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UNSTEADY AERODYNAMICS OF AIRFOILS OSCILLATING IN AND OUT OF DYNAMIC STALL

C.M. Wang®, J.C. Wu** and L.N. Sankart
Georgia Institute of Technology
Atlanta, GA 30332

ABSTRACT

A solution procedure is presented for
the computation of dynamic stall phenomena
encountered by arbitrary shaped airfoils
under arbitrary flow conditfons. This
procedure solves the unsteady, incompressible
Navier-Stokes and the unsteady boundary layer
squations using an efficient, zonal approach.
A number of results for a modified NACA 0012
airfoil experiencing dynamic stall are
presented and compared with available
numerical data. Qualitative comparisons with
flow visualization experiments are also
presented. The present study also illustrates
the effect of numerical viscosity on the
accuracy and robustness of the solution
procedure.

INTRODUCTION

The problem of dynamic stall is an
important area of research in the helicopter
industry, Dbecause of the large load
variations, particularly the pitching moment
variations, that occur during this
phenomenon. Presently, the numerical modeling
of this phenomenon is done primarily through
a synthesis of existing dynamic stall
experimental data . This approach is highly
empirical in nature. It aiso relies on the
avatlability of a large body of experimental
data covering a wide range of airfoil shapes
and flow conditions.

One of the earliest attempts to
numerically simulate the dynamic stall
phenomenon was made by Mehta (Ref. 1). In

this work the 1incompressible, laminar
Navier-Stokes equations were solved in the
vorticity-stream function form using a finite
difference solution procedure. This approach
was able to predict the major features of the
dynamic stall phenomenon, including the
formation and shedding of a strong leading
edge vortex. The Ilaminar, compressible
Navier-Stokes equations were used to compute
the dynamic stall by Sankar and Tassa (Ref.
2). The effect of turbulence was accounted
for in the works of Shamroth (Ref. 3) and
Sankar and Tang (Ref. 4). The above
approaches are all based on the finite
difference solution of the governing
equations and require large amounts of

computer time and memory resources to
accurately predict the dynamic stall
phenomenon.
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In the present work, a zonal solution
procedure is used to perform dynamic stall
calculations. This approach was previously
developed for stationary airfoils of
arbitrary shape experiencing massively
separated flows (Ref. 5). Recently a number
of improvements have been made to this
approach to reduce the number of grid points
and the computer time required to predict
separated flows (Ref. 6).The present work
addresses the extension of the algorithms and
concepts implemented in References § and 6 to
moving grids, and oscillating airfoils. Such
an extension has resulted in a robust, useful
solver capable of generating the dynamic
stall load hysteresis loops in less than 30
minutes on a scalar machine such as the CDC
CYBER 855 system.

The zonal approach used in this study
was motivated by a number of factors. In many
static and dynamic stall problems, the
separated flow is confined to one of the
airfoil surfaces (upper or lower) and the
wake. On the other surface the flow is
attached, and may be approximated by an
unsteady boundary layer flow. The zonal
approach presented here solves the
computationally costly Navier-Stokes
equations only in the separated regions. On
the attached flow side, the boundary layer
equations are solved. This reduces the number
of points where the Navier-Stokes equations
are solved by approximately a factor of two.
Secondly, since in the separated flow regions
the length scales of the vortices of interest
are large compared to the length scales in
the boundary layer regions, a coarser grid
may be used in the separated region. This
also transiates into fewer points and larger
time steps in the separated regions.

A second feature of the present 2zonal
approach is the ability to bring the far
field boundaries closer to the airfoil. This
is achieved by a closed form specification of
the velocities and/or stream function values
on the far field boundary using the
Biot-Savart law. The use of smaller
computational domaing allow the grid points
to be packed close to the solid surface, and
also allows the grid to stretch smoothly from
the airfoil surface to the far field. This is
an important consideration in numerical
salutions if second order spatfal accuracy is
to be guaranteed.

The zonal approach uses an integral form of
the kinematic equations to determine the
vaelocity and stream function values in the
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.;_‘: separated regions, thus removing the need to HZ = -

§- obtain the numerical solution of the (xp¥g = Xg¥e)/r (@
, ,\..j Poisson's equation for the stream function
o iteratively. In the past, integral approaches This quantity may be determined analytically
P such as the one employed here were not as if the conformal mapping is a Joukowski
. efficient as expected because of the need to transformation. It may be numerically

. repeatedly compute or store the geometric determined otherwise. The quantity v’ is the
t- influence coefficients. In the present work, stream function in the rotating frame of

. a Fourier series expansion of the VOI‘t"City r‘f.r.nc.' and is related to the stream

" field along one of the coordinate directions function v in a stationary frame of refarence
is used to simplify the evaluation of the through the following relationship:

_;!-;. velocities. 2 2
o 'z g+ Q(x° + 2 3
. Another important feature of the present ' ’ ( ¥ (3)

s zonal approach is the procedure for the
ad determination of the surface vorticity, Finally, w is the vorticity
- generated at each time step to satisfy the no distribution, as observed in an inertial

. S]1D conditions. The procedure described here frame of r.f‘r.nc.' and g is the angu].r

~ ensures that the global conservation of velocity of the airfoil.

o vorticity is satisfied. This procedure allows
L the s:rfuco vorticity distribution to be

determined with good accuracy, and also Boundary Layer Approximation:
" permits the distribution of surface pressures y Hayer fepra

.:_: which depend on the vorticity gradient at the In the applications considered here, the
N surface, to be calculated accurately. viscous flow region over the lower surface is
Nj confined to a very thin boundary layer.
e In the following sections, the governing Favorable pressure gradients exist over most
) equations and the numerical procedure are of the entire lower surface. For this reason,

A described. In a separate section, the in the present application, the streamwise

Ll computer time and memory requirements are diffusion terms appearing in the vorticity

given. Finally, a number of numerical results transport equation were neglected, giving the
o are presented for the dynamic stall following  unsteady, parabolic  partial
- phenomenon experienced by a modified NACA differential equation for wu:

0012 airfoil, and compared with available .

D numerical data and flow visualization 2
o studies. "Z“t s (TXF) V= (’a?g . _'1: %) (a)
. MATHEMATICAL FORMULATION

-_"\

-,j. Governing Equations:

- The above assumption allows the vorticity
In order to handle arbitrary airfoils field in the boundary layer region to be
o undergoing arbitrary motion, a body-fitted, determined using a simple non-iterative
N orthogonal  0-grid  system is  first marching scheme, starting from the leading

constructed. In the present work, the above edge stagnation point.

-l coordinate system was constructed through an
Eh analytical or numerical conformal mapping of Integral Formulation of the Kinematics:

- the airfoil shape onto a unit circle,

K. followed by a distribution of nodes on the The kinematic relationships for the stream
S exterior of the unit circle. This function may be reexpressed as an integral

distribution is such that a sufficiently expression for the velocity field in the

c large number of nodes are clustered in the circle plane. If this is done, the following
® vicinity of the airfoil. The integral equation results:

T (r, 08) circle plane used in this work is
NS referred to as the (- plane. The physical
[ plane (x,y) is referred to as the z- plane.

\: The governing equations for the unsteady ) 1 H w R x (F - o) .
o incompressible viscous flow past a rotating Vx¥ =3 - ] rodryde,
o airfoil take the following form in the circle [F = vl

plane :

:'{. Tx§ed L [ (T@)F(P=F ) = (F)x(R,)x(F=F )

:.r: % IF -7 |2 "odeo

e o
e VxVs-wK (5)
. . 2 . 1

", In the above equation, T is the position
= Hwg ¢ (7 x )0 = w77 (1) vector of the point where the velocity is

I computed. Also, r, s ;ho variable of
CC integration. The term contains the

j-.' i: :::n:::::n:?::t;?c:"a :y“ the scale factor contributions of the freestream. The line
- integral over the unit circle is zero for
&
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stationary airfoils, but 1is a non-zero
quantity for oscillating airfoils. The term
n_ appearing in the above line integral is an
oltward pointing unit vector.
for the Surface

Integral Formulation

Vorticity:

The surface vorticity generated at every
time step should satisfy the zero normal and
tangential velocity conditions. The law of
conservation of vorticity should also be
satisfied. In the present application, the
integral relationship for the velocity at the
interior points may be used directly to
determine the surface voriticity
distribution. The details of the surface
vorticity determination are given in the
following section.

NUMERICAL FORMULATION

Discretization of the Integral Equation for
Velocity:

In order to evaluate the velocity field V at
any point in the computational field, the
following strategy was used. The grid
generated using the mapping procedurs may be
thought of as a collection of cells. Inside
every cell the vorticity value is considered
invariant in the radfal direction. In the
e-direction, it was assumed that the
vorticity field may be approximated by the
following finite Fourier series:

N
(r)
w(r, O)Nz 2 °°2 + 2 [a,(r)cosne+s sin ne]
nsl (6)

The two components of the velocity vector
were also expressed as the following Fourier
Series expansions :

ol") N
Vo= Z (a,(r)sin nesb (r)cos ne]
)

(7)
e (r) &
Vo = =55+ Z [cn(r)sin ne+d (r)cos ne)
n=]
When the above series expansions are

substituted into Equation (5), the resulting
expressions may be analytically integrated
both in the 6- and the radial directions.
This yields a simple, recursive relationship
between the coefficients of the series for
the vorticity, and the coefficients of the
series for the velocity field. For example,
on all node points located on a circle given
by r= constant, one obtains,

s mm§ g;&&: e,

.

.

co(r) = [ oy Rodry + c (1/r (8)
1

For a complete 1list of the recursive
relationships between the various Fourier
coeffictents, the reader is referred to
Reference 7.

Once, the coefficients of the Fourier
series expansions are determined, the
velocity values at any point in the flow
field may be found. In the present work,
this discretization was used at all the nodes
in the computational domain where velocity
values are needed, including the nodes within
the boundary layer region.

Determination of Surface Vorticity:

The surface vorticity values which are
needed at every time step were obtained as
follows. The integral equation for the
velocity is applied at the airfoil surface,
given by r=l in the circle plane:

uouit x (F - F)

1 If -
5= dr do_ = I(r)
2x = o 2 Te% %0
7 -+, (9)
The right hand side of the above
equations 1is the contribution due to the

velocity of the fluid at the airfoil surface
in the transformed plane, and is entirely due
to the rotation of the airfoil about a
pitching axis.

The Fourier series expansions for the
vorticity field are now substituted into the
above equation. The right hand side of this
equation is also expressed as a finite
Fourier series expansion. A1l the terms which
are muitiples of the same sine or cosine term
are then grouped together, and each group of
terms is individually set to zero. If the
above procedure s followed, then 2N
equations result for the 2N+1 coefficients of
the Fourier series for the vorticity
distribution at the airfoil boundary. The
additional equation required to tetermine all
the 2N+1 coefficients uniquely is the law of
total conservation of vorticity, given dy:

H wgHe v dr o, + 20A = 0 (10)

Where A is the area enclosed by the airfoi)
in the physical plane. This approach gives
an explicit relationship for the Fourier
coefficients for the vorticity distribution
at the airfoil, in terms of the vorticity
field away from the airfoil surface. Note
that this approach is consistent with the way
the interior velocity components are
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evaluated, and avoids any non-unique
specification of the surface vorticity. For a
set of explicit relationships between the
Fourier coefficients of the surface vorticity
and the interior vorticity, the reader is
referred to Ref. 7.

Numerical Treatment of the \Vorticity
Transport Equation:

In the separated fiow regions, the
vorticity transport equation was discretized
as follows:

ZET..M Lsus

1 1
pi S M :f 801w (11)

In the above discretization, etc.
are the standard central diffogoncu which
take into account the fact that the grid is
not uniformly spaced in the radial direction.
The quantity 6. is the backward difference
gporator Pth respect to time. The operators

and are four-point upwind difference
ogcrators. patterned after the QUICK upwind
scheme proposed by Leonard (Ref. 8).

All the vorticity values appearing in
the upwind differences and the viscous terms
were kept at the unknown time level. Thus the
vorticity values at all the nodes are coupled
to each other in a fully implicit manner.
These vorticity values were iteratively
solved for, using a successive line under
relaxation point scheme. The values of the
vorticity at the boundary were also updated
simultanecusly with the interior vorticity
values.

In the boundary layer regions, the same
discretization was used, except the diffusion
terms along the 8-direction were suppressed.
Since the flow velocities relative to the
grid are always from the leading edge to the
trailing edge on the lower surface for the
low reduced frequencies considered here, the
vorticity transport equation in the boundary
layer region may be solved using a simple
marching scheme. Since the boundary voriticty
values in the boundary layer region are
coupled strongly to the vorticity values in
the separated region, these values change
from one iteration to another. Thus, it is
necessary to solve the boundary layer
equations iteratively, along with the
vorticity transport equation in the separated
flow region.

A1l the calculations were carried out by
starting the flow from rest implusively, and
marching in time until a steady state or a

solution was used as the initial condition
for the oscillating airfoil problem.

When advancing the soluticn from one
time step to the 'next, the following
procedure is followed:

1. The velocity values at all the interior
nodes are computed using the Fourier
Series expansion approach discussed
earlier. The velocity values at the far
field boundary were also updated. The
contributions of any vorticity that had
left the computational domain through
convection was negelected in this steon.

2. The vorticity values at the interior
were updated (both the separated and the
boundary layer region) to get a first
estimate of the vorticity field at the
new time level. This value was
under-relaxed by an user input under
relaxation factor.

3. The vorticity values at the solid
surface were updated., to be consistent
with the interior vorticity values.

Steps 2 and 3 are repeated a number of
times until the vorticity values at all the
interior nodes and boundary nodes are fully
converged.

For additional details of the solution
procedure, and its application to separated
fiow problems, the reader is referred to
References 5 and 6.

RESULTS AND DISCUSSION

A1l the calculations presented here are
for a modified NACA 0012 airfoil. This
airfoil was chosen, because some welil
documented numerical results for the laminar
dynamic stall phenomenon, and some water
tunnel flow visualization studies are
available for this airfoil (Ref. 1,9). This
airfoil may be mapped onto a unit circle
using the following Joukowski transformation:

¢

2 +y+
C'c*v

Here 2 = x + i y, and { = r exp(- i6). The
constants C, y etc. determine the type of the
resulting airfoil shape. By a careful
selection of these coefficients, the airfoil
thickness, its camberline shape, leading and
trailing edge radii etc. may be controlled.

The airfoil surface was represented by
S0 nodes in the computations, clustered near
the leading and the trailing edge for maximum
accuracy. In the radial direction 60 nodes
were located. The stretching in the radial

periodic solution is achieved. In the case of direction was such that a minimum of 15 nodes

. the dynamic stall calculations, a steady were located within the boundary layer on the
N solution was first obtained at the lowest lower surface. The location of the first
B N angle of attack experienced by the airfoil point of the wall in the circle plane was
P during the dynamic stall. This steady state typically between 0.006 and 0.003 units.

')'\-

¢

P L T T
e .r-.r" % N ‘_ ol
‘)- o‘('l A e \\‘!\ ‘h .

S

on LR P S - 3
La e ok
t.!‘t"'né'- e ?.-‘ k." * A -' .l.- Q'l‘!"‘kO'A" .’i . ) ')' M ‘” *



Jalal

{ A1) the oscillating airfoil calculations the airfoil trailing edge as shown in Figures

were aone about a mean angle of attack of 10 22 and 2f and in the 1ift curve (Figure 3a).

‘f . degrees, ana an amplitude of oscillation The pitcning moment recovers nowever, as the

0 equal to 10 degrees.Tne following cases were 1ift drops, as seen in Figure 3b.

;o considered:

i During the downstroke, the flow on tne
¢ 1. Reynoids Number 5000, Reduced Frequency airfoil gradually reattaches from the leading

W pased on chord equal to 0.25. edge to the trailing edge. The laminar flow
WWhe on the airfoil is unable to withstand the

N 2. Reynolds number 10000, 0.25 reduced relatively small adverse pressure gradients
o frequency. that exist during this phase of the flow, and
g a sequence of small vortices of positive and
) 3. Reynolds Number 1000, 0.25 reduced negative strength are shed into the wake.
—~ frequency This accounts for the large oscillations in
‘) the 1ift and moment forces shown in Figures
R 'S Reynolds number 5000, 0.5 reduced 3a and 3b. This is in contrast to turbulent
o frequency flows (Ref. 3, 4) where similar variations
‘.,-'\",‘u are not observed during the downstroke.
Y w N
N A steady state solution at zero angle of The drag variations during the dynamic
N, attack was supplied as the initial condition stall process are shown in Figure 3c. Except
in a1l the dynamic stall calculations. at small angles of attack, the primary
contribution to the drag is from the pressure
drag.
In Figures 1 and 2 the constant
vorticity contours and streamlines in the Some numerical experiments were done to
rotating cocrdinate system are shown for case determine the effect of numerical viscosity
1. In Figure 3, the integrated airfoil loads due to the upwind differencing of the
are also shown.These figures reveal the s)ow convection terms, on the solution. In Figure
° forward progression of the separation point 4, the load hysteresis for case 1, computed
b v on the upper surface as the airfoil pitches with a first order accurate upwind difference
(ot up. A large amount of counterclockwise scheme is shown. The large numerical
-\f.' (positive) vorticity is being shed into the viscosity associated with the first order
N wake during this phase of the upstroke, upto scheme smears out a number of features
2 18 degrees airfoil incidence. The separated observed using the third order accurate
28 region remains confined to a narrow region on upwind scheme, and only a qualitative
N the upper surface. The airfoil 1ift continues resemblance between Figures 3 and 4 is found.
to grow during this phase of the upstroke as
v shown in Figure 3. Case 2, is similar to case 1 except the
a9 , flow Reynolds number is increased from 5000
QN Between 18 and 19 degrees during the to 10000. In Figure 5 the 1ift and moment
. upstroke, the shedding of the positive hysteresis loops are shown for case 2.
T vorticity into the wake stops, and a region
0N of counterclockewise vorticity begins to grow Case 3 is similar to cases 1 and 2
A on the upper surface as seen in Figures 1b except the Reynolds number was 1000. At this
C)' and 2C. The airfoil 1ift coefficient lower Reynolds number no clearly
D experiences a momentary drop as shown in distinguishable leading edge vortex structure
s Figure 3a. was observed, as seen in the streamiine
N contours (Figure 6). The associated 1ift and
(- Subsequently, a leading edge vortex of moment loops are plotted in Figure 7.
} clockwise sense begins to grow near the
quarter chord as shown in Figure 1b. The This type of dynamic stall is often
‘ s:r:nﬂ:h of the vortex increases with the classified as the trailing edge stall.
airfo incidence. The 1ift coefficient
e begins to grow, but the moment coefficient The last set = of  dynamic = stall
e remains relatively unaffected. This is calculations presented here are for the same
o because the pressure suction peaks associated flow conditions as case 1, except at the
P with the vortex are too close to the moment slightly higher reduced frequency of 0.5.
Lo axis (quarter chord) to influence the moment This ~case was =~ chosen Decause of the
o coefficient. availability of numerical data (Ref. 1) and
A water tunnel flow visualization pictures. The
\ As the leading edge vortex grows in physical phenomena at this reduced frequency
K. - strength 1t begins go drgift downstngm, at a are very similar to case 1. The actual drop
- speed equal to approximatiey half the in 11ft and moment coefficients are however
O freestream velocity. The 1ift coefficient smaller than at the lower reduced frequency.
‘N continues to grow as shown in portion BC of In Figure 8, the 11ft, drag and moment
_};_: the 11ft curve in Figure 3a. The moment hysteresis loops are plotted and compared
. /- coefficient begins to increase in magnitude with the results of Mehta. Good quantitative
- because the suction peaks associated with the agreement is observed during the upstroke,
ot vortex are now sufficiently ¢ but some discrepancies between the two set of
i y far away from the i
o pitching axis, and eventually moment stall data is found during the downstroke. In view
L occurs, as shown in portion BC in Figure 3b. of the differences in the solution procedures
N The 1ift stall occurs when the vortex reaches used in Reference 1 and in this work, these
s differences are not unreasonable. In Figure
e
f 3
’ 5
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9, the streamlines in an inertial frame are
plotted at selected time levels and compared
with the water tunnel observations of Werle'
presented in Reference 1. Excellent agreement
between these two sets of data is found.

In all the cases computed above,
computer time per case ranged between 15 and
30 minutes on a CDC CYBER 855, depending on
the reduced frequency and Reynolds number.
This code is now being vectorized for a COC
CYBER 205 computer system, and preliminary
calculations show that the computer time per
cycle can be reduced to less than 2 minutes
on this system.

CONCLUDING REMARKS

An efficient solution procedure has been
developed for the prediction of the dynamic
stall characteristics of arbitrary airfoils
in laminar, incompressible flow. This
solution procedure is an order of magnitude
more efficient than existing finite
difference procedures for the same problem. A
two layer eddy viscosity model is being
implemented into this solver and will be used
to study turbulent dynamic stall.

The computations reveal characteristics
similar to turbulent leading edge stall at
Reynolds numbers 5000 and 10000, while at the
Jower Reynolds number of 1000, a trailing
edge stall phenomenon is observed. The effect
of higher reduced freguencies is to reduce
the 1ift and moment drops when stall occurs.
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(c) Angle of Attack = 19.84!

(d} Angle of Attack = 19.53.

Figure 1. Vorticity Contours around an 0Oscy!lating
NACA 0012 Airfoil. Reynolds Number 5000, 0.2%
Reduced F-equency.




5 - (g) Angle of Attack = 17.82:

Figure 2. Streamiines in the Rotating Frame around
an Oscillating NACA 0012 Airfoil. Reynolds Number
5000, 0.25 Reduced Frequency.
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- Figure 3. Lift, Moment and

R ' and Drag Hysteresis Loops
5 for a NACA 0012 Airfoil. R
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Figure 4. Lift Hysteresis Loop computed
Using a First Order Upwind Scheme. NACA 0012
Airfoil, Reynolds Number 5000, 0.25 Reduced
Frequency.
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| Angle of Attack = 16.13¢
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Figure 6. Streamliines in the Rotating Frame around
an Oscillating Airfoil, Reynolds Number 1000, 0.25
Reduced Frequency.

ANGE CF ATTACK

Figure 5. Lift and Moment Hysteresis loops at
Reynolds Number 10000, 0.25 Reduced Frequency.

Figure 7. Lift and Moment Hysteresis Loops for a
Angle of Attack = 19.11t NACA 0012 Airfoil. Reynolds Number 1000, 0.25

Reduced frequency.
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pd Figure 9. Comparison of Streamline in the Inertial
- Frame with Water Tunnel Observations. Reynolds
e Number 5000, 0.5 Reduced Freguency.
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Figure 8. Comparison of Lift and Moment Hysteresis
Loops Computed Using the Present Scheme with the
Results of Mehta. Reynolds Number 5000, 0.5
Reduced Frequency.
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