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During this report period, the followin~ people have been involved in the
expcriment:

William Fairbank - Co-Principal Investigator

Daniel DeBra - Co-Priuncipal Investigator

Michael McAshan - Senior Research Associate 7T;T'
Evan Mapoles - Graduate Student and then Research Associate. His Ph.D. Egzsy
thesis entlitled "Development of a Superconducting Gravity Gradiometer for Test ;5;:;
of the Inverse Square Law," is included as Appendix 1. His publication, %;ﬁ?

"A Superconducting Gravity Cradiometer™ is Included as Appendix 2.

E.‘ RESEARCH OBJECTIVES

This research has had two objectives: (1) to study the application of

crycgenic technology to the problem of gravity gradient measurements, and

(2) to use such a gradicmeter to make more accurate meaurements of the inverse
square law of gravity to test the recent experimental and theoretical sugges-
tions that the inverse square law of gravity might be violated at laboratory
distances.

Since room temperature gradiometers are ultimately limited by room tempera-

. ture Brownian motion, we have been experimenting with a laboratory cryogenic ST

gradiometer which could lead to the development of a more sensitive moving base-

[ line gradiometer for field use. Such gradiometers could have applications to lkiﬁ
Ei problems in navigation and modeling of the earth's gravitational field. 4
TE Recently the inverse square law of gravity at lahoratory distances has ;*Qj'
» L
Fi become a subject of great interest to physicists. This has come about for two ;51;
;"':- ( 1 ) ( 2) £ d iol " ‘.1‘:‘
@ reasons. First, Long and more recently, Tuck have tound an apparent viola- U

tion to the inverse sqiire lav of srovity at laboratery dist ces. If this were
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found to be correct, it would be one of the most important experiments in the
history of physics. Secondly, theorists have L.gun to speculate on the possible
existence of new fundamental particles which could affect the inverse square law
of gravity at laboratory distances. For example, axions with mass 10"5 eV have
been postulated to explain the dark matter of our galaxy and the reason for the

lack of parity in time-reversal violation and strong interactions. Such particles

could contribute to a violation of the inverse square law.(3) By making use of J*f}"

a superconducting gradiometer it appears possible to check the inverse square S

law at distances of the order of one meter to an accuracy of 2 parts in 105.

Operation of a gravity gradiometer at 4 K offers a reduction of thermal
noise power by a factor of 75 over that in room temperature environments, and
this 1s the principle motivation for the development of cryogenic instruments.
However, there are many other potential advantages which help to offset the
additional effort required to maintain the instrument at 4 K. Below 10 K
several metals lose all low frequency electrical resistance (superconductivity)
and become nearly perfect magnetic shields. These materials are used in our

gravity gradfometers to make mapnetic readouts which are free of thermal noise.

Although careful coustructicn is required to allow for the thermal contraction

. of the instrument as it is cooled from room temperature to 4K, once the device

; , is cold the coefficient of thermal expansion is far below the room temperature —- K
value. The liquid helium bath commonly used to maintain low temperature also

provides a stable thermal environment. In addition, low frequency amplifiers

i of unequaled sensitivity based on the Josephson effect (SQULDs) are commercially

t% available.
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During the early part of our work we constructed and tested two prototype
gradiometers. These devices both incorporated superconducting coils and proof
masses, were built with similar techniques, and both measured a single diagonal
component of the gravity gradient tensor. They differed in the method used to
obtain common mode balancing. One of our prototypes used four superconducting
coils, one on each side of two superconducting diaphragms. Each pair of coils
and diaphragm produced a current in response to an applied acceleration, and
these two currents were subtracted at the input of a SQUID. We referred to
this gradiometer as "current differencing". Our second prototype used a single
coil located between two superconducting proof masses so that its inductance
was modulated only by relative motion of these two proof masses. We called
this gradiometer "displacement differencing". Because the four coils in the
current differencing gradiometers are not perfectly matched, the overall
balancing problem in this gradiometer is more complicated. Consequently, we
choose the displacement differencing design to an improved version.

We have completed construction of this lmproved gradiometer and operated
it at 4.2 K with sensitivity approaching 16/ Hz at frequencies between 2 and
10 1. The operatlon of this gradiometer is described in Appendices 1 and 2.
fn order to achieve this level of sensitivity at lower frequencies, a new cryo-
stat probe was bullt to provide a 1.3 K environment for the gradiometer. The
purpose of this was to reduce the thermal sensitivity of the instrument. In
addition, the new probe was designed to provide a high degree of selsmic and
rerenet e Isolatlon.  This probe fn heing used to gather data from the gradio-

meter in the [nverse square 1w experiment.,
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DESCRIPTION OF THE GRADLOMETER

Our primary goal in the design and fabrication of our gravity gradiometer
was to minimize the instrument's sensitivity to linear accelerations both along
the proof mass direction and perpendicular to it. Linear accelerations in the

laboratory exert forces on the proof masses which are very large compared to

the gravitational forces we would like to measure, so careful balancing of the
gradicmeter is needed to eliminate them as a noise source,
i In addition, we decided to build an on-line gradiometer which measures one
of the diagonal components of I'. 1t is highly desirable to be able to measure
-2, -
all three components of V') so we chose a method for suspending the proof masses

o which allows us to operate the gradiometer with its sensitive axis vertical as

well as horizontal.

In order to make the balancing problem manageable we chose a mechanical

»

design which cnabled us to use only one coil in the readout system described

3 later. Experiments have been done with readouts using several coils, but in i

ii these gradicueters careful matching of the coils as well as the proof masses {

f is necessary to reject linear accelerations,

: Basically the gradicmeter consists of two superconducting proof masses

; . adjacent to each other. A single niobium coil 1s mounted in the gap between

: the proof masses so that the coil inductance is proportional to their spacing. ﬂ
This readout system is analyzed in detail below. Since the sensitive axes of

; the procf masses are parallel, the gradiometer detects changes in one of the

; dingonal components of the gravity pradient tensor, [, ..

. 33

:: Each of the two proof masses {s sopported with two mechanical springs.

I

® The mechnanical sprinus are folded contilevers cut into civeular diets of

;‘ nichian, A feldo b cantilover <ith teo-fold svmaetry is chown in figure 1.

;
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In this case the thickness of the plate ¥4 reduced in the two rectangular

areas hatched in the figure in order to restrict thc bending toc those areas.

Slots are then cut in the indicated locations. These slots allow the center

to move perpendicular to the plane of the plates ~s shown in the lower part

of the figure, Since the center of the spring is free to move in the plane

of the plate, the total length of the spring remains constant and the restor-

ing, force is provided bv pure bending without stretching of the spring material.
The proof mass subassembly consists of two springs, two cover pieces, an ;

annular mass, and a ring used to hold the edges of the springs apart. The cover f??f?

pieces are circular disks of nicbium 8.51 cm in diameter which are flat on one

side and have a threaded stud on the opposite side. The flat sides are designed i?ﬁzi

to modulate the inductance of the readout ceil or tuning coils described later.

The flats were polished to ensure flatness and isotropy so that close spacing jiiiﬂ
to the coils could be obtained, and so that the inductance of the coils is modu-
lated only by lincar motion of the surfaces. The threaded studs screw into an

annular disk of niobium which provides the bulk of the mass for each proof mass.

A spring is captured between each cover piece and nroof mass. An exploded view

of cne of the two preoof mass subassemblies is shown in Figure 2. The ring which
is used to maintain the spacing of the edges of the springs is thicker‘than the
proof mass so that each spring is biased away from its equilibrium position and
never passes through its zero point. This eliminates certain forms of nonlinear
behavior, Since the sprimgs have opposite biases, the first order nonlinecar terms
also cancel. he ring was grounded to its final thickness to keep its two sides

5
parallel to one part in 107.
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Once the two proof mass subassemblies were constructed, they were stacked

on top of each other with a ring holding them apart. The thickness of the ring

was chosen so that the readout coil is about 0.013 cm from the opposite proof

)

mass. This structure was mounted on an aluminum fixture which maintained the

angular orientation of the parts. A niobium housing tube 9.3 cm long with a
10.5 cm inside diameter was placed over the parts (Figure 3). A more detailed
desceription of this gradiometer is given in Appendix 1, including details of
cxperinental measureiments on the oradiometer.

The assembled pradiometer was first tested at 4.2 K and has performed as !
capectoed in the frequency raose from 2 He to 10 Nz (see Appendix 1), It has
since been Incorporated in a new cryostat probe capable of cooling the instru-

ent to 1.3 K oand is being used on the inverse square law experiment,
TLVERSE SOUARLE LAW EXPERITMENT
The theory and background for this experiment is given in Chapters 4 and 5

of Appendix 1. We have completed construction of all major components of the

inverse square law experiment (Figure 4) and have commenced work on the experi-
nent. These components fuclude a 1.3 K cryogenic probe and a pedestal which is
need to o meunt the cryostat in a ten foor hole in the floor. A pumping line is
incorporated into the pedestal which allows us to continuously pump on the
creostat to maintain the temperature of the pradiometer at 1.3 K while the
cvlindrical source is moved up and down over the cryostats.  The final major

picee of the apparatus is the system for moving the cylinder up and down.




Figure
Figure
3
Figure
)
i Figure
) -
Ficure

~‘, - .". ‘. '_. ‘L '-- - . ‘-- . Y - -~ - .
PR T, T, T, L A W R S R

-
i

SRR R A Sl Sl fag Sl Sud et daldiohs e 4 TV Y

A

FIGURE CAFTIONS

Assembled gradiometer in mounting fixtyre. Mounting fixture
includes flex hinges on both sides of the gradiometer so
that the instrument may be tilted slightly by PZT bender

plates (upper center).

Major components of the inverse square law experiment. The
cylindrical test mass 1s shown 1n the upper and central portion
of the picture and the dewar on its pedestal is barely visible

at the bottom.

Upper and mid-portion of the new cryostat probe. Cold plate
and the upper part of the 1.3 K radiation shield are at the
very bottom. The isolation stack (which would be at the very

top) is not included at this level of assembly.

Lower detail of the 1.3 K cryostat probe including the gradio-
meter and its fixture in the lower portion of the picture. The
plate in the central portion is a 1.3 K continuous cold plate
refrigerator. During operation the gradiometer is completely

enclosed by copper radiation shield attached to the cold plate.

In turn the entire lower portion od the probe is isolated from -

’

the 4 K helium bath by a vacuum can sealed onto the top plate

seen in the upper part of the picture.

Mechanical isolation stack. This assembly sits on top of the
crvostat and provides the sole mechanical support for the gradio-

meter. Durine operation, the stack is enclosed in a vacuum can.
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In order to maintain the gradiometer at 1.3 K, the new probe hag a copper
plate inside of the vacuum can which serves as a refrigerator (Figure 5). The
probe vacuum can is immersed in a liquid helium bath at 4.2 K. The copper
plate inside the can is thermally isolated from the can and contains a small
reservolr which is connected to the 4.2 K bath through a flow impedance (Figure 6).
This reservoir is continuously pumped to maintain the plate at 1.3 K. The flow
impedance is adjusted at room temperature to adjust the temperature of the plate.
The gradiometer is thermally grounded to this plate to operate it at 1.3 K. The
cold plate has been tested successfully. It has the major advantage that liquid
lielium can be added to the bath in the usual way without disturbing the 1.3 K
space. This means that the 1.3 K space can be maintained for long periods.

A second major improvement in the new probe is the addition of a mechanical
transmission line which will isolate the gradiometer from ;ibrations at frequen-
cies above 10 Hz (Figure 7). This line consists of four brass disks which hang
from each other with small latex springs. The soft springs cut off vibrations
above a frequency of about 10 Hz. The gradiometer hangs from the bottom of this
stack bv a stainless steel tube which allows the gradiometer to be at 1.3 K
while the stack is at room temperature. The entire assembly is in vacuum to
isolate from acoustic noise.

In order to measure the gradient at the center of the cylindrical gravita-
tienal source, the dewar containing the probe and the gradiometer has been mounted
on a pedestal which will fit inside of the cylinder. The pedestal is mounted
at the bottom of a ten foot deecp hole which the cylinder is lowered into during
the measurcement.  This Teaves the devar near floor level to facilitate adjust-
ments, A pumping Line fs built in so that the cold plate can be pumped contin-

nonsly as the cylinder voos up and devn. The 7,160 pound cyvlinder rolls along
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to steel I-beam up and down the wall of the end station in which the experiment
takes place. A hoist has been installed to raise and lower it. Considerable
care has been taken to ensure smooth motion of this large mass, and to minimize
the vibration which the gradiometer must tolerate during the experiment.
During the past year the completed gradiometer and 1.3 K cryostat assembly
has been subjected to initial tests. During these tests gradiometer output power

spectra were obtained with the gradiometer in unbalanced operation. (Balanced

operation was not possible due to inability to store sufficient current in the i
balancing circuit. This problem is presumed to be due to ohmic heating in the

current supply leads which have been subsequently improved.) The output power

spectrum obtained at 1.3 K was observed to have two distinct regions. Above about
0.2 Hz the spectrum was dominated by externally driven mechanical motion of the

gradiometer, most notably the pendulum modes of the suspension system. Previous

experience with the gradiometer has indicated that this response is reduced by

a factor of ~1000 when the gradiometer is properly balanced. Below ~0.1 Hz
the power spectrum was dominated by low-frequency-divergent behavior arising
from the temperature coefficient of the gradiometer together with temperature L’44

fluctuations of the device. In the frequency range of interest for the inverse

square law experiment (~0.15 Iz) the noise power is estimated to 30-40 E//ﬁ;
where a calibration factor obtained from operation at 4 K is used. Proper T
balancing of the gradiometer should drop this to a SQUID noise limited value
of 1 E/Hz. Further reduction of this value by an order of magnitude seems

possible by the use of a dc SQUID which is now commerciallvy available.
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Although the maximum frequency at .!:ich temperature fluctuations dominate
the noise power spectrum has been shifted downward from 1 Hz at 4 K to 0.1 Hz
at 1.3 K, the temperature coefficient at the lower temperature is higher than
expected. In addition, temperature fluctuations at the gradiometer are on the
order of 10 mK, much larger than what is possible to obtain. We have tenta-
tively identified a free-floating radiation baffle located on the gradiometer
suspension rod between the cold plate and the top of the vacuum can as a
possible source of this problem. We are in the process of mounting a heater
and thermometer on this baffle in order to be able to check this hypothesis
and will be able to do so as soon as a leaking low-temperature feedthrough
seal 1is replaced.

FUTURE DEVELOPMENTS

In the following year this research will be continued with the aid of a
fourth-year graduate student, Joel Parke, who will be visiting with Professor
Ho Jun,, "aik from the University of Maryland. Our goal is to check the inverse

square law to the highest possible accuracy and to understand and control the

R . . o
temperature coefficient which remains at 1.3 K,
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A SUPERCONDUCTING GRAVITY GRADIOMETER"

Evan Mapoles

ABSTRACT

A gravity gradiometer has been developed which
uses two superconducting proof masses to measure a
single 'in line component of the gravity gradient
tensor. A niobium coil positioned between the proof
masses carries a persistent current which is modu-
lated by the relative motion of the masses. This
current signal is detected by a SQUID. We expect
to achieve a sensitivity of 10-9/l-2 Hz-%. Initial
experiments indicate that the detector is working
properly. An experiment to test the inverse square

law of gravity at laboratory distances is planned.

I. INTRODUCTION

During the past ten years a cryogenic transducer
was developed at Stanford to convert a mechanical
signal in an aluminum bar to an electricel signal for
amplification (Paik, 1976). This transducer is cur-
rently used in the Stanford gravitational radiation
experiment. The transducer is basically an accelero-
meter whose sensitivity is optimized for detection
of the fundamental longitudinal mode of the bar.

Since 1975 we have been investigating the poss-
ibility of using this technology for gravity gradient
measurement. Potential advantages include reduced
thermal noise due to low temperature and higher
mcchanical Q's of materials, increased mechanical
~tability, and the use of SQUID's as very low noise
amplifiers. Two prototype gradiometers using diff-
erent methods of commen mode rejection were assembled
with components of gravity wave transducers (Patk,

1978). The operating principles of both svstems

*
Work performed under the auspices of AFOSR

’
Stanford University, Stanford, CA 94305

’

wvere confirmed experimentally, and one of the methods
of common mode rejection was chosen for an advanced
vergion.

In the past eighteen months we have designed
and built this new gradiometer. It {s a mechanically
improved system designed for higher common mode
Testing began in April, 1980.

anical and electrical design of this gradiometer, as

rejection. The mech-

well as some preliminary test results are discussed

here.

11. MECHANICAL CONSTRUCTION

The gradiometer consists of two proof masses o q

held adjacent to each other with their sensitive
axes along a line. The device measures a single :'4;;_“
diagonal component of the gravity gradient tensor.

These two proof masses are carefully matched and

aligned to minimize sensitivity to common accelera-
tion. The sensor package is a cylinder 9.5 cm long
and 11.5 cm in diameter.
1.07 kg.

In order to achieve careful alignment of the

Each proof mass weighs

proof mass sensitive axes, the components of the
gradiometer are designed to stack up on each other.
The faces of the parts are made as parallel as poss-

{ble. This stack slides into a niobium housing tube,

where it 1s locked together with two end rings which -i
thread into the housing tube. With this method we k
expect the axes to be aligned to a few tens of micro- T -’!
radians. Accelerations perpendicular to the gradio- . f»:‘

meter axis cause an error which is proportional to

this angular misalignment. Consequertly we expect

to reject these cross accelerations Lo a few parts
in 105. -
Each proof mass consists of an annular disc

with a threaded central hole, two flat springs and
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tvo ground plane pleces which screw into either side
of the snnular disc. The center of each epring is
locked between the center disc and s ground plane.
The entire assembly is niobium so that each proof
mass has two superconducting surfaces which can be
used tu modulate readout coils. The rims of the two
springs are held apart with a niobjum ring which is
fixed to the housing tube.

The flat springs are made from solid discs of
niobjum .318 cm thick and 10.48 cm in diameter. A
rectangular depression is cut into the disc in three
places 120° apart so that 1t is .07) cm thick in an
ares 3.8 cm by 2.2 cm. This area was cut out with
an electron discharge machine. After the depressions
were cut, a series of very narrow (.024 cum) slots
were cut with a wire EDM machine. With these slots
each rectangular depression becomes a folded canti-
lever spring., The center of the disc is thus weakly
held with respect to the rim. The center is attached
to the proof mass and the rim i{s fixed to the case.

The two proof mass subassemblies are held apart
inside the housing tube with a third niobium ring.

In the gap between the two adjacent superconducting
ground planes a superconducting pickup coll 1s moun-
ted. This coil is used to detect differentisl} motion
of the proof masses. Two additional coils are
mounted facing the outer surfaces of the proof masses
for detection of common motion. These also serve as
magnetic springs which can be used tc tune out any
sensitivity to common acceleration along the gradio-
meter axis. Figure 1 shows a cross section of the

pradiometer,

Except for the thin dielectric forms on which

the coils are mounted the entire assembly is pure

nichiur. Since niobium undergoes a srrain of ).43
x lv-3 when cooled from room temperature to 4.2° K,
all parts must be of the same material to prevent
differential contraction from altering the geometry .
In order to calibrate the system, the gradio-
meter package is mounted on a fixture which allows
it te be tilted by applving currents to twe super-
vonducting coils mounted 1in speaker magnets. The
vradiometer {s held bv twe cross-flex pivots perpen-
Jicular to its sensitive axes. The speaker coifls

abplv . torque about this axes. 1f a tilt

G = ¢ sinu t
(8 (]
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is applied to the gradiometer, an acceleration :;'i A
gradient : : ld
Ba= w 29 2 082 ’ -' 5
02 O C(OS uot e 0 9

results. By measuring the emplitude of the second
harmonic of the drive signal the instrument scale

factor can be determined.
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Figure 1. Gradiometer Cross Section K
I11. ELECTRICAL CIRCUITS 1
. R
The gradiometer contains two electrical circuits; . - -, 1
one for detection fo differential proof mass motion [ |
- 9

and one for common motion. Each is readout with a
SQUID.
The ditferential circuit is shown in Figure 2. : 1

The coil mounted between the proof masses is a sinple

layer of .008Y cm niubium wire wound in a spiral on
a .254 cm wafer of machinable glass ceramic. This
wafer 1s glued to one of the procf masses Buch that
the surface of the wire {5 ver, close (013 em) (e
the other proof mass. Since migretic field {5 en lu-
ded from the superconducting proof mass, the inda. -
tance ot the prekue cotl js vontolled by the - cpa-

ration of tnc proot mac.e< wh ehidni e in e Lnapay
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to gradients. A persistent current 1 is stored in

a superconducting loop containing the pickup coil
inductance Lp and is coupled to a SQUID via a super-
conducting transformer. Since the flux in this loop
is fixed, as the proof mass separation changes &

current | is generated in the SQUID input cofl. _

NHIE O

SQUID

——e

1

Figure 2. Differential Mode Detection
Circuit

For an ideal transformer the detection sensiti-

vity can be calculated from

c Al o
L 2
8 wd

where { {s the signal current produced in the SQUID
by an acceleration gradient G, b {8 the proof mass
separation, d is the epacing of the pickup coil from
the other proof mass, w is the resonant frequency
of the differential mode, and “p and L  are the
pickup ce1l and SQUID input coil inductances. In
order tc optimize the sensitivity the gap d is made
as small as practical, and the resonant frequuncy
is minimized. Because 1t is difficult to make
stable low frequency suspensions, we chose 60 Hz

for «. This allowed us to use a practical thickness
for our folded cantilever springs. With 1 = BA,

the SOUID netsce xives a gradient noise of

LW (1E = 1070 §74).

This tvpe of readout le sensitive to temperature
changes decduse the penetration depth of the super-
conducting proof masses varies witn temperature.

As flux moves into the superconductor the coil
inductance varies as if the surface were moving
phvsicall.. The depeudence of penetration depth

i on temperature is piven hy

SRS 1-(1"_ M
Tc

R Y TN T T T T NN WY N Y N NV N T WY Ty WY T U RN W W wr Yy

(Tinkham, 1975) vhere A\ = 440 A and T_ = 9.2° K
for niobium. Taking the derivative with respect to
temperature we find that at 4.2° x

d) [

a1 9.7 A/K
The differential displacement caused by a 1 E grad-
tent 1s about 2 x 107 m. Thus we must control the

temperature to 10—6 °K to stabilize the gap. This
requirement can be relaxed somewhat by operating
the gradiometer at a lower temperature.

The circuit shown in figure 3 s used both to
detect common motion of the proof masses and to
fine tune the stiffness of the proof mass suspen-
sjons. The principle of detection {6 the same as
that used in the differential circuit. Each proof
mass modulates a persistent current in a flat coil
facing its outer surface. The error signals geners~
ted by this motion are summed in a toroidal trans-

former and coupled to the input of a SQUID.

The field generated by the persistent currents
provide a restoring force between the proof mass and
the case when the mass is displaced from equilibrium.
Hence, each pickup coil acts as a magnetic spring
in parallel with the mechanical support springs.

By varying the relative magnitudes of the persis-
tent currents the stiffness of the two proof mass
suspensions can be adjusted to be identical. In
this case if the two experience a common accelera-

tion along their sensitive axes they move the same
distance and there is no change in the inductance

of the differential pickup coil. A fourth coil on

sSQuid

Figure 3. Common Mode Detection Circuit
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the toroidal transformer is provided to vary the
difference in the two persistent currents. A
current in this coil couples flux in opposite
directions into the two pickup loops. The currents

vary to maintain the net flux constant.

1Iv. TEST RESULTS

Initia) tests have been performed to check the
basic properties of the fnstrument. The frequency
of the differential mode is 62.7 Hz, and it has a
Q od 400. This Q is limited by the construction
of the gradiometer rather than the intrimsic Q of
the material. The Q of 400 1s sufficient to reduce
thermal noise below 1E/VHz.

The scale factor of the instrument was weasured
using the internal tilting system with 2.0A stored
in the differential pickup loop. An experimental
valve of 0.30 UV/E was measured. This compares
well with the theoretical value of 0.39 wV/E. The
reduction is probably due to flux leakage in the
coupling transformer.

Common mode rejection was studied by tilting
the cryostat by 10-3 radians and observing the
response of the differential readout. 1t was found
that the response could be driven through zero by
adjustment of the currents in the common mode pickup
circuit as expected. The best matching obtained
corresponded to a mismatch in the spring constants
of 5 x 1074,

The noise power gpectrum of the instrument was
examined under several circumstances. During most
experiments the cryostat was hung on latex tubing
to form a low pass mechanical filter with a reson-
nant frequency of 1.3 Hz. With this filter the
noise level between 2 Hz and 10 Hz was below
20 E/YHz. Below 1 Hz the noise level rises to
550 E//Rz. The sources of noise have not been fully
ident{ified; however, we expect that the large
increase in noise at low frequencies is due to
thermal fluctuations. We expect this to improve
with better temperature control. We also expect to
improve the i{nstrument's reje-tion of seismic noisc
by cooling the system in low magnetic field. This
wil) eliminate pick-up from signal leads moving with

respect to trapped flux in the instrument.
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V. INVERSE SQUARE LAW TEST

Recently 1t has been suggested that the fnverye
square lav of gravity may be violated at laboratory
distances {Long, 1976). We are planning to use our
gradiometer in a nearly null experiment to secarch
for such s deviation. Since the gradiometer only
measures gradients relative to an arbitrary zero,
we must devise a t. ' wmass geometry which produces
8 nearly zero gravity gradient and compare the
output of the in trument with and without the test
mass present.

The test mass geometry we have chosen is a
cylindrical shell large enough to fit over our
cryostat. The gravity gradient at the center of
this shell in the plane perpendicular to the cylin-
der axis 15 given by

Q.o v’

R2L per/n?)?? e

where M, R, and L are the cylinder mass, radius
and length. 1f L>>R this gradient is nearly
zero. Our cylinder will have a mass of 3.2 x 103
kg, a length of 5.1 m and a radius of 25 c¢m so that
L = 20 R. The central gradient is 6.7 E. We hope
to measure this to an accuracy of 12. This would
allow us to see a deviation of 1 part in lOé from

the inverse square law.
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A _SUPERCONDUCTING GRAVITY GRADIOM: TERS ~ E. Mapoles

D1SCUSSION

BROLLEY-~Based on your expr. .vwent, what limit cen
you place on the rest mass o1 the graviton’

MAPOLES-~-1t depends on the range in whici. we do the
experiment. We can't really place (eith- - an upper
or lower) & limit on the rest mass. With this type
of experiment, we can find the vranps of the
violation to be outside of the range betveen 10 rm
snd | =, This corresponds to a range of rest
masses for some particle other than th: graviton.
The graviton is well known to be mcssies

PAIK--There are some indications that another type
of graviton exists.

MAPOLES-~The only reassonable way to interpret »
violation is to say thst there is another particle
which has & reat mass.

PAIK~-There is a theory which says there are scalar
gravitons with wass.

BROLLEY-~Can you separate spin differences?

O ATEREW

MAFULES e can infer somcirang about the spin
trow the Lign of the force. By measuring the sign
of rhe violation, one can discover something about
the epin.

OVERTON--When you cool ‘ua avstem down initially,
unless you cool it down 11 & Helmholte coil or in a
®agnetic shield, you w.ill have froten-in flux
within the superconducting eystem. Does this
affect the pickup from your coil? Does the trapped
flux wmove?

MAPOLES--Yes. That is the lesding problem in the
pickup. 1In fact, it is even worse because ] have
actuatoras which are |agnets. They have
superconducting shields of their own, but a little
wore than the earth's field gets trapped in the
superconducting etructure. As the superconducting
structure rotzles with respect to those magnets, we
do get a spurious effect. I think we can easily
eliminate that problem.
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ABSTRACT

The inverse square law of gravitation is known to agree with astro-
nomical data to very high accuracy, but recent theoretical and experi-
mental work indicate that the inverse square law may be violated at
distances less than 1000 km. Such a violation would signal the exist-
ence of a new force.

In order to check the inverse square law we are preparing to search
for a non-newtonian force in a cylindrical shell. The cylindrical shell
has the property that the newtonian effects nearly cancel, so that we are
doing a nearly null experiment.

We have developed a superconducting gradiometer to measure the gravi-
tational force gradients at the center of this cylindrical shell. By
measuring both the vertical and horizontal gradients we can eliminate
effects due to imperfections in the cylinder. This thesis describes the
instrument and its performance as well as calculations of the sensitivity

of the inverse square law test.
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INTRODUCTION

Newton's inverse square law of gravitation is known to agree with
astrononical data to very high accuracy and has been widely accepted as
the correct force law in the static limit at all mass separations. However,

it has recently been pointed out that existing experimental data allows

3
large violations of the inverse square law at distances less than 10 km

[ Mikkelson 1977, [ Long 1974], and several authors have proposed that the .‘{tff.

gravitational potential ¢(r) at a distance r from a point source of mass :j
®

M has the form Ve js

GM -Br .

o(r) = - ="[1+ae 771, [1.1]

el

> .9

where 2 is a constant greater than -1 and B and G are constants [Wagoner 1970],
[Fujii 1971], [O'Hanlon 1972]. This potential has the property that ifSr >>1
the effect of the additional term is negligible and the inverse square law

is recovered even if o is of the order of unity. The gravitational force on

a test mass m in this potential is given by

_ Foe-Slim (1.2) R 9
. . ;

where :

_ -Rr S X

G(r) = G[1 +a(l + Br)e] . (1.3]
»

Thus, if one measures the force between two particles as a function of sepa- o

ration in the presence of the potential [I.1] one would find that the gravi-

tational constant G, as it is usually defined assuming an inverse square force
law, is actually a function of mass separation. Long [Long 1976] claims to

have observed such a variation in the gravitational constant. The expression

L~
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for G(r) in [I.3] has the interesting feature that for Br >> 1, G(r) = G,

but if Br << 1, G(r)=G(1+x). Values of the gravitational constant are
obtained from laboratory measurements with mass separations much less than
100 m, so if 100 m < B—l <106 m; then the value of G to be used in astro-
nomical calculations is not the value measured in the laboratory. Evidence
for and against a violation is reviewed in Chapter 3.

The possibility of a violation of the inverse square law, and the need
for more accurate laboratory tests has motivated the work of this thesis.
Using techniques of low temperature physics, we have developed an instrument
for measuring gravitational gradients. The design and construction of this
instrument are described in Chapter 1.

The results of initial testing are

described in Chapter 2.

This instrument is intended for use in an experimental test of the

inverse square law. This test consists of measuring the three components

of V") at the center of a cylindrical shell and verifying that V2¢ is zero.
Room temperature gravity gradiometers have been developed, [ Forward 1973],

[ Bell 1977], [ Trageser 1975], but these instruments are not able to check
that Vlb is zero because they measure sheer gradients or linear combinations
of sheer and in-line gradients. The gravitational gradients produced by an
inverse square force law as well as those produced by the Yukawa potential
of equation [I.1] in a cylindrical shell are calculated in Chapter 4.
Various error sources are also considered in Chapter 4. These include posi-
tioning errors, errors due to the finite size of the instrument, and errors

due to imperfections of the cylinder. By verifying that V2¢ is zero one

can eliminate all errors due to imperfections of the cylinder. 1In fact

one could use any source geometry to check the inverse square law if one

2
checks that 7°% =0 [Paik 1979]. However, the cylinder geometry offers
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several large advantages because the gradients at the center of the
cylinder produced by an inverse square force law are attenuated by the
ratio of the diameter to the length squared. For our cylinder this
factor is 0.01. Because of this the accuracy with which the instrument
must be calibrated is also reduced by 100. Another advantage of the -
cylinder is the uniformity of the gradients inside. Because the gradients
are so uniform near the center, the accuracy with which the gradiometer
needs to be positioned is very low, and the effects of the finite size of
the gradiometer are also much smaller than they are with other source
geometries.

The size of the gradients in the cylinder, and the desire to measure
vertical as well as horizontal gradients have influenced the design of the
gradiometer. The gradiometer consists of two accelerometers whose sensitive
axes lie along the same line. Relative motion of these masses is sensed
so that a differential force over the separation of the masses is measured.
This differential force or acceleration is an approximation of the true

gradient. The proof masses are mechanically suspended with pairs of springs

which provide very low compliance in all directions except along the sensi- ;7:,
tive axis of the gradiometer. However, there is a limit to how large a
compliance can be allowed along the sensitive axis if the gradiometer is to o '2J3
be operated vertically and horizontally, because the proof masses will sag
when the gradiometer is turned from horizonmtal to vertical. The need to

keep the support springs relatively stiff puts a burden on the readout,

since the displacements produced by gradients are reduced by stiff springs.
For this reason we make use of an extremely sensitive superconducting

readout described in section 1.2.
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To get some idea of the displacement sensitivity required, let us

calculate the displacement produced by an acceleration gradient of 1 E,

? m/s2 over a distance of 1 m,

where 1 E is a change in acceleration of 10
or 10—9/52. The resonant frequencies of the spring-mass systems which

make up the accelerometers are 60 Hz, and their separation is 3.2 cm, so

a gradient of 1E produces a differential motion

_ (3.2 em) (10797
(2m)?(60)2s ™2

4

Ax = 2.3 x 10_l cm.

This is an extremely small displacement, but it is detectable with the
inductance modulated readout and the SQUID magnetometer.

With a 60 Hz resonant frequency, the sag of an accelerometer under
one g is

981 cm/s2

R = 6.9 x 1072 cn.
(2m)2(60)%/s

2

This number is small enough to allow the gradiometer to be oriented verti-

cally or horizontally without changing internal components of the instrument.
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CHAPTER 1

The Superconducting Gravity Gradiometer

1.1 The Gravity Gradient Tensor

According to the classical theory of gravitation, the gravitational

=
field in vacuum is described by a scalar potential ¢(r) which satisfies

Poisson's equation. The force on a test particle of mass m is

F = -mVo(r)

The tidal forces generated by ¢ are described by the gravity gradient tensor

', given by

[1.1]

Tyy= - 3/3x%; [a/axj ol , [1.2]
or a
3% 5% 5% |
2 [ ~
ax dyox 929x
2 2
3% 3P 3 9
r= - | axdy syt szdy
2 2
% A 3%
Ix3z dydz 322 (1.3]
The elements of T are subject to four constraints since
Iyy = Fji ’ [1.4]
and
Ir.,, =0, [1.5]
JJ
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since ¢ satisfies Poisson's equation. This leaves five independent compo-

nents. In addition to gradients due to the gravitational field, there are

other gradients present if the sensor is not operated in an inertial refer-

ence frame. These affects basically arise from the centripetal forces on

the proof masses when the sensor rotates with respect to inertial space.

Suppose that the gradiometer is fixed in some noninertial frame 0' as shown
>

in figure 1.1. If r is the gradiometer position in the inertial frame O

and t' is its position in the 0' frame, and the 0' frame has an angular velo-

. >
city w, then

>, .
r +

Hye
e
g

2R 2

d?‘_r*/dt2 = + 20 x 9.

[1.6]

If the gradiometer is at rest in 0' the first two terms are zero, then

-+ 2 - > -
dr /dt = wxr' +wx (g x ;'). [1.7]
To calculate the acceleration gradients we need to calculate
' 3 [dz; 3,] -
i T 3! dt2 :
13 ar' de2 [1.8] '
-
The vector w» is fixed in the primed frame so
Box Fr=itzt - oy -5 2" - @x")
y z X b4 -~
~ . . [1.9
+ k(w y' -wx"), :
y
and
-> > > ~
wx (wxr')=1i' [- (w Z-Fm 2)x'+ wwy'tow z']
y z Y X X z
+§' wwx'—(m2+w2) '+ wow z'
y X X z Y y oz [1.10]

~

2 2
+ k! ' -
k [nzwxx + wzmyy (mx + wy )zj .

-
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Figure 1.1 Rotating Coordinates
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Taking the partials we have

w 2 + @ 2 -0 -0 0 - 6w
Yy z z Yy x Yy X z
. 2 2 . ;
t - - _ - . -,
r w, mywx W, + w, W, mycuz :
. . 2 2 t:1;4i
- - W W - ww W +o »
L y Z X X zy X y SN
- [1.11] N

The instrument which we will describe here measures a diagonal component

of T or I'', hence we are interested in error terms of the form miz + mjz.

Suppose that the sensitive axis is along the x direction and the instrument

is given a tilt about the z axis

8 = eocoswt . [1.12] :i.',
Then :i¥ ;
w, = 8 = weosinwt, [1.13]
and ) sz el
w 2 =-2 (1 - cos2wt)
2 2 ' [1.14]

. . 2.2
The gradient consists of a component at 2w and a d.c. component 60 w /2.
This later term represents a serious source of error since it increases as
5

the square of the frequency. For instance, an angular velocity of 3 x10~

rad/sec or 6° per hour produces an equivalent gravity gradient 1lE = 10-9/sec2.

1.2 The Superconducting Readout

The superconducting readout circuit is shown in figure 1.2. It consists ”5;"i
of an inductor L1 rigidly attached to one of the proof masses and coupled to

a SQUID by a superconducting transformer. Ll is located as closely as

-8~
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Figure 1.2 Differential Readout Circuit
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possible to the surface of the other proof mass so that its inductance is
strongly modulated by relative motion of the two proof masses. A persis-

tent current is stored in the loop consisting of L1 and L2. Since the

total flux in this loop must remain constant, a change in the inductance

of Ll causes a change in the current which is detected by the SQUID.

The inductor L1 is a spiral of niobium wire wound on a flat dielectric

substrate. This flat circular coil is glued to one of the proof masses. :f{}f

A flat superconducting plane which is attached to the second proof mass is p.
located about 5 mills from the coil. The readout coil is shown in figure ;f;:ui
1.7. According to Ampere's law the field B produced by a current I in the .iQE;;
Q‘ coil is ..‘:.

B = nu I, [1.15]

where n is the number of turns per unit length in the coil. This field
occupies a volume As where A is the area of the coil and s is coil proof

mass spacing, so that

2
L = k" As. [1.16]
This can be rewritten as o
L, =L°[1+%2-% [1.17]
1 1 — N
d .
L4
where
o 2
= .l
Ly W n"Ad, [1.18]
and d is the equilibrium spacing between the proof masses. )

-10-
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We can write the equations of motion of the two proof masses as ‘ﬁr~

" 2
+ = -
mxy ¥k al/2 Q..
% 2 [1.19] e
mxz + kxz = al /2, ;_:". 1-.-.:
RGN
4.'-."-:;-
where O = L1°/d = uonzA. We have ignored any damping and any mechanical .
mismatch between the proof masses. 1If 7 = Xy =Xy we have
P rwlr= or® [1.20]
o 5 m i N
2 )
where wy = k/m. As current is stored in Ll the magnetic field pushes the s
!
3 proof masses apart and d increases. If h is the spacing with zero current, i
th RO
en . 9 B
d = h+ 0 !&-
2’ .
- [1.21] .
[o]

where Io is the mean value of the persistent current and d is the mean value

of the coil proof mass spacing. Now if we define £ = [ - anz/mwo2 the

equation of motion becomes

2 o [.2 2
+ = 2 lc -1, e
e ofe - -] [1.22) P

Since flux in any superconducting loop is fixed, we have two constraints

b - - = o
L 9 (L + LI - Ml = (L~ +L)T [1.23a]
® | J
P .-
t o, = (L, +Li -

i - MI = -MI s
] 2 3 4 ° [1.23b] _
3 A 4. .
F. where M is the mutual inductance of the transformer in figure 1.2. The mean o
b .
b value of i is forced to be zero when current is stored with a heat switch
»
};
t; which causes part of the loop to go normal. Solving for I and i, we find
L.
@
r- .
r- ' . i
M. TR
" -11- g
r.. S
° ®
e e v e e e S ) i
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~ .
"'.
)

o 2 L
I-1 [, +Lp@;+L) - M ] o
2 bl
L, + L L, +L - M
l( R R [1.24]
and - -1 ©
. IMy - 1)
i = 7
L, +L )L, +L,) -M
(T 27Y3 T [1.25]
If we let (L °+L (L, + L,) —M2 = L2 and expand L, = L °l1 + £ then
1 2 3 4 1 1 d |’
to lowest order in § PR
RV o
PR s B T b
2 - -
L™d .
[1.26]
Using [ 1.24] we can write the equation of motion [1.22] as -
-2 S
“ (L,+L,) 2 S
Frwle= 212+ o 3 4 ¢ ~ol 2 |
° m o L2 - [1.27]

Expanding the right side and keeping the lowest order in £, we have

2_ 2
2 20 I0 (L3-+L4)E

o nL2 : [1.28] .

This expression gives the frequency shift of the differential mode with

persistent current IO, but L is not independent of IO. So let us write

. o a1 2 -
o -
. Ll = |h+ 2 , [1.29] :&
- mw
» o) S
t‘ and define S
® !
t" L2=(ah+L)(L+L)-M2 |
e o 23Ty [1.30]
f' Then we can write [1.28] as o
L j
Ny 2. 2 2 -
; . -
& 2 20°T_“(Ly+L,) ( oI “(Ly+1L,) \
& Bt owg s 2 1+ 2 2 &
5 mL l nl " w ]
.- o] o o
- [1.31]
b -
@

vy
|
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or we can write frequency of the differential mode f as

. 2 2
fz - f 2 20 1o (L3+L4) (1 .\ o (L3+L4)Io
2 2 L L Zw 2
(] m (o] [¢]

[1.32]

The behavior of f2 versus 102 is shown in figure 1.3. f2 increases

rapidly initially with a slope of 2412102(L3 + La)/(ZTT)ZmLO2 but quickly

rolls off and approaches the asymptotic value of 3f02, To find an optimal

value of Io, note that a gravity gradient G produces a differential displace-

ment of the proof masses Gb/(2nf)2 where b is the gradiometer baseline. So

from [ 1.26]

2 L 2 ® 2

o o}

(o}

-MLlOI Gb ) 2021 2(L3+L4) a1 2(L3+L4) -1 a2(13+L4)1 2
i= ° £+ = 1+ —2 1+ ——2

- 2. 2 2
(2m) LO d (27)m Lo

~1
o 2.2
) ML, "I _Gb ) 3o 158 (L3+L4)
= 27 1% * 22
(2m) "L "d (2m) "mlL, [1.33]
From this it follows that i/G is maximized when
2 2
I 2 _ I 2 - wo mLO
o op 5
+
3n (L3 La) [1.34]
Substituting this into the brackets of [1.33] gives
i Tl
G 2. 2
2@0 LO h [1.35]
where LC = ah. To impedance match, we construct the transformer so that
Ly/Lc = L3/L4 = Yy, and we assume that M = /L2L3. Then
2
. -Yb 1 L
i o C
c - TT——— —4 [1.36]

(H2y)h Zwo

~-13-

mL ZQ)Z
o o

.
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Figure 1.3 Frequency shift of the differential mode.
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is the scale factor of the gradiometer. This is optimized for Y>> 1,

rn A

but any value greater than one gives a scale factor close to the optimal.

oo

. One consequence of [1.36] is that the scale factor increases as @,

o

B rather than wo-z if the resonant frequency of the gradiometer proof masses
is reduced keeping their masses constant, since Iop is proportional to W, .
This is a consequence of the current causing the gap between the proof masses
to increase as well as the increase of spring constant provided by the elec-

trical spring. Another interesting consequence of [1.36] is that the scale

factor increases only as 1/Y'h since LC is proportional to h.

1.3 Description of the New Gradiometer

’ Our primary goal in the design and fabrication of our gravity gradio-
meter was to minimize the instrument's sensitivity to linear accelerations
both along the proof mass direction and perpendicular to it. Linear accel-

s
. erations in the laboratory exert forces on the proof masses which are very

large compared to the gravitational forces we would like to measure, so
- careful balancing of the gradiometer is needed to eliminate them as a

' noise source.

In addition, we decided to build an in-line gradiometer which measures B

one of the diagonal components of I'. As we will show in Chapter 4, it is

T
» highly desirable to be able to measure all three components of V2¢ S0 we ® q!
chose a method for suspending the proof masses which allows us to operate e 1

the gradiometer with its sensitive axis vertical as well as horizontal. Cﬁ‘fﬂffi

. " .‘ 4

. S

> In order to make the balancing problem manageable we chose a mechanical ) ol
ERITRRY

design which enabled us to use only one coil in the readout system described SRS

in section 1.2. Experiments have been done with readouts using several

~15~
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coils, [ Paik 1978] but in these gradiometers careful matching of the coils
l as well as the proof masses is necessary to reject linear accelerations.
Basically the gradiometer consists of two superconducting proof masses
adjacent to each other. A single niobium coil is mounted in the gap between
. the proof masses so that the coil inductance is proportional to their spacing.
This readout system is analyzed in detail in the previous section. Since
the sensitive axes of the proof masses are parallel, the gradiometer detects

i changes in one of the diagonal components of the gravity gradient tensor,

...
33
Each of the two proof masses is supported with two mechanical springs.

The mechanical springs are folded cantilevers cut into circular disks of

niobium. A folded cantilever with two-fold symmetry is shown in figure 1.4.

In this case the thickness of the plate is reduced in the two rectangular

areas hatched in the figure in order to restrict the bending to those areas. EUCREN

| 2]
A

Slots are then cut in the indicated locations. These slots allow the center

to move perpendicular to the plane of the plate as shown in the lower part

i of the figure. Since the center of the spring is free to move in the plane .:;Qﬁ:\

of the plate, the total length of the spring remains constant and the

restoring force is provided by pure bending without stretching of the spring
material. The stiffness can be calculated using the cantilever equation
[ Landau 1959] . In the case shown the spring displacement § is

4£83
3 ’
wEh [1.37]

8§ =

where f is the force in the center, h is the cantilever thickness, E is

the Young's modulus of the material and £ and w are the lengths shown in

figure 1.5. The spring constant k is

~y
S
DN S

afh'a L la
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Figure 1.4 Folded Cantilever Spring

WNCEMNEN

‘.
.

" . . -".‘
!
@

-17- -
SN
> o




Lol cotcabe SRaAS. en sua i NS LuL kD SOl SRt s ade g e i atl AR WL AL SRA AL RS SV SV SR BN E e g A At aM MO AL A AR A AR A A A

oL
- =]
o
1)
c.
n
- v
g
J’\ v
E
[y o
. I 5
- @
1)
. <

LS
el
_ .
)
. ©
-
=
~ =
e

~18-
Y " PN 'A_‘L';~ a v.."_s; -71—5_--'1.1;.} PRI, WA Vs




LA Rt A gt a Nl AV S o VA gt SIS S i il sl e LA o e et s et Rt St A Jnh-I i Tl Dt il o 3 AN A - A A i A A Rk A e a5

Ewh3

4%3

on)

[1.38]

The springs used in the gradiometer have three-fold symmetry rather
than two and a picture of one of them is shown in figure 1.5. Since two
l such springs are used to support each proof mass, there are three pairs of

cantilevers, and the net spring constant for each proof mass is

3 Ewh3
k= 4 T3
% [1.39]
b These springs were fabricated from solid disks of niobium 10.5 cm in
diameter and 0.32 cm thick. The faces were carefully machined to produce
a final thickness uniformity of approximately 50 microns. The rectangular

depressions were milled to within a few thousandths of an inch of their
final thickness, and the part was then stress relieved. In the next machining

stage, the rectangular depressions were cut to their final thickness of

-l

0.071 cm using electron discharge machining (EDM) with a rectangular elec~
trode of copper and graphite. EDM was used to achieve a careful match of
all of the cantilevers, and thereby match the final proof mass frequencies.
i In the final stage of machining the narrow slots were cut using wire EDM.
In this process wire is continuously circulated through the part and used
as an electrode. The part is moved on a numerically controlled table as

) the slot is cut.

The proof mass subassembly consists of two springs, two cover pieces,
an annular mass, and a ring used to hold the edges of the springs apart.

) The cover pieces are circular disks of niobium 8.51 cm in diameter which

2
\

are flat on one side and have a threaded stud on the opposite side. The

flat sides are designed to modulate the inductance of the readout coil or

) tuning coils described in section 1.2. The flats were polished to ensure -

-19-
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Figure 1.6 Exploded View of a Proof Mass Subassembly
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flatness and isotropy so that close spacing tc the coils could be obtained,
and so that the inductance of the coils 1s modulated only by linear motion
of the surfaces. The threaded studs screw into an annular disk of niobium
which provides the bulk of the mass for each proof mass. A spring is captured

between each cover piece and proof mass. An exploded view of one of the two

proof mass subassemblies is shown in figure 1.6. The ring which is used to

maintain the spacing of the edges of the springs is thicker than the proof

mass so that each spring is biased away from its eyuilibrium position and

never passes through its zero point. This eliminates certain forms of non- o

linear behavior. Since the springs have opposite biases, the first order

nonlinear terms also cancel. The ring was ground to its final thickness S )

to keep its two sides parallel to one part in 105. rliu"?
By using a design in which all of the parts stack up on each other, ;:‘

and all parts have highly parallel surfaces, we ensure that the sensitive iﬁ::

axes of the two proof masses are also parallel. This parallelism is main-
tained in all the parts to a few parts in 105.

The readout coil is shown in figure 1.7. It is a single layer of

0.0089 cm diameter niobium wire wound on a 0.25 cm thick disk of macor.

The coil has 400 turns and a diameter of 6.9 cm. The lead to the center of

the coil is glued into a slot in the macor substrate so that both leads RS
come off the edge of the coils. The macor coil form is glued to one of
the four cover pieces. This cover piece is 0.06 cm thinner than the other
three to compensate for the coil form mass.

Once the two proof mass subassemblies were constructed, they were

stacked on top of each other with a ring holding them apart. The thickness

of the ring was chosen so that the readout coil is about 0.013 cm from the

opposite proof mass. This structure was mounted on an aluminum fixture which

22
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Figure 1.9 Gradiometer Cross Section
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maintained the angular orientation of the parts. A niobium housing tube
9.3 cm long with a 10.5 cm inside diameter was placed over the parts. .
The ends of the assembly are sealed with a pair of tuning and feedback

coils shown in figure 1.8. The inner coil on each form is currently used

to match the resonant frequencies of the proof mass subassemblies as A

described in section 1.5. The annular outer coil was included for future

use as a feedback coil. Fixtures for making superconducting joints and

v.v...~"
LTt

circuit.

heat switches are mounted on the opposite sides of these tuning coils, -

There is also a supercenducting transformer mounted on each tuning coil; B -

one for the differential readout circuit and one for the common mode readout '(}fi
AR

The entire assembly is locked together with a pair of rings which screw ﬂ:'

into either side of the housing tube. A cross section of the assembled
gradiometer is shown in figure 1.9. The assembled gradiometer has a baseline . L g
of 3.2 cm.

All of the gradiometer components, except for the dielectric coil forms,
are niobium. Since niobium undergoes a contraction of 1.4 x 10-3when cooled
to A.ZOK, all parts must be made of niobium to prevent differential contrac-

tion from altering the geometry.

1.4 The Gradiometer Support Assembly

The gradiometer is supported on an aluminum and titanium fixture in the
cryostat which allows the gradiometer axis to be positioned vertically or
horizontally. This fixture holding the housing tube is shown in figure L4

1.10. The housing tube is clamped between two titanium pieces which bolt

together above and below the gradiometer as in figure 1.11b, This part is
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clamped to the bottom of a pair of cross flex hinges shown in 1.1lla. These
hinges allow the gradiometer to be tilted inside the vacuum chamber of the
cryostat to produce test signals. Titanium is used for the parts which
make contact with the gradiometer because its thermal contraction is a

good match to that of niobium.

Mechanical force is transmitted to these hinges by a pair of arms
inside the aluminum support beams. These arms are rigidly attached to the
gradiometer with an arm that a mechanical force is applied to in order to
apply torque to the hinges.

Two methods of applying torque to the assembly have been used. In
the first experiments with the gradiometer a pair of superconducting sole-
noids were attached to the torquer arm and inserted into the gaps of a pair
of permanent magnets fixed to the top plate. Current with opposite polarity
in the solenoids produces an angular deflection of the gradiometer. This
arrangement was replaced with a pair of PZT bimorphs later because flux
from the magnets was trapped in the gradiometer as it was cooled through
its transition temperature, and this flux may have caused additional
coupling of the readout to mechanical motion.

1.5 Magnetic Tuning and Common Mode Detection

Even with excellent machining tolerances the mechanical springs can
only be matched to a few percent. Since we have designed the system to

. . . ] . .
reject cross accelerations to a few parts in 10° we would like to improve

the frequency matching to this level also. In this case an equal force on
both masses will produce the same displacement, and the inductance of the

readout coil will be unchanged. To accomplish this, we have a magnetic
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tuning circuit in the gradiometer which adjusts the relative stiffnesses
of the proof mass suspensions with respect to the case.

The circuit is shown in figure 1.12. The two inner coils of figure
1.8 are attached to matched inductors of a toroidal core. A third winding
on this core is used to adjust the currents in these loops. A fourth
winding on this core couples to a SQUID which detects common mode motion of
the proof masses. Its inductance is much smaller than the other three and
will be ignored in calculating the frequency shifts caused by currents in
the other three loops.

The inductances L, and L, are given by

1 2
X
o 1
L =L + =
1 1 [l le s [ 1.40a]
and . x2
L2 = L2 [l'f' d—'] .
2 [1.400]
where Llo = qu and d1 £ dZ' The flux equations for the three loops are
op = @pFLIL - LI, - MLy, [1.41a)
oy = @+ LI, = LI + MLy [1.41b]
and
= + - .
¢ Lplp + Mp (1) 1) [1.41c]

We have assumed that the mutual inductance between loops one and two is

just L, and we will also assume that M = /LTL . Solving for the currents,

T

we find
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[1.42]

[1.43]

[1.44]

[1.45]

[1.46a]

[1.46b]

T M
oy Lyl My
o M Ip
I =
1
L1+L L MT
-L L2+L -MT
My M Ip
M
1 T
= — (¢, - — ¢
Ll 1 L'I‘ 3
Similarly,
M
I 1 T
2 = — ((p + _¢ ) s
L2 2 LT 3
and
1 . _
Ir=TTi “1’3[1‘11‘2 * L<L1+L2)] + Mp(0yy ¢1L2)'
1°2°T | |
Using the currents I1 and 12 we can write the equations of motion for the
proof masses,
2
mx+kx=l(¢-M—T¢),
1 11 24.1L 1 LT 3
171
and
M
mE o+ kox, = —1— (4. + £ o)°
2 272 24 L 2 LT 3
272
1 1
If we expand T— and —/—— we then have
L L,
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and

M 2 X
. -1 T 2
+ = —_— i
i P T  S o(¢2 YL ¢2) [1 * dz]
272 [1.47b]
Hence the proof mass resonant frequencies are given by
. MT 2
| 2k (4’1'L—¢3)
T S s
m 24.L.° [1.48al
171

and i”ii*
i r ¢3)2 .

= ’ .9

w, ;2_ + '(l)f . [ 1.48b]

2 . N

dabs -

ST

With current in the tuning loops, the electrical springs act in parallel NN
LT TR 4

with the mechanical springs. In order to tune the gradiometer the sum of

these two spring constants must be equal for the two proof masses. There

are two levels of adjustment available. By storing different ¢1 and

¢2 the two suspensions can be roughly matched, then ¢3 can be adjusted

for a more accurate match. When current is stored in the readout loop

the accelerometers are coupled and the normal modes of the system split

into a mode which is primarily differential motion whose frequency increases
with readout current as in figure 1.4, and a mode which is primarily equal
motion of the masses. Buur the tuning problem remains the same. 1In order

to make the gradiometer insensitive to common forces on the proof masses,

each proof mass must have the same spring constant between itself and the
case of the instrument, so tuning is accomplished in the same way.
Detection of the common mode is carried out with a circuit quite
similar to the fine tuning loop. Let us consider the circuit consisting
of the two tuning loops and the loop which couples to the SQUID, ignoring
’ the fine tuning loop since currents stored in this loop are small. In this
case the equations of motion are very similar to [1l.41],
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(L1+L)I1 - L12 - MSIS ’

[1.49al
¢, = (@Ly+L)I, - LI, +M I, [1.49b]
and
¢S B (L34-L4)Is + Ms(Il‘-IZ) [1.49¢c]
where MS = /L3L. The equilibrium value of Is is kept at zero with a heat
switch., Solving for Is we find
_ 1
I, = AL o [Lle + L(L1+L2)] + M (9L, ¢1L2)’, .
3777172 | |
[1.50]

Now in ideal circumstances the balanced gradiometer would have ¢S = 0, ¢l =

¢2, Llo =L O, and d

2 = d2' Then IS is reduced to

1

M *4 %)
o= =1 . 1 2 [1.51]
(L3+L4)Ll d

to lowest order in xl/d and x2/d2. In the ideal case Is responds only to

1

common mode motion of the proof masses. In practice ¢l # ¢2, dl # dz, and

LlO # L2o so IS does couple to differential motion. This is not really a

problem because common mode motion is much larger than the differential
motion, and the signal from the differential SQUID can be used to identify
that part of the signal from the common mode SQUID corresponding to differ-
ential motion.

The common mode readout circuit was included in the instrument

because in the future we will use its output in a feedback loop to stabilize

the positions of the proof masses. The feedback signal will go to the outer
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coils in figure 1.9. This feedback loop will reduce coupling of vibra-
tion to the differential readout due to nonlinearity of the support springs.

1.6 Feedback Damping of the Differential Mode

'l"-
The high Q of the differential mode is a disadvantage for several Eﬁgﬁi}\
. . . , | SN |
reasons. It causes poor transient behavior since the system rings, and IR
the large signal at resonance taxes the slew rate of the SQUID detector. :
When the slew rate of the SQUID is exceeded, it unlocks and information at ‘
LI

low frequencies is lost. Consequently, it is important to be able to damp
this mode. The most accessible point at which to insert damping is in the
loop between the SQUID and the coupling transformer as shown in figure 1.13.
First we analyze a circuit which uses a real resistance R in the SQUID input
loop to cause loss and damp the differential mode. Then a simple feedback

circuit which synthesizes this resistance is described.

The equations of motion for this system are

LO

- 1 2 2

+ = — -
mE * kL d [I Io] ’ [1.52a]
. = (L.+L)I-Mj = (L.°C+L.)I
1 172 2 ,

1 © [1.52b]
and

= di dr

RJ_ = (L;+L,) e Mo [1.52¢]

where the symbols are those used in section 1.1, and a resistance R has been

included as shown in figure 1.13. To solve for the frequency we assume

iwt wt

that £ = 50 e , I = Io + I'el , and j = j'tth.

Then to first order in

AR,

€O, I', and j' we have

o)
(- + moz) g = u [1.53a]

dm
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goLl o -Mj'=20,

d [1.53b]

@+ L)1 +

and

(L. + L )iwj' - 1wMI' = Rj'
304 [1.53c]

Where woz = k/m.

Setting the determinant

:' 9 2 o
:f w? - —2Ll Io 0
- md
- .
- o
8 L L L+ - =0 ,
4 d
i - +
0 wM R-iw(,+L,) [1.54]

gives the characteristic equation for w,

2 o} 2 o, 2
W3 R S+n)y e . 2 TNy )
D

mdzD

o|m

o 2 02 2
[-(Ll +Ly) @ “+2L T ]

[1.55]

Wwhere D = (L.° + L)(Ly + L,)- Mz. Now let

1
.°1 2 L%, +1,)
© 2 _ " 2,71 0 1 '3 4 s
1 o 2 D [1.56]
and 0. 2 o
2 2 ML I
Wy = e, F 3 ) ’ [1.57
md L, “+L) *
)
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- and R(L° + L
- [1.58] )
; Then
- iw” - oww, - v, + o0 =0 .

[1.59]

The characteristic equation is now a cubic since there is an additional

real solution which represents current j decaying through R without oscilla-

tions in £. The equation is easily solved in two limits. If W, + 0 then P»_; -

2 2 2 2
w

=0, which is the result of section 1.2, If w3—*w we have w = W, .

This is the frequency we would measure if the secondary loop of the trans-

® former were removed. In both cases there is no damping. As R is varied
between 0 and ® the frequency moves between these two points, and the Q
falls to some finite value and returns to infinity.
(~ We can parameterize {1.59] if we let x = iw/wl, A= w3/wl, and B = )
_; wz/ml. Then
-i R
x3 - XZA + x - A.B2 = 0 . [1.60] i:A;:J
If x_ is a solution, the Q is then given by ii? :
- I (x) R
® e = ii'rgﬁ— ' [1.61] !
Equation [1.60] is a cubic and can therefore be solved exactly for the . ;
Q for any A and B. Figure 1,14 shows the variation of the Q with A for a %
d ) .

= given value of B (0.98). Figure 1.15 shows how the minimum Q varies with

B. The result is approximately that

-1
° Qin ~ [l "“’2/‘*’1] ’
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and ,
Wy 1 [“1-%2
e, - Yr 2 \Ta
1 1

[1.63]
gives the minimum Q.

This circuit cannot be used in practice since the real solution implies

that there is a low frequency cutoff in the circuit response, and the addi-

tion of a real resistor would increase the noise in the circuit. However, 3:,T3:

iﬁ the equivalent of a resistor can be built using feedback techniques. This -i'#
T scheme is shown in figure 1.16. It consists of putting the output of the !g:fj}
F SQUID through a filtering and phase shifting network H(w), and then feeding

back a current proportional to the resulting signal to a transformer in front

of the SQUID. This technique was demonstrated by Kai Wang [Wang 1979], who
used this circuit to reduce the Q of a superconducting accelerometer.

The transfer function H(w) consists of a bandpass filter and phase
shifter. The SQUID control unit converts the SQUID input current j to a
voltage with a conversion factor Gs' This voltage is multiplied by H(w),

and converted to a feedback current if in the voltage to current converter

with a scale factor Gv' So

iwt R
i = G Hw) G j'e . e
£ v @ s [1.64] Sl
| T
The voltage across the feedback transformer is ' .
ve = - Mf dif
dt
® {
- —- s 1 -
= Me G G iwH(w)j . [1.65] : -
SN
So the effective resistance is just j_:
Ve .
Reff = 3T —MfGVGsnuH(w). [1.66]
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at the feedback frequency.

reach a minimum Q.

By adjusting GV and Qf, Reff can be adjusted to

-~ -——— -~ MR (e et St i T g KMCARCICISMMR AU A T A S AL SR S A AR ACA e A ARG A A
o CH AN
- The bandpass filter in H(w) has zero phase shift at resonance so an O
4 At
) additional phase shift of 90° is needed to make Reff real and positive. ,!.

. G
P So if RO
N I
- —wfw :.':‘:.
~ H{w) = 2 3 , T
. we o _w ] [1.67]

. Q¢
then Reff becomes )
- M.G G iw_w
R - f'vsf
eff 2 ; 2 :
w "+ iw, w -
[f Log0/ Qg ] [1.68]

xl In practice wf is set at the resonant frequency of the mode to be damped

{ 2

li and Reff reduces to

3 R ¢ MG G Q. . [1.69]

ra
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CHAPTER 2

Experimental Evaluation of the Superconducting Gravity Gradiometer

2.1 Balancing and Normal Modes

The first tests which will be described involve the tuning of the
differential mode, and the balancing of the proof mass spring constants to
reject linear accelerations.

Figure 2.1 shows the frequency of the differential modes as a function
of current between 3.0 and 6.5 amperes. As the current was reduced to
values below 3 amperes the differential mode disappeared. This seems to be
due to an interference between the two proof masses which is eliminated as
the proof masses are pushed apart. It might be some small piece of material
which connects the two masses but loses contact with one of them as current
is stored. As current is stored in the differential pickup coil, the
common mode frequency remainsg fixed at 59.6 Hz.

The data of figure 2.1 can be fitted to equation [1.32] to give values
for the frequency of the differential mode with I0 = 0 and a parameter in
equation [ 1.32],

2
L° +
PR Y

(Zﬂ)ZmLozdz

[2.1]

A fit of the data to equation [1.37] gives a frequency ’ :;\;-T

59 Hz , IR
o ..
and !» )

70 HZZ/A2 .

la}
1]

W

Y

As described in section 1.3, the design value for fo is 60 Hz so the data
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Figure 2.1 Differential mode frequency shift
as a function of persistent current.
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observed frequency of the common mode of 59.6 Hz is also consistent. The

design values of the parameters for Yy are

Ll°
'—d— = .79 H/m,
L.+ L = 9x10°%n
3 4 i
m = 1.07 kg,
and LO2 - 1.8 x 1070 ®2.

The value for Lo assumes that the coupling of the transformer in the readout
. L . . - 2
circuit is unity, so in practice we should expect LO to be somewhat larger.

See equation [1.30]. These numbers give a value

Y = 74 sz/Az,
so again the experiment is quite consistent with calculated results.

Looking back at equation [1.34], the optimum current is related to y by
I = o [2.2]
so that the experimental numbers give

I = 4.2 A .
op

This current corresponds to a field of 525 gauss or not much more than half
of the critical field of 1000 gauss for niobium. This is a consequence of
a conservative choice of pickup coil parameters. A smaller coil could have
been used, thereby increasing Iop with little loss of sensitivity.

In order to balance the system, the response of the differential SQUID
to a mechanical excitation of the gradiometer was measured as a function of

currents in the tuning loops described in section 1.5. Mechanical motion
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was generated in two ways. The internal PZT actuators described in section
1.4 were driven at 4.0 Hz, and the entire dewar was driven externally at

4.0 Hz using a mechanical shaker. The dewar was hung from the ceiling with
latex tubing to provide vibration isolation. This gives a vertical resonant
frequency of approximately 1.2 Hz for the dewar so it appears as a free mass
when driven at 4 Hz. Figure 2.2 shows the amplitude and phase response of
the differential SQUID to a constant drive signal on the PZT as current

in one tuning loop is changed. A constant current of 1.0 amp was left in
the other loop during the test.

The principle feature of figure 2.2 is that at a specific current the
amplitude response passes through zero, and the phase changes by 180° through
this point. This tuning point is the point at which one normal mode of the
coupled proof masses is pure differential motion and the other normal mode
is pure common motion. At this point the two proof masses deflect by exactly
the same distance under a static load. On either side of the tuning point
one proof mass moves more than the other, and there is a differential dis-
placement for a linear acceleration. As the current is moved across the
tuning point the stiffer suspension becomes the weaker, and the sign of the
reponse to a common acceleration changes; hence the 180 degree phase shift.

These results prove that the normal mode structure of the instrument
is understood, and that the balancing control described in section 1.5 is
working. This is essential if we are to make accurate measurements of

gravitational gradients.
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2.2 Scale Factor Calibration and Noise

The most important tests of the gradiometer are the measurement of its
scale factor and the detection of an actual gravitational gradient. This
section describes such measurcments and gives some noise power spectra from

which a reasonable assessment of the instrument's present capabilities can

be made.
The first calibration makes use of the gradiometer's sensitivity to

tilts described by equation {1.14]. If the gradiometer is oriented along

 ae
®-

the z axis, and is given a tilt of amplitude 90 and frequency @ about the .V:'

X or y axis, a gradient

’ o cos 2wt .
t T ———
results. This is a very attractive situation because the gradient signal

GhChedinin se ot~ SLh o
@
N
N
i

can be calculated entirely from measured quantities. It is independent of Bl

®
. the baseline of the instrument, and the location of the rotation axis.
The dewar was hung on latex tubing as described in the previous section.

The mechanical shaker was attached to the top of the dewar with its driving » -

axis parallel to the gradiometer axis. Since the top of the dewar is about 'ﬁ:} -

two feet above the center of mass of the hanging dewar, the a.c. force from -

the shaker applies a torque to the dewar and a small angular motion results. ERRRON
®

This angular motion is detected with an automatic autocollimator [Klinger

1974] whose beam is reflected from a mirror attached to the section of the

E. cryostat in front of the gradiometer. 7 A
? Figure 2.3 is a plot of the differential SQUID response at twice the

;f shaker drive frequency versus the autocollimator tilt signal measured at the

ij drive frequency. The SQUID and autocollimator responses were synchronously

{ detected with a PAR 5204 lock-in amplifier. The upper points fit the

i; -48- ;; {31
: -
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expected behavior of a twice frequency signal increasing as the square of
the tilt amplitude. This plot gives a scale factor of 1.2 + .15 UV/E with
5.0 A stored in the differential loop and a drive frequency of 4.15 Hz.

Equation [1.33] allows us to predict a scale factor of 1.46 uV/E
using the experimental value of y from section 2.1, and a baseline of 3.2
cm, giving reasonable agreement with the experimental result.

In order to calibrate the system with a gravitational gradient we have
measured the response of the gradiometer to a rotating mass quadrupole.
Figure 2.4 shows the layout of this experiment. Two masses are mounted
on an aluminum arm a distance r from the z axis. This arm rotates in a
vertical plane about the z axis at a frequency w. The gradiometer is posi-
tioned with its sensitive axis horizontal, and its center on the z axis a
distance R from the center of the mass quadrupole. The azimuthal angle
is the angle between the z axis and the gradiometer axis.

To calculate the gravity gradients, note that the displacement vectors

between Ml and 12 and M2 and p, are

> ~ ~ ~
dl = (hsinfB-r coswt)i + r sinwtj - (R+h cosB) k s [2.4a]
and
32 = (hsinf + r coswt)i - r singtj ~ (R+h cosB) k .
[2.4b]

The gravitational acceleration at pl is

d d I
3 (0) = cn‘ 1 2 X
1 > (3 > 3 [2.5]
l]dll ] |
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To find the gradient we project this onto the unit vector in the direction

of the gradiometer axis and take the derivative with respect to h. So

d g A ~
g(t) = — [al(t) + (cosB k -sind i)].

dh .
[2.6]
Taking the dot product
g(t) = oM :_h -sinB(h sin8+ r c;sw;)+c;se (R+h cos8) 13/2
[(h sin8+ r coswt)“+r” sin“wt+ (R +h cosb) ]
- 8inf (hsin® - r coswt) + cos 6(R +h cosh)
2. 2 .2 2] 3/2
[(h sinf- r coswt) +r°sin"wt + (R+h cosB) ]
[2.7]

The experiment whose description follows is sensitive only to time varying
gradients so in taking the derivative we will drop terms with no time depen-~

dence. This leaves .

sin28 (h sinB +r cosmt)2+ cosze (R +h cos 8)2

g(e) = 3 GM 5/2
(hsinf8+ r cosmt)2 + rzsinzmt + (R+ h cose)2]
+ sin26 (h sine-rcoswt)2 + c052 8(R+h cose)2
2. 2 .2 2q /2
[(h sin 8 -r coswt) +r” sin‘wt+ (R +h cosb) ]
»
-
[2.8]
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Finally we set h = 0 and again drop constant terms. This leaves

3GMrzsin26c052mt
g(t) = [rZ + R2]5/2 .

[2.9]

We find that the only time dependent term is at twice the mass quadru-
pole spin frequency. This is desirable since most of the mechanical noise

produced by the rotor is at the spin frequency. The signal also has a clear

. . . . . . 2
signature in that rotating the gradiometer about the vertical gives a sin

modulation of the signal. Unfortunately, the dependence on R is a disadvan- SRR
tage. For R > r the signal decreases like R_5 so the rotor has to be rather ?
close to the instrument and relative gradient error is five times the rela-

tive error in R. For these reasons the rotating mass quadrupole is not very i*;'-J

useful for determining the scale factor of the instrument, but it is useful
as a demonstration that the gradiometer is actually able to see a gravita-
tional gradient.

Figure 2.5 is a photograph of the mass quadrupole. The masses consist

of four lead bricks mounted with their centers of mass 35.6 cm apart. For
this experiment the gradiometer dewar was hung in the corner of an acousti- [ ] L
cally insulated room from the usual latex tubing. The mass quadrupole was

positioned just on the other side of the wall. With this arrangement the

dewar could be rotated to change €. The measured values of the parameters 3
in equation [2.9] were ig‘

M = 43 kg, '

R = .58 m,

r = .18 m,
and w = 20.1 rad/sec.
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From these we calculate

3GMr2

= 3.4 E'
[R2 +r

215/2
The mass quadrupole was rotated at 3.2 Hz, and the signal at 6.4 Hz was
synchronously detected with a lock-in amplifier. The lock-in reference was

provided by a photodiode-phototransistor switch on the frame of the mass

quadrupole. Figure 2.6 is a plot of the gradiometer signal versus azimuthal

angle 9. The solid curve is a fit to the data assuming a sinze dependence RO
on azimuthal angle. The data is somewhat noisy because electrical noise ,?n:
from the mass quadrupole drive system causes the SQUID to unlock frequently.
When the SQUID unlocks its output changes by a multiple of 20 mV causing the
lock-in to overload. In order to collect data a short averaging time had to
be used. The time constant of the lock-in amplifier was set at 10 sec for

the data in figure 2.6. Using the data from the previous calibration gives

2

[z(z;b:_rrzlsﬁ = 2.5E
This is significantly less than the calculated value, but a i cm error in A
measuring R gives an error of about 10% in the gradient. In addition to this o ‘wfg
error, finite size effects can also reduce the observed signals. The fact >'ﬁiﬂ]€:

that the reponse varies like sinze strongly suggests that it is gravitational
rather than seismic or acoustic. We also verified that increasing R by 30

cm eliminated the signal with the averaging time used above.

Figure 2.7 shows the gradiometer output noise versus frequency between
zero and ten hertz, The large peak at 1.2 Hz is the vertical resonance of
the suspension. Above 2.5 Hz the noise floor is at 3.3E//§;, although there
are several peaks where the noise is more than 40E/vVHz. Under the suspen-

sion resonance the noise climbs to about 100E/vHz. Two intrinsic
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sources of noise are readily identified. The noise performance of the

commercial SQUID used in the differential readout was measured separately

L

before we installed it in the readout circuit. Between zero and ten hertz

bl
A
s S0 e

n

|

-
o

the output noise was 1.1 uV//ﬁ; or the equivalent of .92 E/VHz with 5.0 A

in the readout loop. The measured performance is only 3.6 times this above
2 Hz. So between 2 Hz and 10 Hz the instrument's performance is approaching
one of the intrinsic limits of the system.

The other intrinsic noise source is the Brownian noise in the differen-
tial mode due to the dissipation in the system. When the system is balanced
the differential mode is just a harmonic oscillator subject to a fluctuating
force with power spectral density

Sf (w) = 4KTH .
[2.10]

according to Nyquist's theorem. Where k is Boltzman's constant, T is the
temperature, and H is the mass divided by the energy decay time of the

mode. The measured energy decay time of the differential mode with 5.0 A

stored was 6.3 seconds. The spectral density of gradient fluctuations

corresponding to Sf(m) is given by

-
Ei
[] _ V8 (w)
— s = f
o 8 '
® Mb [2.11]
:
:;, at frequencies well below the resonant frequency of the differential mode.
'. At T = 4.2° K this gives
;-
-
o Sg = 0.18 E/VHz,
=
-
2
*
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This is nearly 20 times less than the observed noise floor of the instrument
and is six times less than the limit of the SQUID.

Although the noise performance above 2 Hz is quite close to expectations,
the noise amplitude between O and 1 Hz remains a serious problem. In order
to carry out the inverse square law test we need to measure gradients at the
center of a cylindrical shell whose central horizontal gradient is 6 E.
To complete a highly sensitive test we would like to measure this to an
accuracy like .5%. This requires the ability to detect 3 x 10_2 E, a signal

well below the noise level. However, there are several improvements which

may reduce the noise at low frequencies. In section 2.4 we will discuss

the sensitivity of the instrument to thermal fluctuations. It turns out that
this sensitivity is quite high, and the implementation of more stable thermal
control in the instrument may improve the low frequency noise performance.

We will also complete a feedback loop to stabilize the positions of the

proof masses, and this may reduce low frequency noise caused by nonlinearity
in the suspension. Such nonlinearity may cause rectification of high fre~
quency signals, which would show up as an increased noise level near zero
frequency.

2.3 Feedback Damping

During the calibration experiments described in section 2.2, feedback
damping was used to greatly reduce the signal at the differential mode
frequency. This was essential because excitation of the differential mode

would cause the SQUID to unlock frequently if the mode was left undamped.

Figure 2.8 shows the circuit used to condition the feedback signal.

It consists of a bandpass filter with adjustable Q and center frequency,

a phase shifter to provide 90 degrees of phase shift at the bandpass center

frequency, and a voltage to current converter which provides the feedback
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current. According to equation [1.62] the minimum Qin is approximately

-1
= - W .
%in [l @,/ 1] 2.12]
w. can be measured directly since it is the normal mode frequency in the -
absence of damping. We can calculate an expected value for mz from equa- 9. -
tion [1.57]. According to [1.56] and [1.57]
2 2
wzz = cuoz + Pl - R
o
|
(L, +Ly) (L3+L4) [2.13] T
With 6.0A in the readout loop we had
w, = 505 rad/sec. o
P
Using the design values for the other parameters '.':‘:.'
N 2
D = 2700 (uH) s L
(LO+L)(L,+L,) = 4500(uH)>
1 272730 74 H i »
{ and w, = 377rTadls ,
we find an expected value for w, of [
w, = 458 rad/s. el
% According to [2.12] this gives Q i, = 11. Using (1.63] we find the QUiin
®
3 should be reached at L 4 N
3 R .. (L.°+L.) :
- eff 1 2" L oL+ 1 . - )
1271 27 L
[ 2.14] RS
p
o or ; ®.
E:: Rep = 3.1x107° @ Tl
»‘:: D
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According to [1.69]

R = M_G_ G Q.w
ff f £f°f
¢ Ve [2.15]
-6
where Mf = 10 " H
G, = 1.72 x 10° v/A
Qf = 50
we = 500 rad/sec.
With these values of the parameters
R .. = G (4.1 x 10° V- Q/A).
eff v [2.16]
Figure 2.9 shows the measured Q of the differential mode versus Gv’

the current to voltage scale factor of the final stage of the feedback

circuit. As Gv is changed, wf must be readjusted so that the bandpass
filter is tuned to the observed frequency of the mode. If Gv is made very

large, the frequency falls to 73.8 Hz or 464 rad/sec. This is quite close

3

to the expected value of w The initial Q of the mode was 3.2 x 107.

9"
The minimum Q obtained was close to 50 rather than 11. This is probably due

to the Qf of the bandpass filter in the feedback circuit which was left at

50 as Gv was varied. The value of Gv which gives a minimum Q is larger
than expected from [2.14] and [2.16], but this could easily be due to a {ﬁ

smaller value of m_ than the design value of 1 uH.

f
In operation this feedback loop reduced the signal at the resonant .
frequency by a factor of approximately 30 and greatly improved the stability f{;:ff

of the SQUID.

2.4 Thermal Sensitivity

The readout described in section 1.2 is sensitive to changes in the
temperature of the gradiometer due to the variation of the penetration

depth in niobium with temperature. A magnetic field applied to the surface
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of a superconductor will decay exponentially inside the superconductor

in a characteristic length A, the penetration depth. This penetration
depth is a function of temperature, and it is part of the gap between the
readout coil and the opposite proof mass. So, as it changes with tempera-
ture the readout gap varies and a signal is detected. An approximation

to the temperature dependence of A is given by the two-fluid approximation
1
-3
Ae) T L 4
A t
o) (&

[ Tinkham 1975], where Ao = 4404 and t, = 9.2° K for niobium. Taking the

[2.17]

derivative of A (t) with respect to temperature gives

N 3 ¢ by =3/2

B - 2 (S | (e

[2.18]

At 4.2k

dA(t)

_ o]
T 9.7 A/°K

[2.19]

Looking back at the introduction we see that a gravity gradient of
1 E produces a Ax of about 2 x lO_IA cm, or 2 X 10—4 A, so we can expect
a small change in temperature to produce a large signal. This effect is
larger than the length change caused by the coefficient of thermal expan-

sion of the niobium. At 20° K this coefficient is

1 -7 ,0
= %% _ K
L ac 3 x 10 '/
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[ Corruccini 1961], and it is at least one order of magnitude smaller at

4.2° K. Using the size of the gap between the proof masses for L we have

dL

.4 AK
T3 < 4 Af

Measurements of the thermal sensitivity of the instrument as a function
of stored current in the readout coil and gradiometer temperature have been
carried out. Figure 2.10 shows dV/dt at 4.5° K versus readout current,
where V is the output voltage of the differential SQUID, dV/dt increases

linearly with Io, and the slope of the fit is

31.6 V/9K-A.
The measurements were made with a thermometer and a temperature controller
which stabilized the temperature by heating a coil wrapped around the case
of the gradiometer. The thermometer was a carbon-glass resistor model
CGR~1 manufactured by Lake Shore Cryotronics. It§ conductance was
measured with a potentiometric conductance bridge made by S.H.E. Corporation,

and the temperature was controlled with a temperature controller alsoc made

by S.H.E. The response of the SQUID to temperature changes of a few milli-
degrees was measured at each current, and no hysteresis was apparent in
the response. The slope above is about 9 times larger than would be pre-
dicted by considering d\A/dt. With 5A stored the scale factor is 1.2 uv/E
and 1E produces a relative motion of 1.4 x 10—14 cm, so the scale factor
for displacement is

8.6 x 107 V/cm.

Using [2.19], and assuming that the magnetic field penetrates the readout

coil and the proof mass equally we get

8.1 x lO8 V/cm.
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Part of this discrepancy could easily be due to penetration depth changes
in other parts of the circuit. For instance the inductance of the trans-
former primary will change with temperature. It is also possible that the
effective area of the wire in the readout coil is larger than the area of
the proof mass, causing a larger change in inductance with temperature.

Figure 2.11 shows the behavior of the dV/dt as a function of tempera-
ture. The measurement points were taken with 100 mA in the readout loop.
The solid curve shows the behavior of dA/dt as a function of temperature
from [ 2.18] . This curve is normalized to cross the measurement at a.f)K.
The measured points do not increase as rapidly as [ 2.18] but the rapid
increase in dV/dt as temperature approaches 9.2° K does indicate that the
temperature dependence is related to the superconductivity of niobium.

This very large temperature sensitivity may explain the excess gradio-
meter noise below 2 Hz. With 5A stored, the thermal sensitivity is 158 v/°k
ompared with a scale factor of 1.2 UV/E, so temperature fluctuations must
be kept below 10—8 OK to prevent them from contributing to the observed
noise, We currently have a temperature control loop with a stability around
lO_6 °K, and the excess low frequency noise is about one hundred times the
SQUID noise.

2.5 Flux Creep

Early experiments with superconducting gradiometers [Paik 1978] indi-

cated that readouts of the type described here would show drift caused by

flux creep if type II superconductors were used in the readout coils. This

drift is caused by the motion of trapped flux lines in the magnetic field
gradient of the readout coil [Anderson 1962], [Anderson 1964]. Flux is

trapped in type II superconductors when Hcl of the material is exceeded.
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The early readouts were constructed using Nb-Ti wire which has a very low
Hcl° These readouts showed a steady drift like that expected from flux
creep [ kim 1962] . To eliminate this problem we investigated the stability
of pure niobium wire which has Hc = 1000 G.

1

In order to reduce the time required for cooldowns and changes in the

experiment we constructed a small probe to operate as a dip stick in a ; ;;':'
narrow neck storage dewar. The probe is equipped with a small solenoid
of the wire sample to be tested, a hall probe to detect the field produced .i -1.
bv the persistent current in the sample, and a pickup coil which is wrapped
around the wire sample and coupled to a SQUID to detect small changes in
the persistent current. !
Figure 2.12 shows the drift in the SQUID output with 2.0 A stored in ;;};1-

a sample of Nb-Ti wire. Figure 2.13 shows the drift caused by 5.0A stored

in a sample of pure niobium wire. The drift in the niobium-titanium is p

logarithmic as pradicted for flux creep by the Anderson-Kim theory. The .:?

niobium sample does not show any steady drift, and the stability of the :
current is at least 25 times better than it is in the niobium-titanium. ‘.
Because of these results, all of the coils in the gradiometer were built

with pure niobium wire of the tvpe tested in figure 2.13. L; ; :;

2.7 Magnetic Sensitivity ?

Since the source for the inverse square law test is a steel cylinder, e

careful magnetic shielding will be required to prevent the magnetic field

of the source from causing a spurious signal. Because of this we have ®
built several lavers of magnetic shielding into the cryostat. The instrument

itself is the first laver since it is a solid superconductor which shields
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the pickup coil, transformers, and signal leads. The inside of the vacuum
can is lined with another lead shield, and there is another lead shield
and a py-metal shield outside the vacuum can,
This system was tested by applying a magnetic field to the outside of
the dewar with a four foot coil and an audio amplifier. Fields up to 2 milli-
gauss were applied and measured with a flux gate magnetometer without any
reponse from the differential or common mode SQUID. The system can easily
be tested to higher fields if necessary with a more powerful amplifier to

drive the coil.
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CHAPTER 3

Evidence for the Inverse Square Law

3.1 Celestial Mechanics

The original and strongest evidence in favor of the inverse square
law of gravitation comes from observations of the mechanics of motion in
the solar system. The most stringent limits on variations in G come from
the agreement between theory and observation of the precession of the
perihelia of several bodies in the solar system and the binary pulsar
(PSR 1913 + 16). Additional, but weaker, constraints on possible varia-
tions in G can be derived by comparing determinations of planetary masses
made by observing the planet's effect on the orbits of other bodies at
different distances from the planet [ Mikkelson 1977].

The orbits of bound particles in an inverse square force field are
closed ellipses, and small deviations from this force law cause orbital
precession such as that caused by corrections due to general relativity.
Consequently, any variation of G with distance would cause a discrepancy
between observed rates of precession and those predicted from the interaction

of the planets and relativistic effects. Consider the motion of a body of

mass m in a central force field F(r), since angular momentum is conserved

®
24 .
mr- 0 L [3.1]
is a constant, and the radial equation of motion becomes [Goldstein 1950]
P - Ll = F(r)/m .
[3.2]
For a nearly circular orbit of radius a we can expand [3.2] in a power
series in x = r -a, so ®
~73-
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Using [ 3.2] to cancel the terms which are constant we have Vi
- [3K( T

[
[3.4] " .

to first order in x. From this we can see that the body oscillates harmoni-

'
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e Tty
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cally about the circular orbit with a period

{ !
ma
T = 2 .
- {-[3F(a)+aF'(a)] [3.5]
F. .
1 Since 7 is approximately constant, the advance of a planet's perihelion in
one orbit is
L
2
A8 = T = 2—2—11 2 -2m
-[3F(a)+aF'(a)] (3.6] .
Using [ 3.2] again f} fjfj
. 9
! ]
-2 . g
A8 = 2ﬂ‘[3+aF'(a)] _1} . [3.7] T
F(a) ! .
R R
Now suppose that G does vary with r, so that - 1
® r
¢
3
. F(r) = -G{r)M ,
p r
E. Applving [3.7] we find ’
b .
E A8 = -TaG"'(a)
[ G(a) [3.9]
-
o :
E 74 ,
b .
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a to first order in G'(a)/G(a). The most accurate measurements of orbital
precession have been done on the orbit of Mercury where the general relativ-

istic effects are largest. The predicted value of A8 for Mercury after

L S S

e

subtracting out the effects of other planets on its orbit is

7

A6 = 5,01 x 10’/ rad/orbit ,

mer

where A8 is calculated with the relativistic formula [Marion 1970}

A8 = 6Gm Ms/[cza(l—ez)] ,

where MS is the solar mass, C is the speed of light, a is the semimajor
R axis of the orbit, and e is the orbital eccentricity. The measured value of

Aemer is [ Shapiro 1976]

3 A8 = 5.03 + .02 x 10_7 rad/orbit.
gi mer —
-

The excellent agreement of these numbers places a stringent limit on
aG'(a)/G(a) for a = 5.8 x 107 km, the semimajor axis of Mercury's orbit.
.i Measurements on the orbit of Mars [ Laubscher 1971} and the orbit of Icarus
[ Shapiro 1971] also give good agreement with general relativity. These
measurements rule out variations of G of more than a few parts in 108 at

ranges close to 108 km. Observations of the binary pulsar PSR 1913 + 16

{ Taylor 1976] indicate that G is constant to parts in 105 at lO6 km.

A € ¥ &£ » v ¥ 7
L _BATRERERENEN

A comparison of G at distances down to about lO4 km with G at lO8 km

e
’ can be made by comparing determinations of the masses of the inner three
§ planets made at these two distances. The first mass determination comes

from analysis of inuer planetary radar ranging data where the distances

L between the planet and the body whose orbit it perturbs is on the order
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of 108 km [ Shapiro 1973]. For Mercury and Venus, the second mass determina- ,\;t}uy
.Y ."':':

) ROy

tion comes from observations of the trajectory of Mariner 10. Mariner 10 ;‘ - -

4 xm [ Howard 1974] and came

flew by Venus with a minimum separation of 10
within 3 x 103 km of Mercury [Esposito 1976] . The second mass determination

for the earth-moon system was made with lunar laser ranging data. This

8

comparison leads to a limit on the change in G between 3 x 103 km and 3 x 10
km of 5 x 10™% [Mikkelson 1977].

In summary, the inverse square law is very well verified at astronomical e
distances and any proposed violation must be extremely small at these ranges.
However, the exponential deviation of equation [I.1l] has this property and ;;ift':
is not constrained by solar system data if 871 << 10° kn. Long has proposed ;Itf:.

a violation of the form

G(r) = G({ + .002 %nr),

[3.10] .
[Long 1976] based on laboratory data, but some mechanism must cut such a ) F;;::ﬂ:
violation off at distances of 1000 km because it predicts a change in G of Eiﬁ&é&;
10% between 103 km and 108 km. ix‘z:i
3.2 G Measurements ";{ii}
DN
At laboratory distance scales measurements of G provide some slight AN
evidence that G is constant. Long has reviewed a number of precise labora- :T;)::;
tory measurements [ Long 1974]. A plot of these measurements is shown in :i?i*‘
figure 3.1. The measurements are consistent at the level of three standard ~\f}:..

NSNS
deviations, but Long points out that variations in G of less than 1% over ;i - j
this distance range are allowed by the data. He fits the dashed line to ?:rii
the data using equation [3.10], and his own measurements at 4.5 cm and iif%}.f
30 cm [ Long 1976] . ; iffﬂll
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Most of the measurements in figure 3.1 were made with torsion balances;
the technique pioneered by Cavendish in 1798, although Poynting and Richarz
used ordinary balances to detect the change in weight on a test mass from
an attracting mass. The most modern measurement of Rose et al. was made

by measuring the angular acceleration on a torsion balance mounted on a

rotating table subject to a constant torque from masses also mounted on the

table., The references for the various points are:

B [ Boys 1895] Ej:‘ﬁ
BR [ Braun 1896] e
P [ Poynting 1891] ;?i;?
RK-M [Richarz 1898] !\ \
H [ Heyl 1930] e
HC [Heyl 1942]

R {Rose 1969], also see [ Beams 1971). il

Long's measurement also employed a torsion balance. He used two rings

as the attracting masses and positioned the test mass of the torsion balance
at the point where the derivative of force with respect to distance is zero

for each ring in order to reduce the necessary positioning accuracy. Although

the G measurements cannot be construed as verifying Long's measurement, they

do leave open the possibility that something very fundamental is going on.

Long has pointed out another set of measurements which are consistent with

his own. These were made by measuring the frequency shift in a torsion {
balance as an attracting mass was moved between several locations [Karagioz Q,F_'

1976} . Long has analyzed their data and found a value for A in the equation

-78- L.
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G(r) = G[l +A1lnr], [3.11]

of A =01+ .61)x 107

[ Long 1979] .

3.3 Recent Experiments

Since 1976, when Long first claimed that a violation of the inverse

square law exists, some work has been done with the specific purpose of .ﬂ_sz

checking his results. The only work to claim an accuracy better than Long's 5 fi-f:
{ was done at U.C. Irvine [ Spero 1980] using a method similar to that described :};fw"-
p et

ﬂ.; here. The U.C. Irvine group used a torsion balance to measure the horizontal '_1, J
gravitational gradient at the center of a stainless steel cylinder. Their

cylinder has a diameter to length ratio of about .l and is 60 cm long. The

v

gradient was measured by moving the cylinder so that the proof mass of the
torsion balance was next to one wall and comparing this to the force on the
balance with the proof mass next to the other wall. They used Y-ray trans-

mission studies to measure the homogeneity of their source. They find a

value for A in [3.11] of

A o= (L+7)x 107 .

This would appear at least to rule out Long's logarithmic model for the viola- g -,fff
tion, but Long has argued that such a form might arise from a vacuum polar-

ization effect similar to the effect which produces a logarithmic modifica-

tion of Coulomb's law at short distances [ Long 1980a]. Such an effect might é  !
be unobservable in a null experiment due to the lack of a polarizing field

[ Long 1980b].
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§ Several other interesting experiments have been domne, but none has

4
s sufficient accuracy to rule out Long's result. Panov and Frontov [ Panov .
fi 1979] used a torsion balance to measure the ratio of G at 3 m to G at .4 m,
fé and the ratio of G at 10 m to G at .4 m. Their results were
G(3m)
—_— = . + .
oC.4m) 1.003 + .006 ,
. and
) G(10m)
—_— =, + . .
G(.4m) 998 + .012
® Unfortunately, the stated errors are comparable to the size of the effect
predicted by Long. Hirakawa [Hirakawa 1980] has measured the interaction
between a gravity wave antenna resonant at 60.5 Hz and a steel bar rotating
f~ at 30.3. His analysis of the data confirms Newton's law to + 3% over the
;; range from 2 to 5 m, but this error is almost ten times the expected effect
: from Long's work. Taken as a whole, this work indicates that more precise
measurements at different ranges will continue to be interesting and
challenging for some time. ﬁ%
® 3 __S
..
.
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CHAPTER 4

Analysis of the Inverse Square Law Experiment

4,1 Newtonian field of a Cylindrical Shell

In this chapter we will describe the source and some possible signals
from our planned experiment. Our source is a large steel cylindrical shell
which is designed to fit over the dewar containing the gravity gradiometer.
This cylinder was machined from a centrifugal casting of ASTM-27 grade
60-30 normalized steel. 1Its length is 5.080 m, the inside diameter is
0.4572 m, and the outside diameter is .5588 m. This gives it a mass 3.24
X 103 kg or 7.15 x 103 1bs. For the moment we will assume that this source
is perfectly cylindrical and homogeneous for the purpose of calculating its

gravitational field. We will analyze the errors due to deformation and

innomogeneity of this source in a later section.

The acceleration produced by the gravitational field on a test

particle positioned at ;(r,¢,z) is given by

L/2 27 R+t
;(r’(b’z) = / f [ :—‘—IG_(R;‘% r'dr'd¢)'dz' )
?-3'
-L/2 0 R-t [4.1]

where G is the gravitational coupliing constant, 0 is the density of the
cylinder, ;’ is the integration variable, and R is the mean diameter of the
cylinder. The coordinates are shown in Figure 4.1. It is clear from
symmetry considerations that the result for ; must be independent of ¢ so

we may set $= 0 and consider only a test particle in the z-x plane. Then
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A ~ A ~
rr + 2z = ri + zk,

. . -
-4
I

and r'[i cos¢d' + jsind'] + 2" k.

oY
]

So
p-P'= (r—r'coscb')i-r'sincb'j+(z—z')12 ,
E [4.2]
>
and for a we have
L/2 2w R+t

) a(r,z) = -Go / f f [(x-r'cosd' )i-raingl+ (z ~z")k]r'dr'd¢'dz
! 3/2
. /2 0 z')2+ r2+r'2—2rr'cos¢'] (4.3]

A
Note that the integral over ¢' in the j term vanishes, since this term has
odd parity.
Let us define the dimensionless variables 2z/L =z, 2z'/L =¢¢', /R = &,

r'/R=a, n = 2R/L, and w = t/R. Then

1 2m 14w

a(r z)——GOn [f / aln{E~a cose’ )1+(§ Q)k] dadd 'dz’,
2 3/2

- -1 0 1w [(z-z") 24n (E %+ a? - 26acosd")]
J
(4.4]
Our experiment will entail measurements of gradients of the cylinder,
> s0 we want to calculate Bazlaz, and Bar/ar. We also need to know how these
'.: quantities vary with position near the center of the cylinder, in order to
'_'.: determine how accurately the gradiometer needs to be positioned in the
: cylinder. First we calculate aar/ar for z =0, Then
- -83-
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. R
W

2T 14w

an(§ -acosd')dad¢'dr’

ar(r,o) 372

-1 0 1l-w +n (E +Q -Zgacosdﬂ)]

[4.5]
Doing the integral over 7', we have

2r 1+w

a, (r,0) = -2GoR f / a(E- acosd’ )[l+n (E +0 —ZEOLcoS¢ )] d¢'da .,
2
0 1l-w [S ta —2€Otcos¢] [4.6]

. 2 .
Now since N~ = 0.01 for our source we can expand in a power series in nz,

and then integrate over ¢' term by term. Then

2m 14w

a (r 0) = —2GOV f Ol(E acosQ ) [l
[g +02 -2Eacosd ']

1-w

N

2— (E + a2-2"1cos¢ )+ §n4(€ +a2-25acos¢ )

-2 08 @? 4 o? 2gacose)’ 4 o<n8>]
{4.7]
The $' integration over the first term gives zero, so
1+ w
a_(r,0) = 2GOR fomzng 1- 34 0% g%+ 2%
T 1-w
3
+—§— nl‘ [(£2+0L2)2+ 2(€2+a2)a2 +2a2€2] - % r16 [(€2+0L2)
2 [4.8]
r 3022 +a?) + 6 o223 €% +a?) + 3 a“gz]] da .
The cylinder mass is given by
1+w
2 2 2
M =7|R+t)"-(R-t)"|Lo= 2R"Lmo ado . (4.9]
1w
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Let us define

1+w

n+l n+l

A (@) = oPda= (1+w) - (Q-w ]
n n+1l

1-w

[4.10]

Then M = 2R2

2 2 2 A (W)
. GMn I~ (& y 3__
ar(r,o) = RL g [l - <2 + Al (cu))

LﬂcAl(w). Finally we do the integration over a. We have

4 A, (w) A (w)
+ 12 p4 [%—+2g2 3 > ]

+
8 Al(w) Al(m)
6 4a. ) A A (w)
35 efe® 3 g0 9 2 5T T + o
16 4 A, (w) 2 A (@ A, (w) 0
1 1 1
[4.11]
But
| A, (w)
3 2
= 1+ w .

Al(w)
and

A_(w)

5 _ 10 2, 4

Al(m) = 1+ 3 w o+ w ,
and

A (W)

7 = 1+ 7w2 + 7m4 + w6 »

Al(w)
SO
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Since nis 1/100
give measureable
The lowest order
small since 2R/L

a proportionally

newtonian term would be zero, and we would be doing a true null experiment.
However, this would require an infinitely long cylinder, so we must settle
for a cyvlinder which attenuates the newtonian gradient by a factor of 100.
The second advantage is that the gradient in the central plane of the ’; ‘.ﬁ

cvlinder is nearly independent of position.

N S ol i i g St Al Al e Mt e e bR et ey S

e

U
R

[4.12]

and w is 1/20, only the first two terms in this expression
contributions. The solution has two important advantages.
contribution to Bar/ar is GM/RzL(ZR/L)Z. This is quite
is small; consequently any new non-newtonian force makes

larger contribution to the central gradient. Ideally the
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Consider the lowest order term in the force equation [4.12], which

>
is of the form a = CrTr where C is a constant. In the x-y coordinates this

has the form a = c(x% + v¥). Hence aax/ax = Bay/ay = ¢ anywhere in the
central plane. The lowest order correction to this is -3/4 n2 52 which

is very small. If we want to measure the central gradient to 0.1% we need
only have 52< (.1) 4/3, or r <(.37)R = 18.8 cm. This is a very weak

centering requirement.

Next we consider variations of aar/ar with z. Using equation [ 4.4]

we have
1 2r 1-w
2
_ dar _ ~Gon'L
gr(z) T orlr=0 2R / / on
l -1 0 1+w
1 _ 3n%alcos®s! dode'dz "
3/2 5/2
4.13
|- 2% @n? [ -en%en?] [4.13]

Doing the ;' integral 1

5 14w
_ -Garl n 1
g (2) = 7} f f om{ ]3/2

-1 1-w [(:,—C,’)2+(cxn)2

2
3 (na) )
-3 5 ) S/Z}dadc . [4.14]
[(L-c') +(an) J
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o ’
jf.j" Doing the integral over «
a=1+w
1
" _ ~Golrm ~1
ﬂ B (2) = 7} /{ s 5 |12
N -1 [(a~c’) /n“+o I o =1
T ) o= 140 {4.15]
i: _ 2 -1 + ___]:__ (C-C’)
2 1/2 2 3/2 dg'.
, 2
i e 2m %] A T .

i . Or

' 1 . .A - '.
ne _  =GomnL 1 1 . .
:‘ gr(z) = R / 2 1/2 RS

-1 '

[(c—c 242 14y 2]

i 1 1 -z"? - - -
1/2) 2 3/2 3/21°° 2
[(C,'L')2+n2(1—w)2] [(;'-g)zmz(lm)z] 2 [(; )2 (Lw) 2 .
- e (1-2) (+z)
T 2.2 2]1/2 v 2 2 2 1/2] :
[1-52 Fav o) 2n 2 )
[4.16]
]
_ (1-3) _ (1+z) s
1/2 1/2 L
[(l-;)2+n2(1+w)2] [(l+g)2+n2(l-w 2] e
.‘
To the lowest order in @ thus can be rewritten as -
I 2 (1+2) (1-2) :
g.(2) = 3 2 " [ RN ETF * L 41372 [4.17] ) -
(1+2) "4 ] [(l-f,) +n I T
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This function is shown in figure 4.2. It is evidently quite flat
near the center of the cylinder and falls off rapidly outside the end.

To determine how accurately the gradiometer needs to be positioned verti-

cally to measure the central gradient we expand Sar/BrL in ¢ for small

t using [4.16]. This gives

~ Gl
g, E P43 2 40@h+ ochnDH+ omdY .

LR

[4.18

So the gradient error produced by a vertical positioning error is second
order in the vertical displacement of the gradiometer from the center of
the cylinder. Symmetry requires that the error be some even power of .
An error of less than 1 part in 103 requires that the gradiometer be within
4.6 cm of the center. This is more severe than the radial positioning
requirement but still is easily obtainable.

There is one further positioning error which needs consideration.
Newtonian gravitation obeys Poisson's equation so that if ¢ is the gravi-

tational potential, then in vacuum

2 2 2
$2¢,-_— L@+M+3_¢ =
axz ay2 az2 [4.19]
For a perfect cylinder, symmetry requires that
ar  ax? gyl
[4.20]
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[4.21]

This means that as the gradiometer is tilted away from horizontal up to
vertical its output will change by a factor of -2, hence a degree of
leveling accuracy is needed. To determine this we need to evaluate the
gradient signal at the center of the cylinder as a function of angle
between the gradiometer sensitive axis and the horizontal direction.

If we project the acceleration onto this direction, we have

where

~

n = 1icos8+ ksino .

The differential of a_ is

and the directional derivative of a. along the n direction is then given by

6
da 338
8y = 3% COS 8 + 32 sin 8,
[4.22)
see for example [Buck 1965]. But
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3 5 _ 2
:{- % = 3x Iaxcose + azsinel
¢
A Bax Baz
:.::j = 5% cos 8 + P sin®
Y
and 3 K
g _ 9 [a cos9+ a sin9]
. dz 3z e . -
da Baz
=—az—cose+ﬁsin6.
0

Evaluating these quantities at the center of the cylinder, we have

da da
z

dz ax

since a_ = 0 along the z axis and a, = 0 in the central plane of the

0

cylinder. Using equation [4.22],

Sax ” Baz 2 R
. ge = 3% cos 6 + 37 sin 0 'Y )
da
= Sx_x' [c032 6 -2 s:'m2 8]
aa - -
® _ X . 2 ]
) = g}—(— [l - 3 sin e‘ . [4 . 23] pA ‘._:.--

These results can also be obtained by considering a similarity transforma-

® tion on the tensor T which rotates the spatial coordinates with respect to

. the cylinder axis [Goldstein 1959] . S
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In order to have 3 sin28 < 10—3 we need B < 1°. This seems a rather severe
constraint. Fortunately ge at 6 =0 {s a maximum, so that by measuring g
at three values of 6 which we separate by a known A8 ; Bax/ax = g, can
readily be found by interpolation.

To summarize, the radial gradient at the center of the cylinder g, is

o O Sy

-3/2
_oo (V[ (2rY

& = 2 \L L ,

LR [4.24] ‘
and the axial grédient g, is

9 2 -3/2 -
g =_-_2.G_P4.(£&) l+(2_R) '...‘
z 2 \L L RN
LR ’ [4.25] LT
from [4.21]. These gradients have the important characteristic that they -
change slowly as the gradiometer is moved away from the cylinder center. ,’.‘ .

Careful attention needs to be given to the orientation of the gradiometer

axis with respect to the cylinder axis, however.

The orientation error as well as errors due to perturbations of the ,LVHLJ
cylinder discussed in sec. 4.3 can be eliminated by planning the experiment
to measure gx, gg and gz. The gradiometer mount described in Chapter 1 e
allows the instrument to be supported in two positions which orient the .~_;:;

gradiometer axis vertically and horizontally. Two positioning holes in the

o s .
mount ensure that the axis tilts by 90 between these positions. Equation

[4.19] says that the sum of 8> gy and g, is zero if the inverse square
law is correct. This remains true in the presence of distortions of the
cylinder and orientation errors.

However, we will see in sec. 4.4 that the finite size of the gradio-

meter puts a limit on the accuracy with which equation [4.19] can be
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verified.

4.2 Gradients produced by a Yukawa Potential and the Logarithmic Potential

As discussed previously several authors have proposed a violation of
the inverse square law which has the form of an exponentially damped force.
In this section we will consider the gradient in our cylindrical source
which such a force law would produce. This force results from a potential
of the form

-Ar

= ~OGMe " 4.26
¢>y (r) - l ]

The two parameters o and B determine the magnitude and range of the potential.

Since ¢y is exponentially cut off for r>> 1/B8, we can only expect mass at a
-1 s e R -
range of 8 to produce significant variations from the inverse square law.

The force from [ 4.26] is

-aG\d -Rr

a (r) (1 +Br)e T [4.27]
y l’.'

Using this we can write an equation for the force on a test particle in the

field of a cvlindrical shell,

L/2 27 R+t
a(r z) = -G.GG/ f / r [(r-r C05¢)')1+(Z—z )k] (1-+BR)L pdz'd¢ dr!
-L/2 0 R-t
[4.28]
where
1
p = l(z-'z')z"‘r2-+~1:'2—21’1"cosct)'li
We would like to compare the gradients y_ = 3(aR) and y_ _3G-z)
r  or =0 35z Le0

with the results for the Newtonian gradients, so we first calculate
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L/2 R+t
-Bq
2 ~2_,\ _ e ' .
yr(z) = omGof / [ (1+B (B r °-2) ?-Bq] dr'dz .

-L/2 R-t

[4.29]

1
where q = [(z—z')2 + r'2] 2. To lowest order in t/R we can assume that r'

in the integrand takes the constant value R, then

-BRs

) 8Rs
v (o) = ZtOLTrGG/ 61{) [3’; (1 + Bgs) +(82R2-2)—aTBR§]e "oagr,
S

[4.30]

]
where s = [(z- C')Z + n2] . Using M = (2t) (2MR)L,

- BRs
Yr =0LGMf [3n BRS) (B )_ ZBrl:sle nodr' .

[4.31]

Figure 4.3 shows yr(O) calculated numerically as a function of the £R.
When the range 8-1 is comparable to the cylinder radius there is an enhance-
ment of the gradient of almost 50 compared with what a Newtonian force law

with the same coupling constant would produce. As B becomes small the

exponential force law looks Newtonian and we recover the result of section

4.1. As B-l becomes much less than R the force along the cylinder axis L

decays exponentially to zero.

Figure 4.4 shows the variation of yr with z for three values of RBR.
As expected if BR is small, the signal looks approximately like that of
figure 4.2, the Newtonian limit. As BR becomes about 1 the signal is

large and independent of position as long as the gradiometer is inside

.

(]
L
A

of the cylinder. As the instrument leaves the cylinder the signal falls 332;

LI
:
!
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rapidly to zero due to the exponential factor. The signal for BR=5 is
similar, but the signal inside the cylinder is much smaller, since the walls
are now beyond the range of the force, B—l.

If the gradiometer is oriented along the cylinder axis, we can calculate
the gradient yz(z) in a manner similar to that used to obtain equation [4.29].

Using [ 4.26],

L/2 2m R+t
az(r,z) = —Go / [ fr_(z;_z_)_ (l+6p)e-8pdr’d¢'dz'.
P
“L/2 0 R-t [4.32]

Since we are interested here in forces along the z axis we can set r=0 and
do the integral over $'. To lowest order in t/R we can also take r'® R

and do the integration over r'., Then

L/2
oo [ D (1) B,
az(o,z) L 3 l1+8p)e ""dz'. {4.33]
-L/2
So the gradient is
1
Baz(o,z) . 2 GM e—BRs/n
yz(z) = ——a———‘— 2on _? —3—
2 LR 28
-1
;o2 ’ . 2,2
3(5-¢ (l+&)+B_R*(Q'C’)2‘ 1 +B&) dz '’ .
s2 n ﬂz n
[4.34]

A numerical calculation of yz(O) as a function of BR is shown in figure 4.5.
As in figure 4.3 as BR becomes large yZ(O) goes to zero exponentially. 1In
this case however, the fall off starts at BR~.1. This reflects the fact
that n=.1. As soon as the range 8-1 is small enough that the missing mass

at the ends of the cylinder is invisible, each proof mass sees exactly the
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same mass configuration and there is no gradient. As B becomes small we

—2an? M

(1n2)3/2 g%

again recover the Newtonian limit which from section 4.1 is

yZ(O) is quite different from yr(O) in that there is no large enhancement

of the gradient between these two limits. Consequently, the experiment must
be done with the gradiometer horizontal to see a deviation from the inverse
square law.

Unlike the Newtonian potential, the Yukawa potential does not obey
Poisson's equation, and there is no simple relationship between yz(O) and
yr(O) from all values of B. Suppose that a potential of the form [4.26]
does exist with the optimum range for this experiment. This is the case

for 3R = 1.5 or 8 1 =16.7 cm. From figure 4.3

2 GM
y (0) =y (0) = 48 n“a = .

From figure 4.5 yZ(O) is nil in this case so the sum of the gradients

y (©)+y (o) +y (o) = 96an? __GMZ :aGM2 .
' ’ ’ LR LR [4.36]

An alternative to the Yukawa potential has been proposed by D. Long

[Long 1974] . It is a logarithmic potential of the form

e |
V(r) = -a - in (r/ro) , (4.37]

where r, is a range which Long takes to be 1 cm. Using this potential

ar) = -Yv(r) =acM|-—

1 fjl(r/ro) .
3 ' [4.38]
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The first term has exactly the form of the Newtonian force scaled by a
-3

factor of a. Since a is presumably small, (Long gives o = 2 x 10 7) we
ignore this term in what follows. As before, we would like to calculate

the gradients which result in a cylinder. So we write the acceleration on

a test particle in the cylinder

L/2 2r R+t

:’;(f,z)=-0-G0/ f f r'[(r—r'coscb"i\-!-(z—z')ﬁ]ln(p/ro) dr'dé'dz".
-L/2 0 R~t 3

P [4.39]

For comparison with figures 4.3 and 4.5, let us first calculate Lx(z) =

Bar/ari . Taking the derivative first
L/2 2T R+t
Qn(p/r ) _
L(z)=-aG0//f ‘ (“C"S@)
-L/2 0

2
-3(r-r'cosd"') ' 'do'dz"
r rscos on (p/ro)‘ dr'de'dz' . [4.40]

P

Setting r = 0 and doing the integration over ¢',

+
L/2 Rt ‘Sln(QIr -
L_(z) = -20G0T f f Pl
~-L/2 R-t 4
3 r'zln (q/r )' dr'dz' ,
- Q
2 5 |
q
or L/2
fenla/r ) r2
L_(z) = -4 GoTRE —_— + 2
r | 3 2>
-1/2 4

RZQn (q/ro)' dz',
5
q

_3
2

[4.41] D
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to lowest order in R/t. Making the usual change of variable ' =2z'/L

we find

DS -+ DOCENNAKL I DO
‘y

1
Zn(sR/nr ) 2 2
L (z)=_0m2 GM_ —_— 9% .- 3D gn(sR/nr )} dz?
T LR2 3 5 5 0
1 s 28 s
[4.42]
Similarly we can calculate Lz(z) to be
1
- a2 M 2/52
-1

A numerical calculation of Lr(O) and LZ(O) is shown in figure 4.6 for a

wide range of R/ro. The solid curve is Lr(O), and the dashed curve is

:_ LZ(O). As for the Yukawa potential, Lr<0) is much greater than gr(O) if
o0 = 1, And again LZ(O) <<Lr(0)' In this case however, there is no Newtonian

limit and Lr(O) is only very weakly dependent on the choice of range L

Using Long's choice of o and r ﬁ@ng 1976 ) we find that Lr(O)/gr(O) = -,185,
a very large effect. This result has effectively been ruled out by the
experiment of Newman [Spero 1980]. However, Long has recently suggested that
a logarithmic modification of the inverse square law might not be observable
inside of a cylinder [ Long 1980b].

4.3 Gradient Errors due to Cylinder Perturbations

Among the principal sources of error in a measurement of the cylinder's

gravity gradients are perturbations of the cylinder's density and shape.

i In this section we will model these perturbations in order to identify
initial tolerances and develop strategies for making the measurement in

o an imperfect cylinder.

Let us suppose that the deviations of the cylinder from perfect shape

v,

and homogeneity can be represented by writing the cylinder density as

(!
]

®
i ‘ ., ‘."‘.‘ ..".. .
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a(z,9) = Z ZP (%) [ .sinj¢ + biJCOSJ’dJ] R

1=0 3=0 [ 4.644]

where b = 1 and 0 is the mean density of the cylinder. The PL'S are

0,0

the Legendre polynomials defined as Po = 1 and

i
1 d i

- < «?-nt. [4.45]
23 gt

P (@) =

It is shown in many standard texts on linear analysis that the Legendre
polynomials form an orthogonal basis for the set of piecewise continuous

functions on the interval -1 to 1. See for example [Kreider 1966] . They

have the additional property that gé is even if { is even and odd if 4 is odd.

Equation [4.44] ignores radial variations in density since such varia-
tions change only in the higher order terms in t/R, and these terms are very
small as is shown by [4.12]. WNow using [4.13] and substituting the new

expression for 0, we have

1
2 Vot
g (z) = ﬂ GM A 1 _ 3n"(1+cos2¢") de'dz!',
f 2norL? , P2 s /2
Ec-c') +n ] ZI(c =" ]

[ 4.46]
and substituting [ 4.44]
2m
gr(z) ZnL(IiM-/‘ZP (¢’ )f E (a s:|.n3¢>+b COSJd))
TR =0 0 j=0
[4.47]
1 3ng£1+c052¢')

- ls/z d¢‘d(‘;'

3/2
[[(c—:‘)zmz] 22" %n?]
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Since we are primarily interested in gradients at the center of the cylinder

we will take z = Q0 and define the error terms

1 2m
Eij = _n2 QEE Pi(c') (aijsinj¢-+bijcosj¢)
LR
-1 0
1 _ (1+cos2")
_‘2'_2 3/2 2 5/2] d¢'dg" [4.48]
Ch? afertd]

Since the sin(j ¢') and cos(j¢') functions are a mutually orthogonal set,
the only nonzero Eij's are those with j=0 and j=2. Also, since the
function of Z' in brackets is even, and the Pi is odd if i is odd, only

Eij's with even i are nonzero. Using these simplifications

E _ _nz b GM L 1 3n2 ar’
2io 2io zfp (") 3/2 7 /2 :
IR | 2i [szz] 2[;'2+n2]5 [4.49]
and
E..=n?b, . S : _m dg '
212 2i2 LRzJ/.PZ,(g') , 5]5/2 & [4.50]
o 4[é' +n ]

are the only nonzero Eij's
First we calculate some of the EZiO's. PZ(X) = L4(3 xz—l) so

2
E NP, M (32721 (220 %yde ! _ [4.51]

20 ; S 572
4LR -1 [c' +n ]

All of these integrals can be evaluated explicitly giving
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- %6, GM,
E = n_ 20 ' G[Q,n (1 + l/l+n2) - gnn - 1
20 2LR? 2. 3/2
3(l+n )

1 2 1 -2 1 1
_———m—-}-(2+3n )[-——-———2 23/2]+n[ 75" 3/2J .
(1+12) 3n? (140 ?) (1+n? 3(1+n%)

Putting in the value n = .1 gives

GMb
E = -5.02 n2 20 .
20 LR2
[4.53)
A similar calculation gives
GMb
E40= 7.83 n2 ;0- [4.54]
LR :
Next let us calculate some of the error terms of the form E212°
Consider E,,, from [ 4.50]
1
4
Lo bgo f 1 0
02 2 5/2
4LR —1[2.2”]2]
So
R B« S S S S S B
02 2 02 LRZ 4 2 1/2 3 9 3/2
n 1+n B+n ]
= o 93‘3 [4.55]
LR

2
to lowest order inn . 1In general the lowest order contribution to E212

in n2 is given by

2 L 2
Eriz = Mhyy0 —GM—Z Py; (O -2— ————”——572 az'.
LR [3'2”‘2] [ 4.56]
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Cylinder Error Coefficients

2n M/LR%] oM/LR? |

2
Eono [Nbag Exn2 [Pon2

2 - 5.02 - .492
4 7.83 .358
6 - 9.53 - .284
. 8 10.4 .234
E'_ 10 -10.6 ~ .196

12 10.5 .167

14 -10.0 -~ .141

16 8.42

Table 4.1
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[4.57]

SO

E - (1) 2n! GM

2n2 22n (n!)Z LRZ 2n2 4. 58]

to lowest order in nz. The first eight nonzero E and E are listed
2n2 2n0
in Table 4.1. o
With these results we can examine the effects of various errors. The

error coefficients of the form E are considerably larger than the E

2n2 2n0° ERCE
but as the gradiometer is rotated in the center plane of the cylinder the 0 '

gradients produced by the E errors have a cos2$ dependence. Consequently

2n2
if one averages two gradient measurements made with the cylinder rotated
by 90° with respect to the gradiometer axis the result is zero. Actually
this result is apparent from equation [4.19]. If the gradiometer is

oriented along the z-axis (the cylinder symmetry axis), a mass distribution

with cos2¢ dependence cannot produce any gradient since there is no net mass,

and all the mass is equidistant from the gradiometer. So from [4.19] any
two gradients measured along orthogonal directions in a plane perpendicular
to the z-axis must be equal and opposite. This provides a simple way of

eliminating all errors of this type. We simply measure horizontal gradients .f":fii

along the x and y directions and average them. Any difference in these kf;::f
measurements would indicate the presence of a ¢ dependence in the cylinder

mass or density.

Similarly, any of the E errors can be identified by comparing the

2n0 N
gradient along the z axis with the sum of the x and y gradients. In short, ' 5f€}3;

if all three gradients are measured, [4.19] insures that their sum is zero
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regardless of flaws in the cylinder. The cylindrical geometry is still
crucial, however, because it relieves the experimenter from the need to
precisely position the gradiometer inside of the cylinder.

4.4 Finite Size Effects

Since the preceding calculations give the gradients at points, they
are strictly valid only for infinitesimally small gradiometers. In this
section we will consider the errors which result from measuring gradients
with a finite size instrument. Basically, we need to know how [4.19] is
modified by the finite size of the gradiometer.

An indication that finite size effects are small was given in section
4.1, For example, we found that the radial gradient changes by less than
.1% if the gradiometer is moved along the z-axis 4.6 cm from the cylinder
center. So if the gradiometer proof masses have a diameter less than 4.6
cm we would guess that the error from its finite size will be less than .1%.
The actual diameter of the proof masses is 4.3 cm.

Suppose the gradiometer is oriented along the z-axis at the center of
the cylinder as in 4.7a. To calculate the force on the upper proof mass
we can imagine splitting the cylinder into two parts as in 4.76. Since
the upper proof mass is at the center of the upper cylinder piece, symmetry
implies that only the lower part of the cylinder applies a net force on this ; .
part of the gradiometer. Since the gradiometer is far away compared to the '
length and thickness of this piece we will calculate its gravitational field
in the vicinity of the gradiometer using the approximation that it is a very
thin ring of material with a mass per radian of bM/Lw. Then the z-component

of acceleration in the center of the upper cylinder is

JUUIPUNCE A
IR

A A R

INFAISFRSRTION.Y N

.
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»
2
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(b) Cylinder Split into Two Parts

Figure 4.7
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_ -GMb dd
a,(r) = 2m f 2 2 2 3/2
0 kL/Z) +r “+R 2chos¢]

[4.59]

rrorr R I N
NS .“. W .

Nt

X .
l“"”.‘ . - . .

Y

3

Since the gradiometer is small compared with R we expand the denominator in

z = r/R, so 'Q
= 3¢cosé 15?;2coszd>
az(r) - 3/2 2 +....
i anr? [(L/ 2R) +1+; [“'C +1/n ] 2[1+g2+1/n1
[4.60]
Integration over ¢ gives
) 2
a_(r) = 20 1+ L _+...0. [4.61]
2 sl 2., 22 2. 2|2
R ll+l; +1/n 4[l+c +1/n |
i To evaluate the lowest order finite size correction we integrate this accelera-

tion over a disk of diameter d with mass per unit area s, so

. d/R 2T\' 9

- —GMbs 15¢
i / [ 3/2 + 777 p Gdzdo. [4.62]
A ll+g +1/n 2l1+; +1/nzl )

After carrying out the integration and expanding the result in n = 2R/L

one finds that

)
_ -2Gbm n? 3n” (da/R) 2 6
F = - + O(Tl ) ’
z LR2 2 3/2 2]5/2
() 2[”” [4.63]

g where m is the mass of the disk. Since the gradiometer is symmetric about ,..
the origin, the result for the lower disk is --Fz and the gradient v, is \
given by _:::-

) LSRN
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2 2
fp - 3n_(d/z) 4-0(n4)’
377 2[an] |

l4.64)

The leading term is exactly the result of section 4.1, and the lowest order

correction is

gt . oM nt (9)2
z 2 5/2 \R [4.65]
IR [1+n2]
The ratio
3 2 {d 2 -4
g',/8,=-3 n (E) = -4.44 x 10
[4.66]
to lowest order in nz, for a proof mass with a radius of 4.3 cm. Fortunately

this is quite a small correction and does not interfere with a .17 measure-
ment of the cylinder gradients.

Next we must consider the finite size corrections when the gradiometer
axis is perpendicular to the cylinder axis. Looking back at equation [4.5]

if we leave 7 # 0 and work out ar(r,z) we find that the first two terms of

equation [4.12] become

s lo 2 [0 1

r R 2z 2 22 2
(l+—L) (1-T)

2 [ 1 r? 4

> - 1 4](1+(§)2+—2)+o(n)
e LA

[4.67]

From this we can see that the lowest order finite size correction in n2 and

(2d/L)2 comes from a term of the form

2 ()
LR

2

a' (r,z) = [4.68]
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To calculate the gradient correction we need to integrate a'r over a disk
whose axis is along the x axis and whose center is a distance b from the

origin and whose mass per unit area is again s. Then
d

2
Fx = QG—ME n? bs f(—zLi) 2¢d2—z2 dz .
LR ~d '-."A"
[4.69] B
This gives a gradient correction of
o .4
N
o232 M2 -22)2= e S g)2- Al
Ex T2 2 L 2 22" W
[4.70] ,

This is just half the value of g; to lowest order is nz. Since gz/gx=—2,

g'

x _ -4

— = —L = 4.44 x 107 . [4.71]
X

y

From this we can see that [4.19] now does not hold exactly. Summing the finite

errors we have

gy *8', te, = 69“—2 L (9)
LR [4.72]

This effect puts a lower limit on the value of a which can be detected

in equation [4.36]. Taking the ratio we find that the minimum detectable o

is given roughly by

2
4(d -5
o, = 6n (—) = 1.8 x 10
min R [4.73] .
-.‘C Elani
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It is interesting to consider briefly the finite size effect that
would be produced by some flaw in the cylinder. Suppose for instance,
that a cubic centimeter of cylinder material is missing in the wall
about one meter from the geometrical center. It is easy to calculate
that to the lowest order in b, the baseline, this flaw produces a V2¢

of 3 x ].O“6 E, an effect far too small to observe in this experiment.

4.5 Experimental Procedure

Since the d.c. output of the gradiometer is determined by the surround-
ings, the signal from the cylindrical source must be modulated to distin-
guish it from the rest of the gradients due to other objects. The cylin-
drical geometry is convenient for this purpose since the cylinder can be
raised and lowered over the cryostat containing the gradiometer.

Figure 4.8 is a rough sketch of the apparatus we will use for moving
the cylinder. 1In order to support the dewar near floor level we will exca-
vate a hole ten to twelve feet deep in the floor of end station II at the
high energy physics laboratory. A pedestal will be mounted in the center
of the hole to support the dewar. The cylinder will be raised and lowered
with a motorized hoist. In the low position the gradiometer will be at the
center of the cylinder, and in the high position the gradiometer will be
about 10 meters from the center of the cylinder. To measure the central
gradients, the cylinder should be removed to infinity leaving everything
else fixed. Since the roof of the end station prevents this, a correction
has to be made for the gradient produced by the cylinder in the high posi-
tion. Looking back at [4.17] we can calculate that the cylinder produces
a gradient on the high position which is 3.5% of the gradient in the low
position if it is moved two cylinder lengths away (2z/L = 4). The signal

changes sign as the cylinder is moved away, so the difference between the '
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gradient measured with the cylinder down and the cylinder up has to be
l reduced by 3.5% to obtain the correct central gradient. This procedure
. works for measuring the horizontal or vertical gradient, and it only needs
to be carried out with an accuracy of a few percent to obtain the central
I gradient to an accuracy of .l%.

By raising and lowering the cylinder, the signal frequency can be

moved away from d.c. and averaging can be used to obtain a very narrow band-
i width., With the current noise level of 100E/v/Hz, a bandwidth of 10—8 Hz is

necessary to obtain the desired noise level of 10_2 E, so some reduction in

the noise level is still necessary to make this procedure practical.

- -
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Figure 4.8 Cylinder Moving Apparatus
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CHAPTER 5

Conclusions
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We have developed a superconducting instrument for the measurement

of force gradients. This instrument uses a variety of properties of super-

T

conductors to achieve very high displacement sensitivity. The measurements
described in Chapter 2 demonstrate that the performance of the instrument
is very close to the expected behavior, although the problem of excess low
frequency noise remains to be solved. This problem is not a consequence of
the techniques used in building the instrument, but rather of the desire
to have an instrument which can measure vertical and horizontal gradients.
An instrument could be designed for horizontal use only with higher compli-
ance along the sensitive axis. This would reduce the gradient equivalence
of a temperature change. However, as discussed in Chapter 2, there are
steps which can be taken to improve this instrument. The most attractive
of these steps would be to operate the instrument in a helium bath cooled
below the A point.

This instrument will be incorporated into an experiment to check the
inverse square law of gravitation. The possibility of an inverse square law

violation is briefly discussed in Chapter 3. In spite of considerable effort

by many groups to verify the inverse square law, the possibility of a large

violation with a range between 100 m and lO3 km or less than 1 cm remains. :5-'lf1
Our experiment is optimized to detect a small violation with a range near
17 ¢m, but the use of superconducting technology for semsitive detectors

may well contribute to a variety of experiments.
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