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* ESTIMATION THEORY AND STATISTICAL PHYSICS

S.K. Mitter
" Department of Electrical Engineering and Computer Science and

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

1. INTRODUCTION .

In my previous work on non-linear filtering for diffusion processes [Mitter

1980,1983] I have discussed the analogies that exist between these problems and

problems of quantum physics from the Feynman point of view (cf. Glimm-Yaffe 1981].

- The basic idea here is that construction of a non-linear filter involves an

* integration over function space which is exactly analogous to the construction of a

measure on path-space via the Feynman-Kac-Nelson Formula. Meea6-ing to- 4s---- .

wtewpoist, lhe Kalman-Bucy filtering problem. nsmet the filtering of Gauss-Marko

processes in the presence of additive white Gaussian noise occupies the same role as

the Orustein-Uhlenbeck process (finite or infinite-dimensional) in Quantum Mechanics

or Quantum Field Theory. That this analogy ibe pe.5 s borne out by the fact

that a solvable Lie algebra, the oscillator algebra which contains the Heisenberg
algebra as a derived algebra is intrinsically attached to the Kalman-Bucy Filtering

problem. I have also shown -that the problem of non-linear filtering of diffusion

processes admites stochastic variational interpretation -F-l-e-in-Mttti 2 The

" objective of this paper is to strengthen these analogies further with a view to

showing the close relationship of estimation theory to statistical mechanics. The

motivation for this comes from problems of estimation and inverse problems related

to image processing.

In order to carry out this program it is necessary to generalize these ideas to

filtering problems for infinite-dimensional processes where we are forced to work in

the context of generalized random fields. -' There are two types of processes

involved: continuous processes such as infinite-dimensional Ornstein-Uhlenbeck

processes and their L2-functionals which represent intensities of images and

processes of a ldiscrete*'nature which will represent -0 oundariesl' of images. The

most interesting models are obtained when these processes are coupled according to a ..

probabilistic mechanisms. The 'discrete-*'processes should be thought of as gauge

fields and will be a process on connection forms.

Although the estimation problems of interest are naturally viewed in the context

of random fields which are independent of time, the best way to obtain sample

functions for these fields is to simulate it via finite or infinite-dimensional

stochastic differential equations whose invariant distribution coincides with the

....... ....... ....... .. ..".". ." '' ":-"'": -'- " " - . . i' . . -, .* '
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distribution of the time-independent random field. This Monte-Carlo simulation

V procedure is the same idea as stochastic quantization, an idea advanced by Parisi

(cf. Parisi-Wu 1981) and recently studied in a rigorous manner for (PO)2 fields in a

finite volume by Iona-Lasinio and Mitter, 1984. The problem which are of interest

here are filtering problems associated with these stochastic fields obtained by

introducing observations which are local' and studying the behaviour of these

filters as t -4-. To make any progress however, one would have to work with lattice

approximations of these stochastic fields and reduce the filtering problems to a

finite dimensional situation and even here there are severe technical difficulties.

When the observations are however local and considered to be on the stationary Gibbs

field the problems amounts to looking at the invariant distribution of a stochastic

differential equation with a coupling coming from the observations.

The main objective of this paper is to explore these relationships between problems

of estimation and stochastic quantization (stochastic mechanics) at a conceptual

level. The detailed technical discussion will appear elsewhere.

2. SIGNAL MODELS FOR IMAGE PROCESSING

In order to treat problems of Image Processing in a probabilistic framework we need

probabilistic models for the signals in question. These signals are various

attributes of images such as intensity of images and boundaries between smooth parts

of images. The probabilistic models we choose are Gibbsian random fields and are

borrowed from statistical mechanics. These models for image processing have been

used by several authors recently (c.f. Geman and Geman 1984, Grenander 1984,

Marroquin 1985). The exposition of signals models given below follows Sinai 1982.

The signal models we wish to consider correspond to statistical mechanical models on

2a finite lattice and we shall take this lattice to be Z with the Euclidean norm.

The sample space 0 consists of functions 0:Z 2 -) :x=(x,,x 2 ) -- (x), where f is a

finite set, a homogeneous space of a compact Lie Group with the natural a-algebra of

Borel Sets or R1 . The sample space 01 is termed a configuration space in statistical . .

physics. For VCZ2 , a finite subset, we denote by O(V) = (O(x) IxgV] and

VC Z2 = ((V) VCZ 2 }, finite. *

For a non-empty finite subset VC Z we are given a function I:Q(V) -)R:@(V) - - "

I(O(V)) which is called the potential. I( (V) is the joint interation energy of

o(x) inside the domain V.

For an arbitrary finite WCZ 2 , we define the energy H(O(w)) of the configuration 0

in the domain W as

- • . -°. ". '-' .•'.' .- '-' " ", -.' " " -'. ' - • -" '" -'," , '- - ." " " " . " " . • _ - _.', .-_ ,. .._-' .-._ :

.." " . .. . "'f - . - . "'_. .. "":.e _ "- . . ..... .-.. . .-.. . . ". . .. "," ".,. , ,;. . . . .. . . . . --
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- £ (0(Z2\W)) -V.) (2.21)H( (w)I~Z\) (() 22

V n W-
V11 Z\W="

is the interaction energy between the configuration O(M) and O(Z \W), where -(Z.\W)

is the boundary condition. The total energy of the configuration O(W) is the sum

H(O(V) + H(O(Z 2 \M).

The Hamiltonian is defined as the formal series.

H(O) = I(O(V)) (2.3) il

V

where V ranges over all finite subsets of Z-. The model of most interest to us is

the 2-dimensional Ising model when f = (1, -1) (spins), and I( (V)) - 0

unless V [xIyl with jX-Yl" 1.

We take I((V)) = 10(x)0(y) where I = + 1.

H()= -1 (x)#(y) (2.4) ..

f- .,..y"

This Hamiltonian is translation invariant and reflection invariant. If T-+l. the

model is ferromagnetic and J=-I corresponds to an antiferromaSnetic model.

The other model which will be of interest to us is the Ising model with an external

magnetic field with Hamiltonian

0H(O) =-j OWO)(y) -h OWx. (2.5)

Ix~y) xzZllx-yl'

where h may be random.

Finally a case of interest to us is the Hamiltonian

-3-"



H(O) I(x.y),(x)o(y) - h W(x) (2.6) ...

(xy) xZ 2

where 3(xy) is random. This corresponds to a spin glass.

Let a measure be given on f and for every VC Z we consider the product measure

IIdX(O(s)) = dpi.
s8V

We are interested in Gibbs distributions in the domain V which is a probability

distribution on Q(V) whose density with respect to dp is given by

exp(-H((V))) (2.7)

J exp(-H(O(V))d.

Z = f exp(-H(O(v))dp is called the partition function.

This corresponds to the so-called Gibbs distributions in V with free boundary

conditions (Dirichlet Boundary conditions in the literature of quantum field

theory). The signals 0 we shall be interested in will have Gibbs distributions

given by (2.7) and is defined by prescribing the potential I.

For modelling intensities of images we shall typically use a Gibbs distribution

corresponding to a Hamiltonian of the 2-dimensional Ising model. Boundaries between

smooth patches of images will be modelled as Gibbs distributions on the dual

lattice. We shall discuss this in a later section.

P 2.1 Simulation of the Gibbs Distribution

Sample function's of the Gibbs distribution are obtained by constructing a Markov

chain whose states correspond to the configurations of the Lattice field at time

points 1,2 .... in such a way that it has a unique invariant measure as the Gibbs

measure exp(-H(O(V)))dpi. This chain clearly has to be reversible. Various -

algorithms for creating such a chain are known of which the Metropolis algorithm is

the best known. In practice one may have to deal with a very large subset of a ..- .-

lattice and the random variables at the lattice points may take values in R1 . In

P this case it may be useful to make a diffusion approximation and simulate a

stochastic differential equation with the same properties as above. This is the

analogy to stochastic quantization we referred to before. j
One therefore has to study the stochastic differential equation of the basic form:

-4-~ -. **~ S. .... . . . . . .
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do(t.x) - -D*H(o(tx)) + dw(t,x)

(2.8)
silO.z) 0 (I1)."."---.

where in general 0(t,') is a generalized random field and D denotes "functional*

derivative with respect to 0. The questions of interest is to construct the measure

in the path space of 0 and prove that the stochastic differential equation (2.8) has

a unique invariant measure with density (with respect to an appropriate measure)

exp(-H(o)). The interest in this model for generating Gibbs distributions is that

only Gaussian random numbers need to be generated and the computation is amenable to

parallel processing.

3. STOCHASTIC MECHANICS, STOCHASTIC QUANTIZATION AND SIMULATION OF IMAGE

INTENSITIES

We start with some well-known facts relating the Feynman-Kac Formula and the

Girsanov Formula. (Carmona 1979, Simon 1980, Mitter 1980).

Let us suppose that V:R n -) R, be measurable, bounded below and tends to + as

Ixi - * and consider the Schrodinger operator H = -A + V where A is the a-

dimensional Laplacian. Then H defines a self-adjoint operator on L2(Rn; dx) which

is bounded below and the lower bound X (assumed to be 0) of the spectrum of H is an

eigenvalue of H. Let y(x) be the corresponding eigenfunction of H, the so-called

ground state and assume I(x) > 0. We normalize i,(-) i.e. f l(x)12 dx 1. Define

the probability measure dp = l1(x)I 2dx, and the unitary operator

2 n 2 n
U L (R dx) -->L (Rn; dp(x))

f -yf.

If we define the Dirichlet form for f, g e C (Rn)c

6(f,g) = - f(x) Vg(x)dx
Rn

then a calculation shows

65(f g) = (''f~g)i,".""

where ( " ) denotes the scalar product in L2 (Rnldg) and J'is the diffusion operator

(seif-adjoint, positive)%

. = - -+x1 .v (3.1)..-. .:
J'0 10 + Vb V0(31

b = -log T

D .-- . . .. . . . . . .-. *



Since fp satisfies the equation

.4A+ V(x)yu'0. (3.2)

in the sense of distributions (note that we have taken X-O), a direct calculation

shows

V(x) ( Ib(x) 12 Ab (z)) (3.3)

Now using the Feynnan-Kac formula for (3.2)

~(X) E EIv(X(t))ezp(- JV(x(s))ds)Ix(t) x], (3.4)

where Ew denotes expectation w.r. to Wiener measure, the properties of V, equation

(3.3) and the generalized Ito-differential rule (Meyer 1978), we see

10
(3.5)

=expc-J Vb(x(s)).dx(s) - .- JI(X5) dsl

is a (2, S., A'W) mart ingale, where .Ft is the a-field generated by (U(s) 10 5s St)
and pw denotes Wiener measure. Therefore the process (w(t) It 0) defined by

t
w(t) =X(t) - (0) + JVb(x(s))ds (3.6)

0o

is standard Brownian motion with respect to the measure 11'4 defined by-

d L(t) (3.7)
dpz

Hence x(t) considered as a stochastic process on (0, *hirt V0) is a weak solution of

the equation

dz(t) =-Vb(z(t))dt + dw(t)
(3.8)

z(0) = .

Indeed, the stochastic Process defined by (3.8) is a Feller process, which is

recurrent and has p~ as its unique invariant measure. Therefore with the ground



state of a Schrodinger operator we have attached a diffusion process which is

ergodic.

The converse procedure is of interest to us. Suppose we start with the stochastic

differential equation on Rn given by (3.8) where -Vb(.) is a singular drift. The

case of interest to us is where b(.) is a polynomial which is bounded below. Now,

typically the Novikov condition

E exp(- fVb(x(s)) 12ds) < (3.9)
2
0

will fail for these drifts and hence the Girsanov functional

L(t) = eip(- Vb(x(s))•dx(s) - f lVb(x(s))I 2ds) (3.10)
0 0

although a super-martingale, need not satisfy

E" W0] 1

ai hence fail to be a martingale. Therefore, the method of proof to show that

equation (3.8) has a weak solution using the Girsanov formula will not work. To

show, however that (3.8) has a weak solution and the process defined by (3.8) is

recurrent and possesses a unique invariant measure, we consider the operator

- IA + Vb.V, (3.11)

and transform it to

H= - -A + Vx), (3.12)
2

where

V(z) 2VbW.I Ab(x)),

using the Gauge transformation,

p(x) --4exp(b(x)) x). (3.13)

Then using functional-analytic arguments (cf. Segal 1970), one shows that the

semigroup etH is indeed, a strongly continuous, self-adjoint contractive semigroup

on L2 (dp) where p is an appropriate probability measure, e-tnl=l, is positivity

preserving and improving and 1 is the unique ground state. It then follows that

" -'''---' -' ---' -'- -' -'.- -,.-. '--- .--'_- --'-- --" ..u- ,', _ . , . ,, ,.- - .,.' _. -: -_.- . . .'- . . . i. . S.
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e-t is ergodic with gi as its unique invariant measure. To carry out this program

rigorously, one would use hyper-contractive estimates of Nelson and Segal and hence

it is natural to work with the stochastic differential equation:

dx(t) =-Vb(x(t))dt + dt(t), (3.14)

where

d4(t) =-At(t)dt + dw(t), (3.15)

where A is a symmetric nxn matrix. Therefore (3.15) defines a generalized Ornstein-

Uhlenbeck process. Let us define formally the semigroup,

(e- f)Mx) E O[f(x(t))L(t)R(t)Ix(t) X ], (3.16)

where

1 12
L~) exp(-JoVb(x(x)).dx(s) -f0lbxs) d)

o 0

R(t) exp(-JAx(s).ds(S) T JJds)
fo0

1and EO) denotes expectation with respect to Wiener measure. One wants to write

(3.16) in Feynman-Kac form, i.e. in the form

(et M)x) E [f(z(t))Cxp(-JV(x(s)ds)Ix(t) =X] (3.17)

To do this we need an Ito differential rule far b. For this we need that b is

continuous,

Vb L 2 (Rn;dx) and Ab eL (R ndx).
loc. loc.

The measure dji referred to previously then is

=p exp(- V(x(s)ds)dg

where

dp~

The rest then follows fram Nelson 1973, Segal 1970, Glimm Jaffe 1981, Grass 1972.



These ideas can be generalized to random fields (cf. Sona Lasinio-Mitter loc.cit).

Let ACR 2 be a square and consider the Laplacian A on R2 with Dirichlet Boundary

conditions, which is a self-adjoint operator on V L2(A). Let HI(A) be the Sobolev

space of functions f on R2 with norm

2 ( _,A1 11 f (x ) 12 dx

and let VI = H-(A) be the dual-space of distributions with norm

IIII12 f 1120 (x)2 dx.

Let pc denote the Gaussian measure on V' with mean zero and covariance operator C

given by

C (-A+I.) (3.19)

Consider the stochastic differential equation on V':

do(t) = C -(t)dt + dw(t),

2 (3.20)

0(0) = 0, 0 < < 1
2

interpreted in the weak sense, where w(t) is a V'-valued Brownian motion with

covariance C 1-  min(t,s) (defined using test functions).

One can show that this stochastic process defines a measure on the path space

C(O,=;V') and we denote this measure by P. Define the semigroup

-tL 0 f

(e 0f)() = E[f(O(t))IO(t) = 01, (3.21)

where f is a *suitable' function and E denotes expectation w.r. to P-measure. One

shows using the work Segal and Nelson referred to above that:

S

-9-o
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-tI..., 2

,.-- -tL0  
2 -

(i) C is a strongly continuous semigroup on L (dtt )I
c

which is contractive, self-adjoint.

(ii) is positivity preserving and improving on L 2(dpc).
C

tLL

(iii) is a contraction on LP (d4i) 1 <p <

(iv) is hypercontractive: lie 0011 4 C1j011 2
L(dp) LI)

c C

for 0 a Lz(di and t sufficiently large. Moreover the stochastic process defined

by (3.20) is ergodic and has as its unique invariant measure. Therefore the

Ornstein-Uhlenbeck process defined by (3.20) is the stochastic quantization of the

free euclidean field. In view of the well known relationship between the free field

and the Ising model via the lattice approximation (cf. Guerra-Rosen-Simon 1975), we

see that simulating the stochastic differential equation (3.20) is a powerful way of

obtaining sample functions of the free field (Ising field) when the lattice is

large. This can be accomplished in a parallel machine using multi-grid methods.

As remarked by Guerra-Simon-Rosen, the Ising (nearest-neighbour) nature of the

lattice fields are not destroyed if we use non-gaussian random variables at the
lattice paints. This can be accomplished by studying the stochastic differential

equation on V'

•1C-s;te d 1 C-c a )3
d;(t) = C-C (t)dt + XC'.C :(t) :dt + dw(t)

(3.22)

;(0) = , < e <

where : denotes Wick ordering with respect to the covariance C (cf. Glimm-Yaffe

1981). Using an appropriate Ito rule (proved by approximation using tame

functions), considering an aprpomimation of (3.22) using a spectral basis related to

(-A+l) on L2 (A), and using limiting arguments coupled with hyper-contractive

estimates (see the discussion in the first part of this section), Mitter-Jona

Lasinio show that the semi-group defined by

.. . . . . . .. . . . ..
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-tL (3.23)
(e f)(0) - E(f(0(t))exp(Q(t))l(t) 0 (3.23)

where

_X t 3 2 t 3 1-6 )3
00(s)(t) = 2J(: (s :, dw(s)) !L (:0(s)C :0(s :)ds (3.24)

J0 8 f

where 0(t) is the Ornstein-Uhlenbeck process defined by (3.20) satisfy

-tL I=1 and -tL is a contraction on Lo(dp ).

-tL 2(ii) -  is a strongly continuous, self-adjoint semigroup on L (dp)
A 4

with dIL = exp(- J :0 (x) :dx)dpc , positivity preserving and
4 A

improving and 1 is the unique ground state.

(Iii) -tL ergodic and mixing.

This then allows them to show that the stochastic differential equation (3.22)

hr a weak solution and has as its unique invariant measure g.

Since the stochastic differential equations under consideration defines a

Markov process which is ergodic (and mixing), we have

tim E 4( (t), fl)(;(t),f ) .. (;(t),fn )--'"-

tt 0 1 2 
"

Jdi

where the fi are test functions. This enables us to compute spatial statistics of

* the time-in independent random field from the simulation of the stochastic

differential equation.

4. Some Estimation Problems for Random Fields on a Lattice (cf. Marroquin 1985)

Let VC Z2 be a finite subset. Consider a random field

f:V --)t (4.1)

with Gibbs distribution having a density with respect to dp (see (2.7)) given by

Pf Z exp(- TL a M (4.2)

-11- 41
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and To > 0 is a parameter (temperature). 4

We observe a corrupted version of f given by

g(j) = [G(jf)(, F(i)]. j a SCV, (4.3)

where H(j,.) is a function with Olocalw support and I is invertible in the sense

that pMj) = -l(g(j), G(j.f)). We shall assume that V(i) and V(j) are indepenent :-l

and also V(.) and f(.) are independent. Let us suppose that the distribution of

V(.) with respect to dp has density 4

>0 (4.4)

Define the functions

K(isf,g(i)) = -In p,(I- (g(i), G(i;f)). (4.5)

Then the conditional density pf/g can be written as

Z exp(-H (f.g)), (4.6)Pf/g p p

Elf,g) -- M0l0 ) + K(i;f,g(i)) (4.7)
0 isS

and Z is a normalizing constant.
p

We can now provide a physical interpretation of the posterior distribution, by

considering that, while the prior distribution (4.2) describes the behavior of a

free field in thermal equilibrium, the distribution (4.7) describes the behavior of

the same field coupled with a fixed (but spatially varying) external field whose

value is given by g. The functions K whose magnitude depends on the noise variance,

can then be interpreted as the coupling strengths between the two fields. This

coupled system is also Gibbsian and if

G(i.-f) =G(i;f(i))

the Markovian structure of this field will be identical to that of the original

field...

The importance of this interpretation lies in the fact that the optimal estimate of

* f can be obtained simply by observing the equilibrium behavior of this coupled

field. -12-

. .* . .. . . . . . . - .- *



In particular if HO(f) is the Hamiltonian of a ferromagnetic Gaussian Ising field

and the observation is,

g(i) = f(i) + n(i), (4.8)

with n(i) Gaussian, then the coupled field corresponds to a Ising field coupled to a

"" random external field.

The estimates that are of interest to us depends on the choice of the problem. The

two most important estimates for image reconstruction purposes are:

(i) f = E(f g) (Conditional mean)

(ii) f = Arg Max Pfig(fig) (MAP)

From (4.6) and (4.7) the MAP estimate corresponds to minimizing the Hamiltonian

* H (f.g) with respect to f.

4.1 Block Spin Transformation for MAP Estimation (Marroquin 1985)

In order to illustrate the analogy with Statistical Physics further we consider the

MAP estimation of a binary Ising field withe the observations taken as the output of

a binary symmetric channel with error rate &. Therefore [ (1,-li and the

observation model is given by

1- if gi f.
P(g(i) jf(i)) = -

s if g. # fi,

Then it is easy to see that

*H (fg) = 1 f(i)f(j) + a 2 f(i)g(i) (4.8)
p 0

0 i,j] i

Ili-.JII=l .-

and

u = ln( -).-'i

Minimizing H is now a combinatorial optimization problem.p

4.1.1 Simulated Annealing and Global Minimization

Simulated annealing is a new technique, developed by Kirkpatrick et al (.L98 3 ) for

the solution of combinatorial optimization problems. It is based on the idea that

any cost functional of N variables, each of which can take values on some finite

-13-



set, can be considered as the Hamiltonian (Energy) of a physical system whose state

corresponds to a particular value of these variables. Therefore, we can use, say,

the Metropolis algorithm to generate, at any given *temperature* T (which now

becomes a parameter of the optimization process) samples from the corresponding

Gibbs measure. As T 4 0 this measure should converge to a measure which

concentrates on the states of minimum energy, the state of the system in thermal

equilibrium at zero temperature will correspond to the value of f that minimizes the -

energy H(f) globally.

One serious difficulty, however, is that attaining thermal equilibrium might take a

very long time at low temperatures. Kirkpatrick's idea was to start at a relatively

high temperature (where thermal equilibrium is reached very fast), and then, to

slowly cool the system, until "freezing' occurs and the state stops changing.

The analysis of this algorithm is presented in the Appendix.

4.1.2 Block Spin Transformations

In the case of the MAP estimator, the efficiency of the Simulated Annealing

algorithm for the minimization of p can be improved by defining large *blocks' of
p

sites (in a manner that is reminiscent of the *block-spin* strategy used by Wilson

(1975) in connection with the renormalization group approach to the study of

critical phenomena); the optimal estimate for the average value of the field in each

of these blocks is found, and then progressively refined by subdividing the blocks

in successive annealing stages. We will now show that, if we use a maximum entropy

assumption, the structure of the MAP estimation process for Ising models is

invariant under the *blocking" transformation; this means that the ground state

(i.e., the MAP estimator) of the aggregated process (with blocks of size L) also

corresponds to that of an Ising model with a coupled external field, in which the

natural temperature is scaled by a factor of l/L. and the noise (coupling) parameter

by a factor of L2 . As a consequence of this scaling, the final temperature for the

simulated annealing of this smaller network will be approximately L times larger

than for the original problem.

If we denote by V(f(i), f(j)) = f(i)f(j) and q(f(i), g(i)) f(i)g(i), let

Vc( f(i), f(j)) and qc(f(i), g(i)) be the extension to RxR of V and q respectively.

We then write

H (f,) V (f(i),f(j)) + a q(f(i),g(i)) (4.9)

Si, j=l i

I i-j 11=1

We will now derive an expression for the energy in the 'block spin' case. Let us
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partition the original lattice into square blocks of side L. The 'block

observations'S will now be the density of l's on each block, i.e.,

SLM 7 g(j)
gL~) L jeB.i

1h

where Bi is the i t block. The *block field'f is defined in a similar way.

For a given fL' we compute the energy by assuming a maximum entropy configuration,

which occurs when the l's that correspond to the given density fL(i) are randomly

distributed within the block. The energy will have three terms:

1. Interactions between adjacent blocks:

The interaction between two adjacent blocks i and j will be:

'Ij~ (P 1 1 + P 0 0) + 1 .P 10 + P 1 * L

where Pkl is the probability of having an element with state k on block i adjacent

*to an element with state I on block j:

P ~f M

P Lf

01 L fL~i)

10 L~i( L

P 00  (i f fL MM) fL(P

* Substituting these values we get:

I i. L[2(f L(iM + f 1(j)) - 4 fL (Of L Q) -11

2. Interactions within each block: the internal interaction Ii is:

1. 2L(L-l)(-A4f L(0) + 4f Li M 1) .

* 3. Interaction with the observations:

* Assuming that the l's in the observations and in the field are independently

distributed we get: .*-



'obsi) L2[fL - SLM) + (f - fL )L~i)] =

U L2 [ fL 2 "

LfL('i) + SL)- 2fL(i)$L(1)]

Finally, the Hamiltonian takes the form

= 
1  obsli) = i .2.

= L(Y- 11 [
2 fL + T ~L +I.(i)() -1

0.

i ij

2
T-L 1) (-4 fL()) + 4fl()f 1) + ]

0j

+ aL (fL(i) + -

0 i

note that the sums are taken over pairs of adjacent blocks, and over all the blocks,

respectively. For L = 1, this expression reduces to (4.9) with

V (f(i),f(j)) = 2(f(i) + f(j)) - 4f(i)f(j) - 1

c
(f~i), g(i)) = fli) + g(i) - 2fli)g~i),."'" ...

For L > 1, the quadratic terms of HL are:

E-4 f - 8(L - 1) fL(i) 2 ]
01 i,j i.

and since 4

-2 f fL(Lj) + 2 f MLi2 = -2 > 0

ij i ij

it follows that

i j .

and

-16-
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-4 f fL(O~fL (J) - 8L 1) fL(i) 2 < ... ".

< -(4 + (L- W)) fL - 0

which implies that HL is neative definite for L > 1, and therefore, its minima,.

constrained to the hypercube (0,1] (NL is the total number of blocks) will always

find the global minimum of BL , constraining the scarech to (0,i}N . In this case, '

the energy to be minimized takes the simpler equivalent form (up to an additive"-.'-\

iii i
-U + a(L q())2~

The minimum eners y solutions for each L can be interpreted as coa rse scale'

copsnstaion to the yprgibe [attrn f.OneaLuto is th oaubroboksaill alwaysx

refinement (for blocks of size L12) can be efficiently obtained using the previous
solution as a tartin point, and initiating the annealing process at a lower

temperature. :;:'

fDe go o f ELc a sthe serc toe unab to dnths

(Mh Estimation of boundaries using coupled models on the lattice Z2 and the

dual lattice of bonds on Z2 , "i'i"" "

f ild

(iii) other problems in computation vision such as depth from tero-images shape

from shading etc. ",
repreliminary account can be found in Marroquin (1985). ltnioaed he e.

Appendix on Simulated Annealing. -.-.

Let n be a finite set and let 11 denote the cardinality of Q. Consider the problem

of minimizing the energy function:ng process at a.lower

U:Q -- R: i U . ' -

* 5. FINl W .RK

Lt No  E U(O where N ar the e natural numbers, Tk > , k u Ng be a sequence of

real numbers. Consider a Markov chain ukksN with 1-step transition matrices

-17- -
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(P(k'k+l))ksN and some initial distribution constructed on a probability space and

lot pk) P(Xki, isQ, ksN0 . The 'annealing chain' is simulated as follows:

Suppose Zk-i. Then generate a random variable y with P(y'J) qi where

Q - (qij)i,j a stochastic matrix. Suppose y-j, and then define

j if U U.
(U-Uj )/Tk

Xk+1 = j if U. > U. with probability e -"

i otherwise

We may think of the annealing algorithm as a probabilistic descent algorithm where

the Q-matrix represents some prior distribution of *directions', transitions to some

or lower energies are always allowed and transitions to higher energies are allowed

with positive probability which tends to 0 as k --w.

Hajek 1985 has given necessary and sufficient conditions on the rate at which Tk

should go to zero such that P(xk a S]} ->1 as k --)- where S* is the set of global

minimizing energy states. In this analysis the stochastic matrix Q has to be

irreducible and satisfy a weak reversibility condition.

In Gelfand-Mitter 1985 a finite-time analysis of the annealing chain has been

performed as well as a result on the rate of convergence of P[xk 8 S* --1 as k -4"

has been given, under somewhat weaker hypotheses on Q.

Finally, in Tsitsiklis 1985, necessary and sufficient conditions for P(xk 8 Se] 41

as k --> are given by considering the annealing chain as a singularly perturbed

Markov chain operating under different time-scales (under hypotheses weaker than

that of Hajek).

Space does not permit us to give a detailed account of these results.
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