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;wﬁ Abstract

:?f The calculation of the Discrete Fourier Transform (DFT)
ES' has long been a significant bottleneck in many Digital

'Qt Siénal Processing applications. With the arrival of Very

\

3} Large Scale Integration (VLSI) and new DFT algorithms,

€.  system architectures that significantly reduce the DFT

'a? bottleneck are possible. This study addresses the design,
‘Eé simulation, implementation, and testing of the control

ﬁf“ circuitry for a high speed, VLSI Winograd Fourier Transform
:f? (WFT) processor. Three WFT processors are combined into a
23; pipelined architecture that is capable of computing a

33; a 4080-point DFT on complex input data approximately every 120
2:1 * microseconds when operating with 70 MHz clock signals. The
-

jgj chip control architecture features a special Programmable
o

}xﬁ Logic Array (PLA) to control the on-chip arithmetic

*{w circuitry, and a dense, 54K ROM to generate data addresses
ﬁ;% for the external RAM. The PLA controller was fabricated in
E;ﬁ 3 micron CMOS and functioned properly for clock rates of
G over 60 MHz. The address generator ROM was designed and
E; submitted for fabrication in 3 micron CMOS, and SPICE

;zg simulations predict an access time of 60 nanoseconds.

:r Software that automatically generates a ROM layout

’ﬁﬁ description from a data file was developed to ensure the
E‘ﬁ correctness of the final design. Software was also

:g; {E: developed to optimize the ROM by attempting to minimize the
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number of transistors required to represent the
information. The software further optimizes the ROM by
removing any unnecessary drain/source areas. The
transistor minimization procedure is based on a graph
partitioning heuristic, and the drain removal procedure is
based on an algorithm that near-optimally solves the
Traveling Salesman Prqblem. The ROM optimization produces

large gains in power, yield, and in some cases speed.
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CONTROL CIRCUITRY FOR HIGH SPEED VLSI WINOGRAD
FOURIER TRANSFORM PROCESSORS

I. Introduction

Background

The ability to perform detailed signal spectral analysis
at an ever increasing rate has been a major goal in the area
of digital signal processing since an efficient algorithm
for computing Discrete Fourier Transforms (DFTs) was
disclosed in 1965 (Cooley and Tukey, 1965). Since the DFT
is the central computation in most spectrum analysis
problems, fast and efficient methods for its implementation
are crucial. Digital systems that can perform rapid
spectrum analysis have a number of current applications
including speech processing, seismic processing, pattern
recognition, artificial intelligence, sonar, radar, and
military target acquisition systems.

With the arrival of large scale integration and the
resulting reduction in cost and size of digital components,
together with increased speed, the performance of digital
systems in important application areas is continuing to
improve. Additionally, new DFT algorithms and system
architectures are constantly being developed to provide even
faster and more efficient digital systems. However, the

most advanced systems available today are still not able to
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>
()

) %) ¢ ‘\-
A




~

[

o
T«

s
. A_

I3

A ‘l' o I
Y &

¥
LRI O

-
]

oy
e
4
.

3,4,
Pt o

1
AP

R e

.-..
'

e e
g

-
.

R

o 2 & -
PR Wt
..' .l‘ -Q .h .,

2
l:.

| @Y

o

S A N S L L LA
(|

satisfy all of the military requirements for compact, high
speed digital signal processing systems that utilize the
DFT.

Therefore, the Air Force Wright Aeronautical
Laboratories, Air Force Office of Scientific Research, and
Air Force Space Division are sponsoring research for the
development of a high speed DFT processor. This DFT
processing system must be capable of rapidly computing DFT
sizes of up to 4080-points at speeds an order of magnitude
faster than systems currently available. Additionally, the
processor must be implemented in integrated circuit
technology to meet the small size and weight constraints
imposed on embedded systems. The desired DFT processing
system can be used in numerous applications, but is of
prime importance to Synthetic Aperature Radar (SAR)
systems. To achieve a more advanced DFT processing system
which meets the Air Force requirements, new transform
algorithms and hardware architectures must be used while

simultaneously increasing data processing throughput.

Problem

The problem addressed in this thesis is how to design,
simulate, and implement the control circuitry for an
integrated signal processing system that calculates Discrete
Fourier Transforms (DFTs) of sizes up to 4080-points at

clock rates of 70 MHz. The processing system will make
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use of the Prime Factor Algorithm (PFA), the Winograd
Fourier Transform Algorithm (WFTA), a state-of-the-art 1.2
micron Complementary Metal-Oxide-Semiconductor (CMOS)
integrated circuit technology, and special purpose

architectural design.

Scope

The thesis design, simulation, and implementation is
limited to the control circuitry for the 1l6-point WFTA
processor (WFTAl6). The implementation of the control
circuitry for the WFTAl6 considers the control interfaces
required between it, the 15-point, 17-point, and host
processor, and facilitates the eventual design and
implementation of the control for the 15 and 17-point WFTA
chips. WFTAl6 control circuit .test chips were designed,
fabricated, and tested. The WFTAl6 control and arithmetic
circuits were integrated into a total processor design.

Three concurrent theses address other aspects of the
total design project. Taylor presents the PFA and WFTA
theory, overall signal processing system architecture, and
numerical precision simulation results (Taylor, 1985).
Coutee presents the arithmetic circuitry for the WFTAlé
(parts of which can be used for the 15 and 17-point WFTAs
as well) (Coutee, 1985). Collins presents a validation
program for the WFTAl6 operation, and describes the WFTAL6
modules in VHSIC (Very High Speed Integrated Circuit)

Hardware Description Language, VHDL (Collins, 198S5).

I-3
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The contents of the other three theses are crucial to a
full and complete understanding of this thesis. Therefore,
the four theses should be read in the following order:

1. Taylor

2. Coutee

3. Rossbach

4. Collins

Summary of Current Knowledge

The Prime Factor Algorithm and Winogard Fourier

Transform Algorithm. Since the classic paper of Cooley and

Tukey (Cooley and Tukey, 1965) appeared, the Fast Fourier
Transform (FFT) has been used extensively in many DSP
applications. The main advantage of the FFT over the DFT
is the substantial reduction in the number of arithmetic
operations required. The number of arithmetic operations
grows as nlogn for the FFT compared to n? for the DFT.

In 1978, Winograd presented an algorithm that often uses
less than half the number of multiplications required by
the FFT and almost the same number of additions (Winograd,
1978). Moreover, the number of multiplications required
for the Winograd Fourier Transform Algorithm (WFTA) has
been shown to be minimal (Winograd, 1978; Blanken and
Rustan, 1982). However, large WFTAs lack the modularity
which results in an effective VLSI implementation. A
solution to this problem can be derived from a program

presented by Burrus that combines the Prime Factor

I1-4
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- Avg ror o pe A t sood and Thomas (Good, 1971) with small
N Winograt “ranast rms (Burrus and Eschenbacher, 1981).

:' Finally, Linderman presented chip and system architectures
E; that efficiently embed the PFA into VLSI through the use of

WFTA processors (Linderman, 1984: Chapter 7).

o

fg Overview of the PFA. The PFA changes a

'?7 one-dimensional problem into an N-dimensional DFT using the
. prime factor index map of Good and Thomas (Good, 1971;

3J McClellan and Rader, 1979). This approach produces more

;é manageable transform lengths. The Chinese Remainder

r Theorem (CRT) is used to uniquely map the inputs into an

'? N-dimensional hyper-cube and to map the transform outputs

LAk
a F

pack into the desired one-dimensional result. Since the

(\,‘ Chinese Remainder Theorem is used, the factors used to

decompose the DFT must be relatively prime (this leads to

R TPy

AR

unusual DFT sizes). Figure I-1 illustrates the mapping

where a 6 point one-dimensional transform is computed using

o

{i a two~dimensional 2 x 3 point transform. The two-
B <.

_i dimensional transform consists of three 2-point DFTs

" followed by two 3-point DFTs. The multidimensional DFT 1is
. -
.:3 computed using processors for small, relatively prime DFT
9

E: sizes. These processors can be implemented using any

;" available algorithm, including the WFTA (Nussbaumer, 1981).
s§ Overview of the WFTA. Winograd's short algorithm
-~

ti is based on cyclic convolution to compute DFTs (Rader,

LAY

%E 1968) . However, the cyclic convolution is replaced by a
S

W
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series of shorter computations using relatively prime

polynomial factors (Blahut, 1985:76-84). Winograd's large

N

™

: algorithm uses smaller WFTA blocks (3, 5) to compute larger

. . s .

¢: DFTs (15). The large algorithm uses associative properties

: of the Kronecker products of matrices.

—x The WFTA can be viewed as a sequence of pre-additions,

:.’

- multiplications, and finally post-additions on an input
vector to produce the DFT result. This can be written as

4.

-

'-',

1] - -

D X =CDAX

\

hd

:f where D is a diagonal matrix of fixed coefficients to be

P multiplied, A and C are rectangular matrices representing

. .

, ‘Ii the pre-additiens and post-additions respectively.

k The WFTA 1s attractive for high throughput VLSI for a

<

'i number of reasons. First, the number of multiplications is

~ minimal. Second, the matrix representation of the WFTA

maps well into VLSI structures for small block sizes (less

oy 3
LI R Yk

?h i . . .

ji' than 20). Finally, WFTA uses fixed, hard-wired

d coefficients which results in fewer I/0 transfers.

- PFA Elements: 15, 16, and 17-Point WFTA Chips. A
s

P
.

y

PFA pipelined architecture that uses 15, 16, and 17-point

._
-

WFTA processors as the building blocks was presented by

Linderman (Linderman, 1981:187-188). Figure I-2 depicts

the PFA pipelined architecture that is capable of

o~

A5 P\

performing 4080-point DFTs.
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*B CONTROL CONTROL

L

L)
N Figure I-2 PFA Pipelined Architecture.

R The WFTA processing elements of the PFA pipeline make use
S of a bit-serial architecture to achieve good numerical

N performance and high throughput. Additional throughput is

.
A
[

obtained by incorporating many serial multipliers that operate

; in parallel. One key to this increased throughput is the
efficiency of the double-bit-serial pipelined multipliers that

takes advantage of the constant coefficients in the WFTA.
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Y
i. = These special pipelined multipliers make use of a modified
;" Booth's Quaternary Algorithm and are discussed by Coutee
S
ﬁ; (Coutee, 1985).
;i The PFA pipelined architecture and bit-serial WFTA
{: processing elements proposed by Linderman form the basis
,;; and starting point for this thesis (as well as those of
7? Taylor, Collins, and Coutee). The objective is the actual
e design, implementation, and validation of the WFTA
'j processors and the PFA pipeline architecture.
»if CMOS Technology. Because of its high switching speeds,
‘g low power consumption, and ability *to scale to small
%l feature sizes, CMOS is a leading contender for existing and
ﬂg future VLSI systems (Cohen, 1984; Weste and Eshraghian,
y ‘s; 1985). The WFTA processing chips will be designed and
&2 implemented in the CMOS technology because of its numerous
S; advantages over the NMOS and PMOS technologies. Therefore,
: a brief discussion of the CMOS technology used throughout
;E the design of the WFTA chips will be presented in the
:; following sections.
? CMOS Circult. CMOS technology provides two types
é} of MOS (Metal-Oxide-Semiconductor) transistors (devices),
'ﬁ an n-type transistor (NMOS) and a p-type transistor
'i (PMOS). Both are fabricated in silicon using either
;E negatively doped silicon that is rich in electrons
?} {negatively charged) or positively doped silicon that is
'é N rich in holes (positively charged). The physical
.r
P2 -9
.
E
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Figure I1-3 MOS Transistors

(Weste and Eshraghian,

structures for both types of MOS transistors are shown in

Figure I-3. The gate

input, and 1t controls

source and *the Jdrain. The operation

of each transistor is a control
the flow of current between the

of both transistors
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can be described as that of an on/off switch. The NMOS

device is turned on when a "1" (5 volts) 1is applied to the
gate, and turned off when a "0" (0 volts) is applied. The
PMOS device is turned on when a "0" is applied to the gate,
and off when a "1" is applied. The NMOS and PMOS devices do
not always act as perfect or ideal switches. The NMOS
device passes a weak "1" and the PMOS device passes a weak
"o".

The NMOS and PMOS enhancement devices are used to
construct all the logic circuits of the CMOS WFTA chips. Two
basic circuits used are the inverter and transmission gate.
Both circuits are built in a manner to insure that a
"strong"” signal is always output. This is accomplished by
insuring that "1" is passed by a PMOS device, and a "0" is
passed by an NMOS device. The inverter and transmission
gate circuits are shown in Figure I-4.

The foremost attribute of the inverter circuit is that
there is no direct-current flow when the inverter 1is not
changing states, and, therefore, no power dissipation. The
inverter outputs vdd when a "0" is input and outputs Vss
when a "1" 1i1s input. In either case, one of the MOS devices
is switched off. Thus, nu conducting path from vdd to Vss
is availlable, and no power is drawn except for a very small
amount due to junction leakage.

The transmission gate circuit closely approximates an

ideal switch turned on when S is "1" and off when S is "0".
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Figure I-4 CMOS Inverter and Transmission Gate.

DC Characteristic. The DC transfer characteristic

for a CMOS inverter is depicted in Figure I-5. Notice that
the CMOS inverter 1s usually designed to switch at an input
voltage equal to half the supply voltage (Vdd/2). Also
both transistors are on and current is drawn only while Vin
passes from Vi, (threshold voltage for the NMOS device)

to vdd + vtp (tireshold voltage (=-)for the PMOS device).
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Figure I-5 CMOS Inverter DC Transfer Characteristic.

The DC transfer characteristics of the inverter depend
on the ratio of the NMOS transistor gain (Bn) to the PMOS
transistor gain (B8p). The transistor gains are determined
by the effective surface mobility of th= electrons in the
device channel, permittivity of the gate insulator,
thickness of the gate insulator, and physical dimensions of
the channel. Of these four factors, the first three are

determined by the fabrication process and the last is

o e N . .
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o A determined by the designer. Thus, by sizing the NMOS and
PMOS transistor, the desired switching point for a CMOS
inverter may be obtained. Figure I-6 shows the effect of

varying the transistor gain ratio.

0o

ir

o

S0k
\N Figure I-6 Influence of Bn/Bp
PO~ (Weste and Eshraghian, 1985:50).
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For good noise immunity, the majority of inverter's in
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the WFTA circuits were designed to switch at vdd/2. DC

SPICE models indicated that the ratio of NMOS to PMOS device !

e A
e ou
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widths should be 1:2 in order to realize the vdd/2
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}b{ i switching point for the CMOS process used in the WFTA

. design. This 2:1 transistor ratio was used in most of the
D

?3: circuit designs to improve noise immunity and also to

.
24N

insure a symmetric waveform with respect to transient rise

and fall times.

¥
)

Dy The output characteristics of a transmission gate are !
- ':\

Al - . .
e in Figure I-7.
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Figure I-7 Transmission Gate Characteristics
(Weste and Eshraghian, 1985:57).
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. W ) The parallel combination of the NMOS an PMOS resistances
B
& result in a transmission gate resistance that is low for
<~ .

D passing low or high voltages (Vin).

S Switching Performance (Lewis, 1983:6-8). For a
i:? CMOS inverter with Bn = Bp, the propagation delay for a
e

idﬁ high-to-low transition will equal that of a low-to-high

b’ -t;t'-

p#ﬁ transition. The switching delay, D, of that CMOS inverter
B —" -
o will be determined by the devices' internal time delay, t,
> e

A . .

”t} the supply voltage, vdd, the transistor gain, B, and the
N
{23 capacitive load, C in the following manner:

) '

®
S
A D =2C/BvVdd + t.

o “ ol

. (Q If the negligible internal device delay is ignored, and the
) “'-

;& supply voltage is assumed to be held constant, the CMOS
{bﬁ delay 1is determined by the capacitive load and the size of

the inverter devices (that affects the gain,f).

N

A?- Thus, circuits requiring fast switching times must have
" -

:ii the capacitive load held to a minimum, and the NMOS and
oyl

(® PMOS devices sized to drive the capacitive load that does
sxﬂ exlst. The parasitic capacitances and, sometimes more

o~

"

g

'
:flf‘{l
L 2 2 B |

importantly, the interconnect capacitances must be taken

o into account when designing any CMOS circuit that is under

;:i; a speed constraint. Not only can the single inverter be

-

RN sized to drive the capacitive loads, but a number of

ﬂ.(‘

'&F inverters can be staged up in size to drive large loads
- r—~—y
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Many factors must be considered when using successive
stages, but a minimum speed staging requires each stage to
be larger than the previous one by a factor of e = 2.7
(Mead and Conway, 1980:13).

CMOS Latch-up. CMOS circuits are susceptible to

latch-up because of the presence of a p-n-p-n structure.
During latch-up, the CMOS circuit presents a near
short-circuit condition across the power supply. If
preventive measures are not employed to limit the current
flow, some metal or diffusion current paths may be
permanently damaged. Thé four-~layer structure that is
susceptible to latch-up is shown in Figure I-8. Under
normal biasing conditions, all junctions are
reversed-biased. 1If, however, one of the source or drain
junctions become forward-biased (due to momentary voltage
transients at the input/output leads), internal gain
amplifies the current until latch-up occurs.

The circuit designs and I/0 pad designs of the WFTA
chips are designed to protect against latch-up. Adherence

to the design rules, numerous substrate contacts in every

well, and avoiding structures that intertwine n- and
p-devices were the rules followed in designing the WFTA
circuits to prevent latch-up. The 1/0 pad circuits were
designed with the protection diodes located as far away
from active circuitry as possible and completely surrounded

by guard rings. These techniques help to protect against

I-17
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Figure I-8 p-n-p-n Structure (Ong, 1984:271).

latch=-up in this most vulnerable area by preventing the
diodes from supplying base current to other transistors
during an electrostatic discharge. Figure I-9 shows the
protection circuitry for the input pads and output pads.
The output pad protection circuitry is minimal since the
large output driver makes the output more resilent to
voltage fluctuations.

Pseudo 2-Phase Clocking. The WFTA chips employ a

clocklng strategy that uses 2-phase nonoverlapping clock
signals and their complements. This clocking strategy

eliminates the possibility of race conditions that might

exist in a design using a single clock and its inverse.
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Figure I-9 Electrostatic protection circuitry.
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Thus, there is a phi 1, phi 2, phi 1', and phi 2' required

®.

for clocked circuits on the chip. Usually, two master phi

o
b

1 and phi 2 clocks are distributed to local buffers that

LN
l!,‘
f_7

generate the inverses. The clock signals (phi 1, phi 2)

.ttt

v
e

v

are driven from off-chip to insure rapid transitions and

RS
g sharp clock edges. The final chips will have clock pins at
LN
Sl
35: each corner of the chip to decrease the total distance (and
1
'a}: resistance) through which the clock signals travel. This
e approach, coupled with properly designed local clock signal
ﬂ?i inverters, can help minimize clock skew and allows the
“"'“' circuit to functionr properly at high frequencies.
T
W
LARN
-,
f?¢; I-19
R
o
s
e
"I‘J. Cam T P ava e e
RN SRR




TR LT,
!

v
b

{C

L
o

LS

Y,
v “x fo 4, 4,
' A
AN

.‘.1';'
l. = “ '

+

o’
,

353
NN

"R
LA
e o B RO

) 8

5.;"‘

Approach

The responsibilities for major subsections of the WFTA
processor chips and PFA pipeline architecture were
distributed between the four thesis efforts presented
previously. All efforts were directed toward implementation
of a functional WFTAl6 processor. The design of the WFTAlS
and WFTA17 were to be accomplished in parallel as time
permitted. The general WFTAl6 floor plan provided general
guidelines for the area restrictions on the functional
blocks. This floor plan is depicted in Figure I-10.

The control signal requirements for the arithmetic
Circuitry, address generation circuitry, and chip interface
circuitry were to be developed and design implementations
selected. The WFTAl6 subcircuit modules were to be
submitted for fabrication and test in order to insure the

proper functionality of each part of the chip design.

Sequence of the Presentation

Chapter I1 examines various methods of control circuit
implementation that satisfy the requirements for the
arithmetic control, address generation control, and chip
interface control circuitry. For each circuit, a
configuration that best satisfies the requirements is
proposed for use in that circuit design.

Chapter III presents the arithmetic and address

generation control circuits. Each circuits' method of
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operation, cell designs, and simulation results is
presented.

Chapter IV describes the development and implementation
of software that produces an automatic layout description
of a dense ROM that is optimized for a minimum number of
devices and drains. The results and benefits of the
optimization procedure are presented.

Chapter V describes the fabrication procedures, test
results, and evaluation of the arithmetic and address
generation control circuitry developed for the WFTAl6
processor.

Chapter VI presents the conclusions and recommendations
for the WFTA control circuitry and ROM optimization/

automatic layout software.
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ﬁ% II. Detailed Analysis of the Problem
ﬂ!;
b Arithmetic Control
129 . . . . .
N Requirements. In this section, the signals required to
L)
:) control the arithmetic circuitry on the WFTAl16 will be
3: described. First, a brief explanation of the arithmetic
“-.“. . . . .
e . circuitry will be given. More detailed information on this
circuitry can be obtained from Coutee (Coutee, 1985).
:; Second, a description of the signals required to control the
o
'k} on-chip arithmetic circuitry will be presented.
o
.f Arithmetic Circuitry Overview. The circuitry that
*ﬁf performs the Winograd DFTs is a bit-serial implementation of
d“ l‘-
j@ the pre-additions, multiplications, and post-additions of
X (‘- the WFTA. These operations are performed in word-parallel
ﬂ- fashion on 16 streams of complex serial input data. Data
AN I1/0 transfers to and from I/0 shift registers are performed
-
L
W in parallel. The I/0 transfers are performed in parallel
[~ since the processor's throughput is limited by the time
ﬂﬁf required for the data I/0. A number of numerical precision
:E' and error detection operations are performed on the real and
-f: imaginary data as they serially pass certain points in the
ﬁf architecture. Figure II-1 presents the overall block
o diagram of the real or imaginary arithmetic circuitry for
L 2
WFTAL6.
.
=ij Arithmetic Component Description. The Watchdog
’}g; (W/D) circuitry functions to provide an error checking
L)
A SR
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capability which monitors another WFTA chip. The input

addresses and the output data and addresses of a WFTA chip
in W/D mode are continuously compared to those of an active
WFTA processing chip. Any discrepancies in the data or
address values cause the W/D error flag to be set for the
duration of the transform.

The Parallel-In Serial-Out (PISQO) circuitry and
Serial-In Parallel-Qut (SIPO) circuitry convert parallel
data flow to serial and serial data flow to parallel
respectively. The PISO and SIPO are both capable of
shifting data in and out simultaneously using only one clock
cycle to exchange an entire block of 16 data words from
parallel registers to serial registers (or vice versa).

The Parity Checking circuitry examines the data and
parity bits of each data word to check for input data
errors. If any parity errors are found, a parity error flag
is set for the duration of the transform.

The Zero Fill/Sign Extension circuiltry appends sign
extensions or zeros to the appropriate bit positions of the
data word depending on the scaling factor input to the
chip. This circuit extends the 23-bit data representation
used externally to the 32 bits per data word that are used
to perform the calculations within the arithmetic hardware.

The Pre-add, Multiplier, and Post-add circuits implement
the WFTA algorithm as described in Chapter I.

The Rounding Module rounds the 32-bit internal result

Ir-3
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to a 23-bit result before output. The Parity Module
recalculates the odd-parity for each data word result and
appends that parity to the twenty-fourth bit position.

Finally, the scaling circuitry keeps track of the
largest result to inform the next WFTA chip or the host of
the scale factor to be used in subsequent calculations. The
scaling 1s used to increase the numerical precision of the
final result. A more detailed explanation of the scaling
procedure can be found in (Taylor, 1985).

Control Signal Description. Remarkably few

control signals are required to coordinate the operation of
all the arithmetic circuitry described above. The WFTAl6's
data throughput is limited by the 1/0 data rate. Since two
clock cycles are required to input/output each data word of
the sixteen that can be stored in the SIPO and PISO, 32
clock cycles are required for each data block. This figure
of 32 determines both the number of bits in the internal
data word representation and the number of clock cycles
before most of the control signals are repeated. After the
WFTAl6's internal pipeline is filled, the same control
signal pattern will be repeated every 32 clock cycles until
the transform is completed.

In the following pages, a brief description of each
control signal function and the signal's waveform type will
be presented. These descriptions should give a general

understanding of the control signal requirements. Each

I11-4
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control signal description will refer to one of the
waveform types shown in Figure II-2. The waveform types
will be referred to by the letter designator given in the
figure; A for a divide-by-two/half-frequency clock signal,
B for a repeating interval signal, C for a repeating pulse
signal, D for a non-repeating master reset pulse signal,
and E for a signal whose waveform is a function of the
scale factor. Letter designators may be combined (such as
D-E for a repeating interval signal that rises or falls as
a function of the scale factor) to indicate that the
waveform has more than one characteristic.

The control signals are listed below by function:

1. W/D:
(a) Input Check - Enables comparators when the
data 1s stable on input lines.
Waveform: A
(b) Output Check - Enables comparators when the
data and addresses are stable on output
lines.
Waveform: A
(c) RESET - Resets the W/D error flag at the
start of each transform.
Waveform: D
2. PISO:

{a) Shift Down - Loads the 16 complex data words
into the PISO, one data word every other
clock cycle. The PISO is 16 registers deep.
Waveform: A

(b) Latch - Moves the 16 complex data words
shifted into the PISO to the 16 registers
used to serially shift the data out. The
Latch signal must occur for one clock cycle
when the PISO is not shifting down or right.
Waveform: C

I1-5
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(c)

(a)

(b)

(c)

(d)

(a)

(b)

Shift Right - Interval signal that shifts the
24 bits of each of the 16 data words out of
the PISO toward the pre-add matrix.

Waveform: B-E

Parity Checking Circuit:

Check - When this signal is high the parity
of all bits in the 16 data words is checked
as the bits are shifted out of the PISO. The
calculated parity is compared to the parity
bit for each word. An error signal goes high
if the parity of the word is not odd.
Waveform: B-E

Check Reset - This pulse signal resets the
parity checking circuitry after each group of
data words has been checked for parity.
Waveform: C

Latch - This signal latches any parity error
found on the 16 data words into the parity
error set/reset flip-flop. This pulse signal
occurs everytime valid results exist on the
parity check result line (i.e. 24 clock
cycles after the start of shift right PISO).
Waveform: C-E

Error Reset - This signal is used to reset
the parity error flag at the start of each
transform.

Waveform: D

Zero Fill/Sign Extension Circuit:

Zero Fill - When high (active), zeros are
shifted into the arithmetic circuitry to
scale the input data up to 32 bits.
Waveform: B-E

Sign Extension - When high (active), sign
extensions are shifted into the arithmetic
circuitry after the MSB of the data. All
data words have at least 5 sign extensions.
Waveform: B-E

I1-7
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hﬂ Q@? 5. Pre-add, Multiplier, and Post-Add Circuits:
%
: (a) Carry Reset - This pulse signal propagates
through a shift register, resetting the carry
; cell of each adder or multiplier as it goes.
{(' The carry cell is reset just before the LSB
v of the next set of 16 data words arrives at
kY each adder or multiplier.
) Waveform: C
L" .~ ,
gﬁ~ {b) Multiplier Round - This pulse signal rounds
e (rather than truncates) the result .0of the
o multiplier to 32 bits before reaching the
it post-add matrix.
) Waveform: C
. h
‘Eﬁ 6. Rounding Circuitry:
ii {a) Round Calculate - When active, this signal
~; allows the Rounding circuitry to round the
o output data word by adding the most
e significant bit not kept to the output data
e word. Since bits 9 to 31 of the 32 bit
’. result are used, bit 8 is added to bit 9 and
}2 any carry is forwarded.
v \;- Waveform: B
f. 7. Parity Circuitry:

(a) Calculate - When active, this interval signal
‘ commands the parity cell to calculate odd

C? parity on the serial bits being output. The

A parity is calculated on the 23 bits that are

" kept and output to the SIPO.

Waveform: B

) (b) Append - This pulse signal causes the parity
o cell to append the calculated parity to the
\ 24th bit position of each of the 16 real and

imaginary output data words.

-~
Yy

'ﬁ'_:

e Waveform: C

[ 8. SIPO:

o

B3 {a) Shift Down - Outputs the 16 complex data
e words from the SIPO, one data word every
xj other clock cycle. The SIPO (like the PISO)
,if is 16 registers deep.

i3 Waveform: A

[ 3

F (b) Latch - Moves the 16 data words that were
R X —_—

k.o I1-8
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serially shifted into one set of registers to
the 16 registers used to output the data in
. parallel. The Latch signal must occur for
‘HQ one clock cycle when SIPO is not shifting
:1}. down or right.
‘e Waveform: C
) (c) Shift Right - Interval signal that shifts the
;'; 24 bits output from the arithmetic circuitry
ahy into the 16 registers of the SIPO that
‘ﬁ{ receive serial data.
s Waveform: B
foely
gl 9. Scaling Circuitry:
e
[ (a) Update - This signal (when active) allows the
;}ﬂ scaling circuitry to compare the stable data
,b ' on the output bus to the current highest
.‘ value seen. If the output data is of higher
S\ value, its sign bit location is remembered.
DAY Waveform: A
5
}ﬁ- (b) Reset - This signal resets the scaling data
= » word to zero before the next transform data
(;‘ results are output.
' Waveform: D
k. Approaches, Tradeoffs, and Solution.
_Tj Approaches. The WFTAl6 is a sequential state
C). machine with arithmetic control signals as described above.
I,
-" ‘.. . « « .
o A method of implementing the control circuitry to generate
'gxi the given control signals is needed. There are a number of
A
< design methods available to implement a sequential control
e
32%: circuit. The control for a dedicated sianal processor such
e o :
- as the WFTA requires ~rly limited programmability allowing
(nTr
!: for the use of a faster, less flexible hardware design. The
.
Zf{ most popular of these control methods include custom logic
ﬁi{ implementations, use of gate arrays or vprogrammable logic
[} arrays (PLAs), and microprogramming.
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‘:r - Custom logic implementations are those methods that rely

&

: on decision logic modules built from individual gates and
jﬁ flip-flops. The design can be obtained from design methods
-

.j- that use state and excitation tables, methods that use one
"

;’ flip-flop per state variable coupled with a decision logic
er module, or methods that use a counter/decoder and decision

:‘j logic module (Mano, 1979:410). The common element of all
(L

>

| . . . .

‘ design methods for a custom logic implementation is that
}; external inputs and present state inputs feed into a
;ﬁ decision logic module built from custom combinational logic
"1.‘.

0 elements.
®
}} Gate arrays can be used to implement the entire control

S circuitry or to replace the custom decision logic module for

Q. the custom logic implementations. Gate arrays are fixed

o arrays of identical logic circuits. Designing with gate

5

;‘Q arrays consists of specifying the wiring interconnections

‘\'\: .

DOy between the given logic elements in the array (0Ong,

& 1984:329) .
< A PLA implementation of the control circuitry would
-

" require a sequence register or counter coupled with a PLA.

L

'%g The sequence register would keep track of the present state
-

e, . .

o of the machine while the PLA would use the present state and
Pal

9 ) .

S external inputs to generate output control signals
L
X {Mano,1979:413). A slight variation to the normal use of a
hY
"

o PLA can be used when designing the control circuitry. 1If
N
v,

:} the sequence register's outputs can be tied to the product
Py
o I

l\.‘::

e
@
>
o
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terms of the PLA so that only the one (or a few) product
term that corresponds to the present clock cycle within the
timing diagram 1is allowed to be high at any one time, the
speed, power dissipation, size, and complexity of the
AND-plane can be greatly reduced (Linderman, 1984:90).

Finally, a microprogramming approach can be used to
implement the control circuitry. Strings of 1's and 0's
comprising control words are stored in a control memory
{(often a ROM). There are as many control words as there are
different possible control signal variations. The problem
then becomes one of controlling the address register that
addresses the control memory (Mano, 1979:414). 1If the
memory can be accessed in the proper order, each bit of the
control words could be used to implement a control signal.

Trade-offs. Each method of implementing the

control circuitry has its advantages and disadvantages. The
goal is to use the implementation that will provide the
WFTA16 with the best speed, flexibility, and simplicity in a
minimum amount of area.

The control signals must be switched at rates of over
50 MHz (for the 3 micron process) in order to keep pace
with the bit-serial arithmetic circuitry. All of the
implementations can operate at this speed with exception of
the microprogramming approach. It would take a great deal
of effort to make the microprogramming approach work for

this application since the control ROM would have to be

I1-11
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very small in order to obtain the required access speed.

Since the WFTA chips are being designed from the ground

* -
| N .' . .
‘3¢ up, the control signals may change a number of times before
Hﬁ: the final timing diagram is achieved. Because of this,
1) there is a great need for the design to be easily changed.
15;: This is not the case with any of the custom logic
o
ii? implementations, and, therefore, they must be ruled out.
. Of the two remaining options, a sequence register and
ﬁ;l PLA or gate arrays, the PLA approach offers the better use
f;i of area and is simpler to design and redesign. Because the
A
° PLA approach offers a simple and flexible implementation
oY
i¥$ that can operate to speed in a small area, it will be used
.0 .
- to generate the control signals for the WFTA1l6.
b
(i .. . . .
" (; Solution. Figure 1I-3 depicts the type of PLA
o —_—
N
] '(_:.
o
Ff)..
‘ INITIALIZATION
i MSFF COLUNN
T 1
oy
;.”
s
o OR : AND : SEQUENCE
--. ’
ﬁé PLANE ' PLANE * -~ REGISTER
B }‘-t‘,
"
D
v
A
s
aﬁ Figure II-3 General PLA Controller
S,
e
-+
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e implementation to be employed to create the required
control signals. This implementation offers better speed
and power dissipation than one that would have the sequence
register's outputs fed into the AND-plane inputs.

Improved power dissipation results from driving only
the product term lines that correspond to the present clock
cycle of the timing diagram high at any one time. The
speed is better for two reasons. First, the low power
dissipation allows the PLA devices to have much higher
current drive. The larger array devices are capable of
switching the PLA lines quicker than the smaller devices
that would have to be used in a standard PLA in order to

keep its power consumption down to acceptable levels.

Second, the signal propagation distance is smaller in the

s

proposed PLA implementation, thereby decreasing the time
required to generate the output signals. The AND-plane
inputs of the WFTA will be stable long before they are
needed and will remain unchanged throughout the transform
(The inputs consist of only a three-bit scale factor that
is loaded prior to the start of the DFT). Thus, when the
product terms are raised by the sequence register, the

AND-plane inputs will already be stable, and the delay down

the AND-plane will be eliminated.
The final decision for the controller regards the type
of present state sequencer that will be used to output the

single pulse for each clock cycle in the timing diagram. A

I1-13
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new present state sequencer that is simple, fast and

' requires a minimum amount of area is desired. Again, there
are a number of possible solutions that can implement the
sequencer. They are a counter/decoder, ring counter, or

Johnson counter {(Mano, 1979:286).

W

The counter/decoder method uses a counter that cycles

< [P

through the required number of distinct states while a

RN
PR

decoder decodes the states of the counter into a sequence

A
x

3y
[0S =

of pulses. The ring counter is a circular shift register

with only one flip-flop being set at any particular time.

-
i.-

A single bit is shifted from one flip-flop to the next to

e

produce the sequence of timing pulses. The Johnson counter

T

.
AN
8] RS

LN

is a special ring counter that uses only 1/2 the number of
& ‘fk flip-flops to achieve the same number of timing signals.

It accomplishes this by passing more than one bit down the

flip-flop chain and using 2-input AND-gates to output the

Pl
et

proper sequence of timing pulses.

Since all three ways of implementing the PLA's
i sequencer are of comparable complexity, the choice will be
‘ based upon the speed of the circuit and area needed to
construct it. The slowest method of implementing the
sequencer is the counter/decoder method. This method

requires the signal to propagate through all flip-flops of

i

the counter in the worse case as well as through the

et
N

decoder. The ring counter and Johnson counter are similar

l{.
I

A

£,
Fy

in speed performance, although the Johnson counter is

PRS0 P
&1

11-14

P

43
o Oy ¥ LR e e e e e e I AR R Rl

(X " VA ...._.-)' N S ER R -’
RO~ WA 2 S 4




WY, "'

o
uié Y slower due to the extra level of 2-input AND-gates required
:" on the outputs. The ring counter is the fastest method of
;Eg the three. Additionally, since a ring counter can be layed
';; out in a dense array with one flip-flop adjacent to each of
}) two PLA product terms, only a small area along the side of
QS& the PLA is needed for the counter's layout. The area

f:ﬁ required for the counter/decoder, or Johnson counter, added
b to the area required for routing to the product term lines
QIE would be at least as large as the area required for the ring
“E% counter, if not more. Therefore, the ring counter

A

*:l implementation of the present state sequencer will be used
;@? to drive the control PLA.

Configuration of the Control Sedquencer. Thus, the

&;~ proposed final configuration for the arithmetic control

1,
L
[

circuitry is a Control Sequencer comprised of a PLA, ring

3
AP
- J‘.I-

counter with outputs driving the product terms of the PLA,

GXA O

and control signal output flip-flops. The proposed
configuration is depicted in Figure II-4. The ring counter

will continually cycle a bit around the counter. The pulse

-
-’
-

will drive each of the PLA product terms high as it travels

down the ring counter. When a particular set of product

o
.

terms are driven high by the ring counter, it may stay high

(if all the AND-plane conditions are met) and may cause a

e control pulse to be output from the OR-plane. The control
k) J’.
1 'r\
’fx pulse may set or reset a Set/Reset flip-flop (SRFF) or be

.f-'
)
'ib broadcast to the arithmetic circuitry through a master/slave

- :_"1_
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- SCALE FACTOR

:
'S

:;; Figure II-4 Proposed Control Sequencer.

o

_ flip-flop (MSFF). Since the control signals depend only
"‘

. - upon the present state and the scale factor, the only

]

'_

b external AND-plane input will be the scale factor number.
. If a control pulse 1s always required at a particular time
::? regardless of the state of external inputs to the AND-plane
:'.'E (the scale factor), the signal may be taken directly from
"’8 the ring counter without going through the PLA.
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The Control Sequencer must be started and stopped for

each transform the WFTAl6 performs. To start the Control
Sequencer, it must have an initialization column with a
one-shot. The one-shot generates an output pulse when the
OPERATE signal transitions from low to high. In order to
stop the Control Sequencer, the bit that cycles through the
riﬂg counter must be prevented from returning to the first
MSFF in the chain. To reinitialize the Control Sequencer,
all ring counter and output flip-flops must be resettable.
They must reset when the OPERATE signal is driven low again

(see the Chip Interface Control section of this chapter).

Address Generation Control

Requirements. As was described in the first chapter,

the WFTA makes use of fixed coefficients which result in
fewer 1/0 transfers. However, the transform data I/0 must
still be accomplished for each WFTA chip in the pipeline.
This 1/0 transfer between the WFTA chip and the external RAM
must take place rapidly and at precisely the proper instant
to lnsure accurate transform results. The data I/0O
transfers are further complicated by the PFA which uses the
Good and Thomas prime factor index in mapping one-
dimensional DFT problems into a multi-dimensional DFT and
back to a one-dimensional result (Good, 1971; McClellan and
Rader, 1979). That is, the transform data must be input and

output in a special order. The retrieval and output of the

I1-17
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transform data will not be a matter of simply incrementing a
data address counter. The input data will be spread about
the input RAM according to the Chinese Remainder Theorem for
the size transform being performed. The addressing sequence
must follow the ordering of the Chinese Remainder Theorem to
input and output the data. A more detailed discussion of the
Chinese Remainder Theorem and its use iq the PFA is given in
Taylor (Taylor, 1985). Thus, some special address generation
control circuitry is needed to generate input and output
addresses as required by the PFA's data shuffling scheme.

Not only is the address generation control circuitry
required to produce the proper input and output addressing
sequence for each WFTA chip and each transform size, but it
must be built using the minimum possible area of the WFTA
chip, and operate at speeds over 25 MHz. The circuitry must
operate at 25 MHz (3 micron) in order to drive the input and
output address buses with a new address every other clock
cycle at the target operating speed. Since each WFTA chip in
the pipeline (the 15, 16, and 17 point chips) will have four
different DFT sizes to calculate, 12 variations of the
address generation control circultry must eventually be
realized. Therefore, the flexikbility and ease of
implementation for the circuit becomes an important
constraint.

Each WFTA chip's address generation control circuitry

must be capable of generating approximately 4.5K 12-bit

I1-18
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:Z ) addresses in the proper order. 12 bits are required per

3. address in order to address all the data words in the 4080
’ﬁ point transform. The approximately 4.5K addresses that must
b

Tﬁ be generated consist of the sequence for the 4080 point

:' transform plus three other transform size sequences which

3 vary for each WFTA chip (see Chapter I1II).

'E Approaches, Trade-offs, and Solution.

? Approaches. Two methods to implement the address

X generat.on control circuitry were examined. The address

i generation could be accomplished through special purpose,

o custom-bullt circuitry made up of registers, parallel adders,

AL

parallel subtractors, comparators, and gates. Each

w_ l" x

implementation would be designed specifically for a

. particular WFTA chip. The circuitry would implement the

$ocen
&

;2 Chinese Remainder Theorem for each of four DFT sizes per

:S chip. The custom-built address generation hardware is shown

2; in block diagram form in Figure II-5.

/

; The address generation control circuitry could also be

li implemented using a counter and a ROM. The ROM could be

_ﬁ personalized with the 1/0 data addresses in the correct

- sequence, and the counter could then sequentially address the

2 ROM in order to place the proper shuffled data addresses on

i the 1/0 address bus. The four different DFT sizes could be

’ accommodated by starting the counter at four distinct

‘? locations of the ROM.

% Trade-offs. There are five main factors to consider

, e in determining which of the two methods to use to implement
11-19
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Figure II-5 Custom-Built Address Generating Hardware
{Linderman, 1983:196).

the address generation control circuitry. These five areas
are speed of operation, complexity of design, flexibility,
area required, and extensibility of the solution.

The custom-built hardware had a distinct advantage over
the ROM in the amount of silicon area required. The
custom-built hardware could be implemented in 1/2 the area

it would take to build the ROM circuitry.

I1-20
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3%Q The two methods of implementation would generally have a
comparable speed of operation and complexity of design. The
speed of the custom-built hardware is slowed by its need for
numerous parallel adder, subtractor, comparator, and decision
modules to calculate the addresses. The ROM implementation
is hindered by its need to retrieve each data address from
the ROM array and the operation of the counter that addresses
the ROM.

The complexity of the custom-built hardware stems from
the difficulty in calculating the correct sequence of data
addresses for each WFTA chip and each DFT size. The
complexity of the ROM stems from the requirement to
personalize it with over 50,000 bits (although this
complexity can be significantly reduced by developing
software to perform the ROM personalization automatically).

The ROM implementation possesses an advantage over the
custom~-built hardware in its flexibility and extensibility.
Not only could the same basic ROM design be used on all three
WFTA chips, but it could also be used on any other CMOS
project that required a ROM.

The last two advantages of the ROM described above are

very significant in the current context of CMOS design at the

Air Force Institute of Technology (AFIT). Since CMOS design
L , . . , . .
CRE is just getting its start at AFIT, a ROM cell library 1is
Miﬁ needed. The ROM implementation could be extensible to most
AT
pﬁ; any other future project especially microcode stores for
P
g et
I
N
F._;.-: 11-21
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Reduced Instruction Set Computers (RISCs). Design time
would also be saved for the WFTA15 and WFTAl17 chips if the
ROM implementation was used. Rather than redesigning the
custom hardware, new addresses could simply (and
automatically via personalization software) be placed in
the same ROM design.

Solution. The ROM implementation appears to be
more desirable than the custom-built hardware if there will
be enough room on the WFTA chips. Fortunately, there is
enough room in the control section of the WFTA chips to
support the space required to implement the ROM address
generation circuitry because a very dense ROM design will be
used. This dense ROM is one that uses a very compact XROM
cell (Wilson and Schroeder, 1978; McKenny, 1980). The XROM
cell is capable of storing four bits in a cell that is just
under 8 x 8 microns square {(using the design rules and 1.25
micron process given in Appendix A

More improvement can be obtained from the XROM in the
area of speed if precharging and special output sense
amplifiers are used. These two improvements further the
desirability of the XROM implementation. Additional gains
in speed can be made by outputting more than one data
address from the XROM at a time. By making the XROM word

width 2, 4, or 8 times the width of a single data address, a

similar factor gain in output can be achieved.

In either implementation of the address generation
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R control circuitry, both input and output data addresses must
be generated. Once the internal serial data pipeline of the
WFTA chip becomes filled, both input and output addresses
must be generated simultaneously. There are a number of
ways to generate the input and output addresses. One method
is to have two XROM circuits, one for the input addresses
and one for the output addresses. This approach is not
required, however, since the data words will be output to
the same address location as they were input. Therefore,
two different approaches can be considered.

One approach is to delay the input data addresses the
proper number of clock cycles in an array of shift registers
until the data word passes through the arithmetic circuitry

(; and 1is ready to be output. This approach, however, uses an
excessive amount of area for the array of shift registers.
In fact, for the WFTAl6, the necessary delay would require a
shift register array larger than the size of another XROM.
The final approach is to clock the XROM at a rate twice what
is needed for just the input data addresses or just the

output data addresses, and retrieve both input and output

)

Yy
‘r‘l_(

alediletr

addresses from the same XROM. The only additional circuitry

P e

required would be a constant number subtractor to be used to

X
L
.

retrieve the output data address which is a constant number
of addresses "back" in the XROM. The input data addresses
would be output from the XROM into a set of flip-flops, and

then the output data addresses would be output to another
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$
;$§ ik- set of flip-flops. Both accesses would be accomplished in
%fd h the necessary time to keep both input and output data
{iﬁ addresses available for external use.
:gg The overall XROM access throughput can be increased as
i%; required by designing it to read out a larger number of

ié addresses at a time. Given the final speed of the XROM

E; circuit and the rate at which both the data addresses must
s be presented (25 MHz for 3 micron), the width of the XROM
&ti can be directly calculated. The width of the XROM is
Eéﬁ important to its final speed, however, and a number of

'Ei design trade-offs exist to insure the final XROM will be
,{f able to operate at speed (although many sacrifice area and
:?{ circuitry to obtain the greater speed).
?E: (‘- Configuration for the Address Generation Control
fE$ | Circuitry.
S?: Circuit Description. The final configuration for

the address generation control circuitry is a counter/

O

s
i r]d
X

subtractor circuit used to address an XROM that will store

1

3
Aofe St

>
.

e all the sequences of input and output data addresses.
"' Figure 1I-6 depicts the proposed address generation control
jﬁf circuitry. The XROM will output a multiple number of data
-
:3{ addresses on each access in order to achieve the required
b -:._ . . . .

o speed of operation. The XROM may be split vertically in
-7,

:}j order to allow more wordline drivers to drive the XROM

".-:‘..

2{' faster. Precharging and output sense amplifiers will also
S

'y be used to increase speed.

.{-n -_-:., .

.52: N

5«

t [1-24

\:"')

o

»

.
LYY

I". ’ .

P

- - a® 4T .=
. -




LY

I

XX
W g
".” i
W fia1IN2417] UDI]RJBUATL SSAIPPY PASOdOI g-|| 2anB] 4 b
m SINIY 9ONISSINAAY I i
S33A180 3IN1T $53300 | A
hh
| ' 1] ’ A
3 3 | 3 3 TYEIERRLY; m@
i q ¢ ] 0 /33LNN0D -
3 a| o 3 iy
3| woax o I WO ax ; 7 5
g e ¢ NOILYZITWILINI 5 :
m TR EOR dWY 3SN3IS % ES =
: 13X324i 10N 13x30diL 10K ILIS 140
; « 1 : : 111 « 1 i
: ANUE J4SH IR
; 104N L0 4N
w P N FTERETTNIT] e SR ELEREIVRIT ,
‘ 21 ;?.MHE p__.:u _ 7
i K ' * 11 podino
ANYE J4SH ANUD 33SH X0W
104100 104100
s3n)7 L 93X31IILINN REFERFITSITI
2 SA4 5339000 1AdLA0 ]
P ’, ® £
X0 PR A g b A P B T gl



b el aale g 208 Mabi ol St Sh i St sl Ak 00 i ah A Bl ar u ar- e B AL Atie Bedl g audy e et LA A B A A e aeti st ang- b | 1‘1

¢
>

The counter/subtractor circuit will be used to address

o
. Pl
S d
i

the XROM sequentially for both the input and output

addresses. The XROM counter will start at a value

-

determined by the DFT size to be performed, and continue

&L‘H#-"A

R
o B

addressing the XROM to retrieve input data addresses. The
subtractor will subtract a constant from the counter value

and use that result to address the XROM. This addressing

LR b b bl 0w~
FLES Y e

will retrieve the output data addresses that will lag a
constant amount behind the input data addresses.

The contents of the XROM that are output on an input
data access will be shifted into a bank of flip-flops for

input data addresses. The contents of the XROM that are

y M=o T SR . rs »
FRTRRA A s S RO A L

output on an output data access will be shifted into a bank
iY‘ of flip-flops for output data addresses. Both banks of
flip-flops will be multiplexed in order to output one
{: address at a time on the output data address bus and the
; input data address bus.
li The XROM will provide the WFTA chip design effort with a
great deal of flexibility in changing address sequences if
e required. Additionally, the same design can be used on all
‘o three WFTA chips with differing XROM personalizations. The
XROM cell will also provide a great savings in area of the
e chip used over standard ROM designs.

Control Signals Required. The XROM address

- generation circuitry and the associated data 1/0 transfers

will require some control signals. The control signals
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will be generated by the Control Sequencer in the same

manner as it generates the arithmetic control signals.

Each of the eleven control signals necessary to control the
operation of the XROM circuitry will be described below.
The description will be presented in the same manner as was
done for the arithmetié control signals. The same waveform
letters will be given from Figure I1I-2. The signals

required by the address generation control circuitry are:

1. Precharge - This signal (inverted sense) is used
to allow faster access to addresses
stored in the XROM. It is used to
precharge the bit and sense lines
high.

Waveform: B

2. Load - This pulse is used to load the XROM
addressing counter with the proper
value for the size DFT being
calculated.

Waveform: D

3. Increment This pulse signal causes the XROM
addressing counter to be incremented
each time it goes high.

wWaveform: C

4. Latch - This signal causes the contents of
the XROM addressing counter to be
latched into the buffer register.
Waveform: C

5. IN/OUT - This signal multiplexes the input
data addressing value and the output
data addressing value onto the XROM's
decoder address lines.

Waveform: B

6. Shift-Up-In This pulse signal causes the current
output of the XROM to be latched into

the input data addresses' bank of
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3

KTy
'RQ el flip-flops. From here the input data
it addresses are multiplexed onto the

] input address bus.

e Waveform: C
}QX 7. Shift-Up-Out - This signal causes the current output
’§§ of the XROM to be latched into the

v output data addresses' bank of
». flip-flops. From here the output
o data addresses are multiplexed onto
YR the output address bus.

-3:_ Waveform: C

o, .

X :

o 8. DONE-IN Compare - This interval signal informs the
ers. DONE-IN comparator circuit that a
W valid address is on the bus and a
:ﬁ% valid check can be formed to see if
t“ﬁ this is the last input address.

Lo Waveform: C
P
‘,‘ 9. DONE Compare - This signal performs the exact same

. function as DONE-IN compare except
o the check is for the last output
~ address.

N Waveform: C

n 10. Counter Clock - This two phase signal is a quarter
o frequency clock used as input to the
:kj counter circuit. The ripple carry of
-0 the counter requires a slower

o clocking speed.

Waveform: A

Az

11. Write Strobe - This signal is driven off-chip to the
output memory. This signal goes high
one clock cycle after each output
address has been driven onto the
output address bus. The signal

. enables the memory write so the

- stable transform output data can be

e d
s
J I‘

%k?

r&.

ir

4

o written into the output RAM.
:ﬁg Waveform: A

ol

. With these control signals, the XROM address generation
‘&; control circuitry can perform its function of outputting
'?: the addresses for both the input and output transform data,
A

¢ ~ and the output data can be successfully written to memory.
-4 s
o
5

5' I I - 2 8

~




AL

i J I.I-

s
Tt

“N'y

Fun

P
PR

b
2.
'

el I

X

“‘l‘ bty 13
APV

o

e
3

4

rg
»

.. .-
¢(~ *1- -‘ I . " { " w” F.h"‘.».\“d-

Chip Interface Control

This section, unlike the first two major sections of
this chapter, addresses the requirements, approaches, and
solutions for control that is required between WFTA chips
or between a host processor and a WFTA chip. Although chip
interface control is not the major thrust of this thesis
effort, sufficient detail had to be known about how the
WFTA chip was going to communicate with external elements
in order to incorporate all necessary on-chip control
Ccircuitry.

Requirements. There are a limited number of

communication signals that must be passed between the WFTA
chip and the outside world in order for it to do useful,
accurate, fault-tolerant, and precise work. These signal
requirements or functions are listed below. Some signals
are relatively straightforward and little controversy
regarding their worth and form of implementation can be
found. Others have a few possible implementations that
could be considered. These interface signal descriptions
will, however, present the type of implementation found to
be the best with regard to function, minimization of pins
needed, simplicity, and past experience (Linderman and
others, 1985:762). The two major options available for
signals that pertain to accessing the pipeline memories or
the W/D operation mode will be presented. These two major

options are off-chip interface control or on-chip interface
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lhl control. The external WFTA chip control signal
requirements are as follows:

]

’ {‘.‘ R

™
't'
]

-

0y 1. OPR - The chip operate signal is an input

AERS signal and serves two functions. It

NN instructs the WFTA chip to start the

S DFT calculation when it goes high. It
X resets the WFTA chip when it is

jA) returned to a low state.

Ans 2. DONE - The chip done signal is an output
& signal and informs the external

o processor that the WFTA chip has
R completed the DFT and has finished
outputting all data to the output
memory.

|
T

3. W/D ERROR - When this signal goes high and stays
high at any time during the transform
calculation, a WFTA chip in the
watchdog mode of operation has detected
an error committed by the active WFTA
processor.

o
-

F O

PR N N
AR RPRLR S

e OF
STESA

PARITY ERROR - When this signal goes high and stays
R Q;- high at any time during the transform
. calculation, a parity error on the
AN incoming data word{(s) has been seen.

L 4

,J
'y
o
>
.

S 5. W/D Mode - The chip Watchdog mode signal is an

SN input from an external processor

C) informing the WFTA chip that it is to
operate in the watchdog mode. The

output pins will be disabled, and the

chip will compare its operation and

results to the active WFTA chip.

..- .-
I YRNARE NS
* 3 [ Lor e
N
oty ety iy el

6. W/D START-UP - This signal is required only if the
ON-CHIP interface control method is
used. The signal tells the WFTA chip
in watchdog mode when to start its
operation in order to stay in
synchronous operation with the active
WFTA chip. It is an output signal and

- is tied to the watchdog WFTA chip's OPR

- pin.

St
LR Y]

’ »

o 7. DFT Size - This signal requires two pins for the
AR four possible DFT sizes each WFTA chip
¢ can perform. It is an input, and
A instructs the WFTA chip which size DFT
AT is to be performed.
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>?$ e 8. Scale Factor - This input signal requires three
e pins and informs the WFTA chip of
e the magnitude of input transform
B data.
'!’.r.'.
;f} 9. Scale Output - This output signal requires three
oyt pins, and is used to tell the host
L0 processor or the next WFTA chip in a
) pipeline what the highest magnitude
o of output data was.
P
tﬂ& 10. Load State - This input signal is used to
A multiplex two different type signals
a on the same input signal pin. The
-~ purpose of this multiplexing is to
- save on total number of pins.
f{} 11. Pipelined Memory - These signals differ depending
P Access Signals on whether ON-CHIP or OFF-CHIP
—:kﬂ interface control is used. If
+— ON-CHIP circuitry handles the
i interface control, five signal pins
Mo are required for WFTA chip
2R Hand~Shaking to control memory
. accesses. These five signals are:
. (o a. Done with Input memory..
e b. Toggle memory command.
o c. Memory switched output.
[ d. Memory switched input.
. e. Next memory available.
I1f OFF-CHIP interface control is
‘?ff used, only the first signal, a, is
K. required.
x:;‘.
T Approaches, Trade-offs, and Solution.
o . :
R Approaches. As was previously indicated, there are
ey
[ﬁ} basically two approaches to implementing the chip interface
> ,_: ~
fa controls. One approach is to place all the necessary chip
N interface and pipeline control circuitry on each WFTA chip,
Y '.‘.
w,
;}g and have each chip control a particular memory in the
'-“.-.
iﬁf pipeline. Predefined communications protocols would be used
[ S
S
o’
f&
bl I1-31
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to coordinate transfers between chips, and to signal
neighboring processors when a memory bank was free or being
used. The other approach is to place most of this control
-Y: circuitry off-chip on a special Interface Chip. This
Interface Chip would be able to coordinate two or more
processors actions for them by arbitrating the memory and
controlling a small subset of control lines that would
still run to each WFTA chip.
Trade-offs. The biggest advantage to the on-chip
interface control is that the WFTA chip would then be
i self-contained. Only WFTA chips and memory chips would be
‘ needed to implement the PFA pipelined architecture. Most
interfaces would be strictly asynchronous, and the overhead
(;’ would be brought to its lowest level. Only active and W/D
processors would have to run on the same clock signals.
o The advantages of an off-chip controller, such as a
WFTA Interface Chip, are many. First, fewer number of WFTA
chip pins are needed to implement the interface control

o\ when it resides off-chip. The W/D startup signal and four

of the pipelined memory access signals are not needed in

P

the off-chip configuration. This accounts for a savings of

A

o

L

five pins. The W/D startup signal is not needed since the

.,l‘,r,
' Ay
|

1¢

Interface Chip can coordinate the synchronization of the

| B 4

watchdog and active chips by sending them the OPR signal at

Al
®

the same time. The Interface Chip would be able to control

memories in a pipelined architecture by knowing when each

I1-32
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WFTA chip finished reading in its data and finished
outputting its results. The Interface Chip would be able to
control all memories and switch them when required. Since
it controlled the memories and started each chip, it would
have little problem coordinating the WFTA chips.

The second advantage of the off-chip controller is its
flexibility. If the chip interface circuitry is placed
on-chip, it may limit the possible configuration of WFTA
architectures. The on-chip solution may only be able to
handle the pipelined architecture with all three WFTA chips
in line. An Interface Chip, however, could be instructed by
the host c¢n the current chip configuration, and control the
chips' operations in a manner appropriate for that
architecture, be it pipelined, shared memory, or a single
WFTA chip.

The third advantage of the off-chip controller is its
simplicity over the on-chip alternative. The off-chip
controller can be much simpler since it controls the
memories and the WFTA chips, and all communications pass
through it. The complicated hand-shaking circuitry required
for the on-chip configuration does not have to be built if
the off-chip controller is used. The chip can then employ
simple operate and done signal lines. Implementing the W/D
mode of operation also becomes a much simpler task if an
off-chip controller can be responsible for synchronizing the
active and watchdog WFTA chips rather than the chips
attempting to synchronize themselves.
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The last, and perhaps the most important, advantage of
the off-chip controller is the added fault-tolerance it
provides. In the on-chip interface control configuration,
a watchdog chip must have its OPR line hardwired from the
active chip's W/D startup pin. In the off-chip interface
control configuration, all chip OPR lines (as well as all
W/D mode lines) are wired to the WFTA Interface Chip.
Thus, the Interface Chip (or the host processor through
the Interface Chip) can dynamically decide which chips are
the active and which chips are the watchdog. In the
on-chip configuration, active and watchdog WFTA chips may
be switched only if the wiring is redone. The off-chip
controller could also poll three or more WFTA chips to
determine which of the three is really bad if some
watchdog discrepancy occurs. The bad WFTA chip could be
inactivated by the controller. Thus, the off-chip
controller or Interface chip allows triple-cyclic
redundancy checking without hardware reconfiguration.
Figure II-7 illustrates the general configuration of a
WFTA processing element in the pipelined PFA.

Solution. The advantages of the Interface Chip
over on-chip interface control are many, and therefore,
the Interface Chip will be used to control the WFTA chips
using the control signals described in the previous

section.
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Configuration for the WFTA Interface Chip. The proposed

configuration for the WFTA Interface Chip is shown in Figure
11-8.

The Interface Chip will receive commands from the host
processor, and control the WFTA chips and memory banks in
accordance with those commands. The WFTA Interface Chip
will control the W/D modes of operation, OPR signal timing
to the chips, state loading such as scale factors and DFT
size, scale factor passing from one WFTA to the next,
memories, and the like.

The memory controller module is a large crossbar switch
that switches the memory banks between two WFTA processors
or a WFTA processor and the host. After a WFTA processor
outputs all transform data to a memory bank, the next
processor in the pipeline is connected to that memory bank,
in order to read out the data. This technique allows all
processors in a pipeline éo operate simultaneously, once the
pipeline is filled. The memory controller switches two sets
of data, address, and write strobe lines that are routed
directly from two or more processors. Each memory bank in a
pipeline is almost always connected to one processor or the
other through the memory controller switch.

The Interface Chip's flexibility and potential for fault
detection, isolation, and correction has already been
presented. However, Figures II-9 and II-10 present two
possible WFTA configurations for two different DFT

applications.
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Since the WFTA Interface Chip was not designed pursuant
to this thesis effort, it will not be presented in the
Design Chapter (Chapter III). It was presented in this
;_-':}lj chapter, however, to show the viability of the WFTA chip's

1) _ control design.

| ] COMMANDS

I HoST DONE INTERFACE

S Care
OPERATE | . 3 . e e 2 »

e

I INTERFACE CONTROL SIGNALS "i“ B B B B B

NEMORY CONTROL LINES CNTRL
HEMORY CONTROL HANDSHAKE :
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Figure II~8 WFTA Interface Chip.
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ﬁfb Method
g{: Overview. The design of the WFTA control modules was
l}‘ part of the larger task of designing the entire WFTA chip.
E{ Major subsections of the control modules were designed, and
Vgl
rar” these cells were used as the building blocks of the control
-

circuitry.
Q;; Since no previous design projects at AFIT were
1o
%% implemented using CMOS technology, all arithmetic and
g
ﬁ.' control section cells had to be designed from scratch.
"; *
’;?' Much time and effort was taken to design the critical cells
:-J_'-
iljl to minimize the area used, insure functionality, and
o C; maximize speed.
K - -
f'i Numerous test chips were designed and fabricated to
.fi test the functionality and speed of the modules designed.
C)‘ A test chip was fabricated for the Control Sequencer
oo . . . .
¥$ circuit and for the XROM address generation circuit. The
N
A results of these test chips are discussed in Chapter V.
oY
B2

The WFTA chip was designed using the tested control and
T
-'h-. . . .
;ﬁ arithmetic module designs.
f}: Tools. A number of Computer-Aided Design (CAD) tools
Vi; were used in designing the cells, modules, and integrated
T
L {‘ . . . v
‘;i circuits required for the WFTA chips.
LA
4L ".
“E' All the circuits were created and edited using Caesar
!L - (Ousterhout, 1983). Caesar is an interactive VLSI design
L) '-',..‘
.*.:. . . «
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o \.
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tool that uses a color graphics display terminal and a
digitizing pad to aid the circuit designer. Désign rule
checking was performed on the Caesar circuits using Lyra
(Arnold, 1983).

Simulation tools were limited to SPICE (Nagel and others,
1983) and custom made simulation/validation efforts (Collins,
1985). The SPICE simulation program was used primarily to
determine if the worst-case paths of the design operated at
the required speed. Visual inspection, test chips, and the
custom made simulations were the primary functionality
checkers.

Two final tools were invaluable in helping to verify an
integrated circuit ready for submission. These two tools were
Mextra (Fitzpatrick, 1983) and C Stat, a CMOS version of Stat
(Baker, 1985) developed at AFIT. These tools read an
integrated circuit layout description in CIF and provide
information on aliased or unconnected nodes and transistors
which could not be affected by the inputs or affect the
outputs.

Design Rules. The circuits were designed using a scalable

design rule set. The design rules facilitate designing for
the 1.2 micron technology and processing at either 1.2 or 3

microns. The CMOS design rules used are listed in Appendix A.

Control Sequencer

Operation. The Control Sequencer design is depicted in

Figure III-1. The Control Sequencer dimensions are 1000

I11-2
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ﬁ% 48 lambda by 2400 lambda and fit well within the allotted chip
e

o area (see Figure I-10). The Control Sequencer receives a
?3 level signal, OPR, from off chip to start operation. The
;ﬁ circuit's one-shot produces a single pulse from the rising
:1' OPR signal, and this pulse will be passed down the MSFF

1; chain which acts as a ring counter. The initialization

Ei column outputs signals to various modules on the chip

s (primarily the XROM address generating circuit) to set up
@f the circuitry for the DFT calculation cycles. The MSFF

%5 chain continuously cycles the single bit of the ring

72’ counter through all bit positions and back to the first

position as long as the DONE signal is not active. As each

MSFF receives the passed bit, its output not only goes to

---_-f-
' r 8.
AL P

Yo the next MSFF in the chain, but also to the PLA product

é& terms‘that correspond to the present clock cycle of the
g§ timing diagram. When a product term is driven high by the
K
~ ring counter it may affect the outputs of the OR-plane if
‘%: the AND-plane and OR-plane conditions are met. The output
§§ of the ring counter MSFF may bypass the PLA and be input

y directly to an output MSFF or SRFF if the signal is always
Ei required (regardless of the external PLA inputs), and if

E;: the clock cycle signal is not OR'ed with any other clock

!:' cycle signal.

?j The control signals of the timing diagram are output to
%5 the XROM and arithmetic circuitry from the output MSFFs and
i .. SRFFs. These flip-flops' outputs are controlled by the

i; I11-4
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igj o sequence of pulses received from the Control Sequencer's
;b; - PLA output signals or the ring counter output pulses. The
‘Tf Control Sequencer continues to output the same pattern of
A

fﬁg control signals as the bit is cycled around the MSFF ring
:i; counter. This process continues until the DONE signal

};; (generated by the ROM counter/subtractor circuit) is raised
%E and the bit is not allowed to cycle back to the first MSFF
L in the ring counter.

:(fj Testability Considerations. VLSI circuits are

iﬁf inherently difficult to test, and it is even harder to

&:; isolate faults once they are detected. There are at least
i?i three basic reasons why VLSI circuits are so difficult to
iﬁ test. First, the number of possible faults is extremely
;-: (;‘ large. A VLSI circuit contains thousands of transistors
;%i and interconnect lines, all individually subject to

ﬁ?j failure. Second, access to all the internal transistor
iss outputs and interconnect lines is severely limited by the
j;ﬁ small number of I/0O ports available. Third, the large

';if number of faults that can occur will require numerous test
:: vectors to determine correctness or fault (Hayes and

: McCluskey, 1980:17).

SE Because of the difficulty in testing VLSI circuits,

;E techniques to improve the testability of the WFTA chip had
;E; to be incorporated into the design sequence. Three basic
;i; techniques were used to help improve the test

%E - controllability and observability of the WFTA chip.

WS I11I-5
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The first technique was to serially chain all control

A
g
'
¥

cutput flip-flops and ring counter flip-flops to external

- .-

pins (see Figure III-2). The serial connections can be

controlled by a pin input called TEST. If TEST is high, the

A test configuration is enabled and groups of output

3

. flip-flops become serially linked through transmission
K- gates. The chip's pins take on a test configuration also,
and each group of linked cells are tied to an input and an

. output pad. The contents of the output flip-flops may be

F St

clocked out to the output pin in order to observe the state

-

'l‘.
tota sy

of the flip-flops, or test vectors may be loaded into the

Lle

flip-flops from the input pins. This approach aids in

R A
PN T g

fault isolation in both the PLA and arithmetic circuitry,
‘ﬁ; and allows testing of the arithmetic circuitry to continue
' if the control circuitry fails.
The second technique was to connect the arithmetic and
~ control circuitry to two separate clock pins. This
3 approach allows testing of the arithmetic circuitry to be
Iy performed for each control signal vector output from the
control circuitry. The state of the arithmetic circuitry
) can be left as 1is while the next correct Control Seqgquencer
and XROM output vectors are clocked into the output MSFFs
3 through the test ports. Then the arithmetic circuitry can
E be clocked to perform the required multiplications and
. additions. In this manner, the correct operation of the
WFTA chip could be realized if the control circuitry were
- o not functioning properly.

ITI-6




S At g " - A AR S Bl Sl ok et aiar. Ans. | . -y

NSFF MSFT MSFF TEST%
TEST TEST TEST
PAD
TEST TEST TEST
‘9 Figure III-2 Test Chaining.

ff The last technique employed was to provide numerous
probe points on all chips fabricated. This approach

increased the observability and sometimes controllability

;ﬁf of circuit nodes beyond those that were connected to the
e

- chip's package pins.

i% These three techniques were integrated into the design
ig of the WFTA. Groups of cells that are modified to function
oy

in the test configuration when TEST i1s high are the output
flip-flops and the chain of MSFFs in the ring counter.

Control Sequencer Cells. The cells that make up the

Control Sequencer (CS) can be divided into three main
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3 groups: the MSFF chain, the PLA, and the output MSFFs and

.

SRFFs. Each of these groups and selected cells that are

'

used in each group will be presented below. Descriptions

and schematic diagrams of the cell circuits will be given.

” ,
ey nls

Ay

CIF-plots of certain cell features are also presented.

MSFF Chain. The MSFF chain is made up of the

initialization column and the ring counter. Each of these

P Prinh -
LR Sl

sections 1s mostly composed of a chain of double MSFF cells

P

called "pair." Pair is two resettable static delay

-

. P ]
. LYY L e RV A |

master/slave flip-flops whose devices have been sized for
speed and whose layout area has been compressed. Pair
consists of two MSFFs because each MSFF shares common clock
i; and reset signals. Each MSFF output has two output drivers,
‘B. and a first metal path to the input of the next MSFF in the
N chain. The two output drivers are used to output signals
directly to output flip-flops and/or through the PLA for

each clock cycle of the ring counter. Depending on the

L HERAD A

timing diagram, both paths may be used, both outputs may be

% tied to the PLA, or neither may be used at all. A schematic
; diagram of one of the MSFFs in pair is shown in Fiqgqure
III-3.
E The cell size of pair is 76 lambda by 200 lambda. Pair
&
i has horizontal Vdd and GND lines running in first metal while
i: all clock and reset lines run vertically in second metal.
fé A one-shot cell is at the top of the initialization
13 o~ column. The one-shot is made from a pair cell with
I
4
I11-8
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its output drivers replaced with a one-shot circuit. This
circuit takes the output of the first MSFF and ANDs it with
the inverted output of the second MSFF. A schematic of the

one-shot is shown in Figure III-4.

—

MSFF_1
OPERATE ;
(o 4L
‘ —) MSFF-2 o —D
ONESHOT

T

Figure II11-4 One-shot

=

bt
flgz Thus, if the level OPR signal is input to the first MSFF
.‘SE the output of the one-shot will be a pulse that is high
W:SE only during the one clock cycle that the first MSFF outputs
géi. a one while the second MSFF still outputs a zero.

\
vf,
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¥
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The last element of the group is the loop-back circuitry

for the ring counter. Each time the ring counter bit reaches
the last output, it must be fed back to the input of the
first MSFF in the ring counter (the MSFF immediately below
the last MSFF in the initialization column). Since two
inputs must feed into the first MSFF of the ring counter, an
OR-gate must be used. Additionally, when the DONE signal
goes high the bit must be prevented from looping back. Thus,
an AND-gate must also be placed on the loop-back path. This
loop-back circuitry is shown in Figure III-5.

CS PLA. The CS PLA is made up of the AND input
drivers, the AND~plane, the OR-plane, and the OR output
drivers. The CS PLA is a NOR-based PLA that seeks to
improve its device current drive to loading capacitances
ratio by using a "donut" device in both the AND and OR
planes. The donut device cell is shown in Figure III-6.

The high current drive capability of the donut device is
used to rapidly pull down the product term or OR-column
output line of the PLA. The high current drive is combined
with the small drain and sidewall capacitances of the donut
devices that are connected to these same two lines to
provide for a very fast PLA. The donut device's area 1is
minimal for the large gate width of the device allowing for
a fairly dense array structure. It should be noted here
that the drive capability, small area, and small drain

capacitance of the donut structure is desirable in many

II11-11
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%ﬁ; iR situations (not just a PLA). Thus, the donut structure is
;h used throughout the control circuitry especially when large
%f current drive is needed in a minimum amount of area.

,;i Each ring counter output has two product term inputs

|ls available (one for each of the ring counter MSFF's two

;i output drivers). The two product term lines for one clock
iﬁ cycle state are used for instances when the timing diagram
e requires more than one AND term combination of a present
s‘§ state and external inputs. Since there are two PLA cells
{52 for each MSFF, the cells are 19 lambda tall. The AND-plane
”:i cells are 25 lambda wide and the OR-plane cells are 24

lgi lambda wide. The product term and GND lines run

Eé horizontally in the array and the AND-plane input columns

Q; and OR-plane output columns run vertically. The schematic

:%: for the PLA is shown in Figure III-7.

:g The input drivers and the output drivers are made up of

donut device inverters for large gate width and

O

correspondingly large current drive. Static pull-ups are

&

Si placed on the OR-column outputs while the ring counter
iy
] drivers serve as the pull-up on the active product term
o line.
\."‘
ii: The n-device pulldowns in the array of Figure I1I1I-7 are
i
' the donut devices. The array 1s personalized using
?ﬂ contacts and secord metal strips. The contacts connect
It
%ﬂ drains to product term lines in the AND-plane and gates to
ilf — product term lines in the OR-plane. The second metal
el o
s
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. strips connect the input columns to gates in the AND-plane

* YN
‘-’

and output columns to drains in the OR-plane. This

. approach allows a standard PLA chip to be fabricated up to

i the contact layer before a personalization must be applied.
The PLA's OR~plane employs a space saving technique of

. running two output column lines to two OR output drivers

. for every OR donut cell column. This technique allows a

type of PLA folding where two OR-plane outputs that have

mutually exclusive product term inputs can be obtained from

one OR-plane column of devices.

[l MSFFS and SRFFS. These output flip-flops are

- resettable and have large staged-up, donut output drivers.
The MSFF is made from the pair cell without the feedback
) iﬁ" loop and with the larger output drivers. In the output
MSFF array, each flip-flop receives its own pulsed input
and outputs that control pulse to the chip one clock cycle
later. The schematic of the MSFF cell is shown in Figure

- II1I-8 (The test cell configuration is shown).

P e

F. T et

The SRFF consists of two phi 2 latches, set-reset
circuitry, and one phi 1 latch with a large, staged-up

donut output driver. The set-reset circuitry was placed

between the phi 2 and phi 1 latches in order to minimize *
the delay to the phi 2 latch from the ring counter and

PLA. The SRFF is depicted in Figure III-9 (the test cell

;: configuration is shown). The cell sizes for the output
[ o~ flip-flops are 84 lambda by 250 lambda for a MSFF cell
2
)
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.%3 e which contains two MSFFs and their drivers) and 90 lambda
" "
by 225 lambda for a SRFF cell. The GND, vdd, and clock
S0 lines run in the same manner as the pair cell.
.
‘iiv SPICE Simulations. As was indicated in the method
E§1 section of this chapter, the SPICE program was used to
‘&§ simulated the worst-case path of the control circuitry.
'§;§ The worst-case path in the Control Sequencer is one that
= travels from the MSFF in the ring counter, to the PLA,
%23 through the product term and output line that has the
ﬁ%ﬁ worst-case personalization, out to a SRFF cell, and finally
';3 out to the chip. A schematic of this worst-case path is
;;ti shown in Figure III1-10.
ygﬁ Since the signal is allowed two clock cycles to
e
f.' (;' traverse this path, the SPICE results may be shown in two
;tﬁ separate illustrations. In the first section, the signal
;; must travel through the MSFF and the PLA and arrive at the
13' phi 2 latch of the output SRFF in one clock cycle. The
E;: slowest portion of this section is the path from the output
latch of the MSFF to the input latch of the output SRFF
2 through the PLA. Figure I11-11 shows the SPICE output for
;i%t this path for a rising edge from the MSFF and Figure III-12
g;g shows the SPICE output for the falling edge.
J: As the SPICE output shows, the maximum delay 1is on the
‘ng order of 15 nS or a clocking frequency of over 60 MHz.
:3? These results are for the 3 micron process and parameters
i$. as listed in Appendix E. The speed of operation for the
ol
E:. I11-18
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o
E& s circuit will improve for the 1.2 micron process due to the
:?: ‘ scaling effects (Mead and Conway, 1980:34).
T In the second section, the signal must travel through
Ll
1 the SRFF cell and arrive at the phi 2 latches of arithmetic
W,
o cells located on chip in one clock cycle. Figure III-13
\
N2 shows the SPICE output for this path on a set control
ff signal, and Figure III-14 for a reset control signal.
ff The SPICE output shows the maximum delay to be 18 nS or
N8 a clocking speed of over 55 MHz. Again these results will
-~
I} improve as the process is scaled down to 1.2 microns.
-
33 Thus, the SPICE simulations show that the Control
[ J
.;: Sequencer's design can achieve a speed of operation of over
L 55 MHz for the worst-case path in the 3 micron process.
L &; Operating speeds in the 1.2 micron process should reach
}} over the 70 MHz target speed with little or no difficulty.
AR
ﬁf XROM Address Generator
= XROM Operation. The XROM Address Generator design is
N
ﬁﬁ depicted in Figure II-15. The XROM Address Generator
N
A dimensions are 2200 by 4000 lambda and fit within the
’_ allotted chip area (see Figure I-10). The XROM aadresses
'ﬁf are generated by the counter/subcontractor circuit and
T applied to the XROM's wordline PLA decoder (8), address
’i column of the array (1), and 4 to 1 multiplex circuitry at
o {-I
:@ the top of the XROM array (2). The addressing retrieves a
e
R single 48 bit word from the XROM and outputs it to the
%
A .
| b.:::)' wy
"
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#¥: ;%: proper MSFF bank (input or output). The 48 bits comprise 4
" - .
S sequential data addresses that are multiplexed out to the
ﬁi 12-bit input and output data address buses from the input
*
}F} and output MSFF banks respectively.
)
?i The counter/subtractor circuit alternates the addresses
el applied to the XROM to retrieve input addresses and output
LS L
gt; addresses in an alternating pattern. The number of delays
i o
e in the WFTAlé6 pipeline dictates that the output address
;#ff sequence be an exact duplicate of the input address
xfﬁ sequence except delayed by 59 addresses. Since four
:' addresses are retrieved per XROM access and output
ibﬁ addresses are delayed by two, the subtractor subtracts a
§ ?_‘h:“
. constant of 14 from the input address counter and 2 MSFF
[\ =
Ko .
had (;“ delays are added to obtain the correct output data
?éé addresses. Thus, when the counter's value and subtractor's
NS
'ﬁﬁ output are alternated, the XROM output alternates between
e
L NP
Yy input and output data addresses. The set of outputs are
;ti routed and multiplexed to the corresponding I/0 address bus
:Eﬁ to obtain both address sequences. On start up of the WFTA,
A
y
false data may be written out to bogus address locations
'.‘:-\.'
N until the pipeline is filled. However, this data will
ot
N eventually be overwritten.
NN
¢ The speed of the XROM is improved through the use of
o - | F ]
., precharging and output sense amplifiers. When Precharge
S
e
ﬂ@ rises, new addresses flow into the PLA decoder, 4 to 1
- - multiplexer, and address columns. The information flows as
*.':'\ "'\:"4
S5 g
z ‘\‘,
NS
NN 111-26
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far as the wordlines from the PLA decoder, the one channel
of four is selected, and the address columns are driven.
Concurrently, all bitlines and sense outputs are precharged
high. During Precharge', the appropriate bitlines and word
sign bitlines are pulled low through the array devices.

The outputs are latched near the end of Precharge'. This
schemg results in simple and fast address generation from
the XROM.

Another technique employed to increase the XROM's speed
of operation is to break the array vertically into smaller
blocks. This technique decreases the length, resistance,
and capacitive loading of the wordlines. It does, however,
sacrifice some area since the PLA decoder circuitry that
drives the wordlines must be duplicated.

The XROM Address Generator shown in Figure III-15 and
described briefly above has a number of circuit modules
that deserve further explanation. These descriptions of
specific cell operation will be delayed and presented with
the schematics and cell descriptions given in the "XROM
cells" section.

Testability Considerations. The discussion and

techniques presented in the Control Sequencer Testability
Considerations section apply here as well. All three
techniques used for the Control Sequencer can also be used
on the XROM to increase the testability of the circuit.

Probe points were placed as often as possible to achieve

I11-27
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f?i 5& greater observability of the XROM circuit (although placing

- >
.HS. probe points within the dense XROM array was not
‘ig practical). The XROM output MSFFs and counter/subtractor
13§% MSFFs were serially chained together so the proper
“; addresses could be controlled or observed from test pins.
;;; Test vectors can be loaded into the counter/subtractor
Eg MSFFs, and the XROM output can be read from the output
.#”. MSFFs. Finally, the XROM clocks were not connected to the
Qﬁ; same pins as the arithmetic circuitry. All of these
:g% techniques (presented in the Control Sequencer Section)
‘:Q were designed into the XROM circuitry.
;ng Another technique that would be useful during WFTA chip
:532 testing is to control the input and output data addresses
_' (;' externally. If the XROM circuit did not function properly
%&5 during a WFTA chip test, the arithmetic and Control
$§§ Sequencer sections could still be successfully tested by
CS; externally applying the correct address sequence to the
if‘ input and output data RAMS.
EE Although all the above techniques are useful, the key
:% to success is insuring that an operational XROM test chip
i;i is produced before fabricating the WFTA chips.
-éi XROM Address Generator Cells. The cell descriptions
‘35 for the XROM Address Generator circuit are given in the
;E; paragraphs below. The cell presentation will be given in
;E: the same order as the signal information flows through the
éﬁj - circuit. The placement of the cell in the overall XROM
p .7 -
20
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'&ﬁ circuit can be seen by referring to Figure III-15.

Load State PLA. The Load State PLA is used to

initialize the XROM circuit for a particular DFT size as
determined by the two-bit DFT size variable externally
input to the WFTA chip. The Load State PLA circuit is
depicted in Figure III-16.

The two-bit DFT variable externally loaded in the
WFTAl6 chip is stored in the two-bit state register. Table
III-1 shows each of the four 2-bit DFT variables and its
corresponding DFT size for the 15, 16, and 17 point WFTA

chips.

OFT WFTA PROCESSOR SIZE
VARIABLE 15 I= 17

0 4444 4889 4884
U 13 16 17
1 9 233 272 233
1 1 | 249 249 272

Table III-1 DFT Sizes for WFTA Processors.
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Figure 1II-16 Load State PLA

The outputs of the state register are input to the AND-plane
of the Load State PLA. For each DFT size, a corresponding
start counter value, last input XROM address value, and last
output XROM address value are output from the PLA in a
33-bit wide word. The PLA outputs remain stable throughout
the calculation of the DFT. The start counter value is
loaded into the XROM addressing counter in order to start
the address output sequence at the correct location in the
XROM for that DFT size. The last address values are used to
generate the DONE-IN and DONE signals that are used for

external interfacing and stopping of the WFTA processor.
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The PLA is made up of the same cells used in the Control
Sequencer PLA.

Counter/Subtractor. The Counter/Subtractor cell

performs two main functions. It generates the XROM address
and it outputs the DONE-IN and DONE signals. This
Counter/Subtractor circuit is depicted in Figure III-17.

The counter 1is loaded from the start counter value
output of the Load State PLA. The counter output is
latched into an output buffer to allow the counter to
operate while the last counter outputs are still stable.
The counter output 1s applied to the XROM for four clock
cycles when the IN/OUT signal is high. During the next
four clock cycles (when IN/OQOUT is low), the subtractor
circuit's output is applied to the XROM. This alternating
scheme is continued to output both input and output data
addresses from the XROM.

After each of the eight clock cycles needed to address
the XROM with both input and output addresses, the
counter's new incremented value is latched into the output
buffer for the next set of accesses. The control signals
(Counter Clock, LOAD, INC, and IN/OUT) are generated by the
Control Sequencer,

While the circuit is addressing the XROM, two compara-
tor circuits are operating to flag the last input access
and the last output access. The DONE-IN flag is set when

the last input data value has been read and the input memory

I11-31
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1& fﬁ? is free to be released by the Interface chip. The DONE
iﬁﬂ flag is set when the last output input data value has been
- written to the output memory. This flag stops the WFTA
:;j operation by inhibiting the Write Strobe signal immediately
(i' after writing the last data word to the output memory, and
?zi by stopping the bit in the Control Sequencer ring counter
;ii from cycling back to the first MSFF in the chain. The DONE
fﬂ signal also informs the Interface Chip that the assigned
i&j DFT has been completed.
'iﬁ The counter and subtractor cells must be capable of
:;; operating at speeds 8 times and 4 times slower than the
;gi system clock respectively.
?: A loadable counter capable of operating at these speeds
% ) (6 was designed apd implemented. The counter bit-cell and LSB
{gg cell are shown in Figure 1II-18 and Figure III-19
:}; respectively. The counter is a loadable, asynchronous,
s binary counter that receives LOAD and INC control signals
Ef? as input. When LOAD is high for two clock cycles the
W
ﬁ? counter is loaded with the value applied to the load
:E: lines. The normal operation of the counter is controlled
535 by the INC control signal. An examination of the counter
ti; cells will show that the worst-case "roll-over" can occur
ii in one clock cycle provided that the clock rate is slow
;E. enough to allow the ripple carry to travel through 11
,éi transmission gates with a driver between each.
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' t Pt The subtractor cells were designed to operate at the
N

\

v N speeds required by capitalizing on the fact that the

. subtractor will always subtract a hard-wired constant.

)

Since the constant is designed into the circuit, each normal

>
LYoy
NLIN

J8

o]
a_e 7

full-subtractor bit becomes a type of half-subtractor.

1;5 The Boolean equations for a full-subtractor's borrow and
ALY
o difference are:
LYY
e
. B = x'y + X'z + yz
Ao
s
" 1".4: - ]
%é D = x'y'z + x'yz' + xy'2' + xyz.
10
i
nﬁ If x is the bit input, y is the fixed constant, and z is the
P e
> . . .
.Qg _ borrow from the previous bit, the equations reduce to

A ('..¢

L B = x'z
.
_‘:‘- :

L
1_.\_-

D = x'2 + x2' = X + 2

-

T
%; for a fixed-0 subtract, and

i

®

P B = x' + z
%
L0 D = x'2' + XZ = X * 2
.
- 3
:3‘ for a fixed-1 subtract.
R8¢ : . : :
WY These equations can be simply implemented as shown in
¢ .
ORRONY Figure I11-20 for both fixed-0 and fixed-1 subtr-ctor cells.
N
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{§§ 2 The borrow and difference outputs are obtained with only
ARG
i?t' one transmission-gate delay. The borrow signal that is
{EQ propagated down through the subtractor is buffered by a
f}% double inverter every four bit cells to improve the

E;' circuit's speed since the delay is proportional to the
h;_ square of the number of series devices .(Mead and Conway,
‘ g 1980:22,23).

Hf The last address comparator circuits are implemented as
jyb shown in Figure I1I-17. Each bit of the counter or
e
;%ﬁ subtractor output is XORed with the last address value from
':; the Load State PLA. These 11 XOR outputs are ORed together
;i&; and this signal is input to a SRFF after being ANDed with a
gi' COMPARE control signal. Thus, the DONE or DONE-IN SRFF

o (;' will be set only if the last address was stable on the

?ﬁ' subtractor or counter outputs respectively. The DONE-IN
,ﬁi and DONE flags are delayed so as to not halt processing

S before the last address (input or output) is placed on the
‘ftf data address bus for two clock cycles.
*’ XROM PLA Decoder. The XROM PLA decodes the 8-bit
;?; address input and raises the wordline that corresponds to
;i\ that address. The XROM wordline decoder is a NAND decoder
.ﬁi that provides a regular and compact structure. This

:? structure can be easily placed along the side of the XROM
E; array and allows the decoder personalizations to be placed
4;? in any order desired. The former characteristic saves chip
g

area and the latter allows
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the easy implementation of ROW swapping discussed in Chapter
IvV.

The use of a "snaked" gate on the series NAND devices
provides for large device width with a small diffusion
area. The vertical pitch constraint of the decoder cells is
very small to match the 12 lambda height of the XROM cell,
and the series devices must fit within this height. By
having two decoder cells share contacts to the vertical
input and input' lines, and personalizing the decoder cells
in polysilicon, additional space is saved for greater active
area widths. A double NAND decoder cell's CIF-plot is shown
in Figure III-21.

Wordline Driver/Pullup. Normally, the decoder's

output to the wordline is pulled high when it is not the
selected wordline. The decoder's output is input to the
XROM's wordline through three staged-up inverters. The
three inverter's invert the decoder's output signal and
provide for fast switching of the XROM's wordline. The
static p-device pullup and the three wordline driving
inverters are layed out in the same 12 lambda vertical pitch
per wordline as the decoder was. The CIF-plot of the pullup
and first of the three inverters is shown in Figure III-22.
The schematic for a wordline slice of the XROM NAND PLA
decoder and the wordline driver is shown in Figure III-23.
XROM Array. The XROM array (briefly introduced in

Chapter II) 1s the means by which all of the proper
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Figure III-23 XROM Decoder Schematic

data address sequences are stored in a small area. The XROM
cell is the key element of the XROM array, and must be
N understood to appreciate the array's operation.
3 The XROM cell receives 1its name from the pattern of
? devices which resemble the letter X as can be seen from
Figure III-24. The column address lines (labeled PRECH+AOQ

and PRECH+AO0' in Figure III-24) are driven high and low when

E Precharge is low. At that point, the wordline of the XROM

) that is driven high has already turned on any n-devices whose
;L gates are on that wordline. If the device's source is
I connected to a column address line that is selected and pulled
; %3’ low the bitline will be pulled low. If the device's source 1is
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Figure II11-24 XROM Cell Schematic

connected to a column address line that 1is not selected (and
is high) or if no devices are connected to the bitline
(because of the programming), the bitline is not pulled low.
If a device is connected to both address lines, the bit line
will still be pulled low since the n-device will pass a low
voltage more strongly than a high voltage. Additionally, the
bitline voltage only needs to drop below 3.3 volts
(approximately) for the sense amplifier to "sense" a zero.
The active area personalizations on each wordline
determine the data word output on the bitlines. tach XROM
cell stores four bits, two (one for AQ, one for A0') for each

wordline that runs through it. A zero 1is represented by no
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active area personalization and a one is achieved by
placing active area to create an n-device. Figure III-25

show two of the 16 possible cell configurations.

a.) A0 bits b.) AO0' bits

Figure II1-25 Two possible XROM cells.

Figure III-25-a shows a "one" personalization for both A0
bits in the cell and Figure III-25-b for both A0' bits.
The XROM array shown in Figure III-26 is made up of cells
that have four one bits or four zero bits. An improved

cell is described for the four zero bit cell in Chapter 1IV.
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The WFTAl6 XROM array outputs a word that is 192 data
bits and 4 word sign bits wide. The word sign bits are
used to invert portions of the data words output (see
Chapter IV). The 192 data bits are multiplexed to 48 bits
by the 4 to 1 multiplexer contained in the sense
amplifier/multiplexer cell. Eight of the XROM addresses
are input to the PLA wordline decoder and one is input to
the address column lines that run vertically between
bitlines in the XROM array.

The XROM array is built from XROM cells properly placed
on the bit and column address lines. The 8-bit address
applied to the PLA wordline decoder determines which
wordline is driven high and able to turn on its n-devices.
The address bit input into the address column lines
determines which side (left or right) of the bitlines'’
personalization will be output on the bitlines. The 2-bit
address input to the 4 to 1 multiplexer then selects the
one bitline of four in a "column-byte" to be output through
the sense amplifier. This process reduces the 192-bit data
word down to the desired 48-bit data word. The four word
sign bitlines placed in the middle of the arrays are always
selected and are used in the sense amplifier cells. A
section of the XROM array is shown in Figure III-26.

Multiplexer/Sense Amplifier. The Multiplexer/

Sense Amplifier cell selects one of four XROM bitline

outputs, and outputs that bitlines' data or inverse
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SN depending on the column sign bit and word sign bit. The

sense amplifier speeds the operation of the XROM circuit.

Figure II11-27 depicts the schematic of a non-inverting

multiplexer/sense amplifier circuit. The inverting circuit

(used when the entire column's data is to be inverted, see

Chapter IV) is the same except the word and word'

the transmission gates are reversed.

inputs to

PRECHARGE

(o !_qp_l

SENSE ANMPLIFIER

MULTIPLEXER

wx =l oL

SELECT
|

QUTPUT

XROM COLUMN-BYTE

Amplifier Schematic

[I1-47

Ficure II1I-27 Non-inverting Multiplexer/Sense
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The multiplexer portion of the circuit is implemented
with the four n-devices that select the one of four
bitlines. The n-device whose gate is driven high by the 2
to 4 decoder allows its bitline information to pass into
the sense amplifier portion of the circuit.

The sense amplifier operates in the following manner.
The bitline from the XROM array will be approximately 3.3
volts when not pulled low because the bitlines are
precharged high through the multiplexer's n-device. At
this voltage the sense line will not drop below the 5-volt
precharged level since the n-device of the multiplexer is
between the bitline and sense line. As the high
capacitance bitline is slowly pulled low by a n-device of
the array, the n-device of the multiplexer will be able to
rapidly discharge the small capacitance of the sense line.
With the sense inverter designed to switch at approximately
4 volts, the bitline's state is quickly "sensed". Figure
I1I-28 shows the voltage traces of the bitline and sense
line during a read of a one data bit.

One of the keys to the sense amplifier operation 1is
keeping the capacitance on the sense line small while still
having large current drive through each of the four
multiplexer devices. The solution to this problem was to
use a donut device for each of the multiplexer devices.

The donut devices provided large current drive with minimal

drain and sidewall capacitances on the sense line. The
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if donut devices can be seen in Figure III-26.

‘?T - Word Sign Bit Sense Amplifier/Driver. The word sign
s \e bit sense amplifier/driver cell operates in a manner very
fég similar to the multiplexer/sense amplifier cell described
f%' above. The differences are that no multiplexer is needed,
féi the output is never inverted, and greater output drive is

ﬂé needed. The circuit's schematic is shown in Figure III-29.
;? The cell handles two word sign bitlines by duplicating
’if the circuit shown in Figure [II1-29. The cell and word sign
Eéi bits are placed in the middle of each XROM array half and
‘gi control the word and word' inputs to the column sense

;?; amplifiers. A word sign bit output controls a 12

:g; column-byte group, and its output must be used to determine
X

35 which state (x or x') of the sense amplifier signal is to be

BN

o

Wb b

s .
'

output for that group. The word sign bit sense amplifier

@ S

III-49

[
o

oz




-y il A a4 L A st o e e+ g oy L Al au Awis - tad ek e ok aoh oai om g ) Lt a2l Sun dhes A b by i ok sual e .,T

N
PRECHARGE
[
SENSE ANMPLIFIER
A
zt ——QIJ WORD
Df‘r WORD
. HORD SIGN
U BIT COLUMN
Figure III-29 Word Sign Bit Sense Amp.
g circuit can operate faster than the column sense amplifiers
l.
¢ which allows the word and word' signal to arrive in time.
-
E‘P The improved speed is a result of the reduced capacitance
o on the sense line.
h
Eg‘ MSFF Banks/Final Multiplexer. At this point the
e
R{: data addresses output from the XROM need only be routed to
X 3
D the proper MSFF bank (input or output) and multiplexed out

s

ATy
s
,‘)'.
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fﬁﬂ 'i? to the input or output data address bus. Both the input and
??5 v output bank of MSFFs are connected to the XROM outputs. The
:{} XROM output signal is passed through the input MSFF bank in
;ai first metal in order to reach the output MSFF bank placed as
:%; shown in Figure III-15.
"E, The input and output MSFFs have transmission gates on
hﬁé the inputs. The XROM outputs are shifted into the proper
MSFF bank by the SHIFT_UP-IN and SHIFT_UP-OUT control
R signals generated by the Control Sequencer.
;E; Once the 48 bits retrieved from the XROM are stored in
,€§ the proper MSFF bank, a multiplexer for each bank outputs
,;j the four 12-bit addresses to the appropriate data address
.;; bus every two clock cycles. The multiplexer circuit is
o (;. simply a transmission gate controlled by a 4-bit ring
L counter on each MSFF output path to the address bus.
2¥3 SPICE Simulations. The worst-case path of the XROM
;E; address generation circuitry was simulated using the SPICE
E}: program. The schematic of the worst-case path through the
iii XROM is shown in Figure III-30.
%ﬁ This path can be broken up into two sections for the
;5 sake of presentation. The first section consists of the
?7 addresses being input to the PLA decoder and the wordlines
ii; changing state. The second section uses the wordline signal
? as the input to the XROM devices which changes the bitline
:*3 and sense amplifier output. The time to traverse each path
‘;;- separately can be summed to determine the total XROM speed.
2
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q:?
=
$ﬁ - Figures III-31 and I1I1-32 show the timing for a
:{ﬁ o wordline being selected and unselected respectively. The
E&' worst-case time for the wordline transition is less than
%ﬁi 35 nS after the address is applied to the decoder. Figures
é;. 111-33 and III-34 show the timing for an output going high
%; and returning low respectively. The Precharge cycle
a > returns the output low while the output must go high during
1534 the Precharge' cycle. As the SPICE simulations show, both
';ig of the output transitions can occur within 25 nS of the
ﬁgﬁ wordline changing state.
o
t:“' Thus a data word can be retrieved from the XROM in
fﬁg 60 nS (35 nS Precharge time) for a 3 micron process and a
Eﬁi SPICE model as given in Appendix E. This means that four
b (“ data address words can be output at a rate of over 65 MHz
?it per word. Since input and output data addresses must be
?3- output to the bus simultaneously, the XROM must perform two
o

accesses. This effectively cuts the rate in half to just
over 30 MHz per data word pair. Since a new input and
output data address pailr is needed only every other clock
cycle, the system clock can run at a rate of over 65 MHz.
This figure is compatible with the 55 + MHz operating spe¢ :d

of the Control Sequencer. In fact, since the Precharge

signal 1is generated by the Control Sequencer, it can be

AP

- -
1

X
y 4y
PRI

produced from a quarter frequency clock (as long as the

0

4 s
'

]
PLETE I R A

¥
ey

clock speed is less than 60 MHz for the 3 micron process).

Additionally, a speed increase 1is expected for a 1.2 micron
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process implementation of the XROM circuit as was expected
for the 1.2 micron process implementation of the Control

Sequencer.
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IV. Automatic Generation of the XROM

Overview
The XROM circuit used on the WFTAl1l6 must store 4 1/2K
of 12-bit addresses to calculate the 16, 240,

272, and 4080

point DFTs. The WFTAL5 and WFTAl7 chips must store a

similar number. Thus, an efficient procedure to
personalize the 54K bits within the XROM must be found.
Obviously, manual personalization of the XROM using Caesar
would be very time consuming and error prone. The
placement of the personalization ones and zeros is further
complicated by the XROM's intricate design. Therefore,
software that automatically produces a layout description
of the personalized XROM for a given list of data addresses
is essential.

Since a computer program is to be developed to
personalize the XROM, it would be desirable to write the
program to optimize certain parameters within the XROM
before generating the layout. The software will therefore,
include programs that attempt to optimize the power
dissipation, speed, and yield of the XROM by minimizing the
number of transistors and drains in the XROM array.

This chapter will present the development and imple-
mentation of the software that optimizes the bit pattern
arrangement of the XROM personalization and generates a
It will be

Caesar file layout description of the result.
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shown that the transistor minimization problem can be cast

as the classical graph partitioning problem, and that the
drain removal problem is a disgquised version of the
Traveling Salesman Problem. The information in this
chapter is presented in the following order. First, the
development and procedure used to minimize the total number
of devices in the XROM is described. Second, the
development and procedure used to minimize the total number
of drains in the XROM is described. Third, the software
that implements the two optimization routines is

presented. Finally, the methods and software used to
automatically generate the XROM personalization are

presented.

XROM Optimization: Minimizing Total Devices

QOverview. 1If the total number of devices or "ones" in
the XROM can be significantly reduced, the yield, power
dissipation, and possibly the speed of the XROM will be
improved. Since the percent yield of any CMOS LSI circuit
1s inversely proportional to the number of active devices
per square micron of silicon (Ong, 1984:343), deceasing the
number of devices in the XROM will result in improved
yield. The speed of operation for the XROM will generally
be improved by removing dcvices since worst-case wordline
gate capacitances and bitline drain capacitances will

usually decrease. As a result of the decrease in the

Iv=-2
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overall ¥XROM capacitances described above, the switching
power dissipation will decrease proportionally.
The remainder of this section will describe the manner

in which the total number of devices in the XROM are

minimized. Basically the procedure consists of varying the
address lines used for particular address positions, and
applying a number of complex sign bit operations to each

addressing configuration until the minimum number of devices

is achieved.

Varying the XROM's Addressing Scheme. The number of

address lines used for a particular XROM depends on its
storage size. The swapping of two or more addresses to the
XROM will only change the placement position of each bit in
the array, not the total number of one-bits. Whatlt makes the
addressing scheme important in minimizing the devices is the
fact that the changed bit placements may increase the
usefulness of the XROM sign bits. That is, certain bit
placements may have a "better" clustering of ones than
others, and these clusters of ones can be eliminated by the
correct placement of an inverting sign bit. The organi-
zation of the XROM's sign bits will be presented in the next
section. However, this organization is such that only the
address lines used for the multiplexer at the top of the
XROM bitline columns and the address that is input directly

to the XROM array can cause the sign bits to be more or less

effective. Changing the address line order in the PLA
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wordline decoder will only change the location of data and

sign bits, not their 0 or 1 state.

Additionally, certain addresses may not be used to try
to improve the sign bit effectiveness. This limitation
applies to any higher ordered address that does not run the
complete binary number range due to the XROM being a size
other than a power of two. For example, the XROM for the
WFTAl6 chip has 4 1/2K of data words. Since the XROM
outputs four words at a time, 1 1/8K addresses are needed
to access all the contents of the XROM. The higher ordered
four address positions of the 11 bits required do not cycle
through to the maximum addressing capability of 2K. Thus,
these four addresses must always be used in the PLA
wordline decoder and cannot enter into the optimization
routine. If these addresses were considered, and were
input directly to the XROM array or the multiplexer, the
addresses applied to the XROM would not run sequentially.

A nonsequential input to the XROM is not desirable for this

application and will not be considered due to the

additional complexity it would introduce.

Therefore, the use of the address lines to minimize the
number of devices in the XROM shall proceed in the
following manner:

1. The bits of the XROM are placed for each possible
address configuration that can affect the sign bit
effectiveness (for the WFTA1l6 XROM there are 7
candidates for the address column and 6!/4!2!

combinations for the multiplexer addresses = 105
configurations).
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2. The sign bit scheme described below is applied for each
address scheme.

3. The address and sign bit scheme that produces a minimum
number of devices is used.

XROM sign bits. If the XROM (or any other ROM) used no

sign bits and did not invert the state of any row or
column, the maximum number of possible transistors in the
XROM would be equal to the size of the XROM. For example,
the XROM used on the WFTAl6 chip could be personalized with
up to 54K ones in the worst case. Of course since the
actual contents of that XROM are sequential addresses, the
number of ones is more near half that figure. Figure 1IV-1
shows the distribution of the number of transistors in a
54K XROM for six classes of stored data. The six
transistor distributions of Figure TV-1 are for 50 randomly
generated data cases; WFTAl1lS, WFTAl6, and WFTAl7 addresses;
and 4080—§oint WFTA and DFT coefficients. For each type of
data, the number of cases that resulted in a particular
number range of transistors per XROM are given. Note that
the figure depicts the 50 random distributions with an
average number of ones equal to 27,632 with a standard
deviation of 103. The 54K WFTAl5, WFTAl6, and WFTAl7 XROMs
storing addresses have an average number of ones of 26,388,
26,448, and 26,504 respectively. The four 54K XROMs

storing transform coefficients average 27,577 transistors.

In any of the above situations, the average number of
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ones in an XROM may be reduced if a single sign bit is used

for the entire XROM array. The sign bit is set and all
bits in the XROM are inverted if the original number of
one-bits is over half the XROM size. The sign bit is not
set and the XROM is left as is if the number of one-bits is
less than or equal to half the XROM's size. If the sign
bit is set, the data is inverted (again) when output to
restore its original sense. Situations where the total
number of ones is less than or equal to half the XROM size
will not produce a decrease in the number of total ones
using this method. However, on the average a single sign
bit will decrease the number of ones in the array. Figure
IV-2 shows the same six XROM data class cases as Figure
IV-1 only a single sign bit has been applied to the entire
XROM. Notice that the random case distribution is no
longer normal and the average number of ones has shifted
down to 27,561. The results for the other five classes of
data show little or no gain in the number of transistors.
The use of sign bits can be extended to one sign bit for
each half, quarter, eighth, etc., of the XROM array. Each
step adding some complexity, but producing a smaller number
of ones in the array on average. This increase in sign bit
effectiveness is due to the fact that if a sign bit governs
a "small" number of bits, the overall odds that the number
of ones will not be near half the size of the group of bits

are better than the odds would be if the sign bit governed
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a "large" group of bits. For example, if the division
process is taken to the extreme, one sign bit could govern
one XROM bit, and an XROM array with all zeros would be
guaranteed. Unfortunately, the contents of the original
XROM would be duplicated in the sign bit array that is as
large as the XROM.

The use of one sign bit for each data word (be it a
random number, address, transform coefficient, or two's
complement number) seems intuitively appealing since it
would have the sign bit governing a small number of bits,
have a straightforward sign bit assignment procedure, and
there is some "correlation" at the word level (for example,
negative two's complement numbers with a small magnitude).
However, since the XROM for the WFTA chips has a four to
one multiplexer for each output data bit, the sign bits
would have to be multiplexed also. This would add
significantly to the access time of the XROM.
Additionally, one sign bit for each data word would have a
significant layout area cost. Thus, a single sign bit (to
be referred to as a word sign bit) for each of four data
words in a group was used on the WFTA chip XROMs. Figure
IV-3 shows the six XROM cases used in Figure IV-1 with a
sign bit applied for every four data words. All six types
of data stored in the XROM show a substantial decrease in
the average number of transistors per XROM over the results

given in Figure IV-1.
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EF’ One final "sign bit" operation was used on the XROM.
Since the word sign bit contents must be used by each
column's sense amplifier to determine if the bit or
inverted bit sense is to be output, the bits in an entire
column of the XROM can be inverted by using a sense
amplifier with the word and word' lines reversed. The use
of this inverting column sense amplifier will be referred
to as a "column sign bit." It is important to note that
because each bitline into the XROM's 4 to 1 multiplexer can
be the A0 or AON bit, and because one sense amplifier
operates on the output of the multiplexer, a column sign
bit governs a column that 1is eight bits in width (a
column~byte). Figure IV-4 shows the six XROM cases used in

(‘ Figure IV-1 with the column sign bits and then the word

sign bits applied.

At this point, the combination of varying the addressing
scheme of the XROM and the application of column and word
sign bits produces a distribution of ones for the six cases
as shown in Figure IV-5. During this phase, word sign bits

were applied both before and after the column sign bits.

Xy
"l",‘

The XROM solution with fewer transistors was used.

v
3
SN
LA
lI‘llf'

Prearranging XROM Columns. The effectiveness of the

Pail
fi

i

ig; XROM's word sign bits can be improved by rearranging the
Eﬁa column-bytes before the word sign bits are applied. 1If

ES§ column-bytes that are similar (or strongly correlated as
!gﬂ K determined by a correlation scheme) are grouped together
Yoo
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under the control of a single word sign bit column, a lower

total number of devices (or ones) in the XROM can be

achieved. Thus, the method to obtain a minimum number of

devices develops into the following procedure.

1. Place the bits for each of the particular address
schemes.

2. Save the placement pattern for step 8.

3. Apply column sign bits.

4. Calculate the column correlation distances as
determined by the correlation scheme.

5. Group the columns with maximum correlation distances
between them together.

6. Apply the word sign bits.

7. Note result.

8. Restore the current address scheme’s original bit
placement, and apply steps 4, 5, 6, and 3 in that
order.

9. Note result.

10. Return to 1. unless the possible address schemes have
been exhausted.

11. Use the result that yields a minimum number of XROM
devices.

The column arrangement procedure yields a lower number
of devices by grouping column-bytes that have the most
similar one/zero patterns under the control of a single word
sign bit column regardless of what data word that
column-byte belongs to. However, the proper data words must
be recovered from the scrambled column-bytes. The two items

of this procedure that are yet to be described are the

Iv-14
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O correlation scheme used, and the method of partitioning the
strongly correlated columns into groups.

L The Column Correlation Scheme. A simple and efficient

o technique is needed to determine the number of ones that can
-3 be removed from the XROM array if two given column-bytes are

placed under the control of the same word sign bit column.

PP

Since word sign bits exist on each row of the XROM, the

o

problem can be reduced to finding the correlation distance
between two eight-bit bytes of data and applying that
- measure to all the rows of the two column-bytes of
interest. The measure for each row can then be summed over
all rows for the total correlation distance between two
;: column-bytes.
Q" Since each eight-bit byte in a column (and each word sign
'ﬁ bit in a word sign bit column) has a column address (A0) and
a column address' (AON) portion, the correlation scheme must
total the similarities between column-bytes for the A0 half
i; and the AON half. Table IV-1 shows the correlation value
;? matrix used to calculate the correlation distances between
'3' two bytes within a column. The correlation value matrix
assigns a complex number to each data byte in the XROM
- array. The Manhattan magnitude of this complex number

indicates the byte's potential for zero bits (over four).

O
e LI
Y ".‘.'

Thus, a byte with half ones and half zeros in both A0 and AON

i f
s f

FA
s

nibbles receives a correlation value of 0. It has no

potential to obtain over four zeros in that byte whether
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NUNBER 3 [t-201- 3] 1 L+ J|1+2)
O0F ONES IN
ReaLcagy | 2 || -2 ) - 8 j 2J
HALF OF 1 -1-2J1-1- ] -1 -1+ J-1+2)
BYTE 8 fc2-200-2-3 ] -2 [-2¢1 ]-2+23
8 l 2 3 4
NUMBER OF ONES TN IMAGINARY (AON) HALF
0F BYTE
Table IV-1 Correlation Value Matrix
it 1s inverted or not. High potentials (2~-23, 2+23j, =-2-273,

-2+23) are awarded to bytes that have an A0 half with four
ones (+2) or four zeros (-2) and AON halfs with four ones
(+2]) or four zeros (-2j). The bytes with the high correla-

tion values shown above can end up with all zero bits in the

byte since 2 sign bits operate on each byte (A0 and AON).
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ii; The 1importance of the correlation procedure is that the
éé; A0 and AON word sign bit pair must invert or not invert the
}.; bits under its control based on the total bit count for all
fﬁ: data bytes in its data word area. For the WFTA chip's XROM,
y

Q{: there are 12 data bytes in each data word. If column-bytes
o

grouped with an equal number of column bytes
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n\; with all zeros, there is no potential to obtain any more
than one half zeros in that data word area even though
individual correlation values are high. Therefore, the
correlation values must be used to calculate the
correlation distance between every column-byte pair in the
XROM, and a partitioning algorithm must be later applied to

?;j group those most correlated together. The correlation
h distance between column-byte Xx aﬁa column-byte y is

-~ calculated by,

Rows-1
[ }.:0 Re(xi + yi) | + |Im(xXy + ¥i)
%? i= .
35 . As indicated previously, the same correlation metric is
- ‘e applied over all rows and summed. Each row calculation
2 determines the real (AQ0) potential for zeros (over two) and
iJL the imaginary (AON) potential for zeros (over two) for two
- bytes and adds them.
ﬁ;; The result of applying this correlation distance metric to
KE all column-byte pairs of the XROM is a symmetric, fully
_:f connected graph with each column-byte serving as a vertex.
fif Solving the Graph Partitioning Problem (Kernighan and Lin,
:ié 1970). For the WFTA chip XROMs, the column-bytes must be
;%' partitioned into groups of 12. Each column-byte has a
ii symmetric edge distance to each of the remaining 47
:zc column-bytes in the XROM. The column-bytes can be viewed as the
v ‘;'}' vertices of a symmetric digraph with ((48)2/2)-(48/2) = 1128
N
Iv-17
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edges. This section will present an efficient heuristic
procedure to partition this graph into the four groups of
12 so as to minimize the total cost of the edges cut (or
maximize the correlation cost within the group). The
procedure was developed by B. W. Kernighan and S. Lin in 1969.
The graph partitioning problem is in a class of very hard
problems known as NP-complete (Hyafil and Rivest:1973). An
exhaustive search for the optimum solution to the problem at

hand would result in
1/4! x(ig) X (ig> X (ig> X <i§) = 2.7 x 1090 cases.

Thus, we must turn to a heuristic approach.

The Kernighan and Lin heuristic divides a given graph
of 2n vertices into two subsets of n vertices each. Thus,
the heuristic must be applied again to each partition of 24
column-bytes after they are generated. The heuristic
starts with any arbitrary partition A, B of set S, and
tries to decrease the external cost of the partitions by a
series of interchanges of subsets of A and B. The external
cost 1is the sum total of all link costs between each vertex
in one partition and all the vertices in the other
partition. When no further improvement is possible from
interchanging subsets of A and B, a local (perhaps global)
minimum has been found. Repeated application of the

algorithm on arbitrary starting partitions provides a

Iv-18
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fairly high probability of obtaining the optimum partition
(75% probability in this application and a 100% probability
that the solution i1s within 10% of the optimal).

The algorithm's power results from the use of a
difference measure, D, for each node in the graph (see
Figure 1IV-6). The D value 1s the difference between a
node's total external link costs and its internal 1link
costs (sum of all link costs to nodes within the same
partition). Any node with a high D value is a good
candidate for exchange. Although tile two nodes with
maximum D values in each partition will not always give the

greatest gain, examining the highest three D values in each

partition will produce the greatest gain in virtually all
cases.

The node exchanges during one pass continue until all
the nodes of partition A are in B and vice versa. At this
point, the sequence of gains achieved during the process of
totally swapping all nodes is examined. 1If a positive gain
value 1is observed at any stage, the maximum positive gain
will determine how far to actually proceed in the
swapping. The nodes are swapped to that point, D values
are recalculated, and the process continues until no
positive gain is found. By applying this heuristic to the

48 column-bytes and then to each 24 column-byte group, a

4-way partition of the 48 column-bytes into maximally

-
ot

correlated groups of 12 is achieved.

v
',
L.

A

0
»

2
.

t 3 ‘l “ M
2 :j.‘l.‘l::' ;

IvV-19

o @

[y n

r ¥
478, .‘ :.'

- '~ [ \'(j
{\.,.-ﬁx;wf.f\‘s{




guiuoi}ijJed ydeaq ui pue ueysiuaay gq-n| ansi

1997 -0+ %0 = vreg
SYul] Jevdau] (- syul] Jevsaixy { :='qg
JZIWININ

!

[v-20

SANIT TUN¥3ILX]




.m_

48

a0

5*5 gﬁa It is worth mentioning at this point that an XROM test
L case was contrived that showed a reduction from 27K ones
LC? down to zero ones after including the column swapping
o

ﬁ?; step. The case had an alternating pattern of ones and
Tg‘ zeros in the XROM array which could not have any ones

,

.;f removed using all previously discussed techniques except
¥E§ the column correlation and partitioning. By invoking the
' column swapping step in the procedure, 54K zeros (or zero
;ﬁa devices) was the final result.

N

ﬁi Revisiting the six XROM cases presented in the "XROM
%i sign bit" section, and applying all device minimizing

‘1%: techniques described, results in the number of ones

E%gz distribution shown in Figure IV-7.

‘ . (;L Table IV-2 summarizes the number of devices obtained
afj for each of the various stages of techniques presented in
:EE the device minimization procedure on the six XROM test

Y| cases. The results of Table IV-2 are shown graphically in
.&:

Figure IV-8. Notice that the decrease in number of XROM
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transistors is significant in all cases with the possible
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exception of the random data. The WFTA16 XROM exhibits a

> !
r ]
AT

40% decrease in transistors by applying all of the device
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minimization techniques.
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CASE
cloN BT wis uié Wiz OFT | WFTA landoél
No 26388 | 26448 | 26504 | 277295 | 27528 | 27632
81 26388 | 26448 | 26504 | 27571 | 27152 | 27561
Wwo 22546 | 22194 | 23292 | 220835 | 20281 | 24478
w/C 22443 | 20964 | 23254 | 21913 | 20234 | 24423
Ad 21667 | 208624 | 22862 | 21819 | 17695 | 24327
Kttt 19138 | 14844 | 19617 | 16998 | 15387 | 23858
Devices

Table IV-2 XROM Device Minimization Summary.

XROM Optimization: Minimizing Total Drains

Overview. Many bit positions of an XROM will have zero
personalizations. As was shown in the previous chapter, a
zero personalization is accomplished by removing or not
placing a device between the appropriate column address (AQ

or AON) drain and the bitline drain. I1f a column address

Iv-24
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", line drain or a bitline drain has none of the four possible
devices (ones) connected to it, it serves no purpose other
than to slow the operation of the XROM, increase power
consumption, and decrease yield. Two possible cell
alterations can be performed on a cell whose drain does not
have any active devices. They are 1) removing the unused
drain diffusion and metal contact, and 2) straightening the
polysilicon wordlines that will no longer need to be routed
around the drain. The use of these two reconfigurations can
improve the overall speed, power dissipation, and yield of
the XROM. A graphic representation of the improved cell is
shown in Figure 1IV-9.

The improvement in speed is a result of the decrease in
wordline length and the decrease in bitline and address
column line capacitance. The shorter wordline will result
in a lower resistance, thereby decreasing the time needed to
raise or lower the voltage on the wordline. The decrease in
drain capacitance on the metal column lines will allow them
to switch faster.

The power savings result from the decrease in the

column line capacitance. Since power is determined by

P = CVZf,

a decrease in capacitance results in a corresponding

o decrease in power (Weste and Eshraghian, 1985:148).
1vV-25
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(a) standard cell ({b) no drain cell

Figure IV-9 Reconfiguring XROM Cells With No Drain.

s The possibility for an improvement in yield results
from the fewer diffusion implants that must be correctly
placed in the XROM array. With fewer implants, the
probability of an error on the chip decreases. This
improved yield becomes especially significant if the XROM
array design is used for a one megabit ROM chip.

The remainder of this section will describe the manner
in which the total number of drains in the XROM are
minimized. The procedure is one of rearranging columns and
rows in order to group four zero personalizations around
the largest number of drains possible. Then each cell

whose drain is surrounded by four zeros is replaced by the

no drain cell of Figure IV-9. The complexity of the
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Y N procedure is rooted in trying to find the optimal ordering

>

. of rows and columns without exhaustively searching all
S possibilities. It will be shown that this problem, like the
graph partitioning problem, is NP-complete.

P Reordering Columns and Rows. The objective is to remove

. as many drains as possible from the XROM array. A dreat
s deal of progress toward reaching that objective is achieved

by minimizing the number of devices in the XROM. For
example, if a 54K XROM contains 27K ones, the probability of
a drain being pulled is 1/16th for a random ordering of rows
and columns. This probability is calculated by multiplying
the probability of a zero being at a given bit position
(probability = 1/2) times the same probability at each of
if; the three other bit positions around a single drain. Thus,

on the average 1/16 times the total number of drain

PP g

positions in the 54K XROM will be removed. If the device

r minimization procedure (described in the preceding section)
- is applied to the XROM and decreases the number of ones in
the XROM to 13.5K, the probability of a drain being pulled
increases to almost 1/3rd (3/4 to the fourth power). Thus,
y the average total number of drains removed from the 54K XROM
% increases to 1/3rd times the total drain positions. This is
a over a five-fold increase in drains pulled for a two-fold

increase in devices removed.
- As in the preceding section, six classes of XROM data

¢ will be used to demonstrate the increase in drain removal

Iv-27
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5§ ;;? achieved by the device minimization routine. Figure IV-10
fﬁ. shows the distribution of drains remaining for the six data
¢ﬁ types in a 54K XROM before any optimization steps (this

Ei: distribution contains 15 random samples rather than 50).
:FQ The average percentage of drains pulled is 6.94 percent for
Qﬁ: the random cases and 24.71 percent for the WFTAl6

;Eg addresses. Figure IV-11] shows the distribution of drains
e remaining for the same six cases of Figure IV-10 with the
55 device minimization procedure applied. The average

%g percentage of drains pulled is 11.21 percent for the random
s

dh cases, and 44.01 percent for the WFTAl16 addresses.

) Thus, a large number of drains can be removed without

attempting to optimize the layout specifically to pull
(;L drains. However, with some extra computing time and a

'§3 minimal increase in complexity, more drains can be removed
'gﬁ by reordering the columns and rows of the XROM to obtain
CS. groups of four zeros around drains. The only restriction
.5; on the reordering procedure is that it does not affect the
%EZ device minimization results by moving column-bytes away

:u from its controlling sign bit column. This means that when
E;i columns are rearranged, they may only be swapped within the
:Eﬁ data word group that is controlled by a word sign bit

. column pair. Rows, on the other hand may be reordered in
)%f any manner since the word sign bits will be moved with the
ﬁ;i row bits that they govern, and the NAND PLA decoder allows
.gf . any wordline row personalization required.
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Thus, in order to minimize the number of drains in the
..”TAl6 XROM array, data bit columns within each group of 12
will be permuted as will all 144 rows of the XROM. To
exhaustively search all possible row and column
combinations to find the minimum number of drains would be
prohibitive. There are 144! possible ways to place the
rows. For each placement, there are four groups of
column-bytes each with 12! possible column-byte orderings.
Additionally the columns within a column-byte can be
ordered 4 different ways. Thus, there exist 144! x 4 x
(12! x 412) possible unique orderings that could be
examined to find the one with the greatest potential for
drain removal.

Obviously, an exhaustive search will not be possible,
and a heuristic solution must be developed. As is often
the approach with large, intractable problems, a division
of the problem inéo two or more subproblems will be
performed. Although, this approach (and others to follow)
will not always yield the optimum sciution, it does allow a
solution (and a reasonably good one) to be found.

Since the columns of the XROM intermesh with the rows,
heuristic which first groups zeros about drains for columns
and then for rows would not be very effective. This is
because many of the groups of four zeros about drains
produced by the column ordering would be broken up when the

row ordering attempts to find a better solution. Certain
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{ﬁ ‘ﬁ? row exchanges may have to be disallowed in order to keep
;éz specific desirable results from the column ordering. The

‘;é heuristic will not take two steps toward solving the

?3 problem. Rather, it will take one partial step toward a |
E; solution and then make the next step dependent on the last. i
;f The heuristic cannot use a physical division of the XROM |
‘Si either. Since the entire row or column must be switched, a 3
fﬁ' division of the layout into segments and grouping zeros in
:%ﬁ that piece of the XROM is not a workable solution.

,gi I1f the columns are ordered to maximize the zero pairs

}E along the wordlines in the XROM, the ordering of the rows
;EE can attempt to maximize the grouping of paired zero-pairs to

>

‘EE remove drains. In this way, a heuristic which uses a
1}\ (: division of the original problem into two independent
{13 sequential problems is obtained. The heuristic seeks to
;EZ maximize the basic element of a group of four zeros before
= attempting to maximize the groups of four themselves.
!ki However, another problem has spawned from the solution

.Ef of the first. Another heuristic is needed to group zero

i} pairs in the column ordering and to group four zeros about a

Eﬁ drain for the rows ordering. 1If all possible column

1{ pairings were attempted and then all row pairings to achieve

»

iE the solution, the number of cases required to be examined
C? would not be much less than the original exhaustive search
diﬁ already examined. The number of unique orderings that would

i; - have to be examined with this heuristic is

T
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Y 144! + 4 x(12! x 412).

;

'53 Therefore, a smarter way to order the 144 rows and 12

Ei column-bytes per group must be found. The ordering of the
:H 4 columns within each of the 48 column-bytes may still be

Fé done exhaustively first, but the number of elements in the
ii other ordering problems is too large for that approach.

? The Traveling Salesman Problem. The best ordering of

E the rows or columns is determined by which rows or columns
3 placed next to each other produce the interfaces that

.é maximize the zero groups. Each column-byte edge will

%I produce a particular number of zero pairs when placed next
x to another column-byte edge. Similarly, each row will

produce a particular number of bitline or c¢olumn address

5? line zero groupings of fours when placed next to another
-2 row. If each column-byte is paired with each other
column-byte in the data word group, a matrix of the number
4 of non-zero pairs for each match can be produced.
Similarly, if each row is paired with all other rows, a
matrix of bitline drains remaining and column address

drains remaining can be produced. By calculating the

distances between all columns in each group and calculating

the distances between all rows in the XROM, it is possible

e A,
P % Tyt s e
L PR PRV

'~ to follow the minimum distance path to all column or row
- L

i nodes and visits each node only once.

¢
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The problem of visiting all nodes of a graph only once
and traveling the minimum distance is known as the Traveling
Salesman Problem (TSP). "The TSP is perhaps one of the most
celebrated of all discrete optimization problems" (Parker
and Rardin, 1983:69). Since the TSP is an NP-complete
problem, many mathematicians, operations reéearchers,
computer scientists and the like have proposed heuristic
solutions to it.

The various approaches used to solve the TSP
include Dynamic Programming techniques (Held and Karp,
1962), Branch and Bound techniques (Little and others, 1963;
Held and Karp, 1970; Dionne and Florian, 1979), Cutting Plane
techniques (Gomory, 1958; 1960; 1963; Grotschel and Padberg,
1979), Linear Programming (Dantzig and others, 1959) and
many others. So many algorithms have been presented that a
number of articles have been written to review them
(Bellmore and Nemhauser, 1968; Burkard, 1979; Christofides,
1975; Parker and Rardin, 1983; Held and others, 1984).

The algorithm that has found the proven optimal solution
to the largest TSP solved to date (318 cities) was developed
by Crowder and Padberg {(Crowder and Padberg, 1980) in 1979.
Unfortunately, it, like many other TSP algorithms developed,
is very complicated and requires an extensive programming
effort to implement. However, the first phase of Crowder
and Padberg's algorithm implements a straightforward

heuristic to obtain a good initial tour for the TSP. This
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o heuristic algorithm was developed by Lin and Kernighan in
‘ 1971 (Lin and Kernighan, 1973), but is still an effective
and important algorithm for obtaining near-optimal
solutions to the TSP (Held and others, 1984). It offers
several advantages over the other approaches in solving the
TSP. The Lin and Kernighan approach is relatively easy to
program and requires no special knowledge of integer or
linear programming. The Lin and Kernighan algorithm does
not require a lot of memory or CPU time to run large TSP's
as does dynamic programming approaches and certain branch
and bound techniques.

Since the Lin and Kernighan algorithm for the TSP has

been used to obtain near-optimal solutions to problems up

(- to 318 cities and since the algorithm is relatively simple
to program, it is the algorithm that was chosen to order
the columns and rows of the XROM in order to minimize the
number of drains. The Lin and Kernighan TSP algorithm and
how it is used to solve the problem of removing drains will
be discussed in the next two sections.

The Lin and Kernighan TSP Algorithm. (Lin and

Kernighan, 1973). The Lin and Kernighan (L&K) TSP
Algorithm is based on the same general approach as their
graph partitioning algorithm discussed earlier. It starts
with a random TSP tour (a tour is a path that visits all

cities/nodes only once, and returns to the starting

city/node), and applies an iterative improvement to the

1
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&&3 i%: tour by replacing tour links that produce a shorter length
‘: ~ LIRS
5 tour. When no improved solution can be found, the tour is
N (
1S9 locally optimum. Like their graph partitioning algorithm,
SN
S
<. the TSP algorithm attempts to swap a variable number of
‘.‘-v".:i
;S elements on each pass to obtain a more desirable solution.
] - .
¢:i The L&K TSP algorithm is described below (see Figure
19 >
?,‘:i,’ IV-12)-.
oo
v 1. Generate a random initial TSP tour.
- 2. (a) set i=1
o
ﬁ}? (b) Select xj and yj as the most out of place pair
SE at the ith step. This means the xi and yj
Il link are chosen to maximize the improvement when
:25 X1s..+,Xi links are exchanged with
e Y1r---,¥Yi links. xj is chosen from the
e links currently used in the tour, yj is chosen
o from the other possible remaining links.
iy .I‘(
ey - . .
e G;h (c) 1If it appears that no more gain can be made
e {according to a stopping rule)} go to step 3;
AN otherwise set i=i+1 and go to 2(b).
‘ﬂi 3. If the best improvement is found for i=k, exchange
D links %X74...,Xx with y1,...,¥Yx to give a new
- shorter tour and go to step 2. If no improvement has
S been found, go to step 4.
‘ﬁE_ 4. A local minimum has been found. Repeat from 1 to try
1S and insure a global minimum is obtained.
‘;“ Much of the power of the L&K Algorithm results from the
R
e stopping rule. The algorithm only considers sequences of
l-"&- »
[y v . . . . . .
;Q€ gains whose partial sum i1s always positive. This rule can
",
Q\l be used because of the following mathematical fact:
:ﬁ If a sequence of numbers has a positive sum, there is a
fﬁj cyclic permutation of these numbers such that every
ih partial sum 1s positive.
S
N
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This means that choices that exhibit a negative gain at
any step in the process need not be considered. The use of
this gain criteria greatly reduces the number of sequences

to be examined.

Using the L&K TSP Algorithm. The L&K TSP Algorithm is

used to minimize the number of drains in the XROM by
applying it to the ordering of column-bytes within each of
four groups, and then to ordering all of Ehe rows in the
XROM. This section will outline the specific procedure
used in ordering the column-bytes and rows, and how the L&K
TSP algorithm is applied to achieve a near-optimal
ordering. The procedure for ordering the column-bytes will
be described first, followed by the procedure for ordering

the rows.

Column Arranging. Figure IV-13 depicts the layout

of XROM cells within a column-byte. There are eight data

bits per row, four A0 and four AON. In reordering these

four bitline columns two important facts must be
remembered:

1. The address column A0 and AON lines must stay in
place. They cannot be exchanged or two A0 lines (or
AON lines) may become adjacent.

2. When reordering bitlines (which have 2 columns of bit
personalization), the new bitline position must provide
the same AQ and AON line orientation as the old
position. This insures that bits addressed by the A0
(AON) line stay addressed by the A0 (AON) line.

Given the above two rules, each column-byte can take on

only four possible column combinations. If the original

Iv-38
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,g o bitlines are numbered 0 to 3 from left to right, the
: following Table IV-3 shows the four allowable orderings.
’
i

o
Py
\ AQ AON AOQ AQN A0
Wy
o 1. 0 - 1 - 2 - 3
L
(- 2. o - 3 - 2 - 1
’ L
. 3. 2 - 3 - 0 - 1
>
o 4, 2 - 1 - 0 - 3
L
P
o Table IV-3 Four Possible Bit-Column Orderings in a
" Column-Byte.

;f As was previously stated, it will not require an exten-

! Q sive amount of CPU time to try all four orderings to obtain
;j the maximum zero pairs between the three interfaces (dashes in
T Table IV-3) for the four columns. Exhaustively searching the
X

possible combinations for the four columns in each of the 48
; XROM column-bytes yields 3 times 48 or 144 maximally
- zero-paired columns.
M w
> The remaining orderings of 12 column-bytes within a data
:: group will be performed by the L&K TSP algorithm based on the
i: zero pairs between column-byte edges. Since the TSP algorithm
.’ functions to achieve a minimum "distance" for all 12

L4
é column-byte edge links, the appropriate distance measure
v
1 between edges must be calculated. In this case totaling the
¢«

TN

- “.'--
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number of non-zero pairs produced by the matching of each
column-byte edge with all other column~-byte edges will
provide the distance metric. Notice that the column-bytes
are allowed to be mirrored or flipped over in order to make
a match. This adds a small degree of complexity in keeping
track of the data bits (and final layout), but allows for a

better optimization routine. With the

22 x((12)2/2 - 12/2) = 264

distance measures calculated for a data group of 12
column-bytes, the L&K TSP algorithm can optimally place the
column-bytes to maximize pairs of zeros. Since there are
only 12 "cities" in the TSP, an optimal placement is
virtually guaranteed for each data word group.

The last step involves changing the TSP tour solution
into a Hamiltonian path. A Hamiltonian path is a tour that
does not return to the starting city. Since a TSP tour
starts and ends at the same node (column-byte), the
closed-1loop tour must be split. The column-byte edge on
the end of each group of 12 column-bytes is not adjacent to
the other column-byte edge on the other end. Therefore, if
the largest cost link is cut, the optimal zero pair matches
remain.

Row Arranging. The procedure to obtain the best

ordering of XROM rows is similar to the procedure of

Iv-41




ot

KoK
YRR
o
i:{ ﬁy, ordering the 12 column-bytes described above. The
A -‘N-. -
; j; differences result from two factors:

o

.ﬁ} 1. A single XROM row of personalization bits does not have
S5 two edges. Therefore, the distance calculations need
:RI not involve matching two sides of a "node".
;2 2. Unlike the column-bytes, the links of the row TSP must
:&E alternate between two different type distance measures.
A.f Y

oy

e Figure IV-14 helps show how two different sets of bits of
‘o an XROM row are used for two different row matchings: one
i

}j~ for zeros about bitline drains and one for zeros about
Qﬁg address column drains. Thus, two sets of distance measures
o
T between each row and every other row must be calculated.

e One set for bitline drain removal and one for address
?}: column drain removal.

o
(o

pre Additionally the L&K TSP algorithm must insure that the
ﬁ_ links between cities (rows) alternate between bitline drain
{;5: pairings and address line pairings. Otherwise the L&K

g algorithm is used as in the column-byte case after the

'$ 2 x((144)2/2 - 144/2) = 20,588

':é distance measures are calculated.

Qi After the near-optimal ordering of rows to produce the
é& maximum drain removal is achieved by the L&K TSP algorthm,
’Eﬁ the tour must again be split into a Hamiltonian path. For
SRy

i
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the rows, the split will be between the upper and lower rows
of the XROM array. In this case, splitting the address
column link with the shortest distance will produce more
drain removals. This is because only one row borders the
extreme upper and lower address column drains of the XROM,
and placing the rows with the greatest drain removing
potential there will net double the gain.

Since the procedure for minimizing drains in thé XROM
has been presented, a look at the drain optimization effect
on the drain removal for the six data cases of Figure IV-11
is appropriate. Figure IV-15 shows the distribution of
drains remaining for the same six cases of Figure IV-11 with
the drain minimization procedure applied. The average
percentage of drains pulled for the random case is 26.72
percent, and 63.25 percent for the WFTAl6. This compares to
an average percentage of drains pulled for the random and
WFTA16 cases of 6.94 and 24.71 percent respectively for the
non-optimized XROM. Table IV-4 summarizes the number of
drains remaining for each stage of the optimization
procedure on the six XROM test cases. The results of Table
IV-4 are shown graphically in Figure IV-16. As with the
device minimization, all cases (with the possible exception
of the random data case) show significant reductions in the

number of drains.
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STAGE ch Wil wie6 w17 DFT | WFTA {Random
2',’.'{}“,” 24854 | 21817 | 24248 | 23733 | 24645 | 25974
,':‘;;:;f,';'m 19792 | 15616 | 28563 | 18565 | 18437 | 24786
Drain

Minimiged| 15616 | 19256 | 16732 | 14582 | 14878 | 20455

Drains

Table IV-4 XROM Drain Minimization Summary

o
XROM Optimization Software
The two programs described in this section implement
the aevice and drain minimization of the XROM. Both
programs are coded in the C programming language (Kernighan
and Ritche, 1978).
"Placement" - Place and Minimize Devices. The
"Placement" program implements the following:
1. Reads in the file containing the desired XROM data
words.
2. Peri._ms the following for every possible addressing
scheme (105 for 1l6-point WFTA chip XROM).
;j (a) Applies the column sign bits to minimize devices.
" . (b) Applies the Kernighan and Lin graph partitioning

algorithm to group the columns that are highly
correlated for device minimizaticn.
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by
Af (c) Applies row word sign bit to minimize devices.

(d) Attempts to improve device count by reapplying
(b), (c), and (a) in that order.

(e) Saves the XROM addressing scheme, column order,
sign bits, and XROM contents if the number of
devices is the lowest seen thus far.

3. Restores the best solution so the "Drains" program can
continue using the device minimized XROM.

The structure charts for the "Placement" program are
depicted in Figures 1IV-17 to IV-20. The "Placement" proqgram
source listin< <cin e found in Appendix B.

"Drains"-Minimize Drains. The "Drains" program

implements the following:

1. Calculates the distance measures for all possible
column and row pairings.

(;' 2. Arranges the columns in each data word group to produce
’ a maximum number of zero pairs via the L&K TSP
algorithm.

3. Uses the L&K TSP algorithm to arrange the rows of the
XROM to maximize the number of drains pulled.

The structure charts for the "Drains" program are depicted
in Figures IV-21 to IV-25. The "Drains" program source
listing can be found in Appendix C.

Optimization Results for WFTAl6 XROM. This section will

present the theoretical power, speed, and yield results for

the WFTA16 XROM obtained from the two minimization programs. |

Devices and Drains. The number of devices and !

-

YA

drains for an optimized WFTAl6 XROM are compared to the

oo

(R
2
s ety

SN NY

€

numbers for the non-optimized version of the same XROM in |

. " i

ﬂi f?j Table IV-2 and IV-4. As explained previously, these gains
s
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will improve the power, speed, and yield the XROM. The
improvements for the optimized WFTA16 XROM are described in
the following sections.

Power. In order to determine the theoretical gain
in power dissipation of the optimized XROM over the standard
XROM, a "rule of thumb" power equation must be developed.
The starting point for this development will be the general

equation for switching power dissipation of

P=CXUVZx f.

where P is the switching power consumed, C is the
capacitance of the switched line, V is the voltage level
extremes (5 volts for the CMOS XROM), and f is the clocking
frequency. If this equation is applied to the average
switching path of the XROM, a "rule of thumb" equation can
be determined.

The switching path of the XROM (excluding elements that
do not change as a function of optimization) can be broken
up into five main areas. If an equation for switching power
in terms of the number of devices and drains in the XROM can
be derived for each area, the sum of thes= equations will
provide the "rule of thumb" total equation desired. Figure
IV-26 1s a schematic representation of the switching path.
The five nodes that comprise the main areas to determine the

power used are labeled.
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"
"
e iﬂ: The following derivation of power dissipation will
Ay -

1 . . .
- refer to Figure 1IV-26. The derivation will assume that all
?¥ device sizes used in the XROM are as built in the cells
45
2} described in this thesis (Chapter III). The result will be
\f' but an approximation of the actual power dissipation. The
'Aﬂ following variable conventions will be used:
L%I P - Power (watts)
D . v - Voltage Switching Range (volts)

f - Clocking Frequency (Hz)

] Cg - Gate Capacitance (Farads/micronz).
bt Cps - Polysilicon to Substrate Capacitance
o (Farads/micron?).

- Ng - N+ diffusion junction area capacitance
& (Farads/micron?).

ry M - 2nd Metal to diffusion capacitance

(Farads/micron?).

< A - Average number of PLA decoder addresses.
i B - Number of bits in the data word.
- R - Rows in the XROM.
- . Op - Total ones in the XROM.
Qo Dp - Total Drains in the XROM.
3 Sy - Size of the XROM (Bits).

The power used for the first area, the PLA decoder

) L el
Fod MRSRECoE

column lines, does not depend on the number of devices or

= (222

f drains in the XROM. The average power consumed is more a
fﬁ function of how many address lines change (on the average)
52 between each data access. The WFTAl6 XROM is addressed

({ sequentially, and thus, it is often (50% of the time) the
X

,}; case that only the LSB line of the address is changing.

'i; The random datacase may not have a particular addressing

:E sequence, and thus half of the addresses' PLA decoder

i% column lines may be changing. The power consumed in this

L4

area 1is also a function of the number of rows in the XROM.
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g y The number of rows affects the length of the PLA decoder

A 13
L n, b
Hely column metal line, and the number of a gates attached to
:;: it.
¢;? The power equation for the PLA decoder column lines is
AR then,
N
SE Pg = 4 ACq V2 £
e where
P
=
Al
® Cq = R(108M + 37 Cg).
J“"-“
A
i? The constants are determined by the actual decoder layout.
“¥ (;~ The power used in the second area, the product term
mg line, will be a constant since it depends only on the size
LS| '
IE of the transistors in the PLA decoder/wordline driver
“~
] circuit. Additionally only one set of product terms will
.‘..
:ig change on any access. The power equation for the product
o
*J term line is
N Pp = 2 Cp V2 f

v
s

Rt

s
5

where

L]

a e e G A
RV

Cp = 54 Cg + 880 Nd.
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The power used in the third area, the wordline, is a
function of the average number of devices and drains per
XROM row and the number of data bits in the XROM data word.
The number of devices (ones) on the row affects the
wordline's gate capacitance. The number of drains per row
and the number of data bits per data word affects the length
of the polysilicon wordline. The drains per row affect the
wordline length because a no-drain XROM cell's polysilicon
wordline section is shorter than any other XROM cell.

The power equation for the wordline is

Py = 2 Cwr V2 £

where

Cwr, = 10.5(CqOT/R) + 9Cpg[6(2B + 1) + Dp/R].

The power used in the fourth area, the address column
lines (A0 and AON), is a function of the number of drains
on the line, the number of lines (determined by the number
of bits in the data word, B), and the length of each line.
The column address lines are precharged high on each clock
cycle and one half are pulled low on each access. Thus, on
the average 1/2 the lines will change state each cycle.

The length of each line is determined by the number of rows

in the XROM, and the average number of drains on each line




is determined by the total number of drains.

The power equation for the address column lines is

where

Cac = 27RM + 9Dp Ng/8B.

The power used in the last area, the bitlines, is a
function of the same capacitance factors as the address
column lines. The differences lie in the number of
bitlines that will change state each access and in the
voltage swing of the bitlines. The number of bitlines
that go high on an access may be less than half for the
optimized XROM. For a non-optimized XROM with random or
sequential data entries, the number of bitlines that
change state each cycle is expected to be half the total.
After optimization it is expected that more bitlines will
remain unchanged on each cycle. This number of bitlines
that remains unchanged is a function of the number of
devices in the XROM. Since the bitlines are precharged
through an n-type device, they only reach 3.3 volts.
Also, if the XROM is operating at full speed, the bitlines
may not be pulled down all the way to zero. Thus, a

voltage swing of 1/2V will be used.
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The power equation for the bitlines is

PRy, = 4BOpCacV2E/Sk-

Therefore, by summing all five area power equations

the "rule of thumb" XROM power equation becomes,

Pp = 2V2£[2ACQ + Cp + Cyp *+ 4BCac(l + Op/2Sx)].

A good approximation of the power savings produced by
XROM optimization can now be calculated. Using the
parameters listed in Appendix F for the 3 micron CMOS
process, the results can be calculated for the gain
realized in the WFTAl16 XROM. Using the 54K XROM size, the
number of devices and drains as given in Table IV-2 and
IV-4, and a clocking frequency of 12.5 MHz, the power
gains are calculated. The calculated power consumption is
45mW for the non-optimized version of the 54K XROM, and
24mW for the optimized XROM. These results show a power
savings of approximately 50 percent.

Speed. The improvement that is realized in the
area of XROM speed of operation can be simulated using
SPICE. This approach will produce more accurate results
than attempting to present a general equation for speed.
The key items in the SPICE simulation that could improve

the speed for the optimized XROM are the decrease in
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polysilicon wordline length, the decrease in gate
capacitances on the wordline, and the decrease in drain
capacitances on the bitline. The wordline length decreases
by 2 microns with each no-drain XROM cell that it passes
through. The gate capacitances on the wordline decrease
with each device removed from its row. The bitline drain
capacitances decrease with every no-drain XROM cell on the
bitline column. Thus, witﬁ fewer devices and drains in the
XROM, the worst-case operation of the XROM is expected to
improve.

Using the device and drain minimization programs the
following speed results can be obtained for the WFTAl6 XROM
using the SPICE simulator. Table IV-5 shows the gain in
switching speed for the XROM's wordlines and bitlines. The
sum of these improvements gives the average access time gain
of the optimized WFTAl6 XROM over the nonoptimized WFTALl6
XROM. Speed improvements for any XROM will ultimately
depend on how the worst-case path through the XROM is
affected by the optimization routine. The WFTAl6 XROM did
not achieve a significant gain in speed because the
worst-case wordline and bitline capacitances were not
substantially improved by the optimization procedure.

Yield. The chip yield improvement that the
optimized XROM will provide is difficult, if not impossible,

to gquantify. A number of factors such as final chip size
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Table IV-5 XROM Speed Improvement.

and area, total number of devices, fabrication process, and
¥ many others will have a great impact on the WFTA chip's

. yield. It is, however, easily seen that the significant
decrease in the number of active devices, drain implants,

= and connections will result in an improvement in the total

chip yield. 1t is expected that the yield improvement for

certain type defects will be at least proportional to the

+ & 4 0
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reduction in transistors and active drain area. For the

WFTA16 XROM, there was a 40 percent decrease in transistors,
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and a 60 percent decrease in active drain area. These
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reductions should have a positive effect on total chip
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My 1. The sense amplifier array. The sense amplifier's cell
'}% configuration is determined by both minimization
programs. The "Placement" program determines if the

e
WAy
.‘ N

W

<
JEﬁ o Automatic Layout of the XROM

*.h ‘.‘.-

v . : .

" Generating XROM Caesar Files. The need to automatically
é.i generate the personalization cell layout for the XROM was
‘Zﬂ explained in the first section of this chapter. After the
.‘ .‘}.

1935 . . . }
'i) XROM personalizations have been optimized for the desired

k@ parameters by the two minimization programs, it only remains
L )

:Hf to output the optimized configuration to some layout

X

XV description.

{ﬁf; Since the WFTA chips were being designed with the Caesar
e

Ry interactive design software, Caesar files were written to
,,‘h_:'

'gu describe the XROM personalizations.

E‘ The approach taken in generating these output Caesar

%} files was to use cell calls for each personalized XROM cell

: (; as stored in the "Drains" results. There are four major
*&ﬁ XROM areas that require personalization as determined by the
1295
%% "Placement"” and "Drains” programs. These are:

;,
2
\;\

;E sense amplifier for a given column is to be inverting or
) not. They are the column sign bits. The "Drains"
e program may or may not mirror or flip over a column-byte
T to solve the TSP. If a column-byte is mirrored, the
-%}: sense amplifier must compensate by rerouting the column
?:; bit lines. Thus, four different functional type sense
o amplifier cells must exist to be called.
P
A 2. The PLA wordline decoder. After the "Drains" program
{Lﬂ solves the TSP for all rows of the XROM, the correct
*ﬂf addresses must be personalized on the corresponding
VO wordlines in the PLA decoder. Due to the unique
J; polysilicon personalization (described in Chapter I11I),
¢ _ two wordline bits are personalized by one Caesar cell.
(- Thus, four different types of PLA wordline decoder
o ' personalizations are required for calls in the Caesar
b file. ‘
- Iv-67
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3. The four sections of the XROM array itself. The final
positioning of the ones and zeros in the XROM obtained
from the "Placement" and "Drains" programs determine
the final XROM layout. Each XROM cell containing one
drain position and four bit positions are placed on a
bitline or address column line for every four bits in
the array output from the optimizing software. Thus,
16 unique XROM cells are needed for calls in the Caesar
file.

4. The word sign bit columns. The word sign bit results
from "Placement" and "Drains" must be placed in the
correct columns for the XROM. The same 16 XROM cell
configurations are needed for the word sign bit columns
as for the XROM array.

The XROM layout software determines the particular cell
calls to be made for the particular bit pattern produced by
the XROM optimization software. A Caesar file for each
major section described above is created. Each Caesar file
calls the proper personalization cells and transforms the
cell to the correct location in the section's layout.

The interfacing between the three programs,
"Placement,” "Drains," and "Layout", is performed by a
small program called "gen XROM". It simply declares the
global variables and calls all three programs in the proper

order.

"Layout" - Automatically Generate Caesar Files of the

XROM. The "Layout" program, like the other software

developed in this thesis effort, was written in the C

programming language. The "Layout" program generates the

following Caesar files:

1. 4 Sense amplifier arrays. Each array contains the
same number of sense amplifiers as bits in the data

word. One array is placed over each of the
corresponding XROM array groups.
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;Q' o 2. 2 PLA wordline decoder personalization arrays. One
v for the left side of both XROM subarrays and one for
| the right.
13
523 3. 4 XROM array groups.
ALY
Y 4. 2 Word sign bit columns. One for the center of each
l*) XROM subarray.
.Eﬂ The Caesar files described above can be easily used
;ﬁ: to build the XROM that will generate the original data that
>
N was read in by the "Placement" program.
_ﬁj The automatic generation of the Caesar files was
;f& successfully demonstrated for a number of test cases, and
o for the WFTA15, WFTA16, and WFTA17 XROM.
T
S The structure chart for the "Layout" program is
;Qi depicted in Figure 1IV-27. The Layout" program source
N (o listing can be found in Appendix D.
o
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V. Fabrication, Testing, and Evaluation

- Fabrication

- CMOS Fabrication. CMOS circuits can be fabricated using

\ a number of different approaches. Among the most well known

are the p-well process, n-well process, twin tub process,

~ and silicon on sapphire or insulator. A commonly used
approach is the p-well process. The p-well process starts

- with a moderately doped n-type substrate in which the

= p-channel transistors are built, and creates p-type wells in

i; which the n-channel transistors are made. The layout and

éi p-type well process cross-section of a CMOS inverter are

if shown in Figure V-1. This p-well process is the type of
;: |§' CMOS technology used in the fabrication of the integrated

; circuits presented in this thesis. The circuits were
,5. fabricated through the MOS Implementation Service (MOSIS).
> MOSIS Facility. MOSIS is operated by the Information

E Sciences Institute of the University of Southern California
i under the sponsorship of the US Defense Advanced Research

; Projects Agency. MOSIS is a facility that serves as an

;E interface between designers in the academic and industrial
?3 communities and the venders that fabricate the devices.
-;_ Designers submit Caltech Intermediate Form (CIF) layout

ﬁj descriptions of their chips via electronic mail to the MOSIS
3; facility. MOSIS compiles a multiproject wafer and contracts
Té with the semiconductor industry for mask making, wafer

.' )
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.\ij ﬁt% Sequencer test chip was submitted May, 1985 and was
O received in July, 1985. The XROM Address Generator test
_
'$i\ chip was submitted in September, 1985. The photomicrograph
e of the Control Sequencer test chip is included in Figure
5%
1y ) V- 2 .
«;ﬁf The WFTA16 chip should be submitted in 1986.
b
A ‘n”'
i Testing of the Control Circuitry
‘_¢ Objective. The objective of the control circuit
'x.":\‘
jﬁ: testing was to determine the functionality, speed, and
o power dissipation of the Control Sequencer and XROM Address
®
2 Generator. These results could then be used to validate,
.
Y or modify as necessary, the control circuits before they
B .;--:_
A - were integrated into the 1.2 micron implementation of the
L
WFTAL6.
[L"
b . .
%jq Problems. Since the XROM Address Generatcr test chip
ﬁ{\ was not received in time to be tested, test results were
o obtained only for the Control Sequencer test chip.
N
O, Therefore,; the following sections will only discuss the
-_\..&
LN
T testing and results of the Control Sequencer.
L
}ﬁé Equipment/Setup. The test setup for the Control
S
MRS . . . .
’x;» Sequencer chip is shown in Figure V-3. The Control
SN
;Qé' Sequencer chip was placed on a breadboard and wired
K Y according to the pinout diagram. Power was applied to the
{5‘ chip using a standard 5-volt DC supply. Many of the chip's
L)
o,
' " . \ . . .
ﬂ?ﬁ input pins were controlled using simple switches because
RSO
.:i::'l
o Wy
o
-"q*: V_ 4
Yo%,
@
'
xﬁ'ﬁ':
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fabrication, and packaging. MOSIS then delivers the
packaged integrated circuits (ICS) to the designer.

Although this method of chip fabrication was
satisfactory, two major problems were experienced. The
first was an inability to successfully transmit CIF files to
MOSIS from AFIT. Some fabrication submission dates were
missed when test chip CIF files failed to arrive at MOSIS.
It is still not known why these failures occurred. The
second problem is that MOSIS contracts numerous companies to
fabricate the ICs and each has its own process parameters.
Therefore, the speed of the circuit as tested may be
significantly different from the speed that could be
achieved with a different fabricator.

Process and Parameters. The test circuit chips of the

Control Sequencer and XROM Address Generator were designed
and fabricated using a scalable, 3 micron, CMOS process.

The scalable process facilitates processing the same circuit
layouts (except pads) at both 3 microns and 1.2 microns.
Thus, no major cell changes are needed in transitioning to
the 1.2 micron implementation of the WFTALl6.

A typical set of SPICE parameters for the 3 micron CMOS
process is given in Appendix E. Ranges of parasitic
capacitances for the 3 micron CMOS devices are given in
Appendix F.

Submissions. Two control test chips were submitted for

fabrication during the WFTA16 design phase. The Control

e ._.\‘“ .
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: Photomicrograph.
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they operated asynchronously or because they stayed at one
level during a test.

When performing static, functional tests on the circuit,
push button switches were utilized to generate the two clock
phases, phi 1 and phi 2. When performing dynamic testing
for speed, a programmable, eight-output, 50 MHz, signal
generator was used to generate a two phase, non-overlapping
clock signal.

Output signals were observed using 1 GHz and 80 MHz
oscilloscopes. The test setup was implemented to observe
the outputs as they were driven off-chip. If the output
drivers limited the chip's speed of operation, the
programmable signal generator would be used to clock the
circuit the exact number of times to bring an output signal
to a pad and stop. At this point, the outputs could be read
to see if the circuit functioned to speed. This approach
can be used since the Control Sequencer's output signals are
not driven off-chip in the WFTA processors.

Procedure. A functional block diagram of the Control
Sequencer test chip is shown in Figure V-4. Due to the
relative simplicity of the Control Sequencer's operation
(described in Chapters II and III), a straightforward test
procedure was used. With power and clock signals applied to
the chip, the operate line was raised, and the nine output
pulse trains were observed for proper functiocnality at the

output pins. As long as the continue input was high, the

-------
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vy .ﬁ@ outputs were to be periodic every 32 clock cycles. The

- three-bit, scale factor input was changed and the pulse

vﬁj widths of the output signals (especially those that are a
;E§ function of scaling) were observed for proper functionality.
?;J This procedure was followed for both low speed/static
gé and high speed/dynamic testing. If proper functionality

Eﬁ could not be achieved for the chip, numerous controllability
W and observability signals could be exercised to help

}; ascertain the problem with the control circuit. Test

E} vectors could be loaded into the ring counter using the
':: start_bit pin, and the PLA results read out from either the
1:5 output pads or numerous probe pads placed on the chip. The
?: bit_bottom pin and probe pads could be used to see if the

' (; bit was propagating down the ring counter. These and a

%; number of other options were designed into the test chip.
E. Results. The oscilloscope traces for a worst-case
i)‘ output from the Control Sequencer are shown in Figure V-5.
Fg These traces show the Control Sequencer operating at 50 MHz
Hﬁ for the non-overlapping clock (left), and 60 MHz for the phi
. 1-phi 2 overlapping clock signals (right). The output

ij waveforms are shown above the clock waveforms. The top

iﬁ output waveform is the output of a set/reset flip-flop

i& (inverted) whose reset input is propagated through the
;?; worst-case PLA path. The lower output waveform is the

(-
’;: bit_bottom signal (inverted) which goes high each time the
:5 R ring counter bit is passed back toc the first MSFF in the

ié w chain.

)
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"E aﬁg- The divisions for the clock waveforms of Figure V-5 are 5 nS
:‘ in duration. The divisions for the Control Sequencer output
{ﬁ and bit_bottom signal are 200 nS. Notice that there are 32
i? clock cycles between pulses for the output signal and bit_
‘{: bottom signal.
ﬂg The available signal generator could only produce clock
tf waveforms of up to 50 MHz. Thus, in order test the circuit
- at higher speeds, the time between the rise of phi 1 and the
fi fall of phi 2 was decreased. The time between the rise of
,fg phi 2 and the fall of phi 1 can be extended without biasing
:. the results since that portion of the clock is only used to
i% propagate the signal into small phi 2 latches, not to drive
g; the signal out to the PLA or chip. By decreasing the

‘ f; separation of the rise of phi 1 to the fall of phi 2 down to
;% | 16 nS, a 60 MHz clock rate was approximated. Higher clock

‘: frequencies could not be achieved since the overlap of the
i). two-phase clock signals became unacceptable above 60 MHz.

;é The power consumption of the chip was 6.6 mW for static
'jﬁ power dissipation, and 39.7 mW for dynamic power dissipation
() at 50 MHz. A portion of both power measurements is

iﬁ attributable to a design error that resulted in the shorting
>§3 of two signal nodes and the floating a large inverter gate.
.
b Evaluation of the Control Circuitry
ig Control Sequencer. The Control Sequencer test chip
,;é demonstrated that the arithmetic/on-chip control logic
:r& éﬁ: operates properly at speeds in excess of 60 MHz. These
R
o v-10
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results exceed the design goals of the 3 micron imple-

mentation of the Control Sequencer. The Control Sequencer's
ability to operate at the demonstrated clock speeds combined
with its low power consumption (under 40 mW) and small
layout area (1000 x 2400 lambda) make it an exceptional
solution to the arithmetic control requirements. In
‘addition, the Control Sequencer can be easily redesigned if
necessary by simply repersonalizing the circuit's PLA. The
Control Sequencer's MSFFs that include the Scan-in/Scan-out
test circuitry will eventually enable Automatic Test
Generation Equipment (ATGE) to easily determine which WFTA
processors are fully functional and which have fabrication
errors.

XROM Address Generator. The XROM Address Generator

circuit is more difficult to evaluate since the test chip
was not received in time to test its speed and
functionality. However, the circuit's design and SPICE
simulations show that it should function properly at clock
speeds over 55 MHz for the 3 micron process. The XROM
Address Generator circuit shares the same ease of redesign
and testability features as the Control Sequencer since the
contents of the XROM can be automatically reperscnalized if
necessary, and since the XROM's MSFFs contain the same type
test circuitry as the Control Sequencer MSFFs. Finally, the

XROM Address Generator design fits in the available chip

area as discussed in Chapter III.




UL el et s S AU A" S e A ‘Al e - A < e~ ot .‘T

VI. Conclusions and Recommendations

Conclusions

In this thesis, two circuits to control the arithmetic

and address generation circuitry of a high performance VLSI
WFTA processor at speeds over 50 MHz were designed,
simulated, and implemented. A Control Sequencer/PLA
circuit was developed to control thé on-chip circuitry, and
an XROM Address Generator circuit was developed to produce
the proper sequence of 1/0 addresses. Both circuit layouts
were designed and submitted for fabrication in 3 micron
CMOS. Only the Control Sequencer test chip was received in
time to be tested. Test results obtained for the Control

Q‘ Sequencer show proper functionality at clock speeds of over
60 MHz. Although, the XROM Address Generator circuit was
not tested, SPICE simulations show that this circuit can
operate at clock speeds in excess of 55 MHz. Both circuit
designs demonstrated the potential to successfully control
the WFTA processors' arithmetic and address generation
circuitry in terms of functionality, area, speed, and

\3 power.

;1 The control circuitry for the WFTA processors was also

shown to be a viable solution in terms of the off-chip

;; interface requirements. An Interface Chip was proposed to

ii coordinate the operation of the WFTA processors in

calculating the DFT assigned by a host processor. A
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general discussion of the control signal requirements and
implementation advantages of this approach have been
outlined.

A software package that produces an automatic layout of
an optimized XROM Address Generator circuit was designed,
coded, tested, and utilized. The optimization software
uses row and column sign bits and a graph partitioning
algorithm to reduce the number of transistors in the XROM.
The software then reduces the number of drains in the XROM
by reordering its rows and columns in a manner determined
by an algorithm that provides a near-optimal solution to
row and column Traveling Salesman Problems. The reduction
in the number of transistors and drains within the XROM
results in an improvement in the XROM's speed, yield, and
power consumption. The automatic personalization and
layout of the XROM helps to ensure the correctness of the
final design.

The realization of the WFTA control circuit designs has
its primary importance in the contribution it makes toward
achieving the much greater goal of implementing a PFA
processor capable of computing 4080-point DFTs at a rate of

over 8300 Hz (Taylor, 1985).

Recommendations

The following recommendations are proposed regarding
future action:

1. Further testing and modificaticn of the control
circuits for the WFTAl6 should be pursued. More

VIi-2
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extensive test results for both the Control Sequencer
and XROM Address Generator circuits are required before
a complete WFTAl6 processor is submitted for
fabrication in the 1.2 micron process. As the control
circuit testing and necessary modifications are
pursued, continued verification of the WFTAl6 timing
diagram and module interfaces should be accomplished.

2. The complete timing diagrams for the WFTA1lS and WFTAl7
processors must be developed, and the control circuits
constructed from them using the cells presented in this
thesis. Implementation of the WFTA1l5 and WFTAl17 should
involve relatively minor revisions to the Control
Sequencer and XROM Address Generator once the timing
diagram is finalized.

3. The requirements for the Interface chip must be fully
investigated and circuit functions fully defined. The
Interface chip must then be designed and fabricated in
order for the total PFA processing system to be
complete.

4. The software that produces an automatic layout of an
optimized XROM should be validated and generalized. A
menu-driven, front-end software module should be added
to allow a user to choose the size and layout
configuration of the XROM at run time. In addition to
the front-end module, some modifications to the
existing software are required such as the use of
dynamic memory allocation and reformatting some of the
data structures that rely on the XROM using a
particular sized multiplexer (4 to 1) on top of the
XROM array and between the MSFF banks and address
buses.

Other, more general, recommendations for future action

regarding the realization of the WFTAl6 and PFA processors

are given in Taylor (Taylor, 1985: Chapter 6).
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.~'.': APPENDIX B "PLACEMENT" CODE

N _:{ /*‘k**********************************************************************
1% * *
e * *
ey * DATE: 1 DEC 1985 *
'._) * VERSION: 1.0 *
3 * *
\'_{« * TITLE: PLACE/DEVICE MINIMIZE ROUTINE *
R * FILENAME: PLACEMENT.C *
,": * COORDINATOR: CPT R W LINDERMAN *
W * PROJECT: XROM OPTIMIZER *
) * OPERATING SYSTEM: UNIX V 4.2 *
. * LANGUAGE: C *
o * USE: included in gen_XROM.c *
o * CONTENTS: *
a0 * addr_gen( ) *
Sy * exp() *
® * placement() *
* column() *
. * build_cor_matrix() *
* col_swap() *
L - * word() *
Lo * putaddresses() *
. o * array_count() *
A * word_byte_count() *
v W * flipbyte() *
e * setwordbit() *
o x f1lipword() *
> * determine_costs() *
®) * movcol () *
A * compare_save() *
* partition() *
OO * k_and_1() *
A * calc_D() *
vy * Gmax ( ) *
(@ * build_garray() *
o * high_gn() *
0% * Recalc_D() *
A, * *
4 * FUNCTION: This program places bits in an XROM and attempts *
B * to minimize the total number of transistors in *
.t: * the XROM array by using sign bits and applying *
\.:.'j * the Kernighan & Lin Graph Partitioning Algorithm *
* (Kernighan,B W and S Lin, "An Efficient Heuristic *
.- * Procedure for Partitioning Graphs",Bell System *
o * Tecnical Journal,49: 291-308 (1970). *
Vo * The results are passed to the DRAINS.C program *
e * for drafn minimization. *
. o * *
:-':_: 7. ************************************************************************/
/\J:_




:-' 3

%

\.,

S

i .

- #include “"stdio.h"

s

o #define COLS 48

e #define ROWS 144

Rr 2 #define GROUPS 4
d #define DATAWIDTH 12

. #define OUT_SIZE ROWS*GROUPS*DATAWIDTH

[, */

» #define IN_SIZE ROWS*GROUPS*8

- #define KR_L_TIMES 3
& f#idefine KR_L 1

1 #define FIRST 0

ia #define SECOND 1

,*E #define BIG_NUMBER 100000000

char out_array(];

. char word_sign_bit(];
- int col_sign_bit{];
B int carrayl(};

e int costs[COLS][COLS];

ﬁ}i int AOones([COLS] [ROWS];
- int AONones([COLS] [ROWS];
- int BigD[2](8];
= int DICOLS];
ot int g[COLS/2);
2 unsigned in_array[IN_SIZE);

int signs[COLS];
char hold{COLS] [ROWS];

ko int saved8(COLS];
T int savel_24(COLS/2};
- int save2_24[COLS/2];
- int last48E;
. int lastl _24E;
<Y, int last2_24E;
o
/*********************************t**************************************
.- * *
N * *
w3 * DATE: 1 DEC 1985 *
e * VERSION: 1.0 *
- * k 4
- * NAME: ADDR_GEN *
* DESCRIPTION: *
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This module reads in the data to be placed in the XROM, *
and tries every possible addressing scheme in order to *
minimize the number of ones in the array. After a *
particular addressing scheme is applied, two methods of applying
the sign bits are performed for each address placement,
The first method performs the following in the given order:
the column sign bits are set,
the Kernighan and Lin graph partitioning algorithm
is applied to the column groups,
and then the row sign bits are applied.
The second method performs the same functions in a different
order as follows:
the Kernighan and Lin graph partitioning algorithm
is applied to the column groups,
the row sign bits are applied,
and then the column sign bits are set,

The addressing scheme and column arrangement, and method
that yields a minimum number of ones is used
for the next step (L_and_K TSP algorithm) and saved.

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: in_array, carray, out_array

GLOBAL VARIABLES CHANGED: 1in_array, carray

FILES READ: ADDRESSES

FILES WRITTEN: scoutput

HARDWARE INPUT:

HAROWARE OUTPUT:

MODULES CALLED: exp, placement, column, col_swap, word
array_count,build_cor_matrix

CALLING MODULES: gen_XROM

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ % % % % % % % % X% M % % % % % % % % ¥ X % % ¥ M N X % ¥ M X M ¥ ¥ % ¥ *

% % % % % % % % % % % % % % % % W % % % % % % % % ¥ % % ¥ % * *

************************************************************************/

addr_gen()

{

T int totalones;

e int i;

g int leastones;

el int a,b,c,d;

' int aa,bb,cc,dd;

int sA,sB,sC,sD,sE,sF,sG;
int index;

.
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- ]
R SENGA int method;
AR int pla(4];
- int scarray(COLS];
N char out_save[OUT_SIZE];
.';:‘
b FILE *fp, *fopen();
o 3
- fp=fopen("ADDRESSES","r");
for (1=0;1<=IN_SIZE-1;i++)
N fscanf(fp,"%u",&in_array(i]);
'{3 fclose(fp):
} leastones = BIG_NUMBER;
ﬁﬁf for (aa=2;aa<=8;aat+)
- {
R a=exp(2,aa);
‘ for (bb=2;bb<=8;bb++)
2 {
b=exp(2,bb):
if (al=b)
for (cc=2;cc<=8;cc++)
{
" index=0;
Q'. c=exp(2,cc);
- if ((at=c)&&(b<c))
. {
:J for (dd=2;dd<=8:;dd++)
Yo {
C) d=exp(2,dd};
b if ((a!'=d)&&(b'!'=d)&&(c'!=d))
e pla(index++]=d;
R }

placement(a,b,c,pla[0],pla[l]),pla[2],pla[3]);
< for (1=0;i<0UT_SIZE;it+)
® out_save[i] = out_arraylil;

A column();

e Nifdef KR_L

L build_cor_matrix();

-1 col_swap(0);

3 #endif

[l word();

"o totalones = array_count();

- if (totalones < leastones)

o {

[ ] method = FIRST;

VAR leastones = totalones;

G : sA=a;

[
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sB=b;
sC=c;
sD=pla[0];
sE=pla(l];
sF=pla(2];
sG=plal(3];

for (i=0;1<=COLS-1;i++)
scarray[i]l=carray(i];

for (i=0;i<0UT_SIZE;i++)

out_array[i] = out_save{i];

#ifdef KR_L

#endif

Q'

build_cor_matrix();
col_swap(0);

word();
column();
totalones = array_count();

if (totalones < leastones)

{

method = SECOND;
leastones = totalones;
sA=a;

sB=b:

sC=c;

sD=pla[0];

sE=pla(l];

sF=pla(2];

sG=pla{3];

for (i=0;i<=COLS-1;i++)
scarray[il=carray(i];

placement(sA,sB,sC,sD,sE,sF,sG);
if ( method == FIRST )

{

column();
for (1=0;1<=COLS-1;i++)

carrayl[il=scarray[i];

#ifdef KR_L

col _swap(1);
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)
fr \ word();
}
Y else
N {
- for (1=0;i<=COLS-1;i++)
‘37 carray[i]=scarrayl[i];
o Nifdef KR L
ey col_swap(1);
R #endif
£
; word();
- column();
T }
o fp=fopen(“scoutput","w");
1P
:?q fprintf(fp,“address_A %d\n",sA);
R fprintf(fp,"address_A %d\n",sB};
R fprintf(fp,"address_A %d\n",sC);
A fprintf(fp,"address_A %d\n",sD);
e fprintf(fp,“address_A %d\n",sE);
- {® fprintf(fp,“address_A %d\n",sF);
A ’ fprintf(fp,"address_A %d\n",sG);
ﬂ;; fclose(fp);
ey
N return;
}
- /****************‘k*******************************************************
AR * *
:T”_-‘:' * *
L * DATE: 1 DEC 1985 *
- * VERSION: 1.0 *
SR x *
L 2 * NAME: EXP *
T * DESCRIPTION: *
[ * This module calculates the exponent of x raised to the *
- * y power, *
-._-:._: * *
s * PASSED VARITABLES: x: argument *
[ ) * y: exponent *
RS * RETURNS: x ** y *
ot * GLOBAL VARIABLES USED: NONE *
1%
B
s -
3 B-6
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GLOBAL VARIABLES CHANGED: NONE
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: NONE

CALLING MODULES: addr_gen

AUTHOR: PAUL ROSSBACH
HISTORY:

% M % % % % % % X % ¥ *
% % X % % X % * ¥ % % %

************************************************************************/

exp(x,y)
int x;
int y;

{

int total;
int i;

total=x;
if (y<=1)
{

printf("IN EXP exponent less than 2 - ABORT\n");
exit();
}

else

for (i=2;i<=y;i++)
total=total*x;

return{total);
}

/*****************************‘k‘k*****************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: PLACEMENT
DESCRIPTION:

* % % % % * %
* % % % % % *

waia Tt atlata e e Ay o Vet et e e
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PASSED VARIABLES: a_i:
a_muxl:
a_muxl:
a_plal:
a_pla2:
a_pla3:
a_plaa:

RETURNS: NONE

GLOBAL VARIABLES CHANGED:
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

CALLING MODULES: addr_gen

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % % % X N % % % % ¥ ¥ W % % ¥ ¥ ¥ * ¥ % %

increment
increment
increment
increment
increment
increment
increment

out_array

MODULES CALLED: putaddresses

for
for
for
for
for
for
for

The Placement module receives an addressing scheme for the
XROM data and places each data bit in the correct location
in the XROM for that particular addressing scheme.

XROM address

low mux address
high mux address
pla decoder address
pla decoder address
pla decoder address
pla decoder address

GLOBAL VARIABLES USED: in_array, out_array

HWN -

% % % % % O % % % % % % % % % % % % % % % H ¥ M % %

************************************************************************/

placement{a_i,a_muxl,a mux2,a_plal,a_pla2,a _pla3,a_plad)
int a_i,a_muxl,a_mux2,a_plal,a_pla2,a_pla3,a_plaéd;

{

int word;

int addrl,addr2,addr3 addr4,addr5,addr6,addr7,addr8;

int baseaddr;

unsigned current_addr{8];
int row_count;

int i;

int baseai;

int muxl _2;

for (i=0;1<=0UT_SIZE-1;i++)
out_array([i]=0;

muxl_2=a_muxl+a_mux2;

row_count=0;
for (addr8=0;addr8<=4096;addr8 += 4096)
for (addr7=addr8;addr7<=addr8+2048;addr7 +=2048)




ad Ldedi el Al ol b i b osh G th-dh ol i Bine A on bt b o — . - wewTw WY . aad ik add anh-aad oAl o

for (addrb6=addr7;addr6<=addr7+1024;addr6 += 1024)
for (addr5=addr6;addr5<=addr6+512;addr5 += 512)
if (addr8==0 || ((addr8==4096) && (addr5==4096) ))
{
for (addrd4=addr5;addr4<=addr5+a_plad;addr4 += a_plad)
for (addr3=addr4;addr3<=addr4+a_pla3;addr3d += a_pla3)
for (addr2=addr3;addr2<=addr3+a_pla2;addr2 += a_pla2)
for (addrl=addr2;addri<=addr2+a_plal;addrl += a_plal)
{
for (baseaddr=addr];baseaddr<=(addr1+3);baseaddr++)
{
baseai=baseaddr+a_i;
current_addr([0]=in_array[baseaddr];
current_addr{1])=in_array{baseai];
current_addr{2]}=in_array[baseai+a_muxl];
current_addr(3]=in_array{baseaddr+a_mux1];
current_addr{4)=in_array[baseaddr+a_mux2]};
current_addr([5])=in_array[baseai+a_mux2];
current_addr(6]=in_array{baseai+muxl_2};
current_addr[7]=in_array[baseaddr+muxl_2];

word=baseaddr-addri;

G putaddresses(current_addr,row_count ,word);

row_count++;

return;

;"—j /************************************************************************
2o * *
* x
* DATE: 1 DEC 1985 *

* VERSION: 1.0 *

x *

* NAME: COLUMN *

* DESCRIPTION: *

* The column module determines if the column should be *

* inverted and the corresponding column sign bit set. *

- * It does this by counting all the one-bits in the column *

o * and comparing that total with half the total number of *

[} * *

bits in the column. If the number of ones is over half
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{+1), the column is inverted and sign bit set. Column
also calculates a "number of one-bits state" for each
AO/AO-not byte half that is used later to easily calculate
the distance between two columns.

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: col_sign_bit
GLOBAL VARIABLES CHANGED: col_sign_bit
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE QUTPUT:

MODULES CALLED: bytecount, flipbyte
CALLING MODULES: addr_gen

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ % % % % % % % % % % % % % M ¥ ¥ X X %
% % % 3% % % % % % % % % % % ¥ % X ¥ X W

*****************‘k**‘k***************************************************/

column()

{

int count;
int totalcount;
int i,];

count=0;
t~talcount=0;

for (i=0;i<=COLS-1;i++)

{

totalcount=0;

col_sign_bit[i]=0;

for (j=0;j<=ROWS-1; j++)
{

count=bytecount(i+COLS*j);
totalcount += count;
}
if (totalcount>=(ROWS*4+1))
{
for (j=0; j<=ROWS-1; j++)
flipbyte(i+COLS*j);

.\ LRI A SRR LR S
LR R AR AN
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R }
~ }
D return;
AN }
'
3
\
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1::: /*'k**********************************************************************
W * *
el * *
ko * DATE: 1 DEC 1985 *
\ * VERSION: 1.0 *
> * *
w7 * NAME: BUILD_COR_MATRIX *
=3 * DESCRIPTION: x
Y * The build_cor_matrix module calculates a *
p * “number of one-bits state" *
hd * for each AQ/AO-not byte half that is used later to easily *
_$§ * calculate the distance between two columns. *
: * K
o * PASSED VARIABLES: NONE *
W8 * RETURNS: NONE x
W s * GLOBAL VARIABLES USED: AOones, AONones *
- 14 * GLOBAL VARIABLES CHANGED: AOones, AONones *
= * FILES READ: *
o * FILES WRITTEN: *
T * HARDWARE INPUT: *
oy * HARDWARE OUTPUT: *
i) * MODULES CALLED: word_byte_count *
: * CALLING MODULES: addr_gen *
. * *
* AUTHOR: PAUL ROSSBACH *
* HISTORY: *
x *
* *

************************************************************************/

build_cor_matrix()
{
int i,]J;
int AOcount, AONcount;

for (i=0;1<=COLS-1;i++)
{
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for (j=0;j<=ROWS-1;j++)

{

}
}

return;

}

/************************************************************************

% % % % % % % % X % % % M % % % W % N ¥ % % X% ¥ X % % ¥ M % ¥ * *

************************************************************************/

AQcount=word_byte count(i+COLS*j,0);
AOones([i][jl=A0count-2;
AONcount=word_byte_count(i+COLS*j,1);
AONones[i][j)=AONcount-2;

DATE: 1 DEC 1985
VERSION: 1.0

NAME: COL_SWAP

DESCRIPTION:

The Col_swap module is the highest level of the Kernighan
and Lin (K_and_L) graph partitioning algorithm. It

calls the routine that calculates the cost-distance
correlation matrix for the columns, randomly partitions the
columns, calls the K_and_L algorithm, saves the best result,
and finally moves the columns to the location indicated

by the best result.

PASSED VARIABLES: final: 0: normal operation
1: puts xrom bits in best pattern
found (for addressing & k_and_1)
RETURNS: NONE
GLOBAL VARIABLES USED: carray
GLOBAL VARIABLES CHANGED: carray
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: determine_costs, partition, k_and_I
compare_save, movcol
CALLING MODULES: addr_gen

AUTHOR: PAUL ROSSBACH
HISTORY:

col_swap(final)

% % % % D % % % % X% % % O O % % % % % ¥ X % % % X ¥ N ¥ X % ¥ * X
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int final;
{

int choices[COLS);
int pulled(COLS];
- int filetemp{COLS];
. int temp;

) int i,J;

' int x,y;

3‘1 y

é". 1

= if (final==0)

{
srandom(1);

A determine_costs();
K for (i=0;i<=COLS~-1;i++)
>».

s choices[i]=i;
A
o for (1=0;i<=KR_L_TIMES-1;i++)
W {
;x{é partition(COLS,choices);
o k_and_1(COLS);
R if (i==0)
S compare_save(C0LS,0,0);
h (o else
compare_save(COLS,3,0);
. }
o for (i=0;i<=COLS-1;i++)
- choices[i]=carray[i];
= for (i=0;i<=KR_L_TIMES~1;i++)
@ {
™ partition(COLS/2,choices);

N k_and_1(COLS/2);

= compare_save(COLS/2,1,0);
T }

fﬁ; for (i=0;i<=C0LS/2-1;i++)

® choices[i]=choices[i+COLS/2];
D%

Aoy for (1=0:i<=KR_L_TIMES-1;i++)
oy {

o partition(COLS/2,choices);
0N k_and_1(COLS/2);

.-

- if (i==(KR_L_TIMES-1))

> compare_save(C0LS/2,2,1);
-7 else

AU compare_save(COLS/2,2,0);
‘-:. }

‘ ~

i } /* end final==0 if */
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NN for (i=0;i<=((GROUPS-1)*DATAWIDTH);i +=DATAWIDTH)
K for (j=0;j<=DATARIDTH-1; j++)
. if ((carray(i+j}<=(i+DATAWIDTH-1)) && (carray(i+j]>=i))
0 {
3 temp=carray[i+j];
o carray{i+jl=carray(temp];
- carray[temp]=temp;
}

! for (y=0;y<=COLS-1;y++)
% {
L pulled(yl=0;
filetemp(y]=0;
._.: }
o temp=(-1);
for (x=0;x<=COLS-1;x++)
if (carray[x])!=x)
if (pulled(x}==0)
bl movcol(x,temp);
o filetemp(x]=1;
- }
R if (filetemp[carray(x]]==0)
{

Q».O‘ movcol(carray(x],x);
‘@ pulied[carray{x]]=1;
- }
N else
L movcol(temp,x);
'.: }
A return;
:.'\
o }
~ /***************************************‘k********************************
. * *
. * "
- * DATE: 1 DEC 1985 *
.o * VERSION: 1.0 *
- * *
] * NAME: WORD *
5 * DESCRIPTION: *
.,t * The word module performs two functions. It counts the number *
"-\: * of one-bits in a row for A0 and AD-not to see which rows *
N * should be inverted, and it gives the total number of ones in *
o * the array after all rows have been checked. The rows are *
é * inverted if the number of ones is over half as with the columns.*
- " * The total number of ones is kept as a running total updated *
. * after each row is checked. *

...............
..........
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PASSED VARIABLES: NONE

RETURNS: grandtotal: total ones in array = answer
GLOBAL VARIABLES USED: word_sign_bit

GLOBAL VARIABLES CHANGED: word_sign_bit

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: word_byte_count, flipword, setwordbit
CALLING MODULES: addr_gen

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % % % N % ¥ % % X ¥ %
¥ % % % % % % % X W X % ¥ X X %

*****************************‘k******************************************/

word( )

{

int count;

int totalcount:
int 1,J;

int word;

int AON;

int rowbyte;
int wordbyte;

for (i=0;i<=ROWS-1;i++)

{

rowbyte=COLS*i;

word_sign- bit[i]=0;

for (word=0;word<=3;word++)
{
wordbyte=DATAWIDTH*word;
for (AON=0;AON<=1;A0N++)

{
totalcount=0;
for (j=0;j<=DATAWIDTH-1; j++)
{

count=word_byte count((wordbyte+j+trowbyte),AON);
totalcount += count;
}
if (totalcount>=(DATAWIDTH*2+1))
{
for (j=0; j<=DATAWIDTH-1; j++)
flipword((wordbyte+ j+rowbyte),AON);
setwordbit(i,(word*2+A0N)):
}
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/************************************************************************
*
*
*x
x
x
*
*
x
*
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

************************************************************************/

DATE: 1 DEC 1985
VERSION: 1.0

NAME : PUTADDRESSES

DESCRIPTION:

The putaddresses module performs the placement of the

bits for a particular row and word (there are 4 words of
DATAWIDTH per row) from the 8 data entries in address

array (addrarray). Each row of the XROM with a 4 to 1
Demuitiplexer on top of the bit lines has eight different
data values per row if the XROM only output one dataword at a
time. Thus, eight data entries are Toaded into the row-word.

PASSED VARIABLES: addrarray: the 8 data entries to place
row: the current row
. word: the group on that row ( 1 to 4)
RETURNS: NONE
GLOBAL VARIABLES USED: out_array
GLOBAL VARIABLES CHANGED: out_array
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE QUTPUT:
MODULES CALLED: NONE
CALLING MODULES: placement

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ % % ¥ N % o % X N % N ¥ ¥ X X % X % % N % % ¥ ¥ ¥ % ¥ % ¥ ¥ %

putaddresses(addrarray,row,word)
int row;
int word;
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unsigned addrarray(8];

{

int inc,i;

int bit;

int rowbyte;
int wordbyte;
int byte;

int mask;

int bitloc;
unsigned calc;

wordbyte=word*DATAWIDTH;
rowbyte=row*COLS;

for (inc=0;inc<=7;inc++)

{

bitloc=7-inc;

for (i=DATAWIDTH-1;i>=0;i--)

{
bit=((addrarray[inc]>>(DATAKIDTH-1-1)) & (0001));
if (bit !=0)
‘a {
\s byte=rowbyte+wordbyte+i;
mask=1;
mask=(mask<<(bitloc));
calc=out_array{byte];
calc=(calc & 0377);
calc=(calc mask);
out_array([byte]=calc;
}
}
}
.
J!, return;
Ef:f:: }
[
r." /***********************************************************************‘k
E,‘E: * *
o * *
kjﬁ * DATE: 1 DEC 1985 *
;&: * VERSION: 1.0 *
N'::; * *
e x NAME: ARRAY_COUNT *
YA * DESCRIPTION: *
oy ’ * This module counts the total number of ones in the out_array o
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PASSED VARIABLES: NONE

RETURNS: totalcount

GLOBAL VARIABLES USED: NONE
GLOBAL VARIABLES CHANGED: NONE
FILES READ: NONE

FILES WRITTEN: NONE

HARDWARE INPUT: NONE

HARDWARE OUTPUT: NONE

MODULES CALLED: bytecount
CALLING MODULES: addr_gen

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % X% W % N X X % X % % %
% % % % % % % W % N % M % N %

************************************************************************/

array_count()

int count;
int totalcount;
int i;

count=0;

totalcount=0;

for (i=0;i<0UT_SIZE;{i++)
{

count=bytecount(i);
totalcount += count;

}

return(totalcount);

}

/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: BYTECOQUNT
DESCRIPTION:
This module counts the number of ones in a single byte of the

* % % % X X ¥ %
* % % % % % % %




S * out_array *
* ASSED VARIABLES: byte *
* RETURNS: count *
* GLOBAL VARIABLES USED: out_array *
* GLOBAL VARIABLES CHANGED: NONE *
* FILES READ: NONE *
* FILES WRITTEN: NONE *
* HARDWARE INPUT: NONE *
* HARDWARE OUTPUT: NONE *
* MODULES CALLED: NONE *
* CALLING MODULES: array_count *
x x*
* AUTHOR: PAUL ROSSBACH *
* HISTORY: *
* *
* *
************************************************************************/
bytecount(byte)
int byte;
{
‘C int count;
L4 unsigned calc;
calc=out_array([byte];
calc=(calc & 0377);
for (count=0;calc!=0;calc>>=1)
if (calc & 001)
count++;
return(count);
}
/***t********************************************************************
x* *
* *
* DATE: 1 DEC 1985 *
o VERSION: 1.0 *
* *
* NAME: WORD_BYTE_COUNT *
o * DESCRIPTION: *
-~ * This module counts the number or one-bits in the AO or AQ *
B-19
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(AO/AO-not) is returned.

RETURNS: count of ones in byte half
GLOBAL VARIABLES USED: out_array
GLOBAL VARIABLES CHANGED: out_array
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE QUTPUT:

MODULES CALLED: NONE

CALLING MODULES: word

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % X % % % % % ¥ % ¥ X N ¥ ¥ ¥ ¥ X X *

word_byte_count(byte ACorAON)
int byte;
int AOorAON;

{

int count;
unsigned calc;

if (AOQorAON)
{
calc=out_array[bytel;
calc=(calc & 00146);
}
else
{
calc=out_array(byte];
calc=(calc & 00231);
}
for (count=0;calc!=0;calc>>=1)
if (calc & 01)
count++;
return(count);

}

- e

-not half of one byte of the out_array. The module is used
for determining if a row (AO/AO-not) should be inverted,
The masking patterns are as such to align with the actual
bit locations of the XROM. The count for a single byte

PASSED VARIABLES: byte: the index for the out_array
AOorAON: 0 or 1 - which half of byte

. . -
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P . /*****************************************‘k**********************fz*******
) . -
?'s: * DATE: 1 DEC 1985 .
P * VERSION: 1.0 *
‘N » * |
¥ ';-’. |
Wiy * NAME: FLIPBYTE *
* DESCRIPTION: *
et * This module simply inverts an entire character byte of *
- * the out_array. The byte number that is to be inverted *
* is sent to the module. *
e * *
e * PASSED VARIABLES: byte: index for out_array *
ry * RETURNS: NONE *
aKh * GLOBAL VARIABLES USED: out_array *
* GLOBAL VARIABLES CHANGED: out_array *
~ * FILES READ: *
o * FILES WRITTEN: *
. * HARDWARE INPUT: *
(o * HARDWARE OUTPUT: *
- * MODULES CALLED: NONE *
2 * CALLING MODULES: column *
- * *
" * AUTHOR: PAUL ROSSBACH *
< * HISTORY: *
* *
- * *
.‘:-\ ******************************‘k*****************************************/
‘_2}".1
N
L)
s flipbyte(byte)
-j_.:j int byte;
- {
SRS unsigned flip;
L
O flip=out_array{byte];
ey flip=(flip & 0377);
AN flip=(f1ip~(0377));
e out_array(byte]l=flip;
s return;
:}-::
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:‘: /************************************************************************
by * *
|c * *
X * DATE: 1 DEC 1985 *
b * VERSION: 1.0 *
,\L: * *
s * NAME: SETWORDBIT *
" * DESCRIPTION: - o
:’ * Setwordbit sets the proper word sign bit for the section *
N * of the XROM that it is sent., For each row there are 8 word *
[ * sign bits in the 4 to 1 demultiplexed XROM. The 8 word *
" * sign bits are stored in one character byte of the word_ *
A * sign_bit array. Thus, bit level operations are needed to *
- * set each sign bit. *
‘._ * *
= * PASSED VARIABLES: byte: word_sign_bit index *
- * bit: which sign bit in the byte *
3 * RETURNS: NONE *
A * GLOBAL VARIABLES USED: word_sign_bit *
= . * GLOBAL VARIABLES CHANGED: word_sign_bit *
‘ Qe * FILES READ: *
e * FILES WRITTEN: *
ﬁ§ * HARDWARE INPUT: *
‘o * HARDWARE OUTPUT: *
) * MODULES CALLED: *
* CALLING MODULES: word *
, * *
N * AUTHOR: PAUL ROSSBACH *
- * HISTORY: *
:x * *
o * b
_‘-: *********************************‘k**************************************/
o
" setwordbit(byte,bit)
~7 int byte;
‘M int bit;
@
[ {
L unsigned calc;
o int mask;
o mask=1;
e mask=(mask<<(7-bit));

calc=word_sign_bit{byte];
calc=(calc & 0377);




calc=(calc”mask);
word_sign_bit{byte]=calc;

return;

}

/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: FLIPWORD

DESCRIPTION:

Flipword performs the same function as "flipbyte" except
that it only inverts half of the byte. The AO bits of a
byte are inverted if called with a 0 as the second argument.
It inverts the AO-not bitss if called with a 1 as the second
argument,

PASSED VARIABLES: byte: out_array index
AOorAON: 0 or 1 - which word of byte

RETURNS: NONE

GLOBAL VARIABLES USED: out_array

GLOBAL VARIABLES CHANGED: out_array

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: NONE

CALLING MODULES: word

AUTHOR: PAUL ROSSBACH
HISTORY:

o
% % % % % % X N % % % % o % % % % % % % % % ¥ % % ¥ ¥ X %

% 2 X % % % X % % N % % ¥ X X N % ¥ X ¥ ¥ N ¥ X X ¥ ¥ X *

LY ™
1,1{(,:"
PR

2

s
i

************************************************************************/

el
l' . |4
P 1

i f1ipword(byte, AOorAON)
o int byte;
b int AOorAON;

{
unsigned flip;
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if (AOorAON==0)
{
flip=out_array([byte];
flip=(flip & 0377);
flip=(fl1ip~(0231)};
out_array[byte]=flip;
}

else
{
flip=out_array([byte];
flip=(flip & 0377);
flip=(f1ip~(0146));
out_arrayibyte]=flip;
}

return;
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DATE: 1 DEC 1985
VERSION: 1.0

/
*
x
*
*
*
* NAME: DETERMINE_COSTS

* DESCRIPTION:

* Determine_costs calculates the correlation distance

* between all columns of the XROM for one-bit removal.

* The distance matrix is upper-trianguliar since the distances

* are symmetric. The lower triangle is filled in also for future
* use. The AO_ones and AON_ones arrays calculated in the column
* module are used to determine the column’'s correlation. The

* cost difference is the number of ones that can be removed if

* two columns are placed under the control of a single sign bit,
* The cost distance between two columns for one-bit removals

* is based on the number of one-bits in the A0 and AO_not words

* for each row.

*

*

*

*

*

*

*

*

*

*

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: AQones, AONones, costs
GLOBAL VARIABLES CHANGED: costs

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: NONE

¥ % % % X% % % % % % % % % % % % % % % % X ¥ ¥ X ¥ ¥ % *
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oy * CALLING MODULES: col_swap *

"- X * *

i * AUTHOR: PAUL ROSSBACH *

* HISTORY: *
* 1 4

o * *

‘,‘L 'k***********************************************************************/

he

T

hj

4
s determine_costs()
1o

{

o int AOvector;

J int AONvector;

) int i,x,y;
® int AOtotal;
o int AONtotal;
.
o
o
) -
R for (x=0;x<=COLS-1;x++)

» for (y=0;y<=COLS-1;y++)

r.? if (x>y)
e {
'~ AOvector=0;

v AONvector=0;
(5! for (i=0;i<=ROWS-1;i++)
N {
o AOtotal=AQones{x][i] + AOones[y][il];
) AONtotal=AONones[x][i] + AONones([yl[i];

if (AOtotal < 0)

ot AOtotal=(-AOtotal);

K. if (AONtotal < 0)

® AONtotal=(-AONtotal);

- AOvector=AOvector+AQtotal;
:: AONvector=AONvector+AONtotal:
T;; costs[x])[y)=A0Ovector+AONvector;
L J

s }

1S

x.

L for (x=0;x<=COLS~1;x++)

- for (y=0;y<=COLS-1;y++)

v, if (x<y)

g& = costs[x][yl=costs{y}(x];
S return;

"

o
- .:"

v
e s
1 1

'''''''''''''
0




/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: MOVCOL
DESCRIPTION:
Movcol moves the columns of the XROM in order to place them
in the locations determined by the K_and_L graph partitioning
algorithm. The module can move columns in three ways.

a. from one column position in the XROM

to another.
b. from one column postion to a holding area.
c. from the holding area to a column position.

% % % % M % % % X% % % % % % *

PASSED VARIABLES: from: column index number or -1(for temp area)*
to: column index number or -1(for temp area)¥*

® % % % % % ok % % % % % % % M O % % O % % % % % % % % ¥ % ¥ *

RETURNS: NONE *
‘ GLOBAL VARIABLES USED: col_sign_bit, out_array, hold, signs *
G:' GLOBAL VARIABLES CHANGED: <col_sign_bit, out_array, hold, signs *
FILES READ: *
FILES WRITTEN: *
HARDWARE INPUT: *
HARDWARE OQUTPUT: *
MODULES CALLED: NONE *
CALLING MODULES: col_swap o
*
AUTHOR: PAUL ROSSBACH *
HISTORY: *
*
*
************************************************************************/
movcol(from,to)
int from;
int to;
o8 {
JEN
b
tg}:I int index;
e
® o 0) && (from>=0))
S Y, if ((to>=0) rom>=
M\': h S {
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L ' col_sign_bit[to]=col_sign_bit{from];
: for (index=0;index<=ROWS-1;index+t++)
out_array[to+COLS*index]=out_array[from+COLS*index];

. }
X if (to<0)
- {

signs[froml=col_sign_bit([from];
! for (index=0;index<=ROWS-1;index++)

N hold[from] [index]=out_array{from+COLS*index];
. }
- if (from<0)

{

col_sign_bit([to]=signs[carray(to]];
for (index=0;index<=ROWS-1;index++)
out_array[to+COLS*index])=hold[carray[to]][index];

(.
;i return;
8 }
L}
e,
‘ 6.{‘. /********************************************‘k***************************
* *
* *
* DATE: 1 DEC 1985 *
* VERSION: 1.0 *
* *
* NAME: COMPARE_SAVE *
* DESCRIPTION: *
L * Since the K_and_L algorithm attempts to minimize the *
- * ones in the XROM by partitioning the columns numerous *
N * times, a mechanism is needed to keep track of which solution *
; * was the best. Compare_save does the for this first cut in *
* half of the XROM, and for each half into quarters. The *
; * module will also ypdate the carry array with the best solution *
- * so far when called. *
- * *
" * PASSED VARIABLES: size: COLS or COLS/2 partition size *
- * time: 0,1,0or 2 - try number for a size *
¥ * done: flags the last try for the XROM *
o * RETURNS: NONE *
o * GLOBAL VARIABLES USED: costs, carray *
. * GLOBAL VARIABLES CHANGED: carray *
N * FILES READ: *
3 * FILES WRITTEN: *
) * HARDWARE INPUT: *
LT * HARDWARE QUTPUT: *
N ~ * MODULES CALLED: NONE *
'~
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AN
S * CALLING MODULES: col_swap *
v » * *
¥ * AUTHOR: PAUL ROSSBACH *
9 * HISTORY: *
B \‘ * *
N * *
% \: ************************************************************************/
.
-:: compare_save(size,time,done)
- int size;
: int time;

g int done;

ﬂi {

o int Etotal;

° int x,y,i;

- int link;
- . Etotal=0;

Qs

, if ( time==0 )
- {

3 1ast48E=BIG_NUMBER;
[ lastl 24E=BIG_NUMBER;

v last2_24E=BIG_NUMBER;

}

f for (x=0:x<=(size/2-1);x++)
. - for (y=size/2;y<=size-1;y++)

- {

RN link=costs{carray(x]]{carray{yl];

2 Etotal=Etotal+link;
[-.< }

1
E‘: 1: (size==COLS)

~

- if (Etotal<last48E)

for (i=0;1<=COLS-1;i++)
o saved8(il=carray(i];

- else

- for (1=0;i<=COLS-1;i++)
o carray[i]=saved8(i];
L }

! - else

ook {
- if (time==1)
=~ B-28
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Etotal<lastl_24E)

TR

; for (i=0;i<=COLS/2-1;i++)

N savel _24(i)=carray(i);

- }

L else

N {

;«5 if (Etotal<last2_24E)

"y for (i1=0;1<=COLS/2-1;1++)
2 save2_24[i]=carray(i];

oY }

7 }

e . if (done==1)

for (i=0;i<=COLS/2-1;i++)

- {

o carray(il=savel 24(i];
- carray[i+COLS/2)=save2_24(i];
o5 *
i

® return;
S8
g d
(o

/EAEN /************************************************************************
b * *
:':j(, * *
hN * DATE: 1 DEC 1985 *
N * VERSION: 1.0 *
O * *

¥ * NAME: PARTITION *
,ﬁﬁj * DESCRIPTION: *
jﬁ? * This module randomly partitions a group of columns into *
L7 * two groups of half the “size". The initial partition *
o * is used as a random starting point for the K_and_L *
' * algorithm. The columns are partitioned through the column *
R * number's place in the carray array. *
* *
“;ﬁ * PASSED VARIABLES: size: COLS or COLS/2 partition size *
?J{ * choices: the column numbers to partition *
A s * RETURNS: NONE *
§ * GLOBAL VARIABLES USED: carray *
s * GLOBAL VARIABLES CHANGED: carray x
e * FILES READ: *
i * FILES WRITTEN: *
e, * HARDWARE INPUT: *
Yoo * HARDWARE OUTPUT: *
qu ez, * MODULES CALLED: NONE *
NI * CALLING MODULES: col_swap *
If;. ' * o
3

::l' B-29
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AUTHOR: PAUL ROSSBACH
HISTORY:

% X% % %
* % % %

************************************************************************/

partition(size,choices)
int size;
int choices[COLS];

int 1,j.x;
int value;
long random();

i=0;
x=0;
j=size/2;
| while ((i<=(size/2-1)) && (j<=size-1))
Py {
e value=random();
value=(value & 01);

if (value)
carray(i++]=choices[x];
else
carray[j++]l=choices(x];
X++
}
if (x<size)
e if (i<=(size/2-1))
. while (x<=size-1)
" {
- carray[i++]=choices{x];
L X++
}
else
while (x<=size-1)
{
carray[j++]=choices[x];
X++:
}
ff\
- return;
B-30
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)3:::::' /************************************************************************
L) * *
) * *
[ * DATE: 1 DEC 1985 *
:: * VERSION: 1.0 *
A * *
Y * NAME: K_AND_L *
s * DESCRIPTION: x
.‘ * This module implements the heart of the Kernighan and *
% * Lin graph partitioning algorithm. The algorithm *
Ty * continues to look for a better partition *
s * until none can be found. At each iteration, "X" *
T * number of columns are swapped between column groups o
N * to improve the gain or decrease the |external costs *
hnd * -internal cost| value. When the best partition is *
A% * found, its state is saved. *
y -‘3 * *
f:.‘- * PASSED VARIABLES: size: COLS or COLS/2 partition size *
" * RETURNS: NONE *
N (.~4 * GLOBAL VARIABLES USED: carray *
- * GLOBAL VARIABLES CHANGED: carray *
- * FILES READ: *
- * FILES WRITTEN: *
- * HARDWARE INPUT: *
- * HARDWARE OUTPUT: *
* MODULES CALLED: calc_D, build_garray, Gmax *
5 * CALLING MODULES: col_swap *
.;:\': * *
' * AUTHOR: PAUL ROSSBACH *
LS * HISTORY: *
* x
N * *
B ************************************************************************/
- k_and_1(size)

> int size;
o {

S int selpairs(COLS];

¢ int kswap;

SRR int i;

_-;-:«:- N int temp;

gL

N B-31
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kswap=1;
while (kswap>=0)
{

calc_D(size);
build_garray(selpairs,size);
kswap=Gmax(size);
if (kswap>=0)

for (i1=0;i<=kswap;i++)

{
temp=carray(selpairs(2*i]];
carray([selpairs[2*i]]=carray(selpairs[2¥i+1]]; ;
carray(selpairs[2*i+1]]=temp; !
} i
}
return;

/***************‘k********************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: CALC_D

DESCRIPTION:

Calc_D calculates the Kernighan and Lin "D values”

for each node(or column) in the graph set(all columns).

A node's D value is equal to the total external link costs
minus the total internal link costs for the node.

The D is calculated for the initial partition created

by the "partition" module.

PASSED VARIABLES: size: COLS or COLS/2 partition size
RETURNS: NONE

GLOBAL VARIABLES USED: costs, BigD, D

GLOBAL VARIABLES CHANGED: BigD, D

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE QUTPUT:

MODULES CALLED: NONE

CALLING MODULES: k_and_)

¥ % % % % % % % % % % % % % % % % % % X % ¥ * X » %
* % % % % % % % % % % % % X ¥ X% N % % % ¥ ¥ ¥ ¥ ¥ *

AUTHOR: PAUL ROSSBACH




* HISTORY: *

* *
* *x
************************************************************************/

calc_D(size)
int size;

int E{COLS];
int II[COLS];
int link;

int temp;

int lo,hi;
int x,y,yy;
int i;

int jx;

lo=size/2;
hizsize-~1;

for (i=0;i<=hii++)
{
E{i]=0;
I11[(i]=0;
}
for (x=0;x<=(10-1);x++)
for (y=lo;y<=hi;y++)

{
link=costs([carray([x]])([carrayly]];
Elx]=E[x]+1ink;
Ely)=E[y]+Vink;

}

for (x=0:;x<=(10-1);x++)
for (y=0;y<=(lo-1);y++)
if (x!=y)
II[x}=1I[x]}+costs[carray[x]]([carray(y]l];
for (x=10;x<=hi;x++)
for (y=1o0;y<=hiy++)
if (x!=y)
[I{x]=11[x)+costs[carray(x]])(carray(y]];
for (i=0;i<=7;i++)
BigD{0] [1}=(-BIG_NUMBER);
for (yy=0;yy<=1;yy++)
{

y=4*yy;
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for (x=(0+lo*yy);x<=(lo-1+1o*yy);x++)
{

D(x]=E[x]-II[x];

if (D[x])>BigD[0][3+y])
{
i=3+y;
BigD(0][i]=D[x];
BigD{1][i]=x;
while ((BigD{O][i)>BigD[O)([i-1]) && (i>y))

{

for (jx=0;jx<=1; jx++)
|

temp=BigD[jx}[i];
BigD{jx] [1]1=BigD[jx][i-1];
BigD(jx][i-1]=temp;

}

i

/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME : GMAX

DESCRIPTION:

Gmax informs the k_and_1 module on how many columns(nodes)
should be swapped(as listed in the selpairs array) between
partitions. The module sums the gains found for each swap
made by build_garray. I[f a positive sum is found at anytime,
a swap will be made. The highest positive sum will indicate
how far to go (K = GXY) down the selpairs array, swapping
column pairs as indicated.

PASSED VARIABLES: size: COLS or COLS/2 partition size
RETURNS: GXY: the number of swaps to make (K)

GLOBAL VARIABLES USED: g

GLOBAL VARIABLES CHANGED: g

FILES READ:

* % % % X % % % % % % % X ¥ % X * % * *
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v * FILES WRITTEN: x

. * HARDWARE INPUT: *

{ * HARDWARE OUTPUT: x

2% * MODULES CALLED: NONE x

) x CALLING MODULES: k_and_! x

-.‘.- . * *

= * AUTHOR: PAUL ROSSBACH *
* HISTORY: *
4 *
* 4
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************************************************************************/

Gmax(size)
int size;

for (i=0;i<=(size/2-1);i++)
{
G=G+g(il;
if (G>GM)
{
GM=G;
GXY=i;
}
}
if (GM==0)
GXY=(-1);

return(GXY);

/**********‘k*************************************************************
* *
* *

-------- AN \3.
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B
R * DATE: 1 DEC 1985 *
ety * VERSION: 1.0 *
i * *
NN * NAME: BUILD_GARRAY *
e * DESCRIPTION: *
ISy * Build g array fills in a selpairs array that lists the nodes *
w"::- * that are to be swapped (possibly) by the algorithm, and the *
. Y * order in which they are to be swapped. The k_and_1 algorithm *
P o will eventually tag all the nodes to be swapped between the *
e * two partitions, resulting in a mirror image of the starting *
IR * partitions. Therefore, selpairs is an array as big as the *
W * number of nodes in the set(both partitions). The nodes to *
A * be swapped next are selected by high_gn and Recalc_D updates *
. * the D values. The D values used and placed in selpairs are *
* cleared(-BIG_NUMBER) so recalc_D doesn't waste its time. *
o x *
S * PASSED VARIABLES: size: COLS or COLS/2 partition size x
* selpairs: pairs of columns selected for swap *
e * RETURNS: NONE x
."" * GLOBAL VARIABLES USED: NONE *
* GLOBAL VARIABLES CHANGED: NONE *
* FILES READ: d
e * FILES WRITTEN: x
o * HARDWARE INPUT: *
RS * HARDWARE OUTPUT: *
. 9 * MODULES CALLED: high_gn, Recalc_D *
* CALLING MODULES: k_and_1 *
o * *
oA * AUTHOR: PAUL ROSSBACH *
N * HISTORY: *
-:(_ * *
o * *
- ************************************************************************/
e build_garray(selipairs,size)
-t int selpairs[COLS];
RS int size;
._\‘_.:
.j::'.:: {
L 2 int cpair(2];
R int index;
R int i
::-%: for (index=0;index<=(size/2-1);index++)
o {
e _ high_gn(index,cpair);
T for (i=0;i<=1;i++)
iij_lj {
i B-36
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selpairs{index*2+i)=cpair[i];
D(cpair{i}]=(-BIG_NUMBER);
}

if (index!=(size/2-1))
Recalc_D(cpair,size);
}

return;

}

/*********************************************************‘k**************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: HIGH_GN

DESCRIPTION:

This module finds the two nodes to swap next by calculating
which swap will yield the highest gain. To calculate the

high gain, the module uses the 8 biggest D values(4 from

each partition) to see which of up to 16 possible combinations
of 2-node swaps gives the highest gain. These two nodes are
placed in cpair and the gain is placed in the g array

PASSED VARIABLES: index: number of swap entries in g already
cpair: holding area for the 2 next cols

RETURNS: NONE

GLOBAL VARIABLES USED: g, BigD, costs, carray

GLOBAL VARIABLES CHANGED: g

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE QUTPUT:

MODULES CALLED: NONE

CALLING MODULES: build_garray

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % % % % % % % % O ok % ¥ % % % % X ¥ % % ¥ ¥ * % »*
% % % M % % % % O % % % % % % % % % % % % N % % ® X % X ¥

***************************************************‘k********************/

high_gn{index,cpair)

g
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SN

2.

R

VS int index;

e int cpair(2];

\::. {

e . .

o int i,j;

R int temp;

LY.

v glindex]=(-BIG_NUMBER);

- for (i=0;i<=3;i++)

3U if (BigD[1]([i]1>=0)

o for (j=0;j<=3;j++)

;&} if (BigD{1][4+j]>=0)

()

‘ {

- temp=BigD[0][i]+BigD (0] [4+j]-

g, 2*costs[carray[BigD[1][i]]]{carray(BigD({1]([4+j]]];

Y if (temp>g[index])

e {

j:; glindex]=temp;

:;J cpair(0]=BigD(1]([i];

- cpair{1)=BigD(1]{4+]j];

- }

" }

y .. return;

.

S :

3

o
/************************************************************************
a0 * *
ey * *
o * DATE: 1 DEC 1985 *
* VERSION: 1.0 >
‘m * *
* NAME: RECALC_D *
T * DESCRIPTION: *
e, * Recalc_D performs the same function as calc_D, but does it *
:;i * after the graph partitioning scheme has been changed. When *
;ﬁx * a tentative swap or tagging of 2 nodes(columns) is made *
N * between the two partitions, the new D values for each node *
Oy * (column) can be updated from the old D values. Recalc D *
o * uses this method whereas Calc_D must calculate each node's *
S * (column's) D value from scratch. As with Calc_D, the 4 *
- * highest D values for each partition are saved to be used *
)t * in the next attempt to find a better partition by swapping *
(3 N * 2 elements. The negative values are filled in the Big_D *
;Zﬁf " * array to indicate a non-valid entry when less than 4 nodes *
L o * remain “untagged for swap" in each partition. *
‘\n
B

b
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-----

PASSED VARIABLES: size: COLS or COLS/2 partition size
cpair: last 2 columns chosen

RETURNS: NONE

GLOBAL VARIABLES USED: carray, BigD, D, costs

GLOBAL VARIABLES CHANGED: Bigh, D

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE QUTPUT:

MODULES CALLED: NONE

CALLING MODULES: build_garray

AUTHOR: PAUL ROSSBACH
HISTORY:

% o % % % % % % % % % % % X ¥ % %
¥ % % % % 2% % ¥ N X ¥ % N O X N %

************************************************************************/

Recalc_D(cpair,size)
int cpair(2];
int size;

{
int temp;
int offset;
int A,B;
int i,jx;
int x,y,yy;
int lo,hi;

offset=size/2;
A=carray(cpair(0]];
B=carray[cpair(1]];

for (1=0;i<=7;i++)

{
BigD{O][i]=(-BIG_NUMBER);
BigD(1])[il=(-1);

}

for (yy=0;yy<=1,yy++)
{

y=4*yy,
lo=0+offset*yy;
hi=(offset-1)+offset*yy;
for (x=10;x<=hi;x++)
if (D{x]>(-BIG_NUMBER))
{

.......................

...................

BBt Sl i B Sl A S e A AR A s e SR e a gl ok an a '“1'1

‘.- .".‘\'v' L.:*‘

e W




Lol aia — LAt et it Bl Al Sof Sk Sl -Sad A R A B 0 0 0 Lo ko Ao Auh ahs Ase ANe 4ee-m i MR g8 ak-al gl ek . -IKV"‘ﬁYT

if (y)
D(x]=D[x]+2*costs[carray{x]][B]-2*costs[carray([x]][A];
else
D(x]=D(x]+2*costs([carray([x]][A]-2*costs[carray[x]][B];
if (D[x]>BigD{0] [3+y])
{
i=3+y;
BigD([0] [i)=D[x];
BigD{1])[i]=x;
while ((BigD[0]([i}>BigD[0][i-1])) && (i>y))
{
for (jx=0;jx<=1; jx++)
{
temp=BigD{jx]}[i];
BigD([jx][11=BigD{jx][i-1];
BigD[jx][i-1]=temp;
}

i=;

}

return;
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AN APPENDIX C “DRAINS" CODE

290 9 e K A K I A KR e e e K e A A e e e e e T e e e A e e e e e e o e e e e e e e A e ek ek e e ok ok ok ke ok ok

DATE: 1 DEC 1985
VERSION: 1.0

/

*

*

*

x

*

* TITLE: DRAIN PULLER/OPTIMIZER FOR XROM
* FILENAME: DRAINS.C

* COORDINATOR: CPT LINDERMAN

* PROJECT: XROM OPTIMIZER

* OPERATING SYSTEM: UNIX V 4.2
* LANGUAGE: C

* USE: included in gen_XROM.c
* CONTENTS:

* drains()

* L_and_K()

* order_in_col{()

* fill_col_pairs_array()
* fill_row_drains_array()
* generate_tour()

* smallest_yi()
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

x

*

*

x

4

x

*

y 2
ool a B
. 1 & l. l. 3

wll

e

valid_yis()
max_value()
best_gain()
violation()
path_track()
spec_path_track()
linkjoin()
new_links()
fill_invalid()
tl_random()
clear() )
choose_x1()
initialize()
swap()

Took _up()
hamiltonian_path()

FUNCTION: This program minimizes the number of drains
in an XROM array(using the Lin & Kernighan
Traveling Salesman Problem Algorithm)and
passes the output to the layout.c program.

M % % % 3 % % % % % % % % % % % % % % % % % % % O % % % % % o ¥ % % ¥ N % % F ¥ ¥ X *®

J*
= #include "stdio.h"

b
%. ****‘k*******************************************************************/
‘L
~
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WY #define COLS 48
S #define ROWS 144
T #define GROUPS 4
2N #define DATAWIDTH 12
z':- #define IN_SIZE ROWS*GROUPS*8
-.":-\' #define OUT_SIZE ROWS*GROUPS*DATAWIDTH
TN #define KR_L_TIMES 3
- 1- #define KR_L 1
»; #define FALSE 0
2 #define TRUE 1
,,.\ #define MAXROWS 255
RO #define MAXDATAWIDTH 15
\::ﬂ-: */

o #define AL_L 0
#define BL R 1
o #define RIRJ 0
i #define RILJ 1
Ko Y'u fidefine LILJ 2
e #define LIRJ 3
. #define BACKTRACK 0
ifg_ ##idefine AGAIN 1
T #define SWAP 2
< #define YI_EQ_YSTAR 3

\@ #define ALL 0

A f##define Y_1 1
o #define Y_2 2
=N #define NOT_SEEN_YET 0
;:(:'_- #idefine SEEN 1
DAL .
( #define BIG_NUMBER 100000000
¥

extern char out_array(];

A extern int sub_c_array(];

extern int permut_col(];

._ extern int sideways(];

oS extern int row_permutation(];

e int no_pull_row[ROWS] [ROWS][2];
int non_col_pairs{DATAWIDTH] [DATAWIDTH] [4];
'.';' int low[5](3](4];

- int Te_flag;

T int VIO_flag;

int G_valid(5](4];

e int G[ROWS+1];

struct cell *t[ROWS+1];

“" int G_best;
R -7 int k;

el int f_t;
o
- c-2
. L R T
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struct cell {
struct cell *al_1_link;
struct cell *bl_r_link;
int al_1_weight;
int bl_r_weight;
int node_number;
int ycurrent;
fnt xcurrent;
struct cell *ystar;
int ystar_weight;
struct cell *tent_a_link;
struct cell *tent_b_link;
int t_a_weight;
int t_b_weight;
int al_1_is_y;
int bl_r_is_y;
int oldxl;
int oldx2;
int two_ycurrent;
int two_xcurrent;
} nodes{ROWS];

/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: DRAINS

DESCRIPTION:

This module calls all necessary subroutines to perform the
drain minimization in the XROM array.

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: f_t

GLOBAL VARIABLES CHANGED: f_t

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: order_in_col,fill _col_pairs_array,L_and K
hamiltonian_path,fill_row_drains_array

CALLING MODULES: gen_XROM

et
s b

7'1
o .‘4 IR R
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M % % % % % % % % % % % % X % % ¥ % ¥ % ¥ ¥ %
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AUTHOR: PAUL ROSSBACH
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S x HISTORY: .
\ x *
' x *
_h_"‘, ************************************************************************/
i
2
J drains()
"N {

int i;
: static min_f_t;
L order_in_col();
Lo for (i=0;i<=3;i++)
-0 {
LN fill_col_pairs_array(i);
e, L_and_K(DATAWIDTH,i):
- hamiltonian_path(DATAWIDTH,i);

}

-3 fi11_row_drains_array();
> o min_f_t = BIG_NUMBER;
N for (i=0;i<=3;i++)
. {
:-;.:-‘, L_and_K(ROWS,i); /* i not currently used in call but meant */
O /* for "avoid checkout option" see L&K ref*/
v if (f_t < min_f_t)
o {
o min_f_t = f_t;
‘.}:.} hamiltonian_path(ROWS,i);
< }
i }

return;

}

::’_:":‘ /***************************************‘k******************‘k*************
b:‘::::: * *
o2 . ;
¢ * DATE: 1 DEC 1985 *
A SASE * VERSION: 1.0 *
SCoRR * *
b:‘:\-:'.
h':
e C-4
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SRS o * NAME: L_AND_K *
~ * DESCRIPTION: *
! * This module implements the Lin and Kernighan traveling *
A * salesman promblem (TSP) Algorithm described in Operations *
-0~ * Research, pp 498-516, vol 21, no 2, 1973. The purpose *
- * or the module is to find a row or column arrangement *
Lo * that allows the most drain devices to be extracted *
o * within an XROM. *
) x *
oy * PASSED VARIABLES: size: ROWS/COLS *
<1 * time: not used - for future improvements *
Yo * RETURNS: NONE *
0y * GLOBAL VARIABLES USED: G_best, G, VIO_flag, T6_flag, *
ey * GLOBAL VARIABLES CHANGED: G_best, G, VIO_flag, T6_flag, *
. * FILES READ: *
* FILES WRITTEN: *
i{j * HARDWARE INPUT: *

N * HARDWARE OUTPUT: x
,wij * MODULES CALLED: initialize, generate_tour, tl_random *
CI * choose_x1, fill_invalid, smallest_yi *
® * valid_yis, path_track, max_value *
T x violation, best_gain, swap, clear *
,.‘:‘;_: * *
3 * CALLING MODULES: *
'.1_\ * *
RO * AUTHOR: PAUL ROSSBACH *
. (o * HISTORY: *
AN . ' .
e * h
‘:i ‘k***********************************************************************/
._‘...
@)
oy L_and_K(size,time)

N int size;

o int time;

SR

ey {
r int all_done,x1_done;
1SR int progress;
o int swapping;
SN int no_yis_swap;
oL int result;
i int invalid(4];
‘::j int i;

M2
%
e initialize();

‘;"‘ f_t=generate_tour(size);

swapping = TRUE;
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é}f while (swapping == TRUE)
{
G_best = G{0] = O;
swapping = FALSE;
no_yis_swap = FALSE;

- all_done = tl1_random(size,0);
- while ( all_done != TRUE)
{

x1_done=choose_x1(0);
- while ((G_best == 0) && ( x1_done != TRUE))
“\ {
i=1;
fill_invalid{invalid,t[2])->node_number);
smallest_yi(i,size,t[2)->node_number,t[2]}->ycurrent,invalid);
if ( valid_yis(size,i) == TRUE)
{

while ((G_best == 0) && (maxvalue(size,i) != FALSE))
{
if (path_track(1,t{3]),t[4]) == FALSE)
VIO flag = TRUE;
else
VIO _flag = FALSE;
progress = TRUE;
while ( progress == TRUE )
{

e i +=1;
.)' fill_invatid(invalid,t[2*i]->node_number);
smallest_yi(i,size,t[2*i]->node_number,t[2*i])->ycurrent,
£<) invalid),
b if ( valid_yis(size,i) == TRUE)
{

resul t=BACKTRACK
while ((result == BACKTRACK) &&
(maxvalue(size,i) !'= FALSE))

= {

- if ( VIO_flag == TRUE || T6_flag == TRUE )
;: result = violation(size,i);

6 else

o {

. result = best_gain(size,i,0);

if (1 == 2 && result == SWAP )
: result = BACKTRACK;
- }

if (result == SWAP || result == Y[ _EQ_YSTAR)

{
swap();
swapping = TRUE;
: all_done = TRUE;
‘ progress = FALSE;
}

T if (result == BACKTRACK)
L {




SO T6_flag = FALSE;
ey clear(Y_2);
P i=2;
}

SR }

N if ( result == BACKTRACK )
e {

o clear(Y_1);

V) T6_flag = FALSE:

=
* Cr
v

B VIO _flag = FALSE;
s progress = FALSE;
9% I = .
¢ i=1;
: o }
VN
' } /* end valid yis if */
ot else
L {
22N if (i ==2)
.'r(\: {

clear(Y_1);
VIO flag = FALSE;
progress = FALSE;
i=1;
}
else
: . {
Lo T if ( VIO _flag | T6_flag )
- {
- clear(Y_1);
T6_flag = FALSE;

¢

'l"ﬂ-'&.o- P

" VIO flag = FALSE;
progress = FALSE;
" i=1;
-, }
ol else
j?? no_yis_swap = TRUE;
i

o,

-
-

}

e
SN if ( no_yis_swap == TRUE )
oo {
e swap();
,i:i swapping = TRUE;
o all_done = TRUE;
] progress = FALSE;

S of Pl o)
-‘1,‘ x‘r
llllll'l

P B
P A

}
}
} /* end progress while */
} /* end maxvalue while */

if (G_best
{

:0)
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Ehes clear(ALL);
x1_done=choose_x1(1);

}
}
else
{
clear(ALL);
x1_done = choose_x1(1);
}

} /* end while x1_done */

if (all_done != TRUE)
all_done = tl_random(size,l);

} /* end all_done while */

} /* end swapping while */

/*****************************‘k*‘k****************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: ORDER_IN_COL
DESCRIPTION:
This module looks at each column-byte of the XROM and
decides what ordering of the bits within the column yields
the maximum number of zero pairs. There are 4 possible
orderings of bits in each column;

a. leave as is = 0

b. swap the 2 bit line devices = 1

c. swap the 2 bit line devices and the 2 AQ

line devices =2

d. swap the 2 A0 line devices =3
The module determines which ordering gives the most zero
pairs by finding the minimun non-zero pair count and
using that ordering. The module then places that colmun's
bits in that order and fills the sub_c_array with each
column's order.

¥ % % % % % % % % % % % % X % % X% % % % ¥ % *
¥ % % % % % % % % % % N % % % % % % X% % X % %

S PASSED VARIABLES: NONE
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N ‘
ol * RETURNS: NONE * ‘
17N * GLOBAL VARIABLES USED: out_array, sub_c_array *
! R * GLOBAL VARIABLES CHANGED: out_array, sub_c_array x

* FILES READ: *

S * FILES WRITTEN: *

- * HARDWARE INPUT: *
‘o * HARDWARE OUTPUT: *
we * MODULES CALLED: NONE *

) * CALLING MODULES: drains *

_‘.- - * *

SN * AUTHOR: PAUL ROSSBACH *

e * HISTOQRY: *

n:.:_’, * *
o, * *
; ************************************************************************/

o

::-.{ order_in_col()

~ {

el int sub_col(4])[4];

e register i,j;

“ unsigned calc,plugl,plug?;

:‘_,-‘.: int compare,next,arrange;
ke (o int x,y;

X

[R*XXXXXKXAKAXK clear the temporary counting array KHEXIKKKKKAXK /

¥ for (i=0;i<=COLS-1;i++)

{

AL for (x=0;x<=3;x++)

for (y=0;y<=3;y++)

'_':‘s'.:; sub_col(x][y]=0;
.‘ [RXFIRKXRRXXXX for each column, count the non-zero pair IAXKKKNKRKKKK
SN [XEHEXRKKRIXNNX for each possible internal bit ordering FRKKKKKKKK KK /

o for (j=0;j<=RONS-1:j++)

e {

e calc=out_array[i+COLS*j];

"‘; calc=(calc & 0377);

v if (calc & 0140)

S sub_col [0] [1]++; |
if (calc & 0102) |
o sub_col (0] (3]++; (
o if (calc & 0220)

‘ - sub_col[1] (0] ++;
.:_‘ ‘\'\ if (calc & 0030) ‘
[N, sub_col[1][2]++;

-‘1.
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if (calc & 0044)
sub_col[2][1])++;
if (calc & 0006)
sub_col (2] [3]++;
if (calc & 0201)
sub_col[3] [0]++;
if (calc & 0011)
sub_col [3][2]++;

[***xxxx%x find the best internal column order(most O-pairs) and *¥**xxx/
/*******

save that arrangement number in sub_c_array falatabatetbad ]
arrange=0;
compare = (sub_col[0}[1]+sub_col[1](2]+sub_col1({2]([3]);
next = sub_col{0]{3]+sub_col(3](2]+sub_col({2](1];
if (next < compare)

{

compare=next;

arrange=1;

}
next = sub_col[2][3])+sub_col1[3][0]+sub_col(0][1];
if {(next < compare)

{

compare=next;

arrange=2;

}
next = sub_col{2][1]+sub_col([1][0]+sub_col[0][3];
if (next < compare)

{

compare=next;

arrange=3;

}

sub_c_array([i]=arrange;
JX¥xxxx% move the bits in the out_array column to the best order ****/

if (arrange !=0)
for (j=0; j<=ROWS-1; j++)

{
if (arrange == || arrange == 2)
{
calc = out_array[i+COLS*j];
calc = (calc & 0377);
plugl= (calc & 060);

plug2= (calc & 03);
calc = (calc & 0314);

plugl >>= 4;
plugl = (plugl & 03);
plug2 <<= 4;

plug2 = (plugl & 060);
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calc = (calc plugl plug?2);
out_array(i+COLS*jl=calc;
}

if (arrange == 3 || arrange == 2)

calc = out_array[i+COLS*j];
calc = (calc & 0377);
plugl= (calc & 0300);
plug2= (calc & 014);

calc = (calc & 063);

plugl >>= 4;
plugl = (plugl & 014);
plug2 <<= 4;

plug2 = (plug2 & 0300);
calc = (calc ~ plugl ~ plug2);
out_array[i+COLS*j]=calc;

}
} /* end i loop */
return;

}

/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: FILL_COL_PAIRS_ARRAY

DESCRIPTION:

This module calculates the N squared divided by 2 minus N
divided “v 2 pairings beteen each column's left and right sides.
The corretation value is the number of non-zero pairs between
any 2 column c¢ides. These values are upper triangular since the*
correiations are symmetric. The "distance"” measures are used in*
the L_and_K algorithm. The lower-triangle of the matrix is
filled in also for use later. The results are placed in the
non_col_pairs array,

* % % % % % % % % %

PASSED VARIABLES: group: the word # of the XROM
RETURNS: NONE }

GLOBAL VARIABLES USED: non_col_pairs, out_array
GLOBAL VARIABLES CHANGED: non_col_pairs

¥ % % % % ¥ % % % X % X % % X X % X ¥ *
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FILES READ:

FILES WRITTEN:

HARDWARE INPUT:
HARDWARE OUTPUT:
MOOULES CALLED: NONE
CALLING MODULES: drains

AUTHOR: PAUL ROSSBACH
HISTORY:

* % % % X% % ¥ X * X *
¥ % % % % % % % % % %

************************************************************************/

fill_col_pairs_array(group)
int group;

register i,j,x;
unsigned icalc, jcalc;
int start;

/************* C]ear the non—col_pairs array ************/
for (i=0;i<=DATAWIDTH-1;i++)
for (J=0;j<=DATAWIDTH-1; j++)

for (x=RIRJ;x<=LIRJ;x++)
non_col_pairs{i]([j](x]=0;

Y Radababobatole fill the non_col_pairs array by counting the  ¥¥Xx¥kkxky
[XX***X* non-zero pairs between columns left & right sides *¥**¥%*x/
start = group*DATAWIDTH;

for (i=0;i<DATAWIDTH;i++)
for (j=0;j<DATAWIDTH; j++)

if (i>§)
{
for (x=0:x<=ROWS-1;x++)

{
icalc = out_array[COLS*x+i+start);
jcalc = out_array[COLS*x+j+start];
icalc = (icalc & 0377);
jcale = (jcalc & 0377);

if (icalc & 01)

C-12
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{
non_col_pairs{i][j] [RIRJ]++;
non_col_pairs(i][j] [RILJ]++;
}

else

if (jcalc & 0O1)
non_col_pairs[i][j][RIRJI]++;
if (jcalc & 0200)
non_col_pairs[i][j] [RILJ]++;
}

if (icalc & 0200)

{
non_col_pairs{i](jl[LIRJ]++;
non_col_pairs(i][j] [LILJ])++;
}

else

if (jcalc & 01)
non_col_pairs{i][j]{LIRI]++;
if (jcalc & 0200)
non_col_pairs{i][j] [LILI)++;
}

[***xxx%xx  £i]]1 in the other half of the upper-triangular  ****xxxx/
[x*xxxxx distance matrix keeping track of direction KrKKXKKXK f

for (i=0;i<=DATAWIDTH-1;i++)
for (j=0;j<=DATAWIDTH-1; j++)

if (i<])

{
for (x=RIRJ;x<=LILJ;x += 2)

non_col_pairs[i)l[j][x]=non_col_pairs(j][i}(x];

non_col _pairs[i][jl{LIRJ]=non_col_pairs[jl[i](RILJ];
non_col_pairs{il{jl[RILJ)=non_col_pairs[jl{i])[LIRJI];

C-13




/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

NAME: FILL_ROW_DRAINS_ARRAY

DESCRIPTION:

The module performs the same function as fill_col_pairs_array
for all the rows of the XROM, Distance correlations

for the number of drains which can not be removed if 2 rows
are placed next to each other are calculated for matches
about bit line drains and about AO_line draines. The

results are placee in the no_pull_row_array. This

module must consult the permut_col and sideways arrays

in order to have the proper bit arrangement.

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: no_pull_row, sideways, out_array
GLOBAL VARIABLES CHANGED: no_pull_row, sideways

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: NONE

CALLING MODULES: drains

AUTHOR: PAUL ROSSBACH
HISTORY:

% % 26 % % % % X % o % % X % % % % % % % % ¥ % % %X X% ¥ % ¥ ¥ %
% % % % % % % % % % ¥ % X % % % % % % M % % % % ¥ % ¥ % X ¥ %

************************************************************************/

fill_row_drains_array()
{
struct drainlist {
int al[4*COLS+1];
int bl[4*COLS];
} d_1ist[ROWS];

unsigned calc;
register i,j,x,y;

[gp]
1
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LT int rowbyte;
int save;
int jj;
int tempA(4];
int tempB(4];

/************* c 'I ear the no-pu] ]—row array ************/

for (i=0;1<=ROWS-1;i++)
for (j=0;j<=ROWS-1; j++)
for (x=AL_L;x<=BL_R;x++)
no_pull_row(il[j]x]=0;

[RxEXXRXXXX firgt £111 in each rows drain count for bit F¥¥¥x¥xxkix/
[Rx*xAIXX% 1 ine drains and A0 line drains into d_list  *¥*kbddonkx)
[XFxXXXXXX tamp holds the AO(A) and bit(B) counts as KAXAKKKAKK [
[XERXFXXAX 0ach row byte is counted- 4 drains to a byte *¥dxkiwwkk)
[****x%k%% the counts are then concatenated into d_list **¥dkddnnk)

for (i=0;i<=ROWS-1;i++)

{
rowbyte=i*COLS;
(f- save=0;
. for (j=0;j<=COLS-1;j++)
{

for (x=0;x<=3;x++)
{
tempA[x]=0;
tempB{x]}=0;
}
calc
calc

out_array[rowbyte + permut_col(j]];
(calc & 0377);

[*¥**xx% if the byte is flipped, must "look" at it different **¥**x/
[X**x*x** from the byte that will not be flipped on output fafafalelolel )

if (sideways([j])
{

if ((save) |l (calc & 01))
tempA([0])=1;
if (calc & 06)
tempA(l]=1;
if (calc & 0140)
tempA(3]=1;
if (calc & 03)
tempB(0]=1;
if (calc & 014)
= tempB[1]=1;
Tt if (calc & 060)

-::z?ﬁﬁﬁ% A
1
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tempB([2]=1;
if (calc & 0300)

tempB[3])=1;
if (calc & 0200)

save = 1;
else
save = 0;
}
else
{

if ((save) || (calc & 0200))
tempA[0]=1;
if (calc & 0140)
tempA(l]=1;
if (calc & 060)
tempA{3])=1;
if (calc & 0300)
tempB(0]=1;
if (calc & 060)
tempB[1])=1;
if (calc & 014)
tempB{2])=1;
if (calc & 03)
tempB8(3]=1;
if (calc & 01)

save = 1;
else
save = 0;

}

if ( calc & 030)
tempA(2]=1;

JR*XEXXAXXXX £i]1] in the d_list for ADO & bit - lines

Ji=4*J;
for (y=0;y<=3;y++)
{

d_list{i]l.al(jj+yl=tempA{y];
d list{i].b1{jj+yl=tempB(y];
}

if (j == COLS-1)
d_list(i]l.al[jj+yl=save;

} /* end j loop */

} /* end i loop */

********‘k*****/

[*xxxxxxx £5]1] in the distances between rows for the AQ & **¥X*kx¥kkxk/

e
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Jr*x*x*x%k% hit - lines in the no_pull_row array jalalalalalalolabeledelol |
for (1=0;i<=ROWS-1;i++)
for (j=0;j<=RONWS-1; j++)
if (i > j)
{
for (x=0;x<=4*COLS-1;x++)
{
if ((d_tist[i).allx] == 1) 11 (d_list(j).al[x] == 1))
no_pull_row([i][j][0]++;
if ((d_Tist(i].b1[x] == 1) [| (d_list(jl.bl{x] == 1))
no_pull_rowl[il[jl[1]++;
}
if ((d_list[i].al[4*COLS] == 1) (| (d_list[(j].al(4*COLS] == 1))
no_pull row(i]{j][0]++;
}
[X*xxxxx%xx £i11 in the lower triangle of the maxtrix also ¥*¥¥¥xikxxwxx/
for (i=0;i<=ROWS-1;i++)
for (j=0;j<=ROWS-1; j++)
if (i < j)
for (x=0;x<=1;x++)
no_pull _row(ij{jlix]=no_pull_row(jl{il(x];
return;
}
/************************************************************************
* *
* *
* DATE: 1 DEC 1985 *
* VERSION: 1.0 x
* *
* NAME: GENERATE_TOUR *
* DESCRIPTION: *
* This module will generate a random travelling salesman *
* tour of the size passed. Tours made of size = ROWS must *
* have links that start and end (picktype) at the same *
* type (ie all links are either AL_L to AL_L =LILJ or *
* BL_R to BL_R = RIRJ). Tours made of sizes = COLS can *
* have any cf four type links (ie LILJ, LIRJ, RIRJ, or RILJ) o
* Both tours must have one link of each type emitting from *
* each node. The tour starts and ends at node O. *
x *
* PASSED VARIABLES: size = ROWS/COLS *
c-17
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RETURNS: totalweight = initial cost of generated tour *

GLOBAL VARIABLES USED:nodes
GLOBAL VARIABLES CHANGED: nodes
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OQUTPUT:

MODULES CALLED: 1linkjoin
CALLING MODULES: L_and_K

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % ¥ % % ¥ N M %

************************************************************************/

generate_tour(size)
int size;

{

int
int
int
int
int
int
int
int
int
int

num_nodes;
starttype;
picktype;
lasttype;
done;
almost_done;
tonode;
weight;

mask;
total_weight;

tong random();

int

check;

/*********** determine maximum random number *********************/

total _weight=0;
if (size == DATAWIDTH)

mask = MAXDATAWIDTH;
else
mask = MAXROWS;

srandom(1);

/********** Start at node 0' pick a ]inktype *********************/
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L done = FALSE:

num_nodes = O;
lasttype = random();
starttype = lasttype = ( lasttype & 01 );

while( done != TRUE )

/********** piCk a random "to" node ********************/

{
tonode = MAXROWS+1;
while ((tonode > size-1) || (tonode == 0)
Il (tonode == num_nodes))

[X***xX%Xx try any node not too big,not = 0,not itself *¥kkxkkkkxk/

{

tonode
tonode

}

random( ) ;
(tonode & mask);

almost_done = FALSE;
while (((nodes([tonode].al_1 _link != NULL) II
(nodes[tonode] .b1_r_link != NULL)) && (almost_done < 2))

Qi' Jx*xkxx% if the node tried is used, try the next node,etc ****x*xx/
{
if ( tonode == size-1 )
{

tonode = 1;
almost_done++;
}
else
tonode++;

[X***x*** no nodes remain open so put current link to node Q ****x/

if ( almost_done == 2)
{
tonode = O;
picktype = ( starttype ~ 01);

else
{
if ( size == DATAWIDTH )
{
) picktype = random();
O picktype = ( picktype & 01);
' }

]
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B else
picktype = lasttype;

[X***x%*% join the nodes for the link found using pointers ***¥*xx/

if ( picktype == AL_L)

{
if (lasttype == AL_L)
check = linkjoin(&weight,6size,num_nodes,tonode,LILJd);
else
check = linkjoin(&weight,6size,num_nodes,tonode,RILJ);
}
else
{

if (lasttype == AL_L)

.. check = linkjoin(&weight,ksize,num_nodes,tonode,LIRJ);
3 else
check = linkjoin(&weight,size,num_nodes,tonode,RIRJ);

total_weight += weight;
O
[FXxxERXXNK yse the nodes other linktype and continue ¥¥¥ikikikx/
) lasttype = ( picktype ~ 01);
- num_nodes = tonode;

if (almost_done == 2)
done = TRUE;

return(total _weight);

/************************************************* TRHEBAKK K KRR RIK KK KK KKK KK K*K
* *

* *
* DATE: 1 DEC 1985 *
* VERSION: 1.0 *

................
Ay
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************************************************************************/

NAME: SMALLEST_YI
DESCRIPTION:

This module will find the smallest five links from any
“from" node of the "type" specified. The links can not

go to any nodes listed in the "invalid" array. The

links are placed into a "low" link array, one for i=i,

one for i=2, or one for i >= 3. The low array will
always be filled.

PASSED VARIABLES: i: current state
size: ROWS/COLS
from: the from node
type: type link needed
invalid: up to 4 illegal "to" nodes

RETURNS: NONE

GLOBAL VARIABLES USED:low,non_col_pairs,no_pull_row
GLOBAL VARIABLES CHANGED: low

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OQUTPUT:

MODULES CALLED: NONE

CALLING MODULES: L_and_X

AUTHOR: PAUL ROSSBACH
HISTORY:

smallest_yi(i,size,from, type,invalid)

int
int
int
int

{

size;
from;
type;
invalid([4];
int i;

register inc,xx,j;

int ok;

int temp;

int x;
int

...........

% % % % % o % k M % % % M o % % % X N % M % ¥ X ¥ X ¥ * X %
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S
;:f {;ﬁ JRERRIERXKAX £i1] the low array - for i=1,2, or one for > 3 *¥*x¥kknkikk/
i If (1 >= 3)
MYl ii = 3;
S else
o iio= i
8
Y for (xx=0;xx<=4;xx++)
D) Tow{xx] [0)[ii]=BIG_NUMBER;
A
0 [xrxxxxxxxxx find the five smallest legal links from the ¥**kkdkxkakkk/
'\::  Rekabatalalodobobobotl “from" node of "type" for ROWS problem XRKKKXKXKNKKKKX
33, if (size == ROWS)
. {
:ﬁ4 for (inc=0;inc<ROWS;inc++)
o i
::? ok=TRUE;
I for (j=0;j<=3;j++)
W if (inc == invalid(j])
o ok=FALSE;
- if ((inc !'= from) && ok)
s {
’13? if (no_pull_row[from] [inc][type] < Tow[4][0]}[ii])
- {
B Tow[4][0][i1)=no_pull_row([from] [inc] [type];
: \e Yow[4] [1)[ii]=inc;
O low{4][2][ii]=type;
yo XX = 4;
" while ((low{xx}[0]{ii] < low[xx-1][0][ii]) && xx>0)
= {
Eﬁr for (J=0;j<=2; j*+)
{
' temp=low([xx]} [j)[ii];
oY low(xx] [Jl[iil=1owlxx-1][§)[iil;
'u;) low'xx-1][jl[ii]=temp:
2 }
AT
iu XX--:
d. - }
r-{ }
}
v }
,!L else
iif [XERERAAAXA* find the five smallest legal links from the *X¥xkkxikikdix/
o~  Rekadadebebobabobobob “from" node of “type" for COLS problem KAKKIIXKKK KKK |
'I\‘I
A
Py {
o i for (inc=0;inc<DATAWIDTH;inc++)
J"_- -‘_:' {
LD
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ok=TRUE ;
for (j=0;j<=3;j++)
if (inc == invalid(j])
ok=FALSE;
if ((inc !'= from) && ok)
for (x=2-type*2;x<=3-type*2;x++) /* BL_R = 1 :RIRJ,RILJ =0,1%*/
{
if (non_col_pairs{from]{inc]{x] < low[4][0][ii})
{
Tow[4][0][ii]l=non_col_pairs[from][inc][x];
Tow(4][1}[ii])=inc;
Tow[4][2)[ii]=x;
xx = 4;
while ((low{xx][0][ii] < ltow[xx-1]{0]J[ii]) && xx>0)
{
for (j=0;j<=2;j++)
{

temp=low[xx]{jl[ii];
Tow[xx] [jl[ii)=lowixx-1)[j1[ii];
Tow(xx-1][jl[ii]=temp;

Xx--;

}

/*****************‘k****************‘k***************************‘k*********

DATE: 1 DEC 1985
VERSION: 1.0

NAME: VALID_YIS

DESCRIPTION:

This module looks at the contents of the "low" link array
and determines which of those 5 links are valid as
determined by the Lin and Kernighan algorithm. If a
proposed link passes all the tests, the ok flag will

be TRUE and the link is not cleared. [f the link fails

any test it is cleared from the low array. Each Valid yi's
gain values are calculated for one of the tests and saved

% % % % % ¥ X % % * X * % *
* X % X % % % % % ¥ % ¥ ¥ %
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for future use. If no valid_yi's exist, FALSE is returned
from the module.

PASSED VARIABLES: i: current state
size: ROWS/COLS

RETURNS: TRUE: at least one valid yi link found
FALSE: no valid yi links

GLOBAL VARIABLES USED:low, nodes, t, VIO flag, G_valid, G

GLOBAL VARIABLES CHANGED: low, G_valid

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE QUTPUT:

MODULES CALLED: path_track,spec_path_track

CALLING MODULES: L_and_K

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % X N X % X % X ¥ X N %X ¥ ¥ %
% 3% % % % % % % % ¥ % % % % % % % N ¥ %

*********************************************************‘k‘k*************/

valid_yis(size,i)
int size;
int i;

struct cell *aptl, *apt2;
register j,y:

int ok;

int test;

int g_i;

int ii;

[FIEXFAXEAX check the low array - for i=1,2, or one fyr > 3 XFkkkkkkakk/

if (i >=3)
ii o= 3;
else
iio= i

for {j=0;j<=4;j++)
if (low(jl[O}[ii] 1= -1) /* for later - don't think this q is nec.*/
{
ok=TRUE;
aptl=(&nodesflow(j][1])[ii]]);
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N [****x determine if the link in low goes to a node not used yet ***¥*xx/
if (size == ROWS)
{
if (Towljl{2)[i1] == AL_L)
if (nodesNow[jl(1][ii)).al_V_is_y == 1)
ok = FALSE;
else
apt2=nodes[low([jl(1][ii]].al_1_link;
else
if (nodes{low(jj[1]1(ii]l.bl_r_is_y == 1)
ok = FALSE;
else
apt2=nodes[low([j][1][ii]l].b1_r_link;
}
else /** for COLS problem **/
{
if (low{jl[2)[i1) == RIRJ I] low[jl[2][ii] == LIRJ)
if (nodes[low[jl[1][ii]1].b1_r_is_y == 1)
ok = FALSE;
else
apt2=nodes[low[jl[1]1(ii]].b1_r_link;
else
if (nodes[low[jl{1]1[ii)]).al_1_is_y == 1)
ok = FALSE;
(fh else
e apt2=nodes{low[j][1][ii]).al_t_link;
}
[rrxx*XXKAAX only a 1ink to t1 can be of tl's "is_y" type *¥¥XkXxkxxakx/
if ((aptl == t[1]) && (ok == FALSE))
{
ok = TRUE;
apt2 = t[2];
}
JRxExRKAXRAAX |1inks can not use tl as their t[2*i+2] node  *¥¥dkkkkkAnk/
if ((aptl == t[1]) && (ok == TRUE))
ok = FALSE;
[*¥****x%x if in violation mode, check 1ink to be sure it's legal *¥¥*¥wkax/
if (apt2 == t(1])
ok = FALSE;
if ((i 1=1) && (i !'= 2 || VIO_flag == FALSE) &&
(i 1= 3 || T6_flag == FALSE) && ( ok == TRUE ))
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s if ((i == 4 && T6_flag == TRUE) )| (i == 3 && VIO_flag == TRUE))
T {

294 if (spec_path_track(i,aptl,apt2) == FALSE)
Ll ok = FALSE;

4 4\_‘ }

.. else

94 {

{ﬁ if (path_track(i,aptl,apt2) == FALSE)

15 ok = FALSE;

\i‘ }

[ }

1505

"‘

. [***x%%%x the gain must not become negative if the link is placed **X¥*xx%/
K>

o if ( ok == TRUE )

i {

i

Wy

et if (t{2*i]->xcurrent == AL_L)

o g_i = t[2*i)->al_1_weight - low[jl[0}[ii];
g else

N g_i = t[2*1]->bl_r_weight - 1ow[jl[0][ii];
o G [**x*RA*AXE store positive gains in the G_valid array febalaloabelatabolababolodad |
o if ((6Li-1]1 + g_1) > 0)

T G_valid[j)[ii] = Gli-1] + g_i;

on else

-“,:';, ok = FALSE;
2

- ‘1 }
:’.':: [Rxxxxxxx%* {f 3 rule was violated, clear that low entry *¥**kXxkkuxkaxk/
_?, if (ok == FALSE)

o for (y=0;y<=2;y++)

‘"_.jj'_..: low[jl [yl [iil= -1;

T

o

D, .! }

’-Z_(::: [*****x% if all low entries are cleared, return FALSE= no valid yis *¥**/
‘-‘:,,'

f‘ test = 0;

R for (j0;j<=4;j++)

R_‘;} test ' : low[j}10}([ii];

Sy
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if (test == -5)

- return(FALSE);
o else
414 return(TRUE);
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N DATE: 1 DEC 1985
14 VERSION: 1.0
o
Ef“ NAME: MAX_VALUE
— DESCRIPTION:
‘}tf This moduie finds the link from the valid_yis in low
:{r§ that has the maximum | xi+l - yi | value. If one is found,
X tentatively assign that link by calling new_link.
1““*\
. (o PASSED VARIABLES:  1i: current state
ey size: ROWS/COLS
P RETURNS: TRUE: max value found from valid yi

FALSE: no max value found
GLOBAL VARIABLES USED:low, G_valid, G
GLOBAL VARIABLES CHANGED: G
FILES READ:
FILES WRITTEN:

P
Ipi t kY
PR 1')['_ L -“'.

OF

e =

¥ % % % % % % % % % % % O % X % % N % X R X % X % N % *
% % % % % % M O % % % % % % % % % % % ¥ % % ¥ ¥ ¥ * % *

- HARDNARE INPUT:
Q}} HARDWARE OUTPUT:
b, MODULES CALLED: new_links
&Eg CALLING MODULES: L_and_K
®
o AUTHOR: PAUL ROSSBACH
Ijg HISTORY:
o>
oy
:.‘*’. ************************************************************************/
F&
'-'-':..
X
:g maxvalye(size, i)
- int size;
e _ int i;
who
R {
& .
o
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Y c-27
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=
kv int max_yi,;

) int max_value;
K int value;

T register j;

- int passback;

[ int 11;

.
{‘
g¢« [*¥*xxxxxxkk%k check the low array - for i=1,2, or one for > 3 *kkkkkxkkkx/
e
hr™s if (i >=3)

b i = 3

. else
& i =i
f%; max_yi= -1;
S max_value = -BIG_NUMBER;
1,5 passback = FALSE;

_.
24
‘Ij JX¥*XX%X% £ind the 1ink in low with max Ixi+l - yi| value *¥*¥kkkkxkkxx/
o
Sy fo: (J=0;j<=4; j++)
o o
e it (low[Jl{01 1] t= -1)

22 {

2 if ((size == ROWS && Tow[j][2][ii} == BL_R) ||

{: (size == DATAWIDTH && (low([jl([2])[ii] == RIRJ ||
- low[jl[2]1[ii] == LIRJ)))
;,. value=nodes[low([jl[1]{ii]].b1_r_weight - low[jl [0} [ii];
5 else
b value=nodes{low(j] [1][ii]].al_1_weight - low[jl[0]({ii];
Eﬁ if (value > max_value)
o ¢

. max_value=value;
us max_yi=j;

::-;f }

-1;‘ }
v 4

.

i: [¥rxxexxx if a max link exists, tentatively fill it in by **¥xkkkuxxwx/
s JRRIKKEIK calling new_links KEKKHKKKKHIKK [
o
o if (max_yi !'= -1)

“ {
ST

el if ((lowlmax_yil(2][ii] == AL_L && size == ROWS) ||

T T B
P 3

W e o e T St A e PR S S
A ~{$ N."(““h('f“-l"l‘/"-"“} e T A R KR , AR . el

LN .
ARARAY P2




s Notte
." B & .

(G

{(low[max_yil{2]1[11] == LILJ && size == DATAWIDTH))
new_links(LILJ,i,max_yi);

else
{
if ((low[max_yi]l{2](ii]
(Tow[max_yi][2][if]

BL R && size
RIRJ && size

ROWS) ||
DATAWIDTH))

new_links(RIRJ, i ,max_yi);
else
gf (lowl[max_yil[2)[ii] == LIRJ)
new_links(LIRJ,i,max_yi);

else

new_links(RILJ,i,max_yi);

[RFFXEXRKEXKKXK clear the 1ink used so it can't be used again **¥¥¥kxkaxx/
for (j=0;j<=2;j++)

low{max_yil{jlliil= -1;
[rxxExxHAARE return TRUE since a max was found and set G[i] *¥¥x¥dkkdxx/

passback = TRUE;
Gli] = G_valid[max_yi](ii];

}

return(passback};

}
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* *
* *
* DATE: 1 DEC 1985 *
* VERSION: 1.0 *
*x *
. 4 *

NAME: BEST_GAIN

S
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. * DESCRIPTION: *
™ * This module determines if the current t_2*i node were *
) * connected to t1, would a tour with a shorter path (more *
T * gain) be realized. If so, the module continues the *
fg * algorithm by connecting the next yi and disconnecting *
o * the current xi. If the t_2*i's y_star to tl does not *
}f * improve the tour, SWAP is returned indicating that the *
O * last best tour should be used. Best gain also does o
! * some node "house cleaning” by filling in y_star data at *
™ ol the t_2*i, connecting all links permanently, and tagging *
" * the next t_2*i if not in violation mode. *
N * *
> * PASSED VARIABLES:  1i: current state *
2% * size: ROWS/COLS *

* opt_: 0 - normal mode *
p * 1 -~ violation mode *
- * 2 - violation - T6 flagged *
o * RETURNS: SWAP: t_2*i's ystar gives no gain *
N * AGAIN: better tour found, continue *
' * YI_EQ_YSTAR: better tour, but yi goes to tl so swap *
® * GLOBAL VARIABLES USED:t, nodes,G_best, G *
" * GLOBAL VARIABLES CHANGED: t, nodes,G_best, K *
i * FILES READ: *
i * FILES WRITTEN: *
R * HARDWARE INPUT: o
"y ‘fu * HARDWARE OUTPUT: *
~ 0 * MODULES CALLED: NONE *
o * CALLING MODULES: L_and K *
'-3 * *
- * AUTHOR: PAUL ROSSBACH *
b * HISTORY: *
i * *
* *
.:: ************************************************************************/
"’
_\‘?.
_';
.* best_gain(size,i,opt_)
3 int size;
- int i;
G~ int opt_;
5
3
S {

" int last,current,t_one;

3t int g_star;

. int type;

23 int t_num;

¢ int bd_last;

NS int the_type;

o C-30
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current=t(2*i]->node_number;
t_one=t[1]->node_number;

[RFFFAXEIXKRXKE 111 in ystar data in the nodes structure **¥¥ddkkkxkxx/

t{2*i]->ystar= (&nodes[t_one]);
if (size == ROWS)
nodes [current].ystar_weight=
no_pull_row[current] [t_one] [nodes[current].ycurrent];
else
{ .
if (nodes[current].ycurrent == AL _L)
type = LIRJ;
else
type = RIRJ;
if (nodes[t_one].xcurrent == AL_L)
{
if (type == RIRJ)
typet+;
else
type--;
}
nodes [current].ystar_weight=non_col_pairs[current] [t _one][type];
}

[RIFEAXKEXEX see if t_2%i's ystar(i) gives a better tour *¥¥¥kkkdkkxixx/
if (nodes[current].xcurrent == AL_L)
g_star= nodes[current].al_1_weight - nodes(current].ystar_weight;

else
g_star= nodes[current].bl_r_weight - nodes[current].ystar_weight;

[XFEIXAXIAXE if so, save the state and connect the links — *¥**dwkakdxdxx/

if ((G[i-1) + g_star) > G_best)

{
G_best=G[i-1] + g_star;
k=i;
/************* if i=2, y_l must be connected first *************/

if (i == 2 || opt_ 1= 0)
{
if (t[2]->two_ycurrent == AL _L)
{
t(2)->al_1_link=t[2]->tent_a_link;
t(2)->al_1_weight=t([2])->t_a_weight;
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s t[2]->tent_a_link= NULL;
t(2]->t_a_weight= -1;
t{2]->al_1_is_y= TRUE;
}
else
{
t(2]1->b1_r_link=t{2]->tent_b_link;
t(2]->b1_r_weight=t[2]->t_b_weight;
t{2]->tent_b_link= NULL;
t{2]->t_b_weight= -1;
t{2]->b1_r_is_y= TRUE;
}
if (t[2)->ycurrent != t[2]->two_ycurrent)
t[2]}->two_ycurrent = t[2]->ycurrent;
if (t{2]->xcurrent != t[2]->two_xcurrent)
t(2)->two_xcurrent = t[2]->xcurrent;
}
[X*¥**xxxx connect links for t_2*i(and below if in violation mode *****%x/
for (t_num=2*(i-opt_);t_num<=2%i;t_num += 2)
last=t[t_num-1]->node_number;
current=t[t_num]->node_number;
y e b4 _last = t_num-2;
@
[Xxxxx%xxx connect the yi link from t_2*i to t_2*i+1 by KREKAKIXKKK XK /
[X***%x%x*%x making the tentative links permanent HRKKEIKARN KKK |

if (opt_'=0 1| i ==2)

{
if (( nodes[current].ycurrent == nodes(current].two_ycurrent ) ||
{ nodes[current]).two_ycurrent == -1 ))
the_type = nodes{current].ycurrent;
else
the_type = nodes[current].two_ycurrent;
}
else

the_type = nodes{current].ycurrent;

if ( the_type == AL_L)

{
if (nodes(current].oldxl == -1)

nodes[current).oidxl = nodes([current]).al_1_J}ink->node_number;
else

nodes[current].oldx2 = nodes(current].al_1_link->node_number;
nodes(current].al_1_link=nodes(current].tent_a_link;
s nodes[current]).al_)_weight=nodes[current].t_a_weight;
s nodes{current].tent_a_link= NULL;
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::: Cﬁ;‘ nodes{current].t_a_weight= -1;
N nodes(current].al_1_is_y= TRUE;
) }
23 else
A {
5} if (nodes[current].oldxl == -1)
15 nodes[current].oldxl = nodes[current].bl_r_link->node_number;
L, else
v nodes[current].oldx2 = nodes(current].bl_r_link->node_number;
N nodes [current] .bl_r_link=nodes{current].tent_b_link;
}Q nodes[current] .bl_r_weight=nodes[current].t_b_weight;
" nodes[current].tent_b_link= NULL;
0 nodes(current].t_b_weight= -1;
) nodes(current].bl_r_is_y= TRUE;
: }
:? if (nodes(current].ycurrent !'= nodes[current].two_ycurrent)
Ij nodes[current].two_ycurrent = nodes[current].ycurrent;
b
o [*¥**xxkx*x disconnect the xi link from t_2*i-1 to t_2*i and **¥*¥kkkukkkx/
:.r /******** co“nect 1t tO t-z*i-z ************l
4
Pt if (opt_!=0 || i ==2)
3 {
PN ne if (( nodes[last].xcurrent == nodes[last].two_xcurrent ) ||
Qe ( nodes[last].two_xcurrent == -1 ))
g the_type = nodes([last]. xcurrent;
. else
5 the_type = nodes[last].two_xcurrent;
: }
else
3 the_type = nodes[last].xcurrent;
<
);: 1f{( the_type ==AL_L)
L if (nodes[last].oldxl == -1)
" nodes(last].oldxl=nodes(last].al_i_link->node_number;
ol else
o nodes[last].oldx2=nodes[last].al_1_link->node_number;
- nodes{last].al_l_link= t[b4 last];
- if (t(b4a_last])->al_1_link == &nodes([last])
@ nodes{last].al_l_weight=t[b4_last]->al_1_weight;
else
o nodes[last].al_1_weight=t[b4_last]->bl_r_weight;
N nodes[last].al_1_is_y=TRUE;
-.:: }
o~ else
5 {
T if (nodes{last].oldxl == -1)
S nodes(last].oldxl=nodes[last].bl_r_link->node_number;
N C-33
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::j
C_Sj:s i else
s nodes[last].oldx2=nodes{last].bl_r_link->node_number;
. nodes[last].bl_r_link= t(b4_last];

s if (t[b4_last]->al_1_link == &nodes[last])
;}§ nodes[last].bl_r_weight=t[b4_last]->al_l_weight;
< else
“*ﬁ nodes{last].bl_r_weight=t[b4_last]->bl_r_weight;
;,) nodes[last].bl_r_is_y=TRUE;

-‘ ~ }
2@2? if (nodes{last].xcurrent != nodes[last].two_xcurrent)
20 nodes[last].two_xcurrent = nodes[last].xcurrent;
- \

e

ﬂif J**xxxx% if not in violation mode, tag the next i's t_2%i ¥¥*xxxxkkxxxx/
o if ( opt_ == 0 )
‘P {
@ if (t(2*i+2]->al_1_link == t[2*i+1])

'4‘.:". {
S t[2*%i+2] ->xcurrent=AL_L;
DN t(2*i+2]->ycurrent=AL_L;
S }
(.‘ else

o t[2*1+2] ->xcurrent=BL_R;

iy t[2*i+2]-D>ycurrent=BL_R;

" }

3 }
h

e current=t[2*i]->node_number;
fif [X*xxxxkXAX {f the yi 1ink just placed by best_gain was  *¥d¥dkkkkkdion)
'.' /********** ‘Y__Star(i) . return that fact *************/
Qif if (((nodes[current].ystar == nodes[current].al_1_link)
o && nodes{current].ycurrent == AL_L) |1

e ((nodes[current].ystar == nodes{current].bl_r_link)
NN &% nodes[current].ycurrent == BL_R))

o-

S return(YI_EQ_YSTAR);
e else

NI return(AGAIN);
P

¢ }

SR
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t:: st JX*¥*xx%xX%if the y_star(i) from the current t_2*i did not give *¥¥Xxwikxw/
Ko [X**xFxxX* 3 gain, don't put in a new tentative link & return SWAP **¥xx/
!

2N return(SWAP);

.:' }

.H.\

\

:.:q /*********************************‘k**************************************
,.: * *
- * *
\ * DATE: 1 DEC 1985 *
- * VERSION: 1.0 *
g * *
- * NAME: VIOLATION *
* DESCRIPTION: *
‘o * This module handles the cases when the tour's feasibilty x
Ad * criteria at i=2 is violated. If the tour becomes "split" *
S8 * at i=2, special constraints have to be placed on the selection *
;:{ * of yi's and backtracking. This module is called in lew of the *
o * "best gain" module when the VIO flag is TRUE. *
- - * *
S * PASSED VARIABLES:  1i: current state *
Ve * size: ROWS/COLS *
T * RETURNS: SWAP: t_2*i's ystar gives no gain *
‘. * AGAIN: better tour found, continue ol
- * YI_EQ_YSTAR: better tour, but yi goes to tl1 so swap *
a * GLOBAL VARIABLES USED: t, T6_flag, VIO _flag *
P * GLOBAL VARIABLES CHANGED: Té6_flag, VIO_flag *
. * FILES READ: *
T * FILES WRITTEN: *
- * HARDWARE INPUT: *
. * HARDWARE OUTPUT: *
o * MODULES CALLED: path_track, best_gain *
; * CALLING MODULES: L_and_K *
- x x
. * AUTHOR: PAUL ROSSBACH *
- * HISTORY; *
..‘_ * *
- * *
‘; ************************************************************************/

o

Ryttt

violation(size,i)

e int size;

¢ int i;

-..l\, -

N

o
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)
1 int result;
- switch (i) {
:iﬂ [*xxxxkxxxx £3 & t4 caused VIO flag to be set, check t5 & F*¥¥x¥xkkxxy
oy [Xx*xx*AX** £6 to see if they are legal under the VIO _flag ¥*¥¥kxxxkux/
\
x:; case 2:
" )
;\} if (t[5] == t[1])
. return(BACKTRACK);
s else
. {
if (path_track(2,t{4]),t[5]) == FALSE)
[ {
Ly if (path_track(2,t([5],t[6]) == FALSE)
AN return(BACKTRACK);
A else
o4 T6_flag = TRUE;
o }
J":
) }
o5 return(AGAIN);
W Ne
} " break;
S
2% [xxEX*XXX if t5 & t6 were placed between t4 & tl then KAKKKKIKKKAK
fj} JX¥xxxkxx +7 must be placed between t3 & t2 to close tour *¥¥¥xkkkxxxx/
J
X case 3:
- if (T6_flag)
e {
; if (t{7] t= t{1] )
. {
' if (path_track(3,t[3],t[7]) == FALSE)
. return(BACKTRACK);
b else
return(AGAIN);
}
"3 else
fq return(BACKTRACK);
S }
Q& else
‘:’ [Rxxxxkxkk G £5 & t6 were placed between t3 & t2 then F¥r**xdxkdkkkxxy
- T [XF*EXXXXKX the algorithm is almost back to normal jlalalalelobalalobalaloloalal)
(tj .
3
o C-36
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39 -
A {

N if ((result=best_gain(size,i,1)) == SWAP)
) return(BACKTRACK);

<, else

e {

o VIO_flag = FALSE;
N return(resuit);

e }

) }
:'-j:
o break;

~ [XF**AXXX here at i=4 if the T6_flag was set KRIXRRAKXKAKKKXK |

[X*%xxkx*% if there's a gain, normal operation, continue ¥*¥¥axAxkkkxkx/

S

o default: /* i=4 */

if ((result=best_gain(size,i,2)) == SWAP)

o't return(BACKTRACK);

d else
5% {
o T6_flag = VIO_flag = FALSE;
K return(result);
r{ }
'F N

i Vo break;

<

" }

I

e }

N

N

ﬁ::': /************************************************************************
e * *
ey * *
e * DATE: 1 DEC 1985 *
- * VERSION: 1.0 *
S * *
:-3: * NAME: PATH_TRACK *
‘-;:‘i * DESCRIPTION: *
;, * This module provides the "eyes"” to the L_and_K module x
‘ * so it can determine whether or not the link under *
Sy * consideration goes to a point in the tour that is legal. *
QY
K1 * The feasibility criteria is such that if the node pointed to *
:»ti * by “nodel_ptr" is reached first when following the path *
fJ * from tl1, the link under consideration is legal and TRUE *
“ * is returned. If the node at "node2 ptr" is reached first, the *
T, * link is not allowed because it would split the tour into two *
x N * pieces. *
z)\;'
‘-,-“3-, C-37
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PASSED VARIABLES: i: current state
nodel ptr: the pointer to the node that is
closer to t1 in a legal config.
(usually the t_2*i+l1 node)
node2_ptr: the pointer to the node that is
closer to tl1 in an illegal config.
(usually the t_2*i+2 node)
RETURNS: TRUE: tentative link is legal
FALSE: tentative link is illegal
GLOBAL VARIABLES USED: t, nodes, T6_flag,
GLOBAL VARIABLES CHANGED: NONE
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: NONE
CALLING MODULES: L_and_K

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % % % % % % % % ¥ ¥ X ¥ X X ¥ * X X
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path_track(i,nodel_ptr,hnode2_ptr)
int i;
struct cell *nodel_ptr,*node2_ptr;

{
struct cell *track,*next;
int prev;

J***x*% if 3 valid link goes to tl = legal, adj to tl = illegal **¥*x/

if (nodel_ptr == t[1])
return(TRUE);

if (node2_ptr == t[1])
return(FALSE);

[***** track along the path from tl and see what nodes are hit *¥»*x/

track=t{1]->al_1_1link;

if (track == NULL)
track=t[1]->bl _r_link;

prev=t[1]->node_number;

S~ % % % 2% 2% % % % % % % M % N N ¥ % ¥ X ¥ X N ¥
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while (track !'= nodel_ptr && track !'= node2_ptr)
{
if (track != t[2*i-1})
{
next=track->bl_r_link;
if (next->node_number != prev && next != NULL)
{
prev=track->node_number;
track=next;
}
else
{
prev=track->node_number;
track=track->al_1_link;
}
if ((i == 3) && (T6_flag == TRUE) && (track == t[2*i]))
return{TRUE);
}
else
[**** must jump across a tentative link when going from fabakelel
. q
Q’i [¥*k%x t[2%i-1] to t[2*i-2] since the link isn't "there" yet ***¥/
{
track=t[2*i-2];
prev=t[2*i-1]->node_number;
if (T6_flag == TRUE && i == 3)
prev=t(2*i-3]->node_number;
}
}
[**** if arrived at node2 first the tentative tour is illegal ****/
if (track == node2_ptr)
return(FALSE);
else
return(TRUE);
}
/********************************'k*'k‘k************************************
x *
* *
) * DATE: 1 DEC 1985 *

v




* VERSION: 1.0 *
* *
] * NAME: SPEC_PATH_TRACK *
r * DESCRIPTION: *
%2$ * This module performs the same function as “path_track” *
Qy * only for special situations., It is necessary to use a *
u * special path tracking mechanism when in violation mode *
53 * at i=3 and i=4. This module capitalizes on the specificity *
D) * of the problem in order to handle it, otherwise it is the *
S * same as "path_track". *
:5: * *
a * PASSED VARIABLES: i: current state *
" * nodel_ptr: the pointer to the node that is *
R * closer to tl in a legal config. *
. * node2_ptr: the pointer to the node that is *
ok * closer to t1 in an illegal config. *
3‘;?:- * RETURNS: TRUE: tentative link is legal *
o * FALSE: tentative link is illegal *
! % * GLOBAL VARIABLES USED: t, nodes, T6_flag, *
X * GLOBAL VARIABLES CHANGED: NONE *
e. * FILES READ: *
A=t * FILES WRITTEN: *
0 * HARDWARE INPUT: *
- * HARDWARE OUTPUT: *
[ * MODULES CALLED: NONE *
e o * CALLING MODULES: L_and_KX *
) V) * *
T * AUTHOR: PAUL ROSSBACH *
O * HISTORY: *
o0 * *
:’,-:. * *
“ei ************************************************************************/
0
‘k{: spec_path_track(i,nodel_ptr,node2_ptr)
" struct cell *nodel_ptr,*node2_ptr;
™ : :
) int i;
b {
e struct cell *track,*next;
e int prev;
int x;
;ff int t_[8];
.:)-
&
hﬁf [X**x*xxx if a valid link goes to t1 = legal, adj to tl = illegal *¥**w¥*xxy
-’i. N, if (nodel_ptr == t[1])
o "~ return(TRUE);
‘o
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5};

if (node2 ptr == t[1})
return(FALSE);

[***x%x%x track along the path as in path_track only use many bbbl
[*xxxxx " umps" over tentative links since many are not permanent *¥*x/

t_[3]1=t_[4]=t_[5]=t_[7]=NOT_SEEN_YET;

track=t[1)->al_1_link;

if (track == NULL)
track=t[1]1->b1_r_link;

prev=t[1]->node_number;

while (track !'= nodel_ptr && track != node2_ptr)
{

for (x=3;x<=7;x++)
if ((track == t[x]) && (t([x] !'= NULL))
t_[x} = SEEN;

if (((track !'= t[5] && track != t[6] &&
(track !'= t[3] || prev ==t([4]->node_number)
&& (track !'= t{2] || prev == t[1]->node_number)) && i == 4) ||

((track !'= t[4] && (track != t[3] || prev ==t(4]->node_number)
&& (track !'= t[2] || prev == t{1]-Dnode_number)) && i == 3))

{
next=track->bl_r_link;

if (next->node_number != prev && next != NULL)
{ .
prev=track->node_number;
track=next;

}

else

prev=track->node_number;
track=track->al_1_link;
}

}
else
{
if ((track == t[5])) && (t_[4] == NOT_SEEN_YET))
{
track = t[4);
prev = t[3]->node_number;
}
else
if ((track == t{6]) && (t_{7] == NOT_SEEN_YET))
{
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el

"‘K
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P

:\:
W track = t[7];
vy prev = t[8]->node_number;
}
‘.‘h else
R if ((track == t[2)) & (t_[3] == NOT_SEEN_YET))
o {
2 track = t[3];
vy prev = t[4]->node_number;
) }
R else
}; if ((track == t[4]) && (t_[5] == NOT_SEEN_YET))
t {
) track = t(5];
N prev = t(6]->node_number;
else
. if (track == t[3])
: f
o track = t[2];
‘.d prev = t[1]->node_number;
; }
T
R }
-
SR b
] U if (track == nodeZ_ptr)
j:-Z; " return(FALSE);
‘.rj'. else
.';-.' return(TRUE);
2
Vo
’
’|. U
i
T}I_:;. /************************************************************************
:':‘- * *
y “:;-: * *
.- * DATE: 1 DEC 1985 x
" VERSION: 1.0 *
g * *
L .
R * NAME: LINKJOIN *
5 * DESCRIPTION: *
v * Linkjoin is used by the “"generate_tour"” module when connecting *
. * nodes with permanent links at the beginning of an L_and_K *
SRS * iteration. The module links the "num_nodes" node to the *
‘;- i * “tonode" node with the “type_link" indicated. The size *
>,
LS
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variable determines which lookup table will be used.
The weight of the newly placed link is returned.

PASSED VARIABLES: w_ptr: pointer to weight value location
size: ROWS/COLS
num_nodes: the from node
tonode: the to node
type_link: type link to be joined
RETURNS: TRUE: 1ink terminates at open side of a node
FALSE: 1ink terminates at a used side of a node
GLOBAL VARIABLES USED: nodes
GLOBAL VARIABLES CHANGED: nodes
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: lookup
CALLING MODULES: generate_tour

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % % X % % % % % % N % ¥ % % ¥ ¥ ¥ *
% % W % % M % M X X M M ¥ W ¥ X ¥ N ¥ ¥ % ¥ *

************************************************************************,

linkjoin(w_ptr,size,num_nodes,tonode,type_link)
int *w_ptr;

int size;

int num_nodes;

int tonode;

int type_link;

{

struct cell **from_side,**to_side;
int *from_weight,*to_weight;
int weight;

[*raxxxxxxdx depending on the type of link, load the proper *¥**x*x¥kxkxx/
[RFEXRRERXKAX pointer to the correct nodes element FRKKIKIKKK KK [

if ( type_link == RIRJ || type_link == RILJ)
{
from_side

= &(nodes[num_nodes].bl_r_link);
from_weight =

&L(nodes[num_nodes].bl_r_weight);

else

from_side = &(nodes[num_nodes].al_1_link);




N0
\l.\-.
N
‘xw " from_weight = &(nodes[num_nodes].al_1_weight);
Y }
5“ if ( type_link == RIRJ || type_link == LIRJ)
T {
BN to_side = &(nodes[tonode].bl_r_link);
s to_weight = &(nodes{tonode].bl_r_weight);
i/ }
:~2 else
-5 to_side = &(nodes[tonode].al_i_link);
.}5 to_weight = &(nodes[tonode].al_1_weight);
Q} }
. [RXXXIXXAAXR yge the pointers to change the nodes 1links falalalelefalabodototo bt V)
- JXXKEEIXXXXK for the new connection if the node is "open" (F¥kkkkkkkkkkk/
.n‘-.-
S if (*to_side == NULL)
20 {
‘;" weight = l1ook_up(size,num_nodes,tonode,type_link);
*w_ptr=weight;
z&; *from_side = (&nodes[tonode]);
U *to_weight = *from_weight = weight;
o *to_side = (&nodes[num_nodes]);
.£f§ ) return(TRUE);
A (3." }
- else
i}i return(FALSE);
i }
D
A
4 ".;:t /***‘k********************************************************************
J'::- * *
~ * *
b
* DATE: 1 DEC 1985 *
N * VERSION: 1.0 *
7 N N
s * NAME: NEW_LINKS *
I * DESCRIPTION: *
) * New_links sets up all tentative links for the L_and K *
o * algorithm. The information about the new tentative 1link *
% * is found in the low array. New_links is passed the index value *
. * (max_yi) for the low array and the type_link to be installed. *
o * New_links also tags the next node as t_2*i+1, and the t_2*i+2 *
- * node if i=1 or if in the violation mode (best_gain tags t_2*i=2 *
SN * if i>1 and not in the violattion mode). *
“"3 * *
T * PASSED VARIABLES: type link: LILJ,LIRJ,RIRJ,RILJ *
ol ' * i: current state *




[ ~ v K ik 08 Sl 1‘7‘7"7'1

max_yi: 0-4, low(max_index]

RETURNS: NONE

GLOBAL VARIABLES USED: t, nodes, VIO_flag
GLOBAL VARIABLES CHANGED: t, nodes

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: NONE

CALLING MODULES: max_value

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ % % ¥ % % % % % % % X ¥ X % %
¥ % % % % % % % % % ¥ * % N ¥ %

************************************************************************/

new_links(type_link,i, max_yi)
int i;

int type_link;

int max_yi;

{
int ii;

[Xx**xx%XX* yse the proper low array - for i=1,2, or for > 3 *¥¥¥¥kkkkxxy

if (i>=3)
il o= 3;
else
il o= i

[*¥***xxxx tentatively assign the new link from the current *¥¥xx¥kxwdk/
Jrr*F*xxEKX £ [2%1] node using the info in low and type_link  ***xdwkikax/

if ( type_link == RIRJ || type_link == RILJ)
{

t{2*i]->tent_b_link=(&nodes[low[max_yi}[1](iil});
t{2*i]->t_b_weight=1ow[max_yi) [0])[ii];
t{2*i]->ycurrent=BL_R;

t[2*i]->xcurrent=BL_R;

t(2*1]->b1_r_is_y = TRUE;

if (i <=3)
{
if (t[2*i]->two_ycurrent == -1)
t(2*i]->two_ycurrent = t(2*i]->ycurrent;
if (t[2*i]->two_xcurrent == -1)
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N ..

t: Rt t{2*i]->two_xcurrent = t[2*i]->xcurrent;

. }

N }

. else

X t[2*i)->tent_a_link=(&nodes[low[max_yil[1][i1]]);

e t(2*i]->t_a_weight=1ow[max_yi]1[0)[ii];

! t(2*i]->ycurrent=AL_L;

\ t{2*i]->xcurrent=AL_L;

. t[2*i]->al_1_is_y = TRUE:

if (i <= 3)

" if (t{2*i]->two_ycurrent == -1)

4 t{2*i]->two_ycurrent = t[2*i]-Dycurrent;

}) if (t[2*i]->two_xcurrent == -1)

% t(2*i]->two_xcurrent = t[2*i]->xcurrent;

}

N }

e

- [YExERENK jdentify the t[2*i+1] and t[2*i+2] nodes reulting ****kxaxxix/
[X¥xxxxXX from the new tentative yi link falalatataboddedoboted)
[XF*EXKXX tentatively assign the t[2*i+l] x & y currents jalakelalatababodabadel ]

Wi t[2*i+1])=(&nodes [Towlmax_yi]{1][i1]]);

< if ( type_link == RIRJ || type_link == LIRJ)

\; {

'; t{2*i+1]->xcurrent=BL_R;

o t{2%i+2]=t [2*i+1]->b1 _r_link;

b ti2*i+1]->b1_r_is_y = TRUE;

‘ if (i <= 3)

- if (t[2*i+1]->two_xcurrent == -1)

- t(2*i+1]->two_xcurrent = t(2*i+{]->xcurrent;

b else

p t{2*i+1]->xcurrent=AL_L;

t[2*i+2])=t[2*i+1]->al_1_link;
t(2*i+1]->al_1_is_y = TRUE;
if (i <=3)
if (t[{2*i+1]->two_xcurrent =
t[2*i+1]->two_xcurrent = t{2*i+1]->xcurrent;

3.

[P P
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[XRFHEXEXAE {f i=1 or the VIO_flag is set, best_gain won't be **¥*X*xxikxxx/
[*¥***** called so tentatively assign the t[2*i+2] x & y currents *¥**x*xx/

bl if (i ==1 1| VIO_flag == TRUE )
o {
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R if (t(2*i+2]->al_1_link == t[2*i+1])
o {
’ t{2*i+2]->xcurrent=AL_L;
S t[2*i+2]->ycurrent=AL_L;
-~ }
N else
N4 T
0 t[2*i+2]->xcurrent=BL_R;
) t[2*i+2])->ycurrent=BL_R;
.-.~v }
= }
o return;
5 }
SN
:.:f:j:
o
: ’ /************************************************************************
* *
* *
* DATE: 1 DEC 1985 *
. Lo * VERSION: 1.0 *
o * *
_ * NAME: FILL_INVALID *
S * DESCRIPTION: *
o * This module fills the invalid array with up to 4 nodes that the *
ol * current (2*i) node may not choose for a possible 2*i+l1 node. *
* The nodes may be invalid because they are presently connected *
S * to the current node or because they were previously connected *
";\‘;_{ * to the node. This invalid array is used by the smallest_yi o
RSN * module each time it is called. *
" * *
s * PASSED VARIABLES: invalid: ptr to array *
LA * nodenum: current(2*i) node *
N * RETURNS: NONE *
I{:: * GLOBAL VARIABLES USED: t,nodes *
o * GLOBAL VARIABLES CHANGED: NONE *
O * FILES READ: *
™ * FILES WRITTEN: *
e * HARDWARE INPUT: *
- * HARDWARE OUTPUT: *
e * MODULES CALLED: NONE *
P * CALLING MODULES: L_and_K *
.‘:-_ x* *
‘. * AUTHOR: PAUL ROSSBACH *
v s * HISTORY: *
* *
‘I.
B
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* x
************************************************************************/

fill_invalid(invalid,nodenum)
int invalid{4];
int nodenum;

{

int i;

/************** clear invalid ****************/

for (i=0;i<=3;i++)
invalid[i] = -1;

[****xx%x anter the node #s of the nodes connected to 2% ***¥*kxkx/

if (nodes[nodenum].al_1_link != NULL)
invalid{0] = nodes(nodenum].al_}_link->node_number;
else

invalid[0] = t[1]->node_number;

if (nodes([nodenum].bl_r_Tlink f= NULL)

invalid(1] = nodes[nodenum].bl_r_link->node_number;
else

invalid{1] = t[1}->node_number;

[****** enter node #s of nodes previously connected to 2%i **xx*/

if (nodes[nodenum].oldxl != -1)
{
invalid[2]) = nodes[nodenum].oldxl1;
if (nodes[nodenum].oldx2 !'= -1)
invalid{3] = nodes[nodenum].oldx2;

return;

/************************************************************************
* *
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SR * .
b * DATE: 1 DEC 1985 *
, * VERSION: 1.0 *
* *
- * NAME: T1_RANDOM *
- * DESCRIPTION: *
s * This module picks a random starting node, tl1, from a list of *
‘;i' * nodes that have not yet been chosen as tl since the last tour *
N * change. If no nodes remain, no node is chosen and TRUE is x
e * returned. *
‘-:.' * *
o * PASSED VARIABLES: size: ROWS/COLS *
ol * time: 0 = 1st t1 chosen after new tour *
o * 1 = other t1 tries *
. * RETURNS: TRUE: if all nodes have been tried as tl1 w/o gain *
o * FALSE: if another t1 was found o
ol * GLOBAL VARIABLES USED: t1, nodes *
Sy * GLOBAL VARIABLES CHANGED: tl1, nodes *
N * FILES READ: *
;3 * FILES WRITTEN: *
- * HARDWARE INPUT: *
- * HARDWARE OUTPUT: *
L * MODULES CALLED: NONE *
- * CALLING MODULES: L_and_K *
_‘". * *
(; * AUTHOR: PAUL ROSSBACH *

" - * HISTORY: *
- * *x
) * *
s:“_' ************************************************************************/
o t1_random(size,time)

o int size;

- int time;

"

R *

static int t1_nodelist[ROWS];

- int possible;

e int mask;

' int done,i;

F,j int sum;

(?5' long random( );

:3:::"? [REERKKRXKER dotermine maximum random number  FRXKAXKKXKFXKAKXKKKKKKK |

[

KGN if (size == DATAWIDTH)

el T mask = MAXDATAWIDTH;

i
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3 :’ ;: else

20 mask = MAXROWS:

~_ /*********** 1f 1St try‘ Clear the tl node]ist ********************/
o if (time == 0)

{

e for (i=0;i<=size~1;i++)

\ t1_nodetist{i] = 0;

B }

k . [XxxXRAKKRRXX i 311 nodes have been tried, return TRUE **X**xxxkxkxxx/
L.

. sum = 0;

1. for (i=0;i<=size-1;i++)

<o sum += t1 _nodelist(i];

. if ( sum == size )

A return(TRUE);

e else

; ) /********** e]se f-ind a new random tl nOde *********************/
SN {

- done = FALSE;

possible = MAXROWS+1;
while ( possible > size-1 )

;' {‘ possible = random();
u}ﬁ possible = (possible & mask);
oy }

.'\"t

A while (done != TRUE)

3 '..V {
= if (tl_nodelist[possible] == 0)
..‘\':" {
s t1_nodelist[possible] = 1;
yﬁ{. t[1] = (&nodes{possible]);
e done = TRUE;

l’.j‘u'. }

[ ]
’;;: else

::}: [**xxxkkx%x i f random node has been used, use the next(etc) **X*x*¥kxxy
A

2 (

T if (possible != size-1)

'\ possible++;
S8 else

RO possible = 0;

e }

U }
N

;,J s return(FALSE);

N . }

o

YL
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DATE: 1 DEC 1985
VERSION: 1.0

NAME: CLEAR

DESCRIPTION:

Clear removes all tentative links beyond the point indicated

by how_much. Clear is called after a swap is made or after an
attempt to improve the tour has failed, and a new configuration
of the tour is desired.

PASSED VARIABLES: how_much - ALL: clear all but tl
- Y_1: clear all back to t2
- Y_2: clear all back to t4

RETURNS: NONE

GLOBAL VARIABLES USED: t, nodes

GLOBAL VARIABLES CHANGED: t,nodes

FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: NONE

CALLING MODULES: L_and_K

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ N N N N N X X XN N X N N N N X N N N X ¥ ¥ F X X X X F ¥~
% % % % % % % % % N X ¥ % ¥ % ¥ % X ¥ ¥ % % X % ¥ X % X ¥

b2 s st sttt ettt sest et es sttt st s s sttt sess st s st /

clear(how_much)
int how_much;

{

int start,i;
int reclaim_weight;

if (how_much == ALL)
start = 2;
else

............
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w3 if ( how_much == Y_1 )
- start = 3;
else
start = 5;
[FFIKEKIKXKRKXXX clear all from start on if changed(ie t[i]!=NULL) **¥*xx%/
for (i=start;i<=ROWS-1;i++)
{
if ((t[i] '= t[2] || start == 2)&&((t[1] '= t[3] && t(i] '= t[4]) ||
start = 5) && t(i] != NULL)
{
t{i]->xcurrent = -1;
tlil->ycurrent = -1;
t{i]->ystar = NULL;
t(i]->ystar_weight = -1;
t{i]->tent_a_link = NULL;
t{i]l->tent_b_link = NULL;
t{i]->t_a_weight = -1;
t{i]->t_b_weight = -1;
t{i]->al_1_is_y = FALSE;
t{i]->b1_r_is_y = FALSE;
t[i]->0ldx]l = -1;
t{i]->01dx2 = -1;
t{i)->two_ycurrent = -1;
- t{i}->two_xcurrent = -1;
(o t{i]= NULL;
}
else
{
if ( t(i] t= NULL )
{
if (t[i]->two_ycurrent != t{i]->ycurrent)
t(i}->ycurrent = t{i}->two_ycurrent;
“if (t[i]l->two_xcurrent != t[i]->xcurrent)
t{i]->xcurrent = t{i}->two_xcurrent;
if (t[i]-Dycurrent == AL_L)
{
t(i]->tent_b_link = NULL;
t[(i]->t_b_weight = -1;
if ((t(i] == t[2] && t(i] == t{4]) == FALSE)
tli]->bl_r_is_y = FALSE;
}
if (t{il->ycurrent == BL_R)
{
t{il->tent_a_link = NULL;
t{i]->t_a_weight = -1;
if ((t[i) == t(2] &% t[i] == t[4}) == FALSE)
t{i}->al_1_is_y = FALSE;
- }
O tlil= NULL;
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P '
'i;} [*¥x**xxxAX clear Y_1 from node t2 or Y_2 from node t4 *A¥xkkkkxikkukix/
D)
' N if (how_much == Y_1)
P i=2;
'$Q§ if (how_much == Y_2)
1 .'::) is= 4;
R if (how_much != ALL)
{
;ﬁ?ﬁ if (t(i]->Dtwo_ycurrent != t[i]->ycurrent)
il {
g%di t{i]->ycurrent = t[i]->two_ycurrent;
Ko, t[i]->two_ycurrent = -1;
RS )
d if (t{i]->two_xcurrent != t[i]->xcurrent)
2 {
%55 t(i]->xcurrent = t[i]->two_xcurrent;
.¢:y t{i}->two_xcurrent = -1;
oS }
SN G;L if ( tli)->ycurrent == AL_L)
i {
B t[i]->tent_b_link = NULL;
5 t{i}]->t_b_weight = -1;
- ':. }
AR else,
ey {
D t[i]->tent_a_link = NULL:
L4 t(i}->t_a_weight = -1;
::;:t }
L.‘:}" }
N
-y else
s
&

[*F**EIRAXK clear ALL, relink tl & t2, then clear both ¥¥¥¥¥kxwxkkdxkx/

A

SN

if (t{1]) '= NULL ) /* = NULL after swap() */
{
if ( t{1]->al_1_link == NULL)
{
t(1]->al_1_is_y = FALSE;
t{1]->al_1_link = (&nodes{t[1]->01dx1]);
reclaim_weight = t(1]->al1_1_weight;
}

else

& {

, .
v . I..
y

T

= J0r
et

1

5

2*
P )
.

ti1]->b1_r_is_y
t{1]->b1_r_link

FALSE;
(&nodes[t[1]->01dx1]);
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%}: $}j reclaim_weight = t(1]->bi_r_weight;
... - }
L) )
M if ( nodes(t[1]->o1dx1].al_1_link == NULL)
! .‘ {
£ nodes[t[1]->01dx1].al_1_link = t[1];
s nodes[t[1]->01dx1].al_1_weight = reclaim_weight;
S }
e else
) {
o nodes(t{1]->01dx1].b1_r_link = t[1];
o nodes(t[1]->01dx1].b1_r_weight = reclaim _weight;
b }
e t[1]->0ldx1 = -1;
. }
'\‘n
Y
ﬁg; return;
A
B }
' i
:"‘.‘_ o /************************************************************************
@ . :
l- * *
™~ * DATE: 1 DEC 1985 *
v * VERSION: 1.0 *
:.} * *
[ * NAME: CHOOSE_X1 *
* DESCRIPTION: *
ix * For any given tl1 chosen, choose_x1 will pick a random link as *
A * the x1 when called with time = 0. The module will pick the *
o * remaining link if both have not already been tried with time= 1 *
e, * If a link can be assigned, the module assigns it by manipulating*
s * the doubly linked nodes forming the tour. tl is split from tz *
‘Le * and x and y currents, oldxls, and is_ys are flagged. *
__-:_.- * *
t{j * PASSED VARIABLES: time : 0 - immediately after tl chosen *
Al * : 1 - any other time *
o * RETURNS: FALSE : an x1 assigned *
LN * TRUE : both xls used so x1_done *
. * GLOBAL VARIABLES USED: t,nodes *
Y- * GLOBAL VARIABLES CHANGED: t,nodes *
3%{3 * FILES READ: *
- * FILES WRITTEN: *
W * HARDWARE INPUT: *
£ * HARDWARE OUTPUT: *
e * MODULES CALLED: NONE *
j:ﬂ' o * CALLING MODULES: L_and_K *
ol
J:'-:"- C'54
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AUTHOR: PAUL ROSSBACH
HISTORY:

* % % % %

* % % % N

************************************************************************/

choose_x1(time)
int time;

{

static int the_x1;
static int try;
long random();

/************* first try - pick random x1 ******************/

if ( time == 0 )
{
the_x1
- the_x1
Qe try = 1
}

else

random( );
(the_x1 & 01);

/************* next try - pick the other ]ink ******************/

{
if (try == 1)
{
if { the_x1 ==
the x1 = BL
else
the_x1 = AL_L;
try = 2;
}
else

[RxxxRRRKFFIERK third try - return TRUE = x1_done ¥¥xskdkaa Ak AXXXXX /

return(TRUE);

[X¥**FxxKXXAKX | ink assigned - make changes to t and nodes ¥¥ix¥dddkdnk/

if ( the_xl == AL L)
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{
t(2)= t[1])->al_1_link;
t{1]->al_1_is_y = TRUE;
t(1]->a1_1_link = NULL;
t(1]->xcurrent = AL_L;
t{1]->ycurrent = AL_L;
}
elise
{
ti2]= t{1)->bl_r_link;
t(1]->b1_r_is_y = TRUE;
t(1]->b1_r_link = NULL;
t[{1]->xcurrent = BL_R;
t{1)->ycurrent = BL_R;
}
if ( t[2]->al_1_link == t(1] )
{
t{2]1->al_1_is_y = TRUE;
t{2)->a1_1_link = NULL;
t(2]->xcurrent = AL_L;
t{2]->ycurrent = AL_L;
}
else
{
t(2)->b1_r_is_y = TRUE;
t{21->bi_r_tink = NULL;
t{2]->xcurrent = BL_R;
t{2]->ycurrent = BL_R;
}

t(2]->0ldxl=t{1]->node_number;
t(1]1->01dx1=t[2]->node_number;

return{FALSE);

}
/***t*************************t******************************************
x x
* *
* DATE: 1 DEC 1985 *
* VERSION: 1.0 *
* *
* NAME: INITIALIZE *
* DESCRIPTION: *
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Initializes all node structures, t pointer arrays, G arrays
and T6 & VIO _flags. The initialization either clears or
places "illegal" values. Initialize serves to insure all
unassigned variable values are known at the beginning of the
algorithm.

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: t,G,nodes,T6_flag,VIO_flag
GLOBAL VARIABLES CHANGED: t,G,nodes,T6_flag,VIO_flag
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OQUTPUT:

MODULES CALLED: NONE

CALLING MODULES: L_and_K

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % % % % X X% * % % % % % X X% X *
% % % % % % % % % % % % % % ¥ ¥ ¥ % X ¥ *

************************************************************************/

initialize()
{

int i;

for (i=0;i<=ROWS-1;i++)

{

t{i] = NULL;

G[i] = O;
nodes[i].al_1_link = NULL;
nodes(i].bl_r_link = NULL;

nodes[i].al_1_weight = -1;
nodes([i].bl_r_weight = -1;
nodes[i].node_number =
nodes[i].ycurrent = -1;
nodes{i].xcurrent = -1;
nodes[i].ystar = NULL;
nodes[i].ystar_weight = -1;
nodes(i].tent_a link = NULL;
nodes[i].tent_b_link = NULL;
nodes(i].t_a_weight = -1;
nodes[i].t_b _weight = -1;
nodes(i).al_1_is_y = FALSE;
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nodes{il.bl_r_is_y = FALSE;
nodes{i].oldxl = -1;
nodes{i]l.oldx2 = -1;
nodes(i].two_ycurrent = -1;
nodes(i].two_xcurrent =

}

T6_flag = FALSE:
VIO flag = FALSE;

t[ROWS] = NULL;
G[ROWS] = 0;
return;
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DATE: 1 DEC 1985
VERSION: 1.0

NAME: SWAP

DESCRIPTION:

The L_and_K TSP algorithm calls swap when a better tour has
found, but it can progress no further. Since the program
changes links as it goes, only the very last valid link needs
to be modified. Then, all tentative information contained in
the linked node structures must be cleared.

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: f_t,G_best,t
GLOBAL VARIABLES CHANGED: nodes,t
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: clear

CALLING MODULES: L_and_K

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ % % % % % N X N % % % % N N ¥ M X N N N N H N X ¥ M~
* ook % % % % X % % % % % % % X ¥ X % % % % % M % ¥ % *
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L ' ************************************************************************/
.

._4,_(
f:} swap()

) (
-

::_}C: /************** update the full tour cost ****************l
o

\Z f_t = f_t - G_best;

- [X*xxxkxk move the y(k) link to tl to close the tour *¥¥*kwxkxkk/
s if (t[2*k]->al_1_link == t[2*k+1])

{

e t[2*k)->al_l_link = t[2*k]->ystar;

s t[2*k]->al_1_weight = t[2*k]-D>ystar_weight;
ng }
b else
e
g (—.A t[2*k]->b1_r_link = t[2*k]-D>ystar;
- t(2*k]->b1_r_weight = t{2*k]->ystar_weight;
8 }
i‘: /******** Connect tl back thru y(k) to t[z*k] **************/
T!,_ :'
:;t if (t[1]->al_1_is_y == TRUE)

._-‘. {
o t{1]->al_1_link = t[2*«];

-'_'_.-_Z t(1]->al1_1_weight = t[2*k]->ystar_weight;
i t[{1]->al_1_is_y = FALSE;
\., else
._‘.--

:;2 t{11->b1 _r_Vink = t[2*k];
- t(1]->b1_r_weight = t[2*k]->ystar_weight;
so: t(1]->b1_r_is_y = FALSE;

o }

s
o~ t(1]->xcurrent = -1;

X t{1j->ycurrent = -1;
;-‘j::- t{1]->oldx1 = -1;
?a? t(1] = NULL;
SOAREIRA S clear(ALL);
h'-:.-.' T
)
g
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< return;
i }
)
'h:} /************************************************************************
-“._ * *
":. * *
' * DATE: 1 DEC 1985 *
" * VERSION: 1.0 *
* *
::, * NAME: LOOK_UP *
o * DESCRIPTION: *
T * Finds and returns the weight of the link between two columns *
- * or rows from the passed variable information. *
* PASSED VARIABLES: *
o * size: COLS/ROMWS *
* from: node *
-7 * to: node *
‘X * type: RIRJ *
- * RILJ *
v ( . * LILJ *
. g * LIRJ *
1y, * *
-] * RETURNS: link weight *
,_4 * GLOBAL VARIABLES USED: no_pull_row, non_col_pairs *
}; * GLOBAL VARIABLES CHANGED: NONE *
* FILES READ: *
< * FILES WRITTEN: *
_:_ * HARDWARE INPUT: *
e * HARDWARE OUTPUT: *
‘.: * MODULES CALLED: NONE *
SN * CALLING MODULES: 1linkjoin *
o~ * *
LB * AUTHOR: PAUL ROSSBACH *
- * HISTORY: *
* *
:"; * *
::;_ ************************************************************************/
LI
o al
AN
..
< look_up(size,from,to,type)
o int size;
¢ int from;
AN int to;
"{j.' o int type;
e
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Y ok
;.m {
:\: int weight;
S
:::: [**x*kxkx  ROWS have BL_R to BL_R or AL_L to AL_L *¥*¥kxkxkkwk/
I »
o if ( size == ROWS )
-.".\': {
o if (type == RIRJ)
oo weight = no_pull_row([from] [to] [BL_R];
s else
‘, weight = no_pull_row(from] (to] [AL_L];
}
‘ [rxxxxxkx COLS retrieve weight 1 of 4 types — *ddkddkkddkkddxx/
.~ else
O weight = non_col_pairs[from] [to] [type];
s
'_E’j return{weight);
% .
g L N
| }:
O.
,_:
’ : /************************************************************************
':. * *
" * *
. * DATE: 1 DEC 1985 *
- * VERSION: 1.0 *
-, * *
5 * NAME: HAMILTONIAN_PATH o
e * DESCRIPTION: *
g * This module takes the minimum length TSP tour and splits it *
v * (since the row's or column's array edges need not be joined *
N * on the ends). The resulting hamiltonian path is saved in the *
e * proper array to be used later. The ordering is temporarily o
e * saved in the "order"” array. The starting point in the order *
’-j:'.- * array is determined from either max_start or min_start for *
L * columns and rows respectively. *
‘." * *
j-:." :: * COLS: The column tour is split at the maximum link, thereby *
[ ’ * minimizing the costs between the other links. The resulting *
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path for the groups of 12 column-bytes is placed into the
“permut_col" array. If the column-byte had to be flipped over
it is so indicated in the "sideways" array. The 4 calls to
this module for columns cover the 4 groups of 12 in the XROM
from left to right.

ROWS: This module is called when the tour found is the lowest
seen thus far. The row tour is only allowed to be split on an
AL_L(an AO_line drain) link. This is due to the physical layout*
of the XROM. The rows tour is split on the minimum cost 1ink
in order to get a two-for-one “drain savings" on the best 1ink
since this link borders on two rows of drains(top and bottom).
The resulting path is saved in the “row_permutation” array.

% % % X % % % %

PASSED VARIABLES:
size: COLS/ROWS
time: 0,1,2,3 for 4 column groups only

RETURNS: NONE

GLOBAL VARIABLES USED: nodes

GLOBAL VARIABLES CHANGED: permut_col,sideways,row_permutation
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HAROWARE QUTPUT:

MODULES CALLED: NONE

CALLING MODULES: drains

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ % % % X % % % % o % % % % % % ¥ A % % ¥ A ¥ % N ¥ % % % % X % % ¥ %

¥ % % o % % % % % % % % % % % % M % % % % ¥ X ¥ % *

************************************************************************/

hamiltonian_path(size,time)
int size;
int time;

{

int done;

int max_link;
int min_a0_link;
int max_start;
int min_start;
int i,];
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int current_type;

int order[ROWS];

int flip[ROWS];

struct cell *foilow,*last,*next;

[RAXIRIXAXAXEX  start at node zero

follow = &nodes{0]};

last = NULL;

i=0;

orderf{i++] = 0;
min_a0_link = BIG_NUMBER;
max_link = -1;

done = FALSE;
[XXIXXXKXXAXX*  track along the linked tour

while ( done != TRUE )
{
next = follow->bl_r_link;
current_type = BL_R;
flipli-1] = 0;
if (next == last)

{
next = follow->al_1_link;
current_type = AL_L;
flip{i-1] = 1;

}

[X**x*%xx%x**  remember the node sequence

if (next !'= &nodes[0])

order[i++] = next->node_number;
else

i=1;

/************* if ]ink iS AL_L' keep max & min ****************/

if ( current_type == AL_L)
{

if ( follow->al_1_weigi't > max_link )

{
max_link = follow->al_1_weight;
max_start = i-1;

}

if ( follow->al_1_weight < min_a0_link )

{

min_a0_link = follow->al_1_weight;

min_start = i-1;

}

T TR R T YT TR W W T W LUV
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******************/
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S
'.'_ "_'.:: }
Kot else
!
' y /************* ]f the ]]nk iS BL R’ keep max ******************/
e {
T if ( follow->bl_r_weight > max_link )
o {
\ max_link = follow->bl_r_weight;
W] max_start = i-1;
o -
\ﬁn; }
b }
_:k [Rxx*xkXKKKX*X  continue if not finished AXKKKKKIRKKKKKIIKIK |
:; if ( next == &nodes[0] )
- done = TRUE;
A else
-':: {
‘;. last = follow;
Y follow = next;
s }
f} } /* end while */
4“' /************* save the resu]ts: ordering ******************/

if (size == DATAWIDTH)

s {
.- for (j=0;j<=DATAWIDTH-1;j++)
{

permut_col [time*DATAWIDTH+j] = order[(max_start +j) % DATAWIDTH]
+ time*DATAWIDTH:;
sideways{time*DATAWIDTH+j] = flip[(max_start + j) % DATAWIDTH];
}

else

for (j=0;j<=ROWS-1;j++)
row_permutation[j] = order{(min_start + j) % ROWS];

o, .(r‘ll"). EA Pt

a

vfﬁ }

-~ return;

7 }

.................................
'''''
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APPENDIX D “LAYOUT" CODE

/************************************************************************

DATE: 1 DEC 1985
VERSION: 1.0

TITLE: AUTOMATIC LAYOUT OF XROM IN CAESAR
FILENAME: LAYOUT.C

COORDINATOR: CPT LINDERMAN

PROJECT: XROM OPTIMIZER(AUTO LAYQUT)
OPERATING SYSTEM: UNIX V 4.2

LANGUAGE: C
USE: included in gen_XROM.c
CONTENTS:
layout()
pla_pers{)

senseamp_pers{()
xrom_pers()
main_xrom_place()
edges_xrom_place()
word_sign_pers()

FUNCTION: This program uses the results of the DRAINS.C
program to create 10 Caesar files that describe
the XROM in a layout description.

% % % % % % % O % % % % % % % % X % % % ¥ % * * %
% % % % % O % % % % % % % % % % % % % % * ¥ X X %

************************************************************************/

/*
#include "stdio.h"
#define COLS , 48
#define ROWS 144
#define GROUPS 4
#define DATAWIDTH 12
#define FALSE 0
#define TRUE 1
#define OQUT_SIZE ROWS*GROUPS*DATAWIDTH
*/
fidefine LEFT 0
Hdefine RIGHT 1
#define MAXCAENUMSIZE 6
#define TECH "scp
#define CAE_UNITS 2
#define PLA_PERS_UOLO "u010"
#define PLA_PERS_UOL1 "ull11"
#define PLA_PERS_UILO "ull0Q”
D-1
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1A% o
RN #define PLA_PERS_U1L1 "ul11”
AN #define SENSE_AMP_ "sena_"
C #idefine SIDE ‘g
ey #define NOT “n"
1o #define FLIP "En
(.- #define XROM_ "xrom_"
‘I‘: #define A “A"
5 #define B “B"
') #define C "Ce
s #define D D"
i #define OPT_NO "
4 #define FILE_EXT “.ca"
e #define LEFT_PLA_OUT "1pla.ca"
by #define RIGHT_PLA_QUT "rpla.ca"
. #define SIGN1_BITS_OUT "1sig.ca"”
R #define SIGNZ_BITS_OUT "2sig.ca"
W #define XROM1L_OUT “Xarli.ca"
N #define XROMIR_OUT “Xarlr.ca"
[ #define XROM2L_OUT “Xar21.ca"
P #define XROM2R_OUT "Xar2r.ca"
@ _ #define SENSE1L_OUT "SAll.ca"
b~ #define SENSEIR_OUT “SAlr.ca"
i‘;{ #define SENSE2L_OUT "SA21.ca"
e #idefine SENSE2R_OUT “SA2r.ca"
{xj #define XROM_WIDTH 12*CAE_UNITS
e Ly fidefine XROM_HIEGHT 12*CAE_UNITS
\C #define SENSE_WIDTH 98*CAE_UNITS
SO #idefine SENSE_SPACING 96*CAE_UNITS
R #define PLA_WIDTH 13*CAE_UNITS
C?J: #idefine PLA_HIEGHT 26*CAE_UNITS
e #define PLA_SPACING 25*CAE_UNITS
R #idefine NUM_PLA_ADDRS 8
b
ignes
RN extern char out_arrayl(];
e extern char word_sign_bit[];
;-ﬂ extern int col_sign_bit[]};
X extern int sub_c_array(];
R extern int permut_coll[];
T extern int sideways(];
o extern int row_permutation(];
:g:j extern int carray(];
fﬁf char *plaboxsize;
e char *senseboxsize;
e char *xromboxsize;
_’,_*_ o /************************************************************************
=5
'..;_\'.‘ D-2
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N DATE: 1 DEC 1985

R VERSION: 1.0
ey NAME: LAYOUT
frl~ MODULE NUMBER:

23 DESCRIPTION:

S This moduie simply calls the four personalization modules
) that create the output caesar files.

PASSED VARIABLES: NONE

RETURNS: NONE

GLOBAL VARIABLES USED: plaboxsize, senseboxsize, xromboxsize
GLOBAL VARIABLES CHANGED: plaboxsize, senseboxsize, xromboxsize
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: pla_pers, senseamp_pers, xrom_pers,

% 3% % % % % % % % % % X % % % % N % % % * ¥ % % ¥
% % % % % % % % % % % % % % M % % % % % % % ¥ X ¥ X%

32 word_sign_pers

e CALLING MODULES: gen_XROM

<

jﬁﬁ- AUTHOR: PAUL ROSSBACH

Ay HISTORY:

:{::3-:

e (;- ************************************************************************/
":',r::'

1

T layout()

\."1.' {

:) plaboxsize = "0 0 26 52"; /* xmin ymin xmax ymax */

- senseboxsize = "0 0 196 200";

;:4 xromboxsize = "0 0 24 24";

o /* remember caesar units are CAE_UNITS*(lamda_length) */

Y.

N pla_pers();

.~ senseamp_pers();

;}}; xrom_pers();

K- word_sign_pers();

A .'1:‘

1:§§ return;

) "

LI }

:::.\:. /*************************************************‘k**********************
‘4..:,',-: * *
..:- bd *
1§é * DATE: 1 DEC 1985 *
ywre e * VERSION: 1.0 *
o Y * *
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NAME: PLA_PERS

MODULE NUMBER:

DESCRIPTION:

This module creates the personalization caesar files for
side of the XROM arrays (left and right). The proper 1l's
and 0's for the NAND pla are placed in the correct positions
as determined by placement and drains,

PASSED VARIABLES:
RETURNS: NONE
GLOBAL VARIABLES USED: row_permutation
GLOBAL VARIABLES CHANGED: NONE

FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: NONE
CALLING MOOULES: layout

NONE

LEFT_PLA_OUT, RIGHT_PLA_OUT

AUTHOR: PAUL ROSSBACH
HISTORY:

¥ % % X % % % % % % % % X % % X ¥ % X X X %
% % % % ok % % % % % % % X % % % % ¥ ¥ % % ¥ %

***************‘k********************************************************/

pla_pers()
{

int i,J,x;

int calcl,calc?;
FILE *fp,*fopen();
char *tech,*cell;
char *ext;

ext

Lo et ek Rak Barodlar Sas fa’ atet ok Sa aad hab Sed Son Bl Sl A8 0.0 0 0 B 0 8 dh S s Al Sob ain 42

tech

FILE_EXT;
TECH;

for (i=LEFT;i<=RIGHT;i++)
{
if (i
{
fp = fopen(LEFT_PLA_QUT,"w");
fprintf(fp,“tech %s\n",tech);

== LEFT)

else

{
fprintf(fp, "<<end>>\n");

N AN LT e e e e e N e T .
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AN fclose(fp);
0N fp = fopen(RIGHT_PLA_OUT,"w");
" fprintf(fp,"tech %s\n",tech);
;S§§
tj [X****XAXXX gcan through the row_permutation array 2 rows at a **axkrwkx)
o [R¥***KEAXXX time and alternating 2 rows per side. The row KRKERKNKK |
g [FXEXEXXRXE qumber in row_permutation equals the programmed ledebelobatotaloded
)  Aadelalabalaladatole address for the NAND pla. jalalalelalalalolel
,¢:j for ( j=ROWS-4+2*{; j>=2%{;j -= 4)
S {
Y- calcl = row_permutation(j];
R\ calc2 = row_permutation[j+1]);
‘ for (x=0;x<NUM_PLA_ADDRS; x++)
N {
t%} if (calcl & 01)
::g if (calc2 & 01)
. cell = PLA_PERS_U1L1;
N else
o cell = PLA_PERS_UOL1;
<. else
e if (calc2 & 01)
(-~ cell = PLA_PERS_U1LO;
R else
K. - W cell = PLA_PERS_UOLO;
] (o fprintf{fp,"use %s%s\n",cell ext);
R ' fprintf(fp,"transform 1 O %d 0 1 %d\n" ,x*PLA_WIDTH,
%:3 ((ROWS/4-1)-j/4)*PLA_SPACING);
3 fprintf(fp,”"box %s\n",plaboxsize);
ij;” calcl = (calel >> 1);
. calc2 = (calc2 >> 1);
e } /* end x for */
b } /* end j for */
o } /* end i for */
2
"' fprintf(fp, "<<end>>\n");
-2 fclose(fp);
'Eti return:
= }
'[f
o
o
:1::‘
o
,.,‘ - /************************************************************************
. * *
o D-5
o
W .:.1‘
'\ ---‘ WO "‘ 1"":-':.."..\."*;- ‘\"' L N "’.*":': O "x.'-.."x AL o ‘
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;E: :':;.‘ * *
0oL * DATE: 1 DEC 1985 *
' * VERSION: 1.0 *
ay * *
13: * NAME: SENSEAMP_PERS *
q_)_{ * MODULE NUMBER: *
‘-'{j- * DESCRIPTION: *
, 5 * This module creates the caesar files for the sense amplifier *
) * arrays for each XROM array. The sense amp cells called *
*-:J * and placed depend on whether the preceding optimization has *
o * flipped the column over, inverted the column, moved the column, *
o and/or changed the column's internal order, and whether the *
= * XROM array is to the left or right of the center cell. The *
b - * module also labels each cell with the column's bit position *

* number obtained from permut_col since the columns are scrambled.*

IR * *
,';:::j * PASSED VARIABLES: NONE *
e * RETURNS: NONE *
'.::;; * GLOBAL VARIABLES USED: sideways, col_sign_bit, sub_c_array, *
ol * permut_col. *
L * GLOBAL VARIABLES CHANGED: *
G * FILES READ: *
s * FILES WRITTEN: SENSE1L_OUT,SENSE1R_OUT,SENSE2R_OUT,SENSE2L_OUT *
T * HARDWARE INPUT: *
o * HARDWARE OUTPUT: *
A * MODULES CALLED: NONE *
[l (o * CALLING MODULES: 1layout *
A *x *
g * AUTHOR: PAUL ROSSBACH *
N3 * HISTORY: *
x-.:'. * *
h&' * *
D ************************************************************************/
I a senseamp_pers

> p_pers()

N {

o

P int i,j.x,y;
j'_'._': int tag;

ba s int xpos;

’7 int col_num;

e char *appendl;

s char *append2;

AR char *append3;

T char *tech;

‘.53 char *ext;

A IR char *cell;

i D-6
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FILE *fp,*fopen();

cell = SENSE_AMP_;
tech = TECH;
ext = FILE_EXT;

[FrFERXKRAAEX for 2 sets of left and right XROM arrays X**¥*kwkxkxaxk/

for (i=1;i<=2;i++) )
for (J=LEFT; j<=RIGHT; j++)
{

if (i == 1 && j == LEFT)
fp = fopen(SENSEIL_OUT,"w");
else
{
fprintf(fp,"<<end>>\n");
fclose(fp);
if (1 ==1)
fp = fopen(SENSE1R_OUT,"w");
else
if ( j == LEFT)

fp = fopen(SENSE2L_OUT, "w");
else
fp = fopen(SENSE2R_OUT, "w");

fprintf(fp,"tech %s\n",tech);

[X***** call and position the proper sense amp cell configuation

for (y=0:y<DATAWIDTH;y++)
{
x = (2%(i-1)+j)*DATARIDTH +y;

if ( sideways[x] )
appendl = SIDE;
else
appendl = QPT_NO;

if ( col_sign_bit(permut col{x]])
append2 = NOT;

else
append2 = OPT_NO;

if (Jj == RIGHT )
append3 = FLIP;

else
append3

OPT_NO;
tag = sub_c_array[permut_col[x]];

fprintf(fp,"use %s%s%s%s%d%s\n",cell,appendl,append2,

...........................................

.......

******/

N L
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RN append3, tag,ext);
ta_~ fprintf(fp,"transform 1 0 %d 0 1 O\n",fy*SENSE_SPACING);
252
j?j fprintf(fp,“box %s\n",senseboxsize);
A0S
o } /*end y for */
D) fprintf(fp,“<< labels >>\n");
:-'Q for (y=0;y<DATAWIDTH;y++)
\ {
o xpos = (y+.5)*SENSE_WIDTH;
\ x = (2*%(i-1)+j)*DATAWIDTH +y;
o col_num = carray([permut_col(x]];
e fprintf(fp,“label %d %d %d %d %d 1\n",col_num,xpos,0,xpos,0);
o }
y %ﬂ } /* end j for */
N
po fprintf(fp, "<<end>>\n");
b fclose(fp);
o return;
@ }
)
]
(s
¢ ‘.'
:" y /************************************************************************
! * *
* *
:¢ﬁ * DATE: 1 DEC 1985 *
LA * VERSION: 1.0 *
¥ :\:‘-‘ * *
s * NAME: XROM_PERS x
4 * MODULE NUMBER: *
N * DESCRIPTION: *
§§, * This module opens and closes the output files, initiates the *
S * written output, and calls the two main routines that place *
;:}: * the XROM personalization cells into the four arrays. *
o . .
P * PASSED VARIABLES: NONE *
= * RETURNS: NONE *
TNl * GLOBAL VARIABLES USED: NONE *
Mo * GLOBAL VARIABLES CHANGED: NONE *
o * FILES READ: *
e, * FILES WRITTEN: XROMIL_OUT, XROMIR_OUT, XROM2L OUT, XROM2R_OUT *
PR * HARDWARE INPUT: *
N e * HARDWARE QUTPUT: *
- L. T * x

MODULES CALLED: main_xrom_place, edges_xrom_place




-
“ﬂ
]

o]
Py

% * % % % *

************************************************************************/

e * CALLING MODULES: layout
* AUTHOR: PAUL ROSSBACH
* HISTORY:
*
*
xrom_pers()
{
int group;
char *tech;
FILE *fp,*fopen();
tech = TECH;
for (group=0;group<=3;group++)
{
if (group == 0)
fp = fopen(XROMIL_OUT,"w");
. else
(T {
fprintf(fp, " "<<end>>\n"};
fclose(fp);

if (group == 1)
fp = fopen(XROM1R_OUT,"w");
else

if (group == 2)
fp = fopen{XROM2L_OUT,"w");

else
fp = fopen(XROM2R_OUT,"w");

}
fprintf(fp,“"tech %s\n", tech);

main_xrom_place(group,fp);
edges_xrom_place(group,fp);

}

fprintf(fp,"<<end>>\n");
fclose(fp);

return;

}
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DATE: 1 DEC 1985
VERSION: 1.0

NAME: MAIN_XROM_PLACE

MODULE NUMBER:

DESCRIPTION:

This module places the XROM cells for most of the array groups
from the out_array bit pattern and row_permutation matrix.

/

*

*

x

*

*

*

*

*

*

*x

x

o PASSED VARIABLES: group: 0-3, datawidth wide groups

* fp: pointer to output file

* RETURNS: NONE

* GLOBAL VARIABLES USED: row_permutation, out_array

* GLOBAL VARIABLES CHANGED:

* FILES READ:

* FILES WRITTEN: XROMIL _OQUT, XROMIR_OUT, XROM2L_OQUT, XROM2R_OUT
* HARDWARE INPUT:

* HARDWARE QUTPUT:

* MODULES CALLED: NONE

* CALLING MODULES: xrom_pers

*
*
*
*
*

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % % % O % % % % % X % % % % % % ¥ ¥ % ¥ X ¥ *

************************************************************************/

main_xrom_place(group,fp)
int group; /* 0,1,2,3 */
FILE *fp;

{

int bit1[9),bit2[9]),bit3([9];
int calcl,calc2,calc3;

int g,h,i,]§,y,X,yy,xx;

int ur,ul,lir,11;

char *a, *b, *c,6*d;

char *cell;

char *ext;

int x_dim,y_dim;

cell
ext

XROM_;
FILE_EXT;
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[F*xxxxkxx%x for each XROM row in the group by 2's ***xaxikikkix/

for (x=ROWS-1:x>=3;x -= 2)

{

bit1(8] = O;
bit2[8] = 0;
bit3{8] = 0;

g=row_permutation(x-2]*COLS + group*DATAWIDTH;
h=row_permutation{x-1]*COLS + group*DATAWIDTH;
i=row_permutation{x]*COLS + group*DATAWIDTH;
for (j=DATAWIDTH-1;j>=0;j--)

{

/********* ]ook at three rows at a time **************/

calcl = out_arraylg+jl;
calc2 = out_array(h+j];
calc3 = out_array[i+j];

for (y=0;y<=7;y++)

{

bit1(7-y] = (calcl & 01);
bit2[7-y] = (calc2 & 01):
bit3([7-y] = (cale3 & 01);

calcl = (calcl >> 1);
calc2 {calc2 > 1);
cale3 = (cale3 >> 1);

[XFHFxXXXXXX calculate type XROM cell for 4

************/

[RFHXFAIAX bhits of each bit line(xx=0) byte & 4 *rrhbbkbiakt/
[RxxXXXAXX hits of each AD line(xx=1) byte KAKKKKKKKKKKX [

for (xx=0;xx<=1;xx++)
fo; (yy=4:yy>=1,yy--)

if (xx)
{
ur = bit3[2*yy]; /** ur = upper
ul = bit3(2*yy-1]; /** ul = upper
Ir = bit2{2*yy]; [** 1r = lower
11 = bit2[2*yy-1]; /** 11 = lower
}

else
{
ur = bit2{2*yy-1};
ul = bit2{2*yy-2];
Ir = bitl{2*yy-1];

right of drain

left

of drain

right of drain

left

of drain

**/
‘k*/
**/
**/
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oot
R }ll = bitl1([2*yy-2];

K.

N if (ul)

o a = A;

. else

h a = OPT_NO;

Lo if (ur)

) b = B;

-;3::. else

e b = OPT_NO;

oo if (1)

N ¢ =C;

e else
» = OPT_NO;
1_:.; if (1r)

o d = D;
S else

3 d = OPT_NO;

3o
2 x_dim = XROM_WIDTH*(yy + 4%j + . 5%xx):
¥“i‘ y_dim = XROM_HIEGHT*(({ (ROWS-1)-x)/2 + .5%xx};
-

.:-:'.-_- fprintf(fp,"use %s%s¥s¥s¥s%s\n",cell,a,b,c,d,ext);
{4&-’ fprintf(fp,“transform 1 O %d 0 1 %d\n",x_dim,y_dim);
G fprintf(fp,"box %s\n", 6 xromboxsize);
o } /> end yy for ¥/
f o bit1(8] = bit1[0};
‘:"-3 bit2[8) = bit2[0];

W bit3(8] = bit3([0];

j%:. } /* end j for */

-_‘~‘-:

EC;:-.'.: } /* end x for */

e

:7. return;
o }

~ / (282 sdd et asettssesssssesssssdasesssses sttt st tssstesssdsssssssss
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DATE: 1 DEC 1985
VERSION: 1.0
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NAME: EDGES_XROM_PLACE

MODULE NUMBER:

DESCRIPTION:

This module places the XROM cells for the boundaries of the
XROM groups that were initially placed by main_xrom_place.

PASSED VARIABLES: group: 0-3, datawidth wide groups
fp: pointer to output file

RETURNS: NONE

GLOBAL VARIABLES USED: row_permutation, out_array

GLOBAL VARIABLES CHANGED:

FILES READ:

FILES WRITTEN: XROMIL_OUT, XROMIR_OUT, XROMZL_OUT, XROM2R_OUT

HARDWARE INPUT:

HARDWARE QUTPUT:

MODULES CALLED: NONE

CALLING MODULES: xrom_pers

AUTHOR: PAUL ROSSBACH
HISTORY:

% % % % % X% % % % % % % % % X % X % ¥ % *
% % % % % % % % % % % % % % % % % N ¥ ¥ X *

************************************************************************/

edges_xrom_place(group,fp)
int group; /* 0,1,2,3 */
FILE *fp;

{

int bito[9],bit1{9],bitR_1[9];
int calcO,calcl,calcR_1;

int j,y,x,yy,xx;

int ur,ul,ir, 1},

int bit[ROWS+2];

char *a, *b,*c,*d,;

char *cell;

char *ext;

int x_dim,y dim;

cell
ext

XROM_:
FILE_EXT;

[EX*REXXXX £511 in two upper and one lower rows of XROM *Xx¥*xdkx/

bitd(8] = O;




§:§

o

NSSTNY bit1(8] = 0
- bitR_1[8] =
3% for (j=DATAWIDTH-1;:j>=0;j--)
P - {
'i; calcO0 = out_array[row_permutation[0]*COLS + group*DATAWIDTH + j];
. calcl = out_array[row_permutation{1]*COLS + group*DATAWIDTH + j];
V) calcR_l=out_array[row_permutation[ROWS-1]*COLS+group*DATARIDTH+j];
3 for (y=0;y<=7;y++)

< {
o2 bit0{7-y] = (calcO & 01);

- bitl[7-y] = (calcl & 01);
. bitR_1{7-y] = (calcR_1 & 01);
‘N calc0 = (calcO > 1);
-t calcl = (calcl >> 1);

o calcR_1 = (calcR_1 >> 1);

}

.

!1 for (xx=0;xx<=2;xx++) /** O=row 0; 1=rowl; 2=row ROW-1 **/
- for (yy=4;yy>=1;yy--)
- {

: if (xx == 0) /** top AO_drains row **/

- {
\e ur = 0;

- ul = 0;

- Ir = bit0[2*yy];

L 11 = bitO[2*yy-1];

1o }
;) if (xx == 1) /** top bit_drains row **/
S {

e ur = bit0[2*yy-1];

et ul = bit0[2*yy-2];

e Ir = bitl{2*yy-1];

‘i:‘ 11 = bitl[2*yy-2];

i }

oy if (xx == 2) /** bottom AO_drains row **/
e {

e ur = bitR_1{2*yy];

g ul = bitR_1{2*yy-1];

'r Ir = 0;

i n = o;

% )

s if (ul)

3 a = A;

SE - else

SO a = OPT_NO;

TNINTET NI vy
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RO if (ur)
b = B;
else
b = OPT_NO;
if (1)
c =C;
else
= OPT_NO;
if (Ir)
d = D;
else
d = OPT_NO;
if (xx == 1)
{
x_dim = XROM_WIDTH*(yy + 4*j);
y_dim = XROM_HIEGHT*(ROWS-2)/2;
}
else
{
x_dim = XROM_WIDTH*(yy + 4*j + .5);
y_dim = XROM HIEGHT*(((ROHS 2)-(xx/2)*ROWS)/2 + .5);
}
fprintf(fp,“"use %s¥s%s%s¥s%s\n",cell,a,b,c,d,ext);
Qiﬂ fprintf(fp,“transform 1 O %d 0 1 %d\n",x_dim,y_dim);
fprintf(fp,“box %s\n“, 6 xromboxsize);
} /* end yy for */
bit0O[8] = bit0[0];
bit1[8] = bitl[0];
bitR_1[8] = bitR_1[0];
} /* end j for */
JX*xxxxx%% €411 in the left most column of AQ-drains *¥*¥*Xxxiik/
for (x=0;x<=ROWS-1;x++)
bit [ROWS-x] = (out_array[group*DATAWIDTH +
COLS*row_permutation[x]] & 0200);
bit[{Q] = O;
bit [ROWS+1] =
for (x=0;x<=ROWS;x += 2)
{
if (bit[x])
o d = D;
- else

" "\-l\. ,'h_-‘.’

~ n"f‘(
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r:w'lllcu“
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%
P
X -r."j .j:.j- d = OPT_NO;

o
* if (bit[x+1])
w b = B;

ol else

s b = OPT_NO;

e
g a = OPT_NO;
) ¢ = OPT_NO;
-';;:{ x_dim = XROM_WIDTH*(.5);

(o y_dim = XROM_HIEGHT*(-.5 + x/2);

- fprintf(fp,"use %s%s%s%s%s%s\n",cell,a,b,c,d,ext);

fprintf(fp,"transform 1 O %d 0 1 %d\n",x_dim,y dim);

2 fprintf(fp,"box %s\n", xromboxsize);

)
-‘::Zj- } /* end x for */
".::;.
‘)

o
T return;
}
il
| -._-. /************************************************************************
0 * *
- * *
k.- * DATE: 1 DEC 1985 *
* VERSION: 1.0 *
o) * *
[ * NAME: WORD_SIGN_PERS o
o * MODULE NUMBER: *
A * DESCRIPTION: *
*. * This module places the word sign bits for each large portion *
P o of the XROM(XROM 1 & XROM 2) into two caesar files. Each *
._,f * word sign bit column contains 4 sign bits per row (2 for *
. * each AO/AON in each group). *
* *
::::- * PASSED VARIABLES: NONE *
e * RETURNS: NONE *
* GLOBAL VARIABLES USED: word_sign_bit,row_permutation *
, * GLOBAL VARIABLES CHANGED: NONE *
R * FILES READ: *
- * FILES WRITTEN: SIGN1_BITS_OUT,SIGNZ2_BITS_OUT *
e * HARDWARE INPUT: *
e * HARDWARE OUTPUT: *
o * MODULES CALLED: NONE *
L * CALLING MODULES: layout *
. R‘ Ji:‘.-\ * *
.Ea
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Eﬂﬁ T * AUTHOR: PAUL ROSSBACH *
R * HISTORY: *
] * *
,‘- { x *
:'$¢ *'k**********************************************************************/
'
o word_sign_pers()
V)
.7 {
::'\'.“..
2 int bit[ROWS+2]([6];
e int byte;
ar int i,j,y,x;
int offset;
T int ur,ul,lir,11;
R char *a,*b,*c,*d;
;1‘ FILE *fp, *fopen();
s char *tech:
BV char *cell;
’_. char *ext;
AT int x_dim,y_dim;
2B ext = FILE_EXT;
e e cell = XROM_;
(o tech = TECH;
o
N

[**xxxxx%%%* for hoth word sign bit column caesar files ¥¥¥ikiiikaax)

'l'l.

for (j=0;J<=1; j++)
{

if (j == 0)
{
fp = fopen(SIGN1_BITS_OUT,"w");
fprintf(fp,“tech %s\n",tech);

)

oF. 23 ‘ )RR
.8 '
AN ...

[
w ¥a.
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[

Nully }

’- else

N {

s fprintf(fp, "<<end>>\n");

Ry fclose(fp);

o fp = fopen(SIGN2_BITS_OUT,"w");
._ fprintf(fp,“tech %s\n", tech);

}
offset = 4 * j;

I '-‘
f " 4 I‘ “ ks
Lo R

[Xrxxaxxxxxx £11] the bit array with the current column *¥*¥xddkaxix

il g

L
jox?

s S, for (x=0;x<=ROWS-1;x++)

E s {

o

e

}%: 0-17
o

......................... -

N N R R

........
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byte = word_sign_bit[row_permutation(x]];

bit [RONS-x] [0]
bit (ROWS-x] [1]
bit [ROWS-x][2]
bit [ROWS-x] [3]
bit [ROWS-x] [4]
bit [ROWS-x] [5]
}

for (i=0;i<=3;i++)
{
bit{0][i] = O;
bit [ROWS+1][i] =
}

0;
byte & ( 0200 >> offset );
byte & ( 0100 >> offset );
byte & ( 0020 >> offset );
byte & ( 0040 >> offset );
0;

4 #H ou u nou

[***xxkx%x pnlace the AO/AON drains for the word sign bit column **¥*xxy

for (x=0;x<=ROWS;x += 2)
for (y=0;y<=2;y++)

{
ur
ul
r
11

bit[x+1][2*y+1];
bit[x+1][2*y];
bit[x][2*y+1];
bit[x][2*y];

[ | B 1)

if (ul)
a = A;
else
a = OPT_NO;
if (ur)
b = B;
else
= QPT_NO;
if (11)
c = C;
else
¢ = OPT_NO;
if (ir)
d = D;
else
d = OPT_NO;

fprintf(fp,"use %s%s%sXs%s%s\n",cell,a,b,c,d,ext);

fprintf(fp,"transform 1 O %d O 1 %d\n",XROM_WIDTH*y,
XROM_HIEGHT*( (ROWS-x)/2)};

fprintf(fp,"box %s\n",xromboxsize);

.»)
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“\ [X*¥***x% nlace the bitline drains for the word sign bit column **¥x*xx/
?‘:"*
N for (x=1;x<=ROWS-1:x += 2)
oy for (y=0;y<=1;y++)
‘i? ur = bit[x+1][2*y+2];
N ul = bit[x+1][2*y+1]);
3 1r = bit[x][2*y+2];
oS 11 = bitix][2*y+1];
AN
| if (ul)
e a = A;
0N else
) a = OPT_NO;
T if (ur)
.\:.'.: b =8 .
P else
® b = OPT_NO;
P if (11)
:::- c =C;
N else
A ¢ = OPT_NO;
- if (\r)
o (® d = 0;
< else
e d = OPT_NO;
St
o x_dim = XROM_WIDTH*(y + .5);

y_dim = XROM_HIEGHT*( (ROWS-(x-1))/2 - .5);

fprintf(fp,“use %s¥s%s¥s¥s¥s\n",cell,a,b,c,d,ext);

fprintf(fp,"transform 1 O %d O 1 %d\n",x_dim,y dim);
fprintf(fp,"box %s\n",xromboxsize);

}

fprintf(fp, “<<end>>\n");
fclose(fp);

return;
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Appendix E

SPICE Model Parameters

MODEL CMOSP PMOS LEVEL=2.00000 LD=0.512860U TOX=500.000E-10

NSUB=2.971614E+14 VTO0=0.844293 KP=1/048805E-05 GAMMA =

0.723071

PHI=0.600000 U0=100.000 UEXP=0.145531 UCIT=18543.6

DELTA=2.19030 V M A X=100000. XJ=2.583588E-02

NFS=1.615644E+12 NEFF=1.001000E-02 NSS=0.00000E=00

TPG=1.00000

RSH= 95 CGS0=4E-10 CGDO=4E-10 CJ=2E-4 MJ=0.5 CJSW=9E-10

MJSW=0.33

(;: MODEL CMOSN NMOS LEVEL=2.00000 LD=0.245423U TOX=500.000E-10
-NSUB=1.000000E+16 VTO=0.932797 KP=2.696667E-05 GAMMA=1.28047
-PHI=0.600000 UO=381.905 UEXP=1.0010000E-03 UCRIT=999000.
-DELTA=1.47242 VMAX=55346.3 XJ=0.145596U0 LAMDA=2.491255E-02
-NFS=3.727796E+11 NEFF=1.001000E-02 NSS=0.0000E+00 TPG=1.0000
-RSH=25 CGSO=5.2E-10 CGDO=5.2E-10 CJ=3.2E-4 MJ=0.5 CJSW=9E-10

MJSW=0.33
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Layer-Layer

Tox

poly-substrate

metal-substrate

metal-diff

Typical

metal2-substrate

metal2-metal

metal2-polyl

Junction

Junction

Junction

Junction

Area

Side Wall

Area

Side Wall

Appendix F

Parasitic Capacitance

Thickness

500-600 A

7000-8500 A

1.4-1.7 um

9000-9500 A

2.5=2.9%9um

1.1-1.3um

700-900 A

Capacitance

5.6-6.7

.39-.48

.20-.24

«35=-.37

.12-.16

.26-.31

3.9-4.9

1.6-5.0

2.0-3.3

2.8-5.0

1.6-5.4

pF/u**2

pF/u**2

pF/u**2

pF/u**2

pF/u**2

pF/u**2

pF/u**2

pF/u**2

pF/u**2

pF/u**2

pF/u**2




Lo ahi i o i st R ad TR TCRIOP IR It T W TR R RO RYRW bl Rl YR A A-a 4

Resistances and Current Limits

N+ Diff. sheet resistance: <= 40 ohms/square

P+ Diff. sheet resistance: <= 100 ohms/square

Polyl sheet resistance: <= 30 ohms/square

Poly2 sheet resistance: <= 40 ohms/square

Metall current limit: 0.6 mA/micron

Metal2 current limit: 1.0 mA/micron
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