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(ABSTRACT

A Berry-Esseen theorem is proved for weighted U-statistics, assuming

certain growth conditions are satisfied by sums of the weights. The result is

proved using the Fourier-analytic techniques of Chan & Wierman (1977) and

Callaert Vaf~mJ .-(L,978). "
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1. Introduction

Let Xl,X2 ,. ..,X, n > 2 be i.i.d. random variables with common

distribution function F. Let h be a symmetric function of r variables

such that h(X I . ..,X r) has mean zero and such that E[h(X ... ,X )I I=g(X 1

has a positive variance. Hoeffding [11] introduced the U-statistic

H () h(X. ,...,X. ),
n iEC i r

where denotes summation over the set C of combinations i = il , i of
iE C - r

integers in {1,2,...,n). Hoeffding proved the asymptotic normality of

U-statistics. An investigation of the rate of convergence to normality

begun by Grams and Serfling [9] and continued by Bickel [I1 and Chan &

Wierman 14], resulted in the Berry Esseen theorem for U-statistics by Callaert

and Janssen [3]. They obtained the rate of convergence O(n ) assuming

a finite absolute third moment for the kernel h(Xl. .. ). Pecently, Helmers

anc Van Zwet [10], for the case of r=2, have relaxed the assumption to

22 E~g(Xl) ] < and E~h(XIX 2 ) t < - for some t > 5/3.

r
For a symmetric function w(il . . . i r) on (I ), where In {l,2,... ,n1,

satisfying the condition that w(i I ... i r ) = 0 if i ik for some j l k,

we define the weighted U-statistic

Un = iX-w(ily .... 'ir)h(Xi '. . . ) "
_ r

n iEC 1 r i r

Little is known concerning the asymptotic properties of such statistics,

as noted by Serfling [15]. For kernels of degree r=2, Brown and Kildea [2]

considered statistics of the form S = h(X.,X.), where k is fixed
n (i, J)ECK1 nK,n

and for each n, C Kn is a collection of pairs (i,j) with 1 < i < < n

balanced in such a manner that each positive integer less than or equal to n
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is present in exactly 2K pairs in C K,n . These statistics are called balanced

incomplete U-statistics or reduced U-statistics, and are clearly a special

case of the weighted U-statistic with weights of 0 or 1 only. Brown and

Kildea show that Sn, properly standardized, is asymptotically normal. Estimates

based on reduced U-statistics are asymptotically equivalent to those based on

the corresponding U-statistics, but require far fewer steps to compute. Brown

and Kildea also obtain asymptotic normality in some cases when the balancing

condition is relaxed.

Sievers [17] considered the simple linear regression model Y. a + Bx. +1 1

e., 1 < i < n, where a and 0 are unknown parameters, x1 ,...,x n are known

regression scores, and el, .. .,en are i.i.d. random variables. He considered

inferences for 0 based on a weighted rank statistic defined by

n-i n

T = Y Y a ij(Yi - - x., Y 3 - - Ox.)

i=l j=i+l1 ))

where (u,v) = 1 if u < v and 0 if u > v. The weights are arbitrary, except

that a.. = 0 if x. = x.. Note that the when the slope parameter has value 8,

then T is a weighted U-statistic. Sievers proved asymptotic normality of

T a under restrictions on the weights a.j, and developed tests and confidence

intervals for the value of the slope parameter a based on T .

Shapiro and Hubert [16] consider weighted U-statistics with kernels of

order r=2, and proved asymptotic normality if E[h(XIX )2 < and

S 2 n 2 0V ij Y Wk-n
i'j k=i

and

2 2
max w. / - 0

*"'-"" l<i<n -n k=l k'n
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n
where w. = X w... This result is then used to obtain asymptotic normality

j=1
of permutation statistics of interest in biometry (Mantel and Valand [14)),

geography (Cliff and Ord (5]) and clustering studies (Hubert and Schultz 112].

Kepner and Robinson [13] considered weighted sums of multivariate functions

with kernel of order k, and generalized the asymptotic normality results of

Brown and Kildea [2] and Shapiro and Hubert. Note that the results of hese

papers and the present paper are valid when the kernel h and weight f :tion

w are replaced by sequences h and w satisfying the conditions assu
n n

Let U n= w(iI ... ,i r)h(Xi ,X i )iEC r

.where [ denotes the sum of over all combinations i = {i? ...Pi r  of

integers from {1,2,...,n}. Introduce the function g by g(Xil) =

E[h(Xi . . .,xr ) IX.l]' and the sums of weights

w = w~i) = Iwci,i2... ir
Si 9i 2 i i r

1 2 r
{i,i2,..i rIE C

and w.. =  w(i) = [ " w(i,j,i 3 ,..., ri )r1) i i~ - i ir
i3 r

{i,j,i 3 ,...,iIr} E C

n~~ ~ 3n ^
Let r n 2 n s w = a g , and t= n w..

il i=l i=l j=i+l z Accesion ForNTIS CRA&,

The projection of U is given by DTIC TAB 0n Unannournced D]
Justificatloil

n, .. ........----. ........ "n E[U-ni ..
U~~ i~l By.tZ

Dist ibution

n Availability Codes

= i i w(i1 , .... ir)Eth(X . )jXi]  ....r Avail and/ori=i C i ir /Dist Special
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W w(iI ... ,r)g(X i j

. iEC

n
I w ig(Xi )

or alternatively

n r n
n I E[U nXi) w(i ... i) r E[h(X l .. ,X X I

,, .w(i I , .... i r ) [g(X il+---+glX i

iEC r

2 2 2Let = Var (g(Xh C = Var (h(X1 ...,Xr)), and a = Var(U n). Calculate

^2 2 2  n 2
Var(U ) w. Var(g(X)) C w..

fn n i=l Yg i=l.

* Three conditions on the weights are required for the statement of the

result.

Condition (1): There exists B < 1 for which

W2 2 62
maxw < (Bs /r)A(s/rn) for all n > r +1

- n n n
": l<i<n

2
Codtin(2.max w ij 1 -1 11/3 s-9 [t n log(WhCF-sn5r-2t 1-

max w.

Condition (3): t < Cr /s for some C, 0 < C < c.
n n n

Theorem: If h(X1,.... Xr) has finite absolute third moment and the weights

satisfy Conditions (1), (2), and (3), then

SI I P (60 <x ) () o (r /s 3) as n .nln- n n

The most restrictive condition on the weights is Condition (2), which

is derived from the characteristic function bounds in the Fourier analytic

approach to the Berry-Esseen result. With Conditions (1) and (2) satisfied,

the theorem holds for Un / . Condition (3) permits replacement of a byn n ,,. n

n

-4-
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The present paper generalizes the result of Callaert and Janssen [3],

since if w(i) = 1 for all i, conditions (1), (2), and (3) are satisfied,1

and in this case the rate of convergence is O(r /s ) O(n- ). For the
31) n

case of unequal weights satisfying 0 < A < w(i) < B for all i, the Theorem

-I
applies and provides an O(n ) rate of convergence. In fact, one sufficient

condition for the convergence rate O(n is

max s..
(*1) < B,

min w.. -
1J

which holds for the above-mentioned cases in this paragraph. One may observe

from Conditions (1), (2) and (3) that the bound on the convergence rate

depends on the weights only through their sums w.., so individual weights

may differ greatly without violating the hypotheses of the Theorem.

2. Proof of Theorem

Denote (U n-U n)/ n by A . Note that

n n n InX ' r il•...,i

where Y. = h(Xi .... X) - g(Xil)- "'" -g(X. )"

1 r r r

Split A into two parts A' and A" = A - A', with
n n n n n

cn cn cn

A'- . W(il, ...,ri ) y . .y
ill i2=il+1l i+ i =i +II

1 1 r r

Restrictions on the choice of c are found which provide the rate ofn

converqenc, O(r /S ) for bounds on several terms to be estimated. Condition
n n

(2) insures the existence of a choice of c which satisfies all of thesen

restrictions simultaneously. [This corrt sponds to the analysis of order bounds

for c and d ir section 3 of Callaert and Janssen [31.]

11 -5- .
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For any sequence a of constants, an elementary calculation givesb n

sup I P(U /UA < X) W (X)j
x n n -

< supIP(S + A' < x) - (x) I + P(IA"I > a) + O(a
-X n n - n - n n

Then, letting &' denote the characteristic function of random variable X, for x>Q,

0s3/rn t-le-t2/2 -S A' (t) Idt

An n

1e-t 2 Cs3 /rntt) - t

< f0nrnt- 1 -t2  (t)Idt + f IJ t M St.
- 0 S 0 sS +A' )dt

n n n n

Since S is a sum of independent random variables with finite absolute thirdn

moments, a standard Berry-Esseen argument (see e.g. Feller [8], p.5 44) yields

E s3/rnt1 et-2
n n t-etS/2 n _ (t)Idt < Civ o 3 rn/s3

0n 1 3 9

for an absolute constant C1, where V 3 = Eh(Xl ... x) 13 , and we may take

a3/\* = 0g/V).

.4 g 3'

The majority of the proof determines the bound for the remaining

integral. Writing q for the characteristic function of gn(X1), with e as

above, we have 1 2 a2

I1(0)1 < e- 3 q for 181 < 6og

Begin by estimating

I% (t) - 4S +A' (t)
n n n

= IE [e itSn (l-eitAA)]I

< E [e itSn itAn ] j + I t2 E(A') 2,
2
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and note that by independence,

IE[eitSnA']
n

-(1Sit -iki i w~i I  "wEge

i, j<cn.rj
n-j

[ x E wiit W g(Xi "+...+Wir g(Xi r ) 
) Yi . r ]

For a fixed combination i = {i. ... i 1, assuming Condition (1) holds, fori! - 'r'

0 < t < 6 s3/r
n n

E eit n  ^-i
* Ee~n ~ W~(Xk)] kii nWk1)

~~~~k=i. jw g x k  = kn

.. < e- 37 ( n  ki I ..... i r

t 2 (1-B)
e 3

3 1 1for allik.since 0 < t < Es /r n < esn/max w. implies wknt < g f
n n n1<i< 1

Also, for each fixed i, since E[f(X. y . ,i r  = 0 for any bound Borel measurable
i. i r

4 function f,

r•n .j, E wi'g(Xi )y.
-"jl

-nx i.glX 1 n
E[{eitn1 .- w g(X. ) YE J. n "1. y1.

. j=1 j 3 "

-7-
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< tO n w. w EIg(X. ) g x )Y

i. ik r k i '

~< (r+l'v 3 t22 CY lij

Combine these estimates to obtain

EeitsnAnt

< (r+l) (-B) {w(il, +..+ 2}

i" <c n r

iEC

To bound this sum, write

v2 2L w(if...,i )[w. +..+w. + 2w. w. ...+2w. w. ].
1 C r 112 r-i r

First,

2

iECr
-n 2

it{W.

n
w 3

II" and similarly for each of the squared term's contributions. For the cross-

~product terms, by 11older's inequality,

iT: w ~

_ 1= 1-i 1 -



[ ~w(iI .... i )w.w
iCC ' r 11 12
iEC 12

n n
Y X {w w wi 2 , .... i

.% il~Yl i2i 1i 2 i ili 2
111~=1 1i 12  1 2 ''

.%i E C

- n n

i -=l i2=f111 12 1112

Sn n n n

'4..

n
< ww 3

0 There are (r) cross-product sums, each with a coefficient of 2, so combining
2

the bounds, the overall sum is bounded by

2 n 3
r L w ..*

"C,. 3

Hence ford <
n- r n

'dn t - I JE [eits A]Idt

r 2 (r+l)V n d 2
-.< 3 3  d n 2 (1-B)

3 0t e 3
Gn

<- r2(r+l)V 3 rn. 3 v7 I_)3/2

a 3 " 3 4
9 n.4. g n

""'
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m _ I , .. . -,,r, . .- , . = . . - . , - - . - -- - ' -J " .- -

independent of the choice of d . Note also that the choice of c played
n n

no role in the computation of this bound. To bound El(An)2|, note that

ELY. Y. ] 0
1 r "' 1 ... PJr

if the combinations i and j contain zero or one common indices. [See Grams

and Serfling [9]. otherwise,

~ ,~,2 O2
E[Y. . < (r+l)2

,r r - h

^2 2Then a E[(A')
n n

E [~ ~ w(i)w(i)Y.Y.]

W(i)w(j) E [YiY ]

in jj_>2

22 n n
< (r+l) ahL f -I 12 w.w_)

i 2=Yi2=i ii} IJ--

2 2 2a2 w.

(r+l) 2h  illi

a. =1i=i +1 1 21 2 1

(r+l) 22.t.

2

The choice of d id determined by the bound for E(A') . Choosing d = 2 t 2s 2,

n n n n n

the bound becomes
- 1 2fdn

I E(A') f t dt
2 o

<(r+1)2 2-2 d 2"h Ohn tn n

< (r--) 2 2 9-2 r /s3

"-n n

-0O
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The estimates above provide the bound required for IP(G^-U <x) - (X) I for
n n-

all n such that s 3/r < d

3
For the case when d < r /s write

E [e its (1-itA')

it w(X rit enn

< Ina w n it(ieA'
'

k>ck
- n

<_ 3( n E~ wk -e [1_ i t A ' l
1 -2 2  r

< t EIA'I e 3  k>cn wkgtC2

The bound for EIA' I is obtained from Lyapunov's inequality ([6], p. 47)

and the previous bound for E(A') 
2

E I < N 2< (r+l) a a- tEJA' < E (A') _ hn n

Choose c so that

2 > 3a2-1d log(-2 ls r- 2t ).
k k- n g n n n n

k>c
n

Then

Cs /r
fd n n OS (t ) -S+A' (t) Idt

-n

C -1] -



3 I^2-12 2
<(r+l) ad n e fn n e 3 ntl k>c dt

n n

-s - 1 a2 2< (r+l)a O- t n e--nn ek>Cn Wk)
- n~ n n\ r n /

n

= E(r+l)a h-ir /s 3 .hg nl n

Note that inequality (*) is satisfied if

(n-cn) min w. > 3a- 2 s n 2 r-lt log(. s5 r-2t ),
l<i<n g n hg n n

providing a lower bound for n-cn to be used later in the proof.

* To handle A", define . by

UA n n

• O~n" = Z + {iXg wiYi} = Ic+l j
J=Cn 1_ - j=c

n

Since E[j+lli, i < j] = 0 a.s. for all j, the 4. are martingale summands,
cn+k

and by optional skipping, Vk = X 4j forms a martingale, k = 1,2,...,n-c
j=cn+l n

By a theorem of Dharmadhikari, Fabian, and Jogdeo [7], for k =.n-Cn,

EIVn1 3  < 212(n-c ) 3/ 2 max E 3
n Cn +l<j<n

However, for fixed j > c +1,

k

Wk = [ { [ w.Y.} , k=l,2,...,j-I
i=i i 3j, i

is also a martingale. A second application of the theorem of Dharmadhikari,

Fabian, and Jogdeo [7] yields

-2-
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EICj1 3 = EI .j_113 < 212 J-1 ?/2max El Z wiYJ 3

Now - -

El 1 wiYi13 <  y y y w. w. w. E Y. YYiI
- 2,i 3j, i j, i 2 3 ±' -2 -3

-A 3

11 '2'_i3 )j,i -1 -2 -3

3 3
(r+l) V W.

Therefore,

EIA"1 3 < 2 24(r+) V (n-c 3/2 n 3/2[max w. .]3.
3 n ij 1)3 n

By the Markov inequality,

P(IA"I> an< a- 3EINI3.
n n

Taking awn = ((n-c) 3/ 3/n maxi yi

P(IA"I > a n ) < (r+l) 3 3a n

if c is chosen so that

r8/3
n1

".n - 6 2
non max w.

r n

then a < -
n- s3

! . n

Finally, if both conditions concerning n-c may be satisfied

3n

simultaneously, the O(r n/S ) rate of convergence is obtained for 
U / Y

This provides the condition

2 11/3

max w iij < 1 rn t log(a-1is5r-2 t).

2in w. -3n 9 n h g n n n
1 n

-13-



Note that the condition depends on the weights only through their sums w.
1

and w...
1]

To replace &n by C, note that

VarlUn ) =.wiw Efh(X i, .... Xi )h(X1 ,...,X. )]
i -- 1 r r

-- .w.wC 2 + I 1w w.. . ... h(x ,....

1i 9 1 r ir

in j = j in j 1>2

n w2C? + I jw w.E .h(X. ,...,x i )h(X. ,...,x. )]g " ~ i I i 1 1_ 3 iI r]

inl > 2

implies n - h_ h jwj
n -~ iWCj h j

-!n il 1>2

Therefore

an  Ion On
--l < +-l

a. nn.2 "2
(n

^2

2 2

If t < c r n/S , then there exists a constant K such that

-14-



3 -l13P(G U < (1-Kr /s )X) < PNO U <x) < P(G U < (l+Kr /s Wxn n- n n - n ni n n- n n

for all positive real numbers x, with a similar inequality for x < 0.

By the assertion of the theorem,

P(u - U < x)
n n -

<P(C n U n< (l+Kr n/s Wx

n n n n

< c ()+r /s 3x + Lr /s - 2 rI
-n n n n

< IPx) + Lr Is 3 2T x/

n n

Using similar reasoning for the lower bound, the replacement of Ur by n

is shown to preserve the convergence rate r /s 3

n n

% V
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