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ESTIMATION THEORY AND STATISTICAL PHYSICS

S.K. Mitter

Department of Electrical Engineering and Computer Science and
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139

1. INTRODUCTION

In my previous work on non-linear filtering for diffusion processes [Mitter
1980,1983] I have discussed the analogies that exist between these problems and
problems of quantum physig:;sggp the Feynman point of view [cf. GlimmJaffe 1981].
The basic idea here is that,construction of a non-linear filter involves an
integration over function space which is exactly analogous to the construction of a
measure on path<space via the Feynman-Kac-Nelson Formula. #Aecosrding to- this<_
zyiovpoiat, §hgﬂlnlmnn-8ucy filtering problem, ntnetfkthe filtering of Gauss-Markov

processes in the presence of additive white Gaussiam noise occupies the same role as

the Ormnstein—-Uhlenbeck process (finite or infinite-dimensional) in Quantum Mechanics ’ ;

or Quantum Field Theory. That this analogy ney~bo~deepeﬁ\}s borne oat by the fact
that a solvable Lie slgebra, the oscillator algebra which contains the Heisenberg

algebra as a derived algebra is intrinsically attached to the Kalman-Bucy Filtering

o

problem. I have also shown that the problem of non-linear filterimg of diffusion '33']
p:odbsseskadmifs/a stochastic variational interpretation &F&eming-ﬁittvr“t982ff. The

objective of this paper is to strengthen these analogies further with a view to

showing the close relationship of estimation theory to statistical mechanics. The
motivation for this comes from problems of estimation and inverse problems related

to image processing.

In order to carry out this program it is necessary to genmeralize these ideas to

filtering problems for infinite-dimensional processes where we are forced to work in

o
o

the context of generalized random fields. - There are two types of processes it
involved: continoous processes such as infinite—-dimensional Oranstein-Uhlenbeck o
processes and their L2-functionals which represent intensities of images and
processes of & '&iscrete‘:;;tnre which will represent *ﬁ;undarieif of images. The

most interesting models are obtained when these processes are couspled according to a -

probabilistic mechanisms. The ®discrete” processes should be thought of as gauge

fields and will be a process on connection forms,

Although the estimation problems of interest are naturally viewed in the context ——

oy of random fields which are independent of time, the best way to obtain sample Qi:;

- functions for these fields is to simulate it via finite or infinite-dimensional

9 stochastic differential equations whose invariant distribution coincides with the

-]-
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distribution of the time—independent random field. This Monte-Carlo simulation
procedure is the same idea as stochastic quantization, an idea advanced by Parisi
(cf. Parisi-Wu 1981) and recently studied in a rigorous manner for (Pp), fields in a
finite volume by Jona-Lasinio and Mitter, 1984, The problem which are of interest
here are filtering problems associated with these stochastic fields obtainmed by
introducing observations which are "local” and studying the behavionr of these
filters as t &, To make any progress however, one would have to work with lattice
approzimations of these stochastic fields and reduce the filtering problems to a
finite dimensional situation and even here there are severe technical difficulties.
Vhen the observations are however local and considered to be on the stationary Gibbs
field the problems amounts to looking at the invariant distribution of a stochastic

differential equation with a coupling coming from the observations.

The main objective of this paper is to explore these relationships between problems
of estimation and stochastic quantization (stochastic mechanics) at a conceptual

level, The detailed technical discussion will appear elsewhere.

2. SIGNAL MODELS FOR IMAGE PROCESSING

In order to treat problems of Image Processing in a probabilistic framework we need
probabilistic models for the signals in question. These signals are various - f]’
attributes of images such as intensity of images and boundaries between smooth parts
of images. The probabilistic models we choose are Gibbsian random fields and are

borrowed from statistical mechanics. These models for image processing have been

nsed by several authors recently (c.f. Geman and Geman 1984, Grenander 1984,
Marroquin 1985). The exposition of signals models given below follows Sinai 1982,
The signal models we wish to consider correspond to statistical mechanical models on
a finite lattice and we shall take this lattice to be Z? with the Euclidesn norm,

The sample space 8 consists of functions p:z2 —)!:x=(x1,x2) = ¢(x), where § is a

finite set, a homogeneous space of a compact Lie Group with the natural c-algebra of
Borel Sets or Rl. The sample space Q is termed a configuration space in statistical
physics. For VC122, a finite suobset, we denote by ¢(V) = [¢(x)|er} and
ve 22 = (p(V) [veZ?), finite.

For a non-empty finite subset VC Z% we are given a fumction I:Q(V) = R:p(V) =
I(#(V)) which is called the poteatial, TI(p(V) is the joint interation energy of

¢(x) inside the domain V,

For an arbitrary finite W(ZZZ, we define the energy H(¢(w)) of the configuration ¢

in the domain W as

. . M PO T S G PN - . . [T N <. . . . L. o P L
- P L P A A T S P N N T ] - N R R ST . s,
SR SR B S S A S UL MRS WIS I, P 3o SIS/ B TR W ST WSS SV PRV VS sesusseansstieindededattdetintidubmbng




...............

»

- Hp(w) = ) I(s(v)).

. vCw

i The sum

: Bp(w) [p(Z2\W) = ) T(s(M) (2.2)
- VN ¥=g

N VN Z2\W=¢

h is the interaction energy between the configuration g(W) and p(Zz\W). where p(Zz\l)
g is the boundary condition. The total energy of the configuration ¢(W) is the sum
H(g(W)) + H((Z2\W),

The Hamiltonian is defined as the formal series,

Bp) = ) T(s(V), (2.3)
. v
where V ranges over all finite subsets of Zz. The model of most interest to us is
f the 2-dimensional Ising model when § = (1, -1} (spins), and I(g(V)) = 0 ..
f unless V = {x,y} with ||x-y|| = 1. "
F We take I(p(V)) = Jg(x)p(y) where J = + 1,
E.
5 Hp) = -7 ) p(x)p(y) (2.4)
h {x,y)
: ==y ] 1=
:: This Hamiltonian is translation invariant and reflection invariant, If J=+1, the
L model is ferromagnetic and J=-1 corresponds to an antiferromagnetic model.
®
- g
X The other model which will be of interest to us is the Ising model with an external -
\ -
. magnetic field with Hamiltonian ¥
y U
o Hp) = =T ) plx)p(y) - b ) #lx). (2.5) o
: {x,7) xeZ? .
=y} |=1
;- where b may be random,

Finally a case of interest to us is the Hamiltonian

.......................
---------
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H(g) = EJuquuuu)-n§¢u) (2.6)
{x,y]} xeZ2
[Iz~y|]=1

where J(x,y) is random. This corresponds to a spin glass,

Let a measure be given on ¥ and for every VC z2 we consider the product measure

ﬂdx(ﬁs)) = du.

sgV

We are interested in Gibbs distributions in the domain V which is a probability

distribution on Q(V) whose density with respect to du is given by

exp(-H(p(V))) (2.1
j exp(~H(g(V))dp

Z = [ exp(-H(p(v))dp is called the partition function,

This corresponds to the so~called Gibbs distributions in V with free boundary
conditions (Dirichlet Boundary conditions in the literature of quantum field
theory). The signals p we shall be interested in will have Gibbs distributions

given by (2.7) and is defined by prescribing the potential I.

For modelling intensities of images we shall typically use a Gibbs distribution
corresponding to a Hamiltonian of the 2-dimensional Ising model. Boundaries between
smooth patches of images will be modelled as Gibbs distributions on the dual

lattice. We shall discuss this in a later section,

2.1 Simulation of the Gibbs Distribution

Sample functions of the Gibbs distribution are obtained by conmstructing a Markov
chain whose states correspond to the configurations of the Lattice field at time
points 1,2,... in such a way that it has a unique invariant measure as the Gibbs
measure oxp(-H(#(V)))du. This chain clearly has to be reversible, Various
algorithms for creating such a chain are known of which the Metropolis algorithm is
the best known. In practice one may have to deal with a very large subset of a
lattice and the random variables at the lattice points may take values in Rl. In
this case it may be useful to make a diffusion approximation and simulate a
stochastic differential equation with the same properties as above. This is the

analogy to stochastic quantization we referred to before,

One therefore has to study the stochastic differential equation of the basic form:

-d-
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dp(t,x) = -D’H(ﬁ(t.x)) + dw(t,x)

(2.8)
9(0,x) = ﬁo(x)

l where in general ¢(t,*) is a generalized random field and D¢ denotes “functional”
derivative with respect to ¢. The questions of interest is to comstruct the measure
in the path space of ¢ and prove that the stochastic differential equation (2.8) has
s unique invariant measure with density (with respect to an appropriate measure)
. exp(-H(p)). The interest in this model for generating Gibbs distributions is that

only Gaussian random numbers need to be generated and the computation is amenable to

parallel processing.

W 3. STOCHASTIC MECHANICS, STOCHASTIC QUANTIZATION AND SIMULATION OF IMAGE
INTENSITIES
We start with some well-known facts relating the Feynman-Kac Formula and the
» Girsanov Formula. (Carmona 1979, Simon 1980, Mitter 1980).
)
Let us suppose that V:R® — R, be measurable, bounded below and tends to += as
[x] & = and comsider the Schrodinger operator H = -A + V where A is the n-
dimensional Laplacian., Then H defines a self-adjoint operator on L2(Rn: dx) which
_i is bounded below and the lower bound A {(assumed to be 0) of the spectrum of H is an

eigenvalue of H. Let ¢(x) be the corresponding eigenfunction of H, the so-called
ground state and assume @(x) > 0. We normalize p(x) i.e. f|@(x)|2dx = 1, Define

the probability measure du = Iq(x)lzdx. and the onitary operator

v : L2(R%; ax) ->L2(R®; du(x))

£ e lf.

If we define the Dirichlet form for £, g ¢ C:(Rn)

e dad

o
1
I N o

5(f,g) = %-I vE(x) * Vg{x)dx
Rn

then a calculation shows

'
N
PR )

&(f, = (/f,
8) ( g)u

where ( , )u denotes the scalar product in L2(Rn;du) and #’'is the diffusion operator

(self-adjoint, positive)

/'¢=——;-A¢+Vb.V¢ (3.1)
' b =- log ¢
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Since ¢ satisfies the equation
1
3 Ae + Vix)g = 0, (3.2)

in the semse of distributions (note that we have taken A=0Q), a direct calculation

shows
1 2
Vix) = 5 ([W(x) |7 - ablx)). (3.3)

Now using the Feynman—Kac formula for (3.2)
w t
v(x) = E”lp(z(t)exp(= [ V(x(s))ds) [x(t) = x1, (3.4)
0

where E¥ denotes expectation w.r. to Wiemer measure, the properties of V, equation

(3.3) and the generalized Ito-differential rule (Meyer 1978), we see

t
L(t) = '-l(x(O)Q(x(t))exp(-j;V(x(x))ds)
(3.5)

t t
= expl- Wix(s)).ax(s) - 3 [ |Wxts)) JPas)
0 0

is a (a, Jﬂ, p¥) martingale, whete.ﬁ; is the o-field generated by (x(s)IO s )

and p“ denotes Wiener measure, Therefore the process (w(t)lt 2 0) defined by
t
w(t) = x(t) - 2(0) + [ W(x(s))ds (3.6)
0

is standard Brownian motion with respect to the measure w*ﬂ defined by

ax
7 2 L) (3.7
w

dp

Hence x(t) considered as a stochastic process om (8, .4, u’i is a weak solution of

the equation

dx(t) = -Vb(zx{(t))dt + dw(t)
(3.8)

2(0) = x,

Indeed, the stochastic process defined by (3.8) is a Feller process, which is

recurrent and has p as its unique invariant measure, Therefore with the ground

-6-
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state of a Schrodinger operator we have attached a diffusion process which is

ergodic.

The converse procedunre is of interest to us. Suppose we start with the stochastic
differential equation on R given by (3.8) where -Vb(.) is a singular drift. The

case of interest to us is where b(,) is a polynomial which is bounded below. Now,

typically the Novikov condition

1 ¢t 2 .
Eexp} [ [W(xts)) 2 ¢ = (3.9) \
0 .
will fail for these drifts and hence the Girsanov functional

t 1t 2
L(t) = oxp(~ | W(x(s)).dx(s) - 3 [ [zt Jas) (3.10)
0 0

although a super-martingale, need not satisfy

E' [L(t)] =1
as | hence fail to be a martingale, Therefore, the method of proof to show that
equation (3.8) has a weak solution using the Girsanov formula will not work. To
show, however that (3.8) has a weak solution and the process defined by (3.8) is
recurrent and possesses a unique invariant measure, we consider the operator

£=-2a+ Wy, (3.11)
and transform it to

1
H= - E'A + V(x), (3.12)

where

V(e = 3 (W) |2 - av(a),

using the Gauge transformationm,

p(x) Dexp(b(x))p(x). (3.13)

Then using functional-analytic arguments (cf. Segal 1970), one shows that the

-tH

semigroup e is indeed, a strongly continuous, self-adjoint contractive semigroup

on Lz(du) where u is an appropriate probability measure, e_tnl=1. is positivity

preserving and improving and 1 is the unique ground state. It then follows that

e T e N T T . .
RS G G
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e'tn is ergodic with p as its unique invariant measure. To carry out this program
rigorously, one would nse hyper-contractive estimates of Nelson and Segal and hence

it is natuoral to work with the stochastic differential equation:

dx(t) -Vb(x(t))dt + d&(t), (3.14)

where

di(t) = -Af(t)dt + dw(t), (3.15)

where A is a symmetric nxn matrix, Therefore (3.15) defines a generalized Ornstein-

Uhlenbeck process. Let us define formally the semigroup,
-tL w
(e ""f)(x) = E'L[f(x(t))L(t)R(t) |x(t) = x], (3.16)

where

t t
L(t) = exp(-[ M(x(x)).dx(s) - 3 [ [W(xts)) |Pas)
0 0

t t
R(t) = exp(-] Ax(s).das(s) - 3 | |ax(s) %as)
0 0

l and E” denotes expectation with respect to Wiener measure. One wants to write

(3.16) in Feynman-Kac form, i.e. in the form
~tL ¢
(™0 (x) = E°le(x(t))exp(-f Vix(s)ds) Jz(r) = 1 . (3.17)
0

To do this we need an Ito differential rule for b. For this we need that b is
continuous,
2 n 1 n

Vb ¢ L (R7; dx) and Ab ¢ L (R; dx).
loc. loc.

The measure du referred to previously then is

t
dp = exp(- I V(x(s))ds)dug.
0

where

4
du’ R(t).
w

du

The rest then follows from Nelson 1973, Segal 1970, Glimm—Jaffe 1981, Gross 1972.
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These ideas can be generalized to random fields (cf. Jona Lasinio-Mitter loc.cit),
Let /\C:R2 be a square and consider the Laplacian A on R?® with Dirichlet Boundary
conditions, which is a self-adjoint operator on V = L2(N). Let BL(A) be the Sobolew

space of functions f on R? with norm

2 1/2 2
HElle, = f |(—A+1) f£(x) |“dx
A

and let V' = H-l(ﬁo be the dual-space of distributions with norm
Hel12., = | 1e-as™ Y200 Pas.
H A

Let B, denote the Ganssian measure on V' with mean zero and covariance operator C

given by

C = (-a+1)t (3.19)

Consider the stochastic differential equation on V’:

de(t) = - %-C-ap(t)dt + dw(t),
(3.20)
$(0) = ¢, 0 < ¢ <-%

interpreted in the weak sense, where w(t) is a V’-valued Brownian motion with

covariance C17% min(t,s) (defined using test functions).

One can show that this stochastic process defines a measure on the path space

C(0,»;V’) and we denote this measure by P. Define the semigroup

-tLo
(e "£)(p) = ELf(p(t)) |p(t) = ¢], (3.21)

where f is a "soitable” function and E denotes expectation w.r. to P-measure, One

shows using the work Segal and Nelson referred to above that:

-9~
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. (i) e is a strongly continuous semigroup om L (dpc),
- which is contractive, self-adjoint,
3
g (ii) is positivity preserving and improving om Lz(duc):

~ -tL

e 01 =1,

(iii) is a contraction on Lp(duc): 1{p<(=

-tL
(iv) is hypercontractive: ||e 0¢|| 4 < C||¢|| 2
L (dpc) L (dpc)

for ¢ ¢ Lz(duc) and t sufficiently large. Moreover the stochastic process defined
by (3.20) is ergodic and has M, as its unique imvariant measure. Therefore the
Ornstein-Uhlenbeck process defined by (3.20) is the stochastic quantization of the
free euclidean field. In view of the well known relationship between the free field
and the Ising model via the lattice approximation (cf. Guerra-Rosen-Simon 1975), we
see that simulating the stochastic differential equation (3.20) is a powerful way of
obtaining sample fumctions of the free field (Ising field) when the lattice is

large. This can be accomplished in a parallel machine using multi-grid methods.

As remarked by Guerra-Simon-Rosen, the Ising (nearest-neighbour) nature of the
lattice fields are not destroyed if we use non-gaussian random variables at the
lattice points. This can be accomplished by studying the stochastic differential

equation on V'

dg(t) = - % C%s(e)dt + actT%ip()3:dt + dw(t)
(3.22)
- 1
p(0) =9, 0 C e ( 10
where : : denotes Wick ordering with respect to the covariance C (cf. Glimm—TJaffe
1981). Using an appropriate Ito runle (proved by approximation using tame

functions), considering an aprpoximation of (3.22) using a spectral basis related to
(-A+1) on LZ(AO, and using limiting arguments coupled with hyper—-contractive
estimates (see the discossion in the first part of this section), Mitter—-Jona

Lasinio show that the semi-group defined by
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(e the) (p) = EC£(p(t))oxpE(t)) |p(t) = ¢ (3.23)

where
» (* 3 22t 3 1-¢ 3
E(t) = — = ] (:9(s)7:, dw(s)) = — | (:9(s8)7:, C “:9(s)7:)ds (3.24)
2 8 Jo

where #(t) is the Orastein-Uhlenbeck process defined by (3.20) satisfy

(i) e tl 11 and o7l is a contraction on L"(dpc).

(ii) e-tL is a strongly continmous, self-adjoint semigroup on Lz(dp)

with du = exp(- %'-J. :¢4(x):dx)duc. positivity preserving and
A
improving and 1 is the unique ground state.

(iii) o L is ergodic and mixing.

This then allows them to show that the stochastic differential equation (3.22)
hzs a weak solution and has as its unique invariant measure .,
Since the stochastic differential equations under consideration defines a

Markov process which is ergodic (and mixing), we have

_ j(¢.f1)...(¢,fn)dp

» Idu

=

f. where the fi are test functions., This enables us to compute spatial statistics of

. the time—in independent random field from the simulation of the stochastic '1;
differential equation. g

'. 4, Some Estimation Problems for Random Fields on a Lattice (cf. Marroquin 1985) -

[ Let VCZ% be a finite subset, Consider a random field -

-

- £:v o3 (4.1)

.

F with Gibbs distribution having a density with respect to du (see (2.7)) given by

3 P, = Z lexp(- = H (£)) (4.2)

- f TO 0 ’ .

b

-11~




and Ty > 0 is a parameter (temperature).

We observe a corrupted version of f given by
g(j) = ®lG(§:£), p(j)), j e ScV, (4.3)

where H(j,.) is a function with ®"local®” support and § is invertible in the sense
that p(j) = i_l(z(j). G(jsf)). Ve shall assume that p(i) and p(j) are indepenent
and also g(.) and f(.) are independent. Let us suppose that the dastribution of

¥(.) with respect to du has density

P, (4.4) s
Define the functioms :“;;
R(izf,8(i)) = -1a p”(’!_l(g(i). (i), (4.5) _
Then the conditional density Pg/g can be written as . ;
= 7} exp(-H_(£,g)) (4.6) e
Pf/g p P p +81), . .
L
1 . . -
Hy(f,8) = 7 Hy(f) + }x(;;f.g(m 4.7
0 ieS
ie

and Zp is a normalizing constant,

We can now provide a physical interpretation of the posterior distribution, by
considering that, while the prior distribution (4.2) describes the behavior of a
free field in thermal equilibrium, the distribution (4,7) describes the behavior of t, [
the same field coupled with z fixed (but spatially varying) external field whose
valoe is given by g. The fuonctions K whose magnitude depends on the noise variaace,
can then be interpreted as the coupling strengths between the two fields. This

coupled system is also Gibbsian and if o «
G(isf) = G(isf(i))

the Markovian structure of this field will be identical to that of the original

field.

The importance of this interpretation lies in the fact that the optimal estimate of
f can be obtained simply by observing the equilibrium behavior of this coupled
field.

-12-
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In particular if Hy(f) is the Hamiltonian of a ferromagnetic Gaussian Ising field

and the observation is,
g(i) = £(i) + n(i), (4.8)

with n(i) Gaussian, then the coupled field corresponds to a Ising field coupled to a

random external field.

The estimates that are of interest to us depends on the choice of the problem, The

two most important estimates for image reconstruction purposes are:

(i) f = E(flg) (Conditional mean)

(ii) f = Arg Max pt.ls(frg) (MAP)

v & .

From (4.6) and (4.7) the MAP estimate corresponds to minimizing the Hamiltomian

Hp(f.g) with respect to f, ALZ%f;

4.1 Block Spin Transformation for MAP Estimation (Marroquin 1985)

In order to illustrate the analogy with Statistical Physics further we consider the

MAP estimation of a binary Ising field withe the observations taken as the output of
a binary symmetric channel with error rate &. Therefore § = (1,-1] and the

observation model is given by

‘1-3 if 8; = fi
P(g(i) [£(i)) =
1 e if 8; i fi.

Then it is easy to see that

B (£.5) =T—1 } £(i)E(j) + a } £(i)g (i) (4.8)
° i, i

[1i=3]1=2

and

a = ln(he.).
e

Minimizing Hp is now a combinatorial optimization problem,

4.1,1 Simulated Annealing and Global Minimization

Simulated annesling is a new technique, developed by Kirkpatrick et al (1983) for
the solution of combinatorial optimization problems, It is based on the idea that

any cost functional of N variables, each of which can take values on some finite

-13-

D T R R T R U LY PRI TR IR P .
PR PR WA RN A G i PR Y R ST VA Y Y
- >




set, can be considered as the Hamiltonian (Energy) of a physical system whose state

AN

corresponds to a particular value of these variables, Therefore, we can use, say, e

« the Metropolis algorithm to generate, at any given “temperature® T (which now f'V;T
becomes a parameter of the optimization process) samples from the corresponding jiﬂﬂf
oL

Gibbs measure. As T ¢ O this measure should converge to a measure which

concentrates on the states of minimum enmergy, the state of the system in thermal

equilibrium at zero temperature will correspond to the value of f that minimizes the

energy H(f) globally. ii?i

RS

One serious difficulty, however, is that attaining thermal equilibrium might take a
very long time at low temperatures. Kirkpatrick’s idea was to start at a relatively
high temperature (where thermal equilibrium is reached very fast), and them, to

slowly cool the system, until "freezing” occurs and the state stops changing.

The analysis of this algorithm is presented in the Appendix,

4.1.2 Block Spin Transformations

In the case of the MAP estimator, the efficiency of the Simulated Annealing ;L:;:

algorithm for the minimization of Hp can be improved by defining large “"blocks” of

sites (in a manner that is reminiscent of the "block-spin” strategy used by Wilson

(1975) in connection with the remormalization group approach to the study of
critical phenomena); the optimal estimate for the average value of the field in each
of these blocks is found, and then progressively refined by subdividing the blocks
in svccessive annealing stages. We will now show that, if we use a maximum entropy
assumption, the structure of the MAP estimation process for Ising models is A
invariant under the ®blocking” transformation; this means that the ground state

(i.e., the MAP estimator) of the aggregated process (with blocks of size L) also

corresponds to that of an Ising model with a coupled external field, in which the

'; natural temperature is scaled by a factor of 1/L, and the noise (coupling) parameter
3 by a factor of L2. As a consequence of this scaling, the final temperature for the _——

simulated annealing of this smaller network will be approximately L times larger

thaa for the original problem,

If we denote by V(£(i), f£(j)) = f£(i)Jf(j) and q{f(i), g(i)) = f£(i)g(i), let B
V. (f(i), £(j)) and q (f(i), g(i)) be the extensiom to RxR of V and q respectively. g

= We then write

1 , . . ,
B (f.8) = 1= } V_(£0i),£())) + a } a (£(1),5(4)) (4.9) o

i,j=1 i

[i=i]f=1

We will now derive an expression for the emergy in the ®block spin® case. Let us

-1 43~
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partition the original lattice into square blocks of side L. The “block N
N AT
observations” g; will now be the density of 1's on each block, i.e., LN

(0 =3 = ) s .
L jcBi

where B, is the i‘D block. The "block field” f; is defined in a similar way.

For a given fL' we compute the emergy by assuming a maximum entropy coafiguration,

which occurs when the 1’s that correspond to the given demsity fL(i) are randomly ;?;xf
distributed within the block, The energy will have three terms: i

F 1. Interactions between adjacent blocks: “’ "(
The interaction between two adjacent blocks i and j will be: :;f;i
{ Iij =[-1. (P, +P ) +1 .'(Plo + P01 . L fif?l
where P, is the probability of baving an element with state k on block i adjacent sxiii
to an element with state 1 on block j: -
P11 = fl(i)fL(j) -
oy = £ - £ (i) Egjﬁf
P = £.(Q - £(§) . ;
Poo = (1 - £, ~ £ () - ;j

Substituting these values we get:

Iij = L[2(fL(i) + fl(j)) - 4£L(i)fL(j) - 1]
2., Interactions within each block: the internal interaction Ii is:
I, = 2L(L~1)(-4£, ()% + 4£ (i) - 1) L
i L L .

3. Interaction with the observations:

Assuming that the 1’s in the observations anmd in the field are independently

distributed we get:

O T g v T
AR PN AEN 2D '@
MU PREATA S
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2 .
Iy, (1) = al?g (D01 - g (1) + (£ = £ (1))g (D] =
- aLzlfL(i) + g (1) = 2£, ()g ()]

Finally, the Hamiltonian takes the form
1 1 .
H'L(fL) T } Iij + 2 (T— Ii * Iobs(l)) =
0 . . 0
i,) i

1 . . , .
- LET;- S L208,(6) + £(5) - 42,(D2 () ~ 1) +
i,j
2

To

+

(L -1) 2 (-4£L(i)2 +a£ () - 1) +

1

3
E" +al } (£ (1) + g (1) - 28, (i)g, (i)
i

note that the sums are taken over pairs of adjacent blocks, and over all the blocks,

respectively, For L = 1, this expression reduces to (4.9) with
V;(f(i),f(j)) = 2(f(3i) + £(5)) - 4£(I£(3) - 1

qc(f(i), g(i)) = £(i) + g(i) - 2£f(i)g(i).

For L > 1, the quadratic terms of H are:

L
T

= (-4 } £(0F () - 8L - 1) } fL(i)zl
o £ ;

1, 1
and since {... }
-2 } £ (1), (§) + 2 } fL(i)2 =Y (g - fL(j))2 20
i.j i ij

it follows that

2> . .
} £ ()22 } £ () ()
i i,j
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-4 } £, (D () - 8L - 1) } fL(i)z <
i, i

<-4+ 8(L-1)) ) fL(i)z <o

1

which implies that H; is negative definite for L > 1, and therefore, its minima,
constrained to the hypercube [0,1]N (Np is the total number of blocks) will always
lie in a corner of such hypercube which means that we can use simulated annealing to
find the global minimum of By, constraining the search to 0,13 . In this case,
the energy to be minimized takes the simpler equivalent form (up to an additive

constant):

1 . . 2 .
U, " TT } VOE (1), £, (§)) + oL }q(fL(i).zL(x))
i.j i

The minimum energy solutions for each L can be interpreted as “coarse scale”
representations of the original pattern f. Once a solution is obtained, the next
refinement (for blocks of size L/2) can be efficiently obtained using the previous
solution as a starting point, and initiating the annealing process at a lower

temperature,
5. FINAL REMARKS

Due to lack of space we are unable to discuss:

(1) Estimation of boundaries using coupled models on the lattice Z2 and the

dual lattice of bonds on 22.

(ii) Estimation of the field and temperature psrameter T using the innovations
field
(iii) other problems in computation vision such as depth from stero—images, shape

from shading etc,

A preliminary account can be found in Marroquin (198S5).

Appendix on Simulated Annealing.

Let § be a finite set and let |ﬂ| denote the cardinality of @. Consider the problem

of minimizing the enmergy function:

mﬂﬁR:iQUr

Let Ny = NU(0} where N are the natural numbers, Ty > 0, k ¢ Ny be a sequence of

real numbers. Consider a Markov chain (x4}, with l-step transition matrices SRR

...................
.....................................
---------------------
--------

P
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[P(k’k+1))k‘N and some initial distribution constructed on & probability space and
let ng) = P(xk-il, iegQ, ksNo. The "annealing chain” is simulated as follows:

I Suppose xyp=i, Then generate a random variable y with P{y=j} = 9 where
Q= {qij]i.jsn a stochastic matrix. Suppose y=j, and then define
jifo, £ U,
] (0,-0)/T
J k

i g = if Uj > Ui with probability e

i otherwise

Ve may think of the annealing algorithm as a probabilistic descent algorithm where
i the Q-matrix represents some prior distribution of "directions”, transitions to some
or lower emergies are slways allowed and transitions to higher energies are allowed

with positive probability which tends to 0 as k ==,

Hajek 1985 has given necessary and sufficient conditions on the rate at which Ty
should go to zero such that P(x, & $*} 91 as k£ 9 ® where S° is the set of global
minimizing energy states. In this analysis the stochastic matrix Q has to be

irreducible and satisfy a weak reversibility condition,

-

In Gelfand-Mitter 1985 a finite-time analysis of the annealing chain has been
performed as well as a result on the rate of coavergence of P{xk e S.) -1 &8s k 9D

has been given, under somewhat weaker hypotheses on Q.

Finally, in Tsitsiklis 1985, necessary and sufficient conditions for P(xk e §°) 91
as k - o are given by considering the annealing chain as a singularly perturbed
Markov chain operating under different time-scales {(under hypotheses weaker than

that of Hajek).

Space does not permit us to give a detailed account of these results,
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