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Abstract

The accomplishments of the research project "High Performance Parallel Computing"

for the Year 1083 span algorithm formulation, parallel programming languages, basic

software for the Texas Reconfigurable Array Computer and validation of design

concepts for the Texas Reconfigurable Array Computer (TRAC). Image processing,

sorting and time dependent partial differential equations were subjects for algorithm

formulation and analysis. Accomplishments in parallel programming include:

substantial progress toward the implementation of two parallel programming

*environments, the Computation Structures Language, and a task level data flow

programming system. The hardware prototype of TRAC made substantial progress

towards stability. The state-of-the-art in reconfigurable switch based architectures has

been advanced. A result of note is the demonstration of the integration of circuit

switching and packet switching in a single interconnection network.

1. Research Objectives

This research project was an integrated approach to parallel computation spanning

algorithm formulation, programming and software, and hardware/architecture design

and prototyping. The goal of the program was to establish a flexible environment for

experimental studies of parallel computations. The focus of algorithm formulation and

software development research was the Texas Reconfigurable Array Computer (TRAC).

It was realized during the course of this year that the concepts being developed for

programming and software for TRAC applied to a wider range of architectures. We

began to develop our software systems with a broader range of architectures in mind

during this year.

The experience of building a prototype of the Texas Reconfigurable Array Computer

(TRAC) has proved to be highly rewarding. It has improved our understanding of

parallel architectures and, we hope, has made significant contributions to the area of

parallel processing.

TRAC employs the novel concepts of reconfigurability and space-sharing in its
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organization. These are seen to be the key to the success of the general purpose taightly

coupled multiprocessors. Many other unique architectural features were inclu d to

enable it to perform equally well in both numeric and non-numeric applications. Most

of these features have fulfilled their promise while others have brought to l1ght

important issues which may demand further study. The goals for the TRAC

reconfigurable architecture may be summarized as follows:

1. Trivially, it must have an organization to accommodate a large number if
processors.

2. It must provide for different modes of communication between the
processing units.

3. It must have synchronization mechanisms general enough to allow an
arbitrary combination of processors to be synchronized.

4. It must be capable of SISD, SIMD, and MIvD modes of execution (12). The
system should be dynamically reconfigurable between tasks to support these
modes of execution and to maximize the use of system resources.

5. Virtualize the computation. The system must support vertical migration
capability and make underlying hardware transparent to the user. A
parallel architecture should provide a basis for implementation of parallel
languages.

*6. Map the architecture to the algorithm. The system organization should be
flexible enough so as to be able to mold the architecture to the algorithm,
not the algorithm to the architecture as has been applied in the past. It
should make avaIlable to an algorithm the parallelism that it requests so

that its true performance can be evaluated.

7. Give attention to the technology. The machine should be built modularly
with a minimum number of unique partitions. This would facilitate the
translation of the design into the emerging VLSI technology. This last goal
will allow us to assess the engineering decisions that went into the design of
TRAC and to document our experience with the TRAC development effort.

!I
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2. Research Accomplishments

The research accomplishments of the project during 1083 spanned the range from

algorithm formulation to programming languages to operating systems and finally to

validation of hardware/architecture design concepts. The subsections which follow give

the principle research contributions under each topic.

2.1. Algorithm Formulation

One of the two principal algorithm formulation activities during this year was the

establishment of optimal partitioning schemes for time dependent partial differential

equations. This work is discussed in a report by E. J. Shipsey [SHI831. A second

algorithm study was study of the relative efficiency of packet switching and circuit

switching architectures for realization of histogramming and smoothing algorithms for

image processing. A paper on this research was published in the Proceedings of the

1983 International Conference on Parallel Programming [YAS83]. The principal

findings are that circuit based architectures will become more efficient as the image

resolution and thus the volume of data to be processed increases.

Ramakrishnan and Browne [RAM83], in research performed under the 1982 AFOSR

grant of the same title but not reported, developed a paradigm for the design Of parallel

algorithms for SIMD computer arrays. This research explores the class of algorithms

which can be created by combining computational and data movement functions in a

single abstract machine instruction. The results obtained included a new algorithm for

merging on a bidirectional pipeline of processors.

2.2. Parallel Programming Languages

The year 1983 saw substantial advance in the development of the run-time support

system for the Computation Structures Language (CSL). The design for the run-time

system of CSL was completed, implemented and partially debugged during this time

period. Implementation is taking place on the Dual Cyber 170-750's of the University

of Texas Computation Center. A design for a task level data flow language which will

complement the capabilities of CSL was initiated during 1983.
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The two underlying principles upon which we are basing our parallel programming

languages are the separation of representation of dependency relations from

computations and the recognition that all parallel computations can be expressed as

directional graphs.

The Computation Structures Language is a text string language for specification of

computation graphs and for specification of explicit traversal paths for the computation

graphs to execute the computation. The task level data flow language uses the same

principle of separate units of computation from dependency relations, but implements

an implicit traversal of the computation graph.

2.3. Operating System for TRAC

1983 saw the completion of the design for the operating system for the Texas
$

Reconfigurable Array Computer. This research was primarily executed by Mr. Daniel

Canas.

Several unique problems arose from this research. The first of these problems was the

integration of a virtual memory architecture into the reconfigurable memory structure

of TRAC. The capability of the TRAC architecture for switching memory units

between processor configurations is a powerful means of sharing of memory.

The mode of moving a memory unit between processor configurations is to generate

an interrupt when a processor attempts access to an address which is in a "shared"

memory module that is not currently attached to the requesting process. The interrupt

service routine realizes its request by establishing a circuit to the memory board holding

the requested address. A virtual memory page fault can be created in the same manner.

W I'The result is the establishment of a unification of virtual memory and reconfigurable

memory architectures for TRAC. The techniques developed here can be applied to page

fault handling in a conventional demand driven page environment if paging is via a

switchable memory configuration.

LIL
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2.4. Hardware Design Concepts

There have been quite a number of accomplishments directly resulting from work

during the year on the design and implementation of the prototype. These will be

covered subsequently. The memory and the input/output devices are connected to the

base nodes of the banyan network. The TRAC architecture distinguishes between the

two kinds of devices and has separate interfaces for both. The memory modules employ

the Primary Memory Interface while the input/output devices use the Auxiliary

Resource Interface (ARI). One significant accomplishment during this year was the

definition and implementation of the ARI for support of terminal and disk I/O.

The ARI access has allowed I/O programming to be device-dependent at the user

level. The transfers between an Auxiliary Resource (I/O Device) and the primary

memory were implemented via descriptor based instructions. The descriptors have the

same general format, although their contents are specific to the device being processed.

The calling sequences of the instructions are independent of the device being addressed,

making the hardware details of the underlying device transparent to the user. Thus the

concept of ARI has become central to the virtualization of I/O in TRAC. (The concept

is not dissimilar to that of the dev file in UNIX). Also, The actual transfers of data

between the device and the primary memory are complementary, allowing transfer of

data during every memory cycle. The ARI concept has already been used to connect

devices such as terminal (14), printer, disk, self-managed-secondary-memory (15), and

the control port (14) to TRAC.

A second major milestone was the successful implementation of the banyan
interconnection network. It can be considered to be the most important contribution of

- the TRAC project to date. It is a two-sided, multistage network with processors at the

apex end and memories or input/output devices at the base. It has been built

modularly with unique partitioning properties; it has been built using a single building

block called the switch module. The switch module itself is easily segmentable and

amenable to VLSI implementation.

@~



The primary purpose of a close-coupled computer network is to provide mechanisms
for processor-memory and processor-processor communication and those for

interprocessor synchronization. The performance of algorithms is directly related to the

effectiveness of these mechanisms. Most of the unique characteristics of the TRAC

architecture accrue from the capabilities of the supporting interconnection network.

The network supports both packet and circuit switched modes of data movement. The

* packets are essential for implementing an arbitrary permutation on a blocking network

while also furnishing asynchronous communication between the processing elements.

The packet communication facility provides a means for intra-task data permutation,

intertask communication and operating system message interface. The circuit switched

modes of interprocessor communication occur in TRAC in the form of shared and

instruction trees. It is believed that the presence of both circuit switched and packet

* switched modes of communication is necessary to produce the best performance.

It was during this year that prototype validation of both modes of communication was

accomplished. This resulted from exhaustive testing of the interconnection network.

Programs utilizing both circuit switched shared memory and packet transmission for

intra-task communication were successfully executed.

During this period the Control Port was designed and implemented. It is the interface

between an arbitrary TRAC processor and the Network Controller which is responsible
A.. -for the generation of Data, Instruction, and Shared Memory trees. The Control Port

was tested and performs at the design goal of 1 MHz (cycle time). All aspects of cold

and warm restart were shown to be 100% functional.

N "J.The processor microcode space was expanded from 2K to 8K allowing for increased

code space along with support for an external arithmetic processing unit (APU) with

floating point operations. This restructure provided more flexible microbranch

instructions and the removal of wasteful duplicated microcode.

.- A number of tools were generated in-house to help develop hardware and microcode

for TRAC, and were used in addition to the traditional tools such as the high
A.'-
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4 bandwidth oscilloscopes and logic analyzers. These tools were built around a Z-80 based

Cromemco microcomputer. The tools included monitors, testers, and microprogram

development aids. These are discussed in more detail in the following paragraphs.

Two monitor programs, MOE and RABUG, were written for the Cromemco System to

help develop the hardware and to facilitate debugging of the microcode. A parallel

* interface was built which allows the Cromemco microcomputer to read and write to the

* network interface busses and the micro-address busses of all the processor modules.

Through separate interface, the micro-computer is able to control the clock. By proper

utilization of these interfaces, the monitor programs running on the Cromemco can step

through the phases, micro-cycles and memory cycles, and, in addition, can read data

from or write data to the busses in the TRAC system.

Monitor program MOE has a capability to sequence through a specified number of

phases, micro-cycles, machine cycles, and TRAC instructions, and display or print the

data from the busses, and display the contents of the memory pointer registers and the

processor status registers for individual processors. To facilitate this, instrumentation

was added at the microprogram level to output the required information on the network

~ h.bus. At the beginning of each instruction, a microprogram routine is executed which

supplies the processor status information and memory pointer information to the

monitor program, which then displays it on the CRT screen. The monitor program is

also capable of receiving its commands from a batch file. The batch files are created to

.0 P run the machine through an entire program and list bus data or processor status any

* number of times. This way it is possible to exercise the machine for long periods of

time and capture faults if they occur.

Monitor program MOE mentioned above, explicitly controlled the clock, executing

- considerable Z-80 code for each TRAC clock step. As a result, the TRAC hardware was

exercised only at slow speeds. After all functionalities of the architecture were

developed and tested, a need was experienced for a more sophisticated monitor which

* would run the system at the rated speeds of 10kHz, 100kHz or 1 M~lz and still retain
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the debugging capability. Coupling logic was added to enable the TRAC processors and

the Cromemco system to hand-shake and to allow the monitor program RABUG to

switch between free running and controlled stepping of the system clock. A capability

* was also added so that the monitor could send commands, in addition to data, to the

memory modules. This latter capability has proved to be helpful for software

debugging, since via the monitor, the contents of the memory can be inspected and/or

modified. It is now also possible to insert break point8 in the programs to further

facilitate their testing. As a result, RABUG now provides a multiprocessor debug

facility for both microcode and TRAC machine code program validation.

2.5. Software Development Tools

A software simulator for TRAC was written to help develop system and application

software while the hardware was under construction. The software simulator is able to

provide the parallel programming environment available on TRAC. It is also able to

simulate the shared tree concept and the packet communication. A Pascal compiler, an

assembler, and a loader have also been developed for the TRAC system. These

programs can also generate code that can be interpreted by the TRAC simulator.

3. Papers Published

[YAS83] Yasrebi, M., Deshpande, S. and Browne, J.C., "A Comparison of
Circuit Switching and Packet Switching for Data Transfer in Two
Simple Image Processing Algorithms," Proceedings 1983 International

Conference on Parallel Processing, Bellaire, Michigan, August 1983.

[RAM83] Ramakrishnan, I.V. and Browne, J.C., "A Paradigm for the Design of
Parallel Algorithms with Applications," IEEE Transactions on
Software Engineering 9,1983, pp. 411-415.

[SH183] Shipsey, E.J., "Computational Organization for Parallel
g Computation: The Time Evolution of Physical Systems," (in

preparation for publication, manuscript attached).

6 I



4. Personnel Associated with Project

4.1. Senior Investigators

o J.C. Browne, Principal Investigator

o G. J. Lipovski, Co-Principal Investigator

o M. Malek, Co-Principal Investigator

o R. Jenevein, Consultant

a E. Shipsey, Research Associate

4.2. Graduate Degrees Awarded

o D. Canas, Ph.D., "Operating Systems for Reconfigurable Network
Architectured Systems: The Node Kernel," Department of Electrical and
Computer Engineering, The University of Texas at Austin, May 1983.

o S. Y. Han, Ph.D., "A Language for the Specification and Representation of
Programs in a Data Flow Model of Computation," Department of Computer
Sciences, The University of Texas at Austin, May 1983.

o M. Yasrebi, M.S., "A Pipelined Two-Dimensional Fast Fourier Transform
Array Processor," Department of Eleetrical and Computer Engineering, The

-* University of Texas at Austin, May 1983.

o A. Prakash, M.S., "Design and Implementation of an I/O Interface to
TRAC," Department of Electrical and Computer Engineering, The
University of Texas at Austin, May 1983.

5. Verbal Presentations of AFOSR Sponsored Research

o March 23-26, 1983 - "Modern Parallel Computation Methods," DoD Annual
Technical Review on Computer Science and Applied Mathematics, Air Force
Academy, Colorado Springs, Colorado.

9 April 18-19, 1983 - "Two Paradigms for Parallel Computing," University of
Maryland, Department of Computer Science, Distinguished Visitors
Program.

o August 1-3, 1983 - Keynote Speech for Conference on Computer Software
Performance, Los Alamos National Laboratory, Los Alamos, New Mexico.
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* August 17-19, 1983 - "Software for Highly Parallel Architecture," Los
Alamos National Laboratory Symposium on Frontiers on Supercomputers.

eApril 16, 1983 - "A Language for Highly Parallel Computing," Bell

Laboratories, Computer Science Division.

6. Research Project: Perspective

This AFOSR grant was an important element of support for an ambitious

comprehensive research program in parallel computation also supported by the

Department of Energy and the National Science Foundation. The total result of the

project cannot be fully seen from the perspective of only the portion reported herein.

There were also six other papers resulting from this project with sponsorship attributed

to one of the other granting agencies. The total project, synergizing algorithms,

software and hardware was possible only because of the individual contributions of each

0 funding agency to their specific interest areas.



SECURITY CLASSIFICATION OF THIS PAGE (When Date&Entered) .
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT _____________ _ BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) Manuscript: S. TYPE OF REPORT I PERIOD COVERED

Computational Organization for Parallel final: 1/1/83 - 12/31/83
Computation: The Time Evolution of Physical
Systems 6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(e) 6. CONTRACT OR CRANT NUMBER(a)

E. J. Shipsey (Research Associate) AFOSR F49620-83-C-0049

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Computer Sciences Department AREA & WORK UNIT NUMBERS

The University of Texas at Austin
Austin, Texas 78712

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Capt. A. L. Bellamy December 1985.
AFOSR/NM 13. NUMBER OF PAGES

Boiling AFB, DC 20332
14. MONITORING AGENCY NAME a ADDRESS(f different from Controlling Oflie*) IS. SECURITY CLASS. (o this report)

1S. DECL ASSI FIC ATION/DOWN GRAOtS.G
SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

paper in preparation

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue n reverse side it necessary and identify by block number)

The behavior of a physical system as time advances is described by a se tf
partial differential equations. The state of a system is given when all th
functions characterizing its condition are known for all points in space a that
given time. Thus the behavior of the system is given by a set of functions~fi ed
on some space which is continually changing with time.

DD I FAN "7 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (ft". D4hjtoer) -

%e 
% 

" d



COMPUTATIONAL ORGANIZATION
FOR

PARALLEL COMPUTATION:
THE TIME EVOLUTION OF

PHYSICAL SYSTEMS

E. J. Shipsey
Department of Physics

The University of Texas at Austin
Austin, Texas 78712

1. Introduction
The state of a physical sybteni is described, in general, by a set of quantities characterizing its con'lition.

. " These physical qualities are described mathematically as functions defined on a physical space in which
the system is embedded. The behavior of the physical system as time advances is described by a set of
partial differential equations. The state of a system is given when all the functions characteriziing its

.. condition are known for all points in space at that given time. Thus the behavior of the system is given
by a set of functions defined on some space which are continually changing with time.

A more general view may be abstracted from this notion. Instead of time, a more general propagation
variable may be considered. If the partial differential equations describing the physical system are defined
in terms of N variables, the fuii-tions characterizing the system can be viewed in a N-i dimensional space

. as the remaining independent variable takes successive values. In this way the system is imagii.-d to
.. , .evolve in an N-I dimensional space as viewed by an "observer" tiavelling a!ong the remaining coordinate

axis. Computationally propagation implies that, in principle, if the functions characterizing the physical
:. ~system are known for some values of the propagation variable they can be computed at a value or the

propagation variable which in some sense is further along than the values for which the function is already
known. Conceptually and operationally the propagation variable is associated with the unfolding
development of the physical system. It may be possible to find more than one propagation variable for a
liven physical system. The option then arises of selecting a geometry which will give maximum efficiency
or stability for a given purpose. An example of such a situation is given in Section IV. Ideally, the
propagation variable should be selected so that the computation of the functions characterizing the system
is as simple as possible, and that old values of the functions are required at very few other values of the
propagation variable.

* I The computational process is further analyzed by considering the N-I dimensional subspace (the
computational level) which results when the propagation variable is held at a fixed value. The objective is
to find, in some sense, regions of computational independence. The independence is of a restricted nature

because, of course, the entire space is quite intimately involved in the long time development of the
system. An independence of soils can be conceived for sufficiently short time intervals and of a qtialified
local nature. This is accomplished by means of partitioning. The computational level is divid,.d into
regions which are called computational subdomains. To each computational subdomain is added a border.
The border is understood to contain only points contained in an adjacent computational subdoma:in. The
region of the computational level consisting of the computational smbdomain plus its associated brder is
spoken of as a computationA domain. The computational domains can be considered to be
computationally independent if, for a sufficiently small increment in the propagation variable, all the
dependent functions describing the system can be computed for all points in the computational sul)domain

O.
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at an advanced value of the propagation variable using only their values at points in the computational
domain (computational subdoinain and its border) at the previous value of the propagation variablk. The

notion of computational indept ndence thus defined depends on the numerical method adopted as well as
the physical description and the mathematical statement of the problem The numerical method selected
depends in turn on considerations of numerical stability. The difference in the numerical stability
properties of first and second order partial differential equations is the principal reason for the difference
in the partitioning% adopted for the problems discussed in Sections I! and V.

The analysis of the computaitional process is completed by means of a classification system for the
independent variables of the physical system. The three classes of variables are; i) propagation, ii)
communication and iii) internal labelling. The first has already beeu discussed. The last tv.o are
dependent upon the mode of partitioning selected. If an independent variable of the system passes fro.m
one computational subdomain to another as it takes on all its values it is said to be a commun'cation
variable. If, on the other hand, an independent variable of the system which is not a propagation variable

remains in a computational subdomanin as it takes on all its values, it is an internal labelling variable.

The computer organization for parallel computation follows directly from the partitioning and its
associated scheme of variable classification. The computational domains correspond directly to the

memories of a set of independent processors. The computation proceeds in steps of one increment of the
* propagation variable at a time. After each computation is completed data is transferred between

memories to fill in the information needed on the borders of the computational domain at the new value
of the propagation variable. Each processor is then ready to perform another step of the computation.

The process is repeated over and over until the final value of the propagation variable has been attained.

The physical description, mathematical statement and numerical procedure thus produre the
computational organization through the mediation of the partitioning process together with its associated
scheme of variable classification. The actual work of organization is carried out in the partitioning
process. The problem of finding the optimal computational structure for a given formulation of a problem
is thus one of finding the optimal partitioning geometry. The partitioning process, however, is only an

intermediate step in deriving an efficient computational structure. The search for an optimal computation
structure actually begins with the problem formulation itself. Problem formulation can be considered to
be comprised of the three aspects; ph) sical, mathematical and numerical. Seemingly minor reforinulatious

can have quite drastic effects on computational structures. A little in.ight in the initial phases of
development can often reap greter efficiencies than the most ingenious geometrical creations in the latter
stages. In Section !11 an example is given in which a slight modification its the mathematical formulation

allows parallel computations to be carried out in special cases.

The essential feature of propaigation and communication variables is that the numerical problem which
must finally be solved mukt contain very sparse conpling in these variables nad be highly explicit. The

coupling might be seen in the mathematical formulation but becomes more apparent in the numerical
analysis. Some examples of couapliaigs which prevent variables from being communication or propagation

variables are given in Seciion Ill. Ii order that partitioning of a computational level be pobsible it is
. apparent that only a small region in the communication variable subspare must be involved in the

.- calculation. The most immedite requirement of the numerical system to be solved is that only oearby
values (in the directions of th. communication variables) be coupled together. In addition, the ttduti',n
process itself must not spread the calculation into other domains of the partitioning. This latter cotiition

is quite restrictive and actually means that the numerical scheme expresses the functions describiltig the
physical system at one particular point in the computational level in terms of "neighboring' poitats in
earlier computational levels or at only a very specialized class of points in the advanced level. This
requirement which arises froma considering partitioning in the communication variable subspace actually

6%
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furnishes the crucial test of the propagation variable selection. Explicit numerical schemes are not always
stable or may require extremely small step sizes to achieve stability, so that the number of systems which
can be treated in this way are limited.

The problems most readily organized in this manner belong to the clas of problems for the time
evolution of physical systems. The equation which will be studied in the next section is the classical
Liouville equation. This equation, besides its own intrinsic interest, allows the partitioning procedure to be
analyzed in the simplest possible context. Section 111 deals with the electrostatic Vlasov equation. The
Vlasov equation cannot be treated in general by the techniques discussed in the present work. Two special
instances are given which allow the mathematical restatement of the problem for present purposes. Laser
pulse propagation is discussed in Section IV and a further elaboration of the partitioning procedure
introduced. Finally, in Section V the two dimensional diffusion equation which exhibits some difficulties
arising from second partial derivatives is described.

2. Nearest Neighbor Communication, The Simple Example of the
4Classical Liouville Equation

The Liouville equation is a first order homogeneous partial differential equation. Physically the equation
describes the evolution in time of a distribution in phase space. That is, if a mechanical system can be
described in terms of 3N spatial coordinates, a possible state of the system is represented (classically) by a
point in a 6N dimensional space consisting of the 3N spatial coordinates and the 3N associated momenta.
The collection of all possible states satisfying some prescribed conditions can be described in terms of a
density in the 6N dimensional space, which is called the phase space of the system. The Liouville equation
describes the time history of a distribution in phase space which has some prescribed form at the initial
time. The equation thus represents a first order initial value problem which, aside from its dimensionality,
might represent the simplest possible mathematical system.

The classical Liouville equation can be written1

Op/t - E (pi/mi op/Oqi - OV/9 0 OP/Opi)  1)

where i refers to a particular degree of freedom associated with coordinate qj, momentum pi and mass mi.
The forces are assumed to be derivable from a potential energy function denoted by V.

A simple example is a harmonic oscillator of one degree of freedom. This system is exactly solvable and
furnishes a convenient test case for numerical techniques. The parameterless form of the equation is

'/ft + y4f/8t x -x 1f/Oy - 0 (2)

with solution

f(x,y,t) = g(xcost - ysint, xsint + ycost) (3)

where

fqx,yo) - g(x'y) (4)
is the initial condition. The initial condition, and the differential equation, is such that the motion is
bounded, that is fqx,y,t) also satisfies the boundary condition

f(x,y,t) - 0 if lxi or lY- (6)U A practical numerical technique for first order initial value problems is approximation by a truncated
0
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power series in time,

f -+6) , f(t) + bt f(t) + (6/2) f(t)()
where dots denote partial differentiation with respect to time. The first derivative with respect to time is
obtained directly from the partial differential equation itself, Eq(2), and the second derivative is obtained
by differentiating this equation once with respect to time. This procedure can be repeated arbitrarily
many times, but the resulting expression becomes too complex to be useful. The n h time derivative wiil
involve nat order spatial derivatives which Increases the numerical complexity also. The other partial
derivatives are approximated by finite difference procedures. f h is the spacing between grid points, these
approximations are, to fourth order in h,

Of/x = (2/3h)(f(x+h)-f(x-h) - 1/8f(x+2h).f(x-2h)I) (7)

and

A/x =- 4/3h2 {f(x+h)+f(x.h)- I/16f(x+2h)+f(x-2h)j
- 15/8 f(x)) (8)

as can easily be verified by power series expansion. The cross derivative is obtained by applying Eq(7)
twice.

Stability analysis of simple numerical schemes for simple initial value problems 2,8 shows that error
0 .propagation will be stable in such schemes, provided

V < /65(<)
where v is some characteristic velocity and s represents each of the independent variables except time.

The procedure above suggests itself as a means of utilizing large enough displacements in the non-
temporal variables to obtain numerical stability, while also obtaining numerical accuracy. Its practical
success has been verified by numerical computation. An alternative numerical scheme accurate to second
order in the variables At and Ax is illustrated for the very simple equation

U/a-t - u/x (10)

by

u(x,t+At)-u(x,t) = (At/4Ax)(u(x+Ax,t+At)
'"' -~~u(x-ax,t+ At)+u(x+A X,t)-u(x-At)). (1

The value of u at the points (.....x-2Ax,x-tAx,xx+Ax,x+2Ax...) at the new value of time, t + At, now
requires the solution of a linear system of equations. This is an example of an implicit scheme, whereas
the scheme developed from Eq(6) represents an explicit scheme. The present results seem to be that the
explicit scheme described above requires much less computational labor than such implicit schemes.

The explicit scheme adopted moves the function f forward in time with step in time of size t. The
truncated power series (Eq(6)) is used with time derivatives furnished by the partial differential equation
itself. The other derivatives required are given finite difference formulas Eqs (7) and (8). Inspection of
these finite difference expressions reveals that fewer points can be computed at time t + bt than were
available at time t. In other words if, for instance, the area of the computational grid is a square, the
points on the border and next to the border cannot be computed at the next instance in time. If there are

'"., 2n + I non-temporal points initially in each direction this means that after n steps in time the procedure

can only supply the function at a single point.

* This difficulty is overcome for distributions satisfying Eq. (5) by making the approximate solution zero
at the boundary points and at the points neighboring the boundary. At first glance this procedure may
seem somewhat arbitrary as, in effect, the normal derivative of the function as well as the function itself is
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set equal to zero at the boundary. Numerical studies, however, show that for a sufficiently large domain
of approximation no problems arise. The higher order approximation (with the function set equal to zero
on the boundary and its neighboring points) has been compared to an approximation using lower order
finite difference expressions for the non-temporal derivatives (which requires only that the approximate
solution be zero on the boundary itself) and found to be much superior. Distribution functions in both
coordinate and momentum variables are always required to vanish as the momentum becomes infinite.
(Physical problems with entities moving at infinite velocity usually have no significance.) The techniques
described above should always be applicable to the momentum (or velocity) variables. Other boundary
conditions may be applied to the spatial coordinates, however. If the distribution function is only strictly
defined in a finite spatial domain (reflecting walls for example), clearly the present methods are
nonapplicable. Periodic boundary conditions, for example

p(...qi+Li,Pi...) - p(...qipi...) (12)

where Li is the period of the qth coordinate can be handled by an obvious modification.

The process of generating an approximate solution to Eq(2) can be envisaged as follows. A region of the
x,y plane is selected suitably large that f(xy,,t) can be assumed to be zero on the boundary. A grid with
spacing Ax in the x direction and Ay in the y direction is laid out on the region. The approximate
function is assigned the value zero on the boundary points and the points neighboring the boundary. The
approximation retains these values for all times. The initial values of f(x,y,t) are computed at all the
other interior grid points. Using these points which represent f(xy,t) at time equal zero, f(x,y,t) is
computed at time equal t by means of Eqs(6), (2), (7) and (8). It is clear that many of these last
computations are quite independent of each other.

This last step can be partitioned into several independent computations, if the space of computation is
'ivided into subregions with, however, redundant points added to the boundaries as are required by the
ca. !ation. This is shown in Fig. I. The columns of the subregions in Fig. I correspond to values of
f(x,y,t) for x and t fixed. Time is, of course, constant through the region and x varies in the horizontal
direction. The double border of the entire region is shown filled in with zeros, but this need not be done
explicitly. The leftmost region (it may be thought of as an independent processor together with an
associated memory) provides the means of advancing columns 3 through 6, the center region columns 7

*through 12, and the rightmost region 13 through 16. Only one time step can be made since not all the
columns in each region are updated in this time step. Accordingly, updated values of f(xy,t) are moved
from subregion to subregion as required to form the boundary and neighboring boundary values in each
subregion for the next step. The columns required are shown crosshatched in Fig. I and the columns

updated which supply these values are shown shaded diagonally in Fig. 1. The data movement is shown
by the arrows. The partitioned calculation is seen to proceed in two steps. The first is the time
propagation of f(xy,t) in each independent subregion (which can be carried out simultaneously) and
second the transfer of data between subregions to prepare for the next step. The essential feature of the
Liouville equation for the one dimensional harmonic oscillator is that data transfer is only needed between
adjacent subregions.

A slightly more complicated situation arises from a periodic one dimensional Liouville equation such as

Of/at + y 0/ox + sin(x) Of/By - 0. (13)

Here the function is periodic in x. The partitioning is shown in Fig. 2. The new feature is the transfer of
data rrom one end of the region to the other. A simplification immediately suggests itself. If the variable

y is arranged to vary across the columns, and x varies across the rows, the periodicity will be contained
inside each of the subregions of the partition and (with the appropriate modification of the internal
conditions) the situation described by Fig. I is achieved.



The independent variables of a numerical procedure for solution of a partial differential equation are
seen in this partitioning context to have three roles; i) propagation, ii) communication, and iii) internal
labelling. In both there examples the time, t, is solely concerned with propagation. In the example of the
one dimensional harmonic oscillator as discussed above, x is both a communication variable and an
internal labelling variable (since f(xy,t) is being computed at more than one value of x in each subregion).
Finally in the example of the one dimensional harmonic oscillator as discussed above y is solely concerned
with internal labelling. As illustrated by the second example of periodic one dimensional motion,
reassignment of the variable roles can lead to simpler computational requirements. One of the principal
tasks of parallel programming may be said to be that of assigning the optimum role to each variable.

Further subdivision of the computational domain can be considered. In Fig. 3 partitioning in both the x,
and y directions is shown for the one dimensional harmonic oscillator. The boundary condition is again
shown on the extreme borders. The movement of data is again indicated by arrows. No diagonal
movement is required if the data is moved in proper sequence. The vertical moves are made first. That
is, the rows containing unshaded plus cross hatched areas are moved vertically to the neighboring
subregion and form the unshaded and stippled areas of the border. The horizontal moves are made last.

V The internal diagonal shaded, cross hatched, and recently arrived stippled areas are moved horizontally to
form the diagonally shaded areas of the border of the neighboring subregion. The data in the cross
hatched area is seen to be moved twice and to fill the corner of the border in the diagonally opposite
subregion. By means of this double movement the diagonal movement required to fill the corners of the
border has been achieved.

The two dimensional subdivision can be thought of as carried to its ultimate limit if only four points in a
square array remain in the computational region. (in Eqs(7) and (8) a five point finite difference scheme is
used, if a three point scheme were employed the ultimate limit of the computational area would be a
single point.) This is shown in Fig. 4. The data transfer areas have completely coalesced and filled the
computational area which is the central square containing four points. The boundary condition is shown
by the zeros and the data moves are again indicated by arrows. All the vertical moves are made first and
only a single square of four points is moved. All the horizontal moves are made last and each time the
central column of non-zero data is moved. In the first sequence of moves the middle squares on the
horizontal borders of the subregions are filled and in the second sequence the remaining vertical sides of
the subregion borders are filled.

The notion of an ultimate partitioning is useful in classifying a physical problem and indicates just
JL exactly how much parallelism is inherent in a mathematical structure. The idea of an ultimate partition

has more utility in more complicated situations. Consider again the general Liouville equation given by
Eq.(l). In applications involving large numbers of molecules the dimensionality of the partial differential
equation is so large that numerical solution is never attempted. Smaller systems, however, can be of
interest. A linear triatomic molecule (with heavy enough atoms to make classical mechanics

P approximately valid) can be modeled with four variables if bending and coriolis interactions are neglected.
The variables consist of two relative spatial variables which determine the separation of the atoms and
the two associated momenta. If the two new variables are thought of as internal labelling variables, the
computation might proceed as in Fig. 1. The four dimensional problem now requires each processor to
perform a very large calculation. To reduce each processor's labor a finer partitioning is required and the
situation in Figs. 3 or 4 is considered. The ultimate two dimensional partitioning in Fig. 4 may perhaps
be over elaborate for the problem originally considered, but in a higher dimensional problem it may be
quite viable. Higher dimensional nearest neighbor networks can be conceived but seem unduly
complicated, particularly for dimension greater than three. Finally, if a doubly periodic system is
considered (two periodic space variables and their associated momenta) the most natural choices for the
communication variables are the two momentum variables, if a two dimensional partitioning as in Figs. 3

% %
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or 4 is employed.

3. Nearest Neighbor Communication, the Vlasov Equation in Special
Situations

The Vlasov equation is an approximate description of the behavior of a system of free electrons which
avoids the high dimensionality of the Liouville equation. The equation for the distribution function
f(r,v,t) (in the usual terminology velocity is discussed in place of momentum) is 4.5

.f/8 + vyf. e/m E(r,t)Vf - 0 (14)

with

E(r,t) = - V # (r,t) (15)

and

I 4we( dv fqr,v,t), n+(,)) (1)
where e and m are the charge and mass of the electron, respectively and mi(|,) is the charge density of the

* positive ions which are assumed to be so slow moving with respect to the electrons that their motion may
be neglected. The analogy to the Liouville equation can be made by identifying V in Eq. (1) as -e# and
taking N equal to one. The three dimensional spatial gradient operator is denoted by V and Vv is the
gradient in the three dimensional velocity subepace. Another difference between the two equations is that
# represents the non local self consistent field of the electrons whereas V in Eq. (1) is strictly local. This
feature presents both the numerical difficulties of the Vlasov equation and a nonlinear aspect which gives

, the equation great physical interest.

The numerical procedure outlined in the last section requires an expression for the second time
derivative of f and thus if Eq. (14) is differentiated the time derivative ultimately of #(r,t). This is
obtained by differentiating Eq. (16) and using Eq. (14)

V2 = -4we V'jv f(r,v,t)dv (17)
where the term involving Vv has been integrated assuming f(r,v,t) vanishes for large velocity. The time
propagation procedure can thus be applied provided # and 0 can be obtained from Eqs. (16) and (17).
These Poisson equations cannot in general be solved with the partitioning procedures discussed in the last
section, and form a specialized area of research in themselves. Similar mathematical systems as

*represented by Eqs. (14), (15) and (16) arise in fluid dynamics.0

Situations do exist, however, which can be adapted to the methods of the last section. If f(r,v,t) and

E(r,t) are independent of spatial coordinates y and s the equations can be simplified to
Of/ + v Of/x + E X/Ov - (18)

and

BE/Ox . dv f(x,v,t) - q,(x) (19)

where the components of velocity v1 and v. have been integrated out of the problem and the independent

variables as well as the densities and field have been reparameterized 4. Differentiating Eq.(20) with
respect to time, substituting Eq. (18) and using the fact the f vanishes for large velocity

.E/t -J00 v qx,v,t) dv + c(t) (20)

- - - . . . . ... . . ° * .. - -,* - .

-- B.
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where clt) is an integration constant. If the ions are essentially restricted to a finite region which contains
zero net charge, E vanishes at infinity (external fields are assumed to be absent) and c(t) vanishes. In
periodic situations the assumptions are les clear, but it seems that c(t) can be chosen to be zero, also.

The working system of equations is taken to be Eqs. (18) and (20) (with c(t)=0). It is obvious from Eq.
-- (20) that since v is involved in an integral over its entire range, v cannot be a communication variable in a

nearest neighbor communicating partition if computations are to proceed simultaneously. The only
partitioning available for the one dimensional Vlasov equation is thus of the kind illustrated by Fig. 1.
For systems periodic in x there is no choice but to use the kind of partitioning described by Fig. 2. The
only new complication is that for every column of f(x,v,t), x and t fixed and v ranging, a single value of
E(x,t) must be added.

In most applications so far the system actually solved consists of Eq. (18) and (19). The reason for this
choice is that Eq. (19) involves a lower moment of the distribution than does Eq. (20) and is thus thought
to possess more desirable numerical properties. Serial computations using the methods of the previous
section, however, have been performed and show no reason for preferring one to the other.

The ultimate partitioning for the one dimensional non periodic Vlasov equation is shown in Fig. 5. The
data transfer areas have again coalesced completely into the data computational area. Each different area

* of the subdomain contains two columns of data, one for each different value of x. Each column contains
f(x,v,t) for all values of v and one value of E(x,t). The ultimate partitioning is only one dimensional since
with only nearest neighbor data transfer, v cannot be a communication variable.

* The present techniques can be applied to another problem which is potentially interesting. If a laser
beam of radial symmetry ionizes a column of gas a cylindrically symmetric distribution of ions and
electrons will result. To examine this the Vlasov equation is written in cylindrical coordinates

alt + vO^flr + (voIr)pfla + vaflO + (v02 /r 2 + Er) /O ,r

- (vov,/r - E,)8f/-9v, + E38t/&v3 = 0 (21)

where again the equation has been reparameterized 4 and vr,,v#.v2,E,E,,E. are cartesian components of
vectors in the instantaneous orientation of the unit vectors in the cylindrical coordinate system. The

Poisson Equation for the electric field similarly becomes

"/r(cl/ar)rEr + 1/r(Ol8)E + (8/az)E2 - Idvr I dv# I dvnf(rv,t)
r # -so -8o -00

- qi(r). (22)

Spatial cylindrical symmetry implies f is independent of # and z and E¢ and E3 are zero. The distribution
function cannot be independent of v* and v3 since it must vanish when these variables are infinite. From
the form of Eq. (21) v. can be integrated out of the problem, so that all that remains is f(r,vr,V,t) and
E,(r).

The system now becomes

-f/t + v,/r + v 2/r 2 + Er)f/vr- (v vr/r) =f/av* - 0 (23)
and

(O/l) r Er = r( I dv, f(r,v,,v,,t) - q(rl)). (24)

The current equation is obtained by integrating this from o to r, requiring E. to be finite at r=0,
differentiating with respect to time, inserting Eq.(23) and integrating by parts, so that

01%
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Er/8t Idvr I dv#vrf(r,v,,v#,t). (25)

Finally, Eq. (23) can be simplified by replacing the pair of variables r,v, by the pair 0,L where (formally)

r. r
L = rvo (26)

Using the chain rule, and dropping the prime from the resulting equation gives

tf/t + Vrf/ar + (L'/rs + E)8f/0,f - 0. (27)

The 'force" which appears in this equation is the 'centrifugal force' plus the electrostatic force. The
angular momentum is L. Since, classically, the centrifugal force keeps particles away from the axis, for
non zero values of L, f(r,vr,Vl,t) is required to be zero at r equal to zero.

The system of equations to be solved consists of Eqs. (25) and (27). Due to the integral in Eq. (25), vr

and v. (or L) can only be internal labelling values. Again t is the propagation variable and r is the
communication variable. A linear partitioning as in Figs (1) or (5) is the only choice. The columns in
these figures are replaced by matrices with vr and vo (or L) varying along the rows and columns and with

each matrix is associated a single value of Er(rt).

It is interesting at this point to compare the four variable Liouville equation discussed in the last section
on the partitioning given in Fig. 4 with the cylindrical Vlasov equation just discussed on the partitioning
given in Fig. 5. These configurations represent using the ultimate partitioning for the next most simple
problem in the new context. For the Liouville equation the computational area of the simplest problem
consists of four points. In the new context each of these points is replaced by a matrix whose rows and
columns can be thought of as generated by the two new variables. For the Vlasov equatiob the
computational area of the simpler problem consists of two columns which are generated by variation in a
velocity variable (along with a single value of the electric field). In the new context these columns are

replaced again by matrices whose elements are generated by varying the values of the two velocities. In
these two cases the matrices are roughly comparable in size, the difference being that there are four in the
case of the Liouville equation considered and two in the case of the cylindrical Vlasov equation. The
computational labor required in each subdomain is thus of the same order of magnitude. Again the reason
for these numbers, four and two, is because the high order finite difference schemes given by Eq. (7) and
(8) are being considered. If a three point scheme was employed only one matrix would be required.

4. Numerical Organization of Laser Propagation Computations
The physical situation is that of a laser pulse of radial symmetry perpendicular to its direction of

propagation passing through a medium containing matter which the laser pulse is capable of exciting. A
simple mathematical model is given by the three equations 7,1,1

(//z + (1/c)(9/ft - ia(9 2/&r2 + (1/r 6/8r))E = bP, (28)

(a/lIt + kp + ia)P - 6EW, (29)

and
(0/lt + kXW - W*) - -(EP" + E*P). (30)

The independent variables are the time t and the cylindrical coordinates z and r. The Pulse is propagated
along z and r is the distance (perpendicular to z) from the pulse center. The electric field due to the laser

pulse, E, the polarization of the medium, P, and the inversion density, W, are the dependent variables.
Note that E and P are complex. The velocity of light in the medium is c. If the field were suddenly
turned off, as seen from Eqs. (29) and (30) P and W-W ° would decay with decay constants kp and kw

UP" ,, ; ... . P . - . " . r " . - -% . • . . " . . " . . '. % % -/" %



9

respectively, and WO is the steady state value of W. The parameters a,b#,, and -y are combinations of
other physical parameters and constants of the system (frequency, x, Planck's Constant etc.) which have
been combined together for simplicity. Detailed discussions of the underlying physical phenomena are
available. 10,11 Instead of describing the rapidly varying electric field and polarization themselves, E and P
actually describe the assumed slowly varying envelopes, and thus some second derivatives have been
neglected. The geometrical nature of the initial conditions requires specialized numerical techniques.

New variables r and q are defined by
r - t - I/C
and (31)
1a=

From the chain rule it is seen that

9/4t i
and (32)
4/8z + (-/c)0/Ot - 0/1,.

The laser pulse enters the medium at z equals zero at time t equals zero and moves with velocity c. At a
given point, a, r is thus seen to be the time after the 'leading edge' of the pulse has passed. A fixed value
of r determines the path in the t,z plane of a disturbance due to the laser pulse. The derivative along the
path of such a disturbance is O/0q. The transformation does not change the form of Eqs. (29) and (30), so
these can be taken over unchanged, provided that it is understood the time is measured from the 'leading
edge' of the disturbance. The remaining equation, Eq. (28) becomes

OE/pt - ia(0 2/ar2 + l/r 0a/0)E - bP. (33)

The initial condition for E is prescribed at g=0, (q1-0)
E(o,r,t) = Eo(r,t). (35)

The medium is assumed to have its spatially independent steady state values ahead of the laser pulse, so
that

W(q,r,r) --. as r -. o

and (36)
P(ri,r,r) --. Po as r -. o.

The situation is depicted schematically in Fig. 6, neglecting for this purpose the variable r. The time
history of the laser pulse at z=0 is sketched to the left where the 'leading edge' starts at t=0. The
'leading edge' propagates along the line labelled r=0 in the figure. The area below this line has not yet
encountered the laser pulse, and thus the initial conditions for W and P are applied on the skewed line
r=0. The boundary condition for the field is applied at z=0, which is the vertical axis to the left labelled
t=1(o). The boundary of the space-time region is indicated by the diagonal shading attached to the sines.
The derivative 4/0q is taken along the skew lines in the figure with r constant. Thus P and W propagate
in the vertical direction, starting from the line r equals zero, and E propagates in the skewed direction
(r=constant) starting from the line z equals zero.

The nonorthogonal coordinate system can be simply understood by considering the variation in E along
the line r-constant,

AE, - (1E/0Z) , + (0E/Ot) 6r, (37)
where the subscript r indicates the special nature of the variation. From Eq. (31)

A, = 1/c aZ,. (38)
Substituting this in the preceding equation

AS, = (0E/6Z + I/c 0E/&t) 6Z,. (39)
In view of Eq. (32) this can be written

,I"
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A - (ME/j) 6Z,. (40)
It is clear from this expression that

6,7-- bz r  (41)
as is obtained from Eq. (31) also. It might have been supposed that the arc length along the line
r=constant should have been used, but this is seen not to be the case.

The numerical solution has been given by predictor-correcto i t and semi-implicit predictor-corrector B

techniques. These procedures allow a single step in E along r=constant, and a single step in P and W
along z=constant to be taken. These two independent steps must end at the same point if the
information required for the next step is to be available. The nature of the differential equations and their

. boundary conditions have thus provided certain restrictions in the sequence in which the solution is
., generated. Several different sequences can be conceived, but not all are suitable for partitioning into

semi-independent computational procedures. A useful sequence and two associated partitionings are
shown in Figs. 7 and 8. The figures are shown on the problem space shown in Fig. 6. The circles indicate
the points at which the numerical solution is generated and the number in the circle indicates the step
number in which the numerical solution is acquired. Each circle has circles containing smaller numbers
(from earlier steps) to the left along r-constant and below along z=constant. Each circle containing the
same number can be computed independently of all the other circles with the same number, and therefore

0 partitioning can be performed across diagonals containing the same number. Two different partitioning
are shown, one in Fig. 7 to generate the solution behind the leading edge of the pulse, the other in Fig. 8
to generate the solution neighboring the entrance window to the medium. The boundary region is only
shown for the entire problem domain. Only the new values generated are shown in the interior
subdomains, their boundary conditions and data transfers are omitted for simplicity. In order to achieve
this partitioning the computation is required to have a staggered start. In the first step computation
takes place only in subdomain one, in step two parallel computations take place in subdomains one and
two, in step 3, computations in subdomains one, two, and three and so on until all subdomains are active.

So far the radial variable r has not been discussed as it clearly does not present any new problems, or

enter into the complexities discussed above. The radial variable clearly is not a propagation variable. If
the partitioning indicated in Fig. 7 and 8 is implemented in the simple manner of Figs 1 or 5, r is just an
internal labelling variable and merely turns the points indicated in Figs 7 and 8 into the columns of Figs 1
or 5. The partitioning can be further refined, however, and r assigned the role of a communication
variable to produce a scheme such as is given in Figs 3 or 4.

Finally it is interesting to note that in comparing Figs. 7 and 8 the roles of t and z are interchanged in

* the two figures. In Fig. 7, each subdomain contains a particular value of r which remains the same as the
solution is developed. Each successive step advances the subdomain to a new value of z (or qi). Thus z (or
qi) may be said to be the propagation variable and t (or r) the communication variable. Each subdomain
in Fig. 8, on the other hand contains the same value of z for all steps and is advanced in steps of 7 (or t).
Thus in Fig. 8 the propagation variable is t (or r) and the communication variable is z (or q.

5. Two Dimensional Diffusion
Isotropic diffusion in two dimensions is described by the equation

af/ = + a2f/9y 2  
(42)

when suitable units are chosen for the independent variables. Tihe dependent variable f can be regarded as
the concentration of some substance which is initially present in some non-uniform distribution. Only the

*.'' simplest boundary conditions, that for all time f has some fixed value on a rectangular boundary in the
x-y plane, %ill be considered.

0
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If an explicit numerical approximation such as was employed in Sections 2 and 3 is utilized, the
condition for numerical stability will be

D At/(A' < I for Ax -, Ay (43)

where D is some characteristic numerical constant. This condition is strikingly different than the
condition for first order systems given by Eq. (9). Consider the case in which a numerical result has been
obtained which appears physically reasonable. If all the variable spacings are shrunk uniformly the
approximation for the first order system will remain stable (if initially stable) whereas a similar kind of

approximation for a second order system may become quite unstable. In such an event a perhaps
unreasonably small value of At may be required for computation. An unconditional stable explicit
numerical scheme is required to properly handle second order terms.

The variable transformation

S - (y+x)/%12
t - (y-x)/I/2 (44)

is first carried out. This leaves the partial differential equation unchanged, i.e.
f/t - O2f/082 + 82f/aOt. (45)

The two dimensional version 12.12 of a scheme originally devised by Saul'Yev 14 is employed with the s
and t variables. An apparently more accurate version of the procedure is available, t as well as another
application to a more general one dimensional problem IS. The method is generally called the alternating
direction explicit procedure (ADEP). Two different forms of the finite difference expression are given,

aI* AR IAd *24~ A &I Ati'

and

ftA+1.9f 2)(ft A2 It~
in,. M',-(t2 rn-1,n ' 2 ,,, rn,P-I

+ -2 1+1 +#, A - \4 (47)

where
t LAt
ad a 2 (48)
t m h v,2.

The finite difference expression for u furnishes an approximation for f at the gridpoint m,n in terms of
values of m-l,n and mn-I for the same time level plus values from the previous time level. Thus for a

given time level f is generated starting from the lower left hand corner. The situation is reversed for
v. Taken together, the two equations furnish a means of generating an approximation to f, first in one
direction, then in the opposite direction. Two different means of implementing the approximation are in
use. The first is an averaging procedure.

A$ f

VMS-fe" (49)

and

Att

-..-. ~~ f _ - /2(' .,,#j.'.'.f +~ , 
P
Vmm)

r , '
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The second implementation merely takes alternate directions in subsequent steps,

fm,- m,n

AttI Ag+1V s Um,- u (50)
rm,ln m mn.

The procedure is adapted for partitioning by transforming the expression back to the original variables x
and y. Substituting s and t from Eq. (48) into Eq. (44) and solving for x and y gives

x - jh
y = kh (51)

where
. . j --- n-rn

and (52)
k n+m.

For these variables
+ u- - (At/2h2)(u#,k.I - 2 £ I 2u. ,e'

+ "J..,k" -2 ut + upA4I kl (53)

and
%1.' -t (A/=Xv - 2 YA + V

.K j kc "i j,k + j,k-!

+ -I,k+l - 2 j,k j+i,k+i) (54)

These last expressions allow the calculations for the new time level to be carried out in a vertical rather
than diagonal direction. The procedure is shown schematically in Figure 9. In this figure each grid point
in the finite difference scheme is in the center of a small square. Only half of the grid points are coupled
together by the finite difference expressions (Eqs. (53) and (54)), so that f need only be found at half the
grid points. The grid points omitted from the calculation are located in the shaded small squares.
Computation of u from Eq. (53) proceeds from the bottom of the figure to the top. One particular step in

*I the computation of u is shown at the bottom of the figure. The grid points corresponding to the 1+-1"
time level in Eq. (53) are indicated by the open circles. The grid points corresponding to the Ith level are
indicated by solid circles. The calculation proceeds in the direction indicated by the arrow once a
horizontal row has been completed. The computation of v as given by Eq. (54) is similarly shown at the
top of the figure. This computation proceeds from the top to the bottom of the figure.

7The corresponding partitioning and communication for parallel computation is shown in Figure 10. The
situation is quite similar to that of Figure 1 except that in the present case data is transferred at the
completion of the calculation of each horizontal row rather than at the end of the calculation of the
particular time level of the entire domain. The data transferred in the present case is only that of a single

A grid point instead of the transfer of an entire vertical column in Figure 1. The domain border points
*- containing boundary values for the domain computations are located in the crosshatched area (except for

the two rows shown in more detail). Two rows of the finite difference grid are shown in the middle of
each domain. The grid points omitted from the calculation (the shaded small squares in Figure 9) are
located in the stippled squares. The movement of newly computed data to the boundary of the

.6
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neighboring domain (to supply information needed to compute the next row) is shown by arrows.

The time variable (index I in Eqs. (53) and (54)) is a propagation variable in this scheme. The indexj
corresponds to communication and k to internal labelling. In view of the way the computation proceeds
by horizontal rows, k can be also regarded as an internal propagation variable. The independent variables
x and y are equivalent in Eq. (42), and essentially equivalent in Eq. (2). In the latter case a two
dimensional partitioning is possible. Only a one dimensional partitioning, by contrast, is possible in the
present case due to the numerical procedure.

A,.N
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V

A Paradigm for the Design of Parallel Algorithms
with Applications

I. V. RAMAKRISHNAN AND JAMES C. BROWNE

Abstrct-This paper proposes a model or paradigm for the develop- with the number of processing elements. The algorithms developed
ment of parallel algorithms, gives an example of the proposed pardigm, Indude sorting, merging, selection among sets, set interconnection, set
md displays algorithms developed by application of the technique. The difference, subset testing, and string matching.
algorithm for the mere of two ordered list developed through applics-
lion of this technique Is thought to be original. The pardi m proposed Index Term-Data stuctures, parallel algorithms, set processing algo-
Is to create composite unit operations which combine data movement
between data structures with a conventional operation such as compare
or add. The composite operation constructed for this study is baed 1. INTRODUCTION
upon partitioning the data elements into two linear lists. Exchange of THERE is substantial theoretical and practical interest in
data between adjacent elements in each list are then combined with
compares and adds to complete the composite operations. This com- J.the development of parallel algorithms for the common
posite operation can be implemented on at least the following compu. processes of numeric computing and data processing [3] -[5],
tationsi Architectures. [9]. There is, accordingly, a need for models and paradigms

I) SIMD with all processors sharing a common memory, for the development of parallel algorithms akin to the tradi-
2) SIMD with local memories and a linear interconnection (drcdar tional general techniques which have been used for sequential

pipeline or ring network of processon).
3) Vector processor with common memory, such as a CDC CYBER algorithms 110].

205 or a Cray Research CRAY-I. Lint and Agarwala (I II survey and analyze the models used
The algoithms developed al have the property of linea speed-up in formation of parallel algorithms. All of the models for

synchronous parallel algorithms are based on direct abstraction
Manuscript received October 16, 1981. This work was supported by of the physical structure of the system such as common shared

the IBM Corporation and by the U.S. Air Force of Scientific Research memory or specification of an interconnection network: "Sort-
under Grant AFOSR-82-0091.

The authors are with the Department of Computer Science, Univer- ing on a mesh-connected computer" or "Bitonic Sort on Illiac
sity of Texas at Austin, Austin, TX 78712. IV," etc. This focus on a specific architecture does not generate
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insight into the logical structure of the algorithm itself and A conventional notation is used. Ile Computational steps-'

makes transfer to other architectures difficult, within cobegin-coend brackets are processed in parallel with
, ' Models for asynchronous parallelism are typically very ab- the degree of parallelism specified by the range of the index
! ilstract: directed graphs, Petri nets,4etc. This level of abstraction, of the €obegin. For example, the notation

while extremely powerful for structuring process interactions,
"-often hides the actual computations of an algorithm and makes cbgn 0 -I
. .meaningful analysis of execution times difficult. operation (A [i] , B [i])

There is a need for models of parallel processing which are coend
abstract enough to be generalizable to several architectures, implies n parallel executions of operation (A [i] , B [i] ) on each

, ".but which are sufficiently descriptive to allow ready determi- of the elements <0 < i < n- I > of A4 and B. Processors are

nation of execution costs. Sequential algorithms are typically assigned a number from 0 to n-1 (or from 0 to k-I) and the
-modeled as operations on data structures. This model is in- processor of index i acts upon the data elements of index i.

adequate for parallel processing because it does not consider Algoithm (for n processors and n elements in each linear
interprocess communication. liths

Guidance for the development of a paradigm may be obtained
from consideration of the characteristics of models of parallel begin
processing. Models of parallel processing must include costs of for i =0 to - I do
synchronization and interprocess communication as Well as cobegin: i <0:n- 1>
operation counts for the computational steps of the algorithm. operation (A [j] ,_[ ], C[j)
The paradigm proposed here is to create composite unit opera- coend
tions which combine data movement between data structures end.
with conventional logical or arithmetic operations such as
compare or add. The composite operation is applied to data Each execution of the cobegin-coend bracket executes simul-
values specified by their positions in a data structure. T taneously the a4 yet undefined composite arithmeticflogicai
paper defines and applies one example of this paradigm for the plus data movement operation on the three tuple A U],BUJ],
development of parallel algorithms. The composite operation CU]J. This is then repeated n times to complete the execution

is based upon partitioning the data elements into two linear of the algorithm.
lists. The composite operations are defined by combining add In order to conveniently display that linear speed-up in the

and compare operations with a data movement operation of number of processors is obtained, we write the algorithm
value exchange between adjacent elements of each list and where A and B are of size n and m, respectively, and k pro-
identically indexed elements in the separate lists. The subse- cessors are used. We restrict the number of orocessors k to
quent section defines and characterizes the algorithm and its the situation where m = ck and c is integer.
cost of execution. The analysis of execution cost is greatly Algorithm (k processors, m = ck, m<n):

simplified by the use of the composite operation since data begin
movement and synchronization costs are included in the for i = 0 to n- I do
operations count analysis. Algorithms derived with the para- for= 0 to m- I in steps of k do
digm are given in Section Iil. The characteristics and architec- cobegin: I<0:k-I>

* - tural requirements of the algorithm are given in Section IV. operation (A [1] ,BIl , C[I])
The paradigm will be contrasted to the more usual approach of cend
algorithm formulation for specific parallel architectures. Defi- end.
nition of data movement as occurring between data structures
allows for mapping to a spectrum of parallel architectures or All algorithms expressible in this form show speed-up propor-
interconnection structures. tional to the number of processors if we neglect load time and

output time, as is commonly the case at this level of resolution
i. DESCRIPTION OF THE ALGORITHM of detail.

The data structures used are linear lists. Linear lists A and B Lemma I: Using k processors the algorithm uses O(mn/k)
contain the data elements upon which the algorithm will be steps.

- executed and between which data movement will be defined. Proof.. Let m=ck for some integer c. The inner loop takes
It will be necessary to occasionally employ auxiliary linear lists 0(m/k) steps. Therefore the outer loop takes O(mn/k) steps.
which we will note by C, FLAG, etc. These auxiliary variables Definition: Let VA I and IBI denote the sizes of the arrays A
will be used to hold intermediate results for some algorithms, and B, respectively. Let min(IA 1, 8I1) and max(IA 1, IBI) de-

We first write the algorithm in the simple case where the note the minimum and maximum of the sizes of the arrays
number of elements in each data array is n and the number of A and B, respectively.
processors is n. We then give the algorithm in general form Theorem I: Using min(JAI, IBI) processors the algorithm
where A and B may be of different dimension and where the uses max(IA 1, 1BI) steps.
number of processors k may be less than the dimensions of Proof. m=BI,n=lA and m<n. Therefore, m=min(IAI,
A or B. Proofs of linear speed-up and bounds for computation IBI) and n=max(IA 1, BI). Substituting kxm in Lemma 1, the
time are then given for this general case. theorem follows.
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Ill. APPLICATION B. Selection

The utility of the technique is illustrated by developing algo- Given a sequence of elements al , a2 , • , a., selection in-
rithms for sorting, merging, selection, set-problems, and string, volves choosing the kth largest (smallest) element in the
matching. In all the algorithms we use min (IAI, BI) processors sequence. By ranking the elements, selection can be performed
in order to simplify the presentation. Extension to the case by indexing. The technique used to rank elements in the
where the number of processors, k, is less than min(IA I, BI) is sorting algorithm is used for selection.
straightforward so long as m = ck and c is integer. C Merging

A. SortingCMegn
A. o ftin ae n f cnArray A is of size n and B is of size m. Initially A I <

Sorting of a sequence of elements can be performed by rank. A [2] <'.. A [n] and 1B[!] 812] .. B[m).
ing each element in the sequence. Rank of an element x is Merging Agorithm:
defined to be the number of elements greater (less) than x.
Ranking is done by comparing every element against every begin
other element in the sequence. Let A and B be two arrays for i=O to n- I do
each of size n, each containing the list of elements to be sorted. cobegin: i <0 :m- I>

* Initially Cli] = 0 for i =0, 1, 2".. ifA [11 > B[U] then
Sorting Algorithm: A j -B[j] then

A [j] =A (j +i) mod nJbegin. coend
for i=0 to n- I do

* cobegin: <O: n- 1 > end.
if A [1] >B[] then "I The "-" operator interchanges the elements of two lists.

CU] :=C[1J +1; -- operation On termination, A[l ]<A[21 <...' A[n] B[l] <...
coendA[i] =A[(+i)modn]J (A(j],BJ],C[J]) <B(m]. This algorithm has not been previously found in the
Seoend literature and is believed to be a new algorithm for parallel

end. merger of two lists. Proof of this algorithm is given in [7].

The "-" is a data transfer between the two list positions. The '
composite operation here consists of comparison between two

identically indexed elements of A and B, incrementing a rank The two sets of elements are contained in arrays A and B.

counter C and circular left-shift of the elements of A. This Array A is of size n and array B of size m (n > m). Let FLAG
sorting algorithm correctly ranks all'the elements in the array be a Boolean array of size m. Initially, all the values in the

B. The rank of identical elements will, however, be the same. Boolean array are false.

Consequently, completion of the sort by moving the data Set-Intersection Algorithm:
elements to their positions by rank will result in all identical

.. ,', elements being moved to the same locations in array A. In begin

order to avoid this, we adopt the following solution. Identical for i=0 to n- I do

elements are placed in consecutive locations in the final array cobegin: i <0:m-I>
on the basis of their relative positions in the array B. If Bi and if A 1 =B[J] then

B, are two identical elements, Bi follows Bi in the sorted se- FLAG [ i-true;
quence if iPq and vice versa if i>j. An element in the jth A[+ 1] -A[il mod n

position in the array B is compared against elements to its left A l/] = A (j +i) mod n)
after n - j iterations of the for loop. Processor P which always coend
compares the / element in array B with every other element, end.
updates its count on comparing with an equal element only On termination the true values in the FLAG array correspond
after n-/ iterations, to elements in the array B that are also contained in array A.

Sorting Algorithm (identical list elements):

begin E Set Difference
for i-0 to n-I do Arrays A and B represent the elements in the two sets as in

cobegin: / <O:n- I> Section III.D. AFLAG and BFLAG are two Boolean arrays.
if (A [/] > B [/) A FLAG is of size n and BFLAG is of size m (n > m). Initially,

or ((A [/a [/]) the values in both the boolean arrays are false.
and / > (n-i)) Set-Difference Algorithm:

then
C/] :- C[/I + ; begin
A (/j =A ((i+ i) mod nj for i=0 to n- I do

- coend cobegin:/(O:m- I>
end. IfA [j [e11] then

........-...-....... -, ..... , . . . .
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bein AFLAGV]4true;
BFLAGUI 4-true;
A[i] =A[("+i)modn]

end
€oend A- A--- A.

end.

On termination, the false values in AFLAG correspond to processor n.i Processor n-i Processor P
elements in array A that are not in array B, and the false values

in BFLAG correspond to elements in array B that are not in Fig. 1. Circular pipeline of processors architecture.

N array A.
RA and R8 are registers to hold the values of lists A and B.

F Subset Testing The registers of each processor can compare and exchange

Arrays A and B denote sets of elements as in Section IV.D values. The processors are connected by one-way pipes. A

and III.D. FLAG is a boolean array of size m. Initially, all "shift" instruction moves the values from RA of processor i

the values in Care false. to RA of processor i+l with end-around for n- I to 0. This

Subset Testing Algorithm: basic structure can be augmented with additional registers for
each processor as needed for FLAG, etc., vectors. This simple

begin and regular architecture suggests VLSI implementation. It
for i=0 to n- I do should be noted that this architecture will not implement the

cobegin: 1<0 :m- I> string matching algorithm without special provision for the
if A [/] = B[i] then AND of the Boolean values in the FLAG vector at each cycle.

* FLAG [i -true; A wide spectrum of algorithms can be constructed by com-
A A/ = A z(/+i) mod n] posing only compare and add with the very simple data move-

coend ments among so simple a data structure as a linear list. Execu-
end. tion costs, including data movement, are readily determined

On termination, if all the values in FLAG are true, then B for a number of different architectures for each algorithm.
is contained in r. The operations and algorithms also suggest effective architec-

tures for given problems. Definition of composite operations
G. String-Matching on square arrays leads to formulation of graph and image

processing algorithms. These will be explained in a later paper.
" List A holds the text string and List B holds the pattern
. string. String-matching involves determining whether the V. SUMMARY

pattern held in B occurs as a substring of the text held in A. We have proposed and described a paradigm for the design
The subset-testing algorithms of Section Il-F can be used of parallel algorithms. We have applied the technique to pro-

for string-matching with a slight modification. Instead of test- duce a number of algorithms. The algorithms produced by
ing the FLAG array at the termination of the algorithm, the the application of the paradigm have desirable properties such
array is tested after every iteration. If after any iteration the as linear speed-up and readily obtainable bounds. The tech-
value of all elements in the FLAG array are true, then the nique produces algorithms which are applicable to a wide
pattern held in B occurs as a substring in A. variety of computational architectures. We propose that the

paradigm of specifying composite operations against data
IV. ANALYSIS OF THE PROPOSED PARADIGM structures is a basis for at least one direction of study of

The usual procedure for establishment of parallel algorithms parallel algorithms.

is to map a sequential algorithm to some specific parallel archi- ACKNOWLEDGMENT
tecture. The execution cost is determined by separately count- The authors gratefully acknowledge the suggestions of Dr.
ing operations and data movement costs. The technique of M. Gouda and Dr. . Fussell for improving the clarity of the
defining a composite operation against a data structure both

generalizes this approach and simplifies execution cost analysis. paper.
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A COMPARISON OF CIRCUIT SWITCHING AND
PACKET SWITCHING FOR DATA TRANSFER

IN TWO SIMPLE IMAGE PROCESSING ALGORITHMS

by
Mehrad Yasrebi

Communication Products Division
IBM Corporation

Research Triangle Park, NC
and

Sanjay Desbpaude and J.C. Browne
Department of Computer Sciences
The University of Texas at Austin

Abstract
The communication costs for parallel versions of two simple The measure of communication cost is elapsed time. The

algorithms used in image processing are compared in packet communication times given herein are reiorted as number of
switching and circuit switching formulations. The two algorithms memory cycles. We assume, in order to normalize computation
are smoothing and histogramming. ''he histogramming algorithm, costs across architectures, that an integer addition takes a single
the recursive doubling algorithm of Stone, is studied over a range memory cycle and that updating a histogram vector eleiat.cn
of processor numbers and pixel intensity resolution. The packet requires two integer additions. The speed-up of a multiprPcessor
and circuit switching properti(s of the interconnection networks of over a uniprocessor is the ratio of total execution times, TE, where
the multiprocessor systems are based on two network architectured TE + All LOG's in this paper are in base 2
multiprocessors which are well-documented in the literature. PASM T TjpM + Tcovp A
and TRAC. Communication based upon circuit switching generally unless otherwise noted. The data paths of each ICN are taken to
gives a somewhat lower communication cost with the advantage be one integer word in width. For the multistage ICN's of PASM

* increasing with pixel intensity resolution. The results of the and TRAC it is assumed that a unit of data moves through one
analysis suggest a high utility value for including both circuit stage of the ICN on each memory cycle.
switching and packet switching functionality in the networks of Definition of Architectures
network architectured multiprocessor systems.

Introduction and Overview Communication cost for execution of the tAo algorithms iscompared for three ICN-based multiproce.sor architectures. The
This paper compares the communication costs for executing two single shared bus architecture (Figure 1) has been characterized by

algorithms used in image processing on three parallel computer Bhuyan and Agrawal [Bhuyan&2]. It is a baseline for ICN-b.-ed
architectures. The purpore of the comparison is to evaluate packet multiprocessors. There is no distinction between li'cket and circuit
switching and circuit s,tchiag modes of data movement for switching in this model of communication. The model for a packet
interconnection network based multiprocessors. The two switching data movement architecture is PASM (Siegei&t. The
algorithms used for the comparison are computation of bistograrns ICN of PASM connects complete processing elements as shown in
of the intensity values of pixels of an image and smoothing of gray Figure 2.
level data across the pixels of an image.

The model for a packet switching architecture is the Partitionable c
SIMD/MIMD (PASM) System for Image Processing and Pattern o
Recognition ISiegelglJ. The model for a circuit switching ,
architecture is the Texas Reconfigurable Array Computer (TRAC)
ISejnowski80J. The third architecture, all processors sharing a
common bus IBhuyang82I, is given as a baseline for the comparison.
An analysis of communication costs for the two algorithms
executing on PAS.I has been given in ISiegilstl. The resuits of an .t
analysis of the execution of the two algorithms in a circuit
switching formulation based on TRAC are given here. Space
limitations preclude detailing of the analysis.

Communication Analysis for Parallel Algorithms

The major factors determining communication cost for the
execution of parallel algorithms on interconnection network (ICN)
based multiprocessors include: (i) the topology of the ICN and the

-.,.. configuration of resources on the ICN. (ii) the mapping of the data6 movement requirements of the algorithm upon the ICN, (iii) choice
of switching methodology, (iv1 the latency and bandwidth
properties of the ICN, and (v the unit sizes and the total volume
of the data to be moved. This paper focuses on the impact of Ill. 5. Ilia-sr C1 is .. tfi
switching methodology and data volume on communication cost.

The choice of packet switching or circuit switching as the mode of
metwork data path establishment can have a substantial effect on
each of these architectural parameters. Packet switching tends to
give flexihility in topology but fixed unit transfer sizes. Circuit
switching tends toward less flexibility in topr.logy, greater flexibility .'s,,, astw,,
in unit size for transfers, but a longer tiansfer latency time. Packet
switching may also introduce bandwidth degradation due to path
contention while circuit switching may introduce path blockages
which limit realizable network topologies for all networks short of

.urss-brs. i' . t ,.... ., ... ,...
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The interconnection networks proposed for PASM are the TCOw- J(LOG(N) + 2t) + 21 x LOG(N).
eneralized cube and the augmented data manipulator (ADNI) T*neD

1Saeie179.- These two networks are optimal for histogramming in t t
the sense that all permutations for the algorithm can be realized by travel time switch number of level
both networks in a single pass. Thus packet transfers can take through the setting in the ICN
place without blocking. ICN time

The model for a circuit switching data movement architecture is A Circuit Switch Formulation of Recursive Douling
TRAC ISeinowski Ol. TRAC places processors at the apex nodes lttoem ng =ia e on-ree Circuits -Fifure5 illustrates the
and memories at the base nodes of its ICN (Figure 3). The ICN of structureof the ire-uiFswitced data movement formulation of
TRAC is an SW-Baryan JPremkumnar8J with rodes having spread recursive doubling for an 8 processor-8 memory configuration.
of two and fanout of three for its ICY. Processor configurations
sre formed by establishing circuits in the ICN joining processors to ~ *( '' & §
memory units. Data flow between processors for different stages of .Q Q Q
the algorithms can be realized by dynamically switching memories *

between processor-memory configurations. This network also Tr. " ,r,*ts '

implements trees of circuits joining one memory to many

deactivated by a single processor instruction. These tree circuits
are called sh:. ed or switchable memory trees. Data flow between
processors may be implemented using this capability by a sequence
of circuit activations and deactivations (among the circuits

'a following the tree)......r.... r.Its .tccir.t c bas -
S.. ..........

- The ICN of TRAC actually implements both circuit switching
and packet switching but only the circuit switching modc of use n I_________

5" modeled in the equations given following.
The Alorithms nd Their M ing to the Architecture Figure 5: Circuit Switching Using the

0 Histogramming and smoothing are among the basic operations of Tree Circuit Formulation
.r -image processing, although not usually rate determining steps in

the computations. Attention to detailed parallel formulations of
major computational steps of image processing such as thresholding The M2 pixels are evenly partitioned among the 8 memories. Each
and edge detection is needed. It is assumed in the analysis processor computes a partial histogram vector and stores it in the
following that the picture is MNM pixels in size (M-2m) and that corresponding memory. The computation is then completed in
N (N-2') processors are available. The resolution of each pixel is LOG(S)=3 stag- of adding partial vectors with the full histogram
X bits. computed by pli-,cssor 3 and stored in memory 5. The tree

circuits of Figure 5 implement the successive communi'ation paths
Histogrammine Algorithm between levels in Figure 5. The '- 0 tree circuits implement the

data flow between levels 0 and 1 in Figure 4, "ooooo the data flow
The parallel algorithm for histogramming is the recursive between levels 1 and 2 and I..... the data flow between levels 2

doubling algorithm of Stone [Stone751. The structure of the and 3. There is a regular pattern of using first the verticals and
algorithm is shown in Figure 4 for N-8. N partial histograms are then the diagonals of each type of tree circuit. Each tree circuit
computed in parallel at level 0. Each partial histogram is a vector type has a unique number (called COLOR in correspondence with
of length 21. The partial histograms are then added in pairs in graph theory). LOG(N) colors are required to implement the
parallel for LOG(N) stages to complete the algorithm, algorithm in this formulation. Path selection (activation and

deactivation) in all tree circuits of identical COLOR can be done in
B level 3 parallel with a latency time proportional to LOG(N)/2. Tahe ICN

of TRAC can implement the tree circuit pattern of Figure 5
B B without blockage. The total cozomunication cost for this

A level 2 formulation of recursive doubling hisoA amming is

Slevel LO(N)
levTCOMe - (LOG(N)]"t E N/2' [LOG(N) + LOG(N)

- (3/2XN-1) time to latency
% Figure 4: Recursive Doubling Algorithm switch all time

for Histogramming memory with
identical COLOR

' A Circuit Swit'hing Formulation of Recurcive Doubling Raed on
Partial histograms are shown at level 0 by A's and vector additions IfierIteronfiguraiion - Another formulation based on circuit

by B's. N/2 i transfers of vectors ,re done between level (i-I) and switbing can Le developed by dirctly reconfiquring the ICN after
level I. The computation time, T(oMp, for this algorithm under each step (level in Figure 4) of the algorithm to conform to the

data movement path required at each stage of the algorithm. Each
the assumptions made here is proportional to TcoMP - MW/N + configuration step involving establishment of a circuit between a
Ilk LOG(N). given processor and a set of memories must be done serially. Thus

use of the tree-circuit based algorithm is faster by a factor of
Pk h F l o c v l LOG(K) where K is the number of COLORs available.'. -"A Packet Swthn Formul.ation of Recursive obi

IistoTaraming - iegel ct "iebgelfl'-have iven a thorough The Smoothing Algorithm
I 4r " analysis for the execution of this algorithm on PASM. We adopt

V_%the results of this study as our packet switching model of recursiv e Smoothing is replacement of the intensity of each pixel by the
%doubling histogramming. It is commonly the case that further mean of the intensity of the given pixel and its nearest neighbors.

steps in the snalksis of the image require thresholding so that the Packet Swilrhing Formultin of Smonhin - Siegel d at
final histogram Vector must be collectcd in one processor and the -Sc ] ;_ha Formulation o poot - Sige m eent
threshold value distributed. The total communication time for this srgl8lJ I formulated and analyzed a packet data movement
formulation of the algorithm is formulation of the smoothing l,oritbm. They show a speed-up of

•-%



about .AN for a 1024 processor configuration. This estimate is This is negligible compared to the C'512'512 arithmetic operations
extremely conservatively based. A greater speed-up is probable. on the pixels (C> 10 and probably C> 102) since indexing must be

accomplished as well as the addition and division of smoothingCircuit Swthn Formula tions of Smohn - A circuit itself.
switching structure for the smoothing operation is suggested by the
fact that each computation requires only nearest neighbors. We thus conclude that for smoothing data movement costs will
Therefore if the pixels are stored by columns then a processor will be essentially trivial for both packet and circuit switching
need simultaneous access to three columns (say k-l,kk+l) to representations.
execute the computations on column it. A realization of this
representation of the smoothing algorithm is given in Figure 6. Speed-up Analysiq and Discusion
Extra zero valued rows and Columns Of Pixel values are added to Fiue7sostentpedpvrusheumrofrcsos
each formulation of boundary conditions. The solid lines of Figure Figure 7 shows the net speed-up Versus the number of processors
6 are normal circuits. The dotted lines are tree circuits from which for M=1024 and X=8. There is, in this case, little difference
leaf-root paths can be selected. Processor I computes in sequence between formulations based on different switching strategies for
the smoothed values for the pixels in columns 1, 2 and 3. Processor moderate numbers of processors. There is the suggestion that
2 will simultaneously and in sequence compute the smoothed values circuit switching will yield superior performance for large numbers
for the pixels in columns 4, 5 and 6. P1 and P2 must share access of processors.
to pixel columns 3 and 4. The execution procedure described Figure 8 shows the speed-up factor as a function of X for
preceding allows this sharing to be accomplished without conflict if M=1024, and N=250. The amount of data transferred grows
the required circuits can be established in the network. This two
processor configuration obviouzly extends to an N processor 3N- exponentially as ) Thus circuit switching data movement shows a

strong advantage as ) increases since the cost of data movement in
memory COnfiguration so long as the memory unit can bold An the circuit switching strategy given here is constant with respect toentire column of pixel values. A TRAC-like ICN can realize these data volume until the capacity of a memory unit is exceeded.
configurations so long as these restrictions are met. It is also the
case that the necessary data movement can be realized by Smoothing on the other hand shows advantage for packet
reconfiluration of normal circuits. This is not the method of choice switching since there are cases where a pure circuit switching
so long as the conditions for a tree circuit representation can be formulation becomes rather complex.
met.

M.s.rs The bottom line with respect to parallel histogramming is thatc rcuit switching has an advantage resulting from flexibility in the
amis .s . _ ., unit size of transfers and in stability with respect to algorithm

comics '[ [ %% parameters but that well-designed architectures should give similar< jperformance for small to moderate numbers of processors.

nCircuit switching and packet switching are both extremely
efficient for parallel smoothing. Packet switching has an advantage

" c " ' over circuit switching with respect to application of degrees of.. '_0 0 0 0 0 0 0 0 parallelism with N>M for parallel smoothing. This advantage

arises from the greater flexibility in communication topology.0 ', all -............... " 0
0 In li~~ Z-HPSI. I-PACKET, *-CIRCUIT ILIEA

0- e - circuit switching based on trees

- Circuit avItching based an
0 1 1 -e -..... - ----- Z) - ---- recoar/surJt ion

0 Is ...... .. .. .. .. .. ... , .. X0 "1 - - -

"-. tmybdeietoua. degee f pralelsm reaertosns.00000000
6- testsit 8

It may be desired to use a degree of parallelism greater than h!
(N>M). Then the columns of pixels must be decomposed into
vectors of length M/k where N=kM. In this case the
establishment of circuits is dependent upon It and may not always
be possible. A formulation using both circuit switching and packet g
routing capabilities for TRAC has been worked out. The pixels C.
appearing at the boundaries created by partitioning of columns

S. have their 'nearest neighbors' sent to them by packet movement.
This 'mixed' communication mechanism is still of lower cost than

t pure packet based mechanism. The case N<M (for Nm2i, a
% . stm, 2J) is bandied by assigning multiple (2k) columns to processors.

This case raises no new problems.

We give here numbers only for the circuit switching
representation where N-M and data movement is via tree circuit .
activation and deactivation. Then the total communication Cost is 0.00 40.00 o0 1;0.00 1n.0o
(N/2) LOG(N) (a-suming deactivation and activation of all tree fas,- 7 Speedsps versus the limber of Processors
circuit paths is done in parallel). If N-161512, then only (M-1024. A-$)
26'g-2304 memory cycles are required for data communication.

S.7,
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TRAC: AN ENVIRONMENT FOR PARALLE1. COUIUTTNG

J. C. Browne

Department of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712

Abstract concept base which Is extensible across
a broad range of numbers-of processors.

This paper defines one set of requirements for
a successful general purpose parallel The validity of the arguments that TRAC can be
architecture, describes the design concepts of the the basis for a very high perf.rmance parallel
Texas Reconfigurable Array Computer (TRAC) and architecture depends on the validity of this
then demonstrates that the TRAC architecture requirements analysis.
fulfills these requirements. It will be seen that
TRAC implements a general purpose parallel
computation system through its ability to The sections of this paper which follow will
Implement a spectrum of single purpose show that TRAC offers one total system
architectures. Special attention is paid to architecture which meets the requireieuts of the

* architectural support for software and to the I/O problem domain defined by this set of assumptions.
!v problems fr a many-processor architecture. Models of Computation

, Requirements for Effentive It is useful, before going on to the discussion
Parallel Computing of TRAC design principles, to give our perspective

on parallel computing. Problems, algorithms,
architectures and languages can all beA parallel computer architecture is founded characterized by the model of computation which

upon a set of assumptions about the nature of the
workload it is to cxecute and the technology they require for execution or which they realize.
available for implementation. These assumptions
fn turn define the requirements for the The essential element in the understanding of
architecture. This section lists the assumptions the development of algorithns, software and
and requirements which underlie the design of the applications for parallel architectured computer
Texas Reconfigurable Array Computer (TRAC). systems is an understanding of the models of

computation required by significant probler.s and
realized on hardware architertures. A model of

1. An effective general purpose parallel computation for sequential computing includes the
architecture must be able to realize a following elements:
spectrum of models of parallel
computation. (See Section 2 for
definition of models of parallel 1. primitive units of computation
computation.) In many cases efficient

* parallel formulation of most 2. composition rules for composing the
significant problems will require primitive units of computation1 into
multiple modes of parallel computaticn. executable and schedulable units

2. High performance commnunication between 3. definition of address spaces which
parallel processes is as impnrtant as control the data to which the
high performance computations. computation is applied.

3. A successful many processor Models of parallel computation add to the elements
architecture m.;st include an effective of sequential cimputation requirements for:
solution to the problem of distributing

data from I/0. 1. modes and topology of communication
between units of computation which are

4. Software will be the major bottleneck executing in parallel and
in the application of parallel
computing. 2. modes and types of synchronization

5. A successful family of parallel mechaniams.
,architectures will be foundcJ on a

-* -" -" -" . N -



V An application is typically made up of to see that this capability for configuring

algorithms and steps and phases within algorithms, architectures from resources through the

each of which may be characterized by some model establishmont of circuits in the interconnection

of computation. Units of com.putation and the network suppo'rts realization of almost arbitrary

modes and topology of communication are often parallel architectures.

disjoint between phases of an algorithm. These

algorithms and applications must be mapped to a Partitioning

hardware architecture which also realizes one or

more models of parallel computation including the Partitioning is again founded on the

specification of one or more modes of establishme!nt of circuits in the network.
synchronization and/or topologies and modes of Partitioning follows frc-m the fact that a given
communication. resource element interacts on a cycle by cycle

basis only witn the resource elerpents to which it
Design Concepts is joined by active circuits. The construction of

a configuration from a collection of resources can
This section outlines the des'&n concepts which thus be said to partition these resources.

are used in the TRAC systea to meet the

requirements posed by the problem statement Integrated I/0 Architectures
defined in the section entitled "Requirements for

Effective Parallel Computing." The set of The memory unit at each base node of the

concepts which we will describe include network may also have attached a self-managing

*' " confi urabi]ity, partitioning, integrated I/O secory my unit ha e ) t eaT se,a na3ingsecondary memory unit (5,S)[RAT81,RAT3].- ';h e

architecture, and multiple modes of comunication. SPSM is an object-oriented storaGe device. It

implements associative searching by name and thus
Configurability is the ability to realize implements a local directory for the objects it

problem specific parallel architectures from a has stored. The storage element for a SMSM may
* collection of resources. Partitioning is the range from additional RAM to a large disk. An

* separation of resource configurations which gives SMSM extends the address space of a memory unit to
conflict free execution. An integrated I/0 include the objects stored in the S!4SM.

architecture constructs a solution for external

storage as a part of the design of the memory Multiple Modes of Communication

architecture of the system. Multiple modes of

communication refers to the use of both circuit Efficient parallel formulations of problems

switching and packet switching as modes of data and/or algorithms must minimize co:munication

movement through the components of the between streams of computation which are
architecture. proceeding in parallel. Parallel architectures

are, however, only of interest when there must be

Configurability some cooperation and thus communication between
the parallel streams of computation. The ideal

N Configurability in TRAC is founded on the communication system will have zero latency,

dynamic establishment of circuits in an infinite bandwidth and realize arbitrary

interconnection network. The interconnection topologies of communication. These are the

network used in the current incarnation of TRAC is properties of a paracomputer [SCH8O3. We argue

a two-sided SW Banyan network [GOK73,LIP8O). that realization of these properties in an

Processors are placed at the apex nodes of the interconnection network based architecture can be

-switch and memory-I/O units at the bases of the best approached through the use of both circuit

switch. Figure 1 is a schematic of a 4-processor and packet modes of communication. The TRAC

9-memory-I/O configuration of TRAC. The interconnection network does realize both modes of

architecture of TRAC and the properties of the data movement. Circuit based movement of data is

banyan network have been well described in the based upon selective activation of circuits in the
literature [SEJ8O,PRE8OLIP80]. We will focus on switchable trees. If one processor deactivates a
altetue ,ativaacircuit in a tree nthe esor
the properties which result from this circuit in a switchable tree and another processor

architectu.-e. atvtsacruti htte hnteetr
41. -contents of that memory are moved between the

address spaces of the two processors.
Three types of circuits are implemented. All

have the shape of trees. The trees rooted at the
apex nodes link one processor to many memory-I/O TRAC also implements a complete packet

nodes and realize an address space for the switching capability. A processor may direct any
processor. There are two types of trees with memory to which it has an active circuit to send a

%. roots at the base of the network. An instruction data packet selected from its contents to any

tree couples a set of processors to give an 51MD other processor. In fact, all processors may

architecture. A switchable memory tree simultaneously transmit packets.
establishes a family of circuits potentially Effectiveness of TRAC as a

linking many processors to a single memory-I/O - - - as a

unit. Only one circuit in this family* may be Parallel Architecture

active at any given tire. figure 2 Illustrates
the formation of such circuits for the 4-processor This section demonstrates how an architecture

9-memory-I/O configuration. It Is straightforward built on the design principles described preceding

!
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realizes the requirements defined in the first modes of communication for intereo,!nectior network
section of the paper, based architectures.

Realization of Multiple Models of Computation The I/O Problem

It is obvious that TRAC can implement multiple A many processor parallel architecture must

models of parallel computation. There might, face the problems of distributing data to
however, be some need to discuss the efficient processors, maintaining a directory structure,
implementation of actual computations. We wll maintaining consistency and developinF, the
discuss implementation of communication in a necessary bandwidth of I/0. TiRAC provides the

separate sub-section. The TRAC architecture can capability of placing a self- r~gin? secondary
Incorp~rate almost any type or class of processor. memory (S;151) on every memory nooe. Tlie overhead
The principal question to be asked is the of maintaining a central directory is not required
efficiency of access to memory by an individual since the SMSX'S impleMent local directory
processor. Analyses of the switch node have shown services which can be combined to give a
that it is readily possible to construct nodes distributed directory. Parallel directory
with delays of the order of a few nanoseconds. searches can be executed by having each SMSM
The length of the path between processors and initiate a search on its own portion of the
memorie.; is bounded by log n where n is the number distributed directory. The availability of an I/O
of processors so that total delay will be not more port at each memory site gives an enormous
than 10's of nanoseconds for even quite large opportunity for parallel structuring of I/O
numbers of processors. This is still much less processing. Thus TAAC attains 1/0 bandwidth
than cycle time for memcry cells appropriate for through parallelism. The external data necessary
processors of considerable speed. It is also for execution of a given process caii be storer on
readily possible to include processor local caches the SMSM's local to that process. Thus co-plex

In the TRAC design although we have not done so. data movements to co:mplete I/0 are avoided.

There are two other issues to be addressed. Support for Software

These are the costs of configuration and
reconfiguration and the problems created by Resource management in an environment of
blocking in the network causing effective loss of thousands of processors, memories and I/O devices
resources. The TRAC architecture provides is-an unsolved problem. The overhead of resource
hardware .support for the formation of management in resource sharing systems tends to
configurations [RATBO,JEN81,JEN82). Actual rise in a greater than linear fashion with the
establishment of configurations can be degree of competition for the resources and the
accomplished in microseconds. The problems of mediation of conflict for resources. TRAC avoids
allocation of resources to form configurations has this problem since sharing is all explicit. Each
been extensively studied by modeling ad simulation configuration of resources organized into a given
"DEG81a,PRE81J1. These studies have consistently computer architecture executes independently of
shown that rather simple algorithms are apparently all other configurations because the establishment
adequate for reasonable levels of resource usage of circuits partitions the resources. The
and rates of change of configurations. processes interact only when interactions are

programmed as a part of the computation. DeGroot
Communication and Data Movement JDEG81b] has discussed resource management for

% TRAC using the hardware support provided.

The combination of circuit switching and packet
switching mechanisms for communication implemented The structure of the operating system for TRAC
by TRAC synergistically combine to give very high has been described elsewhere [BRO82]. Figure 3 is
performance over a spectrum of requirements for a schematic of the operating system for TRAC.
data movement. The switchable trees give a
mechanism for very high bandwidth communication. The structure of this operating system is
The deactivation of one circuit and the activation hierarchical with the functionality partitioned on
of another in a switchable tree can be a job-by-job basis. This structure in effect
accomplished in a few memory cycle times. The creates a local operating system for each job.
result is the transfer between process address The local operating systems interact only when job
space of the entire contents of a memory-I/O cell configurations are established and altered. This
which may include megabytes of direct access proposed implementation has a growth in resource
memory as well as executable memory. management overhead which is linear in the number

of jobs being executed on the entire architecture.
Packets implement a mechanism of arbitrary

topology but lower bandwidth. Packet based Extensibility
communication can be used whkre the establishment
of circuits has an unacceptably high resource cost The concept base for TRAC can be effective for
or Is simply not pos:ible. p spectrum of configurations of processors from a

small to moderate number of relatively fast
Studies of image proce:;sing [YASB3 algorithms processors to a large number of slower processor3.

have suggested the power of combining the t wt Estimates made of loss of effectiveness thiougn
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conflict, and management overhead [JEN82] suggest 5. [HAT83] Rabthi, B.D., "The ?,:)I p,}d
*i that a configuration of a thousand processors each Perftrmanze Analy:;3s of a Self i-'; ng

in the class of a fuw MIPS should be efficiently Secondary Memory." PI,.D. D : L:tt;ioDl,

realizable in both hardware and software. Depart!,i.nt of Electrical , ,i,

The University of Texas at Austin,

The memory and I/O svstem Is modular. Large December 1983.
memories are realized by combining smaller units

. through circuit establishment. Distribution of 6. [RAT81) Rathi. B.D., "Princiivcs of
I/O capacity with memory units prevents the Operation of TRAC's Se If-:!LT,ing

development of a data movement problem for large Secondary Memory," pre] 'inary

numbers of processors. techn~ical report TRAC 25, 1981.

The extensibility of TRAC is limited by the [ ESCiI80 Schwartz, J.,. "UltracomFtl er,"
ACM TOPLAS 2. 1980, p,.. 184-521.

cost growth of n log n for the switch nodes and by
the density of wires in this switci sructtra. A 8. [RAT8O) Rathi, B.D., Tripathi, A. and
one-sided banyan [GOK79] has only linear growth in Lipovski, G.J., "Hriwired hesource
switch nodes as n becomes large and may allow for Allocators for Reconfi g.rable
still larger configurations founded on the same Architectures," Proc. Int. C+,e'f. on
principls. Parallel Processi:g, August 1915U, pp.

* Summary 109-117.

The" d9. [JEN81] Jenevein, H., DeGroot, 1). and
The discussion given preceding argues that the Lipovski, G.J., "A Hardware Support

design concepts of TRAC offer a cost effective Mechanism for Scheduling Resources in a
basis for realizing very high performance parallel
architectures. Parallel Machine E ronnt," Prc.

epracticality of these concepts 8th lnt. Symp. on C77-. Arch.. 1961,
has been demonstrated in the TRAC prototype now p -66.

running in Austin and through numerous modeling pp. 57-66.

and simulation studies. 10. [JEN823 Jenevein, R., DeGroot, D..
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