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> In a group consensus problem, there is a group with K 2 2 members who are jointly

responsible for the aggregation of their opinions. The group may or may not have

. . SN
a predefined real decision problem. French [1983)%called the group consensus .
problem with a predefined real decision problem a group decision problem and the group con-

sensus problem without a real decision problem a texr—book problem.

Suppose a group with K members are interested in forecasting demands for 8 commodity
for a given time period. Production planning for this commodity depends on demands. Eacl,
group member may have his own opinion for demands in the form of probability distribution.
In this case, the group has a real decision problem in which they should determine the amount
of the commodity to be produced. Here the group consensus opinion is 8 probability distribu-

tion for demands obuined from the group members'® prior opinions for demands. -

On the other hand, a group may simply be required to give their opinions for others to
use st some time in the future in as yet undefined circumstances. Here, there is no predefined
decision problem-> For example, 8 group of meteorologists are required 10 give & single forecast
for weather without having any real decision problem. This is an example of the text-book
problem. Savage HosaT suggested that the whole of statistical theory is directly or indirectly

aimed at the solution of a version of the text-book problem.

The obdjective of this paper is to give s unified approach for these two problems. In this

paper all the group members are assumed to be Bayesians. }Q&axx erelss —— 43
v

N

vt

TN NN TN



it Al Ad e 2l e A St S A A AN A A BAR A A A e

THE GROUP CONSENSUS PROBLEM

1.1. Introduction

In a group consensus problem, there is a group with K 2 2 members who are jointly
responsible for the aggregation of their opinions. The group may or may not have
i a predefined real decision problem. French [1983] called the group consensus .
problem with a predefined real decision problem a group decision problem and the group con-

sensus problem: without a real decision problem a text—book problem.

Suppose s group with K members are interested in forecasting demands for a commodity
for a given time period. Production planning for this commodity depends on demands. Eacl.
group member may have his own opinion for demands in the form of probability distribution.
In this case, the group bas a real decision problem in which they should determine the amount

of the commodity to be produced. Here the group consensus opinion is a probability distribu-

tion for demands obtained from the group members’ prior opinions for demands.

On the other hand, a group may simply be required to give their opinions for others to
use at some time in the future in as yet undefined circumswuances. Here, there is no predefined
decision problem. For example, a group of meteorologists are required to give a single forecast
for weather without having any real decision problem. This is an example of the text-book
problem. Savage [1954] suggested that the whole of statistical theory is directly or indirectly

aimed at the solution of a version of the text-book problem.

The objective of this paper is to give a unified approach for these two problems. In this

paper all the group members are assumed to be Bayesians.

The Group Decision Problem

Suppose the group is faced with a decision problem with an action space A and a state

space ©®. The group members must jointly determine a decision or action from A. The out-

come of any action depends on the state of the world # ¢ ®. Each member provides his beliefs




and preferences by s subjective probability for #, p,, and utility function, v,, definedon A x ©,

respectively. Thus esch member has a preference ordering €' for actions in A defined by
a, €' a; f E v(a,06 €E vi(a?0), (1.1

where E, denotes expectation with respect to the probability distribution p,.

. Most approaches (e.g., Bacharach [1975]) to this problem assume the existence of a group

preference ordering € © on A such that there is a probability distribution pg and a utility func-

tion vg satisfying
a) (odz &r Egvglay 9 < Eg Va(dz, )R

where Eg denotes expectation with respect to pg. However, Arrow's Impossibility Theorem
(Arrow [1951], Kelly [1978]) shows that there is no fair way of forming a group preference
ordering from the individua! preference orderings alone. One interpretation of Arrow’s Impos-

sidility Theorem is that, in general, there is no procedure for combining individual preference

orderings into a group preference ordering that does mot explicitly address the question of

N . QUEANAY

interpersonal comparison of preferences (Keeney and Raiffa {1976)). Hence Arrow's Impossi-
bility Theorem requires that some constraints be given on the possibie forms of the individual
preference orderings in order to obtain a group preference ordering which is consistent with the
seemingly innocuous Assumptions given by Arrow. (For these Assumptions, see Arrow [1951)
or Keeney and Raiffa [1976]). The restriction on the form of the individual preference order-
ing. however, does not give a fair rule for combining the individual orderings except in the case
that either the members share the same utilities, or they share the same probabilities (Raiffa _
[1968], Bacharach [1975]). Here “fair" means that the group consensus opinion should satisfy
the Pareto Optimality Principle and the group consensus opinion can not be a single individual's
opinion. The Pareto Optimality Principle is satisfied if there exists no alternative decision that

some member would find better and none would find worse.

J Bacharach [1975) considers the individual preference orderings derived from the expected

;'.j'- utilities as given by equstion (L1). But be has arrived at an impossibdility theorem, which says
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that there is no fair way of combining the individua! orderings when the individuals disagree on
their utilities. When the group members share the same utilities, he showed that the group

consensus probability is given by a linear opinion pool. But he needs a set of assumptions for

the form of individual preferences, which are too strong in some cases. One of these assump-
. tions is "column linearity”, which says that, for any four actions a,, @, @,, a, in A, if
| Env.(0,.0) — Ev,(a,,6) = E,v,(a,.8) = Ev,(a,,0) for all i, then o, € o, implies a, €Ca, .
Hence we can not consider Bacharach’s result as s justification for the linear opinion pool in the

case where the individuals share the same utilities.

In a different way from Bacharach, de Finetti claimed that, in a group decision problem, a

collective action by several individuals, who agree on their evaluations of utility (by reducing it,

.' for instance, to monetary terms) but not on those of the probabilities, must be optimal for a

hypothetical individual whose opinion is convexly comprised among those of the rea! individu-
als concerned (de Finetti [1972], p. 196). He suggested this conjecture by an example of a
‘ simple hypothesis testing problem (de Finetti {1954)). But de Finetti’s conjecture does not
' imply that the group consensus opinion must be a convex combination of the group

members’ opinions. Moreover, de Finetti’s conjecture is not necessarily true when the

'l group is not allowed to take a randomized action as will be seen in Example 1.3.

Let X be the set of all probability mass or density functions for . For any x ¢ X , the ith
5 group member can determine an action a,'(x) ¢ A which is optimal against x in i's opinion, )
; that is,

Evila'(x), 0 = max ; x(0v(a,0).

’. So for each x ¢ X , there corresponds a,(x) for i=1, ... ,K. Then we can transform the util-
ity v, on A x @ 10 & utility function v, on X x ®, which will be discussed in Section 1.2. In this
paper we will work with &, on X x @ rather than v, on A x @ to determine the group con-
Ve

» sensus opinion in s group decision problem. In other words, the group determines its con-

sensus opinion from X based on the individua) utilities v, on X x @ and their prior opinions

''''''''
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for & under the Pareto Optimality Principle. This means that we transform the real decision
problem with action space A and state space ® 1o a decision problem with decision space X

and state space ® . We will discuss this in more detail in Section 1.2.

The Text-Book Problem

One approach to this problem is to introduce a supra decision maker and let him update
his beliefs as in the expert problem (Keeney and Raiffa [1976]). However, his updated opinion
is his subjective or personal probability. Hence there is no guarantee that the group members

will agree with his opinion. His opinion is only data for the individuals concerned.

An alternative way is to let each group member assume the role of the supra decision
maker and then report his updated opinion in turn. However, it does not solve the fundamen-
tal problem of combining their opinions, if, after several iterations of this process, the opinions

of the group have not yet converged (Genest and Zidek [1984)).

The approach suggested in this mper is to treat the text-book problem as a version of the
group decision problem. As mentioned before, the group decision problem can be considered
as a decision problem with decision space X and state space @ , where each group member has
a utility function u, defined on X x @ . In the text-book problem, there are no actions to be
chosen by the group. But we can consider a group consensus opinion as a group decision to be
determined by the group. It is assumed that each group member has a utility function w,
defined on X x @ . For each x ¢ X , 4,(x, 0) is group member i's utility for the group opinion
x ¢ X when the state of the world is # ¢« @ . The utility w,(-,-) can be interpreted as i's evalua-
tion of probability distributions for @ or i’s psychological value for the probability distribution
which is chosen as a group consensus opinion. Group members will be more satisfied if the

group consensus opinion gives high probability for the actual outcome 0.

We can consider the text-book problem as a version of the group decision problem with
decision space X and state space @ , and individual utility functions v, defined on X x ® . The

only difference between the group decision problem and the text-book problem is that in a

.
.
O
-
.
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group decision problem wu, is derived from v, on A x @ , but in a text-book problem v s

evaluated directly by the ith group member. Hence the utilities u, in 8 group decision problem
: are proper as will be seen in section 1.2, but the utilities u, in a text-book problem are not

pnecessarily proper.

1.2. Proper Utility Functions

This section is mainly concerned with the group decision problem. Suppose a group of K
members has a real decision problem with action space A and state space ©. Each group
member has a utility function v, defined on A x @. We will discuss the transformation of the
individual utility functions v, on A x @ to the utility functions », on X x @ . It wil! be shown

that the transformed utility functions v, are proper.

" Definition

A utility function w, is proper if

Yr0)wu@,0 23 p06)ux,0 (1.2)
’ 0

for all x ¢ X , where p, is i’s true opinion for 6.

u, is srrictly proper if the inequality in (12) is strict forall x = p, in X .

The above definition says that if an individua! has a proper utility function, then he will

announce his true opinion as his opinion for 8, that is, he is honest in announcing his opinion.

For each x ¢ X , there corresponds an action @, (x) ¢ A such ihat

T xO)v16'x), 0 ) =mx F x(6)v,(a,0.
’ S o

Notice that a,'(x) is a Bayes action against x ¢ X for the ith group member. For convenience

we assume that a,'(x) is unique for each x ¢ X . We will relax this assumption lster.




Now define s functionw, on X x 0 :
u(x,0 =vla’(x), 0 for xeX and 0 ¢®©. (1.3)
We can interpret u,(x,8) as i's utility when i uses distribution x € X and 6 occurs. Let p, ¢ X
be i's true opinion for 8. Then i's expected utility for x ¢ X is

u,(x) =3 p(®)u,(x, 0)
’

=3 p.(O)v1a'kx), 6l
[

We can interpret u,(x) as i's expected utility when / takes an action which is optimal against x,

while his true opinion is p,. Hence u, (x) is i's expected utility for x when i’s true opinion is p..

Thus we can use w, defined by (L3) as i's utility function on X x ®. From now on, we can

assume that each member of the group has a utility function u, defined on X x ©.

Lemms 1.1.: wu, defined by equation (1. 3) is proper.
Proof

Suppose i's true opinion is p, ¢ X . Then for any x ¢ X

w(x) =3 p(Ou,lx,

[}

-3 p.(6)v14(x), 6]
(4

< max ¥ p,(8)v,(a, 0)
seA N

=3 p.0)v1a/(), 0)
0

- 2 P,(O)":@u .)
[

-u,0).

This is true for any p, €« X . Therefore u, is proper. o

Note that (i) w, is not necessarily strictly proper, (ii) if v,'s are equivalent up to linear
transformations, then u,'s are also equivalent, and (iii) w, is strictly proper if and only if

a’ : X — A isone to one.
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b We say that two utility functions ¥ and ¥ on X x @ are equivalent if thete exist real Caae

pumbers @ > 0 and b such that w(-,*) = au(-,’) + b

Actually b could depend on 8 and the maximizing decisions would still be the same

Example 1.1

Let® = (0, 1}and A={a:0€ a € 1), where a ¢ A. Any distribution for @ is represented - -

by a real number x « {0, 1], where x is & probability for the event {6 = 1 ). So X = {0, 1].

Suppose v,(a, 8) = —(a—6)? iec., a pegative of the quadratic loss, and i's true opinion . aee e

for6isp, e X. Forany x ¢ X,

max {x v,(a,1)+(1-x)v,(a,0)) = max (-x(@-1)~(1-x)a¥ = —x(1-x)

and a,(x) = x. Hence u,(x,0) = v,(x, 6) = =(x—0)? for all xeX and 6§ ¢®. We can
easily check that u, is strictly proper. D
¥

Example 1.2,

Let®=[0,1]and A={a:0€ a € 1), where a ¢ A is an estimate of 6. Let X be
the set of all probability densities for 6. Suppose v,(a, 8) = —(a—0)? and i's true opinion for #

isp,eX. Thenforany x ¢ X

max [ v,(a, 0)x(6)d6 = - min [ (a-0)*x(e)ds

--—1:1i2!a’—2d£,0+£,0’} e

= - min ( (a-E,0)*+ E,0°-E? ), m

where E, denotes expectation with respect to x ¢ X .

From (1) we can see that . (x) = E,# for all x ¢ X ; and hence

................
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ulx,0) =vla’(x), 0] = v (E8,6) =— (§—E,0)%. ‘;:

o - ,‘,

This utility function w, is proper, but not strictly proper, because any two probability densities

LS}

with the same means have the same utilities. D

¢

S
dtalan e

De Finetti's conjecture (de Finetti [1972]), which was mentioned in Section 1.1, is true if

the transformed utility », on X x @ is strictly proper, which will be proved by Theorem 1.3 in

. Section 1. 4. However, his conjecture is not necessarily true if u, is not strictly proper.
<
[
Example 1.3,
? Consider a group with two members, say 1 and 2, who are faced with a real decision prob-
L‘.
- lem with an action space A = [a), a2 a3) and a state space ® = [0, 1). Suppose each group

member has same utility function v on A x @ defined by Table 1.1.

% state

. 0 1
a; | 3 0

action a; | O 3

N . a; |1 1

Table 1.1. Utilities for action- state pairs, v(a, 0).

Since any distribution for @ can be represented by a real number x e [0, 1], we have

¥ X = [0, 1], where x ¢ X is a probability for the event {@ = 0). .
> o, &,
-. “ -- \(..
“ Let v(alx) be the expected utility of an action @ ¢ A with respect to x ¢ X, that is, ROCANAC
- LG
» palaka>
¥(alx) = x v(a,0) + (1-x)v(a, 1). In Figurel.l we plotied ¥(a,Ix) for i = 1. 2, 3 as 5:‘-"“‘":!
AR ‘;vs D
functions of x ¢ X . ;_:“-:‘:\ o)




e a s s Y SIS MR PR LN AR R AL SRS

1

AAANA
ST LN

%
P

Figure 1.1

Suppose group member 1's [2's) probability for the event {6 = 0} is -:— [%). Let v,(a) be

i's expected utility for an action a. Then

TCOEL T CPES TP ES

and
He) =2 ey =3, ey -1,

So a3 is s Pareto optimal action, that is, there is 0o action @ ¢ A such that
v.(a) 3 v,(ap for i=1.2

with strict inequality for at least one /. However, Figure 1.1 indicates that for any x ¢ X , @, is

pot optima! against x. Therefore, de Finetti's conjecture does not hold for this case. D

s e
R l‘ l.

e
)
2 &

Definitions

£,
<
)

-+

() xeX is a Pareto optmal (or admissible) decision if there is oo y ¢« X such that

ik 72
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u(x) € v,(y) forallie=1,...,K with strict inequality for at least one . NN
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(ii) x ¢« X is a Bayes decision if there exists a A ¢ A such that

_ K

x —
';l Au(x) = I!’!&X '.21 Ay, (),

K
where A= (Ae¢R¥: 220 and I )\ =1).

Let us denote oas a set of all the Pareto optimal decisions in X and &£ as a set of all

the Bayes decisions in X .

In this paper we will prove the following conjectures:

(1) 1If the group members have equivalent and strictly proper utility functions, then the

Pareto optimal decision or the group consensus opinion is a convex combination of their {ff»:::-ﬁi -
- Sy
true opinions. AR
e
D gt ‘I"
(2) If the group members have equivalent and proper (not necessarily strictly proper) utility e

functions, then for any decision x « X there exists a convex combipation of the group

members® true opinions, which is at least as good as x to each member of the group.

Cojecture (1) says that x ¢ X is Pareto optimal if and only if x is a convex combina-
tion of the group members' true opinions. Let C »be the set of all convex combinations of the
group members’ true opinions, i.e.,

X
C=(xeX:x=Ap for Aed),
il

where p, is i’s true opinion for 8. Conjecture (2) implies that for any x ¢ X there is an
x° ¢ C such that i,(x) S u,(x") for all i. This means that a linear opinion pool of the group
members’ true opinions is a Pareto optimal decision or an optimal group consensus opinion
under the Pareto Optimality Principle if the group members have equivalent and proper util-
ity functions. Remember that the utilities of the group members defined by 1.3 in a group

decision problem are proper as was shown by Lemma 1.1,

PR SO
S et

L
-
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1.3 Single Event Case A
Suppose s group with K members are jointly responsible for combinirg their probabilities ' -

for an event A. As assumed before, each group member has a utility function ¥, on X x @,
where X is a space of probability di tributions and @ is a state space. In the single event case,

® = (A, A)and X = [0, 1]). Each x ¢ X denotes a probadility for A. Suppose i's true pro-

bability for A is p, and let w(x) be i's expected utility for x ¢ X. Then

u,(x) =pulx,A) + (- p)u(x,A). Let x, be a maximizer of u,(x) over all x € X , that

is‘ —
u,(x,) = max u,(x) .
' xeX

We assume that / announces his opinion for 6 as x,. Note that x, = p, if v, is proper. In this
section we will show that, for the single event case, a linear opinion pool of the group
members’ announced opinions, x,, is an optima! group consensus opinion if either (i) the
group members’ utilities u, are proper or (ii) the group members® utilities w, are concave in x.
Here u,, i = 1, ... ,K need not be equivalent. If w, are proper for all i, then a linear opinion

pool of the group members’ frue opinions is an optimal group consensus opinion. If v, is

improper, then x, * p,. However, a linear opinion pool of x,, /’s announced opinion, for

i=1,...,K is sn optimal group consensus opinion if ¥, are concave in x for all /.

Lemma 1.2.

If u, is (strictly) proper, then w,(x) is (strictly) increasing for 0 € x €p, and (strictly)

decreasing for p, € x €1, where p, is i's true opinion for A. (Savage [1971], p. 786).
Proof

Let £,(x) = u,(x, A) and fo(x) = 4,(x, A). Define

g(x.p) = pfilx) + (= p)folx) forx, p ¢ X.

Then g(x, p) is i's expected utility for x ¢ X when his true probability is p. Let
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0<p < x; < x;<1andsuppose u,(x;) > & (x;). Then, we have

PLL )11 ) +folx)=Folx) 1 > folx)) = folx).
If u, is proper, g(x;, x)) 2 g(x; x;) and g(xj x) 2 g(xy, x3). However,

g x hxl)"l(xz‘xl) - X|f|(X;)+(1—X|)fo(x1)-XJ|(X1)-(1—X|)fo(X1)
= ), [/1x)=Solx ) =S 1)+ ol D]+ folx ) =S o(x D)
< G=p) U 1xD=Solx )=/ 1x D +fox D).

By symmetry, we also have
80 x)-glxy, x) < & pI /1D —folxd) =S 1(x ) +/o(x))].
Hence, either glx;, x;) < glxy, xp) or glx; x)) < glx), x), which is a contradiction.
Therefore, u,(x)) 3 u,(x)).
In the same way we can show that v, (x) is increasing for 0 € x €p,.

The proof for strictly proper utilities is similar. O

Let us define a set C which consists of convex combinations of the group members' opin-

ions, i.e.,

x
C={xeX:x=3 ap for AeA)

Theorem 1.1.

(i) Suppose u, is strictly proper for all i. Then x ¢ X is admissible if and only if x ¢ C.

(i) Suppose w, is proper for all /. Then, for any x ¢ X, there exists x ¢ C such that

(") 2 u(x)foralli=1,... K.
Proof
Suppose u, is strictly proper forall i andlet0 € x < minp, = », Then

4, (,)-u,(x) = p,{u,(p,, A)-u, (x,A)] + (1=p)u,(p., A)-u, (x A))
2 2. u,0,,A)-4,x,A)] + (1=-p ) v, (p, . A)~u, (x,A))
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= p. g P A+ (1=pJu, (o, A)-p, b, (x ,A)+(1-p, Ju, (x A))

- > 0.
l foralli=1,...,K. Soany x < min p, is inadmissible.
' '
::: Similarly x > max p, is inadmissible.
N
o . -— -
Let min p, € x € max p,. Then, for any y < x, u,{x) > u,(y) for all i with p, 2 x
e - -
. and, for any y > x, 4,(x) > u,(y) for all i with p, € x. Hence x is admissible. This com-
:'.'"' pletes the proof of (i).

The proof of (ii) is similar. D

Example 1.4.

Define ® , A, and X as in the Example 1.1, that is,
@={0,1}), A=10,1], and X=10,1).

Remember that @ ¢ A is an estimate of 6 and x ¢ X is a probability for the event {6 =1 }.

Consider a group of K members with the same utility functions v on A x @ defined by
» v(ag,0) =—(a—-6)? foraeA and 6¢9.

Then u,(x, 6) = —(x— #)? for all i. By Example 1.1, u, are strictly proper. Suppose i's true

opinion for # is p, ¢« X . Then i's expected utility for x ¢ X is

u,(x)=p ulx,1)+ 0=p)ulx,0)
- —p, (x-1)2 = (1-p) x?

Suppose K = 2 and p; = 1/3 and p, = 2/3. Then
G) forany0€ x < p,, u,(x) <u(p)fori=1,2
and

Gi) foranyps;<x €1 ux)<ulp)fori=1,2

Therefore x ¢ X is Pareto optimal ifandonlyif )y € x € p2. D

- - - 4 . Cwl Wt AR LGRS TR GRS T N .
e e ee e e et amatan e AR ol ORI A RN N AR N e LN
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If +°s utility function u, is proper, then his expected utility u,(x) is maximized at x = p,.

If, bowever, u, is improper, then there exists x, « X such that

v.(x,) 2 u,(x) forallx € X and u,(x,) > u,(p,).

Here x, is 8 maximizer of i’s expected utility. Remember that x, is /'s announced opinion.

Lemma 1.3.

If v, is (strictly) concave in x, then ,(x) is (strictly) increasing for 0 <x € x, and
(strictly) decreasing for x, € x €1, where x, is a maximizer of i’s expected utility.
Proof

Suppose u, is concave and let x, € x; € x; Then x;=A\x, + (1-A)x; for some

0 € A £ and hence we have

2, (x) = &, Ox,+(1-0)x)) 2 AL (x,) + (-2, (x).
Thus

Gl - 60 3 AlG ) - ) ] 3 0.

Similarly, forany 0 € x, € x, € x,, u,(x) 3> u (x3).

The proof for the strict concave utility is similar. O

Theorem 1.2,

X
G) If u, is strictly concave in x for all i, then x ¢ X is admissible if and only if x = A x,

1

for some A ¢ A.

(ii) U u, is concave in x for all /i, then, for any x ¢ X, there exists a A ¢ A such that

-X -
u,(IAr.x,) 2 u(x) foralli.

j=]

The proof of Theorem L 2 is similar to the proof of Theorem 1.1,
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Theorem 1.2 indicates that the group consensus opinion is a convex combination of their
announced opinions if the group members have concave utility functions. Here their

announced opinions are not necessarily their true opinions.

We say that an individua) with utility funciion v is conservative if

P <x, €5 for 0€p €3: and 2 €x, <p for $<p <.

We might conjecture that an individual with concave utility function is conservative. But this is

pot true in general. Suppose w(x,A) = Vx and w(x,A) = VT=x. Then v is concave in x.

However,

2

-——p
x, 273 (1=p)? forall 0 € p €1.

So,ifp = -i-. then x, = -l% Hence an individua! with this utility function is not conservative.

(See Lindley [1982], p. 7, for further comments on square root utility.)

Suppose v is concave in x and differentiable. Then an individual with utility function v is

conservative if and only if

.riu(x, A) + (1-:)—’—.,(,‘.2) 20 for 0 x (l
ox &x 2

and

2Ly, A+ 0-x)2vx, A) €0 for L <x <.
ox ox 2

Note that, if v is proper, then

riu(x, A) + (l-x)-—o-u(x. A)=0 forall xeX.
dx 9x

However, if an individual is scored by a proper scoring rule for his opinions and his utility for

the scores is concave, then he is conservative.
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1.4. General Random Variable Case

In this section we will consider the group consensus problem with general state space ©.
As before we define X as the set of all probability mass or density functions for 8. Also we
\ assumne that each group member has a utility function v, defined on X x ® . Of course in a

group decision problem wu, is proper for all /.

In Section 1.4.1, we will show that a linear opinion pool is an optimal group consensus
opinion or a Pareto optimal! decision in X if the group members' utility functions u, are

equivalent and proper.

However, if the group members disagree on their utilities and there does pot exists a
group utility function, we can not have such a strong result as stated above. In Section1.4.2,
we will show that, if the group members’ utility functions u, on X x @ are concave in x, then
any Pareto optimal decision in X or group consensus opinion is 8 Bayes decision in X .

i In some cases, the group members’ utility functions on X x @ may not be concave. But
in Section L § we show that a quadratic approximation of u; is concave in x. Therefore, if the

group members’ opinions are close enough and their utility functions u, are smooth, then we

can assume that the group members’ utilities are concave in x, at least approximately.

1.4.1. Equivalent and Proper Utility Functions

In Section 1.3, we have considered the group consensus problem in which a group is con-
cerned with 8 single event. Now we generalize the results of Section1.3 to a general random
variable case. A group with K members are jointly responsible for combining their opinions for
an unknown quantity @ or a set of mutually disjoint and exhaustive events. Thus the state
space @ consists of the values which the unknown quantity @ can take or @ is the set of events

under consideration. Each group member’s opinion is given by a probabdility mass or density

function for #. Also each group member has a utility function u, definedon X x ©®. Letp, ¢ X

be i's true opinion for 8. Then his expected utility for x ¢ X is given by :

el .."'.'~_..‘-'-_:_. M RO . RN TR e q‘:~.‘~..'-($1b"-" e "u."’)\' "; \...-:."‘."_." S \‘.'?_.\_.\_s'! ‘;\‘\ ‘.l-'.-“‘-\:n\" - \.'5‘;\':".:
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?‘ ®)u,(x, 0 if @ is discrete.

_!p, ®)u(x, 0)d6 if

u(x) =

@ is continuous.

In this section, we will prove the following conjectures:

(1) 1If the group members have equivalent and strictly proper utility functions on X x @ , then
the Pareto optima! decision or the group consensus opinion is & convex combination of
their true opinions.

(2) If the group members have equivalent and proper (not necessarily proper) utility func-
tions on X x @ , then for any decision x ¢ X there is a convex combination of the group

members® opinions, which is at least as good as x for each group member.

Remember that the group members® utilities defined on X x @ are always proper in the
group decision problem. First, we will show that the Pareto optima! decision or the optimal
group consensus opinion is 8 convex combination of the group members® true opinions if the

group members have equivalent and strictly proper utility functions.

Theorem 1. 3.

If the w, are equivalent and strictly proper, then x ¢ X is admissible if and only if

N
xe ¥ ap forsomereA.
i=1

For the proof of the Theorem 1.3 we need following Definitions and Lemmas.

Definitions

Let S be a subset of R

G) se¢S isadmissiblein S if there is po 5'¢ S such that s, € s, for all i with strict ine-

quality bolding for at least one i, where s, is ith component of 3.

(i) se¢S isBayesIn S if there exists 8 A ¢ A such that
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X XK
DAS - max T s,

I 1=] 3 1}

Let us denote o€ a set of all the admissible points in S and % a set of all the Bayes

N points in S . Let
S = (s ¢ R*: there exists an x ¢ X such that s, = :}T(x)foralli ).

Then the set of all Pareto optimal decisions in X and the set of all the Bayes decisions in X

i defined in Section 1.2 correspond to of and & , respectively. Thatis, of= of and 2= & .

Lemma 1.4,

Let S° be the convex hull generated by S. Then

(i) afC %

r
. (i) Ifs" ¢S" is Bayesin S*, then s* = X ¢,;sY), wherer K ;s ¢S forallj =1,...,r;
:

r
¢, >O0forall jand ¢ = 1.
sl

Proof: See Blackwell and Girshick [1954]).

Under the same conditions of the Theorem 1.3 we have the following Lemmas.

: Lemma 1.5: g.cCS. . .
Proof

4
Suppose s° ¢S° is Bayes against A ¢ A. Then, by Lemmal., 5 = J¢,sU), where
J=l

r
r<K;sVeSforall j=1,...,r;¢ >0forall j and 3¢, = 1. Moreover, for each j there
o

corresponds xU? ¢ X such that sU) = u,(x¥") for all i. Since u, are equivalent, we can assume

that u, = u for all i, where u is a strictly proper utility function on X x ©. Let us define a

function g(x, p) by:
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g(x,p)= 26p(6)u(x,8) forx and pinX.
Then g(x, p)is linearin p and g(x, p) < g(p, p) for all x ¥ p. Moreover,
u(x) = Z pOux.0) = g(x. p).

Now we have

T3 ‘2 b BNESE
= ZTAZeptp) ‘ f
"3t p) ey
- '}2 £8(xV), ‘?x,p,) A

S T e(ZTAp. TAp)
J 4 ]
- ‘(Exlpl' lepa)

K
with equality holding if and only if xU) = 3 &, p, for all j.

X
Since s° is Bayes against A\, xU) = 3 ),p, forall j. So

ie]

- 2 £)SIU) - E ‘;"J(XU)) - 2 ‘jul(lepl) - "1(2x p)

o
and bence s° ¢S. D ol

X
Lemma 1.6: Let Sy = (s ¢S:thereisa A e A s.t. 5, = 4,(3Ap,) forall i). Then & = S,.

te]
Proof

X
Let s°¢S;. Then there exists an x ¢« X such that x « 3 A,p, for some A¢ A and

$0 = u,(x) for all i. We have

3 X _
F Al = T Aulx)

fe] fe}




=3 2\, p)
L
- g(x, lepl)
H
= Mmax W AP,
nax g0 Z’) p.)
because g(y, L\, p,) is maximized at y = 3\, p,. Thus
] ]
X
z xlslo = max 8()’- Exlpl)
i1 y i
= max A, . D
na ? g0, p)
=max 31,3 p,(O)u(y, )
x5 ]
np I
- A S,.
Ta 2
The last equality follows from Lemma 1.5. Therefore s° ¢ 4.

Conversely, suppose s° ¢ &, then s° ¢S by Lemma 1.5. Hence there is an x° ¢ X

such that 5" = u,(x") for all i. However,

KX X _
E XJSI. - 2 xlul(x.)
1=] =]
- 2 Nl(X'.P.)
- g(x', Exlpl)

S g(Zap, ZAp)

with equality bolding if and only if x* = 3} A, p,. Therefores* ¢S,. O
i

Lemma 1.7: S;C af- .
Proof

If 5 ¢ Sy, then there is an x° ¢ X such that x% = J A, p, for some A ¢ A with 5° = 1, (x%)
]

a
for all i. Suppose s is inadmissible in S°, then there is an 5° « 3 ¢,5U) for some § with
I3

§20and X ¢ = 1 such that (i) s’ ¢ S for all j and (ii) 5, < s, for all i with holding at least
J=1
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onc strict inequality. Since sV’ ¢ S for all j, for each sV’ there corresponds an x¥' ¢ X such

that 5V’ = u,(x")) for all i. Hence

Exs, - zlngsw
- E N Eu(xY)
- Z A,é £,8(xY, p)
- 2 f,g(xu E* »)

< 2 £ 8( zx P, zx p) Ll

L
- 8( 27\11’:. lepl A
[} [} EURER
= 2 Mg ZNp.p) R
1 ¢ . -
0 o et
- ; x‘g(x 'pl) ‘.‘ .

= 2 A, S,o.
[

Therefore, 3, A,5” < 3 A,5° with holding equality if and only if xU' = x° for all j. This
1 1

implies that s° = 5% which contradicts the assumption that s° is dominated by s°. Hence s°

is admissible in §°. O

Proof of Theorem 1.3:

By the previous Lemmas we have of- = & = S, Hence of = of- and & = %,
because af- C Sand & C S. Thus of « S, thatis, s « S is admissible in S if and only

if s «Sp. Equivalently, x ¢ X is admissible if and only if x = 3, A,p, for some A ¢ A. This
2

completes the proof of the theorem. D
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- We can easily see that de Finetti's conjecture (de Finetti [1972)), which was mentioned

. in Section 1.3 is true if the group members’ utilities u, are equivaleat and strictly proper.

Example 1.5.

Consider a text-book problem in which a group with K members are required to give a
probability density for a continuous random variable 8. Let p, be i’s probability density for 6.
Suppose each group member j has same utility function v, on X x @ fori = 1,... K, where

X is the set of all probability densities for 6. If u,(x, 8) = log x(8), thep

u(x) = [ u(x, 6)p,(6)d0
- [ 2,(6) log x(8)d6 .

Now we have
max u,(x) = max [ p.(6) Jog x(8)d8
= [ p.(8) log ()6,
and bence u, is strictly proper.

- Since u, is strictly concave, we can show that o = @, that is, x ¢ X is an admissible

decision if and only if x is a Bayes decision. (See Theorem 1.6)Forany A e A,

L K
Z aux) = Z [ p.(6) 108 x(8)d8

i=1
= [1Z Apu(6)] log x(0)do

< [1Z \p.0)10g [T A,pi(0))d0
: 1
with equality holding if and only if x = 3 A, p,.
[
Therefore x ¢ X is an admissible decision ifandonly if x ¢« C. O

Now is the time to prove the conjecture that for any decision x ¢ X there is a convex

- combination of the group members’ true opinions, which is at least as good as x for each
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23 A
member of the group. Let

K
Ce{xeX:x=2A\p forsomerecd)

[L3]

Theorem 1.4.

Suppose u, are equivalent and proper. Then for any x ¢ X , there exists an x° ¢ C such

that #,(x") 2 u,(x) for all i.

Proof s
Without loss of generality we can assume that u, = u for all i, where u is strictly

proper. Let « > 0. We can find a strictly proper utility function s on X x © such that

|$(x,0) | <¢/2 forallx ¢X and € ¢®.
This can be done by letting

Lo 2
s(x,0) = 371 -2x(6) + Ix (8)d 6]
for large M >0. Then s is strictly proper and bounded.

Now define a utility function 1" by

u'(x,0=u(x,0 + s(x,0

for all x and 6.

We can see that the utility function u° is strictly proper. Now let
& = { x «X:x is admissible in X for u° )

| S—
Then & is complete, because u° is bounded from above and the maximizers of I, A, v, (x)
i=]

are always in X for all A ¢ A (sec Berger [1980]). Therefore, for each x ¢ X, there exists

x° ¢ C such that u,"(x") 2 &, (x) for all i.

From the definition of u° we have

u(x)+ 3 pO)s(x,0 S u(x")+ T p(0)s(x", 0)
[] ¢
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and hence
u(x) S u(x")+ }.: p.(®)s(x°, 8) - s(x, 0))
S u(x") + ; p.(6)|s(x",0) - s(x, 6)|
<e+u(x")
foralli=1, ..., K.

Since ¢ is arbitrary, we bave the Theorem. (@]

Example 1.6.

Consider a group decision problem as in the Example 1.2, where @ = [0,1], A = [0,1],
and X is the set of all probability densities for 8. Suppose there are K group members with
same utility functions v, on A x @ such that v,(a, 0) = -(a-8) for all @, 0, and i. Then the
induced utility function u, on X x @ is u,(x, 8) = -(8-E,0)’, which is proper but not strictly
proper. Here E, denotes expectation with respect to x. Let p, be i's opinion for
i=1 ..., K Theni’s expected utility for x ¢ X is

u,(x) = - E,(8-E,0)
«-E® +2E0E0-E2,

where E, denotes expectation with respect to p,.
Note that u,(x) = u,(y) if E,0 = E,e.

Now we want to show that Theorem1.4 is true for this example. Since w, is strictly
concave in x, o = @. Let x ¢ X\ C, where C is the set of all convex combinations of

P - ...px. Without loss of generality we can assume that x is an admissible decision. Then

there is a A ¢« A such that

2‘: Ay (x)e u’l&x ? Ay ().

Let x* « 3 A,p,. Then I Ay (x) = T Au4,(s"), because u, is proper. Now
[ [] ]

— RO

T M (x) = T A(-E,0 + 2E0 E,0 - EX) R
' ' KR A
LS
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- - NE® +2E,6 3 \ES-E2
? Ll

- -E,-8°+2E,0E,-6-E2

T Aau(x")y= T N\(-E6°+2E0E,-6-E>6)
1] !
=-F NEW® +2E,-6F NEG6-EX6
! ]
= -E 0 +2E26-E20

- -E,-0®+ E26

Hence E,0 = E,-6. So u,(x) = u,(x")foralli. D

As 8 corollary to Theorem 1.4, if there exists a group utility function ug, which is
proper by Lemma 1.1, in a group decision problem, then the linear opinion pool is optimal
for the group. Here the group utility function ug need not be a functional form of individual

utility functions u,, i=1, ...,K. Hence Arrow's Impossibility Theorem is not relevant here.

1.4.2. Concave Utility Functions

In Section 1.4 .1, we have shown that a linear opinion pool of the group members'® opin-
jons is an optimal group consensus opinion or a Pareto optimal decision in X if the group
members’ utility functions on X x @ are equivalent and proper. However, if the group
members disagree on their utility functions &, for i = 1,...,K and there does pot exist a
group utility function, we can not have such a strong result as Theorem 1.4 In the rest of
this section we will show that, if the group members’ utility functions u, on X x © are concave
in x, thep any admissible (or Pareto optimal) decision in X is a Bayes decision in X . We will
consider the quadratic approximation of the utility functions u, in the next section and show

that the quadratic approximation of u, is concave in x.




—_p— Y
. LRI M
' P

.
B
[

L e e

[

o N -
ERE AL o

PN S el A Mean: i it aiuE Jui SNl S VL AN SN avk e PR A P ey - el Il A Gaittiedh S fudh e S i A i i e Sl S * S A R Y

26

Theorem 1.5.

If w,, i =1,... K, are concave in x, then any admissible decision in X is a Baves
decision in X .
Proof

Let 5s° ¢S’ be admissible in S°. Then, by Lemma 1 4, there is a A ¢ A such that s° is

Bayes against A and s° is represented by

-’a. het E f} ;(XU))
=1

for some x”, ..., x7and r < K. Since u, are concave, we have

sl. s Z( ZE;XU)) - Z(IO)'
Jel

r K K
where x% = Y £,xU). However, 3 A,;5” 2 3 A, 1,(x%), because s° is Bayes against . There-
el il il

fore s, = u,(x°) for all i and hence s° ¢ S. This implies that af- C af .

Let s ¢ o€ and suppose s is inadmissible in §°. Then there exisis s* ¢ S” such that

s, S s, for all i with holding at least one strict inequality. Since s* ¢S , there is a sequence

a
xM, x®, .- in X such that 57 = 3 §,u,(xV) for all i. Then
Jj=1

s S u( TExY) e 4 (x"),
Jj=3

where x° = 3 ¢ ,xU). This means that s is dominated by (4,(x*), i=1,....K) ¢S, which is a
J

contradiction. Therefore af- = o€ C &K -NS . It is easy to show that & NS = & .
Hence 6 C &. O
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Theorem 1.6.

Wu,. 1= . .. K. are strictly concave in x, then & = .

The proof of the Theorem depends oo following Lemmas.
Under the same condition as Theorem 1.6, we have Lemma 1.8 and Lemma 1.9.

Lemma 1.8.

If x and y in X arc Bayes against A ¢ A , then u,(x) = u,(y) for all i with ), > O if and
only if x = y.
Proof

Suppose x and y are Bayes against A and u,(x) = »,(°) for all i with A, > 0. Since y,

are strictly concave, if x # ), thep for any 0 < a <1,

vlax + (1-a)y) > au,(x) + (1-a)u, (') = &,(x)

for all i with A, > 0. Hence

K | &
T Ay fax + (1-a)y) > T A4, (x),
1= s}

which is a contradiction. Sox = y.

The converse is trivial. D

Lemma 1.9: If x ¢ X is Bayes, then x is admissible.

Proof
Suppose x is Bayes against A¢ A . If A, > O for all i, then x is admissible. We cap

assume that A, > Ofori=),... . /and ) = Ofori=/+1,... Kforsomel s/ <K

Suppose x is ipadmissible , then there exists ) ¢ X such that

w,(v) = w(x)for i=l, ... . Liand u,(v) 2 u(x) forislel, .. . K
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with at least one strict inequality bolding. By Lemma 1.8, x = y, which contradicts the .

assumption that x is dominated by y. Therefore x is admissible.

This completes the proof of Theorem 1.6. @]

By the above Theorems the determination of the group consensus opinion is equivalent
to the determination of the Bayes point in X or the determination of A ¢ A, which can be

interpreted as the weights given to the group members, if the group members have concave

utility functions.

g Now we consider the relaxation of the assumption that a,’(x), which was defined in Sec-
r tion 1.2, is unique for all i and x. In a group decision problem with action space A , state

space © , and individual utility functions v, on A x ® , we defined an action a,'(x) by

h T x (@ a](x), ] = max T x(8)v,(a, )
] A 5
l-
[_:I: for each x ¢ X, where X is the set of all probability mass or density functions for 8. We
'P assumed that a,’(x) is unique for each x and defined a utility function ¥, oo X x ® by

u,(x,0) = v,[a'(x),0) for x ¢X and 0¢0.

Now suppose that a,’(x) is not necessarily unique for x ¢ X . Let 8, be i's decision rule

such that i takes ap action §,(x) among the actions which are optimal against x. Then we

can define
u(x,0) = v[8(x),0 for xeX and ¢¢0.

It is easy to show that the utility function u, defined as above is proper for any such decision
rule §,. Furthermore, for any & = (3,....,8x), where &, is i's decision rule, the results
developed thus far are true. Therefore, if each group member chooses a decision rule §,, then

we have the same results as the results obtained under the assumption of uniqueness of a,(x).

..........................................

-------
At e®a®

............................
................
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1.5. Quadratic Approximation

In Section 1.4, we have shown that (i) if the group members have equivalent and proper
utility functions, then a Pareto optimal decision or s group consensus opinion is a linear opinion
pool, and (i) if the group members’ utilities are concave in x, then a Pareto optimal decision is

8 Bayes decision. In some cases, however, the concavity assumption is too strong to be

satisfied for all group members. The objective of this section is 10 show that under certain con- ST

ditions each group member’s utility function is nearly concave.

Suppose the state space @ is finite and suppose that v is proper and differentisble three e
times. Now consider an individua! with utility function » and true opinion p ¢« X . If ® con-

sists of n elements then p is an n x 1 vector. His expected utility for x ¢ X is

i(x) = ®)ulx, 0) B -

b ] 2r@ulx, 6. DR AR,
The Taylor expansion of @{x) is :

| i) =5() + (x=p)' Vi () + -;-(x—p)'li(p)(x—p) + R &),

2
where H (p) is a Hessian matrix of i (x) at x = p and R (x) is the remainder term. Let
ﬁ, Vi) = 5() + G-p) 'V ) + 3 x=p) H () (x-p).
Theorem 1.7.
-b Suppose the third partial derivatives of ¥ (x) are bounded Then v(x) is concave in x if p
is a (relative) interior point of X.
Proof
;' Since u is proper, @ (x) is maximized at x = p and hence it should satisfy the Kuhn-
: Tucker condition :
.
r -
’ 8% (x) -
! o, 1.,
i_

..........
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for all j=1, ..., n for some real number u. Since #(x) € ¥ (p) forall x ¢ X , we have
(=p)'VT () + 3 x=p)'H () x=p) + R1x) < 0.

We know that Vi (p) = u1, where 1=(1, ... ,1)". So (x~p)'Vi(p) = 0. Therefore
G-p)H(P)(x-p) € =2R(x) forallx e X . n

Foranyx,y e Xand0 < A < ],

viax + (1-A)y) 2 avix) + (1-2)vix) F Ge=y)'H(p)x—-y) € 0.
So we should prove that (x—y)'H(p)(x-y) € Oforallx,y ¢ X .

Letz-p+—‘l!-(x—y). wheremlu-l—<M<-=. Then z; 2 0 for all / and iz,-l. So

J J=1
zeX. By (1)
G-p)'H(p)z-p) € -2R(2).
| So
=)' HP)x—y) = M a-p)' H(p)(z—=p)
€ -2MR(2).
I Now the remainder term R (2) is
f" ] ®
: R(;)= iztgg(z,—p,)(lf—h)(h-h)mu b+oC-p)]
_! 1 ) 0!
“ - ?F;;;(x'—yl)uj-yj)(x‘-y‘)mab+0(2—p))
, forsome 0 < # < 1. So
I
: RG) = L ) ey ) Gemye) & T b+ (=
. MR () 6M21:l,;(x, ) 0x=y,) (e =ys) YF T ilp+oz-p))
é and hence MR (z) — 0 as M — oo, Therefore
E G-y)H@P)x-y) €0 forallx,yeX. D
P
.
:
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In Theorem 1.7, we assume that the third partial derivatives of @ (x) are bounded But, if
p is s loca! maximum point of v(x), then we can show that v(x) is concave without the

assumption of Theorem 1.7.

Corollary 1.

If p is a (relative) interior point of X and p is a Jocal maximum point of v(x), then v(x)
is concave in x.
Proof

For any x ¢ X sufficiently close p, v(x) € v(p). So
(-p)'Vi(p) + %(x-p)’H(p)(x—p) <o
Since Vi(p)=pul , (x=p)'Vii(p) =0 and hence (x—p)'H(P)(x—p) €0 for all x

sufficiently close to p.

For given x,y in X let z=p + —;?(x—y) , where m,x 1 < M <e. Then 2z ¢ X and
J

(z-p)'H () (z-p) € 0 for sufficiently large M . So

G-y)'HQP)x-y) = M¥a-p)'H(p)z-p) €0

forallx,yeX. D

Thus far we have considered only the proper utility functions. However, we can obuain
the same result under some smoothness assumptions for the improper utility functions. Sup-
pose @ (x) is maximized at yo % p. A Taylor expansion of & (x) around yo s given by :

B() =i + -y Vil + %(x—yo)'H(yo)(x-yo) +R &)
= vix) + Rx),

where

Vi) = 509 + Gmyd'TTOP + § &-yd'H OO (x-0).
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Corollary 2.

Suppose yq is a (relative) interior point of X . Then v{(x) is concave in x if (i) &(x)

........

satisfies the condition of Theorem 1.7 or (ii) y¢ is a local maximum point of v{x) .

Note that (i) if u is quadratic and yg lies in interior of X , then u is concave and (ii) the

Hessian matrix 4 (yo) need not be negative (semi)definite in order that v (x) be concave.

Example 1.7,

Let

G(x) = —x)=x34+x{ +3xx;+x4

Then @ (x) is maximized at x = (-;—. -12-) and the Hessian matrix at x = (%, %) is

11 23
v bl

| Notice that H (%, -;-) is not negative semi-definite. However,
G—p)'H (G, 3)-p) = =26, —y)? € 0

forallx,yeX. Sow(x)isconcaveinX. O

If the group members’ opinions are close enough and their utility functions are smooth,

we can approximate each member's expected utility &, (x) by a quadratic form :

vl(X) - “—:(P:) + (X”P:)'VI(P:) + %u.pl)'”lvl)(x-pl)' (l‘)

where p, is i's true opinion. Here we assume that v is proper. But we can replace p, in equa-

tion (14) by a maximizer of the expected utility u, if v is not proper. The above Theorems say

F that v,(x) is concave. Hence any Pareto optima! decision is a Bayes decision.

Since (x—p,)'Vu,(p,) = 0 for all i and ,(p,) are constants, we can approximate i, (x) by

.................
------------------------
.....................
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v,(x) = (x=p)'H (@) x-p).
_i For A e A, let

X
VA(X) - ZA,V,(X)

=]

K
| - A (x=p) H,(p) (x=p,).

-]

Suppose x € X maximizes ¥,(x) . Then there is s real number u satisfying

UV, (x") = ul.

e

This is 8 Kuhn-Tucker necessary condition for the optimality. Since V,(x) is concave , it is also

sufficient condition for the optimality. Now we have

. x :
. TAH G =p) = ul
. =]
and hence
! = [ ZNHQ) )T UTAH Q) - ul ]
" =T 4 G-u),
_. where 4' = A1 TAH () 17'H Q) .

Suppose A' = [ al, k,I=1,...,n )fori=1, ... K. Then

) g-égqorm

| - T3 -+33

- T3ei-s

because 3 4' = 7 and hence Y a;, = 1and Y a;=0for !/ = ;.
! Since ix,'- 1, we have

=
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w=dTTTam, -1}
n J |
Thus

x - zzaﬂpﬂ - -! zzzaul’// -1)

t=]i=] to]l w]im]

- 3% iai-13ai+ .

tw]im]

ﬁ - zza;lpllo (15)

to]/=]

wberea,,-a,,-—za,,+—lx- and 220: =1 forallj=1,...,n.
=1 f=li=]

We can partition the equation (1.5) by

- za upu + zzadpdv

=1/,

_ K X

; where Ya/=1 and Y Fa/=0. If aj for /=) are small compared with a/ ,then

> " -] -],

L .

-

- . X

'. x, = ¥B,p, (1.6)
1=}

] K

. where B, = a/ and 3.8, =1 for all j. We call (1.6) a generalized linear opinion pool. (8,

.. 1]

may be negative.)

1.6. Determination of the Pareto Optimal Decision

We have shown that (i) a Pareto optimal decision or a group consensus opinion is a linear
opinion pool if the group members have equivalent and proper utility functions &, i=1, ... K
defined on X x © , and (ii) s Pareto optimal decision is a Bayes decision if the group members’
utilities are concave. Unfortunately, the results of the previous sections do not provide a nor-

mative rule for choosing the Pareto optimal decision for the group. Now we want to discuss

e e T et e . RS R R
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Now suppose that the group agree to assign weight w, for the ith member of the group,

X
where w, 2 0 and Y w, = 1. In most cases w, = 1/K for all /. Then the group may wish 10

o}
minimize
u (x)
- )
'}-:lnl(x) E» l1- u(x,)] ¢

If x* ¢ X minimizes (1.7), then x is Bayes against A = (A}, . .. ,Ay), where A, = % =

X I
and o is a constant which makes zk, = 1. If u, are equivalent and proper, then x = zk,p,.

1o} ‘-]

This method normalizes the group members® utilities by

v(x,0)
v.(x, 0) = ———.( 3
u, X"
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35 . ' .
the determination of the Pareto optimal decision, i.e., the group consensus opinion However,
as Barlow, Mensing, and Smiriga [1984] pointed out, the determination of the Pareto oplima! ,
®
decision is problem dependent. That is, there is no normative rule which can be reasonably T
applied to all problems. Here we want to suggest two methods for determining the Pareto : 1,;.-'\‘.
optimal decision which, I think, are reasonable. '_ﬁ;:‘_l_-;;-' N
.
Method 1
Let L,(x) = ‘Z(Xp,) — u,(x) for x ¢ X ,where x, is a maximizer of i’s expected utility, e
v, (x) = Y 7.(6)u,(x, 8) . Then L,(x) is i’s expected loss-in-utility when the group consensus
4
opinion is x, while his true opinion is p, (or his announced opinion is x,). Let
— “ -.-
L&) u,(x) o
1(x) = = =] = .
u (x,) u,(x,) e
Then /1 (x) is i’s percentage expected loss-in-utility when the group consensus opinion is x € X, S
[

ORI




where v, is i’s normalized utility function. In this case

max »,(x) = 1 forall i
xeX

Metbod 2

In this method we assume that the group members’ utilities are proper, that is, each
group member’s announced opinion is his true opinion. We introduce a supra decision maker
i N who has the responsibility for determining the Pareto optimal decision or the group con-
sensus opinion. We assume that N does not have his own opinion about § and he want to
. minimize his judgement about the group members’ expertise or state of knowiedge about 6.
Barlow, Mensing, and Smiriga [1984] called this assumption as & minimal judgement assump-
tion. Under this assumption, if N were take only one group member’s advice, say ith member,

then he would simply adopt i’s opinion p, as his decision. However, N needs to make some

- judgements about the group members because N could not take only one individual’s opinion
in s group consensus problem. So N's problem is to make a group consensus opinion while

minimizing his judgements about the group members.

If N only takes one group member’s sdvice, say i, then N would adopt /°s utility function

u, and compute

< max Y p.(8)u,(x, 6). (1.8)
xe ]

Of course N’s decision which maximizes (1.8) is p,. So, if N only takes i's opinion, then we
can consider v, as N's utility function. Now let us define N's utility function. Let wn(x,6; i)

be N’s utility for the consequence (x,8) when N only takes i's advice. Then

: un(x, 8, ) = An(u, (x, 0) + Bu()

- where A n(i) > 0 and Bn(i) are coefficients assessed by N to standardize /°s utility function.

Now N's expected utility (with respect to 8) is
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un(x; i) = ANDY p.(O)u,(x, 0) + BN()
[
- Ax(Du,(x) + B(). a9

Let w, ,i=1,..., K be the weights of the group members given by N. Then N's expecied

utitity for x ¢ X is

— X - X
UN(X) - zl\t‘,A N(i)u,(x) + 2"':BN(")

fo=]
-FwA n()u, (x) + By (1.10)
N may wish 1o maximize (1.10). For this N should assess w, and An(i) fori=1, ... .K . e

Now consider a special case that the group members’ utility functions ate proper and
local. A utility function u is local if w(x, 8) = «{ x(8), #) for all & ¢ ® , that is, the utility for i
the consequence (x, ) depends only upon the probability density of the true state and not
upon the density of the states which could have obtained but did not. Bernardo [1979) proved

that, for a continuous case, a proper and loca! utility function v must be of the form :

ulx, 6) = A4 log x(8) + B(9),

where A is an arbitrary constant and B(') is an arditrary function of . For the discrete case,

see Mathai and Rathie [1975].

If the group members’ utility functions are proper and loca! , then N's utility is given by

, unlx ;i) = An(i)b,(a) log x(8) + BN(i). .1
. ~4 .
E The utility un(x; i) given by (1.11) is equivalent to
b
138
*. unix ;i) = ~An() T p.(8) log [0, (8)/x(0)] + By (i), (112)
N ‘
| aasdl
" where By (i) = BnG) + An(i) T p,(0)log p,(6). Let
b ’
D I(x:y)= }._',v(o) log ly(6)/x(6)) forx,yinX.
L
r 1(x:y) is called the (directed) divergence of x from y and is a measure of discrepancy
(Mathai and Rathie [1975]). Kerridge [1961] interpreted /( x: y) as a8 measure of the error
X
B R R R A T —
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made by the observer in estimating a probability density or mass as y € X , which is in fact
x€X . So un(x; i) in equation (1.12) can be interpreted as an error made by N by taking
x ¢ X while the true distribution is p, in N's opinion. Thus N's expected utility

X
un= Y wun(X; i)

=]
- — FTANDT P (6) 10g [p,(6)/x(8) ) + Tw,Bx (i),
[; [ []
can be thought as an expected error made by N when he takes x ¢ X as his opinion. Here w,
can be interpreted either as a probability that i’s opinion p, is a true probability density/mass in
N’s opinion, or as a probability that N takes i's opinion p, if N were allowed to take only one
group member’s opinion.

Now return to the general case. Suppose N judges that w, = Tl(- fori=1,...,K. This

means that N has no preferences among the group members’ opinions prior to learning their
opinions. It also seems reasonable that N would be indifferent between the consequences
(p..i)fori=1,...,K, where (x, i) denotes a consequence that N takes i’s advice alone but

forecasts @ using x. So N would normalize his utility by letting

un(p,,i)=1 foralli=1,... K (1.13)

Suppose also that N judges

ll;n’il"lx un®@,, ) = un(p,, i) =0 foralli=1,... K (1.14)

This means that N is also indifferent between the consequences (p,, i) fori=1,... K.

For the alternative interpretation of the equations (1.13) and (1.14), suppose that each
group member is asked to evaluate the group members' opinions. Then ith group member

may evaluate the opinions by the expected utilities u, (p)fors=1,... K Wehave

max u,(p,) = u,(p,) and ‘lail‘!l v, () = u, ().
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Thus the equations (113) and (1.14) imply that N standardizes the group members® evaluation
for the other group members’ opinions by letting
mex v,(,) = 1 and min», () =0 fori=1. ... K,
where v, is i’s stsndardized utility function. Let
M = max u(p,) and m - mi'n u,(p,).
Then from the equations (1.13) and (1.14), we have

ANDM, + B\(i) = 1

and

>-; AN(i)m, + Bn(i) -0

fori=1,...,K. Hence

ANG) = 1/(M,—m,) and BN() = —m/(M, ~m,)

fori=1,...,K. N'sexpected utility forx ¢ X is

X 1 1 - ml
uN(X)-zl-k_ T!—:—;u,(x)--m . (115

N would take an opinion which maximizes (1.15). If x° ¢ X maximizes (1.15), then x" is a

. Bayes decision against A = (A}, ... ,Ap) with A, = 1/(M, - m,) .
" If u, are proper and equivalent, then
3 ‘ pl
x ,D‘p' nz,M,—m, *
where a is 8 constant such that A, = 1.

Note that, if ¥, are proper and local, then

M,-m,-m.nl(p,;p,) fori=1...,K,
where 1(p,; p,) is » measure of the error made by using p, when p, is /’s true distribution.

I1(p.. p,) is also interpreted as s measure of the distance from p, 10 p, as assessed by /. This

LR B Sagihe e S 0t 2t oge 2 o n ]
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measure of distance is asymmetric, which seems reasonable. With this in mind we can inter-

pret (M, — m,) as a maximum distance from p, to other group members® opinions as evaluated

- by i. N gives a weight A, to the ith group member proportiona! to the inverse of the maximum R &

s
s
2
Pd
A

distance assessed by /. Thus i receives small weight if the maximum distance from his opinion SN

¢

gy
r
r
,
"
£
I
~

to the other members’ opinions is large. NNy
)

1.7. Summary

We have considered a group consensus problem in which the group
members are jointly responsible for combining their opinions for an unknown quantity 6 ¢ © .
If the group has s predefined real decision problem, we call it a group decision problem. If the
group members are simply required to give their opinions fot # without having any real decision
problem, we call it a text-book problem. In this thesis we treat the text-book problem as a ver-
sion of group decision problem. We assumed that each group member i has a utility function

u, defined on X x @ , where X is the set of all probality mass or density functions for 6.

In a group decision problem with action space A , state space © , and individual utility
functions v, defined on A x @ , i’s utility function ¥, on X x @ is derived from v, on A x ©

and it was shown that v, is proper.

In a text-book problem, there is no action space A and hence no individual utility func-

tions v, on A x @ . But we assume that each group member i has a utility function u, on X x
.'jlf @ , which is assessed by i.
We summarize the main results according to the state space: single event case and

general random variable case.

> Single Event Case

(1) If the group members® utility functions v, on X x @ are strictly proper for all i, then a

Pareto optima) decision in X must be a convex combination of the group members’ true “

PRI e A

BT
b3
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opinions, i.e., a linear opinion pool of their true opinions.

If u, are proper for all /, then a linear opinion poo! of the group members’ true opinions
is a Pareto optimal decision in X . Here a Pareto optimal decision may not be a convex
combination of the group members’ true opinions. However, for any decision x ¢ X ,
there exists a convex combination of the group members' opinions which is at leas! as
good as x for each member of the group, that is, there exists x“€X such that x° is 8

convex combination of the group members’ true opinions and &, (x°) > ,(x) for all /.

If u, are strictly concave (not necessarily proper) in x for all /i, then a Pareto optimal deci-
sion in X must be & linear opinion pool of the group members® announced opinions.
Here we assume that each group member i announces the opinion which maximizes his
expected utility u,(x) over all x ¢ X. If u, is proper, i’s announced opinion is his true

opinion.

If u, are concave in x {not necessarily proper) for all /, then a linear opinion poo! of the
group members® announced opinins is a Pareto optimal decision in X . Moreover, for any
decision x in X , there is a convex combination of the group members’ announced opin-

ions which is at least as good as x for each member of the group.

General Random Variable Case

0}

Q)

-

~ I e A -
R A A I_’LL’A.L*A"‘* Sondenclonk

If the group members have the equivalent and strictly proper utility functions v, on X x
© , then any Pareto optimal decision in X must be a linear opinion pool of the group

member’ true opinions.

If the group members have the equivalent and proper (not necessarily strictly proper) util-
ity functions u,, then linear opinion poo! of the group members® true opinions is Pareto
optima! decision in X . Moreover, for any decision x in X , there is a convex combina-
tion of the group members® true opinions which is at least as good as x for each member

of the group.
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(3) If u, are concave in x for all i, then Parcto optimal decision in X is Bayes decision in X .

(4) A quadratic approximation of w, is concave in x. If the group members’ opinions are
close enough and their utility functions w, are smooth, we can assume that v, is concave
in x for all i, st least approximately. Hence Pareto optima! decision in X is Bayes deci-
sion in X in most reasonable cases. We also discuss the form of Pareto optimal decisions

for concave utility cases.

Finally, in Section 1.6, 1 suggested some methods of determining Pareto optimal decision.
However, 1 do pot claim that the methods suggestied in this paper are normative rules which
can be applied to all problems. The determination of Pareto optimal decision is problem depen-

dent.
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