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INTRODUCTION

The method of sieves is a technique of nonparametric

estimation in which estimators are restricted by an in-

creasing sequence of subsets of the parameter space with

the subsets indexed by the sample size. The need for this

technique arises in situations where the parameter space

is too large for the existence or consistency of uncon-

strained maximum likelihood or least squares estimators.

Grenander [10] developed the abstract theory of the method

of sieves and provided a wealth of examples illustrating

its use.

Geman and Hwang [9] have shown that the method of

sieves leads to consistent nonparametric estimators in very

general settings. In practice, the sequence of subsets of

the parameter space (which comprise the sieve) needs to be

carefully chosen to exploit the specific structural prop-

erties of the problem. It would be desirable to know how

to construct the sieve to yield an optimal rate of con-

vergence of the sieve estimator, but this question has

only been studied in some special cases.

In some nonparametric problems, typically where a

monotonicity condition holds, the method of maximum like-

lihood is directly applicable without the need for a sieve.

For instance, under monotonicity of the probability density

function the maximum likelihood estimator, based on an iid

sample, exists and is consistent in Ll-norm, see Grenander

.:



[10, p. 402]. Similar results have been obtained for mono-

tone failure rate functions [15), and unimodal densities

[19]. However without order restrictions the direct method

of maximum likelihood usually fails in nonparametric prob-

lems. The method of sieves then presents itself as one of

several alternative approaches, others being the method of

penalized maximum likelihood*, orthogonal series methods,

kernel methods*, spline methods and the Bayesian approach.

These techniques are themselves closely related to the

method of sieves, see the discussion on this matter in

Grenander [10, p. 7] and Geman and Hwang [9, p. 403]. The

distinguishing feature of the method of sieves is that it

makes use of an optimization principle subject to con-

straints which depend on the sample size. The following

examples of the method of sieves supplement those already

mentioned under the entry METHOD OF SIEVES.

TRANSLATE OF WIENER PROCESS

Let W(t), t k 0 be a standard Wiener process* and a

an unknown function of t c [0,1]. Suppose that n inde-

pendent identically distributed (iid) copies Xi,

i = 1 ... , n of the signal + noise process

t

X(t) = f a(s)ds + W(t), t c [0,1] (1)
0

are observed. The parameter space for this problem is
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L2[0,1], the space of square integrable functions on [0,1].

Grenander [10, p. 424) considered a sieve of the form

Sdn a(t): at) X arr(t)} (2)
n r= 1

where (0r , r 1) is a cobmplete orthonormal sequence in

L2[0,1]. The maximum likelihood estimator contained in Sd

n
is given by

d
() n
& (n)W(t) = & n)r~t) (3)

r= 1

* where

(n) n;ar I f Or (rt)dX i(t)-

It can be shown that (n) is consistent in L 2-norm as n-c

provided d + and d /n- 0, see Nguyen and Pham [18] and
n n

McKeague [17]. The estimator (3) was first studied by

Ibragimov and Khasminskii [11] who defined it from a point

of view suggested by Cencov's [5] method of orthogonal

series for density estimation*. Ibragimov and Khasminskii

showed that within the parameter space of Lipschitz func-

tions of order y, 0<- l, the estimator a(n) can be de-

signed to attain the optimal rate of convergence (in the

sense of an asymptotic minimax property) over all estima-

tors. The optimal rate of convergence of the mean square

error is O(n -2y/ ( 2 I) and this can be achieved by using

the Fourier sieve

.a. :
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n ae2irt 1
Sd  =a: a(t) = r

n r=-d

with dn = [n/ ) , where [ ] denotes the integer part.

Another sieve for this problem is given by

a{rcL 2[0sl]: 1 a, 2

where < , > denotes the inner product in L [20,1] and

Y -2 < , . This sieve has been studied by Geman and Hwang
r2l r
[9], and Antoniadis [3] for general Gaussian processes.

* Antoniadis showed that this sieve estimator is consistent

1-C
* .. provided m nf and mn = O(nl ) for some c > 0. Beder [22]¢t<4".n n

has studied sieves of the form (2) for general Gaussian

processes. Other approaches to the problem can be found

in [14, 16, 20].

INTENSITY OF A POINT PROCESS

Let N(t), t , 0 be a point process* with intensity

PAMe I~t a i MY (tV (t) (4)

*Q j=l

where al, ... , ap are unknown functions and Y1  ... , Y are

observable covariate processes. Practical examples of this

model arise in reliability and biomedical settings. For

instance, suppose that a subject has been exposed to p

carcinogens. Let X be the time of the initial detection

of cancer. Then a plausible "competing risks model" for

S_,
O -' '

5 ~



the hazard function X(t) of X is given by (4) where

alp ...,0 a p represent the changes in the relative hazard

rates of the p carcinogens with age and Y. (t) is the cumu-
th

lative exposure to the j carcinogen by age t. The model

(4) was introduced by Aalen [1, 2] as an alternative to

the proportional-hazard regression model* of Cox [7].

Aalen introduced an estimator of the integrated hazard
t

functions J a (s)ds.
0

The method of sieves is able to provide estimators of

* the a.'s themselves. Suppose that n iid copies of the

processes N(t), Y.(t) are observed over 10,1). In the

case p = 1, Karr [1] used the sieve

S. S = {ae Ll[0,1]: a is absolutely continuous,

a <a<a -1 and IQ' 1 dala,
n n n

and showed that the maximum likelihood estimator of a1

restricted by this sieve is strongly consistent in Ll-norm

• -'" where a = n w ith 0 <n< . For models with more than~n

one covariate McKeague [17] has used the orthogonal series

sieve (2) to obtain consistent estimators of a1 , ..., a

for a general semimartingale regression model which con-

tains the point process model (4) and diffusion process

models as special cases.
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STATIONARY PROCESSES

Some recent apnlications of the method of sieves have

been motivated by problems in the area of engineering known

as system identification. A stationary process is observed

over a long period of time and the engineer seeks to recon-

struct the "black box" which produced the process. In

practice this amounts to estimation of a spectral density

or a transfer function and similar considerations which led

to the use of the method of sieves for probability density

estimation are involved here.

Chow and Grenander [6] consider estimation of the

spectral density of a stationary Gaussian process {X

t=1,2,...} with mean zero and covariance rt = E(Xs X s+t)
7it

= fe f(X)dX, where f is the spectral density. They em-
- T

ploy a sieve of the form

S f: f=lI/g andg]dX51

where n is the length of observation time. They show that

an approximate maximum likelihood estimator of f restricted

to S is strongly consistent in LI[-r,r] provided

'(1-6)
= n where 0< 6<1.n

Liung and Yuan [13] consider the problem of estimating

the transfer function of a linear stochastic system given

by
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iGo
y(t) - " gku(t-k) +w(t)• t - 12.

, Here u(t) and y(t) are the input and output, respectively,

- at time t and {w(t)} is supposed to be a stationary process.

A reasonable sieve for the transfer function
M-ik-

h(w) = I gke , WE [- ,T], is given by
k=l d

n -ikw
Sd h: h(w)= I gke
n k=l

*. where n is the length of observation time of input and out-

put processes. The results of Ljung and Yuan show that the

sieve estimator, formed by using the least squares esti-

mates of gl' ... g , is uniformly consistent provided

d = [nfa, O<.<,.n

Bagchi [4] has used the method of sieves to estimate

the distributed delay function a of the following linear

time-delayed system:

dX= a(u)xtu +

where {Wt, -M<t<w} is a standard Wiener process. The

sieve is given by

Sd c L2[-b,O]: a(u) = adrTr(U)
dT r=l

where (r , r l) is a complete orthonormal sequence in

L2 [-b,O] and T is the length of observation time of the

process X. Bagchi shows that the maximum likelihood

S
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estimator restricted to S is consistent in L2-norm pro-

vided d f - and d2/T - 0 as T w.
T T
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