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ABSTRACT

In a group consensus problem, there is a group with K ; 2 members who are jointly

responsible for the aggregation of their opinions. The group may or may not have

a predefined real decision problem. French /1983] alled the group consensus

problem with a predefined real decision problem a roup decision problem and the group con-

sensus problem without a real decision problem a ext-book problem. -

Suppose a group with K members are interested in forecasting demands for a commodity -- -

for a given time period. Production planning for this commodity depends on demands. Each-

group member may have his own opinion for demands in the form of probability distribution.

In this case, the group has a real decision problem in which they should determine the amount

of the commodity to be produced. Here the group consensus opinion is a probability distribu- -

lion for demands obtained from the group members' prior opinions for demands.-": '-

On the other hand, a group may simply be required to give their opinions for others to

use at some time in the future in as yet undefined circumstances. Here, there is no predefined

decision problem.4 For example, a group of meteorologists are required to give a single forecast

for weather without having any real decision problem. This is an example of the text-book

problem. Savage 9$4T1sugsested that the whole of statistical theory is directly or indirectly -.

aimed at the solution of a version of the text-book problem.

The objective of this paper is to give a unified approach for these two problems. In this

paper all thegroupmembersareasumedtobellayesians. 14C723I -- ,473
/L , .A '
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THE GROUP CONSENSUS PROBLEM

1.1. Introduction 0

In a group consensus problem, there is a group with K ;1 2 members who are jointly

responsible for the aggregation of their opinions. The group may or may not have

a predefined real decision problem. French [1983] called the group consensus - •

problem with a predefined real decision problem a group decision problem and the group con-

sensus problem without a real decision problem a Imzl-book problem.

Suppose a group with K members are interested in forecasting demands for a commodity .

for a given time period. Production planning for this commodity depends on demands. Each

group member may have his own opinion for demands in the form of probability distribution.

In this case, the group has a real decision problem in which they should determine the amount . .

of the commodity to be produced. Here the group consensus opinion is a probability distribu-

tion for demands obtained from the group members' prior opinions for demands.

On the other hand, a group may simply be required to give their opinions for others to

use at some time in the future in as yet undefined circumstances. Here, there is no predefined

decision problem. For example, a group of meteorologists are required to give a single forecast :

for weather without having any real decision problem. This is an example of the text-book"-

problem. Savage [19541 suggested that the whole of statistical theory is directly or indirectly

aimed at the solution of a version of the text.book problem.

The objective of this paper is to give a unified approach for these two problems. In this .-. .

paper all the group members are assumed to be layesians.

The Grouv Decislon Pr "b.e

Suppose the group is faced with a decision problem with an action space A and a state - -

space 0. The group members must jointly determine a decision or action from A. The out-

come of any action depends on the state of the world a .0. Each member provides his beliefs

W-. -,J . oj
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and preferences by a subjective probability for 0, p,, and utility function, v,, defined on A x 0,

respectively. Thus each member has a preference ordering ('for actions in A defined by

an (' a2  L E, v,(a1, 9) ( E, Y,(a2, 0). (1.1)

where E, denotes expectation with respect to the probability distribution p,. ,- *

Most approaches (e.g., Bacharach 119751) to this problem assume the existence of a group

preference ordering ( on A such that there is a probability distribution po and a utility func-

tion vG satisfying

a 2  ' E; vc(a , ) 4 EG vG(a2, 0),

where Ec denotes expectation with respect to pC, However, Arrow's Impossibility Theorem

(Arrow 119511, Kelly [1971) shows that there is no fair way of forming a group preference A ,.

ordering from the individual preference orderings alone. One interpretation of Arrow's Impos-

sibility Theorem is that, in general, there is no procedure for combining individual preference

orderings into a group preference ordering that does not explicitly address the question of

interpersonal comparison of preferences (Keeney and Raiffa 119761). Hence Arrow's Impossi-

bility Theorem requires that some constraints be given on the possible forms of the individual

preference orderings in order to obtain a group preference ordering which is consistent with the

seemingly innocuous Assumptions given by Arrow. (For these Assumptions, see Arrow [19511

or Keeney and Raiffa [19761). The restriction on the form of the individual preference order-

ing, however, does not give a fair rule for combining the individual orderings except in the cue

that either the members share the same utilities, or they share the same probabilities (Raifla

[19681, Bacharacb 11971). Here "fair' means that the group consensus opinion should satisfy

the Pareto Optimality Principle and the group consensus opinion can not be a single individual's

opinion. The Pareto Optimality Principle is satisfied if there exists no alternative decision that

some member would Aind better and none would find worse. -

lacharach 119751 considers the individual preference orderings derived from the expected

utilities as given by equation (W.). But be has arrived at an impossibility theorem, which says

..... 7
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that there is no fair way of combining the individual orderings when the individuals disagree on

their utilities. When the group members share the same utilities, he showed that the group
0

consensus probability is given by a linear opinion pool. But he needs a set of assumptions for

the form of individual preferences, which are too strong in some cases. One of these assump-

tions is 'column lineanrity, which says that, for any four actions a&, a,, a, a, in A , if

E,v,(a,() - -v(a-,) E,v,(a19O) - E,V.,) for all i, then ok < a, implies a.* 4Cr

Hence we can not consider Bacharach's result as a justification for the linear opinion pool in the

case where the individuals share the same utilities.

In a different way from Bacharach, de Finetti claimed that, in a group decision problem, a

collective action by several individuals, who agree on their evaluations of utility (by reducing it, -

for instance, to monetary terms) but not on those of the probabilities, must be optimal for a A
° ..- . - -•

hypothetical individual whose opinion is convexly comprised among those of the real individu-

als concerned (de Finetti 11972], p. 196). He suggested this conjecture by an example of a

simple hypothesis testing problem (de Finetti 11954]). But de Finetti's conjecture does not

imply that the group consensus opinion must be a convex combination of the group

members' opinions. Moreover, de Finetti's conjecture is not necessarily true when the .:-

group is not allowed to take a randomized action as will be seen in Example 1.3.

Let X be the set of all probability mass or density functions for 0. For any x c X, the ith ,- -

group member can determine an action a,'(x) a A which is optimal against x in i's opinion, .-

that is,

E,V, (), - max x(0),( a, ).

So for each x X , there corresponds a,(x) for/-1 .... K. Then we can transform the util-

Sty , on A x 0 to a utility function u, on X x9, which will be discussed in Section 1.2. In this

paper we will work with u, on X x 0 rather than Y, on A x O to determine the group con- . .5-.;

sensus opinion in a group decision problem. In other words, the group determines its con- . -.

sensus opinion from X based on the individual utilities u, on X x 0 and their prior opinions -

' ~~-.-.:-i
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for 9 under the Pareto Optimality Principle. This means that we transform the real decision

problem with action space A and state space 0 to a decision problem with decision space X

and state space 0. We will discuss this in more detail in Section 1. 2.W

The Text-Book Problem

-One approach to this problem is to introduce a supra decision maker and let him update

* his beliefs as in the expert problem (Keeney and Ruiffa 119761). However, his updated opinion

I is his subjective or personal probability. Hence there is no guarantee that the group members

will agree with his opinion. His opinion is only data for the individuals concerned.

An alternative way is to let each group member assume the role of the supra decision

maker and then report his updated opinion in turn. However, it does not solve the fundamen-

tal problem of combining their opinions, if, after several iterations of this process, the opinions

of the group have not yet converged (Genest and Zidek 119841).

I The approach suggested in this papr is to treat the text-book problem as a version of the

group decision problem. As mentioned before, the group decision problem can be considered

* as a decision problem with decision space X and state space 0 , where each group member has

I a utility function u, defined on X xz0. In the text-book problem, there are no actions to be

* chosen by the group. But we can consider a group consensus opinion as a group decision to be

determined by the group. It is assumed that each group member has a utility function u,

defined on X x20. For each x e X q Uu, r,) is group member i's utility for the group opinion

x e when the state of the world is 90 0. The utility u()can be interpreted as i's evalua- :

tion of probability distributions for G or i's psychological value for the probability distribution >

which is chosen as a group consensus opinion. Group members will be more satisfied if the

group consensus opinion gives high probability for the actual outcome 0.

* We can consider the text-book problem as a version of the group decision problem with

* decision space X and state space 0 . and individual utility functions u, defined on X x 0 . The

* only difference between the group decision problem and the text-book problem is that in a
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group decision problem u, is derived from Y, on A x @. but in a text-book problem u. is

evaluated directly by the ith group member. Hence the utilities u, in a group decision problem

are proper as will be seen in section 1.2,but the utilities u, in a text-book problem are not

necessarily proper.

1.2. Proper Utility Functions

This section is mainly concerned with the group decision problem. Suppose a group of K

members has a rea decision problem with acton space A and sate space 0. Each group

member has a utility function v, defined on A x 0. We will discuss the transformation of the

individual utility functions v, on A x 0 to the utility functions U, on X x 0. It will be shown -

that the transformed utility functions u, are proper.

Definition O

A utility function u, is proper if

.p,(0)U,(V, ) ; tp,(0) U,(x, ) (1.2)

for all x E X where p, is i's true opinion for 0.

u, is strict/y proper if the inequality in (L2) is strict for all x - p, in X.

The above definition says that if an individual has a proper utility function, then he will

announce his true opinion as his opinion for 0, that is, he is honest in announcing his opinion.

For each x e X , there corresponds an action a,(x) a A such that .,

x(O)VI OAx), 0)- max X(),( a, 0).

Notice that a,'(x) is a Bayes action against x c X for the ith group member. For convenience .

we assume that ar) is unique for each x e X. We will relax this assumption later.

. ,.

,6:.:-:'...

--- . .-. " '" '-. . .' .- .- "-." .'-. - -".. -.- '-.' -' - . ""- -" -' -' .' - -" ," -" " '" "'-: .- ., "."_" '.e"-:'- :-'.' '-:" .,:-,"3 "-: _._.-- :: :-> 2
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Now define a function u, on X x 0

U,(X, 0) , a,(x), #I for x iX and 9.10. (1.3)

* We can interpret u,(x,9) as i's utility when i uses distribution x a X and 9 occurs. Let p, X

* be i's true opinion forG0. Then i's expected utility for x a X is
4

U,(X) - ( U, (uX, 9)

- , p(0)V,t 0a(x), 91.

We can interpret U,(X) as i's expected utility when i takes an action which is optimal against x,

* while his true opinion is p,. Hence U, () is i's expected utility for x when i's true opinion is p,.

Thus we can use u, defined by WL) as i's utility function on X x 0. From now on, we can

assume that each member of the group has a utility function u, defined on X x 0.

* Lemma 1.1.: m, defined by equation 0l 3) is proper.

Suppose i's true opinion is p, a X. Then for any x e X

.U X) -I() , U. 9)

- P, (9) V,I OAX), 91

'4 max ~p(0)V, (0, 9)

- , p(0)v. V,(P), 91

This is true for any p, X X. Therefore u, is proper. 0

*Note that (j) u, is not necessarily strictly proper, (ii) if v'ls are equivalent up to linear

transformations, then u,'s are also equivalent, and GOii u, is strictly proper if and only if

aX-A is one to one.
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Definition

We say that two utility functions u and u' on X x 0 are equivalent if there exist real

numbers a > 0 and b such that u',) - au ( + b

Actually b could depend on 9 and the maximizing decisions would still be the same

Example 1.1.

t. .--.Let 0 - (0, I) and A- a :0 < a < I }where a i A. Any' distribution for 0is represented ..

by a real number x a 10, 11, where x is a probability for the event 10 ' I. So X - 10, fl.

Suppose V,(a, 9) - 7(-0)2, i.e., a negative of the quadratic loss, and i's true opinion

for 0 is p, e X. For any x X,

max (x v,(Ol)+(l-x)v,(a,O))- max {-x(a-l)-(l-x)a) -- x(l-x)~@*A

and a,°r) - x. Hence u,(x,)- xv, U, 0)--r-) for all xeX and E6. We can

easily check that u, is strictly proper. 0

Example 1.2.

Let -[0,1landA-fa :O<a < I ,whereatA isanestimateof . Let Xbe

the set of all probability densities for 9. Suppose v,(a, ) -(a--)P and i's true opinion for _

isp,eX. Then foranyx#X

max v,(a, O)x(9)dG - - mi f (4_0)2x(e)de
@4A

m-i- 7' - 2d,0 + E, # 2

- - n (a -E,)' + EO 2- E.2 6" -
a s- e

where E, denotes expectation with respect to x a X.

From (1) we can see that a(X) - E,@ for all x c X ; and hence

... ...- .-..-... ............... '.......... . .........-....... . . .,...,..... .-.... '...... ..- ,.,-. ,.. ,.,,,.,_,,
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u,(x, 9)- v,[o,(x), 9] - i,(E.0, 0)-- (G-E)'.

This utility function u, is proper, but not strictly proper, because any two probability densities

with the same means have the same utilities. "

* 4

De Finetti's conjecture (de Finetti [1972]), which was mentioned in Section 1.1, is true if

the transformed utility u, on X x 0 is strictly proper, which will be proved by Theorem 1.3 in

Section 1.4. However, his conjecture is not necessarily true if u, is not strictly proper. * 1

Example 1.3. . -

Consider a group with two members, say I and 2, who are faced with a real decision prob-. . *

fern with an action space A - (a 1, a 31 and a state space e - 10, 1). Suppose each group

member has same utility function v on A x e defined by Table I.I.

S-. - qi

state

0 I . .

0 n 3 0

action 0 20 3

Table 1.1. Utilities for action- state pairs, v(a, 0).

Since any distribution for 9 can be represented by a real number x 1 10, i], we have i

X - 10, 11, where x e X is a probability for the event (e - 0).

Let V(a Ix) be the expected utility of an action a e A with respect to x e X , that is, .

V(a 1x) - x v (o 0) + (I-x)v(a, I). In Figure 1.1 we plotted V(o, x) for i - , 2, 3 as __. _

functions of x X .
'I J, .," "

p4

9',. '-7.
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Figure I. 1

Suppose group member I's 12's] probability for the event (0 - 0) is IV. . Let (T(a) be

i's expected utility for an action a. Then

39-( )- .j-, -j,~ j ,......

and

So a3 is a Pareto optimal action, that is, there is no action a e A such that

S(,o) P ,(o,) for i- 1,2

with strict inequality for at least one i. However, Figure 1.1 indicates that for any x e X, a is

not optimal against x. Therefore, de Finetti's conjecture does not hold for this case. 0
x.5

5' Definitions

Gi) x f X is a Pareto optimal (or admissible) decision if there Is so y I X such that

a7(x 4 ;7 (y) for all i- 1, .. K with strict inequality for at least one i. .

• .a°% *
;".: ?*...,...

.S%.%1o
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(ii) x f X is a Bayes decision if there exists a A i A such that

K _K

U, W~~x max )u 5(),Z '?,'" "-...

K

where A- (AeRl:X-O and X, - I_

a-. .# •

Let us denote .aas a set of all the Pareto optimal decisions in X and g as a set of all

the Bayes decisions in X.i6it

In this paper we will prove the following conjectures:

(1) If the group members have equivalent and strictly proper utility functions, then the

Pareto optimal decision or the group consensus opinion is a convex combination of their

true opinions.

(2) If the group members have equivalent and proper (not necessarily strictly proper) utility MI

functions, then for any decision x e X there exists a convex combination of the group

members' true opinions, which is at least as good as x to each member of the group.

Co ijecture (1) says that xf X is Pareto optimal if and only if x is a convex combina-

tion of the group members' true opinions. Let C be the set of all convex combinations of the

group members' true opinions, i.e.,

K
C -( X X : X Ap, for AIA,

where p, is i's true opinion for 0. Conjecture (2) implies that for any x X there is an

x f C such that u1,(x) S , (x) for all i. This means that a linear opinion pool of the group

members' true opinions is a Pareto optimal decision or an optimal group consensus opinion . "

under the Pareto Optimality Principle if the group members have equivalent and proper util-

ity functions. Remember that the utilities of the group members defined by 1.3 in a group %

decision problem are proper as was shown by Lemma 1.1.

._. .- '~-

... _ .-. L. . ,.12.



1.3 Sngle Event Case

Suppose a group with K members are jointly responsible for combinir,, their probabilities

for an event A. As assumed before, each group member has a utility function u, on X x B,

where X is a space of probabilit) di tributions and 0 is a state space. In the single event case,

B - { A, A } and X - 101 i. Each x i X denotes a probability for A. Suppose i's true pro-

bability for A is p, and let ,dx) be i's expected utility for x c X. Then

u,(x) -p,u,(x, A) + 1- p,)u, x,A) Let x, be a maximizer of i',(x) over all x c X that

is, 0

U,(x,)- max .(X)

We assume that i announces his opinion for e as x,. Note that x, - p, if u, is proper. In this --

section we will show that, for the single event case, a linear opinion pool of the group -

members' announced opinions, x,, is an optimal group consensus opinion if either (i) the -

group members' utilities u, are proper or (ii) the group members' utilities u, are concave in x. -.

Here u, i - 1 . K need not be equivalent. If u, are proper for all i, then a linear opinion .-

pool of the group members' true opinions is an optimal group consensus opinion. If u, is -

improper, then x., - p,. However, a linear opinion pool of x,, I's announced opinion, for "

-1. . K is an optimal group consensus opinion if u, are concave in x for all i.

Lemma 1.2.

If u, is (strictly) proper, then MA(x) is (strictly) increasing for 0 4 x <p, and (strictly)

decreasing for p, < x (I, where p, is i's true opinion for A. (Savage [19711, p. 786).

Proof -

Let f(x) - u,(x, A) and fo(x) - u, U, X). Define -.

g(x,p) - p1 (x) + (- p)fO(x) for x, p C X.

Then g(x, p) is i's expected utility for x C X when his true probability is p. Let

7 *- . o

--..

• - -. -. . -. - -. - - - - - -. - .. - . % . , . . .. . . % % . -% . % " % % ,•° "
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0 < p, I x < x 2  1 and suppose uXL2) > u, (x1). Then, we have

P, (f X2 )-f 1 (x )+fo(x)-fo(X2) ] > fo(xI) - fo(xa). • "

If u, is proper, g(xl, x1 ) k 9(x 2 , xI) and g(x2, x2) >1 •(X, X2). However,

.44• (xa,x I) -•(x x ) - xJr 1 + ( 1-x1 ) fo (x 1 ) -XJ1 (x1 - ( 1-X )fo(x 2 ).:"

-x 11f (X )-fO(X )-f (Xr2)+fO(X2)1+[fO(XI)-fO(XA)

< (xl-p,)[fl(xl)-fo(xa)-f(x 2 )+fo(xc).,

By symmetry, we also have

£(X2, x2)-g(xa, xz) < (xC- p,) l(x)-fo(x)-fl(xl)+fo(xl)],

Hence, either •(XC, xI)< (x, xI) or 9(X2, x2 )< g(x, x2), which is a contradiction.

Therefore, U(x) ; ,(x).

In the same way we can show that ,(x) is increasing for 0 x <p,.

The proof for strictly proper utilities is similar. 0

Let us define a set C which consists of convex combinations of the group members' opin-

ions, i.e., " '
* *- ." .". !

K
C-{xIX x-Fkp, for ?eA).

Theorem 1.1. '

(i) Suppose u, is strictly proper for all i. Then x t X is admissible if and only if x a C.

(ii) Suppose u, is proper for all I. Then, for any x a X, there exists x*e C such that

,u()t ,(x) for all i - 1, .K .

Proof

Suppose u, is strictly proper for all i and let 0 x < min p,- Then

',,,-,()- p,[lu, (p,,A)-u, (x,A)l + (1-p,) [u,,,,,)-u, ,..,*)l

;) p,.[u,(p,,A)-u,(x,A)] + (1-p,.,. -,.)]

+, .. \

'*" % .%, , .°
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for all i - 1.. K So any x < mn p, is inadmissible.

Similarly x > max p, is inadmissible.

Let min p, H x < max p,. Then, for any y < x, U"(x) > Uy(,) for all i with p, > x .

and, for any y > x, ux) > u,(y) for all i with p, 4 x. Hence x is admissible. This com-

pletes the proof of (i).

I
The proof of (ii) is similar. 13

Example 1.4.

Define 0 A and X as in the Example ., that is,

0-101),A-10,11, and x-10,13.

Remember that a e A is an estimate of 0 and x * X is a probability for the event (9- 1

Consider a group of K members with the same utility functions v on A x 0 defined by ..-.

S(a,) -- (a- ) for a * A and 1.'

Then u, U, 9) x- -(- 0) 2 for all i. By Example 1.1, v,, are strictly proper. Suppose i's true

opinion for 0 is p, a X. Then i's expected utility for x a X is

;"(X) , p. w(X, 1) + (1- P,) Vu(X, 0)
-A, (x-l)2- (1-P,) -2- n lv.....t:... ..+. *

Suppose K -2 and p - 1/3 and p2 - 2/3. Then

HG) for any 0 < x < p 1, ;,(x) < ;,(p 1) for i -1, 2

and

(ii) for anyp 2 < x < 1,(x) < (pa) for i- 1, 2.

Therefore x X I is Pareto optimal if and only if p ( x 4 p. 0

"..-. 2

9 - _

- .. . " -
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If i's utility function u, is proper, then his expected utility u,(x) is maximized at .x - p,

if, however, u, is improper, then there exists x., a X such that

u, x,) ux) for all x a X and u(x,,) > u,(p,.

Here x,, is a maximizer of i's expected utility. Remember that x,, is i's announced opinion. 0

Lemma 1.3.

If v, is (strictly) concave in x, then ;,(x) is (strictly) increasing for 0 <x <x, and

(strictly) decreasing for x, < x (1, where x, is a maximizer of i's expected utility.

Proof

Suppose u, is concave and let x x, < (x2. Then X1 -kp + l-kOX2 for some

0 < I ~ and hence we have

Thus

UZt..W1) 4,LX) 117 UP) -,)(X2 ) 0. ~

Similarly, for any 0 < X X1<X,, U, (X1) Z(2)

The proof for the strict concave utility is similar. 0

Theorem 1.2.

* WI If u, is strictly concave in x for all i. then xrc X is admissible if and only if x -LX"

for some h i A.

GOii If u, is concave in x for all i, then, for any x c X , there exists a X t A such that

u,(Ah,x,,) Z ;:(W for all i.

The proof of Theorem L 2 is similar to the proof of Theorem 1.

p.. ... . . . *. . . ~ -.
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Theorem L2 indicates that the group consensus opinion is a convex combination of their

p announced opinions it the group members have concave utility functions. Here their

announced opinions are not necessarily their true opinions

We say that an individual with utility function u is conservativve if '

P xpCj for O<P<i and - <x,,<P, for I P

We might cornjeture that an individual with concave utility function is conservative. But this is

Dot true in general. Suppose u UA) r- and u (x.A) r---x~i Then v is concave in x.

However.

2 -pl for all O <p(1<

3 9So, if p 7w jth~en x, -F.j. Hence an individual with this utility function is not conservative.

(See Lindley 119821, p. 7, for further comments on square root utility.)e

Suppose u is concave in x and differentiable. Then an individual with utility function U is
%~

conservative if and only if 3.

xu(x, A) + (-x)-Lu(x, A) ;0 0 for 0~ ( 1

and .

-u(x, A) + (-x)-V(x, A) (C0 for <x 4 1.
Oax lox

Note that, if u is proper, then

-u U. A) +(0-x)--u U. X)-0 for all x aX.

However, if an individual is scored by a proper scoring rule for his opinions and his utility for

the scores is concave, then be is conservative.
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1.4. General Random Variable Case

In this section we will consider the group consensus problem with general state space e.
As before we define X as the set of all probability mass or density functions for 9. Also we s

% ..

assume that each group member has a utility function u, defined on X xO. Of course in a N

group decision problem v, is proper for all i.0-

In Section 1.4.1, we will show that a linear opinion pool is an optimal group consensus

opinion or a Pareto optimal decision in X if the group members' utility functions u, are

equivalent and proper.

However, if the group members disagree on their utilities and there does noot exists a -

group utility function, we can not have such a strong result as stated above. In Section 1.4. .2,

we will show that, if the group members' utility functions u, on X x 0 are concave in x, then

any Pareto optimal decision in X or group consensus opinion is a Bayes decision in X .

In some cases, the group members' utility functions on X x 0 may not be concave. But

in Section L 5 we show that a quadratic approximation of u, is concave in x. Therefore, if the

* ~group members' opinions are close enough and their utility functions v, are smooth, then we .-

* can assume that the group members' utilities are concave in x, at least approximately.

1.4.1. Equivalent and Proper Utility Functions

In Section 1.3, we have considered the group consensus problem in which a group is con-

cerned with a single event. Now we generalize the results of Section 1.3 to a general random

variable case. A group with K members are jointly responsible for Combining their opinions for

an unknown quantity 9 or a set of mutually disjoint and exhaustive events. Thus the state

* space S consists of the values which the unknown quantity G can take orS0 is the set of events

* ~under consideration. Each group member's opinion is given by a probability mas or density .v

function for 0. Also each group member has a utility function v, defined on X x S. Let p, i X

* be i's true opinion for 0. Then his expected utility for x c X is given by:
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~ I,. ()u,(, ~ if 0) is discrete.

(x)~ ~ ~ ~ ~i - i per(,ed s cotInuous.

In this section, we will prove the following conjectures:

(1) If the group members have equivalent and strictly proper utility functions on X x 0 , then

the Pareto optimal decision or the group consensus opinion is a convex combination of- -

their true opinions.

(2) If the group members have equivalent and proper (not necessarily proper) utility func-

tions on X x 60 then for any decision x e X there is a convex combination or the group9

members' opinions, which is at least as good as x for each group member.

Remember that the group members' utilities defined on X x 6 are always proper in the

group decision problem. First, we will show that the Pareto optimal decision or the optimal

group consensus opinion is a convex combination of the group members' tue opinions if the

group members have equivalent and strctly proper utility functions.

Theorem 1.3.

If the u, are equivalent and strictly proper, then xi X is admissible if and only if --.

X- A,p, for some X e A.

For the proof of the Theorem 1.3 we need following Definitions and Lemmas.

Definitons

Let S bea subset of RK.

s. S is admissible In S if there is no s5£ S such that s, iC s,'for all i with strict ine- -

quality holding for at least one i, where s, is ith component of s.

h (ii) s S is Dayes In S if there exists a XAe A such that .*.
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Z ks, max
Ids,.

Let us denote sr4 a set of a the admissible paints in S and a set of alH the Bayes

points in S Let

S - (s fRK there exists an x iX suchbthat s, i7u,(x) for alli )

Then the set of all Pareto optimal decisions in X and the set of all1 the Bayes decisions in X

defined in Section 1 .2 correspond to.~ and ak respectively. That is,dV- a( and 2 M ~.

Lemma 1.4.

Let So be the convex hull generated by S. Then

(ii) If s i So is Bayes in S', then s' s- where r 5 K; P)~ S for all j rl...

Ij ~> 0foralDljand I, -.

Proof: See Btackwell and Girshick [1954]. ".-

Under the same conditions of the Theorem 1. 3 we have the following Lemmas.

Lemma 1.5: as CS

Proof

* Suppose s * S* is Bayes against A f A. Then, by Lemma 1.4, si"m * s) where

r S K ;sUJ) Sfor all j -1, r tj >O0for all j and 2; - 1. Moreover, forceachj there

corresponds x~u) i X such that 5s(.i) - u,()) for all i. Since u, are eQuivalent, we can assume

that u, a u for all i, where u is a strictly proper utility function on X z 0. Let us define a

function g(x p) by
A'
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g(x, P) = ;6p(6)u(x, 6) for x and p in X.

Then g(x, p) is linear in p and g(X, P) < g(p, P) for all X 10 p. Moreover,

No%% we have

i- -I i-I

- ; Z , (XUp)

2; 11gW ,P

-Zg( ', Zkp,)

with equality holding if and only if xD) 2; A, )Pa for alj

K
Since so is Bayes against X, xU) ; A, )P, for all j. So

r r K _K

27 lisp) - 2; 11 ZZX~) 2 u(; ~ )-U(I

L and hence so i S. D0 -~

Lemmia 1.6: Let So (s e S: there isa A tA s.t.S s, Z.(,Z.,p,) for al i). Then 0. -So.

ftPooffa

Let s 0 1So. Then there exists an x eX such that xmZ?.Ap, for some A t A and

;aD- a(x) for a&D i. We have I -

Z; A, O X ;(X) -
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- Z(X 2gX,p,)

- max gy

because g~jy, 2;X~p,) is maximized at y 2;,,p, Thus

K

-max~ AgYsP'

- max Z tS 1

The last equality follows from Lemma L 5. Therefore s as.

Conversely, suppose s" as. then s* S by Lemma 1. 5. Hence there is an x ~X

such that s, - *~) for all i. However,

K K _

- \ 9(xelp,)

-g(x*, D'P')

with equality holding if and only if x AA ~,, Therefore s* i So. D

Lemma 1.7: So C A(

Proof

If sOtSo, then there is an x 4X such thatX0 - X ?,P, for some )A Awith s 0 - ad,(x 0)

for all i. Suppose s is inadmissible in So, then there is an s' 1,P) for some i with

k 0 and Z j I such that (i) s(J) iS for all j and (ii) s, S s,' for all i with holding at least

j.7n
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one strict inequalit). Since SO) i S for all j, for each SO ) there corresponds an xO I X sucb

that s, - a"-(xW) for all i. Hence
0

K K cc

x AS x, S - ,

- t' u,(x 1) .. .
* J .- -0

- j g, (x ),P,)
- j .g( 2 , , 2 )

J I . . , ,

< l A pg( 2;x,p,)

- g Xg( 2;xp,) -

Al 3 1
0.

Therefore, A, As7 S A, As," with holding equality if and only if xU) x0) for all j. This

a a

implies that s - so, which contradicts the assumption that st) is dominated by s*. Hence s'

is admissible in S. 0

Proof of Theorem 1.3:

By the previous Lemmas we have So. Hence a (- and Rs-

because a. C S and ~.C S. Thus aC So, that is, s iSis admissible in Sif and ony

eif s So Equivalently, x , X is admissible if and only if x X p, for some A i A. This

completes the proof of the theorem. 0

* . . * * - * ... o* *.. ..
*.* .-. *. .* ~ ~ ~ ~ ~ ~ ~ . . . . . . . . . . . . . . . .. . . . . . . . . . . .
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We can easily see that de Finetti's conjecture (de Finetti 1972]), which was mentioned

in Section 1 .3 is true if the group members' utilities u, are equivaleat and strictly proper.

Example 1.5.

Consider a text-book problem in which a group with K members are required to give a

probability density for a continuous random variable 0. Let p, be i's probability density for 6.

Suppose each group member i has same utility function u, on X x 0 for i 1 I. K, where

X is the set of all probability densities for 9. If u,(x, 9) - log x(O), then

u,(x - (x, O)p, (O)d9

Now we have

- fp(Iop(~e I
max u,(x) = max fp,() log x(6)dO

and hence u, is strictly proper.

Since u, is strictly concave, we can show that V 2, that is, x e X is an admissible. -

decision if and only if x is a Bayes decision. (See Theorem 1.6 For any ) e A, -L

K K

S,1u,(X)- X ), fp,(8)log x(O)d.
ai, a-i . ". " . "

- [] 1 xp,(6)] log I(o?.,p,(-)-d9

with equality holding if and only if x - Z ),p 1. -'

Therefore x i X is an admissible decision if and only if xe C. 0

Now is the time to prove the conjecture that for any decision x e X there is a convex

combination of the group members' true opinions, which is at least as good as x for each

z., .- ,-,
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member of the group. Let

K

C (x X:x = Xp, forsome A f A).

Theorem 1.4.

Suppose u, are equivalent and proper. Then for any x X, there exists an x" i C such

that (x*) > u,(x) for all i.

Proof

Without loss of generality we can assume that u, a u for all i, where u is strictly

proper. Let e > 0. We can find a strictly proper utility function s on X x 0 such that

Is(x,9) I <e/2 for alx X and9.S. .. 

This can be done by letting

s(x, 9)- -2x(e)+
M

for large M >0. Then s is strictly proper and bounded.

Now define a utility function u" by

X 0x9) - u(x, 9) + s(x, 9)

for all x and 9.

We can see that the utility function u is strictly proper. Now let

soo' (x i X x is admissible in X for u )

K
Then .e is complete, because u is bounded from above and the maximizers of W,u(x)

are always in X for all X A (see Berger 11980]). Therefore, for each xq X, there exists

- i C such that u(x) (x) for all i.

From the definition of u" we have

U,(X) + p,()s(x, 0): u (x) + , P,(9)s(X 9)

-/ .,.,..*..
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and hence

u,(x) . u(x) + I p,(O)[s(x', 9) - s(x, 9)]
e

u,(x ) + p, S() s(x,)-S(x,)I

<I + (x)

for all i -1. K.

Since i is arbitrary, we have the Theorem. 0

Example 1.6.

Consider a group decision problem as in the Example 1.2, where 0 - [0,1], A ( [0,1],

and X is the set of all probability densities for 9. Suppose there are K group members with

same utility functions v, on A x 0 such that v,(a, 0) - (a-_)2 for all a, 0, and i. Then the

induced utility function u, on X x 0 is u,(x, 9) -(O-E,0)2, which is proper but not strictly

proper. Here E, denotes expectation with respect to x. Let p, be i's opinion for -

• , I K. Then i's expected utility for x e X is

(x) - - E,(9-") 2

# - + 2E, 9,# - E, 9,

.. where E, denotes expectation with respect to p.

" Note that (x)-, if E.0 - E),.

Now we want to show that Theorem 1.4 is true for this example. Since u, is strictly

, concave in x, .V'- A. Let xt X \ C, where C is the set of all convex combinations of

P|. . .Without loss of generality we can assume that x is an admissible decision. Then

there is a A A such that

x - max I Z(y)

Letx- \,p(. Then s ), because u, is proper. Now

.A "(-E, 0 2E,9E.0 - E.9)

-........ W

............. ~ %.....,,,..%'.. ,.. ..-.. ,. .. .. ,,
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X, - 1E, 2 + 2Ee XE, - E,20

- -E,.' + 2E E 01,, - 2a. 
.

and

),, 1(-E,0, + 2Ee E," - E.,,) ,%

X, - E, e + 2E,.9S X, E,0 - ,. .

f' ~~- -. + 212.9- E2 -.-...9
2.- E- ,9.

-E + E ;.-

Hence EO - E.O. So ujx) = ,(x*) for all i. D

As a corollary to Theorem 1.4, if there exists a group utility function uo, which is

proper by Lemma 1.1, in a group decision problem, then the linear opinion pool is optimal ° ,

for the group. Here the group utility function u0 need not be a functional form of individual ".

utility functions u,, i- ..... K. Hence Arrow's Impossibility Theorem is not relevant here.

1.4.2. Concave Utility Functions
.1L

In Section 1.4 .1, we have shown that a linear opinion pool of the group members' opin-

ions is an optimal group consensus opinion or a Pareto optimal decision in X if the group "" "

members' utility functions on X x 0 are equivalent and proper. However, if the group

members disagree on their utility functions u, for i - 1, ... .K and there does not exist a

group utility function, we can not have such a strong result as Theorem 1. 46 In the rest of

this section we will show that, if the group members' utility functions u, on X x 0 are concave

in x, then any admissible (or Pareto optimal) decision in X is a Bayes decision in X . We will --. '

consider the quadratic approximation of the utility functions u, in the next section and show

that the quadratic approximation of u, is concave in x.

•;. .'.

•. ,,~.". ., .

. * - - . -o ... . . . .. .. . .. . . . . - *



26 . *..

Theorem 1.5.

If u,, i -1 .... K, are concave in x, then any admissible decision in X is a Bayes

* decision in X.

* Proof

Let s' S' be admissible in S*. Then, by Lemma 1.4, there is a A~ A such that s* is C

Bayes against A~ and s is represented by

-l 1 jZ,(XUJ)-

for some.......x(') and r -5 K_ Since u, are concave, we have

j.I-

a'K K
where X0 

- (J). However, 2; ).~s, 2t 2; xdU(x 0), because s is Bayes against X. There-
J-I i-1 1-1

fore s u, (x0 ) for aliiand hence s iS. This implies that afi. C g~

Let s i j4 and suppose s is inadmissible in So. Then there exists * f So such that

S, :5 S' for all i with holding at least one strict inequality. Since? * e there is a sequence

X~j)kX( 2),- in X such that s", - j (xV)) for all i. Then

j-i1

where x* - Z ) This means that s is dominated by (u,(x*), i 1,. .K) t S, which is a

*contradiction. Therefore x4(. s4. c a.- nS .It is easy to show that Rs. A S a ..

Hence C 4 0

%1:Z~,



Theorem 1.6.

|If u, 1I. K. are strictl) concave in x. then V.d.
o .*. - .

o

Proof

The proof of the Theorem depends on folloving Lemmas.

Under the same condition as Theorem 1.6, we have Lemma 1.8 and Lemma 1.9.

Lemma 1.1. .

If x and y in X are Bayes against X i A then u,(x) - u,'y) for all i with X, > 0 if and

only if x .

Proof ., .

Suppose x and y arc Bayes against A and w,(x) - u,-) for a&B i with X, > 0. Since u, . -.

are strictly concave, ifx o y, then for an) 0 < a <I,

,, jr (-)y I> au,(x) D (-o)u,(.) u,(x)

%,% %_%-

for all a with A, > 0. Hence

xit, ox ( (- a)>- > A,(x),

which is a contradiction. So x y.

The converse is trivial. D

Lemma 1.9: If x t X is Bayes, then x is admissible.

Proof

Suppose x is Bayes against , e A If X, > 0 for all i, then x is admissible. We can .'2 ."

assume that X, > 0 for i- 1. I and X, a 0 for i-l+ 1. K for somie I S I c K.

Suppose x is inadmissible , then there exists y , X such that

,ivy)= (x)for iaI. .;andu,Ly)>z,(x) fori-l.I .l K N

, ....................... --,.''-
r... .. .- .*.... .. .. .. €- .' _,- . -,".*.' ." . . - *,.'.. . .. . . . . .' . . . . .". . . ... .
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%itb at least one strict inequality holding. By Lemma 1.8, x -y, which contradicts the

assumption that x is dominated by y. Therefore x is admissible. 0

This completes the proof of Theorem 1.6. 0 % ,

By the above Theorems the determination of the group consensus opinion is equivalent. .

to the determination of the Bayes point in X or the determination of , e A, which can be

interpreted as the weights given to the group members, if the group members have concave

utility functions. S

Now we consider the relaxation of the assumption that a,*(x), which was defined in Sec-

tion 1.2, is unique for all i and x. In a group decision problem with action space A , state ' -

space 0 , and individual utility functions v, on A x ) , we defined an action a(x) by

x(O)v5 a,(x), 901 max .x(9)v•,a, 9)

for each x e X where X is the set of all probability mass or density functions for 0. We

assumed that a,(x) is unique for each x and defined a utility function u, on X x 0 by

u,(x#) - v, [4a(x), O] for xe X and 9e0.

Now suppose that a,"(x) is not necessarily unique for x i X. Let 8, be i's decision rule

such that i takes an action 8,(x) among the actions which are optima] against x. Then we

can define

u,(x, )- ,[,(x), ] for x eX and O" .

, It is easy to show that the utility function u, defined as above is proper for any such decision

rule A,. Furthermore, for any 8 -(1 . ....0, where 8, is i's decision rule, the results .,.

developed thus far are true. Therefore, if each group member chooses a decision rule 6,, then * .

we have the same results as the results obtained under the assumption of uniqueness of a@(x).

.~. .. *~ .* * ," * o*°.. ° %
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1.5. Quadratic Approximation

In Section 1.4, we have shown that (i) if the group members have equivalent and proper

utility functions, tben a Pareto optimal decision or a group consensus opinion is a linear opinion

pool, and 60i if tlb, group members' utilities are concave in x, then a Pareto optimal decision is

a Bayes decision. In some caises, however, the concavity assumption is too strong to be

satisfied for all group members. The objective of this section is to show that under certain con-

ditions each group member's utility function is nearly concave.

Suppose the state space e is finite and suppose that u is proper and differentiable three

times. Now consider an individual with utility function u and true opinion p i X. If 0 con-

sist~s of ni elements then p is an n x I vector. His expected utility for x aX is

mVW xmt () U , ).

The Taylor expansion of i; wr is:

PWx P(p') + Cr-p)'VE;(p) + -'-(x-p)'H(p)(x-p) + RUC),
2

where H(p) is a Hessian matrix of i;(x) at x -p and R Wr is the remainder term. Let

w(X) V (P) + Cr-P)'VW(P) + -1 (-rp)H(P)Cr-p).
2

Theorem 1.7.

Suppose the third partial derivatives of 9(xW are bounded Then v W) is concave in x if p

is a (relative) interior point of x.

Since u is proper. ilr)W is maximized at x -p and hence it should satisfy the Kuhn-

Tucker condition:

K 1a
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for all J-I . n for some real number ji. Since V(.x) 4 9(p) for all x c X ,we have

(x-P))7PP) + - + R(x) 4< 0.

We know that VW(p) - MI, where 1-(, .0..)'. So (x-p)'V7(p) -0. Thererore

(x-p)'H(p)(x-p) < -2R (x) for all x e X. (1)

For any x, y a X and 0 < k < 1,

v(Ax + (1-x)y) X,(x) + (1-X)v(x) ( (x-y)'H(p)(x-y) < 0. 0

So we should prove that (x-y)'H(p)(x-y) AC 0 for all x, y, X.

Let -p+-x-y), where max- <M < Then z 0 for allJ andLz,-1. So

z X. By (1)

(z-p)'H (P) (z-p) (-2R (z).

So

(x-y)'H(p)(x-y) - M2(z-p)'H(p)(z-p)

( -2M' R .

Now the remainder term R (z) is

R (z)- ! .E(,-p,) (za-p,) pQ+Gk(z-P)
, *z Z + -. '"_

for some 0 < 0 < 1. So

MR (z) - Tu.T.T(x'-y')(xp-'u)(xz--n ,.p.) .
6M ,. ,. k% .%*.

and hence M2R (z) - 0 as M - e.Therefore o

(x-y)'H(p)(x-y) < 0 for all x, ye X.

----------------- ,
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In Theorem 1.7. we assume that the third partial derivatives or i(xw are bounded But, if

p is a local maximum point of Y(x), then we can show that v~x) is concave without the

assumption of Theorem 1.7.

Corollary 1.

If p is a (relative) interior point of X and p is a local maximum point of v W, then v Wx

is concave in x.

Proof

For any x c X sufficiently close p, v (x) < '(P). So

I(DPI..A( + I!XP'()XP 4 0.
V2

Since VW(p) -#All (x-p)'Vidp)- 0 and hence (x-p)'H(p)(x-p) (0 for all X

sufficiently close to p.

For given x, y in X let z p + -(x-y) ,where max - <Mf<-. Then zEaX and
Af ~ jpi

(z-p)'H(p)Cz-p) <(0 for sufficiently large M. So

(X-y)'Ii(p)(X-y) -M
2(r-p)1H(.p)&Z-j) <0 A

for allX . 0

Thus far we have considered only the proper utility functions. However, we can obtain

the ame result under some smoothness assumptions for the improper utility functions Sup-

pose U W) is maximized at y 0v p. A Taylor expansion of ixW around y 0is given by:
r

R()-D )+(X-yo)'VT'(yo) XYY OX) + RX)

V(X) - (yo + (-OV;O + -1(x-YO'H(yo)(x-YO)-
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Corollary 2.

Suppose yo is a (relative) interior point of X Then %'(x is concave in x if Wi iE(x
0

Supote tG)i0 is qure ratic dylesi interiorpon of X t hen is concave nd GO i the () ...

Hessian matrix H(yo) need not be negative (semi)definite in order that Y(x) be concave.

Example 1.7.

Let

V) -xi -x2 +x? +3xX2 +x.

Then (x) is maximized at x - (- -) and the Hessian matrix at x - (- -) is JA2' 2 2' 2

HO- )...12 31.
2' 2 1321

Notice that H(- -) is not negative semi-definite. However,
2' 2

(X-Y)'H14, -()-y) -2Cx -y,) 0 02' 2

foralx,ya. So(x) is concave in X '

If the poup members' opinions are close enough and their utility functions are smooth,

we can approximate each member's expected utility u,(x) by a quadratic form:

,,)- (p,) + (x-p,)'V;'(P,) + 1 (x-p)'H,(p,)(x-p,), (1.4)
2S

where p, is i's true opinion. Here we assume that u is proper. But we can replace p, in equa-

tion (1 A) by a maximizer of the expected utility u, if u is not proper. The above Theorems say

that v,(x) is concave. Hence any Pareto optimal decision is a Bayes decision. 4,0

Since (x-p,)V7,p,)- 0 for all i and ;(p,) are constants, we can approximate u,(x) by

" * . " "
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-,(X (X -p)'H(P,) (X -P).

For A E A ,let •

1K

U (-,)'H, p) (x-p,).

Suppose x' e X maximizes VA(x) Then there is a real number aatisfying

VV&(x') - pi1.
9

This is a Kuhn-Tucker necessary condition for the optimality. Since Vj(x) is concave, it is also

wufficient condition for the optimality. Now we have

E,,H, () (X-p,) JAI
'-I

P.nd hence

a" - ! ~,(,p,) J-' I T ,Hp,)p, - plx 1 0

where A' - , I H,(p,) )-'H,(p,) . .

SupposeA'- (a', k,l-l.....n )fori-l....,K. Then

.Xj- f*ta'(r I.

a-.,t.• ;.I

- Lt T.°,, - p.T.°J" -

because TA-I and hence .- and ToJ' -0 for. .

ao .,.'.*
Sicj.;. I we have

J-1
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U ~ThusJ I0

K,
3 ".5

K~~ iai I forall 1.
.

wr - ao',, - fa I and ,, :

K Ki ==]. .= y_ a ,- + T. o4P,

K - n

- LZ a"ip,. (1.5)
I-Il-I

wherea -aj--n. I f l(- )and e a-I fora lJ-!. n.

We can partition the equation (1.5) by Decis

K Kx- Ea",, + EZa!p,,, ' ::

where on - 1 and (i) -a 0. Ifo for niJ are small compared wi th gru ben

x: = B ,.,p,.,,(1.6). -.-

where rul- a and ,n - 1 for all J. We call (1.6) a generalized linear opinion pool. (
may be negative.) "'

1.6. Determination of the Pareto Optimal Decision " ..-..

We have shown that (i) a Pareto optimal decision or a group consensus opinion is a linear",
Kopinion pool if the gr'oup members have equivalent and proper utility functions u,~ i-1. K ",'.%

defined on X x e and (ii) a Pareto optimal decision is a Bayes decision if the lgroup members'""" •

utilities are concave. Unfortunately, the results of the previous sections do no: provide a nor-

* mtive rule for chooing the Pareto optimal decision for the group. Now we want to discuss ' -"-"

.-. 4.* .... ... .. ....--
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the determination of the Pareto optimal decision, i.e., the group consensus opinion Hovever,

as Barlow, Mensing, and Smiriga (1984] pointed out, the determination of the Pareto op:ina!

decision is problem dependent. That is, there is no normative rule which can be reasonabl)

applied to all problems. Here we want to suggest two methods for determining the Pareto

optimal decision which, I think, are reasonable.

Method 1

Let L,r) - (x) - uj(x) for x i X ,where x., is a maximizer of i's expected utility,

u(x) - p,(9)u,(x, 0) Then L, ) is i's expected loss-in-utility when the group consensus

opinion is x, while his true opinion is p, (or his announced opinion is x,). Let

I,(x) - Lx - 1 x
11W - -:-

u, U,) (,)

Then I, ) is i's percentage expected loss-in-utility when the group consensus opinion is x e X.

Now suppose that the group agree to assign weight w, for the ith member of the group,

K
where w, 0 and w,- 1. In most cases w,- I/K for all i. Then the group may wish zo .

minimize

u,(x) :.."

If x" c X minimizes (1.7), then x' is Bayes against X - ,. K), where X, - ,
0 a U (XP)

K K

and a is a constant which makes 7, - I If u, are equivalent and proper, then x -

This method normalizes the group members' utilities by

U, 0) - u(,e

L0'- '- ,-. ~ ~ .~.. - ,. . . . . . . . . ... ".. . .

S**-~-*- a ~ ''.C ~ - - -'- -
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where a,, is i's normalized utility function. In this case

max 5(x) - I for all i.
sex I

Method 2 • 4

In this method we assume that the group members' utilities are proper, that is, each

group member's announced opinion is his true opinion. We introduce a supra decision maker

N who has the responsibility for determining the Pareto optimal decision or the group con- _O

aensus opinion. We assume that N does not have his own opinion about 0 and he want to

minimize his judgement about the group members' expertise or state of knowledge about 0.

Barlow, Mensing, and Smiriga 119841 called this assumption as a minimal judgement assump- , .

tion. Under this assumption, if N were take only one group member's advice, say ith member,

then he would simply adopt i's opinion p, as his decision. However, N needs to make some -
a.-

judgements about the group members because N could not take only one individual's opinion ,

in a group consensus problem. So N's problem is to make a group consensus opinion while ,

minimizing his judgements about the group members.

If N only takes one group member's advice, say i, then N would adopt i's utility function - .

u, and compute

Of course N's decision which maximizes (1.8) is p,. So, if N only takes i's opinion, then we

can consider u, as N's utility function. Now let us define N's utility function. Let uN(x,; )'

be N's utility for the consequence (x,O) when N only takes i's advice. Then

uI(x, 0; i) - AN(i)u,(x, 0) + BNi) S- - ..

where A (') > 0 and BNi) are coefficients messed by N to standardize i's utility function.

Now N's expected utility (with respect to 0) is

'a..'.- * Z
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auN(x; ) - A1()1 P,(G)Ux, 6) + BN()

- AN(i)u,(x) + Bt4(,). (.9)

Let w,, i-I...K be the weights of the group members given by N. Then N's expected

utility for x e X is

kN(X) I: EWAi(u ) NO T.WBN(I)

- .woA (),(x) + BN. (1.10)

N may wish w maximize (1.10). For this N should assess w, and AN(i) for i - 1. K.

Now consider a special case that the group members' utility functions are proper and

local. A utility function u is local ir Y (x, 9) - u x(s), s) tor all # e 9, that is, the utility for

the consequence Ux, 9) depends only upon the probability density of the true state and not

upon the density of the states which could have obtained but did not, Bernardo 119791 proved

that, for a continuous case, a proper and local utility function u must be of the form:

a (x, )- A log x (0) + B (),

where A is an arbitrary constant and B() is an arbitrary function of 9. For the discrete case,

see Mathai and Rathie 11975). Fl

If the group members' utility functions are proper and local, then N's utility is given by

i NX • i) - Ai(i)Zp,() log x(o) + BN(). (1.11) ' .

The utility UN(X; i) given by (1.11) is equivalent to

UN(x , i) - -AN(i)OLP, () log V ()lx(0)) + B , (1.12) .

where B(G) BNG) + AN(i)LW,l)logp,(). Let _

(x:y)- .x(0) log y (9)/x() for x, y inX. ...

I (x:y) is called the (directed) divergence of x from y and is a measure of discrepancy

(Mathai and Rathie 11975]). Kerridge 11961) interpreted I( x: y) as a measure of the error

mW



38

* made by the observer in estimating a probability density or mass as y 4 X *which is in fact

X a X . So UN(x; i) in equation (3.12) can be interpreted as an error made by N by taking

x i X while the true distribution is p, in N's opinion. Thus N's expected utility

K ~*
-i IEW,uN(X; 0)% .

-- AN(i)LP,(G) log fp,(#)/x(e) I + LBG

can be thought as an expected error made by N when he takes x i X as his opinion. Here W,

can be interpreted either as a probability that i's opinion p, is a true probability density/mass in

N's opinion, or as a probability that N takes i's opinion p, if N were allowed to take only one

group member's opinion.

Now return to the general case. Suppose N judges that w, - for i - 1,. K. This

means that N has no preferences among the group members' opinions prior to learning their

opinions. It also seems reasonable that N would be indifferent between the consequences

(p,, 0) for i - 1. .. K , where Ux, i) denotes a consequence that N takes i's advice alone but

forecats 9 using x. So N would normalize his utility by letting

UN(p,, Im for All i-1,.. - K. (1.13)

Suppose also that N judges

min UAP.,1) Upa(j.,,i 0O or al i-I K. (.4

This means that N is a&W indifferent between the consequences (p,,.) for i 1 . K.

For the alternative interpretation of the equations (1.13) and (1.14), suppose that each

group member is asked to evaluate the group members' opinions. Then ith group member

may evaluate the opinions by the expected utilities ;,(P.) for s -1..*K. We have '

max ZX5 (P,) and min ;(P,)-
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Thus the equations (113) and (1.14) imply that N standardizes the group members' evaluation

for the other group members' opinions by letting

max'(p,)- I and min (p,)-O fori- 1. K,
S•

where a, is i's standardized utility function. Let

M, - max u, ,) and Pn, - min U,(P,.).

Then from the equations (1.13) and (.14), we have

ANOi), + Dpi(i)- ...-

and

Aw(i)m, + BN(i) - 0

fori-1, .K. Hence

AN(i) - I/(M, - m,) and BN() - -m,/(M, - M,)

for i - 1,... ,K . N's expected utility for x a X is

MNIX) UwjAfr, ar(X) M.m[(11).,. M, - M, M, - M,,.-..-.
U.." 9.%'°

N would take an opinion which maximizes (1.15). If x* e X maximizes (1.15), then x" is a

Bayes decision against L - 0,1 ...... Xj) with ., - It(M, - m,).

If u, are proper and equivalent, then

-.. - , 

where a is a constant such that IA, - I

Note that, if u, are proper and local, then h1

I'.. ,2.-

M ,- maxl(p,;p,) fori - . K ,,-. ..- , ..: .-.. ,. •

where I (p,, p,) is a measure of the error made by using p, when p, b i's true distribution.

I (p,; p,) is also interpreted as a measure of the distance from ,, to p, as assessed by i. This

,%-
. .%

/ .',.,'/.:.-./ . '.. -.-'.."'-.-.' ..-...-...... -.. ... .. .-.... .... .- ... - . . •.. • ... • . . . . . . . . . 5'....-.'I t ,, '2 .' , , ., _ , , .' . , , , , . ., .- , , , -.-.- . -.-.-..-.-., -.-....-. ...' , -, .-., , .., , .. . , .', ." , ' . -.- -., -, . , - -,
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measure of distance is asymmetric, which seems reasonable. With this in mind we can inter-

pret (M, - m,) as a maximum distance from p, to other group members' opinions as evaluated

by i. N gives a weight X, to the ith group member proportional to the inverse of the maximum
distance assessed by i. Thus i receives small weight if the maximum distance from his opinion -""

to the other members' opinions is large.

1.7. Summary . .

We have considered a group consensus problem in which the group

members are jointly responsible for combining their opinions for an unknown quantity 0 0 .

If the group has a predefined real decision problem, we call it a group decision problem. If the

*t group members are simply required to give their opinions fot 9 without having any real decision

problem, we call it a text-book problem. In this thesis we treat the text-book problem as a ver-

sion of group decision problem. We assumed that each group member i has a utility function - -"
-p

u, defined on X x ,where X is the set of all probality mass or density functions for S.

In a group decision problem with action space A , state space *, and individual utility

functions Y, defined on A x 0, i's utility function u, on X x 0 is derived from , on A x 0 .- i

and it was shown that u, is proper.

In a text-book problem, there is no action space A and hence no individual utility func- -,

Lions v, on A x0 . But we assume that each group member i has a utility function u, on X x - . 4

, which is assessed by i.

We summarize the main results according to the state space: single event case and

general random variable case.

4.. .,4.e

.,..',;

Single Event Case -'

(1) If the group members' utility functions u, on X x 0 are strictly proper for all i, then a

Pareto optimal decision in X must be a convex combination of the group members' true

... ,4' % '4 ~ .4 '. .~- .' :.'..:V

.: ~ A '4_ _ _ ... .,-. 4,: -, ,.,.:...



opinions, i.e., a linear opinion pool of their true opinions

(2) If i, are proper for all , then a linear opinion pool of the group members' true opinions p "

is a P&reto optimal decision in X. Here a Pareto optimal decision may not be a convex %

combination of the group members' true opinions. However, for any decision x k-- _

there exists a convex combination of the group members' opinions which is at leas t as .

good as x for each member of the group, that is, there exists x e X such that x is a

convex combination of the group members' true opinions and U,) UW(x) for all i.

(3) If u, are strictly concave (not necessarily proper) in x for all i, then a Pareto optimal deci- 9 .

sion in X must be a linear opinion pool of the group members' announced opinions.

Here we assume that each group member i announces the opinion which maximizes his " " -

expected utility u, ) over all x a X. If u, is proper, i's announced opinion is his true

opinion.

(4) If u, are concave in x (not necessarily proper) for all i, then a linear opinion pool of the

group members' announced opinins is a Pareto optimal decision in X. Moreover, for any

decision x in X , there is a convex combination of the group members' announced opin-

ions which is at least as good as x for each member of the group.

, . O

General Random Variable Case

(I) If the group members have the equivalent and strictly proper utility functions u, on X x '"

o , then any Pareto optimal decision in X must be a linear opinion pool of the group

member' true opinions.

(2) If the group members have the equivalent and proper (not necessarily strictly proper) util- * "
_ 0-, '

ity functions u,, then linear opinion pool of the group members' true opinions is Pareto

optimal decision in X. Moreover, for any decision x in X. there is a convex combina-

tion of the group members' true opinions which is at least as good as x for each member

of the group. %" ,"% .,

• ... ,,
m'h

, O '% . .'m.
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(3) If u, are concave in x for all i, then Pareto optimal decision in X is Bayes decision in X .

(4) A quadratic approximation of it, is concave in x. If the group members' opinions are l

close enough and their utility functions u, are smooth, we can assume that u, is concave

in x for all i, at least approximately. Hence Pareto optimal decision in X is Bayes deci-

sion in X in most reasonable cases. We also discuss the form of Pareto optimal decisions .

for concave utility cases.

Finally, in Section 1.6, 1 suggested some methods of determining Pareto optimal decision. -

However, I do not claim that the methods suggested in this paper are normative rules which

can be applied to all problems. The determination of Pareto optimal decision is problem depen-

dent. -

j" ." J . *

-. 4, ...

. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
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