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> In s group consensus problem, there is a group with K 2 2 members who are jointly

responsible for the aggregation of their opinions. The group may or may not have
a predefined real decision problem. Frcnch/[l983]\"called the group consensus .
problem with a predefined real decision problem a group decision problem and the group con-

sensus problem without a real decision problem a text—book problem.

Suppose 8 group with K members are interested in forecasting demands for a commodity
for a given time period. Production planning for this commodity depends on demands. Eacl
group member may have his own opinion for demands in the form of probability distribution.
In this case, the group has a rea! decision problem in which they should determine the amount
of the commaodity to be produced. Here the group consensus opinion is a probability distribu-

tion for demands obtained from the group members® prior opinions for demands. -

On the other hand, s group may simply be required to give their opinions for others to
use st some time in the future in as yet undefined circumstances. Here, there is no predefined
decision problem.s For example, a group of meteorologists are required to give a single forecas!

for weather without having any real decision problem. This is an example of the text-book
prodblem. Savage {19541“ suggested that the whole of statistical theory is directly or indirectly

aimed at the solution of a version of the text-book problem.

The objective of this paper is 10 give & unified approach for these two problems. In this

paper all the group members are assumed to be Bayesians. JCon e dss . - 1473
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THE GROUP CONSENSUS PROBLEM

1.1. Introduction

In s group consensus probiem, there is a group with K 2 2 members who are jointly

responsible for the aggregation of their opinions. The group may or may not have

a predefined real decision problem. French [1983] called the group consensus . . -
problem with a predefined rea! decision problem a group decision problem and the group con-

sensus problem without a real decision problem a texr—dook probdlem.

ol

Suppose a group with K members are interested in forecasting demands for a commodity T
for a given time period. Production planning for this commodity depends on demands. Eacl,
group member may have his own opinion for demands in the form of probability distribution. ‘_A_M
In this case, the group has a real decision problem in which they should determine the amount "‘

of the commodity to be produced. Here the group consensus opinion is a probability distribu-

tion for demands obtained from the group members® prior opinions for demands.

On the other hand, a group may simply be required to give their opinions for others to
use at some time in the future in as yet undefined circumstances. Here, there is no predefined

decision problem. For example, 8 group of meteorologists are required to give s single forecast

for weather without having any rea! decision problem. This is an example of the text-book

problem. Savage [1954) suggested that the whole of statistical theory is directly or indirectly

simed at the solution of a version of the text-book problem.

The objective of this paper is to give a unified approach for these two prodlems. In this

paper all the group members are assumed to be Bayesians.

Suppose the group is faced with a decision problem with an action space A and & state
space ©. The group members must jointly determine a decision or action from A. The out-

come of any action depends on the state of the world § « ®. Each member provides his beliefs
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and preferences by a subjective probability for @, p,, and utility function, v,, defined on A x ©,

respectively. Thus each member has a preference ordering €' for actions in A defined by
e, €' a; ff E v(a,0) €E viay ), (1.1)

where E, denotes expectation with respect to the probability distribution p,.

Most approaches (e.g., Bacharach [1975]) to this problem assume the existence of a group
preference ordering € on A such that there is a probability distribution pg and a utility func-

tion v satisfying
e, <°a, & Egvgla, 0 € Eg vglay ),

where E¢ denotes expectation with respect to pg. However, Arrow's Impossibility Theorem
(Arrow [1951], Kelly [1978]) shows that there is no fair way of forming a group preference
ordering from the individua! preference orderings alone. One interpretation of Arrow's Impos-
sidility Theorem is that, in general, there is no procedure for combining individual preference
orderings into a group preference ordering that does not explicitly address the question of
interpersonal comparison of preferences (Keeney and Raiffa [1976]). Hence Arrow's Impossi-
bility Theorem requires that some constraints be given on the possidble forms of the individual
preference orderings in order to obtain a group preference ordering which is consistent with the
seemingly innocuous Assumptions given by Arrow. (For these Assumptions, see Arrow [1951]
or Keeney and Raiffa [1976)). The restriction on the form of the individual preference order-
ing, however, does not give a fair rule for combining the individual orderings except in the case
that either the members share the same utilities, or they share the same probabilities (Raifla
[1968], Bacharach [1975]). Here *fair" means that the group consensus opinion should satisfy
the Pareto Optimality Principle and the group consensus opinion can not be a single individual’s
opinion. The Pareto Optimality Principle is satisfied if there exists no aliernative decision that

some member would find better and none would find worse.

Bacharach [1975) considers the individual preference orderings derived from the expected

utilities as given by equation (L1). But he has arrived at an impossibility theorem, which says
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that there is no fair way of combining the individual orderings when the individuals disagree on
their utilities. When the group members share the same utilities, he showed that the group
consensus probability is given by a linear opinion pool. But he needs a set of assumptions for
the form of individua! preferences, which are 100 strong in some cases. One of these assump-
tions is "column linearity”, which says that, for any four actions a,, a,, a,, a,in A, if
Ev,(a,,0) — Ev,(a,,6) = E,v,(a,.8) — E,v,(a,,0) for all i, then a, €C g, implies a,-€Ca, .
Hence we can not consider Bacharach’s result as a justification for the linear opinion pool in the

case where the individuals share the same utilities.

In a different way from Bacharach, de Finetti claimed that, in a group decision problem, a
collective action by several individuals, who agree on their evaluations of utility (by reducing it,
for instance, to monetary terms) but not on those of the probabilities, must be optima! for a
hypothetical individual whose opinion is convexly comprised among those of the real individu-
als concerned (de Finetti [1972], p. 196). He suggested this conjecture by an example of a
simple hypothesis testing problem (de Finetti [1954]). But de Finetti’s conjecture does not
imply that the group consensus opinion must be a convex combination of the group
members’ opinions. Moreover, de Finetti’s conjecture is not necessarily true when the

group is not allowed to take a randomized action as will be seen in Example 1.3.

Let X be the set of all probability mass or density functions for 8. For any x ¢ X , the ith
group member can determine an action 8,'(x) € A which is optimal against x in i’s opinion,

that is,
Evila’(x),0) = max ¥ x(0)v,(a,0).
SeA r]

So for each x ¢ X , there corresponds a,(x) for i=1,...,K . Then we can transform the util-
ity v, on A x © 10 a utility function v, on X x @, which will be discussed in Section 1.2. In this
paper we will work with v, on X x @ rather than v, on A x @ to determine the group con-
sensus opinion in a group decision problem. In other words, the group determines its con-

sensus opinion from X based on the individua! utilities v, on X x @ and their prior opinions

LS Sn g A

---------




for @ under the Pareto Optimality Principle. This means that we transform the real decision
problem with action space A and state space ® to s decision problem with decision space X

and state space ® . We will discuss this in more detail in Section 1.2.

The Text-Book Problem

One approach to this problem is to introduce a supra decision maker and let him update
his beliefs as in the expert problem (Keeney and Raiffa [1976]). However, his updated opinion
is his subjective or personal probability. Hence there is no guarantee that the group members

will agree with his opinion. His opinion is only data for the individuals concerned.

An alternative way is to let each group member assume the role of the supra decision
maker and then report his updated opinion in turn. However, it does not solve the fundamen-
tal problem of combining their opinions, if, after several iterations of this process, the opinions

of the group have not yet converged (Genest and Zidek [1984]).

The approach suggested in this mper is 10 treat the text-book problem as a version of the
group decision problem. As mentioned before, the group decision problem can be considered
as & decision problem with decision space X and state space @ , where each group member has
8 utility function ¥, defined on X x © . In the text-book problem, there are no actions to be
chosen by the group. But we can consider a group consensus opinion as a group decision to be
determined by the group. It is assumed that each group member has a utility function v,
definedon X x @ . For each x ¢ X , 4,(x, @) is group member i's utility for the group opinion
x ¢ X when the state of the world is # ¢ ® . The utility w,(-,) can be interpreted as i's evalua-
tion of probability distributions for @ or i’s psychological value for the prohbility distribution
which is chosen as a group consensus opinion. Group members will be more satisfied if the

group consensus opinion gives high probability for the actual outcome #.

We can consider the text-book problem as a version of the group decision problem with

decision space X and state space © , and individual utility functions u, defined on X x ® . The

only difference between the group decision problem and the text-book prodblem is that in a
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group decision problem w, is derived from v, on A x © , but in a text-book problem w, is o 'f;'
evaluated directly by the ith group member. Hence the utilities w, in a group decision problem :-':
L
are proper as will be seen in section 1.2, but the utilities v, in a text-book problem are not RO
. :\ o .\‘:-.
pecessarily proper. YL
WA
s
LAt

1.2. Proper Utllity Functions

This section is mainly concerned with the group decision problem. Suppose a group of K - "
members has a real decision problem with action space A and state space ®. Each group
member has a utility function v, defined on A x ®. We will discuss the transformation of the
individua! utility functions v, on A x @ to the utility functions », on X x @ . It will be shown

that the transformed utility functions u, are proper.

Definition

A utility function u, is proper if

;p,(o)u,(p,, 0 2 ;p,(o)u,(x. ()] (1.2)

for all x ¢« X , where p, is /s true opinion for 6.

w, is strictly proper if the inequality in (L2) isstrict forall x = p, in X .

The above definition says that if an individual has a proper utility function, then he will

announce his true opinion as his opinion for @, that is, he is honest in announcing his opinion.

For each x ¢ X , there corresponds an action a, (x) ¢ A such that

T x@vla'x), )= max Y x(0)v,(a, 0.
. ol e

Notice that a,(x) is a Bayes action against x ¢ X for the ith group member. For convenience

we assume that a, (x) is unique for each x ¢ X . We will relax this assumption lster.

.......
........



»

WaN

v
1]

M

..............

Now define a functionw, on X x @ :

u(x,0 =v1a'(x),0 for xeX and 8¢ ®O. (1.3)

We can interpret v,(x,0) as i’s utility when i uses distribution x ¢ X and 8 occurs. Let p, ¢ X
be i’s true opinion for . Then i's expected utility for x € X is
u(x)=Y p.(0)u,(x, 0)
]

=3 p.@v.[a'(), 6l
[}

We can interpret u, (x) as i’s expected utility when / takes an action which is optimal against x,
while his true opinion is p,. Hence u,(x)is i's expected utility for x when /’s true cpinion is p,.
Thus we can use u, defined by (1.3) as i's utility function on X x . From now on, we can

assume that each member of the group has a utility function v, defined on X x ©.

Lemmas 1.1.: u, defined by equation (1. 3) is proper.
Proof

Suppose i's true opinion is p, ¢« X . Then for any x ¢ X

7 (x) =3 p.0)u,lx, 0)

[/

-3 2.0v1a(x), 0
[}

< max ¥ 2.(0)v,(a, 0)
adA ¢

=3 p.(0)v,1a0), 6]
[}

=3 2.0u, 0
[}

-u ).

This is true for any p, ¢ X . Therefore w, is proper. O
Note that (i) «, is not necessarily strictly proper, (ii) if v,'s are equivalent up to linear

transformations, then u,'s are also equivalent, and (iii) », is strictly proper if and only if

a’: X — A isone to one.

',

'-‘rf /‘/
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Definition

We say that two utility functions v and v on X x @ are equivalent if thete exis! rea

n numbers @ > 0 and b such that w (-,-) = au ;) + b

Actually b could depend on 8 and the maximizing decisions would still be the same.

Example 1.1,

Let® = {0,1)and A=(a :0 € a €1}, where a ¢ A. Any distribution for 8 is represented

_‘ by & real number x ¢ [0, 1), where x is a probability for the event {6 = 1}. So X = [0, 1).

Suppose v,(a, 8) = —(a—6)?, i.c., s negative of the quadratic loss, and i’s true opinion

for@isp e X. Foranyx eX,

max {x v,(a,1)+(1-x)v,(a,0)) = max [-x(a-1)*~(U-x)a¥ = —x(1-x)

and a’(x) = x. Hence u,(x,6) = v,(x,0) = —(x—0)? for all xeX and 0 ¢ ®. We can

! easily check that v, is strictly proper. D

[ - Example 1.2.

Let®=00,1]and A={a:0€ a €1}, where a ¢ A is an estimate of 8. Let X be

the set of all probability densities for 8. Suppose v,(a, 8) = —(a—~0)2 and i's true opinion for 8

isp,eX. Thenforanyx ¢ X

max [ v.(@a, 0)x(6)40 = - min [ (@-6) x(6)d6
= - min {a?— 26E.6 + E,0?)

- - l;nir | (a—-E,0)*+ E,01- E2), (¢))

where E, denotes expectation with respect to x ¢ X .

From (1) we can see that 0,"(x) = E.8 for all x ¢ X ; and hence




u(x, 8) = v,[a(x), 6] = v,(E,0,0) = — (6~E,0)7. o -

- This utility function wu, is proper, but not strictly proper, because any two probability densities

with the same means have the same utilities. jm]

De Finenii’s conjecture (de Finetti [1972]), which was mentioned in Section 1.1, is true if
the transformed utility u, on X x @ is strictly proper, which will be proved by Theorem 1.3 in

Section 1. 4. However, his conjecture is not necessarily true if u, is not strictly proper. ®

g
A

Example 1.0
n Consider a group with two members, say 1 and 2, who are faced with a real decision prob- "‘ =

lem with an action space A = {a,, @3 a;) and a state space ® = {0, 1}. Suppose each group

member has same utility function v on A x @ defined by Table1.1.

elal

state

: 0 1
. a, | 3 0
t action a; | 0 3
;. a3 |1 1

Table 1.1. Utilities for action- state pairs, v(a, 6).

Since any distribution for @ can be represented by a real number x e [0, 1), we have

X = [0, 1], where x ¢ X is a probability for the event [6 = D).

‘ Let 7(alx) be the expecied utility of an action @ ¢ A with respect to x ¢ X, that is,

Falx) = x v(a,0) + (1-x)v(a, 1). In Figurel.l we plotted ¥(a,Ix) for i = 1, 2, 3 as

- functionsof x ¢ X .
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Figure 1.1 i

Suppose group member 1°s [2°s] probabdility for the event {6 = 0] is % l%]. Let v,(a) be
i's expected utility for an sction a. Then e
"':.: el ‘."
n) = 3. ne) =7 iy =1 TSR
R
and Conime
parata

- - - -

He) = 3 ) = 3, Ve =1,

S0 a; is » Pareto optima! action, that is, there is po action a ¢ A such that
‘m
v(a) 2 v(ay for im 12 '!“""'J

with strict inequality for at Jeast one i. However, Figure 1,1 indicates that forany x ¢ X , a3 is

not optima! against x. Therefore, de Finetti's conjecture does not hold for thiscase. O

Definitions

() xeX is a Pareto opumal (or admissible) decision if there is mo y « X such tha

u(x) € u(y)foralli=1,...,K with strict inequality for at least one i.
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(ii) x «X is a Bayes decision if there exists a A ¢ A such that

K K
T Ay (x) = max T \u,(y),
1=1 rX 0

K
where A= (A¢RX: 220 and I ), = 1).

Let us denote a7as a set of all the Pareto optimal decisions in X and & as a set of all

the Bayes decisions in X .

In this paper we will prove the following conjectures:

(1) If the group members have equivalent and strictly proper utility functions, then the
Pareto optimal decision or the group consensus opinion is a convex combipation of their

true opinions.

(2) If the group members bave equivalent and proper (not necessarily strictly proper) utility
functions, then for any decision x « X there exists a convex combination of the group

members’ true opinions, which is at least as good as x to each member of the group.

Conjecture (1) says that x ¢« X is Pareto optimal if and only if x is a convex combina-
tion of the group members’ true opinions. Let C be the set of all convex combinations of the
group members’ true opinions, i.c.,

K

Ce{xe¢X:x=ZI\p for AcA),

where p, is i's true opinion for . Conjecture (2) implies that for any x ¢« X there is an
x* ¢« C such that &,(x) S u,(x") for all i. This means that a linear opinion pool of the group
members’ true opinions is a Pareto optimal decision or an optimal group consensus opinion

under the Pareto Optimality Principle if the group members have equivalent and proper util-

ity functions. Remember that the utilities of the group members defined by 1,3 in a group

decision problem are proper as was shown by Lemma i, 1,

[N

R AN
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1.3 Sipgle Event Case

Suppose a group with K members are jointly responsible for combining their probabilities
for an event A. As assumed before, each group member has a utility function v, on X x 0,
where X is 8 space of probability distributions and @ is a state space. In the single event case,
® = [A, A)andX = [0, 1]. Each x ¢ X denotes a probability for A. Suppose i’s true pro-
badility for A is p, and let u,(x) be i's expected utility for x eX. Then

u,(x) = pulx, A) + (1- p)u,(x,A) . Let x;, be a maximizer of u.(x) over all x € X , that
is,
u(x,) = max u,(x) .

We assume that i announces his opinion for & as x,. Note that x, = p, if v, is proper. In this

section we will show that, for the single event case, a linear opinion pool of the group

members’ announced opinions, x,, is an optimal group consensus opinion if either (i) the

group members® utilities w, are proper or (ii) the group members' utilities u, are concave in x.
Here u,, i = 1, . .. ,K need not be equivalent. If u, are proper for all i, then a linear opinion
poo! of the group members’ ¢rue opinions is an optimal group consensus opinion. If «, is
improper, then x, ® p,. However, a linear opinion pool of x,, i's announced opinion, for

i=1,...,Kis an optimal group consensus opinion if ¥, are concave in x for all i.

Lemma 1.2,

If u, is (strictly) proper, then u,(x) is (strictly) increasing for 0 € x €p, and (strictly)

decreasing for p, € x €1, where p, is i's true opinion for A. (Savage [1971), p. 786).
Proof

Let £1(x) = u,(x, A) and fo(x) = &,(x, A). Define

g(x.p) = pfilx) + (1- p)folx) forx,p ¢ X.

Then g{x,p) is i's expecied utility for x « X when his true probadbility is p. Let

<

T T e W W W T W T T g~ T~ xw g

o A
e e
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0<p < x < x;<1and suppose u,(x;) > u,(x;). Then, we have

LS x)=f1(x)+fo(x))=folxa) 1 > folx)) = folx)).

If u, is proper, g{x), x}) 2 glxy x;) and g(xy, x3) = g(x;, x2). However,

g(x..xl)—x (X}.Xl) - xJ.(x1)+(l—x1)fo(x1)-x|f|(x;)—(l-—xl)fo(xz)
= x (/1 (x)—Solx )=/ 1)+ olx D1+ S ox )= fo(x )]
< Gy=p )1 (x)=folx)—f1(xD+SolxD].

By symmetry, we also have

—lalala

g0y x)—glxy, x) < =PI/ 1x ) =S olx) =1 10x ) +/o(x )]
Hence, ecither g(x, x)) < glxy x3) or glx; x) < glx), x3), which is s contradiction.
Therefore, u,(x) 2 u,(x).
In the same way we can show that v, (x) is increasing for 0 € x <p..

The proof for strictly proper utilities is similar. D

Let us define a set C which consists of convex combinatioas of the group members’ opin-

jons, i.e.,

X
Ce{xeX:x=Frp for AeA)

Theorem 1.1.

(i) Suppose v, is strictly proper for all i. Then x ¢ X is admissidle if and only if x ¢ C.

(ii) Suppose w, is proper for all /. Then, for any x ¢ X, there exists x ¢ C such that

ux)2ux)foralli=1,... K.

Proof

Suppose u, is strictly proper forall i and let 0 € x < minp, = Py Then
'

.I fl '.‘ '.l

u,(.)-u,(x) = p,[u, (0, ,A)-u,(x,A)] + (1-p) v, (., A)-u, (x,A)]
) p,.lll,(p.,A)-ll.(X.A)] + (I-P:)[U.(Plo.x)-ll,(x,x)]
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= 0.0, A +(1=p)u, (0, A)-[p,w,(x A)+(1-p, Ju, (x A)]
>0

foralli=1,...,K. Soany x < min p, is inadmissible.

Similarly x > max p, is inadmissible.

Let min p, € x € max p,. Then, for any y < x, u,(x) > &, (y) for all i with p, > x . .
and, for any y > x, &, (x) > u,(y) for all i with p, € x. Hence x is admissible. This com-
pletes the proof of (i). : j'i;ﬁ'_'.'_i - -

. & |

The proof of (i} is similar. D

Example 1.4.

Define ® , A, and X as in the Example 1.1, that is,
0={0,1}, A=10,1], and X=10,1].

Remember that @ € A is an estimate of @ and x ¢ X is a probability for the event { 6 = 1 }.

Consider a group of K members with the same utility functions v on A x @ defined by
v(a,0) =—(a—6)> foraeA and 6¢0.

Then u,(x, 6) = —(x— 6)? for all i. By Example 1.1, u, are strictly proper. Suppose i's true

opinion for @ is p, ¢ X . Then i’s expected utility for x ¢ X is

u(x)=p ux, 1)+ (0-p)uilx,0)
- —p, (x-1)1- (1-p,) x?

Suppose K= 2and p; = 1/3and p; = 2/3. Then
() foramy0€ x<p ulx)<ulp)forieml,?
and

Gi) foranypr<x €1, u(x)<ulp)fori=1,2

Therefore x ¢ X is Pareto optimal ifandonlyif p; € x € p;. D

........
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If i’s utility function u, is proper, then his expected utility w, (x) is maximized at x = p,.

If, bowever, v, is improper, then there exists x, ¢ X such that

1(x,) 2 u(x) forallx ¢ X and u(x,) > u,Q,).

Here x, is s maximizer of i’s expected utility. Remember that x, is /'s announced opinion.

Lemma 1.3.

If u, is (strictly) concave in x, then u,(x) is (strictly) increasing for 0 <x < x, and
(strictly) decreasing for x, € x €1, where x, is a maximizer of i’s expected utility.
Proof

Suppose u, is concave and let x, € x) € x Then x;= Ax, + (I-A)x; for some

0 € A €1 and b-nce we have

u,(x) = 4, 0x,+(1-2)x) 2 A (x,) + (-1, ().
Thus

60y -4 x) 3 Alu(x,) —ux) ] 30

Similarly, forany 0 € x; € x; € x,, u,(x) 2 u (x).

The proof for the strict concave utility is similar. O

Theorem 1.2,

X
@) If u, is strictly concave in x for all i, then x ¢ X is admissible if and only if x = YA x,

for some A ¢ A.
(i) If v, is concave in x for all i, then, for any x ¢ X, there exists a A ¢ A such that

-—X -
v,(Trx,) 2 u,(x) foralli

t=]

The proof of Theorem L 2 is similar to the proof of Theorem 1.1,
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Theorem L2 indicates that the group consensus opinion is a convex combination of their
announced opinions if the group members have concave utility functions. Here their

announced opinions are not necessarily their true opinions.

We say that an individual with utility function « is conservative if

P<x, <t for 0cp ) mt I < < for 3ep .

We might conjecture that an individual with concave utility function is conservative. But this is

pot true in general. Suppose ¥ (x,A) = Vx and v (x,A) = Vi=x. Then v is concave in x.

However,

2

R A
x, 273 (1=p)? forall 0 € p €1.

So,ifp = %. then x, = -‘-96 Hence ap individua) with this utility function is not conservative.

(See Lindley [1982), p. 7, for further comments on square root utility.)
Suppose u is concave in x and differentisble. Then an individual with utility function v is

conservative if and only if

riu(x. A) 4 (l—x)lu(x.x) 20for 0€x (l
ox 8x 2
and

2, A) + 1-x)Lvx, &) €0 for lexx
ox 6x 2

Note that, if v is proper, then

xlu(x. A) + (l—x)-!-u(x.x) =0 forall x ¢ X.
ox ox

However, if an individual is scored by a proper scoring rule for his opinions and his utility for

the scores is concave, then he is conservative.
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1.4. General Random Variable Case

In this section we will consider the group consensus problem with general state space ©.
As before we define X as the set of all probability mass or density functions for 8. Also we
assume that each group member has a utility function v, defined on X x @ . Of course in a

group decision problem v, is proper for all i.

In Section 1.4.1, we will show that a linear opinion pool is an optimal group consensus
opinion or a Pareto optimal decision in X if the group members’ utility functions v, are

equivalent and proper.

However, if the group members disagree on their utilities and there does not exists a

group utility function, we can not have such a strong result as stated above. In Section1.4.2,

we will show that, if the group members' utility functions », on X x @ are concave in x, then

any Pareto optimal decision in X or group consensus opinion is a Bayes decision in X .

In some cases, the group members’ utility functions on X x ® may not be concave. But
in Section 1. 5 we show that a quadratic approximation of w, is concave in x. Therefore, if the
group members’ opinions are close enough and their utility functions u, are smooth, then we

can assume that the group members® utilities are concave in x, at least approximately.

1.4.1. Equivalent and Proper Utility Functions

In Section 1.3, we have considered the group consensus problem in which a group is con-
cerned with s single event. Now we generalize the results of Section 1.3 10 s general random
variable case. A group with K members are jointly responsible for combining their opinions for
an unknown quantity @ or a set of mutually disjoint and exhaustive events. Thus the state
space O consists of the values which the unknown quantity @ can take or @ is the set of events
under consideration. Each group member's opinion is given by a probability mass or density
function for 8. Also each group member has a utility function v, definedon X x ©@. Letp, ¢ X

be i’s true opinion for 8. Then his expected utility for x ¢ X is given by :
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?‘ @)u.(x, 0) if @ is discreie. . _-:
vi(x)=
is continuous.

{ pO)u(x, 0000 (o £

In this section, we will prove the following conjectures:

(1) If the group members have equivalent and strictly proper utility functions on X x @ , then
the Pareto oplima! decision or the group consensus opinion is a convex combination of ':
their true opinions. |
(2) I the group members bave equivalent and proper (not pecessarily proper) utility func-
tions on X x @ , then for any decision x € X there is a convex combination of the group -; -
members’ opinions, which is at least as good as x for each group member. 5
Remember that the group members® utilities defined on X x @ are always proper in the :‘&—-—‘
group decision problem. First, we will show that the Pareto optimal decision or the optimal ::
group consensus opinion is a convex combination of the group members® true opinions if the .:.:".:f:-.
group members have equivalent and strictly proper utility functions. " el

Theorem 1.3.
If the w, are equivalent and strictly proper, then x ¢ X is admissible if and only if

X
x=Y Ap forsomereA.
=]

For the proof of the Theorem 1.3 we need following Definitions and Lemmas.

Definitions
Let S be a subset of RX.

() seS is sdmissidblein S if there is no s'¢ S such that s, € 3, for all i with strict ine-

quality bolding for at Jeast one i/, where $, is ith component of 5.

(ii) seS isBayesIn S if there exists s A € A such that

h A
- T e e ARNIAN RNCIACINMAA IR I SO SN IR JURIUIRD St I SRy " B A S GAE N N A Ut
........... "....--- OIS RIEARRDEASRS LS A . . K .‘_.-.: \)l‘{.-{‘_.. .'-.._ FRDAN NS q',‘ N '..-\ LA A .-'
. iy N 2"y e e » n - o WA N = e .
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X K
T As =max X As, .
te} 18 .

Let us denote <€ a set of all the admissible points in S and & a set of all the Bayes
pointsin S . Let
S = (s ¢R¥: there exists an x ¢ X sucb thats, = u,(x)foralli ).

Then the set of all Pareto optimal decisions in X and the set of all the Bayes decisions in X

defined in Section 1 .2 correspond to a€ and & , respectively. Thatis, o= of and 2= & .

Lemma 1.4.

Let S° be the convex hull generated by S. Then
(i) o€ C %K.

r
(i) Ifs° ¢S isBayesinS’, then s’ = Y ¢sU), where r <K ; sV ¢Sforall j =1,...,r;
J=1

r
¢, >O0forall jand 3¢ = 1.
J=1

Proof: See Blackwell and Girshick [1954).

Under the same conditions of the Theorem 1. 3 we have the following Lemmas.

Lemma 1.5: #-CS.

Proof

r
Suppose s° ¢S is Bayes against A ¢ A. Then, by Lemmal., s’ = ¢ sV, where
je

r
rsK;sVeS forall j=l,...,r;¢§ >0 forall jand 3¢, = 1. Moreover, for each j there
Je=l

corresponds xU? ¢ X such that 5Y) = ,(x¥") for all i. Since u, are equivalent, we can assume

that ¥, = u for all i, where u is a strictly proper utility function oo X x ®. Let us define a

function g(x, p) by :

................................................
.................................................
............................................

......




19

g(x,p)= 26p(f)u(x,6) forx andpinX.

Theb g(x, p)is linear in p and g(x, p) < g(p, p) for all x ¢ p. Moreover,
u(x) = X pB)u(x,6) = g(x, p,).
]

Now we have

.S K [
"zlx S = "21 x,J}_;l g5V
-2 x,z;, £u,(xY)
- ? ’\.? £8(xY), p)
- ? E,? rg(xY, p,)
- ‘JZ &g (xV), ?X,p,)
< ? e,g(gx.p,. ;x,p,)
- x(?k.'p,. 2,:”‘)

K
with equality holding if and only if xU) « J A, p, for all j.

X
Since s° is Bayes against A, xU) = 3 &, p, for all j. So

’ ’ - ’ — K - K
:: - 2 f)sn(j) - 2 f}ll,(XU)) - E ej“l(zklpl) - ul(lepl)

J=1 Jel jel iwl isl

and hences* ¢S. D

X
Lemma 1.6: Let Sy = (s eS:thereisaAeA st.s, = 4,(F\p,)foralli). Then & = S;.

te]

Proof

X
Let s°¢S;. Then there exists an x ¢« X such that x = 3 A,p, for some A¢ A and

i=]

; 50 = u,(x) for all i. We have

K K _
T A2 T Ay (x)
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= > \glx,p)
[
- g(x, EMP.)
[
= max ', AD)
nax g Z’: p)
because g0, 2\, p,) is maximized aty = I\, p,. Thus
1 !
K
E Alslo = max g(yr lepl)
1=l yx ]
= max 2 AEeW, p)
=max 3\ p,(0)u(y, 6)
X 5 []
g R
- AS,.
4 Z s
The last equality follows from Lemma 1. 5. Therefore s° ¢ L.

Conversely, suppose s° ¢« &, then s° ¢S by Lemma 1.5. Hence there is an x° ¢ X

such that s = u,(x°) for all i. However,

3 K

E ) WA '.21 Ak (x)
- ; \g(x", p,)
-g(x", ;A.p.)
s x(}?x.p.. ;A.p.)

with equality bolding if and only if x* = I A,p,. Therefores*e¢S,. O
]

Lemma 1.7: S§¢C af-.
Proof

If s° ¢ S, then there is an x% ¢ X such that x° = 3} ), p, for some A ¢ A with 50 = 1, (x0)
1

[ -]
for all i. Suppose s is inadmissible in S°, then there is an s° = 3 §,sV’ for some § with
J=1

o«
£20and X ¢ = 1 such that (i) sV ¢ S for all j and (ii) 5, < 5, for all i with holding at least
2=}
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one strict inequality. Since sV’ ¢ S for all j, for each sV’ there corresponds an xV’ ¢ X such

= that sV’ « u,(xY)) for all i. Hence

K K o
IAS =T AT sV
1o} 1=} =1
= T A fu,xV)
' 7
=32 te(xV, p)
' J

-3 £e(xV, ITAp)
J ]

=3 b Zhn. Zhp) L
- 0 Zhp. Thp) S
- 2 Ag(Zhnp) S
- ; \g(x° p,) .1

IR WA
1
Therefore, 3, A,5” < 3 A,5° with bolding equality if and only if xV) = x° for all j. This
) )

implies that s° « 5 which contradicts the assumption that s° is dominated by s°. Hence s°

is admissible in §°. O

Proof of Theorem 1.3:

By the previous Lemmas we bave of- = & = 8§, Hence of = af-and & = £,

because of- C Sand @+ C S. Thus af = S, thatis, 5 ¢ S is admissible in S if and only

if s ¢So. Equivalently, x ¢« X is admissible if and only if x = 3, A,p, for some A ¢ A. This
- :

completes the proof of the theorem. D




.....
% S

22

We can easily see that de Finetti's conjecture (de Finetti [1972]), which was mentioned

in Section 1.3 is true if the group members’ utilities u, are equivalent and strictly proper.

Example 1.5,

Consider a text-book problem in which a group with K members are required to give a
probability density for a continuous random variable 6. Let p, be i’s probability density for 6.
Suppose each group member i has same utility function u, on X x® fori = 1,... K, where

X is the set of all probability densities for 6. If u,(x, #) = log x(6), then

u(x) = [u(x, 6)p,(6)d8
= [ p.(6) log x(6)d6 .

Now we have
max u,(x) = max [ p.(6) 10g x(6)d8
= [ p.(6) log p, ()0,
and hence u, is strictly proper.

Since u, is strictly concave, we can show that o/ = £, that is, x ¢« X is an admissible

decision if and only if x is a Bayes decision. (See Theorem 1,6 ) Forany A e A,

X K
T aux) = T A, [ p.(6) log x(6)d8

= [1Z Mp.(0)) log x(6)d0
s [1Z \p(0)] 108 [T M, (@))d8

with equality holding if and only if x = 3, A,p,.
!
Therefore x ¢ X is an admissible decision ifandonly ifx ¢ C. O

Now is the time to prove the conjecture that for any decision x ¢ X there is a convex

combipation of the group members’ true opinions, which is at least as good as x for each

v W N VT e Vv Te e e
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member of the group. Let

K
C={(xeX:x= 2 \p forsomeleA)

ie]

Theorem 1.4,

Suppose u, arc equivalent and proper. Then for any x ¢ X , there exists an x° ¢ C such

: that i (x") 2 i (x) for all i. L
Proof "o
Without loss of generality we can assume that ¥, = u for all i, where u is strictly
proper. Let ¢ > 0. We can find a strictly proper utility function s on X x © such that
o) |5(x,6) | <¢/2 forallx ¢X and @ ¢®.
- This can be done by letting
1
2 s0x,0) = 371 -2x(0) + [x0Md0]
for large M >0. Then s is strictly proper and bounded.
- Now define a utility function u* by
™ .
N u(x,0) = u(x,0 +s(x,0)
for all x and 6.
) We can see that the utility function u° is strictly proper. Now let
g 5
o = { x «X: x is admissible in X for u° ) L
) K -
Then o is complete, because u° is bounded from above and the maximizers of 3 Ay, (x) r %
- 00
w" e -_‘_._'
are always in X for all A ¢ A (see Berger [1980)). Therefore, for each x ¢ X, there exists ‘;':‘_:::"
— ‘_-r\-','.:_:
x° ¢« Csuchthat i, (x") 2 u, (x)forall i, “::}.:
> %ﬁﬁh
From tbe definition of u° we bave e
\.\..\.. ... .
-_ - . ':‘. Y .\:'
u(x)+ 2 p(0)s(x, 0 Su(x")+ T p(O)s(x", 6) NGNS
0 [] -‘: -.'\::'»:'
. ?'n :’-‘:\
L 4
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: and hence
5 u(x) S u ") + T p@ls(x”, 0) - stx, 0)
S ux") + ZpO)1s(".0) - s(x.0)]
& <+ i(x")
N
foralli=1,..., K.
Since ¢ is arbitrary, we have the Theorem. O
Example 1.6.
Consider a group decision problem as in the Example 1.2, where © = [0,1], A = [0,1),
and X is the set of all probability densities for 8. Suppose there are K group members with
B same utility functions v, on A x ® such that v,(a, 0) = ~(a-8)* for all @, 8, and i. Then the
induced utility function u, on X x @ is u,(x, 8) = —(§- E,0)%, which is proper but not strictly
" '\ proper. Here E, denotes expectation with respect to x. Let p, be i's opinion for
i=1...,K Theni'sexpected utility for x ¢ X is
u,(x) = - E,(6-E,0)
--E®+2E0E,0-E2,
where E, denotes expectation with respect to p,.
Note that u,(x) = &,(y) if E,0 = E,0.

Now we want to show that Theorem 1.4 is true for this example. Since u, is strictly
concave in x, o = @. Let x ¢ X\ C, where C is the set of all convex combinations of
P .. .. px. Without loss of generality we can assume that x is an admissible decision. Then
- there is 2 A ¢ A such that
3 i) = max B AH0).

_ Letx* = 3 A,p,. Then ? A\ (x) = ? A 4,(s"), because u, is proper. Now
i

T Aux)= T\ (-E0 + 2E0 E,0 - E]6)
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«-Y NE6 +2E,6 3 \ES-E2
! ]
= -E,-8°+2E,6E,-6 - E’6
and
I A (x") = TN (-E6 + 2EBE,-8 - E26)
1] [
- -YNEG® +2E,.6 T NEG-E>6
] i
= -E,-0® +2E28 - E2¢ 3
- _EJJ:# E}-G ) -:Ar.' .
.
Hence E, 8 = E,-8. Sou,(x) = u,(x")foralli. D L
L
. ’-:',.:;;):
As a corollary to Theorem 1.4, if there exists a group utility function ug, which is -ﬁ L

proper by Lemma .1, in a group decision problem, then the linear opinion pool is optimal

for the group. Here the group utility function ug need not be a functional form of individual

utility functions u,, i=1,...,K. Hence Arrow's Impossibility Theorem is not relevant here.

1.4.2. Concave Utility Functions

In Section 1.4 .1, we have shown that a linear opinion pool of the group members’ opin-
jons is ap optimal group consensus opinion or a Pareto optimal decision in X if the group
members’ utility functions on X x © are equivalent and proper. However, if the group
members disagree on their utility functions u, for i = 1,...,K and there does not exist 2
group utility function, we can not bave such a strong result as Theorem 1.4 In the rest of
this section we will show that, if the group members' utility functions u, on X x © are concave
in x, then any admissible (or Pareto optimal) decision in X is a Bayes decision in X . We will
consider the quadratic approximation of the utility functions u, in the pext section and show

that the quadratic approximation of u, is concave in x.
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Theorem 1.5.

If w,, i =1,...,K, are concave in x, then any admissible decision in X is a Bayes
decisionin X .
Proof

Let s° ¢S’ be admissible in S°. Then, by Lemma 1 4, there is a A ¢ A such that 5° is

Bayes against A and s° is represented by

si= 3 &y, (xV)

2=

for some x'V, ... ,x") and r < K. Since u, are concave, we have
r
. - =
s S u( TExY) = u,(x9,
Jel

r K K
where x% = Y ¢,xU). However, 3 A5, 2 3 A\ u,(x%, because s° is Bayes against A. There-
)=l iw} i=)

fore s, = 4,(x° for all i and bence s° ¢ S. This implies that af- C of .

Let s ¢ o and suppose s is inadmissible in S°. Then there exists s* ¢S" such that

s, S 5, for all i with holding at least one strict inequality. Since s° ¢S" , there is a sequence

- -]
xM, x® ... in X such that 57 = 3 §,u,(xV") for all i. Then
je

s S u( TExV) = u(x"),
J=l

where x* = 3 ¢,xU). This means that s is dominated by (&,(x°), i=1, ... ,K) ¢S, whichis a
J

contradiction. Therefore o€ = 2€ C & NS . It is easy to show that & NS = &.
Hence of C & . O
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Theorem 1.6.

Mu.t=) . . K. are strictly concave in x . then & = &£.

The proof of the Theorem depends on following Lemmas.

Under the same condition as Theorem 1.6, we have Lemma 1.8 and Lemma 1.9.

Lemma 1.8, Y
If x and y in X are Bayves against A ¢ A , then u(x)= IT()') for all i with A, > 0 if and .
onlyif x = y.
Proof
Suppose x and y are Bayes against A and u(x) = %,(3) for all i with A, > 0. Since &,

are strictly concave, if x # ), thep for any 0 < a <},

v lax + (1-a))y] > au (x) + (1-a)u, () = & (x)

for all ; with A, > 0. Hence

K K
T aufax + (1=aly]> T Au(x),
1o}

which is & coptradiction. Sox = ).

The converse is trivial. (@]

Lemma 1.9: If x ¢« X is Bayes, then x is admissible.
Proof

Suppose x is Bayes against Ae¢ A . If A, > 0 for all i, thep x is admissible. We cap

assume that A, > Ofori=1, ... . 7snd ), = Ofori=/+], ... Kforsomel £! <K

Suppose x is inadmissible , then there exists 3 ¢« X such that

w,(0) = w(x)for iel, ... . liand 4, (") 2 4,(x) forialsl, .. K
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- with at least ome strict inequality holding. By Lemma 1.8, x = y, which contradicts the

assumption that x is dominated by y. Therefore x is admissible.

This completes the proof of Theorem 1.6. 0

By the above Theorems the determination of the group consensus opinion is equivalent
to the determination of the Bayes point in X or the determination of A ¢ A, which can be
interpreted as the weights given to the group members, if the group members have concave

utility functions. A

Now we consider the relaxation of the assumption that a,(x), which was defined in Sec-

tion 1.2, is unique for all / and x. In a group decision problem with action space A , state

space @ , and individual utility functions v, on A x ® , we defined an action a,(x) by

T x(6)v.[a(x), 6] = max T x(8)v,(a, 0) RO
] L

for each x ¢« X, where X is the set of all probability mass or density functions for §. We

assumed that a,(x) is unique for each x and defined a utility function u, on X x ® by

u,(x,0 = v,[a(x),0] for x ¢X and 0¢©.

Now suppose that g, (x) is not necessarily unique for x ¢ X . Let 8, be i’s decision rule
such that / takes an action §,(x) among the actions which are optimal against x. Then we

can define
u(x,0 = v[8(x), 0] for xeX and 0:0.

It is easy to show that the utility function u, defined as above is proper for any such decision
rule §,. Furthermore, for apy & = (3, ...,8x), where &, is i's decision rule, the results
developed thus far are true. Therefore, if each group member chooses a decision rule §,, then

we have the same results as the results obtained under the assumption of uniqueness of a,(x).

c e .
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1.5. Quadratic Approximation
In Section 1.4, we have shown that (i) if the group members have equivalent and proper
utility functions, then a Pareto optimal decision or s group consensus opinion is a linear opinion

poo), and (i) if the group members® utilities are concave in x, then a Pareto optima) decision is

a Bayes decision. In some cases, however, the concavity assumption is too strong to be

satisfied for all group members. The objective of this section is 1o show that under certain con-

ditions each group member’s utility function is nearly concave.

Suppose the state space @ is finite and suppose that v is proper and differentiable three 7‘.
times. Now consider an individua! with utility function ¥ and true opinion p ¢ X . If ® con-

sists of n elements then p is an n x 1 vector. His expected utility for x ¢ X is
i) = FpOux, 0. e
The Taylor expansion of & (x) is :
G0) = 5(p) + (=p)' Vi (p) + %(x—p)'H(ﬁ)(x—p) + R(x),
where H (p) is a Hessian matrix of @i (x) at x = p and R (x) is the remainder term. Let

v(x) = Z(p) + (x—p) Vi (p) + %(x-p)'ll(p)(x-p).

Theorem 1.7.

Suppose the third partia! derivatives of & (x) are bounded. Then v(x) is concave in x if p

is & (relative) interior point of X.
Proof

Since « is proper, ¥ (x) is maximized at x = p and hence it should satisfy the Kuhn-

Tucker condition :

dii (x) -
0x, |sep #
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for all j=1, ..., n for some real number u. Since T(x) € #(p) for all x ¢ X , we have ':_‘ .'_:;.__j:;

(x—p)' Vi (p) + %(x-—p)'H(p)(x—p) +R&x) <0

N We know that Vi (p) = ul, where 1=(1,...,1)". So (x—p)'Vi(p) = 0. Therefore

! &-p)' Hp) x—p) € =2R(x) forallx e X . 1)
| Foranyx,y «eXand0 < )\ < ],

I vax + (1-2)y) 2 avix) + (1=2)vx) i =)' H(Qp)x-y) € 0. --;‘
So we should prove that (x—y) 'H{(p)(x—y) € Oforalix,y ¢ X . |

l.etz-p+—(x -»), wheremlu-:—<M<en Then 2, 2 0 for all j and z:,-l So
J Jj=l

B o SRR

ze¢X. By (1)

G-p)'H(Pp)(z-p) € -2R(2).

(x=y)'H@)(x—y) = M=p)'H(p)(z—p)

€ =2M?R(2).
. Now the remainder term R (2) is
5 R() = -—222(: P8 Gi=P) g a 5T b+oG=p))
2,9
] 1 1 e
- '3-7-;‘—,2‘;;(1 ~y.) r,~y,) (x, .Yk) ,a e ilp+o(z-p)]
for some 0 < 8 < 1. So
4
= MR () = —-};zz;(x =) G=3) Ce=p) 5 a”ja 7 lp+6G-p))
i‘ and hence M?R (2) — 0 as M — oo, Therefore
G-y)Hp)x-y) €0 forallx,yeX. D
.
B s D L L UL U U L AU B T ORI A
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In Theorem 1.7, we assume that the third partial derivatives of & (x) are bounded But, if
p is a local maximum point of v(x), then we can show that v(x) is concave without the

assumption of Theorem 1.7.

.

Corollary 1.

If p is a (relative) interior point of X and p is a local maximum point of v(x), then »(x)

is concave in x.
Proof R

For any x ¢ X sufficiently close p, v(x) € v(p). So

(=p)'VE () + 3 (x=p)'H (¢ x=p) € 0. -
Since Vi(p)=pul , (=p)'Vi(p) =0 and bence (x~p)'H(p)x-p) €0 for all x

i sufficiently close to p.
For given x,y in X let zmp + -A,—!(x—y) ., where m,x pl < M <eo. Then 2 ¢X and ey
s O
G-p)'H(p)z-p) € 0 for sufficiently large M . So

» (x=y)HP) x~y) = M¥a~p)'H(p)t-p) € 0

forallx,yeX. O

Thus far we have considered only the proper utility functions. However, we can obtain
the same result under some smoothness assumptions for the improper utility functions. Sup-

pose & {x) is maximized at yo * p. A Taylor expansion of & (x) around yg is given by :

B0 = T00 + G-y9'VE00 + Fu-y HOQ xyd + R&)
- vix) 4+ Rx),

where

V) = B0D + G-yd'VE 00 + 3 -y HOD 9.

ARSI




Corollary 2.

Suppose yg is a (relative) interior point of X . Then v(x) is concave in x if (i) 7(x)

satisfies the condition of Theorem 1.7 or (ii) yg is a local maximum point of v(x) .

Note that (i) if v is quadratic and yg lies in interior of X , then « is concave and (ii) the

Hessian matrix N () need not be negative (semi)definite in order that v (x) be concave.

Example 1.7,
Let
i(x) = -xy-x; +x? +3x,x;+x}.

Then & (x) is maximized at x = (%. %) and the Hessian matrix at x = (%, %) is

11 23
L)
Notice that H (-;-. -;—) is not negative semi-definite. However,

(x-y)’H(%, -;—)(x—y) -=20x,-y)?€ 0

forallx,yeX. Soii(x)isconcaveinX. D

If the group members’ opinions are close enough and their utility functions are smooth,

we can approximate each member's expected utility &, (x) by a quadratic form :

W0 = EG) + (c=p)'VE () + 3 —p)'H, () x=p), 10

where p, is i's true opinion. Here we assume that v is proper. But we can replace p, in equa-
tion (14) by s maximizer of the expected utility v, if u is not proper. The above Theorems say

that v,(x) is concave. Hence any Pareto optimal decision is a Bayes decision.

Since (x—p,)'Vu,(p,) = 0 for all i and «, (p,) are constants, we can approximate i, (x) by
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v.(x) = (x=p)YH () (x-p).

Forx e A, let

K
VA(X) - zA,v, (X)

1=]

- }";la,(x-p)'n, 0) (x=p).
Suppose x* € X maximizes ¥,(x) . Then there is a real number u satisfying
VV(x") = ul.
This is 8 Kuhn-Tucker necessary condition for the optimality. Since V,(x) is concave , it is also

sufficient condition for the optimality. Now we have

| §
ZA M) &x .—p,) - ul

=)
and bhence

x* = LEAHG) 1 CENH,GIp, — ul ]
- z A'(p—ul),

where 4/ = A0 TAH, () 17'H,0) .

Suppose A = (o), k, =1, ... ,n)fori=1,... K. Then

. | L]
X - z}/z)ajl(p,-r-u)

- X3~ sT3
- ;;"Jitpu -8,

becsuse 3 A4' = / and hence Y o, ~ 1and Yo, =0for ! = /.

Since ¥ x, =1, we have
=)

T et ettt e 8 iatar.e
Nt T T T e T At N R N N
e e e atata et tat e Cata s
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w= s ZZEaip, - 1),
J v+ 1

. K » 1 a K n
x/ =Y Yapi- - LI T aipi-1)

t=]i=] t=]i=]im]

LSLIN - 1
-3I3la;- "';lau"’ K Jpu

j=]im)

-~

K » ‘
E -zza/lplh (15) g ) .

t=]/=]

) L] K »
where af=a), - l24:,’,+ L ang YYal=1foralj=1,...,n.
ey nK je=liml

We can partition the equation (1.5) by

. X K
X - zlaljjpu + 2zalllpnh

=119,

X X
where Yaj=1 and Y Y af=0. If a/ for /=] are small compared with a/ ,then

. 1=} -]
- I
". x, = 3YB,p, (1.6)
.3
where 8, = a/ and Y 8, =1 forall /. We call (1.6) a generalized linear opinion pool. (B,
- =]
5 may be negative.)
)
1.6. Determination of the Pareto Optimal Decision
l’ We have shown that (i) a Pareto optimal decision or a group consensus opinion is a linear
opinion pool if the group members have equivalent and proper utility functions v, i=1, ... K
defined on X x © , and (ii) a Pareto optimal decision is a Bayes decision if the group members’
3 utilities are concave. Unfortunately, the results of the previous sections do not provide a nor-
mative rule for choosing the Pareto optimal decision for the group. Now we want to discuss
!
A A e
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the determination of the Pareto optimal decision, i.e., the group consensus opinion. However,

B as Barlow, Mensing, and Smiriga [1984) pointed out, the determination of the Pareto optimal
decision is problem dependent. That is, there is no normative rule which can be reasonably

applied 1o all problems. Here we want 1o suggest two methods for determining the Pareto

. optimal decision which, I think, are reasonable.
Metbod 1
E Let L, (x) = u,(x,) ~ u,(x) for x € X ,where x, is a maximizer of i’s expected utility,

u,x) = ¥ p,(8)u,(x, 0 . Then L,(x) is i’s expected loss-in-utility when the group consensus
]
opinion is x, while his true opinion is p, {or his announced opinion is x,’). Let

‘* L &) u (x)
() = = = -
O =) v x,)

Then 1 {x) is i's percentage expected loss-in-utility when the group consensus opinion is x € X .

Now suppose thst the group agree to assign weight w, for the ith member of the group,

»

)

K
where w, 2 0 and 2“’: = ], In most cases w, = 1/K for all i. Then the group may wish to

‘=]

b
b--

:'.i: minimize

b _

® K K u,(x)

: wllx)= ¥Ywlle =] an
: :gl ,;1 u,(x,)

\.:‘ L] L] “‘l

S If x* ¢ X minimizes (1.7), then x is Bayes against A = (A}, ..., Ax), where A, = R

& e u(x,)
. X . X

- and o is & constant which makes 3 A, = 1. If », are equivalent and proper, then x " = I A.p..

N 1] =]

v This method normalizes the group members’ utilities by

t v, (x, 6)

- v,(x, ) & ——

v,(x,)

n
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where v, is i's normalized utility function. In this case

max v.(x)=1 foralli

Method 2

In this method we assume that the group members’ utilities are proper, that is, each
group member’s announced opinion is his true opinion. We introduce a supra decision maker
N who has the responsibility for determining the Pareto optimal decision or the group con-
sensus opinion. We assume that N does not bave his own opinion about & and he want to
minimize his judgement sbout the group members' expertise or state of knowledge about 6.
Barlow, Mensing, and Smiriga [1984] called this assumption as a minimal judgement assump-
tion. Under this assumption, if N were take only one group member's advice, say ith member,
then he would simply adopt i’s opinion p, as his decision. However, N peeds to make some
judgements about the group members because N ocould not take only one individual’s opinion
in a group consensus problem. So N's problem is to make a group consensus opinion while

minimizing his judgements about the group members.

If N only takes one group member’s advice, say i, then N would adopt i’s utility function

u, and compute

max Y p.(0)u,(x, 0). s
xe .

N
-

Of course N’s decision which maximizes (1.8) is p,. So, if N only takes i’s opinion, then we
can consider v, as N’s utility function. Now let us define N's utility function. Let wn(x,8; i)

be N’s utility for the consequence (x,0) when N only takes i’s advice. Then
unix, 0, i) = An(du,(x, 0) + Bu(i) ,

where 4 n(i) > 0 and By(i) are coefficients assessed by N to standardize i’s utility function.

Now N°s expected utility (with respect to 6) is




unlx; i) = ANGDYE p.(O)u,(x, 6) + Br(1)
’
= Ax(i)u, (x) + B\G). (19
Let w,, i=1,...,K be the weights of the group members given by N. Then N's expecied

utility forx e X is

—_ K - K
IIN(X) - Zw,AN(i)u,(x) + z“':BN(i)
1=] =]

- Zw,A N(I')IZ(X) + Bn (110)

N may wish to maximize (1.10). For this N should assess w, and An(i) fori=1,... K. sieosia

Now consider a special case that the group members’ utility functions are proper and
local. A utility function u is local if u(x, 8) = u(x(6), ) for all @ € © , that is, the utility for
the consequence (x, ) depends only upon the probability density of the true state and not
upon the density of the states which could have obtained but did not. Bernardo [1979)] proved

that, for a continuous case, a proper and local utility function ¥ must be of the form :

ul(x, 0) = A log x(6) + B(6),

where A is an arbitrary constant and B(:) is an arbitrary function of ¢. For the discrete case,

see Mathai and Rathie {1975].

If the group members® utility functions are proper and local , then N’s utility is given by
unix ;i) = Au(i)?,(o) log x(8) + Bn(i). (1.11)
The utility un(x; i) given by {1.11) is equivalent to
un(x ;i) =4 N(f)p»,(o) 1og lp, (6)/x(6)) + By (i), (112)

where By (i) = BaG) + AN(DTp,(0)log p,(6). Let
¢

Hx:y)= Tx(6) log ly(@)/x(®)] forx,yinX.
’

J(x:y) is called the (directed) divergence of x from y and is a measure of discrepancy

(Msthai and Rathie [1975]). Kerridge [1961] interpreted /( x: y) as a measure of the error
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made by the observer in estimating a probability density or mass as y ¢ X , which is in fact
x € X . So un(x; i) in equation (1.12) can be interpreted as an error made by N by taking

x ¢ X while the true distribution is p, in N's opinion. Thus N's expected utility

X
un= Y wun(X, i)

1=}
- =T AN)Yp.(6) 10g [0,(6)/x(8) ] + Tw,Bx (),
[] [ :
can be thought as an expected error made by N when he takes x ¢ X as his opinion. Here w,
can be interpreted either as a probability that i’s opinion p, is a true probability density/mass in
N’'s opinion, or as a probability that N takes i’s opinion p, if N were allowed to take only one
group member’s opinion.

Now return to the general case. Suppose N judges that w, = Tl(- fori=1,...,K This

means that N bas no preferences among the group members’ opinions prior to learning their
opinions. It also seems reasonable that N would be indifferent between the conscquences
(.i)fori=1,...,K, where (x, i) denotes a consequence that N takes i’s advice alone but

forecasts @ using x. So N would normalize his utility by letting

un@,i)=1 foralli=1,... K (1.13)

Suppose also that N judges

lt‘n’igx un@,, ) = un(,, ) =0 foralti=1,... K (1.14)

This means that N is also indifferent between the consequences (p,, i) fori=1,... K.

For the alternative interpretation of the equations (1.13) and (1.14), suppose that each
group member is asked to evaluate the group members’ opinions. Then ith group member

may evaluste the opinions by the expected utilities »,(p,) fors = 1, . .. , K. We have

max v,(p,) = u,(p,) and |'<".i21 v,0) = u,(,).

"

.
v
Ay "-1

'

Ty,
A
b3
a2l ls)
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.
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Tbus the equations (113) and (1.14) imply that N standardizes the group members® evaluation

for the other group members’ opinions by letting

max +.(p,) =1 and m.in v.(p)=0fori=1,...,K,

where v, is i’s standardized utility function. Let

M, = max u,(p,) and m, = min u,(p,).

Then from the equations (1.313) and (1.14), we have
AOM, + BN() = 1 A

and “.. |
An(idm, + By(i) = 0

fori=1,...,K. Hence

ANG) = 3/ M, ~m,) and Br(i)) = —m/(M, - m)

fori=1,...,K. N's expected utility for x ¢ X is

i) =3 L T - (1.19) o
N SKIM-m M-ml| : SR
N would take an opinion which maximizes (1.15). If x° ¢ X maximizes (1.15), then x" is s eV
Bayes decision against A = (A}, ... ,Ap) WithA, = 1/(M, - m) . L
If u, are proper and equivalent, then
. l pl . . =
X 'Dap: - a Z‘M' -— m' * -. :‘:‘ '.
where a is 2 constant such that A, = 1. RN
! ; _‘
Note that, if u, are proper and local, then “'!TT
RN
M~-m=mxlI(p;,p) fori=1 ... K, {._x}:\t\:
g R
where I1(p,; p,) is a measure of the error made by using p, when p, is /'s true distribution. PSR
1(p,; p,) is slso interpreted as a measure of the distance from p, to p, as assessed by i. This ;'.j::'::_’..\"_f
PR
SN
2y -,',’

L)
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measure of distance is asymmetric, which seems reasonable. With this in mind we can inter-
pret (M, — m,) as a maximum distance from p, to other group members' opinions as evaluated
by i. N gives a weight A, to the ith group member proportional to the inverse of the maximum
distance assessed by i. Thus i receives small weight if the maximum distance from his opinion

to the other members® opinions is large.

1.7. Summary

We have considered a group consensus problem in which the group
members are jointly responsible for combining their opinions for an unknown quantity 8 ¢ © .
If the group has s predefined rea! decision problem, we call it a group decision problem. If the
group members are simply required to give their opinions fot 8 without having any rea! decision
problem, we call it a text-book problem. In this thesis we treat the text-book problem as a ver-
sion of group decision problem. We assumed that each group member i has a utility function

u, defined on X x @ , where X is the set of all probality mass or density functions for 6.

In a group decision problem with action space A , state space ® , and individual utility
functions v, defined on A x @ , i's utility function v, on X x ® is derived from v, on A x ©

and it was shown that u, is proper.

In s text-book problem, there is no action space A and hence no individua! utility func-
tions v, on A x ® . But we assume that each group member / has a utility function v, on X x

@ , which is assessed by .

We summarize the main results according to the state space: single event case and

general random variable case.

Single Event Case

(1) If the group members’ utility functions v, on X x ® are strictly proper for all i, then a

Pareto optima! decision in X must be a convex combination of the group members’ true

N




A S 0 BB B A B b il

41 et -y s

opinions, i.e., 8 linear opinion pool of their true opinions. . -

(2) If u, are proper for all i, then a linear opinion pool of the group members' true opinions
is a Pareto optimal decision in X . Here a Pareto optimal decision msy not be a convex

combination of the group members’ true opinions. However, for any decision x ¢ X .

there exists a convex combination of the group members’ opinions which is at jeast as
good as x for each member of the group, that is, there exists x"€X such that x" is a

convex combination of the group members® true opinions and «,(x°) > w,(x) for all /.

(3) If u, are strictly concave (not necessarily proper) in x for all /, then a Pareto optimal deci- o - ,"
sion in X must be a linear opinion pool of the group members’ announced opinions. L
Here we assume that each group member i announces the opinion which maximizes his SR f. -
expected utility &,(x) over all x ¢ X . If u, is proper, i’s announced opinion is his true ﬁ, -

opinion.

(4) If u, are concave in x (not necessarily proper) for all i, then a linear opinion poo! of the
group members® announced opinins is a Pareto optimal decision in X . Moreover, for any
decision x in X , there is a convex combination of the group members’ announced opin-

ions which is at least as good as x for each member of the group.

General Random Variable Case
(1) If the group members have the equivalent and strictly proper utility functions u, on X x
© , then any Pareto optimal decision in X must be a linear opinion pool of the group

member’ true opinions.

(2) If the group members have the equivalent and proper (not necessarily strictly proper) util-
ity functions u,, then linear opinion poo! of the group members® true opinions is Pareto
optima! decision in X . Moreover, for any decision x in X , there is a convex combina-
tion of the group members® true opinions which is at least as good as x for each member

of the group.
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- (3) If v, are concave in x for all i, then Pareto optimal decision in X is Bayes decision in X .
(4) A quadratic spproximation of w, is concave in x. If the group members’ opinions are
close enough and their utility functions u, are smooth, we can assume that v, is concave
- in x for all i, at least approximately. Hence Pareto optimal decision in X is Bayes deci-
sion in X in most reasonable cases. We also discuss the form of Pareto optimal decisions .. 1
for concave utility cases. - j':,ij
. . . .. . .. L q
Finally, in Section 1.6, I suggested some methods of determining Pareto optimal decision. AR
However, 1 do not claim that the methods suggested in this paper are normative rules which ¥
. can be applied to all problems. The determination of Pareto optima! decision is problem depen-
dent.
2
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