
RD-Ri64 122 A PROGRAMMER S ASSISTANT FOR A SPECIAL-PURPOSE DATAFLOWd 1/2
LANGUAGE(U) AIR FORCE INST OF TECH MRIGNT-PATTERSON AFB
OHI SCHOOL OF ENGINEERING A J BLACK DEC 85

UNCLASSIFIED AFIT/GCS/ENG/85D-2 F/G 9/2 NL

JL136

1111l1 L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- I963-A

kA.

SDTIC

~A PROGRAMMER'S ASSISTANT FOR h

SPECIAL-PURPOSE DATAFLOW LANGUAGE

THESIS

Alan J. Black
Captain, USAF

AFIT/GCS/ENG/85D-2

DWIS5MION STATEMENT A

Appro.,d to public releaseI Distribution Unlimited

_.1). DEPARTMENT OF THE AIR FORCE
'.. AIR UNIVERSITY

- AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

.""<

AFIT/GCS/ENG/85D

DTICS LLECTE
FEB 1 3 1986

A PROGRAMMER'S ASSISTANT FOR A

SPECIAL-PURPOSE DATAFLOW LANGUAGE

THESIS

Alan J. Black
Captain, USAF

AFIT/GCS/ENG/85D-2

.2?: Approved for public release; distribution unlimited

AFIT/GCS/ENG/85D

A PROGRAMMER'S ASSISTANT FOR A

SPECIAL-PURPOSE DATAFLOW LANGUAGE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electical Engineering

Accesion For

NTIS CRA&M
DTIC TABU. a:;:o' ced

, ,J. tltcto o
Alan J. Black, B.S. -

ByC a t a n U S FD ,y .. o.
Captain, USAF Dttib:tio,,/

Availabiiity Codes

DtI Avail a.,d/or

December 1985 pecidI

• Approved for public release; distribution unlimited

.-

Acknowledgments

I want to thank my thesis advisor, Dr. Gary B. Lamont,

for his help and advice. A special thanks is extendend to

Captain Steven K. Rogers for his help in defining the

requirements for this project. Finally, I want to express

my appreciation to my thesis committee, Captain Steven

Cross, Dr. Matthew Kabrisky, and Professor Charles W.

Richard.

."

4,i

Table of Contents

Page

Acknowledgments **.. ** i

List of Figures iv

Abstract o o....... o... o..... o.... V

1.1 Background--A Robot Simulation Facility 2
1.2 Problem ... o... o................. 3
1.3 Scope o... o.......... oo 3
1.4 General Approach o......... 0*6........0 4
1.5 Sequence of Presentation o o......... 9

II, Requirements and High-Level Design 10

2.1 General Requirements for a Robot Simulation
Facility ~..................... o 10

2.2 Functional Graph Network Language 14
2.o2. 1 Display Trees 16

*2.2o.2 Functional Networks. .. . o... o.......... 18
2.2.3 FGN Code o............6............. 20

2.3 Design Goals for the Graph Design Assistant. 22
2.4 User interaction Senario oo--o-- 25

III. Design 34

3.1 Development strategy o..o.......0.0.. 34

3.1o2 Exporatory programmingo...............o. 37
3.2 Graph Design Assistant Architecture 38

3o2.1 Robot Simulation Facility Hardware
Configuration, 33

3.2.2 Graph Design Assistant Software
Architecture o... o 0*00 41

IV. Detailed Design and Implementation o... 48

4.1 Representation of Dataflow Graphs .. oo......o.. 48
4.2 GDA Knowledge Bases o...o ... 00*0...... 54
4.3 Graph-Window and GDA-Interface 58

V. Results, Conclusions, and Recommendations 61

5.1 Results 006000000000009080 61
5.2 Conclusions o........ o ... 8*608............ 62
5.3 Recomendations o.....o.......... .. o..... 62

Appendix A: Graph Design Assistant Knowledge Bases. 65

47

Appendix B: Graph Design Assistant Source Code 133

" Bibliography16

Vita** * * * * * 165

I.

4,

"j,4

.- , ,.

S. i., . .., .P, . : " -- . . .- ... - .,, . ., .-.. . .-, .. , . . ,

List of Figures

Figure Page

1.1 Plan Instantiation Example 6

2.1 User Roles in the Robot Simulation Facility 11

2.2 Rotate Squares Example: Functional Capabilities . 15

2.3 Rotate Squares Example: Display Tree 17

2.4 Rotate Squares Example: Functional Network 19

2.5 Scenario: An Example Design Hierarchy 26

2.6 Scenario: Level 1 "Animate Robot" 0.000-0.. 27

2.0cnro ee Tgl Ky 090.00 3

2.7 Scenario: Level 2 "Toggle Keys'............ 31

3.1 Robot Simulation Hardware Configuration 39

3.2 Graph Design Assistant Software Architecture 42

3.3 Graph Design Assistant Knowledge Bases 46

4.1 User's Design Hierarchy 49

4.2 "Flat" Functional Network 50

4.3 A User's View of a Dataflow Graph 51

-t4.4 Data Structure for the Dataflow Graph 52

4.5 Graph Element Class Hierarchy 55

iv

AFIT/GCS/ENG/85D

Abstract

A programming tool, the Graph Design Assistant (GDA),

for a special-purpose dataflow language was designed and

implemented. The motivation for the effort was the need to

construct a robot simulation facility which will assist in

*the development of effective algorithms to plan and control

robot movements.

An Evans and Sutherland PS300 graphic workstation is

ij used to display animated robot simulations. The Graph

"* Design Assistant was developed so that researchers could

program robot simulations on the PS300 without having to

learn the intricacies of the PS300's dataflow language.

The Graph Design Assistant was implemented on a "Lisp

machine" using a knowledge engineering tool. The result of

* the effort was a prototype system to be used as the basis

for further development.

.., .i .

.$ c ** * -. . *. * , ,* - *V

A PROGRAMMER'S ASSISTANT FOR A SPECIAL-PURPOSE

DATAFLOW LANGUAGE

I. Introduction

This thesis describes an investigation into the

YK: methodology of computer programming. There is a critical

*@ need to increase the power of our programming tools. John

Backus has stated "there is a desperate need for a powerful

methodology to help us think about programs, and no

conventional language even begins to meet that need"

(Backus, 1978:614).

This thesis deals with a specialized problem,

programming a graphic work station using a special-purpose

dataflow language. The result of the thesis effort was the

development of the Graph Design Assistant (GDA). The system

acts as a programmer's assistant, which guides and advises

the programmer as he interactively builds a dataflow

program.

Although GDA was intended to solve a rather specific

problem, the experience gained and the resulting system is

applicable to many complex design tasks.

"> 1

1.1 Background--A Robot Simulation Facility

The motivation for this thesis effort is to provide a

robot simulation facility for the Air Force Institutes of

Technology's Information Sciences Laboratory. The ability

to simulate a robot is important for the development of

robotic planning and control algorithms, the development of

new robots, and for off-line programming of existing robots.

Current robots can perform well defined tasks, but

perform poorly in uncontrolled environments (Brady 1985:80-

81). A robot simulation can be useful in the development of

robotic control and planning algorithms to deal with complex

situations.. A simulation facility would make it possible

to test algorithms without having to actually build a

physical robot.

A robot simulation facility can be used in the

development of new robots. Different designs can be tested

before the actual robot is constructed.

A simulation facility is even useful for existing

robots. Control programs for existing robots can be

developed and tested off-line (independent of the existing

robot). This capability will be important in industry

because it can prevent losses caused by removing an

expensive robot from service in order to program it

(Thomsom, 1984:335-336). In addition, because software

errors may cause hazardous situations with a real robot, a

2

SASA- n

simulation can be used to thoroughly test new software in a

S-2. safe environment (Pinson, 1985).

1.2 Problem

The specific problem addressed by this thesis effort is

the development of a programming tool for constructing

special-purpose dataflow programs. The dataflow language is

a special-purpose language used to program an Evans and

Sutherland PS300 graphic workstation.

Thus, the objective is to allow researchers to program

a robot simulation on the PS300 without having to learn the

intricacies of the PS300's dataflow language.

..

1.3 Scope

The task of producing a general purpose automatic

-. programming system is difficult. Most of the existing

. efforts are experimental and are capable of solving small

problems (Partsch, 1983: 229). One effort has been underway0_

for 15 years and has just recently produced an "operational

testbed" (Balzer, 1985:1257). Rather than attempting to

fulfill "that ever receding goal of automating the

programming of everything the user wants with a minimal

amount of specification" (Kant, 1985:1371), the scope of the

Graph Design Assistant was limited in several ways.

3

",,

The product of GDA is a program in the special-purpose

dataflow language. Dataflow programs are easily represented

with graphs; therefore, a graphic representation was devised

for the user to manipulate.

The application domain has been limited to producing

robot simulations. This restriction is not unreasonable, in

fact, it has been suggested that in order for an automatic

programming system to benefit the "computationally naive

user", the system must contain domain-specific knowledge

(Barstow, 1985:1321).

Another limitation on the scope of the effort is that

the initial version of the Graph Design Assistant is viewed

as a prototype. One view of prototyping is that its purpose

is to produce a specification for a system (Floyd, 1984:9).

As such, this effort was to produce a complete "outline" of

the system that will demonstrate feasibility and serve as a

specification for further development.

1.5 General Approach

The approach in the development of the Graph Design

Assistant was to focus on the construction of an interactive

tool that is a "mix of human and machine power" (Kant,

1985:1373). The system is was designed to fit somewhere

between the extremes of conventional compilers and fully

automatic programming systems.

* 4'
S. .* .

In the interactive environment of the Graph Design

Assistant, the user specifies a program by building a graph

on the screen. As the graph is built, GDA checks the

"consistency" of the graph and notifies the user of any

problems.

With GDA, much of the programming process involves the

selection of "plans" from a library. The term plan is used

to mean a "standard form" (Rich, 1981:1044). A plan is

instantiated and then expanded (like a macro) to form a

portion of the graph. At the top of Figure 1.1 is a graph

network with nodes Ni, N2, N3, and N5. The user has

selected a plan PLAN-4 a placed it in the network. When the

plan is instantiated, it "unfolds" to create the graph at

the bottom of Figure 1.1.

There are many different approaches to the development

of programming tools. Some approaches are similar but are

described with different terms by their designers. What

follows is a comparison and contrast between several

approaches and the Graph Design Assistant.

P4 Conventional programming tools. Conventional

programming tools consist of high level compilers and

interpreters, and utilities such as program editors, library

managers, debuggers, etc. Of all the approaches that will

be discussed, the conventional approach relies most on the

user's decisions.

5

Z f r% .

I NTNTAEPLN-

N

NiNT

144.1

Figure 1.1 Plan Instantiation Example

Compilers have been developed specifically for dataflow

computers that accept a language similar to ordinary

procedural languages (Ackerman, 1982:15-16; Veen, 1981:130).

There has been one effort to develop a compiled language

specifically for the Evans and Sutherland PS300 (Yamaguchi,

1985:48-60). Although this may benefit the user who is

familiar with the PS300, it would still require considerable

effort for a new user to learn the language. An objective

of the Graph Design Assistant is to allow a user to use the

6

PS300 without having to learn the syntax of a textual

language.

Program Transformation Systems. Program transformation

systems form a broad category of programming tools.

"Transformational programming is a methodology of program

construction by successive applications of transformation

rules" (Partsch, 1983:201). The instantiation of a plan in

the Graph Design Assistant can be viewed as applying a

transformation to the functional network graph. In some of

the program transformation systems the user selects trans-

formations from libraries or catalogs (Partsch, 1983:206).

This is similar to the selection of plans in GDA.

Programmer's Apprentice. The Programmer's Apprentice

(PA) is a project developed at M.I.T.(Waters, 1985:1296).

The PA can be classified as a program transformation system

(Partsch, 1983: 224). It is included in a separately in

this section because its approach is similar to that of the

Graph Design Assistant. The Programmer's Apprentice "lies

somewhere between language-oriented programming tools one

-S hand, and automatic programming tools on the other" (Rich,

1978:444). The Programmer's Apprentice is designed to

4interactively aid and check the work of a programmer; it

keeps track of details and frees the programmer to

concentrate on the hard parts of the problem (Waters,

1985:1296).

7

:.

Graph Grammars. There has been work in the theory of

graph grammars which is relevant to the Graph Design

Assistant. Graph grammar theory is uses dimensional graphs

in the same way that Formal Language theory uses one

dimensional strings (Ehrig, 1978:9). It has been suggested

that graph grammars would be useful in the generation of

programs, given that so many of the programming aids (flow

charts, structure charts, block diagrams, etc.) are in the

form of graphs (Nagel, 1979:71). In the case of dataflow

programming languages, graph grammars are particularly

appropriate because dataflow programs are easily represented

with graphs (Davis, 1982:26).

A System for Interactive Design (SID) is an example of

a system which uses a graph grammar as its basis (Kunii,

1980:33). SID has been used to design hospital information

systems (Kunii, 1980:33) and petrochemical plants (Buchmann,

1979: 732).

* In the design of the GDA, an attempt was made to define

the grammar of the PS300's dataflow language as a separate

part of the system. The objective of the separation of the

grammar of the FGN language is that the GDA system could be

used for other purposes by replacing the grammar definition.

Visual Programming. A recent term which has been used

to describe some programming systems is "visual programming"

(Jacob, 1985:51). The idea is to construct programs by

creating and editing diagrams rather than text. Others have

8

- stated that since a dataflow programs can be viewed as a

graph, it would be advantageous to do away with a text

representation and directly manipulate the graph (Davis,

1982:27).

The Graph Design Assistant presents the dataflow

program to the user in the form of a graph. The user

creates and edits programs by making changes directly to the

graph.

1.5 Sequence of Presentation

Chapter II presents the requirements definition by

examining the needs for a robot simulation facility, and for

the Graph Design Assistant. The system architecture and

overall design of the GDA is presented in chapter III. In

addition the development strategy for GDA is described and

justified. Chapter IV discusses the detail design and

implementation of the Graph Design Assistant. Finally, the

results, conclusions and recommendations are presented in

chapter VI.

.

4 9

II. Requirements and High-Level Design

The first step in the design of the Graph Design

Assistant was to define the requirements for the system.

Requirements are a description of a system to be build

(DeMarco, 1979:412).

The first section in this chapter is a description of

the general requirements for the robot simulation facility.

This provided the context for the Graph Design Assistant.

-Next, the Functional Graph Network (FGN) language is

examined. FGN is the desired output of the Graph Design

Assistant; therefore, it is a major factor in the

determination of the performance requirements for GDA.

Next, the specific requirements for the Graph Design

Assistant are outlined with a series of design goals.

* Finally, an example scenerio is used to make explicit the

interactive user requirements of GDA.

2.1 General Requirements for a Robot Simulation Facility

p The requirements for the robot simulation facility were

driven by the anticipated users of the system. ThreeU-

-different "user roles" were defined. Each role corresponds

to a specific purpose for using the simulation facility.

a- The three roles are Robot Display Designer, Robot Control

10

IlSI-

Program Developer, and Robot Model User. Figure 2.1 is a

diagram which shows the three different user roles, the

processes which comprise the system, and the output from the

processes.

Robot Display Designer. One function the robot

simulation facility must perform is to allow for the

creation of robot models. As shown in Figure 2.1 there are

two processes involved in the creation of a robot simulation

model. They are the Display Tree Design Tool and the Graph

Design Assistant.

USER ROLE PESS~ES Q0IEf

GRAPH DESIGN FQN PROGRAM
ASSISTAT "'ANIMATE ROBOT"

-.." ROBOT DISPLAY
-"" DESIGNER

DISPLAY TREE
'ROBOT TREE'

ROBOT CONTROL ADA PROGRAMMIGAARGA
PROGRAM DEVELOPER AP MIcoNTROL ROBOT"TOOL

ROBOT MODEL DISPLAY OF
USER ANIATED ROBOT

* Figure 2.1 User Roles in the Robot Simulation Facility

11
1.2!

The first process used by the Robot Display Designer is

- Display Tree Design Tool. The processes allows the user to

design and edit display trees. A display tree is a data

structure which contains the three dimensional coordinate

* information which defines the shape of the image. When the

display tree is loaded into the PS300, the image is

displayed on the PS300's screen. In the example shown in

Figure 2.1 the display tree is named "Robot Tree"; it

describes the shape of a robot.

The second process used by the Robot Display Designer

is the Graph Design Assistant. With the GDA, the Robot

Display Designer creates a functional graph network, named

"Animate Robot" in the example in Figure 2.1, which

' .~ controls the movements of Robot Tree.

The two products created by the Robot Display Designer,

together define the animated robot model. When loaded into

the Evans and Sutherland PS300, the display tree defines a

-- three dimensional image of a robot, and the functional

network controls the movement of the robot.

In the example shown in Figure 2.1, the robot model is

designed to interface to a robot control program running on

the host computer connected to the PS300. It should be

4r noted, however, that it is possible to design robot models

that are controlled directly through input devices on the

PS300. The assumption in the example is that the users of

12

i--

the robot simulation facility have an interest in developing

S' " ~ robot planning and control programs.

Robot Control Program Developer. Another role that a

user of the robot simulation facility might assume is that

of a Robot Control Program Developer. In Figure 2.1, the

Robot Control Program Developer is using an Ada programming

tool to develop a program named Control Robot. (The program

language Ada was choosen as an example, in fact, other

programming languages could be used its place.) In Figure

2.1 the robot simulation model created by the Robot Display

Designer would be used to test the program "Control Robot".

Robot Model User. The last role defined for the users

" -. of the robot simulation facility is that of the Robot Model

'. ~. User. In this role the user gives high level commands to

"Control Robot". The process "Control Robot" gives lower

level commands to "Animate Robot" to cause the simulated

robot's movements.

As can be seen in Figure 2.1 the Graph Design Assistant

is part of the process used by the Robot Display Designer.

The purpose of GDA is to create a functional network which

- controls the movements of the animated robot. The

functional network is created using a special-purpose

dataflow language named the Functional Graph Network (FGN)

language. The next section describes this language.

13

--- -- -,al V9

!15

2.2 Functional Graph Network Language

The Functional Graph Network (FGN) language is the

special-purpose dataflow language which is used to program

the Evans and Sutherland PS300 graph workstation (Davis,

1984). A FGN program consists of a series of statements

which are instructions to the PS300 to construct functional

networks and display trees within the PS300's memory. Once

a network and display tree are in memory, the PS300 scans

the display tree and shows the resulting image on the

display screen (Evans and Sutherland, 1984a). The

functional network can have connections to the PS300's input

devices (tablet, dials, mouse, and function keys), and can

output data to the display tree. In this way, the

functional network allows the user to manipulate the image

with the input devices. Additionally, a host computer

connected to the PS300 can send data to the functional

network and manipulate the image.

In this section, a simple example of a display tree, a

functional network, and the FGN program which generates the

tree and network, is developed. Figure 2.2 illustrates the

functional capabilities of the "Rotate Squares" example.

j., Within each of the rounded squares is an image that would

appear on the display screen of the PS300. The left most

screen is the initial image of two concentric squares.

V

14

N - ,

01*~* *

-

ROTATE.

0C RoTA

Figure 2.2 Rotate Squares Example: Functional Capabilities

Turning dial I causes both squares to rotate, while

[turning dial 2 causes the inner square to rotate relative to

the outer square. The following section explains how the

the display tree and the functional network for the "Rotate

Squares" example are constructed.

.-

15
0e

'., . 2.2.1 Display Trees

A display tree is a hierarchical structure within the

Evans and Sutherland PS300. The display tree consists of

elements linked together in a tree like structure. The

elements are vector lists, sub-tree structures, and

transformation nodes. The PS300 displays an image by

A' constantly scanning a display tree, applying transformations

in the nodes to vector lists and displaying the resultant

vectors on the screen.

- Figure 2.3 is a diagram which represents the display

tree in the "Rotate Squares" example. Starting at the top

of the tree, the triangle is a sub-tree structure named

"double-squares". The node labeled "rot-out" (labeled nodes

are shown as two concentric circles) is a transformation

node used to rotate the outer and inner squares. The

unlabeled node (unlabeled nodes are shown as single circles)

is a transformation node used to scale the inner square.

The node labeled "rot-in" is a transformation node used to

rotate the inner square. The box labeled "square" is a list

of vectors or lines (stored as the end points of each line)

that define the 4 sides of a square.

In the display tree in Figure 2.3 there are two

"instances" of the square depicted as lines from "rot out"

and "rot in". The "rot out" transformation node is designed

so that when a rotation transformation is applied to the

16

"""""

node, both instances of the square (the inner and outer

squares) rotate together. The unlabeled transformation node

directly below "rot out" contains a scaling transformation

which makes the inner square smaller than the outer square.

The "rot-in" transformation node is designed so that when a

rotation transformation is applied to the node, only the

inner square rotates.

DOUBLE SQUARES

ROT OUT

ROT I

SQUARE

0

>"gl-e 2.3 Rotate Squares Example: Display Tree

The image defined by the display tree in Figure 2.3 can

manipulated by making connections from a functional network

to the labeled nodes. The one transformation node is

17

L

unlabeled because the scaling transformation was designed to

- -~ remain constant; therefore, it does not need a label as a

connection point to the functional network. The next

section describes functional networks and how they relate to

display trees.

2.2.2 Functional Networks

The PS300 is programmed by constructing functional

networks that reside in the PS300's internal memory. The

functional networks of the PS300 can be viewed a dataflow

graph (Davis, 1984:1.2). In a dataflow graph, the nodes of

the graph are connected to each other with arcs. Data

- ,Ltokens flow between the nodes on the arcs. Each node

performs a function on its input data tokens and produces

output data tokens.

There are many types of functional nodes used in the

PS300. Many of the nodes perform functions designed

specifically for a graphic operations. For example, there

are functions which support matrix and vector manipulations.

These are useful for the transformation of three dimensional

coordinate data. Other functions are more general purpose

in nature, allowing the construction of general purpose

computational structures. For example there are functional

nodes which are useful in building iterative loops (Davis,

1984:2.13).

18

Several types of data tokens which flow between the

functional nodes in the network. The data tokens can be

simple or composite date items. The simple data items can

J>.' be integers, reals, or boolean values. The composite data

* items can be matrices or vectors.

FUNCTIONAL NET DISPLAYTREE

DOUBLE SQUARES

-". ROT OUT

ROTATEOUTER

F:DZROTATE

Figure 2.4 Rotate Squares Example: Functional Network

The functional network for the "Rotate Squares" example

is shown in Figure 2.4 on the left side. There are three

functional nodes (shown as boxes), labeled "dials",

*l "rotate-outer", and "rotate-inner". The "dials" functional

19
-le

node is used to get input from the PS300's dial inputs

(Evans and Sutherland, 1984b:5). The PS300 has a set of

dials that the user can turn. If the output of a dial has

been connected to a functional network, then when the user

turns the dial, a stream of real numeric data tokens are

sent out from the functional node. In this example, dials 1

and 2 are used as inputs to the functional network. The

1"rotateouter" and "rotateinner" nodes are F:DZROTATE

type nodes. Every time a F:DZROTATE node receive a numeric

data token on its input, it applies a rotation about the Z

axis to an internal transformation matrix. This matrix is

then sent out on output 1 of the F:DZROTATE node. Since the

output of "rotate outer" and "rotate inner" are connected to

nodes in the display tree, each time dial 1 or 2 is turned

the transformation matrix in the nodes "rot-out" or "rot-in"

are replaced to reflect an incremental rotation. The final

effect is to rotate the outer and inner squares when dial 1

is turned, and to rotate the inner square relative to the

outer square when dial 2 is turned.

2.2.3 FGN code

In the description of the Functional Graph Network

language, the programs have been described in graphical

terms. In fact, the graph structures are specified to the

PS300 using a textual program, which looks like an ordinary

20S,

-- S

programming language. Below is the code which builds the

display tree and functional network used in the "Rotate

Squares" example.

1. square := vector list
.5,.5 .5p-.5 -.5,-.5 -.5,.5 .5,.5;

2. double squares := begin structure
3. rot out := rotate 6;
4. insEance square;
5. scale .4,.4;
6. rot in := rotate 0;
7. insEance square;
8. endstructure;

9. rotate outer :- f:dzrotate;
10. rotate inner : f:dzrotate;

11. connect dials<l>:<l>rotateouter;
12. connect dials<2>:<1>rotate_inner;
13. connect rotate outer<l>:<l>double square.rot out;
14. connect rotate-inner<l>:<l>doublesquare.rot-in;
15. display double squares;

The program begins with the specification of the

display tree. Line 1 defines a vector list named "square",

which is a unit square centered about the origin of the X,Y

plane (the Z coordinates default to 0). Line 2 through line

8 define a structure named "double squares". The two

transformation nodes "rot-out" and "rot-in" are defined with

in lines 3 and 6 with the "rotate" statement; the initial

rotation is 0 degrees. The unlabeled transformation node

used to scale down the smaller square is defined in line 5.

- .Lines 4 and 7 establish the outer and the inner instances of

a square.

6?21
. .

*,% ~ *

The functional network for the "Rotate Squares" example

': is defined in lines 9 through 14. First the nodes

"rotateouter" and "rotate-inner" are created in lines 9 and

10. The node "dials" is a predefined system function node.

In lines 11 through 14 the connections in the network and to

the display tree are made.

The code to create the display tree and functional

network is downloaded from a host computer to the PS300

workstation through a serial line. In line 15 the statement

"display double-squares" causes the two concentric squares

of the "Rotate Squares" example to appear on the screen.

The ultimate purpose of the Graph Design Assistant is

to produce FGN code from a graphical specification as

opposed to the textual program specification shown in the

above example. With this goal in mind, the next step is to

examine some design goals for the GDA.

2.3 Design Goals for the Graph Design Assistant

The purpose of the GDA is to allow the user to program

the PS300 without having to learn the intricacies of its

dataflow language. The design goals to accomplish this

purpose follows.

22

Design goal 1: Visual programming system

The GDA allows the use to create a program by build a

graph. The graph is presented to the user visually on the

computer terminal. The user enters commands by pointing to

items on the screen with a mouse. When an item has been

"moused" it displays a menu of functions that can be applied

to the item. The reason for the emphasis on visual

programming is to free the user from having to know and

remember a specific syntax (as is required when defining a

functional network using the written text form of the FGN

language).

Design goal 2: Create and use plans

A significant problem with programming the PS300 using

the FGN language is that there is no method for defining a

macro" If a functional network contains several identical

sub-graphs, the user has to write code to define each one

individually.

The notion of a plan is similar to a macro. Once a

plan has been defined, it can be instantiated (or called) to

produce a graph structure. A plan is different from a

macro, however, in that the plan is more flexible. A single

plan may expand to different structures depending on the

context.

23S

Design goal 3: Design by selecting plans from a library

The advantage of being able to define and use plans is

that a library of plans can be created. When the GDA is

used in the robot simulation facility, a library of plans

geared toward the creation of robot simulations will exist.

This amounts to creating a higher level language which frees

the user from the underlying details of the FGN language.

Given a sufficiently extensive library of plans, the typical

user will be able to construct robot simulations by

selecting plans from the library.

Design goal 4: Consistency checking

3
In construction a functional network graph, there are

many opportunities for a user to make mistakes. On of the

goals for the Graph Design Assistant is to automatically

detect errors during the construction of a graph and inform

the user.

There are different types of consistency checks can

make on a functional network. For example tests could be

* made for the following conditions: the inputs and outputs of

"* each node need to be connected, output connections must be
4

made to input connections that are compatible data types,

and the functional network should be a "live" network.

424

.4 N .1 P 024

"Liveness" is a property of a well defined behaved

V. 'dataflow programs (Davis, 1984:3.2). A network is a alive

if data tokens propagate throughout the graph. Data tokens

must be available on all the input nodes of a functional

node before the node fires. A dead network has nodes which

can never fire.

2.4 User Interaction Scenario

The Graph Design Assistant is a "highly interactive"

system. The following scenerio was devised in an attempt to

define the interactive requirements for GDA.

The construction of FGN programs can be viewed as a

part of a design process. In particular, the user of GDA is

designing a graph which is a representation of the

functional graph network. The model of the design process

used in GDA is "abstract refinement" (Mostow, 1985:45). In

the abstract refinement model, a design is constructed at a

series of levels (as in Figure 2.5). The designer begins at

the top level with a few abstract components. The designer

refines components at lower levels. Each lower level

corresponds to a refined design for a higher level

component. (In conventional software engineering this

method is known as top down structured design.) Although

this method sounds simple, there can be difficulties if the

components are not completely independent of each other. In

25

.1

*444,

~{J, LEVEL 1

//

LEVEL 2

* LEVEL 3

@. 2

Figure 2.5 Scenario: An Example Design Hierarchy

the functional graph network, there are many interconnec-

tions between components; GDA checks the user's design for

mistakes.

What follows is a description of a typical session

using GDA to design a Functional Graph Network. The purpose

of this desciption was to help define the functional

specifications for the Graph Design Assistant.

The designer in this scenario designs a functional

graph network to animate and control a 6 axes robot arm.

I26

4**4 e. 4 ** **** ~ ~* 4 * * * * 4 * * *
-[. ~

', ., " t - "- . 4, 4- 4 *,o4 44 *"- 44 .3 . -, ', '' " . , ., . ., .. . , ' . , , ., , - , : , .

AXIS --AEY

0

ON1

TOGGLE- KEYS ON \

34 ON 1

8 " ON I .

.. 12 ON 1L

. . .ROBOT-TRWM

Figure 2.3 Scenario: Level 1 "Animate Robot"

The robot arm is controlled by 12 function keys on the

keyboard of the PS300. Each axis of the robot is controlled

with two keys. The first key starts and stops the rotation

about an axis, while the second key changes the direction of

the rotation.

.Scenario: Design of level I

The designer constructs a graph by instantiating nodes

and making connections between nodes. The designer can

either choose predefined nodes from a library or create new

27

-7

sub-graph nodes. Figure 2.6 shows the design at level 1.

,- The designer has instantiated six copies of the plan

"rotate-axis(x/y/z)", and one copy of the display tree

description "robot-tree". In addition, the designer has

created a sub-graph node, "toggle-keys", which must be

refined later.

The "robot-tree" node is a description of a display

tree. In practice, this tree would be defined by some other

development tool. The tool would generate the actual dis-

play tree, which is downloaded to the PS300, as well as a

description of the display tree for use in the GDA. A
O

display tree is a data structure that describes the image of

the robot. It consists of vector lists and transformation

nodes. The PS300 has a display processor which repeatedly

.. scans the display tree, applying the rotation, translation,

and scaling transformations to the vectors to produce the

image on the display screen. The transformation nodes in

the tree can be labeled so that they can receive input from

the the function graph network.

The display tree description contains knowledge that

GDA must have to build a functional network that will

interface correctly with the display tree. The description

contains a list of transformation nodes and information

about constraints on the nodes. The robot arm described by

"robot-tree" (Figure 2.6) has six joints. "Robot-tree"

c contains a list of the six nodes labeled "al", "a2"",...a6".

28

The description also contains constraint information about

-. o" ~each node; the joints are limited in the amount they can

rotate and which axis (x, y, or z) they can rotate about.

The "toggle-keys" node is a sub-graph node. The

detailed design of this node is described later. (The system

automatically puts a notice on the agenda that design of

"toggle-keys" must be refined. The designer selects the

notice from the agenda when he decides to complete the

design.) The "toggle-keys" sub-graph allows the function

keys to act as boolean toggle switches. A boolean toggle

switch alternately outputs a "true" then a "false" each time

the switch is pressed.

The "axis-rotate(x/y/z)" node is a plan that generates

an network which causes a transformation node on a display

node to rotate about the x, y, or z axis. The inputs to

this node are boolean values. If the "on" input is true,

then the node outputs rotational transformations until the

input changes to false. If the "clockwise" input is true,

the rotation is clockwise, otherwise it is counter

clockwise. When FGN instantiates this plan, it

automatically checks the description of the "robot-tree" to

determine which axis to rotate, and what rotation limits to

build into the network.

In the final step of the design of level 1, the

designer selects the "toggle-keys" node and tells GDA to

zoom in" on this node. The window displaying the current

°.5
. . .29

graph clears and the designer begins the design of the sub-

graph for "toggle-keys".

Scenario: Refinement of level 2's "toggle-keys"

The design process at level 2 of the hierarchy is

exactly the same as for level i. The designer selects

predefined nodes from the library, or creates new sub-graph

nodes (to be refined later). Figure 2.7 shows the final

design of "toggle-keys". The 12 identical "toggle" nodes

.could have easily been predefined nodes selected from a

library, however for the purposes of this example the

>. designer created them as sub-graph nodes. The "fkeys" and

"f:croute" nodes are primitives of the FGN language. The

- "fkeys" node outputs an identifying integer each time a

- function key on the PS300's keyboard is depressed. The

"f:croute" function node has two inputs. Input 1 selects

which output the data from input 2 is directed to. In this

configuration, whenever function key 6 is depressed, a 6 is

sent from output 6 of "f:croute". This in turn causes the

"toggle" node (connected to output 6 of "f:croute") to

toggle it's output from true to false, or false to true.

Next, the designer selects one of the "toggle" nodes to

refine the design (since all 12 of the toggle nodes are

* identical, the user only has to design "toggle" once).

. 3

*., 30

0 , 1 , , ', , - . , ' ' ' ... -,. . ., ., ..., .", ,' , .,, .. ' -, . , , ,

, , _ __ -'

2 iur . Scnro Lee "oge es

I I0 I~

122

instantit e primitiv Fn fu o n ." Te togg

:: :.function is shown in Figure 2.8. The "f:constant" node

I" works by triggering whenever it receives data on input 1.

-- When ever "f:constant" triggers it outputs the constant

':"':value on input 2. En this case "f:constant" outputs a true

whenever it receives data on input 1. The output from

3 31

4 L

"f:constant" goes to the "f:xor" node. This performs an

"exclusive or" operation on the input 1 (always true) and

input 2 (the last output value). The effect is that the

"f:xor" node outputs a data token that is the compliment of

the node's previous output.

TRUE
FALSE

V" Figure 2.8 Scenario: Level 3 "Toggle"

The above scenario describe some of the possible

interactions between the user and GDA. Two aspects of GDA,

however, were not brought out in the scenario. One is the

means of interaction between the user and GDA. GDA uses

graphic to display the state of the design. The user uses a

* mouse to point to elements on the display to carry out his

commands. For example, if the user wants to connect two

nodes, he points to the output connection of the source
node, clicks the mouse, then points to the input connection

of the destination node, and again clicks the mouse to

complete the connection. A line is then drawn by GDA on the

screen between the two nodes. The second aspect of GDA not

32

brought out in the scenario, is the constant consistency

checking that occurs during the design process. Suppose

that in the above connection example, the output and input

nodes had been incompatible. Maybe the output produced an
,. N"

,"> integer token while the input only accepted real tokens.

GDA would detect the conflict and notify the user of the

error. In addition, it would post a notice on the agenda to

insure that the user would eventually correct the error.

The above scenerio described the creation of a

functional network using the Graph Design Assistant. The

scenario served as a functional description and was used as
0

"-i -: a basis to begin the design presented in the next chapter.

m
.3

.- ,.

9..3

.I.:I. Design

' I

The design process of the Graph Design Assistant did

not follow conventional software engineering practice.

Because of this, the first section of this chapter examines

and justifies the development strategy used in this thesis

effort. Next, the design for GDA's system architecture is

described. And finally the overall software design is

examined.

0 3.1 Development strategy

One way to categorize software development projects is

that they are either "design problems" or they are

"implementation problems" (Sheil, 1983:20). Because the

requirements were not well defined, it was felt that the

Graph Design Assistant fell into the category of a "design

problem".

In a project that is an "implementation problem", the

requirements are well understood from the start. It may be

that the project is a redesign of and existing system or

design of a system which is similar to an existing system.

This is not to say that the "implementation problems" are

trivial; the size of many projects can make them very

difficult. There is, however, a well developed body of

V 34

S-..

software engineering knowledge that can aid in the

-" development of large "implementation problems".

The "waterfall" model of lifecycle development is

useful in dealing with "implementation problems". The

software lifecycle model is a step by step approach, which

begins with requirements definition, design, code and

debugging, testing, and finally operations and maintenance

(Boehm, 1976:72). Although there may be some feedback in

* #the development process, steps may be repeated, the general

trend is to finish one step before proceeding to the next.

It is very important, therefore, in a lifecycle development

that the requirements are well defined before proceeding to

-. the development phase.

-* Unfortunately, in a "design problem" type project, the

requirements are often difficult to define until the system

has been built (Floyd, 1984:2; Sheil, 1983:20). The

requirements for the system were poorly defined at the

beginning of the effort. There were no available "dataflow

programming assistant" systems to model GDA after. In an

attempt to alleviate the problems with imprecise
0

specifications, two related strategies, "prototyping"

(Floyd, 1984) and "exploratory programming" (Sheil, 1983),

N:6) were used in the development of the Graph Design Assistant.

.i"

435

-.-. C . ,- -° .- ' .

3.1.1 Prototyping

The definition of prototyping in relation to software

development is a problem. The literal meaning of

prototype, "first of a type", and its use in other

engineering disciplines does not correspond with the way it

is used in software engineering. For the purposes of this

effort, a prototype is an "experimental prototype" primarily

designed to enhance the specification of a system (Floyd,

1984:9).

It should be mentioned that prototyping is not

completely incompatible with the lifecycle approach to

software engineering. First, the development of a prototype

can be viewed as the first step (requirements definition) in

the normal lifecycle. Second, the process of developing the

prototype may undergo the phases of the lifecycle, although

the steps might not be rigidly controlled.

The success of a prototyping strategy depends in a

large part upon the availability of appropriate development

tools. Because of the possibility that the prototype may

serve as a "throwaway" learning device, it is important that

the prototype can be developed at a relatively low cost

(Floyd, 1984: 10). For this reason, "exploratory

programming" is the second part of GDA's development

strategy.

36

3.1.2 Exploratory Programming

Exploratory programming has been defined as the

21 "conscious intertwining of system design and implementation"

using advanced programming environments (Sheil, 1983:19).

The second strategy in the development of the Graph Design

Assistant was to use tools developed for Artificial

Intelligence (AI) research and applications. Researchers in

Al have attempted to build large systems in order to solve

poorly understood problems. Usually they are built quickly

NIA with small programming teams. During the course of

development the programs undergo many modifications due the

fact that the problems are so difficult. A consequence of

the challenges of Al research have been the development of

powerful "exploratory programming environments" (Sheil,

1983:22).

Early in the design of the Graph Design Assistant the

decision was made to such a tool developed for AI

applications. The Knowledge Engineering Environment or KEE

(Intellicorp, 1985c). KEE is a hybrid development

environment that combines frame-based knowledge

representation, object oriented programming, and rule-based

reasoning (Fikes, 1985:906; Kunz, 1984: 41).

The version of KEE which was available ran on a

Symbolics 3600 "lisp machine" (Symbolics, 1985a). A feature

A, of KEE that proved extremely useful is that it allows easy

37

access to the underlying Symbolics development environment.

-~ The Symbolics supports Zetalisp as its programming language

and operating system (Symbolics, 1985b). The Zetalisp

environment provides many programming tools such a syntax

sensitive editor, symbolic debugger (Symbolics, 1985c).

Most importantly for the implementation of the Graph Design

Assistant, the Zetalisp environment has many functions for

doing graphic and windows (Symbolics, 1985d:73-126), and

building mouse and menu based user interfaces (Symbolics,

1985d: 207-255)

3.2 Graph Design Assistant Architecture

The decision to use KEE in the implementation of the

Graph Design Assistant had a large influence in the design

of the system architecture. In this section, the system

architecture is examined. First, the hardware configuration

of the robot simulatioi: facility is shown. Then, the

software architecture of the GDA is described.

3.2.1 Robot Simulation Facility Hardware Configuration

The hardware used in the present configuration of the

robot simulation facility consists of a Symbolics 3600

computer, a VAX 11/780 computer, and an Evans and Sutherland

PS300 graphic workstation.

538

e , . - . - . .P - PA - . - . . .

---- - --- ---- ---

SYMBOLICS VA X 11#0 EVANS AND
3500 SUTHERLAND

PS300 I

t tL t
ROBOT DISPLAY ROBOT CONTROL ROBOT MOOEL

DESIGNER PROGRAM DEVELOPER USER

*e Figure 3.1 Robot Simulation Facility Hardware Configuration

Figure 3.1 shows the components and their connections.

-At the present time a serial line connects the Symbolics to

the VAX (an Ethernet connection is planned) and the VAX to

the PS300.

At the bottom of Figure 3.1, the relationship between

the hardware components and the user roles (defined in

chapter 2) are shown. The Robot Display Designer develops

FGN programs on the Symbolics using the Graph Designer

- . Assistant. The programs are downloaded to the PS300 through

the VAX. The Robot Control Program Developer write his

control programs on the VAX. The Robot Model User interacts

with a model through the PS300 workstation.

A crucial component of the robot simulation facility is

the Evans and Sutherland PS300 workstation. This decision

39

S ' ' , ' ' 1 , -, , " , , , . , - ", , r ' .-.- ' , . " ' , ' ' -' ' k .. , " ." . " " ., . , .

to uses this device was made because it is well suited for

displaying animated robot simulations. The PS300 is capable

of displaying three dimensional images. The images can be

animated in real-time. The calculations to do the

rotations, scalings and translations used in the animation

of the image are made with special purpose hardware residing

in the PS300 (Evans and Sutherland Computer Corporation;

i. l1984a; Foley, 1982:418-421)

The VAX 11/780 acts as a host computer for the PS300

workstation. The PS300 can emulate a normal terminal as

well as performing its graphic functions. Because the PS300

0 performs its graphic functions in local hardware, it makes

few demands on the VAX (it is likely the the 11/780 will be

replaced with a smaller model of the VAX). The VAX can

se---e, however, in the development and execution of planning

and control program which will interact with simulations

running on the PS300.

The decision to include the Symbolics 3600 in the robot

simulation facility was based on the availability of the

powerful, AI development tools available within the Zetalisp

- environment. Since this first implementation of the Graph

Design Assistant is a prototype, a decision might be made to

implement future versions of GDA on the VAX host computer.

. 4

40

";i _ , .,,° ., ,. -.. .,.,.°..- . . -., , . -.. . , N. .A

3.2.2 Graph Design Assistant Software Architecture

The organization of the GDA was strongly influenced by

the choice to implement the system with KEE. In addition,

the method for describing the system was affected by KEE.

It is difficult to describe the Graph Design Assistant

using documentation techniques such as a data dictionaries

and structure charts. A system implemented in a

conventional programming language can be defined by the

structure of the system's data and the procedural code that

operates on the data. Normally the program is conceived as

a hierarchy of procedures or modules, and the software

architecture can be explained in terms of that hierarchy

(structure charts for example).

Unfortunately, a system implemented in KEE is difficult

to describe using standard software engineering graphical

aids. The primary component of a KEE implemented system is

a "knowledge-base". KEE's knowledge-bases combine both data

and procedures in a single unit, which makes it difficult to

describe the system with data dictionaries and structure

charts.

The approach that has been taken to describe the Graph

Design Assistant is to first describe the in general,

knowledge-bases and their and their relationships (in this

chapter). Then the objects which comprise the knowledge-

bases are described in detail (in the next chapter).

41

x USER

KGRAPH - WN00W

OA - INMIFACE

FGN -GRAMMAR

2 //

I , ,

USER - GRAPHS

Figure 3.2 Graph Design Assistant Architecture

GDA knowledge-bases. Figure 3.2 shows the knowledge-

bases of the Graph Design Assistant and indicates the

relationships between them. In addition to the knowledge-

bases, the processes which comprise the user interface are

shown.

,-I

42

: z-

S. *' + .+-- * .

The knowledge-bases are depicted in Figure 3.2 as boxes

-. with rounded corners. They are GDA-SYSTEM, FGN-GRAMMAR, and

USER-GRAPHS. A knowledge-base contains either information

2:': which describes the attributes of objects, or the objects

themselves. The knowledge representation scheme used by KEE

represents objects as a taxonomy of "frames" (Fikes, 1985:

907).

Frames have any number of slots. The slots may contain

declarative or procedural knowledge. The frames are

arranged in a tree structure of object classes. A class is

the description of an object as opposed to the actual object

0 -(members). A frame inherits traits (slots) from its parent

classes. The top of the hierarchical is the most general

* .description of a class of objects. Lower level frames

refine the description of objec', while the "leaves" of the

tree structure are memb rs of the class.

For example in Figure 3.2 the knowledge-base GDA-SYSTEM

contains the most general description of objects. The solid

line from GDA-SYSTEM to FGN-GRAMMAR ienotes that there are

frames in FGN-GRAMMAR with are child classes of frames in

GDA-SYSTEM. In other words, GDA-SYSTEM describes "generic"

.1 graph elements, while FGN-GRAMMAR describes graph elements

that are specific to the Functional Graph Network language

of the PS300. The dashed line from GDA-SYSTEM to FGN-

GRAMMAR, indicates that some of the objects are members of a

parent class defined in GDA-SYSTEM.

43

A A----" --

The FGN-PLANS knowledge-base contains the members of

S - the plan library. Plans are structures similar to macros

which can be expanded into complex structures to use in the

building of graphs.

The USER-GRAPHS knowledge base contains only members of

the classes defined in the other knowledge-bases. This

knowledge-base contains the functional network graphs that

the user is currently creating and editing.

The elliptical shapes in Figure 3.2 indicate "window

processes". Window processes are attached to user

interaction windows (indicated a rectangles). Windows are

-0 displayed on the screen of the Symbolics 3600. The window

-- processes control the interaction with the user through the

mouse or keyboard on the Symbolics 3600.

The process labeled KEE-INTERFACE was not as part of

the Graph Design Assistant development, but is a built part

of the KEE system. It is shown in Figure 3.2 to indicate

that the knowledge-bases can be modified directly from KEE.

The process labeled GDA-INTERFACE was, on the other

hand, constructed during the development of GDA. In a sense

this part was developed outside of the KEE environment

because certain graphic functions were needed which were not

available within KEE. The GDA-INTERFACE controls the

creation and editing of graphs within the USER-GRAPHS

knowledge-base. The user the mouse on the graph window to

44

..

F-

call up menus and execute commands which update the USER-

GRAPHS knowledge-base.

The lines between the three knowledge-bases in Figure

* 3.2 are indications of relationships between frames within

the respective knowledge-bases. The solid line indicates a

"sub-class" relationship and a dashed line indicates a

"member" relationship. A particular object is described by

a hierarchy of classes; the classes are most general at the

top of the tree, and become more specific towards the bottom

of the tree. At the very bottom of a tree, the object

itself is a member of a class.

Figure 3.3 is a closer look at the relationships

between the three knowledge bases in the Graph Design

Assistant. It shows, for illustration purposes, a few

- example frames within each of the knowledge bases.

*, The object labeled DZR 12 within the USER-GRAPHS

knowledge base in an part of a functional network graph. It

- is described by the class DZROTATE, which is in turn a sub-

class of PRIMITIVE, which is a sub-class of GRAPH-ELEMENT.

The class DZROTATE is specific to the PS300's FGN language,

hence it resides in the FGN-GRAMMAR. The class PRIMITIVE,

on the other hand, describes an element that could be in

many different dataflow grammars. In other words, it is a

." q

45

% ,%

VA

i GOA -SYSTEM GRP-ELMN
4 . RAPH- ELMENTLIBRARY

PRIMTVE

FGN-GRAMMAR FG RIIIE

OZROTATE

USER -GRAPHS

OZR_12

Figure 3.3 Graph Design Assistant Knowledge Bases

more general class. The class GRAPH-ELEMENT is even more

general; it consists of all the elements which go to make up

* a graph (including primitives).

The DZROTATE frame shown in Figure 3.3, in addition to

- . being a class description, is also a member of the GDA's

* library. It's a sub-class of FGN-PRIEMITIVE (a FGN specific

46

-7 - -7

class), which is a sub-class of LIBRARY (a general class

applicable to any dataflow grammar).

In this chapter the strategy to develop a prototype

using an "exploratory programming" environment was

*described. The high-level design of the Graph Design

Assistant was discussed. In the next chapter, the design

N.- and implementation details of GDA are presented.

7.4

... '. 47

-@

SIV. Detailed Design and Implementation

The majority of the Graph Design Assistant system was

implemented using the Knowledge Engineering Environment

(KEE) (Intellicorp, 1985). A system is created with KEE by

defining knowledge bases. Knowledge bases contain both the

procedural and declarative knowledge about the system.

The chapter begins with a description of the

representation of dataflow graphs. Next, some of the

*. knowledge bases the Graph Design Assistant are described.

Finally, the detail design and implementation of GDA's user

. ,interface are presented.

46

-, 4.1 Representation of Dataflow Graphs

In the previous chapter, the "abstract refinement"

model of the design process was discussed. Because of the

design process, the user view of the dataflow graph is a

hierarchical tree structure. At the top of the tree are are

high level representations of graphs, while at the bottom of

.* the tree are primitive functional nodes.

* Figure 4.1 shows the different design levels of a
-qr

dataflow graph as conceived by a user. The design of the

overall graph GI is shown at level 1. It consists of two

48
0

LEVEL 1 01:

01.1 G1.2

LEVEL 2. G1.1:. LEVEL 2, G1.2:

LEVEL 3, 01.1.1:

- Figure 4.1 User's Design Hierarchy

sub-graphs, G1.1 and G1.2. The the output from graph G1.1

is directed to the input of G1.2.

Level 2 of Figure 4.1 shows further refinement of the

design. The graph G1.1 consists of an input connector, a

sub-graph G1.1.1, a primitive P3, and an output connector.

The graph G1.2, also at level 2, has an input connection,

and two primitives, P4 and P5. Level 3 of Figure 4.1 is a

refinement of the graph G1.1.1. It contains two primitives,

U P1 and P2.

The functional network graph which is produced by the

hierarchical design of Figure 4.1 is actually a "flat"

S.<;: structure. The hierarchical structure is due to the user's

49

...x__ _ -__ _

Figure 4.2 "Flat" Functional Network

design abstractions in the form of sub-graphs. Figure 4.2

shows the dataflow graph which consists of the primitives

P1, P2, P3, P4 and P5. The light "dotted" square outlines

show the sub-graphs that produced each part of the network.

In the designing GDA, a representation for dataflow

*. graphs was devised that captured the hierarchical design

information, and yet was easily transformed into a flat

functional network.

A simple two level design hierarchy was used to

explain the representation of functional networks. Figure

4.3 shows the user's view of the simple functional network.

The rectangles represent the image the user would see in the

Graph Window. The top level graph G1 (the label runs along

50
-k" 'L

1 -

G1

PI G3

G3 G1

P3

Figure 4.3 A User's View of a Dataflow Graph

the top of the window) has a primitive node PI and a sub-

graph node G3.

G3 is a graph. The window labeled G3_Gi (G3's full

name) shows that G3 has an input connection, Ii, which is

connected to a primitive P3.

The data structure used to represent the simple design

hierarchy is shown in Figure 4.4. There are three different

types of elements in Figure 4.4. The rectangles are nodes

of the functional network (primitive names begin with a "P"

and graph names begin with a "G"). The ellipse shapes are

connectors (input connector names begin with a "I" and

output connectors names begin with an "0"). The "lozenge"

; shapes are arcs (arc names begin with an "A").

51
IA

F
A

01MPIG? F130 A2_03_01

51 - SiB GRAPH
Q- SUB PRJMMTVE IP_3G

17 - SUB INPUT
0- sue OUTPUT
] - FROM CONECTON

W - TO CONNECTON

Figure 4.4 Data Structure for the Dataflow Graph

The three types of elements in Figure 4.4 are connected

with directed lines which represent different relationships

between the elements. Most of the relationships in Figure

4.4 are "sub-element" relationships. For example, the graph

G3_GI is the SUB-GRAPH of GI. The exceptions to the

sub-element relationships occur in conjunction with the

1 arcs. Arc elements use a FROM-CONNECTOR and a TO-CONNECTOR

relationship to show were the arc begins and ends.

The in the implementation of GDA, a frame-based

knowledge representation tool (KEE) was used to represent

52
I

L .."., J" ''. . ." '" '" ,% ' "[' ".'
. '

" "."," "'."V'." ,,. -, D ' ,, ,. ,"" ."" .''V "' "" """',,:,'" ",, '." "'"',"".°" " "" ". S. " ",."

dataflow graphs. The different types of elements (nodes,

* "arcs, and connectors) are represented with units. (A unit

is a frame in KEE). Units have slots which can contain

pointers to other units. The relationships shown in Figure

4.4 were represented with slots. The P1_GI primitive unit,

for example, has a slot named SUB-OUTPUT that contains a

pointer to O1_P1_Gi.

The names used for elements Figure 4.4 are longer than

the names used by the user (Figure 4.3). It was necessary

to design a naming convention to insure that each unit in

the KEE knowledge base has a unique name. The first part of

each name consists of the name used by the user, followed by

the path (following the sub-element relations) to the top of

the tree. The primitive P3 (Figure 4.3) has a long name of

P3_G3_GI because P3 is a SUB-PRIMITIVE of G3, which is a

SUB-GRAPH of GI.

The dataflow graph shown in Figure 4.4 is part of the

USER-GRAPHS knowledge-base. The classes, which contain the

definitions for the elements in the dataflow graph, are

contained in the GDA-SYSTEM and FGN-GRAMMAR knowledge bases.

The next section discusses the knowledge bases which

comprise the Graph Design Assistant.

53

4.2 GDA knowledge bases

As was previously mentioned, the Graph Design Assistant

was implemented by building KEE knowledge bases. The two

major knowledge bases which define the Graph Design

Assistant are the GDA-SYSTEM and the FGN-GRAMMAR knowledge

bases (see Figure 3.2 and Figure 3.3). The other knowledge

base, USER-GRAPHS, is not part of GDA's definition, but

contains the dataflow graphs the user is currently editing.

This sections examines GDA-SYSTEM and FGN-GRAMMAR in

more detail. Specifically, some of the individual units

* - within each knowledge base are described. The purpose of

this section is to show some of the techniques used in the

implementation of GDA. It is not intended to exhaustively

describe all of the units and all of their slots. A listing

of the complete contents of the knowledge bases can be found

in Appendix A.

The GDA-SYSTEM knowledge base contains the "generic"

knowledge about dataflow graphs. The FGN-GRAMMAR knowledge

base, on the other hand, contains knowledge about a specific

dataflow language, the Functional Graph Network (FGN)

language.

One of the important classes of objects defined in GDA-

*' SYSTEM is a "graph element". The graph elements are objects

which are used to construct the representation of a dataflow

graph that resides in the USER-GRAPHS knowledge base.

54

0 .%

-° ; *-

--- I -CONNECTOR
CONNECTOR - OUT - CONNECTOR

JUNCTION 1O IN - PIN

il OUT - PIN

GRAPH - ELEMENT NODE PRIMITIVE

GRAPH -PLAN

ARC

Figure 4.5 Graph Element Class Hierarchy

The graph elements are defined with a hierarchy of

classes. Figure 4.5 shows the classes used to define the

graph elements. Each class shown in the tree is a separate

unit (or frame) within the GDA-SYSTEM knowledge base. The

top unit of the hierarchy is GRAPH-ELEMENT. The lines in

Figure 4.5 indicate sub-class relationships. Therefore,

JUNCTION, NODE, and are sub-classes of GRAPH-ELEMENT.

The purpose of the hierarchy is the common properties

can be "inherited" rather than defined separately within

each unit (Intellicorp, 1985d:5.1-5.7). An inherited

property can be overridden by defining that property at a

9lower level. In other words, the inherited property is a

default, but may be replaced if necessary.

The properties of GRAPH-ELEMENT are the most general

type and defined at that level. At lower levels in the

55
S

hierarchy (to the right in Figure 4.5) the properties are

more specific to the particular type of element. For

example, all of the elements of a graph have a FIRSTNAME;

therefore, that property is defined in the GRAPH-ELEMENT

unit and inherited by all the other sub-classes. The NODE

class contains a SUB-INPUT property which is common to all

of it's sub-classes (PRIMITIVE and GRAPH), but is not

relevant the the ARC or JUNCTION classes.

The properties of a class are represented with "slots".

A slot can contain data values, "methods" (a procedure or

function), "active values" (a combination of a data value

-and a procedure) (Intellicorp, 1985d:11.1-11.7,12.1-12-8).

In order understand the complete definition of graph

- element objects, it is necessary to examine the units and

*- slots of the classes, as well as the class hierarchy. What

follows is a description of some of the units and their

slots in the class hierarchy shown in Figure 4.5.

GRAPH-ELEMENT unit. The GRAPH-ELEMENT is the most

2> 1"generic" class description of the elements which comprise a

dataflow graph. All of the graph elements are described by

sub-classes of the GRAPH-ELEMENT unit.

-< One of the data slots is FIRSTNAME. This is used with

a method slot NAME-ELEMENT. An element is named by sending-T

- a NAME-ELEMENT message to that element. The complete name

for the element is created by appending the FIRSTNAME to the

name of the element's SUPER-ELEMENT.

56
e

All elements have a method slot named DRAW. If an

* element receives a DRAW message, that method knows how to

draw a graphic representation of itself in a window. All

elements inherit the DRAW slot, however, the value of the

slot is overridden at the lower levels because the different

types of elements have have different graphic representa-

tions. The immediate sub-classes to GRAPH-ELEMENT,

JUNCTION, NODE, and ARC, all display themselves differently.

Some of the methods defined in GRAPH-ELEMENT have to do

with the construction and modification of the dataflow graph

representation. INSTANTIATE is a method slot in GRAPH-

ELEMENT. When a class receives an INSTANTIATE messag-, it

creates an instance of that class. That instance is the

graph element which becomes part of the dataflow graph.

DELETE is a method slot in GRAPH-ELEMENT. When an element

receives a DELETE message it deletes all of its sub-elements

(by sending them DELETE messages), removes pointers to

itself from its super-element, and deletes itself from the

USER-GRAPHS knowledge base.

JUNCTION unit. The JUNCTION class describes objects

which serve as the connection points within dataflow graphs.

The DELETE slot in JUNCTION illustrates a variation of the

normal inheritance mechanism. Normally when a slot value is

defined, its new value simply overrides inherited values.

The DELETE method which was inherited from GRAPH-ELEMENT was

applicable to JUNCTION objects, however it needed

57
6

C.°°

modification to work correctly. KEE allows the definition

of "before" and "after" methods (Intellicorp, 1985:11.7-

11.8). In definition of JUNCTION's DELETE slot, a "before"

method was added to delete IN-ARC and OUT-ARC pointers.

This section of code is executed before the method inherited

from GRAPH-ELEMENT. The "before" and "after" methods allows

the modifications of procedures as they are inherited from

sub-class to sub-class.

4.3 Graph-Window and GDA-Interface

-: The principle means of the interfacing GDA with the

user is through a "graph-window" and its associated

"GDA-interface" process (Figure 3.2). This section

describes some of the implementation details for the graph-

window and the ODA-Interface. The descriptions are not

meant to be exhaustive (the source code is found in Appendix

B).

The graph-window appears as rectangular area on the

screen of the Symbolics 3600. When a graph-window is

created by the user, a GDA-interface process is started.

The user interacts with the graph-window by selecting menu

items with the mouse. The GDA-interface process receives

the menu selections and executes the user's commands.

The graph-window and GDA-interface were implemented

outside of the KEE environment. This is possible because

58

w 9- -.- -. ' ' ° . .,. .,. .. - -, , .. , -- ,, .: ., - -/ . ,. - . . .- -: .. ,, " ,- ' %

KEE allows complete access to the underlying Symbolic's

Zetalisp programming environment. The reason that the

decision was made to implement the graph-window outside of

KEE, is that the windows used by KEE did not support the

properties that were needed for the interface.

Graph-window interface behavior. The graph-window

interface was design to display a dataflow graphs. The user

makes enters commands to modify graph elements by pointing

to the element and clicking a mouse button. There are

actually two active buttons for the graph-window interface.

The left button always executes a default command for the

object, while the right button brings up a "pop-up" menu of

other commands applicable to the object.

Along the top of the graph-window, run a row of menu

items that the user can select. These invoke commands which

are applicable to objects that are not visible in the window

or commands which apply to the window itself.

The Graph-window-flavor. The windows facility in the

Symbolics Zetalisp environment is implemented using

Zetalisp's "Flavors" system (Symbolics 1985d: 207-255).

Flavors is an object oriented programming system where first

the flavor, of an object is defined, then the object is

instantiated. Objects are sent messages with cause the

execution of "methods".

The graph-window was created by first defining a flavor

of window called "graph-window-flavor". Several predefined

59

Zetalisp flavors as well as an existing KEE window flavor

w--- "mixed" to produce the graph-window-flavor. The

resulting graph-window-flavor had all of the properties

(methods and variables) of the Zetalisp and KEE windows.

In addition, the graph-window-flavor was customized further

by defining new methods.

06

-w-

'"

I -' I ' '_" ' , ', ' '' " ',= < ' ' ' .' : "' ' "/ . " ' "' , *- ': " '" ,",_ -,; _ ' , ' ." 6 0,' " ,

W 4- -KM -~ WI L_-

c.V V. Results, Conclusions, and Recommendations

5.1 Results

This thesis effort resulted in the design and

development of a prototype programming tool for the

development of dataflow programs. The version of the Graph

Design Assistant should serve as the basis for further

development of GDA. In addition, GDA can serve as a model

for similar "visual programming" tools applied to different

programming problems.

Two specific results were the design of a represen-

tation for dataflow graphs and the development of an user

interface that can create and edit dataflow graphs.

Not all of the original goals of the effort were met.

The intention was to build a prototype that contained all of

the components of the complete GDA system (even if some of

the parts were not completely developed). The actual

implementation, however, did not contain all of the features

envisioned in the original design. There is only

rudimentary error checking of the dataflow graphs, and the
-7

implementation of the "plan" creation and editing capability

.- . was not completed.

61

5.2 Conclusions

.

The "programmer's assistant" and the "visual

programming" approach taken by GDA appears to be a feasible

way to create dataflow program. Although, the prototype did

not implement all of the features necessary for a robust

programming tool, there did not appear to be any

insurmountable difficulties in building a complete system.

The strategy used to develop GDA was an important

factor in making it possible to implement the system in a

short time. GDA was developed with a commercially available

"knowledge engineering tool" (KEE). During the short

development time (approximately 3 man-months) a working

prototype was developed. In the judgment of the author, had

the development effort been attempted with a less powerful

programming environment, much less progress would have been

possible.

5.3 Recommendations

Continued development of the Graph Design Assistant.

There are several problems that were not adequately

addressed in the present implementation of GDA. The repre-

sentation of "plans" needs to be investigated. This is the

means of storing domain knowledge in GDA. Plans are

selected from the a library by the user and are instantiated

62

. - , .

[to form parts of graphs. The representation of plans should

allow for the encoding of knowledge that affects how the

plan expands. For example, a plan that controls a joint on

a robot should be able to build a network that incorporates

constraints that apply to the joint. The joint may be

limited in the speed and the angles it can rotate. The

functional network that controls the joint can have those

limits "built in" by the plan when it is instantiated.

Evaluation of the Graph Design Assistant. At some

point, an effort to evaluate the effectiveness of GDA should

be made. This could be done by comparing the experience of

users who learn to program the PS300 directly by writing

text FGN programs with the experience of users who learn to

* program the PS300 using the GDA system.

Other dataflow "grammars". The present implementation

of the Graph Design Assistant contains representations for

one particular type of dataflow graph. It was design

specifically for the grammar of a special-purpose Functional

Graph Network (FGN) language used to program the Evans and

Sutherland PS300. GDA was designed, however, so that the

FGN grammar could be replaced descriptions of other dataflow

languages.

One possibility for another dataflow grammar which

could be used in GDA is one that describes the robot

simulation facility. In the chapter 2, the requirements for

"I
'" the robot simulation facility were specified with a dataflow

63
I

"1." .' .-.- . ;- .'',i.:. -.'1. --1"'? " ." "1 ': " .1-:,t- ' -- ,"-',i.:.".' 1 "- " ' "- .. ,.- . 'v v ? ,-

diagram (Figure 2.1). It should be possible to define the

. -.- process (nodes of the dataflow diagram) and the data which

objective would be to allow the user to dynamically

configure the robot simulations using by editing graphs with

GDA.

An even more general dataflow grammar could be design

to configure "real-time" systems. Dataflow models have been

proposed as a method of specifying real-time systems

(Allworth, 1981:13-24). It would be interesting to see if

the capabilities of GDA could be enhanced to allow a user to

0 build real-time systems by editing dataflow graphs.

64

S::

Appendix A: Graph Design Assistant Knowledge Bases

The section contains listings of the KEE knowledge

bases which define the Graph Design Assistant. Each

knowledge base listing begins with the name of the knowledge

base followed a list of the knowledge base's contents. The

knowledge base contains units. Each unit and it's slots are

listed.

,6

N%

0, 6

Knowledge Base; GDA-SYSTEM

Contents:

ADD-ONLY-I NPUTS
ADD-ONLY-OUTPUTS
ARC
CONNECTOR
CREATE-GRAPH-WINDOW
CREATE-TREE-WINDOW
DATA-TOKEN-TYPE

- - GDA-ACTIVEVALUES
GDA-CONMANDS
BOA-SYSTEM-UPDATE-COMMANDS
GET-LIBRARY-MEMBERS-MENU

* GRAMMAR
GRAPH
GRAPH-ELEMENT
IMAGE. PANELO@443

- IMAGES

IN-CONNECTOR
[N-PIN
10-PIN
JUNCT ION
LIBRARY
METHOD. ACTUATOR00474
METHOD. ACTUATOR00499
METHOD. ACTUATOR00577
NODE
OUT-CONNECTOR
OUT-PIN
PLAN
PLAN-LI BRAR

* PRIMITIVE

PRIMITIVE-LIBRARY
UPDATE-SUB-ELEMENT-POINTER

66

Unit; ADD-ONLY-INPUTS
Members: NIL
Subclasses; NIL

Own slot: AVPUT
Valueclass; NIL
Values: (LAMBDA (SELF SLOT NEWVALUE OLDVALUE UNIT SLOTIYPE)

(IF IBET.VALUE UNIT 'INPUT-P) NEWVALUE QIDVALUE))

Unit: ADD-ONLY-OUTPUTS
Members: NIL
Subclasses; NIL

unit: ARC
*)Members: NIL

Subclasses: NIL

Member slot: DEFAULT-NAME-PREFIX
Valueclass: NIL
Values: (A)

Member slot: DELETE
Valueclass: NIL
Values: I(BEFORE (LET* ((TO-JUNCTION (GETVALUE SELF 'TO-JUNCTION))

(FROM-JUNCTION IGET.VALUE SELF 'FROM-JUNCTION))%
(REMOVE.VALUE FROM-JUNCTION 'OUT-ARC SELF)
(REMOVE.VALUE TO-JUNCTION 'IN-ARC SELF)))

Member slot: DRAW
Valueclass: NIL
Values; (LAMBDA (SELF WINDOW)

(SEND WINDOW :DRAW-ARC SELF))

r 67
I %

Member slot: FROM-JUNCTION

Valueclass: (JUNCTIONj
Values; NIL

Member slot; PARENT-SUB-POINTER-SLOT
Valueclass: NIL

Values: (SUB-ARC)

-. Member slot: PATH

--V: Valueclass: NIL
Values: NIL

Member slot; TO-JUNCTION
Valueclass; (JUNCTION)
Values: NIL

Unit: CONNECTOR

Members: NIL
* Subclasses; (#Unit kOUT-CONNECTOR GiA-SYSTEM) #Unit {IN-CONNECTGR KDI-SYSIEMf)

Member slot: CONNECT-POINT-OFFSET

Valueclass: NIL
.' .~Values: NIL

Iember slot: ORAW
Valueclass: NIL
Values:; LAMBDA SELF WINDOW)

(SEND WINDOW :DRAW-CONNECTOR SELF),

"ember slot: IN-ARC
Valueclass: (ARC)

Values: NIL

Member slot; INPUI-F

Valueclass; 0ONEOF T NIL)h
Values: NIL

-6

• 68

r. O

r?'rJ"*-**° *,°pi*'** .--
J-. j

' Member slot: LABEL
Valueclass: (STRIN6)
Values: NIL

Member slot: LABEL-OFFSET
Valueclass: NIL
Values: (10 0)

Member slot: OUT-ARC
Valueclass: (ARC)
Values: NIL

Member slot: SHAPE
Valueclass: NIL
Values: NIL

Unit: CREAIE-6RAPH-WINIQW
. (embers; 1L

* •Subclasses. iL

Own slot; DO
,.', Veiecias:; IMEi'-10

S' f.aun ALRBD 1 !6KR E WiN -R1

Uwn slot: UNITI1A6E

Valueclass; NIL

'alues; NIL

SJnt: CREATE- REE-WINDCW
Menoers: NIL

Subclasses; ili;

'J4r slot: DO

'alueclas: NIL

DECLARE ISPECIAL ,

'SETO Ki N!L;
t i ncEwi4eoe

:LABEL

6

* 69

• *.,,, ,,. .

"Enter knowledge bize t ~.
tLOT.GRAPWHkB KB ISUB-ELEt1ENT NIL tREAE.KEE.WIKEOW HR) N~

* Uit; AT;4-13KEN-f'PE
Members: 411L
SubcIasses; 4Unit iFGN-LA4-10KENi-rvFE FN6~M-

Me~bers: 4Unit A[D-GNLY-OUi'PUTq ODA-5.STEW0
$Unit ADD-ONLY-lHPU[S GDA-SYSTEM!
*Uni t (jP DATE -iUB-ELEMET-P I NIEfR lbt- iP
#Unit iGE1-L!8PP.-MEMibER5-MEN1U U-Sri

3ubclsses; NIL

Uniit: 60DR-COMMANDS
M)e .bers: (#Unit (CREATE-TREE-WlNDOW GDA-SYSTEM) $Unit ;CFEATE-RAPH-WINDOW GOA-SYSTPi)l

* Subclasses: 141L

Member slot; COMMAND-MENU
Valueclass: i (MENUITEM)
Values; (("CREATE-TREE-WINDOW"

#Unit (CREATE-TREE-WINDOW GDA-SYSTEMJ)
'Creates a window that shows a hierchical display of oraps in a hb')
("CREATE-GRAPH-WINDOWO #Unit (CREATE-GRAPH-WINDOW GDA-SYSTEM) NIL))

leaber slot: DO
Valueclass: (METHOD)
1Values: (LAMBDA (SELFH

Member slot: SELECT-COMMAND

Valueclass: (METHOD)
Values: (LAMBDA (SELF (EU)E.LTMN SL MN-EL~

!LE T (COIIMAND-UNII(MN E .SOMNSLF OMADEL)i
JUF COMMAND-UNII (UNITMSS COMMAND-UNIT 'DOW)

Member slot: UPDATE-COMMAND-MENU
Valueclass: (METHOD)
Values; iLAMBDA iSELF)

LET* (tCOMMAND-UNITS UNIT.ALLCHiLDPEN SELF 'MEMBER)))
RE?1OVE.ALL,LUCAL, VALUES SELF 'COMMAND-MENU)

(DOLIST (C COMMAND-UNIrS)

* 70

* - LET UIEX1 (FORAI NIL "'a (UNIT.NAME Um;)
(VALUE CUj
(PROMPT IUNII.COMMENT CU)))

(ADD.VALUE SELF
'COMMAND-MENU
'I,TEXT VALUE ,PROMPT))))))

Own slot: \IMAGE.PANEL
Valueclass: NIL
Values: (fUnit (IMA6E.PANEL,0443 BDA-SYSTEM))

Unit: GDA-SYSTEM-UPDATE-COMMANDS
Members: NIL
Subclasses: NIL

Member slot: CREATE.INSTANCE
Valueclass. NIL
Values: NIL

Member slot: CREATE.PROGRAMMATICALLY
Valueclass: NIL

-" Values: CREATE.COMPOSITE.CLASS.PROGRAMMATICALL'

Own slot: GERM
Valueclass: NIL
Values: (NIL #Unit dIMAGE.PANEL ACTIEIMA ES)

NIL
(368 602 348 147)
(109 519 347 48)

-', EXPAND
NIL
((NIL #Unit %METHOD.ACTUATOR ACTIVEIMAGES)

NIL
'. (384 669 120 51)

(384 669 209 48)
EXPAND

0 -NIL
NIL
NIL)

NIL)

'.7, ..

,- 71

I.-

* Own slot: \IMAGE.PANEL
Valueclass: NIL
Values: NIL

Uni t; E-LIBRAR -MEMBERS-MENU
Members: NIL
Subclasses; NI1L

awn slot; AVGET
Valueclass NIL

(SELF Vau SLO AU UNIT SLOTrYPE)

(LET
U(SUIElS (UNIT.CHILDREN UNIT 'SUBCLASS))
(IMMEDIATE-MEMBERS (UNIT.CHILDREN UNIT 'MEMBERfl

.)APEND
((AFCAR FUNCTION (LAMBDA (SUBITE4

.h. (LET ((MENU-TEXI (FORMIAT 14IL

(UNIT.NAME SLBIIEM)
(VALUE-RETURNED SUBITEM)
(PROMPT-MESSAOE (SET. VALUE SUBITEM

PROMPT- MESSAGEi

(SUB-MENU (SET.VALUE SUBITEM 'MEMBER-MENU)
'1.MENU-TEXT I)ALUERETRED ,PROMPT-MESSAGE
(SUBITEMS .,SUB-MENUlfl.)

SUBI TEMS)
(MAP CAR
(FUNCTION (LAMBDA (MEMBER)

(LET HM(ENUTEXI (FORMAT NIL "'a" .UNII.NHME (1EMBLHFl)
VALUE-RETURNED MEMBER)

tPROMPI-MESSAGE t6ET.YALUE NIEMBEk
PROMP r-MESSAGEii

'(.MENUfEXf .VALUE-REIURNED *PROMPI-MESSAHOfli
IMMEDIATE-MEMBERS))))

Unit: 6RAMMAR
Members: ~iUni t IFGN-6RAMMAR FGN-GRiAMMAR-KBfl

4. Subclasses: NIL

72

S.

Member slat: PLAN-LlE'RARi
Valueclass: ((SUBCLHSS.OF PL4N-LIBRARw
Values; NIL

Member slot: PRIMITIVE-LIBRARt
Valueclass: kSUBCLASS.OF PRIMITIVE-LIBRARY))
Values: NIL

Unit: GRAPH
* ~~~~Members: NIL (PNGD-SEI)

Subclasses: 411nit (LNGASSE)

Member slot: ADD-SUB-ELEMENT
Valueclass: (METHOD)
Values: (LAMBDA (SELF CLASS)

LET* 0NEWUNIT tUNITMSG CLASS 'INSTANTIATE))
..r (PREFIX (GET.VALUE CLASS 'DEFAUILT-NAME-PREFIX))

(NEWNAME (UNITMSG SELF 'GENERATE-SUB-NAME PREFI0)
0 (PARENr-SUB-POINTER-SLOT (GET, VALUE NEWUNIT

PARENI-SUB-POINTER-SL'1))
(PUT.VALUE NEWUIJIT 'SUPER-ELEMENT SELF'
UNITMSS NEWUNIT 'NAME-ELEMENT NEWNPAME)
(ADD.VALUE SELF PARENT-SUB-POINTER-SLOT NEWUNIT)
NEWUNIT

Member slot:. CHECK

C Valueclass. NIL

Values: iLAMBDA (SELF AGENDA)
* (LET (SUB-ELEMENTS (GET.YALIE SELF 'SUB-ELEMENTS,)

DOLIST (SE SUB-ELEMENTS) (UNITMS6 SE 'CHEC .AGENAM)

Member slot: DEFAULT-NAME-PREFIX
'Valueclass: NIL
Values: (SG)

Member slot: DRAW-SUB-ELEMENTS
Valueclass: (METHOD)
Values: (LAMBDA (SELF WINDOW)

(LET# ((PRIMITIVES (GET.VALUES SELF 'SUB-PRIMITIVE()
(GAPHS (GET.VALUES SELF 'SUB-GRAPH))
(INPUTS (GET.VALUES SELF 'SUB-INPUT)'
(OUTPUTS (GET.VALUES SELF 'SUB-OUTPUT))

* 73

. (ARCS (GET.VALUES SELF 'SUB-ARC)f)

QDOLIST (SUB (APPEND PRIMITIVES GRAFHS INPUTS vUTPUTS ARCS))

(UNITMSG SUB 'DRAW WINDOW))f)

Member slot: GENERATE-SUB-NAME
Valueclass: (METHOD)

Values: (LAMBDA (SELF PREFIX)

LET ((COUNT (1+ tGETVALUE SELF 'SUB-ELEMENT-COUNi)
(FUT.VALUE SELF 'SUB-ELEMENT-COUNT COUNTi

kMAKE-SYMBOL (FORMAf NIL "ad'' PREFIX COUNT)))J

Member slot: GRAMMAR
ValueclsS: GRAMMAR)
Values: FGN-GRAMMAR)

Member slot: PARENI-SUB-POINIER-SLUI

Valueclass: NIL

Values: (SUB-bRAPH)

*'= Member slot: REMOVE-SUB-ELEME4(

Yalueclass: ;METHOD)
Values: (LAMBDA ,SELF SUBELEMENI))

Member slot: SELECTABLE-IIEM-1'PE
Valueclass: NIL

Values: t;6RAPH-ITEM)

Member slot, SUB-ARC
Valueclass; ARC)

Values: NIL

Member slot; SUB-ELEMENI-COUNT

Valueciass: (INFEGER)
Values: ()

Member slot: SUB-GRAPH
Valueclass: (GRAPH)

* •Values; NIL

74

S.., . . % -l ,, . - . . - . , . ,- , . - _ - . ,- . . .- . - . . - . .- . .- - . . - .

' Member slot: SUB-POINIERS

Valueclass: NIL

Values: (SUB-ARC SUB-URAPH SUB-PRIMIIIVE)

Member slot: SUB-PRIMITIVE
Valueclass: (PRIMITIVE)
Values: NIL

Unit: 6RAPH-ELEMENT
Members: NIL
Subclasses; (lUnit (ARC GDA-SYSIEM) lUnit (NODE ODA-iS1EM) #Unit (JUNCTIION GD-SISTEM))

Member slot: CHECK

Valueclass: METHOD)
Values: (LAMBDA (SELF AGENDA))

Member slot: DEFAULT-NAME-PREFIX
Valueclass; NIL

* Values; tGE)

Member slot; DELETE

Valueclass: tMEIHOD)

Values: (LAMBDA (SELF)
• " (DOLIST (SUB (GET,VALUES SELF 'SUB-ELEMENT)) (UNITMSG SUB 'DELEIE))

(LET ((PARENT (GETVALUE SELF 'SUPER-ELEMENTH)

(IF PARENT
LET t(SUB-POINIER-SLOT IGET.VALUE SELF 'P4RENI-SUB-POINTER-SLOT)))

(IF SUB-POINTER-SLOT (REMOVE.VALUE PARENI SUB-POINTER-SLOI SELF));))
iUNITDELETE SELF))

Member slot; DRAW
Valueclass; 'METHOD)
Values: NIL

Member slot: FIRSTNAME

Valueclass: NIL
Values: NIL

75

* Member slot: INSTANTIATE

Valueclasi; IMEIHOD)
Values: (LAMBDA (SELF)

d)(CREATE.UNIT (GENSYM 'E) NIL NIL SELF)

Member slot: NAME-ELEMENT
Valueclass: (METHOD)
Values: (LAMBDA (SELF &oPrIONAL NEWFIRSTNAME)

(LET* ((FIRSTNAME (IF NEWFIRSTNAME
NEWF IRSTNAME
(GET.VALIE SELF 'FIRSTNAME)!n

(OLDNAME (UNITNAME SELF))
;PARENT (GET.VALUE SELF 'SUPEF-ELEMENT),
(NEWNAME (IF PARENT

~MAKE-SYMBOL FOP.MAI NIL

F IRSrNAME
(UNI TAME PARENTW;

FIRSTNAIE)))

4 (COND I(NED NEWNAME OLDNAME)
(UNITPENAIE SELF NEWNAME)
~PUrVALUE SELF 'FIRSINAME FIRSTN(4ME)
(DOLIST (CHILD (GET,VALUES SELF 'SUM-LEMENI.;.

0UNITMSG CHILD 'NAME-ELEMENI~fl
NEWNAME

Member slot: PARENT-SUB-POINTER-SLO1
Valueclass: ((UNE.OF SUB-INPUT SUB-OUTPUT SUB-GRAPH SUB-PRIV~IVE SUB-ARC;;
Values: NIL

Member slot: SELECTABLE-ITEM-TYPE
Valueclass: i(ONE.OF :PRIMITIVE-ITEM :6RAPH-ITEM :INFUT-ITEM :OUTPUT-IIEM))
Values: NIL

Member slot: SUB-POINTERS
Valueclass: NIL
V.alues: NIL

Member slot: SUPER-ELEMENT
Valueclas (NODE.
Values; NIL

4~ 76

Unit: IlAGE. PANELiO1443
Me~bers: NIL
Subclasses: NIL

Own slot: BORDEF
Valueclass: NIL

- . Values: 12

Own slot: HEIGHT
Valueclass; NIL
Values: III

Own slot: IMAGE.WAS.PAINTED
Valueclass: NIL
Values: (NIL)

Own slot: 1IMAGES
* Yalueclass: NIL

Values: 4tUnit dIETHOD.ACTUA10R00577 6DA-SYSTEM)
#Unit (METHOD.ACTUAIOR00474 6DA-SYSTEl))

Own slot; OBJECT.DISPLAYED
Valueclass; NIL
Values: #KLB (GDA-SYSIEM)

Own slot: REGION
Yalueclass: NIL
Values: (325 623 338 111,

Uwn slot: TITLE
Valuec' ss: NIL
Values: 'GDA LUser Comoands'

Own slot: TITLEFONT
Valueclass: NIL

* Values: FONfS:HLI0B

* 77

Own slot; JOPUNIT
Valueclass: NIL
Values: #Unit (GDA-COMMANDS 6DA-SYSTEM)

awn slot: WIDTH
Valueclass: NIL
Values: 338

Own slot: WINDOW
Valueclass: NIL
Values: *\IWIN Iwin 4 16313352 deexposed)

Unit: IMA6ES
Members: Atnit (IMAGE.PANELOO443 GDA-SYSIEM) #Unit MElHODACTUATCOR0057 6DA-SYSTEM)

finit 4IETHOD.ACTUATOR00499 GDA-SYSTIEM)
tUni t ME1HOD.MCTUATOR00474 GDA-SiSTEM))

5ubiclasses: NIL

* Own slot: DELETE
Valueclass: METHOD
Values: DELETE.ALL.IMAGES

Own slot; DELETE.AL.MAGES
* /Ialueclass: METHOD

Yalues: DELETE.RLL.UfAGES

Own slot: DONT.RECREATE. IMAGES.AFfER.KBLOAO
Valueclass: (ONE.OF T NIL ASKUSER)
Values: ASKUSER

Own slot: RECREATE.ALLIMAGES
Valueclass: METHOD
Values: RECREATE.ALL. IMAGES

Own slot: SAVE.ALL.IMAGES
Valueclass; METHOD
Values: SAVE.AL.IMAGES

* 78

%

'~: Own slot: USER.DELETE.ALL.IMAGES

Valueclass: METHOD
Values:. USER.DELETE.ALLIMAGES

- Own slot: USER.RECREATE.ALL.IMAGES
Valueciass: METHOD
Values: USER.RECREATE.ALL. IMAGES

Unit: IN-CONNECTOR
Members: NIL
Subclasses: NIL

Member slat: CONNECT-PUINI-OFFSET
Valueclass: NIL
Values: 1(13 611

Member slot: DEFAULT-NAME-PREFIX
Valueclass: NIL

I Values: (1)

Member slot: INPUT-P
Valueclass: NIL
Values: IT)

Member slot: LABEL
Valueclass: NIL
Values: ("in")

Member slat: LABEL-OFFSET
Valueclass: NIL
Values: t14 1))

Member slit: PARENT-SUB-POINTER-SLOT
Valueclass: NIL
Values: (SUB-INPUT)

%I %

Mesber slot: SHAPE
Vailueclass: NIL
Values: ((0 0) (25 0) (28 b) (25 12) (0 12) (0 0))

-Unit: IN-PIN
Members: NIL
Subclasses: (#Unit (FGN-IN-PIN FGN-GRAMMAR-KB))

* '- Member slot: CONSTANT-INPUT
Valueclass: ((ONE.OF T NIL))
Values: NIL

Member slot: DEFAULT-NAME-PREFIX

Valueclass' NIL
Values: iI)

Member slot: IN-ARC
Valueclass: ;ARC)

* Values: NIL

Member slot: PARENT-SUB-POINTER-SLOT
Valueclass: NIL
Values: (SUB-INPUT)

Member slot: SELECTABLE-ITEM-TPE
Valueclass: NIL

* Values: (:INPUT-ITEM

Unit: ID-PIN
Members: NIL
Subclasses; OIUnit (IN-PIN GDA-S'fSTEM) #Unit (OUI-PIN 60A-QYSIEM))

Member slot: LEGAL-DATA-TOKENS
- -?" Valueclass: (fATA-TOKEN-TYPE)

Values; NIL

4%~

6 30

Unit: JUNCTION
Members: NIL
Subclasses: (#Unit (IC-PIN GDA-SYSTEM) #Unit (CONNECTOR 5DA-SYSTEMl

Member slot: CALC-DISPLAY-HEIGHT
Valueclass: (METHOD)
Values: (LAMBDA (SELF WINOOW))

Member slot: CALC-DISPLAY-WIDTH
Valueclass: (METHOD)
Values; (LAMBDA (SELF WINDOW))

Member slot: CONNECT-POINT

Valueclass; NIL
Values: NIL

Member slot: DELETE
I• Valueclass; NIL

Values: (BEFORE (LET N(IN-ARCS tGET.VALUES SELF 'I):-ARC))
(OUT-ARCS (GET.VALUES SELF 'OUT-ARC)')

(DOLIST (IN IN-RCS) (UNITMSG IN 'DELETE))

(DOLIBT (OUT OUf-ARCS) (UNITMSG OUT 'DELETE)I)'

Member slot: INPUT-POSITION

Valueclass: NIL
Values: NIL

Member slot: OUTPUT-POSITION
Valueclass; NIL
Values: NIL

Member slot; POSITION

Valueclass: NIL
Values; ((20))

1

A-

r:

I

- -a ... l''4 i.4 : -- *-%2

Sl.

Member slot; SELECT-ARC-FROM-SLOT
Valueclass: (METHOD)
Values: (LAMBDA

' -. (SELF SLOT &OPTIONAL LABEL)
(LET
(iARCS (GET.VALUES SELF SLOT)))
(IF
(! I (LENGTH ARCS))
(LET

((ALIST
tMAPCAR
(FUNCTION (LAMBDA (ARC)

(CONS (LET* ((FROM (GET.VALUE ARC 'FROM-JUNCTION))
(TO (GET.VALUE ARC 'TO-JUNCTION))
(TO-NODE (GETVALUE TO 'SUPER-ELEMENT)))

(FORMAT NIL

'from 'a to %,Wa"
(GET.VALUE FROM 'FIRSTNAME)
(GET.VALUE TO 'FIRSTNAME)

* (GETVALUE TO-NODE 'FIRSTNAME)),
ARC)))

ARCS)))
(SELECT-FROM-ALIST ALIST LABEL))

(CAR ARCS))))

Unit: LIBRARY
Members: NIL
Subclasses; i#Unit PRIMITIVE-LIRtY GDA-SVSTEM) #Unit iPLAN-LIBRARY GDA-SSTEM))

Member slot: GET-MENU-ITEM
Valueclass: (MEIHOD)
Values: (LAMBDA (SELF)

(LET ((TEXT (FORMAT NIL "a" UNIT.NAME SELF)))
(VALUE SELF1
(PROMPT (FORMAT NIL "Instantiate 'a" (UNITNAME SELF))))

'(,TEXr ,VALUE ,PROMPT?))

Member slot; GET-MENU-SUBITEMS
Valueclass: (METHOD)
Values: (LAMBDA

(SELF)
(LET#

Ir ((SUBCLASSES (REVERSE UNlT.CHILDREN SELF 'SUBCLASS)))
"*'-; (MEMBERS (REVERSE (UNIT.CHILDREN SELF 'MEMBER)))

' (SUBCLASS-ITEMS (IF SUBCLASSES
(MAPCAR (FUNCTION LAMBDA iSC)

82

(UNIrMSG SC
'GE1-MENU-SUBITEMS).)

SUBCLASSES)))
(MEMBER-ITEMS (IF MEMBERS

(MAPCAR (FUNCTION tLAMBDA (S5)
(UNITtISG SC 1GE1-MENU-IEM)

MEMBERS)))
ITEIT-VALUE-PROMP1 '(,(UNIT.NAIE SELF) .SELF "See sub menu"L)
(COND ((AND SUBCLASS-IrEMS MEMBER-ITEMS)

)APPEND TEXT-VALUE-PROMPT
iLIST (CONS 'SUBITEMS

APPEND SUBCLASS-ITEMS MEMBEP-IIEMSfl U
(SUBCLASS-ITEMS
WAPEND [EXI-YALUE-PROMPI

'((SUBITEMS . .SUBCLASS-ITEMS))))
uliEMBER-I TENS
(APPEND !Ex f-VALUE-PROMPT

'((SUDIIENS n.E bEP-I1EMS)W)Uw

*Member slot: MEMBER-MENU
Valueclass: (MENUITEM)
Values: NIL

Member slot: MEMBER-MENU-TEST
- Vailueclass; NIL

Values: NIL

Member slot: SELECT-FROII-MENU
Valueclass; (METHOD)
Values: iLAMBDA (SELF)

A (MENU (GET.SLOT.MENU SELF 'MEMBER-MENU)))

Member slot; UPDATE-MEMBER-MENU
Valueclass: (METHOD)
Values; (LAMBDA (SELF)

(LET ((SUBCLASSES WUNIT.CHILDREN SELF 'SUBCLASS))
(MEMBERS (UNIT.CHILDREN SELF 'MEMBER)))

)REMOVE.ALL. LOCAL.VALUES SELF 'MEMBER-MENJU)
(DOLIST (SC SUBCLASSES)

QAD.VALUE SELF 'MEMBER-MENU (UNITM56 SC 'GEl -MENU-SUBIIEMS)),
4 ZDLIST !M MEMBERS)

tADD.VALUE SELF 'MEMBER-MENU (UNITMSS M 'GEI-MENU-ITEMU U)

* 83

Unit. MEIHOD.ACiUAIUR004'4
Members; NIL

Subclasses: NIL

Own slot: BORDER
Valueclass: NIL

Values: 4

Own slot: FONT
Valueclass: NIL

Values: FONTS:HL6

Own slot: HEIGHT

Valueclass; NIL
Values: 36

Own slot: IMAGE.WAS.PAINTED
Valueclass: NIL

Values: T

Own slot: OBJECT.DISPLAYED
Valueclass; NIL

40, Values: Slot (DO CREATE-GRAPH-WINDOW GDA-SYSIEH OWN)

Own slot: REGION
* Valueclass: NIL

Values: NIL

Own slot: SUPERIMAGE
Valueclass; NIL

,*: Values: #Unit IAGE.PANEL00443 GDA-SYSTEM)

Own slot: TITLE

Valueclass; NIL

Values: "Create a new Grach Window'

84

-J Own slot; TITLEFONT
Valueclass: NIL
Values: FONTS:HLIOB

Own slot; TOPUNIT
Valueclass: NIL
Values: (NIL)

Own slot: YALUE.WAS.SAVED
Valueclass: NIL
Values: T

Own slot: WIDTH
Valueclass: NIL
Values: 182

GOn slot; WINDOW
Valueclass: NIL

Values: #IWIN lwin 8 16314026 deeoosed

Unit: METHODACTUATOR00499
Members: NIL
Subclasses: NIL

Own slot: BORDER
Valueclass: NIL
Values: 4

Own slot: FONT
Valueclass: NIL

Values; FONTS:HLb

Own slot: HEIGHT
Valueclass: NIL
Values: 51

85

:';:J

Own slat: IMAGE.WAS.PAINTED
Valueclass; NIL
Values: T

Own slot: OBJECI.DISPLAYED
* Valueclass: NIL

Values: 45lot (SELECT-COIIMAND GDA-COMMANDS GDA-SvtSTEi MEMBER)

Own slot: REGION
Valueclass: NIL
Values: NIL

Own slot: TITLE
Valueclass: NIL

* V'alues; "ODA-COMMANDS's SELECT-COMMAND"

Own slot: TITLEFONT
Valueclass; NIL
Values; FONTS:HLI08

Own slot: TOPUNIT
Valueclass; NIL

- Values: :NIL)

Own slot; VALUE.WAi.SAVED
46 valueclass; NIL

Values'. I

own slot: WIDTH
Valueclass: NIL
Values: IF9

Own slot; WINDOW
Valueclass: NIL
Values: #(IWIN Iwin 2163113124 deexoosed.

S Unit: MEIHOD.ACTUATUR0057T
Members: NIL
Subclasses; NIL

-15 b

6~%

Own slot: BORDER
Valueclass: NIL
Values: 4

Own slot: FONT
u. Valueclass; NIL

Values: FONTS:HLI0

Own slot: HEIGHT
Valueclass: NIL
Values: 41

Own slot: IMAGE,WAS.PAINTED
Valueclass; NIL
Values: T

Own slot: OBJECT.DISF'LAYEI
Valueclass; NIL
Values: $Slot [DO CREATE-TREE-WINDOW GDA-SYSTEM OWiN

Own slot: REGION
Valueclass: NIL
Values: NIL

Own slot: SUFERIMA{E
Valueclass: NIL

Values: lUnit (IMAGE,PANELOO443 UDA-S SlEM)

Own slot: TITLE
Valueclass; NIL
Values: "Create a window of showino sub-element relations"

Own slot: TITLEFON[
Valueclass: NIL
Values: FONTS:HLI0B

Own slot: TOPUNIT
Valueclass: NIL
Values: INIL)

87

Own slat; .ALUE.WASSAVED
Valueclass; NIL
Values: T

Own slot: WIDTH
Valueclass: NIL
Values: 322

Own slot: WINDOW
Valueclass: NIL
Values; #,'IWIN Iwin 6 1631360 deexpos~d)

Unit: NODE
Members: NIL
Subclasses: ilUnit (GRAPH ODA-SYSTEM) #Unit (PRIMITIYE ODA-SYSTEM))

Member slot: ADD-INITIAL-SUB-ELEMENT
'alueclass: METHOD)

* Values: LAMBDA iSELF FIRSTNAIE CLASS SLOT-POINTER)
(ADD.VALUE SELF

'INITIAL-SUB-ELEMENT
'.,FIRSTNAME * UNITREFERENCE CLASS) ,SLOT-POINTER)))

(Member slot: CALC-DISPLAY-HEIGHT
Valueclass: (METHOD)

* - Values: (LAMBDA (SELF WINvOW)

Member slot: CALC-DISPLAY-WIDTH
Valueclass; IMETHOD)
Values: LAMODA (SELF WINDOW)

Member flot: DRAW
4 Valueclass: (METHOD'

'Jalues: (LAMBDA (SELF WIN1DOW)
(SEND WINDOW :DRAW-NODE SELF))

-~.- .q

% %

AO,7R-A:164 122 A PROGRANNER'S ASSISTANT FOR A SPECIAL-PURPOSE DATAFLOw 2/2
LANGAJAGE(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFO

UNCLASSIFIED AFIT/GCS/ENG/85D-2 F/G 92 N

111

1"111110IIIIII
jII I.25 11111'.4 IIII1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

'I,

.

\,

N'
°

Member slot: INITIAL-SUB-ELEMENT
Valueclass: (LIST)
Values: NIL

Member slot: INSTANTIATE
Valueclass: NIL
Values: (LAMBDA (SELF)

(LET ((NEWUNIT (CREATE.UNIT (6ENSYM) NIL NIL SELF)))
(DOLIST ISUB IGET.VALUES SELF 'INITIAL-SUB-ELEMENT))

tLET* ((FIRSTNAME (FIRST SLUB))
(CLASS (SECOND SUB))

~-, ~'(SUBELEMENT (UNITMSG CLASS 'INSTANTIATE))
(SUB-POINTER (THIRD SUB)))

(ADD.' ALUE NEWUNIT SUB-POINTER SUBELEMENI)
(PUT.VALUE SUBELEMENT 'SUPER-ELEMENT NEWUNII)

* (UNITMSG SUBELEMENT 'NAME-ELEMENT FIRSINAME)))
NEWUNI T

0 Member slot: LABEL
Valueclass: iS1PlNG)
Values: (

Member slot: POSITION
Valueclass: NIL
Values: NIL

Member slot: SUB-ELEMENT
Valueclass: (GRAPH-ELEMENT)
Values: NIL

Member slot: SUB-INPUT
Valuiclass: (JUNCTION)
Values: NIL

Member slot: SUB-OUTPUT
* 'alueclass: (JUNCTION)

Values: NIL

89

'C40- .,r e A _c

oA_

Member slot: SUB-POINTERS
Valueclass: NIL
Values: (SUB-ELEMENT SUB-INPUT SUB-OUTPUT)

Unit: OUT-CONNECTOR
Members: NIL
Subclasses: NIL

Member slot: CONNECT-POINT-OFFSET
Valueclass: NIL
Values: ((3 6))

Member slot: OEFAULf-NAME-PREFIX
Valueclass: NIL
Values: (0)

Member slot: INPUT-P
Valueclass: NIL

0 Values: (NIL)

Member slot: LABEL
Valueclass: NIL
Values: ('out')

Member slot: LABEL-OFFSET
Valueclass: NIL

Values: 1(6 2))

Member slot: PARENT-SUB-POINTER-SLOT
Valueclass: NIL
Values: (SUB-OUTPUT)

Member slot: SHAPE
Valueclass: NIL
Values: ((p 0) (30 0) t30 12) (0 12) 0 6) (0 0))

K. Unit: OUT-PIN
Members: NIL
Subclasses: (fUnit (F6N-OUT-PIN FGN-GRAMMAR-B))

r

ll

0
90

m' ' ".%

.; %0

Member slot: DEFAULT-NAME-PREFIX
Valueclais: NIL
Values:. (0)

Member slot: OUT-ARC
Valueclass: ARC)
Values: NIL

Member slot: PARENT-SUB-POINTER-SLOT
Valueclass: NIL
Values: (SUB-OUTPUT)

Member slot: SELECTABLE-ITEM-TYPE
Valueclass: NIL
Values: (,OUTPUT-ITEM)

Unit: PLAN
0 Members: NIL

Subclasses: NIL

Member slot: DEFAULT-NAME-PREFIX
Valueclass; NIL
Values: (PLAN)

Member slot: NIL
Valueclass: NIL
Values; NIL

Unit: PLAN-LIBRARY
Members: NIL
Subclasses: NIL

Unit: PRIMITIVE
Members: NIL
Subclasses: (lUnit (ROBOT-ARM FON-PRIMITIVE-LIBRARY-KB)

#Unit (OFFBUTTONLIGHTS FON-PRIMITIVE-LIBRARY-KB)
#Unit (HOSTOUT FGN-PRIMITIVE-LIBRARY-XB)
fUnit IHCPIP FGN-PRIMITIVE-LIBRARY-KB)

4- 91

#Unit (FLABELO FGN-PRIMIN[VE-LIBRARY-0;B
tNnit RFLBEL.1-I2 FGN-FRIMITIVE-LIBRARY-KB)
#Unit (FKEYS FGN-PRIMIrIYE-LIBRARt-KO)
#Unit (FFPLOT FGN-PRIMITIVE-LIBRARY-KO)
linit IF.1VECTOR FGN-PRINITIVE-LIBRARY-KB)
tNnit (F.ZROTATE FGN-PRINITIVE-LlBRARY-MB
#Unit (F.YVECTOR FGl4-PRIM1TIVE-LIBRARY-KO)
$Uni t (F. YROTATE FON-PR1INITIVE-LIBRARY-KB)
#Unit (F.XVECTOR FGt-PRIMITIVE-LIBRARY-K0i
#Unit (F.XROTATE FGN-PRIMITIVE-LIBRARY-KB8
tinit (F.XORC FGN-PRIflITIVE-LIBRARY-KB)
#Unit (F.XUR FON-PRIMITIVE-LIB.ARY-KB)
tNnit (F.XFORtIDATA FGN-PRIt1ITIVE-LIBRARY-KB)
#Unit (F.WINDOW FGN-PRIMITIVE-LIBRARY-Kbj
#Unit (F.VECC F6N-PRIMITIVE-LIBRARY-KB)
fUnit iF.VEC.EXIR4CT FGN-PRIMITIV-LIRARY-0)
#Unit (F.VEC FGN-PRIMrIVE-LIBRARY-KO)
#Unit (F.TRANS.SJRING 6-R~1V-I~,~

* lUnit (F.T1NEDUT FON-PRll111IYE-LIBRARY-K01
tUnit (F.IAKE.STRING FGN-PR~IITlVE-LIRARY-Kq)
#Unit (F.SYNC FGN-PRINITIVE-LIBRARY-KB;
#Unit (F.SUBC FON-PRIMITIVE-LIBRARY-KB)
#Unit iF.SUB F6N-PRPIITIVE-LIBRARY-KB)
IUnit (F,STRING.TO.NUM FON-PRIMITIVE-LIBRARY-0)
#Unit (F.SQROOT FON-PRIMITIVE-LIBRARY-KO,

* lnit (F.SPLIT FGN-PRINIIVIE-LIBRARY-Kb)
#Unit (F.SINCOS FGN-PRINITIVE-LIBRARY-KB)
#Unit (F.SCALE FG-PRIMITIVE-LIBRARY-KB)
tinit (F.ROUTEC FON-PRIMITIVE-LIBRARY-KB)

~ #Unit (F.ROUTE F6N-PRIN!TIVE-LIBRARY-kB)
#Unit (F.ROUND F6N-PRIflITIVE-LIBRARY-KB)
fUni t (F.RAN6E.SELECT FG-PRIJIITIVE-LIBRARY4DI
tinit (F.PUT.STRIN6 FON-PRIflITIVE-LIBRARY-Kbi
tndt CFPRINT FGN-PRIflhTIVE-LIBRARY-0B)
tUnit (F.POSITION.LINE FGN-PRIMITIVE-LIBRARY-kB)
lNnit (F.PICKINFO F6N-PRIMITIV E-LIBRARY4KB)
tNnit (F.PASSTHRU FGN-PRIMITIVE-LIBRARY-KB)
#Unit (FARTS FGN-PRI11ITIVE-LIBRARY-KB)

4 tnit (F.ORC FGN-PRIMITIVE-LIDRARY-KD)
#Unfit (F.GR FGN-PRIMIT1VE-LIBRARY-0)
tUnit (F.NOT FGN-PRINIrIVE-L18RARf-KO)
lNnit (F.NOP FON-PRIflITIVE-LIBRARI-0B
#Unit (F.NEC FGN-PRlIITVE-LIBRARY-KB'
knit (F.rJE FGN-PRIMITIVE-LIBRARY-0)
lNnit (F.NULC FON-PRIMITIVE-LJBRARe-KO)
fUrit iF.1UL FON-PRIMITIVE-LIBR~Rr-0)
#Unit F.MODC FGN-PRIrVIVE-LIBRARY-K6,

#Unmt (F.MCONCATENATE FGN-PRIMIJIVE-LIBRARt-A8)
lNnit (F,.ATRIX4 FGN-PRIMITIVE-LIOPARY- B
BGnit tF.fARIX'O FG-PRIM1ITIVE-LFBRRY-4.)

%~ .

#S Unit (F.MATRIX*4 FON-PRIMITIVE-LIBRARY-KO8

fUnit (F.LTC FON-PRIflhTIYE-LIBRARY-KB)

#Unit (F.LDCF F ON-PR IITIVE-LIBRARY-KB
#Unit (F.LOOKATO FGN-PRItITIVE-LIBRARY-KBJ
tUnit (F.LAIEDTO FN-PRINITIVE-LIBRARY-KB)4 lfinit (F.LINEEDT FN-PRIITVE-LIRARY-KB)
lUnit CF.LEITR FGN-PRI DIVE-LIBRARY-
#Unit (F.LENBHT.STRIMITFGN-LIR ARYIV-LiM AR -~

* #Unit (F.LEC F6-PRIIIVE-LIBRARY-KB)
finit CF.LBEXRC GN-PRINI1 IVE-LIBRARY-KB ;

5,. tUnit (F.L8BLEtR FON-PRI I UVE-LIBRARY-KO)
#Unit (F.INPTSCHOL FGN-PRIME-LIBP. R AV-KB
tOnit)F.GT FNUSCHOFN-PRI fL Iv-1BRA
#Unit (F.GIC FON-PRINITIVE-LIBRARY-KD)
#Unit (F.6TC FGN-PRIITIVE-LIBRARY-K)
#Unit (F.GEC FON-PRINITIYE-LIBRARY-KB)
fUnit (F.GE FGN-PRINITIVE-LIBRARY-KB)
#Unit (F.SACER6N-RIMITJ -PMTVE-LIBRARY-
tUni t (F.FOTHER.STRIN6 IT I ITVE-LIBRARY-KB)
Unit (FAGAT FN-PRINITIE-LIRARY-K)

'S #Unit (F.FLOA FN-PRIIIVE-LIBRARY-KB)
#Unit (F.FIN.X RN FG N-PRINITIVE-LIBRARY-KB
tNnit (F.FITHNC. RI FNRMITIVE-LIBRARY-KB
#Unit (F,ETCH FN-PRIJITIE-LIBRARY-IKB)

5 #Unit (F.EGC FN-PRIfITIVE-LIBRARY-KB)
#Unit (F.EGEFDETPRT MITJVE-LIBRAR-LB) AY
#Unit (F.DGE.DTEC FN-PRIfITVE-LIBRRY-KB
tinit (F.DIROTATE FGN-PRIflITIVE-LIBRARY-KB)
#Unit (F.DYROrATE FSN-PRIflITIVE-LIBRARY-MB
#Unit (F.DXSaAE FN-PRIITIVE-LIBRARY-B)
lUnt (F.DSCAL FN-PRIITIVE-LIBRARY-B)
#Uni t)F.DIFC FGN-PRIIIVE-LIBRARY-K)
#Unit IF.DELIF FN-PRIMITIE-LBRARY-KB
lHni (F.DEE FGN-PRIfII E-LIBRARY-K)
#Unit (F.CVEC FGN-PRIfITIVE-LIBRARY-KB)
#Unit (F.CSUBL FN-PRIIIE-LIBRARY-KB)
#Unit (F.CRCALE FGN-PRIflITIVE-LIBRARY-KO)
Unit (F.CROUTE FGN-PRIITI YE-LIBRARY-KB)
fUnit (F.COTAT FON-PRINTI YE-LIBRARY-W
#Unit (F.CDMSTNTA F GN-PRINITIVE-LIBRARY-KB)
#Uni t (F.CONCATENATEC FN-PRIITIE-LIBRARY-KB)
lHni (F.CONCATNG FGN-PRINItIYE-LIBRARY-KO)
#Unit (FCOMP.STNRINFNRITIVE-LIBRARV-K I
#Unit (F.CMOL FB-PRIfITIE-LISRARY-KB)

#Ui (F.CfLTCSFNPRIITIVELIBRARYKB)
finit CF.CLT FGN-PRINITIVE-LIBRARY-KB)

#Unit (F.CLFRAIES FON-PRII ITI YE-LIBRARY-KB)
#Unit (F.CLE FGN-PRII1ITIVE-LIBRARY-kg)

'~' .;# Unit F.CLCSECONDS FGN-PRIMITIVE-LIPPARY-4B)
tOnat (F.CHARMASK FGN-PRIMITIYE-LIBRARY-KO)

93

#Unit (F.CHARCONVERT FBN-PRIIrIIVE-LIBRARY-KB)
#Unit (F.CGT FGN-PRIMITIYE-LIBRARY-KB)
#Unit (F.CELING FGN-PRIMITIVE-LIBRAR'I-K)
fUnit (F.CDIV FGN-PRIIIITIVE-LIBRARY-KB)
#Unit F.CCONCATENATE F6N-PRIMITIYE-LIBRARY-KO)
lUnit (F.CBROUITE FGN-PRIMITIVE-LIBRARY-KB)

4'i FBOTCFNPRMTV-IRR-B

Unit (F.BROUTEC FN-PRIMITIVE-LIBRARY-KB)
lUnit 'F.BDOUENCOE FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F.AOOEAN.CHOOSE FN-IITIVE-LIBRARY-)
#Uni t (F.ATERALE FGN-PRINITIVE-LIBRARY-KB)

#Unit (F.AND FON-PRIfl1TIVE-LIBRARY-KB
#Unit iF.AOOC FGN-PRIMIfI'v'E-LUSRAR'1-(8)
#Unit (F.ADD FUN-PRIMITIVE-LIBAR(-KB)
#Unit (F.ACCUMULATE FON-PRIMITIVE-L1SRARY-KC)
tOni t (DTREE FGN-PRINI TlYE-LIBRiARY-kB)
#Unit (OLABEL.1-8 FON-PRINITIVE-LIBRARY-KBI
Unit DlALS FGN-PRIMITIVE-LlBRARY-KB)
#Uni t (CURSOR FGN-PR1MIrlYE-LIBRARY-KB)

0 #Unit (CLEAR.LABELS FGN-PRIMITIVE-LIRRY-KD)
fUnit (BUTTONSIN FSN-PRIIlTIVE-LIBRARY-KB)
#Unit (TABLETOUT FGN-PRlNITIVE-LIBRARY-KO)
#Unit (TABLETIN FGN-PRINITIVE-LIBRARY-KO)
#Unit (SPECKEYS FGN-PRIMTVE-LlBRAR-KB)
f Unit 1ICK.LOCATION FON-PRIMITIVE-LIBRARY-KB)
#Unit (PICK FGN-PRINITIVE-LIBRARY-KB)
#Unit (KEYBOARD FGN-PRIMI[IVE-LIBRARY-KBn)

Member slot: DEFAULT-NAME-PREFIX
Valueclass'; NIL
Values: (P)

Member slot: DEFINE-PRIMITIVE
Yaluiclass: (METHOD)
Values: NIL

* Member slot: LABEL
-~ Valueclass; NIL

Values: (*duamv")

Member slot: PARENT-SLID-POINTER-SLOT
Valueclass; NIL
Values; (SUB-PRIIIlTI"'E,

*4.94

4W. -0

.4~

Member slot: SELECTABLE-ITEM-TYPE
Valueclass: NIL
Values: 0:PRIMITIVE-ITEM)

Unit; PRIMITIVE-LIBRARY
Members: NIL
Subclasses: (#Unit (FGN-PRIMI1 IVE-LIBRARY FGN-PRIMITIVE-LIBRARY-KB))

Unit: UPDATE-SUB-ELEMENT-POINTER
Members: NIL
Subclasses: NIL

.., Own slot: AVPUT
,'2 Valueclass; NIL

Values: iLAMBDA (SELF SLOT NEWVALUE OLDVALUE UNIT SLOTTYPE)
(DOLIST (NEW NEWVALUE)

IF (NOT (MEMBER NEW OLDVALUE) (AD.VALUE UNIT 'SUB-ELEMENT NEW)))
(DOLIST (OLD OLDVALUE)

1IF (NOT (MEMBER OLD NEWVA.UE))
(REMOVEVALUE UNIT 'IUB-ELEMENT OLD)')

NEWVALUE)

95

- ' ' " ": -". : -''". - ,- --- - - -... -. ' . ' _' -"- . " ." . " -". .".".-

Knowledoe Base; FON-GRAtQ AR-KB

Contents:

ANY-TYPE-INPUT
BOOLEAN-flNPUT

* ~ BOOLEAN-OUIPUIT
C-BOOLEAN-INPUT
CONSTANT-INPIT
FGN-DATA-TaKEN- TYPE

X F6N-GRAMMAR
FGN- IN-P IN
FGN-OUT-PIN
INPUT-DETERMINES-OUTPUT
MATRIX

0 T.2D
r.2X2
T.3D
T.303

r.4X3
T.*414

T.BOOLEAN
T.CHARACTER
T.INTEGER
T.REAL
T.STRIN6
VECTOR

* 96

Unit: ANY-IYFE-INPUT
Members: NIL
Subclasses: NIL

Unit: BOOLEAN-INPUT
-~ Members; NIL

Subclasses: NIL

Member slat: LEGAL-DATA-TOKENS
Valueclass: NIL
Values: (T.BOOLEAN)

Unit: BOOLEAN-OUTPUT
Members: NIL
oubclasses; NIL

Member slot: LEGAL-DATA-TOKENS
V8iueclass: NIL
Values; (TBOOLEAN)

Unit: C-BOOLEAN4-IMPUT
Members; NH.
Subclasses: NIL

Unit: CONSTANI-INPUT
Members: NI1L
Subclasses: (lUnit (C-BOOLEAN-IN4PUT FGN-6RAMMAR-KB))

Unit; FGN-DATA-TOKEN-TYPE
* Members: (#Unit (T.STRING FGN-ORAMMAR-KB) JUnit (T.REAL FGN-GRAMMAR-KB)

lHnit (T.INTEGER FGN-GRAMIIAR-KB)
#Unit (T.CHARACIER FGN-GRAMMIAR-KBI
#Unit (T.BOULEAN FGN-GRAMMAR-KB))

Subclasses: (#Unit (VECTOR FGN-GRAMMAR-KB) #Unit (MTRIX FON-GRAMMAR4S))

7' Unit; FGN-6RAMMAR
Member; NIL
Subclasses; NIL

* 97

awn slot: PRIMITIVE-LIBRARY
Valueclass: NIL
Values: (FGN-PRIMITIVE-LIPRARY)

Unit: FGN-IN-PIN
Members: NIL
Subclasses: (finit (CONS1ANT-INPUT FGN-GRA'MMAR-KB) #Unit (BOOLEAN-INPUT FGN-GRA(4KAR-KB)

#Unit (ANY-TYPE-INPUT FON-6RAMMAR-KB))

Unit: FGN-OUT-PIN
Members: NIL
Subclasses: '#Unit (BOOLEAN-OUTPUT FGN-GRAMMAP-KB)

#Unit (INPUT-DETERMINES-OUTPUT FGN-SRAMMAR-KB()

Unit: INPUT-DETERMINES-OUTPUT
Members; NIL

* Subclasses: NIL

Unit; MATRIX
Members: (#Unit (T,44 F6N-GRAMMAR-KO) WUit 0,043 FGN-SRAMMAR-;8)

fUnit (T.3X3 FGN-GRAMMAR-KB)
#Unit (T.ZX2, FON-GRflMMAR-KS))

* . Subclasses: NIL

Unit: T.21)
Members: NIL
Subclasses: NIL

Unit: T.2X2
Members; NIL
Subclasses: NIL

Unit: T.3D
- ~*.Members: NIL

Subclasses: NIL

0 98

Unit: T.3
Members: NIL
Subclasses: NIL

Unit: 1,41
Members: NIL
Subclasses; NIL

Unit', T.4X3
Miembers; NJL
Subclasses: NIL

Unit; T44
Members: NIL

* Subclasses: NIL

Unit: T.BOOLEAN
Members: NIL

Subclasses: NIL

Unit: T.CHARACTER
* - Members: NIL

Subclasses: NIL

Unit: T.INTEGER
Members: NIL
Subclasses: NIL

Unit: r.REAL
Members: NIL
Subclasses; NIL

; 4' 99

Unit: T.STRING
Members; NIL
Subclasses: NIL

Unit: VECTOR
Members: (#Unit (T.41) FGN-GRAMMAR-KB) #Unit JT.31)G-R4*A-B

#Unit (T.2D FGN-GRAMMAR-KB))

Subclasses: NIL

10

Knowledge Base: FGN-PRIMITIYE-LIBRARY-KB

Contents:

ARITHIIETIC-AND-LOGICAL
BUTTONSIN
CHARACTER-TRANSFORMATI ON
CLEAR.LABELS
COMPARISON
CURSOR
DATA-CONYERSION
DATA-SELECT ION-ANO-IIANIPULA ION
DIALS
DISPLAY-TREE
OLABEL. 1-8

* DTREE
F.ACCUMULATE

-' F.ADD

F. ADDC
F. AND
F. AISCALE
F. AlERAGE
F. BOOLE AN. CHOOSE
F. BR OUTE
F. BROUTEC
F. CBROUTE
F. CC ONCA TE NATE
F.CDIV
F. CELING
F.C6T
F. CHARCON VERT
F. CHAR MA SK
F. CLCSECONDS
FCLE
F. CLFRAMIES

~ F.CLT
F. CLTICXS
F. CMUL
F. COLOR
F. COMP. STRING

p. F.CONCATENATE

101

F.CONCATENTAIEC
F. CGNSTANT
F. CRC!ATE
F. CR CUTE
F.CSCALE
F. CSUB

A F.CVEC
F. DELETA
F. DIFC
F.DIV
F. DSCALE
F.DXROTATE
F. DYROTATE
F. DLROTATE
F. EDGE. DETECT
F.Eg

p F.EQC

F. FE TCH
F.FINC. STRING

* F.FIX
F. F LOAT

F. GATHER. SIRING
FAGCE
F.GE
F.SEC
F. ST
F.GTC
F. INPUTS.CHOOSE
F. LA DEL
F. LBL .ElTRACT

F.LEC
F.LENSHT, STRING
F.LlNIT
F. LINEEDITOR
F. 1 0K AT

0 F.LOOKFROl
FALT
F.LTC
F.NATRIX2
F. NATR I 3
F.HATRI%4
F. CONCATENATE

F.MUDC

F * UL

F.NEC
F.NOP

102

F. NOT
F. OR
F. DRC
F. PAR TS
F, PASSTHRU
F. PICK INFO
F. POSITION. LINE
F.PRINT
F. PUT.STRING
F. RANGE. SELECT
F. RUUND
F. ROU TE

S F.ROUTEC
F. SCALE
F S INCOS
F. SPLIT
FSQROOT
F. STRING. TO.NUI
F. SUB
F.SUDC
F. SYNC
F.TAKE.STRING
F. T IEOUT
F. TRANS.*S TRING
F.VEC
F.VEC.EXTRAcr
F. VECC
F. WINDOW
F. XFORMDATA
F. XOR
F.XORC
F. IROTATE
F. IVECTOR
F. YROJATE
F. YYECTOR
F. ZROTATE
FVECTOR

FFPLOT
FGN-PRIMIJIVE-LIBRARY
F KEVS
FLABEL. 1-12
FLABELO
FUNCTION-NODE
HCPIP
HOSrOU r
INITIAL-SIRUCTURES
INPUT-FUNCTIONS
KEYBOARD

d MISCELLANEOUS-FUNCT IONS
OBJECT- TRANSFORIA71ION

-I; OFFBUTTONLIGHTS

4 103

aUIPUT-FUNCTIONS
PI CK
PICK.LOCAT ION
ROBOT-ARM
SPECKEYS
TABLETIN
TA BL ETOUT
TIMINMG
VIEW-TRANSFORMATION

104

Unit: ARITHMETIC-AND-LO6ICAL
Members: (fUnit (F.XORC FGN-PRINITIVE-LIBRARY-KO)

#Unit (F.XOR FON-PRIflITIYE-LIBRARY-KB)
#Unit (F.SUBC FGN-PRIIIITIVE-LIBRARY-KB)
#Unit tF.SUB F6N-PRINITIVE-LIBRARY-KB)
#Unit (F.SQROOT FGN-PRINITIVE-LIBRARY-KB)
lUnit (F-SINCOS FGN-PRINITIVE-LIBRARY-KO)

#Unit (FROUND FGN-PRINITIVE-LIBRARY-KB)
#Unit (F.ORC F6N-PRINITIVE-LIBRARY-KB)
tOnit (F.OR FON-PRIflITIVE-LIBRARY-K8)
lUnit tF.NOT FON-PRIIIlVE-LIBRARY-KB)
#Unit (F.MULC FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F.MUL FGN-PRINITIVE-LIBRARY-KB)
#Unit (F.MODC FSN-PRIMITIVE-LIBRARY-KB)
#Unit (F.MOD F8N-PRIMITIVE-LIBRARV-KB
tHnit tF.DIV FGN-PRIMITIVE-LIBRARY-KB)
finit (F.DIFC FGN-PRINITIVE-LIBRARY-KB)

* W~it (F.CSUO F6N-PRIMITIVE-LIBEARY-KB)
#Unit (F.CMUL FSN-PRINITIVE-LIBRARY-(B)
tUnit (F.CDIV F6N-PRItIITIVE-LIBRARY-KB)
#Unit (F.AVERA6E FBN-PRIMITIVE-LIBRARY-K.B)
#Unit (F.AND FGN-PRIflITIVE-LIBRARY-KB)
tinit (F.ADDC F6N-PRIMITIVE-LIBRARY-KB)
tHnit (F.ADD FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F.ACCUMULATE FGN-PRINITIVE-LIBRARY-KB))

Subdisses: NIL

Unit: BUTTONSIN
Members: NIL
Subclasses; NIL

"105

dX.

Unit: CHARACTER-TRANSFORMA1IOGN
Members: (#Unit 1F.CSCALE F6N-PRINITIVE-LIBRARY-KO)

fUni t (F.CROTATE FGN-PRIMITI YE-LIBRARY-KB))
Subclasses: NIL

Unit: CLEAR.LABELS
Members: NIL
Subclasses: NIL

Unit; COMPARISON
Members: (#Unit iF.NEC F6N-PRIMITIVE-LIBRARY-KB,

#Unit (F.NE FGN-PRIMITIVE-LIBRARY-KO)
fUnit (F.LTC FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F.LT FSN-PRIMITIVE-LIBRARY-KB)
*Unit (F.LEC FBN-PRIMITIVE-LIBRARY-KB)
Unit iF.LE FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F.GTC F6N-PRIMITIVE-LIBRARY-KB)
lUnit (F.GT FGN-PRINI rIVE-LIBRARY-KO)
#Ui FSE O-RIIIELIRR-B
#Unit (F.GEC FGN-PRIMIrIVE-LIBRARY-KB)
#Unit iF.SCE F6N-PRIMI rIVE-LIBRARY-KB)
fini t 1F.C FGN-PRItIITIVE-LIBRARY-KB)
#Unit (F.EQC FN-PRIMITVE-LIBRARY-KB)
Unit (F.EQPTRN FON-PRIMITIVE-LIBRARY-KB)
#Unit (F.COMTRN F6N-PRIITIVE-LIBRARY-KB }
#Unit (F.CLE FGN-PRIMITIVE-LlBRARY-KB)
#Unit (F.CLE F6N-PRIMITIVE-LIBRARY-KB))

Subclasses: NIL

Unit: CURSOR
Members: NIL

* Subcldsses: NIL

Unit: DATA-CONVERSION
Members: (fUnit (F.ZVECTDR FGN-PRIMITIYE-LIBRARY-KB)

k~nit (F.YYECTOR FON-PRlMITIYE-LIBRARY-KB)
Unit (F.XVECTOR FON-PRIMITIVE-LIBRARY-KB)
*Unit (F.XFORMDATA FGN-PRIMIrIVE-LIBRARY-KB)
#Unit (F,VECC FON-PRIMITIVE-LIBRARY-VB)

* - tnit (F.VEC FGN-PRIMITIVE-LIBRARY-KB)

106

#Uni (FTASSRN G-RMTV-IRR-I

#Unit (FTS.STRING.U FGN-PRIITIVE-LIBRARY-B)
tUnit (FASTINT BNURMFN-ITIVE-LIBRARY-K D)
fUnit (FARTS F6N-PRIMITIVE-LIBRARY-KB)
#Unit (F.PATRS FGN-PRIITIVE-LIBRARY-K)
#Unit (F.flATRIX4 FGN-PRIMITIVE-LIBRARY-KB)
#Unit (FHATRIX3 F6N-PRIMITIVE-LIBRARY-KO)

#Unit (F.FLOAT FGN-PRINITIYE-LIBRARI-KB)
#Unlit (F.FIX FGN-PRIMITIVE-LIDRARY-KB)
#Unit (F.CVEC F6N-PRIMITIVE-LIBRARY-KB)

* #Unit (F.CHARCONVERT FON-PRIMtITIVE-LIBRARY-KB)
#Unit (F.CELING FGN-PRIMIIIVE-LIBRARY-KB))

Subclasses: NIL

Unit: DATA-SELECTION-AND-MANIPULATIGN
ilesbers: Atnit IFVEC,EXTRACT FON-PRI11ITIVE-LIBHRY-K0)

tUnit (F.TAKE.STRING FGN-PRItIITIVE-LIBRARY-KB)
#Unit (FSPLIT FGN-PRIMITIVE-LIBRARY-KB)

* tinit (F.ROUTEC F6N-PR1INIFIVE-LIBRARY-0B)
#Unit iFROUTE FGN-PRIMITIVE-LIPPRY-KB)
#Unit (F.RAN6E.SELECT FGN-PRIMITIVE-LIBRARY-KO)
tOnit (FPUT.STR1N6 F6-PRIMI1TIVE-LIBRARY-4B)
#Unit (F.PASSTHRU F6N-PRINITIVE-LIBRARY-KB)
#Unit (F.MCONCATENATE FON-PRIIIITIVE-LIBRARY-KB)
finit (F.LINEEDITOR FGH-PRIftITM~E-LIBRARY-KO)
#Unit (F.LIMIT FGN-PRINITIVE-LIBRARY-KO)
#Unit (F.LEN6HT.STRING FSN-PRIMITIVE-LIBRARY-KB)
#Unit (FLBL.EXTRACT FGN-PRIMITIVE-LIBRARY-KB)
tinit (F.LABEL FON-PRIlIITIVE-LIBRARY-KB)
#Unit (F, INPUTS.CHOOSE FGN-PRIMITIVE-LIBRARY-KO)
lGnit (F.GATHER.STRING FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F.FINC.STRIN6 FGN-FRIMITIVE-LIBRARY-KB)
#Unit (F.DELETA FON-PRIN!TIVE-LIBRARY-KO)
#Unit (F.CROUTE FGN-PRINITIVE-LIBRARY-KB)
#Unit (F.CONSTANT FGN-PRINITIVE-LIBRARY-KB)

'I Unit (F.CONCATENTATEC FGN-PRtflITIVE-LIBRARY-KB)
#Unit (F.CONCATENATE F6N-PRIMITIVE-LIBRARY-KB)
#Unit (F.CHARt1ASK FGN-PRIMITIVE-LIBRARY-KB]
tinit (F.CCONCATENArE F6N-PRIMITIVE-LIBRARY-KO)
#Unit (F.CBROUTE F6N-PRINITIVE-LIBRARY-KB)
tOnit (F.DRCUTEC FGN-PRINIITIVE-LIBRARY-KB)
#Unit (F.BROUTE FGN-PRIMITIVE-LIBRARY-45J
#Unit IF.DOOLEAN.CHOOSE FGN-PRINITIVE-LIRAiRY-KB)
#Unit (F.ATSCALE FGN-PRIMITIVE-LIBRARY-0fl

Subclasses: NIL

107

~c. .* **,,, '~ - ~ ~~*;.;** "~' . -$ '~%

Unit: DIALS
Members: NIL

- Subclasses: NIL

Unit: DISPLAY-TREE
Members: (IUnit (ROBOT-ARM F6N-PRIMITIVE-LIBRARY-KB)

SUnit (DTREE FGN-PRIMITIVE-LIBRARY-KB))

Subclasses: NIL

Unit: DLABEL.l-8

Members: NIL

Subclasses: NIL

Unit; DREE
0Members; NIL

Subclasses: NIL

Unit: F.ACCUMULArE
Members: NIL

Subclasses: NIL

Unit: F.ADD
Members: NIL

Subclasses: NIL

Unit: F.ADDC
Members: NIL

Subclasses: NIL

Unit: F.AUD
Members: NIL
Subclasses: NIL

;' 108

Unit: F.AISCALE
Members: NIL

Subclasses: NIL

Unit: F.AVERAOE
Members: NIL
Subclasses: NIL

Unit: F.BOOLEAN.CHOOSE
Members: NIL
Subclasses: NIL

"4

Unit: F.BROUTE
Members: NIL
Subclasses: NIL

Unit: F.BROUTEC
Members: NIL
Subclasses: NIL

Unit: F.CBROUTE
Members: NIL
Subclasses: NIL

Unit: F.CCONCATENATE
Members; NIL
Subclasses: NIL

Unit: F.CDIV
Members: NIL
Subclasses: NIL

109

Unit: F.CELING
Members: NIL

Subclasses: NIL

Unit: F.CGI
Members: NIL

Subclasses: NIL

Unit: F.CHARCONVERT
Members; NIL

Subclasses: NILI

*' Unit: F.CHARMASK
Members: NIL

I Subclasses: NIL

Unit: FCLCSECONDS
Members: NIL
Subclasses: NIL

Unit: F.CLE
Members: NIL
Subclasses: NIL

Unit: F.CLFRAOES
Members: NIL
Subclasses: NIL

Unit: F.CLT
Members: NIL

Subclasses: NIL

-11

110
I

- .-

Unit; FLLT1YCS
Members: NIL
Subclasses: NIL

Unit: F.CMUL
Members: NIL
Subclasses: NIL

Unit: F.CQLOR
Members: NIL

Subclasses: NIL

Unit; F.COMP.STRIN6
Members; NIL

* Subclasses: NIL

Unit: F.CONCATENATE

-. - Members: NIL

-~-Subclasses; NIL

Unit; F.CDNCATENTATEC
Members; NIL
Subclasses; NIL

Unit: F.CONSTANT
Members: NIL

Subclasses: NIL

Member slot; INITIAL-SUB-ELEMENT
Valueclass; NIL
Values: ((01 #Unit (INPUI-DETERMINES-OUTPUT FGN-GRAMMAR-KB) SUB-OUTPUT)

(12 lUnit (ANY-TYPE-INPUT FGN-GRAMMAR-KB) SUB-INPUT)
(11 #Unit (ANY-TYPE-INPUT FON-GRAMMAR-KB) SUB-INFUT)

-ti -r

' 111

0 , , ' v ,;,? , , .. ,; , " j ' ,.i...i. "',. , ., . .,. . ,,, , , ,

Member slot; LABEL

'Jalueclass: 1I1L
Values: ('f:constanto)

Init: F.CROTA[E

Members: NIL

Subclasses: NIL

Unit; F.CROUTE

Members: NIL
Subclasses: NIL

Unit: F.'SCALE
Members: NIL

Subclasses: NIL

Unit: F.CSUB
Members: NIL
Subclasses: NIL

Unit: F,CVEC
Members: NIL

Subclasses: NIL

Unit: F.AELETA
Members: NIL

Subclasses: NIL

Unit; F.DIFC
Members: NIL

Subclasses: NIL

'-. 1120e

Unit: F,DIV
HMe;'Nrs NILl

Subclasses: NIL

Unit: F.DSCALE
Members: NIL
Subclasses: NIL

Unit: F.DXROTATE
Members: NIL
Subclasses: NIL

Unit: F. ROrATE
Members: NIL

0 Subclasses' NIL

Unit: F.DZROIATE
Members; NIL
Subclasses: NIL

Unit; F.EDGE.DETECF
Members; NIL
'Subclasses: NIL

Unit: F,EQ

Members: 4IL
Subclasses; NIL

Unit: F.EQC
Members: NIL
Subclasses: NiL

or

113

Unit: F.FETCH
Members: I
Subclasses: NIL

Unit; F.,INC.STRING
Members: NIL

4.Subclasses: NIL

Unit: FFIx
Members: NIL
Subcllas5s: NIL

Unit; F.FLOAT
Members: NIL

* Subclasses: NIL

Unit: F.FOY
Mfabers: NIL
Subclasses: NIL

Unit: F.GATHER.STRING
Members; NIL
Subclasses; NIL

Unit: F.GCE
Members: 14IL
Subclasses; NIL

Unit: F.GE
tleebers;, NIL
Subclasses: NIL

114

Unit: F.GEC
Members; NIL
Subclasses; NIL

Unit: FAGT
Members: NIL
Subcdisses: NIL

Unit: FAcTC
Members: 14IL
Subclasses; NIL

Unit: P.INPUTS.CHOOSE
Members: NIL

* Subclasses: NIL

Unit: F.LABEL
Members: NIL

~ Subclasses: NIL

Unit: F.LBL.EXTRACT
Members: NIL
Subclasses: NI1L

Unit: F.LE
Members: NIL
Subclasses: NIL

Unit: F.LEC
Members: NIL

* Subclasses: NIL

6

115

Unit: F.LENGHT.STRING
Members: NIL
Subclasses: NIL

Unit: F.LIMIT
Members: NIL
Subclasses: NIL

Unit: FLINEEDITOR
Members: NIL
Subclasses; NIL

mlmes NIL
* Subclasses: NIL

Unit: F.L5CIKFP~tN
Mi~bers: 3IL
Subclaes N4IL

Unit FLT
Members' NL
Subclasses: NIL

Upit: F.LTI-
Meaber,-' NIL
subciasses: 147

S

Unit;'.~ IX
Members: NIL
Subclasses: NIL

116

0l

:.. ~Unzt I t R
Member,-ser : NIL

/" Subclasses: NQl
aF.

,, Me~bers: NIIL
. . , 3ubd]a.sses'. RIL

Unit: F.CICATENTE

Meabers: NIL

Subclasses: NIL

• ,-, Unit; F.IOD:Members: NILSubclasses: NILUnit: FMIOUC4TE

Members: NIL

Subclasses. NIL

a Unit: FAL

Members', NIL

Miembers: NIL

Subclasses: 1IL

-11-,.,, -"'

"-4," i 1

9
" '',.,:.' '.:'','.v. .- '' *,' ,,. ::.,..Z. ' . ' ',. .U .nit: FNE . .. K . ',., ''" - - .".Y .

Unit: FNEC
.eabers; NIL
Subclasses: NIL

Members, NIL
Subclasses: NIL

Unit: F.NO
Members: NIiL

* Subclasses: NIL

Unit: FtOR
Members: NIL
Subclasses: NIL

Mmbers: N11L

Subclasses: NIL

Unit: F,PARR
Members: NIL
Subclasses: NIL

Unit: FPAICRKF
Members: NIL
Subclasses; NIL

q ' .Unit: FPICKINFO

,": Members: NIL
: : Subclasses: NJL

118

6%

Unit: F.POSITION.LINE

Members: NIL

Subclasses; NIL

Unit: F.RINr
Members; NIL

Subclasses: NIL

Unit: F.PUT.STRING

Members: NIL

Subclasses: NIL

Unit: F.RANGE,SELECT

Members' NIL

* Subclasses: NIL

Unit: F.ROUND
Members: NIL

Subclasses: NIL

Unit: FROUTE
Members: NIL

Subclasses; NIL

Unit: FROUTEC
Members: N1L

Subclasses: NIL

Unit: F,SCALE
Members: NIL

Subclasses: NIL

119

7V

*Z' % . . '. . - . . . - ' , - ' ' " . . ':" ' . " , . ,
' '

' ' .

Unit; F.SINCOS

Members: NIL
Subclasses; NIL

Unit: F.SPLIT
Members: NIL

Subclasses: NIL

Unit: F.SQROOT
Members: NIL

Subclasses: NIL

Unit: F.SJRIN6.TO.NUn
Members: NIL

Subclasses: NIL

Unit: F.SUB
Meabers; NIL

Subclasses: NIL

Unit: FSUBC
Members: NIL
Subclasses: NIL

Unit: F.SYNC
Members: NIL

Subclasses: NIL

Unit: F.TAKE.STRING
%% Members: NIL

Subclasses; NIL

-2

120

,. ..,. , .. ,. ,,. . , .N...- - . .. -.. ..-. ,..* ..- *... , - . ._.. .. .

Unit: F.TIMEOUT
Members: NIL
Subclasses: NIL

Unit; F.TRANSSTRIN8
Members: NIL

Subclasses: NIL

Unit: F.VEC
Members: NIL
Subclasses: NIL

Unit; F.VECEXTRACT
Members: NIL

* Subclasses: NIL

Unit: F.VECC
Members: NIL
Subclasses: NIL

Unit: FWINDOW
Members: NIL
Subclasses: NIL

Unit: F.XFORMDATA
Members: NIL
Subclasses: NIL

Unit: FOR
Members: NIL
Subclasses: NIL

'.

121S
1 V

, Member slot: DEFAULT-NAME-PREFIX
Valueclass: NIL
Values: IXOR)

Member slot: INITIAL-SUB-ELEMENT
Valueclass: NIL
Values: ((01 Unit (BOOLEAN-OUTPUT FGN-6RAMMAR-KB) SUB-OUTPUT)

(12 #Unit (BOOLEAN-INPUT FGN-GRAMMAR-KB) SUB-INPUT)
Ill lUnit (BOOLEAN-INPUT FGN-GRAMMAR-KB) SUB-INPUT))

i Member slot: LABEL
Valueclass: NIL
Values: ('f:xor")

Unit: F.1ORC
Members: NIL
Subclasses: NIL

Unit: F.XROTAIE
Members: NiL
Subclasses: NIL

Unit: F.XVECTOR
Members: NIL
Subclasses: NIL

Unit: FYROTATE
Members; NIL
Subclasses: NIL

" Unit: F,YVECTOR
Members: NIL

- Subclasses: NIL

-..

122
V4.e

S. ?,,5 : :.. . : . . ,,,....-...-... ,.....,..........,:

Unit: FdRGTATE
Members: NIL
Subclasses: NIL

Unit: FZVECTOR
Members: NIL
Subclasses: NIL

Unit: FFPLOT
Members. NIL
Subclasses; NIL

Unit: FGN-PRIMIj rE-LIWARY
Members; NIL

* Subclasses: (OUfiit (DISPLAY-TREE FGN-PRINITIVE-LIBRARY-0)
#Unit (FUNCTION-NODE FGN-PRIMITIVE-LIBRARY-8))

Member slot: MEMBER-MENU
Vilueclass: NIL
Values: ((FUNCTION-NODE

#Uni t (FUNCTION-NODE FGN-PRItITIVE-LIBRARV4B(
'See sub menu"
(SUBITEMS

A (ARITHMETIC-AND-LOGICAL
tUnit (ARITI*ETIC-AND-LOGICAL FON-PRIMITIVE-LIBPARY-KB)
'See sub menu"
(SUBITEMS ("F.XORO #Unit (FXOR FGN-PRIMITIVE-LIi(RARY-KB)

"Instantiate F.XOR')
* ("F.ACCUMULATE" fUnit (F.ACCUMULATE FGN-PRI!,ITIVE-LIBRARY-KD)

Instantiate F.ACCUMULATE')'
(*F.ADD" #Unit (FADD FGN-PRIMIT'VE-LIBRAR(-KB)

'Instantiate F.ADD*)
(*F.ADDC" fUnit (F.ADDC FGN-PRIMITIVE-LIBRAR -KB)

"Instantiate F.ADDC")
-s("F.AND' #Unit (F.AND FGN-PRIMITIVE-LIBRAR;iKB)
"a 'Instantiate F.A14DI)

"F.AVERAGE Wint (F.AVERAGE FGN-PRIMITIVE-LISPARY-KB)
U "Instantiate F.AVERAGE")

!'F.CDIV" Witd F.CDIV FGN-PRIMIT1YE-L1ikRARY-KB)

'Instantiate F.CDIV'I

,'F.CMUL* #Unit (F.CMUL FGN-PRIMITIVE-LIBRARY-KB)

123

%

%*,*.~.**.****-~**%'* 7,

('F.CSUB" lUnit (F.CSUB FG1-PRIM1TIVE-UEBRARY-K0)
"Instantiate F.CSUB"'

(131DV lUnit (F.DIV FGN-FRIMITIVE-LIRARf-KB)
'Instantiate F.DIV)

('F.DIFC' #Unit (F.DIFC FGN-PRIMITIVE-LIBRAY-K0)
'Instantiate F.DIFC')

("F.MODN #Unit (F.IiaD FGN-PRIMITIVE-LIBPARY-KB1
* 'Instantiate F.MOVD)

~ ('F.MODC' #Unit (F.MODC FON-PRIMITIVE-LIBRARY-KB)
V. 'Instantiate F.MODC")

(*F.MUL" #Unit (F.MUL FON-PRIMITIVE-LIBRARY-KB)
' Instantiate F.MUL')

('F.MULC' lGnit, (F.MULC FGN-PRIMITIVE-LIBRAPR -KB)
'Instantiate F.MULC")

('F.NOT' #Unit (F.NOT F6N-PRIIIITIVE-LIBRARY-KB)

'Instantiate F.NOT')
('F.OR" $Unit (FOR FON-PRIMITIYE-LIBRARY-KB)

d "Instantiate F.OR")

C'F.ORC" #Unit (F.ORC FGN-PRIMITIVE-LIBRARY-KB)
'Instantiate F.ORC')

("F.ROUND" fUnit (F.ROUND FGO-PRIMITIVE-LIBRARY-KB)
'Instantiate F.ROUND")

('F.SINCOS" tGnit (F.SINCOS FGN-PRIITIVE-LIBRARY-KB)
"Instantiate F.SINCOS")

('F.SORODT' #Unit (F.SQROOT FON-PRIMITIVE-LIBRARY-4B)
"Instantiate F.SGRQOT")

('F.SUB' lUnit (F.SUB FGN-PRIMNITIVE-LIBRARY-KB)
'Instantiate F.SUB')

f'F,SUEC" #Unit (,F.SUBC FGN-PRIMITIVE-LIBRAiRY-KB)

;Instantiate FSUBC'
'F.XORC" tUnit tFXORC FGN-PRIMITIYE-LIBRARY-YB)

'Isatit ,XR')
I,.,(CHARACTER-TRANSFORMATION

OUni t (CHARACTER-TRANSFORMATION FGN-PRIMITIVE-LIBRARY-KB)
aSee sub menu"
SUBITEflS ('F.CROTATE' lUnit (F.CROTATE FGN-PRINITIVE-LIBRARY-KB)

'Instantiate F.CROTATE")
('F.CSCALE' #Unit (F.CSCALE F6N-PRIMITIVE-LII3RARY-KB)

"Instantiate F.CSCALE"f)
fCOMPARISON
#Unit (COMPARISON FGN-PRIMITIVE-LIBRAP.Y-KB)

* 'See sub menu"
(SUBITEMS t'F.GCE" tUnit (F.GCE FGN-PRIMITIVE-LIBRARY-KB)

" Instantiate F.GCE")
W"F.CGT" $Unit (F.CGI FGN-PRIMITIVE-LIIBRARi-K5)

'Instantiate F.CGT")
"'F.CLE" #Unit (F.CLE FGN-PRIfl1TIVE-L1BRARY-KB)

'Instantiate F.CLE')
("F.CLT' tUnit (F.CLT FGN-FRIMITIVE-LIBFR,-0B

'Instantiate F.CLT-)

124

41%** ~AA.~~

("F.CO1IPSTRING" lHnit (F.COMP.SIRING FGN-PRIMITIVE-LIBRARY-KB)
"Instantiate F.COMP.STRING l

('F.Eg" #Unit (F.EQ FGN-PRIMITIVE-LIBRARM-B)
"Instantiate F.EQ")

('F.EDC" lGnit (F.EQC FGN-PRIM111YE-LIBRANY-K0)
'Instantiate F.EQC")

("F.GE" #Unit (F.GE FGN-PRIMITIV-LIBRARY-Ki)
'Instantiate F.BE5)

('F.GEC" #Unit IF.GEC F01-PRIMflIVE-LIBRARY-0B)
'Instantiate F.GECI)

(F.6GTnit (F.BT FGN-PRIMITIVE-LIBRARY-KB)
"instantiate F.GTM

("F.GrCu #Unit (F.GTC FGN-PRIMITIVE-LIE'RAR'i4B)
"Instantiate F.GTC")

("F.LE" tnit (F.LE FGN-PRIMITIYE-LIBRRt-KB)

"Instantiate F.LE'I
'"F.LEC" finit F.LEC FGN-PRIMITIlE-LIBRAFY-ke)

'Instantiate F.LEC")
("F.LT" k~nit (F.LT FGN-PRIMITIVE-LIBRY-13)

* "Instantiate F.Lf'.
('F.LIC" finit (F.LTC FGN-PRIMITIVE-Ll' AHY-KR)

"Instantiate F.LTC')
("F.NE" finit (F.NE FGN-PRIMIIIVE-LIPARY-kB)

"Instantiate F.NE")
("F.NEC" $Unit (F.NEC FGN-PRJMITIVE-LIBRARY-KB)

'Instantiate F.NEC')))
(DATA-CONVERSION
#Unit (DATA-CONVERSION FGN-PRIMITIVE-LIAR -KB)
"See sub menu*
SUBITEMS
('F.CELING" #Unit tF.CELING FGN-PRIMITIVE-LIBRARY-KB)

"Instantiate F.CELIN6"(
~"F.CHARCONVERT" tGnit (F.CHARCONVERT F6N-PRIMITIVlE-LISRPARY4P B)

"Instantiate F.CHARCONVERT'
("F.CVEC" tinit (F.CVEC FGN-PRIliITIVE-LIBRARY-KB) 'Instantiate F.CYEC')
"F.FIX' $Unit (F.Fl% FGN-PRIMITIVE-LIBRARY-KO) "Instantiate F.FIX")
("F.FLOAT' lUnit (FFLOAT FGN-PRifli[IVE-LIBRARY-KB)

* "Instantiate F.FLOATP)

("F.MATRIX/" tnit (F.MATRIX2 FN-PRINTIVE-LIBRARY-KB)

(#F.flArRIX3' #Unit (F.NATRIX3 FGN-PRIflIflVE-LIBRARY-KB)

'Instantiate F.MAIRIX3')

i'F.MATRIX4' #Unit (F.MATRIX4 FGN-PRPIITIVE LIBRARt -Bi

("F.ARI "ntanit F.IIATRIX4")

"Instantiate F.PARTS'l
("F.PRINT' tGnit (F.PRINT FGN-PRIMITIYE-LRAF -KB,

*Instantiate F.PRINT")
0 ("'F.STRINC'.TO.NLIW lUnit (F.STR[NG.TO.NUM FGN-F'RIMITI,'E-LIBRAR'l-Ki.

"Instonbate F.STRINC.TO.NUM1')
*('F,TRANS.STRING" #Unit (F.TRANS.STRING FGN-PRIMITIE-LA B-Q

125

'Instantiate F.TRANS.STRING")
('F.VEC' #Unit (F.YEC FGN-PRIMITIVE-LIBRARY-KB) "Instantiate F.VEC',
('F.VECC" tUnit (F.VECC FRfl-PRIfITIVE-LIBRARY-A) "Instantiate F.VELO-)

OF.AFORMDATAI #Unit IF.XFORKDATA FGN-PRIMITIVE-LIBRARY-Ki8
"Instantiate F. XFORMDATAI)

I'F.WECTOR" #Unit (FAV~ECTaR FGN-PRIMITIVE-LlBRARY-KB)
'Instantiate F.XVECTOR")

("F.YVECTDR" lHnit (F.YVECTOR FGN-PRIflhTIVE-LIBRARY-kBj
"Instantiate F.YVECTOR')

("F.1VECTOR' lHni (F.IVECTOR FGN-PRIMITIVE-LIBRARYAB)
"Instantiate F.lECTOR"))

-* (DATA-SELECTION-AND-?IANIPULATION
finit DATA-SELEC1 ION-AND-I1ANIPULATIDN FON-PRIMITIYE-LIBR(APY-KB)
"See sub menu'
(SUBITEMS
("F.INPUTS.CHOOSE" #Unit (F.INPUIS.CHOaSE FGN-PRIM1IE-LIVPARY-K0)

'Instantiate F.INPUJS.CHOOSE")
("F.ATSCALE" tUnit (F.ATSCALE FGN-PRIMhTIVE-LI$RRY-K3)

"Instantiate F.ATSCALE')
* '"F.BUOLEAN.CHOOSE" tNnit (F.BOOLEAN.CHOOSE FGN-PRIMI1IYE-LIBRARY-0)

"Instanti ate F. BOOLEAN. CHOOSE'l
("F.ROUTE" #Unit (F.BROUTE FON-PRIMITIVE-LIBRARY-KB)

"Instantiate F.BROUTE")
'"F.BRaWIEC' #Unit (F.BROUTEC FGN-PRIMITIVE-LIBRARY-KB)

"Instantiate F.SROUTEM'
("F.CBROUTE" #Undt (F.CBROUTE FSN-PRlMITIVE-LIPRAPY-KB)

"Instantiate F.CBROUTE,1
("F.CCONCATENATE" lNnit (F.CCONCATENATE FGN-PRIMITIVE-LIBRARY-KB)

'Instantiate F.CCONCATENAIE')
"F.CHAR1AS.' #Unit (F.CHARMASK FGN-PRIMITIVE-LPP4ARY-KB)

"Instantiate F.CHARIIASK')
f,"F.CONCATENAIE" tnit (F.CDNCATENATE FON-PRIMITIYE-LIBRARY4B)

"Instantiate F.LPONCATENATE')
"'F,CONCATENTATEC" tHnit (F.CONCATENiTATEC FNPIIIEL~~

'Instantiate F.CONCATENTATEC")
:'F.COJSTANT" lGnit (F.CONSIANT FGN-PRIMITIVE-LIRRY-.B)

"Instantiate F.CONSTANr'i
0 rF.CROUTE" #Unit IF.CROUTE FGN-PRIMITIVE-LIBRARY-KB)

"Instantiate F.CROUTE'J
('F.DELETA" tinit (F.DELETA FGN-PRIMITIVE-LIBRARY-KBI

"Instantiate F.DELETA')
("F.FINC.STRIN6" tGnit (F.FINC.STRING FGN-PRIMI1IVE-L~IBRRY48)

"Instantiate F.FINC.STRING')
('FGATHER.STRING" #Unit (F.GAIHER.STRING FGN-PRIMITlVE-LIBkARY-Y,,;

'Instantiate F.GATHER.STRING")
(*F.LABEL" tnit (F.LABEL FGN-PRIMiITIVE-LIBRARY-KO)

'Instantiate F.LABEL")
41V i"F.LOL.EXTRACT' #Unit (F.LBL.EXTRACT FGN-PRIMIIIVE-LIBRARY-KO)

"Instantiate F.LBL.EXTRACT")
;"F.LENGHI.SIRING' lGni (F.LENGHl.SlRIN6 FGN-PRIMITIVE-LIBRARY-0B1

'Instantiate F.LENGHT.STRI4G"

126

"F.LIMIP' #Unit tF.LIIIIT FGN-PRIMITIVE-LIBRARY-KB)

V'F.LINEEDITOR" lUnit (F.LINEEDITOR FGN-FRIMITIVE-LIBRRY-01B
'Instantiate F.LINEEDITOR")

('F.MCONCATENlTE' WUit (F.MCONCATENATE FGN-PRflh1TIVE-LIBRARY-0B)
'Instantiate F.MCONCIATENATEO)

("F.PASSTHRU" lUnit tF.PASSTHRU FGN-PRIMITIVE-LIBRARY-KB)
"Instantiate F.PASSTHRU")

('F.PUT.SIRING" #Unit (F.PUT.STRING FGN-PRIMITIVE-LIBRAiRY-S)
'Instantiate F.PUT.STRING*)

'F.RANGE.SELECT* lUnit (F.R.ANGE.SELECT FON-PRIMITI',E-LIDRARY-K0u
'Instantiate F.RANSE.SELECT')

("F.ROUTE" #Unit (F.ROUTE FGN-PRIMITIVE-LIBRARY-KB)
'Instantiate F.RaUTE")

t"F.ROUTEC" #Unit (F.ROUTEC FON-PRIt1ITIYE-LIBRARY-kB)
"Instantiate FROUTEC')

0'F.SPLIT' fUnit (F.SPLIT FGN-PRIflITIVE-LIBRARY-0B)
'Instantiate F.SPLIT")

("F.TAi:E.STPING" #Unit (F.lAKE.STRIN6 FGN-PRIMlITIE-LIBRARY-KB)
0 "Instantiate FTAKE.STRING')

'"F.VEC.EITRACT" fUnit tF,VEC.EXTRACI FGN-PRIMITIVE-LIBRR-0)
'Instantiate F.'YEC.EXrRACf'fl.

IISCELLANEDUS-FUNCT IONS
tGnit (fISCELLANEOUS-FUNCTIONS FON-PRIMITIVE-LIEPAR-4B)

k 'See sub menu'
40 iSUB! TEMS

("F.COLOR" tHnit (F.COLDR FG N-PPIMI1I'VE-LIB~iPYl-KiJ
"Instantiate F.COLOR'

"F.EDGE.DETECT" #Unit F.EDGE.DETECI FG-RMTVELBAY0

'Instantiate F.EDGE.DETECr')
('F.FETCH' #Unit (FFETCH FGN-PRIflhTIYvE-LIBF,,ARY-KB)

"Instantiate F.FETCH")
'FNOP" fUnit (F.NOP FGN-PRIMITIV'E-UIBRRY-KB) "Instanniate FNOP'
t"F.PICKNFO" #Unit (F.PICKINFO FGN-PRIMTIVE-LIBRAY-KBI

"Instantiate F.PICKINFO")
'*F.POSITION.LINE" $Unit (F.POSITION.LINE FGN-PRIMlIlI"E-LIBRAR -KB)

'Instantiate F.POSITION.LINE'l
"F.SYNC" #Unit F.SYNC FGN-PRIMITIYE-LIBFARY-kBl "Instantiate hSYNC'fli

WOJECT- IRANSFORMAT ION
$Unit (OBJECT-TRANSFORMA~TION FGN-PRINITIV'E-LIBRARY-WE
'See sub senu"
SUBITEMS ("F.DSCALE" linit iF.D5CA~LE FGN4'RI1I711.E-LIbPAiRY-KP;

'Instantiate FDSCALE*'
t"F.DXROTATE" #Unit (F.fAOTAIE FGN- RIMIT!'.E-LI5(.RY-k!E'

Instantx.:e F.OROhAFE"

'Instantiate FD(VRWAE'.
'F.DLROTATE lGni F,D,'POTmIE FG-PRIMII',E-LIBFMRY-tD

'Instantiate F.DZROT TE'l
t'~F.*PflTATE" #Unit iF.XROTATE FGN-PRIITI:'E-LIBRR4 ,

"Instantiate F.XROIATEj

127

, F,4jROTATE" #Unit FYRO1ATE FGN-FRIMITIVE-LISRARv-KB,

"Instantiate F.vROTATE')
*"F.2ROTA1E" #Unit FROTATE FGtJ-FRIMITI;E-LIEFARY-Ki5

"Instantiate F.ZROTATE';
i"F.SCALE" fUndt (F.SCAILE FCN-PRIMITIVE-LIBRAR%-KB)

"Instantiate F.SCALE'),'
M11I46
0 Unit (TMINS FGN-FRIMITIVE-LIBRi-KB)
'See sub menu"
SUBITEMS "F.CLSECONOS" fGnd F.CLSECONDS FI-RMTV-IRYK

'Instantiate FDCLCSECUNDS"I
"F.CLFRAr1ES" fUndt (F.CLFR1ANES FNPIIIELEA%-S

"Instantiate FCLFRAMES"J
"'F.CLTICKS" #Undt F.CLTICKS FNFlII'-IRM[

"Instantiate F.CLTICKS")
t"F1TINEOU1" fUnt (F,1INEOUT FGti-PRIHI]T1VE-LLR, RY iKB)

"Instantiate F.TIMEOUI"n)
(V lEN-TRANSFORNAT ION

£ #Unit)VEW-TRANSFORMATION FON-PRIMITIYE-LIBRARY4 B)
0 "See sub mienu"

SUBITENS ('F.FOV" tGnit (F,FOV. FGN-PRIM]TIVE-LIBRARt-KB)
"Instantiate FFOV*)

('F.LOOKAI" fUnit (F.LOOKAI FGN-PRIMITIVE-LIBRARY-KB)
"Instantiate F.LOOKAE")

'"F.LaQKFRoM' #Unit (F.LDOKFROM FSN-FRIMI1IVE-LIRR-4B.
'Instantiate F.LOOKFRDn';

("F.AINDOW fNni kF.WIIDOW FGN-PRIIIITIVE-LIBRMRPKB)
"Instantiate FWINDOW"Jf

OUTPU[-FUNCTIONS
#Unit)OTPUT-FUNCTINS FGN-PRIIIIVE-LIBRf)RY-KB)
"See sub menu"
(SBI TEllS
"CULEAR.LABELS" fGnd CLEAR.LABELS G-RMiELIA-d

'Instantiate CLEAP1LABELS'
"DLhBEL.1-B" #Unit (DLABEL.l-8 F6N-PRINIIIVE-LIRARY-l1b

- -'Instantiate DLABEL.l-8")
C"FFPLOT" fUndt (FFPLOT FGN-FRINITIVE-LIBRPRY-KB "Instantiate FFPL1T')

6 "FKEIS" #Unit)FKEYS FSN-FRIII IE-LIBRARY-KB] "Ths5tant~atLE FKEYS")l
("FLABEL0 #Unit FLABEUO FSN-PRIMIIIVE-LIBRARY-KB)

'Instantiate FLABELI)
("FLABEL.1-IV' fUnit (FLMBEL.l-12 FGN-PRINIIIVE-LiBRARI-KE:)

* "Instantiate FLAiiEL,I-12'")
("HCPIP" fUnt (HCPIP FGN-PRIMII,E-LIBRAPRY-K) "Instantiate HCPIP%;

* "HOSTOUT" #Unit HOSTOUI FGN-PRIMIIIVE-LIIA'ARt-Kb)
'Instantiate HOSIGrour)

;'OFFBUrlONLIOHTS" #Uni t ;OFFBUTTONLISHTS FBN-FRIHITIYE-LIEPARY-KBi
'Instantiate OFFBUTTONLIGHTS")))

INPUT-FUNCTIONS
4 #Unit (INPUT-FUNCTIONS FGN-PRIMITIVE-LIBRAhY-KB)

'See sub menu"
(SUBITEMS '"BUTTONSLN" knit EUTT.ONSINFG-PMTELRHKB

* 12 8

"Instantiate BUTIONSIN')
("DIALS* finit (DIALS FON-PRIMI1IVE-LIBRARY-KB)

"Instantiate DIALS')
'KEYBOARD" #Unit (KEYBOARD FGN-PRIMITIVE-LlBRARY-KB)

" Instantiate KEYBOARD")
('PICK' ftnit (PICK FGN-PRIMITIVE-LIBRARY-Kb)

'Instantiate PICK')
('SPECKEYS' #Unit (SPECKEYS FGN-PRIMITIVE-LIBRARY-KB)

;Instantiate SPECKEYS")('TADLETIN' tUnit (TABLETIN F6N-PRIMlITIVE-LIBRARY4BW
'Instantiate TABLETIN*)

('IABLETOUT' #Unit (TABLETOUT FGN-PRIMITIVE-LIBRARY-KB)
"Instantiate TABLETOUT'f)

(INITIAL-STRUCTURES
#Unit (INITIAL-STRUCTURES FGN-PRIMITIVE-LIBRARY-KB)
"See sub menu'
(SUBITEMS
("CURSOR" 11.nit (CURSOR FGN-PRIMITIVE-LIBRARY-KB) "Instantiate CURSOR')
("PICK.LOCATION' finit (PICK.LOCATION FGN-PRINITIVE-LIBRARY-KB)

* "Instantiate PICKLOCATION')))))
(DISPLAY-TREE
$ Unit (DISPLAY-TREE FGN-PRIMITIVE-LIBRARY-KB)
"See sub menu'
(SUBITEMS ("DTREE" lHni (DIREE FGN-PRIMITIVE-LIBRARY-KB)

"Instantiate DTREE')
("ROBOT1-ARK" #Unit (ROBOT-A~RM FGN-PRJfl1TIVE-l.1DRhHY-XB)

"Instantiate ROBOT-ARM"))))

Unit: FKEYS
Members: NIL
Subclasses: NIL

Unit; FLABEL.1-12
Members: NIL
Subclasses: NIL

Unit: FLABELI
Members: NIL
Subclasses: NIL

Unit: FUNCTION-NODE
Members: NIL
Subclasses: (lUnit DATA-SELECTION-AND-MANIPULATION FSN-FRIfIITIVE-LIBRARY-0K)

T'

129

4A

finit (DATA-CONVERSION F6N-PRINITIVE-LIBRARY-KB)
fUnit (COMPARISON FGN-PRIMITIVE-LIBRARY-KB)
fUnit (CHARACTER-TRANSFORMATION FGN-PRINITIVE-LIBRARY-KB)
tHnit (ARITHtETIC-AND-LOGICAL FON-PRIMITIVE-LIBRARY-KB)
#Unit (VIEW-TRANSFORMATION FGN-PRIMITIVE-LIBRARY-KB)
#Unit (TIMING FGN-PRIMITIVE-LIBRARY-KB(
#Unit (OUTPUT-FUNCTIONS FGN-PRIMI lIVE-LIBRARY-KB)
tUnit (OBJECT-TRANSFORMATION FGN-PRIMITIVE-LIBRARY-KB)
Unit (MISCELLANEOUS-FUNCTIONS FGN-PRIMITIVE-LIBRARY-KB)
#Unit (INPUT-FUNCTIONS FSN-PRIMITIVE-LIBRARY-KB)
#Unit (INITIAL-STRUCTURES FGN-PRIMITIVE-LIBRARY-KB))

Unit: HCPIP
Members: NIL
Subclasses: NIL

Unit: HOSTOUT
* Members; NIL

Subclasses; NIL

* Unit: INITIAL-STRUCTURES
Members: (#Unit (CURSOR FGN-PRIMITIVE-LIBRARY-KBI

fUnit (PICK.LOCATION FGN-PRIMITIVE-LIBRARY-KB))
Subclasses: NIL

Unit: INPUT-FUNCTIONS
Members: (#Unit (DIALS FGN-PRIMITIVE-LIBRARY-KB)

#Unit (BUTTONSIN FGN-PRIMITIVE-LIBRARY-KB)
#Unit (TABLETOUT FGN-PRIMITIYE-LIBRARY-KB)
#Unit (TABLETIN FGN-PRIMITIVE-LIBRARY-KO)
#Uni t (SPECKEYS FGN-PRIMITIVE-LIPARY-0k)
#Unit (PICK FGN-PRINITIVE-LIBRARY-KB)
fUnit (KEYBOARD FGN-PRIMITIVE-LIBRARY-KB))

Subclasses: NIL

% ~Unit: KEYIBOARD
J. *p'Members: NIL

Subclasses: NIL

130

0%

Unit; NISCELLANEOUS-FUNCr104S
Members: (#Unit (F.SYNC FGN-PRINITIVE-LIBRARI-KO)

Unit (F.POSITION.LINE FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F.PICKINFO F6N-PRIMITIVE-LIBRARY-KB)
#Unit (FNOP FON-PRIIITIVE-LIBRARY-KB)
fUnit (F.FETCH FGN-PRINITIVE-LIBRARY-KB)
#Unit (F.EDGE.DETECT FGN-PRINITIVE-LIBRARY-KB)
#Unit (F.COLOR FGN-PRIIIITIVE-LIBRARY-KB))

Subclasses: NIL

Unit: OBJECT-TRANSFORMATION
Members: (#Unit (F.ZROTATE FGN-PRINIrIVE-LIBRARY-KB)

#Unit (F.YROTATE F6N-PRIIIITIVE-LIBRARY-KB)
lUni t (F. XROTATE FON-PRIMITIVE-LIBRARY-KB)
#Unit (F.SCALE FGN-PRIMITIVE-LIBRARY-KB)
f Unit (F.D2RUTATE F6N-PRIMITlVE-LIBRARY-KO)
#Unit (F.DYROTATE FtN-PRIMITIVE-LIDRARY-KO)
#Unit (F.DXROTATE FGN-PRIMITIVE-LIBRARY-KO)
fUnit (F.DSCALE FBN-PRI9ITIVE-LIBRARY-KB))

Subclasses: NIL

Unit; OFFBUTTONL16NTS
Members'. NIL
Subclasses: NIL

Unit: OUTPUT-FUNCTIONS
Members; I#Unit (OFFBUI1UNL16HTS FGN-PRIMITIVE-LIBRARY-Kt

#Unit (HOSTOU[FGN-PRIMITIVE-LIBRARY-KB)
#Unit (HCPIP FON-PRIMITIVE-LIBRARY-KBI
#Unit (FLABELO FGN-PRINIrIVE-LIBRARY-KB)
#Unit (FLADEL.1-12 FON-PRIMITIVE-LIiBRARV48)
#Unit (FKEYS FGN-PRIMITIVE-LIBRARY-KO)
#Unit (FFPLOT F6N-PRINITIVE-LIDRARY-KO)
lHni (DLABEL.1-8 FGN-PRIMITIVE-LIBRARY-KB)
#Unit (CLEAR.LADELS FGN-PRIMITIVE-LIBRARY-KB))

Suliclasies: NIL

Unit: PICK

4. fMembers; NIL
Subclasses: NIL

131

.

Unit; PICK.LOCATION
Members: NIL
Subclasses; NIL

Unit; ROBOT-ARM
* - Mebers: NIL

Subclasses: NIL

Unit: SPECKEYS
Members: NIL
Subclasses; NIL

Unit: TABLETIN
Members: NIL

* Subclasses: NIL

Unit: TABLETOUT
Members: NIL
Subclasses; NIL

Unit: TIMING
Members: (fUnit (F.T1MEOUT FGN-PRIMITIVE-LIBRARY-KB)

#Unit (F.CLTICKS FGN-PRIMITIVE-LIBRARY-KB)
#Unit IF.CLFRAMES FGN-PRIMITIVE-LIBRARY-KO)
#Unit (F.CLCSECONDS FON-PRIMITIVE-LIBRARY-KB))

Subclasses: NIL

Urnit: VIEW-TRANSFORMATION
Members: (#Unit (F.WINDOW FGN-PRIMIIE-LIBRARY-KB)

#Unit (F.LOOKFROH FGN-PRIMITIVE-LIBRARY-KB)
#Unit (F,LO0KAI FGN-PRINIJTIYE-LIBRARY-KBS
fUnit CF.FOV FGN-PRINITIVE-LIBRARY-KBI'

Subclasses: NIL

132

Appendix B: Graph Design Assistant Source Code

U,

The section contains listings Lisp code used in the

Graph Design Assistant. There are three files. Each file

starts with a file header and a listing of the file's

contents.

i

,m

"4

'S

1 133

.4

N.".

:;; -4- Mode: LISP; Packaoe: KEE; Base: Ii - -

Filenase: oda.liso

Prosect: Braoh Desion Assistant version 8

; Date: December 3. 1985
Author: Alan J. Black
Description;

Contains misc. lisp functions used by the the graoh design assistant.

Contents:

host-dir variable

S*da-kbs* variable

qda functions

load-oda-kbs function
save-qda-kbs function

select-from-alist function

Ge ,t-confirmation function

GDA alobal variables

#host-dirt - host directory for GODA system

ogda-kbs# - list of KEE databases in the GDA system

(defvar 'host-dir' ",black)qda)")

(defvar *oda-kbs*

ada-svstem
fan-arasmar-kb

fqn-prisitive-librarv-kb

ada () function

Initializes GDA. Loads files and -nowledoe bases. Sets kEE variables.

(defun oda (0
(load '-black~oda>oraph-indow")
(load ">black>oda.>interface-manaoer')

134

N ."... '-.: . '... '........,'-........ - . - . , - .'-,. # €,'

V0.d-d-ks

(princ 'Graph Desian Assistant loaded")
Isetq valueclasscheck 'strict))

load-qda-kbs

Loads the 6DA knowledge bases

(defun Ioad-qda-kbs 0)
Idolist (kb foda-kbst)
(kbload (strino-append 'host-dir# (oet-pname ObHMl

save-oda-kbs

Save the GDA knowledge bases

0 4defun save-oda-kbs 0
(dolist 4kb #oda-kbs*)
(kbsave kb nil 'host -dir*)))

select-fram-alist (alist &optional label)

ilisplavs a list of available units and allows the user to choose
fras the list.

the available-units-list is an association list toroated as follows:

((label 1V value-i
('label 2' value-2)

(defun select-from-alist (alist &optional label)
(declare (special menui-window menui-list))
(setq senui-list nil)
(setq menu-window

)tvmaake-window
'tv:dvnamic-momentarv-menu
:borders2

* :default-font fonts:hl1O
:label label

* . :deexoosed-tvpeout-action :permit
:item-list-pointer 'menui-list))

(setq menu-list alist)
-~ '~7(send menu-window :choose))

135

get-confirmation (prompt)

-, ; Displavs a meu and asks the user to confirm a pending action

2 (defun oet-confirmation (prompt)
(declare (special confirm-window confira-alist))
(setq confirm-alist nil)
(seto confirm-window

(tv:make-window
tv:dynanic-mosentarv-senu
:borders 2
:default-font fonts:hllO
flabel TONFIRM"'
:deexposed-typeout-action :oermi t
:item-list-pointer 'confirm-alist))

(seta confirm-alist '1U.prompt . t) ("abort" .nilf)

(send confirm-window :choose))

13

f'r %N

M; i-~ode: LISP; Base: 10; Package: KEE--

File name: araph-window.lisp
Project: Gr aph Desion Assistant, version 8
Date: December 3. 1985
Author: Alan J. Black
Description:

Contains the definition for the graph-window-flavor and its
associated methods. The graph-window-flavor is the tvoe of

.4 * window which is used to edit graphs in ODA.

Contents:

0rp-idwfao lvrdfnto
toaph-window-flavor flavor definition

* :calc-box-size oraph-window-flavor method
* :draw-arc graph-window-flavor method
, :draw-box graph-window-flavor method

:draw-connector graph-window-flavor method
:draw-line-between-points araph-window-flavor method
:draw-node graph-window-flavor method

draw-io-pair function
make-io-pair-list function
calc-box-width function
calc-box-heiaht function

:draw-selectable-strino graph-window-flavor aethod
:aet-instantiate-location graoh-window-flavor method
:label-araph-window araph-window-flavor method
:update-path graph-window-flavor method

* :show-menu oraph-window-flavor method
:update graph-window-flavor method
: user-messaoe graph-window-flavor method
initial-ow-;tes-lmst function

* make-oraph-window function
*make-tvoeout-window function

%44 %.4 4 4 4 4 4 4 4 4 9 4 4 4 * 4 9 4 4 4 4

; oraph-wmndow-flavor

Flavor definition, "k:kwin' is the window flavor used by KEE, mixing in
oives the aranh-window-flavor similar Properties.

~. ~.'CK.,defflavor graph-window-flavor 0)

* 137

(tv:basic-eouse-sensitive-i tes
tv window-wi th-typeout-aixin
tv:select-sixin
kUkwin)

:oettable-i nsince-vari abies
settable-instance-variables)

.5 %* 4% N N 4N 4 N I % *44 ft 45% 4 %%4 45 4% 5

typeout-window-flavor

Thswindow wilallow for errors to type out

(defflavor tvpeout-wmndow-flavor (
(tv teaDorary-tvoeout-window
tvselect-sixin))

;some constants that affect the oraphic fioures displaved in
the araph-window

0)defconst Lne-space 12)
(defconst v-connect-coint-offset 5
(defconst box-toD-4argin 2)
(defconst box-bottom-marain 21
(dtfconst sin-box-width 39)
Idefconst 4in-box-heiaht 39)

:calc-box-size Inode)

; Calculate the size of a node box

(defoethod (araph-window-flavor :calc-box-size) (node)
(let#
Hinput-units (qet.values node 'sub-inout))
(output-units (get.values node 'sub-outout))
(in-firstnames (oaocar Vi'lambda W(ulgetavalue u 'firstname)) input-units))
(out-firstnames (maocar F'(lambda Wu (aet.value u 'firstnase)) output-units))
(label (oet~value node 'label))
(box-width (calc-box-windth self label in-firitnames out-firstnames))
(box-heiaht (calc-box-heiaht in-firitniames out-firatnames)))

* (.4oX-width .box-heiahtM)

~~ V ~~~~ :driaiarc (arc) 4 % 4 * 5 4

Draw an arc

(defeethod (araph-window-flavor :draw-arc) iarc)

N Hfros (aet~value arc 'from-sunction))

* 138

7,e r-.r

(p1 (oet.value iros 'output-position))
t Q2 (Get.value to 'input-posiion))
(path (cet.values arc 'path));,
(if
pith
isend self :draw-line-between-points '(.pt *Apath p2l))
(send self (draw-line-between-points '(.pl o2))

.44% 44 4 4 4 4 4% 4 4 4 4 4 %.4 4 4, 4 4 4

; draw-box (x y heioht width alu)

Draw a box

(defeethod (oraph-window-flavor :draw-box) (x v height width &optional)alu tvalu-ior))
Ilett

((if x)
(rt (+ x width))
(too V)
(bo't 1+ v WeOW)

-w (send self (draw-lines alu If too rt top rt Wo If bot It too))
(send self :set-cursorpos x W)

(defun xpos (position) (first position))
(defun Ypos (position) (second poouition))

(defiethod (oraph-window-flavor :draw-connector) (connector)
(let#

((oos (get.value connector 'position))
(x (Xpos pos))
(Y (vpos POS)H
(firstname (oet.value connector 'firstname))
(input-p0)qet.vilue connector 'input-p))
(shape (oet.values connector 'shape))
(connect-ooint-offset (aet.value connector 'connect-point-offset))
)connect-Ooint ')+x (xpos connect-point-offset))

.4v (Vpos connect-point-offset)))
(label (qet.value connector 'label))
(label-offset (aet.value connector 'label-offset))
(points

(mapcar #'(laobda (point) '(.(+ x (xpos point)) .+v (vpos ooint)f)
shape))

(if
inout-P
(out.value connector 'output-position connect-voint)

* (out.value connector 'input-position connect-ooint''
(send sef(-cursorpos x (- v line-space))

(send self :draw-selectable-strina

139

(format nil "ia" firstname)
W ifnDut-p :in-connector-ites :out-connector-item) connector)

(lexr-send self :draw-lines line-args)
(send self :set-cursoroos (+ x (ipos label-offset)) (+ v (0pos label-offset)))
(send self :string-out label))

; :draw-line-between-Doints (ooint-list Woohonal (alu ty~alu-ior))

(defeethod (graph-window-flavor :draw-line-between-pomnts)
(point-list &optional)alu ty~alu-ior(

(let

(lexor-send self :draw-lines line-aras))

defun flatten-point-list (point-list)
(if

point-list
- (let#

*)ol (car point-list)))
(if
p1

(let
Hx (first p1))

~~)v (second p11)
(cons x (cons v (flatten-point-list (Cdr point-list))))

(flatten-point-list (cdr point-list)f)M)

%44 4 4 4 4 4 4 4 4 4 4 , 4 4 4 4 4 4 4 4 444%

:draw-node (node)

Draws a node with labels and io-pins

(defeethod (araph-window-flavor :draw-node) (node)
(let#

((position (get.value node 'position))
'N ix (first position))

0 (i (second position))
(input-units (aet.vilues node 'sub-input))
(output-units (aet.values node 'sub-output))
(in-firstnames (maDCar F'(laabda (u) (aetvalue u 'firitname)) inout-unilts))
(out-firstnames (mavcar I'(laabda W(u)get.value u 'firstna~e)) output-unit5))
(node-+irstname (oe't.value node 'firstnaoel)
label (qet.value node 'label))
box-width (calc-box-width self label in-firstnames out-iirstniames()
(box-height (calc-boy-heiaht in-firstnaaes out-firstnames))
ttestype)aet.vilue node 'selectable-ites-tqpeMl
send self :draw-box xv box-heiaht box-width)
(send self :set-cursoroos x(- Y line-space))
(send self :draw-selectable-strina

for~it nil "a* node-firstrne) itestvpe node)

140

(send Self .set-cursorpois (setq v I+ v box-top-marginMf
(if label

(let*
((label-lenoth (send self ;strino-Ienoth label))
(l-x I+ x MH I- bor-width label-lenoth) 2)

(send self :set-cursorpos l-x 0'
(send self :strino-out label)
(setq v I+ v line-spacef))

Idolist
(jopair (sake-ia-pair-list inDUt-units output-unitWl
(draw-ia-pair x v box-width iooair self)
(setq 'i I+ Y line-space))

(defun draw-io-pair (x v box-width jo-pair window)
(let

''in-unit (car ia-pairm
(out-unit (cdr io-pair)0)
(if in-unit

(let
((in-name (oet.vilue in-unit 'firstname()
(connect-pos '(.x ,(+ v v-connect-ooint-offset))))

(Dut~value in-unit 'input-position connect-DOS)
(send window :set-cursorpos x v)
(send window :draw-selectable-strina

(format nil ~a'in-name) :inout-ites in-unit)'(
(if out-unit

(let*
tout-name aoet.value out-unit 'firstname),
(out-strina (format: nil K a 1out-nameH~
out-lenoth (send window :strino-lenoth out-strino))
(out-%-offset I- box-width out-lenoth))
connect-oos '(. (+ x box-width) v4 --connect-Pont-cffzet)!1

(out.value out-unit 'outout-position connect-oos)
(send window :set-cursoroos (+ x out-x-cffsetl 0)
(send window draw-selectable-strino

out-strinq :output-item out-unit))))

(defun aake-io-oair-list (in-list out-list)
(c and

((and (null in-list) (null out-list)) nil)
((null in-list)

(cons icons nil tcar out-list)) (aake-io-pair-list nil (cdr out-list)(),)
(null out-list)
(cons (cons (car in-list) nil) (Aake-io-oair-list (cdr in-list) nilin

(cons (cons (car in-list) (car out-list))
(make-io-oair-list (cdr in-list) (cdr out-list))M)l

Idefun calc-box-width twindaw label in-firstnames out-firstnames)
(let#

* 141

Hio-oairs (pairlis in-firstnames out-firstnamesn)
(oair-midths
(mapcar
t'(lambda tio-Dair'

(let*
((in-name (car io-oair)l

(out-name (cdr io-pairfl
(out-width (if out-name

send window :strino-lenoth (format nil ' a out-name)'

(in-width (if in-name
(send window :strino-Ienoth (format nil ''a 'in-name))

44' OMl
(+ out-width in-width)0I

io-oairs))
'cma-io-oair-width (if pair-widths (app', 'sax pair-widths) 0.)
0abei-width ksend window :strina-lenoth (format nil 'a label); .

(max max-io-oair-width label -width isi-box-width)))

* defun calc-box;-heioht (in-firstnames out-tirstniames'
(let#

(max-names (max (lenoth in-iirstnames) (lenath out-firstnames)))
* (max in-box-height

(box-top-marain line-space (f max-names line-spacel))j)

:draw-selectable-string (string itemtvpe item)

Drams a selectable strinG and adds the item to the
item alist.

Aetmethod (oraph-window-flavor ;draw-selectable-strinai strino itemtvpe itemi)
(let Wx vO xI yi.!

- * (multiple-'value (xO YO) (send self :read-cursorDosui
* (send self :string-out string)

(multiole-value Wx vi) (send self :read-cursoroos),
send self :orumitive-item itemtype item x0 O A 4 (+ YO IOWfl

; oet-instantiate-location

* Allows user to ~ove ooint ta a cositicn in th window with the Rouse.

* Returns; coordinates k, v), or n~il if ucxer abo~rts

'defmethod (oraph-window-;lavor :oet-location) (width heiqht!
(send setf :excose,
tv:m0use-wait)

* - (tv~with-ouse-arabbed-on-Sheet

* 142

Hx (- tv:mouse-m 8) (- tv:mouse-x 8))
Cv i- tv:mouse-v 24) (- tv:mouse-v 24H)
(b tv~mouse-Iast-buttons tv~mouse-last-buttonsfl

4-. CtHneq b 0) (if (z b 1) (list x 0 nil)
(draw-locate-bom self x v width heicht)
(send self :user-sessage (format nil 'L:Locate. R:Abort x:'4d v: 4d" v)'
ttymouse-wait)
(draw-locate-box self x v width height)

(defun draw-locate-box (window YO YO width height)
(let

((xl (+ xO width))
(NI (+ YO heiaht)))

(send window :draw-lines tv~alu-xor xO YO xl AO gl vI xiO vl gO YOW)

: label-graph-window current-craph

(defiethod (araph-window-flavor :label-araph-window) (current-craph)
(let laraphname kbname)

(cond
V (current-oraph

(seto araphname (unit.naike current-oraph))
(setq kbname (kb.name Cunit.kb current-graph)
(t
(setq praphname 'not assioned")
(setq kbnase "not assigned'))

(send self :set-label
(format nil "araoh; 'a kb: 'a" graphriame kbname))))

N ~ ~ I l V444 44 4N 4 I..~*~ 44 % - -'- %4 4%

:uodate-path (P1 oath p2(

defiethod (araph-window-flavor :update-path) (PI path p2)
(send self :expose)
(send self :draw-line-between-points '(.pi .@!path p2l) ty:alu-xor)
(tvwoith-miouse-arabbed-on-sheet 0(

(tv mouse-wait)
(do

(Iquit nil)
* (new-path nil)

(xi (first p1))
(vi (second p1))

* Cx i- tyvmouse-x 8) (-tv~imouse-x 8))
(v (- tv:mouse-v 24) 1- tv:mouse-v 24))
Ib tvmiouse-last-buttons tvmaouse-last-buttons(

(quit
(send self :draw-line-between-Points '(.pl @~new-oath ,oD)

* new-pith)

143

(slct
(IIedsl da-in-ewe-onsS.l e-ah vauxr

(st e-at a'oen e-ah (M

(sn efAa-iebtenpins3.lAe-ah vaumr

(setq b IX

(setq VI Y))
(2
(setq new-path (butlast new-path))
(if new-path

(let
((ast-paint (first (last new-path))))
(send self :draw-hine-between-aaxnts

'(.last-ooint (,xl vl)) tv:alu-xvr(
(setq xl (first last-pointfl

4(setq Yi (second last-point)))
(po n
(send self : raw-li ne-between-otnts

S(.pl ('I ,vl)) tvalu-xor)
'setq Al (first p1))
(setq vi (second p1))

(4 (seta quit t))
(send self :draw-line-between-ooints (Uxl .,I(t. .) ,I tv:aiU-xor
(send self :user-hiessaoe

(format nil
'L:add-oirnt L:delete-last-porst R~exit ('4d.'4d) C'4d.AIdK x4 .

(tv:mfouse-wax U
send self :draw-line-between-pirnts 1 l) a s.2)tauo)

:set-cursorpas-rel

defuethod toraph-wxndaw-+lavor :set-cursorpas-rei; 'd-4 j-4)

t.ultiole-vaiue x vi send self ;read-cursc,-os:)I
(send self :set-cursaroas (+ d-) t d-v);

irow-Aeru

* Writes the list, L-f .%enu itis across t, e tot, ct the oiar'ow

send Bel, :set-cursoroos52

Er-d self :5trin--out

I tv E- i~ A w 6 o tr.UN iC ndovo

* 144

.i teii '. env~-aaenda 'toeridaV
:itea :4enu-oraph Uro-

.:item ;.eru- iunct! on Uunction")

;uodite Graoh ft

deiaethod (oraph-window-flaqor :update) (corrent-oraoh)
(send self :clear-window)
(send self :show-menu)
(send self ;label-graoh-window current-araph))

.5N- V V V NN IN VSV V 'IN V 11V % VN N 1 V V V VS .

; user-messace "sessaoe string,'

Displays the mesimaa in the loner ledt corner of the window

defeethod (oraph-window-flayor ;user-eessaoe) (message-string)
(send self :home-down)
(send self :clear-rest-of-line)
Isend self :strino-out messaae-strino))

; initial-ow-item-alist

This function initializes the item alist for the graph-window

(defun initial-aw-atem-alist 0
flet Haw-ites-alist nil))
(t', add-typeout-a tem-type

ow-i tem-alist
aenu-zooe-out

.0.7 . o0m-out"

::oom-out

"Zoom out and view parent of this oraph")

---menu-window items --

tvadd-typeout-itemdvpe

:menu-wa ndow
"assign-graph"
:assi an-qraph

* nil
,* "Assions a oraoh to this window")

145

........ '-~~~~~~~ 7 ~** %*~ ~*.- ..

(ty:add-typeout-ites-tvpe
4 ow-item-alist

:menu-windov
'update-window"

-: :update-window
t
'Redraw the window')

menu-aoenda items --

)tv~add-tvpeout-item-tvpe
ow-item-alist
:Pienu-agenda
"descri be-agenda-item"
descr ibe-agenda-i tem

nil
"Shows a description of an item that is on the acenda")

,tv:add-tyoeout-item-tvoe
* aw-i tem-a]i st

:menu-acenda
'delete-azenda-i tern"
:del ete-aaenda-te

'Deletes in item from the acenda without executiro it")

* itv:add-tvaeout-item-type
qw-i tem-al ist
:menu-acenda
'sel ect-acenda-i tee"
: select-agenda-ites
t
"Selects an item from the acenda to execute")

---menu-graph items--

0 (tv;add-typeout-ites-type
ow-I tea-al ist
msenu-graph
'create-qraoh'
:create-graph
nil
"'Create a araph. independent of the oraph assioned to this oindow")

tv add-tiaeout-i tem-tvae
* ow-ites-alist

:menu-graph
* '%reate-sub-oraDh'

:create-sub-graph

"'I" 146

'Create a new graph as a child of the graph assigned to this windowi')

---menu-plan items --

(tv: add-typeout-itea-tvpe
ow-item-alist
:aeflu-plan
"describe-olan"
:describe-plan
nil
'Shows a description of a plan in the plan library')

(tv: add-tvaeout-i tem-tvpe
Ow-itelm-al ist
:menu-plan
"instantiate-clan'
:instantiate-plan
t
"Gets a clan from the library and instantiates it as the child of the assigned graph")

---- menu-primitive ites--

ity add-tvpeout-item-type
ow-i tem-ali st
:aenu-Drisitive
"describe-primitive"
:describe-prisitive
nil
"Shows a description of a primitive in the primitive library")

tv:add-tvoeout-ites-type
ow-i tem-alist
:menti-primitive
"instanti ate-primitive"

* :instantiate-primitive
'a' t

'Gets a librari primitive and instantiaties as the child a+ the assioned oraoh")

--- enu-itunct ion --

itv;add-tvpeout-ites-tvpe
q -item-alist
:menu-,unction

* "instantiate-iunction'
:instantidte-Junct ion

0 W.J147

"Instantiate a junction ior external connections")

*---- graph-item--
itv:add-typeout-ites-type
qw-itel-alist
:graph-item
, label -graph'
:label-graph
nil
"Assign a label to this graph (displayed inside box)')

"' ~ (tv:add-tvpeout-itea-tyve
04-i tem-alist
:graph-ites
"rename-graph'
:renase-element
nil
"Renames this graph node")

itvadd-typeout-i tee-type
Ow-item-al ist
graph-i tem
'delete-graph"

4\ :delete-elesent
nil
'Deletes this oraph node and all it's children*)

(tv:add-tvoeout-ites-type
Ow-i tem-al ist
graph-i tee
",oomi n"
:ZOOM-in

"Zoom in on this oraph node")

(tvadd-b'peout-ites-tvpe

goo-item-aiist
:priaitiye-item
"delete-orieitive"
delete-element

nil
'Delete this arimitive node")

(tvadd-tvoeout-itvs-tvae
Ow-item-alist
:orisitive-item

148

"'N 4.

nil
'Rename this Primitive node')

--- n-connector-item

tvadd-tvPeout-it em-tvpe
aW-item-alist
nn-connector-item
grename-out-connector"
:rename-element
nil
"Rename this in-connector')

(tv~add-tvoeout-ites-type
ow-i tes-a I Ist
:in-connector-item
'delete-connector'

I :delete-element
nil
'Delete connection node')

(tv; add-tvpeout-1 tea-type
910-1tea-al Ist
inout-i tim

"dilute-out-arc"
:delete-out-arc
nil
'Delete an out arc-)

(tv add-tvoeout-item-tyoe
witem-al ist
rin-connector-item

'modi tv-out-drc-oath'
* :modify-out-arc-pith
* nil

'Chanoi the path of the arc')

tv add-tvotout-item-type
QW-I tem-alli t
in-connector-ites

* 'arc-start
:acstr

'itart a connection arc")'

*---- out-connector-item--

t;:add-tvveout-item-tvpe

* 149

-~~I %.~- 2'
*%

% -~~~.\-.'Q 2 *

Vanil

'Rnm thsou-oneto"

9qw-item-al ist
:out-connector-i te
"renaeot-connector
:rename-element

* nil
'Renaet ot-on noetr)

(tv: add-tyoeout-i tes-t yoe
ow-item-dist
:out-connector-item

a 'dele-conetor"
:delete-eletet

'Sete connection rc"e)

lty:add-tvpeout-iten-type
qw-itee-alist

* .'-. :onut-onectrm e

"---- inout-ute

itv add-tveout-item-tvpe
owitim-al jet
:input-item

'r--notput-nemu--

rename-el ement
nil

G15

"Rnm th% inu'

V, ~ .

'Rename this output')

ltyvadd-typeaut-i te-type
ow item alist
:output-item
'delete-out-arc*
:de lete-out-arc
nil
"Delete an in arc')

Itv;Idd-tvpsout-i tern-tVPe
qw-s tes-alist

N. :output-ites
"sodi fv-out-arc-oath"

'N :aodifv-out-arc-oath
nil,

* Change the Path of the arc"

- -F Ow-stem-alist
:outout- tes
"arc-start'
arc-start

'Start a connection arc")

---- end of typeout item types --
qw-stes-ilsst"I

s ake-araon-wi ndow

C reates a new graph window an starts a graph window process.

returns: zeta window obiect

(defun sake-araph-window (itemir-list)
t:aake-window

oraph-window-flayor
:label 'Grach INindow'
:edoes-from :souse
.eyDDSe-P t

'p :save-bits t
:blinker-D nil
:stes-type-alist Ite-alisst)

aake-tvoeout-window

151

(de4un sake-typeout-window (superior-window)
tv: iske-wi ndow
t~peout-windo-flIavor

:superior suoerior-window))

(COAa1i -ldvor-sethods crach-window-flavor)

4)compile-flavor-sethods typeout-window-flavor)

4.

* 152

;; -'- Mode; LISF; Base: 10; Package: KEE -*-

File name: interface-manaoer.liso
Proiect: Graph Desion Assistant, version 8

Date: December 3, 1985
Author: Alan J. Black
Description:

Containts the mouse handler orocess which defines the user interface
to a oraoh-window.

; Contents:;

-tdrt-oraoh-window-Drocess iunction
g raoh-windost-orocess function
check-for-terminal-io function

Functions that execute user coamands;

' arc-comolete iunction
arc-start function
assiqn-graph function
create-oraDh function
create-sub-araph function
delete-eiement function

.'delete-out-arc function
* instantiate-sunction function
.. instantite-Drimitive function

- modify-out-arc-oath function
rename-element function

uodate-oraoh-Window function
zoom-in function
zoom-out functlon

; start-oraoh-window-orocess

Starts a oraph window orocess

.defun start-oraoh-window-orocess 0

b (process-run-function 'I:name 'oraoh-window-orocess")
t' oraph-window-Drocess

153

tdeivar aw) ;Contains the current graph-window obJect. for debugging purposes

araph-window-process

; The process which handles miouse inputs for a window.

The function is a loop which reads in a souse ic,
decodes it. then calls the function requested by the user.

The loop is endless. however, the user can kill the process by
closino the window fa KEE window aroperto0.

tdefun graoh-window-process, 0
(let#
(0ora~h nil)
icurrent-out-iunction nil)

(window (make-ariah-window item-alist))
0 (terminal-ia (make-tvpeout-window window)))

(tvwindow-mouse-call (window :deactivate'
(seto taw* window) ;for debuoqina
iokq-aoto 'kee)

- (update-oraph-window window graph)
(error-restart-loop ((sysabort) *Restart araph-window-process' nil)

(check-for-terminal-ia terinal-io)
(let#

'A ((blia (send window :anv-tvi))
(command (second blip))
tobiect (third blip)))

(send window :user-messaoe
tif (and current-out-junction (neo command :arc-camolete)n

(seto current-out-junction nil))
selecto command

'I. :arc-comolete
)setq current-out- ' unction

tarc-complete window graph obiect current-out-iunction)fl
(:arc-start (setq current-out-Junction (arc-start window grach obiect!'.
(:update-window
)update-oraph-window window orach))

* (:assign-qraoh
(seto graph (assign-graph window graph) 1

* (:create-orach
(setq graph (create-qrah window graphM)

(:create-sub-orach
- ., create-sub-qraoh window graph))

(:delete-ulement (delete-element window araoh obiect))
(:delete-out-arc

* (delete-out-arc window orach obiect))
);instpntiate-iunction (instantiate-winction window oraph)fl
(:instantiate-orimitive iinstantiate-orimitive window oraoh))

* 154

.. -I I%

- - - - - - - - 1 1 I

(:aodifv-out-arc-Path maodifv-out-arc-oath window ob'iect)j
(;renase-element (renate-element windo w object Graph))

(::oom-in (setq graph (zoom-in window ob 'iectf)
(:zoos-out (setq graph (zoom-cut window araoh)
(otherwise
(snd window :user-oessace

(format nil "Command not implemented; "s" bliol()(l)

check-current-oraoah (window graph) ntdipa esaei

Chc osee if graph unit exists, if ntdslymsaei

(deiun chec(k-current-craph)window Graph.,
cond

Hnull Graph.
;send window :user-;,essaoe foraat nil 'A Graph is not assioned to this wirdow",))

* mull (unitreterencet araoh).!
(send window :user-messaoe (format n~l A errror: 's is not a oraph?' zravh)))

Check to see if any type out has occurred on the tvaeout window,
if it has. wait until the user is readv to continue.

(defun checL-ior-teriminal-io (tio)
(cond

(Mond tic ;exoosed-p)

(send tic :strino-out (format nil -74 .click mouse on window to continue)
send tio :any-t i)

(send tic :deexoose)

arc-comolete (window araph in-Junction current-out-junction)

Completes an arc.

Creates an ARC element and places pointers in
it's FROM-JUNCION and TO-JUNCTION slot of the arc unit.

Places pointers in the OUIT-ARC slot of the out sunction. and the IN-ARC
* slot of the ;n Junction,

defun arc-comolete (window Graph in-junction current-out-iunctiorj

null current-out-Junction)
(send oindow :user-messace oStart arc on an outeut oi a node"
(let

155

Aarc (unitmso araph 'add-sub-element '(arc ada-system))))
iout~value arc 'from- ' unction current-out-Junction)
(out~value arc 'to- iunction in-iunction)
(add.value current-out-junction 'out-arc arc)
(add.value in-junction 'in-arc arc)
(uadate-araph-window window graph)))

nil)

arc-start iwindow oraph out-Junction)

Sends the user d message that he has started an arc.

Returns the out Junction.

defun arc-start window graph out-sunction)
(let*
((out-pin-name (aet.value out-iunction 'firstname))

* oairent-node (get.value out-Junction 'suoer-element))
(node-name (aet.value parent-node 'iirstname)))

(send window :user-messaae
(format nil 'Arc started from 'a, *a" out-pin-name node-nam&')

out- junction))

assion-araoh (window current-graph)

Assions the araoh that is to be displayed in the graph-window.

The user is presented with a Dop-uo mRenu where he can fill in
the name of the araph and the knowledge base that contains the araoh.

Returns the unit.reference to the graoh unless. there is an error, then
nil is returned.

defun assion-orauh (window current-oraph)
(declare (soecial graph-name kb-name))
icond

((null current-graoh)
)setq graoh-naite nil)
seto kb-name nil))

((unit re4erence* current-qraph)
(seto aravh-name ;unit.iiame curreot-Grjolii
(seto kb-name)ko.name (unit~kb current-craohWf);

tvchoose-variable-values
'(oraoh-ndoe "Grach .
(kb-name "Knowledoe base'fl

*:label "Assian araoth to window)
cond

(seta current-graph (unitreference ':.oao-naekb-name)))

156

(kbooto kb-name)
(send window :label-oraph-window current-uraph)
current-or aoh)
It
(send wipdow :user-messaoe

(format
.4.- nil

"Unit 'a, knowledge base 'a. does not exist or is not a graph unit"
graph-name kb-name))

(send window :label-graph-window nMl

nil)))

create-graph (window graph)

Creates a new oraph that is not a sub-graph,

Asks user for name of a knew graph and sends an INSTANTIATE messace to
to the class definition of a graph-- '(GRAPH SDA-SYSTEM).

Returns the new araph's unit.reference,

(defun create-graoh (window current-graph)
A. (declare (special araph-name kb-name)l

.r 'cond
((null current-oach)
iseto graoh-naie nil.
(seto kb-name nil)
((unitreference* current-graph)
seto kb-name Okb.name (unit.kb current-oraph))

setq graoh-name nil)
(t.Y:choose-vari able-values

((oraah-name *Graph
(kb-name 'IKnowledge base"))

:label 'Create a new graph
(cond
I(kbreference* kb.nase)

5 (kbooto kb-name)
(seto current-graph

(uniamo '(graph ada-system) 'instantiate))
(unitmsg current-orach 'name-element graph-name)
(send window :label-oraoh-window current-crach)
(update-graph-window window current-graph)
current-graph)
(t
(send window :user-messaue

(format
nil
"Unit Na. knowledge base 4a. does not exist or is not a araoh unst"

(sn araoh-name kb-name))
(edwindow :Iabel-oraph-window nil)

157

nil)))

create-sub-craph (window parentoraph)

Creates a new graoh which is a sub-oraph of the oraph which is
currently being edited. The new graph is given a default name.

The user is shown an outline of the graph node and asked to position
* the araoh somewhere within the oraph-window.

* The graph is created by sending an ADD-SUB-ELEMENT messaoe to
the class definition of graoh--'(GRAPH ODA-SYSTEM).

.defun create-sub-oraph (window Darentoraoh)
(if
(or (null parentaraph)

inull (unitreferencef Parentaraoh)P
(send window :user-message

'Cannot create child graph until a parent orah is assioned to oindow")
(let*
(Isuboraph (unitmso parentoraph 'add-sub-element '(araoh qda-svstem)))
(height (unitmso subgraph 'calc-disolay-height window))
(width (unitmsq subaraph 'calc-displav-width window))
(location (send window :oet-location width hei~ht)))

(cond
(location
(out.value subaraph 'position location)
(update-graph-window window parentgraph))
(t
(unitaso oarentGraph 'remove-sub-element -suboraohl)}

delete-element (window oraoh element'

0 ; Deletes an element.

* "Element" is the obiect the iser s oointiro to when he selects
this function.

; A oov-up 4enu aooears and as 5 for a confiriation 0f the delete
i function.

* An element is deleted by sendino a DELEIE 4isace to tie element,

(defun delete-element (window oraph element)

'get-confirmation (format nil "Delete 'a' tunit.name elkment)W

158
S.

lunitsso element 'delete)
* . (update-graph-window winsdow araphf),)

; delete-out-arc (window ora~h out-sunctioni

Deletes an output arc.

There may be multiple arcs that eminate from d single
lunction. therefore a SELECT-ARC-FROM-SLO? 4esae is sent
to the out- junction. this displays a menu of all of the
output arcs and allows the user to select which one he wants to delete.

(defun delete-out-arc (window graph out-junction)
(let#
((arc (unitaso out-iunction 'select-arc-from-slot 'out-arc "Select arc to deletE'))
(to (aet,value arc 'to-iunction,)))

(if

0 'aet-confirmation (format nil "Delete arc to 'am (unit.name toMl
(p roan

(unitaso arc 'delete)
(update-araoh-window window ordphi (i

instantiate-itirction (window araoh)

A Creates a new instance of a junction.

A~ pop-up menu asks the user to select either an input or

output !unction.

The user is ask to position the Junction in the araph-wiidow,

The new junctions is created by sendino a ADD-SUB-ELEMENT messaae
* * to the Graoh.

(defun instantiate-junction (window graph)

- .. (check-currmnt-oraph window oraph)
(lett
((avail-classes ' ((naut-Junction iin-connector gda-svstem))

(output-junction (out-connector oda-svste)
cliss (select-from-alist ayail-classes "Input or ouput'"Ml

(if
class
(let#

((junction (unitmso oraph 'add-sub-element (unitreference ciassMi
6 (location (send window :aet-location 20 20W)

~ *..~;"location

* 159

(out.value junction 'position location)
(update-graph-window window grach))

(unitaso graph 'remove-sub-element iunction()M)))

instantiate-primitive (window araph)

Creates an new instance of a primitive.

Display's a menu of the primitive library members for this tyoe
of graph. If the user selects a member. an instance of that
class of primitives is created.

(defun instantiate-orimitive (window graph)

(if
(check-current-oraph window araph)
(lett

((orammar (aet.value araph 'orammar))
* (library (Q'et.value grammar 'primitive-librarv))

(newclass (unitoso library 'select-from-menufl))

newc lass
(let#

~ ((newunit (unitaso graph 'add-sub-element newclassfl

(location (send window ;qet-location 1'4 40Ml
(cond

(location
(out~value newunit Pposition location)

* (update-graph-window window graph))

(unitma graph 'remove-sub-element newunit)(fl)

modifv-out-arc-oath (window from-iunction)

Allows the user the change the path of an arc. (The oath is the visual
representation of the arc, an arc's default path is just a straian line).

Idefun modify-out-arc-path (window from-iunction)
(let

(out-arc (unitaso from-junction 'select-arc-from-slot 'out-arc "Select arc to aoditi'
iif out-arc

ilet*
Oto-iunction (oet,value out-arc 'to-iunction))
(ol (get~value from-junction 'outout-position))
W(v2jet~value to-iunction 'inout-oosition))
(old-oath jget.values out-arc 'path))
(new-path (send window :uodatP-path DI old-path a2))
(Put.values out-arc 'Path new-path)

* 160

(send window :user-messaoe
iformat nil "Modifv arc. old oath; 's, new oath: 's" old-oath new-path)M)H)

rename-element (window element oraph)

Allows a user to rename an element. All new units are Oiven a default
name when they are created, this function allows the unit to Give
more mearsinoful names.

Displays a file in pop-up menu that allows the user to enter
the new name.

The name of the element is changed by sending a NAME-ELEMENT message

to the element. This renames the unit and all of the sub-elements of
the unit.

(defun rename-element (window element cravh)
(declare (special name))
(seto name (aet.value element 'firstname))
(tv:choose-variable-values
'((name 'Element name"))
:label "Rename element

(if
name
(oroon

(unitmso element 'name-element name)
(update-graph-window window graph)
(send window :user-messace (format nil "New name %a" name)))

(send window :user-messaoe "No new name"M)

update-araoh-window (window oraoh)

Redisplays the oraph-window

(defun update-graph-window (window graph)
(send window :clear-window)
(send window :show-menu)
(send window :label-craph-window graph!
(if

graph
(unitmso graph 'draw-sub-elements window)))

I zoom-in (window newgraph-object)

Returns the newaraph-obiect to the graph-window. This allows the user

to edit sub-graphs.

161

(defun zoom-in (window neworaph-object)
(update-araph-window window newqraph-obiect
newaraph-object)

zoom-out window oldoraph

Returns the parent oraph (SUPER-ELEMENT). The super-element
becomes the new graph assianed to the graoh-window.

(defun zoom-out (window oldoraph)
(if
(check-current-graph window oldoraph)
(let

i(varent (oet.value oldoraph 'super-element)))
(cond

(parent
Wuodate-oraph-window window Darent)
oarent)
(t
(send window :user-messaoe

(format nil OCan't zoom-out, 'a is at the too'
(get.value oldoraph 'first-name)))

162

Ise

!i " 'LBibliography

Ackerman, William B. "Data Flow Languages," Computer 15(2):
15-25 (February 1982).

Allworth, S. T. Introduction to Real-time Software Design.
New York: Springer-Verlag, 1981.

Barstow, David R. "Domain-Specific Automatic Programming,"
IEEE Transactions on Software Engineering
SE-11(11): 1321-1336.

Brady, Michael. "Artificial Intelligence and Robotics,

Artificial Intelligence 26(l): 79-121 (April 1985).

Boehm, B. W. "Software Engineering," IEEE Transactions on
Computers C-25(12): 1226-1241 (January 1977). Reprinted
in Classics in Software Engineering, edited by Edward

* Nash Yourdon. 323-361. New York: Yourdon Press, 1979.

Buchmann, Alejandro P. and Tosiyasu L. Kunii. "Evolutionary
* .Drawing Formalization in an Enggineering Database

Environment," COMPSAC 79, The IEEE Computer Society's
Third International Computer Software and Applications
Conference. 732-737. IEEE Computer Society, Long Beach,
California, 1979.

Davis, A. L., "An Introduction to Data-Driven Programming
Methodology for PS 300 Users," Graphics Programming.
Volume 2b of the PS 300 Documentation Set, Salt Lake
City, Utah, Evans and Sutherland Computer Corporation,
1984.

Davis, Alan L. and Robert M. Keller, "Data Flow Program
Graphs," Computer 15(2): 26-41 (February 1982).

DeMarco, T., "Structured Analysis and System Specification,"
GUIDE 47 Proceedings, 1978. Reprinted in Classics in
Software Engineering, edited by Edward Nash Yourdon.
411-424. New York: Yourdon Press, 1979.

Ehrig, Hartmut. "Introduction to the Algerbraic Theory of
Graph Grammars (A Survey)," Lecture Notes in Computer
Science 73, Graph-Grammars and Their Application to
Computer Science and Biology. 1-70. Springer-Verlag,
New York, 1979.

161

Evans and Sutherland Computer Corporation, "PS 300 Systems
Overview," General Information. Volume I of the PS 300
Documentation Set, Salt Lake City, Utah, Evans and
Sutherland Computer Corporation, 1984.

Evans and Sutherland Computer Corporation, "Function
Networks I," Graphics Programming. Volume 2a of the PS

'S 300 Documentation Set, Salt Lake City, Utah, Evans and
Sutherland Computer Corporation, 1984.

Fikes, Richard and Tom Kehler "The Role of Frame-based
Representation in Reasoning," Communications of the ACM
28 9): 904-920 (September 1985).

Floyd, Christiane. "A Systematic Look at Prototyping",
Approaches to Prototyping, Proceedings of the Working
Conference on Prototyping, Namur October 1983. 1-18.
Springer-Verlag, Berlin, 1984.

Foley, James D. and Andries Van Dam. Fundamentals of
Interactive Computer Graphics. Reading MA:
Addison-Wesley Publishing Company, 1982.

Intellicorp, Software Development System Active Images User
Manual, KEE Version 2.0. Intellicorp, 1985.

Intellicorp, Software Development System Rulesystem2
Reference Manual, KEE Version 2.0. Intellicorp, 1985.

Intellicorp, Software Development System Reference Manual,
KEE Version 2.0. Intellicorp, 1985.

Intellicorp, Software Development System User's Manual, KEE
Version 2.0. Intellicorp, 1985.

Jacob, Robert J. K. "A State Transistion Diagram Language
for Visual Programming," Computer 18(8): 51-59 (August
1985).

* Kant, Elaine "Understanding and Automating Algorithm
Design," IEEE Transactions on Software Engineering
SE-11(11): 1361-1374. (November 1985).

Kunii, Tosyasu L. and Minoru Harada. "SID: A System for
Interactive Design," AFIPS Conference Proceedings, 1980
National Computer Conference. 33-40. AFIPS Press,
Arlington, Virginia, 1980.

Kunz, John C. and others. "Applications Development Using a
Hybrid AI Development System," The AI Magazine: (Fall
1984).

162

Mostow, Jack. "Toward Better Models of the Design Process,"
The AI Magazine 6(1): 44-57 (Spring 1985).

Nagl, Manfred. "A Tutorial and Bibliographical Survey on
Graph Grammars," Lecture Notes in Computer Science 73,
Graph-Grammars and Their Appication to Computer
Science and Biology. 70-126. Springer-Verlag, New York,
1979.

Partsch, H. and R. Steinbruggen. "Program Transformation
Systems," Computing Surveys, 15(3): 199-236 (September
1983).

Pinson, E. N. "Simulation Environment for Robot Software
Development," presentation at SPIE's Cambridge
Symposium on Optical and Electro-Optical Engineering,
Intelligent Robots and Computer Vision, September 19,
1985.

Rich, Charles. "A Formal Representation For Plans in the
Programmer's Apprentice," Proceedings of the Seventh
International Joint Conference on Artificial

*e Intelligence, Volume 2. 1044-1052. IJCAI, Vancouver,
B. C., Canada, August 1981.

Rich, Charles and Howard E. Shrobe. "Initial Report on a
LISP Programmer's Apprentice," IEEE Transactions on
Software Engineering SE-4(6): 456-467 (November 1978).
Reprinted in Interactive Programming Environments,
edited by David R. Barstow and others. 443-463, New
York: McGraw-Hill Inc., 1984.

Sheil, B. A. "Power Tools for Programmers," Datamation
Magazine. 1983. Reprinted in Interactive Programming
Environments, edited by David R. Barstow and others.
19-30, New York: McGraw-Hill Inc., 1984.

Symbolics, Volume 1, User's Guide to Symbolic Computers.
Cambridge MA. Symbolics, 1985.

Symbolics, Volume 2, Reference Guide to Symbolics-Lisp.
Cambridge MA. Symbolics, 1985.

6_6 Symbolics, Volume 4, Program Development Utilites. Cambridge
MA. Symbolics, 1985.

Symbolics, Volume 7, Programming the User Interface.
Cambridge MA. Symbolics, 1985.

Thomson, C. C. "Robot modelling--the tools needed for
optimal design and utilization," Computer-Aided Design

S16(5): 335-337 (September 1984).

6..
163

0-

Veen, Arthur H. "Reconciling Data Flow Machines and
Conventional Languages," Lecture Notes in Computer
Science 111, CONPAR 81 Conference on Analysing Problem
Classes and Programming for Parallel Computing.
126-140. Springer-Verlag, New York, 1981.

Waters, Richard C. "The Programmer's Apprentice: A Session
with KBEmacs," IEEE Transactions on Software
Engineering SE-iI1 11: 1296-1320. (November 1985).

Waters, Richard C. "The Pro rammer's Apprentice: Knowledge
Based Program Editing, IEEE Transactions on Software
Engineering SE-8(1): (January 1982). Reprinted in
Interactive Programming Environments, edited by David
R. Barstow and others. 464-486, New York: McGraw-Hill
Inc., 1984.

Yamaguchi, Kazunori and others. "A Data Flow Language for
Controlling Multiple Interactive Devices," IEEE
Computer Graphics and Applications, 5(3): 48-60 (March1985).

616

'V

;: 164

VITA

Captain Alan J. Black was born November 19, 1949 in

Salt Lake City, Utah. He graduated from high school in 1968

and attended the University of Utah from which e received

the Bachelor of Science in Computer Science in 1974. He

enlisted in the Air Force in 1977, and received a commission

upon graduation from Officers Training School in 1978. Next

he was stationed at Keesler AFB, Mississippi. As an

technical instructor on a mobile training team, he taught

assembly language programming at World Wide Military Command

": qand Control System (WWMCCS) sites in Europe and Hawaii. In

1981 he was assigned to the Armed Forces Radiobiology

Research Institute (AFRRI) in Bethesda Maryland. He

developed computer programs for scientific investigators

doing biomedical research at AFRRI until entering the School

of Engineering, Air Force Institute of Technology, in June

1984. He is a member of Tau Beta Pi.

165

vir

.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

%fPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2 ECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTiON/AVAILABILITY OF REPORT

__________________________________ Approved for public release;
2b. DECLASSIFICATION/DOWNGRAOING SCHEDULE Distribution unlimited;

4. PERFORMI1NG ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/85D-2

6a. NAME OF PERFORMING ORGANIZATION jab. OF ICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION

School of Engineering AFI7fERG

* 6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Be. NAME OF FUNDING/SPONSORING
1
8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION j(If applicable)

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO,

11. TITLE ilnclude Sec Pity ClawiIicataon)

See Box 1§

~RONL UTORS)Alan J. Black, B.S., Capt, USAF

13&. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

'MS Thesis FROM _ ___TO ____1985 December 173
16s. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT T*IRMS Comntiniie on reverse if necessary and identify by block~ numrberi

FIELD GROUP SUB GR

09 02 Automatic Programming, Dataflow, Program
I Transformation System, Robot Simulation

19. ABSTRACT tConimn..e on reverse' if "ecessary and identify by blocki number'

* Title: A PROGRAMMER'S ASSISTAXNT FOR A
A SPECIAL-PURPOSE DATAFLOW LANGUAGE

Thesis Chairman: Gary B. Lamont

Professor of Electrical Engineering

~aee~e:Jbll teaa 1AW A13 IMjV

UNCASIFED OAE

%NCLASSIFIED/UNLIMI1TED E SAME AS RPT. D' TIC USERSC3 U LASFE

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Gary B.Lamnont 5. 11 nc 25(I_9l 1"fFIT/ENG -..

DOR 1438AP EDITION OF 1 JAN 73 IS OBSOLETE.

04 %SE CURITY C LASS IFICA TION OF TH IS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

Abstract

A programming tool, the Graph Design Assistant (GDA),

for a special-purpose dataflow language was designed and

implemented. The motivation for the effort was the need to

construct a robot simulation facility which will assist in

the development of effective algorithms to plan and control

robot movements.

An Evans and Sutherland PS300 graphic workstation is

used to display animated robot simulations. The Graph

Design Assistant was developed so that researchers could

program robot simulations on the PS300 without having to

learn the intricacies of the PS300's dataflow language.

The Graph Design Assistant was implemented on a "Lisp

machine" using a knowledge engineering tool. The result of

the effort was a prototype system to be used as the basis

for further development.

SECURITY CLASSIFICATION OF THIS PAGE

i LA

7k.. ~rr r, r~r . .. ,r ~ r r . .~j . rt M.M- 4- ~ W~~

MEU

DT
I

