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SUMMARY

A topic of ongoing interest to the Air Force is the response of

shell structures to thermal loads. These thermal loads may be caused by

aerodynamic heating on aircraft and missiles, by laser weapons, or by

radiation effects on space structures. In all cases, it is desirable to

determine the thermomechanical response of shell-like bodies that model

various components of aircraft structures.

To determine the complete thermomechanical response of a shell-like

body to thermal loads, it is necessary to calculate both the thermal and

mechanical fields. The problems with analytically solving the three-

dimensional thermal and mechanical equations for general structural

geometry and general loading are currently insurmountable. Therefore,

alternative methods of solution are required. One alternative is to

obtain a numerical solution using large finite element codes. Although

obtaining a numerical solution of this kind is within current technol-

ogical capability, there are two important disadvantages with this

method. First, it may be necessary to use many elements and many time

steps to calculate the solution of a dynamic problem. This means that

use of the method as a design tool when a number of parameters must be

varied would be prohibitively expensive. Second, the method necessarily

calculates many details of the thermal and mechanical fields that are

not of particular interest. For example, for shells it is sufficient to

obtain limited information such as the resultant force and moment applied

* to the shell. Consequently, the details of the stress distribution

through the thickness of the shell are not needed.

In this research, we used an alternative method of solution that

judiciously models the structure by an appropriate shell theory having

equations that are considerably simpler than those of the three-

dimensional theory. Such a theory focuses attention solely on

quantities of primary interest. Consequently, even if it is necessary
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to develop a numerical solution of the shell equations, the computer

time is efficiently used, the results are easily interpreted, and the

method can be used for design purposes.

The objective of this research was to analyze the thermomechanical

response of a conical shell (Figure 1) that is a model for aircraft and

missile nose cones. Because the conical shell has a converging

geometry, the shell near its tip is necessarily "thick" even though the

shell near its base may be "thin." Therefore, it is important to model

the conical shell with a theory that accurately incorporates the

geometrical details of this crucial tip region. We used recent devel-

opments in the Cosserat theory for the thermomechanical response of

shells. We based our development on the Cosserat theory mainly because

this theory accurately models the geometry of the shell and is

sufficiently general enough to include the important effects of the

steep temperature profile through the thickness of the shell (e.g.,

tangential shear deformation, higher order displacement and temperature

profiles through the thickness of the shell) without the complexity of

the complete three-dimensional theory.

This research was divided into four parts, each of which has been

written as a technical paper that has been submitted for publication. A

copy of each paper is included as an appendix:

Appendix A: A Uniqueness Theorem for Thermoelastic Shells
with Generalized Boundary Conditions

Appendix B: A Nonlinear Congtrained Theory of Shells that
Includes Tangential Shear Deformation

Appendix C: On the Determination of Certain Constitutive
Coefficients for Thermoelastic Shells

Appendix D: Reat Conduction in Plates and Shells with
Emphasis on a Conical Shell.

*We use the term tangential shear deformation instead of the usual term

"transverse" shear deformation because it is more descriptive when
considering nonlinear deformation of a shell as opposed to linear
deformation of a plate.
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Basically, Appendices A-C deal with certain theoretical issues that

were observed while developing the general equations to analyze the

thermomechanical response of shells, whereas Appendix D deals with the

main issue of the conical shell. Appendix A entails a generalization of

the uniqueness theorem for linear thermoelastic shells to include

mechanical contact with a linear elastic medium and thermal convection

on both the major surfaces of the shell and its boundary curve.

Appendix B is concerned with developing a nonlinear constrained theory

of shells that includes tangential shear deformation. This topic was

considered because tangential shear deformation is expected to be

important when a shell is loaded with a steep through-the-thickness

temperature gradient. Appendix C is concerned with determining certain

thermal and mechanical constitutive coefficients for thermoelastic

shells by direct comparison with exact solutions. It was observed that

better comparison with simple exact solutions could be obtained by

specifying values for certain coefficients that are different from those

previously proposed.

In addition to considering general aspects of thermomechanical

response of shells, in Appendix D, we considered heat conduction in

rigid shells with particular emphasis on a conical shell. Specifically,

we used shell equations based on the theory of a Cosserat surface to

determine the average (through the thickness) temperature and tempera-

ture gradient in rigid shells. Attention was focused on rigid shells

because when the strain rates in a deformable shell are small enough,

the thermal and mechanical problems uncouple in the sense that the

temperature fields can be determined from equations for heat conduction

in rigid shells. Once these temperature fields are known, they can be

used together with constitutive equations to calculate thermal loads

which cause mechanical deformation.

To develop confidence in the Cosserat theory for both the thin-

shell limit (which models the base of the conical shell) and the thick-

shell limit (which models the tip of the conical shell), we considered a

number of problems for plates, circular cylindrical shells, spherical

4
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shells, and finally a conical shell (Figure 1). It was shown that by

appropriately modifying the constitutive equations, it is possible to

include enough geometrical features of the shell to predict relatively

accurate results even in the thick-shell limit.

Finally, a specific problem of a conical shell of uniform thickness

was considered. The heat flux on the outer surface of the shell was

taken to be constant, all other surfaces of the shell were insulated,

and the shell was initially at uniform temperature. Using the Cosserat
.4

- equations, we were able to obtain an analytical solution for the time-

dependent average temperature and temperature gradient. This solution

predicted that the average temperature gradient was quite severe near

the tip of the shell and developed its maximum value within a short

time. Since the average temperature gradient produces a thermal moment

on the shell, we expect the bending to be most severe near the shell's

tip.

Future research should concentrate on determining the deformation

in the conical shell produced by these thermal fields.

S.5
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Appendix A

A UNIQUENESS THEOREM FOR THERMOELAS TIC SHELLS
WITHGENRALZED OUNARYCONDITIONS

(Submitted for publication to Quarterly of
Applied Mathematics)
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ABSTRACT

The uniqueness of the solution of initial, mixed boundary value

problems for linear thermoelastic shells is reconsidered within the

context of recent developments in the thermomechanical theory of a

Cosserat surface [4]. Fairly general boundary conditions are considered

that allow mechanical contact with linear elastic media and thermal

radiation on the boundary curve of the Cosserat surface and on the major

surfaces of the shell.
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1. Introduction

Motivated by the application of shell theory to contact problems,

we generalize the usual boundary conditions to include mechanical

contact with linear elastic media and thermal radiation. These

generalized mechanical and thermal boundary conditions are applied on

the boundary curve of the shell as well as on its najor surfaces. In

this paper, the uniqueness proof is reconsidered within the context of

these general boundary conditions.

We recall that the theory of a Cosserat surface [1] has been well

established as a particularly useful model of a shell-like body that,

broadly speaking, is a three-dimensional body that is "thin" in one of

its dimensions. Recent developments in the theory of continuum thermo-

dynamics [2,3] have provided the theoretical framework for developing a

general thermomechanical theory of a Cosserat surface (4]. Such a

theory admits finite numbers of directors d (N - 1,2...) and tempera-
-N

ture field eN to provide limited information about the variation through

the thickness of the shell of the deformation and temperature field,

respectively.

For less general boundary conditions than those considered here, a

uniqueness theorem has been proved for the linear isothermal theory of

shells [1, Sec. 26] and for small motions superposed on a large deforma-

tion within the context of a thermoelastic theory of shells that admits

a single temperature field [5]. A uniqueness theorem for a linear

thermoelastic theory of shells that admits two temperature fields and

two energy equations has also been proved [6), including radiation on

the major surfaces, but not on the boundary curve. None of these

uniqueness proofs considers mechanical contact with elastic media.

*Recall [1] that the three-dimensional boundary conditions applied to

the major surfaces of the shell are incorporated into the field
* equations and therefore are not considered to be boundary conditions

in shell theory.

A-3
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Although the structure of this latter theory is different from that

most recently developed for Cosserat surfaces (4], the linearized

equations can be placed in a one-to-one correspondence with those of a

theory that admits a single director d and two temperature fields 0, *.

It therefore follows that the previous uniqueness theorem [6] applies to

solutions within the context of the new linearized theory [4].

In the following sections, we state sufficient conditions to prove

uniqueness of the solution of the equations of the coupled thermoelastic

theory* that admits the generalized boundary conditions and that

considers inhomogeneous, anisotropic elastic shells. Specifically,

Section 2 records the basic equations of the linear theory of a Cosserat

surface, and Section 3 discusses the generalized boundary conditions.

Finally, in Section 4 we state and prove the uniqueness theorem.

* 2. Basic Equations

Let the material points of the Cosserat surface C be identified by

means of a system of convected coordinates 01 (a - 1,2) and let the two-

dimensional region occupied by the material surface in the present

configuration at time t be denoted by c. Further, let the vector valued

function r define the position of a material point of the surface C and

at each such point define the vector valued function d, called the

director, and the two temperature fields e and * each referred to the
present configuration. Then, a thermomechanical process of the Cosserat

surface is defined by

- r(e at) 'd - d(O ',t) ' [a 2 d] > 0 (2.la,b,c)

8- e(eat) , ( > 0) , a ' (6at) , (2.1d,e,f)

*The uniqueness theorem, with its modification for the generalized

boundary conditions, is clearly applicable to the purely mechanical
theory as well as the purely thermal theory.

A-4
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where the tangent vectors a and unit normal vector a 3 are defined by

br 1/2
a a- e a = 0 a * a 1, a fa >0a~a be a ~a 0 3 31 23 3 '3 > 0

(2.2a,b,c,d)

and the condition (2.1c) ensures that the director is nowhere tangent to

c. The condition (2.2d) ensures that a i(i - 1,2,3) are linearly inde-

pendent vectors forming a right-handed coordinate system. Thus, we may
i

introduce a set of reciprocal vectors a such that

a e ai 1 (2.3)
~i - i

where 61 is the Kronecker symbol. The velocity v, director velocity w,
i*

and temperature gradients g and g, may now be defined by

v=r . a (2.4a,b,c,d)

where a superposed dot denotes time differentiation holding ea fixed and

a comma denotes partial differentiation with respect to the coordinates

Ga. In the reference configuration, we assume that the shell is at

uniform temperature S. Then, the reference values of the various

kinematic quantities may be denoted by

raR , dA , - , a/2 =  1/2 (2.5a,b,c,d)

~i -i

,$ 0 , (2.5e,f)

where R, D, A1 and A
1 /2 depend on the coordinates ea only.

*Throughout this text, we use the usual summation convention over

repeated indices. Greek indices have the range (1,2) and Latin indices
have the range (1,2,3).

A-5
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Let P, bounded by the closed curve 8P, denote the region occupied

by an arbitrary material portion of the surface c in the present

configuration and let v be the unit outward normal to 8P. Using the

notation* of [71 and referring to the present configuration, we define

the following quantities: the positive mass density (mass per unit area

of P) p - p(eM,t); the contact force n - n(G ,t; v) and the contact

director couple m m m( t; v), each per unit length of the curve 8P;

the specific (per unit mass of P) assigned force f m f(a ,t) and

specific assigned director couple I m 1(9 t); the intrinsic director

couple k - k(e9,t) per unit area of P; the inertia coefficients y

y1 (9a) and y2 m y2(0a) which are independent of time; the specific

entropies r - i8(,t) and I - rj(O,t); the specific internal rates of

production of entropy & = 8(6t,t), d (,t) I t ) ; the

entropy fluxes k - k(Oa,t; v) and kI  k1 (ea,t; v) each per unit length

acting across the curve 8P; the specific external rates of supply of

entropy s - s(OM,t) and s1 - sl(ea,t); the specific internal energy

e - e(el,t); and the specific Helmholtz free energy j = 4(ea,t) = -

For the linear theory, it is convenient to introduce the displace-

ment vector u and director displacement 6 by the equations

r - R + u , d - P + 6 • (2.6a,b)

If, in the reference configuration, the shell is free of assigned fields

and contact forces and director couples, then for the linear theory we

assume that in the present configuration, the displacements u, 6 and the

temperatures (0 - 0) and * are of ordert c(O < e << 1) and that

quadratic terms in these quantities may be neglected relative to linear

--~ *This notation differs from that used in [1,41.

tThe temporary use of this symbol for the small parameter should not be

confused with the use of the same symbol elsewhere for the internal
energy.

A-6
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terms. With this background, we record [11 expressions for the

kinematic quantities A a , B MO, Ai., and for the strains e, DY, 7 Ki in

the forms

A -A e A , B -A a A 3  , A *D (2.7a,b,c)

e "L (A. u + A u,) (2.7d)

• TA • + -*u ', 3 "A * 8 - (D * A(%)(A 3  • ii) , (2.7e,f)

(2.7g,h)

where for the linear theory all tensor quantities are referred to the

base vectors A

With suitable continuity assumptions, it can be shown that [1,41

n-Na V m = M V (2.8a,b)

k"w -p Va , k " Li V - P1 V( (2.8c,d)

where v - v * A are the components of the normal vector v and where

N a aa p -a
N, H, £, and LE are independent of v. Further, with reference to the

energy equation, the specific external rates of heat supply r and r,;

and the heat flux vectors q and !11 are defined by

r - Os , r 1 -M s1  , q - Op , q I * 1  * (2.9a,b,c,d)

Now the local forms of the basic equations may be recorded as

1/2 1/2
ppa p0 A > 0 , (2.10a)

*( + y * 1 + (A1/2 a (2.10b)

A-7
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X(y' ;+ y' X= - A"' k+ (A"'MO) =  (2.10c)

EEt

X1 X(s + (A 1/2 /a (2.10d)

- Vs + ) - (A ) ,a (2.1Oe)

where po is the reference value of p. Equation (2.10a) represents

conservation of mass, (2.10b) represents the balance of linear momentum,

(2.lOc) represents the balance of director momentum, and (2.10d,e)

represent balances of entropy. Referring the quantities N , k, M to

the base vectors A, we may write*

a a ia
N W -N A1  , k-k A

i  , M - M A (2.lla,b,c)

Using these definitions, the results of the balance of angular momentum

become [1]

N3a 3 ;' - 3o Do - a M" 3(.1a

N -.D 3k - k + a - a , (2.12b)

where tensor quantities with superscripts are contravariant or mixed

tensor quantities referred to A1 and A

Using appropriate constitutive equations for an -.lastic material

and demanding that the balance of energy be identically satisfied for

- all processes, it can be shown [4] that

4P k P Mi  84(2.13a,bc)
N' POobe 1a 0 y0 cia

84- 81 (2.13d,e)

*This notation is consistent with [7] but differs from that used in
6~ [1,4| •
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and that

Po(e + 0& ) + -P + .
°  o , (2.14)

where for the linear theory, we note that p can be replaced by po in

expressions of the type (2.13) and (2.14).

Specifically, for an inhomogeneous, anisotropic shell we assume

that

2 p 2 p- 2 oY3 (0- ) - 2 C4 O e (e- )

(2.15a)
- 1 K 2 2 )2 - 2 15 e

5 ao 03(o-2 0-4$ 2

2 p C1Y6 e, ey6 + a4(y3)
2 + C2 Y K Iy6

(2.15b)
16,+ c 1o Y Y1 + c 1 ao .K 1 + 2 C;1 ap 3 e

6 , - 7 1,

P 0 + C'1o + 2 (2.15e)

0 6c a e 0 7 a,2

PO E1 = PO i1 = - b 2 (2.15f)

where the quantities

C (N - 1,2) , C (N - 1,2,... , (2.16ab)

a 4 ' 0 0 3 04 05 , b2  ,b 3  , (2.16c)

are functions of the variables

V {Om * A ,o B ,o D Aim } (2.17)

A-9
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and the tensors (2.16a,b) satisfy the symmetry restrictions

i C Or-- I 
6  = , (2.18a)

I 1 1 1

C2  C 2 S % -C(N - 1-4, 6-7) . (2.18b,c)

The forms of the constitutive equations (2.15) are chosen to be similar

to those used in the linearized theory [41, but with appropriate

generalizations to allow for anisotropic, inhomogeneous response and to

satisfy the reduced energy equation (2.14) without approximation.

Specifically, equations (2.15c-f) satisfy the nonlinear form of the

reduced energy equation (2.14), with po replaced by p in each of the
°.'2

expressions. In particular, we note from (2.15e) that & is of order e

and therefore may be neglected in equation (2.10d). Furthermore, weO

note that the constitutive equations (2.15) automatically satisfy

restrictions for modeling a shell that has symmetric response about its

reference surface [1, Sec. 13 y]. Now, with the help of the restric-

tions (2.13), (2.18) and the constitutive equations (2.15), we conclude

that

+C . C aP16 e - C4 (e 
- @) , (2.19a)

k = Cy , k3 =  + eM - (6 - ) (2.19b,c)

!-'V (2.19f,g)

2 p 0  = 2 p 04,1 + 2 0 Y3 + 2 C4 e + 0e2 0 (2.19h)

:'.., Finally, we recall [41 that for such an elastic shell the only

nontrivial statements of the second law of thermodynamics take the forms
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* 1 + "  + 2 l" lt O , (2.20a)

e(t) - 1 > 0 whenever e(t) - 1 > 0 . (2.20b)

The statement (2.20a) corresponds to the classical heat conduction

inequality and is assumed valid for all equilibrium displacement and

temperature fields. Further, the statement (2.20b) is assumed valid

when the Cosserat surface is at rest and the three-dimensional tempera-

ture field is spatially uniform so that e - 0(t), * - 0. In (2.20b), £1

and 81 correspond to the internal energy and uniform temperature of the

shell during some period of time up to tI when the shell has been at

rest and in thermal equilibrium.

3. Boundary and Initial Conditions

This theory, which is developed by direct approach, may be brought

into a one-to-one correspondence with the three-dimensional theory by
,

assuming that the position vector of a point in the shell and the

temperature field 9* admit the representations.

P. * M ,e3,t) _ E(),,t) + 9 d(e',t) , (3.1a)

* * 3 3 a6 - 9*(9,o ,t) - e(e,t) + e *(8 ,t) , (3.lb)

where 03 is a coordinate through the thickness of the shell. Without

loss in generality, we may define the top surface FP+ of the shell by
3 . h/2, where h is a constant having the dimensions of length; then we+++

may write the displacement u and temperature difference ( + - ®) on 6P+

by

•-"- h g+ h+i - + h 6 , ( - ®) -(9- @) + 0 * (3.2a,b)

3
Similarly, we may define the bottom surface 3P- of the shell by 03 -

-h/2 and write the displacement u and temperature difference (B -

on 8P- by

A-11
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h h
u =u-- o , (e -®) =(8 - ® -- A . (3.3a,b)

In this regard, we note that the specification that the major surfaces

of the shell are defined by 03 . + h/2, where h is constant, does not

restrict the theory to that associated with a shell of uniform thickness;

this is because the director D in the reference configuration may be

specified as a function of ea-

With the help of (2.12) and the constitutive equations (2.15c,d,f),

(2.19a-g) and the strain-displacement relations (2.7), equations (2.10),

with - 0, represent a system of equations to determine the unknowns

* u, i, 6 , . These equations must be solved subject to certain initial

and boundary conditions. Here, we define the initial conditions at each

point of the region P by specifying

0 00 0
u = i

) f 3.abcd

- (e) at t - t . (3.4e,f)

where u , v 6,o wo o *o are specified functions of e9 only. Mixed*

boundary conditions at each point s of the boundary 8P may be defined

by specifying either:

n(s,t) or u u(s,t) (3.5a,b)

rnm - r(s,t) or 6 = 6(s,t) , (3.5c,d)

k - k(s,t) or 9 - e(s,t) , (3.5e,f)
V,

W7 Mixed-mixed boundary conditions may be specified but are not

considered explicitly.

z% **The temporary use of the symbol s for a point on P should not be

confused with the use of the same symbol elsewhere for the external
entropy supply.
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k1 .k 1 (st) or * = *(s,t) , for t e[t o , O) (3.5g,h)

More general boundary conditions than (3.5), which include mechanical

contact with a linear elastic media or thermal radiation, ray be written

at each point s of 6P in the generalized form*

n + B(s) u + C(s,t) - 0 , m + B (s) 6 + C (s,t) - 0 , (3.6a,b)

k - B(s,t)(O - @) + C(s,t) - 0 , k - B (s,t) * + C (s,t) - 0

(3.6c,d)

where B and B are assumed to be continuous symmetric three-dimensional

tensor functions of s and are independent of time; B and B1 are

continuous scalar functions of (s,t); C and C are continuous vector

functions of (s,t); and C and C1 are continuous scalar functions of

(s,t). For later convenience, we define the scalars

1 1
J I - u • B u , J - 6 * B 6 (3.7a,b)
1 2- - 2 2- -1

A boundary condition of the type (3.5a) can be obtained trivially from

(3.6a) by setting B 0 0, and C = - n(s,t), and a boundary condition of

the type (3.5b) can be obtained from (3.6b) by setting the tensor B equal

to a scalar b times the identity tensor I(B - b I) and C = - b u(s,t),

and then taking the limit as b approaches infinity.

Recall from [41 that the assigned fields f, 1, s, and a, include

contributions from both the effects of three-dimensional body force and

external entropy supply as well as from the effects of surface tractions

and entropy flux on the major surfaces of the shell. In view of the

specification 03 .- h/2 defining the major surfaces, we may write these

assigned fields in the forms

*A condition of the type (3.6c) has previously been considered for the

three-dimensional theory r8, Sec. 5.7].
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- 1/24 -+-+
Xf - + A (b t + t) , (3.8a)

u - x~i+ A 12(1) (b+ t +-b -t) (3.8b)

- 12 ++ - -

Xe -Xe - A 1/2(b - k+ + b- k-) (3.8c)

1/2h + +
XSl X - A (j)(b k+ -bk) , (3.8d)

where f - , s are considered to be specified assigned fields

associated with the three-dimensional body force and external supply of

entropy, b;+ and b- are positive scalar functions of the variables (2.17)
++

and are independent of time, t is the traction vector and k+ is the

entropy flux on the major surface VP+, and t is the traction vector and

k- is the entropy flux on the major surface 6P-. To allow mechanical

contact of the major surfaces with an elastic media and to allow thermal

radiation, we assume that at each point of* bP+

+ +4+ + 4- 4- +

k++ R u + + C -B + - ) + + C 0 (3.9a,b)

and at each point of OP

t + - u - - , k -B (0- ) + C- 0 , (3.lOna,b)

where B and B- are continuous, symmetric, three-dimensional second

order tensor functions of the variables V in (2.17) and are independent

of time; C+ and C are continuous vector functions of the variables

(V,t); and B+ , B, C+ , C are continuous scalar functions of the

variables (V,t). For later convenience, we define the scalars

.Note that the range of the convected coordinates 00 on the major

surfaces 3P+ and bP- is the same as that on the reference surface P of
the Cosserat surface.
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+-I + +1--
J -u u '• B u . (3.11a,b)

3 2 - ~ 42 -

Depending on the nature of the problem to be considered, the quantities

t , t-, k, k-, ii, u- ,, are either specified or to be determined

by the field equations. For example, if we were to consider a slightly

more general boundary condition of the type (3.9a), which specified the

tangential components of t+ and the normal component ofu then the+ +

normal component of t+ and the tangential components of u would be

determined by the field equations. This is similar to the use of such

quantities in the theory of laminated composite plates [9].

4. A Uniqueness Theorem

We now state the following uniqueness theorem: Let u, 6, 0, * be
displacements and temperature fields that satisfy the above-mentioned

linear field equations, constitutive equations, and statement of the

second law of thermodynamics on P x [to, '), and satisfy the initial

conditions on P at t - to, the boundary conditions on 6P x [to, Cc),

conditions of the type (3.9) on 6P+ x [to, i1 and (3.10) on 6P- x [to, i1,

for prescribed values of the assigned force f, director couple 1, and

external supplies of entropy s and sI . Then, provided the specific

kinetic energy K, defined by

1 1 2
K-Y(v,() ( + 2 yv • + y w w) , (4.1)

is positive definite, the specific heats P3 and 04 in (2.15a) are

positive scalars, the portion of the Helmholtz free energy $j in (2.15b)

is positive semi-definite, and the scalars Jl' J21 J3 J4 ' B, BI, B+, B_

in (3.6), (3.7), (3.9)-(3.11) are positive semi-definite, there exists

at most one set of functions u, 6, 8, 0 that satisfies the strain-

displacement relations (2.8), the field equations (2.10) (with = 0 in

2.10d) and (2.12), the constitutive equations (2.15) and (2.1q), the

restriction (2.20a), initial conditions (3.4), boundary conditions

(3.6), and conditions (3.9) and (3.10), are of class C1 on 6P x [to, i),

and are of class C2 on P x [to, -). For convenience, the restrictions

A-15
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stated above may be written in the mathematical forms*

y 2 > I > 0 , 3 >40 ) 0 0 , (4.2a,b,c,d)

J >0 , J2 > , J3 > ; J4 >0 (4.2e,f,g,h)

B > 0 , B 0 B+>0 B > 0 .(4.2i,j,k,)

Apart from the discussion of the generalized boundary conditions,

our method of proof is nearly identical to that used in Reference [6].

Specifically, we assume the existence of two different solutions of the

above-stated initial, mixed boundary-value problem, form the difference

solution, and use a consequence of the field equations to prove that the

difference solution is the null solution. Let us denote the two

solutions by the sets of quantities

U - (u. , e, $,n, k, in, , 11, 1 £' - tt19 + - k+ , k-} (4.3a)

U, - .', et, 1, n, k ' , nil , 1, l' , t, k', k'-}

(4.3b)

and form the difference solution

U - U - U, (4.4)

It follows that the difference solution satisfies the following: the

field equations

W)MA (+t++bt +( (4.5a)

*The restriction (4.2b) is consistent with the condition (2.20b).
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l 2 .1/2,h ,+, /2( /2X(y + y W) - A )(b t t- b- t-) - A k+ (A M ) (4.5b)

1/2 ++ Al2dXT = -A (b+ i+ + b k) -(A' /2 p) (4.5c)

- - b - 1/2 ,
XTI A''()(b k k) (A ;a,(.d

m1

on P x [to, -), the restriction

PO + £  + £  ( 0 -< 0 (4.6)

on P x [to, -), the initial conditions

u = 0 * I-0 0 0 U 0 =0 (4.7a-f)

on P at t -to, the boundary conditions

n+Bu 0 , m + B 6 0 , (4.8a,b)

A A A A

k - B 0 0 , kI - B 0 , (4.8c,d)

- on 8P x [to, -,), the conditions

-+ +A + + +
t +B u -0 , -- 0 , (4.9a,b)

on 6P+ x [to, -), and the conditions

t +B u -0 , -B e -0 , (4.10a,b)

on 6P- x [to , -1.

Multiplying (4.5c) by e, (4.5d) by *, adding the results together,
integrating over the region P, using the divergence theorem and the

conditions (4.8c,d), (4.9b), and (4.10b), we obtain
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f Op( , + )da fP(Po *t + - A + p °
*l

)d O

+ 2 2
-fp[bB( ) + b B- (0-) ]do

, - 8; + B ;2 )ds , (4.11)

where da is the area element on P and ds is the arc length on 8P. Taking
AA

the inner product of (4.5a) with v, (4.5b) with w, adding the results

together, integrating over the region P, using the divergence theorem and

the conditions (4.8a,b), (4.9a), and (4.10a), we deduce the expression

? = Poo I + I I0)do (4.12)

where

A"A 1 I2 1 2 b+  - A

'E fP [Po(l + K) + T 03 e + T 04 3 b 4.d

+ f8p(Jl + J2)ds , (4.13a)

3 = (em , , K K K(v, w) , - 31 (u) , (4.13b-d)

12- J2 (8) . = J3(u - J4 (u (4.13e,f,g)

and where the functions f'1, X, J1 - J4, are defined by (2.15b), (4.1),

(3.7), and (3.11), respectively. Now from (4.1l)-(4.13) and the

restrictions (4.2), we realize that E > 0 and E < 0. Using the initial

conditions (4.7), we obtain the result that E = 0 for all time t c[to, -)

and therefore

v 0 , w 0 , e , *0 . (4.14a,b,c,d)

Integrating (4.14a,b) and using the initial condition (4.7), we have

u = 0  
, = 0 (4.15a,b)

A-18

... ,-• .. , . . ,% . , . . .., .. , .. ,, .... ... ,- ,... ,,.-,. . ,.



* Finally, substituting (4.14c,d) and (4.15a,b) into the conditions (4.9),

(4.10), we conclude that

A+ - i i-
t - 0 , t- 0 , k - , k -0 (4.16a,b,c,d)

which completes the proof.

To prove uniqueness for thermoelastic statics, we need slightly

stronger conditions than (2.20a) and (4.2d). Specifically, we retain

the restrictions (4.2e-1) and assume that +1 is positive definite and

that the expression on the left-hand side of (2.20a) is negative

definite so that

> 0 , Po  " + " < 0 (4.17a,b)

. where @I in (4.17a) vanishes only when the mechanical fields ea, y1,

Kia vanish and (4.17b) vanishes only when the thermal fields a, *.
,, vanish. Furthermore, we require the temperature e to be specified

on at least one point on 1the boundary of the shell. This can be done by

specifying 0 on 8P, 6+ on 6P+ , or 0- on 6P-.

Now, for thermoelastic statics the thermal equations (4.5c,d) are

uncoupled from the mechanical equations (4.5a,b) and the expression

(4.11) can be derived with the left hand side vanishing. It follows

that

AAA

PO # +  " +  E1 " 1 0 ,(4.18)

from which we conclude that

4o , n-o . (4.19a,b)

Recall from (2.15f) that "

A-19

6 ' 'e ej ; "-"-" " 4" € " ."'"" ." ' ": " "., """"'".. ."' "" " ' ""



-- - .. 7 . . . -, . ., . g wfl u: : - W1r . - ~wWRTWV9M .- 7- 721F

Integrating (4.19a) and using the specification of e at a point of the

boundary of the shell, we have

e - . (4.20)

Substituting (4.19b) and (4.20) into the conditions (4.9b) and (4.lOb),

we deduce that

k - 0 , k - 0 , (4.21a,b)

which completes the proof for the thermal fields. In view of the

results (4.19b) and (4.20), we may take the inner product of the

equilibrium form of equations (4.5a) and (4.5b) with u and 8, respec-

tively, and derive the expression

fP (Po . + b  J3 
+ b J 4 )da + f (J1 + J2 )ds -0 (4.22)

It follows that - 0 so that

e o - 0 , Yi - 0 , Kia 0 • (4.23a,b,c)

Hence, the displacements are unique to within a linear superposed rigid

body displacement. If this arbitrariness is removed, then the displace-

ments will be unique

u-0 , 8 - 0 (4.24a,b)

and from the conditions (4.9a) and (4.10a), we can conclude that

t - 0 , t - 0 , (4.25a,b)

IT 1which completes the proof for the mechanical fields.
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A NONLINEAR CONSTRAINED THEORY OF SHELLS THAT
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Introduction

Within the context of theories of deformable bodies, a constrained

material is a material that can experience only a restricted class of

motions. Various constrained theories of shells have been developed

mainly because the system of equations characterizing a constrained

theory is simpler than that characterizing the general theory. For

shells, it is comon to develop constrained theories that exclude one or

both of the following two types of deformations: (a) normal extension

and (b) tangential shear deformation. The terminology normal extension

and tangential shear deformation is used instead of the usual termi-

nology "transverse normal strain," and "transverse shear deformation"

because it is more descriptive when considering nonlinear deformation of

a shell as opposed to linear deformation of a plate.

*To discuss constrained theories of shells of the type considered

here, it is particularly convenient to model the shell as a Cosserat

surface [1]. Although various restricted or constrained theories of

shells [1, Sec. 10; 2,3,4] have been developed, we choose to focus

attention on three constrained theories. For constrained theory I, we

exclude both deformations (a) and (b) so that a material fiber that is

initially normal to the undeformed reference surface of the shell

remains normal to the deformed reference surface and has constant

length. A nonlinear theory of this type has been developed as a

restricted theory (1, Sec. 10], and it has been observed that it reduces

to the classical linear Kirchhoff-Love plate theory. For constrained

theory II, we exclude only deformation (b) so that a material fiber that

is initially normal to the undeformed reference surface of the shell

remains normal to the deformed reference surface, but is allowed to

extend or contract in length. A nonlinear theory of this type has also

been developed [2]. For constrained theory 111, we exclude only

deformation (a) so that a material fiber that is initially normal to the

undeformed reference surface of the shell is allowed to deform away from

the normal to the deformed reference surface, but the component of the

material fiber normal to the deformed reference surface remains constant.
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Although a theory of this type can be reduced to a linearized theory of

a plate that includes "transverse" shear deformation [51, a nonlinear

version of this theory does not appear to have been previously developed.

Our purpose here is to develop a nonlinear version of constrained

theory III. Because the constraint associated with this theory is

mechanical in nature, we will confine attention to the purely mechanical

theory. In the following sections, we record the basic equations and

discuss the constraint and constraint response associated with theory

III. Next, the boundary conditions are discussed, with a few comments

on the linear theory, and finally the initial conditions are stated.

Basic Equations

In this section, we use the notation in [2) and briefly record the

basic equations appropriate for a constrained version of the theory of a

Cosserat surface. For a complete discussion of this theory, we refer

the reader to (1,61. Let the material points of the Cosserat surface C

be identified by means of a system of convected coordinates ea(a - 1,2)

and let the two-dimensional region occupied by the material surface in

the present configuration at time t be denoted by c. Further, with

reference to the present configuration, let the vector valued function

r define the position of a material point of C and at each such point

define the vector valued function d, called the director. Then, a

motion of the Cosserat surface is defined by

r = -(G ,t) - d = (8='t) r9 2 d] > 0 (la,b,c)

where the tangent vectors a and the unit normal vector a 3 are defined

by

A thermomechanical theory of the type [6) could be developed by
appropriately modifying the constitutive equations.
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a - , a *a - 0*a - ,1 a'- ~ >0 , a3  
[a a

8ea

(2a,b,c,d)

The velocity v and director velocity w are defined by

Wv , wd , (3a,b)

where a superposed dot denotes material differentiation holding Ga

fixed.

Tn the reference configuration, the various kinematic quantities

may be denoted by

r , a A , 1/2 1/2
r - R , d D DA 3  a A , (4a,b,c,d)

At /2

where R, D, A1 , A depend on the coordinates Oa only. The

specification (4b) is made without loss in generality. For later

convenience, we recall f1] the kinematic definitions

a a * , d -a. . d- (5a,b,c)

e., , (aa - a) , yi di - ja - - A (5d,e,f)

b -a ' !,1 * !3 ' (5g)

where A a, Di, A1a, B a are the reference values of a(, di, Xi b ,

respectively; e , Y,, K,, are strains measured relative to the

reference configuration; and a comma denotes partial differentiation

with respect to Ga .

*Throughout this text, Greek indices have the range (1,2) and Latin

indices have the range (1,2,3).
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Let P, bounded by the closed curve bP, denote the region occupied

by an arbitrary material portion of the surface c in the present

configuration and let v be the unit outward normal to 6P. Using the

notation* of [21 and referring to the present configuration, we define

the following quantities: the mass density (mass per unit area of P)

p - p(8 ,t); the contact force n = n(6O ,t; v) and the contact director

couple m - m(e ,t; v), each per unit length of the curve aP; the

specific (per unit mass of P) assigned force f = f(O ,t) and specific

assigned director couple 1 - 1(et); the intrinsic director couple

k - k(OM,t) per unit area of P; and the inertia coefficients yl - yl(e )

and y2 . y 2 (), which are independent of time. With suitable continuity

assumptions, it can be shown [11 that

n - N a V ,m M v , v = a * v , (6a,b,c)

where Na and M are independent of v. Referring all tensor quantities

to base vectors a1, we may write**

a icr i cx icN kN- k i M a (7a,b,c)- ,l" , "

where the usual summation convention is used.

Coupled thermomechanical constraints for a three-dimensional

continuum have been previously discussed within the context of more

classical thermodynamics [71 as well as within the context of recent

developments [8]. Further, a rather general discussion of purely

mechanical constraints for the theory of a Cosserat surface is contained

*This notation differs from that used in [1,61. In particular, we note

that the quantities a, X, I defined here, correspond,

respectively to J, , j in [1,6].

The notations used here for Na and e are consistent with

those of [21, but differ from the notation n' N" ai and i -M
i Ai

used in [1,61.
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in [9]. In these works, a constrained material is characterized by a

set of constraint equations that restrict various kinematical quantities

(deformation and temperature fields) as well as associated constraint

responses that introduce a certain arbitrariness in the kinetic

quantities.

For constrained theory III, we need introduce only a single

constraint, which excludes normal extension and is characterized by

d a -3  A - n (Y 3 wO , y3 =O) (8)
d*

Following previous works (6-8], we assume that the kinetic quantities

k , Mi are completely determined by constitutive equations and

that k separates into two additive parts: one part, denoted by k ,is

determined by a constitutive equation; and the other part, k3, is an

arbitrary function of (6a,t), independent of strain rates, which is

further assumed to be workless. Thus, we assume that

k 3  k +k , k 3  0 • (9a,b)

In view of the constraint (8), the director d may be expressed in the

form

d +D a . (10)

It is now convenient to record [1,2] the local forms of the basic

equations of motion as:

a 1/2 A1/2=p 0  (lla)

a + Nocpi1 -30 a

P 0 N b 0 0 pf + N3 801 + Na ba -0 , (lib,c)

•The quantity ;PO will be defined presently.
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p -a + -M3I b = 0 , (lid)

-3 . 3 j3 + M30 + Mao b (lie)k -p - +M +M

where

Na = NOa = Nap - MO Xar - da(p i 8 + Maal - M3a bp) (12a)
ar a

N3a 3 ~a + Mao~ 3+Ma b) )3 30a -X
N3  d - M b da(p + M + Ma b )+ X a M" _ 0a M'

(12b)

and where f and I are defined using the vectors a which are the

reciprocals of a , such that

YI Y2,
*" il ~* 1. ii i 1 2•

f= " (f -v- -y ') , a • ( - y v - y ) . (13a,b)

In (la) po is the reference value of the mass density p. Also, in (11)

and (12) a bar denotes covariant differentiation with respect to the

metric aa. Equation (Ila) represents conservation of mass, equations

*. (1lb,c) represent the balance of linear momentum, equations (lid,e)

represent the balance of director momentum, and equations (12a,b)

represent the balance of angular momentum.

Once appropriate constitutive equations are specified for the

kinetic quantities

ka Miak , (14)

the six equations (lla-d) may be used to determine the six unknowns

(p, r, da} . (15)

For an arbitrary value of k equation (lie) may be satisfied by an

appropriate specification of-k . Now, equations (llb-d) must be solved

B-7
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subject to certain boundary and initial conditions, which are discussed

in the next section.

Boundary and Initial Conditions

A rather detailed discussion of boundary conditions for constrained

theories I and IT is included in [1, Sec. 15] and [2], respectively.

Basically, we follow the discussion in [1] and recall [2] that the

boundary integral appearing in the energy equation takes the form

f (n +m w)ds= f (ni vi +m wi)ds , (16)

where ds is the elemental arclength of 6P and where

i i ia i i ia
n -a •n N v , i -a •m M v (17a,b,c)

v-a *v , w w a . (17d,e)

Recalling [I], that an arbitrary function F - F(ea,t) may be expressed

in terms of its normal and tangential derivatives 6F/bv and F/as,

respectively, we may integrate (16) by parts, assume continuity on aP,

and use (10) to rewrite (16) in the form

fp i(vi  + MCa- v oao VD3v
ap a a v a a

3v
+ m3 (do vB !- ] (18)

where Pi are given by

P [na + mo(d X X - D b ) + m 3 do b'] + - (mo d x) (19a)

* 3 3 da

P3 -(n 3 + mo da b) +_ [(m 8 D -)] , (19b)

and where the unit tangent vector X to 6P and the Christoffel symbol

are defined by
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X-a 3 x v , ra . (20a,b)

It is clear from (18) that at each point of 6P, we must specify either

the kinetic variables (pi, mi) or their associated kinematic variables

that are written in parentheses in (18). Thus, for the nonlinear

constrained theory III, we must specify six boundary conditions at each

point of 8P. However, for a theory that is linearized about the

reference configuration, the quantities pi, mi, da, vi are small and of

order e(o < e << 1) so that the term in (18) associated with m3 is

negligible compared to the other terms. Thus, for the linearized theory

the number of boundary conditions reduces to five.

To see that the terms in (18) associated with bending of a plate

are consistent with those discussed in [5], we note that for the linear

theory of a plate
4

pa n ,p3 . n3 +-L (m, X D) , (21a,b)
as a

v3 ) + dv 3 (2c
- D v3 ,)a - (a - D 8V) + (d - D , (21c)

d X "d , d v d , (21d,e)

where we have introduced the temporary notation d. and dv, respectively,

for the tangential and normal components of d relative to the curve 6P.

Thus, for a plate, (18) may be rewritten as

f [n' vi ' (ma X D va) + Ma -D a 6v - D v -v--)]ds (22)
a1 P a a v)+m d as aV

Integrating the second term in (22) and using continuity, we may rewrite

(22) in the form

~3

f [(n + ()(v * X) ) + n v
81 -v( v)+v 3
+( X)(As - vL3) + (Z • v)(A - D L3)]ds (23)

B-9
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N. Next, recall [1] that the Cosserat theory may be brought into a one-to-

one correspondence with the three-dimensional theory if the position

vector . locating points in the shell admics the representation

* 3-. r + 0 d (24)

where 03 is the convected coordinate through the thickness of the shell.

Using the notation u' and u' defined in [5), it follows from (21c) and

(24) that w • X and w * v correspond to u' and u' respectively, and

that the last three terms in (23) correspond to a dynamical version of

the boundary integral in (5], where we note that D - 1 characterizes a

shell of constant thickness.

Finally, for a dynamical problem it is necessary to specify initial

conditions of the form

v-, - d- 5(0 , -( )  , for t - o

(25a,b,cd)

where E, V, d, w are specified functions of Oa only and d are

consistent with the constrained form (10) of the director.
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ABSTRACT

In this paper we model a shell composed of a linear elastic,

homogeneous, isotropic material as a Cosserat surface. Specific

attention is focused on the determination of certain thermal and

mechanical constitutive coefficients, which were previously determined

by integrating three-dimensional constitutive equations. Here, we

determine these coefficients by comparing Cosserat solutions with exact

three-dimensional solutions. This comparison suggests values for one of

the thermal coefficients and two of the mechanical coefficients that are

different from those previously proposed [1,2].
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1. Introduction

Classical developments of shell theory usually start with a

complete three-dimensional description of a shell-like body including

constitutive equations. Shell equations that are functions of two

space-variables and time are then developed by introducing approxima-

tions and either integrating the equations of motion through the

thickness of the shell or by using an integral form of a variational

principle. More recently, it has become common to develop shell

equations by a direct approach in which the shell is modeled as a

Cosserat surface [1]. This latter approach has the distinct advantage

over the classical approach that equations can be developed for shells

with arbitrary constitutive properties. More specifically, the

discussion of constitutive equations within the context of the Cosserat

theory is very similar to that in the three-dimensional theory.

Constitutive coefficients are determined by comparing the predictions of

shell theory with experimental data or exact solutions of the three-

dimensional equations that have already been shown to accurately predict

experimental data.

Until recently, the Cosserat theory admitted any finite number of

directors to provide information about the variation of mechanical

variables through the thickness of the shell but only admitted a single

temperature field to model the average temperature in the shell. Recent

advances in thermodynamics have allowed the Cosserat theory to be

generalized to admit any finite number of temperature fields that

provide information about the variation of temperature through the

thickness of the shell [21. An important special case of the general

theory is one that admits a single director and two temperature fields.

In [21 specific constitutive equations are developed for a plate

composed of a linear elastic, homogeneous, isotropic material. Values

* •for most of the mechanical constitutive coefficients and for some of the

thermal coefficients have been determined by comparing predictions of

the Cosserat theory with exact solutions of the three-dimensional

equations [1). Values for the mechanical constitutive coefficients

vk
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associated with tangential shear deformation (more commonly referred to

as transverse shear deformation) and the new thermal coefficients were

determined by integrating three-dimensional constitutive equations

[1,2]. Even though a one-to-one correspondence between the three-

dimensional theory and the Cosserat theory may be established, these two

methods of determining constitutive coefficients do not always yield the

same results (see additional comments in Sections 4 and 5).

The objective of this paper is to show that the new thermal

coefficients and the mechanical coefficients associated with tangential

shear deformation may be determined by direct comparison with exact

three-dimensional solutions. In the following sections, we record the

basic equations valid for a shell composed of a linear elastic,

homogeneous, isotropic material. Next, we briefly recall [11 how most

of the mechanical coefficients were determined by comparison with exact

solutions. Then, we determine the new thermal coefficients by comparing

with simple solutions of the three-dimensional heat conduction equation

for a rigid plate. One of the thermal coefficients determined in this

manner has a value different from that proposed in [2]. Finally, we

determine the two mechanical coefficients associated with tangential

shear deformation by comparing with the exact solutions of simple shear

of a plate and twisting of a circular cylindrical shell. The values of

both of these coefficients determined in this manner are different from

those proposed in [1].

2. Basic Equations

_ Let the material points of the Cosserat surface C be identified by

means of a system of convected coordinate 01(a - 1,2) and let the two-

dimensional region of space occupied by the material surface in the

present configuration at time t be denoted by c. Further, let the

vector valued function Z define the position of a material point of the

surface C and at each such point define the vector valued function d,

called the director, and the two temperature fields 0 and $, each

referred to the present configuration. Then, a thermomechanical process

C-4

;. .... ,,:,.,: :.-.-.- -%. %€,,.:..- -,.-.,..,, .-.- -. ,., .-.-.. ,... .. .. ,.--,1 -,...,.-....,.-



of the Cosserat surface is defined by

- (e ,t) , d - d(eO,t) , a 2 d] > 0 , (2.1a,bc)

8 = ee ,t) , (a > 0) , 0 0 *(e,t) , (2.1d,e,f)

where the tangent vectors a and the unit normal vector a3 are defined

by

a0 * a [a/2 aa
-a a- - •3 3 3 1 , ~1 a2 a31 > 0

(2.2a,b,c,d)

and the condition (2.1c) ensures that the director is nowhere tangent to

c. The velocity y and director velocity L may be defined by

0S

v r , w=d , (2.3a,b)

where a superposed dot denotes time differentiation holding 8a fixed.

In the reference configuration, we assume that the shell has uniform

thickness h and is at uniform temperature 0o. Then, the reference values

of the various kinematic quantities may be denoted by*

R1/2 1/2

r 3 a Ai - A , (2.4a,b,c,d)

0= , 0 0 0 , (2.4e,f)
0

where R, Ai and A1/2 depend on the coordinates ea only.

Let P, bounded by the closed curve 8P, denote the region occupied

by an arbitrary material portion of the surface c in the present

*! *Throughout the text Creek indices have a range (1,2) and Latin indices

have a range (1,2,3).
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configuration and let v be the unit outward normal to ?P. Using the

notation* of [3] and referring to the present configuration, we define

the following quantities: the positive mass density (mass per unit area

of P) p - p(e ,t); the contact force n - n( at; V) and the contact
a

director couple m - m(e ,t; v), each per unit length of the curve 5P;

the specific (per unit mass of P) assigned force f = f(e at) and
a

specific assigned director couple 9 ,t); the intrinsic director

couple k - k(O ,t) per unit area of P; the inertia coefficients yl =

yl(a) and y2 _ y2(ei) which are independent of time; the specific

entropies -n - r (a ,t) and T1 M v1(ea,t); the specific internal rates of

production of entropy C - &(9 ,t), El M 8'(o t), and ZM - I(oat); the

entropy fluxes k - k(Oa,t; v) and k - k (81,t; v); the specific

external rates of supply of entropy s - s(eO,t) and sI - sl(Oa,t); the
a

* specific internal energy e - £(O ,t); and the specific Helmholtz free

energy 4#(0 0 = C

For the linear theory, it is convenient to introduce the displace-

ment vector u and director displacement A relative to the reference

configuration by the equations

r - R + u , d - D + 6 (2.5a,b)

We now assume that in the present configuration, the displacements u, 6

and the temperatures (e - e ) and 0 are of order** e(0 < e << 1) and
that quadratic terms in these quantities may be neglected relative to

linear terms. With this background, we record (1] expressions for the

kinematic quantities Aap, B a, Ai., and for the strains e a, Yi' 'ia in

the forms

*This notation differs from that used in [1,2].II' **The temporary use of this symbol for the small parameter should not be

confused with the use of the same symbol elsewhere for the internal
energy.
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A -= A a B aA *0 " A3 ' (2.6a,b)

A -= -B a , A U = 0 (2.6c,d,)

1

e I (u + U ) - B u3  (2.6e)

- 6 + u + BX u , (2.6f,g)
Ya 3,a a X ,Y

Cc p -BaY 3  , - 3 Y P3C+ B Y (2.6h,i)

po -u3 1 8 B B- B BX u3 + Y

(2.6j)

P3a =73,a (2.6k)

where for the linear theory all tensor quantities are referred to the
base vectors Ai. In (2.6) and through the text, we use the usual

summation convention over repeated indices; a comma denotes partial

differentiation with respect to Oa, and a bar denotes covariant

differentiation with respect to the metric Aa.

With suitable continuity assumptions, it can be shown that* [1,21

n - Na v = (N a A)v ,a m V (Mit Ai)v , (2.7a,b)

~a a ~

k v- p a , k1 - Li " v * p1 va , (2.7c,d)

where v a A a v are the components of the normal vector v and where

N , M , , and are independent of v. Further, with reference to the

energy equation, the specific external rates of heat supply r and r ,

and the heat flux vectors q and q are defined by

*The notation in (2.7a,b) is consistent with that in [3], but differs

from that in [1,21.
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r = e s , r1 - * sI  , - e , (2.8a,b,c,d)

Now the local forms of the basic equations may be recorded as

p a1/2 = po A1/ 2  (2.9a)

° BNN = 0 ,P , (2.9b,c)

PO I k +M to 0 N B - , p0  k - 3  +  Bp = 0- ,

(2.9d,e)

P P p Cc Po PO =  1 + -Pia (2.9f,g)

*where

-a 'oa- -Na +M" B NI i+M (2.lab)

and where

f A * (f- y V .t A, (I-y y , (2y2lab)

In (2.9) po is the reference value of p and in (2.11) A are the

reciprocal vectors of A Equation (2.9a) represents conservation of

mass, (2.9bc) represent the balance of linear momentum, (2.9d,e)

represent the balance of director momentum, (2.9f,g) represent balances

of entropy, and (2.10a,b) represent balance of angular momentum. These

equations must be supplemented by an energy eoation and constitutive

equations. It was shown in [21 that the energy equation for a linear

thermoelastic shell is satisfied provided that

-ao m  1 Mi  F1 (2.12a,b,c)POb k P byiP 1

, " -beI - • (2 12d,e)
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. Additional terms appear in the energy equation, but they are of higher

order and thus are neglected for the linear theory.

Now we confine attention to a thermoelastic that is isotropic in

its reference configuration and specify linear constitutive equations of

the form

2 p0o ( a, A' A Y6 + a2(A ay A0  + Aa6 Ay)]e A e y6

+ 4 (y 3 ) + a5
+ 6(A  A0 + A l]Kao K6

a + A 3 
A  a Y P + a8  

A p3a 30 + 2 a9 
A a e MY 3

- 2 0  3 ( -o- 2 1 A e (-0 22 A  1

*2 -2_
;- p3(02 2 8 e0) - 42 2 (2.13a)

p--a g , p--b 1 , (2.13b,c)

S0 ,Po ti Po 1 -b 2  ' (2.13de)

where the coefficients a1-a 81 9' P0-0 ao, big b in (2.13) are

a1 6 ' 08 59 ~0' 2in(.3 ar
constants and where the temperature gradients g and g are defined by

a
." A (2.14a,b)

. The constitutive assumption in (2.13a) is slightly different from that

[_ used in [11, with the main difference being that here $, is a function of

iia instead of the kinematic variable pia (see additional comments in

Section 5). It follows from (2.12) and (2.13) that

" "= [a, AaP A7 6 + '2 (A' A06 + A'6 A 7 ) ]e 6

+ a9 
A  03 1- A P( - o) (2.15a)

",q..

Y3. 0
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3
k.a3 A YO k a4 Y3 + a 9 A  e - 00 (9 - ) (2.15bc)

r. aoX AY6  AZ5 A6 Ct )1,ca
M a A A + a (A A + Ay 6 - 02 A * , (2.15d)

M = n8 A  C30 (2 .15e)

! PO n 00 Y3 + 0 1 A ao e o + 03 (8 0o + 05 ,(2.15f)

Po n - 02 A'v K +  4 (2.15g)

In general, these constitutive equations must be further restricted by

statements of the second law of thermodynamics [2]. For the thermo-

elastic shell considered here, these restrictions reduce to

a > I > , b2 > 0 > 0 . (2.16a,b,c,d)-j. 0 -- > -- 0-

Before closing this section, we recall [1,21 that this theory,

which is developed by direct approach, may be brought into a one-to-one

correspondence with the three-dimensional theory by assuming that the

position vector r of a point in the shell and the temperature field *

admit the representations

* ~ 3 3
r = r (9 ,3,t) r(O.,t) + 6 d(e ,t) , (2.17a)

"6 - (6 ,6 ,t) - O(6 ,t) + 63 (at) (2.17b)

where 03 is a coordinate through the thickness of the shell. For a

shell of constant thickness h, we may choose the reference surface of

the shell to be the middle surface and define the top surface aP+ of the

shell by 83 h/2 and the bottom surface 6P- by e -h/2. With reference

to the three-dimensional theory, we recall (2] the definitions

*Our use of the symbol &I for the base vector should not be confused
with the use of the same symbol for the temperature gradient in
(2.14b).
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ar 1/2
- ~$ ' i96 l 2a1>~ (2.l8a,b,c)

gi -9 (2.18d,e

where Ziand z£ are, respectively, the base vectors and their

4 reciprocals in the present configuration and where 61 is the Kronecker

symbol. We also recall (2] the following relationships for the linear

theory

.'h/2 1 12 3

x- f p 0 G de (2.19a)
-h/ 2

N h/2 * 13N
1,Xy N f p G (a ) d93  (N -1,2) ,(2.19b)

-h/2 *

-h/2 -

X i/ f *r 1/23 d 3 h B + -+ t, (2.19c)

h/2 * 1

h/2 * 12 3 3 h+ +-
U f /2 * d + -1)B k (2.19d)

-h/a 0

h/2 * 1/2 * 3 3

Xsl f p G s 6 dO (h + ) B_ k (2.19f)

*where p, f9 s are, respectively, the three-dimensional mass density

(mass per unit volume in the reference configuration), specific body

force, and specific rate of entropy supply; tand t are, respectively,

the surface tractions applied to the major surface aP4. and 6P-; k4. and
*1~-~k are, respectively, the entropy fluxes applied to the major surfaces

6+and aP; and Gd"- is the reference value of gl2 Tt follows from

(2.4), (2.17), and (2.18) that
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G1/2 1 A/2[l - 93 B+ )32 (1 B2 2 (220)
a ( 1  2  1  2

and from [2) that the functions B+ and B- take the values

i+ " A' /2[l h +2 2 _ B2 B )] (2.21a)

2
R -A l/2[ +_t B+ (B I B B 2 (2.21b)

2 a 4 12 1

Also, we note that for the linear theory the quantities e 0k and 0 k

represent, respectively, the heat fluxes measured positive for heat

f loving out of the surfaces aP+and aP-

3. Determination of Constitutive Coefficients

In this section, we mainly recall results that were obtained in [1]

for most of the mechanical constitutive coefficients. Confining

attention to a shell of uniform thickness h and uniform density p in

its reference configuration, we may substitute (2.20) into equations

(2.19a,b) to obtain the expressions

X- A 1/2 * A/2 h2  2 1 B 2B] (3.1a)
X A o h A)l + T2- (B1 B2 - B 2

Xy -(P hA 1 /2  h B (31b)

2 0 2 3

Xy (p hA X20( Bh2 + 3 (Bl 2 2 B1)] , (3.1c)
i:': '~ 1Y P I 2''[ 1 2  1 2l

which determine the reference density po and the inertia coefficients
1 1 2=. - , •

by y.

Values for most of the constitutive coefficients were obtained in

[11 by comparing results of the Cosserat theory with exact three-

dimensional results. Even though the constitutive equations (2.13) and

(2.15) are postulated for shells, it suffices to evaluate most of the

constitutive coefficients by considering solutions of plate problems.

By solving the isothermal problemn of a plate subjected to uniaxial

C-12
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stress (or resultant force) and that for a plate subjected to hydro-

static pressure it may be shown [11 that

a , a9 V(l - 2v C , h , (3.2a,b)
( l-2v) 2 2

= G 2) C , C Eh (3.2c,d)
(1 2) C - V2

where E is Young's modulus, v is Poisson's ratio, and p is one of

Lame's constants, all associated with the three-dimensional material.

Similarly, the isothermal problem of pure bending of a plate may be

solved to obtain the results

a5 M vB , a 6  2 v B , B Eh3  (3.3a,b,c)12(l - v )

The thermal coefficients and the remaining mechanical coefficients will

be determined in the next two sections.

4. Determination of the Thermal Coefficients

To determine the thermoelastic coefficients 00, 911 02' we follow

[1] and consider the problems of free thermal expansion of a plate and

free thermal bending to obtain
* 3*

M Eha a
00 01 :- 1 - 2v 1 02 - 12(1 - v) (4.1a,b)

where a is the coefficient of linear thermal expansion associated with

the three-dimensional material.

The remaining thermal coefficients were determined in [2] by direct

integration of the constitutive equations. Here, instead, we determine

these coefficients by comparison with exact solutions of a rigid heat

conducting plate. Specifically, we consider the problem of a plate that

is initially at uniform temperature 80 and that is subjected to a

uniform heat flux q+ on its top surface, zero heat flux on its bottom

surface, and no external supply of heat (s* - 0). The quantity q+ is

C-13
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taken to be positive when heat flows out of the plate. Using k+ - q+/o

and k- - 0, the solution of equations (2.9fg) may be written in the

form

1+(2 +b 2t)]

This Cosserat solution may be compared with the exact solution recorded

in [4, p. 112] by defining the average temperature 0 and the average
* avg

temperature gradient *avg in the direction normal to the plate's

surface. It follows that

9 * - If /2(8" - 9o)d93 M ° (.aeavg "o h° _h/ 2 0P oh

* h/2 p * c h 2
avg o f 0 2K 4.

h = h ( -2 O n-1 (2n - 1)

(4.3b)

where X is the thermal conductivity and c is the specific heat at zero

strain. For most practical purposes, we may retain only the first term

In the series in (4.3b) so that the Cosserat solution and the exact
solution have nearly the same form (note that 96/n 4  0.9855). Equating

these solutions, we obtain

h * c h po* c h

avg h 0h/ 02-)

b2 -- 3 4 (4.4a,b,c)

Next, we compare with exact steady state solutions for a rigid heat
conductor of the forms s ae and o* haeto2 , where a is a constant.

This comparison yields

3

Kh Kh
3

bo 0 r b 1 12 " (4.a,b)

0 0
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The last thermal coefficient 05 corresponds to the arbitrary constant

reference value of the entropy and therefore cannot be specified.

Apart from minor differences in sign, which are caused by our

constitutive assumption (2.13a), all of the values for the thermal

coefficients determined here are the same as those proposed in 12],

except that for 04. The value for 04 proposed in [21,

* 3

po 12 (4.6)
0

was obtained by the method of direct integration of the constitutive

equations instead of by the method of comparison with exact solutions.

Because we ultimately require the Cosserat theory to reproduce exact

*! results with as little error as possible, we adopt the latter approach

and specify 04 by (4.4c) instead of (4.6).

5. Determination of the Mechanical Coefficients a, and mA

The discussion of constitutive equations in [I] emphasized that in

general, the constitutive coefficients are not constants. In other

words, values that are obtained by comparing Cosserat solutions with

exact solutions of one class of problems may not be the same as values

obtained by considering another class of problems. For example, values

that predict accurate results for certain quantities in static problems

may be different from those that predict accurate results in dynamic
problems. Nevertheless, from a practical point of view we need to

specify values for the constitutive coefficients. By way of background,

we recall [1] that the coefficients a3 and a8 associated with tangential

shear deformation* have been specified by

*For a shell (Bf8 0) the coefficient ag relates M3a in (2.15e) to
tangential shea y (see 2.61).
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5 2 7 3
A or a3  M ph p8 1 -0  h (5.1a,bc)

The values (5.1a,c) can be motivated by assuming a form for the stress

distribution through the thickness of a plate and developing an approx-

imate expression for the strain energy function by integration [1,5].

However, the value (5.1b) may be obtained by comparing with a solution

for a vibrating plate [6]. Thus, we would expect that either of the

values (5.1a,b) for M3 (those values are very close to each other) would

be appropriate for dynamical problems. However, as was pointed out in

[11, the value (5.1c) for M8 has not been validated by comparison with

any exact solution. Here, we determine different values for a3 and a.

by comparing with exact solutions of two static problems.

" First, we determine a3 by considering the static isothermal problem

* of simple shear in the 01 - 0 3 plane of a plate in the absence of body

force ( - 0). For this problem, we specify + - ' A , -I

where T is the shear stress applied to the major surfaces of the plate.

It follows that the Cosserat solution is an exact solution if we specify

a3 = gh . (5.2)

A discussion of this result will be given at the end of this section.

Next, the coefficient a8 will be determined by considering the

static, isothermal problem of a circular cylindrical shell of radius R

and thickness h with its inner surface held fixed and its outer surface

rotated by an amount Kh (Figure C.1). Let Ai be an orthonormal

coordinate system with #l parallel to the circumferential tangent to the

shell and #3 parallel to the outward normal to the shell (Figure C.l).

Further, let r be the distance of a point from the symmetry axes of the
shell, u be the displacement in the ge direction, and t13 be the (1,3)

component of the Cauchy stress tij. Then the exact three-dimensional

-solution yields

* 3
r R + (5.3a)
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S 1 h * h2 R2
u (r) - 1 + TR) -1 [r-*- , (5.3b)

r

i* * h h2 R2

t 3(r) - t3 1(r*) - gi + - j) (r,)2 (5.3c)

where all other components of the displacement u* and stress tij vanish.
++

Thus, the displacements I& and l-, and traction vectors e and C- on the

top surface 8P+ and bottom surface 5P- respectively, are given by

U -u (R +t)e 1 -ihe 1  , el U u1(R - -)e 1 -0 , (5.4a,b)

tl +l ) ( e+ 1 t+  (5.4c)
" c13(R 2)1 (1 + hl

0*R~~h h •(.d
t tl3(R -Pe (1 + t,)K e, t- e (.d

-13 2I2 1.-l

r+

where t+ and t- are the values of the stress t13 on the top and bottom

surfaces, respectively. The solution ul(r*) is plotted in Figure C.A

for the thick-shell case where R - h. Notice that since u is nearly
*1

linear in r , we should expect the Cosserat solution to predict accurate

results even in the limit oF a thick shell.

Now, the geometry of a cylindrical shell of radius R is
characterized by

A R e, A e A e -A e A A -0 ,(5.5a,b,c,d)
-l 1  -2 -2 -3  3  -p ~

B R , all other B (5.5e,f)
11 alteB -

BI  - , all other BO -0 , (5.5g,h)
h R

where is the Christoffel symbol. Using (2.5), (2.17a) and (5.5), we

realize that the conditions (5.4a,b) yield

C-18
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+ h - h
u + +, -U h Kh e u - 0 (5.6a,b)

2- -1 ' -U i 22

Consistent with (5.6) we may take

1 hic 2 3 1 c 2 3
u M2 u -u -0 8 R 6 6 0 , (5.7a,b,c,d)

rR

so that

e -0 ( 1 3 (5.8a,b)

e a 0 , Y 2 3 =  0 K ao 0 K 32 = 0 . (5.8c,d,e,f)

It follows that the only nontrivial equations of equilibrium become

o(fI + 1 -0 , o- 1 +LM3 (5.9a,b)

where

p f1 - 1 + h) - t-(l - i)] ' (5.1oa)

0 - )(l +T + tT-)(l - (.lOb)

k = 1_ , -(8 -)(l _ h) . (5.10c,d)

Substituting (5.10) into (5.9) and comparing the result with (5.4), we

realize that the Cosserat equations will predict exact values for t+ and

t- if a3 and a8 satisfy the equation

a3 + 1" Lh • (5.11)

Now if we adopt the specification (5.2), we deduce that

a8  o . (5.12)
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We are now in a position to discuss the significance of the results

(5.2) and (5.12). Since the value of a3 given by (5.2) was obtained by

comparing with the exact solution of the static simple shear problem, it

follows that if 3were specified by (5.1a,b) instead of (5.2), the

Cosserat equations would necessarily predict incorrect results for

simple shear which would be undesirable. However, one could question

whether it is of prime importance for a shell theory to predict results

of simple shear--which requires surface tractions to be specified on the

major surfaces--when many applications of shell theory consider shells

with free major surfaces. In response to this question, we note that

two important problems of a plate with free major surfaces have been

solved for arbitrary values of a3. Problem A [1, Sec. 24] considers

* pure twist of a plate and problem B [7] considers pure bending of a

* plate with a circular hole. If the value [5.2] for a3 is adopted

instead of (5.1a), then it can be shown that the solution of problem A
" ;*is slightly improved and the solution of problem B is only slightly

modified with n being replaced by (6/5)1/2 r - 1.10 -n in the formulas in

[7).

It is also of interest to note that if we were to specify alterna-

tive constitutive equations by replacing Ki. in (2.13a) with Pil, then

for the example associated with Figure C.1, the quantity M3 1 would vanish

and equations (5.9) would again yield the result (5.2). With reference

to this same example, we observe that there is an inconsistency between

the specifications (5.1) and the result (5.11). In particular, it is

clear that if either (5.1a) or (5.1b) are substituted into (5.11), we

conclude that a8 is proportional to phR2, which is significantly

different than (5.1c).

In conclusion; it appears that for static problems it is better to

specify a3 by (5.2) instead of (5.1a,b) and a8 by (5.12) instead of

ri- (5.1c). This is because with this specification, the Cosserat theory

fpredicts accurate results for all four static problems considered in

this section without the inconsistency described above. However, if

comparison with the dynamic problem considered in [61 is of prime

C-20
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importance, then it is best to specify a, by (5.1b) instead of (5.2).

In conclusion, we recall the observation in [1) that the constitutive

coefficients for shell theory are not constants in the sense that the
best values for these coefficients may be problem dependent.
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ABSTRACT

This paper is concerned with analyzing heat conduction in rigid

shell-like bodies. The thermal equations of the theory of a Cosserat

surface are used to calculate the average (through-the-thickness)

temperature and temperature gradient directly. Specific attention is

focused on a conical shell. The conical shell is particularly interest-

ing because it has a converging geometry such that the shell near its

tip is "thick" even though the shell near its base may be "thin."

Generalized constitutive equations, which include certain geometrical

features of shells, are developed here in a consistent manner. These

* equations are tested by considering a number of problems of plates,

circular cylindrical shells, and spherical shells, and comparing the

results with exact solutions. In all cases, satisfactory results are

predicted even in the thick-shell limit. Finally, a problem of

transient heat conduction in a conical shell is solved. It is shown

that the thermal bending moment produced by the average temperature

gradient is quite severe near the tip and it attains its maximum value

in a relatively short time.

b
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1. Introduction

Most aerospace structures are compositions of structural components

that can be modeled as shell-like bodies. For various reasons, it is

desirable to determine the thermomechanical response of these shell-like

bodies to thermal and mechanical loads. Within the context of classical

linear shell theory, the temperature distribution influences the

mechanical response of the shell through the resultant thermal force and

resultant thermal moment. For an elastic shell, the thermal force is

related to the average (through-the-thickness) temperature and the

thermal moment is related to the average temperature gradient by

constitutive equations.

If the strain rate in a given problem is sufficiently small, then

V" the thermal and mechanical problems uncouple in the sense that the

* temperature field may be determined by solving equations for a rigid

- heat conductor. Then the resulting temperature field may be used to

calculate the thermal force and thermal moment, which provide thermal

loading for determining shell deformation.

In this paper, we confine attention to determining the temperature

distribution in a shell-like body that is treated as a rigid heat

conductor. Although the temperature distribution can be determined by

attempting to solve the three-dimensional heat conduction equation, this

approach has two major disadvantages. First, because the thermal loads

for shell theory depend only on the average temperature and temperature

gradient, much of the details calculated by this approach are not of

prime importance. Second, because the heat conduction equation admits

*separable solutions for only a limited number of geometries, it is

exceedingly difficult to obtain analytical solutions for many typical

shell geometries. This latter problem has been addressed in [11, where

equations are developed to calculate an approximate temperature

distribution in shells of revolution.

. We take a different approach and use thermal equations for shells

that have recently been developed [21 to predict the average temperature

and temperature gradient directly. These equations are based on

D-3
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modeling the shell-like body as a Cosserat surface. Details of this

theory may be found in [2,3]. Specifically, the objective of this paper

is to determine the average temperature and temperature gradient in a

conical shell (Figure D.1), which is a basic aerospace structure. The
conical shell is particularly interesting because it has a converging

geometry so tha the shell near its tip is necessarily "thick" even

though the shell near its base may be "thin." For this reason, it is

questionable whether any shell theory can accurately predict results for

the critical tip region. Here it is shown that with appropriate

constitutive equations, the Cosserat theory includes enough of the

geometry of the shell to predict relatively accurate results for the

conical shell.

It is not a trivial matter to develop equations for shells that

*0 produce reasonable results in the thick-shell limit. For example, we

recall that the equations in [I] were developed by writing the heat

conduction equation In a form appropriate for shells and then neglecting

quantities multiplied by higher powers of the ratio of the thickness to

radius of curvature. Even though these equations are more complicated

than the Cosserat equations in that details of the through-the-thickness

. temperature distribution are calculated, too much of the shell geometry

-".' has been neglected, and hence they predict inaccurate results in the

thick-shell limit. The predictions of the equations in [11 are compared

with the more accurate predictions of the Cosserat theory for the thick-

shell problems considered in Sections 4 and 5.

In the following sections, we discuss the basic equations of the

*i Cosserat theory and then solve a number of problems. To develop

confidence in the predictions of the Cosserat theory in the base region

of the conical shell, we solve various problems for a plate and compare

with exact solutions in [4]. These problems examine the effect of the

three types of boundary conditions on the major surfaces of the plate:

specified heat flux, specified temperature, and radiation. Next, to

develop confidence in the predictions of the theory in the tip region of

the conical shell, we use the same equations to solve specific problems

t:-"". ':':'2:D-4
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for a solid circular cylinder and a solid sphere, and compare the

results with exact solutions. Finally, after having developed

confidence In the predictions of the theory in both the tip and base

regions of the conical shell, we solve a specific heat conduction

problem for a conical shell.

2. Basic Equations

Let the material points of the Cosserat surface C be identified by

means of a system of convected coordinates 01(a - 1,2) and let the two-

dimensional region of space occupied by the material surface in the

present configuration at time t be denoted by c. Further, let the

vector valued function LC define the position of a material point of the

surface C and at each such point define the vector valued function 4,

called the director, and the two temperature fields 8 and *, each

referred to the present configuration. Then a thermomechanical process

of the Cosserat surface is defined by

-r=(8',t) , d = d(Ba,t) , [a1 a2 d] > 0 , (2.1a,b,c)

e e(et) (0 > 0) , 9 - *(eat) 9 (2.1d,e,f)

where the tangent vectors A and the unit normal vector A3 are defined

by

a br a~ -a3 -0 , a al 1/2. ta_ a = -a ,-a •- 3 = 3  -3 = -2 !  > 0,

88 (2.2a,b,c,d)

and the condition (2.1c) ensures that the director is nowhere tangent to

c. Also, in the above, 8 represents the average (through-the-thickness)

temperature in the shell and * represents the average temperature

gradient.
.. ..

In the reference configuration, we assume that the shell has

uniform thickness h and is at uniform temperature 00. Then, the
.1.'
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reference values of the various kinematic quantities may be denoted by

. 1/2 . 1/2

=3 -- - 1/ .a 1/A , (2.3a,bc,d)

e e , - 0 , (2.3ef)

where R, 61 and A1/2 depend on the coordinate Oa only. For the rigid

heat conductor considered here, there is no distinction between the

reference and the present configurations; hence equations (2.3a-d) hold

for all time. Further, all tensor quantities will be referred to the

base vectors 41 and their reciprocals 6i defined by

A. " A -61 '(2.4)

where 8iJ is the Kronecker symbol.

Let P, bounded by the closed curve 5P, denote the region occupied

by an arbitrary material portion of the surface c and let , be the unit

outward normal to 8P. Using the notation of [21, we define the follow-

ing quantities: the positive mass density (mass per unit area of P) in

the reference configuration po po(e a); the specific (per unit mass of

P) entropies r - r(91,t) and l - i1 (8
a t); the specific internal rates

of production of entropy & - (8a,t), &1 - 1 (01,t), and a ' 1(ca t);

the entropy fluxes k - k(04,t; v) and k1 - kl(ea,t; X), each per unit

length of the curve 8P; the specific external rates of supply of entropy

s - s(0a,t) and a, - sl(01,t); the specific internal energy e - e(8,t);

and the specific Relmholtz free energy 4, - i(0,t)

e - M- . With suitable continuity assumptions, it can be shown

that [2,31

k p a v , k Zp v (2.5a,b)

•Throughout the text Greek indices have a range (1,2) and Latin indices

have a range (1,2,3).
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where v - A a v are the components of the normal vector and where we

use the usual summation convention over repeated indices. Further, with

reference to the energy equation, the specific external rates of heat

supply r and rj; and the heat flux vectors % and ql are defined by

r - 0 as r = a = 0 z - L 0P (2•6a,b,c,d)

4Now, the local forms of the balances of entropy may be recorded as

[2]

P0 O - PO(s + P) - PO , P Po (s1 + 1) - P1i . (2.7ab)

where a dot denotes material time differentiation and where a bar

denotes covariant differentiation with respect to the metric Aap of the

. shell surface. For later convenience, we recall [2,31 definitions for

the metric tensor Aa, and its reciprocal Aa, the curvature tensor B.,. 0

the Christoffel symbol r and covariant differentiation in the forms

A -A a A ,Aa -A *A , B -A a, A , (2.8a,b,c)

- A , 6 -e , I.p - r a p , (2.8d,e,f)

where a comma denotes partial differentiation with respect to 9a.

Equations (2.7) must be supplemented by an energy equation and

constitutive equations. It follows from [2] that the energy equation

for a rigid thermoelastic shell is satisfied provided that

(2.9a,b)

VA-. and

P + P + p " + - " = 0 (2.10)
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where the temperature gradients and Z, are defined by

& ,aA' 11i ta Aa (2.11a,b)

Confining attention to a rigid shell that is thermally isotropic, we

specify constitutive equations in the form

2 4p  - - 03(e
2 - 2 e o ) -04 2 _ 2 p5 e (2.12a)

p e a * + b1  I " + b2 *2 (2.12d).,0 0

= o P b -A 2 (2.12e)

where as, bl, b2, 3 -05 are constants. Substituting (2.12a) into

(2.9), we have

PO n = 03(e - 0o) 0 +  5 PO i 1 M 4  " (2.13a,b)

The form of the constitutive equations (2.12) represents a slight

generalization of those introduced in [21 for the linear theory. These

equations are chosen to automatically satisfy the reduced energy

equation (2.10) without approximation.

In postulating the form of the constitutive equations (2.12), we

tacitly assume that constitutive equations that are valid for a plate

are also valid for a shell. In the discussion in Section 5, we observe

that certain geometrical features of the shell must be included in the

constitutive equations to predict relatively accurate results for a

solid sphere. These geometrical features of the shell may be introduced

*The sign of the constants 03, 04 used here is opposite that used in

[21.
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by appropriately modifying the constitutive equations to take the forms

2po hj,- - 2 2 02 _ 25e , (2.14a)

ao b (2.14b,c)

p ~ a . + b~ * +(j )b 2 O (2.14d)

0

"S" S -

p0 h 1  Po h  1 -b 2  , (2.14e)

S 0 h p 0 h

where p is the constant three-dimensional mass density (mass per unit

volume) of the material and h is the constant thickness of the shell.

The constitutive equations (2.14f,g) depend on the geometry of the shell

through the ratio p O/P h [see equation (2.16a)].

Within the context of the general theory, the constitutive

equations must be further restricted by statements of the second law of

thermodynamics [21. For either of the sets of constitutive equations

(2.12) and (2.13) or (2.14), these restrictions reduce to

a > 0 , b, > 0 , b2 > 0 3 > 0 (2.15a,b,c,d)

To linearize the equations presented above, we assume that the tempera-

tures (9 Oo) and 0, and their space and time derivatives are small[ .,enough that quadratic expressions in these quantities may be neglected

relative to linear expressions. It follows from (2.12d) or (2.14d) that
Sis of higher order so that & may be set equal to zero in (2.7a).

Now, we recall [2,31 that the Cosserat theory developed by direct

approach may be brought into a one-to-one correspondence with the three-

dimensional theory by assuming that the position vector r of a point in

\. .,,-.D-10
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the shell and the temperature field e* admit the representations

r r (, 3 ,t) - z(eat) + 03 d(e ,t) , (2.15a)

e - 0 e(e0,e3t) - 8(e ,t) + 0 (e ,t) , (2.15b)

where 83 is a coordinate through the thickness of the shell. For a

shell of constant thickness h, we may choose the reference surface of

the shell to be the middle surface and define the top surface 8P+ of the

shell by 03 - h/2 and the bottom surface 8P- by - - h/2. If the

three-dimensional mass density p of the shell is constant, then it may

be shown that [2,3,5]:

0 = po A  G d Ap'h)[1 + -: (B B2 - B1 Bl)]
0~ _l2

- h/2 Po G0l d13  1 h 2-h/2

(2.16a)

-h/2 , 1/2 3Xs X - i+ k+ - B- k- , Xs f P s f d G (2.16b,c)
-h/2

h h/2 * ,1G/2 83 3
Xsl . s A - (i B k+ + (T) B k- Xsl- f po8G de3

-h/2

(2.16d,e)

G 1/2  A A1/2 [I - ae3 B a + (a 3) 2 (B IB B 2 I (21f

12 A1/2[ _ h 3o+ h2 ( 1 2 2 1
G aA [4 1 B 2 (B B B )] , (2.16g)-T a 1 2 2

2
-h a + hL (B1 2 -B 2 B) , (2.16h)"" / 2+ a 4- 12 1 1

+ + - a (2.16i,j)
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where s is the three-dimensional rate of entropy supply; i+ and k- are,

respectively, the entropy fluxes applied to the major surfaces 8P+ and

8P; Ba are the mixed components of the curvature tensor; and 8+ and 9-

are, respectively, the temperatures on the major surfaces 6P+ and 6P-.

Also, we note that for the linear theory

0 k -q , 0k -- q , (2.17a,b)

where q+ is the heat flux measured positive for heat flowing out of the

surface 8P+ and q- is the heat flux measured positive for heat flowing

into the surface bP•

Most of the constitutive coefficients were evaluated in [21 by

direct integration of the three-dimensional constitutive equations. An

-* alternative approach was taken in [5], where the coefficients were

evaluated by comparing Cosserat solutions with exact three-dimensional

solutions. Except for the value of 03, the results in [21 and [5] are

the same. Here, we adopt the results in [5] and specify

_ Kh3  Kh
%2 8 (2.18a,b,c)"-o 0 °  ' =12 e°  2 (o

a 00 0 K

* * 3
p och p0 ch

S0 ~2(2.18d,e)03 P4 2
00

where K is the thermal conductivity and c is the specific heat at

. constant strain of the material. The coefficient 05 corresponds to the

arbitrary constant reference value of the entropy and therefore cannot

be specified. Since the material constants K and c are positive, we

realize from (2.18) that the restrictions (2.15) are satisfied.

-Finally, we use (2.14), (2.16)-(2.18) to write the linearized

version of equations (2.7) in the form

pOc 0 1 p0 80 s IB q+ - B q- + Kh V 0 , (2.19a)
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P0 ch
2  +

2 po 0e0 s A- 1 / 2 (h [B+ q + B- q-1

V2

Po- Kh * + V * , (2.19b)
P0 h 12

02

where the Laplacian operator V2 e is defined by

2 _ -Aa iAa(e -r0 r ) " (2.20)

3. Plates

In this section, we examine the validity of the Cosserat theory in

the thin-shell limit by considering three problems of heat conduction in

a plate. These problems are chosen to examine the effects of specifying

heat flux, temperature, or radiation-type boundary conditions on the

major surfaces of the plate. For each of these problems, we neglect

external entropy supply (or external heat supply) and consider tempera-

ture fields that are functions of time only so that

s - 0 , s = 0  , 68 (t) , OM0(t) . (3.1a,b,c,d)

Further, the curvature tensor B. for a plate vanishes. Hence, from

(2.16) we deduce that

S + 1/2 - 1/2
B -. 0 , Po - po h , B -A S- B A . (3.2a,b,c,d)

and that equations (2.19) reduce to

PO ch e -q + q , (3.3a)

p ch 2
pc 1 q+ 1 q- K (3.3b)
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Problem 1: For this problem, the heat flux q+ is specified to be

constant on the top surface, the bottom surface is insulated, and the

-K: plate is initially at uniform temperature eo. Mathematically, these

conditions are characterized by

q + constant , q -0 , (3.4a,b)

9 , *-I 0 at t - . (3.4c,d)

Since the solution of equations (3.3) with the conditions (3.4) was

developed in [5], we merely record the solution in the nondimensional

form

K(- 0 )  K [- exp(-n 2 ) (3.5a,b)

hq q

-I where v is the nondimensional time parameter defined by

• Kt
" - .t (3.6):'' po ch 2

Recall from [5] that the constitutive coefficients were chosen by

requiring the Cosserat solution to compare very well with the exact

solution recorded in [4, p. 112].

... ' To exhibit this comparison graphically, we have used (2.15b) to

plot in Figure D.2 the Cosserat solution (3.5) together with the exact

solution for various values of the time parameter T. The dashed lines

.. in Figure D.2 have been taken directly from (4, Figure 15, p. 113] and
' .'.-

3 hx = + - (3.7)

so that x - 0 locates the bottom surface P and x - h locates the top

surface 8P .
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FIGURE D.2 NORMALIZED TEMPERATURE IN A PLATE OF THICKNESS h,
WITH ZERO HEAT FLUX AT x= 0, CONSTANT HEAT FLUX q+
(OUT OF THE PLATE) AT x = h, AND UNIFORM INITIAL
TEMPERATURE 0 = 00

The numbers on the curves are values of r = Kt/p~ ch2 . The dashed
lines are the exact solution and the solid lines are the Cosserat
solution.
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Problem 2: For this problem, the temperature 0+ is specified as 80 on

the top surface, the heat flux q- is specified to be constant on the

bottom surface, and the plate is initially at uniform temperature 80.

4: Mathematically, these conditions are characterized by

9 + e , q =constant , (3.8a,b)
0

0 , and -0 at t - 0 . (3.8c,d)

With the help of (2.161) condition (3.8a) yields

S0 0 -  . (3.9)

It is important to observe here that by specifying 0+ , we tacitly

specify 0 in terms of * through equation (2.16i). It follows that it is

not possible to specify independent initial values for 0 and * such as

(3.8c,d). In other words, when temperature is specified on one or both

of the major surfaces, we must, in general, modify the initial

conditions. However, in the special case of this problem, conditions

(3.8c,d) are consistent with (3.9).

Since 0+ is specified, the heat flux q+ must be determined from

equations (3.3). Thus, using (3.9) in (3.3a) we deduce that

" ch2

-4' + - 0.S
q - q + 2 (3.)

Substituting (3.10) into (3.3b), we have

r,,,,-,,",2 4 + %2_

p ch2 (2 + K =- q . (3.11)

Now, solving (3.11) subject to the initial condition (3.8d), we may

write the normalized solution in the form
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22

Kh-e 4+it

K 0 - [ exp {- 4 (2)  2}] , (3.12b)

q- 4 +z

+ 22 4 2c

-_ - [1 - 2) exp {- (7- 2) ] . (3.12c)
q 4+ n 4+i

where T is defined by (3.6).

To compare the Cosserat solution (3.12) with the exact solution

recorded in [4, p. 1131, we rewrite the exact solution in the form

K(e -e o ) 21 _ 93 )_ 8 1-I)n  (2 n + 1) 1

hq- 2 n-O (2 n + 1) 2

1)2 2
x exp [- (2 4 . (3.13)

4

Let us define the average temperature 0 and average temperature
, avg

gradient iav in the plate by the equations

1 h/2 3
evg -eo - / ( - o) de (3.14a)

-h/2

* 12 fh/2 (0. 0 3 d 31b
avg o
*av 

= 12 h/ (e - e ) dO3  (3.14b)

h3 -h/2 o

Then, substituting (3.13) into (3.14) and performing the integration, we

deduce the results

1c(e -vg 0) 1 2 n 2 2a 3 g exp (-1(2 4 41)

hq- it n-0O(2n + 1)
(3.15a)
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- vg 96v [4- (2 n+ 1 - 1)'

q- 4 n-O (2 n + 1) 4  4 -V

(3.15b)

Because the quantities 0 and * in the Cosserat solution correspond
to 0avg and *a , we have plotted each of these in Figure D.3. The

av avg'
solid lines correspond to normalized values of 0 and 0 and the dashed

lines correspond to normalized values of eavg and avg The comparison

for all values of T seems quite acceptable.

Problem 3: For this problem, we consider a plate of thickness 2h. The

heat flux is specified appropriately for radiation from both the top and

bottom surfaces and the plate is initially at a uniform temperature

60 + V. Mathematically, these conditions are characterized by

,... + 0+

q + K( - 60) , q- - KH(0- -o) (3.16a,b)

0 -0 + V , and -0 at t-0 , (3.16c,d)
0

where H is a constant specifying thermal radiation from the major

surfaces. First, we will solve the problem as it is formulated in

(3.16) and second we will obtain a more accurate solution by exploiting

the symmetry about the center plane.

For the first solution, we substitute (2.16i,j) and (3.16a,b) into

equations (3.3) and then replace h by 2h to obtain

S
4 p ch2

0P P ch -I - - 6 2 * l - K(l + Hh) * (3.17a,b)

Using the initial conditions (3.16c,d), the solution of (3.17) becomes

0 exp (- Hh 'r) , - 0 (3•18a,b)

, / ~j, . . ... . . . . . - -i , ,,. .- . . .. *. -'. .. : ..-. '. -. .... . -, . . . .. , . ,
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FIGURE D.3 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE
[K(0 - 6o)hq-] AND AVERAGE TEMPERATURE GRADIENT
[-K O/q-1 FOR A PLATE OF THICKNESS h WITH HEAT FLUX
q- (ENTERING THE PLATE) AT THE BOTTOM SURFACE
AND THE TEMPERATURE 0+ =0 SPECIFIED ON THE TOP
SURFACE

Initially, the temperature 0- 60 at the bottom surface. The
dashed lines a e the exact solution and the solid lines are the
Cosserat solution. 7 = Kt/p o ch2 .
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where T is again defined by (3.6). To compare the Cosserat solution

(3.19) with the exact solution recorded in [4, p. 1221, we rewrite the

exact solution in the form

a3
a 0 CD 2 Rh cos h ) sec x 2
80 I E n 2 21 - an) (3.19a)

n-i [(Hh) 2 + gh + a] eP n

a n tan a - h , (3.19b)

where an are the positive roots of equation (3.19b) and where 03 - 0

locates the center of the plate, 83 - h locates the top surface, and

- - h locates the bottom surface. Replacing h by 2h in (3.14) and

using (3.19), we deduce the expressions

0avg o 0 2 (Hh)2  2
exp a- T) (3.20a)

V n-l 2 [(Rh) 2 + Hh + a2] n '

n n

.0avg 0 . (3.20b)

Comparing (3.18b) with (3.20b), we see that the Cosserat theory predicts

the correct value for the average temperature gradient. To compare the

prediction of the average temperature, we have plotted (3.18a) as the

solid lines and (3.20a) as the dashed lines in Figure D.4, for three

values of the normalized radiation coefficient Rh. From Figure D.4, we

observe that for small values of Rh, the Cosserat theory predicts

*_ accurate results whereas for large values of Rh, its does not. This is

because for small values of Hh, heat is radiated slowly away from the

major surfaces of the plate, so that the temperature through the thick-

ness of the plate is nearly uniform, as predicted by (3.18b). However,

0- for large values of Rh, heat is radiated rapidly away from the plate and

the through-the-thickness temperature gradient may be steep.

Mathematically, we may exploit the symmetry in the problem stated

above and thus confine attention only to the upper half of the plate.
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FIGURE D.4 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE (0 - 0 )/V
FOR A PLATE OF THICKNESS 2h WITH RADIATION FROM THE

, SURFACES [i.e.q + = KH (6+ -00)] AND UNIFORM INITIAL
TEMPERATURE 0 = 00 + V

The dashed lines are the exact solution and the solid lines are the Cosserat
solution. 7= Kt/p0  ch2 .
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Therefore, for this second solution we consider a plate of thickness h.

The heat flux is specified appropriately for radiation from the top

surface, the bottom surface (which corresponds to the center surface of

the plate of thickness 2h) is insulated, and the plate is initially at a

uniform temperature e o + V. These conditions are characterized by

(3.16) with (3.16b) replaced by

q -0 . (3.21)

At this point, it is important to note that although the exact solutions

of the two problems considered here are identical, the Cosserat solution

of the second problem will be more accurate than the Cosserat solution

of the first problem. This is because the solution of the second

problem admits a nonzero temperature gradient in the top half of the

*: plate.

Substituting (2.161), (3.16a), and (3.21) into equations (3.3), we

' N obtain

p ch e KH( + (3.22a)0 2

p ch KH (0 + h 0 ) - K (3.22b)

In their present form these equations are coupled. However, by solving

• (3.22a) for * and substituting the result into (3.22b), we may define
e-e

0 f() (3.23)

and write

f ( df d2 f+ B + C f -0 (3.24a,b)v d2

D-22
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where B and C are constants defined by

2 2 2B-Mn + Hh+- Hh , C - n Hb (3.25a,b)
4

and T is defined by (3.6). Using (3.6), (3.23), and (3.24a), the

initial conditions (3.16c,d) become

f 1 , df ' , at T -O (3.26a,b)
dT-r

Solving (3.24b) subject to the conditions (3.26), the Cosserat solution

may be written in the form

V A 1 exp (- a 1 ) + A2 exp (- C2 ) '(3.27a)

hk 2 [A1 exp (- a -c) + A2 exp (- a2 )]

- (!-)(A, a1 exp -C 1 t 2 02ept 20 (3.27b)

where the constants Al. A2, C. (02 are given by

A1  a2 -a 1h A = - (3.28a,b)

9. 12- 2 a2 - 2a,/

I [-~B-(B 2-4C) 1/ , 2 -(B +(B 2-4C) 1/

(3.28,c,d)

Replacing 03 in (3.19a) by h/2 + 03, we may write the exact

* . solution for the top half of the plate as

* ~a (h +2 93)

9 -9 z - 2Hho 2+ n seca 2 , (3.29)

V n-I [(Hh)2+ h+a2n
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where an are the positive roots of (3.19b), and where 63 - h/2 locates

the top surface and 03 . - h/2 locates the bottom surface (which

corresponds to the center surface of the plate of thickness 2h).

Substituting (3.29) into the definitions (3.14a,b), we obtain the result

(3.20a) for the average temperature 6avg and the result

h $av - Hh [an sin a + 2(cos -)] sec a
- av -- 12n c aexp (- 2 )
V n-l 2 [(Hh)2 + e + ann

n n (3.30)

Figure D.5 compares values of the average temperature with (3.27a)

plotted as the solid lines and (3.20a) plotted as the dashed lines.

Similarly, Figure D.6 compares values of the average temperature

gradient with (3.27b) plotted as the solid lines and (3.30) plotted as

the dashed lines. From Figures D.4 and D.5, we observe that modeling

only the upper half of the plate produces a significant improvement in

the prediction of the average temperature for the higher values of Hh.

Also, we observe from Figures D.5 and D.6 that for Rh - 0.1, the

Cosserat and exact solutions are nearly identical and the average

temperature gradient remains relatively small.

4. Circular Cylindrical Shells

In this section, we investigate the validity of the Cosserat theory

in the thick-shell limit by considering heat conduction in a circular

cylindrical shell and taking the limit of a solid cylinder. Specifically,

consider a circular cylindrical shell of uniform thickness h and mean

radius R. Let ei(i - 1,2,3) be a set of fixed Cartesian base vectors

and let e' be base vectors of a polar coordinate system with polar angle

y defined by

4Although this coordinate system is unconventional, it is chosen because
it yields convenient relations between Ai and
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FIGURE D.5 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE (0 - 0 0)/V
FOR A PLATE OF THICKNESS h WITH RADIATION FROM THE
TOP SURFACE [i.e., q+ = KH (0* -00)], ZERO HEAT FLUX ON THE

* BOTTOM SURFACE, AND UNIFORM INITIAL TEMPERATURE
40=0o +V

The dashed lines are the exact solution and the solid lines are the Cosserat
solution. -r Kt/p: ch2 .
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FIGURE D.6 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE GRADIENT
[-h O/V] FOR A PLATE OF THICKNESS h WITH RADIATION FROM
THE TOP SURFACE [i.e., q+ = KH (0+ - 0 ] ZERO HEAT FLUX ON THE
BOTTOM SURFACE, AND UNIFORM INITIAL TEMPERATURE 0 = 0 0 + V

The dashed lines are the exact solution and the solid lines are the Cosserat solution.
7= Kt/p . ch2.
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e' e- e; - sin y e +cosyet:.''  e e ,~2 = osy-2 -i 3  -3 2 - 3

(4.1a,b,c)

where el is parallel to the generator of the cylindrical geometry.

Now, points on the reference surface of the shell may be located by

the position vector R given by

x el , (4.2a,b,c)

where we have identified the coordinates e1, e2 with x and y,

respectively. Using the definitions in (21 and in Section 2, the

relevant geometrical properties of the cylindrical surface may be

recorded as
''9

* 1/2 11 12 22 1A R *A -1 , A -0 , A .-i- , 439bcd

2 1 a a
B - R all other B - r -0 . (4.3e,f,g)

Substituting (4.3) into (2.16), we have

1 . 1/2 h - 1/2 h

P po 0 h B1 + (l+ ) B- A (4.4a,b,c)

It follows that the thermal equations (2.19) become
• *h q+h2

P0 ch -pO h0 s -h + s -I!) + q- + Kh V (4.5a)

P0 ch2 * h. h + (1 h. -

2 0 oo Sl 21 +2-) - 2-- q

Kh2  2

K h + 12 , (4.5b)

where the Laplacian operator V2 0 for the cylindrical geometry is given

by

D-27
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V2 8 2 1 2 ( (4.6)

8 x 2 R2 8 Y2

Here, we consider the problem for which the heat flux on the outer

surface is constant, the inner surface is insulated, external entropy

supply is neglected, and the shell is initially at uniform temperature

0. Hence, the conditions (3.1) and (3.4) hold and equations (4.5)

reduce to

* h +
p ch 0 - -(1l+ j)q , (4.7a)

* 1 lh+
po ch + R q+ (4.7b)

Integrating (4.7) subject to the initial conditions (3.4c,d), we obtain

K(6- e0)  h

h q

7i ( 1 - exp (- C) (4.8b)
+ 2
q

where T is defined by (3.6). Notice that in the thin-shell limit

(R/h + -), the solution (4.8) approaches the plate solution (3.5). In

the thick-shell limit of a solid cylinder for which R - h/2, the right-

hand side of (4.8a) becomes 2?, which is consistent with the exact

solution (4, p. 2031. Using (2.15b), the Cosserat solution (4.8) with

R - h/2, is plotted in Figure D.7 together with the exact solution for

various values of the time parameter T. The dashed lines in Figure D.7

have been taken directly from [4, Figure 25, p. 2031 and r is the radial

.From (21, we recall that generally G1/2 is required to be positive.

Although the quantity G1I/ vanishes when 3 = - h/2 and R - h/2, this
poses no particular difficulty in the problems considered here.
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FIGURE D.7 NORMALIZED TEMPERATURE IN A SOLID CIRCULAR
CYLINDER OF RADIUS h, WITH CONSTANT HEAT

V-. FLUX q+ (OUT OF THE CYLINDER) AT THE SURFACE,
4.~.AND UNIFORM INITIAL TEMPERATURE 0=60

The numbers on the curved lines are values oft 7 Ktlp0 ch2 .

The dashed lines are the exact solution and the solid lines are
-. the Cosserat solution.
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rat, ':,w- 4 -*- .u-r * aw- . : -*JW.'r : y' .-: , -a . ...... -... . ..- - - -. , , ......... ..

coordinate, with r - 0 locating the center of the cylinder and r = h

locating the outer surface.

In view of the form of solution (4.8), it is obvious that the long-

time temperature is dominated by the term (4.8a). The fact that the

coefficient of T in (4.8a) yields the correct result even in the thick-

shell limit suggests that the Cosserat theory retains the important

geometrical features of the shell. In this regard, it is worth men-

tioning that the result (4.8a) could be obtained using an engineering

approach in which the temperature in the shell is assumed to be uniform

and the energy entering the outer surface is equated with the increase

in internal energy. It is also worth mentioning that the solution of

the more accurate equation (15) of [1] yields a long-time solution of

the form

K(O* - 0o )  . . .sinh ( -) + cosh - •49)"
+ 2R

hq sinh

In the thin-shell limit (4.9) yields the correct result, but in the

thick-shell limit it yields the result (2.313 T), which is incorrect.

Thus, even though equation (15) of [1 is more complicated than

equations (4.8), it does not necessarily produce a better result.

To further examine the validity of the constitutive equations

(2.14b,c) and the specifications (2.18a,c), we consider a simple problem

for which the Laplacian operators in (4.5) do not vanish. Specifically,

consider the steady-state problem of uniform heat conduction in the

constant x3 direction for which the three-dimensional solution is given

by

3 OR 032 co0
SQ 3 - °  - cos ) - ( -cos y) (4.iOa,b)

where is the three-dimensional heat conduction vector and Q is a

constant. Using (4.1) and (4.10), we realize that

D-30

',-, .- . -,, ,. -:a .- .: . . . ..... .'



q q C *e3 Qcosy • (4.11)

Consequently, in the absence of external entropy supply, the steady-

state solution of (4.5) becomes

_ *h
2 -1

- °  QR cos y , *--l+----1) cos y (4.12ab)

12R

Now, with the help of (2.15b) we may compare the exact result (4.10b)

with the Cosserat result (4.12) to conclude that the average temperature

is predicted exactly. Further, the prediction of the average tempera-

ture gradient 4 is very accurate in the thin-shell limit (R/h * *) and

is only 25% low in the thick-shell limit (R/h 1 1/2).

S 5. Spherical Shells

The spherical shell geometry is considered here mainly because it

is one of the simplest geometries in which it is possible to investigate

the differences between the constitutive assumptions (2.12) and (2.14).

*.+ Three problems of a spherical shell of constant thickness h and radius R

are considered. For the first two problems, we consider the thick-shell

"" limit of a solid sphere and discuss the differences between assumptions

* (2.12) and (2.14). For the third problem, we consider the transition

from a thick shell to a thin shell.

With reference to the Cartesian base vectors gi introduced in

Section 4, we let e" be base vectors of a spherical coordinate system

with polar angle y (0 < y < 2%) measured from the e - e plane and
0 .. - - -1 -3

polar angle a (-- < a<- measured from the e plane such that

e ' - sinye1 +o(5.1a)

U-2

4 *Although this coordinate system is unconventional, it is chosen because

it yields convenient relations between and

D-31

Sw+

+. ..-

C '.'. " ' '' '" ' " ' " " " " .. . ' ''' - -'.. . . . . . .'.. ." ".-.. . . " ".". -"" "" "" " " "' -" "



ell - sin a (cos y + sin * + CO ae (5.1b)

e' cos a (cos y + sinY 2 ) + sina! 3  (5.1c)

* Now, points on the reference surface of the shell may be located by

the position vector & given by

R m R e3 e I Y , " a , (5.2a,b,c)

-' where we have identified the coordinates e1, e2 with y and a,

respectively. Using the definitions in [2] and in Section 2, the

relevant geometrical properties of the spherical surface may be recorded

as

1/2 2 11 1 12 22 1
A 2 2 R2 A A

R Cos C R
(5.3a,b,c,d)

1 2 1 a
B1  B2 -- , all other B - , (5.3e,f)

1 1 2 ac
r I -r 1 -tana . r 2 sin acosa all other r aM

(5.3g,h,i)

Substituting (5.3) into (2.16), we have

-12 R

(5.4a,b,c)

It follows that the thermal equations (2.19) become

or h + hh2  1 2 1 2
O- s - (1 + R)2 q+ + 31 -R) q + Kh V 8

F-!:. (5.5a)
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p ch 3 h 2  h h2 +h h2

-2 ( +- 2) * Po 0  61()(+) T-( )i 3Tj-
2 R

- Kh (l + h--...) ,2 + . , , (5.5b)

12 R

where the Laplacian operator V e for the spherical geometry is given by

2 8 = 1 . O I + 2 0 tan a 80 (5.6)
R2 co2 2 o 2 2 a2 a2 (56)

For the first problem, the heat flux on the outer surface is

constant, the inner surface is insulated, external entropy supply is

neglected, and the shell is initially at uniform temperature e0. Hence,

the conditions (3.1) and (3.4) hold and equations (5.5) reduce to

p 1+ h12  + 2 (5.7a)

p0 ch 12R

phch 2 2  h 2
2-(102) - (1 +h) 2q - K 1- R2) * + (5.7b)

it2 ( 12 R R 12 R 2

Integrating (5.7) subject to the initial conditions (3.4c,d), we obtain

<, - K(e - e0 ) [l+ h )
h2 0 2R (5.8a)

I h
2

+2 ( exp (-n 20 T) (5.8b)q 2 ( l + 2
12 R

where T is defined by (3.6). Notice that in the thin-shell limit

(R/h + -) the solution (5.8) approaches the plate solution (3.5). In

the thick-shell limit of a solid sphere for which R - h/2, the right-
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hand side of (5.8a) becomes 3T, which is consistent with the exact

solution [4, p. 242]. Using (2.15b), the Cosserat solution (5.8) with

R - h/2 is plotted in Figure D.8 together with the exact solution for

various values of the time parameter T. The dashed lines in Figure D.8

have been taken directly from [4, Figure 31, p. 2421 and r is the radial

coordinate with r - 0 locating the center of the sphere and r - h

locating the outer surface.

From Figure*D.8, we observe that for long time periods the value of

the average temperature gradient predicted by the Cosserat theory is

substantially larger than the exact value. However, this is not

particularly important because for long times the temperature is

dominated by the term (5.8a). To exhibit this, we have used (2.16i,j)

together with (5.8) to plot in Figure D.9 the temperature on the outer

surface and at the center of the solid sphere. The dashed lines in

Figure D.9 represent the exact solution [4, p. 242]. For short times,

the Cosserat theory predicts the incorrect result that the center

temperature of the sphere drops. This is a consequence of the over-

prediction of the average temperature gradient. For long times, the

lines in Figure D.9 are parallel and the relative error diminishes to

Szero. This Is because the prediction (5.8a) is exact in the thick-shell

limit. In this regard, it is worth mentioning that the result (5.8a)

could be obtained using the engineering approach described in Section 4.

Tt is also worth mentioning that the more accurate equation (15) of [1]

yields a long-time solution of the form

K(O* - o) [sinh (h) + cosh (ih)-- -0 (5.9)
I:4h q+ # inh (

'

*The solution in Appendix A of [1] should be written in a form that has

a linear term in time.
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FIGURE D.8 NORMALIZED TEMPERATURE IN A SOLID SPHERE
OF RADIUS h, WITH CONSTANT HEAT FLUX q+

- (OUT OF THE SPHERE) AT THE SURFACE, AND
UNIFORM INITIAL TEMPERATURE 0 -
The numbers on the curves are values of " = Kt/p* ch2.

The dashed lines are the exact solution and the solid lines
are the Cosserat solution.
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FIGURE 0.9 NORMALIZED TEMPERATURE [-K(0 + 
-0 0 )/hq+] AT THE SURFACE

AND [-K(9- - 0 )/hq+ ] AT THE CENTER OF A SOLID SPHERE OF
RADIUS h. WITH CONSTANT HEAT FLUX q+ (OUT OF THE SPHERE)
AT THE SURFACE, AND UNIFORM INITIAL TEMPERATURE 8 = 0

The dashed lines are the exact solution and the solid lines are the Cosserat
solution. =Kt/po ch2 .
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In the thin-shell limit (5.9) yields the correct result, but in the

thick-shell limit it yields the result (4.075 T), which is incorrect.

We are now in a position to comment on the differences between the

constitutive equations (2.12) and (2.14). If (2.12a) were used instead

of (2.14a), then the average temperature would be given by

K(e - eo)K(O 0 0h 2
(q +j) 2  (5.10)

instead of (5.8a). This would yield the incorrect result 4T in the

thick-shell limit. Similarly, if (2.12d,e) were used instead of

(2.14d,e), then the long time value of t would be

+K 2 2R (5.11)

which produces a larger error than that associated with (5.8b) in the

thick-shell limit.

To further examine the validity of constitutive equations (2.14b,c)

and the specifications (2.18a,c), we consider the steady-state problem

of uniform heat conduction in the constant X1 direction for which the

three-dimensional solution is given by

OR 3e - - cos Y cos o) -cos Y cos a)
(5.12a,b)

where is the three-dimensional heat conduction vector and 0 is a

constant. TUsing (5.1) and (5.12), we realize that

q q e" Q cos y cos a (5.13)

Consequently, in the absence of external entropy supply the steady-state

solution of (5.5) becomes
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"o  Cos Y Cosa - cos y cos , (5.14a,b)

which is an exact result valid for both the thin- and thick-shell

limits.

Finally, to examine the transition from a thin-shell to a thick-

shell, we consider the steady-state problem where the temperature e on

the outer surface is specified to be the constant value 0 and the heat

flux q- on the inner surface is constant. Thus, using (2.16i) we

require

h

+ q-- -constant . (5.15a,b)

In the absence of external entropy supply, the steady-state solution of

(5.5) becomes

K~e-e) - (l-) ( )2' 0) .(1 - TO - (5.16a,b)

12 R 12 R

_ + h2

h2 (5.16c)

q- ( + TO

It can be shown that the exact solution (4, p. 2471 may be written in

the form

0 WR) (5.17)h q- 3
q( - 2( - +(. h )(1 + h)

hqR

and that (5.16c) is an exact result. Now to compare the predictions

(5.16) with the exact solution (5.17), we have used (2.15b) to plot

(5.16) as the solid lines in Figure D.1O and have used (5.17) to plot

the dashed lines in Figure D.10 for three values of R/h. The results in

Figure 0.10 show again that the Cosserat predictions are good even for a

fairly thick shell (R/h m 1).

D-38



1.0

0.9 
-

0.8-
R-= 10

00.7

0.5 R

0.4
'-',: ~ ~0.3 , ..

0.2
o .1.. ..._
0.0 ..... ---

--0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

h JA-6697-6

FIGURE D.10 THE NORMALIZED STEADY STATE TEMPERATURE IN
A SPHERICAL SHELL WITH CONSTANT THICKNESS hAND MEAN RADIUS R

The heat flux q- (entering the shell) is specified on the inner surface
and the temperature 8+ = o is specified on the outer surface. The
dashed lines are the exact solution and the solid lines are the Cosserat
solution.
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6. Conical Shell

In the previous sections, we have solved a number of problems for

plates, circular cylindrical shells, and spherical shells to develop

confidence that the Cosserat theory can predict relatively accurate

results for both the thin-shell limit (which models the base of a

conical shell) and the thick-shell limit (which models the tip of a

conical shell). Here, we confine attention to a conical shell with

constant thickness h and locate points on the conical surface by

R - Rel +Rel 1 2 (6.1a,b,c)'-- 1 +R , -R , e-y

where R is the radial coordinate, y is the polar angle, el are defined

by (4.1), 0 is a constant related to the cone angle (see Figure D.1),

and we have identified the coordinates e1 and 92 with R and y,

*respectively. Using the definitions in [2) and in Section 2, the

relevant geometrical properties of the conical surface may be recorded

as

1/2 2)1/2 11 1 12 22 1
A -R(l+ , A - , A , A --

(I + 02) R2

(6.2a,b,c,d)

2 all other B, 0 (6.2e,f)

1 R 2 2 1

SI 2 r12 - 21  , all other ra  W 0 (6.2g,h)
22 (1 + T ,)p

Substituting (6.2) into (2.16), we have

/2+ " + __)1/2] -  1/2[h1

PO 0  hA 2R( + B2R( + 1/22 / 2

S(6.3a,b,c)

D -40
, ,

.' " ' " ' ?,(' ,r ,'"'' " - " -" .' s '' . '. '''' %' . '. '' ." ' .' - ' '" - ,- . '.' ' '- , ',"'%



It follows that the thermal equations (2.19) become

** * 1 q

ch 0 P h ° s - [i + h iB2)2 + L -
0 0 0 2R(l + ) 2R(1 + 2) q

+ K h V2  , (6.4a)

Po ch2  * h 1 7 ] q+

1920o121(l + i2 ) 2 2R(1 + 2
2 +...1r2 V

- K *' + f! 72 ,(6.4b)

where the Laplacian operator V2 e for the conical geometry is given by

. 2 1 2 -El ( - + . (6.5)
,+2) R R2  a y2

Here, we consider the problem for which the heat flux on the outer

surface is constant, all other surfaces are insulated, external entropy

supply is neglected, and the shell is initially at uniform temperature

80 . Hence, the conditions (3.4) hold in addition to the conditions

O O(R,t) , 01 - O(R,t) ,(6.6a,b)

, 0 at R - R 2  (6.6c,d)

where R, and R2 are the tip radius and base radius of the shell,

respectively (see Figure D.1). Under these conditions, equations (6.4)

reduce to

h + Kh a RBe
ch + + -2 1 / 2  (R ) (6.7a)

0 2 2 6' ~2e(1 + R(l + 2iR'
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* c 2 2
S1 chh + Kh

S+ 2 1 1  q 12R( + 2 R k 8R-

(6.7b)

To analyze these equations, it is convenient to introduce the nondimen-

sional parameters

R Kt
zh -* 2 (6.8a,b)

p ch

K(O - eo )
8 - 6(z,t) + -hq*(z,c) - -z_ (6.8c,d)

hq +q+

and rewrite them in the form

8* 2 z 6z -z - +2 2 /2J (6.9a)

2 2 2
+I. Z MI 6l + (6.9b)

12(l + 2) z z z) 2 2z(l + 2

Similarly, the initial conditions (3.4cd) and boundary conditions

(6.6c,d) become

0-0 , *-0 at T - 0 (6.10a,b)

0 0 at z - z,Z 2  (6.10c,d)

where zI and z2 are the values of z when R equals R1 and R2.

respectively. At this point, it is of interest to note that in the

limit of large ( * -), equations (6.9) reduce to a nondimensional form

'. of (4.7) for a circular cylindrical shell, and in the limit of small

.(* + 0), equations (6.9) characterize a circular plate.

Using standard techniques, the solution of (6.9) may be written in

the form
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A0 + ZAm ()fMz)(.la
~11

- (i)+ Z B (.) f (z) , (6.11b)
0 n-I m m

where fm(z) are elgenfunctions characterized by

1-l d ( m 2 f (no sum on m) (6.12a)Tz-Z dz a m fm

,m• '"df -- 0 at z - zz 
(6.12b)

dz 2

and where a are the nonzero eigenvalues. Since equation (6.12a) can

easily be recognized as Bessel's equation of order zero, the solution,

subject to the boundary conditions (6.12b), is well characterized and

may be written in the form

f(z) = Jo(az) y(mZ) Yo(amZ) (6.13)

where Jn and Yn are Bessel functions of the first and second kind,

respectively, of order n and where am are the positive roots of the

.4' characteristic equation

J (a mz )Y (a z) - Y (am z)J (amz 2  0 (6.14)

Further, the eigenfunctions fm satisfy the orthogonality conditions

f2 z fm dz 0 , f z  z f n dz 0 for (m n) (6.15a,b)
z z
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Substituting (6.11) into (6.9), multiplying the result by z and

integrating, multiplying the result by zfn and integrating, and using

the orthogonality condition (6.15) and the initial conditions (6.10a,b),

we conclude that

SA C Co [l + (6.16a,b)O 0 (l 'C l[ + " 2
2  

Z Z

2) 2
(1 + ) )

Am () l 2 [1 - exp { + 0m2)}TJ (6.16c)

m

fz2 f dz

2(l + 82 1 2 zI

Cm 12d (6.16d)
fm z m

z1  
m

1 2

Bo(T) - i - exp - 2 , (6.16e)

6 C 2 2B ( ) - m [1 - exp {- (1 m* (61f

(12 + m
1+ 2

For later reference, we observe that if the dependence on z is neglected

in (6.11), then (6.11) has the same form as the solution (4.8). This

means that we would be essentially modeling the conical shell as an
"equivalent" circular cylindrical shell with "mean" radius R/h - (z, +

z2)(1 + 02)1/2/20. By considering a specific example, it will be shown

that making this kind of engineering approximation introduces signif-

icant errors at the tip of the conical shell.

Consider the specific example of the conical shell drawn in Figure

D.1, which has a solid tip. For this shell we specify

1 2(l , z2 - 15 , p 3.23 . (6.17a,b,c)
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The minimum value zi of z given by (6.17a) is specified by requiring the

inner surface of the shell to just make contact at the shell's tip.

Using (6.17) we have solved for the first twenty eigenvalues and eigen-

functions and have plotted the solution (6.11) in Figures D.11 and D.12
by normalizing the results by the first terms in the solutions. Figure

D.11 shows plots of D/Ao( ) verses z for various values of T, and

Figure D.12 shows plots of j/Bo( ) verses z for two values of r. The

slight waviness in these curves is caused by the fact that we have

approximated solutions (6.11a,b) using finite series.

From Figure D.11, we observe that for long times the average

temperature is relatively uniform over the shell. This is because the

equivalent-cylinder solution Ao(T) dominates for long times. However,

for short times the value of 9 at the tip is about 65% greater than that

predicted by the equivalent-cylinder solution. This result can be

0explained by observing from (4.8a) that a thick cylinder heats up faster

than a thin cylinder. Thus, we would expect the tip of the conical

shell, which is thick, to heat up faster than its base, which is thin.

From Figure D.12, we observe that the distribution of the average

temperature gradient is nearly constant with time. Also, the value of f

near the tip is nearly 65% greater than the value predicted by the

equivalent-cylinder solution.

To exhibit the temporal dependence of this solution more clearly,

we have plotted Ao(T) and Bo(T) in Figure D.13. From this figure, we

observe that BO(W) reaches its maximum value in a relatively short time.

Recalling from [21 that the average temperature gradient is related to

the thermal bending moment in the shell, this means that the bending in

a conical shell u.ader this load will be quite severe at its tip and the
full effect of the load will be felt in a relatively short time.

Consequently, the tip of the conical shell should be particularly

vulnerable to this type of thermal load.
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FIGURE D.1 1 NORMALIZED AVERAGE TEMPERATURE IN A CONICAL SHELL
OF THICKNESS h.

The numbers on the curves are values of 7 Kt/p,* ch2.
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FIGURE D.12 NORMALIZED AVERAGE TEMPERATURE GRADIENT IN A CONICAL
SHELL OF THICKNESS h

The numbers on the curves are values of r = Kt/po ch2.
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FIGURE D.13 VALUES OF THE FUNCTIONS Ao(T) AND B(T) ASSOCIATED
WITH THE CONICAL SHELL SOLUTION
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7. Summary

In this paper, we have focused attention on analyzing heat

conduction in a rigid conical shell (Figure D.1). The conical shell is

particularly interesting because it has a converging geometry, so that

the shell near its tip is necessarily "thick" even though the shell near

its base may be "thin." Further, the heat conduction equation is not

separable for the conical geometry, and hence it is exceedingly

difficult to obtain exact solutions. We have chosen to model the shell

with the theory of a Cosserat surface to determine the average (through-

the-thickness) temperature and temperature gradient in the shell

directly.

A number of problems of plates, circular cylindrical shells, and

spherical shells are considered and the solutions are compared with

exact solutions to develop confidence in the Cosserat theory. Within

the context of this theory, it is usually assumed that constitutive

equations for shells have the same form as those for plates. Here, it

is shown that to predict relatively accurate results in the thick-shell

limit, it is necessary to generalize these constitutive equations to

include certain geometrical features of the shell. The generalized

constitutive equations are developed here in a consistent manner and

tested in the thick-shell limit. The tests include problems where the

temperature fields e and * are functions of time only so that their

Laplacian vanishes, as well as problems where they are functions of

space only and their Laplacian does not vanish. In all cases,

satisfactory results are predicted even in the thick-shell limit.

Finally, a problem of transient heat conduction in a conical shell,

which does not have an exact solution, is solved analytically using the

Cosserat theory. It is shown that both the average temperature and

temperature gradient have values near the tip that are about 65% greater

than those predicted by an approximate equivalent-cylinder solution.

Also, it is shown that the thermal bending moment produced by the

average temperature gradient is quite severe near the tip and it attains

its maximum value in a relatively short time.
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