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% Abstract
aly The accomplishments of the research project "High Performance Parallel Computing"
v for the Year 1983 span algorithm formulation, parallel programming languages, basic
:\:’ software for the Texas Reconfigurable Array Computer and validation of design
ol
\ concepts for the Texas Reconfigurable Array Computer (TRAC). Image processing,
‘| sorting and time dependent partial differential equations were subjects for algorithm
:’:; formulation and analysis. Accomplishments in parallel programming include:
‘}}! substantial progress toward the implementation of two parallel programming
ity
j::' environments, the Computation Structures Language, and a task level data flow
programming system. The hardware prototype of TRAC made substantial progress
:: towards stability. The state-of-the-art in reconfigurable switch based architectures has
' been advanced. A result of note is the demonstration of the integration of circuit
‘ .
" switching and packet switching in a single interconnection network.
3
;:: 1. Research Objectives
0\
?.: This research project was an integrated approach to parallel computation spanning
_ algorithm formulation, programming and software, and hardware/architecture design
-
‘{: and prototyping. The goal of the program was to establish a flexible environment for
;:: experimental studies of parallel computations. The focus of algorithm formulation and
!
A software development research was the Texas Reconfigurable Array Computer (TRAC).
: It was realized during the course of this year that the concepts being developed for
A
3:' programming and software for TRAC applied to a wider range of architectures. We
N
o began to develop our software systems with a broader range of architectures in mind
- during this year.
e
X
“ The experience of building a prototype of the Texas Reconfigurable Array Computer
,'3 (TRAC) has proved to be highly rewarding. It has improved our understanding of
.’:‘ parallel architectures and, we hope, has made significant contributions to the area of
(o
, parallel processing.
‘
)
TRAC employs the novel concepts of reconfigurability and space-sharing in its
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organization. These are seen to be the key to the success of the general purpose tightly
coupled multiprocessors. Many other unique architectural features were included to
enable it to perform equally well in both numeric and non-numeric applications. Most
of these features have fulfilled their promise while others have brought to Hight
important issues which may demand further study. The goals for the TRAC

reconfigurable architecture may be summarized as follows:

1. Trivially, it must have an organization to accommodate a large number af
Processors.

2. It must provide for different modes of communication between the
processing units.

3. It must have synchronization mechanisms general enough to allow an
arbitrary combination of processors to be synchronized.

4. It must be capable of SISD, SIMD, and MIMD modes of execution (12). The
system should be dynamically reconfigurable between tasks to support these
modes of execution and to maximize the use of system resources.

5. Virtualize the computation. The system must support vertical migration
capability and make underlying hardware transparent to the user. A
parallel architecture should provide a basis for implementation of parallel
languages.

6. Map the architecture to the algorithm. The system organization should be
flexible enough so as to be able to mold the architecture to the algorithm,
not the algorithm to the architecture as has been applied in the past. It
should make available to an algorithm the parallelism that it requests so
that its true performance can be evaluated.

7. Give attention to the technology. The machine should be built modularly
with a minimum number of unique partitions. This would facilitate the
translation of the design into the emerging VLSI technology. This last goal
will allow us to assess the engineering decisions that went into the design of
TRAC and to document our experience with the TRAC development effort.
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2. Research Accomplishments

The research accomplishments of the project during 1983 spanned the range from
algorithm formulation to programming languages to operating systems and finally to
validation of hardware/architecture design concepts. The subsections which follow give

the principle research contributions under each topic.

2.1. Algorithm Formulation

One of the two principal algorithm formulation activities during this year was the
establishment of optimal partitioning schemes for time dependent partial differential
equations. This work is discussed in & report by E. J. Shipsey [SHI83]. A second
algorithm study was study of the relative efficiency of packet switching and circuit
switching architectures for realization of histogramming and smoothing algorithms for
image processing. A paper on this research was published in the Proceedings of the
1983 International Conference on Parallel Programming [YAS83]. The principal
findings are that circuit based architectures will become more efficient as the image

resolution and thus the volume of data to be processed increases.

Ramakrishnan and Browne [RAMB83], in research performed under the 1982 AFOSR
grant of the same title but not reported, developed a paradigm for the design of parallel
algorithms for SIMD computer arrays. This research explores the class of algorithms
which can be created by combining computational and data movement functions in a
single abstract machine instruction. The results obtained included a new algorithm for

merging on a bidirectional pipeline of processors.

2.2. Parallel Programming Languages

The year 1983 saw substantial advance in the development of the run-time support
system for the Computation Structures Language (CSL). The design for the run-time
system of CSL was completed, implemented and partially debugged during this time
period. Implementation is taking place on the Dual Cyber 170-750’s of the University
of Texas Computation Center. A design for a task level data flow language which will

complement the capabilities of CSL was initiated during 1983.
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‘;E::: The two underlying principles upon which we are basing our parallel programming

LX)

.g;::g languages are the separation of representation of dependency relations from
; computations and the recognition that all parallel computations can be expressed as
o
Z*f directional graphs.

3%

388

I”-S The Computation Structures Language is a text string language for specification of

:' 2 computation graphs and for specification of explicit traversal paths for the computation

g

“‘ij graphs to execute the computation. The task level data flow language uses the same

» *H. - - - - L] . :

’:‘ principle of separate units of computation from dependency relations, but implements
- an implicit traversal of the computation graph.

;thf

‘;‘ 2.3. Operating System for TRAC

:.‘ 1983 saw the completion of the design for the operating system for the Texas

S Reconfigurable Array Computer. This research was primarily executed by Mr. Daniel

'—::f-‘, Canas.

i Several unique problems arose from this research. The first of these problems was the

SO

S0 integration of a virtual memory architecture into the reconfigurable memory structure

.P r of TRAC. The capability of the TRAC architecture for switching memory units

.- between processor configurations is a powerful means of sharing of memory.

A \"

:':: The mode of moving a memory unit between processor configurations is to generate

SRS
f.} an interrupt when a processor attempts access to an address which is in a "shared"
: > memory module that is not currently attached to the requesting process. The interrupt
' ._:; service routine realizes its request by establishing a circuit to the memory board holding

L

}Q} the requested address. A virtual memory page fault can be created in the same manner.

1'.':(

iy

."‘ The result is the establishment of a unification of virtual memory and reconfigurable

P, }. memory architectures for TRAC. The techniques developed here can be applied to page

"\.:ix

il fault handling in a conventional demand driven page environment if paging is via a

ohH

sl switchable memory configuration.
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2.4. Hardware Design Concepts

There have been quite a number of accomplishments directly resulting from work
during the year on the design and implementation of the prototype. These will be
covered subsequently. The memory and the input/output devices are connected to the
base nodes of the banyan network. The TRAC architecture distinguishes between the
two kinds of devices and has separate interfaces for both. The memory modules employ
the Primary Memory Interface while the input/output devices use the Auxiliary
Resource Interface (ARI). One significant accomplishment during this year was the

definition and implementation of the ARI for support of terminal and disk 1/0.

The ARI access has allowed I/O programming to be device-dependent at the user
level. The transfers between an Auxiliary Resource (I/O Device) and the primary
memory were implemented via descriptor based instructions. The descriptors have the
same general format, although their contents are specific to the device being processed.
The calling sequences of the instructions are independent of the device being addressed,
making the hardware details of the underlying device transparent to the user. Thus the
concept of ARI has become central to the virtualization of I/O in TRAC. (The concept
is not dissimilar to that of the dev file in UNIX). Also, The actual transfers of data
between the device and the primary memory are complementary, allowing transfer of
data during every memory cycle. The ARI concept has already been used to connect
devices such as terminal (14), printer, disk, self-managed-secondary-memory (15), and

the control port (14) to TRAC.

A second major milestone was the successful implementation of the banyan
interconnection network. It can be considered to be the most important contribution of
the TRAC project to date. It is a two-sided, multistage network with processors at the
apex end and memories or input/output devices at the base. It has been built
modularly with unique partitioning properties; it has been built using a single building
block called the switch module. The switch module itself is easily segmentable and

amenable to VLSI implementation.
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The primary purpose of a close-coupled computer network is to provide mechanisms
for processor-memory and processor-processor communication and those for
interprocessor synchronization. The performance of algorithms is directly related to the
effectiveness of these mechanisms. Most of the unique characteristics of the TRAC
architecture accrue from the capabilities of the supporting interconnection network.
The network supports both packet and circuit switched modes of data movement. The
packets are essential for implementing an arbitrary permutation on a blocking network
while also furnishing asynchronous communication between the processing elements.
The packet communication facility provides a means for intra-task data permutation,
intertask communication and operating system message interface. The circuit switched
modes of interprocessor communication occur in TRAC in the form of shared and
instruction trees. It is believed that the presence of both circuit switched and packet

switched modes of communication is necessary to produce the best performance.

It was during this year that prototype validation of both modes of communication was
accomplished. This resulted from exhaustive testing of the interconnection network.
Programs utilizing both circuit switched shared memory and packet transmission for

intra-task communication were successfully executed.

During this period the Control Port was designed and implemented. It is the interface
between an arbitrary TRAC processor and the Network Controller which is responsible
for the generation of Data, Instruction, and Shared Memory trees. The Control Port
was tested and performs at the design goal of 1 MHz (cycle time). All aspects of cold

and warm restart were shown to be 100% functional.

The processor microcode space was expanded from 2K to 8K allowing for increased
code space along with support for an external arithmetic processing unit (APU) with
floating point operations. This restructure provided more flexible microbranch

instructions and the removal of wasteful duplicated microcode.

A number of tools were generated in-house to help develop hardware and microcode

for TRAC, and were used in addition to the traditional tools such as the high
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bandwidth oscilloscopes and logic analyzers. These tools were built around a Z-80 based
Cromemco microcomputer. The tools included monitors, testers, and microprogram

development aids. These are discussed in more detail in the following paragraphs.

Two monitor programs, MOE and RABUG, were written for the Cromemco System to
help develop the hardware and to facilitate debugging of the microcode. A parallel
interface was built which allows the Cromemeco microcomputer to read and write to the
network interface busses and the micro-address busses of all the processor modules.
Through separate interface, the micro-computer is able to control the clock. By proper
utilization of these interfaces, the monitor programs running on the Cromemco can step
through the phases, micro-cycles and memory cycles, and, in addition, can read data

from or write data to the busses in the TRAC system.

Monitor program MOE has a capability to sequence through a specified number of
phases, micro-cycles, machine cycles, and TRAC instructions, and display or print the
data from the busses, and display the contents of the memory pointer registers and the
processor status registers for individual processors. To facilitate this, instrumentation
was added at the microprogram level to output the required information on the network
bus. At the beginning of each instruction, a microprogram routine is executed which

supplies the processor status information and memory pointer information to the

monitor program, which then displays it on the CRT screen. The monitor program is

5

NARR
Pid Witly

also capable of receiving its commands from a batch file. The batch files are created to

¢
;;,; run the machine through an entire program and list bus data or processor status any
number of times. This way it is possible to exercise the machine for long periods of

R

time and capture faults if they occur.

PP
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o Monitor program MOE mentioned above, explicitly controlled the clock, executing
" considerable Z-80 code for each TRAC clock step. As a result, the TRAC hardware was
'.;«ZE: exercised only at slow speeds. After all functionalities of the architecture were
s

developed and tested, a need was experienced for a more sophisticated monitor which

¢ would run the system at the rated speeds of 10kHz, 100kHz or 1 MHz and still retain
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the debugging capability. Coupling logic was added to enable the TRAC processors and

' SRERAAA: "3 DARK

the Cromemco system to hand-shake and to allow the monitor program RABUG to

o switch between free running and controlled stepping of the system clock. A capability

LR

was also added so that the monitor could send commands, in addition to data, to the
memory modules. This latter capability has proved to be helpful for software
debugging, since via the monitor, the contents of the memory can be inspected and/or

modified. It is now also possible to insert break points in the programs to further

2 30 O R
g ;

facilitate their testing. As a result, RABUG now provides a multiprocessor debug

. facility for both microcode and TRAC machine code program validation.

2.5. Software Development Tools

A software simulator for TRAC was written to help develop system and application
software while the hardware was under construction. The software simulator is able to
provide the parallel programming environment available on TRAC. It is also able to
simulate the shared tree concept and the packet communication. A Pascal corapiler, an
assembler, and a loader have also been developed for the TRAC system. These

. programs can also generate code that can be interpreted by the TRAC simulator.

3. Papers Published

" [YAS83] Yasrebi, M., Deshpande, S. and Browne, J.C., "A Comparison of
. Circuit Switching and Packet Switching for Data Transfer in Two

& Simple Image Processing Algorithms," Proceedings 1983 International

Conference on Parallel Processing, Bellaire, Michigan, August 1983.

e [RAMS3] Ramakrishnan, I.V. and Browne, J.C., "A Paradigm for the Design of
Parallel Algorithms with Applications," IEEE Transactions on
Software Engineering 9, 1983, pp. 411-415.

::: [SHI83] Shipsey, E.J.,, "Computational Organization for Parallel
] Computation: The Time Evolution of Physical Systems," (in
% preparation for publication, manuscript attached).
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e M. Yasrebi, M.S., "A Pipelined Two-Dimensional Fast Fourier Transform
¥ Array Processor," Department of Elestrical and Computer Engineering, The
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. o A. Prakash, M.S., "Design and Implementation of an I/O Interface to
- TRAC," Department of Electrical and Computer Engineering, The
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e August 1-3, 1983 - Keynote Speech for Conference on Computer Software
Performance, Los Alamos National Laboratory, Los Alamos, New Mexico.
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5. Verbal Presentations of AFOSR Sponsored Research

e March 23-26, 1983 - "Modern Parallel Computation Methods," DoD Annual
o Technical Review on Computer Science and Applied Mathematics, Air Force
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Maryland, Department of Computer Science, Distinguished Visitors
[-. Program.

¢




e

Ly 10

‘i

k)

ﬁ e August 17-19, 1983 - "Software for Highly Parallel Architecture," Los

‘-,,‘ Alamos National Laboratory Symposium on Frontiers on Supercomputers.

» ‘
. . e April 16, 1983 - "A Language for Highly Parallel Computing," Bell

! _‘: Laboratories, Computer Science Division.

A8 6. Research Project: Perspective

:'.) This AFOSR grant was an important element of support for an ambitious
"': comprehensive research program in parallel computation also supported by the
.1 ‘t\ Department of Energy and the National Science Foundation. The total result of the
) project cannot be fully seen from the perspective of only the portion reported herein.
3 o~ There were also six other papers resulting from this project with sponsorship attributed
i ) to one of the other granting agencies. The total project, synergizing algorithms,
‘;: software and hardware was possible only because of the individual contributions of each
e funding agency to their specific interest areas.
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1. Introduction

LY
K 1 151 The state of a physical system is described, in general, by a set of quantities characterizing its con !ition.

- :‘_i These physical qualities are described mathematically as functions defined on a physical space in which
e, the system is einbedded. The Lehavior of the physical system as time advances is described by a set of
h“ partial differential equations. The state of a system is given when all the functions characterizing its
! condition are known for all points in space at that given time. Thus the behavior of the system is given
-‘;\".‘_.-: by a set of functions defined on some space which are continually changing with time.

3

LS

A more general vicew may be abstracted from this notion. Instead of time, a more general propagation
o variable may be considered. If the partial differential equations describing the physical system are defined
in terms of N variables, the functions characterizing the system can be viewed in a N-1 dimensional space

_' - as the remaining independent variable takes successive values. In this way the system is imagin.d to
. ,wz evolve in an N-1 dimensional space as viewed by an "obeerver® tiavelling along the remaining courdinate
\x axis. Computationally propagation implies that, in principle, if the functions characterizing the physical
S system are known for some values of the propagation variable they can be computed at a value of the

vl propagation variable which in some sense is further along than the values for which the function is already
},?'. kpown. Conceptuaslly and operationally the propagation variable is associated with the unfoldiag
:':' development of the physical system. It may be possible to find more than one propagation variabl: for a
;;::'. ) given physical system. The option then arises of selecting 3 geometry which will give maximum efficiency
::" or stability for a given purpose. An example of such a situation is given in Section IV. Ideally, the
Bt propagation variable should be sclected so that the computation of the functions characterizing the system
l;' iy is as sinple as possible, aud that old values of the functions are required at very few other values of the
“‘.L,::.. propagation variable.

-
s i The computational process is further analyzed by considering the N-1 dimensional subspace (the
o> computational level) which results when the propagation variable is held at a fixed value. The objective is
by ‘ to find, in some sense, regions of computational independence. The independence is of a restricted nature
i because, of course, the entire space is quite intimately involved in the long time development of the
; o system. Abn independence of soits can be conceived for sufficiently short time intervals and of a gualified
.‘_J'.';: local pature. This is accomplished by means of partitioning. The computational level is dividid into
-,s:::-j regions which are called computational subdomains. To each computational subdomain is added a border.
;-{\' The border is understood to contain only points contained in an adjacent computational subdomiuin. The
¢ - region of the computational level consisting of the computational subdomain plus its associated burder is
j:,-_‘; spoken of as a computational domain. The computstional domains can be considered to be

-7 computationally indepeundent if, for a sufficieatly small increment in the propagatioa vanable, il the
;:g dependent functions describing the system can be computed for all points in the computational sebdomain
\
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at ap advanced value of the propagation variable using only their values st points in the computational
domain (computational subdomain aud its border) at the previous value of the propagation variablc. The
notion of computational independence thus delined depends on the numerical method adopted as well as
the physical description and the mathematical statement of the problem The numerical method selected
depends in turn or considerations of numerical stability. The difference in the numerical stability
propertics of first and second order partial differentisl equations is the principal reason for the diffcrence
in the partitionings adopted for the problems discussed in Sections I and V.

The analysis of the computational process is completed by means of a classification system for the
independent variables of the physical system. The three classes of variables are; i) propagation, ii)
communication and iii} internal lsbelling. The first has already been discussed. The last tv.o are
dependent upon the mode of partitioning selected. If an independent variable of the system passes from
one computational subdomain to another as it takes on all its values it is said to be a communicztion
variable. If, on the cther hand, an independent variable of the system which is not a propagation variable
remains in a computational subdoinain as it takes on all its values, it is an internal labelling variable.

The computer organization for parallel computation follows directly from the partitioning and its
associated scheme of variable classification. The computational domains correspond directly to the
memories of a set of independent processors. The computation proceeds in steps of one incremeut of the
propagation variable at a time. After each computation is completed dats is transferred between
meinories to fill in the infurmation necded on the borders of the computational domain at the new value
of the propagation variable. Each processor is then ready to perform another step of the computation.
The process is repeated over and over until the final value of the propagation variable has been attained.

The physical description, mathematical statement and numerical procedure thus produce the
computational organization through the mediation of the partitioning process together with its associated
scheme of variable classification. The actual work of organization is carried out in the partitioning
process. The problem of finding the optimal computational structure for a given formulation of a problem
is thus one of finding the optimal partitioning geometry. The partitioning process, however, is only an
intermediate step in deriving an efficicnt computational structure. The seatch (or an optimal computation
structure actually begins with the problem formulation itself. Problem formulation can be considered to
be comprised of the three asprcts; physical, mathematical and pumerical. Seemingly minor reformulatious
can have quite drastic effects vm computational structures. A little inzight in the initial phases of
development can ofter reap greater efficiencies than the most ingenious geometrical creations in the latter
stages. In Section Ill an examiple is given in which a slight modification in the mathematical formulation
allows parallel computations to be carried out in special cases.

The essential feature of propagation and communication variables is that the pumerical problem which
must finally be solved must contain very sparse coupling in these variables and be highly explicit. The
coupling might be seen in the mathematical formulation but becomes more apparent in the numerical
analysis. Some examples of couplings which prevent variables from being communication or propagation
variables are given in Section 1Il.  lu order that partitioning of a computational level be possible it is
apparent that only a small region in the communication variable subspace must be involved in the
calculation. The most immediaste requirement of the numerical system to be solved is that only nearby
values (in the directions of the communication variables) be coupled together. In addition, the tolution
process itself must nol spread the calculation into other domains of the partitioning. This latter condition
is quite restrictive and actually means that the numerical scheme expresses the functions describing the
pbysical system at one particular point in the computational Jevel in terms of ®acighboring® poiuts in
earlier computational levels or at only a very specialized class of points in the advanced level. This
requirement which arises frons considering partitioning in the communication variable subspace actually
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furnishes the crucial test of the propagation variable selection. Explicit numerical schemes are not always
stable or may require extremely small step sizes to achieve stability, so that the number of systems which
can be treated in this way are limited.

The problems most readily organized in this manner belong to the class of problems for the time
evolution of physical systems. The equation which will be studied in the next section is the classical
Liouville equation. This equation, besides its own intrinsic interest, allows the partitioning procedure to be
analyzed in the simplest possible context. Section Il deals with the electrostatic Viasov equation. The
Vlasov equation cannot be treated in general by the techniques discussed in the presenat work. Two special
instances are given which allow the mathematical restatement of the problem for present purposes. Laser
pulse propagation is discussed in Section IV and a further elaboration of the partitioning procedure
introduced. Finally, in Section V the two dimensiona) diffusion equation which exhibits some difficulties
arising from second partial derivatives is described.

2. Nearest Neighbor Communication, The Simple Example of the
Classical Liouville Equation

The Liouville equation is a first order homogeneous partial differential equation. Physically the equation
describes the evolution in time of a distribution in phase space. That is, if a mechanical system can be
described in terms of 3N spatial coordinates, a possible state of the system is represented (classically) by a
point in a 6N dimensional space consisting of the 3N spatial coordinates and the 3N associated momenta.
The collection of all possible states satisfying some prescribed conditions can be described in terms of a
density in the 6N dimensional space, which is called the phase space of the system. The Liouville equation
describes the time history of a distribution in phase space which has some prescribed form at the initial
time. The equation thus represents a first order initial value problem which, aside from its dimensionality,
might represent the simplest possible mathematical system.

The classical Liouville equation can be written?
Op/0t = £ (Pi/mi aP/&li - OV/Oqi 09/01'3) (1)

where i refers to a particular degree of freedom associated with coordinate q;, momentum p; and mass m;.
The forces are assumed to be derivable from a potential energy function denoted by V.

A simple example is a harmonic oscillator of one degree of freedom. This system is exactly solvable and
furnishes a convenient test case for numerical techniques. The parameterless form of the equation is

30t + yol|Ox - x Of/dy = 0 @

with solution

f(x,y,t) = g(xcost - ysint, xsint + ycost) (3)
where
f(x,y.0) = g(x.y) (4)

is the initial condition. The initial condition, and the differential equation, is such that the motion is
bounded, that is f(x,y,t) also satisfies the boundary condition

f(x,y,t) = 0 if |x| or |y| — oo. (5)

A practical numerical technique for first order initial value problems is approximation by a truncated

...... e S SR TTPCIT AORTD) K
! \ , ! Gttt ':‘l&ﬁ'o ":Mm" n

U [

O




’

Pk Rl o 0 &

power series in time,
A f(t+6t) ~ f(t) + & f(t) + (343/2) f(t) (©)
where dots denote partial differentiation with respect to time. The first derivative with respect to time is

obtained directly from the partial differentia} equation itself, Eq(2), and the second derivative is obtained
by differentiating this equation once with respect to time. This procedure can be repeated arbitrarily
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,-j:* many times, but the resulting expression becomes too complex to be useful. The n*® time derivative will
{ involve n'® order spatial derivatives which increases the numerical complexity also. The other partial
' derivatives are approximated by finite difference procedures. If h is the spacing between grid points, these
,‘ approximations are, to fourth order in h,
, »
;g 81/8x = (2/3b){f(x+h)-f(x-h) - 1/8[f(x+2h)-1(x-2h))} |
e snd
i \
P1/5x? = 4/3b2{f(x+b)+f(x-b) - 1/16[f(x+2h)+{(x-2h)]

A - 15/8 f(x)} (8)
::' ‘: as can easily be verified by power series expansion. The cross derivative is obtained by applying Eq(7)
§ '. twice.
el
il Stability analysis of simple numerical schemes for simple initial value problems 23 shows that error
,)_ propagation will be stable in such schemes, provided
- vit/s < 1 9)
] "_: where v is some characteristic velocity and s represents each of the independent variables except time.
3 $ The procedure above suggests itself as a means of utilizing large enough displacements in the oon-

2 temporal variables to obtain numerical stability, while also obtaining numerical accuracy. Its practical

. success has been verified by numerical computation. An alternative pumerical scheme accurate to second
oy order in the variables At and Ax is illustrated for the very simple equation
‘{;g /3t = du/dx (10)
e ‘

LAY
tah by

- u(x,t+Atku(x,t) = (At/4Ax){u(x+Ax,t+At)
o -u(x-Ax,t+At)+u(x+Ax,t)lu(x-At)}. (11)
i The value of u at the points {....,x-2A%,x-Ax,X,X+Ax%,X+2Ax...} at the new value of time, ¢t + At, now
*\'::': requires the solution of a linear system of equations. This is an example of an implicit scheme, whereas
X the scheme developed from Eq(6) represents an explicit scheme. The present results seem to be that the
.2 explicit scheme described above requires much less computational labor than such implicit schemes.
L
.":.j The explicit scheme adopted moves the function [ forward in time with step in time of size 6t. The
"},‘-L: truncated power series (Eq(6)) is used with time derivatives furnished by the partial differential equation
S itself. The other derivatives required are given finite difference formulas Eqs (7) and (8). Inspection of
:. these finite difference expressions reveals that fewer points can be computed at time t + & than were
oLV available at time t. In other words if, for instance, the area of the computational grid is a square, the
)\ }‘, points on the border and next to the border cannot be computed at the next instance in time. If there are
N ;;'\ 2n 4+ 1 non-temporal points initially in each direction this means that after n steps in time the procedure
}, can only supply the function at a single point.
‘ This difficulty is overcome for distributions satisfying Eq. (5) by making the approximate solution zero
A >~ at the boundary points and at the points neighboring the boundary. At first glance this procedure may
) N seem somewhat arbitrary as, in effect, the normal derivative of the function as well as the fuaction itself is
Ul
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3" set equal to zero at the boundary. Numerical studies, however, show that for a sufficiently large domain
é: of approximation no problems arise. The higher order approximation (with the function set equal to zero
: on the boundary and its meighboring points) bas been compared to an spproximation using lower order
N finite difference expressions for the non-temporal derivatives (which requires only that the approximate
::{ solution be zero on the boundary itself) and found to be much superior. Distribution functions in both
- coordinate and momentum variables are always required to vanish as the momentum becomes infinite.
’: (Physical problems with entities moving at infinite velocity usually have no significance.) The techniques
!

described above should always be applicable to the momentum (or velocity) variables. Other boundary
conditions may be applied to the spatial coordinates, however. If the distribution function is only strictly
defined in a finite spatial domain (reflecting walls for example), clearly the preseat methods are
nonapplicable. Periodic boundary conditions, for example

ol..q+L;.p;..) = o{...q;p;-) (12)
where L; is the period of the qi“' coordinate can be handled by an obvious modification.
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T
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The process of generating an approximate solution to Eq(2) can be envisaged as follows. A region of the
x,y plane is selected suitably large that f(x,y,t) can be assumed to be zero on the boundary. A grid with
spacing Ax in the x direction and Ay in the y direction is laid out on the region. The approximate
function is assigned the value zero on the boundary points and the points neighboring the boundary. The
approximation retains these values for all times. The initial values of f(x,y,t) are computed at all the
p other interior grid points. Using these points which represeat f(x,y,t) at time equal zero, f(x.y,t) is

- B W
‘- .

o>

,*\’ computed at time equal &t by means of Eqs(6), (2), (7) and (8). It is clear that many of these last
’ j‘ computations are quite independent of each other.

e

~ This last step can be partitioned into several independent computations, if the space of computation is

‘ SMivided into subregions with, however, redundant points added to the boundaries as are required by the
¢ caw.!ation. This is shown in Fig. 1. The columns of the subregions in Fig. 1 correspond to values of
: f(x,y,t) for x and ¢t fixed. Time is, of course, constant through the region and x varies in the horizontal
o direction. The double border of the entire region is shown filled in with zeros, but this need not be done
;. " explicitly. The leftmost region (it may be thought of as an independent processor together with an
o associated memory) provides the means of advancing columns 3 through 8, the center region columns 7
- through 12, and the rightmost region 13 through 16. Only one time step can be made since not all the
'52 columns in each region are updated in this time step. Accordingly, updated values of f(x,y,t) are moved
N from subregion to subregion as required to form the boundary and neighboring boundary values in each
:f" subregion for the next step. The columns required are shown crosshatched in Fig. 1 and the columns
updated which supply these values are shown shaded diagonally in Fig. 1. The data movement is shown
‘_ by the arrows. The partitioned calculation is seen to proceed in two steps. The first is the time
; 1: propagation of f(x,y,t) in each independent subregion (which can be carried out simultaneously) and
A second the transfer of data between subregions to prepare for the next step. The essential feature of the
e Liouville equation for the one dimensional harmonic oscillator is that data transfer is only needed between
:’: adjacent subregions.

A slightly more complicated situation arises from a periodic one dimensional Liouville equation such as

3 oM/ +y 8/x + sin(x) 61/8y = 0. (13)
r Here the function is periodic in x. The partitioning is shown in Fig. 2. The new feature is the transfer of
o data from one end of the region to the other. A simplification immediately suggests itself. If the variable
Ja y is arranged to vary across the columns, and x varies across the rows, the periodicity will be coatained
z inside each of the subregions of the partition and (with the appropriate modification of the internal
2 conditions) the situation described by Fig. 1 is achieved.
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51' The independent variables of a numerical procedure for solution of a partial differential equation are

_9- i seen in this partitioning context to have three roles; i) propagation, ii) communication, and iii) internal
. labelling. In both these examples the time, t, is solely concerned with propagation. In the example of the
}: _:: one dimensional harmonic oscillator as discussed above, x is both a communication variable and an

internal labelling variable (since f(x,y,t) is being computed at more than one value of x in each subregion).
1! Finally in the example of the one dimensional harmonic oscillator as discussed above y is solely concerned
e with internal labelling. As illustrated by the second example of periodic one dimensional motion,
n_) reassignment of the variable roles can lead to simpler computational requirements. One of the principal
tasks of parallel programming may be said to be that of assigning the optimum role to each variable.

A Further subdivision of the computational domain can be considered. In Fig. 3 partitioning in both the x
o and y directions is shown for the one dimensional harmonic oscillator. The boundary condition is again

(¢, shown on the extreme borders. The movement of data is again indicated by arrows. No diagonal
. movement is required if the data is moved in proper sequence. The vertical moves are made first. That
e is, the rows containing unshaded plus cross hatched areas are moved vertically to the neighboring
::\_ subregion and form the unshaded and stippled areas of the border. The horizontal moves are made last.
K 4"‘: The internal diagonal shaded, cross hatched, and recently arrived stippled areas are moved horizontally to
:{:‘- form the diagonally shaded areas of the border of the meighboring subregion. The data in the cross
° batched area is seen to be moved twice and to fill the corner of the border in the diagonally opposite

subregion. By means of this double movement the diagonal movement required to fill the corners of the
border has been achieved.

SURN The two dimensional subdivision can be thought of as carried to its ultimate limit if only four points in a

square array remain in the computational region. (In Eqs(7) and (8) a five point finite difference scheme is
. used, if a three point scheme were employed the ultimate limit of the computational area would be a
_ ! single point.) This is shown in Fig. 4. The data transfer areas bave completely coalesced and filled the
ﬁ';-\ computational area which is the central square containing four points. The boundary condition is shown
{.‘,_\ by the zeros and the data moves are again indicated by arrows. All the vertical moves are made first and
18 only a single square of four points is moved. All the horizontal moves are made last and each time the

central column of non-zero data is moved. In the first sequence of moves the middle squares on the

Q%N horizontal borders of the subregions are filled and in the second sequence the remaining vertical sides of
e the subregion borders are filled.

S0

p ::-:' The notion of an ultimate partitioning is useful in classifying a physical problem and indicates just
N exactly how much parallelism is inherent in 3 mathematical structure. The idea of an ultimate partition
. 9 has more utility in more complicated situations. Consider again the general Liouville equation given by
.&:';: Eq.(1). In applications involving large numbers of molecules the dimensionality of the partial differential
1,,' equation is so large that numerical solution is never attempted. Smaller systems, however, can be of

o interest. A linear triatomic molecule (with heavy enough atoms to make classical mechanics
\,i,' approximately valid) can be modeled with four variables if bending and coriolis interactions are neglected.
: The variables consist of two relative spatial variables which determine the separation of the atoms and
PO the two associated momenta. If the two new variables are thought of as internal labelling variables, the
,_::: computation might proceed as in Fig. 1. The four dimensional problem now requires each processor to
s perform a very large calculation. To reduce each processor’s labor a finer partitioning is required and the
~.:' situation in Figs. 3 or 4 is considered. The ultimate two dimensional partitioning in Fig. 4 may perhaps
; be over elaborate for the problem originally considered, but in a higher dimensional problem it may be
= quite viable. Higher dimensional pearest neighbor networks can be conceived but seem unduly
:\. complicated, particularly for dimension greater than three. Finally, if a doubly periodic system is
; ‘3.':' considered (two petiodic space variables and their associated momenta) the most natural choices for the
~ communication variables are the two momentum variables, if a two dimensional partitioning as in Figs. 3
2%
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or 4 is employed.

3. Nearest Neighbor Communication, the Vlasov Equation in Special
Situations

The Viasov equation is an approximate description of the behavior of a system of free electrons which
avoids the high dimensionality of the Liouville equation. The equation for the distribution function
f(r,v,t) (in the usual terminology velocity is discussed in place of momentum) is 45

/8 + vgt-e/mE(r.t)y,f=0 (14)
with
E(rt)=- g 4 (rt) (15)
and
2 9 = dxe{ Jdv ((r,v 1) - ni(r‘)} (16)

where ¢ and m are the charge and mass of the electron, respectively and nj(r) is the charge density of the
positive ions which are assumed to be so slow moving with respect to the electrons that their motion may
be neglected. The analogy to the Liouville equation can be made by identifying V in Eq. (1) as -e# and
taking N equal to one. The three dimensional spatial gradient operator is denoted by ¥ and 7, is the
gradient in the three dimensional velocity subspace. Another difference between the two equations is that
@ represents the non local self consistent field of the electrons whereas V in Eq. (1) is strictly local. This
feature presents both the numerical difficulties of the Viasov equation and a ponlinear aspect which gives
the equation great pbysical interest.

The numerical procedure outlined in the last section requires an expression for the second time
derivative of [ and thus if Eq. (14) is differentiated the time derivative ultimately of #{r,t). This is
obtained by differentiating Eq. (16) and using Eq. (14)

v’O. = <47e G fv f(r,v,t)dv (17)
where the term involving 7, has been integrated assuming f(r,v,t) vanishes for large velocity. The time
propagation procedure can thus be spplied provided # and @ can be obtained from Eqs. (16) and (17).
These Poisson equations cannot in general be solved with the partitioning procedures discussed in the jast
section, and form a specializted area of research in themselves. Similar mathematical systems as
represented by Eqs. (14), (15) and (16) arise in fluid dynamics.®

Situations do exist, however, which can be adapted to the methods of the last section. If f{e,v,t) and
E(r,t) are independent of spatial coordinates y and s the equations can be simplified to

B8t + v O/x + E S[0v = 0 (18)
and

+e0
OE[3x == !gv f{x.v,¢) - q;(x) (19)

where the components of velocity v, snd v, have been integrated out of the problem snd the independent

1,54 variables as well as the densities and field bave been reparameterized ¢. Differentiating Eq.(20) with
respect to time, substituting Eq. (18) and using the fact the f vanishes for large velocity

OE/ot = -]: v f(x,v,t) dv + ¢(t) (20)




LY

R N *y
.’l.“v"/‘_.‘.

¢

Cia a loa Mg lim ala aaalalaa u-ahe s goa s ane A0k ek ol g Sebcan e Bak g BaX Al Slak Sad Jiuk el B ek Rt et llac Sat Nac ghec Sa® ek datons P gt

where c(t) is an integration constant. If the ions are essentially restricted to a finite region which contains
tero net charge, E vanishes at infinity (external fields are assumed to be absent) and ¢(t) vanishes. In
periodic situations the assumptions are less clear, but it seems that c(t) can be chosen to be zero, also.

The working system of equations is taken to be Eqs. (18) and (20) (with c(t)==0). It is obvious from Eq.
(20) that since v is involved in an integral over its entire range, v cannot be a communication variable in a
nearest neighbor communicating partition if computations are to proceed simultaneously. The only
partitioning available for the one dimensional Vlasov equation is thus of the kind illustrated by Fig. 1.
For systems periodic in x there is no choice but to use the kind of partitioning described by Fig. 2. The
only new complication is that for every columa of f(x,v,t), x and t fixed and v ranging, a single value of
E(x,t) must be added.

In most applications so far the system actually solved consists of Eq. (18) and (19). The reason for this
choice is that Eq. (19) involves a lower moment of the distribution than does Eq. (20) and is thus thought
to possess more desirable numerical properties. Serial computations using the methods of the previous
section, however, have been performed and show no reason for preferring one to the other.

The ultimate partitioning for the one dimensional non periodic Vlasov equation is shown in Fig. 5. The
data transfer areas have again coalesced completely into the data computational area. Each different area
of the subdomain contains two columns of data, one for each different value of x. Each column contains
f(x,v,t) for all values of v and one value of E(x,t). The ultimate partitioning is only one dimensional since
with only nearest neighbor data transfer, v cannot be a communication variable.

The present techniques can be applied to another problem which is potentially interesting. If a laser
beam of radial symmetry ionizes a column of gas a cylindrically symmetric distribution of ions and
electrons will result. To examine this the Viasov equation is written in cylindrical coordinates

1/0t + v, 01/0r + (v,[1)08/0 + v, 0133 + (v,2[r* + E,) 81/ov,

- (v‘vr/r - E‘)af/b\g + E.M/av. =0 (21)
where again the equation has been reparameterized and vV ‘,v..E,,E‘,E. are cartesian components of

vectors in the instantaneous orientation of the unit vectors in the cylindrical coordinate system. The
Poisson Equation for the electric field similarly becomes

1/+(3/r)E, + 110/ 06)E, + (8/2)E, = _;Ev, !:s'v oJ av f(r,v.t)

- g;{r). (22)
Spatial cylindrical symmetry implies f is independent of ¢ and & and E’ and E_ are zero. The distribution
function cannot be independent of v ¢ and v, since it must vanish when these variables are infinite. From
the form of Eq. (21) v, can be integrated out of the problem, so that all that remains is f(r,v v ot) and

E(r).

The system now becomes

3o + v B1/0r + (v"/r2 +E)Ot/Ov, - (v, [r) Of[ov, =0 (23)
and
(3/or)rE, = r{ ]’:l‘v, !’:v‘ f(rv,.v,.t) - q(r)}. (24)

The current equation is obtained by integrating this from o to r, requiring E, to be finite at r=0,
differentiating with respect to time, inserting Eq.(23) and iategrating by parts, so that




8
S I
OE [Ot == [dv [ dv ‘vtl‘(t.v,,v ‘,t). (25)
~ay -
Finally, Eq. (23) can be simplified by replacing the pair of variables r,v o by the pair ¥,L where (formally)
/=1
L=1v ¢ (26)
Using the chain rule, and dropping the prime from the resulting equation gives
o/t + v, 01/3r + (L/1* + E)3t/Ov, == 0. (27)

The *force® which appears in this equation is the ®centrifugal force® plus the electrostatic force. The
angular momentum is L. Since, classically, the centrifugal force keeps particles away from the axis, for
non zero values of L, I(r,v,,v ',t) is required to be zero at r equal to zero.

The system of equations to be solved consists of Eqs. (25) and (27). Due to the integral in Eq. (25), v,
and v R (or L) can only be internal labelling values. Again ¢t is the propagation variable and r is the
communication variable. A linear partitioning as in Figs (1) or (5) is the only choice. The columns in
these figures are replaced by matrices with v_ and v ¢ (or L) varying along the rows and columns and with
each matrix is associated a single value of E (r,¢).

It is interesting at this point to compare the four variable Liouville equation discussed in the last section
on the partitioning given in Fig. 4 with the cylindrical Viasov equation just discussed on the partitioning
given in Fig. 5. These configurations represent using the ultimate partitioning for the next most simple
problem in the new context. For the Liouville equation the computational area of the simplest problem
consists of four points. In the new context each of these points is replaced by a matrix whose rows and
columns can be thought of as generated by the two new variables. For the Vlasov equation the
computational area of the simpler problem consists of two columns which are generated by variation in a
velocity variable (along with a single value of the electric field). In the new context these columns are
replaced again by matrices whose elements are generated by varying the values of the two velocities. In
these two cases the matrices are roughly comparable in size, the difference being that there are four in the
case of the Liouville equation considered and two in the case of the cylindrical Vlasov equation. The
computational labor required in each subdomain is thus of the same order of magnitude. Again the reason
for these numbers, four and two, is because the high order finite difference schemes given by Eq. (7) and
(8) are being considered. If a three point scheme was ¢mployed only one matrix would be required.

4. Numerical Organization of Laser Propagation Computations

The physical situation is that of a laser pulse of radial symmetry perpendicular to its direction of
propagation passing through a medium containing matter which the laser pulse is capable of exciting. A
simple mathematical model is given by the three equations 7:8:°

{8/32 + (1/c)d/ Bt - ia(6%/ 1% + (1/r 8/5r)}E = bP, (28)
(8/3 + k, + ia)P = SEW, (29)
and

(8/0t + k KW - W°) = ~(EP* + E*P). (30)

The independeat variables are the time ¢ and the cylindrical coordinates 1 and r. The Pulse is propagated
along z and r is the distance (perpendicular to z) from the pulse center. The electric field due to the laser
pulse, E, the polarization of the medium, P, and the inversion density, W, are the dependent variables.
Note that E and P are complex. The velocity of light in the medium is c. If the field were suddenly
turned off, as seen from Eqs. (29) and (30) P and W-W® would decay with decay constants k and k,
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respectively, and W° is the steady state value of W. The parameters a,b,a,5 and v are combinations of
other physical parameters and constants of the system (frequency, x, Planck’s Constant etc.) which have
been combined together for simplicity. Detailed discussions of the underlying physical phenomena are
available. 191! Instead of describing the rapidly varying electric field and polarization themselves, E and P
actually describe the assumed slowly varying envelopes, and thus some second derivatives have been
peglected. The geometrical nature of the initial conditions requires specialized numerical techniques.

New variables r and n are defined by
r=t-3fc
and (31)
n=4z
From the chain rule it is seen that
8/3 = 8for
and (32)
8/81 + (1/c)8/8t = 8/dn.
The laser pulse enters the medium at 1 equals zero at time t equals zero and moves with velocity c. At a
given point, z, 7 is thus seen to be the time after the "leading edge® of the pulse has passed. A fixed value
of 7 determines the path in the t,z plane of a disturbance due to the laser pulse. The derivative ajong the
path of such a disturbance is 3/3n. The transformation does not change the form of Eqs. (29) and (30), so
these can be taken over unchanged, provided that it is understood the time is mecasured from the *leading
edge® of the disturbance. The remaining equation, Eq. (28) becomes

OE[3n - ia(3%/0r% + 1/r 5/Or)E == bP. (33)
The initial condition for E is prescribed at 3=0, (n=0)
E(ort) = E (r,t). (35)

The medium is assumed to have its spatially independent steady state values ahead of the laser pulse, so
that

W(nrr)—~ W asr—o0

and (36)

P(nrr) <P, as7—~ 0.
The situation is depicted schematically in Fig. 6, neglecting for this purpose the variable r. The time
bistory of the laser pulse at z=0 is sketched to the left where the ®leading edge® starts at t=0. The
*leading edge® propagates along the line labelled =0 in the figure. The area below this line has not yet
encountered the laser pulse, and thus the initial conditions for W and P are applied on the skewed line
r=0. The boundary condition for the field is applied at =0, which is the vertical axis to the left labelled
t=r({o). The boundary of the space-time region is indicated by the diagonal shading attached to the iines.
The derivative 8/3n is taken along the skew lines in the figure with r constant. Thus P and W propagate
in the vertical direction, starting from the line r equals zero, and E propagates in the skewed direction
(r==constant) starting from the line z equals zero.

The nonorthogonal coordinate system can be simply understood by considering the variation in E along
the line r==constant,

AE = (E/0Z) 62, + (TE/t) &1, (37)
where the subscript r indicates the special nature of the variation. From Eq. (31)

&, = 1/c 8Z,. (38)
Substituting this in the preceding equation

AE, = (OE[3Z + 1/c JE|&) 8Z,. (39)

In view of Eq. (32) this can be written
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AE, = (0E/dy) 82, (40)
It is clear from this expression that
by = G2, (41)

as is obtained from Eq. (31) also. It might have been supposed that the arc length along the line
r=constant should have been used, but this is seen not to be the case.

The numerical solution has been given by predictor-corrector!! and semi-implicit predictor-corrector
techniques. These procedures allow a single step in E along r=constant, and a single step in P and W
along z=constant to be taken. These two independent steps must end at the same point if the
information required for the next step is to be available. The nature of the differential equations and their
boundary coanditions have thus provided certain restrictions in the sequence in which the solution is
generated. Several different sequences can be conceived, but not all are suitable for partitioning into
semi-independent computational procedures. A useful sequence and two associated partitionings are
shown in Figs. 7 and 8. The figures are shown on the problem space shown in Fig. 6. The circles indicate
the points at which the numerical solution is generated and the number in the circle indicates the step
number in which the numerical solution is acquired. Each circle has circles containing smaller numbers
{from earlier steps) to the left along r=constant and below along z=constant. Each circle containing the
same number can be computed independently of all the other circles with the same number, and therefore
partitioning can be perforined across diagonals containing the same number. Two different partitioning
are shown, one in Fig. 7 to generate the solution behind the leading edge of the pulse, the other in Fig. 8
to generate the solution neighboring the entrance window to the medium. The boundary region is only
shown for the entire problem domain. Only the new values generated are shown in the interior
subdomains, their boundary conditions and data transfers are omitted for simplicity. In order to achieve
this partitioning the computation is required to have a staggered start. In the first step computation
takes place only in subdomain one, in step two parallel computations take place in subdomains one and
two, in step 3, computations in subdomains one, two, and three and so on until all subdomains are active.

So far the radial variable r has not been discussed as it clearly does not present any new problems, or
enter into the complexities discussed above. The radial variable clearly is not a propagation variable. If
the partitioning indicated in Fig. 7 and 8 is implemented in the simple manner of Figs 1 or S, r is just an
internal labelling variable and merely turns the points indicated in Figs 7 and 8 into the columns of Figs 1
or 5. The partitioning can be further refined, however, and r assigned the role of a communication
variable to produce a scheme such as is given in Figs 3 or 4.

Finally it is interesting to note that in comparing Figs. 7 and 8 the roles of t and z are interchanged in
the two figures. In Fig. 7, each subdomain contains a particular value of r which remains the same as the
solution is developed. Each successive step advances the subdomain to a new value of z (or ). Thus z (or
n) may be said to be the propagation variable and t (or 7} the communication variable. Each subdomain
in Fig. 8, on the other hand contains the same value of z for all steps and is advanced in steps of 7 (or t).
Thus in Fig. 8 the propagation variable is t (or 7) and the communication variable is z (or n).

5. Two Dimensional Diffusion

Isotropic diffusion in two dimensions is described by the equation
afon = 8°t)ox® + 8%1/dy? (42)
when suitable units are chosen for the independent variables. The dependent variable f can be regarded as
the concentration of some substance which is initially present in some non-uniform distribution. Only the

simplest boundary conditions, that for all time { has some fixed value on a rectangular boundary in the
x-y plane, will be considered.
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'_.»“'_'-'- If an explicit numerical approximation such as was employed in Sections 2 and 3 is utilized, the
condition for numerical stability will be
- D At){AxV¥ < 1 for Ax ~ Ay (43)
oo where D is some characteristic numerical constant. This condition is strikingly different than the
.- condition for first order systems given by Eq. (9). Consider the case in which a numerical result has been
::}: obtained which appears physically reasonable. If all the variable spacings are shrunk uniformly the
approximation for the first order system will remain stable (if initially stable) whereas a similar kind of
‘j approximation for a second order system may become quite unstable. In such an event a perhaps
unreasonably small value of At may be required for computation. An unconditional stable explicit
:_::-} numerical scheme is required to properly handle second order terms.

:_" The variable transformation
: S = (y+x)/{/2

L= (y-x)/y/2 (44)
':"-f. is first carried out. This leaves the partial differential equation unchanged, i.e.

B oMot = 8%t/0s2 + Bt/ n3. (45)
- The two dimensional version 1213 of a scheme originally devised by Saul'Yev !4 is employed with the s
g ; and t variables. An apparently more accurate version of the procedure is available, !5 as well as another
e application to a more general one dimensional problem '8, The method is generally called the alternating
S direction explicit procedure (ADEP). Two different forms of the finite difference expression are given,

e Y ('. Iy Aol Al\'*

h ,'}m 1 A (At/thxAm-l a-2U 0 + U

Al Al I A
+ 804102y +ﬁn.n+l) (46)
':::: and
-
o ~r¢l ot
K Vo, 'Qm (At/2h2)( m-1a " ot Qm B-1
] '0

o + 91‘1:4-1 a2 c +Q‘ n+l) (47)
N where

:::.:- t = [At

N s==nh 2 (48)
o t=mb 2.

.,__ The finite difference expression for u furnishes an approximation for f at the gridpoint m,n in terms of
‘: values of m-1,n and m,n-1 for the same time level plus values from the previous time level. Thus for a
[~ given time level f is generated starting from the lower left hand corner. The situation is reversed for
- v. Taken together, the two equations furnish & means of generating an approximation to f, first in one
) ‘ direction, then in the opposite direction. Two different means of implementing the approximation are in

- use. The [irst is an averaging procedure.
27
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! ‘i The second implementation merely takes alternate directions in subsequent steps,
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LS 1
4L Al
1} ‘ fan = Vo -
)
P
W\{-ﬁ:‘ The procedure is adapted for partitioning by transforming the expression back to the original variables x
{ *:: and y. Substituting s and ¢ from Eq. (48) into Eq. (44) and solving for x and y gives
- x = jh
WhY y =kh (51)
where
N j=nm
D »f:‘: and (52)
1 k=na+m.
>4 For these variables
.«
Y
® 2y g y{l
b ‘5';“'“1( (At/2b )(“f-lkl‘z“ek""';-nu
el
s
o + “tn k412 “ u‘lk-ﬂ) (53)
; ":.; ':. ‘nd
o I . £ 2,1
(. w'- vi = (ay th)("j-l k172 Yk ¥ Vitrka
b
AL +
L + "fl k412 "’ ;-ﬂ k+l) (54)
L3 . These last expressions allow the calculations for the new time level to be carried out in a vertical rather
: than diagonal direction. The procedure is shown schematically in Figure 9. In this figure each grid point
o S in the finite difference scheme is in the center of a small square. Only half of the grid points are coupled
~‘:'. together by the finite difference expressions (Eqs. (53) and (54)), so that f need only be found at half the
.}-;;:' grid points. The grid points omitted from the calculation are located in the shaded small squares.
W {ﬁ Computation of u from Eq. (53) proceeds from the bottom of the figure to the top. One particular step in
® < the computation of u is shown at the bottom of the figure. The grid points corresponding to the }+1°
o time level in Eq. (53) are indicated by the open circles. The grid points corresponding to the I'D level are
;}‘.‘_ indicated by solid circles. The calculation proceeds in the direction indicated by the arrow once a
'{.]:w{ borizontal row has been completed. The computation of v as given by Eq. (54) is similarly shown at the
;:‘C; top of the ligure. This computation proceeds from the top to the bottom of the figure.
Al
."' The corresponding partitioning and communication for parallel computation is shown in Figure 10. The
S situation is quite similar to that of Figure 1 except that in the present case data is transferred at the
e completion of the calculation of each horizontal row rather than at the ead of the calculation of the
Yy particular time level of the entire domain. The data transferred in the present case is only that of a single
o grid point instead of the transfer of an entire vertical column in Figure 1. The domain border points
- containing boundary values for the domain computations are located in the crosshatched area (except for
}v: the two rows shown in more detail). Two rows of the finite difference grid are shown in the middle of
%-‘.'.( each domain. The grid points omitted from the calculation (the shaded small squares in Figure 9) are
}' located in the stippled squares. The movement of newly computed data to the boundary of the
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Qe neighboring domain (to supply information needed to compute the next row) is shown by arrows.

The time variable (index { in Eqs. (53) and (54)) is a propagation variable in this scheme. The index j
e corresponds to communication and k to internal labelling. In view of the way the computation proceeds
e by borizontal rows, k can be also regarded as an internal propagation variable. The independent variables
1208 x and y are equivalent in Eq. (42), and essentially equivalent in Eq. (2). In the latter case a two
f: & dimensional partitioning is possible. Only a one dimensional partitioning, by contrast, is possible in the
" 'lj present case due to the numerical procedure.
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Z dependent time lines
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A Paradigm for the Design of Parallel Algorithms
with Applications

I. V. RAMAKRISHNAN anp JAMES C. BROWNE

Abstract—-This paper proposes s model or paradigm for the develop-
ment of parallel algorithms, gives an example of the proposed paradigm,
and displays algorithms developed by application of the technique. The
algorithm for the merge of two ordered lists developed through applica-
tion of this technique is thought to be original. The paradigm proposed
is to create compaosite unit operations which combine data movement
between dats structures with a conventional operation such as compare
or sdd. The composite operation constructed for this study is based
upon partitioning the dats elements into two linear lists. Exchange of
dats between adjacent elements in each list are then combined with
compares and adds to complete the composite operations. This com-
posite operation can be implemented on at least the following compu-
tational architectures.

1) SIMD with all processors sharing a common memory.

2) SIMD with local memories and s linear interconnection (circular
pipeline or ring network of processors).

3) Vector processor with common memory, such as 8 CDC CYBER
205 or a Cray Research CRAY-1.

The aigorithms developed all have the property of linear speed-up

Manuscript received October 16, 1981. This work was supported by
the IBM Corporation and by the U.S. Air Force of Scientific Research
under Grant AFOSR-82-0091.

The authors are with the Department of Computer Science, Univer-
sity of Texas at Austin, Austin, TX 78712,

with the number of processing elements. The algorithms developed
include sorting, merging, selection among sets, set interconnection, set
difference, subset testing, and string matching.

Index Terms—Data structures, paralle! algorithms, set processing algo-
rithms, sorting and merging.

1. INTRODUCTION

HERE is substantial theoretical and practical interest in

the development of parallel algorithms for the common
processes of numeric computing and data processing [3]-[5],
[9]. There is, accordingly, a need for models and paradigms
for the development of parallel algorithms akin to the tradi-
tional general techniques which have been used for sequential
algorithms [10].

Lint and Agarwala (11] survey and analyze the models used
in formation of parallel algorithms. All of the models for
synchronous paralle] algorithms are based on direct abstraction
of the physical structure of the system such as common shared
memory or specification of an interconnection network: “sort-
ing on a mesh-connected computer” or “Bitonic Sort on Dliac
IV,” etc. This focus on a specific architecture does not generate

0098-5589/83/0700-0411501.00 © 1983 IEEE




) z:’\_:v

-

v T AT

oal gl ekl ard-avi ol s A g i e At Bt 8.

412 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE#%, NO. 4, JULY 1983

insight into the logical structure of the algorithm itself and
makes transfer to other architectures difficult.

Models for asynchronous parallelism are typically very ab-
stract: directed graphs, Petri nets, etc. Thislevel of abstraction,
while extremely powerful for structuring process interactions,
often hides the actual computations of an algorithm and makes
meaningful analysis of execution times difficult.

There is a need for models of parallel processing which are
abstract enough to be generalizable to several architectures,
but which are sufficiently descriptive to allow ready determi-
nation of execution costs. Sequential algorithms are typically
modeled as operations on data structures. This model is in-
adequate for parallel processing because it does not consider
interprocess communication.

Guidance for the development of a paradigm may be obtained
from consideration of the characteristics of models of parallel
processing. Models of parallel processing must include costs of
synchronization and interprocess communication as well as
operation counts for the computational steps of the algorithm.
The paradigm proposed here is to create composite unit opera-
tions which combine data movement between data structures
with conventional logical or arithmetic operations such as
compare or add. The composite operation is applied to data
values specified by their positions in a data structure. This
paper defines and applies one example of this paradigm for the
development of parallel algorithms. The composite operation
is based upon partitioning the data elements into two linear
lists. The composite operations are defined by combining add
and compare operations with a data movement operation of
value exchange between adjacent elements of each list and
identically indexed elements in the separate lists, The subse-
quent section defines and characterizes the algorithm and its
cost of execution. The analysis of execution cost is greatly
simplified by the use of the composite operation since data
movement and synchronization costs are included in the
operations count analysis, Algorithms derived with the para-
digm are given in Section IIl. The characteristics and architec-
tural requirements of the algorithm are given in Section IV.
The paradigm will be contrasted to the more usual approach of
algorithm formulation for specific parallel architectures. Defi-
nition of data movement as occurring between data structures
allows for mapping to a spectrum of parallel architectures or
interconnection structures.

Il. DESCRIPTION OF THE ALGORITHM

The data structures used are linear lists. Linear lists 4 and B
contain the data elements upon which the algorithm will be
executed and between which data movement will be defined.
It will be necessary to occasionally employ auxiliary linear lists
which we will note by C, FLAG, etc. These auxiliary variables
will be used to hold intermediate results for some algorithms.

We first write the algorithm in the simple case where the
number of elements in each data array is n and the number of
processors is n. We then give the algorithm in general form
where 4 and B may be of different dimension and where the
number of processors k may be less than the dimensions of
A or B. Proofs of linear speed-up and bounds for computation
time are then given for this general case.

e Ca et e
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A conventional notation is used. The computational steps
within cobegin-coend brackets are processed in paralle} with
the degree of parallelism specified by the range of the index
of the cobegin. For example, the notation

cobegin: { <0:n-1>
operation (4 [i], B[i])
coend

implies n parallel executions of operation (4 [i], B[] ) on each
of the elements <O<i<n-1> of A and B. Processors are
assigned a number from O to n-1 (or from O to k-1) and the
processor of index i acts upon the data elements of index i.
Algorithm (for n processors and n elements in each linear
lists):
begin
fori=0ton-1do
cobegin: j <0:n-1>
operation (4 [j],8{/], Cl/])
coend
end.

Each execution of the cobegin-coend bracket executes simul-
taneously the ag yet undefined composite arithmetic/logical
plus data movement operation on the three tuple 4[], B[],
C[j]. This is then repeated n times to complete the execution
of the algorithm.

In order to conveniently display that linear speed-up in the
number of processors is obtained, we write the algorithm
where A and B are of size n and m, respectively, and k pro-
cessors are used. We restrict the number of processors k to
the situation where m = ck and c is integer,

Algorithm (k processors, m = ck,m<n):

begin
fori=0ton-1do
forj =0 tom-1 in steps of k do
cobegin: [ <0:k-1>
operation (4[], B[!],C[I])
coend
end.

All algorithms expressible in this form show speed-up propor-
tional to the number of processors if we neglect 1oad time and
output time, as is commonly the case at this level of resolution
of detail, |
Lemma 1: Using k processors the algorithm uses 0(mn/k)
steps.
Proof: Let m=ck for some integer ¢. The inner loop takes
O(m/k) steps. Therefore the outer lpop takes O(mn/k) steps.
Definition: Let |A| and |B| denote the sizes of the arrays 4
and B, respectively. Let min(|4|, |B]) and max(j4}, |B}) de-
note the minimum and maximum of the sizes of the arrays
A and B, respectively. '
Theorem I: Using min(|A], |B]) processors the algorithm
uses max (|A4], |B]) steps.
Proof: m=|B|, n=|A| and m <n. Therefore, m=min(|A4|,
IBl) and n=max(|A|, |IBl). Substituting k=m in Lemma |, the
theorem follows.
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111. APPLICATION

The utility of the technique is illustrated by developing algo-
rithms for sorting, merging, selection, set-problems, and string-
matching. In all the algorithms we use min (14|, {B|) processors
in order to simplify the presentation. Extension to the case
where the number of processors, k, is less than min(|A|, [B]) is
straightforward so long as m = ck and c is integer.

A. Sorting

Sorting of a sequence of elements can be performed by rank-
ing each element in the sequence. Rank of an element x is
defined to be the number of elements greater (less) than x.
Ranking is done by comparing every element against every
other element in the sequence. Let A and B be two arrays
each of size n, each containing the list of elements to be sorted.
Initially C[{] =0fori=0,1,2--.

Sorting Algorithm:

begin

fori=0ton-1do
cobegin: j<0:n-1>

if A[j] > B|j] then }
Cli] :=Clj] +1; = operation
A} =A[G+))modn])) (A[i],BL].CU)
coend

end.

The “«” is a data transfer between the two list positions. The
composite operation here consists of comparison between two
identically indexed elements of 4 and B, incrementing a rank
counter C and circular left-shift of the elements of A. This
sorting algorithm correctly ranks all the elements in the array
B. The rank of identical elements will, however, be the same,
Consequently, completion of the sort by moving the data
elements to their positions by rank will result in all identical
elements being moved to the same locations in array A. In
order to avoid this, we adopt the following solution. Identical
elements are placed in consecutive locations in the final array
on the basis of their relative positions in the array B. If B; and
B; are two identical elements, B; follows B in the sorted se-
quence if i<j and vice versa if i>/. An element in the jth
position in the array B is compared against elements to its left
after n~j iterations of the for loop. Processor P; which always
compares the j element in array B with every other element,
updates its count on comparing with an equal element only
after n-j iterations.
Sorting Algorithm (identical list elements):
begin
fori=0to n-1 do
cobegin: j <0:n-1>
if (A(/1 > B[/D
or ((4[/] =Blj])
andj> (n- )
then
Clj) :=Cl] +1;
Alj] = A[(j+i)mod n)
coend

B. Selection

Given a sequence of elements a,,43,°**, a,, selection in-
volves choosing the kth largest (smallest) element in the
sequence. By ranking the elements, selection can be performed
by indexing. The technique used to rank elements in the
sorting algorithm is used for selection.

C. Merging
Array A is of size n and B is of size m. Initially A[1] <
A[2) <---A[n] and B[1) < B[2] - - - < B[m].
Merging Algorithm:
begin
fori=0ton-1do
cobegin: i <0:m-1>
if A{j] > B[j] then
A[j] = B|j] then
Alj} =A[(j+i) mod n]
coend
end.

The “o” operator interchanges the elements of two lists.

On termination, A[1] K A[2] <---KA[n] <B[I1] <---
< B[{m]. This algorithm has not been previously found in the
literature and is believed to be a new algorithm for parallel
merger of two lists. Proof of this algorithm is given in [7].

D. Set Intersection

The two sets of elements are contained in arrays 4 and B.
Array A is of size n and array B of size m (n>m). Let FLAG
be a Boolean array of size m. Initially, all the values in the
Boolean array are false. .

Set-Intersection Algorithm:

begin
fori=0 ton-1 do
cobegin: i <0:m-1>
if A[f] = B[f] then
FLAGj] « true;
Alj+1] ~A[j] modn
Alj) = A[(i+i) mod n)
coend
end.

On termination the true values in the FLAG array correspond
to elements in the array B that are also contained in array 4.

E. Set Difference

Arrays A and B represent the elements in the two sets as in
Section 111-D. AFLAG and BFLAG are two Boolean arrays.
AFLAG is of size n and BFLAG is of size m (n>» m). Initially,
the values in both the boolean arrays are false.

Set-Difference Algorithm:

begin
fori=0ton-1do
cobegin: j <0:m-1>
if A[j] = B[j] then

-- - - -y k - h\ -
Nt
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N
e begin AFLAG[j] « true;
s BFLAG]/] + true;
?0§.ﬁ Alj]l = Al +i) mod n)
end R, A R

B coend Ii- !

T¢ d R R —l R

N end. 8 8 8
4 :_"J On termination, the false values in AFLAG correspond to Processor o1 Processor m2 R ,
» “,- elements in array A4 that are not in array B, and the false values ) L m,“m
) in BFLAG correspond to elements in array B that are not in Fig. 1. Circular pipeline of processors architecture.

N array A.

N R, and Ry are registers to hold the values of lists 4 and B.

SO
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F. Subset Testing

Arrays A and B denote sets of elements as in Section IV.D
and III-D. FLAG is a boolean array of size m. Initially, all
the values in C are false.

The registers of each processor can compare and exchange
values. The processors are connected by one-way pipes. A
“shift” instruction moves the values from R4 of processor i
to R4 of processor i+] with end-around for n-1 to 0. This

basic structure can be augmented with additional registers for
each processor as needed for FLAG, etc., vectors. This simple
and regular architecture suggests VLSI implementation. It
should be noted that this architecture will not implement the
string matching algorithm without special provision for the
AND of the Boolean values in the FLAG vector at each cycle.

A wide spectrum of algorithms can be constructed by com-

-
-
-

Subset Testing Algorithm:
begin
fori=0ton-1do
cobegin: j <0:m-1>
if A[j] = B[/] then
FLAG{/] « true;

'.‘ A oy

J @ [Z A

>, A[j] =A(( +i)mod n] posing only compare and add with the very simple data move-
.' e coend ments among so simple a data structure as a linear list. Execu-
:_:‘ end. tion costs, including data movement, are readily determined
G S . for a number of different architectures for each algorithm.
" . On tter m:infm:n, if all the values in FLAG are true, then B The operations and algorithms also suggest effective architec-
— & containec in 4. tures for given problems. Definition of composite operations
::‘:-, - , on square arrays leads to formulation of graph and image
0y G. String-Matching processing algorithms. These will be explained in a later paper.
- List A holds the text string and List B holds the pattern
R string.  String-matching involves determining whether the V. SUMMARY

pattern held in B occurs as a substring of the text held in 4.
The subset-testing algorithms of Section III-F can be used

We have proposed and described a paradigm for the design
of paralle] algorithms. We have applied the technique to pro-

"-‘,_ for string-matching with a slight modification. Instead of test- duce a number of algorithms. The algorithms produced by
{::- ing the FLAG array at the termination of the algorithm, the the application of the paradigm have desirable properties such
':;{ array is tested after every iteration. If after any iteration the as linear speed-up and readily obtainable bounds. The tech-

h .:; value of all elements in the FLAG array are true, then the nique produces algorithms which are applicable to a wide

pattern held in B occurs as a substring in 4. variety of computational architectures, We propose that the

paradigm of specifying composite operations against data
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Qé: IV. ANALYSIS OF THE PROPOSED PARADIGM structures is a basis for at least one direction of study of
:: 3 The usual procedure for establishment of parallel algorithms parallel algorithms.
R is to map a sequential algorithm to some specific parallel archi- ACKNOWLEDGMENT
N tecture. The execution cost is determined b elyc -
il . e exec co d by separat l)f ount The authors gratefully acknowledge the suggestions of Dr.
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circuit switching generally gives a someithat lower comrmunication cost with

the advantage increasing vith nixel intensity resolution. The results of the
analysis suggest a hign utility value for including both circuit switching and
packet switching functionality in the networks of network architectured
multiprocessor systems.
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;:. The communication costs for parallel versions of two simple The measure of communication cost is elapsed time. The
ﬁ!;P"‘P"" “5“! In image processing are compared in packet communication times givep herein are rejorted as number of
switching a'nd circuit swnchmg_ formqlatiops. The two algori'lhms memory cycles. \We assume, in order to normalize computation

9y are smoothing and bistogramming. The histogrammiaog algorithm, costs across architectures, that an integer addition takes a single
N the recursive doubling algorithm of Stone, is studied over a range memory cycle and that updating a bistogram vector eleiacnt

Y of processor mumbers and pixel intensity resolution. The packet sequires two integer additions. The speed-up of a multipracessor

:.t ::d cxr;-tqn switching propertic sbof tdho mterconnecu:n nek:}vorks of over a uniprocessor is the ratio of total execution times, Tp, where

- e multiprocessor systems are based on two network architectured e i ah ;

‘l_‘: multiprocessors which are well-documented in the literature, PASN Tg = TCOW + Teoyp: All LOG's in this paper ate in base 2

i and TRAC. Communication based upon circuit switching generally unless otherwise noted. The data paths of each ICN are takea to

. gives a somewhat lower comrmunication cost with the advantage be one integer word in width. For the multistage ICN's of PASM
[ ] increasing with pixel intensity resolution. The results of the and TRAC it is assumed that s unit of data moves through one
o . spalysis suggest 3 high vtility value for including both circuit stage of the ICN on each memory cycle.
AN switching am_i packet switching functionality in the networks of Definition of Architectures
53, petwork architectured multiprocessor systems. -

FOI Introducti d Overvi Communication cost for execution of the two algorithms is

b~ - rfodaciion and Jverview compared for three ICN-based multiprocessor architectures. The

I8 This paper compates the communication costs for executing two single shared bus architecture (Figure l') has beep charactn_‘ued by

1 algoritbms used in image processing on three parallel computer Bhuyan and Agrawal [Bhuyan§2). It is a baseline for ICiN-brsed
architectures. The purpose of the comparison is to evaluate packet muitiprocessors. Tbere is no distinction between packet and circuit
switching and circuit switching modes of data movement lor switching in this model of communication. The model for a packet

g interconnection metwork based  multiprocessors. The two switching data movement architecture is PASM (Siegeiss|. The

o slgorithms used for tke comparison are computation of histograms ICN of PASM connects complete processing elements as shown in

. of the intensity values of pixels of an image and smoothing of gray Figure 2.

e Jevel data across the pixels of an image.

R Shaved

._-‘- The model for a packet switching architecture is the Partitionable P Srerr

N o SIMD/MIMD (PASM) System for Image Processing and Pattern °

D Recognition [Siegel81).  The model for a circuit switching 1

~ srchitecture is the Texas Reconfigurable Array Computer {TRAC) : i |

g [Sejnowski80]. The third architecture, all processors sharing a L u ﬂ

2 common bus [Bhuyan82j, is given as a haseline for the comparison. see

.‘:; ' An analysis of communication costs for the two algorithms

“ }‘1 executing on PASM has been given in [Siegel81). The resuits of an Pia. 3. & Meltiprecessor vich o Shared bus

'y analysis of the execution of the two algorithms in a circuit -

e switching formulation based on TRAC are given bere. Space
i, limitations preclude detailing of the analysis. Q
C icati . . l‘
e ommunication Analysis for Parallel Algorithms [ 5| .
~ The major factors determining communication cost for the 0 smaseries
&'\"- execution of parallel algorithms on interconnection setwork (ICN) . Satvert
:.‘- basd multiprceessors include: (i) the topology of the JCN and the .
o configuration of resources on the ICN, (1i) the mapping of the data
i ‘__-‘ movement requircments of the algorithm upoa the ICN, (iii) choice G
o of switchiog methodology, (iv) the latency and bandwidth

o properties of the ICN, and (v) the unit sizes and the total volume
of the data to be moved. This paper focuses on the impact of Tig. 3. PE-ta-P2 Configuration

s switcbing metbodology and data volume on communication cost.

*. -

. The choice of packet switching or circuit switching as the mode of .e

PN metwork data path establishmeot can have a substantial effect on *

I each of these architectural parameters, Packet switching teads to

e give flexibility in topology but fixed unit transfer sizes. Circuit

-s ! switching tends toward lexs flexibilily in topclogy, greater flexibility . I 1atercomect ton Betwert 1
in onit size for transfers, but a longer tiansfer latency time. Packet

o switching may slso introduce bandwidth degradation due to path é

2 conterlion while circuit switching may introduce path blockages .

L which limit realizable network topologies for all netwotks short of

t%\ full ernss-bars. L 3. Procescec-te-Neaary Configuretion
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The interconnection networks proposed for PASM are the

eneralized cube and the augmented data manipulator (ADM)
|Siegel79].” "I'hese two metworks are optimal for histogramming in
the sense that all permutations for the algorithm can be realized by
both networks in 3 single pass. Thus packet transfers can take
place without blocking.

The model for a circuit switching data movement architecture is
TRAC [Sejnowskis0]. TRAC places processors at the apex nodes
and memories at the base uodes of its ICN {Figure 3). The ICN of
TRAC is an SW-Baryan [Premkumars0] with nodes having spread
of two and fanout of three for its ICN. Processor coafigurations
are formed by establishing circuits in the ICN joining processors to
memory units. Data flow between processors for different stages of
the algorithms can be realized by dynamically switching memories
between processor-memoty configurations. This network also
implements (rees of circuits joining one memory to many
processors in which any ome circuit may be activated and/or
deactivated by a single processor instruction. These tree circuits
are calied sh:.'ed or switchable memory trees. Data flow between
processors may be implemented using this capability by a sequence
of cirewit activations and deactivations {among the circuits
following the tree).

The ICN of TRAC sactually implements both circuit switching
and packet switching but only the circuit switching modc of use 18
modeled in the equations given following.

The Al:orithms and Their Mapping to the Architecture

Histogramming 2and smoothing are among the basic operations of
image processing, although not usually rate determining steps in
the computations. Attention to detailed parallel formulations of
major computational steps of image processing such as thresholding
snd edge detection is needed. It is assumed in the analysis
following that the picture is MM pixels io size (M=2™) and that
? I!N-Z“) processors are available. The resolution of each pixel is

its.

Histogrammiag Algerithm

The parallel algorithm for histogramming is the recursive
doubling algorithm of Stone [Stone75|. The structure of the
algorithm is shown in Figure 4 for N=8. N partial histograms are
computed in parallel at level 0. Each partial histogram is a vector

of length 2. The partial histograme are then added in pairs in
parallel for LOG(N) stages to complete the algorithm.

Jevel 3

Jevel 2

level 0

Figure 4: Recursive Doubling Algorithm
for Histogramming

Partial histograms are shown at level 0 by A's and vector additions

by B's. N/2i transfers of vectors are done between level (i-1) and
level i. The computation time, Trgyp, for this algorithm under

the assumptions made bere is proportional to Toopp = M3/N +
2* LOG(N).

ﬁ Packet Switching Formulation of Recursive Doubling
istogramming - Siegel ¢f al [>icge181[ have given a thorough
analysis for the execution of this algorithm os PASM. e adopt
the results of this study as our packet switebing model of recursive
doubling bistogramming. It is commonly the case that further

steps in the analysis of the image require thresholding ro that the
fina! bistogram vector must be collected in one processor and the
threrhold value distributed. The total communication time for this
formulation of the slgorithm is -

level 1 -

Toorod = {LOG(N) + 2') + 2] x LOG(N).
travel time  switch number of levels
tbrough the setting in the ICN
ICN time

A Cireuit  Switch  Formulation of Recursive Doubling
Histogramming Based on Tree Circuits - Figure § illustrates the
structure of the circuit switched data movement formulation of
recursive doubling for an 8 processor-8 memory configuration.

,.@

LV RN . '
H V2] oo FANCIN H
At B L SR N N AN
Tree clrcuits » AR S LA T B | -
7/ St L’ u N *ves a4
Memocies = m | * I | ‘j lﬂ E]
- -

® essseccsaceses & tree civcvits (esch circuit has &

distinet “color™)
CRIYTYY TIPSR ]

®—_— } sormal processor-memory circuits

Figure 5: Circuit Switching Using the
Tree Circuit Formulation

The M? pixcls are evenly partitioned among the 8 memories. Each
processor computes a partial histogram vector and stores it in the
corresponding memory. The computation is then compleled in
LOG({8)=3 stag>~ of adding partial vectors with the full histogram
computed by piracissor 3 and stored in memory 5. The tree
citcuits of Figure 5 implement the successive communiration paths
between levels in Figure 5. The *——* tree circuits implement the
data flow between levels 0 and 1 in Figure 4, "00000*® the data flow
between levels 1 and 2 and *.....° the data flow between levels 2
and 3. There is a regular pattern of using first the verticals and
thep the diagonals of each type of tree circuit. Each tree circuit
type bas a unique number (called COLOR in correspondence with
graph theory). LOG(N) colors are required to implement the
algorithm in this formulation. Path selection {activation and
deactivation) in all tree circuits of identical COLOR can be done in
parallel with a latency time proportional to LOG(N)/2. Tae ICN
of TRAC can implement the tree circuit pattern of Figure §
without blockage.  The total communication cost (or this
formulation of recursive doubling histes amming is

LOG(N)
Tooru = ILOG(N)I'? £ N/2t [LOG(N) + LOG(N)]
=l 3
time to latency
switch all time

memory with
identical COLOR

A Circuit Swit~hing Formulation of Recursive Doubling Based on
Direct Reeconficuration - Another (ormulalion based om circuit
switching cap Le developed by ditertly reconfiguring the ICN after
cach step (level in Figure 4) of the algoritbm to conform to the
data movement path required at each stage of the algorithm. Each
conliguration step involving establishment of a circuit between a
given processor and a set of memories must be done scrially. Thus
use of the tree-circuit based algorithm is faster by a factor of
LOG(K) where K is the number of COLOMRs available.

= (3/2)}(N-1)

The Smoothing Algorithm

Smoothing is replacement of the intensity of each pixel by the
mean of the jotensity of the given pixel and its nearest neighbors.

Packet Switching Formulation of Smoothing - Siegel et al

sSivg«-lsl] have formulated aud analyzed a packet data movement
ormulation of the sinoothing aljorithm. They show a speed-up of
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about .8N for 3 1024 processor configuration. This estimate is
extremely conservatively based. A greater speed-up is probable.

Circuit Switching Formulations of Smoothing - A eircuit
switching structure for the smoolhmg operation 1s suggested by the
fact that each computation requires only ncarest neighbors.
Therefore if the pixels are stored by columns then a processor will
need simultaneous access to three columns (say k-1kk+1) to
execute the computations on column k. A realization of this
representation of the smoothing algorithm is given in Figure 6.
Extra zero valued rows and columns of pixel values are added to
each formulation of boundary conditions. The solid lines of Figure
6 are pormal circuits. The dotted lines are tree circuits from which
leaf-root paths can be selected. Processor 1 computes in scquence
the smoothed values for the pixels in columns 1, 2 and 3. Processor
2 will simultancously and in sequence compute the smoothed values
for the pixels in columns 4, § and 6. P1 and P2 must share access
to pixel columns 3 and 4. The execution procedure described
preceding allows this sharing to be accomplished without conflict if
the required circuits can be established in the network. This two
processor configuration obviously extends to an N processor 3N-
memoty configuration so long as the memory unit can hold an
entire column of pixel values. A TRAC-like ICN can realize these
configurations so long as these restrictions are met. It is also the
case that the pecessary data movement can be realized by
reconfiguration of normal circuits. This is not the method of choice
so long as the conditions for a tree circuit representation can be
met.
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It may be desired to use a degree of parallclism greater than M
(N>M). Then the columos of pixels must be decomposed into
vectors of length M/k where N=kM. In this case the

establishment of circuits is dependent upon k and may not always
be possible. A formulation using both circuit switching and packet
routing capabilities for TRAC has been worked out. The pixels
sppesring at the boundarics created by partitioning of columas
bave their ®nearest neighbors® sent to them by packet movement.
This *mixed® communication mechanism is still of lower cost than
s pure packet based mechanism. The case N<M (for N=2i,

m-ﬂ’) is bandled by assigning maultiple (2") columns to processors.
This case raises no new prodblems.

We give bere numbers only for the circuit switching
represcntation where N=M and data movement is via tree circuit
sctivation and deactivation. Then the total commueication cost is
{N/2) LOG(N) (a=suming deactivation and activation of all tree
circwit paths is done in paraliel). It N=M=512, then only
256°9=2304 memory cycles ate required for data commnmcauon

a0 A il bt At Bbed Bdu Bt o & S S B i B e h A s b ah Aok g

This is negligible comparcd to the C*512°512 arithmetic operations
on the pixels (C>10 and probably C>10°) since indexing must be
accomplished as well as the addition and division of smoothing
itsellf.

We thus conclude that for smoothing data movement costs will
be essentiully trivial for both packet and circuit switching
representations.

Speed-up Analysis and Discussion

Figure 7 shows the net speed-up versus the number of processors
for M=1024 and A=8. There is, in this case, little difference
between formulations based on different switching strategies for
moderate numbers of processors. There is the suggestion that
circuit switching will yield superior performance for large numbers
of processors.

Figure 8 shows the speed-up factor as a function of X\ for
M=1024, and N=256. The amount of dala trapsferred grows
exponentially as A. Thus circuit switching data movement shows a
strong advantage 2s X increases since the cost of data movement in
the circuit switching strategy given here is constant with respect to
data vcluine uatil the capacity of a memory unit is exceeded.

Smoothing on the other hand shows advantage for packet
switching since there are cases where a pure circuit switching
formulation becomes rather complex.

The bottom lize with respect to parallel histogramming is that
circuit switching has an advantage resulting from flexibility in the
unit size of transfers and in stability with respect to algorithm
parameters but that well-designed architectures should give similar
performance for small to moderate numbers of processors.

Circuit switching and packet switching are both extremely
efficient for paratiel smoothing. Packet switching has an advantage
over circuit switching with respect to applicaticn of degrees of
parallelism with N>M for parallel smoothing. This advantage
arises from the greater flexibility in communication topology.

g I-MPSB, Y=PACKET, #=CIRCUIT, X=LINEAR

219 o = circuit svitching based on trees
] % = circuit svitching based on
yveconfipuration

120.00

100.00

\J Y Y \
0.00 40.00 80.00 120.00 160.00

Figure 7 Speedups versus the Number of Processors
(M~1024, A=8)
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Thbere is suggestion from these two algorithms that
implementation of both packet and circuit switching [acilities in the
ICN's for multiprocessors will give lower communication cost and
greater net speedup than either used separately.
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TRAC: AN ENVIRONMENT FOR PARALLEL COMPUTING

J. C.

Browne

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract

This paper defines one set of requirements for
a successful general purpose parallel
architecture, describes the design concepts of the
Texas Reconfigurable Array Computer (TRAC) and

then demovnstrates that the TRAC architecture
fulfills these requirements. It will be seen that
TRAC  implements a general purpose parallel
computation system through its abiliity to
implement a Spectrun of single purpose
architectures. Special attention is paid to

architectural support for software and to the I/0
problems fur a many-processor architecture.,

Requirements for Effective
Parallel Computing

A perallel computer architecture is founded
upon a set of assumptions about the nature of the
workload it is to «c¢xecute and the technology
available for implementation, These assumptions
in turn define the requirements for the
architecture. This sectinn 1lists the assumptions

and requirements which underlie the design of the

Texas Reconfigurable Array Computer (TRAC).

1. An effective general purpose parallel
architecture must be able to realize a

spectrun of models of parallel
computation. (See Section 2 for
definition of models of parallel

In many cases efficjent
parallel formulatioan of most
significant problems  will require
multiple modes of parallel computaticn.

computation.)

2. High performance communication between
parallel processes is as important as

high performance computations,

3. A successful many processor
architecture must include an e¢ffective
solutfon to the problem of disiributing
data from I/0,

Software will be the major botllenack

in the application of parallel
computing. .
A successful family of parallel

architectures will be fournded on a

RFRIAR
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concept bave which is extensible across
8 broad range of numbers of processors.

The validity of the arguments that TRAC can be
the basis for a very high performance paraliel
architecture depends on the validity of this
requirements analysis.

The sections of this paper which follow will
show  that TRAC  offers one total system
architecture which meets the requiremeuls of the
problem domain defined by this set of assumptions.

Models of Computation

It is useful, before going on to the discussion
of TRAC design principles, to give our perspective
on’ parallel computing. Problems, algorithms,
architectures and languages can all be
characterized by the model of computation which
they require for execution or which they realize.

The essential element in the understanding of
the development of algorithms, software and
applications for parallel architectured conputer
systems is an understanding of the models of
computation required by significant problens and
realized on hardware architectlures. A model of
computation for bequential computing includes the
following elements:

1. primitive units of computation

2. composition rules for compasing the
primitive units of computation into
executable and schedulable units

3. definition of address
control the data to
computation is applied.

spaces which
which the

Models of parallel computation add to the elements
of sequential computation requirements for:

1. modes ond topology of communication
between units of computation which are
executing in parallel and

2. mddes and
mechaniams,

types of synchronization

LIS T AT A e S LIPS
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An application is typically made wup of
algorithms and steps and phases within algorithms,
each of which may be characterized by some model
of computation. Units of computation and the
modes and topology of communication are often
disjoint between phases of an algorithnm. These
algorithns and applications must be mapped to a
hardware architecture which also realizes one or
more models of parallel computation including the
specification of one or more modes of
synchronization and/or topologies and modes of
commumication.

Design Concepts

This section outlines the design concepts which

are used in the TRAC systen to meet the
requirements posed by the problem statement
defined in the section entitled "Requirements for
Effective Parallel Computing." The set of
concepts which we will describe include
configurability, partitioning, integrated 170

architecture, and multiple modes gi communication.

Configurability is the ability to realize
problem specific parallel architectures from a
collection of resources. Partitioning is the

separation of resource configurations which gives
conflict free execution. An 1integrated I/0
architecture constructs a solution for external
storage as a part of the design of the memory
architecture of the system.
communication refers to the use of both circuit
switching and packet switching as modes of data
movemant through the components aof the
architecture. :

Configurability

Configurability in TRAC is founded on the

dynamic establishment of circuits in an
interconnection network. The interconnection

network used in the current incarnation of TRAC is
a two-sided SW Banyan network [GOK73,LIP801.
Processors are placed at the apex nodes of the

-switch and memory-I/0 units at the bases of the

switch. Figure 1 is a schematic of a 4-processor
9-memory-1/0 configuration of  TRAC, The
architecture of TRAC and the properties of the
banyan network have been well described in the
literature [SEJB0,PREBO,LIP80]). We will focus on
the properties which result from this
architecture. .

Three types of circuits are implemented. All
have the shape of trees. The trees rooted at the
apex nodes link one processar to many memory-I/0
nodes and realize an address space for the
processor. There are two types of trees with
roots at the base of the network. An instruction
tree couples a set of processors to give an SIMD
architecture. A switchable memory tree
establishes a family of circuits potentially
linking many processors to a single memory-1/0
unit. Only 9ne circuit in this family may be
active at any given time. Figure 2 illustrates
the formatinn of such circuits for the d-processor
9-memory-I/0 configuration. It is straightforward

Multiple modes of

to see that this capsbility for configuring
architectures from resources through the
establishment of circuits in the intercoanectiog
network supports rezlization of almost arbitrary
parallel architectures,

Partitioning
Partitioning is again founded on the
establishment of circuits in the  network.

Partitioning follows frem the fact that a given
resource element interucts on a cysle by cycle
basis only with the rescurce elenments to which it
is joined by active circuits. The construction of
a configuration from a collection of resources can
thus be said to partition these resources.

Integrated 1/0 Architectures

The memory unit at each base no2de of the
network may also have attached a self-managing
secondary memory unit (SMSM) [RAT81,RATE32.  the
SMSM is an object-oriented storage device. It
implements associative searching by name and thus
implements a local directory for the objects it
has stored. The storage element for a SHSM may
range from additional RAH to a large disk. An
SH3M extends the address space of a memory unit to
include the objects stored in the SUSM.

Multiple Modes of Communication

Efficient parallel formulations of problems

and/or algorithms must minimize c¢ommuanication
between streams of computatisn which are
proceeding in parallel. Parallel architectures

are, however, only of interest when there must be
some cooperation and thus communication between
the parallel streams of computation. The ideal
communication system will have zero latency,
infinite bandwidth and realize arbitrary
topologies of communication. These are the
properties of a paracomputer [SCHE0]. We argue
that realization of these properties in an
interconnection mnetwork based architecture can be
best approached through the use of both circuit
and packet modes of communication. The TRAC
interconnection network does realize both modes of
data movement, Circuit based movement of data is

.based upon selective activation of circuits in the

. Switchable trees.

If one processor deactivates a
circuit in a switchable tree and another processor
activates a circuit in that tree then the entire
contents of that memory are moved between the
address spaces of the two processors.

TRAC also> implements a complete packet
switching capability. A processor may direct any
memory to which it has an active circuit to send a
data packet selected from {ts contents to any
other processor. In fact, all processors may
simultaneously transmit packets.

Effectiveness of TRAC as a
Purallel Architecture

This section demonstrates how an architecture
built on the design pringiples described preceding
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realizes the requirements defined in the first
section of the paper.

Realization of Multiple Models of Computation

It i{s obvious that TRAC can implement multiple
models of parallel computation. Tnere might,
however, be some need to discuss the efficient
implementation of actual computations. We will
discuss implementation of communication in a
separate sub-section. The TRAC architecture can
ineorporate almost any type or class of processor.
The principal question to be asked is the
efficiency of access to memory by an individual
processor. Analyses of the switch node have shown
that it is readily possible to construct nodes
with delays of the order of a few nanoseconds.
The 1length of the path between processors and
memories is bounded by log n where n is the number
of processors so that total delay will be not more
than 10's of nanoseconds for even quite large
numbers of processars. This 1is still much less
than cycle time for mem:ry cells appropriate for
processors of considerable speed. Tt is also
readily possible to include processor local caches
in the TRAC design although we have not done so.

There are two other issues to be addressed.
These are the «costs of configuration and
reconfiguration and the problems created by
blocking in the network causing effective loss of

resources. The TRAC architecture provides
hardware .support for the formation of
configurations [RAT80,JENB1, JENB2]. hctual
establishment of coufigurations can be

accomplisticd in microseconds. The problems of
allocation of resources to form configuratiosns has
been extensively studied by modeling ad simulation

[(DEG81a,PRE§1]. These studies have consistently’

shown that rather simple algorithms are appareuntly
adequate for reasonable levels of resource usage
and rates of change of configurations.

- Communication and Data Movement

The combination of circuit switching and packet
switching mechanisms for communication implemented
by TRAC synergistically combine to give very high
performance over a spectrum of requirements for
data movement. The switchable trees give a

"mechanism for very high bandwidth communication.

The deactivation of one circuit and the activation
of ansther in a switchable tree «can be

accomplished in a few memory cycle times. The

result is the transfer between process address
space of the entire contents of a memory-1/0 cell
which may include megabytes of direct access
memdry as well as executable memory.

Packets implement a mechanism of arbitrary
topology but lower Dbandwidth.
communication can be used where the establishment
of circuits has an unacceptably high resource cost
or i3 simply not possible.

. - Studies of image processing [YAS83] algorithms
.have suggested thc power of combining the' twe

Packet based

wodes of communication for intercousectiosn netwark
based architectures.

The 1/0 Problem

A many processor parallel architecture must
face the problems of distriputing dataz to
processors, maintzining a directory structure,
maintaining consistency and developinug the
necessary bandwidth of 1/0. TRAC provides the
capability of plecing a self-rsneging secondary
memory (Sh3M) on every memory noue. | The overhead
of maintzining a central directory is nov required
since the SW&M's implement 1local directory
services which «can be cormbined to give a
distributed girectory. Parallel directory
searches can be executed by having each S¥MSM
initiate a search on its own portion of the
distributed directory. The availability of an I/0
port at each memory site gives an  enormsus
opportunity for parallel structuring of I/0
processing. Thus TRAC attains 1/0 bandwidth
through parallelism. The external data necessary
for execution of a given process czu be stored on
the SMSM's 1local to that process. Thus camplex
data movements to conplete I/0 are avoided.

Support for Software

Resource management in an environment of
thousands of processors, memories and I/0 devices
is-an unsolved problem. The overhead of resource

.management in resource sharing systems tends to

rise in a greater than linear fashion with the
degree of competition for the resources and the
mediation of conflict for resources. TRAC avoids
this problem since sharing is &all explicit. Each
configuration of resources orgauized into a given
computer architecture executes independently of
all other configurations because the establishment
of circuits partitions the resources. The
processes interact only when interactions are
programmed as a part of the computation. DeGroot
{DEGBIb] has discussed resource management for
TRAC using the hardware support provided.

The structure of the operating system for TRAC
has been described elsewhere [BROB2]. Figure 3 is
a schematic of the operating system for TRAC.

The structure of this operating systenm is
hierarchical with the functionality partitioned on
a Jjob-by-job basis. This structure in cffect
creates a local operzting system for each job.
The local operating systems interact only when job
configurations are established and altered. This
proposed implementation has a growth in resource
management overhead which is linear in the number
of jobs being executed on the entire architecture.

Extensibility

The concept base for TRAC can be effective for
a spectrum of configurations of processors from a
small to moderate number of relatively fast
processors to a large number »f slower processsra.
Estimates made of 1oss of effectiveness througn
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