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SUMMARY

A topic of ongoing interest to the Air Force is the response of
shell structures to thermal loads. These thermal loads may be caused by
aerodynamic heating on aircraft and missiles, by laser weapons, or by
radiation effects on space structures. In all cases, it is desirable to
determine the thermomechanical response of shell-like bodies that model

various components of aircraft structures.

To determine the complete thermomechanical response of a shell-like
body to thermal loads, it 1is necessary to calculate both the thermal and
mechanical fields. The problems with analytically solving the three-
dimensional thermal and mechanical equations for general structural
geometry and general loading are currently insurmountable. Therefore,
alternative methods of solution are required. One alternative is to
obtain a numerical solution using large finite element codes. Although
obtaining a numerical solution of this kind is within current technol-
oglcal capability, there are two important disadvantages with this
method. First, it may be necessary to use many elements and many time
steps to calculate the solution of a dynamic problem. This means that
use of the method as a design tool when a number of parameters must be
varied would be prohibitively expensive. Second, the method necessarily
calculates many details of the thermal and mechanical fields that are
not of particular interest. For example, for shells it is sufficient to
obtain limited information such as the resultant force and moment applied
to the shell. Consequently, the details of the stress distribution
through the thickness of the shell are not needed.

In this research, we used an alternative method of solution that
judiciously models the structure by an appropriate shell theory having
equations that are considerably simpler than those of the three-
dimensional theory. Such a theory focuses attention solely on

quantities of primary interest. Consequently, even if it is necessary




to develop a numerical solution of the shell equations, the computer
time is efficiently used, the results are easily interpreted, and the

method can be used for design purposes.

The objective of this research was to analyze the thermomechanical
response of a conical shell (Figure 1) that is a model for aircraft and .
missile nose cones. Because the conical shell has a converging
geometry, the shell near its tip 18 necessarily “thick” even though the
shell near its base may be “"thin.” Therefore, it is important to model
the conical shell with a theory that accurately incorporates the
geometrical details of this crucial tip region. We used recent devel-
opments in the Cosserat theory for the thermomechanical response of
shells., We based our development on the Cosserat theory mainly because
this theory accurately models the geometry of the shell and is
sufficiently general enough to include the important effects of the
steep temperature profile through the thickness of the shell (e.g.,
tangential shear deformation,* higher order displacement and temperature
profiles through the thickness of the shell) without the complexity of

the complete three-dimensional theory.

This research was divided into four parts, each of which has been
written as a technical paper that has been submitted for publication. A
copy of each paper is included as an appendix:

Appendix A: A Uniqueness Theorem for Thermoelastic Shells
with Generalized Boundary Conditions

Appendix B: A Nonlinear Constrained Theory of Shells that
Includes Tangential Shear Deformation

Appendix C: On the Determination of Certain Constitutive
Coefficients for Thermoelastic Shells

Appendix D: Heat Conduction in Plates and Shells with
Emphasis on a Conical Shell.

*We use the term tangential shear deformation instead of the usual term
“transverse” shear deformation because it is more descriptive when
considering nonlinear deformation of a shell as opposed to linear
deformation of a plate.
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FIGURE 1 CONICAL SHELL OF CONSTANT THICKNESS h,
TIP RADIUS R,, AND BASE RADIUS R,
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Basically, Appendices A-C deal with certain theoretical 1issues that
were observed while developing the general equations t6 analyze the
thermomechanical response of shells, whereas Appendix D deals with the
main issue of the conical shell. Appendix A entails a generalization of
the uniqueness theorem for linear thermoelastic shells to include
mechanical contact with a linear elastic medium and thermal convection
on both the major surfaces of the shell and its boundary curve.

Appendix B is concerned with developing a nonlinear constrained theory
of shells that includes tangential shear deformation. This topic was
considered because tangential shear deformation is expected to be
important when a shell is loaded with a steep through-the-thickness
temperature gradient. Appendix C is concerned with determining certain
thermal and mechanical constitutive coefficients for thermoelastic
shells by direct comparison with exact solutions. It was observed that
better comparison with simple exact solutions could be obtained by
specifying values for certain coefficients that are different from those

previously proposed.

In addition to considering general aspects of thermomechanical
response of shells, in Appendix D, we considered heat conduction in
rigid shells with particular emphasis on a conical shell. Specifically,
we used shell equations based on the theory of a Cosserat surface to
determine the average (through the thickness) temperature and tempera-
ture gradient in rigid shells. Attention was focused on rigid shells
because when the strain rates in a deformable shell are small enough,

the thermal and mechanical problems uncouple in the seunse that the

temperature fields can be determined from equations for heat conduction
in rigid shells. Once these temperature fields are known, they can be |
used together with constitutive equations to calculate thermal loads 1

which cause mechanical deformation.

To develop confidence in the Cosserat theory for both the thin-
shell 1limit (which models the base of the conical shell) and the thick-
shell limit (which models the tip of the conical shell), we considered a :

number of problems for plates, circular cylindrical shells, spherical
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f}} shells, and finally a conical shell (Figure 1). It was shown that by
f' appropriately modifying the constitutive equations, it is possible to
1* include enough geometrical features of the shell to predict relatively
2: accurate results even in the thick-shell limit.
b0
~-; Finally, a specific problem of a conical shell of uniform thickness
;
( was considered. The heat flux on the outer surface of the shell was
f: taken to be constant, all other surfaces of the shell were insulated,
‘:T and the shell was initially at uniform temperature. Using the Cosserat
:: equations, we were able to obtain an analytical solution for the time-
=
- dependent average temperature and temperature gradient. This solution
i_x predicted that the average temperature gradient was quite severe near
5 the tip of the shell and developed its maximum value within a short
-E time. Since the average temperature gradient produces a thermal moment
“d
‘.J on the shell, we expect the bending to be most severe near the shell's
k) 1 L]
& P
ﬁf Future research should concentrate on determining the deformation
in the conical shell produced by these thermal fields.
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Appendix A

& A UNIQUENESS THEOREM FOR THERMOELASTIC SHELLS
JOI N WITH GENERALIZED BOUNDARY CONDITIONS

;J' (Submitted for publication to Quarterly of
L Applied Mathematics)
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ABSTRACT

The uniqueness of the solution of initial, mixed boundary value
problems for linear thermoelastic shells is reconsidered within the
context of recent developments in the thermomechanical theory of a
Cosserat surface [4]. Fairly general boundary conditions are considered
that allow mechanical contact with linear elastic media and thermal

radiation on the boundary curve of the Cosserat surface and on the major

surfaces of the shell.
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1. Introduction

Motivated by the application of shell theory to contact problems,
we generalize the usual boundary conditions to include mechanical
contact with linear elastic media and thermal radiation. These
generalized mechanical and thermal boundary conditions are applied on
the boundary curve of the shell as well as on its wajor surfaces.* In
this paper, the uniqueness proof 1s reconsidered within the context of

these general boundary conditions.

We recall that the theory of a Cosserat surface [l1] has been well
established as a particularly useful model of a shell-like body that,
broadly speaking, is a three-dimensional body that is “thin" in one of
its dimensions. Recent developments in the theory of continuum thermo-~-
dynamics [2,3] have provided the theoretical framework for developing a

general thermomechanical theory of a Cosserat surface [4]. Such a

theory admits
ture field SN
the thickness

finite numbers of directors SN (N =1,2...) and tempera-
to provide limited information about the variation through

of the shell of the deformation and temperature field,

respectively.

For less general boundary. conditions than those considered here, a
uniqueness theorem has been proved for the linear isothermal theory of
shells [1, Sec. 26] and for small motions superposed on a large deforma-
tion within the context of a thermoelastic theory of shells that admits
a single temperature field [5]. A uniqueness theorem for a linear
thermoelastic theory of shells that admits two temperature fields and
two energy equations has also been proved {6], including radiation on
the major surfaces, but not on the boundary curve. None of these

uniqueness proofs considers mechanical contact with elastic media.

*Recall [L] that the three-dimensional boundary conditions applied to
the major surfaces of the shell are incorporated into the field
equations and therefore are not considered to be boundary conditions
in shell theory.




Although the structure of this latter theory 1is different from that
most recently developed for Cosserat surfaces [4], the linearized
equations can be placed in a one-to-one correspondence with those of a
theory that admits a single director S and two temperature fields 0, ¢.
It therefore follows that the previous uniqueness theorem [6] applies to

solutions within the context of the new linearized theory (4].

In the following sections, we state sufficient conditions to prove
uniqueness of the solution of the equations of the coupled thermoelastic
theory* that admits the generalized boundary conditions and that
considers inhomogeneous, anisotropic elastic shells. Specifically,
Section 2 records the basic equations of the linear theory of a Cosserat
surface, and Section 3 discusses the generalized boundary conditions.

Finally, in Section 4 we state and prove the uniqueness theorem.

2. Basic Equations

Let the material points of the Cosserat surface C be identified by
means of a system of convected coordinates 6% (a = 1,2) and let the two-
dimensional region occupied by the material surface in the present
configuration at time t be denoted by c. Further, let the vector valued
function r define the position of a material point of the surface C and
at each such point define the vector valued function g, called the
director, and the two temperature fields 6 and ¢ each referred to the
present configuration. Then, a thermomechanical process of the Cosserat

surface is defined by
£=rxe%,e) , d=4d0%t) , I3 3,d >0 (2.1a,b,c)

o=00(%t) , (08>0 , ¢=0e08%t) , (2.1d,e,£)

*The uniqueness theorem, with its modification for the generalized
boundary conditions, 18 clearly applicable to the purely mechanical
theory as well as the purely thermal theory.

A-4

\. 'U..\?.\: IASE \-\' ~s -“ <- \)_ .-.'\"4_"_‘._‘\:."" : \; AN ‘.\ LS ¢ \‘

-l m . -, -- w"
.-'\,\ ) " \\{‘-

2 ~‘\$‘\\\r '\-.\"\.4 ;;\\\_




dee o A B Al B i B kol ok el S AEAR Al Al Bl Al e Ae Acn Ao A ¢A b Shdt Ao~ Ard iy Bl el RS S0S i o ol sl S

where the tangent vectors 2a and unit normal vector a3 are defined by

or
"83=0 , 23c2;=1 , a' =[3 8,8,]>0

(2.2a,b,c,d)

and the condition (2.1c) ensures that the director is nowhere tangent to
c. The condition (2.2d) ensures that 31(1 = 1,2,3) are linearly inde-
pendent vectors forming a right-handed coordinate system. Thus, we may

introduce a set of reciprocal vectors ai such that

R
2, * 3 61 (2.3)
where 53 18 the Rronecker symbol. The velocity Vs director velocity w,

and temperature gradients g and may now be defined by*
gand g

. a
y Ww=d4 , g= e’ a ' B * ¢ aa (2.4a,b,c,d)

~ ~ ,Q“‘

e

v =
~

where a superposed dot denotes time differentiation holding 6% fixed and
a comma denotes partial differentiation with respect to the coordinates
8%. In the reference configuration, we assume that the shell is at
uniform temperature ®. Then, the reference values of the various
kinematic quantities may be denoted by

r= 5 ’ Q, - R y a a = A ’ (2.5a,b,c,d)

6=® , ¢=0 , (2.5e,f)

where R, D, éd and A1/2 depend on the coordinates 8% only.

*Throughout this text, we use the usual summation convention over
repeated indices. Greek indices have the range (1,2) and Latin indices \
have the range (1,2,3).
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Let P, bounded by the closed curve 3P, denote the region occupied
by an arbitrary material portion of the surface ¢ in the present
configuration and let v be the unit outward normal to 3P. Using the
notation® of [7] and referring to the present configuration, we define
the following quantities: the positive mass density (mass per unit area
of P) p = p(e“,:); the contact force n= E(ea,t; v) and the contact
director couple m = 5(9“,:; 3)’ each per unit length of the curve 3P;
the specific (per unit mass of P) assigned force f= g(e“,c) and
specific assigned director couple L= &(ea,c); the intrinsic director
couple k= E(ea,t) per unit area of P; the inertia coefficients y1 =
yl(e“) and y2 = y2(9“) which are independent of time; the specific
entropies n = n(6%,t) and n - nl(ea,t); the specific internal rates of
production of entropy £ = 5(9“.:), g, = 51(9“,:) and El = El(e“,c); the
entropy fluxes k = k(6%,t; v) and ky = ky (6%,t; v) each per unit length
acting across the curve 3P; the specific external rates of supply of
entropy s = s(ea,t) and sy = sl(Sa,t); the specific internal energy
e = (0% t); and the specific Helmholtz free energy ¢ = ¢(8%,t) = ¢ - On
- iy

For the linear theory, it is convenient to introduce the displace-

ment vector u and director displacement g by the equations
r=R+u , 2 =D+ é . (2.6a,b)

If, in the reference configuration, the shell is free of assigned fields
and contact forces and director couples, then for the linear theory we
assume that in the present configuration, the displacements u, Q and the
temperatures (0 - ®) and ¢ are of order’ €(0 < g€ < 1) and that

quadratic terms in these quantities may be neglected relative to linear

*Ihis notation differs from that used in [1,4].

tThe temporary use of this symbol for the small parameter should not be
confused with the use of the same symbol elsewhere for the internal
energy.
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terms. With this background, we record [1] expressions for the

kinematic quantities AaB’ BaB’ Aia’ and for the strains eaB’ T Kia in
the forms
AGB = ﬁa . éﬁ R Baﬁ = éa,ﬁ . é3 » Aia = éi . E’a (2.7a,b,c)
e ., = l-(A eu ,+ A cu ) (2.7d)
af 2 ‘~a B~ ~,a
a
Ya - éa . é + R . g’a , Y3 = 53 . Q - (2 . é )(é3 . g’a) , (2.7e,f)
g
KaB = éa * 6,8 + D,B * ~a K3q * A3 * é,a -4 B,a)(é3 * ~,a)
(2.7g,h)

where for the linear theory all tensor quantities are referred to the
base vectors éi'

With suitable continuity assumptions, it can be shown that [1,4])

a a
g = H va ’ 2 - g Va ’ (208a,b)
a a
k=peyv=p v, » k =p s v=pP Vv, > (2.8¢c,d)

where va =y e éu are the components of the normal vector v and where

Na, Ea, P and B are independent of Ve Further, with reference to the

~

energy equation, the specific external rates of heat supply r and r;

and the heat flux vectors q and 51 are defined by

r=0s , r = ¢s

1 q = ep » ql = @21 . (2-9a,b,c,d)

1 * < ~ ~
Now the local forms of the basic equations may be recorded as

A=p al’? . Py a2 59 (2.10a)

Ay + gt W) = Af + (A1/2 ) . (2.10b)




A(y1 i + yz é) =L - A}/z k + (A”2 a) « (2.10¢)
AN = A(s + E) - (AI/2 p“)’a , (2.104d)
My =Gy + ) - Y (2.10e)

where p is the reference value of p. Equation (2.10a) represents
conservation of mass, (2.10b) represents the balance of linear momentum,
(2.10c) represents the balance of director momentum, and (2.10d,e)
represent balances of entropy. Referring the quantities ga, k, ga to

the base vectors éi'

we may write*
M =M A (2.11a,b,c)

Using these definitions, the results of the balance of angular momentum

become [1]
IR R ST R o - PE (2.12a)
0% = p? K - 0% & + ASo M - 2% M, (2.12b)

where tensor quantities with superscripts are contravariant or mixed

tensor quantities referred to A, and 51.

~1

Using appropriate constitutive equations for an =lastic material
and demanding that the balance of energy be identically satisfied for
all processes, it can be shown [4] that

‘af _ 2 1_ 2 ta _ >

N® = o —J’—aeaﬂ . K=o, l‘avi , Mg ——9—6‘1‘! , (2.13a,b,c)

ne- - (2.13d,e)
20 * M "% ° ’

*This notation is consistent with [7] but differs from that used in
(1,4].

A-8

‘* *“J‘ ‘. , . ) - ) ' !{‘:1 %._- -;_\-;.,:‘.'.‘"-.« “ ‘.(‘ -(.‘ . (. -‘ l'*l *{ I: 4- .-: ‘\'- ’ ““...-
J‘ e A o0 ey -( ol y
LSO TRy * Sy 123 RSN *
RN .,:_z - ) ot et s \» N

f
,nv..ol "



‘ﬂi‘—“'-ﬁ‘._"

XL EE

e

[ S S S ' A

A
¢

I
P mtu

4 ) e o P i

hi B

RO o
'."_.*
A\,

-:‘ -\. .
RIS
Cacladt '\

ja® ¥,

and that
P(OE + ¢E ) +peg+p g =0, (2.14)

where for the linear theory, we note that p can be replaced by p, in

expressions of the type (2.13) and (2.14).

Specifically, for an inhomogeneous, anisotropic shell we assume

that
af
ZP°¢‘ZPO¢1'ZB°Y3(9‘)"204 eaﬁ(e-)
(2.15a)
2 2
-zc‘;‘ﬁxaa¢-a3(e -20 )-8, ¢ -2858
- afyd 2 apyd
20,0 =Cp 0 epgens T alyy) + G kg Kig
(2.15b)
ap ap af
+ C1 Yo YB + C2 K3a K3B + 2 C3 edB Y3
x af a _ _ af
P C6 9:5 > Py C7 ¢ 8 (2.15¢,d)
- ap af 2
Po 0k C6 e’a O’B + C7 °,a ¢,B + b2 ¢ , (2.15e)
pO El - po El == b2 b (2.15f)
where the quantities
“B"&(N 1,2) , C;B(N -1,2,...,7) , (2.16a,b)
a4 ’ BO ’ 83 ’ 34 ’ BS ’ b2 ’ b3 ’ (2.16c)
are functions of the variables
a
v = {0 . AaB , BaB . Di . Aia ’ } o, (2.17)

. _."_."\"\:h.\ _"
. rf*mw v&iﬁﬁi
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g?“ and the tensors (2.16a,b) satisfy the symmetry restrictions
;#% cstG = cf“*a - c:ﬁév - c{aaa , (2.18a)
SN
g:% S R T Al C T SR DR (2.18b,c)
)
_%{: The forms of the constitutive equations (2.15) are chosen to be similar
:E: to those used in the linearized theory [4], but with appropriate
‘é(i generalizations to allow for anisotropic, inhomogeneous response and to
satisfy the reduced energy equation (2.14) without approximation.

ﬁ:; Specifically, equations (2.15c¢-f) satisfy the nonlinear form of the
N reduced energy equation (2.14), with p, replaced by p in each of the
‘;3 expressions. 1In particular, we note from (2.15e) that £ is of order ez
and therefore may be neglected in equation (2.10d). Furthermore, we
h};. note that the constitutive equations (2.15) automatically satisfy
{Eé restrictions for modeling a shell that has symmetric response about its
{Ig reference surface [1, Sec. 13 y]. Now, with the help of the restric-
i tions (2.13), (2.18) and the constitutive equations (2.15), we conclude
iy that
G2 )

N N o cIPYE 5 * vy -cPo-® , (2.19a)

¢,

'.-’n-" \ -

a af 3 - ap - -

N k C1 YB y K a, Y3 + C3 eaB Bo(e ® , (2.19b,¢)
R u® . c;BYG Kys - cgﬂ o , M%< o3 K35 (2.19d,e)
;“.' a B

a a
Pon = By Y3 + €y egg * B30 @ + By, pgny = G5t Kgg * By 0 s
(2.19¢,8)
ap 2 2
2 PoE ™ 2 p°¢1 + 2 Bo Yq + 2 C4 eaB + B3 0 + B4 ¢ (2.19h)

Finally, we recall [4] that for such an elastic shell the only

nontrivial statements of the second law of thermodynamics take the forms

A-10
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5 p°¢21+2°g+21051_(.0 ’ (2.20a)
o(t) - 91 > 0 whenever ¢e(t) - € >0 . (2.20b)

The statement (2.20a) corresponds to the classical heat conduction

inequality and is assumed valid for all equilibrium displacement and

temperature fields. Further, the statement (2.20b) is assumed valid

when the Cosserat surface is at rest and the three-dimensional tempera-

ture field is spatially uniform so that 6 = 6(t), ¢ = 0. 1In (2.20b), e

and 8, correspond to the internal energy and uniform temperature of the

PO L D Rl X %,

-

shell during some period of time up to t, when the shell has been at
rest and in thermal equilibrium.

R
X ¥

s S
T

3. Boundary and Initial Conditions

This theory, which is developed by direct approach, may be brought

into a one-to-one correspondence with the three-dimensional theory by

\.I.
x

>
2

*
assuming that the position vector p of a point in the shell and the

<

temperature field 9* admit the representations.

¥ o= p(0%6%,0) = £(e%,e) + 0> ge%,e) (3.1a)
)
» o =0 (0%0%,t) = 0(6%,¢t) +6° o(6%t) (3.1b)

3 where 93 is a coordinate through the thickness of the shell. Without
5 loss in generality, we may define the top surface 3" of the shell by

a; 63 = h/2, where h is a constant having the dimensions of length; then we
e may write the displacement 2+ and temperature difference (9+ - ®) on 6P+

- by
. + h + h

. u =u+38 , (8 ~@=(0-0+50¢ . (3.2a,b)
Similarly, we may define the bottom surface 3P of the shell by 93 =
-h/2 and write the displacement 2- and temperature difference (6~ - ®)

\ on 3P~ by

) A-11
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e

-2s . 0 -@-0-®@-20 . (3.3a,b)

In this regard, we note that the specification that the major surfaces
of the shell are defined by 63 = + h/2, where h {8 constant, does not
restrict the theory to that assoclated with a shell of uniform thickness;

x v g g - ..‘
: :a§§EES§ b

o
R
hXal

this is because the director D in the reference configuration may be

¥ CJ

=y
o

specified as a function of 6%.

¢

;;‘E With the help of (2.12) and the constitutive equations (2.15¢,d,f),
gﬁ?y (2.19a-g) and the strain-displacement relations (2.7), equations (2.10),
] with £ = 0, represent a system of equations to determine the unknowns

;;;3 u, Q’ 0, ¢. These equations must be solved subject to certain initial
;fil and boundary conditions. Here, we define the initial conditions at each
;é;f point of the region P by specifying

L]

a a a Q
u= 20(9 )y g - éo(e ) , 6= eo(e ) , o= ¢°(e ) , (3.4a,b,c,d)

. a . a
u = xo(e ) ,» 8= 30(9 ) , at t = to . (3.4e,f)
‘\:‘ whereu , v , § , w , 8 , ¢ are specified functions of o% only. Mixed*
gy ~o0’ ~o’ ~0’ ~0’ 0’ "o Ak
- boundary conditions at each point 8 of the boundary 3P may be defined
R by specifying either:
2 - -
. n =n(s,t) or u=u(s,t) , (3.5a,b)
v
3 - <
S m = m(s,t) or 8 = g(s,t) , (3.5¢,d)
s
‘ - -
Q& k = k(s,t) or 0 = 0(s,t) , (3.5e,f)
oe .
ed
uiﬁ:
wﬁy
:‘;f *
. Mixed-mixed boundary conditions may be specified but are not
&ui- considered explicitly.
S
\..Q-
Eu}~ **The temporary use of the symbol s for a point on 3P should not be
-::: confused with the use of the same gymbol elsewhere for the external
5 entropy supply.
[ )
!.'.
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(3.58,h)

k, = il(s,t) or ¢ = o(s,t) ,

1 for t e[to, ®)

More general boundary conditions than (3.5), which include mechanical
contact with a linear elastic media or thermal radiation, —ay be written
at each point s of 3P in the generalized form*

n + B(s) u + E(s,t) =0 , m+ El(s) Q + gl(s,t) =0 ,

~

(3.6a,b)
k - B(s,t)(6 - ® + C(s,t) =0 , k1 - Bl(s,t) ¢ + Cl(s,t) =0 ,
(3.6c,d)

where B and B1

tensor functions of s and are independent of time; B and B1 are

are assumed to be continuous symmetric three-dimensional

continuous scalar functions of (s,t); C and C1 are continuous vector
functions of (s,t); and C and 01 are continuous scalar functions of

(s,t).

For later convenience, we define the scalars

1
E‘Q *B. &5 .

1
J, = 274° Bu , J B, (3.7a,b)

2
A boundary condition of the type (3.5a) can be obtained trivially from
(3.6a) by setting B = 0, and C = - ﬁ(s,t), and a boundary condition of
the type (3.5b) can be obtained from (3.6b) by setting the tensor E equal
to a scalar b times the identity tensor IB=b1I)and C=-b é(s,t),
and then taking the limit as b approaches infinity.

Recall from [4] that the assigned fields E, L, s, and sy include
contributions from both the effects of three-~dimensional body force and
external entropy supply as well as from the effects of surface tractions
and entropy flux on the major surfaces of the shell. 1In view of the
specification 93 = + h/2 defining the major surfaces, we may write these

assigned fields in the forms

*A condition of the type (3.6c) has previously been considered for the
three~dimensional theory [8, Sec. 5.7].
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M o=A+A G e ), (3.8a)
o=+ ARt -y ) (3.8b) ‘
xe = - A2t ev ) (3.8¢) .
As, = A3, - Al/z(%)(b+ N (3.84)

where i, Z, é, ;1 are considered to be specified agsigned fields
associlated with the three-dimensional body force and external supply of
entropy, b+ and b~ are positive scalar functions of the variables (2.17)
and are independent of time, £+ is the traction vector and k+ is the
entropy flux on the major surface 6P+, and £— is the traction vector and
k~ is the entropy flux on the major surface 3P . To allow mechanical
contact of the major surfaces with an elastic media and to allow thermal
radiation, we assume that at each point of* apt

+ + + + + +
£+”2+£'0,k-5(9+-®)+c+=o (3.9a,b)

~

and at each point of 3P~

t +B u +C =0 , k -B(@ -@+C =0 , (3.10a,b)

where §+ and E- are continuous, symmetric, three-dimensional second

order tensor functions of the variables V in (2.17) and are independent
+ -

of time; C and C are continuous vector functions of the variables

(V,t); and B+, B, C+, C” are continuous scalar functions of the

variables (V,t). For later convenience, we define the scalars

e
F}

*
Note that the range of the convected coordinates 8% on the major
surfaces 3Pt and 3P~ 1s the same as that on the reference surface P of
the Cosserat surface.

a2

a

e

3 Lot
P e

‘e
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1 + o+ +
J3=ze R e o, I =

~

4 *B u . (3.11a,b)

N+

Depending on the nature of the problem to be considered, the quantities
£+, s-, k+, k-, 2+, 2_, 9+, § are either specified or to be determined
by the field equations. For example, if we were to consider a slightly
more general boundary condition of the tyve (3.9a), which specified the
tangential cowponents of £+ and the normal component of 2+, then the
normal component of Ef and the tangential components of 2+ would be

determined by the field equations. This is similar to the use of such

quantities in the theory of laminated composite plates [9].

4. A Uniqueness Theorem

We now state the following uniqueness theorem: Let u, g, 8, ¢ be
displacements and temperature fields that satisfy the above-mentioned
linear field equations, constitutive equations, and statement of the
second law of thermodynamics on P x [t,, =), and satisfy the initial
conditions on P at t = t,, the boundary conditions on 3P x [to, @),
conditions of the type (3.9) on 3P' x [ty =) and (3.10) on 3P x [t,, =),
for prescribed values of the assigned force E, director couple z, and
external supplies of entropy s and s,. Then, provided the specific

1
kinetic energy K, defined by

K-K(x’g)a%(zax-}-Zylxow-{-yzzoz) ’ (4.1)

is positive definite, the specific heats B and 54 in (2.15a) are
positive scalars, the portion of the Helmholtz free energy ¢ In (2.15b)
1s positive semi-definite, and the scalars Jy, Jy, J3, J,;, B, By, B+, B~
in (3.6), (3.7), (3.9)-(3.11) are positive semi-definite, there exists
at most one set of functions u, é, 6, ¢ that satisfies the strain-
displacement relations (2.8), the field equations (2.10) (with £ = 0 in
2.10d) and (2.12), the constitutive equations (2.15) and (2.19), the
restriction (2.20a), initial conditions (3.4), boundary conditions
(3.6), and conditions (3.9) and (3.10), are of class cl on 2P x [ty, =)

and are of class G2 on P x [t,, ). For convenience, the restrictions

A-15
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3}. stated above may be written in the mathematical forms*
Q“' 9 1 2
ey -() >0 , By >0 , B >0 , ¢ 20 , (4.2a,b,c,d)
B
. ’ﬁ
heR Jl >0 , J2 >0 , J3 20 ; J4 >0 , (4.2e,f,g,h)
)
o + -
dod B>0 , B, 20 , B >0 , B >0 . (4.24,3,k,1)
\)
Qr
ot
\
331 Apart from the discussion of the generalized boundary conditions,
S/
our method of proof is nearly identical to that used in Reference [6].
')" Specifically, we assume the existence of two different solutions of the
7Am above~-stated initial, mixed boundary-value problem, form the difference
gf solution, and use a consequence of the field equations to prove that the
P
“‘ difference solution is the null solution. Let us denote the two .
)ﬁa solutions by the sets of quantities
.‘:':;a
i R
:ﬂ" U = {2’ Q) 9, ¢, n, !S’ m, N, ﬂla 51) B Ri» E,t, k, k} (4.3a)
A'.i
N " ' ' ' ' ' ' ' ' ' ' ' ' vt - ot '
:. U-{Exéoeg¢929}5’E!n’n1:51’2)21)£ » £ » k', k')
-
1y (4.3b)
P
el
;) and form the difference solution
fi' )
Y U=U-U" . (4.4)
s
S
2> It follows that the difference solution satisfies the following: the
by field equations
) .
- ® [ 3
‘i -~ ~ A+ ~
R Ay + vt w o= A2t et e b ) + (a2 R . (4.5a)
s N
‘ !
bs ‘
4,
R
b
ﬁhﬁf *The restriction (4.2b) 1s consistent with the condition (2.20b).
P
> A~16
3
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N R S TR AR 3 R LA M, (4.5b)
; a = A2t 4T Ry - b2 D, (4.5¢)
.(
:".: X;l -\ - 1/2( byt &t - b k) - (al/2 ";) , (4.5d)
: on P x [to, ), the restriction
”o;%"é'é*él'élfo (4.6)
on P x [to, ®), the initial conditions
Q-o,é-o,é-o,&-o,;-o,é-o (4.7a-£)
on Pat t = t,» the boundary conditions
é +Bu=0 , m+ 21 §=0 , (4.8a,b)
i-sa-o,fcl-nlg-o, (4.8¢,d)
on 3P x [to, »), the conditions
ghetata0 , -stet-0 (4.9a,b)
on 3Pt x {ty» =), and the conditions
4B g =0, K-8 0 =0, (4.10a,b)

on 3P~ x [ty =)

Multiplying (4.5c) by @, (4.5d) by ¢, adding the results together,
integrating over the region P, using the divergence theorem and the
conditions (4.8¢c,d), (4.9b), and (4.10b), we obtain
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[ppo(8n+0n)do= [ (o 68 +p*g+p *g)do
W2 . .2
- [oIb" BT + b7 BT (87) Jao

= J5p(B 8% + B, +2)ds (4.11)

where do is the area element on P and ds is the arc length on 3P. Taking
the inner product of (4.5a) with v, (4.5b) with W, adding the results
together, integrating over the region P, using the divergence theorem and

the conditions (4.Ba,b), (4.9a), and (4.10a), we deduce the expression
E = fp (8 n+ ¢ n )do (4.12)
where

~os 1 "2
E=fp [py(¢; +K) +35 8,0 +—34¢ +b J3+b J]da

+ fm,(.r1 +J,)ds (4.13a)

~

Oy = dyleggs ¥4 Ky » K=R(L, ® , 3 =@ , (4.13b-4d)

-~ - - Y -

+ e .
Jz - Jz(é,) ’ J3 - J3(u ) Jl; - Jl‘(u ) (4.13e,f,8)

and where the functions ¥y, X, Jy = J4, are defined by (2.15b), (4.1),
(3.7), and (3.11), respectively. Now from (4.11)-(4.13) and the
restrictions (4.2), we realize that E 2 0 and E < 0. Using the initial
conditions (4.7), we obtain the result that E = 0 for all time t e[to, o)
and therefore

v=0 , w=0 , 86=0 , ¢=0 . (4.14a,b,c,d)

u=0 , §=0 , (4.15a,b)
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Finally, substituting (4.l4c,d) and (4.15a,b) into the conditions (4.9),
{4.10), we conclude that

£ =0 , £t =0 , k=0, k =0 (4.16a,b,c,d)

which completes the proof.

To prove uniqueness for thermoelastic statics, we need slightly
stronger conditions than (2.20a) and (4.2d). Specifically, we retain
the restrictions (4.2e-%) and assume that ¢; is positive definite and
that the expression on the left-hand side of (2.20a) is negative
definite so that

¢1 >0 , Po ¢ 51 +pegt ) T ) <0 (4.17a,b)

where ¢y in (4.17a) vanishes only when the mechanical fields eapr Yi»
K{g vanish and (4.17b) vanishes only when the thermal fields S’a, ¢,
°,a vanish. Furthermore, we require the temperature 9 to be specified
on at least one point on the boundary of the shell. This can be done by
specifying 6 on 3P, 6% on 3P, or 6~ on aP”.

Now, for thermoelastic statics the thermal equations (4.5¢c,d) are
uncoupled from the mechanical equations (4.5a,b) and the expression
(4.11) can be derived with the left hand side vanishing. Tt follows

*
that

o tR8*+R 8§ =0, (4.18)

from which we conclude that

>
>

g=0 , 6=0 . (4.19a,b)

*Recall from (2.15f) that &, = £;.
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Integrating (4.19a) and using the specification of 6 at a point of the
boundary of the shell, we have

6=0 . (4.20)

Substituting (4.19b) and (4.20) into the conditions (4.9b) and (4.10b),

we deduce that

~ A

Kk =0 , k =0 , (4.21a,b)

which completes the proof for the thermal fields. In view of the
results (4.19b) and (4.20), we may take the inner product of the
equilibrium form of equations (4.5a) and (4.5b) with é and é, respec—
tively, and derive the expression

~ + ~ - ~ ~ ”~
[pCog ¢y +b Iy +b J o+ [, (3 +J,)ds =0 . (4.22)

It follows that b = 0 so that

A - Y

eaB -0 , Yy = 0 , x,. =0 . (4.23a,b,c)
Hence, the displacements are unique to within a linear superposed rigid
body displacement. If this arbitrariness is removed, then the displace-
ments will be unique

u=0 , §=0 (4.24a,b)
and from the conditions (4.9a) and (4.10a), we can conclude that

A+ A-

£t =0, t =0, (4.25a,b)

which completes the proof for the mechanical fields.
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Introduction

Within the context of theories of deformable bodies, a constrained
material is a material that can experience only a restricted class of
motions. Various constrained theories of shells have been developed
nmainly because the system of equations characterizing a constrained
theory 1is simpler than that characterizing the general theory. For
shells, it is common to develop constrained theories that exclude one or
both of the following two types of deformations: (a) normal extension
and (b) tangential shear deformation. The terminology normal extension
and tangential shear deformation is used instead of the usual termi-
nology "transverse normal strain,” and "transverse shear deformation”
because it is more descriptive when considering nonlinear deformation of

a shell as opposed to linear deformation of a plate.

To discuss constrained theories of shells of the type considered
here, it is particularly convenient to model the shell as a Cosserat
surface {1]. Although various restricted or constrained theories of
shells [1, Sec. 10; 2,3,4] have been developed, we choose to focus
attention on three constrained theories. For constrained theory I, we
exclude both deformations (a) and (b) so that a material fiber that is
initially normal to the undeformed reference surface of the shell
remains normal to the deformed reference surface and has constant
length. A nonlinear theory of this type has been developed as a
restricted theory [l, Sec. 10}, and it has been observed that it reduces
to the classical linear Rirchhoff-Love plate theory. For constrained
theory II, we exclude only deformation (b) so that a material fiber that
is initially normal to the undeformed reference surface of the shell
remains normal to the deformed reference surface, but is allowed to
extend or contract in length. A nonlinear theory of this type has also
been developed [2]. For constrained theory III, we exclude only
deformation (a) so that a material fiber that {s initially normal to the
undeformed reference surface of the shell is allowed to deform away from
the normal to the deformed reference surface, but the component of the

material fiber normal to the deformed reference surface remains constant.




_i; Although a theory of this type can be reduced to a linearized theory of
}é a plate that includes "transverse” shear deformation [5], a nonlinear
& version of this theory does not appear to have been previously developed.
% Our purpose here is to develop a nonlinear version of constrained
;ﬁ‘ theory III. Because the constraint associated with this theory is

. mechanical in nature, we will confine attention to the purely mechanical
it theory.* In the following sections, we record the basic equations and
:: discuss the constraint and constraint response associated with theory

ﬁ ITI. Next, the boundary conditions are discussed, with a few comments

! on the linear theory, and finally the initial conditions are stated.

e

Py

: Basic Equations

’; In this section, we use the notation in {2]) and briefly record the
L basic equations appropriate for a constrained version of the theory of a
;ﬁ Cosserat surface. For a complete discussion of this theory, we refer

‘\ the reader to (1,6]. Let the material points of the Cosserat surface C
% be identified by means of a system of convected coordinates 8%(a = 1,2)

and let the two-dimensional region occupied by the material surface in
the present configuration at time t be denoted by c¢. Further, with

4 reference to the present configuration, let the vector valued function
-E r define the position of a material point of C and at each such point

p define the vector valued function g, called the director. Then, a

o motion of the Cosserat surface is defined by

.'

:: r= g(ea,t) » 4= g(ea,t) , [gl a2, d] >o (la,b,c)
i

:Q where the tangent vectors ga and the unit normal vector a, are defined
- by

v,
l‘
:; - *A thermomechanical theory of the type [6] could be developed by
. appropriately modifying the constitutive equations.
‘

B-3

N SN R T ST T AT
A e [ S . PRI
| ».\.“”‘\w“__"” LA, .‘ ..'- KR ,~

N i ) \.
A Y .o < v‘
\ v ‘..1.‘\, ,L.‘( N X .\.-", *,\ h' \J\\".-urs\
Nal .




~ 1/2

2" or * Zat2T0 0 2ty Tl a2 22020 -
(2a,b,c,d)
The velocity v and director velocity w are defined by
x-i ’ !-é ’ (3a,b)

where a superposed dot denotes material differentiation holding 6%

fixed.

el In the reference configuration, the various kinematic quantities
Ay *

;'%ﬂ may be denoted by

704N

S

e S A S T Al L R )
nes 1/2

“k,‘ vhere R, D, A;, A depend on the coordinates 6% only. The

’"ié specification (4b) is made without loss in generality. For later
&.2' convenience, we recall [1] the kinematic definitions

¢

x"x

N - = . - °
e %p "2 2% » 472t ATyl (5a,b,¢)
L‘.l“"

i 1

S - — - = - = -

9:; €ap "~ 2 (aaﬁ AGB) » Yy =4 =D s ke = Mg T Ay, (5d,e,£)
_‘\

.

Ny b - . 5
.;_ a8 " 24 2 (58)
.ll,:":
‘:Iﬁ where AaB’ Di’ Aia’ BaB are the reference values of aaB’ di’ Kia’ baB’

y respectively; eaﬂ’ Yi’ Kia are strains measured relative to the
N, -
A&K:: reference configuration; and a comma denotes partial differentiation

ey
o with respect to 6%.

-‘lu"
s
UL
e
')
1...'0
RN
fQ§*‘ *Throughout this text, Greek indices have the range (1,2) and Latin
.:;jﬁ indices have the range (1,2,3).
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Let P, bounded by the closed curve 3P, denote the region occupied
by an arbitrary material portion of the surface ¢ in the present
configuration and let v be the unit outward normal to 3P. Using the
notation” of [2] and referring to the present counfiguration, we define
the following quantities: the mass density (mass per unit area of P)
o= p(e“,t); the contact force n = 2(9“,:; y) and the contact director
couple m = 2(9“,:; v), each per unit length of the curve 3P; the
specific (per unit mass of P) assigned force £ = g(ea,t) and specific
assigned director couple § = &(ea,t); the intrinsic director couple
k = 5(9“,:) per unit area of P; and the inertia coefficients y1 = yl(e“)
and y2 = y2(9a), which are independent of time. With suitable continuity

assumptions, it can be shown [1] that

=N vy om=Mv, v ety (6a,b,c)
where Ea and ga are independent of Ve Referring all tensor quantities

*k
to base vectors a,, we may write

N =nTa . k-ila

~

i » = a » (7a,b,c)

where the usual summation convention is used.

Coupled thermomechanical constraints for a three-dimensional
continuum have been previously discussed within the context of more
classical thermodynamics [7] as well as within the context of recent
developments [8]. Further, a rather general discussion of purely

mechanical constraints for the theory of a Cosserat surface is contained

*This notation differs from that used in [1,6]. 1In particular, we note
that the quantities n, k, m defined here, correspond,
respectively to N, m, M in [1,6].

*%
The notations used here for Na and Ma are consistegt with i
those of (2], but differ from the notation N* = N*' a, and M* = M** g,
used in [1,6].




in [9]. In these works, a constrained material is characterized by a
set of constraint equations that restrict various kinematical quantities
(deformation and temperature fields) as well as associated constraint
responses that introduce a certain arbitrariness in the kinetic

quantities.

For constrained theory III, we need introduce only a single

constraint, which excludes normal extension and is characterized by

duEaaDoA =D (Y3’0’Y3'0) (8)

~ ~ ~3

Following previous works [6-8], we assume that the kinetic quantities*
ﬁaﬁ’ ka, Mia are completely determined by constitutive equations and
that k3 separates into two additive parts: one part, denoted by ;3, is
determined by a constitutive equation; and the other part, Ea, is an
arbitrary function of (8%,t), independent of strain rates, which is
further assumed to be workless. Thus, we assume that

G+, © Y3 =0 . (9a,b) )

In view of the constralnt (8), the director d may be expressed in the
form

d=d*a +Da, . (10)

~ ~a ~3

It is now convenient to vrecord [1,2] the local forms of the basic
equations of motion as:

A= p 172 o RY: (11la)

A ~3
o £% + %8 - P bg =0 , pf + N3B|B +vf =0 , (11b,¢)

B af

*The quantity N%B will be defined presently.
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N o -+ M“BIB - P b; =0 , (114)
,‘ _3 A3 A3 3B aB
o = 1
e k p A -k +M |B +M baﬁ , (11le)
R
{:. where
.) L. U R X P % 28+ Maolc 30 g) (12a)
o
o . 2
o N% B 2%+ M"BlB - 3P b;) - d%e 2+ MaBIB el byg) * A¥o M% A% m'°

LN

-,

]
~
e
N
o
~

%:% and where f1 and 11 are defined using the vectors ai which are the
AR ~
L reciprocals of ai, such that
b
- o 1 1 o
.7 fi-ai-(f-v-ylw) sy X 0= -(R-ylv—yzw) . (13a,b)
»D ~ ~ ~
s
L
o
) In (1la) p, is the reference value of the mass density p. Also, in (11)
) Q o
) : and (12) a bar denotes covariant differentiation with respect to the
metric a_s. Equation (lla) represents conservation of mass, equations
o a
1R (11b,c) represent the balance of linear momentum, equations (1l1ld,e)
B
:

fﬁ represent the balance of director momentum, and equations (12a,b)

represent the balance of angular momentum.

Once appropriate constitutive equations are specified for the

Ree kinetic quantities

1R

o

®

T

:Ei the six equations (lla-d) may he used to determine the six unknowns
::J

[ a

a0 {o, £, 4} . (15)
'?

_{i, For an arbitrary value of k3, equation (lle) may be satisfied by an
ﬁji{ appropriate specification of Ea. Now, equations (llb-d) must be solved
\{@

\"-‘.

‘?
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subject to certain boundary and initial conditions, which are discussed

in the next section.

Boundary and Initial Conditions

A rather detailed discussion of boundary conditions for constrained
theories I and IT is included in [1, Sec. 15] and [2], respectively.
Basically, we follow the discussion in [1]) and recall [2] that the
boundary integral appearing in the energy equation takes the form

J(aev+mewyds = | (ni v, + o w,)ds (16)

~ ~

oP oP 1

where ds is the elemental arclength of 3P and where

n =a en= N va y m = a e m = M va (17a,b,c)
v1 = 21 *V ., wi =W Ei . (17d,e)

Recalling [1], that an arbitrary function F = F(6%,t) may be expressed
in terms of its normal and tangential derivatives dF/dv and 3F/3ds,
respectively, we may integrate (16) by parts, assume continuity on 3P,

and use (10) to rewrite (16) in the form

dv ov
i ory  _ B _8 - 3
a£ [p (v)) +m (do ve 4 35 vy D3y
ov
+ w(df vg 552) lds (18)

where Pl are given by

o _r.0 Br Ao _ o] 3 B ,o d (B 0
P° = [n” + o"(d Tyg = P bB) +m d bB] +35 (0 d )\B) , (19a)
P = (2 + P &° bog) + & (@ - o dB)AB] , (19b)

and where the unit tangent vector A to 3P and the Christoffel symbol

c
FKB are defined by

........
.

________________




5 a c

L] = = . .

& A 83 XV PXB 5K.B a (20a,b)
v It is clear from (18) that at each point of 3P, we must specify either
W
N the kinetic variables (Pi, mi) or their associated kinematic variables

k)
i) that are written in parentheses in (18). Thus, for the nonlinear
3% ' constrained theory III, we must specify six boundary conditions at each
L' point of dP. However, for a theory that is linearized about the

%.

% reference configuration, the quantities Pi, mi, dc’ vy are small and of
A

Q order (o < £ < 1) so that the term in (18) associated with m3 is

{

ﬂ negligible compared to the other terms. Thus, for the linearized theory

the number of boundary conditions reduces to five.

: To see that the terms in (18) associated with bending of a plate

o are consistent with those discussed in [5], we note that for the linear
- theory of a plate

|
v
\ c_ 0o 3_.3,8 , 0

h P n , P n + 38 (m xd D) , (21a,b)
o

ﬁ . . . av3 R av3 1
“ = - - - — - —

v S (do D v3.d)é (ds D s )A + (dv D3 o (21c)
d

N : ds =Aed , dv =ved, (21d,e)
N where we have introduced the temporary notation dg and d,, respectively,
~ for the tangential and normal components of d relative to the curve 3P.
;: Thus, for a plate, (18) may be rewritten as
"

v v

‘ i ) c g e 3 3

i + - - —_— - _—
: a]{ [0° vy +35 @ A D vy) + 0 (& -DA 377 -D v, 3-7)]ds (22)
ii Integrating the second term in (22) and using continuity, we may rewrite
fj (22) in the form
' 3
q - JImeM@en+ (s w@ew+n v,

. aP
‘ ov v
1) 3 3
: + @M, =057+ @ W, - Dz5)]ds (23)

R Y,

3
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Next, recall [1] that the Cosserat theory may be brought into a one-to-
one correspondence with the three-dimensional theory if the position

*
vector p locating points in the shell admics the representation

*
B-£+932 (24)

where 03 1s the convected coordinate through the thickness of the shell.
Using the notation G; and G; defined in [5], 1t.follows from (21lc) and
(24) that woe k and wevy correspond to G; and G&, respectively, and
that the last three terms in (23) correspond to a dynamical version of
the boundary integral in [5], where we note that D = 1 characterizes a

shell of constant thickness.

Finally, for a dynamical problem it is necessary to specify initial

conditions of the form

r=1x(0" , v=wo" , d=4d0% , w=u0" , fort=0

(25a,b,cd)

where g, z, d, g are specified functions of 6% only and d, w are

consistent with the constrained form (10) of the director.
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Appendix C

ON THE DETERMINATION OF CERTAIN CONSTITUTIVE
COEFFICIENTS FOR THERMOELASTIC SHELLS

(Submitted for publication to the International
Journal of Solids and Structures)
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ABSTRACT

In this paper we model a shell composed of a linear elastic,
homogeneous, 1isotropic material as a Cosserat surface. Specific
attention is focused on the determination of certain thermal and
mechanical constitutive coefficients, which were previously determined
by integrating three-dimensional constitutive equations. Here, we
determine these coefficients by comparing Cosserat solutions with exact
three~dimensional solutions. This comparison suggests values for one of
the thermal coefficients and two of the mechanical coefficients that are

different from those previously proposed [1,2].
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af 1. Introduction
:v Classical developments of shell theory usually start with a
};Q ) conplete three-dimensional description of a shell-like body including
zd constitutive equations. Shell equations that are functions of two
#: space-variables and time are then developed by introducing approxima-
. tions and either integrating the equations of motion through the
:Cj thickness of the shell or by using an integral form of a variational
:E: principle. More recently, it has become common to develop shell
t}: equations by a direct approach in which the shell is modeled as a
Cosserat surface [l]. This latter approach has the distinct advantage
;& over the classical approach that equations can be developed for shells
@ with arbitrary constitutive properties. More specifically, the
'* discussion of constitutive equations within the context of the Cosserat
) theory is very similar to that in the three-dimensional theory.
> Constitutive coefficients are determined by comparing the predictions of
l; shell theory with experimental data or exact solutions of the three-
:;? dimensional equations that have already been shown to accurately predict
ke experimental data.
%; ntil recently, the Cosserat theotry admitted any finite number of
; 3 directors to provide information about the variation of mechanical
3" variables through the thickness of the shell but only admitted a single
'i) temperature field to model the average temperature in the shell. Recent
'\i advances in thermodynamics have allowed the Cosserat theory to be
‘:; generalized to admit any finite number of temperature fields that
::g provide information about the variation of temperature through the
. thickness of the shell [2]. An important special case of the general
E: theory 13 one that admits a single director and two temperature fields.
l:g In [2]) specific constitutive equations are developed for a plate
%S composed of a linear elastic, homogeneous, isotropic material. Values
o . for most of the mechanical constitutive coefficients and for some of the
%ﬁ thermal coefficients have been determined by comparing predictions of
3; the Cosserat theory with exact solutions of the three-dimensional
;} equations [1]. Values for the mechanical constitutive coefficients
d
3 c-3
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%é% associated with tangential shear deformation (more commonly referred to
as transverse gshear deformation) and the new thermal coefficients were
';f: determined by integrating three-dimensional constitutive equations
;%5 [1,2]. Even though a one-to-one correspondence between the three-
A dimensional theory and the Cosserat theory may be established, these two
.;i; methods of determining constitutive coefficients do not always yleld the
iﬁq; same results (see additional comments in Sections 4 and 5).
gﬁ‘ The objective of this paper is to show that the new thermal
Sﬁ;. coefficients and the mechanical coefficients associated with tangential
.” shear deformation may be determined by direct comparison with exact
’Qfﬁ three-dimensional solutions. 1In the following sections, we record the
fﬂb basic equations valid for a shell composed of a linear elastic,
k%b‘ homogeneous, isotropic material. Next, we briefly recall [1] how most
9 of the mechanical coefficients were determined by comparison with exact
il solutions. Then, we determine the new thermal coefficients by comparing
é#i with simple solutions of the three~-dimensional heat conduction equation
51;4 for a rigid plate. One of the thermal coefficients determined in this
¢ manner has a value different from that proposed in [2]. Finally, we
,h'f determine the two mechanical coefficients associated with tangential
) shear deformation by comparing with the exact solutions of simple shear
& : of a plate and twisting of a circular cylindrical shell. The values of
;j both of these coefficients determined in this manner are different from
iﬁb \ those proposed in [1].
ko
: %% 2. Basic Equations
i Let the material points of the Cosserat surface C be identified by
5;“ means of a system of convected coordinate Ga(a = 1,2) and let the two-
;;gﬁg dimensional region of space occupied by the material surface in the
:‘Bd present configuration at time t be denoted by c. Further, let the

vector valued function p define the position of a material point of the

gsurface C and at each such point define the vector valued function d,

called the director, and the two temperature fields 6 and ¢, each
referred to the present configuration. Then, a thermomechanical process



R of the Cosserat surface is defined by
[}
o, r=xe%t) , d=46%e) , [z 3,d1>0 , (2.1a,b,c)

o o=000%t) , (8>0) , o=00%t) , (2.1d,e,f)

( where the tangent vectors a, and the unit normal vector a, are defined
u:' by
Q'.;
-
' r
g a = E:— a +a,=20 3, *a, =1 31/2 = [a, a, a,] > 0
S~ e '~ A3 > A3 A3 ’ ~1 ~2 X3 ’
f. (2.2a,b,c,d)
.
.: and the condition (2.1lc) ensures that the director is nowhere tangent to

c. The velocity y and director velocity w may be defined by

'hn -
g yv=r , w=d , (2.3a,b)
A where a superposed dot denotes time differentiation holding 6% fixed.
a In the reference configuration, we assume that the shell has uniform
) .
f_ thickness h and 1s at uniform temperature 6,. Then, the reference values
A of the various kinematic quantities may be denoted by*
‘h
1t r=R , d=D=A y a, = A ’ 31/2 - Al/z ’ (2.4a,b,c,d)
.l ~ ~ ~ ~ ~3 ~1 ~1
0=6 , ¢= 0 , (2.4e,f)
) [¢]
L
(. where R, A; and A1/2 depend on the coordinates 6% only.
- Let P, bounded by the closed curve 3P, denote the region occupied
i: by an arbitrary material portion of the surface c¢ in the present
'
[
4
3 *Throughout the text Greek indices have a range (1,2) and Latin indices
5 have a range (1,2,3).
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configuration and let v be the unit outward normal to dP. Using the
notation* of [3] and referring to the present configuration, we define
the following quantities: the positive mass density (mass per unit area
of P) p = p(e“,:); the contact force n = 5(9“,:; v) and the contact
director couple m = B(ea,c; v), each per unit length of the curve 3P;
the specific (per unit mass of P) assigned force f= s(ea,:) and
specific assigned director couple % = £<ea,t); the intrinsic director
couple k = 5(9“,:) per unit area of P; the inertia coefficients y1 =
v1(6%) and y2 : yz(e“) which are independent of time; the specific
entropies n = n(e ,t) and n o= nl(e ,t); the specific internal rates of
production of entropy 5 = £(0%, 1), g, = 51(6 »t), and 5 - E (8%,); ¢
entropy fluxes k = k(e t; v) and k =k (9 S HEOH the specific
external rates of supply of entrOpy g = s(e ,t) and 8 = 81(9 ,t); the
specific internal energy € = e(ea,t); and the specific Helmholtz free
energy ¢ = ¢(9a,t) = g=-0n- ¢n1.

For the linear theory, it is convenient to introduce the displace-
ment vector u and director displacement § relative to the reference

configuration by the equations
r=R+u , d=D+§ . (2.5a,b)

We now assume that in the present configuration, the displacements u, g
and the temperatures (0 - 60) and ¢ are of order** e(0 < e << 1) and
that quadratic terms in these quantities may be neglected relative to
linear terms. With this background, we record [1] expressions for the
kinematic quantities Aaﬁ’ BaB’ Aia’ and for the strains eaﬁ’ Yis Kig in

the forms

*Ihis notation differs from that used in [1,2].

*
* The temporary use of this symbol for the small parameter should not be
confugsed with the use of the same symbol elsewhere for the internal

energy.
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'Y
: = A A B = A « A 2.6a,b
‘ Aa5~a~ﬁ’ ap ~x,B ~3 °’ (2.6a,b)
? . Aaﬂ = -BaB ’ A3a =0 , (2.6c,d,)
<
] - = 2.6
- g =7 (alg * Ypla’ " Bap Y3 (2.6e)
:' Yy =8 +u + BX u Yq =6 (2.6f,8)
¢ « 3,a a A * '3 3 ’
RS
A
- ap ~ Pap ~ Bas Y3 0 K3a T P3P Byvy (2.6h,1)
¥
A A A A
& Pag ™ 30ap " Balp U\ T Bz Ualg T B Unla t Baa Bg U3t Yelp ¢
- (2.63)
_ P3q ™ Y3,a , (2.6k)
" where for the linear theory all tensor quantities are referred to the
‘a base vectors A;. In (2.6) and through the text, we use the usual
> summation convention over repeated indices; a comma denotes partial
. differentiation with respect to 8%, and a bar denotes covariant
¥ differentiation with respect to the metric Asg.
;f With suitable continuity assumptions, it can be shown that® (1,2]
‘
3 n = N% v = (Nia A)v m= M v = (Mia A,)v (2.7a,b)
zi ~ ~ a ~1 a * ~ ~ a ~1 a 4 4
¥,
b k = o y = av k, = ovapav (2.7cd)
> R*XZP Vg » ¥ "R "27P Y o '
e where Ve ” éu * v are the components of the normal vector v and where
:{ Na, Ma, p» and p; are independent of v. Further, with reference to the
I. ~ ~ ~
:} energy equation, the specific external rates of heat supply r and Ty
R and the heat flux vectors q and q1 are defined by
&
"1
|
;: *The notation in (2.7a,b) is consistent with that in [3], but differs
) from that in (1,2]).
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r=0s8 , r =¢ 81 , q =86 J T Pl ¢ El . (2.8a,b,c,d)

Now the local forms of the basic equations may be recorded as

1/2 1/2

A=pa - p° A (2.9a)

3‘313"‘-0 , p°f3+N3B|

5 +8P B =0 , (2.9,0)

o, £ + N“ﬂls -N g 28

“a a af 38 _«a - P 3 38 af -
P, L k +M IB M BB 0 , p, 2 kK™ + M |B + M Baﬂ 0o ,
(2.9d,e)

6 n=p 8-p n =p (s, +E)-p] (2.9f,g)
o ) Plg » Po M = Pyt 1 l'a °? ’
where

rd rd '; ~

R L nz , N ap 254 M“B|ﬂ , (2.10a,b)
and where
1 b | . 1 ~4

flapteg-v-y o , t=dca-si-79 . (21

~

i<

In (2.9) o is the reference value of p and in (2.11) &1 are the
reciprocal vectors of éi' Equation (2.9a) represents conservation of
mass, (2.9b,c) represent the balance of linear momentum, (2.9d,e)
represent the balance of director momentum, (2.9f,g) represent balances
of entropy, and (2.10a,b) represent balance of angular momentum. These
equations must be supplemented by an energy eciation and constitutive
equations. It was shown in [2] that the energy equation for a linear

thermoelastic shell is satisfied provided that

“apf - (ol i - I ia - (o1
N Po e , k Po ay , M Po 3¢ . (2.12a,b,¢)
af i ia
n 26 ’ ﬂl ao . (2-12d,E)
c-8
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Additional terms appear in the energy equation, but they are of higher

order and thus are neglected for the linear theory.

Now we confine attention to a thermoelastic that is isotropic in
its reference configuration and specify linear constitutive equations of

the form

ap Y6 Bd ab By
2 Po o= [al A AY + tzz(AaY AT+ A A )]eaB eY6

2 af v ay ,BS ad By
+ 24,0130 + [ag AT AT + 2 (AT A7 + 4T 4 )k ag %15

aB af aB
ay A Yo YB + ag A K3a.K3B + 2 ay A e(zB Y3

- 28 vy(0-8)-28 A% eas(® = 05) - 2 B, a%R €ap ®
2 2
- B,(8° - 266) -8, 6 - 280 (2.13a)
p=-a g » p=-b g (2.13b,c)
E=0 , p & =P & ==-b, ¢ , (2.13d,e)

where the coefficients al-a6, @gs Tgs BO—BS, a, b b, in (2.13) are

o’ "1° "2
congtants and where the temperature gradients g and g1 are defined by

g=9 « A, g =0, A . (2.14a,b)

The constitutive assumption in (2.13a) is slightly different from that
used in [2], with the main difference being that here ¢ is a function of
Ky, 1nstead of the kinematic variable p4, (see additional comments in
Section 5). It follows from (2.12) and (2.13) that

) 5
NP - [a, A% A0 4 a, (A" AP 4 a° ABY)]eY6

vaga®y, g a%0 -0 , (2.15a)




- S paw aak g - Pwo s PR e LAl Bk s Aok s ol on b ac o Aoa aala a Lo --‘1

TR |
.'"::: a a8 3 af 1
- k = ay A Yg o |3 @, Y4 +ag A eaB so(e 60) , (2.15b,c) ‘
2L af ap ,v8 ay ,BS ad By _ ap 15d
2R M [ag A7 AT + aq (7" AT + A7 A )]KY6 By AT 6, (2.15d)
,.:-\’.;
L4 3a @
«'-‘C M = ag A B K3g (2.15e)
)
B b n=8 v.+p A% e +p.(0-0)+8 (2.15€)
’.::', o o '3 1 af 3 o 5 °?
‘.::.:::" af
:-\::; Po ™M = Bz A "aB + Ba ¢ . (2.15g)
ar
In general, these constitutive equations must be further restricted by
::;::: statements of the second law of thermodynamics [2]. For the thermo-
LY
e elastic shell considered here, these restrictions reduce to
o
e .
*'j a >0 , b1 >0 , b2 20 , 53 >0 . (2.16a,b,c,d)
:-_."‘:J
E}'_:: Before closing this section, we recall [1,2]} that this theory,
W which is developed by direct approach, may be brought into a one~to-one
f
T correspondence with the three~dimensional theory by assuming that the
I *
) -:v' position vector r of a point in the shell and the temperature field e*
':.:: admit the representations
' * * 3 3
:). r =r (8%,07,t) = (8%, e) +6” do%e) (2.17a)
e,
:l‘:':l“ * * a 3 a 3 a
st 9 =0 (0,0 ,t) =08(6,t) +0 6(0,t) , (2.17b)
Wby
‘__ where 93 18 a coordinate through the thickness of the shell. For a
-".-'::):', shell of constant thickness h, we may choose the reference surface of
B re
{:‘.'{ the shell to be the middle surface and define the top surface 3P* of the
o shell by 63 = h/2 and the bottom surface 3P~ by 85 = -h/2. With reference
o to the three—dimensional theory, we recall [2] the definitions*
o
=
F;“.'.;;}. *
Our use of the symbol g, for the base vector should not be confused
O with the use of the same symbol for the temperature gradient in
o (2.14b).
t:::':::' c-10
- 4’__-
oo
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\“
}:f R *
- r
L 1/2
51 - —T . gi . &j - 6;2 , 8 = [5'1 52 &3] >0 , (2.18a,b,c)
26
1j 1,3
8y " B "By » B g *°8 (2.18d,e
where 8¢ and gi are, respectively, the base vectors and their
reciprocals in the present configuration and where éi 1s the Kronecker
symbol. We also recall [2] the following relationships for the linear
theory
h/2
re [ enct/?ad® (2.19a)
~h/2
h2 N
wh= [ cl/2(83) ae3 o =12 , (2.19b)
-h/2
h/2
* * - -
M= [ pnc? el emt e, (2.19¢)
-h/2
h/2
A= cl/2 £* o3 a0’ + B st t-® e, (2.19d)
-h/2
h/2 *
= [ o M2 ¢* qed - st ikt -B Kk, (2.9¢)
-h/a
W2 % 172 % 3 3 by o+ 4+ . by o= -
As. = [ p 6“8 06°d6” -(3)B k +(3)B kK, (2.19¢)
1 o 2 2
~h/a
x Kk %
where Po? £, s are, regspectively, the three-dimensional mass density
(mass per unit volume in the reference configuration), specific body
force, and specific rate of entropy supply; £+ and £_ are, respectively,
:i:f the surface tractions applied to the major surface ap* and dP~; x* and
1_\,‘. -
r..— ) k are, respectively, the entropy fluxes applied to the major surfaces
- o -
b-‘: 6P+ and 3P ; and 61/2 is the reference value of 31/2. It follows from
o (2.4), (2.17), and (2.18) that
"
=
P‘n."-

Fo-.

o c-11
=
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> = - — .
e G A1 -0 B, + (67)" (B] B, - B] nz)] (2.20)
;éﬁ and from [2]) that the functions B* and B~ take the values

S

i Bt - al/2[1 - B0 nt 8! 82 - 82 Bl)] (2.21a)
L 2 Pa T Py By T By Bl &

] 2

e - _ /2 ,hoo R 12 2 1

%r\ B o= A (143 B +7~ (B B, - B B)] . (2.21b)
it
?::"'

+ -
Also, we note that for the linear theory the quantities eok and eok

~
-
3y

represent, respectively, the heat fluxes measured positive for heat

flowing out of the surfaces 3P' and 3P .

>§W 3. Determination of Constitutive Coefficients
it
P In this section, we mainly recall results that were obtained in 1)
A for most of the mechanical constitutive coefficients. Confining
-, *
,i{{ attention to a shell of uniform thickness h and uniform density Po in
i“ﬁf its reference configuration, we may substitute (2.20) into equations
v

(2.19a,b) to obtain the expressions

SN 2
SRS 1/2 * 1/2.r h 1 2 2 .1
R = = - - 3.1
_5.;) A=op A (e, b A1 + 75 (8] B] - B B)] , (3.1a)
h::_ / 2
1 * 1/2,,h° o

Ay - (p, hATHGT B (3.1b)
0% 2 * . 1/2. n 3wt 1.2 2.1
T o= (o b AP + T- (B By - By B (3-1e)
S
»
lif' which determine the reference density (N and the inertia coefficients
_..:-\.,. yly yz'
Séf: Values for most of the constitutive coefficients were obtained in
i
t}: [1] by comparing results of the Cosserat theory with exact three-
'i;: dimensional results. Even though the constitutive equations (2.13) and
Ny (2.15) are postulated for shells, it suffices to evaluate most of the
) "V )
X constitutive coefficients by considering solutions of plate problems.

e

)

¢ By solving the isothermal problem of a plate subjected to uniaxial




.

v .-
be "2 a" s

X _x

N stress (or resultant force) and that for a plate subjected to hydro-

static pressure it may be shown [l] that

W - - v(l - v) - 1 -v

B, 1

. 2

H - (1= Vv - —FEh .

‘ 6 =g =35C » C 7 (3.2¢,d)

) C =ph (3.2a,b)

h where E 18 Young's modulus, v 18 Poisson's ratio, and p 1is one of
W e
) Lame's constants, all associated with the three-dimensional material.

L, Similarly, the isothermal problem of pure bending of a plate may be

solved to obtain the results

3
a = (1_5_29 B, B= ___lﬂl___i_
- 12(1 = v7)

. (3.3a,b,c)

The thermal coefficients and the remaining mechanical coefficients will

N be determined in the next two sections.

4, Determination of the Thermal Coefficients

To determine the thermoelastic coefficients Bo, Bl’ Bz, we follow

) [1] and consider the problems of free thermal expansion of a plate and
Y free thermal bending to obtain

d Eh o Eh> o

a a

B "B =Ty » B2 " -w (4.1a,b)

where a* is the coefficlient of linear thermal expansion associated with

\ the three~-dimensional material.

b The remaining thermal coefficients were determined in [2] by direct
integration of the constitutive equations. Here, instead, we determine
these coefficients by comparison with exact solutions of a rigid heat

.i conducting plate. Specifically, we consider the problem of a plate that
. is initially at uniform temperature 8, and that is subjected to a
uniform heat flux q+ on its top surface, zero heat flux on its bottom

) surface, and no external supply of heat (s* = 0). The quantity q+ is

e
]
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)

::: taken to be positive when heat flows out of the plate. Using Kkt = q+/6° ]
)

’ and ¥k~ = 0, the solution of equations (2.9f,g) may be written in the

o form

¢

b : + h + bzc

e 9'90'(3 e)t , °"2b"e)1'e“('r - (4-20,0)
% 3 o 2 o 4

\

‘ This Cosserat solution may be compared with the exact solution recorded

' *

~;‘3 in [4, p. 112] by defi:ing the average temperature eavg and the average
'\:_ temperature gradient °avg in the direction normal to the plate's

R surface. It follows that

154 h/2 +

" * *

ks o0 =zo +% [ (8 -08)8 =9 -[L1—) , (4.3a)

avg o h o o *

K ~h/2 p_ch

Sy

3, .

24

o (2n—1)2K1:2t
o h/2 + N I

a

10 *  _ 12 * 3.3 q 96 Po © .
N oﬂg:—j (6 - 086" do” = - |21 - = 7 ,
N h™ -h/2 n n=l (2n - 1)

& (4.3b)
Vs -
;n where K 18 the thermal conductivity and ¢ is the specific heat at zero
F1 -

-:\:: strain. For most practical purposes, we may retain only the first term
“‘~' in the gseries in (4.3b) so that the Cosserat solution and the exact
.\,). solution have nearly the same form (note that 96/1:1' = 0.9855). Equating
‘:f:: these solutions, we obtain

!

N * * 3

' Kh pOCh pOCh 4.4a.b
@ bz'g;.83'—e:—.84'——2-;—- (4.4a,b,c)
._.:_' T [o]

Next, we compare with exact steady state solutions for a rigid heat

$ conductor of the forms 6% = a8l and o* = aelez, where a is a coanstant.
'.- This comparison yields
T 3
- - Kb - Kh'__ .
s %8 * M1T128 - (4.5a,b)
. o o

A ]
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The last thermal coefficient Bg corresponds to the arbitrary constant

<
»

reference value of the entropy and therefore cannot be specified.

Apart from minor differences in sign, which are caused by our
constitutive assumption (2.13a), all of the values for the thermal

coefficlents determined here are the same as those proposed in [2],

- SUL oL

except that for B,. The value for B, proposed in [2],

.
w %*
; o B
o
all
N was obtained by the method of direct integration of the comnstitutive
“f equations instead of by the method of comparison with exact solutions.
_f Because we ultimately require the Cosserat theory to reproduce exact
q results with as little error as possible, we adopt the latter approach
»
and specify B, by (4.4c) instead of (4.6).
¥
N3
\
‘ 5. Determination of the Mechanical Coefficients aq and ag
1
The discussion of constitutive equations in [1] emphasized that in
9 general, the constitutive coefficients are not constants. 1TIn other
b™
7 words, values that are obtained by comparing Cosserat solutions with
Y
. exact solutions of one class of problems may not be the same as values

y

obtained by considering another class of problems. For example, values

EA

that predict accurate results for certain quantities in static problems

-

may be different from those that predict accurate results in dynamic

3

problems. Nevertheless, from a practical point of view we need to

a7,

gspecify values for the constitutive coefficients. By way of background,
we recall [1] that the coefficients as and ag associated with tangential

i shear deformation” have been specified by

| *For a shell (Bgg * 0) the coefficient ag relates M2 in (2.15e) to
N tangential sheag \ (see 2.61).

b C-15
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a, = g'uh or ay =715 wh xg = iia-uh . (5.1a,b,c)

The values (5.la,c) can be motivated by assuming a form for the stress
distribution through the thickness of a plate and developing an approx-
imate expression for the strain energy function by integration [1,5].
However, the value (5.1b) may be obtained by comparing with a solution
for a vibrating plate [f]. Thus, we would expect that either of the
values (5.la,b) for Gy (those values are very close to each other) would
be appropriate for dynamical problems. However, as was pointed out in
{1}, the value (5.1lc) for ag has not been validated by comparison with
any exact solution. Here, we determine different values for as and ag
by comparing with exact solutions of two static problems.

First, we determine a3 by considering the static isothermal problem

1

of simple shear in the 6" -~ 93 plane of a plate in the absence of body

+ -
force (ﬁf = 0). For this problem, we specify t = < él » = él ’
where 1t i8 the shear stress applied to the major surfaces of the plate.

It follows that the Cosserat solution {s an exact solution if we specify

@y = ph . (5.2)

A discussion of this result will be given at the end of this section.

Next, the coefficient ag will be determined by considering the
static, isothermal problem of a circular cylindrical shell of radius R
and thickness h with its inner surface held fixed and its outer surface
rotated by an amount ch (Figure C.1). Let g be an orthonormal
coordinate system with [ parallel to the circumferential tangent to the
shell and €3 para}lel to the outward normal to the shell (Figure C.l).
Further, let r* be the distance of a point from the symmetry axes of the
shell, u; be the displacement in the g; direction, and ti3 be the (1,3)
component of the Cauchy stress tij' Then the exact three-dimensional
solution ylelds

*
r =R+ 63 R (5.3a)

c-16
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FIGURE C.1 CROSS SECTION OF A CIRCULAR CYLINDRICAL SHELL
WITH THE INNER SURFACE P~ HELD FIXED AND THE
OUTER SURFACE aP* ROTATED BY AN AMOUNT «h

For this solution R = h.
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2
we) =1+ ) o [ - (1 -2 R (5.3b)
r

2R
2 2
* * h h R
t4(r ) = £y, (r) = u(1 +32)(1 - 3) (_rfz_ K (5.3¢)

*
where all other components of the displacement uy and stress tij vanish.
Thus, the displacements n+ and y , and traction vectors £+ and £~ on the

top surface ap+ and bottom surface 3P , respectively, are given by

* - *
2+ - uI(R +~%)sl =xhe , u = ul(R - gﬁsl =0 , (5.4a,b)
h
= Tt 2/%1 "(1+L) % % .
2R
t---t(R-h)e - - (1+h—xe-—t-e (5.4d)
= 13 2/% " w* ST :

where t* and t are the values of the stress ty3 on the top and bottom
surfaces, respectively. The solution u:(r*) 1s plotted in Figure C.1
for the thick-shell case where R = h, Notice that since u: is nearly
linear 1in r*, we should expect the Cosserat solution to predict accurate

results even in the limit of a thick shell.

Now, the geometry of a cylindrical shell of radius R is

characterized by

c o
HmRe > Mmey s 4378 s Tepm Ay gt A =0 ,(550,ed)
311 = ~R , all other Baﬁ =0 , (S.Se,f)
1 1
Bl =-R all other Bg =0 , (5.5g,h)

where r:a is the Christoffel symbol. Using (2.5), (2.17a) and (5.5), we
realize that the conditions (5.4a,b) yleld
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(8] E-3

2+'2+ §=xhe g-g-%g=o (5.6a,b)

~1

Consistent with (5.6) we may take

u1 - ;% , u2 = u3 =0 , 61 = %’ , 62 = 63 =0 , (5.7a,b,c,d)
so that

" = Re(l - g—n) » kg = - k(1 - %) ’ (5-8a,b)

eaB =0 , Y, = Yy " o , KaB =0 , Kyy = 0o . (5.8¢c,d,e,f)

It follows that the only nontrivial equations of equilibrium become

po(f1 +%11) =0 , 0=p, -t +%M31 (5.9a,b)
where

b £ ==t 1+ - T -89) (5.10a)

o & =B+ ) + TR -] (5.10b)

Kl (ag 50 ), wla- (as;)(l - . (5.10¢,d)

Substituting (5.10) into (5.9) and comparing the result with (5.4), we
realize that the Cosserat equations will predict exact values for t* and
t~ if @y and ag satisfy the ?quation

a

8

Now if we adopt the specification (5.2), we deduce that

a, =0 . (5.12)
8 )
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We are now in a position to discuss the significance of the results
(5.2) and (5.12). Since the value of aq given by (5.2) was obtained by
comparing with the exact solution of the static simple shear problem, it
follows that 1if @4 were specified by (5.1la,b) Iinstead of (5.2), the
Cosgserat equations would necessarily predict incorrect results for
simple shear which would be undesirable. However, one could questfon
whether it is of prime importance for a shell theory to predict results
of simple shear--which requires surface tractions to be specified on the
major surfaces--when many applications of shell theory consider shells
with free major surfaces. In response to this question, we note that
two important problems of a plate with free major surfaces have been
solved for arbitrary values of as. Problem A [1, Sec. 24] considers
pure twist of a plate and problem B [7] considers pure bending of a
plate with a circular hole. If the value [5.2] for aq is adopted
instead of (5.1a), then it can be shown that the solution of problem A
is slightly improved and the solution of problem B is only slightly
modified with n being replaced by (6/5)1/2 n = 1.10  in the formulas in

(71.

It 1is also of interest to note that if we were to specify alterna-
tive constitutive equations by replacing Kig in (2.13a) with Pig» then
for the example associated with Figure C.1l, the quantity w3l would vanish
and equations (5.9) would again yield the result (5.2). With reference
to this same example, we observe that there 1is an inconsistency between
the specifications (5.1) and the result (5.11). In particular, it is
clear that if either (5.la) or (5.1b) are substituted into (5.11l), we
conclude that ag is proportional to thz. which 1s significantly
different than (5.lc).

In conclusion; it appears that for static problems it is better to
specify ay by (5.2) instead of (5.la,b) and ag by (5.12) instead of
(5.1c). This is because with this specification, the Cosserat theory
predicts accurate results for all four static problems considered in
this section without the inconsistency described above. However, if

comparison with the dynamic problem considered in [6] 18 of prime
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importance, then it is best to specify as by (5.1b) instead of (5.2).

In conclusion, we recall the obgervation in [1] that the constitutive

coefficients for shell theory are not constants in the sense that the

best values for these coefficients may be problem dependent.

1]

[2]

{31

(4]

(5]

[6]

(71
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20N ABSTRACT
s
) ";‘7
R This paper 1s concerned with analyzing heat conduction in rigid
SAF shell-1like bodies. The thermal equations of the theory of a Cosserat
2? surface are used to calculate the average (through-the-thickness)
Rt
}ﬂ?‘ temperature and temperature gradient directly. Specific attention is
‘?}" focused on a conical shell. The conical shell is particularly interest-

ing because it has a converging geometry such that the shell near its
tip is "thick"” even though the shell near its base may be "thin.”

L

i& Generalized constitutive equations, which include certain geometrical
i“ ) features of shells, are developed here in a consistent manner. These
® equations are tested by considering a number of problems of plates,
;:&: circular cylindrical shells, and spherical shells, and comparing the
f;$: results with exact solutions. 1In all cases, satisfactory results are
_:j: predicted even in the thick~shell 1limit. Finally, a problem of

b transient heat conduction in a conical shell is solved. It is shown

-;j?. that the thermal bending moment produced by the average temperature
%E?% gradient is quite severe near the tip and it attains its maximum value
'E”E in a relatively short time.
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1. Introduction

Most aerospace structures are compositions of structural components
that can be modeled as shell~-like bodies. For various reasons, it is
desirable to determine the thermomechanical response of these shell-like
bodies to thermal and mechanical loads. Within the context of classical
linear shell theory, the temperature distribution influences the
mechanical response of the shell through the resultant thermal force and
resultant thermal moment. For an elastic shell, the thermal force is
related to the average (through-the~thickness) temperature and the
thermal moment is related to the average temperature gradient by

constitutive equations.

If the strain rate in a given problem is sufficiently small, then
the thermal and mechanical problems uncouple in the sense that the
temperature field may be determined by solving equations for a rigid
heat conductor. Then the resulting temperature field may be used to
calculate the thermal force and thermal moment, which provide thermal

loading for determining shell deformation.

In this paper, we confine attention to determining the temperature
distribution in a shell-like body that 1s treated as a rigid heat
conductor. Although the temperature distribution can be determined by
attempting to solve the three-dimensional heat conduction equation, this
approach has two major disadvantages. First, because the thermal loads
for shell theory depend only on the average temperature and temperature
gradient, much of the details calculated by this approach are not of
prime importance. Second, because the heat conduction equation admits
separable solutions for only a limited number of geometries, it is
exceedingly difficult to obtain analytical solutions for many typical
shell geometries. This latter problem has been addressed in [1], where
equations are developed to calculate an approximate temperature

distribution in shells of revolution.

We take a different approach and use thermal equations for shells
that have recently been developed [2] to predict the average temperature

and temperature gradient directly. These equations are based on

D-3




Loall tal no s wull i Badh s i Ba Malr C 8 Sl B A gk et i A B B S e Sl et ae a8 L) Lacm ol L a )

modeling the shell-like body as a Cosserat surface. Details of this
theory may be found in [2,3]. Specifically, the objective of this paper
is to determine the average temperature and temperature gradient in a
conical shell (Figure D.1l), which is a basic aerospace structure. The
conical shell is particularly interesting because it has a converging
geometry so tha the shell near its tip is necessarily “thick” even
though the shell near its base may be "thin.” For this reason, it 1is
questionable whether any shell theory can accurately predict results for
the critical tip region. Here it is shown that with appropriate
constitutive equations, the Cosserat theory includes enough of the
geometry of the shell to predict relatively accurate results for the

conical shell.

It is not a trivial matter to develop equations for shells that
produce reasonable results in the thick-shell 1limit. For example, we
recall that the equations in {[1] were developed by writing the heat
conduction equation in a form appropriate for shells and then neglecting
quantities multiplied by higher powers of the ratio of the thickness to
radius of curvature. Even though these equations are more complicated
than the Cosserat equations in that details of the through-the-thickness
temperature distribution are calculated, too much of the shell geometry
has been neglected, and hence they predict inaccurate results in the
thick-shell limit. The predictions of the equations in [1] are compared
with the more accurate predictions of the Cosserat theory for the thick-

shell problems considered in Sections 4 and S.

In the following sections, we discuss the basic equations of the
Cosserat theory and then solve a number of problems. To develop
confidence in the predictions of the Cosserat theory in the base region
of the conical shell, we solée various problems for a plate and compare
with exact solutions in [4]. These problems examine the effect of the
three types of boundary conditions on the major surfaces of the plate:
specified heat flux, specified temperature, and radiation. Next, to
develop confidence in the predictions of the theory in the tip region of

the conical shell, we use the same equations to solve specific problems
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:}ﬁ for a solid circular cylinder and a solid sphere, and compare the
- results with exact solutions. Finally, after having developed
;Q confidence in the predictions of the theory in both the tip and base
'“3 regions of the conical shell, we solve a specific heat conduction
; a problem for a conical shell.
:!l "
' -
“: 2. Basic Equations
198
{1
) .%" Let the material points of the Cosserat surface C be identified by
A
A: oo\ means of a system of convected coordinates 6%(q = 1,2) and let the two-
dimensional region of space occupled by the material surface in the
N .: present configuration at time t be denoted by c. Further, let the
:': vector valued function g define the position of a material point of the
"::‘ surface C and at each such point define the vector valued function ¢,
"" called the director, and the two temperature fields 6 and ¢, each
¢, referred to the present configuration. Then a thermomechanical process
o
4 :{ of the Cosserat surface is defined by
o
Nt
o,
' =6ty , d=a0"0) , (a8, d1>0 , (2.1a,b,¢)
o
%:j o=000%¢) , 8>0 , ¢=060%2) , (2.1d,e,f)
'\‘.\\'r
KD
;:‘j"' where the tangent vectors a, and the unit normal vector gy are defined
.;!' by
g
12N or
p‘ il - L = 1/2 =
e eI R - T (2, 2, 812>0 .
(3
1.4, (2.2a,b,c,d)
X0
U
:5': and the condition (2.1lc) ensures that the director is nowhere tangent to
h\.
;':-‘_‘.} c. Also, in the above, 6 represents the average (through~the-thickness)
F.,,; temperature in the shell and ¢ represents the average temperature
N gradient.
.'b '.:_
::::\', In the reference configuration, we assume that the shell has
“’I..’
Q#._\- uniform thickness h and is at uniform temperature 845+ Then, the
P
¢
s"ﬁ
) D-6
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reference values of the various kinematic quantities may be denoted by*

r=R , d=D-= A3 s &; = Ay > 31/2 = A1/2 ’ (2.3a,b,¢,d)

6=6 , ¢=0 , (2.3e,f)

where B, Ai and Al/z depend on the coordinate o% only. For the rigid
heat conductor considered here, there is no distinction between the
reference and the present configurations; hence equations (2.3a-d) hold
for all time. Further, all tensor quantities will be referred to the
base vectors A; and their reciprocals Ai defined by

A (2.4)

Ll e
A s A =8

1 3
where 51j is the Kronecker symbol.

Let P, bounded by the closed curve 3P, denote the region occupled
by an arbitrary material portion of the surface ¢ and let y be the unit
outward normal to dP. Using the notation of [2], we define the follow-
ing quantities: the positive mass density (mass per unit area of P) in
the reference configuration p, = po(e“); the specific (per unit mass of
P) entropies n = n(98%,t) and n - nl(e“,t); the specific internal rates
of production of entropy £ = E(8%,t), £ = gl(e“,:), and El = El(e“,c);
the entropy fluxes k = k(6%,t; ¥) and kl - kl(e“,t; ¥), each per unit
length of the curve 3P; the specific external rates of supply of entropy
s = s(6%,t) and 8 = sl(ea,t); the specific internal energy e = e(Ba,t);
and the specific Helmholtz free energy ¢ = ¢(e“,c) =
€ - 6n - ¢n;. With suitable continuity assumptions, it can be shown
that [2,3]

k=peyvs= pa v

a
’ k1 =R y=pPV , (2.5a,b)

a a

*Throughout the text Greek indices have a range (1,2) and Latin indices
have a range (1,2,3).
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:‘: where Ve © éa * v are the components of the normal vector y and where we
S use the usual summation convention over repeated indices. Further, with
= reference to the energy equation, the specific external rates of heat
:{'C supply r and r;; and the heat flux vectors g and g, are defined by

Jya

‘\'ﬂ
:“ r-es,r1-¢sl,gﬂeg,gl-¢g- (2.6a,b,c,d)
(7))
'H ;
: ,}‘,c- Now, the local forms of the balances of entropy may be recorded as
-l 2]
In A
o, =p.(s+E) - p’ o n =p (8, +E) -pY (2.7a,b)
90N o o a * "o 1 o1 1 1 'a ° !
':1\):..;‘0
»’}% where a dot denotes material time differentiation and where a bar
’ \‘ .
\ 3 denotes covariant differentiation with respect to the metric AaB of the
A shell surface. For later convenience, we recall {2,3] definitions for
_E:.;;j the metric tensor Aaa’ and its reciprocal A“B, the curvature tensor BaB ,
,}{: the Christoffel symbol r° af’ and covariant differentiation in the forms
g
e

A=A <A A% o 4% . 4P B_=A _ A (2.8a,b,¢)

ap ~a ~p ° ~ ~ ' “aB a,p ~3 ° ’
S o o (o] o c a
- - . = - - . f
Tag "2, "2 » g™ 0q » PlgmP g-Tggr »  (2:84eD)
:")_ where a comma denotes partial differentiation with respect to 6%.
! L
*,:_4:: Fquations (2.7) must be supplemented by an energy equation and

*.::: constitutive equations. It follows from [2] that the energy equation
‘:;-f for a rigid thermoelastic shell is satisfied provided that
®
o
q’f:‘ - - —ai - - -a—‘k .9
::::.. n 20 ’ 711 a¢ " (2 8,b)
N
o and
L
¥,

9 . . - .

g PO E+p 0E +peog+p *g =0 (2.10)
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vhere the temperature gradients g and g, are defined by

g=0 A" , g =0 A" . (2.11a,b)

Confining attention to a rigid shell that is thermally isotropic, we

specify constitutive equations in the form

2904;--53(92-2990)-54 ¢2—2359 , (2.12a)
p=-a g , p=-b g , (2.12b,¢)
Po 0 F = a g8°8 + b1 8 8 + b2 ¢2 , (2.124)
Py &1 = Py & = = b, 6 (2.12e)

where a, bl’ bZ’ 53 - 35 are constants. Substituting (2.12a) into
(2.9), we have

Po M= B0 -85 +8, », p n =B, ¢ . (2.13a,b)

The form of the constitutive equations (2.12) represents a slight
generalization of those introduced in [2] for the linear theory.* These
equations are chosen to automatically satisfy the reduced energy

equation (2.10) without approximacion.

In postulating the form of the constitutive equations (2.12), we
tacitly assume that constitutive equations that are valid for a plate
are also valid for a shell. 1In the discussion in Section 5, we observe
that certain geometrical features of the shell must be included in the
constitutive equations to predict relatively accurate results for a

solid sphere. These geometrical features of the shell may be introduced

*The sign of the constants B4, B, used here is opposite that used in

(2].

e
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by appropriately modifying the constitutive equations to take the forms

2 p: h¢=- 83(92 -289 eo) - 34 02 -2 ﬁs e , (2.14a)

R - - ao § . EI - - b]_ 51 N (2.14b,C)

Lo b, 42 2.14d

poeg-aog.&+b151'§-1+p*h 20 . (2. )

* * -

pO h 51 - Po h 51 == bz ¢ (2.14e)
pO pO

po n=* % [53(9 = eO) + 35] ’ po 'ﬂl - = B4 % (2.14f,8)
P, b P, b

where p: is the constant three-dimensional mass density (mass per unit
volume) of the material and h is the constant thickness of the shell.
The constitutive equations (2.14f,g) depend on the geometry of the shell
through the ratio po/p: h [see equation (2.16a)].

Within the context of the general theory, the constitutive
equations must be further restricted by statements of the second law of
thermodynamics [2]. For either of the sets of constitutive equations
(2.12) and (2.13) or (2.14), these restrictions reduce to

a >0 , b >0 , b, >0 , B3 >0 . (2.15a,b,¢,d)

To linearize the equations presented above, we assume that the tempera-
tures (6 - eo) and ¢, and their space and time derivatives are small
enough that quadratic expressions in these quantities may be neglected
relative to linear expressions. It follows from (2.12d) or (2.14d) that
£ 1s of higher order so that £ may be set equal to zero in (2.7a).

Now, we recall [2,3] that the Cosserat theory developed by direct
approach may be brought into a one-to-one correspondence with the three-

*
dimensional theory by assuming that the position vector r of a point in

D-10
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% the shell and the temperature field 9* admit the representations
4
' * *
Q £ =" 0%0%,t) = x(e%, ) + 0% d(o%,e) (2.15a)
0
S -
R o = 0 (8% 0%,t) = 0(8% ) + 0 (6%t , (2.15b)
>
;‘.; where 93 is a coordinate through the thickness of the shell. For a
- shell of constant thickness h, we may choose the reference surface of
\ the shell to be the middle surface and define the top surface 6P+ of the
% shell by 6 = h/2 and the bottom surface 3P~ by 6° = - h/2. If the

*
A three-dimensional mass density Py of the shell is constant, then it may
'
:o be shown that [2,3,5]:
o
0 h/2 2
- 1/2 * 1/2 .3 * 1/2 h™ o1 2 2 .1
e A=op A _‘{/2 P, G '~ d8 (p, h A )1 + 15 (B] B, = B] 32)] ,
v (2.16a)
<
g h/2
<) ~ - - - x &
2 e =A8 =B K -B K , xa= [ o s /240 , (2.16b,c)

o

-h/2
i h/2
N - hy .+ .+ hy - .- - * * 1/2 3 .3
- Aoy =As, - (J)B K +(3)B k ,xsl-j P, 8 G 700 do”
-h/2
N (2.16d,e)
& ¢'/? - 1/2[1 -9 n + (80)? (B 8- 82 - B nl)] , (2.16€)
N 1 2 1 72
3 8" = al/2[1 - R0, n? (8! 82 - 8% Bl)] (2.168)
q( 2 70 4 172 12 ’ ’
-, )
; - 1/2 h o, h 1.2 2 .2
rd — — - .
¥ B [ +3 8.+ (31 B, - B B)] (2.16h)
v ’ + h -
K. o =8+54 , e-e-%q, , (2.161,3)
W
\]
[\"
1S
%)
.'r n_ll
~
']
"
q
-
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where s* is the three-dimensional rate of entropy supply; ' and k are,
respectively, the entropy fluxes applied to the major surfaces ap* and
ap”; BE are the mixed components of the curvature tensor; and 6 and 6~
are, respectively, the temperatures on the major surfaces aP* and ar~.
Also, we note that for the linear theory

+ 0+ -
90 k =g s 90 k =-gqg ’ (2.17a,b)

where q+ is the heat flux measured positive for heat flowing out of the
surface aP+ and q 1is the heat flux measured positive for heat flowing
into the surface 3P .

Most of the constitutive coefficients were evaluated in [2] by
direct integration of the three-dimensional constitutive equations. An
alternative approach was taken in [5], where the coefficients were
evaluated by comparing Cosserat solutions with exact three-dimensional
solutions. Except for the value of g5, the results in [2] and [5] are

the same. Here, we adopt the results in [5] and specify

3
Kh Kh Kh
a =— , b =—7F |, b, === (2.18a,b,¢)
o™, 1" 1279, 2", }
ﬁ
* *
Po ch o ch3
ﬁ3 = 9 , Bl. - —2'——— R (2.184,e) ‘
o n O

where K is the thermal conductivity and c¢ is the specific heat at
constant strain of the material. The coefficient Bg corresponds to the
arbitrary constant reference value of the entropy and therefore cannot
be specified. Since the material constants K and ¢ are positive, we

realize from (2.18) that the restrictions (2.15) are satisfied.

Finally, we use (2.14), (2.16)-(2.18) to write the linearized
version of equations (2.7) in the form

° ~ - + 4 - -
p° cO= po eo 8 - A 1/2 [B q -B q] +Kh V2 e , (2.19a)
D-12
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Lhe B
P
v
o
\
0
-J‘
o
W p o’ ~ /2 by o+ 4 - -
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t’,_ where the Laplacian operator V- 9§ is defined by
by 2 ap B o
' - = - . 3 0
?’3' V 6= A elaﬁ (e,aB raﬁ 9’6) (2.20)
..’
o 3. Plates
it -
"
f In this section, we examine the validity of the Cosserat theory in
,. the thin-shell limit by considering three problems of heat conduction in
e a plate. These problems are chosen to examine the effects of specifying
}] heat flux, temperature, or radiation-type boundary conditions on the
"'. major surfaces of the plate. For each of these problems, we neglect
‘ external entropy supply (or external heat supply) and consider tempera-
ture fields that are functions of time only so that
T s=0 , 8, =0 , 0=86(t) , ¢=06t) . (3.1a,b,c,d)
- Further, the curvature tensor BaB for a plate vanishes. Hence, from
_.i (2.16) we deduce that
o * +  1/2 - 1/2
’- BaB =0 , Po = P h , B =A s, B = A . (3.2a,b,c,d)
[
\; and that equations (2.19) reduce to
%
~
* Y -
™ pochd=-q +q , (3.3a)
]
: p* ch2
S N R T
i
3] i
':‘)
X
-
A D-13
:\.:
X
%
[
\¢ ~ » IS \PC {. \H—').}‘J ! -.J ._‘_"*' -: ‘-,.' ."..-__:-_ : AN

e
éu L .\‘Qsl‘ .‘ ..

\\.l.l

'O
R

-\1‘ \ ‘-".I‘N- \}'5'1‘1
(% { ]




Problem 1: For this problem, the heat flux q+ is specified to be

constant on the top surface, the bottom surface is insulated, and the
plate is initially at uniform temperature 84° Mathematically, these
conditions are characterized by

q+ = congtant , q =0 , (3.4a,b)

6 = 90 , ¢=0 at t =0 ., (3.4c,d)
Since the solution of equations (3.3) with the conditions (3.4) was
developed in [5], we merely record the solution in the nondimensional

form

- (6 - 0) )
— Rt - em- 01, (3.52,b)
q q

where v i8 the nondimensional time parameter defined by

(3.6)

Recall from [5] that the constitutive coefficients were chosen by
requiring the Cosserat solution to compare very well with the exact

solution recorded in [4, p. 112].

To exhibit this comparison graphically, we have used (2.15b) to
plot in Figure D.2 the Cosserat solution (3.5) together with the exact
solution for various values of the time parameter t. The dashed lines
in Figure D.2 have been taken directly from [4, Figure 15, p. 113] and

x=0 +2 (3.7)
so that x = 0 locates the bottom surface 3P~ and x = h locates the top

surface aP+.
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FIGURE D.2 NORMALIZED TEMPERATURE IN A PLATE OF THICKNESS h,
WITH ZERO HEAT FLUX AT x =0, CONSTANT HEAT FLUX q*
(OUT OF THE PLATE) AT x =h, AND UNIFORM INITIAL
TEMPERATURE 6 =4

The numbers on the curves are values of 7 = Kt/p; ch?. The dashed
lines are the exact solution and the solid lines are the Cosserat
solution.

S
s o

L)
Xt

Ay 2

pradiaer

>

.
*t

CA
.
>

W

",. .\

=
.

o

<
[l

- -
3 e
S o e

hPRPR N

- X 1 %
3 ol Iy »-
I

D-15

- .
&

?

s 8

oL

AE2

-
2%

's“s

A TP

-

.

.F' Ly F') " :‘“-“)"V‘ ~* )'-4"‘- - --‘--'.u 1)- -’.. ,‘.F*J' {".('- *1-1" l"'

'y q: :\'.‘.'. . " . e Y ’l"‘l_“:. '
Y ySﬁrﬁMﬁmﬂfﬂu A S Rt YR

AN
A'\".)

-Q;ﬁ-.y.




Problem 2: For this problem, the temperature ot 1s specified as 6, on

the top surface, the heat flux q 1s specified to be constant on the
bottom surface, and the plate is initially at uniform temperature 6,.
Mathematically, these conditions are characterized by

9+ =8 . q- = constant , (3.8a,b)

0= 90 , and ¢$¢=0 at t =0 . (3.8¢c,d)
With the help of (2.161) condition (3.8a) yields
h
=0, -3¢ . (3.9)

It is important to observe here that by specifying 9+, we tacitly
specify 6 in terms of ¢ through equation (2.161). It follows that it is
not possible to specify independent initial values for 6 and ¢ such as
(3.8¢,d). 1In other words, when temperature is specified on one or both
of the major surfaces, we must, in general, modify the initial
conditions. However, in the special case of this problem, conditions
(3.8¢,d) are consistent with (3.9).

Since ot 1s specified, the heat flux q+ must be determined from
equations (3.3). Thus, using (3.9) in (3.3a) we deduce that

gt - 2— . (3.10)

Substituting (3.10) into (3.3b), we have

2
* 2 4+ . -
o ch (——2—") d$+Ko=-q . (3.11)

4m

Now, solving (3.11) subject to the initial condition (3.8d), we may

write the normalized solution in the form
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‘r.A‘.-‘.l‘ y

K(6 - 8) 2
— --% [1- exp {- (=& 5) <] (3.12a)
hq 4+ x
K 4
T e(1-ep (- () M, (3.12b)
q 4 +n
+ 2 nz 4 nz
L-1- 5) exp {- ( 5) <)) . (3.12¢)
q b +n 4 + x

where t 18 defined by (3.6).

To compare the Cosserat solution (3.12) with the exact solution

recorded in [4, p. 113], we rewrite the exact solution in the form

*
R(6 - 06) © _ n
——= -0 -5 ¢ SR (A 2 (- 6%
hq t n=0 (2 n+ 1)
2 2
X exp [- (2n+1) = r] . (3.13)

4

*
Let us define the average temperature 8 avg and average temperature

gradient ¢ 1n the plate by the equations

* 1 * 3
eavg -9 = E.-i/z (6 -9 do” , (3.14a)
h/2
* *
davg = L 7 0" -0y 0%’ . (3.14b)
h” -h/2

Then, substituting (3.13) into (3.14) and performing the integration, we

deduce the results

*
K(Bavg ~ %’ =L- 32 ; - 1" exp {- @a+n)’ o t}]
ha 2 w0 0= (2 o+ 1) )
(3.15a)
p-17
.;;- _:\_: ._: sl
> ‘f " "-" Ny - e \'1‘:




)
!'V \/
u::‘h‘
5% T - n 2 2
Rl - - -
.533 _avg -1 - 2% 5 [4 Q2n+ 1) na(f 1) ] exp [_ (2 n +41) T t] .
Ak q t n=0 (2 n+1l)
] (3.15b)
"
!."l.,
4‘7{
’i:* Because the quantities 6 and ¢ in the Cosserat solution correspond
o * *
‘o to 8 and ¢ , we have plotted each of these in Figure D.3. The
AN avg avg
|A) solid lines correspond to normalized values of 6 and ¢ and the dashed
ey * *
Y lines correspond to normalized values of eavg and ¢avg' The comparison
ﬁ}} for all values of t seems quite acceptable.
=
‘ Problem 3: For this problem, we consider a plate of thickness 2h. The
N heat flux is specified appropriately for radiation from both the top and
l,".
;uﬁz bottom surfaces and the plate is initially at a uniform temperature
: ﬁ: 9o + V. Mathematically, these conditions are characterized by
¢ + + - -
T @ =R - 8) , a4 = -G -6 (3-162,%)
o
W 6~8 +V , and 6=0 at t=0 , (3.16¢,d)
.- where H is a constant specifying thermal radiation from the major
‘lﬂ: surfaces. First, we will solve the problem as it 1s formulated in
s
:;}i (3.16) and second we will obtain a more accurate solution by exploiting
LN the symmetry about the center plane.

For the first solution, we substitute (2.161,3j) and (3.16a,b) into

equations (3.3) and then replace h by 2h to obtain

2

4 p: ch™ |
¢ = - K(l + Hh) ¢ . (30173,‘))

2
n

*¢h B KH(® - ©
poc - (—O) ’

Using the initial conditions (3.16c,d), the solution of (3.17) becomes

6 -8

—v——° =exp (-Hh ) , ¢=0 , (3.18a,b)
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FIGURE D.3 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE
[(K(6 -6,)ha"] AND AVERAGE TEMPERATURE GRADIENT
[-K ¢/q”] FOR A PLATE OF THICKNESS h WITH HEAT FLUX
q~ (ENTERING THE PLATE) AT THE BOTTOM SURFACE
AND THE TEMPERATURE §* = 8, SPECIFIED ON THE TOP
SURFACE

Initially, the temperature 8~ = 60 at the bottom surface. The
dashed lines ai'e the exact solution and the solid lines are the
Cosserat solution. 7= Kt/p0 ch?.
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where t 1s again defined by (3.6). To compare the Cosserat solution
(3.18) with the exact solution recorded in [4, p. 122], we rewrite the

exact solution in the form

3
* ]
n
6 -6, = 2FHh cos ( n ) sec @ 9
7 = T 5 5 exp (- L ) , (3.19a)
o=l [(Hh)” + Hh + a_]
@ tan @ = Hh , (3.19b)

where a, are the positive roots of equation (3.19b) and where 93 =0
locates the center of the plate, 63 = h locates the top surface, and
83 = - h locates the bottom surface. Replacing h by 2h in (3.14) and

using (3.19), we deduce the expressions

2] -9 ® 2
_a_ng’___o = T 7 2 glh) 7 exp (— az 1) R (3.208)
n=1 ¢ [(Hh) + Hh + « ] n
n n
*
= . .20b
¢avg 0 (3.20b)

Comparing (3.18b) with (3.20b), we see that the Cosserat theory predicts
the correct value for the average temperature gradient. To compare the
prediction of the average temperature, we have plotted (3.18a) as the
solid lines and (3.20a) as the dashed lines in Figure D.4, for three
values of the normalized radiation coefficient Wh. From Figure D.4, we
observe that for small values of Hh, the Cosserat theory predicts
accurate results whereas for large values of Hh, its does not. This is
because for small values of Hh, heat is radiated slowly away from the
major surfaces of the plate, so that the temperature through the thick-
ness of the plate is nearly uniform, as predicted by (3.18b). However,
for large values of Hh, heat is radiated rapidly away from the plate and

the through-the-thickness temperature gradient may be steep.

Mathematically, we may exploit the symmetry in the problem stated
above and thus confine attention only to the upper half of the plate.
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o FIGURE D.4 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE (6 -6 )/V
e FOR A PLATE OF THICKNESS 2h WITH RADIATION FROM THE

' SURFACES [ie.q" = KH (8" -8_)] AND UNIFORM INITIAL

e TEMPERATURE G =0 +V

The dashed lines are the exact solution and the solid lines are the Cosserat
solution. 1= Kt/po ch?,
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Therefore, for this second solution we consider a plate of thickness h.
The heat flux is specified appropriately for radiation from the top
surface, the bottom surface (which corresponds to the center surface of
the plate of thickness 2h) is insulated, and the plate is initially at a
uniform temperature 8, + V. These conditions are characterized by
(3.16) witk (3.16b) replaced by

qQq =0 . (3.21)

At this point, it 18 important to note that although the exact solutions
of the two problems considered here are identical, the Cosserat solution
of the second problem will be more accurate than the Cosserat solution
of the first problem. This 1s because the solution of the second
problem admits a nonzero temperature gradient in the top half of the

plate.

Substituting (2.161), (3.16a), and (3.21) into equations (3.3), we

obtain
* . h
Po ch 6 = - KH(O +‘E ¢ - 90) R (3.22a)
*
po Chz . 1 h
-——2——¢--7KH(9+7¢-90)-1<¢ . (3.22b)

In their present form these equations are coupled. However, by solving

(3.22a) for ¢ and substituting the result into (3.22b), we may define

6 - 90
-~ " f(t) , (3.23)
and write
h ¢ 2 df dzf df
-V " 2 f(1) +‘EE iz ;:§-+ B dt +Cf=0 , (3.24a,b)

D-22
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where B and C are constants defined by

2

~ B-n2+Hh+%-Hh , C=n’Hh , (3.25a,b)
A%y
o .

% and t is defined by (3.6). Using (3.6), (3.23), and (3.24a), the
a? initial conditions (3.16c,d) bhecome
\
X fe1 , Eolm , at =0 (3.26a,b)

d=t

Solving (3.24b) subject to the conditions (3.26), the Cosserat solution
may be written in the form

T 8 -6
—_— = - - 3.27

:C: 7 A; exp (- 0, T) + A, exp (= 0,%) (3.27a)
®

! h ¢

:.f -5 2 [A1 exp (- 011:) + A2 exp ( 021’)]

»

¢ 2

| o - (ﬁ][Al a, exp (- a,%) + A, o, exp (- 0,T)) , (3.27b)
<

-::E where the constants A, A), o, 07 are glven by

>

Y 02 - Hh Hh - 01

- A=, Ay, (3.28a,b)
5 279 9% "%

‘H

2 1 2 / 1 2 1/2

by o=z - -s0 , o =33+ @ -0 .

< 172 2 "2

b (3.28,¢,d)
i'. k) 3

;‘: Replacing 87 in (3.19a) by h/2 + 6°, we may write the exact

-. . solution for the top half of the plate as

& 3

2 « @ (h+20)

.;;- e - 90 @ 2 Hh cos — 5 n sec a 2

- - " z 3 5 exp (- x ) |, (3.29)
‘ n=1 [(ah)° + #h + o]

] -
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2
R .
‘} where «, are the positive roots of (3.19b), and where 93 = h/2 locates
88
. the top surface and 93 = = h/2 locates the bottom surface (which
¥ corresponds to the center surface of the plate of thickness 2h).

. Substituting (3.29) into the definitions (3.l4a,b), we obtain the result
LA *
\; (3.20a) for the average temperature eavg and the result
3 *

h ¢av o Hh [an sin a + 2 (cos @ - 1)] sec @, 2

[ - ——s-v = =-12 T 2 5 3 exp (- @ ) .
: n=1 « [(Hh)® + Hh + an]
3 (3.30)
% ]
"

i Figure D.5 compares values of the average temperature with (3.27a)
‘QQ plotted as the solid lines and (3.20a) plotted as the dashed lines.
,y@ Similarly, Figure D.6 compares values of the average temperature

ﬁﬁ gradient with (3.27b) plotted as the solid lines and (3.30) plotted as
d the dashed lines. From Figures D.4 and D.5, we observe that modeling

h. D only the upper half of the plate produces a significant improvement in
'ﬁ the prediction of the average temperature for the higher values of Hh.
, Also, we observe from Figures D.5 and D.6 that for Hh = 0.1, the
Cosserat and exact solutions are nearly identical and the average
f; temperature gradient remains relatively small.
:iij 4. Circular Cylindrical Shells
e In this section, we investigate the validity of the Cosserat theory
fﬁ in the thick-shell 1limit by considering heat conduction in a circular
.Eﬁ cylindrical shell and taking the limit of a solid cylinder. Specifically,
f: consider a circular cylindrical shell of uniform thickness h and mean
, ; radius R. Let 51(1 = 1,2,3) be a set of fixed Cartesian base vectors
ﬁ; and let si be base vectors of a polar coordinate system with polar angle
i; v defined by*
-
k7
:%g *Although this coordinate system is unconventional, it is chosen because
§~§ it ylelds convenient relations between A; and gf.
C
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FIGURE D5 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE (0 —GO)N
< FOR A PLATE OF THICKNESS h WITH RADIATION FROM THE
N TOP SURFACE [i.e., " = KH (8" -6_)], ZERO HEAT FLUX ON THE
- BOTTOM SURFACE, AND UNIFORM INITIAL TEMPERATURE
e 0=0_+V

v [+]
) The dashed lines are the exact solution and the solid lines are the Cosserat
solution. 7= Kt/p; ch?.
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FIGURE D.6 VALUES OF THE NORMALIZED AVERAGE TEMPERATURE GRADIENT
{-h ¢/V] FOR A PLATE OF THICKNESS h WITH RADIATION FROM

THE TOP SURFACE [ie..q" = KH (8% -6_)],

ZERO HEAT FLUX ON THE

BOTTOM SURFACE, AND UNIFORM INITIAL TEMPERATURE G =0_+V
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The dashed lines are the exact solution and the solid lines are the Cosserat solution.
7= Kt/p, ch?




e! = ¢ e! = cos y e

-l ~1 ' =2 -~sinye, , e =sinye

+
3 cos y e

2 3 °

(4.1a,b,c)

2

where s{ is parallel to the generator of the cylindrical geometry.

Now, points on the reference surface of the shell may be located by
the position vector R given by
' . 1 2 4.2a,b
Enxsl-f-Rsa R e-x’e-Y , (-8,,0)
where we have identified the coordinates 91, 02 with x and Y
respectively. Using the definitions in [2] and in Section 2, the
relevant geometrical properties of the cylindrical surface may be

recorded as

a2 o, Allay , A2., Azz-% , (4.3a,b,c,d)
R
2 1 a c
B2 =-x all other BB =0 , P“B =0 . (4.3e,f,g)
Substituting (4.3) into (2.16), we have
* + - h
o, =P, h , B - a2(1 +3) 0B -A1/2(1-ﬁ) . (4.4a,b,c)
It follows that the thermal equations (2.19) become
* ° * ~ -
pochd=p ho s-(1+5)q" +(1-2)q +xnvie , (4.5a)
p* ch2
0o . * - 1 h + 1 h -
—3 0=, 8,8 -3(l+3g)a -3(1-3x)a
T
kh? 2
-K¢+—12—V ¢ , (4.5b)

where the Laplacian operator v2 g for the cylindrical geometry is given
by

.........
B
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0
. 4.6
> (4-6)
Here, we consider the problem for which the heat flux on the outer
surface 18 constant, the inner surface is insulated, external entropy
supply is neglected, and the shell is initially at uniform temperature
8, Hence, the conditions (3.1) and (3.4) hold and equations (4.5)

reduce to
* o h +
P, ch 8 = - (1 +2—n) T (4.7a)
* .
poch¢--K¢-%(1+;—R)q+ . (4.7b)

Integrating (4.7) subject to the initial conditions (3.4c,d), we obtain

K(6 - 90)

h
- T = (1 + ﬁ) L 4 ’ (4.88)
- E:Q = % (1 + %E)[l - exp (- uz T)] , (4.8b)
q

where v 18 defined by (3.6). Notice that in the thin-shell limit

(R/h + =), the solution (4.8) approaches the plate solution (3.5). 1In
the thick-shell 1imit of a solid cylinder for which* R = h/2, the right-
hand side of (4.8a) becomes 2t, which is consistent with the exact
solution [4, p. 203]. Using (2.15b), the Cosserat solution (4.8) with
R = h/2, is plotted in Figure D.7 together with the exact solution for
various values of the time parameter t. The dashed lines in Figure D.7

have been taken directly from [4, Figure 25, p. 203] and r 1is the radial

*From {2], we recall that §enerally GI/2 is_required to be posgitive.
Although the quantity 61/Z vanishes when 63 = - h/2 and R = h/2, this
poses no particular difficulty in the problems considered here.
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coordinate, with r = 0 locating the center of the cylinder and r = h

locating the outer surface.

In view of the form of solution (4.8), it is obvious that the long-
time temperature is dominated by the term (4.8a). The fact that the
coefficient of t in (4.8a) ylelds the correct result even in the thick-
shell 1limit suggests that the Cosserat theory retains the important
geometrical features of the shell. 1In this regard, it is worth men-
tioning that the result (4.8a) could be obtained using an engineering
approach in which the temperature in the shell is assumed to be uniform
and the energy entering the outer surface is equated with the increase

in internal energy. It is also worth mentioning that the solution of

3
,_A_ L ]

the more accurate equation (15) of [1] yields a long~time solution of

alfd

the form

SR

* h h
K(8 - 8) sinh (3z) + cosh (3R ‘

- + > ZR h T . (4-9) -
h q +— sinh (Z—ﬁ)

In the thin-shell limit (4.9) yields the correct result, but in the
thick-shell 1limit it ylelds the result (2.313 t), which is incorrect.
Thus, even though equation (15) of [1] is more complicated than

equations (4.8), it does not necessarily produce a better result.

To further examine the validity of the constitutive equations
(2.14b,c) and the specifications (2.18a,c), we consider a simple problem
for which the Laplacian operators in (4.5) do not vanish. Specifically,

congider the steady-state problem of uniform heat conduction in the

constant gy direction for which the three-dimensional solution is given
by

e F

* * R 3.0
q =Q g3 6 = (90 - %— cos y) - 6 (E-cos Y) (4.10a,b)

-t

#
where q is the three-dimensional heat conduction vector and Q is a

constant. Using (4.1) and (4.10), we realize that
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q =q = S . 33 E Q cos Yy . (4.11)

Consequently, in the absence of external entropy supply, the steady-

state solution of (4.5) becomes

2 -1
0=0 -2R 0 Yy » ¢=-(1+ —E—-) 2 cos Y . (4.12a,b)
o K 12R2 K

Now, with the help of (2.15b) we may compare the exact result (4.10b)
with the Cosserat result (4.12) to conclude that the average temperature
is predicted exactly. Further, the prediction of the average tempera-
ture gradient ¢ 18 very accurate in the thin-shell limit (R/h + «) and
is only 252 low in the thick-shell 1limit (R/h + 1/2).

5. Spherical Shells

The spherical shell geometry 1is considered here mainly because it
is one of the simplest geometries in which it is possible to investigate
the differences between the constitutive assumptions (2.12) and (2.14).
Three problems of a spherical shell of constant thickness h and radius R
are considered. For the first two problems, we consider the thick-shell
limit of a solid sphere and discuss the differences between assumptions
(2.12) and (2.14). For the third problem, we consider the transition
from a thick shell to a thin shell.

With reference to the Cartesian base vectors g; introduced in

Section 4, we let e'' be base vectors of a spherical coordinate system

1
with polar angle y (0 5 vy < 2n) measured from the e1 - e3 plane and
polar angle o (-‘% S oX g) measured from the e1 - e2 plane such that*
Y - + .
51 sin v 51 cos Yy 32 , (5.1a)

*Although this coordinate system is unconventional, it {s chosen because
it yields convenient relations between A; and g{'.
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eé' = - gin o (cos vy e

~

+ 8in y 52) + cos o e (5.1b)

1 3’

35' = cos g (cos y e, + sin vy e,) +sinc e (5.1c)

1 3
Now, points on the reference surface of the shell may be located by

the position vector R given by
R=Re' , 6 =y , 6 =0 , (5.2a,b,c)

where we have identified the coordinates 91, 82 with y and o,
respectively. Using the definitions in [2] and in Section 2, the

relevant geometrical properties of the spherical surface may be recorded

as
1
Al/2 = R2 cos o , All - A12 =0 , A22 = l? ,
R™ cos o R
(5.3a,b,c,d)
Bl gl --1 11 other B% =0 (5.3e,f)
1 ) R °» @all othe 8 . e,
1 1 2 o
P1z = FZI = - tan ¢ , F11 = gin g cos ¢ , all other FaB =0 .
(5.3g,h,1)
Substituting (5.3) into (2.16), we have
i *h(1+h2) g . a2 4 B2 gl \l2( b2
%6 T Po 2) 2R’ 2R’
12 R
(5.4a,b,¢)
It follows that the thermal equations (2.19) become
* h2 * - h 2 + h 2 - 2
poch(1+12R2)e-poeos-(1+5§) q +(1-2—R) q +Kh 9 9

(5.5a)
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2 (1 + 5) ¢ =p, 6,8 ~(3)(1+3x)° a - (3L -37)"a
T 12 R
2 3
mmm 1+ 2y o+ Bv?y (5.5b)
12 R

where the Laplacian operator Vz 6 for the spherical geometry is given by

‘ 2
. | o 6,1 3 6 tanod0 (5.6)

R2 c032 cdy R"d ¢ R

For the first problem, the heat flux on the outer surface is
constant, the inner surface is insulated, external entropy supply is
neglected, and the shell is initially at uniform temperature 6,. Hence,
the conditions (3.1) and (3.4) hold and equations (5.5) reduce to

2
* h h 2 +
p.ch 1+ - (1 +353) ’ (5.7a)
o 12 RZ 2R
* cn? 2 2
Po © h e _1 h 2 + h
(1+ ) ¢ = - —(1+—) -k (1+ ) ¢ . (5.7b)
« 12 - 2 2R 12 2

Integrating (5.7) subject to the initial conditions (3.4c,d), we obtain

R(e-0) (1+2)

- —°- . 22 T, (5.8a)
h q h
(1+ )
2
12 R
h 42
1+ 3=
SR R pneem -l (5.8b)
1 2(1 + -2 5)
12 R

vwhere ¢t is defined by (3.6). Notice that in the thin-shell limit
(R/h » =) the solution (5.8) approaches the plate solution (3.5). 1In
the thick-shell 1limit of a solid sphere for which R = h/2, the right-
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éﬁi hand side of (5.8a) becomes 3t, which 1s consistent with the exact

_?3!:3:' solution [4, p. 242]. Using (2.15b), the Cosserat solution (5.8) with
A\ R = h/2 is plotted in Figure D.8 together with the exact solution for

’?f; various values of the time parameter t. The dashed lines in Figure D.8

:E%; have been taken directly from [4, Figure 31, p. 242] and r is the radial

Y coordinate with r = 0 locating the center of the sphere and r = h

i*} locating the outer surface.

2:;; From Figure D.8, we observe that for long time periods the value of

:*ﬁ the average temperature gradient predicted by the Cosserat theory is

[}

~ I
-t

substantially larger than the exact value. However, this is not

o
-

s

particularly important because for long times the temperature is
dominated by the term (5.8a). To exhibit this, we have used (2.161,3)
together with (5.8) to plot in Figure D.9 the temperature on the outer

)
£.J

surface and at the center of the solid sphere. The dashed lines in

o, Figure D.9 represent the exact solution {4, p. 242]. For short times,
tﬁf the Cosserat theory predicts the incorrect result that the center
'g;i temperature of the sphere drops. This is a consequence of the over-

.. prediction of the average temperature gradient. For long times, the
',,; lines in Figure D.9 are parallel and the relative error diminishes to
fﬁ{ zero. Thig is because the prediction (5.8a) is exact in the thick-shell
‘: ﬁ limit. 1In this regard, it is worth mentioning that the result (5.8a)
.?‘f could be obtained using the engineering approach described in Section 4.
I It is also worth mentioning that the more accurate equation (15) of [1]
,‘;4 yields a long-time solution of the form*

-
:'_{::j
Sy *
N K(O - 9)) sinh (%) + cosh (%]
' N ¥ 7 h B T -9
P hq (3) stoh (3)
X
L\
99
¥
¢

*The solution in Appendix A of [1] should be written in a form that has
a linear term in time.
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In the thin-shell I1imit (5.9) yields the correct result, but in the
thick~shell limit it yields the result (4.075 <), which i{s incorrect.

We are now in a position to comment on the differences between the
constitutive equations (2.12) and (2.14). If (2.12a) were used instead
of (2.14a), then the average temperature would be given by

K(8 - 6)
o h 2
- ———h—+_ - (1 + 2—R-) T (5.10)
q

instead of (5.8a). This would yield the incorrect result 4t in the
thick~shell 1limit. Similarly, if (2.12d,e) were used instead of
(2.14d,e), then the long time value of ¢ would be

K 1 h |2
- q+_°. 7 (1 +3%) (5.11)

which produces a larger error than that associated with (5.8b) in the
thick-shell limit.

To further examine the validity of constitutive equations (2.14b,c)
and the specifications (2.18a,c), we consider the steady-state problem
of uniform heat conduction in the constant £; direction for which the

three~-dimensional solution is given by

*
g4 =Qg , 6 = (90 - %E cos y cos o) - 93 (%-cos Y cos o) ,

(5.12a,b)

*
where q is the three-dimensional heat conduction vector and Q is a
constant. TUsing (5.1) and (5.12), we realize that

- * .
q+ =q =g ° gi' = Q cos y CO8 0 . (5.13)

Consequently, in the absence of external entropy supply the steady-state

solution of (5.5) becomes

n-37
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ot
Bo
1
SR
A0) QR Q
Ty W - - - - - .
ﬁﬂk ] eo X o8 Y cos o , ¢ X €08 Yy cos o , (5.14a,b)
X which is an exact result valid for both the thin- and thick-shell
“
:-:{ limits.
N
3& . Finally, to examine the transition from a thin-shell to a thick-
(SN
) shell, we consider the steady-state problem where the temperature 6t on
ﬁa‘y the outer surface is specified to be the constant value 6, and the heat
4
':.‘ flux q- on the inner surface is constant. Thus, using (2.161) we
A4
. %g require
LI
;'§' o+ % ¢=6, , q = constant . (5.15a,b)
Ny i
)
x{‘l In the absence of external entropy supply, the steady-state solution of
ti n (5.5) becomes
s h \2 h \2
R(e-0) (1-3=) (1-%9)
s e —— St —B— . Gaa
haq 201+ E—) ¢ (1+2—)
{ 12 R 12 R
h 42
+ (1-359)
L. R (5.16¢)
- h 2
a  (1+35)

It can be shown that the exact solution [4, p. 247] may be written in

the form

3
k(' -0 (1-3921 -2

T — - g (5.17)
T q n_ 2z
?,;;--3 2(1 + 52)(1 + )
‘-“,'-J
BN LS .
)ti% and that (5.16c) 1s an exact result. Now to compare the predictions
D "
gi;;- (5.16) with the exact solution (5.17), we have used (2.15b) to plot
I (5.16) as the solid lines in Figure ND.1l0 and have used (5.17) to plot
wt}: the dashed lines in Figure D.10 for three values of R/h. The results in
',
{32 Figure D.10 show again that the Cosserat predictions are good even for a
S fairly thick shell (R/h = 1).
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6.

Conical Shell

In the previous sections, we have solved a number of problems for

plates, circular cylindrical shells, and spherical shells to develop

confidence that the Cosserat theory can predict relatively accurate
results for both the thin-shell limit (which models the base of a
conical shell) and the thick-shell limit (which models the tip of a

conical shell).

Here, we confine attention to a conical shell with

constant thickness h and locate points on the conical surface by

R=BR g

1]
+ R 53

ol =r

)

2
il

(6.1a,b,¢)

wvhere R is the radial coordinate, y is the polar angle, 5i are defined

by (4.1), B 18 a constant related to the cone angle (see Figure D.l),
and we have identified the coordinates 6l and 62 with R and Ys

respectively.

Using the definitions in [2] and in Section 2, the

relevant geometricél properties of the conical surface may he recorded

as
A1/2 R(L + 52)1/2 , A11 - 1 . 12 -0 ,
Qa+ 8"
82 - ——-L—T all other B = 0
»
2 R(1 + 52)1 2 B ’
1 R 2 1 g
Fpoy 2 =———p— , TI,p=sl,, == all other T
12 R °*
22 a+ BZ) 21 af
Substituting (6.2) into (2.16), we have
* + 1/2 h 8 -
p.=p h B = A [1 + ] B = A
° ° ’ 2R(1 + 52)1/2 ’

22 1
A = — ,
R2
(6.2a,b,c,d)
(6.2e,f)
=0 . (6.2g,h)
1/2 h B
[1- ]
2R(1 + 8 )1/2
(6.3a,b,c)
L"-"..J'\\

Axikhxﬂriihjﬁﬁaiithip*

'-‘h' Il g

g



It follows that the thermal equations (2.19) become

* . * - h g + h g -
p ché=p ho s-[1+ ]q +[1- ] q
o o o R(L + B )1/2 R(L + B )1/2
+Kh V2 e , (6.4a)
* h
Po €M o x  ~ h B + 1 h B -
¢=p 6 8, -3=[1+ ] q -5[1- ] q
n2 o o1 2 2R(1 + B2)1/2 2 2R(L + s2)1/2
RhZ 2
-ke+ B2y, (6.4b)

where the Laplacian operator V2 © for the conical geometry is given by

a+ g% oR 6R RZ 3 Y

Here, we consider the problem for which the heat flux on the outer
surface is constant, all other surfaces are insulated, external entropy
supply is neglected, and the shell {s initially at uniform temperature
6o+ Hence, the conditions (3.4) hold in addition to the conditions

6 =06(R,t) , ¢ = o(R,t) , (6.6a,b)
a_e. - 22 - =
3R o , 2R 0 at R Rl’RZ (6.6¢c,d)

where R, and R, are the tip radius and base radius of the shell,
respectively (see Figure D.1l). Under these conditions, equations (6.4)

reduce to

LA h B + Kh d 26
p.chd =<1+ ] + ————— = (R3) (6.7a)
o 2R(1 + B )1/2 R(1 + g2y OR = OR
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Y
r“
P
R p, ch | h h2
T T Ererootn MUY g
.-l.n ® ZR(l + B ) 12R(1 + B )
. (6.7b)
"\‘ i
e i
';: To analyze these equations, it is convenient to introduce the nondimen-
{%‘ sional parameters i
u‘.. .
V)
(o™ R Kt
r{l zZ = -l; ’ T = Y 2 , (6.88,b) £
MY Po ch ]
L
p ¥
e K(6 - 0) -
8= 8(z,1) = - ——=2 , § = R(z,m) = - K2 (6.8¢,d)
" h q q
B
48
Q\N and rewrite them in the form
w
3:3'0:
[0 )
@ = 1 -
o 36 1393 Jol:) B
& ¥ —tL Y- i (6-92)
: 9 ot a + 32) z dz dz 22(1 + B2)1/2
s - : a2
"’é'. Rad s -—E— 5 Y-+ Lot - (6.9b)
12(1 + B8°) 2z(1 + )
JE; Similarly, the initial conditions (3.4c,d) and boundary conditions
e
L (6.6c,d) become
5 =0 , ¢$=0 at t =0 (6.10a,b)
‘-\_t:
b 20 28
I — =0 , =0 at z = z ,2 . (6.10c,d)
e dz dz 172
[
- where z, and z, are the values of z when R equals R; and R,
s respectively. At this point, it is of interest to note that in the
-1
1;? limit of large B(f + =), equations (6.9) reduce to a nondimensional form
N of (4.7) for a circular cylindrical shell, and in the limit of small
TS B(B » 0), equations (6.9) characterize a circular plate.
Using standard techniques, the solution of (6.9) may be written in
o the form
i)
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Ny ®
(B 6=A()+ I A(x) £ (2) , (6.11a)
m=1
1g*,
‘.\:1"? ®
K ¢=B(x)+ L B ()£ (2) , (6.11b)
._1".’ m=1
)
\_ where fm(z) are eigenfunctions characterized by
) .
?5
o daf
'__ %d—z (z -&-z—@-) = - ai £ (no sum on m) (6.12a)
o af
}\ r ol 0] at z = 252y (6.12b)
o
3%
-F and where a% are the nonzero eigenvalues. Since equation (6.12a) can
o easily be recognized as Bessel's equation of order zero, the solution,
::'_jf subject to the boundary conditions (6.12b), is well characterized and
-~ may be written in the form
L.
el Iy (apZy) -
::._: fm(Z) = Jo(amz) - WZ——) Yo(amz) (6.13)
o] 1" m1
,, where J, and Y, are Bessel functions of the first and second kind,
-* respectively, of order n and where a, are the positive roots of the
T
-:'."4 characteristic equation
i’ :
2 Jl(amzl)Yl(amZZ) - Yl(amzl)Jl(amzz) =0 . (6.14)
i .'1
[
’-P,', Further, the eigenfunctions f, satisfy the orthogonality conditions
Ny
“w
N
e . z z
2 [22¢ dz=0 f22¢ £ dz=0 for (m# n) (6.15a,b)
}" m ’ m n ¢ ’
. z z
o, 1 1
R
r-':\

%_
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Substituting (6.11) into (6.9), multiplying the result by z and
integrating, multiplying the result by zfn and integrating, and using
the orthogonality condition (6.15) and the initial conditions (6.10a,b),

we conclude that

B 1
A(v)=Cct , C = 1+ _— 62)1/2 (z1 = z2)] , (6.16a,b)
2 ~ 2
(1 +87)C a
A () = ———-7?———15 [1 - exp {- P-JE—7Z)t}J s (6.16¢)
a 1+8

21 + B) z

i)
5177 | fa 42
1

Ca = z . (6.16d)
) 2 z f2 dz
z, n
1 2
Bo(t) - E'Co[l -exp (- n°T)] , (6.16e)
S PR L. S Y
B (t) = - 1~ exp (-~ 3 (12 + —7)= . (6.16F)
m a2 12 1+ B2
(12 + ——)
1+8

For later reference, we observe that if the dependence on z is neglected
in (6.11), then (6.11) has the same form as the solution (4.8). This
means that we would be essentially modeling the conical shell as an
"equivalent” circular cylindrical shell with "mean"” radius R/h = (zl +
z9)(1 + 52)1/2/28. By considering a specific example, it will be shown
that making this kind of engineering approximation introduces signif-

icant errors at the tip of the conical shell.

Consider the specific example of the conical shell drawn in Figure

D.1, which has a solid tip. For this shell we specify

z, = -———Ji-—jr— . oz, =15, B=3.23 . (6.17a,b,¢)

201 + B2)1 2
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3 The minimum value 2, of z given by (6.17a) 1s specified by requiring the
inner surface of the shell to just make contact at the shell's tip.
Using (6.17) we have solved for the first twenty eigenvalues and eigen-
functions and have plotted the solution (6.11) in Figures D.1ll and D.12
by normalizing the results by the first terms in the solutions. Figure
D.11 shows plots of B/A,(t) verses z for various values of T, and

Figure D.12 shows plots of 3/30(1) verses z for two values of t. The
slight waviness in these curves is caused by the fact that we have

approximated golutions (6.1la,b) using finite geries.

From Figure D.1ll, we observe that for long times the average

B temperature is relatively uniform over the shell. This is because the
2 equivalent-cylinder solution A,(t) dominates for long times. However,
§? for short times the value of 8 at the tip is about 65% greater than that
BV predicted by the equivalent-cylinder solution. This result can be

:’s explained by observing from (4.8a) that a thick cylinder heats up faster
ftzz : than a thin cylinder. Thus, we would expect the tip of the conical

?;% shell, which is thick, to heat up faster than its base, which is thin.

m: v From Figure D.12, we observe that the distribution of the average

temperature gradient is nearly constant with time. Also, the value of §
near the tip 1s nearly 652 greater than the value predicted by the

equivalent-cylinder solution.

s -
A

To exhibit the temporal dependence of this solution more clearly,

we have plotted Ao(r) and BO(T) in Figure D.13. From this figure, we

-

N,
tj observe that B,(t) reaches its maximum value in a relatively short time.
]
‘lzj Recalling from [2] that the average temperature gradient 18 related to
33 the thermal bending moment in the shell, this means that the bending in
e a conical shell uader this load will be quite severe at its tip and the
l}i full effect of the load will be felt in a relatively short time.
;I& Consequently, the tip of the confcal shell should be particularly
':& vulnerable to this type of thermal load.
‘.'
-
b
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7. Summary

In this paper, we have focused attention on analyzing heat
conduction in a rigid conical shell (Figure D.l). The conical shell is

particularly interesting because it has a converging geometry, so that

the shell near its tip is necessarily "thick™ even though the shell near

! its base may be "thin.” Further, the heat conduction equation is not
'w:' separable for the conical geometry, and hence it is exceedingly
g&s difficult to obtain exact solutions. We have chosen to model the shell
éﬁ* with the theory of a Cosserat surface to determine the average (through-
}b. the-thickness) temperature and temperature gradient in the shell
. directly.
e
iﬁ& A number of problems of plates, circular cylindrical shells, and
kﬁ& spherical shells are considered and the solutions are compared with
il exact solutions to develop confidence in the Cosserat theory. Within
™ the context of this theory, it is usually assumed that constitutive
¥§§ ’ equations for shells have the same form as those for plates. Were, it
S0 is shown that to predict relatively accurate results in the thick-shell
'fF ’ limic, it is necessary to generalize these constitutive equations to
R include certain geometrical features of the shell. The generalized
f 3 constitutive equations are developed here in a consistent manner and
Z%& tested in the thick-shell 1limit. The tests include problems where the
.;* temperature fields 6 and ¢ are functions of time only so that their
1), Laplacian vanishes, as well as problems where they are functions of
p ﬁ space only and their Laplacian does not vanish. 1In all cases,
:Eg satisfactory results are predicted even in the thick-shell limit.
\\j Finally, a problem of transient heat conduction in a conical shell,
¢ which does not have an exact solution, is solved analytically using the
f*: Cosserat theory. 1Tt is shown that both the average temperature and
) ) temperature gradient have values near the tip that are about 65% greater
o than those predicted by an approximate equivalent-cylinder solution.
e Also, it is'shown that the thermal bending moment produced by the
:3 average temperature gradient is quite severe near the tip and it attains
x: ' its maximum value in a relatively short time.
10
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