
IO-RA±64 656 DEVELOPMENT AND EVALUATION OF MATH LIBRARY ROUTINES FOR 1/2
I Al 1?5SA AIRBORNE MICROCOMPUTER(U) AIR FORCE INST OF
I TECH WRIGHT-PATTERSON AFI OH SCHOOL OF ENOI.

UNCRSIFID JFRIED 64 DEC 95 AFIT/GCS/MA/BSD-3 F/O 9/2 M

_t. hhmhhh

6L: 1.0 5.0

l-2'.1-2.-
11.6.

11111!.25

MICROCOPY RESOLUTION TEST CHART

{:.. : :

- .- o- .,- - -

k *. *

O&F-LEC9

FEB 1 '198

OF .,D

TA,.

Jen f q J Fie

DTD

DEELPAMENTDEAUO OF ATH IBRARY

TH UIESITY

AIRFORCJenIfUer O.FriE HOLG

Wriht- atr ton i ceBseO i

*:3

AFIT/GCS/MA/85D-3

DTIC
-rLECTEIl -...
FEB 13 198"

DEVELOPMENT AND EVALUATION OF MATH LIBRARY

ROUTINES FOR A 1750A AIRBORNE MICROCOMPUTER

THESIS

Jennifer J. Fried
Captain, USAF

AFIT/GCS/MA/85D-3

Approved for public release; distribution unlimited

. . -

C ~ . . a-

*~. .. ft A 'ft - ' - ' * , - a --.------------ -- - - - -~. *~** * .

V . / . p.

• " " ~Preface ".=°

The purpose of this thesis was to develop, test, and evaluate the

performance of run time math library routines for those architectures

conforming to MIL-STD-1750A, the instruction set architecture for the

airborne computers used in Air Force avionic weapon systems. The

routines implemented include several algebraic functions that are intended

to serve as a benchmark for future contractor developnent. Appendix A

contains descriptions of the pseudo-operations used to explain the design

of these functions, and will be useful in following the logic.

In developing and performing the evaluation of the math library, and

in learning how to use the different support tools and hardware, I have had

a great deal of help from others. In that respect I am deeply indebted to '

my thesis advisor, Dr. Panna Nagarsenker, for her continuing patience and

" assistance when I needed it. Capt Steve Hotchkiss has my undying

gratitude for his friendship and help in these trying times. I also wish to

thank Mr. Bobby Evans and Mr. Dale Lange, from the sponsoring

organization, for all the help that they gave me in getting the needed

equipment and outside information. Finally, I am eternally grateful to Tim

for his unending love and encouragement.

Jennifer J. Fried

SU .t ib tio. I.

Avalability Codes

Av ii a,,d or
:Dist Sp,-'cial

-::-.-_,? - : : "- ' ..- ". : .:•:. : : . •-- .. ., :

Page

Preface... i

List of Figures.................................... v

List of Tables.................................... viA

Abstract.. vii

1 . Introduction................................... 1

Background.............................I
Problem................................... 3
Scope.................................... 4
Assumptions................................ 5

*General Approach............................. 5.
Sequence of Pesentat ion........................ it

11. Theoretical Development.......................... 12

General Discussion 12
Approximation Techniques 13

Polynomials............................. 14
Definition of Chebyshev Polynomials 16
Chebyshev Economization 17

*Rational Approximations..................... 19
The Second Algorithm of Remes 21

Ill. Development and Design of the Functions 27

General Discussion 27
Square Root Implementation 27

M4

W MI, T- k--L L -'-

Page

Exponential Implementation......................32
Natural Logarithm Implementation 38
Common Logarithm Implementation.................41

IV. Validation Verification and Performance Evaluation ... 43

General Discussion...........................43
Manual Static Analysis Methods...................45::
Critical Value Testing.........................45
Performance Evaluation........................46

V. Conclusions and Recommendations 49

Conclusions................................ 49
Recommendations............................49

Appendix A: Pseudo Operations......................... 54

Appendix 6: Function Source Code 59

Appendix C: Support Software......................... 78

Appendix D: VMS Command Files........................ 96

Appendix E: Approximation Algorithms 101
Bi lo r p y03

Bitloap.. 139

iv

-~~ 7 - -7 - -

UZQL Figures

Figure Page

I. Chart of (a) Waterfall; and (b) Logicalized
Model of a Software Development Cycle 7

2. Calculation of Remes Rational Approximations 20

3. Square Root Structured Flowchart 28

4. Exponential Structured Flowchart 35

5. ,u L

5. Natural Logarithm Structured Flowchart 40
6. Common Logarithm Structured Flowchart...............42 '""-...

7. Bit Layout of 1750A Floating-Point Numbers 70

V

*- *•. L-.-

Table Page

1. Information Flow of the Logicalized Software
Development Cycle........................... 8

2. Chebyshev Polynomnials and
Powers of Chebyshef Polynomials 17

3. Constants for Exponential Determination 34

4. Coefficients for Polynomial Approximation
to Exp...................................... 38

5. Coefficients for Polynomial Approximation
to Alog..................................... 59

.............................vi

- °. .

AFIT/GCS/MA/85D-3

Abstract

This project produced a run-time math library for the MIL-STD-1750A

embedded computer architectures. The math library consists of the

algebraic functions. In addition, the steps required for a performance

analysis of the math library have been outlined.

Several approximation methods were investigated. The Chebyshev

Economization of Maclaurin series polynomials, and rational

approximations derived from the second algorithm of Remes were

determined to be the best methods available. Each function's

implementaion was designed to take advantage of features of

MIL-STD-1750A architectures. The recommended test procedures provide

measures of the average and worst case generated errors within each

approximation.

vi.

I. 1DtLQ.U-°

1.lntroduct ion

Background

The Air Force is interested in reducing the life-cycle costs of its

avionics weapon systems. Standardization of high order languages and

an Instruction Set Architecture (ISA) are two of the many ways the Air

Force can reduce these costs. In the past, a major cost contributor was

the proliferation of unique avionics systems and subsystems. Costs

increased with respect to purchasing and inventorying small-lot spares

at many bases, training technicians to maintain complex and/or unique

flight and test equipment, developing and maintaining software

development facilities, training programmers to write application

* programs in seldom used high order languages, and training programmers

to maintain software (especially operating systems) in seldom used

machine languages. (1: 8.1)

MIL-STD-1750A defines a standard 16-bit instruction set

architecture intended primarily for avionics weapon systems. The major

cost advantage of this standard ISA comes in the form of common

support software tools. An extensive set of support software tools has

already been developed and includes a 1750A assembler/crossassembler,

a J73 compiler with 1750A ISA code generator, a linker program, a

loader program, and a 1750A acceptance test program. (1: 8.4) Other

cost benefits are realized through the independent development of

software and hardware, (2: 1) and common maintenance and test

equipment. (3: 168)

7...

Standardization of languages also has an impact on cost reduction.

"in 1978, the Department of Defense had in its inventory, software

written in about 150 different programming languages. This linguistic

proliferation increased maintenance problems due to programmer training

requirements and lack of support tools for many of the languages."

(1: 6.1) The D.O.D. and Air Force recognized this as a problem, and they

took steps to correct it. The D.O.D. Instruction 5000.31, "Interim List of

D.O.D. Approved High Order Programming Languages," states that only

approved languages may be used for new defense system software.

JOVIAL is one of the few languages approved by this instruction.

As previously mentioned, the development of a standard ISA such as

rIL-STD-1750A helps reduce total life-cycle costs for Air Force

avionics weapon systems. This reduction is partially due to the use of

common support software tools, many of which have already been

developed. As was previously mentioned, one of the support software

tools that has been developed is a JOVIAL compiler that generates

1750A ISA code. However, a math library containing the algebraic and

trigonometric functions required by this language has not been developed.

The sponsor for this thesis is the Aeronautics System Division, Language

Control Branch. They are the D.O.D. JOVIAL and ADA compiler validation

site, and are responsible for the development of such libraries.

Completion of this thesis, with its development of a math library for

software support of 1750A systems, can help the Air Force reduce

avionics weapon systems costs.

2

-. .. .-. .

. ~Problem --

i *

Prior to the completion of this thesis effort, there were no math

libraries written to take advantage of the 1750A instruction set. In

keeping with the intent of recent standardization policies of both the

D.O.D and Air Force, the library created by this thesis is written in the

D.O.D approved language JOVIAL. Actual coding of the library was only a

small part of this thesis. Most of the detail has gone into verification,

validation, and evaluation of the product. As such, the focus of this

report is divided into two primary categories: software development and

software testing.

Math libraries are important because they provide the programmer

several tools that serve as building blocks for applications. Math

libraries prevent programmers from having to recreate each function

whenever one is required for use. Libraries also provides a means for

using functions that take full advantage of the computer architecture for

which they were written.

The design of a procedure for computing the value of functions is

not mathematically complete unto itself. An understanding of a

computer architecture's operation is necessary to insure that the

computation of any given function is as efficient as possible, while also

providing the highest degree of accuracy. Such architectural

considerations include word size, number of bits in both the exponent '

and coefficient fields of a floating point number, the way mathematical

3

r

operations are performed by the architecture, memory size of the

architecture, and execution time. Other considerations include overflow,

underflow, and precision. These considerations for the mathematic

functions define some of the problems addressed by this thesis effort.

This effort was limited to the design, code, and evaluation of

algebraic functions. The functions were included in a math library

targeted for MIL-STD-1750A computer architectures, and are the ones

typically found in most FORTRAN libraries. Specifically, these functions

include square root (sqrt), exponential (exp), natural logarithm (alog),

and common logarithm (alog10).

All functions have been written to accept and return only extended

precision floating-point values. The specific floating-point functions

are invoked by using the name given above.

Performance summaries for each of the functions, and algorithms

are provided in Appendix E. They may be used to determine the

polynomial coefficients for computing any of functions addressed by this

paper. These algorithms produce coefficients that are valid for any

nonvector architecture.

4

°. Assu mpotions ,..;.

During a design review held in May of 1985, it was made clear that

certain events could cause overflow and underf low errors, and division

by zero. Since the functions are to be used within an embedded avionics

weapon system, it is necessary that such conditions are detected and

handled gracefully. The consensus of opinion from all participants of the

design review was that the functions should not be aborted, and that

default values should be returned. The error conditions and values

returned are discussed in the individual design sections of this thesis.

This constitutes an important assumption on how to handle such error

conditions, and needs further investigation before implementation on a

real-time system.

Another factor discussed during the design review was the

distinction between fixed-point and floating-point functions.

Floating-point functions have greater precision than fixed-point

algorithms, but take longer to execute. Although the fixed-point

functions are faster, the algebraic math routines and the JOVIAL

computer language do not lend themselves to this method of calculation.

Therefore, as stated earlier, only the floating-point algebraic math

library functions have been implemented.

General A.pproach

The approach used during this thesis effort, is termed the

"logicalized" model of a software system development cycle. This

5

-*-. approach was considered a better alternative than the more commonly

used "waterfall" method of software system development. The ,. .

"waterfall" method is composed of a neat, concise and logical ordering of

a series of steps, each of which must be accomplished in order to obtain

a final software product. These steps are performed in order and include

systems analysis, requirements definition, preliminary design, detailed

design, coding, testing, and implementation.

The "logicalized" model is similar to the "waterfall" model just

described, but it is more concerned with the problem definition part of

the cycle (see Figure 1). This approach is more useful in eliminating

errors that typically occur during the requirements definition and design

phases of the "waterfall' method. Errors generated during these phases

typically occur because designers have a tendency to shift between
'.

abstract high-level design issues and physical implementation

considerations. Thayer (5: 335-41) and Boehm et al. (6: 125-33)

made it clear that these problems exist, and that design errors not only

outnumber other errors, but that they are also more persistent. For this

reason, more attention was given to the top-down decomposition and

abstract (logical) modeling of this particular software system. Such a .

structured approach recommends a dichotomy between the logical design

issues, and implementation issues.

6

. -.

o~

(~) kb)

Data Collection Problem
_____________Defflitior

Sy
Systemse

___________L a 1e ena

[jenirnt Imteen

* ~ ~ ~ ~ ~~Pe rie na7reDvlomn C~~

D 7
- S ~~sign.*S'

........ taile HL. o- d~ e~ I

• ° . . . °v" .

PHASE INPUT TASK OUTPUT

ANALYSIS Interviews, Model problem Abstract model
random data, and implied of implied
and so on solution solution

DESIGN Abstract model of Model an Abstract model
implied solution implementable of implementable
and environmental solution solution
constraints

CODE Abstract model of Implement Executable
an implementable solution solution
solution

Table I Information Flow of the Logicalized Software
Development Cycle-"

The information flow of a logicalized model is summarized in

Table 1. and is "analogous to an artist's conception of a building, i.e.

there is enough information to allow the customer and designer to

communicate and to establish the buildings pluses and minuses, but not

enough detail to begin construction. A series of reviews, refinements.

and the imposition of local building ordinances, for example, are

* necessary before construction can start." (7:1 4)

Therefore, the approach taken for this project was similar to that

just described. The ASD/Language Control Branch established the

* requirements for a MIL-STD-1750A run-time math library written in the

D.O.D approved high-order language JOVIAL. During a design review and

•6 -

-7"oV.

several other meetings, certain design considerations were refined.

Then a "logical" model was established as a baseline. This was

accomplished by using the refined problem statement, and researching

the different methods for approximating the different algebraic -.-

funct ions.

The baseline model served as a reference from which all decisions

regarding actual implementation could be made. Before proceding to the

next phase of development, two such decisions had to be made. These

decisions were to determine which testing methods and which

performance evaluation techniques would be used after coding was

complete. These decisions determined what sort of tests would catch

all possible errors, and determined what techniques could be used to

I •establish a confidence level for the final product.

Up until this point, the abstract model has been devoid of any

implementation considerations. However, after it was clear that the

abstract design was complete and consistent with the requirements, it

became necessary to consider changes to fit the problem into the

MIL-STD-1750A environment. Before any changes could be made, it was

necessary to complete the following steps: study the architecture and

ISA defined by MIL-STD-1750A; determine what resources were

available, such as software support tools and hardware; and then to learn

how to use the available resources. From there, it was possible to

develop an abstract model of an implementable solution. This model

took advantage of those environmental factors that affected the speed

and accuracy of computation for each function approximation.

9-

The major subset of the logicalized software engineering

methodology just described is called structured programming.

Structured programming can be understood as the decomposition of a

problem in order to establish a manageable problem structure. The

highest conceptual level represents a general description of the problem,

and each level of decomposition provides more detail into the problem.

This decomposition is carried out until the problem is almost in coded

form, and is often called a stepwise refinement of the problem. All

implementation considerations are left until the lowest levels of

refinement.

The goals of structured programming must be to minimize: the

number of errors that occur during the development process; the effort

required to correct errors in sections of code found to be deficient; the

effort required to upgrade sections when more reliable, functional, or

efficient techniques are discovered; and the life-cycle costs of the

software. (8: 32) It must also reduce the complexity of the problem.

Structured flowcharting is a technique used to support these

structured programming concepts and goals, and is "designed to reduce

labels and unstructured branching, encourage a single entry/single exit

approach, aid in the use of top-down design techniques, and enhance

modularization. The approach encourages the designer to conceive of the

system in high-level constructs and not in terms of individual detailed

statements." (7. 116) The structured flowcharting technique was used

throughout the development of this project, not only because of the
0 4

reasons just mentioned, but also for its simplicity and understandability

from a reviewer standpoint.

1012. 2.22 -. .. .:.:.... , .,: ..%.,,....,...,.-.........................•....."-...•"..- "......."-"..

* -.. .. - M , 4 N-£ .'i ',.
t. * .

o-p

Seguence 9L Pesentaion

This thesis addresses the design and performance evaluation of a

run-time math library that is targeted to MIL-STD-1750A architectures.

The requirements definition for this problem has already been discussed

(Chapter I - Problem/Scope). The next topic discussed is the theoretical

development of this thesis effort (Chapter 2). This is followed by a

discussion of the detailed design considerations that were made during

implementation of the library functions (Chapter 3). The last aspects

covered in this report are the test and performance evaluation methods

considered (Chapter 4) and conclusions (Chapter 5).

Appendices include algorithms useful for determining the

pseudo-code operations used in the structured flowcharts (Appendix A),

source listings for the implemented functions (Appendix B), support

software developed in conjunction with this thesis (Appendix C), the VAX

VMS command files required to compile, link, and run the developed

product (Appendix D), and the coefficients for each of the functions

(Appendix E).
* 6

-

-1 Thoetcl Development1~2* .*

Gee& -Discussion

The purpose of this thesis was to create and analyze algebraic

functions developed for 1750A architectures. This chapter is concerned

with the design theory of the algorithms used to approximate those

functions. Within the given constraints, the emphasis for each of the

designs is to compute results as quickly and as accurately as possible.

One way of computing a value quickly is to select an approximation

that converges rapidly towards the value of the true function, f(%). There

were several methods of approximation that were considered; however, the

polynomial and relational approximations described by Cody and Waite

(4: 17-84) were found to be the best. The coefficients given by Cody and

Waite were derived by using Chebyshev Economization of the Taylor series

for each function for the approximation itself, or as a starting point for

computing a rational approximation via the second algorithm of Remes.

An excellent reference for Chebyshev Economization is Conte and de Boor

(9: 265-273), and an excellent reference for the second algorithm of

Remes is Ralston. (10: 301-306)

Another means of reducing the amount of processing time required to

compute a result is to take advantage of certain aspects of the computer's

architecture, as well as the different execution times for different

instructions within the ISA. For example, incrementing the exponent field

of a floating-point value is not only faster, but more accurate than the

12
. • . - " o . : . ".: ' . ~ '. .. + . .

o. .% "

equivalent operation of multiplying by two, or examining the sign bit of a

variable is faster than comparing the entire value to zero. These

techniques have been used, and are referenced in the design descriptions

as pseudo-operations. These operations are equivalent to those described e~'.".
'

by Cody and Waite (4: 9), and are listed in Appendix A.

The accuracy of an approximation may be dependent upon the domain

over which the function is approximated. For example, if the domain of an

approximation is halved, the error may be reduced by a factor of about

2
"a) for all polynomials of degree n. (1 : 59) This can be shown to be

true for most functions, but not all of them. Domain reduction has no

effect on accuracy in approximations of certain functions; however, it

still serves as an excellent guide when designing an application. This is

due to the way computer architectures perform operations and store

mathematical values for floating-point numbers. The most significant

bits of a number are always maintained, and since only a finite number of

bits are available to represent the value, it is possible that bits from a

fractional representation may be lost during operations on large numbers.

Approx.imation T echniques __.

The MIL-STD-1750A ISA doesn't call for the implementation of the

elementary functions as standard instruction operators, so it is necessary

to design software routines of optimum efficiency to replace them. The

word "optimum" could be given a variety of precise definitions, but

presumably it refers to an average execution time and storage space.

13
.-, "* *..

Unfortunately, there is no known way to derive or prove such an "optimal"

design. For these reasons, the search for the appropriate approximation

technique was limited to polynomial and rational approximations.

Some of the most popular methods of approximation used are called

Chebyshev approximations. Chebyshev approximations are often referred

to as minimax" approximations because they are used to minimize the

maximum "error" between the true function f(%., and the approximation

of (-). However, these methods of approximation are not without their

problems, and there is a price, even though it is small, to be paid for

using them. For example, the sum-of-squares of the errors in a Chebyshev

approximation will be higher than if a least-squares method of

approximation is used. However, since Chebyshev approximations assure

that an error is never greater than a given amount, they were selected by

this study.

Polynomiall. The first class of approximations discussed are

polynomials, and are the simplest of all the classes of approximations

considered. The most important subclass of the polynomials is the class

T. (Chebyshev), and are polynomials not exceeding degree n. The

Chebyshev polynomials are especially important, and gave rise to the

general concept of Chebyshev "approximations" discussed in the preceding

paragraph.

The motivation for using Chebyshev polynomials over all other

polynomials is their property of least maximum error, and their error

behavior over the entire interval of the approximated function. Through - .

--"- the use of Theorem 1, the Alternation Theorem given below, Chebyshev

was able to prove for all the polynomials of degree n with a leading .

14
_ ii _ , i _ i , _ _ : ,: .:, -. -. -. . . , . - .. -- i. .. , , . - . . . i , . - - - --. -

coefficient of 1, that the Chebyshev polynomial divided by 2 - has the

least maximum error in the interval [-1,1]. In other words, no other

polynomial of the type mentioned will have a smaller error than

t()/2- 1 . In order for a polynomial P,(%) to be considered a Chebyshevft

approximation of the function J(,x), the theorem requires that the

maximum discrepancy between f(x) and P,() occur with alternating

signs at n 2 points over the interval [-1,11.

Alernation Theorem The polynomial P. of degree n that (I)

best approximates J is characterized by the existence of at

least n+2 "points of alternation"

The other motivation for the use of Chebyshev polynomials is that

its generated errors are more well behaved than the errors generated by

other polynomials. For example, approximations, based on the Maclaurin

series whose interval includes zero, have errors that are very nonuniform

-- small near the middle, but very large at the end points. It is more

desirable to use an approximation whose behavior is more uniform instead

of powers of . Since, as stated in Theorem 1, the Chebyshev

polynomials spread the error over the entire interval, they provide this

more desirable behavior.

Definition of JIM Chebushey Pou mils. The Chebyshev polynomials

form an orthogonal set, and are defined by the following equation.

T(X)= cos (We) a -arccos (x) (1)
n -- 1,2

15

From elementary trigonometry, cos(ne) is a polynomial of degree

n in cos(e), and cos(arccos(x)) = ,.; therefore, it follows that the

Chebyshev polynomials defined by 'T(x) = cos(n arccos(-x)) are

polynomials of degree n.

By substituting arccos(ni) for 8 and T,(-)for cos(n arccos(,x))

in the identity function shown in equation (2). the recurrence relation

defined in (3) is formed.

cos ((n 1)8) + cos ((n - 1)8) 2 cos (8) cos (ne) (2)

T =+(x 2x -c.(%) - Tj('. (3)

Let T= I and Tx , then from the recurrence relation

defined in (3). successive polynomials of greater degree can be generated

as in column A4 of Table 2.

By using the results in column A of Table 2, the powers of the

Chebyshev polynomials can be found. That is, it is possible to express

the powers of -x in terms of T An example of the powers of -T are

shown in Table 2 column I Appendix A contains an algorithm that

generates both the Chebyshev polynomials, and their powers.

16

. . -..

TX T X -

To \ 1= 1 = - -1-
T! = 1 -1 Yl" '"

.- *1

XT - = x -1 X - y 71 + 7 " 12 . , + -T s. . 2- m. , ' . 4 x " -3 x X 3 z= I ,' (4 x s 3 x + 7 z 3 ? ,) - /4 r 3 . . + 3 .) . .? :

Table '2 (A) Chebyshev Polynomials: (B) Powers of Chebyshev Polynomials

Chebyshev Ecooization. As already mentioned, the Maclaurin

series can be used to approximate many functions. In addition to the

disadvantages that have already been mentioned for using this series as an

approximation, the Maclaurin series also converges very slowly. That is,

j %. it takes several multiplications and additions to obtain a desired

accuracy. One way of obtaining a lower degree polynomial, and still

maintain the desired accuracy, is to use a technique that is called

"telescoping" or "Chebyshev Economization". In other words, the

polynomial can be expressed in a manner similar to that shown in (4).

P(x) doto(x) + + . . (4)

To compute the economized polynomial approximation to the function

J(x) of absolute accuracy c on the interval [-1, I, use the following

procedure as outlined by Conte et.al. (9: 271-272)

17

S -..:-.

'-U Step 1. Get a power series expansion for J(x) valid on [-1, 1];

typically, calculate the Maclaurin or Taylor series expansion for f(x) -. -'

around 0. O

Step 2. Truncate the power series to obtain a polynomial as in (5).

which approximates f(-x) on [-1, 11 within an error CA, where CA is

smaller than c, and c is defined as in (6). The result of c is the

maximum absolute value, within the interval [-1, 11, of the product of

the first truncated coefficient, x to the power of n + 1, and the n + I

derivative of the function f(x).

,.Pn(-) =a, a, +.. ax (5)

CA= a I ' f + +l (x) (6)

Step 3. By making use of a table similar to that shown in Table 2

column Z, expand the polynomial Pa(%.) into a Chebyshev series as

defined in (4). In other words, substitute the far right-hand-side of the

equations in Table 2 column Z, with the appropriate powers of "

contained in the polynomial formed by Step 2 of this algorithm. The

result is similar to that shown in (7), but of a greater degree.

18
-.- i-. , , • - -- _. ..-. . . .- __-.-. - - • - ----... . .-.. -- - "

Step 4. Retain the first k + 1 terms in this series, i.e. find

equation (7), choosing k as the smallest possible integer such that

equation (8) holds true.

= doTo(x.) + ... + (7)

CA d ,+ ... +dA ce (8)

Step 5. Convert the result of Step 4 into a. power series polynomial

similar to (5), by making use of a table similar to that in Table 2 column

A. In other words, substitute the right-hand-side values of Table 2

column A, into the equation formed by Step 4. Simplify the result.

Rational ADproximations. In most instances, rational approximations

will generate a least maximum error that is as small or smaller than a

Chebyshev polynomial, and will also cost less in terms of the number of

multiplications and additions required to compute them. Therefore, they
*

deserved attention in this study.

As stated earlier, the approximation techniques considered by this

thesis are classified as Chebyshev approximations. These methods,

through their exploitation of Theorem 1, provide approximations whose

maximum error is less than those generated by other techniques. There

* are several algorithms that generate rational approximations that can be

considered Chebyshev approximations; however, the ones that generate the

I
19

:°°..-.

Input
J(x), m, k, [a, b]

Calculate the Pade
approximation R mk(X)

and the members of
the sequence

Calculate the economized
approximation

1 4

Calculate the minimum
maximum error approximation

by the algorithm in this
section using Cmk(x) as
the initial approximation

SI

Fiqure 2 Calculation of Ferrmec Ratiorral Approination-'.

20

-------------- -------

most uniform approximations are those generated by the second algorithm

of Remes. This algorithm is easily automated, and is described in detail

by the following subsection.

iDTa Second Alotm L Remes. The method used in this

description is similar to that outlined by Ralston (10: 301-305), and is

summarized in Figure 2.

Let f(v.) be a continuous function that is to be approximated over the

the interval (a, b], and let the interval include the point 0.0.

Furthermore, let (9) equal the error of any rational approximation of the

form shown in (10).

r = max I f(x) - Rm,(%) I (9)

Mkn

P.(x) 4- j :X,

S(x)

b X

Step I of the algorithm names the input required for this algorithm.

The input value f(,x) is the function being approximated. If the algorithm

is being run on a machine with higher precision than the error for which

21
..........................." .. .- ' -.-?-'-:•- .?-:,.,?-i. -- -i"i-- :. -'2'i.--",'i.-----.-,.-i-

the function is being approximated, then the built-in functions of the

SI machine can be used for f(%). If the machine that the algorithm is to run

on is of the same precision for which the approximation is to be made,h;- then a reasonable substitute, such as a truncated power series that is of.- ,.

equal or greater precision than what is being approximated, can be used.

The other inputs include: m, k, [a, b], and C0 . . C1 The values

m, and k represent the degree of the polynomials found in the

numerator and denominator, respectively. The interval [a, b] is the

interval for which the approximation is valid, and should include the point

* zero, as it will allow the coefficient b , of the denominator, to always

De one. The values C. .. C represent the first N + 1 coefficients of

the power series polynomial that is being converted to a rational

approximation. The value N represents the sum of the degree of the

polynomials used in the numerator and the denominator (m + k).

The second step of the algorithm is to compute a series of Pade

approximations and their error coefficients. The Pade approximations are

of the form depicted in (1), with the restrictions that 0 i i m and

0 j I - i k. For example, the sequence of Pade approximations computed

for an R22 approximation would only include R(°)0 0(,x), R(1)j 0(x.),

R(2)I, (.x), R(3)l1(%), and R(4)2,2(x). The error of the approximations is

equal to the first power of . truncated from the power series, multiplied

by the error coefficients shown in (12). The error calculations used would

only include: d(°00),, d(1°0)29 d -1) I d(2-), and d(2.2.
1 2' 3' 4

22
• , ,

r .3-" Y' P ,-.Y-'.-

" ""R '-i(:') - j=0, ,N - (11) """

b(12)
N+1

The coefficients for each of the sequence of Pade approximations are

computed using (13) and (14). Equation (13) forms a set of m linear

equations, which when solved, determines the value of the coefficients

used in the denominator. Those values can then be directly substituted

into the set of equations formed by (14), and will determine the value of

the coefficients for the numerator.

, b = 0 s0 --- i (13)

(C1= 0 if <0., bo = I)

7 a =o b r =0, 1, M1 (14):-:.~~ ~~~~ - - I, (bj=n. if j>k ' ."'''.

The third step of the Remes algorithm is to compute the economized

*approximation C.(%). To complete this step, it is necessary to compute

the Chebyshev polynomial -r This polynomial can be determined by

using equation (3) of the previous subsection. Once the coefficients of

T W are found, then the values y from (15) can be directly substituted

into (16), and thus solve CI (x). The value t, in (15) is the coefficient

23
-::::--.-. -- .- ---- ----.. ------:---..__-.-----...--...--.-...--...---...--.... ..--..... •

V . - = .= .= = .= .',.o

for u in - t(u). The rational approximation must also be normalized,

that is, the numerator and denominator must be divided by bo, such that

b0 will remain equal to 1.

d = +l / j=O N-1 (15)

d(mk) -N + I i +1_-:.:.
j+1 = , .j-1V) 2 ; .-

d 2)

P(() + " Pi W (16)

N-I

ek(x) + , Y+ 1 I'

The final step of the Remes algorithm is an iterative one. Now that

the initial approximation to the function has been found, it become2.-"

necessary to find the N + 2 points of alternation. This can be done

through interpolation, or by dividing the interval into several small pieces

and solving for each point on a division. This method works, and all that

is necessary is a little bookkeeping to maintain a list of the N + 2

points of alternation. This step consists of the following three -_

procedures.

24
. . _ _ _ _~~~.- .

Procedure 1. Solve the system of N + 2 equations for the N + 2

unknowns a () . (O) b, (0) . . bt (0) and E(°1 as shown in

expression (17). Note that E(°) is the magnitude of error in the

approximation at each of the points .l(o) , and for the first iteration -.-C.-,

can be assumed to be 0.

7

t[-(o)](-1), E (1 7).L b

Procedure 2. Find h,(%) as shown in (18). The function ho(x) then

S•has a magni tude of](with alternating signs at x, i=0 N 1.

In the neighborhood of each ,(0) , there is a point %,(1) at which ho(%)

nas an extremum of the same sign as that of R(O))

at t(°) Replace each ,(O) by the corresponding .,(l) If . , the

point at which h,(%) has its maximum magnitude, is one of the points

* (1) , do not perform procedure 3. If not, replace one of the points -

by iC in such a way that ho(x) still alternates in sign on the points

1

.

rh
J=0

25

- . - ...-.--

z

S Procedure 3. Repeat procedures 1 and 2 using the points

XN.()in (17). This process generates a sequence of rational

approximations which will converge to an optimum if the initial extrema

were sufficiently close.

26

,o -

.-..::.

- -.

26 ..''

I 11. Deve l~ment and De of an the Funct ions -::':

General D iscu ss ion :-2--

This chapter deals with the detailed design of each of the specific

functions. Each design has an associated structured flowchart, and each

box within the flowchart has been numbered for ease of reference. -.

Pseudo-operations are used throughout each of the flowcharts, and

includes those defined by Cody and Waite (4: 9-10). Furthermore, a few

additional pseudo-operations have been introduced. (see Appendix A)

Although the approximation methods used are those suggested by

Cody and Waite, the actual design implementations are significantly

1 %' different. The designs proposed by Cody and Waite are guidelines for a

broad class of computer, and weren't specifically targeted towards a

1750A architecture. Therefore, the designs have been tailored somewhat.

The coefficients for each of the functions were either taken from

Cody and Waite, or are modifications of those provided by Cody and

Waite. These modifications are discussed in their appropriate subsection.

Root Implementation :
M, I

The square root of every non-negative floating point number "X" can

be computed. Computation is composed of three steps: the reduction of

27.

SIQRT

F0 or I ?\. esT

F < C) ? ye F -4BS(F)

VEX P - F E'X P M
SORT- 13

(R 6R

Ci Iur + C 1u.2 RotFt)clrdFI w:

72

LOO I

the given argument "X" into the parameters "f" and "e" using base 2, '"

X f U2e, 1/2 f < 1 (19)

sqrt(X) - sqrt(f) * 2e12, if e is even (20)

sqrt(X) - Isqrt(f)/ sqrt(2) I' 2(e+0/2, if e is odd (21)

the computation of sqrt (f), and the reconstruction of sqrt (X) from the

results.

The variable "X"i is the argument passed to the square root function.

Since JOVIAL treats formal arguments as read only, upon program entry,

the value of WX is assigned to "F". (step I of Figure 3) The variable U"

is then used throughout the remainder of the procedure.

The next step is to check if "F" is either zero or one. (step 2 of

Figure 3) If it is, then "pT" is its own square root; therefore, this value is

returned by the procedure. (step 3 of Figure 3). If "F" was neither a zero

or a one, then it is checked to see whether it is negative. If it is

negative, under normal circumstances, an error would be assumed, and the

procedure would terminate rather than evaluating for a complex number.

Due to the nature on embedded avionics systems, an error should not be

fatal. In this light, rather than attempting to evaluate a complex number,

the absolute value of the input argument is formed. (steps 4 and 5 of

29

Figure 3) The built-in function for absolute value was found to give

inconsistent results, so the absolute value is found by: F= - F. If this

method of error correction proves inappropriate at a later date, it would

not be difficult to modify. Perhaps a different default value should be

assumed, or an error indicator could be established.

The next step of the algorithm is to obtain the exponent portion of

the input argument. (step 6 of Figure 3) JOVIAL's specified tables make

this an easy conversion. When the input argument was placed into "F", "F"

had previously been established as a table whose elements identify the

components of the floating-point number. Therefore, the item "Feip" is

actually the exponent portion of the floating-point number. Immediately

following the extraction of the exponent, this same exponent portion of

e the floating-point number "F" is cleared or set to zero.

The next few steps (steps 7 through 10 of Figure 3) are to compute a

polynomial approximation for sqrt (F). Specifically, the computation

begins with an initial approximation of "y0" shown in (22) with

successively more accurate approximations being obtained through the use

of Newton's iteration in the form of Heron's formula.

Yo - .41731 +59016* f (22)

Yi (yi-+ f/YI i-) 2 (23)

30

-7. . .

The coefficients used in this algorithm are those presented by Cody

and Waite. (4: 23) The approximation described by Cody and Waite is in

the form shown in (23). Aside from the original calculation of "y0 ", by

examining steps 8 through 10 of Figure 3. note that the Newton iteration

is performed three times. Since each iteration doubles the number of

correct significant digits in the square root, this assures an accuracy of

63.32 bits. (4: 23) The next step is to determine whether or not the

exponent field from the floating-point number originally input was odd or

even. (step II of Figure 3) Depending upon the result of this evaluation,

different actions are taken. If the number is odd, additional calculations

are necessary as shown in equation (21). The instruction for determining

whether the number is odd is not a separate function. The power of the

JOVIAL language permit testing of specific bits. Using this tool, the

low-order bit can be checked to determine if it is zero or one. A zero

signifies an even number and a one signifies an odd number which is just

what the procedure checks. Given that multiplication is preferred

multiplications are more efficient than division ,

the calculation sqrt(f) / sqrt(2) is represented by yj * sqrt(.5), where

the decimal representation of sqrt(.5) is the constant .7071067811865.

The final step prior to returning with ie result is to form the

exponent portion of the result. (step 13 of Figure 3)

31

T-- T-.

EpnnilImplementation

There are three steps in calculating the exponential of a

floating-point number. The first step is the reduction of the given

argument to a related argument in a small interval symmetric about the

origin. The second step is the computation of the exponential for the

reduced argument, and the final step is the reconstruction of the desired

function from its components.

The exponential is formed using the following general procedure. Let

-N'1n(2) + g, with Igl i ln(2)/2 then

exp(X) exp(g) *CN (24)

The accuracy of g is the basis for the accuracy of the function value.

Let y - exp (g), then dy / y - dg. This means that the relative error in

exp (g) is approximately the absolute error in g. This error is

proportional to the magnitude of X when X is exact because of the

finite word length of the computer. The only way to achieve small

absolute error in g is to extend the effective precision of the computer

during the computation of g. In most cases, the following computation is

used.

32

g - (X1 -N*C 1).X 2 N*C2 where

X2 I" +-X2"

X I is the integer part of X,

C1 + C2 represents In (C) to more than working precision

This method gives extra digits of precision equivalent to the number

of extra digits in the representation of In (C) when N is small enough

that N * C1 is representable exactly in the machine. If this exact

representation cannot be accomplished, the computation is equivalent to

e not using extra precision. Therefore, the magnitude of N has a practical

limit which results in a limit on the magnitude of X.
There is also a largest and smallest X such the exp(X) can be -il

represented in the machine. For example, if SMALLX is the smallest

positive floating-point number and BIGX is the largest without causing

overflow, then exp (X) can be represented only for those values of X

that between In (SMALLX) and In (BIGX). The value N C1 will be

representable exactly in a machine for any X within the specified bounds,

because a C1 can always be chosen to fit the bound. Obviously, careful

argument reduction cannot compensate for inaccuracies in X. (4: 61)

33.................................. .,

' '- ' 'x '' ,' '. - ' " - ,-" " ' , ', " ' - " " " " ' ' . . ' . ' "' , , ," ' . ' ' ' ' " ' " , " - - - "- , - - . ". " , - ' ,, - . '

BIGX 88.02969193111
SMALLX -89.41598629223
EPS 9.094947017729E- 13
ONEOVERLN 1.4426950408890
LN2 0.6931471805599

Table 3 Constants for Exponential Determination

The variable "Arg" is the argument passed to the square root function.
Since JOVIAL treats formal arguments as read only, upon program entry,

the value of "Arg" is assigned to "W'. (step 1 of Figure 4) The variable
'X" is then used throughout the remainder of the procedure.

e The constant "BIGX" (see Table 3), which has been assigned a value

that is slightly less than the natural logarithm of the largest positive

finite floating-point number (step 2 of Figure 4), is compared with the

input argument. If the argument is larger that this value, an error would

occur during calculating its exponential. Since this application is

destined for embedded avionics systems, a solution to this error situation

must be found that does not result in a degradation of the system. The

selected solution involves replacing the input argument with the constant

"BIGX0. Obviously, other possible options are available to resolve the

error condition, and another solution can easily replace the existing

methodology.

The constant "SMALLX" (see Table 3), which has been assigned a

value that is slightly greater than the natural logarithm of the smallest

positive finite floating-point number (step 4 of Figure 4), is compared

0

34
. . .. -~ . •, . . . ° . . ._.. . % - ° - - - - . - %" .

<ARG BIGA \je ARG* -BIGX

no

e (XPN 1 2

XN FLOA (N)

~ ~ IE(<- EXP+N

E2:(-PX - 1 3
Fj6-((I-(N* l))12 ')

0X

01

35

-k7 K .-

with the input argument. If the argument is smaller that this value, an

error would occur during calculating its exponential. Again the discussion

in the previous paragraph concerning the resolution of an error condition

in an embedded avionics application still holds true. The selected solution

involves replacing the input argument with the constant 'SMALLX".

Obviously, other possible options are available to resolve the error

condition, and another solution can easily replace the existing

methodology.

The next step is to check if "X" is either larger than a positive eps

or smaller than a negative eps. (step 6 of Figure 4) In either case, if it

is, the exponential function returns a value of 1 and terminates

processing. The value of eps (see Table 3) is selected with

exp (X) = 1.0 to machine precision such that JXJ < eps and p1 X2

will not underflow for lxI K eps. Cody and Waite have suggested that

eps = 2-t/2 where there are t base-2 digits in the significand.

The next step (step 8 in Figure 4) involves extracting the integer

portion of the floating-point number that results from the following the

calculation: X * 11 / In (2)]. As noted in the description of the square

root function, multiplication is not as costly as division. Therefore, the

value of I / In (2) has been calculated and used as a constant. (see

Table 3) This newly formed integer is then transformed into a

floating-point number. The JOVIAL specified table construct is put to use

here rather than calling the two functions INTRND and FLOAT. Extraction

of a specific portion of a floating-point number simply involves naming

its component parts and using these names to access the needed part.

36

"-" ."-".. . -.-. .."-..-.n-.,- - .r'. '•-" -.) % -. - % - , .. - - °--- --,- - - -. - -.--..---... . . -- _

This particular construct is an extremely efficient method for doing this

type of accessing, and is not confined to JOVIAL. It is also available in

the Ada language.

The computation provided by Cody and Waite that is specified for no

guard digits is use to create a new, more precise number.

g -i(X1 - XN C)+ X2 -XN C2 , where (25)

*, the floating-point value of the integer portion of X,

X2 = X-X 1 ,

Cl = 0.693359375,

C2 - -2.1219444005470E-4

Now, that the value of the values of the X's and N's are known,

equation (25) can be evaluated for g. (step 9 in Figure 4) This is

followed by the determination of the rational functions R (g) which

approximate exp (g) / 2. The factor of 0.5 is inserted to counteract

wobbling precision. The calculation of the coefficients for the

approximation are determined by the number of bits in the significand.

For this architecture, the number of bits selected are between 30 and 42

inclusively. This results in the coefficient list of Table 4 on the next

page.

37

p0 0.24999 99999 999 E+0
p1 0.59504 25497 759 E-2
qO 0.50000 00000 000 E+0
q, 0.53567 51764 522 E-1
q2 0.29729 36368 224 E-3

Table 4 Coefficients for Polynomial Approximation to Exp

The first step in calculating Rg (step 10 in Figure 4), requires the

2"

formation of g. This value is then used to form g ' Pz) and Q(z)
using nested multiplication. These values are then used to form Rg. Just

prior to returning the value generated through all these calculations, an

additional step is performed to rescale the number. (step I1I in Figure 4)

Natral Logaritflm Im~i.emQDLaL1

The calculation of the logarithm required three steps. First, the

* given argument is reduced to a related argument in a small,

logarithmically symmetric interval about one. The second step involves

the computation of the logarithm for this reduced argument. Finally, the

* desired logarithm must be reconstructed from its components.

38

-7 -7 r - -%

Upon entry into this routine, the value of the input is checked to see.. .. 5

if it is either zero or less than zero. (step I of Figure 5) If it is either

zero or negative, under normal circumstances, an error would be assumed. ____

and the procedure would terminate. In this function, the negative value of

the largest floating-point number is returned. (step 2 of Figure 5) As

previously mentioned, due to the critical nature of embedded avionics

systems, an error should not be fatal. It should provide an alternate path

to a graceful completion of the function.

Many methods exist for calculating the logarithm of a reduced

argument. Cody and Waite have chosen the following method. (4, 42) The

initial assumption is made that the argument is in the following form

X =±f*2 e , where .5 tf< I

Determine the value of N and the scaled value of f such that

X - f *2N, where .5 f < I

. I

Initially, f is assigned the value of the input argument. This allows

for modification of the input floating-point number. Then an estimate for

N is made. N is given the value of the exponent of the input -.

floating-point number, and then this same exponent field is erased. (step

3 in Figure 5)

The value of sqrt(.5) has been previously determined and stored as a

constant for use by this routine. Depending on the value of f, one of two

39.................................

LLO

0AG o 9I e ALIJG <
-MAAFLOAT~.

n~o

F*-ARG

FEXP <-

L-'F > SQRT(.5) ' ~es

*ZNLIM4 -F- 5 ZNUM<- (F-.5)-.5
ZDEN (ZNUM*.5)+.5 ZDEN +(F*.5)+.5

AW~ *E-(A2*W+A 1)*W+AO
BW -'-(W+B I)*W+BO
RZ2 ~-W*AW/BW
RZ 7+Z*RZ2

XN, FLOAT(N)

0 ALOG + (XN*C2+RZ)+
XN*C 1 10

(ETIJRN)

Fig~ure 5 Natural Logarithmr Stru.ctured Flo,*chart

40

aO 0.3733916896316E+ 1
al -0.6326086623386E+0

a2 0.4444551510980E-2
bO 0.4480700275574E+2
b I -0.1431235435589E+2
b2 0. 1 O00000000000E+ 1

Table 5 Coefficients for Polynomial Approximation to Alog

distinct paths may be taken. The value of f is compared to the

sqrt(.5), and znum and zdem will vary accordingly.

After forming z - znum / zdem and w - z2' evaluate r (z2) w

A(w) / B(w). Both A(w) and 8(w) are polynomials in the w coefficients

given in Table 5. (step 8 in Figure 5)

Common Logarithm Implementation

Obviously, from the structure chart for this function (Figure 6), all

the work is done by the Alog function. Since the JOVIAL language does

not support multiple entry points, the common logarithm function had to

be formed in this manner. The result of this function is generated through

the multiplication of the natural logarithm of the input argument with the

natural logarithm of "e". This latter item is encoded as a constant to • -

avoid wasted effort to recalculate for every use of this function. All the

41
. : -_ . .._...*.. +_. _._- - .2. _ _' -a .-.a .-..S C' .C _ ,. ._ .C -. ,, ..2 - . ._. a-'.., 7,,.-. * _._ ,- , .2 I ..:.,

LOF 0 (A~LOGAR

Figure 6 Corrmron Logarithm Structured Flowchart

restrictions that were imposed on the natural logarithm of a number also

apply here.

42

S .~ . °

IV Valiio Veri i X Perfornce Evaluati..-n

General, Discssio

This chapter is concerned with describing the methodology used for

determining the correctness and performance qualities of the implemented

functions. Due to problems in the availability of hardware and the

associated support software, the testing and performance evaluations are

somewhat limited. Hardware became available towards the middle of the

thesis effort, but software tools used for development were incompatible

with those required by the available 1750A. The loader used by the

available 1750A equipment, expects files of a different format ,han what

is created by the software development tools. Rather than developing a

new loader, a routine was written that converts load modules into a

format required by the 1750A loader. The reformatting procedure is listed

in Appendix C.

Another problem that had to be overcome before testing and

evaluation could be considered, was the availability of input/output (I/O)

routines. Without IO routines, further considerations for testing would be

fruitless. No I/O packages were available, and as a consequence, had to be

created. This delayed testing efforts considerably, as an IO routine had

to be developed with the use of the MIL-STD-1750A standard ISA, rather

43

-. - . - 1

than with a high-order language. The i/0 package developed is listed in

Appendix B. and is only capable of writing to a user console.

Performance analysis requires the comparison of 1750A results, with

those generated on a machine of higher precision. Unfortunately. this

requirement made the newly created I/0 routine insufficient for this task.

An available console driver has a routine that writes user specified areas

of 1750A memory to magnetic disk. By storing a function's results in a

specified area of 1750A memory, the test results can then be dumped to

disk for an eventual upload to a VAX 11/780A. The results are then

available for input to the different software test packages. However, the

record format of the 1750A memory dump is not in a friendly format, and

must be converted to a readable form. At the time of this writing, a

routine for making the disk file readable is not completely debugged.

However, it is at a point where it could be completed by another

programmer.

The aforementioned problems have limited the amount of time

available for designing extensive test procedures. Therefore, validation,

verification, and performance analysis is confined to: manual static

analysis methods, critical value testing, and measurement of each ;

algorithms generated error.

44

Mna Static Anlui Methods i::i-

To most people, manual static analysis is called "desk checking" "

Static analysis involves the search for any inconsistencies between design

tools (i.e. flowcharts), design details (chapter 3), program headers, and

program comments. This method is useful for finding errors caused by the

translation of design into code, as well as possible design errors. An

inconsistency may indicate potential problems. This methodology was

used, and all inconsistencies that were found were resolved.

Critical alue Testing

Critical value testing is an attempt to "break" the software, and

requires the selection of specific arguments that could possibly cause

problems. A knowledge of each of the algorithms is required to select

proper arguments. Individual test cases are not listed here, but the reader

may find specific information by examining the test procedures listed in

Appendix B.

It is possible to generalize the tests performed without listing the

specific test cases. Potential test arguments are those whose '

intermediate results could generate an overflow or underflow, or are

arguments lying in the fringe of computational abnormality. These

45• - ~ .- - .-. . .--. . • , - : , I

arguments will help detect problem areas, and will give an indication as

to how robust each function is.

In addition, arguments that test each path of the algorithm have been

selected. Path testing is limited to insuring that every path of an -.-

algorithm is tested, and does not imply that every possible path

combination is taken. j

Performance Evaluation

As was mentioned in the introduction of this chapter, screen output

to the user console and hard copies of computed results are insufficient

for performance evaluation. Their use would imply a visual comparison of

generated results against published tables. Such a technique limits the

number of comparisons that could be made, and would cause doubt as to

the credibility of the comparisons. At best, it would provide a good

feeling for the quality of each function's performance. Therefore, it is

better to automate the process completely, and compare the generated

results against another machine generated standard.

The performance evaluation of the functions involves the computation

of two important statistics: the maximum relative error (MRE), and the

root-mean-square relative error (RE). Their values are determined through

the use of (43) and (44), where F(x is the test result and f(x) is the

comparison value generated by the same extended-precision function call

0i

i- :"., written for the VAX 11/780. .j.-j

MRE-= F(x) + f(xi-" MIZE= -~ (43)

× I n .'(X) +'(i)'%

RE= 7 " f") (44)

\. f(x 1

This method of error checking is an automatic tabular comparison,

where the VAX routines serve as the accepted standard. The test routine

tests densely packed samples of evenly spaced arguments spread

throughout [-3, 3T1 for floating-point algorithms, and [-1, 11 for

fixed-point algorithms. When regenerating arguments within the test

modules, it is important not to introduce unnecessary errors. This means .

that arguments in the VAX should have its lower order bits padded with

zeros. The most-significant bits must be equivalent to the number of bits

in the 1750A argument, and no extra precision should be introduced.

The method of argument generation just described is recommended by

Cody (12: 762), and is the method used at the NASA Lewis Research
Center. This method is preferred to a random-number test because it? .:;; ... !

measures the relative error throughout an entire interval. Using densely ::-
packed arguments also gives valuable insight to problems of different

argument ranges. If the evenly spaced interval is set to a power of two

(representable on both machines), and is not less than the

47

- least-significant bit of the 1750A argument, then an initial argument can

be chosen, such that, zero padding will only have to be performed once.

For example, if an initial floating-point argument is -3.1415 and the
-2. -2

chosen interval is 2-2 the second argument will be -3.1415 + 2-2

Additional padding is not necessary, because "carries" are cascaded

forward and do not increase the number of most-significant bits in the

next argument. Arguments used in the function calls on both machines

must be the same, and must be generated in the same order.

Extra care is needed while reading the 1750A results from disk. Each

of the 1750A results are stored in an unformatted file, and must be read

into a binary record. This record is moved, bit-by-bit, to a variable of the

appropriate type (VAX 11/780 fixed-point or floating-point). The

* bit-by-bit manipulation is accomplished through the use of JOVIAL

specified tables, and prevents conversion errors associated with

formatted input.

Before a comparison of the two results (one from the 1750A, and the

other from the VAX) can be made, the results generated within the test

module must be reduced to the same precision (same number of

most-significant bits) as those from the 1750A. The precision reduction ,

gives a rounded result that can be used to determine the MIE and RE, and

will give a meaningful interpretation to the inherited error of the 1750A

functions.

48
............... .

7. 1 7.

V Conclusions a Recommendations

Conclusions,.. ,.- . -Z

The purpose of this thesis was to develop and to do performance

evaluation on a run-time math library developed specifically for

MIL-STD-1750A architectures. The library consists of the floating-point

implementation of several algebraic functions. Performance evaluation

was the major effort of this thesis, but not in the manner intended.

Function approximations are accomplished through the use of either

Chebyshef or rational approximations. The two different approximation

methods were discussed in chapter two, and are useful in understanding

certain design considerations. The values of each polynomial's

coefficients were derived by (or were modifications of those derived by)

Cody and Waite. (4: 17-84) However, the implementation designs are

significantly different from those suggested by Cody and Waite. The

primary difference between the implemented designs and those suggested

by Cody and Waite, are the methods of argument reduction required of each

* function.

Performance evaluation turned out to be the major effort, but not

because of extensive or elaborate testing of the library functions. Most of

the effort involved overcoming the following problems:

49
• -. . . . -i i .. "- --- ' .--- - -- -.. , ,-....- '. ',-.. .- ' _ _' -. &.. ,_-._' _

* .* ..-

1.) There were several compiler bugs in the original 1750A compiler

used. Assembly listings had to be reviewed, in order to verify each

compilation of the source code.

2.) The use of a simulator for performance evaluation was ruled out -.. ,

because of the limited number instructions that could be simulated, its

inability to simulate the use of floating-point data, and the relative speed

at which results were calculated. The simulator also lacked a facility for

writing results to mass storage. Storage of results on an external device

is necessary for input to software test packages.

3.) A new compiler and linker was introduced near the midpoint of the

thesis effort, and required a long learning curve in order to use them.

4.) Once a 1750A machine became available, it was determined that

all its support software was intended for use with files created by the

old compiler and linker.

5.) Rather than use a compiler and linker that had several deficiencies,

or write a new loader routine, it was decided to write a support tool that

would convert load modules into a format expected by the available loader.

6.) The reformatting program required the use of JOVIAL and its

* specified table features. It also required the use of FORTRAN routines to

perform the I/O of source and target files. The FORTRAN and JOVIAL

interfaces did not operate as expected, and the use of COMMON/COMPOOL
0

areas wouldn't work. This required parameter passing between the

routines, and the documentation for this type of interface was very

inadequate; however, the problems were eventually resolved.

50

7.) The reformatting tool was written for use on a VAX 11/780. It

was assumed that the JOVIAL compiler was free of bugs for a VAX target.

However, when the reformat routine was being debugged, it was

discovered that JOVIAL table names could be over lay ed, but corresponding

table items werent overlayed with them. This problem took a long time

to discover, and an additional amount of time to design around.

8.) 1/O routines have not been written for the 1750A, and had to be

developed. These routines are only capable of writing to a console screen.

9.) Screen output is insufficient for generating the thousands of

results that would be needed during testing and evaluation, so another

means of capturing the data had to be developed. Due to the lack of time

and inexperience in the internal I/0 communications techniques of the

1750A hardware, development of a disk 1/0 routine was not a feasible

alternative. It was determined that results could be stored in specific

locations of memory, and then an available console routine could be used

to write the information to disk. An additional problem was encountered

when it was discovered that the record format of the disk f iles is not in a

VAX friendly format, and another routine had to be written to unpack the

0 stored results.

These problems limited the scope of this thesis effort to developing

the following: designs; code that is free of syntax errors; the

development of command files for compiling, assembling, and linking

routines written for the 1750A; tools for formatting load modules that

are capable of being loaded into a Sperry 1631 implementation of the

M IL-STD- 1750A; and tools that unpack test resulIts stored on an PT/i 11

51

.-p

formatted floppy disk. Generic test algorithms are provided, but are not

written in a high-order-language. They provide the basic structure for

critical range testing, and a means of evaluating and measuring each

functions performance.

Recommendations

The products produced by this thesis effort are at point where design

of the intended performance evaluation can begin. All the groundwork has

been provided, and should be adequate for someone to continue the effort.

Many of the aforementioned problems have been resolved, and support tools

and command files are provided to shorten the learning curve that

follow-on programmers will have to experience.

The following recommendations should be considered if this effort is

continued.

I.) If the effort is limited to the use of JOVIAL, an analysis should be

made for determining how to handle exceptions detected at run time.

Exceptions include arguments outside legally defined limits.

2.) Since Ada has features for exception handling, all the library

functions should also be developed and implemented in Ada.

3.) Another point may be in favor or using Ada is that it also allows

the creation of generic packages and subprograms. The generic

<. 52-.

P-~ .2p q
'. "..'

subprograms define a template, and generic parameters provide the

facility for tailoring the template to fit a particular need at translation

time. In other words, one subprogram could provide calculations for both

fixed-point or floating-point arguments, based on how it is used at

compile time. Because a generic package would not be able to take

advantage of the specific hardware functions unique to floating-point and

fixed point routines, this may result in a degradation of performance.

4.) Initially, it was discussed that all the math library routines should

be written in both JOVIAL and Ada with the intent that a comparative

evaluation could be done on the two languages. Unfortunately, an Ada

compiler targeted to the 1750A is not yet available. When a compiler

does become available, it is recommended that a new Ada math library be

developed and this comparative evaluation be performed.

5.) The compiler problems, mentioned above, should be corrected, and

1750A architectures and associated support software should be acquired

before more time is allocated to the effort.

53

ADendix A

The following pseudo-operations were used in describing the

implementation designs of the different mathematic functions.

ADX(X.N): augments the integer exponent of a floating-point

representation of X by N. This scales the argument X by 2N .

For example,

ADX(I.0,2) =4.0

FIX(X): returns the fixed-point representation of the

floating-point value X . This operation requires explicit

conversion in JOVIAL.

FLOAT(X): returns the floating-point representation of the

fixed-point argument X. This operation requires explicit

conversion in JOVIAL.

ODD(X): determines whether the argument X is odd. For an

integer, the least-significant bit is checked directly. For a

floating-point number, the integer portion is checked. A

description of the floating-point process for this determination

is given below.

54

COEFFICIENT COEFFICIENT
S EXPONENT LSB

01 23 25 31 32 47'

Figure 7 Bit Layout of 1750A Floating-Point Number

To determine whether the integer portion is odd, knowledge

of the internal representation of the 1750A floating-point number is

necessary. The argument X is a JOVIAL specified table item that

makes the components shown in Figure 7 easily accessible. Within

this table is an integer item that overlays the exponent field of X.

This exponent field is the tool needed to check whether the integer

portion is odd or even. Since X has a value of one or greater, and

all floating-point values are normalized, the exponent can be used to

point to the least significant bit of the integer field. Because X is

positive, a one in the least significant bit would indicate the

integer portion is odd. A limit on the maximum value of the

coefficient has been imposed by the functions that use this routine.

This limit prevents the least-significant bit of the integer portion

from falling in the exponent or 1S1" area of the floating-point

coefficient (see Figure 7).

55
55- .

* Since the 1750A architecture requires that all floating-point

values be normalized, the most-significant bit is in the first bit

position following the sign bit. The decimal-point is assumed to be

positioned immediately behind the sign bit, but immediately in front --

of the most-significant bit. The exponent represents a power of

two; therefore, if c represents the value of the exponent field, the

value of the floating-point number is: coefficient *2c.

Equivalently, it is obvious that the decimal-point floats e places to

the left if e is negative, or s places to the right if positive.

Knowledge of how floating-point numbers are stored can be

used to determine whether the integer portion of a number is odd.

The following example gives an explanation of the process.

Given the following machine representation of a

floating-point number, determine whether its integer portion

is odd. In the example below, the decimal-point was inserted

only for clarity.

0.1 10000000000000000000000000000 10000000000000000

Since the sign bit of the exponent is zero, the value of

the coefficient is positive. The following two numbers are

summed together to determine the value represented by this

coefficient: -

56:?

I 2-' ..5

2-' .25

The exponent field is in bold text, and has the value

one. Therefore, the value of this floating-point
representation is, the coefficient (.75) multiplied by two

to-the-power-of the exponent (1), or 1.5.

.75 * 2- 1.5

Another way to compute the result is to shift the

decimal-point in a direction as indicated by the exponent.

The exponent in this case is +1 , so the decimal-point is

shifted one position to the right. The number can then be

computed in a similar manner as described above.
This last method demonstrates how to determine

whether this example is even or odd. If the decimal-point

is shifted I position to the right, this number will have 1

integer bit and 38 fractional bits. The integer bits always

occupy the left-most position of the number. If the exponent

is thought of as a pointer from the left-most side of the

number, the least-significant integer bit can be found. The

exponent in this example points to bit position one. Since

the bit is set to 1, this example's integer value is odd. I

57

I INT(X: return the integer portion of the floating-point

argument X. The description ODD(X) given above determines the

least-signif icant bit of the integer portion of the floating-point

argument. This is used to extract the entire integer portion of

the argument (bits 0 through the least significant bit).

8I

.,

Appendix B

5 09

-1 -. 7 -: - .70.....7

ORTE: 30 August 195
* IERSIOII: 1.0*

MOL NfflUMBER: 1.0
OESCAIPTIOI1:

* This function is called to compute the natural log of
* of the aqm t 'tg'. Since*

* f~LoglO(X) = R1Log(X) * In(e)*
*Riog Is also called byRLogl0 to do Its computations. *

SPASSEDRB ~IES: R'g - an extended precision f loating-point variable
" RETU.RNS: The natu~ral log of arg In extendedl precision float *
" PMOUE CF.LEO: Monem
" AUTHOR: Capt. Junnlfer Fried
" HISTORY: This project was undw taken as a thesis project for *

* ~partial fulfl Ilment of requiemnts for an 11S doge
* in Information Science from the Rir Fort Institute
* ~of Techniologyj. Sponsoring orga ization is the ASO
* Language Control Brandh, Wfriht Patterson RFB,0h. *

START

OEF PROC AgRNT(Rg) F 30;
BEG IN

ITE 1rg F 30;- q
ITEM 1*n S 7;

ITEMI Xn F 30;
ITEMI Znum F 30;
IT9M Zdan F 39;
ITEM Zz F 30;
ITEMI Rz F 39;q
ITE1 Wz F 30;
ITEM Wo F 39;
ITEM As F 39;
I19 9. O F 30;

*TROLE Overlaps (0) Wi 3;
BEG IN
I1TEN Ff F 39 P05(0,0);
IT91 Fexp S 7 P0S9,1);

CONPISTMITO 1zero, F 39 u 0.0;
0COMTRMTITEM9 PtFive F 30 a 0.5;

COIISTANT ITEM SqrtPtFive F 39 w 0.7071057811855;

CCOMSTAN'TITEM19 RO F 39 = 0.373318063E+1;
COMSTANT ITEM1 Al F 39 = -0.8325066823386E40;
COMSTANT IT91 R2 F 39 a O.44445515109S0E-2;

CONSTANT ITEM 90 F 39 - 0. 4490700275574E+2;
COMSTANT ITEM Of F 39 a -0.143 I2354355SgE.2;
CONISTANTITE 811 2 F 39 a * nnnDOOEI

60

CONSTANT ITN C I F 39 O
CONSTANT ITEM C2 F 39 a -2. 1219444005489E-4;

I F Zeruo;

swi

FICO0) a Rrg;
Hn = Fexp(O);
Fexp(O) a 0;

IF FI(O) 'SqrtPtFlve;
BEGI N
bnus m (P1(O) - PtFIve) - PtFlve;
Zdut a (FfCO) * PtFIue) + PtFlve;

BEG IN
Zm. m P1(O) - PtFive;
Zdan a (Znia * PtFIva) + PtFiue;

Zz uZna /Zdmmn;
U. Zz *Zz;

*w C R2 0 No + RI) NoU + AS;

Rtz2 = N. * An On9;
Az m bz + Zz * Rz2;

Xn C * F 39 *)C Wi
tg*(Xii C2 + Az) + Xn *Cl;

END

END

61

* DTE: 30 lAgust 1985*
* I.RSION: 1.0

NAME: "10lO
* IOJIE ISER: 1.0

* ~~~This subroutine Is called to campute the base 10 logDECITO:*F
* of the passed co .immit. S Ince

* L"10 m ..og 0log(e)
It mtaesacal to Rtog

*PASSED UMRIELES: Ar'g - an extende&-precisian f loating-pint vaiable
* TUI: The floating-pint rep of log(Rrg)
* OOLLES CALLEG: ALog
* mimeR: Capt. Jennifer Fried
*HisTOY This project was tadertaken as a thesis project for 4

*part IalI fu If I Iwmt of reiIrteents for an HS degee
* in Inforsetion Sciene froe the Air Force Institute
* of Technology. Sponsoring organization Is the RUG

* LanuageControl b'and, Wright Patterson RF,Oh.

START

REFPROIC FEog A R(g) F 39;
BEGIN
I TEN Arg F 39;

DEF PROC 10~gl RENT (g)F 39;

BEGI N

11111 ftg F 39;

CONSTANT ITEMI Loges F 39 u0.4342944819=3;

"10gl u Log(Rrg) *Loges;

TEND

626

* DATE: 30 August Ig65 *
* UERSION: 1.0
* MAlE: Exp *
* rlOOLLE NUMBER: 1.0
* DESCRIPTION: *
* Returns the extmnded-prec lion floating-point value *
* for e** t-g
* PASSEDURIRB LES: Rrg - an ext--ded precision floating-point vriable *
* RETRU : G x ** NOCULESCRULED: none *

* RJTHOR: Cpt. Jennifer Fried
* HISTORY: This project was wdertaken as a thesis project for *
0 parbt IaI fulIf IllIment of requIiments for an NS de@e 0
* in Information Science froe the Air Fore Institute ,
* of Technologu. Sponsoring orgniization is the AM *
* Laguage Control h4lich, Wright Patterson RF9,Oh. ** .*.

START

DEF PROC Exp ENT (Atg) F 39;

SE0IN

l1EN ARO F 39;
ITEM Xx F 39;
ITEM Xn F 39;
ITEM Og F 39;
ITEO XI F 39;
ITEM X2 F 39;
ITEII Zz F 39;
ITEO Pz F 39;
ITEO Qz F 39;

ITEO 7; -

TRBLE Over sp (0) U 3;

ITEM Rg F 39 POS(O,O);
ITEM Rexp S 7 P(, 1);

CONSTANT ITEM Xmax F 39 a 1.701411834SKE+38;
CONSTANT ITEM Xmin F 39 a 1.4693679383ME-39;

CONSTANT ITEM Xbig F 39 a 88.02993111;
CONSTANT ITEM XsmalI F 39 - -89g.41352 ;..
CONSTANT ITEM Eps F 39 = 9.094947017"29E-13;
CONSTANT ITEN PO F 39 a 0.24-... . 0;...

ICONSTANT I1EN PI F 39 n 0.59504254775 -2;

CONSTANT ITEM QO F 39 a 0,M*+Q;

CONSTANT ITEM 01 F 39 a 0.53=6751764522E-1;
CONSTANT ITEM Q2 F 39 a 0. 29?336224E-3;

63

FOST" U E 39 a 0.89335937;
CONSA"TI TE C2F 39 a -2. 1219444005470E-4;

CCNSTNiT ITEM Ln2 F 39 u 0.891471803599,

CONMiWIT ITEM One F 39-m 1.0;
CM%1R"T TEM tF Ive F 39 a0. 5;

Xx a ftrg;

IF ARg X Tig;
Xx uXbIq;

IF Xx XmaI1;
Xx *XmII;

IF (Xx Eps) AM11 (Xx)-Eps);
Exp -Om;

ELSE
993IN

Itt a (S, Rl 7 *X(Xx * onaut'2)
Xn a (F 39 NnIt)

X1 *w(F 39 S)(31 CXXx))
X2 a Xxc - Xl1;
Sq a M(l - Xn *Cl) + X2) - Xn t C2;

Zz muGg*Sg;
Pz au(Pl*Zz +PO) *Gg;
Qtz * (02*Zz +Q1)D*Zz+Q0;
Rg(0) -PtFive + Sq Pz /(Qkz - Pz)

Rmxp(O) * Rex(0) +n itt 8 7 1XI)

Exp -Rg(0);

ETCM
EM

* T

64

.,

* .-. ,

D GATE: 30 August 19 *
* VERSION: 1.0 * .'-K-
* RS: Sqt*
* OLE NUIUER: 1.0 S

DI OECIPTION:
* lpproximate the sque root of th oitgant 'frg' *
* PASSED IRIMLES: ftg - an extended precision floating-point variable *

SFETMINS: i extee precision float r reswttation of the sqrt *
* of 'Arg *

M OICJLES CALLED: none *
* AUTHOR: Capt. Jennifer Fried
• HISTORY: This project was tatdrt as a thesis project for *
* prtial fulfillment of requlirents for an 11 d *.

Sin Information Silnce from the Air Farce Institute *
• of Technolowy. Sponsoring orgoization is the S *.
* Lajuguoge Control btcd , Wight Patterson FB,Oh. 'i-:

- -i - - - - - - - - - - - -- -

OEF PROC Sqrt RIEIT(Xx) F 39;

TABL GierLaop (0) Ii 8;

5ITEM Ff F 39 POS(O,0);
ITEM Fxp S 7 POS(8,1);
111 Y F 39 POS(0,3);
ITEM Yexp S 7 POS(,4);

ITE Xx F 39;
ITIEM Me S 7;
ITEM Ix S 8;

ITEM ln S 15;
ITEM lbit B 16;
OUERLRY Nin: Hbit;

CONSTANT ITEM SrthMilf F 39 a 0.?07105781195;
CONSTANT ITM C1 F 39 n 0.41731;
CONSTANIT ITEM C2 F 39 * 0.59016;
CONSTANT ITEI One F 39 a 1.0;
CONSTANT ITEM Zero F 39 s 0.0;

SCONSTANT ITEM Oneint S 7 * 1;

Ff (O) Xx;

IF (Ff(0) - Zero) OR (Ff(O) = One);
Sq't a Ff(O);

asm

IF Ff(0) (Zero;
Ff(O) " -Ff(O);

65

Mni Fexp(O);
FeMp(O) a 0;

YY(O) w Cl + C2 *Ff (0);

FOR I x I BY I WILE Ix 4-3;
BEG IN
YyCO) *Yy(O) + Ff(0) /YyC$0);..-
Ysp(0) uYuop(D) - Onelnt;

IF BITClbit, 15,1). 11V;
BEG I
Yy(0) a YyjC0) S 9tWnA4alf;

*n a M + 1;

Mm Nn /2;
Ywxp(0) * Vx(0) Me
Sqrt YyO)

EMe

66

r6

* DTE: 1g JaLuY 19ee

* IWI: ilatti.ib
* fOOLE IBER: 1.0
* DESCRiPTION:

* This cooI Is re~iired byj aM JOJIR. proua that nEm to
* ref w avM of the math funmctions written for f loating-point
* or fixed-pint c utations
* PASED IAL : N/A
RETURNS: N/A

*MOmMES CRIED N/A -

0 AUTHOR: Capt. Steme A. Hotct*iss and
0 Cqpt Jam Ifer Friead
* HISTOY This project was undertaken asa thesis project for

* . partial fulfil imt of reqiremewts for an M 9e
*In information Sciene from the Air Force Institute 0
* of Technoiogij. Sponsoring organilzation is the AISO
*~q magae ControlI Branch, UI'it Patterson RFB, Oh.

RIEF PROC Exp PantCArg) F 39;
BEG IN
ITEN Arg F 39;

REF PROC A Ro Ant(ftrg) F 39;

ITEMC AglOR(F 39;
lEN fgF 9

E0 iNC " 0RntAg 9

ITEM Arg F 39;

RE PAOC Sqrt RENT (Arg) F 39;
BEG IN
[TEN Arg F 39;

F PROC S In RENT(Xx) A 1,30;
BEG IN
ITEM Xx A 1, 30;

ENDI

REF PROC Cos RENT(Xx) A 1, 30;
BEG IN
ITEM Xx A 1, 30;

67

REF PROC Ton IET(Xx) A 12, 19;

I TEM Xx A 1,30;

REF PROC Cot RENflCXx) A 12, 19;
BEG IN ..

ITEM Xx A 1, 30;

RUE PROC FIBIn IETCXx) A 1,30;
BEGIN
ITEM Xx A 1,30;
e.

FIE PROC AlCos IlET(Xx) A 1, 30;
BEG IN
ITEM Xx A 1,30;

END

RIEF PROC RAon RENT(Xx) A 1,30;
@1 BEGIN

I791 Xx R 1,30;
ENO

FIE PROC Sin? AEtT(Xx) F 39;
BEG IN
ITEM Xx F 39;

END

REF PROC Cost 1TM(Xx) F 39;
BEG IN
ITEM Xx F 39;
ENC

REU PRO Tat? ENiMax) F 39; ::
ITEM Xx F 39;

REF PROC Cot? RENTCXx) F 39;
BEGIN
I TEN Xx F 39;
ENC

REF PRIOC MiSni AEHTCMx F 39;
BEG IN

*ITEMIXx F 39;
EtC

REF PROC R~ost REIT(Xx) F 39;
BEGimH
ITEM Xx F 39;
BID

68
..................... ~~ L

.

E PROC RTwnf iwii(Xx)F 3;

ITEM Xx F 39;

TENI

69

- - - - - - - - - - - - - - - - - - - -------------------- ~-. ----------- ~ '.~

- - - - - - - - - - .-

* GATE: 29 AuJgust 1M9
VEtRSION1: 1.0
NAMfE: to~ess

* EOLE NJMBER: 1.0
*GESRIPTIOII:

*This Coepool Is necessary to reference routines that we
*necesw for testing and performance evaluation of ofll math
*funictions developed for the 1750.m *PR URLRlAILES: N/A

RETURNtS: "/A
M fONUE CALLED: N/A

* UJ1HA: Capt. Steme A. Hotchkiss and
* Capt. Jenn~ifer Fried

H HISTORY: This project onundertim as a thesis project for
h * ~partial fulfillment of raquirements for an MS d~e

* ~~In Information Science from the Air Foac Institute *--
* of Technologyj. Sponsoring organization is the ASO *
*Language Control INand , Wight Patterson A9, Oh.

S START

~QOLIo~efs;

UThe following IT1 are required to print a cr-r-Jage return and
I line feed on a terminal cmected to a MIIL-STD-1750 copter

DEF ITEM Carriage STATIC U 18 2573;
DEF ITEM CALF STATIC C 2;5 UERLAY Carriage: CALF;

*The faIoni ng refermvced subrout Ine I s oritten I n 1750 Rtsml l Ianguage
*and is used to print charater strings only. Nonchracto, types mill
have to be coverted before callIing this routine. The following DEFINE is
000000de for all routines calling ObcSim:

* DEFINE WIiTE'STRlNG(A) -Printc(W0DSIE(IR),LOC('A)Y ;

Anft exmle of a typical CallI follows:

* ITEM Exmle C 2;

* .RITE'STRIN(Example);

REF PROC Printe RElIT(Length, Message);

70

9EOIN
I - TEII Length U (BITSIN1,10D-1);
ITEM Message P;

ENO .~\

I *The fol lowing reformne routine Is necessary for routines wishing
*to cowert f loating-point values to a dw rt string

REF PROC F ItToChar (Ag) C 20;
BEGIN
ITEM ft'g F 39;
END

*The following referece routine is necessarj for routines wishing
*to conver-t fIxe-pint values to a chmrater string. The variable
lnt~verlay at be overlaijed on top of a fixe-pint variable and

- * Bitslnroc is an integer value indicating the number of fractional
bits in the fixed-point value.

RF PROC FIxToChar (lnt~verlay, BitslnFroc) C 20;

ITEM Intvera S931;

71

*DATE: 29 August 1IM
* MAION: 1.0
* tft: FixTo~har
* JOCLE MLIER: 1.0

* ECIPTION:
*This routine Is used to convert fixed-point values Into
* d~u'acter represetation. This routine wsnecessar for
* testing and performnc evaluation of math routines developed: ~~:for the 1750Ftoha bisf *
~U PASE FAILE: lntOverlay - ft' Integer kUmilaie Overlayed an top

the fixd- Intgrgumnn

* AUTHOR: Capt. Steve R. Hotchkiss and
*Capt. JenfrFried

H HISTORY: This project was undertaken as a thesis project for
'S partial fulfillment of requiremen ts for an MS dere *
* ~~in Information SOinc froe the Air Fores Institute
'S ~of Technology. Sponsoring orgco ization Is the AMO '
* Language Control Bracid Wihght Patterson FD,Oh.

STAT

FEP PROC FltToChar (Rg) C 20;
BEG IN
I TENI Fg 39;

*FixToChar Procedure

OEF PROC FixToChar (lnt~veriay, BitslnFrac C 20;

ITO1 IntOveray S 31;
ITEO BitsInFrac U 8;

BEG IN
ITEM1 ftg F 39 PO8(0,0);
ITE ~Pe S 7 P08(8,1);

Rrg(G a F39 *)(vela
Fe () m rgxp(O) - *S7 Btifc

72

[" b. , ,r , -. * . ..

.7M 7 -

* GATE: 29 August 1IM* L I014: 1.0 * oi

IAE: FItToChar *
SMOOIE NUMBER: 1.0 *

* OESCIPTIOII:
* This routine is used to convert floating-point values into *
* chma~=ta rpres tation. This routine was necessary for *
* testing end performance evaluation of eath routines developed -

Sfor the 17 .4
* PASSED IROLES: Rq - the value to be comported *
* FETRS: a 20 dw oacter re nteseattion of the argument *
* IOLES CALED: n *

A UTHO: Capt. Steven R. HotcIkls and
* Capt. Jennifer Fried "

HISTOAY: This project ows unde ltkan as a thesis project for * l
* partial fuIfIment of requirements for an MS doe
* in Informtion Science froe the Air Force Institute *
* of Tedtnology. Sponsoring orgnization is the IO *

I anguage Control IBrnch, Wright Patterson AFB, Oh. *

START

DEF POC FItToChar (Rrg) C 20;

BEDul

OEFIME Yes " ". -
DEFIME ft "180"

ITEM Ag F 39;
ITEM Fraction F 39;
ITEM Temp F 39; "
ITEM Result C 20;

ITEM Ix U 8;
ITEM ly U 8;
ITEM ExpCnt U 8;

*ITEO NegExp 8;

ITEO Char~a I U 8;
ITEM Ch0a C 1;
MvLY Champ: Charkal;

ITEO ZeroAep STATIC C 1 '0';
ITEM Zerowal STATIC U 8;
OMALEAY ZeroRmp: ZeroU I;

CONSTANT ITEM Zero F 39 - 0.0;
CONSTANT ITEM One F 39 a 1.0;
CONSTANT ITEM TenFloat F 39 - 10.0;
CONSTANT ITEM PtFive F 39=0;
CONSTANT ITEM PtOne F 39 a 0.1;

73
. ,- ... - - .

PA I Reut C) a M-M --- IE

IF Fb'q I Zero;
BEGIN
Fract Ion * -Arg;
BYTEffai.t,O, 1) U.

EMD
ELSE

Fraction *Arg;

IF Fraction CPtOns;
N~Exp = Yes;

*~~x No.

ExpCnt = 0;
WHILE (Fraction > One);

BEG IN
ExpCnt sExpCnt + 1;
Fraction uFraction /w Ten oat;
END

0IF (N~exp *Yes) RIO Fraction)Zero);
BEG IN
BYT(ResuIt, 17, 1)

WHILE (Fraction (PtOne);
BEGIN
ExpCnt a ExpCnt + 1;
Fraction - Fraction *TwFloot;
END

*y 0;
WHILE ((Fraction o) Zero) AND (Iu 13));

BEG IN
Tw Fraction STenFloat;

IF lqj 12;
Tmp a Tep + PtFlve;

Chartlal - (* U89*)(Twp)
*rcto m); *F39* hra

Chartlal m Chari~al + Zeroi~al;
BYTE(Result,Iy+3,1) uChwW;~

*y l + 1;
ENC

* Chorual U(*US*)Expt MM 10)+ ZerIaIl;
SYTE(Rinmul t, 1g, 1) -ChwtRW;
Chor~jal U(*US*)(Expnt/10) + ZroIWI;
9YTE(esi I t, 18,1 D Chufiep;

FltToChar Rlesult;

*RETURN; 7
ENO

TERN

74

TITLE HOL(PRINC)
IMOLE PRIHTC

" DATE: 4 September 1283
" VERSI ON: 1.0
" N'AIIE: Printc

* flOO L MtBER: 1.0
* DESRIPITION:

* This module is called to print a charater string onto
* a console that is connected to a lii I-Std-1750 op

* p~5~VARIABLES:
* LENOTHL3 - this variable contains a cnt of the ruwer

*~d charatrs to print
MESE-G3 - this Is a location pointer for the string tobe

RETIRMS:
* prints mssages on user console

* IODLLES CALLED:
AUTH4OR: Capt. Stwven A. Hotchkiss an4

* Capt. Jennifer Fried
H HISTORY: This project was undertaken as a thesis project for

* partial fulfillment of re~iirinents for an ('1S degree
* In Information Scienc froe the Air Forc Institute
*of TechnolIogqj. Sponsor Ing or gan izatIoan isz the ASO
* Language Control Branch Wright Patterson RF9,Oh.

* -SEP-S5/15:0Q:29
PRINTOFF 00 NO0T LIST IIETAS

*STRT OF M'ETA DEFINITIONS

ORTFIS M'ETA 3 REPEATED PRESET META
L.F(O) EcP. $

LOOP 2,1,It"(OF)-1
vaiD OF(-., 1),I4OAMR,.OTflS
OOTG TEST

NORMA LAEL
DATA OR-..)

TEST LOOPTEST

.. IS MMET 3
LOOP 1,1,GF(-.,l)
DATA OR-.)
LOOPTEST

LEIGTH 25,~9M

SECTION M'ETA 0 .CSECT META
LOOP 2.,1,31

iC(DLX4*.) CSECT
LOOPTEST

75

*GEIERATE FED ECPJATES META

FEB META
xNC LOWP 0,1,15
NC(R) WOJ XPIC

LOOPTEST .-

eVB OF META DEFIMITIOI9S

OW FE EQLMT

812 EU 12
913 EU 13
9 14 EQU 14
915 Ea5I

COMMITON CODE EQURTES

£0Q EQU 2

OTELJ 4
EQU 5

LLT EXU 9
LEQ ECV 10
LCLE EOU 11
LOT Ea.J 12
LM EOU 13

LGEEQIU 14U 414EQU 15

IRO OF EQLIMS

REG
SECTION
PRINT
O EFINE PRINTC

PSSOAR R EQU 3
PSSCOIIS$ EQZi 4
PSSCOOES ECP 2
* NO RF DAT DECLARA I ON
* NO BVRF/TP/M9CUJ DECLARTIONS

S * LOCAL RUTO I C DATA *** S IZE IN MOMM - 2 DEC IN I' 2 HEX *
*LOCAL RJTOHWIIC DATA FOR PROC PRINTC

STACK FRIE ***SIZE INUMAD-2 OECIW. :2 HEX**
UILaoSE EQU HEXCO) .SIZE - 2

* LENTfl3 EOU IE() .SIZE I
IIESSAGE.3 E0J HEXMl SIZE
* EN) OF LOCAL AJTO11RTIC DECLARATIONS
* PSEC SOATA I S E"IT

76

* 82 m NIER OF CHRRACTERS I N STR ING
R 3 a LOCAT ION OF CHARFACTER STR ING

PSSOOEORIGIN HMXO)
PR INTC EQUJ

ORIGIN IEX(OO02)

AISP R2,1I FAUST CHFRACTER CMII
SFI R2,1 I ST lO COHMIWCS EUI~WLENT TO

BLE LL..000 ANCH OUT IF I.EGAL CHAR COUNIT
OUTPUT EauJ

X101 RS,RCS .READ CONSOLE STAUSj. .

TOR 1, R5 CWC STATUS B IT 1
BEC OUTPUT I F OFF, LOOP MBACK IFL CONOLIRAD
L 85,0,83 GET NlEXT TWO CHARACTERS OF MESSAGE
XIO R5,CO PRINT BM~ CHRACTERS
RiSp R3,1I PO INT TO MWX TWO CHFRCTERS
SOJ R2,OUWU WoECEENT LOOP COUT, G0 BACK I F "ORE

* 1.-.002 EOU
RISP R15,2
POP"I R2,83
URS 815
ORIGIN HMEX(O0)
PSMf 82,8R3
81WP R15,2
ORIGIN HE(0013)

77

Appendix C

-A

78

----- -- - - - - - - - - - -- -- ------------ --------- - -- - - - -

MIOTE: 10 October 1Q85
UERSIOfl: 1.0
M ~lE: Refilat

* IOCLE IIIUIBE: I
* DESCIPTIONM:

* This routine is used to convert ITS LI files Into
* a format that can be loaded into the SPRY 1831
* coeputer (175OR architecture). The ITS files are *'-14

SO.9' f IlIes and mat be i n the 90 colum record format
dam dcI bed I n the E1W I TS Load floduIae lCO (COIL 0 1005

* contract OF39857-O3-C-0244). Use of the command f il I
* LIWI175D.C0 to link~ all compiled modules will irwre*

that these record we of the right format. The format*
* of the SPERRY loader record wre defIneod In FRpedI x B
* of Its programmer reference manual. The byites of all I
* binaryj data fields mst be swapped (i.e. the high *
* order b its of a word ore swapped w Ith the lon orderS8)*
C The only tuype ITS record conerted wre binary and
C en~ad reor types. It also igiore all protectionC
C ~indicators, and can not handle expandedmo- jobs. C
C liWe all object files wre copied Into a single object

0 * for liing by the ITS LIICER, the main procedure mast*
C be copied into the file fIrstIIIfI Otherwise, this
C application will have no way of determining the point
C ~that oeection Is to begin. The end' recor created
Cby the I TS I I nwr conta ins the lowet addrress of the
C load module, and this appi cation assumes that the
C routine begins at that point. The ITS file contains
CdatfaI ds that ore In HEX character r epreetation, C
C and the SPEFRY 1831 expects binary data fields;C
C therefore the ITS data mast also be conver-ted to C
C~ ~ bInaryj

*~ ~~ IASE WRILES: N/A
REATUMI: M/A

C ICCLES CMLLE: GetHdk
C RAwdf*
C ~ PrintfC
C Cl C o
C lntFilC

* *AUTHOR: Capt. Steven A. Hotchkiss andC
* Capt. Jennifer FriedC

H HISTOWY This project am undertaken ais a thesis project for
C partial fulfillment of re~iremets for an MS9 degree
C in Information Science from the Air Fores Institute
Cof Techno Iogyj. Sponsor ig or gan izatIoan I s the AISO

1 Langua~ge ContraoI Brach d, Ur I gt Patterson AF9, Oh.C

START

* cOPOOL(lo0ata');
lttPO Clocal Is')
'COIIPOO CRfImtCpV);

79

PmOmIVI Refrott;

BIEGI N
cttsia 49*0000;
FirstPas = True;
LdSt -I-; t
Eat a Faine;
Buf f a 0;
tufPtrC0) a 1;
tafPtr(1) - 1;

*Initialize 10 Films
I ntF II;

*Got Macdr Info for Loader File
BatHd';

WHILE NOT Eat;
BEG IN

*Read the first 8O coilwu reor
Rleadf (lIts~d, Eof)

-Put Loadsr Info Into Contiguous Mieaory Locat Ionrs
IidsInrcd w CntI(0) - Rxel 50;
Rd*CCO) a Rd*(0);
IWdICCO) - UdICO);
Wd2CCO) w IWd2(0);

*Wd3C(0) * 1Jd3(0);
IWd4C(0) a iWd4(O);4
UdSC(0) asd()
Ud5CCO) = IWdB(O);
iWdC(0) w UdflO);

Initialize the Output Buffers
FOR Ix: I BY I WHILE lx'33;

CharTaflin~ix) - 0;

FOR Ix: 0 BY I WHILE 1x463;
OutBuff(Ix) a 0;

0 Convrt CharTol0In adPack it"
FOR Ix: 1 BY I WHILE 1xa32;

BEG IN
IF (RsciiO<arTasin(Ix)) AM (CharTa9In(lx)'u~scii9);

CharTalln(Ix) * CharToin(Ix) - Rsel 10;
ELSE

*IF CRsiIiA4w.OirToBInlx)) AND (ChCToBIn(ix)unfcl IF);
OhrToin(ix) a ChorTo~incix) - AsiR + 10;

HalfByt.(lx) H ibblesC ix);
END

IF Typ(O)*
BEGIN "This Is a binary rwecord

IF tifPtr(Buff) + Iddslnflcd (461 AMO LdPT *Laddr(0);
BEGIN "Old Record and still romfor more data f ields"

60

.................... ...

I ,.-.--..-,.

Flip Flop the position of each byte of a 1750A word
FOR Ix: 0 BY INIILE Ix<Wdslncd;

BEGIN
Buf yteO(BufPtr(Buff).lx) n FleldL(I)x+);
Buflytel(BufPtr(Buff)+Ix) w FieldH(lx+l);
END

"Point to uher info from next ITS 80 colm recod
" is to be placed into this loodr record
BufPtr(Buff) a BufPtr(Buff) + iWdslnPcd; .

" Update load point so the next ITS recoad cmi be dcecked to "
n s If it belongs In this Ioader recod
LdP LdPt + Mdsl--d;

IF BufPtr(Buff) m 61;
BEGIN " Loader eord Is full and needs to be or I ttu-

1dslnluffer - 60;
RcdTypl RsciiB;MPitrecd;

Uri-

ENO

aEN

BEGIN Old reor and not enough room - or new record

IF LPt= Laddr(O);
BEGIN am loader recFOrd, but not e room for all

, data fields in ITS record

Swop ByItes of wr going Into loader rcd
FOR Ix: 0 BY I IILE BufPtr(Buff)+Ix < 51;

BEGIN
Buf8yteO(BufPtr(Buff)+lx) w Field.(Ix+l);
Bufyt*el(BufPtr(Buff)+lx) a FieIdH(Ix+I);
LdPt = LdPt + 1;
END

Smite the full record out
*idslnguffer a 80;
R dTypI • Asli B;
WrI telcd;

Set the load point for this new load record ...
Ldd(O) w LdPt;

Swap bytes of the other ITS data fields and place them Into"
- record. If the next ITS recor doesn't hav the load point "
Scomputed here, it should be the first entries for another

Ioader r*com
FOR IU: Ix BY I W4ILE l (1ldslnR'd;

BEGIN
BufByte(BufPtr(Buff)+Iy) = FIeIdL(Iy+I);
BufBytel(BufPtr(Buff)+Iy) a FIeldH(Iy+I);
LdPt LdPt + 1;

4
81 °

...... p .-...

" - %. ".; o,-°.. o.L I o. "° .A%.LL1o " ov. ''. .°- .. 9 ,. - . • o °" ..-" .-. -. .-. Ko.° "---

EO *Sm recod not enco ro"

ELSE

BEGIN "this Is the start of a ne loadw- recor

IF NOT FirstPass;
BEG IN .-

IF BufPtr(Buff) 4) 1;
BEGIN "the last recor didn't got f IlIled up, so I t

-hasn t beew orItten yept. The rout ine
*Wited sets BufPtr to 1 before exit

Udslrtbffer uBufPtr(Buff) -1;
Uri tePod; -

EM
EmO end not first pass

FirstPass = False;2
0 -Set the load point for this loader recod

Ldd(O) *Laddr(O);

Swaop bytes of ITS data fields going Into loader vecor
FOR Ix: 0 BY 1 WHILE lx ' WdsInrcd;

BEG3 MN
A OP Sf~ijteD(lx+1) - Fili&(Ii);

Buf~mjtel(lx4.1) a FieldH(1x+1);
ENO

BufPtr(Buff) * dsnRcd + 1;
Ldt *LaddrC0) + IddslnRcd;

E aend newreod

EmD *end of old recor not enough rooem or new record

EmO "end of this is a binaryj recor

* ELSE

BEGIN "this is an eecution aftes record
IF Typ(O) - ''

BEGI N
RcdTp 828M51; "b I ak E"
Ou.t&.ff(0) a Ladd"(0);
Ou.t~uff(1) a 30; 0 ascii recor serator
Ur 1t@elcd;
EM

EmD "end exectio n aftess record

Em "end while loop"

Write end of file loader record

RcdTplu828; "blIank F

82

OutafFC(O) u30; *s ai~I rooem w~pm ar

Clem up Film used

END
TEPM

F 83

MIIONt: 1.0

NAMEf: WIiteRed
PM IE NUBER: 7

K * DESCRIPTION:
* This routine Is called byj Afiat to do 10 stuff that
* ~~needs to be doae throughout the main poer.Three
* types of SPERY 1031 loader remod wre orI tten:

BinmV~ ,Execution, and End of f Ile. I f the recor tyjpe*
* ~~Is a binary~ recor, this routine coptes a checsum

for t Snten It Hoto ihe id o h m.Te
thie rectyp Ias oidr ttdn ast ao b thesib Irjc fory
emta fufilleo re q tpeIsrnmts o reo o18 er
in Indfmtn iencefro thew AirFoe Isitute *
foI Ted byo the Sponsoringoraizao Is th ASOf f *
lobale vnrl thah poit t tte rs=o beOh

*TAR MVRALE:Mn

*IOLECALED RTR-aANRRA,1 rutn
* ATHR:Cat. teenA.Hoth1ss5;

Cat 120;erFre

HITOY: Tisprjetds udinim a tessfrjet;o

prtiallilwto eirwt o;a Sdy

in0Inf inSi- rmteArFoc nttt
of L dv oy.Sonoig rm z)nI teA

REFPRC Pinf(cSaya XO ~ifor);)

I L WJIE FOTRA4

FOR Ix: 1 BY I1 4ILE Ix (a LoopCnt;
BEG IN
OUTBFF(1x4.1) m BufI~d(Ix);
O?*Sum *ChkSum XOA Out~uffB(lx+I);

Ojtutuff9lx+1) *Chkam;

Prlntf(RdTypIOutFId); -

ELSE

Pr'Intf(RmdTypI ,GutFld);

BufPtr(Buff) *1;
Buf f FES(1-Buf f;

RETMI;
TEM

85

0 DATE: 10 October 1985
* VJERSIONI: 1.0 4
* NAMtE: local Is
* MODULE NLUER: 9*

* ECIPTION:
* ~This co Io Is required for Refilat to referve I ts *
* associated FORTRAN 10 routines

* PASEDUARIABLES: N/A
* REURNS: ft/A
* MODULES CALLED: N/A
* AUTHOR: Capt. Steven R. Hotclikiss and
0 Capt. Jennifer Fried
* HISTORY: This project wsundewtaen as a thesis project for *

* partial fulfillment of reqlrementsfor an S d*W-e
* in Information Science from the Air Fore Institute 4
* of Tedv loogy. Sponsoring organization Is the ASO
* Language Control BrEanch, Ib'i ght Patterson FB, Oh. *

COI1P0OL, loCal Is;

REF PROC Wite~cd;
BEGI1N

REF MW OetHdr;
SLi I KAGE FORTRAN;

BEG IN

FEF PROC Readf C: I tsRcd, Eof)
ILINKAG FORTRN

BEG IN
ITEM ItsRcd C 90;
ITEM Eof B 1;
ENO

* RF PROC Printf(RcdTyp, Buffer);
ILINKAGE FORTRAN;
BEGIN
ITEM RcdTyjp S 15;
ITEM Buffer C 128;

REF PROC C I nJp; -

ILINKAGOE FORTRRN;
BEGIN

REF PROC IntFlI;
* 'LINKAGE FORTRAN;

TERM

86

-' .* *'. ---.

• DATE: 10 October 1985 *
SUERSiION: 1.0 *

M IAIIE: IOato *
• OLE IIUM : 9 *
• DESCRIPTION: -
* This compool defines all data riqluired for the JOUIFL *-
* routine RefMat and its associated FORTRAN 10 routines *
* PSSE VARIABLES: N/A *
* AETLFIS: N/A *
* NODULES CALLED: N/A *
* AUTHOR: Capt. Steven A. Hotdkiss and *
0 Capt. JaiI fer Fried *
* HISTORY: This project was adrtaku as a thesis project for *
* partial fulflllent of requlrwmts for an MS degre *.
* in Informtion Science from the Air Force Institute *
* of Technology. Sponsoring organization is the ISO *
• language Control Brach, Wright Pattrson FB,Oh. *

START

COIPIL loate;

CU ITEM Infil C 10;
OEU ITEM Outfil C 10;
CUF ITE I FlInm C 8;
DF I TE e C 0;

CUF IULE ItsTableCO) U 20;

ITEM Addr C 4 POS(16,00);
ITEM Typ C I POS(16,01);
ITEM Cnt C I POS(24,01);
ITEM CntI S 7 POS(24,01);
ITEM 1dl C 4 POS(08,03);
ITEM Ud2 C 4 POS(16,05);
ITEM Ud3 C 4 P0S(24,07);
ITEM MMl C 4 POS(00,10);
I TEM6M C 4 P09(06,12);
ITEM dO C 4 POS(18,14);
ITEM lid? C 4 POS(24,16);

CUF ITEM Its~cd C 80;
GEIAY ltsRcd: I sTTable;

OEF TABLE Outlcd (0:62) T 16 M;
BEGIN
ITEM OutBuff S 15 P0S(0,0);
ITEM Out.BuffB 18 POS(0,0);END ":-

CUF ITEM OutFId C 128;
OVERLAY OutAcd: OutFId;

DEC ITEM Eof B 1;
EF ITEM RcdTypl S 15;

87

-.- -.. - -

DEF ITEMI RcdTyp C 2;
OYJERLAY RedTypI: Rcdr!Jp;

OVERM Infil, OutFil, Filnam, kiaer, ItsRad, OutFId, Eof, Radfyp;

TERMl

RD-RI64 650 DEVELOPHENT AND EVALUATION OF MATH LIBRARY ROUTINES FOR 2/'2
A 1759R AIRBORNE NICROCONPUTER(U) AIR FORCE INST OF
TECH MRIGHT-PATTERSON RFB OH SCHOOL OF ENGI..

UNCLASSIFIED J J FRIED 64 DEC 85 RFIT/GCS/NA/B5D-3 F/G 9/2 NL'

EhllhlhlllllOIIIIIIIIIIIIIu
IIIIIIIIIIIIIu
I.IIIIII

-. i Q. -- $:':-.. - .'. .-- - : - '. " -" '- "*.- -. . .."- - ,. . r ," .,_ , w , r , ._'- . rs'-.r.- r , ,,C rnr.a-. e..r. - er,- .r- r,.r- r

1111111M0

IIIIL 1 ,11_-6

M O .. hoh T C

M CRoc PY R SOLU ON TESI CHART
.:-" :

. I

* x:. .- t-*-o-

Ut-

D RTE: 10 October 1985 *
* UERSIOI: 1.0 *
* AIMw: RflItCpI *

Mam II P M: *"
DESCRIPTION:*

• This compool contains all the variables and tables *
* that wre used to unpack ITS I inker records, packs them *
* and comports the HEX dwacters to blinar data fields, *
SIand then places them into a SPERRV 183 loader record *

* format *
SPASSED VARIFABLES: N/I *
• RETlJRAS: M/R *
* WILES CF.ED: i/A
* FUTHOR: Capt. Steven A. Hotchiss and *
• Capt. Jemni fer Frie *
* HISTORY: This project was Idertaken as a thesis project for *
* partial fulfillIment of reqIrements for an MS degree
* In Information Science from the Air Force Institute
• of Technology. Sponsoring organization is the AM *

SLanguage Control Banch, Wright Patteron RFB,Oh.
- * -- - -- - -

0 .. -.-.- o-

- ~ ~~ ~ ~~~~ - - - - - - - - -- - - - - - - -

STRT

CQ1POOL RflltCpI;

DEF ITEM ChkSum B 18;
DUF ITEO F IrstPass 9 1;

DEF ITEM LdPt S 15;
OEF ITEM Buff U 8;
CEF ITEN Ix U 6;
DEF ITEM ly U a;
DEF ITEM UdsIslnRcd S 15;
(EF ITEM LoopCnt S 15;
DEF ITEM dsIln~uffer S 15;

DEF ITEM Zero STATIC C 1 '0';
DEF ITEM RscliO STATIC S 7;
OI.RLAY Zero: AsciiO;

DEF ITEM Nine STATIC C I '
CEF ITEM Aciig STATIC S 7;
OIERlRY NIne: cIll 19;

CEF ITEM IR STATIC C 1 'A';
DEF ITEM RsciiA STATIC S 7;
O IERLRY FR: R c i A;

DEF ITEM FF STATIC C 1 'F';
OF ITEM RscIIF STATIC S 7;
OUERLAY FF: si iF;

OEF I TE 1 W STATIC C 2 B';
DEF ITEM AscilS STATIC S 15;
OUER.RY W: Asci iS;'

89
~~~~~~~~~....... ............-......,.............. __L -, .;L . ..... .... ' ' -



CEF TFILE Looaoint (0);

ITEM Ld~d S 15;

OEF TAIBLE BufStJI (0:1);
BEGIN
ITEM BufPtr S 7;

OEF TAIBLE Pagkedlold (0) W 8;
BEG IN
ITEM RddrC C 4 P0(00);
ITEM MdIC C 4 P08(0,1);
ITEMI2 C 4 P09(0,2);
ITEM MM3 C 4 P09(0,3);
ITEM WW4 C 4 P09(0,4);
ITEM WW5 C 4 P0(05);
ITEM UdOC C 4 P08(0,8);
ITEM Wd? C 4 P09(0,7);

DEF TABLE CharCowt (1:32) T 8 U;
BEG IN
ITEM Cha'TaBin 9 7 P09(0,0);
ITEM Nibbles S 3 P09(4,0);
END

OUE1LRY Packeood: ChwCanerwt;

ClEF TAIBLE Hxuf (1:32) T 4 U;
BEGIN
ITEM Hafijte 8 3 P08(0,0);

ClEF TABSLE PakI ts (0: 7) T 18 W;
BEG IN
ITEM Laddr S 15 P09(0,0);

END

ClEF TAIBLE BinFields (0:7) T 18 U;
BEG IN
ITEM Field S 15 P09(0,0);
ITEM FieidH 9 7 P09(0,0);
ITEM Fleldl. S 7 P09(9,0);

OUERLAY He~d& f,Ix: Paklts: Birflelds;

- - ClEF TABL DatFields (0) U 1;
BEGIN

-'ITEM 9uf~yte0 S 7 P09(0,0);
1 ITEM Bfjtet S 7 P09(8,0);
ITEM DOW~ S 15 P09(0,0);
BE

90



C C
C VERSION4: 1.0 C
C NAME: lntFllI C
C MOILE NUMBER: 5 C
C DESCRlIPTION: C
C This routine Is called byj the JVIA routine called C
C Remiat. Its purpose is to promt the us~for the C
C name of a file that was created by an ITS link, CI
C promt the user for the nms of a file that the C
C reforettedITS fleIs to be aittento, and then C
C mow both fIles. The Input fIles must be a 0.S0 file C
C and the output file Is a w.CRT* file. C
C P USD RI ALE hane C
C RTURNS: Nothing C
C GLOBAL LUILES: All variables used wre global, and have bow ~ C
C defIneod In the coon COPL)cal led Icoata C
C MODULES CaLLED: None C
C AUJTHOR: Capt. Stevwn A. Hotchkiss and C
C Cap t. Jami for Fr ied C
C HISTORY: This project am dinrtalten as a thesis project for C
C part ia I fu If IIle ent of requi rements for an 118 dege C
C in information Scienc from the Air Force Institute C
C of Technologyj. Sponsoring organ ization is the ASO C
C Language ControlII ~aid, W l gt Pat tmwsa AFB, Oh. C
C C

7 r n r r, , rr ------------------------ n------- -- -: ------

Subroutine IntFl I

IMPLICIT INTEGER (R-Z)

CHARACTEI Fi Inam
CHRRACTEr-10 Infil, Outfii

WRITE(*,*)' Enter File Mns (Mlax 6 Characters)
RAD(, lO)F I Inom

10 FORMAT105)

*I -INEX(Filnm,.) -1I
IF (I.L.E.O) THEM

I tME(Fiins )r I
IF (I.L.E.O) THEM

Ie
END IF

* DIF

Infil a Fllnam(:I)/P.S0'
Ou.tfil a Fllrm(1:1)//.AT
I4RITE(*,*)Input File m *,Infil,'Output file * ,Outfil

OPEN(LR I T a 2, NAME a I nf II, TYPE a 'OLD, FORM FORMATTED'
* OPENCUNIT a 3, lifE a Out~IVl, TYPE m 'MEW',

* . ORN. flWRTTF')

END



C C
- .C amE: 10 October 1985 C

C UERSIOfl: 1.0 C
C WRE: Geu*d c
C MODCULE I9E: 2 C
C DECIPTION: Ths1C

C Refilat. It requests a user to input a oam line C
C headwt that will be placed in a loadu file. C
C PASSE I IBME: Mone C4
C RETLIRPS: Nothing C
C OLOM N A ~I F8 All I ariables uine Oe global, and ore def ined In C
C the common CtFL)called loData C
C MODULES CAL.LED: IloeC
C AUJTHOR: Capt. Stemw R. Hotchkiss and C
C Capt. Jennifer Fried C
C HISTOY This project a nwdtiwin as a thesis project for C
C Partial ful fiIfilwt of requireaits for an I15 dere C
C in Information Sciono froe the A Ir Fore I nst itute C
C Of TechnDology Sponsoring organization Is the ASO C
C Language Control kanoh , Wfright Patterson AFD3,Oh. C
C C
-- - - - - -- - - - - - A

Subroutine Get~dr

0?g IMPLICIT INTEGER (R-Z)q

IMTEOER*2 Space1
~CT~0 Headet

CHARACTER* 1 AS
DATA RIS/30/

SpacerI '0
U I TE(*, *) Enter Optional 1 Line Header Text
Reod(*, 10)Header

10 FOA I I(SO)
WR ITE(*, *M)eader

* URITE(3) 07/Header//RS
DO 20 1-42,54

WR~I TE(3 )Spacer 1
20 C0HTINLE

92



- - - - - - - -

C C
C DATE: 10 October 198 C
C kIERSON: 1.0 C
C IWIE: Prlntf C
C MOOULE MNI9E: 4 C
C DESCR'IPTION: C
C This routine Is called byj the JO.IRL routine called C
C Refflat. I t I s useid to or Ito SPERRY l oadefrcod out C
C to a".DAT"file. The niseof the filbeing writtenis C
C stored in the global vaiable (Outfil which oas set in C
C the routine called lntFIl C
C PASSED VAR I RUES Mome C
C RTURN: Nothing C
C OLMBL VMRIUFILES: AllI variables iued wre global, and wre defined In C
C the comen CWPL)called lo~nta C
C MODULES CAL.LED: Morn C -

C AUTHOR: Capt. Stev.ien A. Hotchkiss mid C
C Capt. Jennilfer Fried C
C H ISTORY: This project as undertaken as a thesis project for C
C partial fulfilIlment of requirements for an l1S d e C
C in Information Science from the Rir Fore Institute C
C of Technologyj. Sponsoring orgwi Ization is the ASO C

*C Language Czntrol lbawidi, Wright Patterson AFD,Oh. C
C C

Subroutine Printf(RcdTyp, OhutFId)

IMPLICIT INTEGER UK-)
MOVER ITER*2 RcdTyp
IMTEGER*2 OutFid(1:53)

WRITE(3)RcdTyp,(OtFId(l), 1 1,83)
WIlTE(*, *)'ri to next recodm.

END3

93



NATE 10- -- C IV- N;

C am 0October 1985 C
C UI~E~ON: 1.0 C Z
C W#E. Podf C
C MODLE ItEI9E: 3 C
C DECIPTION: C
C This routine Is coiled by the JOIALIN routine called C
C Refflat. Its is used to read 80 colIumn record created C
C byj the ITS link~er. The nam of the fit being read Is C
C stared in the global variable Infil which was set in C
C the routine called lntFil. This file Iso a.SO" file C
C PMSED IVILES: None C
C FETLRI: Nothing C
C MWBL UI FKES: All variables used are global, and are defined In C
C the common (CIPO)cailed Icoata CRC MODLES CAILLED: None C
C AUTHOR: Capt. Steven A. Hotchkiss and C
C Capt. Jemni fer Fr ied C
C HISTORY: This project was undertaken as a thesis project for C
C partial fulfillment of requirements for on M1S dee C
C in Information Scenc from the A Ir Fore Institute C
C of Technology. Sponsor Ing origanization Is the ASO C
C Language Control Branch, Wright Patterson FFB,Oh. C
C C

~4e Subroutine Readf(Its~cd, Eaf)

IMIPLICIT INTEOER WAZ)

LOGICAL'*4 Eof

Eof = FRLSE.

RIER(2, 10, EN u 20) 1 tsAcd
10 FCWtIT(A90)

i.IR ITE(*, *) I ts~cd
OMT030

*20 Eof -. TRWE.
30 COhNTINUE

94



7. T

14 -- -444 4 4 4 4 4444 49 44--

C C
C ORTE: 10 Octoe 1995 C
C IERSIOII: 1.0 C
C IMI: CInLp C
C tICCILE MOWgE: 5 C
C CSRIPTION: C
C This routine Is called byj the routine Refflat to clos C
C the film itused for 10 C
C PASSED VARlI LES: Mone C
C RETURNS: Nothing C
C iIOOLLES CALLED: I'arm C
C OLWL VARI ELES: RliIvaiobim ued wre global, and ame def ined In C
C the common ( OFO) called loData C
C RUTHOA: Capt. Stewe R. HotchkI ss and C
C Capt. Jennifer Fried C
C HISTORY: This project wasudertdmw as a thesis project for C
C partial fulfillment of requhrments for an MS deWe C
C In Information Science from the Air Force Institute C
C of Technol~ogyj. Sponsoring organization Is the ASO C
C Language Controi Branch, Wigh~t Patterso FD,Oh. C
C C

Subroutine CinOp

IMPLICIT iNTEME (RA-Z)

CLMS(UNIT - 2)
Cl S(UNIT -3)

EVV

95



Appendix D --

96



$ 1 RS175O1 - RumIble a 75D swrce module

I$ 1 W17RW file

$ 1 file - irnut soure 'mn of module file.Sl..

$ I Create RIsiibli input file UI that dsiglates fill-Std-175OR as the target
$ 1 rathUr tha the altenate 1750A target
$ CFRT 'P1'.UI --

ASEM1BLE TF-ET4I175OR
$ TY 'P1.UI
$I
$ ISSI ON *PV'.UI UI I UPORTE INPUT i FILE (IMPUT)
$ FISSION 'PP'.Sl SI I 17SA FISSEBLY SORCE FILE (INPUT)
$ ISS I N 'Pl.OJ 00 I OBJECT OUTPUT
$ ASSIG 'Pl' .SO SO I SYMBOLIC OUTPUT
$ ISSION 'PI'.L0 LO I LISTING OUTPUT
$ FISSION LIB.JIRL-?OR 01 I LIBRRY INPUT

$ SET UERIFY
$ M175OR
$ 1rs l s- - . .
$ EISI ON SI
$ OE IOM UI
$ EANsION 00
$ D mESqION SO
$ OEASSIG LO
$ IJEASSIO OI 01

$ DELETE 'PP'.U;*
$ SET NIOYERIFY

97

.....................-.....



$ 1 JOPJISO - JOIft. COMPILE FOR MIL-STD-l?1O TWET* $1
$ 1 JOUI17O file [.filetypeJ (options]

$ 1 e.g., &W175O TEST I SAIC /SVYITRLOSLY/TRTISTI CS
$ I J OU1750 TEST2 /IIRCHI t LCOCE/RSS

$ 1 Note: If the fi letIpe Is JOU, options miN be typed as d p2eter.
$ 1 1f a fil etpe Is suppl ied, It must be preceded by as Ahwn.$9
$ I Resulting object moduIle has type . !NJ

$ SET UERIFY
$ JOUIRL 'P1 P2f'lRA "T17OIR CFOI/IO'. T-se 0

98.I!

98+-



- , - ~ -- -. . . . . *., ~ -7... .r--

$ I LlII750 - Link one or more 175A target object modules.

$ 1 IL IK1750 file

$ I file object file (containing one or more object modules)
$.o ornato object file by first deleting all .obj files for
$ I CCNIPO0Ls that don't contain arM DEFs. Then use the
$ i following commands to create the object file

$ I COPY *.OBJ flle.O
$ 1 FEMW file.0 file.OBJ

$ I O. fles cre ted by the coplIr and the asse ler can be copied to the
$ I same OBJ file, but the URX will give an incompatible files warning. IgI ot
$ Ithe warning, the copy Is made arnaj'
$I
$ I Create Linker input file "Ul"
$i
$ SET UERIFV$I

$ RTE 'P I.UI
LINK OAR,LIST,DEBUG, INPUTS

ALLOCRTE LOCRTIOM1O-1000 MOI.US
LINKEND

$ AIsoN 'P'.Ui Un I LINKER COHTOL (INPUT)
$ AS SN 'P'.OBJ 00 I OBJECT IOIXLE(S) (INPUT)
$ FISSION 'P' .S0 so I LOAD MODULE (OUTPUT)
$ SSIGN 'P1' .LO LO I LINKER LIST FILE (OUTPUT)

' $ ASSIGN LIB..LJOUILO175O f 0 . LIBARY OBJECT FILE (INPUT)$1
$ ITSLINK RUM r "175O Li nker...reads logic device Ul
$ 1 Output on SO ond LO

DESSIGO UI
$ o GEssIO 00

D$EASSIGH SO
IO$ DESSION LO

$ OEASSIG 01

$ DELETE 'P'.UI;*
$ SET NOUERIFY

99
.. . .*iL L_ .- '""- - --..... ... .-. .," ,-- .-. *, -, 2 2 2 --. . .- i.j , .. . -_ .- . ..



$ ! LOGIH.COfl This commd procedwt is irnyked with each login.
$ 1 and m, be d Kred to tai Ie oryur ow irornmwt.

$ I Set stankr al iauses. Note that several UNIX-I Ike al iases re set up.

$ ST IOU.ERIFY
$ SET PROTECTI0Im(SYSTH:R,0I31ER:RWED, OUP:A, WORLD: RE)VOEFRULT
$SMBOS:
$ BQ S0M, QUEUE/BaTCH
$ :- SET DEFAULT
$ OS : IRECTORY /SIZE
$ E EI
$ HOME U.SET DEFRULT OSKARD0L: IRDOL.HOTCHSA
$ LO : LOGOUT. COI
$ LS : DIRECTORY
$ Pq :SHOW QUEUE SYS"I HT
$ PS :%WSHO PROCES ! Like UNIX ps mmm "
$ P1 :- SHOW DEFRULT ! Like UNIX pod comwnd
$ R :"RUIM
$ SD : SH0 OEUICES
$ SO - SHOW SYMBOLS /GLOBRL /RLL

$ ST : SH TER lIlAL
$ WHO :- SHO USERS I Like UNIX who coemand
$ SHQ - SHOW QUEUE SLtR$QUEUE/LL
$ SoO "SET TEM INFL/WIDTH8O"
$ S132 : SET TERMILI./W1OTHm132
$ JOI1750 :" J-1750
$ LII(1750: In.L)t(750
$ SIM1750 - llM175O
$ RSH170 : IS '1750
$ UL OC - KIIPROTET

$ 1 End user defined keyins.

$ 1 DEFINE JOUIRL LIBRY FOR AUTOMATIC SEARCHIGIO FOR VAX TRROET

$ I FASIGH JOU.IBU:JOULIBU.OLI LKS IBRRRY

$ I The fol lowing defines the 1750R support tools rgeudo-omands:

$ LINK50R :- LINKITS
$ RRIOX :- STOOLS:RRID
$$ I E1tD L013It.Coil

SFINISH:
$ EXIT

100



. - . . . . .

p.

~ A.

I). ~

Appendix F

i~. -

p

I

I I

6

6

6

101



L - - -.. . . . . . . --

* with TECT-10;
use TEXT-1O;
w I th TCHEBYSHEF..PCKRIGE;
use TOEWYSHERCROE;

procedure TCHEBYS*4EF_.ECOIIOII ZAT GIllIs

- This procedure Is the main driver for the Tchbydf economization
- of a polynomial.

E0lfIZEDJ0L IFiL: FLWA..LECTO (0. .I'IADEFIE :*
(0. .1FX..DEWEE w 0.0);

-The I s the resuting economized coeff icients to the polyn~omial
SLIM: FLOATIWECTOR (0. .IRLDEGE) :- (0. .MtLEEE -), 0.0);

-This value Is a temporr work are for the sum of the coIlumns
- of the work matrix

UORKIRTIX: FLOARTRIX (0. .MFlRXEGME, 0. .IRX_..EW1EE)
(0. .I1RXLOEWEE a), (0.M-IRDEGAE a), 0.0));

-Temoarw work area for forming the economized coefficients

102



L. -".

procedre OISPLAYJSECTOA (PRINIT-VECTOR: In VECTOA) Is
-The sole purpose of this routine Is to dlsplay an integer vector

package IT-10 is new INTEOELID (integer);
use IT10;

begin -- Olsplaw Uector.
for I In 0..0E0AESF,.PIYNCII RL I oop
put (I); - '-
put C" ")
put (PRINT.IECTOR (I));
ne -ine;

wd loop;
aid OISPLAYJ.ECTCA;

103

............



. _r.'w -- - - - -- - -- --. - -. '-.- - - - - .

procedue o iSPLRYFLOATJ.ECTOR (PR I NTECTOR: in FLOTUECTOR) Is
.- -The sole W of this routine is to display a floating point vector

package INT-IO is new INTEOERIO (intewr);
use INl-o;
package FLT-IO is nw FLRT-1O (float);
use FLTO ;

begin -Dlsplay Float Ueo.U
for I in 0. .DEREELF..PLWI I AL loop

put (1);
put (- -
put (PRINTJ-ECTOR (0));
neul me;

end loo0p;
end DISPLRY..FLOTUECTOA;

104



131 e~a OISPLAYJWIATX (PRlNTJ1A"hX: In MRTRIX) Is
-The sole pwomof this routine Is to display an Integer matrix

package INT-10.I is ne IHTEGER.LOG (Integer);
use IIIT-..l;

pkgeFLT-10I Is ne FLORT-10I (float);
use FLT...l;

begin -Display Mlatrix.
for I in 0. .CEGLjEF..PM0LWIAI loop

put (I);
put V )
for J in 0..Imr .CGFLOF-MYPCL III loop

put CPRIMTJIAMIX (1,0));
put( )

uvd loop;
now-line;

end loop;
encd 0 1SPLAY-JIR I X;

105



pwoer OISPLAY-.FLOATJIATRIX (PRiINTJIA IX: In FLORTJITIX) Is
-The sole purpose of this routine Is to display a floating point matrix

package IINT-..0 is new INTEOER..I0 (Integer);
use IHT.JO;
parAnge FLT-1.0 is new FLORT-10 (float);
use FLT....l;

begin -0Ilsplayj Float Mlatrix.
for I In 0. .DE0MLEF..PCLYWIALIM loop

put (I);
put ( )
for J I n 0. .OEOREELCJ20.PLYNMflI L l oop

put (PRItIT..MhIX (1,0);,
put CO *');

end lo00p;
new-i me;

end loop;
aid 0 1 SPLRY-JLOATJIRR I X;

106



-- - -- - -.. i-..-s -- - - - -

begin -Thmbjphf Economization.

I NP-UTEF I C I ENTS;
put ("Input Coefficlentso);

new-IF I o

Dl SLAY-FLOATJ*ECTOR (COEFFICIENTS);

ram Ira

put ("Power of Polqbphelal);
neml- Ino;
Dl SPNLAJT IX TCI NIEB SF.JOYOMYfT.);

-Genrate the work matrix used In the f inal calculations of the economized
-polynomial. Again the matrix is lower triangular.

for I in 0..v .DE0OEJ3PLYMMIAL~ loop
for J in0O..l loop

IJORK..MTIX (91,J) := floot(ILTIPLiER MJ) * P I.ESOF...TCIEBYSH (1,J)
*COEFFICIENTS (1);

and l oop;
p end l oop;

-- ccuw *a the sum of the work matrix columns
for I In 0. .CE-F.PLYNNIlL loop

for J In 0. .0EOFEEDFPMLYM1OIRL loop -~
81*(J) :a 91*(J) + (UOXL.MTIX(lJ));

end l oop; "
end loop;

--Perform the final additions and sultipli cations to form the resut.
for* I In 0. .WEO :LCD.30LYMIIL - 1) loop

'or J In 0..1I loop
ICO EDl...OLYMtL~tl. (J) :- ECOIlZEDJPVLYHNIfL. (J) +

flotTCEYSEF.P YNONIALS (1,J)) * 91* (1);
end loop;

* end loop;

put ("Economized Polipoiao);

0 1 9PLAY.FLOMr.ECMO (ECOMI I ZED..POMf I s.L);
enid TOUEYSHIEMMEcNII ONl;

-- -------

107

lima" -



- NIES: TCEYEJXFG
STRINL-TOJINT

* - IMPUlT-CEFF IC I ITS
COFTETCHEBSHEFPOYMIR L

- DI SPLAY-L..ECTOR
*0 1ISPLRVJIARI X

- OESCRIPTIONS: Provided with each routine.
- PASSED M IASLE: The Input to this syjstem Is the dewa'iption of

the polyn~omial to be econoelzed.
- ETLIRI: The result of prcsIng Is the coefficients of the

econoeized polynomial.
- CILL I "MRNVIES TOUHE ..ECVOO I ZAT I OM

AUTHOR: Cpt Jennifer Fried and
Capt Steven Hotchkiss

-HISTORY: Original version, De 1, 1985

with TEXT-10i; use TEXT-..i;

* packag TCHEBYSHEF.PCKAG Is

- This package ecIves the coefficients of a polynioeial that Is to be
- econoeIzed, coptes its Tchmbjseg polynomial, and the power of
- Tahebiphef matrix.

-U.nconstrained ty~pe declarations
type WTRlX Is array (integer rimg 0, integer rng <0 of Integer;

-tiatrix of integer values, used to contain the Tdmbpstuhf polynomials
type FLOT41ATIX is array (integer r4ang 0, integer ranew of float;

--ttrix of floating point values, used to contain the powers of
-Tchmbyshef

type UECTO i s array ( In teger range40) of integer;
-- Vector of Integer values, used to contain the multiplier of the matrix

* type FLOAT4VECOR Is array (Integer wag 0)) of float;
-ijector of floating point values, used to contain the coefficients of

-the polyomial

-Jahriable declarations
MIRLIGIT: Integer := 19;

-The maximum number of digits permitted in a number is nine.
- This value represents the maximum input string length for two numbers
- and a slIash, .

tRX-DE.G: intege :a 9;
-The maximm value of the lawrget exponent of the polyn~omial

OEGREELOF...POLYMtOIAL: integer :- 0;
-The actual value of the Ilorget exponet as Input byj the user

COEFFICIENTS: FLOAT.JUECTOA (0. .MRX..DEGAEE) :m (0. .IIAX..EORlM s) 0.0);
-Contains a coefficient for each deWe of the polynomial that was

-specified by the user
0 IIILTIPLIER: UECTOR (0. .IRX...EGAEE) :a (0.M.IX..DEGAEE a) 0);

-This vector contains the reciprocal of the values contained on
- the d iagna of the Tchebxjshf polynomial matrix.
- Used in generating the economized polyniomial.

108



TCHEYsHUEF...OLttIALS: IIRRIX (0. .flRX...EE, 0. .MFaXDE0E)
(0. .'AX.DEM~ = (0. .PFMLDEGEE a), 0));

-The matrix obtained when using the Tchebyshef fow Ia.
PONERS..(F-iaEYSHEF: FLOTJ"I X (0..MIRLDEGME, 0.. tRXDENEE)

-The matrix forme when applying the secon step of the etonomization .- %-

-algorithm

function STRING-TO-INT (S: string) return integer;
-Th Is fwictioan i s used to cwYrwt the I nput coef f Icieant str ing i nto an '

- inteWu value that equates to the numw'ator and the denominator.

-These procedures perform the functin specife byti package
pi ocedure I WUlT-.COEFF I C I MNT;

-Get the Input coefficients for the polyomil
procedure WMFTTOEBYSWLYWM I FL;

-Gww ato the Tchabyshef polynomial matrix-rMaTCHdE
-Generate the pows of Tcebephef matrix

end TCHEBYSWHEFK~XW;

1091
. . . . . . . . .6



"--~~ ~~ ~~ -. --"-- -,--. --".- -,---.- -_. --/' ' ' -, -', . - - '-- -- .- - ----- -- ---- : -- .- 7 -.- 7 - . ---1 - -
-~~ ~ - -' --*C. - - .s. Y - -U -I - - - - - -

package body TCHEDYSHEF.PACKAIGE is

function STRINC..TOINT (S: string) return integer is
-String to integer equivalent conversion.

CR: chacter; -individuai number in each
- plaaeholder of the input string.

DIGIT : Integer; -lndividual nuiber in each placeholder
- of the output integer.

MLTIPLIER : Integer :a 1; -Tens value of the integer
- pointer.

FI rfL-ESLT : Integer := 0; -Output Integer being generated.
POSITIOl : integer :w S'lost; -Pointer into input string

- (moves right to left).

begin -String to integer conversion.

-Starting from the end of the input string, process each
- successive chm-acter until all characters have been conveted.-
while POSITIOl - S'first loop

--Get one character digit from the input string.
CHAR :a S(POSITIOII);

-If this Is a valid character digit representation, convert the
- chxr=tar into Its nulereic representation, and uiltiply it by
- its tensvalum.
if C4it in '0'..'g' then.

DIGIT : tharctr'pos(CHRR) - chrclter'pos('O');
DIGIT :* DIGIT * tULTIPLiER;

-If the final value will be the most negative numbr,- designate it as the most negative number and stop
- processing. The reason this is done is to adjust for the
- problem that the absolute value of the most negative number
- Is I digIt larger than the most positive number and wIl I I
- result in an out-of-bound condition.
if integer'last - (FINAL..iEStLT - 1) + DIGIT then
FINALJEStLT :m integer'first; ,_
POSITION := S'first;else-.

-Otherwise, this is not the most negative number. Thus,
- add the curent digit to the rest of those found, and
- inaremnt the tens value to the next larger number.
FI fAL.ESLLT :- FINRLJESLT + DI1T;
IILLTIPLIER :a MILTIPLIER * 10;

end If;

-If the original input was negative, then negate the results.
elsif CA M -' then

FINAL.ESULT " -FIMRLF.ESULT;
aid i f;

-Adjust the pointer into the input string to point to the next

110



-dwootar to the left.
POSITION : POSITION - 1;

and loo0p;

-Conversion finished, return the gu~m'atd integW.
rturn FIMFt...ESU.LT;

and STItNLTO-INT;



procedure INPUT-.COEFFICIE1TS is
-This procedure obtains the information about the input polynomial aid
- converts the coefficients into floating point format

package INT-10 is raw INTEGERLIOC integer);
use INT...I;

POERS: Integer := 3; ~~.
-indicates whether all pows, only the even, or onlIy the odd powr
- wre pesent in the Input polynomial. Originally set to out of
- bounds condition to verify pr-oper- Input.

STEPS: intege :- 2;
-Incrment value for entering the coefficients of the polynomial

INITIAL: integer := 0;
-Starting value for the value of the exoet

COIJIhTER: integer;
-Loop counter through the Input string

NUMERRTOA: intege;
-tumerator of the coefficient

DENOMINATOR: Integer;
-DeOminator of the coefficient

COMJERT-.STRINB: string (1. .tIRX.DIGIT);
-String r~eetation of the coefficient

LRIST-.DIGIT: integer;
-Actual length of the Input string

begin -input Coefficients.

-O(btain the value of the largest exoet of the polynomial.
- It must be between 2 and g.
wh I I a OEGREE.OF.POLYNOI I Al. ( 2 or OEOREEJ3F..LYNOI I AL > 1IRLDEE3AEE l oop

put ("Enter the degre of polynomial desired. (Milnimam Is 2): ;

get (cIlEELOF...POYtIOIAL);
now-l ine;

end loop;

--Obtain an indicator for the type of the polynomial's exponents
whileI POWERS '0 or >OIR 2 loop

put ("Enter 0 for coefficients for ALL powers of X");
raw-line;
put ("Enter 1 for coefficients for CO powers of X");
ne-I Ine;
put ("Enter 2 for coef f Ic ients for EV.EN powers of X");
newJI i no;
get(PSS;

end l oop;

--Set the Initial and Increental values for obtaining the polynomial
-coefficients. Saves time.

I f PalmS 0 then
S3PS:*1

elsif IOIR then
INITIAL :1;

end if,

112



T- Vj

--Obtain the coefficients for each el nwnt of the polynoeial
put ("Enter the coefficients of the series being expmmde by*");
neu.I I e;
put C' entering a fraction, i.e. -2/3 or +2/3 or 2/3");
nowl ine;
put ("Coefficient for X* )

--Loop through all elements
while INITIAL i- OEOREE.OFPFILYMOMIIN. loop

put (INITIAL);
put (" a ');
gel Ine (CONVIERT..STRIN,LAST..DIGIT);

COUNTIER :*1;

-Stop through the Input string looking for the which~ separates
-the rmervator froe the denomnator. If one does not exist, or It
- ppear. in either the first or the last position In the string,

- then the coef ficaieant must be retered.
while COUNTER (a LRSLDOIT loop

i f (COtIUERT-.STR IINO (COUNER) *1)and
(COUNTER /= COIIERT..STING first and
COUNTE /w LAST-.DIGIT) then

declare
-Onc the "/" has been located and i s in a pr oper Ilocat ion

- obtain the numer ar string and the denoinator string.
MUMERRTOR..STRINO: string renames

COMM-RT.~IMO (COl1I.RT..S MG'Ofirst. .(COUMTER - M;)j EMOIUTOR-.STRING: string renames
CONJUT-.STRING ((COUNTER + 1). .LRIST.DIGIT);

begin --Block
--Convert the two strings Into Integers
NIIEWAOR :- STRINO...TO...INT (NIJERRTOL-STRINO);
OENOMIMIfO :a STRINL-TO..INT (OEMIIOIRTOA.R- INO);

-If the denoelnator is a valid value, then generate the floating
-point value for the coefficient

I f okmom IrflTA im 0 then
COEFFICIENTS (INITIAL) :m float(ILNEWAOR) / flot(EOINRTOR);
-.Icemen t to the next element in the polyniomial.

INITIAL :a INITIAL + STEPS;
end If;

-indicate that this coefficient has been foud and converted
COUNTER :- LRIST.DIGIT;

end; -Bl 1ock

end I f;r
--Point to the next charatr in the input stringM

COUNTER :W COUNTE + 1,
end loop;

end loop;
end IIIPUT.COEFFICIENTS;

113



- -~ - - - - - - - - .v r . .U .. .-

procedure COt1PUTL.TCHEBYSHEF.JOLYMlOMI s. is
-Generate the matrix of the Tdhebyshef polynomial. The procedure uses
- values of the matrix elments that have already beow found.
- The algorithm is recursive in fl-at respect.

* begin --Compute Tchebyshef Polynomial.

-Tefirst two elements anst be initialized to allow the following

--Loop through the low triangular portion of the matrix
a nd calculate the Tchebyshef polynomial values.

for I in 2. .MAX...OEOIEE loop
for J in 0..1I - 2 loop
TCHEBYSEF-.POLYNMfIRLS (1,J)

TCXEDVS1EF...PLWtIMlRLS (1,J) - TCHEWSHF.OLYMIOIILS (I 2,)
end Iloop;

for J In 0..I - I loop
TCEYSEF.POLYNOIILS (1,J + 1) :

TcHEDVSEF..OLYIMtIRLS (l,J + 1) +
(2 * TC2EWMSEF_..PVYNIVIIRLS (I - 1J)

end l oop;
end loop;

and COMM-TOEBYSHEF..POLYMfIRL;

114



procedre COWUETLPGJERS-OF-.TCHEBYS1EF i s
--Compute the matrix for the poes of Tahabyshaf

COEFFICIENTLIST: FLORT-.AECTOR (0.A.MX.EGREE):
(0. .IIXOEOME = 0.0);

ICEX: integer :a OEGREL-FPOLYNMfI AL;
STEP: integer;
POINTER: integer;

begin -Compute Power of Tahhy.shef.
shl le ltCEX >= 0 loop

ILT I Pl.IER ( I WED): I /TCHEBYSEFJ2LYN I RLS <(II'MX,lICMM);
STEP :- ItCEX;
whiIc STEP >a 0 loop

COEFFICIENT-.LIST (STEP) :*flot(TCHEYSEFPLYNOILS (IrCEX,STEP));
STEP :*STEP - 1;

end loop;
POIJERS..OF-.TCHE9YSHEF (I NOEX, INDOEX) u1. 0;
STEP :- IMIMX- 2;
while STEP )a 0 loop

POIERS..OF..TCHEBYSHEF (IMOEX, STEP) :a
-(COEFFICIENIT-LIST (STEP))
/flot(TCHEBSEF..PLY10tIALS (STEP,STEP));

PO INTER :STEP;
while@ POINTER )a 0 l oop

COEFFICIEI1T4.IST (POINTER) :
COEFFICIENT-.LIST (POINTER) + POWERS-OFC*BYSHEF (IMOEX,STEP)

U * floot(TCESYSHE-POLYOiIRLS <STEP,POIDETER));
PO INTER :*PO INTER - 2;

and l oop;
STEP :a STEP - 2;

aid l oop;
IMWE :* IMDE - 1;

and loo0p;

mid TCHEDYSHEF-.PflCKROE;

115

......................



•. ~ N-- - -~e 29-.9 .:i..

L~ -. I"

° .... 4

- Date: 28 NoVefler 1I8S

- Version: 1.0

- Nine: pro ivr--
- NoduIa Numbr: 1.0
- Description: This routine loops until a user is done approximating

Siicew function he desires
-Pssed Umiblas: None
- Returns: Nonm
- Globals Used: Choice

-Modules Called: EiU
- uthor: Capt. Stevm A. Hotbhkiss and
- Capt. Jennifer Fried

- History: Developed as a thesis and AR project

wi th GLOSRL-DATA3E; use 1LOB.M-TIMSE;
with P AXIIWTORS; use IPPRO mO S;
with TEXTIO; use TEXTIO;
procedure APPROX.ORIEN is

iMl: integer :a 0;
DENl: Integer :" 1;
CHOICE, KEY : character;
QUIT : character :a 7';

package INTIO Is new INTEOERLIO(INTEOER);
use INTLIO;

package FLT_1O is new FLORTIO(LCNO)FLORT);
use FLTIO;

begin
I'.I

see -i nwgth(24);

initialize data points

CGWUTLTCHEBYSHU;-

let the user approximate a many functions as needed

116
,-, ,.._ : . . . .... , .-.... . - -- . : . , - . .: , _• ...-. :



whiIe (CHOICE /m QUIT) loop

- select function to approximate
- by giving users a men of options

MEIIJ(CHOICE);

- use the buI It functions to mae a mt, accurate approximtion

COPERPFFPFIOX IMT 1016;

If CHOICE /a QUIT then

for I in O..1 loop
if C(ILII,) / 0.0 or C(On,I)/ 0.0 then

put(l);
•. put(" 1; ".

put(C(t, I

put( b*);
put( ");

Put -
put(C(OE, I );

new.I Ine;

eid If;

W4 loop;
WndIf;

put("Hlt aN kej to continue");
get(KEY);

newline;

end loop;

.* en FI1OXJI I U;"

117



- Date: 28 Noavere 1Q85
- Uers Ion: 1.0
-NHoe:alBR19T
- Module l'iaber: 2.0

- eaiption: Contains allI global variables
-PasedVariables: M/A

- Retu~rns: fl/A
- Olobals Used: ALL
- Module s Cal led: N/A
- Auithor: Capt. Steme A. Hotchkiss and

Capt. Jennifer Fried
-History: Completed for Thesis and FOR prnject

package OLAIJATMASE is

typo LONG.JLOAT is digits 9;
tyjpe VECTOR is array(integer rang 0..25) of LOh0-.FLOAT;
type MIATRIX Is arra (integer wag 0. .25, Integer rang 0..25) of

LONO..FLOAT;
tyePACE.J IRX Is ara (integer rang 0..25, Integer rang 0..1,

Integer ang 0. .25) of LO-FLOAT;

e T: MATRIX; - Mlatrix containing the coefficients of
- different posers of Tcheby~shev polyn~omials

R: PRDLMRTR IX; - Used to contain the series of PACE approx
- R(5,11 or 0,C)
- S I s the serieas nujmber
- N or D N - 0 for the Pumerar

- ~ 0 - I for the denoeijnator
- C - coefficient for a poer of X for the
- paticular series' nu~merator or
- denominator

0: VECTOR; - Error values of PRIDE approximations
M1: Intege; - Poer of the numerator polynomial
K: Integer; - Posm of the denoinator polyJnomial
N: integer; - Pose of the initial powe series

* NCLRAJRIN: VECTOR; - Contains the coefficients for the
- d If ferent poser s of "X" for the poser ,

- series exp-alon of a function
COEFFiCIENT: string(1. .33); - Used to contain use onte-ed coefficients

- a Pose ser ies epsion
*EPS: LOMO.AOAT; - Convergent epsi Ion

C: MAiTRIX; - Final rational apprxiation

end 0LOBAL-OATFOCIE;

118



. W M.- V fl .- --- . - - - . .. ~.-- -.--- . ._ 7 ...
V. '.

I5t

-DATE: 28 Noveer 190-
- Ursion: 1.0

- ame: COWROS(
- Ilodule Number: 3.0

Description: This package contains procedures that are invoked
throughout the system

- Passed Uariables: I/A
- Returns: t/A
- Olobals Used: ti/A
- lodules Called: N/A
- Author: Capt. Steven A. Hotchkiss and

Capt. Jennifer Fried
- History: Developed as a thesis aid ADA project

with OLOBRLt. FITBRSE; use OLOGL J.-T.E,

package COtMOl0lPAOCS is

procedure POIER.PRO9IPT(IUI, DEN: out Integer; Epsilon: out LOtIOSLOAT);

procedure GETSCOEFFICIElITS(STRCTURE: in character; POWER: in integer);

function PAOO(JCT(FROtI, TO, BY: integer) return LOI-FLOAT;

function FACTORIAL (NUMER: integer) return LONOFLOAT;

end iIOPROCS;

119

. -. • . .

. . . . . . . . . . . . . .. .. , ',

* .: .- , . - ...... .,.. .. : .-... . ,.t...-. ,,.,, . .. . ........ .. ~. .J . . .A. t .. .. .. . .a



with TEXT..JO; use TEXT.JO;
Package bodyj CIOLPFNCS i s

package INT10 is new ItITEOE.LO(integer);
use llT-10l;

packamge FLT-10b is new FLOTJO(LOflG.LT);
Use FLT...I0;

procedure POWER..PRWPT(HMM, OEM: out integer; Epsilon: out LOflO-FLORT) is

begin

set~maLl uigth(24);

loop

new-page;

put("Enter the poer of the rnumerator(wmast be integer) )
get(MLI),
new-J m e;

put("Enter the pow' of the dnoinator(mast be integer) )
get(DEII);
new-l ine;

put("Enter the epsilon of convergence.");
put("Thls must be a real fraction and entered as O.x");
put<"",er x is any sting of digits up to 9 In length )
got(EPSI LMl);
newI Ine;

eI t;
end l oop;
exception

when data..wror =>
put-l lne("lnv5 al id Entry. Reentwr data");

ernd POIJEPROMPT;

120



131eta GET-DOEFFiClENTS(STRLCTURFE: In character; POUJR: In integer) is

COEFF :LOIIG..FL0~Rr 0.0; ...
FRMt, TO, BY In teger,&

procedure GET..POIJE(IIUIEE: In Integer; COEFF: out LOIIGJLOAT) Is

LABT..SW : Integer :a CCEFFICIENT lost-i;
IJUMMIO bool an := TRI.E; .
OUT..COEFF :LOtIG-.FLOAT;
CHFFLRPTR integer;
MMII, DEM strlng(l. .15);
I tflT-.EFFI0R exception;

procedure COMPUTLRFEJL.COEFF(NLI, DEN: in string;
COEFF: out LONG-.FLORT) is

CHRR..PTB: integer :2 Mm' f irst;
NLEIERRTOR: LOII..FLOAT :m 0.0;

* ~OMIINATOR, SIGN: LOIIG..FLOAT :-1.0;

begin -COMPUTLERVL..COEFF

if (NWt(M*VU.TR) *+)then
CH4R-PTR uONR..PTR +1;

elsif (I(C1.AR-.PTR) 3 )then
SIGm :a -SIGH;
CHAFLPTh := CHWL-PTR + 1;

aid i f;

while ((MM~(CHF.PTRM) /ma and (CHRR..PT (m MMIalst)) loop
NUMERAOR := MUE *O 10.0 +

LOhG.JL0AT(chcuocterpos(UIIXHAA.PTR)) -
chwaterpos('0'));

end loop;

CHAIR-.PT :- OE'first;
if (DEJI(OMIA..PTR) * >then

* ~CHRR-.PTR := CHFR.JT + 1;q
elsif (DEN(CHFP..PTR) * )then

SIGH :0 -SIGH;
CHAA.R-M CHFPTRM + 1;

end If;

* while ((DEN(CHAA..PTR) /a and (CHAR.PTR (m DEIC last)) loop
I9.MERATOR : UEATWOR 10. 0 +

LONO..FLOT(choacter pos(JEN(C~HIAA..P)) -
dharocta'pos'O*));

end loop;

COEFF : - MUMEERRTOR /ENOI I NRVTOA*S I ON;

end COIIPUTEMRL...COEFF;

121



K begin- GET..PVI0

-promt the user
put("Entet' the coefficients for x**");
put(lttlER);
put(" - ) I
get(CCEFF ICI BIT);

pack and wepmato
for I in COEFFICIENTrange loop

If CO' (- COEFFICIEIIT(l) and COFFICIENT(I) (m 'g) o
COEFFICIENTMl a or COEFFICIENT(l) m * or
COEFFICIEIIT(l) a or COEFFICIENTMI m then

if COEFFICIENTMl */ then
CHR.PTR :*OEW first;
MtJIMROR ~FALSE,

elsif COEFFICIENT(I) -+or COEFFICIEtIT(l) -or

CO0 (a COEFFICIEHT(I and COEFFICIENT(I) <='9 )

i f tIJIIEATOR then
MI(CHAR..PR :COEFFICIBtITI);

else
GEiI(CHFLrA.PR) :COEFFICIENT(l);

aid I f;
OCR..PTR :O*R..PTR + 1;

end if;
elso

raise INPUT..EFROR;
end i f;

end loop;

exit;
end loop;

cOPT-FALCOEFF(IMfl, OE, OUT-COEFF);
COEFF :- OUT-XOEFF;
put(OUT-COEFF);

0 neu...I Ine;

exception
whnIIPUT..EMAA- pu-l ine(lnput lError. Reenter value.");

new1 Ine;

0 end&WGET.POWE;

.ji

122



begin -GET..COEFFICIENTS

setpage.Jength(24);

put-l ine("Enter the coef f IcI ants for each");
puUl lne("power of the X' In fractional form.');
pu-l ine("If a sign Is mnter~ed, it mfist be the )

iput-l I ne("flIrst dhater. Mb Ilarks wre all Iowed.")
puUline("The amallowable sin is 9digits per");

newInine; -

pu-l lne("SamplIaenmtrlIes: 1/2 ,+1/2 ,or -1/2");
ne.J1 I e;

TO :-POMME;
case SThUCTI. s

when '1a FROMI 0;
BY .1;

when '2' FROMl :a 0;
BY .2;

when '3' FROM1:a1;
BY :a2;

dwe o thms FIRMI 0;
BY :u;

end case;

whle (FRCII- TO) loop
GEPER(FRMf, COEFF);

FROMl FROMl + BY;
end loop;

end GET-COEFFICIEN1TS;

123



. . - .

function PROCUCT(FROI, TO, BY: integr) return LOIIOSLOAT is

iESLT: L _01l..FLORT : 1.0;

I LOOP-TEST: integer :=FROII

beg in

tile (LOOP-TEST <= TO) loop
RESULT :- FESULT * LOIIGFLOIT(LOOP.TEST); ,'-

LOP-TEST := LOOP-TEST + BY;
aid loop;

rtturnFESULT);

and PFOC I

124

- - ~ ~ ......................................



function FACTORIAL (NUMIBER- integer) return LON1G-.FLOAT is

RESULT: LOIIG-.FLOAT :1.0;

beg in

for I in 2. .WJUER loop .i

RESULT := RESULT *LOtlG.FLOT(I);

end loop;

retun(RESULT);

end FACTOR IAL;

end OLPROCS;

125



-Date: 28 Movmer 195
-Uersion: 1.0
- ame: FUNCT I 0W.PRCIAGE
-Module NLuer: 4.0
-Description: This package contains modules that we called to either

compute a predefined power series exansion of a function
or allow a users to enter their own

- Passed Variables: N/A
- Returns: M/A
- Ol1obalIs Ulsed: GLOBALDATARAI
- Modules Called: None
- Au.thor: Capt. Steven R. Hotchkiss and

Capt. Jennifer Fried
-History: Developed as a thes is and AOR project

package F~ftCT I OtPACKAGE is

procdureSIN..SERIES;

procedure TRILSER IES;

procedure AS I tSER IES;

procedure ATFti-SER I ES;

procedure EXP..SER(ES;

procedure 9U I ID.nE I ES;

end FUNCT I 0ItPRCKRGE;

126



a i th GLO9AL.DATFSRSE; use GLOSAL...OARASE;
w ith COW1Otl RMC; use COMtIWLPROCS;
with TEXT-1O; usm TEXT....l;

I package body FLIICT IOttPRCKRGE is

procedure S I tER I ES is

N: inteW; .g

- of the nmierator, denminator, and the value two

-Compute the initial approximating polynomial
for I in 0.-25 loop

end loop;

for I in 1..(UNI)/2) loop

end loop;

j&* Se en SIERI ES;

127



procedure TFISERIES is

N: integer;

be)gi n-"- -'

get the powers of the numerator and denominator polynomials.
- Also prompt the user for a convergent eps I on.
POIJ(M, K, EPS);

Compute the power of the Maclaurin series. It is the sum of the pose
-of the nierator, denominator, and the value two :--

M := M + K + 2;

Compute the initial approximating polynomial
for I in 0.25 loop

IFICLALIRIM(I) : 0.0;
and loop;

MCLFUIN(1) :z 1.0;

for I in 1..((,1+)/2) loop
MIICLJAUIN(2*1+1) : PAOOLICT(2, 2*1, 2) /

0 FACTORIAL(2*l+1);
end loop;

end T~tLSER I ES;

128



P'....-r,.. .

procecle ASIPLSER IES is

II: integer;
begin"•

- got the pow& of the numrator and denominator polynomials.
- lso prompt the user for a convergent epsilon.
PGIERSAOIIPTQI, K, EPS);

- Compute the power of the Maclaurin series. It iz tne sum of the poer
- of the numerator, denominator, and the value two
N :M + K + 2;

Compute the initial approximating polynIomial
for I In 0..25 loop

IRCL.URI(I) := 0.0;
eNd loop;

for I in I..((N14)/2) loop
IACLUIN(l*2-1) := PROO1CT1, ((1-2)*2+1),2) /

R==(2, (1*2-2),2) *
LON-FLORT( 1*2-1);

end loop;

end AS I NSER I ES;

0[i]] '

S .-.

IS.!.i

. . -~- - - - - - - - - ., . . .... . . . .



prcodre RTRIL.SE I ES I s
• N: integer; A.

begin
- get the powers of the numerator and denominator polynomials.
- Also prompt the user for a convergent eps Ion.
POIERSROIPT (M,K,EPS);

- Compute the powr of the Miac laurin series. It Is the sum of the pomr
- of the numerator, denominator, and the value two
N M fl + K + 2;

Compute the initial approximating polynomial
for I in 0..25 loopICLA:Rl I - 0. 0; :.::::

end loop;

for I in 1..((N+1)/2) loop
IICLMLIRI(2*-1) =-1.0**(I-1)/FFCTORIRL(2*I-1);

end loop;

Send ATAILSERIES;

130

.................... , ...



-|- ,-.. .

"-* procedure BUILD-SERIES is

: integer;
STRICTURE : chaacter;

begin

se•t pgl ength(24);

- get the pou of the numrtor and denominator polynomials. '-a-,
- Also prompt the u for a convergent apsi Ion.
PGER-ROIIPTUI, K, EPS);

- Compute the posr of the Maclaurin series. It Is the sum of the pow,
- of the numerator, denominator, and the value two
M :m M + K + 2;

Compute the initial approximating polynomial
for I in 0..25 loop

MILIINCI) :* 0.0;
end loop;

* - Prompt the user for the structure of the polynomial
n" ...page;

LI:
loop

put.line(CEnter I if all posr of Xw);
putline("Enter 2 if only even powers of X");
putC"Enter 3 if only odd pows of X -
get(STRUCTURE);
ne]l ie;

if '1' STRUCTURE or STRUCTURE >'3 then
putl ine("OW Entryj. Try l gin.");

else
GET.SOEFFICIENTS(STMUCTURE,,N);

end if;

exit Li;

end loop LI;

end BUILD-SERIES;

131

- - - - -- - - - - - - - - - - - - - - - - - - - - - . -,



pevocedLe EXP.JER I ES I a

N: i n tegr;

- get the po~w of the nueao n wmntrplnmas
- Also prw t the user for a convergent epsi Ion.
POIJER.PROPTUI, K, EPS);

- Compute the pome of the halaurin series. It I s the sum of the poer
- of the numerator, denominator, and the value two
N := MI + K + 2;

-Compute the initial approximating polynomial
for I In 0.25 loop

IIALRIt() * 0. 0;
end loop;

for I i n 0. .1 loop
IIRCLAIRII(I) :1.0 /FRCTORIL(l)

end loop,

end EXP..SER IES;
odFLCT I OK-PAO(AGE,

132



-- Dats: 28 Novmbr 1985
- Version: 1.0

Name: RPPROX IMTOl S ..-- Modu Ie tkumbe: 5.0","-
- Description: This packaW includes procedures that compute
- approximations to user selected functions -'

- Passed Uaiables: lI/A 2::..
- Returns: N/R

-Olobals Used: OLO9AL.JWTASBASE
- lodules Called: N/A
- Author: Capt. Stevn A. Hotchkiss and
- Capt Jennifer FPried
- History: Developed as a thesIs and FO project

package RPPROX IIiTORS is

procedure COtPUTETCHEBY;EV

* procedure MIJ(CHOICE: out carater);

procedure CO(VITE.PAEPPX I IA I OlS;

- cOMPUTES-I.

end APPRX I ITWORS;

133
L._..._.__.._ .-... -,... ' '.'. ''' L ""- "" " . . "". ."""." . .- - - - - --.."."•" '."."-,- - - - ." . .- ' . - "''""""""" '



wi th GLO9AL.DATAOSE; use M0LBm.flTFASE;
w ith FUCT I OLPRCKAGE; use FUNCT I OHLPCKAIGE;
with TEXT-..0; use TEXT-IO;
package bodyj F'PPOX IMRTORtS is

pcKage FLT-1l0 is new FLORT-.IO(LONG.AOAT); use FLT-..l;

pro~edure CVUTETCHENME Is
beg in

-build the global table "T" containing the coefficients for
- each of a seris of Tchebyuhev polynomials -

T(0,0) :~1.0;

T(2,0) :~-1.0;
T(2,2) :~2.0;

for I In 3. .25 l oop

for J. In 0.25 loop
T(I,J) :u T(1,J) - (-,)

end l oop;

for J In0. .24 loop
T(15J41) T(l,J+I) + 2.0 *T(I-1,J);

end looap;

end l oop;

and CGI1PUTL.TCHEBYSHEV;

134



pr'ocea.r fItl(I4O ICE: out charater) is

OUT-DO I E: chormcter;
BAO..,CHOICE: exception;

beg in

set-pagel. ngth(24);

c clear soreen and print menum

put-l ine("Choose function to be approximated*);

putlI ne("Enter I for sin*);
put-1 lne( Enter 2 for tan");
put-llnh("Enter 3 for arasin");
put-line("Enter 4 for orctan*);
puU inenCEnter 5 for oxp");
pu-l ine( "Enter 5 for user defined function");
put-.. ineC"Eriter 7 to quit');

* loop

for I in flRCLRJAIr1,ronge loop
IIRCLRLN I Wl)1 0. 0;

end loop;

puWC- )

CHOICE := U LCHOICE;
ase OUT-.CHOICE is

when '1 ' a)SULERIES;
ewe '2'* TRNLSEIES;
when 3' a) RSIK-SEIES;
when W* a) RITAft.ER IES;
when '5' a'EXP..SERIES;
when W6 BU I D...SI ES;
when '7' null;
when others u'ra ise BRD..HO I CE;

end case;
exit;

end loop;
except ion

* when BD-MCHICE m)
put-l I ne(*"Inva II d entryj. Tryj aga in");

end MEII;

135



IT V-- r- - M

procedure COMPUT-PAD-PPIOX IRTIONS is

ItJIA: ingru ;~ S

MUM integer :" 0;
DEN : integer 1;
TEMP : LON-FLOAT; -.':.':
IW : MTRIX;

9 :UECTOR;

beg in

- this procedure converts the initial appoximating polynomial
- (the Maclaurin pmw series) Into a rational aproximation
- clew out this PACE approximtion's numator
- and denominator polyntoials
for SERIES in 0. .25 loop

for FOLDEN in 0. . I loop
for COEFFICIENT in 0..25 loop

R(SERIESJJIULOE,COEFFICIEIIT) :0.0;
end loop;

end Iloop;
end l oop;

for I in O..1l loop - loop for all poer of the numerator

for J in O..K loop - loop for all poers of the denominator

if (I 'w J) then
- buiI d a work matrix to solve simultaneous equations -.9(0) := 1.0;'"

:=M I + J;." -

for S in O..(-MRX - I - 1) loop
for NI in O..J loop

1RKI(+8I,l) := MRCLURIN(s(NMX - S - N1));
if (NJ - 0) then

B(S+) : -MCLAURIN(abs(Mt.RX - S - i));
eid if;

end l oop;
end loop;

- Solve simultaneous equations for denominator coefficients
for NI in 1..J loop

if (MOAK(1,NI) w 0.0) then
SETUP:
for M2 In 1.,J loop

if (MOW(2,N1)/- 0.0) then
TEIP :, B(2);
8(12) 1301);
B(Nl) : TEPP;
for tO in 1..J loop

TEMP :a wo (M2,3);WPKM2,M3) :- WORKMI,3);
UORK(NNS) :- TEIP;

end loop;
exit SETUP;

end if;
end loop SETUP;

136

. . . . .. . . . . . . .. -N ..- .- .. -3 . -. .. .. . .. .



. . . . . . . . . . . . . . . . . ... . - -o-.-.--.-..-*-,

end i f;

TEMP := WOM(NI, 1I,);
if TEMP /a 0.0 then

B(1l) : 0 B011)TEMP;
else

B<ll) : 0.0;
end If;

for1 12 in 1..J loop
If Te /, 0.0 then

IJO KOI,M2) :a ONC(I,2)/TUIP;
else

,JOA(NI,1I2) :* 0.0;
end If;

and loop;

for 1I2 In 1..J loop
if (MI H-PI2) then

TEMP :-I (N2,111);
for 1,13 In 1. . loop

,UOA(I2,N3) := IJOK(N2,13) + lOK011,113) * TEIP;
end loop;
B(H2) :S 8(12) + 9(01) * TEMP;

end if;
end loop;

end loop;

- use denominator coefficients to compute the nueerator
-wfficients, and build the selies of PADE approximations

for III in 0.. I loop
for M2 in O. .11 loop
R(l+J,1U1,N1) := R(I+J,UI,N1) + 8(12) * IIQa.JAIN(NI-92)/

B(0); " '

ed loop;
aid loop;
for N1 in reverse O..4 loop

R(I+J,DE,11) :a B(1)/B(O);
B(11) :0 8(11) / B(O);

end loop;

- Compute the O's tha arte used to compute C(mk)
- 0(1+4+I) w SUML=O to J (flcla rin(l+J4+-L)*B(L).
0(1+4+1) := 0.0;
for L in O..4 loop

O(l+4+l) :a 0(l+4+1) + ICLIAURIN(I+J+I-L) * B(L);
and loop;

md if;
end loop;

end I op;

end ,-.FUT 0ES•"."PPR"0X I . T I O•S;

137

.- . !.-p*- -



roo CQIPUTL-CI is

- - A: integer :*0;
8: integr 1;
LNMO: VECTOR;

beg in

-Compute the Ladas (alpha-i)
LSIO() :a -(0U14K+1) * TUI+K,0)) /(2.O**U(frK));

for J in 0. .Ch4K-1) loop
if D(Jil) /U 0.0 then

LFlt(J+1) :*(O(11K+1) *TUI+K+1,J4')) /((2.0 **(h4.K)) *D(J41));
else

LMIR(Jbl) U0.0;

envd If;
end loop;

-Load Pm(X) and Qm(X) with their A and 8 coefficients rsctivelu
for I in 0. II loop

C(fl,) : RUI+K, R, I)
WW loop;

for I in 0. .K loop
C(9,l) := AU'IIK,B,l);

end loop;

-Coepute coefficients RA of numerator and "B" of deoinator
for J in 0. .UI+K-1) loop

for K in 0. .25 loop
R(J,AK) := A(J,RJK) * LAVA .+1);
C(RK) :- C(R,K) + R(J,R,K);
R(JPB,K) :a RUJ,BK) * LAIIO(Jl);
C(B,K) :a C(BK) + RJ,9,K);

end loop;
end loop;
C(A0O) :C(,0) + LM()

for I in reese 0. .25 loop;
C(Al) :0 C(R,l)/C(B0O);
C(B, I : C(B, I)/C(9,0);

end l oop;

wW COflUTL-at;

lAPP O I tUTORS;

138



.t - . , ~ rx~r rrf ~ rw- wz~ w-o.-.-. w.. , -. -4 7~-- .7-

Bibl11ogjapy

1. TRW. "A Study of Embedded Computer Systems Support," ECS
Technology Forecast, 8: (September 1960).

2. Department of the Air Force. rLli=r Sixteen-Bit Computer
Instruction Set Architecture. MIL-STD-1750A. Washington:
Government Printing Office, 1960

3. Lynn, H. C. and R. K. Moore. "MIL -ST D-1?50 Chip Set: Possible
Designs," 4thl AIAA/IEEE Digital Avionics SyjI Conference.
168- 172. A Collection of Technical Papers. New York: American
Institute of Aeronautics and Astronautics, (November 17-19,

4. Cody, William J. and William Waite. Software Manual for the
Elementary Functions,:Englewood Cliffs, N.J.: Prentice- HNill Inc.,

5. Thayer, T. A. "Understanding Software Through Analysis of
Empirical Data,"~ Proceeding of the 1975 National Comnputer
Conference (44). 335-4 1. Montvale, N.J.: AFIPS Press, 1975.

6. Boehm, B.W., R. L. McClean, and D. B. Urf rig, "Some Experiences
with Automated Aids to the Design of Large-Scale Reliable
Software," IEEE Transactions on Software Engineering
SE- March 1975

7. Peters, L. J. Software Design: Methods and Techniques. New York:
Vourdon Press, 1 961

8. Jensen, R. W. "Structured Programming," Comrpgter.3 1-46, March
1961

-

................ * -n

, , . . . -



9.Conte, S.D. and Carl de Boor. Elementary Numerical Analysis~, An
Algorithmic ADproach (Second Edition). New York: McGraw-Hill
Book Company, 1972

10. Ralston, Anthony. AFrtCourse In Numerical Aalysi. New York:
McGraw-Hill Book Company, 1965

11. Hart, John F. CoWe Aaproximations (Second Edition).Huntington,
N.Y.: Robert E. Krieger Publishing Company, 1978

140.. . . . . . . . J



VITA

Captain Jennifer J. Fried was born on 19 October 1951 at Ft. Sill,

Oklahoma. in May of 1989, she graduated from High School in Newport
.i

News, Virginia. She later enlisted in the United States Air Force as a

Computer Programmer, and was assigned to Holloman AFB, New Mexico. In

1979, she was accepted into the Airman Education and Commissioning

Program and attended New Mexico State University. Upon receiving a

Bachelor of Science in Computer Science and Mathematics in January

1981, she was sent to Officer Training School. Upon graduation, she was

stationed at Peterson AFB, Colorado where she became Chief of the Missile

Warning/Space Computer Test Section. While working toward a degree of
j • fMaster of Science in Computer Data Management, she was selected to

enter the School of Engineering. Air Force Institute of Technology, in June

of 1984.

Permanent address: 5113 Windgate Court

Colorado Springs, Colorado 80917

141



* UNCLASSIFIED
* SECURITY CLASSIFICATION OF THIS PACE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

* I JNCLASSI?IED____________ ______

2s, SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

s ADDrove1 for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Iistribut ion linl1imited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/mA/85D-3

6. NAME OF PERFORMING ORGANIZATION hb. OFFICE SYMBOL 74, NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering jAFIT/ENC
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology
* Wright-Patterson AFB. Ohio 459433

a.& NAME OF FUNDING/SPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

*PROGRAM PROJECT TASK WORK UNIT
ELE ME NT NO. NO. NO. NO.

I1I TITLE (include Security Classification)
See Box i9________________ ____

1 2. PERSONAL AUTHOR(S).Tennif er J. Fried. B.S.. Capt, USAF
* 13&. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Yr. Mo.. Day) 15. PAGE COUNT

MS Thesis IFROM TO ~ j 1985 December 4 149
14. SUPPLEMENTARY NOTATION

17. COSATI CODES 18, SUBJECT TERMS (Continue on reverse if necesuary and identify by block, number)

FIELD GROUP sue. GR. Functions (Mathematics), Appvroximations,
01 Computer Programs, MIL-STD-i1 t 5OA

lB. ABSTRACT (Continue on reverse if necessary and identify by blockt number)

Title: DEVELOPMENT AND EVALUAUiON OF MATH LIBRARY
ROUTINES FOR A 1750A AIRBORNE MICROCOMPUTER

Thesis Chairman: Panna B. Nagarsenker
Associate Professor of Mathematics and Com~puter Science

DOM 101 Fk...rreh or'd PI 1-i"sIt.il 00-01I01110ki

AJN Yviiii taseIIt.,I I I-koy (AA.1

"'Y0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION-

UNLASFIOUNIN1EDXSAME AS RPT DTIC USERS UNCLASS IF rED

L2*NAME OF RESPONSIBLE INDIVIDUAL 
22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

ana . Nagarsenker 11-5-20AI/N

00 FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.0

SECURITY CLASSIFICATION OF THIS PAGE



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ii

This project produced a run-time math library for the MIL-STD-1750A

embedded computer architectures. The math library consists of the

algebraic functions. In addition, the steps required for a performance

analysis of the math library have been outlined.

Several approximation methods were investigated. The Chebyshev

Economization of Maclaurin series polynomials, and rational

approximations derived from the second algorithm of Remes were

determined to be the best methods available. Each function's

implementaion was designed to take advantage of features of

MIL-STD- 1750A architectures. The recommended test procedures provide

measures of the average and worst case generated errors within each

app roxi nati on. 

SECURITY CLASSIFICATION 0, THIS PAGE

...............................................................................

........................................................................: ...



-~ ... t.ttt at 
.r ~

~I.

-? 4

l~ 4

L I

* 
L I

j~.

FILMED

j

0

0

0

'-4DTIc
L~4

- '-.-*~-.I - .~. - ~ ~. 4I~y,' - . -- -- 
.'. --


