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| The VHSIC Hardware Description Language was applied to the problem of model-
;%" ing a VHSIC class circuit being designed by the VLSI design group at the Air Force
Institute of Technology. A methodology was defined to decompose and model the circuit
oy using the hierarchical facilities of the VHDL. The circuit embeds the Winograd Fourier
, Transform Algorithm into a pipelined serial architecture. This architecture was modeled
T using the VHDL and the C programming languages. A custom simulation tool was
v developed to verify the timing, control and hardware macrocells used to implement the

M WFTA processor. This simulation modeled the architecture at the bit level and vali-

L dated the design.
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e MODELING AND SIMULATION OF A
SIGNAL PROCESSOR IMPLEMENTING
THE WINOGRAD FOURIER TRANSFORM

Chapter 1

Introduction

1.1. Overview

‘;F"'
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el

Continuing advances in the state-of-the-art of silicon fabrication technology have

allowed a tremendous increase in both the functionality and performance that can be

o

e

achieved by a single integrated circuit. The natural counterpart of this increased funec-

tionality is, of course, increased design complexity. Increased complexity limits the indi-

E e sd
A
A

o

(.‘ vidual designer’s ability to completely understand the circuit being designed. Thus,
large ICs are now developed by design teams, leading to another problem, how to con-

cisely and accurately communicate design information.

The formal language oriented approach, using hardware description languages
(HDLs), is one method used to describe and model electronic circuits. Unfortunately,
most HDLs were developed in a simpler time when IC functionality was limited to small
and medium scale circuits. As we head into the very large scale, and very high speed
integrated circuit (VLSI. VHSIC) era, there exists a need to develop tools that can both

model and simulate these complex ICs in a concise and timely fashion.

Once military applications drove the state of the art in the electronics industry.
Potential commercial spinoffs encouraged industry to pursue Department of Defense
(DoD) business. as military Integrated Circuits (ICs) were sufficiently general purpose to
be directly applicable to marketable products. As the industry grew. however, the DoD

share of the total IC market fell to under 10¢ '11l. In addition, the continual need to
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Y maintain technological superiority over potential adversaries required ever more complex

b special-purpose circuitry, driving the DoD into an increasingly specialized sector of the
r 45 marketplace [11].

f.: As military and civilian applications began to diverge, the military driving toward
1 high speed signal processors, and the civilian market toward general purpose data pro-
%'0, cessors, it became apparent to planners in the DoD that industry could no longer be
::: expected to develop ICs directed towards military applications in a timely manner.
j' Thus, in 1980, the DoD launched the Very High Speed Integrated Circuit (VHSIC) tech-

nology development program. Formulated as a seed program, it was designed to spur
development of technology directed towards military needs. It was anticipated that
once the technology was available industry would find civilian applications that would

complement future military needs. Major goals of the VHSIC program are development

of technology necessary to produce submicron devices, increased processing throughput,

and the formulation of new circuit design methodologies and computer-aided design

(o

P ) (CAD) tools required for maximum exploitation of the new technology [16].
e . o o .
L~ Insertion of the new technology into existing weapons systems is considered a prior-
O
Oy . . . . . .
*-'.' ity goal. The reduction of system size, weight, and power requirements using the new
VHSIC class ICs over systems using current technology is expected to decrease the cost
T : N L
N and increase the reliability/maintainability of the new systems. The VHSIC program
:f:: office plans to demonstrate the replacement of over 50 ICs in current systems with one
o - . o . .
< VHSIC chip. This implies that the VHSIC chip could have upwards of 250,000 logic
S gates, an extremely complicated part to design and validate. Mode'ing and simulation of
_'_j::‘..' a circuit of this complexity could easily be on the critical path towards a correct imple-
r‘ mentation of the intended function. However, current simulation languages are not
:“'} capable of simulating large circuit designs in a timely manner.
0 o - , .
-:._-: After surveying existing Hardware Description Languages (HDLs), the VHSIC pro-
PR gram office decided none would adequately meet its projected requirements and thus
N e
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o
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; Q&Z‘ funded the development of a VHSIC HDL (VHDL) to meet both present and anticipated
,:2 applications. VHDL, based on Ada, the new DoD standard High Order Language, incor-
: porates VHSIC specific requirements such as portability, maintainability, timing, and the
i ability to do hierarchical modeling and simulation. VHDL is now in its final design
.:_'! stage. A test version of the VHDL simulator is scheduled to be made available to the
‘::E: Air Force Institute of Technology (AFIT) for beta-site testing during the spring of 1986.
"% Although VHDL has been designated as the DoD standard HDL for VHSIC circuitry, a
Ly significant amount of work remains to evaluate the language for its ease of use and clar-
;:"" ity of syntax in the description of a VHSIC class chip.
)
: 1.2. Digital Signal Processing
o
L] Signal processing involves Fourier series analysis of continuous or discrete time-
% varying signals. With the advent of large-scale integration of digital systems, it became
:\( practical to implement complex signal processing functions on a single substrate. Sys-
i t‘ tem designers began to foresee applications requiring Fourier analysis which were previ-
}, ously infeasible due to size and/or speed limitations of available analog or digital sys-
,x\\; tems. Some current systems use Fourier analysis as the basis for pattern recognition sys-
‘ tems. A time domain picture is taken and converted int(; the frequency domain by a
,‘:_ fast Fourier transform (FFT) algorithm. Results are compared with a prestored spec-
E trum to determine identity of the objects in the field of view. Fourier analysis of seismic
; feedback from explosions is a primary method of searching for petroleum deposits.
: Sonar detection of enemy submarines through processing of signal returns is another
' important defense application. Future applications include not only enhancements of

current implementations but also many potential applications not currently feasible due

to speed and size limitations of current technology. For example, a digital front-end for

L

gV

A a £ A K

a phased-array radar, real-time computer resolution of satellite imagery, and medical

.

i,

needs, such as pictorial representation of internal body organs through low-level X-ray

:' ;CC; tomography, would benefit from more processing power than is available using today’s
8
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..,. Q‘:?’,' technology [1]. Advances in device technology must be matched with clever algorithmic
"y'l‘t-f‘i

. / design to reduce the computational burden in order to bring these applications into the
el -

‘Jo’:’: realm of feasibility.

o

'.:2 1.3. Winograd FFT

)

;%.' The Winograd Fourier Transform Algorithm (WFTA) is a method for implement-
\

v,}' : ing a Discrete Fourier Transform (DFT) for signal processing. It offers the potential for
L.

::@1:2‘ a tenfold increase in processing throughput over existing signal processing algorithms. A
e group of AFIT graduate students is designing a WFTA processor that will be imple-
R A

)

oL, mented using 1.2y CMOS technology similar to that developed in VHSIC Phase I.

)

Ak

N ;:,'

" - 1.4. Statement of the Problem

; ' The problem addressed in this thesis is to analyze the effectiveness of the VHSIC
'.;ﬂ-‘ Y Hardware Description Language (VHDL) for modeling large CMOS integrated circuits,

and to verify the architecture, data flow, and control sequencing of the 16-point Wino-

o

)

o

-

]
-

grad FFT signal processor.

o ul ¢

The major portion of the research is directed toward analysis of VHDL as a tool

-
-
-
-
P

£

o

useful in VLSI design. This analysis covered learning the language syntax, development

55U

of a methodology to be used for VHDL modeling, and modeling the primary CMOS cir-
s cuits that make up the WFTA processor. In support of the WFTA vcrification effort, a
model of the 16 point architecture was developed using the C programming language.
e This model completely describes the arithmetic and control functions of the processor at
> the bit level. It verified correct operation of the algorithmic implementation, and was

(A% : : . :
B 1 exercised to generate test vectors for future VHDL simulations and hardware testing.

.'1
My

AN

1.5. Problem Environment

XN,
el

The research reported in this thesis is one of four related efforts working toward the

-
e

-7 e design and implementation of VLSI signal processors that implement the Winograd
>

Fourier Transform. Captain Kent Taylor [17] developed the architecture of the WFTA

-4-
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chip from the original concept developed by Linderman [8]. Taylor’s thesis covers
theoretical development, numerical performance, and control and timing details of the
processors. He developed and validated programs that performed FFTs using the 15, 16,
and 17 point Winograd algorithms. Captain Paul Rossbach [13] designed and imple-
mented the control portion of the WFTA chip. An interim control sequencer test chip
was designed, fabricated, and tested at clock rates exceeding 50Mhz. He also designed
and implemented a X (shaped storage cell) Read Only Memory (XROM) to provide the
data addresses to an off-chip Random Access Memories (RAM) in the order specified by
the Chinese Remainder Theorem. The XROM has been optimized to minimize the
number of transistors by a solution to both the graph partitioning and the traveling
salesman problems using the approach of Kernighan and Lin (7]. Finally a silicon com-
piler was written to automatically place the address sequencing scheme into the XROM
personalization mask. Captain Paul Coutee [4] developed and implemented the serial
adders and multipliers used in the processor’s arithmetic section. The multipliers are
derived from Lyon’s serial multiplier architecture, but redesigned to use fixed coefficients
[9]. In addition, the horizontal and vertical pitch was minimized. The resulting dense
cell structure is critical towards achieving the goal of an entire Winograd processor on a
single silicon chip. In addition, cells were designed to check and generate parity and to

perform arithmetic rounding of the results.

1.8. Summary of Current Knowledge

Hardware Description Languages are not a new item. As early as 1939, Shannon
used a type of HDL in his work on switching circuits {8). Nor are they rare. In a special
IEEE issue on HDLs Liposki noted that whenever someone developed a circuit simulator
they felt compelled to develop a HDL to drive it rather than learn and adapt an existing
one to their application [8]. In other special issues on HDLs by the IEEE Computer

Society, writers have called for a common HDL [3]. It was noted that although there

were many languages that were adequate for a specific purpose, none were suitable for
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application over the entire range of a large hardware design project. The IEEE has
sponsored project CONLAN (CONsenus LANguage) to develop a group of languages
linked by common syntax and design conventions. The new language would use desir-
able features and concepts from the myriad existing languages and incorporate these into

its basic syntax Base CONLAN (12].

Around the same time the DoD, faced with an explosion in the number of software
languages in its computer systems, launched an effort to slow the growth of the cost of
software maintenance. After studying the problem the DoD concluded that computer
languages had not kept pace with the advances in technology. Accordingly an effort was
made to develop a language incorporating both features in current languages and
modern concepts in software engineering such as structured programming, information
hiding, data abstraction, real time control and data handling. The result was the Ada
Programming Language which has been designated as the standard DoD High Order
Language [2]. The VHSIC program office, looking at the problem of concisely communi-
cating design information on integrated circuits containing up to 250,000 gates, recog-
nized that the basic concepts and constructs used in Ada could be used in a new HDL.
The relationships between VHDL and Ada are detailed in the VHDL Design ‘Analysis
and Justification [6]. In general VHDL constructs supported by Ada were required to

use the Ada syntax [6]. The basic objectives of the VHDL are:

1. It be capable of documenting digital hardware over the
range of entire systems to logical gates.

2. It be able to be used as a design and documentation
tool
3. Its complexity be kept to a minimum.

A contractor team of Intermetrics, IBM, and Texas Instruments was selected to develop
the VHDL. The contract was for a two-phase design effort followed by a testing phase.
AFIT was selected as a test site to determine if VHDL meets the requirements set forth

in the requirements documents, and if the VHDL is a practical tool for use in VLSI
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design development.

1.7. Approach

As has been stated, the main thrust of this thesis effort has been to analyze the
effectiveness of the VHSIC Hardware Description Language (VHDL) as a tool for model-
ing the detailed design of a VHSIC class chip. This analysis will be accomplished by
structurally decomposing the 16-point processor into its constituent processing elements
and modeling the primary CMOS circuits which make up those processing elements. In
addition, the arithmetic and control sections of the architecture will be modeled at the
bit level using the C programming language. This will serve to verify the correctness of

the architecture and the circuit design.

The modeling of the architecture has been accomplished by a structural decomposi-

tion of the system into subsystems, components of those subsystems, macro cells and

finally the microcells that make up the cells. Decomposing the architecture led to the
definition of the hardware interfaces. This top-down interface definition imposed a sig-
nal flow structure on the system that was followed by the definition of the internal circu-
itry. Once the chip was decomposed into its smallest individual logic components, the
micro and macrocells were modeled using VHDL library descriptions as well as user
defined descriptions. In this fashion the system could be reconstructed following the pre-

viously defined interfaces.

Subgoals of the modeling process were to establish functional equivalency between
the simulation program and the actual hardware, development of test cases to simulate
various data sets, and development of test vectors for use in future VHDL simulations

and hardware testing.

1.8. Sequence of Presentation

Chapter 2 reports on the development of the architecture of a signal processor

based on the Winograd algorithm. Details on the Winograd Transform. the Good-

-7-
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lond) .
! ;-H. .::’: Thomas prime factor algorithm, the Chinese Remainder Theorem and their implications
.:“‘ ’ for the system architecture are included in this chapter.
:‘-‘: Chapter 3 presents the VHDL constructs used to model hardware. A hardware
:‘: entity is described as it is used in the VHDL. Examples will be used to illustrate a
? methodology to be followed when modeling circuits.
:C Chapter 4 details the modeling of the 16-point processor using VHDL. The 16 point
::5:' processor is completely decomposed into the smallest independent circuits, inverters and
e transmission gates, which are then used to construct the primary cells. The VHDL
::: descriptions and modeling of the major cells are presented.
-"'j: Chapter 5 presents the C simulation used to verify the 16-point architecture. A
. discussion of the need for system simulation is presented, followed by a description of
}_:E the general approach used in program development.
i: Chapter 6 is an analysis of the utility of the VHDL as a VLSI design tool. Recom-
. Gi‘ mendations for applications of the C simulations are presented. Finally the recommen-
::E::: dations and conclusions based on the research performed while carrying out this thesis
\.{. will be presented.
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: ‘ Development of the WFTA Architecture

, :\{

WY

K

W

V)
il: ,J 2.1. Overview

‘] . . . .

:::. As stated in the first chapter, the Winograd DFT algorithm is a computationally
i . . .

i eflicient method of computing the discrete Fourier transform. It is of interest in VLSI
%, because the matrix form of the algorithm maps very efficiently, in terms of space, and
[\ \!

' & regularity of structure, into a signal processing architecture. In addition, by combining
ApdS

) " various Winograd modules into a pipelined architecture in the manner specified by the
@

e Good-Thomas Prime Factor algorithm, large data blocklengths may be computed. The
oA
* development of an architecture based on these algorithms is discussed in this chapter.
4.}‘. The approach will be to introduce the Fourier transform, how it is used signal processing
e (! applications, and then demonstrate how a more efficient implementation of the basic
e

U . . . .
) Fourier transform leads to the architecture modeled in this thesis. A 4080 point block
'.o" length is initially assumed and later justified in section 2.2. Concepts which will be
R

’A)“\ introduced in this section include the Good-Thomas Prime Factor algorithm, the Chinese
M . . . .
,::tts Remainder theorem, the Winograd Fast Fourier Transform algorithm and cyclic convolu-
v.‘;t‘ )

g ) tion.
b, '-L‘S

"-,:, 2.2. Fourier Series Representation

‘ I}‘
1338 . . . . . . . . .

j{f Most signals of interest in communications or signal processing applications can be
E _b-"
"‘\:‘ described as a function of time by the equation:
N
00
W)
a*:s — : )
f f(t) = A sin (wt + ¢) (2-1)
::". ' where A is the signal Amplitude.
< ¢ is the signal Phase.

. ,

o »ﬁ;g‘, w is the frequency in radians/sec.
o
e
e
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e Signals which conform to the relaxed Dirchilet conditions [15]:

Y e

1. f(t) has only finite number of maxima and minima in the interval.
2. f(t) has only a finite number of discontinuities in the interval.
3. f(t) satisfies the inequality:
T
2
f . f(t) ’ dt < oo (2-2)
0

may be represented by the Fourier series which is defined as:

n=o00
jnwt)

flt) = 32 Fne( (2-3)

n= -0

where:
Fn is a complex coefficient representing
the initial phase angle and magnitude

(inwt)

the exponential, e ,
represents phasor rotation at angular frequency w.

G By summing the phasors, ejwt, over the index the instantaneous amplitude and phase of
the original signal can be determined. In addition, the Fourier coefficients, Fn, can be
summed to find the average signal power. A plot of the Fourier coefficients versus fre-
quency is known as the spectrum of the signal. Characteristics of the spectrum are (1)
that its envelope is dependent on the pulse shape, and (2) there is an inverse relationship

between pulse width and frequency spread.

The Fourier transform, used to calculate the Fourier coefficients, is defined by the

equation:

Flw) = [ f(t)e "t (2-4)

Using the Fourier transform we can describe any signal of the form (2-1) in terms of a

spectral density function of the form (2-4).

-10-
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'\33 2.3. Fast Fourier Transforms
Many of the problems in digital signal processing involve computation of the
Discrete Fourier Transform (DFT) for finite input sequences of real or complex data
points. The DFT of a complex data sequence v is given by:
i=n-1
Ve = Ty, (2:5
1=0
where:
n is the blocklength of the data sequence
w is the complex phasor e_(j%/N)
v is a vector of complex numbers.
The DFT can be computationally expensive. The number of complex additions and mul-
tiplications is O(NQ). For example, a direct implementation of a 4080 point DFT will
require 16,646,400 multiplications and 16,642,320 additions. The body of theory labeled
‘ﬁ.', Fast Fourier Transforms is concerned with manipulation of input and output data
o indices in order to achieve a more efficient means of performing this DFT operation.
FFT algorithms generally use a variety of methods to shuffle elements around in the
data matrices to reduce the number of multiplications required. Figures of merit for
;“ FFT algorithms revolve around the numbers of additions and multiplications, with
;E‘ replacement of multiplications by additions being the preferred approach to achieve a
; more efficient algorithmic implementation. Fast multipliers are costly in terms of silicon
.(:;': area and processing time. Reduction of multiplications in favor of additions reduces the
é:z-s space requirements of the multiplier section and decreases latency through the pipeline.
%:; Additional space freed up can then be used to allow a smaller die size. resulting in
:' greater yield, or to implement desirable features such as error detection, correction, and
:' other fault tolerance measures.
AT
i'h‘: The Winograd Fourier Transform Algorithm (WFTA) architecture was developed
E:;‘ e using both the Winograd and Good-Thomas Prime Factor algorithms. The Good-
_E% - Thomas algorithm is used to break the 4080 point blocklength into mutually prime
)
m -11-
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sequences of length 15, 16, and 17. These smaller blocklengths are computed using the
Winograd FFT algorithms. Combining the Good-Thomas Prime Factor Algorithm (PFA)
and the WFTA in this fashion will reduce the number of operations to 31,148 multiplica-
tions and 157,164 additions [17]. This represents a reduction in the number of multipli-
cations by a factor of over 500. We now wish to examine the theory which allows us to

decompose the 4080 point DFT in order to achieve these reductions.

2.3.1. Good-Thomas Prime Factor Algorithm. The Good-Thomas PFA allows the
representation of a linear array of n data points as an m-dimensional array in such a
manner as to allow calculation of a sequence of true m-dimensional Fourier Transforms.
The CRT is used to map the sequential data addresses onto a unique location in a m-
dimensional hypercube. In order to use the CRT the decomposition factors, ml, m2, and
m3 must be relatively prime (sharing no common factors). Considerations for selection
of a WFTA block length were computational efficiency of the pipeline and adaptability

to existing signal processing systems.

Pipelined architectures achieve maximum efficiency when all processors require
approximately the same time to compute each problem. Current radar systems use 4096
point scans for signal processing, but may be adapted for other block sizes. For these
reasons the decomposition factors ml = 15, m2 = 16, m3 = 17 (8] were chosen. This
balances the processing delay through all stages in the pipeline. The product of the
decomposition factors ml X m2 X m3 equals 4080. This can be thought of as map-
ping the 4080 data points into a cubic data structure with sides of length 15, 16. and 17.
The sides of the cube are the block lengths of the decomposed DFT. The entire DFT
can then be computed by piping the output of one stage into the input of the next.

Using the PFA we can rewrite the 4080 point DFT originally given as:

4079
ik k
Viswv (2-6)
1=0
-12-
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into the following form by remapping the input and output data indices using the CRT.
239 271 254 . )
1k Lk gk
Vi = [ XY Xw vlw Jw | (2-7)
11=0 i12=0 13=0
Now instead of doing one 4080 point transform, we are doing a 16 point DFT (15)(17)

times, a 15 point DFT (16)(17) times and a 17 point DFT (15)(16) times. Taylor per-
formed a numerical simulation of the 4080-point pipeline and the results showed that the
best ordering of the DFT modules would be as shown above. The 16-point FFT has the
best numerical performance, while the 17-point shows the worst. Ordering the pipeline

in this fashion will minimize truncation and rounding noise [17].

The combined effect of the PFA and the CRT is shown figuratively in Figure 2-1.
The CRT maps each element of the 4080 point data sequence into a unique address on a -
15 x 16 x 17 cube. The 4080 point DFT is then computed as a sequence of three 2-D
DFTs. For example, the 15 point DFT can be visualized as an array (16,17) of columns
with 15 elements per column. This is represented by the XZ plane in Figure 2-1. Com-
plete computation of the DFT will require computation of a DFT for each of the surface
planes of the cube. The summation notation in equation (2-8) above reflects the DFT

being computed and the number of iterations through the data set that are required.

Thus computation of the DFT is performed in a pipelined implementation as fol-

lows:

a). computation of all columns perpendicular to the XZ plane, map the
outputs via the CRT into new location on the cube. (16 point DFT).

b). computation of all columns perpendicular to the YZ plane, map the
outputs via the CRT into new location on the cube. (15 point DFT).

c¢). computation of all columns perpendicular to the XY plane. map the
outputs via the CRT into new location on the cube. (17 point DFT).

This conceptualization leads directly into the pipelined architecture of the 1080 point
DFT processor. shown in Figure 2-2. In hardware, the cube is a memory element of 1080

words with data addresses determined by the CRT and the array of columns represents

-13-
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Figure 2-1. Cubic Data Structure of the 4080 Point PFA Implementation

a 15, 16, or 17 point WFTA processor element. Dual 4080 word memories are used
between each WFTA element in order to allow each element exclusive access to a 4080
word data cube. After each element completes a scan through the data set the results

are sent to the next memory element in the pipeline.

2.3.2. Winograd Fast Fourier Transform. Dr. Shmuel Winograd first introduced the
Winograd Fast Fourier Transforms in 1975 [18]. Some of the characteristics of these

algorithms are that the number of multiplications is nearly O(N) while the number of

additions remain in the neighborhood of those required for other FFT algorithms.
Winograd’s algorithms are used to compute each 15, 16, and 17 point DFT. The small

algorithms treat three cases of block size:

-14-
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Figure 2-2. 4080-Point WFTA Pipeline Implementation

1. Blocklength a prime.
2. Blocklength a power of a prime.
3. Blocklength a power of two.

Cases one and t' ee, respectively, will be used to compute the 17 and 16 point DFT.
The 15 point DFT does not fall under any of the cases listed above. In order to compute
this DFT, and other blocklengths which are not one of the cases listed above,
Winograd’s large algorithm must be used. The large algorithm combines smaller block-
lengths, which can be computed using the small algorithm, into a larger DFT module.
In the case of the 15-point module it may be computed using blocklengths of sizes three

and five, which are both case two.

-15-
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S 2.4. WFTA Processor Architecture
The 16-point DFT, shown in (2-6), is computed using case three, blocklength a i
power of two. }
=15 i
\ A |
=X wV (2-8) |
1=0
Convolution theory allows the DFT of a data sequence to be written as a cyclic convolu-
tion. Using the procedure for the second case, the 16 data points are partitioned into sets
of even and odd indices. The eight odd indices are arranged into a set of four cyclic con-
‘;‘:: volutions, while the eight even indices form an eight-point DFT, again a power of two.
o This partitioning process continues until the resulting DFT is composed of only two
P; points which may be then directly converted into a cyclic convolution. The theoretical
o
- aspects of this process are covered in more detail in [1], [L7]. The basic principle involved
,ij; is that the DFT may be converted to a series of cyclic convolutions using the Winograd
Q. Algorithm. The rationale behind the conversion to a ecivolution is that the convolution
t;‘_ may be calculated more efficiently using a fast convolution algorithm such as the Wino-
*'1
W grad Fast Convolution Algorithm.
The form of a cyclic convolution :
v
N s(x) = g(x)d(x) mod [ m(x) ] (2-9)
:“-‘j; where d(x) is the data sequence.
: g(x) is the coeflicient sequence.
- m(x) is a fixed polynomial arising out
- of the partioning process.
_..- Through an application of the Chineses Remainder Theorem for polynomials and some
L manipulations shown in detail in 1" 17, (2-9) may be converted into the form:
. P ‘
':'&
e X = CDAx (2-10)
‘_ C 1s an incidence matrix of preadditions.
.‘~ D is a diagonal matrix of coeflicients.
. e A 15 an incidence matrix of postadditions.
..\.' -16-
hd




The coefficient sequence is a diagonal matrix with constant either real or imaginary
terms, the dimension of which is equal to the number of multiplications to be performed.
The architecture that implements this equation in hardware is shown in Figure 2-3. The
structure exploits the fact that the data is not complex until the postaddition matrix,
where the paths merge in the final postaddition operation. This allows the architecture
which implements the preaddition and multiplication operations to be separate real and
imaginary parts. The arithmetic operations are performed using serial hardware to
reduce routing space and complexity. However the I/O paths are word parallel in order
to lessen the memory access time constraint. Additional structures needed are a control
sequencer to generate control signals, and a ROM to store the data addresses in the

order specified by the Chinese Remainder Theorem.

Winograd’s large algorithm could have been used to compute the entire 4080 point
DFT by nesting the 15, 16, and 17 point using the Winograd Large Algorithm, as in the
case of the 15-point DFT. However, the size of the multiplication matrix limits the abil-
ity to embed an entire processor on a single silicon chip. For example, the 4080 point
DFT would require a multiplication matrix over 23,000 serial multipliers tall [17]. A
more modular implementation which is more suitable for VLSI implementation using
state-of-the-art fabrication technology uses the Winograd modules to compute the 15-,
16-, and 17-point DFTs and the Good-Thomas Prime Factor Algorithm (PFA) to com-
pute the entire transform. This implementation requires more operations but is more
area efficient and lends itself to a pipelined implementation yielding greater computa-

tional throughput.

-17-

.- -~
iy L

LTI

I N N Y O O N P O R Y O O T T T O PO P T PO PO T O TN P T T W T Y Y YT WY WY Wy

Tt L e R VR i e R e R P I I T
Ly 0 I-.‘\l.' PCh A R R A RS LR U RO/ TR A TN
y 'IEAM.LAXLMHJM‘AR;A‘L{M(‘L&'I:L{A-U.{\ ..'.“.';:\".fnk'ni'h\_;_J SIS T



b «
y
1)
U~
L&
W In
('j. ‘-..
]
éﬂ RESULTS DATA HANDSHAKES /
8! ouT IN SCALING
e
1ot SCALING lllll 1
) Ly
o — REAL SIPO REAL PISO — CFF-CHIP
2 " e =
> REAL REAL
g — REAL —
b oS T |yl tirLies | PRE: ol
ADDS ADDS
KL L +— coNTROL
B «——] SEQUENCER
s | e e
[l - i
e v — a0ps | MULTIPLIES | Looe Lo A
° PARITY/ PARITY 0!
b ROUND AR | mooress Vg
o L= 1nas siro inAG riso | —1 L e ;
4 , !
LN
> SCALING IIITT l l Té
'64 Yin s
) RESULTS 0ATR INPUT
o . ouT N ADDRESSES
wi s
‘-'L
o
@) Figure 2-3. Winograd Processor Architecture
o
Y
20
7
25
=
%
do8
L ’
L
)
'?5
¢
o
\"1- - -
W
Y
L
\ -18-
[ )
[P
il
RNt o7 4T e T S o e o 7 9 e e e R T 5 N S 2 S SO A




d ¥ bk " “yﬁ._j

»
-

s
[}
v
R
i 1 CHAPTER 3
!‘ »
‘:ﬁ VHSIC Hardware Description Language
i
b
“'lt:' ),
1)
;\ :
;&3 3.1. Overview
i
5 ) .
;r". The Winograd Fourier Transform (WFT16) processor presented in the last chapter
is a complex circuit consisting of over 100,000 transistors. Complete comprehension of
c"
e the function of every transistor would be impossible if the circuit was considered as a
18ay
; *Q monolithic entity. An alternative approach might be to try and understand the function
W
°® of the major components, and how they interact with the rest of the circuit. Detailed
“1 understanding would come by continually repeating this process, each time at a lower
1
:_-L level, until the entire processor can be visualized as a grouping of simple circuits
,'“"j
i C:“ interacting in a complex manner. This is what VHDL modeling is all about. "VHDL is a
& N language which can be used to describe hardware, ranging from simple logic gates to

)

, . Y,
ERNE RN
v ¥
AN

complex digital systems” [5]. The VHDL allows a circuit behavior to be described at a

2

P
' 2

convenient level of understanding (or abstraction); more detail may be observed by step-

C

‘)_ ping down one level in the hierarchy and describing the behavior of the components and
s

[ :‘;ﬁ the interactions which together create the larger behavior.

"‘ .

" = This chapter will present VHDL in the following context. A VLSI circuit of almost
-.r:::: 29,000 transistors will be described, and its behavior modeled using the hierarchical pro-
'\. -

-\:5". . .

;‘: cedure described above. Along the way, the syntax of VHDL will be presented as a tool
i useful in describing circuit behavior. The VHDL structures used for representation of a

X ‘- physical device will also be addressed. These include entities and bodies. This descrip-
Al
3 tion will be followed with a representation of the constructs used to model data
2 ?

LRy .

J transforms such as sequential and concurrent signal assignment statements and bus reso-
.'.}-'_'j e lution functions. Finally, a complete example of VHDL modeling of a CMOS latch will
o ..
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be given.

3.2. VHDL Modeling of a Large Circuit

The output structure of the 16-point WFTA (WFT16) processor is a serial in,
parallel out (SIPO) shift register. Every clock cycle one bit from each of 32 serial input
vectors enters the register, and every other clock cycle a forty-eight bit vector is output
in parallel to the data bus. This process is controlled by three signals. Thus, at the
highest level of abstraction, the SIPO may be viewed as a black box which receives
inputs and produces an output. By itself, this description does not impart very much
information about how the SIPO operates. Referring to the system block diagram reveals
that the thirty-two bit input is actually made up of two-sixteen bit vectors, and the out-
put is two twenty-four bit words. This allows a second, lower level of behavior to be
visualized: The SIPO is really composed of two smaller identical shift registers. Con-
tinuing in this fashion each register is found to consist of sixteen identical rows, each
row made up of twenty-four identical cells. If the behavior of this one cell can be under-
stood, it is easy to visualize the operation of the entire 29,000 transistor register. The
decomposition of the SIPO behavior from one register into a cell is shown in Figure 3-1.
Although not all circuits are an array of identical cells, most behaviors may be decom-
posed into a lower level of abstraction, which can then be more easily understood and

modeled.

3.3. VHDL Modeling Structures

There are three independent units in VHDL: packages, entities, and bodies. A
VHDL description of a piece of hardware consists of the interface (which is called an
entity in the VHDL syntax) and an architectural description of how the device
transforms inputs to outputs (a body in the syntax). Related type declarations, func-
tions, and procedures can be grouped into a package and made available to the interface.
VHDL defines two different types of information channels. Ports are the wires used to

interconnect entities, while signals are used to carry information internal to a design
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gl Figure 3-1. SIPO Decomposition

beghy entity. Furthermore, ports are declared in interface entities, while signals are declared in

bodies.

E“‘) 3.3.1. Packages. A package is an Ada-derived structure used to group logically
:\_, related items so they can be referenced by a group of related design entities. Items
4.5 which may be inside a package are type declarations, attribute declarations and
,, specifications, constants, alias declarations, functions, and procedures. The contents of a

3_' package are made visible to interface declarations with a context clause:

[N

‘ 2 for SOME_PACKAGE; use SOME_PACKAGE;
oG

at the header of the entity declaration.

< There are two kinds of types in VHDL, scalar and composite. Scalar types are

single-valued such as:
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b). Floating point types

Integer types

Enumeration Types
Physical types.

St? N e St

c
d
Enumeration types are declared by listing the values which objects of that type may
have. A bit, which may take on the values '0’ or '1’, and boolean arguments which have
the values of either ’true’ or 'false’, are examples of predefined enumeration types. Phy-
sical types represent physical parameters such as time, voltage, current, and so forth.
Mathematical operations are defined on physical types. Composite types represent an

array of values. Composites may be only of one type (such as an array of bit), or

different types, such as a record listing the voltage and current requirements of a circuit.

VHDL also permits user-defined types. One example would define OPCODE as an

array of eight bits. Then CPU instructions could be declared as being of type

OPCODE. As another example, an enumeration type, TRI_STATE could be defined

(;1 with a set of values ( '0’, ’1’, ’Z’). However, functions and operations on objects of user-

defined types would have to be defined.

The SIPO would have various data types associated with the decomposition shown
in Figure 3-1. The input and output at each level exhibit a certain word length which
may be declared as a bit vector, a tristate data type is also needed, and the control and
clock signals may form additional data types. Thus, a SIPO_PACKAGE would contain

the following declarations:

Package SIPO_PACKAGE is

type 16_bit_vector is bit_vector (15 downto 0);
type 24_bit_vector is bit_vector (23 downto 0);
type clk_signal is bit;

type z_bit is (’0’, '1’, °Z’);

type control is bit;

end SIPO_PACKAGE;

VHDL is a strongly typed language. Although control and clk_signal are hoth of type
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; ‘ (,?‘i,f bit, the compiler will flag assignments of clk_signals to signals declared of type bit, and
LL vice versa.
oy
.': ‘E 1 3.3.2. Interface Declarations. The interface declaration defines the data paths (ports)
j over which information flows to and from a device. It consists of a list of port declara-
“‘?' tions and the direction and type of information which may flow through each port. To
P> ‘f describe each level of decomposition of the SIPO shown in Figure 3-1, an interface
‘j" ‘g description may be written. This description would contain a listing of all the inputs
e and outputs of the circuits. There is generally only one interface declared per design
fr > entity, but different implementations may reference the same interface. [tems common to
:-\_':":j,; all bodies of that interface may also be included in the entity.
There are five port modes which are used to describe information flow across the
E}s interface boundary. Mode in is used for data entering a device from an external source.
NS
:,.ﬂ“: In ports may only be referenced, not changed, within that entity. However, in ports may
e (i‘ be given a tie-off value in the interface declaration for use if that port is not connected
:'i: to an external driver during a simulation. Mode out is used for data originating within a
;ﬁi device for use in some external circuit. Its value, representing the result of an internal
--: data transform, may not be used within the originating device. Mode inout is a bidirec-
L ' tional port which allows the port to be externally or internally driven (as in a system
:i: bus). Mode buffer allows the port to be referenced (read) by components both inside and
(. outside the device boundary. However, it must be driven by a source within the entity
‘ defined by the interface. An example of buffer mode is the feedback inverter of a static
ki :: latch. The mode linkage is used for ports whose direction of travel is unknown. This
b ;\c port mode is used only to pass information down to lower levels of the hierarchy. It can-

not be either referenced or altered. Table 3-1 summarizes the port modes and allowed

operations.

2
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Port Mode in out inout buffer linkage
Reading
insidke A D A A D
outside A A A A D
Writing
insidle D R R R D
outside A A A D D

(A) Allowed (D) Disallowed (R) Required

Table 3-1. Port modes [5].

An example will serve to illustrate several of these points. One cell of the output

serial to parallel converter used in the WFT16 processor is shown in Figure 3-2.

PARALLEL_IN
so_siro
SERIAL - SERIAL
IN ouY
. %
SR_SIPO
LATCH
A el
PARALLEL _OUT
Figure 3-2. Serial to Parallel Output Cell
-24-
AR A SIS (08 A S S R

-
."\.r ~

“u

O

-

.- . .b\‘..' .l.‘
PR

Lhd a3 i)




. Y. . N L - e a-a g Al o a k- ok A aa-adiani e A-al aaiuad bl aie A-8 et 8- Ad aat askh aua o |

:
Y
&
ol '{}_." SERIAL_IN and PARALLEL_IN are the input data bits, SERIAL_OUT and
iy "
’ PARALLEL_OUT are the output bits. SR_SIPO, SD_SIPO, and LATCH_SIPO are con-
: trol signals. Circuit operation is under the control of a two-phase clock. The interface
_. declaration for this cell is shown in Figure 3-3.
v This example illustrates the use of port modes and user defined types. Types control and
‘ A'. clk_signal are defined in SIPO_PACKAGE. The in ports are given tie-off values which
Y, will be used if the port is not connected in some simulation model. It is important to
He
note what is happening at node A in Figure 3-2. First, the node is being driven by both
i.‘ the input port PARALLEL_IN, and the output port, SERIAL_OUT. Any node driven
.'.w
:f: by more than one independent source is termed a "bus” in VHDL syntax. Busses must
N
Ko be declared by type and bave an associated bus resolution function, which will determine
N how the several source values will be resolved to arrive at a signal value. Bus resolution
’\ functions will be discussed in section 3.5.3. SERIAL_OUT is also used to drive internal
" {5 and external nodes, this must be reflected in the port mode. Both inout and buffer modes
‘ could be used. In this case, mode buffer was chosen to reflect that node A should not be
¢
f..:: driven from an external source. The assertion construct reflects the design intent that
'-1 4‘:
9 |
o with SIPO_PACKAGE; use SIPO_PACKAGE;
S entity SIPO_CELL
s (SERIAL_IN, PARALLEL_IN: in bit :=’0’;
L SR_SIPO, SD_SIPO, LATCH_SIPO: in control;
4 CLK2, CLK2_NOT, CLK1, CLK1_NOT: in clk_signal :=
3'_‘. SERIAL_OUT: buffer bit;
- PARALLEL_OUT: out bit) is
P
Vol ot assert (not(LATCH_SIPO and SD_SIPO))
L report "LATCH_SIPO AND SD_SIPO are both set”
X severity fatal;
i
-3 end SIPO_CELL;:
4
é Figure 3-3. Interface Declaration
v_? .
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only one of the two drivers of node A should be active during any simulation cycle. If
this assertion is violated the simulator will report the error message shown. The severity
level is referenced at simulation time, along with a user specified error threshold, to

determine which errors encountered should cause termination of the run.

3.3.3. Bodies. Many different approaches may be used to implement a given function.
In general, however, the inputs and outputs to the function are fairly well defined early
in the design cycle. VHDL supports design flexibility by allowing multiple architectural
bodies to be written for a given interface. Each architectural body may be tested by
linking the interface description to the body using a configuration block statement or

configuration body.

The body defines how the device actually operates. There are two types of bodies,
architectural and configuration. An architectural body describes the behavioral and/or
structural characteristics of a particular implementation. A configuration body defines
how a particular instantiation of an design entity is to be implemented. The
configuration body is the linkage between the entity declared in the component declara-
tion, the specific architectural body the designer wishes to use, and the component

instantiation.

3.3.3.1. Architectural Bodies. = The architectural body may consist of different levels
which describe the operation of a device. A purely structural description exclusively uses
component declarations and instantiations to describe its operation. On the other hand,
a purely behavioral description contains no component instantiations. All data
transforms are completely described using concurrent signal assignment or process state-
ments inside the architecture. VHDL allows any combination of these two extremes to
be used to model a device. The basic structure of an architectural body is shown in Fig-

ure 3-4.
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architecture NAME_OF_BODY of NAME_OF_INTERFACE_DECLARATION is
block_name: block (boolean guard statement)

declarative section:
component declaration;
component configuration;
local signal declaration;

begin
concurrent statements
processes

nested block_name;

end name_of_body;

Figure 3-4. Architectural Body Template

i Note that these statements and declarations could be in any order within their respec-

tive regions.

The nature of digital systems is that their operation is made up of multitudes of
circuits, all operating in parallel. The WFT16 processor is a pipelined, bit-serial proces-
sor which is designed to operate at high speeds, as such, there are few logic stages
between clocked elements. Thus, the circuit could be roughly partitioned into just two
sets of parallel operations: those which occur on the ¢2 pulse and those which occur on
the #1 pulse. The block structure which makes up the architectural body shown in Fig-
ure 3-4 is the structure that VHDL uses to represent parallel events. All the statements
contained within the block execute concurrently and may be controlled by the boolean
guard. The guard expression specifies a condition which must be true before statements
within the block which reference the guard can execute. This will be discussed further in

the sections on signal assignment statements.

3

-27.

Lt e e ‘-_ '--,:-“) e e ™ ‘-._'- v -.’*4 P R R -‘.. T ~~4‘-_. S 71..“\‘.. .
w ey ’ -" . ¥ o *,- N {\ ,‘1‘: " ")\" *x" ‘.. ‘-N > “‘ \‘I‘. ‘.".“ --'\ PR

s




- _
PP IS

s

e

e
».‘ Hy
w’

- ‘-))4:—{ -

o E ANy
ot MUY

¥

s =
AN

~
Ay Ay 44y
P R W A 4 g

LA

’

3
r

Before a lower level VHDL description can be referenced in a higher level descrip-
tion it must be declared. This is done by listing the interface entity name, followed by a
listing of its port names, data types, and modes. A component declaration makes avail-
able a local copy of an interface to a body. To describe the behavior of the SIPO_CELL
in terms of the behavior of its components, those components would first have to be

declared as shown in Figure 3-5.

component MSFF
port(A: in Z_bit;
CLK2, CLK2_NOT, CLK1, CLK1_NOT: in clk_signal;
B: buffer bit);

component T_GATE:
port (X: in Z_bit;
CLK: in clk_signal;
Y: out bit);

Figure 3-5. Component Declaration Statement

Note the type clash between the input and outputs of the MSFF and T_GATE. The
MSFF produces an output of type bit, and the T-GATE expects its inputs to be of type
Z_bit. Since these are connected as per Figure 3-2, a type conversion function must be

used to convert the output of the MSFF into the type that the T_GATE expects.

A component instantiation statement fits a declared component into the framework
of the design. This is done by an interconnection of the ports of the instantiated com-
ponent with ports declared within the interface and locally defined signals. A component

tnstantiation is a concurrent construct and will be further discussed in section 3.5.2.

Information transfer within an architecture takes place using signals and ports.
Ports, which are listed in the interface declaration for the register, are connected to the

port with that same name in the component instantiation statement or signal
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K
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AN
\: .‘j}:f- assignment statements. Signals are declared by name, by type, and by the reserved
e word atomic that indicates that multiple drivers are defined for that signal. As stated
earlier, signals with multiple drivers are called busses. Signals are declared atomic fol-
s
.} lowed by the name of a bus resolution function. Atomic is a flag indicating that multi-
"y
A . . . . .
. ple drivers are associated with a signal, and the name of the function to be used to
\
e resolve the drivers into an output value.
SN
SKN o : .
3.3.3.2. Configuration Blocks and Bodies.  Since interface declarations can be associ-
D
ated with more than one implementation (body), it is necessary to identify which body is
'
NN being declared. Identification of a component with a specific body can be done with a
A.)rt
& . . . Ly .
N configuration specification within the body or by a separate configuration body. The
;
° disadvantage of placing the configuration within an architectural body is that the archi-
R : : . : . . : . :
tecture is now specifically associated with one design. Flexibility to instantiate different
g
o components is lost unless the code is edited and recompiled. The more flexible approach
g {6 would define a separate configuration body for each design. This would allow different
4‘1 configuration bodies to be written for different component instantiations within the same
<+
g‘- architectural framework.
{j:
[ . . . . . . . .
A configuration specification assigns a specific body to be used with the interface in
'-.j the component declaration. It may also specify port maps, additional ports, and generic
g
j"_; declarations. The label used in a component instantiation statement identifies which
V2
"-'1' instance of the component is being configured. Figure 3-6 shows the configuration of the
o
o MSFF and T_GATE used in the SIPO_CELL declared in Figure 3-5.
o
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o
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for M1, M2: MSFF

use

entity (MSFF)

port map (bit_in => A,
CLK?2 => CLK2, CLK2_NOT => CLK2_NOT,
CLK1 => CLK1, CLK1_NOT => CLK1_NOT,
bit_out =>B)

body (MIXED_BODY)

end for;

for all: T_GATE

use

entity (T_GATE)

port map (bit_in => convb-z(X),
clk => clk,
bit_out => Y)

body (BEHAVIOR)

end for;

Figure 3-6. Configuration Specification for SIPO_CELL

Note the use of the type conversion function, convb_z(X), in the port map for the
T_GATE. Also note that since both instantiations use the same configuration, the
instantiations labels, M1 and M2, could be replaced with the reserved word all as in the
T_GATE configuration. If multiple configurations of the same entity are involved, all
but one the same, the different one could be configured first, as above, and the rest

identified with:

-- for others: MSFF use --

and configured in one block.

Entity (MSFF) identifies which interface entity is used. The entity entry links the
component declaration to an entity which is stored in the VHDL design library. The
port map associates the formal names listed in the entity with those used in the com-

ponent declaration: association is left to right, formal == actual. The statement body

-30-
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(MIXED_BODY) directs the use of the architecture (MIXED_BODY) for use in this

architectural body.

The configuration body describes the implementation of any entities in an architec-

tural body which are referenced by component instantiation statements. Design units

referred to by the configuration body must reside in the design The

library.
configuration body is the top level of the hierarchy for the entity listed in the body
header. The configuration specification is the main item which constitutes the body.

in

Configuration of component instantiations two levels deep is allowed a

configuration body. if the

For example, SIPO_CELL is instantiated to build a
SIPO_REGISTER_ROW a configuration body could configure the SIPO_CELL hierar-
chy down one additional level, allowing different MSFF implementations to be simulated

within the framework of the SIPO_REGISTER.

3.4. Signals

VHDL uses signals to represent wire interconnections within a design entity, and
ports to represent data channels to external devices. Input-to-output transforms in
VHDL are represented by -a future signal value and a time when it will become valid.
This time/value pair is called a transaction. The time aspect could be represented by a
delta delay or simulation time value. A delta delay is an infinitely small time unit, the
sum of any number of which will never add up to any finite amount of physical time (in
terms of circuit delays). Delta delay is used to represent events which must occur in
response to other events without considering the nuances of their timing interaction.

Simulation time represents real time, and is used to simulate timing dependencies

between component and events.
The form of a simple signal assignment statement:

A <= B after Tns;

T,
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9, \ - . .

SRR reads "the value of signal B is assigned to the driver of signal A and will possibly become
S the value of signal A after T nanoseconds”. It is not possible to affect the current value
1 i of a signal only its future values. A simple example repeated from the VHDL tutorial

AL

’w:fj‘_- will serve to illustrate this point.
. “" ”Consider the following pairs of statements:
[} 0
‘ A:=B; X<=Y;
i B:=A; Y <=X;
,-2| Variable Assignment Signal Assignment
5'* ) In the case of variables A and B, after the two variable statements are executed, the values of A
:,.'3 and B are identical after the two statements are executed. More interesting, however, is the fact
T that the values of X and Y will be swapped as soon as simulation time advances, because the

e current value of each signal has been scheduled to become the next value of the other signal’s
b < driver ( after delta delay).” (5]
®
_g\v{ The value of a signal depends on the value of all of its drivers. (Some devices, such
by o : .

h ‘5 as node A of the SIPO_CELL, have multiple inputs to a single node. These multiply
'

o . . . . .
’ G driven nodes are known as busses). When a signal assignment statement is executed it
:i:;' inserts a transaction into a signal driver. The signal driver can be thought of as a stack
A8

'] . . . . . .

N ordered with respect to time, time being the stack pointer. As time advances the value
N

f:'). of the pointer will become simulation time. If the signal has only one driver, that
A driver’s value will become the signal value at the time indicated by the stack pointer.
|

Iy : : ‘ : . . . : :
oY Signals with multiple drivers have their values arbitrated via a bus resolution function

A g p

‘m
;'.:_n A which is usually written by the VHDL programmer. The bus resolution function is
xS automatically invoked by the stmulator.

\':

‘\:\'}, A signal assignment statement creates a “projected output waveform™ for a signal.
\“ g p g
A : . :

Once the projected output waveform is put on the stack, but before it becomes a current
A driver value, it may be affected by signal assignment statements which execute at some
point in the future. In other words, assignment to a node with only one signal driver
:::': does not automatically guarantee that, at some future point in time, the value of the
s assignment will become the signal value. The reserved word transport may appear in an
" Ve
[)

! }'i
:,,

W -32-

®

s

R

R
A s o L e




ol "ol
Eee

154

-

e

~':
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:_ e assignment such as:

.'"’

e

',..\ A <== transport B after T ns;

o

: Transport acts to delete transactions scheduled for times later than the first scheduled

F

' ) transaction in the new waveform. Inertial delay, the default case, simply deletes all tran-

'. 4

N\ . . :

. 'Q sactions from the stack which are scheduled to occur before the first event in the new
.Il

o projected waveform. Figure 3-7 illustrates transactions and drivers. The stack structure

represents a driver for the output of the combinational logic network. A projected signal

LA | .

:" waveform is shown which assumes that this is the only driver for the signal S. In the

o
" . . . .

: j; absence of any future signal assignments taking place between current time and the last

"

) . . L .

’ time on the transaction stack, this will be the future signal waveform.

B

.}:n 3.5. Signal Assignment Statements
»_.'._o

"..} - . .

‘r, VHDL supports two types of signal assignment statements, those which execute
[’ sequentially (sequential signal assignment) and those which execute simultaneously (con- ‘
.h - i
&~ !
oy current signal assignment). Sequential statements, which must be nested inside a con-
1:\_
> current process statement, are an abstract means of describing [/O transforms, while

;)‘ concurrent statements lean more toward a specific hardware implementation.

o

N

1 .

"nj-: 3.5.1. Sequential Assignment Statements. An algorithmic approach to hardware

O

% modeling would use a sequence of calculations to map inputs into outputs. Sequential

[ W
-,.{ statements in VHDL are used for this purpose. They must be nested within a region
'y

B . :
') known as a process. The process statement is itsell a concurrent statement which may

LY ] . 1

execute once per simulation cycle. When the process executes, however, each sequential

e

:?:: statement will execute in turn. Each process executes in response to changes in signals

! s.

v T S s Ce . . . . .

\:\ . currently enabled in its "sensitivity list”. A sensitivity list identifies all the signals which

)

vy . . : . : . o
can trigger a change in an output signal value. Every time a signal in the sensitivity list

L . . :
"':, R changes state, the process is activated and computes a new projected outnut waveform.

105
LW
%
¢
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Figure 3-7. Signals and Drivers

The sensitivity list provides a means to improve the execution time of a simulation.

Consider simulation of a D-latch, the primary cell structure for most components
within the WFT16 processor. The latch has one data bit input and two clock senses for
input signals. Since any of these three signals can affect the output, they all will be listed
in the sensitivity list. However, the output changes only in response to changes in the
input signal. Needless event scheduling can be avoided by activating the process only
when the input has changed, not just because the clock "ticked.” Enable and disable
statements are used to achieve this purpose. All three signals must be listed in the sensi-
tivity list, but the enable statement may be used to enable sensitivity to clock transi-

tions only if the input has just changed state. While the input remains stable, the
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,;:::: ‘ﬁ",‘ disable statement will make the latch process insensitive to clock transitions.
LX)
0
. Another feature of processes is that they may use variables and constants to com-
L pute a value. Since variable assignment occurs immediately, (instead of at some point in
ik the future, as in the case of signals), an arbitrarily complex algorithm may be used to
TR
V) compute a value and assign it to a signal node. This feature can be used to model pro-
I
D
‘,h. pagation through layers of combinational logic within one simulation cycle. Using delta
()
l . .
‘::. delay for signal assignment statements will cause the signal to take one simulation cycle
1% ¥
[N
propagation delay per logic stage. If variable assignhment statements are used, propaga-
o
SN tion delays through gates will not be a factor and delta delay simulation can still be used ‘
e,
Yt . . .
$ "‘*’. to simulate clockad stages. For computing variables, VHDL supports most of the control
A
“ statements used in programming languages such as loops, case statements, if .. then ..
p . |
i else, and, for. These control constructs may also be used to assign a signal value to a
LS
L)
:;: target based on a the value of a variable. |
e |
. |
w ‘ @ 3.5.2. Concurrent Signal Assignment Statements. “Concurrent statements allow the
7.8
|l
% user to specify the structural characteristics of a design, and to describe its behavioral
> \
"Q\K characteristics in terms of concurrently executing, sequential processes” {5]. Concurrent |
J statements represent hardware components which operate in parallel upon receipt of
Sobab
e )
“t' some control signal or clock pulse. }
§. ’l
4‘ o
Lt . .
Fy o The block statement defines a region of text and a guard statement which can affect ‘
L\ !
® . execution of processes within that block. Blocks are delineated by:
i
-:::, block (optional guard) .... end block;
=,
.-:: statements. The guard is a boolean expression which is referenced by concurrent state-
b ments using the reserved word memoried. Memoried statements fire only when the
R
(' <., . . . . . .
o guard expression is true, if the guard is false, changes to the signals will not cause out-
9t
o . . .
\ :-‘a put transitions. Block statements group together statements which execute in parallel
y-3°
‘_ (on the same clock pulse for instance). Processes can import the guard value by insert-
N L
T . . . e . . . .
%\3 3 ing the guard into their sensitivity lists. Signals can be enabled or disabled depending
-1.
) '_;J
¢ "j
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on the guard value. If the guard is omitted, its value defaults to true.

SN

N-

‘ The scope of the guard is only within the nearest enclosing block statements. They
Y can be nested but this must be done explicitly. Blocked statements consist of declarative
» and executable parts. The architectural body is an example of a blocked structure.

; Component and signal declarations follow the block label. Begin signals the start of the

v executable part. Component instantiations, conditional signal assignments and processes

_: fall within this section. The end block; signifies the end of the scope of the guard state-

' ‘ ment, but it may be imported to nested blocks by declaring a port for the guard and

'.: assigning the value of the port to that guard.

:", Component instantiation statements make use of a unit defined with a component

::'t declaration by listing the signals which are to be connected to the ports named in the
L] declarations. Ports can be assigned by name association, by positional association, or a
:,. combination of both. Name association is an explicit linkage of the port and the name
:{: declared in the component declaration. Positional association is implicit, local signals are
. ﬁ identified by their position in the instantiation list with respect to the ports listed in the
‘. component declaration. If a combination of the two methods are used, all named associ-
. 3 ations must occur first.

A purely structural description of the SIPO_CELL could be written by instantiat-
: ing the MSFFs and T_GATEs and connecting them through their port lists:

‘ Ti: T_GATE porySERIALIN, SR_SIPO. SN, |

Y ML MSFF port(S_IN, CLK2, CLK2_NOT, CLK1, CLKI_NOT, SERIAL_OUT):
Ly T2: T_GATE port(PARALLEL_IN, SD_SIPO, P_IN);

N T3: T_GATE port(SERIAL_OUT, LATCH_SIPO, P_IN);

::'} M2: MSFF port(P_IN, CLK2, CLK2_NOT, CLK1, CLK1_NOT, PARALLEL_OUT);
o)

]

.

o

These statements will execute whenever one of the signals listed in the port list changes.

v Lo

(R

This method of modeling provides a great deal of information about the device intercon-

[l
A
P

nections, but not much on its’ operation. There are other concurrent statements which

-

can be used to impart a little more information about the behavior of the device. Since

g

o L
0
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S
:';3': \\::}?‘ the transmission gates are mainly used to control the inputs to the MSFF's, the clarity of
' I. .
a the description may be improved by using a conditional signal assignment statement.
cab !
:é": The three transmission gate instantiations will be replaced as shown below.
3 '
!
:3@!. S_IN <= SERIAL_IN when SR_SIPO = 'I’
1) else 'Z’;
i
o P-IN <= PARALLEL_IN when SD_SIPO = 1’
S else
§:’; SERIAL_OUT when LATCH_SIPO ="'1’
\ else 'Z’;
4 A SIPO_REGISTER_ROW could be constructed using twenty-four instantiations

of the SIPO_CELL. This would be very cumbersome method to model a regular array

-
"
a_ v A .
Py 40
S SOV |

of cells. VHDL provides a more efficient way through the generate statement. The

» A g gn

Aok

VHDL model for a SIPO_REGISTER_ROW is shown in Figure 3-8 below.

r‘"“‘
P
[ B

o

for i in (23 downto O) generate
if i = 23 generate
SIPO(23): SIPO_CELL
port(SERIAL_IN, PARALLEL_IN(i), CLK2, CLK2_NOT, CLK1,
CLK1_NOT, SERIAL_OUT(i), PARALLEL_OUT(i));
end generate;

=

if i < 23 generate
SIPO(i): SIPO_CELL
port(SERIAL_OUT(i+1), PARALLEL_IN(i), CLK2, CLK2_NOT, CLK1,
CLK1_NOT, SERIAL_OUT(i), PARALLEL_OUT(i));

end generate;

o

AR

i

~ay ‘:R_

Ty
LY
EE,

end generate;

a

. [ ey

Figure 3-8. SIPO_CELL_ROW Model
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3.5.3. Bus Resolution Functions. = Each concurrent statement that assigns to a node
creates a separate driver for that node. The signal cannot update its current value
without considering the values of all the drivers, these signals are said to be atomic. No
changes may be made to the value of a signal without considering the values of all the
drivers. Bus type signals are declared using the reserved word atomic followed by the

name of the bus resolution function, and the data type:

atomic BUS_RESOLUTION_FUNCTION_NAME data type;

Other data types may also be atomic, this simply means that the elements of an object,

S

such as a record or bit vector type, are inseparable. Assignment cannot be made to any

.
0
¥
v

A AN

one element individually, all elements must be updated in parallel. If the programmer

o

]

tries to update a single element an error will be flagged.

S

Bus resolution is the means by which multiple drivers are resolved into a single

value. The function is defined by the user and invoked by the compiler each time a new

TN .
(. driver value rises to the top of the stack. One nice feature is that there is no defined
‘:::*: number of nodes per atomic signal. Additional components may be hung on the bus

R

[

te %
"

simply by assigning to that signal name. The function is implicitly called during simula-

h

tion, its argument list is an unconstrained array of that signal type. An example of a

bus resolution function for tristate signals is shown in section 3.4.

)

An explicit function call can also be used to perform bus resolution type behavior.

-
<
(]

The function call would contain a listing of the signals, both control and data, which

LM |
n'.’ 'y

A could affect a node, and return the value of the future signal driver. Bus resolution via a
_E function call is used in the LATCH example in the next section.

v

w\_' 3.6. CMOS Latch Example

1‘: The latch is the building block for all clocked elements within the processor. A
n" clocked CMOS latch, shown in Figure 3-9, will demonstrate how VHDL is used to model
[ _: f: hardware. The box surrounding the latch represent the distinction between entities and
;'\
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o Figure 3-9. Clocked CMOS Latch

;:‘: bodies. Entities describe the interface of the latch to external circuitry, and bodies
o , describe how the internal hardware performs. The Latch interface consists of the signal
B C;A lines IN, OUT, CLK, and CLK_BAR. Therefore, a simple VHDL interface description

13. ‘ can be written as shown below.

b with Latch_package; use Latch_package;
) entity Latch

:' (BIT_IN: in Z_bit;

'

N BIT_OUT: buffer Z_BIT;

el CLK, CLK_BAR: in CLK_SIGNAL := '0’) is

e end LATCH;

,

! In this example "BIT_IN” is a signal driven by a source external to the Latch. Its value

.

>
\fc' will be used by the device, but it may not be changed within the boundaries of the latch,
" !

" port mode in is the read-only mode. The port BIT_OUT is the output signal and also
-::‘c:: the signal source for the feedback loop. The port mode buffer is used because it requires
e the signal source be interior to the body, but also allows the value to be referenced
| o}

ﬂ - within the body. Since it may not be driven by a source external to the body, it is read-

LA
o only for outputs. The clock signals, CLI, and CLK_BAR are of type CLK_SIGNAL.

e

X
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This is a user defined type and the context clause (with .. use .. ) implies that it has been

defined in the package Latch_package. Node A illustrates the requirement for a bus reso-
lution function. This node may be driven by two separate components, the T- gate and

the clocked inverter. A detailed architecture description is shown below.

architecture one_description of Latch is

description_blk:
block

-- The double dash is the comment delimiter in VHDL.
-- The component declarations provide a copy of the device for
-- use within the body.

component T_gate port(A: in Z_bit; B: out Z_bit; C: in bit);

component Inverter port(C: in Z_bit; D: out bit);

component TRI_STATE_INVERTER port(A: in Z_bit; B: out Z_bit; C: in
bit);

-- This is a "block configuration” for the T_gate used within this

-- description. The use is a binding indication which ties

-- together the predefined device T_GATE_INTERFACE to the label T1
-- in the component instantiation statements. The ports listed in

-- the T_gate entity description are tied to those listed within the

-- component statement above. Finally, the body identifies a

-- particular architectural body to be used with the entity. The

other components are configured in a similar manner.

for T1: T_gate use

entity (T_GATE_INTERFACE)

port map (T_gate_jn => A; T_gate_out => B; Control =>> C)
body (a_behavior);

end for:;

signal A: atomic LATCH_RESOLVE Z_BIT;
-- LATCH_RESOLVE is the bus resolution
-- function which will be used to
-- determine the value of node A.

signal tmp: bit;

begin

A <= IN when CLK = "1";

T T T
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2 N OUT <= B;

Dy

3 block (CLK = 0’ and not OUT’stable)
)

-f':",-) -- this is the guard statement associated
b3 -- with this block;

: »)’4{ A <= memoried tmp;

L0

)

p -- This signal assignment statement will only execute when the guard
ity -- is true. Note two assignments to node A. If there were other

RS -- statements within this block that did not use the word memoried,
n"\"ﬁ -- they would execute regardless of the value of the guard.

,. -- Event scheduling could be minimized

ROS, -- by guarding the input node with the boolean expression (not

] -- IN’stable) and using a memoried signal assignment statement to
ol -- signal A. The output of the latch will remain the same unless the
:‘f-‘ -- input changes, without requiring event scheduling on every clock
e -- transition.

.

k‘ end block;

o

Z 4
T

T1: T_GATE port (IN, A, CLK);

k21 11: INVERTER port (A, B);
i':" TRI1: TRI_STATE_INVERTER port(B, tmp, CLK_BAR);

F}’. -
' (;“ end block description_block;
_*::E end one_description;

s
‘:_-‘: Declaring A to be atomic tells the compiler that that node is driven by more than one
0 \
® source and the function LATCH_RESOLVE will be used to determine its value. The
*-:‘ function is located within the package Latch_package as shown below. Once the latch is
fh' . built and tested it may be declared in the same manner as t? T_gate in this example.
e
(‘
2Rk
N

2%
e
Lo
L 1..‘
2%
e
i
)
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% : e, package Latch_package is

B type CLK_SIGNALS is (CLK, CLK_BAR);

A5p type CONTROL_SIGNAL is (RST, SH_RIGHT, LOAD);
.‘7:&. PR mner 1 7

:{\‘: type Z_bit is ('0’, ’1’, ’Z’);

3 function R_LLATCH_RESOLVE (RST, BIT_IN, L_BIT: Z_bit)
f‘ﬁ“ return Z_bit is

x." y

b } constant RST_SIGNAL :Z_bit:=0; -- This assigns a value of '0’
W -- to RST_SIGNAL.

'J'.. if (RST >=1) then

return RST_SIGNAL;

[ elsif BIT_IN >= ("0’ or ’1’) then

:‘-::-(‘ return BIT_IN;

:;\.'i else

}"- return L_BIT;

"“‘ end if;

vl

ol end R_LATCH_RESOLVE;

.*jtJ

b function LATCH_RESOLVE (array < > of Z_BIT)
Yy (;_‘ return Z_bit is

3 :'Q for I in input’low to input’high loop

WY if input(I) /=2’ then

output := input(l);

':'_‘ exit;

Ll end if;

! end loop;

e
Pt
S )

) ] return output;

f;:': end LATCH_RESOLVE;
W]
"
i)

@_. end Latch_package;
DS
M
R
R
L The function R_LLATCH_RESOLVE is a function which would be called to resolve the
'; inverter input value to a circuit as shown in Figure 3-10. The conditional signal assign-
ALY

»
t:;t ment calling the function to return the output value wouid be written as follows:
AN

&
Pl A <= R_LATCH_RESOLVE(BIT_IN. RST. INVERT_OUT);
BA Y

&

K LS T . . . ~ . . . . .
SSRGS Note from the circuit diagram that the RST is being implemented in a behavioral
Wy

s
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3 Figure 3-10. Resettable CMOS Latch

fashion, rather than a description of the circuit (structural) implementation.

W
_",
Zata 1

(-. This is a very detailed, in-depth description of a latch. A much more concise, com-
pact, VHDL description can be written which will execute much more efficiently. This
> description will model the function that the latch performs, rather than the subcom-
" ponents which implement that function. Behavioral descriptions will focus entirely on

" function at the expense of detail. An alternate latch description is shown below
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architecture BEHAVIOR of LATCH is
block( not bit_in’stable)

begin
process( guard, clk, bit_in)
begin
if (guard and bit_in /= Z) then
enable clk;
else disable clk;
end if;

if (clk = '1’) then
bit_out <= not bit_in;
end if;
end process
end block;
end BEHAVIOR,;

This description uses a process statement to assign the inverted input to the output.
Several conditions are placed upon this assignment in order to minimize the number of
transactions placed in the driver for signal bit_out. In general, we wish to avoid
scheduling unless the new output value is different from the previous one. In order for
the output to get assigned a value, these conditions must be met: 1). the input value
must have changed. 2). the input must not be the high impedance value, and 3). the
clock must be high. This description models the same function as the preceding exam-
ple, but it eliminates transactions caused by the _not transitions, and it only executes if

it will cause a different output to be put in the driver.

3.7. Complete SIPO Modeling

Finally we are in a position to do a complete SIPO description in VHDL. This sec-
tion will pull together the previous examples, as well as incorporate the principles used
in the last latch example, that of trying to avoid unnecessary CPU overhead caused by
redundant event scheduling. The methodology used in this section will parallel the

methodology used to do the complete WFT16 modeling.

In general, we wish to model and simulate circuits at a level of detail sufficient to

observe the functionality and operability of the unit cell. but not to the level of every
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'.O"., signal node switching as the clock "ticks”.
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N The SIPO was decomposed into a single cell, the SIPO_CELL, in section 3-1. Fig-
’3: ure 3-2 shows that the primary components are MSFFs and T_gates. As stated earlier,
) transmission gates (T_gates) are primarily used to gate inputs with control signals or
b0 clock pulses. Thus, we shall model them behaviorally with conditional signal assignment
3 statements. The MSFFs on the other hand, are built from two latches of the type
Y modeled in the previous section. Instead of building a MSFF from two instantiations of

L a latch, we shall use the same principles to model the MSFF behaviorally.
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¥ 3 ~T- architecture behavior of MSFF is
B
ek block
signal mid : bit;
N .
i begin
) block(not bit_in’stable)
LA begin
N o . .
ey process(guard, bit_in, clk2)
) begin
" if (guard and bit_n = '2")
st enable clk2:
.tv( else
v .
k. disabl clk?2:
e end if.
- if (clk2 = 1) then
N ’-:: mud - not convz_b(bit_n);
1 end f
i end process
Ay end block
o
o block (not mid 'stable)
Tt begin
-::j: processiguard. mid. clkl)
. begin
< (5,_ if (guard)
e ® enable clkl.
]:}: else ‘
:».‘: disable clk1;
L end if;
oy if (clk1 = '1') then
) bit_out <~ = not convb_z(mid);
o end if;
oy end process;
":J',: end block;
f;.;- end block;
AL end behavior;
e
f,;::: Using this description as a building block, we may now efficiently model the
) “,"-_.
‘ ::.',-" SIPO_CELL.
S
.J':'.'
S8
";,::
'~ :“.:\
<
i
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architecture MIXED of SIPO_CELL is

block
component MSFF port (a: in Z_bit; CLK2, CLK1: in clk_signal,
z: out bit);
-- defer configuration of MSFF, do in a separate configuration body.

begin

process(shift_right, ser_in)
begin
if (((ser_in’stable nor (ser_in = 'z’))
and shift_right = ’1’) then
from_ser <= ser_in;
end if;
end process;

process (parallel_in, ser_out, latch, shift_down)
begin
if (shift_down nor latch) then
disable ser_out, parallel_in;
else enable ser_out, parallel_in;
end if;
if ((shift_down = ’1’) and (not parallel_jn)) then
to_paralle] <= parallel_jn;
elsif ((latch = ’1’) and not (ser_out’stable)) then
to_parallel <= ser_out;
end if;
end process;

fi_ser: MSFF port(from_ser, CLK2, CLK1, ser_out);
fi_par: MSFF port(to_parallel, CLK2, CLK1, p_out);

end block;
end MIXED;

Using this mixed description of the SIPO_CELL the SIPO may be described as an array
of these cells. Modeling the SIPO as an array [16][24] of SIPO_CELLs must be done in
two steps. First, construct a {1](24] row of cells, and then use this row (instantiate) six-
teen times to build an array [16]{1] of rows. The SIPO_CELL is configured at the row
level. Since our goal was to observe the WFT16 at the functional level, the SIPO_CELL
is the highest level at which we will attempt to model things behaviorally. Above this

level. things will be modeled at a purely structural level. It is possible to use the
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N hierarchical modeling facilities of VHDL to model behaviorally at much higher levels, but
VISR
ah that will not be done here. The interface description for the SIPO_ROW is shown below.
:-: with SIPO_PACKAGE; use SIPO_PACKAGE;
[~ entity SIPO_ROW
o

%) (BIT_IN: in z_bit;

- WORD_IN: in 24_bit_vector;
40‘:: CLK2, CLK2_NOT, CLK1, CLK1_NOT: in clk_signals :=
bt SHIFT_RIGHT, SHIFT_DOWN, LATCH: in control;
- WORD_OUT: out 24_bit_vector)) is
§

[,
v end SIPO_ROW;
e
;i . architecture Structure of SIPO_ROW is
‘40 block
n signal SERIAL_INT: bit_vector(22 downto 0);

t

begin
1%

&) for i in (23 downto 0) generate
if 1 = 23 generate
SIPO(23): SIPO_CELL
G port(SERIAL_IN, PARALLEL_IN(i), CLK2, CLK2_NOT, CLK1,

CLK1_NOT, SERIAL_INT(i), PARALLEL_OUT(i));

N end generate;

s if (1 < 23)and (i> 0))generate

f)‘ SIPO(i): SIPO_CELL

o= port(SERIAL_INT(i+1), PARALLEL_IN(i), CLK2, CLK2_NOT, CLK1,
CLK1_NOT, SERIAL_INT(i+1), PARALLEL_OUT(i));

o~ end generate;
Ko
%3 if i = O generate

SIPO(0): SIPO_CELL
h port(SERIAL_INT(i+1), PARALLEL_IN(i), CLK2, CLK2_NOT, CLK1.
e CLK1_NOT, PARALLEL_OUT()):
28 end generate;
‘Ld
e
o

end generate;
o end block;
- end structure;

-

-

4 @ TP W
[

The final step, generation of the entire SIPO array as a set of SIPO_ROWs, is simi-

lar to the generation of SIPO_ROW. A special body, SIPO_TOP. will be used as the

topmost row in the array. Signal declarations are also required for the parallel inputs
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if:'t- and outputs of the rows internal to the structure.

Modeling the SIPO as an array of cells requires several steps, and different architec-
tural bodies and interfaces. The top level interface description, shown below, is the final
product, so far as the rest of the circuit is concerned, of the description process. The

detail shown in the circuit modeling is buried in the input-output transform of the SIPO.

entity SIPO

( WORD_IN: in 24_bit_vector;
SERIAL_OUT :buffer 16_bit_vector;
CLK2, CLK2_NOT, CLK1, CLK1_NOT: in clk_signal := '0’;
SR_SIPO, SD_SIPO, LATCH_SIPO: in control; ) is

end SIPO;

The architecture could just as easily (actually much more easily), have been modeled
behaviorally. As long as the output bit stream from both simulations look the same, the

level of detail of the description is irrelevant.
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CHAPTER 4

VHDL Modeling

4.1. Overview

This chapter will present the structural decomposition of the 16-point WFTA
(WFT16) processor leading to the VHDL modeling of its primary circuit components. A
top down decomposition will impose a signal flow on the system which can be used to
define the VHDL interface entity. Once the processor is decomposed into its primary cell
structures, a hierarchical description of the chip will be facilitated by a bottom-up cell

description.

4.2. 16-Point WFTA Processor

The 16-point Winograd algorithm was discussed in Chapter 2. The basic architec-
ture for all of the Winograd processors consists of input/output registers, arithmetic cir-
cuitry, special cells for parity and rounding operations, address storage ROMs, and a
control sequencer. Primary differences in the actual implementation of the different pro-
cessors result from different numbers of arithmetic operations in the pre-, post addition

array, and the height of the serial multiplier array. The desire to balance the latency

between all the processors in the pipeline would require different data word lengths to

1

)
.

compensate for the different array sizes.

2,7,

Py

4.3. Operation.

: The processor architecture is a pipelined bit-serial machine. The major processing

N

N blocks: input and output registers, preadders, multipliers, postadders. and parity circui-
try form the first level of decomposition. Figure 4-1 shows this level of decomposition

o

LY
.
T x,‘

for the WFT16 processor superimposed over a signal flow graph.
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The processor can be divided into two separate identical sections, real and ima-
ginary. These sections are independent through the last column of the post adders. In

this column, real and imaginary data is added/subtracted to form the complex outputs.

z d
BT sl

Rl

Since the two sides are mirror images, only one side will discussed and modeled, with the

d

understanding that the other side performs exactly the same operations, in the same

sequence, only with a different set of data.

The input register is a parallel-in, serial-out (PISO) register, twenty four bits wide
by sixteen words deep. Input data is twenty-three bits of data and one parity bit. Every
other clock cycle the PISO gets a new word from one of the two off-chip input memories,
using an address from the XROM. The signal SD_PISO is used to shift the pre-existing
words in the parallel portion down one level. After thirty-two clock cycles, the PISO is

~ full and the signal LATCH_PISO goes high to transfer the word-parallel data into the
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serial shift register. This empties the parallel portion of the PISO, and the cycle repeats
itself for as long as the operate flag remains high. Words in the serial register will be
shifted into the parity check and zero fill cell (PC/ZF), least significant bit first, one bit
per word, while the signal SR_PISO is high. To allow for numerical growth through the
arithmetic pipeline, the data is extended to a thirty-two bit word length in the PC/ZF
cell. Parity is checked and the parity bit stripped in this cell. The PC/ZF cell has
inserted one half clock eycle delay. Some zeroes are inserted prior to the LSB to scale up
the data to enhance the signal to noist ratio. Sign extensions are appended after the
MSB in order to prevent arithmetic overflow. The reader is referred to [17] and (4] for

more information.

The number of zero fills and sign extensions are determined by the adaptive scaling
algorithm which takes into account the relative magnitude of the input data. Each 4080
point data set is associated with a scale factor which reflects the magnitude of the larg-
est number in the input data set. The scale factor is the smallest number of sign exten-
sions of any number in the set. To avoid overflow, the largest number (scale factor 0)
requires five sign extensions. Data sets composed of smaller numbers can replace

unneeded sign extensions by zeroes to enhance numerical performance.

The arithmetic section actually implements the Winograd Fourier Transform. To
generate the multiplicand from the output of the PC/ZF up to four sequential
addition/subtraction operations may be needed. Multiplicands generated in less than
four operations remain aligned with the other elements in the bit-vector through the
adder/subtractor columns by replacing the one-delay wide A/S cells with MSFFs. Most
circuit components in the WFT16 have an input ¢2 latch and an output ¢l latch.
Exceptions to this rule are the PC/ZF which is a ¢2 latch preceded by some combina-
tional logic, and the adder subtractors (A/S). The A/S are reversed, data enters
through a ¢1 latch, and leaves through a 42 latch. To balance the pipeline with an
equal number of ¢2, and ¢1 latches, some extra latches are put at each end of the adder

arrays. A pipeline view of the preadd section is shown in Figure 4-2.
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Figure 4-2. Preadd Pipeline

The fourth column operation only involves two data words, the result of which is the
DC components of the Fourier transform. This is the last arithmetic operation to be
performed on these two bit streams. They will travel through the rest of the pipeline
through delay MSFFs. Since the sum and difference of this operation pass through a
trivial multiplier (X 1), the last adder/subtractor (A/S) column can be eliminated and
ﬂ the sum/difference of these two terms computed in the first column of the postadd
array. This will reduce pipeline latency one clock cycle and eliminate thirty-five MSFFs.
There is a one clock cycle latency through each column of the preadders, thus the

preadd section of the WFT16 introduces four cycles latency into the pipeline.

The multiplier array consists of an array [18]{14] of multiplier cells. The 28 bit
Winograd coefficients are encoded into fourteen cells using Booth’s quaternary encoding
algorithm. Each bit of the reduced coeflicient represents one bit of the serial multiplier.
Since each multiplier cell requires three delay stages, there are a total of forty-two cycles

of latency through the multiplier.

The postadder, like the preadder, requires three columns of adders. In column one,
the add operation, deferred when the fourth column of the preadd array was eliminated,
is performed. Data is either real or imaginary through the first two columns of the post
adder. In the third column the two streams are mixed, resulting in complex outputs.

A The next stage is the parity generation, arithmetic rounding cell. At this point the
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\\ﬁ' thirty-two bit results carried through the arithmetic pipeline are rounded down to
twenty-three bits. The PR cell calculates odd parity on these twenty-three bits which is
then appended to make a twenty-four bit word. The diagram of the postadd portion of
the pipeline is shown in Figure 4-3. The output leads into the serial in, parallel out
(SIPO) register. The SIPO has the same organization as the PISO, only the data enters

bit serial, and leaves word parallel.

After the MSB (which is the parity bit) has entered the SIPO the signal
LATCH_SIPO rises and drops the bits into the parallel portion of the SIPO. Every
other clock cycle the complex output is sent to the output RAM, the memory address

again are supplied by the XROM.

4.4. Processor Decomposition

Any one section of the processor is continually operating on a one bit slice of a

thirty-two bit vector. Latency through the pipeline is 119 clock cycles, but once a word

enters the PISO it is associated with fifteen other bits in the same position in their

respective data words. This alignment is maintained throughout the pipeline.

The WFT16 processor can be decomposed into parallel columns of functional com-
putation units. The height of the column would represent the number of bit streams (or
wires) crossing the interface. The second level of decomposition is shown in Figure 4-4.

VHDL interface descriptions could be written to cover the number of bits coming across

FRON MULTIPLIER T0 Sipro

+F, [F {887, 4[5, [F 5. T5 >

LATCH ADDY ADDY ADD2 ADD2 ADD3I  ADD3 PR_IN PR_OUT LATCH

o Figure 4-3. Postadd Pipeline
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the interfaces from each column, and the control signals required per column for this
level of decomposition. The next level of decomposition will break the columns into
their constituent processing elements. These processing elements are the primary build-
ing blocks for the WFTA processor. A final decomposition will tear these cells down
into flip flops, latches, transmission gates, and inverters. Each column in Figure 4-4 is
built by stacking a number of primary circuit components. The primary circuit com-
ponents for the WFT16 are the PISO_CELL, the MSFF, the A/S, the five multiplier
cells, the PARITY ROUND CELL, and the SIPO_CELL. For the purposes of function-
ally simulating the entire circuit, these cells will be the highest level where behavioral
constructs will be used. Above this level, at the column or block level, the descriptions
will be purely structural. The VHDL descriptions of these cells are given in Appendix 1.
In addition to The latch described in Chapter 3, the lower level subcomponents, which

can be used to structurely model the primary cells, are also located in Appendix 1.

{

PISO
16 X 2¢ CELLS

16 16 16 18 SERIAL MULTIPLIERS 1B X 14 18 16 16 16
3 DELAYS PER COLUMN X X X X

-
-
-
-3¢
-

Siro
16 X 2% CELLS

v

Figure 4-4. Column Form of WFT16 Processor
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SN CHAPTER 5

WFT16 Simulation Program

5.1. Overview

The VHDL is being developed to model and simulate the VLSI and VHSIC circuits
currently being designed for future defense needs. One of the needs that it is intended to
fill, that of design verification, is one that the WFTA design group currently requires.
Current simulation tools, such as N.2, and N.mpc are not suitable to simulate designs
such as the WFT16 processor at the functional level. Furthermore, the run times of of
logic level simulators, such as RNL, become excessive as the size of the circuit increases.
The characteristics of the WFT16 architecture make it amenable to modeling and simu-
lation using another approach, that of using a high order language with the necessary

bit-level operators to develop a custom simulation tool.

The main goal of the simulation was to verify that the 16-point processor imple-
ments the 16-point Winograd Fourier Algorithm using the circuits and control signal
interactions built into the chip design. By viewing the processor as a set of bit streams,
traveling lock-stepped with respect to each other through the pipeline, it is possible to

see the basic form of a high level modeling and simulation program. The interaction

between the bit streams is specified by the 16-point Winograd algorithm and imple-
mented using the hardware structures described in the preceding chapter. A more
detailed description of the design and operational characteristics of these circuits is avail-
able in 4|. This chapter will describe the programs which are used to simulate the pro-
cessor, and the data structures used to form the link between the model and the actual

circuits.
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Simulation Description

The simulation was designed and coded using the decomposition of the processor
outlined in Chapter 4. This allows the output of the programs developed in this simula-
tion to be compared directly with the output of a VHDL simulator. It is also directly
compatible with the algorithmic simulator developed by Taylor [17]. The output of the
simulator is a stream of bits for each slice of the processing elements. Follow on efforts
which implement testability into the processor can use this output to generate test vec-

tors for hardware testing.

The simulation consists of five programs which execute in sequence under the con-
trol of a shell script to simulate the WFT16 processor. The processor architecture was
partitioned in the manner shown in Figure 5-1. This partitioning allows for incremental
development of the simulation using outputs from previously tested modules. It also
limits the size of the individual programs resulting in faster compilation and run times
during program development. The output of each column is written to a file for analysis

during coding and future test vector generation.

The programs are listed by name and the processor blocks which they simulate:

CS.C: The Control Sequencer.

C_CNTRL.C: The arithmetic reset and multiplier control circuitry.
PRE_WFTA.C: The PISO, ZF/PC, and three preadd columns.
MULTIPLY.C: The serial multiplier.

POST_WFTA.C: The postadder columns, parity_round circuit
and the SIPO.

Programs were also written to aid in data analysis. The numerical performance of
the WFT16 was simulated by [17]. A program was developed that performed the WFT
at the algorithmic level. using double precision integers and the WFT16 equations. Tay-
lor wrote a decimal-to-binary conversion program which was modified to compute odd
parity and append it following the MSB of each input word. [t is used to convert his

input data sets into a form usable as input to this simulation. The loop between the out-
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= Figure 5-1. Partitioning of the Processor for Simulation

>
1 “*
i ' put of this simulation and the algorithmic simulation was closed by writing a program
Y which converted the binary outputs of the simulation into decimal for comparison
i . : : :
K" against the results of Taylor’s numerical WFT simulation.

3

1

| 5.3. Time
“::: The representation of time in VHDL is done with the physical type time which
‘f; could be a variable length or even infinitesimally small time unit. The simulator kept
s Y

¢ track of events and transactions scheduled to occur. In this simulation, the artifice of

-

o o . . , .

e VHDL time is replaced by a spatial separation of events. Events that are scheduled to
.‘; P |%
¥
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occur simultaneously are textually grouped together. The WFT16 processor controls the
hardware with a two-phase clock. The events which are scheduled to occur at the same
point in time can be roughly partitioned into events which are scheduled to happen on
one of the two clock phases. The simulation uses two counters to model the system
clock. The master clock, kept in the control sequencer, is appended to every control
word. Every clock cycle the master clock is compared against an internal clock, kept in
each program. If they are not identical the simulation program will issue a non-
synchronization message and terminate. All column outputs written to files are also
tagged with internal clock time. When this data is used by another program the time
tag is checked against its internal clock in the same procedure outlined above. This
method keeps the pipeline lock-stepped during file communication. The pipelined archi-
tecture can be modeled by a program looping structure which sequentially runs through
all bit manipulation and movements (shifting) operations in the pipeline. The internal
counter is incremented every cycle, which is compared against a limit to determine when

to terminate the simulation.

A clock cycle can be defined as a ¢2 event which is followed by a ¢1 event. This
definition is necessary because of the sequential nature of the simulation. The program
operates in a loop, first ¢2 events occur, then ¢1 events occur. The process repeats itself
for as many cycles as control signals are available. In the hardware, operations occur
concurrently based on the phase of the clock, 2 and ¢1 events are separated in time, in
the simulation these events are separated textually. A 02 event occurs when data avail-
able at the input is gated into a ¢2 latch. Any combinational logic which occurs
hetween a o1 latch and a ¢2 latch is also defined as a ¢2 event. ¢l events are defined
in a similar manner. To model the propagation of a bit through delay stages without a
two phase clock, provisions must be made to ensure a data bit is not available to affect
the inputs of the succeeding stage until one simulation cycle after it was created or
modified (this is similar to a signal assignment statement not being allowed to affect the

current value of a signal in VHDL). This is accomplished grouping all the 02 events at
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the beginning of the program, and all the ¢1 events at the end. This forces the ¢2
latches to work with the bits put into the @1 latches at the end of the preceding simula-

tion cycle. For example consider the last stage of the PISO and the following PC/ZF

cell shown in Figure 5-2.

Inputs to the MSFF's are gated by a ¢2 clock pulse, and are moved into the second
latch by a ¢1 pulse. The combinational logic which takes place between latches is simu- !
lated prior to the ¢2 latch in the PC/ZF cell. The code would be written and executed

in the following sequence:

PARALLEL IN

et {17 [ 7,

S0_PIS

SERIAL IN_D‘<‘L [¢a| ' ¢l—

SR_PISO o
PARALLEL_OUT

Figure 5-2. PISO and PC/ZF Stage

2

T AR A A
A T, W L/
s e . J*‘:'c':" [\ ‘ oy
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o b START:
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: ¢2 events

.P*

;?;:: Read Control Word.
N PISO_CELL EVENTS
Q If SD_PISO high,

(M latch data into ¢2 latch from parallel ¢1 latch above.
o If SR_PISO high,

latch data into ¢2 latch from serial ¢1 latch to the left.
LT If LATCH_PISO is high,
latch data from parallel ¢1 latch in same PISO_CELL.

M(-
2@" PC/ZF CELL EVENTS
e
, de' If ZERO_FILL high,
W put O into ¢2 latch. ‘
. If PASS high, !
'Y pass output of PISO to the ¢2 latch. i
1o If neither signal high, *
&I |

o do nothing. ‘

G’L ¢1 Events.
Move parallel and serial data in PISO from 42 latch into |
o the &1 latch.
2
PG Increment internal control counter.
i

L GO TO START and REPEAT !
A |
o
"y
f

The data is buffered in this fashion, keeping bits from being used by the following

stage until one clock cycle after they are created. This prevents the bits from racing

«

'y

through the simulated arithmetic pipeline. Additional functions, such as a column of

-~
s . .
EA Ay

adders. can be inserted into the code by separating the ¢2 events and ¢l events and

‘l, o
2 9§ ?
.'

placing them in sequence with respect to the components they follow in the actual

oG

hardware.
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5.4. Program Descriptions

This section will describe the programs and data structures used in the WFTA
simulation. Data structures are used as ”software circuits” in the simulation. For each
of the primary cells discussed in the preceding chapter a data structure has been
developed. The elements of the data structures, for the most part, represent a clocked
storage element (a D-latch) in hardware. This implies that there is a correspondence
between the latches of the real hardware and the variables declared in the structures.
Figure 5-3 shows the correspondence between one data structure and the hardware it is
supposed to model. The structure for the +1 multiplier cell, MULTXI1, has one variable
for each ¢2 and ¢1 latch. The variable tmp_sum is an exception, being used as a hold-
ing bin for the result of the addition operation. Assignment of this variable to the

sumflclk2 latch is dependent on the value of the control signal sign_ext.

Bl et Al A mvlv-.:uT

STRUCT

int £flc
int £flc

l

l DATR
int rch{

1

1 %
il 77—,
k1

k2;

r

Int Ff2c
Int £f3c
nt ;:;’,",‘,cm PARTIAL PRODUCT
Int sumffc v +
int carrgrrclal; >

Int carryfeclkl; CAKKY N
inttmp_zun; ’ *#**l%a[¢l——ﬂ

MULTXL; Z ] & Ja— s1en_gxr
Pt— RST_0

Figure 5-3. Example of a Simulation Data Structure

A
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In addition to latched variables, signals which must travel through more than one

level of logic may also declared as a variables in the data structures.

5.4.1. Cs.C The operation of the control sequencer is simulated by this program.
The control sequencer, shown in Figure 5-4 consists of a 32 bit ring counter, a PLA, out-
put buffers and XROM address generation circuitry (not modeled). It generates twenty
control signals which are used to control the arithmetic and I/O circuitry of the WFT

processor.

The is the only program which will prompt for input, the scale factor and the
number of clock cycles to simulate. The output is a file, master_control, containing the

number of cycles simulated, a time tag, and the twenty control signals. The last two

CONTROL OUTPYUTS
"’/\

orR L — 1

— oNesHoT
oUTPUT oUTPUT
INIT ] |
COLUNN MSFFS SRFFS |
A |
|
RING | ano R
COUNTER PLANE PLANE

==

SCALE FACTOR

Figure 5-4. WFTA Control Sequencer

------




Ty

£

- ">

} ; , .:& items are written to the file after every simulation cycle. These control signals are active
SNy at the beginning of every simulation cycle. This the source file for control information
:’,'. for all other programs used in the simulation.

z!p:' The data structures used in this program are the MSFF and the SRFF (set reset
:’f‘%' flip flop). The MSFF structure contains two variable bins for holding the contents of
: the two latches. The SRFF contains three variables, a set, a reset, and an out variable.
‘_ The Set variable is used to maintain the current value of the output interval signal. The
"

f". out variable must be initialized to zero prior to the start of simulation.

' The ring counter is a chain of thirty-two MSFFs connected in series. In hardware,
' the output of the last MSFF in the chain and the input to the first are connected by a
120 feedback loop. This allows the bit to keep cycling through the counter while the con-
\ tinue signal remains high. The ring counter is modeled using a counter that rolls over
‘3_‘- mod thirty-two. If the result of the modulus operation is zero, the input to the first

3 C MSFF is set to one, if one, the input is set to zero. The bit advances one MSFF during

: - e each simulation cycle. Control signals are generated as a function of the position of the
t:_ bit modeled in the controller. There are three basic types of control signals in the
‘:::; WFT16: pulse, fixed interval, and variable interval. Pulse signals are high for one clock
_ pulse. These signals are assigned by reading the output tap of the MSFF representing a
RN

,3_2' particular clock cycle. If the bit is in the ¢1 latch of that MSFF the signal is set to one,
-v’_::: zero otherwise. Interval signals are high over the same clock interval each time the simu-
pev lation is run. These signals are modeled with a boolean expression that evaluates to true
Y

«JE} if the clock counter value is within the interval the signal is supposed to be active. If
-'-;3 the expression evaluates to true, the corresponding control signal is set to one, zero oth-
'2 erwise.

‘ ':.': The final class of signals is a function of the adaptive scaling algorithm. The inter-
1 ""f:: val these signals are high depends on the value of the three bit scale factor. The eight
e cases are modeled using an if/then control structure as shown below:

ST '
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ool if condition 1
" " action O;
) else if condition 2

[~ action 2;

o

b1 :

Ry else

1a aclion 8;
&
Ty
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T Where the condition represents the boolean value of the "anding” of the scale fac-
R

tor and clock counter, and the action, the setting or the resetting of of the set-reset vari-

B\
-‘:. T able. If the case evaluates to true, a set or reset flag is set to one. Action 8 is the
-
~‘::: default that occurs if none of the cases evaluate to true. The SRFF function then evalu-
. ates the three variables: set, reset, and out, setting or resetting the control signals
:—‘;5‘ accordingly.

e

a , .
’j_f.: 5.4.2. C_CNTRL.C. This program generates the signals used to control data flow
) (! through the arithmetic pipeline. The only data structure used, a MSFF, is described in

G

- . . . . . . . .
i section 5.2.1. The arithmetic control circuitry consists of a chain of forty-eight MSFFs

:: connected in series. The input to the first MSFF in the chain is the reset_add signal
;’% generated in the control sequencer. As the bit traverses the chain, it will be used as a
X ) . . .
,_ . reset signal for the carry and borrow MSFFs in the preadd and postadd arrays. It will
D
e also generate the four control signals needed for the multiplier cell; reset_0, reset_l, |
[\

e sign_ext, and rstde. The output of the program is written to three files, one for the
[r=

’. l..\ . . . ~
N preadd array, one for the multiplier array, and one for the post add array. This file
ﬁi structure represents the partitioning of the arithmetic portion of the WFTI16 architec-
' 0}

L ture as shown in Figure 5-1.

hEN |
R
I 5.4.3. PRE_WFTA.C. The PRE_WFTA.C program simulates the operation of the i
W :
.’ processor from the PISO input to the ¢1 latch following the third column of the preadd i
_. ,:3 array. This program capitalizes on the symmetry between the real and imaginary por-
A j X
W)
\.)
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tions of the WFT16 algorithm. Rather than write one program to compute both real
and imaginary results simultaneously, the same program can be re-used with the
different data sets and run twice. Since these data sets are completely independent
through two columns of the postadd array, the multiplier program can also be reused in
this same fashion. Structures were defined for each of the macro-cells in the preadder.
They are the PISO, which consists of four elements, two per flip-flop, the ZERO_FILL
which contains a MSFF structure, a latch variable, and two logic output variables. The
Adder-Subtractor was broken into two sections, the input and the output and variables
declared for the X, Y, carry and borrow inputs, and the SUM, DIFF, carry and borrow
outputs. Comparison of the data structures shown in this Figure and the circuit
diagrams of the hardware described in [4] will show a one to one matching of the vari-
ables and the outputs of circuit components. This approach leads to a natural synthesis

of the simulation program from the hardware components.

The simulation of multiple cycles is done using a loop controlled by the internal
clock counter. The loop condition is set by the first word of the master control file
which is the number of cycles for which control signals are available. While the internal
clock is less than this value, the simulation will proceed. The program is set up by

reading the master_control file and preadd control word before every simulation cycle.

The PISO is implemented as a [16][24] array of PISO_CELL structures. The MSB
of the input word is located in column sixteen of the array. The LSB, located in column
1. is shifted out first. The output of the PISO is sent to the PC/ZF, a column of 16

PC/ZF cells, where the parity bit is stripped and the wordlength is extended to thirty-

two bits.

The preadd array, which follows the PC/ZF, is composed of three columns of
adder-subtractor (A/S) cells and MSFFs Each column of the preadd array either com-

putes the sum and difference of the inputs, or delays it for one clock cycle. The MSFFs

are used as place holders to maintain bit synchronization with the other elements of the
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bit vector which are passing through the A/S elements. The A/S is defined to compute
the sum and difference, x + y, of the two serial input vectors. Thus, the minuend is
assigned to the x variable, and the subtrahend is assigned to the y variable. The inter-
connections of the A/S and MSFFs of the preadd array is a function of the Winograd

Algorithm and is shown in Figure 5-5.

A note concerning the usage of the reset_adder signal is in order. Unlike all the
other control signals, this signal is the output of a ¢2 latch in the C_CNTRL circuitry.
In the A/S structure, the reset signal is "anded” with the ¢_2 clock, which effectively
causes the signal to be active on the following ¢1 pulse. At this time the reset signal will
cause both latches to be reset. The reset signal should reset the carry and borrow fol-

lowing the MSB arithmetic operation of the preceding data set.

5.4.4. MULTIPLY.C. The multiplier array in hardware is an [18][14] array of multi-
plier cells. Each cell represents one bit of the Booth’s quaternary encoded binary
coefficient. In software, the serial multiplier is represented by an array of data struc-
tures, each array element being one of the five possible multiplier cells. The data struc-
tures are declared to be external so that all variables will hold their value between func-

tion calls. An example of the multiplier data structure was shown in Figure 5-3.

The simulation proceeds by columns. The mult_cntrl file consists of a time tag and
fourteen sets of four bits each which are the four control signals for a column. Before
the &2 event of each column of eighteen cells, the program reads in the control word for
that column. Next the partial product and data bit are read into the cell structure
representing a particular location in the array. Finally the function which simulates the
multiplier cell is called to evaluate the bits, and shift the data through the MSFFs. This
is done by a function call that has the arguments, the pointer to the data structure, and
the control signals needed for that particular cell. The pointer name pa70 imparts cer-
tain information about the location of the structure in the array. The p-7- means that

the multiplier cell is in the seventh row of the array. The pa-- means that the cell is in

-68-

R R £ S S i
» m | Sy \ ‘&L\“l— ~ {\‘k‘f f;hl\x{:h&il‘-\.‘.’..‘;‘ﬁh‘_';-_\_'..'MZ.“_"'L'L..L‘..-_' = -




- ™ a ﬂﬁ T L bt o
"")nfs.'f-:')""‘c AN AT AR S I R AL ALAEHES L AR A AL LGRARA ORI S AR A Aot Sl ath awa ata ab)

23
MSFF HSFF SUM X
I nser WSFF orr 8 v
] NSFF [ SUM 9 X M X
| nsFr AR prrdl v
] HSFF Un 1 X SUM 7 X
— HSFF DIFF Y DIFF Y
—{5Un 0 X L] 2 X SUN 3 X —
—| pIFF Y DIFF ) DIFF Y i
~—sun 1 X ] 3 X SUN ' X
—{ DIFF A DIFF \ DIFF Y
T X SUN X SUR T
2 4 S
DIFF Y DIFF L DIFF Y i
~—{sun X L] X SUN X
3 9 6
~—{ DIFF Y DIFF Y DIFF Y
UN s _/——’ TUN 6 X SUN 7 X +H—
IFF Y OIFF Y DIFF Y I
5.‘.5 ~— NSFF
] HSFF

Figure 5-5. Preaddition Operations in the WFTA Processor.

the tenth column. Finally, the p--O0 means that it is a O multiplier cell. Therefore, this a

the pointer to the multiplier array element which is in the tenth column of the seventh

.:E row, and calls the mO function. The other multiplier identifiers are: p--1 for the +1 mul-
L
ra tiplier, p--2 for the +2 multiplier, p--n for the -1 multiplier, and p--q for the -2 multi-

1

plier. Theory of operation of the multiplier cells is covered in detail in [4] and will not
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be covered here.

PR I
v
A

v w

o er
o)
%y
J‘I

[ 13

)Lq
3

e A e
a M
.
.
NN
.

-89-

T e R s S R Ry »«i



W N W O T N R R W I N T R T T O T O TR TTE T R g v e T e n L w o T W m Y o werag v e T I

5.4.5. POST_WFTA.C. This program simulates the WFTA pipeline from the output
of the multipliers to the output of the SIPO. It is a dual program in that both the real
and imaginary operations are simulated simultaneously. The A/S elements are the same
as the preadders, and the SIPO is essentially the same as the PISO. The only totally
new data structure used is the parity round cell. The parity round cell consist of several
levels of combinational logic, variables were declared for the outputs of the logic as well
as the standard latch variables. The interconnection of the postadd columns is shown in

Figure 5-6. Results from the imaginary and real sections of the processor are mixed in

the third column of the postadders.

—{3UN X SUR X SUN X —
) .
—{ DIFF Y DIFF Y DIFF L
—s0n X SUN X UH X —
1 1 1 \
—1 DIFF Y DIFF Y DIFF
—{ 50N X : UM X SUM X —
2 2 Y
—{ DIFF Y DIFF Y DIFF —_
] X SUN X SUM X
3 i 3
DIFF Y 4 DIFF Y DIFF Y|l
—{3UN X ~— MSFF TN X
4 4
—{ DIFF Y \ MSFF —1 oifFrF Y |
UM 5 X —\i 1 MSFF —1.5UNM g X —
—{ DIFF Y i MSFF DIFF Y —
— 350 X NSFF UH 6 X t+—
6 H Y
—{ DIFF Y — HSFF DIFF —
HSFF / ! MSFF SUN 7 X —
NSFF HSFF — DIFF Y
— sun X —
DIFF Y -
MSFF |
FROM_IMAG TO_IMAG MSFF

Figure 5-6. Post Addition Operations in the WFTA Processor
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”' 5-_‘_:" The outputs of the real and imaginary columns, and the output of the both SIPOs
n
"" are written to a output files.

N
?:S: 5.5. Generation of a WFT Simulation
Al
\ This section will discuss considerations involved in building a WFT simulation
: from the data structures and functions defined in earlier sections. The cells were
""\; designed to be single independent units. Larger computational units may be created
::'!. merely by declaring more instances of the cell structure. The key parameter in all the
programs is the number of clock pulses which constitute a simulation cycle. The 16-
"; point architecture uses 32, the 15 would use 30, and the 17 would use 34 clock pulses.
'I‘f The loop control functions are all done with modulo (number of clock pulse) arithmetic.
BN
.‘ An important point regarding the control signals is that the signals are set high in the
‘::-:( control sequencer on the cycle which they are supposed to be used. In actual hardware,
i’:} the signals might be created a clock cycle ahead of time and buffered in an output
) ] (’ MSFF. The timing diagram used as a source document should be examined to deter-
.‘:.:: mine which interpretation was used in generating the diagram. The constructs used in
:‘t modeling the control sequencer were selected to allow changes to be made in the timing
diagram without requiring extensive changes to the simulation.

“ The PRE_WFTA.C and POST_WFTA.C adder-subtractor (A/S) elements are
'j interconnected using the equations from the Winograd program written by Taylor and
1:‘ the coefficients used to generate the multiplier array were obtained from [4]. The outputs
:::-:3 from the algorithmic simulation program were also used to verify the results of the simu-
j,.- lation.
1

Implementing the serial muitiplier array as a fixed array of data structures is a
-_'".E: flexible and easily understandable approach. The coefficient encoding can be changed
:?{3 without having to redo the entire array. The major difficulty encountered in construct-
: - ing the simulation was the timing of events across the program boundaries. Reading
": { data from files is normally a 02 event. (the start of the simulation cycle). On the other
0
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hand. writing to a file is a #1 event, (the end of the cycle). The clock time appended is
the cycle which the data was created. However, when a file is read, the program treats
the data as being applicable for that simulation cycle. Problems arise when the output
of one program, such as PRE_WFTA.C is used as the input to the MULTIPLY.C pro-
gram. The multiplier treats the preadd outputs as input data valid on the same clock
cycle that is was created. The effect of this is that the data is arriving one cycle before
it was created. In many cases, the effect is barely noticeable, showing up as an error in
the LSB of some of the answers, and very hard to detect. In some answers, those with
just the right number of sign extensions, the fact that the control signals and data are
out of synchronization by one cycle causes the MSB of the data, the sign bit, to
overflow, changing the sign of the intermediate result. The fix was simple, once the prob-
lem was identified. Data read across program boundaries was defined to be ¢1 event so
data effectively was being read at the end of the simulation cycle which it written to the
file. The source document for the control signals defined the clock cycle that the signals
were to be active. The CS.C program generated them on this cycle, therefore this prob-
lem did not affect them. Once this problem was detected and corrected, building the
complete simulation essentially consisted of interconnecting the data structures in the

manner specified by the 16-point WFT algorithm, and debugging programming errors.

5.6. Simulation Scenario

C shell scripts were written to automate the execution of the simulation programs.
Execution was subdivided into two scripts, generation of the control signals, and simula-

tion of arithmetic operations.

The script control executes the programs CS.C and C_CNTRL.C. CS.C is the
only program that requires input from the kevboard. It will prompt for the number of
clock cycles to simulate and the scale factor to the input data set. The scenario is
shown in Figure 5-7. Control files are generally good for multiple simulations so theyv do

not have to be regenerated unless the scale factor of the input data changes.
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. Figure 5-7. Control Generation Simulation Scenario

3

. The script demo runs the arithmetic simulation programs. The scenario that the
script executes is shown in Figure 5-8 In addition, the script also runs the output for-
t:: mat programs which convert the binary streams into integers. In the absence of any
> operator action, the converted output will scroll across the screen, so the normal pro-
:_ cedure is to redirect the screen output to a duta file with the command: demo >&
* tst_output, which will send the output to the file tst_output.

e The code used to siinulate the WFT16 is included in Appendix 2.

L]
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CHAPTER 6

Summary and Conclusions

8.1. Overview

This thesis addressed the problem of modeling and simulation of a VHSIC class sig-
nal processor. A new Hardware Description Language (VHDL) is being developed to
address this need by the VHSIC program office. VHDL is intended to be a medium to
communicate design intent for large, complex designs in a concise manner. Perhaps
more importantly, the VHDL code used to describe the circuit also serves as the input to
a hierarchical simulator. The simulator allows a design to be simulated at different lev-
els of abstraction within the same design entity. This is a key concern when discussing

large designs which may be composed of hundreds of thousands of transistors.

VHDL was originally targeted to be the vehicle used to simulate the design of a sig-
nal processor that embedded the Winograd Fourier Transform Algorithm in a pipelined
architecture. An early delivery of the VHDL simulator failed to materialize, so a custom
simulation tool was developed to perform this task. The work done in decomposing and
modeling the circuit using VHDL translated well into the new simulation - the C simula-
tion. This simulation modeled the processor at the bit level, using hardware-like data
structures. It was used to validate the architecture, cell functionality, and
control,/timing interaction of the WFTI16 processor. Insights obtained during the
development and coding of the simulation was also useful in correcting errors which had

slipped into the processor design.

6.2. VHDL
VHDL was applied to the problem of modeling the WETIo vt 4 level where the
functionality of the individual circuits may be observed The tanctenal level was deter-
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mined to be the level at which bits could be seen passing through latched storage loca-
tions. This visibility was achieved by decomposing the circuit into its smallest func-
tional processing components, and then modeling these components. It was found to be
quite easy to model low level cells, such as inverters, T_gates, and latches, and to build
progressively larger circuit models by instantiating the previously described subcom-
ponents. This approach will model and simulate circuit operation at the very lowest
level of detail. The CMOS latch was modeled at the transistor behavior level using this
approach. However, the run time of circuit simulations containing large nunibers of dev-
ices modeled at this level is expected to be excessively long. VHDL provides a hierarchi-
cal approach, the circuit could be modeled at a higher level of abstraction for the pur-
poses of simulation. This alternate approach, modeling only the bare functionality, cou-
pled with limiting redundant event scheduling, should allow large circuits to simulate

much more efficiently.

The WFT16 processor was decomposed into a set of lower level behaviors, and
modeled at both the functional and structural levels. The structural description is useful
for seeing the architecture of a cell, while the functional description is more abstract.
Functional descriptions may provide a clear picture of the device behavior, but their pri-
mary purpose is to aid efficient simulation. Thus, two VHDL architectural bodies were
written for most cells, one to document the architecture, and the other to describe the
function and be used to drive a simulation. The MSFF was found to be the highest level
which could be efficiently modeled using this approach, modeling the functionality, while
preserving some structural flavor of the design. Higher level cells, modeled at the funec-

tional level, would instantiate a MSFF as part of the overall design.

The basic concepts behind the VHDL were found to be relatively simple. The sytax
allows the VHDL descriptions to be written which are clear and concise. [t appears to
be difficult to write a description which would not be fairly readable and understandable
to someone with a basic knowledge of the language. However, this absence of complexity

leads to descriptions which are tedious to write. There are also many areas of the
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ey syntax where questions arise as to the actual meaning or implications of a particular con-
WA
{ struct. This is not unexpected, it arises when learning any new computer language, but
-
]
g . .
e the problem is exacerbated due to the youth of the language, lack of documentation and
(:’.
'(I‘-
L) examples.
n'("..'.‘
V) There appear to be two aspects of VHDL, design documentation, and design simu-
pr-
&% lation. Of the two, only documentation is fully supported by the language at this point
00
},). in time. There also appears to be two types of description that correspond to these
W
aspects. The goals of modeling and simulating a circuit using VHDL seem to be facili-
‘N
t tated by separate approaches. A purely structural description will not simulate as
:'.:j;'.j efficiently as will one specifically written for that purpose. On the other hand, circuit
descriptions written with an eye towards minimizing simulation time will not be as clear
= . - o . _ .
N in describing the circuit structure. The MIXED type of architectural description allevi-
).'_'-f." ates this problem somewhat, but the actual improvement using abstract descriptions
c : :
‘b alone is not known.
1598
h \:;: 6.3. C Simulation
o
L . . .
:) The WFT16 processor was modeled and simulated using the C programming
SO language. Primitive cell structures were defined to model each of the primary circuits at
s P y
-“!‘,\ . e e . .
:::.'& the bit level. These primitive cells were then declared and interconnected using the 16-
195
A : . .
;ﬂ point WFTA as a netlist. A clock was defined that was used to march bit streams
:;.:% through the this cell structure. In this fashion, the WFT16 architecture was shown to
."-‘.\: ; i
e perform the 16-point DFT, thereby validating the architecture, the results of Taylor’s
A numerical simulation and the signal to noise ratio projections.
..o—‘
.‘
X 8.4. VHDL Recommendations
i’ }.
BN : . . . :
MO The run time of any VHDL driven simulation needs to be quantized. using both
". ]
o . functional and structural descriptions. The improvement in run time for such tech-
v
n '{:") . C . . ‘ .
,l.:"!: niques as limiting event scheduling unless the input/output transform will cause an
"
5
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i "j.: event on the output, and removing redundant circuit functions, (such as the feedback
loop of a static latch) should be studied. If the difference is not significant, the designer
will have the flexibility to run a more structurally flavored circuit models (easier to
write) in the simulation. Finally, the descriptions should be validated to ensure that

N they do in fact perform identical functions and may be interchanged at will.

B At this point in VHDL’s life cycle the documentation aspect is fully supported by
. the syntax. This capability should be used to document the cell structure and other
parameters of the cells developed during the VLSI courses. These include the name of
the cell, the name of subcells, and design information which would be useful in automat-
ing the layout process at some point in the future. The yearly turnover of personnel in

the AFIT environment, as well as the complexity of the cells, require that clear, struc-

e

: tured documentation exist to aid the continuity of research effort. Thus the major

: recommendation in this area is that the»VHDL should be used to document the CMOS

- Qj cells which were built over the course of the last year, and in future years, by all VLSI

.. design groups.

3

:: 6.5. Simulation Recommendations

_ Although the simulation was designed to simulate the WFT16 processor, the design

0

* philosophy is applicable to the other processors in the PFA pipeline, the WFT15,

~' WFT17 and also to other architectures which have lock-stepped, bit serial pipelines. It
models the hardware at the bit level, and has the primary advantage that the run time

.

l_.: of the simulation is very short, under one CPU minute. to run several 16-point data sets

:: through the pipeline. The C simulator is a tool which should grow along with the

.. research in pipelined serial signal processing architectures. Any design which uses the

t: cells designed in the WFT16 eflort can use the structures and concepts of the simulator.

' At this time, a class project is developing a program which will layout and simulate the

.. multiplier array for the WFT processors. Future projects in this area could include

[) .«

‘: o automating the layout of the other WFT processors, leading to computer generated sig-

-
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phat nal processor layout.

8.8. Conclusions

The WFTI16 architecture has the potential of an order of magnitude improvement
in processor throughput over existing designs. Based on the research discussed in this
report, and the reports of the other members of the design team,[17), [4], [13], there
exists a high degree of confidence that the WFT16 processor will work, as expected, on

first silicon.
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Appendix 1 VHDL Modeling

The WFTA processor was decomposed into its primary circuits in the Chapter 4.
The very lowest level of decomposition shows that all the circuit elements are built from
transmission gates and the basic logic gates. These cell are linked together to build
latches, logic gates and flip flops. This appendix contains the VHDL models the pri-
mary circuits. The devices which will be modeled range from transmission gates to
the booths multiplier cells.

1.1. Transmission Gate This is a behavioral description of a transmission gate. It
actually needs both senses of the control signal to drive the CMOS 'P’ and 'N’ transis-
tors, but since the inverted signal does not perform any independent function, it is not
included in the port list or architectural description. The T_gate is sensitive to both the
input signal switching and also transitions on the control line. Therefore, both these sig-
nals are included in the process sensitivity list. The T_GATE is sensitive to both the
input and control signals. However if control = ’0’ then the output will be not change
regardless of the value of the input. The process statement reflects this consideration. If
the control has not just changed to '1’ the output will not reflect the input. As soon as
control switches to '1’ then the input will be enabled. As long as the control remains
high the output will reflect the input, when it falls the input signal will be disabled and
not be allowed to cause events in the transaction queue.

e 300 e 2 e b o e 0 o 3 oK K ok ol Sk ke ok ke ke ol 3 ok ok ok ok i o ok ok ok ok 2k ok o K ok ok o 3 ok o oK K ok ok ok 3k ok ok ok ok ok ok ko ok ok ok kK

- DATE: 29 JULY 1985

-- TITLE: Transmission Gate Descriptions
-- FILENAME:t_gate.v
-- LANGUAGE: VHDL
-- ENTITY:
entity T_gate
( bit_n: in Z_bit;
control: in CONTROL;
bit_out: out Z_bit;
) is
end T_gate;

__#*t***#**###***#*******tt***************t#*******t*********************/

architecture BEHAVIOR_1 of T_gate is

block
begin
process(bit_in, control)
begin
QRN if (control and not control’stable) then
k'}.‘" . .
N enable bit_in;
t:,.‘\- end if;
t;::. if (not control) then
& disable bit_in;
?]j i"‘. (’nd lf.
*-‘ \. k ’..
SR . .
'{".‘ bit_out -7 == bit_in;
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end process;
end block;

end BEHAVIOR_1;
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1.2. Z_ IJNVERTER

4 The Z_INVERTER accepts inputs of type Z_BIT and returns type bit. ’'0’ and I’
’ inputs are negated and mapped to the output in the normal fashion. A ’Z’ input has
no effect on the value of the output, the output will retain its previous value. The port

-y
P
.
AN
Yol
L

S mode "buffer” is used to allow assignment of the output to itself when the input is
‘. 'Z’.  This device is used in the latch in order to behaviorally model a high impedance
» input.

' __*;1*******t**t**t****i**********************‘*tt#*ti*#**#***************
) -

& - DATE: 29 AUG 1985

ﬂ -

X - TITLE: Z INVERTER

. -- FILENAME: z-invarch.v

e -- LANGUAGE: VHDL

-- ENTITY:

. entity Z_INVERTER

3 (bit_in : in Z_BIT;

K - bit_out: buffer BIT) is

W end Z_INVERTER;
::**!i**#****l*#ﬁ‘**###*****#************#****************i***************/
:: architecture BEHAVIOR of Z_INVERTER is

. block

f ) begin

“0 process (bit_in)

3 begin

“~

- if(bit_in = 'Z’) then

. bit_out <= bit_out;

“ elsif (bit_in = '1’) then

- bit_out <= "0’;

I else

N bit_out <=1

uy end if;

X ‘ end process;
i end block;

d end BEHAVIOR:

-
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1.3. Full Adder-subractor

This section contains two descriptions of the full adder-subtractor which is used in
the pre- and post-add arrays. The first is a completely structural description listing all
the logic gates and interconnections. The second is a boolean algebra description of the
functionality of the circuit.

o 302K o e i a2 ol ok s ok ok 3k ok ke ok ok ol ok ke ok ok ok ke okl i ak kK ok ok ok e 3K K oK k3 K ok 3k o ok ok ok 3k ok ok 3 ok kK ak o oK ok ok ok ok ok oK K K ok K K

- DATE: 29 AUG 1985

- TITLE: LOGIC LEVEL DESCRIPTION OF AN ADDER/SUBTRACTOR
- FILENAME: add-logic.v

-- PROJECT: THESIS

- LANGUAGE: VHDL

- ENTITY:
entity ADD_SUB2
(A, ALNOT, B, CY, BY: in bit;
SUM, DIFF, CY_OUT, BY_OUT: out bit) is
end ADD_SUB2;

- FUNCTION:

- This is a pure structural description of the

- ADDER/SUBTRACTOR cell used in the PREADD and POSTADD columns
-- of the WFTA. Because of the cmos transmission gates used,

- it is necessary to input A and A_NOT.

“*t#**t#*#**t************#*********#************************i**********#/

architecture PURE_STRUCTURE of ADD_SUB_CELL
PURE_STRUCTURE:
block

component OR_GATE port (A,B: in bit; C: out bit);
component AND_GATE port (A, B: in bit; C: out bit);
component XOR_GATE port (A, B: in bit; C: out bit);
component XNOR_GATE port (A, B: in bit; C: out bit);
component INVERTER port (A: in bit; C: out bit);

signal S5. S6, T1. T2, T3: bit;
signal S1, 82, SUM, CY_OUT. DIFF, BY_OUT: atomic WIRED_OR bit;

begin
-- signals S1, and S2 are common to both the adder and subtractor
CT1: INVERTER port(B, B_NOT);
CAl: AND_GATE port {A, B_NOT, S2);

CA2: AND_GATE port (A_NOT, B, S2);
CA3: AND_GATE port (A, B, S1);




CA4: AND_GATE port (A_NOT, B_NOT, S1);

-- the gates labeled C.. make up the XOR, XNOR functions

-- given by X1, X2 below. this was done to make this description
-- compatible with the actual circuitry implemented in CMOS
--X1: XNOR_GATE port (A,B,S1); - S1 = A xor B

--X2: XOR_GATE port (A,B,S2); -- 52 = A xnor B

-- adder section
Al: AND_GATE port (CY, S1, SUM); -- CY (A xnor B)
I1: INVERTER port (CY, T1); - CY’
A2: AND_GATE port (S2, T1, SUM); -- CY’ (A xor B)

0O1: OR_GATE port (A, B, S5); - (AorB)

A3: AND_GATE port (A, B, S6); - (A and B)

A4: AND_GATE port (S6, T1,CY_OUT); -- CY’ (A and B)
A5: AND_GATE port (CY, S5,CY_OUT); - CY (A or B)

-- subtractor section

AB: AND_GATE port (BY, S1, DIFF); -- BY (A xnor B) = DIFF’

I2: INVERTER port (BY, T2); -- BY’
A7: AND_GATE port (S2, T2, DIFF); -- BY’ (A xnor B) = DIFF
I3: INVERTER port (A, T3); -- BY (A xnor B) = BY_OUT

A8: AND_GATE port (BY, S1, BY_OUT); -- BY (A xnor B) = BY’
A9: AND_GATE port (T3, $2, BY_OUT); -- BY (A xnor B) = BY_OUT

3 zm. end block;

end PURE_STRUCTURE;
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{2 ) -- This is a boolean algebra description of the adder/subtractor cell
architecture LOGIC_STRUCTURE of ADD_SUB_CELL is
block

signal S1, S2: bit —temporary signals for xor, xnor resources

.A begin

y S1 <= A xnor B;

S2 <= A xor B;

--adder section

», SUM < = (S1 AND CY_IN) or (S2 and not CY_IN);

W, CY_OUT <= ((A or B) and CY_IN) or (A and B and not CY_IN));

~ --subtractor section

- DIFF <= (S2 and not BY_IN) or (S1 and BY_IN);
BY_OUT <= (S1 and BY_IN) or (S2 and not A);

end block;

Qe

< end LOGIC_STRUCTURE;
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) :’f; '::{J 1.4. Resettable CMOS Latch
qu. The resettable latch is used as the front end of the resettable MSFF. The reset
o signal is “anded” with clock_not to avoid fighting at the input node. The VHDL
2% code follows the normal latch, but with the addition of the reset signal to the interface
3’,,,_. declaration and the process statement. The reset signal is meant to take precedence
b over the input, (a direct connection to ground will drain any charge on the node) for
4\ . . . . . . .
S this reason it is listed first in the signal assignment statement.
3’.\.
¥

oo 020k ok k3 o e ok ok ok ok ok ok oK ok ok ke ok ok ok o o o8 i kb o ok b ok i ok sk ok A ok ok ok ok ok sk ok ok ok ok 2 ok K ok ok ok ok A ok ok K ok ok %k ok ok ok

)

3

0 -
i_‘, - DATE: 29 AUG 1985
R - TITLE: RESETABLE CMOS LATCH
ol - FILENAME: rlatcharch.v
-- LANGUAGE: VHDL

L -

o - ENTITY:

J“:ﬁ‘

o entity RESET_LATCH
SN (bit_jn: in Z_BIT;

CLK : in clk_signal;

¥ CLK_NOT : in clk_signal := I;
‘\&.\ reset: in CONTROL;
0% bit_out: buffer BIT ) is

Al end RESET_LATCH,;

."‘..l PR ::***********************************************************************/

@
._ \'1:: architecture MIXED_DESCRIPTION of RESET_LATCH is
..\‘-’
.-\:\ block
2

signal t_gate_out; : Z_BIT;
1_fdbk, invert_out: BIT;

component T_GATE port (a: in Z_BIT; cntrl: in CONTROL; x: out Z_BIT);
component Z_INVERTER port(b: in Z_BIT; y: buffer Z_BIT);
component INVERTER port(c: in BIT: z: out BIT);

e, D r,
e, P
L .

: "

-

w e
[

2.3, ]

for all: T_GATE use -- This is a mapping between the ports declared

“_c‘.f -- win the component declarations and the
-\.::- -- formal ports listed in the interface
: e -- declaration.
1S entity (T_GATE)
. :_ portmap(BIT_IN ==- a, CONTROL = -~ cntrl, BIT_OUT = . y)
o- body (BEHAVIOR):
K ¥ = end for;

N
¢ for all: Z_INVERTER use

P entity (Z_INVERTER)
bt port map( BIT_IN = ~ b, BIT_OUT = - v)

Pl body (BEHAVIOR):

‘;‘Z g=_~ end for:
SS QI

},-:: for al.INVERTER use
'\’:-

o

{ Ty --: -.'\, o, Ot 'x\'.r.'h“zu‘ / ‘, ."."'—
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}'5 \J
s o entity (INVERTER)
A body (< <library >>)
) end for;
UN
q\::‘: begin
;' ) T1: T_GATE port(IN, CLK, T_GATE_OUT)
W Z1: Z-INVERTER port(INVERT_IN, BIT_OUT);
')..‘. I1: INVERTER port (BIT_OUT, INVERT_OUT);
"') T2: T_GATE port (INVERT_OUT, CLK_NOT, L_FDBK);
13,
ol process( RESET, T_GATE_OUT, L_FDBK ,CLK,CLK_NOT)
. if (not RESET stable or not T_GATE_OUT’stable or not L_FDBK’stable)
¢ then
b enable CLK, CLK_NOT;
else
disable CLK, CLK_NOT;
BIX ) Iy
Ko endif;
e
ﬁ if ((reset = '1’) and (CLK_NOT = ’1)) then
e INVERT_IN <="0’;
W elsif (T_GATE_OUT /= "Z’) then
o INVERT_IN <= T_GATE_OUT;
else
A INVERT_N <= L_FDBK;
e end if;
N —a. end process;
N (e
. end block;
P
A% end MIXED_DESCRIPTION;
2
[~
R
Y
3. <
35
1 .‘.
et
S A
bl
-.}l :r-.
-~ -
e
¥
!
® A-8
W)
“
o

D T T T T Tt T iy S S E N T T S e R R T G P SR Y L L N S
BTN g Lt ._?‘ QRN \._J- o QUSRS e AN O AN L O S AR

A et
. .
....... L2 00 0P,




y

i

o

i .

I *.}: 1.5. Set-Reset Flip Flop
)

: The set reset flip flop (SRFF) is used to maintain interval signals in the control

sequencer and to store the parity error flag in the PC/ZF column. The SRFF is com-
) posed of three latches and some CMOS transistors. This cell can be modeled in two
ways, by instantiation, and process statements. The process statement may be a little
more unwieldly but it should execute more efficiently.

Cx ¥ Y

%

e 30 30 0 20 2 30 2 0 2 e e ok 3K 3 6 30 o o o ok ok ok ko 8 ok ke ok ae o ok 3k o ok ol 2 e ok ok bk ok ok ok 2 ok 3 ok sk ok K ok 3k ok ok ok ok ok ok ok oK ok ok ke ok ok ok ok

- DATE: 29 AUG 1985

- TITLE: SET-RESET ARCHITECTURE
FILENAME: srff-arch.v
- LANGUAGE: VHDL

1
[}

g ENTITY:
)
1)
1 - entity SRFF
X - ( OPERATE: in BIT;
4 - SET, RESET: in Z_BIT;
' CLK2, CLKI1 : in clk_signal;
. CLK2_NOT, CLK1_NOT : in clk_signal := 1;
- SR_OUT: buffer BIT) is
- assert (not (set and reset))
i - report ” SET AND RESET ARE BOTH HIGH SIMULTAENQUSLY”
1 - severity error;
ﬁ-’ - end SRFF;
- FUNCTION:
M -
4 -
Y -
1 __************************************#*********.**************#**********/
architecture BEHAVIOR of SRFF is
block
«( signal PASS_RESET, SET_OUT, RESET_OUT, TO_OUT: Z_BIT;
- begin

L_S: LATCH port (SET,CLK2, CLK2_NOT, SET_OUT);
D L_R: LATCH port (PASS_RESET, CLK2, CLK2_NOT, RESET_OUT);
: L_OUT: LATCH port (TO_OUT, CLKI. CLKI_NOT, SR_OUT);

\ PASS_RESET <= RESET when OPERATE = I’
Ly else ’'17;
L'
N TO_OUT < = SET_OUT when SET = '1’
else RESET_OUT;
P er d block
.
k.
¥
‘ .
‘ »
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Re uE end BEHAVIOR;
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Yo
e
Nt
)
1) A.‘
E
XA
syl q& architecture BEHAVIOR of SRFF is
R block
é}: component LATCH port(A: in Z_bit; CLK: in clk_signal; X: buffer bit);
i for all: LATCH use

ey entity (LATCH)

i port map (bit_in => A, CLK => CLK, CLK_NOT =>> open, bit_out => X)
D) body (STRUCTURE);

" end for;

L

; \-‘g‘:: signal PASS_RESET, SET_OUT, RESET_OUT, TO_OUT: Z_BIT;
s
K begin

-- If either the set or reset have just changed the process will be

0 -- sensitive to clock transitions.
Kot o
e
t,j-‘ process(OPERATE, SET, RESET,CLK2)

L begin

o if (OPERATE ="1’)

® enable SET, RESET;

. else

A disable SET, RESET;

o end if;
b _:E'
"ﬁ if not(SET’STABLE or RESET’STABLE) then

Bl G& enable CLK2;
N end if;

¥

SET_OUT <= SET;

S RESET_OUT <= RESET;
! )‘y;»'\‘
VRS end process;
J
A process(SET_OUT, CLK1)
P begin
K 'V,; if (not SET_OUT’stable or not RESET_OUT’stable) then
DX enable CLK1;
(@ else
disable CLK1;
-' ; end if;
g if SET_OUT =1’ then
Ve SR_OUT <="1’
o elsif RESET_OUT = "I’ then
o SR_OUT <="0
t;:: else
AR SR_OUT <= SR_OUT;
R4 .
ol end if;
2
ph end process;
:.1“ ":3,': end block;
ros
‘ z’
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3@ end BEHAVIOR;
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1.8. Master Slave Flip/Flop

The MSFF is composed of two latches connected by the signal s2. The type
conversion function, convz-b, is used to convert the input signal of type Z_bit to type
bit which phi_one latch expects. This will be a common problem throughout the cell
descriptions. An explicit conversion mechanism is used to confirm that the design
intent was to connect a tristate signal to the input of a gate. Once more process
scheduling is optimized by enabling the signal s2 only if s1 has just changed state, if
not the signal s2 will remain stable and will not fire a transaction.

. 280 sk ke ok e o 2 ok 3k o0 e o ol o b ke o ok o ok o e ke e ok e ok ol ok ke ok 3 ok 3 ok ke ok ke ok ok ol ok ke sk s ke ok ok ke ok ok s e ok ok ok ke sk sk ok ok

- DATE: 29 AUG 1985

- TITLE: MASTER SLAVE FLIP/FLOP ARCHITECTURE.
- FILENAME: msfl-arch.v

- OPERATING SYSTEM: VMS

- LANGUAGE: VHDL

-- ENTITY:
entity MSFF
( bit_in: in Z_BIT;
CLKZ2, CLK1: in clk_signal;
CLK2_NOT, CLK1_NOT: in clk_signal := 1;
bit_out: out BIT) is
end MSFF;

- FUNCTION:

- this is a description of a
-- non-resettable flip flop. The signal sl connects
- the PHI 1 and PHI 2 latches.

“**t****tt*****#*ﬁt*******#**#****#tt#**i*#*#*##*t*****#***t*****t******/

architecture STRUCTURE of MSFF is
block
component LATCH port{A: in Z_bit; CLK: in clk_signal; X: buffer bit);
for all: LATCH use
entity (LATCH)
port map (bit_in => A, CLK => CLK, CLK_NOT = > open, bit_out => X)
body (STRUCTURE);
end for;

-- configuration of latch using a block configuration statement

signal s1: BIT; -- local signal within the MSFF
s2: Z_BIT;

begin

L1: LATCH port (bit_in, clk2, s1);
L2: LATCH port (s2, clkl, bit_out);
process(sl.clkl.clkl_not)

A-13
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>
pl ) begin
' y if (not s1’stable) then
enable clkl;

. else

X disable clkl;
. s2 <= convb-z(sl);

-- the output of the phil latch must be

. -- converted to type Z_BIT to avoid a type
q - clash.

end if;
end process;

end block;

¢ end PURE_STRUCTURE;
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N :‘{: __tmt#**t*#t****t**t*******#****#**tt*******t**t***t*t*******************/
L) Y

i - architecture BEHAVIOR of MSFF is

: - This is an alternate modeling of the MSFF.

Xy -- Note the simplicity of the modeling, it will show the same behavior
' -- at the interface ports as the much more detailed model above.
¥ - The level of detail required in the simulation determines which
:. -- VHDL modeling approach should be taken, simple or complex.
"

N block( not bit_in’stable)

[\ . . iy .

¢ signal sl: BIT; -- local signal within the MSFF

p

: begin

L)

Y, . .

sl <= memoried bit_in when CLK2 =1,

' bit_out <= s1 when CLK1 = 1;

’

) end block;

: end MIXED:;
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Y 85 PISO
i This is the input shift register cell for the WFT processors. Data enters word
Sy parallel, and leaves bit serial. Input data is 23 bits numeric, one bit parity. Latch
- causes the input to be moved down into the serial path. Shift Right moves the data out
b serially. Shift down moves the data down one level in the register.

e 0200 2 e 2 o e S e o ok o o o e ok ke ok o ke e e o ook o ok ok ok sk ak ok ke ok ak ok 3k 3k ok ke e o e ok ok ok ok e e s sk o ok ok ok ok ke ok ok ok

- DATE: 29 AUG 1985

o,

0 -~

':: 8 - TITLE: Parallel In, Serial Out Shift Register

<. -- FILENAME: piso

ho: - LANGUAGE: VHDL

- -- ENTITY:
oo entity PISO_CELL

A (P_IN, S_IN: in Z_BIT;
N CLK2, CLK1 :in clk_signal;
o CLK2_NOT, CLKI1_NOT : in clk_signal := 1;
u P_SHIFT_DOWN, P_SHIFT_RIGHT, P_LATCH: in CONTROL;
o S_OUT: buffer BIT;

- P_OUT: buffer BIT) is

o

> assert (not (P_LATCH and P_SHIFT_RIGHT))
: report "LATCH_PISO AND SHIFT_RIGHT_PISO ARE BOTH HIGH”

. (5,. severity warning;

®

g end PISO_CELL;

\..'1' -
:ﬂf _-**********‘********t***********#***ﬁt****i#****************************/
L~

architecture STRUCTURE of PISO_CELL is

-~ this is a purely structural description of the PISO cell.

:

N block

P -~

-&, component MSFF port(A: in Z_bit;
P CLK2, CLK2_NOT, CLK1, CLK1_NOT: in clk_signal;
\_." B: buffer bit);

5

}: component T_GATE: port (X: in Z_bit;
19 CLK: in clk_signal; Y: out bit);
Y

: for all: MSFF use
b entity (MSFF)

port map (bit_in => A,
CLK2 => CLK2, CLK2_NOT => CLK2_NOT,
CLK! => CLKl, CLK1_NOT => CLKI1_NOT,
bit_out = >B)
body (MIXED_BODY);
end for;

7 N

v
PP o
r
’.

for all: T_GATE use

Ty
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) T
SOLTEN Y entity (T_GATE)

v port map (bit_in => convb-z(X),
- clk => clk, bit_out => Y)
e body (BEHAVIOR);
» end for;

Y signal PARALLEL_IN : Z_bit;
signal SERIAL_IN : atomic LATCH_RESOLVE Z_BIT;

'D begin

T1: T_GATE port(P_IN, P_SHIFT_DOWN, PARALLEL_IN);

M1: MSFF port(PARALLEL_IN, CLK2, CLK2 NOT, CLK1, CLK1_NOT, P_OUT);

T1: T_GATE port(S_IN, P_SHIFT_RIGHT, SERIAL_IN);

T1: T_GATE port(P_OUT, P_LATCH, SERIAL_IN);

M2: MSFF port(SERIAL_IN, CLK2, CLK2_NOT, CLK1, CLK1_NOT, S_OUT);
end block;

STy
P

P
x "

2y

g
At s

Pk

end STRUCTURE;
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e
r‘ ! g
_ :'_:-' e -- this is a mixed behavioral/structural description of the unit piso cell
v -- note the open clk_not ports.
\ architecture MIXED of PISO_CELL is
o block
e
:; component MSFF port{A: in Z_bit; CLK2, CLK1: in clk_signal;
V) X: buffer bit);
- for all: MSFF use
S entity (MSFF)
a5 port map (bit_in => A; CLK2 => CLK2, CLK2_NOT => open,
7oL CLK1 => CLKI1, CLK1_NOT =2>> open, bit_out => X)
: body (BEHAVIOR);
) end for;
L signal PARALLEL_IN, SERIAL_IN: in Z_BIT;
; '-:::.". begin
e
o P_FF: MSFF port (PARALLEL_IN, CLK2, CLK1, P_OUT);
;A"':' S_FF: MSFF port (SERIAL_IN, CLK2, CLK1, S_OUT);
4’-‘-':
g process(P_SHIFT_DOWN, P_IN)
e begin
" ' if (P_SHIFT_DOWN = "1’) then
® enable P_IN;
- else
disable P_IN;
e end if;

if P_SHIFT_DOWN = "1’ then
PARALLEL_IN <= P_IN;

By te e e
T R

PR
Do PN
s

end if;

) ‘\n-':
“‘--:» end process;
Y
; :"-: process(P_SHIFT_RIGHT, P_LATCH, S_IN, P_OUT)
- begin
.rg if (P_SHIFT_RIGHT = "I’ or P_LLATCH = '1’) then
AT enable P_OUT, S_OUT:
N else
oS disable P_OUT. S_OUT;
s end if;
. if (P_SHIFT_RIGHT = 'I') then
SR SERIAL_IN = S_IN:
I elsif
AR (P_LATCH = "1') then
s SERIAL_IN < = convb-z(P_OUT):
o else

- SERIAL_IN = "Z"
et - end if;
e

N

.............................
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g end process;
»

. end block;

‘-*‘ end MIXED;
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l;a' N 1.8. Adder-Subtractor
L) RS

This is the structure of the adder-subtractor used in the WFT pre-adds and post-

Sk adds. It is made up of a combination logic adder/subtractor, CLK1 latches for the input
e bits, two MSFF’s, to hold the CARRY and BORROW for the next data bits, and CLK2
A latches for holding the result on the way to the next stage. The carry and reset msff

S
”

latches are reset on the leading CLK2 latches. It should be noted that the inputs are
‘inverted and inverted again at the outputs.

’;.’."Z

d
:“'%: e 0 200 200 20 2 o 2 o e 20 2 20 ok i ol a2 ok ok ol ol ok ek ok ak ok ok ok o ok ok ok ok gk 3k ok ke ok ke 2k e e e ok k2 2k sk ol ok sk ok ok ok ok ok ok ke ke ok ok ok ok Kk
. £
L} " -
;g:o - DATE: 29 AUG 1985
?. ‘ - TITLE: ADDER/SUBTRACTOR CELL
W] - FILENAME: add.v
v - PROJECT: THESIS
. - LANGUAGE: VHDL
g -
TN - ENTITY:
o with WFTA_PACKAGE; use WFTA_PACKAGE;
e entity ADD_SUB_CELL
K ( BITX, BIT_Y : in bit;
® RST: in control;
A28 CLK2, CLK1 : in clk_signal;
oy CLK2_NOT, CLK1_NOT : in clk_signal := 1;
}:: SUM, DIFF: buffer bit) is
-y end ADD_SUB_CELL;
(o - FUNCTION:
o -
% __******************************#****************************************/
<
.\:J architecture PURE_STRUCTURE of ADD_SUB_CELL is
~,) PURE_STRUCTURE:
K block
Ay
oA
:-.:_' component ADD-SUB port(A, ANOT, B, CY_IN, BY_IN: in bit;
O SUM, DIFF, CY_OUT, BY_OUT: out bit;
X for RAL: ADD-SUM
-"{ entity (ADD-SUB)
:;: port map (A => A, ANOT => A NOT,B => B, CY_IN => CY.
s BY_IN => BR_IN, SUM => SUM, DIFF =~> DIFF,
~ CY_OUT => CY_OUT, BY_OUT => BR_OUT)
LN body (LOGIC_STRUCTURE);
L end for;

,

component RMSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal:
RST: in control, X: buffer bit);

CALTAEN

N oA
S

for all: RMSFF use
entity (RMSFF)
RSN port map (bit_in => convb_z(A); CLK2 => CLK2, CLK2_NOT = > open,
R CLK1 => CLK1, CLKI_NOT => open, RST_FF => RST,
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»
b bit_out => X)
'i:‘ ] N body (BEHAVIOR);
i end for;
- component LATCH port(A: in bit; CLK, CLK_NOT: in CLK_SIGNAL;
B: buffer bit);
Lt
for all: LATCH
) entity (LATCH)
0% port map (BIT_IN => A, CLK => CLK, CLK_NOT => open, BIT_OUT => B)
,’1 body (BEHAVIOR);
3\‘ end for;
*-,(
-
component INVERTER port(A: in bit; B: out bit);
s for all: INVERTER
e entity (INVERTER)
N port map {open)
_“& body (< <LIBRARY> >);
o end for;
Vo]
A -- signals for real section
& signal S1, SA, SB, S_NOTA, S_CY, S_BY, S_SUM, S_DIFF, S_CY_OUT,
N S_BY_OUT: bit;
S
ﬁ begin
l‘ N -- adder/subtractor
¥ 3 RI1: INVERTER port(A_IN, S1);
o RL1: LATCH port (A_IN, CLK1, SA);
N
3 RL2: LATCH port (B_IN, CLK1, SB);
) RL3: LATCH port (convb-z(S1}), CLK1, S_NOTA);
) RA1: ADD_SUB port(SA, S_ZNOTA, SB, S_CY, S_BY, S_SUM, S_DIFF,

S_CY_OUT, S_BY_OUT);

RFF1: R MSFF port(convb-z(S_CY_OUT), CLK2, CLK1, RESET, S_CY);
RFF2: R_.MSFF port(convb-z(S_BY_OUT), CLK2, CLK1, RESET, B_CY);
RL4: LATCH port(convb-z(S_SUM), CLK2, SUM);
RL5: LATCH port(convb-z(S_DIFF), CLK2, DIFF);

"g AL
Ry PR

end block;

‘l ".A'l.r"- l' ‘.I “"

end PURE_STRUCTURE;
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l“ b Zero Multiplier
i The following descriptions structurally describe the interconnections of the Lyons multi-
; pliers. Each description is essentially identical, which of outputs of the data Flip-Flops is used as
X the input to the Adder is the main difference The primary difference between the cells is what
W MSFF output tap the input to the adder comes from, and which counirol signals are used as
) inputs.
)
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;i - DATE: 29 AUG 1985
.-_\ - TITLE: Zero Multiplier for the WFT processor
4 -- FILENAME: m0
-- LANGUAGE: VHDL
N -  ENTITY:
- entity MULT_0
"' (DATA_IN: in BIT;
" P_PROD_IN: in BIT;
CLK2, CLK1 : in clk_signal;
@ CLK2_NOT, CLK1_NOT :in clk_signal := I;
': SIGN_EXT: in M-CONTROL;
.'\: P_PROD_OUT, DATA_OUT: buffer BIT) is
I end MULT_O;
e
A% - ‘
0:. -- FUNCTION: This cell implements the 0 case for the modified
8 -- Lyons serial multiplier architecture.
L - There is no adder cell nor carry flip flop
e - used in this circuit. It is primarily a shift
o - register.
. \ ::******#*#*#*********#******************#*****************l‘l**t**********/
)
o architecture STRUCTURE of MULT_O is
s block
a component MSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal;
o] X: buffer bit);
> for all: MSFF use
o entity (MSFF)
o port map (bit_in => A; CLK2 => CLK2, CLK2_NOT = > open,
g CLK1 => CLK1, CLKI_NOT => open, bit_out => X)
- body (BEHAVIOR);
't end for;
':.;: signal FFO_OUT, FF1_OUT, FF2_OUT: bit
, PROD_IN: Z_BIT;
a . begin
;: ,;*'::_\
t) > FFO: MSFF port(convb-z(DATA_IN}, CLK2, CLK1, FFO_OUT});
e
5
v
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[+2 Y FF1: MSFF port{convb-z(FFO_OUT), CLK2, CLK1, FF1_OUT);
" i
i

i FF2: MSFF port(convb-z(FF1_OUT), CLK2, CLK1, DATA_OUT);
*r FF_PROD: MSFF port(convb-z(PROD_IN), CLK2, CLK1, P_PROD_OUT);

&3 PROD_IN < = convb-z(P_PROD_IN) when SIGN_EXT = 1’
5y else 'Z’;

) end block;

LN end STRUCTURE;
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: - Plus One Multiplier
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475 - DATE: 29 AUG 1985

LIRS

- .. -

'_C::ﬁ - TITLE: Plus one serial multiplier

T ~  FILENAME: ml

3 - LANGUAGE: VHDL

i -

! - ENTITY:

275
ﬁ'{j entity MULTpl1

29 (DATA_IN: in BIT;
' P_PROD_IN: in BIT;

CLK2, CLK1 :in clk_signal;

;,-'u CLK2_NOT, CLK1_NOT : in clk_signal :=1;

s RESET_0, SIGN_EXT: in M-CONTROL;

{ P_PROD_OUT, DATA_OUT: buffer BIT) is
j' [y ] end MULTpI;
o
Ah
" - FUNCTION: Plus one serial multiplier for the WFT

ot - This cell needs the reset to 0 and the
b - sign extend control signals. The input to]
‘f{-q - the adder comes from the output of the second
: i$. -- MSFF in the data chain.

f\‘- Q&—‘ ::****#***************t***********#****##*#t**i**********#*###*********#*/
1

e _!.2 architecture STRUCTURE of MULTpl is
A block
:) component ADD-SUB port(A, A_NOT, B, CY_IN, BY_IN: in bit;
- SUM, DIFF, CY_OUT, BY_OUT: out bit);

o

._; for RA1: ADD-SUB use
L entity (ADD-SUB)
‘g port map (A => A, ANOT => ANOT,B => B, CY_IN => CY,

BY_IN => BR_IN, SUM => SUM, DIFF => DIFF,

o CY_OUT => CY_OUT, BY_OUT => BR_OUT)
'_-}'.‘_'; body (LOGIC_STRUCTURE),
o end for;

: _’: component RMSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal:
i RST: in control, X: buffer bit);

N

S for all: RMSFF use

. entity (RMSFF)

o~ port map (bit_in => convb_z(A); CLK2 => CLK2, CLK2_NOT = > open,
o CLK1 => CLKI1, CLKI_NOT => open, RST_FF = RST,
‘t bit_out = > X)
prs body (BEHAVIOR);

t end for;

SO
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component MSFF port{A: in Z_bit; CLK2, CLK1: in clk_signal;
X: buffer bit);

for all: MSFF use
entity (MSFF)
port map (bit_in => A; CLK2 => CLK2, CLK2_NOT = > open,
CLK1 => CLKI1, CLK1_NOT =>> open, bit_out => X)
body (BEHAVIOR);

end for;
signal FFO_OUT, FF1_OUT, FF2_OUT: bit
PROD_IN: Z_BIT;
begin
DPO: MSFF port(convb-z(DATA_IN), CLK2, CLK1, FFO_OUT);
DP1: MSFF port(convb-z(FFO_OUT), CLK2, CLKI1, FF1_OUT);
DP2: MSFF port(convb-z(FF1_OUT), CLK2, CLKI1, DATA_OUT);
Al: ADDER port(FF1_OUT, CY_IN, P_.PROD_IN, CARRY, SUM),
FF_PROD: MSFF port(convb-z(SUM_IN), CLK2, CLK1, P_PROD_OUT);
FF_CARRY: R_MSFF port(convb-z(CARRY), CLK2, CLK1, RESET_0, CY_IN);

SUM_IN <= convb-z(SUM) when SIGN_EXT =1’
else °Z’;

end block;

end STRUCTURE;
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| Plus Two Multiplier
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o - DATE: 29 AUG 1985

- - TITLE: plus two multiplier
: - FILENAME:m2

‘ - LANGUAGE: VHDL

i: -

W - ENTITY:

&8

: entity MULTp2

(DATA_IN: in BIT;
P_PROD_IN: in BIT;
o CLK2, CLKI1 : in clk_signal;

9 CLK2_NOT, CLKI_NOT : in clk_signal := 1;

. RESET_0, RSTDC, SIGN_EXT: in M-CONTROL;
9 P_PROD_OUT, DATA_OUT: bufler BIT) is
W end MULTp2;

q

-, -- FUNCTION: implements the +2 multiplier for the WFT
'2 -- This cell takes the input to the adder from

% - the output of the last flip flop in the chain.

) - it also requires the signal rstdc which is
\ , -- ”anded” with the data path input.

1

m __************i***#**********************#*******************************/

e
‘ architecture STRUCTURE of MULTp2 is
& block
. component ADD-SUB port(A, ALNOT, B, CY_IN, BY_IN: in bit:
:j SUM, DIFF, CY_OUT, BY_OUT: out bit;
s for RAL: ADD-SUB use

- entity (ADD-SUB)

A port map (A => A, ANOT => A_NOT,B => B, CY_N => CY,

BY_IN => BR_IN, SUM = SUM, DIFF => DIFF,

» CY_OUT => CY_OUT, BY_OUT => BR_OUT)
- body (LOGIC_STRUCTURE);

. end for;

W component RMSFF port(A: in Z_bit; CLK2, CLKI: in clk_signal;
] RST: in control. X: buffer bit);

for all: RMSFF use
entity (RMSFF)
port map (bit_in => convb_z(A); CLK2 => CLK2, CLK2_NOT => open.
CLK! => CLKI, CLK1_NOT => open, RST_FF => RST,
bit_out = > X)

l‘ .

&st.'.",

X body (BEHAVIOR);
SRS end for;
{
o
] A-26
4

....................

PR Aol tet Wt A .-
“ 4‘.’.‘\",; .)_ ’Jl’*o"s ‘*y{’-}\/
® ' » i V

%
"y a“




3 ) \"l"ﬁ.\\.\ \.\ .'L. ." “ ‘.-.. L N R L UL N AY AN Balothi i TV - v LAY 00 S0 & ol o ca arh uoa axk aum aca oo o]
i
L
o
0N
NS component MSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal;
- i X: buffer bit);
N 3 for all: MSFF use
..-}:j entity (MSFF)
’_‘; port map (bit_in => A; CLK2 => CLK2, CLK2_NOT =>> open,
% CLK1 = > CLK1, CLKI_NOT —> open, bit_out —> X)
\ body (BEHAVIOR);
) end for;
W signal FFO_OUT, FF1_OUT, FF2_OUT: bit
b _: DATA_PATH_IN, SUM_IN: BIT;
o
e begin
O DPO: MSFF port{convb-z(DATA_IN), CLK2, CLK1, FFO_OUT);
“_, DP1: MSFF port{convb-z(FF0_OUT), CLK2, CLK1, FF1_OUT);
'.:::;: DP2: MSFF port(convb-z(FF1_OUT), CLK2, CLK1, DATA_OUT);
A Al: ADDER port(DATA_PATH_IN, CY_IN, P_PROD_IN, CARRY, SUM);
§ ;.:-: FF_PROD: MSFF port(convb-z(SUM_IN), CLK2, CLK1, P_PROD_OUT);
YRy
20 FF_CARRY: R_MSFF port(convb-z(CARRY), CLK2, CLK1, RESET_0, CY_IN);
! e, SUM_IN <= convb-z(SUM) when SIGN_EXT = "1’
_Q.‘-.' A else 'Z’;
-"B-’}
*}Iq DATA_PATHN <= (RSTDC and FF2_OUT);
15t
i) end block;
e end STRUCTURE;
M
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s, Negative One Multiplier
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,&I - DATE: 29 AUG 1985
a8 -
t::: - TITLE: Negative one multiplier cell
WS - FILENAME: multnl.v
.j - LANGUAGE: VHDL
i - ENTITY:
)
.:-{: entity MULTn1
SN ( DATAL_IN: in BIT;
* P_PROD_IN: in BIT;
- CLK2, CLK1 :in clk_signal;
! CLK2_NOT, CLK1_NOT : in clk_signal := 0;
N RESET_1, SIGN_EXT: in M-CONTROL;
,“ P_PROD_OUT, DATA_OUT: buffer BIT) is
‘ 1'; end MULTn1;
K s‘ hd
@ - FUNCTION: This is the negative 1 multiplier cell. The carry in
\‘\5 D -~ the negative cells are reset to one instead of zero
.:g., -- as in the positive case.
b} AF‘ -
'; { __*#**********#‘*********************************************************/
‘ .
N , )
(@ architecture STRUCTURE of MULTn1 is
. 4
-1 block
Lol
.\'.‘: component ADD-SUB port(A, A_LNOT, B, CY_IN, BY_IN: in bit;
k. SUM, DIFF, CY_OUT, BY_OUT: out bit;
- for RA1: ADD-SUB use
o entity (ADD-SUB)
L. port map (A => A, ANOT => A_NOT, B => B, CY_IN => CY,
0 BY_IN => BR_IN, SUM => SUM, DIFF = > DIFF,
Y CY_OUT => CY_OUT, BY_OUT => BR_OUT)
.3t body (LOGIC_STRUCTURE);
? ) end for;
2 N component MSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal;
[ X: buffer bit);
b
% for all: MSFF use
entity (MSFF)
B port map (bit_in => A; CLK2 => CLK2, CLK2_NOT => open.
L CLK1 => CLK1, CLK1_NOT = > open, bit_out => X)
b body (BEHAVIOR);
ne end for;
’ .'-'."
L4
T A component RHMSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal:
\, h RST_1: in M-CONTROL: X: bufler bit);
B
Jo. A A-28
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YO for all: RHMSFF use
W) ' entity (RHMSFF)

port map (bit_in => A; CLK2 => CLK?2, CLK2_NOT => open,

v CLK1 => CLKI1, CLK1_NOT => open,
" RST_1 => RST_1, bit_out => X)

- body (BEHAVIOR);
-1 end for;
ke signal FFO_OUT, FF1_OUT, FF2_OUT: bit

! , ADD_IN, SUM: bit;

oy

o, begin
kv
7_'- DPO: MSFF port(convb-z(DATA_IN), CLK2, CLK2_NOT, CLK1,
s CLK1_NOT, FFo_OUTY);

Xy DP1: MSFF port(convb-z(FFO_OUT), CLK2, CLK2_NOT, CLK1,
- CLK1_NOT, FF1_OUT);

5

o DP2: MSFF port(convb-z(FF1_OUT), CLK2, CLK2_NOT, CLK1,
o CLK1_NOT, DATA_OUT);

L

‘ Al: ADDER port(ADD_IN, CY_IN, P_PROD_IN, CARRY, SUM);
f FF_PROD: MSFF port(convb-z{SUM_IN), CLK2, CLK2_NOT, CLK1,
.. CLK1_NOT, P_PROD_OUT);

FF_CARRY: R_MSFF port( convb-z(CARRY), CLK2, CLK2_NOT, CLK1, CLK1_NOT,
RESET_1, CY_IN);

S

SUM_IN <= convb-z(SUM) when SIGN_EXT =1’
else ’Z’;

ADD_IN <= not(FF1_OUT);,

(] \‘

e

end block;

end STRUCTURE;
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' Negative Two Multiplier
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N - DATE: 29 AUG 1985 F
{.':‘ 3 - TITLE: Negative two multiplier
N v - FILENAME: multn2.v
"*5 - LANGUAGE: VHDL
LI —
H\." - ENTITY:
ey
AN entity MULTn2
hid ( DATA_IN: in BIT;
) P_PROD_IN: in BIT;
CLK2, CLK1 : in clk_signal;
s CLK2_NOT, CLK1_NOT : in clk_signal := 0;
e RESET_1, RSTDC, SIGN_EXT: in M-CONTROL;
j} P_PROD_OUT, DATA_OUT: buffer BIT) is
| j“: end MULTn2;
< -—
__ﬁ#*#********#****#******t#*#******t************************************/
-7 architecture STRUCTURE of MULTn2 is
<
S block
- ’u'.n
-2a504 e component ADD-SUB port(A, A_LNOT, B, CY_IN, BY_IN: in bit;
o SUM, DIFF, CY_OUT, BY_OUT: out bit;
Ak
‘-q:.: for RA1: ADD-SUB use
L entity (ADD-SUB) :
b & port map (A => A, ANOT => A NOT,B => B, CY_IN => CY,
7)' BY_IN => BR_IN, SUM => SUM, DIFF = > DIFF,
WM CY_OUT => CY_OUT, BY_OUT => BR_OUT)
wid body (LOGIC_STRUCTURE);
~ end for;
3
‘;CL‘; component MSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal;
X: buffer bit);
o
> for all: MSFF use
.:;.Q entity (MSFF)
:-_.:: port map (bit_in => A; CLK2 => CLK2, CLK2_NOT = > open,
Ay CLK1 => CLK1, CLK1I_NOT = > open, bit_out => X)
L2 body (BEHAVIOR};
-?{:\: end for;
Y
L component RHMSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal:
2'_::.;. RST_1: in M-CONTROL; X: buffer bit);
(AN
N for all: RHMSFF use
entity (RHMSFF)

2
2

TN port map (bit_in => A; CLK2 = > CLK2. CLK2_NOT = > open, !

]
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X
A CLK1 => CLKI, CLKI_NOT => open,
A RST_1 => RST_l, bit_out => X)
S body (BEHAVIOR);
o end for;
4 -
2 signal FFO_OUT, FF1_OUT, FF2_OUT: bit
S DATA_PATH_IN, SUM_IN: BIT;
" begin
\
DPO: MSFF port(convb-2(DATA_IN), CLK2, CLK1, FFO_OUT);
S
E;:: DP1: MSFF port(convb-z(FFO_OUT), CLK2, CLK1, FF1_OUT);
o~
oy DP2: MSFF port(convb-z(FF1_OUT), CLK2, CLK1, DATA_OUT);
v .‘R Al: ADDER port(DATA_PATH_IN, CY_IN, P_PROD_IN, CARRY, SUM);
i FF_PROD: MSFF port(convb-z(SUM_IN), CLK2, CLK1, P_PROD_OUT);
’. ‘a_‘f(\:
05 FF_CARRY: R_MSFF port(convb-z{CARRY), CLK2, CLK1,
P RESET_0, CY_IN);
i: SUM_IN <= convb-z(SUM) when SIGN_EXT = "I’
y § else °Z’;
el DATA_PATH_N <= (RSTDC nand FF2_OUT);
A o end block;
|ﬁ}
;::' end STRUCTURE;
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P Parity Round Cell
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5 -
2 - DATE: 29 AUG 1985
¥ -
e - TITLE: PARITY ROUND CELL
DA - FILENAME: prcell.v
' - LANGUAGE: VHDL
L -
e - ENTITY:
~.:: entity PRCELL
N ( PR_IN: in bit;
' P_CALC, R_CALC, P_APPEND: in CONTROL;
CLK2, CLK1 : in clk_signal;
CLK2_NOT, CLKI1_NOT : in clk_signal := I,
> PR_OQOUT: bufler bit) is
; end PRCELL;
:'j’, - FUNCTION: THIS CELL COMPUTES THE PARITY BIT AND ROUNDS THE RESUTL
.' - OUT OF THE POST-ADDERS.
" —~
t-:‘. __**t**ﬁ#***********************************#****************************/
:‘.. architecture mixed of preell is
e o block
‘: component LATCH port(A: in Z_bit; CLK: in clk_signal;
.:-_': X: buffer bit);
'E:" for all: LATCH use
. entity (LATCH)
9 port map (bit_in => A, CLK => CLK, CLK_NOT —=> open, bit_out —> X)
=0 body (STRUCTURE);
- end for;
:: component MSFF port(A: in Z_bit; CLK2, CLK1: in clk_signal;
ot X: buffer bit);
)
for all: MSFF use
}:i entity (MSFF)
P port map (bit_in = > A; CLK2 => CLK2, CLK2_NOT = "> open,
‘:-f:_' CLK1 = » CLKI1, CLKI_NOT = " open. bit_out = - X)
o body (BEHAVIOR);
o end for:
’:-;'.: signal ROUND_AND. ROUND_OR, ROUND_OUT, IN_XOR. PARITY_XOR.
o PARITY_OR, PARITY_OUT: bit;
_'::::. begin
e -- ROUNDING SECTION
AN
':Ii-_:- L_IN: LATCH port{ PR_IN. CLK1. BIT_IN);
.;'-::: Ve IN_XOR - = {BIT_IN xor ROUND_OUT);
1o
Krin{
@ A-32
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ROUND_AND <= (BIT_IN and ROUND_OUT);
ROUND_OR < = (ROUND_AND or R_CALC);
RND_MSFF: MSFF port(ROUND_OR, CLK2, CLK1, ROUND_OUT};

-- PARITY SECTION

PARITY_XOR <= (IN_XOR or PARITY_OUT);
PARITY_OR <= (PARITY_XOR or P_CALC);
PAF_MSFF: MSFF port{PARITY_OR, CLK2, CLK1, PARITY_OUT);
TO_OUT <= IN_XOR when P_APPEND = "1’
else PARITY_OUT;
L_OUT: LATCH port(TO_OUT, BIT_PR_OUT);

end block;

end MIXED;
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Appendix 2

C Simulation Programs

This appendix contains the programs used to simulate the WFT16 processor. In
addition, the binary-decimal and decimal-binary conversion programs are also included.
The programs are listed in the order encountered in the pipeline: Control Sequencer,
Column Controller, Pre_WFTA c, Multiplier, Post Adders, and the conversion programs

bin.c and form_16.c.

1.1. CS.c
/*********************************************************************

*x DATE: 15 AUG 1985

* %k

** TITLE: Control Sequencer Simulation Program

** FILENAME: cs.c

** COORDINATOR: Jim Collins.

** PROJECT: THESIS

** FUNCTION: simulates the control sequencer for the wfta.

** Requires the number of control cycles to

*x generate control signals for, and the scale factor

*x of the input data.

** FILES WRITTEN: master_control: contains a time tagged control
*¥ word for the wita processor.

** FILES INCLUDED: sr.c: A function which is used to evaluate

** the set reset (SRFF) behavior.

* %

*t********************************************************************/

#include <stdio.h>

#define clk_cycle 32 /* number of cycles in the counter*/
#include "sr.c”

main ()

FILE *fp, *gp, *hp, *ip, *fopen();
int clk_count = 0;
int clk;

int i;

int setpass = 0;
int rstpass;

int rszf;

int tmp_pass;

int tmp_zfill;

int tmp_piso;

int scale = 0;

int pcal;

Sk
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()
::‘!: i int real;
::u'. - int tmp_rcal;
W int cycles;
B /* flag register which holds the control signals before they are
’:k: written to the file */
A1

3 struct

RN j .

v unsigned pre_bar : 1;
Y8 unsigned inc : 1;
B . unsigned load_rom : 1;
ol . ..
- unsigned par_rst : 1;
-\J unsigned r_calc : 1;
o unsigned p_calc : 1;

) unsigned p_append : 1;
_ unsigned 1_sipo : 1;

K unsigned sr_sipo : 1;
Ay unsigned sr_piso : 1;
hd unsigned 1_piso : 1;

L) unsigned sd_sipo : 1;
l.‘\ ¥

unsigned sd_piso : 1;

et unsigned mult_round : 1;
unsigned zero_fill : 1;
unsigned pass_out : 1;
unsigned rst_add : 1;
unsigned par_chk : 1;

|

Ll ol
S

“ unsigned in_out: 1;
t’ unsigned up_in: 1;
i } flags;
:\ * master slave flip flop structure, (MSFF'), there are thirty two MSFFs
15 in the ring counter  */

)

struct msff

N
‘-}': int clk2;
::J: int clkl;
o } fi{32], delayst, delayrst;
o struct srff /*set reset data structure*/
(LY { .
'0 Int set;

> int reset;

: int out;
.‘ } shift_piso, zfill, pass;
L‘:' hp = fopen(” master_control”, "w”); /*open the control file */
:.' shift_piso.out = 1;
ey pass.out == [; -
o delayst.clkl = 1:

delayst.cik2 = 1;
Z R delayrst.clkl = 1;
o
X B-2
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delayrst.clk2 = 1;
zfill.out = 1;

/*prompt for the number of clock cycles and the scale factor
of the input data set */

printf(” HOW MANY CLOCK CYCLES DO YOU WANT TO SIMULATE?0);
scanf("%d”, &cycles);

again:

printf(>” WHAT IS THE SCALE FACTOR FOR THE INPUT DATA? 0);
printf(” THE SCALE MUST BE BETWEEN 0 AND 70);
scanf(”%d” ,&scale);
if ((scale > 7) | (scale < 0))
printf( "SCALE FACTOR IS NOT WITHIN RANGE, TRY AGAINO}J;
goto again;
printf(”COMPUTING CONTROL SIGNALS FOR %d CLOCK CYCLESOQ,cycles);
printf(” THE SCALE FACTOR IS %d0,scale);

fprintf(hp,” %d0, cycles);

/#*#****t*********************#**ttt*##*#**t****#*****#***t******#***/

while (clk_count <=cycles)

clk = clk_count % clk_cycle; /* modulo 32 counter */

/* initialize the ring counter to simulate a bit entering

on clock cycle 0 */

if {(clk == 0)
f(0].clk2 = 1;

if (clk == 1)
ff[0].clk2 = 0;

/* things which happen on clock 2*/

for (i = 1; 1< =31, i++)
ff{i].clk2 = fifi-1].clk1;

delayrst.clk2 = rstpass;
delayst.clk2 = setpass;

/* things that happen on clock 1 */

for (i = 0; i<=31; i++)
fifi].clk1 = fifi].clk2;

delayst.ctkl = delayst.clk2:
delayrst.clkl = delayrst.clk2;
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.
: : e /* assignment of control signals: adaptive scaling algorithm uses
t' b the if - then construct to model the PLA and SRFF behavior */
" if ((scale == 0) && (clk == 6))
el setpass = 1;
f else if ((scale == 1) && (clk == 7))
‘ setpass = 1;
Wy else if ((scale == 2) && (clk == 8))
e setpass = 1;
v else if ((scale == 3) && (clk == 9))
;;:l setpass = 1;
else if ((scale == 4) && (clk == 10))
4 setpass = 1;
A else if ((scale == 5) && (clk == 11))
c'!. .
KN setpass = 1;
else if ((scale == 6) && (clk == 12))
1{‘ setpass = 1;
U else if ((scale == 7) && (clk == 11))
ag setpass = 1;
: o else
. ] setpass = 0;
_ if ((scale == 0) && (clk == 29))
: rstpass = 1;
1 else if {(scale == 1) && (clk == 29))
\E rstpass = 1,
‘8 else if ((scale == 2) && (clk == 29))
i (‘" rstpass = 1;
g else if ((scale == 3) && (clk == 30))
'_t rstpass = 1;
:-" else if ((scale == 4) && (clk == 31))
~ rstpass = 1;
59 else if ((scale == 5) && (clk == 0))
<' rstpass = 1;
) else if ((scale == 6) && (clk == 1))
o~ rstpass = 1;
S else if ((scale == 7) && (clk == 1))
- rstpass = |;
!\
. else
™ rstpass = 0;
2 /* call the set_reset function to evaluate any possible changes in
LR the set and reset variables */
5
:\’ tmp_piso = set_reset(setpass, rstpass, shift_piso.out);
"'1 shift_piso.out = tmp_piso;
flags.sr_piso = shift_piso.out;
g if ((scale == 0) && (clk == 6))
P rszf = 1;
" else if ((scale == 1) && (clk == 7))
:;. rszf = 1;
o else if ((scale == 2) && (clk == 8))
" H rszf = 1;
! RV else if ((scale == 3) && (clk == 9))
%
o)
‘) B-4
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'.R .'
N
;ﬁ e rszf = 1;
;‘;3 R else if ((scale == 4) && (clk == 10))
N rszf = 1;
else if ((scale == 5) && (clk == 10))
e rszf = 1;
‘o else if ((scale == 6) && (clk == 10))
..)"'- r = 1:
._\.‘ rsz N
K- else if ((scale == 7) && (clk == 10))
e rszf = 1;
) else
v rszf = 0;
259!
T tmp_zfill = set_reset(ff[1].clk1, rszf, zfill.out);
'\-j zfill.out = tmp_zfill;
-: flags.zero_fill = zfill.out;
uhy tmp_pass = set,_reset(setpass, rstpass, pass.out,);
' _ pass.out = tmp_pass;
e flags.pass_out = pass.out;
s
"W /* sd_sipo and sd_piso both happen on alternatating clock cycles */
e if (clk%2 == 0)
flags.sd_sipo = 1;
else
flags.sd_sipo = 0;
(91— if (clk%2 == l)
. flags.sd_piso = 1;
. else
u flags.sd_piso = 0;
Ln
y 0. * interval signals */
J if ((cdk < 19) |] (elk >= 28))
! .‘ flags.p_calc = 1;
S else
‘.::7: flags.p_calec = 0;
q ‘J.:
e if ((clk < 19) || (clk >= 27))
0 flags.r_cale = 1;
s else
o flags.r_calc = 0:
0% .
e if ((clk < 21) || (clk >= 29))
,3 flags.sr_sipo = 1;
- else
\ flags.sr_sipo = 0:
e
g * pulse signals *
oSy
B
- flags.I_piso = fl10].clk1;
p flags.l_sipo = ff{21].clkl;
.7 flags.par_chk = flags.sr_piso;
: f. Y fAags.par_rst = flags.|_piso;
it o
o
3 ‘.:
e B-5
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Dl flags.mult_round = fi[].clk1;
) flags.rst_add = !ff[1].clk2;

flags.p_append = fI{19}.clk1;
/* print results to the file master_control */

fprintf(hp, ”%d0, clk_count);

fprintf(hp,”%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %do,
flags.pass_out, flags.zero_fill, flags.par_chk, flags.par_rst,

flags.r_cale, flags.p_cale, flags.p_append, flags.mult_round,

flags.inc, flags.sr_piso, flags.l_piso, flags.sd_piso,

flags.sd_sipo, flags.| sipo, flags.sr_sipo, flags.pre_bar,

flags.rst_add, flags.load_rom, flags.in_out, fags.up_in);

clk_count +=1;
} /* end while */

} /* end main */
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o **  DATE: 29 AUG 1985
&k
- b TITLE: Column controller simulation program.
AR *x FILENAME: c_cntrl.c
‘_-,:7_' * COORDINATOR: Jim Collins.
I *x PROJECT: WFT16 SIMULATION
j ** USE: This program generates the control files for the arithmetic
"‘ . o pipeline. It recieves input from the file MASTER_CONTROL,
oy *x and outputs three files, preadd_cntrl, mult_contrl,
S -
'#.:y and postadd_cntrl.
SN *x
:. : t*#*ﬁ#********‘*******llli***********i*****#*l‘l*************************#/
#include <stdio.h>
iy #define clk_cycle 32
e main ()
--.,‘:i
o FILE *fp, *hp, *ip, *ip, *fopen();
; int i, int clk, clk_count, clk_int = 0, cycles, rst_add;
® int c_word[20;
: 'Q‘- - . . .
N /* this is the structure which holds the control signals for all
:\_ fourteen columns of the multiplier array */
S
e struct
‘\

o :-_ {
(;— unsigned reset_0 : 1;
unsigned reset_1 : 1;

ARy

1 unsigned rstde  : 1;
1_‘. unsigned s_extend : 1;
AUy } flags[14];
%)
’_' ' struct msff /*master-slave flip flop data structure */
N {
e, int clk2;
N : int clkl;
K- }s
¥ struct msfl tmp, preadd_cntrl(4], mult_cntrl[42], postadd_cntrl[3];
:_-: /* the control pipeline is initially set to all ones, signals switch
- in response to a zero traveling throught the pipe, which
',.:: happens every thirty-two clock-cycles. */
';;:-3 for (1 =41:1 >=0; i--)
I mult_cntrlfi].clk2 = 1;
pAS mult_entrlfil.clkl = 1;
,, }
rus ,
- for (1= 31 >=0;1i-)
(2 { )
N -, preadd_cntrllij.clk2 = 1.
ny C preadd_cntrllij.clkl = I:
W
s 7
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2§ o
: " *\'.. }
O
. for(i=2;i>=0; i)
3 postadd_cntrl[i].clk2 = 1;
- postadd_cntrlfi].clkl = 1;
L-: tmp.clk2 = 1;
& tmp.clkl = 1;
) mp-¢
X
NN fp = fopen(” master_control”, "r”); /* input word from controller */
\:[: hp = fopen(”preadd_cntrl”,”w”);  /* control signals for multiplier column*/
N2 ip = fopen{” mult_cntrl”,”w”); /* control signals for multiplier column*/
s jp = fopen(”postadd_cntrl”,”w”);  /* control signals for post add column*/
fscanf(fp,”%d” ,&cycles);
! .,:'.‘ /* The first word in the file is used as to control the loop. */
T
\: while (clk_count < cycles)
Ny
® fscanf(fp,”%d”, &clk_count);
) clk = clk_count % clk_cycle;
). clk_int = clk_int % clk_cycle;
\ ﬁ: for (i = 0; i<=19; i++) /* read all 20 control signals which
': - are sent out each clock cycle */
- fscanf(fp, "%d %", &c_word|[i]);
- "." /* start execution of program */
‘::::, rst_add = c_word[16; /*the reset signal for the adder is
oy in position 16 in the file */
o~ preadd_cntrl[0].clk2 = rst_add;
" if (clk '= clk_jnt) /*check to ensure validity of the data */
o printf( "clocks are not aligned! clk = %d clk_int = %d0,
o clk, clk_jnt);

i exit();
.$‘ }

/* clock two events

- shifting operations* /
\::: preadd_cntrl[1].clk2 = preadd_cntrl{0].clk1;
_-._" preadd_cntrl(2].clk2 = preadd_entrl[1].clkl:
e preadd_cntrl(3].clk2 = preadd_cntrl[2].clk1:
v mult_cntrl[0].clk2 = preadd_cntrl[3].clkl:
"y

:g for (i = 40: 1 >= 0; i--)

B> mult_cntrlfi+1i.clk2? = mult_cntrili].clk1;
o

\ postadd_cntrli0!.clk2 = mult_cntrll4t].clkl:
postadd_cntri/ll.clk2 = postadd_cntrl{0].clkl:

RN postadd_cntrl2 .clk2 = postadd_entrll1].clk1:
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/* clock one events */

for(1=3;i >=0; i~)
preadd_cntrl(ij.clkl = preadd_cntrli].clk2 ;

for (i =41;1>=0;i-)
mult_cntrl(i].clkl = mult_cntrlfi].clk2;

for (i = 2;1 >=0; i~)
postadd_cntrl(i].clkl = postadd_cntrl{i].clk2 ;

/* the multiplier signals are generated in sets of three */
for (i=0;1 <=13; i++)
flags|ij.reset_0 = mult_entrl{3*i + 1].clk2;
flags|i].reset_1 = !(flags|i].reset_0);
for(i = 0; 1 <==13; i++)
flags(i].rstdc = mult_cntrl(3*i + 1].clkl;
flags(i].s_extend = !(mult_cntrl{3*i+1].clk1 & mult_entrl[3*i+2].clk1);
/* print the output files */
fprintf(hp,” %d”, clk);
fprintf(ip,”%d0, clk_count);
fprintf(jp,” %d”, clk_count);
for (i=0;1 <=2; i++)
fprintf(hp,” %6d ”, preadd_cntrifi].clk2);
fprintf(jp,” %d " ,postadd_cntrl(i].clk?2);

flags{13|.s_extend = 0; /*no sign extensions of column thirteen*/
for {t = 0; 1 <=13; i++)
fprintf(ip,” %d %d %d %d 0 ,flags|i].reset_0,flags|i].reset_1,
flags(i].rstdc, flagsfi].s_extend);

clk_jnt +=1;
} /* end while */

} /* end main */

B-9

O

...

B '\~ AP, VY

_;- r». w *

'\"'\‘\ x'!.'ﬂ\ NG
.

. A N
. .}‘, -‘\“‘.‘ ‘.‘\t,\}_\‘“ T ~\
., LTS A%NNS.

-
0



s

si
.
K,
X
}}\ {“C 3.1.
-3 /******************************************ﬁ*****t***‘##**“*#*#tt‘******
* %
,.‘* ®%
s **  DATE: 12 NOV 1985
* %
E% *x AUTHOR: Jim Collins
wy *x TITLE: Preadd pipeline simulation program
.'_j *% FILENAME: pre_wfta.c
v > PROJECT: WFT16 Simulation
*x OPERATING SYSTEM: UNIX V 4.2
A ** LANGUAGE: C
’: ‘ *x USE: This program is the third in the series which model the
3}' *x 18-point winograd pipeline. It follows the multiply.c
: ** program.
. * %k
‘ -k
. **  FILES READ:
, :;.'- *x master_control: control word for the processor per simulation
-.'f *x cycle.
W *x preadd_cntrl: reset signal for the carry/borrow of the
o o postadd column.
- o test_piso: Problem set to be used to caluculate DFTs
S b output of bin.c {decimal-binary conversion
206 xx program).
; ’\‘ *%
NN e ** FILES WRITTEN:
. * %k
; *x piso_out: serial output of the piso.
e o zf_out: output of zero fill cell.
AN *x preaddl_in:  input to the preadd column 1.
'\'; *x preadd2_in:  input to the second preadd column.
. *x preadd3_in:  input to the second preadd column.
D) *x phil_out: output of the latch following the last adder.
< ** to_mult: input to the multiplier program.
" *x
\ :-‘ *k
= ** FILES INCLUDED:
"""J, *k
¥ *x typedefin: structure declarations for the program.
t d fn_add.c: binary addition function.
-0 *H sr.c:  evaluates the set reset function (SRFF).
I ** declare: type declarations for the program.
4": ¥
:ﬁ;' * %
[ S ] e s e e ke ok ok ok ok ko ok ok ok ok e 3k ok ok ok 3k K i o sk ok ok ok ok ki ok ks ok ok ok 3k e K ok o0k kol ok ok ok ok ko ok K ok Kk K sk ok ok koK ok ok ok kK
. #include < stdio.h>
‘t_‘.. #include "typedefin”
. #include “fn_add.c”
"-7': #include "sr.c”
~d #include "declare”
Wy #define clk_cycle 32 /* 16 point wfta cycle */
. main()
e
YA
\ﬂ.l
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<

"{ g qp = fopen(”col3_out”,”w");
:} o sp = fopen(”col4_out” - w”);

h rp = fopen(”col5_out”,”w”);
tp = fopen(”col6_out” ”),

o up = fopen(” col7_out, w”);
-.::' vp = fopen(” colS_out”,”w”);
‘.1_' wp = fopen(”col9_out”,"w”);
e yp = fopen(”cola_out”,”w”);
b zp = fopen(”colb_out”,”w”);

pz = fopen(”colc_out”,”w”);
. xp = fopen(”cold_out”,”w”);
zzp = fopen(” mult_out”,”w”);

'\ fscanf(ap,”%d” ,&cycles);
b= while (clk_count <= cycles)

. fscanf(ap,”%d” ,&clk_count); /* read master control word */
"‘ for (i=0; i<=19; i++)
L fscanf(ap,”%d" &flags(i]);
K+ clk =(clk_count % clk_cyecle);
"-{ clk_int =(clk_int % clk_cycle);

' if (clk t==clk_jnt)

- { printf(” clocks are not synchronized 940, clk);

exit();
h \:.

\ mult_round = flags{7|; /* rounding signal for input

o to the first column  */
[

L 4 fscanf(bp, "%d”, &clk_data);
.:i "***‘*‘*************‘* ASSIGNN]ENTS To TI—IE MULTIPLIER ***********************‘/

/'**i***#************** TO COL[J’MN 1 *******t********#*********/

for(i=0;i <=7;i++)
if (i <=4)
{ (p0O(i])- >fM1clk2 = phil_Jatchli);
p00[ij- >prod_in = 0; }

-

et Lt gt )
R -’.‘A'l'-‘

e a5

else
e { (pOOIi})- >f1clk2 = phil_latch[i+5];
20 p00(i}- >prod_in = 0; }
o p801->f1clk2 = phil_latchis);
2 p801->>prod_in = mult_round;
»”“
-" p901->fl1clk2 = phil_latch6);
< p901- > prod_in = mult_round;
T paOn- >flclk2 = phil_Jatch[7]:
- pa0n- = prod_in = mult_round:
"j pb00- - flclk2 = phil_Jatch[8];
<] o pb00- =~ prod_in = mult_round:
| "‘u,\‘.-
N
\)
1}
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AN pcOn- > ff1clk2 = phil_Jatch{9];

~ pcOn- > prod_jn = mult_round;
: pdOn->fflclk2 = phil_latch([13];
: hh pdOn->prod_in = mult_round;
-.
.: peOn->fllclk2 = phil_latch(14];
4,‘:- peOn->prod_in = mult_round;
e

‘ pfOn->filelk2 = phil_Jatch[15];

R pfOn- >prod_in = mult_round;

SO

e pgOn->fl1clk2 = phil_latch[16];

/'_‘.1: pgOn- >prod_in = mult_round:
ph00- > ff1clk2 = phil_latch(17];

S 3 ph00- > prod_in = mult_round;

B 1\1

j{f:" fscanf(cp, "%d”, &clk_data);

L for (i =0;i <=17;i++)

" fscanf(cp, "%d”, &phil_latch(i]);

L 4

,_’ /% 3 e 2 ok e oK ok e oK ok e ke kK K ok ok K ok TO COLUMN 1 **************************/

b/ \.'

vt

Tt for(i=10;1i <=7;i1++)

o { (p10[i]} > fi1clk2 = pOOi]- > fA3clk1;

ey . p10{i}- > prod_in = p00|i|- >sumficlk1; }

Y (o

e p81n->fflclk2 = p801->fi3clkl;

‘ p81n- >prod_in = p801->sumflclkl,;
p91ln->fflclk2 = p901->f{3clkl;
p91ln->prod_in = p901->sumffclkl;

paln- > fflclk2 = paOn->ff3clkl;

o paln- >prod_jn = paOn- >sumffclkl;

< pbit->f1ctk2 = pb00- > fM3clkl;

. pbl1->prod_in = pb00- >sumffelkl;

.‘ pcl0- > fllclk2 = pcOn- >fI3clkl;

,.: pcl0- >prod_in = pcOn- >sumflelkl;

o pd11- - filclk2 = pdOn-~f3clk1:

o pdll- :-prod_n = pdOn- >sumffclkl:

A

L 2 pell- - fllclk? = peOn- >ff3clkl;

: pell- -prod_in = pe™n- :>sumflclkl;

S

< pf12- -filclk2 = pfOn- ~fM3clkl;

T pf12- -prod_in = pfOn- >>sumflclkl:

o

s pgl0- - flclk? = pgOn- - A3clkl:

b < pglO- -prod_n = pgOn- >sumflcikl:

o =L

.:_;

b
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e phln->fliclk2 = ph00- > fi3clk1;
o phln->>prod_jn = ph00- >sumffclkl;

3 3K o o ok e e ok ok ok ok K e ok ok kK K TO COLUMN 2 ok ok ok o Kk ke ok ok ok ok ok ok ok ok ok kok ok ok /
/

for(i=0;i <=17;i++)
{ p20[i]->fTlclk2 = p10{i]- > f3clk1;
p20(i]-> prod_in = p10][i]- >sumflcikl; }

p821->fficlk2 = p8ln->f3clkl;
p821->prod_in = p81n->sumflclkl;

p921- > fflclk2 = p91n- >ff3clkl;
p921->prod_in = p91n->sumflclkl;

pa2n->fflctk2 = paln->ff3clkl;
pa2n- >prod_in = paln->sumflclkl;

pb2q > f1clk2 = pb11->f3clkl;
pb2q¢->prod_in = pbl1->sumffclkl;

pe2n- > fllcltk2 = pcl10->ff3clkl;
pc2n->prod_in = pcl0- >sumflelkl;

pd2n->fflclk2 = pd11- >fT3clkl;
pd2n- >prod_in = pd1l->sumflclkl;

“n pe2n- > fflclk2 = pell->f3clkl;
‘Q pe2n->>prod_in = pell- >sumflclkl;

pf20- > fflclk2 = pf12- >f3clk1;
pf20- >prod_jin = pf12- >sumflelkl;

pg2l- > fllclk2 = pgl0- >fI3clk1;
pg21->prod_in = pgl0- >sumffcikl;

ph22->ff1clk2 = philn->fi3clkl;
ph22->prod_in = phln- >sumflclkl;

ok ok e ook ok ke ook e koK sk ok ok ok ok sk TO COLleN 3 e ok ok ok ok o ok K ok ok ok 3k ok ok ok ok ok sk ok ok koK Kok k|

for (i == 0:1 <<= T7:i++)
{ p30lij- ~f1clk? = p20lij- > A3clkl:
p30iil- ->prod_in = p20ii;- .-sumflclkl; }

p83n- ~fflclk2 = p821- > f3clkl;
p33n- --prod_in = p821- »sumflclkl:

pP93n- > filclk2 = p921- - A3clkl;
p93n- -prod_in = p921- -sumflclkl;

padl- -fllclk2 = pa2n- >f3clkl;
pa3l- -prod_n = pa2n- >sumflclkl;

pb3n- ~fllclk2 = pb2q- >~ A3clk1:
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‘o % pb3n- >prod_in = pb2q- >sumflclkl;
;é" *

f": pe3n->fllclk2 = pe2n->f3clkl;

o pedn->prod_jn = pe2n->sumflelkl;
-

f_" pd31->ff1cik2 = pd2n->f3clkl;

..‘ pd31->prod_jn = pd2n->sumflclkl;
<.

Wy pe3l->fflclk2 = pe2n->fl3clkl;

! pe3l->prod_jn = pe2n->sumflclkl;
W/

;a pf3q->fflclk2 = pf20- > fi3clkl;

Iy pf3q->prod_in = pf20- >sumflclkl;

)
>
U pg3l->fflclk2 = pg21->f3clkl;

pg31- >prod_in = pg21->sumflclkl;
!
I ph31->fflclk2 = ph22->fi3clkl;
L ph31->prod_in == ph22- >sumffclkl;
o
!‘“, /e e e o o o e e ke ok ok ok ke o ok KOk ok TO COLUMN 4 ******#*******************/
_. for(i=0;1 <=7; i++)
[ - { p40[i]->fllclk2 = p30[i]- >M3clk1;
b p40(i}- >prod_in = p30[i]- >sumficlk1; }
S
),‘J p840->ff1clk2 = p83n->fi3clkl;
! Q; p840->prod_in = p83n->sumflclk1;
-1 p940->fllclk2 = p93n- > fM3clkl;
:‘: p940- >prod_jn = p93n- >sumflclkl;
.&v
;. padq->flclk2 = pa31l->ff3clkl;
e pa4q->prod_in = pa3l->sumflclkl;
' pb40->filclk2 = pb3n->ff3clkl;

p pb40->prod_in == pb3n->sumffelkl;

e
[*) pc4l->filelk2 = pe3n- >f3clkl;

ﬁ pc4l->prod_in = pedn->sumflelkl;
0 pd40->fT1clk2 = pd31->M3clkl;

:: pd40->prod_in = pd31- >sumffclki;
; ped0- > fflclk2 = ped1->Mf3clkl;

e pe40- >prod_in = pe3l- >sumflclkl;
. pf4n- > fTlclk2 = pf3q- > ff3clkl;

:“ pf4n->prod_in = pf3q- >sumflclkl:
g;; pg4n->filclk2 = pg31->M3clkl;

4 pg4n- >prod_in = pg31->sumflclkl;
VL “n ph40- > fT1clk2 = ph31->f3clkl:
SIS ph40- > prod_in = ph31->sumflclkl;
N
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for(i=0;1i <=7, i++)
{ p50ji]->fT1clk2 = p40[i]- > fi3clk];
p50(i]- >prod_in = p40[i}- >sumflclk1; }

p851- > fflclk2 = p840->f3clkl;
p851- >prod_in = p840- >sumflclki;

p951- > ff1clk2 = p940- >fI3clkl;
p951- >prod_jn = p940- >sumflclkl;

pa50->fflclk2 = padq->fi3clkl;
pa50- >prod_in = padq->sumffclkl;

pb5n->flclk2 = pb40->f3clkl;
pb5n->prod_in = pb40- >sumffclkl;

pc50->fllclk2 = pe4l->ff3clkl;
pc50->prod_jn = pc41->sumffclkl;

pd5n->fflclk2 = pd40- > ff3clkl;
pd5n->prod_in = pd40- >sumfleclkl;

pe5n- > fflclk2 = ped0- >ff3clkl;
pebn->prod_jn = pe40->sumficlkl;

pf51-> fllclk2 = pf4n->fi3clkl;
pf51->prod_in = pf4n->sumflclkl;

pg50- > fflclk2 = pg4n->fM3clkl;
pg50- >prod_jn = pg4n->sumficlkl;

ph51->fT1clk2 = ph40- > fi3clk1;
ph51->prod_in == ph40- >sumflclkl;

738 300 2 e e e e e o 00 33 e K e ek e ek TO COLUMN 6 ***********#**************/

for (i =0;1 <=7; i++)
{ p60[i]- >f1clk2 = p50(i]- > fi3clk1;
p60(i]- >prod_in = p50(i|- >sumflclk1; }

p861- > ff1clk2 = p851->f3clkl;
p861- >prod_jn = p851- >sumffcikl;

p961- >fflclk2 = p951- >M3clkl;
p961- >prod_in = p951- >sumflclkl;

pa62- > fficlk2 = pa50- >fA3clkl;
pab62- >prod_in = pa50- >sumflclkl;

pb6n- - fflclk2 = pbSn- > f3clkl;
pb6n- > prod_in = pb5n- > sumffclkl;

pcbl- > f1clk2 = pc50- - A3clkl;
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15 ]
A 5:'2' pc61->prod_in = pe50- >sumflclkl;
A,
o pd6n->fTlclk2 = pd5n- > fi3clkl;
408 pd6n- >prod_jn = pd5n->sumflclkl;
:;#:: pebn->fflclk2 = pe5n->f3clkl;
- pe6n- >prod_jn = pe5n->sumflcikl;
AL
f pf6n->fl1clk2 = pf51->fT3clkl;
' pf6n->prod_in = pf51->sumflclk];
§
1wV
: f pgbn->fllclk2 = pg50->f3clkl;
v pg6n->prod_in = pg50- >sumflclkl;
M
o ph61->fflclk2 = ph51->ff3clkl;
ph61->prod_in = ph51->sumffclkl;
;r. ; /*ﬁ*********#**t****** TO COLUMN 7 *************************#/
o for (i=0;1 <=7, i++)
o { p70[i]- >fi1clk2 = p60[i]- >f3clkl;
® p70(i]->prod_in = p60[i]- >sumflclkl; }
Tl p870->fl1clk2 = p861->f3clkl;
' ‘:.3 p870- > prod_in = p861->sumflclkl;
e p970->filclk2 = p961->M3clkl;
t.‘ p970- > prod_jn = p961->sumflclkl;
nal
3 pa7n->fflclk2 = pab2->fi3clkl;
‘_"_E-: pa7n->prod_in = pa62- >sumffelkl;
! ':
AV pb70->ff1clk2 = pb6n- > fI3clkl;
:‘) pb70->prod_in = pb6n- >sumffclkl;
o pc7n->fAlclk2 = pcb1->f3elkl;
0 pc7n->prod_in = pc61->sumflelkl;
\ .
4.'( ’
e pd70->fT1clk2 = pd6n- > fI3clkl;
‘-i_ pd70->prod_in = pd6n->sumflclkl;
e pe70- > fl1clk2 = pebn- > fl3clkl;
'_;,.:: pe70->prod_in = pe6n- >sumflclkl;
Y
{1 pf70- > filclk2 = pf6n- > ff3clkl;
W pf70- > prod_in = pf6n- >sumflclkl;
L}
o pg71- >fllclk2 = pgén- >-f3clkl;
[+ pg71- > prod_jn = pgbn- >sumflclkl;
*::: ph70- - fflclk2 = ph61->f3clkl;
_{é ph70- > prod_in == ph61- >sumflclk1;
¥, -’:_‘. o o o e ok R el ok e ok e ok ok oK ok K TO COLLYN[N 8 o ok ke ok ok ok ke ok ok ok ok ok ok ke ok ok ok ke ok ok ok ok ok
O
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for(i=10;i <=7;i++)
{ p80[i]- >fTlclk2 = p70(i]- >ff3clkl;
p80(i]- >prod_in = p70[i]- >sumficlkl; }

p880-> fficlk2 = p870- >fi3clkl;
p880->prod_in = p870- >sumflclkl;

p980- > fllclk2 = p970- > ff3clkl;
p980- > prod_in = p970- >sumffclkl;

pa80- > f{lclk2 = pa7n- >ff3clkl;
pa80->prod_in == pa7n->sumflclkl;

pb82->fT1clk2 = pb70- > fi3clkl;
pb82->prod_in = pb70->sumffclkl;

pc82->fTlclk2 = peTn->f3clkl;
pe82->prod_in = pc7n->sumffelkl;

pd80->fl1clk2 = pd70- > fi3clkl;
pd80->prod_jn = pd70->sumflclkl;

pe80->fflclk2 = pe70- >ff3clkl;
pe80->prod_in = pe70- >sumflclkl;

pf82->fllclk2 = pf70->ff3clkl;
pf82->prod_in = pf70- >sumflclkl;

pg8q > flclk2 = pg71->MA3clkl;
pg8q->prod_in = pg71->sumflclkl;

ph8g->fllclk2 = ph70- > ff3clk1;
ph8q- >prod_in = ph70- >sumflclkl;

/‘**t*******t**it*t*i*t TO COLUMN ] *****#t***************i***/

for (i = 0;1i <=17;i++)
{ p90[i}- > ff1clk2 = p80|i]- >fi3clkl;
p90[i}- >prod_in = p80}i]- >sumflclk1; }

p891- > fflclk2 = p880- >f3clkl;
p891- > prod_in = p880- >sumflcikl;

p991->fliclk2 = p980- > ff3clkl;
p991- >prod_in = p980- >sumflclkl;

pa92- > fflclk2 = pa80- >f3clkl;
pa92- >prod_in = pa80- >sumflclkl;

pbIq- > ff1clk?2 = pb82- > fA3clkl;
pb9g- > prod_in = pb82- >sumflclkl;

pc91- > fflelk2 = pc82- > f3clkl:
pc9l- - prod_n = pc82- >sumflelkl;

B-27

aa ad o g

\1‘\.)' n':‘ \
PRGN

-‘--.‘ﬁ. A’_A'.‘.}J 'J‘j



ARy
[an W D Y

2 a

Zif} L pd9n->filclk2 = pd80- > ff3clkl;
- pd9n- >prod_jn = pd80->sumflclk1;

pedn- > filclk2 = pe80->fi3clkl;

:E::E, pe9n->prod_in = pe80->sumficlkl;
\
\
'k \ pf9n->fllclk2 = pf82- > fI3clk1;
% ; pf9n->prod_jn = pf82->sumflclkl;
D %)
L) pgdn->filclk? = pg8q->f3clkl;
; X pg9n->prod_in = pg8q->sumffclkl;
By
N ph92->filclk? = ph8g->f3clkl;
';‘!.‘ ph92->prod_jn = ph8q->sumflclkl;
TR

/****i*##*t****tt***** TO COLUMN 10 *t#t*******#*##*****#****/
8
h-f\{ for(i=0;i <=T7;i++)

) { pa0i]- >ff1clk2 = p90[i]- >ff3clkl;
N pa0[ij->prod_in = p90[i]- >sumflclkl; }
o p8al->ff1clk2 = p891->fi3clkl;

T p8al->prod_in = p891->sumflcikl;
o

-~
58 pal->filclk2 = p991->3clk1;
..:)'_ p9al->prod_in = p991->sumffelkl;
)

;‘ paa0->fflclk2 = pa92- >fI3clkl;
. paa0->prod_in = pa92->sumflclkl;

i,

e pba0->filclk2 = pb9q-> f3clkl;

e pba0->prod_in = pb9q- >sumflclkl;
W
pcal->fflclk2 = pc91- >fi3clkl;

) pcal->prod_in = pc9l- >sumflclkl;

S‘-‘.

}-’\.: pdan- >fflclk2 = pd9n- > ff3clkl;

' } pdan->prod_in = pd9n- >sumficlkl;

e
» _ pean- > fflclk2 = pe9n->f3clkl;
€ ] pean- > prod_in = pedn- >sumflcikl;
2
o pfal- >ff1clk2 = pf9n- > fA3clk1;

:_" pfal->>prod_in = pf9n- >sumflclkl;

W
SR
; :\:'-: pgan- > fflclk2 = pg9n- >f3clkl;

. pgan- > prod_in = pg9n- >sumffclkl,;

T pha0- -fllclk2 = ph92- > ff3clkl;
it phaO- ~prod_jn == ph92- >sumficlk!;
F};-:E: ok ok o ok ok ok ok ok A ok ok ook K ok ok ok ok TO COLLTMN ll ok ok ok ok ok ok ok ok o ok ok ok ok ok Kk ok kK ok ok ok

for (i ==0;i <=7:14++)
{ pbolij- >f1clk2 = paO[i]- = f13clk1l: ]

v ix
e
Aty
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.
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a
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e
S
SAY
: } S pbOli]- >prod_jn = pa0li]- >sumflclk1; }
‘ ~ “Te

‘G
o ; p8bn->fTlclk2 = pB8al->f3clkl;

p8bn->prod_in = p8al->sumflclkl;

. \

:::-:: p9bn-> fflclk2 = p9al->f3cikl;
R p9bn- >prod_in = p9al->sumflclkl;
'\.'.":

A pabg->flclk2 = paa0->ff3clk1;

) pabg->prod_in = paa0- >sumffclkl;

)':',-'

1_"‘. pbbl->fflclk2 = pba0- > ff3clkl1;
N pbb1->prod_in = pba0->sumfclk1;
o
b~ pebn->ff1clk2 = pcal- >f3clkl;

pcbn->prod_in = pcal->sumficlkl;

'.".‘

-"'_ pdbl->fflclk2 = pdan->fi3cikl;
W 'i pdbl->prod_in = pdan->sumflclk1;

.i pebl->f1clk2 = pean->f3clkl;

pebl->prod_in = pean- >sumffeclkl;

.}-t: pfbl->fflclk2 == pfal->ff3clkl;
*-:,.\ pfbl->prod_in = pfal- >sumflclkl;
VRN

\‘

’:i} pgbl->fTlclk2 = pgan->fi3clkl;

QM pgbl->prod_in = pgan- >sumficlkl;

o phbn->flclk2 = pha0-> ff3clk1;

j Q'-,- phbn->prod_in = pha0->sumflclkl;

4‘ };E /3 e 3 e o e ol ke ok ke e sk ok ok ok ok ok sk ok ok TO COL[J'MN 12 *********************‘***/
Loy
) for (i =0;i <= 7; i++)

"Q: { pcOfi]->f1clk2 = pbO|i]- > fl3clk1;
[, peO(i]- >prod_in = pb0[i]- >sumflcik1; }
ey
oy p8cn- > ff1clk2 = p8bn->f3clkl;

A~ J p8cn- > prod_in = p8bn- >sumflclkl;
o, p9cn- > fflclk2 = p9bn- > fl3clkl;

-:::-j p9¢cn- >prod_jin = p9bn- >sumffclkl;
S pac2- >filelk? = pabg->f3clkl;

N pac2->prod_in = pabg->sumflcikl;

(>

pbecl- >fTlclk2 = pbbl- >f3clkl;

- e pbcl- > prod_in = pbbl->sumflelkl;
'-."-; pce2- ~f1clk2 = pebn- > fA3clkl;

pcc2- -prod_in = pcbn- >sumflclkl:

A pdel- -fllelk2 = pdbl- >f3clkl;
.»'\.]\ e pdcl- -prod_in = pdbl- »sumffelkl:
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PRI

S
NS AN
! » pecl->ff1clk2 = pebl->f3clkl;
pecl->prod_in = pebl->sumflcikl;
. pfc0->filclk2 = pfbl->fi3clkl;
[ K-‘ pfc0->prod_in = pfbl->sumffclkl;
‘ I
Plow
'|' pgeq>fllclk2 = pgbl->f3clkl;
Vi pgeq->prod_in = pgbl->sumflclkl;
v
:;: phen->fflclk2 = phbn->ff3clkl;
:.' phcn->prod_in = phbn->sumflclkl;
.:.:‘: (/**#*************#**** TO COL'[J'MN 13 **#***#**************t***/
for (i=0;i <==6; i++)
P, { pd1fi}]->ff1clk2 = pcO[i]- >fI3clkl;
’j,‘: pd1(i]->prod_in = pcOfi]->sumflclkl; }
iy
p7dn->f1clk2 = pcO[7]->f3clk1;
$ p7dn->prod_in = pc0(7]- >sumflclkl;
o .
T p8d1l->fllclk2 = p8cn->f3clkl;
28 p8d1->prod_in = p8cn->sumflclkl;
-\
r$: p9d1->fficlk2 = p9cn->f3clkl;
v p9d1->prod_in = p9cn->sumflclkl;
Qo pade->f1cik2 = pac2-> f3clkL;
- pad0->prod_jn = pac2->sumflclkl;
- pbdi->flclk? = pbel->>fA3clkl;
':. B pbdl->prod_in = pbcl->sumflclkl;
.
pedn->fflclk2 = pec2->ff3clkl;
) :' pedn->prod_in = pcc2->sumflelkl;
2
"
! pddn- >fflclk2 = pdel->f3clkl;
! pddn- >prod_in = pdcl->sumffelkl;
{ pedn->ff1clk2 = pecl->fl3clkl;
[, pedn->prod_in = pecl->sumffclkl;
<
pfdn->f1clk2 = pfc0-> fi3clk1;
N pfdn->prod_in = pfc0- >sumflclkl;
N
[} pgdl->ff1clk2 = pgeq->f{3clkl;
- pgdl->prod_jn = pgecq- >sumffelkl;
phdn- >flclk? = phen- > fi3clk1:
< phdn->prod_in = phcn->sumflelkl;
"
e ke ok ko o ok ol KOk o ke ok ok K Rk ok ok COLU‘N{N 0 OF THE .\R'LTIPLIERS Ak ok o ok o ok ok ok sk ok ok ok Ok R
K7 AT
Yoo fscanf(bp. "%2dCcd%d%d", &reset_0.&reset_1 &rstde. &sign_ext):
()"
L
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Py L3t A as-S it o Sagr )

1,0 ot
\x +h fprintf(zp,” prod_in = %d ", ph00- >prod_in); }
\ e
' n for(i=0;i <=T7;i++)
¢ mO(p00(i], sign_ext);
i ta®
}.‘:4 m1(p801, reset_0, sign_ext); F
o m1(p901, reset_0, sign_ext);
{ :1{:‘ nl{paOn, reset_l, sign_ext);
4 mO(pb00, sign_ext);
. ) nl(pcOn, reset_l1, sign_ext);
et nl(pdOn, reset_l1, sign_ext);
:}i\_: n1(peOn, reset_l, sign_ext);
Wad n1(pfOn, reset_1, sign_ext);
5-‘: nl(pgOn, reset_l, sign_ext);
1y mO(ph00, sign_ext);
/***ﬁ*****‘********tﬁ* COLUW l OF TI.IE MULTIPLIER **************************/’/
E::‘ /* read the input control signals for this column before calling the
o multiplier function */
e fscanf(bp, "%d%d%d%d”, &reset_0,&reset_1,&rstdc, &sign_ext);
®
5K for(i=0;i <=17;i++)
t:.f-', mO(p10[i], sign_ext);
b ™ .
AR
e nl(p8ln, reset_l, sign_ext);
i S, nl(p91n, reset_1, sign_ext);
e nl(paln, reset_l, sign_ext);
NAX ml(pbll, reset_0, sign_ext);
Wy ~
RLOK mO(pcl0, sign_ext);
::S::o. ml(pdll, reset_0, sign_ext);
'l? ml(pell, reset_0, sign_ext);
o) m2(pf12, reset_0, rstde, sign_ext);
C) mO0(pgl0, sign_ext);
Vgt nl(phln, reset_1, sign_ext);
:‘:‘: /36 3 o e ke ek 3k e ok ok ok ok ok ok ke ok ok ok COLUMN 2 OF TI{E MULTIPLIER **********t***************/
.‘f ! /
i fscanf(bp, "%d%d%d%d”. &reset_0,&reset_t &rstde, &sign_ext);
®
A
<o n
0
‘_{ for (i =10;i <=7;i++)
L mO(p20(i], sign_ext);
o m1(p821, reset_0, sign_ext);
1 m1(p921, reset_O, sign_ext);
- _" N nl(pa2n. reset_l, sign_ext);
:-‘-ft n2(pb2q, reset_1. rstdc, sign_ext);
-"\ nl{pc2n, reset_l, sign_ext);
e ni(pd2n. reset_lI, sign_ext};
. nl(pe2n. reset_1, sign_ext);
‘ ?.:". '.-F". mO(pf20, sign_ext);
o T
\ x'::;
' .,
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m1{pg21, reset_0, sign_ext);
m2(ph22, reset_0, rstdc, sign_ext);

}/’*******‘************* COLUN[N 3 OF T}E MIHATIPLIER ****‘*********************/
fscanf(bp, "%d%d%d%d", &reset_0,&reset_1,&rstdc, &sign_ext);

for(i=10;i <=7;i++)
mO(p30(i[, sign_ext);

n1(p83n, reset_1, sign_ext);
nl(p93n, reset_l, sign_ext);
ml(pa3l, reset_0, sign_ext);
nl(pb3n, reset_l, sign_ext);
nl(pc3n, reset_1, sign_ext);
m1l(pd31, reset_0, sign_ext);
ml(pe31, reset_O, sign_ext);
n2(pf3q, reset_1, rstde, sign_ext);
m1(pg31, reset_O, sign_ext);
ml(ph31, reset_0, sign_ext);

/********************* COLIJMN 4 OF TI—IE MULTIPLER ********‘***************t#//
fscanf(bp, "%d%d%d%d", &reset_0,&reset_l1,&rstdc, &sign_ext);

for(i=10;i <=7;i++)
mO(p40|i], sign_ext);

mO(p840, sign_ext);

mO(p940, sign_ext);

n2(padq, reset_l, rstdc, sign_ext);
mO(pb40, sign_ext});

ml(pc4l, reset_0, sign_ext);
mO(pd40, sign_ext);

mO(pe40, sign_ext};

nl{pf4n, reset_l, sign_ext);
nl(pg4n, reset_l, sign_ext);
mO(ph40, sign_ext);

’,r*********t******#**** COLWN 5 OF Tl{E A\IUITIPL[ER 3 ok ok ok ok sk e gk ok K Kok ok ke ok ok ok ok 3k sk ok ok ok

fscanf(bp, "%d%d%d%d", S:reset_0,&reset_1,&rstdc. &sign_ext):

for(i=0;i <=7:1++)
mO(p50l[i], sign_ext);

ml(p851. reset_0, sign_ext);
ml(p951. reset_0. sign_ext);
mO0(pa50. sign_ext);

nl(pb5n, reset_1, sign_ext);
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s mO(pc30, sign_ext);
nl(pdsn, reset_1, sign_ext};
ni(pe5n, reset_l, sign_ext);
m1(pf51, reset_0, sign_ext);
mO(pg50, sign_ext);
m1(ph51, reset_0, sign_ext);

/*t*tt*t*t**********t* COL(JMN 6 OF TI—E MULT]PLIER *************#************/

fscanf(bp, "%d%d%d%d”, &reset_0,&reset_1,&rstdc, &sign_ext);

for(i=0;i <=17;i++)
mO(p60(i], sign_ext);

m1(p861, reset_0, sign_ext);
ml(p961, reset_0, sign_ext);
m2(pab2, reset_0, rstdc, sign_ext);
nl(pb6n, reset_1, sign_ext);
m1(pc6l, reset_0, sign_ext);
n1{pd6n, reset_1, sign_ext);
ni(pe6n, reset_1, sign_ext);
ni(pf6n, reset_1, sign_ext);
nl{pgbn, reset_1, sign_ext);
ml(ph61, reset_0, sign_ext);

_--" /********************* COLUMN 7 OF TI—IE MlJLTH)LIER **************************/
fscanf(bp, "%d%d%d%d”, &reset_0,&reset_1,&rstde, &sign_ext);

for(i=0;i <=7;i++)
mO(p70[i], sign_ext);

mO(p870, sign_ext);
mO0(p970, sign_ext);
nl(pa7n, reset_1, sign_ext});
mO(pb70, sign_ext});
nl(pe7n, reset_l, sign_ext);
mO0(pd70, sign_ext);
mO(pe70, sign_ext);
mO(pf70, sign_ext);
ml(pg71, reset_0, sign_ext);
mO(ph70. sign_ext);
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e ok o ok e e o e ok ko ok ok kol ok ok ok ok kK COLLT\lN 8 OF T}IE \ALYLTIPLIER ok o o o ok ok ok ok ok sk ks kol ok ok ok ok ok ok ok K R K
fscanf(bp, "“6d%cd0d%d”, &reset_0.&Lreset_1 &rstde. &sign_ext});

4
M

.
* 8

AL
& Te ety e
.. &

. for (1 = 0:1 <= T; i++)
N S

s mO(p8OIil, sign_ext);
‘ N
Ay .
'-,» - mO{pB80. sign_ext); |
" {:‘ RS mO(p930. sign_ext);
R
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e

g

: \3' " pecl->fflclk2 = pebl->ff3clkl;

- ( pecl->prod_in = pebl->sumffclkl;
s plc0->filclk2 = pfbl->fi3clkl;
R\ WGy pfc0->prod_in = pfbl->sumflclkl;
4 >
5 .'fi pgeq>fllclk2 = pgbl->f3clkl;
‘j pgeq->prod_in = pgbl->sumffelki;
\

3 iogt phcn->fTlelk2 = phbn- > ff3clkl;

‘% phen->prod_in = phbn->sumflclkl;
,l. W
,:g. /*l&#*****************‘ TO COL[JMN 13 ******************#******/
dale
for (i=0;1 <=6; i++)

e { pdl{i]->ﬂlclkg = pcO[il->ﬁ3clk1;

e pd1{i]- >prod_in = pc0[i]- >sumficlkl; }
‘hl':¢l

WY p7dn->flclk2 = pc0(7]- >f3clkl;
O p7dn->prod_in = pc0{7]- >sumffelkl;
o
& p8d1->fliclk2 = p8cn->M3clkl;
"::»;_: p8d1->prod_in = p8cn- >sumficlkl;
o

i p9d1->flclk2 = poen-> A3clkl;

i p9d1->prod_in = p9cn->sumflclkl;

4 c.‘;..
LY

pad0->fl1clk2 = pac2->f3cikl;

.jlﬂ-‘. pad0->prod_in = pac2- >sumflclkl;
."p\}.

AR pbd1->flclk2 = pbel->f3clkl;

4\; pbd1->prod_in = pbecl->sumficikl;

= pedn->filclk2 = pce2->ff3clkl;

(- pcdn->prod_in = pce2->sumffelkl;
A"

..t pddn->ff1clk2 = pdel-> f3clkl;

’;‘ pddn- >prod_in = pdcl->sumffclkl;
T

pedn->fflclk2 = pecl->ff3clkl;

e pedn->prod_in = pecl- >sumflclkl;
S pfdn->f1clk2 = pfe0- > fi3clkl;
_]:g-q pfdn- >prod_in = pfe0- >sumffelkl;
)
LN pgdl->flclk2 = pgeg- >f3clkl;
g pgdl->prod_in = pgecq- >sumflclkl;
yai
- phdn- >f1clk? = phen- > fi3clkl;
'*;}j phdn->prod_jn = phcn- >sumflclkl;
o,
‘A 3 e o o ook ok o ok ok o ok ol ok ok sk ok sk ok ol ok ok C’OLL“\‘N 0 OF TIIE .\RTLTIPLIERS Ak ok ok % ok Xk ok ok ok ok ok ok ok sk ok ok ok kK
::;,.'\:. AN fscanf(bp, "Codcd%d%d", &reset_0,&reset_1.&rstde, &sign_ext);
B
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'5-.,{.:; _‘3;‘ fprintf(zp,” prod_in = %d ”, ph00->prod_in); }
kel
.’! 3 for(i=0;1 <=7;i++)
mO(p00[i], sign_ext);
}‘:. m1(p801, reset_0, sign_ext);
e m1(p901, reset_0, sign_ext);
K1 . n1(paln, reset_l, sign_ext);
AS mO(pb00, sign_ext);
) nl(pcOn, reset_l1, sign_ext);
,_ . nl{pdOn, reset_1, sign_ext);
1588 nl(peOn, reset_l, sign_ext);
1 ﬂ.—' n1(pfOn, reset_l1, sign_ext);
40 nl(pg0n, reset_l, sign_ext});
Bt mO(ph00, sign_ext);
f’ . /********************* COLUMN l OF TI—E M[JLTII)LIER ****t#********************/
\u‘,<
t /* read the input control signals for this column before calling the
et multiplier function */
'.' fscanf(bp, »%d%d%d%d”, &reset_0,&reset_1,&rstdc, &sign_ext);
z"' for(i=0;i <=7; i++)
5‘3 mO(p10[i], sign_ext);
%
e nl(p8ln, reset_1, sign_ext);
il R nl(p9ln, reset_l1, sign_ext);
A (.. nl(paln, reset_l, sign_ext);
ml(pbll, reset_0, sign_ext);
< mO(pc10, sign_ext);
e mil(pdll, reset_0, sign_ext);
KX ml(pell, reset_0, sign_ext);
W m2(pf12, reset_0, rstdc, sign_ext);
3 mO(pg10, sign_ext);
\: nl(phln, reset_l, sign_ext);
o
\:',: 3k ok ok e e e ok ke o ok ok ok ok ok ok K ok COLUNIN 2 OF T}{E MULTIPLIER AEEEX R KRR KRR AR R K%
a e
r fscanf(bp, "%d%d%d%d", &reset_0.&reset_1 &rstdc. &sign_ext);
o for (i =0:i <=7:i++)
mO(p20[i|, sign_ext);
.8 2
'é: mi(p821, reset_0, sign_ext);
G mi(p921, reset_0, sign_ext);
J'.' . .
‘{_\ nl{pa2n. reset_I, sign_ext);
RO n2(pb2q, reset_1, rstde, sign_ext);
2 nl{pc2n, reset_1, sign_ext);
33 nl{pd2n, reset_l. sign_ext):
f. . nl(pe2n, reset_l, sign_ext}):
"..'~: T mO(pf20. sign_ext);
oo
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e m1(pg21, reset_0, sign_ext);
o m2(ph22, reset_0, rstdc, sign_ext);

/r’********************* COL[J-NIN 3 OF TI—E MULTIPLER **************************/
}.,g fscanf(bp, "%d%d%d%d”, &reset_0,&reset_1,&rstdc, &sign_ext);

for (i=0;1i <=7, i++)
m0(p30[i], sign_ext);

ni(p83n, reset_l, sign_ext);
s nl(p93n, reset_1, sign_ext};
D ml(pa3l, reset_0, sign_ext);
nl(pb3n, reset_1, sign_ext);
nl(pe3dn, reset_l1, sign_ext);
m1(pd31, reset_0, sign_ext);
S ml(pe3l, reset_0, sign_ext);
B n2(pf3q, reset_l, rstdc, sign_ext);
e ml(pg3l, reset_0, sign_ext);
L ml(ph31, reset_0, sign_ext);

JQ //********************* COLUMN 4 OF TI.]E MIJLTIPLIER **************************/
fscanf(bp, "%d%d%d%d”, &reset_0,&reset_1,&rstde, &sign_ext);

for (i=0;i <=7;i++)
mO(p49/i], sign_ext);

mO(p840, sign_ext);
mO(p940, sign_ext);
n2(padq, reset_l, rstdc, sign_ext);

A ! mO(pb40, sign_ext);

R ml(pc41, reset_0, sign_ext);
~" mO(pd40, sign_ext);

"':j mOQ(pe40, sign_ext);

nl(pf4n, reset_1, sign_ext);
: nl{pgdn, reset_l, sign_ext);
f:':'j mO(ph40. sign_ext});

* e e e ok ok ok ke ok ok ok ok ok ok ke ok ok ok K COLUNIN 5 OF THE NiLTLTIPLIER ok sk ok ok ok ok ok sk kK kK sk sk ke ok ok ok ok K Ok ok %K K Ok

.’: fscanf(bp. "¢d%d%d%d”, &reset_0 &reset_1 & rstde, &sign_ext);
:\ for(i =01 < =T7;1+=+)
RN mO(p50/il, sign_ext);

m1(p851. reset_0, sign_ext);

) m1(p951. reset_0. sign_ext);

z- j o mO0(pa50. sign_ext);

N O nl(pbsn. reset_l. sign_ext);
5



e
[\ $~ ')
3
by .
el :
}.:‘,. o mO0(pc50, s:gn_ext)i
Ay ’ nl{pd5n, reset_l, sign_ext);
v nl(pedn, reset_l1, sign_ext);
o ml(pf51, reset_0, sign_ext);
- mO(pg50, sign_ext);
co m1(ph51, reset_0, sign_ext);
L
\_?.:_-"
X -\\ ok 38 ok ok ok ol ok ke o ke e ok ok ok ok ok Ok ok ok 3k K 3 e 2 3k ok ok 3k ok ok ok e e s e ok ok ok ok ok Rk ok kK k kok [/
o / COLUMN 6 OF THE MULTIPLIER ;
\
_‘- fscanf(bp, "%d%d%d%d”, &reset_0,&reset_1,&rstde, &sign_ext);
AN for (i = 0;i <= T; i++)
Lo mO(p60[i], sign_ext);
23 m1(p861, reset_0, sign_ext);
i ml(p961, reset_0, sign_ext);
-Q:} m2(pa62, reset_0, rstdc, sign_ext);
}'J nl(pb6n, reset_1, sign_ext);
Ky mi(pc6l, reset_0, sign_ext);
° nl(pd6n, reset_l1, sign_ext);
Ve nl(pebn, reset_1, sign_ext);
IS nl{pf6n, reset_l, sign_ext);
A4 .
e nl(pgbn, reset_1, sign_ext);
) ‘;:'\ m1(ph61, reset_0, sign_ext);
‘el N Ta
b + e 2 oK ok a3 e o ok ok o ke ok ok ok ok ke ok ok K ok COLLTMN 7 OF TI_{E L\ITULTIPLER o ok ok ko ok ok ok K koK ok ok ok ok ok ok Rk kok ok /)
o fscanf(bp, "%d%d%d%d". &reset_0,&reset_1 &rstde, &sign_ext);
B>
K- for (i=0:i <=7; i++)

mO(p70[i], sign_ext);

.

mO(p870, sign_ext);
mO(p970. sign_ext);
nl(paZn, reset_l1, sign_ext);
mO(pb70, sign_ext);

‘r‘.“‘r;\r
FRra

‘.
4 Yo
P
PRIl

(-, nl(pc7n, reset_1. sign_ext);
® mO(pd70. sign_ext);

. o )

e mO(pe70, sign_ext);

mO(pf70. sign_ext);
m1l(pg71. reset 0, sign_ext):
mO(ph70, sign_ext);

..
eal

.-

J" Ao o ok ook sk sk sk ek ok ok ok ok Kk ook ok ok (:'OLL;’A\(N 8 OF TllE .\I['IJTIPL'ER o 3k ok e ok a ok kK ok Ok ok sk ok ok ok K ok ok K
,.:-:E fscanf(bp. "Ced®d%dd". &reset_0.Creset_L. &rstde. &sign_ext);

Y for (i =00 - = 7:i~~)

‘.::: mO(pB0[ii, sign_ext);

s o mO(p3R0, sign_ext):

Sl AN mO(p980, sign_ext):

e
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b oA mO(pa80, sign_ext);
:: ‘e m2(pb82, reset_0, rstdc, sign_ext);
1 , m2(pe82, reset_0, rstdc, sign_ext);
‘ ( mO(pd80, sign_ext);
eh{j mO(pe80, sign_ext);
" ) m2(pf82, reset_0, rstdc, sign_ext);
A n2(pg8q, reset_l, rstdc, sign_ext);
h n2(ph8q, reset_1, rstdc, sign_ext);
A
1
r\ /*#*#**‘**#**********# COLUMN 9 OF TI-E MULTIPLIER *************************t//
o
é = fscanf(bp, "%d%d%d%d”, &reset_0,&reset_1,&rstdc, &sign_ext);
AN
for(i=0;i <=T;i++)
Py mO(p90|i], sign_ext);
Lo
:-"'- ml(p891, reset_0, sign_ext);
_z.-:: m1(p991, reset_0, sign_ext);
':,. m2(pa92, reset_0, rstdc, sign_ext);
p .\ n2(pb9q, reset_1, rstdc, sign_ext);
; m1(pc9l, reset_0, sign_ext);
3::-} nl(pd9n, reset_l1, sign_ext);
}3;) nl(pe9n, reset_l, sign_ext);
e nl(pfIn, reset_l, sign_ext);
"?": nl(pg9n, reset_l, sign__ext,);
A" Gu m?2(ph92, reset_0, rstdc, sign_ext);
o w
\-::‘5 /********************* COLUMN 10 OF Tl_IE MULTIPLIER **************************//
‘S
Tt
:}:-; fscanf(bp, " %d%d%d%d", &reset_0,&reset_l,&rstdc, &sign_ext);
’:) for(i=0;i <=7;i++)
S mO(pa0|i], sign_ext);
::*‘:- 1(p8al, reset_0, sign_ext};
T ml(p9al, reset_0, sign_ext);
S 0(paa0, sign_ext);
& mO(pba0. sign_ext);
S ml(pcal, reset_0, sign_ext);
:j.'-:: ni(pdan, reset_i, sign_ext);
\.:;x' nl(pean, reset_l, sign_ext);
:t ml(pfal, reset_0, sign_ext);
Y nl(pgan, reset_l, sign_ext});
"8 .
o mO(pha0. sign_ext);
¢
":*." Rk ok kokokokk Rk kokkkxsxokx COLUMN 11 OF‘ THE MULTIPLIER ***xskskkkkrnrkbhhrhsksss
.I-.‘: *
o
A fscanf(bp, "%2d%d%d%d", &reset_0 &reset_1.&rstde, Lsign_ext):
1%
g e for{i=20;i <« =7:i++)
(s . mO(pb0li], sign_ext);
. %‘.’ " Lo
(.
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nl(p8bn, reset_l, sign_ext);
ni(p9bn, reset_l, sign_ext};
n2(pabgq, reset_1, rstdc, sign_ext);
ml1(pbbl, reset_0, sign_ext);
nl{pcbn, reset_l, sign_ext);
ml(pdbl, reset_0, sign_ext);
ml(pebl, reset_0, sign_ext);
m1(pfbl, reset_0, sign_ext);
m1(pgbl, reset_0, sign_ext);
nl(phbn, reset_1, sign_ext);

/***************#***** COLUMN 12 OF TI.IE M‘(J’LTH)L[ER ******##tt!*t#*t*t#t*tt*tt/

fscanf(bp, ”%d%d%d%d”, &reset_0,&reset_l1,&rstdc, &sign_ext);

for(1=0;i <=7;i++)
mO(pcO(i], sign_ext);

nl(p8cn, reset_l1, sign_ext);

nl(p9cn, reset_1, sign_ext);

m2(pac2, reset_0, rstdc, sign_ext);
ml(pbcl, reset_0, sign_ext);
m2(pcc2, reset_0, rstdc, sign_ext);
mil(pdcl, reset_0, sign_ext);
ml(pecl, reset_0, sign_ext);
mO(pfcO, sign_ext);

n2(pgeq, reset_l, rstdc, sign_ext);

nl(phen, reset_l, sign_ext);

£ % ok ke ke 3k 3 ke ik ok ok ok ok ok ok ok K ke kK K K COLUMN 13 OF TI—IE: MIJLTIPLIER **************************/
fscanf(bp, "%d%d%d%d", &reset_0,&reset_l,&rstdc, &sign_ext);

for (1 =0;1 <=6;i++)
m1(pd1[i], reset_0, sign_ext);

ni{p7dn, reset_l1, sign_ext);
ml(p8dl. reset_D, sign_ext);
m1(p9d1, reset_0, sign_ext);
mO(padoO, sign_ext);

m1{pbdl, reset_0, sign_ext);
nl(pcdn, reset_1, sign_ext);
nl{pddn, reset_l, sign_ext);
nl(pedn. reset_l, sign_ext);
nl(pfdn, reset_1, sign_ext);
m1(pgdl, reset_0. sign_ext);
nl(phdn. reset_l, sign_ext);

+ o e ook ok ok ok ok o ok ke ok ok K ok ok ok ok ok ok ok PR[NT RESL'LTS sk ok ke sk ke sk ok ok ok ok ok ok ok ok ok sk ok ok 3K ok ok ok ok ok K

if ( clk_count > = 39)
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{ fprintf(np,” %d ” clk_int);
for(i =0;1 <=7; i++)
fprintf(np,”%d " ,(p00(i])- >sumflclk1);
fprintf(np,” %d %d %d %d %d %d %d %d %d %d ", p801->sumffclk1,
p901->sumflclkl, paOn- >sumficlkl, pb00- >sumffclk1,
pcOn->sumflfelkl, pdOn- >sumffelkl, peOn- >sumffclkl,
pfOn->sumffclkl, pgOn->sumflclkl, ph00- >sumflclkl); }

if ( clk_count >= 42)

{ fprintf(op,” %d ” clk_int);

for(i =0; i <=17; i++)

fprintf(op,”%d " (p10[i])- >sumficlk1);

fprintf(op,” %d %d %d %d %d %d %d %d %d %d ”, p8in->sumflclkl,
p91n->sumflfclkl, paln->sumflclkl, pbll->sumffclkl,
pcl0->sumffelkl, pd11->sumffclkl, pell->sumffclkl,
pf12->sumficlkl, pgl0->sumffclkl, phin- >sumffelk1); }

if { clk_count >= 45)

{ fprintf(pp,” %d ” clk_int);

for(i =0; i <=17; i++)

fprintf(pp,”%d ” ,(p20[i))- >sumflclk1);

fprintf(pp,” %d %d %d %d %d %d %d %d %d %d ", p821->sumflclkl,
p921->sumffclkl, pa2n- >sumflclkl, pb2q->sumflclkl,
pe2n->sumflelkl, pd2n->sumffclkl, pe2n- >sumflclkl,
pf20->sumflclkl, pg21->sumficlkl, ph22->sumflclkl); }

if ( clk_count >= 48)
{ fprintf(qp,” %d " clk_int);
for(i =0; 1 <= 7; i++)
fprintf(qp,”%d  (p30(i})- >sumficik1);
fprintf(qp,” %d %d %d %d %d %d %d %d %d %d ", p83n->sumffclkl,
p93n- >sumflclkl, pa31l->sumffclkl, pb3n->sumficlkl,
pedn->sumflelkl, pd31->sumflclkl, pe3l->sumflclkl,
pf3q->sumficlkl, pg31->sumffclkl, ph31->sumflclkl); }

if ( clk_count >= 51)

{ fprintf(sp,” %d ” ,clk_int);

for(i =0; 1 <=7; i++)

fprintf(sp,”%d " ,(p40[i]}- >sumflclk1);

fprintf(sp,” %d %d %%d %d %d %d %d %d %d %d ”, p840- >sumflclkl,
p940- >sumffclkl, pad4q- >sumflclkl, pb40- >sumflclk1,
pc4l->sumffclkl, pd40- >sumficlkl, pe40- >sumflclkl,
pf4n->sumflelkl. pg4n- >sumflclkl, ph40- >sumflelk1); }

if { clk_count >= 54)
{ fprintf(rp,” %d ” clk_int);
for(i =0: 1 <= 7; i++)
fprintf(rp,”%d ” (p50[i]} >sumflclk1);
fprintf(rp,” %od %d %d %d %d %d %d %%d %d “od ", p851- ~sumflclkl.
p951- >sumffclkl, pa50->sumflclkl. pbdn- > sumflclkl.
pc50- >sumflelkl, pd5n- >sumflelkl. pe5n- - sumflelkl,
pf51--sumflclkl, pg50- >sumflclkl. ph51- -sumffclkl); }
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S
(s o, if ( clk_count >= 57)
. ~ { fprintf(tp,” %d " clk_int);
. for(i =0; i <=17; i++)

. fprintf(tp,”%d ”,(p60[i]} >sumflclk1);

fprintf(tp,” %d %d %d %d %d %d %d %d %d %d ”, p861->sumficlkl,

< p961->sumflclkl, pa62->sumffelkl, pb6n->sumflclkl,
Pt pc61- >sumffelkl, pd6n- >sumficlkl, pe6n->sumflclkl,

‘ {::". pf6n->sumffclkl, pgbn->sumflclkl, ph61->sumflclkl); }
! if ( clk_count >= 60)

< { fprintf(up,” %d ” clk_int);

(> for(i =0; i <=17; i++)

s fprintf(up,”%d ” ,(p70(i]}- >sumflcik1);

=

- fprintf(up,” %d %d %d %d %d %d %d %d %d %d ”, p870->sumflclkl,
: p970->sumflfclkl, pa7n- >sumflelkl, pb70->sumffclkl,
pc7n->sumflelkl, pd70- >sumffelkl, pe70- >sumffelki,

. pf70->sumffclkl1, pg71->sumffclkl, ph70->sumficlk1); }
L5 if ( clk_count >= 63)
: { fprintf(vp,” %d 7 ,clk_int);
. for(i =0; i <=17; i++)
fprintf(vp,”%d ”,(p80|i])- >sumficik1);
o fprintf(vp,” %d %d %d %d %d %d %d %d %d %d ", p880->sumficlkl,
R p980->sumffclkl, pa80- >sumflclkl, pb82- >sumflclk1,
I pc82->sumflclkl, pd80- >sumficlkl, pe80- >sumffclkl,
J::; pf82->sumffclkl, pg8q->sumflclkl, ph8q->sumficlk1); }
“." if ( clk_count >= 66)
" - { fprintf(wp,” %d " clk_int);
S for(i =0;1 <=17; i++)
(. fprintf(wp,”%d 7 ,(p90[i])- >sumflclk1);
o fprintf(wp,” %d %d %d %d %d %d %d %d %d %d ”, p891->sumficlkl,
f.\-; p991->sumflelkl, pa92- >sumflclkl, pb9q- >sumflclkl,
Loy pc91->sumflelkl, pd9n- >sumffclkl, pe9n->sumflelkl,
% pfIn->sumflclkl, pg9n- >sumflclkl, ph92- >sumflclk1); }
]
“; if ( clk_count >= 69)
o { fprintf(yp,” %d ” clk_int);
.l;. for(i =0;1 <=T7; i++)
1] fprintf(yp,”%d ”,(pa0[i]} >sumflclk1);
fprintf(yp,” %d %d %d %d %d %d %d %d %d %d ”, p8al->sumflclkl,
L - p9al->sumffclkl, paa0->sumflclkl, pba0- >sumffelkl,
:~:: pcal- >sumflclkl, pdan- >sumflclkl, pean- >sumffclkl,
e pfal->-sumffclkl, pgan- >sumffelkl, pha0- >sumflelkl); }
T if ( clk_count >= 72)
| { fprintf(zp,” %d " clk_int);
y for(i =0; 1 <<= T7:i++)
- fprintf(zp.”%d " (pbO[i])- >sumflclk1);
o0 fprintf(zp.” %d %d %d %d %d %d °d %d °%d %d ", p8bn- >sumflclkl.
;"-} p9bn- >sumffelkl, pabg- >sumflclkl. pbbl- >sumflclk1,
V2 pebn- >sumflelkl, pdbi- >sumffelkl. pebl- >sumflclk1.
Y pfbl- >sumflclk1, pgbl- >sumflelkl, phbn- > sumflelk1); }
S if ( clk_count = 75)
- "U
T
.o
qu
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‘%_ RO { fprintf(pz,” %d ”,clk_count);
1.5 b for(i =0; 1 <= T7; i++)
o fprintf(pz,”%d ” (pcO[i])- >sumflclk1);
e fprintf(pz,” %d %d %d %d %d %d %d %d %d %d ", p8cn->sumffclkl,
4 -:"J p9cn->sumflelkl, pac2- >sumffclkl, pbel- >sumflclkl,
e pce2->sumflelkl, pdel->sumflelkl, pecl->sumffclkl,
. ‘,:- pfc0->sumflelkl, pgeg->sumflclkl, phen->sumflclkl); }
l—ﬁ if ( clk_count >= 78)
vaeh { fprintf(xp,” %d ” clk_count);
o for(i =0; 1 <= 6; i++)
:\:: fprintf(xp,”%d ”,(pd1[i])- >sumficlk1);
Bag fprintf(xp,” %d %d %d %d %d %d %d %d %d %d %d ”,p7dn- >sumffclkl,
R p8d1- >sumffelkl, p9di1- >sumflclkl, pad0- >sumflclkl,
e pbdl->sumffclkl, pedn->sumflelkl, pddn- >sumflclkl,
pedn->sumffclkl, pfdn- >sumflclkl, pgdl->sumflcikl,
:;u'ﬁ phdn->sumffelk1); }
O
=' fprintf(zzp,” %d 7 ,clk_count);
y for(i =0;1 <= 6; i++)
b7 fprintf(zzp,” %d ”,(pd1[i])- >sumflclk1);
® fprintf(zzp,” %d %d %d %d %d %d %d %d %d %d %d ”, p7dn- >sumflelki,
” p8d1->sumflclkl, p9di- >sumflclkl, pad0->sumffclkl,
-?':} pbdl->sumfielkl, pcdn->sumficlkl, pddn->sumflclkl,
"s‘; pedn->sumffclkl, pfdn- >sumflelk1, pgdi- >sumflfclkl,
;::& phdn- >sumffclk1);
L. clk_nt +=1;
| -_'T.-
o
oS felose(ap);
o fclose(bp);
P fclose(cp);
’ felose(np);
o felose(op);
o fclose(pp);
b fclose(qp);
ot fclose(pz);
Vel felose(sp);
e. fclose(tp);
s felose(up);
e fclose(vp);
::-‘_' felose(wp);
N fclose(xp);
.,y? fclose{yp);
L fclose(zp);
fclose(zzp);
o }
L
e
g
‘GO
. "
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N LW /**‘*****#***********#************************#**********************t
e **  DATE: 29 AUG 1985
e .
-2 % TITLE: multiplier functions

‘o * FILENAME: subm0.c, subml.c¢, subm2.c subnl.c, subn2.c

O) ** COORDINATOR: Jim Collins.

o o PROJECT: WFT16 SIMULATION

¥ x;- *x USE: These are the functions called by the multiply.c program
B *x to evaluate the bits in the data structure pointed to

ChY ** by the position in the array in the same

AN *x fashion the hardware multipliers will do.

h * %k
************************#*******t*************************************/

v

NN .

I /* zero multiplier cell */

Lo, .

(e, mO (ptr, sign_ext)

LA struct multX0 *ptr;

int sign_ext;

if (sign_ext ==

ptr- >sumflclk2 = ptr- >prod_in;
else

ptr- >sumffclk2 = ptr- >sumflclk?;

P Ay
S M

| @
;’\q y B ptr->ff2clk2 = ptr- >fllclkl;
ptr->ff3clk2 = ptr->f2clkl;

AGT ptr->fliclkl = ptr->fflclk2;
Y ptr- >ff2clkl = ptr- >f2clk2;
0 ptr->fi3clkl = ptr->f3clk2;
e ptr- >sumffclkl = ptr- >sumflclk2;

return;

Vet
e

S %y 7,

e 500
P
L

s 'u.’:- R
LA
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:9:. _E:: /* plus one multiply function */

‘ -

' .

e m1l (ptr, reset_0, sign_ext)
i struct multX1 *ptr;

:‘1':’ int reset_0, sign_ext;

s

N {

= int add = 0;

)

i if (reset_0 == 0)

- ptr->carry_ficlk2 = 0; /* reset the carry flip-flop to 0 */
}: ptr->carry_ficlkl = 0;
Vs }

/* things that happen on clock two */

add = ptr->f2clkl + ptr->prod_in + ptr->carry_flclkl;

A

i

z switch(add)
K {
case O:
<2 ptr- >tmpsum = 0;
-y ptr- >carry_flclk2 = 0;
\ :‘ break;
»y
:. case 1:

(L ptr- >tmpsum = 1;

L ptr- >carry_flelk2 = 0;

Ty break;
p L
’;‘_ case 2:
yoe

ptr->tmpsum = 0;
ptr->carry_ffclk2 = 1;

‘3 break;
-‘4

::«j case 3:

O ptr->tmpsum = [;

;‘.i ptr->carry_flclk2 = 1;

e break;

. }  /* end case */
':: if (sign_ext !'= 1)

e ptr- >sumflclk2 = ptr- > tmpsum:
. .

; ptr- > ff2clk2 = ptr- > fflclkl:
o ptr- > ff3clk2 = ptr- > ff2clk1;
?‘_'.'_ * things that happen on clkl */
ptr- >fflclkt = ptr->fflclk2;
'f‘f ptr- > fl2lkl = ptr- > ff2clk2;

ptr- - ff3clkl = ptr- > f3clk?2:

o

; \ N
¥ z

o>,

1 )
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/* plus two multiplier */

m2(ptr, reset_0, rstdc, s_extend)

struct multX2 *ptr;
int reset_0, rstde, s_extend;

int add =
int addin = 0;

if (reset_0 == 0)

ptr- >carry_ffclkl = 0; /* reset the carry flip-flop to 0 */
ptr- >carry_flclk2 = 0; /* reset the carry flip-flop to 0 */

/* things that happen on clock two */

addin = (ptr->ff3clkl && rstdc);
add = addin + ptr->prod_in + ptr->carry_flelki;

switch(add)

case 0:
ptr->tmpsum = 0;
ptr->carry_ffclk2 =
break;

case 1:
ptr->tmpsum = 1;
ptr- >carry_ficlk2 = 0;
break;

case 2:
ptr- >tmpsum == 0;
ptr- >carry_flclk2 = 1;
break;

case 3:
ptr->tmpsum = 1;
ptr- >carry_flclk2 = 1;
break;

}  “*end case *:

if (s_extend '= 1)
ptr- >sumflclk2 = ptr- > tmpsum;:

ptr- >f2clk2 = ptr- > fFlclkl;
ptr- = fl3clk2 = ptr- > fl2clkl;

* things that happen on clkl */
ptr- - fflclkl = ptr- >fflclk2:

ptr- -fl2clkl = ptr- >fl2clk2;
ptr- --fi3clkl = ptr->fi3clk2:
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N2 ..
:i Y ptr~- > carry_ficlkl = ptr- >carry_ffclk?2;
A = ptr->sumffclkl = ptr- >sumffclk2;

- return;
I }
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L)
.
\:
"-:: .::i_\,, /* minus one multiplier function */
nl(ptr, reset_1, s_extend)
struct multN1 *ptr;
\ . int reset_1, s_extend;
9
rn int add = 0;
/* things that happen on clock two */
e,
b if (reset_1 ==1)
‘ ptr- >carry_flclkl = 1; /* reset the carry flip-flop to 0*/
-j ptr->carry_ficlk® = 1;
A ,'"]
add = !(ptr->ff2clkl) + ptr->prod_in + ptr->carry_flclk1;
[ :
_: switch(add)
:‘ :P' case 0:
Wy ptr->tmpsum = O;
° ptr- >carry_flclk2 = 0;
[ break;
o case 1:
3 ptr- >tmpsum = 1;
o ptr- >carry_ficlk2 = 0;
6' break;
v‘ bl
Ig] case 2:
's;f ptr- >tmpsum = 0;
j‘ ptr- >carry_flclk2 = 1,
" break;
p4
- case 3:
) ptr->tmpsum = 1;
5K ptr- >carry_flclk2 = 1;
#‘
b break;
e
' }  /* end case */
B
N if (s_extend = 1)
jﬁ‘ ptr- >sumffclk? = ptr->tmpsum:
) !
o ptr- > ff2clk2 = ptr- >fTlclkl;
| ptr- > ff3clk2 = ptr- = ff2¢lk1;
+4
:’.‘: * things that happen on clkl *
¢‘
‘i
'f:
< ptr- - filclkl = ptr- - flcik2:
ptr- -ff2clkl = pte- - fT2clk2;
N ptr- = f3clkl = ptr- > f3clk2:
. e
i )
'
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ptr- >carry_ffclk2;

ptr- >sumffclkl = ptr- >sumffelk2;

ptr->carry _flelk1

‘1..1 _ﬂnll -- ,‘Q. v »\l-ﬂsntv -h\ -N.\F.!“-
. 14 -
£ q.f)n. o
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ey
2\
X
S
:f::: e /* minus two multiplier */
«S- -
3
e n2(ptr,reset_1, rstdc, s_extend)
. struct multN2 *ptr;
e int reset_l, rstdc, s_extend;
T,
5 {
s .
L int add = 0;
v int addin = 0;
:: if (reset_1l == 1)
oy
.‘:: ptr->carry_flclkl = 1; /* reset the carry flip-flop to 0*/
i ptr->carry_ffclk2 = 1; /* reset the carry flip-flop to 0%/
~ - .
N addin = !(ptr- >fl3clkl && rstdc);
o add = addin + ptr- >prod_in + ptr->>carry_fclkl;
e
NS switch(add)
-~
?-: case 0:
o ptr- >tmpsum = 0;
e ptr- > carry_ficlk2 = 0;
break;
-
- (5 case 1:
. ptr->tmpsum = |1,
T ptr- > carry_flclk2 = 0;
o break:
L case 2:
Y ptr->tmpsum = 0;
:) ptr- >carry_flclk2 = 1;
.‘q_ break;
.-; case 3:
oo ptr- >tmpsum = 1;
e ptr- >carry_flelk2 = 1;
® break:
:. } * end case */
o if (s_extend != 1)
< ptr- >sumffclk2 = ptr- >- tmpsum:
&
ptr- > ff2clk2 = ptr- > fflclkl:
}:. ptr- > ff3clk2 = ptr- > fl2clkl:
oy
::‘ * things that happen on clkl *
.t.
N ptr- - fitclkl = ptr- ~fTlclk2:
S ptr- > fl2clkl = ptr- - M2c1k2:
‘:: ptr- ~ff3ctkl = ptr- -~ f3clk2:
y
o
e B-46
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ptr- >carry_ficlkl = ptr->carry_ffclk2;
ptr- >sumffclkl = ptr- >sumflclk2;
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**********************************************************************/

*k
* %k
* %
* %k
kK
xR
* %k
Xk
*%k
* %k
* %k
* %
* K
* %k
K
*x %
&k
* %k
* %
* %k
*%k
* &
* %k
* %
* ok
* %
* %k
* %k
* ok
* %k
* %
* Kk
* %
* ok
* K
%k
* %k
* %k
* &
* %k
* %
* K
* %
* %
* &

DATE: 12 NOV 1985

AUTHOR: Jim Collins

FILENAME: post_wfta.c
PROJECT: WFTI16 Simulation
OPERATING SYSTEM: UNIX V 4.2
LANGUAGE: C

USE: This program is the third in the series which model the
16-point winograd pipeline. It follows the multiply.c
program.

FILES READ:

master_control: control word for the processor per simulation
cycle.
reset signal for the carry/borrow of the

postadd column.

postadd_cntrl:

rmult_out: output of the real pass through the serial
multiplier, input to the real postadders.
imult_out: output of the imaginary pass through the serial

multiplier, input to the imaginary postadders.

FILES WRITTEN:

rpostaddl_in: input to the first columns of the real postadders.
rpostadd2_jn: input to the second column of the real postadders.
rpostadd3_in: input to the third column of the real postadders.
rpreell_in: input to the real parity round cell.

rpreell_out: output of the real parity round cell.

rsipo_out:  output of real results.

ipostaddl_jin: input to the second column of the imaginary postadders.
ipostadd2_in: input to the second column of the imaginary postadders.
1postadd3_in: input to the third column of the imaginary postadders.
iprecell_in: input to the imaginary parity round cell.

isipo_out:  output of imaginary results.

FILES INCLUDED:
fn_add.c: addition function
postdec: type and structure declarations for
the program.

e ok e sk ok oo e e ok e oK i ok ok Kk ke ol ko ok ok oK ook ke ok ok ok ok ok ook ki ook ok sk ok ok ok 3k K sk ok 3 ik ok sk ok koK ok K ok ok ok ok ok %k K
#include - stdio.h >

#include "fn_add.c”

#include "postdec”

#define clk_cycle 32

/* 16 point wfta cycle */

typedef struct add_cell

.( .rQ.:uh[t"
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~ int x_1;
int y_1;
int c_1;
int b_1;

|5

typedef struct add2_cell
{

Int sum,;

int diff,

int co;

int bo;

|8
main()

FILE *ap,*bp,*cp,*dp,*ep,*gp,*hp,*ip,*jp,*kp,*Ip,*mp,
*np, *op, *pp, *qp, *fopen();

‘* initialize the pointers for the adders*/

for (1 =0;1 <= 8; i++)

{ pri[i] = &r_col_linli];
p_r_lofij = &r_col_louti];
p_i_lifi] = &i_col_lin[i];
p_i_lofi] = &i_col_lout[i}; }

L. for (i=0;1 <=3, i++)

{ p_r_2ili] = &r_col_2inli];
p_r_20(i] = &r_col_2outli];
p2ifi] = &i_col 2inli;
p_i_2ofi] = &i_col 2outli]; }

for (i=0;1 <= 6; i++)

{ p_r_3ili] = &r_col_3inl[i];
p_r_3oli] = &r_col_3outli];
p_i_3ili] = &i_col_3inlil;
p_i_3o{i] = &i_col_3outfi]; }

* open the files for the control words, and input data and output */

ap = fopen(” master_control”, "r”);
bp = fopen(”postadd_cntrl”,”r"};
cp = fopen("rmult_out”, "r”);

dp = fopen(”imult_out”,”r”);

hp = fopen(”rpostaddl_m JwT):
jp = fopen(”rpostadd2_jn"."w");
ip = fopen("rpostadd3_in”,"w");
kp = fopen(”rpreell_jn", "w")

gp = fopen("rpreell < ouc” "w');

lp = fopen(”rsipo_out”, ’):

np = fopen("ipostaddl_jn","w”");
Ty op = fopen("ipostadd2_jin”."w");
ot pp = fopen("ipostadd3_jn"."w"),
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‘ "4{:
A\
Aty
AN
SOOI qp = fopen(”iprcell_in","w"});
~ mp = fopen(”isipo_out” ,”w");

'J"{‘ fscanf(ap,”%d” ,&cycles); /* number of full cycles which the program

> will simulate */
‘:z'_-: while (clk_count <= cycles)
» t.‘--a {

fscanf(ap,”%d”,&clk_count); /* read master control clock cycle */

2

AW

clk ==(clk_count % clk_cycle);
clk_int =(clk_int % clk_cycle);

Ceme e

e
. /* check to see if internal and master clocks are sychronized */
if {clk '==clk_jnt)
1 { printf(” clocks are not synchronized %d0, clk);
i exit(); }
o , :
o /* read all the control signals */
® for (i=0; i<=19; i++)
T fscanf(ap,” %d” ,&flags(i]);
::'_ /* assign control variable to be used in this program */
~ _ . sr_sipo = flags|14];
) fb"' I_sipo = flags[13];
i sd_sipo = flags[12];
o p_cale = flags[5];
e p_append = flags|6];
ot r_cale = flags|4);
~ - fscanf(bp,”%d”,&clk_add); /* read adder reset signals */
,\% for(1=0;1 <= 2;i++)
d ::: fscanf(bp,”%d”  &rst_bit[i});
\'
K-y
! v: 3 e o ok ok K ok K ok o ok ok ok ok ko Ok ok POST ADD MODULE 1 ********‘*‘***********************//
Lo "
ol /* call fn_add.c to add bit stream*/
'3.1,: for(i = 0; i <= 8 i++)
> {
‘O e .
' i.j add(p_r_tifi], p_r_loli]);
~, add(p_i_lilii, p__loii]);
.':::'f‘. * The MSFFs in the postadder are reversed, data enters through phi_l and
WS leaves through phi_2, assign to output latch of the MSFF *
R for (i = 0:i « = l:i+~)
® { rpostaddlii.fclk2 = rpostadd|il fclkl:
L3y ipostadd ii.felk2 = ipostaddlij.felkl; }
Jﬁ o
W
D x:":
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- /‘*********************** POST ADD MOD[}'LE 2 ***************************t****/’
for(i = 0; i <= 3; i++)
add(p_r_2ifi], p_r_20li);

add(p_i_2ili], p_i_20[i));

/* seven MSFFs in the second column */

for(i = 0; 1 <=17; i++)
{ rpostadd(i].fclk2 = rpostadd2]i].felk1;

ipostadd2(i].fclk2 = ipostadd2|i].felkl; }

/6 3 3 3 ok o ok ok ok ok ke ok 3k ok ok o e ok oK ok K POST ADD MODULE 3 ********************************/

for(i = 0; i <=6; i++) /* same as first column */

add(p_r_3ifi], p_r_3oli);

add(pi_3ifi], pi_3oli});

for( i =10;1 <= 1;i++)

rpostadd3[i].felk2 = rpostadds/i].felk1;
ipostadd3(i].fclk2 = ipostadd3[i].felkl;
}

“.. (o 2 e ok ke ok ok ke ok ok o ok ok ok ok K ok oK PARITY ROUND CELL *#****t***************************/

.
s

PR

[y
Y
-

/* move bits through the parity round cell, both real and imaginary */
for (i =0;1 <=15; i++)

(r_cell[i]).and_out = (r_cell[i]).clk1 & (r_cell(i]).r.fclk1;
(r_cellfi]).r_or = (r_cell(i]).and_out | !r_calc;
(r_cellfi]).in_xor = (r_cell[i}).clkl * (r_cell[i]).r.felk1;
(rcell(i]).p_xor = (r_cellfi]).in_xor * (r_cell[i]).p.fclk1;
(r_cellli]).p_or = (r_cell[i]).p_xor [ Ip_calc;
(r_cell[i)).p.felk2 = (r_cell[i)).p_or;

(r_cellfi}).r.felk2 = (r_cell|i]).r_or;

/* check control signals for parity cell*/
if (p_append ==
(r_cellfi}).clk2 = (r_cell{i}).in_xor;
else

(r_cellfi)).clk2 = (r_cellli)).p.fclk1;

(r_cellfil).p.felkl = (r_cellfi}).p.fclk2;
(r_cellli]).r.felkt = (r_cell(i)).r.fclk2;

(icelllij).and_out = (i_cell[i]).clkl & (i_ceillil).r felk1:
(i_cellli]).r_or = (i_cell[i]}).and_out | !r_calec;
(i_cellii]).in_xor = (i_cell[i]).clkl * (i_cellil).r.fclk1:
(icelliil).p_xor = (i_celllil).in_xor * (i_cell/il).p felk1:
(icelliil).p_or = (i_celli]).p_xor | 'p_calc:

e A

A
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1 (i_cellfi]).p.felk2 = (i_cellfi]).p_or
(icell[i]).r.fclk2 = (i_cell[i]).r_or;

if (p_append == 0)
(icell[i]).clk2 = (i_cell[i]).in_xor;
else

(icell(i]).clk2 = (i_cell[i]).p.felk1;

(icell]i]).p.felkl = (i_cell[i]).p.fclk2;
(i_cell[i]).r.felkl = (i_cell(i]).r.fclk2;
}

70 e 2 ook o ke ok ok ok ok ok ok S]PO CELL ***********ttittt*t*#**t**t****t**t*#**t#/

/* shift the data right in the serial path */

if (sr_sipo == 1)

for (i = 15;1 >=0; i--)
for (j =23;j >=0; j--)

if j == 23)

{ r_sipoli}[j].s—clk2 = r_phil_Jatchli|;
i_sipo(i(j].s_clk2 = i_phil_Jatch[i]; }

else

{ r_sipo{i](j].s_clk2 = r_sipo[i][j+1].s_clk1;
i_sipoli]{j].s_clk2 = i_sipoli|{j+1].s_clk1; }

/

/* latch data from the serial path into the parallel path */

if (lsipo == 1)
for (i = 15;1 >=0; i~-)
for (j == 23; ) >==0; j--)

{ r_sipoli]{j].p—clk2 = r_sipo[i][j].s_clk1;
i_sipo[i][)].p_clk2 = i_sipoli][j].s_clkl; }

ok ek ok ok ok ok ke sk ok o ok ok ok o ok ok ok ke ok ok ok ok ok ok ok ok ok kK ok ek ok K sk ok ok ok ok sk sk ok 3k ok ok ok ok ko ok ok K K ok 3k K kK kK ok K

* shift the data down in the parallel path */
if (sd_sipo == 1)

for (i = 15;1 >= 0; i-)
for (j =23;) >=0, j--)

if (i == 15):
else
{ r_sipolijlj].p_clk2 == r_sipo[i+1]] ” p_clkl;
i_sipolil j] clk2 = i_sipoli+1]{j].p_clkl: }

}
rrrrsrsaresss CLOCK ONE OCCURENCES ADD COLUNMN QNI #%##trxnnsk
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P
RIS ., * Assign input multiplier results to the x and y variables within
s h the adder data structures indices on the left are inputs and outputs
using the Taylor numbering system */
& (p_r_1i[0]}- >x_1 = rmult{0]; /* t00 h0O */
! (pr-1i[0]}>y_1 = rmult|1); /* t01 hO8 */
2 (pr_1i{l]}>x_1 = rmult{3}; /* 103 t100 */
(p—r_1i[1])->y_1 = rmult[8]; /* t05 t101 */
: (p—r_1i[2])->x_1 = rmult[13]; /* t13 102 */
X (pr_1i[2])->y_1 = rmult6]; /* t11 t103 */
5 (pr_1i[3])- >x_1 = rmult[4); /* t04 t104 */
' (pr_1i[3}}>y_1 = rmult[9]; /* t06 t105 */
(pr.1i[4])->x_1 = rmult|11]; /* t08 t106 */
o (pr_ti[4])->y_1 = rmult[10}; J* t07 */
0
i)
\ (pr_1i[5]}->x_1 = rmult[12]; /* t09 */
. (pr_1i[5])->y_1 = rmult[10]; /* t07 t107 */
q (p—r_1i[6])- >x_1 = rmult[7); /* £12 £108 */
. (pr_1i[6])->y_1 = rmult14]; /* t14 £109 */
< (p—r1i[7))->x_1 = rmult[15]; /* t15 t110 */
’ (pr1i[7]}>y_1 = rmult[16]; /*t15 */
ﬁ‘, (p-r-11[8]}->x_1 = rmult[15]; J* t15 */
p (pr_1i[8])}->y_1 = rmult[17]; /* t17 t110 */
\
t rpostadd[0}.fclkl = rmult{2]; /* t02 */
z rpostadd(1].felkl = rmult[5]; /* t10 */
"' "**‘*t***************'** IN[AGmARY SECTION ****#*******************//
v
" (p_1i[0]}->x_1 = imult|0]; /* u00 hoO */
. (pJ_1i[0])->y_1 = imult{l] ; /* u01 hO8 */
A (pLi_tif1))->x_1 = imult[3]; /* u03 u100 */
(p-lifl])->y_1 = imult[8]; /* u05 ulol *;
X (pd_1i[2])- >x_1 = imult[13]; * ul3 ulo? *
2 (pd_ti[2])- >y_1 = imult|6]; /*ull ul03 *
. (pi_1i[3})- >x_1 = imult[4]; /* u04 ul04 *
4 (piLif3])->y_1 = imult|9); * u06 ul05 *
¥
W (pd_ti{4l)} >x_1 = imult|11]; * u08 ul0s *
. (pa_lif4])- >y_1I = imult[10]; * 07 *
b
) (pLi_li[5])- >x_1 = imult{12]; *ul2*
' (pJ_1i51)- »y_1 = imult[10[; * w07 ulo7 *
r N
SN
N . (pd_1ii6])- >x_1 = imult|7}; *ul2 ulog *
B-53
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;::f:'\‘. (p__1i[6])->y_1 = imult{14]; /* ul4 ul09 */
(p1i[7])->x_1 = imult{15]; /* ulb ull0 */
(pS1i[7])- >yl = imult[16]; /*uls */
(p-11i[8])->x_1 = imult[15]; /* ul5 */
(p1i(8])>y_1 = imult(17]; /* ul7 ull0 */
ipostadd(0].fclkl = imult{2]; /* w02 */
ipostadd(1].felkl = imult[5]; /* ul0 */

for (i =0;1 <=8;i++) /* move carry, borrow to CLK1 latches */
{ (p_r1ifi]}->c_1 = p_r_loli}]->co;

(pr_1ifi]}->b_1 = p_r_loli]->bo;

(pJLifi)}->c_t = p_i_lofi]->co;

(paifi]}>b_1 = p_i_loli]->bo; }

/* if reset high reset the carry and borrow */
if (rst_bit[0] ==

for (i =0;1 <= 8;i++)
{(p_—r_tofi]}->co = 0;
(p_—r_lofi]}->bo = 0;
(pxdifij}>c_1 = 0;
(pr-1ifi])}->b_1 =0;
(p_lofij}>co = 0;
(p_i_tofi]}>bo =0;
(piLifi]}>c_1 = 0;

= (p1ii])->b_1 = 0;}

fscanf(cp, "%d”, &clk_real);
fscanf(dp, "%d”, &clk_add);
for(i=0;i <= 17; i++) /* read input data from multiplier */
{ fscanf(cp,”%d” ,&rmult(i});
fscanf(dp,” %d” ,&imult|i]);

if (clk_count >= 79) /* first input not expected until
clock 79 */

fprintf(hp,” 9%d  cik_count); ,* print real and imaginary inputs

to the output files * /
for(i=0:1 <=8 i++)
fprlntf(hp %%d %d " (p_r_tili])- >x_1. (pr_Lili])}- >y_1);
fprintf(hp,”%d %d . rpostadd(0|.fclkl, rpostadd|1].felk1);

fprintf(np.” “od ~,clk_count);
for (i =0:1« =8 i++)

fprintf{np."%d “ad * (p_i_tili})- >x_1, (p_i_1ili))- >y_1);

o
fprintf(np.”%d “od ", ipostadd|0].fclk1, ipostadd|l].felk1); }
xusrrrsxarsr CLOCK ONE OCCURENCES ADD COLUMN TWQ  ***kxasksnxk

h
S (p_r_2il0i)- ~x_1 = (p_r_l0(3])->sum; % £104 1200 *
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(px22i[0])->y_1 = (p_r_lo[4]) >diff; /* t106 201 */
(pr2i[1]}->x_1 = (p_r_1o[3])- > diff; /* t105 t202 */
(pr2i{1]}>y_1 = (pr_lo[5])- >diff; /* t107 203 */
(pr-2i[2])->x_1 = (p_r_lo|6])->sum; /* £108 t204 */
(pr22i[2]}>y_1 = (pr_1o[7]}- >sum,; /* t110 t205 */
(px22i[3])->x_1 = (pr_Llo6})- > diff; /* t109 t206 */
(pr_2i[3]}->y_1 = (p_r_lo[8])- > diff; /* t111 t207 */
rpostadd2(0] fclkl = rpostadd|0].fclk2; /* t02 */
rpostadd2(1}.felkl = (p_r_lo[0]} >sum; /* h0 */
rpostadd2(2| felkl = (p_r_1o[0]) > diff; /* h8 */
rpostadd2(3].felkl = (p_r_lo(1]}>sum; /* t100 */
rpostadd2(4].fclkl = (p_r_lo[1])}>diff; /* t101 */
rpostadd2(5|.fclkl = rpostadd|(1].felk2; /* t10 */
rpostadd2(6] fclkl = (p_r_lo[2|} >sum; /* t102 */
rpostadd2(7].fclkl = (p_r_lo(2])- > diff; /* t103 */

//**tt##t***##**t#*#***** MAGINARY SECTION *t**‘lﬁ******t**t***t#***/

e, b,
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(p2i[0])->x_1 = (p_i_1o[3])- >sum; /* t104 t200 */
(po.2i[0])->y_1 = (p_i_lo[4]}- >diff; /* t106 t201 */
(pi2i(1])>x_1 = (p__lo[3])->diff; /* t105 t202 */
(p2i(1])->y_1 = (p_ito[5])-> diff; /* t107 t203 */
(p42i[2])}>x_1 = (p_i_10o[6])- >sum; /* £108 t204 */
(po2i[2]}>y_1 = (pi_Lo[7]}->sum; /* t110 t205 */
(pi2i[3]}>x_1 = (p_i_lo[6]}>diff; /* £109 £206 */
(P 2{3]}>y_1 = (pi_lo[8])>diff; /* t111 t207 */
ipostadd2|0].fcikl = ipostadd[O].fclk2; /* 102 */
ipostadd2(1].felkl = (p_i_10[0]}- >sum; /*h0 */
ipostadd2(2].felkl = (p_j_lo[O ¥ > diff; /*h8 */
ipostadd2(3|.felkl = (p_i_lo(l])- >sum; /* t100 */
ipostadd2(4].felkl = (p_i_lLo[1]}- > diff; /* t101 */
ipostadd2|5|.fclkl = ipostadd(1].felk2; /* 10 */
ipostadd2(6|.fclkl = (p_i_10(2])- >sum; /* 1102 */
ipostadd2(7].fclkl = (p_i_lo{2|)- > diff; /* 1103 */
for(i=0:1 <=3; i++) /* shift carry, borrow on
phi_1 pulse *
{ (pr22i i] >e_l = (p-r_f-’om)

(pr2ifi]}- >b_1 = (p_r_20i|)- >

(p.J_,.l[n]) >c_l = (p_l_..o i)

(pd2ifi})- >b_1 = (p__20li})- > }
if (rst_bit{l] === 0) /* if reset high reset the carry and borrow *

for (i = 0:1 <= 3;i++)
{(pr20ii])->co =0;
(p_r_20]i])- >bo = 0:
(pr_2ilil)->>c_1 = 0;
(pr_2ifi})->b_1 = 0;
(p_20iil)- >co = 0;
(p_i_20ii]}- »bo = 0;
(p2ifi))- »c_1 =0
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"y ;i:{ (pi2ifi])->b_1 = 0;}
A‘ﬁ 'n '
>!0:._|
. ( if (clk_count >= 80) /* print real and imaginary inputs
SSOAS which are the outputs of columns two */
) ‘-.“.:.
j:‘_‘:‘- fprintf(jp,” %d ” ,clk_count);
\ for (i=0;1 <= 3;i++)
b fprintf(jp,”%d %d " ,(pr_2ifi])- >x_1, (p_r_2i[i]}->y_1);
l‘) for (i=0;i <=17;i++)
fprintf(jp,” %d”, rpostadd2|i].fclk1);
1,390
LI-W\': fprintf(op,” %d ”,clk_count);
A for (i=0;i <= 3; i++)
S fprintf(op,” %d %d " (p__2ifi]}- >x_1, (p_L_2i[i])->y_1);
for(i=0;1 <=17;i++)
fprintf(op,” %d”, ipostadd2[i].fclkl);
v /#xxxxxxexsxs. CLOCK ONE OCCURENCES ADD COLUMN THREE #**#**txsxxsxssxss/
[/ ¥,
" /* assign output of column two adders both real and imaginary
v to the input of column 3 */
-.}'-:: (pr_3i[0])->x_1 = (p_r_20[0])- >sum; /* t200 */
< (pr_3i[1])->x_1 = rpostadd2(3].fclk?2; /* t100 */
o (p_r_3i[2])->x_1 = (p_r_20[1])->diff; /* 203 */
A2 < (p—r_3i[3])->x_1 = rpostadd2(0].fclk2; /* 102 */
Q) (pr_3i[4]}->x_1 = (p_r_20[1]}- >sum; /* 1202 */
o (pr_3i[5]}->x_1 == rpostadd2[4].felk2; /* t101 */
el (pr_3i[6]}->x_1 = (p_r_20[0])- > diff; /* t201 */
::::_': “* in the real case, the imaginary term gets assigned to the y variable */
(pr3i[0])->y_1 = (p_i_20]2])->>sum; /* u204 */
N, (pr.3i[1]}>y_1 = ipostadd2(6].fclk2; /* ul02 */
o (pr_3i[2]}->y_1 = (p_i_20[3])- > diff; /% u207 */
oy (p_r_3i[3])}->y_1 = ipostadd?2[5].fclk2; /* ul0 */
P oy (p_r_3i[4]}->y_1 = (p_i_203|}- >sum; /* u206 */
\ ": (pr-3i[5])}->y_1 = ipostadd?2(7].fclk2; /* ul03 */
(pr_3i[6])- >y_1 = (p_i_20[2])->diff; /* u205 *
-: Rxkdokkkokkkkkkrknkkkkrkk INfAGINARY SECTION ®% %%k sk k koo ok ok ok ok dokokok ok ok
b
P
L (p-3i[0])->x_1 = (p__20[0])->sum;
e (p_i_3ill]}->x_1 = ipostadd2[3].fclk2;
A (p3i[2])}->x_1 = (p_i_2o[1])- >diff;
[« (pd3i{3])- >x_1 = ipostadd2|0] fclk2;
bl (pi_3i[4])}- ~x_1 = (p_i_20[1])- >sum;
[ (p__3i[5])- > x_1 = ipostadd?2[4].fclk?;
o (p_i_3i[6]) >x_1 = (p_i_20[0])- > diff;
1Y)
- - " * in the imaginary case, the real term is assigned to the x term */
-;.':':: .
A
-
Syt
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.._-;:k’, (pJ_3i[0])->y_1 = (pr_20(2])->sum;
. {pi_3i[1])-> y_1 = rpostadd2[6].fclk2;
p (pa3i[2])->y_1 = (p_r_20(3])->diff;
( - (pa3i(3])- >y_1 = rpostadd2[5] felk2;
XN (pJ_3i[4])}->y_1 = (p_r_20[3])->sum,;
3% (pJ_3i[5])}->y_1 = rpostadd2(7].felk2;
T (p_i_3i[6])->y_1 = (p_r_20[2])->diff;
SO
19N
D rpostadd3(0].fclkl = rpostadd2(1].felk2;
) rpostadd3(1].felkl = rpostadd2[2] fclk2;
[} ‘1>
e ipostadd3[0).felk1 = ipostadd2(1).felk?;
e ipostadd3{1].fclkl = ipostadd22].fclk?2;
:o' for (i = 0;1 <= 6; i++)
{ (pr_3ii])->c_1 = (p_r_30li])>co;
oy (pr8ifi]}->b_1 = (p_r_30[i]}->bo;
o (pa_3i[i])}->c_1 = (p_i_30[i])->co;
4}; (p_3ifi]}->b_1 = (p_i_30[i]}- >bo; }
g
VOB
” if (rst_bit[2] == 0) /* reset carry/borrow */
h {for(i=10;i <= 6;i++)
T { (px_30[i]}->co = 0;
e (p_r_30li])}->bo = 0;
(P30 — 0
‘.}.:: p_r 31[1])—>b_1 =0,
' Q’-, (p_i_3oli}}->co = 0;
- (p_1 _3o(i]}->bo = 0;
W (p_3ifi])->c1 =0
_.‘i':.'_‘ (pa3ifi])->b_1 = 0; }}
3}.:
"' if (clk_count >= 81) /* print results */
L fprintf(ip,” %d ”,clk_count);
_::(-".1 for (1=0;1 <= 6;i++)
Ll fprintf(ip,”%d %d ”,p_r_3i[i]- >x_1, p_r_3i[i]- >y_1);
o for(i=0;1 <= 1;i++)
o fprintf(ip,”%d ”, rpostadd3|i.fclk1);
S fprintf(pp,” %d ”,clk_count);
e i for (i=10;i <= 6;i++)
e fprintf(pp,”%6d %d " ,p_i_3i[i]- >x_1. p_i_3ili]- >y_1):
ro o for (i =0;i <= 1;i++)
R fprintf(pp,”%d ", ipostadd3|i].felk1);
}
h §h‘~ A o e oK o ok o ok kK K ok ok ok K ok ok ok PARITY ROLIND CELL INPL'T Kk kkkkkk kR k ok kokkok ok kkokokkkkkk
) ‘:,
K ‘_:: * assignments to the phil_Jatch in the pr_cell */
]
s
: r_cell[0}.clk1 rpostadd3(0].felk2;

r_cell(1].clkl = (p_r_30[0])- > diff;
r_cell{2].clkl = (p_r_30{1])- >diff;
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" <
oo Ry r_cell[3].clkl = (p_r_30[2])- >sum;
A r_cell{4].clkl = (p_r_30[3))->diff;
" rcell[5].clkl = (p_r_30(4])- > diff;
r_cell[6].clkl = (p_r_3o[5]) > diff
K- r_cell{7].clkl = (p_r_30[6])- >sum;
o rcell[8].clk1 = rpostadd3(1].felk2;
-, r_cell[9].clkl = (p_r_30(6])- > diff;
[ r_cell[10].clk1 = (p_r_30[5])- >sum;
. r_cell[11].clkl = (p_r_30(4])- >sum;
\ rcell(12].clkl = (p_r_30(3]|)- >sum;

: r_cell{13].clk1 = (p_r_30[2])- > diff;
b\ r_cell[14].clkkl = (p_r_3o[1])->sum;
2 r_cell[15].clk1 = (p_r_30[0])- >sum;

\n
‘:“*f i_cell{0].clk1 = ipostadd3[0].fclk2;

i_cell{l].clkl = (p_i_30[0])- >sum;
i_cell[2].clkl = (p_i_30{1])- >sum;

7 i_cell{3].clkl = (p_i_30[2])- > diff;

4 i_cell[4].clkl = (p_i_30(3])- >sum;
1 i_cell[5].clkl = (p_i_30[4])- >sum,;
s i_cell[6].clkl = (p_i_30[5])- >sum;
i_cell(7].clkl = (p_i_30[6]}- > diff;

h i_cell{8].clk1l = ipostadd3(1].fclk2;

i_cell[9].clkl = (p_i_3o[6])- >sum;

‘. i_cell[10].clkl = (p_i_30(5])- > diff;

1-_ icell(11}.clkl = (p_i_30[4])- > diff;
i_cell{12].clkl = p_1_30[3])->d1ﬁ'

e i_cell{13].clkl = (p_i_30(2]}- >sum;

N Q i_cell{14].clk1 = (p_i_30(1])- > diff;

B i_cell{15].clkl = (p_i_30[0])- >diff;

B if (clk_count >= 82)

19

fprintf(qp, ” %d”, clk_count);
fprintf(kp, ” %d”, clk_count);

3 for (i =0;i <= 15: i++)

:: fprintf (kp,” %d 7, (r_cell(i}).clk1);

! fprintf (qp,” %d ", (i_cell[i]).clkl);

.

« }

\

;' eknaies PHI ONE LATCH BETWEEN PARITY AND SIPO CELL #*¢**%*ssxk
)

;:: "* This lateh returns the pipeline to its normal configuration,

N phi_2 leading, phi_l trailing */

.' for (1 =0;1 <= 15;i++)

. { r_phil_atch[i] = r_cell|i}.clk2:

i_phil_Jatch(i] = i_cellfij.clk2; }

if {clk_count >= 83)

! - fprintf(gp.” %d ”. clk_count);

RN for (i=0; i <= 15; 1++)

K

y
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3

P2, .
%.“ EORY fprintf(gp,” %d ", r_phil _Jatchi]);

4 .‘_: ’/**t******#************* SH)O CLOCK ONE OCCURENCES *********************/
~ /* shifting from phi_2 to phi_1 */

for (i = 15;i >=0; i--)

for (j = 23;j >=0; j-)
{ r_sipoli](j].s_clkl = r_sipoli][j].s_clk2;
- r_sipoli][j].p—clkl = r_sipoli][j].p_clk2;
A i_sipoli][j].s_clkl = i_sipoli][j] s_clk2;

-3 i_sipo(i}{j].p_clkl = i_sipoli}{j].p_clk2; }

(2

" W /*******************‘****************#**********************************/
"

" :ﬁ if (clk_count >= 117) /* write data out of SIPO */

“)r

AN fprintf(lp,” 7);

o fprintf(mp,” ) ;

for (j = 23;j >=0; j-)
{ fprintf(lp,” %d " ,r_sipo[0](j].p_clk1);
$'_ fprintf(mp,” %d ” ,i_sipo(0|[j].p_clk1); }

N ¢
$ * (x.'.n
) ol clk_int +=1; /* increment the internal counter */
B }
- /* end loop */
b /* close all files */
N>~ fclose(ap);
‘:) felose(bpj;
s fclose(ep);
‘ . fclose(dp);
g fclose(ep);
e felose(gp);
» felose(hp);
wa felose(ep);
fclose(kp)
;:-\.: fclose(ip);
y fclose(lp);
T~ fclose(mp);
o felose(np};
- fclose(op);
w fclose(pp);
‘j felose(qp):
¢
i }
A
3¢
e
\lg
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+1 to Binary Conversion Program” nr $0 2 7 +1 to Binary Conversion Program

6.1.

Decimal
/##***********#*************#******************************t**********

** DATE: 15 SEP 1985

* %k

*ox TITLE: decimal to binary conversion program.

e FILENAME: bin.c
e COORDINATOR: Jim Collins.
** PROJECT: WFT16 SIMULATION

*x USE: Converts decimal input numbers into their binary
*x representation. Reads the input file wfta_in and

*x produces the binary output in file test_piso (the name
** of the input file for the simulation program.

X %k

ﬁ*t#*#***tt*****#t#tt*******#****#**************#**************###*##*/

main ()

{

FILE *fp, *gp, *fopen();
int j, bit[24], mask;
long num, k;
int sum = 0;
int x;

fp = fopen(”wfta_jn”,”r");
gp = fopen(”test_piso”,"w”);

fscanf (fp,”%Id”, &k);

while (k '= -1)
{
num = k;
for (j = 23, ) >= 0; j--)

/* The numbers are converted using a shift and add function. The masks,
i.e. MASKOO, are not included in this file for reasons of space. */

switch (})
case 0: bit[j] = (k & MASK00) > > j; break;
case 1: bit[j] = (k & MASKO1) > > j; break;
case 2: bit{j] = (k & MASKO02) > > j; break;
case 3: bit}jj = {k & MASKO3) > > j; break:
case 4: bit[j] = (k & MASKO04) > > j; break;
case 5. bit[jj = (k & MASKO05) > > j; break;
case 6: bit[j] = (k & MASKO06) > > j; break;
case 7: bit[j|] = (k & MASKO7) > > j; break:
case 8: bit|j] = (k & MASKO8) > > j; break:
case 9: bit[j] = (k & MASKO09) > > j; break;
case 10: bit[j] = (k & MASK10) > > j; break:
case 11: bit[j] = (k & MASKI11) > > j; break:
case 12: bit{j] = (k & MASKI12) > > j; break:
case 13: blt[]] = (k & MASKI13) > > j: break:
case 14: bit[j] = (k & MASK14) > = j; break:
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'\-1 o case 15: bit[j] = (k & MASKI15) > > j; break;
WIS case 16: bit{j] = (k & MASK16) > > j; break;
! case 17: bit[j] = (k & MASK17) > > j; break;
! case 18: bit{j] = (k & MASK18) > > j; break;
< case 19: bit{j] = (k & MASK19) >> J; break;
b= case 20: bit{j] = (k & MASK20) > > j; break;
.. case 21: bit(j] = (k & MASK21) > > j; break;
> case 22: bit[j] = (k & MASK?22) > > j; break;
‘N case 23: bit|j] = (k & MASK23) > > j; break;
\ case 24: bit[j] = (k & MASK24) > > j; break;
, case 25: bit{j] = (k & MASK25) > > j; break;
Y case 26: bit[j] = (k & MASK?26) > > j; break;
; case 27: bit[j] = (k & MASK27) > > j; break;
r case 28: bit[j] = (k & MASK28) > > j; break;
' case 29: bit{j] = (k & MASK29) > > j; break;

} case 30: bit{j] = (k & MASK30) > > j; break;
Y case 31: bit{jj = (X & MASK31) > > j; break:
W } /* end switch *

-j } /* end for loop *°
N
- sum = 0;
- for() = 0; ] <= 22; j+~+)

q sum = sum + bitlj|;

VY

- . * odd parity requires that the number of ones in the data word be odd.
X In this case, if the number is even a one is appendend in the MSB
. position, zero otherwise. */

ﬂ ¢ if (sum%2 == 0)
bit[23] = I;

W else

-:: bit{23] = 0;

»

) for (j == 23; ) >=0; j--)
~ fprintf (gp,” %d”, bit|j]);

. fprintf (gp,”0);

o fscanf (fp,”%Id", &k); /* get next number */

- } /* end while */

" } /* end main */

-

q
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S
SO 7.1.

’}: e to
_" /******************************t*************************************#
- **  DATE: 2 AUG 1985

_(",j *k

S5 *x TITLE: Binary to Decimal Conversion Program

(- *x FILENAME: form16.c

*k COORDINATOR: Jim Collins.

oy *x PROJECT: WFT16 SIMULATION

! ** USE: This program takes the 16 serial outputs per clock
b ** cycle, for any column, and converts it from a veritcal

::-' o format to a horizontal display. It also converts the

¥ ** binary output stream into a decimal number. There is a

'.:: *x family of these programs, one for all possible number
¥

*x of outputs for each column
* *

***t#**********t*****************************************************t/

#include <stdio.h>

o

\; #define clk_cycles 32 /* number used within one file*/
= main ()

\A‘ * * *

PY FILE *ap, *bp, *cp, *fopen();

:-. int 1, j, flag, cycles;

'gY int reformat[17}][32];
:}‘. unsigned long sum;

N int count;
! (Ll

- ¢ ap = fopen(”master_control”, "r");

. bp = fopen(”in_format”, "r”);

o cp = fopen(”out_for:nat”, "w”);

.

"::: fscanf(ap,”%d”, &cycles);

teg count = cycles / clk_cycles;

while (count > 0)

S
.-: for {(j = 0;j <= 31; j++)
S for(i=0;i <= 16 ;i{++)

- fscanf(bp,”%d”, &reformatfi}(j}}:

Cad

!4 for (i = 0;1 <= 16; i++)
::;j: for(j = 0:j <= 31; j+~+)

- fprintf(cp.” %cd 7. reformatliifj});
- fprintf{cp,”0);

o

L .
S * convert the bit streams into decimal, if the MSB is a 1 the
' X result is negative, the program handles this in the same
X manner as normal two'’s complement conversion. *
W
e for (i = 0:i - = 16: i)

; { sum = 0;

for(j =0:j - =31:j)~+)

* the first entry is the clock tag *

B-62




Rt . if (1 .
,':-._: - else if (reformat[ 81 ==1)

sum = sum ~+ (!(reformatli]|j]) << j);
Ak flag =
- else

K :’; {sum = sum + (reformati][j] << ] );
e flag = 0;}

Lol
R if (lag == 1)
; ) { sum = sum +1,;

-.‘ printf(” [%d| =-%d” (i-1), sum);}

::L else
e printf( 7 [%d]| = %d 0, (i-1), sum);
-

count == count - 1;
. } /* end while */
!

N
-
O.‘.-.
-
i“.
pT
gt
o
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