
RAD-0164 851 IMPLEMENTATION OF THE AFIT/ENG FACULTY AND STUDENT 1/3
DATABASE MANAGEMENT SYSTEM(U) AIR FORCE INST OF TECH
NRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERINGUNCLASSIFIED D A GAITROS DEC 85 AFIT/GCS/ENG 85D-5 F/G 9/2 U

iEEEEEEEEEMoEE
EEEIIIEEIIEEEE

EhhEEEEEmhEEEEEIEE~lEEEEEEEE
EhlEEEEEEEElhE
EEEEEEllEEEllE
IIIIImmllllIIol
llllllllIollll

L- . L2 2
11111w L.51

1111118

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Or STANDARDS 1963-A

pt

L.4

0

)TrIC

OF D

IMPLEMENTATION OF THE AFIT/ENG

FACULTY AND STUDENT

k DATABASE MANAGEMENT SYSTEM

THESIS

David Alan Gaitros

Captain, USAF

AFIT/GCS/ENG/8 SD-S

Amlo ft 1u 18M (N

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/8 5D

-4'

DTIC
S ELLECTE !

FB1 3 1986D

" D

IMPLEMENTATION OF THE AFIT/ENG
FACULTY AND STUDENT

DATABASE MANAGEMENT SYSTEM

THESIS

David Alan Gaitros

Captain, USAF

AFIT/GCS/ENG/85D- 5

Approved for public release; distribution unlimited

6
-4,' . ':., . . ,/ .< ''. ."-.," ,' ''" •' ' -°' *,.-.,.' .

.4

-- AFIT/GCS/ENG/85D-5

IMPLEMENTATION OF THE AFIT/ENG FACULTY AND STUDENT

, 4 DATABASE MANAGEMENT SYSTEM

THESIS

* Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science
Accesion For
NTIS CRA&I
DTIC TA8-
U, annou, ced
Justificator

A -I
B yBy.... i

Dit ib-ti ...
David A. Gaitros . .

Availability Codes
Captain, USAF . .

Dist Avaii aid/orSpecial

December 1985

Approved for public release; distribution unlimited

10 W

'x* A-•.

-- - - - - . . .

Preface

The AFIT/ENG database has the ability to store and

manipulate student and faculty data utilizing the TOTAL Database

Management System and the Forms Management System. This study

was undertaken to design the complex network of application

programs needed to maintain the database system. Additionally, a

library of standard routines were created to ease the amount of

code needed to create the programs and aid in the maintenance of

the system. One of the programs was implemented and tested to

* . validate the design and to serve as an example of how the

standard routines were implemented.

I would like to thank my advisor, Dr Gary B. Lamont for his

time, expertise, and confidence in my abilities. Additionally, I

would like to thank Robert Ewing and Captain Steve Woffinden for

their assistance in guiding me through the experience of writing

a thesis. Finally, I would like to express my sincere gratitude

to my wife, Cindy, for her never ending faith and encouragement

U through this assignment and the past nine years.

Table of Contents

Page

Preface...............................

List of Figures...................- v

Abstract vi

I. Introduction..................... 1-1

Background 1-1
Statement of Problem 1-2
Scope 1-4
Assumptions 1-4
Summary of Current Knowledge. 1-4
Standards and Notations 1-6
Approach 1-6
Materials and Equipment 1-8
Other Support.....................1-8

II. General Approach to Requirements Definition 2-1

Database Schema and Modification 2-3
Functional Requirements. 2-5

Functional File Grouping 2-5
*Required Standard Database Functions 2-7
*System Limitations/Constraints. 2-9
*Required Response Time. 2-13

Required Reports...................2-13
Data Syntax and Compatibility Checks 2-16

Computer Interface Requirements..............2-17

Targeted User Group. 2-18
Database Prototype Development. 2-19
Interview Results.................2-21

Summary............................2-23

III. Database Preliminary and Detail Design. 3-1

Database Relations 3-2

Preliminary Design 3-10

Main Program Module Design............3-10
Data and File Abstraction. 3-12
Standard Database Functions.3-15

Database Generation and Initialization . 3-17
Reports Generation and Design 3-18
Syntax and Compatibility Routines 3-19

d iii

Detail Design 3-20

Functional Design 3-20

Database Application Software Layer 3-21
Standard Database Module Descriptions . . . 3-22
Master File Data Set Functions 3-23
Variable Data Set Functions 3-24
Database Backup Utilities 3-26
Database Algorithm Selection 3-27

InterFace Design Considerations 3-28

Visual Design Considerations 3-29
Help Level Integration and Tutorials 3-30

Summary of Design Considerations 3-31

IV. Implementation and Test 4-1

:• Prototype Evaluation 4-1
Host Computer Configuration 4-4

Forms Management System Utilization 4-6
Education Plan Program Development 4-8

SEDPLAN Program Unique Routine Descriptions 4-11
Other Modules Under Development 4-15
System Integration 4-16
Test Plan. o.4-16
Summary 4-17

. V. Conclusions and Recommendations. o............. 5-1

Introduction o. 5-1
Conclusion 5-1
Problems Encountered 5-4
Recommendations. 5-5

Bibliography BIB-I

Appendix A: AFIT/EN Faculty and Student Database Generation A-1

Appendix B: File/Data Item Syntax and Compatibilty rules. B-I

* . Appendix C: Standard Database Record Type Declarations. C-1

* Appendix D: System Flowcharts D-1

Appendix E: Frames Descriptions E-1

* Appendix F: Data-sete Requirement Tabulations F-1

iv

.'II.

Appendix G: Abstract Data Type Definitions G-1

Appendix H: Standard Database Routines. H-i

Appendix I: Standard Database Routines Test Plans -1i1

Appendix J: Standard AFIT/ENG Database Procedures ... J-1

Iv

I.

.1

* V

N.,

* f* - , . r r r 4 - . . -- -- ~ C * - . - C . . C-

ii3 -m "~~~

List of Figures

Figure Page

2-1 Objective of Requirements Definition . . . 2-3

2-2 EN Manpower Formulas 2-15

2-3 EN Department Manpower Formulas 2-15

2-4 Standard User Characteristics 2-19

*3-1 Master and Varible File List 3-4

3-2 Student and Faculty Relationships 3-5

3-3 Faculty Varible file Relationships . . . 3-6

3-4 Course and Schedule Relationships. 3-7

3-5 Course Information Schema 3-8

3-6 Generic Standard Database Procedures . . . 3-14
3-7 Master Sequence File Menu. 3-16

3-8 AFIT/ENG DBMS Software Layer Description . 3-20

3-9 Backup File Responsibilities 3-26

4-1 VAX 11/780 Hardware Configuration 4-2

,,i

p.
'.4.'.°

4.

,"p

X vi

AFIT/GCS/85D-5

Abstract

This study took the works of the previous AFIT/ENG Student

and Faculty Database system thesis efforts and design and

implemented the application software for the project. The basic

purpose of the thesis was to provide a sound design for the

application programs that would interface with the TOTAL Database

Management System and the Forms Management System. The entire

system was to be designed with the notion that it would be

modified and enhanced. A series of standard interface routines

were created to act as a layer between the TOTAL DBMS. The

resulting routines were abstracted and used as an extension to

the Pascal programming language.

The education plan portion of the database was used as a

* prototype to develop the requirements of the human-computer

interface. The program was then redesigned and implemented using

the standard routines and the specifications developed from the

prototype. A menu driven system was used to implement the design

utilizing the Forms Management System as the screen interface.

The education plan program is an example of the structured

approach used in interpreting the design of the database system.

The program contains examples of scrolled screens, database

calls, linked list routines, and data abstraction. Additional

programs were written to demonstrate the capabilities interfacing

K with the GKS graphics package, transmition of data to the

registrars office, and to show the continuity of the design.

* vii

Chapter 1

I. Introduction

Background

A database management system is a computer based system

whose overall purpose is to record and retrieve information.

(1:3). Database management systems offer a convenient and

practical means to store, manipulate, and retrieve information.

There are three basic types of database systems: relational,

hierarchial, and network(l:450). The relational database

represents the information as a series of tables. The

hierarchial database represents information as a tree structure

with some data being subordinate to other data or records. The

network database is by far the most complex because it involves

linking related pieces of information together to avoid

duplication. This structure provides the user of the database a

great deal of flexibility in storing and retreiving large amounts

of data. The Air Force Institute of Technololgy (AFIT)

School Engineering, Department of Electrical and Computer

Engineering has a need to maintain information on students,

faculty, courses, and class rooms. Several proposals for an

AFIT/ENG database have been submitted and a prototype is under

A.- construction in the Department of Electrical and Computer

Engineering, Information Sciences Laboratory. This project is

under the supervision of Dr. Gary B. Lamont and Engineer Robert

Ewing and is designed to provide students with a valuable

learning tool and a service to the School of Engineering. The

5LNA
.,J , , . " < - '- ." " , ." ' -" : - ". ' : '' ' " ' " " . . " ' > ' ' ' -• , > - 2 ' " "." - .'•, -..: " - " " , " " " " " " ' , .' '

overall purpose of this thesis project is to establish a working

database manangement system for the Department of Electrical and

Computer Engineering, AFIT.

Three AFIT/EN thesis written by Jeffrey S. Ricks, Robert S.

Colburn, Dean S. Alfred, and Myron E. Pangman have proposed a

database management system in detail using the VAX 11/780 (VMS

Operating System) and a network database system called TOTAL.

These theses describe in detail the file types, display forms,

network schemes, dataset selections, data description language,

and anticipated application program design as well as the

feasibility of such a project. The design of the database was

* approached as a solution to the demands of the Electrical and

Computer Engineering Department's request to store and manipulate

more information. The design was intended to create a "user-

Sfriendly" information center using the database system TOTAL(16),

a forms management utility called FMS(10), and an application

programming language such as FORTRAN or PASCAL.

This proposed database management system is being used in

*. classroom projects in EE 6.46 (Computer Database Systems), and

DBTA efforts. This has given students the opportunity to work on

a real database system, write applications programs, and use

.' schemas while studying DBMS concepts. During these courses

several modifications and enhancements were suggested to improve

the efficiency and make the system more "user-friendly".

Statement of Problem

The purpose of this thesis investigation is to analyze

previous thesis effort design and implementation, the work done

by the students of previous EE 6.46 classes, and indentify

1-2

modifications and enhancements. The modifications to the schemas

and application software will be reviewed and incorporate in the

system. A formal design phase will be conducted to reflect

modifications to the new schema and enhancements. The

application programs developed as class projects will be reviewed

for further ideas to aid in the design of a complete software

package to implement the database structure. A study will be

conducted to test the feasibility of linking the AFIT/EN Database

Management System with the AFIT scheduling system and integrating

a backup and restore capability into the design. The system will

be designed to generate the Division Facutly Schedule and
I

Manpower Requirement and Expenditure document as prepared by the

School of Engineering. This feature will take the instructors

hours spent on teaching classes, conducting short courses, thesis

students, and PHD students and generate statistics based on this

data. Requirements for generating a graphical representation of

the data for managment information needs will be conducted. The

overal design will include the use of a commercial form display

technique called FMS that is currently available on the ISL VAX

1l,/780 (VMS Operating System).

1

.. 1-3

I

Scope

The purpose of this thesis effort is to identify existing

problems with the database system and concentrate on the design

of the system. The study will confine the use of the database

system to the AFIT/ENG Department although recognizing the need

for an all-inclusive AFIT database (2:1-3) This effort will

provide a solid base for further program development and

implementation by enhancing the current database schema,

analyzing current user needs, and providing a detailed design

analysis of the overall database system. Software design for

this project will consider time and space requirements into

* consideration for algorithm design. In addition, a portion of the

. design will be implemented for use by the faculty and students.

Assumptions

No attempt will be made to justify the need for an AFIT/EN

database system nor will any attempt be made to analyze the need

to apply another type of database such as a relational or

hierarchial. It's assumed that these topics were discussed in

sufficient detail in previous thesis efforts (2).

Summary of Current Knowledge

The proposed AFIT Database (2) currently contains

information and schema definitions on faculty, departments,

students, thesis, section leaders, school courses, school

quarters, course text books, class times, room capacities,

schedules, master degree requirements, and course sequences.

(See Appendix A) Several enhancements to the schema have been

proposed by students in the EE 6.46 class while developing

application programs for the AFIT Database System. Some of

1-4

-- these enhancements are a direct result of the changing

requirements for a database system and others stem from the

p introduction of new or improved software and hardware

capabilities in the Information Sciences Laboratory.

Or

'V.%

Standards and Notations

*. The time analysis for algorithms will use the notation O(n)

which transalates to big-oh of n (3:21-23). This indicates that

the algorithm takes an order of time to execute which is

dependent upon the number of inputs designated by "n". Space

analysis of an algorithm will also be in terms of the number of

inputs designated by "n".

Structure charts developed by Stevens, Myers, and Constatine

(4:60) will be used to represent the modular characteristics of

the applications programs. These charts will be used because of

the highly modular and structured design of the proposed system.

* The Software Development Workbench (SDW) will be used as the

automated tool for designing and documenting the development of

the system. Sructure charts and diagrams will be drawn on the

system flowchart portion of the graphics editor while the SADT

charts will be drawn on the AUTOIDEF (8:173) of the Requirements

Definitions portion of the Software Development Workbench (SDW).

The use of the SDW is intended to decrease the number of errors

in the software and to allow easy changes to the preliminary

design of the sytem. Documentation standards will conform to the

AFIT/ENG Development Documentation Guidelines Draft #2 and

Standards document published September 26, 1984.

Approach

The project will consist of the following phases.

1) A preliminary evaluation of the current AFI7/EN Database

will be conducted to identify deficiencies and weaknesses in the

schema. Reevaluation of the current requirements will be

~.•. ' necessary because of the time from the last research done on this

1-6

topic (1983).

2) Interviews and research will be conducted to find any

additional errors that have been found by previous EE 6.46

classes in their efforts to write software to interface with the

database. Enhancements to the database schema will be included

with this phase to accomodate new requirements for information.

3) A new database schema will be completed and compiled to

reflect the changes made as a result of the investigation.

4) Input and output standards to the new database will be

completed to establish guidelines for future efforts. An updated

0version of the Frames Management System (FMS Version 2.1) will be

used as the input/output media. The objective will be to make a

self documenting system, easing the burden on the user by using a

menu driven system with query capability. An alternative system

could use the lower level modules to develop a command driven

system for the expert users and on remote terminals with limited

graphic capability.

5) An initial design of the system will follow the top-down

structured design techniques with emphasis placed on efficiency

of the program modules. At the same time, a bottom up

development will be conducted to design the abstract routines

needed to interface with the TOTAL DBMS. This will be done to

provide an abstraction between the programmer and the database

system and to facilitate the coding phase of the development

cycle.

6) A study will be conducted to address the feasibility of

. ~ using a graphics package to generate graphs of managment

1-7

-, . information compiled by the DBMS. Examples of this would include

the representaion of the Division Faculty Schedule and Manpower

Requirement Expenditure Document as a bar chart of faculty and

division manpower ut ili za t ion.

7) A portion of the design will be implemented to further

establish programming and documentation standards and to

-~ demonstrate the usefulness of the database system to the faculty.

The majority of the development will be in the main module

programs and the bottom layer utility programs.

Materials and Equipment

Implementation and testing will be done on the ISL VAX

~' 11/780 computer system with the VMS operating system, and

application programs. Enough disk memory space will be required

-~ to hold a test database and associated utililty software. A

nine-track tape drive system will be required to backup software,

data, and documentation in case of system failure. A work

station for this project is required and will include a desk and

a computer terminal with connection to the VAX 11/780 located in

the Information Sciences Laboratory (ISL).

Other Support

The cooperation of the faculty and students in gathering

current data to test the database is required as well as the

software developed in past EE 6.46 efforts to aid in the design

of the database system. These efforts will aid in identifying

past deficiencies and contribute to the accuracy of the testing

of specific algorithms. The Software Development Workbench (SDW)

~ will be used as the automated design tool to aid in the design

1-8

%

phase and to test its application to software design phase.

,%1

1-9

U

Chapter 2

II. General Approach to Requirements Definition

This chapter will cover the functional requirements

for a student and faculty database system. This section of the

thesis will deal directly with the targeted users of the proposed

system in trying to establish the requirements for the system.

Previous work done by Allred (12) , Ricks and Colburn (13) , and

Pangman (2) were to define the AFIT/ENG database and to

implement the database schema. These theses efforts

focused on the initial requirements for information to be

contained in a database for The AFIT School of Engineering. In the

software development life cycle (4:13), the steps through the

requirements definition have been reached on the database schema

design. As discussed in chapter 1, the design of the application

software has been largely ignored. A review of the initial

concepts and requirements of the database schema will be

conducted to insure that the current configuration supports these

requirements. En addition, requirements for the application

software will be defined in this chapter. The software

requirements definition phase for this software design will be

divided into two parts, the functional requirements and the user

inter face requirments.

The f'rst part is the functional requirements of the system

and defines what the system must be able to provide to the using

organization and design how it will be done. The topics to be

covered are modular grouping of the software, standard database

functions (ADD, UPDATE, DELETE, REVIEW), the limitations placed

2-1

10

on the system, response time, memory requirements, graphic

capabilities, required reports, and data syntax and compatibility

checks.

The second part of the requirements definition phase is

defining the "human computer interface" of the system. This

section will describe the design of the interfaces to the system.

The success of the design effort depends a great deal on how

effectively the methodology externalizes issues with each group

in the human interface (4:202) . In this section a targeted group

of users will be defined so a profile of the "average user" can

be defined. En the requirement definition phase, interaction

* between the analyst and the user is very important to the success

of any design. one of the most common reasons systems fail is

because the definition of system requirements is inadequate

(14:139). Assumptions on the experience level of the user are

necessary in developing the requirements for the interface portion

of the software. A prototype database application program of the

education plan (EDPLAN) system will be constructed to further

define the requirements of the user. By experimenting with this

program and gaining user feedback the interface and functional

requirements can be further refined. This will also give the

eventual users of the system a hand in the developement which

should make implementation easier. A complet.? requirements list

developed this and previous thesis efforts can be found in

Appendix F and will be referenced thourghout this chapter.

The users seem to be more satisfied with a qualitative

definition which, in many cases, specifies the system in

generalities and in terms of benefits to be derived. To reach

2-2

the level of detail that the designer wants, the users must

actually enter what they consider to be problem solving, or

design (how) mode: they must arrive at functions that will solve

their problems. Designers of systems are usually thinking a step

ahead of the user (14:140) . Table 2-1 (extracted form the

article Pinpoint Requirments (14:140)) shows the analyst or

designer views as apposed to the users views.

THE OBJECTIVE OF REQUIREMENTS DEFINITION

Objective: To define what the system will do:

ANALYST/DESIGNER USER

Functional definition Qualitative definition
Precise Interpretation to be
Complete All request to be met
Frozen Flexible definition
Definition produce within Definition ongoing
I allotted time process
Resulting system Favorable impact of

implemented within system on depart-
schedule and budject mental budgets

Good system System will work

Figure 2-1 Objective of Requirements Definition

Database Schema Review and Modification

The current database schema was reviewed during the

development work in the fall session of the computer database

class EE 6.46. Several enhancements and modifications were

recommended by the classes during that session. It was very

important to establish the database schema early in the

requirments phase in order to provide a solid base by which to

design the application software. The schema is important because

2-3

Z' n

- - - - - - -.- - - - - - - - --.. . .

it defines the relationships of data and records to each other

and also defines the very essence of the database system. The

modifications discussed below are a direct result from an early

investigation into the database schema (Requirement 1, Appendix

F). The first real users of the new database were the new

Engineering and Computer Science students entering the summer

1985 quarter.

Several of the network relationships within the database

posed a problem with the current configuration. The first problem

was found in the Master Degree Requirements File(Requirement 1.1,

Appendix F). This file maintained the different graduate degree

* programs and the minimum requirements needed for graduation.

Within this file was a link to a students social security number.

The file could not be created unless a students social security

number was assigned to that field. Previous thesis efforts were

searched to determine what purpose the field served. After

finding no valid purpose, the field was deleted from the schema.

There exists within the originial schema two files that hold

text book information. The Master Text Book File holds

information on required text books for a particular class, the

Master Book File holds information on books associated with a

class but on a more detailed manner. Since the Master Book File

was also connected via links to AFIT courses, a duplication of

information was indicated. The Master Text Book File was deleted

from the schema and all links to other master and variable files

were removed(Requirement 1.2, Appendix F).

The other major change to the database took place late in

~-..~..-. the 1985 spring quarter. The field length of the class field was

2-4

originally 6 and took the form "EE450 . This configuration

S "" allowed for a suffix to indicate a lab or special sessions of a

class. To allow for compatibility with other database systems,

the field was lengthened to 8 characters and now takes the form

"EENG450 "(Requirement 1.3, Appendix F).

During the course of developing low level interface modules

to the TOTAL DBMS, it was discovered that the faculty or student

files could not be deleted without destroying student thesis

information. Since the thesis information is usually kept for

research this presented a problem. At the same time, duplicate

information was found in the Master Thesis Catalog (NTIC). To
0

"- solve the problem, the thesis information was moved from the

variable file to the Thesis Master File (THES) and the Thesis

catalog file should be removed from the schema (Requirement 1.4,

Appendix F).
Functional Requirements

Functional File Grouping

The file structure of the AFIT/EN Database (Appendix A), as

proposed has 16 master files and 21 variable files but all of

these files can be group into the following categories:

1. Faculty : The files that belong in this group are

the Faculty Master file, and the Master Department File and all
h%.

related variable files.

2. Student : The files that belong in this group are

the Student Master file, the Master Section Number file, and the

associated variable files.

3. Course/Room: The files that belong in this group are
%

the Master Course File, Master Quarter file, Master Book File,

V 2-5

0, a

Master Order File, Master Class Time File, Master Building/Room

File, Master Room Capacity File, Master Day Scheduling File, and

associated variable files.

4. Thesis: The file that belong in the Thesis grouping

are the Master Thesis Catalog Number File, the Master Thesis

Number File, and associated variable files.

5. Sequence/Degree Requirements: This grouping contains

the Master Sequence File, the Master Degree Requirements File,

and associated variable files.

This grouping is necessary to allow for update priviledges to

related files within a module and to reduce the amount of code

required to operate any application program. A complete

description of the master files and associated variable files can

be found in Appendix A of this document. Therefore, the

requirement exist that the database system be in a modular and

structured form keeping related functions in seperate modules.

The structure of the database file system allows for this. The

following requirements exist for the overall system to conform to

a structured design, ease of maintenance, and to to insure

database integrety and security (Requirement 2.1, Appendix F):

1. Each functional group of files must have a standard set

of functions associated with each file and variable file if one

is required. These function must include the ability to add

records or information, delete records or information, update

database information, and the ability to review the information

stored in the files. All information within a database is

eligible for update except the items used as keys. If a key is

2-6

6q, ° • .. ° o -,

.7..found to be in error then the entire record must be deleted and

~ ~ then added again to maintain the integrity of the database.

2. Each functional group of files must be maintained by a

seperately compiled and completely autonomous program. This will

* keep memory requirements to a minimum, help the database manager

to maintain the integrity of the data by excluding users-from

- .~ access to unauthorized modules, and ease in maintenance of the

system

3. The software design will follow a top down structured

approach but with a standard set of utility subroutines that

perform common functions among the modules such as signing off

* and on the database, error routines, reading, writing, and

deleting records from the database, and standard messages. This

will permit the database to be further abstacted while adding

validity and reliability to the software.

Required Standard Database Functions

- To maintain any datab3se, certain standard functions are

required (Requirement 2.2, Appendix F). In addition, many other

functions are required that are unique to the TOTAL database

system. This section will describe the requirements of these

functions in detail.

Each master file must have the ability to add, update,

delete, and review the information within a given record.

Selecting these records should be done via a unique key as

described in the database record in Appendix C and the routines

for these records are described in Appendix G. The file

functions are described below:

1. ADD: Adding a master o~r variable record to a file. The

2-7

information should be edited for the proper syntax and

compatibility with other data items. Typing should be kept to a

minimum and the user should be allowed to select from groups of

items to enter rather than typing in the data. This will keep

keystroke errors to a minimum and aid in the integrity of the

database.

2. UPDATE: Changing the information within a given record

of a file. This function will allow the user to modify fields

within a record except the record key. If the record key is

found to be in error than the record must be deleted and added

with the proper key. As in the ADD function, typing should be

kept to a minimum and the user should be allowed to select from a

group of items to enter to keep the error rate down. The same

- syntax, range, and compatibility checks should be used in the

update that were used in the ADD function.

3. DELETE: Remove a record from a master and variable

files. This function will permit the authorized user to remove a

record from the database system. The user should select the

record from a list of keys and be permitted to review the record

before deletion. The system shall prompt the user to insure that

0 the record shown is the one to be deleted. After deletion, the

record should be stored to provide for restoring the data in case

- of user error.

4. REVIEW: This function will display the data within a

specified record or series of records. A great deal of

flexibility can be installed in this function. However, care

must be take to keep the function as standard for each of the

V 2-8

file groupings as possible to make the system easier to use. The

ability to create a hardcopy of the data shall also be an option

associated with this function.

System Limitations/Constraints.

Telimitations on the system are really assumptions as to

the number of students, faculty, books, classes. These will be made

to aid in defining the storage capacity needed to run the system

and the size of the programs. These requirments must be defined

when generating the database. This is an important aspect of the

system that was given little attention in other theses efforts.

The following limitations apply to data items or records within

* the database system and are based on current AFIT figures

(Requirement 2.3f, Appendix F):

1. Faculty Requirements: According to the faculty and staff

to roster maintained in AFIT/ENA, there are over 130 instructors,

staff members, adjunt professors, and lecturers. This number

does not include the secreteries and support personnel. Room

should be allotted for 200 people to allow for growth and

additional personnel. Each faculty record requires 460 bytes of

-~ storage space, so 92,000 bytes of storage will be required to

store all of the AFIT/EN faculty.

2Student Requirements: As of the writing of this thesis,

there are 532 students enrolled in the School of Engineering

according to AFIT/ENA rosters which includes part time and

foreign students. To allow for expansion of the near future, the

number of records allocated for students should be 585, which is

ten percent greater then the number currently enrolled. This

number assumes that when a student leaves, his/her records are

2-9

A

archived and removed from the current database. The logical

record size for the student file is 460 bytes of memory, which

means that 269,100 bytes of storage must be reserved to hold the

master student file. When allocating the space for a student,

we must remember that for each student there are several variable

files. They are the Variable Awards File (VHAW), Variable Course

File (CRSE), Variable Education File (VEDU),and the Variable AFIT

Courses and Credits File (VCQR)

3. Department Requirements: There are currently five

departments within the school of Engineering: Aeronautical and

Astonautical, Mathematics, Electrical and Computer Engineering,

Physics,and Operational Research. Space should be made

available for seven departments to include those of the staff and

faculty plus any additional departments added at a later date.

The space required for this master file is 40 bytes or 280 bytes

total required to store all of the departments on disk.

4. Thesis Catalog Requirements: This is a difficult

requirement to specify because it is unknown if all theses will

be required to be cataloged or just the ones whose students are

currently enrolled. Since all theses are cataloged in the

library, it would be a duplication of effort to catalog them in

the database, however, the ability to call up a past thesis or

search the database for a particular thesis would be a powerful

management tool. For the time being, space will be reserved for

those thesis whose students are currently enrolled. The decision

to catalog all theses will be made at a later date. A seperate

system could be used to catalog past theses that would be

2-10

4! available in the library for student use and updated on a

quarterly basis.

5. Class Section Requirements: Within each department,

there can exist several types of degrees. Each type of degree

will have associated with it, a class of students. Currently,

there are 15 different types of degrees awarded at the AFIT

School of Engineering. However, at any one time there may be two

sections overlapping for a certain degree. Space must be reserved

for 30 sections which equates into 1500 bytes of storage. This

assumes that a sections data will be archived upon the sections

graduation.

*O 6. Course Requirments: According to the AFIT 1985-1986

catalog, there are 493 courses offered in the AFIT School of

Engineering. The faculty strives to keep AFIT and its courses up

to date with the state of the art technology. For this reason,

this file will be higly volatile. Course are continuously being

added, deleted, or changed. It is expected that the database

will be regenerated on an annual basis, so the requirement to

store 493 courses plus ten percent (542) should be sufficient.

Since 1218 bytes are required to store a course record, 69,376

bytes are required to store all of the records for one year.

7. Class Quarter Requirements: It is expected that

information on quarters should be maintained for one year

previous to the current quarter and 2 years in advance of the

current quarter for a total of 3 years or 12 quarters. Each

Master Quarter record requires 40 bytes, so 480 bytes should be

allocated for the Master Quarter File.

~ *.," 8. Course Book Requirements: The average number of books

4N

2-11

required for a course is between 1 and 2. This exact average is

difficult to come by because of the volatile nature of the

courses and instructors. For the purposes of this thesis, we

will assume that no more than two books will be required for a

class. With the number of courses set at 542, storage must be

set aside for 1084 records. This equates into 140,920 bytes of

storage required.

9. Daily Class Time Requirements: For the purpose of this

thesis, we will assume that classes start on the hour with the

first class starting at 0800 hours and that last class starting

at 1700 hours. This is a total of 10 class times. However, each

quarter there are a number of special instances where class times

do not conform with this standard. To accomodate special

requests, an additional 5 records shall be allocated for class

start times that do not begin on the hour and/or are outside the

0800 to 1700 range. Each class time requires 20 bytes of storage

for total of 300 bytes required for the total file.

10.Building/Room Requirements: Capacity for each room will

be set at 30 which is the default enrollment value. Currently,

classes are scheduled for buildings 640 and 641. The number of

rooms vary from quarter to quarter. Initially, the limit will be

set to 100 rooms total. With each record requiring 32 bytes of

storage, 3200 bytes will be reqiured to store the required

building/room records.

1l.Degree/Sequence Requirements: This is also a very

volatile file because of the changing degree requirements and the

flexibility given the students and instructors when selecting a

2-12

degree and sequence. For this purpose the sequences will have a

number from 0 thru 999, and the degrees will have a number from 0

thru 99. The Master Sequence file will require 60,000 bytes to

store the maximum number and the Master Degree File will require

6600 bytes to store the maximum number of degrees.

Required Response Time

Because of the size of the system and the fact that other

programs will be running on the system at the same time, the

issue of response time will remain flexible. However, it will be

important to keep response time to a minimum to prevent

psycological stepdown(5). If the system does not respond to the

* user within five to eight seconds then the user becomes unsure of

what is happening to the system. With this in mind, the system

should not be allowed to go for more than eight seconds (5)

without reassuring the user that the system is still working on

their problem (Requirement 2.4, Appendix F).

Required Reports

For future requirements,several additions to the basic

system have already been suggested by some faculty members and

students (Requirement 2.5, Appendix F). The first of these is a

package to generate the Division Faculty Schedule and Manpower

Requirement Expenditure Document using the information contained

in the database. The basic understanding of the document, the

formulas and the concept were derived from Dr. Gary Lamont.

Interviews from Dr. Biezad (Lt Col, USAF) and from Dr Seward

(Maj, USAF) have established the basic guidelines and needs for

the system. This information will be reviewed to establish the

feasibility of including this concept in the design. See

2-13

Appendix E for examples of the listing required and the graphic

bar chart report.

"The School of Engineering faculty workload is
measured in terms of quantifiable activities
representing a measure of faculty productivity and
output. These activities include classroom courses
and lectures, laboratory courses, MS thesis
supervision, and PhD dissertation supervision.
This particular set of faculty activities
represents the quantity of educational output in an
academic institution. All other activities such as
course and program development, professional
development, faculty research, consulting, etc.,
are not easily quantifiable.. This second set of
activities contributes to the quality of
educational output. Although the principal
function of t' *s second set is in a supporting
role, its importance must not be underestimated.
For example, lack of adequate research time for the

0 faculty will lead to the deterioration of academic
excellence and the loss of Air Force unique
courses. Thus the school dean has the
responsibility of striking a proper balance between

-' the quantifiable teaching activities (and their
efficiency and effectiveness) and the non-
quantifiable supporting functions to achieve the
overall objectives for individual programs." (18)

The 1983 manpower standards are expressed as a set of

formulas in terms of four workload factors Xl, X2, X3, X4 where

Xl = Contact hours for degree education.

X2 = Contact hours for PCE.

X3 = Master's degree graduates.

X4 = Doctoral degree students (dissertation -)-ase only)

The manpower formulas obtained from the AFIT/ENG department are shown

in figures 2.2 through 2.3

2-14

Faculty = (8068 + 8.008*Xl + 5.530*X2 + 81.48X3 + 217.3*X4) /
1742

Dept Heads = 8710/1742 + 5

Secretaries= (7230 + 1.062X1 + 0.7333*X2 + 10.80*X3 +
28.81*X4) /1742

Figure 2-2 EN Manpower Formulas

ENS Faculty = (1366 + 8.008*Xl + 81.48*X3)/1742

Other Dept Facutly = (1676 + 8.008*XI + 5.530*X2 + 81.48*X3 +
217. 3*X4)/1742

I ENS Secretaries = (1413 + 1.062*XI + 10.80*X3)/1742

* Other Dept Secretaries = (1454 + 1.062*Xl + 0.7333*X2 +
10.80*X3 + 28.81*X4)/1742

Figure 2-3 EN Department Manpower Formulas

The second enhancement involves the ability to generate a class

schedule using the information in the database and calling the

scheduling system already in use. Captain Michael Mullennex was

given as the point of contact in the scheduling office. He

attended the EE 646 Database class in the Winter of 1985 and

helped develop a prototype of such a system. This prototype

built a temporary file of the information needed by the

scheduling system and relied upon the user to initiate the job.

The initial requirements state that this initiation of the class

scheduler be made from the database system. The primary input to

the scheduling system is the education plans produced by the

students.

Until recently, the education plans were written by the

students, checked for sequence and graduation requirements by the

2-15

students faculty advisor, and then input into the system by the

department secretary. The requirement exist to allow the student

to generate education plans using the databaseand produce a

hardcopy for their records. This will relieve the burden on the

department secretary of entering the education plans on the

computer. Udates to the education plan will depend upon

department policy. A sample of what the edplan report should look

like can be found in Appendix F.

In addition to the education plan requirements, there is a

need for the faculty and students to be able to validate the

students degree requirements and check to proper sequence

entries. This would be done automaticaly when the student enters

the education plan. Additionally, the program should have the

ability to caclulate grade point averages on selected classes for

the faculty only. This ability should be available on hard copy

as well as interactively (2:H-1).

A printed listing of currently enrolled students should be

made available to authorized individuals. The output should

contain the number and names of the students programmed to take

all classes for fiscal/calendar years. (2:H-2)

A listing should be available of all or partial lists of

course information (quarters course taught, instructor, text

used, credit hours, title, and number). (2:H--2)

Data Syntax and Compatibility Checks

To insure that accurate data is passed to the database

system, data syntax and compatibility checks must be used

whenever entering data (Requirement 2.6, Appendix F). The Forms

2-16

Management System (FMS) could be used for this to some degree,

~ .~. but the majority of the syntax and data compatibility checks must

be done by the application software. For a complete description

of data syntax and compatibility rules see Appendix C.

Computer Interface Requirements

Defining what information must be presented to the user and

what the user must input to the system is a straight forward

process. In the case of the AFIT/EN Student and Faculty

Database System, the information has already been defined by

previous thesis efforts. Up till know, the requirements

definition has been confined to the manipulation of this

* information to achieve user goals. This section of the chapter

will deal with the "human computer interface" (5) requirements

* definition (Requirement 3, Appendix F). This section will

identify the targeted group of users that will use the system

-' most often and come up with a standard profile. Using this

profile as a standard, the system can be tailored to the react to

the user. However, there are some difficulties in trying to

~. ,.define a standa:1 user.

Users who try to define a system with the designers' goals

in mind can find themselves in a predicament, particularly when

one of the following is true(l4:140):

1. The system in question is just not definable by

"traditional" means.

2. The system can be defined, but the user doesn't know what

he/she wants.

3. The user knows what he/she wants but can't articulate it.

When confronted by an undefinable system, the user is faced with

2-17

the impossible task of defining what he/she wants without knowing

.S~. if it will work or not (14:146). They must perform some very

difficult activities, such as reducing problem solutions to

functional terms, visualilzing system components and the

* interaction of these components during everday operations, and

discriminating between alternative approaches. Unfortunately,

the only sure way to determine if a system will be acceptable to

the users is to allow the user to try system. Prototyping

addresses this problem and will be attempted for this

application. With fast prototyping, construction of system will

begin after a bare minimum of requirements are defined.

Tagee User Group

Pangman (2:2-5) described a mixed category of possible

users for the system. Among them are secretaries, professors and

instructors, department administrators, and students. For the

application of this thesis effort, the user population will be

confined to the student and faculty of the Electrical and

Computer Engineering Department. This presents a problem because

there is such a varied background among the users, including

educational experience, computer background, and even typing

abilities. Figure 2-4 lists the characteristics of the chosen

"standard user" (Requirement 3.1, Appendix F).

V. ..

2-18

1 Will be Between the age of 21 and 55.
2.Has at least 2 years of college.

3. Has either run a word processor, computer,
or typewriter.

4. Will be considered a casual user of the
system. (no more than once a week.

5. Will have limited access to manuals.
6. Will not know many of the abbreviations

used in the current database.
7.Will not have access to Social Security
numbers because of the privacy act.

8.May not have an American Social
Security numbers. (i.e. foreign students)

Figure 2-5 Standard User Characteristics

Database Prototype Development

Normally, the first logical step would be to conduct a full

requirements definition cycle before the actual production of

code. However, because of the vast amount of work done by the

EENG 6.64 Database class and by engineer Robert Ewing, there

exists a complex and working prototype model currently being used

by new students to enter student ed plans onto the database

(Requirement 3.2, Appendix F). This creates a perfect

environment for feedback on the "user-friendliness" of the

system, and has proven very effective in designing useful

computer software software for non-computer personnel.

"This quick and dirty system has one purpose, and
that is to show the users what they are asking for
and give then some working knowledge of the
results that can be achieved by the system they
have defined." (14:146)

other purposes include showing the user alternative methods

for doing the same task and at the same time demonstrating new

features of the system. It is important to give the users

alternatives in describing there system.

* , 2-19

This technique was used by Mr. C. Gerald Morrison and the

autnor of this thesis at the 552 Airborne Warning and Control

Division to design a computer database system for aircraft

maintenance and scheduling problems. Mr. Morrsion used

interviews and Air Force manuals on aircraft mainte nance and

scheduling to come up with a preliminary concept of the system.

Then, using a CROMEMCO II computer and the COBOL language with a

special display interface, he designed a rough package that

displayed and accepted specific aircraft information. After

showing this to the commander, likes and dislikes were noted as

well as suggestions for future enhancements. In contrast to

* conventional programming technology, which restrains the

programmer in the interest of orderly development, fast prototype

development of systems must amplify the programmer or analyst in

the interests of maximizing his effectiveness. This can require

a small number of programmers to make essentially arbitrary

transformations to very large amounts of code (6:23) . However,

the systems analyst or designer must be ready to discard the

prototype and start designing the system from scratch.

To gain further insight into the needs of the user,

interviews will be conducted to gain the thoughts of personnel

who are not familiar with the AFIT/ENG Database System. The

targeted group will be the new GCS-86D and GE-86D students who

arrived in May of 1985. These students are required to enter

their education plan via the ISL VAX 11/780 using the TOTAL

Database Management system and the education plan software

developed by engineer Robert Ewing. Students will be questioned

as to whether they thought the system was easy to use, self

2-20

documenting, and useful.

After interviewing each student personally, they will be

interviewed as a group in hopes that ideas and comments from

other students will spark conversation and ideas from others. it

is very important to gain this information in the early stages of

the design because the EDPLAN system, as developed by engineer

Robert Ewing, will be used as a prototype for further design

considerations and to add standardization to the system. These

interviews will help in gaining useful information in formulating

the degree requirements portion of the database. The suggestions

of the students will be assembled and scrutinize to ascertain

their usefulness.

Interview Results

Fifteen out of the thirty students who used the system were

questioned as to their likes and dislikes of the education plan

database prototype. An informal interview was performed because

of the nature of the questions. The main objectives behind the

interview was to find out how easy the system was to use, how

long it took them to learn to use it, how "user-friendly" it was,

which features they liked ,and what they did not like about the

system.

The program itself was designed to be self documenting.

once a user logged on, the program was executed and the user was

prompted for specific answers to questions. Almost all of the

students were able to use the system within a couple of minutes,

however, several of the students who were not familiar with

computers had difficulty in changing typing errors. once a field

2-21

was typed in and the user had moved on to the next field, many

had difficulty in backing up to the previous field. Most of

them, re-entered the program and started the process over again.

This created many extra copies of the edplan being printed off at

the laser printer.

The edplan program approached the problem of entering data

via the standard approach. The student was required to know

which class he/she was supposed to enter, if the class was given

in a specific quarter, if the class belonged in the sequence

selected, or even if the class existed. This required a great

deal of typing and chance for error. However, very few of those

* individuals interviewed selected this as a problem area. Most

excepted this as a normal way of doing business, except a few

students who were not familiar with these procedures and some who

were exceptionally skilled in software development.

Some of the suggestions made by the students and the faculty

were on the "user-friendliness" of the system. It was noticed by

several students that many of them were entering education plans

that were very similar. Many had selected specific degree

sequences that required the same classes. It was suggested that

default edplans be made part of the system so a student could

declare a sequence and update an edplan instead of creating a new

one. The other suggestion was to have the students select

classes from a list instead of typing them in, or at least

provide an edit check of the classes before the database is

updated (Requirement 3.4, Appendix F).

2-22
0<

Summary

This chapter characterized the AFIT/EN departments

requirements for a complete and integrated database system and

outlined the steps taken in the preliminary design and source

test of the proposed system. Although the requirements of the

system will continue to change as more data is needed, as the

school grows, and as new data becomes available, the importance

of a good requirements definition phase will be evident in the

design phase. The requirements have called for a system that can

be easily expanded and maintained by the faculty and student

body. In addition, the system will be designed to accomodate the

* "1casual user" of the system such as new students and instructors.

2-23

% III. Database Design

In chapter 2, the requirements for the AFIT/EN student and

faculty database system have been well defined through several

iterations of the requirements definition phase by this and

previous thesis efforts. This chapter will present the

preliminary and detailed design phase of the application software

for the AFIT/EN Student and Faculty Database System. The

preliminary design phase is sometimes referred to as a high-level

design or system model showing what the system will accomplish in

its task, but not specifically how it will be done. (4:12) En

this portion of the design, system flowcharts are of use to

present the system in an abstract pictorial form. The

preliminary design should also be in such a form as to make it

independent of machine and programming language. On the other

hand, the detailed design of this system will take the

preliminary design and refine it to the point where it can then

be implemented onto a particular machine using a particular

language. There should be a logical mapping from the

requirements definitions to the preliminary design and then to

.4. the detailed design of the system. It is important at this point

to continue to review the requirements of the system for errors

and feasibility.

The design of the system will follow the top-down structured

approach to software design. Structured design is a set of

proposed general program design considerations and techniques for

making codeing, debugging, and modification easier, faster, and

less expensive by reducing complexity. (14:328) Simplicity of

3-1

S%

design will be the major theme when dividing the system into

seperate pieces. To reduce the complexity even more, some of the

-K linked lists that are to be used as a data structure and the

database system TOTAL will have operations defined .on them to

improve the interface between the application programmer and the

y. database system.

In this chapter, the schema will be reviewed to define and

identify the relations that were built into the database system.

The requirements of the system defined in chapter two will then

be mapped into the preliminary design of the overall system.

Finally, the preliminary design of the database system will be

refinded and further defined into the detailed design of the

sytem in two seperate categories. The first category will be

the functional design of the system and the second will include

the design of the interface to the system. Sometimes, these

steps of the software development phase are considered as well

defined steps with absolute borders on the definition of each

phase. In this application of the waterfall model of software

development, the process becomes more of an evolution of

development where one phase transitions to the next with no

*distinct border.

Database Relationships

It was obvious, upon review of the database schema for the

AFIT/EN database system, what some of the relationships and

applications were invisioned by the original creators of the

- database. Many of the characteristics of the database schema

appear to take on the traits of a relational database system but

3-2

-t -!

still maintain the complexity and speed of a network database.

Each database relation will be examined for some of the

relationships suggested by faculty members and students and there

apparent application in the design of the database software.

These applications will then be fit into the overall design of

the system later in the chapter.

The student and faculty master files are linked by common

variable files. Figure 3-1 gives a list of the master files and

variable files along with there respective file codes. Each

student and faculty member share common information in the

variable Honors and Awards File, Section File, Advisor File, and

Thesis File. Figure 3-2 shows the database relationship to these

two files. These relationships allow the application programmer

to extract certain information:

1. Select a complete or partial list of all of the students

who have the same faculty advisor, thesis advisor, and committee

member(Figure 3-3).

2. Select the students and faculty who have attended the

N same university and achieved the same degree.

3. Retrieving information on the section adivisor and

section leader for any given student (Figure 3-4).

4. Calculating the work load on an instructor by extracting

the number of students he/she advises on thesis and

dissertations.

5. Select and print all of the students who have signed up

for the same class.

6. Retrieve the courses an instructor is teaching, or has

3-3

v ' . taught list thesis students he/she advises.

--

v '- MASTER FILES

FACT MASTER FACULTY FILE

DEPT MASTER DEPARTMENT FILE
STDT MASTER STUDENT FILE
THES MASTER THESIS NUMBER FILE

I SECT MASTER SECTION NUMBER FILE
MCRS MASTER COURSE FILE
MQTR MASTER QUARTER FILE
MBKT MASTER BOOK FILE
MORD MASTER ORDER BOOK FILE
TIME MASTER CLASS TIME FILE
BLRM MASTER BUILDING/ROOM FILE
CPTY MASTER ROOM CAPACITY FILE
DAYS MASTER DAY SCHEDULING FILE
MSSF MASTER SEQUENCE FILE

* MDEG MASTER DEGREE REQUIREMENTS FILE

VARIABLE FILES

VEDU VARIABLE EDUCATION FILE
I FSOC VARIABLE FACULTY SOCIETY FILE

FCMT VARIABLE FACULTY DEPARTMENT AND
COMMITTEE MEMBER FILE

VHAW VARIABLE HONORS AND AWARDS FILE
FINT VARIABLE FACULTY INTERESTS FILE
FCOM VARIABLE FACULTY PUBLICATIONS AND

PRESENTATIONS FILE
FTDY VARIABLE FACULTY TDY FILE
MCRS VARIABLE STUDENT COURSE FILE
THTL VARIABLE THESIS TITLE FILE
SECL VARIABLE SECTION LEADER FILE
VCQR VARIABLE QUARTER FILE
VREQ VARIABLE PRE-REQUISITE FILE
VCBK VARIABLE BOOK LINK FILE
VNMO VARIABLE NUMBER ORDERED FILE
SCHD VARIABLE CLASS SCHEDULE FILE
CLSR VARIABLE CLASSROOM FILE
TCMT VARIABLE THESIS COMMITTEE MEMBER FILE
FADV VARIABLE FACULTY ADVISOR FILE
VINS VARIABLE INSTRUCTOR STATISTICS FILE
TADV VARIABLE THESIS ADVISOR FILE
VPDQ VARIABLE PROFESSIONAL DEVELOPMENT FILE
VMSS VARIABLE SEQUENCE FILE

S - Figure 3-1 Master and Variable File list

K 3-4

'. ,

o-SI
4- 0

4. ~m

.. a

r,

"' " FGR 32STEN ADFCUT RLTONHP

@ 3-5

!-9, ' '. .". . ". '. -.-. -. . - . " .I

: ,.% , :< < ,. ; ...:"":',L[.". .< .<. , . '.< .,.' . .-

.L.

00

IL

C
Q

i -" FIGURE 3-3 FACULTY RELATIONSHIPS

C3-6, i 3_ 6

La.

-'- --- hi-'

,00

I* "
°.C.)

,-. L

t4"I

'CAA'

aa
in

'3-F

I-gh

The Master Course File schema has the potential to provide a

great deal of information to the user of the system. Figure 3-5

contains the basic relationship of the Master Course File schema.

Each course is linked to a variable quarter file which contains a

series of records that designates when the course is offered and

the variable Schedule File which contains information as to when

and where the course is given. Linked via the schedule file is

the Master Class Time file and the Master Day file. Using these

relations, some of the applications are:

1. When updating information on a course, there is only a

need to change it in one location which makes the change global

4 thoughout the entire database.

2. The database can be searched to examine the text books

required for that course, the availability of those books, and

the price of them.

3. The database can be searched to determine what classes

are offered during a ceratain day and/or time. This would be

useful for a student who is looking to replace a dropped class.

The sequence and degree requirements schema gives the

faculty the ability to verify whether a student meets the

requirments for a specific degree and sequence within a

department. The Master Sequence File and the Master Degree

Requirement File are linked through the Variable Sequence File.

Using these relationships, the faculty will no longer need to

check a students education plan to insure graduation requirements

for a course sequence are met. The database can also be used to

calculate the students eligibility for graduation.

3-9

4A2

.1

4 PRELIMINARY DESIGN

The preliminary design phase of the software development

life cycle bacically takes the requirements as defined in the

requirements definition and maps these into a abstract picture of

the system. At this stage in the development life cycle, system

flowcharts and diagrams play an important part in depicting the

system. Appendix D contains all of the system structure charts

referenced in this chapter. Each requirement will be implemented

in the design of the system (if applicable) and justified. To

evaluate alternatives for dividing programs into modules, it

becomes necessary to examine and evaluate types of "connections"

between modules. A connection is a reference to some label or

address defined elsewhere outside the module (15:329). When

designing the system, it will become important to group modules

together that are functionally rela,:ed into a common seperately

compiled program, and define operations on these groupings.

Main Program Module Design

Because of the database schema and previous specifications

in chapter 2, there exists a requirement for the database system

to be in a structured form and for the five fL:e groupings to be

contained in separately compiled programs. Appendix D has the

system diagram for the five main functional groupings that are

named STDTMOD, FACTMOD, MCRSMOD,THESMOD, SEQUMOD. These modules

will perform the following functions:

1. STDTMOD: Maintain the Student Master File, Honors and

Awards file, Student Course File, and the Sequence File through

standard add, update, delete, and review routines. The only

3-10

I . 4.

~ ~ exception is that students may not have access to grade changes.

This must be done by a seperate module for security reasons.

Students should only have access to their education plans and

personal data while maintaining the ability to update their

locator card on the computer.

2. FACTMOD: Maintain the Faculty Master File, Society File,

~N Faculty Advisor File, Section File, Department and Committee

Files, Honors and Awards File, Publications and Presentation

File, TDY File, and the Instructor Statistics File.

3. MCRSMOD: Maintain the Master Course File, Master Quarter

* File, Master Book File, Master Order File, Master Class Time

File, Master Building/Room File, Master Room Capacity File,

Master Day Scheduling File, Variable Quarter File, Variable

Requisite File, Variable Book Link File, Variable Number Ordered

File,and Variable Classroom File. Modules to add master files,

delete file, update files and review files will be included

within this module.

4. THESMOD: Maintain the Master Thesis Number File, Variable

Thesis Title File, Variable Thesis Committee Member File, and

Thesis Advisor File.

5. SEQUMOD: Maintain the Master Sequence File, Master Degree

Requirement File and Variable Sequence File. These Files will be

W maintained with add, delete, update, and review modules. Because

of the changing requirements within the departments, these files

will are seperated from the associated course module. Faculty

and students should be allowed to vary sequences and degree

requirements to obtain maximum flexibility. Therefore, the

3-11

degree requirements and sequences obtained are to be used as a

guide and not a rule.

Data and File Abstraction

To make it easier on the user, the programmer,. and the

designer, operations are needed to act as an interface between a

data structure and the TOTAL Database Maintenance System. These

operations or algorithms must meet the following criteria (3:2):

1. There are zero or more quantities which are externally

supplied.

2. At least one quantity is produced.

3. Each instruction must be clear and unambiguous.

4. When the instructions of an algorithm are traced, in all

cases the algorithm will terminate after a finite number of

* steps.

5. Every instruction must be sufficiently basic that it can

in principle be carried out by a person using only a pencil and

paper.

By using these operations on the data types and files, we can

* - then control the manipulation of data to such a degree that we

can then validate the algorithms and add to the correctness of

our program. It is important to note that the operations on

these data types and files are descibed in terms of what is done

but not how the operation should occur. This division of the

tasks, called specification and implementation, is useful because

it helps to control the complexity of the entire process (2:7).

x it is hoped that by doing this, the further development of

application software will be made easier.

3-12

.

Each Master File and Variable File will have associated with

it, a group of modules that act as an interface to the TOTAL

Database System. Each file must have a record described in the

TYPE declaration section with the ability to make it a linked

list if necessary. The Figure 3-6 shows these modules where

."XXxX" represents the four letter file code. For instance,to

write to the Student Master File (STDT), the module

WRMSTDT(STDTRECORD) would be used. For a complete description

of the common routines see Appendix H. These modules will have

the following characteristics:

1. Each module will return a status code which notifies the

calling routine of the success or failure of the database

operation.

2. Each module will be responsible for transfering data from

the record to or from the database schema. The TOTAL database

system expects the data to be entered as a continuous string of

data. This attribute should be hidden from the applications

programmer. This is accomplished by defining the record types in

the standard type declaration module that all programs wil have

access to.

3. The write to variable records should handle the instance

where there is more than one master record linked to the variable

record. It may be difficult to define a standard set of

variable record functions depending upon the linkage reference

and the key of the master record associated with it.

3-13

. -

-1-..e-.zr.

MASTER FILE OPERATIONS

MODULE FUNCTION

WRMXXXX Write to a master file.

RDMXXXX Read From a master file in a
random or sequencial manner.

DLMXXXX Delete a record from a master
*? file.

ADMXXXX Add a record to a master file.

VARIABLE FILE OPERATIONS

A ADCXXXX Add Variable Continue. Add
a record after the record that

is currently pointed to.

the string.
ADAXXXX Add Variable record after the

* second record in the string.
ADBXXXX Add Variable record before the

record being pointed to.
RDVXXXX Reads the next variable record

in the string.

RDRXXXX Reads the previous variable
record.

RDDXXXX Read direct. Reads the record
directly pointed to by reference
pointers.

WRVXXXX Writes a Variabel record.
DLDXXXX Delete the current record pointed

to by reference pointers.

Figure 3-6 Generic Standard Database Procedures

Throughout the database, there will be many instances where

a search will be required on the Faculty, Student, and Staff

files. Since these routines will be used in almost all of the

programs, it will be important to define them early in the

development of the system and implement the procedures in

computer code. These list routines will be used to search for a

student or faculty member by name or section and must be kept in

'IF alphabetical order at all times. In addition, the speed at which

3-14

the lists are searched and sorted are of the utmost importance to

the user. The operations on the list will be defined as:

1. ADDNAME: Adds a faculty or students data to the list of

names.

2. DELNAME: Removes a faculty or students data from the

list.

3. FINDNAME: Finds a faculty or student depending upon the

last name and position the search started in the list.

4. CREATE: Creates a empty list with a header and trailer

record.

5. BUILDLINKLIST: Builds the linked list of student or

faculty names from reading the database sequentially.

A complete description of the axioms and procedure definitions

can be found in Appendix H.

Standard Database Functions

Using the standard utilities that have been created to

access the database, the standard functions associated with the

database become easier. Each master file will be accessed

through a series of menus and standard database functions. At

the lowest level of access, each menu will give the user the

ability to add records, delete records, update records, and

treview records with the option to produce a hardcopy. Figure

3-7 shows an example of a menu used in the Database Class

(EENG646).

3-15

_t0n

COURSE SEQUENCE DATABASE MODULE

* OPTION DESCRIPTION

1 ADD A SEQUENCE

2 UPDATE A SEQUENCE

3 DELETE A SEQUENCE

4 REVIEW A SEQUENCE

5 CHECK A STUDENTS SEQUENCE

9 EXIT TO PREVIOUS MENU

SELECT OPTION (1-5,9)

4
Table 3-7

Master Sequence File Menu

The commercial frames system, from Digital Equipment

Ir Corporation (DEC) called the Form Management System (FMS), will

be used to produce all of the displays seen by the user.

Appendix E contains the frames that have been produced and used

at the writing of this thesis. It is designed for ease of

formulation and simulation in order to collect the transmited

data in an orderly manner. By using this utility,

standardization will be built in the interface to the database

from the users point of view.

It is important to note that the number "9" is used to exit

to the previous menu instead of the number "6" which would have

been the next logical number in sequence. This was done for two

reasons: 1) The number used to exit all of the screens in the

system will be "9" and 2) The remaining digits will be reserved

3-16

4r -z

for furture adaptations to the system. By standardizing the

selection of items in the menus, the transition from using one

portion of the system to another should be easy.

See Appendix E for the frames used in this development.

Database Generation and Initialization

The following procedures on generating and initializing the

• AFIT/EN database were taken from the TOTAL Database Users Manual,

publication number p10-0001-00 with alterations to the procedure

by Mr. Robert Ewing. This procedure is to be used whenever the

sizes of the files or alterations in the schema are to be

-changed. See requirement number 2.3.1 through 2.3.11 for file

size specifications. Performing this function allows the

Database Manager to change the size of the files to accomodate an

* . increase in students, faculty, course, sequence, and theses.

"The following steps should be followed for

each Data Base Descriptor Module, (DBMOD), the user
wishes to generate.

1. Code the input DBDL statements as described
in chapter 4, the Data Base Generation chapter of
the TOTAL Users Manual.

2. The DBGEN program will accept a sequential
A'. source file of 80 bytes image records.

3. Execute the DBGEN utility. This utility
will read the DBGL statements if required and print
the data-base documentation lilsting including all
diagnostics and statistical messages. If an output

V file is required, it will be created with the

output filename given with the extension .MAC. The
following statements will execute DBGEN from a

77 terminal provied the user has update priviledges:

$SET DEF DUA3:[TOTAL]
$RUN [TOTAL]DBG
DBG>AFITDB,MAC=AFITDB.DBG
$MCR MAC AFITDB,AFITDB/-SP=AFITDB
$RUN DBF
FMT>DBMOD=AFITDB

3-17

e

S. 'FMT/

The output file will be the name of the .MAC
file while the input file will contain the input
DBDL. The default extention for the input file is
.DBG. Upon completion of the database generation,
if errors are detected they will be documented in
the output listing at the terminal. The output
listing file is not spooled. To spool the listing
file the following step is necessary:

$PRINT LSTF11.DBG

4. Assemble the generated source program
providing the DBMOD object file.

5. The Data-Base Descriptor Module (DBMOD) is now
available for use with TOTAL and the utilities.

To start the database in operation, following
the following VMS instructions:

1. $SUBMIT TOTALINIT

". 2. $RUN TOTALPRM

3. TOT>AFITDB

4. TOT>/

At this point, all of the files are empty and

must be restored (16:3-5)"

Reports Generations and Design

Some of the required reports listed below were specified by

Pangman (2 Appendix H of his thesis). Some of these requirements

[were specifically requested in the interviews conducted while

others reflect anticipated requests by the users. Other required

reports are a result of recent interviews and requests by the

faculty. These reports are listed in requirement numbers 2.5.1

through 2.5.4 of Appendix F.

Required Reports

1. Division Faculty Schedule Manpower and Requirements

Expenditure Document. (Requirement 2.5.1)

3-18as

2. Faculty Workload Distribution /ENG(Requirement 2.5.2)
3. Enrolled Student Listing (Requirement 2.5.3)

4. Course Listing Information (Requirement 2.5.4)

5. Student Locator (Requirement 2.5.5)

6. Course Enrollment

7. Education Plans

Syntax .and Compatibility Routines

The integrity of the data is vital to providing management

with vital information. Requirement 2.6 of Appendix F states the

necessity for a complete list of data syntax and compatibility

tests to be performed on the data items when entered into the

database system.

The TOTAL database management system handles many of the

compatibility routines and the Forms Management System (FMS) will

also handle many of the syntax operations. Items such as rank,

dates, AFSC's, phone numbers, race, religion, sex, aero ratings,

and items entered as years must be edited by the the application

programs. See Appendix C for a complete list of syntax and

compatibility rules.

3-19

IV

* ~ Zno, . -i .* . ~- % * ~

. , Detail Design

Functional Design

The detailed design phase of the waterfall model of software

development will be a refinement of the preliminary design to the

extent that the detailed design can then be implemented in a

computer language. (4:12) This portion of the detailed design will

deal with developing a strategy of building software to perform

the required functions assigned to the database. It involves

taking the logical design of the system and making it a physical

design that can be mapped into the implementation phase. The

design of the proposed system imposes layers of software

between the user and the machine itself. Figure 3-8 identifies

these layers.

i Database User

Layer 1 (Menu Select Software)l

Layer 2 (Function Select) I

Layer 3 (Functions Performed)

Layer 4 (Function Unique

* IModules)
Layer 5 (Standard Database

Functions)

Layer 6 (TOTAL DBMS)

Layer 7 (System Software)

Layer 8 (Machine Level

Figure 3-8 AFIT/EN Software Layer Description

3-20

0, ,

This part of the chapter will take the preliminary design

steps and refine them into the detailed design. The main program

modules specified in the first part of this chapter will be

defined functionally and by means of structured diagrams. The

data and file operations will be implemented and tested in this

chapter to facilitate the implementation of the application

software. The standard database functions will also be

implemented and tested. These two steps are required to

construct the layer 5 (Figure 3-8) of the database in order to

form a "user-friendly" interface to the TOTAL database system.

Each step of the design should relate to some portion of the

requirements in Appendix F.

Database Application Software Layer Description

1. Layer 1: This layer of software consists of the main

module routines and offers the closest interaction to the user.

%41

These modules present choices to the user as to what portion of

- - the database they wish to work with. (i.e. FACTMOD, STDTMOD,

THESMOD, MCRSMOD, SEQUMOD) . This layer may be implemented in a

command file mode and should check to see if the TOTAL database

system is in operation.

2. Layer 2: This layer is associated with each of the five

distinct functional modules (requirement 2.1, Appendix F). These

44 modules will present to the user a choice of what files or

44 information they wish to modify (Add, Update, Delete, or Review)

N or if selecting an alternative function associated with the file

such as the scheduling routine, report listings, or running

management information programs.

4 3-21

0 ,a

% 3. Layer 3: This layer of software will perform the actual

function requested in layer 2. The adding of records, deleting

* of records, updates and reviews will be part of the software

required for these modules. These layers are still responsible

for prompting the user for information and instructions.

4. Layer 4. This layer will be hidden from the interactive

database user. These modules perform operations unique to the

functions of layer 3. Some examples of these would be formatting

a report for course listings, syntax checks on the records of

A') information, preparing links to select variable records, and

* frames displays. In fact, any module that is used by only one

function would be considered part of this layer.

5. Layer 5: These modules are standard routines that act as

a "user-friendly" interface to the TOTAL Database System. Adding

of master records, reading master records, link list

manipulation, signing on and off, and status checking are some of

the routines required.

6. Layer 6: This layer is the TOTAL Database System itself.

This layer is presented to the application programmer in the

forms of DATBAS subroutine calls.

7. Layers 7 & 8: These layers are system software that

interacts with the operating system, and the machine itself.

Standard Database Module Descriptions

Layer 5 of the design of the system allows the programmer to

have ease of access to the TOTAL database system. Because of the

wide range of operations allowed by TOTAL, a subset of these

< ~ operations will be selected for use. The justification of the

3-22

operation will be included with the description of the module.

Master File Data Set Functions

* The following procedures are required as the interface to

the AFIT Database system through TOTAL. To operate these

procedures, a standard set of type declarations is required to be

included with any run of the database.

1. PROCEDURE SIGNONOROFF(OPER:BUFF5; DATASET:BUFF4):

This will log the applications program onto the database. The

parameter passed to the routine will identify which of the five

main modules is running and the appropriate schema which

idetifies what files can be accessed will be loaded. This routine

should also log off the application program from the database.

Every program that uses the database is required to sign on and

4 identify itself to TOTAL.

2. PROCEDURE CHECKSTATUS(OK): This procedure checks the

status of the database call and returns to the caller a boolean

- variable, (TRUE = Good database read, FALSE = Error in the call).

If an error occurs, the checkstatus routine should return a

message to the user of the outcome and offer some diagnostics.

This procedure should be called at the end of each DATBAS

procedure call.

4. 3. PROCEDURE RDMXXXX(VAR XXXX : XXXX REC; KEY:

typekey): This procedure will read a master record from the

database. The "XXXX" is to be replaced by the four letter file

code of the file as defined in the database generation listing

(figure 3-1). The program will format a record of the type

6 ~XXXX REC with the information passed in the buffer area. The

3-23

V

data item "KEY" will contain the master key of the record. This

procedure is required for all master records in the database.

4. PROCEDURE WRMXXXX(XXXX: XXXXREC) : This procedure

writes a record back to the database after an update transaction.

The information contained in the record of type XXXXREC is

transferd into the buffer area in the same order the data

appears in the record. This procedure is required in only those

modules that have update operations.

5. PROCEDURE ADMXXXX(XXXX: XXXXREC; KEY: typekey):

The add master routine is used to add a new master record to the

database. The operation is almost identical to the WRMXXXX

except for the function assigned to the database call. This

routine is used only by those modules which are allowed to add

new records to the database.

6. PROCEDURE DLMXXXX(KEY: typekey) : This routine

. reads the master record in the update mode to insure it is part

of the database, if it is, then the user is prompted to insure he

wishes to delete the record. If the record is to be deleted, all

variable file links are deleted and stored in a save file in C3e

restoration is desired, and then the master file is deleted and

saved.

Variable Data Set Functions

These routines are a subset of the functions permitted by

the rOTAL database system. The READR and ADDVB operations were

omitted because combinations of the other operations could

perform the same functions. Because of the flexibility of the

variable record and the number of links, and master file keys,

3-24

0%

the files that these are to be assigned to will be limited to

those files with master record lengths that have the same key

length and/or have only one variable link.

1. PROCEDURE ADCXXXX(XXXX: XXXXREC; KEY: keytype) ;

This routine will add a variable record after the variable record

currently pointed to by the database pointer.

2. PROCEDURE RDVXXXX(VAR XXXX:XXXXREC; VAR

VREFERENCE: BUFF4;

CODE:typekey); This routine reads the variable record from the

file designated by the four digit code "XXXX" that occurs in the

next string after the record pointed to by the VREFERENCE
6

pointer. The information is then formatted into the record

defined by the record type XXXXREC. This routine is a standard

3equential read function and will be used in almost all

3ppli cations.

3. PROCEDURE RDDXXXX(VAR XXXX:XXXXREC;

'IREFRENCE:BUFF4; CODE: typekey): This routine will read a record

lirectly from the database file with the code XXXX pointed to by

the code contained in the parameter: VREFERENCE. The information

will then be formatted into the record of type XXXX REC and

returned to the calling program. This routine is useful in the

application of updating a database record.

4. PROCEDURE WRVXXXX(XXXX:XXXXREC; VREFERENCE:BUFF4;
I

CODE:typekey): The Write Variable record routine writes a record

directly to the database in the same position it was retrieved

from. This record must be read in the update mode before it is

written back to the file. This routine is useful in applications

3-25

-• . . . - , - , ,1- - ". . " ° ""- ' Z - . .-.. "'-.
, "

. *."" ,,"..- * ,

for updating the variable records in the database.

5. PROCEDURE DLDXXXX(XXXX:XXXXREC; VREFERENCE:BUFF4;

CODE: typekey) : The Delete Variable Record routine removes a

, record from the database in the file indicated by the four letter

code: XXXX. The record must be read in the update mode before it

-j) is deleted.

Database Backup Utilities

It has been proven by years of experience that any given

machine will sooner or later break down. To guard against

such disasters, a system of backup utility programs will be

employed to retrieve the database information and store the data

in sequential files that can be read and transformed back to the

database. Each of the five main modules will have the

responsibility for backing up and restoring the database. The

files each module is responsible for is depicted in figure 3-9.

MASTER RECORDS VARIABLE RECORDS

FACT VEDU
DEPT FSOC

FCMT
VHAW
FINT
FTDY
FCOM
FADV
VINS

VPDQ

FIGURE 3-9(l) FACTMOD BACKUP FILES

3-26

MASTER RECORDS VARIABLE RECORDS

STDT MCRS
SECT SECL

FIGURE 3-9(2) STDTMOD BACKUP FILES

MASTER RECORDS VARIABLE RECORDS

THES THTL
TCMT
TADV

FIGURE 3-9(3) THESMOD BACKUP FILES

MASTER RECORDS VARIABLE RECORDS

MQTR VCQR

MBKT VREQ
* MORD VCBK

TIME VNMO
BLRM SCHD
CPTY CLSR
DAYS
MCRS

FIGURE 3-9(4) MCRSMOD BACKUP FILES

MASTER RECORDS VARIABLE RECORDS

MSSF VMSS
MDEG

FIGURE 3-9(5) SEQUMOD BACKUP FILES

3-27

Fe?-'~ i~ i

Database Algorithms Selection

To eliminate the need for sorting and to decrease the search

time involved with large list, a doubly linked list will be

maintained by the programs for each master file associated with

the module. This will reduce the amount of database accesses

needed by maintaining a minimum amount of information in a linked

-. list. Since the lists will be inserted in alphabetic order, no

sorting will be required, so the insertion of an item will take

on the average O(N/2) number of record comparrisons, where (N) is

the number of records in the list. The search for an item will

take the same amount of time. The linked list approach also allows

us to dynamically allocate storage for the records which

eliminates the need to maintain a large unused storage area.

However, for less volatile files, such as the Master Section

File, a simple array of records can be loaded and maintained at

the beginning of the interactive session. The routines needed to

maintain and access these lists are described below using psuedo

code.

1. ADDXXXX(XXXX:XXXXPTR; HEADER:XXXXPTR);

BEGIN
If the HEADER is nil then create a new header

record
else get the next record after the header record.

while the search pointer is not nil and
the input node is > searched node then begin

get the next record
end
insert the new pointer in the list.

end.

2. DELXXX (CTRL:typekey; VAR HEADER:XXXXPTR);

BEGIN
While not at end of list and not found do

get next record

3-28

e

- .. '

end do;
if found then remove node

-,END;

3. FIND XXXX(Name: nametype; CTRL:ctrltype; LIST: listtype);
BEGIN
while no match (name = list.name) do

current.ptr := current.ptr .next
if found then ctrl := current.ctrl
else ctrl := spaces.

END;

Interface Design Considerations

The four main features of a "user-friendly" interface for

the AFIT/ENG Database System are:

1. Allowing the user to navigate through the control

paths of the interface, following the structure as though

traversing a tree.

2. Allowing the user to enter input data, and have

the user select data to avoid user input errors. Example:

(. Selecting a student from a list of students instead of looking up

the social security number to enter as a key.

3. Informing the user of errors in as much detail as

possible and always giving the user a way to recover.

4. The aid of a help function to tell the user what the

machine is expecting as input.

5. Avoid putting default values in the menu to prevent

the accidental selection of an option such as "9" (exit). Initial

tests showed that when response was slow, users would hit the

return key to elicit a response and inadvertently exit the

program.

The method of integrating these features are through the

design of the program in a structured form to allow for the tree

structure to be implemented, the visual design of the human

3-29

",6 ., .. ' .'';-: -:x ."V . .4 ,, V , ' ' """-'.. .- i,..2,,. - i -i- '.i , ''.i'. -". - i. ,

interfaces, the selection of phrases that would be familiar to

4the user, and the design of the help displays.

Visual Design Considerations

* Since the "user-friendliness" of a system is determined by

the user through the visual displays and interfaces, the design

of the screen output media becomes very important. The main

consideration behind the desing of the screen frames and display

formats will be the following criteria:

1: The displays will remain consistant from one portion

of the database to another. Student and faculty information will

be displayed in the same manner as will the course sequences,

degree requirements, and educations plans.

2. Items selected from a menu will remain consistent

thoughout the database, using numbers to select a particular

function. When performing adds, updates, deletes, reviews, and

special functions within a frame, the number 1 will be used to

select the add, number 2 to select the update, 3 to select the

delete, the number 4 to select the review, and 5 through 8 for

I[special functions. The number 9 will be used to exit the menu.

3. Each screen should allow the user to abort the

0 function and recover to the previous menu. The information such

as how to move through a screen, how to enter data, how to abort

the screen, and how to call the help text should be displayed on

,W7 the frame or available upon pressing the Pf2 key.

4. The title of the screen should appear at the top of

the form in oversize letters in reverse video or bold colors.

. [The use of bolding should be limited as it tends to clutter the

S3-30

screen and this type of graphics is not compatable with many

4. terminals. Columns of data such as the kind that appear on the

course sequence add, update, and review screens can be iispli 'ed

in reverse video to highlight that they are data and not titles.

Help Level Integration and Tutorials

There are three kinds of users to any system:

1: The novice is a new user of the system, and has

little or no experience with similar systems. This user requires a

great deal of assistance and training.

2: The casual user is one that uses the system three or

four times a month or a new user that's had experience with some

* similar systems. This kind of user needs help occasionally but

can otherwise use the systerai effectively.

3: The expert user is a person who is very familiar

with the system and uses it on a day to day basis. Little or no

help is required for this type of user.

The use of the database system will assumed to be on a

casual level.(2) The majority of work will come at the end and

beginning of quarter when new students are added, old students

are archived, classes are changed, and schedules are run. During

the majority of the quarter, the use of the database system will

* be directed to generating management information and running of

course and student listings. There will be very few people

w~ categorized as expert users. For this reason, a menu driven

system was selected instead of a operation and operand system.

The system will be configured to accomodate the casual user

most of the time. The novice user need only select the tutorials

V Vthat will be implemented with each main module or select the PF2

3-31

4-f * r

(help) key to find out what the machine is expecting.

Summary Of Design Considerations

Besides the enhancements to the database schema and the

structure charts in the appendices, the following represent all

of the design considerations presented in this chapter.

1 . The entire AFIT/ENG Database System will be decomposed

into five main modules or programs. The programs are name (1)

FACTMOD, (2) STDTMOD, (3) MCRSMOD, (4) THESMOD, (5) SEQUMOD.

Each of these modules will have update responsibility for

different parts of the database.

2. Certain routines and list structures should be

abstracted into pre-defined operations. The AFITDB TOTAL

database system will have record type definitions and read,

write, update, and delete routines defined on them. In

addition, a linked list of often used record names and keys will

be maintained to decrease the search time required to access the

TOTAL database system.

3. Each master file will have at the very least a set of

standard functions the user will be able to perform. The user

should be able to add, update, delete, and review records with

the option for hardcopy.

4. To accomodate changes in the size of the AFIT

organization, the database should have the ability to save

records, re-generate the database, and restore the database

records.

5. The requirements stated in Appendix E state the need for

certain reports. These include but are not limited to: (1)
.3..3

-- 3-32

Division Faculty Workload Distribution Document (2) Enrolled

Student listing (3) Couse listing, (4) Student locators (5)

Education Plans and, (6) Sequence and Degree Requirements

Listing.

6. To insure the integrity of the database, the data must

have syntax and compatiblity checks performed when entering data.

7. To make the program easy to maintain and modify, an

eight layer structure of software should be used (figure 3-8).

8. A library of standard database modules should be

maintained in a seperate library file for future programmers to

use in creating new modules or enhancing old modules. These

routines should not rely on any global variables except for one.

STATUS should be defined as "STATUS:BUFF4" through out any

program as a global variable.

9. Each of the main modules (figure 3-9) should have the

responsibilty to backup and restore those files the module has

update priviledges for. This option should be password protected

and should be done on a weekly basis.

10. When programming the interface to the user, four things

should be considered: (1) Paths through the system should be well

defined and should not change, (2) Have the user select input

instead of typing it in to improve data integrity, (3) Display

detailed error messages, (4) Insure the PF2 key works in all

cases to provide the user with all the information a novice would

need.

11. The visual design of the system should : (1) Limit the

amount of color used on the VT240 terminals, (2) Maintain

standard selection terms (i.e. 1=ADD, 2=UPDATE.. 9=EXIT), (3)

3-33

Each screen should allow the user to exit without any changes

and, (4) Each screen should have a title at the top of the screen

in double letters.

* 12. The system should be designed for the casual user and

the novice should have access to all of the help and tutorials

-% needed through menu selections and the PF2 key.

13. The lower level routines should be designed in such a

manner to allow maintenance programmers to develop a command

language database system to accomodate the expert users and allow

access to the database through devices that are not compatible

with FMS.

I3-3

This ~ IV chaterdisus ENhow ION AND TEST

Thi chpte dicuses ow heproposed design of an

AFIT/ENG Faculty and Student Database System was implemented on

a Digital Equipment Corporation (DEC) 11/780 computer using a

VMS operating system. The implementation of this system was

-> affected by many different factors. The availability of software

that has already been written greatly affected the design

considerations outlined in chapter 3. The implementation and

testing of the system presented in this chapter will identify

those characteristic of the system that deviate from the original

design.

The topics discussed in this chapter include: an evaluation

of the database prototype, the configuration of the host

computer, forms Management System features and usage, the TOTAL

database interface and integration problems, the development of

the EDPLAN program, database generation techniques and problems,

system integration, and module test plans.

* Prototype Evaluation

During the final weeks of the design phase and the start of

the implementation phase, 15 students were ask to participate in

a mock database session. All of the people ask to participate fit

the description of the standard user. Each individual was given

a task to perform and taught how to logon to the computer, how to

start the database, and how to use the help key(PF2) . The

subjects were observed to see if they could accomplish the task

* without the use of manuals or assistance. During the session, the

subjects were encouraged to critique the system.

..- -r"e'A":

,........

-4-
4b

"'p.. -

La
4- ,,,1',

00

'-"4,,+IW IILfl 00.
-C,%-., I,,=I

.4.. 0 O
ILLv

Qw

x

a~a
W 0

(Ia w w

w

- r 1- -kill

Is I- .1

,o a. m y

',.., z zj W. :

(=h,

::: -,,.-,'FIGURE 4-1 ISL 11/780 VAX HAREWARE CON FIGURATION

14-
w B:.

' " ++ ' + + " - " = - '+ " ' - W' a+- " + - - . " + + + ..

i ii i 11 I ~ ~ ~ ++ . i+ % + ,_ . • +. . = ' . _, t +i.+ , + ,' +

Several comments were common to most of the users and

several offered improvements to the system. The list below is a

sample of comments that were common to over half of those tested.

1. There was a lack of help menus and tutorials on most of

the systems, but some were very good. The best was the help menu

in the education plan module which used a secondary frame to

display more information.

2. Abbreviations were unclear and should be avoided when

possible.

3. When the users pressed the PF2 (Help key) they expected

to see examples of what they needed to enter.

4. Several screens did not allow the user to exit without

performing some action that caused a change. There should be a

way to exit each function and screen.

5. The add, update, and review functions look very similar.

At times the user forgot what mode he/she was in.

6. The default option in a menu (9 = exit) caused a problem

when the system was slow to respond. The user would tap the

return key and completely exit the system. The default should be

taken out and left blank.

7. Menus changed from when the user originally signed on

(edplans), this confused the user. They did not know if they

were in the correct part of the database system. The menus

should remain consistant.

8. There were two types of scrolling and selection of

records. One method had the user scroll a list by, select a

record and then enter a coded number that appeared beside the

4-3

record. The other method also scrolled the items by, but the

user selected a record by placing an "x" beside the record to be

selected. The majority of the users prefered the first method

because the placing of the cursor beside the location took longer

than it did to just enter a number.

9. The faculty module had the beeper turned on which bother

7 the user. The beeper served no purpose other than to embarris

the user.

10. When upu,.ting course sequences and edplans, the

updating started at the personal data part. This usually does

* not change and the majority of those tested suggested that the

position of the cursor be placed at the first class list and

allow the user to back up to the personal data if need be.

Host Computer Configuration

The configuration of the host computer shall be a major

concern in the future implementation of transfer of the AFIT/ENG

Faculty and Student database system to another computer. This

section of chapter 4 will deal with the computer set up and the

file systems needed to support the TOTAL DBMS and AFIT database.

I* The computer used in this thesis development was the ISL VAX

11/780 located in room 245 of the building 640 (AFIT School of

Engineering). The system contains 2.5 megabytes of main memory,

four RK07 disk drives, 8 to 10 terminals, one on line printer,

and one laser printer. The two types of terminals used in the

implemention were the VT250 and the VTI00. The VT250 had color

capability and was used in some applications. The operating

;:,. ~.: system used on the computer was version 4.2 of the VAX/VMS

4-40:

operating system upgraded from version 3.6 half way through the

implementation. This produced several errors in the software

.J because the version 2.0 of the TOTAL DBMS was not compatible with

the new operating system. The version of the TOTAL Database

System was upgraded from 2.0 to 3.5. The VMS operating system

employed demand paging system using a fixed size of 512k bytes

per page.

The TOTAL DBMS was maintained and run from the directory

V [AFITDB.rOTAL] and maintained under the disk pack identified by

DUA0:. To access the TOTAL database system commands, the user

must logon under the user id of "AFITDB". Once on the system, the

following VMS instruction was needed to put the user inside the

directory: "SET DEF DUA0:[AFITDB.TOTAL]". The TOTAL DBMS could

then be generated, submitted and started execution. All of the
(-_

datafiles and TOTAL utility programs were kept under the same

directory name for ease of access and maintainability. To Back

the database files, the entire data files were copied to an

identical directory protected by the system identification on the

disk pack DUAO: To restore the database, the files were just

copied back to the original disk pack under a user id with system

priviledges.

The application software (i.e. FACTMOD, SEQUMOD, ...etc) were

maintained on the same disk pack as the TOTAL DBMS but under a

seperate directory called "AFITDB". To compile and link a

program with the TOTAL database system, the following VMS

commands must be used:

$PAS/NOWARN programname.PAS

4-5

I

$LINK programname,DUAO:[AFITDB.TOTAL]NATDATBAS,NATBUF

The term "programname" is the file name given to location of the

source program. To then execute the program, the instruction

$RUN programname is used. This assumes that the programmer has

correctly signed on and accessed the database system properly

(see appendix F for examples).

Forms Management System Utilization

Each module (i.e STDTMOD, FACTMOD ... etc) has associated

with it the FMS library of the same name that containing all of

the menus and screens the module needs to use for an interactive

session. Therefore, the frames library associated with the

STDTMOD.EXE module would be maintained as STDTMOD.FLB. The

screens used are described in Appendix E and follow certain

conventions.

The conventions or standards were developed using the

prototype as a means of testing the reaction of different

techniques on perspective users. The standards developed

from the use of the prototype are:

1. Different transactions were selected using a number

instead of a alphabetic symbol such as ADD, or DEL. The number 1

was always used to add records, 2 is always used to update and

so on.

2. The number 9 is always used to exit to the previous

menu or system. This also limits the number of selections on a

screen by not allowing room for anymore selection on the screen.

3. Auto tabbing was not used as it is often confusing to

.. the casual user and promoted mistakes in entering data. When

4-6

S ' '"""" ' '" ' ' " j '' . " . % . . "" . . j - ' . % . . ."-"-"-"-"- j . . - . "•"•" "•"

entering text information, data contained in one field would

spill into another field by mistake.

4. The use of scrolled areas to select names of students

- and faculty, book titles, sequence titles, degree names, and

section names reduced the need to memorize keys such as social

security numbers, sequence numbers, and lengthy book titles.

5. The use of bold areas, reverse video, double wide

letters, and boxes were kept to a minimum because of their

- incompatibility with other terminals that were not VT52, VTlOO, and

VT240 used in the development of the system.

6. Each screen employed a method to exit the current

operation without change. For menus it was accomplished using

the number 9, and for other screens, hitting return on the first

- field caused the program to exit to the previous operation.

7. The method used to move around screen is by use of the

'TAB' and 'Backspace' or 'CTRL H' keys. The tab advances the

cursor while the Backspace or 'CTRL H' key moved the cursor back

one field. The 'Delete' key removed a character up until the

beginning of the field. Furthor specifics can be found in the

VAX-1l Software Reference Manual (10).

S. Often, more than one transaction of the same type would

need to be accomplished such as updates to the students edplans.

Usually, a secretary would bring several students records to

update at one time. This would require the screen to be

displayed to update students records until it was cancelled by

one of the methods mentioned before.

0 9. The FMS program employs two basic types of GET calls

* ,1,4-7

. . that retreive information from the screen. The first is

FDV$GETAL which retrieves the entire screen into on large buffer

where the program must retreive the information. This allows the

use of the 'Backspace' key to move to the previous field but the

program has no control of the operation until the FMS driver

releases the information. The other is the FDV$GET which

retreives one item at a time but does not allow the user to back

up to the previous item but does allow for edit checks on the

items as they are entered. The latter of the two was used

because it allowed for edit checks and the data item 'TERMINATOR'

was checked for the 'Backspace' key to allow the user the ability

* to go back to the previous field.

Education Plan Prograrm Developement

The requirements for the EDPLAN program were essentially

defined by engineer Robert Ewing in his development of the EDPLAN

prototype. The main requirements for the program were to 1)

enable new students to enter their personal information and an

initial education plan and sequence declaration, 2) allow the

students to update the edplans, 3) allow students and faculty to

review and print the education plans, and 4) generate a file that

could be passed to the scheduling office that would allow them to

* "schedule classes.

The first step in creating the program was to copy the files

TYPE.PAS and UTIL.PAS from the DUAl:[PANGMAN] directory into a

file called EDtLAN.PAS. The files TYPE.PAS and UTIL.PAS hold

the standard type declarations, standard database routines, and

O- link list routines as described in chapter 3. A forms library

4-8

A - A A e Z&. .. * _2 _-_ .'

---- --- ---

* was created and called STDTMOD.FLB since the edplan program will

eventually become a part of the STDTMOD module. At this point

all syntax errors and as many logic errors as possible had been

detected so the code contained in EDPLAN.PAS was in working

condi tion.

A main routine was created and performed the following

steps:

1. Initialized the FMS driver and opened the form library.

2. Signed on to the database system. If the database system

was not operational then the program exited.

3. Built the linked list for the faculty, students, and an

array of the class section.

4. Set up a WHILE loop to detect the type of transaction the

user wanted:

a. Add an Education Plan;

b. Update an Education Plan;

c. Delete an Education Plan;

* d. Review an Education Plan;

e. List Students in a Section;

f. Print an Education Plan for a Student;
-LI

g. Print Education Plans for a Section;

h. Generate the registration summary file;

* i. or Exit the Pogram.

To test the calls to the various routines, stubs were put

in the place of the actual routines and the software was tested to

insure it signed on to the database system, initialized the FMS

driver, and made correct calls to the stubs when ever a

4-9

transaction was selected. The program then tested to see if it

signed off of the database.

The routines needed to add the education plan and basic

student information were created first and tested. It was

important to insure this worked first for several reasons. The

first reason is that most of the other routines read information

from the files. The update, delete, and review routines would use

several of the functions and procedures developed in the add

* procedure. Since most of the procedures to read and write to the

database had been developed and tested (Appendix I), the majority

of the programming effort was concentrated on providing a "user-

friendly" interface to the program and providing as much error

checking as possible. Help messages and menus were programmed in

* * to provide information to the novice user.

* The next set of routines developed were the update routines.

The only difference between the add and the update routines was

the need to read a students master and course records. This

involved selecting a student from the database system. Since few

individuals would have access to the social security numbers, it

* was decided to develop a way to access a record using the last

name. If more than one student had the same last name, a list of

these names would appear and allow a selection to be made. A

combination of the linked list routines, and the FMS scrolling

ability aided in this design.

C. With the above routines completed and tested, the review and

list students routines were completed using a combination of the

add, and update routines. These were completed and tested in a

4-10

67

matter of hours because all of the routines called had been

developed and tested earlier. The last routines completed were the

printing routines which basically followed the review routines in

their format. Using this program as a basis, other pieces of

software can be developed in minimal time if some basic rules

layed down by this thesis as followed.

Edplan Program Unique Routine Descriptions

The following descriptions are of the routines developed for

the EDPLAN program only. However, using these routines are

guides will aid in the development of other programs.

1. PROCEDURE FINDSECTION(VAR FIND: LINK PTR; SEARCHSECT:BUFF8);

'C' This routine finds the first occurance of a student who

belongs to a specific section passed via the SEARCHSECT

parameter. The starting location is passed in the FIND parameter

and the location is passed back through the same pointer. The

routine was designed to be called until the entire list of

student or faculty members had been exhausted.

2. PROCEDURE DISPLAY NAME(VAR NAME:BUFF28; VAR CTRL:BUFF9;

CURR:LINKARRAY);

-1' This routine was designed to find a student's or faculty

member's social security number given his last name or a subset

of his last name. This is accomplished by searching the linked

list of students or faculty for all the names that match the

input name passed by the parameter NAME. when this routine is

the matching names are passed through the parameter CURR. rising

"4-11

S '

the FMS scrolling feature, the names are presented to the user

and the user can either make a selection or abandon the screen, in

which case, a blank social security number is returned. The

blank social security number indicates no names were found.

3. PROCEDURE GETVCQR (VAR VCQR: VCQRARRAY; CTRL: BUFF9);

This module reads the courses a student has entered into his

education plan into an array of variable course quarter records,

allowing up to 120 records. It formats the records into the array so they

appear in the proper column when displayed by FMS.

4. PROCEDURE FILLEDPLAN (STDT:STDTREC; VCQR:VCQR_ARRAY);
This procedure fills the FMS screen 'EDPLANI' with the

students name, rank, social security number, box number, primary

afsc, education code and courses.

5. PROCEDURE GETADVISOR(VAR NAME:BUFF28; VAR CTRL:BUFF9);

The procedure GETADVISOR retrieves a faculty members social

security number and master record by calling the procedure

FINDNAME for all occurences of instructors with the same last

name. If only one is found then the record is read and the

information passed back, if more than one is found then the

procedure DISPLAY NAME is called to select one of them.

6. PROCEDURE GETSTUDENT(VAR NAME:BUFF28; VAR CTRL:BUFF9);

This procedure performs the same function as GETADVISOR

except it is done for students names.

7. PROCEDURE UPTSEQ(VCQR: VCQRARRAY);

This routine deletes and re-creates the associated course

files for the student. The array is sorted based upon the year

and quarter the course will be taken, and then the copy of the

courses in the CRSEARRAY are displayed and updated to reflect if

4-12

6

the courses are SEQA, SEQB, MATH, THES, or WAIV type courses.

8. PROCEDURE ADDPLAN;

This procedure initially adds a students personal data and

6basic edplan into the system. The procedure UPTSEQ is called to

write the course information to the database.

9. PROCEDURE UPTEDPLAN;

This procedure updates a students education plan by reading

in his/her previous plan and displaying this to the user. Once

the plan is read in, the courses are sorted based on the year

and quarter and written back to the database. These courses are

then copied into an array of records of type CRSEARRAY where the

user defines them as SEQA, SEQB, THES, MATH, or WAIV courses.

This routine allows the programmer to add edit checks while the

courses are read in from the screen so that at the end of the

session, all course entered are valid. The student is not

deleted from the database and the course taken are archived in

the Registrars office.

10. PROCEDURE DELEDPLAN;

This module deletes a students education plan from the data

base but does not delete the student information from the STDT

master file. The student is selected using the GETSTUDENT

routine and the edplan is displayed to the user to insure that

this is the plan they wish to delete. Only after the user has

affirmed the decision will the plan be deleted.

11. PROCEDURE REVEDPLAN;

This routine functions much in the same way that the
0

UPTEDPLAN routine does except it does not allow the user to

4-13
S °.

udpate any information.

12. PROCEDURE LISTSTDT;

This routine lists all of the students who belong to a

specific section by searching the linked lists and passing the

selected names to the DISPLAY NAME routine.

13. PROCEDURE PRINTCOURSE(COURSE:BUFF8; VAR CUM,QTR: INTEGER);

The PRINTCOURSE subroutine accepts as parameters the 8

character course code and the cumulative and quarterly hour

totals. The procedure reads the master course file to obtain the

title of the course and its credit hours, and then converts the

number to an integer and adds them to the totals. The procedure

* then writes the course description to the file "RECORDS".

14. PROCEDURE PRINTSEQ(STDT: STDTREC; SECTION:BUFF8);

%This procedure produces the second page of the education

plan report by printing the course sequence declaration as

described by the student or faculty member.

15. PROCEDURE PRINTHEAD;

This procedure prints the header for each quarter of the

education plan report or the header for each sequence.

16. PROCEDURE PRINTTAIL(VAR CUM,QTR: INTEGER);

0Q This procedure prints the totals for each quarter and the

cumulative totals.

17. PROCEDURE PRINTEDPLAN(SSAN: 3UFF9; FLAG: BOOLEAN);

This procedure controls the printing of the first page of

the education plan. It prints the course a student is taking by

the quarter. It then reads the VCQR file, formats the output and

prints the information. If a flag is sent to the routine as

4-14

-".4

TRUE, then the second page of the report is also printed which

contains the sequence declarations.

18. PROCEDURE PTREDPLAN;

The procedure reads in the student's name whose edplan is

requested. If the edplan is found, the user must enter whether a

request for the second page is needed. The PRINTEDPLAN routine

is then called.

19. PROCEDURE SECEDPLAN;

This procedure reads the section code from the user and

gathers all of the students who belong in that section from the

linked list. The names are then sent one by one to the procedure

" PRINTEDPLAN. The file 'RECORDS' is then printed and deleted.

Other Modules Under Development

In order to accomplish many of the tasks required in the

EDPLAN program, many other forms of data were required in the

database system. For instance, faculty records, section

description, courses offered, department information, and several

other items needed to be in the database in order for the

variable records to be added. A section advisor record (FADV)

could not be added if a faculty member with the specified social

* security number did not exist and the master section record did

not exist. The basic maintenance modules for all of the master

files were constructed at one time by the EENG 646 database

class. A brief description of the modules constructed using the

above programming techniques and some of those gathered from the

WINTER 1985 EENG 646 class are described below.

1) FACTMOD.PAS: This program allowed the addition, update,

deletion and review of all of the faculty master records.

4-15

v. .

1A.............................

2) SEQMOD.PAS: This module allows members to describe course

sequences so students will be able to check their education plans

to insure they have enough credits in the right courses to

graduate. Course sequences can be added, updated, deleted,

reviewed, and students can check their education plans against

them.

3) BOOK.PAS: This file maintains the text book titles,

order information, and re-order information. Currently, book

information can be added, updated, deleted and reviewed.

System Integration

The integration of the system was simple and very flexible.

The design of the system allowed the Data Base Administator

several options. Each module (i.e STDTMOD, FACTMOD...etc) could

be called individualy, allowing access to certain users by

using the system priviledge codes. Several of the programs could

be combined into a large program with a small main routine to

drive them both . Or, a .COM (command file) could be used to

control the calls to each of the modules.

The latter of the options was chosen because it allowed the

mixing of modules with out re-compiling the programs and linking

the data base system with the object modules. This also allowed

the DBMS Manager to re-start the TOTAL DBMS system by use of a

filename.COM file if the first call to the TOTAL DBMS failed to
6-

sign on. This solution relies on the version of VMS currently

on the machine and could pose a problem in the Future if a

different operating system was used. A better solution would be

[to have a program which called the modules as external references

4-16

*," **<

' - ' , "I ;'-- " "* * "± '' "- '" : " " " " - ''' , O' l, '.(i* - . -"" ' *.., " l'**.'rl 9*rr
W

,**.*
'

." 'l 9-"

much, using the programs as subroutines.

Test Plan

A formal test plan was used to test the lower level database

S modules in the beginnig to insure they worked properly with the

database. Several conditions had to be met in order to insure

their validity:

1. Each module had to work with an empty database.

2. Each module had to return a valid status code.

3. Each module was required to return or send valid data

and to detect data sent in other than character form.

4. The linked list routines must work with an empty list of

-. names, and up to the maximum number of names allowed in the

database. Some special cases occured with one and two names in

the system, but these were detected and handled.

The validation of the standard routines was conducted very

early in the design phase. The modules were working at the time

when the overall system was being coded. They were used as

extensions to the PASCAL language and not as independent modules.

The test plans followed by this thesis are identical to those

developed by Pangman (2) and Bailor (7) in their theses

on the same subject. The test plans can be found in Appendix I.

Summar y

This chapter developed the details of coding and

implementing a portion of the AFIT/E-NG Database Design on the VAX

11/780 and the TOTAL DBMS. The education plan was chosen because

it was under prototype development by the deptrtment, and has a

great potential for decreasing the workload on the faculLy. The

4-17

-a

actual configuration of the VAX 11/780 was described to aid in

future development of the AFIT/EN Database and in the

configuration of the system to facilitate transfer to another

computer when the sytem becomes fully operational. The EDPLAN

program was examined in detail to provide future programmers and

analyst an insight into the program development methodology and

design. It is hoped that any future attempts will follow the

structured programming of the EDPLAN module during modifications

of the code, and on any programs currently under developement.

el-.

'.

-I V

'4"-4

*N4N

_ -,

I -

. - ' ,4 -1 8

,-A- Chapter 5

V. Conclusions and Recommendations

Introduction

This chapter presents the conclusions, problem areas, and

recommendations derived from the results achieved by this study.

Thoughout the course of this effort the human computer interface

and user requirements were highlighted as well as the Software

Development Life Cycle. From the beginning, the project

proceeded upon the assumption that the software produced by this

project would be used by the AFIT Shool of Engineering

Department Electrical and Computer Engineering, if not the entire

school, as a protoype for future development. The main effort

was to produce a standard set of software products that adhered

to the practices of good software engineering.

Conclusion

The intial part of this effort was to examine the

requirements of the AFIT/ENG Department and compare these

* requirements with past theses efforts by Pangman (2), Allred(12),

and Ricks(13). Some of the requirements had changed and are

*" still changing. Information such as faculty personal data,

course names, privacy act regulations, sequence requirments,

degree requirements, and department changes will greatly effect

the database structure and the associated computer programs.

The next step was to examine the functional requirements of

the database and the user-interface requirements. The functional

part of the database described what data was to be stored, how

the data was stored, how the software was to interact, the

5-1

overall structure, the reports to be generated, and the purpose

of the system. At this point it was decided to define some

standard functions that would act as auxiliary operations to the

Pascal language. These functions and procedures would be available to

all of the program segments and modules.

The human-interface requirements took into account how the

information was presented to the user, the skill level of the

average user, average age, and access priviledge. Using these

critera the characteristics of a standard user were developed by

which the interface systems could be taylored. A prototype of the

education plan program (EDPLAN) was developed and tested on the

incoming class of students where. They were required to enter

their education plan on the system. The students were then

interviewed to find their likes, dislikes, how long it took them

to learn to use the system, and how "user-friendly" they thought

it was. Using the feedback from the prototype system, a real

education program was developed during the implementation stage

of the Software Development Life Cycle.

Having defined the requirments for the system, the next step

was to perform a preliminary design of the AFIT/ENG Database
S

System. The database schema, as defined by Pangman (2) and as

modified by engineer Robert Ewing, was examined for relationships

in the structure that were intended to be mapped into some type of

query. These relationships were translated into further

refinements of the requiements. The method for development chosen

was a combination of top-down and bottom-up design. The overall

picture was depicted in structure charts while the common

5-2

routines were completely developed and tested. This provides a

better foundation for development and use as tools for future

modifications. The requirements for the system were well defined

and mapped almost in a one-to-one correspondence into a design of

the system.

The detailed design of the system was a refinement process

from the preliminary design phase. There wasn't an exact point

in the process where the preliminary design ended and the

detailed design began. It was more of a smooth transition or

evolution of software. Because of the complexity of the design,

* layers of software were developed following the stategy of the

ISO network software. Each layer was developed to perform

specific tasks at specific levels. Using dummy procedures as

stubs, each layer was developed seperately from the others. This

provided a front end processor to the TOTAL DBMS. The detailed

design phase also involved defining the help level descriptions

and tutorial screens which are important to the type of user

described in the early phases of the development.

The next phase on the Software Development Life Cycle was

the implementation phase or the coding phase. This phase

involved taking the detailed design and putting it into a

computer language (Pascal and VMS) . Much of the software which

was required to enter data into the database was developed from

the EENG 646 DATABASE SYSTEM class and integrated by engineer

-~ Robert Ewing. These modules were inspected and changed to fit

the design as described by this thesi3. Additional software was

-' developed to prove the design to be a solid one. User commenL,;

5-3

AD-R164 051 IMPLEMENTATION OF THE AFIT/ENG FACULTY AND STUDENT 2/
DATABASE MANAGEMENT SYSTEMU) AIR FORCE INST OF TECH
WRIGH T-PATTERSON AFB OH SCHOOL OF ENGINEERING

UNCASSFIE DA GRITROS DEC 85 AFIT/GCS/ENG/85D-5 F/C 9/2 M

EhL SEEEEEEE hEEEEEEEEE,7

53.W.,

1111 1.0 I 2 .0"": ' UlIII IIII322I i

.,
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- I963-A

'-I.

.12

.

i4.,

were used thoughout the implementation phase to fine tune the

system to the needs and cognitive styles of the users. The

EDPLAN program was developed to provide an example of the

validity of the design and to stand as an example to guide the

future software developments and modifications.

Using the standard database routines developed in this

project, the availability of additional software from the EENG

646 class, and the use of the FMS (Forms Management System)

caused the overall development of the system to proceeded very

smoothly. The maintenance and any future developments should

benefit from the extensive research provide by this and previous

efforts. All software developed from this project is kept in the

Information Sciences Laboratory as version 2.2 of the AFIT/ENG

Faculty and Student Database Management System.

Problems Encountered

The most prevelent problem in the beginning was the

learning curv;e required to use the TOTAL DBMS. The description

of the schema, signing on to the database system, declaring

external procedures, and the complex calling routines required to

access the TOTAL DBMS were the main problems. This was

addressed by putting the emphasis on the thesis in developing

routines that all future programmers could use to perform these

functions in an easy and timely manner.

The worst problem was caused when the operating system was

changed from VMS version 3.6 to VMS verison 4.2. This changed

the way TOTAL interfaced with the operating systems mail programs,

the device definitions, and the logon commands required to run

5-4

the software. The version of TOTAL currently running (2.2) is

- the same version that runs on the PDP-11 computer. A run time

simulation program is used to run the PDP-ll code on the VAX

11/780. This software was also required to be updated when the

operating system was changed.

The other problem associated with the change in operating

systems was the change in the Pascal compile and the FMS

definition program. The new operating system will not allow

strings of different sizes to be assigned. Before, trunction was

expected and blanks were padded at the end of the sending field.

* A long recieving field would flag a Pascal compile error. The

new compiler would not flag an error if the sending field was to

large but the new operating system would issue an error message

and abort the program upon executing the assignment statement.

The software was changed so all receiving and sending fields on

assignments statements were of the same length. The new FMS

driver program was compiled using the new version of the Pascal

compiler using the following format:

$PASCAL/ENVIRONMENT FDVDEF.

Recommendations

-~ The modular approach to the design of this system has

evolved over several iterations of the requirements and

preliminary design phases. It was the intention from the

beginning that the maintenance phase of the Software Life Cycle

would contribute much to the capabilities of the AFIT/ENG

Database System. Future work should concentrate initially on the

.2. ~ basic maintenance software that safeguards the data integrity and

5-5

provides a "user friendly" interface to the system. The first

large effort that should be put in to this database is the entry

* of data on to the database is the faculty information, thesis

titles and authors, sequence and degree requirments, and complete

scheduling information.

Currently, once education plans or grades are entered into

the database, they are transfered by tape or manually to the

admissions office for input into their system. A set of

standards and methods should be negotiated between the two

-~ parties to accomplish this task automatically. This would also

involve forming a set of rules and standards between the School

* of Logistics, School of Engineering and School of Civil

Engineering. The main objective of this database is to reduce

the workload humans have to perform and allow faculty to

concentrate on academics instead of administrative duties.

Another recommendation is to phase in the ability to produce

the Graduate Credit Record using the database system. A simple

formula will be used to produce the credit record which

calculates the grades by taking thesis courses and the highest

grades from all graduate level course and calculating the grade

point average. The user will be allowed to change these

decisions by tagging and untagging specific course and viewing

the change in credit hours and grade point average in a real time

environment. Examples of this screen can be seen in Appendix E.

The department heads should draft a formal letter of

responsibilities for the database. Issues such as who enters

course grades, education plan changes, sequence requirements,and

5-6

has access to privacy act information should be addressed before

the database is totally integrated in the School of Engineering.

Some these problems solved if a driver could be found for the

Burroughs terminals that would allow the faculty members to have

access to the database from their office. Currently, the

Burroughs terminals cannot recognize the FMS graphics signals.

Finding a VT100 simulator for these systems would work, or

changing the FDVDEF.PAS program that interacts with FMS would

also be a solution.

The TOTAL DBMS system currently operates in a secondary mode

to the VMS operating system. It must go through a PDP-11

simulator in order to operate a 16-bit system in a 32-bit

addressing environment. A study should be conducted to the

possibility of converting the current TOTAL DBMS to a version

that operates under the VMS 4.2 operating system without an

emulatotr. There currently exist a database called ULTRA (17)

that would satisfy this need. The ULTRA Database Management

4 - System is compatible to TOTAL and provides a relational database

front-end processor. This would by all indications improve the

performance of the database by a considerable margin and add new

capabilities to the system. This would also eliminate the need

for an Ingress version of the database system.

The AFIT/LN~G Database Management System is a large and

complex software development effort that should proceed in a

series of steps to insure proper implementation. The first

milestone should be to finish and validate the student education

plan program. During this phase, the software needed to maintain

5-7

V the database should be developed and tested. This would include

faculty, course, student, thesis, and sequence information. The

database works best when all of the relationships can be linked

together. The next step is to completely implement the database

within the Department of Electrical and Computer Engeering. The

next steps would be to phase in the other departments within the

d~. School of Engineering and begin development on the management

information programs. The success of the AFIT/ENG Database

Management System for Faculty and Students will depend upon the

software engineering and managerial abilites of those maintain

the system. It is hoped that this thesis has provided a sound

* foundation for that success.

.5-3

-A

Bibliography

.1 1. Date, C. J. An Introduction to Database Systems(Third
Edition). Reading, Menlo Park, London, Amsterdam, Dom Mills,
Sydney: Addison-Wesley Publishing Company, 1982

2. Pangman, Myron E. Complete Development and Implement AFIT/EN
Database Management System, Masters Thesis, School of
Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, 1983

3. Horowitz, Ellis and Sahni, Sartaj. Fundamentals of Data
Structures In Pascal. Rockville:Computer Science Press,
Inc. , 1984

4. Peters, Lawrence J.Software Design: Methods and Techniques,
Yourdon Press, New York,1981

5. Woffinden, Duard S. Lecture notes from EE9.93, Software
Engineering, School of Engineering, Air Force Institute of
Technology, Air University (AU), Wright-Patterson AFB, OH,
1985.

6. Sheil, B. A. "Power Tools for Programmers," Datamation
S ... , Magazine, pages 19-30,(1983)

7. Bailor, Pail D. Development of a Data Base Management
System Performance Monitor, Masters Thesis, School of
Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, 1983

8. Lamont, Gary B. PH.D., Hadfield, Steven M.The Software
Development Workbench: An integrated Software Development
Environment. Unpublished-Text. School of Engineering, Air

Force Institute of Technology, Wright-Pattterson AFB, Ohio

9. Wiederhold, Gio. Database Design New York: McGraw Hill,
Inc., 1977

10. Digital Equipment Corporation, VAX-il FMS Software Reference
Manual Order No. AA-J260A-TE. Digital Equipement
Corporation, Maynard, Ma, September, 1980

11. Pressman, Roger S. Software Engineering: A Practitioners
Approach. New York: McGraw Hill Book Company, 1982

12. Allred, Dean S. Consolidated AFIT Database,Masters Thesis,
School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, 1980 (AD 124376).

13. Ricks, Jeffrey S. and Robert S. Colburn, Ananlysis of
Information Requirements and Design of the Consolidated AFIT
Database and Information System (CADIS) with an AFIT/CI
Implementation Design,Masters Tsis, School 5f Engineering,

'., . Air Force Institute of Technology (AU), Wright-Patterson

BIB-1

AFB, OH, 1980 (ADA 124647)

14. Scharer, Laura.,"Pinpointing Requirements",Datamation
Magazine, pages 139 - 151, April, 1981

15. Stevens, W. P., Myers, G. L. and Constantine, L.L.,
"Structured Design",IBM System Journal,Volume 13, Number
2,pages 328 through 352, 1974

16. Cincom Systems, Inc. TOTAL User's Guide. Digital Equipment
Corporation, Canada, 1-980

17. Cincom Systems, Inc.ULTRA Interactive Data Base. Company
Brochure, Digital Equpnt Corporation, Canada 1985

V

BIB-2

.5.

Vita

David Alan Gaitros was born 18 February 1955 in Decatur,

Illinois. He graduated from high school in Cerro Gordo, Illinois

in 1973 and attended Southern Illinois University, Carbondale,

Illinois from which he recieved a Bachelor of Arts in Computer

Science and Mathematics in May 1977. Upon graduation he was

commissioned a Second Lieutenant in the United States Air Force

through ROTC. He served as a systems analyst and source

selection board recorder during his first assignement. His last

assignment was as the Chief of the Test and Development Section,

Utility Software Branch, Mission Support Directorate of the 552nd

Airborne Warning and Control Division. He en.ered the Air Force

Institute of Technology in June of 1984.

Permanent address: 302 East Carter St.
P.O Box 15
Cerro Gordo, Illinois

a 61818

4° .Io

-I-. '". - ."" -' -. ,. ' -'" ""'""%"""" . . . - . " . " ' " "

4APPENDIX A

% 7AFIT/ENG FACULTY AND STUDENT DATABASE GENERATION

The following appendix is the source code used by the TOTAL
DBMS to define the master files, variable files, data names, and

relationships for the AFIT/ENG database. The data files, data
names, data links, data sizes, number of logical records, record
length, and records per blocks are all defined by the database
generation. When the database is first generated in the form
below, all files sizes are fixed and empty.

BEGIN-DATA-BASE-GENERATION / THIS IS THE NEW VERSION OF THE /
DATA-BASE-NAME=AFITDB / EXPANDED AFITDATABASE. /
SHARE-IO / DEVICES ARE LISTED AS RA81 INSTEAD /
IOAREA=MASI / OF RK07. THE TITLE OF THIS IS /
IOAREA=MAS2 / AFITDB.DBG RLE 16 AUG 1985 /
IOAREA=MAS3
IOAREA=MAS4
IOAREA=MAS5
IOAREA=MAS6

* IOAREA=MAS7
IOAREA=MAS8
IOAREA=MAST

IOAREA=VARI
IOAREA=VAR2
IOAREA=VAR3
IOAREA=VAR4
IOAREA=VAR5
IOAREA=VART

IOAREA=VARX

END-IO

A-1

W

--------------------- MASTER FACULTY FILE -----------------

. . BEG IN- MAS TER- DATA- S ET
DATA-SET-NAME=FACT / FACULTY MASTER /

IOAREA=MAS5
MASTER-DATA
FACTROOT=8
FACTCTRL=9 / FACULTY SSN /
FACTLKSE=8 / SECTION LINK /
FACTLKSO=8 / SOCIETY LINK /
FACTLKED=8 / EDUCATION LINK /
FACTLKHA=8 / HONORS & AWARDS LINK /
FACTLKIN=8 / INTEREST LINK /
FACTLKCO=8 / PUBLICATIONS & PRESENTAIONS LINK
FACTLKTD=8 / TDY LINK /
FACTLKCM=8 / DEPT & COMMITTEE LINK
FACTLKTH=8 / LINK TO THESIS /
FACTLKCQ=8 / GRADE LINK /
FACTLKPD=8 / LINK TO PROFESSIONAL DEV QTR
FACTLKTA=8 / LINK TO THESIS ADVISOR
FACTLKIS=8 / LINK TO INSTRUCTOR STATISTICS
FACTLKAD=8 / LINK TO FACULTY ADVISOR /

* FACTLKTC=8 / LINK TO THESIS COMMITTEE MEMBER
FACTNAME=28 / FACULTY MEMBERS NAME,LAST,FIRST,MI/
FACTRANK=3 / MIL/CIV RANK (O-OFFICER,G-CIV,NN-RANK)/
FACTSRVC=2 / MILITARY SERVICE /
FACTDOCM=6 / DATE OF COMMISSION /
FACTHDAT=6 / DATE HIRED /

(O FACTSALR=5 / SALARY /
FACTDOBI=6 / DATE OF BIRTH /
FACTSEXX=1 SEX /
FACTAERO=10 / AERO RATING /
FACTDTSC=6 / DUTY AFSC /
FACTPMSC=6 / PRIMARY AFSC /
FACTDORK=6 / DATE OF RANK /
FACTYRSS=2 / YEARS OF SERVICE /
FACTADDR=40 / CURRENT ADDRESS -/

/ NUMBER,STREET,CITY,STATE,ZIP/
FACTHPHN=7 / HOME PHONE (EXCHANGE,EXTENSION)/
FACTEADR=40 / EMERGENCY ADDRESS /
FACT4STA=I / MARITAL STATUS /
FACTSPOS=12 / SPOUSE FIRST NAME /
FACTSDOB=6 / SPOUSE DATE OF BIRTH /
FACTNDEP=2 / NUMBER OF DEPENDENTS /
FACTRACE=2 / RACE /
FACTRELN=2 / RELIGION /

or FACTOFIC=12 / OFFICE RM NUMBER /
FACTOPHN=7 / OFFICE PHONE (EXCHANGE,EXTENSION)/
FACTLORG=50 / LAST ORGANIZATION /
FACTTITL=50 / LAST POSITION TITLE /
FACTDEPT=6 / EXPECTED AFIT DEPARTURE DATE
END-DATA

TOTAL-LOGICAL-RECORDS=1000

LOGICAL-RECORD-LENGTH=462

A-2

- - - -- - - - - -- - -- -

LOGICAL-RECORDS-PER-BLOCK=5 /BLOCKSIZE=2560/
DEVICE=RA81
DRIVE=30,5000,DU3
END-MASTER-DATA-SET

0

A-3

------------------------------- MASTER DEPARTMENT FILE ------

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=DEPT /DEPARTMENT MASTER/
IOAREA=MAS 2
MASTER-DATA
DEPTROOT=8
DEPTCTRL=4 /DEPT CODE/
DEPTLKCM=8 /DEPT & COMMITTEE LINK/
DEPTNAME= 20
END-DATA

TOTAL-LOGICAL-RECORDS= 200
LOG ICAL-RECORD-LENGTH= 40
LOGICAL-RECORDS-PER-BLOCK=12 /BLOCKSIZE=512/
DEVICE=RA81
DRIVE=31, 5000,DU3
END-MASTER- DATA-SET

--------------------------- MASTER STUDENT FILE---------------------

* BEGIN-MASTER-DATA-SET
DATA-SET-NAME=STDT /STUDENT MASTER/
IOAREA=MAS4
MASTER- DATA
STDTROOT=8 /REQUIRED/
STDTCTRL=9 /STUDENT SOCIAL SECURITY/

SSTDTLKAW=8 /LINK TO VHAW (AWARDS)/
STDTLKCR=8 /LINK TO CRSE (COURSE)/
STDTLKDG=8 /LINK TO VEDU (VARIABLE EDUCATION) FILE/
STDTLKCQ=8 /LINK TO VCQR (AFIT COURSES & CREDITS/
STDTLKTH=8 /LINK TO THESIS FILE/
STDTLKSE=8 /LINK TO SECTION FILE/
STDTLKTA=8 /LINK TO THESIS ADVISOR/
STDTLKIS=8 /LINK TrO INSTRUCTOR STATISTICS/
STDTLKAD=3 /LINK TO FACULTY ADVISOR/
STDTLKCM=8 /LINK TO THESIS COMMITTEE MEMBER/
STDTSEQN=3 /MASTER SEQUENCE CONTROL NUMBER *
STDTNAME=29 STUDENT NAME (LAST,FIRSTMI)/
STDTRANK=3 ,'MIL/CIV RANK(O-OFFICER,G-CIV,NN-RANK/
STDTGRAD=l HAS STUDENT ALREADY GRADUATED/LEFT AFIT?/
STDTSRVC=2 /MILITARY SERVICE/
STDTAERO=10 /AERO RATING/
STDTDORK=6 /DATE OF RANK/
STDTDOCM=6 /DATE OF COMMISSION/
STDTYRSS=2 /YEARS OF SERVICE/
STDTSEXX=l SEX/
STDTBOXN=4 /BOX NUMBER/
STDTDTSC=6 /DUTY AFSC/
STDTPMSC=6 /PRIMARY AFSC/
STDTADDR=40 /CURRENT ADDRESS/
STDTEADR=40 /EMERGENCY ADDRESS/
STDTHMPH=7 /HOME PHONE NUMBER/
STDTDTPH=7 /DUTY PHONE NUMBER/

A-4

7.

STDTEDCD=5 / EDUCATION CODE /
', . , STDTDOBH=6 / DATE OF BIRTH /

-',STDTPOBH=40 / PLACE OF BIRTH /
STDTMSTA=I / MARITAL STATUS - M(MARRIED) ,D(IVORCED) ,ETC
STDTSPOS=12 / SPOUSE FIRST NAME /
STDTSDOB=6 / SPOUSE DATE OF BIRTH /

-. " STDTMSPS=I / MILITARY SPOUSE /
STDTNDEP=2 / NUMBER OF DEPENDENTS /
STDTRACE=2 / RACE /
STDTRELN=2 / RELIGION /
STDTLCMD=5 / LOSING COMMAND /
STDTLORG=50 / LAST ORGANIZATION /

'S-'" STDTTITL=50 / LAST POSITION TITLE /
*%'- STDTDURN=2 / DURATION AT LAST DUTY ASSIGNMENT /

END-DATA

TOTAL-LOGICAL-RECORDS= 5000
LOG ICAL-RECORD-LENGTH= 460
LOGICAL-RECORDS-PER-BLOCK=5 BLOCKSIZE=2300 MAS1=2560
DEVICE=RA81
DRIVE=26, 5000,DU3

* END-MASTER-DATA-SET

--------------------- MASTER THESIS NUMBER FILE

BEGIN-MASTER-DATA-SET
9 0 DATA-SET-NAME=THES / THESIS NUMBER MASTER /

IOAREA=MAS6

MASTER-DATA
THESROOT=8
THESCTRL=10 / THESIS CATALOGING NUMBER /
THESLKTH=8 / LINK TO VARIABLE THESIS TITLE FILE /
THESLKTA=8 / LINK TO THESIS ADVISOR /
THESLKTC=8 / LINK TO THESIS COMM MEMBER FILE /
THESTITL=50 / THESIS TITLE /
THESSPON=50 / THESIS SPONSOR /
THESLOCN=50 / THESIS LOCATION /

* THESCLAS=12 / THESIS CLASSIFICATION /
THESNAME=28 / STUDENT NAME FOR ARCHIVE PURPOSES /
END-DATA

""*. TOTAL-LOGICAL-RECORDS=5000
LOGICAL-RECORD-LENGTH=232
LOGICAL-RECORDS-PER-BLOCK=4
DEVICE=RA81
DRIVE=22,5000,DU3

END-MASTER- DATA-SET

..'. .T.l,

"' A-5

...-- ,

------------------------------------ -MASTER SECTION NUMBER FILE----------

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=SECT /SECTION NUMBER MASTER FILE/
IOAREA=MAS6

MASTER-DATA
SECTROOT= 8
SECTCTRL=8 /SECTION NUMBER (EX., GCS-84D)/
SECTLKSE=8 /LINK TO SECTION LEADER FILE/
SECTLKAD=8 /LINK TO FACULTY ADVISOR/
SECTLSSN=9 /SECTION LEADER SSSN/
SECTGRDT=6 /GRADUATION DATE/
SECTENDT=6 /ENTRY DATE /
SECTNRSN=3 /NUMBER OF STUDENTS IN SECTION/
END- DATA

TOTAL-LOGICAL-RECORDS= 500
LOG ICAL-RECORD-LENGTH= 56
LOG ICAL-RECORDS-PER-BLOCK= 9
DEVICE=RA81

* DRIVE=23,5000,DU3

END-MASTER-DATA-SET

------------------------------------- MASTER COURSE FILE---------------------

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=MCRS /COURSE DATA MASTER FILE/
IOAREA=MAS3

MASTER-DATA
MCRSROOT=8 /REQUIRED BY TOTAL/
MCRSCTRL= 8 /COURSE NUMBER /
MCRSCRHR=1 /COURSE CREDIT HOURS/
MCRSLKCQ=8 /LINK TO QUARTER/
MCRSLKRQ=3 LINK TO REQUISITE/
MCRSLKCB=8 /LINK TO BOOK TITLE/

*MCRSLKSC=8 /LINK TO SCHD/
MCRSLKSS=8 /LINK TO COURSE SEQUENCE/
MCRSLKIS=8 /LINK TO INSTRUCTOR STATISTICS/
MCRSLCHR=l COURSE LECTURE HOURS DATA/
MCRSLBHR=l COURSE LAB HOUR DATA/
MCRSSZLM=2 /SIZE LIMIT DATA/
MCRSTITL=50 /TITLE DATA /
MCRSREST=l RESTRICTED (FROM GRAD REQ) COURSE/
END-DATA
DEVICE=RA81
TOTAL-LOG ICAL-RECORDS= 2000
LOGICAL- RECORD- LENGTH= 130
LOGICAL-RECORDS-PER-BLOCK=7 /BLOCKSIZE =1024/

DRIVE=12, 5000,DU3
~' .~.>END-MlASTER-DATA-SET

A-6

4-l

S----------------------ASTER QUARTER FILE

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=MQTR / QUARTER DATA MASTER FILE /
IOAREA=MAS 7

MASTER-DATA
-QTRROOT=8 / REQUIRED BY TOTAL /
MQTRCTRL=4 / QUARTER NUMBER /
MQTRLKCT=8 / LINK TO COURSE /
MQTRLKPD=8 / LINK TO PROF DEV QTR /
MQTRSTDT=6 / QUARTER START DATE(DAY,MO,YR) /
MQTRSPDT=6 / QUARTER STOP DATE (DAY,MO,YR) /
END-DATA

DEVICE=RA81
TOTAL-LOGICAL-RECORDS=1000
LOGICAL-RECORD-LENGTH=40

LOGICAL- RECORDS-PER-BLOCK=12
DRIVE=13,5000,DU3
END-MASTER-DATA-SET

----------------------- MASTER BOOK FILE---------------------

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=MBKT / BOOK INFORMATION MASTER FILE /
IOAREA=MAS1
MASTER-DATA
1MBKTROOT=8 / REQUIRED BY TOTAL /
MBKTCTRL=40 / BOOK TITLE NAME /
MBKTLKBK=8 / LINK TO COURSE THRU VCBK /
MBKTLKNO=8 / LINK TO NUMBER ORDERED /
MBKTATHR=28 / BOOK AUTHOR NAME (LAST,FIRST,MI) /

[. MBKTPUBL=28 / BOOK PUBLISHER NAME /
*.-- MBKTNAVL=6 / NUMBER OF BOOKS AVAILABLE /

MBKTPRCE=4 / BOOK PRICE /
END-DATA

DEVICE=RA81 PHYSICAL ENVIRONMENT
TOTAL-LOGICAL-RECORDS= 5000

LOGICAL-RECORD-LENGTH= 130
LOGICAL-RECORDS-PER-BLOCK=3
DRIVE=14,5000,DU3
END-MASTER-DATA-SET

A- 7
.- .*

---------------------- MASTER ORDER FILE--------------------

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=MORD / BOOK ORDERING INFORMATION MASTER FILE
IOAREA=MAS1
MASTER-DATA
MORDROOT=8 / REQUIRED BY TOTAL /
MORDCTRL=7 / MASTER ORDER NUMBER
MORDLKBO=8 / LINK TO BOOK THRU VNMO
MORDORDT=6 / ORDER NUMBER /
MORDDUDT=6 / DUE DATE

MORDCMPY=20 / COMPANY /
MORDADDR=40 / COMPANY ADDRESS /
MORDPHNE=10 / COMPANY PHONE NUMBER WITH AREA CODE

END-DATA

:7 DEVICE=RA81 PHYSICAL ENVIRONMENT
TOTAL-LOGICAL-RECORDS=1000

LOGICAL-RECORD-LENGTH=106
LOGICAL-RECORDS-PER-BLOCK=4
DRIVE=15,5000,DU3

* END-MASTER-DATA-SET

---------------------- MASTER CLASS TIME FILE-------------
BEGIN-MASTER-DATA-SET
DATA-SET-NAME=TIME / MASTER CONTAINING COURSE TIMES
IOAREA=MAST
MASTER-DATA
TIMEROOT=8
TIMECTRL=4 / MILITARY CLOCK TIME /
TIMELKSC=8 / LINKPATH TO SCHEDULE FILE
END- DATA

TOTAL-LOGICAL-RECORDS=3600
LOGICAL-RECORD-LENGTH=20

LOGICAL-RECORDS-PER-BLOCK=25
DEVICE=RA81

-" DRIVE=01,5000,DU3
- END-MASTER-DATA-SET

--------------------- MASTER BUILDING/ROOM FILE

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=BLRM / MASTER CONTAINING ROOMS AND

/ BLDG #'S FOR SCHEDULING/
IOAREA=MAST
MASTER-DATA
BLRMROOT=8
BLRMCTRL=8 / BUILDING AND ROOM NUMBER
BLRMLKSC=8 /LINKPATH TO SCHEDULE FILE
BLRMLKCL=8 / LINKPATH TO CLASSROOM FILE

A-8

-%

END- DATA

TOTAL-LOGICAL-RECORDS= 5000
LOGICAL-RECORD-LENGTH= 32
LOGICAL-RECORDS-PER-BLOCK= 16
DEVICE=RA8 1
DRIVE=02,5000,DU3
END-MASTER-DATA-SET

------------------------------ MASTER ROOM CAPACITY FILE -----

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=CPTY /MASTER CONTAINING ROOM CAPACITIES/
IOAREA=MAST
MASTER- DATA
CPTYROOT=8
CPTYCTRL=4 /CAPACITY NUMBER/
CPTYLKCL=8 /LINKPATH TO CLASSROOM FILE/
END-DATA

* TOTAL-LOGICAL-RECORDS= 700
LOG ICAL-RECORD-LENGTH= 20
LOGICAL-RECORDS-PER-BLOCK=25
DEVICE=RA81
DRIVE=03,5000,DU3
END-MASTER-DATA-SET

------------------------------- MASTER DAY SCHEDULING FILE ----

BEGIN-MASTER-DATA-SET
DATA-SET-NAME=DAYS /MASTER WHICH CONTAINS DAYS OF WEEK/
IOAREA=MAST
MASTER-DATA
DAYSROOT=8
DAYSCTRL=4 /DAY OF THE WEEK/
DAYSLKSC=8 /LINKPATH TO SCHEDULE FILE/
END-DATA

TOTAL-LOGICAL-RECORDS= 30
LOG ICAL-RECORD-LENGTH= 20
LOGICAL-RECORDS-PER-BLOCKs 25
DEVICE=RA81
DRIVE=04,5000,DU3
END-MASTER-DATA-SET

A- 9

------------------------------ MASTER SEQUENCE FILE--------------

4 BEGIN-MASTER-DATA-SET
DATA-SET-NAME=MSSF /COURSE SEQUENCES MASTER/
IOAREA=MAS8
MASTER-DATA
MSSFROOT=8
MSSFCTRL=3 /COURSE SEQUENCE NUMBER/
MSSFSEQN=40 /SEQUENCE NAME /
MSSFLKSS=8 /VARIABLE SEQUENCE FILE LINK/
END- DATA

TOTAL-LOGICAL-RECORDS=5000
LOGICAL-RECORD-LENGTH=60
LOGICAL-RECORDS-PER-BLOCK=8 /BLOCKSIZE=512/
DEVICE=RA81
DRIVE=42,5000,DU3
END-MASTER-DATA-SET

--------------------------- MASTER DEGREE REQUIREMENTS FILE---------

* BEGIN-MASTER-DATA-SET
DATA-SET-NAME=MDEG /DEGREE REQUIREMENTS MASTER/
IOAREA=MAS8
MASTER-DATA

* MDEGROOT=8
MDEGCTRL=2 /NUMBER IDENTIFYING TYPE GRAD DEGREE/
MDEGNAME=40 NAME OF TYPE OF DEGREE/
MDEGLKCR=8 /COURSE LINK /
MDEGLKSS=8 /COURSE SEQUENCE LINK/
END- DATA

TOTAL- LOGICAL-RECORDS= 5000
LOGICAL- RECORD- LENGTH= 66
LOGICAL-RECORDS-PER-BLOCK=7 /BLOCKSIZE=512/
DEVICE=RA81
DRIVE=43,5000,DU3
END-MASTER-DATA-SET

A-10

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=VEDU /EDUCATION VAR FILE/
IOAREA=VAR1
BASE- DATA
VEDUFSSN=9 /FACULTY SSN/

4. FACTLKED=8=VEDUFSSN /LINK TO FACULTY MASTER/
VEDUSTDT=9 /STUDENT SSN /
STDTLKDG=8=VEDUSTDT /LINK TO STUDENT MASTER/
VEDUUNIV=40 /INSTITUTION (UNIVERSITY) ATTENDED/
VEDUDEGR=40 /DEGREE EARNED /
VEDUYEAR=4 /YEAR DEGREE AWARDED/
END-DATA

DEVICE=RA81
DRIVE=32,5000,DU3
TOTAL-LOGICAL-RECORDS= 5000
LOG ICAL- RECORD- LENGTH= 120
LOGICAL-RECORDS-PER--BLOCK=4 /BLOCKSIZE=512/
END-VARIABLE-ENTRY- DATA-SET

------------------------------- VARIABLE FACULTY SOCIETY FILE---
0

BEGI N-VARIABLE- ENTRY-DATA-SET
DATA-SET-NAME=FSOC /SOCIETY VAR FILE/
IOAREA=VAR1
BASE-DATA
FSOCFSSN=9 /FACULTY SSN/
FACTLKSO= 8=FSOCFSSN
FSOCSOCY=40 /SOCIETIES TO WHICH INDIVIDUAL BELONGS
FSOCDUM1=8 /PADDING TO INCREASE REC LENGTH/

END-DATA

DEVICE=RA81
DRIVE=33, 5000,DU3
TOTAL-LOGICAL-RECORDS=10000
LOGICAL-RECORD-LENGTH=66
LOGICAL-RECORDS-PER-BLOCK=7 /BLOCKSIZE=512/
END-VARIABLE-ENTRY-DATA-SET

---------------- VARIABLE FACULTY DEPT & COMMITTEE FILE ----

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=FCMT /DEPT AND COMMITTEE VAR FILE/
IOAREA=VAR1
BASE-DATA
FCMTCODE=2
FCMTFSSN=9 /FACULTY SSN=9/
FACTLKCM=8=FCMTFSSN /LINK TO FACULTY MASTER SSW
FCMTDCOD=4 /DEPARTMENT DCOD /
DEPTLKCM=8=FCMTDCOD /LINK TO DEPT MASTER DEPT CODE/
FCMTDATA=14 /REDEFINED DATA AREA LENGTH/

A-11

RECORD-CODE=DP /COMM4ITTEE MEMBERSHIP/
RECORD-CODE=CM /ADDITIONAL COMMITTEE MEMBERSHIPS/
END-DATA

DEVICE=RA81
DRIVE= 34, 5000,DU3
TOTAL-LOGICAL-RECORDS= 5000
LOGICAL-RECORD- LENGTH= 46
LOGICAL-RECORDS-PER-BLOCK=l1 BLOCKSIZE=512/
END-VARIABLE- ENTRY-DATA-SET

---------------------- VARIABLE HONORS & AWARDS FILE---

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=VHAW /HONORS & AWARDS VAR FILE/
IOAREA=VAR1
BASE-DATA
VHAWCODE= 2

4, VHAWFSSN=9 /FACULTY SSN/
FACTLKHA=8=VHAWFSSN /LINK TO FACULTY SSN/
VHAWSTDT=9 /STUDENT SOCIAL SECURITY NUMBER/

* STDTLKAW=8=VHAWSTDT /LINK TO STDT (STUDENT MASTER)/
VHAWDATA=16 /REDEFINING DATA LENGTH AREA/
RECORD-CODE=HN /HONOR AREA/
RECORD-CODE=AW /AWARD AREA/
END-DATA

(. DEVICE=RA81
DRIVE=36, 5000,DU3
TOTAL-LOGICAL-RECORDS= 10000
LOGICAL-RECORD-LENGTH= 54
LOGICAL-RECORDS-PER-BLOCK=9 /BLOCKSIZE=512/
END-VARIABLE-ENTRY-DATA-SET

---------------------- VARIABLE FACULTY INTERESTS FILE -----

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=FINT /INTEREST AREA VAR FILE/
IOAREA=VAR1
BASE-DATA
FINTFSSN=9 /FACULTY SSN/
FACTLKIN=8=FINTFSSN /LINK TO FACULTY SSN/
FINTAREA=15 /AREA OF INTEREST/
END-DATA

DEVICE=RA81
DRIVE=37,5000,DJ3
TOTAL-LOGICAL-RECORDS=10000
LOG ICAL-RECORD-LENGTH 34
LOGICAL-RECORDS-PER-BLOCK=16 /BLOCKSIZE=512/
END-VARIABLE-ENTRY- DATA-SET

A-12

- - - ----------- VARIABLE FACULTY PUBS AND PRESENTATIONS--

BEG IN-VARIABLE-ENTRY-DATA-SET
V DATA-SET-NAME=FCOM /PUBLICATIONS & PRESENTATIONS VAR FILE/

IOAREA=VARI
BASE-DATA
FCOMCODE=2
FCOMFSSN=9 /FACULTY SSN/
FACTLKCO=8=FCOMFSSN /LINK TO FACULTY FSSN/
FCOMDATA=61 /REDEFINED DATA AREA LENGTH/
RECORD-CODE=PB /PUBLICATION DATA AREA /
RECORD-CODE=PR /PRESENTATIONS DATA AREA/
END- DATA

DEVICE=RA81
DRIVE=38, 5000,DU3
TOTAL-LOGICAL- RECORDS= 10000
LOG ICAL-RECORD-LENGTH= 82
LOGICAL- RECORDS-PER-BLOCK= 6
END-VARIABLE- ENTRY-DATA-SET

---------------- VARIABLE FACULTY TDY FILE-------------------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=FTDY /TDY VAR FILE/
IOAREA=VAR1
BASE-DATA
FTDYFSSN=9 /FACULTY SSN/
FACTLKTD=8=FTDYFSSN /LINK TO FACULTY SSN/
FTDYCOST=7 /COST OF TDY DATA IN THIS FILE/
FTDYDEST=20 /DESTINATION/

) FTDYBDAT=6 /BEGIN DATE/
FTDYEDAT=6 /END DATA/
END-DATA

DEVICE=RA81
DRINIE=39, 5000,DU3
TOTAL-LOGICAL-RECORDS= 10000

{ LOGICAL-RECORD-LENGTH=58
LOGICAL-RECORDS-PER-BLOCK=9 /BLOCKSIZE=512/
END-VARIABLE-ENTRY-DATA-SET

9.-------------------------------- VARIABLE STUDENT COURSE FILE---------------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=CRSE /COURSE VARIABLE/
IOAREA=VAR4
BASE-DATA
CRSESTDT=9 /STUDENT SOCIAL SECURITY NUMBER/

~ STDTLKCR=8=CRSESTDT /LINK TO STUDENT (STUDENT MASTER)/

*~ A-13

<*'~.

CRSEMDEG=2 / TYPE GRAD DEGREE (NUMBER - FROM MDEG) /
MDEGLKCR=8=CRSEMDEG / LINK TO MASTER DEGREE REQUIREMENTS
CRSENUMB=8 / COURSE NUMBER /
CRSENAME=20 / COURSE NAME /
CRSEGRAD=2 / COURSE GRADE /
CRSEBEGN=4 / QUARTER STUDENT TOOK OR WILL TAKE COURSE /
CRSECOLL-30 / COLLEGE ATTENDED /

.4 CRSEWAIV=1 / COURSE WAIVED? (Y/N) /
END-DATA

DEVICE=RA81
TOTAL-LOGICAL-RECORDS=50000

LOGICAL-RECORD-LENGTH=94
LOGICAL-RECORDS-PER-BLOCK=II / BLOCKSIZE = 1024 /
DRIVE=27,10500,DU3
END-VARIABLE-ENTRY-DATA-SET

--------------- VARIABLE THESIS TITLE FILE ---------------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=THTL / VAR FILE FOR STUDENT THESIS DATA /
IOAREA=VAR4

BASE-DATA
THTLTHES=10 / DEPARTMENT THESIS NUMBER /
THESLKTH=8=THTLTHES / LINK TO THES /
THTLFACT=9 / FACULTY ADVISOR FSSN /
FACTLKTH=8=THTLFACT / LINK TO FACULTY FSSN /

(e THTLSTDT=9 / STUDENT SSSN /
STDTLKTH=8=THTLSTDT / LINK TO STUDENT SSSN /
END-DATA

TOTAL-LOGICAL-RECORDS=5000

LOGICAL-RECORD-LENGTH=52
LOGICAL-RECORDS-PER-BLOCK=10 / BLOCKSIZE 520 /
DEVICE=RA81
DRIVE=24, 5000,DU3

END-VARIABLE-ENTRY-DATA-SET

--------------- VARIABLE SECTION LEADER FILE-------------

BEGIN-VARIABLE-ENTRY-DATA-SET
F.4" DATA-SET-NAME=SECL / VARIABLE SECTION LEADER FILE /

IOAREA=VAR3

BASE-DATA

SECLSECT=8 / RELATED TO SECT (SECTION NUMBER) /
SECTLKSE=8=SECLSECT / LINK TO SECT /
SECLSTDT=9 / STUDENT SSSN /
STDTLKSE=8=SECLSTDT / LINK TO STUDENT SSSN /
SECLFACT=9 / FACULTY FSSN /

-- FACTLKSE=8=SECLFACT / LINK TO FACULTY FSSN /
END-DATA

A-14

TOTAL-LOGICAL-RECORDS=5000
"-V LOGICAL-RECORD-LENGTH=52

ELOGICAL-RECORDS-PER-BLOCK=10
DEVICE=RA81
DRIVE=25,5000,DU3

END-VARIABLE-ENTRY-DATA-SET

-----------------------VARIABLE QUARTER FILE----------------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=VCQR / VARIABLE QUARTER FILE /
IOAREA=VAR5
BASE-DATA
VCQRCODE=2

'C" VCQRNMBR=8 / COURSE NUMBER CONTROL FIELD /
MCRSLKCQ=8=VCQRNMBR / LINK FROM MASTER COURSE /
VCQRIDEN=4 / QUARTER IDENT CONTROL FIELD /
MQTRLKCT=8=VCQRIDEN / LINK FROM MASTER QUARTER /

* VCQRDATA=20 / REDEFINED VAR QUARTER DATA /
RECORD-CODE=QC / CODE IS QC (FOR COURSE) /
RECORD-CODE=QS / CODE IS QS (FOR STUDENT) /
STDTLKCQ=8=VCQRSSSN / LINK TO MASTER STUDENT /
RECORD-CODE=FQ / CODE IS FQ (FOR FACULTY) /
FACTLKCQ=8=VCQRFSSN /LINK TO FACULTY SSN/
END-DATA

DEVICE=RA81
TOTAL-LOGICAL-RECORDS=50000

LOGICAL-RECORD-LENGTH=50
LOGICAL-RECORDS-PER-BLOCK=10

DRIVE=16,5000,DU3
END-VARIABLE-ENTRY- DATA- SET

---------------------- VARIABLE REQUISITE FILE-------------

BEGIN-VARIABLE-ENTRY-DATA-SET

,- DATA-SET-NAME=VREQ / VARIABLE REQUISITE FILE /
IOAREA=VARX
BASE-DATA

C N VREQCODE=2 / CODED RECORD FOR REQUISITE /
" , 4VREQNMBR=8 /COURSE NUMBER CONTROL FIELD/

MCRSLKRQ=8=VREQNMBR / LINK FROM MASTER COURSE /
VREQDATA=14 / REDEFINED REQUISITE DATA /
RECORD-CODE=CR / CODE IS COREQUISITE /
RECORD-CODE=PR / CODE IS PREREQUISITE /
END-DATA

DEVICE=RA81
TOTAL-LOGICAL-RECORDS=5000

"A : LOGICAL-RECORD-LENGTH=32

' A-15

'I4-

LOGICAL-RECORDS-PER-BLOCK=18
DRIVE=17,5000,DU3

* END-VARIABLE-ENTRY-DATA-SET

--- VARIABLE BOOK LINK FILE---------------

* BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=VCBK /VARIABLE BOOK LINK FILE/
I OAREA= VARX
BASE-DATA
VCBKNMBR=8 /COURSE NUMBER CONTROL FIELD/
MCRSLKCB=8=VCBKNMBR /LINK FROM MASTER COURSE/
VCBKTITL=40 /BOOK TITLE CONTROL FIELD/
MBKTLKBK=8=VCBKTITL /LINK FROM MASTER BOOK TITLE/
END- DATA

DEVICE=RA81
TOTAL-LOGICAL-RECORDS= 5000
LOGICAL- RECORD-LENGTH= 64
LOGICAL-RECORDS-PER-BLOCK=8
DRIVE=19,5000,DU3

* END-VARIABLE-ENTRY-DATA-SET

------------------------------- VARIABLE NUMBER ORDERED FILE----------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=VNMO/ VARIABLE NUMBER OF TEXTS/

/ORDERED FILE/d
I OAREA= VARX
BASE-DATA
VNMOTITL=40 /BOOK TITLE CONTROL FIELD/
MBKTLKNO=8=VNMOTITL /LINK FROM MASTER BOOK TITLE/
VNMONMBR=7 /ORDER NUMBER CONTROL FIELD/
MORDLKBO=8=VNMONMBR /LINK FROM MASTER ORDER NUMBER/
VNMONORD=3 /NUMBER ORDERED DATA ITEM/
END-DATA

DEVICE=RA81
ToTrAL-LOGICAL-RECORDS=5000
LOGICAL-RECORD-LENGTH=68
LOGICAL-RECORDS-PER-BLOCK=7
DRIVE=20,5000,DU3

* END-VARIABLE-ENTRY-DATA-SET

---------------------- VARIABLE CLASS SCHEDULE FILE---------------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=SCHD /VAR FILE TO CONTAIN CLASS DATA/
IOAREA=VART
BASE-DATA

0 SCHDNSTD=3 /NUMBER OF STUDENTS IN CLASS/
SCH-DNMBR=8 /COURSE NUMBER/

A-16

MCRSLKSC=8=SCHDNMBR / LINKPATH TO COURSE NUMBER FILE /
SCHDDAYS=4 / DAY CLASS MEETS /
DAYSLKSC=8=SCHDDAYS / LINKPATH TO DAYS FILE /
SCHDTIME=4 / TIME CLASS STARTS /
TIMELKSC=8=SCHDTIME / LINKPATH TO TIME FILE /
SCHDBLRM=8 / BUILDING AND ROOM NUMBER /

*'" BLRMLKSC=8=SCHDBLRM / LINKPATH TO BUILDING AND ROOM FILE /
SCHDFNTM=4 / CLASS FINISH TIME /
END-DATA

DEVICE=RA81
TOTAL-LOGICAL-RECORDS=5000

LOGICAL-RECORD-LENGTH=64
LOGICAL-RECORDS-PER-BLOCK=8
DRIVE=05,5000,DU3
END-VARIABLE-ENTRY-DATA-SET

---------------- VARIABLE CLASSROOM FILE-------------------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=CLSR / FILE TO CONTAIN CLASSROOM DATA /

* IOAREA=VART
BASE-DATA

CLSRBLRM=8 / BUILDING AND ROOM NUMBER /
BLRMLKCL=8=CLSRBLRM / LINKPATH TO BUILDING AND ROOM FILE /
CLSRCPTY=4 / CAPACITY OF ROOM /
CPTYLKCL=8=CLSRCPTY / LINKPATH TO CAPACITY FILE /
CLSREQPT=2 / TYPE(S) OF EQUIPMENT IN ROOM /
CLSRTYPE=3 / CODE FOR TYPE OF ROOM /
CLSRCFLG=1 / CODE FOR SECURITY CLASSIFICATION LEVEL OF ROOM
END-DATA

DEVICE=RA81
TOTAL-LOGICAL-RECORDS=5000

LOGICAL-RECORD-LENGfH=34
LOGICAL-RECORDS-PER-BLOCK=14
DRIVE=06,5000,DU3
END-VARIABLE-ENTRY-DATA-SET

--------------- VARIABLE THESIS COMMITTEE MEMBER FILE

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=TCMF / VAR THESIS COMM MEMBER FILE /

IOAREA=VAR3

BASE-DATA
TCMFFACT=9 / FACULTY SSN /
FACTLKTC=8=TCMFFACT / LINK TO FACULTY FSSN /
TCMFSTDT=9 / STUDENT SSN /
STDTLKCM=8=TCMFSTDT / LINK TO STUDENT SSSN /
TCMFTHES=10 / DEPARTMENT THESIS NUMBER /
THESLKTC=8=TCMFTHES / LINK TO THESIS DEPARTMENT NUMBER /
END-DATA

A-17

ar

TOTAL-LOGICAL-RECORDS=5000
~ LOGICAL-RECORD-LENGTH=54

LOGICAL-RECORDS-PER-B LOCK= 9
DEVICE=RA81
DRIVE=44,5000,DU3

END-VARIABLE-ENTRY-DATA-SET

------------------------ VARIABLE FACULTY ADVISER FILE---------------

BEGIN-VARIABLE-ENTRY-DATA-SE,"
DATA-SET-NAME=FADV /VARIALE FACULTY ADVISOR FILE/
IOAREA=VAR3

BASE-DATA
FADVSECT=8 /SECT CTRL (SECT NUMBER)/
SECTLKAD=8=FADVSECT /LINK TO SECT/
FADVSTDT=9 /STUDENT SSSN/
STDTLKAD=8=FADVSTDT /LINK TO STUDENT SSSN/
FADVFACT=9 /FACULTY FSSN/

* FACTLKAD=8=FADVFACT /LINK TO FACULTY FSSN/
END-DATA

TOTAL-LOGICAL-RECORDS= 5000
LOGICAL-RECORD-LENGTH=52
LOGICAL-RECORDS-PER-BLOCK= 10
DEVICE=RA8i
DRIVE= 45,5000, DU3

END-VARIABLE-ENTRY- DATA-SET

------------------------ VARIABLE INSTRUCTOR STATISTICS FILE-------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=VINS /INST STATS FOR USE WITH/

/iNSTRUCTOR LOAD DATA/
IOAREA=VARI

BASE-DATA
VINS.STDT=9 /STUDENT SSSN/
STDTrLKIS=8=VINSSTDT /LINK TO STUDENT SSSN/
VINSNMBR=8 /CRCTL(COURSE NUMBER)/
MCRSLKIS=8=VINSNMBR /LINK TO MCRS (MASTER COURSE FILE)/
VINSFACT=9 /FACULTY SSSN/
FACTLKIS=8=VINSFACT /LINK TO FACULTY FSSN/
END- DATA

TOTAL-LOGICAL-RECORDS=5000
* LOGICAL-RECORD-LENGTH=52

LOGICAL- RECORDS-PER-BLOCK= 10
0 DEVICE=RA81

DRIVE=4G, 5000, DU3

A-18

(-. END-VARIABLE-ENTRY-DATA-SET

------------------------ VARIABLE THESIS ADVISOR FILE-------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=TADV /VAR THESIS ADVISOR FILE/
IOAREA=VAR3

BASE-DATA
TADVTHES=10 /IDENTIFIES TADV TIED TO THES NUMBER/
THESLKTA=8=TADVTHES /LINK TO TilES/
TADVSTDT=9 /STUDENT SSSN/

* ~. STDTLKTA=8=TADVSTDT /LINK TO STUDENT SSSN/
TADVFACT=9 /FACULTY FSSN /
FACTLKTA=8=TADVFACT /LINK TO FACULTY FSSN/

* END-DATA

* TOTAL-LOGICAL-RECORDS=5000
LOGICAL- RECORD-LENGTH= 54
LOG ICAL-RECORDS-PER-BLOCK= 9

* DEVICE=RA81
DRIVE=47, 5000,DU3

END-VARIABLE-ENTRY-DATA-SET

---------------------- VARIABLE PROFESSIONAL DEVELOPMENT FILE-------

BEGIN-VARIABLE-ENTRY-DATA-SET
DATA-SET-NAME=VPDQ /VAR FILE TO DET INST PROF DEV QTRS/

- IOAREA=VAR2

BASE-DATA
* * VPDQMQTR=4 /TIED TO MQTR (QUARTER NUMBER)/
* MQTRLKPD=8=VPDQMQTR /LINK TO MQTR (MASTER QUARTER FILE)/
* VPDQFACT=9 /FACULTY SSSN/
* FACTLKPD=8=VPDQFACT /LINK TO FACULTY FSSN/

END-DATA

* . T'OTAL- LOGICAL- RECORDS =5000

LOGICAL-RECORD-LENGTH=3 0
LOGICAL- RECORDS-PER-BLOCK= 17
DEVICE=RA81I
DRIVE=48 ,5000,DU3

END-VARIABLE-ENTRY-DATA-SET

A- 19

----------------- VARIABLE SEQUENCE FILE--------------

BEGIN-VARIABLE-ENTRY-DATA-SET

DATA-SET-NAME=VMSS / VARIABLE SEQUENCE FILE /
IOAREA=VAR5

BASE-DATA
VMSSMSSF=3 TIED TO MASTER COURSE SEQUENCE NUMBER
MSSFLKSS=8=VMSSMSSF LINK TO MASTER COURSE SEQUENCE FILE

VMSSNMBR=8 TIED TO MASTER COURSE NUMBER
MCRSLKSS=8=VMSSNMBR I.LINK TO MASTER COURSE /
VMSSMDEG=2 TIED TO MASTER DEG REQUIREMENT NUMBER
MDEGLKSS=8=VMSSMDEG /LINK TO MASTER DEGREE /
VMSSCRSS=30 LISTS WHICH COURSES BELONG IN SEQUENCE
END-DATA

TOTAL- LOGICAL-RECORDS= 5000
LOGICAL- RECORD- LENGTH= 86
LOGICl'AL- RECORDS-PER-BLOCK= 6
DEVICE=RA8.
DRIVE=49,5000,DU3

* END-VARIABLE-ENTRY-DATA-SET
END-DATA-BASE-GENERATION

A- 20

.A p2

Appendix 3

FILE/DATA ITEM SYNTAX AND COMPATIBILITY RULES

The following lists of data names represents all of the items contained

in the database generation source file. The first colomn is the named data

item. The second column is the description of the data item. The third

column is the syntax of the data item and specifies if the item is numeric,

alphabetic, and the format of the data item. The last column specifies if the

data item has any compatibility rules to be applied. This appendix is used in

the development of error routines.

------------------------ MASTER FACULTY FILE -----------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

FACrCRTL SSAN ALL NUMERIC 0-9
FACTLKSE LINK TO SECTION N/A SECTION MUST EXIST IN

MASTER SECTION FILE.
FACTL.KCM LINK TO DEPT/COMM N/A DEPARTMENT CODE MUST

EXIST IN MASTER DEP.
FILE.

FACTNAME FACULTY NAME ALPHBETIC SEE NOTE #1
FACTRAN4K FACULTY RANK El..E9,

01..010,
Gl..G13

FACTSRVC MILITARY SERVICE NUMERIC IN YEARS
FACrDOCM DATE OF COMMISION DDM9YY OFFICER ONLY

FACTrIDAT DATE HIRED DDMMYY
FACrSALR SALARY NUMERIC ROUND TO NEAREST DOLLAR
FACrDOBI DATE OF BIRTH DDMMYY
FACrSEXX FACULTY GENDER "M" OR "F"
FACTAERO AERO RATING ALPHA NUMERIC
FACrDTSC DUTY AFSC EX: 4935B MILITARY ONLY
FACrPMsc PRIMARY AFSC EX: 4935B MILITARY ONLY

FACrDORK DATE OF RANK DDMMYY
FACrYRSS YEARS OF SERVICE NUMERIC ROUND ro NEAREST YEAR

FACrADDR CURRENT ADDRESS ALPHA NUMERIC
FACTHPHN HOME PHONE NUMERIC DOES NOT INCLUDE AREA

CODE
FACrEADR EMERGENCY ADDRESS ALPHA NUMERIC

FACfMSTA MARITAL STATUS "M" OR "S"
FACTSPOS SPOUSES' NAME ALPHABETIC
FACTSDOB SPOUSE DATE OF DDMMYY

B-i

". ~ ~ ~ ~~ ~~~~~~ z .-.--q.. < 9 ,""ii , ;; , .4%A """""2''".i... Y--." ,;,..... . , , . .

BIRH
FACTNDEP NUMBER OF DEPEND. NUMERIC

FACTRACE RACE ALPHABETIC

FACTRELN RELIGION ALPHABETIC
FACrOFIC OFFICE RM NUMBER ALPHANUMERIC
FACTOPHN OFFICE PHONE NO. NUMERIC EXCHANGE/EXTENSION
FACTLORG LAST ORGANIZATION ALPHANUMERIC

FACTrITL LAST DUTY TITLE ALPHANUMERIC

FACTDEPT DEPARTURE DATE DDMMYY

NOTE #1: EXAMPLE OF CORRECT FORMAT: SMITH JOHN D

*~B-

(0

B-2

----------------- MASTER DEPARTMENT FILE---------------------------

-., NAME DESCRIPTION SYNTAX COMPATIBILIrY RULES

DEPTCTRL DEPARTMENT CODE ALPHABETIC
DEPTNAME DEPARTMENT NAME ALPHABETIC

------------------------ MASTER STUDENT FILE ------------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

STDTCTRL STUDENT SSAN NUMERIC
STDTLKSE SECTION N/A DECLARED SECTION MUST EXIST

IN MASTER SECTION FILE.
SrDTLKAD LINK ro FACULTY N/A FACULTY MEMBER MUST EXIST IN

ADVISOR MASTER FACULTY FILE.
STDrSEQN SEQUENCE CONTROL NUMERIC SEQUENCE MUST EXIST IN

MASTER SEQUENCE FILE.
STDTNAME STUDENT NAME ALPHANUMERIC
STDrRANK STUDENT RANK El..E9

O1..010
G1..G16

STDTGRAD GRADUATE OF AFIT? "Y" OR "N"
STDTSRVC MILITARY SERVICE NUMERIC ROUND TO NEAREST YEAR
STDrAERO AERO RATING ALPHANUMERIC

Y SrDTDORK DATE OF RANK DDMMYY

_ STDTDOCM DArE OF COMMISSION DDMMYY MILITARY ONLY
- srDrYRSS YEARS OF SERVICE NUMERIC ROUNT rO NEAREST fEAR

STDrSEXX SrUDENT GENDER "M" OR "F"

STDTBOXN STUDENT BOX NUMBER NUMERIC

STDTDrSC DUTY AFSC EX: 4935B MILITARY ONLY
STDTPMSC PRIMARY AFSC EX: 4935B MILITARY ONLY

STDTADDR CURRENT ADDRESS ALPHANUMERIC STREET/CITY/STArE ErC..
* STDTEADR EMERGENCY ADDRESS ALPHANUMERIC SrREET/CIrY/STATE ETC..

STDrHMPH HOME PHONE NUMBER NUMERIC
STDDTPH DUTY PHONE NUMBER NUMERIC
STDrEDCD EDUCATION CODE ALPHANUMERIC
STDTDOBH DATE OF BIRTH DDMMYY
STDTPOBH PLACE OF BIRTH ALPHANUMERIC/ADDRESS

STDTMSTA MARITAL STATUS "M" OR "S"
STDTSPOS SPOUSES' FIRST NAME ALPHABETIC
SrDTSDOB SPOUSES' DATE OF DDMMYY

BIRTH
W7 STDTMSPS MILITARY SPOUSE "Y" OR "N"

STDTNDEP NO. OF DEPENDENTS NUMERIC
SrDTRACE STUDENT RACE ALPHABETIC
STDTRELN STUDENTS RELIGION ALPHABETIC
SfDTLCMD LOSING COMMAND ALPHABETIC VAC,SAC,MAC, ETC..
SrDrLORG LAST ORGANIZATION ALPHANUMERIC
STDTfITL LAST OtilY rITLE ALPHABETIC

STDT.)IRN OURATIN OF LAST NUMERIC ROUND TO NEARESf YEAR
DUTY ASSIGNME&C

3.

_\ .. " ".. ...

------------------- MASTER THESIS CATALOG NUMBER FILE-

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

ADNRCrRL THESIS CODE ALPHANUMERIC

ADNRLKTH LINK TO THESIS N/A
TITLE

------------------------MASTER THESIS NUMBER FILE-

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

THESCTRL THESIS CATALOG NO. NUMERIC

rRESLKTA LINK ro THESIS N/A ADVISOR MUST EXIST IN riE

ADVISOR FILE FACULTY ,iASrER FILE.

rHESLKTC LINK ro THESIS N/A COMMITTEE MEMBER MUST

COMMITTEE MEMBER EXIST IN FACULTY FILE

-------------------------MASTER SECTION NUMBER FILE-

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

SECrCTRL SECTION NUMBER ALPHA-NUMBERIC

SECrLKSE LINK ro SECTION N/A STUDENT MUST EXIST

LEADER STUDENT MASTER FILE

SECrLKAD LINK ro FACT N/A FACULTY ADVISOR .UST

ADVISOR EXIST IN FACULrY MASrER

FILE

SECrLSSN SECTION LEADER NUMERIC SSAN MUST BE IN STUDENT

SSAN STUDENT MASTER FILE.

SECTGRDr GRADUArION DArE DDMMYY

SEcrENDf ENTRY DATE DDMMYY

SECfNRSN NUMBER OF STUDENTS NUMERIC

-.4

B- 4

9o

---- ------------------------- MASTER COURSE FILE-------------------------------

NAME DESCRIPTION SYNrAX COMPATIBILITY RULES

c aCiSCrRL COURSE NUMBER ALPHANUMERIC
"CRSCRHR CREDIT HOURS NUMERIC
MCRSLCHR LECTURE HOURS NUMERIC
MCRSSZLM SIZE LIMITATION NUMERIC DEFAULT TO 30.
MCRSTITL COURSE TITLE ALPHANUMBERIC
MCRSREST RESTRICTED "Y" OR "N"

--- ------------------------ MASTER QUARTER FILE -----------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

MQrRCTRL QUARTER NUMBER tWO ALHA SEASON
TWO DIGIT fEAR

MQrRSTDT START DATE DDMMYY
MQTRSPDT STOP DATE DDMMYY

-------------------------- MASTER BOOK FILE---------------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

IBKTCfRL BOOK TITLE (KEY) ALPHANUMERIC
MBKTLKBK LINK TO COURSE N/A COURSE MUSr EXIST IN

MASTER COURSE FILE
-BKrArHR BOOK AUTHOR ALPHABETIC
BKTPUBL "OOK PUBLISHER ALPHANUMERIC

.MBKfNABL NUMBER AVAIL NUMERIC
:IBKrPRCE PRICE NUMERIC LAST twO DIGITS DECIMAL

------------------------ MASTER ORDER FILE --------------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

MORDCrRL 4ASTER ORDER NUMBER NUMERIC
MORDORDT ORDER NUMBER NUMERIC
MORDDUDT DUE DArE ODMMYY

>ORDCMPY COMPANY ALPHANUMERIC
IORDADDR ADDRESS ALPHANUMERIC
MORDPHNE PHONE NUMERIC WITH AREA CODE

B-5

.-

Z

.------------------------ MASTER CLASS iME FILE ---------------------------

V ,',' NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

TIMECTRL CLASS rIME NUMERIC MILITARY CLOCK 0000-2400

------------------------ MASTER BUILDING/ROOM FILE ------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

BLRMCTRL BUILDING AND ROOM NUMERIC
NUMBER

------------------------ MASTER ROOM CAPACITY FILE ------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

CPTYCTRL CAPACITY NUMBER NUMERIC DEFAULT IS 30
CPrYLKCL LINK TO CLASSROOM N/A ROOM MUST EXIST IN

FILE MASTER BUILDING/ROOM FILE

------------------------ MASTER DAY SCHEDULING FILE -----------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

DAYSCfRL DAY OF THE WEEK MOND,TUES,WEDN,
rHUR,FRID

--------------------------- MASTER SEQUENCE FILE -----------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

' ISSFCfRL COURSE SEQUENCE NUMERIC
NUMBER

ISSFSEQN SEQUENCE NAME ALPHANUMERIC

4

B-6

------------------------ MASTER DEGREE REQUIREMENrS FILE ------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

MDEGCTRL GRADUATE DEGREE NUMERIC
CODE

MDEGNAME DEGREE NAME ALPHANUMERIC

.4

. A

B-7

--, °

,.4. . . - . . e, . ,°, .- . . - . v ,- .. . C,,e , .
4.j4,,_

. , ,, .. .,. %. . % ,, . . . % % . . , . . ,

- --------------- VARIABLE EDUCATION FILE --------------------------

(. NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

VEDUFSSN FACULTY SSAN NUMERIC MUST HAVE AN ASSOCIATED
MASTER RECORD

VEDUSTDT STUDENT SSAN NUMERIC MUST HAVE AN ASSOCIATED
MASTER RECORD

VEDUUNIV UNIVERSITY ATT. ALPHABETIC
VEDUDEGR DEGREE EARNED ALPHABETIC

VEDUYEAR YEAR EARNED NUMERIC 19XX

------------------------ VARIABLE FACULTY SOCIETY FILE --------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

- FSOCFSSN FACUTLY SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

FSOCSOCf SOCIETIES TO WHICH ALPHANUMERIC
PERSON BELONGS

------------------------- VARIABLE FACULTY DEPT & COMMITfTE FILE ------------

NAME DESCRIPTION SYNTAX COMPATIBILITf RULES

FCMrFSSN FACULTY SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

. FCMTDCOD DEPARTMENT CODE NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

FCMTNAMD NAME OF COMMITTEE ALPHABETIC
- FCMrDEPD NAME OF DEPARTMENT ALPHABETIC

FCmrNAMC NAME OF COMMITTEE ALPHABETIC
FCMrNAMC NAME OF DEPARTMENT ALPHABETIC

----------------- VARIABLE HONORS AND AWARDS FILE ------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

SiAWFSSN FACULri SSAN NUMERIC MUST dAVE ASSOCIATED
MASTER RECORD

VHAWSTD[STUDENT SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

V,AWNONR JONORS RECIEVED ALPHANUMERIC
ir{kWDAfE DATE RECIEVED ODMMYY

.AAWAWED AWARDS RECIEVED ALPHANUMERIC

VHAWADAr DATE REC[EiED DDMMYY

B- d
Al -.

--- ------------------------- VARIABLE FACULfY INTERESTS FILE ------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

FINTFSSN FACULTY SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD.

FINTAREA AREA OF INTEREST ALPHANUMERIC

------------------------ VARIABLE FACULTY PUBS AND PRESENTATIONS----------

NAME DESCRIPTION SYNTAX COMPATIBILIfY RULES

FCOMFSSN FACULTY SSAN NUMERIC MUST HAVE AN ASSOCIATED
MASTER RECORD

FCOMNAME TITLE OF PUB ALPHANUMERIC
FCONDATE DATE OF PUB DDMMYY
FCOJCOAU NAMES OF ALPHABETIC

CO-AUTHORS
" FCOMORGN PRESENTATION GIVEN ALPHANUMERIC

AT rHIS ORGAN.
* FCOMPDAT DATE PRESENTAION DDMMYY

GIVEN

------------------------- VARIABLE FACULTY TDY FILE ------------------------

- NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

FTDYFSSN FACUrLY SSAN NUMERIC MUST HAVE AN ASSOCIAfED
MASTER RECORD

FTDYCOSr COST OF fDY NUMERIC LAST fWO PLACES REP.

CENrS
FTDYDEST DESTINATION ALPHABETIC
FTDYBDAf BEGINNING DATE DDMMYY
FrDYEDAf ENDING DAFE DDMMYY

B-9

"%4 ?

- --------------- VARIABLE STUDENT COURSE FILE ---------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

CRSESTDr STUDENT SSAN NUMERIC MUST HAVE AN ASSOCIATED
MASTER RECORD

CRSEMDEG TYPE DEGREE ALPHABETIC MUST HAVE AN ASSOCIATED
MASTER RECORD

CRSENUMB COURSE NUMBER --- MUST BE CONTAINED IN THE
MASTER COURSE FILE

CRSENAME COURSE NAME ALPLHABETIC
CRSEGRAD COURSE GRAD DDMMYY

CRSEBEGN QUARTER BEGAN --- MUST EXIST IN THE MASTER
QUARTER FILE

CRSECOLL COLLEGE ATTENDED ALPHABETIC
CRSEWAIV COURSE WAIVED "Y" OR "N"

-- -------------- VARIABLE THESIS TITLE FILE -----------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

fHTLADNR THESIS CATALOG NO NUMERIC MUST HAVE AN ASSOCIATED

MASTER RECORD

THTLTHES DEPARTMENT THES NO NUMERIC MUST HAVE AN ASSOCIATED
MASTER RECORD

THTLFAC FACYLTY ADVISORS NUMERIC MUST HAVE AN ASSOCIAFED
SSAN MASTER RECORD

fHrLSrDT STUDENTS SSAN NUMERIC MUST HAVE AN ASSOCIATED
MASTER RECORD

r TTLTIrL THESIS TITLE ALPHANUMERIC
rHLSPON SPONSOR ALPHANUMERIC
TtITLLOCN THESIS LOCATION ALPHANUMERIC
F'TLCLAS THESIS "SECREr","'TOP-SECRET", EfC...

CLASSIFICATION

------------------------ VARIABLE SECTION LEADER FILE ---------------------

* NAME DESCRIPTION SYNTAX COMPAfIBILI Y aULES

SECLSECr SECTION NUMBER ALPHANUMERIC MUST HAVE ASSOCIArED
MASTER RECORD

SECLSrDr SECTION LEADER NUMERIC MUST HAVE ASSOCIArED
SSAN MASTER RECORD

SECLFAC FACULfY ADVISOR NUMERIC MUST HAVE ASSOCIAtED

SSAN MASTER RECORD

B-10

.4.L

"°., 4 -

;,: a- 4*o

---------------- VARIABLE QUARTER FILE ----------------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

VCQRNMBR COURSE NUMBER ALPHANUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

VCQRIDEN QUARTER NUMBER ALPHANUMERIC MUST HAVE ASSOCIATED

MASTER RECORD

VCQRSSSN STUDENT SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

VCQRGRAD GRADUATE DATA ALPHANUMERIC
VCQRFSSN FACULTY SSAN NUMERIC MUST HAVE ASSOCIATED

MASTER RECORD

-------------------------- VARIABLE REQUISITE FILE --------------------------

.AME DESCRIPTION SYNTAX COMPATIBILITY RULES

'REQCODE CODED RECORD NUMBER NUMERIC

- VREQNMBR COURSE NUMBER ALPHANUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

VREQRNUM PRE-REQUISIrE NUMERIC MUST HAVE ASSOCIATED
COURSE NUMBER MASTER RECORD

VREQPNUM PRE-REQUISITE NUMERIC MUST HAVE ASSOCIATED
COURSE NUMBER MASTER RECORD

------------------------ VARIABLE BOOK LINK FILE --------------------------

NAME DESCRIPTION SYNIAX COMPATIBILIrY RULES

VCBKNMBR COURSE NUMBER NUMERIC MUST ,AVE ASSOCIATED

MASTER RECORD
VCBKfriL BOOK TITLE ALPHANUMERIC MUST HAVE ASSOCIATED

MASTER RECORD

------------------------ VARIABLE NUMBER ORDERED FILE ---------------------

AAME DESCRIPTION SYNTAX COMPATIBILITY RULES

VNMOTITL BOOK TITLE ALPHANUMERIC musr HAVE ASSOCIATED
MASTER RECORD

VNMONMBR ORDER NUMBER NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

VNMONORD NUMBER ORDERED NUMERIC

B-11

%

4 '

------------------------- VARIABLE CLASS SCHEDULE FILE ---------------------

NAME DESCRIPTION SYNrAX COMPATIBILITY RULES

SCHDNSLD NUMBER JF STUDENTS NUMERIC
SCHDNMBR COURSE NUMBER ALPHANUMERIC MUST HAVE ASSOCIAE

MASTER RECORD

SCHDDAYS DAY CLASS MEETS ALPHABETIC MUST HAVE ASSOCIArED
MASTER RECORD

SCHDTIME TIME CLASS MEETS NUMERIC MUST HAVE ASSOCIAfED
MASTER RECORD

SCHDBLRA BUILDING/ROOM NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

SCHDFNTM FINISH TIME NUMERIC 24 HOUR CLOCK.

------------------------ VARIABLE CLASSROOM FILE --------------------------

NAME DESCRIPTION SYNTAX COMPATIBILIIY RULES

CLSRBLRa BUILDING AND ROOM NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

* CLSRCPTY CAPACITY NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

CLSREQPr TYPE OF EQUIPEMENT ALPHANUMERIC
CLSRTYPE CODE TYPE FOR ALPHANUMERIC

ROOM
CLSRCFLG SECURITY LEVEL ALPHANUMERIC

------------------------ VARIABLE FACULTY ADVISOR FILE --------------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

FADVSECr SECTION ALPHANUMERIC MUST HAVE ASSOCIAfED
MASTER RECORD

FADVSfDF STUDENT SSAN NUMERIC MUST HAVE ASSOCIAfED
MASTER RECORD

FADVFACE FACULTY SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

S

-------------------------VARIABLE INSTRUCTOR STATISTICS FILE --------------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

f7 VINSS Df SrUDENrS SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

•INSNMBR COURSE NUMBER ALPHANUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

VINSFACr FACUTLY SSAN NUMERIC MUSE HAVE ASSOCIATED
MASTER RECORD

B-12

1 M

------------------------------ VARIABLE PROFESSIONAL DEVELOPMENT FILE -----------

NAME DESCRIPTION SYNTAX COMPATIBILITY RULES

-PDQMQrR QUARTER NUMBER ALPHANUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

VPDQFACr FACULTY SSAN NUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

------------------------- VARIABLE SEQUENCE FILE ---------------------------

NAME DESCRIPTION SYNfAX COMPATIBILITY RULES

VMSSMSSF COURSE SEQUENCE NUMERIC MUST HAVE ASSOCIATED

NUMBER MASrER RECORD

VMSSNMBR COURSE NUMBER ALPHANUMERIC MUST HAVE ASSOCIATED

MASTER RECORD

VMSSMDEG DEGREE NUMBER ALPHANUMERIC MUST HAVE ASSOCIATED
MASTER RECORD

,. VMSSCRSS COURSES IN ALPHANUMERIC
SEQUENCE

A

=-q"

B-13

.
p

V•VV .°"'v.-, .

.- - .'. V- .-!- '.%B-13- .. '- -

- q V --- V":*V ~*V

APPEND I:: C

SANDA?"D DATADASE RECORD TYPE DECLARATION~S

-rh-2 Pascal constant and type declarations described in this

appendix were used in the development of the AFIT/ENG Database

application programs. The file is named TYPE.PAS and is

..aintained seperately from the applications programs. The file

'V was intended to be used as a #INCLUDE file so maintenance could

be performed on the file without the need to recompile the

software.

Included in this file are the constants, buffer types,

records types, and array types needed for the standard database

routines. This file is required whenever the standard routines

are used within a program.
CONST

:4:EXTRAl ='
EXTRA2 ='
E EX'RA 3 =
EXTRA4' ='

EXTRA5 ='
EXTRA10 ='
EXTRA25 =
EXTRA40 =
FACTCONST1 = 'FACTLCTRLFACTNLIAIIEFACTRANiKFACT'SRVCFACTLDOCM'-';
FACTCONST2 = 'FACTHiDATLFACTSALRFACTDOBIFACT4SEX<XFACTAERO1';
FACTCOIST3 = 'FAC-rDTSC-FACTLPM'S'FACTDOR:,KFAC'rYRSSFACTLADDR';
FACCONST4 = FACTLIIPHINFACTEADRFACTM'S-TAFACT SPOSFACTSDOB';

JST = FACTNDEPFACTRACEFAC'RELNFAC-TOF ICFACrOPHPJ'
FACTCONST6 = 'FACT',LORGFACTTITLFACTDEPT7-NLD.
S'TDTCONST1 ='STIDT-CTRLSTDTSEQNSTDTNAME7-STDT RANKSTDlGrZAD;
STDcons T2 = 'S-'"TSR'CST DTAER OSTIDTDC.RISTDTDOC:ISTDTYRSS'

4. STDiTcONST3 = ISTDTSEXMSTDTnO::N'.SDTDTS.-STD-P'Sc-STDTADDrz';
STDTCONS174 = 'STDTEADRSTDT[IMPISDTDTP!ISTD?:'-DCDSTDTDOn' ;
GSTDTONSTS = 'STDTPOBIISTID'MSTASTDSPSSTLDTSDOSTDTSPS';
STDTCDOJST6 = 'STDTNDEPSTDTRACESTDTRELN]STDTLCI4DST.DTLORG';
STDTCONST7 ='STDTTITLSTDTrDURNErND.

DEPTCONST1 'DEPTCTRLDEPTNA14EEND.
TIIESCONST1 'TFIESCTRLTHESTI'LTHESSPI"r,.TlIESLOCNTIHESCLAS';
TIIESCONSTI 'THESNAMEEND.
SECTCONST1 ='SECTLCTRLSECTLSSNISECTGRDTSECTENDTSECTNRSl';

-7 SECTCONST2 ='END.

MCRSCONST1 'M.CRSCTRLMICRSCRIIRMICRSLCHRMLCRSLBHlrM,,CRSSZ Lt1';
MCRSCONST2 ' MC RST ITLr1CRS RES -CND.
MQTRCONS T1 = 'QTRCTRLM4QTRSTDTI!IQTRSPDTENID.

%-

'1BKT~CO'IST1 = 'MBKTCTRLMBKTATHRMB1KT PU L3KTiNAVL,'.K TP RCE';
:II3KTCONST2 = 'CND.I

>IODCOST1= 'ORDTRLORDORDTMORDDUDT',OR-DCM'-PYMOR.DADDR',

MORDCONST2 = 'MORDPHNEEND.
TIll-1CON STi1 = ",TIMECTRLEND.

I3LRMCONST1 = 'BLRf4CTRLEND.
VCPTYCONST1 = 'CPTYCTRLEND.

DAYSCONST1 = 'DAYSCTRLEND.
14SSFCONST1 = 'MSSFCTRLMSSFSEQt4END.
M4DEGCONST1 = 'MDEGCTRLMDEGNAIA.EEND.
VEDEJCONST1 = 'VEDUFSSN]VEDUSTDTIVEDUUN IVVEDUDEGRVEDUYEAR';
VEDUCONST2 = 'END.
FSOCCONST1 = 'FSOCFSSNFSOCSOCYFSOCDU!11END.
F'CMTCONST1 = 'FCMTCODEFCt.TFSSNFCMDCODFCMTDATAFCMTAMA D';
FCMTCONST2 = 'FCM-LDEPDFCMTNAMCFCZITDEPCEND.I
VHIAWCONST1 = 'VHIAWCODEVHAWFSS NVIIAW4STDTVHAIIDATAVAiflONR';
VHAWCONST2 = 'VIIAWDAT'EVHAWAW4RDVIIAWIADATENID.
FI.NTCONSTI = 'FINTFSStlFINTAREAEND.
FCOrICONST11 = I FCOMCODEFC014FSS NFCOMDA 2AFCOM17NAM EFCOt MATE'
FCOM1CONST2 = 'FCOMICOQUFCQMORGIFCOrIPDATzNID.I
F-IDYCONS-11 = IFTDYFSSNFTLDYCOSTF'rDYDESTFTDYBDA-FTDYEDAT.;
FTDYCONST2 = 'Z

0CRSECONST1 = 'CR ,. STDTCRSEMDEGCRSENZUMBCRSEN4AMECRSEGRAD';

V CRSECONST2 = 'CRSEBEGNCRSECOLLCRSEWAIVEND.I
THTLCOtJST1 = 'THTLADNRTHTLTHESTHTLFACTTHTLLSTDTTHITLTLITL';

THTLCONTS2 = 'THTLSPONTIITLLOC14THTLCLASEND.
SECLCONST1 = 'SECLSECTSECLSTrDTSECLFACTEND.
VCQRCONST1 = 'VCQRCODEVCQRNMtBRVICQRIDENlVCQRSSSNEN"D.
VCQRCONST12 = '*CODE=QSVCQRNM3RVCQ'~ IDE-NEND.
IREQCONS-1 ='VREQC OD EVREQ NMB RV R7Q DATA %R2,Q RN Ui.VRE '3L KA'
VRCQCONST2 = 'VREQPNUMVREQBLKBEND.
VCBKCONST1 = 'VCBKNMBRVCBKTITLEND.
"NtAOCONST-1 = 'VIlIOTI TLVN 4ON',MB RVNM!ON.ORDEfID.
SC:IDCONST1 = 'SCH"DNSTDOSC:IDNMBRSCIIDDAYSSC':IDTAIMESC:IDBLRl';
SCIIDCONST2 = 'SCHDFNTMIEMD.
CLSRCONST1 = 'CLSR3LRfICLSR-PTYC:LSREQPTrCLSRTYPECLSRCLFG';
CLSRCONST2 = 'END.
TC.MFCONST1 = "'TCA"FFACTrTCMFSTDTfTCMFTqIES £ND.
FADVCONST1 = 'FADVSECTFADVSTDTFAOVFACTEND.
VIINSCONST1 = 'VINSSTDTVINSNM3RYI NSFACTEND.
LADVCONS"T1 = "TADVTH12STADVISTDTT4ADVFACTEN.D.
VDQCDNST1 = 'VPDQtMQTR'IPDQFACTlEtD.
V"ISSCONST1 = 'VMISSrSSFV,'SSN13RVISSMDEGVISSCRSSCfl1D.
EXTR~A = I

C-2

TYPE
B UFF1 C11AR;
BUFF2 PACKED ARRAY[I..2] OF CHAR;
BUFF3 = PACKED ARRAY[I..31 OF CHAR;
BUFF4 = PACKED ARRAY [1..4] OF CHAR;

BUFF5 = PACKED ARRAY 11..5] OF CHAR;

{ BUFF6 = PACKED ARRAY [1..6] OF CHAR;
BUFF7 = PACKED ARRAY [i..7] OF CHAR;
BUFF8 = PACKED ARRAY [l..8] OF CHAR;
BUFF9 = PACKED ARRAY [l..9] OF CHAR;
BUFF10 = PACKED ARRAY [l..10] OF CHAR;

, UFF11 = PACKED ARRAY [i..ii] OF CHAR;
.BUFF2 = PACKED ARRAY [l..121 OF CHAR;

BUFF14 = PACKED ARRAY [1..14] OF CHAR;
BUFF15 = PACKED ARRAY [1.•15] OF CHAR;

3UFF16 = PACKED ARRAY [1.. 15] OF CHAR;
BUFF17 = PACKED ARRAY [l..16] OF CHAR;

BUFF18 = PACKED ARRAY [l..17] OF CHAR;
BUFF19 = PACKED ARRAY [I..18] OF CHAR;
BUFF21 = PACKED ARRAY [1..21] OF CHAR;
"UFF22 = PACKED ARRAY [i..21 OF CHAR;
BUFF22 = PACKED ARRAY [1..21] OF CHAR;
BUFF23 = PACKED ARRAY [1.. 21 OF CHAR;

- BUFF24 = PACKED ARRAY [i..231 OF CHAR;
BUFF28 = PACKED ARRAY [1..25] OF CHAR;

BUFF28 = PACKED ARRAY [i..25] OF CHAR;
*- BUFF30 = PACKED ARRAY [1..31 OF CHAR;

BUFF33 = PACKED ARRAY [l..33] OF CHAR;
BUFF36 = PACKED ARRAY [1..36] OF CHAR;
3BUFF3 = PACKED ARRAY [l..38] OF CHAR;
BUFF48 = PACKED ARRAY [1..48] OF CHAR;

. I3UFF48 = PACKED ARRAY [l..40] OF CHAR;
BUFF50 = PACKED ARRAY [i..61] OF CHAR;
3UFF60 = PACKED ARRAY [l..80] OF CHAR;
3=8F6 = PACKED ARRAY 11. .61 OF CHAR;
3UFF120 = PACKED ARRAY [1..80] OF CAR;

BUFF122 = PACKED ARRAY [l..122] OF CHAR;
3UFF13 = PACKED ARRAY [1..130] OF CHAR;

3UFF240 = PACKED ARRAY [1..120] OF CHAR;

BUFF240 = PACKED ARRAY [i..20] OF CHAR;
B UFF236 = PACKED ARRAY [l..2361 OF CHAR;
3UFF280 = PACKED ARRAY [.. 280] OF CHAR;
BUFF400 = PACKED ARRAY [1..400] OF CHAR;
3UFF408 = PACKED ARRAY [i..408] OF CHAR;
1BUFF480 = PACKED ARRAY [1..480] OF CHAR;

'.C-

C-3

FACT REC RECORD;
': " ' CTRL : BUFF9; * SSAN *}

NAME : 3UFF28;
{* FACULTY MEMBERS NArE,LAST,FIRST,MI*}

RANK : BUFF3;
{* MIL/CIV RANK (O-OFFICER,G-CIV,NN-RANK)*}

SRVC : BUFF2; {* MILITARY SERVICE *}
DOCM : BUFF6; {* DATE OF COMMISSION *}
HDAT : BUFF6; {* DATE HIRED *1
SALR : BUFF5; {* SALARY *1
DOBI : BUFF6; {* DATE OF BIRTH *}
SEXX :BUFFi; {*SEX *1
AERO : BUFF10; {* AERO RATING *}
DTSC : BUFF6; {* DUTY AFSC *1
PMSC : BUFF6; {* PRIMARY AFSC *}
DORK : BUFF6; {* DATE OF RANK *}
YRSS : BUFF2; {* YEARS OF SERVICE *}

, ADDR : BUFF40; {* CURRENIT ADDRESS -

HPHN : BUFF7; {* HOME PHONE (EXCHANGE,EXTE!.NSIO)*}
"ADR : BUFF40; j* EMERGENCY ADDRESS *1
MSTA : BUFF1 ; MARITAL STATUS *}

* SPOS : BUFF12; {* SPOUSE FIRST NAME *}
SDOB : BUFF6 ; SPOUSE DATE OF BIRTH *}
NDEP : BUFF2 ; {* NUMBER OF DEPENDENTS *}
RACE : BUFF2 ; RACE *}
RELN : BUFF2 ; * RELIGION *}
OFIC : BUFF12; t* OFFICE RM NUMBER *1
OPHN :BUFF7 ; * OFFICE PHOINE (EXCHlANlGE,EXTlENSION)*}
LORG : BUFF50; * LAST ORGANIZATION *}
TITL : BUFF5L; * LAST POSITION TITLE *}
DEPT : BUFF6 ; f* EXPECTED AFIT DEPARTURE DATE *}

%,-] .[.. END ;

DEPT REC = RECORD;
CTRL : BUFF4 ; j* DEPT CODE *}

NAME : BUFF20
. END;

C-4

,,, " ,*

STDT REC = RECORD;
CTRL : BUFF9; (* STUDENT SOCIAL SECURITY *}

S.QN : BUFF3; {* MASTER SEQUENCE CONTROL NUMBER *}
AN E : BUFF28; {* STUDENT NAME (LAST,FIRST,MI) *}

RANK : BUFF3; f* MIL/CIV RANK(O-OFFICER,G-CIV,NNl-RANK *1
GRAD : BUFF1; {* HAS STUDENT ALREADY GRADUATED/LEFT AFIT?

SRVC : BUFF2; {* MILITARY SERVICE *}
AERO : BUFF10; 1* AERO RATING *}

DORK : BUFF6; {* DATE OF RANK *}
DOCM : BUFF6; f* DATE OF COMMISSION *}

YRSS : BUFF2; f* YEARS OF SERVICE *)
SEXX : BUFF1; {* SEX *1

BOXN : BUFF4; {* BOX NUMBER *}
DTSC : BUFF6; {* DUTY AFSC *1
PMSC : BUFF6; {* PRIMARY AFSC *}
ADDR : BUFF40; {* CURRENT ADDRESS *}
EADR : BUFF40; {* EMERGENCY ADDRESS *}
HMPH : BUFF7; {* HOME PHONE NUM2ER *}

DTPH : SUFF7; 1* DUTY PHONE NUMBER *}
EDCD : BUFF5; 1* EDUCATION CODE *}
DOBH : BUFF6; {* DATE OF BIRTH *}

POBH : BUFF40; {* PLACE OF BIRTH *}
• MSTA : BUFF1; [* MARITAL STATUS -}

SPOS : BUFF12; {* SPOUSE FIRST NAME *1
SDOB BUFF6; {* SPOUSE DATE OF BIRTH *1

MSPS : BUFF1; { MILITARY SPOUSE *}
NDEP : BUFF2; {* NUMBER OF DEPENDENTS *}
RACE :BUFF2; 1*RACE *1
RELN : BUFF2; {* RELIGION *1
LCMD : BUFF5; {* LOSING COMMAND *}
LORG : BUFF50; {* LAST ORGANIZATION *}
TITL : BUFF50; {* LAST POSITION rITLE *}
DURN : BUFF2; {* DURATION AT LAST DUTY*}

END;

:3IES REC = RECORD;
-CTRL : BUFF10; [*TIIESIS CATALOGING NUMBER*}
TITL : BUFF50; {*THiESIS TITLE*}
SPON : BUFF50; {*THESIS SPONSOR*}
LOCN : ?UFF50; {*TEESIS LOCATION*1
CLAS : BUFF12; {*TIESIS CLASSIFICATION*}

IAIE : BUFF28; * STUDENTS NAME FOR ARCHIVE *}EN

A A-

e..

,,--. - , , -..,,, . .5 . , [: - , . ;

SECT REC = RECORD;
' CTRL : BUFFS; {*SECTION NUMBER (E:., GCS-84D)*}

LKSE : BUFFS; [*LINK TO SECTION LEADER FILE*}
LKAD : BUFFS; [*LINK TO FACULTY ADVISOR*}
LSSU : BUFF9; [*SECTION LEADER SSSN*}
GRDT : BUFF6; {*GRADUATION DATE*}
ENDT : BUFF6; {*ENTRY DATE*}
NRSN : BUFF3; {*NUMBER OF STUDENTS IN SECTION*}

END;

'LA'CRSREC = RECORD;
CTRL : BUFFS; {*COURSE NUMBER*}
CRHR : BUFF1; {*COURSE CREDIT HOURS*}
LCHR : BUFF1; (*COURSE LECTURE HOURS DATA*1
LBHR : BUFF1; [*COURSE LAB HOUR DATA*}
SZLM : BUFF2; {*SIZE LIMIT DATA*)
TITL : 3UFF50; I*TITLE DATA*}
REST : BUFF1; {*RESTRICTED (FROM GRAD REQ) COURSE*)

END;

M.1TRREC = RECORD;
CTRL : BUFF4; {*QUARTER NUMBER*}
STDT : BUFF6; {*QUARTER START DATE(DAY,!4O,YR)*)
SPDT : BUFF6; [*QUARTER STOP DATE (DAY,MO,YR)*l

END;

MBKT REC = RECORD;
CTRL : 3UFF4g; {*BOOK TITLE NAME*}
ATHR : BUFF28; {*BOOK AUTMOR NAME (LAST,FIRST, II)*}
PUBL : BUFF28; {*BOOK PUBLISHER NAME*1

NAVL : BUFF6; [*BOOKS AVAILABLE*}
EN PRCE : BUFF4; {*BOOK PRICE*}

'*ORD REC = RECORD;
CTRL : BUFF7; {*:.ASTER ORDER NU...*}
ORDT : BUFF6; {*ORDER NUMBER*}
DUDT : BUFF6; {*DUE DATE*}

:MPY BUFF20; {*COMPANY*)
ADDR : BUFF40; {*COMPANY ADDRESS*}
P:VNE : BUFF10; {*COD PAiY PHONE NU113ER WITH AREA CODE*}

CND;

:IEREC = RECORD;
CTRL : BUFF4; {*MILI7ARY CLOCK TIME*]

END;

BLRM REC = RECORD;
CTPL : BUFFS; [*BUILDING AND ROOM NU[I3ER*1

END;

4 CPTY REC = RECORD;
. - END; CTRL : BUFF4; [*CAPACITY :IUM3ER*}" ."'"END ;

C-6

I%

*'~~~ AS 'I ~ .- ~<(~'~- ~%\ ~ *~** **"A

DAYS RE':C =RECORD;

*CTRL :BUFF4; [*DA'. OF THlE ',.'-EK*l
£ ND;

:'SSF REC =RECORD;
C TRL :BEJFF3; [*COURSE~ SEQUENCE~ NUfl3CRfl'
SEQN :BU.FF40; {*SEQUENCE NAM.E*1

END;

MDEG REC = RECORD;
CTRL, BUFF2; {*NUMBIER IDENTIFYING TfYPC GRAD DZGRJEE*j
NAIIE :BUFF40; [*NAiIE OF TYPE OF DEGREE*)

END;

IEDU REC = RECORD;
FSSN :BUFF9; [*FACULTY SSN*}
STDT :BEJFF9; (*STUDENT SSN*}
UNLlI'/ : UFF40J; { * ItNsT:ITruION (UNIVERSITY) ATTENDED*)
DEGR : UFF40; [*DEGREE EARNED*}
YEAR :BUFF4; [*YEAR DEGREE AWARDE)*}

END;

PSOC REC =RECORD;
FSSN :BUFF9; [*FACULTY SSN*}
SOCY : BUFF403; [*SOCIETIES TO '1WHICH INDIVIDUAL BELONGS *
DUM1 BUFFS; [*PADDING TO INCREASE REC LENGTH*)

s D

FCMT REC =RECORD;
CODE : UFF2;
FSSN :BUFF9; [*FACULTY SSN : BUFF9*1
DCOD :BUFF4; {*DEPARTM4ENT DCOD*}
DATA :BUFF14; [*REDEFINED DATA AREA LENGTHl*)
NAMD : BUFF10; {*N.AM4E OFCOITE}
DEPD :BUFF4; {*N~AME OF DEPARTMIENT ??*I
NAMC :BUFFIO; [*NAPIE OF OTHER COM11MITTEE*1
DEPC BUFF4; {*NAM.E Or O-THEP DEPARTMENT ??*I

END;

A',-' REC = RECORD;
CODE BUFF2;
FSSN BUFF9; {*FACULTY SSN*I
STDT BUFF9; {*STrUDENT SOCIAL SEICURIT7Y IIJNDBR*l

*DATA :BUFF16; [*REDEFINING DATA LENGTH AREA*}
HONR :BUFF13; [*iI1O\ORS RECEIVLED*}
DATE : BUFF6; [*DATE TIONOR RECEivED*1
AtIRD :BUFF10; {*A"IARDS RECEIVED*l
ADAT :BUFF6; [*DATE AWARD RECEIVED*)

END;

C-7

0%

FINT REC RECORD;
SFSSN :BUFF9; [*FACULTY SSN*}

AREA : UFF15; {*AREA OF INTEREST*l
END;

FCOM REC = RECORD;
CODE :BUFF2;
FSSN :BUFF9; [*FACULTY SSN*}
DATA :BUFF61; [*REDEFINED DATA AREA LENGTI*1
NAME :BEJFF25; [*TITLE OF PUBLICATION*1

*DATE :BEJFF6; [*DATE OF PUBLICATION*}
COAU :BUFF30; {*NAME(S) OF C0-AUT.!0R(S)*}
ORGN : 3UFF25; [*PRESENTATION GIVEN TO TIlS ORGANIZATION*}
PDAT :BUFF6; [*PRESENTATION DATE*}

EIND;

FTDY REC = RECORD;
FSSN :BUFF9; f*FACULTY SSN*1
COST : UFF7; [*COST OF TDY DATA IN THIS E'ILE*1
DEST :BUFF20; f*DESTINATION*}
BDAT : UFF6; (* DATEv~}
EDAT : BUFF6; [*END DATA*)

* END;

CRSE REC =RECORD;
STDT :BUFF9; [*STUDENT SOCIAL SECURITY NUMBER*1
:IDEG : UFF2; (*TYPE GRAD DEGREE (NUMBER - FROM MDEG)*}
NUMB :BUFF8; [*COURSE NUM,1BER*1

(.NAME :BUFF20; [*COURSE NAt!E*'l
"RAD :BUFF"; [*COURSE GRADE*)
BEGN :BUFF4; (*QUART ER STUDENT TOOK OR WILL TAKE COURSE*)
COLL :BUFF30; (*COLLEGE ATTENDED*}
WA IV : UFFl; [*COURSE W-.AIVED? (Y/N)*l

END;

?HTL R = 2 ECORD;
'TN1S :3UFFI10; *PA"'V'TlS :Us2*
FACT :UF9 - *FACULT ADVISOR FSSv*
STDT :B3'FF9; f*STU DENT SSSN*}

SECL RE2'- = RECORD;
S C UrF8; {*RELA'?ED 7O0 C 5CIO UBR*

STDT : UFF9; {S TJD I S3''*}
FACT :BUFF9; [*FACULT,;! FSN,*}

END;

or VREC =RECORD;

CODE : UF'F2;
NMBR :BUFF8; [*COURSE NUMBEZR CONTROL FIELD*)
IDEN : 3UrF4; (*QUARTER IDENT CONTROL FIELD*1
SSSN : BUFF9; {*STUDENT SSN CATA*}l
VJREF :BUFF4;

END;

"REQ 2EC = RECORD;
CODE : BUFF2; {*CODED RECORD FOR REQUISITE*}
-:lTi3R : BJFF8; {*COURSE NUMBER CONTROL FIELD*)
DATA : BUFF12; {*REDEFINED REQUISITE DATA*}
RNUM : BUFF8; {*REQUISITE COURSE NUMBER*1

BLKA : BUFF6; {*RECORD BTYE FILLER FOR TOTAL*}
PNUM : BUFF8; {*REQUISITE COURSE NUMBER*}
BLKB : BUFF6; {*RECORD BYTE FILLER FOR TOTAL*}

END ;

VCBKREC = RECORD;
I,NMBR : BUFF8; {*COURSE NUMBER CONTROL FIELD*}

TITL : BUFF40; {*BOOK TITLE CONTROL FIELD*)
END;

VNMCOREC = RECORD;
TITL : BUFF40 ; {*BOOK TITLE CONTROL FIELD*}

,- NMBR : BUFF7; {*ORDER NU:4BER CONTROL FIELD*}
NORD : 3UFF3; {*NUM3ER ORDERED DATA ITEM*}

* SCuID REC = RECORD;
NSTD : BUFF3 ; *NUMBER OF STUDENTS IN CLASS*}
NMBR : BUFF8 ; [*COURSE NUMBER*}
DAYS : BUFF4; [*DAY CLASS MEETS*1
TIME : BUFF4; {*T IME CLASS STARTS*)
BLRM : BUFF8; {*BUILDING AND ROOM NUMBER*}

FNTM : BUFF4; {*CLASS FINISH TIME*}
-C'; D;

CLSR REC = RECORD;

"LRM : BUFF8; [*BUILDING AND ROOM NUMBER*}
CPTY : BUFF4; {*CAPACITY Or ROOM*}
EQPT : EUFF2; {*TYPE(S) OF E7UIPENT IN ROOM*}
TYPP : BUFF3; {*CODE FOR TYPE OF ROOM*}
CFLG : BUFFi; {*CODE FOR SECURITY CLASSIFICATION LEVEL OF

ND ;

-EC = RECORD;
FACT : BUFF9; {*FACULTY SSN*1
SDT 3UF29; [*SUD:. S*
CuES : BUFF1O; {*DEPARTLE',T THESIS 'U.3ER*}

FADV REC = RECORD;
W7 SECT : BUFF8; {*SECT CTRL (SECT NUJM3DR)*}

STDT : BUFF9; {*STUDENT SSSI*}
FACT : 3UFF9; {*FACULY'.' FSSN*}

4 C-9
4

S - % .. ,. . . . -. "% , r ; '.. ' - ' . ." -. . < . " .. '/ ' . .' .. . " _ - . ' '

VI:NS REC = RECORD;
STDT :BUFF9; [*STUDENT SSS11*1

'PNMBR : 3UFF8; {*VC!-RS CTRL (COURSE NIMBER)*1
FACT :BUFF9; [*FACUJLTY SSS:~Il

END;

TADV REC = RECORD;
TEIES :BUFF10; {*IDENTIFIES TIED TO T1IES NU:.IBER*l
STDT :BUFF9; {*STUDENT SSSN*1
FACT : BUFF9; [*FACULTY FSSN*}

END;

VPDQREC = RECORD;
:IQTR :BUFF4; {*TIED TO MQTR (QUARTER NUMBER)*1
FACT :BUFF9; {*FACULTY SSSN*}

END;

:',SS REC =RECORD;

-.SSF :BUFF3; [*TIED TOMASTER COURSE SEQUCN'!CE NzurIDER*}
NMDIR :BUFF3; [*TIED TO MASTER COURSE NME*
MDEG :BUFF2; {*TIED TO0 MASTER DEG REQUIREMENT NU:4BER*}

* CRSS :BLJFF30; (*LIs'I' WIC COURSES BELONG IN SEQUENCE*)
VREF :BUFF4; {*RECORD REFERENCE

END;

MSSF PTR = HSSFRECORD;
.SSF RECORD =RECORD;

SUL (FF3; {*C-OURSE SEQUEN'CE 'qtM3ER~)
V.SE~BiUFF40; [*S7"UEN'CE NAME*}

NEYT : SSF PTR;4?.PEV :MSSFPTR;
'AD'7-PTR7 = ^MD-EG RECORD;
:DEG RECORD =RECORD;

4)CTRL BUFr2; {NU:4B CR ID1 T FlXlING TYPE GRAD DEGREE*}
W DJ BFF4O; {*NA.IE OF TY -P2 OF OECGREE*}

"" D1 GPTR;
PREV M-DCGPTR;

E~ND ;
LINK P'TR = LINKRECORD;
LINK RECORD =REtCOR-b

NAME BUFF23;
.:TRL BUFF9;
RANK B3UMF;
DEP7 :i3UFF4;
3 EC'T :DUFF 3;
1EX T :LINIKPTR;

PREy LINKPTR7;
END; L* ,INK_ RECORD-*}

{* THESE TYPE DECLARATIONS ARE USED IN VARIOUS *}
". LIST PROCESSIG THAT IS UNIQUE TO TilE CDPLAN *}

-{* PROGRAM. *}
•*** ** *********** ***** ***** ** ****** * *** ** ******* *** *}

SECTARRAY = ARRAY [i..100] OF SECT REC;
LINK ARRAY = ARRAY [1..100] OF LINK RECORD;
CRSEARRAY = ARRAY [1..30] OF CRSE REC;
VCQR-ARRAY = ARRAY [1..120] OF VCQR REC;
VMSS-ARRAY = ARRAY [i1..30] OF VMSSREC;

!

i -l

0-I

Appendix D

.- ,;SYSTEM FLOWCHARTS

This portion contains the structure charts for the

anticipated application program structure. The charts are

intended to describe the system in terms of a map that the

systems analyst and users can follow to a specific function. The-The

first chart (page D-2) depicts the system in terms of the

seperate applications programs. FACTMOD, STDTMOD, CRSEMOD..etc

are seperately compiled programs spawned as seperate processes

by a main program. The standard database routines have been

omitted because they are considered abstractions of a data

* structure which in this case is the TOTAL Database Management

system.

'

D--

ww

ww £ Q
IAC)

- Li C E

z -

ca w <C
00 (3) Li -- - -

I. In -)
K IK

Z:LLA- LI 00 '
* 0--0 w

-3 CV La3Q
IL L. C -

LA. 00

Er >~ V -

I-~~U > . 3

<I~~ > w

zA j

-~ Li D-2

.IL

XLd

ata

.9 0.

IL

aa

C-) I-

.

bd

LaJ&

w aMa

D-3-

6-

ui w

CL.

0-4-

Lai.
0 aa

cu-

U) cu

LLIA
Li.)

Ca~

oro
9-

D-4-

&A R

-s-

0

Er

Ng0
* (4)

p.x
LA

UA

w I

C jz

'~La

4-ix

.~.., ~, .*94.. v.- *Lai

x

IL

U*')

c-ni

- LUJ

I-I

(A

I-I

Lai

D-6

I..

w

00
tal,

w __________

w
0 W

ww

ww

w w

L a Lan.
LIi

IL w

-JA

ac

B. Mj

Ii

z%
0~

#- a Caa

nc I-
ot

0 a
-j

Nt #A

W 00

%s

9. e24 .

k4'

4,.- ,-

-o.*

* "-V'

wl

0.

•4o

- 0g° ,

UC3I

D-9'

. -.

4.A

.4.9

-I-

*IIQ

CL

ww

42.1
#- j

aca

.4' C) '

Mi 0

w.

I-l

x C
6
.4.4W

I. -A'-A~~~~ -. C-. - .

aat

N'P ",,,

'S-'L W-

CL

I

t'tn!at

6m

i "" D-11I

o, IA

Lna

ww

in

Z:I

FI-
CU

00

CD-1

'. '

aa

L~l)a-, U 4D

"'>'"00m

%' .

.-..-. J -1

"2.".

4, K

-l L&

CL a.
Ir a

Ica.

C -at

00

~D-1

I.- >
CI a -

00h

~iU

C I

* LaJLai
LA

00

ccA

D-15-

00

0 CL

C.L

(A C

0 .1
:4 0-

%n wI

Ic0

D-1-

Appendix E

- AFITDB Frames Descriptions

The following is a compilation of th2 FIS form screens

contained within the library which supports the AFIT/ENG D3'!S.

Each screen must be resident within a library in order to require

only one open and close statement within a program. The listings

were created using the instruction FMS/DESCRIPTION/ImAGE

"formname". This creates a file called formname.lis which can

then be printed in the format described in this appendix.

The three column format is produced using the fms form

* _utility (FUT). The date column lists the latest date changes

were made to each form, while column three shows the work space

area , in bytes, reserved for each screen within the FMS driver

I. work space area.

zorm Application Aids V2.2
l9-:OV-1985 08:58

LiLrary DUA:[PAG MAN .AFITD3]STD-,cD.FLP,;1,
created: 12-SEP-1935 13:13

Date and time of last modification: 19-N-V-1935 03:57

Form name Creation date/time Iorkzpace size (b'ytes)

CDPLAW1 19-NOV-1935 08:57 5779
NAISEL 18-SEP-1935 11:36 1029
!!ELPEDPL 18-SEP-1985 13:01 1109
2DPLAN 19-7]OV-1985 08:32 1359
GETNA L 2-OCT-1985 12:39 1215
DELEDPLAM 29-OCT-1985 09:21 781
NArESECT 29-OCT-1985 09:43 1003
GETSEC °" 2-OCT-1985 12:37 937i SELSEC? 2-OCT-1985 10:59 1019

I-C

S..,-.

' , , " '- J i L' - " . . .- ° - .- .. - .. - . . . , , • . .-.. . - - - -, . - , . . . -1° ,. ,

Form name Creation date/time Workspace size (bytes)

STUDSEL 29-OCT-1985 09:34 1103
4-"

PRINTOPT 18-OCT-1985 14:29 585
TAPESEL 29-OCT- 1985 09:33 1029
SELALL 19-NOV-1985 08:34 773

i,1ORKON 22-OCT-1985 08:32 855
DELNAME 24-OCT-1985 11:56 631

STDTMENU 24-OCT-1985 10:57 615

DELMENU 24-OCT-1985 11:07 659

DELSECT 24-OCT-1985 11:59 531

1-1ORKDEL 24-OCT-1985 12:01 409

ALLORSOME 29-OCT-1985 09:20 675

WORKONSECT 25-OCT-1985 11:12 403

SEQHELP 19-NOV-1985 08:37 1021

SEQABWO2 19-NOV-1985 08:41 3705

NAMESECT2 29-OCT-1985 09:47 1043

LISTSECT 29-OCT-1985 10:25 711

SEQPAGS 30-OCT-1985 08:53 2139

LOADING 6-NOV-1985 09:43 645

- GRAPHMENU 8-NOV-1985 09:47 693
NOSCREEN 8-NOV-1935 10:25 159

* GRAPHSEL 7-NOV-1985 13:33 989

EDPLANIIELP 19-NOV-1935 08:50 879

EDPLANHELP2 19-NOV-1985 08:55 1153

'.- 9

V '

0%'

7° -"2

6.

* *h -

'/ '0'/ 4 40 ".*.

Form: EDPLAN1

1 2 3 4 5 6 7 8
123456789o123456789O123456789012345678901234567890123456789012345678901234567890

11 AFITDB/ENG:STUDENT EDPLAN V2.2 I1
21 NAME : 12
31SSAN: IAFSC: I ADEMIC ADVISOR: HELP 13
, RANK, AEC, A SECTION CODE: IUSE PF2i4•5 BOXNJ 1 5

61 16
--71 . -- 17

QTR81 COURSES Is
91 1 19

101 H0
Il IIII1 111

121 1112
131 1113
141 1114151 15
161 1,6171 117

181 Ia1

191 1 1119
201 1120
211 1121
221 1122
231 1 1123

------------------------ -------- -------- -------- -------- -------- -------- -------- ---------
12345678901234567890123456789012345678901234567890123456789012345678901234667890

1 2 3 4 5 6 7 a

Form: NAMESEL

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

21 12
31 SELECT FACULTY ADVISOR 13
41 14

51 A UNIQUE NAME COULD NOT BE FOUND GIVEN YOUR 15
61 INPUT. THE FACULTY MEMBERS BELOW MATCH YOUR 16
71 INPUT. PLEASE SELECT ONE OF THEM. 17
81 18
91 ---------------------- -19

" 101 10

121 112
131 113
141 114
151 115

* 161 116
1 171 117
18 1 - --- ------- ------- ---- -- --- ---- ------ --- - 118

" 191 .-- 19
. 201 I USE ARROW KEYS TO SCROLL THE SCREEN. ENTER AN 1120
- 211 I "X" TO SELECT A RECORD. TO EXIT WITHOUT SELECT- 1121

221 I ING A RECORD, HIT RETURN. 1122
"-23 1 - - - - - - - - - - - - - - : - - - - - - - - - - - - - 123---2

123456789012345678901234567890123456789O 1234567890123456789012345678901234567890

2 3 4 5 6 7

Form: HELPEDPL

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

21 LISTED BELOW ARE BRIEF DESCRIPTIONS OF ALL OF THE SELECTIONS 12
3J 13
41 1. THIS MODULE ADDS A NEW STUDENT TO THE DATABASE SYSTEM AND 14
51 THE STUDENTS EDUCATION PLAN. THE STUDENT SHOULD KNOW I5
61 HIS/HER SOCIAL SECURITY NUMBER, SECTION. AND FACULTY ADVISOR. 16

*71 17
81 2. THIS MODULE WILL ALLOW THE USER TO CHANGE ALL OF THE INFORMATION 18
91 ENTERED IN THE ADD ROUTINE EXCEPT THE SOCIAL SECURITY NUMBER. 19

101 110
111 3. TO DELETE AN EDUCATION PLAN FOR A STUDENT, USE THIS SELECTION. III
121 NOTE: THIS WILL NOT DELETE THE STUDENT FROM THE DATABASE. 112
131 113

* 141 4. THIS IS THE SAME AS THE UPDATE ONLY NO CHANGES WILL BE PERMITTED. 114
151 115
161 5. THIS MODULE WILL LIST THE STUDENTS IN THE DATABASE BY SECTION 116
171 NAME. 117
181 118
191 6. THIS MODULE WILL PRINT AN INDIVIDUALS EDUCATION PLAN. 119
201 120
211 7. THIS MODULE PRINTS AN ENTIRE SECTIONS EDUCATION PLAN. 121
221 122
231 123

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

6

Form: EDPLAN

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

11 AFITDB DATABASE V2.2 11
21 STUDENT EDUCA-ION PLANS 12
31 -- 13
41 1. ADD A NEW STUDENT AND EDUCATION PLAN 1 14
51 I5
61 2. UPDATE A STUDENT'S EDUCATION PLAN I 16
71 17
81 3. DELETE A STUDENT'S EDUCATION PLAN Is
91 19
101 4. REVIEW STUDENT'S EDUCATION PLAN 110

121 5. LIST STUDENTS BY SECTION 112
131 113
141 6. PRINT A STUDENT'S EDUCATION PLAN 114
151 I115
161 7. PRINT A SECTION'S EDUCATION PLAN 116
171 117
181 8. CREATE REGISTRAR SUMMARY FILE. 18
91 I119
201 9. EXIT TO PREVIOUS MENU 120
211 --- 21
221 SELECT OPTION (1-9)==> 22231 123

12345678901234567890123456789012345678901234667B90123456789012345678901234667890
1 2 3 4 a 7 8

E -4

I%

Form: GETNAME

2 3 4 5 6 7 8

, , 12345678901234567890123456789012345678901234567B9O123456789O12345678901234567890
% -.-- Ii

11 12
21

1

31 ENTER THE LAST NAME OF THE STUDENT
14

41
14

5; Is

l I I is91 ---------------------------------+19
710

101
110

121 ENTER THE LAST NAME OF THE STUDENT WHOSE RECORD YOU WISH TO
112

131 WORK WITH. IF ONLY ONE STUDENT IS FOUND WITH THAT LAST NAME. THEN 113

141 HIS/HER RECORD WILL BE READ AND PRESENTED. IF MORE THAN ONE STUDENT
114

151 HAS THAT LAST NAME, ANOTHER SCREEN WILL APPEAR WITH THOSE STUDENTS
115

161 THAT MATCH THE ENTRY ABOVE. YOU NEED NOT ENTER THE ENTIRE LAST NAME. 116

171 ENTER AS MUCH OF THE NAME AS POSSIBLE TO LIMIT THE POSIBILITIES.
TO 117

18l EXIT THIS SCREEN, HIT RETURN WITHOUT ENTERING ANY CHARACTERS. 118

19+_
- 119

201 DO YOU WISH TO PRINT THE LAST PAGE OF THE EDPLAN REPORT(Y.N) i 120
211

121

221 122
231 123

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

.4

Form: DELEOPLAN

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

. STUDENT EDPLAN DELETION 1

21 12
31 13
41 14

61 STUDENT'S LAST NAME: I 16
7 1 - ----------------------------- 17
81 i8
91 ENTER THE WHOLE OR PARTIAL LAST NAME OF THE STUDENT WHOSE 19

" 101 EDPLAN YOU WISH TO DELETE. NOTE THAT THE EDPLAN AND ONLY THE 10
ill EDPLAN WILL BE DELETED. THE STUDENTS RECORD WILL REMAIN. TO Ill
121 EXIT THIS SCREEN WITH NO CHANGE. HIT RETURN WITHOUT ENTERING ANY 112

131 CHARACTERS. 113

141 114
151 115

* 161 116
171 117

181 119
191 119

201 120
211 121

221 122231 123

12345678901234567890123456789012345678901234567890123456789012345678901234567891
..- 1 2 4 5 6 7 8

E-5

4

SI -, f ."K '-" -- "G ;.-" * ' " " "" ".. """ '

Form: NAMESECT

I 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

21 12

31 LIST OF STUDENT BY SECTION 13

41 14
51 DISPLAY ONLY 15
61 16
71 SECTION: 17
81 1
9 1 - ----- --------- ------------------------- - 19

101 I10

! 121 I 112
131 113

141 1 114

151 115
161 1 116
171 17

181 ------- +---- ------------------- .118
191 I USE ARROW KEYS TO SCROLL THE SCREEN. HIT RETURN 1119
201 I TO EXIT THE SCREEN. NOTE: THIS IS A DISPLAY OF 1120
211 I INFORMATION ONLY. USE 'E' TO EXIT THE SCREEN OR 1121
221 I HIT THE RETURN KEY. 1122
231 ------------------------ 123

1 2345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 8 7 8

"I.J

Form: GETSECT

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

li I
21 12

31 ENTER SECTION CODE 13
41 14
51 Is
6 1 1 6
71 SECTION = I I 17

91 19
101 ENTER THE SECTION CODE OF THE CLASS YOU WISH TO WORK WITH. IF 110

ill THE SECTION YOU ENTERED IS NOT A VALID SECTION THE PROGRAM WILL RETURN Ill
121 TO THE PREVIOUS MENU. 12

131 13
141 ------- -- - ---------- 114
151 WORKING ON STUDENT = 1 115
161 16

171 --- 117
18 WOULD YOU LIKE THE SECOND PAGE OF THE REPORT (YN) N I 118
191 1--- 19
201 120
211 121
221 122
231 123

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 4 5 7 8

E-6

%

Form: SELSECT

S1 2 3 4 5 6 78
1234567S901234567890123456789O12345678901234567890123456789012345678901234567890

21 12
31 SELECT CLASS SECTION 3

61- --- 16
71 17

891 I 19
101 1 I 10

121 1 112

131 1 13
141 1 114
151 1 15

161 116
17 117
18 1 - - -- - -- -- - - - -- - -- - - - -- - - - -- - -- - -- -- - -- -- - -- - Ila

19 1 USE THE TAB KEY AND UP AND DOWN ARROW KEYS I 119
201 I TO MOVE THROUGH THE SCREEN. PUT AN *X" BESIDE THE 1 120
211 I SECTION YOU WISH TO WORK WITH OR PRINT. HIT RETURN 1 121
221 I WITHOUT ENTERING ANYTHING TO EXIT THIS FUNCTION. I 22
231 - -- - 123

1234567890123456789012345678901234567890123456789O123456789012345678901234567890
1 2 3 4 5 A 7 0

Form: STUDSEL

1 2 3 4 s 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

21 12
31 SELECT STUDENT RECORD 13
41 14
51 A UNIQUE NAME COULD NOT BE FOUND GIVEN YOUR 15
61 INPUT. THE STUDENT LIST BELOW MATCH YOUR 16
71 INPUT. PLEASE SELECT ONE OF THEM OR HIT 17
81 HIT RETURN TO EXIT WITHOUT SELECTING A NAME. 18

911 ------------------------------ 19

1 115
101 11

121 12

•141 1 14

151 115161 1116

171 17

11--- 1
201 1 USE ARROW KEYS TO SCROLL THE SCREEN. ENTER AN 1120

211 X" TO SELECT A RECORD. TO EXIT WITHOUT SELECT- 1121
221 ING A RECORD, HIT RETURN WITH NO "X" ENTRY. 1122

S23 1 - -- -- -- ------ -- -- --- -- ---- ------ --- ---- -- ---- --------- 123
* 21--3

... 1234567890123456789012345678901234S678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

E-7
44e~

'S , - , % - , - . - . - . ' " . . , - • , " . " . , - . . , , . . - . " ' - ' , . . . - - - -

Form: PRINTOPT

X\1 2 3 4 5 6 7B
-f 12345678901234567890123456789012345678901234567890123456789012345678901234567890

--11 I1

21 12,;,31 13
*4 K1 EDUCATION PLAN PRINT OPTION 14

S15
61 16

71 17
al WOULD YOU LIKE TO PRINT THIS EDUCATION PLAN (YN) N is
91 19

101 110
I1 WOULD YOU LIKE TO PRINT THE SEQUENCE PAGE (V,N) N Ill
121 112
131 113
141 114
151 115
161 116
171 117
181 118
191 119
201 120
211 121
221 122
231 123

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

Form: TAPESEL

1 2 3 4 5 6 7 a
123456789012345678901234567890123456709012345678901234567B9012345678901234567890

21 12
31 REGISTRAR TAPE BUILD FUNCTION 13

451 (CREATES STUDENT SUMMARY.DAT FILE5
61 1
71 --- 1

1010
z=.v 11

121 1 12
131 1113

V14 114

165
171-- ------------- 117181 IPLACE AN 'X' BESIDE THE SECTIONS YOU WISH lies

191 1TO GENERATE A SUMMARY FILE FOR. YOU MAY I119
201 IUN-SELECT A SECTION BY PLACING A SPACE IN THE I12
211 IMARKER TO THE LEFT. TO EXIT. HIT RETURN. TO I121
221 IEXIT AND CANCEL , ENTER AND 'E'. 1122
231---123

l234567890l234567890123456789012345678901234567890123456789012345678901234567890

12 3 4 5 6 78

E-8

V.

ft-.".

?f .k ~ *-*.t' t--* t *-*tf

Form: SELALL

1 2 3 4 5 6 7 8
123456789012345678901234567890123456789012345678901234567890123456789 1234567890

1 1 1 1

21 12
31 SUMMARY FILE GENERATION FUNCTION 13

41 14
5 15
61 THIS MODULE ALLOWS THE USER TO GENERATE THE SUMMARY FILE NEEDED 16
71 BY THE REGISTRARS OFFICE TO SCHEDULE CLASS. SUMMARYS CAN BE 17
al GENERATED FOR ALL OF THE SECTIONS OR JUST SELECTED SECTIONS. 18
91 19
1OI 110
III GENERATE SUMMARY FILE FOR ALL II
121 SECTIONS. 112
131 113
141 2 SELECT SPECIFIC SECTIONS TO BE 114
151 GENERATED. 115
161 116
171 9 EXIT TO PREVIOUS MENU. 117
101 lie
191 SELECT OPTION (1.2.9)==> 119
201 120
211 121
221 122
231 123

123456789012345678901234567890123456789O12345678QD123456789 12345678901234567890

1 2 3 4 5 A7 a

,_9-

Form: WORKON

1 2 3 4 5 6 7
123456789012345678901234567891234567891234567891234567891234567891234S6790

1--
21 SUMMARY FILE GENERATION 12
31 12
41 13

---------- --- 14
6 1 1 ---- ------. . 15
71 SECTION ==> 16
81 1 18

901 1 PITNSTDN =---------------------------------------I 19,11 PRINTING STUDENT =>I 1 10ill I---------- --------------------------------121 I ...
131 -- 112

+ 113

161 115
171 116
1ei 117
19119
201 119
211 120
221 121
3122

1234567890123456891234678912345678901234567890123456789012345678912345?8

1 2 3 4 5 6 7

E-9

Form: DELNAME

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

--

21 12
31 ENTER THE STUDENTS LAST NAME 1
44
5 YOU WISH TO DELETE 5
6 16
7 17

91 19

lo-- 11
III NAME - I I III
121 -------------------------------- 112

131 +-+ 113
141 ARE YOU SURE YOU WANT TO DELETE THIS RECORD (Y,N) 1 1 114
15! 1- 15
161 116
17 117
181 18
191 19
201 20
211 121
221 22
231 23

1234567890123456789012345678901234567890123456789D123456789012345678901234567890
1 2 3 4 5 6 7 8

Form: STDTMENU

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

11 I1
21 12
3 AFITDB/ENG STUDENT DATABASE 13
41 14
51 15
61 6
71 1. ADD A STUDENT TO THE DATABASE. 7
a[a
91 2. UPDATE A STUDENTS PERSONNEL RECORD. 9

S101 110
" 11l 3. DEL A STUDENT(S) FROM THE DATABASE (ARCHIVE). Ili
" 121 112
" 131 4. UPDATE A STUDENTS PERSONNEL RECORD. 113
" 141 114

151 5. RUN THE EDUCATION PLAN PROGRAM. 115
16 6

- 1 9. EXIT TO PREVIOUS MENU. 17
181 118

-' 19J SELECT OPTION (1-5,9)==> 119
201 120
21 121
22 122
23 123

~12345678901234567890123456789012345678901234567890123456789o12345678901234567890

*.t.- 1 2 3 4 5 6 7 8

E-1O

4L

Form: DELMENU

12 3 4 56 7 8
1234567890123456789012345678901234567890?234567890123456789012345678901234567890

I1 Ii
21 12
31 DELETE STUDENT FUNCTION 13
41 14
s 15
61 THIS FUNCTION REMOVES THE STUDENT OR STUDENTS FROM THE DATABASE 16
71 SYSTEM AND STORES ALL OF THEIR INFORMATION IN FILE CALLED ARCHIVE.DAT. 17
81 YOU CAN EITHER REMOVE A SINGLE STUDENT OR ARCHIVE AN ENTIRE SECTION. Is
91 19

10 1 DELETE A STUDENT BY NAME. 110

III III
121 2 DELETE AN ENTIRE SECTION. 112
141 9 EXIT TO PREVIOUS MENU. 114

151 115
161 SELECT OPTION(.2.9)==> 116

* 171 117181 118

191 119
201 120
211 21,-221 122

231 123

12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8

(S

Form: DELSECT

I!1 2 3 4 5 6 7 8

1234567890123456789012345678901234567890123456789012345678901234567890 568

21 1
3 13
41 DELETE AND ARCHIVE AN ENTIRE SECTION 14
61 Is
71 1671- - -- - - 17
81 ENTER THE SECTION CODE ==> I I
9 1 - ---------

101 19
111 110

+ -+II

121 ARE YOU SURE YOU WISH TO DO THIS. (YN) I I 12
131 .11
141 113

151S 114
161 115
171 16
181 117

191 118

201 119

21I 120

221 121
231 122

--123 2

K. 123456789012345678901234567901234567891234567890123456789012345 89 1234567890
1 2 3 4 5 6 7 8

E-1%

-%'.~.%**4* -.-. ~ ~ A .J

Form: WORKDEL

, .*,., 1 2 3 4 5 6 7 8
... 1234567890123456789012345678901234567890123456789012345678901234567890123456789

II Ii

2 12

3 13
41 14

51 CURRENTLY ARCHIVING AND DELETING 15
61 16
71 j7
al ----------------------- i

91 1 I 19
10 ------------- 10

, 121 112
131 (PLEASE STAND BY:) 113
141 114
151 115
161 116
171 117
181
191 119
201 120

% 211 121
221 122
231 123

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

.q.,

Form: ALLORSOME

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

1I 11
21 12
31 13
4 SELECT AN ENTIRE SECTION TO BE PRINTED 14

15
a 16

71 OR SELECTED STUDENT WITHIN A SECTION 7

91 19
101 110
ill 1 PRINT ALL STUDENTS EDPLANS WITHIN A SECTION. Ill
121 2
131 2 PRINT SELECTED STUDENTS EDPLAN WITHIN AN SECTION. 13
141 (AN ADDITIONAL SCREEN WILL APPEAR TO ALLOW) 114
151 (YOU TO PICK THE STUDENTS TO BE PRINTED.) 115
161 116
171 9 EXIT TO PREVIOUS FUNCTION. 117
181 is
191 SELECT OPTION (1,2,9)==> 19
201 120
211 121
221 122
231 123

12345678901234567890123456739512345678901234567890123456789012345678901234567890
*12 3 4 5 6 78

E" -12

.
0%

,. Form: WORKONSECT

.. 1 2 3 4 5 6 7 8
"2345678901234567890123456789012345678901234567890123456789012345678901234567890

it Il
21 12
31 CURRENTLY PRINTING EDPLAN 13
41 14
51 15
61 16
71 -- - - - - - - - -- - - - - - -1

91 FOR: I I 19101 IO
ill - - - - - - - - - - - - - - - -Ill
121 112
13113
141 113
151 114
161 115
17 117

191 118
2) 201 19

211 120

221 121

231 122
23

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 a

Form: SEQHELP

1 2 3 4 5 6 7 812345678901234567890123456789012345678901234567890123456789012345678901234567890

2" 12
31 ENTER TO THE LEFT OF THE COURSE. THE TYPE OF SEQUENCE THE COURSE 13
41 BELONGS TO. FOR INSTANCE. EENG799 WILL ALMOST ALWAYS BE THE 14
5I THESIS COURSE AND SHOULD CONTAIN AN ENTRY THES'. OTHER VALID i5
61 SEQUENCE CODES UNDG.SEQA.SEQB.MATHWAIV. AS A SHORT CUT. THE FOLLOWING 16
71 ONE LETTER CODES CAN BE ENTERED IN PLACE OF TYPING THE ENTIRE FOUR 17

% 8I LETTER CODE: 18
91 19

% 10 A x SEQA 10
% I I a SEQB Il

121 M = MATH 12
131 W = WAIV 113
141 U = UNOG 114
151 OR A SPACE WILL DELETE THE FIELD 11
161 116s
171 ENTER THE CODE AND HIT TAB OR RETURN AND THE ACTUAL CODE WILL APPEAR. 117
181 TAB. BACKSPACE, AND RETURN KEYS ALLOW YOU TO TRAVERSE THE LIST. THE Ila
191 FUNCTION WILL NOT TERMINATE UNTIL THE CURSOR PASSES THE LAST FIELD AND 119
20 THE RETURN KEY IS HIT. 120

212
231 122

123456789012345678901234567901234567890123456789012345678901234567890123456790
2 3 4 S 6 7 S

E-13

e-

Form: SEQABW02

. 2 3 4 5 6 7 B
Jl, 12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 ISEQUENCE DECLARATION 11

21 THE FOLLOWING COURSES REPRESENT THE SEQUENCES AS 12
31 THEY CURRENTLY EXIST IN THE COURSE FILES. SEQA REPRESENTS THE 3

* . 41 DEGREE REQUIRED COURSES, SEQB REPRESENTS THE SEQUENCE COURSES. 14
- - 51 MATH, THES. AND WAIV REPRESENT MATH, THESIS AND WAIVED COURSE. is

61 UNDG REPRESENT THE UNDERGRADUATE COURSES. 16
- 7 1 1 7"- . llB$

9 1 1 o1 19

101 110
2 121 12

131 1 113
141 1 114
1,, 1. 1151'.' 6 18 16

171 1 117
181 1 118
191 119
201 120
211 121
221 122
231 1 123

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

Form: NAMESECT2

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

21 12
31 LIST OF STUDENT BY SECTION 13

14SELECT STUDENTS TO BE PRINTED I5
61 16

7 "SECTION: 17
81 9

101 110

121 12
131 113
1 41 14

161 116
171 1 117

--- 18
190 i USE ARROW KEYS TO SCROLL THE SCREEN. HIT RETURN 1119
201 i TO EXIT THE SCREEN. PUT AN 'X' BESIDE THE NAMES 1120

211 1 OF THOSE STUDENTS WHOSE EDPLAN YOU WISH TO PRINT. 1121*% 21 ENTER AN 'E' TO CANCEL THIS FUNCTION. 1 122
--- 13

12345678901234567890123456789012345678901234567890123456789012345678901234567890

1.2 3 4 5 6 7 ..

-14-

I F

Form: LISTSECT

, %

I 2 3 4 5 6 7 8
• ".5- 123456789O123456789Ol2345678901234567890123456789O12345678901234567891234567890

--

2' 12LIST OF STUDENTS BY SECTION 13

4 1451 5sS61 16
71 17
8l ENTER SECTION =I 1 18
91-- - - - - -1101 11il.- 110

121 ENTER THE SECTION CODE OF THE CLASS YOU WISH TO WORK WITH. IF 112
131 THE SECTION YOU ENTERED IS NOT A VALID SECTION THE PROGRAM WILL RETURN 113
141 TO THE PREVIOUS MENU. THE LIST OF STUDENTS ASSOCIATED WITH THE SECTION 114
151 WILL APPEAR ON THE NEXT SCREEN IN A SCROLLED AREA. 115
161 16
181

117

191 119
201 120
211 121
221 122
231 123

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8

Form: SEQPAGE

1 2 3 4 5 6 7 8

%'S 12345678901234567890123456789012345678901234567890123456789012345678901234567890

11 SEQUENCE DECLARATION DISPLAY 1

21 SEQUENCE A: DEGREE REQUIRED COURSES: 12
31 13
41 -- 14
51 SEQUENCE B: REQUIRED SEQUENCE COURSES: I5
61 16
SI- -.............-- 17

8MATH COURSES: 18
91 ---

19
I Il THESIS COURSE: Ill
121 112
131 ---113
141 OTHER GRA'I-"TE COURSES: 114
151 115

'F161 11Is
171 ---117
8'1 1 UNDERGRADUATE COURSES: is

191 1ji9, . 919
201 --- 20
211 WAIVED COURSES: 21

* 221 122, .. 231 123
-- 2
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8

E-15

A -

Form: LOADING

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

--
1 WELCOME TO THE DATABASE SYSTEM 11

31 12-3 AFIT/ENG DATA BASE MANAGEMENT SYSTEM 35
14" 5

S61 ---
*71 16

ll 8 LOADING THE FILE.PLEASE STAND BY 17

90 19
101011 110

124 ------ III
1312141 NUMBER OF RECORDS 112141 --- --

151 114
161 115
17 116

181 117
191 18
20 19

S"211 120
* . 221 121

231 122
'.'',23w..

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* 1 2 3 4 5 6 7 8

9 Form: GRAPHMENU

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

21 GRAPHIC DEMONSTRATION PROGRAM 12
4 14

S5I 1. GRAPH NUMBER OF STUDENTS IN A SECTION is
61 16
71 2. GRAPH NUMBER OF STUDENTS IN A COURSE 17

91 3. SET MODE TO PLOTTER 19
101 10
11 4. SET MODE TO SCREEN (DEFAULT) 11
121 112
131 5. AFIT/ENG FACULTY WORKLOAD (USING FMS) 13
14 14
1 15 6. AFITIENG GEPARMENT WORKLOAD (USING FMS) 15,161 6s1I

• 171 9. EXIT PROGRAM 117
181 18
191 SELECT OPTION (1-4.9)==> 19
201 20
211 21
221 122

- 231 123
--

' .. .
12 3 4

5
6 7

890
12 3 4

5
6 7

89012
3 4 5 6

789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

E-16

Form: NOSCREEN

1 2 3 4 5 6 7 e
12345678901234567890123456789O123456789O123456789O12345678901234567891234567890

--'I Ii

21 12
31 3
41 4

61 14

71 17
sIs

0 19

12l IlO
110S131 12

141 113

151 1 14
161 1 5
171 116

18a 117
191 Ila
201 119
211 120
221 121
231 122

123
1234567890123456789123456789123456789012345678901234567890123456789012345678901 2 3 4 5 6 7 8

Form: GRAPHSEL

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

2 12

31 SELECT SECTIONS TO BE GRAPHED 13
, 41 1451 1

61 16
71 17
81/ 1 8
91 = 19

101 j 110

121I 112
131 I= =13
141 I 114
is! 1 is
161 I=116
171 +----------------------------------- 17
181 PLACE AN 'X' BESIDE THE SECTIONS YOU WISH 18
191 I TO GENERATE A SUMMARY FILE FOR. YOU MAY I 19
201 I UN-SELECT A SECTION BY PLACING A SPACE IN THE I 120

* j 21 I MARKER TO THE LEFT. TO EXIT. HIT RETURN. TO i 121
* 221 EXIT AND CANCEL . ENTER AND 'E'. 122

231 -- 123
--

-- 12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

E-17

o

APPENDIX F

Data-set Requirement Tabulations

This part of the appendix was obtained from Maj Pangmans

Thesis on the AFIT/EN Database System (2). The left side of this

A, appendix lists the specific requirements requested that the

expanded AFIT Database accommodate, while the right side show the

subsequent location where ethe requirement has been included

.within it. The data requirements obtained by 'interviews' also

consisted of the repeat conversation with administrative

personnel as will as those originally interviewed. This document

was used to check the requirements requested against the atomic

values needed to support those re-quirements. Those requirements

S &"items which have more than one data-set listed as the location

where the requirement is found indicate that either area could

contain such data depending on the application progoram or that

the application program requ'ired to obtain such data can do so

utilizing the listing data-set links.

7'C EQUIRE IENT DATA TABLE DATA - ;HERE TIE
REQUIREMENT DATA ARE LISTSD
1N TNE DATA-SET

I. Change the thesis course credi M'CRS - Course control
from 2 to any number of hours. number has six digits.

(ex. ee79A - I credit hour)

2. Fac Advisor -- Students FADV - Linked to FACT,STDT,
.% Fac Advisor -- Thes Students SECT

,,. Student -- > Fac Advisor TADV - Linked to FACT,STDT,
Student -- Thes Advisor TIES

. Thesis Data -- > Student STDT
Advisor TADV

F-I

Box Number STDT
Class SECT
"-Thesis Topic (Title?) TIITL
Committee Members -AC1F

Thesis Title THTL

4. Instructors with Course Listing --
Instructors FACT

Course Linsting MCRS

3. Course Listing -- Title MCIRS
Course Number M CRS

Number Credit Hour MCRS

Quarter MQTR
Course Text M4BKT
Instructor VINS

6. Projected Enrollments -- > Course MCRS
Number of MCRS
Hours
Quarter MQTR

* Number of VNMO
Books to order

7. Ed Plan -- Student Name STDT
SSAN STDT
Course (Num. & Title) t.CRS
Section (Size Limit) !ICRS
Credit Hours ,ICRS

* Class SECT
Quarter MQRT
Grades CRSE
Prerequisites .1REQ
Wa i ver CRSE
Course Sequence >SSP

' ":',_aching Loads -- > a. Instructors Name FACT
b. Course(s) Taught ,1CRS/VCDR

'p. c. Quarter P,
d. Type of Course 1.ICRS

. Number of Section MCRS
f. Number of Thesis/

Instructors FAC-/TAD 7/TlES
g. Short Term '!ours ,CRS/FACT

Taught
h. Profssional

Developement
Quarter Listing VPDQ

i. Faculty Advisor

Listing FADV
J. Thesis Committee

Listing TCMF

9. Cuurse Data -- > Student Name STDT,'- , " '-.-SSA.,' STDT

.

, ,Service STDT
Rank STDT

1 Class S'DT/SECL/SECT
Home Telephone STDT

Box Number STDT

1. Instructor
-*--"Statistics -- > Instructor Name FACT

SSAN FACT
Courses Taught MCRS

Students In Course by:
Name STDT

SSAN STDT
Class SECL

Grades CRSE

11. Catalo Faculty

Publications--> Name FACT
SSAN FACT
Title FCOM

7i Date FCOM
* Topic (TITLE) FCOM

12. Room Usage -- > Room Location BLRr1
Room Capacity CPTY
Time Schedule TItE/DAYS/SCHD

13. Projected -- > Course MCRS
Enrollments Quarter MQTR

Student SSAN STDT
Student Name STDT
Student Class SCCL

14. Proffessional -- > Awards FIAW
Duties Committee IemDership -CIT

Committee Duties F:T
Professional Soc. FS0C
Interest Area FlT7

15. Student Data -- > Name SD?
SSAN .T DT
Box N'umber ,T DT,
Home Phone ,Number STDT
Ad v i so r TADV
Class SEC7
Service STDT
Graduated AFIT? STDT

16. Graduate Record--> Verify Degree
Data Requirements MDEG

- Course Se'4uences .ISSF
Course ,CR"S

--. ' .ath Credits MC RS

F-3

V.,v"

., APPLICATIONS SOFTWARE REQUIREMENTS LIST

-his portion of the requirements list specifies the

requirements for the application software and computer interface

requirements. The requirements are numbered for easier reference

in the thesis.

i. Database Schema Enhancements and Modifications

1.1 Graduate Credit Record Modification.

1.1.1 Remove the student social security number link
from the Variable Sequence File and from the Master Student File.

1.1.2 Remove references to the student social security
number link from all other files.

1.2 Text Book file modification.

1.2.1 Text book file and book file contain Juplicate
information. Delete the text book file from the database.

1.2.2 Remove all references to the text book file from

* other files.

1.3 Zourse Field Modification.

1.3.1 Increase the field size from 6 characters to 8
.:haracters to make the field compatible to other database
systems.

1.4 Thesis Catalog File (NTIC).

.4. 1 Information contained in the variable files
belongs in the laster Thesis File (THES) 'The variablej files must
icontain links only to allow for deletion of stjdents and faculty.S

1.4.2 Thesis Catalog file and Thesis file contain

iplicate information. The Thesis Catalog file should be
removed from the schema and all links removed from the system.

1.4. 3 Re-generate the database using the new file
syst-m.

2. Fuictional Requirements.
2.1 Functional file grouping. There are ive distinct file

groups. Each one is to be maintained by a seperately compiled
program to aid in modularity and design.

". ;." ui culty: Maintains faculty master file,

F-4

0

. }]' .%V.,, ' .- ' ' S-... . L'-,", . , ,." " N .''2, V.'.-
"

" > V " - ... -,".". . .. ,"..,'- - '. . < ,- ", .' ."*. - . *"" -, .

department master file and related variable files.

2.1.2 Student: Maintains the student master file,
education plans and related variable files.

2.1.3 Courses: Maintains the master course file,
master textbook file, day file, time file, room capacity file,
and quarter file as well as the related variable files.

2.1.4 Thesis: Maintains the thesis master file and
controls the links to students, faculty,and departments.

2.1.5 Sequence and Degree Modules: Maintains the
master sequence file, master degree requirement file and
associated variable files.

2.2 Standard Database Functions.

2.2.1 Add: Adds a record to the database. This
involves adding a master record and associated variable records
if necessary.

* 2.2.2 Update: Updates a master record and in the
database. Must be able to detect if the record exists and update
associated variable records.

2.2.3 Delete: Delete a master record. In some cases
such as for the faculty and students records, the data should be
archived for historical data and records. Thesis information
3hiould be keot for student database searches.

,.2.1 Review: Scan the information in a master record
and link variable records in read mode only. 'Maintain the
ability to print the information.

2.2.5 'M2:.X:X:!: Write an updated master file record to
the AFIT Datahase ihere "'X'X" is the four character file code.

2.2 6 RDe::XX: Read a record from the master File of
the AFIT Database where ",XXX" is the four character file code.

2.2.7 DLMX:*:.: Delete a master record from the AFIT
Database and all of the associated variable records. "*'"

designates the four character file code.

2.2.3 AD,::X.:.. Add a new record to the AIT Database
system where is the four character file coda.

2.2.9 ADCXXX: add a variable record continue, adds a
record after the current record pointed to.

2.2.10 ADAXXXX: Add a variable record after the second
record pointed to.

2. 2. 1 ADB', :.*X: Add a record before the one pointed to

F-5

.,,

• a.F

. - - - --.----------------------

in the record string.

2.2.12 ,.DVXXX,: Read the next variable record in the
string of records.

2.2.13 RDRXXXX: Read the previous variable record in
the string.

2.2.14 RDDXXXX: Read direct. Reads the record directly

pointed to by the reference pointer.

2.2.15 WRVXXXX: Writes a variable record back to the
database system that previously existed.

2.2.16 DLDXXXX: Deletes a record pointed to by the
reference pointer.

2.3 Database Limitations. These limitations apply to the
database generation because TOTAL allocates the disk space for
the entire file system at once. Disk space must be contiguous.

2.3.1 Faculty file limitations
•0 Room should be allocated for 200 people in

the database with 460 bytes for each individual. Blocksize of
the record should be 5 records or 2560 bytes.

2.3.2 Student file limitations:
Space should be allocated for 585 students in

the database with 460 bytes per student. The blocksize of the
file should be the same as the faculty (2560)yte blocks).

2.3.3 Department file limitations:
There are currently five departments,

however, space should be allocated for seven in case of growth.
Each records should contain 40 bytes and the blocksize should be
set to 512 bytes.

2.3.4 Thesis file limititations:
%''" At this time, space should be allocated for

585 th-sis which is identical to the number of students enrolled.
17Lach record contains 232 bytes, blocksiz should be set at 922

.3 (Class section limitations:
'.;ith the ability to overlap the number of

;ection a degree is offered to, space for 33 sections should be
allowed. Each section requires 56 bytes and a blocksize of 144
bt e s.

2.3.6 Course file limitations:
The number of course required to be store is

542. This allows for a ten percent growth in the next year. Each
record requires 128 bytes with a block size of 1024,.

2. 3.7 Class quarter limitations:

F-6

The number of quarters is expected to remain
the same. Soace should be allocated for 3 years of classes, or 12
quarters. Each record requires 40 bytes with a block size of 483
'bytes per block.

2.3.3 Course Book limitations: Each course will

require on the average of 2 books. With a set number of classes
at 542, storage must be made available for 1084 books. Each
record requires 130 with a blocksize of 390 bytes.

2.3.9 Class time limitations:
With each class time starting on the hour

between the hours of 0800 and 1700, there are 10 class times. To

accomodate special requests, an additional 5 classes will be
added. Room should be made available for 15 classes, each record
requies 20 bytes with a blocksize of 503.

2.3.10 Building and Room limitations:
The only capacity for the rooms ever put on

-he current database is 30, which is the enrollement limitation.
However, room should be allowed for 10 records for the room
capacity and 130 rooms total for the Master Building and Room

* file. The laster Room capacity file requires 20 bytes per
record and 400 byte blocksize and the Master Building and Room
file needs 32 bytes per record and a 512 bytes per block.

2.3.11 Degree and Sequence limitations:
Because of the changing requirements, these

two files should be allowed their total capacity of 100 and 1,007,
records respectfully. The Master Sequence File should allow for
1000 records with each record requiring 60 bytes and 512 byte
'- blocksize. The Master Degree Requirement file needs 66 bytes per
record and 512 b.)'te blocksize.

2. . .sponse -ime Requirments. The objective is to keep
r,2sponse time to a minimum. Because of the relative low nimber of
records that are in each Lile, (less then 400 on the average)
-this can be one by keeping an internal list of files in a simple

links list structure. There are currently a need for the
following linked list structures.

'2.4.1 Student file: Keep track of the students name,
social security number, class section, an,.I box number. Define
add, j2date, lelete and find operations on this list.

.I.4. Vaculty file: X,.e) track of the 'aculty names,

3 social security number, and advisor section. Define thi add,
u-)date, delete, and find operations on tnis list.

2.4.3 Class Section: Keep a sorted list of class
sections, advisors, and section leaders in a linked list. Define
the Add and find operations on the structure.

4
,%'4.

,-r-

2 3 Require] Reports

2.5.1 Division Faculty Schedule and :1anpower
Requir-aments Expenditure Document: See this Appendix for
examples of th2se documents.

2.5.2 Education Plans: Contains the students
information, class schedule by quarter, sequence A and B.

2.5.3 Listing of Enrolled Students: Give the students
enrolled in courses at AFIT by department and section numbers.

2.5.4 List Courses and information on when they are
offered, credit hours, and instructors.

2.5.5 Student Locator listing: Contains the information
currently contained on the student locator cards in the ENA
")f C i co

2.6 Data Syntax: 'ee Appendix C for a complete list of data
sy7ntax aid compatibility tests to be performed on the data items
to protect the data integrety.

3. Computer Interface Requirements.

3.1 Identify targeted user group and develop system on the
critera of the average user as defined by this thesis.

3.2 Develop a prototype of the Education Plan program to
demonstrate to possible users for feedback on "user-friandliness"
of the system.

3.3 Develop menus for the system that are standard in
structure Dnd self documenting. No more than seven selections
should oe)n ny one menu.

3. 1 Item Selection: W.henevr ,, :ible, let the user select
from a group of items such as course to eliminate the need to
type in data. This should enhance data integrety and make the
system simpler to use. 'lake the selection as narrow as
possible. For instance, if selecting from a group)f classes,
3low the user to ask for only £JG classes or "A?, classes.

or

6o'

%'] ,-8

lie a

I-F-8

SCHOOL OF ENGINEERING STUDENT RECORD
. GAITROS, DAVID A. CPT 4924 GE-85D

PLAN INITIAL REVISED FINAL
PROGRAM APPROVAL: M. S.

'." ' ADVISOR ACADEMIC THESIS

GTR-YR NUMBER COURSE TITLE HRS GRADE PTS

SUMMER 1984
MATH531 MATH METHODS OF COMPUTE 4
MATH592 MANAGERIAL STATISTICS I 3
COMM600 TECHNICAL WRITING 2
MATH445 INTRO TO ALGORITHM DESI 4

CUM HRS: 13 CUM GPR GTR HRS 13 GTR GPR:

FALL 1984
EENG450 INTRO TO LOGIC DESIGN 5
MATH692 MANAGERIAL STATISTICS I 3
EENG586 INFO STRUCTURES 4
EENG589M OPERATING SYSTEMS 2

CUM HPS: 27 CUM GPR GTR HRS 14 GTR GPR:

WINTER 1985
EENG588 COMPUTER SYSTEMS ARCHIT 4
EENG593 SOFTWARE ENGINEERING 4

* EENG&46 COMPUTER DATA BASE SYS 4
EENG698 THESIS SEMINAR 0

* COMM698 SEMINAR IN TECH COMMUNI 2
CUM HRS: 41 CUM GPR GTR HRS 14 QTR GPR:

,, SPRING 1985
EENG690 SOFTWARE SYS PROGRAMMIN 2
MATH555 INTRO TO ADA 4

EENG799 INDEPENDENT STUDY 4
OPER548 MANG ANAL & SIM I 4

CUM HRS: 55 CUM GPR GTR HRS 14 OTR GPR:

SUMMER SHORT
EENG545 SOFTWARE SYS ACQUISITIO 2

CUM HRS: 57 CUM GPR GTR HRS 2 QTR GPR:

SUMMER 1985
EENG799 INDEPENDENT STUDY 4
O OPER648 MANG ANAL & SIM II 4

CUM HRS: 65 CUM GPR GTR HRS 8 GTR GPR:

FALL 1985
EENG799 INDEPENDENT STUDY 4
MATH568 INTERACOMMIVE COMPUTER 4

- EENG793 ADVANCED SOFTWARE ENG 4
CUM HRS: 77 CUM GPR GTR HRS 12 GTR GPR:

AFITDB/ENG FORM #1 21-NOV-1985

F-.9

PAGE 2
SCHOOL OF ENGINEERING STUDENT RECORD

AFITDBi/ENG 21-NOV-1985

GAITROS, DAVID A. CPT GE-85D COURSE HRS
, SEGASEG" EENG589M OPERATING SYSTEMS 2

EENG588 COMPUTER SYSTEMS ARCHIT 4
EENG593 SOFTWARE ENGINEERING 4

SEGE

EENG586 INFO STRUCTURES 4
OPER548 MANG ANAL & SIM I 4
OPER648 MANG ANAL & SIM II 4

MATH
MATH592 MANAGERIAL STATISTICS I 3

MATH692 MANAGERIAL STATISTICS I 3
THESIS

EENG799 INDEPENDENT STUDY 4
OTHER GRAD

EENG698 THESIS SEMINAR 0
COMM698 SEMINAR IN TECH COMMUNI 2
EENG690 SCFTWARE SYS PROGRAMMIN 2

MATH555 INTRO TO ADA 4
MATH531 MATH METHODS OF COMPUTE 4
COMM600 TECHNICAL WRITING 2
EENG545 SOFTWARE SYS ACGUISITIO 2
EENG646 COMPUTER DATA BASE SYS 4
MATH568 INTERACOMMIVE COMPUTER 4
EENG793 ADVANCED SOFTWARE ENG 4

UNDERGRAD

MATH445 INTRO TO ALGORITHM DESI 4
EENG450 INTRO TO LOGIC DESIGN 5

LAST ITEM

"F-10

DATABASE MANAGEMENT SYSTEM(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

AUML SSIIE DA GITOSDEC 85 RFIT.'GCS/ENG/85D-5 F/G 9/2 M

lEEEEEEEE

W 13250

III -II il j

M E
NATIONL B U OF S

APPENDIX G

ABSTRACT DATA TYPE DEFINITIONS

STUDENT AND FACULTY LINKED LIST ABSTRACT DATA TYPE.

The AFIT/ENG Database system requires that sorting and

searching must be accomplished on the faculty and student data

names in a highly volotile environment. To facilitate this

highly dynamic arena, an internal list of the data must be kept

and maintained. The data type is implemented with a singly

linked list using pointers and a dynamic memory allocation

scheme. Modules should be independent of global variables to

make transporting and maintenance easier. The following data

type and modules should be defined for all applications of the

master student and faculty files:

type

LINK PTR = ^LINK(RECORD;
LINK RECORD = RECORD;

NA E : BUFF28;

CTRL : BUFF9;
RANK : BUFF3;

DEPT : BUFF4;
SECT : BUFFS;
NEXT : LINK PTR;
PREV : LINK-PTR;

C'ND; {* LINKRECORD *}

,. ODULE NAME PARA:METERS FUNCCTION

BUILDLINKLIS7 LINK PTR,FILE Reads the database master student
* HEADER) or faculty file sequentially and

inserts the name and data into the

1. list.
l ADDNAME LINK PTR,FILE Adds a record to the link list in

HIADER alphabetical order. The HEADER

parameter will point to the faculty
or student list..,

• .ELNArlE SSAN,HEADER Deletes a record from the list for

.' G-I

a specific social security number.

FINDNAME NAME,SSAN, Finds a record using the last name
LINK PTR as a key or a portion of the last

name. For instance, this routine
would find the first occurance of
the name that began with the letter
"G". The search starts at the next
position from LINKPTR but not in-
clusive.

ISEMPTY HEADER Detemines if the list is empty.

CREATE HEADER Creates a header record for a list.

Student and Faculty List Axiom definition

Structure LINKLIST(LINK PTR,HEADER,FILE)
DECLARE CREATE(HEADER) ==> HEADER;

3UILDLINKLIST(HEADER,FILE) ==> HEADER
ADDNAME(LINK PTR,HEADER) ==> HEADER
DELNAME(LINKPTR,HEADER) == HEADER
ISEMPTY(HEADER) ==> BOOLEAN

FOR ALL A in LINKLIST, ptr as LINKPTR, file as FILE,
head as HEADER, LET
ISEMPTY(CREATE(head)) ::= true;
ISEMPTY(ADDNAME(ptr,CREATE(head))) ::= false
DELNAME(ptr,ADDNAME(ptr,head)) ::= head
DELNAME(ptr,CREATE(head)) error

end
end LIN IKLIST

-- 2

6 g-p

Appendix H

STANDARD DATABASE ROUTINES

These routines are required to enable the application

programmers to interface with the Total Database Management

System in an easier fashion. By doing this, we hope to decrease

the amount of time involved in developing the required software

and in training personnel to maintaining the programs.

MODULE NAME PARAMETERS FUNCTION

SIGN "SINON,SINOF" Log onto the database system.

SCHEMALOAD SCHEMA Defines the parameters, files, and
S file disposition of the database at

the time of "SINON"

CHECKSTATUS STATUS,OK Checks the return status of a call
to the database system. Calls an

error routine in case the status is
not "****"•

ERRORCODES STATUS Displays the message associated
with the error code to the user

and waits for 8 seconds before
clearing the screen.

WAIT TIME Performs a wait function which may
allow the user to view a message

Jo before the next function is
displayed.

OUTPUTERROR STATUS Maintains the error messages for
the TOTAL DBMS system.

WRMXXXX XXXX REC The generic write master file
routine used to generate a write

master routine for a specific

master file.

RDMXXXX XXVX REC The generic read master file
routine.

ADMXXXX XXXXREC The generic add master record
routine. The control key must be
asssigned to KXXX.CTRL before the

call.

H-I

V -

DLMXXXX XXXX REC The generic delete a master record
routine. All viable records must
be deleted before this routine is
called.

*, H-2

The following Pascal program procedures are the complete set

of standard routines developed and used thoughout this effort.

The programs reside in a single file and are read into another

file when creating an application software package for the

AFIT/ENG Database System. The standard data types must also be

included in the file if these routines are to be used.

N

pH-3

DATE: 30/05/85 *}
NAME: WAIT *}
DESCRIPTION: THIS MODULE ALLOWS THE PROGRAMMER TO SPECIFY AN *}

A WAITING PERIOD BEFORE GOING TO THE NEXT INSTRUCTION. *}
THIS IS USEFUL THAT WHEN DISPLAYING ERROR MESSAGES TO *}
THE USER AND ALLOWING THE USER TO SEE THE MESSAGE WITH- *}
OUT HITTING RETURN TO CONTINUE. *}

GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE

* {* MODULES CALLED: NONE *}
CALLING MODULES: OUTPUTERROR
AUTHOR: CAPT DAVID A. GAITROS *}

PROCEDURE WAIT (WAITVAR: INTEGER);
VAR INDEX,I : INTEGER;
BEGIN

I :- 1;
FOR INDEX :- 1 TO WAITVAR* 100 DO

SI : INDEX
END; {* WAIT *1

.H

.e

1'
•

. ,,4.-

1'> {* DATE: 30/05/1985 *}
NAME: OUTPUTERROR
DESCRIPTION: THIS MODULE ACCEPTS THE ERROR CODE FROM THE

DATABASE AND TRANSLATES THAT INTO AN ERROR MESSAGE. *}
GLOBAL VARIABLES USED: NONE

1* GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: NONE
CALLING MODULES: CHECKSTATUS *}
AUTHOR: CAPT DAVID A. GAITROS *}1* *}

PROCEDURE OUTPUTERROR(STATUS : BUFF4);

BEGIN
WRITE (*** ERROR STATUS CODE ***
WRITE (STATUS);
WRITELN;
IF STATUS = 'BCCR' THEN

WRITELN(OUTPUT,(BAD CYLINDER CONTROL RECORD)
ELSE IF STATUS = 'BCTL' THEN

WRITELN(OUTPUT,- BLANK CONTROL FIELD)
ELSE IF STATUS - 'DBNF" THEN

WRITELN(OUTPUT," DATA BASE NOT FOUND ')

ELSE IF STATUS = 'DBPR THEN
WRITELN(OUTPUT,- DATA BASE ACCESSED IN PRIVATE MODE)

(. ELSE IF STATUS = -DUPM- THEN
WRITELN(OUTPUT,(DUPLICATE MASTER RECORD ")

• ELSE IF STATUS = 'DUPO' THEN
..\"" WRITELN(OUTPUT," DUPLICATE OPEN OF A DATA SET)

ELSE IF STATUS - 'ENTF' THEN
WRITELN(OUTPUT,' ELEMENT NOT FOUND)

ELSE IF STATUS = 'EXSO" THEN
WRITELN(OUTPUT,' EXTRA SINON COMMAND)

ELSE IF STATUS = 'FAIL' THEN
WRITELN(OUTPUT,- COMMUNICATION FAILURE (F))

ELSE IF STATUS = 'FATL" THEN
WRITELN(OUTPUT,- FATAL ERROR)

*ELSE IF STATUS = 'FNOP' THEN
WRITELN(OUTPUT,' FILE NOT OPEN)

ELSE IF STATUS = "FNTF" THEN
WRITELN(OUTPUT,(FILE NOT FOUND)

ELSE IF STATUS N 'FTYP" THEN
WRITELN(OUTPUT, INVALID FILE TYPE)

ELSE IF STATUS = 'FULL' THEN
WRITELN(OUTPUT,- FILE LOADED TO CAPACITY)

ELSE IF STATUS - "FUNC' THEN
WRITELN(OUTPUT,' INVALID FUNCTION CODE)

ELSE IF STATUS - 'HELD' THEN
WRITELN(OUTPUT,' RECORD HELD)

ELSE IF STATUS - 'ICHN' THEN
*. " -WRITELN(OUTPUT,- INVALID LINKAGE PATH CHAIN)
*.- "ELSE IF STATUS - 'IMDL' THEN

WRITELN(OUTPUT," INVALID MASTER DELETE ')

H-5

ELSE IF STATUS = IOER' THEN
WRITELN(OUTPUT,- I/O ERROR (F))

ELSE IF STATUS = 'IPAR' THEN
WRITELN(OUTPUT,- INVALID NUMBER OF PARAMETERS)

ELSE IF STATUS - 'IRLC' THEN
WRITELN(OUTPUT," INVALID RECORD LOCATION (F) ')

ELSE IF STATUS - 'IVBF' THEN
WRITELN(OUTPUT,- INVALID BUFFER SIZE)

ELSE IF STATUS - 'IVRC' THEN
WRITELN(OUTPUT," INVALID RECORD CODE)

ELSE IF STATUS - 'IVRD' THEN
WRITELN(OUTPUT,- INVALID VARIABLE ENTRY DATA SET READ)

ELSE IF STATUS - 'IVRP "THEN
WRITELN(OUTPUT,- INVALID REFERENCE PARAMETER ')

ELSE IF STATUS - 'IVTF' THEN
WRITELN(OUTPUT,- INVALID TOTAL FILE ')

ELSE IF STATUS - 'IVWD' THEN
WRITELN(OUTPUT,- INVALID WRITE DIRECT ')

ELSE IF STATUS - 'LDnn' THEN
WRITELN(OUTPUT,- LOADER ERROR ")

ELSE IF STATUS - 'LOAD' THEN
WRITELN(OUTPUT,(VAR ENTRY FILE LOADED BEYOND CYL. LOAD LIMIT)

ELSE IF STATUS = 'LOCK' THEN
WRITELN(OUTPUT,- DATA SET LOCKED (F))

ELSE IF STATUS - 'LGER" THEN
WRITELN(OUTPUT,- LOGGING I/O ERROR (F))

ELSE IF STATUS = 'LGNA" THEN
WRITELN(OUTPUT,(LOG FILE NOT ACTIVE)

ELSE IF STATUS = 'LSZE' THEN
WRITELN(OUTPUT,- LOG SIZE ERROR)

ELSE IF STATUS = 'MFNF' THEN
WRITELN(OUTPUT,(MASTER FILE NOT FOUND)

ELSE IF STATUS = 'MLNF" THEN
WRITELN(OUTPUT,- MASTER LINK NOT FOUND)

ELSE IF STATUS = 'MRNF' THEN
WRITELN(OUTPUT,- MASTER RECORD NOT FOUND)

ELSE IF STATUS = 'NHLD' THEN
WRITELN(OUTPUT,' RECORD NOT HELD)

ELSE IF STATUS = 'NLAT' THEN
WRITELN(OUTPUT,- NO LOGGING ATTACH)

ELSE IF STATUS = 'NOIO' THEN
WRITELN(OUTPUT,' NO ASSIGNED I/O AREA (F))

ELSE IF STATUS = 'NOTO THEN
WRITELN(OUTPUT," TOTAL NOT AVAILABLE)

ELSE IF STATUS - 'NRCV' THEN
WRITELN(OUTPUT,- NO RECOVERY MODE)

ELSE IF STATUS = "NSMR' THEN
WRITELN(OUTPUT,' NO SECONDARY MASTER RECORD FOUND)

ELSE IF STATUS - 'PNUL' THEN
WRITELN(OUTPUT,- POSSIBLE NULL RECORD)

ELSE IF STATUS - 'POOL' THEN
WRITELN(OUTPUT,- INSUFFICIENT POOL AREA)

* ELSE IF STATUS '. -QFUL- THEN
WRITELN(OUTPUT, RESERVATION QUEUE IS FULL)

ELSE IF STATUS = RSVD" THEN

H-6

WRITELN(OUTPUT,- RESERVED DATA SET)
ELSE IF STATUS - 'SEND' THEN

WRITELN(OUTPUT," AN ERROR OCCURRED ON SENDING THE DATA)
ELSE IF STATUS = "TFUL' THEN

WRITELN(OUTPUT,- TASK TABLE IS FULL)
ELSE IF STATUS - 'UACM" THEN

WRITELN(OUTPUT,- UNDEFINED ACCESS MODE (F))
ELSE IF STATUS - 'UCTL' THEN

WRITELN(OUTPUT,- UNEQUAL CONTROL FIELD)
ELSE IF STATUS = 'ULGO' THEN

WRITELN(OUTPUT,- UNDEFINED LOGGING OPTIONS (F))
ELSE IF STATUS - 'UPDE' THEN

WRITELN(OUTPUT," UPDATE MODE ERROR)
ELSE IF STATUS - 'VMRE' THEN

WRITELN(OUTPUT,- VARIABLE READ MASTER ERROR (F) ')

ELSE WRITELN(OUTPUT," UNDEFINED ERROR CODE ');

WRITELN(OUTPUT);
WAIT(500);
END; (*OUTPUTERROR*)

i

* H-7

-DATE: 30/05/1985

NAME: CHECKSTATUS *1
DESCRIPTION: MODULE CHECKSTATUS DETERMINES IF A CALL TO THE *}

"+'*<,'TOTAL DATABASE WAS IN ERROR.
* GLOBAL VARIABLES USED: NONE

"* {* GLOBAL VARIABLES CHANGED: NONE *}

MODULES CALLED: OUTPUTERROR *}
CALLING MODULES:
AUTHOR: CAPT DAVID A. GAITROS *1

PROCEDURE CHECKSTATUS(VAR OK:BOOLEAN);

BEGIN
IF STATUS = '**** THEN

OK :- TRUE
ELSE BEGIN

- OK :- FALSE;
OUTPUTERROR (STATUS);
WRITE (', HIT RETURN TO CONTINUE);
READLN

END
END {* CHECKSTATUS *};

,H-8

,',,

DATE: 23/05/85 *
NAME: SIGNONOROFF *
DESCRIPTION: THIS MODULE LOADS THE DATABASE SCHEMA DEPENDING *

UPON THE USERS REQUEST AND SIGNS ON OR OFF OF THE *
DATABASE. *

GLBA VAIBE UE:NN
GLOBAL VARIABLES USAED: NONE *
MODULES CALLED: DATBAS,CHECKSTATUS *
CALLING MODULES: MAIN *
AUTHOR: CAPT DAVID A. GAITROS *

PROCEDURE SIGNONOROFF(ONOROFF : BUFF5; DATABASE: BUFF4);
CONST

FACTI = 'SECTIONSAFITDBUPDATENLFACTPRIVXXXXDEPTPRIVXXXX'; (46 *
FACT2 = 'STDTSHREXXXXTHESSHREXXXXSECTSHREXXXXMCRSSHREXXXX'; j48 *
FACT3 = MQTRSHREXXXXMBKTSHREXXXXMORDSHREXKXXTIMESHREKXXX'; {48 *
FACT4 = 'BLRMSHREXXXXCPTYSHREXXXXDAYSSHREXXXXMSSFSHREXXXX'; {48 *

*FACTS = 'MDEGSHREXXXXVEDUPRIVXXXXFSOCPRIVXXXXFCMTPRIVXXXX'; {48 *
FACT6 = VHAWPRIVXXXXFINTPRIVXXXXFCOMPRIVXXXXFTDYPRIVXXXX'; 148 *
FACT7 = 'CRSEPRIVXXXXTHTLPRIVXXXXSECLPRIVXXXXVCQRPRIVXXXX'; {48 *
FACT8 = -VREQPRIVXXXXVCBKPRIVXXXXVNMOPRIVXXXXSCHDPRIVXXX; {*48 *
FACT9 = CLSRPRIVXXXXTCMFPRIVXXXXFADVPRIVXXXXVINSPRIVXXXX'; 48 *
FACT1O= 'TADVPRIVXXXXVPDQPRIVXXXXVMSSPRIVXXXXEND. ~ *48 *

STDrl = 'SECTIONSAFITDBUPDATENLFACTSHREXXXXDEPTSHREXXXX'; 146 *
STDT2 = 'STDTPRIVXXXXTHESSHREXXXXSECTPRIVXXXXMCRSSHREXXXX; {*48 *
STDT3 - MQTRSHREXXXXMBKTSHREXXXXMORDSHREXXXXTIMESHREXXXX'; f*48 *1
STDT4 = 'BLRNSHREXXXXCPTYSHREXXXXDAYSSHREXXXXMSSFSHREXXXX-; 148 *
STDT5 = MDEGSHREXXXXVEDUPRIVXXXXFSOCPRIVXXXXFCMTPRIVXXXX; {*48
STDT6 = 'VHAWPRIVXXXXFINTPRIVXXXXFCOMPRIVXXXXFTDYPRIVXXXX-; {48 *
STDT7 = 'CRSEPRIVXXXXTHTLPRIVXXXXSECLPRIVXXXXVCQRPRIVXXXX'; 48 *
STDT8 = 'VREQPRIVXXXXVCBKPRIVXXXXVNMOPRIVXXXXSCHDPRIVXXXX'; {48 *
STDT9 = 'CLSRPRIVXXXXTCMFPRIVXXXXFADVPRIVXXXXVINSPRIVXXXX'; {48 *
STDT1O- 'TADVPRIVXXXXVPDQPRIVXXXXVMSSPRIVXXXXEND. ; r48 *

MCRS1 = 'SECTIONSAFITDBUPDATENLFACTSHREXXXXDEPTSHREXXXX; {*46 *
MCRS2 = 'STDTSHREXXXXTHESSHREXXXXSECTSHREXXXXMCRSPRIVXXXX (48 *
MCRS3 = 'MQTRPRIVXXXXMBKTPRIVXXXXMORDPRIVXXXXTIMEPRIVXXXX'; 48 *
MCRS4 = BLRMPRIVXXXXCPTYPRIVXXXXDAYSPRIVXXXXMSSFSHREXXXX'; {48 *
MCRS5 'MDEGSHREXXXXVEDUPRIVXXXXFSOCPRIVXXXXFCMTPRIVXXXX'; 48 *
MCRS6 'VHAWPRIVXXXXFINTPRIVXXXXFCOMPRIVXXXXFTDYPRIVXXXX'; P48 *
MCRS7 = CRSEPRIVXXXXTHTLPRIVXXXXSECLPRIVXXXXVCQRPRIVXXXX'; 148 *

* MCRS8 = VREQPRIVXXXXVCBKPRIVXXXXVNMOPRIVXXXXSCHDPRIVXXXX f 48 *
MCRS9 = CLSRPRIVXXXXTCMFPRIVXXXXFADVPRIVXXXXVINSPRIVXXXX'; {48 *
MCRS1O= 'TADVPRIVXXXXVPDQPRIVXXXXVMSSPRIVXXXXEND. ~ *48 *

THESi = SECTIONSAFITDBUPDATENLFACTSHREXXXXDEPTSHREXXXX'; 1* 46 *}
*THES2 - 'STDTSHREXXXXTHESPRIVXXXXSECTSHREXXXXMCRSSHREXXXX'; {*48 *

THES3 = MQTRSHREXXXXMBKTSHREXXXXMORDSHREXXXXTIMESHREXXXX'; {48 *

H-9

THES4 = BRSRXXCTYHEXXITHEXXMSSRXX * 48 *
THES5 = MDEGSHREXXXXVEDUPRIVXXXXFSOCPRIVXXXXFCMTPRIVXXXX'; {48 *
TRES6 = 'VHAWPRIVXXXXFINTPRIVXXXXFCOMPRIVXXXXFTDYPRIVXXXX"; {*48
THES7 = 'CRSEPRIVXXXXTHTLPRIVXXXXSEGLPRIVXXXXVCQRPRIVXXXX'; {48 *
THES8 = -VREQPRIVXXXXVCBKPRIVXXXXVNMOPRIVXXXXSCHDPRIVXXXX'; 1*48 *
THES9 = 'CLSRPRIVXXXXTCMFPRIVXXXXFADVPRIVXXXXVINSPRIVXXXX,; 148 *
THES1O= 'TADVPRIVXXXXVPDQPRIVXXXXVMSSPRIVXXXXEND. *48 *

MSSF1 = 'SECTIONSAFITDBUPDATENLFACTSHREXXXXDEPTSHREXXXX; { 46 *
M1SSF2 = 'STDTSHREXXXXTHESSHREXXXXSECTSHREXXXXMCRSSHREXXXX'; {48 *
MSSF3 = -MQTRSHREXXXXMBKTSHREXXXXMORDSHREXXXXTIMESHREXXKXX 48 *
MSSF4 = 'BLRMSHREXXXXCPTYSHREXXXXFINTSHREXXXXMSSFPRIVXXX; {*48 *
!ISSF5 = 'MDEGPRIVXXXXVEDUPRIVXXXXFSOCPRIVXXXXFCMTPRIVXXXX t 48 *
MSSF6 = 'VHAWPRIVXXXXDAYSPRIVXXXXFCOMPRIVXXXXFTDYPRIVXXXX,; {48 *
MSSF7 = 'CRSEPRIVXXXXTHTLPRIVXXXXSECLPRIVXXXXVCQRPRIVXXXX'; 1*48 *
M1SSF8 = -VREQPRIVXXXXVCBKPRIVXXXXVNMOPRIVXXXXSCHDPRIVXXXX'; {48 *
MSSF9 = 'CLSRPRIVXXXXTCMFPRIVXXXXFADVPRIVXXXXVINSPRIVXXXX; { 48 *

* MSSF10=' TADVPRIVXXXXVPDQPRIVXXXXVMSSPRIVXXXXEND. ; *48 *

TYPE
BUFF46 = PACKED ARRAY [l. .46] OF CHAR;
BUFF48 = PACKED ARRAY [1. .48] OF CHAR;

VRFUNCTIONS :BUFF5;

SCHEMA: BUFF48O;
ENDIT: BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS: BUFF5; STATUS :BUFF4;
SCHEMA : BUFF48O; ENDIT: BUFF4); FORTRAN;

BEGIN
ENDIT := 'END.-;

FUNCTIONS := ONOROFF;
IF DATABASE = 'FACT' THEN

* SCHEMA := FACT1 + FACT2 + FACT3 + FACT4 + FACT5 +
FACT6 + FACT7 + FACT8 + FACT9 +FACT1O+ EXTRA2I:ELSE IF DATABASE = 'STDT' 'THEN

SCHEMA := STDT1 + STDT2 + STDT3 + STDT4 + STDT5 +
STDT6 + STDT7 + STDT8 + STDT9 +4 STDT10 +--

ELSE IF DATABASE = 'MCRS' THEN
* SCHEMA := MCRS1 + MCRS2 + MCRS3 +4 MCRS4 + MCRS5 +

MCRS6 -+ MCRS7 + MCRS8 + MGRS9 + MCRS1O- EXTRA2
ELSE IF DATABASE = 'THES' THEN

SCHEMA := THESI + THES2 + THES3 + THES4 -+ THES5 +
rHES6 + THES7 + THES8 + THES9 +- THESLO+ EXTRA2

ELSE SCHEMA := MSSF1 + MSSF2 + MSSF3 + MSSF4 + MSSF5 +
* MSSF6 +- MSSF7 + MSSF8 + MSSF9 + MSSF10 + EXTRA2;

DATBAS (FUNCTIONS ,STATUS ,SCHEMA, ENDIT);
* CHECKSTATUS(OK);

IF OK THEN

*H- 10

IF FUNCTIONS - 'SINON' THEN

BEGIN
WRITELN;
WRITELN;
WRITELN('THE PROGRAM IS SIGNED ON TO THE DATABASE);
WRITELN

'. END
ELSE

BEGIN
WRITELN;
WRITELN;
WRITELN('THE PROGRAM IS SIGNED OFF OF THE DATABASE);
WRITELN

END
ELSE

BEGIN
WRITELN;
WRITELN;% IIWRITELN('DATABASE ERROR, DATABASE IS NOT SIGNED ON)

END

END; (*SIGNONOROFF *)
{* LAYER 5 *}

{* DATE: 01/08/85
NAME: WRMSTDT *1
DESCRIPTION: THIS MODULE WRITES A NEW STUDENT MASTER RECORD TO *}

THE DATABASE. THE MODULE EXPECTS THE RECORD TO BE *}
IN THE FORMAT OF THE STDT REC DATA TYPE. *}

FILES READ: AFITDB *1
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

********************************* ***** ************************ I,

PROCEDURE WRMSTDT (STDT:STDTREC);
VAR

FUNCTIONS: BUFF5;

DATASET : BUFF4;
SSAN : BUFF9;
ELEMENTS: BUFF280;

- BUFFER : BUFF408;

ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

'7 PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;

. SSAN: BUFF9; ELEMENTS: BUFF280; BUFFER:BUFF408; ENDIT:BUFF4);
FORTRAN;

N H-il

-' ,- " RI M

BEGIN FUNCTIONS := WRITM ;
DATASET : 'STDT';
SSAN : STDT.CTRL;
ELEMENTS : STDTCONSTI + STDTCONST2 + STDTCONST3 +STDTCONST4 +

STDTCONST5 + STDTCONST6 + STDTCONST7;
FOR INDEX :- 1 TO 408 DO BUFFER (INDEX] :- " ";

ENDIT : 'END.';
WITH STDT DO BEGIN

BUFFER :- CTRL - SEQN + NAME + RANK + GRAD + SRVC + AERO + DORK +

DOCM + YRSS + SEXX + BOXN + DTSC + PMSC + ADDR + EADR + HMPH +
DTPH + EDCD + DOBH + POBH + MSTA + SPOS + SDOB + MSPS + NDEP +

RACE + RELN + LCMD + LORG + TITL + DURN + EXTRA + EXTRA + EXTRA;

.*.. DATBAS (FUNCTIONS,STATUS,DATASET,SSAN,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS (OK)

END
END;

f* LAYER 5 *1

DATE: 01/08/85
NAME: RDMFACT

DESCRIPTION: THIS ROUTINE READS A RECORD FROM THE STUDENT *
MASTER FILE AND PUTS THE INFORMATION INTO THE RECORD *1
FACT OF TYPE FACT REC; *}

FILES READ: AFITDB *1

{* FILES WRITT.N: NONE *}
GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS

CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

K' t ************* -******-****************-************************** }

PROCEDURE RDMFACT (VAR FACT:FACTREC);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;

SSAN : BUFF9;

ELEMENTS: BUFF280;
BUFFER : BUFF408;
ENDIT : BUFF4;

* .. " INDEX,I : INTEGER;
OK : BOOLEAN;

-H-12

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
SSAN: BUFF9; ELEMENTS: BUFF280; BUFFER:BUFF408; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS : READM';
DATASET :' FACT;
SSAN := FACT.CTRL;
ELEMENTS := FACTCONST1 + FACTCONST2 + FACTCONST3 +FACTCONST4 +

FACTCONST5 + FACTCONST6;
FOR INDEX : 1 TO 408 DO BUFFER [INDEX] := - -;

ENDIT :- 'END.';
DATBAS(FUNCTIONS,STATUS,DATASET,SSAN,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);
IF OK THEN BEGIN

WITH FACT DO BEGIN
FOR I := 1 TO 9 DO CTRL [I] := BUFFER [I];
FOR I :1 TO 28 DO NAME [I] := BUFFER [1+9];
FOR I := 1 TO 3 DO RANK [I] := BUFFER [1+371;

END;
END;

END;

{* LAYER 5 *}I******************* *** ***********************-*******************

{* DATE: 01/08/85 *}
NAME: ADMFACT *}

U 1* DESCRIPTION: THIS MODULE ADDS A FACULTY MASTER RECORD TO THE *}
{ 1* AFIT DATABASE SYSTEM ASSUMING THAT rHE MEMBER DOES NOT *1

EXIT. THE INFORMATION SHOULD BE IN THE RECORD PASSED *}
TO THE MODULE OF TYPE FACT REC.

FILES READ: NONE *}
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE

H-13

p P -

GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKsTATUS *
CALLING MODULES:

1* AUTHOR: DAVID A GAITROS, CAPT, USAF *

PROCEDURE ADMFACT (FACT:FACTRLEC);
VAR

FUNCTIONS: BUFF5;
DATASET :BUFF4;
SSAN : BUFF9;
ELEMENTS: BUFF28O;
BUFFER : BUFP408;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
SSAN: BUFF9; ELEMENTS: BUFF28O; BUFFER:BUFF4O8; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS : ADD-M';
DATASET ' FACT-;
SSAN :=FACT.CTRL;
ELEMENTS :=FACTOONSTI +- FACTCONST2 + FACTCONST3 +FACTCONST4 +

FACTCONST5 +- FACTCONST6 + FACTCONST7;
FOR INDEX :=1 TO 408 DO BUFFER [INDEX] --

ENDIT := 'END.';
WITH FACT DO BEGIN

BUFFER :-CTRL+NAME+RANK+SRVC+DOCM+HDATISALR+D&BI+SEXX+AERO+DTSC
+PMSC+DORK+YRS S+ADDR+RPHN+EADR+MSTA+SPOS+SDOBINDEP+RACE+RELN+
OFIC+OPHN+LORG+TITL+DEPT+EXTRA+EXTRA-EXTRA;
DATBAS (FUNCTIONS ,STATUS ,DATASET ,SSAN ,ELEMENTS, BUFFER,ENDIT);
CHECKSTATUS(OK)

END
END;

4H- 14

{* LAYER 5 *}

DATE: 01/08/85
NAME: WRMFACT *}
DESCRIPTION: THIS MODULE UPDATES A FACULTY MASTER RECORD TO THE *}

1* AFIT DATABASE SYSTEM ASSUMING THAT THE MEMBER DOES *}
EXIST. THE INFORMATION SHOULD BE IN THE RECORD PASSED *1
TO THE MODULE OF TYPE FACT REC. *}

FILES READ: NONE *}
11* FILES WRITTEN: AFITDB *}
{* GLOBAL VARIABLES USED: NONE *1

GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

11************** AA .A A A************************ }

PROCEDURE ADMFACT (FACT:FACTREC);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;
SSAN : BUFF9;
ELEMENTS: BUFF280;
BUFFER : BUFF408;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
SSAN: BUFF9; ELEMENTS: BUFF280; BUFFER:BUFF408; ENDIT:BUFF4);

FORTRAN;

- BEGIN

FUNCTIONS := WRITM';
DATASET := 'FACT';
SSAN : FACT.CTRL;
ELEMENTS : FACTCONSTI + FACTCONST2 + FACTCONST3 +FACTCONST4 +

FACTCONST5 + FACTCONST6 + FACTCONST7;
FOR INDEX:- 1 TO 408 DO BUFFER [INDEX] : - -;

ENDIT :- 'END.';
WITH FACT DO BEGIN

BUFFER :-CTRL+NAME+RANK+SRVC+DOCM+HDAT+SALR+DOBI+SEXX+AERO+DTSC

+PMSC+DORK+YRSS+ADDR+HPHN+EADR+MSTA+SPOS+SDOB+NDEP+RACE+RELN+
OFIC+OPHN+LORG+ITL+DEPT+EXTRA+EXTRA+EXTRA;
DATBAS (FUNCTIONS,STATUS,DATASET,SSAN,ELEMENTS,BUFFER,ENDIT);

END .CHECKSTATUS(OK)
H END

0 11-15

END;

{* LAYER 5 *1{ *** }

DATE: 01/08/85

NAME: RDMSTDT *}
DESCRIPTION: THIS ROUTINE READS A RECORD FROM THE STUDENT *}

MASTER FILE AND PUTS THE INFORMATION INTO THE RECORD *}
STDT OF TYPE STDTREC; *}
{* *1

FILES READ: AFITDB *}
FILES WRITTEN: NONE

GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *1
MODULES CALLED: CHECKSTATUS
CALLING MODULES: *}

AUTHOR: DAVID A GAITROS, CAPT, USAF{* *1
I:*** ******** ********--,

PROCEDURE RDMSTDT (VAR STDT:STDT REC);
VAR

FUNCTIONS: BUFF5;

DATASET : BUFF4;
SSAN : BUFF9;

ELEMENTS: BUFF280;
BUFFER : BUFF408;

ENDIT : BUFF4;
INDEX : INTEGER;

OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;

SSAN: BUFF9; ELEMENTS: BUFF280; BUFFER:BUFF408; ENDIT:BUFF4);
FORTRAN;

H-16

BEGIN

FUNCTIONS :' READM';
DATASET := STDT';
SSAN := STDT.CTRL;
ELEMENTS : STDTCONST1 + STDTCONST2 + STDTCONST3 +STDTCONST4 +

STDTCONST5 + STDTCONST6 + STDTCONST7;
FOR INDEX := 1 TO 408 DO BUFFER [INDEX] :- - -;

ENDIT :- 'END.';
DATBAS(FUNCTIONS,STATUS,DATASET,SSAN,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);
IF OK THEN BEGIN

WITH STDT DO BEGIN
FOR INDEX :- 1 TO 6 DO BEGIN

DOCM [INDEX] := BUFFER [INDEX + 621;
DORK [INDEX] : BUFFER (INDEX + 56];
DTSC [INDEX] : BUFFER [INDEX + 751;
PMSC [INDEX] := BUFFER [INDEX + 81];
DOBH [INDEX] := BUFFER [INDEX + 1861;
SDOB [INDEX] := BUFFER [INDEX + 245]

END;
FOR INDEX :- 1 TO 40 DO BEGIN

ADDR [INDEX] := BUFFER [INDEX + 871;
EADR [INDEX] : BUFFER [INDEX + 1271;
POBH [INDEX] BUFFER [INDEX + 1921

END;
FOR INDEX :- 1 TO 50 DO BEGIN

LORG [INDEX] :- BUFFER [INDEX + 3131;
TITL [INDEX]':= BUFFER [INDEX + 3631

END;
FOR INDEX :- I TO 2 DO BEGIN

SRVC [INDEX] := BUFFER [INDEX + 45];
YRSS [INDEX] : BUFFER [INDEX + 68];
NDEP [INDEX] : BUFFER [INDEX + 2521;
RACE [INDEX] := BUFFER [INDEX + 254];
RELN [INDEX] := BUFFER [INDEX + 256];
DURN [INDEX] : BUFFER [INDEX + 3631

END;
FOR INDEX := 1 TO 7 DO BEGIN

8MPH [INDEX] : BUFFER [INDEX + 1671;
DTPH [INDEX] : BUFFER [INDEX + 1741

END;
FOR INDEX :- 1 TO 5 DO BEGIN

EDCD [INDEX] := BUFFER [INDEX + 1811;
LCMD [INDEX] := BUFFER [INDEX + 258]

END;
FOR INDEX :- 1 TO 3 DO BEGIN

SEQN [INDEX] :- BUFFER [INDEX + 91;
RANK [INDEX] : BUFFER [INDEX + 401

END;
FOR INDEX :- I TO 4 DO BEGIN

BOXN [INDEX] : BUFFER [INDEX + 71];
NAME [INDEX] := BUFFER [INDEX + 12];

-, AERO [INDEX] := BUFFER [INDEX + 46];
SPOS [INDEX] :l BUFFER [INDEX + 233];

* H-17

"- CTRL [INDEX] :- BUFFER [INDEX]

END;
AERO [10] := BUFFER [57];

FOR INDEX :- 5 TO 9 DO BEGIN
NAME [INDEX] : BUFFER [INDEX + 12];

SPOS [INDEX] := BUFFER [INDEX + 2331;
CTRL [INDEX] := BUFFER [INDEX]

END;
FOR INDEX :- 10 TO 12 DO BEGIN

NAME [INDEX] : BUFFER [INDEX + 12];
SPOS [INDEX] : BUFFER [INDEX + 233];

END;
FOR INDEX :- 13 TO 28 DO

NAME [INDEX] := BUFFER [INDEX + 12];
SEXX . BUFFER [70];
MSTA : BUFFER [2321;
MSPS := BUFFER [251]

END
END

END;

1

.

a...

oH- 1

0d"

*.2'-

a

L"\ {* DATE: 01/08/85 *

NAME: ADMSTDT *1
DESCRIPTION: THIS MODULE ADDS A STUDENT MASTER RECORD TO THE *}

AFIT DATABASE SYSTE M ASSUMING THAT THE STUDENT DOES NOT
EXIT. THE INFORMATION SHOULD BE IN THE RECORD PASSED *11* TO THE MODULE OF TYPE STDTREC. *1

FILES READ: NONE *}
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE

1* GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKSTATUS
CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF1 * *1

• : { ***** ******** *** }

PROCEDURE ADMSTDT (STDT:STDTREC);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;
SSAN : BUFF9;
ELEMENTS: BUFF280;
BUFFER : BUFF408;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
SSAN: BUFF9; ELEMENTS: BUFF280; BUFFER:BUFF408; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS :=ADD-M';
DATASET := STDT';
SSAN := STDT.CTRL;
ELEMENTS : STDTCONSTI + STDTCONST2 + STDTCONST3 +STDTCONST4 +

*STDTCONST5 + STDTCONST6 + STDTCONST7;
FOR INDEX := 1 TO 408 DO BUFFER [INDEX] :=
ENDIT :- 'END.-;
WITH STDT DO BEGIN

BUFFER := CTRL + SEQN + NAME + RANK + GRAD + SRVC + AERO + DORK +
DOCM + YRSS + SEXX + BOXN + DTSC + PMSC + ADDR + EADR + HMPH +
DTPH + EDCD + DOBH + POBH + MSTA + SPOS + SDOB + MSPS + NDEP +
RACE + RELN + LCMD + LORG + TITL + DURN + EXTRA + EXTRA + EXTRA;
DATBAS (FUNCTIONS,STATUS,DATASET,SSAN,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK)

END
END;

'

• H-19

a'%

DATE: 01/08/85
NAME: WRMSTDT *}
DESCRIPTION: THIS MODULE WRITES A STUDENT MASTER RECORD TO THE *}

AFIT DATABASE SYSTEM ASSUMING THAT THE STUDENT DOES NOT *}
EXIT. THE INFORMATION SHOULD BE IN THE RECORD PASSED *}
TO THE MODULE OF TYPE STDT REC. THIS MODULE ASSSUMES *}
THE RECORD ALREADY EXISTS ON THE DATABASE SYSTEM *}1* *}

FILES READ: NONE
1* FILES WRITTEN: AFITDB
[* GLOBAL VARIABLES USED: NONE *}

GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF *1

PROCEDURE WRMSTDT (STDT:STDT REC);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;
SSAN : BUFF9;
ELEMENTS: BUFF280;
BUFFER : BUFF408;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;

SSAN: BUFF9; ELEMENTS: BUFF280; BUFFER:BUFF408; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS : "WRITM';
DArASET := STDT';
SSAN : STDT.CrRL;

* ELEMENTS : STDTCONST1 + STDTCONST2 + STDTCONST3 +STDTCONST4 -

STDTCONST5 + STDTCONST6 + STDTCONST7;
FOR INDEX : 1 TO 408 DO BUFFER [INDEX] : " ";

ENDIT :- 'END.';
WITH STDT DO BEGIN

BUFFER := CTRL + SEQN + NAME + RANK + GRAD + SRVC + AERO + DORK +
6DOCM + YRSS + SEXX + BOXN + DTSC + PMSC + ADDR + EADR + HMPH +

DTPH + EDCD + DOBH + POBH + MSTA + SPOS + SDOB + MSPS + NDEP +
RACE + RELN + LCMD + LORG + TITL + DURN + EXTRA + EXTRA + EXTRA;
DATBAS (FUNCTIONS,STATUS,DATASET,SSAN,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK)

SEN END

END;

H-20

DATE: 02/08/85
NAME: WRMSECT *
DESCRIPTION: THIS MODULE WRITES AN UPDATED RECORD BACK TO THE *

MASTER SECTION FILE OF THE AFIT DATABASE. THE INFO IS *
1* PASSED TO THE MODULE VIA THE SECTREC RECORD. *

FILES READ: NONE *
FILES WRITTEN: AFITDB
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKSTATUS *
CALLING MODULES: *
AUTHOR: DAVID A GAITROS, CAPT, USAF *

PROCEDURE WRMSECT (SECT:SECTREC);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;
CODE : BUFF8;

*ELEMENTS: BUFF8O;
* .~BUFFER : BUFF40;

ENDIT : BUFF4;
-~INDEX : INTEGER;

OK : BOOLEAN;

PROCEDURE DArBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;

FORTRAN;

BEGIN

FUNCTIONS :=WRITM';
DATASET ' SECT';
CODE :=SECT.CTRL;

ELEMENTS :SECTCONST1+SECTCONST2;
FOR INDEX :=1 TO 40 DO BUFFER (INDEX]
ENDIT := 'END.';
WITH SECT DO BEGIN

7 BUFFER : = CTRL+LSSN+GRDT4ENDT+NRSN+EXTRA;
DATBAS(FUNCTIONS ,srATUS ,DATASET, CODE ,ELEMENTS, BUFFER, ENDIT);
CHECKSTATUS (OK);

END
END;

LH- 21

DATE: 02/08/85 *}
NAME: RDMSECT *}
DESCRIPTION: THIS MODULE READS A RECORD FROM THE MASTER SECTION *}

[* FILE OF THE AFIT DATABASE AND FORMATS THE SECT REC *}
RECORD WITH THE INFORMATION. -*

"1 [* FILES READ: AFITDB *1
FILES WRITTEN: NONE *}
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKSTATUS *}

N'* CALLING MODULES: *1
fk AUTHOR: DAVID A GAITROS, CAPT, USAF *}1* *1

.***-- ******************- }

PROCEDURE RDMSECT(VAR SECT:SECT REC; CODE:BUFF8);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;

* ELEMENTS: BUFF80;
BUFFER : BUFF40;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFFS; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF8; ELEMENTS: BUFF80; BUFFER:BUFF40; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS : READM";
DATASET : SECT';
CODE SECT.CTRL;
ELEMENTS : SECTCONST1+SECTCONST2;
FOR INDEX : 1 ro 40 DO BUFFER [INDEX] := - ;
ENDIT : 'END.';

* WITH SECT DO BEGIN
DATBAS(FUNCTIONS,STATUS,DATASET,CODE,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);
IF OK THEN BEGIN

FOR INDEX := 1 TO 3 DO BEGIN
CTRL [INDEX] : BUFFER [INDEX];
LSSN [INDEX] := BUFFER [INDEX + 9];
GRDT [INDEX] := BUFFER (INDEX + 18];
ENDT [INDEX] := BUFFER [INDEX + 24];

NRSN [INDEX] := BUFFER [INDEX + 30]
END;

..' FOR INDEX := 4 TO 6 DO BEGIN
*i CTRL [INDEX] := BUFFER [INDEX];

LSSN [INDEX] := BUFFER [INDEX + 9];
GRDT [INDEX] := BUFFER [INDEX + 18];
ENDT [INDEX] := BUFFER [INDEX + 24];

H-22

L - -- 4

END;
-. 4" FOR INDEX 7 TO 8 DO BEGIN

CTRL [INDEX] BUFFER [INDEX];
LSSN [INDEX] BUFFER [INDEX + 91;

END;
INDEX := 9;
LSSN [INDEX] BUFFER [INDEX + 9];

END;
END

END;

H-23

- U 4. , - . - . - , - - , - - -

F, w----j .- . ' e
' ' ' , ' - '

."" ." " " - " -' . " " " , , , '-, . '' '' - , . '-'-., ", .: . '' .z - . ' '"' ' ., ,.''

-, { }** *********************************

DATE: 02/08/85 *}
NAME: ADMSECT *1
DESCRIPTION: THIS MODULE WRITES AN NEW RECORD BACK TO THE *}

MASTER SECTION FILE OF THE AFIT DATABASE. THE INFO IS *}
PASSED TO THE MODULE VIA THE SECT REC RECORD. *}

FILES REAP! NONE *}
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *1
MODULES CALLED: CHECKSTATUS *1
CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF *11* *1

PROCEDURE ADMSECT (SECT:SECTREC);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;
CODE : BUFF8;
ELEMENTS: BUFF80;
BUFFER : BUFF40;

ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF8; ELEMENTS: BUFF80; BUFFER:BUFF40; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS : ADD-M';
DATASET : SECT';
CODE SECT.CTRL;
ELEMENTS := SECTCONSTI+SECTCONST2;
FOR INDEX := 1 TO 40 DO BUFFER [INDEX] :=
ENDIT := 'END.';
WITH SECT DO BEGIN

BUFFER := CTRL+LSSN+GRDT+ENDT+NRSN+EXTRA+EXTRA;
DATBAS(FUNCTIONS,STATUS,DATASET,CODE,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK)

END

END;

* m H-24

DATE: 02/08/85
1* NAME: WRMMCRS

DESCRIPTION: THIS MODULE WRITES AN UPDATED RECORD TO THE *
MASTER COURSE FILE USING THE INFORMATION PASSED IN *
THE MCRS RECORD OF TYPE MCRS REC.

FILES READ: NONE *
FILES WRITTEN: AFITDB *
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE *
MODULES CALLED: CHECKSTATUS
CALLING MODULES: *
AUTHOR: DAVID A GAITROS, CAPT, UJSAF *

PROCEDURE WRMMCRS (MCRS: MCRS .REC);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;

SCODE : BUFF8;
ELEMENTS: BUFF8O;
BUFFER : BUFF80;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF8; ELEMENTS: BUFF8O; BLFFER:BUFF80; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS '=WRITM';
DATASET : MCRS';
CODE :MCRS.CTRL;

ELEMENTS :MCRSCONST1+MCRSCONST2;

FOR INDEX :=1 TO 80 DO BUFFER [INDEX] :--

ENDIT :- 'END.';r WITH MCRS DO BEGIN
BUFFER := CTRL+CRHR+LCHR+LBHR+SZLM+TITL+REST+EXTRA+EXTRA;
DATBAS(FUNCTIONS ,STATUS ,DATASET,CODE, ELEMENTS, BUFFER,ENDIT);
CHECKSTArUS(OK)

END
END;

*H- 25

- { ***- }

DATE: 02/08/85 *}
NAME: RDMMCRS *}
DESCRIPTION: THIS ROUTINE READS A MASTER COURSE RECORD FROM

THE DATABASE AND FORMATS THE RECORD MCRS OF TYPE *}
MCRSREC WITH THE DATA IF THE READ WAS ACCOMPLISHED. *1

FILES READ: AFITDB *}
1* FILES WRITTEN: NONE *}

GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}[* *1

11**}
.0 PROCEDURE RDMMCRS (VAR MCRS:MCRSREC);, VAR

VAR FUNCTIONS: BUFF5;

DATASET : BUFF4;
ELEMENTS: BUFF80;
BUFFER : BUFF80;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;
CODE : BUFF8;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF8; ELEMENTS: BUFF80; BUFFER:BUFF80; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS := "READM';

DATASET :- 'MCRS';
CODE :- MCRS.CTRL;
ELEMENTS := MCRSCONST1+MCRSCONST2;
FOR INDEX =1 TO 80 DO BUFFER [INDEX] : ;
ENDIT := 'END.';
WITH MCRS DO BEGIN

DATBAS(FUNCTIONS,STATUS,DATASET,CODE,ELEMENTS,BUFFER,ENDIT);

CHECKSTATUS(OK);
IF OK THEN BEGIN

FOR INDEX := 1 TO 8 DO CTRL [INDEX] := BUFFER [INDEX];
FOR INDEX := 1 TO 50 DO TITL [INDEX] BUFFER [INDEX +13];
FOR INDEX := 1 TO 2 DO SZLM [INDEX] := BUFFER [INDEX +11];
CRHR := BUFFER [8];
LCHR : BUFFER [9];
LBHR := BUFFER (101;
REST :- BUFFER [631

" " END

END; END

*H-26

{ ** }

DATE: 02/08/85 *}
NAME: ADMMCRS *}
DESCRIPTION: THIS MODULE ADDS A MASTER RECORD TO THE COURSE

MASTER FILE USING THE INFORMATION PASSED IN THE *}
MCRS RECORD OF TYPE MCRS REC. *}

FILES READ: NONE
FILES WRITTEN: NONE
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *1{1* *}

PROCEDURE ADMMCRS (MCRS:MCRSREC);

VAR
"FUNCTIONS: BUFF5;

DATASET : BUFF4;
CODE : BUFF8;
ELEMENTS: BUFF80;
BUFFER : BUFF80;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

. PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF8; ELEMENTS: BUFF80; BUFFER:BUFF80; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS := ADD-M';
DATASET :' MCRS ;
CODE : MCRS.CTRL;
ELEMENTS : MCRSCONST1+MCRSCONST2;
FOR INDEX := 1 TO 80 DO BUFFER [INDEX] : ;
ENDIT :- 'END.;
WITH MCRS DO BEGIN

BUFFER :- CTRL+CRHR+LCHR+LBHR+SZLM+TIrL+REST+EXTRA+EXTRA;
DATBAS(FUNCTIONS ,STATUS,DATASET,CODE,ELEMENTS, BUFFER, ENDIT);
CHECKSTATUS (OK)

END
W7 END;

,%.

• * H-27

{* DATE: 02/08/85 *

NAME: WRMMQTR *}
DESCRIPTION: THIS MODULE WRITES AN UPDATED RECORD BACK TO THE *}

{* AFIT DATABASE IN THE MASTER QUARTER FILE. THE RECORD *1
IS PASSSED TO THE MODULE IN THE MQTRREC FORMAT.
(* *}

FILES READ: NONE
FILES WRITTEN: NONE

GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE

MODULES CALLED: CHECKSTATUS *}
CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF *}(* *1

{ * * * * * ******************-********** / *** ********** ******** }
PROCEDURE WRTMSTRMQTR (MQTR:MQTRREC);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
CODE : BUFF4;
ELEMENTS: BUFF80;
BUFFER : BUFF80;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF4; ELEMENTS: BUFF80; BUFFER:BUFF80; ENDIT:BUFF4);
FORTRAN;

BEGIN

FUNCTIONS : WRITM';
.4 DATASET := MQTR';

CODE := MQTR.CTRL;
ELEMENTS := MQTRCONST1 + EXTRA;
FOR INDEX := I TO 80 DO BUFFER [INDEX] := - -;

ENDIT :- 'END.';
WITH MQTR DO BEGIN

BUFFER := CTRL+STDT+SPDT+EXTRA+EXTRA;
-*"- DATBAS(FUNCTIONS,STATUS,DATASET,CODE,ELEMENTS,BUFFER,ENDIT);

CHECKSTATUS(OK)
END

END;

*e H-28

" " "I ' , " " I.' , " "' . . ' .I " " - . o " .' ' , . "

DATE: 02/08/85
NAME: RDMMQTR *}
DESCRIPTION: THIS MODULE READS A MASTER RECORD FROM THE MASTER *}

QUARTER FILE AND FORMATS THE RECORD "MQTR" OF TYPE *}
.* MQTRREC IF THE READ WAS ACCOMPLISHED. *}

FILES READ: AFITDB
FILES WRITTEN: NONE *}
GLOBAL VARIABLES USED: NONE *}

S:* GLOBAL VARIABLES CHANGED: NONE
" [MODULES CALLED: CHECKSTATUS *1

CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{1* *}

, *** ** }

411%PROCEDURE RDMMQTR (VAR MQTR:MQTRREC; CODE:BUFF4);

I0 VAR
9 VAR FUNCTIONS: BUFF5;

DATASET : BUFF4;
ELEMENTS: BUFF80;
BUFFER : BUFF80;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF4; ELEMENTS: BUFF80; BUFFER:BUFF80; ENDIT:BUFF4);

." FORTRAN;

BEGIN

'V FUNCTIONS : READM';

DATASET =MQTR';
ELEMENTS : MQTRCONST + EXTRA;
FOR INDEX := 1 TO 80 DO BUFFER [INDEX] : - -;

ENDIT :- 'END.';
WITH MQTR DO BEGIN

DATBAS(FUNCTIONS,STATUS,DATASET, CODE, ELEMENTS,BUFFER, ENDIT);
CHECKSrATUS(OK);
IF OK THEN BEGIN

FOR INDEX := 1 TO 4 DO BEGIN
CTRL [INDEX] :- BUFFER [INDEX];
STDT [INDEX] :- BUFFER [INDEX + 41;
SPDT [INDEX] :- BUFFER (INDEX + 10]

e.- END;
FOR INDEX :- 5 TO 6 DO BEGIN

STDT [INDEX] : BUFFER [INDEX + 41;
97 SPDr [INDEX] :- BUFFER [INDEX + 10]

- END

[-k. END
END END;

_ 1-29

DATE: 02/08/85
NAME: ADMMQTR
DESCRIPTION: THIS MODULE ADDS A RECORD TO THE MASTER QUARTER *}

1* FILE IN THE AFIT DATABASE. THE RECORD MUST NO EXIT *1
AND MUST BE PASSED TO THIS MODULE IN THE MQTRREC *1
FORMAT. *}
[* *}

{* FILES READ: NONE *}
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE *1
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

{* *1

PROCEDURE ADMMQTR (MQTR:MQTR REC);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
CODE : BUFF4;

Si.FEELEMENTS: BUFF80;
BUFFER : BUFF8O;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
CODE: BUFF4; ELEMENTS: BUFF80; BUFFER:BUFF80; ENDIT:BUFF4);
FORTRAN;

BEGIN

V FUNCTIONS := ADD-M';
DATASET : MQTR;
CODE : MQTR.CTRL;
ELEMENTS := MQTRCONST1 + EXTRA;
FOR INDEX : 1 TO 80 DO BUFFER [INDEX] := - ,

ENDIT : 'END.';
WITH MQTR DO BEGIN

BUFFER :- CTRL+STDT+SPDT+EXTRA+EXTRA;
DATBAS(FUNCTIONS,STATUS,DATASET,CODE,ELEMENTS, BUFFER, ENDIT);
CHECKSTATUS(OK)

END
END;

Irl w . (

R-30

e V w-.' . . , . .,. . ,. . , "''L' " ,W,.% ., , w. ., .. , . . % . . . ; .. - - .. ,, . ,. , , ,.. % ., .

, . . { ** }

DATE: 08/08/85 *1
1 " {* NAME: ADVCRSE *}
{* DESCRIPTION: THIS MODULE ADDS A VARIABE RECORD TO THE CRSE *1
.-11 {* VARIABLE FILE AFTER THE RECORD POINTED TO BY THE *}

VREFERENCE PARAMETER. THE INFORMATION PASSED TO THIS *
MODULE IS IN THE RECORD FORMAT OF TYPE CRSEREC. *}

FILES READ: NONE *1
FILES WRITTEN: AFITDB *1
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE *1
MODULES CALLED: CHECKSTATUS *1
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}(* *1

II** ******-******* I

PROCEDURE ADVCRSE(CRSE:CRSEREC;VAR VREFERENCE:BUFF4;
CODE :BUFF9);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
VLINKPATH: BUFF8;
ELEMENTS : BUFF80;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE: BUFF4; VLINKPATH: BUFF8; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := ADDVC';
ENDIT :- 'END.';
DATASET :- "CRSE";
VLINKPATH :=STDTLKCR';

" ">iELEMENTS :=CRSECONSTI+CRSECONST2 ;

FOR INDEX :u I TO 240 DO
BUFFER [INDEX] : - ";

WITH CRSE DO BEGIN
BUFFER : STDT+MDEG+NUMB+NAME+GRAD+BEGN+COLL+WAIV+EXTRA+EXTRA+EXTRA+

EXTRA+EXTRA;
DATBAS (FUNCTIONS,STArUS,DATASET,VREFERENCE,VLINKPATH,CODE, ELEMENTS,

BUFFER,ENDIT);

CHECKSTATUS(OK)
END

. . END; {* ADVCRSE *1

H-31

DATE: 08/08/85
1* NAME: WRVCRSE *1

DESCRIPTION: THIS MODULE WRITES AN UPDATED VARIABLE RECORD *1
FROM THE FILE CRSE TO THE DATABASE TO ITS ORIGINAL *}
POSITION WITHIN THE STRING. THE INFORMATION IS PASSED *1
TO THE MODULE VIA THE RECORD IN THE CRSEREC FORMAT. *1

{. -*.
FILES READ: NONE
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE *1
GLOBAL VARIABLES CHANGED: NONE *1

V* MODULES CALLED: CHECKSTATUS *1
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF{* *}

{ ************************* -****- -***- -*************************

PROCEDURE WRVCRSE(CRSE:CRSEREC;VAR VREFERENCE:BUFF4;
VLINKPATH :BUFF8;
CODE :BUFF9);

VAR
FUNCTIONS: BUFFS;
DATASET : BUFF4;
ELEMENTS : BUFF80;
BUFFER : BUFF24O;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;

VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF8O; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS :- 'WRITV';ENDIT :- 'END.';

DArASET :- 'CRSE';
ELEMENTS :i CRSECONST1+CRSECONST2;
FOR INDEX :1 1 TO 240 DO

BUFFER [INDEX] : -
WITH CRSE DO BEGIN

BUFFER :=STDT+MDEG+NUMB+NAME+GRAD+BEGN+COLL+WAIV+EXTRA+EXTRA+EXTRA+
EXTRA+EXTRA;

DATBAS (FUNCrIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,ELEMENTS,
BUFFER,ENDIT);

CHECKSTATUS(OK)
END

END; {* WRVCRSE *}

.H-3

~H-32

II** }

DATE: 08/08/85 *}
NAME: RDVCRSE *}

DESCRIPTION: THIS MODULE READS A VARIBLE FILE FROM THE DATABASE *}
FROM THE FILE CRSE. IT FORMATS THE INFORMATION INTO *}

{* A RECORD OF TYPE CRSE REC AND RETURNS IT TO THE *}
CALLING PROCEDURE. *11* *

FILES READ: AFITDB
FILES WRITTEN: NONE *1

{1* GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}[* *}

t **}I

PROCEDURE RDVCRSE(VAR CRSE:CRSE REC; VAR VREFERENCE:BUFF4;

CODE :BUFF9);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;

- ELEMENTS : BUFF80;
* VLINKPATH: BUFF8;

BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF8O; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS :- 'READV';
ENDIT :- 'END.';
DArASET :- "CRSE';
VLINKPATH :' STDTLKCR';
ELEMENTS := CRSECONST1+CRSECONST2;
FOR INDEX : 1 TO 240 DO

BUFFER [INDEX] : - -;

WITH CRSE DO BEGIN
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,

ELEMENTS,BUFFER,ENDIT);

CHECKSTATUS(OK);
IF OK THEN BEGIN

WAIV :- BUFFER [751;
FOR INDEX := 1 TO 9 DO STDT [INDEX] : BUFFER [INDEX];

• FOR INDEX : 1 TO 2 DO MDEG [INDEX] := BUFFER [INDEX +9];
" - FOR INDEX : 1 TO 8 DO NUMB [INDEX] := BUFFER [INDEX + 111;

FOR INDEX :I 1 TO 20 DO NAME [INDEX] :- BUFFER [INDEX + 191;

H-33

FOR INDEX .= 1 TO 2 DO GRAD [INDEX] := BUFFER [INDEX + 39];

FOR INDEX := 1 TO 4 DO BEGN [INDEX] : BUFFER [INDEX + 411;

FOR INDEX := 1 TO 30 DO COLL (INDEX] := BUFFER [INDEX + 451;

END

END
END; t* RDVCRSE *1

H3.

S

.- 3

{ [** DATE: 08/08/85** }

NAME: RDDCRSE *}
DESCRIPTION: THIS MODULE READS A VARIABLE FILE RECORD FROM THE *1

FILE CRSE DIRECTLY FROM THE DATABASE USING THE POINTER *}
[* PARAMETER "VREFERENCE" AS THE KEY. THE INFORMATION IS *}

' [{ FORMATTED AND STORED IN A RECORD OF TYPE CRSEREC; *}

FILES READ: AFITDB
FILES WRITTEN: NONE *}
GLOBAL VARIABLES USED: NONE *}

-* GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKSTATUS*
CALLING MODULES: LAYER 4, AND LAYER 3 *1
AUTHOR: DAVID A GAITROS, CAPf, USAF *1

* -. ************** *** -*********-****-****-*********************

PROCEDURE RDDCRSE(VAR CRSE:CRSEREC; VAR VREFERENCE:BUFF4;
VLINKPATH :BUFF8;

CODE :BUFF9);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
ELEMENTS : BUFF8;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := "READD';
ENDIT :- 'END.;
DArASET := CRSE;
ELEMENTS : CRSECONSTI+CRSECONST2;
FOR INDEX :1 TO 240 DO

BUFFER [INDEX] = -;

*' WItH CRSE DO BEGIN
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,

ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);
IF OK THEN BEGIN

WAIV :- BUFFER [751;
FOR INDEX : 1 TO 9 DO STDT [INDEX] :- BUFFER [INDEX];

* FOR INDEX := 1 TO 2 DO MDEG [INDEX] := BUFFER [INDEX +91;
FOR INDEX:- 1 TO 8 DO NUMB [INDEX] :BUFFER [INDEX + 11];

-.- "'-/ FOR INDEX :- I TO 20 DO NAME [INDEX] := BUFFER [INDEX + 19];
FOR INDEX :- 1 TO 2 DO GRAD [INDEX] := BUFFER [INDEX + 391;

* H-35

FOR INDEX 1 TO 4 DO BEGN [INDEX] BUFFER [INDEX + 411;

-- _ - FOR INDEX : 1 TO 30 DO COLL [INDEX] : BUFFER (INDEX + 45];
END

END
END; {* RDDCRSE *}

N

H36

- A. --

DATE: 08/08/85
NAME: DLDCRSE *}
DESCRIPTION: THIS MODULE DELETES A RECORD FROM THE DATABASE *}

V 1* FROM THE FILE CRSE. THIS RECORD MUST HAVE BEEN READ *}
FIRST WITH INTENT TO UPDATE AND THE RECORD POINTER *1
PASSED TO THIS MODULE IN THE PARAMETER "VREFEENCE". *{* *}

FILES READ: NONE *}
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE *1
GLOBAL VARIABLES CHANGED: NONE *1
MODULES CALLED: CHECKSTATUS *1
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

I *************** ***********************************-*************

PROCEDURE DLDCRSE(VAR CRSE:CRSE REC; VAR VREFERENCE:BUFF4;
CODE :BUFF9);

VAR
FUNCTIONS: BUFFS;
DATASET : BUFF4;
VLINKPATH: BUFF8;
ELEMENTS : BUFF80;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS :- "READV';
ENDIT := 'END.';
VLINKPATH := 'STDTLKCR';
DATASET := CRSE';
ELEMENTS : CRSECONST1+CRSECONST2;
FOR INDEX : 1 TO 240 DO

BUFFER [INDEX] :=
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,

ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);
IF (OK) AND (VREFERENCE <> END.')ThEN BEGIN
FUNCTIONS :- "READV';
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,

*ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);
END;

END; {* DLDCRSE *1

H-37

-.-.-. -. - .-.-...--- -- - .

1* DATE: 08/08/85 *
NAME: ADCVREQ *
DESCRIPTION: THIS MODULE ADDS A VARIABE RECORD TO THE VREQ *

VARIABLE FILE AFTER THE RECORD POINTED TO BY THE *
VREFERENCE PARAMETER. THE INFORMATION PASSED TO THIS *

1* MODULE IS IN THE RECORD FORMAT OF TYPE VREQ REC. *

FILES READ: NONE *
FILES WRITTEN: AFITDB *
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE *
MODULES CALLED: CHECKSTATUS *
CALLING MODULES: LAYER 4, AND LAYER 3 *
AUTHOR: DAVID A GAITROS, CAPT, USAF *

PROCEDURE ADCVREQ(VREQ:VREQREC;VAR VREFERENCE:BUFF4;
* VLINKPATH :BUFF8;

CODE :BUFF8);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;

.0ELEMENTS : BUFF8O;
BUFFER : BUFF24O;

ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE: BUFF4; VLINKPATH: BUFFS; CODE: BUFF8;
ELEMENTS: BUFF8O; BUFFER: BUFF24O; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := 'ADDVC';
ENDIT := 'END.;
DATASET :- 'VREQ';
ELEMENTS :=VREQCONST1+VREQCONST2;
FOR INDEX :=1 TO 240 DO

BUFFER [INDEX]
* WITH VREQ DO BEGIN

BUFFER : CODE+NMBR+DATA+RNUM+BLKA+PNUM+BLKB+EXTRAiEXTRA+EXTRA+EXTRA
+EXTRA;

END;
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,ELEMENTS,

'A BUFFER,ENDIT);
* CHECKSTATUS(OK)

END; {*ADVVREQ *

l- 38

- {** }
DATE: 08/08/85 *1
NAME: WRVVREQ *}
DESCRIPTION: THIS MODULE WRITES AN UPDATED VARIABLE RECORD

FROM THE FILE VREQ TO THE DATABASE TO ITS ORIGINAL *}
POSITION WITHIN THE STRING. THE INFORMATION IS PASSED *1
TO THE MODULE VIA THE RECORD IN THE VREQREC FORMAT. *}{. *}

{* FILES READ: NONE *}
FILES WRITTEN: AFITDB
GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3 *1
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

{**************************************-***** **************-**I

PROCEDURE WRVVREQ(VREQ:VREQREC;VAR VREFERENCE:BUFF4;
VLINKPATH :BUFF8;
CODE :BUFF8);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
ELEMENTS : BUFF80;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF8;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

4

BEGIN
FUNCTIONS := 'WRITV';
ENDIT := 'END.';
DATASET : VREQ';
ELEMENTS : VREQCONST1+VREQCONST2;
FOR INDEX : 1 TO 240 DO

BUFFER [INDEX] :- -;
WIrH VREQ DO BEGIN

BUFFER :=CODE+NMBR+DATA+RNUM+BLKA+PNUM+BLKB+EXTRA+EXTRA+EXTRA+
EXTRA + EXTRA

END;
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,ELEMENTS,

BUFFER,ENDIT);
CHECKSTATUS(OK)

END; {* WRVVREQ *1

H-39

-'~ ~~~1 % JZ'r Z', . <// ,' : : ;,'"" .. "'.3 " .". L , ''' " . . .'.

' ' [* DATE: 08/08/85 *}
NAME: RDVVREQ *}
DESCRIPTION: THIS MODULE READS A VARIBLE FILE FROM THE DATABASE *1

FROM THE FILE VREQ. IT FORMATS THE INFORMATION INTO *1
A RECORD OF TYPE VREQREC AND RETURNS IT TO THE *}
CALLING PROCEDURE. *}{. *1

{* FILES READ: AFITDB *}
FILES WRITTEN: NONE

. { GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3
AUTHOR: DAVID A GAITROS, CAPT, USAF

[1* *1
{ *********** **********************************'*************

PROCEDURE RDVVREQ(VAR VREQ:VREQ.REC; VAR VREFERENCE:BUFF4;
VLINKPATH :BUFF8;
CODE :BUFF8);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
ELEMENTS : BUFF80;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STAtUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF8;

AELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := 'READV';
ENDIT :- 'END.;
DArASET := VREQ';
ELEMENTS := VREQCONST1+VREQCONST2;
FOR INDEX:- 1 TO 240 DO

BUFFER [INDEX] :- ' ";
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPArH,CODE,

ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);

WITH VREQ DO BEGIN
IF OK THEN BEGIN

FOR INDEX := 1 TO 2 DO CODE (INDEX] := BUFFER [INDEX];

FOR INDEX : 1 TO 8 DO NMBR [INDEX] := BUFFER [INDEX+2];
FOR INDEX:- 1 TO 6 DO BEGIN

RNUM (INDEX] := BUFFER [INDEX + 221;
BLKA [INDEX] := BUFFER [INDEX + 281;
PNUM [INDEX] := BUFFER [INDEX + 341;

6-40

(. -," "." .,." ' . ' . . ". .

.- BLKB [INDEX] :- BUFFER (INDEX + 401
p" END;

FOR INDEX " 1 rO 12 DO DATA [INDEX] : BUFFER [INDEX+1O]
END

END
END; 1* RDVVREQ *}

14

.._.41

DATE: 08/08/85
i 1 {* NAME: RDDVREQ *}

DESCRIPTION: THIS MODULE READS A VARIABLE FILE RECORD FROM tHE *}
FILE VREQ DIRECTLY FROM THE DATABASE USING THE POINTER *}
PARAMETER "VREFERENCE" AS THE KEY. THE INFORMATION IS *}
FORMATTED AND STORED IN A RECORD OF TYPE VREQREC; *}{* *1

FILES READ: AFITDB *}
FILES WRITTEN: NONE *1
GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

** **** }

PROCEDURE RDDVREQ(VAR VREQ:VREQREC; VAR VREFERENCE:BUFF4;

VLINKPATH :BUFF8;
CODE :BUFF8);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
ELEMENTS : BUFF80;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS: BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF8;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN

FUNCTIONS := 'READD';
ENDIT :- 'END.';
DATASET :- 'VREQ';
ELEMENTS : VREQCONSTI+VREQCONST2;
FOR INDEX := 1 TO 240 DO

BUFFER [INDEX] : - -;

DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,

ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);

WITH VREQ DO BEGIN
IF OK THEN BEGIN

FOR INDEX := 1 TO 2 DO CODE [INDEX] :- BUFFER [INDEX];
FOR INDEX 1 TO 6 DO BEGIN

RNUM [INDEX] := BUFFER [INDEX + 221;
BLKA [INDEX] := BUFFER (INDEX + 28];
PNUM [INDEX] := BUFFER [INDEX + 341

END;

H-42

FOR INDEX :1 TO 8 DO NMBR [INDEX] :BUFFER [INDEX +2];

FOR INDEX :1 TO 12 DO DATA [INDEX] UBUFFER [INDEX +101

END
END

END; {*RDDVREQ *

H-4

,:',

** DATE: 08/08/85
NAME: DLDVREQ *}

[* DESCRIPTION: THIS MODULE DELETES A RECORD FROM THE DATABASE *}
FROM THE FILE VREQ. THIS RECORD MUST HAVE BEEN READ *}
FIRST WITH INTENT TO UPDATE AND THE RECORD POINTER

1* PASSED TO THIS MODULE IN THE PARAMETER "VREFERENCE". *{*

* 1

FILES READ: NONE *}
FILES WRITTEN: AFITDB
GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

11 * ** *************** ** ****** ********** ***** ** ** *- *** ****** *** ** }

* -, PROCEDURE DLDVREQ(VAR VREQ:VREQ REC; VAR VREFERENCE:BUFF4;

VLINKPATH :BUFF8;
0CODE :BUFF8);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
ELEMENTS : BUFF80;

YBUFFER :BUFF24O;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE: BUFF4; VLINKPATH : BUFF8; CODE: BUFF8;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEG IN
FUNCTIONS :- "DELVD';
ENDIT :- 'END.';
DATASET : VREQ';
ELEMENTS := VREQCONST1+VREQCONST2;
FOR INDEX I= TO 240 DO

BUFFER [INDEXI]-
DATBAS (FUNCTIONS,STATUS,DATASET, VREFERENCE, VLINKPATH,CODE,

ELEMENTS, BUFFERENDIT);
CHECKSTATUS(OK);

END; {* DLDVREQ *}

H-44

DATE:19/07/85 *}
NAME: CONVERT TO DISP *}
DESCRIPTION: CONVERTS A NUMERIC INTEGER INTO A 3 DIGIT *1

DISPLAY CHARACTERS. *}

FILES READ: *}
'" (FILES WRITTEN: *}

GLOBAL VARIABLES USED: *}
GLOBAL VARIABLES CHANGED: *}

{* MODULES CALLED: *}
CALLING MODULES: *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

'- * *1

FUNCTION CONVERTTODISP(INNUM:INTEGER): BUFF3;
VAR

HOLDDISP: BUFF3;
DIVISOR : INTEGER;
HOLDNUMB: INTEGER;
INDEX : INTEGER;

* DISPNUM : PACKED ARRAY [0..9] OF CHAR;

BEGIN
DISPNUM [01 :'0;
DISPNUM [11 := ';
DISPNUM [21 :"2;

Of DISPNUM [31 :=3;
DISPNUM [41 :'4;

DISPNUM [5] :'5;
DISPNUM [61 : 6";
DISPNUM [7] :' 7';
DISPNUM [8] : 8';
DISPNUM [91 :"9;
HOLDNUMB := INNUM;
DIVISOR :- INNUM;
FOR INDEX : 3 DOWNTO I DO BEGIN

DIVISOR := DIVISOR DIV 10;
DIVISOR :- DIVISOR*10; {* STRIP OFF LAST DIGIT *}
HOLDDISP [INDEX] := DISPNUM [HOLDNUMB - DIVISOR];
HOLDNUMB :- HOLDNUMB DIV 10;
DIVISOR:- DIVISOR DIV 10

END;
CONVERT TO DISP : HOLDDISP;

END;

H-45

' {* DATE: *1

11* NAME: READSECT *1
[* DESCRIPTION: READS THE SECTION THAT A STUDENT BELONGS TO. *}

FILES READ: *}
* .' . [* FILES WRITTEN:

GLOBAL VARIABLES USED: *1
GLOBAL VARIABLES CHANGED: *1
MODULES CALLED: *}
CALLING MODULES: *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

" ****{************** *********-*************************************}

PROCEDURE RDVSECL(VAR SECL:SECL REC; VAR VREFERENCE:BUFF4; SSAN:BUFF9);
VAR TEMPBUFF20 : BUFF2O;

OK : BOOLEAN;
VLINKPATH :BUFF8;
FUNCTIONS : BUFF5;
DATASET : BUFF4;
ELEMENTS: BUFF80;

S. BUFFER : BUFF80;
RLSE : BUFF4;

I : INTEGER;
PROCEDURE DATBAS (%STDESCR FUNCTIONS : BUFF5; STATUS : BUFF4; DATASET : BUFF4;

VREFERENCE : BUFF4; VLINKPATH : BUFFB; SSAN : BUFF9;
ELEMENTS : BUFF80; BUFFER : BUFF80; RLSE
BUFF4); FORTRAN;

BEGIN
FUNCTIONS := 'READV';
DATASET := "SECL'/;
RLSE := 'END.';
VLINKPATH := STDTLKSE";
ELEMENTS := SECLCONST1+EXTRA;
FOR I :- 1 TO 80 DO BUFFER [I] := "
DArBAS (FUNCTIONS, STATUS, DATASET, VREFERENCE, VLINKPATH, SSAN,

ELEMENTS, BUFFER, RLSE);
CHECKSTATUS(OK);
IF OK THEN BEGIN

FOR I :1 1 TO 8 DO SECL.SECT[I] := BUFFER (I;
FOR I : I TO 9 DO SECL.STDT[I] := BUFFER [1+8];
FOR I := 1 TO 9 DO SECL.FACT[I] := BUFFER [1+171;

END;
END;

* H-46

''. , . -' j. - '0~~~
\, .~

'. ' .":-:" { DATE: 18/07/85 *}

NAME: FINDSECTION.PAS *1
1 {* DESCRIPTION: SEARCHES THE STUDENT LINK LIST FOR A STUDENT *1

THAT BELONGS TO A SPECIFIC SECTION. THIS ALGORITHM *}
ASSUMES THE LOCATION PASSED IS EITHER A HEADER RECORD *}
OR HAS ALREADY BEEN SEARCHED.{* *}

FILES READ:

FILES WRITTEN: *}
GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED: *1
MODULES CALLED: *1
CALLING MODULES:
AUTHOR: DAVID A GAITROS, CAPT, USAF{* *1

t ***-******* }

PROCEDURE FINDSECTION (VAR FIND:LINKPTR; SEARCHSECT:BUFF8);
VAR FOUND: BOOLEAN;

BEGIN
*Q FIND := FIND-.NEXT;

FOUND :- FALSE;
WHILE (FIND<>NIL) AND (NOT FOUND) DO

IF FIND-.SECT - SEARCHSECT THEN FOUND - TRUE
L.- ELSE FIND : FIND-.NEXT

END;

H .-. 4

DATE: 08/08/85
NAME:ADVVCQR *}
DESCRIPTION: THIS MODULE ADDS A VARIABE RECORD TO THE VCQR

VARIABLE FILE AFTER THE RECORD POINTED TO BY THE *}
VREFERENCE PARAMETER. THE INFORMATION PASSED TO THIS *}
MODULE IS IN THE RECORD FORMAT OF TYPE VCQR-REC. *}

{* FILES READ: NONE AT ALL *}
{* FILES WRITTEN: AFITDB *}

GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE *}

1 {* MODULES CALLED: CHECKSTATUS *1
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}[* *}

.II< ******** -*-******- ---*********************************** * }*

PROCEDURE ADVVCQR(VCQR:VCQR REC;VAR VREFERENCE:BUFF4;CODE:BUFF9);
VAR

" FUNCTIONS: BUFF5;
DATASET : BUFF4;
VLINKPATH: BUFF8;
ELEMENTS : BUFF80;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := 'ADDVC';
ENDIT := 'END.';
VLINKPATH := 'STDTLKCQ';
DATASET :' VCQR';
ELEMENTS := VCQRCONSTI+EXTRA;
FOR INDEX:= 1 TO 240 DO

BUFFER (INDEX] := " -;

WITH VCQR DO
BUFFER : CODE+NMBR+IDEN+SSSN+EXTRA+EXTRA+EXTRA+EXTRA+EXTRA+EXTRA;
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,ELEMENTS,

BUFFER,ENDIT);
CHECKSTATUS(OK);
IF OK THEN WRITELN('RECORD ADDED');

END; (* ADVVCQR *}

R-48

r%

,..€DATE: 08/08/85

NAME: WRVVCQR *1
DESCRIPTION: THIS MODULE WRITES AN UPDATED VARIABLE RECORD

FROM THE FILE VCQR TO THE DATABASE TO ITS ORIGINAL
POSITION WITHIN THE STRING. THE INFORMATION IS PASSED *}
TO THE MODULE VIA THE RECORD IN THE VCQR REC FORMAT. *}, *. .

FILES READ: NONE *1
1* FILES WRITTEN: AFITDB

GLOBAL VARIABLES USED: NONE *}
' 1 GLOBAL VARIABLES CHANGED: NONE

MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

'4, i ***-***** -*****-*********-**************-**************** }
PROCEDURE WRVVCQR(VCQR:VCQRREC;VAR VREFERENCE:BUFF4;CODE:BUFF9);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;

* ELEMENTS : BUFF80;
VLINKPATH: BUFF8;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8: CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := WRITV';
VLINKPATH := STDTLKCQ';
ENDIT :- 'END.';
DATASET := VCQR';
ELEMENTS :- VCQRCONST1+EXTRA;

* FOR INDEX : 1 TO 240 DO
BUFFER [INDEX] :=

WITH VCQR DO
BUFFER :=CODE+NMBR+IDEN+SSSN+EXTRA+EXTRA+EXTRA+EXTRA+EXTRA+EXTRA;
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,ELEMENTS,

BUFFER,ENDIT);
* CRECKSTATUS(OK)

END; {* WRVVCQR *}

4-49

1it-' - . - . - . - - . - , . . 4 , - - - . . • .

,1.

DATE: 08/08/85
{1* NAME: RDVVCQR *1

DESCRIPTION: THIS MODULE READS A VARIBLE FILE FROM THE DATABASE *}
FROM THE FILE VCQR. IT FORMATS THE INFORMATION INTO *}
A RECORD OF TYPE VCQRREC AND RETURNS IT TO THE *1
CALLING PROCEDURE. *}

FILES READ: AFITDB *1
FILES WRITTEN: NONE *}
GLOBAL VARIABLES USED: NONE

S {* GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3 *1
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

t {*************** -******* ***************-****************** }

PROCEDURE RDVVCQR(VAR VCQR:VCQRREC; VAR VREFERENCE:BUFF4;
4CODE :BUFF9);

VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
ELEMENTS : BUFF80;
BUFFER : BUFF240;
VLINKPATH: BUFFS;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;
I : INTEGER;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := 'READV';
ENDIT := 'END.';
VLINKPATH:= "STDTLKCQ';

DATASET := VCQR';
ELEMENTS := VCQRCONSTI+EXTRA;

FOR INDEX := I TO 240 DO
BUFFER (INDEX] := - -;

DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,
ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);

WITH VCQR DO BEGIN
IF OK THEN BEGIN

FOR I : 1 TO 2 DO CODE [I] := BUFFER [I];
FOR I : 1 TO 8 DO NMBR [I] := BUFFER [1+21;
FOR I : 1 TO 4 DO IDEN [I] := BUFFER [I+101;

END
END

END; 1* RDVVCQR *}

ii-50

.-, .,, , ,, ,. ,. . , _ , , , . . , . . , .. .:

DATE: 08/08/85 *}
NAME: RDDVCQR *
DESCRIPTION: THIS MODULE READS A VARIABLE FILE RECORD FROM THE *}

FILE VCQR DIRECTLY FROM THE DATABASE USING THE POINTER *}
PARAMETER "VREFERENCE" AS THE KEY. THE INFORMATION IS *}
FORMATTED AND STORED IN A RECORD OF TYPE VCQRREC; *}

FILES READ: AFITDB
FILES WRITTEN: NONE *1
GLOBAL VARIABLES USED: NONE *}

.1 {* GLOBAL VARIABLES CHANGED: NONE *1
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3 *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}1* *1

****.***************************** ************-*********************}

PROCEDURE RDDVCQR(VAR VCQR:VCQR REC; VAR VREFERENCE:BUFF4;CODE:BUFF9);

* VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
ELEMENTS : BUFF80;
VLINKPATH: BUFF8;
BUFFER : BUFF240;
ENDIT : BUFF4;
INDEX,I : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF240; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS :- 'READD';
ENDIT := 'END.';
VLINKPATH :- 'STDrLKCQ ;
DATASET : VCQR;
ELEMENTS := VCQRCONSTI+EXTRA;
FOR INDEX : I TO 240 DO

BUFFER [INDEX] := - -;

DArBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,'

A, ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);

*I1 WITH VCQR DO BEGIN
- '., IF OK THEN BEGIN

FOR I := 1 TO 2 DO CODE [I] := BUFFER [I];
FOR I :1 1 TO 8 DO NMBR [I] := BUFFER [1+21;
FOR I := 1 TO 4 DO IDEN [I] := BUFFER [1+10];

END
END

END; (* RDDVCQR *1

• H-51
J

,:.'....' . . ",- , ..,- .- ' '.....> , , : .. ., ...-.. ,;..,.'/. ..'.....,....l-,......

V -. ;~ (* DATE: 08/08/85
NAME: DLDVCQR *
DESCRIPTION: THIS MODULE DELETES A RECORD FROM THE DATABASE *

FROM THE FILE VCQR. THIS RECORD MUST HAVE BEEN READ *
FIRST WITH INTENT TO UPDATE AND THE RECORD POINTER *
PASSED TO THIS MODULE IN THE PARAMETER "VREFERENCE". *

FILES READ: NONE *

FILES WRITTEN: AFITDB *

GLOBAL VARIABLES USED: NONE *
GLOBAL VARIABLES CHANGED: NONE *

MODULES CALLED: CHECKSTATUS *
CALLING MODULES: LAYER 4, AND LAYER 3
AUTHOR: DAVID A GAITROS, CAPT, USAF *

PROCEDURE DLDVCQR(VAR VCQR:.CQRREC; VAR VREFERENCE:BUFF4;
CODE :BUFF9);

* VAR
FUNCTIONS: BUFFS;
DATASET : BUFF4;
ELEMENTS : BUFF8O;
BUFFER : BUFF240;
VLINKPATH:BUFF8;
ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE: BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFFSO; BUFFER: BUFF24O; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS :=DELVD';

* ENDIT := 'END.';
VLINKPATH := 'STDTLECCQ';
DATASET : VCQR;
ELEMENTS :=VCQRCONST1+EXTRA;

FOR INDEX :=I TO 240 DO
BUFFER [INDEX].- ,

* ~DATBAS (FUNCTIONS, STATUS, DATASET, VREFERENCE, VLINKPATH ,CODE,
ELEMENTS ,BUFFER, END IT);

CHECKSTATUS(OK);
END; (*DLDVCQR *

j H- 52

DATE: 08/08/85 *}
NAME: ADVFADV
DESCRIPTION: THIS MODULE ADDS A VARIABE RECORD TO THE FADV *}

VARIABLE FILE AFTER THE RECORD POINTED TO BY THE *}
(,i {* VREFERENCE PARAMETER. THE INFORMATION PASSED TO THIS *}

MODULE IS IN THE RECORD FORMAT OF TYPE FADVREC. *1

FILES READ: NONE *1
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE

A* MODULES CALLED: CHECKSTATUS *1
CALLING MODULES: LAYER 4, AND LAYER 3

AUTHOR: DAVID A GAITROS, CAPT, USAF *1{* *1t ***-******-******-********- *-****************************

PROCEDURE ADVFADV(FADV:FADVREC;VAR VREFERENCE:BUFF4;CODE:BUFF9);

* VAR
FUNCTIONS: BUFF5;
DATASET : BUFF4;
VLINKPATR: BUFF8;
ELEMENTS : BUFF80;
BUFFER : BUFF200;

(P ENDIT : BUFF4;
INDEX : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE: BUFF4; VLINKPATH: BUFFS; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF200; ENDIT: BUFF4); FORTRAN;

.*.* BEGIN
FUNCTIONS := ADDVC';
ENDIT := 'END.';

*VLINKPATH := 'STDTLKCQ';
DATASET := FADV';
ELEMENTS : FADVCONSTI+EXTRA;
FOR INDEX : 1 TO 200 DO

BUFFER [INDEX] :- ;
* WITH FADV DO

BUFFER :=SECT+STDT+FACT+EXTRA+EXTRA+EXTRA+EXTRA+EXTRA;
DATBAS (FUNCTIONS,STATUS,DATASET,VREFERENCE,VLINKPATH,CODE,ELEMENTS,

BUFFER,ENDIT);
CHECKSTATUS(OK)

END; t* ADVFADV *}

S1-H-53

"*1'5 " > ' "":i ': ;:"~ :? i'j :~ " ": / : " /:: ":. ' -

DATE: 08/08/85
NAME: RDVFADV *}
DESCRIPTION: THIS MODULE READS A VARIABE RECORD FROM THE

1- {* VARIABLE FILE AFTER THE RECORD POINTED TO BY THE *}
VREFERENCE PARAMETER. THE INFORMATION PASSED FROM THIS *}
MODULE IS IN THE RECORD FORMAT OF TYPE FADVREC. *

FILES READ: NONE *}
FILES WRITTEN: AFITDB *}
GLOBAL VARIABLES USED: NONE *1
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: CHECKSTATUS *}
CALLING MODULES: LAYER 4, AND LAYER 3
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

* { *******-*** .***

PROCEDURE RDVFADV(FADV:FADVREC;VAR VREFERENCE:BUFF4;CODE:BUFF9);
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;

4 VLINKPATH: BUFF8;
ELEMENTS : BUFF80;
BUFFER : BUFF200;
ENDIT : BUFF4;
INDEX,I : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS (%STDESCR FUNCTIONS:BUFF5; STATUS:BUFF4; DATASET:BUFF4;
VREFERENCE:BUFF4; VLINKPATH:BUFF8; CODE: BUFF9;
ELEMENTS: BUFF80; BUFFER: BUFF200; ENDIT: BUFF4); FORTRAN;

BEGIN
FUNCTIONS := 'READV';
ENDIT := 'END.';
VLINKPATH :- 'STDTLKCQ';
DATASET : FADV';
ELEMENTS : FADVCONST1+EXTRA;
FOR INDEX :1 1 TO 200 DO

BUFFER [INDEX] : - -;

WITH FADV DO BEGIN
DATBAS (FUNCTIONS,STArUS,DATASET,VREFERENCEVLINKPATH,CODE,ELEMENTS,

BUFFER,ENDIT);
CHECKSTArUS(OK);
IF OK THEN BEGIN

FOR I := I TO 8 DO SECT (I] :- BUFFER [I];

FOR I := 1 TO 9 DO STDT [I] := BUFFER [1+81;
FOR I :1 1 TO 9 DO FACT [I] := BUFFER [1+171;

END
END {* WITH *}

END; 1* RDVFADV *1

R-54

e 4 . . . , ' " - - . - . . -. , . ' ,' . , " . , -. , . - , • . . - ..

.. . DATE: 9/07/85
NAME: ADDNAME
DESCRIPTION: THIS MODULE ADDS A NAME TO A LINK LIST PASSED TO *}

THE MODULE AS A PARAMETER. THIS ROUTINE WAS DESIGNED *}
TO ADD TO A FACULTY LIST OR STUDENT LIST. *}

: * FILES READ: NONE *1
FILES WRITTEN: NONE *}
GLOBAL VARIABLES USED: NONE *}
GLOBAL VARIABLES CHANGED: NONE *}
MODULES CALLED: NONE *}

4* CALLING MODULES: *}
AUTHOR: DAVID GAITROS *}

{***** *. A A A A A********** * *** ** *************************** }

PROCEDURE ADDNAME (LINK:LINK PTR; VAR HEAD: LINK PTR);
VAR

FOUND : BOOLEAN;
PREV,CURR : LINKPTR;

* BEGIN
FOUND :- FALSE;
IF HEAD = NIL THEN BEGIN

NEW(CURR);
CURR-.NAME := - -;

* CURR-.CTRL '=000000000';
CURR-.SECT := - ";
CURR-.NEXT : LINK;
HEAD :- CURR {* FIRST RECORD IN LIST *1

END
ELSE BEGIN

PREV : HEAD;
CURR := HEAD-.NEXT;
WHILE ((CURR > NIL) AND (LINK'.NAME > CURR-.NAME)) DO BEGIN

PREV : CURR;
CURR : CURR^.NEXT

END;
LINK-.NEXT : PREV-.NEXT;

* PREV-.NEXT := LINK;
* ,END

END;

o H-55

DATE: 09/07/85 *}
NAME: FINDNAME *}
DESCRIPTION: THIS ROUTINE WILL SEARCH THE SPECIFIED LINK LIST *}

FOR A NAME. IT WILL ASSUME THAT THE CURRENT LOCATI5"ON *}
1* HAS ALREADY BEEN SEARCHED AND THAT THE HEAD RECORD IS A *}

IS A DUMMY RECORD. ALSO, IN CASE OF A RECORD NOT FOUND,*}
THE RETURNED NAME FIELD WILL BE BLANK. NOTE THAT THE *}

{*t NAME RETURNED WILL BE THE FULL NAME, AND THE INPUT NAME *}
WILL BE ONLY THE LAST NAME OR ANY PORTION OF IT. *}

NOTE: WHENEVER USING THIS ROUTINE, BE SURE TO PASS IT A WORK *}
", {* POINT BECAUSE ITS VALUE WILL BE CHANGED. *}

{* (i FILES READ: NONE *}
FILES WRITTEN: NONE
GLOBAL VARIABLES USED: NONE *1

{*(it GLOBAL VARIABLES CHANGED:NONE *}
MODULES CALLED: NONE *}

(i* CALLING MODULES: *1
AUTHOR: DAVID A GAITROS, CAPT, USAF *}

9{i******AhAAAhJ~********** AA AJ.AA******************ti*}

PROCEDURE FINDNAME(VAR NAME:BUFF28; VAR SSANOUT:BUFF9; VAR SEARCH :LINK PTR);
VAR FOUND,MATCH : BOOLEAN;

INDEX : INTEGER;
1%. BEGIN

SSANOUT : - -;

FOUND := FALSE;
SEARCH : SEARCH .NEXT;
WHILE (NOT FOUND) AND (SEARCH > NIL) DO BEGIN

INDEX :- 1; MATCH :- TRUE;
WHILE (MATCH) AND (NAME [INDEX] >) DO BEGIN

IF NAME [INDEX] <> SEARCH^.NAME [INDEX] THEN MATCH : FALSE;
INDEX := INDEX + 1

END;
. IF MATCH THEN BEGIN

FOUND := TRUE;
SSANOUT := SEARCH-.CTRL;
NAME :- SEARCH^.NAME
END

ELSE
SEARCH := SEARCH .NEXT

END
END; [* FINDNAME *1

L H- 56
p *,,rT. .

DATE: 08/19/85
NAME: FMS INITIALIZE *}
DESCRIPTION: THIS MODULE INITIALIZES THE CALLS TO FMS AND *}

{* ~* SETS THE SYSTEM TO READ THE FRAMES IN FROM THE *1
FRAME LIBRARY SPECIFIED IN THE FDV$OPEN ROUTINE *}
CALL.

** CALLING MODULES: MAIN

AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *1

PROCEDURE FMSINITIALIZE;

BEGIN
FDV$ATERM(TCA :- TCA, SIZE :- 12, CHANNEL :- 2);
FDV$AWKSP (WKSP :- WORKSPACE,SIZE : 2000);
FDV$LOPEN('STDTMOD',1);

END; {* FMS INITIALIZE *1

tH-'5

.¢

-h-4

L..- ,, H-.57

Si

O * * 4**-57~

, '* *-***********-********************* ****** ******** *****--~******* }
DATE: 08/19/85

1* NAME: FMS CLOSE
DESCRIPTION: THIS MODULE RELEASES THE WORKSPACE AND CLOSES THE *}

FMS LIBRARY FILE INDICATED IN THE FDV$LOPEN STATEMENT *}
IN THE FMSINITIALIZE ROUTINE.

CALLING MODULES: MAIN *}
1. {* AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

- [*ROCEDRE{ *** A A A. A Aa A A AA A A**}M.COE

PROCEDURE FMSCLOSE;

BEGIN
FDV$LCLOS;
FDV$DWKSP (WKSP := WORKSPACE);

END; FMSCLOSE

q-58

S,:.
,,. . .,-..,. ..,, . ..A. . . ; - ". ". ,;"..

{. DATE: 09/07/85 *1
NAME: BUILDLINKLIST *}

* {* DESCRIPTION: THIS ROUTINE BUILDS THE LINK LIST FOR THE *}
FACULTY AND STUDENT FILE. NAMES ARE STORED IN *}
ALPHABETIC

A-.: {*ORDER. *}FILES*}

FILES READ: AFITDB
FILES WRITTEN: NONE *}
GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED:NONE
MODULES CALLED: ADDFACT *}
CALLING MODULES: *}
AUTHOR: DAVID A GAITROS, CAPT, USAF *}{* *}

{ *******************************-******** ************** *** }

PROCEDURE BUILDLINKLIST(VAR HEADER:LINK PTR; FILEIN:BUFF4);
VAR NAME: BUFF28;

SSAN: BUFF9;
NUMBER: INTEGER;
NUM : BUFF3;
PTR,LINK: LINKPTR;
SECTION: BUFF8;
SECL: SECL REC;
VREF : BUFF4;
ELEMENTS : BUFF40;
INDEX : INTEGER;
FUNCTIONS : BUFF5;
DATSET : BUFF4;
QUALIFIER: BUFF4;
ENDIT: BUFF4;
OK : BOOLEAN;
BUFFER: BUFF50;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4;
DATSET : BUFF4; QUALIFIER:BUFF4; ELEMENTS: BUFF40;
BUFFER:BUFF50; ENDIT: BUFF4); FORTRAN;

BEGINBEGIN WRITELN('BUILDING LINK LIST OF ",FILEIN," FILE, PLEASE STAND BY');
STATUS := ;
FUNCTIONS := RDNXT';
QUALIFIER : BEGN';
DATSET : FILEIN;

3'ENDIT :- END ';
ELEMENTS := FILEIN+'CTRL'+FILEIN+'NAME'+FILEIN+'RANKEND.'+EXTRA;
BUFFER :
DATBAS(FUNCTIONS,STATUS,DATSET,QUALIFIER,ELEMENTS,BUFFER,ENDIT);
CHECKSTATUS(OK);
WHILE (OK) AND (QUALIFIER > END.') DO BEGIN

NEW(LINK);
FOR INDEX :- 1 ro 9 DO

LINK-.CTRL[INDEX1 : BUFFER [INDEX];
4FOR INDEX 1 TO28 DO

H- 59

LINK-.NAME [INDEX] :BUFFER (INDEX + 9];
FOR INDEX :- 1 TO 3 DO

LINK-.RLANK [INDEX] BUFFER [INDEX+371;
BUFFER :

IF FILEIN - 'STDT' THEN BEGIN
VREF :- LKXX';
RDVSECL(SECL,VREF,LINK- .CTRL);
IF STATUS ***THEN LINK-.SECT :-SECL.SECT;

END;
ADDNAME(LINK,HEADER);

DATBAS(FUNCTIONS,STATUS, DATSET,QUALIFIER, ELEMENTS,BUFFER, ENDIT);
CHECKSTATUS(OK);

END;
END; (*BUILDLINKLIST *

H06

DATE: 10/01/1985

NAME: BUILDSECT *}
DESCRIPTION: THIS ROUTINE WILL BUILD A SIMPLE LIST OF ALL OF *1

SECTIONS CURRENTLY IN THE DATABASE. THEY WILL BE *}

STORED IN SEQUENTIAL ORDER IN A LIST OF TYPE LISTARRAY.*}

4,* *}

FILES READ: NONE *
FILES WRITTEN: NONE *

1* GLOBAL VARIABLES USED: SECTION *

GLOBAL VARIABLES CHANGED: SETION *
MO0DULES CALLED: *

CALLING MODULES: MAIN
AUTHOR: DAVID A GAITROS, CAPT, USAF *

******-*******,*-A*****-******-***A *.** A A A }

PROCEDURE BUILDSECT;
VAR

FUNCTIONS: BUFF5;
DATASET : BUFF4;

* ELEMENTS: BUFF8O;
SECT : SECTREC;
QUALIFIER: BUFF4;
BUFFER : BUFF40;
ENDIT : BUFF4;
INDEX,I : INTEGER;
OK : BOOLEAN;

PROCEDURE DATBAS(%STDESCR FUNCTIONS: BUFF5; STATUS: BUFF4; DATASET: BUFF4;
QUALIFIER: BUFF4; ELEMENTS: BUFF80; BUFFER: BUFF40; ENDIT: BUFF4);
FORTRAN;

BEGIN

FUNCTIONS : 'RDNXT';
DATASET :' SECT;
QUALIFIER := BEGN";
ELEMENTS : SECTCONST1+SECTCONST2;
FOR INDEX :- 1 TO 40 DO BUFFER [INDEX]:= - ,

ENDIT :- 'END.;
WITH SECT DO BEGIN

INDEX :- 0;
DATBAS(FUNCTIONS, STATUS,DATASET,QUALIFIER, ELEMENTS, BUFFER, ENDIT);
CHECKSTATUS(OK);
WHILE (OK) AND (QUALIFIER <> END.') DO BEGIN
IF OK THEN BEGIN

FOR I :- I TO 8 DO
CTRL[I1 :- BUFFER [I];

FOR I :- I TO 9 DO
LSSN (I] := BUFFER [1+241;
INDEX :- INDEX + 1;

., .. SECTION [INDEX] :- SECT;
_-.. *:-~;END;

DArBAS(FUNCTrIONS, STATUS, DATASET,QUALIFIER, ELEMENTS,BUFFER, ENDIT);

H-61
I-.,

4

* 'CHECKSTATUS(OK);
END

END
END;

-

-.

6-6

Appendix J

Standard AFIT/ENG Database Procedures

This is a guide to the beginning or casual user of the

AFIT/ENG Database System. This guide contains instructions on

the procedures needed to use the database system, logon to the

system, start the database in operation, unlocking the database,

creating tape files, printing documents, some of the more

requested operations, and solutions to some common problems.

Guide Index

1. How to Logon to the System.0
2. How to Start the Database in Operation.

3. How to Unlock the Database Files.

4. How to Create a Tape for RR.

5. How to Select Items.

6. How to Check to See if TOTAL is Running.

7. What to Do if The System is Not Running.

8. How to Exit the System.

6 l

.

• J-l

l.HOW TO LOGON TO THE SYSTEM.

The following procedure will allow you access to the system

and will start the database system in operation for you. The

items in BOLDFACE are the ones you are to type in. When the

terminal is turned on, be sure the keybourd is in upper case

(caps lock) mode for best results with the database. To logon the

system, perform the following steps:

$USERNAME: AFITDB
$PASSWORD: ENG AFIT

2. HOW TO START THE DATABASE IN OPERATION

When logging on to the system, sometimes an error message

such as STATUS = FAIL, COMMUNICATION ERROR (FATAL ERROR) will

appear. This means that the TOTAL Data Base Management System is

not running. This procedure will allow you to start it in

operation and start the program again.

a. Hit the keys "CTRL" and "C" at the same time.
This will stop the program and put you into the
operating system. A $ should appear on the
screen.

* b. Type the following commands. The items in
BOLDFACE are the instructions you must
enter.

$SET DEF [AFITDB.TOTAL]

$SUBM IT TOTALINIT
Expect some messages here.

$RUN TOTPRM
>AFITDB

$SET DEF [-]
$@AFITDB

J-2

L3

.~ - ~ 3. HOW TO UNLOCK THE DATABASE SYSTEM

Sometimes when a program you or someone else is running

aborts or stops in an abnormal manner, this locks up the files on

the database system. An error message such as STATUS a LOCK,

DATA SET LOCK (F)will appear when this occurs. To solve this

problem, it will be necessary for you to stop the program you are

in and unlock the database. To do this follow the steps below.

a. Stop the program by type the keys "CTRL" and
"C" at the same time. This will stop the
program and issue a "$"

b. Type the following commands. Remember, you
need type only those commands in BOLDFACE.

$SET DEF [AFITDB.TOTAL]
$RUN ULK
ULK>DBMOD-AFITDB
ULK>FILES-ALL.
UL K>

$SET DEF [-]
$@AFITDB

NOTE: A common mistake is forgetting to put the
period (.) at the end of FILES-ALL.

4. HOW TO CREATE A TAPE FOR RR.

First, all sections must be printed by using the print

command in EDPLANS (ED) or selecting a tape generation function.

This creates the file SUMMARY.DAT on the disk. This file must be

transfered from disk format to a tape. A nine blank or old tape

must be mounted on the tape drive (MSA0:) by following the

instructions underneath the cover. Once the tape has been

threaded, close the lid and press the online button, and then the

load button located on the front panel. Perform the followinG

steps:

j-3

a. Hit the keys "CTRL" and "C" at the same time
to stop any program running.

b. Enter the following commands. You must type
only those commands shown here in BOLDFACE.

*$INIT MSAO:
$MOUNT MSA :/FOREIGN
$RUN SYS$SYSTEM: FLX

FLX>/RS
FLX>MSO :/ZE/DO
FLX>NS0:DU0: [AFITDB] SUMMARY.DAT
FLX>MSO:/DO/DI {* SHOW LISTING *}

4,.4

C. Hit the keys "CTRL" and "C" at the same time.

d. Unload the tape.

, 5. HOW TO SELECT ITEMS

This data base system is called a menu driven program. This

9means that you perform a function by selecting it from a list of

functions shown on the screen. These will appear as one or two

alphapbetic codes or numbers. To select a function, just type

the number or letter(s) shown beside the function and hit the

"RETURN" or "ENTER" key, usually just to the right of the left
4.-

pinky finger. Anytime you are confused as to what the system is

expecting, hit the PF2 key located on the keypad to the right of

the key bouard.

6. HOW TO CHECK TO SEE IF TOTAL IS RUNNING.

To check to see if TOTAL is running, you must be in the

operating system. Do this by hitting the keys "CTRL" and "C"

at the same time and then type the following command:

A. J-4

$SHOW QUEUE SYS$BATCH

The response, if TOTAL is running, will appear similar to:

JOBNAME USERNAME ENTRY STATUS

TOTALINIT AFITDB status

If TOTAL is not running then usually nothing will appear.

7.WHAT TO DO IF THE SYSTEM IS NOT RUNNING

Perform function number 2 of this document.

8.HOW TO EXIT THE SYSTEM

Follow the directions on the menus. The last menu you see

should have been the first one to appear on the screen when you

logged on. When you type "EX", this will stop the program and

log you off of the system.

fi

.N

4

6 j-5

Unclassified
*. SECURITY CLASSIFICATION OF THIS PAGE

~ ,.'..REPORT DOCUMENTATION PAGE
is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified_______________________
* 2s. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAI LABILITY OF REPORT

Approved for public release;
2. OECLASSI FICATION/DOWNG RAODING SCHEDULE distribu ti ro unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERISI

AFI T/GC S/ENG/85D-5

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

School of Engineering XA 4G

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

goS. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INST RUMENT IDENTIFICATION NUMBER
- .ORGANIZATION (If applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

TPROGRAM PROJECT I TASK WORK UNIT
-*ELEMENT NO. NO. NO. No.

17. TITLE linclude Security Classification)I

- ~See Box 19_ _ _ _1

12. PERSONAL AUTHOR(S)

4 Gaitros, David A., B.A., CAPT. USAF
13a. TYPE OF REPORT 13b. TIME COVERED j14. DATE OF REPORT (Yr.. Mo., Day) 1.PGCOUNT

YS THESIS FROM _ TO _ 1985 December 2271
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 13. SUBJECT TERMS (Con tinue on reverse if necessary and identify by block number)
* FIELD GROUP SU.G.Data Bases, Data Base M''anagement System, EBM

09 02 1TOTAL, Network Database, FTVS, Forms M anagement
-System

S. 19. ABSTRACT (Continue on reverse if neceuai-i and identify by block number)

Title: Implementation of the AFIT/ENG Faculty and Student Database
ivanagement System

Thesis Advisor: Dr. Gary B. Lamont, professor, EE Department

Deqe E., WOLAVER /L)Awdt

A8Oil 4.54j3

£ 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

%,'%k'?.JNCLASSI F I E/UNLI MITED 0 SAME AS RPT. 7 OTIC USERS unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
Dr. Gary B. Lamont, EE Department '!Y5 AFIT/ENG

DDFORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

-This study took the works of the previous AFIT/ENG 4

Student and Faculty Database System thesis efforts and design
and implemented the application software for the project.
The basic purpose of the thesis was to provide a sound design
for the application programs that would interface with the
TOTAL Database Management System and the Forms Management
System. The entire system was to be designed with the notion
that it would be modified and enhanced. A series of standard
interface routines were created to act as a layer between
the TOTAL DBMS. The resulting routines were abstracted
and used as an extension to the Pascal programming language.

The education plan portion of the database was used as
a prototype to develop the requirements of the human-computer
interface. The program was then redesigned and implemented
using the standard routines and the specifications developed
from the prototype. A menu driven system was used to
implement the design utilizing the Forms Management System
as the screen interface. The education plan program is an
example of the structured approach used in interpreting the

* design of the database system. The program contains examples
of scrolled screens, database calls, linked list routines, and
data abstraction. Additional programs were written to demonstrate
the capabilitees interfacing with the GKS graphics package,
transmition of data to the registrars office, and to show

-°. the continuity of the design. .

3-

w

STUNCLA6IFIED

SECURITY CLASSIFICATION OF THIS PAGE

°.I.

D F IC
T M I

