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Preface

The purpose of this thesis was to develop, test, and evaluate the

-
- ..
......

performance of run time math library routines for those architectures NIt

conforming to MIL-STD-1750A, the instruction set architecture for the o
airborne computers used in Air Force avionic weapon systems. The B
routines implemented include several algebraic functions that are intended
to serve as a benchmark for future contractor development. Appendix A
contains descriptions of the pseudo-operations used to éxplain the design :
of these functions, and will be useful in following the logic.

In developing and performing the evaluation of the math library, and
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in learning how to use the different support tools and hardware, I have had

a great deal of help from others. In that respect | am deeply indebted to ":':""":;
my thesis advisor, Dr. Panna Nagarsenker, for her continuing patience and i

assistance when | needed it. Capt Steve Hotchkiss has my undying S

gratitude for his friendship and help in these trying times. 1 also wish to c
thank Mr. Bobby Evans and Mr. Dale Lange, from the sponsoring -
organization, for all the help that they gave me in getting the needed ‘
equipment and outside information. Finally, 1 am eternally grateful to Tim -:_i_‘

for his unending love and encouragement.
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Abstract

This project produced a run-time math library for the MiL-STD-1750A
embedded computer architectures. The math library consists of the
algebraic functions. In addition, the steps required for a performance
analysis of the math library have been outlined.

Several approximation methods were investigated. The Chebyshev
Economization of Maclaurin series polynomials, and rational

(‘ approximations derived from the second algorithm of Remes were
determined to be the best methods available. Each function’s
implementaion was designed to take advantage of features of
MIL-STD-175S0A architectures. The recommended test procedures provide
measures of the average and worst case generated errors within each

approximation.
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Background

The Air Force is interested in reducing the life-cycle costs of its
avionics weapon systems. Standardization of high order languages and
an Instruction Set Architecture (1SA) are two of the many ways the Air
Force can reduce these costs. In the past, a major cost contributor was
the proliferation of unique avionics systems and subsystems. Costs
increased with respect to purchasing and inventorying small-lot spares
at many bases, training technicians to maintain complex and/or unique
flight and test equipment, developing and maintaining software
development facilities, training programmers to write application
programs in seldom used high order fanguages, and training programmers
to maintain software (especially operating systems) in seldom used
machine languages. (1: 8.1)

MIL-STD-1750A defines a standard 16-bit instruction set
architecture intended primarily for avionics weapon systems. The major
cost advantage of this standard ISA comes in the form of common
support software tools. An extensive set of support software tools has
already been developed and includes a 17S0A assembler/crossassembler,
a J73 compiler with 1750A ISA code generator, a linker program, a
loader program, and a 1750A acceptance test program. (1: 8.4) Other
cost benefits are realized through the independent development of
software and hardware, (2: 1) and common maintenance and test

equipment. (3: 168)
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Standardization of languages also has an impact on cost reduction.
“In 1978, the Department of Defense had in its inventory, software
written in about 150 different programming languages. This linguistic
proliferation increased maintenance problems due to programmer training
requirements and lack of support tools for many of the languages.”
(1: 6.1) The D.0.D. and Air Force recognized this as a problem, and they
took steps to correct it. The D.0.D. Instruction 5000.31, “Interim List of
D.0.D. Approved High Order Programming Languages,” states that only
approved languages may be used for new defense system software.
JOVIAL is one of the few lanquages approved by this instruction.

As previously mentioned, the development of a standard ISA such as
MIL-STD-1750A helps reduce total life-cycle costs for Air Force
avionics weapon systems. This reduction is partially due to the use of
common support software tools, many of which have already been
developed. As was previously mentioned, one of the support software
tools that has been developed is a JOVIAL compiler that generates
1750A ISA code. However, a math library containing the algebraic and
trigonometric functions required by this language has not been developed.
The sponsor for this thesis is the Aeronautics System Division, Language
Control Branch. They are the D.0.D. JOVIAL and ADA compiler validation
site, and are responsible for the development of such fibraries.
Completion of this thesis, with its development of a math library for
software support of 1750A systems, can help the Air Force reduce

avionics weapon systems costs.
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Prior to the completion of this thesis effort, there were no math
libraries written to take advantage of the 1750A instruction set. In
keeping with the intent of recent standardization policies of both the
D.0.D and Air Force, the library created by this thesis is written in the
D.0.D approved language JOVIAL. Actual coding of the library was only a
small part of this thesis. Most of the detail has gone into verification,

validation, and evaluation of the product. As such, the focus of this

report is divided into two primary categories: software development and
software testing.
Math libraries are important because they provide the programmer
L Y several tools that serve as building blocks for applications. Math
libraries prevent programmers from having to recreate each function
whenever one is required for use. Libraries also provides a means for

using functions that take full advantage of the computer architecture for

which they were written.

The design of a procedure for computing the value of functions is R
not mathematically complete unto itself. An understanding of a - ‘1'
computer architecture’'s operation is necessary to insure that the ]

computation of any given function is as efficient as possible, while also

providing the highest degree of accuracy. Such architectural
considerations include word size, number of bits in both the exponent

and coefficient fields of a floating point number, the way mathematical




o R

operations are performed by the architecture, memory size of the
architecture, and execution time. Other considerations include overflow,
underfiow, and precision. These considerations for the mathematic

functions define some of the problems addressed by this thesis effort.

2c0pe

This effort was limited to the design, code, and evaluation of
algebraic functions. The functions were included in a math library
targeted for MIL-STD-1750A computer architectures, and are the ones
typically found in most FORTRAN libraries. Specifically, these functions
include square root (sqrt), exponential (exp), natural logarithm (alog),
and common logarithm (alogt0).

All functions have been written to accept and return only extended
precision floating-point values. The specific floating-point functions
are invoked by using the name given above.

Performance summaries for each of the functions, and algorithms
are provided in Appendix E. They may be used to determine the
polynomial coefficients for compyting any of functions addressed by this
paper. These algorithms produce coefficients that are valid for any

nonvector architecture.
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During a design review held in f1ay of 1985, it was made clear that

e W S e e

certain events could cause overflow and underflow errors, and division

i by zero. Since the functions are to be used within an embedded avionics
weapon system, it is necessary that such conditions are detected and
h handied gracefully. The consensus of opinion from all participants of the
1 design review was that the functions shouid not be aborted, and that

default values should be returned. The error conditions and values
returned are discussed in the individual design sections of this thesis.
This constitutes an important assumption on how to handle such error
conditions, and needs further investigation before implementation on a
real-time system.

Another factor discussed during the design review was the
distinction between fixed-point and floating-point  functions.

Floating-point functions have greater precision than fixed-point

algorithms, but take longer to execute. Although the fixed-point
' functions are faster, the algebraic math routines and the JOVIAL
: computer language do not lend themselves to this method of calculation.
Therefore, as stated earlier, only the floating-point algebraic math

o library functions have been implemented.

% General Approach

%

. The approach used during this thesis effort, is termed the
:.7._ "logicalized” model of a software system development cycle. This

............

.........................

...............................................................
.......................

“a




T 'v_w_.F:Vl\x-_ D Al i gt Sul 3ot Sod o Sad AR i g s A i AL ol ade obh o'

approach was considered a better alternative than the more commoniy
used “waterfall” method of software system development. The
“waterfall” method is composed of a neat, concise and logical ordering of
a series of steps, each of which must be accomplished in order to obtain
a final software product. These steps are performed in order and include
systems analysis, requirements definition, preliminary design, detailed
design, coding, testing, and implementation.

The “logicalized” model is similar to the *waterfall® model just
described, but it is more concerned with the problem definition part of
the cycle (see Figure 1). This approach is more useful in eliminating
errors that typically occur during the requirements definition and design
phases of the *waterfall” method. Errors generated during these phases
typically occur because designers have a tendency to shift between
abstract high-level design issues and physical implementation
considerations. Thayer (5: 335-41) and Boehm et al. (6: 125-33)
made it clear that these problems exist, and that design errors not only
outnumber other errors, but that they are also more persistent. For this
reason, more attention was given to the top-down decomposition and
abstract (logical) modeling of this particular software system. Such a
structured approach recommends a dichotomy between the logical design

issues, and implementation issues.
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PHASE INPUT TASK QUTPUT
ANALYSIS  Interviews, Model problem Abstract model ad
- random data, and implied of implied R
. and 0 on snlution solution ROChS
P;': .._-:.:-:.
x DESIGN Abstract model of Model an Abstract model u:ﬁ
] implied solution implementable of implementable ‘
3 and environmental  solution solution S
- : constraints sl
CODE Abstract model of Implement Executable
an implementable solution solution
q solution
| - Table 1 Information Flow of the Logicalized Software R
#. Development Cycle " A
The information flow of a logicalized model is summarized in o
Table 1, and is “analogous to an artist’s conception of a building, i.e. =
there is enough information to allow the customer and designer to i

communicate and to establish the buildings pluses and minuses, but not

enough detail to begin construction. A series of reviews, refinements, o

P —
LA IR NEAEN »

and the imposition of local building ordinances, for example, are
necessary before construction can start.” (7:14)

Therefore, the approach taken for this project was similar to that
just described. The ASD/Language Control Branch established the
requirements for a MIL-STD-1750A run-time math library written in the

D.0.D approved high-order language JOVIAL. During a design review and

8
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several other meetings, certain design considerations were refined.
Then a "logical® model was established as a baseline. This was
accomplished by using the refined problem statement, and researching
the different methods for approximating the different algebraic
functions. e
The baseline model served as a reference from which all decisions
regarding actual implementation could be made. Before proceding to the
next phase of development, two such decisions had to be made. These
decisions were to determine which testing methods and which
performance evaluation techniques would be used after coding was »
complete. These decisions determined what sort of tests would catch
all possible errors, and determined what techniques could be used to \
establish a confidence level for the final product. o
Up until this point, the abstract model has been devoid of any
implementation considerations. However, after it was clear that the
abstract design was complete and consistent with the requirements, it
became necessary to consider changes to fit the problem into the
MIL-STD-17S0A environment. Before any changes could be made, it was oI
necessary to complete the following steps: study the architecture and ._ﬁ
ISA defined by MIL-STD-1750A; determine what resources were
available, such as software support tools and hardware; and then to learn _
how to use the available resources. From there, it was possible to
develop an abstract model of an implementable solution. This model =
took advantage of those environmental factors that affected the speed

and accuracy of computation for each function approximation. ROl

..........................
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The major subset of the Ilogicalized software engineering
=" -‘I
methodology just described is calied structured programming. —

Structured programming can be understood as the decomposition of a

problem in order to establish a manageable problem structure. The

highest conceptual level represents a general description of the problem,
and each level of decompaosition provides more detail into the problem.
This decomposition is carried out until the problem is almost in coded
form, and is often cailed a stepwise refinement of the problem. All
implementation considerations are left until the lowest levels of
refinement.

The goals of structured programming must be to minimize: the
number of errors that occur during the development process; the effort
required to correct errors in sections of code found to be deficient; the
effort required to upgrade sections when more reliable, functional, or
efficient techniques are discovered; and the life-cycie costs of the
software. (8: 32) It must also reduce the complexity of the problem.

Structured flowcharting is a technique used to support these
structured programming concepts and goals, and is “designed to reduce T
labels and unstructured branching, encourage a single entry/single exit 1
approach, aid in the use of top-down design techniques, and enhance
modularization. The approach encourages the designer to conceive of the
system in high-level constructs and not in terms of individual detailed e
statements.” (7: 116) The structured flowcharting technique was used '
throughout the development of this project, not only because of the
reasons just mentioned, but also for its simplicity and understandability

from a reviewer standpoint.
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Sequence of Presentation

This thesis addresses the design and performance evaluation of a
run-time math library that is targeted to MIL-STD-1750A architectures.
The requirements definition for this problem has already been discussed
(Chapter 1 - Problem/Scope). The next topic discussed is the theoretical
development of this thesis effort (Chapter 2). This is followed by a
discussion of the detailed design considerations that were made during
implementation of the library functions (Chapter 3). The last aspects
covered in this report are the test and performance evaluation methods

\e considered (Chapter 4) and conclusions (Chapter 5).

Appendices include algorithms useful for determining the
pseudo-code operations used in the structured flowcharts (Appendix A),
source listings for the implemented functions (Appendix B), support
software developed in conjunction with this thesis (Appendix C), the VAX
VMS command files required to compile, link, and run the developed
product (Appendix D), and the coefficients for each of the functions
(Appendix E).
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[1. Theoretical Development

General Discussion

The purpose of this thesis was to create and analyze algebraic
functions developed for 1750A architectures. This chapter is concerned
with the design theory of the algorithms used to approximate those
functions. Within the given constraints, the emphasis for each of the
designs is to compute results as quickly and as accurately as possible.

One way of computing a value quickly is to select an approximation
that converges rapidly towards the value of the true function, f(x). There

‘-; were several methods of approximation that were considered; however, the
polynomial and relational approximations described by Cody and Waite
(4: 17-84) were found to be the best. The coefficients given by Cody and
Waite were derived by using Chebyshev Economization of the Taylor series
for each function for the approximation itself, or as a starting point for
computing a rational approximation via the second algorithm of Remes.
An excellent reference for Chebyshev Economization is Conte and de Boor
(9: 265-273), and an excellent reference for the second algorithm of
Remes is Ralston. (10: 301-306)

Another means of reducing the amount of processing time required to
compute a result is to take advantage of certain aspects of the computer’s
architecture, as well as the different execution times for different
instructions within the I1SA. For example, incrementing the exponent field

of a floating-point value is not only faster, but more accurate than the
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equivalent operation of multiplying by two, or examining the sign bit of a
variable is faster than comparing the entire value to zero. These
techniques have been used, and are referenced in the design descriptions
as pseudo-operations. These operations are equivalent to those described
by Cody and waite (4: 9), and are listed in Appendix A.

The accuracy of an approximation may be dependent upon the domain
over which the function is approximated. For example, if the domain of an
approximation is halved, the error may be reduced by a factor of about
278+ 1 ror all polynomials of degree n. (11: 59) This can be shown to be
true for most functions, but not all of them. Domain reduction has no
effect on accuracy in approximations of certain functions; however, it
still serves as an excellent guide when designing an application. This is
due to the way computer architectures perform operations and store
mathematical values for floating-point numbers. The most significant
bits of a number are always maintained, and since only a finite number of
bits are available to represent the value, it is possible that bits from a

fractional representation may be lost during operations on large numbers.

The MIL-STD-1750A [SA doesn’'t call for the implementation of the
elementary functions as standard instruction operators, so it is necessary
to design software routines of optimum efficiency to replace them. The
word "optimum” could be given a variety of precise definitions, but

presumably it refers to an average execution time and storage space.
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Unfortunately, there is no known way to derive or prove such an “optimal”
design. For these reasons, the search for the appropriate approximation
technique was limited to polynomial and rational approximations.

Some of the most popular methods of approximation used are called
Chebyshev approximations. Chebyshev approximations are often referred
to as "minimax”® approximations because they are used to minimize the
maximum “error” between the true function f{(x), and the approximation
of §(sx). However, these methods of approximation are not without their
problems, and there is a price, even though it is small, to be paid for
using them. For example, the sum-of-squares of the errors in a Chebyshev
approximation will be higher than if a least-squares method of
approximation is used. However, since Chebyshev approximations assure
that an error is never greater than a given amount, they were selected by
this study.

Polynomials. The first class of approximations discussed are
polynomials, and are the simplest of all the classes of approximations

considered. The most important subclass of the polynomials is the class
To (Chebyshev), and are polynomials not exceeding degree n. The

Chebyshev polynomials are especially important, and gave rise to the
generai concept of Chebyshev "approximations” discussed in the preceding
paragraph.

The motivation for using Chebyshev polynomials over all other
polynomials is their property of least maximum error, and their error
behavior over the entire interval of the approximated function. Through
the use of Theorem |, the Alternation Theorem given below, Chebyshev

was able to prove for all the polynomials of degree n with a leading
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coefficient of 1, that the Chebyshev polynomial divided by 22! has the
least maximum error in the interval [-1,1). In other words, no other

polynomial of the type mentioned will have a smaller error than

‘tn(x.)/2"1. In order for a polynomial P, (x) to be considered a Chebyshev

approximation of the function f(x), the theorem requires that the
maximum discrepancy between f(x) and P,(x) occur with alternating

signs at n+2 points over the interval [~1,1].

.o .- - .
.

- ‘.

. .o - 1
‘L‘h Lo L

Alternation Theorem: The polynomial P, of degree<n that (1)

best approximates { is characterized by the existence of at

“ ‘e ,A...
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. . L.

L N . R

C e e Te T T oot
e b g

least n+2 “"points of alternation”

The other motivation for the use of Chebyshev poignomials is that
its generated errors are more wetl behaved than the errors generated by
other polynomials. For example, approximations, based on the Maclaurin
series whose interval includes zero, have errors that are very nonuniform

-- small near the middle, but very large at the end points. It is more

desirable to use an approximation whose behavior is more uniform instead
of powers of x. Since, as stated in Theorem 1, the Chebyshev

polynomials spread the error over the entire interval, they provide this

more desirable behavior.

Definition of the Chebyshev Polynomials. The Chebyshev polynomials
form an orthogonal set, and are defined by the following equation.

T4 (x) = C0s (nB) arccos (x) (1)

1,2, ..

8
n
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From elementary trigonometry, cos(n8) is a polynomial of degree

n in cos(8), and cos(arccos(x)) = =i therefore, it follows that the
Chebyshev polynomials defined by  T,(x) = cos(n arccos(x)) are
polynomials of degree n.

By substituting arccos(x) for 8 and T, (x) for cos(n arccos(x))

in the identity function shown in equation (2), the recurrence relation

defined in (3) is formed.
cos {(n + 1)8) + cos ((n - 1)8) = 2 cos (B) cos (ne) (2)

Tae1(%) = 2% T(x) = Tgoy (%) (3)
.

Let T, © 1 and T, T % then from the recurrence relation

defined in (3), successive polynomials of greater degree can be generated
as in column A of Table 2.
By using the results in column A of Table 2, the powers of the

Chebyshev polynomials can be found. That is, it is possibie to express
the powers of x in terms of T,- An example of the powers of T are

shown in Table 2 column B  Appendix A contains an algorithm that

generates both the Chebyshev polynomials, and their powers.

.......................................................................................
..............................
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Table 2 (A} Chebyshev Polynamials; (B) Powers of Chebyshey Palynomials

Chebyshev Economization. As already mentioned, the Maclaurin
series can be used to approximate many functions. [n addition to the
disadvantages that have already been mentioned for using this series as an
approximation, the Maclaurin series also converges very slowly. That is,
it takes several multiplications and additions to obtain a desired
accuracy. One way of obtaining a lower degree polynomiai, and still
maintain the desired accuracy, is to use a technique that is called
“telescoping” or “Chebyshev Economization”. In other words, the

polynomial can be expressed in a manner similar to that shown in (4).

P(x) = dgTo(x) + . . . * d,7, (4)

To compute the economized polynomial approximation to the function
f(x) of absolute accuracy € on the interval [-1, 1], use the following

procedure as outlined by Conte et.al. (3: 271-272)
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Step 1. Get a power series expansion for f{(x) wvalid on [-1, 1}
typically, calculate the Maclaurin or Taylor series expansion for f(x)

around x=0.

Step 2. Truncate the power series to obtain a polynomial as in (5),
which approximates f(x) on [-1, 1] within an error €, Where ¢ is
smatler than ¢, and ¢, is defined as in (6). The result of ¢, is the

maximum absolute value, within the interval [-1, 1], of the product of
the first truncated coefficient, x to the power of n+ 1, and the n+ |

derivative of the function f(x).

Pn(-:c)=at,+a,x+...+ax’l ()

gy = Ry(x) = ag, =™ [ @1 (x) (6)

Step 3. By making use of a table similar to that shown in Table 2
column B, expand the polynomial Pn(x) into @ Chebyshev series as
defined in (4). In other words, substitute the far right-hand-side of the
equations in Table 2 column B, with the appropriate powers of x
contained in the polynomial formed by Step 2 of this algorithm. The

result is similar to that shown in (7), but of a greater degree.
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Step 4. Retain the first k + 1 terms in this series, i.e. find
equation (7), choosing k as the smallest possible integer such that
equation (8) holds true.

Pry(x) = doro(x)+ ... +det, (7)

Eg* dyyy * ... v d, S € (8)

Step 5. Convert the result of Step 4 into a power series poiynomial

similar to (S), by making use of a table similar to that in Table 2 column

A. In other words, substitute the right-hand-side values of Table 2

column A, into the equation formed by Step 4. Simplify the resuit. gr_;.-;,;—;!
‘:_'-_-_?::.i

Rational Approximations. In most instances, rational approximations i

will generate a least maximum error that is as small or smailer than a -“.j;;-f-!

Chebyshev potynomial, and will also cost less in terms of the number of

multiplications and additions required to compute them. Therefore, they

deserved attention in this study. T

As stated earlier, the approximation techniques considered by this
thesis are classified as Chebyshev approximations. These methods, ::3;
through their exploitation of Theorem 1, provide approximations whose s
maximum error is less than those generated by other techniques. There
are several algorithms that generate rational approximations that can be ) J
considered Chebyshev approximations; however, the ones that generate the ;.
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most uniform approximations are those generated by the second algorithm
of Remes. This algorithm is easily automated, and is described in detail
by the following subsection.

The Second Algorithm of Remes, The method used in this
description is similar to that outlined by Ralston (10: 301-305), and is
summarized in Figure 2.

Let f(x) be a continuous function that is to be approximated over the
the interval fa, bl, and let the interval include the point 0.0.
Furthermore, let (9) equal the error of any rational approximation of the

form shown in (10).

il T fcn fan 4 e an v Sea o g Yot A iey

Fag( = Max | {0 - Ry 4(x) | (9)
P
P {X) L 2yX
Rep = 2 o £ (1)
WX b —
1=0 .
Step 1 of the algorithm names the input required for this algorithm. 1\
The input value f{(x) is the function being approximated. If the algorithm ':i‘"
is being run on a machine with higher precision than the error for which :
21
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the function is being approximated, then the built-in functions of the 2-;;
machine can be used for f(x). If the machine that the algorithm is to run
on is of the same precision for which the approximation is to be made,
then a reasonable substitute, such as a truncated power series that is of ;h;‘
equal or greater precision than what is being approximated, can be used.

The other inputs include: m, k, [a,bl, and C,...G,. The values

m, and k represent the degree of the polynomials found in the L

numerator and denominator, respectively. The interval [ a, b ] is the

interval for which the approximation is valid, and should include the point

zero, as it will allow the coefficient b, of the denominator, to always

be one. The values Cy ... Gy represent the first N+ 1 coefficients of

the power series polynomial that is being converted to a rational

polynomials used in the numerator and the denominator (m + k).

The second step of the algorithm is to compute 3 series of Pade
approximations and their error coefficients. The Pade approximations are
of the form depicted in (11), with the restrictions that 0 <i<m and

0¢j-isk For exampie, the sequence of Pade approximations computed

for an R,, approximation would only include RK®y(x), R, (%),

R, ,(x), R, (x), and R®, ,(x). The error of the approximations is

by the error coefficients shown in (12). The error calculations used would

only include: d(o'o)l' d(l.ﬂ)z' d(M)S' d(Z.l)‘. and dm)s-
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approximation. The value N represents the sum of the degree of the

equal to the first power of x truncated from the power series, multiplied -
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03K (%)
mk) X - :::::;-:E
N+1 j%:)CH‘Pl'jbj (2 YL
The coefficients for each of the sequence of Pade approximations are .
computed using (13) and (14). Equation (13) forms a set of m linear
equations, which when solved, determines the value of the coefficients
used in the denominator. Those values can then be directly substituted .
into the set of equations formed by (14), and will determine the value of :
the coefficients for the numerator.
\e '
& Cyeiby = 0 5=0,1,..., N-tm-1 (13}
(Ci=0 if]<0, by=1)
T . R .
a. = 50 b r=01...,m i 14)
f j'?'q' -~ (by=0ifj:k )
The third step of the Remes algorithm is to compute the economized
approximation cu(x). To complete this step, it is necessary to compute -
the Chebyshev polynomial 1Tg,,. This polynomial can be determined by ,f:f.
using equation (3) of the previous subsection. Once the coefficients of ‘
Tiey are found, then the values vy from (15) can be directly substituted o
into (16), and thus solve Cu(x). The value Y in (15) is the coefficient \
23 o




for uin T,M(u). The rational approximation must also be normalized,
that is, the numerator and denominator must be divided by b,, such that

by Will remain equal to 1.

{mXx)

= ~dyay tor2V j=0,... N1 (15)

S 0 - N+t
Y -

Y m,

3 . e IS

3 i+1 JKEEETe

S i+l “
, |
o

3 5 P

PalX) * 2 ¥, PO ¢ v (16)
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The final step of the Remes algorithm is an iterative one. Now that
the initial approximation to the function has been found, it becomes
necessary to find the N + 2 points of alternation. This can be done
through interpotation, or by dividing the interval into several small pieces
and solving for each point on a division. This method works, and all that
is necessary is a little bookkeeping to maintain a list of the N + 2
points of alternation. This step consists of the following three

procedures.
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Procedure I. Solve the system of N+ 2 equations for the N+ 2
unknowns a, ‘@, .. ., 3@ . b O, . b, @ and E? as shown in

expression (17). Note that E® s the magnitude of error in the

approximation at each of the points x® . and for the first iteration

can be assumed to be 0.

S (0} §
2 )
” :.\"(»U'\] - —

1

= (-1 (17)

X .
Top [ty
Z ‘r:jlx1 ]

-

Procedure 2. Find hy(x) as shown in (18). The function hy(x) then
has a magnitude of |E®| with alternating signs at %, i=0, ..., N+
In the neighborhood of each x(®, there is a point =) at which hg(x)
has an extremum of the same sign as that of f(x) - R\® 4 (x)
at  x(® . Replace each x® by the corresponding xS . If x| the
point at which hg(x) has its maximum magnitude, is one of the points

%, do not perform procedure 3. If not, replace one of the points x4

by = insuch a way that hy(x) still aiternates in sign on the points

g 1
>. X‘() .
b
v
o
C'_'
% R o
a | mh X T ]
:l' hl]l:,X_:' = f(‘(' - " lt‘g =1 ] (1)
- B}
i7a Py X
»
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i Procedure 3. Repeat procedures 1 and 2 using the points

%, L x4 in (17). This process generates a sequence of rational
approximations which will converge to an optimum if the initial extrema _;

were sufficiently close.
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[11. Deveigpment and Design of the Functions
General Discussion

This chapter deals with the detailed design of each of the specific

. functions. Each design has an associated structured flowchart, and each
b box witnip the flowchart has been numbered for ease of reference.
Pseudo-operations are used throughout each of the flowcharts, and

includes those defined by Cody and Waite (4: 9-10). Furthermore, a few

] additional pseudo-operations have been introduced. (see Appendix A)
| Although the approximation methods used are those suggested by o
' Cody and Waite, the actual design implementations are significantly ]
i \e different. The designs proposed by Cody and Waite are guidelines for a g
broad class of computer, and weren't specifically targeted towards a e
17S0A architecture. Therefore, the designs have been tailored somewhat. 1
The coefficients for each of the functions were either taken from ﬂ
Cody and Waite, or are modifications of those provided by Cody and

waite. These modifications are discussed in their appropriate subsection.

Square Boot Implementation

The square root of every non-negative floating point number "X* can

Y be computed. Computation is composed of three steps: the reduction of

27
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Fiqura 2 Square Foot Structured Flowchart,
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the given argument “X* into the parameters “f* and “e” using base 2,

X = f*2€ 172 < f«1 (19)
sqrt(X) = sqrt(f) * 2¢/2 if e is even (20)
sqrt(X) = [ sqrt(€) /7 sqre(2) 1* 2(8*1/2 it ¢ is odd (21)

the computation of sqrt (f), and the reconstruction of sqrt (X) from the
results.

The variable “X" is the argument passed to the square root function.
Since JOVIAL treats formal arguments as read oniy, upon program entry,
the value of “X" is assigned to “F". (step 1 of Figure 3) The variable * F*
is then used throughout the remainder of the procedure.

The next step is to check if "F* is either zero or one. (step 2 of
Figure 3) If it is, then “F* is its own square root: therefore, this value is
returned by the procedure. (step 3 of Figure 3). If "F" was neither a zero
or a one, then it is checked to see whether it is negative. If it is
negative, under normal circumstances, an error would be assumed, and the
procedure would terminate rather than evaluating for a complex number.
Due to the nature on embedded avionics systems, an error should not be
fatal. In this light, rather than attempting to evaluate a complex number,

the absolute value of the input argument is formed. (steps 4 and 5 of

..................
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Figure 3) The built-in function for absolute value was found to give
inconsistent results, so the absolute value is found by: F = -F. If this
method of error correction proves inappropriate at a later date, it would

not be difficult to modify. Perhaps a different default value should be

assumed, or an error indicator could be established.

The next step of the algorithm is to obtain the exponent portion of
the input argument. (step 6 of Figure 3) JOVIAL's specified tables make
this an easy conversion. Wwhen the input argument was placed into “F*, “F*
had previously been established as a table whose elements identify the

components of the floating-point number. Therefore, the item “Fexp” is

: -\"ji
R
T4
o
0
S0 4

actually the exponent portion of the floating-point number. Immediately
following the extraction of the exponent, this same exponent portion of

\Ne the floating-point number “F* is cleared or set to zero.

The next few steps (steps 7 through 10 of Figure 3) are to compute a S
polynomial approximation for sqrt (F). Specifically, the computation 1
o]
begins with an initial approximation of “yg" shown in (22) with . o
A
successively more accurate approximations being obtained through the use ROSR
s
of Newton’s iteration in the form of Heron's formula.

Yo = 41731+ .59016* (22)

Yi - (Yi_l + ”Yi-l) / 2 (23)
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The coefficients used in this algorithm are those presented by Cody
and Waite. (4: 23) The approximation described by Cody and Waite is in

the form shown in (23). Aside from the original caiculation of “yq*, by

examining steps 8 through 10 of Figure 3, note that the Newton iteration
is performed three times. Since each iteration doubles the number of
correct significant digits in the square root, this assures an accuracy of
63.32 bits. (4: 23) The next step is to determine whether or not the
exponent field from the floating-point number originall.g input was odd or
even. (step 11 of Figure 3) Depending upon the result of this evaluation,
different actions are taken. If the number is odd, additional calculations
are necessary as shown in equation (21). The instruction for determining
whether the number is odd is not a separate function. The power of the
JOVIAL language permit testing of specific bits. Using this tool, the
low-order bit can be checked to determine if it is zero or one. A zero
signifies an even number and a one signifies an odd number which is just
what the procedure checks. Given that multiplication is preferred

mulitiplications are more efficient than division
the calculation sqri(f) / sqrt(2) is represented by v * sqrt(.5), where
the decimal representation of sqrt(.5) is the constant .7071067811865.

The final step prior to returning with the result is to form the

exponent portion of the result. (step 13 of Figure 3)
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Exponential jmplementation

There are three steps in calculating the exponential of a
floating-point number. The first step is the reduction of the given
argument to a related argument in @ small interval symmetric about the
origin. The second step is the computation of the exponential for the
reduced argqument, and the final step is the reconstruction of the desired
function from its components.

The exponential is formed using the following general procedure. Let

X = N*In(2) + g with (gl ¢In(2)/2 then

exp(X) - exp(g)* CN (24)

The accuracy of g is the basis for the accuracy of the function value.
Let y =exp(g), then dy /vy =dg. This means that the relative error in
exp (g) is approximately the absolute error in g. This error is
proporticnal to the magnitude of X when X is exact because of the
finite word length of the computer. The only way to achieve small
absolute error in g is to extend the effective precision of the computer
during the computation of g. In most cases, the following computation is

used.
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B-I(XI-N‘CI)*'XZI-N‘CZ where
><1+><2-><.

X 1 is the integer part of X ,

Cy +C, represents In (C) to more than working precision

This method gives extra digits of precision equivalent to the number

of extra digits in the representation of In (C) when N is small enough
that N * Cy is representable exactly in the machine. If this exact
representation cannot be accomplished, the computation is equivalent to
\eo not using extra precision. Therefore, the magnitude of N has a practical

limit which results in a limit on the magnitude of X.
There is also a largest' and smallest X such the exp(X) can be

represented in the machine. For example, if SMALLX is the smallest

positive floating-point number and BIGX is the largest without causing
L overflow, then exp (X) can be represented only for those values of X 1
@
3 that between In (SMALLX) and In (BIGX). The value N*C, will be - -8
;"", representable exactly in a machine for any X within the specified bounds, 3
[. because a Cy can always be chosen to fit the bound. Obviously, careful .
_:?_:f_ argument reduction cannot compensate for inaccuracies in X. (4: 61) SR
J S
N '.'

................................................................
.........................................




BIGX 88.02969193111 i
SMALLX  -89.41598629223 -
EPS 9.094947017729E-13
ONEOVERLN  1.4426950408890 "
LN2 0.6931471805599 S

Table 3 Constants for Exponential Determination

The variable "Arg” is the argument passed to the square root function.
Since JOVIAL treats formal arguments as read only, upon program entry,
the value of "Arg” is assigned to "X". (step 1 of Figure 4) The variable =77
X" is then used throughout the remainder of the procedure.

ﬁ Ne The constant “BIGX” (see Table 3), which has been assigned a value
;':ji that is slightly less than the natural logarithm of the largest positive

finite floating-point number (step 2 of Figure 4), is compared with the

input argument. If the argument is larger that this value, an error would
occur during calculating its exponential. Since this application is e
destined for embedded avionics systems, a solution to this error situation
must be found that does not result in a degradation of the system. The

selected <olution involves repiacing the input argument with the constant

"BIGX". Obviously, other possible options are available to resolve the

E. error condition, and another solution can easily replace the existing -
;L methodology. |
; The constant "SMALLX" (see Table 3), which has been assigned a ‘
9_ value that is slightly greater than the natural logarithm of the smallest T
X positive finite floating-point number (step 4 of Figure 4), is compared i
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with the input argument. If the argument is smaller that this value, an
error would occur during calculating its exponential. Again the discussion
in the previous paragraph concerning the resolution of an error condition
in an embedded avionics application still holds true. The selected solution
involves replacing the input argument with the constant "SMALLX".
Obviously, other possible options are available to resolve the error
condition, and another solution can easily replace the existing
methodology.

The next step is to check if "X" is either larger than a positive eps
or smaller than a negative eps. (step 6 of Figure 4) In either case, if it
is, the exponential function returns a value of 1 and terminates

processing. The wvalue of eps (see Table 3) is selected with

exp (X) = 1.0 to machine precision such that |X| <eps and p; * X2

will not underflow for |X| < eps. Cody and Waite have suggested that
eps = 271/2 where there are t base-2 digits in the significand.

The next step (step 8 in Figure 4) involves extracting the integer
portion of the floating-point number that results from the following the
calculation: X * [1/71n(2)]. As noted in the description of the square
root function, multiplication is not as costly as division. Therefore, the
value of 1 /In(2) has been caiculated and used as a constant. (see
Table 3) This newly formed integer is then transformed into a
floating-point number. The JOVIAL specified table construct is put to use
here rather than calling the two functions INTRND and FLOAT. Extraction
of a specific portion of a floating-point number simply involves naming

its component parts and using these names to access the needed part.
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This particular construct is an extremely efficient method for doing this
type of accessing, and is not confined to JOVIAL. It is also available in
the Ada language.

The computation provided by Cody and Waite that is specified for no

guard digits is use to create a new, more precise number.

g=l(Xy-XN*Cy)+Xy]-XN*Cy  where (25)

Xy = the floating-point value of the integer portion of X,
Kg = XXy,
Cy - 0.693359375,

Cp = -2.1219444005470E-4

Now, that the value of the values of the X's and N's are known,
equation (25) can be evaluated for g. (step 9 in Figure 4)  This is
followed by the determination of the rational functions R (g) which
approximate exp (g) 7/ 2. The factor of 0.5 is inserted to counteract
wobbling precision.  The calculation of the coefficients for the
approximation are determined by the number of bits in the significand.
For this architecture, the number of bits selected are between 30 and 42

inclusively. This results in the coefficient list of Table 4 on the next

page.
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pg  0.24999 99999 999 E+0
Py 0.59504 25497 759 E-2
qp  0.50000 00000 000 E+0
q; 053567 51764 522 E-1 S
a; 0.29729 36368 224 E-3

Table 4 Coefficients for Poiynomial Approximation to Exp
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The first step in calculating Rg (step 10 in Figure 4), requires the

formation of 32. This value is then used to form g * P(z) and Q(z)
using nested muitiplication. These values are then used to form Rg. Just
prior to returning the value generated through all these calculations, an

additional step is performed to rescale the number. (step 11 in Figure 4)

Natural Logarithm Implementation

The calculation of the logarithm required three steps. First, the
given argument is reduced to a related argument in a small,
logarithmicatly symmetric interval about one. The second step involves
the computation of the logarithm for this reduced argument. Finally, the

desired logarithm must be reconstructed from its components.
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Upon entry into this routine, the value of the input is checked to see
if it is either zero or less than zero. (step | of Figure S) If it is either
zero or negative, under normal circumstances, an error would be assumed,
and the procedure would terminate. In this function, the negative value of
the largest floating-point number is returned. (step 2 of Figure 5) As
previously mentioned, due to the critical nature of embedded avionics
systems, an error should not be fatal. It should provide an alternate path
to a graceful completion of the function.

Many methods exist for calculating the logarithm of a reduced
argument. Cody and Waite have chosen the following method. (4, 42) The
initial assumption is made that the argument is in the following form

X =:f*2¢ where S¢fcti

Determine the value of N and the scaled value of f such that

X=f*2N, where S5<f«l

Initially, [ is assigned the value of the input argument. This allows
for modification of the input floating-point number. Then an estimate for
N is made. N is given the value of the exponent of the input
floating-point number, and then this same exponent field is erased. (step
3 inFigure 5)

The value of sqrt(.5) has been previously determined and stored as a

constant for use by this routine. Depending on the value of f, one of two
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a0 0.3733916896316E+1

al -0.6326086623386E+0
a2 0.4444551510980E-2
b0 0.4480700275574E+2
bl -0.1431235435589E+2
b2 0.1000000000000E+1

Table S Coefficients for Polynomial Approximation to Alog

distinct paths may be taken. The value of f is compared to the
sqrt(.5), and znum and zdem will vary accordingly.

After forming z=znum / zdem and W = zz. evaluate r (%) ~w*
A(w) 7/ B(w). Both A(w) and B(w) are polynomials in the w coefficients

given in Table 5. (step 8 in Figure S)

Common Logarithm Implementation

Obviously, from the structure chart for this function (Figure 6), all
the work is done by the Alog function. Since the JOVIAL language does
not support multiple entry points, the common logarithm function had to
be formed in this manner. The result of this function is generated through
the multiplication of the natural logarithm of the input argument with the

natural logarithm of “e”. This latter item is encoded as a constant to

avoid wasted effort to recalculate for every use of this function. All the
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restrictions that were imposed on the natural logarithm of a number also

’i Ne apply here.
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IV Validation Verification and Performance Evaluation

General Discussion

This chapter is concerned with describing the methodology used for
determining the correctness and performance qualities of the implemented
functions. Due to problems in the availability of hardware and the
associated support software, the testing and performance evaluations are
somewhat limited. Hardware became available towards the middle of the
thesis effort, but software tools used for development were incompatible
with those required by the available 1750A. The loader used by the
available 1750A equipment, expects files of a different format -han what
is created by the software development tools. Rather than developing a
new loader, a routine was written that converts load modules into a
format required by the 1750A loader. The reformatting procedure is listed
in Appendix C.

Another problem that had to be overcome before testing and
evaluation could be considered, was the availability of input/output (1/0)
routines. Without 1/0 routines, further considerations for testing would be
fruitless. No 1/0 packages were available, and as a consequence, had to be
created. This delayed testing efforts considerably, as an 1/0 routine had
to be developed with the use of the MIL-STD-1750A standard ISA, rather

.................
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than with a high-order language. The 1/0 package developed is listed in
Appendix B, and is only capable of writing to a user console.

Performance analysis requires the comparison of 1750A results, with
those generated on a machine of higher precision. Unfortunately, this
requirement made the newly created [/0 routine insufficient for this task.
An available console driver has a routine that writes user specified areas
of 1750A memory to magnetic disk. By storing a function’s results in a
specified area of 1750A memory, the test results can then be dumped to
disk for an eventual upload to a VAX 11/780A. The results are then
available for input to the different software test packages. However, the
record format of the 1750A memory dump is not in a friendly format, and
must be converted to a readable form. At the time of this writing, a
routine for making the disk file readable is not completely debugged.
However, it is at a point where it could be completed by another
programmer.

The aforementioned problems have limited the amount of time
available for designing extensive test procedures. Therefore, validation,
verification, and performance analysis is confined to: manual static
analysis methods, critical value testing, and measurement of each

algorithms generated error.




Manual Static Analysis Methoeds

To most people, manual static analysis is called “desk checking” .
Static analysis involves the search for any inconsistencies between design
tools (i.e. flowcharts), design details (chapter 3), program headers, and

program comments. This method is useful for finding errors caused by the

§
translation of design into code, as well as possible design errors. An
inconsistency may indicate potential problems. This methodology was
' used, and all inconsistencies that were found were resolved.
i} \e
i

Critical value testing is an attempt to "break” the software, and
requires the selection of specific arguments that could possibly cause
problems. A knowledge of each of the algorithms is required to select
proper arguments. Individual test cases are not listed here, but the reader
may find specific information by examining the test procedures listed in
Appendix B.

It is possible to generalize the tests performed without listing the
specific test cases. Potential test arguments are those whose
intermediate results could generate an overflow or underflow, or are

arquments lying in the fringe of computational abnormality. These

45
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arguments will help detect probiem areas, and will give an indication as
to how robust each function is.

In addition, arguments that test each path of the algorithm have been
selected. Path testing is limited to insuring that every path of an
algorithm is tested, and does not imply that every possible path

combination is taken.

Performance Evaluation

As was mentioned in the introduction of this chapter, screen output
to the yser console and hard copies of computed results are insufficient
for performance evaluation. Their use would imply a visual comparison of
generated results against published tables. Such a technique limits the
number of comparisons that could be made, and would cause doubt as to
the credibility of the comparisons. At best, it would provide a good
feeling for the quality of each function's performance. Therefore, it is
better to automate the process completely, and compare the generated
results against another machine generated standard.

The performance evaluation of the functions involves the computation
of two important statistics: the maximum relative error (MRE), and the
root-mean-square relative error (RE). Their values are determined through
the use of (43) and (44), where F(x) is the test result and f(x) is the

comparison vaiue generated by the same extended-precision function call
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written for the VAX 11/780.

MRE = Flx) » i) (43)
/ I & FFxi)+ %) ™2

E RE = /¢ 2| ) (44) .8
"'./ . f‘: X} A 5 '_;:

I RSRN
3 -4
: This method of error checking is an automatic tabular comparison, :'.T'_:';I':l
where the VAX routines serve as the accepted standard. The test routine e

tests densely packed samples of evenly spaced arguments spread ‘ﬁ
throughout [-37, 31] for floating-point algorithms, and [-1, 1] for :
fixed-point algorithms. When regenerating arguments within the test
modules, it is important not to introduce unnecessary errors. This means ~ q
that arguments in the VAX should have its lower order bits padded with L

zeros. The most-significant bits must be equivalent to the number of bits

in the 1750A argument, and no extra precision should be introduced.
The method of argument generation just described is recommended by

Cody (12: 762), and is the method used at the NASA Lewis Research

Center. This method is preferred to a random-number test because it \

measures the reiative error throughout an entire interval. Using densely

packed arguments also gives valuable insight to problems of different

argument ranges. If the evenly spaced interval is set to a power of two

(representable on both machines), and is not less than the

.............................
.................................
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least-significant bit of the 175S0A argument, then an initial argument can
be chosen, such that, zero padding will only have to be performed once. o
For example, if an initial floating-point argument is -3.1415 and the ol '
chosen interval is 272, the second argument will be -3.1415 + 272, :.:331:3:2-
Additional padding is not necessary, because “carries” are cascaded . :_..-,'A
forward and do not increase the number of most-significant bits in the <

next argument. Arguments used in the function calls on both machines

must be the same, and must be generated in the same order.
»':'-5, Extra care is needed while reading the 1750A results from disk. Each |
of the 1750A results are stored in an unformatted file, and must be read R

[ - into a binary record. This record is moved, bit-by-bit, to a variable of the

:‘._‘__ appropriate type (VAX 11/780 fixed-point or floating-point). The

\e bit-by-bit manipulation is accomplished through the use of JOVIAL

specified tables, and prevents conversion errors associated with

formatted input. L

Before a comparison of the two results (one from the 1750A, and the . ,

other from the VAX) can be made, the results generated within the test i

module must be reduced to the same precision (same number of i

. most-significant bits) as those from the 1750A. The precision reduction '

gives a rounded result that can be used to determine the MRE and RE, and ‘
will give a meaningful interpretation to the inherited error of the 1750A

functions. !
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V Conclusions and Recommendations

The purpose of this thesis was to develop and to do performance
evaluation on a run-time math library developed specifically for
MIL-STD-175S0A architectures. The library consists of the floating-point
implementation of several algebraic functions. Performance evaluation
was the major effort of this thesis, but not in the manner intended.

Function approximations are accomplished through the use of either
Chebyshef or rational approximations. The two different approximation
methods were discussed in chapter two, and are useful in understanding
certain design considerations. The wvalues of each polynomial's
coefficients were derived by (or were modifications of those derived by)
Cody and Waite. (4: 17-84) However, the implementation designs are
significantly different from those suggested by Cody and Waite. The
primary difference between the implemented designs and those suggested
by Cody and Waite, are the methods of argument reduction required of each
function.

Performance evaluation turned out to be the major effort, but not
because of extensive or elaborate testing of the library functions. Most of

the effort involved overcoming the following problems:
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1.) There were several compiler bugs in the original 1750A compiler
used.  Assembly listings had to be reviewed, in order to verify each
compilation of the source code.

2.) The use of a simulator for performance evaluation was ruled out
because of the limited number instructions that could be simulated, its
inability to simulate the use of floating-point data, and the relative speed
at which results were calculated. The simulator also lacked a facility for
writing results to mass storage. Storage of results on an external device
is necessary for input to software test packages.

3.) A new compiler and linker was introduced near the midpoint of the
thesis effort, and required a long learning curve in order to use them.

4.) Once a 17S0A machine became available, it was determined that
all its support software was intended for use with files created by the
old compiter and linker.

S.) Rather than use a compiler and linker that had several deficiencies,
or write a new loader routine, it was decided to write a support tool that
would convert load modules into a format expected by the availabie loader.

6.) The reformatting program required the use of JOVIAL and its
specified table features. It also required the use of FORTRAN routines to
perform the 1/0 of source and target files. The FORTRAN and JOVIAL
interfaces did not operate as expected, and the use of COMMON/COMPOOL
areas wouldn't work. This required parameter passing between the
routines, and the documentation for this type of interface was very

inadequate; however, the problems were eventually resolved.

S0
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7.) The reformatting tool was written for use on a VAX 11/780. It
was assumed that the JOVIAL compiler was free of bugs for a VAX target. roer
However, when the reformat routine was being debugged, it was '
discovered that JOVIAL table names could be overlayed, but corresponding __
table items weren't overlayed with them. This problem took a long time T
to discover, and an additional amount of time to design around. ‘

8.) 1/0 routines have not been written for the 1750A, and had to be
developed. These routines are only capable of writing to a console screen. "

9.) Screen output is insufficient for generating the thousands of
; results that would be needed during testing and evaluation, so another =

means of capturing the data had to be developed. Due to the lack of time
and inexperience in the internal 1/0 communications techniques of the
\e 1750A hardware, development of a disk 1/0 routine was not a feasible _
alternative. [t was determined that results could be stored in specific *
locations of memory, and then an available console routine could be used
to write the information to disk. An additional problem was encountered »
when it was discovered that the record format of the disk files is not in a R
VAX friendly format, and another routine had to be written to unpack the
stored results. .
These problems limited the scope of this thesis effort to developing
the following:  designs; code that is free of syntax errors; the
development of command files for compiling, assembling, and linking D

routines written for the 1750A; tools for formatting load modules that

are capable of being loaded into a Sperry 1631 implementation of the
MIL-STD-1730A; and tools that unpack test results stored on an RT/11




formatted floppy disk. Generic test algorithms are provided, but are not ,,

written in a high-order-lanquage. They provide the basic structure for
critical range testing, and a means of evaluating and measuring each

functions performance.

The products produced by this thesis effort are at point where design
of the intended performance evaluation c¢an begin. All the groundwork has

been provided, and should be adequate for someone to continue the effort.

and command files are provided to shorten the learning curve that
follow-on programmers will have to experience. D
The following recommendations should be considered if this effort is

continued.

made for determining how to handle exceptions detected at run time.
Exceptions include arguments outside legally defined limits.

functions should also be developed and impiemented in Ada.

3.) Another point may be in favor or using Ada is that it also allows

........................................
..................................
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Recommendat ons i

Many of the aforementioned problems have been resolved, and support tools

.

1.) If the effort is limited to the use of JOVIAL, an analysis should be ” ] 7

2.) Since Ada has features for exception handling, all the library i

l‘a'- TR
P

the creation of generic packages and subprograms. The generic T




................

subprograms define a template, and generic parameters provide the
facility for tailoring the template to fit a particular need at translation
time. In other words, one subprogram could provide calculations for both

fixed-point or floating-point arguments, based on how it is used at

7 compile time. Because a generic package would not be able to take

3 advantage of the specific hardware functions unique to floating-point and
fixed point routines, this may result in a degradation of performance.

h 4.) Initially, it was discussed that all the math library routines should

be written in both JOVIAL and Ada with the intent that a comparative

evaluation could be done on the two languages. Unfortunately, an Ada
compiler targeted to the 1750A is not yet available. When a compiler
does become available, it is recommended that a new Ada math library be
developed and this comparative evaluation be performed.

S.) The compiler problems, mentioned above, should be corrected, and
1750A architectures and associated support software should be acquired

before more time is allocated to the effort.
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Appendix A

The following pseudo-operations were used in describing the

implementation designs of the different mathematic functions.

ADX(X,N): augments the integer exponent of a floating-point
representation of X by N. This scales the argument X by 2V. S |

For example,

MR AR T AN At . af REAanE

ADX%(1.0,2) = 4.0

g 0.‘.'.—" .," ',

FIX(X): returns the fixed-point representation of the
floating-point value X . This operation requires explicit

conversion in JOVIAL.

FLOAT(X): returns the floating-point representation of the
fixed-point argument X. This operation requires explicit

conversion in JOVIAL.

0ODD(X): determines whether the argument X is odd. For an
integer, the least-significant bit is checked directly. For a
floating-point number, the integer portion is checked. A
description of the floating-point process for this determination

is given below.

''''''''''''''''''''''''''
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Figure 7  Bit Layout of 1750A Floating-Point Number

To determine whether the integer portion is odd, knowledge
of the internal representation of the 1750A floating-point number is
necessary. The argument X is a JOVIAL specified table item that
makes the components shown in Figure 7 easily accessible. Within
this table is an integer item that overlays the exponent field of X.
This exponent field is‘the tool needed to check whether the integer
portion is odd or even. Since X has a value of one or greater, and
all floating-point values are normalized, the exponent can be used to
point to the least significant bit of the integer field. Because X is
positive, a one in the least significant bit would indicate the
integer portion is odd. A limit on the maximum value of the
coefficient has been imposed by the functions that use this routine,
Thig limit prevents the least-significant bit of the integer portion
from falling in the exponent or "LSB" area of the fleating-paint

coefficient (see Figure 7).
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Since the 17350A architecture requires that all floating-point
values be normalized, the most-sighificant bit is in the first bit
position following the sign bit. The decimal-point is assumed to be
pasitioned immediately behind the sign bit, but immediately in front
of the most-significant bit. The exponent represents a power of
two; therefore, if € represents the value of the exponent field, the
value of the floating-point number is:  coefficient * 2¢
Equivalently, it is obvious that the decimal-point floats ¢ places to
the left if € is negative, or € places to the right if positive.

Knowledge of how floating-point numbers are stored can be
used to determine whether the integer portion of a number is odd.

The following example gives an explanation of the process.

Given the following machine representation of a
floating-point number, determine whether its integer portion
is odd. In the example below, the decimal-point was inserted

only for clarity.
0.110000000000000000000000000000 100000000000600000

Since the sign bit of the exponent is zera, the value of
the coefficient is positive. The following two numbers are
summed together to determine the value represented by this

coefficient:




I 1 %271 =

|
w

| * 27t =25

The exponent field is in bold text, and has the value

one. Therefore, the wvalue of this floating-point

-Er. o,

representation is, the coefficient (.75) multiplied by two
to-the-power-of the exponent (1), or 1.5.
)
75%21=15
§ \o Another way to compute the result is to shift the
5 decimal-point in a direction as indicated by the exponent.
The exponent in this case is +1 , so the decimai-point is
i shifted one position to the right. The number can then be

computed in a similar manner as described above.
: This last method demonstrates how to determine
i whether this example is even or odd. If the decimal-point
is shifted | position to the right, this number will have |
integer bit and 38 fractional bits. The integer bits always
occupy the left-most position of the number. If the exponent
is thought of as a pointer from the left-most side of the
number, the least-significant integer bit can be found. The
exponent in this example points to bit position one. Since

the bit is set to 1, this example’s integer value is odd. §

...............................
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{ INT(X): return the integer portion of the floating-point K
argument X. The description ODD(X) given above determines the
: least-significant bit of the integer portion of the floating-point -
-I argument. This is used to extract the entire integer portion of
the argument (bits O through the least significant bit).
k
»
i \/
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* » 5
* DATE: 30 August 1983 »
* UERSION: 1.0 » q
* NAME: Alog » -
* MODULE NUMBER: 1.0 » .
* DESCRIPTION: »

* This function is calied to computa the natural log of »
» of tha argumant ‘Arg’. Since »
* ALog10¢X> = ALog(X) * In(e) »
» AlLog is also called by ALogl0 to do its computations. » -
* PASSED VUARIABLES: Arg - an extended precision floating-point variable * -
* RETURNS: The natural log of arg in extended precision float * T
® MODULES CALLED: None » B
* RUTHOR: Capt. Jenmnifer Fried » L
* HISTORY: This project was undertaken as a thesis project for * L
* partial fulfiliment of requiresants for an NS degres * K |
* in Information Science from tha Air Force iInstitute » -
* of Technology. Sponsoring organization is tha ASD *
» Language Control Branch, Wright Patterson AFB,0h. *
® L] .
. o
: START
DEF PROC ALog RENTC Arg ) F  39; S
BEGIN .
ITEM Arg F 39; -
ITEN Hn s 7 A
ITEM Xn F 39
ITEN Zrum F 39, : o
ITEM Zden F 39, R
ITEN 22 F N, B
ITEMN Rz F 39, .. 9
ITEM Az2 F 30,
ITEN e F 39, iy
ITEM Aw F 39
{TEM Bw F 39,
TRBLE Overlays (0> W 3; T e
BEGIN =

ITEM Ff F 39 P0S(0,0);
ITEM Fexp S 7?7 POS(8,1);

END
CONSTANT |TEN Zaro F 2= 0.0;
CONSTANT ITEN PtFive F 30= 085; . 4«
CONSTANT ITEM SqrtPtFive F 30 = 0.7071067011865; Lol
CONSTANT ITEM RO F 39 = 0.37339166963166+1; o
CONSTANT ITEN At F 30 = —0.63260866233866+0; -
CONSTANT ITEN A2 F 30 = 0.4444551510980E-2; ol
CONSTANT ITEN BO F 30 = 0.4480700275574E+2; -~
CONSTANT ITEM B! F 39 = —0. 1431235435589E+2;
CONSTANT ITEM B2 F 39 = 0.1000000000000E+1;
.
60
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CONSTANT ITEM C1 F 3 = 0.5033503750000;
CONSTANT ITEM C2 F 30 = ~2.1219444005400E-4;
IF Arg <= Zero;

Alog = -MAXFLOAT(39);
ELSE

BEGIN

FI0) = fArg;

Nn = Faxp(0);
Faxp(0> = O;

IF Ff<0)> > SqrtPtFive;
BEGIN
Zrum = (F1C0) - PtFive) - PtFlve;
2den = (FfC0) * PtFive) + PtFiva;

by

BEGIN

Zrvm = FfCD) - PiFive;

Zden = (Zrum * PtFive) + PtFive;
END
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* DATE: 30 August 1983 *

* UERSION: 1.0 »

* NAE: fLog10 *

# MODULE NUMBER: 1.0 »

* DESCRIPTION: .

* This subroutine is called to compute tha base 10 fog *

» of the passad argument. Sinca .

. Alogi0 = ALog * logCe) .

. 1t sokes a call to Alog .

* PRSSED URRIABLES: Arg ~ an extended-precision floating-point variabie *

& RETUANS: Tha floating-point rep of log{Rrg) b

* MOOULES CALLED: fLog »

* AUTHOR: Capt. Jennifar Fried *

# HISTORY: This project was undertaken as a thesis project for »

* partial fulfilisent of requiresents for an MS degree * A

* in Information Science from the Air Force Institute * R

* of Technology. Sponsoring organization is the RSD * SRR

he Language Control Branch, Hright Patterson AFB,Oh. »

* " .'.

’ - C_:x "!-_]

STRAT f:_f.;:—‘ft’

REF PROC Alog RENT CArg ) F  39; 3
BEGIN L]
ITEN Arg F 39; AR
END )

DEF PROC ALogl0 RENT <(Arg) F 39;
BEGIN
ITEM Arg F 30;

CONSTANT I(TEM Log‘'e’ F 30 = 0.4342044819033;

Alogi0 = ALog(Arg) * Log'e’;

RETURN;
END

SR
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e
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» »
* DATE: 30 August 1963 »
* UERSION: 1.0 »
* NAME: Exp *
* MODULE NMUMBER: 1.0 *
* DESCRIPTION: *
* Raturns tha extanded-precision floating-point value *
* for e**Arg »
* PASSED VARIABLES: FArg -~ an extanded precision floating-point variable * RCRY
* RETURNS: ey *
& MODULES CALLED: nona * -
* AUTHOR: Capt. Jannifer Fried »
# HISTORY: This project was undertaken as a thesis project for b .
» partial fulfilisent of requiresents for an MS * TR
* in Information Science from tha Rir Forca institute » .
e of Technology. Sponsoring organization is the ASD » K
. Language Control Branch, Hright Patterson AFB,Oh. »
" »
START oY ‘
DEF PROC Exp RENT (Arg) F 30; e
BEGIN
ITEN ARO F 39,
ITEM Xx F 39
ITEM Xn F 39;
ITEM Gg F 39;
ITEM X1 F 39;
ITEM X2 F 39; -
ITEM 2z F 3e; -
ITEM Pz F 39; (
= ITEN Gz F 39; N
= (TEM tn s
. TRBLE Overloys <0) W 3; L
® BEGIN
d ITEN Rg F 39 P0SC0,0); -
S ITEN Rexp S 7?7 POSCS,1);
:_ CONSTANT ITEM Xmax F 39 = 1.701411834500E+38;
o CONSTANT ITEM Xain F 39 = 1.4693679383276-39; "
{
CONSTANT ITEM Xbig F 39 = 88.02000193111; T
CONSTANT ITEM Xsmall F 39 = -89.41508629223;
CONSTANT ITEM Eps F 39 = 9.004047017720E~13; :
CONSTANT ITEM PO F 39 = 0.2499990999999€+0;
® CONSTANT ITEM P9 F 39 = 0.5950425497730E-2; M
3 CONSTANT (TEM QO F 30 = 0.5000000000000E+0; o
- CONSTANT ITEM Q1 F 39 = 0.5350751704522€-1;
CONSTANT ITEM Q2 F 30 = 0.2972036368224E-3;
63 -
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CONSTANT ITEM C1
CONSTANT ITEM C2

CONSTANT ITEM Ln2
CONSTANT ITEM OneOverin2
CONSTANT ITEM One
CONSTANT ITEMN PtFive

mAwMMm MM
3883 38

Xx = fArg;

IF Arg > Xbig;
Xx = Xbig;

IF Xx ¢ Xsmall;
Xx = Xsmall;

IF (Xx ¢ Eps) AND (Xx > ~Eps);

Exp = One;
ELSE

RIN 8nx 57 §
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partial fuifilinent of requiremants for an IS

in inforsation Scienca from tha Rir Forca institute
of Technology. Sponsoring organization is the ASD
Language Control Branch, Wright Patterson AFB,0h.

»

DATE: 30 August 1085 *
VERSION: 1.0 *
NAME Saort *
MODULE NUMBER: 1.0 *
DESCRIPTION: »
fApproxisates the squars root of th arguaent ‘Arg’ *

PASSED UVARIABLES: Arg - an extendad precision floating-point variabie *
RETURNS : An axtendad precision float representation of the sqrt *
of 'Arg’ *

HODULES CALLED: nona *
AUTHOR : Capt. Jarnifer Fried »
HISTORY: This project was undertaken as a thesis project for *
L

»

®

L]

]

DEF PROC Sqrt RENT(Xx) F 39;

BEGIN

TABLE Overiays <0Y H 6;
BEOIN
ITEM Ff F 39 P0S<0,0);
ITEN Fexp $§ 7 POSCS,1);
ITEM Wy F 39 P0S(0,3);
ITEN VYaxp S 7 POS(B,4);
END

ITEM Xx F 39;

ITEN Mm s 7;

ITEH Ix s 8;

ITEN Nn S 13;
ITEN Nbit B 16
OVERLAY Nn : N:H.

CONSTANT ITEM SqrtOneHalf F 39 = 0.7071087811865%;
CONSTANT ITEM C1 F 39 = 0.41731%;
CONSTANT ITEM C2 F 39 = 0.59016;
CONSTANT {TEM One F 9= 1.0

CONSTANT ITEM Zero F 30 =0.0;

CONSTANT ITEM Onaint § 7= 1;

Ff(0) = Xx;

IF (F1(0) = 2ero) OR (FfC(O)> = One);
Sqrt = Ff<0);

ELSE
BEGIN

IF FfC0) < Zaro,;
FfC0) = -Ff(0);

A e .
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............
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Nn = Fexp(0);
Fexp(0) = 0;

Yyco> = C1 + C2 * FI(D);

FOR (x : 1 BY 1 WHILE Ix <= 3;
BEGIN
vyc0) = Yydo) + F0) / Yy<0);
Yaxp(0) = Yaxp(0) - Onaint;
END

IF BIT(NDiIt, 13,1 = 1B'1°;
BEGIN
Yy(0) = Yy<0) * SqrtOneHalf;
Mn=hh+i;
END

5
1

( Yaxpl0) + tm;

<0),;

§
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ORTE: 19 JULY 1963
VERS(ON: 1.0

NAE: HathiLib
MODULE NUMBER: 1.0
DESCRIPTION:

or fixed-point computations
PASSED UARIABLES: N/MA
RETURNS : N/A
NODULES CALLED: N/A

Capt Jamnifer Fried

of Technology.

SR A N X I N N I I I N I B B B I B N

This coapool is required by any JOWIAL program that needs to
reference any of the math functions erittan for floating=-point

AUTHOR : Capt. Steven A. Hotchkiss and

HISTORY: This project was undertaken as a thesis project for
. partial fulfiliment of requiresents for an NS
in information Sciance from the Air Force Institute
Sponsoring organization is the RSD

-

Language Control Branch, Wright Patterson AFB,Oh.

L 3 I I K IR B JE IR N R B K 3 N K N K J

START

COMPOOL. MathLib;

AEF PROC Exp Rent(Arg> F N,

BEGIN
ITEM Arg F 39;
END
REF PRAOC fAlLog Aent(Arg) F N;
BEGIN
ITEN Arg F  0;
END
REF PROC ALog10 Rent(Arg) F 39;
BEGIN
ITEM Arg F 39;
END
REF PROC Sqgrt PRENTC(Arg) F N;
BEGIN
ITEN Arg F N;
END
REF PROC Sin  RENTC(Xx) A 1,30;
BEGIN
ITEM Xx A 1,30;
END
REF PROC Cos  RENTC(Xx) A 1,30;
BEGIN
IT]M Xx A 1,30;
END
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REF PROC Tan  RENT(Xx)> R 12,18;

BEGIN
ITE Xx A 1,30;
END

REF PAOC Cot  RENT(Xx) R 12,18;
BEGIN
ITeM Xxx A 1,30;
END

REF PROC ASin RENTCXx) R 1,30;
BEGIN
ITEN Xx A 1,30;
END

REF PROC ACos FRENT(Xx) A 1,30;
BEGIN
ITEN Xx A 1,30;
END

REF PROC ATan FRENTCXx) A 1,30;
BEGIN
ITEN Xx A 1,30;
END

REF PROC Sinf FRENTCXx) F 99;
BEGIN
ITEh xx F  99;
END

REF PROC Cosf FRENT(Xx) F N;
BEGIN
ITBN Xx F 39,
END

REF PROC Tanf FRENTCXX) F 30;
BEGIN
ITEM Xxx F 39;
END

REF PROC Cotf RENT(Xx) F N;
BEGIN
ITEM Xx F 39;
END

REF PROC ASInf RENT(Xx) F  39;
BEGIN
ITEM Xx F  39;
N

REF PROC ACosf RENTCXx) F  39;
BEBIN

ITEM Xx F x;
END
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39;

REF PROC ATanf RENT(Xx) F

et

.

39;

ITEN Xx F
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P * DATE: 29 August 1985 »

1 * UERSION: 1.0 *

i * NATE: lofefs *

* MODULE NUMBER: 1.0 *

. * DESCRIPTION: *

- » This Compool is necassary to reference routines that were »

- * for testing ond performance evaluation of ail math »

' » functions develioped for tha 1730. .

. * PRSSED UARIABLES: NMA .
* RETURNS: N/A .
* MODULES CALLED: N/R »

* AUTHOR: Capt. Stevan A. Hotchkiss and .

s » Copt. Jemnifar Fried »

s * HISTORY: This project was undertaken as a thesis project for *

E . partial fulfilisent of requirements for an IS degres *
* in Information Science from the Air Force institute *
* of Technology. Sponsoring organization is the RSO *
* Language Control Branch, Wright Patterson AFB,0h. *
L] »

* STRART

COMPOOL |oRefs;

ﬁ \ o ' Tha following |TEMs are required to print a carriaoge return and

- ‘ lina fead on a terminal connected to a MIL-STD-1730 computer
DEF ITEM Carriaoge STATIC U 16 = 2523;

j DEF ITEM CRLF STATIC C 2,

K OVERLAY Carriage: CRLF;

' Tha following referenced subroutine is written in 1730 Asseably language

< ‘ and is usad to print character strings only. Noncharacter types will

® ‘ have to ba corverted before calliing this routine. The following DEFINE is

| ' reconsandad for all routines calling ObcSim:

) DEFINE WRITE'STRINGCA) " 'PrinteCHORDSIZECIAY,LOCCIAYY' ",

* An example of a Wpical call follows:

. L]

: ) ITEM Exomple C 2;

' WRITE' STRING(Exanple);

®

N AEF PROC Printe RENT(Langth, Message);

..

- - - - N - - - . - - - - w
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S BEGIN
SRS ITEM Langth U <BITSINWORD-1);
ﬂ ggﬂ Message P;

AP
s

The folliowing referenced routine is necessary for routines wishing
to cowert floating-point values to g character string

. v - ¥~ y % K
8 ~ = B
r’t
’

: REF PROC FItToChar (Argd C 20;
N BEGIN

TN Arg  F 39,

K 0o

' Tha fol lowing referenced routine is nacessary for routines wishing
' to corwert fixed-point values to a character string. The variable
' IntOveriay must be ovariaoyed on top of a fixed-point variable and
‘ BitsinFrac is an integer value indicating the rumber of fractional
‘ bits in the fixed-point value.

FEme FixToChar (IntOveriay, BitsinFrac> C 20;
IN

ITEN IntOveriay $ 31,

ITEM BitsinFrac U 8s;

END

------------------------------------------------
...............
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o RETURN;
° ; I
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DATE: 20 August 1983
VERSION: 1.0

NAYE : F ixToChar
MODULE NUMBER: 1.0
DESCRIPTION:

This routine is used to convert fixed-point vaiues into
character representation. This routine was necessary for
testing and performance evaluation of math routines deveioped
for tha 1750
PASSED VARIABLES: IntOveriay - An Integer Uariable Overioyed on top
of a fixed-point valua
PitsinFrac - the nusber of fractional bits of

tha fixed-point arguesent

RETURNS : a 20 charocter represantation of the arguaent
MODULES CALLED: Fl tToChar
AUTHOR: Capt. Steven A. Hotchkiss and
Capt. Jannifer Fried
HISTORY: This project was undertaken as a thasis project for

partial fulfiliment of requiresents for an MS dagrea
in Information Sciance from the Air Force institute
of Technology. Sponsoring organization is the RSD
Language Contro} Branch, Wright Patterson AFB,Oh.

REF PROC F|tToChar (Arg) C 20;

BEGIN
ITEN Arg F 39;
END

"W FixToChar Procedures desieajespeaiefeesieriiageisiog

DEF PROC FixToChar (intOveriay, BitsinFrac) C 20;

BEGIN

ITEM IntOveriay § 31,
ITEM BitsinFrac U 8,

TABLE Overliays <0) N 3;
BEGIN
ITEM Arg F 39 P0S<0,0);
ITEM ArgExp S 7 POS(S, 1);
END

Arg<o) = (®* F 30 *)X [ntOveriaoy
ArgExp(0) = ArgExp<0) - (* § ? "')( Bltslnch J

FixToChar = F{tToChar(Arg<0))
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DRTE: 29 August 1989 ’
UERS 1ON: 1.0 P
NAME : FitToChar
MODULE NUMBER: 1.0 -
DESCRIPTION:

This routine is usad to convert floating-point values into
character represantation. This routine was necessary for
testing and parformance evaluation of math routines deve!oped
for the 1730

IR N N K N N N N N N I I S NN R X N
IR BK 2E 2R Bk BE BE B BK BR R SR R BE BE BN K B IR K A )

PRSSED URRIABLES: Arg - the valua to ba converted R
RETURNS : d 20 character representation of the argusent ST
MODULES CALLED: nona S
AUTHOR: Capt. Staven A. Hotchkiss and R
Capt. Jarn|fer Fried A
HISTORY: This project was undertoken as a thasis project for q
partial fuifiliment of requiresents for an MS degrea .
, in Information Science from tha Rir Force Institute
( of Technology. Sponsoring organization is the RSD
Language Control Branch, Wright Patterson AFB,0h.
o ‘
[ STRRT
DEF PROC FltToChar CArg> C 20;
BEOIN
DEFINE Yes “1B'1'";
DEFIME No “1B'0'";
ITEN Arg F o
ITEM Fraction F N;
ITEM Temp F :;
ITEN Result t 20;
ITEM ix U s;
ITEN |y U B8; -
ITEM ExpCnt u s; iy
ITEM NegExp B; -~
i{TEN Charial U 8;
ITEM Chorfep c :
OVERLAY Charfep: CharVal; _
ITEN ZeroRep  STATIC C 1= '0"; o
ITEM ZerolVal STATIC U 8; :

OUERLAY ZeroRep: Zerolal;

CONSTANT (TEM Zero F 3= 0.0,
CONSTANT ITEM One F 39 = 1.0;
CONSTANT ITEM TenFloat F 39 = 10.0;
CONSTANT ITEM PtFive F 38 = 0.5; - ¢
CONSTANT ITEM PtOne F 39= 0.1;
-l
73 '




Result = ' 0.0000000000000E+00" ; S
IF firg ¢ Zero; '

BEGIN

Fraction = -firg; B

BYTECResult,0, 1) = '=*; T

END N

E.SE .::._'n

Fraction = frg; Ll

IF Fraction < PtOne;

HegExp = Yes; -

NegExp = No;
t=0;

WHILE (Fraction > One); SIS

BEGIN :

ExpCnt = Explnt + {; ;

Fraction = Fraction / TenFloat; .

END T

IF (NegExp = Yes) AND ¢ Fraction <> Zaro);

BEGIN S

BYTE(Result, 17,1 = '=*;

WHILE (Fraction < PtOna); :
BEGIN
ExpCnt = ExpCnt + 1; -
Fraction s Froction * TenFloat;
END :

END

Iy = 0; -
WHILE ((Fraction <> Zero) AND (ly < 13));

BEGIN ol

Tesp = Fraction * TenFloat; L

IF ly= 12; -

Temp = Temp + PtFive;
CharVal = (¢ U 8 *)( Temp ); :
Fraction = Teap - (* F 39 *)( Charlal ); -
CharVal = Charlal + ZeroVal; -
BYTE(Resul t, iy+3, 1) = Charflep;

Iy= iy + 1;

END
CharVal = (% U 8 *)}ExpCnt MOD 10> + ZeroVal;
BYTE(Rasul t, 19, 1) = Charfep; AR
Charlal s (% U 8 *)ExpCnt / 10> + Zerolal; o
BYTECResult, 18, 1) = Charflep; :
FltToChar = Result; Y
RETURN; o

END :




TITLE HOLCPRINTC)
MODULE  PRINTC

DRTE:
VERSION:
NAME :

DESCRIPTION:

HISTORY:

B R EF R RERREREREREBRERTERERREERER RN

MODULE NUMBER:

4 Septesber 1985
1.0

Printe

1.0

This module is called to print a character string onto
a console that is connected to a Mii-8td=-1730 computer

PRSSED VARIABLES:

LENGTH.3 - this variable contains a count of the rmusber
charactars to print

MESSAGE.3 - this Is a focation pointer for the string to be
printad

prints messages on user consola
‘Capt. Steven A. Hotchkiss and

Capt. Jennifer Fried

This project was undertcken as a thesis project for
partial fulfi)isent of requirements for an MS degres
in Information Science from the Rir Force Institute
of Technology. Sponsoring organization is the ASD
Language Control Branch, Hright Patterson AFB,Oh.

$ 4-SEP-685/16:00:29 §

PRINTOFF . DO MOT LIST METRS
* START OF META DEFINITIONS
»

L]

DATRS METR 3 . REPEATED PRESET METR
LF<0) EQU $
- LOoOP 2, 1,NMCGF -1
YoID GF(_, 15, NORA, _DATAS
GOTO TEST
NORMA LABEL
DATA OF ()
TEST LOOPTEST
0
~DATARS METR 3
-— LOooP 1,1,6FC_, 1)
DATA GF¢L)
LOOPTEST
MEND
LENGTH 25,9999
L
SECTION META 0 . CSECT META
- LOOP 2,1,31
SC(DLN®() CSECT
LOOPTEST
MEND

PRSP S AT PN




.

* END OF META DEFINITIONS

* BASE REC EQUATES

:
)
g 8888

.._o_vlr."v- A

AP A

i
M

g 2288838080 80888

'é'hggghgébhhhhhhg' ’
-

L N

Il - - L

....................

0,1,15

XNC

12
13
14
15

5:60000&0N¢0

- -
Adw

ik S(2E N WORDS —— 2 DECIMAL : 2 HEX **
LOCAL AUTOMATIC DATA FOR PROC
et S(ZE IN HORDS -— 2 DECIMAL : 2 HEX #**

HEX<0)
HEX<0)
HEX( 1)
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CHARACTERS IN STRING L
OF CHARACTER STRING —

g
22

giill.i
3
o
z

R

HEX(0) R

PRINTC EQU $ i
ORIGIN  HEX(0002) S

L YA
. ADJUST CHARACTER COUNT

. 18T THO COMMANDS EQUIVRLENT TO
: A2 = ROUND(R2/2) RS
. BRANCH OUT IF ILLEGAL CHAR COUNT

. CHECK STATUS BIT 1
. IF OFF, LOOP BACK UNTIL CONSOLE RERDY
. GET NEXT THO CHARACTERS OF MESSAGE

. PRINT BOTH CHARACTERS

. POINT TO NEXT TWO CHARACTERS

. DECREMENT LOOP COUNT, GO BACK IF MORE

E
3
B

s2h %
3*b B
§ -

E
33

rTF."TYT >
g gzﬁr
% (=]
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Q
3
. 1‘ ' .
|"'1: I S .,.'.. .
S S I SRR,

2
38
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SEE
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ORIGIN  HEX<O0013)
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H 10 October 1983
VERSION: 1.0

: Refftat
MODULE NUMBER: 1

This routine is used to corvert ITS LINK files into

a format that con be loaded into the SPERRY 1631
computer (1750 architectura). Tha ITS filas are

'.80° files ond must be in tha 80 column record forsat
describad in the EMAD ITS Load Module ICD (CDRL #1005
contract *F33637-63~C~0244). Use of the command file

3
2
R EBEREREEES

of tha SPERRY |oader records are defined In Appendix B8 *
of its progroaser reference sarwal. Tha bytes of all
binary data fialds must be seapped (i.a. the high
order bits of g word are swapped with the low order 8)
Tha only type |TS records corwerted are binary and
end record types. It also ignores all protection
indicators, and can not handie expanded semory jobs.
When all object files are copied into a single object
for linking by the 1TS LINKER, the main procadure must
ba copied into tha file firstiill{!! Otherwise, this
opplication will have no way of determining the point
that execution is to bagin. The 'end’ record created
by tha (TS |inker contains tha lowest addrress of the
load module, and this application assumes that the
routine begins at that point. The ITS file contains
datafieids that are in HEX character representation,
and the SPERRY 1031 expects binary data fields;
tharefore tha |TS data must also be converted to
binary
PASSED UARIABLES: N/A
RETURNS : N/A
: CatHdr
Readf
Printf
Cinlp
IntFil
Wi tefied
Capt. Steven R. Hotchkiss and
Capt. Jarnifer Fried
HISTORY: This project was undertaken as a thesis project for
partial fulfiliment of requiresents for an MS degree
in Information Science from the Air Forca Institute
of Technology. Sponsoring organization is the ASD
Languaga Control Branch, Hright Patterson AFB,0h.
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ICOMPOOL. (' loCalls’);
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PROGRA! RefMat;

BEGIN

ChkSum = 4B8'0000° ,;
FirstPass = True;
LdPt = ~1;

Eof = Falsa;

Buff = 0;
BufPtr(0) = {;
BufPtr(i) = §;

* Initialize (10 Files "
IntFil;

“ Gat Header Info for Looder File °
GatHdr;

WHILE NOT Eof;
BEGIN

* Read the first 80 coluan record
Readf(: | tsfied,Eof);

" Put Loader Info into Contiguous Memory Locations * - e
HdsInfced = Cnti(0) - Asci i0;
AddrC(0) = Addr(0);
HA1CCO) = Wd1¢0);
HA2C(0) = Wd2¢0);
HA3CC0) = Wd3(0);
HA4CC0) = Hd4(0);
HASCCO) = WASCO);
HABC(0) = WABCD);
HA7C(0) = Wd?¢0);

“ Initialize the Output Buffers *
FOR Ix: 1 BY 1 WHILE Ix<33;
CharToBin(ix) = 0;

FOR Ix: O BY 1 WHILE 1x<63;
OutBuff(ix> = 0;

" Corvert Char To Bin and Pack it *
FOR Ix: 1 8Y 1 WHILE Ix<=32;
BEGIN
IF {Asci i0x=CharToBin(ix)>) AND (CharToBin(Ix)<sfscii9);
CharToBin(Ix) = CharToBin(Ix) - fisciio;

ELSE

IF (AscliA<sCharToBin(Ix)) AND (CharToBinCix)<=fsciiF), T (

CharToBin(ix) = CharToBin(ix) - Rsciif + 10; AR

Hal fBytelix) = Nibblas(Ix); RS
END

IF Typc0d = * °; S

BEGIN "This Is a binary record” -4

IF BufPtr(Buff) + WdsinRed <=81 AND LdPT = Laddr(0);
BEGIN " 0id Record ond still room for more data fields "




ey L T T Frrrrey
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" Flip Fiop the position of each byte of a 1750A word
FOR Ix: O BY 1 WHILE Ix<ldsinficd;

BEGIN

BufByte0(BufPtr(Buff)*ix) = FialdL(Ix+1);
BufByte 1(BufPtr(Buff)+ix) = FieldH(Ix+1);
END

“ Point to whare info from naxt ITS 80 column rmd
“ is to ba placed into this |oader record
mfPtNBuff) = BufPtr<Buff) + Hdsinfied;

" Update load point so the next ITSrm'dcmb.M.dto
“sea if it balongs in this |oader record
LdPt = LdPt + Udsinfcd;

tF

BufPtr(Buff) = 61;
BEOIN " Loader Record is full and neads to be written “

Hds InBuffer = 60;
RedTypl = AsciiB,;
Nriteficd;

END

ELSE

BEGIN " 0Oid record and not enough room — or nes record °

IF

LdPt = Laddr<0);
BEGIN "Smloadu-rmd butnotmwd\roo.forall "
" data fields in lTSneord

" Swap Bytes of words going into loader record *
Fm*l:: 0 BY 1 WHILE BufPtr(Buff)+ix < 61;
IN
BufByte0(BufPtr(Buff)+ix) = FieldL(Ix+1);
BufByte 1(BufPtr(Buff)+ix) = FieldH Ix+1);
LdPt = LdPt + 1;
END

" write the full record out *
Hds InBuf fer = 60;

RedTypl = AsciiB;

Wr i tefcd;

" Sat the load point for this new loader record *
LdRd(0) = LdPt;

Swap 'yjtes of tha other |TS data fialds and place thea into
record. |f the naxt ITS record doesn't have the load point
cosputed here, it should ba tha first entries for another
loader record
FOR {y: Ix BY 1 WHILE Iy < WdsinBed;

BEGIN

BufByteO(BUfPtr<Buff)+iy> = FleldL(iy+1);

BufBytat(BufPtr(Buff)+iy) = FieldH(ly+1);

LdPt = LdPt + §;

END

..........................
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]

END “Same record not enogh room”
ELSE
BEGIN = this is the start of a new loader record "

IF NOT FirstPass;
BEGIN

IF BufPtr(Buff) <> 1;
BEGIN “the last record didn't get filled up, so It "
“ hasn't baen written yat. The routine "
“ WriteRcd sats BufPtr to 1 bafore exit "

RedTyp! = AsciiB;
Wds InBuffer = BufPtr(Buff) -1;
Wi tafed;
END
END " end not first pass °

FirstPass = Faise;

* Sat the load point for this loader record "
LdRd<(0) = Laddr(0);

* Swop bytes of |ITS data fields going into loader record *
FOR Ix: 0 BY 1 WHILE Ix < ldsinRed;

BEGIN

BufByte0(ix+1) = Field (Ix+1);

BufBytetCix+1) » FialdH(ix+1);

END

BufPtr(Buff) = ldsinRed + 1;
LdPt = Laddr(0> + WdsinRcd;

END " end new record "
END “end of old record not encugh room — or nes record *
END “end of this is a binary record”
ELSE

BEGIN “this is an execution address record "
IF Typ<0)> = 'E’;

BEGIN

RedTypl = 6261; “blank E°
OutBuff(0) = Laddr(0); NN
OutBuff¢1) = 30; * ascii record seperator " ...
Hr i tefed; R
END .

END "end execution address record °
END “end whila loop "

“ Hrite end of file |loader record ”
RedTypl = 8262; ~ blank F "

......................................................
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OutBuFF(0) = 30; " ascii record seperator *

o * Clean up Files used "
Cinlp;

END
TERM
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* DATE: 10 October 19835 *

* UERSION: 1.0 b

* NAME: Hri teRced *

* MODULE NUMBER: ? »

* DESCRIPTION: .

» This routine is cailed by RefMat to do 10 stuff that =*

» neads to be dona throughout tha main procedure. Threa *

- tq.puofmmai looder records are written: »

» Binary ,Execution, and End of fila. If the record typa *

- is a blnw'g record, this routina computes a checksua *

hd fwitwtdxsltmtothtmofﬂnrmd.nm »

* the record type is written out followed by tha binary *

* record. |f the record type is on execution record or *

. an end of file record, thtncordupeisrittnnout »

. fol lowed by the record. The i la ‘Buff’ is a »

* global variable that points to tha record to be *

* oritten. »

* PASSED VUARIABLES: None »

* RETURNS: Nothing * :
* MODULES CALLED: Printf — o FORTAAN [0 routine *
* AUTHOR: Capt. Steven A. Hotchkiss and * LR
* Capt. Jarnifer Fried »

* HISTORY: This project was undertoken as a thasis project for »

» portial fulfifiment of requirements for an MS degrea *

» in Information Sciance from the Rir Forca Instituts .

* of Technology. Sponsoring organization is tha RSO »

* Language Control Branch, Wright Patterson AFB,0Oh. »

» »

START .
{COMPOOLS "RMLCPI ' );
ICOMPOOL. (' loData'); e
REF PROC Printf<RcdTyp,Buffer); IR

ILINKAGE FORTRAN;
BEGIN T
ITEM RedTyp S 15;
ITEM Buffer C 125; -
END R
DEF PROC Writefed;
BEGIN
LoopCnt = Lids|nBuffer;
|f RedTypl = AsciiB; ‘
BEGIN
ChkSum = 4B°'0000° ; e
OutBuff<0> = LdAd(O); AT

ChkSum = ChkSum XOR OutBuffB(0); = oot

OutBuff<1) = KdsinBuffer;
ChkSum = ChkSum XOR OutBuffB(1);




...............

FOR Ix: 1BY 1 HHILE Ix <= LoopCnt;
BEGIN
OUTBUFF(Ix+1) = Buflid(ix);
ChkSum = ChkSum XOR OutBuffB(ix+1);
END

OutBuffBCix+1) = ChkSum;
Printf(RedTypl ,0utFid);

END
ELSE

Printf<RadTypl, OutFid);

BufPtr(Buff) = 1;
Buff = RBSC1-Buff);

RETURN;
END
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* DATE: 10 October 1965 * N
* UERSION: 1.0 *

* NAME: loCalls »

# MODULE NUMBER: 9 *

* DESCRIPTION: o

» This compool is required for RafMat to reference its *

* associated FORTRAN |0 routines -

* PASSED UARIABLES: N/A .

* RETURNS: N/A . -
* MODULES CALLED: N/R » '

* AUTHOR: Capt. Steven A. Hotchkiss and b

. Capt. Jarnifer Fried *
* HISTORY: This project sas undertcken as o thesis project for . o
* partial fulfiliment of requirements for an MS * . N
* in information Scienca from the Air Force Institute * q
* of Technology. Sponsoring organization is the ASD » T
* Language Control Branch, Wright Patterson AFB,0h. *
L] ]

STRART ',-';.“":‘1
COMPOOL loCal Is;

REF PROC LriteRcd;
BEGIN
END

REF PROC GetHdr; el
ILINKAGE FORTRAN, R
BEGIN
END

REF PROC Readf(: | tsRed,Eof);
ILINKAGE FORTRAN; - 1
BEGIN R
ITEN |tsRed C 80;
ITEM Eof B 1; e
END

REF PROC Printf<RcdTyp, Buffer);
ILINKRGE FORTRAN;
BEG!IN
ITEM RedTyp S§ 1S;
ITEM Buffer C 126;
END

REF PROC CIinp; e

ILINKRGE FORTRAN; e
BEGIN
0o

REF PROC IntFil;
ILINKAGE FORTRAN; .4
BEGIN
EMD
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* DATE: 10 October 1965 » e
* UERSION: 1.0 » ."'_"'
* NAE: loData »
* MODULE MUAMBER: 8 » S
* DESCRIPTION: » {
* This compool dafinas all data required for tha JOVIAL *
b routine RefMat and its associated FORTRAN (0 routines *
% PASSED UARIABLES: N/ .
* RETURNS: N/A » U
* MODULES CALLED: N/R »
* RAUTHOR: Capt. Steven A. Hotchkiss and *
» Capt. Jannifer Fried »
* HISTORY: This project was undertaken as a thesis project for *
* partial fulfllimsent of requiresents for on MS degrea *
L in information Scienca from the Rir Force institute * N
» of Technology. Sponsoring organization is the ASD * .
» Language Control Branch, Wright Patterson AFB,0h. *
» »

L ialies afile ¥

P\;

e START 5
COMPOOL (oData;

: DEF ITEN Infi| cC 10;

DEF ITEM Outfil c 10;
DEF ITEM Filnam C 6;
DEF ITEM Heoder c 80;

DEF TRBLE 1tsTabla<0) W 20;

BEGIN
ITEM Addr  C 4 POSC16,00);
ITM T C1  POSCIB,O0); }
ITRMCnt  C 1 POSC24,01); N

. ITEM Cntl S 7  POSC24,01); .

- ITEM Md) €4  POSC08,03); S

- ITEM 42 C 4 POSCI6,05);

8 ITEN I3 C 4 POSC24,07);

- (TR U4 C 4 POSCO0, 10);

g ITEM Wd5 C 4  POSCOB, 12);

le ITEM MdB C 4 POSCIO, 14); -

g ITEM Ud? C 4  POSC24, 16); g

\ N

¢ DEF ITEN itshcd C 60;

; OVERLAY |tsAcd: |tsTable;

. DEF TRELE OutRcd (0:62) T 18 K; i
BEDIN o

I ITEN OutBuff  § 15 POS(O,0); |

; ITEM OutBuffs B8 16 POSC0,0);

.' )

s DEF ITEN  OutFid C 126;

2 OVERLAY OutRcd: OutFid; :

! -

. : DEF |TEM Eof B {;

{ DEF ITEM RedTypl S 15,

.................... TN
G
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. DEF ITEM RedTyp € 2; 5
R OVERLAY RedTyp!: RedTyp; -

OVERLAY Infil, OutFil, Filnam, Header, |tsRcd, OutFid, Eof, RedTup;

(-
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. »
* DATE: 10 October 1989 »

* UERSION: 1.0 * (
* NAME: RfMtCpl *
* MODULE NUMBER: 10 »

* DESCRIPTION: *

- This compoo! contains al) the variables and tables *

» that are used to unpack ITS |inker records, packs theam *

* and corwerts the HEX characters to binary dato fields, *

» and then piaces thea into a SPERRY 1631 loader record *
* format b .
* PASSED UARIABLES: N/A e L
* RETURNS: N/A * R
* MODULES CALLED: NA *
* AUTHOR: Capt. Steven A. Hotchkiss and . RN
» Capt. Jemnifer Fried . (
* HISTORY: This project was undertaken as a thesis project for » e

* partial fulfiliment of requiresents for an MS »

L in Information Scienca from the Rir Force Institute »

» of Technology. Sponsoring organization is the RSD *

* Language Control Branch, Hright Patterson AFB,0h. *

» ] -

START
COMPOOL RfMtCplI;

DEF ITEM ChkSum B 18; L.
DEF ITEM FirstPass B8 f;
DEF ITEM LdPt s 15; )
DEF ITEM Buff U s 3
DEF ITEM Ix U s; L
DEF ITEM |y U s; p
DEF ITEM WdsinRed S 1S; :
DEF ITEM LoopCnt s 1S;
DEF ITEM WdsinBuffer § 1S;
DEF ITEM Zero STATIC C t = '0';
DEF ITEM AsciiO STATIC S 7;

OUVERLAY Zero: AsciiO; ..

ITEN Nine STATIC C 1= 'Q‘;
ITEM Ascii9 STATIC S 7?;
OVERLAY Nina: Rscii9;

DEF ITEM AR STATIC C 1= 'A‘';
DEF ITEM AsciiR STATIC S8 7;
OVERLAY AR: Asciif;

0y

DEF ITEM FF STATIC C 1 = ‘F'; o
DEF ITEM RsciiF STATIC S 7; o
OVERLAY FF: AsciiF,;
A

OEF ITEM B8 STATIC C 2= ' B;
DEF ITEN AsciiB STATIC S 1S;
OVERLAY BB: RsciiB,
L
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DEF TRELE LoadPoint ¢0);
BEGIN
ITEN LaRd S 1S;
END

DEF TRBLE BufStuf <0:1);

BEGIN
ITEM BufPtr 8 7;
END

DEF TRELE PackedRcd (0) M 8;
BEGIN
ITEM AddrC C 4 POSCO,0);
ITEM WdIC C 4 POSCO,1);
ITEM Hd2C C 4 POSD,2);
ITEM Hd3C C 4 POS(O,3);
ITEM W4C C 4 POSCO,4);
ITEM WSC C 4 POSCO,S);
ITEM Ha6C C 4 POSCO,8);
ITEM Hd?C C 4 P0S(0,7);
N

DEF TRBLE CharCorwert (1:32) T 8 W;
BEGIN
|TEM CharToBin S8 7 POSC0,0);
ITEM Nibbles S 3 P0S<4,0);
END

OVERLAY PackedRcd: CharCorwert;

DEF TRABLE HexBuf €1:32) T 4 W,
BEGIN
ITEM HalfByte S 3 P0SC0,0);
END

DEF TRBLE Pakits <0:7) T 16 U;
BEGIN
ITEM Laddr S 13 POSC0,0);
END

DEF TRBLE BinFialds ¢0:7) T 16 W;
BEOIN
ITEM Field S 15 P0S(O,0);
ITEM Flaldd 8 7 POSCO,0);
g.g Fiald § 7 POS(8,0);

OVERLAY HexBuf, Ix: Paklts: BinFields;

DEF TRBLE DatFields ¢0) W 1;
BEGIN
ITEM BufByted § ? P0SC0,0);
ITEM BufByte! S 7 POS(8,0);
ITEN Bufid S 15 P0SC0,0);
END

S

-
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C DATE: 10 October 1983 c A

C UVERSION: 1.0 c e

C NAE: IntFil c L

C MODULE NUMBER: 6 c N

C DESCRIPTION: c )

c This routina is called by the JOWIAL routine called C

c RafMat. (is purposa is to prompt the user for the c ‘3

c nane of a file that was creatad by an ITS link, c Lol

c proapt tha user for tha nome of a file that the c .

c reforsatted ITS file is to be wittan to, and then c

c opans both files. Tha input file sust ba a “.S0" flla C

c and the output file is a ".DAT" file. c

C PASSED UARIABLES: Nona c .

C RETURNS: Nothing c o

C GLOBAL VRRIABLES: AI! variables used are global, and have been c ' ‘

c definad in tha cosmon (COMPOOL)> cal led loData c o

C MODULES CALLED: Nona c g

C AUTHOR: Capt. Steven A. Hotchkiss ond c .

c Capt. Jennifer Fried c .

C HISTORY: This project was undertaken as a thesis project for c Lo

c partial fulfilimsent of requiresents for an NS c P

c in Information Science from the Air Forca iInstituta C K

c of Technology. Sponsoring organization is the RSD c

g Language Control Branch, Wright Patterson AFB,0h. g

L]

Subroutina IntFil

IMPLICIT INTEGER (R-2)

CHARRCTER*S  Filnom
CHARACTER*10  Infil, Outfil -

WRITEC(™,*)' Enter File Noma (Max 8 Characters) '
READ(*™, 10)F | Inam

10 FORMAT(RG )
| = |NDEX(Filnom,*.') = 1 {
IF CI.LE.O) THEN "

} = INDEX(Filncm,' ') - 1
IF ¢|.LE.O> THEN

i =8
ENDIF
ENDIF
T
Infil = Filnam¢1:13//*.80° T
Outfil = Fiinam<1:()/7* .DAT"

HWRITEC(*,*)’ Input File = *,Infil, 'Output file = *,Qutfil

OPENCUNIT = 2, NAE = Infil, TYPE = 'OLD’, FORM = 'FORMATTED') o
OPENCUNIT = 3, NAME = OutFil, TYPE = "NEN', o
{FORM = 'UNFORMATTED' ) T
ENO
I
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c
c
c
c
c
c
This routine perforas I10 for g JWIAL routine called C

RafMat. |t requasts a user to input a ona line c

header that wil! be placed in a loader file. c

PASSED UARIABLES: Nona c
RETURNS : Nothing c
OLOBAL VARIABLES: Al variables used are global, and are defined in C
the cosmon (COMPOOL) called loData c

MODULES CALLED: None c
AUTHOR : Capt. Staven R. Hotchkiss and c
Capt. Jemnifer Fried c

HISTORY: This project was undertaken as a thesis project for C
partial fulfillsent of requirements for an MS degree C

in Inforsation Scienca from tha Rir Force Institute c

of Technology. Sponsoring organization is the ASD c

Language Control Branch, Hright Patterson RFB,0h. g

OO0 OODOOOOOO0

Subroutine GetHdr
\s IMPLICIT INTEGER (A-2)

INTEGER*2 Spacer 1
CHARACTER*B0 Headar
CHARACTER* { RS
OATA RS/30/

1=0
WRITE(*,*)' Enter Optional 1 Line Header Text '
Read(*, 10 )Header
10 FORMAT(ABO )

L .v. ".
AN s Y=

HRITEC*, % Header
WAITE(3)>' D'//Header//RS
00 20 (=42,04
WRITE(3)Spacer1
20 CONT INUE -
B0 5
... 8
q
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DATE: 10 October 19685
UVERS 1OM 1.0

NAME : Printf

MODULE NUMBER: 4

DESCRIPTION:

This routina is callied by the JWIAL routine called

RefMat. It is used to write SPERRV |ocader records out
to a ".DAT" fila. Tha noma of the fil baing written is
stored in tha global variable Qutfil which was sat in

the routine called IntFil
PASSED UARIABLES: Nona
OLOPAL VUARIABLES: Al variables used are global, and are dafined in
the common (COMPOOL) called loData e
MODULES CALLED: None ' P
AUTHOR : Capt. Staven R. Hotchkiss and -
Capt. Jannifer Fried '

HISTORY: This project was undertoken as a thesis project for

partial fulfillment of requirements for an MS degree
in Information Science from the Air Force Institute
of Technology. Sponsoring organization is the RSD
Language Control Branch, Wright Patterson AFB,0Oh.

c
c
c
c
c
c
c
c
c
c
c
c
RETURNS : Nothing c
c
c
c
c
c
c
¢
c
c
c
c

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Subroutine Printf(RedTyp, OutFid) i !
IMPLICIT INTEGER <A=~2) o
CHARACTER*2 RedTyp
|NTEGER*2 OutFid(1:63)

HRITECI )RedTyp, COutFIdCl), | = 1,83)
WRITEC®, *)'Write next record’

END
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C ORTE: 10 October 1963 c
C VERSION: 1.0 c -~
C NRME: Readf c
C MODULE NUMBER: 3 c N
C ODESCRIPTION c W
c This routine is called by tha JOWIAL routina called c "
c RafMat. Its is usad to read 80 colusn records created C N
c by the 1TS |inker. Thtnmofﬂnfilbcingnadis c >
c stored in the gicbal variable Infil which was set in C -
(> tha routine called IntFil. This file is a ".80" file C s
C PRASSED VARIABLES: None c
C RETURNS: Nothing c
C GLOBAL VARIABLES: A!l varicbles used are global, and are dafined Iin C _
c the coamon (COMPOOL) called locData c o
C MODULES CALLED: Nona c
C AUTHOR: Capt. Steven A. Hotchkiss ond c
c Capt. Jannifer Fried c
C HISTORY: This project was undertiaken as a thesis project for c
c partial fulfiliment of requiresents for an MS degrese C
c in Information Sciencea from the Air Force Institute c
c of Technology. Sponsoring organization is the RSO c -
c Languaga Control Branch, Wright Patterson AFB,Oh. c -
€ c
Subroutine Readf(| tsRcd, Eof)
IMPLICIT INTEGER <R-2) o
CHARACTER*G0 1| tsRed
LOG | CAL ™+ Eof ~
Eof = .FALSE. --
RERDC2, 10, END = 20) |tsRed
10 FORMATCRBOD )
HRITE(», *)| tshed
GOTO 30
20 Eof = _TRUE.
30 CONT | NUE )
END
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c c
- C DATE: 10 October 1989 c
| C VERSION: 1.0 c
; C NAE: Cinlp c
3 C MODULE MUMBER: S c
: C DESCRIPTION c
- c This routina is called by the routine RafMat to closa C
- c tha files it used for 0 c
" C PASSED VARIABLES: Norma c
C RETURNS: Nothing c
' C MODULES CALLED: Nona c
C OLOBAL VARIABLES: Allvariables used are global, and are dafined in c
c the common (COMPOOL) called ioData €
C RAUTHOR: Capt. Steven A. Hotchkiss and c
. c Capt. Jamnifer Fried c
E C HISTORY: This project mas undertaken as a thesis project for c
‘ £ partial fulfiliment of requiresents for an MS degree C
c in Information Science from tha Air Force Institute c
c of Technology. Sponsoring organization is the RSD c
c Language Controli Branch, Hright Patterson AFB,0h. c
c c
. L
Subroutine Cintp
- IMPLICIT INTEGER (A-2)
] \e
| CLOSECUNIT = 2)
. CLOSECUINIT = 3)
) o
R
)
)
. P
- __;‘.J
- R
] e
o -‘,'.‘:j'.‘w
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| RSM1730 — Rssembia a 1730 source module

1730 file

file = input source name of module file.SI

! Create fAsseabler input file Ul that designates Mii-Std-1730R as the target
rather than the alternate 1730A targat

$ CREATE 'P1'.U!
ASSEMBLE TRARGET=1730R
:W'Nnm
!
$ RSSION 'P1°.UI
$ ASSION ‘P1’.S|
$ ASSION 'P1°.08J
$ ASSIGN 'P1'.S0
$ RSSION 'P1'.LD
:mQMLMJMﬁJHm
|
$ SET UVERIFY
: M1750R
!
$ DEASSIGN S)
$ DERSSIGN Ui
$ DERSSION 00
$ DEASSIGN SO
$ DERSSION LO
- $ DERSSIGN Ol
\e $ !

$ DELETE 'P1".UI;»
$ SET NOVERIFY

L 2 2 2 2 4 2 2 2 J

§

INPUT COMMANDS FILE CINPUT)
RSSEMBLY SOURCE FILE CINPUT)
QUTPUT

IC QUTPUT

ING OUTPUT

{eikis

i

25882<
L
2

INPUT

............................................
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g 1 JOUI7S0 — JOVIAL COMPILE FOR MIL-STD-1730R TRARGET
!
: ! JOV1750 file [.filatypa] [options]
{
$!eg., JOV1?S0 TEST1 .SRC  /SYNTRAX_OMLY/STATISTICS
: ! @JOV1750 TEST2 /MACHINE_CODE /CAQSS
!
$ ! Nota: If tha filatype is JOV, options may be typed as 2nd poramater.
gl If a filetype is supplied, it must ba preceded by a “." as shown.
'
: | Rasulting object module has type .0BJ
!
$ SET VERIFY
$ JOVIAL 'P1' ‘P2’ /TRARGET=1730A/NO|NFO/CROSS /ASSEN'P3’
98
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g { LINK1?730 — Link ona or more 1750R target object modules.
!
, : | BLINKI?SO  file
i {
i
. $! file = object file (containing one or more object modules)
$! create object file by first deleting all .obj files for
$! COMPOOLs that don't contain amy DEFs. Then usa the
g ! following commands to create the object file
}
I $ ! COPY *.0BJ fila.O
: ! RENAIE file.0 file.0BJ
|
$ ! 0BJ files created by tha compiler and the assesbler can ba copied to the
$ ! saome 0BJ file, but the UAX will give an incompatible files warning. Ignore
:! tha warning, the copy is sade anyeay
|
i : | Create Linker input file “UI"
!
g SET VERIFY
{
$ CREATE 'P1'.UI
.LINK DATA,L1ST,DEBUG, INPUTS
> ALLOCATE LOCATION=1000 MODULES .
l;lN(ENJ
{
$ ASSIGN 'P1' . UI Ul I LINKER CONTROL <IMNPUT)
$ RSSIGN 'P1'.08J 00 ! OBJECT MODULE(S) CINPUT)
_ $ ASSIGN 'P1'.S0 S0 ! LORD MODULE (OUTPUT)
- $ ASSIGN 'P1' LD Lo ! LINKER LIST FILE (QUTPUT)
] ‘ 4 : ASSIGN LIB.JOVIAL_ 1750/ ol ! LIBRARY OBJECT FILE CINPUT)
]
$ ITSLINK ! RUN 1730A Linker...reads logic device Ul
$ ! Qutput on SO and LO
$ DEASSIGN U\
$ DEASSIGN 00
. $ DERSSIGN SO
$ DERSSIGN LO
: DERSSIGN 01
!
$ DELETE 'P1'.UI;*
$ SET NOUVERIFY
4
J
)
)
g9
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LOGIN.COM This command procedura is invoked with each login.
and may be changed to tailor your anvironment.

s smm Amm sam e

Set standard aliases. Note that ssverqal UNIX-|ike aliases are sat up.

L X 2 2 3 2 2 4

§

;== SHOW DEFAULT ! Lika UNIX ped command

;== SHOM DEVICES
.mw SHOW SYMBOLS /GLOBAL /ALL

;== SHOW TERMINAL
;= SHOW USERS ! Like UNIX who cosmand
;== SHOW QUEUE SLAMSQUEUE /ALL

S80 ;== SET TERMINAL /W|DTH=80

S132 ;== SET TERMINAL /MIDTH=132

JOU1730 == @JOV1730

LINK1750:== 8L )NK 1730

SIMI?7S0 == @SIM17S0

ASM1730 == GASM 1730

UNLOCK :== QUNPROTECT

co

08

E

HOME

Lo

LS

PQ :
PS :s= SHOM PROCESS ! Lika WNIX ps command
PHD

R

S0

S8

ST

WHO

SHQ

\~

: End user dafined keyins.

; DEFINE JOVIAL LIBRARY FOR AUTOMATIC SEARCHING FOR VAX TARGET
ASSIGN JOUL1BU:JOULIBU.OLB LNKSL | BRARY

Tha following defines the 1730A support tools pseudo-commands:

INKSOR == LINKITS
RAIDX :== $TOOLS:RAID

|
1
]
1
!
L

]
! END LOGIN.COM
!
INISH:
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= This procedure is the main driver for the Tchebyshef economization -.e_‘:.r_
-— of a polynomial. '
B e e S A

ECONOM| ZED.POLYNOMIAL : FLOAT_VECTOR <0..MAX_DEGREE) :=
<0. .MOCDECREE = 0.0);
-—The is the resulting economized coafficients to tha polynomial o
SUM: FLOAT_VECTOR ¢G..MAX_DEGREE) := <0..MAX_DEGREE => 0.0); -
==This valua is a teaporary work area for the sum of the coluans
== of the work matrix
WORK_MATRIX: FLORT_MATRIX ¢0..MAX_DEGREE, O..MAX_DEGREE) :=
<0. .MAX_DECREE => <0..MAX_DEGREE => 0.0));
-—~Temporary work area for forming tha economized coefficients Tels
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procedura DISPLAY_VECTOR <PRINT_VECTOR: in VECTOR) is
-=The sole purpose of this routine is to display an Integer vector

package INT.IO is new INTEGER.IO (integer);
usa INT_IO;

bagin —Display Vector.
for | in O..DEGREE_OF_POLYNOMIAL |oop

put ¢* *); ., .
put (PRINT.VECTOR (I)); A

new..| ine; -
eand loop; B
end DISPLAY_VECTOR; .
r -
4 . )
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procedure DISPLAY_FLOART_VECTOR (PRINT_VECTOR: in FLORT_VECTOR) is ‘-l:."-ﬁ-’
—The sole purpose of this routine is to dispiay a floating point vector N

package INT_IO is new INTEGER.I0 (integer); WA
use INT_IO; O
package FLT.I0 is new FLOAT.IO (float); e,
use FLT.10; ».-_{.-;:

YA
begin —Display Float Vector. RS
for | in 0..DEGREE.OF..POLYNOMIAL |oop
put (1)J;
put ¢* "),
put (PRINT_VECTOR ¢I));
new_l ina;

end loop; S
end DISPLAY_FLORT_VECTOR; o

.....................
.......................
............................
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procedure DISPLAY.MATRIX (PRINTIRATRIX: in MATRIX) is
~Tha sole purpose of this routine is to display an integer matrix

package INT_I0 is new INTEGER-IO0 (integer); v
use |HT_|0; _.::_.::_
packaga FLT.I10 is new FLORT_IO (float); e
usa FLT.I0;

begin —Display Matrix. .-...a_
for | in 0..DEGREE_OF_POLYNOHIAL |oop N

put <1); -
put = *); -
. for J in 0. .DEGREE_OF_POLYNOMIAL loop )
: put CPRINTMATRIX (1,J)); :

‘ put ¢* ); A

E end loop;

! nes_|ine; Sanar
end loop; :

end DISPLAY_MATRIX;
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procedure DISPLAY_FLORT_MATRIX <PRINT_MATRIX: in FLOATMATRIX) is
=—The sole purpose of this routine is to display a floating point matrix

package INT_I0 is new INTEGER.IO C(integer);
use INT_I0;

package FLT_I0 is new FLORT_IO (float);
usa FLT.I10;

bagin —Display Float Matrix.
for | in O..DEGREE_OF_POLYNOMIAL loop
put <1);
put (* *);
for J in 0..DEGREE_OF _POLYNOMIAL |oop
put (PRINTIATRIX <I,J));
put ¢* ");
end loop;
new_l ine,
end loop;
end DISPLAY_FLOAT_MATRIX;

vv. Y

o
. o
{
-l' ..‘-
2o
{
-
{

-




T B T B AR A e b S A A S i S A tua

anentiatuiimiuniiesiusiuiusiestspuiauieoiaiasguisestectsiesiustmiuiuisnissiunininhsbaiuuiosisssiuiriiniuinioingeiisinisiuishuiuisinupuuininpui

begin —Tchebyshef Economization.

INPUT_COEFF ICIENTS;

put ("input Coafficiants®),;
new.line;

DISPLAY.FLORT_VECTOR <COEFF{CIENTS);

COMPUTE._TCHEBYSHEF _POLYNOM 1AL ;

new.! ina;

put ("Tchebyshef Polynoaial”);

new_line;

DISPLAY.MATRIX (TCHEBYSHEF_POLYNOMIALS);

COMPUTE_POLERS.OF _.TCHEBVSHEF ;

neu_line;

put ("Powers of Tchebyshef");

new_line;

DISPLAY_FLOAT_MATRIX (POUERS.OF _TCHEBYSHEF ),

-—-Ganerate the work matrix used in the final calculations of the eaconomized
— polynomial. RAgain the matrix is lower trianguiar.
for | in O..DEGREE_OF_POLYNONIAL |oop

for J in0..1 loop

NORK_MATRIX €1,J) := float(MULTIPLIER (1)) * POUERS_OF_TCHEBYSHEF (1,J)
 COEFFICIENTS <1);

end loop;

and (oop;

-—ficcumu, ‘a the sum of the work matrix coluans
for | in 0. .DEGREE_OF_POLYNOMIAL {ocop
for J in 0. .DEGREE_OF POLYNOMIAL 1oop
SUMCJ) = SUNMCJ) + CHORK. MATRIXCI,J));
erd loop;
end loop;

—Perfora tha final additions and muitipiications to form the resuit.
for- 1 in O..(DEGREE_OF .POLYNOMIAL - 1) loop
for J in0..1 loop
ECONOM I ZED_POLYNOMIAL (J) := ECONOMIZED_POLYNOHIAL (J) +
float{TCHEBYSHEF _POLYNOMIALS (1,J)) * SUM (1);
end |oop;
end |oop;

new.| ina;

put (“Economized Polynomial”);
naw_|ine; TINL
DISPLAY_FLOAT_VECTOR (ECONOMIZED_POLYNOMIAL), s

end TCHEBYSHEF _ECONOH | 2RT 10N,
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DATE: Decesber 1, 19683
VERSION: 1.0
MAMES: TCHEBYSHEF _PRCKRGE
STRING_TO.INT
INPUT_COEFF ICIENTS
COMPUTE_TCHEBYSHEF _POLYNOM | AL
COMPUTE_POWERS _OF _TCHEBYSHEF
DISPLAY_VECTOR
DISPLAY_MATRIX
DESCRIPTIONS: Provided with each routine.
PRSSED URRIABLES: Thae input to this system is tha description of
the polynoaial to be economized.
RETURNS: The result of processing is tha coefficients of the
econcaized polynoaial.
CALLING MODULES: TCHEBYSHEF_ECONOM|ZATION
AUTHOR: Capt Jennifer Fried and
Capt Steven Hotchkiss
HISTORY: Original version, Dec 1, 1985

with TEXT.I0; use TEXT.IO;
package TCHEBYSHEF.PACKAGE is

I
- This package receives the coefficiants of a polynomial that is to be
== economized, computes its Tchebysheg poiynomial, and tha powers of
= Tchebyshef matrix.

~~Unconstrained type declarations
type MATRIX is arroy Cinteger rangs <>, integar range <>) of integer;
-=tatrix of integer values, used to contain tha Tchabyshef polynomials
type FLOAT.MATRIX is array (integer ranga <>, integer ranga <) of float;
=—Hatrix of floating point values, used to contain tha powers of
== Tchebyshaf
type VECTOR is array (integar range <>) of integer;
==Uactor of integer values, used to contain the multiplier of tha matrix
type FLOAT.VECTOR is array Cinteger range <») of float;
—Vsctor of floating point vaiues, used to contain the coefficients of
== tha polynomial

—yariable declarations
MAXDIGIT: integer := 19;
==The saxisum mmber of digits pereitted in o mmber is nine.
== This vaiua represents the saximum input string length for two mumbers
— and a siash, "/".
MAX_DEGREE: integar := Q;
==The maxisum value of the iargest exponant of the poliynomial
DEGREE_OF _POLYNONMIAL: integer := 0;
—The actual valua of the largest exponent as input by tha user
COEFF ICIENTS: FLORT.VECTOR <O..MAX_DEGREE) := (0..MAX_DEGREE => 0.0);
—Contains a coefficient for each degree of the polynomial that was
-— specified by the user
MULTIPLIER: VECTOR ¢O..MAX_DEGREE) := <0..MAX_DEGREE => 0);
-~This vactor contains the reciprocal of the values contained on

== the diagonal of the Tchebyshef polynomial matrix.
== Used in generating the economized poiynomial.

................................................
.....................
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TCHEBYSHEF _POLYNOMIALS: MATRIX <0..MAX_DEGREE, 0..MAX_DEGREE) :=
-~ <0. .MAX_DEOREE => <0..MAX_DEGREE => 0));
s =—Tha matrix obtained whan using the Tchebyshef formula.
' POMERS..OF _-TCHEBYSHEF : FLORT_MATRIX <O..MAX_DEGREE, O..MAX_DEGREE) :=
(0. .MAX_DECREE => (0..MAX_DEGREE => 0.0));
-=The matrix formed when applying the second step of the sconomization
-— algorithe

function STRING_TO.INT (S: string) return integer;
=~This function is used to corwert the input eocfflelmt string into an
== integer vaiua that equates to thea nuserator and the danominator.

—These procedures perfora the functions specified by this package
procedure |NPUT_COEFF ICIENTS; RN
—Gat tha input coafficients for the poiynomial e
procadure COMPUTE_TCHEBYSHEF_POLYNOMIAL ; o
-=0enerata tha Tchabyshaf polynomial matrix ‘
COMPUTE_POWERS_OF _TCHEBYSHEF ;

==Generate the posers of Tchebyshef matrix RN

end TCHEBYSHEF _PACKRGE ;
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package body TCHEBYSHEF._PACKRGE is
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function STRING.TO_INT <(S: string) return integer is
-=5tring to integer equivalent corwersion.

CHAR : character; —individual nusber in each

== placeholder of tha input string.
DIGIT : integer; —Iindividual nuaber in each placeholder

- of the output integar.
MULTIPLIER ! integer :» 1; ==Tens value of the integer
- pointer.

F INRL_RESULT ! integar := 0; -—Output integar being generated.
POSITION . intager := S'last; -—Pointer into input string

- (moves right to laft).
bagin —String to integer corwersion.

-—~Starting from the end of the input string, process eoch
-— successive character until all characters have been corwerted.
while POSITION >= S'first loop

-—Gat one character digit from the input string.
CHAR := SCPOSITION);

, ==|f this is a valid character digit representation, corvert the
N — character into its nuseric representation, and sultiply It by
— jits tens value.
if CHAR in '0'..'9" then
0iGIT := character'pos(CHAR) - character 'pos(’0’');
DIGIT := DIGIT * MULTIPLIER;

| —|f tha final valua will ba tha most negativae rnumber,
dasignate it as tha most negative number and stop

processing. Tha reason this is done is to adjust for the
problen that the absolute vaiua of the most negative rusber
Is 1 digit largar than tha most positiva number and will
rasult in an out-of-bound condition.
if integer’'last = (FINAL_RESULT ~ 1) + DIGIT then

FINRL_RESULT := integer'first;

POSITION := S'first;
else

=—0therwise, this is not tha most negative rumber. Thus,
=— add the current digit to the rest of those found, and
== incresent the tens valus to the next |larger number.
FINAL_RESULT := FINARL_RESULT + DIOIT;
MULTIPLIER := MULTIPLIER * 10;

ed if;

==|f tha original input was negative, then negate the results.
eisif CHAR = ‘=’ then

FINAL_RESULT := -FINAL_RESULT;
end if;

—~fidjust the pointer into tha input string to point to the next

......
.........................

----------------
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- character to the laft.
POSITION := POSITION - 1;
end loop;

—Corwersion finished, return the ganerated integer.
return FINAL_RESULT;
end STRING_TO.INT;
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procedure [NPUT_COEFFICIENTS is
—This procedure obtains the information about the input polynomial and
— convarts the coafficients into floating point format

package INT.I0 is new INTEGER_10Cinteger);
usa |NT_I0;

POMERS: integer := 3;
—~indicates whather all powars, only the sven, or only tha odd powars
— are present in tha input polynomial. Originally sat to out of
= bounds condition to verify proper input.
STEPS: integar := 2;
—|ncremant value for entering the coafficients of the poiynomial
INITIAL: integer := O,
—Starting value for the vaiue of the exponent
COUNTER: integer;
—Loop counter through tha input string
NUMERARTOR: integer;
-—Nuserator of the coafficient
DENOMINATOR: integer;
—~Danominator of tha coefficient
CONVERT_STRING: string <1..MRX.DIGIT);
—String representation of the coefficient
LAST.DIGIT: integer;
—fictual length of the input string

-\. i begin —input Coafficients.
’
—-0Obtain the valua of the largest exponent of the poiynomial.
== |t sust ba between 2 and 9.
while DEGREE_OF _POLYNOMIAL ¢ 2 or DEGREE_OF.POLYNOMIAL > MAX.DEGREE loop
put (“Enter the degree of polynomial desired. (Hinimm is 2): ");
get (DEGREE_OF _POLYNOMIAL);
new_! ina;
end loop;

-=0Obtain an indicator for the type of the polynomial's exponents

whila PONERS < O or PONERS > 2 loop
put ("Entar 0 for coafficients for ALL powers of X");
new.line;
put ("Enter 1 for coafficients for 00D powers of X"), P
new_|ine; A
put ("Enter 2 for coefficients for EVEN powers of X"),; e
new_line; N
get (POLERS), e

end loop;

BT

--Sat the initial and incremental values for obtaining the polynomial - ﬂ
— coafficients. Saves timse. R
if POMERS = 0 then DI
STEPS := {; S
elgif PONERS = { then
INITIAL := §; SIRN
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—0btain the coefficients for each elament of the polynomial
put (“Enter tha coefficients of the series baing expandad by");

new_| ine;

put (“ entering a fraction, i.e. -2/3 or +2/3 or 2/3");
new_|ine;

put ("Coafficiant for X%* °);

new.! ine;

--Loop through al! elements
whila INITIARL <= DEGREE_OF _POLYMOMIAL |oop
put CINITIAL);
put (* = *);
gat_!ine (CONVERT_STRING,LRST.DIGIT);
new_!ine; g 4
= {; SRR

~—Step through the input string looking for the "/ shich separates
i == tha numserator from the denominator. [f ona does not exist, or it
== appears in either tha first or tha last position in tha string,
= then the coafficient sust be resntered.
whila COUNTER <= LAST.DIGIT loop
if (CONVERT_STRING (COUNTER) = ‘/') and
(COUNTER /= CONVERT_STRING'first and
COUNTER /= LAST.DIGIT) then

» d

declare L ’
=—Once the "/" has bean located and is in a proper location o
- obtain the nuserator string and the denominator string.
NUMERATOR_STRING: string renaomes

. COMVERT_STRING (COMVERT_STRING'first. . (COUNTER - 1)); L

] N DENOMINATOR_STRING: string renames q

CONVERT_STRING <(COUNTER + 1)..LAST DIGIT); T

bagin —Block
~—Corwert the two strings into integers
NUMERATOR := STRING.TO_INT (NUMERATOR_STRING);
i DENOMINATOR .= STRING_TO_INT (DENOMINATOR.STRING);

ol K
.o ¢

L o
e e

- A‘.‘ A S

==If the denominator is a valid vaiua, then generate the floating
-— point valua for tha coefficient
i f DENOMINATOR /= O then
COEFFICIENTS C(INITIAL) := float(NUMERATOR) / float(DENOMINATOR);
==increment to the next element in the poiynomial.
» INITIAL := INITIAL + STEPS;
end if;

-—|ndicate that this coefficient has been found and converted
COUNTER := LAST.DIGIT;
end; —Block

end if; .-
-=Point to the naxt character in the input string
COUNTER := COUNTER + {;
end |oop;
end loop;
end |NPUT_COEFF ICIENTS;

13
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procedure COMPUTE_TCHEBYSHEF_POLYNOMIAL is
~—~Generate the matrix of tha Tchebyshef poiynomial. Tha procedurs uses
-~ values of the matrix elements that have already been found.
-— The algorithm is recursive in f'at respect.

begin -—Compute Tchebyshef Polynomial.

~~Tha first two eiements sust ba initialized to allow the following
== passes to usa them.

TCHEBYSHEF _POLYNOMIALS ¢0,0) := |,

TCHEBYSHEF_POLYNOMIALS (1,1) := §;

~=Loop through the lower trianguiar portion of the matrix
== and calculate tha Tchebyshef polynomial values.

for | in 2. MAX_DEGREE |oop
for J in0..1 - 2 loop
TCHEBYSHEF _POLYNOMIALS <1 ,J) :=
TCHEBYSHEF _POLYNOMIALS ¢1,J> - TCHEBYSHEF_POLYNOMIALS ¢l - 2,J);
end loop;

for J in0..1 - 1 loop
TCHEBYSHEF.POLYNOMIALS (I,J + 1) :=
TCHEBYSHEF _POLYNOMIALS (1,J + 1) +
(2 * TCHEBYSHEF_POLYNOMIALS <1 = 1,J));
end loop;
end loop;
end COMPUTE_TCHEBYSHEF _POLYNOMIAL ;
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procedure COMPUTE_POUERS_OF _TCHEBYSHEF is
—Compute the matrix for the powers of Tchebyshaf

COEFFICIENT_LIST: FLOAT_VECTOR <O..MAX_DEGREE) :=
<0. .MAX_DEGREE => 0.0);

INDEX: integer := DEGREE_OF_POLYNOMIAL;

STEP: integer;

POINTER: integer;

[f begin —Compute Powers of Tchebyshef.
while INDEX >= 0 loop
MUATIPLIER CINDEX) := { / TCHEBYSHEF_POLYNOMIALS ¢INDEX, INDEX),;

STEP := INDEX;
whila STEP >= 0 loop
COEFFICIENT.LIST (STEP) := float(TCHEBYSHEF_POLYNOMIALS (IMNDEX,STEP));
; STEP := STEP - 1,
: end loop;
1 POUERS_OF _TCHEBYSHEF ¢ INDEX, INDEX) := 1.0;

STEP := INDEX - 2;
while STEP >= 0 loop
POMERS.OF _TCHEBYSHEF ¢ INDEX,STEP) :=
- (COEFFICIENT.LIST (STEP))
/ t1oat(TCHEBYSHEF _POLYNOMIALS (STEP,STEP));
POINTER := STEP;
while POINTER >= 0 loop
COEFF ICIENTLIST (POINTER) :=
COEFF ICIENT.LIST CPOINTER) + POMERS_OF.TCHEBYSHEF (INDEX,STEP)
* f]oat( TCHEBYSHEF _POLYNOMIALS (STEP,POINTER));
POINTER := POINTER - 2;
end loop;
STEP := STEP - 2;
end loop;
INDEX := |NDEX - 1;
end loop,;
end COMPUTE_POMERS_OF _TCHEBYSHEF ;

end TCHEBYSHEF _PACKRGE ;
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— Date: 28 Novesber 1983
— Varsion: 1.0

— Name: Approx_Dr i ver G
— Module Number: 1.0 ot
- Dascription: This routine loops until a user is done approximating
- whichever function he desires

-— Passed Variables: None

- Raturns: None

=- Globails Used: Choica

— Modules Called: MENU p
= Author: Capt. Steven A. Hotchkiss and

- Capt. Jemnifer Fried

- History: Developed as a thesis and RDA project

with GLOBAL_DATRBASE;  use GLOBAL_DRTABRSE; oL
with APPROX IMATORS; use APPROX|MATORS; S
with TEXT.IO; use TEXT_IO;

procedure APPROX_DRIVER is

NI integer = O;

DEN: integer := 1; ,
CHOICE, KEY : character; ..
QuIT : character := '7°;
pockage INT_IO Is new INTEGER..IOCINTEGER);

use INT_IO;

package FLT_I0 is new FLOAT_)OCLONG_FLOAT); :
use FLT.I0;

bagin

set_page_|length(24);

== initialize data points
COMPUTE_TCHEBYSHEV; T

— lat the user approximsate as many functions as needed

116
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while (CHOICE /= QUIT) loop

— seieact function to approximate
= by giving usars a manu of options
MENUCCHOICE); '

— use the built functions to moke a more accurate approximation
COMPUTE_PRDE_RPPROX I MAT 1ONS ; il

COMPUTE_CMK; g
If CHOICE /= QUIT then )
for | in 0..M loop
if CKNM, 1) /= 0.0 or C<Dan,!) /= 0.0 then

put(gee");
put(ll;
put(” == *);
Put(CCMmM, 1));
putc*  bes); L
putcly; L
put(® ==y *);
put(C(DEN, | ));
naw.l ine;
ond If;
end loop;
ond if;

put("Hit any key to continue”);
gat(KEY);
new..! ina;
end loop;
end APPROX_DRIVER; o
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~— Date: 28 November 1985 R
-= Uersion: 1.0 A
- Nome: GLOBAL_DATABASE
= Hodule Number: 2.0
~ Description: Contains ali global variables AN
-~ Passed Uariacbles: N/R
== Raturns: N/R
-~ Globals Used: ALL
~ Modules Cal led: N/A
~— Author: Capt. Steven A. Hotchkiss and .-
-~ Capt. Jannifer Fried e
-~ History: Compiated for Thesis and ADR praject o
package GLOBAL_DATRBASE is
tupe LONG_FLORT is digits 9,
type VECTOR is array(integer range 0..25) of LONG.FLORT, DI
typa MATRIX is array(integer range 0..25, integer rangs 0..25) of el
LONG_FLOAT; -
type PRDE_MATRIX is array (integar range 0..25, integer range 0..1, I
intager rangs 0..25) of LONG.FLORT;
T: MATR!X; — Matrix containing the coefficients of
— different powers of Tchebyshev poliynomiais )
R: PADEMATRIX; — Used to contain the series of PADE approx AANAS
— R(S,N or D,C) e
. -~ § is tha series number
—NorD N -0 for the mmerator -z
- D -1 for the denominator
-~ C = coafficiant for a power of X for the
- particulor series’ nuserator or R
- denominator R
D: VECTOR; — Error vaiues of PAOE approximations
N: integer; - Power of the rumerator polynomial
K: intager; ~ Power of tha denominator polynomial
N: integer; — Powar of tha initial power series
MACLAURIN: VECTOR; — Contains the coafficients for the

— different powars of “X" for the power

-~ series axpansion of a function
COEFFICIENT: string(1..33); - Used to contain user entered coefficients
=~ d powar series expansion
EPS: LONG_FLORT; - t epsilon
C: MATRIX; -- Final rational approximation -

end GLOBAL_DATABASE;
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— DATE: 28 November 1989

- Ugrsion: 1.0

- Nome: COMMON_PROCS

- Module Numsber: 3.0

== Description: This packoge contains procedures that are invoked
- throughout the systea

— Passed Variacbles: N/A

— Raturns: N/A

- Globals Used: N/A

-— Modules Cal led: N/A .
= RAuthor: Capt. Steven A. Hotchkiss and e
- Capt. Jannifer Fried =
— History: Develioped as a thesis and ADA project

with GLOBAL.DATABASE; use GLOBAL_DATABASE;
package COMMON_PROCS is

procedure POUER_PROMPT(NUM, DEN: out integer; Epsilon: out LONG.FLOAT); _
procedure GET_COEFF ICIENTS(STRUCTURE: in choracter; POUER: in integer); L

n 7'vwvv-

function PRODUCT(FRON, TO, BY: integer) raturn LONG_FLOAT;
function FACTORIAL ¢(NUMBER: integer) return LONG_FLORT;
end COMMON_PROCS;




with TEXT.IO0; use TEXT_I0;
package body COMMON_PROCS is

packaga INT.I0 is new INTEGER.10¢integer);
use INT.IO;

pockage FLT_I0 is new FLOAT_IOCLONGFLOAT);
use FLT.I0;

procedure PORER_PROMPT(NUM, DEN: out integer; Epsilon:

begin
sat_page_length(24);
loop

new_page;

put{"Enter the powar of the numerator(must be integer) "),
get(NUM),;
new.|ine;

put("Enter the power of the denominator(must be integer) "),
gat(DEN);
new_| ine;

put(“Enter the epsilion of corwergence.”);

put("This must be a real fraction and entered as 0.x");
putl{"there x is any string of digits up to 9@ in length °);
get(EPSILON);

new.line;

axit;

end loop;
exception

shen data_error =>
put_! ina("inval id Entry. Reenter data™);

end POWER_PROMPT;
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procedure GET_COEFF ICIENTS(STRUCTURE: in character; POWER: in integer) is

COEFF : LONGFLOAT := 0.0; e
FROM, TO, BY : integer; e

procedure GET_POUER(NUMBER: in integer; COEFF: out LONG_FLOAT) is oty

LAST_SWAP : integer := COEFFICIENT' last-1; EaN
NNMERATOR . boolean := TRUE; .
OUT_COEFF  : LONG.FLOAT; o
CHAR_PTR ! integer;

NUM, DEN : string(1,.19);

1 INPUT_ERROR : exception;

b L
1 procedure COMPUTE_REAL_COEFFC(NUM, DEN: in string;
. COEFF: out LONG_FLOAT) is

CHRR_PTR: integer =
NUMERATOR: LONGFLOAT :=
DENOMIMNATOR, SIGN: LONG_FLOAT :=

begin -— COMPUTE_RERL._COEFF

if (NUMCCHARPTR) = '+') then RNy
\o CHARPTR := CHARPTR + 1; Nohy
» alsif (NM(CHAR_PTR) = '=') then q

SIGN := ~SIGN;

whila CCNUMCCHAR_PTR)Y /= * ') and (CHAR_PTR <= NUM'last)) |oop
NUMERATOR := NUMERATOR * 10.0 +
LONG_FLORT (character pos(NUN(CHAR_PTR)) - ... 9
character 'pos(’'0’'));
end loop;

CHAR_PTR := DEN'first;

if (DEN(CHAR_PTR) = ‘+') then
CHAR_PTR := CHRR_PTR + 1; . |

aisif (DENCCHAR_PTR) = '=') then
SIGN := -SION;
CHAR_PTR := CHAR_PTR + 1;

erd if;

while (CDEN(CHAR_PTR) /= ' ') and (CHAR_PTR <= DEN'last)) loop
NUMERATOR := NUMERATOR * 10.0 + T e
LONG_FLOAT (character ' pos(DEN(CHAR_PTR)) -
character 'pos<‘0’')),; LN

end loop;
COEFF := NUMERATOR/DENOM|NATOR*SIGN;

end COMPUTE.REAL_COEFF;
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begin -— GET_POWER
new.page,

loop
- prompt the user
put{“Enter the coafficients for x**");
put (NUMBER);
put(” ==y “).
Qat(COEFF ICIENT);

-~ pack and separate
for | in COEFFICIENT 'range loo0p
if ¢'0" <= COEFFICIENTCI)> and COEFFICIENT(I) <= 'Q') or
)

< T
COEFFICIENT(!) = '~° or COEFFICIENTCI)> = "+° or L
COEFFICIENTCI) = /' or COEFFICIENTCI) = * * then o "

if COEFFICIENTCI) = */° then
CHAR_PTR := DEN'first;
NUMERATOR := FALSE; EREE
elsif COEFFICIENTCI) = '+' or COEFFICIENTCI) = '=' or T ]
€'0’ <= COEFFICIENTC|)> and COEFFICIENT()) <= ‘Q*) Tl

if NUMERATOR then
NUMC(CHAR.PTR) .= COEFFICIENT(I);

else

DEN(CHAR_PTR) := COEFFICIENTC1);

end if;
CHARPTR := CHARPTR + 1;

end if;
else
raisa INPUT_ERROR; .
end if;
end loop;
exit;
end {oop;

COMPUTE_REAL_COEFF(MUM, DEN, OUT_COEFF);
COEFF := OUT_COEFF;

put(OUT_COEFF >,
new_l ine;
exception
when INPUT_ERROR => put_iina(” Input Error. Reenter value.”);
naw_}ine;
end GET_POMER;

o




begin - GET_COEFFICIENTS
set_page_iength(24);
new_page,

put_l ine("Enter the coafficients for each”);
put_iina("power of the 'X' in fractional form.");
put_linal"If a sign is entered, it must be tha );
put_iine("first character. No blanks are allowed.”);
put_! ina¢“Tha max al lowabie siza is 9 digits par");
put_! ina"mmber.”);

new_|ine;
put_lina("Sample entries: 1/2 , +1/2 , or =1/2%);
new_| ine;
TO := POWER;
case STRUCTURE is
when ‘1’ = FROM := Q;
By := ¢;
shen ‘2’ => FROM := O,
By :=2;
whan '3' = FROM := {;
BY :=2;
whan others=> FROM := 0;
BY = {;
end casa,;

while (FROM <= TO> loop
GET_POUER(FROM, COEFF);
MACLAUR INCFROM ) .= COEFF;
FROM := FROM + BY;

end loop;

end GET_COEFF ICIENTS;




.................

function PRODUCT(FROM, TO, BY: integer) return LONG_FLOAT is

i RESULT: LONGFLORT := 1.0;
| LOOP_TEST: integer := FRON;

begin

while (LOOP_TEST <= TO) loop
. RESULT := RESULT * LONG_FLOATCLOOP_TEST);
| LOOP_TEST := LOOP_TEST + BvY;

end loop;

return(RESULT);

end PRODUCT;

B I R AP R AP R P T S R S S T T AP T S T VN U Y DY A W




P SME B ANL AN Sl ar ot Sl ari Al S b e gl S G SR AVl Sl gl AL SR e sl B Al Aol AN

function FRCTORIAL (NUMBER: integer) return LONGFLOAT is
RESULT: LONGFLORT := 1.0;
begin
for | in 2. .NUMBER loop

RESULT := RESULT * LONG_FLOAT(I);
end (oop;

return(RESULT);
end FRCTORIAL;

end COMMON.PROCS;
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Date: 28 November 1985

Uersion: 1.0

Nome: FUNCT | ONPACKAGE

Module Number: 4.0

Description: This package contains modulies that ore called to either
compute a predafined power series expansion of a function
or allow a users to enter thair own

Passed Uariables: N/A

== Returns: N/A

Globals Used: GLOBAL_DATABASE

Hodules Called: Nona

Author: Capt. Steven A. Hotchkiss and
Capt. Jenmnifer Fried

History: Daveloped as a thesis and ADA project

package FUNCT|ON_PRCKAGE is

procedure SIN_SERIES; o

procedure TANSERIES; 4

procedure ASIN_SERIES; R

_ procedura ATAN_SERIES; o

I \e procedure EXP_SERIES; T
' procedure BUILD_SERIES; .

end FUNCT | ON_PRCKAGE ;
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wi th GLOBAL_DATABASE ; use GLOBRL_DATRABASE ;
wi th COMION_PROCS; use COMMON_PROCS;
with TEXT.IO; use TEXT_IO;
package body FUNCTION_PACKRGE is

procedure SIN_SERIES is
N: integer;
begin
— gat the powers of the numerator and denominator polynomials.

— Aiso prospt the user for a corwergent epsilon.
PONER_PROMPT(M,K,EPS);

— Compute the power of the Macliaurin series. It is the sum of the power
== of tha nuserator, denominator, and the vaiua two
N:=HM+K+ 2

-- Computa the initial approximating polynomial
for | in 0..25 loop

MACLAURINCI ) := 0.0;
end loop;

for | in 1..C(N+1)/2) loop
MACLAURINC1%2-1) := -1 O%=| /FACTORIAL(2%*i-1),;
end loop;

end SIN_SERIES;
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procedure TAN_SERIES is
a N: integer;
in
-- gat the powers of the numerator and denominator polynomials.
-- Aiso prompt the user for a convergent epsilon.
POMER_PROMPT(M,K,EPS);
. -- Compute the power of the Mociaurin series. |t is the sum of the power
-— of the nuserator, denominator, and the valus two
N:=H+K+2;
- Compute the initial approximating polynomial
for | in 0..25 loop
MACLAURINC] ) := 0.0,
k end loop;
MACLAURINC1) = 1.0;
for | in 1..(N+1)/2) loop
- MACLAURINC2*I+1) .= PRODUCT(2, 2*i, 2) /
» FRACTORIAL(2*[+1);
end loop;
end TAN_SERIES;
a \~
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procedure ASIN_SERIES is
N: integer;

begin
— gat the powers of the numerator and denominator poiynomials.

— Aiso prompt the user for a corwergent epsilon. '.'_'-:.‘_'.‘.';'.
POLER_PROMPTM, K, EPS); i
— Compute the power of the Maciaurin series. It iz ithe sum of the power el
— of the nuserator, denominator, and the value two e ’
N:sMH+K+ 2; :_-_.'-.

-~ Compute the initial approximating polynomial R
for | in0..25 loop DN

MACLAURINCI ) := 0.0; s
end loop;

for | in 1..CCN+12/23 loop
MACLAURINC [#*2=-1) := PRODUCT(1, (CI-2Y%2+1),2) /
PRODUCT(2, (1%2-2),2) *
LONG_FLOAT( [%2=1);

end loop;

end ASIN_SERIES; S
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procedure ATAN.SERIES is
N: integer; RO
bagin

— get the powers of the numerator and denominator polynomiails.

— Riso prompt the user for a convergent epsilon.
POUER_PROMPT (M, K, EPS);

- Computa the power of the Macliourin series. It is the sum of tha power
- of the numerator, denoainator, and the vaiua two ATEER
N:=HM+K+2;

-- Compute the initial approximating polynomial ‘
for | in0..25 loop

MACLAURINC] ) := 0.0; PO
end loop;

for 1 in 1..CC(N+13/2) loop :
MACLAURINC2*(=1) := =1.0%#(1=1)/FACTORIALC2Z* |- 1);
end loop;
end ATAN_SERIES;

e
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RN
procedure BUILD_SERIES is T
N . integer; o
STRUCTURE : character; -
L
begin A
set_poge_length(24); Z::j::;
=— gat the powars of the numerator and denominator poiynomiais. S
= RAiso prospt the usar for a convargent epsilon.
POUER_PROMPT(H,K,EPS); N
—Coiputoth.pourof the Maclourin series. It is the sua of the power
- of tha nmerqtor, denominator, and the value two -
N:=Pn+K+2; -
= Compute the initial approximating polynomial
| for | in 0..20 loop
N MACLAURINCI ) := 0.0; Do
: end loop;
&. — Prospt the usar for the structure of the polynomial
- nevw._page; K
L L1 :
y loop
. put_lina("Enter 1 if all powers of X");
L ‘ - put_l ine(“Enter 2 if oniy even powers of X"),
L4 put{“Enter 3 if only odd powers of X ==> ");
9et(STRUCTURE); -
new.! ine;
- if "1' > STRUCTURE or STRUCTURE >'3’ then
put_!ine("Bad Entry. Try again.");
alse c
9 GET.COEFF ICI1ENTS(STRUCTURE, N); - -
end if; o
.
b, axit L1;
‘L. end loop L1;
- end BUILD_SERIES;




procedure EXP.SERIES is
N: intagar;

bagin

=~ get the powers of the numerator and denominator polynomials.
-~ Also prompt the user for a convergent epsilion.
POMER_PROMPT(M,K,EPS);

— Compute the power of the Haclourin series. It is the sum of the power
- of the numerator, denosinator, and the value two
N:sH+K+2;

— Compute the initial approximating polynomial
for | in0..25 loop

MACLAURINC])Y = 0.0;
end loop;

for | in 0..N loop
MACLAURINCI ) := 1.0 / FARCTORIALCL);
end loop;

end EXP_SERIES;
end FUNCT | ON_PACKAGE ;
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--Date: 28 Novesber 19683

-— Uarsion: 1.0

— Name: RPPROX | MATORS

- Module Number: 9.0

— Jescription: This package inciudes procedures that compute
-— opproximations to user salected functions

-~ Passed Variables: N/R

- Returns: N/R

-— Globals Used: GLOBAL_DATABASE

-~ Modules Cal led: N/R

- Author: Capt. Steven A. Hotchkiss and A
-_ Capt Jennifer Fried R
- History: Oaveloped as a thesis and RDA project e

package APPROXIMATORS is
procedure COMPUTE_TCHEBYSHEV,
procedure MENUCCHOICE: out character); o

procedure COMPUTE_PRDE_APPROXIMATIONS;
procedure COMPUTE_CMK;
end APPROXIMATORS;

......




:

package FLT_I0 is new FLOAT_IOCLONG_FLOAT);  use FLT_IO; ey

procedure COMPUTE_TCHEBYSHEV is
begin
~= build tha global table "T" containing the coafficients for
~ each of a saries of Tchebyshev polynomials

7¢0,0) := 1.0; T
T¢1,1) := 1.0; ol
1¢2,0) := -1.0; : .
7¢2,2) := 2.0, ST

(

for | in 3..29 loop

for J in 0..28 loop
TCV,d% 1= TO,J) = TAU=2,);
end loop;

for J in 0..24 loop
T ,J+1) = T, J+1) + 2.0 * T(U=-1,D);
end 1oop,;

end loop; RO
end COMPUTE_TCHEBYSHEV, -.: N..'.
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procedure MENU(CHOICE: out character) is

OUT_CHOICE: character; S
BAO.CHOICE: exception; |

begin
set_paga_length(24);
= cleor screen and print senu

neu_page,
put_l ine("Choosae function to be approximated”);
new_| ine;

put_| ine("Enter
put_! ina(“Enter
put_l ine("Enter
put_l ina("Enter
put_l ine(“Enter
put_! ina{"Enter
put.] ina("Enter

Ty
St
r

for sin"); o
for ton"); R
for arcsin®); L
for arctan™); S
for ep");

for user defined function®);
to quit™)y;

~NOADWN -

loop - '
for | in MACLAURIN'range loop

MACLAUARINCI Y := 0.0;
end loop;

new_! ine;
pute =y *); -~ .
get(OUT_CHOICE); el
CHOICE := QUT_CHOICE;

. case OUT.CHOICE is

when '1' => SIN_SERIES; e

when ‘2’ => TAN_SERIES; i 'q
‘3' => ASIN_SERIES; Tt

‘4’ => ATAN_SERIES;

‘S’ => EXP_SERIES;

‘0’ => BUILD_SERIES;

‘P o= rull;

whan others => raise BAD.CHOICE;

TEEH

end case,;
axit;
end loop;
exception
when BROCHOICE => <
put.lina(”inval id entry. Try ogain”); Tl

end MENU,
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procedure COMPUTE_PRDE_APPROXIMATIONS is

: integer;

! integer = Q;
: integer = 1,
: LONG_FLOAT;

: MATRIX;

: VECTOR;

"§7845

begin

— this procedure converts the initial approximating polynomial
= (the Maclowrin power series) into g rational approxisation
- clear out this PRDE opproximation's numserator
- and denominator poiynomials
for SERIES in 0..23 loop
for NUM.DEN in 0..1 loop
for COEFFICIENT in 0..25 loop
R(SERIES, NUM_DEN, COEFF ICIENT) := 0.0;
end {oop;
end loop;
end loop;

for | in0..M loop == loop for all powars of tha numerator
for J in 0..K loop — loop for all powars of the denominator

If <1 >= J) then
=~ buifd a work matrix to solve simultaneous equations
B<O) := 1.0;
NRX = | + J;

for S in0. . (NMAX - | -~ 1) {oop
for N1 in 0..J loop
HORK(S+1,N1) := MACLAURINCabs(N_MAX - § - N1));
if (N1 = 0) then
B(S+1) = -MACLAURINCabs(NMRX - § - N1));
end if;
end loop;
end loop;

-~ Solve sisul taneous equations for denominator coefficients
for N1 in 1..J loop
if (HORKCNT,N1) = 0.0 then
SETUP:
for N2 in 1..J loop
if (HORK(NZ,N1)/= 0.0) then

® TEMP := B(N2);
‘ BIN2) ;= BN1);
- B(N1) := TEMP,
- for N3 in 1..J loop

TEMP := HORK(N2,N3);
.. WORK(N2,N3) := HORK(N1,N3);
® WHORKC(N1,N3) := TEMP;
- end |oop;
exit SETUP;
end if;
end loop SETUP;
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end [oop;

end

end COMPUTE_PRDE_APPROX | MAT IONS;
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end if;

TEMP := WORK(N1, N1);
if TEMP /= 0.0 then
BC(N1> = B(N1)/TEMP;
else
B¢N1) := 0.0;
end if,

for N2 in 1..J loop
if TEWP /= 0.0 then
HORKCN1,N2) := WORK(N1,N2)/TEMP;
eise
HORK(N1,N2) :=» 0.0;
end if;
end loop;

for N2 in 1..J loop
if (Nt /= N2> then
TEMP := -UORK(N2,N1);
for N3 in 1..J loop
WORK(N2,N3) := WORK(N2,N3> + WORK(N1,N3> * TEMP;
end foop;
B(N2> := B(N2) + B(N1) * TEMP;
end if;
end loop;

end loop;

- use denominator coefficients to compute the numserator
== coafficients, oand buiid tha series of PRDE approximations
for N1 in0..1 loop

for N2 in Q. .Nt loop

ACI+J,NUM,N1) = ACI+J,NUM, N1) + B(N2) * MACLAURINCNI-N2)/
B<0);

end loop;
end loop;
for N1 in reverse 0..J loop

R¢1+J,DEN,N1> := B(N1)/B<0);

B(N1) := B(N1) /7 B4<0);
end loop;

— Compute the D's that ore usad to compute Cim, k)
= OCi+J+1) = SUMIL=0 to & (Maclaurin(i+Jd+i-LI*B(L)]
DCI+J+1) ;=2 0.0;
for L in0..J loop

DCl+d+1) o= DCI+d+1) + MACLAURINC [+J+1-L) * BCL);

end loop;
end if;

loop;
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end COMPUTE.CIK;
end APPROX IMATORS ;

procedure COMPUTELIX is

A. integer := Q;
B: integer = 1{;
LAMDA: VECTOR,

bagin

- Compute the Lamdas (alpho=1)
LAMDACO) = =(D(MK+1) * T(MK,00) / (2.0 (MHK));

for J in 0..(K-1) loop
if DCH+1) /= 0.0 then
LAMDAC S+ 1) = (DCMK+1) ® T4 1, 0+ 1)) /7 (€2.0 *(MK)) * DCJ+1));
else
LAMDACJ+1) := 0.0;
end if;
end loop;

— Load Pm(X)> and Om(X) with their R and B coafficients respectively
for | in0..M loop

C(A, 1) = R(IMHK,A, 1;
end |oop;

for | in 0..K loop
C(B,1) = R(M+K,B, | );
end loop;

-- Compute coefficients "A” of numerator ond "B“ of denominator
for J in 0..(MK~-1) loop
for K in 0..25 loop
R¢J,A,K) ;= RCJ,A,K) * LAMDACJ+1);
C¢A,K> := C(AR,K> + R(J,A,K);
R¢J,B,K) := R¢J,B,K) * LAMDACU+1);
€(B,K> := C(B,K> + R(J,B,K);
end |oop;
end loop;
C(R,0) := CC(A,0) + LAMDACO);

for | in reverse 0..25 loop;
C(R, 1) := CCA, 1)/CCB,0);
c¢B,1> := C¢B,1>/C(B,0);
end loop;
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V- JADDRRN

o e e T
- I
o, R
el Y P

Vo
PP RN




ERARMAAI SR AR SO A I AP A S AL Sl it On R A A e £ K AN ISR ARA AL St b pMC SR A ey (AR PE S gt AR et Pt T ’
Bibliography
1. TRW. “A Study of Embedded Computer Systems Support,” ECS

...................................................................

&

Technology Forecast, 8: (September 1980).

Department of the Air Force. Military Sixteen-Bit Computer
Instruction Set Architecture. MIL-STD-1750A. Washington:
Government Printing Office, 1980

Lynn, H. C. and R. K. Moore."MIL-3TD- 1750 Chip Set: Possible
168-~172. A Collection of—‘reﬁical Papers. New York: American
Institute of Aeronautics and Astronautics, (November 17-19,
1981).

Cody, William J. and William Waite. Software Manual for the
Elementary Functions,:Englewood Cliffs, N.J.: Prentice-tall Inc,,
1880.

Thayer, T. A. "Understanding Software Through Analysis of
Empirical Data,” Proceedings of the 1975 National Camputer
Conference (44). 335-41. Montvale, N.J.: AFIPS Press,1975.

Boehm, B.W., R. L. McClean, and D. B. Urfrig, "Some Experiences
with Automated Aids to the Design of Large-Scale Reliable

Software,” IEEE Transactions on Software Engineering
{SE-1).125-33. March 1975

Peters, L. J. Software Design: Methods and Techniques. New York:

Yourdon Press, 1981

Jensen, R. W. "Structured Programming,” Computer.31-48, March
1981

.............

N
st
- PR
e e
. ot o
. ' R A e
A R
N N ' s s e e e

P B
e, R
'JJJ'Q. oy

. - . o ', . * . »

LRI P P

RN o y o
DR BENINSONET VN,

~



9. Conte, 5.D. and Carl de Boor. Elementary Numerical Analysis, An
Algorithmic Approach (Second Edition). New York: McGraw-Hill
Book Company, 1972

10. Ralston, Anthony. A First Course In Numerical Analusis. New York:
McGraw-Hill Book Company, 1965

11. Hart, John F. Computer Approximations (Second Edition).Huntington,
N.Y.: Robert E. Krieger Publishing Company, 1978

i Ne

..........................................................
...................

PN RIS T YT s A . Y




U DA DAL A/ g e/t BA ey it S A AL LAl o W S0 i i b e ) e T g T T T T T R W T WO TV T

VITA

: Captain Jennifer J. Fried was born on 19 October 1951 at Ft. Sill,
i Oklahoma. In May of 1969, she graduated from High School in Newport
, News, Virginia. She later enlisted in the United States Air Force as a
Computer Programmer, and was assigned to Holloman AFB, New Mexico. In
i 1979, she was accepted into the Airman Education and Commissioning
Program and attended New Mexico State University. Upon receiving a
Bachelor of Science in Computer Science and Mathematics in January
) 1981, she was sent to Officer Training School. Upon graduation, she was
stationed at Peterson AFB, Colorado where she became Chief of the Missile
warning/Space Computer Test Section. While working toward a degree of
i \~ Master of Science in Computer Data Management, she was selected to
enter the School of Engineering, Air Force Institute of Technology, in June
of 1984.
i

Permanent address: 5113 Windgate Court - 1
Colorado Springs, Colorado 80917 |

s mtama B R L P D W/ W VA WY S G PP S A AL S S AL S ST SRS A A SUUE LA SUAR ST TR AR S AP 10 0. S W VAL SRR AT AP R SO S PR




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

R R Ak A BA 28 —
it A A Y Y Y S U T T U R TR W T W W e e

REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION

"y JNCLASS IPIED

b, RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public relzase;
distribution unlimited

4 PERFORMING ORGANIZATION AEPORT NUMBER(S)

AFIT/GCS/MA/85D-3

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION b. OF FICE SYMBOL

(1f applicable)

School of Engineering AFIT/ENC

Ta. NAME OF MONITORING QRGANIZATION

6c. ADDRESS (City. State and ZIP Code)

Alr Porce Institute of Technology
Wright-Patterson AFB, Ohlo 45433

75. ADDRESS (City, State and ZIP Code)

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL

9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A

1 ORGANIZATION (If applicable)

p

N

{ 8c. ADORESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

k. PROGRAM PROJECT TaSK WORK UNIT
ELEMENT NO. NO. NO. NO.

.

b 11 TITLE (Inciude Security Classification)

\ See Box 19

12. PERSONAL AUTHOR(S)

..Iennifer J. Pried, B.S,, Capt, USAF

13a TYPE OF REPORT 13b. TIME COVERED

MS Thesis FROM TO

15. PAGE COUNT

149

14 DATE OF REPORT (Yr. Mo., Day)

1985 December 4

16. SUPPLEMENTARY NOTATION

l|7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP su8. GA. Functions (Mathematics), Approximations,
12 01 Computer Programs, MIL-STD-~1750A
09 01

Title:

Thesis Chairman:

Panna B. Nagarsenker

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
DEVELOPMENT AND EVALUATION OF MATH LIBRARY
ROUTINES FOR A 1750A AIRBORNE MICROCOMPUTER

Associate Professor of Mathematics and Computer Science

N mvedw (Buhlia reletueT LAW AFR 1y,
: ol vivieha s ow $H

. Dean for Research and Pr-fessional Developmeat
3 Al Foroe lustitute o1 T chmoleay (Read

- Wrighi-Patterson /. . O siwsld

.‘ -

o

: A .70 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
uncuassiFieo/unuimited B same as rer O oTic users O UNCLASSIFIED

" : 220. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

T tInclude Area Code)

. Panna B. Nazarsenker 513-255-7210 AFIT/ENC

0D FORM 1473, 83 APR

Bl 80 s an. n

EOITION OF 1 JAN 73 1S OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

D U

LA A kS R At Ad 2ok Rl )




R T T L T T T T e e T T T W o = ¥~~~
A~ I
LN L

ot - -
P UNCLASSIFIED

O SECURITY CLASGIFICATION OF THIS PAGE

s o ERNERERENG
Y

v v
v

This project produced a run-time math library for the MIL-STD-17504

ernbedded carnputer architectures. The math library consists aof the

S LA

algebraic functions. In addition, the steps required for a performance - .,
analysis of the math library have been outlined. S

oeveral approximation methods were investigated. The Chebyshev
canomization  of  Maclaurin - series  palynomials, and  rational
approzimations derived from the second algorithm  of Remes were
determined to be the best methods available. Each function’s
irmplementaion  was designed to  take advantage of features of

MIL-3TD-1730A architectures. The recommended test procedures provide T

rmeasures of the average and worst case generated errors within each

approximation,

. .
-
-
-
-
- e
-

SECURITY CLASSIFICATION OF THIS PAGE

e e . . .- P T I S - .
A PN W e R et A SR - LT
D L R P T AL I B N I P SO e AT et Al et W W




.’.

ST WY e iy

 anll nin ab SN S

© v

POREY

o e oy AT e

? Y




