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Abstract

The VHSIC Hardware Description Language was applied to the problem of model-

ing a VHSIC class circuit being designed by the VLSI design group at the Air Force

Institute of Technology. A methodology was defined to decompose and model the circuit

using the hierarchical facilities of the VHDL. The circuit embeds the Winograd Fourier

Transform Algorithm into a pipelined serial architecture. This architecture was modeled

using the VHDL and the C programming languages. A custom simulation tool was

developed to verify the timing, control and hardware macrocells used to implement the

WFTA processor. This simulation modeled the architecture at the bit level and vali-

dated the design.
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MODELING AND SIMULATION OF A

SIGNAL PROCESSOR IMPLEMENTING

THE WINOGRAD FOURIER TRANSFORM
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Chapter 1

Introduction

1.1. Overview

Continuing advances in the state-of-the-art of silicon fabrication technology have

*5 allowed a tremendous increase in both the functionality and performance that can be

4achieved by a single integrated circuit. The natural counterpart of this increased func-

tionality is, of course, increased design complexity. Increased complexity limits the indi-

vidual designer's ability to completely understand the circuit being designed. Thus,

large ICs are now developed by design teams, leading to another problem, how to con-

cisely and accurately communicate design information.

The formal language oriented approach, using hardware description languages

(HDLs), is one method used to describe and model electronic circuits. Unfortunately,

most HDLs were developed in a simpler time when IC functionality was limited to small

and medium scale circuits. As we head into the very large scale, and very high speed

intgrtedcicui (LSI MSIC) era, there exists a need to develop tools that can both

model and simulate these complex ICs in a concise and timely fashion.

Once military applications drove the state of the art in the electronics industry.

Potential commercial spinoffs encouraged industry to pursue Department of Defense

(DoD) business, as military Integrated Circuits (ICs) were sufficiently general purpose to

be directly applicable to marketable products. As the industry grew, however, the DoD

F " share of the total IC market fell to under 10 'l11. In addition, the continual need to

o :i"; "? 2,-'''--''';,' ' " " -.i - : : " .'.'-2-: "i. . % :-' -'-- -'i 'ii -' .: -... ,?,--" ';.i-1-.i-i



maintain technological superiority over potential adversaries required ever more complex

special-purpose circuitry, driving the DoD into an increasingly specialized sector of the

marketplace [11].

As military and civilian applications began to diverge, the military driving toward

high speed signal processors, and the civilian market toward general purpose data pro-

cessors, it became apparent to planners in the DoD that industry could no longer be

- expected to develop ICs directed towards military applications in a timely manner.

Thus, in 1980, the DoD launched the Very High Speed Integrated Circuit (VHSIC) tech-

nology development program. Formulated as a seed program, it was designed to spur

development of technology directed towards military needs. It was anticipated that

.once the technology was available industry would find civilian applications that would

complement future military needs. Major goals of the VHSIC program are development

of technology necessary to produce submicron devices, increased processing throughput,

and the formulation of new circuit design methodologies and computer-aided design

(CAD) tools required for maximum exploitation of the new technology [16].

Insertion of the new technology into existing weapons systems is considered a prior-

ity goal. The reduction of system size, weight, and power requirements using the new

VHSIC class ICs over systems using current technology is expected to decrease the cost

and increase the reliability/maintainability of the new systems. The VHSIC program

office plans to demonstrate the replacement of over 50 ICs in current systems with one

VHSIC chip. This implies that the VHSIC chip could have upwards of 250,000 logic

-. gates, an extremely complicated part to design and validate. Modeling and simulation of

a circuit of this complexity could easily be on the critical path towards a correct imple-
--

mentation of the intended function. However, current simulation languages are not

capable of simulating large circuit designs in a timely manner.

After surveying existing Hardware Description Languages (IIDLs), the VHSIC' pro-

. (. gram office decided none would adequately meet its projected requirements and thus

%",
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funded the development of a VHSIC HDL (VHDL) to meet both present and anticipated

applications. VHDL, based on Ada, the new DoD standard High Order Language, incor-

porates VHSIC specific requirements such as portability, maintainability, timing, and the

ability to do hierarchical modeling and simulation. VHDL is now in its final design

stage. A test version of the VHDL simulator is scheduled to be made available to the

Air Force Institute of Technology (AFIT) for beta-site testing during the spring of 1986.

Although VHDL has been designated as the DoD standard HDL for VHSIC circuitry, a

significant amount of work remains to evaluate the language for its ease of use and clar-

ity of syntax in the description of a VHSIC class chip.

1.2. Digital Signal Processing

0 Signal processing involves Fourier series analysis of continuous or discrete time-

varying signals. With the advent of large-scale integration of digital systems, it became

practical to implement complex signal processing functions on a single substrate. Sys-

tem designers began to foresee applications requiring Fourier analysis which were previ-

ously infeasible due to size and/or speed limitations of available analog or digital sys-

tems. Some current systems use Fourier analysis as the basis for pattern recognition sys-

tems. A time domain picture is taken and converted into the frequency domain by a

fast Fourier transform (FFT) algorithm. Results are compared with a prestored spec-

trum to determine identity of the objects in the field of view. Fourier analysis of seismic

feedback from explosions is a primary method of searching for petroleum deposits.

Sonar detection of enemy submarines through processing of signal returns is another

important defense application. Future applications include not only enhancements of

current implementations but also many potential applications not currently feasible due

to speed and size limitations of current technology. For example, a digital front-end for

a phased-array radar, real-time computer resolution of satellite imagery, and medical

needs, ,uch as pictorial representation of internal body organs through low-level X-ray

tomography, would benefit from more processing power than is available using today's

-3-



technology [1]. Advances in device technology must be matched with clever algorithmic

design to reduce the computational burden in order to bring these applications into the

realm of feasibility.

1.3. Winograd FFT

The Winograd Fourier Transform Algorithm (WFTA) is a method for implement-

ing a Discrete Fourier Transform (DFT) for signal processing. It offers the potential for

a tenfold increase in processing throughput over existing signal processing algorithms. A

group of AFIT graduate students is designing a WFTA processor that will be imple-

mented using 1.2,u CMOS technology similar to that developed in VHSIC Phase I.

1.4. Statement of the Problem

*The problem addressed in this thesis is to analyze the effectiveness of the VHSIC

Hardware Description Language (VHDL) for modeling large CMOS integrated circuits,

and to verify the architecture, data flow, and control sequencing of the 16-point Wino-

grad FFT signal processor.

The major portion of the research is directed toward analysis of VHDL as a tool

useful in VLSI design. This analysis covered learning the language syntax, development

of a methodology to be used for VHDL modeling, and modeling the primary CMOS cir-

cuits that make up the WFTA processor. In support of the WFTA %-crification effort, a

model of the 16 point architecture was developed using the C programming language.

This model completely describes the arithmetic and control functions of the processor at

the bit level. It verified correct operation of the algorithmic implementation, and was

exercised to generate test vectors for future VHDL simulations and hardware testing.

4- -1.5. Problem Environment

The research reported in this thesis is one of four related efforts working toward the

design and implementation of VLSI signal processors that implement the Winograd

JA, Fourier Transform. Captain Kent Taylor !171 developed the architecture of the WFTA

-4-
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chip from the original concept developed by Linderman [8]. Taylor's thesis covers

theoretical development, numerical performance, and control and timing details of the

processors. He developed and validated programs that performed FFTs using the 15, 16,

and 17 point Winograd algorithms. Captain Paul Rossbach [131 designed and imple-

mented the control portion of the WFTA chip. An interim control sequencer test chip

was designed, fabricated, and tested at clock rates exceeding 50Mhz. He also designed

p and implemented a X (shaped storage cell) Read Only Memory (XROM) to provide the

*data addresses to an off-chip Random Access Memories (RAM) in the order specified by

the Chinese Remainder Theorem. The XROM has been optimized to minimize the

number of transistors by a solution to both the graph partitioning and the traveling

salesman problems using the approach of Kernighan and Lin [7]. Finally a silicon com-

_ piler was written to automatically place the address sequencing scheme into the XROM

personalization mask. Captain Paul Coutee [4] developed and implemented the serial

adders and multipliers used in the processor's arithmetic section. The multipliers are

derived from Lyon's serial multiplier architecture, but redesigned to use fixed coefficients

[9]. In addition, the horizontal and vertical pitch was minimized. The resulting dense

-- cell structure is critical towards achieving the goal of an entire Winograd processor on a

single silicon chip. In addition, cells were designed to check and generate parity and to

perform arithmetic rounding of the results.

1.8. Summary of Current Knowledge

Hardware Description Languages are not a new item. As early as 1939, Shannon

used a type of HDL in his work on switching circuits [8]. Nor are they rare. In a special

IEEE issue on HDLs Liposki noted that whenever someone developed a circuit simulator

they felt compelled to develop a HDL to drive it rather than learn and adapt an existing

one to their application [8]. In other special issues on HDLs by the IEEE Computer

Society, writers have called for a common HDL [3]. It was noted that although there

were many languages that were adequate for a specific purpose, none were suitable for

pV
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application over the entire range of a large hardware design project. The IEEE has

sponsored project CONLAN (CONsenus LANguage) to develop a group of languages

linked by common syntax and design conventions. The new language would use desir-

able features and concepts from the myriad existing languages and incorporate these into

its basic syntax Base CONLAN [12].

Around the same time the DoD, faced with an explosion in the number of software

languages in its computer systems, launched an effort to slow the growth of the cost of

software maintenance. After studying the problem the DoD concluded that computer

languages had not kept pace with the advances in technology. Accordingly an effort was

made to develop a language incorporating both features in current languages and

modern concepts in software engineering such as structured programming, information

hiding, data abstraction, real time control and data handling. The result was the Ada

Programming Language which has been designated as the standard DoD High Order

Language [2]. The VHSIC program office, looking at the problem of concisely communi-

cating design information on integrated circuits containing up to 250,000 gates, recog-

nized that the basic concepts and constructs used in Ada could be used in a new HDL.

The relationships between VHDL and Ada are detailed in the VHDL Design Analysis

and Justification [6]. In general VHDL constructs supported by Ada were required to

use the Ada syntax [6]. The basic objectives of the VHDL are:

1. It be capable of documenting digital hardware over the
range of entire systems to logical gates.

2. It be able to be used as a design and documentation
tool

3. Its complexity be kept to a minimum.

A contractor team of Intermetrics, IBM, and Texas Instruments was selected to develop

the VHDL. The contract was for a two-phase design effort followed by a testing phase.

AFIT was selected as a test site to determine if VHDL meets the requirements set forth

"':;" in the requirements documents, and if the VHDL is a practical tool for use in VLSI
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5

design development.

1.7. Approach

As has been stated, the main thrust of this thesis effort has been to analyze the

effectiveness of the VHSIC Hardware Description Language (VHDL) as a tool for model-

ing the detailed design of a VHSIC class chip. This analysis will be accomplished by

structurally decomposing the 16-point processor into its constituent processing elements

and modeling the primary CMOS circuits which make up those processing elements. In

addition, the arithmetic and control sections of the architecture will be modeled at the

bit level using the C programming language. This will serve to verify the correctness of
the architecture and the circuit design.

The modeling of the architecture has been accomplished by a structural decomposi-

tion of the system into subsystems, components of those subsystems, macro cells and

finally the microcells that make up the cells. Decomposing the architecture led to the

definition of the hardware interfaces. This top-down interface definition imposed a sig-

nal flow structure on the system that was followed by the definition of the internal circu-

-_ itry. Once the chip was decomposed into its smallest individual logic components, the

micro and macrocells were modeled using VHDL library descriptions as well as user

defined descriptions. In this fashion the system could be reconstructed following the pre-

viously defined interfaces.

Subgoals of the modeling process were to establish functional equivalency between

the simulation program and the actual hardware, development of test cases to simulate

various data sets, and development of test vectors for use in future VHDL simulations

and hardware testing.

%'. " 1.8. Sequence of Presentation

Chapter 2 reports on the development of the architecture of a signal processor

based on the Winograd algorithm. Details on the Winograd Transform, the Good-

-7-
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Thomas prime factor algorithm, the Chinese Remainder Theorem and their implications

for the system architecture are included in this chapter.

Chapter 3 presents the VHDL constructs used to model hardware. A hardware

entity is described as it is used in the VHDL. Examples will be used to illustrate a

methodology to be followed when modeling circuits.

Chapter 4 details the modeling of the 16-point processor using VHDL. The 16 point

processor is completely decomposed into the smallest independent circuits, inverters and

transmission gates, which are then used to construct the primary cells. The VHDL

descriptions and modeling of the major cells are presented.

Chapter 5 presents the C simulation used to verify the 16-point architecture. A

discussion of the need for system simulation is presented, followed by a description of

the general approach used in program development.

Chapter 6 is an analysis of the utility of the VHDL as a VLSI design tool. Recom-
mendations for applications of the C simulations are presented. Finally the recommen-

dations and conclusions based on the research performed while carrying out this thesis

%.: will be presented.

.
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CHAPTER 2

Development of the WNFTA Architecture

2.1. Overview

As stated in the first chapter, the Winograd DFT algorithm is a computationally

efficient method of computing the discrete Fourier transform. It is of interest in VLSI

because the matrix form of the algorithm maps very efficiently, in terms of space, and

regularity of structure, into a signal processing architecture. In addition, by combining

various Winograd modules into a pipelined architecture in the manner specified by the

Good-Thomas Prime Factor algorithm, large data blocklengths may be computed. The

development of an architecture based on these algorithms is discussed in this chapter.

The approach will be to introduce the Fourier transform, how it is used signal processing

applications, and then demonstrate how a more efficient implementation of the basic

Fourier transform leads to the architecture modeled in this thesis. A 4080 point block

length is initially assumed and later justified in section 2.2. Concepts which will be

introduced in this section include the Good-Thomas Prime Factor algorithm, the Chinese

Remainder theorem, the Winograd Fast Fourier Transform algorithm and cyclic convolu-

tion.

2.2. Fourier Series Representation

Most signals of interest in communications or signal processing applications can be

described as a function of time by the equation:

f(t) = A sin (wt + €) (2-1)

where A is the signal Amplitude.

0 is the signal Phase.

w is the frequency in radians/sec.



Signals which conform to the relaxed Dirchilet conditions [15]:

1. f(t) has only finite number of maxima and minima in the interval.
2. f(t) has only a finite number of discontinuities in the interval.
3. f(t) satisfies the inequality:

T

f I f(t) Idt < c (2-2)

0

may be represented by the Fourier series which is defined as:

n) 00

f(t) = fn" )  (2-3)

nl= -00

where:
F n is a complex coefficient representing

* the initial phase angle and magnitude

(jnwt)
the exponential, e
represents phasor rotation at angular frequency w.

By summing the phasors, e over the index the instantaneous amplitude and phase of
the original signal can be determined. In addition, the Fourier coefficients, Fn? can be

summed to find the average signal power. A plot of the Fourier coefficients versus fre-

quency is known as the spectrum of the signal. Characteristics of the spectrum are (1)

that its envelope is dependent on the pulse shape, and (2) there is an inverse relationship

between pulse width and frequency spread.

The Fourier transform, used to calculate the Fourier coefficients, is defined by the

equation:

T

2

F(w) = f f(t)euiwt)dt (2-4)

-T

2

Using the Fourier transform we can describe any signal of the form (2-1) in terms of a

spectral density function of the form (2-4).

-IO-



2.3. Fast Fourier Transforms

Many of the problems in digital signal processing involve computation of the

Discrete Fourier Transform (DFT) for finite input sequences of real or complex data

points. The DFT of a complex data sequence v is given by:

i=n-!

Vk= E ik (2-5)

i=0

where:
n is the blocklength of the data sequence

w is the complex phasor e - (j2 r / N )

v is a vector of complex numbers.

The DFT can be computationally expensive. The number of complex additions and mul-

tiplications is O(N ). For example, a direct implementation of a 4080 point DFT will

require 16,646,400 multiplications and 16,642,320 additions. The body of theory labeled

Fast Fourier Transforms is concerned with manipulation of input and output data

indices in order to achieve a more efficient means of performing this DFT operation.

FFT algorithms generally use a variety of methods to shuffle elements around in the

data matrices to reduce the number of multiplications required. Figures of merit for

FFT algorithms revolve around the numbers of additions and multiplications, with

replacement of multiplications by additions being the preferred approach to achieve a

more efficient algorithmic implementation. Fast multipliers are costly in terms of silicon
774

area and processing time. Reduction of multiplications in favor of additions reduces the

space requirements of the multiplier section and decreases latency through the pipeline.

Additional space freed up can then be used to allow a smaller die size. resulting in

greater yield, or to implement desirable features such as error detection, correction, and

other fault tolerance measures.

The Winograd Fourier Transform Algorithm (WFTA) architecture was developed

using both the Winograd and Good-Thomas Prime Factor algorithms. The Good-

Thomas algorithm is used to break the 4080 point blocklength into mutually prime

-11-



sequences of length 15, 16, and 17. These smaller blocklengths are computed using the

Winograd FFT algorithms. Combining the Good-Thomas Prime Factor Algorithm (PFA)

and the WFTA in this fashion will reduce the number of operations to 31,148 multiplica-

tions and 157,164 additions [17[. This represents a reduction in the number of multipli-

cations by a factor of over 500. We now wish to examine the theory which allows us to

decompose the 4080 point DFT in order to achieve these reductions.

2.3.1. Good-Thomas Prime Factor Algorithm. The Good-Thomas PFA allows the

representation of a linear array of n data points as an r-dimensional array in such a

manner as to allow calculation of a sequence of true m-dimensional Fourier Transforms.

The CRT is used to map the sequential data addresses onto a unique location in a m-

dimensional hypercube. In order to use the CRT the decomposition factors, ml, m2, and

m3 must be relatively prime (sharing no common factors). Considerations for selection

of a WFTA block length were computational efficiency of the pipeline and adaptability

to existing signal processing systems.

Pipelined architectures achieve maximum efficiency when all processors require

approximately the same time to compute each problem. Current radar systems use 4096

point scans for signal processing, but may be adapted for other block sizes. For these

reasons the decomposition factors ml = 15, m2 = 16, m3 = 17 [8] were chosen. This

balances the processing delay through all stages in the pipeline. The product of the

decomposition factors ml X m2 X m3 equals 4080. This can be thought of as map-

ping the 4080 data points into a cubic data structure with sides of length 15, 16. and 17.

The sides of the cube are the block lengths of the decomposed DFT. The entire DFT

can then be computed by piping the output of one stage into the input of the next.

Using the PFA we can rewrite the 4080 point DFT originally given as:

4079
V ik k

Vk-' E v (2-6)

-12-
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into the following form by remapping the input and output data indices using the CRT.

239 271 254
Vk = [ [ [ 1 kv i2k (2-7)

i1=O i2=0 i3=0

Now instead of doing one 4080 point transform, we are doing a 16 point DFT (15)(17)

times, a 15 point DFT (16)(17) times and a 17 point DFT (15)(16) times. Taylor per-

formed a numerical simulation of the 4080-point pipeline and the results showed that the

best ordering of the DFT modules would be as shown above. The 16-point FFT has the

best numerical performance, while the 17-point shows the worst. Ordering the pipeline

in this fashion will minimize truncation and rounding noise [17].

The combined effect of the PFA and the CRT is shown figuratively in Figure 2-1.

The CRT maps each element of the 4080 point data sequence into a unique address on a

15 x 16 x 17 cube. The 4080 point DFT is then computed as a sequence of three 2-D

DFTs. For example, the 15 point DFT can be visualized as an array (16,17) of columns

with 15 elements per column. This is represented by the XZ plane in Figure 2-1. Com-

plete computation of the DFT will require computation of a DFT for each of the surface

planes of the cube. The summation notation in equation (2-8) above reflects the DFT

being computed and the number of iterations through the data set that are required.

Thus computation of the DFT is performed in a pipelined implementation as fol-

lows:

a). computation of all columns perpendicular to the XZ plane, map the
outputs via the CRT into new location on the cube. (16 point DFT).

b). computation of all columns perpendicular to the YZ plane, map the
*outputs via the CRT into new location on the cube. (15 point DFT).

c). computation of all columns perpendicular to the XY plane, map the
outputs via the CRT into new location on the cube. (17 point DFT).

This conceptualization leads directly into the pipelined architecture of the 1080 point

. DFT processor, shown in Figure 2-2. In hardware, the cube is a memory element of 1080

words with data addresses determined by the CRT and the array of columns represents

-13-
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Figure 2-1. Cubic Data Structure of the 4080 Point PFA Implementation

a 15, 16, or 17 point WFTA processor element. Dual 4080 word memories are used

between each WFTA element in order to allow each element exclusive access to a 4080

word data cube. After each element completes a scan through the data set the results

are sent to the next memory element in the pipeline.

2.3.2. Winograd Fast Fourier Transform. Dr. Shmuel Winograd first introduced the

Winograd Fast Fourier Transforms in 1975 [18]. Some of the characteristics of these

algorithms are that the number of multiplications is nearly O(N) while the number of

additions remain in the neighborhood of those required for other FFT algorithms.

Winograd's algorithms are used to compute each 15, 16, and 17 point DFT. The small

. algorithms treat three cases of block size:

-14-
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Figure 2-2. 4080-Point WFTA Pipeline Implementation

1. Blocklength a prime.
2. Blocklength a power of a prime.
3. Blocklength a power of two.

Cases one and t' ee, respectively, will be used to compute the 17 and 16 point DFT.

The 15 point DFT does not fall under any of the cases listed above. In order to compute

this DFT, and other blocklengths which are not one of the cases listed above,

Winograd's large algorithm must be used. The large algorithm combines smaller block-

lengths, which can be computed using the small algorithm, into a larger DFT module.

In the case of the 15-point module it may be computed using blocklengths of sizes three

and five, which are both case two.

-15-



".'.? 2.4. WFTA Processor Architecture

The 16-point DFT, shown in (2-6), is computed using case three, blocklength a

power of two.

i---15

ik
V=Z W vi  (2-8)

i=0

Convolution theory allows the DFT of a data sequence to be written as a cyclic convolu-

tion. Using the procedure for the second case, the 16 data points are partitioned into sets

of even and odd indices. The eight odd indices are arranged into a set of four cyclic con-

volutions, while the eight even indices form an eight-point DFT, again a power of two.

This partitioning process continues until the resulting DFT is composed of only two

* •points which may be then directly converted into a cyclic convolution. The theoretical

aspects of this process are covered in more detail in [1], [17]. The basic principle involved

is that the DFT may be converted to a series of cyclic convolutions using the Winograd

Algorithm. The rationale behind the conversion to a c oavolution is that the convolution

may be calculated more efficiently using a fast convolution algorithm such as the Wino-

grad Fast Convolution Algorithm.

The form of a cyclic convolution

s(x) = g(x)d(x) mod [m(x)] (2-9)

where d(x) is the data sequence.
% g(x) is the coefficient sequence.

m(x) is a fixed polynomial arising out
of the partioning process.

Through an application of the Chineses Remainder Theorem for polynomials and some

manipulations shown in detail in 1 17, (2-9) may be converted into the form:

X CDAx (2-10)

C is an incidence matrix of preadditions.
D is a diagonal matrix of coefficients.
A is an incidence matrix of t)ostadditions.
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* The coefficient sequence is a diagonal matrix with constant either real or imaginary

terms, the dimension of which is equal to the number of multiplications to be performed.

The architecture that implements this equation in hardware is shown in Figure 2-3. The

structure exploits the fact that the data is not complex until the postaddition matrix,

where the paths merge in the final postaddition operation. This allows the architecture

Swhich implements the preaddition and multiplication operations to be separate real and

imaginary parts. The arithmetic operations are performed using serial hardware to

reduce routing space and complexity. However the I/O paths are word parallel in order

to lessen the memory access time constraint. Additional structures needed are a control

sequencer to generate control signals, and a ROM to store the data addresses in the

order specified by the Chinese Remainder Theorem.

Winograd's large algorithm could have been used to compute the entire 4080 point

DFT by nesting the 15, 16, and 17 point using the Winograd Large Algorithm, as in the

case of the 15-point DFT. However, the size of the multiplication matrix limits the abil-

ity to embed an entire processor on a single silicon chip. For example, the 4080 point

DFT would require a multiplication matrix over 23,000 serial multipliers tall [17]. A

more modular implementation which is more suitable for VLSI implementation using

state-of-the-art fabrication technology uses the Winograd modules to compute the 15-,

16-, and 17-point DFTs and the Good-Thomas Prime Factor Algorithm (PFA) to com-

pute the entire transform. This implementation requires more operations but is more

area efficient and lends itself to a pipelined implementation yielding greater computa-

tional throughput.
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lCHAPTER 
3

VHSIC Hardware Description Language

3.1. Overview

The Winograd Fourier Transform (WFT16) processor presented in the last chapter

is a complex circuit consisting of over 100,000 transistors. Complete comprehension of

the function of every transistor would be impossible if the circuit was considered as a

monolithic entity. An alternative approach might be to try and understand the function

* of the major components, and how they interact with the rest of the circuit. Detailed

understanding would come by continually repeating this process, each time at a lower

m J level, until the entire processor can be visualized as a grouping of simple circuits

interacting in a complex manner. This is what VHDL modeling is all about. "VHDL is a

language which can be used to describe hardware, ranging from simple logic gates to

complex digital systems" [5]. The VHDL allows a circuit behavior to be described at a
., convenient level of understanding (or abstraction); more detail may be observed by step-

ping down one level in the hierarchy and describing the behavior of the components and

the interactions which together create the larger behavior.

This chapter will present VHDL in the following context. A VLSI circuit of almost

29,000 transistors will be described, and its behavior modeled using the hierarchical pro-

cedure described above. Along the way, the syntax of VHDL will be presented as a tool

useful in describing circuit behavior. The VHDL structures used for representation of a

physical device will also be addressed. These include entities and bodies. This descrip-

tion will be followed with a representation of the constructs used to model data

transforms such as sequential and concurrent signal assignment statements and bus reso-

lution functions. Finally, a complete example of VHDL modeling of a CMOS latch will

V.i "



, *.\.,.\) be given.

3.2. VHDL Modeling of a Large Circuit

The output structure of the 16-point WFTA (WFT16) processor is a serial in,

parallel out (SIPO) shift register. Every clock cycle one bit from each of 32 serial input

vectors enters the register, and every other clock cycle a forty-eight bit vector is output

in parallel to the data bus. This process is controlled by three signals. Thus, at the

highest level of abstraction, the SIPO may be viewed as a black box which receives

inputs and produces an output. By itself, this description does not impart very much

information about how the SIPO operates. Referring to the system block diagram reveals

that the thirty-two bit input is actually made up of two-sixteen bit vectors, and the out-

* @put is two twenty-four bit words. This allows a second, lower level of behavior to be

visualized: The SIPO is really composed of two smaller identical shift registers. Con-

tinuing in this fashion each register is found to consist of sixteen identical rows, each

row made up of twenty-four identical cells. If the behavior of this one cell can be under-

stood, it is easy to visualize the operation of the entire 29,000 transistor register. The

decomposition of the SIPO behavior from one register into a cell is shown in Figure 3-1.

Although not all circuits are an array of identical cells, most behaviors may be decom-

posed into a lower level of abstraction, which can then be more easily understood and

modeled.

03.3. VHDL Modeling Structures

There are three independent units in VHDL: packages, entities, and bodies. A

VHDL description of a piece of hardware consists of the interface (which is called an

entity in the VIIDL syntax) and an architectural description of how the device

/transforms inputs to outputs (a body in the syntax). Related type declarations, func-

tions, and procedures can be grouped into a package and made available to the interface.

VHDL defines two different types of information channels. Ports are the wires used to

interconnect entities, while signals are used to carry information internal to a design

-20-
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Figure 3-1. SIPO Decomposition

'U, entity. Furthermore, ports are declared in interface entities, while signals are declared in

bodies.

3.3.1. Packages. A package is an Ada-derived structure used to group logically

-"Y related items so they can be referenced by a group of related design entities. Items

which may be inside a package are type declarations, attribute declarations and

specifications, constants, alias declarations, functions, and procedures. The contents of a

package are made visible to interface declarations with a context clause:

for SOME-PACKAGE; use SOME-PACKAGE;

at the header of the entity declaration.

There are two kinds of types in VHDL, scalar and composite. Scalar types are

single-valued such as:

-21-



a). Integer types
b). Floating point types
c). Enumeration Types
d). Physical types.

Enumeration types are declared by listing the values which objects of that type may

have. A bit, which may take on the values '0' or '1', and boolean arguments which have

the values of either 'true' or 'false', are examples of predefined enumeration types. Phy-

sical types represent physical parameters such as time, voltage, current, and so forth.

Mathematical operations are defined on physical types. Composite types represent an

array of values. Composites may be only of one type (such as an array of bit), or

different types, such as a record listing the voltage and current requirements of a circuit.
VHDL also permits user-defined types. One example would define OPCODE as an

array of eight bits. Then CPU instructions could be declared as being of type

OPCODE. As another example, an enumeration type, TRILSTATE could be defined

with a set of values ( '0', '1', 'Z'). However, functions and operations on objects of user-

defined types would have to be defined.

The SIPO would have various data types associated with the decomposition shown

in Figure 3-1. The input and output at each level exhibit a certain word length which

may be declared as a bit vector, a tristate data type is also needed, and the control and

clock signals may form additional data types. Thus, a SIPO_PACKAGE would contain

the following declarations:

Package SIPOPACIKAGE is

type 16bit-vector is bit-vector (15 downto 0);
type 24_bitvector is bit-vector (23 downto 0);
type clksignal is bit;
type z-bit is ('0', '1', 'Z');
type control is bit;

end SIPOPACKAGE;

VHDL is a strongly typed language. Although control and clk--signal are both of type
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J bit, the compiler will flag assignments of clk_..ignals to signals declared of type bit, and

vice versa.

* 3.3.2. Interface Declarations. The interface declaration defines the data paths (ports)

over which information flows to and from a device. It consists of a list of port declara-

tions and the direction and type of information which may flow through each port. To

* describe each level of decomposition of the SIPO shown in Figure 3-1, an interface

_ description may be written. This description would contain a listing of all the inputs

and outputs of the circuits. There is generally only one interface declared per design

entity, but different implementations may reference the same interface. Items common to

all bodies of that interface may also be included in the entity.

*There are five port modes which are used to describe information flow across the

interface boundary. Mode in is used for data entering a device from an external source.

-In ports may only be referenced, not changed, within that entity. However, in ports may

be given a tie-off value in the interface declaration for use if that port is not connected

-. .. to an external driver during a simulation. Mode out is used for data originating within a

device for use in some external circuit. Its value, representing the result of an internal

data transform, may not be used within the originating device. Mode inout is a bidirec-

tional port which allows the port to be externally or internally driven (as in a system

yr bus). Mode buffer allows the port to be referenced (read) by components both inside and

outside the device boundary. However, it must be driven by a source within the entity

defined by the interface. An example of buffer mode is the feedback inverter of a static

latch. The mode linkage is used for ports whose direction of travel is unknown. This

port mode is used only to pass information down to lower levels of the hierarchy. It can-

not be either referenced or altered. Table 3-1 summarizes the port modes and allowed

operations.
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Port Mode in out inout buffer linkage

Reading
inside A D A A D

outside A A A A D

Writing
inside D R R R D

outside A A A D D

(A) Allowed (D) Disallowed (R) Required

Table 3-1. Port modes [5].

An example will serve to illustrate several of these points. One cell of the output

serial to parallel converter used in the WFT16 processor is shown in Figure 3-2.

)1!

PARALLEL IN

.SERIALI SERIAL
'N 0" OU T

,. PRRALLEL.OUT

Figure 3-2. Serial to Parallel Output Cell
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"'4 w" SERIALJN and PARALLELJN are the input data bits, SERIAL-OUT and

PARALLEL-OUT are the output bits. SRSIPO, SD_SIPO, and LATCHSIPO are con-

trol signals. Circuit operation is under the control of a two-phase clock. The interface

declaration for this cell is shown in Figure 3-3.

This example illustrates the use of port modes and user defined types. Types control and

clk.signal are defined in SIPOPACKAGE. The in ports are given tie-off values which

will be used if the port is not connected in some simulation model. It is important to

note what is happening at node A in Figure 3-2. First, the node is being driven by both

the input port PARALLELJN, and the output port, SERIAL-OUT. Any node driven

by more than one independent source is termed a "bus" in VHDL syntax. Busses must

be declared by type and have an associated bus resolution function, which will determine

how the several source values will be resolved to arrive at a signal value. Bus resolution

functions will be discussed in section 3.5.3. SERIAL-OUT is also used to drive internal
IF.a and external nodes, this must be reflected in the port mode. Both inout and buffer modes

could be used. In this case, mode buffer was chosen to reflect that node A should not be

driven from an external source. The assertion construct reflects the design intent that

with SIPOPACKAGE; use SIPOPACKAGE;
entity SIPOCELL

(SERIALJN, PARALLELJN: in bit := 0;
SR_$IPO, SDSIPO, LATCHSIPO: in control;
CLK2, CLK2_..NOT, CLK1, CLKILNOT: in clk_.signal :'0';
SERIAL-OUT: buffer bit;
PARALLEL-OUT: out bit) is

assert (not(LATCHSIPO and SDSIPO))
report "LATCH_SIPO AND SDSIPO are both set"

severity fatal;

end SIPO_CELL:

Figure 3-3. Interface Declaration

2,
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; ..¢ only one of the two drivers of node A should be active during any simulation cycle. If

this assertion is violated the simulator will report the error message shown. The severity

level is referenced at simulation time, along with a user specified error threshold, to

determine which errors encountered should cause termination of the run.

3.3.3. Bodies. Many different approaches may be used to implement a given function.

In general, however, the inputs and outputs to the function are fairly well defined early

in the design cycle. VHDL supports design flexibility by allowing multiple architectural

bodies to be written for a given interface. Each architectural body may be tested by

linking the interface description to the body using a configuration block statement or

. configuration body.

* The body defines how the device actually operates. There are two types of bodies,

architectural and configuration. An architectural body describes the behavioral and/or

structural characteristics of a particular implementation. A configuration body defines

how a particular instantiation of an design entity is to be implemented. The

configuration body is the linkage between the entity declared in the component declara-

tion, the specific architectural body the designer wishes to use, and the component

instantiation.

3.3.3.1. Architectural Bodies. The architectural body may consist of different levels

which describe the operation of a device. A purely structural description exclusively uses

component declarations and instantiations to describe its operation. On the other hand,

a purely behavioral description contains no component instantiations. All data

transforms are completely described using concurrent signal assignment or process state-

ments inside the architecture. VHDL allows any combination of these two extremes to

be used to model a device. The basic structure of an architectural body is shown in Fig-

ure 3-4.
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architecture NAMEOFBODY of NAMEOFJNTERFACEDECLARATION is

block__name: block (boolean guard statement)

declarative section:
component declaration;
component configuration;
local signal declaration;

,.4. begin
concurrent statements

processes
nested block-name;

M end name-of.body;

Figure 3-4. Architectural Body Template

Note that these statements and declarations could be in any order within their respec-

tive regions.

The nature of digital systems is that their operation is made up of multitudes of

circuits, all operating in parallel. The VFT16 processor is a pipelined, bit-serial proces-

sor which is designed to operate at high speeds, as such, there are few logic stages

between clocked elements. Thus, the circuit could be roughly partitioned into just two

sets of parallel operations: those which occur on the 02 pulse and those which occur on

the 01 pulse. The block structure which makes up the architectural body shown in Fig-

ure 3-4 is the structure that VHDL uses to represent parallel events. All the statements

contained within the block execute concurrently and may be controlled by the boolean

guard. The guard expression specifies a condition which must be true before statements

within the block which reference the guard can execute. This will be discussed further in
.4. the sections on signal assignment statements.
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Before a lower level VHDL description can be referenced in a higher level descrip-

tion it must be declared. This is done by listing the interface entity name, followed by a

listing of its port names, data types, and modes. A component declaration makes avail-

able a local copy of an interface to a body. To describe the behavior of the SIPOCELL

in terms of the behavior of its components, those components would first have to be

declared as shown in Figure 3-5.

component MSFF
port(A: in Zbit;
CLK2, CLK2_NOT, CLK1, CLK1_NOT: in clk..gignal;
B: buffer bit);

component TGATE:
port (X: in Z.bit;
CLK: in clk__ignal;
Y: out bit);

Figure 3-5. Component Declaration Statement

Note the type clash between the input and outputs of the MSFF and TGATE. The

MSFF produces an output of type bit, and the T-GATE expects its inputs to be of type

Z.bit. Since these are connected as per Figure 3-2, a type conversion function must be

used to convert the output of the MSFF into the type that the TGATE expects.

A component instantiation statement fits a declared component into the framework

of the design. This is done by an interconnection of the ports of the instantiated com-

ponent with ports declared within the interface and locally defined signals. A component

instantiation is a concurrent construct and will be further discussed in section 3.5.2.

Information transfer within an architecture takes place using signals and ports.

Ports, which are listed in the interface declaration for the register, are connected to the

port with that same name in the component instantiation statement or signal

-28-
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assignment statements. Signals are declared by name, by type, and by the reserved

word atomic that indicates that multiple drivers are defined for that signal. As stated

earlier, signals with multiple drivers are called busses. Signals are declared atomic fol-

"5 lowed by the name of a bus resolution function. Atomic is a flag indicating that multi-

ple drivers are associated with a signal, and the name of the function to be used to

resolve the drivers into an output value.

3.3.3.2. Configuration Blocks and Bodies. Since interface declarations can be associ-

ated with more than one implementation (body), it is necessary to identify which body is

being declared. Identification of a component with a specific body can be done with a

configuration specification within the body or by a separate configuration body. The

* disadvantage of placing the configuration within an architectural body is that the archi-

tecture is now specifically associated with one design. Flexibility to instantiate different

components is lost unless the code is edited and recompiled. The more flexible approach

I would define a separate configuration body for each design. This would allow different

configuration bodies to be written for different component instantiations within the same

architectural framework.

A configuration specification assigns a specific body to be used with the interface in

the component declaration. It may also specify port maps, additional ports, and generic

declarations. The label used in a component instantiation statement identifies which

-2 instance of the component is being configured. Figure 3-6 shows the configuration of the

" MSFF and TGATE used in the SIPOCELL declared in Figure 3-5.
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for M1, M2: MSFF
use
entity (MSFF)
port map (bit-in => A,

CLK2 => CLK2, CLK2_NOT ==> CLK2_NOT,
CLK1 => CLKI, CLKINOT => CLKINOT,
bit-out =>B)

body (MIXED-BODY)
end for;

for all: TGATE
use
entity (TGATE)
port map (bit-in => convb-z(X),

clk => clk,
bit-out => Y)

body (BEHAVIOR)
end for;

Figure 3-6. Configuration Specification for SIPOCELL

.4

Note the use of the type conversion function, convbz(X), in the port map for the

TGATE. Also note that since both instantiations use the same configuration, the

instantiations labels, M1 and M2, could be replaced with the reserved word all as in the

TGATE configuration. If multiple configurations of the same entity are involved, all

but one the same, the different one could be configured first, as above, and the rest

identified with:

-- for others: MSFF use --

and configured in one block.

Entity (MSFF) identifies which interface entity is used. The entity entry links the

component declaration to an entity which is stored in the VHDL design library. The

port map associates the formal names listed in the entity with those used in the coin-

ponent declaration: association is left to right, formal actual. The statement body
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(MIXEDBODY) directs the use of the architecture (MIXED-BODY) for use in this

architectural body.

The configuration body describes the implementation of any entities in an architec-

tural body which are referenced by component instantiation statements. Design units

referred to by the configuration body must reside in the design library. The

configuration body is the top level of the hierarchy for the entity listed in the body

header. The configuration specification is the main item which constitutes the body.

Configuration of component instantiations two levels deep is allowed in a

configuration body. For example, if the SIPOCELL is instantiated to build a

SIPOREGISTERROW a configuration body could configure the SIPOCELL hierar-

chy down one additional level, allowing different MSFF implementations to be simulated

within the framework of the SIPOREGISTER.

3.4. Signals

VHDL uses signals to represent wire interconnections within a design entity, and

ports to represent data channels to external devices. Input-to-output transforms in

VHDL are represented by *a future signal value and a time when it will become valid.

S,-', This time/value pair is called a transaction. The time aspect could be represented by a

delta delay or simulation time value. A delta delay is an infinitely small time unit, the

sum of any number of which will never add up to any finite amount of physical time (in

terms of circuit delays). Delta delay is used to represent events which must occur in

response to other events without considering the nuances of their timing interaction.

Simulation time represents real time, and is used to simulate timing dependencies

between component and events.

The form of a simple signal assignment statement:

A <- B after Tns;

-31-
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reads "the value of signal B is assigned to the driver of signal A and will possibly become

the value of signal A after T nanoseconds". It is not possible to affect the current value

of a signal only its future values. A simple example repeated from the VHDL tutorial

will serve to illustrate this point.

"Consider the following pairs of statements:

A:=B; X<=Y
B:=A; Y<=X;

Variable Assignment Signal Assignment

In the case of variables A and B, after the two variable statements are executed, the values of A
and B are identical after the two statements are executed. More interesting, however, is the fact
that the values of X and Y will be swapped as soon as simulation time advances, because the
current value of each signal has been scheduled to become the next value of the other signal's
driver ( after delta delay)." [51

The value of a signal depends on the value of all of its drivers. (Some devices, such

as node A of the SIPOCELL, have multiple inputs to a single node. These multiply

c driven nodes are known as busses). When a signal assignment statement is executed it

inserts a transaction into a signal driver. The signal driver can be thought of as a stack

ordered with respect to time, time being the stack pointer. As time advances the value

of the pointer will become simulation time. If the signal has only one driver, that

driver's value will become the signal value at the time indicated by the stack pointer.

Signals with multiple drivers have their values arbitrated via a bus resolution function

which is usually written by the VHDL programmer. The bus resolution function is

automatically invoked by the simulator.

A signal assignment statement creates a "projected output vaveform" for a signal.

Once the projected output waveform is put on the stack, but before it becomes a current

driver value, it may be affected by signal assignment statements which execute at some

point in the future. In other words, assignment to a node with only one signal driver

does not automatically guarantee that, at some future point in time, the value of the

assignment will become the signal value. The reserved word transport may appear in an
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'' assignment such as:

A <= transport B after T ns;

Transport acts to delete transactions scheduled for times later than the first scheduled

transaction in the new waveform. Inertial delay, the default case, simply deletes all tran-

sactions from the stack which are scheduled to occur before the first event in the new

projected waveform. Figure 3-7 illustrates transactions and drivers. The stack structure

represents a driver for the output of the combinational logic network. A projected signal

waveform is shown which assumes that this is the only driver for the signal S. In the

absence of any future signal assignments taking place between current time and the last

time on the transaction stack, this will be the future signal waveform.

3.5. Signal Assignment Statements

VHDL supports two types of signal assignment statements, those which execute

S.0 sequentially (sequential signal assignment) and those which execute simultaneously (con-

current signal assignment). Sequential statements, which must be nested inside a con-

current process statement, are an abstract means of describing I/O transforms, while

concurrent statements lean more toward a specific hardware implementation.

3.5.1. Sequential Assignment Statements. An algorithmic approach to hardware

modeling would use a sequence of calculations to map inputs into outputs. Sequential

statements in VHDL are used for this purpose. They must be nested within a region

known as a process. The process statement is itself a concurrent statement which may

execute once per simulation cycle. When the process executes, however, each sequential

statement will execute in turn. Each process executes in response to changes in signals

currently enabled in its "sensitivity list". A sensitivity list identifies all the signals which

can trigger a change in an output signal value. Every time a signal in the sensitivity list

changes state, the process is activated and computes a new projected owput waveform.

: Q -33-

,--""
io Si " _



TIIIEVALUE

-~~~ EUlO I Eili-~

so] a ClL s

'o I TIRRNSCTION

20 1
0 0

|-,' 8 I ,,

0 20 40 6 0 M0 TIME
PROJE[TEU OUTPUT WRVEFORM

Figure 3-7. Signals and Drivers

The sensitivity list provides a means to improve the execution time of a simulation.

Consider simulation of a D-latch, the primary cell structure for most components

within the WFT16 processor. The latch has one data bit input and two clock senses for

input signals. Since any of these three signals can affect the output, they all will be listed

in the sensitivity list. However, the output changes only in response to changes in the

*• input signal. Needless event scheduling can be avoided by activating the process only

when the input has changed, not just because the clock "ticked." Enable and disable

statements are used to achieve this purpose. All three signals must be listed in the sensi-

tivity list, but the enable statement may be used to enable sensitivity to clock transi-

tions only if the input has just changed state. While the input remains stable, the

-34-
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disable statement will make the latch process insensitive to clock transitions.

Another feature of processes is that they may use variables and constants to com-

pute a value. Since variable assignment occurs immediately, (instead of at some point in

+ :.i the future, as in the case of signals), an arbitrarily complex algorithm may be used to

compute a value and assign it to a signal node. This feature can be used to model pro-

pagation through layers of combinational logic within one simulation cycle. Using delta

delay for signal assignment statements will cause the signal to take one simulation cycle

propagation delay per logic stage. If variable assignment statements are used, propaga-

tion delays through gates will not be a factor and delta delay simulation can still be used

to simulate clocked stages. For computing variables, VHDL supports most of the control

statements used in programming languages such as loops, case statements, if .. then

else, and, for. These control constructs may also be used to assign a signal value to a

target based on a the value of a variable.

3.5.2. Concurrent Signal Assignment Statements. "Concurrent statements allow the

user to specify the structural characteristics of a design, and to describe its behavioral

characteristics in terms of concurrently executing, sequential processes" J51. Concurrent

statements represent hardware components which operate in parallel upon receipt of

some control signal or clock pulse.

The block statement defines a region of text and a guard statement which can affect

execution of processes within that block. Blocks are delineated by:

block (optional guard) .... end block;

statements. The guard is a boolean expression which is referenced by concurrent state-

ments using the reserved word memoried. Memoried statements fire only when the

guard expression is true, if the guard is false, changes to the signals will not cause out-

put transitions. Block statements group together statements which execute in parallel

(on the same clock pulse for instance). Processes can import the guard value by insert-

ing the guard into their sensitivity lists. Signals can be enabled or disabled depending
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on the guard value. If the guard is omitted, its value defaults to true.

The scope of the guard is only within the nearest enclosing block statements. They

can be nested but this must be done explicitly. Blocked statements consist of declarative

and executable parts. The architectural body is an example of a blocked structure.

Component and signal declarations follow the block label. Begin signals the start of the

executable part. Component instantiations, conditional signal assignments and processes

fall within this section. The end block; signifies the end of the scope of the guard state-

ment, but it may be imported to nested blocks by declaring a port for the guard and

assigning the value of the port to that guard.

Component instantiation statements make use of a unit defined with a component

declaration by listing the signals which are to be connected to the ports named in the

declarations. Ports can be assigned by name association, by positional association, or a

combination of both. Name association is an explicit linkage of the port and the name

declared in the component declaration. Positional association is implicit, local signals are

identified by their position in the instantiation list with respect to the ports listed in the

component declaration. If a combination of the two methods are used, all named associ-

ations must occur first.

A purely structural description of the SIPOCELL could be written by instantiat-

ing the MSFFs and TGATEs and connecting them through their port lists:

TI: T_-GATE port(SERIALAIN, SR_SIPO, SAN);
MI: MISFF port(SN, CLK2, CLK2_NOT, CLKI, CLIKINOT, SERIALOt-UT):
T2: TGATE port(PARALLELAN, SD__SIPO, PAN);
T3: TGATE port(SERIALOUT, LATCHSIPO, PAIN);
M2: MSFF port(PAN, CILK2, CLK2_NOT, CLKI, CLKINOT, PARALLELOUT):

These statements will execute whenever one of the signals listed in the port list changes.

This method of modeling provides a great deal of information about the device intercon-

" nections, but not much on its' operation. There are other concurrent statements which

can be used to impart a little more information about the behavior of the device. Since
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the transmission gates are mainly used to control the inputs to the MSFFs, the clarity of

the description may be improved by using a conditional signal assignment statement.

The three transmission gate instantiations will be replaced as shown below.

SJN < = SERIAL-IN when SR.SIPO = '1'
else WZ;

P-IN < = PARALLELJN when SD...SIPO = '1'
'S else

SERIAL-..OUT when LATCH..$IPO = '1'
else WZ;

A SIPO...REGISTER..ROW could be constructed using twenty-four instantiations

of the SIPO-CELL. This would be very cumbersome method to model a regular array

of cells. VHDL provides a more efficient way through the generate statement. The

VHDL model for a SIPO-REGISTER-ROW is shown in Figure 3-8 below.

for i in (23 downto 0) generate
if i = 23 generate
SIPO(23): SIPO-CELL
port(SERIALJN, PARALLELJN( i), CLK2, CLK2..NOT, CLIC1,

CLKL-NOT, SERIAL-OUT(i), PARALLEL-OUT(i));
end generate;

if I < 23 generate
SIPO(i): SIPO-CELL
port(SERIAL-OUT(i+l), PARALLELJN(i), CLK2, CLK2..jNOT, CLKI,

CLK1LNOT, SERIAL-.OUT( i), PARALLEL-OUT(Oi);
end generate,

end generate;

Figure 3-8. STPQ..CELLVROW Model
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3.5.3. Bus Resolution Functions. Each concurrent statement that assigns to a node

creates a separate driver for that node. The signal cannot update its current value

without considering the values of all the drivers, these signals are said to be atomic. No

changes may be made to the value of a signal without considering the values of all the

drivers. Bus type signals are declared using the reserved word atomic followed by the

name of the bus resolution function, and the data type:

atomic BUS-.RESOLUTION-YUNCTIONJ-JAME data type;

Other data types may also be atomic, this simply means that the elements of an object,

such as a record or bit vector type, are inseparable. Assignment cannot be made to any

one element individually, all elements must be updated in parallel. If the programmer

* •tries to update a single element an error will be flagged.

Bus resolution is the means by which multiple drivers are resolved into a single

value. The function is defined by the user and invoked by the compiler each time a new

co driver value rises to the top of the stack. One nice feature is that there is no defined

number of nodes per atomic signal. Additional components may be hung on the bus

simply by assigning to that signal name. The function is implicitly called during simula-

tion, its argument list is an unconstrained array of that signal type. An example of a

bus resolution function for tristate signals is shown in section 3.4.

An explicit function call can also be used to perform bus resolution type behavior.

The function call would contain a listing of the signals, both control and data, which

could affect a node, and return the value of the future signal driver. Bus resolution via a

function call is used in the LATCH example in the next section.

3.8. CMOS Latch Example

The latch is the building block for all clocked elements within the processor. A

clocked CMOS latch, shown in Figure 3-9, will demonstrate how VHDL is used to model

-: '.C hardware. The box surrounding the latch represent the distinction between entities and
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Figure 3-9. Clocked CMOS Latch

bodies. Entities describe the interface of the latch to external circuitry, and bodies

describe how the internal hardware performs. The Latch interface consists of the signal

lines IN, OUT, CLK, and CLKBAR. Therefore, a simple VHDL interface description

can be written as shown below.

with Latch-package; use Latch.package;
entity Latch
(BITJN: in Z.bit;

BIT-OUT: buffer Z.BIT;
CLK, CLKBAR: in CLKSIGNAL :'0') is

end LATCH;

In this example "BITJN" is a signal driven by a source external to the Latch. Its value

will be used by the device, but it may not be changed within the boundaries of the latch,

port mode in is the read-only mode. The port BIT-OUT is the output signal and also

the signal source for the feedback loop. The port mode buffer is used because it requires

the signal source be interior to the body, but also allows the value to be referenced

within the body. Since it may not be driven by a source external to the body, it is read-

only for outputs. The clock signals, CLK, and CLKJBAR are of type CLKSIGNAL.

-39-
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This is a user defined type and the context clause (with .. use .. ) implies that it has been

defined in the package Latch-package. Node A illustrates the requirement for a bus reso-

lution function. This node may be driven by two separate components, the T- gate and

the clocked inverter. A detailed architecture description is shown below.

architecture one-description of Latch is

descriptioniblk:
block

-- The double dash is the comment delimiter in VHDL.
-- The component declarations provide a copy of the device for
-- use within the body.

component T.gate port(A: in Zbit; B: out Z-bit; C: in bit);
component Inverter port(C: in Zbit; D: out bit);
component TRISTATEJNVERTER port(A: in Zbit; B: out Z.bit; C: in

bit);

-- This is a "block configuration" for the T.gate used within this
-- description. The use is a binding indication which ties
-- together the predefined device TGATEJNTERFACE to the label TI
-- in the component instantiation statements. The ports listed in
-- the T-gate entity description are tied to those listed within the
-- component statement above. Finally, the body identifies a
-- particular architectural body to be used with the entity. The
-- other components are configured in a similar manner.

for Ti: T-gate use
entity (TGATEJINTERFACE)
port map (T.gate.in => A; T-gate-out => B; Control => C)
body (a.behavior);

end for;

signal A: atomic LATCH-RESOLVE Z.BIT;
-- LATCH-RESOLVE is the bus resolution
-- function which will be used to
-- determine the value of node A.

signal tmp: bit;

begin

A <= IN when CLK = '1';
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OUT <= B;

block (CLK = '0' and not OUT'stable)

-- this is the guard statement associated
-- with this block;

A <= memoried tmp;

-- This signal assignment statement will only execute when the guard
*- is true. Note two assignments to node A. If there were other
-- statements within this block that did not use the word memoried,
-- they would execute regardless of the value of the guard.
-* Event scheduling could be minimized
-- by guarding the input node with the boolean expression (not
-- IN'stable) and using a memoried signal assignment statement to
-- signal A. The output of the latch will remain the same unless the
-- input changes, without requiring event scheduling on every clock
-- transition.

end block;

Ti: TGATE port (IN, A, CLK);
II: INVERTER port (A, B);
TRIL: TRISTATEJNVERTER port(B, tmp, CLKBAR);

end block description-block;

end one-description;

Declaring A to be atomic tells the compiler that that node is driven by more than one

source and the function LATCH-RESOLVE will be used to determine its value. The

function is located within the package Latch-package as shown below. Once the latch is

built and tested it may be declared in the same manner as t0 T-gate in this example.

- 1
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package Latch-package is

type CLKSIGNALS is (CLK, CLKBAR);
type CONTROL-SIGNAL is (RST, SHRIGHT, LOAD);
type Z-bit is ('0', '1', 'Z');

function RLATCHRESOLVE (RST, BITJN, LBIT: Z-bit)
return Z-bit is

constant RST.SIGNAL :Z-bit:=O; -- This assigns a value of '0'
-- to RSTSIGNAL.

if (RST >= 1) then
return RSTSIGNAL;

elsif BITJN >= ('0' or '1') then
return BITJN;

else
return L.BIT;

end if;

end RLATCHRESOLVE;

*: function LATCH_RESOLVE (array<> of ZBIT)
return Z-bit is

for I in input'low to input'high loop
if input(I) /= 'Z' then
output := input(I);
exit;

end if;
end loop;

return output;

end LATCH-RESOLVE;

end Latch-package;

The function R_LATCH_RESOLVE is a function which would be called to resolve the

inverter input value to a circuit as shown in Figure 3-10. The conditional signal assign-

ment calling the function to return the output value would be written as follows:

A <= RLATCHRESOLVE(BITJN. RST, INVERTOUT);

Note from the circuit diagram that the RST is being implemented in a behavioral

-42-
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Figure 3-10. Resettable CMOS Latch

fashion, rather than a description of the circuit (structural) implementation.

This is a very detailed, in-depth description of a latch. A much more concise, com-

pact VHDL description can be written which will execute much more efficiently. This

description will model the function that the latch performs, rather than the subcom-

ponents which implement that function. Behavioral descriptions will focus entirely on

function at the expense of detail. An alternate latch description is shown below

"-.3
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architecture BEHAVIOR of LATCH is
block( not bitjin'stable)

begin
process( guard, clk, bit-in)

begin
if (guard and bit-in /= Z) then

enable elk;
else disable elk;
end if;
if (elk = '1') then

bit-out <= not bit-in;
end if;

end process
end block;

end BEHAVIOR;

This description uses a process statement to assign the inverted input to the output.

Several conditions are placed upon this assignment in order to minimize the number of

transactions placed in the driver for signal bit-out. In general, we wish to avoid

scheduling unless the new output value is different from the previous one. In order for

the output to get assigned a value, these conditions must be met: 1). the input value

must have changed. 2). the input must not be the high impedance value, and 3). the

clock must be high. This description models the same function as the preceding exam-

ple, but it eliminates transactions caused by the -not transitions, and it only executes if

it will cause a different output to be put in the driver.

3.7. Complete SIPO Modeling

Finally we are in a position to do a complete SIPO description in VIHDL. This see-

tion will pull together the previous examples, as well as incorporate the principles used

in the last latch example, that of trying to avoid unnecessary CPU overhead caused by

redundant event scheduling. The methodology used in this section will parallel the

methodology used to do the complete WFT16 modeling.

4 In general, we wish to model and simulate circuits at a level of detail sufficient to

. observe the functionality and operability of the unit cell, )ut not, to the level of every
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• ". signal node switching as the clock "ticks".

The SIPO was decomposed into a single cell, the SIPOCELL, in section 3-1. Fig-

ure 3-2 shows that the primary components are MSFFs and T-gates. As stated earlier,

transmission gates (T-gates) are primarily used to gate inputs with control signals or

clock pulses. Thus, we shall model them behaviorally with conditional signal assignment

statements. The MSFFs on the other hand, are built from two latches of the type

modeled in the previous section. Instead of building a MSFF from two instantiations of

a latch, we shall use the same principles to model the MSFF behaviorally.
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architecture behavior of MSFF is
block

signal mid : bit;
begin

block(not bit._in'stable)
begin

process(guard, bit-in, clk2)
begin

if (guard and bit-in = 'Z')
enable clk2:

else
disabi rlk2.

end if,
if tclk2 = i) then

mid not ,onvzb(bitjn);
end if

end prrcess
end block

block Inot mid \tablei
begin

processiguard, mid. clkl)
begin

if (guard)
( enable clk I.

else
disable clkl

end if:
if (clkI = 1) then
bitout < = not convbz(mid);

end if.
end process:

end block;
end block;
end behavior;

Using this description as a building block, we may now efficiently model the

SIPO_CELL.
.,. 
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architecture MIXED of SIPOCELL is

block
component MSFF port (a: in Z-bit; CLK2, CLKI: in clk-signal,

z: out bit);
-- defer configuration of MSFF, do in a separate configuration body.

begin

process(shift-right, ser-in)
begin

if (((serin'stable nor (ser.Jn = ))
and shift-right = '1') then

from-ser <= ser-in;
end if;

w end process;

process (parallel-in, serout, latch, shift-down)
begin

* if (shiftdown nor latch) then
disable ser-out, parallelin;

else enable ser.out, parallel-in;
end if;
if ((shift-down = '1') and (not parallel-in)) then

to-parallel <= parallel-in;
elsif ((latch = '1') and not (ser-out'stable)) then

to-parallel <= serout;
end if;

end process;

ff__ser: MSFF port(from.ser, CLK2, CLK1, ser-out);
ffpar: MSFF port(to-parallel, CLK2, CLK1, p-out);

end block;
end MIXED;

Using this mixed description of the SIPOCELL the SIPO may be described as an array

of these cells. Modeling the SIPO as an array [161[241 of SIPOCELLs must be done in

two steps. First, construct a [1][24] row of cells, and then use this row (instantiate) six-

teen times to build an array [161[11 of rows. The SIPOCELL is configured at the row

level. Since our goal was to observe the WFT16 at the functional level, the SIPOCELL

is the highest level at which we will attempt to model things behaviorally. Above this

W-N level, things will be modeled at a purely structural level. It is possible to use the
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hierarchical modeling facilities of VHDL to model behaviorally at much higher levels, but

that will not be done here. The interface description for the SIPO__ROW is shown below.

with SIPOPACKAGE; use SIPO.PACKAGE;
entity SIPOROW

(BITN: in z.bit;
WORDJN: in 24_bit-vector;
CLK2, CLK2__NOT, CLK1, CLK1_NOT: in clksignals := '0';
SHIFT-RIGHT, SHIFT-DOWN, LATCH: in control;
WORD-OUT: out 24_bit-vector)) is

end SIPOROW;

architecture Structure of SIPO.ROW is
block
signal SERIALJNT: bit-vector(22 downto 0);
begin

for i in (23 downto 0) generate
if i = 23 generate

SIPO(23): SIPOCELL
621 port(SERIALJN, PARALLELJN(i), CLK2, CLK2__NOT, CLK1,

CLKINOT, SERIALJNT(i), PARALLELOUT(i));
end generate;

if (( i < 23 ) and ( i > 0 )) generate

SIPO(i): SIPOCELL
port(SERIALJNT(i+1), PARALLELJN(i), CLK2, CLK2_.NOT, CLKI,

CLKLINOT, SERIALJNT(i+1), PARALLELOUT(i));
end generate;

if i = 0 generate
SIPO(0): SIPOCELL

port(SERIALJNT(i+I), PARALLELJN(i), CLK2, CLK2-NOT, CLKL.
CLKINOT, PARALLELOUT(i));

end generate;

end generate;
end block;
end structure;

The final step, generation of the entire SIPO array as a set of SIPOJI.OV's, is sirni-

lar to the generation of SIPO.ROW. A special body, SIPOTOP. will be used ,is the

topmost row in the array. Signal declarations are also required for the parallel iI1pluts
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{ C C and outputs of the rows internal to the structure.

Modeling the SIPO as an array of cells requires several steps, and different architec-

tural bodies and interfaces. The top level interface description, shown below, is the final

product, so far as the rest of the circuit is concerned, of the description process. The

detail shown in the circuit modeling is buried in the input-output transform of the SIPO.

entity SIPO
( WORDJN: in 24_bit-vector;

SERIALOUT :buffer 16_bitvector;
CLK2, CLK2_NOT, CLK1, CLK1.NOT: in clk.signal := '0';
SR.SIPO, SD.SIPO, LATCHSIPO: in control; ) is

end SIPO;

The architecture could just as easily (actually much more easily), have been modeled

* behaviorally. As long as the output bit stream from both simulations look the same, the

level of detail of the description is irrelevant.
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CHAPTER 4

VHDL Modeling

, 4.1. Overview

This chapter will present the structural decomposition of the 16-point WFTA

(WFT16) processor leading to the VHDL modeling of its primary circuit components. A

top down decomposition will impose a signal flow on the system which can be used to

define the VHDL interface entity. Once the processor is decomposed into its primary cell

structures, a hierarchical description of the chip will be facilitated by a bottom-up cell

description.

4.2. 18-Point WFTA Processor

The 16-point Winograd algorithm was discussed in Chapter 2. The basic architec-

ture for all of the Winograd processors consists of input/output registers, arithmetic cir-

cuitry, special cells for parity and rounding operations, address storage ROMs, and a

control sequencer. Primary differences in the actual implementation of the different pro-

cessors result from different numbers of arithmetic operations in the pre-, post addition

array, and the height of the serial multiplier array. The desire to balance the latency

between all the processors in the pipeline would require different data word lengths to

compensate for the different array sizes.

4.3. Operation.

The processor architecture is a pipelined bit-serial machine. The major processing

blocks: input and output registers, preadders, multipliers, postadders, and parity circui-

try form the first level of decomposition. Figure 4-1 shows this level of decomposition

for the WFTI6 processor superimposed over a signal flow graph.
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Figure 4-1. Decomposition and Signal Flow of the WFTI6 Architecture

The processor can be divided into two separate identical sections, real and ima-

ginary. These sections are independent through the last column of the post adders. In

this column, real and imaginary data is added/subtracted to form the complex outputs.

Since the two sides are mirror images, only one side will discussed and modeled, with the

understanding that the other side performs exactly the same operations, in the same

. sequence, only with a different set of data.

The input register is a parallel-in, serial-out (PISO) register, twenty four bits wide

"p by sixteen words deep. Input data is twenty-three bits of data and one parity bit. Every

* other clock cycle the PISO gets a new word from one of the two off-chip input memories,

using an address from the XROM. The signal SD_PISO is used to shift the pre-existing

words in the parallel portion down one level. After thirty-two clock cycles, the PISO is

'- "full and the signal LATCH.PISO goes high to transfer the word-parallel data into the
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serial shift register. This empties the parallel portion of the PISO, and the cycle repeats

itself for as long as the operate flag remains high. Words in the serial register will be

shifted into the parity check and zero fill cell (PC/ZF), least significant bit first, one bit

per word, while the signal SRPISO is high. To allow for numerical growth through the

arithmetic pipeline, the data is extended to a thirty-two bit word length in the PC/ZF

cell. Parity is checked and the parity bit stripped in this cell. The PC/ZF cell has

inserted one half clock cycle delay. Some zeroes are inserted prior to the LSB to scale up

the data to enhance the signal to nois; ratio. Sign extensions are appended after the

MSB in order to prevent arithmetic overflow. The reader is referred to [17] and 14] for

more information.

The number of zero fills and sign extensions are determined by the adaptive scaling

algorithm which takes into account the relative magnitude of the input data. Each 4080

point data set is associated with a scale factor which reflects the magnitude of the larg-

est number in the input data set. The scale factor is the smallest number of sign exten-

sions of any number in the set. To avoid overflow, the largest number (scale factor 0)

requires five sign extensions. Data sets composed of smaller numbers can replace

unneeded sign extensions by zeroes to enhance numerical performance.

The arithmetic section actually implements the Winograd Fourier Transform. To

generate the multiplicand from the output of the PC/ZF up to four sequential

addition/subtraction operations may be needed. Multiplicands generated in less than

four operations remain aligned with the other elements in the bit-vector through the

adder/subtractor columns by replacing the one-delay wide A,'S cells with MSFFs. Most

circuit components in the WFT16 have an input 02 latch and an output 01 latch.

Exceptions to this rule are the PC/ZF which is a 02 latch preceded by some combina-

tional logic, and the adder subtractors (Ai;S). The A/S are reversed, data enters

through a 01 latch, and leaves through a 02 latch. To balance the pipeline with an

equal number of 02, and 01 latches, some extra latches are put at each end of the adder

arrays. A pipeline view of the preadd section is shown in Figure 4-2.
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Figure 4-2. Preadd Pipeline

The fourth column operation only involves two data words, the result of which is the

DC components of the Fourier transform. This is the last arithmetic operation to be

performed on these two bit streams. They will travel through the rest of the pipeline

through delay MSFFs. Since the sum and difference of this operation pass through a

trivial multiplier (X 1), the last adder/subtractor (A/S) column can be eliminated and

the sum/difference of these two terms computed in the first column of the postadd

array. This will reduce pipeline latency one clock cycle and eliminate thirty-five MSFFs.

There is a one clock cycle latency through each column of the preadders, thus the

preadd section of the WFT16 introduces four cycles latency into the pipeline.

The multiplier array consists of an array [18][14] of multiplier cells. The 28 bit

Winograd coefficients are encoded into fourteen cells using Booth's quaternary encoding

algorithm. Each bit of the reduced coefficient represents one bit of the serial multiplier.

Since each multiplier cell requires three delay stages, there are a total of forty-two cycles

*of latency through the multiplier.

4 The postadder, like the preadder, requires three columns of adders. In column one,

the add operation, deferred when the fourth column of the preadd array was eliminated,

is performed. Data is either real or imaginary through the first two columns of the post

adder. In the third column the two streams are mixed, resulting in complex outputs.

The next stage is the parity generation, arithmetic rounding cell. At this point the
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thirty-two bit results carried through the arithmetic pipeline are rounded down to

twenty-three bits. The PR cell calculates odd parity on these twenty-three bits which is

then appended to make a twenty-four bit word. The diagram of the postadd portion of

the pipeline is shown in Figure 4-3. The output leads into the serial in, parallel out

(SIPO) register. The SIPO has the same organization as the PISO, only the data enters

bit serial, and leaves word parallel.

After the MSB (which is the parity bit) has entered the SIPO the signal

LATCH.SIPO rises and drops the bits into the parallel portion of the SIPO. Every

other clock cycle the complex output is sent to the output RAM, the memory address

again are supplied by the XROM.

4.4. Processor Decomposition

Any one section of the processor is continually operating on a one bit slice of a

thirty-two bit vector. Latency through the pipeline is 119 clock cycles, but once a word

enters the PISO it is associated with fifteen other bits in the same position in their

respective data words. This alignment is maintained throughout the pipeline.

The WFT16 processor can be decomposed into parallel columns of functional com-

putation units. The height of the column would represent the number of bit streams (or

wires) crossing the interface. The second level of decomposition is shown in Figure 4-4.

4 VHDL interface descriptions could be written to cover the number of bits coming across

FRIOM ULTIPLIER TO SIPO

LATCH 0001 DOl AD02 00 RID 03 0003 RIN PR.OUT LATCH

. , Figure 4-3. Postadd Pipeline
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the interfaces from each column, and the control signals required per column for this

level of decomposition. The next level of decomposition will break the columns into

their constituent processing elements. These processing elements are the primary build-
ing blocks for the WFTA processor. A final decomposition will tear these cells down

into flip flops, latches, transmission gates, and inverters. Each column in Figure 4-4 is

built by stacking a number of primary circuit components. The primary circuit com-

ponents for the WFT16 are the PISOCELL, the MSFF, the A/S, the five multiplier

cells, the PARITY ROUND CELL, and the SIPOCELL. For the purposes of function-

ally simulating the entire circuit, these cells will be the highest level where behavioral

constructs will be used. Above this level, at the column or block level, the descriptions

will be purely structural. The VHDL descriptions of these cells are given in Appendix 1.

In addition to The latch described in Chapter 3, the lower level subcomponents, which

can be used to structurely model the primary cells, are also located in Appendix 1.

P.SO016 X 211 CELLS

16 16 16 16 II SERIAL MULTIPLIERS 18 X 11 I 16 IS 16
X X X XX DELAYS PER COLUMN X X XX

• .I SIFO
16 X 21 CELLS
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CHAPTER 5

WFT16 Simulation Program

5.1. Overview

The VHDL is being developed to model and simulate the VLSI and VHSIC circuits

currently being designed for future defense needs. One of the needs that it is intended to

fill, that of design verification, is one that the WFTA design group currently requires.

->z Current simulation tools, such as N.2, and N.mpc are not suitable to simulate designs

such as the WFTI6 processor at the functional level. Furthermore, the run times of of

logic level simulators, such as RNL, become excessive as the size of the circuit increases.

The characteristics of the WFT16 architecture make it amenable to modeling and simu-

lation using another approach, that of using a high order language with the necessary

bit-level operators to develop a custom simulation tool.

44C.' The main goal of the simulation was to verify that the 16-point processor imple-

ments the 16-point Winograd Fourier Algorithm using the circuits and control signal

interactions built into the chip design. By viewing the processor as a set of bit streams,

traveling lock-stepped with respect to each other through the pipeline, it is possible to

see the basic form of a high level modeling and simulation program. The interaction

-between the bit streams is specified by the 16-point Winograd algorithm and imple-

mented using the hardware structures described in the preceding chapter. A more

detailed description of the design and operational characteristics of these circuits is avail-

able in 1. This chapter will describe the programs which are used to simulate the pro-

cessor, and the data structures used to form t.he link between the model and the actual

circuits.

°0 .
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," Simulation Description

The simulation was designed and coded using the decomposition of the processor

outlined in Chapter 4. This allows the output of the programs developed in this simula-

tion to be compared directly with the output of a VHDL simulator. It is also directly

compatible with the algorithmic simulator developed by Taylor [17]. The output of the

simulator is a stream of bits for each slice of the processing elements. Follow on efforts

which implement testability into the processor can use this output to generate test vec-

tort for hardware testing.

The simulation consists of five programs which execute in sequence under the con-

trol of a shell script to simulate the WFT16 processor. The processor architecture was

* •partitioned in the manner shown in Figure 5-1. This partitioning allows for incremental

development of the simulation using outputs from previously tested modules. It also

limits the size of the individual programs resulting in faster compilation and run times

during program development. The output of each column is written to a file for analysis

during coding and future test vector generation.

The programs are listed by name and the processor blocks which they simulate:

CS.C: The Control Sequencer.

CCNTRL.C: The arithmetic reset and multiplier control circuitry.
PREWFTA.C: The PISO, ZF/PC, and three preadd columns.

MULTIPLY.C: The serial multiplier.

POSTWFTA.C: The postadder columns, parity-round circuit
and the SIPO.

Programs were also written to aid in data analysis. The numerical performance of

the WFT16 was simulated by '171. A program was developed that performed the \VFT

at the algorithmic level, using double precision integers and the WFT16 equations. Tay-

lor wrote a decimal-to-binary conversion program which was modified to compute odd

parity and append it following the MSB of each input, word. It is used to convert his

• Q,., input data sets into a form usable as input to this simulation. The loop between the out-
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RESULTS PRERDD.C
OUT MDTA IN

REA SIPO " I REAL PS°
SPARITY CS.C

RONDPRALREAL CHECK

ORESULTS MTA
OUT I E

Figure 5-1. Partitioning of the Processor for Simulation

put of this simulation and the algorithmic simulation was closed by writing a program

which converted the binary outputs of the simulation into decimal for comparison

against the results of Taylor's numerical WFT simulation.

5.3. Time

The representation of time in VHDL is done with the physical type time which

could be a variable length or even infinitesimally small time unit. The simulator kept

dg track of events and transactions scheduled to occur. In this simulation, the artifice of

-4

VHDL time is replaced by a spatial separation of events. Events that are scheduled to
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occur simultaneously are textually grouped together. The WFT16 processor controls the

hardware with a two-phase clock. The events which are scheduled to occur at the same

point in time can be roughly partitioned into events which are scheduled to happen on

one of the two clock phases. The simulation uses two counters to model the system

clock. The master clock, kept in the control sequencer, is appended to every control

word. Every clock cycle the master clock is compared against an internal clock, kept in

each program. If they are not identical the simulation program will issue a non-

synchronization message and terminate. All column outputs written to files are also

tagged with internal clock time. When this data is used by another program the time

tag is checked against its internal clock in the same procedure outlined above. This

method keeps the pipeline lock-stepped during file communication. The pipelined archi-

tecture can be modeled by a program looping structure which sequentially runs through

all bit manipulation and movements (shifting) operations in the pipeline. The internal

counter is incremented every cycle, which is compared against a limit to determine when

to terminate the simulation.

A clock cycle can be defined as a 02 event which is followed by a 01 event. This

definition is necessary because of the sequential nature of the simulation. The program

operates in a loop, first 02 events occur, then 01 events occur. The process repeats itself

for as many cycles as control signals are available. In the hardware, operations occur

concurrently based on the phase of the clock, 62 and 01 events are separated in time, in

the simulation these events are separated textually. A o2 event occurs when data avail-

able at the input is gated into a 02 latch. Any combinational logic which occurs

between a 01 latch and a P2 latch is also defined as a o2 event. 61 events are defined

in a similar manner. To model the propagation of a bit through delay stages without a

two phase clock, provisions must be made to ensure a data bit is not available to affect

the inputs of the succeeding stage until one simulation cycle after it was created or

modified (this is similar to a signal assignment statement not being allowed to affect the

current value of a signal in VHDL). This is accomplished grouping all the o2 events at
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the beginning of the program, and all the 0)1 events at the end. This forces the 02

latches to work with the bits put into the 01 latches at the end of the preceding simula-

tion cycle. For example consider the last stage of the PISO and the following PC/ZF

cell shown in Figure 5-2.

Inputs to the MSFFs are gated by a 02 clock pulse, and are moved into the second

latch by a .01 pulse. The combinational logic which takes place between latches is simu-

lated prior to the 02 latch in the PC/ZF cell. The code would be written and executed

in the following sequence:

I

?4,

PARALLEL IN

SD.0PIS(O

~LATCH
SEIA I t PASS

4i

PARALLEL-OUT

Figure 5-2. PISO and PC/ZF Stage
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START:

02 events

Read Control Word.

PISOCELL EVENTS

If SDPISO high,
latch data into 02 latch from parallel 01 latch above.

If SRYPISO high,
latch data into 02 latch from serial 01 latch to the left.

If LATCHPISO is high,
latch data from parallel 41 latch in same PISOCELL.

PC/ZF CELL EVENTS

If ZERO-FILL high,
put 0 into 4)2 latch.

.• If PASS high,
pass output of PISO to the 42 latch.

If neither signal high,
do nothing.

4)1 Events.

Move parallel and serial data in PISO from 42 latch into
the 401 latch.

Increment internal control counter.

GO TO START and REPEAT

The data is buffered in this fashion, keeping bits from being used by the following

stage until one clock cycle after they are created. This prevents the bits from racing

through the simulated arithmetic pipeline. Additional functions, such as a column of

adders, can be inserted into the code by separating the 02 events and 01 events and

placing them in sequence with respect to the components they follow in the actual

hardware.

-02-



5.4. Program Descriptions

This section will describe the programs and data structures used in the WFTA

simulation. Data structures are used as "software circuits" in the simulation. For each

of the primary cells discussed in the preceding chapter a data structure has been

developed. The elements of the data structures, for the most part, represent a clocked

storage element (a D-latch) in hardware. This implies that there is a correspondence

between the latches of the real hardware and the variables declared in the structures.

Figure 5-3 shows the correspondence between one data structure and the hardware it is

supposed to model. The structure for the +1 multiplier cell, MULTX1, has one variable

for each 4'2 and 401 latch. The variable tmp.sum is an exception, being used as a hold-

* ing bin for the result of the addition operation. Assignment of this variable to the

sumffclk2 latch is dependent on the value of the control signal sign-ext.

STRUCT
int FrcIlkl;
Int rrlclk2; OTOint ff2eli2; ) _ (, .(  [ "

int rr3cIkl,; IX [X
Int rr3cIk2;
int sum rcIk ; PARTIAL PR DOiUC
iot sumrfclkl;int carrfrcii1; lC# A+ r t

int carrqrfcIkI;
nt tmp.sum;

f-ULTXI; 1 2 T_

UR

Figure 5-3. Example of a Simulation Data Structure

Ji-3

~-83-

:6t



In addition to latched variables, signals which must travel through more than one

level of logic may also declared as a variables in the data structures.

5.4.1. CS.C The operation of the control sequencer is simulated by this program.

The control sequencer, shown in Figure 5-4 consists of a 32 bit ring counter, a PLA, out-

put buffers and XROM address generation circuitry (not modeled). It generates twenty

control signals which are used to control the arithmetic and I/O circuitry of the WFT

processor.

The is the only program which will prompt for input, the scale factor and the

number of clock cycles to simulate. The output is a file, master-control, containing the

number of cycles simulated, a time tag, and the twenty control signals. The last two

CONTROL OUTPUTS

oR
• ONESHOT

INIT

RING A AND OR

COUNTER PLANE PLANE

SCALE FRCTOR

Figure 5-4. WFTA Control Sequencer
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items are written to the file after every simulation cycle. These control signals are active

at the beginning of every simulation cycle. This the source file for control information

for all other programs used in the simulation.

The data structures used in this program are the MSFF and the SRFF (set reset

flip flop). The MSFF structure contains two variable bins for holding the contents of

the two latches. The SRFF contains three variables, a set, a reset, and an out variable.

The Set variable is used to maintain the current value of the output interval signal. The

out variable must be initialized to zero prior to the start of simulation.

The ring counter is a chain of thirty-two MSFFs connected in series. In hardware,

the output of the last MSFF in the chain and the input to the first are connected by a

feedback loop. This allows the bit to keep cycling through the counter while the con-

tinue signal remains high. The ring counter is modeled using a counter that rolls over

mod thirty-two. If the result of the modulus operation is zero, the input to the first

MSFF is set to one, if one, the input is set to zero. The bit advances one MSFF during

each simulation cycle. Control signals are generated as a function of the position of the

bit modeled in the controller. There are three basic types of control signals in the

WFT16: pulse, fixed interval, and variable interval. Pulse signals are high for one clock

pulse. These signals are assigned by reading the output tap of the MSFF representing a

particular clock cycle. If the bit is in the 01 latch of that MSFF the signal is set to one,

zero otherwise. Interval signals are high over the same clock interval each time the simu-

lation is run. These signals are modeled with a boolean expression that evaluates to true

if the clock counter value is within the interval the signal is supposed to be active. If

the expression evaluates to true, the corresponding control signal is set to one, zero oth-

erwise.

The final class of signals is a function of the adaptive scaling algorithm. The inter-

val these signals are high depends on the value of the three bit scale factor. The eight

cases are modeled using an if/then control structure as shown below:

0- V-
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if condition 1
1action 0;

else if condition 2
action 2;

else
action 8;

V; Where the condition represents the boolean value of the "anding" of the scale fac-

tor and clock counter, and the action, the setting or the resetting of of the set-reset vari-

able. If the case evaluates to true, a set or reset flag is set to one. Action 8 is the
default that occurs if none of the cases evaluate to true. The SRFF function then evalu-

* ates the three variables: set, reset, and out, setting or resetting the control signals

accordingly.

5.4.2. CCNTRL.C. This program generates the signals used to control data flow

through the arithmetic pipeline. The only data structure used, a MSFF, is described in

section 5.2.1. The arithmetic control circuitry consists of a chain of forty-eight MSFFs

connected in series. The input to the first MSFF in the chain is the reset-add signal

generated in the control sequencer. As the bit traverses the chain, it will be used as a

reset signal for the carry and borrow MSFFs in the preadd and postadd arrays. It will

also generate the four control signals needed for the multiplier cell; reset_0, reset-1,

* sign-ext, and rstdc. The output of the program is written to three files, one for the

preadd array, one for the multiplier array, and one for the post add array. This file

structure represents the partitioning of the arithmetic portion of the WFT16 architec-

ture as shown in Figure 5-1.

5.4.3. PRE.WFTA.C. The PREWFTA.C program simulates the operation of the

processor from the PISO input to the 01 latch following the third column of the preadd

array. This program capitalizes on the symmetry between the real and imaginary por-
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tions of the WFT16 algorithm. Rather than write one program to compute both real

and imaginary results simultaneously, the same program can be re-used with the

different data sets and run twice. Since these data sets are completely independent

through two columns of the postadd array, the multiplier program can also be reused in

this same fashion. Structures were defined for each of the macro-cells in the preadder.

They are the PISO, which consists of four elements, two per flip-flop, the ZERO-FILL

which contains a MSFF structure, a latch variable, and two logic output variables. The

Adder-Subtractor was broken into two sections, the input and the output and variables

. declared for the X, Y, carry and borrow inputs, and the SUM, DIFF, carry and borrow

outputs. Comparison of the data structures shown in this Figure and the circuit

diagrams of the hardware described in [4] will show a one to one matching of the var-

*T ables and the outputs of circuit components. This approach leads to a natural synthesis

of the simulation program from the hardware components.

The simulation of multiple cycles is done using a loop controlled by the internal

. clock counter. The loop condition is set by the first word of the master control file

which is the number of cycles for which control signals are available. While the internal

clock is less than this value, the simulation will proceed. The program is set up by

. reading the master-control file and preadd control word before every simulation cycle.

The PISO is implemented as a [16J[24] array of PISOCELL structures. The MSB

of the input word is located in column sixteen of the array. The LSB, located in column

1, is shifted out first. The output of the PISO is sent to the PC/ZF, a column of 16

PCiZF cells, where the parity bit is stripped and the wordlength is extended to thirtv-

, "two bits.

The preadd array, which follows the PC/ZF, is composed of three columns of

adder-subtractor (A/S) cells and MSFFs Each column of the preadd array either com-

putes the sum and difference of the inputs, or delays it for one clock cycle. The NISFFs

are used as place holders to maintain bit synchronization with the other elements of the
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bit vector which are passing through the A/S elements. The A/S is defined to compute

the sum and difference, x :±= y, of the two serial input vectors. Thus, the minuend is

assigned to the x variable, and the subtrahend is assigned to the y variable. The inter-

connections of the A/S and MSFFs of the preadd array is a function of the Winograd

Algorithm and is shown in Figure 5-5.

A note concerning the usage of the reset-adder signal is in order. Unlike all the

other control signals, this signal is the output of a ¢2 latch in the CCNTRL circuitry.

In the A/S structure, the reset signal is "anded" with the 2 clock, which effectively

causes the signal to be active on the following 41 pulse. At this time the reset signal will

cause both latches to be reset. The reset signal should reset the carry and borrow fol-

lowing the MSB arithmetic operation of the preceding data set.

5.4.4. MULTIPLY.C. The multiplier array in hardware is an [18][14] array of multi-

plier cells. Each cell represents one bit of the Booth's quaternary encoded binary

coefficient. In software, the serial multiplier is represented by an array of data struc-

tures, each array element being one of the five possible multiplier cells. The data struc-

tures are declared to be external so that all variables will hold their value between func-

tion calls. An example of the multiplier data structure was shown in Figure 5-3.

The simulation proceeds by columns. The mult.cntrl file consists of a time tag and

fourteen sets of four bits each which are the four control signals for a column. Before

the 62 event of each column of eighteen cells, the program reads in the control word for

A, that column. Next the partial product and data bit are read into the cell structure

representing a particular location in the array. Finally the function which simulates the

multiplier cell is called to evaluate the bits, and shift the data through the MSFFs. This

is done bv a function call that has the arguments, the pointer to the data structure, and

the control signals needed for that particular cell. The pointer name pa70 imparts cer-

tain information about the location of the structure in the array. The p-7- means that

d .. the multiplier cell is in the seventh row of the array. The pa-- means that the cell is iII
d-8-



MSFF 5FF D y

MSF sum . -r, . x sum. x -
:" MSFF / IFF Y I FI F.

- su FF sum x sum
... FF Y DIFF 2 yD I FF Y -E

D DI FF 0--Y DIFF Y DIFF Y
3-4

DIFF 2 y DIFF Y DIFF Y -
sum;: 2. x su 4,. x sum 5 x-

9 rrF Y DIFFr Y DIFF Y _

DI F Y F DIFF" Y

'W ,,Figure 5-5. Preaddition Operations in the WVFTA Processor.

,4.,

the tenth column. Finally, the p--O means that it is a 0 multiplier cell. Therefore, this a

the pointer to the multiplier array element which is in the tenth column of the seventh

row, and calls the mO function. The other multiplier identifiers are: p--i for the +1 mul-

tiplier, p--2 for the +2 multiplier, p--n for the -1 multiplier, and p--q for the -2 multi-

plier. Theory of operation of the multiplier cells is covered in detail in [4) and will not

be covered here.

Oo .0'.
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5.4.5. POSTWFTA.C. This program simulates the WFTA pipeline from the output

of the multipliers to the output of the SIPO. It is a dual program in that both the real

and imaginary operations are simulated simultaneously. The A/S elements are the same

as the preadders, and the SIPO is essentially the same as the PISO. The only totally

new data structure used is the parity round cell. The parity round cell consist of several

levels of combinational logic, variables were declared for the outputs of the logic as well

as the standard latch variables. The interconnection of the postadd columns is shown in

Figure 5-6. Results from the imaginary and real sections of the processor are mixed in

the third column of the postadders.

S

"DIFF 2 y DIFF Y DIFF Y -

DIFF Y DIFF Y D IF F Y

[UM X sm XFFm

DIOFF Y . I FF YD IF F Y2

DI PFF Y D I F F Y 1FF Y

Msr4 MSFF sum 4
D sFF Y SFF DIFF

-- pIF.

FROM_IMAG O0_IMAG MSFF

Figure 5-6. Post Addition Operations in the WFTA Processor
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The outputs of the real and imaginary columns, and the output of the both SIPOs

are written to a output files.

5.5. Generation of a WFT Simulation

This section will discuss considerations involved in building a WFT simulation

from the data structures and functions defined in earlier sections. The cells were

designed to be single independent units. Larger computational units may be created

merely by declaring more instances of the cell structure. The key parameter in all the

programs is the number of clock pulses which constitute a simulation cycle. The 16-

point architecture uses 32, the 15 would use 30, and the 17 would use 34 clock pulses.

The loop control functions are all done with modulo (number of clock pulse) arithmetic.

* An important point regarding the control signals is that the signals are set high in the

control sequencer on the cycle which they are supposed to be used. In actual hardware,

the signals might be created a clock cycle ahead of time and buffered in an output

MSFF. The timing diagram used as a source document should be examined to deter-

mine which interpretation was used in generating the diagram. The constructs used in

modeling the control sequencer were selected to allow changes to be made in the timing

diagram without requiring extensive changes to the simulation.

".',... The PREWFTA.C and POSTWFTA.C adder-subtractor (A/S) elements are

interconnected using the equations from the Winograd program written by Taylor and

the coefficients used to generate the multiplier array were obtained from [4]. The outputs

from the algorithmic simulation program were also used to verify the results of the simu-

lation.

Implementing the serial multiplier array as a fixed array of data structures is a

flexible and easily understandable approach. The coefficient encoding can be changed

V without having to redo the entire array. The major difficulty encountered in construct-

ing the simulation was the timing of events across the program boundaries. Reading

data from files is normally a o2 event. (the start, of the simulation cycle). On the other
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hand, writing to a file is a €1 event, (the end of the cycle). The clock time appended is

the cycle which the data was created. However, when a file is read, the program treats

the data as being applicable for that simulation cycle. Problems arise when the output

of one program, such as PREWFTA.C is used as the input to the MULTIPLY.C pro-

gram. The m~ltiplier treats the preadd outputs as input data valid on the same clock

cycle that is was created. The effect of this is that the data is arriving one cycle before

it was created. In many cases, the effect is barely noticeable, showing up as an error in

the LSB of some of the answers, and very hard to detect. In some answers, those with

just the right number of sign extensions, the fact that the control signals and data are

out of synchronization by one cycle causes the MSB of the data, the sign bit, to

overflow, changing the sign of the intermediate result. The fix was simple, once the prob-

lem was identified. Data read across program boundaries was defined to be 01 event so

data effectively was being read at the end of the simulation cycle which it written to the

file. The source document for the control signals defined the clock cycle that the signals

were to be active. The CS.C program generated them on this cycle, therefore this prob-

lem did not affect them. Once this problem was detected and corrected, building the

complete simulation essentially consisted of interconnecting the data structures in the

manner specified by the 16-point WFT algorithm, and debugging programming errors.

5.0. Simulation Scenario

C shell scripts were written to automate the execution of the simulation programs.

Execution was subdivided into two scripts, generation of the control signals, and simula-

tion of arithmetic operations.

The script control executes the programs CS.(C and C_jCNTRZL.C. CS.C is the

only program that requires input from the keyboard. It will prompt for the number of

clock cycles to simulate and the scale factor to the input data set. The scenario is

shown in Figure 5-7. Control files are generally good for multiple simulations so they do

not have to be regenerated unless the scale factor of the input, data changes.
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I CLOCK CYCLES SCALE FACTOR

ES. CONTROL

PREADDCNTRL

"" -RST_ RDD

tL 7

Figure 5-7. Control Generation Simulation Scenario

The script demo runs the arithmetic simulation programs. The scenario thaL the

script executes is shown in Figure 5-8 In addition, the script also runs the output for-

mat programs which convert the binary streams into integers. In the absence of any

operator action, the converted output will scroll across the screen, so the normal pro-

cedure is to redirect the screen output to a data file with the command: demo >&

tst-output, which will send the output to the file tst-output.

The code used to simulate the WFT16 is included in Appendix 2.
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CHAPTER 6

A Summary and Conclusions

8.1. Overview

This thesis addressed the problem of modeling and simulation of a VHSIC class sig-

nal processor. A new Hardware Description Language (VHDL) is being developed to

address this need by the VHSIC program office. VHDL is intended to be a medium to

communicate design intent for large, complex designs in a concise manner. Perhaps

more importantly, the VHDL code used to describe the circuit also serves as the input to

a hierarchical simulator. The simulator allows a design to be simulated at different lev-

els of abstraction within the same design entity. This is a key concern when discussing

large designs which may be composed of hundreds of thousands of transistors.

VHDL was originally targeted to be the vehicle used to simulate the design of a sig-

nal processor that embedded the Winograd Fourier Transform Algorithm in a pipelined

architecture. An early delivery of the VHDL simulator failed to materialize, so a custom

simulation tool was developed to perform this task. The work done in decomposing and

modeling the circuit using VHDL translated well into the new simulation - the C simula-

tion. This simulation modeled the processor at the bit level, using hardware-like data

. structures. It was used to validate the architecture, cell functionality, and

control, timing interaction of the WFT16 processor. Insights obtained during theK ,\., development and coding of the simulation was also useful in correcting errors which had

slipped into the processor design.

6.2. VHDL

VHDL was applied to the problem of mode, iin g Il, \\I l'l I , i' I' ,'1 h,.r tht

functionality of the individual circuits may be , hse.r ,.-,I Th.- I, l i , i I,. ,.i :e. I,,t



mined to be the level at which bits could be seen passing through latched storage loca-

tions. This visibility was achieved by decomposing the circuit into its smallest func-

tional processing components, and then modeling these components. It was found to be

quite easy to model low level cells, such as inverters, Tgates, and latches, and to build

progressively larger circuit models by instantiating the previously described subcom-

ponents. This approach will model and simulate circuit operation at the very lowest

C,,. level of detail. The CMOS latch was modeled at the transistor behavior level using this

approach. However, the run time of circuit simulations containing large numbers of dev-

ices modeled at this level is expected to be excessively long. VHDL provides a hierarchi-

cal approach, the circuit could be modeled at a higher level of abstraction for the pur-

poses of simulation. This alternate approach, modeling only the bare functionality, cou-

pled with limiting redundant event scheduling, should allow large circuits to simulate

much more efficiently.

The WFT16 processor was decomposed into a set of lower level behaviors, and

modeled at both the functional and structural levels. The structural description is useful

for seeing the architecture of a cell, while the functional description is more abstract.

Functional descriptions may provide a clear picture of the device behavior, but their pri-

mary purpose is to aid efficient simulation. Thus, two VHDL architectural bodies were

written for most cells, one to document the architecture, and the other to describe the

function and be used to drive a simulation. The MSFF was found to be the highest level

which could be efficiently modeled using this approach, modeling the functionality, while

preserving some structural flavor of the design. Higher level cells, modeled at the func-

tional level, would instantiate a MSFF as part of the overall design.

The basic concepts behind the VHDL were found to be relatively simple. The sytax

allows the VHDL descriptions to be written which are clear and concise. It appears to

% be difficult to write a description which would not be fairly readable and understandable

to someone with a basic knowledge of the language. lowever, this absence of complexity

leads to descriptions which are tedious to write. There are also many areas of the
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syntax where questions arise as to the actual meaning or implications of particular

struct. This is not unexpected, it arises when learning any new computer language, but

the problem is exacerbated due to the youth of the language, lack of documentation and

examples.

There appear to be two aspects of VHDL, design documentation, and design simu-

lation. Of the two, only documentation is fully supported by the language at this point

in time. There also appears to be two types of description that correspond to these

aspects. The goals of modeling and simulating a circuit using VHDL seem to be facili-

tated by separate approaches. A purely structural description will not simulate as

efficiently as will one specifically written for that purpose. On the other hand, circuit

descriptions written with an eye towards minimizing simulation time will not be as clear

in describing the circuit structure. The MIXED type of architectural description allevi-

ates this problem somewhat, but the actual improverment using abstract descriptions

alone is not known.

, ,: 6.3. C Simulation

The WFT16 processor was modeled and simulated using the C programming

a,¢, language. Primitive cell structures were defined to model each of the primary circuits at

', '. the bit level. These primitive cells were then declared and interconnected using the 16-

point WFTA as a netlist. A clock was defined that was used to march bit streams

through the this cell structure. In this fashion, the WFT16 architecture was shown to

*.'a.perform the 16-point DFT, thereby validating the architecture, the results of Taylor's

numerical simulation and the signal to noise ratio projections.

8.4. VHDL Recommendations

The run time of any VHDL driven simulation needs to be quantized. using both

functional and structural descriptions. The improvement in run time for such tech-

niques as limiting event scheduling unless the input 'output transform will cause an
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event on the output, and removing redundant circuit functions, (such as the feedback

loop of a static latch) should be studied. If the difference is not significant, the designer

will have the flexibility to run a more structurally flavored circuit models (easier to

write) in the simulation. Finally, the descriptions should be validated to ensure that

they do in fact perform identical functions and may be interchanged at will.

At this point in VHDL's life cycle the documentation aspect is fully supported by

the syntax. This capability should be used to document the cell structure and other

parameters of the cells developed during the VLSI courses. These include the name of

the cell, the name of subcells, and design information which would be useful in automat-

ing the layout process at some point in the future. The yearly turnover of personnel in

the AFIT environment, as well as the complexity of the cells, require that clear, struc-

tured documentation exist to aid the continuity of research effort. Thus the major

recommendation in this area is that the VHDL should be used to document the CMOS

cells which were built over the course of the last year, and in future years, by all VLSI

design groups.

8.5. Simulation Recommendations

Although the simulation was designed to simulate the WFT16 processor, the design

philosophy is applicable to the other processors in the PFA pipeline, the WFT15,

WFT17 and also to other architectures which have lock-stepped, bit serial pipelines. It

models the hardware at the bit level, and has the primary advantage that the run time

of the simulation is very short, under one CPU minute. to run several 16-point data sets

through the pipeline. The C simulator is a tool which should grow along with the

research in pipelined serial signal processing architectures. Any design which uses the

cells designed in the WFT16 effort can use the structures and concepts of the simulator.

At this time, a class project is developing a program which will layout and simulate the

multiplier array for the WFT processors. Future projects in this area could include

9-4 automating the layout of the other WFT processors, leading to computer generated sig-
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nal processor layout.

6.8. Conclusions

The WFT16 architecture has the potential of an order of magnitude improvement

in processor throughput over existing designs. Based on the research discussed in this

report, and the reports of the other members of the design team,117], [4], [13], there

exists a high degree of confidence that the WFT16 processor will work, as expected, on

first silicon.
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Appendix 1 VHDL Modeling

The WFTA processor was decomposed into its primary circuits in the Chapter 4.
The very lowest level of decomposition shows that all the circuit elements are built from
transmission gates and the basic logic gates. These cell are linked together to build
latches, logic gates and flip flops. This appendix contains the VHDL models the pri-
mary circuits. The devices which will be modeled range from transmission gates to
the booths multiplier cells.
1.1. Transmission Gate This is a behavioral description of a transmission gate. It
actually needs both senses of the control signal to drive the CMOS 'P' and 'N' transis-
tors, but since the inverted signal does not perform any independent function, it is not
included in the port list or architectural description. The Tgate is sensitive to both the
input signal switching and also transitions on the control line. Therefore, both these sig-
nals are included in the process sensitivity list. The TGATE is sensitive to both the
input and control signals. However if control = '0' then the output will be not change
regardless of the value of the input. The process statement reflects this consideration. If
the control has not just changed to '1' the output will not reflect the input. As soon as
control switches to '1' then the input will be enabled. As long as the control remains
high the output will reflect the input, when it falls the input signal will be disabled and
not be allowed to cause events in the transaction queue.

-- DATE: 29 JULY 1985

-- TITLE: Transmission Gate Descriptions
-- FILENAME:t.gate.v
-- LANGUAGE: VHDL
-- ENTITY:

entity T-gate
( bit-in: in Z-bit;

control: in CONTROL;
bit-out: out Zbit;
is

end Tgate;

architecture BEHAVIORI of T-gate is

block
begin

process(bit-in, control)
begin
if (control and not cont.rol'stable) then

enable bit-in;
end if;
if (not control) then

- ' disable bit-in:
-.. end if;

bit-out .. = bit-in;



end process;

end block;

end BEHAVIORJ;

. '
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1.2. ZJNVERTER

The ZJNVERTER accepts inputs of type ZBIT and returns type bit. '0' and '1'
inputs are negated and mapped to the output in the normal fashion. A 'Z' input has
no effect on the value of the output, the output will retain its previous value. The port
mode "buffer" is used to allow assignment of the output to itself when the input is
'Z'. This device is used in the latch in order to behaviorally model a high impedance
input.

-- DATE: 29 AUG 1985

-- TITLE: Z INVERTER
-- FILENAME: z-invarch.v
-- LANGUAGE: VHDL

-- ENTITY:
entity ZJNVERTER

(bit-in : in Z..BIT;
bit-out: buffer BIT) is

end ZJNVERTER;

architecture BEHAVIOR of ZJNVERTER is

block
begin
process (bit-in)
begin

if(bit-in = 'Z') then
bit-out < = bitout;

elsif (bit-in = '1') then
bit-out <= '0';

else
bit-out <= ''

end if;

end process;
end block;

end BEHAVIOR;

A-3
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.,', .. 1.3. Full Adder-subractor

This section contains two descriptions of the full adder-subtractor which is used in
the pre- and post-add arrays. The first is a completely structural description listing all
the logic gates and interconnections. The second is a boolean algebra description of the
functionality of the circuit.

- DATE: 29 AUG 1985

- TITLE: LOGIC LEVEL DESCRIPTION OF AN ADDER/SUBTRACTOR
-- FILENAME: add-logic.v
-- PROJECT: THESIS
-- LANGUAGE: VHDL

-- ENTITY:
entity ADD..SUB2

(A, A-NOT, B, CY, BY: in bit;
SUM, DIFF, CYOUT, BYOUT: out bit) is

end ADD_.SUB2;

* -- FUNCTION:
-- This is a pure structural description of the
-- ADDER/SUBTRACTOR cell used in the PREADD and POSTADD columns
-- of the WFTA. Because of the cmos transmission gates used,
-- it is necessary to input A and A-NOT.

to-

architecture PURE-STRUCTURE of ADD_$UBCELL

PURE_$TRUCTURE:

block

component OR-GATE port (A,B: in bit; C: out bit);
component AND-GATE port (A, B: in bit; C: out bit);
component XOR-GATE port (A, B: in bit; C: out bit);
component XNORGATE port (A, B: in bit; C: out bit);
component INVERTER port (A: in bit; C: out bit);

signal S5. S6, TL T2, T3: bit;
signal Si, S2. SUM, CYOUT, DIFF, BYOUT: atomic WIREDOR bit:

begin

-- signals SL and S2 are common to both the adder and subtractor

('11: INVERTER port(B. B_.NOT);
(Al: AND-GATE port (A. B-NOT, S2);

- .. CA2: k,NqDGATE port (ANOT, B, 52);
">. ICA3: XND_.GATE port (A. B. SI);

A-4
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CA4: AND-GATE port (A-..NOT, B-NOT, SI);

-the gates labeled C.. make up the XOR, XNOR functions
-given by Xi, X2 below, this was done to make this description
-compatible with the actual circuitry implemented in CMOS

--XI: XNOR..GATE port (A,B,S1); - Si = A xor B
--X2: XOR-GATE port (A,B,S2); -- S2 = A xnor B

-adder section
Al: AND-GATE port (CY, Si, SUM); -- CY (A xnor B)
1i: INVERTER port (GY, Ti); -- CY'
A2: AND-GATE port (S2, Ti, SUM); -- CY' (A xor B)

0i: OR-GATE port (A, B, S5); -- (A or B)
A3: AND-GATE port (A, B, S6); -(A and B)
A4: AND-GATE port (S6, T1,CYOQUT); -- CY' (A and B)
A5: AND-..GATE port (CY, S5,CY-OUT); - CY (A or B)

7.4- subtractor section

A6: AND-.GATE port (BY, S1, DWFF); -- BY (A xnor B) = DIFF
12: INVERTER port (BY, T2); -- BY'

* A7: AND-GATE port (S2, T2, DIFF); -- BY' (A xnor B) = DIFF
13: INVERTER port (A, T3); -- BY (A xnor B) = BY-OUT
AS: AND-GATE port (BY, S1, BY-OUT); -BY (A xnor B) = BY'
A9: AND-GATE port (T3, S2, BY....UT); -- BY (A xnor B) = BY-OUT

1.j~ end block;

end PURE-S.TRUCTURE;

4..
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-This is a boolean algebra description of the adder/subtractor cell

architecture LOGIC-STRUCTURE of ADD$UBjCELL is

block

signal Si, S2: bit -temporary signals for xor, xnor resources

begin

SI < =A xnor B;

S2 <'=A xor B;

--adder section

SUM < = (Si1 AND CYJN) or (S2 and not CYJN);

GY-OUT < = ((A or B) and CYJN) or (A and B and not CYJN));

--subtractor section

DIFF < = (S2 and not BYJN) or (S1 and BYJN);

BY-OUT <= (S I and BYJN) or (S2 and not A);

end block;

-~~ end LOGIC-..STRUCTUJRE;
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1.4. Resettable CMOS Latch

The resettable latch is used as the front end of the resettable MSFF. The reset
signal is "anded" with clock-not to avoid fighting at the input node. The VHDL
code follows the normal latch, but with the addition of the reset signal to the interface
declaration and the process statement. The reset signal is meant to take precedence
over the input, (a direct connection to ground will drain any charge on the node) for
this reason it is listed first in the signal assignment statement.

-- DATE: 29 AUG 1985
4.

-- TITLE: RESETABLE CMOS LATCH
-- FILENAME: rlatcharch.v
-- LANGUAGE: VHDL

-- ENTITY:

entity RESET-LATCH
(bit-in: in Z...BIT;

CLK : in clk.,ignal;
CLK...OT : in clk-.signal:=1

reset: in CONTROL;
bit-..out: buffer BIT )is

end RESET-LATCH;

architecture MIXEDJDESCRIPTION of RESET-LATCH is

block

signal t-gate-out; : Z-BIT;
lJ'dbk, invert-out: BIT;

component T-GATE port (a: in Z-BIT; cntri: in CONTROL; x: out ZJ3IT);
component ZJNVERTER port(b: in Z-3IT; y: buffer Z-BIT);
component INVERTER port(c: in BIT: z: out BIT);

for all: TJZGATE use -- This is a mapping between the ports declared
-~ -- Win the component declarations and the

-formal ports listed in the interface
-declaration.

entity (T2GATE)
%portmap(BITJN = a, CONTROL = cnitri. PITODUT y

body (BEIIAX'1OR1):
end for:

for all: ZJNVERTER use
entity (ZJNXVERTER)

Irport map( I3ITJN = b. BlThOI1T y)
body (BEIIA\VIOR);

end for:

for all:[NVERTER rise

A- 7
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entity (INVERTER)
body (< <library > >

end for;

begin
Ti: T-GATh port(IN, OLK, TGATE-OUT)
ZI: Z-INVERTER port(INVERTJN, BIL.OUT);
11: INVERTER port (BIT-OUT, INVERT-OUT);
T2: T-GATE port (INVERT-OUT, CLK-.NOT, LYFDBK);

* process( RESET, TGATE-OUT, LJ'DBK ,OLK,GLK-YOT)
if (not RESET'stable or not T...GATE-.OUT'stable or not L-YDBK'stable)
then

enable CLK, CLKYNOT;
else

disable OLK, CLK-YOT;
endif;

if ((reset = '1') and (CLK..NOT ='))then

INVERT-JN <== '0';

elsif (T-GATE-OUT /= WZ) then
* INVERT-IN <= T-..GATE-OUT;

else
INVERTJN <= LYFDBK;

* end if;

end process;

end block;

end MIXED-DESCRWPTION;

A-8
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1.5. Set-Reset Flip Flop

The set reset flip flop (SRFF) is used to maintain interval signals in the control
sequencer and to store the parity error flag in the PC/ZF column. The SRFF is com-
posed of three latches and some CMOS transistors. This cell can be modeled in two
ways, by instantiation, and process statements. The process statement may be a little
more unwieldly but it should execute more efficiently.

- DATE: 29 AUG 1985

-- TITLE: SET-RESET ARCHITECTURE
-- FILENAME: srff-arch.v
-- LANGUAGE: VHDL

ENTITY:

-- entity SRFF
- (OPERATE: in BIT;
-- SET, RESET: in Z.BIT;

CLK2, CLK1 : in clk..signal;
CLK2..NOT, CLKINOT : in elk-signal := 1;

-- SR_OUT: buffer BIT) is
-- assert (not (set and reset))
-- report " SET AND RESET ARE BOTH HIGH SIMULTAENOUSLY"
-- severity error;
-- end SRFF;

-- FUNCTION:

architecture BEHAVIOR of SRFF is

block

signal PASSJRESET, SET-OUT, RESET-OUT, TO-OUT: ZBIT;

.1 begin

L_S: LATCH port (SET,CLK2, CLK2_NOT, SETOUT);
L_R: LATCH port (PASS-RESET, CLK2, CLK2_NOT, RESETOUT);
LOUT: LATCH port (TO-OUT, CLKI. CLKINOT, SROUT);

PASS-RESET <= RESET when OPERATE 'I'
else 'l';

TO-OUT < = SET-OUT when SET = '1'
else RESET-OUT;

er d block

I A-9
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,~. .- ~.end BEHAVIOR;
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architecture BEHAVIOR of SRFF is

block

component LATCH port(A: in ZJbit; CLK: in clkignal; X: buffer bit);

for all: LATCH use
entity (LATCH)
port map (bit-in = > A, CLK = > CLK, CLK.NOT => open, bitout => X)
body (STRUCTURE);

end for;

signal PASS-RESET, SETOUT, RESETOUT, TO-OUT: ZBIT;

begin
-- If either the set or reset have just changed the process will be
-- sensitive to clock transitions.

process(OPERATE, SET, RESET,CLK2)
begin

if (OPERATE = '1')
enable SET, RESET;

•. else
disable SET, RESET;

end if;

if not(SET'STABLE or RESET'STABLE) then
enable CLK2;

end if;

SET-OUT < = SET;
RESET-OUT <- RESET;

end process;

process(SETOUT, CLK1)
begin

if (not SETOUT'stable or not RESETOUT'stable) then
enable CLKI;

else
disable CLKI;

end if;

if SET-OUT = '1' then
SROUT <='I'

elsif RESET-OUT = '1' then
elseSROUT < = '0'

-u, ,else

SROUT <= SROUT;
end if;

end process;

• .- end block;
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x end BEHAVIOR;
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I-i.V 1.8. Master Slave Flip/Flop

The MSFF is composed of two latches connected by the signal s2. The type
conversion function, convz-b, is used to convert the input signal of type Z-bit to type
bit which phi-one latch expects. This will be a common problem throughout the cell
descriptions. An explicit conversion mechanism is used to confirm that the design
intent was to connect a tristate signal to the input of a gate. Once more process
scheduling is optimized by enabling the signal s2 only if si has just changed state, if
not the signal s2 will remain stable and will not fire a transaction.

- DATE: 29 AUG 1985

-- TITLE: MASTER SLAVE FLIP/FLOP ARCHITECTURE.
-- FILENAME: msff-arch.v
- OPERATING SYSTEM: VMS
- LANGUAGE: VHDL

-- ENTITY:
entity MSFF
(bit-in: in ZBIT;

CLK2, CLKL: in clk_.signal;
CLK2_NOT, CLKL.NOT: in clk-signal := 1;
bitout: out BIT) is

end MSFF;

-F FUNCTION:

-- this is a description of a
-- non-resettable flip flop. The signal sl connects

the PHI I and PHI 2 latches.

architecture STRUCTURE of MSFF is

block

component LATCH port(A: in Z-bit; CLK: in clk..-signal; X: buffer bit);

for all: LATCH use
entity (LATCH)
port map (bit-in => A, CLK => CLK, CLKNOT => open, bitout => X)
body (STRUCTURE);

end for;
- configuration of latch using a block configuration statement

signal sl: BIT; -- local signal within the MSFF
s2: ZBIT;

begin

LI: LATCH port (bit-in, clk2, sl);
L2: LATCH port (s2, clkl, bit-out);

process(si,clklclkl-not)
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begin
: if (not sl'stable) then

enable clkl;
else

disable clkl;
s2 < convb-z(sl);

- the output of the phil latch must be
- converted to type Z.BIT to avoid a type
- clash.

end if;
end process;

end block;

end PURE-STRUCTURE;

SA-.1
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architecture BEHAVIOR of MSFF is
- This is an alternate modeling of the MSFF.
- Note the simplicity of the modeling, it will show the same behavior
- at the interface ports as the much more detailed model above.
- The level of detail required in the simulation determines which
- VHDL modeling approach should be taken, simple or complex.

block( not bitin'stable)

signal si: BIT; -- local signal within the MSFF

begin

si <= memoried bit-in when CLK2 1;
bit-out <= sl when CLK1 = 1;

end block;

end MIXED;

IA
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1.7.
PISO

This is the input shift register cell for the WFT processors. Data enters word
parallel, and leaves bit serial. Input data is 23 bits numeric, one bit parity. Latch
causes the input to be moved down into the serial path. Shift Right moves the data out
serially. Shift down moves the data down one level in the register.

- DATE: 29 AUG 1985

- TITLE: Parallel In, Serial Out Shift Register
eFILENAME: piso
-- LANGUAGE: VHDL

-- ENTITY:
entity PISOCELL

(P.JN, SJN: in ZBIT;
CLK2, CLKI : in clk--signal;
CLK2.-NOT, CLK1INOT : in clk..signal :- 1;
P.SHIFTDOWN, PSHIFTRIGHT, P._LATCH: in CONTROL;
S-OUT: buffer BIT;
POUT: buffer BIT) is

assert (not (P.LATCH and PSHIFTRIGHT))
report "LATCHPISO AND SHIFT.RIGHT..PISO ARE BOTH HIGH"

severity warning;

end PISOCELL;

architecture STRUCTURE of PISO-CELL is

- this is a purely structural description of the PISO cell.

block

component MSFF port(A: in Z..bit;
CLK2, CLK2_NOT, CLKI, CLK1__NOT: in clk__signal;
B: buffer bit);

component TGATE: port (X: in Z-bit;
CLK: in clk-signal; Y: out bit);

for all: MSFF useW entity (MSFF)

port map (bit-in > A,
CLK2 => CLK2, CLK2_NOT => CLK2-NOT,
CLKI -> CLKI, CLKINOT => CLKINOT,
bit-out = > B)

body (MIXEDBODY);
end for;

for all: TGATE use
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A entity (T-GATE)
port map (bit-in => convb-z(X),

body (BEHAVIOR);
end for;

signal PARALLEL-IN: Z-bit;
- signal SERIALLJN : atomic LATCH-RESOLVE Z-BIT;

begin

Ti: T-..GATE port(PJN, P$HFUTIOWN, PARALLELJN);
MI: MSFF port(PARALLELJN, CLK2, CLK2JJOT, CLKI, CLKL-NOT, R..OUT);
T1: T-GATE port(S-JN, P$SHWFTRIGHT, SERIALJN);
TI: T-GATE port(P-OUT, PJLATCH, SERIAL-JN);
M2: MSFF port(SERIAL-JN, CLK2, CLK2.YOT, CLK1, CLKL-NOT, S-OUT);

* end block;

end STRUCTURE;

A-1



'VrT~ 

q3

~): > -- this is a mixed behavioral/structural description of the unit piso cell
-note the open clk--not ports.

architecture MIXD of PISO-JELL is

block

component MSFF port(A: in Z-..bit; CLK2, CLKI: in clk-. ignal;
X: buffer bit);

for all: MSFF use
%11 entity (MSFF)

* port map (bit-in > A; GLK2 => CLK2, CLK2..NOT > open,
OLKI => GLKI, CLKL-NOT => open, bit-out => X)

body (BEHAVIOR);
end for;

signal PARALLELJN, SERIALJN: in Z-.BIT;

begin

* PJF: MSFF port (PARALLELJN, GLK2, CLKI, P-OUT);

S.YF: MSFF port (SERLAiLJN, GLK2, CLK1, SOUT);

process(P-SHFT-DOWN, ThiN)
begin

if (P-SHWFTJDOWN '1) then
els enable PJN;

* disable PJN;
* . end if;

* if P..$HIFT-DOWN Il'1 then
PARALLELJIN <= ThN;

end if;

end process;

process(P-$HIFTSRIGHT, PJLATCH, SJN, P-OUT)
begin

0 if (P..$HFT-RIGHT = T1'or P...LATCH T 1) then
enable P..OUT, S-OUT:

else
disable POUT. S-OUT;

end if:

if (P..SHWFT.RIGIIT = T) then
SERlALJN =SJN:

elsif
(PJLATCH = T) then

SERIALJ1N convb-z(P0(iT):
else

*SERIA\LJN 'Z
end if:
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,.4.... end process;

end block;

end MIXED;
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1.8. Adder-Subtractor
This is the structure of the adder-subtractor used in the WFT pre-adds and post-

adds. It is made up of a combination logic adder/su btractor, CLKI latches for the input
bits, two MSFF's, to hold the CARRY and BORROW for the next data bits, and GLK2
latches for holding the result on the way to the next stage. The carry and reset msff
latches are reset on the leading CLK2 latches. It should be noted that the inputs are
inverted and inverted again at the outputs.

- DATE: 29 AUG 1985

-- TITLE: ADDER/SUBTRACTOR CELL
-- FILENAME: add.v
- PROJECT: THESIS
-- LANGUAGE: VHDL

-- ENTITY:
with WFTAPACKAGE; use WFTXYPACKAGE;

entity ADD.$UB-CELL
(BIT..X, BIT.Y : in bit;

* RST: in control;
CLK2, CLK1 : in clk...signal;
CLK2..NOT, CLK1_NOT : in clk-signal :=1;

SUM, DIFF: buffer bit) is
end ADD..$UB-CELL;

-- UNCTION:

architecture PURE-..TRUCTURE of ADD-SUW..CELL is

PURJR&$TRUCTURE:
block

component ADD-SUB port(A, A-NOT, B, CYJN, BYIN: in bit;
SUM, DIFF, CYJI)UT, BY-OUT: out bit;

for RAI: ADD-SUM
entity (ADD-SUB)
port map (A = > A, A-.NOT = > A-NOT, B = > B. CYJN >CY.

BYJN = > BRJN, SUM ==> SUM, DIFF =-> DWFF,
CY-OUT > CY-OUT, BY-OUT =>BR-JUT)

body (LOGIC....TRUCTURE);
end for;

component RMSFF port(A: in Z...bit; CLK2, CLKI: in clk-jsignal:
RST: in control, X: buffer bit);

for all: RMVSFF use
(7 entity (RMSFF)

port map (bit-in => convb..z(A); CLK2 = > CLK2, CLK2.NOT -> open,
CLKI =>CLKI, CLKL-NOT => open, RSTYFF => RST,
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bit-..out = > X)
body (BEHAVIOR);

end for;

component LATCH port(A: in bit; CLK, CLKYNOT: in CLK-SIGNAL;
B: buffer bit);

for all: LATCH
entity (LATCH)
port map (BITJN = > A, CLK = > CLK, CLK-NOT => open, BIT-OUT ~> B)
body (BEHAVIOR);

end for;

component INVERTER port(A: in bit; B: out bit);

for all: INVERTER
entity (INVERTER)
port map (open)

p..body («LIBRARY >);
end for;

* -- signals for real section

signal S1, SA, SB, SJ4OTA, SCY, SBY, S-SUM, S..DWFF, S_CYOUT,
S-BY-OUT: bit;

begin

- adder/subtractor
RhI: INVERTER port(AJN, Si);
RL1: LATCH port (A-JN, OLKi, SA);
RL2: LATCH port (BJN, CLK1, SB);
RL3: LATCH port (convb-z(SI), CLKI, SJ"JOTA);

.2 RAl: ADD-SUB port(SA, S-NOTA, SB, S-CY, S-BY, S-$UM, SJMIFF,

5..CY-OUT, S-BY-OUT);

RFFi: R-MSFF port(convb-z(S-X...OUT), CLK2, CLIi, RESET, S-CY);
RFF2: R-vISFF port(convb-z(S-BY-OUT), CLK2, CLKI, RESET, B-CY);
RL4: LATCH port(convb-z(S-SUM), CLK2, SUM);
RL5: LATCH port(convb-z(S-DMFF), CLK2, DIFF);

end block;

end PURE..$TRUCTURE;

A-2 1

.4V.



,1.9.
Zero Multiplier

The following descriptions structurally describe the interconnections of the Lyons multi-
pliers. Each description is essentially identical, which of outputs of the data Flip-Flops is used as
the input to the Adder is the main difference The primary difference between the cells is what
MSFF output tap the input to the adder comes from, and which co.arol signals are used as
inputs.

-- DATE: 29 AUG 1985

-- TITLE: Zero Multiplier for the WFT processor
-- FILENAME: mo
-- LANGUAGE: VHDL

-- ENTITY:
entity MULT_0

(DATAJN: in BIT;
PPRODJN: in BIT;
CLK2, CLK1 : in clk_.ignal;
CLK2_.NOT, CLKI-NOT : in clk-signal := 1;
SIGNEXT: in M-CONTROL;
PPRODOUT, DATA-OUT: buffer BIT) is

end MULT_0;

-- FUNCTION: This cell implements the 0 case for the modified
-- Lyons serial multiplier architecture.
-- There is no adder cell nor carry flip flop
-- used in this circuit. It is primarily a shift
-- register.

architecture STRUCTURE of MULT_O is

block

component MSFF port(A: in Zbit; CLK2, CLKL: in clk-signal;
X: buffer bit);

for all: MSFF use
entity (MSFF)

port map (bit-in > A; CLK2 = > CLK2, CLK2_NOT = > open,
CLKI => CLKI, CLKINOT => open, bit-out => X)

body (BEHAVIOR);
end for;

signal FF0_OUT, FFIOUT, FF2_OUT: bit
PRODJN: Z__BIT;

begin

,K ' FF0: MSFF port(convb-z(DATAJN), CLK2, CLKI, FF0_OUT);
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FFI wrwwn potcnbz(F-U) CLK2 CLKI rFI-Orn-

FF1: MSFF port(convb-z(FFO-OUT), CLK2, OLKI, FFL..OUT);

FF-YROD: MSFF port(convb-z(PROD-JN), CLK2, OLKi, PYPROD-OUT);

PROD-IN <= convb -PROD-JN) when SIGN.EXT = '1'
else 'Z';

end block;

end STRUCTURE;
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, -1.10.
Plus One Multiplier

-- DATE: 29 AUG 1985

-- TITLE: Plus one serial multiplier
-- FILENAME: ml
- LANGUAGE: VHDL

-- ENTITY:

entity MULTpl
(DATAJN: in BIT;
P_PRODJN: in BIT;

CLK2, CLKI : in clk-signal;
CLK2.NOT, CLKINOT : in clk..ignal :- I;
RESET_0, SIGNEXT: in M-CONTROL;
P.PRODOUT, DATA-OUT: buffer BIT) is

end MULTpl;

- FUNCTION: Plus one serial multiplier for the WFT
S-- This cell needs the reset to 0 and the

-- sign extend control signals. The input to)
-- the adder comes from the output of the second
-- MSFF in the data chain.

architecture STRUCTURE of MULTpl is

block

component ADD-SUB port(A, A-NOT, B, CYJN, BYJN: in bit;
SUM, DIFF, CYOUT, BY-OUT: out bit);

for RA1: ADD-SUB use
entity (ADD-SUB)
port map (A = > A, A-NOT = > A-NOT, B - > B, CYJN > CY,

BYJN => BRJN, SUM => SUM, DIFF => DIFF,
CYOUT => CYOUT, BY-OUT => BROUT)

body (LOGIC_$TRUCTURE);
end for;

component RMSFF port(A: in Zbit; CLK2, CLKI: in clksignal:
RST: in control, X: buffer bit);

for all: RMSFF use
entity (RMSFF)

port map (bit-in = > convb-z(A); CLK2 = > CLK2, CLK2_ NOT open,
CLKI = > CLKI, CLKINOT -> open, RSTF => RST,

bit-out i> X)
body (BEHAVIOR);

end for;
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component MSFF port(A: in Z-bit; CLK2, OLKI: in clk-3ignal;
X: buffer bit);

for all: MSFF use
* entity (MSFF)

port map (bit-in = > A; CLK2 = > CLK2, CLK2..NOT = > open,
CLK1 => OLKi, CLKI-NOT => open, bit-out => X)

body (BEHAVIOR);
end for;

signal FF0_OUT, FF1_OUT, FF2.OUT: bit
PROD-JN: Z-BIT;

begin

DPO: MSFF port(convb-z(DATA-JN), CLK2, OLKI, FFO-OUT);

DPI: MSFF port(convb-z(FFO-.OUT), CLK2, OLKI, FFLOUT);

DP2: MSFF port(convb-z(FFI.OUT), CLK2, CLK1, DATA-QUT);

Al: ADDER port(FFL-OUT, CY-JN, P-YROD-JN, CARRY, SUM);

FF-PROD: MSFF port(convb-z(SUM-JN), CLK2, CLKI, PYPROD-OUT);

FF-CARRY: RJVI4SFF port(convb-z(CARRY), OLK2, CLKI, RESET-0, GYJN);

SUMJN <= convb-z(SUM) when SIGN...EXT=''
else 'Z;

end block;

end STRUCTURE;
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Plus Two Multiplier

-- DATE: 29 AUG 1985

-- TITLE: plus two multiplier
-- FILENAME:m2
-- LANGUAGE: VHDL

-- ENTITY:

entity MULTp2
(DATA-JN: in BIT;
PJ'ROD-JN: in BIT;
CLK2, OLK1 : in clk--ignal;
CLK2..NOT, CLKL.NOT : in clk-5ignal := 1;
RESET..., RSTDC, SIGN...EXT: in M-CONTROL;
P..YROD-OUT, DATA-OUT: buffer BIT) is

end MULTp2;

4 -- FUNCTION: implements the +2 multiplier for the WFT
-- This cell takes the input to the adder from

* -- the output of the last flip flop in the chain.
- it also requires the signal rstdc which is
-- anded" with the data path input.

architecture STRUCTURE of MULTp2 is

block

component ADD-SUB port(A, A-N..OT, B, CYJN, BYJN: in bit;
SUM, DIFF, CY-OUT, BY-OUT: out bit;

for RAI: ADD-SUB use
entity (ADD-SUB)
port map (A = > A, A-NOT = > A-NOT, B = > B, CYJN => CY.

BYJN => BRJN, SUM => SUM, DIFF => DIFF,
CY-OUT => CY-OUT, BY-OUT > BR-OUT)

boy(LOGIC.$TRUCTURE);
end for;

component RMSFF port(A: in Z...bit; CLK2, CLKI: in clkjsignal;
* RST: in control. X: buffer bit);

for all: RMSFF use
entity (RMSFF)

port map (bit-in = > convb..z(A); CLK2 = > CLK2, CLK2..NOT >open,
CLKI => CLKI, CLKL__NOT => open, RSTF= RST,d bit-..out = > X)

body (BEHAVIOR);
end for;
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component MSFF port(A: in Z-bit; CLK2, CLKI: in clk-ignal;
X: buffer bit);

for all: MSFF use
entity (MSFF)

port map (bit-in => A; CLK2 => CLK2, CLK2JNOT => open,
OLK1 => OLKI, CLKL.NOT => open, bit-..out => X)

body (BEHAVIOR);
end for;

signal FFOOUT, FF1_OUT, FF2_OUT: bit
DATA-PATILIN, SUM-JN: BIT;

F begin

DPO: MSFF port(convb-z(DATAJN), CLK2, OLKI, FF0_OUT);

DPi: MSFF port(convb-z(FFO-OUT), CLK2, CLK1, FFL-OUT);

DP2: MSFF port(convb-z(FFL-OUT), CLK2, OLKI, DATA-OUT);

0Al: ADDER port(DATA-YATH-JN, CY-JN, PJ'ROD-JN, CARRY, SUM);

FF-PROD: MSFF port(convb-z(SUM-JN), CLK2, CLKI, P-PROD-JUT);

FF-CARRY: R.MSFF port(convb-z(CARRY), CLK2, OLKI, RESETO0, CYJN);

SUMJN <= convb-z(SUTM) when SIGN..EXT='1
else 'Z';

DATA-PAIH-JN <= (RSTDC and FF2JJUT);

end block;

end STRUCTURE;
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, 1.12.
Negative One Multiplier

_***DATE: 29 AUG 1985

-- TITLE: Negative one multiplier cell
-- FILENAME: multnl.v
- LANGUAGE: VHDL

-- ENTITY:

entity MULTnl
DATA-IN: in BIT;
PPRODJN: in BIT;

CLK2, CLKI : in clkgignal;
CLK2_NOT, CLKlNOT : in clksignal := 0;

RESETI, SIGN-EXT: in M-CONTROL;
PPRODOUT, DATA-OUT: buffer BIT) is

end MULTnI;

-- FUNCTION: This is the negative 1 multiplier cell. The carry in
-- the negative cells are reset to one instead of zero
-- as in the positive case.

(4" architecture STRUCTURE of MULTnl is

block

component ADD-SUB port(A, A-NOT, B, CYJN, BYJN: in bit;
SUM, DIFF, CYOUT, BY-OUT: out bit;

for RAI: ADD-SUB use
entity (ADD-SUB)
port map (A = > A, A-NOT => A-NOT, B --> B, CYJN => CY,

BYJN => BRJN, SUM => SUM, DIFF => DIFF,
CYOUT = > CYOUT, BY-OUT = > BROUT)

body (LOGIC-STRUCTURE);
* end for;

component MSFF port(A: in ZJbit; CLK2, CLKI: in clk-5ignal;
X: buffer bit);

for all: MSFF use
entity (MSFF)

port map (bit-in = > A; CLK2 = > CLK2, CLK2.NOT = > open.
CLKI => CLKI, CLKINOT => open, bit-out > X)

body (BEHAVIOR);
end for:

"' .' . \ component RHMSFF port(A: in Z.bit; CLK2, CLKI: in clk..signal:
RSTJ: in M-CONTROL: X: buffer bit);
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for all: RHMSFF use
entity (RHMSFF)

port map (bit-in = > A; CLK2 = > CLK2, CLK2.NOT ~> open,
CLKI => CLK1, CLKLNOT => open,
RSTJ1 => RST-J, bit-out => X)

body (BEHAVIOR);
end for;

signal FFO-OUT, FFLO0UT, FF2.OUT: bit
ADD-JN, SUM: bit;

begin

DPO: MSFF port(convb-z(DATAJN), CLK2, CLK2-NOT, CLKI,
CLKI-.NOT, FF0_OUT);

DPI: MSFF port(convb-z(FFQ..OUT), CLK2, CLK2..NOT, CLK1,
CLKLNOT, FFI-OUT);

DP2: MSFF port(convb-z(FFL.OUT), CLK2, CLK2.NOT, CLKI,
CLKI-NOT, DATA-OUT);

Al: ADDER port(ADD-JN, CYJN, PJ'RODJN, CARRY, SUM);

FFJPROD: MSFF port(convb-z(STM-JN), CLK2, CLK2JWOT, CLK1,
CLKL-NOT, PJ'ROD-OUT);

FFCARRY: R-vISFF port( convb-z(CARRY), CLK2, CLK2-NOT, CLK1, CLKI-NOT,
RESETJ1, CYJN);

SUMJN < = convb-z(SUM) when SIGN-.EXT='1
else WZ;

ADD-JN <= not(FF LOUT);

edblock;

end STRUCTURE;
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Negative Two Multiplier

-- DATE: 29 AUG 1985

-"""TITLE: Negative two multiplier
-- FILENAME: multn2.v

-- LANGUAGE: VHDL

-- ENTITY:

* entity MULTn2
DATAJN: in BIT;
PJPRODJN: in BIT;

CLK2, CLKI : in clk_.signal;
CLK2_NOT, CLKI_NOT : in clk__signal := 0;

RESETJ, RSTDC, SIGNEXT: in M-CONTROL;
PPRODOUT, DATA-OUT: buffer BIT) is

end MULTn2;

architecture STRUCTURE of MULTn2 is

a -' block

component ADD-SUB port(A, A.NOT, B, CYJN, BYJN: in bit;
SUM, DIFF, CYOUT, BY-OUT: out bit;

for RAI: ADD-SUB use

entity (ADD-SUB)
port map (A = > A, A-NOT => A-NOT, B => B, CYJN > CY,

BYJN => BRJN, SUM => SUM, DIFF => DIF,
CYOUT = > CYOUT, BYOUT = > BROUT)

body (LOGICSTRUCTURE);
end for;

component MSFF port(A: in Zbit; CLK2, CLKI: in clk_-ignal;
X: buffer bit);

for all: MSFF use
entity (MSFF)

port map (bit-in = > A; CLK2 = > CLK2, CLK2JNOT => open,
SCLKI => CLK1, CLKILNOT => open, bit-out => X)

body (BEHAVIOR);
end for:

component RHMSFF port(A: in Z-bit; CLK2. CLKTI: in clk__signal:
%.. RST__: in M-CONTROL; X: buffer bit);

for all: RHMSFF use
entity (RHMSFF)

port map (bit-in => A; CLK2 CLK2, CLK2_NOT = open,
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CLKI = > CLKI, CLKL-NOT = > open,
RST..J => RST.J, bit-out => X)

body (BEHAVIOR);
end for;

signal FF4LOUT, FFLOUT, FF2_OUT: bit
- DATA-PATHJN, SUMJN: BIT;

begin

DPO: MSFF port~convb-z(DATA-JN), CLK2, CLKI, FFO-OUT);

4.:MF otcnbzFOOU) L2 LI FU)

DPi: MSFF port(convb-z(FFi-OUT), CLK2, CLK1, FFLO-UT);

Al: ADDER port(DATA-'ATH-JN, CYJN, PJPROD-JN, CARRY, SUM);

FFJ'ROD: MSFF port(convb-z(STM-JN), CLK2, CLK1, PJPROD-OUT);

A FF-CARRY: RJVISFF port(convb-z(CARRY), CLK2, CLK1,
* RESET-0, CY-JN);

* ~~SUMJN <= convb-z(SUM) when SIGNEX 1
else WZ; 

JX

DATAJPATHJN <= (RSTDC nand FF2-OUT);

* end block,

end STRUCTURE;
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1.14.
Parity Round Cell

-- DATE: 29 AUG 1985
'I.

-- TITLE: PARITY ROUND CELL
-- FILENAME: prcell.v
-- LANGUAGE: VHDL

-- ENTITY:
* entity PRCELL

PRAN: in bit;
PCALC, R_CALC, PAPPEND: in CONTROL;

CLK2, CLKI : in clk_signal;
CLK2_NOT, CLKINOT : in clk.,signal :- 1;

PROUT: buffer bit) is
end PRCELL;

-- FUNCTION: THIS CELL COMPUTES THE PARITY BIT AND ROUNDS THE RESUTL
-- ZOUT OF THE POST-ADDERS.

architecture mixed of prcell is

block

component LATCH port(A: in Z-bit; CLK: in clk-signal;
X: buffer bit);

for all: LATCH use
-r entity (LATCH)

port map (bit-in => A, CLK -> CLK, CLKNOT -> open, bitout => X)
body (STRUCTURE);

end for;

component MSFF port(A: in Z-bit; CLK2, CLKi: in clk-signal:
X: buffer bit);

for all: MSFF use
entity (MSFF)

port map (bit-in - A: CLK2 = > CLK2. CLK2_NOT open.
CLKI CLKI, CLK!LNOT = open. bituout X)

body (BEHAVIOR);
end for:

signal ROUNDAND. ROUNDOR. ROUNDJ)UT. INJOR. PAIRITYJOR.
.PARITYtOR, PARITYOUT: bit:

begin
-- ROUNDING SECTION

LAN: LATCH port( PRN. CLK. BITN);
INJ(OR- (BITN xor ROUNDJOT):
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-~ ROUND-AND <= (BITJN and ROUND-OUT);
ROUNDOR < = (ROUND.AND or R-CALC);

4 RND-%,ISFF: MSFF port(ROUND-OR, CLK2, CLKI, ROUND-OUT);

-PARITY SECTION

PARITY2(OR < = (IN-XOR or PARITY-OUT);
PARITYOR1 < = (PARITY..XOR or P-CALC);
PAF..YSFF: MSFF port(PARITY-OR, CLK2, CLK1, PARITY-OUT);

T0O-OUT < = INLXOR when P-APPEND= I
* else PARITYOUT;

SL-OUT: LATCH port(TO-OUT, BITJ'R-OUT);

end block;

end vIfXED;
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Appendix 2

C Simulation Programs

This appendix contains the programs used to simulate the WFT16 processor. In

addition, the binary-decimal and decimal-binary conversion programs are also included.

The programs are listed in the order encountered in the pipeline: Control Sequencer,

Column Controller, PreWFTA.c, Multiplier, Post Adders, and the conversion programs

bin.c and form_16.c.

1.1. CS.c

** DATE: 15 AUG 1985

** TITLE: Control Sequencer Simulation Program
** FILENAME: cs.c
** COORDINATOR: Jim Collins.
** PROJECT: THESIS
** FUNCTION: simulates the control sequencer for the wfta.
** Requires the number of control cycles to
** generate control signals for, and the scale factor
** of the input data.
** FILES WRITTEN: master-control: contains a time tagged control
** word for the wfta processor.
** FILES INCLUDED: sr.c: A function which is used to evaluate
** the set reset (SRFF) behavior.
**

#include <stdio.h>
#define clk-cycle 32 /* number of cycles in the counter*/
#include "sr.c"
main (){

FILE *fp, *gp, *hp, *ip, *fopen);
Q mt clk-count = 0;

mt clk;
int i:
mt setpass = 0;
int rstpass;
mt rszf;
imt tmp-pass;
mt tmpjzfill;
mt tmp-piso;
"mt scale -0;
mt pcal;
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int rcal;
int tmp._rcal;
int cycles;

/* flag register which holds the control signals before they are
written to the file */

struct{
unsigned pre-bar : 1;
unsigned inc : 1;
unsigned load-rom : 1;
unsigned par.rst : 1;
unsigned r.calc 1;
unsigned p-calc :1;
unsigned p.append : 1;
unsigned lsipo : 1;
unsigned sr-sipo: 1;
unsigned sr-piso :1;
unsigned lpiso : 1;
unsigned sd.-sipo :1;
unsigned sd_piso :1;

• unsigned mult-round 1;
unsigned zero-fill :1;
unsigned pass-out : 1;
unsigned rstadd :1;
unsigned par-chk :1;
unsigned inout: 1;
unsigned up-in: 1;

} flags;

/* master slave flip flop structure, (MSFF), there are thirty two MSFFs
in the ring counter */

struct msff
. {

int clk2;
int clki;

} ff[321, delayst, delayrst;

struct srff /*set reset data structure*/
{

int set;
int reset;
int out;

} shift.piso, zfill, pass;

hp - fopen("mastercontrol", "w"); /'*open the control file *,

shift-piso.out 1;
pass.out = 1;
delayst.clkl = 1:
delayst.cik2 = 1;

delayrst.clkl 1;
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delayrst.clk2 = 1;
zfill.out = 1;

/*prompt for the number of clock cycles and the scale factor

of the input data set */

printf(" HOW MANY CLOCK CYCLES DO YOU WANT TO SIMULATE?0);
scanf("%d", &cycles);

again:
printf(" WHAT IS THE SCALE FACTOR FOR THE INPUT DATA? 0);
printf(" THE SCALE MUST BE BETWEEN 0 AND 70);
scanf("%d" ,&scale);

if ((scale > 7) 1 (scale < 0)){
printf( "SCALE FACTOR IS NOT WITHIN RANGE, TRY AGAINO);
goto again;

printf('COMPUTING CONTROL SIGNALS FOR %d CLOCK CYCLESO,cycles);
..* printf(" THE SCALE FACTOR IS %d0,scale);

fprintf(hp,"%dO, cycles);

while (clk-count <=cycles)
{

clk - clk_¢ount % clk-cycle; /* modulo 32 counter */

/* initialize the ring counter to simulate a bit entering

on clock cycle 0 */
if (clk =- 0)

ff(Oj.clk2 1;

"' 'if (clk == 1)
ff[0.clk2 = 0;

*things which happen on clock 2*!

for (i = 1; i<-31; i++)
ff[ij.clk2 = ff[i-1].cikl;

delayrst.clk2 = rstpass;
delayst.clk2 = setpass;

*things that happen on clock 1I

for (i = 0; i<-31; i++)
ff(ii.clkl = fffi.clk2;

-:...delayst.clk delayst.clk2;
-' "'. delayrst.clkl - delayrst.clk2;
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,I/ assignment of control signals: adaptive scaling algorithm uses
the if - then construct to model the PLA and SRFF behavior */

if ((scale -= 0) && (clk = 6))
setpass = 1;

else if ((scale == 1) && (clk -= 7))
setpass = 1;

else if ((scale == 2) && (clk == 8))
setpass - 1;

else if ((scale == 3) && (clk = 9))
setpass 1;

else if ((scale -- 4) && (clk -- 10))
setpass 1;

else if ((scale == 5) && (clk = 11))
setpass = 1;

else if ((scale == 6) && (clk == 12))
setpass = 1;

else if ((scale == 7) && (clk -- 11))
setpass - 1;

else
setpass = 0;

if ((scale -= 0) && (clk == 29))
rstpass = 1;

else if ((scale == 1) && (clk = 29))
rstpass 1;

else if ((scale -- 2) && (elk -= 29))
rstpass = 1;

else if ((scale == 3) && (clk == 30))
rstpass = 1;

else if ((scale == 4) && (elk = 31))
rstpass - 1;

else if ((scale == 5) && (clk -- 0))
rstpass = 1;

else if ((scale -- 6) && (elk -- 1))
1> rstpass = 1;

else if ((scale -- 7) && (clk I))
rstpass = 1;

else
rstpass 0;

". / * call the set-reset function to evaluate any possible changes in

the set and reset variables */

tmp.piso = set-reset(setpass, rstpass, shift-piso.out);
* shift-piso.out = tmp-piso;

flags.sr-piso = shift-piso.out;

if ((scale 0= 0) && (clk -- 6))
rszf = 1;

else if ((scale 1= 1) && (clk == 7))
rszf = 1;

else if ((scale == 2) && (elk 8))
rszf = 1;

else if ((scale 3) && (clk 9)
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else if ((scale ==4) && (elk ==10))

rszf = 1;
else if ((scale ==5) && (clk ==10))

rszf=
else it ((scale ==6) && (clk ==10))

rszf =1;
else if ((scale ==7) && (clk ==10))

rszf =1;
else

rszf = 0;

tmp..zfill = set-reset(ff[I].clkl, rszf, zfill.out);
zfilI.out = tmp...jfill;
flags.zerojll = zfill.out;

tmp-.pass = set-.reset(setpass, rstpass, pass.out);
pass.out = tmp-pass;
flags.pass-out = passout;

*sd..jipo and sd-piso both happen on alternatating clock cycles *

0 if (clk%2 == 0)
flags.sd-sipo = 1;

else
flags.sd,sipo =0;

if (clk%2- )
flags.sd-piso = 1;

else
flags.sd-piso = 0;

*interval signals */

if ((cik < 19) (elk >= 28))
flags-p-calc =1;

else
flags.p-calc =0;

if ((elk K19) (elk >= 127))
flags.r..calc =1;

else
flags.rscalc 0:

if ((elk -, 21) (elk =29))

flags.sr-,ipo 1;I
else

flags.sr--ipo =0;

*pulse signals

flags.1-piso =lVol.lki;
flags.l1..sipo = T[2'11.clkl;

6flags.parcshk flags.sr-piso;

~ flags.par-rst =flags.I-piso:
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flags. mult-round = ff[O.clkl;
- flags.rst-add = !ff[1j.clk2;

flags.p-append = ff[191.clkl;

/* print results to the file master-control *

fprintfqhp, "%dO, cik-count);
fprintf(hp,"%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %dO,
flags.pass..out, flags.zerofll, flags.par-chk, flags.par-rst,
flags r-caic, flags.p-calc, flags.p-append, flags. mult-sound,
flags.inc, flags.sr..piso, flags.1-piso, flags.sd-piso,
flags.sd--ipo, flags.LUipo, flags.srj.ipo, flags.pre..bar,
flags.rst..add, flags. load-jrom, flags.in-out, flags.up-in);

clk-count += 1;
/ /* end while *

} /* end main ~
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2.1.

** DATE: 29 AUG 1985

-.'. ** TITLE: Column controller simulation program.
** FILENAME: ccntrl.c

** COORDINATOR: Jim Collins.

-** PROJECT: WFT16 SIMULATION
** USE: This program generates the control files for the arithmetic
** pipeline. It recieves input from the file MASTER-CONTROL,
*and outputs three files, preaddcntrl, multcontrl,
** and postaddcntrl.

~*"

#include <stdio.h>
#define clkcycle 32
main 0

FILE *fp, *hp, *ip, *jp, *fopen0;
,e. int i, int clk, clkcount, clkint = 0, cycles, rstadd;
* int c-word[201;

/* this is the structure which holds the control signals for all
fourteen columns of the multiplier array

struct

unsigned reset_0 : 1;

unsigned reset-i : 1;
unsigned rstdc :1;
unsigned s-extend : 1;
}flags[14);

struct msff /*master-slave flip flop data structure */{
int clk2;
int clkl;

struct msff tmp, preadd-cntr[41, mult.cntrl[42], postaddcntrl[31 ;

' /* the control pipeline is initially set to all ones, signals switch

in response to a zero traveling throught the pipe, which
* "-' happens every thirty-two clock-cycles. */

for(i-41;i >=O;i--)

multcntri[i].clk2 = 1;

multcntrl[ij.clkl = 1;

for (i = 3: i -=0: i--)

preadd_cntrllij.clk2 = 1:
preadd_cntrlij.clkl = 1:
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for (i =2; i >= 0; i--)

postadd-e..ntrl[i] .clk2 =1;
postadd-cntrlli).clkl 1;

}m~l2 1
tmp.clk2 = 1;

fp =fopen("master.control", "r"); /* input word from controller *
hp =fopen("preadd-cntrl","w"); /* control signals for multiplier column*/

ip = fopen("rnult-...ntrl","w"); /* control signals for multiplier column*/
jp = fopen("postaddcentrl","w"); /* control signals for post add column*/
fscanf(fp,"%d" ,&cycles);

-~~ /* The first word in the file is used as to control the loop. *

while (clk-count < cycles)

* fscanf(fp,"%d", &clL..count);
clk = clk-count % clk-cycle;
clk..jnt = clkjnt %clk..sycle;
for (i = 0; i <= 19; i+±) /* read all 20 control signals which

'4. are sent out each clock cycle *
* fscanf(fp, "%d%",&c.word[ij);

/ * start execution of program *

rst-.add = c-N.ord[161; /*the reset signal for the adder is
in position 16 in the file

preadd..cntrl[01.clk2 = rst-.add;

if (clk != clk-int) /*check to ensure validity of the data *

printf( "clocks are not aligned! clk = %d clk-int = %dO,
clk, cikijnt);

exito;

*clock two events
7 shifting operations*,

preadd-sntrlrI[I .ck preadd-sntrli0Oj.elk 1
preadd..cntrl[2j .cik2 - preadd-cntrlljclki:

V preaddL..cntrl[31.clk2 = preadd-esntr1[2].clkI:
* mult..cntrl [01.-clk2 = preadd....ntrl[3I.clkl:

for (i = 40: i > = 0; i-- )
mult-cntrlli- 1Yclk2 mult-rntrliI.clk I;

postadd...ntrlI.cMk~ mult..cntrl4ItI clk I
£ postadd-sntrI l.cl2 postadd-cntrlr0.clkl;

postadd...ntrlr2l ck2 postadd-entrllclkl:
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/* clock one events *

for (i = 3; > = 0; i-)
preadd-cntrl[ij .clk 1 = preadd-cntrl [i] .clk2

for ( i=41; i > =0; i--)
mult..cntrl[i] .clkl = mult-.cntrl [i] .clk2;

for (i = 2; i >= 0; i-)
postadd.cntrl[il .clI = postadd-cntrl [ii .clk2

/the multiplier signals are generated in sets of three *

for (i = 0; i <=13; i++i)

flags [ij.reset-0 =mult-cntrl[3*i + I.clk2;
flags (i]. resetj = !(flags [i. .reset-.0);

for(i = 0; i < = 13; i+ +)

* ~fags[ij.rstdc = mult...ctrl[3*i + 1.clkl;
flagsii .s...extend = !(mult..cntrl[3*i+ lj.clkl & mult...ntrl[3*i+21 .clkl);

/*print the output files *

fprintf(hp," %d", cik);
fprintf(ip,"%dO, clk-count);
fprintf(jp," %d", clk...count);

for (i =0;i < 2; i+±)

fprintf(hp," %d ", preadd-cntr[ij .clk2);

A. flags I 3.s...extend = 0; /*no sign extensions of column thirteen*/
:a* ~ for (i = 0; i < =13; i± +)

fprintf(ip," %d %d %d %7d 0 ,flags (i]. reset-0, flags[i 1. resetI,
* ~flagsi} .rstdc, flags[iI J.s..extend);

clk-jnt -4-==1
* } fen d while *

} ,end mainf
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3.1.

•* DATE: 12 NOV 1985

• * AUTHOR: Jim Collins
• * TITLE: Preadd pipeline simulation program
•* FILENAME: prewfta.c
•* PROJECT: WFT16 Simulation
•* OPERATING SYSTEM: UNIX V 4.2
• * LANGUAGE: C
•* USE: This program is the third in the series which model the
• * 16-point winograd pipeline. It follows the multiply.c
• * program.

• * FILES READ:• * mastercontrol: control word for the processor per simulation

• * cycle.
• * preaddcntrl: reset signal for the carry/borrow of the
*•** postadd column.
** testpiso: Problem set to be used to caluculate DFTs
** output of bin.c (decimal-binary conversion
• * program).

S"* FILES WRITTEN:

** pisoout: serial output of the piso.
• f.** .zf.out: output of zero fill cell.
** preaddl-in: input to the preadd column 1.
** preadd2jn: input to the second preadd column.
** preadd3_jn: input to the second preadd column.
S* phil-out: output of the latch following the last adder.
•* to..jnult: input to the multiplier program.

** FILES INCLUDED:""*
• * typedefin: structure declarations for the program.
• * fn._.add.c: binary addition function.

sr.c: evaluates the set reset function (SRFF).

declare: type declarations for the program.

#include <stdio.h>
#include "typedefin"
#include "fnjadd.c'
#include "sr.c"
#include "declare"
#define clk..ycle 32 '* 16 point wfta cycle */
maino(

.0I
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qp = fopen("col&..out", w")
sp = fopen("col4_out","w");
rp = fopen("co5..out" ,"w"
tp = fopen(" col6..out","w");
up = fopen("co17.out", w")
vp = fopen("col8-out","w");
wp =fopen("co19_out","w")

yp =fopen("cola-out","w");

zp =fopen("colb-out" , w"
pz =fopen("colc..out","w")

xp =fopen("cold-out", w")
zzp =fopen("mult-out",'"W")

fscanf(ap,"%d" ,&cycies);
while (elk-count <= cycles)

fscanf(ap,"%d",&clk..count); /* read master control word *
for (i=0; i<=19; i++)

fscanf(ap,"%d" ,&fiags~iI);
clk =(clk..count % clk...cycle);
clkjint =(clk-jnt % clk..cycle);
if (clk !=clk-jnt)
{printf("clocks are not synchronized %d0, clk);

exito;

mult-j'ound = fiags[71; /* rounding signal for input
to the first column *

*fscanf(bp, "%I'd", &clk-data);

~~ ASSIGNMENTS TO THE IJLTIPLIER

~*~~**~********TO COLUMN I

for (i 0; i < = 7; i ++)
if (i < =4)
{(pOO[i)->fflclk2 = phililatch[i];
pO0ij->prodjn = 0;}

* else
* { (pOO~ij)->ff1clk2 = philjatch[i--5];

pOO~ij->prodjn = 0;}

p801- >fflclk2 =phi1Jatch[51;

p..p80->prodjn =mult-yound;

*p901-- :,fflclk2 phil1Jatch 61;
p901- >prodjn =mult-j'ound;

pa~n- >fflk2 -phi1jatch 71:
pa~n- -prod-in mult-round:

pbOO- --fflclk2 philjatch81;
pbOO - .prod-in =mult-round:
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pc~n->fflclk2 phi1Jlatch 91;
pc~n- > prod-in = mult-round;

pd~n->fflclk2 = phiIJatch[131;
pd0n->prodjn = mult-jound;

peOn-> fflclk2 = phiIatch[14];
peon->prodin = mult-round;

pfOn->fflclk2 = philJatch[151;
* pfOn-> prod-in = mult-round;

pgOn->fflclk2 = phiiJatch[161;
pgOn- >prodin mult-round:

phO->fflcIk2 = philJatch[171;
phOO- >prod-in mult-jound;

fscanf(cp, "'7d", &elk-data);
'4.for (i = 0; i < =17; i++)

fscanf(cp, "%d", &philjatch[i]);

'*~*************TO COLUMN 1I*************

for (i = 0; i < =7; i-+-+)
{(plO[il}->fflk2 = pOO[i->ff3clkl;

p1O[ij-> prod~jn = pOO(ij- >sumffclkl; I

p8ln->fflclk2 = p801->ff3clkl;
p8ln->prod-jn p80l->sumffclkl;

p~ln->fflclk2 =p901->ff3cIkl;

p~ln->prod-jn p901->sumffclkl;

paln->fflcik2 =pa0n->ff3cIkI;

pain->prod-in pa~n->sumffclkl;

pbll->fflclk2 =pbO->ff3clkl;

pbll->prod-jn pbOO->sumffclkl;

* pcIG->fflclk2 =pc~n->ff3cikl;

pclO->prodjn = pcOn- >sumffclkl;

pd II- 'ff Ic~k2 =pdOn-'ff3c~k 1:
-~pdlIl- :prod-in pdOn- > sumffclkl1:

ir pelt- *-fT1lclk2 peOn-:-ff3clkl;
pell--'prod-in =p'~n- "-sumficiki:

pf 12- .'fflclk2 =pf~n-.->ff3clI;

pf 12- *prod-in =pfOn- 'suniffclk1:

pgIO- fftIlk2 =pgOn- -ff3clk 1
4.pglO- -prod-in pg~n-: -sumffclkl:
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phln->fflclk2 phOO->ff3clkl;

***************TO COLUMN 2**************

for (i = 0; i <= 7; i++-)
{p20(ij->fflclk2 =plO(il->ff3clkl;

p20[i]->prod-in =plO[i]->sumffclkl;}

p821->fflclk2 = p8ln->ff3clkl;
p821->prod-in = p8ln->sumffclkl;

p921->fflclk2 = p9ln->ff3clkl;
p921-> prodJn = p9ln- >sumffclkl;

pa2n->fflclk2 = pain->ff3clkl;
pa2n->prod-in = pain- >sumffclkl;

* -pb2q->fflclk2 pbll->ff3clkl;
pb2q->prod-in = pbll->sumffclkl;

pc2n->fflclk2 pclO->ff3clkl;
* pc2n->prod-in =pclO->sumffclkl;

* pd2n->fflclk2 =pdll->ff3clkl;

pd2n->prod-in =pdll->sumffclkl;

pe2n->fflclk2 = pell->ff3clkl;I. pe2n->prodjn = pell->sumffclkl;

pf2->fflclk2 =pf12->ff3clkl;

pf20->prodjn =pfl2->sumffclkl;

pg2l- >fflclk2 =pglO->-ff3clkl;

pg2l- >prod-in =pglO->sumffcikl;

ph22->fflclk2 =phln->ff3clkl;

ph22->prod-in = phln->sumffclkl;

***************TO COLUMN 3 *************

for 0(i 0: i <= 7: i+--)
{p30fij> fflclk2 =p20fi1- f0lckl;
p30(il- -,prod-in = p20lIi-_,~sumffclkl,

p83n- -fflcLk'2 p821-> fP3clkl;
p83n- _- prod-in p821- >sumffclkl:

p93n- -fflcik2 -p921- -flckl;
p9Th- -prod-in -p921- surnffclkl.

pa3l- - fflcik2 pa2n- fT~clkl;
pa3l- -prod-in =pa2n- ->sumffclkl:

pb3n -fftcLk2 pb2q- > tT3clkI:
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pb3n- >prod~jn = pb2q- >sumffclkl;

pc3n->fflclk2 = pc2n->ff3clkl;
pc3n->prodjn = pc2n->sumffclkl;

pd3l->fflcik2 = pd2n->ff3clkl;
pd3l->prodijn = pd2n->sumffclkl;

pe3l->fflclk2 = pe2n->ff3clkI;
pe3l->prodjn = pe2n->suniffclkl;

v pf3q->fflclk2 = pf2O->ff3clkl;
pf3q->prod-in =pf2O->sumffclkl;

pg3l->fflclk2 =pg2l->ff3clkl;

pg3l->prod-in =pg2l->sumffclkl;

ph3l->fflclk2 =ph22->ff3clkl;

ph3l- >prodjn =ph22- >sumffclkl;

/***************TO COLUMN 4 ************/

0for (i = 0; i <=7; i+±)
{p40[i]- >fflclk2 =p3O[ij- >ff3clkl;
p40[i]- >prodijn p30[i]- >sumffclkl;}

p840->fflclk2 = p83n->ff3clkl;
p840.> prod-in = p83n- >sumffclk 1;

p940->fflclk2 = p93n->ff3clkl;
p940->prodin = p93n->sumffclkl;

pa4q->fflclk2 = pa3l->ff3clkl;
pa4q->prodJn = pa3l->sumffclkl;

pb40->fflclk2 = pb3n->ff3clkl;
pb4->prodjn = pb3n->sumffclkl;

4 pc4l->fflclk2 = pc3n->ff3clkl;
4 pc4l- >prodijn = pc3n- >sumffclk I;

pd40->fflclk2 = pd3l->ff3clkl;
pd4->prodijn pd3l->sumffclkl;

pe4O..>fflclk2 = pe3l->ff3clkl;
pe4->prodjn = pe3l->sumffclkl;

pf4n-->fflclk2 pf3q->ff3clkl:
pf4n->prodjn =pf3q->sumffclkl;

pg4n->fflclk2 pg3l->ff3cikl;
pg4n- >prodijn = pg3l- >sumtlclkl;

ph40-,>fflclk2~ ph3l->ff3clkl:
*ph410- -prodin =ph3l->sumffclkl;
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TO COLUMvN 5*************/

for (i =0; i <= 7; i++)
I p5Ofi->fflclk2 =p4OfiJ->ff3clkl;

p50[i- > prod-in =p40[il- >sumffclkl; I

p851->fflclk2 = p840->ff3clkl;
p851->prod-in = p840->sumffclkl;

pg5l->fflclk2 = p940->ff3clkl;
pg5l->prod-in = p940->sumffclkl;

pa5->fflclk2 = pa4q->ff3clkl;
pa5O- >prod-in pa4q > sumffclk 1;

pb5n->fflclk2 = pb40->ff3clkl;
pb5n->prodin =pb4O->sumffclkl;

pc50->fflclk2 = pc4l->ff3clkl;
pc5O->prod-in pc4l->sumffclkl;

* pd5n->fflclk2 =pd40->ff3clkl;

pd5n->prod-in = pd40->sumffclkl;

pe5n->fflclk2 = pe4->ff3clkl;
-. pe5n->prodin =pe4->surnffclkl;

pf~l->fflclk2 =pf4n->ff3clkl;

pf5l->prod-in =pf4n->sumffclkl;

pg5O->fflclk2 =pg4n->ff3clkl;

.4* pg5->prodjn = pg4n->sumffclkl;

ph~l->fflclk2 = ph40->ff3clkl;
ph~l->prod-in =ph40->sumffclkl;

~~ TO COLUMN 6

for (i = 0; i =7; i+±)
{p60[i]->fflclk2 =p50[i]->ff3clkl;

* p60[ij->prod-in p50[il->sumffclkl;}

* p861->fflclk2 = p851->ff3c~kl;
*p861- >prod-in p851->sumffclkl;

* p961- >fflclk2 =p951->ff3clkl;

p96->prod-jn p951->sumffclkl;

pa62->tflcik2 =pa50->ff3c~kl;

*pa62- ;>prod-jn pa5O->sumffclkl:

* pb6n- >fflclk2 =pb5n->ff3clkl;

pb6n. '--prod-in =pb5n- > sumffclkl1:

pcfil-- ITlclk'2 pc5O- :,tT3c~kl.
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pc6l->prod-in pc5O->sumffclkl;

pd6n->fflclk2 pd5n->ff3clkl;
pd6n->prod-in = pd5n->sumffclkl;

pe6n->fflclk2 = pe5n->ff3clkl;
pe6n->prod-in = pe5n->sumffclkl;

pf6n->fflcik2 = pf5l->ff3clkI;
pf6n->prodin pf5l->sumffclkl;

pg6n->fflclk2 =pg5->fl3clkl;
pg6n->prod-in = pg5O->sumffclkl;

ph6l->fflclk2 =ph5l->ff3clkl;
ph6l->prod-in = ph5l->sumffclkl;

/ **************TO COLUMN 7 ************/

for (i = 0; i <== 7; i+±)
{p7O[ij->fflclk2 =p60[i]->ff3clkI;

* p70[i->prod-in =p60[i->sumffclkl;}

p870->fflclk2 =p861->ff~clkl;
p870->prod-in = p861->sumffclkl;

p970->fflclk2 p961->ff~clkl;
p970->prod-in =pg6l->sumffclkl;

pa7n->fflclk2 pa82->ff3clkl;

pa7n->prodin =paO2->sumffclkl;

pb70->fflclk2 pb6n->ff3elkl;
pb7->prod-in = pb6n->suinffclkl;

pc7n->fflcik2 pc6l->ff3clkl;
pc7n->prod-in = pc6l->sumffclkl;

pd7->fflclk2 pd6n->ff3clkl;
pd70->prod-in = pd6n->sumffclkl:

pe70->fflclk2 =pe6n->ff3clkl;

pe7->prod-in = pe6n->sumffclkl;

pf7o- ;,-ff lclk2 pf6n- >ff3clkl;
Vpf70->prod-in pf6n->sumffclkl;

all
pg~l- >fflclk2 pg6n- >fl'3clkl;
pg7l- -prod-in pg6n- >sumffclkl;

ph7O- -fflclk2 ph6l->ff3clkl;
ph7o-:>prodin ph6l- >,sumtfclkl;

~~~ ~TO COLLUMN 8 *************
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for (i =0; i<= 7; i++)
{p8O[i->fflclk2 =p70[ij->ff3clkl;

p80[i->prodijn =p70[il->sumffclkl;}

p880->fflclk2 = p870->ff3clkl;
p880->prod-in = p870->sumffclkl;

p980->fflclk2 = p970->ff3clkl;
p980->prod-in = p970->suniffclkl;

pa8O->fflclk2 = pa7n->ff3clk1;
pa80->prodjn = pa7n->sumffclkl;

pb82->fflclk2 = pb70->ff3clkl;
pb82->prod-in = pb7->sumiffclkl;

pc82->fflclk2 = pc7n->ff3clkl;
pc82->prodJn = pc7n->sumffclkl;

pd80->fflclk2 = pd7o->ff3clkl;
.A pd8->prodjn = pd7O->sumffclkl;

pegO->fflclk2 = pe7O->ff3clkl;
pe8->prodjn = pe7O->sumffl'ckl;

pf82->fflclk2 = pf70->ff3clkl;
pf82->prodjn =pf7o->sumffclkl;

C. pg8q->fflclk2 =pg7l->ff3clkl;

pg8q->prod-in =pg7l->sumffclkl;

% ~ ph8q > fflclk2 =ph7- >ff3clkl;
ph8q->prod-in = ph7->sumffclkl;

j***************TO COLUMN 9 ************/

A ~for (i= o 0 i <= 7; i++)
4 {p90[il->fflclk2 =p80[i]->ff3clkl;

p9O[i-> >prod-in p80[i]- >sumffclkl;}

p891->fflclk2 =p880->ff3clkl;

p8gl->prod-jn =p880->sumffcikl;

p991->fflclk2 =p980->ff3cikI;

p99->prodjn =p980->sumffcikl;

pa92->fflclk2 pa8->ff3clkl;
pa92->prod-in = paSo-.>sumflclkl:

pb9q->fflclk2 =pb82- >ff3clkl;
* bgq->prod-in pb82->sumffclkl;

pc~l- -fflclk2 pc82->ff3clkl:
pc9l- >prod-in =pc82- >sumffclkl;
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.:~; 4:;.pd9n->fflclk2 =pd8O->ff3clkl;

pd9n->prodijn =p8-smfl

pegn->fflclk2 =pe80->ff3clkl;
pe9n->prod-in pe8O->sumffclkl;

pfgn->fflclk2 = pf82->ff3clkl;
pf9n-> prodijn =pf82- >sumffclkl;

pggn->fflclk2 = pg8q->ff3clkl;
pggn->prod-in pg8q->sumffclkl;

ph92->fflclk2 = ph8q->ff3clkl;
ph92->prodjn = ph8q->sumffclkl;

/ ~ ~ ~ TO COLUMN 10 *************

for (i = 0; i <= 7; i+

{pa0~il->fflclk2 = p90(ij->ff3clkl;
paO[i]->prodjn = pg0[i]->sumffclkl; I

* p8al->fflclk2 p891->ff3clkl;
p8al->prod-in = p891->sumffclkl;

pgal->fflclk2 p991->ff3clkl;
p9al->prod-in p9g1->sumflclkl;

paa0->fflclk2 =pa92->ff3clkl;

paa0->prodjn =pa92->suinffclkl;

pba0->fflclk2 =pb9q->ff3clkl;
pba0->prodjn = pb9q->sumffclkl;

pcal->fflclk2 pcgl->ff3clkl;
pcal->prod-in =pcgl->sumffclkl;

pdan->fflclk2 pd9n->ff3elkl;
pdan- >prod-in = pdgn- >sumffclkl;

pean->fflclk2 pe9n->ff3clkl;
pean->prod-jn =pegn->sumffcikl;

pfal->fflclk2 ==pf9n->fl3clkl:

pfal->prod-jn - pf9n--,sumffclk1:

pgan- --flclk2 pg9n- >ff3clkl;
pgan- -,prod-in pggn- >sumffclk 1;

pha0- --.fflclk2 =ph92->ff3clkl;

pha0- prod-in -ph92- >sumffclk1;

~~ TO COLUMN 11

for (i 0; i <7: 1±--)
Pb i-J lck2 paulij- >fT3clkl:
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pb~fi->prod~jn = paOlil->sumffclkl;}

p8bn->fflclk2 =p8al->ff3clkl;
p8bn->prodjn = p8al->sumffclkl;

p9bn->fflclk2 =p9al->ff3clkl;
pgbn- >prod-in = pgal- >sumffclkl;

pabq->fflclk2 = paaO->ff3clkl;
pabq->prod-in =paao->sumffclkl;

P, pbbl->fflclk2 =pbaO->ff3clki;

pbbl- >prod-in = pbaO- >sumffclkl;

pcbn->fflclk2 = pcal->ff3clkl;
pcbn->prod-jn = pcal->sumffclkl;

pdbl->fflclk2 =pdan->ff3clkl;
pdbl->prod-in = pdan->sumffclkl;

pebl->fflclk2 = pean->ff3clkl;
pebl->prod-in = pean->sumffclkl;

pfbl->fflclk2 = pfal->ff3clkl;
pfbl->prod-in =pfal->sumffclkl;

pgbl->fflclk2 =pgan->ff3clkl;

~ pgbl->prod-in = pgan->sumffclkl;

* phbn-> fflclk2 phao-> ff3clkl;
phbn->prod-in = phaO->suinffclkl;

:***************TO COLUMN 12 *************

for (i = 0; i < = 7; i++)
I pcO~ij->fflclk2 =pbOjij->ff3clkl;

pc0[i->prodJn =pb0[i]->sumffcikl;}

p8cn->fflclk2 = p8bn->ff3elkl;
p8en->prod-in = p8bn->sumffclkl;

pgcn->fflcik2 = pgbn->ff3clkl;
pgcn- >prod-in = pgbn->sumffclkl;

pac2->fflclk2 = pabq->ff3clkl;
pac2-'>prod~jn =pabq->sumflclkl;

* *,pbcl->fflclk2 pbbl->ff3clkl;
*pbcl- -.prod-in =pbbl->sumffclkl;

pcc2- fflclk2 pcbn- >fT3clkl;
* pcc2- -prod-in =pcbn-->sumtfclkl;

* p(IcI- fflclk2 =pdbl-, ff3clkl;
pdcl- -prod-in =pdbl- --sumffclkl:
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pecl->fflclk2 = pebl->ff3clkl;
pecl->prod-in = pebl->sumffclkl;

pfcO->fflclk2 = pfbl->ff3clkl;
pfcO->prod-in =pfbl->sumffclkl;

pgcq->fflclk2 =pgbl->ff3clkl;

pgcq->prod-in =pgbl->sumffclkl;

phcn->fflclk2 phbn->ff3clkl;
phcn->prod-in phbn->sumffclkl;

~~~ ~TO COLUMN 13 *************

for (i =0;i < =6; i++)
{pdl[i]->fflclk2 =pcO[i]->ff3clkl;

pdl~iJ->prodjn pcO(il->sumffclkl;}

p7dn->fflclk2 =pcO[7]->ff3clkl;

p7dn->prod-in pcO[7]->sumffclkl;

p8dl->fflclk2 = p8cn->ff3clkl;
p~dl->prod-in = p8cn->sumffclkl;

p~dl->fflclk2 = p9cn->flf3clkl;
*pgdl->prod-in pgcn->sumffclkl;

padO->fflclk2 =pac2->ff3clkl;

pad->prodjn pac2->sumffclkl;

pbdl->fflclk2 = pbcl->ff3clkl;
pbdl->prod-in pbcl->sumffclkl;

pcdn->fflclk2 =pcc2->ff3clkl;

pcdn->prod-in pcc2->sumffclkl;

pddn->fflclk2 = pdcl->ff3clkl;
pddn->prod-in =pdcl->sumffclkl;

pedn->fflclk2 = pecl->ff3clkl;
pedn->prod-in = pecl->sumffclkl;

pfdn->flclk2 = pfc->ff3clkl;
pfdn- >prod-in pfco- >sumffclk 1;

* pgdl->fflclk2 pgcq->ff3clkl;
pgdl->prodin pgcq-->sumffclk1;

phdn - fflclk2 phcn- >ff3clkl;

phdn- >prod-in phcn- >sumffclkl:

~ COLUMN 0OOF THE MN-LTIPIERS

* 7-rscar~bp '%d~d~dd", resetj ,resetj ,&r-tdc. &signyx)
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fprintf(zp," prodin =%d, phOO- >prod-in);}

for (i =0;i < =7; i4-+
MO(pOO[i], sign...ext);

m1(p801, reset..0, sign..ext);
mIn(p9OI, reset-0., sign...ext);
nl(pa~n, reset-1, sign-ext);
mO(pbOO, sign-ext);
nl(pcOn, reset-1, sign-ext);
nl(pd~n, resetj1, sign...ext);
nI(peOn, reset-1, sign-ext);
nl(pf~n, reset-1, sign-ext);
nl(pgOn, reset-1, sign-ext);
mO(phOO, sign...ext);

~~ ~COLUMN I OF TH-E MULTIPLIER /

1read the input control signals for this column before calling the

multiplier function

fscanf(bp, " %d%d%d%d", &resetO,&resetj,&rstdc, &sign-ext);

for (i = 0; i <= 7; i±±)

nl(p81n, reset-1, sign-ext);
nl(p9ln, reset-J, sign-ext);
nl(paln, reset-1, sigIL-ext);
ml(pbll, reset-0.., sign-..ext);
mO(pc 10, sign-ext);
ml(pdll, reset-0.., sign-..ext);
ml(pell, reset-O, sign-..ext);
rn2(pfl2, reset-0.., rstdc, sign-..ext);
mO(pglO, sign-ext);
nl(phln, reset-1, sign...ext);

~~ ~COLUMvN 2 OF THE MfULTIPLIER /

fscanf(bp, "%~d%d%d%d", &reset_0 ,&resetj,&rstdc, &sign..ext);

for (i =-0; i < = 7; i++)
mO(p2O~ij, sign-ext);

ml(p821, reset..., sign-..ext);
ml(p921, reset-O, sign..ext);
nI(pa2n. resetJ. sign-ext);
n2( pb2q, resetJ rstdc, sign--ext);
nl(pc2n, reset-I. sign...ext);
n Il(pd2n. reset-1, sign-ext);
n I(pe2n. resetJ, sign-ext);

~ .> rO(pf2O, signe-xt);
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Q ~ ml(pg2l, reset-. sign-ext);
m2(ph22'-, reset-0, rstdc, sign-ext);

~~~ ~~COLUMNN 3 OF THE MULTIPLIER *************

fscanf(bp, "%d%d%d%d", &reset.o,&resetjl,&rstdc, &sign-ext);

for (i = 0; i <=7; i-i-i)

nl(p3, stsigext);

nl(p83n, reset-1, sign-ext);
ml(pa3l, reset.J1, sign-ext);
nl(pb3n, reset-, sign..ext);
nl(pc3n, reset-1, sign-ext);
ml(p3, reset...., sign-ext);
ml(pe3l, reset-.0, sign-.ext);

n2(pf3q, reset-1, rstdc, sign-ext);
ml(pg3l, reset-.0, sign...ext);
mI(ph3l, reset-O, sign-ext);

/***************COLUMN 4 OF THE MULTIPLIER

fscanf(bp, " %d%d%d%d", &resetO,&resetj ,&rstdc, &sign-ext);

*-for (i =0; i <=7;i++)
mO(p4O~i], sign-ext);

mO(p840, sign-ext);
mO(p940, sign-ext);
n2(pa4q, resetJ, rstdc, sign-ext);
mO(pb4O, sign-ext);
ml(pc4I, reset-0.., sign...ext);
mO(pd4O, sign-ext);
mO(pe4O, sign-ext);
nl(pf4n, reset-1, sign...ext);
nl(pg4n, resetj1, sign-..ext);
mO(ph4O. sign-ext);

~~ COLUMN 50OF TH-E MIULTIPLIER

,IJ~ scanf( bp, "q %d%d%d%d". S&resetL9,&resetj ,&rstdc. &sign-ext):

for (G = 0; i < 7; i ----)
mO(p50[ij, sign-ext);

ml(p851. resetO0, sigw...ext);
ml(p951. reseL..O. sign--ext);

) nl(ph5n, resetJ1, sign-.ext);
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mO(pc5O, sign-.ext);

nl(pe5n, reseti1, sign..ext);
* ~ml(pf5l, reset-0.., sign-..ext);

mO(pg5O, sign-ext);
ml(ph5l, reset_0, sign-ext);

/***************COLUMN 6 OF THE MULTIPLIER*************/

fscanf(bp, "%d%d%d%d", &reset_0 &resetjl,&rstdc, &sign-ext);

for (i = 0; i < =7; i++)
mO(p6ofi], sigxt.ext);

ml(p861, reset_0, sign..ext);
ml(p96l, reset_0, sign-ext);
m2(pa62, reset-0, -stdc, sign..ext);
nl(pb6n, reset-1, sign-ext);
ml(pc6l, reset-0, sign-ext);

* nl(pd6n, reset-1., sign..ext);
nl(pe6n, reset-1, sign-ext);
ni(pf6n, reset-1, sign-ext);
nl(pg6n, reset-1, sign..ext);
ml(ph6l, reset_0, sign..ext);

,/***************COLUMN 7 OF THE MULTIPLIER /

fscanf(bp, "ld%dtd%d", &reset_0 &reset-J,&rstdc, &signext);

for (i = 0; i <;=- 7; i+±)
mO(p70[iI, sign- ext);

mO(p87O, sign...ext);
mO(p970, sign-ext);
nl(pa7n, reset-1, sign..ext);
mO(pb7O, signL-ext);

* nl(pc7n, reseti., sign...ext);
mO(pd7O, sign-ext);
mO(pe7O, sign..ext);

mO(pf7O. sign-ext);
mI(pg7l. reset-O. sign-ext);
mnO(ph7O. sign-ext);

~~ COLLUMN 8 OF TH-E MULTIPLIER
fscanf(bp, "%'cdd-c'd", &reset0.&S-resetj,&-rstdc. ksignext);

for (I 0: i 7; i+-)
m0(p8OI!, sign-ext);

mnO(p88O. sign-ext);
rnO(p980. sign..ext);

* 1B-33



peeli>fflclk2 =peb..>ff3c~ki;

pfcO->fflclk2 = pfbl->ff3elki;
pfcO->prodin = pfbl->sumffclkl;

4 pgcq->fflclk2 = pgbl->ff3clkl;
pgcq->prod-in = pgbl->sumffclkl;

phcn->fflclk2 = phbn->ff3clkl;
phcn- >prod-in = phbn- >sumffclkl;

/~~*************TO COLUMN 13 *************

for (i = 0; i < = 6; i±+)
4 { pdl[il-> fflclk2 = pcOli)-> ff3clkl;

* pdli->prodin = pcOi->sumffclkl; I

p7dn->fflclk2 = pcO[7]-.>ff3clkl;
~* p7dn->prodin = pcO[71->sumffclkl;

i p8dl->fflclk2 = p8cn->ff3clkl;
-N. p8dI->prod-in = p8cn->sumffclkl;

p9dl->fflclk2 = p9cn->ff3clkl;
pgdl->prod-in = pgcn->sumffclkl;

pad0->fflclk2 = pac2->ff3cikl;
padO->prod-in = pac2- >sumffclkl;

* *~*pbdl->fflclk2 = pbcl->ff3clkl;
pbdl->prod-in =pbcl->sumffclkl;

pcdn->fflclk2 = pcc2->ff3cikl;
pcdn->prod-in = pcc2->sumffclkl;

pddn->fflclk2 =pdcl->ff3clkl;

pddn->prod-in = pdcl->sumffclkl;

pedn->fflclk2 =pecl->ff3clkl;

pedn->prodin =pecl->sumffcikl:

pfdn->fflclk2 = pfc0->ff3clkl;
,V-,pfdn- >prod-in =pfc0- >sumffclkl;

pgdl->fflclk2 =pgcq- >ff3clkl,
Cpgdl->prod-in =pgcq->sumffclkl;

phdn-->fflclk2 =phcn->;ff3clkl;

phdn->prod-in =phcn->sumffclkl;

* f scanf(bp, "%cd'd%dc'd", &reset.,&resetj.&rstdc, &sign--cxt);

B-30



V~. . ~fprintf(zp," prod-in = %/'d phOO->prod-in) }

for (i =0; i < = 7; i±-i)
mO(pOOji], sign-..ext);

ml(p8Ol, reset_0, sign-ext);
ml(p901, reset_0, sign..ext);
nI(paOn, reset-J, sign-ext);
mO(pbOO, sign-ext);
nl(pcOn, resetl1, sign-ext);
nl(pdOn, resetJ, sign-ext);

r, nl(peOn, resetJ, sign-ext);
nl(pfOn, resetj, sign-.ext);
nl(pgOn, reset-1, sign-ext);
mO(phOO, sign-ext);

,/***************COLUMN 1 OF THE MULTIPLIER

, read the input control signals for this column before calling the
multiplier function

fscanf(bp, "%d%d%d%d", &reset_0 &reset-J,&rstdc, &sign-ext);

for (i = 0; i < = 7; i++)
MO(plO~i], sign..ext);

nl(p8ln, reset-1, sign-..ext);
nl(p9ln, resetj1, sign-ext);
nl(paln, resetJ, sign-ext);
ml(pbll, reset_0, sign..ext);
mO(pc 10, sign-ext);
ml(pdll, reset-0.., sign-..ext);
ml(pell, reset..J, sign-ext);
m2(pfl2, resetO0, rstdc, sign-ext);
mO(pglO, sign-ext);
nl(phln, resetI, sign-jext);

~~~ ~~COLUM4N 2 OF TH-E N4LTIPLIER *************

fscanf(bp, "%d%d%d~cd", &reset-O,&resetj,&rstdc. &sign-ext);

for (i = 0; i < = 7: i -- )
mft22O ij, sign-ext);

ml(p821. reset..O. sign-ext);
ml(p921. reset-.O, sigw..ext);
nl(pa2n, reset-l, sigiu-ext);
n'2(pb2q, resetj1, rstdc, sign-ext);
nl(pc2n. reset-j. sign....xt);
n I(pd2n. reset-j. sign-ext):
n nI(pe2n. reseti1. sign-fext):
mO(pf2O. sign jext);
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S mI(pg2l, reset..., sign-ext);
- m2(ph22, reset-O, rstdc, sign-ext);

~~~ G~OLUMvN 3 OF THE MULTIPLIER *************

fscanf(bp, "%d%d%d%d", &reset_0 &resetjl,&rstdc, &sign-ext);

for (i = 0; i < = 7; i++)

nl(p3, set., iext);

nl(p83n, reset.J, sign-ext);
V.' ml(pa3l, reset-1, sign-ext);

nl(pb3n, reset-, sign..ext);
nl(pc3n, reset-1, sign-ext);
ml(pd~n, reset-0, sign-..ext);
ml(pe3l, reset.O, sign-.ext);

n2(pf3q, reset-1, rstdc, sign..ext);
mI(pg3l, reset..O, sign...ext);
ml(ph3l, reset-0.., sign-..ext);

~~~ ~COLUMN 4 OF THE MULTIPLIER*************/

fseanf(bp, "%d%d%d%d", &resetO,&resetjl,&rstdc, &signext);

-. for (i = 0; i <= 7; i+±)
mnO(p40[ij, sign...ext);

mO(p840, sign-ext);
mO(p940, sign-ext);
n2(pa4q, reseti1, rstdc, sign- ext);

% mO(pb4O, sign-ext);
ml(pc4l, reset..., sign...ext);
mo(pd4O, sign-ext);
mO(pe4O, sign-ext);

^Jnl(pf4n, resetj1, sign-..ext);
0 nl(pg4n, reseti., sign..ext);

mO(ph4O. signe!-xt);

~ COLUMN 50OF THE MIULTIPLIER

* scanf(bp, "%'-d'-dl'd~d". &reset-O.&resetj,krstdc. ksign..ext);

for (i = 0; i 7; i+*--)
MO(p5OiiL sign-ext);

m I(p85 1. reset-0., signe xt);
*mI(p951. reset.0. sign-ext);
<9mO(pa5O. sign-jext);

n. nI(pb5n. resetj. sign-ext);
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'~~ nlm(pd5nrs, sign ext);
nl(pe5n, reset..J, sign-.ext);

ml(pf~l, reset_0, sign-ext);
* mO(pg5O, signegxt);
j ' ~ml(ph5l, reset_0, sign-.ext);

/ ~ COLUMIN 6 OF THE MULTIPLIER

fscanf(bp, " %d%d%d%d", &reset.O,&resetj ,&rstdc, &sign-ext);

for (i= ; i < ==7; i++)
mO(p60[i], sign--ext);

M4~861, reset.O, sign-ext);
ml(p961, reset_0, sign-ext);
m2(pa62, reset-O, rstdc, sign-ext);
nI(pb6n, reset-1, sign-ext);
Ml(pc6l, reset_0, sign-..ext);

0 nI(pd6n, resetl1, sign-ext);
nl(pe6n, reseti1, sign-ext);
nI(pf6n, reset-1, sign-..ext);
nl(pg6n, reset-j, sign-ext);
ml(ph6l, reset_0, sign-..ext);

~~ COLUMN 7 OF THE MULTIPLIER

fscanf(bp, "'77d~cd%d%d". &reset_0 &resetJl,&rstd, &sign-ext);

for (i =0: i < = 7; i-t-0-

* rnft70[ij, sign-ext);

mO(p870, sign..ext);
mO(p970. sign-ext);
nl(pa7n, reset-j, sign-ext);
mO(pb7O. sign-ext);
nl(pc7n, reset-j. sign-ext);

* rnO(pd7O. sign--ext);
rnO(pe7O, sign-ext);
mO(pf7O. signe.-xt);
mrl(pg7l. reset-0,O sign-jext):
rnO(ph7O. sign-ext);

~~~ ~~C'OLU IN 8 OF THlE MULTIPLIER *************

fscanf(bp. kedd(~ &reset _0.k rese-t.-A1 .rst(d1c. &Mign...ext ):

for (i = 0: i =7; i --

mO(p8Oi'. signe t):

mfofp8XO sign-ext):
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mO(pa8O, sign-ext);
m2(pb82, reset-0, rstdc, sign-ext);
m2(pc82, reset_0, rstdc, sign-ext);
m0(pd8O, sign-ext);
mO(pe8O, sign...ext);
m2(pf82, reset-0, rstdc, sign-ext);
n2(pg8q, reser-J, rstdc, sign...ext);
n2(ph8q, reset-1, rstdc, sign-ext);

/***************COLUMN 9 OF TILE MIULTIPLIER /

fscanf(bp, "%d%d%d%d", &reset_0 &resetjl,&rstdc, &sign-ext);

for (i = 0; i <= 7; i+±)
MO(pOO[i], sign-ext);

MI(pS91, reset-0, sign-ext);
Ml(pQ91, reset..., sign-..ext);
m2(pa92, resetJ, rstdc, sign-ext);
n2(pb9q, reset-1, rstdc, sign-ext);

0 ml(pc9l, reset_0, sign..ext);
nl(pd9n, resetj1, sign-ext);
nl(pe9n, reset-1, sign-ext);
nl(pf9n, reset-1, sign..ext);
nl(pg9n, reset-1, sign-ext);

m2(ph92, resetO0, rstdc, sign-ext);

/***************COLUMN 10 OF THE MULTIPLIER

fscanf(bp, "%d%d%d%d", &reset_0 &re5et-j,&rstdc, &sign--ext);

for (i = 0; i < = 7; i±±)
mO(paO[i], sign-ext);

ml(p~al, reset.0, sign-..ext);
ml(p9al, reset_0, sign-ext);
mO(paa0, sign-ext);
mO(pbaO. sign-ext);
ml(pcal, reset_..0 sign-..ext);
nl(pdan, resetiJ, signegxt);

C'-2nl(pean, resetj1, signext);
ml(pfal, reset-.0, sign...ext);
nl(pgan, resetiJ, sign-ext);
mo(phaO. sign-ext);

~~ COLUMN 11 OF THE MULTIPLIER

fscanf(bp, "0%d%d0'dod". &reset...,&reset-j,&rstdc. &sign-.txt);

for (i =0; i 7:i-
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* nl(p8bn, reset-1, sign..ext);
nl(p9bn, reset-1, sign-ext);
n2(pabq, reset-J, rstdc, sign-ext);
ml(pbbl, reset..., sign-ext);
nI(pcbn, reset-1, sign..ext);
ml(pdbl, resetO0, sign...ext);
ml(pebl, reset.O, sign-ext);
ml(pfbl, reset.O, sign-ext);
ml(pgbl, reset-O, sign-.ext);
nl(phbn, reset-1, sign...ext);

/ ***************COLUMN 12 OF TH-E MULTIPLIER

fscanf(bp, "%d%d%d%d", &reset_0 &resetj,&rstdc, &sign-ext);

for (i = 0; i =7:,i+
mO(pcOfil, sign..ext);

nl(p8cn, reset..J, sign-..ext);
* nl(p9cn, resetj1, sign-ext);

m2(pac2, reset_0, rstdc, sign-ext);
ml(pbcl, reset_0, sign-ext);
m2(pcc2, reset-.., rstdc, sign...ext);
ml(pdcl, reset-O, sign-..ext);

mO(pfcO, sign-ext);
n2(pgcq, reset-1, rstdc, sign...ext);

nl(phcn, reset-1, sign...ext);

~~~ ~~COLUMN 13 OF THE MULTIPLIER * ***** ***

fscanf(bp, "%d%d%d%d", &reset.O,&resetj ,&rstdc, &sign~ext);

4-.,for (i =0; i <= 6; i±+)
ml(pdltil, reset-0, sign-..ext);

nl(p7dn, resetj1, sign-..ext);
ml(p8dl. reset-0, sign-ext);
ml(p9dl, resetO0, sign...ext);
mO(padO, signext);
ml(pbdl. reset-O, sign-ext);

* nl(pcdn, resetj1, sign..ext);
nl(pddn, resetj1, sign..ext);
nI(pedn. reseti., sign..ext);

*nl(pfdn. reset-1, sign--ext);
mI(pgdl, reset-.0. sign...ext);
nl(phdn. reset-1, sign-ext);

***** ** ~ PRINT RESULTS * * ******* ****

if (clk-.sunt ~.=39)
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-- - -- - . . .

{fprintf(np," %d ",clk-jnt);
for(i =0; i <= 7; i±±)

fprintf(np," %d " ,(pOO~i] )- >sumffclkl);
fprintf(np," %d %d %d %d %d %d %d %d %d %d ", p801->sumffclkl,

p901-> sumffclkl, pafln- >sumffclkl, pbOO- >sumffclkl,
'1 pc~n- >sumffclkl, pdOn- >sumffclkl, peOn- >sumffclkl,

pf~n- >sumffclkl, pg~n- >sumifelki, phOO- >sumficlki);}

if ( clk..sount > = 42)
( fprintf(op," %d " ,clk-jnt);
for(i =0; i <= 7; i±+)

-'5'- fprintf(op,"%d " ,(plO[i] )- >sumffclkl);
* fprintf(op," %d %d %d %d %d %d %d %d %d %d", p8ln->sumffclkl,

pgln- >sumffclkl, paln->sumffclkl, pbll- >sumffclkl,
pclO- >sumffclkl, pdll- >sumffclkl, pell- >sumffclkl,
pfl2->sumffclkl, pglO- >sumffclkl, phin- >sumffclkl);}

if ( elk-.count >= 45)
{fprintf(pp," %d " ,clkijnt);

for(i =0; i < = 7; i±±)
fprintf(pp," %d ",(p20[i])- >sumffclk1);

0 yj fprintf(pp," %d %d %d %d %d %d %d 97d %d %d, p821->sumffclkl,
0 p921-> sumffclkl, pa2n- >sumffclkl, pb2q- >sumffclkl,

pc2n- >sumffclkl, pd2n- >sumffclkl, pe2n- >sumffclkl,

pf2- >sumffclkl, pg2l- >sumffclkl, ph22- >sumffclkl);}

if ( cilkcount >= 48)
{ fprintf(qp," %d " ,cik-jnt);
for(i =0; i < = 7; i++)

fprintf(qp,"%d " ,(p30[i)- > sumffclkI);
fprintf(qp," %d %d %d %d %d %d %d %d %d %d" p83n->sumffclkl,

pg3n- >sumffclkl, pa3l- >sumffclkl, pb3n- >sumffclkl,
pc3n->sumffclkl, pd3l- >sumffclkl, pe3l->sumffclkl,
pf3q- >sumffclkl, pg3l- >sumffclkl, ph3l- >sumffclkl);}

if ( cilkcount >= 51)

for(i =0; i < = 7; i+±)
fprintf(sp,"%/'d " ,(p40[ij)->sumffclkI);

fprintf(sp," %d %d %d %d %d %d %77d %-d %od %d ", p840- >suniflclk I,
p940- >sumffclkl, pa4q- >sumffclkl. pb4O- >sumnffclkl,
pc4l- >sumffclkl, pd4O- >sumffclkl, pe4O- >sumffclkl,
pr-In- >sumflclkl, pgn->sumffclkl, ph4O->suniffclkt);

if( clk-count > =54)
{fprintf(rp,"' %d " ,clk-jnt);

for(i =0; i < = 7; i±±)
fprintf(rp,"%d " ,(p50[ijy->sumffclkI1);
fprintf(rp," %bd %'d %'d ced %od %'d %d %od Od od ", p851- >-suimffclkl.

p951-.>sumffclkl, pa5O- -sumffclkl. pb5n- -:surnffclkl,
pc5O-,-sumffclk1. pd5n- *-sumffclkl. pe5n- --surniffekI1,

*pfSI- -sumffclkl. pg5O-,- sumffclkI, ph.5I- Msumtlcl ):
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- *-,if ( clk-count > = 57)
{ fprintf(tp," %d " ,clk-jnt);
for(i =0; i < = 7; i++)

fprintf(tp," %d " ,(p60[i] -> sumffclkl);
fprintf(tp," %d %d %d %d %d %d %d %d %d %d ", p861->sumffclkl,

p961-> sumffclkl, pa62- >sumffclkl, pb6n- >sumffclkl,
pc6l- >sumffclkl, pd6n- >sumffclkl, pe6n- >sumffclkl,

4 pf6n->sumffclkl, pg6n->sumffclkl, ph6l->sumffclkl);}

if ( clk...count > = 60)
( fprintf(up," %d ",clk-jnt);
for(i =0; i <= 7; i++)

fprintf(up,"%d ",(p70(ij)- >sumffclkI);
fprintf(up," %d %d %d %d %d %d %d %d %d %d ", p870->sumffclklI,

p970-> sumffclkl, pa7n- >sumffclkl, pb70- >sumffclkl,
pc7n- >sumffclkl, pd70- >sumffclkl, pe7O- >sumffclkl,
pf7O- >sumffclkl, pg7l- >sumffclkl, ph70- >sumffclkl);}

if (clk..count > = 63)
{fprintf(vp," %d " ,clkjint);

for(i =0; i < = 7; i++)
* fprintf(vp," %d " ,(p80[i] )- >sumffclkl);

fprintf(vp," %d %d %d %d %d %d %d %d %d %d, p880->sumffclkl,
p980-> sumffclkl, pa8O- >sumffclkl, pb82- >sumffclkl,
pc82->sumffclkl, pd8O->sumffclkl, pe8O->sumffclkl,
pf82- >sumffclkl, pg8q > sumffclkl, ph8q--> sumffclkl);}

if ( clk-count >= 66)

for(i =0; i <= 7; i++)
fprintf(wp,"%d ",(p90[il)->sumffclkl);

fprintf(wp," %d %d %d %d %d %d %d %d %d %d ", p891->sumffclkl,
p991-> sumffclkl, pa92- >sumffclkl, pb9q- >sumffclkl,
pc9l- >sumffclkl, pd9n- >sumffclkl, pe9n- >sumifelki,
pfgn- >sumffclkl, pggn- >sumffclkl, ph92- >sumffclkl);}

if ( cilkcount >= 69)
{fprintf(yp," ?bd ",clk-jnt);
for(i =0; i <= 7; i±+)

fprintf(yp,"%d ",(paO[ifl->sumffclkl);
fprintf(yp," %d %d %d %?d '?'d %d %7d %d %d %d ", p~al- >sumnffclkl,

p9al- >sumffclkl, paa.- >sumffclkl, pba0- >sumffclkl,
pcal-,>sumffclkl, pdan- >sumffclkl, pean- >sumffclkl,
pfaI-: sumffclki, pgan->sumffcikl, phaO->sumffclkl);}

if ( elk-count > = 72)
( fprintf(zp," '7d ",clkint);
for(i =0; i e = 7; i±I± )

fprintf(zp." bd ",(pbO[i])->sumffclkl);
fprintf(zp." %od %d %d %od %od %d %d %'bd Iod %d" Ib-srnfbl

% pgbn-i'sumffclki, pabq-->sumffclk1. pbbl->sumffclkl,
pcbn- >sumflclkl, pdbl- >-sumffclkl. pebi- >sumffclkl,

* pfbl- >sumllclkl, pgbl->sumffcikl, phbn- >surnffclkl);}

if ( ci-count =75)
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{fprintf(pz," %d ",clk..count);
for(i =0; i < = 7; i+±)

fprintf(pz ,"%d " ,(pcO~i])- >sumffclkl);
fprintf(pz," %d %d %d %d %d %d %d %d %d %d ", p8cn->sumffclkl,

pgcn- >sumffclkl, pac2- >sumffclkl, pbc 1-> sumffclkl,
pcc2- >sumficiki, pdc1- >sumffclkl, peci- >sumffclkl,
pfco->sumffclkl, pgcq->sumffclkl, phcn->sumffclkl);}

if ( clk-count > = 78)
{fprintf(xp," %d ",cik-count);

for(i =0; i <= 6; i++)

fprintf(xp," %d %d %d %d %d %d %d %d %d %d %d ",p7dn->sumffclkl,
p8dl- >sumffclkl, pgdl- >sumffclkl, padO- >sumffclkl,

pbdl- >sumffclkl, pcdn- >sumffclkl, pddn- >sumffclkl,
pedn- >sumffclkl, pfdn- >sumffclkl, pgdl- >sumffclkl,
phdn->sumffclkl); )

fprintf(zzp," %d ",clk..sount);
for(i =0; i <= 6; i++)

fprintf(zzp," %d " ,(pdl[i])- >sunuffclkI);
* fprintf(zzp," %d %d %d %d %d %d %d %d %d %d %d ", p7dn->sumffclkl,

p8dl- >sumffclkl, p9dl- >sumffclkl, padO- >sumffclkl,
pbdl- >sumffclkl, pcdn- >sumffclkl, pddn- >sumffclkl,
pedn- >sumffclkl, pfdn- >sumffclkl, pgdl- >sumffclkl,
phdn- >sumffclkl);

(I cikijnt +=I;

fclose(ap);
fclose(bp);
fc Iose(cp);
fclose(np);
fclose(op);
fclose(pp);
fclose(qp);
fclose(pz);
fclose(sp);

* fclose(tp);
felose(up);
Cclose(vp);
fclose(wp);
fclose(xp);
fclose(yp);
fclose(zp);

* * felose(zzp);
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., - - ds In Functions"

~5.1.1.
/**********************************************************************

** DATE: 29 AUG 1985

** TITLE: multiplier functions
: " ** FILENAME: submo.c, subml.c, subm2.c subnl.c, subn2.c

** COORDINATOR: Jim Collins.
** PROJECT: WFT16 SIMULATION
** USE: These are the functions called by the multiply.c program

to evaluate the bits in the data structure pointed to
by the position in the array in the same

.9. ** fashion the hardware multipliers will do.

" ~1*/* zero multiplier cell */

mO (ptr, sign.ext)
struct multXO *ptr;

* . int sign.ext;

if (signext = 0)
ptr- > sumffclk2 = ptr- > prod.in;

else
ptr->sumffclk2 - ptr->sumffclk2;

ptr->ff2clk2 - ptr->fflclkl;
ptr->ff3clk2 - ptr->ff2clkl;

ptr- > fflclkl = ptr- > fflclk2;

ptr- > ff2clkl ptr->ff2clk2;
ptr- > ff3clkl -ptr->ff3clk2;
ptr->sumffclkl - ptr->sumffclk2;

'9} return;
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/* plus one multiply function *

ml (ptr, reset-.0, sign-ext)
struct multXl *ptr;
int reset-0, sign-ext;

int add =0;

if (reset.0 == 0)

ptr->carryjlfclk2 = 0; /~reset the carry flip-flop to 0 ~
ptr->carryjlfclkl = 0;

/* things that happen on clock two ~

add = ptr->ff2clkl + ptr->prod~jn + ptr->carryjlfclkl;

switch(add)

case 0:
ptr->tmpsum = 0;
ptr->carryjfclk2 = 0;

'V break;

case 1:
ptr->tmpsum = 1;*1. ptr->carryjfclk2 = 0;

break;

case 2:
ptr->tmpsum = 0;
ptr->carryffclk2 =1

break;

case 3:
ptr->tmpsumn = 1;

* ptr->carryjrfclk2 =I

break;

/* end case

if (sign-ext!=1
ptr->sumffclk2 =ptr->tmpsum:

pt-fJck pr>.lll

ptr->ff~clk2 = ptr->fflkl;

things that happen on ciki *

ptr- ->flclI = ptr->fflclk2;
(A ptr- >-ff2clkl = ptr- >ff2clk2;

ptr- Dff I = ptr- > f3clk2:
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~ ~ *ptr->carryJfclkl = ptr->carryjlfclk2;
ptr->sumffclkl =ptr->sumffclk2;

return;
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plstomultiplier/

m2(ptr, reset..., rstdc, s-..extend)

struct multX2 *ptr;
int reset-0, rstdc, s..extend;

int add 0
int addin = 0;

if (reset-0 == 0)

{t-cryfck ;/rsttecryfi-lpt
ptr- >carry-fclk2 = 0; /* reset the carry flip-flop to 0 *

/* things that happen on clock two *

addin = (ptr->ff3clkl && rstdc);
add =addin + ptr->prod-in + ptr->carryjffhlkl;

switch(add)

* case 0:
ptr- >tmpsumn = 0;
ptr->carryfcLk2 = 0;

break;

case 1:
ptr->tmpsum = 1;
ptr->carryjlfclk2 = 0;

break;

case 2:
ptr- >tmpsum = 0;
ptr->carryjl'clk2 = 1;

4 break;

case 3:
ptr->tmpsum = 1;
ptr->carryjfclk2 1;

break;

} end case*

if (s....xtend != 1)
ptr->-sumffclk2 =ptr- >tmpsum;

ptr- >ff2clk2 = ptr tlckl
ptr- -.ff.3clk2 = ptr- -1 ff2clkl;

*things that happen on ciki

p)tr- if icik I = ptr- > fflcclk2:
ptr- 'ff2clkl = ptr->ff2clk2;
ptr - fT3clkl =ptr- ffMck:
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~.- ptr->carryjffclkl = ptr->carryJfclk2;
ptr->sumffclkl =ptr->sumffclk2;

return;
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-~ 2*~.\ *minus one multiplier function *

nl(ptr, reset-1, s-extend)
struct muitNi *ptr;
int resetJ, s~extend;

mnt add = 0;
/* things that happen on clock two ~

if (reset-1 = 1)

ptr->carry-.ffclkl = 1; /* reset the carry flip-flop to 0*/
ptr- >carry..ffclk2 = 1;

'II

add = !(ptr->ff-clkl) + ptr->prod-jn + ptr->carry.Jfclkl;

switch(add)

case 0:
ptr->tmpsum = 0;

* ptr->carryjffclk2 0;
break;

case 1:
ptr->tnpsum = 1;
ptr->carryjlfclk2 = 0;

break;

case 2:
ptr->tmrpsum = 0;
ptr->carryJfclk2 = 1;

break;

case 3:
ptr->tmpsum = 1;
ptr->carryjlfclk2 = 1;

break;

~ ~end case

if (s...extend =1

ptr- ;,sumffcik2 =ptr-->tmpsum;

ptr-.>ff2clk2 = ptr->fflclkl;
*ptr- >ff3clk2 = ptr- --ff2clkl1:

*things that happen on cikI

ptr- if icik I ptr- _- ff IcIk2:.
ptr- -ff2clkl = ptr- -ff2clk2;

* ptr- -ff3cikl = ptr- -'ff.3clk2:
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'? ~'
p.

.4

4.
4.

,.*'' .*.'*
.. ~ .. /. ptr->carryjlclkl = ptr->carryjlclk2;

ptr->sumffclkl = ptr->sumffclk2;

*4% return;
'4 *~

}
4.. *
.4.
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*~~ minus two multiplier *

n2(ptr,reset-1, rstdc, s-extend)
struct multN2 *ptr;
int reseti1, rstdc, s-extend&

mnt add = 0;
int addin = 0;

if (reset-1 == 1)

ptr-cry cll=; /* reset the carry flip-flop to 0*!
ptr->carryffclk2 = 1; 7* reset the carry flip-flop to 0*/

addin = !(ptr->ff3clkl && rstdc);
* add = addin + ptr->prod-in + ptr->carryjfclkl;

switch(add)

case 0:
ptr->tmpsum = 0;
ptr- >carryjfrclk2 =0;

break;

case 1:
ptr->tmpsum = 1;
ptr->carryJfclk2 = 0;

break:

case 2:
ptr->tmpsum = 0;
ptr->carryJfclk2 1;

break;

case 3:
ptr-- >tmpsum =1

ptr->carry-ffcik2 1:
* break;

*end case

if (s-extend 1
ptr- --sumffclk2 =ptr- tmpsum:

ptr->ff~clk2 = ptr- i.ficiki:
ptr- >-ff.3clk2 = ptr- ->fT2clkl;

things that happen on cikI

ptr- 'fIicIki= ptr- -fTIcIk2;
ptr- _>tT2cI = ptr- *IT2clk2:
ptr- fT3clkl = ptr- -.fT3ck2:
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-:ptr- >carryjlfclkl =ptr- >carryjfclk2;
ptr->sumffclkl ptr->sumffclk2;

return;
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** DATE: 12 NOV 1985

** AUTHOR: Jim Collins
** FILENAME: postwfta.c

• * PROJECT: WFT16 Simulation
** OPERATING SYSTEM: UNIX V 4.2
"*" LANGUAGE: C
** USE: This program is the third in the series which model the
** 16-point winograd pipeline. It follows the multiply.c
** program.

** FILES READ:
": ** mastercontrol: control word for the processor per simulation

** cycle.
- * ** postadd-cntrl: reset signal for the carry/borrow of the
* ** postadd column.

** rmultout: output of the real pass through the serial
• * multiplier, input to the real postadders.
** imult out: output of the imaginary pass through the serial
** multiplier, input to the imaginary postadders.

** FILES WRITTEN:

** rpostaddlin: input to the first columns of the real postadders.
** rpostadd2_jn: input to the second column of the real postadders.
** ,rpostadd3_jn: input to the third column of the real postadders.
** rprcelld.jn: input to the real parity round cell.
** rprcellout: output of the real parity round cell.

** rsipo-out: output of real results.
** ipostaddl-in: input to the second column of the imaginary postadders.
** ipostadd2_jn: input to the second column of the imaginary postadders.
** ipostadd3_jn: input to the third column of the imaginary postadders.
S* iprcell._n: input to the imaginary parity round cell.

- ** isipo.out: output of imaginary results.
* -. **

** FILES INCLUDED:
** fn-add.c: addition function
•* postdec: type and structure declarations for

the program.

#include ---stdio.h-j'
#include "fn_.add.c"
#include " postdec"

#define elk-cycle 32 j* 16 point wfta cycle *
typedef struct add-cell
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int x-1;
int y-1;
int c-1;
int b-1;

typedef struct add2-.cell.

int sum;
int duff,
int co;
int ho;

main()

FILE *ap,*bp,*cp,*dp,*ep,*gp,*hp,*jp,*jp,*kp,*lp,*mp,
*flp, *op, *pp, *qp, *fopenO;

*initialize the pointers for the adders*/

0for (i=O0; i< =8; i++)
{p-r-Ji[i] = &r...col-iin~ij;
p-r-Jo[ij = &r..col-iout~i];
p-j-i[ij = 6-col-in[i];
p.j-Jo~ij= &L-col-lout[i];}

L.for (i =0; i< =3;i++)
{p-..r.2i~i] = &r-col..2in(iJ;

-~~ p-r.2o(i] = &r..col.2out~i];
p-..2i[ij = &Lcol..2in[i];

p--oi &iLcol-2outi];}

for (i 0; i < = 6; i++)

j p.r-361i = &r-col-3in[i];
P-Yj~fij = &r-col-3outril;
pij~iij =&L..coLini];

p-J3ojij &icoL-3outi; I

*open the files for the control words, and input data and output j

ap = fopen("master-control". "r");
bp = fopen(" postadd-cnt rl"," r");
c p = fopen("rmult-out", 'Y);
dp = fopen(" imultoput" 2 r");
hp = fopen("rpostaddl-in"," w");
Jp t'open(" rpostadd2jn" ." w");

ip fopen(" rpostadd3-jn"." w");
kp =fopen("rprceil~ji","w");

gp =fopen("rprcello-ut"."w');

Ip = open(" rsipo-out","w");
Aq np =fopen("ipostaddl-jn","w"):

-- op =fopen("ipostadd2-jn"."w");

* pp =fopen(" ipostadd13.jn" "w"i;
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GA, fopen("iprcelbn" ,"w");
mp =fopen("isipo-out","w");

V.fscanf(ap,"%d" ,&cycles); 7* number of full cycles which the program
will simulate

while (clk-count <= cycles)

fscanf(ap,"%/7d",&clk count); 7* read master control clock cycle *

cik =(clk-count % clk...cycle);
clkijnt =(clk-jnt % clk..cycle);

*check to see if internal and master clocks are sychronized *
if (clk !=.clkjnt)
{printf(" clocks are not synchronized %dO, clk);
exito; I

* ,,'* read all the control signals *

* for (i=O; i<=19; i++)
fsc anf(ap," %d" ,& flags liJ);

assign control variable to be used in this program *

sr__ipo = flags[14];
Ls-ipo =flags[131;
sd-sipo = flags[L21-;
p-calc =flags[51;
p-append = flagsj6j;
r-calc =flags[41;

fscanf(bp,"%d" ,&clk~jadd); 7* read adder reset signals *
for (i = 0; i < = 2; i ++)

fscanf(bp,""id" ,&rstbitij);

~~~ ~~POST ADD MODULE I******************

/* call fn..add.c to add bit streami*
bfor(i = 0; '< 8: i-.+-

add(p~j'jirii, pj~Jorij);

V *The NISFFs inthe postadder are reversed, data enters through phi-l and
leaves through phL-2. assign to output latch of the NISFF *

for (i = 0: i = :i-±-

{rpoStradd~i'I.fclk2 rpostaddTi~.Nckl;,
ipostadd'i'Jclk2 ilpostaddli'.fclk 1:
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-:' ~ / ****************POST ADD MODULE 2 /

for(i= 0; i < 3; i ++)

add(p-.....i[i], p-j...2o[iJ);
add(p-j '2i[i], p-i.2o(ij);

/ * seven MSFFs in the second column *
for(i = 0; i <= 7; i++)

~.4. { rpostadd2 [i] .fclk2 =rpostadd2 fi].fclk 1;
ipostadd2i1 .fclk2 =ipastadd2[i] .felkl;}

,'****************POST ADD MODULE 3

for(i = 0; i < = 6; i ++) /~same as first column *

add(p...L3i[i], p-j3o[i]);

for( i 0; i <= 1; i+±)

rpostadd3 Ri].fclk2 rpostadd3 [i] .fclkl;
ipostadd3[ij.fclk2 = ipostadd3[i].fclki;

PARITY [ROUYND CELL

/* move bits through the parity round cell, both real and imaginary ,

for ( i= 0;i i< 15;i+

(r..celljf.and-out (r..cell~il).clI & (r..celIil).r.fclk1;
(r..cell til).r-or (r..cell[i] ).and-.out I !r-..calc;
(r...cell~ij).in...xor =(r...cell[i).clki (r-cell[il).r.fclkl;
(r-..cell~ij).p-jcor =(r-cell~ij).in.xor ^(r...cell[i).p.fclkl;

* -. ~~(r...celllij).p-.or = (r...cell[il).p..,or I !p-..calc;
(r...cell[ij).p.fclk2 = (r cell[iJ)p-.or;
(r..cellji]).r.fclk2 = (r celI~i)).r..or;

/* check control signals for parity cell*,/
if (pappend ==0)

(r-..cell~ij).clk2 =(r celli).in..xor;
else
(r...celi).lk2 =(r cel1 ij).p.fclk1;

(r-celllii).p.fclki = (r..celli).p.fclk2;
(r..cellrij).r.fclk1 (r..celljiI).r.fclk2;

(i....ell~ij).and-out (L..cell[ij).clkl & (i...ceHli).r.fclki:

(ic-elii).p.xor =(L...cell[i]).lkxo^ (i elli).~fclk:

(L celli ).p-or (Lcsell~il),p..xor ! p-cale;
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~: ~ (L-cellfi]).p.fclk2 = (L..cellij).p..or;
(iLcell[i]).r.fclk2 = (L-cell[iI).r..or;

if (pappend == 0)
(i,..cell[i]).clk2 = (i-cell[il).in..xor;

else

(i...cell[i]).clk2 =(i...cell~i]).p.fclkl;

(i...cell[i] ).p.fclkl = (i..cell[i] ).p.fclk2;
(i...cell[i] ).r.fclkl = (i-cell[iI).r.fclk2;

i*************SIPO CELL *********************/

* * ~shift the data right in the serial path *

if (sr-.sipo =1

for (i = 15; i > = 0; i-)
for (j =23;j > =0; j--)

if (j == 23)
* {r.-5ipo[ijjj].s.clk2 =r..phil-atch[ij;

i....ipo[iI[jI.s-.clk2 = Lphil.Jatch[i];}
else

{ r....ipo[i] [j].s-..clk2 = r...sipo[i] [j +1J.s-..clkl;
i-,ipo[i][j].s-clk2 =i...sipo~i][j+1Js-clki;}

*latch data from the serial path into the parallel path *

if (L--sipo= 1

for (i =15; i > = 0; i--)
for (j = 23; j > = 0; j-)

i--ipo[i [jj .p-clk2 =i...sipo[i]j] .s-clkI;}

*shift the data down in the parallel path *

if (sd....gipo = )

*for (i =15; i>= 0; i--)
for (j =23; j > = 0; j--)

if (i == 15):
else

{r-ipo~ij~jj.p-clk2 r....ipoi- lijI.p-clkl;

~~ ~CLOCK ONE OCCURENCES ADD COLUMIN ONE ***~
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*Assign input mutpirresults tothe x andyvribe within

the adder data structures indices on the left are inputs and outputs
using the Taylor numbering system *

(p-r.Ji[Oj)->x.. = rmult[O]; /* too hOo *
(prj-i [0] -> y-1 = rmult[1]; /* t~l hOS8*

(prj i [ 11 Y>x-j = rmult[31; /* t03 t1OO *
(p...rJi[II)->y..J = rmult[81; /* t05 tiol *

(p-r-J i 2])-> x-1 = rmult[131; /* t13 t102 *
(p..yji[21)->yJl = rmult[61; /* til tU03

px-i3)>- = rmult[41; /* t04 tU04 *
(p-rji[31)->yj = rmult[91; /* t06 Q105 *

(p--.-Ji[4j)->x.J = rmult[11); /* t08 t106 ~
(p..j.Ji[4j)->y.J = rmult[1O]; /* t07 ~

(pr-Ji[5]y >x.j = rmult[121; /* t09 ~
(p-r-Ji[5j)->y.J = rmultfl0j; /* t07 t107 *

(p.r-ji[6J)->xJ = rmult[7]; /* t12 tU08 *
(p..rJi[Ofl>y.J = rmult[14J; /* M1 U109 *

(p-sJi71).>x-J = rmult[15]; /* t15 t11O *
(pxj-i[7])->y-j = rmult[161; /* t15 ~

(prJ i [8j)- > x- = rmultf 15); / * t15 ~
(p-r-Ji[8]->yJ = rmult[17]; /* t17 til10*

rpostadd[O].felkl = rmult[2]; /* t02 ~
rpostadd1il.fclkl = rmult[5]; /* tlo */

~ TIVAGINARY SECTION

(p.Ll1i[Oj)->x-j = imult(O]; /~uOO hOO *
(p-jJi[Oj)->Y-J = imult[1J /* u0l h08 ,

(p.LlJi[(I)- > xJ = imult[31; ,/* u03 u1OO
(pjli(1j)->yJ1 = imult81; '~u05 u10l

(pJ.Ji[21)->xj = imult[l31; u13 ul102
(p-ji 2j)- >y-J = imultl6l; ul 1 u103*

(P-jJi[3i)->x-j = imult[41; *u04 u10-1
(p-ji [3j)- > y- imult[9I; u06 0105

(p~~I->xj= imult llI: *U08 11106
(p~~I--,y- = imult[lO1; 0i7*

(p-j..l51)- >x-j = imult l21; 0i2 *
(p~i5 -- y-1 = imulti i1; u07 u 107

(p1jij61)->-X-j = imult[7h * u12 u108*
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~ ~-.. (p...LUi[6)->y.J = imult[14]; /* u14 u109 *

(pjli[7])->x-J = imult[151; /* U15 UllO *
(p..Lli[7j)->yJI = imult[161; /* U15 ~

(p-jJi[8j)->x.J = imult[15J; /* u15 *
"4(pji(81 Y >y-1 = imult[171; / * u17 u11O 0

ipostadd[OJ.fclkl = imult[21; /* u02 *
ipostadd(1].fclkl = imult[5]; 7* u10 */

for (i = 0; i < = 8; i±+) /* move carry, borrow to GLKI latches *
f (p-r.Ji[i])->c-J =P-rJo~ij->co;

(p..rji[i]->bJ = p-j.Jofi]->bo;
p..(p-i-ii[i])->c.j =p-jJo[i]->co;

(p-j.Ji~i])>b.J p-j.o[i]->bo;}

if (rst-it0J == 0) 7* if reset high reset the carry and borrow *
for (i = 0; i <= 8; i++)
{(p...r.oij)->co =0;

*0 (pr..J[i])-b =0;

(p-j.Ji[il)->bJ = 0;
(pi.-Jo[ij)->co =0;

(p..jo[il)->bo =0;

(pi.JIi[ij)->c-j= 0;
(p-j.Ji[iJ)->b.J 0;}

fscanf(cp, "%d", &clk...real);
fscanf(dp, "%d", &clk-add);
for (i = 0; i < = 17; i+±+) 7*read input data from multiplier *

{fscanf(cp," %d" ,&rmult[il);
fscanf(dp,"%d" ,&imultfiJ);

if (clk-count >= 79) /* first input not expected until
clock 79

fprintf(hp, '? %d '.clk-count); ,'* print real and imaginary inputs
to the output files

for( i=0: i = i--)
fprintf(hp.'%d %od ".(p-rli[i)- >x-J (p-rjjii)>y-I);

fprintf(hp"d "o .61~dd0.felki, rpostaddci1}.fclki);

fprintf(np."' %d ,elk-count);
for ( i =0: i S; i-i--)

fprintf(np.'%d ed ", ipostad[O.fclkt. ipostadd[l!.fclkl);

******~CLOCK ONE OCCURENCES ADD COLUMN TWO

(p..r...2i0+) 'xJ (p...rjo 3I)>sum; t 104I t'200*
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(p-rj2i[01)->yJl = (p..r-lo[41)->diff; /* Ul06 t201 *
(P-L.2i[l)->X.J = (p.r-Jo3])->diff; /* U105 t202 *

(PTi~l)>YJ= (P..x.Jo[5])- >diff; /* t107 t203 *
(p-rj.)i[2])->x.j= (p~j.Jo[6])->sum; /* U108 t204 *
(p-r.2)i[2J)>y.J (p-r-Jo[7j)>sum; /* MiO t205 *

(pri=]~~ (p..r.Jo[6])- >diff; /* t109 t206 *
(p-rj.2i[3])->y..I (p-rJo[8])->diff; /* tlll t207 *

rpostadd2[Oj1.fclkl = rPostadd[Oj.fclk2; /* t02 *
rpostadd2[l].fclkl = (p.r-jo[0])->sum; /* hO *
rpostadd2[2].fclkl = (p-rjJ(0)->diff; /* h8 *
rpostadd2[3l.fclkl = (p...r.jo[1])>sum; /* tloo ~
rpostadd2[4] fclkl = (p..-Ao[lj)->diff; /* tiol *
rpostadd2[51.felkl = rpostadd[lj.fclk2; /* tlo *
rpostadd2[6j.fclkl = (p-r-Jo2j)->sum; /* 0102 *
rpostadd2[71.fclkl I (p-x-lo2])>diff; /* 0103 *

/******************IAGINARY SECTION************/

*(p.L 2i[O)->x.J = (p-j.Jo[3})- >sum; /Ut04 t200 *
(P-j- i (0j)- >Y-1 = (P-j-o[4])->diff; /* U106 t201 ,

(pi..~~j-x = (P-j-lo[31)->diff; /* tU05 t202 *
(P...ii)>. = (p-iJo[5y > diff; /* U107 t203 *

S(p-i.2i[2j)->x~j= (pi.jjo[61)->sum; /* Ui08 t204 *
(pj...2i[21)->y. = (pij-o[7)->sum; /* MiO t205 *
(p-j -2i[31)->xJl = (P-j-o6)>diff; /* t109 t206 *
(p i...i[3)->yJl = (p-jJo8)->diff; , * t Ill t207 ~

ipostadd2[01.fclkl = ipostadd[Ol.fclk2; /* t02 *
ipostadd2f1l-felI = (pi.j-o(oj)->sum; /* hO *
ipostadd2[2].fclkl = (P-iJo[})- >diff; /* h8 *
ipostadd2[31.rclki = (p-j.Ao[l])->sum; 11* tlOO *
ipostadd2[4i.fclkl = (P..iAo[lj)->diff; /* tiol *
ipostadd2[5].fclkl = ipostadd[1].fclk2; /* tia *
ipostadd2[61.fclkl = (P-j-o[2])->sum; /* 0102 ~
ipostadd2[7i.fclkl = (p-i-o[2j)->diff; U1 t03/

for (i = 0; i < = 3; i++) /* shirt carry, borrow on
*phijI puls e *

{~ ~ ~~~(- (p.24]- c pso[ij)->co;
(P-r2ifil)- > b-J =(p-r'oil->bo,

(P- iil)- >cj (p-W.2ot]- >co;
>p~~i) >b (pW.,o[i)->bo;

if (rst-bitrl -= 0) /* if reset high reset the carry and borrow
for (i 0: i < = 3; i-~±

N. (ps22oil)- co =0;
(P...x..oli)- >bo = 0;

Pr" 

il-C1 0
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(p.L-'i[iD)->b.J = 0;}

if (clk-count > = 80) /* print real and imaginary inputs
which are the outputs of columns two *

fprintf(jp," %d ",clk-count);
for ( i = 0; i <= 3; i++)

fprintf(jp," %d %d pj.ii]->x,(rii])>yJ;
for (i = 0; i<= 7; i++)

fprintf(jp," %d", rpostadd2[i] .fclkl);

fprintf(op," %d " ,clk-count);
for ( i = 0; i <= 3; i++)

fprintf(op," %d %d " ,(p-i.ifij )->xJ, (p-j..2i[i] )- >yJ);
for (i = 0; i <= 7; i++)

fprintf(op," %d", ipostadd2 [i} .fclkl);

~~ ~CLOCK ONE OCCIJRENCES ADD COLUMN THREE*********/

i* assign output of column two adders both real and imaginary
to the input of column 3 *

(p.-r..3i[0j)->xj = (p......2o[0)->sum; /* t200 *
(p-r-.3i[I)->x..j = rpostadd2[3J.fclk2; /* tiO00~

7 (p-..r 3i['2)->x-l = (p..r..2o[1)->diff; /* t203 *
(pjr-3i13)- > x- = rpostadd2[01.fclk2; /* t02 */
(p-jji[4])->xJl = (p-r..o[1j)>sum; /* t202 *
(p-rji[5])->xlI = rpostadd2[4l.fclk2; /* tiol *

*(p..x.3i6 Y > x- = (p-r.2o[0J)- >diff; /* t201 *

* * ~in the real case, the imaginary term gets assigned to the y variable *

(p-r-3i [0)- >y-1 = (p.L-'o[2])->sum; /* u204 *
(P-r-3i[(II Y > y- = ipostadd2[61.fclk2; /* u102 *

(p~~~~j- 3i1)-y = p..[3j)->diff; /* u207 *
(p-jr..3i[3j)>y.J = ipostadd2[5].fclk2; /* u10O*/

%(p-jr.3i[4J)>y-l = (p.L.2)o[3j)->sum; /* u206 ,
(pjr.3i[5j)->yJI = ipostadd2[7l.fclk2; !/ u103

*(p..r..3i[6j)->y-j = (p...L2of2I)->diff; /* u205

* ~ ~ ~ ~ I~~~~vIAGINARY SECTION************i

(pi..3 i [0)- > x- = (p-j jo[0j)- >sum;
(pi...3if I+) >x-1 = ipostadd2[3i.fclk2;
(p..i..3i2Y > x- = (p12-'o[1I)I- > diff:
(pLj3i j3+ >)-I = ipostadd2[Ojfclk2;
(pLj3i 41)- -xl (p12 2"o II1+-> >sum;
(p-j-3i [5j)- >xJ = ipostadd2[4j.fclk2;
(pi-Iii[6+) 'xJ = (pi..2)o 0l)-> diff:

*in the imaginary case, the real term is assigned to the x term
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(p..L3i[])->yJ = (p..x...o[2])->sum;

(P..L3i[1]->y.J = rpostadd2[6].fclk2;
(p..i3i[2)->y.j = (p..x..o[3])->diff;
(P..L3i[3] )- > yj = rpostadd2 [5] .fclk2;
(P...L3i[4)->y.j = (p.-...o[3])->sum;
(P..L3i[5])>yj = rpostadd2[7j.fclk2;
(p-L3i[61)->y.j = (p-r-2o[2])->diff;

rpostadd3[0j .fclkl = rpostadd2[1j .fclk2;
rpostadd3[1] .fclkl = rpostadd2 [2] .fclk2;

ipostadd3[0] .fclki = ipostadd2[1] .fclk2;
ipostadd3[1] .fclkl = ipostadd2 [2] .fclk2;

for (i = 0; i <= 6; i++)
{(p..r3i[i)->c.j = (--oi)>o
(P-r-.3iji )- >b-J = (p-r-3o[i] )-> bo;
(pLj3i[i )- >c1l = (p1j3[i])-> Ca;
(p-i..3i[ij)->b-j = (P-j-.3o[i])->bo;}

if (rst-bit[21 == 0) /*reset carry/borrow *
{for (i =0; i<= 6;i++)

,Al (p.-...3o[i])->co = 0;
* (P..i-3o[i])->bo = 0;

(p-r_&.3[i])->cIj 0;
(P-j-3i[i])->bJ = 0;
(p.L-3o[ij)- >co = 0;
(P-i3o[if)- >bo = 0;
(p-j3i[iJ)->c~j= 0;

(p-.L3i[i)- >bJ =0; }

if (clk-count >= 81) /* print results ,

fprintf(ip," %d ,clk.count);

fprintf(ip,"%d %d " ,p-r.3i[i]- >x~j, prJ3i[il- >y~j);
for (i = 0; i <= 1; i+±)

fprintf(ip,"Od ", rpostadd3[ij.fclk1);

fprintf(pp," %od ",clk-eount);
for( i=0 i <=6;i++)

f printf(pp,"% od %d " ,p.L-3i[i}- >x~J, pj_.3i [iV yJl);
for (i = 0; i <= 1; i++)

fprintf(pp,"%bd ", ipostadd3[iJ .fclk 1);

******************PARITY ROUND CELL INPUT

assignments to the phil-Jatch in the pr-ceII l

r-celI(0].clkl = rpostadd3[0].fclk2;
r-ceIlri].clki = (pj-r.3o[0])->diff;

*q r-ceji[2).clkl (p-r.3o[1])->diff;
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\~~ r.ceII[3j.clI = (pr_..3o[2j)->sum;
-" r-s.eli[4].clkl =(p.~r.3o(3])->diff;

r..cell[5.clkl (p~ir..3o[4])->diff;
r...cell[61.clkl (p......3o[5])->diff;
r-..ceIlf7] clkI (p__r_3o[6j)- >sum;
r...ceII[81 .clkl =rpostadd311 .fclk2;
r..ceII 191.cI (p~jz.3o[6])- > duff;
r....cell 10] .clkl = (p..r..3o [5])- >sum;
r..cell[III]clkl = (p.-r..3o[4])- >sum;
r..cell[12].clkl = (p..i3o[31)->sum;
r-cell[13].clkl = (p~x...3o[2)->diff;

V r.....-cell[14.clkl =(p...r..3o[])->sum;

V r-..cell[15].clkl =(p_.r_.3o[0)->sum;

Lcell [0] .clI ipostadd3[0J .fclk2;
L-cell[1].clkl (pJj3o[0])->sum;
L-cell[2] .clkl =(pi..3o[1])- >sum;
L-cell[3[.clki (pi...3o[2])->diff;

- ,~iLcell[4j.clkI (p.L.3o[3)->sum;
i...cell[5.clkl (pj.3of4])->sum;
L-cell[6] .clkl (p.~..3o[5] )- >sum;
iLcelI[7j.clkI= (pi...3o[6j)->diff;

*1 i-cell[8[ ciki ipostadd3[1] .fclk2;
iLcell[9j .clkl (p-j. 3 o [61 y- > sum;
L-cell[10].clkl =(pj.3o[5j)->diff;

iLcell[1 11.clkI (p~...3o[4 )-> duff;
i-cell[121.clkl =(p..L3o[3]}->diff;

L-cell 131.clki (p.L_3o[2])->sum;
i-cell(I41.clkl =(p.j...3o(I)->diff;

i-cell[15J .clkl =(pi.3o[0j)- >duff;

if (clk...count >= 82)

fprintf(qp, " %7d", clk...count);
fprintf(kp, ' %7d", clk-count);
for (i = 0; i < =15: i± +)

fprintf (kp," %d ",(r...cell[ij).clkI);

'***~~PHI ONE LATCH BETWEEN PARITY AND SIPO CELL

*This latch returns the pipeline to its normal configuration,
phi-') leading, phijt trailing *

for ( i = 0; i <= 15: i + -4-)

{r-.philjatchii r..cell[il .clk2;
iLphiljatchjii i...cell[ijclk2: }

if (cik-count >=83)

a fprintf(gp," %od ", cilkcount);
for (i= 0; i <Z 15; i++-)
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fprintf(gp," %d ",r.phil-latchi]);

/****************SIPO CLOCK ONE OCCURENCES ***********

/* shifting from phL-2 to phi- *

for (i = 15; i > = 0; i--)
for (j = 23; j >= 0; j-)

{r....ipo~ijj.s-..clkI r--ipo[i[jj.s-clk2;
r-ipoiI[jI.p-cI = r-,ipo[ij[jI.p-clk2;

i-.ip[i][j].s-.clk1 = L.-sipo[ij[j].s-clk2;
L--ipoi[j].p-.clkI = i-sipolil[jl.p-clk2;}

if (clk-count >= 117) /*write data out of SIPO *

{ pitfl,
fprintf(lp," )

for (j 23; > 0; J j p..ck)
{fprintf(lp," %d ",r...,ipo[0j]Jpck)

clk-int +=I; / * increment the internal counter *

/*end loop *
/*close all files *

fclose(ap);
fclose(bp);

* fclose(cp);
fclose(dp);
fclose(ep);
fclose(gp);
fclose(hp);
fclose(ep);
fclose(kp);
fclose(ip);

-2os~l)
fclose(mp);
fclose(mp);
fclose(np);
fclose(op);
fclose(qp);
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-,1 to Binary Conversion Program" nr $0 2 +1 to Binary Conversion Program

, 8.1.

Decimal

** DATE: 15 SEP 1985
**

** TITLE: decimal to binary conversion program.
FILENAME: bin.c

** COORDINATOR: Jim Collins.
** PROJECT: WFT16 SIMULATION
** USE: Converts decimal input numbers into their binary
** representation. Reads the input file wfta-in and
** produces the binary output in file test-piso (the name
** of the input file for the simulation program.

main 0
' {

FILE *fp, *gp, *fopen0;
int j, bit[241, mask;

* long num, k;
int sum = 0;

int x;

fp = fopen("wfta-jn","r");
Y." .." gp = fopen("testpiso","w");

fscanf (fp,"%ld", &k);

while (k !- -1)

num - k;
for (j - 23; j > = 0; j--){

* The numbers are converted using a shift and add function. The masks,
i.e. MASK00, are not included in this file for reasons of space. */

switch (j)
{ase 0: bitj} = (k & MASK00) > > j; break;

case 1: bit[j] = (k & MASK01) > > j; break;
case 2: bit[j = (k & MASK02) > > j; break;
case 3: bitjj = (k & MASK03) > > j; break;
c ase 4: bit[j l = (k & MASK04) > > j; break;
case 5: bitlji = (k & MASK05) > > j; break;
case 6: bit{j} = (k & MASK06) > > j; break;

- case 7: bit[j] = (k & MASK07) >> j; break:

,.-,case 8: bitij} --- (k & MASK08) > >j; break:
case 9: bitjj = (k & MASK09) > > j; break;
case 10: bitj] = (k & MASK0) > > j; break;
case 11: bitj[ = (k & MASKll) "> > j; break:

case 12: bit[j = (k & MASKI2) > > j; break:
case 13: bit[j] - (k & MASK13) > > j; break:
case 14: bit~j] = (k & MASKl4) -j; break:

B-80

Si

- -- i..- - .; - ~n



~' -*case 15: bit[ij (k & MASKiS) >3> j; break;
case 16: bit[j] = (k & MASKI6) >3> j; break;
case 17: bit[j] = (k & MIASK17) > > j; break;,
case 18: bitdjl = (k & MASKiS) >3> j; break;
case 19: bit~j] =(k & MASK19) >3> j; break;
c ase 20: bitfi] = ( k & MASK2O) 3>> j; break;
case 21: bit] = (k & "AK21) >3> j; break;
case 22: bit~j] = (k & "AK22) 3 > j; break;
c ase 23: bit[j} = ( k & MASK23) 3 > j; break;
c ase 24: bit[jj ( (k & "AK24) >3> j ; break;
case 25: bitjj] = (k & MASK25) 3> j; break;
case 26: bitfj] = (k & MASK26) 3> j; break;
c ase 27: bit[j] = ( k & VASK27) 3 > j; break;
case 28: bitfi] = (k & MASK28) >> j; break;
case 29: bit~jj = (k & VASK29) > j; break;
case 30: bitil = (k & NMASK30) 3> j; break;
case 31: bitj] = (!-. & MASK3 1) > > j ; break;

} ~ end switch~
} /~ end for loop

sum = 0;
for(j = 0; j < =22; j-4+)

sum = sum + bit];

*odd parity requires that the number of ones in the data word be odd.
In this case, if the number is even a one is appendend in the MSB
position, zero otherwise. *

if (sum%" -- 0)
bit[231 = 1;

else
bit[23] = 0;

for (j =23; j > = 0; j--)
fprintf (gp," %d", bitfi]);

fprintf (gp,"0);
fscanf (fp,"%ld", &k); 7* get next number *

} /* end while*,
} 7* end main *
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7.1.

to

** DATE: 2 AUG 1985

** TITLE: Binary to Decimal Conversion Program
** FILENAME: formnl6x
** COORDINATOR: Jim Collins.
** PROJECT: WFT16 SIMULATION
** USE: This program takes the 16 serial outputs per clock

** cycle, for any column, and converts it from a veritcal
** format to a horizontal display. It also converts the
** binary output stream into a decimal number. There is a
** family of these programs, one for all possible number
** of outputs for each column

#include <stdio.h>

-~ #define clk..cycles 32 /* number used within one file*/

main (

0 FILE *ap, *bp, *cp, *fopeno;

nt 1, j, flag, cycles;
'C mt reformnat[17] [32];

unsigned long sum;
int count;

ap = fopen("ma.5ter-.control", "r");

*cp =fopen("outjfor~tiat", "w");

fscanf(ap,"%d", &cycles);
* . count = cycles / clk-cycles;

while (count > 0)

for (j =0; j < =31; 1+-t-)
for (I = 0; i <=16 ; i--+-

fscanf(bp,"%d", &reformatii1[jj);

*for (i =0: i < 16; i-+--)

for (j = 0; j =31; j--)
fprintf(cp." (rd ", reformiatii jj);
fprin tf(cp,"'0);

c (onvert the bit streams into decimal, if the MSB is a I the
result is niegative, the program handles this in the same
manner as normal two's complement conversion.*

for (i 0: 16: i---.j
*sumn 0;

for (j 0; -- 31: j -)
the first enltry is the cl ock tag

40 B-62



-~ if (i == 0);
else if (reformat ij [311 == 1)

sum = sum -,- (!(reformat ij] ) < < j )
* flag =1;}

else
(sum = sum + (reformat[iJ [jj < < j )

0:,flag 0 ;}

if (flag 1
sum sum +1;
printf(" [%dj = -%d", (i-1), sum);)

else
printf( " [%7d} = %d 0, (i-1), sum);

I%.
count =count - 1;

} /* end while *
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