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UNSTEADY AEROOYNAMICS OF AIRFOILS OSCILLATING IN AND OUT OF DYNAMIC STALL

C.M. Wang*, J.C. Wu** and L.N. Sankar
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

A solution procedure is presented for In the present work, a zonal solution
the computation of dynamic stall phenomena procedure is used to perform dynamic stall
encountered by arbitrary shaped airfoils calculations. This approach was previously
under arbitrary flow conditions. This developed for stationary airfoils of

procedure solves the unsteady, incompressible arbitrary shape experiencing massively
Navier-Stokes and the unsteady boundary layer separated flows (Ref. 5). Recently a number
equations using an efficient, zonal approach. of improvements have been made to this
A number of results for a modified NACA o01Z approach to reduce the number of grid points
airfoil experiencing dynamic stall are and the computer time required to predict
presented and compared with available separated flows (Ref. 6).The present work
numerical data. Qualitative comparisons with addresses the extension of the algorithms and
flow visualization experiments are also concepts implemented in References 5 and 6 to
presented. The present study also illustrates moving grids, and oscillating airfoils. Such
the effect of numerical viscosity on the an extension has resulted in a robust, useful
accuracy and robustness of the solution solver capable of generating the dynamic
procedure. stall load hysteresis loops in less than 30

minutes on a scalar machine such as the COC
CYBER 855 system.

INTRODUCTION The zonal approach used in this study

The problm of dynamic stall is an was motivated by a number of factors. In many
important area of research in the helicopter static and dynamic stall problems, the
industry, because of the large load separated flow is confined to one of the
variations, particularly the pitching momnt airfoil surfaces (upper or lower) and the
variations, that occur during this wake. On the other surface the flow is
phenomenon. Presently, the numerical modeling attached, and may be approximated by an
of this phenomenon is done primarily through unsteady boundary layer flow. The zonal

% a synthesis of existing dynami c stall approach presented here solves the
experimental data . This approach is highly computationally costly Navier-Stokes
empirical in nature. It also relies on the equations only in the separated regions. On
availability of a large body of experimental the attached flow side, the boundary layer
data covering a wide range of airfoil shapes equations are solved. This reduces the number
and flow conditions, of points where the Navier-Stokes equations

are solved by approximately a factor of two.
One of the earliest attempts to Secondly, since in the separated flow regions

numerically simulate the dynamic stall the length scales of the vortices of interest
phenomenon was made by Mehta (Ref. 1). In are large compared to the length scales in

this work the incompressible, laminar the boundary layer regions, a coarser grid
Navier-Stokes equations were solved in the may be used in the separated region. This
vorticity-strem function form using a finite also translates into fewer points and larger

difference solution procedure. This approach time steps in the separated regions.
was able to predict the major features of the

V. dynamic stall phenomenon, including the A second feature of the bresent zonal
formation and shedding of a strong leading approach is the ablty to bring the far
edge vortex. The laminar, compressible field boundaries closer to the airfoil. This

Navier-Stokes equations were used to compute ts achieved by a closed fom specification of
the dynamic stall by Sankar and Tassa (Ref. the velocities and/or stream function values
2). The effect of turbulence was accounted on the far field boundary using the
for in the works of Sha roth (Ref. 3) and Biot-Savart law. The use of smaller

Sankar and Tang (Ref. 4). The above computational domains allow the grid points

approaches are all based on the finite to be packed close to the solid surface, and
difference solution of the governing also allows the grid to stretch smoothly from
equations and require large amounts of the airfoil surface to the far field. This is
computer time and memory resources to an important consideration in numerical
accurately predict the dynamic stall solutions if second order spatial accuracy is
phenomenon. to be guaranteed.

The zonal approach uses an integral form of
' Post Doctoral Fellow, Member AIAA the kinematic equations to determine the
** Professor, Associate Fellow AIAA velocity and stream function values in the
t Associate Professor, Member AIAA
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separated regions, thus removing the need to H 2 )/r (2)
obtain the numerical solution of the 

(x ry , " XeYr

Poisson's equation for the stream function
iteratively. In the past, integral approaches This quantity may be determined analytically

such as the one employed here were not as if the conformal mapping is a Joukowski
efficient as expected because of the need to transformation. It may be numerically
repeatedly compute or store the geometric determined otherwise. The quantity #' is the
influence coefficients. In the present work, stream function in the rotating frame of
a Fourier series expansion of the vorticity reference, and is related to the stream
field along one of the coordinate directions function # in a stationary frame of reference
is used to simplify the evaluation of the through the following relationship:
velocities. 0' X 0 + (x2 + Y2)/2 (3)

Another important feature of the present
zonal approach is the procedure for the
determination of the surface vorticity, Finally, W is the vorticity

I generated at each time step to satisfy the no distribution, as observed in an inertial
slip conditions. The procedure described here frame of reference, and a is the angular
ensures that the global conservation of velocity of the airfoil.
vorticity is satisfied. This procedure allows
the surface vorticity distribution to be
determined with good accuracy, and also Boundary Layer Approximation:
permits the distribution of surface pressures
which depend on the vorticity gradient at the In the applications considered here, the
surface, to be calculated accurately. viscous flow region over the lower surface is

confined to a very thin boundary layer.
In the following sections, the governing Favorable pressure gradients exist over most

equations and the numerical procedure are of the entire lower surface. For this reason,
described. In a separate section, the in the present application, the streamwise
computer time and memory requirements are diffusion terms appearing in the vorticity
given. Finally, a number of numerical results transport equation were neglected, giving the
are presented for the dynamic stall following unsteady, parabolic partial
phenomenon experienced by a modified NACA differential equation for w:
0012 airfoil, and compared with available
numerical data and flow visualization
studies. 

2Wt + (Vx'). = v (a-W+ (4)

MATHEMATICAL FORUJLATION t

Governing Equations:
The above assumption allows the vorticity

In order to handle arbitrary airfoils field in the boundary layer region to be
undergoing arbitrary motion, a body-fitted, determined using a simple non-iterative
orthogonal O-grid system is first marching scheme, starting from the leading
constructed. In the present work, the above edge stagnation point.
coordinate system was constructed through an
analytical or numerical conformal mapping of Integral Formulation of the Kinematics:
the airfoil shape onto a unit circle,
followed by a distribution of nodes on the The kinematic relationships for the stream
exterior of the unit circle. This function may be reexpressed as an integral
distribution is such that a sufficiently expression for the velocity field in the
large number of nodes are clustered in the circle plane. If this is done, the following
vicinity of the airfoil. The integrl equation results:
(r, 6) circle plane used in this work is
referred to as the C- plane. The physical
plane (x,y) is referred to as the z- plane.

The governing equations for the unsteady 1 ff W Mh x of- Fo0
incompressible viscous flow past a rotating X x I * I- JJ%2 rodr +

airfoil take the following form in the circle
plane

T V x X 7 V 1 (Vxi).o(, 1-) - (Vxl)x(o)x(F-f0 )- r F 1odeo

7" x 7 2 - ,,412 1 5

- t2 + (2 x I * v2 In the above equation, 7 is the position
Ht +( vector of the point where the velocity is

computed. Also, r, is the variable of
"In the above equations, 1 is the scale factor integration. The term I contains the
In. tcontributions of the freestream. The line
of transformation given by integral over the unit circle is zero for
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stationary airfoils, but is a non-zero r
quantity for oscillating airfoils. The term f r
n appearing in the above line integral is an co(r) = ] (o o dr0  c0(1)/r (8)
o8tward pointing unit vector. 1

Integral Formulation for the Surface
Vorticity:

For a complete list of the recursive
The surface vorticity generated at every relationships between the various Fourier

time step should satisfy the zero normal and coefficients, the reader is referred to
tangential velocity conditions. The law of Reference 7.
conservation of vorticity should also be
satisfied. In the present application, the Once, the coefficients of the Fourier
integral relationship for the velocity at the series expansions are determined, tne
interior points may be used directly to velocity values at any point in the flow
determine the surface voriticity field may be found. In the present work,
distribution. The details of the surface this discretizatlon was used at all the nodes
vorticity determination are given in the in the computational domain where velocity
following section. values are needed, including the nodes within

the boundary layer region.

NUMERICAL FORMULATION Determination of Surface Vorticity:

Discretization of the Integral Equation for The surface vorticity values which are
Velocity: needed at every time step were obtained as

follows. The integral equation for the
velocity is applied at the airfoil surface,

In order to evaluate the velocity field Vat given by r1 in the circle plane:
any point in the computational field, the

* folloting strategy was used. The grid
generated using the mapping procedure may be oH2 7 x (7
thought of as a collection of cells. Inside 1 0 r drod o = I(r)
every cell the vorticity value is considered 2w J - ro 0  (
invariant in the radial direction. In the IT P (9)

6-direction, it was assumed that the
vorticity field may be approximated by the
following finite Fourier series:

N The right hand side of the above
r )H2 2 0 (r) equations is the contribution due to the

2 -[a (r)osne+$nsin ne] velocity of the fluid at the airfoil surface2 tn in the transformed plane, and is entirely due
nasl (6) to the rotation of the airfoil about a

pitching axis.

The two components of the velocity vector The Fourier series expansions for the
were also expressed as the following Fourier vorticity field are now substituted into the
Series expansions : above equation. The right hand side of this

equation is also expressed as a finite
N Fourier series expansion. All the terms which

a (r) N are multiples of the same sine or cosine term
V r + I [Can(r)sin nen(r)cos no] are then grouped together, and each group of

n2z  term is individually set to zero. If the
above procedure is followed, then ZN

(7) equations result for the 2N+1 coefficients of
the Fourier series for the vorticity

(r)  N distribution at the airfoil boundary. The
c0 (r) additional equation required to letermine all

v+ T + cnr)sin nO+dn(r)cos ne] the 2N+1 coefficients uniquely is the law of
nal total conservation of vorticity, given by:

When the above series expansions are 2rr o
41 r dr do + Z0A a 0 (10)substituted into Equation (5), the resulting jdd0 00 0

expressions may be analytically integrated
both in the @- and the radial directions.
This yields a simple, recursive relationship Where A is the area enclosed by the airfoil
between the coefficients of the series for in the physical plane. This approach gives
the vorticity, and the coefficients of the an explicit relationship for the Fourier
series for the velocity field. For example, coefficients for the vorticity distribution
on all node points located on a circle given at the airfoil, in terms of the vorticity
by rn constant, one obtains, field away from the airfoil surface. Note

that this approach is consistent with the way
the interior velocity components are

3



evaluated, and avoids any non-unique solution was used as the initial condition

specification of the surface vorticity. For a for the oscillating airfoil problem.

set of explicit relationships between the
Fourier coefficients of the surface vorticity When advancing the solution from one

and the interior vorticity, the reader is time step to the *next, the following

referred to Ref. 7. procedure is followed:

Numerical Treatment of the Vorttcity 1. The velocity values at all the interior

Transport Equation: nodes are computed using the Fourier
Series expansion approach discussed

In the separated flow regions, the earlier. The velocity values at the far

vorticity transport equation was discretized field boundary were also updated. The

as follows: contributions of any vorticity that had
left the computational domain through

1 convection was negelected in this step.

r r e 0 ~r 2. The vorticity values at the interior
1 "were updated (both the separated and the

2V6rr + 6 + boundary layer region) to get a first
6 r 6( estimate of the vorticity field at the

new time level. This value was
under-relaxed by an user input under

In the above discretization, 6 6 r etc. relaxation factor.

are the standard central diffepences wich
take into account the fact that the grid is 3. The vorticity values at the solid

not uniformly saced in the radial direction, surface were updated, to be consistent

The quantity 1, is the backward difference with the interior vorticity values.

gPerator pith respect to time. Tho operators

o eand r are four-point upwind difference Steps and 3 are repeated a numer of

oerators, rpatterned after the QUICK upwind times until the vorticity values at all the

scheme proposed by Leonard (Ref. 8). interior nodes and boundary nodes are fully
converged.

All the vorticity values appearing in
the upwind differences and the viscous term For additional details of the solution

were kept at the unknown time level. Thus the procedure, and its application to separated

vorticity values at all the nodes are coupled flow problems, the reader is referred to

to each other in a fully implicit manner. References 5 and 6.
These vorticity values were iteratively
solved for, using a successive line under
relaxation point scheme. The values of the RESULTS AND DISCUSSION

vorticity at the boundary were also updated All the calculations presented here are
simltaneously wth the interior vorticity for a modified NACA 0012 airfoil. This

ivalues. arfoil was chosen, because some well
documented numerical results for the laminar

In the boundary layer regions, the sam dynamic stall phenomenon, and some water
discretization was used, except the diffusion tunnel flow visualization studies are

term along the 8-direction were suppressed. available for this airfoil (Ref. 1,9). This
Since the flow velocities relative to the airfoil may be mapped onto a unit circle

grid are always from the leading edge to the using the following Joukowski transformation:
trailing edge on the lower surface for the
low reduced frequencies considered here, the C

- vorticity transport equation in the boundary Z u + C +
layer region may be solved using a simple
marching scheme. Since the boundary voriticty
values in the boundary layer region are

coupled strongly to the vorticity values in Here z z x + i y, and C z r exp(- ie). The
the separated region, these values change constants C, Y etc. determine the type of the
from one iteration to another. Thus, it is resulting airfoil shape. By a careful
necessary to solve the boundary layer selection of these coefficients, the airfoil
equations iteratively, along with the thickness, its camberline shape, leading and
vorticity transport equation in the separated trailing edge radii etc. may be controlled.
flow region,

The airfoil surface was represented by
50 nodes in the computations, clustered near

All the calculations were carried out by the leading and the trailing edge for maximum
starting the flow from rest implusively, and accuracy. In the radial direction 60 nodes
marching in time until a steady state or a were located. The stretching in the radial
periodic solution is achieved. In the case of direction Was such that a minimum of 15 nodes
the dynamic stall calculations, a steady were located within the boundary layer on the
solution was first obtained at the lowest lower surface. The location of the first
angle of attack experienced by the airfoil point of the wall in the circle plane was
during the dynamic stall. This steady state typically between 0.006 and 0.003 units.

4



All the oscillating airfoil calculations the airfoil trailing edge as shown in Figures

were done about a mean angle of attack of 10 2e and 21 and in the lift curve (Figure 3a).

degrees, and an amplitude of oscillation The pitching moment recovers nowever, as tne

equal to 10 degrees.Toe following cases were lift drops, as seen in Figure 3b.

considered:
, During the downstroke, the flow on tne

1. Reynolds Number 5000, Reduced Frequency airfoil gradually reattaches from the leading

based on chord equal to 0.25. edge to the trailing edge. The laminar flow
on the airfoil is unable to withstand the

2. Reynolds number 10000, 0.25 reduced relatively small adverse pressure gradients

'. frequency. that exist during this phase of the flow, and
a sequence of small vortices of positive and

3. Reynolds Number 1000, 0.25 reduced negative strength are shed into the wake.
frequency This accounts for the large oscillations in

the lift and moment forces shown in Figures

4. Reynolds number 5000, 0.5 reduced 3a and 3b. This is in contrast to turbulent
frequency flows (Ref. 3, 4) where similar variations

% are not observed during the downstroke.

A steady state solution at zero angle of The drag variations during the dynamic
attack was supplied as the initial condition stall process are shown in Figure 3c. Except
in all the dynamic stall calculations, at small angles of attack, the primary

contribution to the drag is from the pressure
drag.

In Figures 1 and 2 the constant
vorticity contours and streamlines in the Some numerical experiments were done to
rotating coordinate system are shown for case determine the effect of numerical viscosity
I. In Figure 3, the integrated airfoil loads due to the upwind differencing of the
are also shown.These figures reveal the slow convection terms, on the solution. In Figure
forward progression of the separation point 4, the load hysteresis for case 1, computed
on the upper surface as the airfoil pitches with a first order accurate upwind difference
up. A large amount of counterclockwise scheme is shown. The large numerical
(positive) vorticity is being shed into the viscosity associated with the first order
wake during this phase of the upstroke, upto scheme smears out a number of features
18 degrees airfoil incidence. The separated observed using the third order accurate
region remains confined to a narrow region on upwind scheme, and only a qualitative
the upper surface. The airfoil lift continues resemblance between Figures 3 and 4 is found.
to grow during this phase of the upstroke as
shown in Figure 3. Case 2, is similar to case 1 except the

Between flow Reynolds number is ihcreased from 5000
Between 18 and 19 degrees during the to 10000. In Figure 5 the lift and moment

upstroke, the shedding of the positive hysteresis loops are shown for case 2.
vorticity into the wake stops, and a region
of counterclockewise vorticity begins to grow Case 3 is similar to cases 1 and 2
on the upper surface as seen in Figures 1b except the Reynolds number was 1000. At this
and 26. The airfoil lift coefficient lower Reynolds number no clearly
experiences a momentary drop as shown in distinguishable leading edge vortex structure
Figure 3a. was observed, as seen in the streamline

contours (Figure 6). The associated lift and
Subsequently, a leading edge vortex of moment loops are plotted in Figure 7.

clockwise sense begins to grow near the
quarter chord as shown in Figure 1b. The This type of dynamic stall is often
strength of the vortex increases with the classified as the trailing edge stall.
airfoil incidence. The lift coefficient The last set of dynamic stall
begins to grow, but the moment coefficient
remains relatively unaffected. This is flow conditions as case 1 except at the
because the pressure suction peaks associated slightlydhigne redced freue of 0.5

wit th vrte ae to cos toth montslightly higher reduced frequency of .S.
with the vortex are too close to the moment This case was chosen because of the-.,axis (quarter chord) to influence the momentavibltyonuecldta(f. )ad

/coefficient. availability of numerical data (Ref. 1) and
water tunnel flow visualization pictures. The

As the leading edge vortex grows in physical phenomena at this reduced frequency
t bein a are very similar to case 1. The actual dropstrength it begins to drift downstream, at a in lift and moment coefficients are however

speed equal to approximatley half the mller than at the lower reduced frequency.
'. freestream velocity. The lift coefficient salrta ttelwrrdcdfeuny

r a o T t iIn Figure 8, the lift, drag and moment
continues to grow as shown in portion BC of hysteresis loops are plotted and compared
the lift curve In Figure 3a. The moment with the results of Mehta. Good quantitative
coefficient begins to increase in magnitude agreement is observed during the upstroke,
because the suction peaks associated with the but some discrepancies between the two set of
vortex are now sufficiently far away from the. ].pitching axis, and eventually moment stall data is found during the downstroke. In view
chu s, a nd e l of the differences in the solution procedures

occurs, as shown in portion BC in Figure 3b. used in Reference 1 and in this work, these
The lift stall occurs when the vortex reaches differences are not unreasonable. In Figure

5-J
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9, the streamlines in an inertial frame are 6. Wu, J.C., Wang, C.M. ana Gulcat, U.,
plotted at selected time levels and compared "Zonal Solution of Unsteady Viscous Flow
with the water tunnel observations of Werle' Problems," AIAA Paper 84-1637.
presented in Reference 1. Excellent agreement
between these two sets of data is found. 7. Wang, C.M. and Wu, J.C., "Numerical

Solution of Navier-Stokes Problems Using
In all the cases computed above, Integral Representations with Series

computer time per case ranged between 15 and Expansions," AIAA Paper 85-0034.
30 minutes on a CDC CYBER 855, depending on
the reduced frequency and Reynolds number. 8. Leonard, B.P., "A Stable and Accurate
This code is now being vectorized for a CDC Convective Modeling Procedure on
CYBER 205 computer system, and preliminary Quadratic Upstream Interpolation,"
calculations show that the computer time per Computer Methods in Applied Mechanics
cycle can be reduced to less than 2 minutes and Engineering, Vol. 19, 1979, PP
on this system. 59-98.

CONCLUDING REMARKS

An efficient solution procedure has been
developed for the prediction of the dynamic
stall characteristics of arbitrary airfoils
in laminar, incompressible flow. This
solution procedure is an order of magnitude
more efficient than existing finite
difference procedures for the same problem. A
two layer eddy viscosity model is being
implemented into this solver and will be used
to study turbulent dynamic stall.

* The computations reveal characteristics
similar to turbulent leading edge stall at (a) Angle of Attack 16.90'

Reynolds numbers 5000 and 10000, while at the
lower Reynolds number of 1000, a trailing
edge stall phenomenon is observed. The effect
of higher reduced frequencies is to reduce
the lift and moment drops when stall occurs.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Army (b) Angle of Attack 18.341
Research Office under the Center of
Excellence in Rotary Wing Aircraft Technology
(CERWAT) program.

REFERENCES _

1. Mehta, U.B., "Dynamic Stall of an
Oscillating Airfoil," Proceedings of the
AGARD Conference on Unsteady
Aerodynamics, AGARO CP-227, September (c) Angle of Attack 19.84'
1977.

2. Sankar, L.N., "Reynolds Number and
Compressibility Effects on the Dynamic
Stall of a NACA 0012 Airfoil," AIM.
Paper 80-0010. / ,

i'- '. 3. Shamroth, S.J., "Calculations of __ /___
Oscillating Airfoil Flowfield via the _ _--_ _"_

Navier-Stokes Equations," ____-- ___--

AFOSR/FLSRL/University of Colorado
Workshop on Unsteady Separated Flow, (d) Angle of Attack 19.53,
August 10-11, 1983.

4. Sankar, L.N. and Tang, W., "Numerical
Solution of Unsteady Viscous Flow past Figure 1. Vorticity Contours around an Oscillating
Rotor Sections," AIAA Paper 85-0129. NACA 0012 Airfoil. Reynolds Numoer 5000. 0.25

5. Wu, J.C. and Gulcat, U., "Separate Reduced F-epuency.

Treatment of Attached and Detached Flow
Regions in General Viscous Flows," AIAA
Journal, Vol. 19, No. 1, pp 20-27, 1981.

6
.* 'A % R 4*,'.-



(a) Angle of Attack 12.82,

(of )t Angeo tak= 17.82i

Figure 2. Streamlines in the Rotating Frame around
an Oscillating NACA 0012 Airfoil. Reynolds Number
5000. 0.25 Reduced Frequency.

(b) Angle of Attack 16.901

(c) Angleo tak 1.4 ANGU. OF ATTACKC

AT (a)

AIGL ATTC

-~ (b)

() Angle of Attack 20.*3 DEL

(c)

Figure 3. Lift, Moment and Drag Hysteresis Loops
% for a NACA 0012 Airfoil. Reynolds Number 5000,

0.25 Reduced Frequency.
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Figure 4. Lift Hysteresis Loop computed
Using a First Order Upwind Scheme. NACA 0012

Airfoil, Reynolds Number 5000, 0.25 Reduced
Frequency.

C. Angle of Attack 216.13 1

* Figure 6. Streamlines in the Rotating Frame around
an Oscillating Airfoil. Reynolds Number 1000, 0.25
Reduced Frequency.
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* Figure . Lift and Moment Hysteresis Loops atr

Angl of ttac 19.1 tNACA 0012 Airfoil. Reynolds Number 1000. 0.25
Reduced rrequency.
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Angle of Attack 20.

ANL FATTACKM

ANGLE OF ATAC

.7 Figure 9. Comparison of Streamline in the Inertial
~- Frame with Water Tunnel Observations. Reynolds

Number 5000, 0.5 Reduced Frequency.
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ANGLE o ATTACK

Figure 8. Comparison of Lift and Moment Hysteresis
Loops Computed Using the Present Scheme with the

*Results of Mehta. Reynolds Number 5000, 0.5
* Reduced Frequency.
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