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During this report period, the followiii- people have been involved in the

exper iment:

William Fairbank - Co-Priucipal Investigator %.M I

Daniel DeBra - Co-Principal. Investigator

Michael McAshan - Senior Research Associate

Evan Mapoles - Graduate Student and then Research Associate. lls Ph.D.

thesis entitled "Deelopment of a Superconducting Gravity Gradiometer for Test -

of the Inverse Square Law," is included as Appendix 1. Ills publication,

"A Superconlducting Gravity Gradiometer" is Included as Appendix 2.

RES:EAR(HI OBJECTIVES

This research has had two objectives: (1) to study the application of

cryogenic technology to the problem of gravity gradient measurements, and

(2) to use such a gradiometer to make more accurate meaurements of the inverse

square law of gravity to test the recent experimental and theoretical sugges-

tions that the inverse square law of gravity might be violated at laboratory

distances.

Since room temperature gradiometers are ultimately limited by room tempera-

ture Brownian motion, we have been experimenting with a laboratory cryogenic

gradiometer which could lead to the development of a more sensitive moving base-

line gradiometer for field use. Such gradiometers could have applications to

problems in navigation and modeling of the earth's gravitational field.

Recently the inverse square law of gravity at laboratory distances has

become a subject of great interest to physicists. This has come about for two

n(21),eel u.
reasons. First, Long and more recently Tuc have found an apparent viola-

tion to the in,;,ric r,'u 're In; of 'liy at laboratory dis, ,es. If this were

~~. .. ............. ...... . . . . . . .. ...... •. . ".... . .,...-.,
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found to be correct, it would be one of the most important experiments in the

history of physics. Secondly, theorists have lb.gun to speculate on the possible

existence of new fundamental particles which could affect the inverse square law

of gravity at laboratory distances. For example, axions with mass 10 eV have

been postulated to explain the dark matter of our galaxy and the reason for the

lack of parity in time-reversal violation and strong interactions. Such particles

could contribute to a violation of the inverse square law. By making use of

a superconducting gradiometer it appears possible to check the inverse square q
5

law at distances of the order of one meter to an accuracy of 2 parts in 10

Operation of a gravity gradiometer at 4 K offers a reduction of thermal

noise power by a factor of 75 over that in room temperature environments, and q

this is the principle motivation for the development of cryogenic instruments.

However, there are many other potential advantages which help to offset the

additional effort required to maintain the instrument at 4 K. Below 10 K

several metals lose all low frequency electrical resistance (superconductivity)

and become nearly perfect magnetic shields. These materials are used in our

gravity gradiouerers to make magnetic readouts which are free of thermal noise.

Although careful coustruction is required to allow for the thermal contraction

of the instrument as it is cooled from room temperature to 4K, once the device

is cold the coefficient of thermal expansion is far below the room temperature -

value. The liquid helium bath commonly used to maintain low temperature also

provides a stable thermal environment. In addition, low frequency amplifiers

of unequaled sensitivity based on the Josephson effect (SQUIDs) are commercially

a va iTa 1bl e.

,.. .-.
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S U~IT\RY OF RESERI EFFORT

During the early part of our work we constructed and tested two prototype

gradiometers. These devices both incorporated superconducting coils and proof

masses, were built with similar techniques, and both measured a single diagonal

component of the gravity gradient tensor. They differed in the method used to

obtain common mode balancing. One of our prototy-pes used four superconducting

coils, one on each side of two superconducting diaphragms. Each pair of coils

and diaphragm produced a current in response to an applied acceleration, and

these two currents were subtracted at the input of a SQUID. We referred to*this gradiometer as "current differencing". Our second prototype used a single

coil located between two superconducting proof masses so that its inductance

was modlulated only by relative notion of these two proof masses. We called

this gradlometer "displacement differencing". Because the four coils in the

current differencing gradiometers are not perfectly matched, the overall

*balancing problem in this gradlometer is more complicated. Consequently, we

choose the displacement differencing design to an improved version.

We have completed construction of this Improved gradiometer and operated

It at 4.2 K with sensitivity approaching I.E/-ij at frequencies between 2 and

* 10 lI. Ile opera-tilu of this gradlonieter is dlescribed in Appenidices 1 and 2.

hii order to achieve tIh Is I evel of sensitivity at lower frequencies, a new cryo-

stant probe wits b)111 t to provide a 1.3 K environmlentL for the gradiomecter . The

pur11pose Of this waIS to r dIICe the thermlal sensitivity of the instrument. In

aiddit ion, the niew p re b wats dous Igied to provide a h ijhI dig ree of seismic and

- t t.llet Cic~~ I oilu. 'fill.; probe Vboliig us;ed to gather data fromn the gradio-

. .- - - - -- - - - - -. .
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DESCRIPTION OF TIE G(A\I) IOMEILR

Our primary goal in the design and f,'hrication of our gravity gradiometer

was to minimize the instrument's sensitivity to linear accelerations both along

the proof mass direction and perpendicular to it. Linear accelerations in the

laboratory exert forces on the proof masses which are very large compared to

the gravitational forces we would like to measure, so careful balancing of the

gradiLineter is needed to eliminate them as a noise source,

In addition, we decided to build an on-line gradiometer which measures one

of the diagonal components of F. It is highly desirable to be able to measure

all three cumponents of 7 2 so we chose a method for suspending the proof masses

which allows us to operate the gradiometer with its sensitive axis vertical as

well as horizontal.

In order to make the balancing problem manageable we chose a mechanical

design which enabled us to use only one coil in the readout system described

later. Experiments have been done with readouts using several coils, but in

these gradio;:ieters careful matching of the coils as well as the proof masses

is nocess,.ary to reject linear accelerations.

Basically the gradiumeter consists of two superconducting proof masses

alijacent to each other. A single niobium coil is mounted in the gap between

the proof ma:sa;ses so that the coil inductance is proportional to their spacing.

T1his readiut system is analyzed in detail below. Since the sensitive axes of

the proof mt;ses are parallel, the cradiometer detects changes in one of the

di'n uollal c inompiltnts of the gravitv g,,radient tensor, .
ii

Each of the two prnvf v .,;s ,s i,; ,,iipportcd with two mechinical springs.

Ill, nchlrnical sprin-; aro fldt!'i c~nt 1 evr:; cut into c-'"iilar di-ls of

Ill (0 , '". A ,. nti .r 1it 11,t... , s'.' trV is .hl;.:, in f igure I.

------- . . . ---- -. -. -... .... .'. ..- .-..... •.. -. ..-.. - -.
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Figure 1. Folded Cantilever Spring



In this case the thickness of the plate 4- reduced in the two rectangular

areas hatched in the figure in order to restrict the bending to those areas. i
Slots are then cut in the indicated locations. These slots allow the center

to move perpendicular to the plane of the plates -s shown in the lower part

of the figure. Since the center of the spring is free to move in the plane i
of the plate, the total length of the spring remains constant and the restor- -.-

iny force is provided by pure bending without stretching of the spring material.

The proof mass subassembly consists of two springs, two cover pieces, an

annular mass, and a ring used to hold the edges of the springs apart. The cover

pieces are circular disks of niobium 8.51 cm in diameter which are flat on one

side and have a threaded stud on the opposite side. The flat sides are designed

to modulate the inductance of the readout coil or tuning coils described later.

The flats were polished to ensure flatness and isotropy so that close spacing

to the coils could be obtained, and so that the inductance of the coils is modu-

lated only by linear motion of the surfaces. The threaded studs screw into an

annular disk of niobium which provides the bulk of the mass for each proof mass.

A spring is captured between each cover piece and nroof mass. An exploded view

of olle of the two proof mass subassemblies is shown in Figure 2. The ring which

is used to miintain th, .cin,; of the edges of the springs is thicker than the

proof miss so that each sprinu is biased away from its equilibrium position and

never passes through its zero point. This eliminates certain forms of nonlinear

behavior, Since the spriiuws have opposite biases, the first order nonlinear terms

also cancel. Vhe ring was grounded to its final thickness to keep its two sides

5
parillel to one part in 10

..

- - - - - - - - - - - - - - - - - - - - - -- - - - - -
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Once the two proof mas;s subassemblies were constructed, they were stacked

on top of each other with a ring holding them apart. The thickness of the ring

was chosen so that the readout coil is about 0.013 cm from the opposite proof

maIss. This structure was miounted on an aluminum fixture which maintained the

angular orientation of the parts. A niobium housing tube 9.3 cm long with a

10.5 cm inside diameter was placed over the parts (Figure 3). A more detailed

deacipt o(if Lhii uga, i~ee is 'iven in Appendix 1, including details of

* (Yper ::~etal ''aaremets (n Lbo %'~raidlometer.

ii e -ue:rble-,rradi!iot:er fa first tested at 4 .2 K arid has per formed as

<:L k k(I in ti tht Urequnire' f ~rrorm 2 11ix to i.0 Ilz (see Appendix I) 1 it 11,s

1): e i1 'e i i co r ja ra L ('( in a n(-,. cryos tat p robe c apab1)le of cooling thre inst ru-

:2I atot I K '111 ad i 3 be tigf u!aad on tihe inverse square law experiment.

1'1'~g; i!.~*i LAW ~LxIMN

'PI" t"Ieer aur :IMI forun ir ths ex perimient. is given in Chapters 4 and 5

ofAppindfi 1 . We hayve Comple t ed construct ion of all mnaj or components of the

* Ii.'are spare aw eperiment (Figunre 4) and hrave comimenced work on the experi-

Lei . eecenpoirei Ls Inic 1(1(1 a 1.'3 K cryogenic probe and a p)edestal which is

IIA' t( ( 1r11rrt tihe c r vest at in a ten foor hole in tire floor. A pumping line is

iin eI)rpeitLad intoa tire pedea';Lt ImiiCi a llaa li to cant irnlsly piump on Lire

era oatto mae jjLute in Lira' tempe-rature of Lire grad lamuter at. 1.3 K while tile

I tm2 r l sourcee i a miewei up amiid dow n aver tire cryoetLats. iTre Uin; I. irajor

p i... tie ajpIr:ILtu.; is tiieetu for mrurv lug, tihe cv Linrder up and down.
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FIGURE CAPTIONS

I. -

Figure 3 Assembled gradiometer in mounting fixture. Mounting fixture

includes flex hinges on both sides of the gradiometer so

that the instrument may be tilted slightly by PZT bender

plates (upper center).

Figure 4 Major components of the inverse square law experiment. The

cylindrical test mass is shown in the upper and central portion

of the picture and the dewar on its pedestal is barely visible

at the bottom.

Figure 5 Upper and mid-portion of the new cryostat probe. Cold plate

and the upper part of the 1.3 K radiation shield are at the

very bottom. The isolation stack (which would be at the very

top) is not included at this level of assembly.

Figure 6 Lower detail of the 1.3 K cryostat probe including the gradio-

meter and its fixture in the lower portion of the picture. The

plate in the central portion is a 1.3 K continuous cold plate

refrigerator. During operation the gradiometer is completely

enclosed by copper radiation shield attached to the cold plate.

In turn the entire lower portion od the probe is isolated from

the 4 K helium bathn by a vacuum can sealed onto the top plate

seen in the upper part of the picture.

Figure Mechanical isolation stack. This assembly sits on top of the

crvoStat Id provides the sole mechanical support for the gradio-

meter. During" operatioi, the stack is enclosed in a vacuum can.
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In order to maintain the gradiometer at 1.3 K, the new probe has a copper

plate inside of the vacuum can which serves as a refrigerator (Figure 5). The

probe vacuum can is immersed in a liquid helium bath at 4.2 K. The copper

plate inside the can is thermally isolated from the can and contains a small

reservoir which is connected to the 4.2 K bath through a flow impedance (Figure 6).

This reservoir is continuously pumped to maintain the plate at 1.3 K. The flow

impedance is adjusted at room temperature to adjust the temperature of the plate.

The gradiometer is thermally grounded to this plate to operate it at 1.3 K. The

cold plate has been tested successfully. It has the major advantage that liquid

helium can be ad-ded to the bath in the usual way without disturbing the 1.3 K

space. This means that the 1.3 K space can be maintained for long periods.

A second major improvement in the new probe is the addition of a mechanical

transmission line which will isolate the gradiometer from vibrations at frequen-

cles above 10 Hz (Figure 7). This line consists of four brass disks which hang

from each other with small latex springs. The soft springs cut off vibrations

above a frequency of about 10 Hz. The gradiometer hangs from the bottom of this

stack by a stainless steel tube which allows the gradiometer to be at 1.3 K

while the stack is at room te-mperature. Tihe entire assembly is in vacuum to

isolate from acoustic noise.
0

In order to measure the gradient at the center of the cylindrical gravita-

tional source, the dewar containing the probe and the gradiometer has been mounted

oil a pedestal which will fit inside of the cylinder. The pedestal is mounted

0
,it the bottom of a ten foot deep hole which the cylinder is lowered into during

th, n: ,v:urfmeim t. "lji.; 1(,,,,e!;, the, dFk,.,;r ne.,r f 1,'or level. to facilitate adjust-

-mer ; . A pmirpi; i, Ane I; hu iIt in so that Lhe col.d plate can be pumped contin-

,1W,,,!]y a; the c'l i , .mimp -eii d-i. . The 7,160 pound cvl ider rolls along

a J-
...............................................................................
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to steel I-beam up and down the wall of the end station in which the experiment

takes place. A hoist has been installed to raise and lower it. Considerable

care has been talen to ensure smooth motion of this large mass, and to minimize

the vibraton which the gradiometer must tolerate during the experiment.

During the past year the completed gradiometer and 1.3 K cryostat assembly

has been subjected to initial tests. During these tests gradiometer output power

spectra were obtained with the gradiometer in unbalanced operation. (Balanced

operation was not possible due to inability to store sufficient current in the 4

balancing circuit. This problem is presumed to be due to ohmic heating in the

current supply leads which have been subsequently improved.) 'he output power

spectrum obtained at 1.3 K was observed to have two distinct regions. Above about

0.2 ilz the spectrum was dominated by externally driven mechanical motion of the

gradiometer, most notably the pendulum modes of the suspension system. Previous

experience with the gradiometer has indicated that this response is reduced by

a factor of ~i000 when the gradiometer is properly balanced. Below -0.1 liz

the power spectrum was dominated by low-frequency-divergent behavior arising

from the temperature coefficient of the gradiometer together with temperature

fluctuations of the device. In the frequency rani;e of interest for the inverse

square law experiment (-0.15 1Hz) the noise power is esti:mated to 30-40 E/v'11z

where a calibration factor obtained from operation at 4 K is used. Proper

balancing of the gradiometer should drop this to a SQUID noise limited value

of I E/V liz. Further reduction of this value by an order of magnitude seems

possible by the use of a dc SQUll) which is now coLnaerclallv available.



Although the maximum frequency at -,ich temperature fluctuations dominate

the noise power spectrum has been shifted downward from 1 Hz at 4 K to 0.1 Hz

at 1.3 K, the temperature coefficient at the lower temperature is higher than

expected. In addition, temperature fluctuations at the gradiometer are on the

order of 10 mK, much larger than what is possible to obtain. We have tenta-

tively identified a free-floating radiation baffle located on the gradiometer

suspension rod between the cold plate and the top of the vacuum can as a

possible source of this problem. We are in the process of mounting a heater

and thermometer on this baffle in order to be able to check this hypothesis

and will be able to do so as soon as a leaking low-temperature feedthrough

seal is replaced.

Iurui UEIVELOPMENTS

In the following year this research will be continued with the aid of a

fourth-year graduate student, Joel Parke, who will be visiting with Professor

1h, Junt, "aik from the University of Maryland. Our goal is to check the inverse

square law to the highest possible accuracy and to understand and control the

temperature coefficient which remains at 1.30 K.

0

"- I
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A SUPERCONDUCTING GRAVITY GDADIOMETER*

Evan Kapoles

ABSTRACT were confirmed experimentally, and one of the methods

A gravity gradiometer has been developed which of common mode rejection was chosen for an advanced

uses two superconducting proof masses to measure a version.

single in line component of the gravity gradient In the past eighteen months we have designed

tensor. A niobium coil positioned between the proof and built this new gradiometer. It is a mechanically

masses carries a persistent current which is modu- improved system designed for higher common mode

lated by the relative motion of the masses. This rejection. Testing began in April, 1980. The mech-

current signal is detected by a SQUID. We expect anical and electrical design of this gradiometer, as
-9 -2 -to achieve a sensitivity of 10 /s Hz

"
. Initial well as some preliminary test results are discussed

experiments indicate that the detector is working here.

properly. An experiment to test the inverse square -. MECHANICAL CONSTRUCTION

law of gravity at laboratory distances is planned. The gradlometer consists of two proof masses

I. INTRODUCTION held adjacent to each other with their sensitive

During the past ten years a cryogenic transducer axes along a line. The device measures a single

was developed at Stanford to convert a mechanical diagonal component of the gravity gradient tensor.

signal in an aluminum bar to an electrical signal for These two proof masses are carefully matched and

amplification (Paik, 1976). This transducer is cur- aligned to minimize sensitivity to common accelera-

rently used in the Stanford gravitational radiation tion. The sensor package is a cylinder 9.5 cm long

experiment. The transducer is basically an accelero- and 11.5 cm in diameter. Each proof mass weighs

meter whose sensitivity is optimized for detection 1.07 kg.

of the fundamental longitudinal mode of the bar. In order to achieve careful alignment of the

Since 1975 we have been investigating the pass- proof mass sensitive axes, the components of the

ibilitv of using this technology for gravity gradient gradiometer are designed to stack up on each other.

measurement. Potential advantages include reduced The faces of the parts are made as parallel as poss-
therma 3 nois e due to low temperature and higher ible. This stack slides into a niobium housing tube,--.-

me( h.ni,,al Q's of materials, Increased mechanical where it is locked together with two end rings which

stability, and the use of SQUID's as very low noise thread into the housing tube. With this method we

amlfiers. Tw~o prototype gradiometers using diff- expect the axes to be aligned to a few tens of micro-

Prenr Me-thoa of common mode rejection were assembled radians. Accelerations perpendicular to the gradio-

with components of gravity wave transducers (Paik, meter axis cause an error which is proportional to

19;8). The operating principles of both systems this angular misalignment. Consequer.tly we expect

Wok pf e nr eto reject these cross accelerations Lo a few parts

Work performed under the auspices of AFOSR in 10.

Stanford University. Stanford, CA 94305 Each proof mass consists of an annular disc

with a threaded central hole, two flat springs and

153
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two ground plane pieces which screw Into either aide is applied to the gradiometer, an acreleration

of the annular disc. The center of each spring is gradient

locked between the center disc and a ground plane. &a- k 2 2
o 0 cos2i. t

The entire assembly Is niobium so that each proof 2

mass has two superconducting surfaces which can be results. By measuring the amplitude of the second

used to modulate readout coils. The rims of the two harmonic of the drive signal the instrument scale

springs are held apart with a niobium ring which is factor can be determined.

fixed to the housing tube. FLAT SPRING

The flat springs are made from solid discs of PROOF MASSES

niobium .318 cm thick and 10.48 cm in diameter. A

rectangular depression is cut Into the disc in three

places 1200 apart so that It is .071 cm thick In an

area 3.8 cm by 2.2 cm. This area was cut out with

an electron discharge machine. After the depressions

were cut, a series of very narrow (.024 cm) slots

were cut with a wire EDM machine. With these slots

each rectangular depression becomes a folded canti-

lever spring. The center of the disc is thus weakly

held with respect to the rim. The center is attached

to the proof mass and the rim is fixed to the case.

The two proof mass subassemblies are held apart

Inside the housing tube with a third niobium ring.

In the gap between the two adjacent superconducting

ground planes a superconducting pickup coil is moun-

ted. This coil is used to detect differential motion

of the proof masses. Two additional coils are

mounted facing the outer surfaces of the proof masses

for detection of comon motion. These also serve as

magnetic springs which can be used to tune out any
PARALLEL SPACER

sensitivity to common acceleration along the Fradio- COIL FORMS

meter axis. figure 1 shows a cross section of tht

gradiometer. Figure 1. Gradiometer Cross Section

Except for the thin dielectric forms on which
III. ELECTRICAL CIRCUITSth, coils are mounted the entire assembly is pure "i"

The gradiometer contains two electrical circuits;

nifjur, Since niobium undergoes a strain of 1.43 In- for detection fo differential proof mass motion

s ! when cooled from room temperature to 4.20 K, and one tur cumnion motion. Each is readout with, a
all parts must be of the same material to prevent SQUID.

diff~rentlal contraction from altering the geometry. The dilferential circuit is shown in Figure 2.

In order to calibrate the system, the gradio- The coil mounted between the proof masses is a singlt

meter package is mounted on a fixture which allow, layer of .0089 cm nioblur. wire wound in a ;piral o-

it to be tilted by applying currents to two super- a .254 cm wafer of machin,iblc glass ceramic. This

condu, tinp coils mounted in speaker magnets. The wafer is glued to one of the pro cf masses such that

rdiometer is held by two cross-flex pivots perpen- the surfaLe of the wire is ver, clobe (.I13 cm) to

diular to its fsensitive axes. The speaker coils tie other proof mass. Since ... iKnetli I he L e. I,- .

itoI .i torqu, about this axes. If a tilt ded fron the upercond(tin i ri m., - , th,. ind , -

C' qir
n " 

t tance ot tht lihk 1 r k ti i. , ontol , ].. 1 it p, -

ratio of iro pro l m.-Ic- ,l anL ini r 2 n,,

154



-. - - -", .- ,"-.. "r

_ . V

to gradients. A persstent current I Is stored in (Tinkham. 1975) where A. - 440 A and Tc  9.2
° 

K

a superconducting loop containing the pickup coil for nlobium. Taking the derivative with respect to

inductance L and is coupled to a SQUID via a super- temperature we find that at 4.20 K

conducting transformer. Since the flux in this loop d 9

is fixed, as the proof mass separation changes a 
dT . 7 K

current I is generated in the SQUID input coil. _ The differential displacement caused by a I E grad- _len isabot 2x 1-16 "'-

.ent Is about 2 x 10 m. Thus we must control the ..- -.

temperature to 10
-6 

oK to stabilize the gap. This

I requirement can be relaxed somewhat by operating

the gradlometer at a lower temperature.

MMThe circuit shiown in figure 3 is used both to

SOUID detect common motion of the proof masses and to

fine tune the stiffness of the proof mass supen-

sions. The principle of detection is the same as

chat used in the differential circuit. Each proof

I mass modulates a persistent current in a flat coil

IFigure 2. Differential Mode Detection facing its outer surface. The error signals genera-
Circuit

ted by this motion are summed in a toroidal trans-
[ former and Coupled to the input of a SQUID.

For an ideal transformer the detection sensiti-

Ity can be calculated from The field generated by the persistent currents
provide a restoring force between the proof mass and

i*_ Gb_I the case when the mass is displaced from equilibrium.

I 5 Ls d Hence, each pickup coil acts as a magnetic spring

where I is the signal current produced in the SQUID in parallel with the mechanical support springs.

by an acceleration gradient G, b is the proof mass By varying the relative magnitudes of the persis-

Iseparation, d is the spacing of the pickup coil from tent currents the atifvness of the two proof mass

the other proof mass, Lw is the resonant frequency suspensions can be adjusted to be identical. In

of the differential mode, and Lp and Ls are the this case if the two experience a common accelera-

pickup cvil and SQUID input coil inductances. In tion along their sensitive axes they move the same

urdr to optimize the sensitivity the gap d is made distance and there is no change in the inductance

as small as practical, and the resonant frequcncy of the differential pickup coil. A fourth coil on

I s m inimited.- Because it is difficult to make

stable loe frequency suspensions, we chose 60 Hz

foi .. This allowed us to use a practical thickness

for our folded cantilever sprin.s. With I = BA, M M

ttw S, I ), nisc ives a gradient noise of

.- IL Hz (IE - lo
- 9  S-1). i I-)

This type of readout is sensitive to temperature

ch.ng - os-auqe the penetration depth of the super-

conducting proof masses varies witih temperature.

C' ,As flux mcves into the superconductor the coil

ind,,ctan, varics, as if the surface were moving-------

* I phvsicall.. The depvudence of penetration depth

on temperature is given hv

(T X I-I - ° -S'UID

Figure 3. Common Mode Detection Circuit
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the toroidal transformer is provided to vary the V. INVERSE SQUARE LAW TEST

* difference in the two persistent currents. A Recently It has been suggested that the inverse

current in this coil couples flux in opposite square law of gravity may be violated at laboratory

directions into the two pickup loops. The currents distances (Long, 1976). We are planning to use our

vary to maintain the net flux constant. gradlometer in a nearly null experiment to sesrTh-

IV. TEST R for such a deviation. Since the gradlometer only

measures gradients relative to an arbitrary zero,

Initial teats have been performed to check the we must devise a t, masts geometry which produces

basic properties of the instrument. The frequency a nearly zero gravity gradient and compare the

of the differential mode is 62.7 Hz. and it has a output of the In :rument with and without the test

Q od 400, This Q is limited by the construction mass present.

of the gradiometer rather than the intrinsic Q of The test mass geometry we have chosen is a

the material. The Q of 400 is sufficient to reduce cylindrical shell large enough to ft over our

thermal noise below lEI/Hiz. cryostat. The gravity gradient at the center of

The scale factor of the instrument was measured this shell in the plane perpendicular to the cylin-

using the internal tilting system with 2.OA stored der axis Is given by

in the differential pickup loop. An experimental 2 (R/L) 2

valve of 0.30 PV/E was measured. This compares g 2 2 312
R L Il+(2R/L) ]

well with the theoretical value of 0.39 1V/E. The

reduction is probably due to flux leakage in the where M, R, and L are the cylinder mass, radius

coupling transformer, and length. If L >>R this gradient Is nearly

zero. Our cylinder will have a mass of 3.2 x 103 .
Com-on mode rejection was studied by tilting

the cryostat by 10
-3 radians and observing the kg, a length of 5.1 m and a radius of 25 cm so that

response of the differential readout. It was found L - 20 R. The central gradient Is 6.7 E. We hope

that the response could be driven through zero by to measure this to an accuracy of 12. This w

adjustment of the currents in the common mode pickup allow us to see a deviation of I part in 104 fom

circuit as expected. The best matching obtained the inverse square law.

corresponded to a mismatch in the spring constants
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ABSTRACT V

The inverse square law of gravitation is known to agree with astro-

nomical data to very high accuracy, but recent theoretical and experi-

mental work indicate that the inverse square law may be violated at

distances less than 1000 km. Such a violation would signal the exist-

ence of a new force.

In order to check the inverse square law we are preparing to search

for a non-newtonian force in a cylindrical shell. The cylindrical shell

has the property that the newtonian effects nearly cancel, so that we are

=* p

doing a nearly null experiment.

We have developed a superconducting gradiometer to measure the gravi-

tational force gradients at the center of this cylindrical shell. By

measuring both the vertical and horizontal gradients we can eliminate

effects due to imperfections in the cylinder. This thesis describes the

instrument and its performance as well as calculations of the sensitivity

of the inverse square law test.

* p.
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INTRODUCTION

Newton's inverse square law of gravitation is known to agree with

astronomical data to very high accuracy and has been widely accepted as

the correct force law in the static limit at all mass separations. However,

it has recently been pointed out that existing experimental data allows

3 lop
large violations of the inverse square law at distances less than 10 km

[Mikkelson 19771, [Long 19741, and several authors have proposed that the

gravitational potential (r) at a distance r from a point source of mass

M has the form

G(r) = G

r-l 'e I [ 1.11---
r

where a is a constant greater than -1 and and G are constants [Wagoner 19701,

[Fujii 1971], [O'Hanlon 1972]. This potential has the property that ifs >rr

the effect of the additional term is negligible and the inverse square law
p .

is recovered even if a is of the order of unity. The gravitational force on

a test mass m in this potential is given by

G(r)Mm [1.21

r

where

G(r) = G[Il +0,(i + 6r)e]- r [1.31

Thus, if one measures the force between two particles as a function of sepa-

ration in the presence of the potential [I.11 one would find that the gravi-

tational constant G, as it is usually defined assuming an inverse square force

law, is actually a function of mass separation. Long [Long 19761 claims to

have observed such a variation in the gravitational constant. The expression

-1- 1-22
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for G(r) in [1.31 has the interesting feature that for ar >> 1, G(r) =G,

but if r << 1, G(r)=G(l+). Values of the gravitational constant are

obtained from laboratory measurements with mass separations much less than - -

-1 6
100 m, so if 100 m < - <10 m; then the value of G to be used in astro-

nomical calculations is not the value measured in the laboratory. Evidence

for and against a violation is reviewed in Chapter 3.

The possibility of a violation of the inverse square law, and the need

for more accurate laboratory tests has motivated the work of this thesis.

Using techniques of low temperature physics, we have developed an instrument

for measuring gravitational gradients. The design and construction of this

instrument are described in Chapter 1. The results of initial testing are A

described in Chapter 2.

This instrument is intended for use in an experimental test of the

inverse square law. This test consists of measuring the three components -

- 2 2of _42 at the center of a cylindrical shell and verifying that V .is zero.

Room temperature gravity gradiometers have been developed, [Forward 19731, .Z_

[Bell 1977], [Trageser 19751, but these instruments are not able to check

2that 7 ' is zero because they measure sheer gradients or linear combinations

of sheer and in-line gradients. The gravitational gradients produced by an

inverse square force law as well as those produced by the Yukawa potential -

of equation [ I.1] in a cylindrical shell are calculated in Chapter 4.

Various error sources are also considered in Chapter 4. These include posi-

tioning errors, errors due to the finite size of the instrument, and errors • -

due to imperfections of the cylinder. By verifying that V % is zero one

can eliminate all errors due to imperfections of the cylinder. In fact

one could use anv source geometry to check the inverse square law if one _O

cnecks that 7 = 0 [Paik 19791. However, the cylinder geometry offers

-2-
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several large advantages because the gradients at the center of the

cylinder produced by an inverse square force law are attenuated by the

ratio of the diameter to the length squared. For our cylinder this

factor is 0.01. Because of this the accuracy with which the instrument

must be calibrated is also reduced by 100. Another advantage of the -

cylinder is the uniformity of the gradients inside. Because the gradients

are so uniform near the center, the accuracy with which the gradiometer

needs to be positioned is very low, and the effects of the finite size of - .

the gradiometer are also much smaller than they are with other source

geometries.

The size of the gradients in the cylinder, and the desire to measure

vertical as well as horizontal gradients have influenced the design of the

gradiometer. The gradiometer consists of two accelerometers whose sensitive

axes lie along the same line. Relative motion of these masses is sensed

so that a differential force over the separation of the masses is measured.

This differential force or acceleration is an approximation of the true

gradient. The proof masses are mechanically suspended with pairs of springs

which provide very low compliance in all directions except along the sensi-

tive axis of the gradiometer. However, there is a limit to how large a

compliance can be allowed along the sensitive axis if the gradiometer is to

be operated vertically and horizontally, because the proof masses will sag

when the gradiometer is turned from horizontal to vertical. The need to

keep the support springs relatively stiff puts a burden on the readout,

since the displacements produced by gradients are reduced by stiff springs.

For this reason we make use of an extremely sensitive superconducting

readout described in section 1.2. ''"

-3-
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To get some idea of the displacement sensitivity required, let us

calculate the displacement produced by an acceleration gradient of 1 E,

-9 2
where 1 E is a change in acceleration of 10 m/s over a distance of 1 m,

-9 2
or 10 s. The resonant frequencies of the spring-mass systems which

make up the accelerometers are 60 Hz, and their separation is 3.2 cm, so

a gradient of 1E produces a differential motion

Ax (3.2 cm)(10 9 s-2) 2.3 x 10-14 cm.
Ax = 2 2 -2~ m

(2iT) (60) s

This is an extremely small displacement, but it is detectable with the

inductance modulated readout and the SQUID magnetometer.

With a 60 Hz resonant frequency, the sag of an accelerometer under

one g is

Ax= 981 cm/s2  6.9 x 10 - 3 cm.
(27T)2 (60 )2/s2 69x1 m

This number is small enough to allow the gradiometer to be oriented verti-

cally or horizontally without changing internal components of the instrument.

-4-
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CHAPTER I

The Superconducting Gravity Gradiometer -

1.1 The Gravity Gradient Tensor

According to the classical theory of gravitation, the gravitational ,

field in vacuum is described by a scalar potential (r) which satisfies

Poisson's equation. The force on a test particle of mass m is

SF = -m q(r). [1.11 S ..

The tidal forces generated by are described by the gravity gradient tensor

, given by
Fij - /Dx [3/Dx. ][1.21

or
222

2 2 2

F=- 3x37  323yy. .

j 2 2 2
Sx z 3y z 3 2  [1.31 i" -i'[

The elements of I'are subject to four constraints since

r = .[1.41
ii i

and

rF. =o , [1.51
Li

-5-
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since i satisfies Poisson's equation. This leaves five independent compo-

nents. In addition to gradients due to the gravitational field, there are -

other gradients present if the sensor is not operated in an inertial refer-

ence frame. These affects basically arise from the centripetal forces on

the proof masses when the sensor rotates with respect to inertial space. -',

Suppose that the gradiometer is fixed in some noninertial frame 0' as shown

in figure i.i. If r is the gradiometer position in the inertial frame 0

and r' is its position in the 0' frame, and the 0' frame has an angular velo-

city c, then

d2 dt .  + 4, 4 + 4-
d r/dt2  r' + 2'W x r +'x r + Wx(W x r').

[1.61

If the gradiometer is at rest in 0' the first two terms are zero, then . -

-2 2 - r - 4 +dr /dt = x r' +cox (cW x r'). [1.71 "

To calculate the acceleration gradients we need to calculate

P_-

i D r'. Ldt2 U It [l~.81

The vector L- is fixed in the primed frame so

W x r' i'(W Z'- y')Z' - zX'.
y z x z

* S

+ • -w )[1.91
+ ky X' ),

and

-0 4 + , 2 2 1W x (W x r)= i' [- (W )x + W y' + ci cz
y x x z

+ W' [c~ix' (W 2 + Wz)'+ W y Wz Z' ~ 1.101

2 2+ j, [yxX, -+ W , (W + W )z'[i

1W x z y z -

-6-
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Figure 1.1 Rotating Coordinates
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Taking the partials we have

2 2
Cu + - C-),i
y z z Y x x z

6 2 -2

y zx x z y x y.

The instrument which we will describe here measures a diagonal component

of F or r', hence we are interested in error terms of the form wi
2 + 6) 2.

Suppose that the sensitive axis is along the x direction and the instrument

is given a tilt about the z axis

* p
= 0 coswt [1.12]

0

Then

6 = w =60 sin6wt, [1.131

and 22
2 - (1 - cos2wt). [1.14]

22

The gradient consists of a component at 2w and a d.c. component 2 22/2.
0

This later term represents a serious source of error since it increases as

the square of the frequency. For instance, an angular velocity of 3 x0 - 5

rad/sec or 60 per hour produces an equivalent gravity gradient IE = 10-/sec ...

1.2 The Superconducting Readout

The superconducting readout circuit is shown in figure 1.2. It consists

of an inductor L1 rigidly attached to one of the proof masses and coupled to

a SQUID by a superconducting transformer. L is located as closely as

-8-
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Figure 1.2 Differential Readout Circuit
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possible to the surface of the other proof mass so that its inductance is

strongly modulated by relative motion of the two proof masses. A persis-

tent current is stored in the ioop consisting of L 1and L 2 * Since the

total flux in this loop must remain constant, a change in the inductance

of L 1causes a change in the current which is detected by the SQUID. I

1. . . .

The inductor L is a spiral of niobium wire wound on a flat dielectric

1 .- " -'

substrate. This flat circular coil is glued to one of the proof masses.

A flat superconducting plane which is attached to the second proof mass is -

located about 5 mills from the coil. The readout coil is shown in figure

1.7. According to Ampere's law the field B produced by a current I in the

ucoil is

B =np. 1, 1.151

where n is the number of turns per unit length in the coil. This field

occupies a volume As where A is the area of the coil and s is coil proof

mass spacing, so that

2
L = n As. [1.161

where

mas pain, o hao" 2"

L1  = pJn Ad, 1.181

and d is the equilibrium spacing between the proof masses.

-10-
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We can write the equations of motion of the two proof masses as

.l.n. . - -

rn 2 icj = ct 2/2 """-
22

1+ kx =- /

%,2 1 .191

where a =  /d = Pon2A. We have ignored any damping and any mechanical

mismatch between the proof masses. If = x2 -x1 we have

2 X12  [1.201
0 m

2
where W = k/m. As current is stored in L the magnetic field pushes the

proof masses apart and d increases. If h is the spacing with zero current,

then 2
2d h= aI

2 [1.211
0

where I is the mean value of the persistent current and d is the mean value
0

of the coil proof mass spacing. Now if we define = - 0/mW 2 the

equation of motion becomes
a 2 = t [ 2 _ I 2 .

" .0 m E 12 11.221

Since flux in any superconducting loop is fixed, we have two constraints

1 (LI + L2)1 - Mi = (LI + L2)I [1.23a]*o

(L3 + L4)i - MI = -MI ,2o [1i.23b]

where M is the mutual inductance of the transformer in figure 1.2. The mean S

value of i is forced to be zero when current is stored with a heat switch

which causes part of the loop to go normal. Solving for I and i, we find

. ..



p

I = I' 1 2 3 4 1l
o~~~~LJ '-A.... --

(L + t2)(L + t4L12] ...

1 2 3 2 4,.-

0

(L + L)(L3 + L) 2  j1.24.

and -1 M(L L 0

(L I + L 2 ) (L 3 + L 4  M 1.251

If we let (L 0 + L2 )(L3 + L4) -M
2 = 

2 and expand LI = Ll°[i + then

to lowest order in .

-ML I 
i 

2
L d 

1 .261

Using [1.241 we can write the equation of motion [1.221 as

2- 2 11 a (L3 L 4 ) ,2 2 1."
+ 0oL

10t L 2 m [1.271

Expanding the right side and keeping the lowest order in C, we have

22a I
"" 2 -2 21o(L3 +L4)

+0 0 2 [. 281

0mL1.8

This expression gives the frequency shift of the differential mode with

persistent current I , but L is not independent of I . So let us write

0 0

L [h [ 1.291

and define

2 2
L (ah + L 2 )(L 3 +L 4 ) - M [1.30]

Then we can write [1.281 as

2 2 o 34
2(x I(L LCtLI (L +L)

21o 0L 3 44 +" "0""4

%02 2 2
mL 2 mL

0 0 11.31]
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or we can write frequency of the differential mode f as

2 2 2 2 12ot 2 (L +L )12
f3 4 3___ 4__0

( 2 7 T )L 2 22m L1 . 3 2 1 , - -, . .- . -

0 0 0

22 2- -The behavior of versus I is shown in figure 1.3. f increases *

2 2 2 2rapidly initially with a slope of 20t1 (L3 + L4 )/(2r) mL but quickly

2rolls off and approaches the asymptotic value of 3f 0 To find an optimalO

value of I , note that a gravity gradient G produces a differential displace-
0

ment of the proof masses Gb/(27f) 2 where b is the gradiometer baseline. So

from [1.261

L4 + I4 +2 L)I- 2 0 2+2 2 2 , 2

(27T) 2 L 2 d (27T) m L mL 2  JJo mL W" .
0 f0 0 0 0

-i1fL 0 1 3 22 L2)()
-MIOGb()2 2 ff 2 + 0 1°(3 + L4) " . ."

(27o oLd (27 ML2 [1.331

From this it follows that i/G is maximized when

2 22 2 w 2mL
10 00 op 2 .

3ca (L 3 + L4 ) [ 3--.-.
3[1.341

Substituting this into the brackets of [1.331 gives 0

-ML coi -c 0

G 2 20 L [ 1.351

where LC = oh. To impedance match, we construct the transformer so that .4

L /L = L/L = y, and we assume that M z L2L Then2 C 3 4 2 3

2
-yb 2 [1.361

G (l+2y)h 2W 'F 4,

0
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is the scale factor of the gradiometer. This is optimized for y>> 1,

but any value greater than one gives a scale factor close to the optimal.

One consequence of [1.361 is that the scale factor increases as W
0

-2rather than w - if the resonant frequency of the gradiometer proof masses h.-
is reduced keeping their masses constant, since I is proportional to w.

op 0

This is a consequence of the current causing the gap between the proof masses

to increase as well as the increase of spring constant provided by the elec- _..

tricai spring. Another interesting consequence of [1.36] is that the scale• ".!

factor increases only as 1// h since Lc is proportional to h.

1.3 Description of the New Gradiometer

Our primary goal in the design and fabrication of our gravity gradio- p

meter was to minimize the instrument's sensitivity to linear accelerations

both along the proof mass direction and perpendicular to it. Linear accel-

erations in the laboratory exert forces on the proof masses which are very .

large compared to the gravitational forces we would like to measure, so

careful balancing of the gradiometer is needed to eliminate them as a

noise source.

In addition, we decided to build an in-line gradiometer which measures

one of the diagonal components of r. As we will show in Chapter 4, it is

highly desirable to be able to measure all three components of V 2 so we

chose a method for suspending the proof masses which allows us to operate

the gradiometer with its sensitive axis vertical as well as horizontal.

In order to make the balancing problem manageable we chose a mechanical

design which enabled us to use only one coil in the readout system described

in section 1.2. Experiments have been done with readouts using several

-15-
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coils, [ Paik 1978] but in these gradiometers careful matching of the coils

as well as the proof masses is necessary to reject linear accelerations.

Basically the gradiometer consists of two superconducting proof masses

adjacent to each other. A single niobium coil is mounted in the gap between

the proof masses so that the coil inductance is proportional to their spacing. -.

This readout system is analyzed in detail in the previous section. Since

the sensitive axes of the proof masses are parallel, the gradiometer detects i 1
changes in one of the diagonal components of the gravity gradient tensor,

J3

Each of the two proof masses is supported with two mechanical springs.

The mechanical springs are folded cantilevers cut into circular disks of

niobium. A folded cantilever with two-fold symmetry is shown in figure 1.4.

In this case the thickness of the plate is reduced in the two rectangular

areas hatched in the figure in order to restrict the bending to those areas.

Slots are then cut in the indicated locations. These slots allow the center

to move perpendicular to the plane of the plate as shown in the lower part

of the figure. Since the center of the spring is free to move in the plane

of the plate, the total length of the spring remains constant and the

restoring force is provided by pure bending without stretching of the spring

material. The stiffness can be calculated using the cantilever equation

[Landau 19591. In the case shown the spring displacement 6 is

= 4f 3

wEh3  [1.371

where f is the force in the center, h is the cantilever thickness, E is

the Young's modulus of the material and Z and w are the lengths shown in

figure 1.5. The spring constant k is

16
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f Ewh
3

3 3
4Z[1.381

The springs used in the gradiometer have three-fold symmetry rather

than two and a picture of one of them is shown in figure 1.5. Since two

such springs are used to support each proof mass, there are three pairs of .'-

cantilevers, and the net spring constant for each proof mass is

3 Ewh3

k = - -
4 93 [ 1.391

These springs were fabricated from solid disks of niobium 10.5 cm in -

diameter and 0.32 cm thick. The faces were carefully machined to produce

a final thickness uniformity of approximately 50 microns. The rectangular

depressions were milled to within a few thousandths of an inch of their a

final thickness, and the part was then stress relieved. In the next machining

stage, the rectangular depressions were cut to their final thickness of

0.071 cm using electron discharge machining (EDM) with a rectangular elec-

trode of copper and graphite. EDM was used to achieve a careful match of

all of the cantilevers, and thereby match the final proof mass frequencies.

In the final stage of machining the narrow slots were cut using wire EDM. lp

In this process wire is continuously circulated through the part and used

as an electrode. The part is moved on a numerically controlled table as

the slot is cut. P

The proof mass subassembly consists of two springs, two cover pieces,

an annular mass, and a ring used to hold the edges of the springs apart.

The cover pieces are circular disks of niobium 8.51 cm in diameter which S

are flat on one side and have a threaded stud on the opposite side. The

flat sides are designed to modulate the inductance of the readout coil or

tuning coils described in section 1.2. The flats were polished to ensure

-19-
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flatness and isotropy so that close spacing to the coils could be obtained,

and so that the inductance of the coils is modulated only by linear motion

of the surfaces. The threaded studs screw into an annular disk of niobium

which provides the bulk of the mass for each proof mass. A spring is captured

between each cover piece and proof mass. An exploded view of one of the two - -:

proof mass subassemblies is shown in figure 1.6. The ring which is used to

maintain the spacing of the edges of the springs is thicker than the proof

mass so that each spring is biased away from its equilibrium position and

never passes through its zero point. This eliminates certain forms of non-

linear behavior. Since the springs have opposite biases, the first order

nonlinear terms also cancel. The ring was ground to its final thickness
5P

to keep its two sides parallel to one part in 10

By using a design in which all of the parts stack up on each other,

and all parts have highly parallel surfaces, we ensure that the sensitive

axes of the two proof masses are also parallel. This parallelism is main-

5tained in all the parts to a few parts in 10

The readout coil is shown in figure 1.7. It is a single layer of

0.0089 cm diameter niobium wire wound on a 0.25 cm thick disk of macor.

The coil has 400 turns and a diameter of 6.9 cm. The lead to the center of

the coil is glued into a slot in the macor substrate so that both leads

come off the edge of the coils. The macor coil form is glued to one of .

the four cover pieces. This cover piece is 0.06 cm thinner than the other

three to compensate for the coil form mass.
* 5

Once the two proof mass subassemblies were constructed, they were

stacked on top of each other with a ring holding them apart. The thickness

of the ring was chosen so that the readout coil is about 0.013 cm from the

opposite proof mass. This structure was mounted on an aluminum fixture which

-22-
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maintained the angular orientation of the parts. A niobium housing tube

9.3 cm long with a 10.5 cm inside diameter was placed over the parts.

The ends of the assembly are sealed with a pair of tuning and feedback

coils shown in figure 1.8. The inner coil on each form is currently used

to match the resonant frequencies of the proof mass subassemblies as

described in section 1.5. The annular outer coil was included for future

use as a feedback coil. Fixtures for making superconducting joints and

heat switches are mounted on the opposite sides of these tuning coils.

There is also a superconducting transformer mounted on each tuning coil;

one for the differential readout circuit and one for the common mode readout

circuit.

The entire assembly is locked together with a pair of rings which screw

into either side of the housing tube. A cross section of the assembled

gradiometer is shown in figure 1.9. The assembled gradiometer has a baseline

of 3.2 cm.

All of the gradiometer components, except for the dielectric coil forms,

are niobium. Since niobium undergoes a contraction of 1.4 x 10-3 when cooled

* to 4.20 K, all parts must be made of niobium to prevent differential contrac-

* tion from altering the geometry.

o 1.4 The Gradiometer Support Assembly

The gradiometer is supported on an aluminum and titanium fixture in the

* cryostat which allows the gradiometer axis to be positioned vertically or

* horizontally. This fixture holding the housing tube is shown in figure

1.10. The housing tube is clamped between two titanium pieces which bolt

together above and below the gradiometer as in figure 1.11b. This part is

-25-
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clamped to the bottom of a pair of cross flex hinges shown in l.lla. These

hinges allow the gradiometer to be tilted inside the vacuum chamber of the

cryostat to produce test signals. Titanium is used for the parts which

make contact with the gradiometer because its thermal contraction is a

good match to that of niobium.

Mechanical force is transmitted to these hinges by a pair of arms

inside the aluminum support beams. These armc are rigidly attached to the

gradiometer with an arm that a mechanical force is applied to in order to

apply torque to the hinges.

Two methods of applying torque to the assembly have been used. In

the first experiments with the gradiometer a pair of superconducting sole-

noids were attached to the torquer arm and inserted into the gaps of a pair .

of permanent magnets fixed to the top plate. Current with opposite polarity

in the solenoids produces an angular deflection of the gradiometer. This

arrangement was replaced with a pair of PZT bimorphs later because flux

from the magnets was trapped in the gradiometer as it was cooled through -

its transition temperature, and this flux may have caused additional

coupling of the readout to mechanical motion.

1.5 Magnetic Tuning and Common Mode Detection

Even with excellent machining tolerances the mechanical springs can

only be matched to a few percent. Since we have designed the system to

reject cross accelerations to a few parts in 10 we would like to improve

the frequency matching to this level also. In this case an equal force on •

both masses will produce the same displacement, and the inductance of the

readout coil will be unchanged. To accomplish this, we have a magnetic

-28-
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tuning circuit in the gradiometer which adjusts the relative stiffnesses
• !

of the proof mass suspensions with respect to the case.

The circuit is shown in figure 1.12. The two inner coils of figure

1.8 are attached to matched inductors of a toroidal core. A third winding

on this core is used to adjust the currents in these loops. A fourth

winding on this core couples to a SQUID which detects common mode motion of

the proof masses. Its inductance is much smaller than the other three and

will be ignored in calculating the frequency shifts caused by currents in

the other three loops.

The inductances L and L are given by

p 

L -L° [1+ d[l.40a!-"

and

L =L 011+
2 02

L[ I1.40b]1 , .

where L L2 and d d2 . The flux equations for the three loops are

= (LI+L)II - LI 2 - MTLT [1.41a]

= (L 2 +L)I 2 - LI1 + MTLT [l.41b"

and
3 LTIT + MT(I1 - 12)" [1.41c]

We have assumed that the mutual inductance between loops one and two is

just L, and we will also assume that M = L L . Solving for the currents,

we find

-30- .° ' p ' " °



-L MT

*2 L2 +L -MT

-M L
3 T T

L + L -L MT

-L L 2 +L -MT

MT -MT LT 1.421

Tp

MT
L 1 L 3 [1.431

1 T

Similarly,

12 1 2 MT
2 2 L 3L2 LT [ 1.44]

and

T = LLL 3 L2 +L(T [1+Ll + L 1.451
1 2 T 12 l' 712 -

Using the currents I and I we can write the equations of motion for the
1 2

proof masses,

MT  2 ". i)

m+kXl - 1 ( MT12d 1 L ¢3) [1.46a]2dlL T

and

IMT 2"-"' -"

mS2 + kx +  [- 2 [1.46b]
2 2 2d2L 2 LT 3

2 2T

If we expand 1 and 1we then have

1 1T 2'r:2

m 1 + kx=1 (c - 3) 2  1 [1.47a]
1 1 o 1 L 3 L dJ

2db LT 1
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and .

mK2 + k x2 =- 22 + MT )2[ + 2]
2 2 2 [1.47b]

Hence the proof mass resonant frequencies are given by

2 1 )i - L 3
m 0  [1.48a]

2dl 1 .

and

2k+2 MT 2
2 k ~ [l T 3 .48b]

2 =  -- + [1 4b :.:'.

m 2d L 2
2 2

With current in the tuning loops, the electrical springs act in parallel

with the mechanical springs. In order to tune the gradiometer the sum of

these two spring constants must be equal for the two proof masses. There

are two levels of adjustment available. By storing different l and

the two suspensions can be roughly matched, then c3 can be adjusted_'

for a more accurate match. When current is stored in the readout loop

the accelerometers are coupled and the normal modes of the system split

into a mode which is primarily differential motion whose frequency increases

with readout current as in figure 1.4, and a mode which is primarily equal

motion of the masses. Bur. the tuning problem remains the same. In order

to make the gradiometer insensitive to common forces on the proof masses, .

each proof mass must have the same spring constant between itself and the

case of the instrument, so tuning is accomplished in the same way.

Detection of the common mode is carried out with a circuit quite 0

similar to the fine tuning loop. Let us consider the circuit consisting

of the two tuning loops and the loop which couples to the SQUID, ignoring

the fine tuning loop since currents stored in this loop are small. In this _ .

case the equations of motion are very similar to [1.411,

-32-
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= (LI+L)I  - LI2  - M  I " [l.49a_S S [ 1.49a] • 9

= (L2 +L)I 2 - LII + M I [ 1.49b]

and

= (L3 +L 4 )Is + MS(I 1 2)  1.49c]

where M = /L3L. The equilibrium value of I is kept at zero with a heat3 S

switch. Solving for I we find
S

1s= L3+ 4)L1 2  L [LL + L(L + L] + M ( 2 L1  LIs (L3+L4)LIL2 s 1 2 1 .- s 2 i 1_"

[1.501

Now in ideal circumstances the balanced gradiometer would have s = 0, c1  •

2' L 0  L 2
0 , and dl = d 2  Then I is reduced to

I Msl (Xl x 2

s= o , [1.511(t3 +L L)L I 0 d i--'-

U to lowest order in xl/d 1 and x2 /d 2 . In the ideal case I responds only to

common mode motion of the proof masses. In practice *i q2' dl # d2 ' and

L # L so I does couple to differential motion. This is not really a2 s

problem because common mode motion is much larger than the differential
S S

motion, and the signal from the differential SQUID can be used to identify

that part of the signal from the common mode SQUID corresponding to differ-

ential motion.
0 .0

The common mode readout circuit was included in the instrument

because in the future we will use its output in a feedback loop to stabilize

the positions of the proof masses. The feedback signal will go to the outer

-33- "
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coils in figure 1.9. This feedback loop will reduce coupling of vibra-

tion to the differential readout due to nonlinearity of the support springs. ..

1.6 Feedback Damping of the Differential Mode

The high Q of the differential mode is a disadvantage for several

reasons. It causes poor transient behavior since the system rings, and

the large signal at resonance taxes the slew rate of the SQUID detector.

When the slew rate of the SQUID is exceeded, it unlocks and information at

low frequencies is lost. Consequently, it is important to be able to damp p

this mode. The most accessible point at which to insert damping is in the

loop between the SQUID and the coupling transformer as shown in figure 1.13.

First we analyze a circuit which uses a real resistance R in the SQUID input .

loop to cause loss and damp the differential mode. Then a simple feedback

circuit which synthesizes this resistance is described.

The equations of motion for this system are -

1 22m + k = "" - _. 1 " .52a]

= (L 1 +L2)I-Mj = (Ll 0 +L2l 2)1-
1o. 52b1

and

R. = (L3+ dj _M [1.52c]
* j 4 dt dt

where the symbols are those used in section 1.1, and a resistance R has been -

included as shown in figure 1.13. To solve for the frequency we assume

iittiwt .- "-
that = e , I 1 + ei

, and j = j't . Then to first order in _0 0 ,-. - .--

ro' I', and j' we have -

00

2 2 = 2L I I' (1.53a] -.
(-W + W 1 dmdm

-34-
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0S

1 d 0 Kj[1.53b]

and -

(L 3 + L 4)iwj' iwMI' Rj [1.53c] -

WThere w k/in.
0

Setting the determinant

2 2 -2L 11 0
0 md

L 1l1o L1 +L2 -M 0

d

0 W R-iw(L +L4)[.4

gives the characteristic equation for w,

i3 -w2 R(L 0 +L) 2 W02 2L 0 102 (L 3+L4

1~ ~ 2 2i~o 10 D+

D 
2 2 2

D [(L + L 2  ~0 + 2L 021 20 [1.55]1

0 2
Where D =(L 1 +L(L 3 + L 4) M .Now let

0 +2L 0 12 L 0 (L + L) a
1 0 2 D [1.56]

md

and2L02 L
2 2 0o

2 0 md 2 L + 1.7

-36-
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P.7

and R + )

Then = D L2  [ 1.581

.3 2 2 2
i03 ~ - o ;_ -i 1  + 3Ja,. 2 0 .,.',...

[1.591 4

The characteristic equation is now a cubic since there is an additional

real solution which represents current j decaying through R without oscilla-

tions in . The equation is easily solved in two limits. If W + 0 then -3P

2 2 2 2
- 1 ' which is the result of section 1.2. If w3 we have w = o 2 ,

This is the frequency we would measure if the secondary loop of the trans-

former were removed. In both cases there is no damping. As R is varied .

between 0 and o the frequency moves between these two points, and the Q

falls to some finite value and returns to infinity.

We can parameterize (1.591 if we let x = iw/a I, A = 3 /01, and B =

W /W Then
21

3 x2A2

x 3 xA +xAB =0 [ 1.601 P ,

If x is a solution, the Q is then given by
0

I (x)m 0

2Re(x) [1.611 -

Equation [1.601 is a cubic and can therefore be solved exactly for the

Q for any A and B. Figure 1.14 shows the variation of the Q with A for a

0 given value of B (0.98). Figure 1.15 shows how the minimum Q varies with P

B. The result is approximately that

0..-[1.621

SQmin 1 ,/W["
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and "1+ ("[3
3l 1 'l '2.:51

(12 1 [1i•631

gives the minimum Q. .. . .

This circuit cannot be used in practice since the real solution implies

that there is a low frequency cutoff in the circuit response, and the addi-

tion of a real resistor would increase the noise in the circuit. However,

the equivalent of a resistor can be built using feedback techniques. This

scheme is shown in figure 1.16. It consists of putting the output of the p

SQUID through a filtering and phase shifting network H(c), and then feeding -

back a current proportional to the resulting signal to a transformer in front

of the SQUID. This technique was demonstrated by Kai Wang [Wang 19791, who P •

used this circuit to reduce the Q of a superconducting accelerometer.

The transfer function H(w) consists of a bandpass filter and phase

shifter. The SQUID control unit converts the SQUID input current j to a P.

voltage with a conversion factor Gs . This voltage is multiplied by H(),
-

and converted to a feedback current if in the voltage to current converter -

with a scale factor G . So .
v

itif = G H(co) G j'e [1.64
f v s .4

The voltage across the feedback transformer is

di
vf= -M f

dt

= - M G G siH(w)j' [1.651
f v s

So the effective resistance is just

R vf -MG G .iH...

eff = fvs [1.661

-40-
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The bandpass filter in H(J3) has zero phase shift at resonance so an

additional phase shif~t of 90 0 is needed to make R ffreal and positive.

So if

1 1 ( w ) f 2 1 ~) W 
. 7

Qf

* then Re becomes2

M G G id w 2

R f v.s

ff + [)fi&3f WiQ f wJ [1.681

In practice CAw is set at the resonant frequency of the mode to be damped
* f

and Ref reduces to

Rf M MGvG Q~ w [1.691

eff f S f

at the feedback frequency. By adjusting G v and Qf9 R ef can be adjusted to

reach a minimum Q.
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CHAPTER 2

Experimental Evaluation of the Superconducting Gravity Gradiometer

2.1 Balancing and Normal Modes

The first tests which will be described involve the tuning of the

differential mode, and the balancing of the proof mass spring constants to

reject linear accelerations.

Figure 2.1 shows the frequency of the differential modes as a function -"---

of current between 3.0 and 6.5 amperes. As the current was reduced to

values below 3 amperes the differential mode disappeared. This seems to be

due to an interference between the two proof masses which is eliminated as

the proof masses are pushed apart. It might be some small piece of material

which connects the two masses but loses contact with one of them as current

is stored. As current is stored in the differential pickup coil, the

common mode frequency remains fixed at 59.6 Hz.

The data of figure 2.1 can be fitted to equation [ 1.321 to give values

for the frequency of the differential mode with I = 0 and a parameter in

equation [1.321,

o2L (L + L

(2'T) mL 2d 2.1]

A fit of the data to equation [1.37] gives a frequency

f ~59 Hz

and 0

2 2
y 70 Hzm/A

As described in section 1.3, the design value for f is 60 Hz so the data
0

are consistent with the theory for the folded cantilever springs. The

-43-



7

x
hX

CI,

5 x Experimental

-Fit

4

I 3
0 10 20 30 40 50

1' (amp')

I Figure 2. 1 Differential mnode frequency shift

as a function of persistent current.

-44-7



observed frequency of the common mode of 59.6 Hz is also consistent. The

design values of the parameters for y are
• p. -. -.

;-. "

0

d = :.79 H/m,

-6

+ L = 9x10 H,
3 4

m = 1.07 kg,

2 = .81 9  2
and L 1.8 x 10 H

0

The value for L assumes that the coupling of the transformer in the readout
0

circuit is unity, so in practice we should expect L to be somewhat larger.

See equation [1.301. These numbers give a value

2 2
y = 74 Hz /A

so again the experiment is quite consistent with calculated results.

Looking back at equation [1.341, the optimum current is related to y by

21 2 f 022= o [ 2.21
op 3¥ ; -

O 3y

so that the experimental numbers give

= 4.2 A

op

This current corresponds to a field of 525 gauss or not much more than half

of the critical field of 1000 gauss for niobium. This is a consequence of

a conservative choice of pickup coil parameters. A smaller coil could have

been used, thereby increasing I with little loss of sensitivity.
op

In order to balance the system, the response of the differential SQUID

to a mechanical excitation of the gradiometer was measured as a function of

currents in the tuning loops described in section 1.5. Mechanical motion
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was generated in two ways. The internal PZT actuators described in section

1.4 were driven at 4.0 Hz, and the entire dewar was driven externally at

4.0 Hz using a mechanical shaker. The dewar was hung from the ceiling with

latex tubing to provide vibration isolation. This gives a vertical resonant

frequency of approximately 1.2 Hz for the dewar so it appears as a free mass

when driven at 4 Hz. Figure 2.2 shows the amplitude and phase response of

the differential SQUID to a constant drive signal on the PZT as current

in one tuning loop is changed. A constant current of 1.0 amp was left in

the other loop during the test.

The principle feature of figure 2.2 is that at a specific current the

amplitude response passes through zero, and the phase changes by 180 through

this point. This tuning point is the point at which one normal mode of the

coupled proof masses is pure differential motion and the other normal mode

is pure common motion. At this point the two proof masses deflect by exactly

the same distance under a static load. On either side of the tuning point

one proof mass moves more than the other, and there is a differential dis-

placement for a linear acceleration. As the current is moved across the

tuning point the stiffer suspension becomes the weaker, and the sign of the

reponse to a common acceleration changes; hence the 180 degree phase shift.

These results prove that the normal mode structure of the instrument

is understood, and that the balancing control described in section 1.5 is

working. This is essential if we are to make accurate measurements of

gravitational gradients.
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2.2 Scale Factor Calibration and Noise

The most important tests of the gradiometer are the measurement of its

scale factor and the detection of an actual gravitational gradient. This

section describes such measurcnents and gives some noise power spectra from

which a reasonable assessment of the instrument's present capabilities can 9.

be made.

The first calibration makes use of the gradiometer's sensitivity to

tilts described by equation [ 1.14]. If the gradiometer is oriented along .

the z axis, and is given a tilt of amplitude 0 and frequency W about the

x or y axis, a gradient
S2 2 --- .

g(t) 0 cos 2wt
2 12.31

results. This is a very attractive situation because the gradient signal

can be calculated entirely from measured quantities. It is independent of
p

the baseline of the instrument, and the location of the rotation axis.

The dewar was hung on latex tubing as described in the previous section.

The mechanical shaker was attached to the top of the dewar with its driving

axis parallel to the gradiometer axis. Since the top of the dewar is about

two feet above the center of mass of the hanging dewar, the a.c. force from

the shaker applies a torque to the dewar and a small angular motion results.

This angular motion is detected with an automatic autocollimator [Klinger

19741 whose beam is reflected from a mirror attached to the section of the

cryostat in front of the gradiometer.

Figure 2.3 is a plot of the differential SQUID response at twice the

shaker drive frequency versus the autocollimator tilt signal measured at the

drive frequency. The SQUID and autocollimator responses were synchronously

detected with a PAR 5204 lock-in amplifier. The upper points fit the
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* expected behavior of a twice frequency signal increasing as the square of

the tilt amplitude. This plot gives a scale factor of 1.2 + .15 ViV/E with

* 5.0 A stored in the differential loop and a drive frequency of 4.15 Hz.

Equation [1.331 allows us to predict a scale factor of 1.46 liV/E

using the experimental value of y from section 2.1, and a baseline of 3.2

cm, giving reasonable agreement with the experimental result.

In order to calibrate the system with a gravitational gradient we have

h measured the response of the gradiometer to a rotating mass quadrupole.

Figure 2.4 shows the layout of this experiment. Two masses are mounted

on an aluminum arm a distance r from the z axis. This arm rotates in a

vertical plane about the z axis at a frequency wi. The gradiometer is posi-

tioned with its sensitive axis horizontal, and its center on the z axis a

distance R from the center of the mass quadrupole. The azimuthal angle

is the angle between the z. axis and the gradiometer axis.

To calculate the gravity gradients, note that the displacement vectors

between M4 and p and M andpar

d (hsin -r co sti + rsinwtj -(R +h cos o 'k [2.4a]

and

• .- °- " Ao,,A

e d (h sino + r cosw t)i r sinwta s)ce )k

[2.4b]

The gravitational acceleration at p1 is

4. + •

~(t) d14l + d2
1 13 ~ 2.51
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To find the gradient we project this onto the unit vector in the direction

of the gradiometer axis and take the derivative with respect to h. So

g(t) a H[ 1 (t) (cos6 k -sine i)] 26

Taking the dot product

g~) GM 4 - -sine (h sin 6+ r cos w t) +cos 8 (R +h cosO)

g~t = h [(h sin a+ r coswt) 2+2rsi t+(R +h cose)]3'

-sine8 (h sine - r coswt) + cos e (R +h cose)

[h sine - r coswit) 2 +r2sin2 wt+ (R +h cose 8) 2] 1

[2.71

The experiment whose description follows is sensitive only to time varying

gradients so in taking the derivative we will drop terms with no time depen-

dence. This leaves

.2 2 2 2
sn8(h sine8+ r cosowt) + Cos eO(R +h cose8)

g(t) =3 eI1 +5/ow)2 oe 2

h sn 8+ rcost)+ r' sin wt + (R + h oe

2 2 2 2
+ sin 8(h sine -rcoswt) + cos O(R+h cose)

2 2 2 2 /
Lh sin 8- rcoswt) + r sin Wt +(R +h cosO)]5/

[2.8]
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Finally we set h = 0 and again drop constant terms. This leaves

3GMr2 sin2 6cos2t
g(t) = [r2 + R [2.91

We find that the only time dependent term is at twice the mass quadru-

pole spin frequency. This is desirable since most of the mechanical noise

produced by the rotor is at the spin frequency. The signal also has a clear

signature in that rotating the gradiometer about the vertical gives a sin2

modulation of the signal. Unfortunately, the dependence on R is a disadvan-

tage. For R > r the signal decreases like R-5 so the rotor has to be rather

close to the instrument and relative gradient error is five times the rela-

tive error in R. For these reasons the rotating mass quadrupole is not very P

useful for determining the scale factor of the instrument, but it is useful

as a demonstration that the gradiometer is actually able to see a gravita-

tional gradient.

Figure 2.5 is a photograph of the mass quadrupole. The masses consist

of four lead bricks mounted with their centers of mass 35.6 cm apart. For

this experiment the gradiometer dewar was hung in the corner of an acousti- P 4

cally insulated room from the usual latex tubing. The mass quadrupole was

positioned just on the other side of the wall. With this arrangement the

dewar could be rotated to change e. The measured values of the parameters S -

in equation [2.91 were

M = 43 kg,

R = .58m,

r = .18 m,

and w = 20.1 rad/sec.
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* From these we calculate

3GMr2  4
= 3.4 E.

[R + r 2 ] 5 /2

The mass quadrupole was rotated at 3.2 Hz, and the signal at 6.4 Hz was

synchronously detected with a lock-in amplifier. The lock-in reference was

provided by a photodiode-phototransistor switch on the frame of the mass

quadrupole. Figure 2.6 is a plot of the gradiometer signal versus azimuthal
.2

angle 9. The solid curve is a fit to the data assuming a sin 6 dependence .* ...q
on azimuthal angle. The data is somewhat noisy because electrical noise

from the mass quadrupole drive system causes the SQUID to unlock frequently.

When the SQUID unlocks its output changes by a multiple of 20 mV causing the .

lock-in to overload. In order to collect data a short averaging time had to

* be used. The time constant of the lock-in amplifier was set at 10 sec for

the data in figure 2.6. Using the data from the previous calibration gives

3GMr2

2 2 5/2 .5E
[R +r "

This is significantly less than the calculated value, but a i cm error in .

measuring R gives an error of about 10% in the gradient. In addition to this

error, finite size effects can also reduce the observed signals. The fact

that the reponse varies like sin2e strongly suggests that it is gravitational

rather than seismic or acoustic. We also verified that increasing R by 30

cm eliminated the signal with the averaging time used above.

Figure 2.7 shows the gradiometer output noise versus frequency between

zero and ten hertz. The large peak at 1.2 Hz is the vertical resonance of -

the suspension. Above 2.5 Hz the noise floor is at 3.3E/VHz, although there

are several peaks where the noise is more than 40E/P/Hz. Under the suspen-

sion resonance the noise climbs to about 100E/IVz. Two intrinsic -
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Figure 2.6 Gradiometer signal from
the rotating mass quadrupole.
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sources of noise are readily identified. The noise performance of the

commercial SQUID used in the differential readout was measured separately . .-.

before we installed it in the readout circuit. Between zero and ten hertz

the output noise was 1.1 pV/Hz or the equivalent of .92 E/Hz with 5.0 A

in the readout loop. The measured performance is only 3.6 times this above

2 Hz. So between 2 Hz and 10 Hz the instrument's performance is approaching

one of the intrinsic limits of the system.

The other intrinsic noise source is the Brownian noise in the differen-

tial mode due to the dissipation in the system. When the system is balanced

the differential mode is just a harmonic oscillator subject to a fluctuating

force with power spectral density .

Sf (w) = 4KTH [2.-01
[2.101 .. .,..

according to Nyquist's theorem. Where k is Boltzman's constant, T is the

temperature, and H is the mass divided by the energy decay time of the

mode. The measured energy decay time of the differential mode with 5.0 A

stored was 6.3 seconds. The spectral density of gradient fluctuations .

corresponding to Sf( ) is given by

Mb [2.111 .

at frequencies well below the resonant frequency of the differential mode.

0
At T = 4.2 K this gives

S = 0.18 E/Hz.
g
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This is nearly 20 times less than the observed noise floor of the instrument

and is six times less than the limit of the SQUID. .

Although the noise performance above 2 Hz is quite close to expectations,

the noise amplitude between 0 and 1 Hz remains a serious problem. In order

to carry out the inverse square law test we need to measure gradients at the P•.....

center of a cylindrical shell whose central horizontal gradient is 6 E.

To complete a highly sensitive test we would like to measure this to an

-2accuracy like .5%. This requires the ability to detect 3 x 10 E, a signal

well below the noise level. However, there are several improvements which

may reduce the noise at low frequencies. In section 2.4 we will discuss

the sensitivity of the instrument to thermal fluctuations. It turns out that -

this sensitivity is quite high, and the implementation of more stable thermal

control in the instrument may improve the low frequency noise performance.

We will also complete a feedback loop to stabilize the positions of the _

proof masses, and this may reduce low frequency noise caused by nonlinearity

in the suspension. Such nonlinearity may cause rectification of high fre-

quency signals, which would show up as an increased noise level near zero

frequency.

2.3 Feedback Damping

During the calibration experiments described in section 2.2, feedback

damping was used to greatly reduce the signal at the differential mode

frequency. This was essential because excitation of the differential mode

would cause the SQUID to unlock frequently if the mode was left undamped.

Figure 2.8 shows the circuit used to condition the feedback signal.

It consists of a bandpass filter with adjustable Q and center frequency,

a phase shifter to provide 90 degrees of phase shift at the bandpass center

frequency, and a voltage to current converter which provides the feedback
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current. According to equation [1.621 the minimum is approximately

1-1 0

Qmin - 21 f 2.12]

W can be measured directly since it is the normal mode frequency in the

absence of damping. We can calculate an expected value for w from equa- -

tion [1.57]. According to [1.56] and [1.57]

2 2 2 2

0 + 0
(LI 0 +L 2 )(L 3 +L 4) [2.131

With 6.OA in the readout loop we had

Wi = 505 rad/sec.

Using the design values for the other parameters

D 2700 (pH)2

(Ll 0 +L 2 )(L 3 +L 4 ) = 4500(pH) 2

and

a = 377 rad/s
0

we find an expected value for w of.

w 458 rad/s.

According to [2.121 this gives Qi 11. Using [1.63] we find the Qmin

should be reached at S

Reff (L 1 ° + L2 )

D = 2 1 - 2 ) [2.141 i'

or 0

Reff - 3.1 x 10 .
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According to [1.691

R = M GQW 2.151

where Mf = 10 6 H

G s= 1.72 x 10~ V/A

Qf = 50 • .

Wf = 500 rad/sec.

With these values of the parameters

Rff =G (4.1 x 103 V- Q/A). [eff[v2.161 i i., l.

Figure 2.9 shows the measured Q of the differential mode versus Gv,

the current to voltage scale factor of the final stage of the feedback p 4

circuit. As Gv is changed, wf must be readjusted so that the bandpass

filter is tuned to the observed frequency of the mode. If G is made very
V

large, the frequency falls to 73.8 Hz or 464 rad/sec. This is quite close p
3to the expected value of w. The initial Q of the mode was 3.2 x 103

The minimum Q obtained was close to 50 rather than 11. This is probably due .'.

to the Qf of the bandpass filter in the feedback circuit which was left at

50 as G was varied. The value of G which gives a minimum Q is largerv v

than expected from [2.141 and [2.161, but this could easily be due to a

smaller value of mf than the design value of 1 pH.

In operation this feedback loop reduced the signal at the resonant

frequency by a factor of approximately 30 and greatly improved the stability

of the SQUID.

2.4 Thermal Sensitivity

The readout described in section 1.2 is sensitive to changes in the

temperature of the gradiometer due to the variation of the penetration

depth in niobium with temperature. A magnetic field applied to the surface
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of a superconductor will decay exponentially inside the superconductor

in a characteristic length X, the penetration depth. This penetration S

depth is a function of temperature, and it is part of the gap between the

readout coil and the opposite proof mass. So, as it changes with tempera-

ture the readout gap varies and a signal is detected. An approximation

to the temperature dependence of A is given by the two-fluid approximation .

40 [(C)2.171 . . .

[Tinkham 19751, where A 440Aand t = 9.2 K for niobium. Taking the
0 C

derivative of \(t) with respect to temperature gives

dt ~ ~ 3 4] [-•3]/2.-"'
d (t) 0 -

At 4.20 K

dA(t) 9.7 A/'K -
dt , -

[2.191

Looking back at the introduction we see that a gravity gradient of

-14 4z.W1 E produces a Ax of about 2 x 10 cm, or 2 x 10 A, so we can expect

a small change in temperature to produce a large signal. This effect is

larger than the length change caused by the coefficient of thermal expan-

00 sion of the niobium. At 20 K this coefficient is

1 dL-7
L L _ 3 x 10/°K

L dt
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Measurements of the thermal sensitivity of the instrument as a function

of stored current in the readout coil and gradiometer temperature have been

carried out. Figure 2.10 shows dV/dt at 4.50 K versus readout current,

where V is the output voltage of the differential SQUID. dV/dt increases

linearly with Io and the slope of the fit is

31.6 v/OK-A.

The measurements were made with a thermometer and a temperature controller .

which stabilized the temperature by heating a coil wrapped around the case

of the gradiometer. The thermometer was a carbon-glass resistor model

CGR-1 manufactured by Lake Shore Cryotronics. It's conductance was

measured with a potentiometric conductance bridge made by o.-.E. Corporation,

and the temperature was controlled with a temperature controller also made

by S.H.E. The response of the SQUID to temperature changes of a few milli-

* degrees was measured at each current, and no hysteresis was apparent in

the response. The slope above is about 9 times larger than would be pre-

dicted by considering dX/dt. With 5A stored the scale factor is 1.2 . -.V/E ,

and sE produces a relative motion of 1.4 x 10nc 4 cm, so the scale factor

for displacement is

* 8.6 x 10~ V/cm.

Using [ 2.191, and assuming that the magnetic field penetrates the readout

coil and the proof mass equally we get %

8.1 x 10 V/cm.
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Part of this discrepancy could easily be due to penetration depth changes

in other parts of the circuit. For instance the inductance of the trans-

former primary will change with temperature. It is also possible that the

effective area of the wire in the readout coil is larger than the area of '.,,

the proof mass, causing a larger change in inductance with temperature.

Figure 2.11 shows the behavior of the dV/dt as a function of tempera-

ture. The measurement points were taken with 100 mA in the readout loop.

The solid curve shows the behavior of dX/dt as a function of temperature

0from [2.181. This curve is normalized to cross the measurement at 4.7 K.

The measured points do not increase as rapidly as [2.181 but the rapid

0increase in dV/dt as temperature approaches 9.2 K does indicate that the -.

p...
temperature dependence is related to the superconductivity of niobium.

This very large temperature sensitivity may explain the excess gradio-

meter noise below 2 Hz. With 5A stored, the thermal sensitivity is 158 V1°K

compared with a scale factor of 1.2 IV/E, so temperature fluctuations must

-8obe kept below 10 OK to prevent them from contributing to the observed

noise. We currently have a temperature control loop with a stability around

10 K, and the excess low frequency noise is about one hundred times the

SQUID noise.

2.5 Flux Creep

Early experiments with superconducting gradiometers [Paik 19781 indi-

cated that readouts of the type described here would show drift caused by

flux creep if type II superconductors were used in the readout coils. This

drift is caused by the motion of trapped flux lines in the magnetic field

gradient of the readout coil [Anderson 1962], [Anderson 1964]. Flux is

trapped in type II superconductors when H of the material is exceeded.
cI
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The early readouts were constructed using Nb-Ti wire which has a very low

H These readouts showed a steady drift like that expected from flux

creep [ Kim 1962]. To eliminate this problem we investigated the stability

of pure niobium wire which has Hcl 1000 G.

In order to reduce the time required for cooldowns and changes in the

experiment we constructed a small probe to operate as a dip stick in a

narrow neck storage dewar. The probe is equipped with a small solenoid

of the wire sample to be tested, a hall probe to detect the field produced .

by the persistent current in the sample, and a pickup coil which is wrapped

around the wire sample and coupled to a SQUID to detect small changes in

the persistent current. P

Figure 2.12 shows the drift in the SQUID output with 2.0 A stored in

a sample of Nb-Ti wire. Figure 2.13 shows the drift caused by 5.OA stored

in a sample of pure niobium wire. The drift in the niobium-titanium is P

logarithmic as pr ..dicted for flux creep by the Anderson-Kim theory. The

niobium sample does not show any steady drift, and the stability of the

current is at least 25 times better than it is in the niobium-titanium. -

Because of these results, all of the coils in the gradiometer were built

with pure niobium wire of the type tested in figure 2.13.

2.7 Magnetic Sensitivity

Since the source for the inverse square law test is a steel cylinder,

careful magnetic shielding will be required to prevent the magnetic field

of the source from causing a spurious signal. Because of this we have

built several layers of magnetic shielding into the cryostat. The instrument

itself is the first laver since it is a solid superconductor which shields
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the pickup coil, transformers, and signal leads. The inside of the vacuum

can is lined with another lead shield, and t'ere is another lead shield

and a 'p-metal shield outside the vacuum can.

This system was tested by applying a magnetic field to the outside of

the dewar with a four foot coil and an audio amplifier. Fields up to 2 milli-

gauss were applied and measured with a flux gate magnetometer without any

reponse from the differential or common mode SQUID. The system can easily

be tested to higher fields if necessary with a more powerful amplifier to

drive the coil.
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CHAPTER 3

Evidence for the Inverse Square Law

3.1 Celestial Mechanics

The original and strongest evidence in favor of the inverse square

law of gravitation comes from observations of the mechanics of motion in

the solar system. The most stringent limits on variations in G come from

the agreement between theory and observation of the precession of the

perihelia of several bodies in the solar system and the binary pulsar

(PSR 1913 + 16). Additional, but weaker, constraints on possible varia-

tions in G can be derived by comparing determinations of planetary masses

made by observing the planet's effect on the orbits of other bodies at

different distances from the planet [Mikkelson 19771.

The orbits of bound particles in an inverse square force field are

closed ellipses, and small deviations from this force law cause orbital

precession such as that caused by corrections due to general relativity.

Consequently, any variation of G with distance would cause a discrepancy

between observed rates of precession and those predicted from the interaction .

of the planets and relativistic effects. Consider the motion of a body of

mass m in a central force field F(r), since angular momentum is conserved

IS
2 L [3.11

is a constant, and the radial equation of motion becomes [Goldstein 19501

-2 /mr2 F(r)/m

[3.21

For a nearly circular orbit of radius a we can expand [ 3.2] in a power

series in x = r-a, so P
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L + IF... = -F(a)+ F,(a)x +
2 a

ma~

[3.3]

Using [3.21 to cancel the terms which are constant we have

x - F~a)+ Ft(a) x = 0 ,a 3.4] 1

to first order in x. From this we can see that the body oscillates harmoni-

cally about the circular orbit with a period

T' - 2Tr - F a F'(a)] [3.51

Since - is approximately constant, the advance of a planet's perihelion in

one orbit is

= T 2L a -27r
a [3F(a)+aF'(a)] [3.61

Using [3.21 again

t .

A =2T 1[3 + aF'(a) 3. 71
F F(a)

Now suppose that G does vary with r, so that

F(r) = -G(r)M [3.81
2 3.81

r

Applying [3.71 we find

A8 -TraG' (a)

C (a) [3.91

" I 
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to first order in G'(a)/G(a). The most accurate measurements of orbital

precession have been done on the orbit of Mercury where the general relativ- .--

istic effects are largest. The predicted value of Ae for Mercury after

subtracting out the effects of other planets on its orbit is

AE = 5.01 x 1 rad/orbit
mer

where A6 is calculated with the relativistic formula [Marion 19701

A = 6Gr M /[c2a(l -e 2)]

where M is the solar mass, C is the speed of light, a is the semimajor

axis of the orbit, and e is the orbital eccentricity. The measured value of

A6 is [Shapiro 19761mer

A = 5.03 + .02 x 10- 7 tad/orbit,.
mer

The excellent agreement of these numbers places a stringent limit on

7aG'(a)/G(a) for a = 5.8 x 10 km, the semimajor axis of Mercury's orbit. -. '

Measurements on the orbit of Mars [Laubscher 1971] and the orbit of Icarus

[Shapiro 1971] also give good agreement with general relativity. These

8measurements rule out variations of G of more than a few parts in 10 at

ranges close to 108 km. Observations of the binary pulsar PSR 1913 + 16 .

[Taylor 1976] indicate that G is constant to parts in 105 at 106 km.

4 8A comparison of G at distances down to about 10 km with G at 10 km

can be made by comparing determinations of the masses of the inner three

planets made at these two distances. The first mass determination comes

from analysis of inuer planetary radar ranging data where the distances

S between the planet and the body whose orbit it perturbs is on the order "
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8 -' .of 10 km [ Shapiro 1973]. For Mercury and Venus, the second mass determina-

tion comes from observations of the trajectory of Mariner 10. Mariner 10
4

flew by Venus with a minimum separation of 10 km [Howard 1974] and came

3
within 3 x 10 km of Mercury [Esposito 19761. The second mass determination

for the earth-moon system was made with lunar laser ranging data. This 4

3 8comparison leads to a limit on the change in G between 3 x 10 km and 3 x 10

km of 5 x 10-4 [Mikkelson 1977].

In summary, the inverse square law is very well verified at astronomical

distances and any proposed violation must be extremely small at these ranges.

However, the exponential deviation of equation [1.11 has this property and
is not constrained by solar system data if - 10 km. Long has proposed

a violation of the form

G(r) = G(l + .002 Znr),
[3.101

[Long 19761 based on laboratory data, but some mechanism must cut such a

violation off at distances of 1000 km because it predicts a change in G of

10% between 103 km and 108 km. -

3.2 G Measurements

At laboratory distance scales measurements of G provide some slight -..-

evidence that G is constant. Long has reviewed a number of precise labora-

tory measurements [Long 19741. A plot of these measurements is shown in

figure 3.1. The measurements are consistent at the level of three standard

deviations, but Long points out that variations in G of less than 1% over

this distance range are allowed by the data. He fits the dashed line to

the data using equation [3.101, and his own measurements at 4.5 cm and

30 cm [Long 19761.
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Figure 3.1 G as a Function of Mass Separation [From D.R. Long, Phys. Rev.
D 9, 850 (1974)).
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Most of the measurements in figure 3.1 were made with torsion balances;

the technique pioneered by Cavendish in 1798, although Poynting and Richarz S

used ordinary balances to detect the change in weight on a test mass from

an attracting mass. The most modern measurement of Rose et al. was made

by measuring the angular acceleration on a torsion balance mounted on a.p

rotating table subject to a constant torque from masses also mounted on the

table. The references for the various points are:

B [Boys 1895]

BR [Braun 18961

P [Poynting 18911

0 RK-M [Richarz 18981

H [Heyl 19301

HC [Heyl 1942]

R [Rose 19691, also see [Beams 1971).

Long's measurement also employed a torsion balance. He used two rings

as the attracting masses and positioned the test mass of the torsion balance

at the point where the derivative of force with respect to distance is zero

" for each ring in order to reduce the necessary positioning accuracy. Although

the G measurements cannot be construed as verifying Long's measurement, they

do leave open the possibility that something very fundamental is going on.

Long has pointed out another set of measurements which are consistent with

his own. These were made by measuring the frequency shift in a torsion

0 balance as an attracting mass was moved between several locations [Karagioz

.-" 19761. Long has analyzed their data and found a value for X in the equation

-78-

. . .. ,. -. o-. .-. -.' ~.'- . .-.. . .. ......... .. .....,, . . .. ..... ... .. . . . ". .. .. . ... .. .. . . . .- . . . "-. .



[ ~ ~ - . .] ' -,. .- .

r G[1+X lnr [3.111

of X =(2.01 + .61) x 10 - 3

[Long 19791.

3.3 Recent Experiments

Since 1976, when Long first claimed that a violation of the inverse

square law exists, some work has been done with the specific purpose of .

checking his results. The only work to claim an accuracy better than Long's

was done at U.C. Irvine [Spero 19801 using a method similar to that described

here. The U.C. Irvine group used a torsion balance to measure the horizontal P..

gravitational gradient at the center of a stainless steel cylinder. Their

cylinder has a diameter to length ratio of about .1 and is 60 cm long. The -

gradient was measured by moving the cylinder so that the proof mass of the

torsion balance was next to one wall and comparing this to the force on the

balance with the proof mass next to the other wall. They used y-ray trans- -

mission studies to measure the homogeneity of their source. They find a 3 J

value for A in [3.111 of
-5-.

X (1 + 7) x 10 - 5

This would appear at least to rule out Long's logarithmic model for the viola-

tion, but Long has argued that such a form might arise from a vacuum polar-

ization effect similar to the effect which produces a logarithmic modifica-

tion of Coulomb's law at short distances [Long 1980a]. Such an effect might

be unobservable in a null experiment due to the lack of a polarizing field

[Long 1980b].
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Several other interesting experiments have been done, but none has

sufficient accuracy to rule out Long's result. Panov and Frontov [Panov

1979] used a torsion balance to measure the ratio of G at 3 m to G at .4 m, I 4%"-M

and the ratio of G at 10 m to G at .4 m. Their results were

G(3m) = 1.003 + .006
G(.4m) -

and

G(. 4m) = 998 + .012.

Unfortunately, the stated errors are comparable to the size of the effect

predicted by Long. Hirakawa [Hirakawa 19801 has measured the interaction

between a gravity wave antenna resonant at 60.5 Hz and a steel bar rotating

at 30.3. His analysis of the data confirms Newton's law to + 3% over the

range from 2 to 5 m, but this error is almost ten times the expected effect

from Long's work. Taken as a whole, this work indicates that more precise

measurements at different ranges will continue to be interesting and

challenging for some time.
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CHAPTER 4

Analysis of the Inverse Square Law Experiment S

4.1 Newtonian field of a Cylindrical Shell

In this chapter we will describe the source and some possible signals

from our planned experiment. Our source is a large steel cylindrical shell

which is designed to fit over the dewar containing the gravity gradiometer.

This cylinder was machined from a centrifugal casting of ASTM-27 grade

60-30 normalized steel. Its length is 5.080 m, the inside diameter is

0.4572 m, and the outside diameter is .5588 m. This gives it a mass 3.24
1 3 1 3" ...

x 10 kg or 7.15 x 10 lbs. For the moment we will assume that this source

is perfectly cylindrical and homogeneous for the purpose of calculating its

gravitational field. We will analyze the errors due to deformation and

innomogeneity of this source in a later section.

The acceleration produced by the gravitational field on a test

particle positioned at p(r,c,z) is given by

L/2 27T R+t

a(r,4,z) r - G(;-;') r'dr'd 'dz' %

-L/2 0 R-t [4.1]

where G is the gravitational coupling constant, a is the density of the

cylinder, p' is the integration variable, and R is the mean diameter of the

cylinder. The coordinates are shown in Figure 4.1. It is clear from

symmetry considerations that the result for a must be independent of so

we may set = 0 and consider only a test particle in the z-x plane. Then
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SoS

p = rr + zz = ri + zk, - ')

and fo A Aehv

and '~ = r'[ i cost' + j sinP '] + z' k. ,.-'[.-

L/ 27 , .-

I p °

So-- "

-P' = (r-r'cosP') i-r' sin' j+ (z-z')k , :'d1[ 4.21 9 .;

and for a we have

L/2 23 R+t"2
:fr/ f f 2 +r, +(z r'dr'd,'dz

~(r~z) = -z-z I + r -2 2rr'cos4I3/

-L/2 0 R-t [4.31

Note that the integral over P' in the j term vanishes, since this term has

odd parity.

Let us define the dimensionless variables 2z/L =, 2z'/L = r', r/R = ,-.

r'/R = ., r = 2R/L, and w t/R. Then

1 272ff f ^2(r,z) =-Gar2L a[n( -acos')i+(C -')k] dado'd '.

2 3/2-1 0 1- [ _,)+r2( +  a 2_2 ccosV,]"'-.'

[4.41

Our experiment will entail measurements of gradients of the cylinder,

so we want to calculate a z/Z, and Da r/r. We also need to know how these

quantities vary with position near the center of the cylinder, in order to

determine how accurately the gradiometer needs to be positioned in the

cylinder. First we calculate 9ar /3r for z =0. Then _
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1 21T 1+(L)

a (r,o) = -G9fl2L f q f n accos ')dotdP'de'
r 0 f -fLf 2 2 2 "2.." 3/2

-1 0 1-w + n2(C + 2 - 24acos'-

4.51.7

Doing the integral over ' we have

2 22 2+~
a (r,o) = -2GoR C / t(C- cosV')[+n 2 ( 2  2 cos') dO'd.

r ~~~ a 2 ( c 2stcsV)
0 - 2  k [4"6.ccs"-"6]

2 2

Now since rl = 0.01 for our source we can expand in a power series in

and then integrate over 'term by term. Then

a (r,o) -2= ( c - OLCO SV'
ri

r 2 +J 2 -2 Ccos '-

0 I-

2 (2 + a 2 rtcosO') + I" n 4 (C2 + ot2 -2E atcos€ ,)2.-

5 6 , 2 2 3 2 2

16 2+ -2 cycosV') + 0(n

(4.71

The ?' integration over the first term gives zero, so
l+Wo- ._. .

a (r,o) = 2GOR f an2 [i _ 3/4 n2 ( 2 + 2c 2 ) I

S 2 +t2)+2(E2+ct2)ct2,+2ota 3 6 2o2 "

2 2 2 2 2 
2 [4 2] T

8 3 2 + a )  + 2 (E2 2 + 3 ot4x + 2 cc C 6 4.+

+ 3a 2 2 +cc2)2 + 6 a 2 2( 2 +a2)+ 3 cc4 C2]J da 14.81

The cylinder mass is given by

l+W)

M=T(R + t )2 (R -t) 2] Lo= 2R2LTrj cda . [49]
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Let us define

n~l n+l

A &~ nd (1 + CO) 0
n n + 1

1-W [4.101

Then M =2R 
2 L~T0A (w). Finally we do the integration over (x. We have

a r(r,o) =2 A3

r5T +M2 ~ 3 + +5w

15 T 3 A (w) A (w])

35 61 A 3(w) _9 2 A 5(w) A 7(w)
T) + ___ ++ r

16 11

[4.11]

Bu t

and
A_5(w 10 2 4 m.

and
A ()2 4 6

1 i+ 7c + 7w +Cw D

A M~j

so
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a (r,o) = GM 1 + 2

+p

+-5 n 4 1 - + +2 2 (1 + t +--,.,-.

8 L RJ R/ R.~- 3

2 4 62

35~~ 6 (6) -2 + q

t) 4 1 4 + ( ) ° + 6 + o(n8)

64.21

Since n is 1/100 and w is 1/20, only the first two terms in this expression

give measureable contributions. The solution has two important advantages.

2 2The lowest order contribution to a /?Jr is GM/R L(2R/L) . This is quiter

small since 2RIL is small; consequently any new non-newtonian force makes

a proportionally larger contribution to the central gradient. Ideally the

newtonian term would be zero, and we would be doing a true null experiment.

However, this would require an infinitely long cylinder, so we must settle

for a cylinder which attenuates the newtonian gradient by a factor of 100.

I.. .

...................ontributions. The-solution has tw importat.advatages.....

Th prooronallyvantger isonhtrbthegin t i the central laent Idef l the'.-.

cyliend advnealy idepndet ohf gradiet in.tecnrlpln f e

-86- 0

1 4



Consider the lowest order term in the force equation [4.121 , which

is of the form a =Cr? where C is a constant. In the x-y coordinates this

has the form a =c(x5Z + y9). Hence 3a /ax = a /9y =c anywhere in the
X y

2 2
central plane. The lowest order correction to this is -3/4 Tj C which

is very small. If we want to measure the central gradient to 0.1% we need

only have 2 < (.1) 4/3, or r < (.37)R =18.8 cm. This is a very weak

centering requirement.

Next we consider variations of 3a /Dr with z. Using equation 14.4]
r

we have
1 21T 1- w

ar--(M2 L f f
gr\z) 3rir=0 2R J J

- 0 1+~

1 T 2Cc2 Cs2,1dd'

22 2+ co ) } [4.131
~(;~ +t)2 (; 2+2

Doing the 'integral

9 z) -Gcrr Ln 2 f f -f 1

3 (flc) 2  1dctdt, [4.141
2 [ 2j 5 /LI2 j5/
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Doing the integral over a~

( -Gylj UTl

-r Rf 21222 1

3 R1

* [(2 )2 ) 12 ]~~)+f~+ 3/2 d'

= -Z'r[[l 2+U 1+2 I 1(I+;)+n2G )2I

1g(1z.;R2fn2(1cJ 2- 2 (1+W)2] 21/~2 )i

0 2 1r 2 r 2 2 1 3 / 2 [ri 3 / 2 22 1 /

LR-) 1+T) 2 21() 2(-)+ 3
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This function is shown in figure 4.2. It is evidently quite flat

near the center of the cylinder and falls off rapidly outside the end.

To determine how accurately the gradiometer needs to be positioned verti-

cally to measure the central gradient we expand Da /DrL in for small 111r =0_-,

Susing [4.161 . This givesLALl

g(Z) -2 nG {l + 3 + a( 4 ) + O(2n2 ) + a(n2)}LR 2  
'

[4.181

So the gradient error produced by a vertical positioning error is second .,

order in the vertical displacement of the gradiometer from the center of

the cylinder. Symmetry requires that the error be some even power of C.

An error of less than I part in 10 requires that the gradiometer be within

4.6 cm of the center. This is more severe than the radial positioning

requirement but still is easily obtainable.

There is one further positioning error which needs consideration.

Newtonian gravitation obeys Poisson's equation so that if ,P is the gravi-

tational potential, then in vacuum

~ % "__ __-

:2 = 2q + 2qb + 2qb 0. "--

9x2 3y 2  z2 [4.191 .

For a perfect cylinder, symmetry requires that

* 2~ 32 - 2_

22 y2 ,

[4.201 -
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so
2. -2 2.

4. 21]

This means that as the gradiometer is tilted away from horizontal up to

vertical its output will change by a factor of -2, hence a degree of

leveling accuracy is needed. To determine this we need to evaluate the

gradient signal at the center of the cylinder as a function of angle

between the gradiometer sensitive axis and the horizontal direction.

If we project the acceleration onto this direction, we have

a, a-.

where

n i cos0+ k sinc

The differential of is

da la, -IJda L 3x 3z ,

. - -

and the directional derivative of a along the n direction is then given by

*a g - Cos 0+ asin a

'a 3 = a •n

[4.22]

see for example [Buck 19651. But
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aa0
3 l~ a cosv + az sin el

3a aa
"x cosO + az sin

and

Dz 3 a xcos 6+ a zsinel
3z z

aa D+a
s= - o + z sin eaZ az

* Evaluating these quantities at the center of the cylinder, we have

3a 3a
-x z

since ax 0 along the z axis and a ct0 in the central plane of therx z p ..
cylinder. Using equation [4.22],

Da 9a
x 2 z 2

g x" cos20 + - sin-

Da
xi 2 .2cos e -2sin 2 9

ax

= y- 1 - 3 sin 2 0 . [4.231

These results can also be obtained by considering a similarity transforma-

tion on the tensor F which rotates the spatial coordinates with respect to

the cylinder axis [Goldstein 1959].
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In order to have 3 sin e 0 we need e < 10. This seems a rather severe

constraint. Fortunately g e at e0=0 is a maximum, so that by measuring g S

at three values of 6 which we separate by a known A0; a / x = g can

readily be found by interpolation.

To summarize, the radial gradient at the center of the cylinder g ris

-3 /2

GM 12R\ 2  + 2R\2

r - LR2 Li [4.241

and the axial gradient g zis

*-2GM 2R 2 213/2

LR2  [+()[4.25]

from [4.21]. These gradients have the important characteristic that they

change slowly as the gradiometer is moved away from the cylinder center.

Careful attention needs to be given to the orientation of the gradiometer

axis with respect to the cylinder axis, however.

The orientation error as well as errors due to perturbations of the-

cylinder discussed in sec. 4.3 can be eliminated by planning the experiment

to measure g,9 g and g . The gradiometer mount described in Chapter 1
g

* allows the instrument to be supported in two positions which orient the

gradiometer axis vertically and horizontally. Two positioning holes in the

mount ensure that the axis tilts by 900 between these positions. Equation

[ 4.191 says that the sum of gP g and g zis zero if the inverse square

law is correct. This remains true in the presence of distortions of the

cylinder and orientation errors.

0' However, we will see in sec. 4.4 that the finite size of the gradio-

meter puts a limit on the accuracy with which equation [4.19] can be
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verif ied.

4.2 Gradients produced by a Yukawa Potential and the Logarithmic Potential

As discussed previously several authors have proposed a violation of

the inverse square law which has the form of an exponentially damped force.

In this section we will consider the gradient in our cylindrical source %

which such a force law would produce. This force results from a potential

of the form

-.caGMery (r) = - 14.261
y r

The two parameters ct and 8 determine the magnitude and range of the potential.

. Since y is exponentially cut off for r>> 1/8, we can only expect mass at a
y

range of - to produce significant variations from the inverse square law.

The force from [4.261 is

+ = -c GM(1 ;- ji

a (r) + r)e- r [4.27]
yr

Using this we can write an equation for the force on a test particle in the

field of a cylindrical shell,

L/2 2ir R+t

r' [(r-r'cos ')i +(z-z')k (l+ p)L: d 'dr' ,--.:
a(r,z) = -cGof 3.

-L/2 0 R-t P

[4.281

where

p = [(-z,)2+r+r'22rr' cosO'I.

We would like to compare the gradients yr = r an d
r I r=O

with the results for the Newtonian gradients, so we first calculate . . '
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L/2 R+t .2:./.,..:.,.

r 3r'2(13q! + (a2r2-2) 28q dr'dz'
y (z) Co s-' +- r'dzr = GO q

-L/2 R-t

14.291

2 2-"where q [(z-z') + r '  To lowest order in t/R we can assume that r' '"

in the integrand takes the constant value R, then

2tcarGci 4 R2\l[3n2 + Rs\ 22 2 -IRs

y (z) -+ (2R 2 -2)- "R_ s e r d '
r R 3 2L2 /s r) "'

[4.301

where s = [(c- ') +  
. Using M = (2t)(2FR)L,

Sy2 2) - •Rs2LR 2 f [I (i+ )+ (2R2-2 2 Rs= (z) R-2- n d C " "''"

[4.31]

Figure 4.3 shows y (0) calculated numerically as a function of the R.
-r

-. When the range is comparable to the cylinder radius there is an enhance-

ment of the gradient of almost 50 compared with what a Newtonian force law

with the same coupling constant would produce. As becomes small the

exponential force law looks Newtonian and we recover the result of section

4.1. As B becomes much less than R the force along the cylinder axis

decays exponentially to zero.

Figure 4.4 shows the variation of y with z for three values of aR.

As expected if BR is small, the signal looks approximately like that of

figure 4.2, the Newtonian limit. As 6R becomes about I the signal is

*' large and independent of position as long as the gradiometer is inside

of the cylinder. As the instrument leaves the cylinder the signal falls
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rapidly to zero due to the exponential factor. The signal for $R= 5 is

similar, but the signal inside the cylinder is much smaller, since the walls

are now beyond the range of the force, -l

If the gradiometer is oriented along the cylinder axis, we can calculate

the gradient y (z) in a manner similar to that used to obtain equation [4.29] .

Using 14.261,

L/2 2Tr R+t
(r,rz) ff (z- (+ eP dr'd 'dz'.

P [ 4.32]

-L/2 0 R-t [4.321

Since we are interested here in forces along the z axis we can set r=0 and

do the integral over ' To lowest order in t/R we can also take r'-- R

and do the integration over r'. Then p

LI/2

((+) e- dz'. [4331

-L/2 p"

So the gradient is

a~ 3 (oz 0-,M z ') I+ ' -"-"-"
-L/ 2 GM 

"

(a o z 2) GM-. r .
yz)= Zz ' = 2c --~~ e[i])
z 3 z- 2 s3 '"i"J_

LR 2 2s 3

)2 ( + 2C- RS d 7 - .

[4.341

l -

A numerical calculation of y (0) as a function of SR is shown in figure 4.5.

As in figure 4.3 as SR becomes large y (0) goes to zero exponentially. In
z

this case however, the fall off starts at BR = .i. This reflects the fact
B-l

that n = .1. As soon as the range is small enough that the missing mass

at the ends of the cylinder is invisible, each proof mass sees exactly the
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same mass configuration and there is no gradient. As - becomes small we
2

again recover the Newtonian limit which from section 4.1 is +n2) 3 / 2 R2 LGM .

y (0) is quite different from y (0) in that there is no large enhancement
zr

of the gradient between these two limits. Consequently, the experiment must - -

be done with the gradiometer horizontal to see a deviation from the inverse

square law.

Unlike the Newtonian potential, the Yukawa potential does not obey

Poisson's equation, and there is no simple relationship between y (0) and

Yr(0) from all values of 3. Suppose that a potential of the form [4.26]

does exist with the optimum range for this experiment. This is the case

for 3R 1.5 or S 16.7 cm. From figure 4.3

y(o) = y (O) = 48 n 2 a GM
xLR 1 4.35]

From figure 4.5 y (0) is nil in this case so the sum of the gradients

2 GM ~ LGM...',
v (o)+ (o) +y (o) = 96a 2 G . [4.
Yx LR LR [4.361

An alternative to the Yukawa potential has been proposed by D. Long

[Long 19741. It is a logarithmic potential of the form

V(r) = GM Zn r/r °

r \ ) [4.371

where r is a range which Long takes to be 1 cm. Using this potential

.v.
MI I Z r/r o  4 . .38...1

10



The first term has exactly the form of the Newtonian force scaled by a

i -3). ."_'

factor of a. Since a is presumably small, (Long gives a = 2 x 10 ) we

ignore this term in what follows. As before, we would like to calculate

the gradients which result in a cylinder. So we write the acceleration on

a test particle in the cylinderp

L/2 2Tr R+t

a(rz) -OGCJ J J r'[(r-r'cos 'i+ (z-z')J9n(p/r ' dr'do'dz'.

-L/2 0 R-t 3
P [4.391

For comparison with figures 4.3 and 4.5, let us first calculate Lx(Z) =

3a / r Taking the derivative firstr r=0 o," . .

L/2 2Tr R+t ,
- r r' Zn(p/r) (r-r'cos') 2

Lr W -a~a f f f (r-r-L/2 0 R-t 3 5

p p-3(r-r'cosV')2 [[

5 Zn (P/r°)0 dr'd 'dz' [4.401

Setting r = 0 and doing the integration over

L /2 t i Zn (q /r ) 
i r'

2f , ( q 2Lr(z) = -20GOjr 3 0 + 2 5 '

-L/2 R-t

3 r'2 n (q/ro dr'dz'

q -
orL2 q 5

Z n(q/r ) 2

Lr(z ) =-4 aGIRt f 3 0 R-5

-L/2 q 2q

3 ,n (q/r dz',
2~ 5

q

[4.411
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Figure 4.6 L,(0) and Lr(0) as a function of R,/r 0 ,



* 7 .- - .• .

to lowest order in R/t. Making the usual change of variable ' =2z'/L

we find i • .
L = M n(sR/nr ) 2 2

(z)=-t R- - + - n- ZRnr ~r _2 5  s5-...''''
Ls 213 s

[4.421 :e

Similarly we can calculate L (z) to be
z

L (z) --a 2 kn(sR/Tr d+- 2/s 21 d[.z L fj 0_l 4.43] .1 i-
LR -

0A numerical calculation of L (0) and L (0) is shown in figure 4.6 for a
r z

wide range of R/r . The solid curve is L r(0), and the dashed curve is

L (0). As for the Yukawa potential, L (0) is much greater than g (0) if
Z r r

a 1. And again L (0) <<L (0). In this case however, there is no Newtonian
z r

limit and L r(0) is only very weakly dependent on the choice of range ro.

Using Long's choice of a and r [Long 19761 we find that L r(0)/gr (0) = -.185,

a very large effect. This result has effectively been ruled out by the

experiment of Newman [Spero 1980]. However, Long has recently suggested that

a logarithmic modification of the inverse square law might not be observable

inside of a cylinder [Long 1980b]

4.3 Gradient Errors due to Cylinder Perturbations

Among the principal sources of error in a measurement of the cylinder's

gravity gradients are perturbations of the cylinder's density and shape. •

In this section we will model these perturbations in order to identify

initial tolerances and develop strategies for making the measurement in

an imperfect cylinder. S

Let us suppose that the deviations of the cylinder from perfect shape

and homogeneity can be represented by writing the cylinder density as

-103-
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ar(4,c : E P ~P (0 [a sinjp + bj Cos j
i=0 j=0 

[444]

where b = 1 and a is the mean density of the cylinder. The P.'s are
0,0

the Legendre polynomials defined as P = 1 and 0.'.*. i.-:
0 1

= 1 d 2_1 i  4.451

1 2i dC

It is shown in many standard texts on linear analysis that the Legendre

polynomials form an orthogonal basis for the set of piecewise continuous

functions on the interval -1 to 1. See for example [Kreider 1966]. They

have the additional property that P. is even ifi is even and odd if £ is odd.

Equation [4.44] ignores radial variations in density since such varia-

tions change only in the higher order terms in t/R, and these terms are very

small as is shown by [4.121. Now using [4.13] and substituting the new

expression for a, we have

g (Z) -T - GM ( aJ 3T (1+cos20 1) d'
2TrRL2 J J 2+, 22( )2+2

-1 0

[4.461

and substituting [4.44]

1 27T 00•

gr(z) GM P (  ' E (aijsinj+b ijcosjo)

I i=o 0 j=0

[4.47]

C -$ )2+ 2 C - ' 2+nq 2- "
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Since we are primarily interested in gradients at the center of the cylinder

we will take z = 0 and define the error terms

122
E -fl 2 ~ f PC;' f (ajsinj +b. .jcosj )

-l 0
2I 3rj .(l+cos2o') 1 dl .8

,2.. 42Tl]5/2I[48
~21~]3/2 2LLrL [C't

Since the sin(j ') and cos(j ') functions are a mutually orthogonal set,

the only nonzero E. .'s are those with j = 0 and j= 2. Also, since the
13

function of t;' in brackets is even, and the P.i is odd if i is odd, only

E. *' s with even i are nonzero. Using these simplifications

0E -I2 b GM 1f 1 3n21 a;',
2i ~ b. LR2 f 2i 2t' [ +2T213  2I2 + T)2I 1 4.491

and

E = 2 GM.3nl
2i2 T b M GM22f P2 .t' [CFF2+Tn2] 5/2 t' [4.501

are the only nonzero E. .'s.

First we calculate some of the E 'iIs.P2() 1k3x 2_ )s

2
E2  -n b 2 oGM f (3t;'2 _1)(2;' 2 -pl2)d;' [4.511

-0l [2+n215/2

All of these integrals can be evaluated explicitly giving
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E 6 n (1 + 1+n 2 ) - -n1

20 2 3/2"-
2LR 3 (14 -n 2

i _ 3l__ 2 
-'- i '

1 21 +2

,.... I/2 - ~(2+3T / + -"'-)
(i+~ ( i

2
) .3 2 ( 2) ln I /

2  (l 
3 / 2  "2- 2( 2) 2

- .+T3- .. -

Putting in the value n = .1 gives

GMb
E = -5.02 n 20

LR2  14.531

A similar calculation gives

GMb4""

E 7.83 2  40 [.4.-. E40 = .3 LR 2  [4.54] 1

Next let us calculate some of the error terms of the form E 2 . I --
2i2'

Consider E from [4.50]
22'

413Ti b 2GM
._-E 3 b02 G  f 1 '""C1'"'

02 4LR 2  -1 ~2+T2 1/2 d-

* . So

E 3 4 b i1 1 1M
02 2 02 LR2  4  l+n211 2  3 312J

= b GM
02 2_ [4.55]

LR

to lowest order in Ti 2 In general the lowest order contribution to E2i2

in i2 is given by

E i 2  b GM P2i(0) 3 T 2 )

2i 2i24 2 +[2] 5/2J1 [4.56]

-106
*) -106- I

. *......-.

S. . .. ... *..

~~~~~~. . . ..-.. ..... - . . . . . ...... ...... . .. .. *



," .- o..

Cylinder Error Coefficients

2n E2 0 [ 2 b2 0 G/LR
2  E [b n M/LR

2 -5.02 - .492

4 7.83 .358 -

6 9.53 .284

8 10.4 .234

10 -10.6 - .196

12 10.5 .167

14 -10.0 - .141

16 9.42

Table 4.1
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P (0)3n
2n) = (-1) 

n (2n!)

2 2 (n! 2
* 4

4.57] 1;''

so
(-l) 2n! GM

2n2 2 2n W)2 LR2 2n2 [4.581 *

2to lowest order in r. The first eight nonzero E2n 2 and E 2n are listed

in Table 4.1.

With these results we can examine the effects of various errors. The

error coefficients of the form E2n2 are considerably larger than the E

but as the gradiometer is rotated in the center plane of the cylinder the

gradients produced by the E2n2 errors have a cos24 dependence. Consequently

if one averages two gradient measurements made with the cylinder rotated

by 90 with respect to the gradiomet~r axis the result is zero. Actually

this result is apparent from equation [4.191. If the gradiometer is

oriented along the z-axis (the cylinder symmetry axis), a mass distribution

with cos2 dependence cannot produce any gradient since there is no net mass,

and all the mass is equidistant from the gradiometer. So from [4.19] any

two gradients measured along orthogonal directions in a plane perpendicular

to the z-axis must be equal and opposite. This provides a simple way of

eliminating all errors of this type. We simply measure horizontal gradients

along the x and y directions and average them. Any difference in these

measurements would indicate the presence of a 4 dependence in the cylinder
* t.

mass or density.

Similarly, any of the E errors can be identified by comparing the

gradient along the z axis with the sum of the x and y gradients. In short,

if all three gradients are measured, [4.19] insures that their sum is zero

-108-
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* regardless of flaws in the cylinder. The cylindrical geometry is still

crucial, however, because it relieves the experimenter from the need to

precisely position the gradiometer inside of the cylinder.

... -4.4 Finite Size Effects ... .- -'

Since the preceding calculations give the gradients at points, they

* .are strictly valid only for infinitesimally small gradiometers. In this

*section we will consider the errors which result from measuring gradients

with a finite size instrument. Basically, we need to know how [4.19] is

modified by the finite size of the gradiometer.

An indication that finite size effects are small was given in section

0 4.1. For example, we found that the radial gradient changes by less than

.1% if the gradiometer is moved along the z-axis 4.6 cm from the cylinder

center. So if the gradiometer proof masses have a diameter less than 4.6

-* o. . -

cm we would guess that the error from its finite size will be less than .1%..

- The actual diameter of the proof masses is 4.3 cm.

Suppose the gradiometer is oriented along the z-axis at the center of

the cylinder as in 4.7a. To calculate the force on the upper proof mass

*we can imagine splitting the cylinder into two parts as in 4.76. Since

the upper proof mass is at the center of the upper cylinder piece, symmetry .

* implies that only the lower part of the cylinder applies a net force on thisq

part of the gradiometer. Since the gradiometer is far away compared to thej

length and thickness of this piece we will calculate its gravitational field

in the vicinity of the gradiometer using the approximation that it is a very

thin ring of material with a mass per radian of bM/LT. Then the z-component *.

of acceleration in the center of the upper cylinder is
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Figure 4.7 (a) Gradiometer with its Axis Vertical
(b) Cylinder Split into Two Parts
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-GMb f _____________

Z ~ ~~ T j(L/ 2) 2+r 2+R -2rRcos~j31
01

14.591

Since the gradiometer is small compared with R we expand the denominator in

=r/R, so

a r)= -GMb f d [,+ 3Ccos4 + 15C 2Cos2

z27TR 2 2  2 13/2 [+ 2+1/T2 I 2 2
0 (L2R + C2 l+21n

[4 .601

Integration over gives

a(r) = -Gjb ]/ l+ 15 2 + [4.611

To evaluate the lowest order finite size correction we integrate this accelera-

tion over a disk of diameter d with mass per unit area s, so

d/R 2r

F -G~bsJ 15 7/21 .
0 0 +2 u21 3 /2  2jl+7+/ 2 [ 4.62]

After carrying out the integration and expanding the result in nl 2R/L

one finds that

F =-2GMbm _____ 2 3n 4 (dIR) 2
z R21 2 3/2 ln152+ C(T

(1+T) 24.63]

where m is the mass of the disk. Since the gradiometer is symmetric about 4

*the origin, the result for the lower disk is -F and the gradient y is
z

given by



-c-. .. X - - - -*. * ... . . -./

2F Z -2GM -"/~ 4

gz 26m 2 2 3 21
/ 2 2 1-F

[4.641 -

The leading term is exactly the result of section 4.1, and the lowest order

correction is

3GM 4__ _ /d 2

z LR2  [ 2 2 [ 4.651

The ratio

=--gl -4.44 x 10 -
g 1 2  [4.66]

to lowest order in , for a proof mass with a radius of 4.3 cm. Fortunately

this is quite a small correction and does not interfere with a .1% measure-

ment of the cylinder gradients.

Next we must consider the finite size corrections when the gradiometer

axis is perpendicular to the cylinder axis. Looking back at equation [4.51

if we leave # 0 and work out a (r,z) we find that the first two terms of
r

equation [4.121 become

r 2 LR 2 2 2J

1--n 1 + + + a(T4

2 +2z4 (i 4 R) 2) [4.67]

2From this we can see that the lowest order finite size correction in n and

(2d/L) 2 comes from a term of the form "

2
a' (r,z) 3 r)2r 2  [4r68-

rL 2 [4.681
LR L
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To calculate the gradient correction we need to integrate a' rover a disk

whose axis is along the x axis and whose center is a-distance b from the

origin and whose mass per unit area is again s. Then

3GM 2 1f 2 2 d

14.691
2 P ..., ..

Thi gaiuve a h gradient correction enefoitert 'oe ads """

9~~~I x 2 IL 22T

This is just half the value of g' to lowest order is n Since g g =-2,

-4 [ 4 4.44 x 10 [4.711

From this we can see that [4.191 now does not hold exactly. Summing the finite

errors we have

+' ig' + g' 6 6GM2  T 4(d)2
LR [4.721

This effect puts a lower limit on the value of gz which can be detected

in equation [4.361. Taking the ratio we find that the minimum detectable a

is given roughly by

Cg_ = 1.8 
[ 710-5

min R) 1.8 x[4.731
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It is interesting to consider briefly the finite size effect that

would be produced by some flaw in the cylinder. Suppose for instance,

that a cubic centimeter of cylinder material is missing in the wall

about one meter from the geometrical center. It is easy to calculate

that to the lowest order in b, the baseline, this flaw produces 
a V 2

-6of 3 x 10 E, an effect far too small to observe in this experiment.

4.5 Experimental Procedure

Since the d.c. output of the gradiometer is determined by the surround-

ings, the signal from the cylindrical source must be modulated to distin-

guish it from the rest of the gradients due to other objects. The cylin-

drical geometry is convenient for this purpose since the cylinder can be

raised and lowered over the cryostat containing the gradiometer.

Figure 4.8 is a rough sketch of the apparatus we will use for moving

the cylinder. In order to support the dewar near floor level we will exca-

vate a hole ten to twelve feet deep in the floor of end station II at the

high energy physics laboratory. A pedestal will be mounted in the center

of the hole to support the dewar. The cylinder will be raised and lowered

with a motorized hoist. In the low position the gradiometer will be at the

center of the cylinder, and in the high position the gradiometer will be

about 10 meters from the center of the cylinder. To measure the central 9
gradients, the cylinder should be removed to infinity leaving everything

else fixed. Since the roof of the end station prevents this, a correction

has to be made for the gradient produced by the cylinder in the high posi-

tion. Looking back at [4.17] we can calculate that the cylinder produces

a gradient on the high position which is 3.5% of the gradient in the low

position if it is moved two cylinder lengths away (2z/L = 4). The signal --'.-.

changes sign as the cylinder is moved away, so the difference between the
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gradient measured with the cylinder down and the cylinder up has to be

reduced by 3.5% to obtain the correct central gradient. This procedure

works for measuring the horizontal or vertical gradient, and it only needs

to be carried out with an accuracy of a few percent to obtain the central

gradient to an accuracy of .1%.

By raising and lowering the cylinder, the signal frequency can be

moved away from d.c. and averaging can be used to obtain a very narrow band-

width. With the current noise level of IOOE/HY'iz, a bandwidth of 10-8 Hz is - -

necessary to obtain the desired noise level of 10- 2 E, so some reduction in

the noise level is still necessary to make this procedure practical.

1..°
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Figure 4.8 Cylinder Moving Apparatus
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CHAPTER 5

Conclusions

We have developed a superconducting instrument for the measurement

of force gradients. This instrument uses a variety of properties of super-

conductors to achieve very high displacement sensitivity. The measurements

described in Chapter 2 demonstrate that the performance of the instrument

is very close to the expected behavior, although the problem of excess low

frequency noise remains to be solved. This problem is not a consequence of

the techniques used in building the instrument, but rather of the desire

to have an instrument which can measure vertical and horizontal gradients.

An instrument could be designed for horizontal use only with higher compli-

ance along the sensitive axis. This would reduce the gradient equivalence

of a temperature change. However, as discussed in Chapter 2, there are

steps which can be taken to improve this instrument. The most attractive

of these steps would be to operate the instrument in a helium bath cooled

below the X point. .

This instrument will be incorporated into an experiment to check the

inverse square law of gravitation. The possibility of an inverse square law

violation is briefly discussed in Chapter 3. In spite of considerable effort

by many groups to verify the inverse square law, the possibility of a large

violation with a range between 100 m and 10 km or less than 1 cm remains.

Our experiment is optimized to detect a small violation with a range near -

17 cm, but the use of superconducting technology for sensitive detectors

may well contribute to a variety of experiments.

2.S
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