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Abstract

The calculation of the Discrete Fourier Transform (DFT)

has long been a significant bottleneck in many Digital

Signal Processing applications. With the arrival of Very

Large Scale Integration (VLSI) and new DFT algorithms,

system architectures that significantly reduce the DFT

bottleneck are possible. This study addresses the design,

simulation, implementation, and testing of the control

circuitry for a high speed, VLSI Winograd Fourier Transform

(WFT) processor. Three WFT processors are combined into a

pipelined architecture that is capable of computing a

4080-point DFT on complex input data approximately every 120

microseconds when operating with 70 MHz clock signals. The

chip control architecture features a special Programmable

Logic Array (PLA) to control the on-chip arithmetic

circuitry, and a dense, 54K ROM to generate data addresses

- for the external RAM. The PLA controller was fabricated in

3 micron CMOS and functioned properly for clock rates of

over 60 MHz. The address generator ROM was designed and

submitted for fabrication in 3 micron CMOS, and SPICE

simulations predict an access time of 60 nanoseconds.

Software that automatically generates a ROM layout

description from a data file was developed to ensure the

correctness of the final design. Software was also

developed to optimize the ROM by attempting to minimize the

xi
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"number of transistors required to represent the

information. The software further optimizes the ROM by

removing any unnecessary drain/source areas. The

transistor minimization procedure is based on a graph

partitioning heuristic, and the drain removal procedure is

based on an algorithm that near-optimally solves the

Traveling Salesman Problem. The ROM optimization produces

large gains in power, yield, and in some cases speed.
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CONTROL CIRCUITRY FOR HIGH SPEED VLSI WINOGRAD
FOURIER TRANSFORM PROCESSORS

I. Introduction

Background

The ability to perform detailed signal spectral analysis

at an ever increasing rate has been a major goal in the area

of digital signal processing since an efficient algorithm

for computing Discrete Fourier Transforms (DFTs) was

disclosed in 1965 (Cooley and Tukey, 1965). Since the DFT

is the central computation in most spectrum analysis

problems, fast and efficient methods for its implementation

are crucial. Digital systems that can perform rapid

spectrum analysis have a number of current applications

including speech processing, seismic processing, pattern

recognition, artificial intelligence, sonar, radar, and

* military target acquisition systems.

With the arrival of large scale integration and the

resulting reduction in cost and size of digital components,

together with increased speed, the performance of digital

systems in important application areas is continuing to

improve. Additionally, new DFT algorithms and system

architectures are constantly being developed to provide even

faster and more efficient digital systems. However, the

most advanced systems available today are still not able to

I--7
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satisfy all of the military requirements for compact, high

speed digital signal processing systems that utilize the

DFT.

Therefore, the Air Force Wright Aeronautical

Laboratories, Air Force Office of Scientific Research, and

Air Force Space Division are sponsoring research for the

development of a high speed DFT processor. This DFT

processing system must be capable of rapidly computing DFT

sizes of up to 4080-points at speeds an order of magnitude

faster than systems currently available. Additionally, the

processor must be implemented in integrated circuit

technology to meet the small size and weight constraints

imposed on embedded systems. The desired DFT processing

system can be used in numerous applications, but is of

prime importance to Synthetic Aperature Radar (SAR)

systems. To achieve a more advanced DFT processing system

which meets the Air Force requirements, new transform

algorithms and hardware architectures must be used while

simultaneously increasing data processing throughput.

Problem

The problem addressed in this thesis is how to design,

simulate, and implement the control circuitry for an

integrated signal processing system that calculates Discrete

Fourier Transforms (DFTs) of sizes up to 4080-points at

clock rates of 70 MHz. The processing system will make

1-2
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use of the Prime Factor Algorithm (PFA), the Winograd

Fourier Transform Algorithm (WFTA), a state-of-the-art 1.2

Wk. micron Complementary Metal-Oxide-Semiconductor (CMOS)

integrated circuit technology, and special purpose

architectural design.

Scope

The thesis design, simulation, and implementation is

limited to the control circuitry for the 16-point WFTA

processor (WFTA16). The implementation of the control

u circuitry for the WFTA16 considers the control interfaces

required between it, the 15-point, 17-point, and host

processor, and facilitates the eventual design and

- .. implementation of the control for the 15 and 17-point WFTA

chips. WFTA16 control circuit .test chips were designed,

fabricated, and tested. The WFTA16 control and arithmetic

circuits were integrated into a total processor design.

Three concurrent theses address other aspects of the

total design project. Taylor presents the PFA and WFTA

theory, overall signal processing system architecture, and

numerical precision simulation results (Taylor, 1985).

Coutee presents the arithmetic circuitry for the WFTA16

(parts of which can be used for the 15 and 17-point WFTAs

as well) (Coutee, 1985). Collins presents a validation

program for the WFTA16 operation, and describes the WFTAI6

modules in VHSIC (Very High Speed Integrated Circuit)

Hardware Description Language, VHDL (Collins, 1985).

1-3



The contents of the other three theses are crucial to a

full and complete understanding of this thesis. Therefore,

the four theses should be read in the following order:

1. Taylor

2. Coutee

3. Rossbach

4. Collins

Summary of Current Knowledge
The Prime Factor Algorithm and Winogard Fourier

Transform Algorithm. Since the classic paper of Cooley and

Tukey (Cooley and Tikey, 1965) appeared, the Fast Fourier

Transform (FFT) has been used extensively in many DSP

applications. The main advantage of the FFT over the DFT

is the substantial reduction in the number of arithmetic

operations required. The number of arithmetic operations

grows as nlogn for the FFT compared to n2 for the DFT.

In 1978, Winograd presented an algorithm that often uses

less than half the number of multiplications required by

the FFT and almost the same number of additions (Winograd,

1978). Moreover, the number of multiplications required

for the Winograd Fourier Transform Algorithm (WFTA) has

been shown to be minimal (Winograd, 1978; Blanken and

Rustan, 1982). However, large WFTAs lack the modularity

which results in an effective VLSI implementation. A

solution to this problem can be derived from a program

presented by Burrus that combines the Prime Factor

1-4



A 2i-A A t ;.,>d tnd Thomas (Good, 1971) with small

Wi ', ra i i :,! : tis 8buttus and Eschenbacher, 1981).

Finally, Linderman presented chip and system architectures

that efficiently embed the PFA into VLSI through the use of

WFTA processors (Linderman, 1984: Chapter 7).

Overview of the PFA. The PFA changes a

one-dimensional problem into an N-dimensional DFT using the

prime factor index map of Good and Thomas (Good, 1971;

McClellan and Rader, 1979). This approach produces more

manageable transform lengths. The Chinese Remainder

Theorem (CRT) is used to uniquely map the inputs into an

N-dimensional hyper-cube and to map the transform outputs

nack into the desired one-dimensional result. Since the

- Chinese Remainder Theorem is used, the factors used to

decompose the DFT must be relatively prime (this leads to

unusual DFT sizes). Figure I-i illustrates the mapping

where a 6 point one-dimensional transform is computed using

a two-dimensional 2 x 3 point transform. The two-
. dimensional transform consists of three 2-point DFTs

followed by two 3-point DFTs. The multidimensional DFT is

computed using processors for small, relatively prime DFT

sizes. These processors can be implemented using any

available algorithm, including the WFTA (Nussbaumer, 1981).

Overview of the WFTA. Winograd's short algorithm

is based on cyclic convolution to compute DFTs (Rader,

1968). However, the cyclic convolution is replaced by a

1-5
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series of shorter computations using relatively prime

polynomial factors (Blahut, 1985:76-84). Winograd's large

algorithm uses smaller WFTA olocks (3, 5) to compute larger

DFTs (15). The large algorithm uses associative properties

of the Kronecker products of matrices.

The WFTA can be viewed as a sequence of pre-additions,

multiplications, and finally post-additions on an input

vector to produce the DFT result. This can be written as

S=C DA

where D is a diagonal matrix of fixed coefficients to be

multiplied, A and C are rectangular matrices representing

the pre-additions and post-additions respectively.

The WFTA is attractive for high throughput VLSI for a

number of reasons. First, the number of multiplications is

minimal. Second, the matrix representation of the WFTA

maps well into VLSI structures for small block sizes (less

than 20). Finally, WFTA uses fixed, hard-wired

coefficients which results in fewer I/O transfers.

PFA Elements: 15, 16, and 17-Point WFTA Chips. A

PFA pipelined architecture that uses 15, 16, and 17-point

WFTA processors as the building blocks was presented by

Linderman (Linderman, 1981:187-188). Figure 1-2 depicts

the PFA pipelined architecture that is capable of

performing 4080-point DFTs.

1-7
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FROM HOST TO HOST

ARM" ROMROMRo

0 , INTEIRFC PROCEZSSOR!

INPUT OUTPUT

CONTROL CONTROL

Figure 1-2 PFA Pipelined Architecture.

The WFTA processing elements of the PFA pipeline make use

of a bit-serial architecture to achieve good numerical

performance and high throughput. Additional throughput is

obtained by incorporating many serial multipliers that operate

in parallel. One key to this increased throughput is the

efficiency of the double-bit-serial pipelined multipliers that

takes advantage of the constant coefficients in the WFTA.

1-8



These special pipelined multipliers make use of a modified

Booth's Quaternary Algorithm and are discussed by Coutee

(Coutee, 1985).

The PFA pipelined architecture and bit-serial WFTA

processing elements proposed by Linderman form the basis

and starting point for this thesis (as well as those of

Taylor, Collins, and Coutee). The objective is the actual

design, implementation, and validation of the WFTA

processors and the PFA pipeline architecture.

CMOS Technology. Because of its high switching speeds,

0 low power consumption, and ability to scale to small

feature sizes, CMOS is a leading contender for existing and

future VLSI systems (Cohen, 1984; Weste and Eshraghian,

1985). The WFTA processing chips will be designed and

implemented in the CMOS technology because of its numerous

advantages over the NMOS and PMOS technologies. Therefore,

a brief discussion of the CMOS technology used throughout

the design of the WFTA chips will be presented in the

following sections.

CMOS Circuit. CMOS technology provides two types

of MOS (Metal-Oxide-Semiconductor) transistors (devices),

an n-type transistor (NMOS) and a p-type transistor

(PMOS). Both are fabricated in silicon using either

negatively doped silicon that is rich in electrons

(negatively charged) or positively doped silicon that is

rich in holes (positively charged). The physical

'-9
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Figure 1-3 MOS Transistors (Weste and Eshraghian, 1985:6).

,L%"6structures for both types of MOS transistors are shown in

Figure 1-3. The qate of -ach transistor is a control

input, and it controls the flowo(urn ewe h

source and 1-he :Ir,3in. Th.- :-p-rat-ion of both transistors
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can be described as that of an on/off switch. The NMOS

device is turned on when a "1" (5 volts) is applied to the

gate, and turned off when a "0" (0 volts) is applied. The

PMOS device is turned on when a "0" is applied to the gate,

and off when a "1" is applied. The NMOS and PMOS devices do

not always act as perfect or ideal switches. The NMOS

device passes a weak "1" and the PMOS device passes a weak

l0,.

The NMOS and PMOS enhancement devices are used to

construct all the logic circuits of the CMOS WFTA chips. Two

basic circuits used are the inverter and transmission gate.

Both circuits are built in a manner to insure that a

"strong" signal is always output. This is accomplished by

insuring that "I" is passed by a PMOS device, and a "0" is

passed by an NMOS device. The inverter and transmission

gate circuits are shown in Figure 1-4.

The foremost attribute of the inverter circuit is that

there is no direct-current flow when the inverter is not

changing states, and, therefore, no power dissipation. The

* inverter outputs Vdd when a "0" is input and outputs Vss

when a "I" is input. In either case, one of the MOS devices
V.

is switched off. Thus, no conducting path from Vdd to Vss

is available, and no power is drawn except for a very small

4'Z amount due to junction leakage.

. The transmission gate circuit closely approximates an

*ideal switch turned on when S is "l" and off when S is "0".

0
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Figure 1-4 CMOS Inverter and Transmission Gate.

DC Characteristic. The DC transfer characteristic

for a CMOS inverter is depicted in Figure I-5. Notice that

the CMOS inverter is usually designed to switch at an input

voltage equal to half the supply voltage (Vdd/2). Also

both transistors are on and current is drawn only while Vin

passes from Vtn (threshold voltage for the NMOS device)

to Vdd + Vtp (t.ireshold voltage (-)for the PMOS device).

1-12
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Vdd I

SU_OUT

.- UddF-

j I

U n  ,S Udd VtP Udd

Figure 1-5 CMOS Inverter DC Transfer Characteristic.

The DC transfer characteristics of the inverter depend

_ on the ratio of the NMOS transistor gain (en) to the PMOS

. - transistor gain (pp). The transistor gains are determined

by the effective su2:face mobility of the electrons in the

device channel, permittivity of the gate insulator,

thickness of the gate insulator, and physical dimensions of

S,.
4  the channel. Of these four factors, the first three are

determined by the fabrication process and the last is

1-13
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determined by the designer. Thus, by sizing the NMOS and

PMOS transistor, the desired switching point for a CMOS

inverter may be obtained. Figure 1-6 shows the effect of

varying the transistor gain ratio.

WvDO

S.0 1

O V0 0

I.1

00

VooI

" 'II

0 l 0 Vl V. IV l
-V. v

Figure 1-6 Influence ofn/ p

% ' (Wste and Eshraghian, 1985:50).

~For good noise immunity, the majority of inverter's in

%.:_. the WFTA circuits were designed to switch at Vdd/2. DC---
orSC oode inited immty the ajoit of inrteS dvi

* -widths should be 1:2 in order to realize the Vdd/2

* 1 -1 4 - • ' .. . . . . . . . . . ; i ' . . :



\"switching point for the CMOS process used in the WFTA

design. This 2:1 transistor ratio was used in most of the

circuit designs to improve noise immunity and also to

insure a symmetric waveform with respect to transient rise

and fall times,

The output characteristics of a transmission gate are

in Figure 1-7.

n -DEVICE p -DEVICE

RESISTANCE RESISTANCE

IN
,TRANSMISSIO N

,GATE RESISTANCE
eal

X-i..

Figure 1-7 Transmission Gate Characteristics
(Weste and Eshraghian, 1985:57).
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W " The parallel combination of the NMOS an PMOS resistances

result in a transmission gate resistance that is low for

passing low or high voltages (Vin).

Switching Performance (Lewis, 1983:6-8). For a

CMOS inverter with $n = flp, the propagation delay for a

high-to-low transition will equal that of a low-to-high

transition. The switching delay, D, of that CMOS inverter

will be determined by the devices' internal time delay, t,

the supply voltage, Vdd, the transistor gain, P, and the

capacitive load, C in the following manner:

D = 2 C/f Vdd + t.

(. If the negligible internal device delay is ignored, and the

supply voltage is assumed to be held constant, the CMOS

,. delay is determined by the capacitive load and the size of

the inverter devices (that affects the gain,).

Thus, circuits requiring fast switching times must have

the capacitive load held to a minimum, and the NMOS and

* PMOS devices sized to drive the capacitive load that does

exist. The parasitic capacitances and, sometimes more

importantly, the interconnect capacitances must be taken

into account when designing any CMOS circuit that is under

a speed constraint. Not only can the single inverter be

sized to drive the capacitive loads, but a number of

inverters can be staged up in size to drive large loads

1-16
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Many factors must be considered when using successive

stages, but a minimum speed staging requires each stage to

be larger than the previous one by a factor of e = 2.7

(Mead and Conway, 1980:13).

CMOS Latch-up. CMOS circuits are susceptible to

latch-up because of the presence of a p-n-p-n structure.

During latch-up, the CMOS circuit presents a near

short-circuit condition across the power supply. If

preventive measures are not employed to limit the current

flow, some metal or diffusion current paths may be

* _permanently damaged. The four-layer structure that is

susceptible to latch-up is shown in Figure 1-8. Under

normal biasing conditions, all junctions are

0S reversed-biased. If, however, one of the source or drain

junctions become forward-biased (due to momentary voltage

transients at the input/output leads), internal gain

amplifies the current until latch-up occurs.

The circuit designs and I/O pad designs of the WFTA

chips are designed to protect against latch-up. Adherence

to the design rules, numerous substrate contacts in every

well, and avoiding structures that intertwine n- and

p-devices were the rules followed in designing the WFTA

circuits to prevent latch-up. The I/O pad circuits were

designed with the protection diodes located as far away

from active circuitry as possible and completely surrounded

by guard rings. These techniques help to protect against

1-17
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Figure 1-8 p-n-p-n Structure (Ong, 1984:271).

latch-up in this most vulnerable area by preventing the

diodes from supplying base current to other transistors

during an electrostatic discharge. Figure 1-9 shows the

protection circuitry for the input pads and output pads.

The output pad protection circuitry is minimal since the

large output driver makes the output more resilent to

voltage fluctuations.

Pseudo 2-Phase Clocking. The WFTA chips employ a

. clocking strategy that uses 2-phase nonoverlapping clock

signals and their complements. This clocking strategy

eliminates the possibility of race conditions that might

exist in a design using a single clock and its inverse.

'.. -A.<
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Figure 1-9 Electrostatic protection circuitry.

Thus, there is a phi 1, phi 2, phi 1', and phi 2' required

for clocked circuits on the chip. Usually, two master phi

1 and phi 2 clocks are distributed to local buffers that

generate the inverses. The clock signals (phi 1, phi 2)

* are driven from off-chip to insure rapid transitions and

sharp clock edges. The final chips will have clock pins at

each corner of the chip to decrease the total distance (and

resistance) through which the clock signals travel. This

approach, coupled with properly designed local clock signal

inverters, can help minimize clock skew and allows the

circuit to function properly at high frequencies.

1-19
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Approach

The responsibilities for major subsections of the WFTA

processor chips and PFA pipeline architecture were

distributed between the four thesis efforts presented

previously. All efforts were directed toward implementation

of a functional WFTA16 processor. The design of the WFTA15

and WFTA17 were to be accomplished in parallel as time

permitted. The general WFTA16 floor plan provided general

guidelines for the area restrictions on the functional

blocks. This floor plan is depicted in Figure 1-10.

* The control signal requirements for the arithmetic

circuitry, address generation circuitry, and chip interface

circuitry were to be developed and design implementations

selected. The WFTAI6 subcircuit modules were to be

submitted for fabrication and test in order to insure the

proper functionality of each part of the chip design.

Sequence of the Presentation

Chapter II examines various methods of control circuit

implementation that satisfy the requirements for the

-, arithmetic control, address generation control, and chip

interface control circuitry. For each circuit, a

configuration that best satisfies the requirements is

proposed for use in that circuit design.

Chapter III presents the arithmetic and address

generation control circuits. Each circuits' method of

1-20
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operation, cell designs, and simulation results is

presented.

Chapter IV describes the development and implementation

of software that produces an automatic layout description

of a dense ROM that is optimized for a minimum number of

devices and drains. The results and benefits of the

optimization procedure are presented.

Chapter V describes the fabrication procedures, test

results, and evaluation of the arithmetic and address

generation control circuitry developed for the WFTA16
0.

processor.

Chapter VI presents the conclusions and recommendations

for the WFTA control circuitry and ROM optimization/

automatic layout software.

4.
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V
II. Detailed Analysis of the Problem

Arithmetic Control

Requirements. In this section, the signals required to

control the arithmetic circuitry on the WFTA16 will be

S-[. described. First, a brief explanation of the arithmetic

- .- circuitry will be given. More detailed information on this

circuitry can be obtained from Coutee (Coutee, 1985).

Second, a description of the signals required to control the

on-chip arithmetic circuitry will be presented.

Arithmetic Circuitry Overview. The circuitry that

performs the Winograd DFTs is a bit-serial implementation of

the pre-additions, multiplications, and post-additions of

the WFTA. These operations are performed in word-parallel

fashion on 16 streams of complex serial input data. Data

I/O transfers to and from I/O shift registers are performed

* in parallel. The I/O transfers are performed in parallel

since the processor's throughput is limited by the time

required for the data I/O. A number of numerical precision

and error detection operations are performed on the real and

imaginary data as they serially pass certain points in the

architecture. Figure II-i presents the overall block

diagram of the real or imaginary arithmetic circuitry for

WFTAI6.

Arithmetic Component Description. The Watchdog

(W/D) circuitry functions to provide an error checking
0
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capability which monitors another WFTA chip. The input

addresses and the output data and addresses of a WFTA chip

in W/D mode are continuously compared to those of an active

WFTA processing chip. Any discrepancies in the data or

address values cause the W/D error flag to be set for the

duration of the transform.

The Parallel-In Serial-Out (PISO) circuitry and

Serial-In Parallel-Out (SIPO) circuitry convert parallel

data flow to serial and serial data flow to parallel

respectively. The PISO and SIPO are both capable of

. shifting data in and out simultaneously using only one clock

cycle to exchange an entire block of 16 data words from

parallel registers to serial registers (or vice versa).

The Parity Checking circuitry examines the data and

parity bits of each data word to check for input data

errors. If any parity errors are found, a parity error flag

is set for the duration of the transform.

The Zero Fill/Sign Extension circuitry appends sign

extensions or zeros to the appropriate bit positions of the

data word depending on the scaling factor input to the

chip. This circuit extends the 23-bit data representation

used externally to the 32 bits per data word that are used

to perform the calculations within the arithmetic hardware.

The Pre-add, Multiplier, and Post-add circuits implement

the WFTA algorithm as described in Chapter I.

-7.." The Rounding Module rounds the 32-bit internal result

- 11-3
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to a 23-bit result before output. The Parity Module

recalculates the odd-parity for each data word result and

appends that parity to the twenty-fourth bit position.

Finally, the scaling circuitry keeps track of the

largest result to inform the next WFTA chip or the host of

the scale factor to be used in subsequent calculations. The

scaling is used to increase the numerical precision of the

final result. A more detailed explanation of the scaling

r procedure can be found in (Taylor, 1985).

Control Signal Description. Remarkably few

control signals are required to coordinate the operation of

all the arithmetic circuitry described above. The WFTA16's

data throughput is limited by the I/O data rate. Since two

clock cycles are required to input/output each data word of

the sixteen that can be stored in the SIPO and PISO, 32

clock cycles are required for each data block. This figure

of 32 determines both the number of bits in the internal

data word representation and the number of clock cycles

before most of the control signals are repeated. After the

WFTAl6's internal pipeline is filled, the same control

signal pattern will be repeated every 32 clock cycles until

the transform is completed.

In the following pages, a brief description of each

control signal function and the signal's waveform type will

be presented. These descriptions should give a general

understanding of the control signal requirements. Each

11-4
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.,. control signal description will refer to one of the

waveform types shown in Figure 11-2. The waveform types

will be referred to by the letter designator given in the

figure; A for a divide-by-two/half-frequency clock signal,

B for a repeating interval signal, C for a repeating pulse

signal, D for a non-repeating master reset pulse signal,

and E for a signal whose waveform is a function of the

scale factor. Letter designators may be combined (such as

D-E for a repeating interval signal that rises or falls as

a function of the scale factor) to indicate that the

waveform has more than one characteristic.

The control signals are listed below by function:

1. W/D:

c'. (a) Input Check - Enables comparators when the
data is stable on input lines.
Waveform: A

(b) Output Check - Enables comparators when the
data and addresses are stable on output
lines.
Waveform: A

(c) RESET - Resets the W/D error flag at the
start of each transform.
Waveform: D

2. PISO:

(a) Shift Down - Loads the 16 complex data words
into the PISO, one data word every other
clock cycle. The PISO is 16 registers deep.
Waveform: A

(b) Latch - Moves the 16 complex data words
shifted into the PISO to the 16 registers
used to serially shift the data out. The
Latch signal must occur for one clock cycle
when the PISO is not shifting down or right.
Waveform: C

: '. I1-5
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, (c) Shift Right - Interval signal that shifts the
24 bits of each of the 16 data words out of
the PISO toward the pre-add matrix.
Waveform: B-E

3. Parity Checking Circuit:

(a) Check - When this signal is high the parity
of all bits in the 16 data words is checked
as the bits are shifted out of the PISO. The
calculated parity is compared to the parity
bit for each word. An error signal goes high
if the parity of the word is not odd.
Waveform: B-E

N (b) Check Reset - This pulse signal resets the
parity checking circuitry after each group of
data words has been checked for parity.
Waveform: C

(c) Latch - This signal latches any parity error
found on the 16 data words into the parity
error set/reset flip-flop. This pulse signal
occurs everytime valid results exist on the
parity check result line (i.e. 24 clock
cycles after the start of shift right PISO).
Waveform: C-E

(d) Error Reset - This signal is used to reset
the parity error flag at the start of each
transform.
Waveform: D

4. Zero Fill/Sign Extension Circuit:

(a) Zero Fill - When high (active), zeros are
shifted into the arithmetic circuitry to
scale the input data up to 32 bits.
Waveform: B-E

(b) Sign Extension - When high (active), sign
extensions are shifted into the arithmetic
circuitry after the MSB of the data. All
data words have at least 5 sign extensions.
Waveform: B-E

11-7



5. Pre-add, Multiplier, and Post-Add Circuits:

(a) Carry Reset - This pulse signal propagates
through a shift register, resetting the carry
cell of each adder or multiplier as it goes.
The carry cell is reset just before the LSB
of the next set of 16 data words arrives at
each adder or multiplier.
Waveform: C

(b) Multiplier Round - This pulse signal rounds
(rather than truncates) the result .of the
multiplier to 32 bits before reaching the
post-add matrix.
Waveform: C

6. Rounding Circuitry:

(a) Round Calculate - When active, this signal
allows the Rounding circuitry to round the
output data word by adding the most
significant bit not kept to the output data
word. Since bits 9 to 31 of the 32 bit
result are used, bit 8 is added to bit 9 and
any carry is forwarded.
Waveform: B

7. Parity Circuitry:

(a) Calculate - When active, this interval signal
commands the parity cell to calculate odd
parity on the serial bits being output. The
parity is calculated on the 23 bits that are
kept and output to the SIPO.
Waveform: B

(b) Append - This pulse signal causes the parity
41 cell to append the calculated parity to the

24th bit position of each of the 16 real and
imaginary output data words.
Waveform: C

8. SIPO:

(a) Shift Down - Outputs the 16 complex data
words from the SIPO, one data word every
other clock cycle. The SIPO (like the PISO)
is 16 registers deep.
Waveform: A

(b) Latch - Moves the 16 data words that were
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serially shifted into one set of registers to
the 16 registers used to output the data in
parallel. The Latch signal must occur for
one clock cycle when SIPO is not shifting
down or right.
Waveform: C

(c) Shift Right - Interval signal that shifts the
24 bits output from the arithmetic circuitry
into the 16 registers of the SIPO that
receive serial data.
Waveform: B

9. Scaling Circuitry:

(a) Update - This signal (when active) allows the
scaling circuitry to compare the stable data
on the output bus to the current highest
value seen. If the output data is of higher
value, its sign bit location is remembered.
Waveform: A

(b) Reset - This signal resets the scaling data
word to zero before the next transform data
results are output.
Waveform: D

Approaches, Tradeoffs, and Solution.

Approaches. The WFTA16 is a sequential state

machine with arithmetic control signals as described above.

A method of implementing the control circuitry to generate

the given control signals is needed. There are a number of

design methods available to implement a sequential control

circuit. The control for a dedicated sianal processor such

as the WFTA requires rrly limited programmability allowino

for the use of a faster, less flexible hardware design. The

most popular of theso control methods include custom logic

implementations, use of gate arrays or programmable logic

-~*arrays (PLAs), and microprogramming.

11-9
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Custom logic implementations are those methods that rely

on decision logic modules built from individual gates and

flip-flops. The design can be obtained from design methods

that use state and excitation tables, methods that use one

flip-flop per state variable coupled with a decision logic

*module, or methods that use a counter/decoder and decision

logic module (Mano, 1979:410). The common element of all

design methods for a custom logic implementation is that

external inputs and present state inputs feed into a

decision logic module built from custom combinational logic

elements.

Gate arrays can be used to implement the entire control

circuitry or to replace the custom decision logic module for

the custom logic implementations. Gate arrays are fixed

arrays of identical logic circuits. Designing with gate

arrays consists of specifying the wiring interconnections

between the given logic elements in the array (Ong,

1984:329).

A PLA implementation of the control circuitry would

A. require a sequence register or counter coupled with a PLA.

The sequence register would keep track of the present state

of the machine while the PLA would use the present state and

external inputs to generate output control signals

(Mano,1979:413). A slight variation to the normal use of a

PLA can be used when designing the control circuitry. If

the sequence register's outputs can be tied to the product

11-10'....
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terms of the PLA so that only the one (or a few) product

term that corresponds to the present clock cycle within the

timing diagram is allowed to be high at any one time, the

speed, power dissipation, size, and complexity of the

AND-plane can be greatly reduced (Linderman, 1984:90).

Finally, a microprogramming approach can be used to

implement the control circuitry. Strings of l's and 0's

comprising control words are stored in a control memory

(often a ROM). There are as many control words as there are

different possible control signal variations. The problem

then becomes one of controlling the address register that

addresses the control memory (Mano, 1979:414). If the

memory can be accessed in the proper order, each bit of the

control words could be used to implement a control signal.

Trade-offs. Each method of implementing the

control circuitry has its advantages and disadvantages. The

goal is to use the implementation that will provide the

WFTAI6 with the best speed, flexibility, and simplicity in a

minimum amount of area.

The control signals must be switched at rates of over

50 MHz (for the 3 micron process) in order to keep pace

with the bit-serial arithmetic circuitry. All of the

implementations can operate at this speed with exception of

the microprogramming approach. It would take a great deal

of effort to make the microprogramming approach work for

this application since the control ROM would have to be

TIl
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very small in order to obtain the required access speed.

Since the WFTA chips are being designed from the ground

up, the control signals may change a number of times before

the final timing diagram is achieved. Because of this,

there is a great need for the design to be easily changed.

This is not the case with any of the custom logic

implementations, and, therefore, they must be ruled out.

Of the two remaining options, a sequence register and

PLA or gate arrays, the PLA approach offers the better use

of area and is simpler to design and redesign. Because the

* PLA approach offers a simple and flexible implementation

that can operate to speed in a small area, it will be used

to generate the control signals for the WFTA16.

Solution. Figure 11-3 depicts the type of PLA

A] ~INITIARLIZAIT ION i

H SFF: COLUMN

"A,'ND SEQUENCE
P L,. A PN E P PL AN E R E

Figure 11-3 General PLA Controller
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implementation to be employed to create the required

control signals. This implementation offers better speed

and power dissipation than one that would have the sequence

register's outputs fed into the AND-plane inputs.

Improved power dissipation results from driving only

the product term lines that correspond to the present clock

cycle of the timing diagram high at any one time. The

speed is better for two reasons. First, the low power

dissipation allows the PLA devices to have much higher

current drive. The larger array devices are capable of

switching the PLA lines quicker than the smaller devices

that would have to be used in a standard PLA in order to

keep its power consumption down to acceptable levels.

Second, the signal propagation distance is smaller in the

proposed PLA implementation, thereby decreasing the time

required to generate the output signals. The AND-plane

inputs of the WFTA will be stable long before they are

needed and will remain unchanged throughout the transform

(The inputs consist of only a three-bit scale factor that

is loaded prior to the start of the DFT). Thus, when the

product terms are raised by the sequence register, the

AND-plane inputs will already be stable, and the delay down

A the AND-plane will be eliminated.
6r

The final decision for the controller regards the type

of present state sequencer that will be used to output the

single pulse for each clock cycle in the timing diagram. A
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new present state sequencer that is simple, fast and

requires a minimum amount of area is desired. Again, there

- are a number of possible solutions that can implement the

sequencer. They are a counter/decoder, ring counter, or

Johnson counter (Mano, 1979:286).

The counter/decoder method uses a counter that cycles

through the required number of distinct states while a

decoder decodes the states of the counter into a sequence

of pulses. The ring counter is a circular shift register

with only one flip-flop being set at any particular time.

A single bit is shifted from one flip-flop to the next to

produce the sequence of timing pulses. The Johnson counter

is a special ring counter that uses only 1/2 the number of

flip-flops to achieve the same number of timing signals.

It accomplishes this by passing more than one bit down the

flip-flop chain and using 2-input AND-gates to output the

proper sequence of timing pulses.

Since all three ways of implementing the PLA's

sequencer are of comparable complexity, the choice will be

based upon the speed of the circuit and area needed to

construct it. The slowest method of implementing the

sequencer is the counter/decoder method. This method

requires the signal to propagate through all flip-flops of

the counter in the worse case as well as through the

decoder. The ring counter and Johnson counter are similar

in speed performance, although the Johnson counter is

11-14
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slower due to the extra level of 2-input AND-gates required

on the outputs. The ring counter is the fastest method of

the three. Additionally, since a ring counter can be layed

out in a dense array with one flip-flop adjacent to each of

two PLA product terms, only a small area along the side of

the PLA is needed for the counter's layout. The area

required for the counter/decoder, or Johnson counter, added

to the area required for routing to the product term lines

*-.- would be at least as large as the area required for the ring

counter, if not more. Therefore, the ring counter

implementation of the present state sequencer will be used

to drive the control PLA.

Configuration of the Control Seiuencer. Thus, the

proposed final configuration for the arithmetic control

. circuitry is a Control Sequencer comprised of a PLA, ring

counter with outputs driving the product terms of the PLA,

and control signal output flip-flops. The proposed

*, configuration is depicted in Figure 11-4. The ring counter

will continually cycle a bit around the counter. The pulse

will drive each of the PLA product terms high as it travels

down the ring counter. When a particular set of product

*' terms are driven high by the ring counter, it may stay high

(if all the AND-plane conditions are met) and may cause a

control pulse to be output from the OR-plane. The control

pulse may set or reset a Set/Reset flip-flop (SRFF) or be

broadcast to the arithmetic circuitry through a master/slave

11-15
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Figure 11-4 Proposed Control Sequencer.

flip-flop (MSFF). Since the control signals depend only

upon the present state and the scale factor, the only

external AND-plane input will be the scale factor number.

If a control pulse is always required at a particular time

regardless of the state of external inputs to the AND-plane

(the scale factor), the signal may be taken directly from

the ring counter without going through the PLA.
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.r' " The Control Sequencer must be started and stopped for

each transform the WFTA16 performs. To start the Control

Sequencer, it must have an initialization column with a

one-shot. The one-shot generates an output pulse when the

OPERATE signal transitions from low to high. In order to

stop the Control Sequencer, the bit that cycles through the

ring counter must be prevented from returning to the first

MSFF in the chain. To reinitialize the Control Sequencer,

all ring counter and output flip-flops must be resettable.

They must reset when the OPERATE signal is driven low again

4 (see the Chip Interface Control section of this chapter).

Address Generation Control

Requirements. As was described in the first chapter,

the WFTA makes use of fixed coefficients which result in

fewer I/O transfers. However, the transform data I/O must

still be accomplished for each WFTA chip in the pipeline.

This I/O transfer between the WFTA chip and the external RAM

must take place rapidly and at precisely the proper instant

to insure accurate transform results. The data I/O

transfers are further complicated by the PFA which uses the

Good and Thomas prime factor index in mapping one-

dimensional DFT problems into a multi-dimensional DFT and

back to a one-dimensional result (Good, 1971; McClellan and

Rader, 1979). That is, the transform data must be input and

output in a special order. The retrieval and output of the
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-transform data will not be a matter of simply incrementing a

data address counter. The input data will be spread about

the input RAM according to the Chinese Remainder Theorem for

the size transform being performed. The addressing sequence

must follow the ordering of the Chinese Remainder Theorem to

input and output the data. A more detailed discussion of the

Chinese Remainder Theorem and its use in the PFA is given in

Taylor (Taylor, 1985). Thus, some special address generation

control circuitry is needed to generate input and output

addresses as required by the PFA's data shuffling scheme.

Not only is the address generation control circuitry

required to produce the proper input and output addressing

sequence for each WFTA chip and each transform size, but it

must be built using the minimum possible area of the WFTA

chip, and operate at speeds over 25 MHz. The circuitry must

operate at 25 MHz (3 micron) in order to drive the input and

output address buses with a new address every other clock

cycle at the target operating speed. Since each WFTA chip in

the pipeline (the 15, 16, and 17 point chips) will have four

different DFT sizes to calculate, 12 variations of the

address generation control circuitry must eventually be

realized. Therefore, the flexibility and ease of

implementation for the circuit becomesan important

constraint.

Each WFTA chip's address generation control circuitry

must be capable of generating approximately 4.5K 12-bit
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addresses in the proper order. 12 bits are required per

address in order to address all the data words in the 4080

point transform. The approximately 4.5K addresses that must

be generated consist of the sequence for the 4080 point

transform plus three other transform size sequences which

vary for each WFTA chip (see Chapter III).

Approaches, Trade-offs, and Solution.

Approaches. Two methods to implement the address

generation control circuitry were examined. The address

generation could be accomplished through special purpose,

custom-built circuitry made up of registers, parallel adders,

parallel subtractors, comparators, and gates. Each

implementation would be designed specifically for a

particular WFTA chip. The circuitry would implement the

Chinese Remainder Theorem for each of four DFT sizes per

chip. The custom-built address generation hardware is shown

in block diagram form in Figure 11-5.

The address generation control circuitry could also be

implemented using a counter and a ROM. The ROM could be

personalized with the I/O data addresses in the correct

sequence, and the counter could then sequentially address the

ROM in order to place the proper shuffled data addresses on

the I/O address bus. The four different DFT sizes could be

accommodated by starting the counter at four distinct

locations of the ROM.

Trade-offs. There are five main factors to consider

in determining which of the two methods to use to implement
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Figure 11-5 Custom-Built Address Generating Hardware
(Linderman, 1983:196).

the address generation control circuitry. These five areas

are speed of operation, complexity of design, flexibility,

area required, and extensibility of the solution.

The custom-built hardware had a distinct advantage over

the ROM in the amount of silicon area required. The

custom-built hardware could be implemented in 1/2 the area

it would take to build the ROM circuitry.
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," :"The two methods of implementation would generally have a

comparable speed of operation and complexity of design. The

speed of the custom-built hardware is slowed by its need for

numerous parallel adder, subtractor, comparator, and decision

modules to calculate the addresses. The ROM implementation

is hindered by its need to retrieve each data address from

N the ROM array and the operation of the counter that addresses

the ROM.

The complexity of the custom-built hardware stems from

w ~the difficulty in calculating the correct sequence of data

addresses for each WFTA chip and each DFT size. The

complexity of the ROM stems from the requirement to

personalize it with over 50,000 bits (although this

complexity can be significantly reduced by developing

*software to perform the ROM personalization automatically).

The ROM implementation possesses an advantage over the

custom-built hardware in its flexibility and extensibility.

Not only could the same basic ROM design be used on all three

WFTA chips, but it could also be used on any other CMOS

project that required a ROM.

The last two advantages of the ROM described above are

very significant in the current context of CMOS design at the

Air Force Institute of Technology (AFIT). Since CMOS design

is just getting its start at AFIT, a ROM cell library is

needed. The ROM implementation could be extensible to most

any other future project especially microcode stores for
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C.- Reduced Instruction Set Computers (RISCs). Design time

would also be saved for the WFTA15 and WFTA17 chips if the

ROM implementation was used. Rather than redesigning the

custom hardware, new addresses could simply (and

automatically via personalization software) be placed in

the same ROM design.

Solution. The ROM implementation appears to be

more desirable than the custom-built hardware if there will

be enough room on the WFTA chips. Fortunately, there is

enough room in the control section of the WFTA chips to

support the space required to implement the ROM address

generation circuitry because a very dense ROM design will be

used. This dense ROM is one that uses a very compact XROM

* cell (Wilson and Schroeder, 1978; McKenny, 1980). The XROM

cell is capable of storing four bits in a cell that is just

under 8 x 8 microns square (using the design rules and 1.25

micron process given in Appendix A

More improvement can be obtained from the XROM in the

area of speed if precharging and special output sense

amplifiers are used. These two improvements further the

desirability of the XROM implementation. Additional gains

in speed can be made by outputting more than one data

address from the XROM at a time. By making the XROM word

width 2, 4, or 8 times the width of a single data address, a

similar factor gain in output can be achieved.

In either implementation of the address generation
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control circuitry, both input and output data addresses must

be generated. Once the internal serial data pipeline of the

WFTA chip becomes filled, both input and output addresses

must be generated simultaneously. There are a number of

ways to generate the input and output addresses. One method

is to have two XROM circuits, one for the input addresses

and one for the output addresses. This approach is not

required, however, since the data words will be output to

the same address location as they were input. Therefore,

..two different approaches can be considered.

One approach is to delay the input data addresses the

" proper number of clock cycles in an array of shift registers

until the data word passes through the arithmetic circuitry

and is ready to be output. This approach, however, uses an

excessive amount of area for the array of shift registers.

In fact, for the WFTA16, the necessary delay would require a

shift register array larger than the size of another XROM.

The final approach is to clock the XROM at a rate twice what

is needed for just the input data addresses or just the

* output data addresses, and retrieve both input and output

addresses from the same XROM. The only additional circuitry

required would be a constant number subtractor to be used to

retrieve the output data address which is a constant number

of addresses "back" in the XROM. The input data addresses

would be output from the XROM into a set of flip-flops, and

then the output data addresses would be output to another
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set of flip-flops. Both accesses would be accomplished in

the necessary time to keep both input and output data

addresses available for external use.

The overall XROM access throughput can be increased as

required by designing it to read out a larger number of

addresses at a time. Given the final speed of the XROM

circuit and the rate at which both the data addresses must

be presented (25 MHz for 3 micron), the width of the XROM

can be directly calculated. The width of the XROM is

important to its final speed, however, and a number of

design trade-offs exist to insure the final XROM will be

able to operate at speed (although many sacrifice area and

circuitry to obtain the greater speed).

Configuration for the Address Generation Control

Circuitry.

Circuit Description. The final configuration for

the address generation control circuitry is a counter/

subtractor circuit used to address an XROM that will store

all the sequences of input and output data addresses.

* Figure 11-6 depicts the proposed address generation control

" circuitry. The XROM will output a multiple number of data

addresses on each access in order to achieve the required

g-. speed of operation. The XROM may be split vertically in

order to allow more wordline drivers to drive the XROM

faster. Precharging and output sense amplifiers will also

* be used to increase speed.
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The counter/subtractor circuit will be used to address

the XROM sequentially for both the input and output

addresses. The XROM counter will start at a value

determined by the DFT size to be performed, and continue

addressing the XROM to retrieve input data addresses. The

subtractor will subtract a constant from the counter value

and use that result to address the XROM. This addressing

will retrieve the output data addresses that will lag a

constant amount behind the input data addresses.

The contents of the XROM that are output on an input

data access will be shifted into a bank of flip-flops for

input data addresses. The contents of the XROM that are

output on an output data access will be shifted into a bank

of flip-flops for output data addresses. Both banks of

flip-flops will be multiplexed in order to output one

address at a time on the output data address bus and the

input data address bus.

The XROM will provide the WFTA chip design effort with a

great deal of flexibility in changing address sequences if

required. Additionally, the same design can be used on all

three WFTA chips with differing XROM personalizations. The

XROM cell will also provide a great savings in area of the

chip used over standard ROM designs.

Control Signals Required. The XROM address

generation circuitry and the associated data I/O transfers

will require some control signals. The control signals
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will be generated by the Control Sequencer in the same

manner as it generates the arithmetic control signals.

Each of the eleven control signals necessary to control the

operation of the XROM circuitry will be described below.

SThe description will be presented in the same manner as was

done for the arithmetic control signals. The same waveform

letters will be given from Figure 11-2. The signals

required by the address generation control circuitry are:

1. Precharge - This signal (inverted sense) is used
to allow faster access to addresses
stored in the XROM. It is used to
precharge the bit and sense lines
high.
Waveform: B

2. Load This pulse is used to load the XROM
addressing counter with the proper
value for the size DFT being
calculated.

r Waveform: D

3. Increment This pulse signal causes the XROM
addressing counter to be incremented
each time it goes high.
Waveform: C

4. Latch This signal causes the contents of
the XROM addressing counter to be
latched into the buffer register.
Waveform: C

5. IN/OUT This signal multiplexes the input
data addressing value and the output

* , data addressing value onto the XROM's
decoder address lines.
Waveform: B

6. Shift-Up-In - This pulse signal causes the current
output of the XROM to be latched into
the input data addresses' bank of
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flip-flops. From here the input data
addresses are multiplexed onto the
input address bus.
Waveform: C

7. Shift-Up-Out - This signal causes the current output
of the XROM to be latched into the
output data addresses' bank of
flip-flops. From here the output
data addresses are multiplexed onto
the output address bus.
Waveform: C

8. DONE-IN Compare - This interval signal informs the
DONE-IN comparator circuit that a
valid address is on the bus and a
valid check can be formed to see if
this is the last input address.
Waveform: C

0- 9. DONE Compare - This signal performs the exact same
function as DONE-IN compare except
the check is for the last output
address.
Waveform: C

10. Counter Clock - This two phase signal is a quarter
frequency clock used as input to the
counter circuit. The ripple carry of
the counter requires a slower
clocking speed.
Waveform: A

' 11. Write Strobe This signal is driven off-chip to the
output memory. This signal goes high
one clock cycle after each output
address has been driven onto the
output address bus. The signal
enables the memory write so the
stable transform output data can be
written into the output RAM.
Waveform: A

With these control signals, the XROM address generation

control circuitry can perform its function of outputting

the addresses for both the input and output transform data,

and the output data can be successfully written to memory.
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Chip Interface Control

This section, unlike the first two major sections of

this chapter, addresses the requirements, approaches, and

solutions for control that is required between WFTA chips

or between a host processor and a WFTA chip. Although chip

interface control is not the major thrust of this thesis

effort, sufficient detail had to be known about how the

WFTA chip was going to communicate with external elements

in order to incorporate all necessary on-chip control

circuitry.

Requirements. There are a limited number of

communication signals that must be passed between the WFTA

chip and the outside world in order for it to do useful,

accurate, fault-tolerant, and precise work. These signal

requirements or functions are listed below. Some signals

are relatively straightforward and little controversy

regarding their worth and form of implementation can be

found. Others have a few possible implementations that

could be considered. These interface signal descriptions

will, however, present the type of implementation found to

be the best with regard to function, minimization of pins

needed, simplicity, and past experience (Linderman and

others, 1985:762). The two major options available for

signals that pertain to accessing the pipeline memories or

the W/D operation mode will be presented. These two major

options are off-chip interface control or on-chip interface
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-'- ."-' control. The external WFTA chip control signal
requirements are as follows:

1. OPR - The chip operate signal is an input
signal and serves two functions. It
instructs the WFTA chip to start the
DFT calculation when it goes high. It
resets the WFTA chip when it is
returned to a low state.

2. DONE - The chip done signal is an output
signal and informs the external
processor that the WFTA chip has
completed the DFT and has finished
outputting all data to the output
memory.

3. W/D ERROR - When this signal goes high and stays
high at any time during the transform
calculation, a WFTA chip in the

* watchdog mode of operation has detected
an error committed by the active WFTA
processor.

4. PARITY ERROR When this signal goes high and stays
C. high at any time during the transform

calculation, a parity error on the
incoming data word(s) has been seen.

5. W/D Mode - The chip Watchdog mode signal is an
input from an external processor
informing the WFTA chip that it is to
operate in the watchdog mode. The
output pins will be disabled, and the
chip will compare its operation and
results to the active WFTA chip.

6. W/D START-UP - This signal is required only if the
ON-CHIP interface control method is
used. The signal tells the WFTA chip
in watchdog mode when to start its
operation in order to stay in

* . synchronous operation with the active
WFTA chip. It is an output signal and
is tied to the watchdog WFTA chip's OPR
pin.

• 7. DFT Size - This signal requires two pins for the
four possible DFT sizes each WFTA chip
can perform. It is an input, and
instructs the WFTA chip which size DFT
is to be performed.
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8. Scale Factor This input signal requires three

pins and informs the WFTA chip of

the magnitude of input transform
,data

V.

V. 9. Scale Output - This output signal requires three
pins, and is used to tell the host
processor or the next WFTA chip in a
pipeline what the highest magnitude
of output data was.

10. Load State - This input signal is used to
multiplex two different type signals
on the same input signal pin. The
purpose of this multiplexing is to
save on total number of pins.

11. Pipelined Memory - These signals differ depending
Access Signals on whether ON-CHIP or OFF-CHIP

interface control is used. If
ON-CHIP circuitry handles the
interface control, five signal pins
are required for WFTA chip
Hand-Shaking to control memory
accesses. These five signals are:

a. Done with Input memory..
b. Toggle memory command.
c. Memory switched output.
d. Memory switched input.
e. Next memory available.

If OFF-CHIP interface control is
used, only the first signal, a, is
required.

Approaches, Trade-offs, and Solution.

Approaches. As was previously indicated, there are

.-. basically two approaches to implementing the chip interface

controls. One approach is to place all the necessary chip

interface and pipeline control circuitry on each WFTA chip,

and have each chip control a particular memory in the

pipeline. Predefined communications protocols would be used
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to coordinate transfers between chips, and to signal

neighboring processors when a memory bank was free or being

used. The other approach is to place most of this control

circuitry off-chip on a special Interface Chip. This

Interface Chip would be able to coordinate two or more

processors actions for them by arbitrating the memory and

controlling a small subset of control lines that would

still run to each WFTA chip.

Trade-offs. The biggest advantage to the on-chip

interface control is that the WFTA chip would then be

a self-contained. Only WFTA chips and memory chips would be

needed to implement the PFA pipelined architecture. Most

interfaces would be strictly asynchronous, and the overhead

would be brought to its lowest level. Only active and W/D

processors would have to run on the same clock signals.

The advantages of an off-chip controller, such as a

WFTA Interface Chip, are many. First, fewer number of WFTA

chip pins are needed to implement the interface control

* when it resides off-chip. The W/D startup signal and four

*; of the pipelined memory access signals are not needed in

the off-chip configuration. This accounts for a savings of

five pins. The W/D startup signal is not needed since the

Interface Chip can coordinate the synchronization of the

watchdog and active chips by sending them the OPR signal at

the same time. The Interface Chip would be able to control

memories in a pipelined architecture by knowing when each
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-. WFTA chip finished reading in its data and finished

outputting its results. The Interface Chip would be able to

control all memories and switch them when required. Since

it controlled the memories and started each chip, it would

have little problem coordinating the WFTA chips.

The second advantage of the off-chip controller is its

flexibility. If the chip interface circuitry is placed

on-chip, it may limit the possible configuration of WFTA

architectures. The on-chip solution may only be able to

handle the pipelined architecture with all three WFTA chips

in line. An Interface Chip, however, could be instructed by

the host on the current chip configuration, and control the

chips' operations in a manner appropriate for that

architecture, be it pipelined, shared memory, or a single

WFTA chip.

The third advantage of the off-chip controller is its

simplicity over the on-chip alternative. The off-chip

controller can be much simpler since it controls the

memories and the WFTA chips, and all communications pass

through it. The complicated hand-shaking circuitry required

for the on-chip configuration does not have to be built if

the off-chip controller is used. The chip can then employ

simple operate and done signal lines. Implementing the W/D

mode of operation also becomes a much simpler task if an

off-chip controller can be responsible for synchronizing the

active and watchdog WFTA chips rather than the chips

attempting to synchronize themselves.
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The last, and perhaps the most important, advantage of

the off-chip controller is the added fault-tolerance it

provides. In the on-chip interface control configuration,

a watchdog chip must have its OPR line hardwired from the

active chip's W/D startup pin. In the off-chip interface

control configuration, all chip OPR lines (as well as all

W/D mode lines) are wired to the WFTA Interface Chip.

Thus, the Interface Chip (or the host processor through

the Interface Chip) can dynamically decide which chips are

the active and which chips are the watchdog. In the

* on-chip configuration, active and watchdog WFTA chips may

be switched only if the wiring is redone. The off-chip

controller could also poll three or more WFTA chips to

determine which of the three is really bad if some

watchdog discrepancy occurs. The bad WFTA chip could be

inactivated by the controller. Thus, the off-chip

controller or Interface chip allows triple-cyclic

redundancy checking without hardware reconfiguration.

Figure 11-7 illustrates the general configuration of a

WFTA processing element in the pipelined PFA.

Solution. The advantages of the Interface Chip

over on-chip interface control are many, and therefore,

the Interface Chip will be used to control the WFTA chips

using the control signals described in the previous

section.
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Configuration for the WFTA Interface Chip. The proposed

configuration for the WFTA Interface Chip is shown in Figure

11-8.

The Interface Chip will receive commands from the host

processor, and control the WFTA chips and memory banks in

accordance with those commands. The WFTA Interface Chip

will control the W/D modes of operation, OPR signal timing

to the chips, state loading such as scale factors and DFT

size, scale factor passing from one WFTA to the next,

memories, and the like.

The memory controller module is a large crossbar switch

that switches the memory banks between two WFTA processors

or a WFTA processor and the host. After a WFTA processor

outputs all transform data to a memory bank, the next

processor in the pipeline is connected to that memory bank,

in order to read out the data. This technique allows all

processors in a pipeline to operate simultaneously, once the

pipeline is filled. The memory controller switches two sets

of data, address, and write strobe lines that are routed

directly from two or more processors. Each memory bank in a

"- pipeline is almost always connected to one processor or the

other through the memory controller switch.

The Interface Chip's flexibility and potential for fault

. detection, isolation, and correction has already been

presented. However, Figures 11-9 and II-10 present two

* possible WFTA configurations for two different DFT

applications.
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Since the WFTA Interface Chip was not designed pursuant

to this thesis effort, it will not be presented in the

Design Chapter (Chapter III). It was presented in this

*' chapter, however, to show the viability of the WFTA chip's

control design.

* CONNANDS

- HOSTINTERFACEHOST DONE

CHIP
OPERATE 3 7

IFEIFOCE CONTROL 51GNALS "j N
I MEMIORY CONTROL LINES CNT1L
2 IEMORY CONTROL HANDSHAKE
3 MFTA OPERATE LINES 'N IlFTA
I IF'TA DONE LINES
S VFTA H/1 ERROR LINES RANS I PROCESSORS
6 IFTA PARITY ERROR LINES
7 LOAD STATE CONTROL LINES
8 SCALEIDFT SIZE-NODE BUS

.3-.'

Figure 11-8 WFTA Interface Chip.
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III. Design

Method

Overview. The design of the WFTA control modules was

part of the larger task of designing the entire WFTA chip.

Major subsections of the control modules were designed, and

these cells were used as the building blocks of the control

circuitry.

Since no previous design projects at AFIT were

implemented using CMOS technology, all arithmetic and

control section cells had to be designed from scratch.

Much time and effort was taken to design the critical cells

to minimize the area used, insure functionality, and

maximize speed.

Numerous test chips were designed and fabricated to

test the functionality and speed of the modules designed.

A test chip was fabricated for the Control Sequencer

circuit and for the XROM address generation circuit. The

results of these test chips are discussed in Chapter V.

* The WFTA chip was designed using the tested control and

arithmetic module designs.

Tools. A number of Computer-Aided Design (CAD) tools

were used in designing the cells, modules, and integrated

circuits required for the WFTA chips.

All the circuits were created and edited using Caesar

* (Ousterhout, 1983). Caesar is an interactive VLSI design

'A-
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*i .~ ,,,tool that uses a color graphics display terminal and a

digitizing pad to aid the circuit designer. Design rule

checking was performed on the Caesar circuits using Lyra

(Arnold, 1983)

Simulation tools were limited to SPICE (Nagel and others,

1983) and custom made simulation/validation efforts (Collins,

1985). The SPICE simulation program was used primarily to

determine if the worst-case paths of the design operated at

the required speed. Visual inspection, test chips, and the

custom made simulations were the primary functionality

checkers.

Two final tools were invaluable in helping to verify an

integrated circuit ready for submission. These two tools were

Mextra (Fitzpatrick, 1983) and C Stat, a CMOS version of Stat

(Baker, 1985) developed at AFIT. These tools read an

" integrated circuit layout description in CIF and provide

information on aliased or unconnected nodes and transistors

* ". which could not be affected by the inputs or affect the

outputs.

Design Rules. The circuits were designed using a scalable

design rule set. The design rules facilitate designing for

the 1.2 micron technology and processing at either 1.2 or 3

microns. The CMOS design rules used are listed in Appendix A.

Control Sequencer

Operation. The Control Sequencer design is depicted in

-, 5 Figure II-1. The Control Sequencer dimensions are 1000
.%.
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: Z lambda by 2400 lambda and fit well within the allotted chip

area (see Figure 1-10). The Control Sequencer receives a

level signal, OPR, from off chip to start operation. The

circuit's one-shot produces a single pulse from the rising

OPR signal, and this pulse will be passed down the MSFF

chain which acts as a ring counter. The initialization

column outputs signals to various modules on the chip

(primarily the XROM address generating circuit) to set up

the circuitry for the DFT calculation cycles. The MSFF

chain continuously cycles the single bit of the ring

counter through all bit positions and back to the first

position as long as the DONE signal is not active. As each

MSFF receives the passed bit, its output not only goes to

fi the next MSFF in the chain, but also to the PLA product

terms that correspond to the present clock cycle of the

timing diagram. When a product term is driven high by the

ring counter it may affect the outputs of the OR-plane if

the AND-plane and OR-plane conditions are met. The output

of the ring counter MSFF may bypass the PLA and be input

directly to an output MSFF or SRFF if the signal is always

required (regardless of the external PLA inputs), and if

the clock cycle signal is not OR'ed with any other clock

cycle signal.

The control signals of the timing diagram are output to

the XROM and arithmetic circuitry from the output MSFFs and

*SRFFs. These flip-flops' outputs are controlled by the

111-4
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sequence of pulses received from the Control Sequencer's

PLA output signals or the ring counter output pulses. The

Control Sequencer continues to output the same pattern of

control signals as the bit is cycled around the MSFF ring

counter. This process continues until the DONE signal

(generated by the ROM counter/subtractor circuit) is raised

and the bit is not allowed to cycle back to the first MSFF

in the ring counter.

Testability Considerations. VLSI circuits are

inherently difficult to test, and it is even harder to

isolate faults once they are detected. There are at least

three basic reasons why VLSI circuits are so difficult to

test. First, the number of possible faults is extremely

large. A VLSI circuit contains thousands of transistors

and interconnect lines, all individually subject to

failure. Second, access to all the internal transistor

outputs and interconnect lines is severely limited by the

small number of I/O ports available. Third, the large

number of faults that can occur will require numerous test

vectors to determine correctness or fault (Hayes and

McCluskey, 1980:17).

Because of the difficulty in testing VLSI circuits,

*- techniques to improve the testability of the WFTA chip had

to be incorporated into the design sequence. Three basic

techniques were used to help improve the test

controllability and observability of the WFTA chip.
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The first technique was to serially chain all control

output flip-flops and ring counter flip-flops to external

pins (see Figure 11-2). The serial connections can be

controlled by a pin input called TEST. If TEST is high, the

test configuration is enabled and groups of output

flip-flops become serially linked through transmission

gates. The chip's pins take on a test configuration also,

and each group of linked cells are tied to an input and an

output pad. The contents of the output flip-flops may be

clocked out to the output pin in order to observe the state

of the flip-flops, or test vectors may be loaded into the

flip-flops from the input pins. This approach aids in

fault isolation in both the PLA and arithmetic circuitry,

and allows testing of the arithmetic circuitry to continue

if the control circuitry fails.

The second technique was to connect the arithmetic and

control circuitry to two separate clock pins. This

approach allows testing of the arithmetic circuitry to be

performed for each control signal vector output from the

control circuitry. The state of the arithmetic circuitry

can be left as is while the next correct Control Sequencer

and XROM output vectors are clocked into the output MSFFs

through the test ports. Then the arithmetic circuitry can

be clocked to perform the required multiplications and

additions. In this manner, the correct operation of the

WFTA chip could be realized if the control circuitry were

not functioning properly.
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* Figure 111-2 Test Chaining.

The last technique employed was to provide numerous

probe points on all chips fabricated. This approach

" increased the observability and sometimes controllability

of circuit nodes beyond those that were connected to the

chip's package pins.

These three techniques were integrated into the design

of the WFTA. Groups of cells that are modified to function

in the test configuration when TEST is high are the output

flip-flops and the chain of MSFFs in the ring counter.

Control Sequencer Cells. The cells that make up the

Control Sequencer (CS) can be divided into three main

TIII-7
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groups: the MSFF chain, the PLA, and the output MSFFs and

SRFFs. Each of these groups and selected cells that are

used in each group will be presented below. Descriptions

and schematic diagrams of the cell circuits will be given.

CIF-plots of certain cell features are also presented.

MSFF Chain. The MSFF chain is made up of the

initialization column and the ring counter. Each of these

sections is mostly composed of a chain of double MSFF cells

called "pair." Pair is two resettable static delay

master/slave flip-flops whose devices have been sized for

speed and whose layout area has been compressed. Pair

consists of two MSFFs because each MSFF shares common clock

and reset signals. Each MSFF output has two output drivers,

and a first metal path to the input of the next MSFF in the

chain. The two output drivers are used to output signals

directly to output flip-flops and/or through the PLA for

each clock cycle of the ring counter. Depending on the

timing diagram, both paths may be used, both outputs may be

tied to the PLA, or neither may be used at all. A schematic

diagram of one of the MSFFs in pair is shown in Figure

111-3.

The cell size of pair is 76 lambda by 200 lambda. Pair

has horizontal Vdd and GND lines running in first metal while

all clock and reset lines run vertically in second metal.

A one-shot cell is at the top of the initialization

4 column. The one-shot is made from a pair cell with
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its output drivers replaced with a one-shot circuit. This

circuit takes the output of the first MSFF and ANDs it with

the inverted output of the second MSFF. A schematic of the

one-shot is shown in Figure 111-4.

OPERRTE ________

flSFF-2

'V

11-1

] ONESHO

t -. Thus, if the level OPR signal is input to the first MSFF

2 the output of the one-shot will be a pulse that is high

' r, ,"only during the one clock cycle that the first MSFF outputs

'-"-a one while the second MSFF still outputs a zero.
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The last element of the group is the loop-back circuitry

for the ring counter. Each time the ring counter bit reaches

the last output, it must be fed back to the input of the

first MSFF in the ring counter (the MSFF immediately below

the last MSFF in the initialization column). Since two
inputs must feed into the first MSFF of the ring counter, an

SOR-gate must be used. Additionally, when the DONE signal

goes high the bit must be prevented from looping back. Thus,

an AND-gate must also be placed on the loop-back path. This

loop-back circuitry is shown in Figure 111-5.

CS PLA. The CS PLA is made up of the AND input

drivers, the AND-plane, the OR-plane, and the OR output

drivers. The CS PLA is a NOR-based PLA that seeks to

j- 1improve its device current drive to loading capacitances

ratio by using a "donut" device in both the AND and OR

planes. The donut device cell is shown in Figure 111-6.

The high current drive capability of the donut device is

used to rapidly pull down the product term or OR-column

output line of the PLA. The high current drive is combined

with the small drain and sidewall capacitances of the donut

devices that are connected to these same two lines to

provide for a very fast PLA. The donut device's area is

- minimal for the large gate width of the device allowing for

a fairly dense array structure. It should be noted here

that the drive capability, small area, and small drain

* capacitance of the donut structure is desirable in many

%
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Figure 111-5 Ring Counter Loop-back Circuitry
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situations (not just a PLA). Thus, the donut structure is

used throughout the control circuitry especially when large

current drive is needed in a minimum amount of area.

Each ring counter output has two product term inputs

available (one for each of the ring counter MSFF's two

output drivers). The two product term lines for one clock

cycle state are used for instances when the timing diagram

requires more than one AND term combination of a present

k! state and external inputs. Since there are two PLA cells

for each MSFF, the cells are 19 lambda tall. The AND-plane

SO-cells are 25 lambda wide and the OR-plane cells are 24

lambda wide. The product term and GND lines run

horizontally in the array and the AND-plane input columns

and OR-plane output columns run vertically. The schematic

for the PLA is shown in Figure 111-7.

The input drivers and the output drivers are made up of

donut device inverters for large gate width and

correspondingly large current drive. Static pull-ups are

placed on the OR-column outputs while the ring counter

*drivers serve as the pull-up on the active product term

line.

The n-device pulldowns in the array of Figure 111-7 are

the donut devices. The array is personalized using

contacts and second metal strips. The contacts connect

drains to product term lines in the AND-plane and gates to

product term lines in the OR-plane. The second metal

111-13
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%l
..*.. strips connect the input columns to gates in the AND-plane

and output columns to drains in the OR-plane. This

approach allows a standard PLA chip to be fabricated up to

the contact layer before a personalization must be applied.

The PLA's OR-plane employs a space saving technique of

running two output column lines to two OR output drivers

for every OR donut cell column. This technique allows a

type of PLA folding where two OR-plane outputs that have

mutually exclusive product term inputs can be obtained from

one OR-plane column of devices.

MSFFS and SRFFS. These output flip-flops are

resettable and have large staged-up, donut output drivers.

The MSFF is made from the pair cell without the feedback

loop and with the larger output drivers. In the output

MSFF array, each flip-flop receives its own pulsed input

and outputs that control pulse to the chip one clock cycle

later. The schematic of the MSFF cell is shown in Figure

111-8 (The test cell configuration is shown).

The SRFF consists of two phi 2 latches, set-reset

circuitry, and one phi 1 latch with a large, staged-up

donut output driver. The set-reset circuitry was placed

between the phi 2 and phi I latches in order to minimize

the delay to the phi 2 latch from the ring counter and

PLA. The SRFF is depicted in Figure 111-9 (the test cell

configuration is shown). The cell sizes for the output

d flip-flops are 84 lambda by 250 lambda for a MSFF cell
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which contains two MSFFs and their drivers) and 90 lambda

by 225 lambda for a SRFF cell. The GND, Vdd, and clock

lines run in the same manner as the pair cell.

SPICE Simulations. As was indicated in the method

section of this chapter, the SPICE program was used to

simulated the worst-case path of the control circuitry.

The worst-case path in the Control Sequencer is one that

travels from the MSFF in the ring counter, to the PLA,

through the product term and output line that has the

worst-case personalization, out to a SRFF cell, and finally

out to the chip. A schematic of this worst-case path is

shown in Figure III-10.

Since the signal is allowed two clock cycles to

i<(, traverse this path, the SPICE results may be shown in two

separate illustrations. In the first section, the signal

must travel through the MSFF and the PLA and arrive at the

phi 2 latch of the output SRFF in one clock cycle. The

slowest portion of this section is the path from the output

latch of the MSFF to the input latch of the output SRFF
* 4

through the PLA. Figure III-ll shows the SPICE output for

this path for a rising edge from the MSFF and Figure 111-12

shows the SPICE output for the falling edge.

W7. As the SPICE output shows, the maximum delay is on the

order of 15 nS or a clocking frequency of over 60 MHz.

These results are for the 3 micron process and parameters

as listed in Appendix E. The speed of operation for the
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circuit will improve for the 1.2 micron process due to the

scaling effects (Mead and Conway, 1980:34).

In the second section, the signal must travel through

the SRFF cell and arrive at the phi 2 latches of arithmetic

cells located on chip in one clock cycle. Figure 111-13

shows the SPICE output for this path on a set control

signal, and Figure 111-14 for a reset control signal.

The SPICE output shows the maximum delay to be 18 nS or

a clocking speed of over 55 MHz. Again these results will

improve as the process is scaled down to 1.2 microns.

Thus, the SPICE simulations show that the Control

Sequencer's design can achieve a speed of operation of over

55 MHz for the worst-case path in the 3 micron process.

Operating speeds in the 1.2 micron process should reach

over the 70 MHz target speed with little or no difficulty.

XROM Address Generator

XROM Operation. The XROM Address Generator design is

depicted in Figure 11-15. The XROM Address Generator

,'- dimensions are 2200 by 4000 lambda and fit within the

0allotted chip area (see Figure 1-10). The XROM aadresses

-. are generated by the counter/subcontractor circuit and

applied to the XROM's wordline PLA decoder (8), address

column of the array (1), and 4 to 1 multiplex circuitry at

the top of the XROM array (2). The addressing retrieves a

single 48 bit word from the XROM and outputs it to the
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j , proper MSFF bank (input or output). The 48 bits comprise 4

sequential data addresses that are multiplexed out to the

12-bit input and output data address buses from the input

and output MSFF banks respectively.

The counter/subtractor circuit alternates the addresses

applied to the XROM to retrieve input addresses and output

addresses in an alternating pattern. The number of delays

in the WFTA16 pipeline dictates that the output address

sequence be an exact duplicate of the input address

sequence except delayed by 59 addresses. Since four

addresses are retrieved per XROM access and output

addresses are delayed by two, the subtractor subtracts a

constant of 14 from the input address counter and 2 MSFF

/ delays are added to obtain the correct output data

addresses. Thus, when the counter's value and subtractor's

output are alternated, the XROM output alternates between

input and output data addresses. The set of outputs are

S.-routed and multiplexed to the corresponding I/O address bus

to obtain both address sequences. On start up of the WFTA,

false data may be written out to bogus address locations

until the pipeline is filled. However, this data will

eventually be overwritten.

The speed of the XROM is improved through the use of

precharging and output sense amplifiers. When Precharge

rises, new addresses flow into the PLA decoder, 4 to 1

multiplexer, and address columns. The information flows as

111-26
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far as the wordlines from the PLA decoder, the one channel

of four is selected, and the address columns are driven.

Concurrently, all bitlines and sense outputs are precharged

high. During Precharge', the appropriate bitlines and word

sign bitlines are pulled low through the array devices.

The outputs are latched near the end of Precharge'. This

scheme results in simple and fast address generation from

the XROM.

Another technique employed to increase the XROM's speed

of operation is to break the array vertically into smaller

blocks. This technique decreases the length, resistance,

and capacitive loading of the wordlines. It does, however,

sacrifice some area since the PLA decoder circuitry that

drives the wordlines must be duplicated.

The XROM Address Generator shown in Figure 11-15 and

described briefly above has a number of circuit modules

that deserve further explanation. These descriptions of

* specific cell operation will be delayed and presented with

the schematics and cell descriptions given in the "XROM

* cells" section.

Testability Considerations. The discussion and

techniques presented in the Control Sequencer Testability

Considerations section apply here as well. All three

techniques used for the Control Sequencer can also be used

on the XROM to increase the testability of the circuit.

Probe points were placed as often as possible to achieve
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greater observability of the XROM circuit (although placing

probe points within the dense XROM array was not

practical). The XROM output MSFFs and counter/subtractor

MSFFs were serially chained together so the proper

addresses could be controlled or observed from test pins.

Test vectors can be loaded into the counter/subtractor

MSFFs, and the XROM output can be read from the output

MSFFs. Finally, the XROM clocks were not connected to the

same pins as the arithmetic circuitry. All of these

techniques (presented in the Control Sequencer Section)

were designed into the XROM circuitry.

Another technique that would be useful during WFTA chip

testing is to control the input and output data addresses

externally. If the XROM circuit did not function properly

,:.:. during a WFTA chip test, the arithmetic and Control

Sequencer sections could still be successfully tested by

externally applying the correct address sequence to the

input and output data RAMS.

.. Although all the above techniques are useful, the key

* to success is insuring that an operational XROM test chip

is produced before fabricating the WFTA chips.

XROM Address Generator Cells. The cell descriptions

1r7 for the XROM Address Generator circuit are given in the

paragraphs below. The cell presentation will be given in

* .- the same order as the signal information flows through the

* -circuit. The placement of the cell in the overall XROM
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circuit can be seen by referring to Figure 111-15.

Load State PLA. The Load State PLA is used to

initialize the XROM circuit for a particular DFT size as

determined by the two-bit DFT size variable externally

input to the WFTA chip. The Load State PLA circuit is

depicted in Figure 111-16.

The two-bit DFT variable externally loaded in the

WFTA16 chip is stored in the two-bit state register. Table

III-i shows each of the four 2-bit DFT variables and its

corresponding DFT size for the 15, 16, and 17 point WFTA

chips.

. OFT" WFTN PROCESSOR SIZE

VRRIRBLE is 15 17

O 8 408 480 4088

1 1 15 16 17

1 8 255 272 255

1 1 248 240 272

Table III-1 DFT Sizes for WFTA Processors.
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Figure 111-16 Load State PLA

The outputs of the state register are input to the AND-plane

of the Load State PLA. For each DFT size, a corresponding

start counter value, last input XROM address value, and last

output XROM address value are output from the PLA in a

33-bit wide word. The PLA outputs remain stable throughout

the calculation of the DFT. The start counter value is

. loaded into the XROM addressing counter in order to start

the address output sequence at the correct location in the

XROM for that DFT size. The last address values are used to

generate the DONE-IN and DONE signals that are used for

external interfacing and stopping of the WFTA processor.
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The PLA is made up of the same cells used in the Control

Sequencer PLA.

Counter/Subtractor. The Counter/Subtractor cell

performs two main functions. It generates the XROM address

and it outputs the DONE-IN and DONE signals. This

Counter/Subtractor circuit is depicted in Figure 111-17.

The counter is loaded from the start counter value

output of the Load State PLA. The counter output is

latched into an output buffer to allow the counter to

operate while the last counter outputs are still stable.

The counter output is applied to the XROM for four clock

cycles when the IN/OUT signal is high. During the next

four clock cycles (when IN/OUT is low), the subtractor

circuit's output is applied to the XROM. This alternating

scheme is continued to output both input and output data

addresses from the XROM.

After each of the eight clock cycles needed to address

the XROM with both input and output addresses, the

counter's new incremented value is latched into the output

* buffer for the next set of accesses. The control signals

(Counter Clock, LOAD, INC, and IN/OUT) are generated by the

Control Sequencer.

While the circuit is addressing the XROM, two compara-

tor circuits are operating to flag the last input access

. and the last output access. The DONE-IN flag is set when

the last input data value has been read and the input memory
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S.is free to be released by the Interface chip. The DONE

flag is set when the last output input data value has been

written to the output memory. This flag stops the WFTA

operation by inhibiting the Write Strobe signal immediately

after writing the last data word to the output memory, and

by stopping the bit in the Control Sequencer ring counter

from cycling back to the first MSFF in the chain. The DONE

signal also informs the Interface Chip that the assigned

DFT has been completed.

The counter and subtractor cells must be capable of

operating at speeds 8 times and 4 times slower than the

system clock respectively.

A loadable counter capable of operating at these speeds

was designed and implemented. The counter bit-cell and LSB

cell are shown in Figure 111-18 and Figure 111-19

respectively. The counter is a loadable, asynchronous,

binary counter that receives LOAD and INC control signals

as input. When LOAD is high for two clock cycles the

counter is loaded with the value applied to the load

[ lines. The normal operation of the counter is controlled

by the INC control signal. An examination of the counter

cells will show that the worst-case "roll-over" can occur

V_ in one clock cycle provided that the clock rate is slow

enough to allow the ripple carry to travel through 11

transmission gates with a driver between each.
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The subtractor cells were designed to operate at the

speeds required by capitalizing on the fact that the

subtractor will always subtract a hard-wired constant.

Since the constant is designed into the circuit, each normal

full-subtractor bit becomes a type of half-subtractor.

- The Boolean equations for a full-subtractor's borrow and

difference are:

B = x'y + x'z + yz

D = x'y'z + x'yz' + xy'z' + xyz.

If x is the bit input, y is the fixed constant, and z is the

borrow from the previous bit, the equations reduce to

B x'z

D = x'z + xz' = x + z

for a fixed-O subtract, and

B =x' + z

D = x'z' + xz = x • z

for a fixed-i subtract.

These equations can be simply implemented as shown in

Figure 111-20 for both fixed-0 and fixed-i subtractor cells.
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:. .The borrow and difference outputs are obtained with only

one transmission-gate delay. The borrow signal that is

propagated down through the subtractor is buffered by a

double inverter every four bit cells to improve the

circuit's speed since the delay is proportional to the

square of the number of series devices (Mead and Conway,

1980:22,23).

The last address comparator circuits are implemented as

shown in Figure 111-17. Each bit of the counter or

subtractor output is XORed with the last address value from

the Load State PLA. These 11 XOR outputs are ORed together

and this signal is input to a SRFF after being ANDed with a

COMPARE control signal. Thus, the DONE or DONE-IN SRFF

will be set only if the last address was stable on the

subtractor or counter outputs respectively. The DONE-IN

and DONE flags are delayed so as to not halt processing

before the last address (input or output) is placed on the

data address bus for two clock cycles.

XROM PLA Decoder. The XROM PLA decodes the 8-bit

address input and raises the wordline that corresponds to

that address. The XROM wordline decoder is a NAND decoder

that provides a regular and compact structure. This

structure can be easily placed along the side of the XROM

array and allows the decoder personalizations to be placed

in any order desired. The former characteristic saves chip

area and the latter allows
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* the easy implementation of ROW swapping discussed in Chapter

IV.

The use of a "snaked" gate on the series NAND devices

provides for large device width with a small diffusion

area. The vertical pitch constraint of the decoder cells is

very small to match the 12 lambda height of the XROM cell,

and the series devices must fit within this height. By

having two decoder cells share contacts to the vertical

input and input' lines, and personalizing the decoder cells

in polysilicon, additional space is saved for greater active

-* area widths. A double NAND decoder cell's CIF-plot is shown

in Figure 111-21.

Wordline Driver/Pullup. Normally, the decoder's

% ( output to the wordline is pulled high when it is not the

-', selected wordline. The decoder's output is input to the

XROM's wordline througTh three staged-up inverters. The

three inverter's invert the decoder's output signal and

provide for fast switching of the XROM's wordline. The

static p-device pullup and the three wordline driving

inverters are layed out in the same 12 lambda vertical pitch

per wordline as the decoder was. The CIF-plot of the pullup

and first of the three inverters is shown in Figure 111-22.

The schematic for a wordline slice of the XROM NAND PLA

decoder and the wordline driver is shown in Figure 111-23.

XROM Array. The XROM array (briefly introduced in

Chapter II) is the means by which all of the proper
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i .. ...'

NPRODUCT TERM

XRO1I
W.ORLINE CELL

". Figure 111-23 XROM Decoder Schematic

data address sequences are stored in a small area. The XROM

cell is the key element of the XROM array, and must be

understood to appreciate the array's operation.

The XROM cell receives its name from the pattern of

devices which resemble the letter X as can be seen from

Figure 111-24. The column address lines (labeled PRECH+AO

and PRECH+AO' in Figure 111-24) are driven high and low when

Precharge is low. At that point, the wordline of the XROM

that is driven high has already turned on any n-devices whose

gates are on that wordline. If the device's source is

connected to a column address line that is selected and pulled

low the bitline will be pulled low. If the device's source is
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Figure 111-24 XROM Cell Schematic

connected to a column address line that is not selected (and

is high) or if no devices are connected to the bitline

(because of the programming), the bitline is not pulled low.

If a device is connected to both address lines, the bit line

will still be pulled low since the n-device will pass a low

voltage more strongly than a high voltage. Additionally, the

bitline voltage only needs to drop below 3.3 volts

- (approximately) for the sense amplifier to "sense" a zero.
S

The active area personalizations on each wordline

determine the data word output on the bitlines. Each XROM

cell stores four bits, two (one for AO, one for AO') for each

'., ,wordline that runs through it. A zero is represented by no

1 .

Ii111-43

0o . .... .. . , ,. . . . . . , ,. _ . .



active area personalization and a one is achieved by

placing active area to create an n-device. Figure 111-25

show two of the 16 possible cell configurations.

4

0A

!~
. . • iilL-,i~ ~....... . -.."... •. ..

. i !i ~i:~
, i i i i 'ii !i..... .. .. ....... -

0 a.) AO bits b.) AO' bits

Figure 111-25 Two possible XROM cells.

Figure III-25-a shows a "one" personalization for both AO

bits in the cell and Figure III-25-b for both AO' bits.

The XROM array shown in Figure 111-26 is made up of cells

that have four one bits or four zero bits. An improved

cell is described for the four zero bit cell in Chapter IV.

.... 111-44
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The WFTA16 XROM array outputs a word that is 192 data

bits and 4 word sign bits wide. The word sign bits are

used to invert portions of the data words output (see

Chapter IV). The 192 data bits are multiplexed to 48 bits

by the 4 to 1 multiplexer contained in the sense

amplifier/multiplexer cell. Eight of the XROM addresses

are input to the PLA wordline decoder and one is input to

the address column lines that run vertically between

bitlines in the XROM array.

The XROM array is built from XROM cells properly placed

on the bit and column address lines. The 8-bit address

applied to the PLA wordline decoder determines which

.I wordline is driven high and able to turn on its n-devices.

The address bit input into the address column lines

-L ,.determines which side (left or right) of the bitlines'

personalization will be output on the bitlines. The 2-bit

address input to the 4 to 1 multiplexer then selects the

one bitline of four in a "column-byte" to be output through

the sense amplifier. This process reduces the 192-bit data

G word down to the desired 48-bit data word. The four word

sign bitlines placed in the middle of the arrays are always

selected and are used in the sense amplifier cells. A

*- section of the XROM array is shown in Figure 111-26.

Multiplexer/Sense Amplifier. The Multiplexer/

Sense Amplifier cell selects one of four XROM bitline

outputs, and outputs that bitlines' data or inverse

11 %-4
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depending on the column sign bit and word sign bit. The

sense amplifier speeds the operation of the XROM circuit.

Figure 111-27 depicts the schematic of a non-inverting

multiplexer/sense amplifier circuit. The inverting circuit

(used when the entire column's data is to be inverted, see

Chapter IV) is the same except the word and word' inputs to

- the transmission gates are reversed.

PR ECHOR GE

SENSE HIfPLIFIER

SELECT___

XROM COLUMN-BYTE

Ficlure 111-27 Non-inverting Multiplexer/Sense
Amplifier Schematic
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The multiplexer portion of the circuit is implemented

with the four n-devices that select the one of four

bitlines. The n-device whose gate is driven high by the 2
to 4 decoder allows its bitline information to pass into

the sense amplifier portion of the circuit.

The sense amplifier operates in the following manner.

The bitline from the XROM array will be approximately 3.3

volts when not pulled low because the bitlines are

precharged high through the multiplexer's n-device. At

this voltage the sense line will not drop below the 5-volt

precharged level since the n-device of the multiplexer is

between the bitline and sense line. As the high

capacitance bitline is slowly pulled low by a n-device of

the array, the n-device of the multiplexer will be able to

rapidly discharge the small capacitance of the sense line.

With the sense inverter designed to switch at approximately

4 volts, the bitline's state is quickly "sensed". Figure

11I-28 shows the voltage traces of the bitline and sense

line during a read of a one data bit.

One of the keys to the sense amplifier operation is

keeping the capacitance on the sense line small while still

having large current drive through each of the four

multiplexer devices. The solution to this problem was to

use a donut device for each of the multiplexer devices.

The donut devices provided large current drive with minimal

drain and sidewall capacitances on the sense line. The
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Figure 111-28 Sense Amplifier Operation.

donut devices can be seen in Figure 111-26.

Word Sign Bit Sense Amplifier/Driver. The word sign

bit sense amplifier/driver cell operates in a manner very

similar to the multiplexer/sense amplifier cell described

above. The differences are that no multiplexer is needed,

the output is never inverted, and greater output drive is

needed. The circuit's schematic is shown in Figure 111-29.

The cell handles two word sign bitlines by duplicating

the circuit shown in Figure 111-29. The cell and word sign

bits are placed in the middle of each XROM array half and

control the word and word' inputs to the column sense

amplifiers. A word sign bit output controls a 12

column-byte group, and its output must be used to determine

which state (x or x') of the sense amplifier signal is to be

output for that group. The word sign bit sense amplifier

111-49

"i ' -
'

' ' . . .-- 'J -, . . . v ' . '. - . - " - - 4 * - * * - * ' - . " . . ' -. . - . . .. . • - . - ,- -. -, -. -. -. . .. -. -, -



L.

PRECHftRGE

SENSE AMIPLIFIER

WJORD SIGN
BIT COLUMIN

Figure 111-29 Word Sign Bit Sense Amp.

- -, circuit can operate faster than the column sense amplifiers

which allows the word and word' signal to arrive in time.

The improved speed is a result of the reduced capacitance

on the sense line.

MSFF Banks/Final Multiplexer. At this point the

data addresses output from the XROM need only be routed to

the proper MSFF bank (input or output) and multiplexed out
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to the input or output data address bus. Both the input and

output bank of MSFFs are connected to the XROM outputs. The

XROM output signal is passed through the input MSFF bank in

- first metal in order to reach the output MSFF bank placed as

* shown in Figure 111-15.

The input and output MSFFs have transmission gates on

the inputs. The XROM outputs are shifted into the proper

MSFF bank by the SHIFTUP-IN and SHIFTUP-OUT control

signals generated by the Control Sequencer.

Once the 48 bits retrieved from the XROM are stored in

the proper MSFF bank, a multiplexer for each bank outputs

the four 12-bit addresses to the appropriate data address

bus every two clock cycles. The multiplexer circuit is

4 r. simply a transmission gate controlled by a 4-bit ring

counter on each MSFF output path to the address bus.

SPICE Simulations. The worst-case path of the XROM

address generation circuitry was simulated using the SPICE

program. The schematic of the worst-case path through the

XROM is shown in Figure 111-30.

This path can be broken up into two sections for the

sake of presentation. The first section consists of the

addresses being input to the PLA decoder and the wordlines

changing state. The second section uses the wordline signal

as the input to the XROM devices which changes the bitline

and sense amplifier output. The time to traverse each path

separately can be summed to determine the total XROM speed.
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Figures 111-31 and 111-32 show the timing for a

wordline being selected and unselected respectively. The

worst-case time for the wordline transition is less than

35 nS after the address is applied to the decoder. Figures

111-33 and 111-34 show the timing for an output going high

and returning low respectively. The Precharge cycle

returns the output low while the output must go high during

the Precharge' cycle. As the SPICE simulations show, both

of the output transitions can occur within 25 nS of the

wordline changing state.

Thus a data word can be retrieved from the XROM in

60 nS (35 nS Precharge time) for a 3 micron process and a

SPICE model as given in Appendix E. This means that four

data address words can be output at a rate of over 65 MHz

per word. Since input and output data addresses must be

output to the bus simultaneously, the XROM must perform two

accesses. This effectively cuts the rate in half to just

over 30 MHz per data word pair. Since a new input and

output data address pair is needed only every other clock

cycle, the system clock can run at a rate of over 65 MHz.

This figure is compatible with the 55 + MHz operating sp( *d

of the Control Sequencer. In fact, since the Precharge

signal is generated by the Control Sequencer, it can be

-i produced from a quarter frequency clock (as long as the

clock speed is less than 60 MHz for the 3 micron process).

Additionally, a speed increase is expected for a 1.2 micron
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process implementation of the XROM circuit as was expected

for the 1.2 micron process implementation of the Control

Sequencer.
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IV. Automatic Generation of the XROM

Overview

The XROM circuit used on the WFTA16 must store 4 1/2K

of 12-bit addresses to calculate the 16, 240, 272, and 4080

point DFTs. The WFTA15 and WFTA17 chips must store a

similar number. Thus, an efficient procedure to

personalize the 54K bits within the XROM must be found.

Obviously, manual personalization of the XROM using Caesar

would be very time consuming and error prone. The

placement of the personalization ones and zeros is further

complicated by the XROM's intricate design. Therefore,

software that automatically produces a layout description

of the personalized XROM for a given list of data addresses

is essential.
I.

Since a computer program is to be developed to

personalize the XROM, it would be desirable to write the

program to optimize certain parameters within the XROM

before generating the layout. The software will therefore,

include programs that attempt to optimize the power

dissipation, speed, and yield of the XROM by minimizing the

number of transistors and drains in the XROM array.

This chapter will present the development and imple-

mentation of the software that optimizes the bit pattern

arrangement of the XROM personalization and generates a

Caesar file layout description of the result. It will be

-IV-1
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shown that the transistor minimization problem can be cast

as the classical graph partitioning problem, and that the

drain removal problem is a disguised version of the

Traveling Salesman Problem. The information in this

chapter is presented in the following order. First, the

; '.: development and procedure used to minimize the total number

of devices in the XROM is described. Second, the

development and procedure used to minimize the total number

of drains in the XROM is described. Third, the software

that implements the two optimization routines is

*- presented. Finally, the methods and software used to

automatically generate the XROM personalization are

presented.

XROM Optimization: Minimizing Total Devices

Overview. If the total number of devices or "ones" in

the XROM can be significantly reduced, the yield, power

dissipation, and possibly the speed of the XROM will be

improved. Since the percent yield of any CMOS LSI circuit

is inversely proportional to the number of active devices

per square micron of silicon (Ong, 1984:343), deceasing the

number of devices in the XROM will result in improved

yield. The speed of operation for the XROM will generally
S

be improved by removing dj.vices since worst-case wordline

gate capacitances and bitline drain capacitances will

usually decrease. As a result of the decrease in the

,.- IV-2
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overall XROM capacitances described above, the switching

power dissipation will decrease proportionally.

The remainder of this section will describe the manner

in which the total number of devices in the XROM are

minimized. Basically the procedure consists of varying the

address lines used for particular address positions, and

2'Y applying a number of complex sign bit operations to each

addressing configuration until the minimum number of devices

is achieved.

Varying the XROM's Addressing Scheme. The number of

address lines used for a particular XROM depends on its

' storage size. The swapping of two or more addresses to the

-4" XROM will only change the placement position of each bit in

i (the array, not the total number of one-bits. What makes the

addressing scheme important in minimizing the devices is the

fact that the changed bit placements may increase the

* usefulness of the XROM sign bits. That is, certain bit

placements may have a "better" clustering of ones than

-, others, and these clusters of ones can be eliminated by the

[* correct placement of an inverting sign bit. The organi-

zation of the XROM's sign bits will be presented in the next

- section. However, this organization is such that only the

*V address lines used for the multiplexer at the top of the

. -XROM bitline columns and the address that is input directly

to the XROM array can cause the sign bits to be more or less

effective. Changing the address line order in the PLA

- ,
-. . .. IV-3
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" .- K. wordline decoder will only change the location of data and

sign bits, not their 0 or 1 state.

Additionally, certain addresses may not be used to try

to improve the sign bit effectiveness. This limitation

applies to any higher ordered address that does not run the

complete binary number range due to the XROM being a size

-. other than a power of two. For example, the XROM for the

WFTA16 chip has 4 1/2K of data words. Since the XROM

outputs four words at a time, 1 1/8K addresses are needed

to access all the contents of the XROM. The higher ordered

-7t four address positions of the 11 bits required do not cycle

through to the maximum addressing capability of 2K. Thus,

4-. these four addresses must always be used in the PLA

(." wordline decoder and cannot enter into the optimization

.. routine. If these addresses were considered, and were

input directly to the XROM array or the multiplexer, the

addresses applied to the XROM would not run sequentially.

A nonsequential input to the XROM is not desirable for this

application and will not be considered due to the

* additional complexity it would introduce.

Therefore, the use of the address lines to minimize the

number of devices in the XROM shall proceed in the

following manner:

1. The bits of the XROM are placed for each possible
address configuration that can affect the sign bit
effectiveness (for the WFTA16 XROM there are 7
candidates for the address column and 6!/4!2!

0 - combinations for the multiplexer addresses = 105
. *". configurations)

-. I



2. The sign bit scheme described below is applied for each
address scheme.

3. The address and sign bit scheme that produces a minimum
number of devices is used.

XROM sign bits. If the XROM (or any other ROM) used no

sign bits and did not invert the state of any row or

column, the maximum number of possible transistors in the

XROM would be equal to the size of the XROM. For example,

- the XROM used on the WFTA16 chip could be personalized with

up to 54K ones in the worst case. Of course since the

actual contents of that XROM are sequential addresses, the

number of ones is more near half that figure. Figure IV-1

shows the distribution of the number of transistors in a

54K XROM for six classes of stored data. The six

-. transistor distributions of Figure TV-i are for 50 randomly

• -" generated data cases; WFTA15, WFTA16, and WFTA17 addresses;

and 4080-point WFTA and DFT coefficients. For each type of

* S data, the number of cases that resulted in a particular

number range of transistors per XROM are given. Note that

the figure depicts the 50 random distributions with an

average number of ones equal to 27,632 with a standard

deviation of 103. The 54K WFTA15, WFTA16, and WFTA17 XROMs

storing addresses have an average number of ones of 26,388,

26,448, and 26,504 respectively. The four 54K XROMs

storing transform coefficients average 27,577 transistors.

In any of the above situations, the average number of

IV-5
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ones in an XROM may be reduced if a single sign bit is used

for the entire XROM array. The sign bit is set and all

bits in the XROM are inverted if the original number of

one-bits is over half the XROM size. The sign bit is not

set and the XROM is left as is if the number of one-bits is

less than or equal to half the XROM's size. If the sign

bit is set, the data is inverted (again) when output to

restore its original sense. Situations where the total

number of ones is less than or equal to half the XROM size

will not produce a decrease in the number of total ones

using this method. However, on the average a single sign

bit will decrease the number of ones in the array. Figure

IV-2 shows the same six XROM data class cases as Figure

IV-l only a single sign bit has been applied to the entire

XROM. Notice that the random case distribution is no

longer normal and the average number of ones has shifted

down to 27,561. The results for the other five classes of

data show little or no gain in the number of transistors.

The use of sign bits can be extended to one sign bit for

each half, quarter, eighth, etc., of the XROM array. Each

step adding some complexity, but producing a smaller number

of ones in the array on average. This increase in sign bit

effectiveness is due to the fact that if a sign bit governs

a "small" number of bits, the overall odds that the number

of ones will not be near half the size of the group of bits

are better than the odds would be if the sign bit governed

IV-7
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a "large" group of bits. For example, if the division

process is taken to the extreme, one sign bit could govern

one XROM bit, and an XROM array with all zeros would be

guaranteed. Unfortunately, the contents of the original

XROM would be duplicated in the sign bit array that is as

large as the XROM.

The use of one sign bit for each data word (be it a

random number, address, transform coefficient, or two's

complement number) seems intuitively appealing since it

would have the sign bit governing a small number of bits,

* have a straightforward sign bit assignment procedure, and

there is some "correlation" at the word level (for example,

negative two's complement numbers with a small magnitude).

However, since the XROM for the WFTA chips has a four to

one multiplexer for each output data bit, the sign bits

would have to be multiplexed also. This would add

significantly to the access time of the XROM.

Additionally, one sign bit for each data word would have a

significant layout area cost. Thus, a single sign bit (to

*be referred to as a word sign bit) for each of four data

words in a group was used on the WFTA chip XROMs. Figure

IV-3 shows the six XROM cases used in Figure TV-i with a

sign bit applied for every four data words. All six types

of data stored in the XROM show a substantial decrease in

the average number of transistors per XROM over the results

given in Figure IV-I.

IV-9



d2ru
4 zc

0

=0-L

(.L c-
u.

LU"'!



S - - - - -r- -- . - 9 : - r w ,- . -- . .. • - - , . -

One final "sign bit" operation was used on the XROM.

Since the word sign bit contents must be used by each

column's sense amplifier to determine if the bit or

inverted bit sense is to be output, the bits in an entire

column of the XROM can be inverted by using a sense

amplifier with the word and word' lines reversed. The use

of this inverting column sense amplifier will be referred

to as a "column sign bit." It is important to note that

because each bitline into the XROM's 4 to 1 multiplexer can

be the AO or AON bit, and because one sense amplifier

*operates on the output of the multiplexer, a column sign

bit governs a column that is eight bits in width (a

column-byte). Figure IV-4 shows the six XROM cases used in

ti Figure IV-I with the column sign bits and then the word

sign bits applied.

At this point, the combination of varying the addressing

scheme of the XROM and the application of column and word

sign bits produces a distribution of ones for the six cases

as shown in Figure IV-5. During this phase, word sign bits

were applied both before and after the column sign bits.

The XROM solution with fewer transistors was used.

Prearranging XROM Columns. The effectiveness of the

XROM's word sign bits can be improved by rearranging the

r column-bytes before the word sign bits are applied. If

column-bytes that are similar (or strongly correlated as

. .determined by a correlation scheme) are grouped together

kI0Vo1
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under the control of a single word sign bit column, a lower

total number of devices (or ones) in the XROM can be

achieved. Thus, the method to obtain a minimum number of

devices develops into the following procedure.

1. Place the bits for each of the particular address

schemes.

2. Save the placement pattern for step 8.

3. Apply column sign bits.

4. Calculate the column correlation distances as
determined by the correlation scheme.

5. Group the columns with maximum correlation distances
between them together.

6. Apply the word sign bits.

7. Note result.

8. Restore the current address scheme's original bit
placement, and apply steps 4, 5, 6, and 3 in that
order.

9. Note result.

10. Return to 1. unless the possible address schemes have
been exhausted.

11. Use the result that yields a minimum number of XROM
devices.

The column arrangement procedure yields a lower number

of devices by grouping column-bytes that have the most

similar one/zero patterns under the control of a single word

sign bit column regardless of what data word that

column-byte belongs to. However, the proper data words must

be recovered from the scrambled column-bytes. The two items

of this procedure that are yet to be described are the

IV-14
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correlation scheme used, and the method of partitioning the

strongly correlated columns into groups.

The Column Correlation Scheme. A simple and efficient

technique is needed to determine the number of ones that can

be removed from the XROM array if two given column-bytes are

placed under the control of the same word sign bit column.

Since word sign bits exist on each row of the XROM, the

problem can be reduced to finding the correlation distance

between two eight-bit bytes of data and applying that

measure to all the rows of the two column-bytes of

interest. The measure for each row can then be summed over

all rows for the total correlation distance between two

column-bytes.

Since each eight-bit byte in a column (and each word sign

bit in a word sign bit column) has a column address (AO) and

a column address' (AON) portion, the correlation scheme must

total the similarities between column-bytes for the AO half

and the AON half. Table IV-1 shows the correlation value

matrix used to calculate the correlation distances between

two bytes within a column. The correlation value matrix

assigns a complex number to each data byte in the XROM

array. The Manhattan magnitude of this complex number

indicates the byte's potential for zero bits (over four).

Thus, a byte with half ones and half zeros in both AO and AON

nibbles receives a correlation value of 0. It has no

potential to obtain over four zeros in that byte whether

IV-15
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NIER3 1- 2J I1- J 1 1 + J I 12J

OF ONES IN - 2J
.REAL(, 2 - 2J -J , 2
HRLF OF 1 -1 - 2J -1 - J -1 -I + J -1 + 2J
BYTE 6 -2 -2J -2 - J -2 -2 + J -2 + 2J

1 1 2 3 4

NUPIBER OF ONES [N [IAGINflRY (Rll) HALF
OF BYTE

'0

Table IV-1 Correlation Value Matrix

• .it is inverted or not. High potentials (2-2j, 2+2j, -2-2j,

-2+2j) are awarded to bytes that have an AO half with four

ones (+2) or four zeros (-2) and AON halfs with four ones

(+2j) or four zeros (-2j). The bytes with the high correla-

tion values shown above can end up with all zero bits in the

0byte since 2 sign bits operate on each byte (AO and AON).

The importance of the correlation procedure is that the

AO and AON word sign bit pair must invert or not invert the
or

bits under its control based on the total bit count for all

data bytes in its data word area. For the WFTA chip's XROM,

there are 12 data bytes in each data word. If column-bytes

with all ones are grouped with an equal number of column bytes

IV-16
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with all zeros, there is no potential to obtain any more

than one half zeros in that data word area even though

individual correlation values are high. Therefore, the

correlation values must be used to calculate the

correlation distance between every column-byte pair in the

XROM, and a partitioning algorithm must be later applied to

group those most correlated together. The correlation

distance between column-byte x and column-byte y is

calculated by,

[ •Rows-1

Z Re(xi + yi) + Im(xi + yi)
i=0

" -. As indicated previously, the same correlation metric is

applied over all rows and summed. Each row calculation

determines the real (AO) potential for zeros (over two) and

the imaginary (AON) potential for zeros (over two) for two

bytes and adds them.

The result of applying this correlation distance metric to

all column-byte pairs of the XROM is a symmetric, fully

connected graph with each column-byte serving as a vertex.

Solving the Graph Partitioning Problem (Kernighan and Lin,

1970). For the WFTA chip XROMs, the column-bytes must be

"*'- partitioned into groups of 12. Each column-byte has a

-.. symmetric edge distance to each of the remaining 47

column-bytes in the XROM. The column-bytes can be viewed as the

-, (~*'.ivertices of a symmetric digraph with ((48)2/2)-(48/2) = 1128

" -.' IV-17
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edges. This section will present an efficient heuristic

procedure to partition this graph into the four groups of

12 so as to minimize the total cost of the edges cut (or

N2 maximize the correlation cost within the group). The

procedure was developed by B. W. Kernighan and S. Lin in 1969.

"- The graph partitioning problem is in a class of very hard

problems known as NP-complete (Hyafil and Rivest:1973). An

exhaustive search for the optimum solution to the problem at

hand would result in

41 (48 (16) (24)~ x 12\151/41 x(12 x 12 x 12 x 12 = 2.7 x 1050 cases.

..

K. Thus, we must turn to a heuristic approach.

The Kernighan and Lin heuristic divides a given graph

of 2n vertices into two subsets of n vertices each. Thus,

the heuristic must be applied again to each partition of 24

column-bytes after they are generated. The heuristic

starts with any arbitrary partition A, B of set S, and

*e tries to decrease the external cost of the partitions by a

series of interchanges of subsets of A and B. The external

cost is the sum total of all link costs between each vertex

in one partition and all the vertices in the other

partition. When no further improvement is possible from

interchanging subsets of A and B, a local (perhaps global)

. .** ~minimum has been found. Repeated application of the

algorithm on arbitrary starting partitions provides a

IV-180:



b ,.',-' fairly high probability of obtaining the optimum partition

(75% probability in this application and a 100% probability

that the solution is within 10% of the optimal).

The algorithm's power results from the use of a

difference measure, D, for each node in the graph (see

Figure IV-6). The D value is the difference between a

node's total external link costs and its internal link

costs (sum of all link costs to nodes within the same

partition). Any node with a high D value is a good

candidate for exchange. Although tiie two nodes with

0 maximum D values in each partition will not always give the

greatest gain, examining the highest three D values in each

partition will produce the greatest gain in virtually all

cases.

The node exchanges during one pass continue until all

the nodes of partition A are in B and vice versa. At this

point, the sequence of gains achieved during the process of

totally swapping all nodes is examined. If a positive gain

value is observed at any stage, the maximum positive gain

,0 will determine how far to actually proceed in the

swapping. The nodes are swapped to that point, D values

are recalculated, and the process continues until no

positive gain is found. By applying this heuristic to the

48 column-bytes and then to each 24 column-byte group, a

4-way partition of the 48 column-bytes into maximally

.-... correlated groups of 12 is achieved.

"IV-19
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It is worth mentioning at this point that an XROM test

case was contrived that showed a reduction from 27K ones

down to zero ones after including the column swapping

step. The case had an alternating pattern of ones and

zeros in the XROM array which could not have any ones

removed using all previously discussed techniques except

the column correlation and partitioning. By invoking the

column swapping step in the procedure, 54K zeros (or zero

devices) was the final result.

Revisiting the six XROM cases presented in the "XROM

" sign bit" section, and applying all device minimizing

techniques described, results in the number of ones

distribution shown in Figure IV-7.

(." Table IV-2 summarizes the number of devices obtained

for each of the various stages of techniques presented in

the device minimization procedure on the six XROM test

cases. The results of Table IV-2 are shown graphically in

Figure IV-8. Notice that the decrease in number of XROM

transistors is significant in all cases with the possible

exception of the random data. The WFTA16 XROM exhibits a

40% decrease in transistors by applying all of the device

minimization techniques.
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MIS 16 WM17 OFT IFTR Random

NO 26388 26440 26534 27725 27528 27632

61 26388 26448 26534 27571 27152 27561

kID 22546 22194 23292 22335 23281 24478

./C 22443 21964 23254 21913 21234 24423

D A 21667 28624 22862 21819 17695 24327
K I L 19138 14844 19617 16998 15387 23858

Devices

4-

.4.

. Table IV-2 XROM Device Minimization Summary.

XROM Optimization: Minimizing Total Drains

'.-* Overview. Many bit positions of an XROM will have zero

personalizations. As was shown in the previous chapter, a

zero personalization is accomplished by removing or not

placing a device between the appropriate column address (AO

-, or AON) drain and the bitline drain. If a column address

IV-24
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. line drain or a bitline drain has none of the four possible

devices (ones) connected to it, it serves no purpose other

than to slow the operation of the XROM, increase power

consumption, and decrease yield. Two possible cell

alterations can be performed on a cell whose drain does not

have any active devices. They are 1) removing the unused

-" -' drain diffusion and metal contact, and 2) straightening the

polysilicon wordlines that will no longer need to be routed

around the drain. The use of these two reconfigurations can

improve the overall speed, power dissipation, and yield of

the XROM. A graphic representation of the improved cell is

shown in Figure IV-9.

The improvement in speed is a result of the decrease in

wordline length and the decrease in bitline and address

. column line capacitance. The shorter wordline will result

:- in a lower resistance, thereby decreasing the time needed to

raise or lower the voltage on the wordline. The decrease in

drain capacitance on the metal column lines will allow them

to switch faster.

* The power savings result from the decrease in the

column line capacitance. Since power is determined by

p = CV 2 f,

.4.

a decrease in capacitance results in a corresponding

, decrease in power (Weste and Eshraghian, 1985:148).

IV-25
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(a) standard cell (b) no drain cell

Figure IV-9 Reconfiguring XROM Cells With No Drain.

II"

* The possibility for an improvement in yield results

from the fewer diffusion implants that must be correctly

placed in the XROM array. With fewer implants, the

probability of an error on the chip decreases. This

improved yield becomes especially significant if the XROM

S-array design is used for a one megabit ROM chip.

-- The remainder of this section will describe the manner

in which the total number of drains in the XROM are

minimized. The procedure is one of rearranging columns and

rows in order to group four zero personalizations around

the largest number of drains possible. Then each cell

whose drain is surrounded by four zeros is replaced by the

no drain cell of Figure IV-9. The complexity of the

IV-26
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procedure is rooted in trying to find the optimal ordering

of rows and columns without exhaustively searching all

possibilities. It will be shown that this problem, like the

graph partitioning problem, is NP-complete.

Reordering Columns and Rows. The objective is to remove

as many drains as possible from the XROM array. A great

deal of progress toward reaching that objective is *achieved

by minimizing the number of devices in the XROM. For

example, if a 54K XROM contains 27K ones, the probability of

a drain being pulled is 1/16th for a random ordering of rows

and columns. This probability is calculated by multiplying

the probability of a zero being at a given bit position

(probability = 1/2) times the same probability at each of

the three other bit positions around a single drain. Thus,

on the average 1/16 times the total number of drain

positions in the 54K XROM will be removed. If the device

minimization procedure (described in the preceding section)

is applied to the XROM and decreases the number of ones in

the XROM to 13.5K, the probability of a drain being pulled

increases to almost 1/3rd (3/4 to the fourth power). Thus,

the average total number of drains removed from the 54K XROM

increases to 1/3rd times the total drain positions. This is

over a five-fold increase in drains pulled for a two-fold

increase in devices removed.

As in the preceding section, six classes of XROM data

will be used to demonstrate the increase in drain removal
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achieved by the device minimization routine. Figure IV-10

shows the distribution of drains remaining for the six data

types in a 54K XROM before any optimization steps (this

distribution contains 15 random samples rather than 50).

The average percentage of drains pulled is 6.94 percent for

the random cases and 24.71 percent for the WFTA16

addresses. Figure IV-11 shows the distribution of drains

remaining for the same six cases of Figure IV-10 with the

device minimization procedure applied. The average

percentage of drains pulled is 11.21 percent for the random

cases, and 44.01 percent for the WFTA16 addresses.

Thus, a large number of drains can be removed without

attempting to optimize the layout specifically to pull

drains. However, with some extra computing time and a

minimal increase in complexity, more drains can be removed

by reordering the columns and rows of the XROM to obtain

groups of four zeros around drains. The only restriction

on the reordering procedure is that it does not affect the

device minimization results by moving column-bytes away

*O from its controlling sign bit column. This means that when

columns are rearranged, they may only be swapped within the

data word group that is controlled by a word sign bit

column pair. Rows, on the other hand may be reordered in

any manner since the word sign bits will be moved with the

row bits that they govern, and the NAND PLA decoder allows

[* _any wordline row personalization required.
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Thus, in order to minimize the number of drains in the

..TA16 XROM array, data bit columns within each group of 12

will be permuted as will all 144 rows of the XROM. To

l exhaustively search all possible row and column

combinations to find the minimum number of drains would be

prohibitive. There are 144! possible ways to place the

rows. For each placement, there are four groups of

column-bytes each with 12! possible column-byte orderings.

Additionally the columns within a column-byte can be

ordered 4 different ways. Thus, there exist 144! x 4 x

(12! x 412) possible unique orderings that could be

examined to find the one with the greatest potential for

drain removal.

Obviously, an exhaustive search will not be possible,

* and a heuristic solution must be developed. As is often

the approach with large, intractable problems, a division

of the problem into two or more subproblems will be

performed. Although, this approach (and others to follow)

will not always yield the optimum sclution, it does allow a

solution (and a reasonably good one) to be found.

Since the columns of the XROM intermesh with the rows, a

heuristic which first groups zeros about drains for columns

0 and then for rows would not be very effective. This is

because many of the groups of four zeros about drains

produced by the column ordering would be broken up when the

row ordering attempts to find a better solution. Certain
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row exchanges may have to be disallowed in order to keep

specific desirable results from the column ordering. The

heuristic will not take two steps toward solving the

problem. Rather, it will take one partial step toward a

solution and then make the next step dependent on the last.

The heuristic cannot use a physical division of the XROM

either. Since the entire row or column must be switched, a

division of the layout into segments and grouping zeros in

that piece of the XROM is not a workable solution.

If the columns are ordered to maximize the zero pairs

*" along the wordlines in the XROM, the ordering of the rows

can attempt to maximize the grouping of paired zero-pairs to

remove drains. In this way, a heuristic which uses a

division of the original problem into two independent

sequential problems is obtained. The heuristic seeks to

- maximize the basic element of a group of four zeros before

attempting to maximize the groups of four themselves.

However, another problem has spawned from the solution

of the first. Another heuristic is needed to group zero

I* pairs in the column ordering and to group four zeros about a

drain for the rows ordering. If all possible column

'- pairings were attempted and then all row pairings to achieve

the solution, the number of cases required to be examined

would not be much less than the original exhaustive search

already examined. The number of unique orderings that would

" have to be examined with this heuristic is
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144! + 4 x(12! x 412).

Therefore, a smarter way to order the 144 rows and 12

column-bytes per group must be found. The ordering of the

4 columns within each of the 48 column-bytes may still be

done exhaustively first, but the number of elements in the

other ordering problems is too large for that approach.

The Traveling Salesman Problem. The best ordering of

the rows or columns is determined by which rows or columns

placed next to each other produce the interfaces that

maximize the zero groups. Each column-byte edge will

produce a particular number of zero pairs when placed next

to another column-byte edge. Similarly, each row will

produce a particular number of bitline or column address

line zero groupings of fours when placed next to another

row. If each column-byte is paired with each other

column-byte in the data word group, a matrix of the number

of non-zero pairs for each match can be produced.

Similarly, if each row is paired with all other rows, a

matrix of bitline drains remaining and column address

drains remaining can be produced. By calculating the

distances between all columns in each group and calculating

the distances between all rows in the XROM, it is possible

to follow the minimum distance path to all column or row

nodes and visits each node only once.
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-. The problem of visiting all nodes of a graph only once
- -

and traveling the minimum distance is known as the Traveling

Salesman Problem (TSP). "The TSP is perhaps one of the most

celebrated of all discrete optimization problems" (Parker

and Rardin, 1983:69). Since the TSP is an NP-complete

problem, many mathematicians, operations researchers,

computer scientists and the like have proposed heuristic

solutions to it.

The various approaches used to solve the TSP

include Dynamic Programming techniques (Held and Karp,

1962), Branch and Bound techniques (Little and others, 1963;

Held and Karp, 1970; Dionne and Florian, 1979), Cutting Plane

techniques (Gomory, 1958; 1960; 1963; Grotschel and Padberg,

1979), Linear Programming (Dantzig and others, 1959) and

many others. So many algorithms have been presented that a

number of articles have been written to review them

(Bellmore and Nemhauser, 1968; Burkard, 1979; Christofides,

1975; Parker and Rardin, 1983; Held and others, 1984).

The algorithm that has found the proven optimal solution

to the largest TSP solved to date (318 cities) was developed

., by Crowder and Padberg (Crowder and Padberg, 1980) in 1979.

Unfortunately, it, like many other TSP algorithms developed,

is very complicated and requires an extensive programming

effort to implement. However, the first phase of Crowder

and Padberg's algorithm implements a straightforward

heuristic to obtain a good initial tour for the TSP. This
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heuristic algorithm was developed by Lin and Kernighan in

1971 (Lin and Kernighan, 1973), but is still an effective

and important algorithm for obtaining near-optimal

solutions to the TSP (Held and others, 1984). It offers

several advantages over the other approaches in solving the

TSP. The Lin and Kernighan approach is relatively easy to

program and requires no special knowledge of integer or

linear programming. The Lin and Kernighan algorithm does

not require a lot of memory or CPU time to run large TSP's

as does dynamic programming approaches and certain branch

and bound techniques.

Since the Lin and Kernighan algorithm for the TSP has

been used to obtain near-optimal solutions to problems up

to 318 cities and since the algorithm is relatively simple

to program, it is the algorithm that was chosen to order

the columns and rows of the XROM in order to minimize the

number of drains. The Lin and Kernighan TSP algorithm and

*' how it is used to solve the problem of removing drains will

be discussed in the next two sections.

; 0 The Lin and Kernighan TSP Algorithm. (Lin and

- Kernighan, 1973). The Lin and Kernighan (L&K) TSP

Algorithm is based on the same general approach as their

graph partitioning algorithm discussed earlier. It starts

with a random TSP tour (a tour is a path that visits all

cities/nodes only once, and returns to the starting

city/node), and applies an iterative improvement to the

IV-35

- t



tour by replacing tour links that produce a shorter length

tour. When no improved solution can be found, the tour is

locally optimum. Like their graph partitioning algorithm,

the TSP algorithm attempts to swap a variable number of

elements on each pass to obtain a more desirable solution.

The L&K TSP algorithm is described below (see Figure

IV-12).

1. Generate a random initial TSP tour.

2. (a) Set i=1

(b) Select xi and yi as the most out of place pair
at the ith step. This means the xi and Yi
link are chosen to maximize the improvement when

0 xl,...,x i links are exchanged with
y l,--.,yi links. xi is chosen from the
links currently used in the tour, yi is chosen
from the other possible remaining links.

(c) If it appears that no more gain can be made

(according to a stopping rule) go to step 3;
otherwise set i=i+l and go to 2(b).

3. If the best improvement is found for i=k, exchange
links xl,...,xk with Yl,---,Yk to give a new
shorter tour and go to step 2. If no improvement has
been found, go to step 4.

4. A local minimum has been found. Repeat from 1 to try
and insure a global minimum is obtained.

Much of the power of the L&K Algorithm results from the
40

stopping rule. The algorithm only considers sequences of

gains whose partial sum is always positive. This rule can

be used because of the following mathematical fact:

If a sequence of numbers has a positive sum, there is a

cyclic permutation of these numbers such that every

partial sum is positive.
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This means that choices that exhibit a negative gain at

any step in the process need not be considered. The use of

this gain criteria greatly reduces the number of sequences

to be examined.

Using the L&K TSP Algorithm. The L&K TSP Algorithm is

used to minimize the number of drains in the XROM by

applying it to the ordering of column-bytes within each of

four groups, and then to ordering all of the rows in the

XROM. This section will outline the specific procedure

used in ordering the column-bytes and rows, and how the L&K

TSP algorithm is applied to achieve a near-optimal

ordering. The procedure for ordering the column-bytes will

be described first, followed by the procedure for ordering

the rows.

Column Arranging. Figure IV-13 depicts the layout

of XROM cells within a column-byte. There are eight data

bits per row, four AO and four AON. In reordering these

four bitline columns two important facts must be

remembered:

I. The address column AO and AON lines must stay in
* .place. They cannot be exchanged or two AO lines (or

AON lines) may become adjacent.

2. When reordering bitlines (which have 2 columns of bit
personalization), the new bitline position must provide
the same AO and AON line orientation as the old
position. This insures that bits addressed by the AO
(AON) line stay addressed by the AO (AON) line.

Given the above two rules, each column-byte can take on

0 only four possible column combinations. If the original
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bitlines are numbered 0 to 3 from left to right, the

following Table IV-3 shows the four allowable orderings.

AO AON AO AON AO

1. 0 - 1 - 2 - 3

2. 0 - 3 - 2 - 1

3. 2 - 3 - 0 - 1

4. 2 - 1 - 0 - 3

Table IV-3 Four Possible Bit-Column Orderings in a
Column-Byte.

As was previously stated, it will not require an exten-

sive amount of CPU time to try all four orderings to obtain

the maximum zero pairs between the three interfaces (dashes in

Table IV-3) for the four columns. Exhaustively searching the

possible combinations for the four columns in each of the 48

XROM column-bytes yields 3 times 48 or 144 maximally

zero-paired columns.

The remaining orderings of 12 column-bytes within a data

group will be performed by the L&K TSP algorithm based on the

zero pairs between column-byte edges. Since the TSP algorithm

"4 functions to achieve a minimum "distance" for all 12

column-byte edge links, the appropriate distance measure

between edges must be calculated. In this case totaling the
4
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number of non-zero pairs produced by the matching of each

column-byte edge with all other column-byte edges will

provide the distance metric. Notice that the column-bytes

are allowed to be mirrored or flipped over in order to make

a match. This adds a small degree of complexity in keeping

track of the data bits (and final layout), but allows for a

better optimization routine. With the

22 x((12) 2 /2 - 12/2) = 264

distance measures calculated for a data group of 12

column-bytes, the L&K TSP algorithm can optimally place the

column-bytes to maximize pairs of zeros. Since there are

only 12 "cities" in the TSP, an optimal placement is

virtually guaranteed for each data word group.

The last step involves changing the TSP tour solution

into a Hamiltonian path. A Hamiltonian path is a tour that

does not return to the starting city. Since a TSP tour

starts and ends at the same node (column-byte), the

closed-loop tour must be split. The column-byte edge on

- the end of each group of 12 column-bytes is not adjacent to

the other column-byte edge on the other end. Therefore, if

the largest cost link is cut, the optimal zero pair matches
. ..

remain.
L . .

Row Arranging. The procedure to obtain the best

ordering of XROM rows is similar to the procedure of

Sv-41



- .ordering the 12 column-bytes described above. The

differences result from two factors:

1. A single XROM row of personalization bits does not have
two edges. Therefore, the distance calculations need
not involve matching two sides of a "node".

2. Unlike the column-bytes, the links of the row TSP must
alternate between two different type distance measures.

S." Figure IV-14 helps show how two different sets of bits of

an XROM row are used for two different row matchings: one

for zeros about bitline drains and one for zeros about

address column drains. Thus, two sets of distance measures

between each row and every other row must be calculated.

One set for bitline drain removal and one for address

column drain removal.... (i4
Additionally the L&K TSP algorithm must insure that the

links between cities (rows) alternate between bitline drain

pairings and address line pairings. Otherwise the L&K

algorithm is used as in the column-byte case after the

2 x((144) 2 /2 - 144/2) = 20,588

distance measures are calculated.

After the near-optimal ordering of rows to produce the

maximum drain removal is achieved by the L&K TSP algorthm,

the tour must again be split into a Hamiltonian path. For
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the rows, the split will be between the upper and lower rows

of the XROM array. In this case, splitting the address

column link with the shortest distance will produce more

drain removals. This is because only one row borders the

extreme upper and lower address column drains of the XROM,

and placing the rows with the greatest drain removing

- potential there will net double the gain.

Since the procedure for minimizing drains in the XROM

has been presented, a look at the drain optimization effect

on the drain removal for the six data cases of Figure IV-I

is appropriate. Figure IV-15 shows the distribution of

A drains remaining for the same six cases of Figure IV-i1 with

the drain minimization procedure applied. The average

percentage of drains pulled for the random case is 26.72

percent, and 63.25 percent for the WFTA16. This compares to

an average percentage of drains pulled for the random and

WFTA16 cases of 6.94 and 24.71 percent respectively for the

non-optimized XROM. Table IV-4 summarizes the number of

drains remaining for each stage of the optimization

0 procedure on the six XROM test cases. The results of Table

IV-4 are shown graphically in Figure IV-16. As with the

, device minimization, all cases (with the possible exception

of the random data case) show significant reductions in the

number of drains.
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. =

-I5 WIG W17 OFT lFTR Random

optimized 24854 21917 24248 23733 24645 25974
--'- Device

- 19792 15616 29563 18565 18437 24786

D rain 15616 19256 16732 14582 14870 20455

Dr ai ns

Table IV-4 XROM Drain Minimization Summary

XROM Optimization Software

The two programs described in this section implement

the device and drain minimization of the XROM. Both

*i programs are coded in the C programming language (Kernighan

and Ritche, 1978).

"Placement" - Place and Minimize Devices. The

"Placement" program implements the following:

1. Reads in the file containing the desired XROM data
words.

2. Pert--ms the following for every possible addressing
. scheme (105 for 16-point WFTA chip XROM).

(a) Applies the column sign bits to minimize devices.

(b) Applies the Kernighan and Lin graph partitioning
algorithm to group the columns that are highly
correlated for device minimization.
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" (c) Applies row word sign bit to minimize devices.

(d) Attempts to improve device count by reapplying
(b) , (c) , and (a) in that order.

(e) Saves the XROM addressing scheme, column order,
sign bits, and XROM contents if the number of
devices is the lowest seen thus far.

3. Restores the best solution so the "Drains" program can
continue using the device minimized XROM.

The structure charts for the "Placement" program are

depicted in Figures IV-17 to IV-20. The "Placement" proqram

snurce listin ci De found in Appendix B.

"Drains"-Minimize Drains. The "Drains" program

0O implements the following:

1. Calculates the distance measures for all possible
column and row pairings.

2. Arranges the columns in each data word group to produce
a maximum number of zero pairs via the L&K TSP
algorithm.

3. Uses the L&K TSP algorithm to arrange the rows of the
XROM to maximize the number of drains pulled.

The structure charts for the "Drains" program are depicted

in Figures IV-21 to IV-25. The "Drains" program source

listing can be found in Appendix C.

Optimization Results for WFTA16 XROM. This section will

present the theoretical power, speed, and yield results for

the WFTA16 XROM obtained from the two minimization programs.

Devices and Drains. The number of devices and

drains for an optimized WFTA16 XROM are compared to the

numbers for the non-optimized version of the same XROM in

> : Table IV-2 and IV-4. As explained previously, these gains
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will improve the power, speed, and yield the XROM. The

improvements for the optimized WFTA16 XROM are described in

the following sections.

Power. In order to determine the theoretical gain

in power dissipation of the optimized XROM over the standard

XROM, a "rule of thumb" power equation must be developed.

The starting point for this development will be the general

equation for switching power dissipation of

p C X V 2 x f.

where P is the switching power consumed, C is the

capacitance of the switched line, V is the voltage level

." 0 extremes (5 volts for the CMOS XROM), and f is the clocking

frequency. If this equation is applied to the average

switching path of the XROM, a "rule of thumb" equation can

be determined.

The switching path of the XROM (excluding elements that

do not change as a function of optimization) can be broken

_ up into five main areas. If an equation for switching power

"" in terms of the number of devices and drains in the XROM can

be derived for each area, the sum of these equations will

provide the "rule of thumb" total equation desired. Figure

IV-26 is a schematic representation of the switching path.

.- 'he five nodes that comprise the main areas to determine the

pover used are labeled.
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N The following derivation of power dissipation will

refer to Figure IV-26. The derivation will assume that all

device sizes used in the XROM are as built in the cells

described in this thesis (Chapter III). The result will be

but an approximation of the actual power dissipation. The

following variable conventions will be used:

P - Power (watts)
V - Voltage Switching Range (volts)
f - Clocking Frequency (Hz)
Cg - Gate Capacitance (Farads/micron2 ).
Cps - Polysilicon to Substrate Capacitance

(Farads/micron2 ).
Nd - N+ diffusion junction area capacitance

(Farads/micron2 ).
M - 2nd Metal to diffusion capacitance

(Farads/micron2 ).
A - Average number of PLA decoder addresses.
B - Number of bits in the data word.
R - Rows in the XROM.

OT - Total ones in the XROM.
04 DT - Total Drains in the XROM.

Sx  - Size of the XROM (Bits).

The power used for the first area, the PLA decoder

column lines, does not depend on the number of devices or

drains in the XROM. The average power consumed is more a

function of how many address lines change (on the average)

between each data access. The WFTA16 XROM is addressed

sequentially, and thus, it is often (50% of the time) the

case that only the LSB line of the address is changing.

The random datacase may not have a particular addressing

sequence, and thus half of the addresses' PLA decoder

column lines may be changing. The power consumed in this

area is also a function of the number of rows in the XROM.
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The number of rows affects the length of the PLA decoder

column metal line, and the number of a gates attached to

it.

The power equation for the PLA decoder column lines is

1then,

Pd= 4 A Cd V
2 f

where

* Cd = R(108M + 37 Cg).

The constants are determined by the actual decoder layout.

The power used in the second area, the product term

line, will be a constant since it depends only on the size

of the transistors in the PLA decoder/wordline driver

circuit. Additionally only one set of product terms will

change on any access. The power equation for the product

term line is

Pp = 2 Cp V2 f

where

Cp = 54 Cg 880 Nd.
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The power used in the third area, the wordline, is a

function of the average number of devices and drains per

XROM row and the number of data bits in the XROM data word.

The number of devices (ones) on the row affects the

wordline's gate capacitance. The number of drains per row

and the number of data bits per data word affects the length

of the polysilicon wordline. The drains per row affect the

wordline length because a no-drain XROM cell's polysilicon

wordline section is shorter than any other XROM cell.

The power equation for the wordline is

PWL = 2 CWL V 2 f

where

CWL lO.5 (CgOT/R) + 9Cps[6(2B + 1) + DT/R].

- The power used in the fourth area, the address column

lines (AO and AON), is a function of the number of drains

on the line, the number of lines (determined by the number

of bits in the data word, B), and the length of each line.

The column address lines are precharged high on each clock

cycle and one half are pulled low on each access. Thus, on

the average 1/2 the lines will change state each cycle.

The length of each line is determined by the number of rows

* in the XROM, and the average number of drains on each line
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is determined by the total number of drains.

The power equation for the address column lines is

Pac 8BCacV
2 f

where

Cac = 27RM + 9 DT Nd/8B.

~*-t The power used in the last area, the bitlines, is a

~.4 function of the same capacitance factors as the address

column lines. The differences lie in the number of

bitlines that will change state each access and in the

voltage swing of the bitlines. The number of bitlines

that go high on an access may be less than half for the

optimized XROM. For a non-optimized XROM with random or

sequential data entries, the number of bitlines that

change state each cycle is expected to be half the total.

After optimization it is expected that more bitlines will
0

remain unchanged on each cycle. This number of bitlines

that remains unchanged is a function of the number of

devices in the XROM. Since the bitlines are precharged

through an n-type device, they only reach 3.3 volts.

Also, if the XROM is operating at full speed, the bitlines

may not be pulled down all the way to zero. Thus, a

voltage swing of 1/2V will be used.
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The power equation for the bitlines is

PBL = 4BOTCacV 2 f/Sx.

Therefore, by summing all five area power equations

the "rule of thumb" XROM power equation becomes,

PT = 2V2 f[2ACd + Cp + CWL + 4BCac(l + OT/ 2Sx)].

A good approximation of the power savings produced by

XROM optimization can now be calculated. Using the

parameters listed in Appendix F for the 3 micron CMOS

jP-
process, the results can be calculated for the gain

realized in the WFTA16 XROM. Using the 54K XROM size, the

number of devices and drains as given in Table IV-2 and

IV-4, and a clocking frequency of 12.5 MHz, the power

gains are calculated. The calculated power consumption is

45mW for the non-optimized version of the 54K XROM, and

24mW for the optimized XROM. These results show a power

savings of approximately 50 percent.

Speed. The improvement that is realized in the

area of XROM speed of operation can be simulated using

SPICE. This approach will produce more accurate results

than attempting to present a general equation for speed.

The key items in the SPICE simulation that could improve

the speed for the optimized XROM are the decrease in
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.. polysilicon wordline length, the decrease in gate

capacitances on the wordline, and the decrease in drain

capacitances on the bitline. The wordline length decreases

by 2 microns with each no-drain XROM cell that it passes

through. The gate capacitances on the wordline decrease

with each device removed from its row. The bitline drain
.4

capacitances decrease with every no-drain XROM cell on the

bitline column. Thus, with fewer devices and drains in the

XROM, the worst-case operation of the XROM is expected to

improve.

Using the device and drain minimization programs the

following speed results can be obtained for the WFTA16 XROM

using the SPICE simulator. Table IV-5 shows the gain in

switching speed for the XROM's wordlines and bitlines. The

sum of these improvements gives the average access time gain

of the optimized WFTA16 XROM over the nonoptimized WFTA16

XROM. Speed improvements for any XROM will ultimately

depend on how the worst-case path through the XROM is

affected by the optimization routine. The WFTA16 XROM did

not achieve a significant gain in speed because the

worst-case wordline and bitline capacitances were not

substantially improved by the optimization procedure.

Yield. The chip yield improvement that the

optimized XROM will provide is difficult, if not impossible,

to quantify. A number of factors such as final chip size
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hiordline itline Recess

Non-
optimized 34n5 22n5 56n5

Optimized 33n5 21n5 54n5
1"oral

T oa In
Gain InS M 2nS

.4

Table IV-5 XROM Speed Improvement.

and area, total number of devices, fabrication process, and

many others will have a great impact on the WFTA chip's

yield. It is, however, easily seen that the significant

decrease in'the number of active devices, drain implants,

and connections will result in an improvement in the total

chip yield. It is expected that the yield improvement for

certain type defects will be at least proportional to the

reduction in transistors and active drain area. For the

WFTA16 XROM, there was a 40 percent decrease in transistors,

and a 60 percent decrease in active drain area. These

reductions should have a positive effect on total chip

yield.
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Automatic Layout of the XROM

Generating XROM Caesar Files. The need to automatically

generate the personalization cell layout for the XROM was

explained in the first section of this chapter. After the

XROM personalizations have been optimized for the desired

parameters by the two minimization programs, it only remains

to output the optimized configuration to some layout

description.

Since the WFTA chips were being designed with the Caesar

interactive design software, Caesar files were written to

describe the XROM personalizations.

The approach taken in generating these output Caesar

files was to use cell calls for each personalized XROM cell

(. as stored in the "Drains" results. There are four major

XROM areas that require personalization as determined by the

"Placement" and "Drains" programs. These are:

1. The sense amplifier array. The sense amplifier's cell
configuration is determined by both minimization
programs. The "Placement" program determines if the
sense amplifier for a given column is to be inverting or
not. They are the column sign bits. The "Drains"
program may or may not mirror or flip over a column-byte
to solve the TSP. If a column-byte is mirrored, the
sense amplifier must compensate by rerouting the column
bit lines. Thus, four different functional type sense
amplifier cells must exist to be called.

2. The PLA wordline decoder. After the "Drains" program
solves the TSP for all rows of the XROM, the correct
addresses must be personalized on the corresponding
wordlines in the PLA decoder. Due to the unique
polysilicon personalization (described in Chapter III),
two wordline bits are personalized by one Caesar cell.
Thus, four different types of PLA wordline decoder
personalizations are required for calls in the Caesar
file.
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3. The four sections of the XROM array itself. The final
positioning of the ones and zeros in the XROM obtained
from the "Placement" and "Drains" programs determine
the final XROM layout. Each XROM cell containing one
drain position and four bit positions are placed on a
bitline or address column line for every four bits in
the array output from the optimizing software. Thus,
16 unique XROM cells are needed for calls in the Caesar
file.

N 1 4. The word sign bit columns. The word sign bit results
from "Placement" and "Drains" must be placed in the
correct columns for the XROM. The same 16 XROM cell
configurations are needed for the word sign bit columns
as for the XROM array.

The XROM layout software determines the particular cell

calls to be made for the particular bit pattern produced by

the XROM optimization software. A Caesar file for each

major section described above is created. Each Caesar file

calls the proper personalization cells and transforms the

4cell to the correct location in the section's layout.

The interfacing between the three programs,

"Placement," "Drains," and "Layout", is performed by a

small program called "gen_XROM". It simply declares the

global variables and calls all three programs in the proper

order.

"Layout" - Automatically Generate Caesar Files of the

XROM. The "Layout" program, like the other software

developed in this thesis effort, was written in the C

programming language. The "Layout" program generates the

k. following Caesar files:

1. 4 Sense amplifier arrays. Each array contains the
-- same number of sense amplifiers as bits in the data

word. One array is placed over each of the
corresponding XROM array groups.
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2. 2 PLA wordline decoder personalization arrays. One
for the left side of both XROM subarrays and one for
the right.

3. 4 XROM array groups.

4. 2 Word sign bit columns. One for the center of each
XROM subarray.

The Caesar files described above can be easily used

-- to build the XROM that will generate the original data that

was read in by the "Placement" program.

The automatic generation of the Caesar files was

successfully demonstrated for a number of test cases, and

t* for the WFTA15, WFTA16, and WFTA17 XROM.

The structure chart for the "Layout" program is

depicted in Figure IV-27. The Layout" program source

(e listing can be found in Appendix D.
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V. Fabrication, Testing, and Evaluation

Fabrication

CMOS Fabrication. CMOS circuits can be fabricated using

a number of different approaches. Among the most well known

are the p-well process, n-well process, twin tub process,

and silicon on sapphire or insulator. A commonly used

approach is the p-well process. The p-well process starts

with a moderately doped n-type substrate in which the

p-channel transistors are built, and creates p-type wells in

which the n-channel transistors are made. The layout and

p-type well process cross-section of a CMOS inverter are

shown in Figure V-i. This p-well process is the type of

g# CMOS technology used in the fabrication of the integrated

circuits presented in this thesis. The circuits were

fabricated through the MOS Implementation Service (MOSIS).

MOSIS Facility. MOSIS is operated by the Information

Sciences Institute of the University of Southern California

under the sponsorship of the US Defense Advanced Research

Projects Agency. MOSIS is a facility that serves as an

interface between designers in the academic and industrial

communities and the venders that fabricate the devices.

Designers submit Caltech Intermediate Form (CIF) layout

descriptions of their chips via electronic mail to the MOSIS

facility. MOSIS compiles a multiproject wafer and contracts

with the semiconductor industry for mask making, wafer
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Sequencer test chip was submitted May, 1985 and was

received in July, 1985. The XROM Address Generator test

chip was submitted in September, 1985. The photomicrograph

-* of the Control Sequencer test chip is included in Figure

V-2.

The WFTA16 chip should be submitted in 1986.

Testing of the Control Circuitry

Objective. The objective of the control circuit

testing was to determine the functionality, speed, and

power dissipation of the Control Sequencer and XROM Address

Generator. These results could then be used to validate,

or modify as necessary, the control circuits before they

were integrated into the 1.2 micron implementation of the

WFTA16.

Problems. Since the XROM Address Generator test chip

was not received in time to be tested, test results wereWA
obtained only for the Control Sequencer test chip.

Therefore, the following sections will only discuss the

testing and results of the Control Sequencer.

Equipment/Setup. The test setup for the Control

Sequencer chip is shown in Figure V-3. The Control

Sequencer chip was placed on a breadboard and wired

according to the pinout diagram. Power was applied to the

chip using a standard 5-volt DC supply. Many of the chip's

input pins were controlled using simple switches because

v- 4
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fabrication, and packaging. MOSIS then delivers the

packaged integrated circuits (ICS) to the designer.

Although this method of chip fabrication was

satisfactory, two major problems were experienced. The

first was an inability to successfully transmit CIF files to

MOSIS from AFIT. Some fabrication submission dates were

missed when test chip CIF files failed to arrive at MOSIS.

It is still not known why these failures occurred. The

second problem is that MOSIS contracts numerous companies to

fabricate the ICs and each has its own process parameters.

Therefore, the speed of the circuit as tested may be

significantly different from the speed that could be

achieved with a different fabricator.

co Process and Parameters. The test circuit chips of the

Control Sequencer and XROM Address Generator were designed

and fabricated using a scalable, 3 micron, CMOS process.

The scalable process facilitates processing the same circuit

layouts (except pads) at both 3 microns and 1.2 microns.

-.' Thus, no major cell changes are needed in transitioning to

the 1.2 micron implementation of the WFTA16.

A typical set of SPICE parameters for the 3 micron CMOS

process is given in Appendix E. Ranges of parasitic

capacitances for the 3 micron CMOS devices are given in

Appendix F.

Submissions. Two control test chips were submitted for

0 _ fabrication during the WFTA16 design phase. The Control
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. ,- they operated asynchronously or because they stayed at one

level during a test.

When performing static, functional tests on the circuit,

push button switches were utilized to generate the two clock

phases, phi 1 and phi 2. When performing dynamic testing

for speed, a programmable, eight-output, 50 MHz, signal

generator was used to generate a two phase, non-overlapping

clock signal.

Output signals were observed using 1 GHz and 80 MHz

oscilloscopes. The test setup was implemented to observe

the outputs as they were driven off-chip. If the output

drivers limited the chip's speed of operation, the

programmable signal generator would be used to clock the

circuit the exact number of times to bring an output signal

to a pad and stop. At this point, the outputs could be read

to see if the circuit functioned to speed. This approach

can be used since the Control Sequencer's output signals are

not driven off-chip in the WFTA processors.

Procedure. A functional block diagram of the Control

Sequencer test chip is shown in Figure V-4. Due to the

relative simplicity of the Control Sequencer's operation

(described in Chapters II and III), a straightforward test

procedure was used. With power and clock signals applied to

the chip, the operate line was raised, and the nine output

pulse trains were observed for proper functionality at the

output pins. As long as the continue input was high,the

V-6
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outputs were to be periodic every 32 clock cycles. The

three-bit, scale factor input was changed and the pulse

widths of the output signals (especially those that are a

function of scaling) were observed for proper functionality.

This procedure was followed for both low speed/static

and high speed/dynamic testing. If proper functionality

could not be achieved for the chip, numerous controllability

and observability signals could be exercised to help

ascertain the problem with the control circuit. Test

vectors could be loaded into the ring counter using the

* start-bit pin, and the PLA results read out from either the

output pads or numerous probe pads placed on the chip. The

bit-bottom pin and probe pads could be used to see if the

bit was propagating down the ring counter. These and a

number of other options were designed into the test chip.

Results. The oscilloscope traces for a worst-case

output from the Control Sequencer are shown in Figure V-5.

*- . These traces show the Control Sequencer operating at 50 MHz

*[[ for the non-overlapping clock (left), and 60 MHz for the phi

*~ 1-phi 2 overlapping clock signals (right). The output

* waveforms are shown above the clock waveforms. The top

• <. output waveform is the output of a set/reset flip-flop

or (inverted) whose reset input is propagated through the

worst-case PLA path. The lower output waveform is the

bit-bottom signal (inverted) which goes high each time the

ring counter bit is passed back to the first MSFF in the

chain.
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1. ' The divisions for the clock waveforms of Figure V-5 are 5 nS

in duration. The divisions for the Control Sequencer output

and bit bottom signal are 200 nS. Notice that there are 32

clock cycles between pulses for the output signal and bit_

bottom signal.

The available signal generator could only produce clock

waveforms of up to 50 MHz. Thus, in order test the circuit

at higher speeds, the time between the rise of phi 1 and the

fall of phi 2 was decreased. The time between the rise of

phi 2 and the fall of phi 1 can be extended without biasing

* the results since that portion of the clock is only used to

propagate the signal into small phi 2 latches, not to drive

the signal out to the PLA or chip. By decreasing the

separation of the rise of phi 1 to the fall of phi 2 down to

16 nS, a 60 MHz clock rate was approximated. Higher clock

frequencies could not be achieved since the overlap of the

two-phase clock signals became unacceptable above 60 MHz.

The power consumption of the chip was 6.6 mW for static
power dissipation, and 39.7 mW for dynamic power dissipation

at 50 MHz. A portion of both power measurements is

attributable to a design error that resulted in the shorting

of two signal nodes and the floating a large inverter gate.

Evaluation of the Control Circuitry

Control Sequencer. The Control Sequencer test chip

demonstrated that the arithmetic/on-chip control logic

operates properly at speeds in excess of 60 MHz. These
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results exceed the design goals of the 3 micron imple-

mentation of the Control Sequencer. The Control Sequencer's

ability to operate at the demonstrated clock speeds combined

-o - with its low power consumption (under 40 mW) and small

layout area (1000 x 2400 lambda) make it an exceptional

solution to the arithmetic control requirements. In

addition, the Control Sequencer can be easily redesigned if

necessary by simply repersonalizing the circuit's PLA. The

Control Sequencer's MSFFs that include the Scan-in/Scan-out

.'-. test circuitry will eventually enable Automatic Test

* Generation Equipment (ATGE) to easily determine which WFTA

processors are fully functional and which have fabrication

errors.

XROM Address Generator. The XROM Address Generator

circuit is more difficult to evaluate since the test chip

-* was not received in time to test its speed and

functionality. However, the circuit's design and SPICE

2 simulations show that it should function properly at clock

speeds over 55 MHz for the 3 micron process. The XROM

j. Address Generator circuit shares the same ease of redesign

-! and testability features as the Control Sequencer since the

contents of the XROM can be automatically repersonalized if

necessary, and since the XROM's MSFFs contain the same type

* *. test circuitry as the Control Sequencer MSFFs. Finally, the

XROM Address Generator design fits in the available chip

-i. 7 area as discussed in Chapter III.
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VIE. Conclusions and Recommendations

Conclusions

In this thesis, two circuits to control the arithmetic

and address generation circuitry of a high performance VLSI

WFTA processor at speeds over 50 MHz were designed,

simulated, and implemented. A Control Sequencer/PLA

circuit was developed to control the on-chip circuitry, and

an XROM Address Generator circuit was developed to produce

the proper sequence of I/O addresses. Both circuit layouts

• were designed and submitted for fabrication in 3 micron

CMOS. Only the Control Sequencer test chip was received in

time to be tested. Test results obtained for the Control

kO Sequencer show proper functionality at clock speeds of over

60 MHz. Although, the XROM Address Generator circuit was

not tested, SPICE simulations show that this circuit can

operate at clock speeds in excess of 55 MHz. Both circuit

designs demonstrated the potential to successfully control

the WFTA processors' arithmetic and address generation

circuitry in terms of functionality, area, speed, and

power.

The control circuitry for the WFTA processors was also

shown to be a viable solution in terms of the off-chip

interface requirements. An Interface Chip was proposed to

coordinate the operation of the WFTA processors in

calculating the DFT assigned by a host processor. A
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general discussion of the control signal requirements and

implementation advantages of this approach have been

outlined.

A software package that produces an automatic layout of

an optimized XROM Address Generator circuit was designed,

*coded, tested, and utilized. The optimization software

uses row and column sign bits and a graph partitioning

algorithm to reduce the number of transistors in the XROM.

The software then reduces the number of drains in the XROM

by reordering its rows and columns in a manner determined

* by an algorithm that provides a near-optimal solution to

row and column Traveling Salesman Problems. The reduction

in the number of transistors and drains within the XROM

(results in an improvement in the XROM's speed, yield, and

power consumption. The automatic personalization and

layout of the XROM helps to ensure the correctness of the

final design.

The realization of the WFTA control circuit designs has

its primary importance in the contribution it makes toward

achieving the much greater goal of implementing a PFA

processor capable of computing 4080-point DFTs at a rate of

over 8300 Hz (Taylor, 1985).

Recommendations

The following recommendations are proposed regarding

future action:

S.. 1. Further testing and modification of the control
circuits for the WFTA16 should be pursued. More

VI-2
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* extensive test results for both the Control Sequencer
and XROM Address Generator circuits are required before

*a complete WFTA16 processor is submitted for
fabrication in the 1.2 micron process. As the control
circuit testing and necessary modifications are
pursued, continued verification of the WFTA16 timing
diagram and module interfaces should be accomplished.

• 2. The complete timing diagrams for the WFTA15 and WFTA17
-processors must be developed, and the control circuits

constructed from them using the cells presented in this
thesis. Implementation of the WFTA15 and WFTA17 should
involve relatively minor revisions to the Control
Sequencer and XROM Address Generator once the timing
diagram is finalized.

3. The requirements for the Interface chip must be fully
investigated and circuit functions fully defined. The
Interface chip must then be designed and fabricated in

* order for the total PFA processing system to be
complete.

4. The software that produces an automatic layout of an
optimized XROM should be validated and generalized. A
menu-driven, front-end software module should be added

IV to allow a user to choose the size and layout
configuration of the XROM at run time. In addition to
the front-end module, some modifications to the
existing software are required such as the use of
dynamic memory allocation and reformatting some of the
data structures that rely on the XROM using a
particular sized multiplexer (4 to 1) on top of the
XROM array and between the MSFF banks and address
buses.

"' Other, more general, recommendations for future action0

regarding the realization of the WFTA16 and PFA processors

are given in Taylor (Taylor, 1985: Chapter 6).
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APPENDIX B "PLACEMENT" CODE

*DATE: 1 DEC 1985
*VERSION: 1.0*

*TITLE: PLACE/DEVICE MINIMIZE ROUTINE*
*FILENAME: PLACEMENT.C

COORDINATOR: CPT R WLIDRA
PROJECT: XROM OPTIMIZER

*OPERATING SYSTEM: UNIX V 4.2*
*LANGUAGE: C*
*USE: included in genXROM.c
*CONTENTS:*

* addrgen()
* exp()o
* placement()
* column()
* build cor matrix()
* col _swap()
* word()

* putaddresses()

word_byte count()
-V. * flipbyte()

* setwordbit()
* flipword()
* determine_costs()
* movcol ()*
* compare save()
* partition()
* k_and 1()*
* caic _Do

'a' * Gmax()
* build_garray()
* high gn( o
* Recalc Do

*FUNCTION: This program places bits in an XROM and attempts*
* to minimize the total number of transistors in*
* the XROM array by using sign bits and applying*
* the Kernighan & Lin Graph Partitioning Algorithm
* (Kernighan,B W and S Lin, "An Efficient Heuristic *

* Procedure for Partitioning Graphs",Bell System*
* Tecnical Journal,49: 291-308 (1970).*
* The results are passed to the DRAINS.C program*
* for drain minimization.*
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#include "stdio.h'

#define COLS 48
#define ROWS 144
#define GROUPS 4
#define DATAWIOTH 12
#define OUTSIZE ROWS*GROUPS*DATAW 10TH

#define INSIZE ROWS*GROUPS*8
#define KRLTIMES 3
#define KR_L I

#define FIRST 0
-~#define SECOND 1

#define BIGNUMBER 100000000
char out array[];

o char word sign bit[];
int col-sign bit[J;
int carray[l;

int costs ICOLS] (COLSI;
i nt AOones (COLSI (ROWSI;

40 tnt AONones[COLS] ROWS];
int BigD[21 [B];
int D[COLSJ;
int g[COLS/21;
unsigned in_arrayflN..SIZE];
int signs[COLSJ;
char hold[COLS] (ROWS];
int save48[COLS];
int savel_24(COLS/21;

* mt last48E;
* mt lasti _24E:

int last2_24E;

*DATE: 1 DEC 1985
*VERSION: 1.0

-*NAME: ADORGEN*
*DESCRIPTION:
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"*" * This module reads in the data to be placed in the XROM, *

• and tries every possible addressing scheme in order to *

• minimize the number of ones in the array. After a *

* particular addressing scheme is applied, two methods of applying*
.* the sign bits are performed for each address placement. *

• The first method performs the following in the given order: *

r * the column sign bits are set, *

*" * the Kernighan and Lin graph partitioning algorithm *

• is applied to the column groups, *

• and then the row sign bits are applied. *

-"* The second method performs the same functions in a different *
* order as follows: *

* the Kernighan and Lin graph partitioning algorithm *

* is applied to the column groups, *

• the row sign bits are applied, *

* and then the column sign bits are set, *

.-* The addressing scheme and column arrangement, and method *

= * that yields a minimum number of ones is used *

• for the next step (L andK TSP algorithm) and saved. *

".* PASSED VARIABLES: NONE *

"* RETURNS: NONE *

* GLOBAL VARIABLES USED: inarray, carray, outarray *

"-"* GLOBAL VARIABLES CHANGED: in_array, carray *

C' * FILES READ: ADDRESSES *.* FILES WRITTEN: scoutput *

'.* HARDWARE INPUT: *
" * HARDWARE OUTPUT: *

i: * MODULES CALLED: exp, placement, column, col_swap, word *

' * array count,buildcor matrix *

l * CALLING MODULES: gen_XROM *
S* *

-* AUTHOR: PAUL ROSSBACH *

" * HISTORY: *

•********************************* *

addrgen(

int totalones;
-nt i;
int leastones;
"nt a,b,c,d;

Sint aa,bb,cc,dd;
int sA,sB,sC,sD,sE,sF,sG;
int index;
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int method;

* mnt pla[41;
int scarray[COLS];
char out-save (OUTSIZE];

FILE *fp, *fopen();

fpzfopen( "ADDRESSES" * ar );

for (l=O;i<=INSIZE-1:l++)
fscanf(fp,"%u",&inarrayi );

fclose(fp);

leastones aBIGNUMBER;

for (aa=2;aa<=8;aa++)

a=exp(2,aa);
for (bb=2;bb<=8;bb++)

b=exp(2,bb);
if (a!=b)
for (cc=2;cc<=8;cc++)

index=O;
c~exp(2,cc)
if ((a!=c)&&(b<c))

for (dd=2;dd<=8;dd++)

d=exp(2,dd);
* if ((a!=d)&&(b!=d)&&(c!=d))

pla (index++] =d;

placement(a,b,c,pla[O] ,pla[1] ,pla[2] ,pla[31 );
for (i=O;i<OUT_SIZEi++)

* out-saveil = out_arrayli];
column( );

Hifdef KRL
build -cor -matrixo;
col _swap(O);

fendif

word( )
totalones array counto;
if (totalones < leastones)

* method =FIRST;
leastones =totalones;

sA=a;
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* -- sB=b;
sC=c;
sD=pl a [0);
sE=Pla[1];
sF=Pla[2];
sG=pla (31;

for (i=0;i(=COLS-1;t4-$)
scarray[il=carrayli);

for (101<OUT_SIZE;i++)
out-arrayli] = out_savefi];

lifdef KRL
build cor matrix();
col _swap(O);

#end if
* wordo;

columnfl;
totalones =array count();

if (totalones < leastones)

method =SECOND;
leastones =totalones;
sA=a;
sB=b;
sC=c;
sDpla [01;
sE=pla [1]
sF=pla[2];
sG=pla (31

for (i=O;i(=COLS-;i+')
scarrayf i1=carray [i);

plcmnI As~s~Ds~Fs)
if mto = IS

coumo
fo iIi=OSIi+

car.iJsara.)

coluswa( I
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tNendif

word(;

el se

for (l=O;i<=COLS-1;i++)
carrayil=scarray 111;

Nlfdef KRL
colswap(l);

#endlf

word();
columno;

fp=fopen("scoutput" ,"w

0fprintf(fp,"addressA %d\n",sA);
fprlntf(fp,"address_A %d\n",sB);
fprintf(fp,"addressA %d\n",sC);
fprintf(fp,"address_A %d\n",sD);
fprintf(fpj"addressA %d\n',sE);
fprintf(fp,"address A %d\n",sF);
fprintf(fp,"addressA %d\n",sG);

fclose(fp);

return;

*DATE: 1 DEC 1985*
*VERSION: 1.0

*NAME: EXP
*DESCRIPTION:*

*This module calculates the exponent of x raised to the*
*y power.*

* * PASSED VARIABLES: x: argument

* RETUNS: ** y: exponent*
REUN:x **

*GLOBAL VARIABLES USED: NONE*
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'* GLOBAL VARIABLES CHANGED: NONE *

: -* FILES READ: *

4 * FILES WRITTEN: *

"* HARDWARE INPUT: *

*-,, HARDWARE OUTPUT:
*" MODULES CALLED: NONE *

. * CALLING MODULES: addrgen *

• AUTHOR: PAUL ROSSBACH *

• HISTORY: *

exp(x,y)
int x;
int y;

int total;
,t i;

- ..- total=x;
*" if (y<=l)

- -printf("IN EXP exponent less than 2 - ABORT\n");
exit( );

else
for (i=2;i<=y;i++)

total =total*x:

return(total);

; . / ***********************************************************************

,-"* *

*DATE: 1 DEC 1985*
-* VERSION: 1.0 *

-* 
- '  

* *

' "* NAME: PLACEMENT *

" .* DESCRIPTION: *

B-7



*The Placement module receives an addressing scheme for the*
*XROM data and places each data bit in the correct location*

* in the XROM for that particular addressing scheme.

*PASSED VARIABLES: ai: increment for XROM address*
*a muxi: increment for low mux address*

a muxi: increment for high mux address
*aplal: increment for pla decoder address 1I
*apla2: increment for pla decoder address 2 *

apla3: increment for pla decoder address 3 *
apla4: increment for pla decoder address 4 *

*RETURNS: NONE*
*GLOBAL VARIABLES USED: in_array, out array*
*GLOBAL VARIABLES CHANGED: out-array*
*FILES READ:*
*FILES WRITTEN:
*HARDWARE INPUT:*
*HARDWARE OUTPUT:*
*MODULES CALLED: putaddresses*

* * CALLING MODULES: addr_gen*

*AUTHOR: PAUL ROSSBACH*

*HISTORY:

placement(a_i a_muxi a_mux2,a_plal,apla2,apla3,apla4)
int ai , a muxi a_mux2,aplal,apla2,apla3,apla4;

int word;
mnt addrl,addr2,addr3,addr4,addr5,addr6,addr7,addr8;
int baseaddr;
unsigned current_addrf8l;

* tnt row_count;
int i;
int baseal;
int mux _2;

* for (i=O;i<=OUTSIZE-1;1++)
out-array~iI=O;,

mux _2=a-mux1a-mux2;

row count=O;
for (addr8=O;addr8<=4O96;addr8 - 4096)
for (addrl=addr8;addr7<=addr8+2048;addr7 +=2048)



for (addr6=addrl;addr6<=addrl+1024;addr6 += 1024)
for (addr5=addr6;addr5<=addr6+512;addr5 += 512)
if (addr8==0 11 ((addr8==4096) && (addr54096) )
I
for (addr4=addr5;addr4<=addr5+apla4;addr4 += apla4)
for (addr3=addr4;addr3<=addr4+apla3;addr3 += apla3)
for (addr2=addr3;addr2<=addr3+a pla2;addr2 += apla2)
for (addrl=addr2;addrl<=addr2+aplal;addrI += aplal)

for (baseaddr-addrl ;baseaddr<=(addrl+3);baseaddr++)

baseal zbaseaddr+a-i;
Ncurrent addr(OJ=in_.array[baseaddrj;

current addrfll=lnarrayfbaseaij;
current addrf2J=inarrayfbaseai+a -muxll;
current addr(31=in-arraylbaseaddr+a -muxil;
current addr[4)=in array[baseaddr+a-mux2J;
current-addr[5J=lnarray~baseai+a-mux2l;
current -addr[6]=Inarraybaseal+muxl_2];

* current-addrfl]=lnarrayfbaseaddr+muxl_2];

4 word=baseaddr-addrl;

1 putaddresses(current_addr row count,word);

row-count++;

return;

DAE DC18
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DECRPTON
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' * (+1), the column is Inverted and sign bit set. Column *
* also calculates a "number of one-bits state" for each *

• AO/AO-not byte half that is used later to easily calculate *

',* the distance between two columns. *

* *

-*% •PASSED VARIABLES: NONE *
"* RETURNS: NONE *

* GLOBAL VARIABLES USED: col_sign_bit
• GLOBAL VARIABLES CHANGED: col_sign-bit *
• FILES READ: *

• FILES WRITTEN: *
" * HARDWARE INPUT: *

i * HARDWARE OUTPUT: *
* MODULES CALLED: bytecount, flipbyte *

• CALLING MODULES: addr_gen *

• AUTHOR: PAUL ROSSBACH

HISTORY:. .

columnl)

c

int count;
int totalcount;

int i,j;

count=O;
t-talcount=O;

for (i=O;i<=COLS-l;i++)
{
totalcount=O;
col_signbit[li=O;
for (j=O;J<=ROWS-I;j++)

count=bytecount(i+COLS*J);
totalcount += count;

I
if (totalcount>=(ROWS*4+1))

for (j=O;j<=ROWS-I;j++)
flipbyte(i+COLS*j);

B-10
0"



* -col_sign_bit[il=I;

return;)

* DATE: 1 DEC 1985 *
• VERSION: 1.0 *

* NAME: BUILD_COR_MATRIX *
• DESCRIPTION: *
• The buildcormatrix module calculates a *
• "number of one-bits state" *
*•* for each AO/AO-not byte half that is used later to easily *
• calculate the distance between two columns. *

• PASSED VARIABLES: NONE *
• RETURNS: NONE *
' * GLOBAL VARIABLES USED: AOones, AONones *
• GLOBAL VARIABLES CHANGED: AOones, AONones *
* FILES READ: *
* FILES WRITTEN: *
• HARDWARE INPUT: *

HARDWARE OUTPUT:
• MODULES CALLED: word_byte count *
* CALLING MODULES: addr_gen *

* AUTHOR: PAUL ROSSBACH *

• HISTORY:

build cor matrix()

or

int ij;
int AOcount,AONcount;

'i for (i=O~i<=COLS-I;i++)
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for (j=O;j<=ROWS-1;j++)

AOcount=word byte count( i+COLS*j,O);
AOones [iI[Ji =AOcount-2;
AONcount=word byte count(i+COLS*J,1);
AONones(iJ [JrAONcount-2;

return;

*DATE: 1 DEC 1985*
*VERSION: 1.0*

*NAME: COL SWAP*
*DESCRIPTION:*

*The Col swap module is the highest level of the Kernighan*
*and Lin (K_andL) graph partitioning algorithm. It*
*calls the routine that calculates the cost-distance
*correlation matrix for the columns, randomly partitions the *

*columns, calls the K -andL algorithm, saves the best result, *
*and finally moves the columns to the. location indicated*
*by the best result.

*PASSED VARIABLES: final: 0: normal operation*
* 1: puts xrom bits in best pattern*

* found (for addressing & kand_1) *

*RETURNS: NONE*
*GLOBAL VARIABLES USED: carray*
*GLOBAL VARIABLES CHANGED: carray*
*FILES READ:
*FILES WRITTEN:*

* * HARDWARE INPUT:*
*HARDWARE OUTPUT:*
*MODULES CALLED: determine costs, partition, k _and_ 1I

* compare~save, movcol*
*CALLING MODULES: addr_gen*

I* AUTHOR: PAUL ROSSBACH*
*HISTORY:

col _swap(final)
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i t f inal;

i nt choices[COLS];
i nt pulled(COLS];
tnt filetemp[COLSJ;
tnt temp;
int I,j;
int x,y;

if (final==O)

srandom( 1);

determine costs( ;
for (i=0;i<=COLS-1;l++)

choices~i1=i;

for (l=0;i<=KRLTIIIES-I;i++)

partltlon(COLS,choices);
k -and_l(COLS);
if (i==0)
compare save(COLS,O,0);

(9 else
compare save(COLS,3,0);

for (i=O;i<=COLS-1;i++)
choices [i1=carray [i];

for (i=0;i<=KRLTIMES-1;i++)

partition(COLS/2,choices);
k _and_l(COLS/2);
compare save(COLS/2, 1,0);

for (i=0;i<=COLS/2-1;i++)
41 choiceslhchoicesll+COLS/2];

for (l=0;i<=KRLTIMES-1i+

partition(COLS/2,choices):

k _and_l(COLS/2);

* - if (i==(KRLTIMES-I))
compare save(COLS/2,2,1);

else
compare save(COLS/2,2,0);

1/* end final=0 if *

8- 13



for (i=O;i<=((GROUPS-I)*DATAWIDTH);i +=DATAWIDTH)
for (j=O;J<=DATAWIDTH-I;J++)
if ((carray[i+j]<=(i+DATAWIDTH-1)) && (carray[l+jl>=i))
{

temp=carray[i+j];
carray(i+J]=carray(temp];
carray[temp]=temp;

for (y=O;y<=COLS-1;y++)

pulled(y]=O;
filetemp[y]=O;

temp=(-1);

for (x=O;x<=COLS-l;x++)
if (carray[x]!=x)

{if (pulled~x1==O)

* movcol(x,temp);
filetemp[x]=l;L- .. }

if (filetemp[carray[xl]==O)

movcol(carray[xl,x);
pulled(carray[x]]=l;

N }
else

movcol(temp,x);
I

return;

• DATE: 1 DEC 1985 *
• VERSION: 1.0 *

• * NAME: WORD *
• DESCRIPTION: *
• The word module performs two functions. It counts the number *
* of one-bits in a row for AO and AO-not to see which rows *
* should be inverted, and it gives the total number of ones in *
• the array after all rows have been checked. The rows are *
* inverted if the number of ones is over half as with the columns.*
-* The total number of ones is kept as a running total updated *
" * after each row is checked. *
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- - -- - - - - -- - - - - - - - - - -- - -

*PASSED VARIABLES: NONE
*RETURNS: grandtotai: total ones in array answer
*GLOBAL VARIABLES USED: wordsign_bit
*GLOBAL VARIABLES CHANGED: word sign bit*
*FILES READ:
*FILES WRITTEN:
*HARDWARE INPUT:*
*HARDWARE OUTPUT:
*MODULES CALLED: word byte_count, flipword, setwordblt*
*CALLING MODULES: addr_gen *

*AUTHOR: PAUL ROSSBACH*
*HISTORY:

in worrd;

int con;

int 1,j;te
tnt word;ye

for (i=O;i<=ROWS-1;i++)

rowbyte=COLS*i;
C word sign-bit~i]=O;

for (word=O;word<=3;word++)

* wordbyte=DATAWIDTH*word;
for (AON=O;AON<=1 ;AON++)

totalcount=O;
for (j=O;j<:DATAWIDTH-1;j++)

count=word byte_count( (wordbyte+j+rowbyte),AON);
totalcount += count;

if (totalcount>=(DATAWIDTH*2+1))

for (J=O;J<=DATAWIDTH-1:J++)
fi ipword( (wordbyte+j+rowbyte),AON);

setwordbit(1, (word*2+AON));
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return;

* DATE: 1 DEC 1985 *
* VERSION: 1.0 *

"'* NAME: PUTADDRESSES *
* DESCRIPTION: *

* * The putaddresses module performs the placement of the *
* bits for a particular row and word (there are 4 words of *
,.* DATAWIDTH per row) from the 8 data entries in address *

* array (addrarray). Each row of the XROM with a 4 to I *
.,* Demultiplexer on top of the bit lines has eight different *

* data values per row if the XROM only output one dataword at a *
* time. Thus, eight data entries are loaded into the row-word. *
, .

: * PASSED VARIABLES: addrarray: the 8 data entries to place *

*, row: the current row
word: the group on that row ( to 4) *

* RETURNS: NONE *
* GLOBAL VARIABLES USED: outarray *
-* GLOBAL VARIABLES CHANGED: outarray *
% * FILES READ: *

* FILES WRITTEN: *
.* HARDWARE INPUT: *

* HARDWARE OUTPUT: *
* MODULES CALLED: NONE *
[i* CALLING MODULES: placement *

' * AUTHOR: PAUL ROSSBACH *
.* HISTORY: *

0""* *
. . * ,

'...*************************************************************************/

putaddresses(addrarray, row,word)
int row;
int word;
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unsigned addrarray[81;

int inc,1;
int bit;
int rowbyte;
int wordbyte;
int byte;
int mask;

* mt bitloc;
* unsigned caic;

wordbytesword*DATAWIDTH;
rowbyte=row*COLS;

for (inc=0;inc<=7;inc++)
11~ I
* bitloc-7-inc;

for (i=DATAWIDTH-1;i>=0;i--)

blt=((addrarrayfmncJ >(DATAWIDTH-1-l)) & (0001));
if (bit != 0)

ri byte=rowbyte+wordbyte+i;
mask=I;

* mask=(mask<((bitloc));
calc=out-arrayfbytel;
calc=(calc & 0377);
calc=(calc-mask);
out array[bytehcalc;

* return;

*DATE: 1 DEC 1985*
*VERSION: 1.0*

* * NAME: ARRAYCOUNT
*DESCRIPTION:

*This module counts the total number of ones in the out array *
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*PASSED VARIABLES: NONE
*RETURNS: totalcount*
*GLOBAL VARIABLES USED: NONE*
*GLOBAL VARIABLES CHANGED: NONE*
*FILES READ: NONE*
*FILES WRITTEN: NONE*
*HARDWARE INPUT: NONE*
*HARDWARE OUTPUT: NONE*
*MODULES CALLED: bytecount
*CALLING MODULES: addrgen*

*AUTHOR: PAUL ROSSBACH
*HISTORY:

* array count()

int count;
int totalcount;
int i;

con.O
tocount=O;

for (i=O;l<OUTSIZE;l++)

count=bytecount( 1);
totalcount += count;

return(totalcount);

DAE DC18
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* * DESCRIPTION:*
*This module counts the number of ones in a single byte of the *
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out array *

'"* PASSED VARIABLES: byte *
• RETURNS: count *

• GLOBAL VARIABLES USED: out_array *

: * GLOBAL VARIABLES CHANGED: NONE *
-* FILES READ: NONE

*FILES WRITTEN: NONE*
! * HARDWARE INPUT: NONE *

* HARDWARE OUTPUT: NONE *
* MODULES CALLED: NONE *

-,* CALLING MODULES: array_count *

T' * AUTHOR: PAUL ROSSBACH *

• HISTORY:

-- ************ ************** ****** * *

* bytecount(byte)

int byte;

{

int count;
unsigned calc;

calc=outarray[bytel;
calc=(calc & 0377);
for (count=O;calc!=O;calc>>=l)

if (calc & 001)
count++;

return(count);

* DATE: I DEC 1985 *

• VERSION: 1.0 *

':* NAME: WORDBYTECOUNT *
* ""DESCRIPTION: *

.'" * This module counts the number or one-bits In the AO or AO *
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iz.4

* -not half of one byte of the outarray. The module is used *

• for determining if a row (AO/AO-not) should be inverted. *

• The masking patterns are as such to align with the actual *

• bit locations of the XROM. The count for a single byte *

* (AO/AO-not) is returned. *

• PASSED VARIABLES: byte: the index for the out_array *

* AOorAON: 0 or I - which half of byte *

• RETURNS: count of ones in byte half *

* GLOBAL VARIABLES USED: outarray *

• GLOBAL VARIABLES CHANGED: out array *
* FILES READ: *

• FILES WRITTEN: *

* HARDWARE INPUT: *

• HARDWARE OUTPUT: *

• MODULES CALLED: NONE *

* CALLING MODULES: word *

.* AUTHOR: PAUL ROSSBACH *

* HISTORY:

word_bytecount(byteAOorAON)
int byte;
int AOorAON;

int count;
unsigned calc;

if (AOorAON){4.

calc=outarraylbytel;
calc=(calc & 00146);

.. }

else

IF calc=out arraylbytel;
calc=(calc & 00231);

for (count=O;calc!=O;calc>>=1)
if (calc & 01)

count++;
return(count);

B-20
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* *.

* DATE: 1 DEC 1985 *
*VERSION: 1.0 *

* NAME: FLIPBYTE *

* DESCRIPTION: *
* This module simply inverts an entire character byte of *
--* the outarray. The byte number that is to be inverted *

* is sent to the module. *-* *

* PASSED VARIABLES: byte: index for out_array *

* RETURNS: NONE
* GLOBAL VARIABLES USED: outarray *
•"* GLOBAL VARIABLES CHANGED: out-array *
" * FILES READ: *

""* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: NONE *

* CALLING MODULES: column *

" * AUTHOR: PAUL ROSSBACH *

* HISTORY:
* .

.. *********************************** ****

flipbyte(byte)
-. int byte;

unsigned flip;

flip=outarray[bytel;
flip=(flip & 0377);

>..- flip=(flip-(0377));

outarray[bytel=flip;

*- return;
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* *
* DATE: 1 DEC 1985 *
* VERSION: 1.0 *

* NAME: SETWORDBIT *

* DESCRIPTION:
* Setwordblt sets the proper word sign bit for the section *
* of the XROM that it is sent. For each row there are 8 word *

*sign bits in the 4 to 1 demultiplexed XROM. The 8 word*
* tsign bits are stored in one character byte of the word *
* sign bit array. Thus, bit level operations are needed to *
* set each sign bit. *

* PASSED VARIABLES: byte: wordsignbit index *
* bit: which sign bit in the byte *
* RETURNS: NONE *
.* GLOBAL VARIABLES USED: wordsignbit *

* GLOBAL VARIABLES CHANGED: wordsignbit *
* FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
, * MODULES CALLED: *

.* CALLING MODULES: word *
, ,

* AUTHOR: PAUL ROSSBACH *
* HISTORY: *

setwordbit(byte,bit)
int byte;
int bit;

unsigned calc;
int mask;

mask=1;
mask=(mask<<(7-bit));
calc=wordsignbit(byte];
calc=(calc & 0377);
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. - - --

calc=(calc-mask);
wordsignbit[bytel=calc;

return;

- I I

I

.-* DATE: 1 DEC 1985 *
" * VERSION: 1.0 *

"* NAME: FLIPWORD *
* DESCRIPTION: *

* * Flipword performs the same function as "flipbyte" except
] * that it only inverts half of the byte. The AO bits of a *
" * byte are inverted if called with a 0 as the second argument. *
.•* It inverts the AO-not bltss if called with a I as the second *
-* argument. *

Y"* PASSED VARIABLES: byte: out_array Index *
* AOorAON: 0 or 1 - which word of byte *
* RETURNS: NONE *
• GLOBAL VARIABLES USED: out_array *

'* GLOBAL VARIABLES CHANGED: out-array *
I * FILES READ: *

* FILES WRITTEN: *
'-* HARDWARE INPUT: *
•-* HARDWARE OUTPUT: *
" * MODULES CALLED: NONE *
'"* CALLING MODULES: word *

, * AUTHOR: PAUL ROSSBACH *
° * HISTORY: *

flipword(byteAOorAON)
int byte;

- int AOorAON;

• "' - unsigned flip;
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if (AOorAON==O)
{
flip=outarray[byte];
flip=(flip & 0377);
flip=(flip-(0231));

out array[bytel=flip;

elsef
flip=outarray(byte];
fllp=(fllp & 0377);

• ."flip=(flip-(O146))"
out array[byte]=flip;

I

return;

* *

."* *

* • DATE: I DEC 1985 *
• VERSION: 1.0 *

• NAME: DETERMINE COSTS *
* DESCRIPTION: *
* Determinecosts calculates the correlation distance *
.* between all columns of the XROM for one-bit removal. *

* The distance matrix is upper-triangular since the distances *
* are symmetric. The lower triangle is filled in also for future *
' * use. The AO ones and AON ones arrays calculated in the column *
• module are used to determine the column's correlation. The *
* cost difference is the number of ones that can be removed if *
• two columns are placed under the control of a single sign bit. *
-* The cost distance between two columns for one-bit removals *
-.* is based on the number of one-bits in the AG and AO not words *

*-" for each row. *
* *

o* PASSED VARIABLES: NONE *
* RETURNS: NONE *
* GLOBAL VARIABLES USED: AOones, AONones, costs *
• GLOBAL VARIABLES CHANGED: costs *

"" * FILES READ: *
"-* FILES WRITTEN: *
'"* HARDWARE INPUT: *

.* HARDWARE OUTPUT: *
• MODULES CALLED: NONE *
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N * CALLING MODULES: col _swap*

*AUTHOR: PAUL ROSSBACH
*HISTORY:*

determine-costs()

{n ~etr

int AOvector;

int i,x,y;
* mnt AOtotal;

int AONtotal;

fo xv-.CLSIx+
for (=O;<=COLS-;++)

if (x>y)

AOvector=0;
AONvector=O;
for (i=O;i<=ROWS-1;i++)

AOtota]=AOones[xliJ + AOones[y)[i]:
AONtotal=AONones[xfliJ + AONones[y][iI;
if (AOtotal < 0)

AOtotaI =( -AOtotal );
if (AONtotal < 0)

*1 AONtotaI=( -AONtotal );
* AOvector=AOvector+AOtotal;

AONvector=AONvector+AONtotal;

costs Ix]fy]=AOvector+AONvector;

for (x=O;x<=COLS-1;x++)
for (y=O;y<=COLS-1;y++)
if (x<y)
costs[xl [ylcostsly] lxi;

return;
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-* DATE: I DEC 1985 *
."* VERSION: 1.0 *

:>* NAME: MOVCOL *

* DESCRIPTION:
* Movcol moves the columns of the XROM in order to place them *
* in the locations determined by the K and L graph partitioning *
-.* algorithm. The module can move columns in three ways. *

* a. from one column position in the XROM *
""* to another. *

* b. from one column postlon to a holding area. *
* c. from the holding area to a column position.

* PASSED VARIABLES: from: column index number or -1(for temp area)*
* to: column index number or -1(for temp area)*

"* RETURNS: NONE *
-'* GLOBAL VARIABLES USED: col _signbit, outarray, hold, signs *

.1 * GLOBAL VARIABLES CHANGED: col signbit, out_array, hold, signs
- "* FILES READ: *

:'." * FILES WRITTEN: *

.- * HARDWARE INPUT:
,." * HARDWARE OUTPUT: *

-* MODULES CALLED: NONE *
* CALLING MODULES: col swap *

' * AUTHOR: PAUL ROSSBACH *
*** HISTORY: *

' :-'.' movco ( from, to )
i i nt from;

_" int to;

-'.'"int index;

' l.

, 4 ,--* if ((to>=O) && (from>=O))
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col_signbit[tol=col_signbit[from];
for (index=O;Index<=ROWS-I;index++)
outarray[to+COLS*indexl=outarray[from+COLS*index];

if (to<O){
signs[from]=colsignbit[from];
for (index=O;index<=ROWS-1;index++)
hold[from][Index]=outarray[from+COLS*index];

}

if (from<O)
{
colsignbit(to]=signs[carray[toll;
for (index=O;index<=ROWS-1;index++)
outarray[to+COLS*index]=hold[carray[tol][index];

}return;

* DATE: I DEC 1985 *
* VERSION: 1.0 *

* NAME: COMPARESAVE *
* DESCRIPTION: *
* Since the K and L algorithm attempts to minimize the *
* ones in the XROM by partitioning the columns numerous *
* times, a mechanism is needed to keep track of which solution *
* was the best. Comparesave does the for this first cut in *
* half of the XROM, and for each half into quarters. The *
* module will also update the carry array with the best solution *

* so far when called. *

* PASSED VARIABLES: size: COLS or COLS/2 partition size *
.-* time: O,1,or 2 - try number for a size *

* done: flags the last try for the XROM *
.* RETURNS: NONE *
'.* GLOBAL VARIABLES USED: costs, carray *
" * GLOBAL VARIABLES CHANGED: carray *
',* FILES READ: *

.* FILES WRITTEN: *

* HARDWARE INPUT:
.'* HARDWARE OUTPUT: *

"* MODULES CALLED: NONE *
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- - - - - - - -

*CALLING MODULES: col _swap

*AUTHOR: PAUL ROSSBACH*
*HISTORY:

compare save( size, time,done)
int size;
tnt time;
int done;

int Etotal;
tnt x,y,i;
int link;

Etotal=O;

if (time==O

last48E=BIGNUMBER;
lasti_-24E=BIG_-NUMBER;
last2_24E=BIGNUMBER;

for (x=O;x<=(size/2-l);x++)
for (ysize/2;y<=slze-l1y++)

1 ink~costs(carraytxJ I carraytyll;
* Etotal=Etotal+link;

if (size==COLS)

if (Etotal<last48E)
* for (i=O;i<=COLS-I;i++)

save48(ihcarray[i];
K else

for (i=O;i<=COLS-1;I++)
.9.. carray~ilsave48f i];

else

if (time==1)
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if (Etotal<lastl_24E)
for (i=O;i<=COLS/2-1;i++)

*Z+ savel_24[i]=carray[i];

*else
{

if (Etotal<last2_24E)
for (i=O;i<=COLS/2-1;i++)

save2_24[i]=carray[i];

if (done==i)
for (i=O;i<=COLS/2-1;i++)

{
carray[il=savel_24(i];
carray[i+COLS/2]=save2_24[i];

* return;

MI

r / *************************************************************************

""* DATE: 1 DEC 1985 *
* , VERSION: 1.0

) * NAME: PARTITION *
" * DESCRIPTION: *

* This module randomly partitions a group of columns into *
' * two groups of half the "size". The initial partition *
.,* is used as a random starting point for the K andL *
• algorithm. The columns are partitioned through the column *
*.. :number's place in the carray array.

* PASSED VARIABLES: size: COLS or COLS/2 partition size
• choices: the column numbers to partition *
* RETURNS: NONE *
-* GLOBAL VARIABLES USED: carray *

* GLOBAL VARIABLES CHANGED: carray *

* FILES READ:
.* FILES WRITTEN: *
-* HARDWARE INPUT: *

* ., HARDWARE OUTPUT: *
• * MODULES CALLED: NONE *

* CALLING MODULES: col swap *
B* *
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-~ - - *AUTHOR: PAU ~ROSS I' *
*HISTORY:*

partltlon(size,choices)
int size;
int choices[COLSJ;

* mnt i,j,x;
int value;
long random();

e i=O;
X=O;
j=si ze/2;

while ((i<=(size/2-1)) L& (J<=size-1))

value=random();
value=(value & 01);

if (value)
carraylli++1=choices[x];

else
c array j+~ hoic es Il

I, if (x<size)
* if (i(=(size/2-1))

while (x<=size-1)

carray Ii++I=choices [xl;

else
while (x<=size-1)

carray[j++I~choices[xl;

ILI

return;
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4:.w ,"' / ***************************'A*******************************************

'2* DATE: 1 DEC 1985
.* VERSION: 1.0 *

• NAME: K AND_L *
* DESCRIPTION: *
• This module implements the heart of the Kernighan and *
• Lin graph partitioning algorithm. The algorithm *
'(* continues to look for a better partition *
.* until none can be found. At each iteration, "K" *
".* number of columns are swapped between column groups *
-,* to improve the gain or decrease the lexternal costs *

S * -internal costl value. When the best partition is *
-.* found, its state is saved. *

> * PASSED VARIABLES: size: COLS or COLS/2 partition size *

* RETURNS: NONE
* GLOBAL VARIABLES USED: carray *
• GLOBAL VARIABLES CHANGED: carray *
• FILES READ: *
'"* FILES WRITTEN: *
.* HARDWARE INPUT: *
.... HARDWARE OUTPUT: *
l * MODULES CALLED: calc_D, buildgarray, Gmax *

* CALLING MODULES: colswap *

""* AUTHOR: PAUL ROSSBACH *
-.* HISTORY: *

. - ******************A***************************************************** /

k _and_l (size)

int size;

.nt selpairs[COLS];
- int kswap;

. int i ;

int temp;
-, .B3
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U".

kswap=1;
while (kswap>=O)
I
calcO(slze);
build garray(selpairs,size);
kswap=Gmax(size);
if (kswap>=O)
for (i=O;i<=kswap;i++)I

temp=carray[selpairs(2*1]];
carray[selpairs[2*il]=carray[selpairs[2*i+l]];
carray(selpairs[2*i+l]]=temp;

}

return;

-* *

.* DATE: 1 DEC 1985 *

.* VERSION: 1.0 *

• NAME: CALC_0 *
-*. DESCRIPTION: *

* Calc_D calculates the Kernighan and Lin "D values" *

* for each node(or column) in the graph set(all columns). *

. * A node's 0 value is equal to the total external link costs *
* minus the total internal link costs for the node. *

t * The 0 is calculated for the initial partition created *

* by the "partition" module. *

* PASSED VARIABLES: size: COLS or COLS/2 partition size *

* RETURNS: NONE *

* GLOBAL VARIABLES USED: costs, BigD, D *

• * GLOBAL VARIABLES CHANGED: BigD, D *
* FILES READ: *

• FILES WRITTEN: *
* HARDWARE INPUT: *

• HARDWARE OUTPUT: *
* MODULES CALLED: NONE *

" . * CALLING MODULES: k and l *

• AUTHOR: PAUL ROSSBACH *
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*~ ~ I ISTORY:

caic_D(slze)
int size;

int E[COLS];
int II[COLS];
int link;
int temp;
int lo,hi;

* mt x,y,yy;
mnt i;
int jx;

lo=size/2;
hi~size-1;

E1[i]O;

for (x=O;x<=(lo-1);x++)
for (y=lo;y(=hi;y++)

linkzcosts(carray (xli[carray~y]1;
E~x]=EtxJ+link;
E~y]=E~yl+link;

for (x=O;x<=(lo-1);x++)
for (y0:y<=(lo-l);y++)

if (x!=y)
II[x]=II~x]+costs[carray~x]][carray~y]];

* for (x=lo;x<=hi;x++)
for (y=lo;y<=hi;y++)
if (x'=y)
hf xl =II[xl+costs [carray (xl I[carrayfyi];

for (i=O;1<=7;1++)
BigDOjl (1=(-BIGNUMBER);

7 for (yy=O;yy<=1;yy++)

y=4*yy;
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for (x=(O+lo*yy);x<=(lo-l+lo*yy);x++)
,L, {

D[x]=E[x]-II[x];
if (D[xI>BlgDO[O[3+y])

i=3+y;
BigDO [0[I =DIx];
BigOIll [iI=x;
while ((BigDO[O[iJ>BigD[O][i-11) && (i>y))

for (jx=O;jx<=;jx++)

temp=BigD[jx][i];
BigDfjxJ [i]=8igD[jx] [i-1];
BigO[jx] [i-1]=temp;

, ..:. i-- ;

return;

.* DATE: 1 DEC 1985 *

VERSION: 1.0

j * NAME: GMAX
-,* DESCRIPTION: *

* Gmax informs the kand_1 module on how many columns(nodes) *
: * should be swapped(as listed in the selpairs array) between *
--* partitions. The module sums the gains found for each swap *
.* made by build_garray. If a positive sum is found at anytime, *
( * a swap will be made. The highest positive sum will indicate *
* how far to go (K = GXY) down the selpairs array, swapping *
'.* column pairs as indicated. *

.'* PASSED VARIABLES: size: COLS or COLS/2 partition size *
"-* RETURNS: GXY: the number of swaps to make (K) *

[*- * GLOBAL VARIABLES USED: g *
' ! ' * GLOBAL VARIABLES CHANGED: g *

* FILES READ: *
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*FILES WRITTEN:
*HARDWARE INPUT:
*HARDWARE OUTPUT:*
*MODULES CALLED: NONE*
*CALLING MODULES: k-and_-1

*AUTHOR: PAUL ROSSBACH*
*HISTORY:*

Gmax( size)
int size;

V mnt G;
int GM;
int GXY;

*

GM=O;

for (i=O;i<=(size/2-l);i++)

G=G+g~i1;
if (G>GM)

GM=G;
GXY=i;

* if (GM==O)
* GXY=(-1);

return( GXY);
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i * DATE: 1 DEC 1985 *
* VERSION: 1.0 *

* NAME: BUILD GARRAY *
' * DESCRIPTION: *
" * Build g array fills in a selpairs array that lists the nodes *
-* that are to be swapped (possibly) by the algorithm, and the
ii* order in which they are to be swapped. The kand_1 algorithm *
• will eventually tag all the nodes to be swapped between the *

• two partitions, resulting in a mirror image of the starting *
.* partitions. Therefore, selpairs is an array as big as the *
' * number of nodes in the set(both partitions). The nodes to *
.* be swapped next are selected by highgn and Recalc_D updates *
• the D values. The 0 values used and placed in selpairs are *
* cleared(-BIGNUMBER) so recalcD doesn't waste its time. *

• PASSED VARIABLES: size: COLS or COLS/2 partition size *
* selpairs: pairs of columns selected for swap *
."* RETURNS: NONE *

*,o GLOBAL VARIABLES USED: NONE *
• GLOBAL VARIABLES CHANGED: NONE *

* FILES READ:
,,* FILES WRITTEN: *
.* HARDWARE INPUT: *
'J* HARDWARE OUTPUT: *

- '" * MODULES CALLED: high_gn, Recalc_D

, * CALLING MODULES: k and_1 *

" * AUTHOR: PAUL ROSSBACH *

'.* HISTORY: *

* buildgarray(selpairs,size)
* int selpairs[COLS] *

int size;

- int cpair[21;
int index;
int i;

for (index=O;index<=(size/2-1);index++)
~{

*highgn(index,cpair);

for (i=O;i<=I;i++)
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selpairs[index*2+iJ=cpair[i];
D(cpair[i]]=(-BIGNUMBER);

}
if (index!=(slze/2-1))
RecalcD(cpair,size);

return;

* DATE: I DEC 1985 *
* VERSION: 1.0 *

* NAME: HIGHGN *
* DESCRIPTION: *

* This module finds the two nodes to swap next by calculating *
* which swap will yield the highest gain. To calculate the *

* high gain, the module uses the 8 biggest 0 values(4 from *

* each partition) to see which of up to 16 possible combinations *

of 2-node swaps gives the highest gain. These two nodes are *
placed in cpair and the gain is placed in the g array

* PASSED VARIABLES: index: number of swap entries in g already *

* cpair: holding area for the 2 next cols *
* RETURNS: NONE *

* GLOBAL VARIABLES USED: g, BigO, costs, carray *
* GLOBAL VARIABLES CHANGED: g *
* FILES READ: *
* FILES WRITTEN: *

* HARDWARE INPUT: *
* HARDWARE OUTPUT: *

* MODULES CALLED: NONE *
* CALLING MODULES: build garray *

* AUTHOR: PAUL ROSSBACH *

* HISTORY: *

F ~ *********** **********************************************************

high gn(index,cpair)
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int index;
int cpair[21;

int i,j;int temp;

g[indexl=(-BIGNUMBER);
'. for (i=O;i<=3;T++)

if (BigD[1][i]>=O)
for (j=O;j<=3;j++)
if (BigD[1][4+j]>=O)

temp=BigD[O][i]+BigD[O][4+j]-
2*costs[carray[BigD[l][ill][carray(BigD[1][4+jll];

if (temp>g[index])

'.p g[indexl=temp;
cpair[O] =BigD[1] [(i ;
cpair[1]=BigD[I][4+j1;

"- return;

'.* DATE: 1 DEC 1985 *
* VERSION: 1.0 *

" ' * *

* NAME: RECALCD *
"-". * DESCRIPTION: *

* Recalc D performs the same function as calc D, but does it *
..* after the graph partitioning scheme has been changed. When *

* a tentative swap or tagging of 2 nodes(columns) is made *
o* between the two partitions, the new D values for each node *

.* (column) can be updated from the old D values. Recalc_D *
' * uses this method whereas Calc_D must calculate each node's *

* (column's) 0 value from scratch. As with Calc_D, the 4 *
.* highest D values for each partition are saved to be used *

* in the next attempt to find a better partition by swapping *

- * 2 elements. The negative values are filled in the Big_D *
"* array to indicate a non-valid entry when less than 4 nodes *

f * remain "untagged for swap" in each partition. *
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*PASSED VARIABLES: size: COLS or COLS/2 partition size
* cpair: last 2 columns chosen*

*RETURNS: NONE
*GLOBAL VARIABLES USED: carray, BigD, D, costs*
*GLOBAL VARIABLES CHANGED: BlgD, D
*FILES READ:
*FILES WRITTEN:
*HARDWARE INPUT:
*HARDWARE OUTPUT:*
*MODULES CALLED: NONE*
*CALLING MODULES: build_garray

*AUTHOR: PAUL ROSS8ACH
*HISTORY:*

Recaic_D(cpair,size)
* mnt cpair[21;

mnt size;

mnt temp;
int offset;
int A,B;
int i,jx;
int x,y,yy;
int lo,hi;

offset=size/2;
A=carray [cpair (0]

4 B~carray[cpairlll];

for (l=O;i<=7;i++)

BigDjOJ(i=(-BIG_NUMBER);
BigD(1J Li =(-1 );

for (yy=O;yy<=l;yy++)

y=4*yy;
1 o=O+offset*yy;
hi=(offset-1 )+offset*yy;

4 for (x=lo;x<=hi;x++)
if (D~x]>(-BIG_NUMBER))
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if (y)
D[xB=DtxI+2*costs[carraytx]fBJ-2*costs[carrayfx]J[A;

else
D hO [xl+2*costs (carray [xl][A] -2*costs (carray [xi] [81;
if (D[x]>BIgD[OJ[3+yl)

i=3+y;
BigO(01(il=D~xI;
BigD[li [ihx;
while ((BigD[0j[ij>BlgD[OH[i-1J) && (iDy))

for (jx=O;jx<=1;jx++)

temp=BigD~jxJ (11;
BigO~jx] [ij=BigDfJxI[i-Il;
BlgDI[Jx] li-1=temp;

i -- ;

return;
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:~ .---- APPENDIX C "DRAINS" CODE

*DATE: 1 DEC 1985*
*VERSION: 1.0*

*TITLE: DRAIN PULLER/OPTIMIZER FOR XROM
*FILENAME: DRAINS.C
*COORDINATOR: CPT LINDERMAN*

* *PROJECT: XROM OPTIMIZER
*OPERATING SYSTEM: UNIX V 4.2
*LANGUAGE: C*

A * USE: included in genXROM.c*
*CONTENTS:

* drains()
.1' LandK()

* order-in-col()
* * fill _colpairsarray()

* fill _row drains array()
* generate tour()
* smallest..yi()
* valldyis()
* max_value()
* best gain()
* violation()
* path track( o
* spec path_track()
* linkjoin( o
* new_links()
* fill invalid()
* t1 _random( o
* clear( o
* choose xl()
* initialize()
* swap( o

0 * look up()
* hamiltonianpath()

*FUNCTION: This program minimizes the number of drains*
* in an XROM array(using the Lin & Kernighan

U * Traveling Salesman Problem Algorithm)and*
* passes the output to the layout.c program.*

#include "stdio.h"
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- ,deflne COLS 48
#define ROWS 144
#define GROUPS 4
#define DATAWIDTH 12
#define IN SIZE ROWS*GROUPS*8
#define OUTSIZE ROWS*GROUPS*DATAWIDTH
#define KR L TIMES 3
#define KRL 1
#define FALSE 0
#define TRUE 1
#define MAXROWS 255
#define MAXDATAWIDTH 15

#define ALL 0
#define BLR I
#define RIRJ 0
#define RILJ I
#define LILJ 2
# Ndefine LIRJ 3

. #define BACKTRACK 0
#define AGAIN I
#define SWAP 2
#define YIEQYSTAR 3

0 #define ALL 0
#define Y_1 I
#define Y 2 2
#define NOTSEENYET 0
#define SEEN I

#define BIGNUMBER 100000000

extern char out array[];
extern int sub c array[];
extern int permut_col1;
extern int sideways[];
extern int rowpermutation(];

int nopullrow[ROWSI[ROWS][21;
int non colpairs[DATAWIDTH][DATAWIDTH][41;
int low[5[3] [4];
int T6_flag;
int VIOflag;
int G va lid[5] [4;
tnt G[ROWS+11;
struct cell *t(ROWS+1];
int Gbest;

. tint k;
int f_t;

C-2

. . . ...* . .. . *. . . . .



- - - - - - - - -

struct cell
struct cell *a]I 1_llnk;
struct cell *bl _r_link;
int al 1 weight;
int bl _rwelght;
int node -number;
int ycurrent;

7 tnt xcurrent;
struct cell *ystar;
int ystar weight;
struct cell *tent -a link;
struct cell *tent_b_link;
int t -a -weight;

:2: t t b-weight;
tnt al _lis-y;
int bI risy;
mnt oldxl;
int oldx2;

0 mt two ycurrent;
mnt two xcurrent;

}nodes[ROWS];

*DATE: 1 DEC 1985*
*VERSION: 1.0

*NAME: DRAINS*
*DESCRIPTION:*

*This module calls all necessary subroutines to perform the*
*drain minimization in the XROM array.*

*PASSED VARIABLES: NONE*
*RETURNS: NONE
*GLOBAL VARIABLES USED: f t*
*GLOBAL VARIABLES CHANGED: f t*
*FILES READ:

9 * FILES WRITTEN:*
*HARDWARE INPUT:*
*HARDWARE OUTPUT:
*MODULES CALLED: order_ in col,fill cal pairs array,L andK

* hamiltonian path fill _row-drains ara
*CALLING MODULES: genXROM*

*AUTHOR: PAUL ROSSBACH*
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H HISTORY:

drains()

int i;
static minf_t;

order-in-col();

for (i=O;i<=3;i++)

fill _ col _pairs array(i);
-7e ~ L -and_-K(DATAWIDTH,i);

hamiltonianpath(DATAWIDTH,i);

fill _row drains-array();
minf-t = BIGNUMBER;

for (i=O;i<=3;i++)

*L-and-K(ROWS,i); /* i not currently used in call but meant *
/* for "avoid checkout option" see L&K ref*/

if (f-t < minf-t)

'.~min _f t = f t;
hamiltonianpath(ROWS,i );

return;

*DATE: I DEC 1985*
*VERSION: 1.0*
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"'}:' * NAME: LAND_K
• * DESCRIPTION: *
* This module implements the Lin and Kernighan traveling *
* salesman promblem (TSP) Algorithm described in Operations *
" * Research, pp 498-516, vol 21, no 2, 1973. The purpose *
: * or the module is to find a row or column arrangement *

* that allows the most drain devices to be extracted *

* within an XROM. *

• PASSED VARIABLES: size: ROWS/COLS *
* time: not used - for future improvements *

• RETURNS: NONE *
• GLOBAL VARIABLES USED: Gbest, G, VIO_flag, T6_flag, *
• GLOBAL VARIABLES CHANGED: G_best, G, VIOflag, T6_flag, *

FILES READ:
FILES WRITTEN:

, * HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: initialize, generate tour, ti random *
* choose_xI, fill-invalid, smallestyi *

* * valid_yis, path_track• max_value *
: * violation, best gain, swap, clear *

. .* *

:-* CALLING MODULES: *

* AUTHOR: PAUL ROSSBACH *
@ * HISTORY: *

S* *

L_and_K(size,time)
int size;
int time;

S

int all _donexl_done;
int progress;
int swapping;
int noyisswap;
int result;
int invalid(41;
int i;

initializeol;
•6 f-t=generate_tour(size);

swapping TRUE;
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while (swapping TRUE)

Gbest = G[O] =0;
swapping = FALSE;
no_yis_swap = FALSE;
all _done = tl-random(size,O);
while ( all-done != TRUE)
{
xl_done=choosexl(O);
while ((Gbest == 0) && ( xldone ! TRUE))

i=l;

fill _invalid(invaltd,t[2]->node_number);
smallestyi(1,size,t[21->node_number,t[21->ycurrent,invalid);
if ( valid_yis(size,i) == TRUE)
{
while ((Gbest == 0) && (maxvalue(size,i) != FALSE))
(
if (path_track(l,t[3J,t[4]) FALSE)
VIOflag = TRUE;

else
VIO_flag = FALSE;

progress = TRUE;
while ( progress == TRUE

Ii += l;
fillinvalid(invalid,t[2*l]->node_number);
smallest_yi(i,size,t[2*i]->node_number,t[2*i]->ycurrent,

invalid);
if ( valid_yis(size,i) == TRUE)
(
result=BACKTRACK;
while ((result == BACKTRACK) &&

(maxvalue(slze,i) ! FALSE))
(
if ( VIO_flag == TRUE II T6_flag == TRUE
result = violation(size,i);

else
{

result = best_gain(size,i,O);
if ( == 2 && result == SWAP
result = BACKTRACK;

if (result == SWAP II result == YI EQYSTAR)
(

swap();
swapping = TRUE;
alldone = TRUE;
progress = FALSE;

if (result == BACKTRACK)
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_T6flag = FALSE;

clear(Y_2);
i = 2;

)

if ( result == BACKTRACK

clear(Y-1);
T6_flag = FALSE;
VIO_flag = FALSE;
progress = FALSE;)

m,/. end valid yis if */
else
{

It, if (i == 2)
,?w, {

clear(Y_1);
0VIOflag = FALSE;

progress = FALSE;
- '. i = 1;

else

* If ( VIOflag T6_flag

clear(Y I);
T6_flag = FALSE;
VIO flag = FALSE;
progress 2 FALSE;

. i = 1;
i

else
no_yis_swap = TRUE;

0I

if ( no_yis_swap == TRUE

swap( );
swapping = TRUE;

0- alldone = TRUE;
progress = FALSE;

" /* end progress while */
/* end maxvalue while */

P ' ,.. if (Gbest = )
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clear(ALL);
x1 _done=choose_xl(1);
I

}
else

clear(ALL);
xl_done = choose_xl(l);

} 1* end while xl_done */

if (all_done != TRUE)
alldone = tlrandom(size,1);

/ 1* end all done while */

/ /* end swapping while */

0

* DATE: I DEC 1985 *
* VERSION: 1.0 *

* NAME: ORDER IN COL *
* DESCRIPTION: *

* This module looks at each column-byte of the XROM and *
* decides what ordering of the bits within the column yields *

* the maximum number of zero pairs. There are 4 possible *

* orderings of bits in each column: *
* a. leave as is = 0 *

* b. swap the 2 bit line devices = 1 *
* c. swap the 2 bit line devices and the 2 AO *
* line devices =2 *
* d. swap the 2 AO line devices =3 *

* The module determines which ordering gives the most zero *

* pairs by finding the minimun non-zero pair count and *
'* using that ordering. The module then places that colmun's *
t"* bits in that order and fills the sub c_array with each *

* column's order. *

" "* PASSED VARIABLES: NONE *
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""* RETURNS: NONE *
• GLOBAL VARIABLES USED: out_array, sub_c_array *
* GLOBAL VARIABLES CHANGED: out array, sub c_array *
• FILES READ: *
-"* FILES WRITTEN: *
'.* HARDWARE INPUT:
• HARDWARE OUTPUT: *

• MODULES CALLED: NONE *
• CALLING MODULES: drains *

* AUTHOR: PAUL ROSSBACH *

* HISTORY:

***************************************************************** ****** /

C-: orderin col()

int sub co][4][41;
register i,j;
unsigned calc,plugl,plug2;
int compare,next,arrange;
int x,y;

.... ************ clear the temporary counting array

for (i=O;i<=COLS-l;i++)
for {
for (x=O;x<=3;x++)

.-. ,-. for (y=O;y(=3;y++)

subcolfx][y]=O;

/************ for each column, count the non-zero pair *
/************ for each possible internal bit ordering

for (j=O;j<=ROWS-1;j++)

calc=out-arrayfi+COLS*jl;
calc=(calc & 0377);
if (calc & 0140)
subcol [01 [11++;

if (calc & 0102)
a,. sub_col (01 (3J++;

. if (calc & 0220)
subcol [1][0]++;

if (calc & 0030)
.. subcol [1][21++;

C-9
S

c . * - .

t-?ip . - . .. -** * . * *~,*' .



- -if (caic & 0044)
sub-col [2] [1I++;

if (caic & 0006)
sub-col [2][3]++;

if (caic & 0201)
sub-col[31101++;

if (caic & 0011)
sub-cal [31 [21++;

f******find the best internal column order(most 0-pairs) and
save that arrangement number in subc-array

arrange=0;
* compare =(sub col [01 [I+sub_col[1H[21+sub_cal [2] [3]);

next = sub_co [01 [3]+sub_col (31 [21+sub_col[2H(1];
if (next < compare)

compare=next;
* arrange=1;

next = sub-col [2] [3]+sub-col [31 [01+sub_col[01 [1];
if (next < compare)

I
compare=next;

* arrange=2;

next =sub-col[21[1]+sub-col[11[0I+sub_col[0][31;
if (next < compare)

* compare=next;
arrange=3;

sub-c-array[i]=arrange;

~~ move the bits in the out-array column to the best order

* if (arrange !=0)
for (j=0;j(=ROWS-1;j++)

* -if (arrange = I arrange ==2)

caic = out arraylli+COLS*jI;
caic = (caic & 0377);
plugl= (caic & 060);
plug2= (caic & 03);
caic = (caic & 0314);
plugi >>= 4;

* plugi = (plugi & 03);
plug2 <<= 4;
plug2 =(plugi & 060);
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calc= (calc plugi plug2);
outarray[i+COLS*j]=calc;

if (arrange == 3 II arrange == 2){
calc = outarray[i+COLS*j];
calc = (calc & 0377);
plugl= (calc & 0300);
plug2= (calc & 014);
calc = (calc & 063);
plug1 >>= 4;
plugl = (plugI & 014);
plug2 <<= 4;
plug2 = (plug2 & 0300);
calc = (calc - plugl - plug2);
outarrayli+COLS*jl=calc;

*! } /* end i loop */

return;

* *

*DATE: 1 DEC 1985
*VERSION: 1.0

*NAME: FILLCOLPAIRSARRAY*
0 * DESCRIPTION:*

*This module calculates the N squared divided by 2 minus N*
*divided ',, 2 pairings beteen each column's left and right sides.*
*The correiation value is the number of non-zero pairs between *

*any 2 column Eides. These values are upper triangular since the*
*correlations are symmetric. The "distance" measures are used in*
*the L and K algorithm. The lower-triangle of the matrix is *

*filled in also for use later. The results are placed in the *

S noncol pairs array.

*PASSED VARIABLES: group: the word # of the XROM*
* * RETURNS: NONE*

*GLOBAL VARIABLES USED: non col _pairs, out array*
*GLOBAL VARIABLES CHANGED: non_cal pairs*

C-11

...



"," * FILES READ: *

- ' "-" * FILES WRITTEN:
* HARDWARE INPUT: *

.* HARDWARE OUTPUT: *
* MODULES CALLED: NONE *

*CALLING MODULES: drains

* AUTHOR: PAUL ROSSBACH *

* HISTORY:

fill_colpairsarray(group)
int group;

register i,j,x;
.' unsigned icalc,jcalc;

int start;

clear the noncol_pairs array

for (i=O;i<=DATAWIDTH-1;i++)
for (j=O;j<=DATAWIDTH-;j++)

for (x=RIRJ;x<=LIRJ;x++)
non_colpairsij(jjfxl=O;

../******* fill the noncolpairs array by counting the *

" /*** non-zero pairs between columns left & right sides ********/

I* start = group*DATAWIDTH;

for (i=O;i<DATAWIDTH;i++)
for (j=O;j<DATAWIDTH;j++)

if (i>j)

for (x=O;x<=ROWS-1;x++)
{
icalc = outarray[COLS*x+i+start;

• jcalc =out_array[COLS*x+j+start];

icalc = (icalc & 0377);
jcalc = (jcalc & 0377);
if (icalc & 01)

- C- 12
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non_colpairs(il[jjtRIRJI++;
non -colpairs[i][j][RILJI++;

else

if (jcalc & 01)
non_colpalrsfi][j[RIRJI++;

if (jcalc & 0200)
non_cal pairsil[ji [RILJI++;

if (icaic & 0200)
I
non-colpairslil~jl[LIRJI++;
non colpairs[i][j][LILJ]++;

else

if (jcalc & 01)
* non col pairsti] [ii[LIRJI++;

if (Jcalc & 0200)
non_colpairsti][jl[LILJJ++;

/******fill in the other half of the upper-tinua ****

~ distance matrix keeping track of direction

for (i=0;i<=DATAWIDTH-1;i++)
for (j=0;j<=DATAWIDTH-1;j++)

if (i<j)

for (x=RIRJ;x<=LILJ;x += 2)
non-cal pairs[ijlx=non_colpairsl[ilxl;

non-colpairs~i][jH[LIRJJ=noncolpairs[j~i][RILJI;
non-colpairs[i1[jJIRILJI=noncolpairs[j][i][LIRJI;

return;
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* *k

• DATE: 1 DEC 1985 *
,.*- VERSION: 1.0

• * NAME: FILLROW_DRAINSARRAY *
* DESCRIPTION: *
'" * The module performs the same function as fill col pairs array *

* for all the rows of the XROM. Distance correlations *
* for the number of drains which can not be removed if 2 rows *
• are placed next to each other are calculated for matches *
* about bit line drains and about AO_line draines. The *
.* results are placee in the nopullrow_array. This *

* module must consult the permutcol and sideways arrays *
,-* in order to have the proper bit arrangement. *

:"* PASSED VARIABLES: NONE *
0. . RETURNS: NONE

* GLOBAL VARIABLES USED: no pullrow, sideways, outarray *
."* GLOBAL VARIABLES CHANGED: no_pull_row, sideways *
.* FILES READ: *
"-* FILES WRITTEN: *

* HARDWARE INPUT: *
• HARDWARE OUTPUT:
* MODULES CALLED: NONE *
* CALLING MODULES: drains *

..- * *

:•* AUTHOR: PAUL ROSSBACH *
* HISTORY: *

j.* *

fill row drains array()

struct drainlist {
-- int al[4*COLS+] ;

int bl[4*COLS];

- d_list[ROWS];

unsigned calc;
register i,j,x,y;

'C C- 14
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int rowbyte;
int save;
int jj;
int tempA(41;
,nt tempB[4];

clear the nopull row array

for (i=o;i<=ROWS-1;i++)
for (j=O;J<=ROWS-I ;j++)
for (x=AL_L;x<=BLR;x++)

nopull_row(i][jlx]=0;

.'. /***** first fill in each rows drain count for bit *
S/********* line drains and AO line drains into d list **********/

./ * * temp holds the AO(A) and bit(B) counts as
""/ * each row byte is counted- 4 drains to a byte *
/*** the counts are then concatenated into d list *

for (i=0;i<=ROWS-1;i++)

rowbyte=i*COLS;
save=0;
for (j=O;j<=COLS-I;j++)

for (x=O;x<=3;x++)

tempA [x] =0;
tempB[x]=O;
}

calc = outarray[rowbyte + permutcol(ij]];
calc = (calc & 0377);

"/* if the byte is flipped, must "look" at it different *
/****** from the byte that will not be flipped on output *

If (sideways(j])

if ((save) II (calc & 01))
tempA [0] =1;

if (calc & 06)
tempA[1]=1;

if (calc & 0140)
tempA[3] =1;

if (calc & 03)
tempB [01=1;

if (calc & 014)
tempB[1]=1;

if (calc & 060)
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4- tempB [2]=1
if (caic & 0300)

tempB [31 =1;
if (caic &0200)
save 1

else
save =0;

else

if ((save) 11 (caic & 0200))
tempAL[l =1;

if (caic & 0140)
tempA[11=1;

if (caic & 060)
tempA[3I =1;

if (calc & 0300)
tempB(0] =1;

if (calc & 060)
tempB[l]=1;

if (calc & 014)
tempB[2] =1;

4-if (caic & 03)
tempB[31=1;

if (caic & 01)
save =1

else
save =0;

if (caic & 030)
tempA[2] =1;

/*********fill in the d-list for AO & bit -lines *******/

jj=4*j;
for (y=0;y<=3;y++)

d_- list[il.al[jj+yltempA(yJ;
djlis tIi.bl~jj+yI=tempB~y];

if (j ==COLS-1)
d_ list~ili.al[jj+yJ=save;

J/* end j loop *

11* end i loop ~

/******fill in the distances between rows for the AO &
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bit - lines in the nopull row array

for (i=O;i<=ROWS-1;i++)
for (j=O~j<=ROWS-1;j++)I if (i > J)

for (x=O;x(=4*COLS-1;x++)

if ((d_ llst~il.al [x] == 1) 11 (dllst~jI .al [xl ==1))

no -pull _row~i][j][OJ++;
if ((d_ llst(iJ.bl~xj = 1) 11I (d listfjI.bl (xl 1))

no pull _row[ll(j][1l++;

if ((d_ listfi].al(4*COLS] I) 11 (d-list(jl.al(4*COLSJ = )
no pull _row[i][jl[Ol++;

0 ~ ~ ~ ~ fill in the lower triangle of the maxtrix also ******/

for (i=O;i<=ROWS-1;i++)
for (J=O;j<=ROWS-1;j++)

.4/ if (i < j)
C'Lk for (x=O;x<=1;x4+)

no pull _row~ilfjlfx]=no pull row(jl(i][xj;
return;

*DATE: I DEC 1985*
V * VERSION: 1.0*

*NAME: GENERATETOUR
*DESCRIPTION:

*This module will generate a random travelling salesman*
*tour of the size passed. Tours made of size =ROWS must*
*have links that start and end (picktype) at the same*
*type (le all links are either ALL to ALL =LILJ or
*BLR to BLR =RIRJ). Tours made of sizes =COLS can
*have any ef four type links (le LILJ, LIRJ, RIRJ, or RILJ)*
*Both tours must have one link of each type emitting from*
*each node. The tour starts and ends at node 0.*

*PASSED VARIABLES: size =ROWS/COLS*
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RETURNS: totaiweight initial cost of generated tour
• GLOBAL VARIABLES USED:nodes *
• * GLOBAL VARIABLES CHANGED: nodes *
• FILES READ: *
• * FILES WRITTEN: *

* HARDWARE INPUT:
'* HARDWARE OUTPUT: *

S AMODULES CALLED: linkjoin *
CALLING MODULES: L-andK

• AUTHOR: PAUL ROSSBACH *

* HISTORY:

*************************************************************************/

* generatetour(size)
int size;

.. '

int num_nodes;
int starttype;
int picktype;
int lasttype;
int done;
int almostdone;
int tonode;
int weight;

j- int mask;
int total _weight;

* -. long random();
int check;

./****** determine maximum random number **********************

total weight=O;
if (size == DATAWIDTH)
mask = MAXDATAWIDTH;

else
mask = MAXROWS;

srandom(l);

/*** start at node 0, pick a linktype *
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done = FALSE;
num nodes = 0;
lasttype = random(;
starttype = lasttype ( lasttype & 01 );

* while( done != TRUE

/1"********* pick a random "to" node

tonode = MAXROWS+I;
while ((tonode > size-i) II (tonode = 0)

II (tonode == num nodes))

/****** try any node not too blg,not = O,not itself ***********/

tonode = random();
tonode = (tonode & mask);

almost-done = FALSE;
while (((nodes[tonode].all_link ! NULL) II

(nodesltonodeL.bl_r_link 1= NULL)) && (almostdone < 2))

/******* if the node tried is used, try the next node,etc *

. W q { {

if ( tonode == size-I

tonode = 1;
almostdone++;

else
tonode++;

/****** no nodes remain open so put current link to node 0 *****/

if ( almost-done == 2)

tonode = 0;
* picktype = ( starttype 01);

else

if ( size == DATAWIDTH

* picktype = randoml;
picktype = ( picktype & 01),
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el se
picktype =lasttype;

~~ join the nodes for the link found using pointers

if (picktype == ALL)

if (lasttype ==AL_L)
check = linkJoln(&welghtsize,num-nodes,tonode,LILJ);

else
check =link join(&weight,sizenum-nodes,tonode,RILJ);

else

if (lasttype ==ALL)
check =link join(&weight,size, numnodes,tonode,LIRJ);

else
check =link join(&weight,size, num-nodestonode,RIRJ);

total weight += weight;

/~~*~***use the nodes other linktype and continue

lasttype =(picktype 01);
num -nodes tonode;
if (almost-done == 2)

done = TRUE;

return(tatal weight);

DAE DC18
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* NAME: SMALLEST_YI *
• DESCRIPTION: *
• This module will find the smallest five links from any *
* "from" node of the "type" specified. The links can not *
• go to any nodes listed in the "invalid" array. The
* links are placed into a "low" link array, one for 1=i, *
• one for i=2, or one for I >= 3. The low array will *
• always be filled.

*PASSED VARIABLES: i: current state *
• size: ROWS/COLS *

from: the from node *
* type: type link needed *
• invalid: up to 4 illegal "to" nodes *

-* RETURNS: NONE *
" * GLOBAL VARIABLES USED:low,non col pairs,nopull row *
, * GLOBAL VARIABLES CHANGED: low *

!* FILES READ: *

* FILES WRITTEN: *

HARDWARE INPUT:
""* HARDWARE OUTPUT: *

* MODULES CALLED: NONE *
"* CALLING MODULES: L-and K *

-* AUTHOR: PAUL ROSSBACH *
* HISTORY: *

smallest_yil(i,size,from,type,invalid)
int size;

Sint from;
int type;
int invalid[4];
int i"

register inc,xx,j;
V. int ok;

int temp;
int x;
int ii;
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~--: ~,/*********fill the low array -for i=1,2, or one for > 3

if (1 >= 3)
4H 1 3;

else
ii i ;

for (xx=O;xx<=4;xx++)
low~xxJ[0O[ii]=BIG_NUMBER;

/~~ " find the five smallest legal links from the
~~~ ~ "from" node of "type" for ROWS problem *******

if (size == ROWS)

for (inc=O;inc<ROWS;inc++)

VZ, ok=TRUE;
for (j=O;j<=3;j++)
if (inc == invalld~j])

* ok=FALSE;
if ((nc != from) && ok)

if (no pull row~fromJ[incl[typel < low[4HO01ii])

low(41 (01 [iilno pull rowifrom] (mc] [type];
low[4][1][iij=inc;
1low[41 (2] [i i]I=type;
xx = 4;
while ((low[xxl[OI[iiI < lowlxx-1]HOI(ii1) &&xx>O)

for (J=O;J<=2;j++)

temp=lowfxxJ (ii[ii];
low[xxlJ ] [ii]=low[xx-1] [ii[ii];
lowrxx-1] i] [ii]=temp;,

xx- -

else

~~ find the five smallest legal links from the

/********** "from" node of "type" for COLS problem *******

for (inc=O;inc<DATAWIDTH;inc++)
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; "-1; ok=TRUE;

"- for (j=O;j<=3;j++)
if (inc == invalid[j])
ok=FALSE;

if ((inc != from) && ok)
for (x=2-type*2;x<=3-type*2;x++) /* BLR I :RIRJRILJ =0,1"/
!
if (noncolpairs(from][inc]fx] < low[4][01[ii])!

low[41 01 [iil=non_colpairs[from][inc][x];
low[4 [11 [iil]=inc;
low[41 [2 [ii]=x;
xx = 4;
while ((low[xx][0][ii] < low(xx-1][O][ii]) && xx>O)

~{
for (j=O;j<=2;j++)

{
temp=low[xx] [j] [ii];
low[xx] [j] [ii]=low[xx-1] [j] [ii];
low[xx-I] [j] [iil=temp;

xx--;

return;

}

* DATE: I DEC 1985 *

* VERSION: 1.0 *

* NAME: VALIDYIS *

* DESCRIPTION: *

* This module looks at the contents of the "low" link array *

* and determines which of those 5 links are valid as *

* determined by the Lin and Kernighan algorithm. If a *

* proposed link passes all the tests, the ok flag will *

* be TRUE and the link is not cleared. If the link fails *

'. * any test it is cleared from the low array. Each Valid yi's *
* * gain values are calculated for one of the tests and saved *

C -23
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* * for future use. If no valid yi's exist, FALSE is returned*
*from the module.*

.5 *PASSED VARIABLES: i: current state
* size: ROWS/COLS

*RETURNS: TRUE: at least one valid yi link found*
- . * FALSE: no valid yi links*

**GLOBAL VARIABLES USED:low, nodes, t, VIO flag, G_valid, G*
*GLOBAL VARIABLES CHANGED: low, G-valid*

* . * FILES READ:*
* . * FILES WRITTEN:
* * HARDWARE INPUT:

*HARDWARE OUTPUT:*
*MODULES CALLED: path_track~spec path track*
*CALLING MODULES: L and K*

*AUTHOR: PAUL ROSSBACH*
*HISTORY:

valid_yis(size,i)
int size;

.n mt m;

struct cell *aptl,*apt2;
register j,y;

* * mt ok;
int test;
int gi;
mnt ii;

~~ ~check the low array -for i=1,2, or one f~r > 3 ******

if (i >= 3)
ii =3;

else
0 1=1

for (j=O;J<=4;j++)
if (low(jI[Ol(ii] ! -1) /* for later -don't think this q is nec.*/

ok=TRUE;
apt1=(&nodesllow(j][ljiiII);

C C- 24
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;' " '-"" /***** determine if the link in low goes to a node not used yet *

if (size == ROWS)

if (low[j] [21 [i) == AL_L)
if (nodes[low[j][1][il]]al llis_y == 1)

ok = FALSE;
else

apt2=nodes(low[j][1l[i]].al_l _link;
.1 else

if (nodes(low(j[1I](iil.blrlsy == )
ok = FALSE;

else
apt2=nodes[low(j][1][iil].bl_r_link;

else /** for COLS problem **/

if (low[j][21[ii] == RIRJ II lowij][2][ii] == LIRJ)
if (nodes[low[j][1][ii].bl r isy == 1)

ok = FALSE;
* else

apt2=nodes[low(j][1][ll].bl _r_link;
else
if (nodes[low[j][11[iil].al llIs y == 1)

ok = FALSE;
else

apt2=nodes[low[j][i](ii]].al 1 _link;

I*********** only a link to tI can be of ti's "isy" type *

if ((aptl == t[i) && (ok == FALSE))

ok = TRUE;
apt2 = t[21;

/*********** links can not use t as their t[2*i+2] node *

if ((aptl == t[1]) && (ok == TRUE))
ok = FALSE;

/****** if in violation mode, check link to be sure it's legal ********/

if (apt2 == t[i)
ok FALSE;

if ((i != 1) && (i != 2 II VIO_flag == FALSE) &&
* (i != 3 II T6_flag FALSE) && ( ok TRUE ))
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if ((i == 4 && T6_flag == TRUE) 11 (1 == 3 && VIO_flag =- TRUE))
{
if (spec path track(1,aptl,apt2) == FALSE)
ok = FALSE;

elseA {
if (pathtrack(i,aptl,apt2) == FALSE)

ok = FALSE;

/****** the gain must not become negative if the link Is placed *******/

if (ok = TRUE)' i; {

if (t[2*il->xcurrent == ALL)
Sg_i = t[2*i]->al_l_weight - low(j][O][ii];

else

gi= t[2*11->blr-welght - lowijI 101 (ii];
'4...

/* * store positive gains in the Gvalid array *

if ((G[i-I] + gi) > 0)
G valid(j][ii] = Gli-I] + g_i"

else
ok = FALSE;

/*** ** if a rule was violated, clear that low entry *

If (ok == FALSE)
for (y=O;y<=2;y++)

lowij]iy](ii]= -1;

I** if all low entries are cleared, return FALSE= no valid yls *

test = 0;
for (j:O;j<=4;j++)

test low[j][0]lii;
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If (test == -5)
return( FALSE);

else
return(TRUE);

* DATE: I DEC 1985 *
* VERSION: 1.0 *

* NAME: MAX VALUE *
* DESCRIPTION: *
,* This module finds the link from the validyis in low *

that has the maximum I xi+l - yi I value. If one is found,
,.* tentatively assign that link by calling new_link. *

* PASSED VARIABLES: i: current state *
, * size: ROWS/COLS *
* RETURNS: TRUE: max value found from valid yi *
.* FALSE: no max value found *

* GLOBAL VARIABLES USED:low, G_valid, G *
* GLOBAL VARIABLES CHANGED: G *
I * FILES READ: *
",* FILES WRITTEN: *
.* HARDWARE INPUT: *
'-* HARDWARE OUTPUT: *
* MODULES CALLED: newlinks *
•'* CALLING MODULES: L andK *

N,* AUTHOR: PAUL ROSSBACH *
• * HISTORY: *

maxvalue(size, I)
'nt size;
int i;
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int maxjyi;

int max -value;
int value;
register j;
int passback;
it ii;

~~ ~check the low array -for i=1,2, or one for > 3 ******

if (i >= 3)
i= 3;

else
-; ii =1

max yi= -1;
max-value =-BIGNUMBER;
passback =FALSE;

/~~**~find the link in low with max jxi+1 -yil value *******

for (j=0;j<=4;j++)

if (low(jl(O1(iil = I

if ((size ==ROWS && low~il (21i] [i = BLR) I
*(size ==DATAWIOTH && (low~j1(21(iii RIRJ 11

lowijI (21(iii = LIRJ)))

value=nodes~low~jJ[1J[ii]].bl _r-weight -lowtjHO01tii];

else
value=nodes~low[j][1l(iill.al _l-weight -low~jj(O1(ii];

if (value > max-value)

max-value=value;
max yi=j;

~~ ~if a max link exists, tentatively fill it in by******/
calling new_ links

if (maxyl i 1

if ((low~maxyi)[21[lii AL L && size ==ROWS)
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(low(max_yi][21 (ill == LILJ && size == DATAWIOTH))

new links(LILJ,i ,maxyl);

else

if ((low(max~yiJ(21[ilJ == 81R &size ==ROWS) I
(low(max..yiJ(21 liii = RIRJ &&size ==DATAWIOTH))

new links(RIRJ,i,maxy1);

else

if (low[max~yiJ[2J[il] == LIRJ)

new-links(LIRJ,l,maxjyi);

else

new-links(RILJ,l,maxyi);

/**********clear the link used so it can't be used again

for (j=O;j<=2;j4-+)
low(maxyi [j] i il -1;

/*********return TRUE since a max was found and set GUi ******

passback =TRUE;
GUI] = G-valid(maxyi(iil;

return(passback);

DAE 1.DC,98

VESON .

NAE BS GI
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"* DESCRIPTION: *
• This module determines if the current t 2*1 node were *

* connected to tI, would a tour with a shorter path (more *
• gain) be realized. If so, the module continues the *

* algorithm by connecting the next yi and disconnecting *
* the current xi. If the t_2*i's ystar to tI does not *
• improve the tour, SWAP is returned indicating that the *
* last best tour should be used. Best gain also does *
* some node "house cleaning" by filling in ystar data at *
• the t2*i, connecting all links permanently, and tagging *
qJ* the next t_2* if not in violation mode. *
* -*

* PASSED VARIABLES: i: current state *
* size: ROWS/COLS *

* opt_: 0 - normal mode *
* 1 - violation mode *

* 2 - violation - T6 flagged *
* RETURNS: SWAP: t 2*i's ystar gives no gain *

* AGAIN: better tour found, continue *
* YI_EQYSTAR: better tour, but yi goes to t1 so swap *

* * GLOBAL VARIABLES USED:t, nodes,G_best, G *
* GLOBAL VARIABLES CHANGED: t, nodesG_best, K *
• FILES READ:

FILES WRITTEN: *
, * HARDWARE INPUT: *

. . * HARDWARE OUTPUT: *
* MODULES CALLED: NONE *
* CALLING MODULES: Land_K *

* AUTHOR: PAUL ROSSBACH *

* HISTORY: *

best gain(size,i,opt_)
int size;
int i;
int opt_;

int last,currentt_one;
int gstar;
int type;
int tnum;
nt b4_last;

7 - int the type;
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current~t [2*i I->node_number;
t_one=t[1]->node_number;

/**********fill in ystar data in the nodes structure

t[2*i]->ystar= (&nodes[t-one]);
if (size == ROWS)
nodes [current] .ystar-weight=

no-pull1 row[current] [t-one] (nodes[current] .ycurrentJ;
else

if (nodes[currentl.ycurrent =ALL)

type = LIRJ;
else

type =R1RJ;
if (nodesft one] .xcurrent =AL L)

if (type ==RIRJ)

type++;
* else

type--;

nodes[currentJ.ystar-weight=non_col _pairs[currenti [t-one] [type];

~~ see if t 2*i's ystar(i) gives a better tour

if (nodes[current].xcurrent ==ALL)
gstar= nodes[current].al 1 _weight - nodes~current].ystar_weight;

else
g-star= nodes~current].bl _r-weight - nodes~current].ystar-weight;

~~ ~if so, save the state and connect the links *******

if ((Gi-i] g-star) > G-best)

G-best=G[i-iJ + gstar;

/**********ifi=2, y I )must be connected first

if (t(2]->twoycurrent ==ALL)

t[21>l1 _link=t[2]->tent a link;
t[21-a1 _weight=t[2]->t_a_weight;
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~ t[2]->tent_a link= NULL;
- - t(2]->t_a_weight: -1;

t(2]-)al _I_isy= TRUE;

else

'-'-p t(2J->bI _r-linkzt[2J->tent b link;-
t[2]->bl _r_weight=t(21->tbw-eight;
t[2J->tent b link= NULL;
t[21->t_b -weight= -1;
t[2J->bl _r-isy= TRUE;

if (t[21->ycurrent != t[2J->twoycurrent)
t[211->two..ycurrent = t[21->ycurrent;,

if (t[21->xcurrent != t(2J->two_xcurrent)
t[2]->two-xcurrent = t[21->xcurrent;

~~ connect links for t_2*l(and below if in violation mode

for (t num=2*(i-opt_);tnum<=2*i;tnum += 2)

last~t[t num-1]->node number;
current=t[t-numJ ->node-number;
b4_last = t-num-2;

Sconnect the yi link from t_2*1 to t_2*1+1 by
/******making the tentative links permanent

if ( opt_ !=0 11 1 == 2)

* :1 if ((nodesicurrent].ycurrent ==nodes(currentl.two_ycurrent )I
nodes[current].twojycurrent == -1 )

elethe-type = nodesicurrenti .ycurrent;

the-type = nodes~currentl.two_ycurrent;

else
the-type =nodes[currentl .ycurrent;

if (the type ==ALL)

*if (nodes(current].oldxl -1)
nodes[currentJ.oldxl =nodes[current].al 1 _link->node-number;

else
nodes~currentj.oldx2 = nodes(current].all 1 link->node_number;

nodes(current].al- 1 link~nodes[currentl.tent-a link;-
~~ nodes[current].aI~ 1 weight~nodes[current].t_a_weight;

nodesfcurrentJ.tent-a link= NULL;
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nnres~currrnt.t~aweinht= -1;
nodes[currentl.al 1 _is_y= TRUE;

else

if (nodes~currentl.oldxl == -1)
* nodes[currentJ.oldxl = nodesfcurrentJ.bl _r_link->node-number;

else
nodes[current].oldx2 = nodes[current].bl _r-link->node-number;

nodes[currentl.bl _r-llnk=nodes~currentJ.tent-b-link;
nodes[current].bl _r_weightnodes[current].t_b-weight;
nodes~current].tent b link= NULL;
nodes~current] .t-.bweight= -1;
nodes[current].bl _r_is_y= TRUE;

if(oecurnlyurn!=ndscrettwycret

inodes~current.tycurrent != nodescurrent].oycurrent)

* disconnect the xi link from t -2*1-1 to t_2*i and
connect it to t_2*l-2

if ( opt- != 0 11 i == 2)

if ((nodes~last].xcurrent == nodes[lastl.two-xcurrent 11I
(nodes[lastl.two xcurrent ==-1 ))

the type = nodes[last].xcurrent;
else

the type = nodes[lastl.two_xcurrent;

else
the type =nodes~last].xcurrent;

if (the_type ==AL_L)

0 . if (nodestlastj.oldxl -1)
* nodes[lastj.oldxl=nodes(Iastl.al-_I link->node_number;

else
nodes[lastl.oldx2=nodes[lastl.al-1 _link->node_number;

nodes[last].al 1 _link= t[b4_last];
if (tb4_last]->aI 1 _link == &nodes~last])

IF nodes[lastl.al-lweight=t[b4_lastl->allweight;
else
nodes[last].al Iweight=t~b4 last]->bl rweight;

nodes[last].al _lisy=TRUE;

else

if (nodes[last].oldxl == -1)
nodes[lastj.oldxl=nodeslast].bl _r-link->node number;
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el se
nodes~last].oldx2=nodesflast].bl _r-link->node_number;

nodes[last].bl _r -link= t[b4_last];
if (t[b4_last]->al 1 _ link ==&nodesflast])
nodes~lastl.blrweightt[b4_lastj->allwelght;

else
nodesfiasti .blrweght=tfb4_lastl->bl~r-weight;

nodes [last] bi ri s.y=TRUE;

-: if (nodesflast].xcurrent != nodes[lastl.two-xcurrent)
nodes[last].two_xcurrent =nodes[last] .xcurrent;

/******if not in violation mode, tag the next i's t 2*i *******

if (opt_ == 0

0if (t[2*i+2]->al-1 link t[2*il)

t(2*i+21->xcurrent=AL_L;
t[2*i+21->ycurrent=AL_L;

else

{[*+1>curn=LR
t[2*i+2]->xcurrent=BL_R;

current~t[2*Il]->node_number;

~~ if the yi link just placed by best gain was
* ystar(i) , return that fact

if (((nodes[current].ystar == nodes[currentl.al 1 _link)
&& nodes(current].ycurrent == ALL) 11

((nodes[currenti.ystar ==nodes(current].bl _r_link)
&& nodes[current].ycurrent BLR))

return(YI-EQ_YSTAR);
else

'V return(AGAIN);
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S.... /******** if the y star(i) from the current t_2*1 did not give *
' "** a gain, don't put in a new tentative link & return SWAP *****/

return(SWAP);

/ *****************************************************************

* DATE: I DEC 1985 *
* VERSION: 1.0 *

* NAME: VIOLATION *
* DESCRIPTION: *
* This module handles the cases when the tour's feasibilty *
* criteria at i=2 is violated. If the tour becomes "split" *
* at i=2, special constraints have to be placed on the selection *
* of yi's and backtracking. This module is called in lew of the *
* "best gain" module when the VIOflag is TRUE. *

* PASSED VARIABLES: i: current state *
-* size: ROWS/COLS *

* RETURNS: SWAP: t_2*i's ystar gives no gain *
* AGAIN: better tour found, continue *
* YIEQYSTAR: better tour, but yi goes to tl so swap *

* GLOBAL VARIABLES USED: t, T6_flag, VIO flag *
* GLOBAL VARIABLES CHANGED: T6_flag, VIO flag *
* FILES READ: *

FILES WRITTEN:
* HARDWARE INPUT:*
* HARDWARE OUTPUT: *

* MODULES CALLED: path track, bestgain *
* CALLING MODULES: Land_K *

* AUTHOR: PAUL ROSSBACH *
* HISTORY: *

violation(size,i)
int size;
int i;
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int result;

switch (1){

~~ t3 & t4 caused VIO flag to be set, check t5 &

/********t6 to see if they are legal under the VIG-flag ******

case 2:

if (t[51 == tDHl
return(BACKTRACK);

else

if (path track(2,t[4Lt[5I) ==FALSE)

if (path_track(2,t[51,t[6]) FALSE)
return( BACKTRACK);

else
* T6_flag =TRUE;

return(AGAIN);

()e break;

~ if t5 & t6 were placed between t4 & ti then

* /*******t7 must be placed between t3 & t2 to close tour

case 3:

if (T6_flag)

if (path track(3,t[3Lt[7j) ==FALSE)

return( BACKTRACK);
else

return(AGAIN);

else
return(BACKTRAC K);

else

~~ if t5 & t6 were placed between t3 & t2 then
/*******the algorithm is almost back to normal
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'-I if ((result=bestgain(size,i,I)) == SWAP)
return(BACKTRACK);

else
{
VIO flag = FALSE;
return(result);

break;

/* * here at i=4 if the T6_flag was set
/* * if there's a gain, normal operation, continue *

default: /* 1=4 */

if ((result=bestgain(size,i,2)) == SWAP)
return(BACKTRACK);

else
{
T6_flag= VIO_flag = FALSE;
return(result);

I.; break;

,* * DATE: I DEC 1985 *
* VERSION: 1.0 *

C'i* *

* NAME: PATH TRACK *
* .DESCRIPTION: *
• This module provides the "eyes" to the L and K module *

"* so it can determine whether or not the link under *
* consideration goes to a point in the tour that is legal. *
,* The feasibility criteria is such that if the node pointed to *

• * by "nodelptr" is reached first when following the path *
* from tI, the link under consideration is legal and TRUE *
* is returned. If the node at "node2ptr" is reached first, the *

.* link is not allowed because it would split the tour into two
'-:K- * pieces. *
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*PASSED VARIABLES: I: current state
* nodel_ptr: the pointer to the node that is

* closer to tliIn a legal config.
*(usually the t_-2*1+1 node)*

* node2_ptr: the pointer to the node that is *

* closer to t1 In an illegal config. *

* (usually the t_2*i+2 node)
*RETURNS: TRUE: tentative link is legal*

* FALSE: tentative link is illegal*
-~ *GLOBAL VARIABLES USED: t, nodes, T6_flag,

*GLOBAL VARIABLES CHANGED: NONE*
*FILES READ:
*FILES WRITTEN:*
*HARDWARE INPUT:*
*HARDWARE OUTPUT:
*MODULES CALLED: NONE

2~) CALLING MODULES: L-andK

*AUTHOR: PAUL ROSSBACH*
* * HISTORY:*

path track( i,nodelptr,node2_ptr)
int I,,
struct cell *nodelptr,*node2_ptr;

struct cell *track,*next;

int prev;

* /*****if a valid link goes to ti legal, adj to ti illegal ***

if (nodelptr == t[1j)
return(TRUE);

if (node2_ptr ==t[l])
return(FALSE);

Strack along the path from ti and see what nodes are hit

track=t(1]->al 1 _link;
* if (track == NULL)

' track=t[1J->bl _r_ link;
prev=t~l1->node-number;
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while (track !~nodel ptr && track !~node2_ptr)

if (track !~t[2*i1J

next=track->bl _ r -link;
if (next->node-number != prey & next !=NULL)

prev=track->node-number;
track=next;

else

prev=track->node-number;
track=track->al 1 _link;

if ((i == 3) && (T6_flag ==TRUE) &&(track t(2*iI))
return(TRUE);

else

Smust jump across a tentative link when going from
/**t[2*i-11 to t[2*i-2] since the link isn't "there" yet

track=t[2*i-2I;
-~ prev=t[2*i-1]->node-number;

if (T6_flag == TRUE Li& i == 3)
prev~t(2*i-31->node_number;

Sif arrived at node2 first the tentative tour is illegal

.. 1 4if (track == node2_ptr)
return(FALSE);

else
return(TRUE);

*DATE: I DEC 1985
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' ' v * VERS ION: 1 .0 *

• NAME: SPECPATHTRACK *
• DESCRIPTION: *

* This module performs the same function as "path track" *
-* only for special situations. It is necessary to use a *
' * special path tracking mechanism when in violation mode *

* at i=3 and i=4. This module capitalizes on the specificity *
* of the problem in order to handle it, otherwise it is the *
* same as "pathtrack". *

* PASSED VARIABLES: i: current state *
* nodelptr: the pointer to the node that is *
* closer to tI in a legal config. *
• node2_ptr: the pointer to the node that is *

* closer to tI in an illegal config. *
• RETURNS: TRUE: tentative link is legal *
• FALSE: tentative link is illegal *
• GLOBAL VARIABLES USED: t, nodes, T6 _flag, *

* GLOBAL VARIABLES CHANGED: NONE *
*•* FILES READ: *
• * FILES WRITTEN: *
• HARDWARE INPUT: *

* HARDWARE OUTPUT: *
• MODULES CALLED: NONE *

* CALLING MODULES: L-and_K *

• AUTHOR: PAUL ROSSBACH *

* HISTORY:

specpath_track(i,nodelptr,node2_ptr)
struct cell *nodelptr,*node2_ptr;
int i;

struct cell *track,*next;
int prey;
int x;
int t_[81;

4W** if a valid link goes to tl legal, adj to tl = illegal ******/

,* ,if (nodelptr == t[l])
return(TRUE);
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if (node2_ptr t[IJ)
return( FALSE);

1"***** track along the path as in path_track only use many
I* * "jumps" over tentative links since many are not permanent *

t_[31=t_[41=t_[51=t_[7]=NOTSEENYET;

track=t[lJ->al 1 _link;
if (track == NULL)
track=t[1]->bl_r_link;

prev=t[I->nodenumber;

while (track != nodelptr && track != node2_ptr)
;" {

for (x=3;x<=7;x++)
if ((track == t[x]) && (tx] != NULL))

t [xJ = SEEN;
0

if (((track != t[51 && track != t[6] &&
(track 1= t[3] 11 prey ==t(4]->nodenumber)

&& (track != t[21 II prey == t[1]->nodenumber)) && i == 4) 11

((track != t[4] && (track != t[3] II prey ==t(41->nodenumber)
&& (track != t[21 II prey == t[l]->nodenumber)) && i == 3))

next=track->bl _r link;
if (next->nodenumber != prey && next != NULL)

prev=track->nodenumber;
track=next;
}

else

prev=track->nodenumber;
track=track->al 1 link;

else

if ((track t[51) && (t_[41 NOTSEENYET))

track t[41;
prey = t[3]->node_number;

else
if ((track == t[61) && (t_[7] == NOTSEEN_YET))
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~' track =t[71;

prev tf81->node_number;

else
if ((track == t[21) && (t_[31 2=NOTSEENYET))

track t[1
prey t[41->node-number;

else
if ((track 2= t[41) && (t_[51 NOTSEENYET))

track =t[51;

prey t[6J->nodenumber;

else
if (track == t[31)

track t[1
prey t[1->nodenumber;

elseif ( track =odt[3tr
p~~~t r ey FALSE);de~umer

else

preturn(TRUE);

*DATE: I DEC 1985*
*VERSION: 1.0

*NAME: LINKJOIN*
*DESCRIPTION:

*.Linkjoin is used by the "generate tour" module when connecting
*nodes with permanent links at the beginning of an L and_-K*

,.iteration. The module links the numnodes" node to the
"tonode" node with the "typelink" indicated. The size
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""* variable determines which lookup table will be used. *

* The weight of the newly placed link is returned. *

• PASSED VARIABLES: w_ptr: pointer to weight value location *
' * size: ROWS/COLS *
.* numnodes: the from node *
' * tonode: the to node *

* type_link: type link to be joined *
• RETURNS: TRUE: link terminates at open side of a node *
*. , FALSE: link terminates at a used side of a node *

'-.. * GLOBAL VARIABLES USED: nodes
* GLOBAL VARIABLES CHANGED: nodes *
• FILES READ: *
* FILES WRITTEN: *
* HARDWARE INPUT: *
-* HARDWARE OUTPUT: *

* MODULES CALLED: lookup *
• CALLING MODULES: generate tour *

• AUTHOR: PAUL ROSSBACH *
-* HISTORY: *

linkjoin(w_ptrsize,numnodestonode,typelink)
int *wptr;
int size;
int numnodes;
int tonode;
int type link;

struct cell **from side,**to_side;
int *fromweight,*toweight;
int weight;

/*********** depending on the type of link, load the proper * ******/
* * pointer to the correct nodes element

if ( type link == RIRJ 11 type_link == RILJ)
{
from-side = &(nodes[numnodes].bl_r_link);
from weight = &(nodes[num_nodesj.bl_rwelght);
}

Celse

fromside = &(nodes[numnodesl.al_l_link);
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' "}from weight &(nodes[numnodes].al 1 weight);

if ( typelink == RIRJ II typelink LIRJ)

toside = &(nodes[tonodel.blr_link);
to_weight = &(nodes[tonodel.bl_rweight);

else

toside = &(nodes(tonodej.al _I _link);
to_weight = &(nodes[tonode].al 1 weight);

I*********** use the pointers to change the nodes links *************/
.** * for the new connection if the node is "open" *

if (*to-side == NULL)

weight = lookup(size,num nodes,tonode,typelink);
0 *w_ptr=weight;
-*fromside = (&nodes[tonode]);

*to weight = *fromweight = weight;
*to side = (&nodes[numnodes]);

V. return(TRUE);

else
return(FALSE);

0_ * DATE: I DEC 1985 *

.... * VERSION: 1.0 *

." * NAME: NEWLINKS *
C * DESCRIPTION: *
* New links sets up all tentative links for the L andK *
* algorithm. The information about the new tentative link *

.-, * is found in the low array. Newlinks is passed the index value *
* (max_yi) for the low array and the type_link to be installed. *
-.* New links also tags the next node as t2*i+I, and the t 2*i+2 *
S* node if i=1 or if in the violation mode (bestgain tags t_2*i=2 *
''.* if >1 and not in the violattion mode). *

* ,

r-* PASSED VARIABLES: typelink: LILJ,LIRJ,RIRJ,RILJ *

i: current state *
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"'* max_yi: 0-4, low[maxindex] *

* RETURNS: NONE *
• GLOBAL VARIABLES USED: t, nodes, VIO_flag *
" * GLOBAL VARIABLES CHANGED: t, nodes *
"* FILES READ: *
" * FILES WRITTEN: *

"'* * HARDWARE INPUT: *
*HARDWARE OUTPUT:

_- * MODULES CALLED: NONE *
'"* CALLING MODULES: max value *

'"* AUTHOR: PAUL ROSSBACH *
"* HISTORY: *

•*********************************** *

new_links(type_link, i ,max_yi)
* int i;

int type link;
int maxji;

int ii;

,--/*** use the proper low array - for i=1,2, or for > 3 ***********/

if ( i >= 3)
ii = 3;

else
ii i;

/******** tentatively assign the new link from the current *
0 /******** t[2*i] node using the info in low and typelink ***********/

if ( type link == RIRJ II typelink == RILJ)

'" " t[2*i]->tent-b-link=(&nodes[low[max yi][1][ii]])"

t[2*i]->t_b-weight=low[maxyl][0][ii];
t[2*i]->ycurrent=BL_R;
t[2*iJ->xcurrent=BL R;

t(2*il->blr_is_y =-TRUE;
if ( i <= 3)

if (t[2*i->two_ycurrent = 1)

- .t[2*i]->two-ycurrent t(2*i]->ycurrent;
if (t[2*i]->twoxcurrent == -1)

1..C -
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t[2*il->two xcurrent t[2*il->xcurrent;

else

t[2*i]->tent-a-link=(&nodesjlow[max_ylJ[1H[ii]]);
t[2*ilJ>t-a-weight=low[maxyi][01 [ill;
t [2*1 1->ycurrent=ALL;
t [2*1 ]->xcurrent=ALL;
t[2*iJ->al _ljs.y = TRUE;
if (i <= 3)

if (t[2*l->two..ycurrent ==-1)
t[2*i]->two..ycurrent =t[2*il->ycurrent;

-4 if (t[2*i1->twoxcurrent ==-1)
t[2*i1->two-xcurrent =t[2*il->xcurrent;

~~ identify the t[2*il and t[2*l+21 nodes reulting
~ from the new tentative yl link

~~ tentatively assign the t[2*ill x & y currents

t[2*ill=(&nodes[lowfmax~yi][1][iill);

if ( type link == RIRJ 11 type link ==LIRJ)

t[2*i+11->xcurrent=BL_R;

t[2*i+1]->blrisy = TRUE;
if ( i <= 3)

*if (t[2*i+1]->two -xcurrent -1)
t[2*i+1J->two-xcurrent =t(2*i'1I->xcurrent;

else

tt2*i+lI->xcurrent=AL_L;
t[2*i+21=t[2*i+l]->al 1 _link;
t(2*i+]->al]isy = TRUE;
if (i <= 3)

if (t[2*i+1I->two-xcurrent -1)
*t[2*i+1]->two-xcurrent t[2*i+l1->xcurrent;

~~ ~if i=1 or the VIG_flag is set, best gain won't be ******

/***called so tentatively assign the t(2*i+2] x & y currents

if (i 1= 11I VIO_flag TRUE
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.* ~-if (t[2*i+2]->al I link t[2*i+lJ)

t[2*i+2]->xcurrent=AL_L;
t[2*i+21->ycurrent=AL_L;

else

t[2*i+2J->xcurrent=BL_R;
t[2*i+2]->ycurrent=BL_R;

}

return;

iI

!) * *
.,* *

• DATE: 1 DEC 1985 *
~ * VERSION: 1.0 *

-.* NAME: FILLINVALID *
' * DESCRIPTION: *

* This module fills the invalid array with up to 4 nodes that the *
" * current (2*i) node may not choose for a possible 2*i+1 node.
' * The nodes may be invalid because they are presently connected *

* to the current node or because they were previously connected *
* to the node. This invalid array is used by the smallestyi *
..* module each time it is called. *

* PASSED VARIABLES: invalid: ptr to array *
• nodenum: current(2*i) node *

* RETURNS: NONE
N: * GLOBAL VARIABLES USED: t,nodes *

* GLOBAL VARIABLES CHANGED: NONE
-* FILES READ: *
3 * FILES WRITTEN: *
F-* HARDWARE INPUT: *
• HARDWARE OUTPUT: *
* MODULES CALLED: NONE *

.4" * CALLING MODULES: L and K *
F- * *

' * AUTHOR: PAUL ROSSBACH *
• * HISTORY: *
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fill _invalid(invalid,nodenum)
int invalid[41;
int nodenum;

int i;

I *********** clear invalid

for (i=O;i<=3;i++)
invalidfi] 1

/***enter the node #Ds of the nodes connected to 2*1****/

if (nodes[nodenumj.all 1 _link != NULL)
invalid[Ol = nodeslnodenuml.al 1 _link->node number;

else
invalid[O] = tIll->node_number;

4eif (nodesfnodenuml.bi _r link != NULL)
invalid(1] = nodestnodenum].bl _r-link->node_number;

else
invalidil] = t[1]->node_number;

/***enter node #s of nodes previously connected to 2*1 ***

if (nodesjnodenum].oldxl != -1)

invalid[2] nodesllnodenum].oldxl;
if (nodes~nodenumi.oldx2 != -1)

invalid(3] nodes[nodenumJ.oldx2;

return;
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* DATE: I DEC 1985 *

• VERSION: 1.0 *

-'* NAME: TIRANDOM *

" * DESCRIPTION: *

" * This module picks a random starting node, tI, from a list of *

* nodes that have not yet been chosen as tl since the last tour *
* change. If no nodes remain, no node is chosen and TRUE is *
* returned. *

* PASSED VARIABLES: size: ROWS/COLS *

* time: 0 = Ist tl chosen after new tour *
" * = other tl tries *

• RETURNS: TRUE: if all nodes have been tried as tI w/o gain *
• FALSE: if another tl was found
'*-GLOBAL VARIABLES USED: tI, nodes
.* GLOBAL VARIABLES CHANGED: tI, nodes *
..* FILES READ: *

: * FILES WRITTEN: *

* * HARDWARE INPUT: *

>:* HARDWARE OUTPUT: *

* MODULES CALLED: NONE *

" * CALLING MODULES: L-andK *

- "* AUTHOR: PAUL ROSSBACH *
• * HISTORY: *

. *

.-. tlrandom(size,time)
-nt size;
int time;

static int tinodelist[ROWS];
_ int possible;

int mask;
- int done,i;

int sum;
long random(;

•* * determine maximum random number *

if (size == DATAWIDTH)
mask = MAXDATAWIDTH;
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- el se
mask = MAXROWS;

/*********** if Ist try, clear the ti nodelist *

if (time 0)

for (i=O;i<=size-1;i++)
t1_nodelist(i] = 0;

/*********** if all nodes have been tried, return TRUE ************/

sum -0,

for (i=O;i<=size-1;i++)
sum += t _nodelist[i];

if ( sum == size
return(TRUE);

else

* /*** else find a new random tl node *
.'- • {

done = FALSE;
possible = MAXROWS+I;
while ( possible > size-I

. .* {

possible = random();
possible = (possible & mask);

while (done != TRUE)

* (if (tl_nodelistfpossiblel == 0)

tl _nodelist[possible] = 1;
t[l] = (&nodes[possiblel);
done = TRUE;

* else

"/* * if random node has been used, use the next(etc) *

if (possible != size-i)
possible++;

else
possible = 0;

return(FALSE);
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* I DEC 1985*

* VERSION: 1.0 *

'-* NAME: CLEAR *
* DESCRIPTION:
* Clear removes all tentative links beyond the point indicated *
* by how much. Clear is called after a swap is made or after an *
* attempt to improve the tour has failed, and a new configuration *
* of the tour is desired. *

L',.* *

* PASSED VARIABLES: how-much - ALL: clear all but t1 *
* - Y 1: clear all back to t2 *
!* - Y_2: clear all back to t4 *

* RETURNS: NONE *
* GLOBAL VARIABLES USED: t, nodes *
* GLOBAL VARIABLES CHANGED: t,nodes *
, * FILES READ: *

.* FILES WRITTEN: *

HARDWARE INPUT: *
HARDWARE OUTPUT: *

* MODULES CALLED: NONE *
..* CALLING MODULES: L andK *

7 * AUTHOR: PAUL ROSSBACH *

"* HISTORY:

clear(how much)
int howmuch;

*"-int start,i;
int reclaim-weight;

if (how much ALL)
,,start 2;

else
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start = 3;
else
start =5;

/*********clear all from start on if changed(ie t[i]!=NULL)

for (i=start;i<=ROWS-1;i++)

if ((til] t[2l 11 start == 2)&&((t[il !=t[31 ti]l! t[4]) 11
start !=5) && t(il != NULL)

tli]->xcurrent = -1;
t~i]->ycurrent = -1;
t(i]->ystar = NULL;
t[i]->ystar weight =-1;
tlil->tent a link =NULL;
t[il->tent b link =NULL;
tiil->t-a weight =-1;
t~iJ->t- bweight =-1;

* t[tJ->a)T1is~y = FALSE;
tfil->bl _isj# = FALSE;

PN t]-rdl 1
t[i]->oldxl = -1;
ttiJ->ocuren -1;1
tfii->two_ycurrent = -1;

tfiJ= NULL;

else

if (til != NULL

if (tiil->twojycurrent !=tiil->ycurrent)
til->ycurrent =t~il->two-ycurrent;

if (t~il->two_xcurrent != t[ij->xcurrent)
t[ij->xcurrent til->two-xcurrent;

if (t~il->ycurrent ALL)

t(il->tent b Tlink =NULL;
t[i]->t-b_weight -1;
if ((til == ti(2 & til= t(41) ==FALSE)
tl->bl _risy FALSE;

if (tii->ycurrent ==BL_R)

t~il->tent a link NULL;
tlij->t_a weight =-1;
if ((til t[21 && til] t[41) ==FALSE)

t~il->al I i.sy =FALSE;

tfil= NULL;
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/*******clear Y_1 from node t:2 or Y_2 from node 1:4

if (how-much ==Y_1)

= 2;
if (how -much =Y_2)

= 4;
*-if (how -much !ALL)

if (t[i]->twoycurrent !=t[i]->ycurrent)

t(iJ->Ycurrent = t(il->twoycurrent;
tIil->twojvcurrent =-1;

* if (t[i]->two-xcurrent !t~iI->xcurrent)

tilJ->xcurrent = t~i]->two -xcurrent;
ttil->two-xcurrent = -1;

if (tfiI->ycurrent == AL-L)

- "*t[i]->tent -b Tlink =NULL;
-: tfi]->t_b-weight =-1;

else.

t[i]->tent_a Tlink =NULL;
V tIi]->t a weight =-1;

else

/*******clear ALL, relink t1 & t:2, then clear both*******/

if ( t[Ij != NULL ) /* NULL after swap()o

if (tIIJ->al 1 _link == NULL)

t(1J->al _]_ isy = FALSE;
t[1]->al 1 I_-link = (&nodes[t[1]->oldxl]);
reclaim weight = t[1J->al 1 _weight;

else

t(1I->bl _r is-y = FALSE;
t[IlJ- r-link = (&nodes~t(11->oldxlJ);
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• ', .reclaim-weight = t[I1->bl_r_weight;

if ( nodes(t[11->oldxl].al-l link == NULL)

nodes[t[I]->oldxl].al-1 link = t(1];

nodes[t[1]->oldxl].al]lweight = reclaim-weight;

else
ill {

nodes[t[ll->oldxll.bl _r_link = t[1j;
nodes[t[1]->oldxll.bl_r weight = reclaim weight;

t[1]->oldxl -1;

return;

* DATE: 1 DEC 1985 *
-,* VERSION: 1.0 *

* NAME: CHOOSE_X1 *
* DESCRIPTION: *
* For any given tl chosen, choose_x1 will pick a random link as *
"* the xl when called with time = 0. The module will pick the *
.* remaining link if both have not already been tried with time= I *

, •If a link can be assigned, the module assigns it by manipulating*
¢ * the doubly linked nodes forming the tour. ti is split from t2 *

* * and x and y currents, oldxls, and isys are flagged. *

='* PASSED VARIABLES: time • 0 - immediately after ti chosen *
.* 1- any other time *

* RETURNS: FALSE : an xl assigned *
* TRUE : both xis used so x _done *
• GLOBAL VARIABLES USED: t,nodes *
• GLOBAL VARIABLES CHANGED: t,nodes *
• FILES READ: *
• FILES WRITTEN: *
."* HARDWARE INPUT: *
€ * HARDWARE OUTPUT: *

*- * MODULES CALLED: NONE *
... CALLING MODULES: L andK *
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*AUTHOR: PAUL ROSSBACH
*HISTORY:*

choose_xl(tlme)

int time;

static int the_x1;
static int try;
long randomo;

* /**********first try -pick random x1

if (time ==0

I
the -xl1 random();
the xl1 (the_xl & 01);
try-= 1

else

/**********next try -pick the other link

if (try ==1)

if ( the~x == AL-L)
the xl BL R;

else
* the-xl =ALL;

try =2;

else

/**********third try -return TRUE x1 _done *********/

return( TRUE);

f********link assigned -make changes to t and nodes ******

if (the_xl AL-L)
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t(21= t(11->al-jQ ink;
tfl->al]isy =TRUE;
t[lJ->al l1 ink =NULL;
t(1I->xcurrent = AL_L;
t[1I->ycurrent = AL_L;

else

t1= tjll->blr_link;
t(1J->blrisjy = TRUE;
ttl->bl _r-link = NULL;
tflI->xcurrent = BL_R;
trlJ->ycurrent = BL_R;

if (t(21->al _Ilink == t(11

t[21->alisy = TRUE;
t[21->al 1 _link = NULL;

* t(2J->xcurrent =AL_L;
t[21->ycurrent = AL_L;

else

t[21->bl.*rjis~y TRUE;
t[21->bl _r-link =NULL;
t[21->xcurrent = BL_R;
t(2]->ycurrent =BL_R;

t(21->oldxl=tf I I->node number;
tl1]->oldx1=t[21->node_number;

return(FALSE);

*DATE: 1 DEC 1985
*VERSION: 1.0

E * NAME: INITIALIZE
*DESCRIPTION:
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.?*% .&. * Initializes all node structures, t pointer arrays, G arrays *
* and T6 & VIO _flags. The initialization either clears or *
* places "illegal" values. Initialize serves to insure all *
• unassigned variable values are known at the beginning of the *
* algorithm. *

.'* PASSED VARIABLES: NONE *
* RETURNS: NONE

GLOBAL VARIABLES USED: t,G,nodes,T6_flag,VIOflag *
• GLOBAL VARIABLES CHANGED: t,G,nodesT6_flag,VIOflag *
* FILES READ: *

.,* FILES WRITTEN: *
* HARDWARE INPUT:

• MODULES CALLED: NONE *

CALLING MODULES: Land_K *

" * AUTHOR: PAUL ROSSBACH *
" * HISTORY: *

initiallze()

{

int i;

for (i=O;i<=ROWS-l;i++)
{
t[i] = NULL;
G[i] = 0;

nodes[i].al 1 link = NULL;
nodesfil.bi r-link = NULL;
nodes~i].al_l_weight = -1;
nodesi].bl_r_weight = -I;
nodes[ii.node-number = i;
nodes[i].ycurrent = -1;
nodes[i].xcurrent = -1;
nodesili.ystar = NULL;
nodes[i].ystar weight = -1;
nodes[i].tent_a_link = NULL;
nodes[lj.tentb_ link = NULL;
nodes[i].t_a_weight = -1;
nodes[i].t-b-weight = -1;
nodes[i].al 1 isy FALSE;
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"" nodes(f].bl_r_is_y = FALSE;
nodes[il.oldxl = -1;
nodes~il.oldx2 = -1;
nodes[i].twoycurrent = -1;
nodes[il.twoxcurrent = -1;

TF

T6 flag = FALSE;
VIO flag =FALSE;
t[ROWS] = NULL;
G[ROWS] = 0;

return;

b*/*************************************************************************

* ! DATE: 1 DEC 1985 *
* VERSION: 1.0 *

* NAME: SWAP *
l* DESCRIPTION: *

* The Land K TSP algorithm calls swap when a better tour has *
." * found, but it can progress no further. Since the program *
, * changes links as it goes, only the very last valid link needs *
* to be modified. Then, all tentative information contained in *
>.* the linked node structures must be cleared. *

[ _* *

* PASSED VARIABLES: NONE *
._ " * RETURNS: NONE *

* GLOBAL VARIABLES USED: f-t,G-best,t *
.* GLOBAL VARIABLES CHANGED: nodes,t *

* FILES READ: *
* * FILES WRITTEN: *

* HARDWARE INPUT: *
v * HARDWARE OUTPUT: *
* MODULES CALLED: clear *
.'* CALLING MODULES: L andK *

* AUTHOR: PAUL ROSSBACH *
.'* HISTORY: *
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swap()

/***********update the full tour cost

f-t =f-t - best;

~~ move the y(k) link to tI to close the tour

if (t[2*kl->al 1 _link == t(2*k+l])

t(2*kJ->al 1 _link = t[2*k1->ystar;
t(2*kJ->al-1 weight = t[2*k1->ystar weight;

else

t[2*k1->bl _r link = t[2*kl->ystar;
'N t(2*k1->blr-weight =t(2*kI->ystar weIght;

~~ ~connect tI back thru y(k) to t[2*kl *******I

if (t[l1->al _lisy == TRUE)

tflI->al-_ Ilink =tf2*kl;
t[1J->al 1 _weight = t[2*k]->ystar weight;
t~l]->al 1 _isy FALSE;

else

t(1]->bl _r-link t[2*k];
t[l->bl _r_weight = t[2*k]->ystar weight;
t(1J->bl _r_isy =FALSE;

t[IJ->xcurrent = -1;

tflj->ycurrent =-1;

till = NULL;

clear(ALL);
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return;

* *

*1' * *

DATE: 1 DEC 1985 *

* VERSION: 1.0

.* NAME: LOOKUP *

, * DESCRIPTION: *
* Finds and returns the weight of the link between two columns *
" * or rows from the passed variable information. *
•a PASSED VARIABLES: *

* * size: COLS/ROWS
*! * from: node *

• to: node *

* type: RIRJ *
" * RILJ *
• L ILJ *
* L IRJ *

• RETURNS: link weight *

* GLOBAL VARIABLES USED: no pullrow, noncolpairs *
• GLOBAL VARIABLES CHANGED: NONE *

* FILES READ: *
* FILES WRITTEN: *

• HARDWARE INPUT: *
• HARDWARE OUTPUT: *

* MODULES CALLED: NONE *
• CALLING MODULES: linkjoin *

* * AUTHOR: PAUL ROSSBACH
T * HISTORY: *

_* *

look_up(size,from,to,type)
. int size;

int from;
int to;
int type;
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{

int weight;

/******** ROWS have BLR to BLR or ALL to ALL *

if ( size == ROWS

: if (type ==RIRJ)

, weight =no_pull_row(from][tol[BLR];
else
weight = nopull_row(froml(tol(AL_Ll;

•*** COLS retrieve weight I of 4 types *

else
weight = non_col_pairs[from][to][type];

return(weight);

* DATE: I DEC 1985
! * VERSION: 1.0 *

"'* NAME: HAMILTONIAN-PATH *

"":* DESCRIPTION: *
! .* This module takes the minimum length TSP tour and splits it *

r* (since the row's or column's array edges need not be joined *

* on the ends). The resulting hamiltonian path is saved in the *
" * proper array to be used later. The ordering is temporarily *

.. * saved in the "order" array. The starting point in the order *

...* array is determined from either maxstart or minstart for *

''* columns and rows respectively. *
* COLS: The column tour is split at the maximum link, thereby

i * minimizing the costs between the other links. The resulting *
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""* path for the groups of 12 column-bytes is placed into the *
• permut col" array. If the column-byte had to be flipped over *
• it is so indicated in the "sideways" array. The 4 calls to *
• this module for columns cover the 4 groups of 12 in the XROM *
, * from left to right. *

ROWS: This module is called when the tour found is the lowest *
•seen thus far. The row tour is only allowed to be split on an*
•AL_L(an AO-line drain) link. This is due to the physical layout*

of the XROM. The rows tour is split on the minimum cost link *
in order to get a two-for-one "drain savings" on the best link *
since this link borders on two rows of drains(top and bottom). *
The resulting path is saved in the "row-permutation" array. *

•* *

," * *

-* PASSED VARIABLES: *
* size: COLS/ROWS *
*time: 0,1,2,3 for 4 column groups only

* RETURNS: NONE *
* GLOBAL VARIABLES USED: nodes *
* GLOBAL VARIABLES CHANGED: permut_col,sideways,rowpermutation *
* FILES READ: *

* FILES WRITTEN: *
4 HARDWARE INPUT:

-.* HARDWARE OUTPUT: *
• MODULES CALLED: NONE *

o * •CALLING MODULES: drains *

.* AUTHOR: PAUL ROSSBACH *
: * HISTORY: *

, .********************************* *

hamiltonianpath(size,time)

int size;
int time;

int done;
int max_link;
int min aO link;
int max start;
int min start;

14 int i,j;
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mnt current type;
- mnt order[ROWS];

int flip[ROWS];
- - struct cell *follow,*last,*next;

~ start at node zero

follow = &nodesfOl;
last =NULL;
I = 0;
orderji++] 0;
minaG-link =BIGNUMBER;
max-link = -1;

done =FALSE;

~~ track along the linked tour

while ( done != TRUE

next = follow->bl _r_link;
current-type = BLR;
flip(i-1I 0;
if (next ==last)

14"next follow->al 1 _link;

/******** remember the node sequence

if (next != &nodes[Ol)
orderlji++J = next->node-number;

else

/**********if link is AL_L, keep max & min~

if (current type ==AL_L)

if ( follow->allweig',t > max_-link

- max link =follow->al _I _weight;
max start =i-1;

if (follow->allweight < minaO-link

0min _aO -link = follow->al _weight;
min-start i-1;

C



else

~~ if the link is BLR, keep max

if (follow-b _r weight > max-link

max-link =follow->bl _r-weight;
max-start =i-i;

-~ ~ continue if not finished

* if (next == &nodes [01
done = TRUE;

else

last = follow;
* follow =next;

/ * end while *

e ~ save the results: ordering

if (size == DATAWIDTH)

for (j=0;j<=DATAWIDTH-1;j++)

permutcol[time*DATAWIDTH+jI order[(max_start +j) % DATAWIDTHI
+ time*DATAWIDTH;

sidewaysftime*DATAWIDTH+jI = flipII(max-start + j) % DATAWIOTH];

els
I

S for (j=0;j(=ROWS-1;j++)
row permutation~j1 order[(minstart +j) % ROWS];

return;
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- APPENDIX D "LAYOUT" CODE

" * DATE: I DEC 1985 *

* VERSION: 1.0 *i! *
* TITLE: AUTOMATIC LAYOUT OF XROM IN CAESAR *
• FILENAME: LAYOUT.C *
; * COORDINATOR: CPT LINDERMAN *

* PROJECT: XROM OPTIMIZER(AUTO LAYOUT) *
* OPERATING SYSTEM: UNIX V 4.2 *
* LANGUAGE: C *
* USE: included in genXROM.c *

",'' * CONTENTS: *
., * layout() *
',* pla_pers() *

* senseamppers() *

0 * xrom pers() *
*.. main_xrom place().*
,. * edgesxrom placef) *
:" * wordsign pers() *

• •* *

* FUNCTION: This program uses the results of the DRAINS.C
• program to create 10 Caesar files that describe *
• the XROM in a layout description. *

#include "stdio.h"

#define COLS 48
#define ROWS 144
#define GROUPS 4
#define DATAWIDTH 12
#define FALSE 0
#define TRUE I
#define OUTSIZE ROWS*GROUPS*DATAWIDTH

d?1

r #define LEFT 0
Ndefine RIGHT 1
#define MAXCAENUMSIZE 6

#define TECH "scp"
#define CAE UNITS 2
#define PLAPERS_UOLO "u010"
#define PLAPERSUOL1 'uoll"

* #define PLA PERS_UILO "ullo"

0-1

...................................................., .,- .. , .•.... -........
" .' ,",- "" ", *:' "-..'-' "*. ., .' .,.** .* * -"", W ' ""' ' -:'' '-.-- '' ," " -",'. - - ,-". . ",



#define PLAPERSUlLI "ulll'
#define SENSEAMP- lsena_"
# define SIDE lost.

#define NOTIoi
#/define FLIP @f1
#/define XROM "lxrom_
#define A "All
#/define 8 "Boo
#define C local
#/define 0148
# Idefine OPTNO toIl
#/define FILEEXT c
#define LEFTPLAOUT "lpla.ca"
#/define RIGHT_-PLAOUT "irpla.ca"
#/define SIGNI_BITS_OUT "Isig.ca"
#define SIGN2_BITS_OUT "2sig.ca"
#define XROMILOUT "Xarll.ca"
#define XROM1ROUT "Xarlr.ca"
#define XROM2L-OUT "Xar2l.ca"
#define XROM2ROUT "Xar2r.ca"
# Idefine SENSELOUT "SAl1.ca"
#define SENSElR_OUT "SAlr.ca"
#/define SENSE2LOUT "SA21.ca"
#/define SENSE2R_OUT "SA2r.ca"
#/define XROMWIDTH 12*CAEUNITS
Idefine XROMHIEGHT 12*CAEUNITS
#define SENSEWIDTH 98*CAEUNITS

* Idefine SENSESPACING 96*CAEUNITS
#define PLAWIDTH 13*CAEUNITS
#define PLAHIEGHT 26*CAEUNITS
# Idefine PLASPACING 25*CAEUNITS
#define HUMPLAADDRS 8

extern char out -array[];
extern char word sign bit[];
extern int col sign bitil;

0~extern int subcarrayH];
extern int permut col[];
extern int sideways(];
extern int row permutationl];
extern int carrayl];

char *plaboxsize;
- - U'char *senseboxsize;
* char *xromboxsize;
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* DATE: I DEC 1985
• * VERSION: 1.0 *

.* NAME: LAYOUT *

.* MODULE NUMBER:
*DESCRIPTION:*

*.: •This module simply calls the four personalization modules *
• that create the output caesar files.

* PASSED VARIABLES: NONE *
* RETURNS: NONE *

::* GLOBAL VARIABLES USED: plaboxsize, senseboxsize, xromboxsize *
*.L. * GLOBAL VARIABLES CHANGED: plaboxsize, senseboxsize, xromboxsize *

* FILES READ: *

* FILES WRITTEN: *
• HARDWARE INPUT: *
• HARDWARE OUTPUT: *
• MODULES CALLED: pla_pers, senseamppers, xrom-pers, *
• word_signpers *

* * CALLING MODULES: gen_XROM *
A* *

-'.* AUTHOR: PAUL ROSSBACH *
.* HISTORY:

. layout(

*paboxsize = "0 0 26 52"; 0* xmin ymin xmax ymax

; . senseboxsize = "0 0 19620 ;
, xromboxsize ="0 0 24 24'";

/* remember caesar units are CAEUNITS*(Iamda*length)

pa_pers() ;
senseamp_pers 0;

- xrom pers(;
-. word signpers( );

.%-, -.

return;

'r.*

* *

• DATE: I DEC 1985 *
- -- * VERSION: 1.0 *
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* NAME: PLA PERS *
"* MODULE NUMBER: *

m * DESCRIPTION: *
, * This module creates the personalizatlon caesar files for *
-* side of the XROM arrays (left and right). The proper 's *

* and O's for the NAND pla are placed in the correct positions *
* as determined by placement and drains. *

• PASSED VARIABLES: NONE *
• RETURNS: NONE *
* GLOBAL VARIABLES USED: rowpermutation *
• GLOBAL VARIABLES CHANGED: NONE *

.* FILES READ: *
,* FILES WRITTEN: LEFTPLAOUT, RIGHTPLAOUT

* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: NONE *
* CALLING MODULES: layout *
* •

* AUTHOR: PAUL ROSSBACH *

• HISTORY:

pla_pers(

int i,j,x;
Q' int calcl,calc2;

FILE *fp,*fopen(;
char *tech,*cell;
char *ext;

ext = FILEEXT;
tech = TECH;
for (i=LEFT;i<=RIGHT;i++)({

if ( i= LEFT)

fp = fopen(LEFTPLAOUT,"w");
fprintf(fp,"tech %s\n",tech);

else

S ". fprintf(fp,"<<end>>\n");
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fclose(fp);
* fp =fopen(RIGHT_PLA_OUT,'w'1;

fprintf(fp,"tech %s\n",tech);

~~ scan through the rowpermutation array 2 rows at a
~ time and alternating 2 rows per side. The row

~~ number in row permutation equals the programmed
address for the NANO pla.

for (J=R0WS-4+2*i;j>=2*i;j - 4)

calcl = rowpermutationijl;
calc2 = row permutationlj+1J;
for (x=0;x<NUMPLAADDRS;x++)

if (calci & 01)
C if (calc2 & 01)

cell =PLAPERSUlLi'
else

* cell = PLAPERSUOL1;
else
if (calc2 & 01)

cell = PLAPERSUILO;
else

cell =PLAPERS UOLO;
fprintf(fp,"use %s%s\n",cell,ext);
fprintf(fp,"transform 1 0 %d 0 1 %d\n",x*PLAWIDTH,

((ROWS/4-l).j/4)*PLASPACING);
fprintf(fp,"box %s\n",plaboxsize);,

calci (calci >> 1):
calc2 = (calc2 >> 1);
}/* end xfor/

1 /* end j for *
I /* end i for/

fprintf(fp,'«<end >\n");
fclose(fp);

return:
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-* DATE: 1 DEC 1985
m * VERSION: 1.0 *

* NAME: SENSEAMPPERS *
" * MODULE NUMBER: *
:'* DESCRIPTION: *

4" * This module creates the caesar files for the sense amplifier *
* arrays for each XROM array. The sense amp cells called
• and placed depend on whether the preceding optimization has *
* flipped the column over, inverted the column, moved the column, *
* and/or changed the column's internal order, and whether the *
* XROM array is to the left or right of the center cell. The *
* module also labels each cell with the column's bit position *
• number obtained from permutcol since the columns are scrambled.*

-* PASSED VARIABLES: NONE *

* RETURNS: NONE *
01* GLOBAL VARIABLES USED: sideways, col _signbit, sub_c_array, *

* permut-col. *
* * GLOBAL VARIABLES CHANGED: *

L * FILES READ: *
-.* FILES WRITTEN: SENSEILOUTSENSEIR_OUTSENSE2R_OUT,SENSE2LOUT *
.* HARDWARE INPUT: *
.* HARDWARE OUTPUT: *
,.* MODULES CALLED: NONE *
• CALLING MODULES: layout *

• AUTHOR: PAUL ROSSBACH *
* HISTORY: *

* ,

* *.

senseamppers()

•~ '" .

"-.int i,j,x,y;
- int tag;

int xpos;
int col_num;
char *appendl;
char *append2;
char *append3;
char *tech;

. char *ext;
S -. char *cell;
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FILE *fp,*fopeno;

cell = SENSEAMP__
tech = TECH;
ext = FILEEXT;

~~ for 2 sets of left and right XROM arrays

for (i=1;i<=2;l++)
for (j=LEFT;j<=RIGHT;J++)

if (1 == 1 && j == LEFT)
fp = fopen(SENSE1L_OUT,"w");

else

fprintf(fp,%'<end >\n");
fclose(fp);
if ( i == 1)

fp =fopen(SENSE1R_OUT,4w");
else

* if (j == LEFT)
fp = fopen(SENSE2LOUT,"w");

else
fp = fopen(SENSE2ROUT, 6w");

fprfntf(fp,"tech %s\n",tech);

/***call and position the proper sense amp cell configuation

for (y=O;y<DATAWIDTH;y++)

x =(2*(i-1)+j)*DATAWIDTH +y;,

if (sideways[x]
appendi SIDE;

else
appendi OPTN0;

if ( colsignbit(permutcoifx]I)
append2 =NOT;

else
append2 = OPT_-N0;

if ( j == RIGHT
append3 = FLIP;

else
append3 =OPTNO;

tag = sub-c _array~permut col [xl];

fprintf(fp,"use %s%s~s%s%d%s\n",cell ,appendl,append2,

0-7



append3tag,ext);

fprintf(fp,"transform 1 0 %d 0 1 O\n",y*SENSESPACING);

9. fprintf(fp,"box %s\n",senseboxslze);

} /* end y for*/

fprintf(fp,"<< labels >>\n");
for (y=O;y<DATAWIDTH;y++)

xpos = (y+.5)*SENSE WIDTH;
x = (2*(i-)+j)*DATAWIDTH +y;
col-num = carray[permut_col [x]];
fprintf(fp,"label %d %d %d %d %d 1\n",col_num,xpos,O,xpos,O);

/ 1* end j for */

fprintf(fp, "<<end>>\n");
SIfclose(fp);

return;

", '* *

-*. DATE: I DEC 1985

'* VERSION: 1.0 *

* NAME: XROMPERS *
* MODULE NUMBER: *
i_* DESCRIPTION: *
i+* This module opens and closes the output files, initiates the
• written output, and calls the two main routines that place *
* the XROM personalization cells into the four arrays. *

-* PASSED VARIABLES: NONE *
* RETURNS: NONE *

,* GLOBAL VARIABLES USED: NONE *
.-* GLOBAL VARIABLES CHANGED: NONE *

."* FILES READ: *FILES WRITTEN: XROM1L_OUT, XROMIR_OUT, XROM2LOUT, XROM2ROUT
HARDWARE INPUT:*

* HARDWARE OUTPUT:

* MODULES CALLED: main_xromplace, edgesxromplace *

O -
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*CALLING MODULES: layout*

*AUTHOR: PAUL ROSSBACH*
*HISTORY:

xrompers()

int group;
char *tech;
FILE *fp,*fopen();

tech =TECH;
0

for (group=O;group<=3;groupH-)

if (group ==0)
fp =fopen(XROMIL_OUT,"w");

else

fprintf(fp,'(<end >\n");
fclose(fp);
if (group ==1)

fp =fopen(XROM1R_OUT,w);
else
if (group == 2)

fp = fopen(XROI2L_OUT,"w");
else

fp =fopen(XROM2R_OUT,"w");

fprintf(fp,"tech %s\n",tech);

main-xrom-place(group,fp);
edges xrom place(group,fp);

wI
q fpri ntf( fp, "«end >\n");

fclose(fp);

return;
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VESIN 1.0

NAE MAI XO PLC

DESRIN:I1.0:

*This module places the XROM cells for most of the array groups *

* *from the out-array bit pattern and row_permutation matrix.

*PASSED VARIABLES: group: 0-3, datawidth wide groups
* fp: pointer to output file*

*RETURNS: NONE*
*GLOBAL VARIABLES USED: row permutation, out_array
*GLOBAL VARIABLES CHANGED: *

*FILES READ:
* * FILES WRITTEN: XROMILOUT, XROM1ROUT, XROM2LOUT, XROM2ROUT *

*HARDWARE INPUT:*
*HARDWARE OUTPUT:

* *MODULES CALLED: NONE*
* *CALLING MODULES: xrom-pers*

*AUTHOR: PAUL ROSSBACH
*HISTORY:

main_xromplace(group,fp)
int group; /* 0,1,2,3 *
FILE *fp;

int bitl[9),bit2[91,bit3[9];
int calcl,calc2,calc3;
int g,h,i,.j,y,x,yy,xx;

497 int ur,ul,lr,i1;
char *a,*b,*c ,*d;
char *cell;
char *ext;

* mt xdlm,ydim;

cell = XROM_
ext =FILE_EXT;
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for each XROI row in the group by 2's

for (x=ROWS-1;x>=3;x - 2)

bltl[81 -0;
bit2[81 =0;
bit3(81 - 0;
g=rowpermutation~x-21*C0LS + group*DATAWIDTH;
h=row-permutation~x-1I*C0LS + group*OATAWIDTH;
i=rowpermutationfx]*COLS + group*DATAWIDTH;
for (j=DATAWIDTH-1;j>=0;J--)

/*******look at three rows at a time

calci = out-array~g+j1;
calc2 = out-array[h+jJ;

~1 calc3 =out-array[i+j];

for (y=O;y<l7;y++)

bitl(7-yJ = (calci & 01);
bit2[7-y] = (calc2 & 01),
bit3[7-y] =(calc3 & 01);

'3calci (calci >> 1);
calc2 = (calc2 >> 1);
calc3 = (calc3 >> 1);

/*******calculate type XROM cell for 4
~~ ~bits of each bit line(xx=0) byte &4******/
~ bits of each AO line(xx=1) byte

for (xx=0;xx<=1;xx++)
for (yy=4;yy>=1;yy--)

if (xx)

ur =bit3(2*yy]; /~ur = upper right of drain
ul =bit3(2*yy-II; /~ul = upper left of drain ~
lr =bit2[2*yyl; / l ir lower right of drain ~
11 =blt2[2*yy-1]; 11 =lower left of drain ~

else

ur =bit2[2*yy-11;
ul =bit2[2*yy-21;
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11 =bit1(2*yy-2];

if (ul)
a =A;

* else
a =OPT_NO;

if (ur)
b =B;

~ - else
b =OPTN0;

if (11)
c =C;

else
c =OPTNO;

if (1r)
d =0;

-~ elseA d =OPTN0;

x xdim = XROMWIDTH*(yy + 4j+ .5*xx);
y-dim = XROMHIEGHT*(((ROWS-1)-x)/2 + .5*xx);

fprintf(fp,"use %s%s~s%s%s%s\n",cell,a,b,c,d,ext);
.4 fprintf(fp,"transform 1 0 %d 0 1 %d\n",x_dim,y dim);

fprintf(fp,"box %s\n",xromboxsize);

}/* end yy for ~

bitl[8] = biti (01;
bit2[8) bit2[0J;
bit3[8J = bit3[OJ;

/ * end j for *

4' ~/* end xfor/

S return;
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*NAME: EDGESXROMPLACE
*MODULE NUMBER:*
*DESCRIPTION:*

*This module places the XROM cells for the boundaries of the *

*XROM groups that were initially placed by main xrom place.*

*PASSED VARIABLES: group: 0-3, datawidth wide groups
* fp: pointer to output file*

*RETURNS: NONE*
*GLOBAL VARIABLES USED: row permutation, out_array*
*GLOBAL VARIABLES CHANGED:*
*FILES READ:*
*FILES WRITTEN: XROM1LOUT, XROMIROUT, XROM2LOUT, XRO?12ROUT *

*HARDWARE INPUT:*
*HARDWARE OUTPUT:*
*MODULES CALLED: NONE*
*CALLING MODULES: xrompers

*AUTHOR: PAUL ROSSBACH*
*HISTORY:*

edges xrom place(group,fp)
int group; /* 0,1,2,3 *
FILE *fp;

int bitO[91,bitlt9],bitRltglj;
tnt calcO,calcl calcR_l;
tnt j~y,x~yy,xx;
int ur,ul,lr,ll;
int bit[ROWS+21;
char *a,*b,*c,*d;
char *cell1
char *ext;
int x_dlm,y dim:

cell = XROM_
ext =FILEEXT;

* /********fill in two upper and one lower rows of XROM

bitO(81 =0;
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biti [81 0;
bitR_1181 = 0;

for (j=DATAWIDTH-1;j>=O;J--)

cac u{ra~o-emtto[]CL ru*AAIT )

calcl = out-array[rowpermutation[0I*COLS + group*DATAWIDTH + jJ;

calcR_1=outarray[row-permutation[ROWS-1]*C0LS+group*DATAWIDTH+j];

for (y=O;y<=7;y++)

bi{ -j=(clO&0)
bitlI7-yl = (calcO & 01);

bitR -l[7-y] = (caicR-I & 01);
calcO =(calcO >> 1);
calcl (calci >> 1);
calcR_1 (calcR_1 >> 1);

* for (xx=0;xx<=2;xx++) O =row 0; 1=rowl; 2=row ROW-i 1
for (yy=4;yy>=1;yy--)

if (xx ==0) /*top A0_drains row ~

ur = 0;
ul =0;
Ir = bitO[2*yyl;
11 = bit0[2*yy-1];

if (xx ==1) /*top bit drains row ~

ur = bit0[2*yy-11;
ul =bit0[2*yy-21;
Ir = bitl[2*yy-11;

if (xx == 2) /*bottom AO drains row ~

ur =bitR 1[2*yyl;
ul = bitR 1[2*yy-1;
Ir = 0;
11 =0;

if (ul)
a =A;

~ else
a. OPTNO;
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if (ur)
b =B

el se
b OPTNO;

if (11)
c =C;

el se
c =OPT_-NO;

if (1r)
d =0;

el se
d =OPTN0;

if (xx == 1)

x dim =XROMWIDTH*(yy + *)
y dim = XROMHIEGHT*(R0WS-2)/2;

else

x-dim =XROMWIDTH*(yy + 4j+ .5);
ydim = XROIIHIEGHfT*(((ROWS-2)-(xx/2)*ROWS)/2 +.5);

fprintf(fp,"use %s%s%s%s%s%s\n",cell ,a,b,c.,d,ext);
fprintf(fp,"transform 1 0 %d 0 1 %d\n",x dim,y dim);
fprintf(fp,"box %s\n",xromboxsize);

.q. }/* end yy for *

bit0(81. bitO[O);
biti [8] bitl 101;
bitR_1[81 =bitR_1[01;

4'. /* end j for ~

/*******fill in the left most column of AO-drains

for (x=O;x<=ROWS-1;x++)
bit[ROWS-x] = (out array~group*DATAWIDTH +

COLS*rowpermutation[x]1 & 0200);
4*w bit[O] = 0;

bit(ROWS+1] = 0;

for (x=O;x<=ROWS;x +=2)

if (bit~x])
-d d D;

else
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d = OPT_NO;

if (bit[x+1])
b = B;

else
b = OPTNO;

a = OPTNO;
c = OPTNO;

x dim = XROMWIDTH*(.5);
2 y dim = XROMHIEGHT*(-.5 + x/2);

2"' fprintf(fp,"use %s%s%s%s%s%s\n",cell,a,b,c,d,ext);
fprintf(fp,"transform 1 0 %d 0 1 %d\n",xdim,ydim);
fprintf(fp,"box %s\n",xromboxsize);

}-/* end x for*/

return;

'.,* *

" * DATE: I DEC 1985 *
""* VERSION: 1.0 *

* NAME: WORD SIGN PERS *
- * MODULE NUMBER: *
: * DESCRIPTION: *
.* This module places the word sign bits for each large portion *
* of the XROM(XROM I & XROM 2) into two caesar files. Each *

*0 * word sign bit column contains 4 sign bits per row (2 for *
..* each AO/AON in each group). *

..* PASSED VARIABLES: NONE *
* RETURNS: NONE *
"* GLOBAL VARIABLES USED: word_sign bit,rowpermutation *

* GLOBAL VARIABLES CHANGED: NONE *
: * FILES READ: *

* FILES WRITTEN: SIGNIBITS OUT,SIGN2_BITSOUT *
* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: NONE *
* CALLING MODULES: layout *
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*AUTHOR: PAUL ROSSBACH
*HISTORY:

* word_slgnpers()

int bit[ROWS+2] [6];
int byte;

int offset;
int ur,ul,lr,l1;
char *a,*b,*c,*d;
FILE *fp, *fopen();
char *tech;
char *cell;

* char *ext;
tnt xdim,y dim;

ext = FILE_EXT;
cell =XROM_;
tech =TECH;

/*********for both word sign bit column caesar files

for (j=O;j<=1;J++)

if (j == 0)

fp =fopen(SIGN1_BITSOUT,"w");
fprintf(fp,"tech %s\n7,tech);

else

fprl ntf( fp, "(<end >\n");
fclose(fp);
fp =fopen(SIGN2_-BITS_7OUT,"w");

5*~* fprfntf(fp,"tech %s\n tech);

offset =4 * J;

/*********fill the bit array with the current column

~ ~ for (x=O;x<=ROWS-1;x++)

I



byte word_sign bit[rowpermutatlon[xJ];

bit[ROWS-x][ [01 0;
bit[ROWS-xl [11 byte & ( 0200 >> offset )
bit[ROWS-xl [2] byte & ( 0100 >> offset )
bit(ROWS-xJ [3] byte & ( 0020 >> offset )
bit[R0WS-xJ [41 -byte & ( 0040 >> offset )
bit[ROWS-x][5(51 0;

* for (l=0;1<=3;l++)

bit[01[i] = 0;
bit[ROWS+11i = 0;

/******place the AO/AON drains for the word sign bit column***/

for (x=0;x<=ROWS;x += 2)
* for (y0O;y<=2;y++)

ur =bit[x+1H[2*y+l1;
ul =bit[x+11[2*y1;
Ir xbit[xH[2*y+l1;
11 =bit[x]12*y];

if (ul)
a =A;

else
a OPT_-NO;

if (ur)
b 8;

else
b =OPT_NO;

if (11)

else C
c OPTNO;

if(1r)
d=D;

else
d =OPTNO;

fprintf(fp,"use %s%s%s%s%s%s\n",cell ,a,b,c,d,ext);

fprintf(fp,'transform 1 0 %d 0 1 %d\n",XROM_WIDTH*y,
XROM_1IIEGHT*((R0WSx/2)

fprintf(fp,"box %s\n",xromboxsize);



~~ place the bitline drains for the word sign bit column***/

for (x=l;x<=ROWS-1;x += 2)
for (y=O;y<=I;y++)

ur = bitlx+11H2*y+21;
ul = bit~x+l][2*y+I];
Ir = bit~xH[2*y+21;
11 =bittx112*y+l];

if (ul)
a =A;

else
a =OPTNO;

if (ur)
b =B;

else
b = OPT_NO;

if (11)
c =C;

.~*. .*else

c =OPT NO;
(S if (1r)

ed 0;
ese
d OPTNO;

x-dim =XROMWIDTH*(y + .5);
ydim = XROMHIEGHT*((ROWS-(x-1))/2 -. 5);

fprintf(fp,"use %s%s%s%s%s%s\n",cel 1,a,b,c,d~ext);
fprintf(fp,"transform 1 0 %d 0 1 %d\nxdim ,ydim);

.3 fprlntf(fp,"box %s\n",xromboxsize);

fprintf(fp, "(<end >\n");
fclose(fp);

return;
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Appendix E

SPICE Model Parameters

MODEL CMOSP PMOS LEVEL=2.00000 LD=0.51286OU TOX=500.OOOE-10

- NSUB=2.971614E+14 VTO=O.844293 KP=1/048805E-05 GAMMA

0.723071

- PHI=0.600000 UO=100.000 EEXP=O.145531 UCIT=18543.6

- DELTA=2.19030 V M A X=100000. XJ=2.583588E-02

- NFS=1.615644E+12 NEFF=1.001000E-02 NSS=0.OOOOOE=OO

TPG=1.00000

* - RSH= 95 CGSO=4E-10 CGDO=4E-10 CJ=2E-4 MJ=0.5 CJSW=9E-10

MJSW=0.33

(0 MODEL CMOSN NMOS LEVEL=2.0QOOO LD=0.245423U TOX=500.OOOE-10

-NSUB=1 .OOOOOOE+16 VTO=0. 932797 KP=2.696667E-05 GAMMA=1 .28047

-PHI=0.600000 UO=381 .905 UEXP=1. OO10000E-03 UCRIT=999000.

-DELTA=1.47242 VMAX=55346.3 XJ=0.145596U LAMDA=2.491255E-02

-NFS=3.727796E+l1 NEFF=1.OO1000E-02 NSS=0.OOOOE+00 TPG=1.0000

-RSH=25 CGSO=5.2E-10 CGDO=5.2E-10 CJ=3.2E-4 MJ=0.5 CJSW=9E-10

* MJSW=0.33
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Appendix F

Typical Parasitic Capacitance

- ~ Layer-Layer Thickness Capacitance

0

Tox 500-600 A 5.6-6.7 E-4 pF/u**2

poly-substrate 7000-8500 A .39-.48 E-4 pF/u**2

metal-substrate 1.4-1.7um .20-.24 E-4 pF/u**2

0

metal-diff 9000-9500 A .35-.37 E-4 pF/u**2

(i i metal2-substrate 2.5-2.9um .12-.16 E-4 pF/u**2

metal2-metal 1.1-1.3um .26-.31 E-4 pF/u**2

metal2-polyl 700-900 A 3.9-4.9 E-4 pF/u**2

N+ Junction Area --- 1.6-5.0 E-4 pF/u**2

N Junction Side Wall --- 2.0-3.3 E-4 pF/u**2

P Junction Area --- 2.8-5.0 E-4 pF/u**2

P+ Junction Side Wall --- 1.6-5.4 E-4 pF/u**2

F-i
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Resistances and Current Limits

N+ Diff. sheet resistance: <= 40 ohms/square

P+ Diff. sheet resistance: <= 100 ohms/square

Polyl sheet resistance: <= 30 ohms/square

Poly2 sheet resistance: <= 40 ohms/square

Metall current limit: 0.6 mA/micron

Metal2 current limit: 1.0 mA/micron

4.

r
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