
AD-At64 076 DEVELOPMENT AND IMPLEMENTATION OF THE X25 PROTOCOL FOR 1/3
THE UNIVERSAL NETH (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI M W WEBER

NCLSSIFIED DEC 85 RFIT/GE/ENG/85D-52-VOL-1 F/G 9/2 NL

EEEEEEIIIIEEI
EIhEEEEEEEllhE
ElEEEEllEEEEEE
EllEEEEElhEEEE
EEEEEEEEllEEEE
EEEEllEEEllllI

1.0j jg 12.8 2.5

I ~ ~ L l i i I . ±

ILI

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

s%

Ifh 1.

'111 AO 2.

bI

'AA

100

'O DEXELOIP'-NT AND IMPLEINEINTATION!

..5 P ROTOC(,1L

FcL R TH!E

V G)L I C, I L

T! i

N4 DEPARTMENT OF THlEAIFOC

"5"''" .2"5/' -P' .;R 'JT ' ,_

--A ',. . . ,, "

V- AIR UNIVERSITY

L..).

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

v I ~~~~~~~~for ,'njj ,;. " ." ...: , I
distat~bu 8 6

qi;; . 1

AFIT/GE/ENG/85D-52

DEVELOPMENT AND IMPLEMENTATION
OF THE

X.25 PROTOCOL

FOR TILE
UNIVERSAL NETWORK INTERFACE DEVICE (UNID) II

VOL I OF II

THESIS

AFIT/GE/ENG/85B-52 Mark W. Weber
Captain USAF

. F Lb 1 Fb 51986;

Aforoved for Public Release; Distribution Unlimited

-! . %,*

AFIT/GE/ENG/85D-52

DEVELOPMENT AND IMPLEMENTATION
OF THE

X.25 PROTOCOL
FOR THE

UNIVERSAL NETWORK INTERFACE DEVICE (UNID) II
VOL I OF II

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

- ~. Accession For

7IS- GRA&I

PTIC T1,19

Mark W. Weber, BS EE

Captain, USAF .Avail 1 C o dos

Disti ia

December 1985

'--p Approved for Public Release; Distribution Unlimited

*., 0

P REFACE

This research effort describes the continued development of an

improved Universal Network Interface Device (UNID II). The UNID II's

architecture was based on a preliminary design project at the Air Force

Institute of Technology. The UNID II contains two hardware modules; a

local module for the network layer software and a network module for the

data link layer software and physical layer interface. Each module is

an independent single board computer (SBC) residing on an Intel multibus

chassis, complete with its own memory (EPROM and RAM), serial link

interfaces, and multibus interface. The local module is an iSBC 544 and

the network module is an iSBC 88/45. This research effort expands the

Consultive Committee for Telephone and Telegraph (CCITT) X.25 protocol

in the UNID II design. This report updates the documentation for the

detailed hardware and software design, test, and integration of this

system.

I wish to thank thank all the people who helped me through this

challenging project. First, there is my thesis advisor, Dr. Gary Lamont,

, for guidance and advice during my periods of confusion. My thanks as

*well to Major Walter Seward and Dr. Hartrum for their assistance and

guidance. I greatly appreciate the assistance from Mr. Orville Wright,

Mr. Charlie Powers, Mr. Dan Zanbalm, and Mr. Robert Durham for their

technical and supply support. Capt Ken Cole gets a special thanks for

pointing me in the right direction an many different occasions. Finally

I reserve my highest thanks to thank my wife, Melissa, for her

patience and never ending support given during these 18 months.

, ii

..

Table of Contents

Page

Preface ii

Table of Contents iii

List of Figures vii

List of Tables ix

Abstract x

I. Introduction and Background 1-1

Background 1
Current Status 8
Problem Statement 9
Scope 9

0 Assumptions .i.....................10
Summary of Current Knowledge. 10
Standards 10
Approach i. .. 11
Equipment 12
Other Support 12
Conclusion 13

II. UNID II and DELNET Requirements 2-I

Introduction 1
UNID II Requirements Summary 1
DELNET Functional Requirements 8
X.25, Network Layer Protocol. 10
Test and Validation Requirements 12

* Protocols 14
Implementation Issures in the ISO Model 15
Conclusion 19

111. System Design. 3-1

Introduction I
Synopsis 2
ISO Reference Model 3
Transport Layer 6
Internet Protocol 9
Subnet....................................... .12
Network Layer 13
Data Link Layer....................15
Physical Layer 19

Conclusion 21

iii

TablIe of Contents

page

IV. UNID II Hardware Design. 4-1

~.. ~Introduction I
Initial Hardware Design. 1
Childress's Design 7

*Detailed Hardware Description of the SBC 544 (56) . . . 10
Detailed Hardware Description of the SBC 88/45 (55) . . 11
SBC 86/12A Hardware Description (54). 14
AM 95/6445 Card Cage Description. 14
UNID II Physical Layer Interface. 15
Conclusion. 17

V. Software Design 5-1
Introduction
Previous Development 1
Development Language Selection. 13

*UNID II Data Structures 15

Network 3B Design 16
Network 3A Design 25
Data Link Design and Implementation 26
Conclusion. 40

VI. Software Integration and Validation. 6-1

Introduction I
Test Philosophy. 1
Integration/ Validation 2
Test Outline 5
Phase One Testing.o.....................6
Phase Two Testing.o.....................7
Phase Three Testing 16
Phase Four Testing. 21
Conclusion. 23

VII. Conclusions and Recommendations 7-1

Introduction I
Conclusions. II.Recommendations. 2
Concluding Remarks 6

Bibliography BIB-I

4iv

Table of Contents (cont)

Page

Appendix A. UNID II Data Flow Diagrams A-i

UNID II Data Flow Diagrams (31:26-34)

Appendix B. RS-232C and RS-422 Signals B-I

RS-232C and RS-422 Signals (15:Appendix B)..

Appendix C. Hardware Configuration for the UNID II C-I

Hardware Configuration for the UNID II.

Appendix D. Host System Modifications for the UNID II . . . D-1

Host System Modifications for the UNID II 1

* Appendix E. UNID Semaphores and Protected Regions E-1

UNID Semaphores and Protected Regions (15:Appendix E) 1

Appendix F. Transmit Request/Transmit Acknowledge

Handshake F-I

Transmit Request/Transmit Acknowledge Handshake
(15:Appendix F) 1

Appendix G. DELNET/UNID Header InformationC-I

DELNET/UNID Header Information (15:Appendix D) 1

Appendix H. UNID II Software Data Dictionary. H-i

Data Dictionary (15:Appendix C) 1

1. Network Layer Simulation 2

Constants 2
Variables 3
Procedures 5
Link and Locate Batch File 6

2. Data Link Layer Simulation 7

Constants 7
Variables 8
Procedures 10
Link and Locate Batch File

V - -

V%

Table of Contents (cant)

Page

3. SBC 544 Validation. 12

Constants 12
Variables 14
Link and Locate Batch File 15

4. H-ost CP/M1- Simulationo.............................16

Constants 16
VariaIles 16
Procedures. 18
Link and Locate Batch File 19

.Xppcndix I. UNID II Software Structure Charts- 1

*ISIS HOST. 2

Operational SBC 544 Software. 7

Data Link Simulation Software. 16

Appendix J. ISIS HOST Software. J1

ISIS HOST Software 1

Appendix K. Host I/O Modules K-1

I. INTEL 210 CP/M 1/O Modulc (assembly) 2

2. INTEL 230 ISIS I/O Module (assembly). 11

3. INTEL 230 ISIS 11/0 Module (PL/N 15

Appendix L. SBC 544 Simulation Software. L-1

SBC 544 Simulation Software....... 1

Appendix M. SBC 544 Operational Software-I

SBC 544 Operational Software...... 1

4)Include file INTR3.LOC. 37

vi

0

Table of Contents (cont)

Page

Appendix N. Data Link Simulation Software N-i

1. Main Module 2

* 2. LAPBO Module 45

3. LAPBI Module 84

4. PCKT Module 97

Vita V-i

' "w'."vii

..4 + ° . + + ' ' + , + - !-,9
- -

+ + +

List of Figures

I
Figure Page

i - I Figure 1-1. Initial Concept of a Multi-Ring Base

Level Network (87) 1-2
1 - 2 Figure 1-2. DELNET Architecture (87) 7

2 - I Figure 2-1. UNID II General Concept 2-3
2 - 3 Figure 2-2. UNID II, Country Code "0", General

Concept 4
2 - 3 Approximate Correspondence Between the Various

Networks (105:22) 16
2 - 4 INA 960 Conceptual Diagram (65:27) 18

3 - I Figure 3-1. Temporal Order Sublayering in CCITI A.25
Recommendation (3:22) 3-4

[. 3 - 2 Figure 3-2. ISO OSI Reference Model Applied to DELNET
and UNID(15:2-7) 4

3 - 3 Figure 2-3. Transport Header used with DELNET

(78:C-20 - C-25).. 9
3 - 4 Figure 3-4. ISO OSl Reference Model with the Internet

Protocol (15:2-9). 11..................
3 - 5 Internet Protocol used in DELNET (78:C-20 - C-25).. 12

3 - 6 Network Header Defined by CCITT (108:25) 15
3 - 7 Data Link Frame Format Defined by CCITT (108:25) • . 17

3 - 8 Previously Implemented Frame Header Information
(15:2-11) 17

3 - 9 Currently Implemented Frame Header Information . . . 18

4 - 1 Figure 4-1. UNID II Block Diagram (30:43). 4-3
4 - 2 Figure 4-2. UNID II Block Diagram (Revised) (64:1-9) 6
4 - 3 Figure 4-3. Current UNID II Block Diagram 8
4 - 4 Figure 4-4. A RS-422 Inter-connection Technique for

UNID II 15
4 - 5 The Implemented RS-422 UNID Interconnection

Technique 16

5 1aa Figure 5-1. Original UNID Data Structures and Flow
(15:4-4) 5-3

5 - 2 Figure 5-2. UNID II Data Structures and Flow 4
5 - 3 Figure 5-3. Network Layer High Level Structure Chart

(15:4-8) 7
5 - 4 Figure 5-4. Route$in Procedure Structure Chart

(15:4-8) 7
5 - 5 Figure 5-5. Route$Out Procedure Structure Chart

(15:4-12) 8
5 - 6 Figure 5-6. Route$Out Procedure Pseudocode (15:4-12) 9
5 - 7 Figure 5-7. UNID/Host Transmit Request/Transmit

Acknowledge Handshake (15:4-13) 10
5 - 8 Figure 5-8. UNID II Memory Map (15:4-30) 12

%I

viii

%1" d

• #%

;'-'.' vi i

List of Figures (cont)

Figure Page

5 - 9 Figure 5-9. Control Lead Sequence for Half Duplex

Operation (27:956) 19

5 - 10 Figure 5-10. Control Lead Sequence for Full Duplex

Operation (27:955) 20
5 - 11 Figure 5-11. Pseudocode for a full Duplex DTE . . . 22

5 - 12 Figure 5-12. Transmit Interrupt Procedure (15:4-17) 23
5 - 13 Figure 5-13. Route$out Procedure Pseudocode 24

5 - 14 Figure 5-14. Pseudocode for Main Procedure Data Link
Software 28

5 - 15 Pseudocode for Procedure STARTDNMODE 29

5 - 16 Pseudocode for Procedure START$INFO$XFER 29
5 - 17 Pseudocode for ROUTE$IN Data Link Procedure 31

5 - 18 ROUTE$IN Destination Processing Pseudocode 32

5 - 19 Pseudocode for RCVIFRAME 35
5 - 20 Example of a Processed I Frame 37

6 - I Figure 6-1. Network Layer Simulation Data Structure
and Flow (15:5-7) 6-10

6 - 2 Figure 6-2. Data Link Layer Simulation Data Structure
and Flow (15:5-13) 12

6 - 3 Pseudocode for for Procedure READLINE 13
6 - 4 Frame Delay Test •. 19
6 - 5 Figure 6-5. Network Layer Simulation with the CP/M

System and H19 (15:5-13) 19

6 - 6 Figure 5-4. UNID II and NETOS Connection (15:5-14) 21

A - I Figure A-I. UNID II Overview A-2

A - 2 Figure A-2. Input Local Information 3

A - 3 Figure A-3. Format According to Outgoing Protocol. . 4

A - 4 Figure A-4. Transmit Network Message 5

A - 5 Figure A-5. Input Network Information 6

A - 6 Figure A-6. Transmit Local Information 7

B - 1 Figure B-I. RS-232C Pin Assignments B-2

B - 2 Figure B-2. RS-422 Pin Assignments 3

E - I Figure E-I. Pseudocode for SBC 544 to SBC 88/45III Packet Movement E-3
E - 2 Figure E-2. Pseudocode for SBC 88/45 to SBC 544

Packet Movement 6

F - I Figure F-I. NETOS Transmit Request/Transmit

Acknowledge Handshake F-2

F - 2 Figure F-2. UNID TR/TA Allowable States 3
F - 3 Figure F-3. State Diagram of the TXTR Handshake. . . 4

G1 C - I Figure G-I. DELNET/UNID Detailed Header Information. C-5

ix

IV

List of Tables

Table Page

Table 1 - 1. Table 1.1 Phases of UNID Design 1-4
Table 2 - 1. Table 2-1 UNIV II REquirements. 2-7
Table 2 - 2. Table 2-2 UNID I and UNID 11 Validation Tests 2-13
Table 7 - I. Table 7-1 Tasks Accomplished. 7-1

x

A-7 S Z

Abstract

This research effort describes the continued development of an

improved Universal Network Interface Device (UNID II). The UNID II's

architecture was based on a preliminary design project at the Air Force

Institute of Technology. The UNID II contains two main hardware

modules; a local module for the network layer software and a network

module for the data link layer software and physical layer interface.

Each module is an independent single board computer (SBC) residing on an

Intel multibus chassis, complete with its own memory (EPROM and RAM),

serial link interfaces, and multibus interface. The local module is an

Intel iSBC 544 and the network module is an Intel iSBC 88/45. The

network layer software supports the CCITT X.25, datagram option,

protocol and the data link layer software supports the CCITT X.25 LAPB

(HDLC) protocol. This report documents the further implemtation of the

CCITT X.25 procotol in the UNID II design.

xi

.- - -- , '. ~ *, - .. - - •----
L'

-4f

Chapter I

Introduction and Background

This Thesis describes further development and implementation of the

International Consultive Committee for Telegraph and Telephone (CCITT)

X.25 protocol standard in the Universal Network Interface Device (UNID)

II. This chapter provides introductory information and background

material on UNID, UNID II, and the Digital Engineering Laboratory

Network (DELNET). Background material for this thesis effort comes from

material contained in the master's theses of Phister (93), Matheson (84)

and Childress (15). Phister and Matheson detail the development and

A logical choice of the multi-ring structure chosen for UNID. Childress

summarizes early UNID hardware and software development and presents the

current UNID and DELNET status.

The following sections in this chapter give the background, problem

statement, scope, current status, assumptions, standardsm approach, and

equipment necessary to conclude the Thesis effort.

v Background

Requirements for the UNID first came about in 1977 when the 1842

Electrical Engineering Group (EEG) identified the need of a local area

network (LAN) to interconnect base-level data processing equipment. A

report, "An Engineering Assessment Toward Economical, Feasible, and

Responsive Base-Level Communications Through the 1980's (1), to the Air

Force Communications Command (AFCC) concluded that high capacity commun-

ications could be achieved through the use of a multi-ring computer

metwork structure. The multi-ring structure would meet typical base-

:--1
J.Qqq

level requirements by providing flexibility, easy expansion, and high

capacity at low costs. The original concept identified five different

functional devices needed to interface various base daLa processing

equipment. These five fundamental groups defined the services that the

LAN would provide. Figure 1-1 shows the original multi-ring concept.

3 3 Host C Dial-Up

t7 Users

/ Oft r
2 Base 2 2 Digital

Sites ESS

, / off

I ,2 ijase 2/2

//'9I9 1 -- \,-

User Commun -..y
2j Community l 2 2 2

A- User
Community 5

2 B l 2 ('2

• .-,'_

3-. 3 4

F Host B] Access Proc,ssor

4 F4 AUTODIN I
'l

..DN Acocessor

IProcessorl

1. Inter-Ring Interface Node
2. Terminal Interface Device
3. Processor Interface Device
4. DDN/AUTODIN I Interface Device
5. Dial Central Office Interface Device

Figure 1-1. Initi'il.Ccic,:,t .jf a Multi-Ring Base Level Network (93)

1-2

* * ''' - 2

Following the 1842 EEG's report, Rome Air Development Center (RADC) was

tasked by AFCC to expand the multi-ring network concept and further

define the required interface devices.

RADC's investigation of the functional interface resulted in a

generalized interface device, performing all functions required ,: the

multi-ring LAN. The device depicted by RADC's studies would connect a

highly variable group of host processing equipment to form small closed

rings and then connect the separate rings to form one large, base-wide

multi-ring LAN. The name given to the device to accomplish all inter-

connections between host elements nodes on the multi-ring network was

Universal Network Interface Device or UNID. According to Phister (93:1-

4) the multi-ring network concept, and hence UNID, was incorporated into

the RADC post doctorial study program. Several research efforts from

AFIT came about through AFIT's association in RADC's Post Doctorial

program.

The original 1842 EEG concept as modified by RADC prompted a series

of AFIT thesis efforts that produced detailed studies of a multi-ring

network environment and hardware implementing the findings of those

studies. Past thesis efforts include the works of Sluzevick (107) and

Ravenscroft (96) in 1978; Brown (10) in 1979; Baker (5) in 1980; Papp

(93), Hobart (34), Gravin (31), and Geist (30) in 1981; Cuomo (19),

Palmer (91), and Hazelton (33) in 1982; Spear (108), Phister (93), and

Matheson (84) in 1983; and, most recently, Childress (15) in 1984.
a .

These interests at AFIT forged two directions. First, development

proceeded on a device to meet the criteria established by RADC using Z-

13

.'

O~*<.~

80 based architecture. This device became known as UNID I. Second,

further development proceeded using 16 bit 8086 based architecture.

This device was called UNID II.

Overall, the plan was to develop evolutionary hardware and software

designs of the UNID architecture. Ultimately, the UNID designs would

be used inside DELNET for educational purposes associated with computer

network courses and for continued research in LAN design. The first

Master's level thesis efforts came in 1978 and are briefly discussed in

Childress's Thesis (15). The following material comes mostly from the

introductory material of Childress.

In 1978 Sluzevich (107) and Ravenscroft (96) began their efforts on

conceptual hardware and software designs of UNID and DELNET respec-

tively. Sluzevich defined four phases of the UNID design (15:1-4).

Table 1-1. Phases of UNID Design

X 1. Define the functional requirements of the UNID.

X 2. Translate functional requirements into system

design.

X 3. Design UNID's hardware.

- 4. Design UNID's software.

X: Phase completed

-: Phase incomplete

To date, only the last task remains uncompleted. The design envisioned

by Sluzevich consisted of three separate modules: one module would

interface the UNID with host equipment, a second module would interface

1-4

I

- - - - . . . -. . I ---

~ ~ ~ ~ ~ ~ 1 I. 'd
°
"L. " .. ""'. , '.-' -.... "'. " ".". '' , *I" ". "". I ' ' " "- .".". "

A '.*. the UNID with the multi-ring LAN, the third module would provide neces-

sary data processing and control for the other modules. Ravenscroft

centered on design of a LAN for the Digital Engineering Laboratory

(DEL). This network evolved into what is presently known as DELNET.

In the following year, Brown (10) expanded the processing

capability of the basic UNID architecture by providing separate parallel

processors for the local host side and the network side of UNID. To

facilitate data transfer, the two processors would share common memory

blocks. In 1980 Baker (5) developed more software, expanded the

hardware capability of the existing UNID, and performed system

0 intergration tests with commercial fiber optic communication links.

In 1981 Papp (97) implemented an operational hardware structure and

began initial hardware testing of two UNIDs in a DELNET configuration.

€1 1is work formed the basic hardware components of what became UNID 1.

Work continued on DELNET with Hobart's conceptual development of

required software (34). His structured analysis and design techniques

(SADTs) formed the initial data flow diagrams of the network. Also in

1981, Giest started protocol development on UNID. His protocol

m. , structure used the ISO Open Systems Ilterconnection (OSI) seven layer

model as the basic structure for data flow and program development.

In 1982 Cuomo and Hazelton began their efforts with UNID and DELNET

respectively. Cuomo (19) refined hardware design of UNID I by expanding

data ports available to hosts on UNID, reducing transient noise through

rewiring the UNID I, and refitting the UNID I with static Random Access

Memory (RAM). Hazelton (33) improved Giest's protocol by implementing

software according to the Consultive Committee International Telephone

-5

and Telegraph (CCITT) recommendations. At the data link layer, he

started implementation of the Link Access Protocol (LAP) and, at the

network layer, he began implementation of the CCITT X.25 network layer

protocol.

In 1983 Phister and Matheson continued their respective efforts on

UNID and DELNET. Phister (93) continued development of the data link

layer and network layer software for implementation of the X.25 protocol

layer using the datagram option. He also started development of the

transport layer software based on the CCITT X.121 and Transmission

Control Protocol/Internet Protocol (TCP/IP) standards. At this point

* DELNET standards were established to interface UNID at the transport

lv, l. Phister's work was the last effort on the Z-80 based hardware

l" Zn known as UNID I. Matheson's work centered on the Intel SBC

86/12A single board computer (SBC) which formed the basic design of UNID

II. Figure 1-2 shows the DELNET architecture according to Phister's

design.

Q

1-6

e. a

Local Area Host A Local Ara

, .~'" x Network Network

-UNID 2 0 0 UNID 15
.44

i (1~ca Area iiu
Network - UNID I .__ UNED 0

Local Area
\Network

..... UNID 15 i

'UNID 2 UI5UNID 0

Lcal Area UNt Local Area

ENetwork ,. Network

IjI

N' ' r-.0 UNID 0

UNID 15 UNID I
--!".r-.. 2- - - -

Local Area , UNID 2 lost
Network

r Local Area

Network

Figure 1-2. DELNET Architecture (93)

UNID Il's developinent originated in 1981 with work by Gravin (31)

un an improved UNLD 11 design based on 16 bit architecture components.

Design criteria for UNID li1 roqii ired complete compatibility with L-

UNID I implementation. in 1982 Palmer impleinrnted a hardware desigi

i, -i, 8035 b'st?-d single board computer (SBC) 86/12A and Intel

iilti ,;iri cage. Both local and netwo)rk ,i i,; wer-e started, but

i lil :)Tnpleted. Matheson's design in 1983 continued implementation of

1-7

i*% °%

0........, z ; .: ;:? ,[:: :: .= ..,..., % .: > , % .- ..:+< , .,+., o.,,, ., ; ..

Palmer's design by completing the local and network modules. Matheson

then started the translation of software developed by Phister to the PLM

86 programming language for the 8086 based UNID II.

In 1984 Childress (15) implemented the host and network modules of

UNID II with two off-the-shelf SBC's. The Intel SBC 544 was selected as

the local module implementation and the Intel SBC 88/45 was selected as

the network module implementation. Together, these two boards

eliminated the requirement for a separate processing module and provided

reliable, proven hardware components for the UNID II design. Childress

then completed the translation of Phister's software into PLM 86 and

0 tested the local host SBC 544 board software. While software was

developed for the SBC 88/45 network board, the software was never

embedded on the board and tested as with the SBC 544 local board. At

this point Childress concluded his development of UNID II.

Current Status

A hardware design using Intel SBC 544 Intelligent Communications

Controller and SBC 88/45 Advanced Data Communicatons Processor Board

exits with software embedded on the SBC 544 board. Software for the SBC

88/45 board exits, but has only been tested in modular form and has not

been embedded in Read Only Memory (ROM) on the SBC 88/45. Test programs

exist on the Intel System Implementation Supervisor (ISIS) and on a CP/M

%. based operating system. These simulation programs implement the minimal

amounts of transport layer protocol necessary to validate accurate data

- . transmission by UNID II. Implementation of the network layer protocol

*' consists of the data communications state of the datagram option of the

CCITT X.25 (1980) protocol standard (115:133). Publications since 1984

1-8

.0 N1980).Publications

-- - -- - -- - -- - -

indicate CCITT will drop the datagram option (105:41). This has no

significant impact in development of the X.25 protocol within UNID II

since planned development eventually includes full implementation of

X.25 protocol.

Problem Statement

The intent of this research effort is to expand the CCITT X.25

protocol service within UNID II by implementing the data link software

on the SBC 88/45 and expand the existing datagram service.

More Specifically:

I. Remove the current timing problems within the UNID II

interrupts.

2. Install and validate the data link layer software on the

SBC 88/45 network board.

3. Further develop and implement CCITT X.25 network layer

protocol standards for full datagram service and permanent

virtual circuit service (PVC).

4. Research current implementations of the transport,

session, presentation, and applications layers of the ISO seven

layer model for DELNET and UNID application.

Scope

The SBC 88/45 and SBC 544 board architecture will be investigated

%for an alternative method of disabling interrupts on incoming packets.

%- The five signalling lines of the RS-232C interface, not yet fully imple-

mented, but necessary to emulate the X.21(bis) protocol, will be devel-

oped. The software loop on the data link layer will be used as a bias

for developing the data link procedures. Ultimately the procedures will

41 -9

then be installed on the SBC 88/45 board. Tho data link receive ready,

receive not ready, reject, set asynchronous balanced mode, disconnect,

unnumbered acknowledgement, and command reject response frames will be

implemented. Finally, an investigation of commercially available soft-

ware packages for the upper four layers of the ISO model (Transport

through Applications layers) will be performed.

Assumptions

These three assumptions made come from Childress (15:1-9) and

remain valid for this thesis:

1. It is assummed that the local and network boards
work properly.

2. It is assummed that the local software design
previously developed, translated, and implemented
functions properly.

3. It is assumed that the network software design as
developed functions properly.

Summary of Current Knowledge

Childress' Thesis describes the most current development of UNID

- and DELNET (15). Both Childress's Thesis and Phister's Thesis give

detailed summaries of past development of UNID and DELNET. Phister's,e -

Thesis provides further aid in developing the Transport layer

interworkings.

Standards

Standards for this Thesis effort continue unchanged from the works

of Childress (15:1-10), Phister (93:1-23) and other past research

-." efforts (10, 19, 31, 33, 34, 93, 94, 92, 96, 107, 108). As such, these

standards contain:

1. ISO Open Systems Reference Model DP-7490

I::1-1-

2. CCITT X.1, X.2, and X.95 for Class of Service

3. CCITT X.121 for routing control

4. Transmission Control Protocol/Internet Protocol

(TCP/IP).

5. CCITT X.25 (1980) for network control

6. ISO 3309-1976(E) for data link control

7. High Level Data Link Control (HDLC) protocol

8. CCITT Link Access Control B (LAPB)

9. RS-232C, RS-422 and RS-449 for physical layer

protocol

* These standards reflect current international agreements for public

data communications networks. Furthermore, these standards maintain

compatibility with DELNET and UNID I. The compatibility within DELNET

between UNID I and UNID 11 allows the UNID devices to perform their

basic function as a truly "universal" interface device between networks

and computer hosts.

Approach

First, the UNID's timing and interrupt response when processing

multiple datagrams will be examined using the HP 4951A protocol analy-

zer. A simulated host will send multiple datagrams to UNID II. The HP

4951A can monitor activity on the physical, data link, and network

layers within UNID. Changes required to the interrupt structure will be

made at that time.

Second, examination of the physical layer protocol will determine

* 'changes necessary to implement the CCITT X.21(bis) protocol as its RS-

232-C and RX-422 equvalent. This implementation will require the HP

N1 - 1i

S'm

4 7 4951A and Intel System III acting as hosts on the UNID II.

Third, software for the data link layer will be installed in the

SBC 88/45. Should RS-232-C implementations functions require

alterations of the data link software, the software will be installed

and tested before any other alterations are made.

Fourth, with the data link software installed, remaining datagram

functions and CCITT X.25 permanent virtual circuit packets will be

developed and implemented. Software will be developed on the Intel

Series III computer using ISIS software development tools.

Finally, dependent on the time remaining, software packages imple-

*O menting transport and higher layer software functions will be

investigated.

Equipment

Software program development and host simulation requires use of

the Intel Series III micro computer. Further host emulation and proto-

col analysis requires use of the HP 4951A protocol analyzer. Word-

processing and Programmable Read Only Memory (PROM) requirements will be

satisfied by the Intel System 11/210 micro computer and Bytek PROM

programmer. PROM programming will be necessary for embedding software

on Eraseable/Programmable Read Only Memory (EPROM) in the SBC 544 and

SBC 88/45 boards.

Other Support

A workbench, desk, and technical manuals for all hardware and

software development tools will be required. Also, specific EPROMS,

ROMS, integrated circuits (ICs) cable harnesses, and miscellaneous

administrative supplies will be required.

1 12

- Conclusion

Chapter I, the introduction and backround, began with a brief pre-

sentation of the ordering of material contained within the main body of

this Thesis. Background material followed which gave a brief history of

the UNID and DELNET development. Chapter 1 presented brief summaries of

-*. the current status of UNID II, problem statement, scope, assumptions,

standards, approach, equipment and other support. Chapter II gives the

UNID II and DELNET requirements pertaining to this Thesis. After

*' Chapter II, the system design, hardware design, software design, and

validation efforts follow in succeeding chapters. Chapter III details

* the system design as viewed through the protocol. Chapter IV details

the current hardware design of UNID II, and Chapter V presents the

current software design of UNID II. Chapter VI gives the Design and

Implementation of the X.25 protocol features implemented to date.

Chapter VII presents the final conclusions and recommendations of the

Thesis.

I - 13

%

Chapter II

UNID II and DELNET Requirements

Introduction

This chapter summarizes UNID II and DELNET requirements. Though

the requirements have changed little since initially conceived (31, 84,

93), the degree of their functional implementation has varied greatly.

None of the requirements were changed by this thesis effort. It is the

objective of this thesis to further the extent of the implementation and

not research new or different requirements. As such, the presentation

here comes mostly from the works of Gravin, Phister, Matheson, and

Childress. First, the UNID II functional and hardware requirements are

given. Following UNID requirements, DELNET short and long term require-

ments detail UNID II and DELNET interactions. Next, the protocol

requirements for UNID and DELNET are discussed. Then the validation of

software and hardware/software integration are reviewed. Finally, the

requirements integrating OpenNet products into the UNID and DELNET

environment are presented for completeness.

UNID II Requirements:

Sluzevich, in 1979 developed the following general criteria

(107:14):

1. The UNID should function as a store and forward

concentrator and have message routing capabilities.

2. The UNID might require specialized I/O ports for

unique communications requirements.

3. The UNID should be capable of interfacing to

various network operating systems and protocols.

%2 1

2ar1i -

4. The UNID should provide an environment for computer

communications studies.

These criteria formed the preliminary design goals of past UNID II

development and remain valid for current UNID II development. In the

final form UNID II will be incorporated into DELNET, and, within DELNET,

UNID II will act as a research tool for analyzing design characteristics

within Local Area Networks (LANs). Functionally UNID II will

operate as a gateway switch and local cluster network incorporated in

one device. As a gateway switch, UNID II will perform necessary proto-

qr. col conversion from a host to a high speed dual ring network formed by

other UNIDs. Separate dual ring networks will be linked by special

UNIDs having the country code '0' (93:2-9). As was shown in Chapter I,

These UNIDs will form the multi-ring LAN. The local side of UNID per-

forms much the same as a concentrator node. Each UNID II will have the

software capability of addressing as many as 256 hosts. As currently

implemented in hardware, each UNID II acts as a concentrator node for up

to four hosts. The hardware allows for possible expansion of the number

of hosts a single UNID II may support. Figure 2-1 shows the general

concept of the UNID II operation. As shown UNID consists of the subnet

* or bottom three layers of the ISO Reference Model plus the internet

N.. protocol. The local side of a UNID II may address up to 255 hosts,

while the network side of UNID II supports up to 16 UNIDs within a

single dual ring network.

2 2

S"

1%lr-

* °°*

- LOCAL HOST MODULE

a DELMET NETWORK MO'DULE

C4) RS-e32-C
3

4 --

LOCAL HOST PORTS

(a) RS-42,

DELNET PORTS

*

Figure 2-1. UNID II General Concept.

4 The UNIDs having a country code '0' have not been implemented in hard-

ware. Figure 2-2 gives their general concept. As shown in Figure 2-2,

a UNID II, country code '0' (UNID II (0)) is simply another UNID II with

the addition of a second dual ring network interface. This gives UNID

II (0) added control and responsibilities dithin the network. One of

the features discussed by Phister was the use of UNID (0) to perform

*Q "wake up" programming of a ring of UNIDs upon activation of the net-

work. Each non-UNID (0) (UNID (N) where N is any element of the set 1

to 15) member of ring would have capability of transmitting and receiv-

ing packets on the ring. Higher level functions would be contained

within UNID (0) and upon activation of the network UNID (0) would

program each member of the network. Thus all flow control, catastrophic

failure actions, and normal network configuration information need

2 3

2. %

reside within only one UNID, the UNID (0) of each ring. The final

requirements and specifications for UNID (0) have not yet been fully

developed and remain as follow-on investigations for further UNID devel-

opment (See Chapter VII for recommendations).

IEHTNEVR MODULE

I A

D() RS-42MO CO 2-428

Figure 2-2. UNID II, Country Code '0' General Concept.

In definin6 the architecture of UNID II (0), consideration must be given

to have all protocol changes in all UNI1.s accomplished at the software

of firmware level rather than changing or redesigning hardware. This

* will require hardware configured by software access within UNID. Th

following UNID II requirements summary supplies more details into the

hardware requirements of UNIlD II and comes in part from Matheson (93:2-1

-2-3).

Hardware requirements were developed from existing EIA standards

for electronic interfaces. The electrical path of the local and network

sides of UNID I forms the lowest lcvel of the protocol implementation.

2-4

?, .

At this level, the physical level, UNID II will use RS-232-C (24) and

RS-449 (25) standards. The characteristics of these two interfaces are

covered in the physical layer discussion of the ISO Reference Model

presented later within this chapter. The host to UNID local interface

will use the RS-232-C interface as it is among the most common used by

peripheral devices within the United States and conforms to higher

level protocol requirements. UNID to UNID network interfaces will use

the RS-449 interface. Upwardly compatible with the RS-232-C, the RS-

449 interface allows the higher data rates required on the network side

of the UNID. The RS-232-C and RS-449 interface protocols will enable

0 the higher levels of protocol at the data link layer and above to be

independent of the physical characteristics of the network. Therefore

changes may be made at any of the higher levels without requiring design

changes of the physical layer.

Sluzevich's structured analysis and design techniques (SADTs) (107)

developed the original UNID design requirements. From these require-

ments, three separate modules were identified:

1. A local input/output module for interfacing the UNID to
the user's computers, terminals, or modems.

2. A network module for interfacing the UNID to other UNIDs
over the network.

3. A dual processor module for matching the local I/O to

the network environment (107:154-155).

-'. In 1981, Gravin (31) began design on an improved UNID based on 8086
U

components. From the original functional requirements (107:33) used for
UNID I, data flow diagrams (DFDs) were used to produce a new functional

requirements model for the UNID II. Table II-I lists those original

requirements used to produce the UNID II. The DFDs arrived at a similar

S2- 5

9%

design as did Sluzevich with one fundamental difference. Two function-

ally similar groups of requirements were identified similar to two of

the modules identified by Sluzevich. One group handled messages between

hosts on the local side of UNID. The second group handled messages

between UNIDs in the network. The difference lay in that a third module

was not identified by the DFDs. However, Matheson's design for UNID II

continued Sluzevich's three module concept by partitioning the control-

ling facilities outside of the local and network modules. Childress,

however, altered the design by implementing the intelligence within the

local and network modules. A third processor module then was not
0

required. The original DFDs developed by Gravin are reproduced in

Appendix A. They were the basis for the UNID II design and remain valid

for the current UNID II implementation.

•A.J

2 -6

4N.

TABLE 2-1: UNID II REQUIREMENTS (84)

I. Interface a side variety of network components and
handle various topologies

A. Accommodate dissimilar computing equipment

1. Accomplish code conversion

2. Perform data rate speed conversion

B. Interface peripherals and user terminals to the

network

C. Interface host computers to the network

D. Provide a network to network interface (a gateway)

II. Perform independently of network components

A. Handle network data transmission and reception
1. Accommodate network throughput requirements

and flow control
2. Adapt to different protocols

a) Handle both synchronous and asynchronous
commun ica t ion
messages

c) Unpack a message

d) Perform parallel to serial and serial to

parallel data conversion
e) handle error control functions such as

message acknowledge, no acknowledge,
repeat and time out

3. Perforia error checking and recovery procedures

b. Relieve host computers from network specific

'7" functions

I. Provide a buffer to smooth message traffic

2. Poll communications lines if they are

multidropped
3. Handle interrupts
4. Route messages to desired destinations
5. Collect performance, traffic and error

statistics

Ill. Provide a test bed for computer network studies and

research

2 -7

DELNET Requirements

The system requirements outlined in the original thesis (101)

became the basis for a series of additional investigations. As the

system requirements evolved, further refinement of the DFDs was accom-

plished (34), followed by implementing standards, developing software

procedures and writing the necessary code (30, 33, 84, 93). At the same

time the UNID hardware design was refined (5, 19, 84, 108) to correct

known problems, improve reliability and create the dual ring topology of

the UNID network (93). Demonstrations of the DELNET were accomplished

in 1981 (92, 1983 (84), and 1984 (15) but were limited to the use of

* single UNID due to the lack of an operational second UNID and a complete

software implementation of the network layer.

Hazelton in 1981 determined functional requirements for DELNET by

performing a survey (33). Matheson summarized these requirements (84:2-

3 - 2-6) and, as in Childress' work, they remain the basic requirements

for DELNET. The requirements as summarized by Matheson are:

I. Ability to transfer files across the network.

2. Ability to share peripherals attached to the hosts

on DELNET.

3. Flexibility with respect to the network topology,
protocols, and transmission ports.

4. Performance monitoring capability.

5. High percentage of availability.

6. User transparency to network configuration and
specific operating systems at a time.

While the above features state requirements for initial UNID func-

tions, Hazelton questioned potential users for long term design goals.

His results indicated long term UNID development would implement

2 -8

....

.-... ~ 4 .*.*....v. - * *N

functions to:

1. Permit software tool sharing.

2. Perform distributed processing.

3. Use distributed databases.

4. Incorporate fault tolerance.

5. Provide a means to connect to other networks such as

ARPANET and the planned AFITNET.

6. Connect to the local Cyber and DEC VAX 11/780 mainframe
computers.

7. Provide data privacy.

8. Provide security for classified projects.

In consideration of the last item, though very desirable, the

DELNET and UNID are considered separate from systems implementing secure

data communications. At present, no attempt will be made to develop the

complex and detailed criteria required by the Electronic Security

Command (ESC). Under existing conditions ESC will not approve a secure

network in the AFIT environment due to: lack of physical security; lack

of TEMPEST approved equipment; and lack of trusted computer software,

and it's associated hardware, validated and approved by the National

Security Agency (NSA). However, providing data privacy, including user

authentication, and verification procedures for the DELNET users are

desirable goals and possible within the scope of the DELNET and UNID.

Recommendations in this area have been made since Hazelton's initial work

and continue as recommendations for future thesis research (See Chapter

VII for recommendations).

Utilizing the user generated list of functional requirements, a set

of requirements for the DELNET hardware and software was established. A

2 -9

... ",

ring topology was initially selected for the DELNET connections with each

node providing a star subnet to the local users. This was the same

basic configuration recommended in the 1842 EEG Technical Report (1) for

base level communications systems. However, the report indicated a

single user at each network interface while the DELNET requirement was

for multiple hosts (up to four in the current design) on each network

node. The chief advantages in using the ring topology was the develop-

ment of easy routing algorithms and simplified system expansion

(112:Chapter 7). The simple routing within the dual ring allows con-

nection of new nodes to the network without changes in the routing

algorithms.

In summary, the requirements for DELNET follow Hazelton's work and

essentially remain unchanged. Phister has added details to the require-

ments by implementing the ISO Reference Model as it would be applied

Hazelton's original DELNET requirements. Matheson and Childress both

summarize these same requirements and, as such, the requirements for

DELNET remain unchanged for this thesis as well.

X.25 Network Layer Protocol Requirements

In 1981, Giest (30) reviewed various protocol standards to deter-

. mine the 'best' suited standards for DELNET. From his studies the CCITT

X.25 packet switching recommendation was selected for establishing the

protocol standards within DELNET. The criteria for 'best' sought to

include long term durability and an international scope for the

standard. These criteria have been achieved as demonstrated by the

incorporation of the X.25 recommendation in the Institute of Electrical

and Electronics Engineers (ILLE) LAN specifications (IEEE 802) and the

4,.-. o _ %l.Oq

2 1U

*--" current wide usage of the X.25 recommendation in industry protocol.

' ' Specifications for the X.25 Network Layer come from CCITT X.25

"-' '-'recommendations contained within the Yellow Book (1980 revisions),
volume VIII. The X.25 subnet consists of the X.21 or X.21(bis) recom-

mendation for the physical protocol implementation and initial circuit

establishment. The data link layer protocol consists of LAP B proce-

dures or equivalently the balanced mode operation of HDLC. At the

[i'. packet level, the X.25 recommendation specifies a minimal set of

i".'.required functions and services (115:73):

I1. Call set-up and clearing.

". "2. Data and interrupt.

'.3. Flow control and reset.

''- "4. Restart procedures.

5. Diagnostic information.

V.-

"-

currentl wieutsag ofrte X.2ninh recommenindustryn protocol.e

pecificdationesefrs thsceti.5 Neser cptome rma CCIT X.25rze

reomedtin cotiedwti1teYlowBo0(90rviin)

1eda ion ke for do th hsial prfotoconimplemetation.diiia ici

ea sn2. Packet data size.

pce lee3. Datagram service.

req4u Fast Select Service s

5. Throughput class negotiation.

6. Closed user groups.

7. One-way logical channels.

O o Certification o an operational X.25 packet network can be made

tthrough th he of network protocol analyzers which meet CCITT criteria

,, ... 2 - 11

as(0)

for X.25 packet network operation.

Test and Validation Requirements

The previous sections contained the requirements for UNID II,

DELNET, and the X.25 protocol. Not mentioned was the criteria used to

measure how the final design fulfills the given requirements (29).

Within this Thesis, the term "validation" will be used as a process

demonstrating the degree to which the design fulfills stated require-

ments. The term "verification", often associated with validation,

implies an entirely different process, the process to measure the degree

a design doesn't fulfill requirements. Tests for software and soft-

ware/hardware integration will be tests limited to validating the

software and will not attempt verification.

Phister developed a comprehensive test plan to validate UNID I

operations within DELNET (84: Chapter 3). Childress developed a

similar test plan for UNID II and validated portions of the UNID II

software and DELNET/UNID II interface. Table 2-2 shows the test phases

developed by Phister and Childress.

Im

-p

2 - 12

- ,-, '-:. - - -% " " N " " '. %

ITable 2-2: UNID I and UNID II Validation Tests

I Phase Phister for UNID I

ix UNID Local Side Data Transfer

x II UNID Network Side Data Transfer

x III Local-to-Network and Network-to-Local Data

Transfer

x IV Local-to-Local Loop Back Data Transfer

ix V Local-to-Local Data Transfer

x VI Network-to-Network Loop Back Data Transfer

VII Host-to-Host Data Transfer via 2 UNID Network

VIII Host-to-Host Data Transfer via 18 pair Cables

* IX Host-to-Host Data Transfer via 3 UNID Network

Childress for UNID II

x I Validate Inter-module Interface

x II Validate Module Integration

x III Validate Host-to-UNID II Data Transfer

IV Validate UNID II-to-LSI-Il Data Transfer

V Validate UNID I1-to-UNID II Data Transfer

x - indicates the phase was fully completed

The testing in both cases was incomplete due to unavailability of

hardware for al additional UNID. From both their test plans, useful

guidance for test procedures validating UNID II may be extracted. The

following paragraph presents the most distinct requirements necessary

for software validation.

The stages of software validation should be partitioned by each of the

layers of protocol used within the UNID II: the physical layer, the

2 - 13

6'

data link layer, the network layer, and the internet layer. Each layer

should have as a phase of validation: individual module interface

validation, software configuration testing, system configuration

testing, and system configuration testing. In the chapters that follow,

- Chapter III presents the system or protocol design of UNID II, Chapter

IV presents the hardware and software implementations of the design, and

Chapter V presents the validation of software and hardware/software

integration.

The following section concerns the implementation the UNID II and

DELNET within the structure of the ISO Reference Model protocol.

Protocols

Use of the ISO OSI Reference Model (21, 112) was proposed (33) for

the overall DELNET protocol design. Since that time, protocols for

8 .DELNET are made by specifying their functions within the ISO Reference

Model. With the Reference Model in mind, Phister developed specific

protocols for DELNET (93) using the following standards and

recommendations:

1. CCITT X.25, LAPB, in the data link layer.

2. CCITT X.25, datagram service in the network layer.

3. CCITT X.121, internet description in the transport
layer.

4. TCP/IP in the transport layer for datagram service.

5. Federal Information Processing Standards (FliPS)
and National Bureau of Standards in the transport

layer for virtual service.

These spec if icat ions and recommendations make spec i fic references

2 - 14

-

to the following associated specifications and recommendations(103:298-

301):

1. X.1, specifies the class of service for users in public

data networks which offer with respect to operating

mode,transmission speed, and permissable character code.

2. X.21, Draws on X.1, X.24, X.26, and X.27 to specify the

electrical and mechanical characteristics of a DTE/DCE

interface.

3. X.24, specifies the logical definition of ten interface

circuits used across analog communications circuits.

4. X.26, specifies the electrical characteristics of the

DTE/DCE interface.

5. X.27, specifies the electrical characteristics of the

DTE/DCE interface for speeds up to 10 mbps.

Implementation Issues in the ISO Model

Manufacturers of computer network interface equipment often set

standards unique to their own product line and often over looked

interoperability between different the equipment of different

manufacturers. An example of this situation is IBM.s System Network

Architecture (SNA) and Digital Equipment Corporation's DECNET. In

reaction to these many incompatibilities, the International States

Organization developed a communications nodal reference model, commonly

referred to as the ISO Reference Model or ISO Model. This model clearly

% defines a standard international computer communications interface. The

development of a common reference model was in part to promote a high

degreeofintercompatibility between different networks, to simplify

2 -15

- -'

interface technical details, and to maintain fair business relationships

between large and small equipment suppliers. Establishment of a model

for interfaces within networks was a major step forward in developing an

acceptable world-wide industry standard for network architecture. At

this time the ISO Reference Model was established, several networks were

already in wide usage. Among them were ARPANET, IBM's System Network

Architecture (SNA), and Digital Equipment Corporation's DECNET. While

the shaping of these particular networks do not fall precisely within

the framework of the Reference Model, but they do provide a "close

approximation" to the functional layering of the model. Figure 2-3

shows an approximation of how these existing networks fit into the ISO

: eference !oe !.

Layer ISO ARPANET SNA DECNET

7 Application User End user

6 Presentation Telnet, FTP NAU services

-',I Data flow control
5 Session (None) (None)

Transmission control
S T n(Host-host

Transport Network services
!Source to destination IMP

3 Network Path contrcl Transport

IMP-IMP
. 2 Data link Data link control Data link control

I Physical Physical Physical Physical

p p rur 2-. ppr xinaCe Corr2sppndec Between the Various Uet 1:

•ince the advent of the S0 Reference >IodeL, new area networks

;ahere. at least in principle,* adhere ta the seven layer ;e
.a u
ot.

:r b ms do remain. sFec iica L' with the adoption of tle CCITT . md

..2 recommendat ions for the subnet layers w hch were devel oped p :or

! general use of the reference. Some manufacturers approached to this

blurring of the subnet layers by marketing all-in-one packages which

implement the physical and data link layers as a single product.

Examples of this are Intel's Ethernet and STARLAN and IBM's PC Network

(46).

One of the basic concepts behind standardized components and systems

architecture is to increase compatibility between equipment from differ-

ent manufacturers. Intel, IBM, and MicroSoft have developed the OpenNet

trademark as adjoint cooperation in standardized components. Use of

*0 this trademark is restricted to equipment conforming to the ISO

Reference Mnodel. Presently OpenNet products exist for seven layers of

the Reference Model. Common implementation of the physical and data link

layers use the 82586 or 82568 single chip LAN in conjunction with the

80186 microprocessor to create a LAN essentially in two very large

scale integrated (VLSI) chips. The complexity of networks using these

LAN chips varies greatly, but in general conform to carrier sense multi-

ple access/carrier detect (CSMA/CD) protocol using IEEE 802.3 standards.

Ethernet and STARLAN are both examples of CSMA/CD network technology.

Above the subnet come software implementations of the transport and

higher layers. The transport layer is where UNID II will interconnect

with the world. OpenNet products currently make use of Intel's INA 960

transport layer software (68). The package actually implements both

network and transport layers, but for the present, the network layer

4 .. functions only as a null layer at present. Routing of message traffic

goes directly from the data link interface to the transport layer

10 " software. Future releases of INA 960 (68) will include a functioning

2 -17

0

network layer for multiple users. Figure 2-8 shows the conceptual

details for INA 960:

a~~ R IJ MOST3 I

+''+; , JV.1. I

t TRANP)PT L- .A .. EIA T o l

...ii..i....... I .

pAll

SFigure 2-4. INA 960 Conceptual Diagram (68:27)

. . " ',

As shown above, the INA 960 has datagram, virtual circuit, and direct

access to the data link layer. These access implementations compose

horizontal slices of the transport layer. Intel's INA 960 is intended

*for general usage with non-Initel products. A tailored version of INA

960, INA 961 is designed specifically for Intel's own product line and

meets the newly released ISO 8073 transport layer standard (46).

OpenNet normally constructs the session, presentation, and applicaIItion layers located above the transport layer as a single product. The

licroSoft's XENIX operating system performs the operating system fun-

ctions, and with the XENIX-NET software also performs transparent net-

work access functions. Transparent network access allows the user to

treat alL interactions on the network as an access to a file. The

2-18

I%

-Vcest h aalnklyr hs cesimlmnain ops

. n oriz ntal slies o the tranpor lay r. Itel' I. 960 * *sinene

XENIX-NET software memory maps the file location in the network with the

file name. XENIX-NET network functions include remote file access,

network management, and communications with other operating systems.

Another OpenNet operation systems is Intel's RMX (68). The RMX

operating system serves to:

I. Monitor system peripherals.

2. Control I/O with system peripheral devices.

3. Provides a user configured environment using

multiprocessors.

4. Support common programming languages and software tools.

RMX is specifically designed for Intel's 8086, 8088, 80186, 80286

microprocessor product line. The OpenNet products for XENIX and

RMX (XENIX-NET and RMX-NET respectively) provide interoperability

between XENIX and kRX.

MicroSoft's MSDOX has also come into use within OpenNet through

MSNET software (46). MSNET software allows personal computers running

under MSDOS or PC DOC to run as an applications package to either XENIX

or RMX operating systems. Thus, OpenNet products support the full

seven layers of the ISO Reference Model and implement communications

between different nodes and different networks using the XENIX, RMX,

MSDOC, and PC DOS operating systems.

Conc lusion

This chapter introduced the requirements for both UNID II and

DELNET. Data flow diagrams from the SADT design of UNID I were

referenced for UNID II requirements. DELNET requirements were

summarized in Table 2-1. Then X.25 network recommendations were

2 - 19

% .

; h, presented as the ISO reference model protocol requirements for UNID II.

Test requirements for validating software and hardware integration were

then briefly described through the association of design implementation

with the functional specifications of the ISO Reference Model. The next

chapter, Chapter III, discusses both early UNID II hardware design and

*" the current UNID II hardware implementation in the multibus system using

the SBC 544 local module and SBC 88/45 network module. The chapter

concludes with the discussion on the UNID II software as developed by

this Thesis.

.I

2 - 20

0

.4'% . '2 ',. ,'- :, .. 2. •', ' -.- ' -. ',".-.,.-'.'.'.' - ., ..-.-% ' . ..- ,... -'.",

CHAPTER III.

System Design

Introduction:

This chapter presents the protocol design structure used by UNID

II. The protocol is consistent with the design requirements given in

chapter II. Specifically the design is developed from X.25, X.21(bis),

and V-24 recommendations and incorporates physical equipment operating

under EIA RS-232-C, EIA RS-422, and EIA RS-449 standards as well as the

general constraints imposed by the ISO Reference Model. The first

section in this chapter gives a brief synopsis of the UNID II and DELNET

design by detailing the method UNID II will be incorporated into DELNET.

The following sections elaborate on the UNID II protocol implementation

by discussing each of the layers of the ISO Reference Model. The

application layer, presentation layer, and session layer are discussed

only briefly as they have no rigid definition by CCITT and are not

actually incorporated into the UNID. The discussion continues with the

transport layer, the layer that will communicate with the UNID. Next

the Internet protocol is discussed. The Internet protocol is

implemented to facilitate communications between the transport layer and

the network layer. The subnet layers follow the Internet protocol

discussion and represent the basic building blocks of the UNID II

protocol. Their order of presentation is the network layer, the data

link layer, and the physical layer. The network layer provides for the

routing capability of the UNID. The data link layer controls the

transfer of bits across the communications link. The chapter concludes

3 -1

6O

with a discussion of the physical layer implementation within UNID II.

Synopsis

As with DELNET, UNID II will support the ISO Reference Model.

Incorporation of UNID II as a node within DELNET will occur at the

transport layer. The UNID will implement the network, data link, and

physical layers. Hosts for UNID II require transport, session,

presentation, and application layers. The host and UNID II layered

software will be linked by an intermediate layer between the network and

transport layer known as the internet layer. The host and UNID will

implement the internet protocol as described by CCITT X.121 internet

specifications for the TCP/IP transport layer datagram service.

In applying the CCITT recommendations, X.1 specifies the user class

of service and X.2 specifies the user services and facilites required in

public data networks. X.25 specifies the DTE/DCE interface between

packet mode public data networks. In specifying the DTE/DCE interface,

X.25 references X.21(bis) for non-digital circuit operation at the data

link layer. X.21(bis) in turn references V.24 (115:44) for the func-

tional characteristics of the physical layer. V.24 references the V.28

(115:44) for the electrical characteristics of a 25-pin interface and

X.26 for the operation of a 37-pin interface. Within the US, 25-pin

interface protocol is handled by the EIA RS-232-C interface and the 37-

pin interface protocol is handled by the EIA RS-449/442 standards.

A summation of the ISO Reference Model as it applies to DELNET and

UNID follows. The material, in part, comes from Childress (15:Chapter

2) and Phister (93:Chapter 2), and Tannenbaum (112).

3 -2

I

..-. -.'" ," --.- ,-.---.-. "-".-,-.-.-.'''"" - -,'" ''" ,- - "". , '- - - ," " . ,""""""- - ,""""""" . """"""""'

ISO Reference Model

The ISO Reference Model provides the framework for developing

communications protocols for end to end comnmunication- hetwien open

ended systems. Each of the seven layers within the model group relates

activities within a common layer. The model then assigns the layer of

i:vities a hierarchy within the system to form a network. Each layer

.;,rtitio.is an activity into easily defined tasks. The layers are

'-.i-,ked on top on one another to form a node within a network. The most

fundamental tasks appear at the bottom while the most specialized tasks

required of the user appear at the top. Organizations such as CCITT and

* the National Burea.Ll of Standards have tailored their specifications and

standards to be co)mpatible with the OS model (38, 39, 40, 41, 42, 43,

44). However, some existing standards, such as the CCITT X.21 and CCITT

.25 re r-"aexdation were established before general usage of the OSI

model and do niot "conform very well" to criteria established by the

model. In fact, as shown by (3), these two recommendations must be

divided into vertical, horizontal, and temporal sublayers to adequately

fall within the OSI model.

3 -. 3

4
..

.: . - .. - .., ..,.: .>,.v,.. . ..---. . .-.. -.-- ',--.. ** *.*\ -._ * * .:... ': '-. .' ", .,:,,: ." : . : . -".':-'. '-. ." -,' "-"- .

~~- ---- - - - - --- I---------
d .. Network X.21 X.25, level 3 pX.25 level 3 X.21

Layer Connection Connection I X.25 [Correction I Correction
Est. Phase Est. Phase level 3 LRelease Phase lRelease Phase

Data Link X.21 LAP B L A P B LAP B X.21

Layer Connection Connection Connection Connection

- - Est. Phase Est. Phase Release Phase Release Phase

Physical X.21 X.21

Layer Connection X.21 ConnectIon

Est. Phase Release Phase

_ _ -TIME, t -

Figure 3-1. Temporal Order Sublayering in CCITT X.25

Recommendation (3:22).

0Figure 3-2, below shows the seven layers of the OSI model as it

would be implemented using four UNIDs to form a dual ring.

* Level Layer Layer Unit

Host A Host B

7 Application ---------------- Application Msg

6 Presentation ---------------- Presentation Msg

5 Session ---------------- Session Nsg

4 Transport ---------------- Transport Msg
I I

3B Internet----------------------Internet Nsg
I

3A Network - - Network - - Network - - Network Packet

2 Data link - - Data link- - Data link - - Data link Frame I

1 Physical - - Physical - - Physical - - Physical Bit

UNID < --------- > UNID < --- > UNID < ------- > UNrID

e Virtual communications between peer layers

Physical communications (hard wire, optic cable etc.)

Figure 3-2. ISO OSI Reference Model Implemented With UNID (15:2-7).

3 -4

"N"

m . Actual communications takes place horizontally (between hosts) at

the physical layers (solid lines). Remaining layers form the same

equivalent functions between nodes and communicate horizontally via a
*'I..

* peer process. The dotted lines within the figure represent this peer

process as virtual communications between layers. Messages travelling

through a node must first travel vertically through different layers,

eich performing its specific task. Once at the physical layer, communi-

cations proceeds horizontally (DTE to DCE or DCE to DTE) to the next

node. At the destination node, the message again proceeds virtually

with each layer performing the reciprocal function of its associated
e

C peer process. In the specific case demonstrated in figure 3-2, Host A

'.w is separated from Host 8 by four different UNIDs within the ,DELNET.

Host A and Host B may be on the same DELNET ring or on two separate

rings in which case the inner two UNIDs would both have country codes of

lot

The application layer process specifies user requirements, and to a

large extent c''iuits of a multitude of horizontal sublayer partitions

within the application layer. Horizontal sublayers may coasist of

several user options such as file transfer, interactive communications,

or electronic mail transfer. Once both nodes (near and distant ends)

have agreed to jointly sj):port the designated sematics, a single hori-

zontal partition within the applications layer is selected and communi-

cations proceeds to the presentation layer.

% The primary cl..:ra of the presentation layer is with the re pre-

-'. ntation of the information given by or to the applications layer.

Thus, while the applications layer concerns its self with the sematics

3-5

0%

or meaning of the message, the pree,,atation layer defines the syntax of

the message (36:1403). The syntax may vary from graphical representa-

t ious r- v..trious international character sets or i,,ty o L ' 1 0 tLous

number of bit representations of sematics.

The session layer, and all layer; ')elow, are concerned primarily

with the movement of the message and not its representation. Specifi-

cally the sion layer performs the top most addressing functions

within the host and the first structurin 6 of the message syntax or

Sssion Service Data Units (SSDUs) which segment the data (26:1397).

Within the SSDU, Session Protocol Data UNITs (SSPUs) carry data or

control informat ion to ald From the ipper layers of the model. Below

the session layer comes the tralsport layer which is the first layer

having a clearly defined structure and format for operation within

60O DELNET and UNID.

'rans ,_rt L.yer

Portions of the transport layer information presented comes from

the previous work of Phister (93), Childress (15), and Hunt (37).

The transport layer is the only layer within the ISO model control-

li i, transfer of data between open syste-is. Tlhe transport layer

;tructures the message from iB:optance by the lower three layers

(subnet) for eventual transmission across the network. At the virtual

communications level within the model communicatioas with the 'i!)er

three layers proceeds at a specified or at least known quality of ser-

vice. Functions provided by the transport layer included flow control

procedures, ordering of message packets, and error checking. The opera-

tion of tlip t r),, rr liyer nay b described in three phases: connec-

3 -6

%

I-

tion establishment; data transfer; and connection rielease.

During the first phase, connections establishuaeit, tli transport

layer provides a means for a pair of hosts to locate one another through

the many possible physical connection schemes between them by the use of

a user identity code. Th9 completion of this phase establishes data

transfer !),tween users.

The second phase, the data transfer phase exchanges Transport

Service Data Units (TSDUs), which as with the session layer nay -oatain

Transport Protocol Data Units (TPDUs) (37:187). The TPDUs establish in

the connect phase the following classes of service: sequence, blocking,

concatenation, segmentation, ,nultiplexing or splitting, flow control,

error detection and/or correction, and error recovery. Finally the data

transfer phase must allow expedited packets (high priority packets) to

move ahead of other packets in the system.

The third phase, the release phase, simply terminates the transport

- layer .onic t ion in an orderly fashion. Fuactions provided in this

phase consist of notification of reason for release; identification of

the transport connection released; and additionally requested informa-

tion, as may be specified by existing protocol.

The transport layer as applied to DELNET follows both datagram

;,rvce (t. virtial circuit services. For datagram service, the TCP

protocol provides reliable service between host processors and the

network nodes. The TCP interfaces between the applications layers and

the subnet layers. Within DELNET, TCP will make up the lowest layer ofF' the host and interface with the protocol structure embedded in UNID.

The transport layer in DELNET will provide the Internet Header Format

I 3- 7

:.,,2" " . _- , . .- - .- - .J- , .- o- . " . J"

'' ' (IHF) which forms the t:tsgram header. The IHF resides in the host and

not UNID so as to allow UNIT) the opttion of both datagram and virtual

circuit serv i,.,

The '1- al circuit operationi fo r DLNET is e fined i f FIPS (38,

39, 40, !, 42, -3, 44). As stated by Phister (93:2-17) "The reasons

for this select ,),i r- : 1' 7: 1ii '')tained to run on the VAX fr-; I

the National Bureau of Standards (NBS) and (2) if AFIT can fully Lipic-

ment TCP in UNID, the NBS will certify it."

Shown below in Figure 3-3 is the transport header alone. The

v~itransport header consists of 24 bytes and is placed in the data-ram data

section following the IP header bytes.

A

I
4

3 8

S

-, .

% -

10 1 1 I 2 1 3 1

10 1 2 3 4 5 6 718 9 0 1 2 3 4 516 7 8 9 0 1 2 314 5 6 7 8 9 0 It

-- I

I SOURCE PORT I DESTINATION PORT I

I --- I

I SEQUENCE NUMBER

I--- I
IACKNOWLEDGEMENT NUMBER

I -- I

IDATA I IUIAIPIRISIFI

IOFFSETI RESERVED IRICISISIYIII WINDOW

I I IGIKIHITIYINI

I--- I
I CHECKSUM I URGENT POINTER I

I---I
I OPTIONS I PADDING I

I --- I
I USER DATA FIELD I

I--- I

URG: Indicates use of UPGENT POINTER field

ACK: Indicates use of ACKNOWLEDGEMENT field

PSH: Push function

RST: Used to reset the connection

SYN: Used to synchronize sequence numbers

FIN: Indicates no more data from sender

Figure 3-3. Transport Header used with DELNET (78:C-20 - C-25)

%] As of this time DELNET dous not operate in the virtual circuit mode

due to the incomplete implementation of the subnet layers within UNID.

%! The TCP implementation within DELNET is more completely described in

(93: Appendix C).

The following section describes the Internet layer through physical

layers as applied to DELNET and UNID. This material updates the pre-

vious work of Childress (15:2-8 - 2-15).

Internet Protocol

"Tht IP protocol is usually implemented between the transport and

3 -9

S%-, ' _A ' ' - ' - '" -, - -" .V "" .';
-

,- "" - "J "" """" ' """" ' '-- .'" -'"" -% '"- -"' "v

network layers to interface networks with different protocols and data

entity formats through a common standard protocol (112: Chapter 8). The

most common implementation of the IP is where two different networks are

connected through a gateway. A gateway is a set of computer hardware

and software programs through which two different networks can communi-

cate. The most common implementation of a gateway is where the

functions of the gateway are divided in half and implemented at nodes of

the two different networks. The IP protocol is implemented as the

common protocol between the gateways and the next higher and lower

layers, the transport layer and the network layer, respectively. The IP

protocol is effectively sandwiched between the transport and network

layers, forming another layer that could be called the internet layer,

layer three-and-one-half. The sandwiched layer representation is shown

in Figure 3-4 as applied to the ISO Reference Model in the UNID and

DELNET. Although the IP is used between two different networks, it may

also be used between a host and the host's servicing packet switching

node. The IP protocol is implemented in the UNID and the DELNET

(93:Appendix C, 15:2-8 - 2-9).

3 - 10

I %.

S - ,-

. . ..
.. .

Leve iLayer Layer Unit

Host A Host B

7 Application ---------------- Application Msg

6 Presentation ---------------- Presentation Msg

5 Session ---------------- Session Nsg

4 Transport ---------------- Transport Msg

3B Internet ----------------- Internet Data-

I I gram

3B Internet ---------------- Internet Datagram

3A Network - - Network - - Network - - Network Packet

2 Data Link - - Data Link - - Data Link - - Data Link Frame

1 Physical ---- Physical ---- Physical ---- Physical Bit

UNID ------- -UNID ------- UNID ------- UNID

Figure 3-4. ISO OSI Reference Model with the Internet Protocol (IP).

(15:2-9)

The figure below shows the IP header format. The IP header is 32

bytes long as is the transport header and starts in the datagram data

section as the first byte of data. Hence, the maximum of 128 bytes of

data allowed for a datagram has 56 bytes of transport header and IP

header information leaving at most 72 bytes of data for user messages.

Implementation of ISO layers above the transport layer also require

additional bytes for their respective header formats.

....
a1

3-11

0q

I -0-- I I 2 I 3 1

10 1 2 3 4 5 6 718 9 0 1 2 3 4 516 7 8 9 0 1 2 314 5 6 7 8 9 0 11

I--------------------------------I-------------------------------

IVERSIONI IHL ITYPE OF SERVICEI TOTAL LENGTH I

I IDENTIFICATION IFLAGSI FRAGMENT OFFSET I

I---I

*-I TIME TO LIVE I PROTOCOL I HEADER CHECKSUM I

S,--- I

S I SOURCE ADDRESS

I--- I

I"I DESTINATION ADDRESS I

'4I I-- I

I OPTIONS I PADDING I

I--- I

Figure 3-5. Internet Protocol using in DELNET (78:C-20 - C-25)

Subnet

The physical, data link, and network layers form the lowest three

layers known collectively as the subnet. Subnet functions route mes-

_ . sages to and from specified hosts. Once above this level, message

traffic moves between a single host pair. Within the subnet, messages

from any of the nodes on the network may be present, awaiting final

delivery to either a host at the existing node or another node in the

SLAN. The subnet protocol specified for UNID and DELNET is defined by

the CCITT X.25 recommendation. The use of the X.25 recommendation came

about through DELNET's requirement for high compatibility between the

many diverse computer systems and networks currently in existence. The

X.25 recommendation defines conditions of interface between packet

switched networks and has come into general acceptance by the

international community. The X.25 recommendation specifies the protocol

of the network and data link layers of the subnet and refers to the

4%

3 -12

Sr--

-- . - , ". o .".- .".* - -, = '. " ,.44'_ ; . ,l ; . C .: . .¢ ' {"

CCITT X.21 or X.21 (bis) recommendation for the physical layer and link

access protocols.

Network Layer

The top layer of the subnet, the network layer, directs message

traffic within the subnet towards the designated host. To perform this

task, the network layer must provide routing control, sequencing, and

flow control. In networks with provision for only one host, the network

layer often does not exist in its full implementation. For the true

X.25 network, the network layer must determine which of may possible

paths a data packet will travel to reach its destination. Implementa-

tion of static routing tables affords a simple solution to the routing

decision process within the network layer. More complex methods require

-' ~ the node to update dynamic routing tables in an effort to optimize the

network data flow.

The 1980 addition of the CCITT X.25 recommendation allowed three

types of services: virtual call, permanent virtual circuit, and data-

gram. Virtual circuit service requires call establishment and release

0. during each session within the network and is the most complex service

in the network. Permanent virtual circuit service dispenses with call

establishment and release by maintaining a completed circuit at all

times. Datagram service provides even simpler communications by never

actually establishing a session between nodes. Each packet is its own

complete session without requirements of a call request packet prior to

establishment of the session. Within the virtual circuit session a

feature known as "fast select" allows the call request packet to contain

data for the designated host. In the years between 1980 version of the

3 -13

1-061

2 X.25 protocol and the revised 1984 version of the X.25 protocol, only

the fast select option was implemented by a national carrier Nippon

Telephone and Telegraph, Japan (NTT) (105:41), hence, the X.25 (1984)

recommendation as described in the CCITT "Red Book" dropped the datagram

service altogether, yet retained the "fast select" facility. The cur-

rent implementation of the X.25 recommendation within UNID I1 has only

datagram service. However, full compliance with X.25 protocol is

planned for the final evolutionary stages of UNID II.

Datagrams are packets containing all address information required

to route the packet to the eventual host. Moreover, datagrams contain

the standard default of 128 bytes allowed for data within a packet and

form the basic element of communications between two hosts without the

required overhead for establishment of a virtual circuit. While fast

select service also contains data in the call establishment overhead of
," a circuit, it is roughly 33 o less efficient due to requiring three

packets to complete a single data packet, while a datagram on the other

hand takes only two packets to complete a transaction (8:18). More

information on datagram service may be found in (8, 93, 112).

In all services (datagram, virtual circuit, and permanent virtual

circuit), the X.25 recommendation specifies a common flow control proce-

dure. Flow control is used as a means in delaying with congestion in

the network. As pointed out in (112), flow control messages may provide

information on the amount of available buffer space, a busy condition in

the node, or a simple acknowledgement of data. Flow control packets

Z have not been implemented within UNID or DELNET at this time.

The X.25 recommendation specifies a priority for messages destined

3 -14

% P

for the transport layer. The network layer provides a prioritized queue

"where transport messages jump to the front of other message traffic.

Should the queue become full, the network layer does not accept any more

.-. packets until space in the queues is again available. Once vacancies

occur, flow control packets acknowledge packets received in the queue.

The following figure shows the network header specified for a

datagram data packet.

---I

10 I 1 I 2 I 3

10 I 2 3 4 5 6 718 9 0 1 2 3 4 516 7 8 9 0 1 2 314 5 6 7 8 9 0 I

I --------------------------------I---------------------------------I

IGFI I LGCNI LCN IP(R) IOIP(S) IOIDCE SRCIDTE DSTI

I I I I I I I ILENGTH ILENGTH I

I--- I

I DTE ADDRESS (VARIABLE, DETERMINED BY DTE SRC/DST LENGTH I

I--- I
1 10 0 0 010 01 FACILITY I FACILITY (VARIABLE) I

I I I I LENGTH I

I--- I

I BEGINNING OF DATA SECTION: DATA <= 128 BYTES

I--- I

CFI - General Format Indicator LGCN - Logical Group Channel
SLGN - Logica L Channel Number Number
P(S) - Send State Variable P(K) - Receive StaLe Variable
DST- Destination SIKC - Source

Figure 3-6. Network Header Defined by CCITT (115:100)

Data Link Layer

While the network layer deals with the exchange of messages in the
form oil packets, the data link layer's basic unit of exchange is the

frame. The frame consists of control, and address information in addi

- tion to a complete packet. Services provided by the data link consist

3- 15

.,.

of (18,112):

1. Initialization.

2. Indentification of sender and receiver across the data

link.

3. Synchronizing the decoding and encoding mechanisms.

4. Segmentation and delimiting the frames.

5. Data transparency.

6. Flow control.

7. Sequence and Error control through use of the cyclic
redundancy check (CRC).

8. Abnormal recovery functions.

S9. Data link termination.

10. Data link activation, deactivation and monitoring
- - '. functions.

The data link uses a restricted set of the High Level Data Link

Access Control (HDLC) called Link Access Procedure B (LAP B) as speci-

fied by the X.25 recommendation. LAP B allows only the balanced mode of

operation contained in HDLC. Figure 3-7 shows the frame format speci-

,- fied by the X.25 standard. Figure 3-8 shows the X.121 format used by

Hazelton, Phister, and Childress implemented inside the datagram header

in lieu of the format specified by the OSI X.25 recommendation (15:2-

13). The format will be changed to accommodate the X.25 format imple-

mented in DELNET and UNID II.

p.-.

3 - 16

SA A

I< ------------------------------ FRAME -------------------------- >1

BYTE POSITION I

I N + 4 I N + 3 I N + 2 I 1 I 0 I I

I------------------ ---
I

FLAG I FRAME CHEKSUM I INFOR I CONTROL I ADDRESSIFLAG I

I---I

N - size of information in bytes

(First bit transmitted is right most bit)

Figure 3-7. Data Link Format Defined by CCITT (115:25)

1<----------------------------- FRAME ------------------- >1
I I

I< --.------------------- PACKET ------- ...---------- >1 I
1134 - 71 6 1 5 1 4 3 I 2 1 1 I 0 I

I DATA I SPARE ISPARE I SEQ # ISOURCE ADR I DEST ADDR ICONTROL I UNID I

I (128) I 0 1 0 I 0 1 CH I UNID I CH I UNID I Y Xl SORC I DEST I

MSB .. I LSB

/

I<-DATA-> 1<-TOP-> I<-------------P--------------------------------------..>1

II< ----- DESTI NATION ---- >1< -------- SOURCE ---------------- >1

S134-63 1 62-39 1 38-27 1 26 I 25 1 24 I 23 1 22 1 21 1 20 I 19 1 18- 7 1

I BYTES I BYTES I BYTES 1 19 1 18 1 17 I 16 1 15 1 14 1 13 12 1 5YTES I
1127-56 1 55-32 131-201 PC I HC I IC I CTI PFC I HC I CC I CT 11- 0 1

MSH LSB

Figire 3-8. Previously Implemented Frame Header Information (15:2-11)

The figure represents a composite of the LAPB protocol, X.25 proto-

col with datagram service option, and the TCP/IP header used in the

3 -17

%,-.-

software implemented for both UNID I and UNID II. The TCP/IP, developed

for standardized use in the Department of Defense computer networks and

a required protocol for DoD (2], 22). Computer networks, is partially

implemented in the transport layer of UNID I and UNID II. The source

and destination addresses are shown for each of the frame, packet, and

datagram services where each structure is broken down into smaller

segments to show its respective contents. The control (CT), country

(CC), network (NC), host (HC), and port (PC) codes are shown for the

implementation of the CCITT X.121 standard in the IP header used with

the UNIDs. A more detailed description of the header structure and

* contents is in Appendix G (15:appendix D) and (93:Appendix C).

Figure 3-9 shows the current frame format used for a more compatible

implementation with the ISO X.25 recommendation.

V.

;h%.

3 - 18

,.

-- PACKET ----------- >1 I

I 6 1 5 I 4 I 3 I 2 I 1 1 0 I

I SR ADOR I LENGTH I SEQUENCE I LCN I GFI/LGCN I CONTROL I ADDR I

I UNIDI CH I SRC I DST I P(R)OP(S)OI SRC I DEST I 0001/0000 I P(R)OP(S)O I I

MSB LSB
5"

'N.

I<----- ------------ - --- FRAME

I < PACKET

I 140 - 12 t 11 I 10 I 9 I 8 I 7 I

I DATA I FAC PARAN I FAC CODE I FAC LENGTH I PADDING I DST AD[F I

I (128 BYTES) I 00000000 I 00000000 I 16 100 I 00000000 I UNIDI CH I

MSB LSB

77

I<-DATA->I<-TCP->I< --------------------- IP ----------------- >1

<I I I I< - DESTINATION ---- >1< -------- SOURCE --------- >1 I

1 134-63 162-39 38-27 26 I 25 1 24 1 23 1 22 1 21 1 20 1 19 1 18- 7 1

I BYTES I BYTES I BYTES 19 I 18 I 17 I 16 1 15 I 14 I 13 1 12 I BYTES I

1 127-56 155-32 131-201 PC I HC I NC I CC I CT I PC I IC IIC I CT 1 11- 0

.5--

5- MSE LSB

Figure 3-9. Currently Implemented Frame and Header Information

Since the data link layer can receive bad data from the physical

layer, an error detection capability is included. A set of 16 bits

based on cyclic redundency check (CRC) calculations, called a checksum,

is appended to the address in the frame as they are sent. The checksum

is compared with the locally generated checksum at the receiving node.

3 - 19

:,V.',':.-.-",- ...-.- ,.-","--.-..-.. .-".-' "--,".-" ,..v.......................................-...,-...-.v,...,.....-.....-- -.-*,*

* .4

1A~IZL~.A A~A s*, , .,,3,

When the checksums match, the received frame is assumed correct. A

difference in the checksums indicates bit errors in the message. The

CRC generator specified by the X.25 recommendation detects all single

bit errors, double bit errors, odd number bit errors, and all 16 bit

burst errors with some additional error detection capabilities

(112:132). More details on CRC calculations may be found in (112, 80).

Figure 2-3 does not show the flag or checksum bits, even though they are

present, as these are automatically calculated, added, and deleted by

the digital transmitter and receiver hardware at the network physical

level. The flag bits are also appended to the data link layer frame.

* These flag bits are used for syncronizing the hardware to the beginning

and ending of the data. Both the flag and the CRC bits are usually

appended and deleted automatically by the physical level hardware. This

hardware process is implemented in the UNID 11 hardware.

- Physical Layer

.A. The bottom-most layer of the subnet and of the ISO Reference Model

is the Physical layer. It interfaces directly with the transmission

median and is the layer most dependent on the type of transmission

medium employed. The physical layer provides physical, electrical,

mechanical, functional, and procedural services to define the physical

*interface between network nodes. These services include (81:1373):

1. Physical connections established at two or more data
points.

2. Physical Service Data Units to preserve the data
identity from one end of the link to the other.

3. Physical connector end points to terminate each end of

the link.

3 -20

7
M wo M'

4. Identification of data circuits which transmit and

receive bits.

5. Sequencing the bits on the data circuit.

6. Fault condition notification by the physical layer.

7. Quality of service parameters.

The CCITT X.21 standard comes very close to establishing media indepen-p dent protocol procedures. However, the standard is defined for true

digital communications and has not come in wide usage due to the lack of

truly digital systems. The X.21(bis) recommendation on the other hand

was created for digital equipment interfaced by a synchronous modem

communications equipment. Electronic Industries Standard (EIA) RS-232-C

* and RS-449 contain similar procedures. EIA RS-232-C specifies 21 inter-

change circuits, their electrical characteristics and use. EIA RS-449

was designed to replace the EIA RS-232-C interface by providing improved

performance with longer interface cables, higher data rates, additional

.'' functions, and a tighter specification of the electrical standards. RS-

. 449 specifies the protocol for 39 interchange circuits. The actual

electrical characteristics are defined in RS-422 for balanced communica-

. tions and RS-423 for unbalanced operation. An important characteristic

of RS-449 is its compatibility with the more widespread RS-232-C inter-

face (7). Within the United States, the EIA RS-232-C is the most often

used of the standards and was chosen as the interface for UNID 1l's

local module. The EIA RS-449 standard offers significantly higher data

rates (up to 10 mega bits per second) and was selected for this reason

for UNID ll's network module. Original UNID II development (101)

included a 20 milliamper (ma) current loop (part of the original RS-232a

standard). This feature was not retained for UNID II operation as the

" ' 3 - 21

pA,

"S2-

RS-232-C standard establishes slightly different electrical connections.

Most of the older equipment employing the 20 ma current loop have been

replaced with newer RS-232-C specification. This has also occurred in

the military communications environment with adoption of MIL-STD-188.

Appendix B shows the actual RS-232-C and RS-422 signals to be used in

DELNET and UNID II (15:Appendix B).

Conclusion

This chapter began with a synopsis describing how UNID lI's proto-

col falls within the ISO Reference Model. The sections that followed

*, described each of the layers of the ISO Reference Model as they would be

* implemented within the UNID environment. The application layer, presen-

tation layer, and session layer were discussed only briefly as their

implementation is independent of the UNID construction. The next sec-

tion in the chapter discussed how the transport layer operated using

Transmission Control Protocol. The section following the transport

layer described the Internet Protocol's interconnection between the

transport layer and the network layer. The last sections in the chapter

cover the subnet layers, namely the network layer, the data link layer,

and the physical layer. The network layer implements the routing capa-

bility within the UNID while the data link layer implements the control

necessary for transfer of frames across the communications networks.

p The final section in the chapter covered the physical layer and detailed

the electrical characteristics of the interface used to interconnect the

network nodes. The following chapter, Chapter IV continues with a

detailed look at UNID II hardware design software implementations.

3 - 22

"S".

%* % %" - __ ,

*1..1

CHAPTER IV

HARDWARE DESIGN

Introduction

This chapter presents the early UNID II hardware designs developed

by Gravin (31), Palmer (91), and Matheson (84) and the present hardware

design developed by (15). The first section describes the early hard-

ware development. The next section details the present hardware design

developed by Childress (15:Chapter 4). No changes in the hardware

configuration have been made to Childress' design as the objective of

this Thesis is to broaden the base of the software developed for UNID

II. Three separate sections present the detailed composition of the SBC

544, SBC 88/45, and the SBC 86/12A. The last section of the chapter

discusses how the RS-422 interface connects to other UNID Hs.

* Initial Hardware Design

Gravin's Thesis in 1981 studied developing a UNID design with

performance characteristics superior to the existing UNID I design based

upon eight bit Zilog Z80 architecture. Based on Intel 8086 16-bit

architecture, Gavin's design became known as UNID II. The objectives

within the design were to the improve delay and capacity characteristics

of UNID through the use of 16-bit components and to increase design

flexibility through the use of relocatable code. The preliminary design

Cravin arrived at had two subsystems, a network subsystems and a local

subsystem, operating from a common system bus known as a multibus. The

8086 and 8089 processors along with a private bus, memory, and I/O

hardware comprised the architecture of the network module. A separate

4 -1

.7

8086 with four channels of serial I/O made up the local module.

Gravin's design placed a strong emphasis on maintaining a high degree of

functional and physical separation between local and network subsystems.

SThe network subsystem's private bus allowed handling network I/O sepa-

rate from activity on the system bus. The local subsystem then could

make use of the system bus to handle local I/O activities. Interconnec-

tions between the local and network subsystems occurred through

restricted system bus activity and a block of common memory. The common

memory facilitated processor-to-processor data transfers through the use

of first-in-first-out (FIFO) buffers separate from the transmit and

receive buffers. Control of data transfer and synchronization within

the the common memory occurred through the use of pointers and sema-

phores inside block memory headers. Cravin's functional analysis of

UNID requirements led to development of data flow diagrams (DFDs) given

in Appendix A. Though Gravin's original design has gone through many

ilterations, the DFD's provide accurate and useful guidance for all

following UNID II development. Further information on the DFDs may be

found in (31).

The hardware implementation of Gravin's design became three circuit

cards within an Intel multibus card cage. Figure 4-1 shows the hard-

ware construction.

..

-. -4 -

An Intel SBC 86/12A processor was used as the local processor

controlling the multibus to both the local and network subsystems. The

remaining portion of the local subsystem and the network subsystem were

constructed from wire wrapping components onto multibus cards. The

parallel port off the SBC 86/12A was used to connect the four channel

serial I/O card required for the local subsystem. The network

subsystem, the 8086/8089 card, originated from an Intel applications

note (72). Host-to-UNID data transfer would make use of one of the four

serial channels on the local subsystem. The SBC 86/12A would perform

packet construction and then place the messages into the common system

memory. After the message was placed in common memory, an interrupt to

the network subsystem would activate processing by the network

subsystem. The 8086-8089 card would then perform the final frame

construction on the message and send the message to the 8089 network

1/0 hardware.

Though 16-bit processors were manipulating the data, all data

transfers were essentially eight bit data transfers. Data transfer

between the SBC 86/12A and all hosts was through eight bit universal

synchronous/asynchronous receiver/transmitters (USARTs) and the eight

bit parallel port of the SBC 86/12A. Communications between the SBC

86/12A and 8086/8089 card was through 16-bit multiple protocol communi-

cations controllers (MPCCs). These 16-bit controllers, in fact, handled
U-

only eight bits of data with each data transfer. The remaining eight

bits was used for status information (27:5-267). The end result was

that all data transfers between local and network subsystems, the host-

' " . •

'.."4 - 4

V. to-UNID interface, and the UNID-to-UNID interfaces were all eight bit

data transfers (15:3-4). A review of available MPCCs in late 1984

Lshowed no commercially available MPCCs capable of 16 bit data transfers,

other then a few specialized, but otherwise unsuitable integrated cir-

cuits. Nonetheless, the implementation produced a functional, though

only minimally operational system.

Palmer's continuation of UNID II development was hampered by wiring

errors in the network subsystem. This was discovered in the network

board checkout phase (79:Chapter 4). At the conclusion of Palmer's

design implementation, the only software developed for UNID II was for

testing circuit boards and not for implementing any of the required

communications protocol.

Matheson continued development of UNID II in 1983 (84). He deter-

mined that the original design would not function as specified. The

main problems were in the 8086/8089 network board (84:3-11). The

8086/8089 network board could not handle two MPCCs as originally

believed. Each MPCC required a separate interrupt to operate the tran-

smit and receive buffers in the full duplex mode. Matheson's solutions

was to replace the 8086 on the network board with another 8089. With

this design modification, the two 8089s acted as a cluster 1/0 processor

with sufficient interrupt capability to handle both MPCCs. Another

problem with the network board was an incompatible memory address map-

ping of the network card with the local card. This was corrected by

placing memory and I/O ports of the network card in the system memory

space. Matheson's final design is shown in figure 4-2 (84:1-9)

4 -5

-) c

tot
J0 - E

~~~~~~, 0.. I - a. I

'I1 -.- %

4 I 0 4J

aJ I E- 1C3

441 uJ11

0 EU3

LjGJ

aJJ z

V))
0 S-

EU

LA %-

93. 0z

4.1 U
-) 0

4j 00
L.J C-

co IA

o o

rxI



" -, After redesign of the network board, Matheson places a monitor program

into the SBC 86/12A's EPROM to minimize the time consuming process of

loading the system memory with the in-circuit emulator (ICE) 86 (43).

He also translated UNID I software developed in PL/Z to PL/M and con-

cluded his work with the functional validation of the local subsystem

hardware and software. The UNID I code converted to PL/M, however, was

only cursorily validated. It was left for (15) to validate all network

and local software converted to PL/M.

Childress' Design

Childress' design used a architecture structure similar to

Matheson's design, but took an entirely different approach in the imple-

mentation through the use of off-the-self SBCs. The design consisted of

multibus card cage and power supply, an Intel SBC 544 board to implement

the local subsystem functions, and an Intel SBC 88/45 board to implement

the network subsystem functions. The SBC 544 board comes complete with

four 8251A USART channels which may be configured as RS-232-C interface

ports via software. The 88/45 board has two high speed serial ports

which may be configured as RS-422/499 ports. The choice of Intel compo-

nents is a matter of convince and availability and not an endorsement.

Other manufacturers, such as Advanced Micro Devices (AMD) and Inter-

phase, manufacture similar equipment. One particular board, not avail-

able at the time of Childress* selection for hardware design, completely

implements a token ring passing node from the physical layer all the way

to the transport layer (Interphase). As with UNID, most of the commer-

cially available hardware makes use of the ISO X.25 recommendation for

subnet protocol. Figure 4-3 shows Childress' UNID II architecture.

i.- .54 47

14 -S -r t !. L



Note the design consists of only two modules, a local module and a

network module, as indicated by the functional analysis performed by

Gravin.

The SBC 544 local module consists of an 8085 processor servicing

four interrupt driven 8251A USARTs. Up to 32K bytes of memory may

reside on the SBC 544. Up to 16K bytes of this memory may be located in

common with the multibus system memory. The board is implemented as a

stand along processor requiring minimal assistance from the system bus.

Resident within the SBC 544 module is the network layer software and

network layer tables, pointers, and semaphores. More details for both

the SBC 544 board software and SBC 88/45 software are given in

Chapter V.
.4.

The SBC 88/45 network board consists of an 8088 processor servicing

two high speed multiprotocol serial controllers (MPSCs) configured as

two RS-422/449 ports. Direct memory access (DMA) operations between the

central processing unit (cpu) and MPSCs allow data rates up to 800 K

baud. A total of 64 K bytes of memory is available on board with up to

12 k bytes of memory shared with the system memory. Resident within the

SBC 88/45 memory is the data link software and data link local tables.

Each of the two SBCs provides the spare counter/timers necessary for the

time-out clocks required by the X.25 protocol. Specific details of SBC

544 and SBC 88/45 operation may be found in (57, 58).

The use of the SBC 544 and SBC 88/45 allows simplification of the

design procedure. The hardware test and debug phase of development may

be assumed complete as all hardware is a commercially available piece of

equipment. Moreover, software development aids operating on the Intel

4 -9

_-



.0!6

=~a I-.

IA L ~L

LL

Lfcl _

00 0C a

I-1e

.0'e

4J~

~4Ln 4J

I '~0I
CL . 4J 4

0 -2 L. '

r= 0i 0- '

IT LA-,.

4
4J

4-P-

N w0 .) $- CD.C

*~c 4~JL
r-c. C).L



.. System 230 and System 310 are available. 'IMlese software development

aids include a full screen text editor; PL/M compilers, linkers, and

assemblers; and program debugging aids to assist in program developn-nt.

- Detailed Hardware Descriptions of the SBC 544 (58)

The SBC 544 communications controller (58) is designed as an intel-

* *ligent slave to a system processor. The board provides four serial (RS-

232-C) ports, one parallel port, seven programmable timers, eight pro-

grammable priority interrupts, and an on board 8085 processor. The four

serial I/O channels provide programmable character length, sync

character (for synchronous operation), baud rate, parity, and stop bits

(for asynchronous operation) through the use of four 8251A USARTs. Two

8253 Programmable Interval Timer (PIT) chips provide six count down

timers. Four of the PITs are used for the USARTs while the remaining

two are available to generate interrupts or as auxiliary transmit

clocks. The programmable interrupts are generated from an 8259

Programmable Interrupt Controller (PIT); a Flag byte in the base memory

* address of the SBC 88/45; carrier detect interrupts to the 8085 CPU;

ring indicator interrupt, also to the CPU; multibus interrupts, and

timer interrupts to the 8085 CPU. The SBU 544 supports up to 8 k bytes

of ROM/EPROM. Currently, the 6 k bytes of program code resides in two

2732A EPROMs. The code location is from the base memory of the board

with the dual port dynamic RAM located beginning at 8000 H. If

required, the SBC 544 may access additional system memory for its own

use. The SBC 544 has up to 16 k bytes of dynamic dual ported RAM. The

dual ported RAM allows access by either the SBC 544 CPU or a multibus

master processor. The dual ported RAM is mapped into system memory

4 - 10

,'-"



hr.

beginning at location 10000 H. In addition to the 16 k bytes dynamic

RAM, 256 bytes of static RAM are available on the 8255 PPI beginning at

address 7FO0 - 7FFF H. The start address of the dual ported RAN is

*ed at 8000H.

Detailed Hardware Description of the SBC 88/45 Advanced Data

Communications Processor Board (ADCP) (57)

The SBC 88/45 is based on the 8088-2 8 bit processor and supports

Serial Data Link Control (SDLC), High-level Data Link Control (HDLC)

* "' with data transfer speeds up to 800,000 baud. The SBC features the

following characteristics:

1) 8088-2 CPU operating at a clock rate of 8 Mhz

2) 16 k bytes of RAM with up to 12 k bytes allocated for
a,' dual port operations

. 3) Up to 64 k bytes of ROM/EPROM

4) Three serial interfaces capable of RS-232-C or RS-422
operation (only channels A and C are capable of RS-422)

5) DMA access for up to two serial channels

6) Asynchronous, bisynchronous, SDLC, HDLC protocols

5" 7) 9 levels of interrupt detection

8) 6 programmable counter/timers (4 are dedicated to the
serial I/O port)

9) Compatible with RS-232-C, RS-422 and CCITT V.24
interfaces

10) Operates as a bus master or intelligent slave

The SBC 88/45 has an internal bus for on board memory and I/O

operations which allows for parallel processing when used as part of a

multibus system. The dual port RAM may be located at any 16 k byte

boundary addressed by the on board CPU. The three serial interfaces are

4 -11

*~ *5

,0%



' ,independently programmable through both an 8274 Programmable Multiple

Protocol Serial Controller (MPSC) and an 8273 SDLC/HDLC protocol con-

troller. Channels A and B of SBC 88/45 are implemented through the b274

MPSC. Channels A and B can achieve data transfer rates of 800 k baud in

synchronous operation and 19.2 k baud in asynchronous operation.

Channel C can achieve data transfer rates of 64 k baud in synchronous

operation. An 8237-5 DMA controller provides DMA operation for two

channels of communication with the SBC 88/45 board. Of six available

count down timers, four are used for programming baud rates while two

remain available for user programs. An 8259A PIC provides eight levels

of programmable interrupts. A non-maskable interrupt is provided for

catastrophic error recovery as would be required by a power failure.

There are seven large scale integrated (LSI) devices that require

4. programming on the SBC 88/45: an 8255A PPI, an 8273 protocu. control-

ler, an 8274 MPSC, an 8237-5 DMA controller, two 8254-2 PITs, and an

8259A PIC. The sequence of programming these devices may be found in

(57:Chapter 3).

The 8273 protocol controller supports asynchronous and synchronous

operations in point-to-point and loop configurations. Up to 16 differ-

ent commands allow the 8273 protocol controller to perform DMA functions

between itself and the DMA controller. For data transmission, a begin

flag, two byte checksum, and ending flag are added to the out going

S frame. For incoming frames these same bytes are removed. Following a

frame reception, the 8088-2 CPU must check the 8273 status register to

determine the frame checksum results. The 8273 protocol controller will

act as one of the two RS-422 high speed data channels.

4 -12



The 8274 MPSC has two identical channels which require the program-

ming of 11 parameter registers. The 8274 MPSC performs the basic

serial-to-parallel and parallel-to-serial data transfers necessary. The

8274 may operate in bisynchronous, SDLC, or HDLC protocol. Channel A of

the 8274 MPSC may operate as either a RS-232-C or RS-422 serial port,

while channel B is restricted to RS-232-C operation. The UNID II design

will use channel A as one of the two RS-422 high speed serial ports to

the DELNET ring, while channel B will be used as a monitor port for

4 software development and for network capacity monitoring. More informa-

tion about channel B operation may be found in chapter V. The data link

layer software developed in Chapter V defines the UNID II as having two

high speed RS-422 channels, channel A and channel B. Future references

to the physical channels A, B, and C will be through the data link

nomenclature used in Chapter V. Channel A data link software corres-

ponds to the channel A port of the 8274 MPSC. Channel B of the data

- link software corresponds to the channel C port and is the 8273 protocol

controller. Note also that the software requires channel A be config-

ured as a DCE device and channel B be configured as a DTE device.

The 8237-5 DMA controller has four channels to provide direct

memory access for two of the three serial interfaces on the SBC 88/45.

Two of the four channels of the 8237-5 are dedicated to channel A of the

8273, while the other two channels may be programmed for transmit and

receive functions to either of the other two serial ports. UNID II will

use those remaining two ports for the 8274 MPSC for the second high

speed serial port. Two 8254-2 PITs are available on the SBC 88/45.

... Two of the three timers/counters available on each 8254-s PIT are

4 - 13

0,"-



dedicated to the trans m it and receive clocks of the 8273 protocol

controller and 8274 MPSC. The remaining timer on each chip is available

-_ .for a programmable interrupt.

The 8259 PIC controls the interrupt services to the 8088-2 CPU.

Interval capabilities include on board I/O, expansion I/O, multibus

interrupts, and the SBC 88/45 Flag byte.

SBC 86/12A Hardware Description (56)

The SBC 86/12A is currently used only as a monitor resource for the

memory operations performed by the SBC 544 and SBC 88/45 boards.
.

Current designs do not include it's use in a functional UNID II.

The SBC 86/12A has an 8086 16 bit on board CPU with an internal bus

structure for parallel processing functions on a multibus system. Up to

32 k bytes of RAM may be located on the SBC 86/12A of which all or part

may be accessed by an off board multibus master processor. Four

receptacles are available for up to 16 k bytes of ROM/EPROM memory.

Presently a monitor routine uses 8 k bytes of EPROM on the SBC 86/12A.

One serial RS-232-C port and one parallel port with 24 programmable

lines resides on the SBC 86/12A. Communications with the monitor

routine takes place through the serial port and a H-19 terminal.

7 AM 95/6445 Card Cage Description

The AM 95/6445 card cage is a six slot multibus with a control

panel, 180 watt switched power supply, and two fans for forced air

cooling. The card cage allows priority assignment of boards residing in

the card cage. Presently, the SBC 86/12A board is placed in slot J-1

with the highest priority. Slots J-2, J-4, and J-6 are not used. The

* next highest priority is assigned to slot J-3 were the SBC 88/45 is

4-14

',,

p'.



placed. No priority assignment is given to slog J-5 were the SBC 544

normally resides. When the SBC 88/45 is not tested, the SBC 544 resides

in slot J-3. Jumper positions are given for the AM 95/6445 in Appendix

C.

SL'ID II Physical La)er Interface

The physical layer interface of the UUID II consists of the two RS-

422 channels on the SIBC 38/45 used to support two different UN:ID rings.

In full abstraction, The UNID II has two separate rings passing mes-

sages. One ring passes messages in a clockwise direction, and the

other ring passes messages in a counter clockwise direction. Two

entirely different approaches are possible in the configuration of the

RS-422 interfaces. One is to dedicate channel A for processing mes-

sages in one direction and dedicate channel B for processing messages in

the other direction. This technique would have every channel A con-

nected to another UNID's channel A. Figure 4-4 show graphically how

this technique would work.

B .... > > ...... ISBC 88/45 .-------. > ----... A

Distant B I+ ------ I A Distant

End Local I I S1C 544 I 1 Local End

UNID I I I UNID
II I

B 11 1 1 A
B ---- < < ----- I -..---- < < ---- A

--- --

Figure 4-4. A RS-422 Inter-connection Technique for UNID II.

S4- 15

-- - - -. V - . . - - ,. - , . . . ,, . - " - - . - . . • " " - " . - - - - - - - . - , - - - ' . - - . . 1



This technique has two limitations. One UNID would have to have a null

modem interface built on both channels while the other UNID would have

no null modem interfaces on either connector. A null modem simply inter

changes the transmit and receive signals. However, since a RS-422

interface has balanced lines, most of the signals used would have to be

interchanged. The result of this technique would be the creation of a

UNID designed as a DCZ device alhd another UNID designed as a DTE device.

'Moreover, every DULNCT ring would require an even number of UNIDs. 1he

other limitation associated with the interface is that it would be

* impossible for hardware loop back on a single UNID. Such a capability

would be useful for trouble shooting hardware problems. Another

possibility would be to create a DCE interface and a DTE interface on

the same UNID. Thus, a UNID could connect to itself in a hardware loop

back or to any number of other UNIDS. This configuration would require

one channel to have a null modem on each UNID II and each UNID II would

have an identical hardware implementation. Figure 4-5 shows how this

configuration would look.

42B ->-----1SC 88/45 1 I---- ----- A
Distant A I+ ----- + I B Distant

End Loca I I I SBC 544 1 1 Loca I End

UNID II I I UNIO
I I I

* A I I I B
.... < < -------- II II- ----- < < ---- A

----- - ---

Figure 4-5. The Implemented RS-422 UNID Interconnection
*.'- Technique

4 - 16



* The present hardware and software configurations implement channel A as

a DCE device and channel B as a DTE device. Refer to (Appendix B) for

more information a null modem configuration.

Conclusion

This chapter presented the hardware design evaluation of UNID II.

First, the designs of Gravin (31), Palmer (91), and Matheson (84) were

briefly given. Then, the final hardware implementation developed by

Childress (15) was developed in detail. The information discussed

concentrated documentation of the current hardware implementation of the

UNID II. The final section in the chapter discussed the hardware RS-422

interface as it is currently implemented on the UNID II. The following

chapter, Chapter V, describes the UNID II functional testing procedures

( and the results obtained from those tests.

. y1

4 - 17



CRAPTER V

SOFTWARE DESIGN

IntroductionU This chapter briefly presents the design completed by the past

Thesis effort (15) and then presents the design and implementation of

the CCITT X.25 recommendation which followed. The contents of the

chapter focuses primarily on the design and implementation of a protocol

meeting the CCITT X.25 recommendation. This chapter is composed of the

following sections: previous development, program language selection,

data structures, UNID II network layer software development and

implementations, data link software development and implementation, and

physical layer implementations.

Previous Development

The PL/M programming language was used for development and imple-

mentation of the past UNID II software (15:4-1 - 4-2). The previous

selection of PL/M was based primarily on two key criteria:

1) It was the only high level language available for both the 8085

and 8088 processors used in the UNID II hardware.

S 2) The developer (15) had prior experience with PL/M.

Development prior to Childress made use of several different languages.

Among them were "C" (84) and PL/Z (93). The PL/Z software written by

Phister (93) was translated to PL/M by Childress, then modified for

operation in the current UNID II hardware design.

The PL/M code for the 8080 and 8085 processors (PLM80) did not have

the facilities for dynamic memory allocation. Hence, indexed arrays

S. 5-,

. . . . . . . . . . . .. . . . . . . . . . . . .



q l .. .. . - . . . . ..

were used in lieu of pointer based linked-list data structures.

Moreover, previous implementations of the UNID I software had also used

indexed arrays. This commonality of UNID I and UNID II software allowed

the previous software modules and basic program design to be integrated

into UNID Il's hardware. The overall effect was a savings in UNID II

.' ,development time.

*. Communications between the SBC 544 and SBC 88/45 was addressed

through the use of semaphores (Appendix E). The use of semaphores by

r "K each processor eliminated the problem of two separate processors trying

to access the same memory location at the same time. This measure of

protection assured each processor only valid data would be manipulated.

UNID I data flow between receive and transmit tables (memory buf-

fers) of the network layer software was altered (15:Chapter 4) in the

UNID II design. Local to Network tables (LCNTB), Local to Local tables

(LCLCTB), Network to Local tables (NTLCTB), and Network to Network

tables (NTNTTB) were eliminated in favor of direct memory transfers.

The removal of these four tables from the network software simplified

- the software and decreased processing time for each message. Most of

the development was limited to the network layer TCP/IP routing soft-

[ ware. The data link simulation software did not contain flow control

changes implemented in the network software. Additionally, the Local to

Network and Network to Local tables remained in the data link simulation

software. Finally, the data link software also did not include the
"T

semaphores developed for the network simulation and operational software

*(see figures 5-1, and 5-2).

5 2



LC3RLCNTTB ~LCO4RX >NT0 TX - -

"- LCO2RX - - ...... NTOTX -

" 
- LCO4RX- -- 

....

LCLCTB NTNTrB

:,v, +f-ii ,T2_.<- 1
0L--j LCO2TX - NTLCTB < - NTO1RX <

'LCO3TX -NTO2RX

DATAGRAM PACKET FRAME

128 BYTES 133 BYTES 135 BYTES

ITRANSPORT NETWORK DATA LINK PHYSICAL

0 LAYER LAYER LAYER LAYER

Figure 5-1. Original UNID Data Structures and Flow (15:4-4).

or

I!m
4, 

344

4- , 
5 - 3

'-'--- , - . ., , - -- - - . . - " 2 
4.v . > . " . -- ." " , - -. - - .- -> .... ,> ' v .,, , ..' -' 7. .' ', ...' .''..4. ..Z'4< ,



i - . - + ++ + + , . V',1 + + - r -- , -- .- -,--,+- , ,v - ,~ . -

LCD 1RX

- LCO2RX ---- NTO1Tx
.. . . -> NTCE 4T

LCO.. . . .I T

LC02TX ~-
, LCO - ---.... .- .... . . NTO 1RX K-.

LCO4TX NTO
'

2R
-

Lptr -- > ILPOINTERI -- > Lptr

Ready -- > LSEM.J -> Ready

Done <-- <-- Done

Nptr <-- NPOINTER <-- Nptr

Done--> NSEM --> Done

Ready <-- <-- Ready

DATAGRAM DATAGRAM/PACKET/FRAME FRAME
128 BYTES 128/133/135 BYTES 135 BYTES

• TRANSPORT NETWORK DATA LINK PHYSICAL,LAYER LAYER LAYER LAYER

Figure 5-2. UNID II Data Structures and Flow (15:4-5)

The solid lines in the figures above represented data flow between

N data tables. At the bottom of each figure, the approximate ISO layer

corresponding to the data flow was labeled. The data structures passed

by each of the tables retained by (15) consisted of datagrams, packets,

and frames. The format each of these structures was specified by

(93:Append C). The format for the datagram consisted of a minimal

implementation of the TCP/Ip header within a 128 byte array. Processes

- operating at layer 4, the transport layer, format the bytes needed in

5-4

-3.'- :. ';'- L %I,:, . ,."- '- *%1%'F +.- . L .>. *- - *." *-". . *." ". - - -. " % - . " - " *. +* . *-. 7. *..-." .- " *. - -' " .- '.-.-.-, '



the TCP/IP header and send the message to the UNID through the hardware

RS-232-C interface. While the TCP/IP header used 56 bytes, only 22

bytes were filled out in the IP header and only 6 bytes were filled out

in the TCP header. This minimal implementation supported the necessary

developed by (93) added only five bytes to each datagram. Of these five

bytes, one was for a source address and one was for a destination

address. The remaining three bytes were unused. This implementation

accomplished a primitive network header comparable to the CCITT X.25

recommendat ion.

* Appended to the packet format were two more bytes used to form the

partial frame structure. The first byte was an address byte. As imple-

mented by (93) this byte contained the message destination country code

and network code for multipoint addressing. The second byte appended to

the partial frame format was a sequence byte. This byte used only one

bit to implement the sequence number functions. As mentioned above,

these two bytes formed the partial frame formnat.

The complete format structure included a beginning flag byte, the

address byte, the sequence byte for LAP B protocol, the packet struc-

ture, a two byte checksum, and an ending flag byte. of these fields,

the beginning flag, checksum, and ending flag bytes are handled by the

SBC 88/45 hardware. The user, however, must interrogate the hardware

status to determine the validity of the frame. This implementation

results in a frame structure of 135 bytes (excluding the bytes handled

by the hardware), a packet structure of 133 bytes, a datagram structure

of 128 bytes, and a user data area of 72 bytes (15:.Appendix Q).

5 5



i..

- In the network layer software on the SBC 544, transmit (LCOxTX)

tables and receive (LCxRX) tables are datagram size. (The "x' stands

for numbers 1, 2, 3, or 4.) In the data link layer software, the

- transmit (NTOxTX) tables and receive (NTOxRX) tables are both the

partial frame size of 135 bytes. The length of these tables had no

analytical basis other than the length of ten datagrams, or in the case

of frames, the length of ten information frames. The number of ten

structures for each table came about from the hardware memory limita-

tions. When possible, communications between tables used pointers

if,. rather than block data transfers. This approach reduced processing time

devoted to each message transaction.

The network layer software design implemented corresponds to the

upper portions of the ISO layer 3B (Figure 3-2). Layer 3B functions

concern the IP header manipulation and channel routing for a multihost

environment. The TCP/IP header implemented a variation of the CCITT

X.121 internet addressing protocol (93:Append C). The variation applies

to the 32 bits allowed for the source and destination addresses in the

IP header. The layer 3B software implemented determines the datagram

destination from the IP destination address and sends the datagram to

the appropriate host. If the host is located on the same UNID, the

datagram goes directly to the appropriate receive table. If the data-

gram is destined for another UNID, a primitive network layer header is

constructed and the datagram is sent to the data link transmit table.

The primitive software structure charts in figures 5-3, 5-4, and 5-5

show the basic routing algorithm used to send and receive datagrams.

More information may be found in (15: 4-5 - 4-17).

5-6

N~ WId~



main

route$in route$out.

Figure 5-3. Network Layer tligh Level Structure Chart

(15:4-7).

routeSin

destination IcOxns destinations

destination$ cn address

address

-I source$address

S. IcOxrx(IcOxns) '- portnum . IcOxrx( IcOxns+51

odestinationS
.address

"IcOxrx(IcOxns) .netrx(O)

-. portnum Y

detlSaddr sends srvc$ detSaddrS moveto

packet tabS n nl local

Figure 5-4. Route$In Procedure Structure Chart

(15:4-8).

Figure 5-3 shows the highest level of operations within UNID II

software as developed in (15). Figure 5-4 shows the level break down of

the "route$in" procedure. The procedure "route$in" first determines

157-7



the address of a received packet with the procedure det$addr. The

procedure send$packet moves the packet to the correct location within

the target receive table. Procedure "srvc$tab$hskp updates the receive

table pointers. If the packet is determined for a local host from the

data link layer (i.e. SBC 88/45) then "det$addr$nl" and "move$to$local"

are called to move a packet to the appropriate host.

route$out I

F-output mask

transmit interrupts

requestj

Figure 5-5. Route$Out Procedure Structure Chart

(15:4-11).

Figure 5-5 shows the high level break down of the "route$out" procedure.

Procedure "route$out" sends data to the appropriate receive table

through internet driven software handshakes. Figure 5-6 gives the

pseudocode for the "route$out" procedure. The TR/TA handshake envolves

r- four boolean variables which prepare both the sender and the receiver

1_ of a datagram for data transmission.

%. %

* 5-8



disable interrupts
mask receive USART interrupt off

enable interrupts

if datagram available and not sending then
do
if TRTA$handshake and (not sending and not receiving) then

do

set transmit request true

set sending true
send transmit request

end

if not TRTA$handshake or (sending and not receiving) then
do
set sending true
disable interrupts
mask transmit USART interrupt on
enable interrupts

end

end

disable interrupts

mask receive USART interrupt on
enable interrupts

Figure 5-6. Route$Out Procedure Pseudocode

(15:4-12).

Figure 5-7 shows the TR/TA handshake process when the UNID receives

a message from a host. The process for the UNID sending a message to

the host is the same with the roles of the UNID is host reversed.

4
4

5 9

% i.



UNID Host

Idle Datagram to send

TR
Recv TR < ---------------------- Send TR

Wait for TA

TA
I Send TA ---------------------- > Recv TA

Look for
Datagraut

Datagram

Recv Datagram ----------------- Send Datagram

Figure 5-7. UNID/liost Transmit Request/Transmit Acknowledge Handshake.

(15:4-13)

More detailed information on the TR/TA handshake procedures may be found

' "(.1. in (15:4-13 - 4-17) and in Appendix F The network layer as com-

pleted by (15) is referred to in this document as the network layer 3B

and serves primarily as a TCP/IP interface for the UNID and as a multi-

host server. Network layer 3A, also referred to as the packet layer,

performs the flow control, congestion management, and other funictions

specifically discussed by paragraphs 4, 5, 6, and 7 in the X.25 recom-

mendation (115:75 - 128). The present condition of network layer 3A is

a "straight through" minimal implementation which addr sses the

manipulation of one byte of the ten byte network layer header. The

data link software implementation of previous work (30, 33, 93, 15)

allowed only one bit for a sequence number and only processed inform-

ation (I) frames with limited use of receive ready (RR) frames, and

receive not ready (RNR) frames. The structure of the data link layer

5- 10

-,...



software was similar to the network layer software with "route$in" and

"route$out" procedure called to move data between receive and transmit

tables. The data link layer procedure "route$in" searched a table

(LCNTB) for a datagram destined to the data link layer. When a datagram

was present, the "route$in" procedure filled in the necessary frame

header bytes and sent the datagram to the data link layer transmit

table. Frames found in the data link receive tables (NTOxRX) destined

for the local host were sent to a local transmit table (NTLCTB) where

the network layer software continued further processing. Frames found

in the data link receive table destined for another UNID were sent to

the data link transmit tables (NTOxTX). The procedure "route$out"

handled frames found in the data link transmit tables. Procedure

"route$out" created a software loopback and sent any frames found in the

transmit tables back to the receive tables. The two channels, A and B,

then had messages circulating from the receive tables to the transmit

tables. This simulated the DELNET ring of UNIDs which the data link

software accessed. The data link software Childress was able to imple-

ment did not use the semaphores necessary to communicate with the net-

work layer software on the SBC 544, nor did the data Link software

address the four individual receive and transmit tables of the network

layer software. The majority of the work in (15) focused on the IP

network layer software and programming the SBC 544.

The final design developed by Childress presented the system memory

map shown in figure 5-8 for the UNID II.

.4.. 5 - 11



%,

SBC 544 Address System SBC 88/45
Memory Local System Memory Memory

+----+--------------------------+----------------------

- -I Data Link

I I Layer

I I Software

I I I (EPROM)

I FE000 I

S+--------------------------+----------------------

I.-'. I III

I 14000 I 1
~' +-------+---------------------------+----------------------

1 12000 1 -------------------- I

*1 -J

* SBC 544 Has I I Common Tables, I
No Memory Above I I Pointers, I

FFFF I I0000 I Semaphores I

W------------------------------+----------------------------+----------------------

I I I
I Not I I I I
I Used I I I I

I I COOO iOCOQO II
--------------- +- - +----------------------------+--------------------+

I Network Layer I I I I

I Tables, I I I I

I ----- Pointers, --- I A000 I I I
I Semaphores I I I I

I-- ,1 8000 1 08000 1 1
I------------------------------+----------------------------+----------------------

1 544 Scratchpad RAMI 7F00 I I
III

* ~I II -

1"  I 4000 1 04000 1

4------------------------------+----------------------------+----------------------

I.-
I - - -- - - -- --- 2000 11 Daia Link

I","I Layer

.- I Network Layer I I I I Local

I Software I I I I Tables

I (EPROM) 1 0000 1 00000 1

------------------------------ +----------------------------+----------------------

Figure 5-8. UNID II Nemory Map (15:4-30).

5- 12

'-. ,- .- ., .-? ', ,- '- .-? ,' ','< ,'.'- .;;' ,' ' -'. .'',-'. '. -.-,', '.'". 'i ,.', "'. -.- .- "-' ', .''. / .. ' " ' • .



7AlD-Ai64 876 DEVELOPMENT AND IMPLEMENTATION OF THE X25 PROTOCOL FOR
THE UNIVERSAL NET. (O) AIR FORCE INST OF TECH

U 'ASS RIGHT-PATTERSON AFB OH SCHOOL OF ENGI. . K W WdEBER
NCLASSIFIED DEC 85 AFIT/GE/ENG/85D-52-VOL-i F/G 9/2

IEEEEEEEEEEEEE
EllEEllEEEEEEE
ElEEEEEEElIIEE
ElEEEEEEEEE~lE
EEEEEllllllEEE
EEEEEEEEEllEEE



'III'

III1 II1.4 IIII1 i"8

MICROCOPY RESOLUTION TEST CHART

1.NATIONAL 
BUREAU OF STANDARDS-1963-A

L28

m .

Uo

Au 36I6 L.



, V . .,

System memory consists of the memory locations accessible by all proces-

sors capable of accessing the multibus. Each processor board has its

own RAM available to the local CPU. Part or all of the available dual

port RAM may be made public to any device in control of the multibus.

The tables, pointers, and semaphores common to both the SBC 544 and SBC

88/45 were located at 10000 h in system memory. The memory addresses of

the RAM for on board use does not have to match the address used by the

system memory. In the case of the SBC 544, the local memory address of

the dual port RAM of 8000 h is "mapped" to the system memory location of

10000 h. Note in figure 5-8 that the SBC 544 may only address memory

locations from 0 to FFFF h, while the SBC 88/45 has access to an addi-

tional 64 k bytes of memory above the uppermost limit of the SBC 544.

All the addresses in figure 5-8 are given hexidecimal (h).

Development Language Selection

As with previous efforts the language selected for this project was

PL/M. The use of PL/M over other available languages removed the neces-

sary step of translating operational software to another language for-

mat. In reviewing the language selection, the "C" programming language

was strongly considered for two reasons. It is more robust than PL/M in

features allowing for more control over data structures and operation at

a higher level of abstraction. Though Kernighan and Ritchie may dispute

to some degree that "C" is a high level language (76:1), "C" does allow

for more control over the basic data structures than PL/M. Finally the

wide spread popularity of the "C" programming language (78:1) allow for

a greater transportability than is presently shown with PL/M. however,

" 5 -13

• -4 .... . ,. . ... .. . .. ', ..... ., ., . , ' - : _',-.:., . .. :!:e , , ' - ,,,:i '



PL/M and "C" share many common features. Both PL/M and "C" allow modu-

lar, self documenting code. Both languages allow manipulation of data

structures at the bit level and allow direct access to the hardware

ports. Other languages, such as Pascal, lack these features. Despite

the above short comings experienced by PL/M, the advantages in main-

taining PL/M as the "primary" programming language overcame PL/Ms inher-

ent limitations. In furthering the X.25 protocol implementations in the

existing software, many existing modules needed no changes while others

needed only minor alterations. This was the case for most of the IP

software developed supporting the SBC 544. The data link layer software

required a significant extension to implement CCITT X.25 data link

features. Even though PL/M allows the linking of object code modules of

different programming languages, the author has had no experience those

activities and could find no documentation in describing how separate

PL/M and "C" module could be linked together. Therefore, as with past

recommendations (15:4-2), "C" may be chosen for a more robust implemen-

tation of UNID software, but with current software implementation in

PL/M and the familiarity of PL/M over "C", leads the author to the

conclusion of maintaining PL/M as the primary programming language.

Some work in 8080/8085 assembly was performed as part of this

project. Previous software used an 8080/8086 assembly module for data

communications with the UNID software. This software was modified for

use with an 8251 USART, the Intel system 210 operating under CP/M, and

the Intel system 230, SERIES III operating under ISIS. While the

changes were minor in nature, they required the author to gain much

experience over two different operating systems and assembly code. The

5 -14

,ILV ,: r r, 4. ,. ,," . '".,, r ? -, '. ::: ,: . : , !',. , ,, ),[ ,,,, , - ,' :,: : "



final result of the program modifications allowed the author to remove

all assembly code form the ISIS host software and replace the assembly

module with a PL/M module. The basic I/O module remains separate from

the main host software to allow modular replacement of the I/0 module

when the code is transported to other hardware systems.

UNID II Data Structures

The data structures from previous work were continued over to the

software development of the data link software. While the PL/11 sup-

ported by the 8086 (PLM86) offers other data types in addition to the

PL/M supported by the 8085 (PLM8O), facilities for dynamic storage

* allocation are not documented in user manuals. The use of indexed

arrays in the form of FIFO buffers continued as did the use of sema-

phores to control system memory access. The SBC 88/45 counterpart of

the semaphore structures for the SBC 544 were implemented on the SBC

88/45 board. The header format structures used in previous works (15,

93) were altered for compatibility with the CCITT X.25 recommendations.

Restructuring the primitive network and data link formats required

adding five more bytes to the length of each frame and packet. The

first two bytes of the modified frame structure support the data link

layer functions within the X.25 protocol. The remaining 10 bytes, which

lead the 128 datagram bytes, support the network layer functions. The

reader may wish to review Figure 3-7 (3-16) and Figure 3-8 (3-17) for

the changes in the format structure of the frame and packet data

structures.

The packet header required the addition of five bytes to meet the

X.25 datagram format requirements. The format chosen is the fixed

5 - 15



length allowed by X.25 (115:72, Note 2).

The first byte of the packet header contains the General Format

Indicator (GFI) in the upper four bits. The GFI is used to determine

the type of packet being processed. Packet types include call set-up,

clearing, datagram, flow control, interrupt, reset, restart, diagnostic,

- ."data, and datagram service signal packets (115:91). Of the GFI formats,

only the datagram format is currently used. The lower four bits of the

first byte in the packet header are used for the Logical Group Channel

Number (LGCN). This number is defined by the user for identifyin6 logi-

4cal connections between node pairs.

0The second byte of the packet header, the Logical Channel Number

(LGN) uses the LGCN when an extension of available logical connections

is necessary. Presently, the LGCN is initialized to 0 h and not used.

The LCN is the address byte 0 (Figure 3-7) of the previous work moved to

$ the LCN byte location and is composed of the source UNID number in the

upper for bits and the destination UNID number in the lower four bits.

If the UNID's number does not appear in the LCN byte, the packet is

looped back into the DELNET ring without further processing.

The third byte in the packet layer header provides the packet

*sequence number. This sequence byte functions identically to the I

frame control byte in second byte of the frame header.

The fourth byte in the packet header denotes the number of "semi

octets" or bits in the source and destination address. The upper four

bits signify the number of bits in the source address while the lower

four bytes signify the number of bits in the destination address. The

exact composition of the source and destination addresses is not speci-

5- 16

So

N0.



fied by the X.25 protocol. In the UNID implementation the values of

these bytes defaults to 088 h signifying 8 bits for both the source and

destination addresses.

The fifth byte of the packet header has the source UNID, placed in

the upper four bits, and the UNID channel number, placed in the lower

four bits. The sixth byte provides the destination address. The same

format used in source address is used for the sixth byte of the packe

header, the destination address.

The seventh byte is used strictly for padding and initialized to

00 h.

0 The eighth signifies the facility field of two bytes and is set to

02 h. The two byte facility length specifies the minimal facility

implementation used in datagran service.

The ninth byte is the facility code byte. The function of this

byte concerns strictly the network layer protocol of the X.25

recommendation. The coding of this field is discussed in length in

(115:114 - 128). Presently this byte is unused.

The last byte of the packet header, the facility parameter serves

to provide additional information when required by the facility code.

This byte is also unused at present.

A partial list of some of the functions of the facility bytes

follows (115:113 - 128):

a) closed user groups
b) bilateral closed user groups
c) reverse charging
d) flow control
e) packet size negotiation
f) window size negotiation
g) datagram nondelivery indication

5 -17

.~. ,%



h) datagram confirmation

All functions provided by the facility bytes are optional functions

(115:113 - 138) and are not required by any X.25 packet layer services.

The 56 bytes of the TCP/IP header which follow the packet header are

unaltered from previous works (15, 93). A detailed discussion of the

.1 TCP/IP header format used by DELNET may be found in (93: Appendix C).

Network Layer 3B Design

The design as developed by Childress went unmodified except for

changes to the packet header format and the transmit interrupt proce-

dures. The design as a whole, is presented here for completeness.

The network layer interfaces to the transport layer through both a

hardware and software interface. The software interface consists of the

32 byte IP header format. The IP header format, embedded in the 128

byte datagram, serves to add features not supported by the packet header

or transport header. Presently, only eight of the 32 bytes are manipu-

lated in any manner. A detailed description of the IP header format may

be found in (93: Appendix C). The hardware interface serves to provide

the physical connection between the network layer and the host transport

layer. The hardware interface is a sublayer of the network layer and

not a true physical layer as would be found in a gateway node (Fig 3-4).

A "three wire" full duplex asynchronous protocol is currently

implemented. In lieu of the request-to-send, clear-to-send handshaking

found on the "typical" RS-232-C interface, software handshakes as dis-

cussed earlier (5-6) are implemented to alert the receive (either DTE,

or DCE) of incoming traffic. The four handshake variables were origin-

ally developed for interface with the NETOS LSI network and is

A- 518
aV



considered adequate for the current development of the UNID. Final

development will require the full implementation of a synchronous RS-U232-C interface supporting the requirements detailed by the CCITT

X.21(bis) recommendation (115:44 - 51) Figure 5-9 below provides the

simple pseudocode for a synchronous half-duplex RS-232-C interface.

Further details may be found in (23, 28:928 - 961).

CC CF DATA SET DTE PWR STATE REQUEST CLEAR RECEIVED

0,0< -...-- >4,0< - ---. >4,1 READY TO SEND TO SEND LINE
DTE DTE DTE SIG DET

{ ., ,PWR PWR PWR ----. ...----- .-.--- --------- .- .--- .-.---- ..............

0 0 0 0 0 0

cc CF - - 1 0 0 1

* 2,0<------>6,0< -..--- >6,1 0 1 2 0 1 0

'1 - - 3 0 1 1

CA CA 1 0 4 1 0 0
, OPERATE -- 5 1 0 1

C4 RECEIVE 1 1 6 1 1 0

). 2,4<--- >6,4 6,2 - - 7 1 1 1

rCB
- t Applicable x Don't Care

1 On 0 Off

6,6 - PERATE TRANSM IT

ON --- > A
• I

, I

Vi <-- OFF

* Figure 5-9. Control Lead Sequences for Half Duplex Operation

(27:956).

Figure 5-10 shows the allowed state transitions for a full duplex solu-

tion using two-point dedicated lines. On transitions are noted by a

down or right directed arrow. Off transitions are noted by a up or left

directed arrow. Also a (xx) indicates an off transition.

5- 19

,~~~~~~~~~~~~~~~~~..-...-.-..-.-.-. .-.... . . ...., . . .... ,.... ..-.............-.



CC CF DATA SET DTE PWR STATE REQUEST CLEAR RECEIVED
- 0,0<----->4,0< .-... >4,1 READY TO SEND TO SEND LINE

DTE DTE DTE SIG DET
PWR PWR PWR ---------------w,-.0 0 0 0 0 0

o cc CF - - 1 o o 1

0 1 2 0 1 0

CA 0 1
CA CA 1 0 4 1 0 0

. -5 1 0 1

cc CF 1 1 6 1 1 0
2,4< ------- >6,4< ------ >6,2 6,3 7 1 1 1

, / I CB

CB - Not Applicable x Don't Care
, jCF CA I On 0 Off

6,2 6,6< -------- >6,7

* CA A

ON ---- > I OPERATE TRANSMIT AND RECEIVE

% %I I
I"- OFF

Figure 5-10. Control Lead Sequence for Full Duplex Operation

(28:955).

The state diagrams show the various transitions which are allowed for

RS-232-C communications. Full duplex operation has the simplest

protocol in that the overhead required to change direction is not

necessary. Half duplex on the other hand allows the two way circuit to

operate at maximum capacity in a given direction (28:935). The host-to-

network layer data exchanges involve a fixed datagram length of 128

bytes. Rapid turn around between transmit and receive functions would

not be required if the transmission interval was comparatively longer

than the turnaround time. Hence, throughput would benefit from the half

duplex implementation. This analysis, however, neglects the semaphore

polling conducted between the network layer software and the data link

software. Moreover, as the baud rate increases from the present 9600

5 -20

0o



baud to the desired 19.2 k baud, the time duration of each datagram

would be cut in half and become less significant when compared to the

turnaround time. Further operational analysis would be required to

determine the hardware delays encountered by the polling of two data

link receive table semaphores by the SBC 544 and the polling of four

network table semaphores by the SBC 88/45. Figure 5-11 shows the

psuedocode developed for a the control of a simple full duplex RS-232-C

interface. Manipulation of the Signal Line Quality Signal for half

duplex operation.

42

4b

2 .-. > -



Initialize interface variables DTR, DSR, RTS, CTS

CALL TURN ON DTR /* for DTE */
CALL TURN ON RTS /* for DTE */
do while not DISCONNECT

do while not CLEAR

do while ((DTR ON and DSR ON and not (CLEAR or
DISCONNECT))

*' do while (CTS ON and RTS ON)
*. TRANSHIT AND RECEIVE DATA

END

END
END

END

function DISCONNECT(DTE): DTE sets DTR and RTS OFF

function DISCONNECT(DCE): DCE sets DSR and CTS OFF

* function CLEAR(DTE):
Set RTS OFF, XMIT '0'
wait for DCE to set RCV to '0'
if no TIME$OUT then Set XMIT '1'

AND wait for DCE to set RCV to 'I'
/* CLEAR DTE COMPLETE */

else set call DISCONNECT

• *. function CLEAR(DCE):

- Set DSR OFF and RCV to 'O'a
Iwait for DTE to set RTS OFF and XMIT '1'

if no TIME$OUT then CLEAR COMPLETE
else call DISCONNECT

Figure 5-11. Pseudocode for a Full Duplex DTE

- The changes made to the transmit service routines are described in

the paragraphs that follow.

The transmit procedure disabled the receive interrupts when data

w4  was detected in the transmit table. The transmit procedures would

disable the receive interrupt to the channel, transmit a byte, enable

the receive interrupt and wait for interrupt processing to detect the

next byte in the transmit table. Even though the receive interrupts had

.22
F,. 5 - 22



:.4*4.

* k O priority over the transmit interrupts, the receive interrupt had to be

disable long enough to transmit a byte which meant it was also disabled

long enough to miss receiving a byce. Figure 5-12 shows the original

psuedocode used by (15).

if ((not trta) or ((txtr and rxta) and ((not rxtr) and

-(not txta)))) then
do
send next character to host

increment transmitted character count
increment transmit buffer index
if number bytes sent >= datagrain size then

do
mask transmit interrupt bit off
reset transmitted character count
if transmit buffer index >= max index then

'- reset

reset txtr false
reset rxta false
reset send false

end
end

clear interrupt

* - removed when modified for this thesis

Figure 5-12. Transmit Interrupt Procedure (15:4-17)

The transmit interiupt procedures were enabled whenever the ROUTE$OUT

procedure was executed. The ROUTE$OUT procedure provided a means to

poll the software handshake variables and enable the interrupt transmit

routine when a packet of data was found. The interrupt routines would

then update the next-to-send (NS) pointer of the transmit table as each
S

byte is sent to the host.

The modified ROUTE$OUT procedure psuedocode is given in Figure

5-13. All disable and enable statements of the receive interrupt

routines are removed from the procedure. At no point in the data link

5 -23

-P A1 L.02 L



'*'." software are the receive interrupt routines disabled once initialized.

disable interrupts
* mask receive USART interrupt off

enable interrupts

if datagram available and not sending then

do
7 .- if TRTA$handshake and (not sending and not receiving) then

do
set transmit request true

set sending true
send transmit request
e nd

if not TRTA$handshake or (sending and not receiving) then

do
0 set sending true

* disable interrupts
mask transmit USART interrupt on

• enable interrupts

end
I 'end

* disable interrupts
* mask receive USART interrupt on

* enable interrupts

-removed for this thesis

- ** - replaced with CALL SERVICE$TRANS routine

e,. Figure 5-13. Route$Out Procedure Pseudocode

0 The transmit interrupt routines were changed to polled routines called

" by the ROUTE$OUT procedure. All disable and enable statements in proce-

+- dure ROUTE$OUT, along with all lines of code between them, were removed

and replaced with a single call to polled transmit service routine.

Also, the dummy receive and transmit routines for channel one, the SBC

544 monitor channel, were replaced with operational receive and transmit

procedures. Hence, channel one is both the SBC monitor port and an

5 " 24

-7



operational UNID port. The final network layer 3B software embedded on

the SBC 544 (under filename OP544.SRC) had the two byte data link layer

header, the ten byte X.25 packet layer header, four interrupt driven

receive channels and four polled transmit channels.

The network layer software in the SBC 544 primarily manipulates the

bytes located in the TCP/IP header. Within the ISO reference model,

this layer performs the network layer 3B (Figure 3-4) functions. Layer

3B's functions to provide multi-host services, while layer 3A functions

to establish packet level management. The present datagram implementa-

tion requires none of the call set up procedures implemented in VCS and

performs only the minimum layer 3A functions necessary for communi-

cations between the network layer 3B and the data link layer. Hence,

the network layer 3A development within UNID II has a minimal implemen-

tation. As a minimal implementation, the only byte within the packet

header manipulated by UNID II software is the GFI/LGCN byte (i.e. the

second byte of the packet header). The remaining bytes supply either

redundant information or support facilities not implemented.

Network Layer 3A Design

The modules RCV$DATA and RCV$I$FRAME of the data link layer soft-

ware provide the interface to the packet layer protocol as discussed in

paragraph 5 of the X.25 recommendation (115:85-90). Many of the func-

tions provided by the packet header have nearly identical processes in

the two byte data link header. In consideration of the recommendation

given by Tannenbaum (112:245) and of the delay encountered relating to

the host--UNID interface, the packet layer was not fully developed.

Presently, routing procedures in the simulation software examines the

5 -25



~: ~ packet layer LCN byte and sends the packet to either a local host of

back on to the network. Additional packet layer functions are not

necessary for simple datagram operation. Virtual circuit service (VCS)

and permanent virtual circuit service (PVS) do require additional packet

layer services, but fall outside of the scope of this thesis (115:92).

Further information on VCS and PVS services may be obtained in paragraph

4 of (115:75 - 85). The data structure developed for the packet layer

was described in (5-10 - 5-14). Appendix K presents the state diagrams

developed from paragraph 5 of (108) and Appendixes A, C, and D.

The Datalink Layer Design and Implementation

The previous implementation (15) left the data link layer simula-

tion software with the capability to transmit and receive information

frames. The use of data link control mechanisms was limited to receive

ready (RR) frames for a correct frame and reject (REJ) frames for incor-

rect frames. This software only existed as a simulation. The software

routed frames between data link tansmit and receive tables, between data

link receive tables and network layer transmit tables, and between

network layer receive tables and data link transmit tables. No hardware

initialization routines for the SBC 88/45 were developed, nor did trans-

mit and receive software routines employ the same use of semaphores as

did the network layer 3B software.

The references (106, 115) provided the primary background for

developing the X.25 design in this thesis. Additional material came

from (3, 23, 28, 81, 100, 116) for development of the LAP B data link

protocol. From (115) a set of primitive Structured Analysis and Design

Technique (SADT) activity diagrams were developed. The SADT diagrams

5-26

%



assisted the conversion of LAP B protocol procedures from (115) to a

modular set of processes. From the SADT diagrams, structure charts were

developed (Appendix I) which defined the inter-module interfaces between

different processes. After several iterations where the SADT's and

structure charts were modified to eliminate inconsistencies with LAP B

procedures, the PL/M procedures were coded.

The design of the data link software complies with the DELNET

requirements presented in Chapter II. The previous implementation of

the LAP B procedures was expanded to include all data link command and

response frames except the optional asynchronous response mode (SARM)

command. Specific details on each frame implemented are discussed later

in this chapter.

While the design centered around modifications to the procedures

ROUTE$OUT and ROUTE$IN from the previous design, other modules were

modified to initialize global variables added to the design, accommodate

the revised frame and packet structures and to accept variable length

frame sizes. Global parameters added include SEND$STATESA and

RCV$STATE$A. These variables acted as the LAP B V(S) and V(R) variables

for channel A. SEND$STATE$B and RCV$STATE$B acted as the LAP B V(S) and

V(R) variables for channel B. Literal constant definitions required

changing to reflect the new packet and frame sizes. The constant

FRAME$SIZE was changed to four separate constants (I$FRAME$SIZE,

S S$FRAME$SIZE, U$FRAME$SIZE, CMDR$FRAME$SIZE) to reflect the different

frames passed by the data link software. The variable FRAME$SIZE was

then added to the procedures LAB$TAB$HSKP and SRVC$TAB$HSKP. The vari-

able FRAME$SIZE allows access to the indexing distance of the six tables

5 -27

13 A



used by the simulation software. Presently, I frames are a fixed length

of 140 bytes. The X.25 recommendation allows for variable information

frames. Though not implemented in the software developed at this time,

future implementations must determine the length of information frames

before the next-to-service (NS) and next-available (NE) pointer may be

updated. Finally the semaphore structures used in the SBC 544 for

communications with the SBC 86/45 were developed and implemented in data

link software.

In general, the program flow of Figure 5-5 (5-8) was changed to the

program flow portrayed in Figure 5-14 below. The START$DM$NODE of

procedure establishes the asynchronous balanced mode of communication

across the link. The START$INFOSXFER procedure is essentially identical

to Lhe main program of Figure 5-5, which calls the procedures ROUTE$IN

and ROUTESOUT.

main: do
do while FOREVER is true

* call START$DM$MODE

' , call START$INFOR$XFER

end while loop
end main

4

Figure 5-14. Pseudocode for main procedure of data link software

Figure 5-15 below shows in more detail the START$DM$M1-ODE. The proces-

sing in the procedure assures both channels on a given UNID operate in

the asynchronous balanced mode and react to SABM commands as specified

by (115:66-67).

5 - 28
4



set SABM mode false in both channels

send message indicating in DM mode
do while not in SABM mode in both channels

/* Channel A processing */
if a frame is present in the receive table then

do
if not in SABM mode(Channel A) then

do

if SABM frame call RCV$SABN(Channel A, P$bit
else if UJA frame call RCVSUA(Channel A, P~bit)

else send DM response frame

end

end

/* end Channel A processing */

/* Channel B processing */
if a frame is present in the receive table then

do

if not in SABM mode(Channel B) then

do
if SABM frame call RCV$SABM(Channel B, P$bit
else if UA frame call RCV$UA(Channel B, P$bit)

else send DM response frame

end

end

/* end Channel B processing *1

Figure 5-15. Pseudocode for procedure START$DI!$MODE

Figur5-16 shows the details of the START$INFO$XFER procedure. The

procedure is essentially the same as the main program for the software

previously developed (15).

F set RNR MODE off for both channels

send message indicating start of procedure

do while in SABIM mode for both channels AND FOREVER is true

call ROUTE$IN

call ROUTE$OUT

end while loop

Figure 5-16. Pseudocode for procedure START$INFO$XFER

fThe module ROUTE$IN was changed extensively to add procedure calls

to the LAP B data link procedures. The calls consisted of send and

5 2
~5 - 29

6 .. . . . '." '"" ' " " " ' ' ' ', '''"" 7 ' 2



.

receive procedures for receive ready (RR) frames, receive not ready

(RNR) frames, reject (REJ) frames, set asynchronous balanced mode (SABM)

command frames, disconnect mode (DM) response frames, disconnect (DISC)

command frames, unnumbered acknowledgement (UA) response frames, and

command reject (CMDR) response frames. The ROUTE$IN procedure performs

both data link and network header evaluations. Datalink processing

begins with checking for a frame in the receive data link tables. A

valid response continues processing the control byte. Figure 5-17 shows

the pseudocode for the ROUTE$IN data link processing.

0

%.

-.. '..

V..

.

, 4 . % " .% " . •" °



/*Channel A processing */

control byte = byte 2 of frame
p$bit = bit 5 of control byte
sequence number = bits 8 through 5
if not SABM$MODESA then

if control byte = SABM control byte call RCV$SABM(Channel A, P$bit)
else send DM response

else if control byte = I$frame control byte then

call RCV$I$FRAME(Channel A, P$bit)
else if control byte = UA control byte then
call RCV$UA(Channel A, P$bit)

else if control byte = RR control byte then
call RCV$RR(Channel A, P$bit, sequence number)

else if control byte = RNR control byte then

call RCVSRNR(Channel A, P~bit, sequence number)
else if control byte = REJ control byte then
call RCV$REJ(Channel A, P$bit, sequence number)

else if control byte = DISC control byte then

call RCV$DISC(Channel A, P$bit)
else if control byte = CMDR control byte then

call RCV$CMDR(Channel A, P$bit)
else if control byte = DM control byte then

call RCV$DM(Channel A, P$bit)
else service the next to send pointer /* dump the frame */

/*Channel B processing */
control byte = byte 2 of frame
p$bit = bit 5 of control byte
sequence number = bits 8 through 5
if not SABM$MODE$B then

if control byte = SABM control byte call RCV$SABM(Channel B, P$bit)
else send DM response

• else if control byte = I$frame control byte then
call RCV$I$FRAME(Channel B, P$bit)

*. else if control byte = UA control byte then

call RCV$UA(Channel B, P$bit)
else if control byte = RR control byte then
call RCV$RR(Channel B, P$bit, sequence number)

else if control byte = RNR control byte then
call RCV$RNR(Channel B, P$bit, sequence number)

else if control byte = REJ control byte then
call RCV$REJ(Channel B, P$bit, sequence number)

else if control byte = DISC control byte then

call RCV$DISC(Channel B, P$BIT)
else if control byte - CMDR control byte then

call RCV$CMDR(Channel B, P~bit)
else if control byte = D1 control byte then

call RCVSDM(Channel B, P$bit)
else service the next to send pointer /* dump the frame *1..

Figure 5-17. Pseudocode for ROUTE$IN Data Link Procedure

*5 -31

% %N.



The network processing consists of an evaluation of the LCN byte for the

destination of the frame. Figure 5-18 shows the pseudocode for the

ROUTE$PACKET procedure. This procedure performs destination processing

of the LCN byte.

if I frame has been received from network layer then

do
determine network destination
if destination for channel A then

do

determine if information in transmit buffer A
if no info frame in transmit buffer then

do

build an information frame
service local buffer pointer

end
end

if destination for channel B then

do
-' determine if information in transmit buffer B

if no info frame in transmit buffer then
do
build an information frame

service local buffer pointer
end

end
end

Figure 5-18. ROUTE$PACKET Destination Processing Pseudocode

The procedure does not load the transmit buffers with an I frame if one

already exists. This way the transmit buffer contains no more than one

I frame to send at any given time.

The X.25 recommendation specifies the address and control bytes

shall be transmitted least significant bit first and the two byte check-

sum shall be transmitted most significant bit first. The bit order of

transmission for the remaining bytes of the frame are not specified.

5 - 32

a



Throughout this chapter and following chapters, the most significant bit

will be the left most bit of the parameter depicted, the least signifi-

u.s cant bit will be the right most bit in the parameter, and transmission

will begin with the left most bit and continue to the most significant

bit. As an example, the X.25 recommendation presents the 'A' address

for the address byte of the frame as '11000000' binary. This repre-

sentation is least significant bit first. In this Thesis, the 'A'

address byte is given as 03 h or '00000011' binary.

The control byte is first evaluated against the appropriate SABM

mode status variable SABM$tODE$A or SABM$MODE$B. If the UNID has not

MC entered the SABN mode, then only a SABM mode command or UA response to a
O

SABM mode command may be received. All other frames generate a DM

%e response frame and increment the NS pointer which effectively dumps the

frame. Once the SABM mode has been entered, all NE pointers, NS

pointers, receive variables, and send variables are set to zero and the

UNID responds to all data link frames.

-.- Evaluation of the control byte determines the receive sequence

number, N(R), and the send sequence number, N(S), and the poll/final

. (P/F) bit. Only i frames contain the N(S) sequence number. The N(S)

A sequence number updates the receive state variable V(S). The receive

sequence number N(R) contained in I frames, RR frames, RNR frames, and

i REJ frames s the send state variable V(S). As RR frames, RNR

frames, and REJ frames act as both command or response frames, the

address byte must be examined to determine if the frame is an issued

command or a response to a command. Should the control byte decode into

a non-existent frame type the frame is treated as an invalid frame and

5 - 33



ignored. Currently reception of all CMDR frames simply reset the SABM

mode, however, evaluation of the three bytes of status information does

allow for more precise handling of rejected frames.

I frames are considered valid when the address byte is a command

address for the channel receiving the frame and the receive sequence

number is in sequence. Both the receive sequence numbers and the send

sequence number consist of three bit modulo 8 fields. The modulo 8

numbers allow up to seven frames to remain outstanding without a dupli-

cation of sequence numbers. Current software retains the limitation of

one outstanding frame allowed in the data link transmit tables. While

further development will wish to increase the number of outstanding

frames, (4) indicates a window size of only 3 or 4 frames achieves

optimum performance. Passed to the RCV$I$FRAME procedure is the

received channel number and the sequence number. The RCV$I$FRAME proce-

dure, as with all other receive and send procedures, consist of a case

structure as shown in figure 5-19.

m -.

97

5 -34

%



do case (channel)
CASE Channel A:

receive sequence number = upper 3 bits of control byte
send state sequence number = bits 2 - 5 of control byte
if receive sequence number is in sequence then

do
RCV$STATE$A = send state sequence number + I mod 8
update the send state(Channel A) with the

receive sequence number
if P$bit = 1 then

if I frame is next to send
bits 8 - 5 = receive sequence number

else call SEND RR(Channel A, P$bit = 1)
DESTINATION = determine destination of Channel A
if DESTINATION = network-to-network then

do
move frame from Channel A to Channel B

service next available pointer

end
0 else

do
move packet in frame to local host receive

tables
e Ceh service next available pointer

' ° end

end C hannel A
,'-'-Case Channel B

receive sequence number = upper 3 bits of control byte
send state sequence number = bits 2 - 5 of control byte
if receive sequence number is in sequence then

do
RCV$STATE$B = send state sequence number + 1 mod 8
update the send state(Channel B) with the

receive s( luence number
if P$bit = 1 then

if I frame is next to send
bits 8 - 5 = receive sequence number

* ° else call SEND RR(Channel B, PMbit = 1)
DESTINATION = determine destination of Channel B
if DESTINATION network-to-network then

do
move frame from Channel B to Channel A

*- service next available pointer

end

else
do

move packet in frame to local host receive

tables
- ,service next available pointer

- . [....... end

Figure 5-19 Pseudocode for RCV$1$FPAME.

• 5 - 35

,. .-'..,'. - . . '.- ., .... *4*:% ,.v "' -."4 .. .. "*'- 4 , 4,,' ..; . " .- . . - ." '. ,; ' -' . " . "'4' ,''. v



~ The evaluation of separate cases for each channel of the data link layer

simplifies building in the DCE and DTE properties of the X.25 protocol.

For receive I frames, and all other frames, channel A is defined as the

DCE device and channel B is defined as the DTE device. The arbitraryIiidefinition is also carried out in the physical layer hardware. Channel

A sends all command frames with an 'A' address byte and expects an 'A'

address byte for all responses (108:65). A WB address byte on a frame

indicates a command to channel A from the DTE device. Channel B sends

all commands with a WB address byte and expects a 'B' address byte in

response frames. An 'A' address byte on channel B is considered a

* command frame.

After evaluation of the address byte and the least significant bit

5, of the control byte, the receive sequence number is checked for a

receive state sequence number within a single frame window. A valid

sequence number updates the receive state variable of the channel

receiving the frame and initiates an acknowledgement of the received I

f rame. An acknowledgment occurs in one of two ways: Should the NS

pointer in the receiving channels transmit buffer point to an I frame,

then the I frame's receive state variable is updated to the current

*receive state. Should the NS point indicate a frame other than an I

frame, a RR frame with the current NCR) variable is added into the

transmit queue. Future implemen~tations of the data link software may

*also use RR, RNR, or REF frames to update the N(R) variable. Once the

receive state variable has been updated, the time-out mechanista is

reset. Figure 5-17 shows the possible changes in state variables when

4 an I frame is sent.

5 36

ILI



- Channel A Channel B

UNID II (2) UNID II (1)

v(s) = o v(s) = 0
V(R) = 1 V(R) = 0

I frame (1,0) >-------------------------------------------------
V(S) = 0
%1\(L~ 10

I frame(l,0)

-- or RR frame, N( R) = 2
or RNR frame, N( 1,) = 2
or * REJ frame, N( r) = I

"(S) = N(R)

.N(r() = 0 (unchanged)

(X,Y) -X is N(R)

Y is N(S)

* If the frame is rejected due to sequence number or an

invalid frame, the state variable V(S) would be '0' and not '1'

Figure 5-20. Example of a Received I Frame.

Figure 5-20 shows an I frame sent from a UNID (2) to the neighboring

UNID (1) inside a DELNET ring. Depending on UNID (1)'s evaluation of

the I frame, one of four frames may be sent: another I frame if there

is one ready to send back to UNID (2); a RR frame for a successful

transfer, but not I frame to return ehe acknowledgement; a RNR frame for

a successful transfer, but a busy condition at UNID (1), and a REJ frame

for an unsuccessful transfer. The N(R) variable sent by UNID (1) is

then used to up dates the UNID (2) N(S) variable. A reciprocal arrange-

-% i ment occurs when UNID (1) sends a message to UNID (2).

Upon determining the destina, ion of the received I frame, the

process becomes a network layer operation. Procedure DET$DEST$ONE

5 537

'.. 5 . .7

... ................. . '. . . - ......... _..-.............. ... ........ . . .... .



(channel A) and DET$DEST$TWO (channel B) are the network layer proce-

dures which return determine if the frame goes to one of the local hosts

or if the frame goes to another UNID. Byte three of the frame (byte I

of the packet) is evaluated for the UNID destination number. A match

between the destination number and the current UNID number moves the

frame's packet to the appropriate channel of the SBC 544. A mis-match

sends the frame to the opposing channel's transmit table. Channel A

will send the frame to channel B to move the frame in a counter clock-

wise direction around the DELNET, while channel B will move the frame

to channel A in clockwise direction around the DELNET. The final pro-
.k

cessing performed by the RCV$I$FRAME procedure updates the NS pointer

to the next frame in the receive table. The remaining seven frame

processing procedures perform similar, albeit, simpler processing as I

frames.

RR frames are implemented only as responses and not as command

frames. The frame updates the send state variable of the channel

receiving the frame. The RNR mode condition, if set is removed. The

RNR mode allows the receive channel time to process existing frames

without any new I frames arriving. RR frames, REJ frames, UA frames,

and SABM frames remove the RNR mode condition. In addition to resetting

the RNR mode condition, the time-out mechanism is reset and the NS

pointer is incremented to the next frame in the receive table.

* RNR frames function identically as RR frames except, instead of

removing the RNR mode condition, the RNR mode condition is set. At

present, RNR frames are not sent as the single frame window allows

* receptic of only one I frame at a time. Future implementations may

5 - 38



chose to count the number of outstanding I frames received and upon

passing a predetermined threshold, issue a RNR frame instead of the RR

frame acknowledgement.

REJ frames function similar to RR frames except, the receive state

variable returned indicates the next in sequence number expected was not

the one receive. The REJ frame functions as a negative acknowledgment

and does not update the time-out mnechanism as implemented. When more

than the maximum allowed retransmissions occur, a CMDF frame is sent

which resets the link in the SABM mode.

DM frames are sent as responses while the channel is not in the

SABM mode of operation. The received frame is simply ignored.

SABM command frames function to set the channel's NS, NE, send

state variable, and receive state variable to zero. The SABM command

also removes the RNR mode condition and effectively dumps any frames

awaiting processing in either the transmit or receive tables.

DISC frames sever the communication link. In a virtual circuit

service link, the link would go to an inactive state, however in data-

gram service, the link merely reverts back to the DM condition. As the

set ascynchronous response mode (SARM) is not used or implemented in

current software, the link simply tries to reset the SABM mode.

UA frames are set whenever a SABM or DISC command frame is

received. The RCV$UA frame procedure retrieves the last U command frame

received and initiates the appropriate processing.

CMDR frames provide three bytes of status information. At present

no analysis of the status bytes is performed to determine an optimal

error correction procedure. Upon reception of a CMDR frame the link is

."p"

5 - 39



reset using a SABM command.

The procedure ROUTE$OUT first evaluates the control byte of the

frame indicated by the NS pointer. The length of the frame (I frame,

S/U frame, CMDR frame) is evaluated and passed to the transmit serving

routine. No acknowledgement is awaited for S or U frames. All S frames

are sent as responses, not commands, and all U frame commands are not

acted upon until a UA response is received. I frames force the proce-

dure to invoke a time delay mechanism allowing up to MAX$RETRANS number

of retransmissions before an error is signalled. The variables

MAX$RETRANS$A and MAX$RETRANS$B are considered systems parameter and may
I

be changed to provide optimum performance.

Conclusion

This chapter briefly presented the previous design (15) and then

detailed the subsequent software design changes, modifications, and

further implementations. First, the programming language selection of

PL/M was presented. Next, the data structures, including the frame and

packet header formats were reviewed. Changes to the frame and packet

headers presented in detail. Modifications to the SBC 544 network layer

(layer 3B) software was presented. A brief presentation of the the

packet layer (layer 3A) was developed. The remainder of the chapter

concentrated to the changes and additions made to the data link software

ROUTE$IN and ROUTE$OUT procedures. Procedure ROUTE$IN now calls

specialized procedures to handle the LAP B functions. Procedure

ROUTE$OUT now handles all types of LAP B frames. The following chapter,

Chapter VI, presents the integration and validation phase of the soft-

ware development implemented during this thesis effort.

5 - 40

I



CHAPTER VI

SOFTWARE INTEGRATION AND VALIDATION

Introduc tion

This chapter presents the test criteria developed to integrate

software into the UNID II design and validate the operation of the

design. The f irst section discusses the test philosophy used for the

validation process. The following section discusses the modification to

host software needed to test the UNID II. the next section outlines

the test plan. The remaining sections detail the test plan. Each test

phase first discusses the purpose of the test and then presents the

results. The chapter concludes with a brief summary of the tests

performed.

Test Philosophy

Software validation methodologies may be grouped into two

categories: validation and verification. In this thesis effort valida-

tion is interpreted as an examination of software for a given finite set

of conditions. Verification, in contrast, means a mathematical 'proof'

of the correctness of the software design. often, and particularly in

cases involving long detailed programs, test verification becomes an

impractical burden on those resources limited in a software development

project such as time and f inances. This Thesis effort considers the

validation approach not only pragmatic, but the only approach which

adequately balances available resources against the scope originally

defined for the software development.

6-1

SW



This design used the conventional top-down approach to overall

project development. Each task was partitioned based upon its relation

to the ISO reference model. For the network layer 3A and the data link

layer the abstraction at each level was then partitioned using either

existing state diagrams as given by the X.25 recommendation (115:

Appendixes A, B, C, D) and the RS-232-C standard (24) or through SADT

diagrams developed from the X.25 recommendation. From the abstractions,

whether state diagrams or SADTs, structure charts were developed and

then pseudocode procedures were written for each module. As common in

software development cycles, the code implementation uncovered short-

comings of the design and several interactions between detailed design

and implementation were necessary.

For the network layer 3B and the physical layer, a simplified

approach was taken. The network layer 3B (TCP/IP protocol layer) had

previously been validated (15: Chapter V). However, the software was

configured for equipment no longer available for UNID II development.

In lieu, of redesigning all the host software used to test the UNID,

-structure charts were developed and I/O dependent procedures were modi-

fied for equipment available within the Computer/Communications Labora-

tory (16). The physical layer design was treated as a single problem:

How were the UNIDs to interconnect within DELNET? While several possi-

bilities exist, it became evident from the data link software design

that the UNID would exhibit the unusual characteristic of having both a

DCE and DTE high speed interface channel. Further research (16)

provided collaborative support for the physical layer integration.

Integration / Validation Tools

6 2

-AA



Test tools implement the methodology outlined by the test

philosophy. In the case of UNID II, path testing methodology provided

the necessary details to validate software. Path testing marked criti-

cal areas of the program flow. The tools used to implement path testing

consisted of diagnostic test messages, a host software program, a moni-

tor program, and finally a piece of test equipment called a protocol

analyzer.

The primary diagnostic aid used in the past works (15, 84, 93) and

the present work remains insertion of diagnostic test messages with the

development software. The messages primarily show path direction, but

may include error conditions or update status on key program variables.

Most messages demonstrate successful completion of a process by their

placement at strategic locations within modules. Some messages, on the

* other hand indicate areas where erroneous paths may be taken or faulty

conditions occur. Some messages display current values of key variables

so as to document proper progression of counters, pointers, and sequence

numbers.

The display diagnostic messages requires a terminal attached to the

device executing the software. As messages are displayed on the termi-

nal, the observer analyzes the path flow. From this analysis, the

observer is assured the correct path was taken at the appropriate time.

The false occurrence of a diagnostic display or the occurrence of an

vv inappropriate sequence of diagnostic messages informs the observer of

improper software path flow. A trace of diagnostic messages then

locates the departure from the correct path. Failure of a diagnostic

message display, by itself may indicate one of several existing condi-

6-3
e.



" tions. The problem may exist in the hardware apparatus or software

associated with the diagnostic message. As mentioned by (15:5-4):

"The lack of a display message is not conclusive
proof that a problem exists in the software as other

conditions may exist to prevent the display of the
message. The observer needs to look further at
the conditions of the test or even generate other

tests or diagnostics to determine if the
software is at fault."

From the past thesis work (15), a CPM based host program was

designed for communications with UNID II. The host program sent mes-

sages to UNID II, received messages from UNID II, displayed portions of

the TCP/IP header, and effectively simulated the transport and internet

protocol required by a fully functional host attached to one of the four

UNID II ports. Use of the host test program allowed testing of UNID in
an environment simulating expected operational conditions.

A monitor program developed for the SBC 86/12A (15) was used to

examine UNID system memory. Placing the SBC 86/12A in the card cage

allowed examination of the contents of the multibus system memory. The

system memory contains the four local ho:3 receive tables and two net-

work receive tables, as well as the pointers and semaphores to those

tables. All components involved in communications between SBCs must

have precise locations known to each SBC. Close examination of the

declare statements for the operational SBC 544 and SBC 88/45 software

(Appen W) will note the careful assignment of all pointers, semaphores,

and receive tables in contiguous memory locations. Moreover, the

centralized memory locations allows the SBC 86/12A monitor to access the

data variables in one localized portion of memory. The SBC 86/12A

6 -4



\ monitor found use where insertion of diagnostic messages proved

inadequate or a large number of data variables required display. This

tool provided a 'snap shot' window to the data exchange processes

occurring between the SBC 544 and SBC 88/45. The value of this trouble

shooting aid can not be over stated. For operational details of the

monitor software embedded on the SBC 86/12A refer to (iSBC 957 INTELLEC

.4

. - isbc 86/12A Interface and Execution Package USER's GUIDE).

The last diagnostic tool used was a protocol analyzer,

specifically, a HP 4951A. This device serves to monitor communications

between a DCE and DTE device or simulate either DCE or DTE interactions

using commonly implemented protocols. A simplified modular programming

language embedded on the HP 4951A allows specific tests tailored to user

needs. The HP 4951A supports the X.25 protocol as well as HDLC, SDLC,

and user developed protocols. The primary use of this device was to

observe the actual data hardware and software handshakes made between

the host device and UNID II. The protocol analyzer will serve an

increasing role as a test diagnostic/test validation tool as the UNID It

protocol is extended (34).

Test Outline

Testing was accomplished in four phases. Phase One testing con-

sists of procedure software testing. Individual procedures are examined

for operational suitability and completeness. Phase Two testing con-

sists of simulation software programs. The simulation software provides

a realistic environment for software modules and fully exercises speci-

fic tasks before their placement on target hardware. Phase Three test-

ing consists of an evaluation of operational software for the SBC 544

6 -5



and the SBC 88/45. The evaluation concerns the operational testing of

the SBCs as individual units with additional software simulating the

presence of the missing SBC. Phase Four Testing consists of integrating

the SBC 544 and SBC 88/45 software and hardware components. The tests

examine the data exchanges between SBCs.

Phase One Testing

* Modules from previous software development (15, 84, 93) were

assumed to operate correctly as stated in introductory remarks to this

Thesis (Table 1-1). Given the conditions and limitations as stated in

(15) no module fault was ever attributed to the previous works. An

inconsistency, however, was noted between the simulation and operational

software. The simulation software reversed the bit order of the most

significant bits and least significant bits in the TCP/IP header fields.

While this in no way impacted the actual operation of the software, it

did present interpretation problems. After investigation, the operation

software was determined to have the correct implementation (14, 38, 39,

40, 41, 42, 43, 44).

The modules developed for the LAP B data link protocol were tested

either through individual drivers, or as groups of similar processes. A

'garbage collection' technique was used to accumulate functional proce-

dures. Procedures not under test were either not present in the driver

or commented out. Once a procedure was considered validated under Phase

I testing, it was considered usable for validating other procedures

still in Phase I testing.

In PL/M, modules are considered a set of one or more procedures

properly identified with a module name. A program in PL/M must con-

6 6

Il



sists of one module titled "main" and may have several modules with

names other than "main". Variables and procedure declarations betweenN the main module and subordinate modules must be resolved through the use

of PUBLIC and EXTERNAL attributes to the declarations. Once created,

modules are compiled separately from one another. Hence, operationally

validated code need not be recompiled with every minor change. The

software developed for the data link layer simulation eventually

required three separate program modules. The software quickly out grew

the PLM86 compiler's symbol table during the development process. The

software had to be divided into four separate modules (main, LAPBO,

* LAPB1, PCKT) to resolve dynamic storage allocation errors. Presently

the modules main and LAPB are near the maximum size permissible in the

PLM86 compiler's symbol table. Further additions to the data link

software should be accomplished in a separate program module.

* . Phase Two Testing

Both the SBC 544 and SBC 88/45 used simulation software to validate

procedural aspects of each board's target software. The simulation

software was developed on the Intel System III under the ISIS operating

system. The simulation software lacked initialization routines for pro-

A grammable devices and the receive and transmit procedures for the commun-

ication ports found on the SBC 544 and SBC 88/45. The simulation soft-

ware allowed testing and validation of key operational software proce-

dures in an environment facilitating change and modification. For

example, the compilation of a 1000 line module normally takes 10 - 15

minutes Call compiling i s done on the 8085 processor for both PLM80

and PLM86). Once compiled the time to change the file format to a CP/M

6-7



hex file, program and install the EPROMs on the target system takes

approximately 30 minutes or more. Simulation software, on the other

hand, merely requires program execution with immediate results.

4. Once the operational software was validated through simulation,

datagrams, packets, and frames were known to correctly pass through the

individual nodal layers. Also, datagrams, packets, and frame headers

were all shown to be correctly interpreted and executed. Moreover, each

message unit, whether datagram, packet or frame was known to be

correctly routed to the intended destination. Even though the simula-

tion software required further integration with programmable device

* intialization routines, I/O drivers, and memory allocation assignments,

the simulation process installed a high degree of confidence in the

suitability and operatability of the target software.

Previous thesis efforts (84, 93) used the In-Circuit Emulator (ICE)

for software validation. The ICE system required installation of the

operational software on the target system before testing could begin.

The ICE system did not provide ease of access to the executing software

as did the Intel 230 under the ISIS OS. Moreover, the ICE system was

more suited to trace hardware failures than tracing incorrect path flow,

or monitoring exchanges of data. Altogether, the ICE system was

considered inappropriate for the present level of UNID II development.

The general construction for the SBC 544 and SBC 88/45 software

was the same. A test message was used as the data section of the TCP/IP

Nheader. The TCP/IP header was filled with dummy values, except for data

fields which effected the source and destination addressing. These

values were filled out through user responses to questions posed by the

6-8

JU



• . ' software. The user's response routed the TCP/IP, packet, and frame

headers in the simulation software. Global assignments within the

simulation software established the UNID as the second UNID of a DELNET

ring of three UNIDs. Messages sent to UNID number 2 were looped back

though software to one of the four host channels on the UNID under test.

Messages sent to the channel originating the message were displayed on

the terminal. Messages sent to the other three channels could be dis-

played by another host or simply by an attached terminal.

The SBC 544 simulation software had been previously shown to func-

tion correctly. The changes to the packet header were made on the

simulation software prior to modification of the operational software.

- Once correct routing and processing was validated by Lhe simulation

software, the operational software was modified. Figure 6-1 shows

graphically the operation of the simulation software for the SBC 544.

--- '""6 - 9

'I7A



> LCO IRX ->

--_-- -- > 0R

> LCO3RX -

> LC04 RX

<- LCO2TX '<

K- -LCO3TX -< NTOIRX <--__.

K-- LC4TX-J < NTO2R K---

Lptr -- > LPOINTER -- > Lptr

Ready -- > LSEl -- > Ready

Done <-- <-- Done

Nptr <-- NPOINTER <-- Nptr

0 Done -- > NSEM -- > Done
Ready <-- <-- Ready

DATAGRAM DATAGRAM/PACKET/FRAME FHAME
128 BYTES 128/133/135 BYTES 135 BYTES

TRANSPORT NETWORK DATA LINK
LAYER LAYER LAYER

Figure 6-1. Network Layer Simulation Data Structure and Flow
(15:5-7)

The simulation software loads 0 to 9 test messages to the LCO1RX

* receive table on the host. The user could then select destination

network code (UNID number) and the host code. A '2' network code sends

the test message to one of the four transmit tables. Host codes range

from '0' to 'FF' h. Each channel's host codes consists of 0 to 3F h for

channel one, 40 h to 7F h for channel two, 80 h to BF h for channel

three, and CO h to FF h for channel four. The Series III monitor

*O displayed the test message sent and the message received after routing

a,."a'by the simulation software. Bytes 12 to 19 of the TCP/IP header were

6 - 10

S:<

............................................................. ..'- " " " " " "-. ,. -" •°-.°"."". ; -' - "," . -' - "."..'...'......-..-..' $-, ,.



-"-"displayed to indicated proper source and destination addresses. The

ac tua 1 test me ssage cons is ted o f a f ie ld o f 72 bytes loaded into the

TCP/IP data section. Within that field, a modulo 10 number identified

each specific message sent through the simulation software. As indi-

cated by Figure 6-1, once a message was routed to the data link software

receive tables, a software loop returned the message to the local host

transmit tables (LCOxTX). Once received by the host receive table, the

message was displayed on the system monitor.

The SBC 88/45 simulation functioned similarly to the SBC 544 simu-

lation software. Test messages with modulo ten identifiers were loaded

into a dummy network receive table (LCNTTB). The network would examine

this table for a message and, if present, load the message on to one of

two transmit tables (NTO1TX or NT02TX). A simple routing algorithm

0' based on a comparison of the destination address with the current UNID

,f number, sent the message to the appropriate data link transmit table.

i~i:.The routing algorithm required the UNIDs sequentially numbered within

the DELNET ring. The largest UNID network code must then connect to the

SUNID '1' network code. The routing algorithm would then determine which

i-

number was closest to the current UNID network code. When a UNID II

~with network code '0' is developed, it will naturally serve as the small-

est network code in place of the UNID '1' network code. Figure 6-2

acshows the data link simulation software path flow.

'• : 6 - I h. ?-7

9,
trnmttbe L4T) nercivdb h otrcietbe h

-. ,-. .. _- ,_ message ... was displayed ", on the. syste".m". ". onitor' -. "..-. - .- "- .'.-.v ..



I -,. ." J

___> N 01-'->

.- -

--- > --- -- ~T O---- - --- 1X
-LCNT02RX

PACKLT FRA},E

133 BYTES 135 LYIES

DATA LINK PHYSICAL

LA ;, LAYER LAYER

" 6-2 Dataliik Layer Siimulation and Data Structure Flow
""" (15 :3-z )

l'" .o cf,,:tivcly simulate traffic on the DELNET, a software loop sent
'?"

messag;ts sent from the transmit channels to the receive tables. The

receive tables then sent frames destined for the local host to a single

table (N'TLCTB). Frames destined for another UNID were routed out the

" -appropriate transmit table. Figure 6-3 gives the pseudocode used to

querry the user for routing messages.

4>:-

6 - 12

" "SS' "° R



send request to load test message

read response
if 'yes' then
do

ask for which UNID message is destined
read response
if valid response then

do
ask how many datagrams to load
read number
if valid number then load number requested

end
end

ask to load any control frames
read response
if 'yes' then

do
* give menu selection

read number

do case of number read
Case 0: send CMDR to both channels
Case 1: send RR to both channels
Case 2: send RNN to both channels
Case 3: send REJ to both channels
Case 4: send UA to both channels

Case 5: send DISC to both channels
Case 6: send DM to both channels
Case 7: send SAB1! to both channels

end case

end loading control frames

Figure 6-3 Pseudocode for procedure READ$LINE

* Unlike the simulation software for the SBC 544, the SBC 88/45

required extensive changes to process the LAP B procedures. The soft-

ware loop back procedures had to process channel A using DCE software

protocol and process channel B using DTE software protocol. Previous

works had failed to note the asymmetrical characteristics of the DCE

and DTE data exchanges extended beyond the physical layer into both the

6 data link and packet layers of the X.25 recommendation. Appropriate

modifications were required to the frame and packet structure, and the

-6 - 13

- .' .* . * ... * ~ . *. .



procedures ROUTE$IN AND ROUTE$OUT which envoked the LAP B software

procedures. The revised simulation software for the 88/45 significantly

aided the refinement of the final LAP B procedures. The final simula-

tion software displayed the test messages sent, the message received,

indicated critical flow paths encountered, indicated placement of NS and

NE pointers in the six tables used for the simulation, and created a

file (FILE.OUT) for a permanent recording of the sequence of events. To

fully validate each frame's receive and send processing, the simulation

menu was expanded to allow the user to send any of the S or U frames.

the hard copy print out of the output file allowed detailed review of an

entire session of exchanges between all six tables. The output file

procedure may be disabled by changing the literal declaration of

FILE$OUT from 'Offh" to '0' as would be done in a similar 'C' program

with a preprocessor define statement.

The data link software was evaluated against the performance

requirements given in paragraph 2 of the CCITT X.25 Recommendations

(115). The testing made extensive use of the file created by the

simulation program, FILE.OUT. FILE.OUT records all messages sent to the

system console by the simulation program. Upon invoking the simulation

program, FILE.OUT reinitializes itself to an emptyfile, hence, data

never accumulates from previous runs of the simulation.

Testing of the data link simulation in general consisted of loading

Sdesignated test messages into a table simulating one of the four

SBC 544 receive tables. Messages were then sent to one of the data link

transmit tables. The software allows specifying which transmit table

through a querry in the READLINE procedure. The procedure READLINE

6 - 14

O

% . .o,. .

i ' , . + + - .+++ o ' .' ,, + % -+ o + .. - .+ . " . " + + -. + - ' -° -. + " . " . . ' +i, + . - " " . % % = . . -. . m . ,, + i, q . • . n " , +



p. -

asked for a UNID, "I" or "3", to send the message. A response of "I"

results in the software routing algorithm determining the shortest

distance from the current UNID, UNID (2), to UNID (1) as through channel

A. Likewise, a response of "3" results in the software routing

algorithm determining the shortest distance from the UNID (2) to UNID

(3) as through channel B. For simulation purposes, the message is

looped back to the receive channel of the UNID. Thus, a message from

transmit channel A returns to channel B; a message from transmit

channel B returns to channel A. Frames received by a channel are then

displayed by the READTAB procedure.

I frames destined for another UNID (such as UNID (1) or UNID (3) in

the simulation software) would normally be evaluated, sent to the

appropriate transmitting channel, and then sent out into the network.

To avoid the network table from accumulating I frames, thesimulation

software dumps the I frames after determining the messages destination.

This was done by simply not moving the frame to the designated transmit

table.

I frame protocol was tested by placing various combinations of test

messages in either or both channels and noting whether

1) the frame was ever received by a transmit table

2) the sequence numbers were being updated properly.

The testing of I frame routing brought out the crucialsynchronization

aspects not covered by the X.25 protocol. In general, whenever, a

frame, any frame, has been manipulated the next-to-service (NS) pointer

and next-available (NE) pointer "must" be properly placed for

6- 15

Io -

II . .• •, . -+ . .. J - -.-.-.. ,,,* , . ", _ .r " . '' .. _5 ', . .; . "" + +.' ,..." ' '+ ' ,-+%. . " ', -, . ,% +"' "" "'''.'I

. . . . .. . . . . ' ' me_ s+' + • o . .+ " '+ "- + [ + + i+ + -



manipulation by "any" following procedure. If the NS pointer for any of

the tables manipulated does not always point to the next frame to

q. service in the queue, conditions for program lockout exist. Likewise,

if the NE pointer for any table does not always point to the next

available location to load a frame in the queue, conditions for programU lockout exist. As implemented "every" procedure in the data link

protocol to assumes the NS and NE pointers are properly placed when the

procedure is invoked. As such, the NS and NE pointers must be properly

positioned for every possible occurance within the procedure.

The DISC and SABM frames were tested for their ability to reset the

various varibles and pointers under their control. Both of these

frames tested successfully.

CMDR and DM frames tested succesfully to the extent of their

implementation. This implementation was briefly described in Chapter V.

RR, RNR, and REJ frames were tested as responses only. Both RR and

REJ frames were found to function properly. RNR frames would place the

link in the "receive-not-ready" mode, but the condition could not be

recovered without a link reset (DISC frame) or the SABM command frame.

Neither The RR nor the REJ frames would successfully return the link to

normal operation. This problem remains for further investigation.

Phase Three Testing

Phase Three testing required modifying the previously

developed host program for operation on the available resources within

the Computer/Communications Laboratory. Two separate systems were

implemented as hosts for the UNID. The previously developed (15) program

(SBS.ASM) served as the basis of three separate host I/O driver modules

6 16

%0



for the main PL/M module. HOSTI.ASM operated on the Intel 210 under the

CP/M operating system. HOSTI.ASM allowed configuration of the baudrate,

parity bits, and stop bits for the 8251 USART used on the Intel 210.

HOST2.ASM operated on the Intel 230 under the ISIS operating system.

The module operated under the default conditions of 9600 baudrate, one

stop bit, and no parity checking. No menu selection was included as it

was not considered crucial for the current stage of software develop-

ment. HOST3.SRC was simply the HOST2.ASM program written completely in

PL/M. HOST3.SRC simplifies the development process for any future

modifications to the host I/O driver routines through the use of a high

level programming language (PL/M) without the usual requirement of

writing assembly code. All three host modules are included in Appendix

K to show the simple process of converting an assembly written module to

one written entirely in PL/M. Further development of any I/O driver

routines for UNID II interfaces should carefully consider using PL/M in

lieu of assembly code.

Once the host software was modified and verified in operational

tests with the operational SBC 544 UNID II code previously developed

(15), the transmit interrupt routines were modified for consistency with

the CCITT X.25 recommendation. To embed the software on the target

system (the SBC 544), two 2732A ERPOMs required programming. The pro-

cess required moving an ISIS formatted object code file to the RAM

memory of a Bytek EPROM programmer. Intermediate steps in the process

required changing ISIS hexidecimal formatted files to CP/M hexidecimal

formatted files. Specific details of the conversion process may be

found in Appendix D.

6 - 17

.1*

..-.. °



.\ The operational tests used an UNID II with the original software, a

second UNID II with the polled transmit routines, and the HP 4951A

K protocol analyzer. The protocol analyzer's program had a timer start
,j.

when the last two bytes of a test message occurred and stop when the

first four bytes of the test message arrived. The Intel 230 host

software (ISHOST) was modified to send up to nine datagrams contin-

uously to the UNID (DPHOST) without waiting for a response. The DPHOST

software had a menu selectable delay from 0 to 2.56 seconds between

datagrams. When eight messages were sent, the protocol analyzer accumu-

lated the time for seven separate delays. The acummulated time divided

by seven represented the average delay time between datagrams. A H19

terminal on the UNID II received the messages. Errors in reception

could be noted from careful examination of the H19 display or through

( ~ examination of the actual memory contents using the SBC 86/12A monitor.

The SBC 86/12A allowed precise location of which bytes were lost when

receive error occured. The H19 display, on the other hand, allowed a

quick identification of improperly received datagrams. Both techniques

were employed in the final testing. Figure 6-4 shows graphically the

conditions measured by the test set-up and Figure 6-5 shows the test
,p"

configuration used.

-

1,•'

6 ,18



de I y
4

_______ 1____ 1 I_______1______ 2 1______________ 1 3 1
I FRAME 0 1 1 FRAME 1 I I FRAME 2 1 1 FRAME 3 1
II I _ _ _ _I_ _ _ _ I

delay

4

I<-------->IdelaylR--- --- >Idelayli--- --- >Idelayl<---
1___ 1 51 1 61 I_ __ 17 1

I FRAME 4 1 1 FRAMES 5 1 FRAME 6 1 1 FRAAE 7 1

AVERAGE DELAY =Total measured delay /7

0Figure 6-4. Frame Delay Test.

H19- - LCO IRX

L C02RX
CP/M LC03RXF ~__LC04RX

LCO1TX <--1< LCOT
LFE02TX_ _ _

<-[ L03TXNTOIRX
<-LC04TX - NT02RX

Lptr -- > L-POINTER -- > Lptr
Ready -- > LSEM -- > Ready

Done <-- <-- Done

Nptr <-- NPO INTER <-- Nptr

Done --> NSEM --> Done

Ready <-- <-- Ready

DATAGRAM DATAGRAM/PACKET/FRAME FRAME
128 BYTES 128/133/135 BYTES 135 BYTES

TRANSPORT NETWORK DATA LINK
LAYER LAYER LAYER

Fig;ure 6-5. Network Layer Simulation with the CP/M System and 1119
* (15:Figure 5-3)

6 6 19
0

w%



The final tests show the original software lost bytes when frames

approached within 290 ms of une another. In all cases less then 290 ins,

one or more bytes were lost. The polled software showed no errors

during testing with the protocol analyzer and the DPHOST software.

However, the test software could only reduce the delay between datagrams

to 110 ins. At 9600 bits per second, this was approximately 141 bytes or

slightly more than one packet length. As the only change made to the

original software on the SBC 544 was in the transmit routines, the

transmit interrupt routines were determined to be the source of the

errors detected. The interrupt transmit routines contained disabled

statements for the receive interrupts. Since the polled transmit rout-

ines removed all disabled statements for the receive interrupts in the

host software, the transmit routines are no longer considered a contri-

buting factor to lost receive packet bytes. Nonetheless, considering

the delay between frames could only be tested down to 118 ins, there

* still could exist other factors which could cause loss of bytes on

received packet.

With tests of the modified 1/0 drivers for the SBC 544 completed,

the frame and packet structured revisions took place. The UNID II was

then retested using the frame and packet formats compatible with the

CCITT X.25 recommendation. The test results were identical to the

previous tests.

The data link software was not ready for operational testing and

not tested. The SBC 88/45 software requires the addition of pointers and

semaphores needed to communicate with the six tables located in system

memory, declare statements modified to locate variables and tables at

6-20

% h



the same memory location found in common with the SBC 544, and, finally,

the hardware initialization routines necessary for operation of all

three ports on the SBC 88/45.

Phase Four Testing

Phase four testing consisted of only an examination of the SBC 544

in the LSI-11 network. The original SBC 544 embedded software was

configured in the network (see Figure 6-6 below) and data messages were

then sent through the network using the software TEST3 at node D, GATEKE

at node K, and GATEUE at node A.

A K

51A UNIDCP/M
Host

H194,:

C - Node C of LSI-11 Network (Central System)
A - Node A of LSI-11 Network
D - Node D of LSI-ll Network

K - Node K of LSI-11 Network

H19 - Terminal to monitor UNID II

Figure 6-6. UNID II and NETOS Connection (15:5-14)

The UNID was inserted between node A and node K of the LSI-l1 network.

Channel 3 of the SBC 544 was hooked to node A and Channel 2 of the SBC

6 -. 1

m. .. -. .,, ,, . ,.. , ... , .. , . .. , ...- , , ,,a. , .. , .. ... ,', ','.'." , , '.% ,,. ,..'''
% %.,,. " - .-. . . . . % . . ,.,.,.. . .. . .. . .. - ,. ., "r .3 ' " . . ,& ""',J, ' - , . . """ '",',' ,,



f" 544 was hooked to node A. The routing message for the gateway software

to send a message from node K to node A takes the form:

"Dxx3xxxxxxxx . . . xxxxxxxxx"

,'.- where "D" indicates node D is the source, "3" indicates the destination

and "x" are arbitrary numbers for the remaining message bytes. The

routing message placed the appropriate source and destination bytes in

the datagram sent to the UNID to route the message to node A.

As described in C1S:Chapter 5) the first datagram was received

without error, but the second datagram was essentially "trashed" by the

network. The modified software for the SBC 544 did correctly receive

and pass the messages sent from node K to node A and the looping

messages sent from node A to node K. The protocol analyzer was used to

confirm proper handshaking between the UNID and the LSI-11 nodes and as

an additional validation tool for the accurate transmission of the

message.

Phase four testing was not accomplished on the 88/45 board software

was not fully developed for the target EPROMs. The following paragraph

describes the steps that would occur in Phase Four Testing.

The UNID II configuration consists of three boards in the six slot

A.- card cage. Slot J1 has the SBC 86/12A. Slot J3 has the SBC 88/45.

Slot J5 has the SBC 544. The operational software on the SBC 544 must

have all loop back procedures, dummy calls, and dummy responses assoc-

iated with the SBC 88/45 removed. The loops on the SBC 88/45 remain

unaltered for the initial Phase Four testing.

The host software developed for the SBC 544 will send datagrams to

%-ei the SBC 544 network layer software. Successful exchanges between the

6 -22

S. P...'



PI.

two SBCs for packets destined for the same port sending the message

will result in messages received at the host terminal when the destina-

tion address is the host terminal. H19 terminals may be attached to the

remaining ports of the SBC 544 to validate proper returns to the remain-

ing local host channels. The SBC 86/12A will serve as a debugging tool

formessages not successfully transversing the system memory boundary

between the SBC 544 and SBC 88/45. For Phase Four testing, the SBC

88/45 transmit tables should be located in memory common between the SBC

86/12A and SBC 88/45. This will allow the SBC 86/12A monitor to access

the frames residing in the SBC 88/45 transmit tables.

After validation of data exchanges between the SBC 544 and the SBC

88/45, the software loops within the data link software should be

removed. The operational transmit and receive routines for the data

link software will then be callei to envoke the RS-422 physical layer

interface. A null modem on channel B's RS-422 interface will be

required to allow the the two channels to connect together for testing.

The host program will then send messages to the then fully operational

UNID II. Once the hardware interface has been validated as fully opera-

tional, the second UNID II software may be cki.figured for the first test

of an operational DELNET ring of two UNIDs.

Conclusion

This chapter outlined the test philosophy and methodology used to

validate and integrate UNID II software. The test philosophy estab-

lished terminology and validation requirements. The chapter then

covered modifications to existing software testing tools. Next, the

chapter briefly outlined the test stages developed for the validation

6 - 23

6e



process. The final four sections of the chapter detailed Phase One

module testing, Phase Two simulation testing, Phase Three operational

testing, and Phase Four integration testing. Phase One and Phase Two

tests were both "successfully completed." Phase Three testing of the

SBC 544 was also completed. The Phase Three testing of the SBC 88/45

was not completed. This then precluded Phase Four testing of the SBC

88/45. The SBC 544, however, was successfully tested in the LSI-11

network. The next and final chapter of this thesis effort discusses

the conclusions and recommendations of this thesis effort.

1.A

6-24



% %

Chapter VII

Conclusions and Recommendations

Introduction

tThis Thesis tffort sought to further the implementation of the

SCCITT[ X.25 protocol in the UNID 11. .'hile each of the tasks listed in

.%

Chaper wee adresednChat ere copeedIale71lit h

Conluskn andcoeommenation

Table 7-1. Tasks Accomplished

1. The timing problem associated with bytes lost in
received datagrams was corrected and validated on the LSI-11

(e" network.

hs2. The software necessary to operate the UNID II off an

Intel 210 and 230 development system was developed.

3. The frame and packet head ere altered for

consistency with the X.25 recommendation.

.. ' 4. LAP B procedures were developed to the point that they

-, may L,2 integrated into operational SBC 88/45 software.

;.4

5. The "living document" approach used in this Thesis
effort to provide sufficient and detailed information for

following efforts provided in additional documentation on
historical UNID II development and detailed procedures used

Ain software development, desion, integration, and

validation..vnct
, fot opoid.ufcin nddtiedifrato o

42.-

,4)

0, ' -. ... ., . , . . ." - . . . .' - --' ', ' ." . . .' -- ." " .-" • -- -', ' -{ " i i --7 g ' ---- --' .-"

u' ' '- . ,-7 ' '- . - , ; : '. ''- " ' - '- . . _2 ' " ,'',,'__: : :' _7 ' : : ': '' . ""7- I-' , '-1 '



Conclusions

The UNID II design now includes fully operational TCP/IP and

datalink software. While functions in both layers may be considerably

expanded for a broader implementation, they do not now represent the

main focus of UNID II development. The functional simulations developed

by previous work (15) and considerably refined in this effort provides

validated modules for an operational UNID 1I. The SBC 544 software will

nowsupport datagram transfer between local host channels. The SBC 544

allows up to four separate hosts to access any other hosts on the SBC

544. The access to the SBC 544 requires the use of the TCP/IP protocol,

and the transmit request / transmit acknowledgement handshake.

The UNID II now has operational host test software on two separate

systems (Intel 210, Intel 230) and under two separate operating systems

(CP/M, ISIS). The modular design of the host software restricts

modifications to the I/O module linked with the main program module.

The modules developed during this thesis effort support the 8251 and

8251A USARTs commonly used in serial communications. Appendix D of this

,* thesis discusses the details necessary to transport the source code to

other devices. Appendix K of this thesis gives the three separate I/O

modules for the host software and demonstrates the simplicity in writing

the I/O drives in PL/M as opposed to an assembly language.

Transportability of the host software was a key consideration in the

selection of the language used and the modular refinement of the

software. As such, the host software may easily be transported to the

such systems as the Intel 310 and Intel 330 under either RMX or Xenix

operating systems.

7-

.. ..'.-



The packet layer for the UNID II now nas the correct format for

X.25 compatibility, though the packet layer functions are not fully

implemented. The datalink layer for the UNID II now has the correct

header format and, to the extent implemented, performs correctly. While

a broader implementation may improve networking capacity and delay

characteristics, such development is not necessary for a functional

UNID II. The physical layer was addressed only in the design phase and

at this point in the development cycle represents one of the next areas

of development.

The major objective yet to be accomplished in the UNID II is

0 embedding operational software on the SBC 88/45 and the integration

testing, refinement, and validation of the SBC 544 and SBC 88/45.

Recommenda t ion

As stated in previous UND/DELNET research and development, this

author recommends development continue on UNID II. The DELNET and UNID

environment provides the developer a rich arena in networking related

activities. The scope of knowledge gained from the DELNET/UNID environ-

ment is rich with the same activities associated with the OpenNet,

ARPANET, DDNS, and other mainline networks. The software environment of

UNID spans the entire development cycle, hence, UNID development details

specifications, requirements, design, detailed design, implementation,

integration, and validation. The interpretations on the specifications

and requirements have been delimited more clearly as the project nears

completion. Design changes made from one developer to the next have

advanced and refined each stage of development. Integration of

previous software with the developers own design has provided the "real

7 3

0



.- ". world" exercise missing in much of the previous course work of an

educational environment. Test and validation techniques, rarely touched

upon outside of software engineering circles, have become the major

issues in UNID II development and have become the milestones by which

the developer is judged. Furthermore, each of these stages of

development forces the use of advanced design techniques (SADTs,

Structure Charts, etc.).

At the other end of the development spectrum is the hardware

related activities. The UNID 11 developer must have detailed

understanding of interrupt programs,hardware interfaces such as X.21,

" RS-232-C, and RS-422. The details of converting the 'soft' code of

software programs to machine readable code on EPROMs cannot be

overlooked. At present, no less than four separate code conversions

must currently be used before a single machine instruction can be

1 executed on one of the SBCs.

The developer/officer directly benefits through the

commonalityof the UNID/DELNET design with current nodal processors and

gateway switches going into the Defense Data Network (DDN) (110). The

general strategy of these processes reflect the same approach taken with

UNID design: common, off the self, SBCs, a multibus type card cage

executing software designed using the ISO reference model. The UNID II

design gives the officer/developer hands on experience with technology

coming into the DoD inventory at this very time.

Specific recommendations are made in the following paragraphs.

I. Further development in the UNID II design should proceed with

completion of the physical layer hardware initialization on the SBC

7 -4



88/45. Seven ICs on the SBC 88/45 require programming. These devices

will provide two RS-422 channels and one RS-232-C. The RS-232-C channel

will be used to monitor operations within the SBC 88/45. One of the two

RS-422 channels will require a null modem. A null modem simply

interchanges the transmit and receive signals to allow interconnection

of the two channels. The null modem interface provides orderly addition

of other UNIDs to the DELNET ring.

2. Once the RS-422 interface is fully operational, the UNID II

shouldbe characterized to benchmark performance levels. Noted short

comings would then guide further refinements to the UNID II software.

3. As now developed, further refinements to the UNID II software

would come as top down extensions of the network and datalink layers.

The network layer should have a fully functional RS-232-C interface.

The interface should use RS-232-C circuits BA,BB9 CA, CB, CC, and CF.

The present software handshake sequence should then be removed.

4. For full datagrarn service, the minimal packet layer currently

implemented requires, expansion. Once packet layer software becomes

available, incorporation of virtual circuit service on the UNID becomes

a simple process of extending packet layer services.

* 5. The datalink software should have the current one frame window

extended to three or four frames. Intelligence should be 'built-in' the

datalink software to handle simple error conditions without resetting

the link.

6. Development of the UNID (0) gateway switch between DELNET rings

should be addressed. The UNID (0) acts as a true gateway switch between

UNID rings within DELNET. The hardware configuration of UNID (0) is

7 -5

0%



*.).
'simply two SBC 88/45 boards replacing the SBC 544 and SBC 88/45 board

pair. The datalink and packet layer software programs developed for an

operational UNID II would require only minor changes for UNID (0).

Features should be added to use one of the RS-232-C ports as a network

monitor.

7. Further development should seriously look at the use of the 'C'

programming language. While PL/M proves ideal for use in interrupt

routines, the PL/M implementation can not achieve the same levels of

abstraction as can an implementation in 'C. Moreover, the available

I/O routines in "C" greatly simplify the developers ability toextract

* information from the test program.

8. It is the contention of this author that the next development

*of the UNID II not proceed without the use of an advanced software

development aid such as the RMYX operating system. RMX provides the user

a finite nucleus which may be embedded on the target EPROM of a SBC.

The nucleus can be upgraded through additional operating system layers.

Each layer tailors the RMX OS for the specific needs of the target SBC.

J The RMX facilities may range from a simple monitor type program to a

fully functional macro computer with compilers, editors, dynamic

* =debuggers, static debuggers, and a 'human interface'. No software need

be written to add any of these features, no further hardware need be

- obtained, this author recommends use of the presently available SBC.

86/30 board (128 k bytes on board RAM) as the target for the RMS

nucleus. The SBC 86/30 would then replace the SBC 86/12A presently in

use. Once the SBC 86/30 was in place, the SBC 544 and SBC 88/45 could be

* '. restrapped to use the system memory as location for their respective

S"7- 6



5' " -programs. Then the software simply needs to be loaded into system

memory through the SBC 86/30's RS-232-C port.

9. A simpler recommendation to recommendation 8 would be to mount

the presently available 286 monitor firmware on the SBC 86/30. The SBC

286/10 monitor is partially functional on the SBC 86/30 and the SBC

86/30, unlike the SBC 286/10 has on board dual port KAM. The SBC 286/10

monitor hasroutines to up load and down load software from the Intel

230. In this fashion, the burning of EPROMs for each program change to

-? operational UNID II software could be eliminated.

Concluding Remarks

The UNID/DELNET project has provided the basis for many thesis

topics over the years. While the original palace of DELNET has been

superseded by various local area networks, the UNID/DELNET project

remains an invaluable educational resource. There is simply no

replacement for the 'hands on experience' provided by the UNID/DELNET

project.

J7 7-7

.-; *_* .' .' ..'. . ..i',.-? . ,-.-.. ....... . ., .,-- . -. ... ..-.. . .--.-. . . . ., - ''-



Bibliography

1. 1842 EEG/EEIC. An Engineering Assessment Toward Economic,

Feasible and Responsive Base Level Communications Through the
1980's. Technical Report TR 78-5. Richards-Gebaur AFB, Missouri.
October 1977.

2. Air Force Automated Systems Program Office (AFASPO) (AFCC).
Private conversations with the program management staff regarding
multi-user and multi-level security issues related to the
Integrated-Service/Agency Automated Message Processing Exchange
(I-S/A AMPE). Gunter AFS, AL, June-July 1982 and March-April
1983.

3. Andreoni, Gaetano, Le Moli, Gesualdo and Palazzo, Sergio
"Sublayering in Standard Network Architectures," Computer

Communications, 7: 17-22 (February 1984).

4. Arthurs, Edward, Gregory L. Chesson and Barton W. Stuck.
"Theoretical Performance Analysis of Sliding Window Flow Control,"

0 IEEE Journal on Selected Areas in Communications, SAC-l: 947-959
(November 1983).

5. Baker, L. "USAF Prototype and Software Development for Universal
Network Interface Device." MS thesis, AFIT-GCS-EE-80D-4. School

of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1980 (AD A100787).

6. Bartoli, Paul D. "The Application Layer of the Reference
Model of Open Systems Interconnection," Proceedings of the
IEEE, 71: 1404-1407 (December 1983).

7. Bertine, H. V. "Physical Level Interface and Protocols,"

Computer Networks: A Tutorial, IEEE Computer Society: 97 - 124
(1984).

8. Blumberg, Robert, "Access Protocols for X.25 Local Area
Network," IEEE Computer Society International

Conference/Fall: 13 - 19 (1983).

9. Borgsmiller, Michael. "The Serial Communications Interface
Board." Project Report, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1983.

10. Brown, E. "USAF Prototype Universal Network Interface Device."
NS thesis, AFIT-CE-EE-79-8. School of Engineering, Air Force

4. Institute of Technology (AU), Wright-Patterson AFB OH, December
1 79 (AD A080173).

11. Burg, Fred 1.. "Design Considerations for using the X.25 Packt

Layer in Data Terminal Equipment," INFOCOM: 180 - 188 (April
BB1984).

BIB-



12. Bytek Corporation. EPROM Programmer Manual. Manufacture's data.
Santa Clara CA, 1982.

13. Callon, Ross "Internetwork Protocol," Proceedings of the
IEEE, 71: 1388-1393 (December 1983).

14. Carlson, D. E. "Bit - Orientated Data Link Control
Procedures ," Computer Networks: A Tutorial, IEEE
Computer Society: 125 - 138 (1984).

15. Childress, C. T. "Continued Development and Implementation
of the Universal Network Interface Device (UNID) II in the
Digital Engineering Laboratory Network (DELNET)". MS
Thesis, AFIT-GE-EE-84D-17. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB,
OH, December 1984.

16. Childress, C. T. Telephone Conversations regarding UNID II

design, May - September 1985.

17. Cole, Kenneth. Private conversations regarding data structures.
School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, June - September 1984.

47 18. Conard, James W. "Services and Protocols of the Data Link

Layer," Proceedings of the IEEE, 71: 1378-1383 (December
1983).

19. Cuomo, Gennaro. "Continued Development of the Universal Network
Interface Device." MS thesis, AFIT-CE-EE-82D-28. School of
Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1982.

20. Deital, Harvey M., An Introduction to Operationing Systems
Reading, Massachussetts, Addison-Wesly, 1984.

21. DOD Standard: Transmission Control Protocol Specification.
* Arlington VA: Defense Advanced Research Projects Agency (DARPA),

*, September 1981.

22. DOD Standard: Internet Protocol Specification. Arlington VA:
Defense Advanced Research Projects Agency (DARPA), September 1981.

23. Dolpine, Richard, Principles of Data Communications,
Carnegie Press, Madison, NJ, 1984.

24. EIA Standard RS-232C. Interface Between Data Terminal Equipment
and Data Communication Equipment Employin Serial Binary Data
Interchange. Washington, D.C.: Electronic Industrial Association,
April 1975.

BIB - 2

- .. .. .. I.. . . . .



25. EIA Standard RS-449. General Purpose 37 Position Interface for
Data Terminal Equipment and Data Circuit Terminating Equipment
Employing Serial Binary Data Interchange. Washington, D.C.:
Electronic Industrial Association, November 1977.

26. Emmons, Willard F. and Chandler, A.S. "OSI Session Layer:
Services and Protocols," Procedings of the IEEE, 71:
1397-1400 (December 1983).

27. Fairchild Camera and Instrument Corporation. Microprocessor
Products Data Book. Manufacturer's data. Santa Clara,
California: Fairchild Camera and Instrument Corporation,
January 1983.

28. Folts, Harold C., Harry R. Karp, Data Communications
Standards, McGraw-Hill, New York, NY, 1979.

29. Freeman, Peter. "Fundamentals of Design," Tutorial on
Software Design Techniques, IEEE Computer Society: 2 - 22
(1984).

30. Ceist, John W. "Development of the Digital Engineering Laboratory

Computer Network: Host-to-Node/Host-to-Host Protocols." MS
thesis, AFIT-GCS-EE-81D-8. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December
1981.

31. Gravin, Andrew C. "Preliminary Design of a Computer
Communications Network Interface Device Using INTEL 8086 and 8089
16-Bit Microprocessors." MS thesis, AFIT-GCS-EE-81D-9. School of
Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1981.

32. Hartrum, Thomas C. Private conversations regarding the AFIT LSI-
11 Network Operating System (NETOS). School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, June
- September 1985.

33. Hazelton, Craig 11. "Continued Development and Implementation of
the Protocols for the Digital Engineering Laboratory Network." MS
thesis, AFIT-GE-EE-82D-37. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December
1982.

34. Hewlett-Packard Company. HP 4951A protocol analizer Operating
Manual No. 04951-90012, November 1984. HP Company/Colorado

Telecommunications Devision.

BIB - 3

I



b _ . -- - '--... . .- = . .. 
- 

. - . ... l .. . .. r .. . .. .

35. Hobart, William C., Jr. "Design of a Local Computer Network for
the Air Force Institute of Technology Digital Engineering
Laboratory." MS thesis, AFIT-CE-EE-81M-3. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
M1arch 1981.

36. Hollis, Lloyd L. "OSI Presentation Layer Activities"
Proceedings of the IEEE, 71: 1401-1403 (December 1983).

37. Hunt, Ray "Open Systems interconnection - the transport

4. layer protocol," Computer Communications, 7:
V 186-197 (August 1984).

38. Specification for Message Format for Computer Based Message
Systems. Proposed Federal Information Processing Standard.
Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, April 1982.

39. Specification of a Transport Protocol for Computer Comunications,
Volume 1: Overview and Services. Draft Report ICST/HLNP-83-1.

* Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, January
1983.

40. Specification of a Transport Protocol for Computer Comunications,
Volume 2: Class 2 Protocol. Draft Report ICST/HLNP-83-2.
Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, February
1983.

41. Specification of a Transport Protocol for Computer Comunications,
Volume 3: Class 4 Protocol. Draft Report ICST/HLNP-83-3.
Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, February
1983.

42. Specification of a Transport Protocol for Computer Comunications,
Volume 4: Service Specifications. Draft Report ICST/HLNP-83-4.
Washington DC: Institute for Computer Sciences and Technology,
National Bureau of Standards, Department of Commerce, January

a. -1983.

43. Specification of a Transport Protocol for Computer Comunications,
Volume 5: Cuidance for the Implementor. Draft Report ICST/HLNP-
83-5. Washington DC: Institute for Computer Sciences and
Technology, National Bureau of Standards, Department of Commerce,
January 1983.

B13 4

0%
4-. ,- I .-a4



1 - %7VW' Mf J-J' - -

44. Specification of a Transport Protocol for Computer Comunications,

Volume 6: Guidance for Implementation Selection. Draft Report
ICST/HLNP-83-6. Washington DC: Institute for Computer Sciences

and Technology, National Bureau of Standards, Department of

Commerce, February 1983.

45. Intel Corp. AEDIT-86 Text Editor User's Guide. Manufacturer's
data, 121956-001. Intel Corp., Santa Clara CA, 1982.

46. Intel Corp. "Communications," ;Comments, Intel Corp., Santa

Clara CA: Chapter 6 (June 1985).

47. Intel Corp. Development Systems Handbook. Manufacturer's data,

210940-001. Intel Corp., Santa Clara CA, May 1983.

48. Intel Corp. Distributed Control Modules Databook. Manufacturer's
4 data, 230972-001. Intel Corp., Santa Clara CA, 1984.

49. Intel Corp. iAPX 86, 88 Family Utilities User's Guide.
Manufacturer's data, 121616-003. Intel Corp., Santa Clara CA,

* 1982.

50. Intel Corp. iAPX 86/88, 186/188 User's Manual: Programmer's
Reference. Manufacturer's data, 210911-001. Intel Corp., Santa

Clara CA, May 1983.

51.. Intel Corp. ICE-85B In-Circuit Emulator Operating Instructions

for ISIS-II Users. Manufacturer's data, 980463-003. Intel Corp.,
Santa Clara CA, 1982.

52. Intel Corp. ICE-86A/ICE-88A Microsystems In-Circuit Emulator

Operating Instructions for ISIS-II Users. Manufacturer's data,
162554-002. Intel Corp., Santa Clara CA, 1982.

53. Intel Corp. Intellec Series III Microcomputer Development System
Programmer's Reference Manual. Manufacturer's data, 121618-003.
Intel Corp., Santa Clara CA, 1981.

54. Intel Corp. Intellec Series III Microcomputer Development System
Product Overview. Manufacturer's data, 121575-002, 1981. Intel
Corp., Santa Clara CA, 1981.

55. Intel Corp. Intellec Series III Microcomputer Development System
Console Operating Instructions. Manufacturer's data, 121609-003.

Intel Corp., Santa Clara CA, 1981.

56. Intel Corp. iSBC 86/12A Single Board Computer Hardware Reference
Manual. Manufacturer's data, 983074-01. Intel Corp., Santa Clara

CA, undated.

.IB - 5
S

O

.4 , , .- . .- - - .,-,- - .' . . ." -". - .- - . .v '. " .. -,. -. .- , ,-. ,- ...,.. .. : '-- -...- , -. ,.'-. ,..-.-. " --. ""



.' .. . -

* -- 57. Intel Corp. iSBC 88/45 Advanced Data Communications Processor
Board Hardware Reference Manual. Manufacturer's data, 143824-001.

Intel Corp., Santa Clara CA, 1983.

58. Intel Corp. iSBC 544 Intellegent Communications Controller Board
Hardware Reference Manual. Manufacturer's data, 980616B. Intel
Corp., Santa Clara CA, 1983.

59. Intel Corp. iSBC 957 Intellec iSBC 86/12A Interface and
Executive Package User's Cuide. Manufacturer's data,
9800743A, Intel Corp., Santa Clara CA , 1978.

60. Intel Corp. ISIS-lI User's Guide. Manufacturer's data,

980306-05. Intel Corp., Santa Clara CA, 1979.

61. Intel Corp. ISIS-II PL/M-80 Compiler Operator's Manual.
Manufacturer's data, 980300-004. Intel Corp., Santa Clara CA,
undated.

62. Intel Corp. ISIS-Il PL/M-86 Compiler Operator's Manual.

_ Manufacturer's data, 980478-004. Intel Corp., Santa Clara CA,
undated.

63. Intel Corp. MCS-86 Absolute Object File Formats. Manufacturer's
data, 960821A. Intel Corp., Santa Clara CA, 1977.

64. Intel Corp. MCS-86 Software Development Utilities Operating

Instructions for ISIS-II Users. Manufacturer's data, 980639B.
Intel Corp., Santa Clara CA, undated.

-'. 65. Intel Corp. Memory Components Handbook. Manufacturer's data,
210830-002. Intel Corp., Santa Clara CA, 1983.

66. Intel Corp. Microprocessor and Peripheral Handbook.
Manufacturer's data, 210844-001. Intel Corp., Santa Clara CA,
1983.

67. Intel Corp. OEM Systems Handbook. Manufacturer's data, 210941-
* 004. Intel Corp., Santa Clara CA, 1934.

68. Intel Corp. OpenNet Product Cuide, Intel Corp., Santa
Clara, CA, 1985,

69. Intel Corp. Peripherial Design Handbook, Intel Corp., Santa
Clara CA, August 1981.

70. Intel Corp. PL/M-80 Programming Manual. anufacturer's data,
980268-002. Intel Corp., Santa Clara CA, undated.

71. Intel Corp. PL/M-86 Programming Manual. anufacturer's data,
980466-003. Intel Corp., Santa Clara CA, undated.

BIB - 6

%' %

00
..............................



*~q4.
- -.

72. Intel Corp. Prototyping with the 8089 1/0 Processor.
Manufacturer's data, AP-89. Intel Corp., Santa Clara CA,
May 1980.

73. Intel Corp. "Serial Interface Connection Chart," ;Cornments Intel
Corp., Santa Clara, CA: Chapter I (June 1985).

74. Intel Corp. Software Handbook. Manufacturer's data, 230766-001.
Intel Corp., Santa Clara CA, 1984.

75. Interphase Corp. LNC 5180 Local Area NetworK Controller
Users's Cuide. Nanufacturer's data, Interphase, Dallas, TX,

September 1983.

76. Kernighan, Brian W., Dennis M. Ritchie, The C Prora ming
Laaguage, Prentice-Hall Inc., Englewood Cliffs, NJ, 1978.

77. Knightson, Keith C. "The Transport Layer Standardization,"
Procedings of the IEEE, 71: 1394-1396 (December 1983).

78. Kochan, Stephen C., Programming in C, Hayden BookCompany,
Hasbrock Heights, NJ, 1983.

79. Limb, John 0. "Performance of Local Area Networks at High
Speed," IEEE Communication Magazine, 22: 41-45 (August

1984).

80. Lin, Shu, and Daniel J. Costello, Jr. Error Control Coding:
Fundamentals and Applications. Englewood Cliffs, New Jersey:
Prentice-Hal Inc., 1983.

81. McClelland, Frank M. "Services and Protocols of the
Physical Layer," Proceedings of the IEEE, 71: 1372-1377

(December 1983).

82. Madnick, Stuart E. and John J. Donovan. Operating Systems. New
York, New York: McCraw-Hill Book Co., 1974.

83. Magee, F. R., Jr., R. P. evey. "An Internal Packet Metwork
Protocol and Buffer Management Scheme for an X.25 Based Network,"

INFOCOM: 481 - 484 (April 1983).

84. Matheson, William F. "Continued Development of a Universal
Network Interface Device Using the INTEL 8086 and 8089 16-Bit
P ic reprocessors." MS thesis, AFIT-CE-EE-83D-42. School of
Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB 01H, December 1983.

BIB -7

%"%

.. 1, -
-,,. A . . . .

. . . . . . . . . ..0. .. . . . . . . . . . . . . . . . . .



85. Merwin, Richard E. Secure Operating System Technology Papers for

the Seminar on the DoD Computer Security Initiative Program.

American Federation of Information Processing Societies Conference

Proceedings, National Computer Conference. Montvale NJ: American
Federation of Information Processing Societies, Inc., June, July
1979.

86. Mil'tary Standard. File Transfer Protocol. MIL-STD-1780 (Draft),
US Government Printing office, Arlington, Virginia: 1983.

87. Military Standard. Internet Protocol. MIL-STD-1777, US
Government Printing Office, Arlington, Virginia: 1983.

88. Military Standard. Simple Mail Transfer Protocol. MIL-STD-1781
(Draft), US Government Printing Office, Arlington, Virginia: 1983.

89. Military Standard. Transmission Control Protocol. MIL-STD--1778,
US Government Printing office, Arlington, Virginia: 1983.

6 90. Military Standard. TELNET Protocol. MIL-STD-1782 (Draft), US
Government Printing Office, Arlington, Virginia: 1984.

91. Palmer, Donald E. "Design of a Prototype Universal Network

P: Interface Device Using INTEL 8086 and 8089 16-Bit
' Microprocessors." MS thesis, AFIT-GCS-EE-82D-52. School of

Engineering, Air Force Institute of lechnology (AU), Wright-
Patterson AFB OH, December 1982.

92. Papp, Charles E. "Prototype DELNET Using the Universal Network
interface Device." MS thesis, AFIT-GE-EE-81D-46. School of
Engineering, Air Force Institute of Technology (AU , Wright-
Patterson AFB OH, December 1981.

93. Phister, Paul W. Jr. "Protocol Standard and Implementation Within
the Digital Engineering Laboratory Computer Network (DELNET) Using
the Universal Network Interface Device (UNID)." MS thesis, AFIT-
GE-EE-83D-58. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 19b3.

94. Pickens, R. Andrew. "Wideband Transmission Media II: Satellite
Communications," Computer Communications, Volume 1, Principles,
edited by Wushow Chou. Englewood Cliffs, N. J.: Prentice-Hall,
Inc., 1983.

95. Pingry, Julie. "Local Area Networking Becomes A Standard
Feature," Digital Design, 14: 70-83 (March 1984).

96. Ravenscroft, D. "Electrical Engineering Digital Design Laboratory

m Communications Network." MS thesis, AFIT-GCS-EE-78--16. School of

Engineering, Air Force Institute of lechnology (AU), Wright-
Patterson AFB OH, December 1978 (AD A064729).

BIB - 8



97. Rivest, Ronald L., Adi Shamir and Len Adleman. A Method for
Obtaining Digital Signatures and Public-Key Crcptosystems.
Massachusetts Institute of Technology publication MIT/LCS/TM-82.

NY%, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge MA, April 1977.

98. Rudin, Harry "An Imformal Overview of Formal Protocol
Specification," IEEE Communication Magazine, 23: 46-52 (March
1985).

99. Rubin, Izhak and Luis F. M. De Moraes. "Message Delay Analysis
for Polling and Token Multiple-Access Schemes for Local
Communication Networks," IEEE Journal on Selected Areas in
Communications, SAC-i: 935-946 (November 1983).

100. Rybczynski, A.M. "A Common X.25 Interface to Public Data
Networks," Computer Networks, 4: 97-110 (1980).

101. Sauer, Charles H. and K. Mani Chandy. Computer Systems
. Performance Modeling. Englewood Cliffs, New Jersey: Prentice-Hall

Inc., 1981.

102. Sauer, Charles H. and Edward A. MacNair. Simulation of Computer
Communication Systems. Englewood Cliffs, New Jersey: Prentice-

Hall Inc., 1983.

" 103. Schindler, Sigram, Luckenbach, Thomas and Steinacker,
Michael "X.21 as a Universal Digital Service Access
Interface," Computer Communications, 5: 298-306
(December 1982).

104. Sinkov, Abraham. Elementary Cryptanalysis. Washington DC:
Mathematical Association of America, 1966.

'- 105. Sirbu, Marvin A. "Standards Setting for Computer
Communication: The Case of X.25," IEEE Communications
Magazine, 23: 35-45 (March 1985).

106. Sloman, M.S. "Standards and Protocols," Computer
Communications, 1: 310-328 (December 1978).

107. Sluzevich, Sam C. "Preliminary Design of a Universal Network
Interface Device." MS thesis, AFIT-GE-EE-78-41. School of
Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB 011, December 1978 (AD A064059).

108. Spear, Mark C. "Hardware Design and Implementation of the
Universal Network Interface Device (UNID)." MS thesis, AFIT-CE-
EE-84 N-XX. School of Engineering, Air Force Institute of
Technology (AU), Wright-.atterson AFB OH, March 1984.

O

[.., BIB - 9

,0

I;) . .. ........... .



109. Steinmetz, Jay S. "A Secure Computer Network." MS thesis, AFIT-
GCS-EE-82D-34. School of Engineering, Air Force Institute of

Technology (AU), Wright-Patterson AFB OH, November 1982.

110. Systems Development Corp., SDC Introduces the MIL/INT Network

System, Manufaucture's Data. System Development Corp.,

Communications System, Santa Monica, CA, 1984.

Ill. Transport Layer Specification. Draft specification.
Documentation and programs available on UNIX compatible magnetic
tape. Washington DC, National Bureau of Standards, December 1983.

112. Tannenbaum, Andrew S. Computer Networks. Englewood Cliffs, New
Jersey: Prentice-Hall Inc., 1981.

113. Ware, Christine "The OSI Network Layer: Standards to Cope
with the Real World," Proceedings of the IEEE, 71:

-" ,1384-1387 (December 1983).

114. Witt, Michael. "An Introduction to Layered Protocols." Byte:
* 385-398, September 1983.

115. The X.25 Protocol and Seven Other Key CCITT Recommendations: X.1,
X.2, X.3, X.21, X.21(bis), X.28, and X.29. Lifetime Learning

Publications, Belmont CA, 1981.

116. Yu, W., Majithia, J.C., and Wong, J.W. "Access Protocols

for Circuit/Packet Switching Networks," Computer Communications,
4: 271-283 (1980).

117. Zilog, Inc. PLZ User Guide. Manufacturer's data, 03-3096-01.
Zilog Inc., Cupertino CA, July 1979.

. %]

BIB - 10

*a,. . % ..? .... . .. . . . -. -.. . . .



t 0. .' -, ov

.. iA, U- l: IT iL.'L LS ~ r c , I l'. D ' ' '

s LI Cd. r Cou., 11~sup. 1: S c0. tillS C.. 0 dIf5.C.0.

LArS72 ci LWI L 1 6 . CJ .~ .s' i2 i: UI.L .. 3

A- 1 L

.4I



- -4

ii
V

-4

C-,

-4 .-. 
'---4

-- 4

0 -.

C
-4

-4

-4 -~ 
-4

-4 -

-~-4 N

k ( -4 - -4

4-. -~

-4--

-4 ,J

.4..

I

S

.,-'..



- .-.--- ,-.--.-. -- -- - rr 'rrr-,r-rnI-s.-v~-- -

r

- ~.. I

* ::~ -- :~:
)...

-- ,-.., I -

.1

.4

~-.4

1~ 1~.~
N:

~i.

0

- .-" -4k-.

* .4 . -

-~ I

7!

.5

.4 I 7

-. 4 -T * .--- II
- -.- N:

'.1

/ 7'
/ I

*

6

5* i-s. - S * S
S. . 5 .5 * .

.5.. .5.5.*



z -\ 4

K'. ~

/ ... 'N.-J

.2' '-'

/
-. I

.4

* 'I

I- N S. - -
- - K

/1
/

*5%*

-S .4

~-Z

p...AS.

4...

S ..~- A-.

/ - .-~ -
-~

-I -~ -,

5*'*

5,

5-

I * I
A.-1:

.- S

-.5 55**5

A -~

5'



I - .. -.

I .-.--. "..,:,

"-
* 7: "- ..

-'- - J - - -. -

- - .. ,: - -4 ._ * .:--.

. 'N.

, .,, j -, -. , . -, - .. . , . _ - '-. -, . .. -. . - -, .. -. . .- -. . . . - -. - - ., , - , ,



N

-- .4 -i.-

~- :.
.- -~ .

L. -

V -' - V

-3,--

C: c.~
A- -

- -~ -4

* j-.-~Z . '~1 -

-4-----. - -~

- I C *-~ -

-: . I -J

It

NI

N

> ~-i n
:2 ~ ~ C'

I-' ~jz:

"p

S.

I.

S

- . - . - - - . --------------.-.-. - - - -



-1

A.

L4C~~O ~
-44-

I ~4 4 --' -4

4 1' 2

I - _

- . -~ J2-.---. j <1246 
-~ -4

U

(9

.2; 12 1

- -4 ~-4

/ -

.4 
~

4 *-4 -

4 -4- ~

4. 
-~-4 ~r-4

3k /

U
4 

.
-4

.4.-
4 - -

*4

Z.J N

4 4 -

6
.4,

~ 
4 -. 

4~ ~ * *%* .444 -- - 4'44* , 4,,4* .4-.
4~4~~ 4.~4'~. .~. '. --~.X&N~y ~ 4,4 * ~ - .

.. - 4.... 44

4.. ~4 .% ~ 
~ 

4 4-



!tS- 3 2C P~ PS- 4 22 Si ;1.

*T'1, iiet~r Livcr ( SPC 5 4or silaIr 'iar.K .r? a c:-,. .cTI L.I L

local Ios 'I SiC,'2 Cof Lh. 2TT I0) ill use the? FS232C stan 'c-I r t o

interface -,it', the ost )au ters or othier DELNET not icc -s Ch r

1, -Cia:)L,2r 2;, :;uc;t as tio NCITOS (32). Tile UIata l11 l1er'DCL

or sii-Lar ar~aaIncrfface oc the net ,;ork sic'e of the L;NIT) TI) il

uzsc theL 1'1S-',2' s tan-larLi to Lnterfiece one UNTD Will anothecr UNID

(D7 :Choi~ptr 1, Charer 2).

Cal stdfl.:AJcd ',24, 25) hlas a lar-,c nu .iber of 3i,)nils 31ec i'i(-d not

all of o'aici arc use,!h t he U'IID I~s ')3 Aj'peticlix 3). Thie fo Ilowin.-;

fL ures licit Ia toec s i,nals thiat are ip~lemienteJ in tile UN..IT) an(!

DEL, T. S i ;al i :ct ior i.uoo uto h Ut!T) II is s hom' for L

4- NS - 2 2 i nt ier ac . Si 1na I. J rectiori into or out o f the UVIDT) I is n oL

Jaor'. or thei, LS22 nterface I,- the SBC 544 board is IL-.o ~r

*co -l rl ea I ia -ii a a Tr or :- !C h connoction. Ir c le0 0f I UIt

eon 1jtrajt7,o: for the( C:S-_2L2C ports on tho SPC 544 h-oark' is scet to a DiCE

k.toal .;L ha~sc co' ut.rs anni( t-ar:'.inals to 1*.rectly o cto Iat!

U':1!; If L L oL L. .L u s:t J. a rai.'l .lu'

if

,- 

d

~54



DB-25 Pin -1.et:i
:uirSi. nal naiI~. D DLL.-[T

IFm r ,:e ro 0Un1CJ
2 Trans.J it .:i ta

C GmaC to Sendi A
1Di Li Set Ri'

7 SI.;nal O;roulld x
.~,~ ~'~Si Det--Ct

- Unassi
Unassliie

1L LUnassi jne 1

12 Seconcarv R,?ccivc2 Si unaI D--tc
iSSoc 3nuirv Cloar t,) Sonv!
142 S o niary Traiis; it Data

15Tr.-ir'S:, it Si "ria l i 1 2 oL Ti lin
1c Sco n,:a rv oceivto L'a .-

17 &ecuive SLi-.nal det2,,ent TiA:in,

V S2ccljrii PRocuest to Send
22 Data Tariiiial ;,L~dy

2 2
Eata- SiL~nai RatL! Sele,.ct (DTE)

24 Data ' )nIRLL, SeL-ct (DCE)

2 5 U I s~

:;OT,: Piis inU 22, :. irk-U (2,are not re.(,a1reuo t t;ic ',":D
is ,vi .JuIr ma to a :inst z0o a or to r:.' inn I. Tliese In
-;ooI 16 r IIlly Sn, LISO.i 'ia part Lcu uar port is c~~,C

u -r o -i FS-232C Pin Assi ;a..eits

Tie local side connee-tto), to A(,SL a.'tr or trias

ClS RS-232C si.;nals siown i- iur !-I. It 1: ,is:w ~I~ eI's-,:s c

IOto :facc eonSC a s talidai ciO:Ii-2OncLtOC.



D,3-3"7 Pin !i,rctj~ iwi o n

A;umbor SL-,nal :o elnar I Ot ir

I Shield x
2 SL Inal -Tao A

a S: a r e
4 Seud Data A

5 Send Ti~iin., A N
RoPceive niia A

7 Par(-uest to com AX
Dec-iv-- Ti.-in A x

1 Clear LO Sendi AX
IDLocal Loo hacz A
11.Dta .lode A
12Te-rnrinal Real': AAA

13 Receiver iReakdy A x
14Ra.:iote Lco)L-ac-z

1 In1cul"inq Call
* VStelect Frequeacy Sl ,nallin,

iRate loulCator

17 Ta!r:iinal Ti.iu 2  X
L . Te2st 'ode A
1 j Si -nal Groundj X

2(3 3 coive Co,111un

2Son,: Datda B x
2. 3 sead, Ti;.'in B x

.1 e)coivo Data X

27 Clear to Sen,, 1
2 ~ Terilal [a Scrvice A

32F, frn,.i al ReaJ
3i Receiver Rewady 11
32 select Stian..'!,y A
33 Si,,nal Quality
34 Now Si'nal
3 5 Terminal iV;N

3 6 Standby IALdicator
37 Sent, Conoon10

.o r:7: Vie -A arid -B suff1226 anI t'ie. si~nal no--nc 1aturo reccr
*CO t!10 nunT-inve-rted and-, liive rted Outputs;:pu. ot - 'C-

472 si,ls -is tie si nalzi uc3e a bLalancud si ;nalllin:
-etiI0,1 aIId a re2Ver3Oe1 conne1ction .,ill inveCrt the desired2

-na I



Thuc U,.TDs are connecL2' l L1y -K2e12ar0 ~ aele

-Ive r 111 u L wrc) si. s L i,? 'Ue u:i. F C ; x:

*. 1.,Tt and ind lcates .'ItiC,L 1 :,i C Ir elli7 L I. t, k L L ic

F~~T 1,71: 1: L!Ii s Ui r ur, Lt: ~ L 10 ti nL a n.: keI cC L~ lI is

1,1, to Ch.-rt" I. L e usc o.f A nul Uc rOeUirleJ Oil Gne af t,'.,2 a

spei LI-j.r> ports. It Li ossa !u Lthet Lie- > S-422 ieter2f3ZC useS: .1

SL~ild.LJ J-37coiliecLOr.

or



i rr--'l k .,, r o 1 t C .fL

iK 1-71;

j, 'o1 KI Cm C,: 1!:~h~ L L 1 K2 I L. C L S. ou C.

S~ yi
~J 1.e /L 7v

1%



Tic jt.Ar LC 1ii .. r 0 0 Lr±It:: (2;1f1l1jf:

7- _5

3 13-14

J' 1 11V11 ~ Old iM~i)tl j .

2-4 .n o - -o aw t,2 r p r E 232 C p i ru.,)

CcS .012LI- -, -IE r 3 -. -Ac.. e n. Ca on i:n t.~ i ip

ST I Lo. 02 0 C I tcto. u1 -:- JI C1, foics.Oir< LO LUj t

I~) rw.. iLi( 2 .C r,2,; is h11 Ill L :TE. D 7c iti iS n ~
1-2 t1 - 1 V *7 -' -

7 431 7 11 pl v

>17, R I

I - 12-1 3 11 111i1h C o

t- L3U1 >111

1.-lI~-- 02332- 115,



"OST SYSETE :-

Sa LL 2 Lis C!!LAL CcUtc Lro: L2 .J L

al L I -zLC:I Ca l Lu LQ ca.J I, u 1L Lis Ls 'it . ss.>:

S o c Lo 1/J "ni r :(CLltLI2 -or t.,z noS ;r Iall' vt 2 'l

a1~ ce ti Lro-vtnus 1,"0 "rzivc rOLI li '.Vi T rn ' L.- .;O Lj

li \ LIrCI iV - :,lor .; L6

C" r5~ '2 ab.L. Lt .At Ls) w -L~

calL'- o ii t1 . .i ,t %: cL La L~. Io . v1I

Lw 16 L : '> .iiia . L: .I. Sl j 1. r ~ ii yL L'- . Le L 1

S .AV tL La t -1, CO.? 11i L y'L %. L,, oC v~ c2; -'f;

Cel I iC2( ill L:,, s EL~tw ro os-s Ir - LI fl t.. LI 10 i L'.! 2 s

in o:oLrSVysL-2ns 3 L r >1nL:t'

t~a..oil: c~.i: ihotosU.1L1



STA

COU:Tl' - Seria cunrl rL:C

;',ILI rite ,)rt it) L, -i. r -. ;A oc> t .,..
-2'~ r A/ ' . -

1, ,; S 7ll 1 I~ r 2 Ii C SIc s :IciC1. u c -2 ri rLwi -, - t

21; 22s on: 'I' C',~ls L C 2ic La

* .;v~~no:'z sa-rial 1.3-12- C co. --1nicLlC, ccs~e7L a

ts e l t I.L t. 1: -- 1a. Lv v dicL16;

tA.:L~j'z tirc oS ut2 .. 1> :: ro ur PS -

1 ., 1; L\; Trans..)

(~j * .. u I C G' a.

C I ' lLa c v

1 i L o L V C c r:. r'A2 T ii

tl ut l ot i I C ,

s.. -itl nt ou iIiIt vl iu c- U' ' .. t c : hI

Is '~an C t !:jy Xit c uC :u, :Uat: j i L7' IL o '

L .i LfLL:t Lac I'u~ 11 c>; I::c:, <.'.

-S~ Vq . o.,. . . . .

Ft1 ......... ,... ..t..i~fu~t v'.o.....~i '. .

L6A



V1

3o s :i.o.T K -, -tart .i :.t ,,.; ,_v ,. [ " , ,: ' 3 '. ' [

ri

, :' ,,2. . :v be "i z :tL .-.. r : , ; L .. ~ .' .: .. -c i L ',c.:,
%4•

i' r L" I

ISIS i, r,:ILL-: >'.sv . rcc . 1 ,. . u a t ,~ l a i ci.
C3 I~a. LLLI GJLC La1.v I Icu

C::, ~ ~ ~ ~ ~ ~ ~ ; rf :p1.SjCiD:C.I itIL Lic.u: L 1 L1 a ctua

II

, .;.-'0 ,,c'l ui : t i -l ' i 0'c i : 1. : 2 S 2 1 t 1),C I . 2,," I.. t. at ,.

t.'-! .. . o , _. -ir r .;iiv

0 r

L -1
, -." 'til. -)- cJ.-' C ttE1O:. ;i _.iCK ,.c KL.C 3$2 ".Ca:t ,t L CC4 1)C1L2,. .it "LCAL I i,

*,.5 .ri;7uu; aS.' La cat +ei-; SIC, - ';lV ,arK rocSave<

C'"'

N ,~ .q 2 .c - ,,. . ,v r._. ; Li' , C o . . :70, ..,r : i 22' C

";i3t..!. At_' ;t LL i L.,, ...i:2 ,.IL :L > ,it.', 2 . T; iIawu , r i VmL . T."-,

t'' ') c

C,... '7jit

:;l, 2t ~ ± . L'2

, J ' - : l ::.' j . ' . . 1 iL ' .. . i CQ .. .Ci i . I, z , c s L ", : .1 > : : . 't , ,L C ' o i ' 1. . [ , , -a r ; : , , 'L> a : 1 , .'

,L r I .I 1 1 2

*a ,r. [ , "ur at tS ' . ' LC . , t . 2 C, ... Lar.L r

, r LJt(UC S,LCX. I ,,.c it , . "; , Li', ira- ra,. iS IS:V ;22... r,.C -

-- "~.:.. i2..L.; U ru Cit. pv'. ;cjcLi,: :SC: 2:.> i,;L:. !7! La tS. KU>: C-JnVL,_. -C .:

4 -- I-_. 
.,

Id. iu t ,'t : r , t ,, ., - ( 'V . . "

/ -( -. - , a ri , ¢.:,r * .' ' ,JL .( . .. . .,LC Li C, - - r
* - . i ...... v . t.,: ',v- . r C,,t i 111; i . "' t f L :'

0

< Jt<J , .*



'lOST SYSTI" St 951T71 CAT 10> ROEIP

i IT2 PlOTs is::,a 2 r- i i -s-2

rC ,A.ljZI cills co t ic exiit in!, c:,cr,-L Lin sys'.2 *t .c c i

*)C -: r, Cit -XciL ) r c i .-urf 2s a :;SO()C i IL2 A. Lm 1 2,.0114

,Cca L , L.2, 1/0 ? Jrlv r Lr baLiiae-S for Las, ri w secriz .,I 1'0 j vic ri.,L

r iC2L Ii,? prc: tiiouS 1,'U drivo r cooIL LCIoS. TI11 r, Laok L-ot L\ar2 b2Cui§; to

rLc0c oct,2d Lu a lotliL in sy;s;L2o. meaor> viicr2- e-22C02i~io o x:o0cted, to

Z 21 0 21 (0 .n ro~plac in , LAC !;DOS cll s ill ti.c a-s.bly *:;pan ion

pr ;C ;ru. (S iSAS' In CirlLL,,r sser Thessls or BiOST1.AS,> i:- L.-ls T-oesis) tLeu

u oI L c r,2iCcH n es Luj co 7istL, ccIjnln, C 0OL L 0US0, :L k: eiX iaIv all b e

re wvc 3co t if pro;;ra I flls. A t tIL Ls L)oit t >LLwer- ai re cI~c

1* c~~~~XL-2oaul cai - cooK be easily sCccni LUr~rCc

., ivtwr ruutines . LIPi:- .V11ii La ,Li1C,j S S. 'flJ <o rol

*,iour tual-o'eii~srs,.1t;ol iroiiois clectoor *'

-. ( jl'-Cli jI:.t' C lLr.' 1 ni L a (Us:-±,.

-, 'Aw*"



SD,\TA S S r LiI .. ~.. 'JV,

S S TAT - Soral. ;LiLui O~rL
C Gr:TY U - 2o c oi IX -_ c f c 0U r! t t2r ;2

c::r~uc - 17,itL 16,L -Our L'il, L L-vC OS~~t . ., .
tie0 iSAJ" L usck2 7or c 'f , 'i

T. i v,.I L i i I r..a ;1e I L:ic ;2 i [CaLL L:,- joCtS L~ac i

t k': 1ib 2.~ 2'_"'±S -1 LI '-*.'"

y'3r 2>~ -. s;22C cc); 1!.;u-IiCdti~tA, aIs sncci lod )yV t.A, r,.11 r,

f or I'NI I L c co3oa .io aa sLs so c ia Le %. i L h t e USART 11l re -il 1r

a... ..c o~.Currcoatly, lull UIupl,!-, one I_ Lroctio3, avzo.

-* .' Clikl~ittOO OUVr.; L2..Ci Le LU.NTI, oink tL'i2 7s 2~ r-a S-

2%C rot~ccl caIlls for full duplex, z;-,rcIironuas co~n.,unicitiwi~s. Vi i

ili recuLiro2 -i.)le. ,miLlii Ltt fclluo. coiiLrois:

I1 )2 A Si -iaol Ground:
U; 3 (D' TraI:is tiL Daita

1; P A) A.'iV2 .Lil

I , Cl.!,t Lo S0 II

IY- 11.a L L '-c L.r S .Izl Ei_. .ient Ti L'15
It jC ~Ct.V Si 11 I.L[LTi-iL I7~

1 -2 Cr Lcu S 1.1, oiiaL L 10 S-2 J ''C )ill Ie~s''. Lo t I,-

i. 2 ea~i~ Iii.dCJL . tli2 EA c.ir..UiL _JS1. 1 L1.

!r JUL a)riCko2S il,ijicaL,2 t.IC 'C.27 , I%2, ,.2 CC I IT ci r,- . L

*~~~~ 1 U-1. L Jol. Cuirrelltly l i O uilton V L LL 'L .j

L .i c L It craic2t ldayer1 -'C i .~ in J ly L ii' !C S ,I I iLo, L IL

L h0SL iicdare IoLJrfacC nis -I' a "iS-23?2-C protoc

r 2 L' 2 C I C C L~ S. Is L ' )~ r- r s

iC Li W- "I. Fir S'ta 1()Cr11, ~ -. r I 1t102

a-IL i L rI-:I1e i i L ILIL 0 .'S l- 0L .iJL2fC ita53C; i



S J'ce. o ie ta a-,rc. i.,j 01f.2 . .~,'L 5 ~ ,.

Lic cc :.u. e a-Yi ~L L v 2 - 11.L .r Lo.-io 1ujciLIil-', L e Ii L

L .iiIL is u rI~ L_ -. I o. ~ 1uit :- tel K3 Li .,i j c2 l 1r -1L c:-

Lu'i~ L I~.\ *iloc uztc, t'2 ISIS3W.lr .~ E;L n ~ fl

ru: i e.P, iV L-2 sLa r L D Cl ;: i :1c c: c.. uxci L K.ce.T.,

12S cri..1;;t recor-3 L;Ls Vd I 11 iiL 0 1.1L C1,

L (iii u ' K I rL I~ii 22l..n:i :t ulicio l E0 2 2cu.

ccil u icuTuc Oilcu COJb- Se :.12 nL .. ucL .)C Aicc It OCution

vlb L. ; iU p LLStructiuri aJ.'ac!( Lo locatioiis Qe , 1 .13, .ii_ r, -avec2

T il Sp 00L i I Lr r)., 'ISIS to 0 i,> is" S Ile 'jit~

'F:1, F110 .!nSt .,e inL tic In te F.", r .a T i sc c.>'- 2 niro- ti .1 (

0 iinj f, Lo (:QJ !V I uLS. 1i) (J: i cu er o '.1 ve1K;IlIIS 0' t2 f i 0 0

1:1iL 1 1,: tjC.i1- Ava iI -1 C-, 1 .1 1,2 S1 S witl L .L I C 1 :1 1

re nf tre ~o uC;tcnL firSL C'i.I 1-IL2 I 3FX c to 1 1 1 S

1T." for -at, Lenc~ C:1-, Iu S!, f\ trv.IL t P" fornint. T Te it I,

to L ISE IIX Lujrit is iii:.> hI iI.2 icx" 1t L'.1L, Co.<

S lnre 2. T'w f Lie- 1.i .1 i:; illn L. 10U. L L:i r i e Lt: :-aI..L

to r c u 2st2 i . 2 it1, t tc t e ,.o r,: Lni'e2. 1 v

i 4 (iCitC2S tl1A i'21114 S,21Z iOn 0r 1' 2 1 1~e L i t2O TI c o.0 i v o r.; re..

LT ni r .rbu :;e c L. i oos ire .ivai la', Li ii ly n; L>' )il C o ; ii

I oC c 4 o 'o ri:: cntr -1 .,.1ir. .O L I Lc CL>oit.ii'rcir& t 2X1..

,i ru rUw oivrin ) LAU 19:: L:: i L to 1 Ci'' i1 r L, i~ 2'

-Z 6



function *isc2" in tihu ir.. 's2 L. 11ai.uir 0

cu~ot.i ll L''o f i 12 cr.2c Li. ' L11, ic U:C L iu:P S c:Ili.nc~' t0 L 'I,! C

for:.iat an'-- rmnIau! to Liil 1ucOO 2i t.1. 2Lva ;L :i:2;

SJ. 02. -AL ta uixl I Ic xts ia L.Iu [,, L r it. T '.i Z 1- .. i

~~cyiIrc CIo "2LA'u.r 'CP ,) 2(). ,iii t o lcit > i>

*L i2 ')ru),xr o .. r-' Loc~i 0: u f 0j 1 J~ -1 ' :L ,AD 1r) ii )

-1il lly tL..o f ito ' I I rU,-,Lc iro a L .2 L.LL2 ijiSLiau 2 L lfl Lu L.1 I Lit

oc -\CuLitia lucil L i01 '5Ch for HOSTI.AS:'). T i i ,,s L r ut L ion 0:1 -1

eCL2L OL oiher Li asso. !l~y cudoe 2> . by>.'to ihL') or ).ic AEue cc..>

Ccclusiozlis

7ro- Il a300) :, -scr int ()TI, s Li Ia r i'rico .Li:i i-'ivelo e' o

JL:,tcr 07)(2ra-t i , :3/Lyst S, SLIC;L -IS 'S4J c , .. n c . , t L Clan-,sS

1.; 7!iic Lo IxLL L.,,, r.. Cuu, veriu of t:m !FF.: filb

C .1 L ~ i r2 1ir2 LI 1'U:,2: !-:I " SC2- . : L t1 2 1- c

' :" CU IC Liuil i S C chJn , t2 La, LW.' CP':: Cur i:aL a,. 1,2-. Lu Lu i(2,.1

uXiLS i~l tO- CP/M for:AdL. T~iuiL r 2 1i rir C, t iua' :QD

wiuu--in ZCPR) co,-laad to LocaL- Lao, CIi.'. iL toL .r 1)C 'cur ' .0 C -1 L iha: U

Aola. ".'ILOAD" r-2cquir.25 a Ida-L 01, S. F- I L 1 .. t, r U i Cu L

S";1- IIV !UI-, I Lat rullt Iu1 LO L!ho I
9 
Lt o :y;L !,-I iO''jL y C r

't A :' T t or 0;i~r Ci~ 0a? Po Jt~

il~~~~~~~C o-t)o J ic 71I I

Aw



function "ise-" in the2 tOCA c f~z Ilm. i':Lae1.> . .

c a t ,! t le f ile c roate L Lw 1- C:"Z .ct L

tar-m- i a rena,,au ta tlie scean: 17ile it,' o -, t D l V. 9 1)

"I> I L.2L 0 V i3. Fon 11 Cl exit s ii; L hC C o 0r:..:iL. ts- 1. . 1

,u:.uare L.... .. U012CC Z~~3co'_acn2i to locaLe2 Lou 11 j

12~f LOle 2i-, taa)naJ(..$'L A e(Jrz . '-

f 2 2x I u it C1 uu o1C ch oSc>. '7C ~ [o ias tastrue Lo a

C. u~yte) ar :ac .at- coJO_-

..,, .- %,*L,2 :I ' U 2"

Fr o-' L12 I :s 8502 .. srI*io,. ilar ;.rau res-,2 .,av edvyae for

othle r ocra L i.1 L~tca sectS Is -:50'; . i 11,in, a sL- tLa i

'-f. 2 C V Cuca~ 2. c ri L t '3 . Litr atr spla±., .- e

.Sy5L..tOre4 t irc V uitLi ;u~u... Cooze rsiuan 4 LIet2 ISt-.

t~ ~ ~ , U~ i': 211 I~qtS t L t.ia~ L2 C t Li tL I1

.) ~ ~ ~ : C,. I .q11.2 1('U1 Iu t. . I L hi S3 a '-1. C C i c rs 11 L.C' I

tcx L't~ltu 1 S CliI - to t*Ia C)/" i OrtaL it1 rena :2' t(- Li .- '

tI t~ o v 11~t. 59!t si;2 U - ~2 5 2 AtL CitS icDLi '*

uxtt Ls in the1 CP,' faor.:.i. c lh8- L !L 1.i CrttC Vt '', Ir

t.; 1 .LiLcLL, So L '.t L o,: C:.eC:Lt f IC.I LIC 0.-K1C i. - 'ti L,)t' . 1.u c

VT
%



U"J N.i)P 'L-C 2' - 1U1

.IO O z 'U;~r L : i-t cL i citicalS

I..C'C; inA: L-[o t- 'U L7,rc L ,s e f o i i rLiaO s s tetneen o i t :e 32C nr.i .in r as

, 2 -- ,3. D i j I L I.>-i~~1 :( tw( &, tors Ti. i~~lI Uf Larl, CQk.2 iS 2. da CL2I r

L C 0 1of sc- , fc s i zceu t o protec .! r c riIca cI !L102i

r. L r L:I exci L2. o. LC t , t or -1d 1m o a cI C u iCa

)1CSC i.- L5 Uc0Lat rO : SC J:,,/ti rocsor :nicoix en t.r CAsi WOOt

SuECii44 ,'. ote s tis not I. ultil A_, it!i C,1, cr ::ulttoocess1 and .uiti c cs

t2 systeca. Dat i7 th fo t CL pvc icwt ac e oar 23c t 2C~ tX S tL2

.iOir. L L 1 ;7.C isc~ .10 Ls vE L?4 irCC: oIt e'isu L t

LOCi f t Ii-,
tL 0E r/4 r rocess s Lu . LiinLo ti L t ie: :- s s1t of .Lt lef

,1l ;l Lti - , L r t ,,L , u r t - e L ;-. L:

A ' OC5. noc3s o~cvieVi SC 44~cccs il, sWl



as It.I! SbC 4"'I.S !,)1 :I t :1 ,2,c S!

S; 45 :), r 0 L S t_- LOI o ntor ti, for -r

* ~d~r..o s. <.. SI c 5.4: i _its. oo not six'ctro .oion

0"c) , -o . 2 1 i, Ic illuo .)fl' :rdnAc r ,

ti~'~it o:roto yt (2o:7 ;~ L: otLyhons sc i i oda r o S 10154

;!,C j.ss./45 pr ceoc,; t'o.. S fu.~3 fr t'li 'c .. zDatc atc:, o i fdy ..,il -,o,

At.1 .. C t t I! L- 1: Li 1 .2 r ur L~ir raco ssn-,ihic s2 tt

t I,: j21 . r, r 'L , L 0 jt v 1 i o r o to e ~'. T:o :

;I !.I'jr. ~ C. LO t o rococinos -. i t. ii -ii rr t..

tI! iZ !.. tL J- c-ii.u!ioi !10 Lrec>,.; ~ io L1~;. I! t L

toos~ Li. u:II Lt su0 ijt~ ri. o 2.! ,2 S ti IL 1 .;.: . i

c. u2i>c L i>- 2!I :Iis. 0 ~I Ii Ltwt2 1:1 1 ru L 
1  

.1 ,2 i~ A2

U-%



If Data ra.-Availa5L!- L~i I:, '~ .
If LSu..i Done L,3:

Jo

6r jic,2.ua1.c12 ix O2li

.. oJ'oLoir, .X tornz. LTtL:;yFc zo2LS izC

10

T no ir,,t sectiOnlJ ; 2UC C so ,'.,D zorresjna:S Lo t C ch no Cl

ss:C 5.'4 4 no ir. . trn ea e c) a :cCtio1 1 o s'mJ co('e co~r reoL, 1 o t it

.co~c.L roz.n:; oa ":!e Si5c /5 i r. Diaa, \ 1,2ti Ls

:n1 c L 10: L 1 1 r a :,,I aC Vt L2 Leal 0o AVI L 0 t C) a-,~ o r,

Po:L c. L Jitr Lto to, aVoi C ),l Sz Le ua.2 or,

r '.ul t 1 ,lS: Eii .. u~ to Q o 2 r t x t

i! Lor' D. r a pace z- i ti Si C 6 4 0 .i.o:. Loo r anA

2 S' 1,2 Cr ci t Ln 1v r'2sav oru sau z~:~ i aiovas CL 1~ 0. 0!

)O . .c~o.Inetio. . . L Ile :;io. ril J Loa tticu

S-i . e~ a rc a ,) , o ; v 2 e s a C 1;S 1 1rL - i 0 ta 70. )!1

.

.. c tj t.-L ~ a L

r , r-S i i L ,ii



vis I,)I e e.1z;s .2 i 1ianu, 2 L'[. . . .i2 C i? C -t:-r 1i 2

otie 11L rjcesses j C e Z7 S'~ i .v e S !C r'-' rC~

-;ec ~L loii of Cod,,e Ia Li , I In L2. Co~,! te11 .1i -' e V ,- oe . G, v

,.vrL ii Lu~t L .!e2 r2 -e L i .1 roc ) II j

1, t2e C 544i ;,2~o~s 2hs i C ee~ .. ro IrL f,

t ~r C 54z+ T~~i 1on~ --':2L e y i u.lI.L ,2 c in L L IllA 2,

n rc: t re. ) 10.11 L 2Ct tO 132 Ac ,us r1:1:e'r L I Si I o ne

..2x: LL o S-. nd I -C ) , 1.l.tC . -:L I -tLe r root ,. , -c! u 1 .. il CIL!

e LL o S i 1 1;1t L, Ki, o10;1 Jo so ~ Lie partilcul ir L.ILJa ra., is for

toeul~O ao oCIi, L ieVe?. or t. The0kf iO A rot I-iO l eh e2 tie .11-o

.75:i~0prt Iritero Ate 0: Lee il) lncat:r CL- tie :ir*st Jetiro.

L' : L t 0:;c I I Lt tii oa , r a, , for Locoil ot to ic~,

S'.0V v t L12e 'c jLi a r I i; wVe 2 i tie . L t So n,! .lon t-c

f i. c u 0 rai ii four 1w ,i o t Lo n ,t r:L) v it, L L

(1?0 0eLu C AUJCi ih V e 1 C cI .1. T'1e itr C L Z0

.1 l eu.I, a t h 2'- 1 f/1 ren. fu 0i r

J Lir.'s thC Sone is li E!i~lv 1. tO [It2C SL, .:L 1,2 1 1 .i a n o-;L

ti At t iie to) o f the L c, i<>l~ Iii .iti2 o. X

Lu ,ij., ,.k . LO . IoiJL Lo L.~ ii. I~ iiC LL . ~ r'

1~~~ ~ ~ L-o L -LoKII;
.-.--.. , . . . . . . . . .- ... . . . . . ..[7,



tALI is *oi to the IIt..ur' .uu: U~ L'- Ilest.tO L 200joC

is eilLtareii.

It s~iouid' be otu tat iavl2 CIL'C220~.d~ h .~ i Lu

*ic Ikdfi2 s 'ared sy Le- .1ic.-Cf' aiL t:,, t--iu ticki 'jn Zji ra a

-i tu~ Lt :us LO t1 CdL t, i a fLout, rod., J r w r L to ti I

-is'~a tO Ia i j

C..a c. loa t i at L2xactLI L t ;d L2 itoat. Ti.-- 1_to.5'

i istult' ohio. cna i ,2 vc(2n tc t! 1, ti2- jar varcCS ad5. Or .

' L-le SlDC 5 44 -irocussor is in tic iddlu- of a fe2tci .dra i sl'ilro i;.:~ory,

theia~wac usir.loksout lcuss to t e oory to ot:;iur procossors

-- .~i Li acce-ss to thaLt ohart--d :co heer ho SEC 3d /-'45 boar-]

C311110 L iccu Ss the "'esi11rcud locatLioii untl thuc SBC 544 boa r,' has comnlTe t 2d

L s cu r r at i as t ru ct iLn, i e r cu po n, taOi S 1,C -',4'5 .7Lay thu " c0 -1 o the'S C

3! iud -ciorv. Thu ae iul :s truo for an aceu-,ss of e~iu :,uor i,

th2 SC uK boi r.1. k:*cii thL! SEC ,'/4& 5 roccicoor accu,-sss0 ro

....................2 , ter !,roce2 sor~ ar2 Ioke )ut f r. i c ce s i t a: s': a f-3

z-00cmi ti LkG r.u:j -i: ;n tc r~ it,: Lu a 10rotco.

1~r . if t L! S !'C X'45 31s c u t in t,2ic ( r u crm o .ii t o st

E~i Don,-!, anul thu SEC 544 is fute~d,, t'i, u- e.: lucI 10, to if-Ltcr-

r o ;a Lt a j -r ne' thei.re will iint a itnc oLi

I oca Li on LSe::i' as explaiimd t~oov(2. T.cr.ruor- tio SC 5-; . !te2rro.--t Li

ex 'UcLL! t .e critical io-Lutln a cc or, :

Tf . ijl fio I, tsv~atio fl-: tC 3o 1) or i ,; 2 Lu] ii e 2

1:; iL!ClI to ta'lt Lorth SkC 544 to K>C :'~ j.u2~nK Lu~'O'2 1,a ~,vin.2.1mtm rac imSe i tios t..;e,2,nt

U Li ;, - Pi r1 it 0.'

S%
LA



C):.-.u 1i C tion. 'itc -IstoCO'..-" o . C 'T,' 1 L CC 5 1 r

U~~~l~ .. .. it -ill :

C')'. , U~C t f v: ru fC:'
- f I' c t'.tv V K.,l 1 i Lu n KP nceC s, .:CcaUt .. i1,.' I "3

-0:7 c, 2; cet:eLu :Lw4 )- K... cC .' 'i.-Lrn . ,

292; i = 2-".,

t:Po1 L r C : ) oI§ ': ..... y ~c (Pruc,_-:s u':-K.CLI,'J hy SAC,{ 9-i-)

*u<'e .. :yj tcr,c ..CL.l..u'..... r.S.

. on L.;" -) i 1'r . - L L

S IloC .Lcca I''ran .. 5' c LL 0V,,,

,l[. ML' s-2 .,t..wuwC,co.2 Ij C " ' L., aBC 544 .',ac _it :IovCJJVL:

, A.'l:4

S

°';



AD-A164 876 DEVELOPHENT AMD IMPLEMENTATION OF THE X25 PROTOCOL FOR 3/
THE UNIVERSAL NETN (U) AIR FORCE INST OF TECH
U RIGHT-PATTERSON AFB ON SCHOOL OF ENGL. H W WEBER

NCLASSIFIED DEC 85 AFIT/GE/EUO/85D-52-VOL-i F/G 9/2 UL

EIIEIIIEEEEIIE
ElEEEEEEEEEllE
EllEEEEEEEEEEE
IEEEEEEIIEEEEE
EEEEEEEEEEEEEE
Eulllll~



kFw....

~MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

liii;-

- 6

-i-

, '- , 2 -' ' '- ., ' ' " -." .-" " .; .- " ' "- -" " " ' '- .-' ' "; -.' ', , " ' '- 5 " * " -' ' ' ; " " - " " -' ' -- 2L. -.3 3 6' ' .;



Irans it Roc uc.! L: Trant;.; i L AC!-GT I z-n; [I, iizc

Ln 2~ 2::. , L Is .) -L 2a i Is of L, I z Aro Lt --uL r Ins. L

Tti, t rans:tiL r U-q L i' trafnsaiL t c iiJ .C .dliV .. LlI;L.. Ct)

synclironize .. L I~e;~~I~rsf.'r lI ca;.tjyara !le .;roccs:3

ull lo! IOC-11.i~~i i. allows L!,,. ordeorly trans. ISS 10 01

.'2ta.,ra.rs between C~ie 1,06L alil tie UXI:D If. This llows thie UNID II to

C--liablIy sen .lr Ci.2ut ra; fror. a ilost tliat is so2 tCian Cie

s 1 c f >~TT .:tho r t~i- lost nol 's the recoi ve p or t or :ia a

se ntorruiwt ro'- :)ns or a. o,-ct t'at lIocs njot '.-ave a-- intorruiot

rivon 1rec. lv2 --. rt fro!,t U''ID 11. T'is :ec.-anis, or ~.J~l

:;I ii uc; a ti Di~-S~or RTS-CTS lrur :nsaL,:a.t2

ct to :illox aJr ttrasiso o I'traS :--t'.2. A

:;MI n K ts Con*c0' osts. Tie rtclr;.l>ctao:

2:: .~ .j~a'.sc,1o3s21 to aCCoi!;'o,-ate Lace IETOS 'LSI-l' :wtL :ora i

1,2 1. CFT .'lc 52 i ut:M taSait rccue.;L / ac (O..e,. ,

L. -ik d SUses -(oeS 110L use a ir.vr aui:-.2 SueC Is

* TS-CTS bicausv the sirai a r! io L i J!'. Lthat L;- C. Ctu

clizucnIS.-S , iac:i as XOM-~QY ca) i2 rc~lAl volv cas .ii.Ic

'S ~ ~ L1 tie[JID II SOf toare to azco,.,-oda t s iilar tie2 leai ~ iat oier

C10.. o. I, ci .1 *iO-c in Ltc NEFTOS des:iros to --~ a>ic'zuL Lu

cinthcr .J~,Lt CirSL socsa trzinsioit roquic:3t 'TF : to t.>'r

F-

0~



aodc. Thie reeeivii', node Clhan-, . iL ~ z~a TF, .;as sclit to ic,

Viiscmn a tra.1s.;,it a ou(TAI baiC:- Lo the SOIL.1 2r tV.LurIL. is

- .read' to rccecva- a )a' L T; s-'CIILI, 10de '.han,1 it r~ac.~ ui zeu La.? f

f-r,; t~a c-ci~ci;daE,30Cd-S CIO l'ati.-ra:- to Lrie zrav ~ o.! .

Tlizre 7.s aoc final SQri-ll u et av Cia recelver hac'k o tC2 ,adur Lu)

acluno;.,-la"..- tlie cece-tion of Lha- data, "ra. a R/TA .a ac'Aai&. effa1-c-

tivelv recilcas a nor-ially full duAxchannel to a 'Ialf cl,: carl 1. 0 .

T'ic oroces ; can )o diac,,raw.iec as slio.wu in PiLiurc r-1.

No Ia A Nd

ILI Ia iData,-raa. to sara:

:nLfoc TA

TA
Sa-nd TA- -- -- -- -- -- -- --- -- -- -- aLcv TA

DaLao- xi

Data ,ram-
Recv Data,1rai-- - -- -- -- -- -- -- -- -- Scudi Data .ra.:

Fl ;urc F-1. iT.TOS Trans.AiL cus/ca-tAcnwc aknsaa

The -.iechanism is ile.Eta in Ct,. UN'ID) 11 Suf Lare tith frour

boolean fla--s for eachi host :)ort. Fa)ir i.La:>-ar re cui ral s inc-a !h:L

TD, TA ,:cns, o>iAz 1 i awtr :i -!ca-ctiaa. 7 a2

L'X.ID LL :~. 1<aL ?i La- LO aa, t Ii It tLClUV.ic!Lacorr:",Li

.,iL.l Cie1 ;ET)S .id.Tli f(Jur l. -r-, Tr..ils 1t transi:3,t auL

IiW6%

.0 
L1'Z



(TXTR), Receive trans.:nit c:o'iec (RX:TAj, Roc-ivv ri:l uu

,PXTR), and Transa-it trans.iL ac~mo'i.jl(- - Laz>:) 1u -1 5 t a*.2

value TRUE or FALSE. Thie initial staL.! -s -11 COUr flL- V ALS:. 37' thIe

13 possii-le sLat23, Lae fUvC allow,'L: z;atus are s.,ia ;. In (' u ru! 7-2. A

Srapr~sents FALSE and a i'reliCeSuehts TP.LC.

TXTA R1XTA RXR TXTA

0 0 0 ~o.c~t u ta.;s i. Ler

S~h~iA Unta ra:t

0 0 . ata ;r I c2v r;1s

0 31 1 01, to rece2ivc La ;r-,;,

F i,!ur,! F-2 IID TR/ITA Allowable StaLjs.

'4ute th'at the .uechanis.-. starts iai Lthe all zero, or FALSE, stata

* wii no data-,ralas to send or receive and returns to t'he- all zero state,

at thec completion of sendin. or rece-ivin';, a d'atal,raii. Also, only one

process of sending a datara.a- or recuivia,, a Jata,-:.a.ii is allowed at one

Li 7. (thile this is a require.Ient f or thQ :,ETOS, arc' possibly othLer

rnetwor'zs, C~ie UNID sof tware is totally interruptL crive-n and caui sea.1 an

receive a datacra.. si.:..ultaneously without thnis hand-s ,'e.e ;a.ichaaisai. Tlie

UUDIl local so~t ,rare on tii, 544 boaird, ias been tei..tirou',h, tie

F-3

*~~~~~ .** .- . . . ... .* . .:~ y .. ~
%% %4



use of a boolIeca i f!a~ rIa I c. T:1TA -0 t Ilt L ~/Avi wc ..

saakc .-lay be used ur 'Ll1ot u ;:u Jl 1:1Y IVea Port 01- L,,t-- I~d

T-e '-.~r.:'lo - r: i

* as s;~o'.a in Fi ;urc F-3.

- TXTA

I k a- 0

-" 4..r T T



T"Iis u~lou ix ~2n,- ,t TCP/IP Itlul i!e, - rn

ieidcr f-r.~tion :r ~teU rio fly in Chcrter On-2 S3:,or:i;C

r:a-Cl :yte i~l t co,:pl1-te "'ati.-ru:i., dzc:,ct, ,anf is s"0,11 ;.ith t

a,-propriate ',it infor:iat . 2- i L..O C.L 7-:t.3 ;1,-;( 'd. tof~ .),7L,2

i~osLiorn, aoa , .it.i the, Ii~a :u22r, is ,iv,!c for ec ~t

Thie su'iscri 'Cs N an"d L rtrto :icst si,nificanL byte- aaJ! io az

siiificz-at bytu, zaupoctivoly. Sinilirly, thfe su'bscripts 3, 2, and 1

llzilLcatc thAe ioEt sisinificant byte2, te IleXt 5.'ificant bUyte and the

0 least Siilif iCajit te respectively. The conttents of .c.byte -onifor:i

to Lt-,e staandards csta'61lisiia,: la 15 ):n--,k C, 115". En tr i ,s

toiat contaia Ileters refer to specLl"ic )il-s thatL iust 'D, initialio.-, or

Staccord l--in; to *iow an,. uiu the-y arecsea For :apth lc.,t

wiOurc.. adcdress w'ill b e -. constaitL tLm I cd upoii the iarticular UYTD'

Sport nu-:i er to W.-iich a buist is co-nnected-. The Tyi-e of Scrvice. bLyt-e

on Da, ~-2!Penuls upon -'Ou aud ne ioliy, Liroa ;'LLut U-HL. rout in;

tC(UiCOU bv t~cl transport an., it 1 eL lve- I Irotucols. T'iose ',Its Li

bytes t:,at conitain l0 tcrs are2 variah),,us that are detainu

T.. c1e o Thse b yt es tS L;, L~ ;- Ly ., ~r o .110t yetL u,3d -Y tlic L T. I I

soltware and are currently lil~ '!it Zcros. Th &rtcuarL:LL

iovL/i; was use' for the tcstini L t "':I:; !I iii tic LSI-11 iH-'TOS te-St.

. L) 'Lto is furtier ex~enUIn '-4, 2$ 3A~e~xC, 115'.

%,

% '



SFra. 10 P cx'L tX L araA .

I r

CchlLroi 1.C c c C c

C -I c.LCol .a for f raie

GFTLGC:: 1 1 L
J 2J ', for ILd -rxi senvicu

I chefaultO to 0 11

LC',
U-01 ,,0 1U U U LI C C C C.

c clarnel

0--- ---------

n eoa ' a ri a a n nI

S:our .,'De.; icoaation 5 3 ------------

L i:s s ,-;
sourc.:J - ---

L U U U U C C C C

SOL to 0

Facility LPant-hte 9 e'

jsut to0)

'4%

Fociity ar.~.2tu 11 1.%



p..TrL.[,,tlI

;racrcc:2 LkLJ u.:LS

? 1ea ! 152 134 23

U.cl. I~-.t 4u u u . U

User I QntL 17 155 u u u u ii u u

Fla -s,'Frc,- Off'11) 1 630 1 ' '~

r.;c cOfsetL) 1 17 7 i0 0C) o c

Ti-e LD Liv.< -C(;) 2C 3CI11I'

?:tool21 10 0C 2 1

Jiurcc'?

Cotrl'~iity24 22 12 03 3 2 2

>ct~~or~ Co LT 5 2'3 13 --

[os L Coc CL)!/ '-S 21 1!41

Port Cod422)

Vijrt C,),,-1>' 27 2315 U

Ltlor.CVCC ..I 2 27 17 ni
:IOSL ~AU 4 ~----------------- --- -



l''d arne !n&:: !' i L -,

Fra-ie Pafc tc tlra: "SB

s!ost Code(L)/ 30 2L 1'
Port Code(2)

' or, I " 2-
.*-orCou&,1< 31 29 19 i ) .. 6 :P -

Port co- ue ' ,
S- --------
SCUr Ly. 32 10 2L 0 si

SecurityL) 23 21 00 9<10 1

S Field(i) 34 32 22

S Fi.1,],L) 35 33 23 i
* .'. . .. . .,_

C Fied() 36 34 214"

C FiLJ(L) 37 35 25

N" 3,, 36 23

P IielJ(L) 3." 37 27 I

TCC F" lc(2) 4 C 3

T t...L"Ci 41 3 )"

TCC F",,',1(" 2 41 .3 -- - - -2 . ---- -4- -- - -

:;. .. u .. iu.; 43 41 31 '.... .......... I .

1'C !Mj, 44-67 42-65

Source Port(SI) 44 42 32

Source PortL) 45 43 33 -

Destin Port(H) 46 "! 34

Destin Port(L) 47 4 35

Sequence ., 41) )6

44en5(t2,C. :* 49 47 37
S,2cajc,lco 1" - /"4'

Scvu c . 5 4,..

-i G -

-p.



Fraiae Pac.ket Data,rai; 'SE LSD

AckOW10Ld0 43) 52 5

Ackiowlc (2 3 51 41

Aa~o~dc 1 ~ 54 5 2 42

Acknuouoc!.-; O(0) 55 53 45

Data OffsetllResv 53G 54 44, 0 11 o 0 o )

Pscrve(./Cofltro1 57 55 45 0 u a r s f

~;nd~~A~53 56 46

C, le l zsul.~ 60 50 4)I-

VCaec suL-nL) 61 59 49- I

Ur. enz i'tr,\H) 62 60 50

Ur.;ntPtr(L) &63 61 51

Op~tion 6"4 62 52

Pz 1J) 63 53 o o)Q00~

PaJd in 1) 6 64 54 o; o 0 0 o 0

Pada;Q 7 65 5 5 o o, o 0 0

*User Data GG-139 66-137 56-127 :X X X : x

Fi, ,urc G-1. DEL-.ET/UZS-ID Detaile"J Heialcr Iafor:A!ation

-5

MxI



Appendix H

Data Dictionary

This appendix contains the data dictionary updated from

(15:Appendix H) for the four programs that comprise the network and

data link layer simulations, the validation and test programs used

with the UNID II and NETOS, and the ISIS host simulation software.

The simulation dictionaries are presented first followed by the

dictionary for the software on the SBC 544 and the CP/M system. Each

of the four programs has its own subdictionary which contains a

section for constants, variables, and procedures. Each entry is

6 listed in alphabetical order.

The batch files used to link and locate the object code generated

by the compiler are also included at the end of each applicable

subd ict ionary.

The appendix is subdivided into four subdictionaries which are

listed as follows:

Subdictionary Page

- I. Network Layer Simulation ...... ............ H-2

2. Data Link Layer Simulation ... ........... . H-7

3. SBC 544 Validation .... ............... . H-15

4. ISIS Host .......... ................... H-19

H-

4 M



I. Network Layer Simulation

The purpose of this program is to simulate the network layer

software on the Intel Software Development System.

Constants

ASCII(*) - Array of ASCII characters used for converting binary to hex
and hex to binary numbers for display on the console.

DATA$GRAM$SIZE - Number of bytes in a datagram (128) received from a
host.

DATA$TABLE$SIZE - Number of bytes within a data table.

L$RISDEST$ERR - Local route in destination error.

L$RO$DEST$ERR - Local route out destination error.

MAX$COUNTRY$CODE - Maximum number of countries operational on the
DELNET.

MAX$NETWORK$CODE - Maximum number of UNIDs operational within a
particular country.

0 ' PACKET$SIZE - Number of bytes in a packet (138).

4 PACKETS$IN$TABLE - Number of packets in a packet table.

PACKET$TABLE$SIZE - Number of bytes in a packet table.

R$CONN - I/O handle number for ISIS console call.

STAT$NBR - Number of the status entries to be included in the status
table.

SYS$MEM$BASE - Base address used to locate the shared table and
variables.

SYS$BASE - Base label used to properly locate the shared table and
variables. Used with SYS$MEM$BASE.

THIS$COUNTRY$CODE - Unique code indicating in which country
*THIS$UNID$NBR resides.

THIS$UNID$NBR - Unique UNID number for the UNID performing the interface
between local hosts and the DELNET.

TCP$DATA$SIZE - Number of user data bytes in the TCP header.

H- 2

€*. .

-.- .--%-\.->V--



TA - Transmit acknowledge character.

TR - Transmit request character.

W$CONN - I/O handle number for ISIS console call.

Variables

ACTUAL - Number of characters returned from ISIS console read call.

BUFFER - 128 byte buffer used with ISIS console read call.

DESTINATION - Indicates whether a received datagram is destined for the
network or another attached local host.

DESTINATION$ADDRESS - Indicates the destination address of a datagram.

SOURCE$ADDRESS - Indicates the source address of a datagram.

ERRNUM - Number of the error returned from an ISIS system call.

LCO1NE - Pointer in the array LCOITB pointing to the next available
position for a received datagram.

LC02NE - Pointer in the array LCO2TB pointing to the next available
position for a received datagram.

LC03NE - Pointer in the array LCO3TB pointing to the next available
position for a received datagram.

LC04NE - Pointer in the array LCO4TB pointing to the next available
position for a received datagram.

LCOINS - Pointer in the array LCOITB pointing to the next datagram to
service.

LC02NS - Pointer in the array LC02TB pointing to the next datagram to
service.

LCO3NS - Pointer in the array LC03TB pointing to the next datagram to
service.

LC04NS - Pointer in the array LC04TB pointing to the iext datagram to

service.

LCOISZ - The maximum number of bytes in the LCOITB array.

LCO2SZ - The maximum number of bytes in the LC02TB array.

LCO3SZ - The maximum number of bytes in the LC03TB array.

H-3

•/ . . . - . . . . . . . . . . .." . . --......... "......•...-- --.........- -



LCO4SZ - The maximum number of bytes in the LCO4TB array.

LCO1TB - Local receive table for host port number one.

LC02TB - Local receive table for host port number two.

LC03TB - Local receive table for host port number three.

LC04TB - Local receive table for host port number four.

LPTR$1, LPTR$2, LPTR$3, LPTR$4 - Pointer to the current packet to be
passed to the data link layer.

LSEM$1, LSEM$2, LSEM$3, LSEM$4 - Semaphore used by the network and data
link layers to indicate the state of the packet transfer.

LSPARE$1, LSPARE$2, LSPARE$3, LSPARE$4 - Spare memory locations used by
the SBC 88/45 for it's pointer transfer.

NPTR$1, NPTR$2, NPTR$3, LPTR$4 - Pointer to the current packet to be
passed to the network layer.

NSEM$1, NSEM$2, NSEM$3, NSEM$4 - Semaphore used by the network and data
link layers to indicate the state of the packet transfer.

NSPARE$1, NSPARE$2, NSPARE$3, NSPARE$4 - Spare memory locations used by
the SBC 88/45 for it's pointer transfer.

TXO1NE - Pointer in the array TXOITB pointing to the next available
position for a transmitted datagram.

TX02NE - Pointer in the array TX02TB pointing to the next available
position for a transmitted datagram.

TXO3NE - Pointer in the array TX03TB pointing to the next available
position for a transmitted datagram.

TXO4NE - Pointer in the array TX04TB pointing to the next available

position for a transmitted datagram.

TXOINS - Pointer in the array TXOITB pointing to the next datagram to
service.

TXO2NS - Pointer in the array TX02TB pointing to the next datagram to
service.

TX03NS - Pointer in the array TX03TB pointing to the next datagram to
service.

TXO4NS - Pointer in the array TX04TB pointing to the next datagram to
service.

H 4

3%



N '-TXO1SZ - The maximum number of bytes in the TXOITB array.

TX02SZ - The maximum number of bytes in the TX02TB array.
TXO3SZ - The maximum number of bytes in the TX03TB array.

TX04SZ - The maximum number of bytes in the TXO4TB array.

TXO1TB - Local receive table for host port number one.

TX02TB - Local receive table for host port number one.

TX03TB - Local receive table for host port number one.

TXO4TB - Local receive table for host port number one.

MESSACE(*) - Test message array.

STATUS - Error status of ISIS console I/O calls.

* Procedures

DET$ADDR - Determine the destination of the datagram from the attached

host.

DET$ADDR$NL - Determine the destination of the datagram passed from the

data link layer.

ERROR - I/O error handler for ISIS operating system calls.

EXIT - Graceful method to end the simulation; returns to the ISIS

operating system.

INIT - Initializes the variables to their initial states.

*INIT$TAB - Initializes the network and data link layer tables and
pointers to their initial values.

LD$TAB$HSKP - Housekeep a specified buffer table load pointer.

LOOP - Simulates the semaphore check and set operation of the SBC 88/45
board to turn a frame around to the network layer.

MOVETO$LOCAL - Move a datagram from a receive host buffer or the data
link layer buffer to the local host transmit buffer.

READ - Read a line of character input from the console; an ISIS

operating system call.

"-" ROUTE$IN - Route received datagrams from the local hosts to the daLa
link layer or the local host transmit buffers.

H- 5

A61



ROUTE$OUT - Send the datagrams in the transmit buffers to the local

hosts.

SEND$PACKET - Transforming the user datagram into a packet for transfer

to the data link layer.

SERVICE$LOOP - Turns a frame around at the data link layer. The source
and destination headers are exchanged.

SET$TRTA - Queries operator for which host channels will use the TRTA
handshake.

SNDSEQ - Takes a message string from the calling procedure and outputs

it to the ISIS operating system.

SRVC$TAB$HSKP - Housekeep a specified buffer table service pointer.

WRITE - Write a line of character information to the console; an ISIS
operating system call.

Link and Locate Batch File (LNK544.CSD)

CAUTION: Do not change address or other parameters in the

following batch file. They are highly hardware dependent
on the System III and the ISIS operating system.

LINK SIM544.OBJ,SYSTEM.LIB,PLMS0.LIB TO S1M544.LNK MAP
LOCATE SIM544.LNK TO SIM544 STACKSIZE(0OH) ORDER(CODE,DATA,&
STACK,MEMORY) CODE(5000H) MAP PRINT(SIM544.MP2)

TYPE SIM544.MP2

.

A."

. "- H- 6



2. Data Link Layer Simulation

The purpose of this program is to simulate the data link layer

software on the Intel Software Development System.

Constants

A$ADD - LAP B address byte for command and response frames.

ASCII(*) - Array of ASCII characters used for converting binary to hex
and hex to binary numbers for display on the console.

B$ADD - LAP B address byte for command and response frames.

CMDR$FRAME$SIZE - Size of Command Reject Frames in bytes (3).

CONCTC - Network monitor counter timer port address.

CONCMD - Network monitor USART command port address.

CONDAT - Network monitor USART data port address.

DATA$GRAM$SIZE - Number of bytes in a datagram (128) received from a
host.

DATA$TABLE$SIZE - Number of bytes within a data table.

DISC$CNTL - Disconnect frame mask byte.

I$CNTL - Information frame mask byte.

I$FRAME$SIZE - Size of Information frames in bytes (140).

L$RI$DEST$ERR - Local route in destination error.

L$RO$DEST$ERR - Local route out destination error.

MAX$COUNTRY$CODE - Maximum number of countries operational on the
DELNET.

MAX$NETWORK$CODE - Maximum number of UNIDs operational within aNa

particular country.

MAXNOA - Maximum number of timing counts for network channel A.

MAXNOB - Maximum number of timing counts for network channel B.

H -7



MAXRETRANSSA - Maximum number of retransmissions of a frame for network
channel B.

MAXRETRANS$B - Maximum number of retransmissions of a frame for network
channel B.

PACKET$SIZE - Number of bytes in a packet (133).

PACKETS$IN$TABLE - Number of packets in a packet table.

PACKET$TABLE$SIZE - Number of bytes in a packet table.

P$BIT$MASK - Mask for poll/final bit.

R$CONN - I/O handle number for ISIS console call.

S$FRAMESSIZE - Size of Supervisory frames in bytes (2).

SABM$CNTL - Set asynchronous balanced mode maske byte.

STAT$NBR - Number of the status entries to be included in the status
table.

THIS$COUNTRY$CODE - Unique code indicating in which country
THIS$UNID$NBR resides.

THIS$UNID$NBR - Unique UNID number for the UNID performing the interface
between local hosts and the DELNET.

TCP$DATA$SIZE - Number of user data bytes in the TCP header.

U$FRAME$SIZE - Size of unnumbered frames in bytes (2).

UA$CNTL - Unnumbered Acknowledgment mask byte.

W$CONN - I/O handle number for ISIS console call.

Variables

ACTUAL - Number of characters returned from ISIS console read call.

BUFFER - 128 byte buffer used with ISIS console read call.

CTCNOA - Progressive number of time counts for network channel A.

CTCNOB - Progressive number of time counts for network channel B.

DESTINATION - Indicates whether a received datagram is destined for the
network or another attached local host.

SOURCE$ADDRESS - Indicates the source address of a datagram.

H- 8



. DM$MODE - Indicates when system in the Disconnect Mode of operation.

ERRNUM - Number of the error returned from an ISIS system call.

I$FRAME$QUE - The I frame queue for I frames being sent down to the
physical layer.

I$FRAME$QUE$NE - The next available pointer for the I$FRAME$QUE.

I$FRAME$QUE$NS - The next to send pointer for the I$FRAMESQUE.

I$FRAME$QUE$SZ - The size of the array for I$FRAMESQUE.

LCNTNE - Pointer in the array LCNTTB pointing to the next available
position for a received datagram.

LCNTNS - Pointer in the array LCNTTB pointing to the next datagram to
service.

LCNTSZ - The maximum number of bytes in the LCNTTB array.

LCNTTB - Local to network table.

L$PTR$1 - Pointer to host channel 1 for datagram to send to the data
link.

V L$PTR$2 - Pointer to host channel 2 for datagram to send to the data
link.

LSPTR$3 - Pointer to host channel 3 for datagram to send to the data
link.

LSPTR$4 - Pointer to host channel 4 for datagram to send to the data
link.

L$SEM$1 - Semaphore for host channel 1.

L$SEM$2 - Semaphore for host channel 2.

L$SEM$3 - Semaphore for host channel 3.

L$SEM$4 - Semaphore for host channel 4.

L$SPARE$1 - Unused semaphre for channel 1.

-$SPARE$2 - Unused semaphre for channel 2.

L$SPARE$3 - Unused semaphre for channel 3.

L$SPARE$4 - Unused semaphre for channel 4.

H - 9

.. '



,., . NTLCNE - Pointer in the array NTLCTB pointing to the next available
position for a received datagram.

NTOINE - Pointer in the array NTOITB pointing to the next available
position for a received datagram.

NTO2NE - Pointer in the array NT02TB pointing to the next available
position for a received datagram.

NTLCNS - Pointer in the array NTLCTB pointing to the next datagram to
service.

NTO1NS - Pointer in the array NTOITB pointing to the next datagram to
service.

NTO2NS - Pointer in the array NT02TB pointing to the next datagram to
service.

NTLCSZ - The maximum number of bytes in the NTLCTB array.

NT01SZ - The maximum number of bytes in the NTOITB array.

NTO2SZ - The maximum number of bytes in the NT02TB array.

NTLCTB - Local receive table for host port number two.

NT01TB - Local receive table for host port number three.

NT02TB - Local receive table for host port number thr.
J NTO2TB - Local receive table for host port number four.

MESSAGE(*) - Test message array.

N$PTR$1 - Pointer to current frame to send to packet layer from
channel A.

N$PTR$2 - Pointer to current frame to send to packet layer from

channel B.

N$SEM$I - Data link semaphore for channel A.

N$SEM$2 - Data link semaphore for channel B.

NSPARE$1 - Currently unused spare semaphore for data link tables.

NSPARE$2 - Currently unused spare semaphore for data link tables.

TXOINE - Pointer in the array NTOITX pointing to the

next available position for a transmitted datagram.

RCV$STATE$A - State varible N(R) for channel A.

RCV$STATE$B - State varible N(R) for channel B.

H -10

4

% r % ."--

% w



RETRANS$A - Progressive number of retransmissions of a frame for channel

A.

RETRANS$B - Progressive number of retransmissions of a frame for channel
A.

RNR$MODE$A - Indicates when channel A is in the receive not ready mode

of operation.

RNR$MODESB - Indicates when channel B is in the receive not ready mode
of operation.

SABM$MODE$A - Indicates when channel A is in the SABM state.

SABM$MODE$B - Indicates when channel B is in the SABM state.

SEND$STATE$A - State varible N(S) for channel A.

SEND$STATE$B - State varible N(S) for channel B.

SEQ$BIT$A - Frame acknowledge bit for channel A.

SEQ$BIT$B - Frame acknowledge bit for channel B.

SEQNUM$A - Sequence number for the received channel A sequence number.

tSEQNUM$B - Sequence number for the received channel B sequence number.

STATUS - Error status of ISIS console I/O calls.

SYSBASE - Current base for location of embedded operational code.

THIS$SEQ$BIT$A - Current sequence bit for frame to transmit in channel A.

THIS$SEQ$BIT$B - Current sequence bit for frame to transmit in channel B.

TIMCHA - Current time count for channel A.

TIMCHB - Current time count for channel B.

UA$ACK$CHA - Indicates when an unnumbered acknowledgement is received

for channel A.

UA$ACK$CHB - Indicates when an unnumbered acknowledgement is received

for channel B.

U$CMD$QUE$A - Contains the oldest unacknowledged unnumbered command

for channal A.

U$CMD$QUE$B - Contains the oldest unacknowledged unnumbered command
for channal B.

" H - 11

H-l%



" Procedures

MODULE NETX25:

DQ$DECODE$EXCEPTION - External ISIS call to decode error exceptions.

DQ$CLOSE - External ISIS call to close an I/0 handle.

DQ$DETACH - External ISIS call to detach an I/0 device.

DQ$EXIT - External ISIS call to exit the current program back to the
ISIS operating system.

DQ$ATTACH - External ISIS call to attach an I/0 device.

DQ$CREATE - External ISIS call to obtain an I/0 handle.

DQ$OPEN - External ISIS call to open a file.

DQ$READ - External ISIS call to read an opened file.

*DQ$WRITE - External ISIS call to write an opened file.

INIT - Initializes the variables to their initial states.

INIT$TAB - Initializes the network and data link layer tables and
pointers to their initial values.

LD$TAB$HSKP - Housekeep a specified buffer table load pointer.

LOOP - Simulates the operation of another UNID in the network.

ROUTE$IN - Route received packets and frames from the network
layer and the network.

ROUTE$OUT - Send the frames to the network or packets to the network
layer.

BUILD$I$PACKET - Transforms the user packet into a frame for transfer
to the network.

SERVICE$LOOP - Turns a frame around in the network. The source
and destination headers are exchanged.

SNDSEQ - Takes a message string from the calling procedure and outputs
it to the ISIS operating system.

SRVC$TAB$HSKP - Housekeep a specified buffer table service pointer.

- "H - 12

,' -'V: ', . ' 'i -. . -', -- -- '" 
. ,

" -,- 
" '

." -" " ' .''."' ."'." '. ' ,-"' .'."'



MODULE LAPO:

DSPLY$FRAME$HDR - Displays the frame header for specified transmit or
receive tables.

FIND$U$CMD - Finds the outstanding unnumbered command in the U$CMD$QUE
table.

PRINTI - Prints an integer when given a byte value.

RCV$CMDR Procedure to receive CMDR frames.

RCV$DISC - Procedure to receive DISC frames.

RCV$DM - Procedure to receive DM frames.

RCV$I$FRAME - Procedure to receive I Framres.

RCV$REJ - Procedure to receive REJ frames.

RCV$RNR - Procedure to receive RNR frames.

RCV$RR - Procedure to receive RR frames.
RCV$SABM - Procedure to receive SABM frames.

RCV$SA - Procedure to receive A frames.
. RCV$UA - Procedure to receive UA frames.

SND$CMDR Procedure to send CMDR frames.

SND$DISC - Procedure to send DISC frames.

SND$DM - Procedure to send DM frames.

SND$I$FRAME - Procedure to send I Framres.

-SND$REj - Procedure to send REJ frames.

SND$RNR - Procedure to send RNR frames.

SND$RR - Procedure to send RR frames.

SND$S. - Procedure to send RR frames.

' SND$SABM - Procedure to send SABM frames.

SND$UA - Procedure to send UA frames.

A A



,

MODULE LAPBI:

DET$ADDR - Determine the destination of the packet from the attached
host.

DET$DEST$ONE - Determines the destination for frames in channel A.

DET$DEST$TWO - Determines the destination for frames in channel B.

DET$DEST$LN - Determines the local host destination for a frame going
to a local host.

READTAB - Reads the network to local table and displays to the console
output device.

TIME$DELAY$CHA - Time out mechanism for channel A.

TIME$DELAY$CHB - Time out mechanism for channel B.

MODULE PCKT:

ROUTE$PACKET - Moves a frame to the appropriate local receive table.

Link and Locate Batch File (netx25.csd)

CAUTION: Do not change address or other parameters in the
following batch file. They are highly hardware dependent on

the System III architecture and the ISIS operating system.

run link86 netx25.obj, lapbO.obj, lapbl.obj, pckt.obj, small.lib
run Ioc86 netx25.lnk ad(sm(code(7800h),const(a500h),data(c400h), &
stack(edOOh),memory(f300h),??seg(f200h)))

3.

""'

H 14



3. SBC 544 Validation

The purpose of this program is to operate th- network layer

software on the Intel SBC 544. All the constants, variables and

_. procedures from the network layer simulation are used in this program.

Constants

BRFO, BRFI, BRF2, BRF3 - Data rate factor, USART 0, 1, 2, and 3.

SIM$MASK - Set interrupt mask mask.

MASTER - Port number for Master Mode.

SLAVE - Port number for Slave Mode.

* 8251A USART Constants:

US$PO$CMD - SERIAL PORT 0 COMMAND
US$PO$STAT - SERIAL PORT 0 STATUS
US$PO$DATA - SERIAL PORT 0 DATA
US$PI$CMD - SERIAL PORT I COMMAND

US$Pl$STAT - SERIAL PORT 1 STATUS
US$PI$DATA - SERIAL PORT I DATA
US$P2$CMD - SERIAL PORT 2 COMMAND
US$P2$STAT - SERIAL PORT 2 STATUS
US$P2$DATA - SERIAL PORT 2 DATA

.- US$P3$CMD - SERIAL PORT 3 COMMAND

US$P3$STAT - SERIAL PORT 3 STATUS

US$P3$DATA - SERIAL PORT 3 DATA

US$MODE - SERIAL PORT MODE
US$COMMAND - SERIAL POPT COM4MAND
US$RESET$CMD - RESET USART
US$DTR$ON - RTSRXEDTRTXE
US$CRT$CMD - RTSEFRXE,DTRTXE
US$TTY$CMD - RTSERRXETXE
US$DTR$OFF - RTS,RXETXE

. US$RXRDY - RECIEVER READY

. US$TXE - TRANSMITTER EMPTY
US$TXRDY - TRANSMITTER READY
PARITY$MASK - MASK OFF PARITY BIT

8253 Interval Timer Constants:

ITI$CONT - INTERVAL TIMER I CONTROL
ITI$CNTRO - COUNTER 0, USART 0
ITI$CNTRI - COUNTER I, USART I

. . ,H -15

r o
'V.-



ITI$CNTR2 - COUNTER 2, USART 2

" IT2$CONT - INTERVAL TIMER 2 CONTROL
IT2$CNTRO - COUNTER 3, USART 3
IT2$CNTRl - COUNTER 4, CNTR5 OR SPLIT CLOCKS
IT2$CNTR2 - COUNTER 5, RST 7.5
USART$CNTR$M3 - DIVIDE BY N RATE CENERATOR, MODE 3, FOR USART CLK *

16, CLK = 1.2288 MHZ
B19200 - TIMER VALUE FOR 19.2 KBPS
B9600 - TIMER VALUE FOR 9600 BPS
B4800 - TIMER VALUE FOR 4800 BPS

B2400 - TIMER VALUE FOR 2400 BPS
B1200 - TIMER VALUE FOR 1200 BPS
B600 - TIMER VALUE FOR 600 BPS
B300 - TIMER VALUE FOR 300 BPS
BI50 - TIMER VALUE FOR 150 BPS
B1l0 - TIMER VALUE FOR 110 BPS

8155 Peripheral Interface Constants:

PI$PORTA - PORT A (OUTPUT)

PISPORTB - PORT B (INPUT)
PI$PORTC - PORT C (INPUT)
PI$STAT - PPI STATUS

PI$CMD - PPI COMMAND

PI$CNTR$LO - PPI COUNTER LO BYTE

PI$CNTR$HI - PPI COUNTER HI BYTE
PI$CNTR$LOCNT - PPI COUNTER TIME CONST
PI$CNTR$HICNT - PPI COUNTER TIME CONST
PI$INIT$CMDI - PPI INITIALIZATION COMMAND 1, A OUT, B & C IN, STOP

COUNT
PI$INIT$CMD2 - PPI INITIALIZATION COMMAND 2, A OUT, B & C IN, START

COUNT
PI$INIT$US$INTI - USART AND INT CONT RESET

PI$INIT$US$INT2 - USART AND INT CONT NORMAL
PI$PORTC$STAT - PORT C STATUS
PI$PORTC$CTL - PORT C CONTROL
PI$M2Ml - A-MODE 1, B-MODE 2

'.- PI$OBF - OUTPUT BUFFER READY

PI$IBF - INPUT BUFFER READY

5-

H1- 16

A ,
lV



8259 Interrupt Controller Constants:

IC$PORTA - PORT A
IC$PORTB - PORT B
IC$ICWI - INIT COMMAND WORD 1, (A7A6A5) = 010; EDGE TRIG; INTERVAL

= 4; SINGLE; NO ICW4
% IC$ICW2 - INIT COMMAND WORD 2, (A15-AO) = 0
-" IC$ICW3 - INIT COMMAND WORD 3, NO SLAVE IN IR

INIT$MASK - 'IO010100B', INITIAL INTERRUPT MASK, OCWI; RECEIVE INTR
ON, TRANSMIT INTR OFF

IC$EOI - END OF INTERRUPT CMD, OCW2, ROTATE (PRIORITY) ON NON-
SPECIFIC EOI

IC$OCW3$SMMS - SPECIAL MASK MODE SET
IC$OCW3$SMMR - SPECIAL MASK MODE RESET

Variables

BYTES$RECV$1, BYTES$RECV$2, BYTES$RECV$3, BYTES$RECV$4- Integer value
indicating how many bytes of a datagram have been received from a
host.

BYTES$SENT$1, BYTES$SENT$2, BYTES$SENT$3, BYTES$SENT$4 - Integer value
indicating how many bytes of a datagram have been sent to the host.

CHAR$I, CHAR$2, CHAR$3, CHAR$4 - Place holder for the received character
in the receive interrupt routine.

RXTA$1, RXTA$2, RXTA$3, RXTA$4 - Boolean flag to indicate if a transmit
acknowledge has been received.

RXTR$I, RXTR$2, RXTR$3, RXTR$4 - Boolean flag to indicate if a transmit
* request has been received.

SEND$1, SEND$2, SEND$3, SEND$4 - Boolean flag to indicate when a host

channel is sending data to its host.

TA - Transmit acknowledge character.

TR - Transmit request character.

TRTA$1, TRTA$2, TRTA$3, TRTA$4 - Boolean flags to indicate if the
transmit request/transmit acknowledge handshake is in use.

TXTA$1, TXTA$2, TXTA$3, TXTA$4 - Zoolean flag to indicate if a transmit
acknowledge was sent.

TXTR$1, TXTR$2, TXTR$3, TXTR$4 - Boolean flag to indicate if a transmit

*.~. request was sent.

H -17

S - %4. ..'; ';-..1'.' . ": '' - .- ",".:. -'''' '"" ,-'i "; .""-"'.,. -" ..' ':J i":'ia : <



Procedures

INITIALIZE$BOARD - Initialize the hardware integrated circuits on the
SBC 544.

R$MASK - External procedure to read the interrupt mask on the 8085
processor. Linked from PLM80.LIB.

S$MASK - External procedure to set the interrupt mask on the 8085
processor. Linked from PLM80.LIB.

Link and Locate Batch File

CAUTION: Do not change address or other parameters in the
following batch file. They are highly 544 hardware dependent

on the SBC 544 architecture and the network layer software.

LINK OP544.OBJPLM80.LIB TO OP544.LNK MAP
K. LOCATE OP544.LNK TO OP544 STACKSIZE(100H) ORDER(CODEDATA,&

STACKMEMORY) CODE(60H) DATA(OAOOOH)&

RESTARTO MAP PRINT(OP544.MP2)
TYPE OP544.MP2
OBJHEX OP544 TO OP544.HEX

mH

.4

."4

-J

Nq

H -18

4,. ,' ,. ,* , . .,,"'- .,_. " '''''. ',' . . .-. . o . •" ,,'. . ,." " , ."'' ' ," . . _ "'o" , " . '



4. ISIS Host Simulation (15:Appendix G)

The purpose of this program is to simulate a host system to the SBC

544 network layer software. All the constants, variables and procedures

from the network layer simulation are used in this program with the

exception that the console 1/0 now occurs through the either CP/M or

ISIS system calls and the actual character I/O to the UNID II is

*accomplished through calls to an I/O module linked to a this module.

The following constants, variables and procedures are additions to

the network layer simulation.

* Constants

ASCII(*) - Array used for converting hex to binary and binary to hex.

-- BDOS2 - BDOS call 2-console output (not used with ISHOST).

'7 BDOS9 - BDOS call 9-print string until *$'(not used with ISHOST).

"." :BDOSIO - BDOS CALL 10-read console input buffer (not used with ISHOST).

DATA$GRAM$SIZE - Number of bytes from host.

DATA$TABLE$SIZE - Number of bytes in datagram table.

!"IAX$COUNTRY$CODE - Indicates country codes in use.

MAX$NETWORK$CODE - Indicates UNIDs operational in the network.

MAX$RXTA$TRIES - Maximum number of TA wait tries.

PACKET$TABLE$SIZE - Number of bytes in packet table.

TCP$DATA$SIZE - TCP data size.\ V.,

THIS$COUNTRY$CODE - Country code where this UNID resides.

THIS$UNID$NBR- Unique address for this UNID in its country code.

4- 19

J. 
M* % -



Variables

RESULT - Error value returned by BDOS function calls.
BUFFER(128) - Line buffer used for console input.

CHAN$NUM - Channel number in which to load the test datagrams.

DEST$NET$CODE Destination network code for the test datagrams.

DEST$HOST$CODE - Destination host code for the test datagrams.

CHAN$PTR - Pointer to the current datagram.

RXTASTRIES - Number of received transmit acknowledge attempts.

TRANS$1$RDY - Indicator when the transmit software is ready to transmit
*a datagram.

RX01NE - Pointer to next available space to receive a datagram.

RXOINS - Pointer to next datagram to service.

RXO1SZ - Size of receive datagram buffer.

RXOITB - Receive buffer for datagrams.

TXOINE - Pointer to next available space to send a datagram.

TXO1NS - Pointer to next datagram to service

TXO1SZ - Size of receive datagram buffer.

TXOITB - Transmit buffer for datagrams.

DESTINATION - Destination of the datagram for program control.

DESTINATION$ADDRESS - Destination address of datagram from IP header.

SOURCE$ADDRESS - Source address of datagram from IP header.

0BYTES$RECV - Integer value indicating how many bytes of a datagram have

been received from a host.

BYTES$SENT - Integer value indicating how many bytes of a datagram have

been sent to the host.

CHAR - Place holder for the received character in the receive interrupt
routine.

RXTA - Boolean flag to indicate if a transmit acknowledge has been

received.

H -20

A:
S.2-



RXTR - Boolean flag to indicate if a transmit request has been received.

SEND - Boolean flag to indicate when a host channel is sending data to

its host.
TA - Transmit acknowledge character.

TR - Transmit request character.

TRTA - Boolean flags to indicate if the transmit request/transmit
acknowledge handshake is in use.

TXTA - Boolean flag to indicate if a transmit acknowledge was sent.

TXTR - Boolean flag to indicate if a transmit request was sent.

Procedures

BDOS - External call to the CP/M operating system to perform a BDOS

call (not used with ISHOST).

CHK$RXTA - Procedure to check the receive USART for a received transmit
acknowledge character.

CHK$RXTR - Procedure to check the receive USART for a received transmit

request character.

EXIT - External call to return to the CP/M or ISIS operating system.

INIT - Procedure to initialize the variables used in the program.

LD$TAB$HSKP - Procedure to adjust the pointers to the next available
datagram position in a buffer table.

LOAD - Procedure to interactively load datagrams into a buffer for
transmission to the UNID.

LOOP2 - Procedure to send and receive a datagram.

RCV$l - Procedure to read a datagram from the USART.

READ - Procedure to read a line of buffered input from the host console.
.4-

READ$LINE - Procedure to interactively read and interpret a line of text

.4 at the host console.

6READ$RXTAB - Procedure to read and display the contents of the receive
buffer table.

4.. READ$TXTAB - Procedure to read and display the contents of the transmit
buffer table.

,. H - 21

4%

6



SCLRCM - External call to clear the USART receive port.

SCMCHK - External call to check the USART receive port for a character.

SCMIN - External call to get a character from the USART.

SCMOUT - External call to send a character to the USART.

SINIT - External call to initialize the host USART port.

SNDSEQ - Procedure to send a message to the host console for display.

SRVC$TAB$HSKP - Procedure to adjust the pointers to the next to service
datagram in the buffer tables.

TRANS$l - Procedure to send a datagram to the USART.

MODULE INFORMATION

MODULE HOSTI.ASM - for use with the original CPMTMP.SRC code used on a
CP/M machine using an 8251/8251A USART (i.e. Intel
210 under CP/M).

MODULE HOST2.ASM - for use with ISIS operating system or any operating
system to which the host software has been transported.
The I/O ports use 8251/8251A USARTs.

MODLE HOST3.SRC - same as HOST2.ASM, ecept the soruce code is written
in PL/M.

Link and Locate Batch File

CAUTION: Do not change address or other parameters in the

following batch file. They are highly CP/M system dependent.

For linking ISHOST with HOST3.SRC:

LINK ISHOST.OBJ, HOST3.OBJ, PLMBO.LIB TO ISHOST.LNK MAP
LOCATE ISHOST.LNK TO ISHOST STACKSIZE(IOOH) ORDER(CODE,DATA,&
STACK,MEMORY) CODE(103H) MAP PRINT(ISHOST.MP2)

TYPE ISHOST.MP2
OBJHEX ISHOST TO ISHOST.HEX

For installing the the linked and located code on the SBC544 EPROM,

refer to Appendix D.

H- 22

........................................................



APPENDIX I

UNID II Software Structure charts

I. ISIS HOST: ISHOST.SRC - Programs the Intel 230 to act
as a test host for the UNID II .... ............... ... 1-2

2. OPERAITONAL SBC 544: OP544.SRC - Program resident on

the SBC 544 .......... ........................ ... 1-7

3. DATA LINK SIMULATION: NETX25.SRC, LAPBO.SRC, LAPBI.SRC,PCKT.SRC ........... .......................... . 1-15

S%
VI'

'C.,

,€.0

.4

.

'S

V...4, .. .. ,.._, . . ,,, ' ' " "'



LiJ

0

I- 0

U CL

.33

* 0u gov 0

Uw 0x Q

NI

00
kUb

(Ir

.

0
(JO __________

00

w

I-.-

*X xp,

$. a

1-



I~J~

-v
V

ni
w
4
3
I-
I'.

in 0
U)

I-
U)
0
r

I

* 0IA.
0

- 4I
U

6-

z
I-
U4.-
I-
In

w
4.

w

6-
K'a

* I a
- z

6-~
- a

'a'In e
w

* 4I

IA

4 U)
~~1 .~ 6-

a in
K 0

I

-4 in.4

-~ U

62
z

-p.M~ *

1-3

-4.

~ -. *1* ~V p .' ~-.1-..I.. 4-., 4 .4 - .4



'V.j

L a w'
1- - O

w'

j w~ &a W

Q 0 0

.4I.-

*L La.

-~1.0

C0~* 0-

-4 01-4



4LA
i~

0--

.4

Laii

.44

I"- tu 0-a .-

m hi

94 6.-

),U,

210x

o,

ca-

• to

..' . . .

U, , £

,,.

.-- U -

-. . -o , o- - • - -o



EE

(Ll-

4.u

;dF

.- .-

K CL

x
CL__ 0 wI La.

Inn

S-

j

1-6-



'.4o

; ;. 2. OPERAITONAL SBC 544: OP544.SRC - Program resident on
-.- the SBC 544

S

*,h V .

.-

V' ..

'a



<.J

01

zc

zz

Luj

-3

1-8-



1 7 0'

LA.

C)

cr

40-

(. a.
0

1-91



I (

4-..J

w

I-

SQ 0

I-I

-w -1



44.

AI.

w

-~LfA

I.-n

0-0.

A IL
ct x

W .

010 "a

00 00C

a.

ww
.4 0



rr

00
mA

SM

% %I



.~Lp.

I--

nJ

r w w
1- 00 9 a 0

m cc

a.

IA~

U
CE0*0

I- I.-
:p wa

0

I- Q

e- U)

Ix-

U U)

- p.

1-134



'N .'---,-

Ln

CC.

0 La

Li.C

Lit:
I-1.

CL

Ix

.11-



La

I. W- I

0 
IFO F

010

- W I-

z

Laa

La,

-4- -S 0 0

Z

acV

0-Ph~t 0LL4~0 b

041-15



-No

3. DATA LINK SIMULATION: NETX25.SRC, LAPBO.SRC, LAPBI.SRC,
PCKT.SRC.

1 16



09?

0.

hLi
-(x

-3

0

0

La 1.
10 z
S

ac -
5-

w C

I-

1-17

2 zl - ZJL



IL I

U 0 !
ra

w y

atIx

X L

Laa

Ix-

L..

w cz

-

*P-

1-1

aN



I.d

t-.

IIA.

0

-I

0.0 CI-

1-19



uj

I-

CL z

LA

1-2-



C.

co 

O -

0 w

400 V)z

-~ r-

LA.

C.)1-21



C L C L

.4 '-I

.41:14 
D Ccw .

- z -

* I z m r

II-

sc.
CD co0

N.h
W-

LP
9-

x

P- $-

Ia.

'1-2



im

cr

cc
cc1

00

UJU

LA

I-
X

1-2-



jru

103

L.J

4A-

4*r

1-24



0-. -.

U m

100 zQ

ar 4.1 a

-fin

-. 0--
LLI-

993

I-.

* 
I .-

*LAI
:3 

0

LL

1-2-



- I
:<:.b: .

-w W

X?.a.
COO.W '

-I-

* I-

-a- 0--

'L1

-.- ,

0-0. -
,W

at LIAJ

CL,

1-26

;I.-
I- * C.a. -.

0*



1.'

. L

- -

0o.

Gz

w L

zz

1-2

I W.



-J.

m

I.-° I-

2'
6-J

*< o.I -

a'. ._ _ _ __._,
4. 1<,

, , 'I - 2

9-



0*0&

4A Z. La W -
a w Z

a.a. L

II

9n cu I.-

Lu

IL

ZA.

I.-

kA Im 9 at

I-

LLA

a. Iow

I.,. IL

IA.

1. -9



C-0 0-0

CL
4

.fu I-

th 0

I-
C

0w
LL

1-3



Er

.1

w I--

~!

"14L LA
RI LA

I-

'

* 0-* o.

" " '' "",''o,...*,' '.."' -. -' ,, ,, % . % ...- , . - . '.- - ' .' .- .' .. '-b' " - ' '. - .".' .- ""• • ' '- " " -' -? "." . -. ' '" ' *L.Il



zo al
0 c ar a. a

CL o. Q. wf

0.-U 0-.0

z -

z a.

w C
I- c

LU 'A P 3 n L
Ld .0

I--

0

Em 9x

Ix

* --

ww

fl, c

w -

16

Q $-
''A

0 .0

1-32



0-W 0--

Q.
a wa
w N

O-W

I.-i

-

0w

1-33



-'44

4

4%N

.4,d

tb4

It-

1-34



.9n

CL w

0*0

mnj n

w 0;

w

La

1-3-

t- A



i,

0.

--- -

O 0,

1 I--

F - I-
'J 0

~U,

fuu

aL.

1LU

ri
X

Ld

1-36

0%



w

0
kn

0-0

asa

i-

LA.

CAA

-o-
fu

00

a..

ul

0-j x~ -0
r5-

1-3

-Y rY



p., .,

, z

CLJ

.4 L&
0

',0.--. 'A

22

00

ar IN-

w x

I.-

CLC

I-

1-38

---
S 

-



nfl

* aa

I--aU.
*0

atf

Ir-

* 00

A

-39-

Sip.r



w

J 0
•

* *

0

Jr

C-

eLL
-. -.

r:,"

,%.)

LL

1-4-

, ,...
% *z

I , I-4_



z

41--

zn I

I?1

4-0

zz cu .

0

ru
z- 0-4 -

wr

La 7 r

'A x
*l w
LaL

CA)

1-4-



[IWO

x tnQ x
CL j

ow N ~ ~ ~ I

ww

U I.-

I-A

z LaJ

1-42



I'

CL

u

40

j
w

00C

I.-

uC

* at

ru

1-43



co-*

A. I

I-I.-

ix
w

I

1-4-



; _ . . . .- . . . . .-~ . _ - . - . .. - , --l- , I o I i~- ~ - - -

L

I.

A9

rn,

10

LC

fu.p'-

1-45



aI

w In

4 0.

lzz
-J

CLLA

U

1~~ w

-Ij

LA-

1-4-



I.

0.. O

v

*" *

I-.N

II

- U uJ

II -

.U.

%, ,

"41"1

,.,.;.-

g;-5 1-4



AFIT/CE/ENC/85D-52

-,,,..p

67

..

DEVELOPMENT AND IMPLEMENTATION
OF THE

X.25 PROTOCOL
FOR THE

UNIVERSAL NETWORK INTERFACE DEVICE (UNID) II

VOL II OF II

THESIS

AFIT/GE/ENC/85D-52 Mark W. Weber
Captain USAF

~Approved for Public Release; Distribution Unlimited

'%. %

o,
4... ,;.-;',". .-. +,-. .. :,,.'', ,".:'.'- . . - ," ' - " 2 ' . .. ~....;.,-S...-.+?.,,..:, -.?.. " .- -:. ,-'..



AFIT/CE/ENC/85D-52

DEVELOPMENT AND IMPLEMENTATION

OF THE
X.25 PROTOCOL

FOR THE
UNIVERSAL NETWORK INGERFACE DEVICE (UNID) II

VOL II OF II

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree pf

Master of Science in Electrical Engineering

Mark W. Weber, BS EE

Captain, USAF

December 1985

Approved for Public Release; Distribution Unlimited

6



~U1

-- i

LALf

IQ.

11

0 LA!

taa

x w
La-
xw

N 1-48



UNCLASSIFIED ) /
J SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

" "" " , REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

"' -V'JNCLASSIFIED
dg. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/85D-52

6&. NAk4E OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
I'(l'applicabte)

School of Engineering AFIT/EN

' 6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

- Air Force Institute of Technology
Wright Patterson AFB, OH 45433

Be. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBO-. 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
* ORGANIZATION J(if applicable)

.* Rome Air Development Ctr

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Griffiss AFB NY 13441 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (include Security Clasificalion)

See Box 19
12. PERSONAL AUTHORIS)

See Box 19
TYPE OF REPORT 13b. TIME COVERED 14 AEOF REPORT (Yr., Mo., Day) 15. PAGE COUNT

MS Thesis -FROM TO i1985 December 498
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if necessary and identify by block number)

I FIELD GROUP SUB. GR. Local Area Networks, Network Interface, Protocols,
09 0 UNID, ISO Reference Model, X.25, X.121, TCP/IP

19. ABSTRACT (Continue on reverse it necessary and identify by block number)

Title: DEVELOPMENT AND IMPLEMENTATION OF THE X.25 PROTOCOL FOR THE
UNIVERSAL NETWORK INTERFACE DEVICE (UNID) II

Thesis Advisor: Dr. Gary B. Lamont ,: I
Author: Mark W. Weber, BS EE, Capt USAF -J . .i.M,

,'C'

1- ,.0 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

I. LASSIFIED/UNLIMITEO [ SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED
22&. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

I (Include .4 rea Code)

1 Dr. Gary Lamont 513-255-3576 AFIT/EN

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

r , ., , .. 4. 4 '.,,')'" .''.,'..,. - ,, - , , .: -. ,,. . . .. . .,.- . --. . .. , . . . .. - • ,., . - . - . . . - .



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

i

Block 19 (cont)

Abstract

This r eax-ch---ef--r describes the continued development of an improved
Universal Network Interface Device (UNID II). The UNID II's architecture was
based on a preliminary design project at the Air Force Institute of
Technology. The UNID II contains two main hardware modules; a local module
for the network layer software and a network module for the data link layer
software and physical layer interface. Each module is an independent single
board computer (SBC) residing on an Intel multibus chassis, complete with its
own memory (EPROM and RAM), serial link interfaces, and multibus interface.
The local module is an iSBC 544 and the network module is an iSBC 88/45. The
network layer software supports the CCITT X.25, datagram option, protocol and

the data link layer software supports the CCITT X.25 LAPB (HDLC) protocol.
This report documents the further implementation of the CCITT X.25 protocol in
the UNID II design.

UNCLASSIFIED
SECURITY CLASSIFICATION Or TW41S PAOl

A*:... . . . .-. . . . . . . . . . . . .



-:-t r'- 1w- T-1 M,.7% ir -T.77- W.- 7 -. 1 7- 7 1-.7 2. 7 7 M

or~


