
AD-Al64 129 A NETWORK MONITORING FACILITY FOR A DISTRIBUTED DATA 1/4
BASE MANAGEMENT SYSTEM(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFS OH SCHOOL OF ENGI J F ROME

UNCLASSIFIED DEC 85 AFIT/GCS/EE/85D-14 F/G 9/2 MLEIIEEEIIIIII
EEEEllEEEEEllE
EEIIEIIEEEEEI
EEIIIIEEIIEEI
EIIIIIEEEEEIIE
EEEEEEEEElhEEE
ElhllEEEEEEIEE

28 W.
A' 122

JJ1.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

IC I

00
A NETWORK MONITORING FACILITY

FOR A DISTRIBUTED DATA BASE MANAGEMENT SYSTEM

THESIS

AFIT/GCS/EE/85D-14 JANICE F. ROWE
Captain USAF

Q. F

Q.: DI FO CSNT T J.T AFTC N L G

_.j WrihtPatrsbon Ai oreBaeuOi
C..).__ A

Lii

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

SI

AFIT/GCS/ENG/85D-14

SELECTEI

SDTICFEB 13D1986

D

A NETWORK MONITORING FACILITY

FOR A DISTRIBUTED DATA BASE MANAGEMENT SYSTEM

THESIS

AFIT/GCS/EE/85D-14 JANICE F. ROWE
Captain USAF

A

i Approved for public release; distribution unlimited

_ p m' " . . , ' 'P e' 4 ',v J ' " ,
"

J " - r ,' r " " - q" • - - .1 , *.

AFIT/GCS/ENG/85D-14

NETWORK MONITORING FACILITY

FOR A

DISTRIBUTED DATA BASE MANAGEMENT SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

* of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the r
NTIS CFi'

Requirements for the Degree of DTIC TAB
Unannounced 0

Masters of Science Justification

By --"" Di-t, ibutionI

Availability Codes

Janice F. Rowe, B.S.
Dit Avail ai~d/or

Captain, USAF Special

December 1985

Approved for public release; distribution unlimited 'I
V . V

y "-4.

Preface

The purpose of this study was to design and implement a performance

monitor for a Distributed Data Base Management System. Although many of

the articles and papers read as preparation for this study mentioned the

need for such a monitor, none contained a detailed examination of what was

to be measured and how the measurements were obtained or presented a

methodology for determining how to conduct such an examination. Capt Paul

D. Bailor, presented with the same problem in his attempt to develop a Data

* Base Management System Performance Monitor, conducted a detailed analysis

of the DDBMS performance evaluation process and included this analysis in

his thesis report. This reference proved invaluable and I would like to

thank Capt Bailor for the completeness of his work, it provided an

excellent guideline for my study.

I would also like to thank my thesis advisor, Dr Thomas Hartrum for

all his help and encouragement as well as the other members of my thesis

committee, Dr Gary Lamont and Major Walter Seward, for their help in

preparing this report. Finally, I wish to thank my husband Mark, who

though faced with a thesis effort of his, own found the time to support and

encourage me in mine.

Janice F. Rowe

ILI

Table of Contents

VOLUME I

Page

Preface ii

List of Figures v

List of Tables. vi

Abstract vii

It. Introduction.

Historical Perspective 1
Background. 4
Summary of Current Knowledge.11
Problem. 14

*Approach 15
Scope 16
Assumptions and Constraints 16
Materials and Equipment 17
Overview of the Thesis. 17

II. Requirements Analysis.18

Introduction 18
General Concepts in Performance Evaluation. 18
Systems Requirements Analysis26
Summary of Chapter Two. 35

III. Systems Design 36

Introduction 36
NETOS Encapsulation Process 36
Preliminary Design Phase. 38
Detailed Design Phase 42
Design Test Plan48
Design Implementation 50
Summary of Chapter Three. 52

44P ii

IV. Implementation and Testing 53

Introduction 53
Monitor Environment 53
Online Monitor Design and Implementation 54
Offline Monitor Design and Implementation 65
Changes to Existing Programs 70
Performance Monitor Testing 72
Summary of Chapter Four78

V. Results, Conclusions and Recommendations 79

Introduction 79

Results from the Study 79
Conclusions about the Study 80
Future Recommendations 80
Final Comments 82

Biblography 83

Vita 85

Appendix A: System EnvironmentA-i

Appendix B: Test DocumentationB-I

Appendix C: Documentation Tools and Techniques C-I

Appendix D: Monitor Installation on an Intel 310 D-I

VOLUME II

Appendix E: Preliminary Systems Design DocumentationE-i

Appendix F: Detailed Systems Design DocumentationF-i

Appendix G: On-line Program Implementation Documentation G-i

Appendix H: Off-line Program Implementation Documentation H-i

Appendix I: Configuration Guide I-i

VOLUME III

Program Source Code

Note: Volume II and Volume III are maintained by Dr. Thomas A. Hartrum,
AFIT/EN.

iv

44

List of Figures

Figure Page

1. Data Base Models 6

2. Typical Distributed Data Network. 8

3. Network Topology 10

4. LSINET DDBMS Current Implementation 13

5. Types of Monitoring Centers 24

6. DDBMS Performance Evaluation Process 28

7. NETOS Message Encapsulation Process 39

8. DDBMS Network Monitor SADT 40

9. Conduct On-line Analysis Activity 41

10. Conduct Off-line Analysis Activity 43

ic 11. Performance Monitor Structure Chart 45

12. On-line Analysis Structure Chart 46

13. Off-line Analysis Structure Chart 49

14. On-line Monitor Input Screen 59

15. On-line Monitor Primary Output Screen 61

16. On-line Monitor Secondary Output Screen 63

17. Off-line Monitor Sample Input Screen 67

18. Off-line Monitor Sample Output Screen 69

"

,

S

List of Tables

Table Page

I. Classic Performance Measures.. 21

II. Selected Performance Metrics.. 33

III. Sample Design Test Plan 51

Sii

.2F

V_ -W W W

Abstract

This investigation designed and implemented a hybrid network

monitoring facility on an existing Distributed Data Base Management

System. Analysis of the performance evaluations goals and objectives for

the complete distributed system (both the layered protocol network and

distributed data base) was accomplished. Two monitoring programs were

developed. The on-line analysis monitor is designed to work with

existing software to calculate metrics involving arrival rates, packet

, counts and arrival times. The off-line analysis monitor, using the

vpackets saved during the on-line session, completes a more detailed
* analysis, providing user selectable metrics in the area of throughput,

response times and utilization. Both programs were extensively tested

using a four phased process which encompassed unit level, integration,

systems and operational testing. Operational testing was accomplished

using an artifical traffic generator program, designed to produce

realistic network traffic.

~vii-

4I

I. Introduction

Over the past decade, the trend in computer systems as been away

from centralized computing systems and towards distributed data pro-

cessing systems. These systems are characterized by the location of

their resources and data at different work sites. Microcomputers,

, .. serving as user workstations as well as storage devices and printers are

distributed to the work areas and connected to other similar work-

stations. System's software and data is shared among all users,

J -. increasing the level of complexity for such systems. Since the system's

resources are shared among several users, it requires a centralized

* management function to insure efficient and effective operation. This

management function relies heavily upon performance evaluation to accom-

N plish its goals. However, the development of performance evaluation

techniques has not kept up with the development of new distributed

systems (2:388). Little work has been done in the area of performance

evaluation for distributed systems beyond the simulation and modeling of

computer networks. Actual performance monitoring is a necessary step

since it can indicate what the system is doing, a prerequisite to under-

;- . stand "why" (19:2).

A Historical Perspective

Before examining distributed data networks and current methods used

in their performance evaluation, it is necessary to understand the back-

ground of these systems and the changes that have occurred in the

computer field over the past twenty years. Early computers were large,

expensive, complicated machines, characterized by a relatively slow

%

operating speed, vacuum tube construction, high electrical consumption

'-5 and special environmental requirements (temperature, humidity, etc).

Referred to as the first generation, these computers performed one opera-

tion at a time, lacking the capability for simultaneous operations

(10:525-530). The software on these machines was rudimentary, usually

consisting of a program loader and some simple utility programs. Periph-

eral devices consisted of a card reader,and a line printer. Jobs on the

system were run in batch mode usually by the programmer. Due to hardware

costs involved and the simplistic nature of the software, computer per-

formance evaluation centered around hardware and was based on such para-

meters as CPU cycle time and instruction execution time (21:2-3).

0Computers gradually evolved over the next ten years. The intro-

duction of larger, less expensive memories, new hardware technology,

better peripheral devices, and improved software aids made computers

easier to use. This second generation can be categorized as having

increased reliability and reduced environment requirements due to

transistor construction (10:525-530). These computers allowed simul-

taneous operations, interactive access and more complicated software.

This software included the introduction of operating systems which pro-

vided a uniform environment for writing and running programs. Hardware

costs far exceeded those of software, so performance evaluation still

centered around hardware performance with some consideration given to

system throughput (21:2-4).

Characterized by integrated circuits, the third generation computers

were smaller, cheaper and faster than those which preceded it (10:532-

554). The computer organization was modular with units, (processor, main

2

47

:I:' :::

"....................
-. -* .* , ..

'. . - ,q* *- J- . - . ~ .

" : -j:'-'< : _: " :' ::j::: : :::::::::::::: -.:' ,::':-::',::~ - ::: : :::::::::::::::: : : ,:i: ' :-:,::, .:::'. ,-:_::.,,. y .-. '

memory and data channels), added or removed to meet changing require-

ments. The third generation saw the introduction of telecommunications,

though early computer networks were mainly used to allow users at one

site to log onto a computer at another site or allow users to transfer

files between sites (9:4-5). Software was changed drastically. Compli-

cated operating systems and control programs were needed to coordinate

the complex hardware configuration, efficiently use multiprogramming

*capabilities, and handle all the terminal communication requirements

(10:1353-1358). The nature of performance evaluation also changed

dramatically. In an article by Henry Lucas, the changing nature was

explained as follows:

"Because the programming system is an integral part of modern
computers, the evaluation process must now consider software as well
as hardware in assessing performance. The capabilities of the
operating system are central to the performance of the computer:
particularly crucial are any multiprogramming and multiprocessing
features. The speed of assembly and compilation plus the execution
of the resultant output code are also of great importance.
Application programs, special telecommunications packages, and
utilities are also part of the computer system and their performance
is a component of total systems performance." (16:79)

The fourth generation has seen the introduction of large and very

large scale integrated circuit design and with it the introduction of

small, inexpensive, highly versatile, mini and micro computers (9:4-5).

These computers are characterized by an increase in abilities, speed and

efficiency, a reduction in costs and elimination of the special environ-

mental requirements of large systems. Improved telecommu'ications tech-

nology has allowed minicomputers to be placed in the work area with the

users (9:4-6). Microcomputers as well as system resources such as

memory, disks and printers are now distributed to the user work areas and

interconnected together, replacing the central computer. While hardware

3

costs have decreased with the introduction of new technology, software

costs have soared (2:79). A system's software can now be expected to

incur as much as eighty percent of the total systems initial development

costs (24). The reason for this rise is the nature of the software

required for distributed systems. The software is much more complex,

* requiring coordination of the tasks occurring at all nodes of the network

(10:1359-1362). Additionally, distributed data base management systems

are needed so the capabilities of the entire network can be available to

each user. The complexity of distributed computer systems causes much of

the software to contain gross inefficiencies that are not suspected by

the designer (19:1-2). It is the goal of performance evaluation in

fourth generation computer systems to detect these inefficiencies. Per-

formance evaluation techniques also need to be changed to reflect the

changing nature of computer systems and the increasing effect of

communications.

Background

This thesis effort was impacted by two different areas, Data Base

* Management and Local Area Networks. Basic concepts in these areas are

described.

Data Base Management. A data base is a collection of interrelated

data, designed to be used by one or more applications, stored so that the

data is independent of the applications which use it, and organized for

rapid retrieval and processing (15:11). The software that manages and

manipulates the data contained within the data base is known as the Data

Base Management System (DBMS). A data base model is used by the DBMS

4

to describe the logical structure of the data base and how it is

processed (15:21). Three of the most commonly used models are:

A. Relational: Based on the theory of relational mathematics, the

data is represented by two dimensional tables (15:149-150). This

model is illustrated in Figure la.

B. Hierarchical: The data is represented as a hierarchy of

elements, organized in a tree-like structure composed of nodes and

links (15:61-62). In this structure, shown in Figure lb, a node may

have exactly one parent but any number of children.

C. Network: The data is represented by a collection of nodes and

links as in the hierarchical model, but a node may have multiple

40
parents (15:69-70). Figure ic illustrates this model.

The data base and its management system, when implemented on a

-. single computer, are referred to as centralized systems while those

spread over a network of computers are called distributed systems. Each

type of system has its own advantages and disadvantages. In a centra-

lized system, some costs (notably personnel and communications) are

reduced, better control is exercised over the data (especially in the

areas of security and data integrity), and the data is more available to

top-level management (8:5-6). The major constraints of a centralized

system are that the system may not be responsive to the user and that it

is more difficult to take advantage of rapidly changing technology. In a

distributed system these disadvantages are avoided. A distributed system

is more responsive since the computers are usually located in the user's

work area, more reliable since a single failure generally will not

prevent the network from functioning in a degraded mode, more economical

5Iv.r

*-COURSE DEPT ROOM INSTRUCTOR UNITS

EE7.64 ENG a6a SEUARD 4
EES-90 EhG 164 b4ARTRUM a
MAS.31 MATH 16a LAULISS 4
EE4.60 EhG so uOFFINO1TON 4
MA4.50 M!ATH 363 aftOUN 3

A. RELATION4AL

CDUPST STUE SKLL

COURSESSTUDEN SKILLS

. NIETRA K

.%. I Q J R 1 . A T A A S E O D E L

PTApS

6D

TEACHnERS KILL

C.HTUR

FIGURE 1.DT AEMDL

IFJ~

-.

7.

4.-

C since the cost of several small systems is usually less than that of a

comparable large system; and more easily upgraded, either with replace-

ment components or additional links and nodes (8:6-7). The major disad-

vantage of a distributed system is its increased complexity. A Distri-

buted Data Base Management System (DDBMS) is more complicated and

difficult to implement. More complex technology is needed to handle the

increased problems of security, data integrity, recoverability and

availability.

An example of a typical distributed data network (23) is shown in

Figure 2. The system is made up of several components: the host sites

* equipped with local data bases and data dictionaries; network interfaces

complete with extended data dictionaries and distributed data base

management systems; and the actual network, the organization of equipment

and lines that provide the communication service. A typical query

(request for data) is serviced first at the local site. The local data

directory is accessed for the location of the data. If the data cannot

be found, the request is passed on to the network interface module where

the query is translated into the DDBMS language and the extended data

directory is accessed for the location of the data. If the location is

found, the query is routed to that site and the response is passed back

to the sending site. If the location cannot be found, a request for data

location if sent to the central data directory which contains the loca-

tion of all of the data items in the system. The central data directory

finds the location of the data and sends that location to the requesting

site which then routes the query to that site (23).

'V.

7

0 .

a w ~ a
aa x

OA~
~ Ca ~a ~W13

c m
z" f

a0

p~9b

* £2

CL

IA* I-

3 3

6ai

This is not to imply that every distributed system works in this

, manner. Some systems have eliminated local or extended data bases and

all inquiries are routed through the centralized data directory. Other

systems have complete data dictionaries at each site in the network. The

important fact about distributed data networks is that all system inter-

action is transparent to the user. For all intents and purposes, the

user is logically, although perhaps not physically, accessing data on his

local system (12).

Local Area Networks. A Local Area Network (LAN) is a communications

system that provides service within a limited geographic area, usually

with a radius of under a mile. These networks can span a building,

• campus or installation and are generally owned by a single entity (17:3).

A LAN is designed to fit the nature of the distributed system it services

and therefore the network can be constructed using a variety of

topologies, the arrangement of links and nodes that make up the network.

The most popular of these topologies are:

A. Star. All the sites in a Star network are joined at a single

point (central site) and all routing is performed at this point

(Figure 3a). This type of network is optimal when the traffic flow

is predominantly from the central site to outer sites. Its biggest

disadvantages are that the central site can be a single point of

failure and the size and capacity of the network is a direct

function of the size and capacity of the central site (9:34-35).

B. Ring. All the sites in this type of network are arranged to

Vform a single unbroken ring (Figure 3b) and messages travel from

site to site around the ring with each site retransmitting the

a

L

MOVE MODE

MODE

A. STAR

S. RING

Bus

N C. oUS

h FICURE 3. NETUORK TOPOLOGY

10

message to the next site. This increases the integrity of the

W . . information in the network since it is verified at each site. The

disadvantage to a ring network is without bypass logic, any site can

be a single point of failure. Installing this logic, increases the

complexity of the system even further (9:35-37).

C. Bus. All the sites are multidropped and share a single, fully

connected channel (Figure 3c). Messages are broadcast to all sites

with each site responsible for recognizing its address and receiving

its messages. This is the most popular type of network since a

single site's failure doesn't effect the entire ring, there is no

store-and-forward delay and the network is easily configured and

expanded. Its primary disadvantages are the collisions between

network messages and a more difficult fault detection and

isolation (9:38-40).

Summary of Current Knowledge

For a number of years now, the Air Force has been investigating the

feasibility of using distributed data base networks to solve Air Force

Problems. The United States Air Forces in Europe has contracted with

Boeing Corporation to develop a distributed data network for their

intelligence functions. The Strategic Air Command is developing their

* own network, SACDIN, designed to provide a link to their remote operating

., locations.

Due to the impact of these and other efforts, the Air Staff tasked

Rome Air Development Center (RADC) to develop and coordinate the research

and development activities in this area. RADC contracted for research

into distributed data base networks with the Computer Corporation of

America. This contract resulted in the publication of a three volume

paper which detailed the problems of distributed data networks and inves-

tigated possible solutions to these problems. Additionally, RADC has

sponsored several thesis efforts at AFIT which investigated different

aspects of distributed data base networks. Four of those efforts had a

direct effect on this investigation.

The first was an effort conducted by Captain Eric F. Imker (7:1-5)

in 1982 which produced a high level design of a DDBMS for use on the com-

puters in the AFIT Digital Engineering Laboratory (DEL). The second, by

Captain John G. Boeckman (5:1-8), modified and expanded Imker's efforts.

He felt that the primary purpose of a distributed data base was to allow

* the user to access several data bases spread over a network as if they

were one. His thesis effort produced the basic design and partial imple-

mentation of such a network. The DDBMS designed by Captain Boeckman

1 0 allowed two relational DBMSs, Dbase II and Ingress, to communicate via

the LSINET located in the AFIT DEL (Figure 4).

The third effort, conducted by Captain Paul D. Bailor (3:1-2 - 1-5),

developed the methodology for conducting a performance monitoring effort

on a centralized DBMS and developing a generalized design for a corre-

sponding DBMS software performance monitor. This effort included an

extensive requirements analysis in the area of performance evaluation on

centralized computer systems. The fourth, a continuation of Captain

Bailor's effort, was conducted by Captain Timothy D. Bruner (6:1-1 - I-

7). This effort continued Bailor's work by developing and implementing a

user friendly interface to the existing DBMS performance monitor. This

interface was intended to facilitate the job of the Data Base

612

.4 USER
SYSTE-

0

,.

FIGU[4. L SINT ODlPI CURRENT !I~PLP ENTATI[ON

C
A(S ll)

-SYSTEM

%"%

? 13
%4

Administrator by allowing the option of selecting the performance

% ' parameters to be modified.

A fifth thesis effort that affected this study was conducted simul-

taneously with this effort by Capt James Wedertz. His effort was

directed at furthering the implementation of the DDBMS designed by

Captain Boeckman. He concentrated on fully implementing a centralized

data directory and to the extent possible his study was used to provide

ai LSINET DDBMS message formats and performance goals for this thesis

investigation.

Problem

The DDBMS software, as implemented on the LSINET, had no performance

* metrics included. Therefore there was no means, other than visual

inspection, of evaluating the performance of the software or network.

Additionally, several other thesis efforts were underway that would have

benefited from DDBMS and network performance evaluation. Finally, since

the data base is a resource shared among several users, it required a

centralized management function to insure the DDBMS was efficiently and

effectively utilized. Questions that needed to be answered by this

management function included: where should the data be stored, how

should the data be organized, what functions of the data base need to be

e distributed, how to insure data base integrity, and how responsive is the

network to the user. This management function would have been assisted

by the implementation of a network monitor. Therefore the goal of this

effort was to expand on Captains Imker's and Boeckman's efforts by

designing and implementing a network traffic monitor capable of:

4 A. generating real-time, on-line performance statistics.

14

B. generating off-line reports, summarizing performance statistics

."\" over a yet undetermined period of time.

C. handling the maximum traffic load of the network.

Approach

This thesis effort was accomplished in the following four phases:

A. Research

B. Requirement Analysis

C. Systems Design

D. Implementation and Testing

During the research phase, the various aspects of the problem were

fully investigated. A review of previous thesis efforts as well as the

6published articles and books was conducted to become familiar with the

concepts involved. The operations manuals for the LSI 11 micro-computer

systems and the LSINET (14) as well as the available notes on the RT-11

Operating System and the Network Operating System (14) were also reviewed

to become more familiar with the operation of the actual network.

In the requirements analysis phase, the actual performance metrics

to be used were derived from the material reviewed in phase one and from

other AFIT thesis students pursuing topics in related areas. The message

traffic on the LSINET was analyzed to see how it could be used or modi-

fied to provide the required measurements. Also during this phase, deci-

sions on the presentation of the metrics (on line, off-line, graphic,

tabular), were made.

During the Systems Design phase the activities encompassing a per-

formance evaluation monitor were determined and the processes required to

accomplish these activities designed. Those processes included the On-

15

6%

line Analysis process which represents the software module that will

'.. receive all traffic from the network, store it for off-line analysis and

generate the on-line performance statistics and the Off-line Analysis

Process which represents the software module that will generate the off-

line performance statistics.

Finally in the implementation and test phase, the software processes

designed during the system design phase were coded, integrated and

tested. An artificial traffic generator was used to insure accurate and

repeatable results and the software was modified as necessary.

Scope

This study developed a set of performance objectives for the LSINET

DDBMS and generated the design of a performance monitor based upon those

objectives. Every attempt was made to design a monitor general enough to

be used with any type of standard network topology although this study

only implemented the design on the current network (star topology).

Every attempt was also made to fully implement an operational monitor for

the LSINET DDBMS subject to the constraints given below.

Assumptions and Constraints

A. The LSINET DDBMS message format and the NETOS communications

protocol frame format as shown in Appendix A, System Environment, corre-

spond to the actual format of the packets transferred by the LSINET.

Changes in either of these formats will necessitate a change in the

monitor programs since they are both format dependent.

16

4.' , " . ' .- . % o ' . - -' ' - '. '' ' - ' ' . - ' . . .'. " ' ' - " . - . ' ' ' ' ' ' ' ' ' "

B. The LSINET DDBMS will be operational and capable of generating

usable network traffic for the monitor. If this is not the case, opera-

tional acceptance testing of the monitor will be eliminated.

Materials and Equipment

This thesis effort required access to a dedicated workstation on the

LSINET. This equipment was available in the AFIT DEL.

Overview of Thesis

The format of this report follows the approach detailed earlier.

...C Chapter II provides a description of the requirements analysis conducted

on the necessary functions of the network monitor. Chapter III presents

the systems design of the Network monitor for use on the LSINET. Chapter

IV describes the implementation procedures used and the testing conducted

in the evaluation of the monitor. Chapter V summarizes the results of

" this thesis and recommends actions to be taken for further thesis

efforts.
4%q.

-4

4'". .4

p,.. .

17

IL

"M.

II. Requirements Analysis

Introduction

This chapter presents the results of the analysis performed on the

problem of designing and implementing a Network Performance Monitor for

the Digital Equipment Laboratories Distributed Data Base Management Sys-

Ntem (LSINET DDBMS). In order to satisfy the requirements of all readers,

Nit is divided into two sections. The first deals with general concepts

in the area of performance evaluation and presents a methodology for the

process of developing a network performance monitor. Readers familiar

4 with the general concepts involved in performance monitoring and evalua-

tion may wish to skip to the second section which applies the concepts

discussed in the first section to the problem of developing a performance

monitor for the LSINET DDBMS.

General Concepts in Performance Evaluation

The first problem encountered in performance evaluation is the

meaning of the word performance. Since performance is a qualitative mea-

sure and highly subjective to the needs of the people involved with the

system, it has many different interpretations (21:8). Performance has

been loosely defined as the effectiveness with which the resources of a

system are utilized toward meeting its objectives (21:8). That defini-

tion, loosely paraphrased as "how well the system does what it was

intended to do", will suffice for this thesis.

Based on this definition, performance evaluation can be defined as

the process of collecting and analyzing a system's performance informa-

tion and comparing it to that system's desired capabilities. In the case

of a distributed data network, this task becomes more difficult since the

,

18

.

'_ system referred to is the entire distributed network including the hard-

ware and software at each site as well as the organization of lines and

equipment that make up the communications network. Each of these compo-

nents must be examined individually to determine its individual perfor-

mance and the system must then be evaluated as a whole to determine

overall performance. There are basically four steps in the process of

performance evaluation: determine the goal of the evaluation, determine

what to measure, determine how to measure it, and analyze the results of

the measurement (11:26-32). Each step is described in more detail below.

Determine the Goal of the Performance Evaluation. The main purpose

* of the measurement and evaluation of a computer or communication system

are: to aid in the design of hardware and software, to aid in the system

selection process, and to provide data on the actual performance of an

existing system (16:79-81). The first two purposes are accomplished pri-

marily through simulation and modeling and are not included in the scope

of this thesis. The third purpose is usually accomplished through per-

formance monitoring, a method of collecting data on the performance of an

existing system through the prolonged observation of the system's

behavior (21:79). Once the purpose of the evaluation has been

established, the actual goals of that evaluation can be determined. The

general goal of performance monitoring is to gain an insight into system

behavior either to improve performance or to add functionality. This

general goal can be divided into more specific goals such as: evaluate

network traffic and characteristics, lower costs, determine level of per-

formance, support network management and determine availability and

reliability.

%',

.r, 19

0-

N ~ ~ . -- --. -~W%

Determine What to Measure. Once the goals of the evaluation are

established, the next step is to determine the actual performance

measures (21:76). These measures are influenced by two criteria, the

purpose of the system and the viewpoint of the evaluation (19:3-5).The

purpose of the system refers to what the system's role is. Performance

of a system can be discussed only in the context of what the system is

required to do (21:10). For example, if the system is a real time, fee-

for-service network, response time may become the primary performance

measure. If however, it is installed in a hospital, reliability might be

more important. The second criteria is the viewpoint of the evaluation.

* Measurement evaluated from the user's viewpoint might be more concerned

with the function of an individual site as it relates to the entire

system, i.e. response time. Measurement evaluated at the system admin-

(X. istrator level would be more concerned with the function of the overall

system, and measures such as throughput and utilization might be

considered more important.

Generally, there are three classic performance measures used to eva-

luate computer systems: throughput (task completions per time unit);

response time (interval of time starting when a user submitted a request

and ending when a response is obtained); and resource utilization

(percentage of time the resource is in use). As seen in Table I, these

* measures are applicable at each level of a distributed data network.

These measures encompass a great many individual performance metrics,

discussed in detail in the second section of this chapter.

Determine How to Measure It. The third step in performance

evaluation is to determine how to obtain data on the selected performance

S 20

TABLE I

Classic Performance Metrics (16:79)

Level: Parameter Description

NETWORK:

Throughput Number of messages transmitted per unit time

Response Time Interval of time starting when a message enters
the network and ending when an acknowledgement is
received by the sending node

Utilization Percentage of time each of the nodes and links
are in use

DBMS:

Throughput Number of queries executed at a local DBMS per
unit time

Response Time Interval of time starting when a query is
submitted to the local DBMS and ending when a
reply is returned

Utilization Percentage of time each of the local DBMSs are is

use

DDBMS:

Throughput Number of queries executed by the distributed
system per unit time

I Response Time Interval of time starting when the user submits a
* query and ending when a response is received by

the user

Utilization Percentage of time each of the components in the
Distributed Network is in use

X '21

metrics. As mentioned above, performance monitoring is the method of

collecting data on the actual performance of an existing system (21:79-

80). A performance monitor is the tool that facilitates the performance

analysis and evaluation. Its main functions are event detection, data

collection, data reduction, and presentation of results (10:362). A per-

formance monitor usually falls into one of three categories: software,

hardware or hybrid.

A software monitor is a program, incorporated into the operating

system or applications program, that is capable of measuring the perfor-

mance of either computer systems or computer programs (10:1362). This

type of monitor can either be of the event driven or sampling type. An

event driven monitor is activated by a specific event, an instruction or

flag for instance. Upon the occurrence of this condition, the monitor is

activated, the event noted and the monitor deactivated until the next

occurrence (10:1362). A sampling monitor is similar to an event driven

monitor but it is activated by an interval timer, collects data about the

system for a set period of time and then is deactivated by a timer. A

typical use for a software monitor can be seen in a job accounting system

'4 where the hardware resource utilization, memory utilization, amount of

input/output, and CPU time are calculated for each job. The largest dis-

advantage of a software monitor lies in the fact that it introduces addi-

tional software overhead to the system and extra timing considerations

must be made to insure that the monitor does not interfere with the

normal operation of the computer system.

A hardware monitor is a device which measures electrical events

(e.g. pulses, voltage levels) in a digital computer (10:679). It is used

22
4t

to gather data for measurement and evaluation of computer systems, parti-

cularly computer hardware fault detection and isolation. A hardware

monitor consists of several components including probes, logic circuits,

counters, comparators and data transfer registers. As an example of use,

the hardware monitor might be connected to measure the busy time for a

CPU and I/O channel controller, and determine their overlap with an end

goal of determining the efficiency to the multiprocessing system

(10:680). The biggest disadvantage is that a hardware monitor only mea-

sures specific electrical events at predetermined points.

The disadvantages of the hardware and software monitors are solved

in part by the hybrid monitor which combines elements of both the hard-

ware and software monitors. Residing in a separate processor, the hybrid

monitor can be fed data from the operating system of the computer as well

as through probes. The major advantage of the hybrid monitor is that it

allows accurate and comprehensive monitoring of the entire computer

system. Its primary disadvantage is that it adds another level of com-

plexity to an already complicated system (21:79).

Once the type of monitor is selected, a decision must also be made

as to the type, centralized, distributed, or hybrid, of monitoring cen-

ter. A centralized monitor appears as another site on the communications

network (Figure 5-A). It must be capable of receiving all network mes-

sage traffic (universal receiver). Additionally it must be capable of

recognizing and responding to traffic routed specifically to it (i.e.

update messages). The distributed center has connections to each site in

the network (Figure 5-B). Completed messages are sent to this center

along with the performance statistics for each message. The disadvantage

23

'i%

COMLL41NCAT IONS Bus

A. CENTRALIZED

MOD

CoQNMIWCATZOfS Bus

.J 3. DISTRIBUTED

COMUICATIONS $US
4 4

-. - ,IOIO.- T
- S 4•

C. NYBRID

FIGURE S. TYPES OF MONITORING CENTEWS

24

of this type of center are the excessive communications involved to con-

nect each site in the network twice and the software overhead at each

site required to handle message flow (2:390). As in the case of types of

monitors, the problems of monitor location are largely solved by a hybrid

monitoring center (Figure 5-C). This type of center appears as another

site on the network and like the centralized monitoring center it must be

a universal receiver. Additionally, selected sites have monitoring soft-

ware installed at their nodes and with it perform local analysis on their

message traffic. The results of this local analysis are sent to the

hybrid monitor either via the network or over direct links where they are

" 4 combined with the rest of the analysis results. The advantage of the

.0 hybrid monitor is that it presents a more complete analysis of the net-

work than is possible with either the centralized or distributed moni-

toring center. Its chief disadvantage is the increased software complex-

ity, the increased communications requirements and the increased delays.

Finally, the type of presentation, either on-line or off-line or

some combination of the two, must be considered. Several factors weigh

on this decision. First, if on-line presentation is used, decisions must

be made as to which performance metrics to present, how to present them

N (graphically or via a report), how often to update the presentation (with

every new message or at specific time periods), and how to handle

incoming messages while the on-line system is being run. If an off-line

presentation is used, the decisions to be made include which performance

metrics to present, how to present them, how often to run the performance

monitor program.

25

.%

Analyze the Results of the Measurement. Perhaps the most important

step in the performance evaluation process is the analysis of the results

of the measures. It is during this step that the conclusions are drawn

from the graphs, tables and reports produced by the monitor. These con-
clusions consist of an evaluation of existing system performance and

recommendations for system improvements. In short, they provide

necessary feedback on actual system performance. The administrator com-

pares these conclusions with the goals laid out in step one and deter-

mines what changes, either system tuning or upgrading, is needed to

better achieve these goals.

Systems Requirements Analysis

This section details the results of the requirements analysis per-

formed on the problem of developing a network performance monitor for the

LSINET DDBMS. Readers unfamiliar with the specific environment, either

the LSINET or the LSINET DDBMS and NETOS software that operate on the

LSINET, are referred to Appendix A, System Environment. As described

above, there are basically four steps in the process of performance eval-

uation: Determine the goal of the evaluation, determine what to measure,

determine how to measure it and analyze the results of the measurements.

In this part of the chapter, those steps have been applied to the problem

,and are discussed below. Prior to that discussion, however, a brief

overview of previous studies and an analysis of the DDBMS performance

evaluation process is presented.

Overview of Previous Studies. A review of the current literature

available on the subjects of Distributed Networks, Distributed Data

". Bases, and Performance Evaluation for both Computer and Communication

26

o
1.°

W7 .77-7- o

Systems aided greatly in supplementing background information for this

study, but produced little information on the problem of performance

evaluation of a DDBMS. Captain Bailor, noting this problem in his thesis

effort (3:11-24) conducted a detailed analysis of the DBMS performance

process. That analysis is expanded in this study to cover the DDBMS per-

formance process. Readers requiring more detailed information of the

analysis process used are referred to Captain Bailor's study.

DDBMS Performance Analysis. The detailed analysis of the perfor-

mance evaluation problem begins with an examination of the performance

evaluation process for a DDBMS. This process is illustrated in Figure 6.

*In this figure, the users of the DDBMS generate the system inputs (DDBMS

*. workload) and receive its output (completed work). The "service work-

* - load" process refers to general computer tasks such as responding to

users' queries, running applications programs and printing reports and is

not restricted to only DDBMS workload. The "determine DDBMS performance

objectives" process is crucial to this study and is discussed in detail

below. This process is a subset of the "DBMS performance evaluation"

process which in turn is a subset of computer performance evaluation

(3:11-30). The overall system is monitored to determine its effective-

ness, capability to process a given workload, and efficiency, capability

to process while minimizing resources used. Additionally, specific per-

formance objectives for the DDBMS are established from the workload of

the users, as well as the management requirements and objectives of the

Network Manager or Data Base Administrator. These performance objectives

along with the effectiveness and efficiency measures are inputs to the

actual analysis process which uses these inputs to produce results for

1. 6 q %27

DAABAEDTABS

SERVICEMC

OJCI E FFCIEESMAUE

DETEMINUANLYZ

PIGLP 6. DDRSPERFORM~ANCE CAUTO RCS

REQUIEMENT OBCTIVE !X-31

PEFO-AC

OBETVS EUT

28

.1%-

the network manager. These results are used to determine how well the

DDBMS is performing or to recommend changes to improve performance.

LSINET DDBMS Performance Objectives. As mentioned above, one of the

most critical areas in performance evaluation is determining the system

performance objectives. Without specific objectives, it is useless to

monitor the performance of the DDBMS since there is no predetermined

acceptable level or standard of comparison. The approach of "measure

everything" is flawed since vast quantities of useless information are

usually provided and must be sifted through to find the desired informa-

tion and in most cases requires a prohibitive amount of storage (2:391).

Also this method wastes system resources, computing and storing metrics

that will never be used. A more goal oriented approach is preferred with

the objectives of the analysis defined first and then the data and tech-

niques required to meet the objectives determined (13:1).

The first step of performance evaluation, determining the perfor-

mance objectives, must be accomplished in light of the role of the

system being evaluated. In this case, the system under evaluation is the

LSINET DDBMS as installed on the LSINET. Both are currently in an inter-

V mediate stage of development and several efforts are underway to enhance

their capabilities. The role of the LSINET can best be considered as

that of an educational test bed. Its use is a function of the projects

tasked to the students who us , it, and its users change form quarter to

quarter. The objective of a DDBMS is to allow the user to access several

different local data bases spread over a network as if they were one. As

currently implemented, the LSINET DDBMS allows a user to access two rela-

tional DBMSs. The users of this system are students involved in thesis

29

0

• -... , " ' ' "" ' " "| " " ' '- ' I " ' : a d " I

work to upgrade its capabilities and to allow any user to access any of

the installed DBMSs. These users need the ability to evaluate their mod-

ifications to the system and to compare these modifications to a baseline

system. In other words, these students need the ability to conduct

before and after performance tests to determine to what degree their mod-

ifications have affected system performance. For these reasons, the goal

of performance monitoring the LSINET DDBMS will center more around deter-

mining the system's efficiency (the quantitative measures of the system's

capacity such as component utilization and internal delays) and place

less emphasis upon the system's effectiveness (the capability to meet

given constraints such as throughput, time requirements or minimum

0workload)(21:14).

Given a general goal of determining the system's efficiency, the

problem of selecting specific areas or indices that best determine this

efficiency remains. The specific indices chosen for the LSINET DDBMS

system are detailed below along with the reasons for selection.

External System Delay. Defined by such terms as query turnaround

time or response time, this is a measure of the time elapsed between

input of a user request and receipt of response (21:17). This index
4'

is valuable since it will provide the user with the ability to

measure the overall effect of the proposed modification in terms of

a change in overall delay.

Productivity. This index is defined as the volume of information

processed by a system in a unit of time (3:B18). Inclusion of this

index will allow a user to determine how well the system performs

under differing algorithms or workloads and can assist in answering

30

... v. M PP,

-i V - - - --- -- --- --- -- --- --

* questions such as where should the data be located and how can it be

distributed.

Responsiveness. Also known as internal system delay, this index is

a measure of the time between input to a specific component and the

appearance of a corresponding output (3:B19). This is valuable

since it allows for measurement of exact values at a component

level, an aid to users who wish to determine the effect of their

modifications on specific system components.

Allocation. Defined as the types and amounts of resources requested

by or allocated to tasks, this index is useful for users wishing to

trace their modifications or queries in terms of resources used.

Utilization. This index is defined as the percentage of time the

system and its resources are in use. It is useful since it will

allow the users to see how their modifications improve or degrade

component utilization and determine bottlenecks or "heavily"

utilized resources.

Given the goal of determining the system's efficiency in the areas

outlined above, the next step involved the selection of a set of perfor-

mance metrics that encompass the desired indices. At the same time, some

consideration had to be given to the problems of how and when to measure

the selected metrics. Answers to these questions were necessary to

insure that the metrics selected were measurable under the current LSINET

DDBMS system and were meaningful to the method of monitoring selected

(on-line or off-line). Metrics such as number of outstanding queries or

time of last message receipt are of minimal value in an off-line monitor

environment. Additionally, the metrics selected to be monitored in an

31

I

on-line mode should reflect parameters that can be resolved in a real

time mode. For example, say one of the on-line performance metrics is

the number of successful access made to an extended data dictionary and

the value observed at the time of monitoring was zero. This would
4probably indicate that there was a problem with the extended directory.

Although this is an interesting fact, it is meaningless in a real time

environment unless the problem can be corrected in a real time mode. An

example of a metric correctable in a real time environment is that of

site status. If a site becomes non-operational, this is a useful fact in

real time since a number of actions can be undertaken including halting

the message traffic to that site and contacting the site to attempt to

O
re-initiate it.

This difference between meaningful and non-meaningful on-line

metrics becomes important when the actual metrics selected for monitoring

by the LSINET DDBMS monitor are chosen. The determination of whether and

where the metric should be monitored was largely a function of the answer

to the question, "Is it meaningful in this environment and required by

the objectives". Due to the limited system resources, on-line monitoring

was restricted to metrics that were very meaningful in a real time

environment. All others were deferred to indepth, off-line monitoring.

_* The selected metrics along with a description, method of presentation and

reference (if applicable) are given in Table II.

32

0O

TABLE II

./. "-~ Selected Performance Metrics

METRIC DESCRIPTION REF MODE

active sites the sites currently active on None Online
the network, this metric can
include all possible sites or
just DDBMS sites

active process the number of DDBMS processes (12) Online
active at any given time on the
network

network total and average amount of (2) Online
thruput network traffic Offline

* DDBMS total and average amount of (3) Online
thruput traffic generated by the DDBMS Offline

network delay time beginning when a message is (22) Offline

submitted to the network and
ending when it is received by
the destination

DDBMS time beginning when a querry is (3) Offline
. response time submitted and ending when a

response is received

DDBMS the number of times a dictionary (12) Offline
Dictionary was accessed during an online
Usage session, including the success

rate of the access

DDBMS the number and frequency of (3) Offline

V- Dictionary dictionary updates during the
Updates online session

I3-

-2

".- .

TABLE II

Selected Performance Metrics (Continued)

METRIC DESCRIPTION REF MODE

Network The total traffic flow per (2) Offline
Traffic source destination link

.Distribution

DDBMS The total DDBMS traffic flow per (2) Offline
Traffic source destination link
Distribution

DDBMS The distribution of the message None Offline
Message by the type received
Distribution

DDBMS Loading The ratio of the number of (22) Offline
Factor messages generated by a node

to the total number of messages
generated

Number of The number of packets received (12) Online
Packets Queued by the monitor and awaiting

processing

Average Packet The time required to analyze a (22) Online
Service Time single packet

3
" 34

4.4

- ' - s. -" ..- ., ° '.' '. - • ' t - .- -. '. "° . - %' i'.' ' . . " '- .. .-. .'.4. -'

Summary of Chapter Two

This chapte: presented the requirements analysis of the stated pro-

blem. Genera, concepts in the area of performance measurement and evalu-

ation were explained and a development methodology proposed. This metho-

". dology was then applied to the problem and the questions concerning the

goals of the performance evaluation and what to measure were answered.

-.4 Finally the performance metrics to be included in the actual monitor and

used in the detailed design stage were defined.

&

35

III. System Design

Introduction

This chapter presents the systems design process conducted for the

LSINET DDBMS performance monitor. The requirements and objectives pre-

sented in chapter two form the basis of the design process. The design

process was accomplished in two phases, preliminary system design and

detailed system design. The preliminary system design phase consisted of a

functional requirements analysis documented with Structured Analysis and

Design Technique (SADT) diagrams. The detailed system design phase

included design of program structure and flow. This phase is documented

using structure charts. Both the SADTs and structure charts along with

their associated data directories were prepared in accordance with estab-

lished AFIT standards. Those readers unfamiliar with these tools are

referred to Appendix C, Documentation Tools and Techniques. Prior to pre-

IW senting an overview of each design phase, this chapter describes the NETOS

encapsulation process upon which both design phases depend for message for-

mats. This chapter concludes with a discussion of the design level the

test plan and a discussion of the design implementation constraints in the

actual LSINET DDBMS monitor.

NETOS Encapsulation Process

The NETOS encapsulation process was designed to conform to the seven-

layer Open Systems Interconnection reference model developed by the Inter-

national Standards Organization (22:15-17). The process begins at the

application layer, (ISO Layer 7) with the creation of a information block

to be transmitted. This information block can be a string, buffer or

entire file, and originate from either the network or LSINET DDBMS system.

36

r

If the information block to be transmitted is of type LSINET DDBMS, the

DDBMS header which includes source and destination identification, unique

process identification, a message type, and a time stamp showing time the

message was created is appended to the beginning of the block and the block

together with the source and destination nodes are transmitted to the pre-

sentation layer, (ISO Layer 6).

At the presentation layer, the information block is reviewed and if a

file is to be transmitted, the file size is calculated and a pointer to the

file is created. The information block (complete with DDBMS header if

applicable), the file size, and the source and destination nodes are then

transmitted to the session layer (ISO Layer 5). Here the source and desti-

nation nodes are transformed into their NETOS equivalent and a source and

destination process number determined. The information block is divided

into fixed size data buffers. The number of buffers required to transmit

the complete message is calculated and a count of the number of buffers

currently transmitted is maintained. The total and current buffer counts

are appended as the layer five header to the data buffers and the entire

buffer as well as the NETOS source, source process number, destination and

destination process number are then passed to the transport layer (ISO

Layer 4).

At layer 4, the data buffers are divided into messages. The layer 4

header consisting of the source, source process number, destination, desti-

nation process number, sequence number (which indicates the sequence number

of the message in the data buffer) and use (set to one to indicate the mes-

' -sage originated at the transport layer) is affixed to the beginning of the

message and the entire message passed to the network layer along with

37

~|

source and destination (duplicating the two fields within the layer 4

header). At layer 3 the source and destination along with a use field are

attached to the beginning of the message and a time stamp appended to the

end to form a packet. Additionally, the destination is used to determine

the port identification. The port identification and the packet are then

transferred to the data link layer (ISO Layer 4). Here, a start of text

character is attached to the beginning of the packet, a check sum calcu-

lated and appended to the end to form the frame. This frame is sent along

with the port identification to the physical layer (ISO Layer 1) which

transmits it across the network. This process is shown in Figure 7.

Preliminary Design Phase

* The first level LSINET DDBMS Performance Monitor SADT, shown in

Figure 8, was developed directly from the requirement for both an on-line

and off-line monitor detailed in the previous chapter. The "control

monitor" activity is responsible for any initialization required as well as

for the program flow. Two types of monitor activities are desired. The

"conduct on-line analysis" activity has as inputs the message packets from

the LSINET. These packets are analyzed and the results of this analysis

displayed as performance reports. Additional outputs include CRT messages

informing the user of any error conditions and an updated message file con-

taining a copy of all of the message traffic received. The "conduct off-

ii line analysis" activity uses this updated message file to conduct in-depth

performance analysis once again producing as output performance reports or

CRT error messages.

",..*

** 38

IV

w I II I

I SI
I#

4A i p '

I I I I I
* I I I 4

0 M

4,

03

Pwl pq

-Vu

.44

04 D

AI

00

C9A

:0

212-

-4 I

IIA

V.m b' 0

0 _Z4,-
D) M

ov a

qaa

ma a 0

40

The second level consists of two SADTs, one for each of the analysis

activities described above. The first, the "conduct on-line analysis"

Activity, shown in Figure 9, decomposes into four separate activities:

"available packet", "transfer packet", "analyze message", and "display on-

line results". Each of these activities is described below:

Available Packet. This activity monitors the network for the receipt

of a message packet. When the message is received, it stores the message

in the packet storage area and signals the receipt of a packet to activate

the next activity.

Transfer Packet. This activity is responsible for storing the

incoming packets in a temporary storage area known as the "tempq". Each

packet is sorted into records according to its source host and process num-

ber. When enough packets have been received to form a complete record

ready for analysis, this activity moves the entry to a permanent storage

area known as the "permq" and signals that an entry is ready for analysis.

If enough packets are not yet available, control returns to the "available

packet" activity. Finally this activity is responsible for updating the

message file with a copy of the received packet.

Analyze Packet. This activity is responsible for analyzing the data

present in the "permq" entry, modifying the previously calculated perfor-

*I mance metrics based on the new information, updating the results records

and then signaling when analysis is completed.

p.

40

O

.44A
.- am

1 2Z

-4 -4I

-44

In An

CC

2,a

*u-- nC
fq 10l -

Vpr n p .

.- 6
4 1

4%4

Display Results. This activity updates the on-line performance report

screens displayed for the user.

Similarly, the "conduct off-line analysis" activity shown in Figure 10

can be broken down into the activities described below:

Transform Message File. This activity is responsible for taking

inputs from the message file and presenting them to the "conduct off -line

analysis" activity in a form designed to aid analysis. (An example might

be the reconstructing of the DDBMS packets into partial messages for

analysis.) This transformation should take place without destroying the

original message file and control should pass to the "conduct off-line

analysis" activity whenever a complete entry is available for analysis.

Analyze Off-line Messages. This activity is responsible for analyzing

the data present in the file entries provided by the "transform message

file" activity. The selection of the actual performance metrics analyzed

is accomplished via user inputs. Upon complete analysis of the message

file, this activity signals the completion of the analysis process.

Display Off-line Reports. This activity generates a comprehensive set

of output reports upon completion of the analysis process.

For readers desiring more detail on the preliminary systems design

process, a complete design package including the third level SADTs and data

directory entries for each of the activities and data elements is provided

in Appendix E, Preliminary Systems Design Documentation.

Detailed Design Phase

Upon completion of the preliminary design phase, the detailed design

phase commenced. This phase was responsible for detailing program

structure and flow of control. This was accomplished using structure

' Vv 42

pd.2,

itY'

F~IF

:30

m G

2 r<"

D Cu

)goi

,S... U <"

*IA M C

IP c

VA 4

'I'

N

., .3

.?I.'
i-'""

Lo-2 0o 3 0

charts to enhance and clarify the SADTs developed earlier. The high level

structure charts for the "on-line" and "off-line" processes are described

below with differences between the structure charts and their associated

SADTs noted. A complete set of structure charts and associated data

directory entries is provided in Appendix F, Detailed Systems Design Docu-

mentation.

The first level structure chart shown in Figure 11 is directly derived

from the first level SADT (Figure 8). In this structure, program control

flows between the "control monitor" process and the "on-line analysis" and

"off-line analysis" processes with process selection determined by user

input. Inter-dependencies between second level processes are kept to a

minimum with the only shared parameter being the message file created by

the "on-line analysis" process and used by the "off-line analysis" process.

V The second level structure charts detail the operation of each of the

analysis processes. The first, the "on-line analysis" process, is shown is

Figure 12. It differs somewhat from its associated second level SADT

"- . (Figure 9), reflecting the need for initialization and error detection not

specifically covered in the SADT. This process decomposes into the

following third level processes:

Init Qryscn. This process is responsible for querying the users for

the on-line performance metrics to be displayed by the real time monitor.

This process, not envisioned during the preliminary design phase, resulted

from the decision to allow the user to tailor the monitor to the largest

extent possible, displaying the specific performance results that meet the

user s needs.

44

MSG FILE SG FILE

FIGUME 11. PERFORM~ANCE MONIITOR STRUCTURE CHART

45

ONLINE

ANALYSISrA.S.O

A0

DOME

STATUS STATUS STATUS

INIT UPDATE
QS RN RSLTS

MNIT FM FX AVAIL. XFER. ANALYZ
l eLINE NEfERR PKT PICT PKT

SA. 3a A.4 A.S. A.6.0

FIGURE 12. ONLINE ANALYSIS STRUCTURE CHART

* .4

Z46

4,',

.- *. Init On-line. This process provides initialization for any required

global values and structures and was originally included as part of the

control monitor functions in the preliminary design phase. The decision to

move it resulted from the decision to minimize the inter-dependencies

between the "on-line analysis" and "off-line analysis" processes.

Fix Memerr. Although not included in the preliminary design SADTs,

the on-line monitor requires the ability to continue operations when faced

with correctable errors (such as an out of memory condition). This process

is responsible for providing this ability, re-initializing the monitor

while minimizing the loss of data and insuring the result's integrity.

Avail Packet. This process corresponds directly with the "avail

packet" activity described above. A status signal is returned to the

calling process (on-line analysis), informing that process when a message

packet is available.

Xfer Packet. Corresponding to the "transfer packet" activity, this

process is responsible for storing the packet into the appropriate record,

(either "tempq" or "permq") and signaling the calling process (on-line

analysis) via a status flag when a complete entry is ready for analysis.

Analyze Pkt. This process is responsible for performing the on-line

analysis on the completed entries and updating the results statistics as

necessary. The process corresponds directly to the "analyze message"

activity in the SADTs.

Update Rslts. This process, corresponding to the "display results"

activity in the SADTs, is responsible for structuring and displaying the

on-line results.

47

%

The second layer structure chart for the "off-line analysis: process

as shown in Figure 13, differs drastically from its related SADT

(Figure 10). This difference reflects the decision to keep the "off-line

analysis" process as independent and modularized as possible. Reasons for

this decision are covered in the section that discusses the use of the

design in the actual LSINET DDBMS monitor. The result of this decision

however, is the segregation of each of the performance metrics with the

activities presented in the SADT implied in each of the second layer pro-

cesses. Each of the processes is described below:

Det Thru Put. This process is responsible for querying the user for

the type of thruput to be measured (Network or DDBMS) and the type of

results display desired. Based upon the replies to these queries, analysis

of the message file is conducted, and the resulting statistics displayed

for the user in the desired format.

Det Resp Time. This process is responsible for analyzing the message

file contents to determine the response times for the selected performance

metric. Response time can be determined for Network or DDBMS traffic, and

on a packet or message level.

Det Dict Access. This process is responsible for conducting the

analysis of the message file that determines the access statistics for the

DDBMS central, local, and extended Data Directories.

Design Test Plan

The design level test plan developed in conjunction with the Detailed

Design Phase, served three purposes. First, it insured that all of the

possible inputs to each process was discovered and their results antici-

9pated. Second, it served as a guide to the actual software implementation

48

OFFL IKE

4%

.. 4.

ANALYSI

GE? DET RESP DET DICT
TI,,uPUT TIME ACCESS

' 4. .2.0 3.3.0

FIGURE 13. OFF-LINE AtALvSIS STRUCTURE CHART

,.-4

R", , ".". . . ""-. '--'".., ". . % ,%. -,. -.. ,.

allowing for greater program clarity and completeness. Third, it was used

as a major portion of the module level test plan required in the implemen-

tation and test phase. This design test plan is written with the overall

intent to test the validity of the design (i.e. to find errors in the

design) and so is extremely detailed. When incorporated in the implementa-

tion phase test plan, it will serve to accomplish module level correctness

testing. This means that each module will be tested in isolation before

integrated with the rest of the modules. (Integration testing of the

modules is described in detail in the next chapter.) A sample of the

design test plan is shown in Table 3, with the complete plan presented in

J Appendix B, Test Documentation.

Design Implementation

The complete detailed design package included in Appendix F shows the

processes required in implementing the DDBMS performance monitor. To the

" largest extent possible, the design phase was conducted independent of

machine implementation and for that reason some of the design processes

will require restructuring to fit the actual monitor environment. Details

- * ion this restructuring are provided in the next chapter.

The knowledge that this monitor would be running on a minicomputer

with limited amounts of storage space, did effect some portions of the

design package. It reduced the performance metrics monitored in the on-

line session to those that can be analyzed quickly and reacted to in a real

time environment. It also caused the off-line monitor to be designed so

that each set of sub-modules was independent and could be implemented as a

'.-. set of small programs rather than one large one. This design does not

.50

00 0

00) 0

00 ~t,00

(D~t0 (D~1 ~

D (D 1

(D 0). C L '.D

00 00
(D (D

C/,) V)_ M_ _ u V

4-- 0)r Z-rt> r tr "H .
=~~~~~~~~ >. c <r _> r)0 0 v

pi "r) (D)C ~ C

~~~~ 11 00 <L (0D, 0 ~ -

VA P.- 0- ( D CD I - Hj I-3
0) 00 0) ( )r D U)- 0 / 00 >

0 0 00 00 00 Go (D C: C z t

CD

a)CH rCD)C<I El "t CDH .0 a n m O0
0)D 0 ) 0 0)0 0'-0 1 0 a C)wxw
CD(, en Ia. (,) () (D CL H. rr ( D M

rr) CD CD' 0 I-<)OC
D CD Q) M X~~D~ r 0 ( H. (A 0 (n

H. ~0 0)a 0) a) CD CD."H.=
0)0 (D0-t0 H*1m"m " n0r) E CA -

(D m 0 0

-1 Iw 0) )

CA)

51

I0



effect the monitors ability to be implemented on a large scale system. The

monitor has simply been designed to run more efficiently on a small

system.

Summary of Chapter Three

This chapter discussed the two phase system design process conducted

for the LSINET DDBMS. The processes and activities involved in each phases

were described in detail and their Jnterfaces outlined. Additionally a

design level test plan was included and the approach for using the design

in the implementation discussed.

6

A

U

%

52
. ..6 5



IV. Implementation and Testing

Introduction

This chapter discusses the methods used to implement and test the

LSINET DDBMS performance monitor. First, the details the exact monitor

environment are discussed, specifically the hardware and software

selected, network topology, and type of center. Next, descriptions of

the actual programs used to implement the monitor are provided. Although

the performance monitor was originally envisioned as a single program

with two phases, on-line analysis and off-line analysis, this proved

difficult to implement due to the size constraints of the LSI-11 micro-

computers. Instead, it was implemented as two separate programs. Each

of these programs are described fully, including the performance metrics

calculated, module descriptions, input and output screen formats, and all

assumptions made. Finally the complete test plan for the monitor is

described, along with the results of the test.

Monitor Environment

As mentioned previously the performance monitor was implemented on

the LSINET located in the Digital Equipment Laboratory. This network has

,4. a star topology with one node, the central site, responsible for message

* passing. (A complete description of the LSINET and the NETOS communica-

tions protocol is available in Appendix A, Systems Environment.) Unlike

most centralized computing systems, the LSINET contains no software

reporcing tools or cost accounting packages that could be used to assist

in performance analysis. This lack of existing performance monitoring
4"

tools, coupled with the type of network topology, caused the decision to

implement a passive (no traffic generated), hybrid (specialized software

53
4.



i "programs installed on dedicated hardware) monitor at a centralized

(single) site. This minimized the artifact introduced in the existing

communications software and the only change required was to send a copy

of all message traffic to the monitoring center. In a ring or bus

topology, no artifact would have been introduced since in a single source

media, the monitoring center can be configured to be a universal receiver

and a separate copy of each transmitted message is not required.

The actual monitoring center was implemented on an dedicated LSINET

workstation. At first the workstation selected to host the monitor was

an Intel System 310. Difficulties with this device, (detailed in

Appendix D) caused the implementation of the monitor on an operational

LSI-11 workstation instead. No specific workstation is required, but the

central site software only recognizes three nodes and monitor hosts,

systems A, S and K. In keeping with the existing software on the net-

work, all program development was accomplished in Whitesmith's C.

On-line Monitor Design and Implementation

Performance Metrics Calculated. The following is a description of

the performance metrics which are monitored in the on-line session, how

they are obtained and where they are calculated in the on-line program.

* A. Total count of network packets - This is a simple count of all

the packets received by the monitor regardless of packet type and it

is calculated as a simple increment of the value of totnpkt in the

Jmain module.

B. Total count of DDBMS packets - Also a simple count, the

tot ddpkt metric keeps track of all the DDBMS packets received and

is calculated in the xfer_pkt module.

54

4 J V I



%'-:* C. Total processes - Slightly more complicated, the totprc metric

is a count of the total number of unique DDBMS queries received.

It is calculated by monitoring the DDBMS packet for a message type

of "BEG". When this is received, the process number is noted and

the totprc count incremented. The analysis of this metric occurs

in the anlyzpkt module.

D. Active processes - The metric atvprc is a count of the total

number of currently active processes. Calculated in the anlyzpkt

module, this count is incremented when a DDBMS packet of type "BEG"

is received and decremented when type "STP" is received.

E. Active sites - This metric is calculated from the values in the
I

field sarray (site array), a 26 character array that reflects the

site status for each of the 26 allowable sites. A one in any

-- - position means the site is active, a zero means it is inactive.

Initially calculated by interpreting the entries in a DDBMS packet

of type "DRC", the atv site metric is updated with the receipt of

"ASM" and "DSM' type messages. This metric is calculated in the

anlyzpkt by simply counting the number of ones entered in the

sarray field.

E. Inactive sites - The opposite of atvsite, this metric is

calculated during the updaterslts module by subtracting the value

in atvsite from the total number of allowable sites.

F. Arrival Rates - Arrival rates for the network traffic, DDBMS

U traffic and processes are calculated by dividing the total count of

packets received (or processes started) by the length of time the

monitor has been running. Calculated during the anlyz pkt module,

55

P% %

6

P " . d *. .°. - ~ -~ . t~, V **. . **'~ . . -



.*.. these metrics are converted to messages per minute for output.

G. Time last packet received - Calculated during the main module,

'.' *the metric is simply a time stamp showing when the last module was

received. It is printed to the screen when the monitor is receives

a packet for analysis.

H. Number of packets queued - The lvl_2q metric is a count of the

number of packets queued at the ISO 2 level awaiting processing.

Designed somewhat as a semaphore, this metric is incremented when

ISO 2 level receives a packet and decremented when the module

availpkt removes a packet for analysis.

Module Design. The complete list of the modules incorporated in the

on-line performance monitor can be found in the file header block. This

list includes a brief description of each module. Additionally, the

module header block contains a more detailed description. Code for all

of the modules can be found in Appendix G, On-line Program Documentation.

For this reason most of the modules are not described again here. How-

" ever, because simpler design alternatives exist for a few of the on-line

modules, the rational used for selecting the module design used is

included for clarity. The modules are:

A. Xferpkt - This is a complicated module required because to
'p

insure maximum network flexibility, the program does not assume that

the size of the DDBMS header is less than the size of the

transmitted data packet. This means that there are two alternatives

S- in dealing with the problem of split messages, total message

reconstruction or partial message reconstruction. Total message

reconstruction was rejected because the messages could have been

3'.;. 56

.3W



files which would require a prohibitive amount of storage to

reconstruct. This means that messages must be partially

reconstructed until a complete DDBMS header is formed and then

parsed into appropriate fields for analysis. (Total message

reconstruction is not a requirement.) This was accomplished using

two queues, the "tempq" where packets are stored until a complete

DDBMS header is available and the "permq" which contains the parsed

fields of the DDBMS message. To determine if a packet is required

to form the DDBMS header, the block count and sequence number are

checked. In the initialization process, the number of blocks

required to form a DDBMS header was calculated. The block count of

the current message is compared to the block count required and

passed to the xfer queue module if the packet is a required part of

the header. If not the received packet count is incremented to

reflect the arrival of the packet, a check is made to see if all the

outstanding packets of the message have been received and the proper

signals generated (either complete message available or resume

polling).

B. Xfer_queue - This module is responsible for reconstructing

enough of the received message to form a DDBMS header. It is

complicated by the fact that the assumptions were made that packets

would not necessarily be arriving in order. This means that packet

2 from host A may arrive before packet I from host A or that packets

from hosts A and B may arrive inter-mingled. A further assumption

was made that all of the packets forming a complete block would

arrive before the next block of a message was transmitted. In order

,-;. .57



to determine to which message a packet belongs, a compare array

(cmpary) has been formed from the network header and is assumed

unique for each transmitted message. This array is then compared to

each record in the "tempq" to find the message the packet belongs

to. Once found, the block count and sequence number are used to

calculated where in the record the information field of the packet

.7 should be stored. The record is then checked for completeness and

the calling module appropriately signaled. An alternative design was

to the partial parsing of packets into the "tempq" was to link the

pointers to the packets together until a complete packet was formed,

and then parsing that packet into the "permq" as required. This

method was attempted but problems with correctly linking packets

together and overflowing the storage capabilities of the

microprocessors caused the simpler, albeit more time consuming

process described above to be implemented.

C. Searchmtab - This module is used to convert a three character

DDBMS message type into a unique integer equivalent. This is done

* by searching the message table for the message type and returning

the message integer. The message table does not contain all of the

allowable DDBMS message types, rather just the ones needed by the

monitor to calculate performance metrics. If a message type is not

found the module returns a zero. This method of table build and

look up was implemented instead of setting up static arrays in the

actual programs because it allowed the most flexibility in actual

implementation.

-58

-7."



Welcome to the DDBMS Network Monitor Program

This program has been designed to perform as an online monitor
for the DEL DDBMS implemented on the LSINET.

You have a choice of the following actions:

A ===> Initiate/Continue Online Monitor
and display DDBMS Site information

B ==> Initiate/Continue Online Monitor
and display Primary Metrics Screen

C ===> Change Floppy Disks

X ===> Exit

-" ENTER YOUR CHOICE NOW =>

FIGURE 14. ONLINE MONITOR INPUT SCREEN

(59

"1-

4W

-r' "

% ,, . .. - .. . % - . . . . , . . .. • . , . . . . - - - .. . . . . .. ,.. % . , *6 % , , . . . -. ..-59 -.



D. Fixmemerr - If the processor runs out of storage space during

execution, this module tries to fix the problem and resume

operation. Rather than freeing all allocated storage, this module

first de-allocates all the storage allocated to the "permq" and the

"tempq". If enough storage space has not been freed, the packet

queue is then de-allocated after first storing the packets into the

off-line file. In this way, the chances of completely losing

message traffic are reduced. In either event, a warning message

prints to the screen to alert the user of the situation.

User Interface. The on-line monitor has one input and two output

screens. The input screen, shown in Figure 14, prints a menu of the

actions available to the user of the monitor. The alternative to a menu

driven on-line monitor would have been having the user enter a command

without the menu prompt. Since familiarity with the monitor could not be

assumed, a help screen would have had to be implemented to give the user

".. *the available options. For this reason, it was decided to implement the

a menu driven monitor. The output screens were designed to maximize

clarity while minimizing clutter. For this reason the output was divided

into two screens with one showing the status of the sites and the other

the arrival rates and packet counts. The first output screen, Figure 15,

presents the overall results of the analysis, showing received packet

counts for DDBMS and Network packets as well as their respective arrival

rates. Counts of the total number of active processes, the total number

of processes received, the total number of active and inactive sites and

the process arrival rates are also included. Finally, three time stamps

showing current time, the time analysis began, and the time the last

60



q. 

------ K-

DDBMS ONLINE MONITOR

NBR ACTIVE SITES: NBR INACTIVE SITES: NBR QUEUED PKTS:

TRAFFIC INFO:
Total pkts received: Avg Arrival Rate:
Total DDBMS pkts received: Avg Arrival Rate:

* _ DDBMS Percentage of Total:

,.° . PROCESS INFO:
Total Nbr Processes rcvd: Avg Arrival Rate:
Nbr Active Processes:

START TIME:
TIME LAST PACKET RECEIVED:

.-. . CURRENT TIME:

0FIGURE 15. ONLINE MONITOR PRIMARY OUTPUT SCREEN

61

"

KID.



. . - packet was received are also included. At the users discretion, the

secondary output screen, Figure 16, showing the active and inactive DDBMS

sites can be displayed. The lower three lines of both output screens are

reserved for error and warning messages from the monitor.

Program Assumptions. Several assumptions were made in the course of

coding and implementing the on-line monitor program. These assumptions

-are listed below:

A. Save file - All message traffic is saved to the DDMON.MSG file

in its received format. This file is assumed resident on the floppy

disk located in drive DXI. Since the C compiler does not support

the C file "appends" option, this file is opened at the beginning of

execution and remains open until the program terminates. This means

that no tests for an "out of disk space" condition can be conducted

and should a file overflow occur, the program will abort to the

- . operating system. To remedy this problem, the size of the DDMON.MSG

- file was fixed at 1600 blocks of 140 characters, roughly half the

space on a floppy disk. The program counts the number of packets

sent to the disk and when that count reaches 1600, the file is

closed and the user signaled with a warning message that packet

traffic is no longer being saved. Until a new disk is loaded and

the save function restarted, all received packets are analyzed and

discarded.

B. The output screens are painted once and then specific positions

updated as required. For this reason the lower three lines of the

screen are used for all monitor messages to the user.

%.

62

0V



1'

, DDBMS SITE STATUS SCREEN

ACTIVE SITES INACTIVE SITES

* TOTAL: TOTAL:

%' CURRENT TIME:

FIGURE 16. ONLINE MONITOR SECONDARY OUTPUT SCREEN

-6

.

.,'



C. The monitor will run without interruption until the user strikes

a key. This action will cause the program to return to the input

screen menu where the user can choose a different option. This does

not cause a reset of the on-line monitor and statistics are

calculated from the time the monitor was first started.

D. The monitor has "hooks" built in to allow monitoring of its

operation as well. These hooks are activated by setting the

constant MONIT to a one and recompiling and linking the program. In

this version of the monitor, module entry and exit will cause

messages and time stamps showing when these actions occurred to be

printed to the file MONTR.DAT.

% E. All packets can be uniquely identified as DDBMS type packets by

the source and source process number values located in the network

header and contained in each transmitted packet. The packet is

assumed to be a DDBMS type packet if its source and source process

number are of type DDBMS (this is determined by the values entered

in the DDTAB.DAT file, loaded from floppy disk at program

execution). A packet generated by a DDBMS host and process cannot

be transmitted to a non-DDBMS host and process and vice versa.

F. It is assumed that all the packets constituting a message from

one site and process will be received before the next message from

that site is begun, although the packets do not have to be received

in order. Secondly it is assumed that a message can be recon-

structed from the information contained in the network packet

headers and access to the DDBMS header information is not required

for reconstruction.

64

A.0



-p

Off-line Monitor Design and Implementation

Performance Metrics Calculated - The following is a description of

the performance metrics monitored for in the off-line monitor. Also

included is a discussion of how the metrics are obtained from the traffic

and where they are calculated in the monitor program.

A. Traffic Distribution - This metric calculates amount of packet

traffic passed between a source-destination pair for the entire

monitor period. This metric can be calculated for all the

transferred packets or just the DDBMS type packets. Either way,

this metric is a simple count of the the transmitted packets sorted
0

by source and destination and calculated in the netsite module.

B. Total Traffic Generated - This metric calculates the number of

packets each source generated during the on-line session, regardless

of destination. Also calculated in the net-site module, this metric

can be calculated for all packet traffic or just DDBMS packets.

C. Total Traffic Received - This metric calculates the number of

packets each destination received during the on-line session,

regardless of source. As above, the metric is calculated during the

netsite module and can be tailored to monitor all traffic or just

DDBMS traffic.

D. Total Packets Monitored - Calculated by the netsite module,

this metric is a simple count of the number of packets monitored

either network or DDBMS.

E. Time Distribution - This metric calculates the packet traffic,

either network or DDBMS, by time generated. It is calculated by the

65

r 4..



'W

1.7 net-time module and is a simple count of the packets by the hour

they were generated by the ISO level three function.

G. DDBMS Message Distribution - This metric is calculated by the

dd-msg module and calculates the traffic distribution for DDBMS

messages, not packets, by message type.

H. Process Traffic Generated - This metric is calculated in two

forms. In the prcsspkt traf module the metric counts the number of

packets generated by each unique process. This is sorted by source

and source process number. In prcss_pkt-traf, the metric is

calculated for the messages generated for each unique DDBMS process.

I. DDBMS Response Time - Calculated in the detddresp module, this

metric measured how long it took to satisfy each query type.

J. Directory Utilization - This metric is a measure of the number

of hits and finds for each LNDD, ENDD, and CNDD and is calculated by

the det dictaccss module.

Module Design. A list of the modules contained in the off-line

monitor program is given in the file header along with a brief descrip-

tion of each module. Detailed descriptions are included in the module

headers. Several modules designed for the on-line monitor are also

included in the off-line monitor. When required, the methods of recon-

structing partial DDBMS messages to get complete DDBMS headers are the

same as those used in the on-line monitor. With the exception of two

modules, the off-line metrics are calculated by selecting the metric to

be analyzed and then searching the message save file for information per-

taining to that metric. In this way, the save file is only read once for

each metric calculated. The exceptions to this rule were the modules

.4'

66

-.



-P,.' - Wr-r--." To~~-- .- -.

DDBMS OFFLINE MONITOR

LEVEL TWO -- THRUPUT

Your choice of actions is:

* A ===> Analyze Network Packet Traffic by Site
B ==> Analyze DDBMS Packet Traffic by Site
C ===> Analyze Network Packet Traffic by Tiie Period
D ==> Analyze DDBMS Packet Traffic by Time Period
E ==> Analyze DDBMS Packet Traffic by MSG Type
F ==> Analyze Network Process Traffic by Pkt Generated
G ==> Analyze DDBMS Process Traffic by MSG Generated
X ===> Exit

ENTER YOUR CHOICE NOW ===>

FIGURE 17. OFFLINE MONITOR SAMPLE INPUT SCREEN

~.I

67-.



7

%det dictacss and ddresptime. Both of these modules had to be
i

redesigned so that the amount of storage used was not a function of the

save file size (See Appendix B for more details). In order to accomplish

this, after the metric was selected, the file was first read for the next

process number to be analyzed. The complete file was analyzed for infor-

mation regarding that process number, statistics calculated and the file

closed. After one process number was completed, another was selected.

The analysis process continued in this fashion until all of the monitored

processes were analyzed for the desired metrics.

User Interface. The user interface required for the off-line monitor is

more slightly more complicated than that of the on-line monitor. Unlike

the on-line monitor, the off-line monitor is menu driven, allowing the

user the ability to select a subset of the total available metrics and

thus tailor the monitor to meet his/her unique needs. This results in

several available input screens, one for each level of detail. A sample

input screen is included in Figure 17. The output screens have been

designed to meet the size constraints of the screen. A sample output

screen is included in Figure 18.

Program Assumptions. The assumptions made for the off-line monitor

program are as follows:

S A. Each metric is calculated and displayed by a distinct group of

sub modules. This group is by intent independent of the rest of the

monitor program and could, if necessary, function alone. For this

reason the message save file is declared, opened, read, and closed

in several of the modules.

68

O0/ . . ~~~4 .'. ° {" i -'"".'''"'" .;%,



! 2'- NETWORK DISTRIBUTION TOTALS

S\D A B C D E F G H I J K L M

A 0 0 2 5 0 3 7 8 0 0 0 4 2
B 0 0 0 0 0 0 0 0 0 0 0 0 0

C 3 0 0 7 3 6 0 9 0 3 0 0 0
D 1 0 2 0 2 4 0 7 0 1 0 5 3
E 4 0 0 0 0 0 6 4 0 0 0 0 2
F 0 0 1 2 0 0 0 1 0 0 0 0 0
G 1 0 2 4 5 2 0 1 0 1 0 5 0
H 3 0 0 0 1 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
J 0 0 1 2 6 4 0 8 0 6 0 0 1
K 0 0 0 0 0 0 0 0 0 0 0 0 0

L 1 0 6 9 2 0 0 7 0 1 0 1 5
M 0 0 2 4 9 0 0 1 0 1 0 3 5

FIGURE 18. OFFLINE MONITOR SAMPLE OUTPUT SCREEN

-. .,

:,- -'

("

-69

*1 A



B. As in the on-line version, monitor "hooks" exist which, when

activated, allow the monitor's performance to be monitored.

C. The monitor is menu driven, and requires frequent interaction

with the user. For this reason, it cannot run completely unattended

as the on-line monitor can. When user intervention is required

. however, a bell on the terminal sounds to alert the user.

D. An error condition in the off-line monitor will cause a

termination of the metric analysis, a printout of the cause of the

error (i.e. insufficient storage available) and a return to the

next higher level of the off-line menu.

E. As in the on-line monitor, all packets can be uniquely

identified as type DDBMS by their source and source process number.

Likewise, a packet generated by a DDBMS host and process is cannot

• .;' be transmitted to a non-DDBMS host and process.
1.

Changes to Existing Programs

One of the goals in designing the program monitor was to minimize

the impact on the existing programs. To the largest extent possible this

was accomplished. In four areas, the existing programs were found

lacking and changes made. These areas are as follows:

Time Stamps. As implemented, the LSINET traffic had no time stamp

to indicate when traffic was generated or passed. A time stamp of some

sort was required to test for delays and show traffic distribution over a

given time period. For this reason, it was decided to modify the

existing ISO level software to include time stamps. The next decision

was to determine which layers should add the time stamp. There was a

valid argument to add a time stamp at each layer of the ISO software. In

.0



this way the packets could be monitored to see how much time each layer

required and decisions to optimize the code at given layers could be

made. The problem with this argument proved to be the amount of monitor

overhead added to each packet. Each time stamp requires ten characters,

so adding seven would increase the overhead in each transmitted packet

by 70 characters. Given the current information field is 120 characters

and the overhead for existing ISO layer headers and trailers was 18

characters, an overhead of 88 characters per packet (over 50 percent) was

deemed excessive. The decision was made instead to add time stamps at

the application program level, ISO layer 7, where the information to be

transmitted or requested is first created and then for each packet at the

network level, ISO layer 3. This reduced the overhead to ten characters

for each complete message and ten characters for every packet.

Monitor Site. The NETOS central system had already been modified to

send a copy of all traffic to a set node, system L, where the monitor was

originally scheduled to reside. Due to number of projects requiring the

use of system L and ability to run the monitor program on any of the

available nodes, the was changed to allow the network manager to select

the monitor node at the time the central system is initiated or change it

during operation.

Unique Process Number. A problem discovered in the existing DDBMS

software was the fact that the messages had no identification and once

divided into buffers and packets, reconstruction was impossible if more

than one message was present on the network. Also needed was the ability

to relate reply messages to queries. For these reasons, a unique process

number was assigned to each process. All messages and queries spawned by

"I

-.......................... 7 ,.. . . . . ., .

. .- . , . . . . . . . . , - -- . . - . . .



the original process were assigned the same process number. This allowed

the traffic to be traced to a specific process.

Buffer/Block Count. At ISO level five, the files or buffers to be

transmitted were divided into blocks and passed to layer 4. Due to the

storage constraints of the monitor hardware, it was decided not to try to

reconstruct each message but rather simply keep track of the total number

of layer 5 blocks or layer 3 packets expected. For this reason, layer 5

software was changed to include a header of two fields, total block count

which is determined by calculating the size of the file to be trans-

mitted, and current block count, the count of the block as it is passed

to layer 4.

Performance Monitor Testing

Basic Definitions. Given that it is impossible to prove a program

is totally free from errors, testing is best defined as the process of

executing a program with the intention of finding errors (18:169).

Testing can be used to both validate and verify software programs. When

a program is tested in a simulated environment with the goal of insuring

that the software being developed corresponds to specification, it is

being verified. When testing is conducted in a real environment to

*. ensure that the software is meeting its objectives, it is validated (22).

The goal of testing should be to both validate and verify a program.

i "There are several techniques that have been developed for use in

testing. Three methods commonly used are top-down, bottom-up, and mixed

testing. In top-down testing the modules of a program are tested and

interfaced in a fixed sequence (20:239). First the control module is

written and tested with lower level modules represented by stubs.

72

0 i)

,' I" ' ., .-: 2¢ "' ,i. - 2 .i ." - . " - . -. - . .' ' - . , , ' ". -. .' ' -,- .,r .' ' . :-. , . , -. ,,. , ., , ,. _



Testing of the program continues on a level by level basis, until all

levels have been integrated and tested. Bottom-up testing reverses this

procedure, developing the bottom most modules first and testing them via

program drivers. Upper level programs are then designed and tested and

the processes continues until all modules have been tested (20:239).

Mixed testing or kernel testing, is an adaptation of the other two types.

Critical modules are designed first and tested with drivers or stubs,

which ever is appropriate. Then, both preceding and succeeding level

modules are added and tested. This process continued until all modules

are tested.

__ In this effort, most of the testing accomplished was concerned with

verifying the developed software and ensuring that it worked according to

specification. Due to unavoidable problems, no actual DDBMS traffic

existed to accomplish the validation testing. Instead artificial traffic

was sent across the network and some validation testing was accomplished.

Testing was conducted in four phases using a modified, top-down approach.

Each phase, along with the results obtained, is discussed below.

Phase One: Unit Testing. Unit testing is the verification of a

program module, on an individual basis, to insure that each module

functions correctly as an individual unit (18:173). For this effort,

unit testing was accomplished using the test plan created during the

detailed design phase. A test program was developed which passed para-

meters to and called module stubs for each module tested. The test pro-

gram queried the user for the input to serve as passed parameters so the

full spectrum of input variables could be tested. The results of each

test printed was displayed on the CRT screen for verification. The

73



, , results of this test are noted on the design test plan included in

Appendix B, Test Documentation.

Phase Two: Integration Testing. Integration testing is the

verification of the interfaces among the systems parts (18:173), focusing

on testing the complete program to insure that the interfaces between the

modules are working correctly and that none of the modules have an

adverse side effect on other modules (3:V-3). Integration testing of the

performance monitor was conducted in two steps. Step one involved

testing of the on-line monitor. The module "avail packet" was changed so

that the recv_packet call would return a hard-coded packet with known

values, instead of one from the network queue. This dummy packet was

used to test the function of all the modules of the on-line monitor. The

results of this test were printed to the screen and verified against

anticipated results. All errors were investigated and corrections made.

This process continued until the results anticipated matched the results

obtained. Then the recv_packet function was changed to return a packet

from a test file containing twenty packets. Each packet was read in and

the monitor program called appropriate modules to conduct the analysis

and display the results, polling for the next packet until all twenty

were read and analyzed. The results of this analysis were compared to

0 their expected values and error correction was again conducted. Step Two

involved the integration testing of the off-line monitor program. The

same file used to generate packet traffic for the on-line monitor served

as the message file for the off-line monitor. Again, the monitor was run

against this file, the results compared and errors corrected.

• ' . 7



,*" --- - wwwxw w

Both steps accomplished testing using a modified top-down approach.

Groups of modules that accomplished a single function (such as deter-

mining the network traffic distribution -- netsite, matprint, mat-tot,

and matscrn) were integrated together and tested. When the results

achieved were the same as the results anticipated, secondary modules

(such as histoprint) were integrated in and tested. This approach

allowed the top level module to be first integrated and tested and then

the branches of called modules integrated and tested until the operation

* .of all modules was fully verified.

Phase Three: System Testing. System or validation testing is

designed to ensure the set of software program performs in accordance

with the requirements. In other words, system testing is the process of

trying to find discrepancies between the system and its original objec-

S *" tives (18:231). In this case, system testing was accomplished using an

artificial traffic generator, a test program used to place traffic with

known performance metrics on the network. The results produced by both

the off-line and on-line monitors were compared to those calculated for

the traffic generator and discrepancies in the results were corrected.

The use of an artificial traffic generator program allowed for several

categories of tests to be run. These categories are as follows:

A. Load/Stress Testing: This type of testing is used to find the

limits of the program being tested. In this study, high traffic

volume periods were alternated with low volume periods and the

. recoverability of the monitor was checked. Also included was volume

testing which tested a continuous stream of high volume traffic.

The on-line monitor was able to recover from short bursts of high

". 75

.'-.



"" volume traffic very well, storing packets for future processing and

signalling when storage space was inadequate for requirements.

Additionally, the monitor was able to handle a continuous packet

arrival rate of approximately one packet every 2 - 3 seconds.

Arrival rates much faster than that soon burdened the storage

capacities of the monitor; the measuring process proved unable to

keep up with the packet traffic and packets were lost.

B. Storage testing: Conducted in conjunction with load testing,

this is designed to test the amount of storage available to the on-

line program. Due to limitations in the way storage was dynamically

allocated, the exact amount of storage available to the on-line

monitor was impossible to determine. Roughly speaking however,

after initial program storage allocation (for tables and heads of

queues), the system had approximately five thousand characters of

storage available.

C. Recovery Testing: This testing tested the program's ability to

recover or gracefully degrade in the presence of system or

transmission errors. In the on-line monitor errors occurring during

initialization caused the program to be terminated, other errors

caused error messages to be printed and recovery procedures

instigated.

Phase Four: Operational Testing. The final phase in testing is to

run the developed software in an operational environment to determine its

ability to meet desired objectives. Unfortunately, a fully operational

DDBMS was not available for operational testing. Instead, an artificial

traffic generator was used to simulate network and DDBMS traffic. This

76

4W

%



traffic generator was an extension of the one used in Phase Three des-

cribed above. In this instance, a greater attempt was made to create a

more meaningful artificial traffic generator. Rather than just a program

that read a traffic file onto the network, programs were activated at

several of the network workstations with the traffic routed between them.

It was during this testing that the following problems were discovered.

A. ISO interrupts - The ISO layer 2 software currently implemented

on the LSINET is interrupt driven software. Basically, when a

packet arrives, the work currently being done is suspended, the

interrupt serviced (packet stored to the queue), and work continued.

A problem in interfacing the on-line monitor to this software was

discovered when running the monitor at full speed. Since the

routines that print information to the screen were interrupt based,

there was no way to disable interrupts for critical regions of

monitor code. Unfortunatel- if a packet happened to arrive while in

one of these critical regions, information was lost or the screen

garbled. A temporary solution to this problem was to run the

monitor on polled, not interrupt driven software.

B. On-line Monitor File Size - The on-line monitor quickly

(approximately 30 minutes) filled the message save file with packets

when the artificial generator was running full speed (I packet

every 2 - 3 seconds) on several nodes. A solution to the problem of

a limited save file space will be to implement the monitor on a

1 system with a hard disk and take off the 1600 packet constraint

currently placed on the size of the save file. This is not an

urgently required fix since it required all of the traffic

77

V"



generators to be running full speed to discover the problem and

normal, network traffic would not be that heavy.

C. Off-line Monitor File Size - The off-line monitor worked

perfectly on small sized message save files, however large files

caused insufficient memory conditions in calculating two of the

*. performance metrics, directory access and DDBMS response times. The

reason for this was that the amount of memory required for the

calculation was directly proportional to the size of the save file.

The software was originally designed this way to allow the metric to

be calculated with only one pass through the save file, minimizing

the time spent calculating the metric. Both of these modules were

redesigned to require only a fixed amount of memory, regardless of

the size of the message save file. This fix, although minimizing

the amount of storage required, required several passes through the

message save file. The maximum number of passes required equals the

number of processes. This is an adequate fix; the only disadvantage

noted is the amount of time required to analyze the file for these

metrics.

Summary of Chapter Four

In this chapter the installation of the monitor on the LSINET was

discussed. The monitor environment was explained and the implementation

difficulties explained. The actual performance metrics calculated were

included as was a description of the modules developed. The chapter con-

cluded with a discussion of the testing process the monitor underwent.

Each phase of testing was presented and the results from the tests con-

ducted during that phase discussed.

78

...V. . . . . . . ... . , , .. . . . , .



V. Recommendations and Conclusions

Introduction

Previous chapters detailed the process of designing and implementing

a performance monitor for a distributed data base management system.

Specific problems encountered during the study and the solutions adopted

were discussed in detail. This chapter is designed to look at the whole

* process of performance monitoring. The chapter will first present the

overall results of the study, discussing both the on-line and off-line

versions of the monitor. Next some conclusions reached on the subject of

performance monitoring in general will be discussed and recommendations

for future studies presented. Finally, the chapter concludes with a few

comments about the project.

Results of the Study

This study accomplished its primary goal of installing an

operational DDBMS performance monitor on the DEL LSINET. The monitor as

installed, however, is in a preliminary stage and requires much more work

to insure that the metrics currently monitored are meeting the require-

ments of those using the monitor. As it is currently implemented, the

monitor programs provided for a very "rudimentary" evaluation of the

network traffic. The on-line portion of the monitor is restricted to

simple counts (and the statistics derived from these counts) due to the

limitations of the hardware. With the network enhancements planned, this

limitation will be reduced and the monitor can be made more meaningful.

The off-line portion of the monitor concentrates on the evaluation of

thruput metrics, less on the areas of response time and utilization.

CThis fact should be corrected.

79

V-



..

Conclusions About the Study

During the research phase, a wealth of information was presented on

V the need for and value of performance monitors. But little documentation

was found which provided information on how this evaluation was

conducted, what metrics were valuable, what differences existed between

distributed and centralized performance evaluation. Only three studies,

two of which were conducted by AFIT students, provided useful specifics

regarding performance monitoring. As the process of designing and

implementing the actual monitor commenced, the reason for this appeared

to be that the metrics evaluated are dependent upon the system

environment and objectives and are not of a general enough nature to

discuss. Some of the articles in more recent publications seemed to bear

this out, since they were largely slanted to a specific environment.

Although the actual implementation of a performance monitor may be highly

dependent upon the environment, general concepts in the area of

performance monitoring do not share this dependency. The general process

of designing and implementing a performance monitor needs to be

formulated, (although the study by Captain Paul Bailor presented an

excellent guideline), and sample metrics for different types of networks

discussed and evaluated. This leads to the conclusion that not enough

work has been done in the area of performance evaluation of a distributed

data network.

Future Recommendations

The monitor is in its first stage of development and could be

enhanced in several ways. A few suggestions are:

80

%



Enhance the Software. The current monitor should be expanded with

new metrics calculated as objectives change. Possible new metrics

include tracking message formation so that at any time the the percentage

of each message received can be calculated and displayed, expanding the

utilization and response time metrics for the off-line monitor, deriving

a method of calculating network response time, and deriving utilization

statistics for each of the network nodes. This could be done by

expanding the current centralized monitor to a hybrid and having software

packages calculating statistics regarding node performance present on

each of the nodes and operating concurrently with the applications

software. These nodes could then update the central monitor with the

results of the individual monitoring and these results could be

incorporated. Finally, the results of the analysis should be upgraded,

allowing for graphics displays and hard copy output.

Enhance the Hardware. The software should be transferred to the

Intel 310 whenever possible. This system is ideal for the monitor since

it allows multiprocessing and could serve as both a node and monitor

simultaneously. Additionally it is equipped with a faster processor and

hard disk storage allowing for the monitor to run faster and eliminating

the time and space constraints discussed in Chapter Four. Additionally,

* the monitor should be transferred to the Ethernet environment when it is

available, eliminating the need for artifacts on the network.

Monitor the Monitor. As mentioned earlier, both the on-line and

off-line portions of the monitor have "hooks" installed which will allow

for future monitoring of the monitor software. Although the code was

designed as efficiently as possible, no attempt was made to monitor,

81



' modify, or optimize the code. Additionally, since the code was not

tested against actual DDBMS traffic, this operational testing remains to

be conducted when the traffic is available.

Final Comments

This study has been a fruitful one and the initial objectives were

achieved. Future study should concentrate on a full implementation of

the enhanced monitor on the Intel system.

8

jpvs

V 82

I



" BIBLIOGRAPHY

1. Air Force Institute of Technology (AU). Development Documentation
Guidelines and Standards. Draft AFIT/ENG Standard, revision 2.
September 1984).

2. Amer, Paul D. "A Measurement Center for the NBS Local Area Computer

Network," IEEE Transactions on Computers, Volume C-31, Number 8:
723-729 (August 1982).

3. Bailor, Capt Paul D. Development of a Data Base Management System
Performance Monitor. MS Thesis, GCS/ENG/83D-2. School of
Engineering, Air Force Institute of Technology (AU), Wright
Patterson AFB OH, December 83.

4. Benwell, Nicholas. Benchmarking, Computer Evaluation and
Measurement. Washington D. C.: Hemisphere Publishing Corporation,
1975

5. Boeckman, Capt John G. Design and Implementation of the Digital
Engineering Laboratory Distributed Data Base Management System. MS

0 Thesis, GCS/ENG/84D-5. School of Engineering, Air Force Institute
of Technology (AU), Wright Patterson AFB OH, December 84.

6. Bruner, Capt Timothy D. Continued Development of a Data Base

Management System Performance Monitor. MS Thesis, GCS/ENG/84D-6,
School of Engineering, Air Force Institute of Technology (AU),
Wright Patterson AFB OH, December 84.

7. Imker, Capt Eric F. Design of a Distributed Data Base Management

-*-. System for use in the AFIT Digital Engineering Laboratory. MS
.~ . Thesis, GCS/ENG/82D-21. School of Engineering, Air Force Institute

of Technology (AU), Wright Patterson AFB OH, December 82.

8. Champine, George A. Distributed Computer Systems. New York: North
Holland Publishing Company, 1980.

9. Digital Equipment Corporation. Introduction to Local Area Networks,
1982.

1 10. Enslow, P.H., Rosen, S., Sammet, J. E., Ferrari, D., and DiNoe, J.
Encyclopedia of Computer Science and Engineering Second Edition.
Edited by Anthony Ralston. New York: Van Nostrand Reinhold
Company, 1983.

11. Ferrari, Domenico, Computer Systems Performance Evaluation.
Englewood Cliffs: Prentice Hall, 1978.

12. Hartrum, Dr. Thomas C. Professor. Personal Interview, Air Force
Institute of Technology, Wright Patterson Air Force Base, Dayton,
Ohio.

83

6L

~9~i- ;>4,



n13. Hartrum, Dr. Thomas C. and Rowe, Janice F. Applications Level
Monitoring of a Distributed Data Base System with Real Time
Analysis. Unpublished paper, Air Force Institute of Technology
(AU), Wright-Patterson AFB, Ohio.

14. Hartrum, Dr Thomas C. Lecture materials distributed in EE 690,
Software Systems Programming. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH July 1985.

15. Kroenke, David. Database: A Professionals Primer. Chicago:
Science Research Associates, INC., 1978.

16. Lucas, Henry C. "Performance Evaluation and Monitoring,"
Computing Surveys, Volume 3, Number 3: 79-91 (Sept 1971).

17. Mockapetris, Paul V. Communication Environments for Local Networks.
Contract ISI/RR-82-103. Information Sciences Institute, Marina Del
Rey, CA, Dec 1982.

r 18. Myers, Glenford J. Software Reliability Principals and Practices.

New York: John Wiley and Sons, 1976

19. Nutt, Gary J. Computer Systems Monitoring Techniques. Contract
NSF# GJ 660. Department of Computer Science, University of
Colorado, Boulder, CO, Feb 1973.

20. Shooman, Martin L. Software Engineering. New York: McGraw Hill,
let 1983.

21. Svobodova, Liba. Computer Performance Measurement and Evaluation
Methods: Analysis and Applications. New York: American Elsevier
Publishing Company, 1976.

22. Tanenbaum, Andrew S. Computer Networks. New Jersey: Prentice-
Hall, Inc., 1981

23. Wedertz, James A. Design and Implementation of a Centralized
Directory for a Distributed Data Base Management System. Ms Thesis,
GCS/ENG/85D-24. School of Engineering, Air Force Institute of
Technology (AU), Wright Patterson AFB OH, December 85.

24. Woffinden, Capt Steven. Lecture materials distributed in EE 593,
Software Engineering. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, April 1985.

84
"Jd

I I



VITA

Captain Janice Forsen Rowe was born on 5 February 1955 in Burbank,

California. She graduated from La Reina High School in Thousand Oaks,

California in 1973 and attended Loyola Marymount University from which she

received the degree of Bachlor of Science in Mathematics in June 1977.

Upon graduation, she received a commission in the USAF through the ROTC

program and was called to active duty in July 1977. She served at the San

Antonio Data Services Center, San Antonio, Texas as a Telecommunications

Analyst from July 1977 to May 1981. Her next assignment was to the 7102nd

Computer Services Squadron, Ramstein AB, Germany and served as a Plans and

Programs Officer until entering the School of Engineering, Air Force

Institute of Technology, in May 1984.

Permanent address: 1366 East 10th North

Logan, Utah 84321

ra

85

a.,



APPENDIX A

System Environment

Introduction

This appendix presents a detailed description of the functioning of

the LSINET, focusing on the hardware employed, communications protocol, and

one of the applications programs which use this network, the LSINET DDBMS.

Description of the LSINET

The AFIT Digital Engineering Laboratory (DEL) LSINET is a local

computer network located in the School of Engineering building. The LSINET

name comes from the use of the LSI-11 microcomputers for many of the nodes.

The LSINET consists of 13 micro- or mini-computers interconnected in a star

topology as shown in Figure A-i. The LSINET uses the NETOS communications

protocol for all message traffic. This protocol was designed to conform as

closly as possible to the seven-layer Open Systems Interconnection

reference Model developed by the International Standards Organization

(22:15-17).

Each micro- or mini- computer in the network is called a node with

node B being the central node or system. All of the nodes are linked by

' full duplex serial communication lines using a subset of the RS-232

standard. The serial links operate at a maximum of 9600 baud. All nodes

may communicate with each other by exchanging messages which are routed by

and through the central node.

The communication protocal described below Ls shown in Figure A-2.

The basic unit of information transfered can be a file, string, or buffer

and is created at the layer 6-7 level. This information field along with

ty.e source and destination of the message are passed dowi to laver 5. This

. . layer is responsible for dividing the information field into blocks,

A -1S °

@.



L AD-Ri,64 129 A NETWIORK MONITORING FACILITY FOR A DISTRIBUTED DRTR 2/k~
BASE MNAG~EMENT SYSTEMCU) AIR FORCE INST OF TECH

UNCLASS IFIE N-PATTERSON FB OH SCHOOL OF ENGI J F ROWE

UCAE EEE5RITGEEEEEEEEEE 9/ NEEhhEEhE



I liii 1 .0 =~18 2

LL6
11111 all 2.0" IIIIIlIIII 8

' I1111k2  lIII1 IIIL& ;

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

4I

t

11



Ic w -

a 40 w

-I-

aa
0 a

IA

• = 1
£

0

U.-

o

°0 -



i:'.6

&L %

cog Owl I C

-h IA~*'4

I~ II I 4 .n 40n

-~ If /I

dI IS Cc/

we % %a



\* determining how many blocks are to be transmitted and which block is

currently being tranmitted. This information is included in a layer 5

header that is passed as part of the data buffer to layer 4. Layer 5 is

also responsible for transforming the source and destination codes passed

down from layer 6-7 into the network source, destination, source process

number and destination process number and passing this information along

with the data buffer to layer 4.

Layer 4 is responsible for dividing the data buffer into messages, creating

a layer 4 header by adding use and sequence fields to the information

passed from layer 5 and passing the entire message buffer to layer 3 for

transmittal. Layer 3 takes this message buffer, adds a layer 3 header

which consists of a duplication of the source and destination fields, a use

field and a timestamp and passes the entire packet to layer 2. Layer 2

calculates a checksum for the packet and builds a frame that includes a

* start of header character, the packet, the checksum, and 5 end of text
)

characters. This frame is then transmitted, character by character, by

layer 1.

When a frame is ready for transmittal, the sending site sends a transmit

request to the central site. The central site utilizes polling to

determine which of the other nodes requires service. When the central site

polls the sending node and sees the transmit request, it sends a transmit

acknowledge to the sending site. The frame is then sent and if the central

site receives it correctly an acknowledgement is returned to the

transmitting node. The central node then determines the destination of the

frame sends that node a transmit request, waits for the receipt of a

transmit acknowledge and then sends the frame on. If a transmit

A-4

-%



1 ;; acknowledge is not received the central site will eventually time out

delete the packet and continue the polling process. If the frame is

transmitted to the destination, an option set in the central site software

will allow a copy of the frame to be sent to the monitor program.

A more detailed description of the operation of the LSINET may be found in

the LSINET documentation (14).

Description of the LSINET DDBMS Messages

This section shows the format for the DDBMS messages transferred over

the network. These message formats are derived from the formats of the

subset of messages currently under development in a different thesis

* effort. These formats are a variation of those proposed by Capt Boeckman

-in the original DDBMS thesis effort. When the monitor program was written,

the divider between fields was a CRLF, two characters. Later changes made

this divider simply the line feed. Since the message analysis was very

position dependent, and it was too late to change the code, the decision

was made to keep the divider at two characters, and having the module that

reads in the packet modified to add the second character between fields.

*:

A- 5



DDBMS Header. All DDBMS message traffic will contain the standard

header shown below:

CharValueCount

0 Start of Text - STX 1

1-3 Message Type 3

4 Line Feed 2

5-14 Destination ID 10

15 Line Feed 2

16-25 Source ID 10

26 Line Feed 2

27-30 Unique Process ID 4

31 Line Feed 2

32-41 Time Stamp 10

42 Line Feed 2

42-N Message Dependent N-42

N+I End of Text 1

A-6

t

* . 4J~~jj.



* 'DDBMS Messages. All of the message types detailed in Boeckmans effort

are considered valid even though they are not currently implemented. Not

all of the messages are monitored for however. The following is a list of

the DDBMS message types currently being monitored for by the network and

their meaning. Other message types, although equally valid, are not

monitored specifically. Instead they are treated simply as any other DDBMS

message.

Message Message Type

* DDBMS Ready Command DRC

I Deleted Site Message DSM

Added Site Message ASM

External deleted site command EDS

External added site command EAS

Unique process started BEG

Unique process ended STP

A -7



3: " Appendix B

Test Documentation

Contents

Page

Unit Level Test Plan .......... ....................... B - 2

Integration Testing ..... ........................... B - 15

System Testing ........ ... .......................... B- 17

Operational Testing .......... ....................... B- 19

B

,o .. ;

B-i1

"..,,.' - . "- ' "- - "-,- - '.:- .' ' .
-

"J' ' 4- -.*.'"'. 4-."' ' ", ',. 'L " ,"- '".
"



wl 6 4.4 c 0)a d ) 0 U4Q

E- ) 0) N. Q) 4-4 4J 4j 6 -) u

Cl) 0) 0)q 0 ud
Q.~ - 60) 44 i= -4 4) ) a) 0) 0) 00 l - (1)

0) 4 0 0J-4 c i>) C U x).. .L. x. x 4 U 0
41 w,- -4 -W w U u 0

0~ 0 0 .4.0 u. ~0 0 ) 0) (0 J- 0)
= cz w04 a4 E w~C ~U 0 .-C -C~CO

COx0)) 0 ~ U)
Q 4.4 ~ C~4-J4

4-) c
Cl) cc 0a $

-. 0 4.Y 4 a d

0 c*.m-, w4~ 0 ) . 0 ) 4 4 w ~ d)J ) c )c

0 C4.4 &00 - wC w0 00. w ~ w w0ww1

C~ -4 1-41. C/)C/CO W a Sn 0 40 H ECa

CL O 0 -4 c- -4 4

wI - 0) 4.j -4 cc ca .,4 -4 -Z 0)

x w)5 ~ ~ X 0 00 00 00 00 cc 00

ow0. 0 -4 *-4 0

0 C. 0 044 0 ~ > C
0r- 0-H 4-4 r4.) 4J 4

C 4.44. C) -Wc o t

0i)
5 00 S 0

ml Q) 10 2

m co cc 0) co c 0)

4-4 'o E cl) oE

I4 4 00 -W00

r_ 4-W i) ~4,i
Q) ~u) ca44

~ -41--4

0 O 0 0)

00 CC)

4wccC

0 0 r_ r_--

4C



.A\

--

2D E 0 "a44
t - *0U a 0) ,I a)
. =o - 0) " 4 ) 1) w I) 4-

Aj ~ 00 0 >"acj- 4-W -) j. AJ -w u
S0 X: cO CO 0 u .- lj > U U u u

a) w = wc ) w a) a) a) )) a.
a a.O 0.z 41=c, L I. 0a CL x

S x 4hJ.JCOX 0 x x a)
E- Q) ~~ wC 0 a*- w0" ) a) Q) )

• x 0 )0 o 0U x Cw Q m.Q Q ) Co C )c m <

C/W' "u 0' ca 0 0

0 00 0a 0 r-
- r- * 00 $.,-

ct) CO 0 m/C/ m i1
W D) 0 D o011 000011 1111 r
m 4)C 0- a)) WlJ. C Q)aCC0i

0 ~ 0) 1-4 r. 4- cr_ _ Q
0 0 0 0c/ ) I 4 0CZ a 0)) c- U 0)b

4) U) u 0.- M~Ju U C
,a .. 00. 4j CA ~ M w mwww co c

a) C >1 ~ f-4 ~- = =220S .
w r- 0.1 Z C 0~ .6-)J.JJ.J4. )J.J " - .

B 0-41. 0° .w 0 =•-www

En L) LT. II. 0I0 0

:C .), -',) ,, -. ,

00 F 00) 00 )

CL - 0.311
2M 4-4 4-4 r_- r_ S C

02 0- * ,j. 0 0 0.0
cc 0 Q)) 0 )0 c -4 -4 4H

>- = CC 4*J .64- ) 4J-
0 0 0 cO CO Ua U UU CO

00 ~ ~ ~ a Q .)U C) <.Q

UQ)

*0

,,--

-- C

0 0)00

0 0)



(n 0 ) u a u r a(

--- .-

En "IV-. ~ .

0 oN . 0 > 1m0 -uU 0 4-1) a)>1N a

u0 Q)~ cr- u u a ) H > o

0. c Q. u a w 0).0 - on C. lo c ,.- (n a
x CV-H x 1 UW- X C W()XU )H Q

(UU

cn cc) .0C
i0 1 0Cm4- .l a) -4 .J 0

,0) u. 0 0. 1 01

c,) >*- - 4 U) a) *

a -.. co 0 . "i .& 0 ri- U,. U,WOOj c > CNCu J-) =c-.0c = -W)U
a)u0 > , mc" AJ Co .0~ co o*- CO .- Cj u c 4. U
w o m ca -4 4.J CO caQo

-" rw. 1.4 L" oW -W 9) W)"C -W N )W -. 0 Q) = a U) 0 00 :: m .-

. ". 0 -0 "Ca (1 ,1C 4Q - C-)C C )c0 c Q

,-- W " W-

13 to >I SII m 41 w."
L0 W 0 0H 00 UW4 4' . 4 04 - - 4o

CoU wU )r4 ) E w ) 020C2L E M

L':-;

.U 000Un U)

cn -4zj 144t
E-

0z

Nc 4 -1~ 0

0 I.

CA1-4 ~



En -4.

> W u u E 3 ()
00 -W

C) co~ Q) x C xa

a) C(10 = < Q r=
(n U) 0 Q) *-z 0 LU)

E- -W *.- W Wj --4.-M

CO -Y -0 On -.
ca N. oa > -0 aW < .- L

- U

W M a) m 0 W
J r- 0 0

-Q in. 0 0 0

cu -oY

r_ -- C4- -

Q) ) - .W 4a

m .- *0-4

- > r4 ~ oW
- 0 - 0>
~ $VE .. ;

L4-

>. - -0 C

=~ .-

00*
cm CrJ
in-



w a " "u

a Cl

- . C" o 4 U)
- 0 -4 4- ca) 0

Cx) 0. j a) w. Q) = )LC0 4 u =

U UM u u a ml Cl)

N =- O* 4 O 0 ) IN0)J 0.

l ~ ) Q) a) (0 ) 0 4 c :,1

c- 0)coL0 - CO Q ro

4 ( -e (N 0) 1; Q ) u 41":

,- " 0 . OJIU
Cl) 0 a w wU 0m .4 .

© L.LJ L.

C) 00 ) Q)0)w.~~- . N- -4 Q) >0

*~~ Cx 0)N. VC

- " 0a0 ) u, 0 C
~~~'r (V0)(0C) -4(.0 4O ~ CU -

cu co ,. C
a) ta 0< co CIL)5 "

Li))--S MIWOc

-. .- __) I. _ m$-

Q) 1~/ Q0)uA-
u Cl.

-) Q) a) 0

E- -;.- %4..4
01) ZD "a

Cx -.. 00 0 111 11

- 2 2 2

E-E E E

-0 0)-

" B -6

M 0U

* - '-aa)

z$- Ca4- 0

"E M "

W-...

in (3 0)

&IN'-
KXI pi

)

. . . .

.7r.

m 04 C u)02 4)r
0-2 a) a) J 0 C

- ~ ~ ~ ~ 4 cL2 11.)W O 0

=)I U)O LI 02

41. WD 4. - .60 c (-.

<. 6 .6. u U Z i.C

4) (1 WW 02 02 ccO L2W0 E-

a) J W~ -4 ~ %CO - z
W a 0.a- 0. 0~ w 0V .j.6

.&J. (a a) -14 LJ mO co0 CO om 0 E-
u0. . m xL w 0-Ou. 0 E tm

w u 0-4 A'J0 rn 0c
A. -3 CO uZ cc02 (1)OL 0. 0 .00 00M dC

c -0.- 0 0 O'. = -M- M

wA 0 (zj 0~ CO)- A.c *'C -C co) Q)a~ C dWa- w m ww m

w' Owl -j -W C-

E- X0-)o -c c z1

0)a Q I I

cn ji 0. 0J 00
0 coE0 2I W2oQ)L

V -4 >0>>"

41 0) co J-J . - o

a) a) W W
0 .-1 .. & .OC . U >

Q u E-. u)

-4-
4-40-CC~ ~ -J~.i. 02 C C12

* .)..

6..

,) ,,I..I WL

W j-0 C x

:: 4 JX ''.'.5 >
'

- u u U Q)(A4-

~~Cl c. 0 jj
U E .,4 64 .J

A* C- 0v -cc

Cz~0 4-)CO ;01OQJ a) L .
0 .140 = CO.- I-o r_ w c cc co

U3 co~ ~ ~ ~ ~ ~ ~C E () a 0C0 w.

41 40. c -4)w 0 0*)0 cE00

,ca,, 41g) 4J 00 "0 0 .,- 0 W,- 0 0 co- -W W -W = IV

a z 1 ca . W -H . . ,j m e w 00Q) a

94 0U W 4- -19 24)~ w.. m u C o LCO CUj
J J - 4 U 0 , = 4. -- A E a

W) (L) 4) 4) 04))W -
co w A Go co u -4 a

CL. ,,.- ,,) X, 0 , $-4 u.' (,) cc Aj 4- 0 .,) u >1 6". 4) "

4J,.,.

c 0

0 -d - ,

- 1- -o -

> CU > o cc

cc 4) u L >> c

, C cc.0 E.

[LI •W • C

Z 4j 4)614-

9= CVC
~-m (00 CO 4)r>

Q~c E~J. U;~~

$. Q4)

4a)
-~ 4) 0.CL

=~ 8 .

cx Aj -W i 01 41 00 C
u u u 0 u 0 u
Q. CL 0 0. CL CL 0.C

x x xc x

< U)U) U) V) x U

V) a) 'o > u 41 a22c - 010 2.

m a Q O4.-j- 0C 6 j r 0C *2-H a

Cl) 01O~ J-) 1) I I n CC (n =
rccw 6 4-J 41~ A.. 4.j 0Jn Q)*~ ca. o

0 03- xu w (1 (L 0. 0 x 1
E*o 4-1 co M) 4-j 0) 4 -5 Q) _ Q) -0 (1)mC

C= =CU =iC~iC2 C.0m 01CC0W
VZ - *0 -4 "01 -" " -,- r- 5--4 Co 2

Ci co u H12.- 26 (U cum0m0c wma)C 0 C 0

-4 U) CoU)M -4 2-. E 2 u Cu u exu 005CV) 4-4 JCO E

Q E-
'- 01

M.0 0 0 0

P-4 0 0 0 0

X:) 0W1. 4

- C;

CC

z

C)

H Aj
ca-

U4 C()

3:

W (D W) 0)a
S41 4--1 41 4 4.) 4. j 41J
u W u U-4. U U u U
a~) Q) 4) W =W 0) 0) 0)

CL. 0. 0.=1 9.C
Sx x xO 0 x x x

E- 0)) 0 (L) 2 E) 0)0D0

~U 4-4 >-, Zl) U
-cc0.0 o'

U~ .6J 044 Cl (4I.j~~-~ to0 4~ ru - uE).~-O W g
co ca- EO a) 0)) .1-4 .- U u 00

u U- a$. U .- WO = Cnji4. () ~co=I,*C/) co~- &) 0 r_ 4. u 4- W- a
Ca . -4 4 = o Ca 4 10 cc 0 I0a0()

>N .1 0 41 0 Wi.44aL. 1-4 .6J U E0~ (n
.-cl .- 41"J44U) cu 0 S..= L4.g u U

a -Z c 0) 0 U~0 *j ~n
W MU c 4- c c V. 0. U) Uu ca .4 M - ~ '

0) () M 2: ri m) 9~.) W =- C I00

06 Eu w~ r= (n*0) C au a))
0O i1j0

4 U) cz C1 O- 4 =ca Cn cuc C) c c

tip'9
-4 CL-E-~ vii 0)) 0,

.- a s E 0: e to 14-4 r_ C
M " 0 0# 0 0 0
S0 - 3-' Z 0.,- -4d 0~ m Hr

C -4 (z o C-4 0 Cu m Q U (u U
Q3 C.3 0.C U: W C. <-

0

18-1 wcn1 CO 0m

0 0 m *4 0 U,
M- u ca 0)

cn 0 u~~

w) 000

~~~~ 12~O0)u

N-



m. 0 .- . )0

AC m CL a) -1 *0 .) 4

0)0a) ) 0 4) -44~O a)
u ua W u
13) cJuV). 0)

a.) x x x00).
(D Q)- 6.) 0)L) U V ) 0 Q)
U) -4 0O)- O 0 ci(V)

m~, -4 .4- L L

u 0V E) .~-cc. r= n o-"

M~- mV 0).-4'a ) u II Q
0~ > u oe

a) Q ) 0 ~ ~o .

m U3 m A0 r 0 - -
- 0. -4 -416. 4.J 4.J*,-M . UII 1 () l .6J 0)6

4-e 4-4 __$_._a___-4_____

- 0) ca cc -a.)_ W 0 0 j

m ) m -6 0nt UC 0 M0Q

0n 0 0E S E
W CLi 0 .4

2= A .6J .6

4-1X 0 .

CI ~ 0) MW M a CO C

- ia cc -) . >

o~ ~ a) ccc ccc~ v0)0

Cu~ a.0 CmO)r_0r0)0

j~A4

Ca..-' cc.

~ C- 11



! a
Q

(L Q ) ) a) 0
-W .6 41 .6 4 r

.-- j

u.' ui= .u u -. .14

Q) 0 0) c G) 4)CI W 4-1

Q . L L Q. r 0. U -4
xx x xv x 6

Q) Q) W Q W6.O0
> .00 00

M.. -C _ co•

o 0

xJ -14 a)) a)J U)J ) 0

Z =-4 _ * o 6d 0 4

4) 0 .JV cC 4( c, oc U) c.Q E0.W 0.
4-- a.I n 41 EV u. a

09 >1 0 0 U2*-H =1 au uo 0 .1w 0

r_ > ca 6. ca. uW 4 U
c a( 0 "o LW $ i.Jj w. c~(10 O~ -

ca U3 2J* U .r .) cam4 c A v
IVCL N 1 1.64 w A1 E ca.

0 0wu Xv 4)~l~ * . ). O~-U 4 O W (1 M Q)
U) 3 -4 U0. CL 0) U C6 W.1 M~ . . CO 1 CC

cz )
CA 0 -4 0CO C

Q .) 0 LU0

0 . " J.0 0
- Z J.411 J 1IC)C ca .61

S0

'" 0 - E ca -
m 0o0 0 0> cvco

Cl ~ca )-

oc

4m .,q

o Ccc

E UV
cz Hv

.4-, 12

6 c K7v



r=ca- 00 r_

w3 "a co u) .4 0 03 a

03 00 03 00 w 202m0

u ). 4 (a3 U()U 02 ) u 4
.- 3 w3 (L) (U 03. C.0

aC 0 =3 Q) "o 1 r_ a)
4U) U) *-4 03 0) -. C= 4 0 ) 0

E -C r_ m u E 0 = L)

Q) I) (n C U
cn c "00J0 a) Q'4-. QI (U w3
E- m 00wCU02 U) $. 0 u>W 0 CL Q " w wc
.-3 > 0 0)... u s. On E =00 cc

w.w- U)1 a)22.0) .~440 U) uC = M
=J 0 0 3uo ( ( 1 9) 0jJ CC)0 U)-W

I= 4U) m02u 9 0d a)~. z~ -33 0 0) >1-W
00 U) Q) w3 ) 0 U) J - E =O r- W - 03 a) 02 O .,I )

0 Wz 0- ). - 03Q 0 X:-44 - )M )C

0. 4 m20 0- coQ CQ c L C4.4 .E 6 E0 O U0 C V )>
-/ r_ v. . ~--1 41) = - 02 E0~0 U)C - 0. c (

to w- w~ 031- 0- 020 0 00 " 3 = 0 - -C

Q)3 U) w3- . -4 0 U-.~U~ w E 'o Q)
C --J 02 . ~ 0 S.~0 Q)03 .0 -H20"

V4 ) CC -4 4..J t - 2 %.6 Co ow4-1 S-. Lu.. -J'4 E w u 4-' 23 02

V* 00

c cc0 0
W- 03-

- 0 a. -0

En cJ ) 0 C 0a
=- W .4 W

0 C 0 = C 0

-o 0. 020 0 00wM

-4 CL Co 0 00
M E E "a- CO -

L.U 0 03 r

U -
rA 020 rA

u COM co
in~00 -0

- 02 .J *.O13



-- ,1

7x

0,, u -) I0

m6-. 3 " 0 4- j II s-I ,-0. 0) Q) Z .6J

-- -4 E

00

x cu co .6J CO
rl 41 - r

06 4)-4 si (

[.,-,

w r_, cc

C4

• - .- 0-) -° -

.4. - )---

4- I -~ 04

an cc

Z~ 14I4-



-. 7777777-- 

Integration Testing

Step One: Integrate Analysis Modules

In this step the both the on-line and off-line analysis modules were

merged to form the on-line analysis program and the off-line analysis

program. Problems of the following types were encountered.

A. Redundant variable/module names -- minor difficulties were

discovered in that some of the module and variable names were

identical in the first five characters and the error message "re-

declared variable VARNAME" was received during compile. Changing

the names solved the problems.

B. Module calls and returns -- some problems were encountered when

calls to modules had the passed variables in the incorrect order or

failed to have the correct number of passed variables. All modules

,were checked and the problem resolved.

C. Declaration of Modules -- one of the largest problems

encountered was the fact that the default value of module returns is

integer if the module is not declared regardless of the fact that

the return value is declared properly. This happened with the call

to the function in the Qlib where the returned value was a long

decimal as was the variable that received the returned value but the

function was undeclared. After declaring the function, the problems

created were resolved and all the modules that returned values were

F, likewise declared.

B- 15

WvV



Step Two: Test with hard-coded packet

The next step involved testing the on-line analysis program against

- a single hard-coded packet. A 142 character packet was created in the

module availpkt and returned to the program to be analyzed. The main

problem discovered was incorrect field position when parsing the tempq

into the permq.

Step Three: Testing with an on disk packet file.

This step changed the availpkt function to read a packet from a

test file containing twenty packets all of type DDBMS. No major

difficulties were encountered but minor problems in algorithm design were

* discovered and corrected. Both the on-line and off-line programs were

tested against the same packet file.

Step Four: Test with network traffic

The final step in integration testing involved testing the on-line

analysis program against actual network traffic. Network traffic was

generated by the existing DEMO3 programs and no major problems were

discovered. In this testing, the packet stream was not continuous. The

packets were sent one at a time and the operation of the on-line monitor

verified through the use of readkeys.

B 16



System Testing

Step One: On-line Analysis Program

In this phase, the on-line analysis program was operational and

DDBMS traffic simulated via an artificial traffic generator which sent a

constant stream of DDBMS traffic across the network. All of the readkey

functions that allowed the user to slowly step through the on-line

analysis modules were turned off (using preprocessor statements set to

* zero) and the same packet file used in integration testing was used. The

major problem discovered involved the interrupt handling of a received

packet while the program was involved in a critical area of code. The

receipt of a packet at this time would cause non-predictable, non-

standard results. Either the program would Ftrap out (if in the middle

of a calculation) or garble the print screen (if in a printf statement).

An attempt was made to solve this problem by disabling the interrupts

when a critical area of code was entered and enabling them when the area

was exited, but unfortunately too many of the standard C functions like

printf use the interrupts nd disabling them caused the program to abort.

This problem was resolved by using the polled version of the IS02

software but it remains to be solved.

Step Two: Off-line Analysis Program

In this phase, the off-line analysis program was run against the

DDMON.MSG file created by step one. A major difficulty was discovered in

the reading and writing to files. As originally designed, the on-line

B -17

S7



program was to have written to the files in a character-by-character

fashion, using the function putc. Similarly, the off-line program would

have read the file using getc. The putc function however does not work

with NULL values and no error message is printed (Saying unable to write

etc.) but the problem was discovered by calculating the packet length.

The solution to the problem was relatively simple. The received packet

was logically or'd with the value OlOOH on a character by character basis

before storing to the file with an fprintf command. This changed the

character to a 16 bit value greater than 0. Upon reading the character,

it was again logically and'd with the value O011H which transformed the

character to its original value.

B -18



Operational Testing

Due to the non-availability of actual DDBMS traffic, true

Operational Testing could not be conducted. However, the artificial

traffic generation program was expanded to provide a more realistic

traffic load (with pauses and by sending out packets with sequence

numbers 0 thru 3). While the traffic generator created the DDBMS traffic

stream, the DEM03 program was loading the network with simple network

traffic from other nodes. Generally, the on-line monitor could handle

these adequately, taking approximately 1 second to process a DDBMS

packet, .6 second for a network packet. The main problem was that the

traffic, with generators running at full speed and transmitting a packet

*0 every two to three seconds, soon filled the DDMON.MSG file causing the

out of file space message to occur. The on-line monitor continued to

operate, although packets were not saved for off-line analysis.

A major problem with the off-line monitor was the out of memory

condition that occurred when the DDMON.MSG file size was maximized.

Although the logic was sound, some of the modules were redesigned to

minimize the amount of storage they required in order to process the very

large message files. No other major problems were encountered.

B 19



APPPENDIX C

Documentation Tools and Techniques

Contents

P~age

I..troduction. ............................ C - 2

Data Flow Diagrams. ......................... C - 2

Structured Analysis and Design Techniques .............. C - 4

Structure Charts. .......................... C - 4

C I

VX



Introduction

This appendix describes the format for the documentation tools and

techniques used in this study. These tools and techniques were used in

several classes taught at the Air Force Institute of Technicology and are

proposed Engineering Department Standards (1). The specific descriptions

of thes tools were obtained from this standard as well as the study by Capt

Paul D. Bailor and are included here for completeness.

Data Flow Diagrams (3: 11-26-27)

The mechanics of a Data Flow Diagram (DFD) are shown in Figure C-1.

An input data source provides data to a data transformation process. The

transformation process converts the input data into output data which is

provided to the data sink. A transform process can have more than one

input data flow and produce more than one output data flow. Additionally,

the transform process can access data files or data bases while performing

the data transformation process.

Data Flow Diagrams are intended to show the steady state flow of data

within a system with no consideration to control paths such as loops;

hence, loops appear very seldomly in DFDs. One situation where loops may

occur is an iterative testing process such as hypothesis testing. In these

situations, data and test conditions can be modified several times to give

a broader range of results. Showing data flow through a hypothesis testing

process would naturally seem to require some indication of an iterative
.1

porcess or loop. Since loops are seldomly contained in DFDs, there is no

agreed upon convention for showing a loop. For this study, a data flow

constructed of dashed lines is used to show a loop in the data flow paths,
C

"4

* -



DATA
SOURCEFILE OR DAT BASE

INPUT DATA FLOU

TIGRENSFORMATION

DAT

C-3

%6.



and in keeping with the intent of DFDs, this convention is used only when

absolutely necessary.

Structured Analysis and Design Technique (3:111-1/3)

The Structured Analysis and Design Technique (SADT) developed by

SofTech Corporation was used to document the preliminary design. By

showing the system activities, the SADT technique specifies what has to be

accomplished before the details of how it is accomplished are introduced.

Therefore, the implementation details are forced to the lower levels of the

problem solution, and the design documentation does not resemble

programming logic.

The mechanics of an SADT activity diagram are shown in Figure C-2.

The box represents the activity to be performed, and the arrows represent

the data associated with the activity. An advantage of SADT activity
-mJ.

diagrams is their ability to specify control and mechanism inputs as well

as input and outputs. Documentation for SADT diagrams consists of a node

index, the activity diagrams with facing page text and a data dictionary.

Structure Charts (1)

A structure chart is used to document the modules used in developing

the programs code. The mechanics of a structure chart are shown in Figure

C-3. The box represents the process (module). Each should contain the

module name and number. A module that has already been identified in

another drawing should contain the original module number and be flagged as

a common module with a small, filled in triangle in the lower right hand

corner. The boxes should be connected with vectors. These vectors are

used to connect parent modules with the modules they call (children).

.4W.



CONTROL

INPUT ACTIVITY OUTPUT

x14

hI  I

MECHANISM

INPUT - DATA CONSUMED/TRANSFORMED BY THE ACTIVITV

CONTROL - DATA WHICH CONSTRAINS THE ACTIVITY

OUTPUT - DATA PRODUCED BY THE ACTIUITY

MECHANISM - PROCESSOR/TOOL USED TO

ACCOMPLISH THE ACTIVITY

FIGURE C2. SADT ACTIUITV DIAGRAM

(3slZI-3)

..

G-,



PARENT
PROCESS

PASSED DATA PASSED DATA

PASSED /FLAG PASSED FLAG

CHILD CHILDCOfN
PROCESS PROCESSPRCS

FIGURE C3. SAMPLE STRUCTURE CHART

C-6



Appropriate arrows and parameter names should indicate the parameters

passed between parent and child. A single structure chart should be

horizontally oriented and show a parent module and one level of children.

A second level of children may be shown if it is the bottom level and there

are only a few modules.

C 7
Sl

1. 71 0%F

%!



' ,. APPENDIX D

Monitor Installation on an Intel 310

Introduction

This appendix presents a description of the current status of the

implementation of the network monitor on the Intel System 310. The Intel

system is a powerful mini-computer, capable of operating in a multi-user,

multi-task environment. For this reason, it was chosen to host the

network monitor. It would be an ideal performance monitor, capable of

running the real-time performance monitor in the foreground, and the

detailed performance monitor in the background. Due to a lack of easily

understandable documentation and constrained by time, the attempt to use

the Intel system was halted and a working LSI-11 system substituted as

the monitor hardware. The use of the Intel 310 for the monitor should be

pursued however, and this index will provide useful details on the

current status of the machine.

Hardware Description

The Intel System came with 256K of memory. An additional 512K

memory board was installed bringing the total memory to 768K. This

memory board is required to run the Intel system with the RMX 86

operating system. Also installed was an Intel 544A communications board.

This board is equipped with an 8080 processor and is currently configured
e'

to allow up to four serial devices and one parallel device to be attached

to the ports. The internal cabling to support the serial connections

(ports J5-J8).

D- 1



Software Description

The RMX 86 operating system has been installed on the system as have

the languages PLM, Assembly, and C. The Intel system boots from a file

located in the directory :sd:/system/rmx86. This file is created by the

user invoking the ICU program (to invoke the user must be in the

/rmx86/icu directory and type the command ICU86), modifying the contents,

saving and regenerating using the ICU commands, exiting the ICU and then

copying the file created from the boot directory to the /system/rmx86

directory. The boot file is currently configured to activate the 544

driver on one of the 544 ports.

Proposed Direction

Two major obstacles prevented using the Intel as the network

monitor, lack of usable documentation and lack of time. The major

problem was the documentation provided. The RMX 86 operating system is

very powerful, but unfortunately very complex. The documentation is

likewise very complex and somewhat obscure. To work with the system, a

thorough understanding of the operating system is required since none of

the languages seem to allow direct access of the ports (all port access

is made through calls to the operating system). Recommended is

attendance at an Intel school that teaches the operating system and how

it interfaces with the Intel 310 as well as a detailed reading of the

documentation provided.

A recommended plan of attack is to first get the system operational

with a super user and two or three of the 544 ports activated. (This can

be done using the drivers provided in the ICU configure file). After the

ports are activated, programs can be written that try writing things to

D- 2



and receiving data from each of the ports until familiarity with the

system calls is achieved. Finally, the network monitor and the related

NETOS software needs to be brought on-line and modified as required.

Some problems may be encountered in trying to properly configure the 544

driver (which in turn programs the 544 board). The driver allows three

input modes, transparent, normal and flush which are explained in the

configuration guide, page 10-110. None of these seem suitable for

receiving interrupts from a communication line, reacting to them, and

-' then returning to the working program. A specialized driver may need to

be written.

0 As envisioned, the 8080 processor on the 544 board would be

responsible for handling the communication links with the LSINET,

receiving the packets and storing them in the memory shared with the

Intel 310 8086 processor. This processor would be responsible for

reading the packets from the memory locations and analyzing them

appropriately. This suggests a carefully planned interface since both

processors could not access the shared memory at the same time and a

method of marking the packets needs to be developed. An easier solution

would be the implementation of a 534 board which does not have its own

processor or an ethernet card (both boards are either available or on

order).

mT)

' V .,



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE 

qT/I /
I |REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2e. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

2b. OECLASSIFICATION/DOWNGRAOING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/85D-14
6a NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Paterson AFB, Ohio 45433

go. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Sc. ADDRESS (City. Stale and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
* .. ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Clasification)

See Box 19.

12. PERSONAL AUTHOR(S)

Janice F. Rowe, B.S., Captain, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

MS Thesis FROM TO 1985 December 130
16. SUPPLEMENTARY NOTATION

-I I -. .

17. COSATI CODES 18. SUBJECT TtRMS (Connue on reerse if necessary and identify by block number)

FIELD GROUP SUB. GR. Networks, Database, AComputer Performance Monitor,
09 02 Distributed Database Management System, Computer Program

19. ABSTRACT (Continue on reverse if necessary and identify by block numberp

Title: A NETWORK MONITORING FACILITY FOR A DISTRIBUTED DATA BASE MANAGEMENT SYSTEM

Thesis Chairman: Thomas A. Hartrum, Phd.,

Professor of Electrical Engineering

A o~ap.yd tbo#W retsmr 1AW AM 110-1.

ZZ~v.WOLAVU 1 4.)A'E
Do a taer Si.amb ad hlism.ioanal D .,eniiial
Air 1'M ftwo" at Teabsusogy (Me-t

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

K' i "% -NCLASSIFIEO/UNLIMITED 0 XME AS RPT. DTIC USERS C3 UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

Nle ilnclude Area Code)

Thomas A. Hartrum, Phd. 513-255-3576 AFIT/ENG

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

.. .V-,, . -% --. % %..........p.



4.

TTNC1T.AqTFTED
, SECURITY CLASSIFICATION OF THIS PAGE

Abstract 4':...-:..C--,:

" This inlesrt-ig designed and implemented a hybrid network

monitoring facility on an existing Distributed Data Base Management

System. Analysis of the performance evaluations goals and objectives for

the complete distributed system (both the layered protocol network and

distributed data base) was accomplished. Two monitoring programs were

developed. The on-line analysis monitor is designed to work with

existing software to calculate metrics involving arrival rates, packet

counts and arrival time-. The off-line analysis monitor, using the

packets saved during the on-line session, completes a more detailed

*analysis, providing user selectable metrics in the area of throughput,

response times and utilization. Both programs were extensively tested

using a four phased process which encompassed unit level, integration,

systems and operational testing. Operational testing was accomplished

using an artifical traffic generator program, designed to produce

realistic network traffic.

M. '

*UNCLASSIFIED

SSECURITY CLASSIFICATION OF THIS PAGE



- 4...

ITI
- ....,';' 

U-


