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Abstract

An analytical study was conducted to determine the natural frequencies and
mode shapes for laminated anisotropic plates, including the effects of shear
deformation and rotatory inertia, by using the Galerkin Technique. Three different
boundary conditions, simply-supported, clamped, and two opposite sides clamped,
two opposite sides simply-supported, were considersd. Two different graphite-
epoxy symmetric plates were used in the analysis. Convergence characteristics and
the effects of length to thickness ratios were investigated. Comparison to

tlassical results and contour plots for several mode shapes are provided.

It was found that as the length to thickness ratios were reduced, shear
deformation effects significantly lowered the natursl frequencies. Analysis also
showed that rotatory inertia effects were very small. Convergence characteristics
for all three boundary conditions were very good and excellent agreement with

classical solutions was achieved.
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Introduction

; Background

In recent years interest in the use and application of composite materials
has greatly increased. This is due in part to their high strength to weight ratios
and the fact that they can be tailor made for specific applications. Because of
their unique properties, they have opened up numerous fields of research and

analysis,

Past developments have shown that the dynamic response of composite

plates departs more from Classical Thin Plate Theory than isotropic ones do.

:. Classical Thin Plate Theory is based on the assumption that plane sections remain
plane after deformation occurs. It has been found that vibration 2nalyses based on

this theory yield frequencies that are too high. Therefore, to gain better

E . agreement with reality, the theories used to analyze the response of camposite

plates need to include the effects of shear deformation and rotatory inertia.

e,
e e

& A number of theories including shear deformation and rotatory inertia have

been proposed to date. Mindlin [11] introduced a two dimensional theory of
| flexural motion for isotropic elastic plates. This theory is based on the fact that f
L the change of displacement results from two rotations due to bending and two 1
[. rotations due to shear deformation. This theory assumes that no warping of the - ﬁ

plane section due to shear occurs, but does include a correction factor to account

[ for this inconsistency.

Yang, Norris, and Stavsky [20] extended this theory (commonly referred to
as the YNS theory) to laminates consisting of an arbitrary number of bonded
anisotropic layers. They considersd the frequency equations for the propagation
of harmonic waves in a two- layer, infinite, isotropic plate.

i




Whitney and Pagano (191 applied the YNS theory to laminated plates

consisting of an arbitrary number of bonded anisotropic layers, each having one
plane of symmetry parallel to the central plane of the plate. They employed this
theory to study the cylindrical bending of antisymmetric cross~ply and angle-ply
plate strips under sinusoidal loading and presented a clased form solution for the
free vibrations of antisymmetric angle-ply plate strips. Following Whitney and
Pagano, Bert and Chen [2] presented a closed-form solution for the free vibration

of simply-supported rectangular plates of antisymmetric angle- ply laminates.

Finite element analysis of laminated plates including transverse shear
effects began with Pryor and BarKer [13). Their model was based on Reissner’s
plate theory and was applied to the cylindrical bending of a symmetric cross-ply
laminate. Reddy [14] developed a simple finite element model based on the YNS
theory and applied it to the free vibration of antisymmetric, angle-ply plates.
Reddy and others [15) also applied this technique to orthotropic laminates of

bimodulus materials.

Up to this point, all of the methods discussed could not be applied to
laminates which possessed bending/torsional stiffness parameters. This implies
coupling of the squations of motion. Recently, Sathyamoorthy and Chia [16) used
the nonlinear von Karman equations to develop the theory to study the large
amplitude vibrations of anisotropic skew plates for simply-supported, clamped, and
clamped simply-supported baundary conditions. This theory did include the
bending ‘torsional stiffness parameters. They solved these equations using the
Galerkin method and the Runge-Kutta procedure, howavaer, their applications were

limited to homogeneous laminated plates.

Thus, a need exists for a method that will take into account shear

deformation and rotatory inertia effects that includes the bending/torsional




LA et B S A 8 A A AL A Sal gii AAe il sl i oL gl aitis

stiffness parameters, yet is not burdened by large computational requirements.

Objectives

The purpose of this thesis is threefold. First, it will present a method to

determine the natural frequencies and mode shapes for anisotropic symmetric
laminated plates, including the effects of shear deformation and rotatory inertia,
using existing theories and techniques. This method will include the use of
bending/torsional stiffness parameters. Second, the method will be used to analyze
the effects of shear deformation and rotatory inertia on two different symmetric
laminated plates. And third, comparison of this study with classical solutions,

where available, will be accomplished to validate the method. el

Approgch

The approach used for achieving the desired objectives is straightforward.
The motion of an anisotropic symmetric laminated plate will be modelled using the
YNS extension of the Mindlin Plate Theory [28] and the resulting differential

equations of motion will be solved using the Galerkin Technique. To do this,

M o
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assumed functions will be selected for sach boundary condition and the Galerkin

P
(]
.
oy
c'll
o
L AN

1

equations will be established. From these equations the eigenvalue problem will
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be formylated. A computer programi(s) will then be written to compute the

) W"-J"

I
§

.,'-n 4 . .'

stiffness and mass (or inertia) matrix elements and to solve the eigenvalue
problem. The solution of this problem will yield the desired natural frequencies

and coefficients to determine the mode shapes. Comparison of these results with

-

classical solutions, where avaliable, will be accomplished. Also, to insure valid
results, a study of the convergence characteristics will be performed by increasing

the number of terms in each Galerkin equation. Qe
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Shear deformation and rotatory inertia will be studied by computing the
natural frequencies over a range of length to thickness ratios. These frequencies
will then be compared with classical results. This will first be done without
rotatory inertia, thus determining when shear deformation becomes important.
Then, rotatory inertia will be included and the frequencies will be recalculated
over the same range of length to thickness ratios, thus ascertaining the effects of

rotatory inertia.
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11. Theory and Modellin

We will begin our discussion of the theory used in this thesis by starting
with some results from Classical Laminated Plate Theory. From there, we will
discuss the equations of motion for a thick laminated plate using the Mindlin Plate
Theory, and then discuss an approximate method of solution for differential
equations called the Galerkin Technique. GalerKin‘s technique will then be applied

to our differential equations of motion for three different boundary conditions.

Anisotropic Thick Plate Theory with Rotatory Inertia

Classical Laminated Plate Theory (commonly referred to as CLPT)
incorporates constitutive relationships for an orthotropic lamina through the plate
thickness resulting in expressions which approximate force resulants in terms of
displacement functions. The concepts from CLPT are essential for the later
development of the equations of motion. We will begin by describing the basic
constituitive relationships for an individual lamina. The reader should refer to

References (1] and [8] for an in-depth development of these relations.

The basic constitutive relationships for a single orthotropic layer in the

fiber oriented reference system, as shown in Figure 2.1, are:

Figure 2.1 Definition of Coordinate System
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where € (! (2. and (3 are the normal strains, €4 65. and 66 are the shear strains, ‘_;‘.-'4-."
o‘. 02. and 03 are the normal stresses, and 04. os. and °6 are the shear stresses. '
The Su terms form the compliance matrix and, expressed in terms of the
engineering constants, are: ::7
L...
S“ = l/E1
512 ® 'k 5

Si3 = “V3,/E5

S22 = 1By (..
AN
823 = V278 (2 S
Sy = 1/E, -
S4a = 17823 .
Sgq = 1785, £
S ™ 176, E::-::'_::

where Bi are Young’s moduli in the ith direction, Vii is Poisson’s ratio for

..........................

..........
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transverse strain in the jth direction when stressed in the ith direction, and G‘. ;

the shear modulus in the i-j plane.

{0} = [Q'] (€

1f we invert Eq. (1) to get stresses in terms of strains we have

where [@’]) is the reduced stiffness matrix and has the form

.-. where

@y @y,
¥y, ¥y
Q.. o
(1 = 13 @23
0 ®
0 0
0 8
Q’,, =(5,.8..-5..2)/8
11 = 1522933753
Q'y2 = 15,385375,2533"/8
Qg3 = (58,378135,,7/8
Q.. =@,.8 -8 .2/5
22 * ©33811753
Q'y3 " 8125,378354)/8
@, =1(8,.8..-5..2/85
33 " 4155275y
Q= 1/5,,
Q. =1/8
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66 = /54

Ql

2

) 2 ) 2
S 251522533 " 511523 ~S228(3 533517 *25;,8,3%;3

= 1f we wish to rotate our principal lamina axis an amount © (in the 1-2 plane)
E with respect to some geometrical axis (refer to Figure 2.1) then our stiffness

matrix must under go a tensor transformation. The transformation matrix would be

defined as

[ )
m2 n2 9 ') 9 mn
n2 m2 9 0 8 -mn
] e 1 8 0 (]

[(T. = (6)

) 8 0 m -n 9
e e 8 n m 0

~2mn 2mn 8 8 8 (mz-nz)

whare m=cos(8) and n=sin(9j. The transformed stiffness matrix would then be

€G3 = CT1€Q1CTIT a

and

(o) = LR (€) (8)
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At this point we shall assume for a thin laminae a state of plane stress.

Therefore, oz =9, From Eq. (8), we have

O =0=Q', € +Q@'..€ +Q', € +Q'.,Y (19
y 4 X 2

13 237y 33 36" xy

or

€ =(@,./Q

z 13 33)€x + (Q'zalQ’aa)Gy + (Q'36/Q 33)}’ (1)

Xy

Substituting Eq. (11) back into Bq. (8) the resulting [@‘] matrix becomes a 5x5

matrix referred to as [QJ.

B @ 0 8 a. |
@, 12 16
8, 8, o 8 %
(@ = 0 ) O, O,s 0 (12)
(] ] 645 655 8
5, B, ¢ o 0y |
where
G,, =Q,cos'e + 2@, +2Q, )8in’0cos0 + Q._sin'e
1= @y 12*2@4 22
3, = (Q, +Q..-4Q,.)5in20c0s20 + Q.. (sin'0+cos'o)
P R TR BT 12

= _ _ 3 _ . 3
Q“ = (Q“ sz ZQ“)sinOCM o+ (012 022+20“)sm Ocos o

= 4 2 2 4
sz . Q“sin e+ 2(012+20“)sin ©cos" O + szcos o

3 3

026 = (Q“-Qu-ZQ“)sin 0cosO + (Qn-ﬂzz-&zo“)sinecos ) 43

2

= 2
Q“ = Q“cos o+ stlin ]

0‘5 = (Q‘ 4-0“):os0;1n0

Gy - a”cnze . Q“sinzo

.................................
............................
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4

= . 2 2 4 +
- - s ©O)
Q“- (Q“+022 2Q12 2(1“)sm Ocos © #Q“(sin 9+co |
| and -“.
Q“ = gi’“'vtz"zi’
Q12 = VuEZ/(l-Vuvu) = v21811(1-v12v21)

Qa2 = Bp/1-VypVay! "

‘ Q4 * 93 L
Qgy * G3y
@2%6 i

) {

We can, therefore, write Bq. (8) as

O | %11 %2 @440\ :
] e
' c.'y = le Q.22 Q“ GY (13)
.? Txy) [ %16 926 Qs (Vxy £
and N
Ty2 Tye
* (16) o
; . :
4 Xz Xz .
We now wish to build a laminate from N perfectly bonded lamina and express
. the forces and moments acting on this laminate in terms of displacement functions. ; K
. Before we do this, we need to make an assumption concerning Gz for the laminate N
and we need to discuss our sign convention.
.
10




We shall assume that ez-o. This implies that a line perpendicular to the
midplane will not stretch under deformation and is an accepted inconsistency in
plate theory. In reality, € 2 is not zero, but is small compared to the other strains.
For our lamindate, it means there will be discontinuities in Gz at the lamina
boundaries (they too, will be small). With this assumption we can assume a

displacement field of the form
us uo(x.y,t) + zvx(x.y.t)
ve vo(x.y,t) + z!y(x.y.t) an
w B wix,y,t)

where u,v, and w are the x,y, and z coordinate displacements respectively, u® and
v® are the displacements of the midplane of the laminate, and vx and vy are
rotations of a line perpendicular to the midplane due to bending. It is important to
note here that in this thesis v and 'y will be thought ot as rotations. Thus, for
an axis system as defined in Figure 2.2, a right hand rotation about the positive y
axis will give us a positive v rotation. On the other hand, we will think of w'x
and w'y (the commas denote differentiation) as rates of change of displacement
with respect to the appropriate coordinate. Some authors look at the rotations vx

and vy as rates of change of displacements ialso (see Ref. [13]). Depending upon

the point of view one takes, the sign on these rotations is different. However, if

one is consistent throughout his development with his notation then either

approach will yield the same result related to generalized functions such as ;_':-
i

eigenfunctions and eigenvalues.
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Figure 2.2 Plate Coordinate System
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We can recall that for small strains

(x = Uy
€ sy (18)
Y Y
yxy = u'y + v'x
Thus, for our displacement field in Bq. (17), our strains are
€ = u® +2v -
X X XX
€ = v® 4z (19
Y oy Yy
o o o
+ + +
Txy sy g v X 'x'y 'y’x ’. ’
or o 'ﬂ
o ) :
€ o ¥y N
.'. o - 3
€ \=(¢ + 2% (20) Yo
14 Yy Y
o
rx Y Xy “xy

¢° w° :'.-
% o X _.

¢© \={dy® (21) -
b 4 Y

o Q [}

4 x u ¥ + v X

and the middle surface curvatures due to bending are
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(22)

At this point we have not modelled shear deformation and one should take note

that the above curvatures do not include their effects. Now Eq. (15) can be written

(for the Kth layer of a laminate) as

f—

% gy,
oy = 012
Ty K 316

l512

t516

v
Xy X

+ Y (23)

Yy

4 +y
XyY VX

The resulant forces and moments acting on a laminate are obtained by

integrating the stresses in each layer through the laminate thickness.

Thus, we

have (see Figure 2.3 for the geometry of an N layered laminate)

[]}-g
N
o

T

{
¢

MIDOLE SURFACE 7

e

ity | "

Tl

A
LY
¢
]

N
t

LAYER NUMBER

Figure 2.3 Geometry of an N Layered Laminate
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h/2 N 7,
(Nx ,Ny,ny) -f (ox ,oy,‘l’xr) dz = I f (ox,oy,‘!’”) dz (24>
-h/2 k=1 zk-—l
and
h/72 N zk
M M M ) = (¢ ,06 ,7T )zdz = I f (¢_,0 ,T ) 2dz (23
XUyt xy X'y’ Xy X'yl xy
-h/2 k=1 zk__1

The integrations in Bqs. (24) and (25) can be rearranged to take advantage of

the fact that the stiffness matrix for a4 lamina is constant within the lamina. We

can also recall that €° ’ ¢° ' r°
X Y Xy

' K X' ¥ y' and K Xy are not functions of z but are

micddle surface values of the laminate and can be removed from under the

summation signs. Therefore, Eqs. (24) and (23) can be written as

Ny 4,
Ny 2= 1912
er :16
and

My e,
M 2™ B2
M) |Bie
where

A2

A2z

26

12
22

26

Als

A2

13

12

22

26

4 (28)

Xy

K (27)

K
Xy
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N _ 1

= (@ ) (2, -z, ) (28) .

id ke id K K “k-1 .
N 2

B,, = XX «(@ ) (z,%z . °) (29)

P P S A

D.. = 1/3 T Q. ) (30)

3
D T { -
id K=1 i’k 2k Zy~1

In Eqs. (28), (29), and (30) the A“'s are called the extensional stiffnesses, the

Bi ‘s are called the coupling stiffnesses, and the DiJ.'s are called the bending

i
stiffnesses.

We now need to determine an expression for the transverse shear forces Qx

and Qy in terms of displacement functions. To do this we need to discuss Mindlin

Plate Theory.

In classical plate theory the Kirchhoff hypothesis states that straight lines
perpendicular to the neutral axis in the undeformed state remain straight and W

perpendicular to the neutral axis after deformation. Mindlin discarded this

assumption and assumed that these lines would remain straight (no warping) but
would not remain perpendicular to the midplane after deformation. The assumption
of no warping is not correct and he did introduce a factor, K, as a means of
compensating for it. Therefore, the slope of the midplane (w'x and w'y) now
consists of a rotation due to bending ('x’ vy) and a rotation due to shear

deformation (sz. Tyz)' See Figure 2.4.
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From the definition of enginesring strain we have

Y _ = u_+w (31)
14

X2 % ———

Substituting the first expression in Eq. (17) into £q. (31), we have

. .,,. -
, Vo
Jrlelene oy
oAt T
. Fatal e
Py SO

u:" A (32) o
Therefors

’ru - te (33)
and from similiar reasoning I

Y _ = w_+v% (34)

¥z "y Y
Here we can see that the curvature is ¢ function of both bending and shear ~
i

deformation. Substituting Egs. (33) and (34) into Bq. (18) and introducing K, the

correction factor for assuming the shear warping to ba a straight line, we have

T +
(. |Me a3 )00y (35)
fxz 045 055 w,x"x
The shear forces, Qx and Q.y may now be determined by integrating the shear r’
[

stresses Y“ and ’ryz through the lamina thickness and summing over the laminate.

We have

f h/2 N 7, A
Q = X_ d = % f ) dz (36
X -h2 X2 k=i o 3 xz7K
k-1

f h/2 N 2, E

Q = 8§ dz = % f (1), dz (37) s .
Y daz 72 k=t of 2, V2K RS
k-l _:..‘:..

e

i’“

i

RS
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As before the integration can be rearranged to take advantage of the fact

that the stiffness matrix for a laminate is constant within the lamina. We can also
[ note that W w'y. ’x' and 'y are not functions of z but are midplane values of the

;{ laminate, Therefore, we have
A

where the Ai.i terms are defined in €q. (28). We now have the required forces and
moments in terms of displacement functions as we desired and may proceed on to

the governing equations of mation for a plate.

{ The governing equations of motion for a plate may be derived by formulating L
the Lagrangian function (in terms of plate variables) for the plate and applying ‘
Hamilton’s principle to that Lagrangian. This approach will also yield the required
‘@ boundary conditions. Reference [4) formulates the Lagrangian for a plate
including the effects of transverse shear and rotatory inertia (modelled using the
_:j: Mindlin Plate Theory). Following the derivation from that text, we have, after

applying Hamilton’s principle and Green’s theorem, the following: '

t -
ft ffo L T L A N LV RN o
1 '_'-

+ [-Pw + Qx X + Qy y + q) Swl dA dt S

’ L] '-*J"'-‘

t
N {IM_ dx-M_dylsy_ + [M dx-M__dylse_ + [Q dx-Q dr)sw)dt = 8 (39)
t r Xy X X V4 xy Yy b4 X
1

where the double integral over the domain represents the equations of motion for "
. the plate and the line integral around the contour represents the required .:E:-E
g boundary conditions. Also E'

19 \
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/2 , S
1 ‘-'-'f P 2" dz (408) '
~h/2 e

To determine the equations of motion for the plate at any time t, we take
the double integral expression over the domain and note that the variation cannot
be zero over this region. Therefore, the coefficients for each variation coordinate s

must be equal to zero. Thus we have

+ M -Qa = 1I¥ 41>
Y

1f we assume the time dependance to be harmonic, then we can seperate out

the time variable in Eg. (41) and we have

M+ M -a +elly = @ (42a) oL
Xy X XYY X X

2 PO
- 4 14
Mxy,x + Hy,y Qy + 0 "y = @ (42b) .

2
+ + + +
Qx,x + Qy'y wa,xx Znyw,xy Nyw'” PO“w = @ (42c)

where W is the frequency of vibration and we have lat q = wa.xx + 2nyw.xy +

Nyw yy' This will allow the use of our equations to solve the linear bifurcation
1

problem. We will retain this sxpression throughout our equation development but

will not consider it when solving the vibration problem. Thus, Bgs. (42a) thru (42¢) { g

are our equations of motion.

Before we procesd we must determine the appropriate boundary conditions

for the system of equations which are sufficient to assure a unique solution. L~

2




These can be determined from the line integral expression in Eq. (39). The
boundary conditions associated with Eq. (423) are represented by va and its e

coefficient. Thus, we have

fl" (-dey + nydx) va = @ (43a)

Similiarly, the associated boundary conditions for Eqs. (42b) and (42c) are,

respectively

(M dx-M dy)se = 0 (43b)
r Y Xy y
f {-Q dy +Q dx} Sw = 8 (43¢)
r X Y

We now have the equations of motion and the required boundary conditions

and can proceed with finding a solution for this system. Before we do this,

- ’0. however, we need to apply a restriction, This thesis will only be concerned with
symmetric laminates. Therefore, all of the coupling stifinesses (Bu's) are equal

to zero and the extensional stiffness term, A“, is also equal to zero. With this

restriction Egs. (27) and (38) become
. ~
- . :
- M, [0,, 0y, Oy Yx.x
Hy = 012 022 026 'y,y (44) neee
Mxy Dy 026 Déi Yy ,y"y,x
‘ a A 8 L IR [
w Oy
N |4 y Y (45) -
9 ® Ass ¥ x R
?..-..
- -
24 :
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Since we have arrived at a set of partial differential equations that e
describe the motion of our plate, we now need to solve them. This thesis will use

an approximate method called the Galerkin technique. As opposed to a technique

like the Ritz method, this technique involves the direct use of the differential
equation and does not require the existence of a functional, Thus, it has & broader
range of application than the Ritz method. However, in the area of solid

mechanics, the two are closely related. - q

The basic idea behind the Galerkin technique can be discussed quite briefly.

Suppose we want to solve the eguation

L{u) = 8 (48)

where L is some differential operator in two variables whose solution satisfies
homogenecus boundary conditions. We will look for an approximate solution in the
form

N

U(x,y) = X C.0.(x,y) (47)
im]

where Oi(x svy) is a system of functions which satisfy the boundary conditions and g
are undetermined coefficients. We will assume the functions .i("'y) to be linearly
independant. It is important to note here that if we are to get an "accurate”
answer, the system of functions Oi(x.y). must be complete in the given region. If R
they are not, then we are excluding part of the solution and our results will be 5 .
very misleading. If U(x,y) is to be an exact solution, then L(0) will be identically :
squal to zero. If L@) is continuous then we are saying that L() is orthogonal to

all of the functions of the system Oi(x »y). Mathematically speaking we have

22
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N
J. LCT(x,¥))¢.(x,y) dxdy = f LCE c.,0.{x,¥y))8.(x,y) dxdy = 8 (48)
D i 0] j=1 i J !

where i = {,..,N individual equations. From this system of equations we can solve

for the undetermined coefficients and therefore arrive &t our solution.

St SR
vl

The question now arises what happens if our assumed function does not

satisfy the boundary conditions. If it doesn’t, wa want to force our approximate

functions Oi(x,y) to satisfy them also. Thus, for the case of two variables we
would set up a GalerKin equation as a line integral around the boundary that would
torce the function to satisfy the boundary. For homogensous boundary conditions ' 1

this line integral in and of itself would also equal zero,

- ’ P NN
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At this point we are ready to formulate the Galerkin equations for the plate
equations of motion. Our approach will be to formulate the Galerkin equations,

make appropriate substitutions, and then normalize the sgquations.

In formulating the Galerkin equations we must be careful. If we could find
approximate functions which would satisfy both the geometric and natural boundary
conditions, then we could apply Eq. (48) to each of our three equations of motion
and our Galerkin equations would be formulated. However, finding such functions
is extremely difficult, if not impossible. We can, however, find functions which
satisfy the geometric boundary conditions. This does impose the added condition
that we now must formulate a Galerkin equation for the boundaries as well as the
equations of motion. We’ll start by formulating the Galerkin equations for Eqgs.
{42a) and (43a). If we assume that ;x is the approximate rotation function about

the y axis and use Eq. (48), we have for Eq. (42a)

bea 2 _
f f M + M -Q +0°1¥>¥ dxdy = @ (49)
eve ¥ XY,y x X x

where ;x is made up of a series of functions (each which satisfy the geometric
boundary conditions) where each term in the series is myltiplied by an
undetermined coefficient, Amn' 3’,( on the other hand, is a single term of the ;x
approximate series and has no undetermined coefficient associated with it. This is
a result of the Galerkin derivation and several examples of this may be found in
References (5] and {17]. For each term in the approximate 7,( series; a new
equation will be generated. We should note here that one of the conditions for
solving for the undetermined coefficients is that there are as many equations as

there are undetermined coefficients. Thus, if we have m#n undetermined

coefficients in our approximate series, 'v'x, Bq. (49) will generate m#n equations.

24
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We will now turn our attention to the formulation of the Galerkin equation
for the boundary, Eq. (43a). Eq. (43a) is different from Eq. (42a) in that it still
contains the variation of 'x' This poses no real problem in that the Galerkin

method can be related to the functional expression in Eq. (39). Using Eq. (43a) and

following the procedure from Reference [5] we have

f (-M dy +M_dx)>¥' =@ (5Qa)
r X Xy X

where V'X 1s again a single term of the 'v'x approximate series and does not contain
an undetermined coefficient. The undetermined coefficients are hidden in the Mx
and ny terms (see Eq. (44) where 'x is replaced with ;x)' 1f we use the plate
coordinates (see Figure 2.2) to define the contour for the integral in Eq. (50a), it

becomes (see Ref. [18))

b
fe (M €8,,)9° (8,y) - M (a,,)¥ (a,7)) dy

a
OJ; (ny(x,ﬂ)! X(x,O) - ny(x,b)!’x(x,b)) dx = @ (38b)

) Egs. (49) and (56b) form the Galerkin equations for the first coordinate ¥ . In st
order to reduce the size of the eigenvalue problem we will be solving later, we can

approximate the two Eqs. (49) and (38b) by combining them into one equation. We

! have therefore

bea 2
- H -/
J;J: (Hx,x + Mxy,y Qx + 0 va) 'x dxdy

b
+ J‘e (M, (8,7) 7;(o,y) - M Ca,y) ‘v‘;(a,y)) dy

a
| + fo M, Cx,8) F7(x,8) - M_(x,b) F/(x,b)) dx = @ (51
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Now substituting Bq.(44) and (4%) into (31) and combining terms we have

a_b
ff mll'x,xx * 2016’x,xy * Déé'x,yy * 016 Y XX * (012 066 y,xr
0%

- - 2- =/
+ Dzévy’” kAssvx KASS‘”,x + Iw 'x) vx dx dy

b
3 - 5 s 4
+J‘° (D“v’,x(o,y) + DlZ'y,y(a’y) + Dlé "x y(l,y)*!y’x(ﬂ,y))) !x(O,y)

- {D,, 9 _(a,y) +D

117, x (a,y) + D

s = =/
(!x’y(a,y)ﬂhx(a,y))) vx(a,y) dy

12 Y, 16

a
= = - - =/
:f; Oy 8, (618 ¢ Dy (x,0) + D (F  (x,004F,  (x,8))) ¥l (x,8)

-(D, ¥ _(x,b)+D. ¥ (x,b)4D (¥ _ (x,b)+¥ (x,b))};;(x,b)dx =9 (52)

16" x,x 28 v,y 66 x,y ! YyX

b We choose to normalize 8q. (52) using the normalization scheme similiar to

the one used in Reference [181].

ij " D; /B

3 = A7Eb

R = ab

s = a/h

@2 = pazozlEzh o
% = wh

§ = x/a

3 = y/b

where d” and a“ are the normalized bending and extensional stiffnesses
respectively, 82 is Young’s Modulus in the direction normal to the lamina fibers, R

is the aspect ratio, s is the length to thickness ratio, @ is the normalized

26




frequency, p is the product of lamina density and lamina thickness summed over the

laminate, § is the normalized x coordinate, M is the normalized y coordinate, and h

is the plate thickness. We will also make the substitution

h/2
x-f P22 dz = Ph3/12 = phe/i2 (54)
-h/2
where
N
p= X Pat (55)
K1

The reason for this substitution is that it will allow us to build up a laminate of
different materials. Thus, we can use our homogeneous theory to handle hybrid
composite plates. Aéter these substitutions and subsequent simplifications, Eq.

(52) becomes

- 2 _ -
ff (d) ¥y g * 2RA Ty oq * RO Ve an * 0y Ty oy ¥ RO 40 0OF ey

+ R%. ¥ - Ksla ¥, - ksa5§a ? (u2/12)v‘) ?;
L]

26" 3, M 53°% ds df

1
= = =/
*J: (d“'g g(0 y ¢+ Rt:l12 1, n(O 1+ d "1(0,‘!)4!“"(0,“\))) "(8,1)

(1,0+¥F, (1,0} ¥/

- v + +
{d,.v (1,m Rd,.¥ (1,%) d Q,"l ’ n,4 " 5

1178 12799 (1,7 dn

1
s </
*J: (dlé'i §“ y0) ¢+ Rd26 A, 1..(!,0) + d G, ,‘(Q,O)ﬂn"(g,ﬂ))) vg(Q.O)

(dy ¥y 4 4s 1) 4R, F 26D

*dg (§,1)+7, ‘(g,mﬁ’u,n dy = @ (56)
]
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Wa are now ready to formulate Galerkin’‘s equation for Bqs. (42b) and (43b).

Using the same procedure as before, we arrive at

bea 2 _,
If My, * My, =0+ 0%1v ) ¥ dxdy
v
b _, _,
+ J‘a (ny(e,y) vyca,n - Mxy(a,y) !Y(a,y)) dy

a
+ J‘e (Hy(x,O) ;;(X,.) - Hy(x,b) !;(x,b)) dx = @ (57)

where ;Y is the assumed rotation function about the x axis. As before the double
integral will force our approximate rotation function to satisfy the plate domain
while the two line integrals will force the function to satisfy the natural boundary
conditions. Now substituting Bqs. (44) and (43) into (57) and combining terms we

have

a_b
ff (Dlévx,xx * (012‘066)'x,x>’ * oZé'x.yy * Déévy,xx ¢ 2026'7,x7
8*s8

- s _ - 2= | =
+D kA“vY kA“w’y + 1o vy) vy dx dy

22'7,77

b
- - = = =/
+J; Dy ¥, (0,7 ¢ D5 (0,y) ¢ Dy (¥ (8,7)4F  (8,7))) ¥/(8,7)

_ - - = = =/
(Duvx,x(a,y) + 026'y,y(a'y) + Déé“x,y("y)"y,x(a’y)” vy(a,y) dy

a
+J; O, (10 ¢ ¥ €8 + Dy (T, (x,04F

($x18))) ?;<x,e)

- - -— - - -
(Dlzvx'x(x,b)*Dzzvy’Y(x,b)*Dzé(!x’y(x,b)ﬂ'y,x(x,b)))vy(x,b)dx =08 (38)
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If we normalize B€q.(358) using the same normalization scheme as before, we

have

1.1
- _ 2. - _
ff Wy T oan * 9ypt00% gn * RTdpgTy an * dggTn g5 ¢ 2RApTy gy
')

2 - _ 2 = - -2 /
+ R dzz'ﬂ,ﬂ‘l ks®a,,.? ksa“w’n + (D°/12)% ) ‘l d§ d%

1
bd -
¥ )
’fa (d) ¥y (0, ¢ Rd%v1| o(@M + dg (R!g KB AT, €8, M)) T8,

(1, + Rd, ¥ (l‘l)+d

- — =1/
LI 2670, AW (1,00 Foct, W

8,

1
-— -—/
+J: mlzv"g(q,o) + Rdzz'q n(!,O) + d (Rv‘ ,,(Q,O)+v,,"(q,0))) v,’(ﬁ,O)

(§,1)+Rd (§,1)

{di% 0 22°%,3

+dy, (§,1)4+9

-
g,n (!,1)))!1‘“,1) dy = @ (39

1,8

We now need to formulate Galerkin’s equation for the last equations of our

system, Eqs. (42c) and (43c). We have

bea 2“ —_
fafo @ L+, N A s N e 3 dxdy

b -t -
+ f (QX(O.Y) Wie,») - Qx(l,)’) Uia,y)) dy
e

a
+ f (@ (x,8 Wix,8) - @ (x,b) Wix,0)) dx = @ (60)
8

where W is the assumed displacement function. Again, the double integral is to
satisfy the domain and the two line integrals are to satisfy the boundary.

Substituting Eqs. (44) and (43) into (40) and combining terms we have
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apeb
J.‘J; {kASS'x,x * kASSw,xx * kA44?y,y ¢ kA“w'” - kZNow,xx
-
$ P - KN podw) W' dxdy

10,7y

b -1
:l; (kAssvx(O,y) + khssu,x(O,y)) W8,y

- -/
- {kﬁssvx(a,y) + I(Assw’x(a,y)) Wea,y) dr

.
:

32 -/
*J; (Kﬁ“vy(x,a) + I(A“u,y(x,e)} Wix,8)

- -t
-(I(A44vy(x,b)*l(A44w’y(x,b)) W(x,b) dx = 8 (41)

where Ny“"i"o' Nx'-KZNO, and ny'KSNo'

We will now normalize Eq.(61), however, we need to define two more

normalization factors. They are

a Nobzlﬂzha
(62)

42 3

"2 =pb W /Ezh

Therefore, £q.(61) will become =T q
5 Y
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1 ol
- - 2 —- 2, 2.—
J;J; (k“55'§,§ + K‘st,lg + kRn“Vn'ﬂ + KR '44w,g§ kle(R /% )“,gg
4,2 4,2 o
3,2 - — —_ =/ o
+ 2K3(R /s ))\1w,§q kl(R /s )Xlw’m' + (R7/s )sz) W d&dn -.:»_-‘..:_
+1< ¥ ) + Kaogd ,(8,M) W8, "‘—‘*
; ksa55!‘(0,11 aSSw,i O ’ 4
(Ksa ¥ % .(1,M) W1,m  dn
- sassv‘(l,ﬂ) + kassu'g 1,M) Wi,
| «
- - -/ -
*”: (Ksa44!ﬂ(§,0) + Rka44w,n(§,8)) Wwig,8)
- (ksa, Fo(8,1) + RKa, W (8,1)) W(R,1) d§ = @ (63) ¢
$244%9(% 244¥ 4% ' F
At this point we are ready to pick a boundary condition, find approximate ';;:1-"_‘.‘}-
functions for A~ vy. and w for that condition, and substitute into Bqgs. (56), (39),
and (431, l
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Since the Galerkin equations have been formulated it is possible to choose
the displacement and rotation functions (w, 'x’ !y) which satisify the three

equations for each boundary condition being considered. These differential

equations can be integrated resulting in three algebraic equations (for each
boundary condition). The eigenvalue problem can be formulated from which the
natural frequencies and mode shapes can be obtained. Let us begin with the

simply-supported boundary condition.

For a plate simply supported on all sides, we know from plate theory that:

atx = 0,2
] =9 =0 ( m
; w y é4) :
S M Dy T * D52 Ty *Pag Py Tyt 8 R
i ) and I
aty= 00 B
wey =90 (65)
S
My * D12 Ve * D22 ,y.y * D26 ('y.x * 'x.y) =0 s
-1_"_ Therefore, wa shall choose for our admissible functions (functions which satisfy
L the geometric boundary conditions and are continuously differentiable one time) I:;{:;-
.- @ D g
¥ = I I A__ cos(mXx/a) sin(nAy/b) R
x nn e
m=] n=i <o
, - o e
~ vy = I X an sin(mXx/a) cos(niy/b) (64) '.‘::‘.?\
. m={ n=1 N
- ‘q"‘s_i
-‘-\- ..‘1..-
.:\_ - - '\:h":
W = E I C_ sin(mfx/a) sin(nty/b) N
h - m={ pmy ™ et
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or in terms of normalized coordinates ".'-f-'.—j

v‘ = X £k ﬁmn cos({m¥X§) sin(n¥xXM) ’

m=l n= .

- - ‘-.
.= £ I B _ sin(mx§) cos(nxM) 87)
| mn

m=! n={ o
W = £ X C_ sin(m§) sin(nt®

mn
msi n={

In order to substitute into Eqs. (54), (59), and (63) the following derivatives

are needed (note: all X are over m={ to « and n={ to ).

Tyq SII AL M sin(mId) sintnIm) =
;ﬁ.". =Itk -ﬁmn “’212 cos(mX§) sin{nLN) -
;ﬁ.iﬂ =L ma¥Z sin(mIg) cos(nin) :
Ye,n XX AL 0 cos(mit) cos(nkm)
;s,nn =X I AL n2x° cos(mX8) sin(pAM)
?,‘, ¢ =IX B o cos(mIy) cos(nxm \
;"I,u =IX -B m2x2 sin(mK§) cos(nxM) \«:
Yaen "I B mox? cos (M) sintnIm) (48) ,-,',.
Yaa =IE B ot sin(mgy) sintnm
'v'n,“ =XII -8 n?x? sin(mee) cos(nxm)
a.% =X C nmXcostnid) sin(nkM ;
a,%i *IL G n2x? sin(m§) sin(nxM .
Wag =II C a2 cos(mr8) cos(nxM) .::;
Wa =II G 0fsin(ng) costnxm -
G'nn =II -C_ n2x2 sin(mr8) sin(nxM)
S
X
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Thus from Bq. (34)

- -» ) P3|
I (-d..A mixlcos(ma8)sin(nk) - 2Rd, A _mnLsin(mA&)cos(n¥)
1{ mn 16 mn
me={ pn=i{egs8

2 2.2 . _ 2.2 .
R d“Amn L"cos(mX§)sin(nA®) demnm X sin(mi€cos(niN)
- R(d, ,+d, )B_mnAZcos(mEy)sinn - R%d, B n t’sin(mag)cos(nIM
12 746" "mn 26 mn

2 . ,
Ks assﬂmcos(mrﬂ) sin{nxm ksasscmnm‘[cos(nr(t)st n{nAM

(62/12)Anncos(m(§)sin(n(ﬂ)} {cos(pxX&)sin(qIM)} d&§ dn

+

1
+J: (—d“Amnl'ltlsm(B)sin(n‘E"l) - Rdlannn‘lsm(B)SIn(n'("l)

F'S

dlélmmnn(cos(ﬂ)cos(ntﬂ) + anm(cos(a)cos(n‘n)l) {cos(B)sin(qIW)

- (-d“Amnn(sin(mt)sin(n{"l) - Rdemnn(sin(M)sin(n("l)

e

d, ,[RA_ nfcos(mKicos(nk®) + B8 m¥cos(mU)cos(nAN)])
18" "mn mn

™

{cos(pX)sin(qXM} dn

1
fj; (-dléAnnmIsln(mi.)sm(e) - Rd 6Bnnn(sm(n(§)sin(0)

2

+

d“[mmn(cos(mtg)cosw) + Bmm(cos(ntt)cos(a)]) {cos(pA§)sin(8))

- (-d“Annn(sin(m(Usin(nt) - Rdzbemntsin(m(!)sin(n()

+

d66[ mﬂnn(cos(m(!)cos(n{) + B.nll(cos(mﬂ.)cos(n‘() 1

»

{cos(pAf)sin(qu)) d§ = & (69)

kL)
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From B

X X
m=in=)

2 2
R d26Amnn X

+

ol

g. (59

iel
2.2 2 .
SOSG(_d“Amm A cos(mX§)sin(nxN) R(d,z*déémmnmni sin(mit)cos(nIW)

2cos(n‘u) sin(ni%) - d“anmz‘lzsi n{mk§)cos(nAN

2

2Rd 68nnmn(2cos(mt)sln(nt"l) - R°d nztzsin(m‘ti)cos(n("\)

2 228mn

2 . .
Ks '44ans in(mX&)cos{nxMN) kRsa44Cmnn(s in(mX§)cos(nAM)

(62/12)ansin(mt§)cos(ntﬂ)) {sin(pAy)cos(qAM} d§ dn

+JB (-dlénnnmtsm(s)sm(nt’l) - Rd268mn‘(sm(8)sm(n‘(“i)

+

- (--dl

+

dé [RA n¥cos(8)cos(nI) ¢+ B mXcos(B)cos(nAM]1) {sin(B8)cos(qxM?
é " mn mn
6Amnntsm(n()sin(nt1l) - Rdzéamnntsm(m‘[)sin(n‘(ﬂ)

d“[mmnn(cos(m()cos(n("l) + Bnnntcos(mt)cos(n‘n) 1}

(sin(pcos(qxM)} dn

1
+J; (-dlzhmnm'um(m(!)sm(o) - Rdzzsmn(sm(n‘u)sin(e)

“

dzélmmn(cos(m!)cosw) + anw(cos(nﬂ)cosw)]) {sin(pAy)cos(8))

(-dlznmnn(sin(mic)sin(nt) - Rd22 nLsin(mig)sin{nX)

dzétmmn(cos(mncos(nt) + Bmm'lcos(m(%)cos(ni) 1)

(sin(pAQ)cos(qL)} c§ = 8 (700
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And from BEq. (§3)

o - {0l
. . 2.2 . .
nil nilfo-,: ( knssﬁmm{sm(mx)sm(n(ﬂ) kasscmnm A sin(mXg)sin(nN)

. ; 2
kRsa“Bnnntsnn(m‘(i)sm(nt’l) KR"a

2.2 . ,
440mnn AL sin{mrE)sin(nAM)

2 2.2

)Cmnn T sin(mi§)sin(nkn)

+

2
kz)\‘(R /s

2k3(R3/52)x

-+

2
1Cmum( cosi(nX{)cos{nx®)

kl(R4/s2)k1

-

C nleZsin(ma8)sin(naM)
mn

+ (R4/52))\ Cmnsin(m‘(!i)sin(n‘[ﬂ)} {sin(pA%)sin(qXW)) d§ dn

2

i
4”; (ksassnmcos(a)s:n(n‘n) + kasscmnMCos(O)sm(n!“l)) {(sin(B)sin{qxAM)

- (ksasshmncos(nr()sm(n("\) + kasscmnm{cos(m‘[)sin(nt"l)}

# {sin(p)sin(qIM} dn

1
+J; (ksa“Bmsnn(nr(l)cos(G) 4 Rka44cnnn(51n(mt§)cos(a))(sln(ptg)sin(B))

- {ksa,,B sin(m(§)cos{n¥) + RKka

44°mn Cmnntsin(mti)cos(n())

44

* {(sin(pX§)sin(qu)) d§ = @ (7%)

The indicated multiplications are performed after noting that sin(®) =

sin(pX) = sin(qX) = & (p and q are integers) and cos(®) = §,

.........
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From Eq. (69)

' f J‘ d“Amnm 12 cos(mIg)cos(pXrsin(nAMsin(qxM)
m-l n=1

- 2Rd, A mntZsin(mI&)cos(pTR) cos (XM $in(qLM)

- de“Amnnztzcos(m‘ﬂ)cos(ptt)si n{nkMsin{qLN)

shnmztzsin(mtg)cos<ptg>cos(ntn>sin(qtﬂ)

dig

- R )B mn(zcos(m‘!!)cos(ptﬁ)sun(n(‘l)sm(q‘(ﬂ)

(dyp*dg4

- dezsahn“ 12sin(mX8) cos(pR) cos(nAM sinlqLM)

2 . .
Ks assﬁmncos(mﬂ)cos(p‘(!)sl n{nXM)sin(qxM)

sscmm{cos(nts)cos(pti)si n{nkMsin(qxN)

(52/1 2)Anncos(l!1§)cos(p‘(§) sin{nKMsin(quN) d§ dv

<>

i
+ J; dlélmmnn'(cos(n‘["l)sin(ql'll) + Bmm(cos(n‘m)sin(q‘["l)]

- dl 6[mmnntcos(n()cos(pt)cos(nt"l)si n{qxM)

+ anm:os(mr()cos(pt)cos(ntﬂ)sin(q‘[‘l)l da =g (72)
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From Eqg. (70)

- - b 1
Z I ~d, A nz‘lzcos(mnsin(p(;)sin(nt’ﬂ)cos(qtﬂ)
16 mn
n={ n=1 o3 ¢@

2 . .
R(dlz’déé)ﬁmnm“ sin(mI§)sin(px§)cos{niN)cos(gXM)

- dezéﬁmnztzcos(m‘u)sin(ptg)sin(nl‘l)cos(q‘n)

2.2 .
dééennm L sin(mIg)sin(pr§)cos(nKM)cos(qx)

- 2Rd268mnmntzcos(m(§)sin(p‘[;)sin(n‘(ﬂ)cos(q‘["l)

2.2 .
R2d228mnn s in(mKE) sin(px&) cos(nlM) cos{qLh)

2 . .
Ks A“Bmsm(n‘(g)sn n{px3)cos(niN)cos{(qIN)

- kRn“Cmnts in(mX¥)sin(pA8)cos(nXW)cos(qxMN)

L J

(62/12)Bmsin(nﬂ,)sin(p(!)cos(n(ﬂ)cos(qt'l) dd dn
|
+ j; dzélmnnn(cos(m(!)sm(pi!) + anntcos(n‘lﬁ)sun(p‘lﬁ)]

- dzélmmn(cos(nt) cos(qu)cos(m§)sin(px§)

+ Bnnnicos(n()cos(q()cos(mﬁ)sin(p(!)] d§ = 9

MR s m g o e s a e L SR —— - — -
. R RN i - AR bt - LT T —r r -\

(73) S




Nulhdnd Bl o s i g 2

1 1
f cos{mix) cos(pAx) dx = [%¥x + (1/4mX) sin(2mAx}1 = X 73
8 ]
1 1
f sin(mix) sin(pXx) dx = [¥x - (1/4m1) sin(2mIx)) = % (78)
¢ 9
1 2 i
f sin(mXx) cos(pix) dx = {({/2m) sin"(mIx)] = @ (77)
) 8
39
. A‘_.-J ”;C‘:':;""" e ‘u_ ,:‘ ( ::‘-:-.- s e e \.'\.--:::.".“_-;‘ . . T SR LSO

And from Bq. (71)

J.J‘ ksassA msin(nKk§)sin(prydsin(nAMein(qLM)
m-1 n={

- Kasscmnztzsi n{mE)sin(pAR)sin(nIMsin(qAM)

- kRn“anntun(m‘(t)un(p‘n)s:n(nt‘l)snn(qt"l)

- kR2a4qchnn2(25in(nt%)sin(pt!)sin(n(ﬁ)sin(qtﬂ)

+k2x1(R2/52)Chnm2125in(m(%)sin(pt!)sin(ntﬂ)sin(qiﬂ)

+ 2 (R3/s2)x1Cﬁnmnizcos(mtg)sin(pt!)cos(ntﬂ)sin(qiﬂ)

3

N k,(R4/52)x1Cmnnztzsin(m(!)sin(pt!)sin(ntﬂ)sin(qtﬂ)

+ (RY/82,C sintmy)sinpra)sin(nIMsintgIn dadd = @ (74)

In order to integrate these equations, we shall use the following integrals taken

from [31].

Whenm=p (orn=gq
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Whenm = p (orn=q)

i

1 . ,
sin(m-p)>Xx . sin(m+plAx N
= )
J; cos{mAx) cos(p¥x) dx = 20 (m-p) + 2 (mtp) L e (78
1 . , 1
. . - $in(m-p)Ax _ sin(mtp)Ax
J: sin(mix) sin(pAx) dx 20(m-p) 2X(mtp) ) 8 (79)
§ {
. = . Cos(m-p)Xx _ cos(m+pl¥x
J; sin{mAx) cos(pxx) dx 2L(m-p) 2L(mip) ]

e . SOS(M-p)A ~ 1 _ cos(mip)X — 1
2¥(m-p) 2%(m+p)

= (CCOB(m-pIX + 1)(m+p) | {(-cos(m+p)X ¢ 1)¢{m-p)
2X(m-p)<m+p) 21(m-p) (m+p)

DL Y

= $-cos(m-plX + 1)(m+p) + (~cos(m+p)¥ + 1)(m-p)

: \ 2(m2 - p2) N
i o :
= § for (m+p) an even integer (88)
and
1 « 2m/%mE - p) for (m+p) an odd integer 81)
Similarly for S
t =
f sin(pXx) cos(mxx) dx = @ for (p+m) an even integer 82) D
. o
2_ 2 , X
= 2p/X{p” - m") for {p+m) an odd integer (83)
We shall now introduce the notation
i g
f cos{m¥x) cos{prx) dx = (% or §) (84) .
. o ) . ;.
. where the value on the left side of the parenthetical 2xpression is the va'ue of the :::::::'
) ” integral when m=g and the value on the right side of the expression is when msp, ROl

49
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Thus, upon integrating, simplifying, and taking only a finite number of terms we

have (note: even and odd tests are for the sum of the indices):

From £q. (72)

T ¥ (%% or 8)% or 0)(ﬂm2d11 - n2R%d, - ksla__/x

2.2 2 2 2.2
86 55 + o
=1 n=]

/12%7)

/¢ (m2-p2) (q%-n%))

(8 or @ even,2m 0dd)(8 or @ even,2q odd)(Zanndlé

+ (8 or 8 even,2q odd)(anlé(l—cos(mt)cos(p{)))/(qz-nz)] A

-+

t22(% or 8)(% or B) (-nnRed, , + d )

2 46

- (Bor® even,2m odd)(Bor® even,2q odd)(m2d164n2R2d26)/((mz—pz)(qz-nz))
+ (8 or B even,2q odd)(mdlé(l- cos(nr()cos(p()))/(qz—nz)] an
- [€(%X or 8){X% or 8)(mk5355)] Cmn = @ (8%
From Eq. (73)
M N >
Z I (5% or 0)(X or G)(-mnR(d,, + d,.)
12 46
m=1 n=|

2

(8or@ even,2p odd)(Bord even,2n odd)(m°d 2 2_m%)(n-q2

d26)/((p -m)(n"-q )

2
16~*n R

6(1—cos(n‘[)cos(q() D) )/(p2-m2)] A

+ (6 or @ even,2p odd)(nRd o

2

+ 1%%C% or 8)(% or 8)(-m2d66 - n2R2d2

2

2
2 (ks 144

Y% + Ger121%)

2_2

- (8 or @ even,2p odd)(8 or 8 even,2n odd)(ZMndzé)/((p -m 2

y(nZ-q%)

4+ (9 or @ even,2p odd)(mdzé(l—cos(nt)cos(q‘l)))/(pz-mz)l an

- [X<% or 8)(X% or 0)(ansa44)] Cmn = @ (86)

41




And from Eq, (74)

M N .

2 I -%(% or 8)(X or 8)(mksa55) Amn L
m=1 n=] S
- %(% or B8)(%X or 8){(nRksa,,) B

44 mn
2 2,2 e
+ 122 (% or B)(% or 8)(-nika ~n’R7Ka,,

N szlmz(RZ/sz)fklxlnz(R4/52*x2(R4/{252))

+ (0 or 8 even,2p 0dd)(8 or 8 even,2q odd)

* 2Ry 1/ ¢s%p2m?) (g%-n 1 c. = o (87)

Bquations (85), (84), and (87) are now ready to be programmed. The process
to generate the Galerkin equations is to pick an M and N (they must be equal), then
cycle through p and q (which are equal to M and N). Thus, ¥ and N determine the
number of terms in each Galerkin equation and p and q determine the number of

Galerkin squations.

S

o 4

L
1,0,
O

PSS
N

-
. A,

AR
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Clamped undary Condition
a_ For a plate clamped on all sides, one knows from plate theory that:
atx = 0,a
- (88)
. wEe = 'l‘y z 9
and
at ys= &b
i (89) -
- w9y =9 =§ o
E X
Therefore, we shall chocose for our admissible functions
- e R
A ¥o= I I A sin(mx/a) sin(nfy/b) RS
- m=1 n={ .
t - @ .
: ¥ = X I B p $in(mIx/a) sin(nfy/b) {98) c
b 4 m=1 n=] .
° . = C
W = X I C_ sintmx/a) sin(nAy/b) RN
mn <
m=1 n=]
or in terms of normalized coordinates
Wi
» @ ~.t.—.
Y= L I A sin(mg) sin(nim el
m={ n=1 -
J » - t
< ¥,= I I B sin(nX8) sin(axm (91)
m={ n=i oo
- ”» o«
w =z I C“m sin(nXg) sin(nYM
m= =

TTRT T T Te T

TR
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r |
r

f,'

3

X

b

b

3




In order to substitute into Eqs. (56), (59), and (63) one needs the following

derivatives (note: all XX are over m={ to = and n={ to =),

'g,g n mX cos{mX§) sin{nXM)

= 2.2 . .
'g,gg m KX sin{nk§) sin(nxXM

y,80
v nX sin¢mg&) cos{nxM)
£,1

- 2.2 . .
'g,nn = n X" sin(mAg) sin(nX®M)

?

B cos(nXy) cos(nAM)

nX cos(mY8) sin(pnX®
“’g

V9,88 ©

vﬂ,&ﬂ mnX
nX sin{mxy) cos(nAW)

m2{2 sin{(nXg§) sin(n¥kM)

2 cos(nX§) cos(nkN)

1,%

_ 2 . .
'ﬂ,\ﬂ = n 12 sin(nX§) sin(nXM)

nX cos(mI§) sin{n¥M)

n2L? sin(nX) sin(nxMm

8

1

&1 mnt2 cos(mX§)> cos(nX™)
)

nX sin{(m@%) cos{(nAWM

] 022 sin(m&) sin(naM

,‘
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Now, substituting into Eq. (34) we have
> o el 2.2 2 T
I X {(~d, A m“ X sin{mg)sin{naN) + 2Rd, A mnX“cos(mAt)cos! nIWN) -
11 mn 16 mn ..
=1 n={ (] .
2 2.2 . 2.2 . .
R d“f-\mnn L sin{mX§)sin(nxn) - dléann L sin{mIB)sin{nAMN) =
-2 'a
+ R(d, ,+d, )B_ mn¥cos(m§)cos(ntM) - R2d, B nZx’sin(m¥&)sin(nLM)
12 44" "mn 24 mn
2 . . .
Ks assﬁmnsm(m(g)snn(n{'l) ksasscnnmtcos(m‘(%)mn(n{"l)
+ (62/12)Amsin(mtt)sin(n‘(ﬂ)) {sin(px®)sin(qAM)} d§ dn
1 R
+J; ¢ dy A mAcos(@)sin(axR) + Rdlzannlsm(O)cos(n‘("l) R
N
+ dM[RAmnn‘(sm(B)cos(ntﬂ) + anm(cos(e)sin(n(ﬂ)]) {sin(@)sin{qIM} -
) - dliﬁmnm«:os(m{)sin(nti) + RdIZan(sln(M)cos(nKﬂ) o

-

dM[RAmnIsm(m()cos(nti) + Bmm(cos(nﬂ)sin(n!ﬁ)])

% {sin(pX)sin(quM)} dn

1 s
. . N
4.’; { dléﬂmnn(cos(ntt)sm(e) + Rdzéannn(sm(ntt)cos(m R
SN
v»-r_:_-‘
r . . . et

+ d“.RAmnntsm(m(E)cos(O) + anntcos(nti)sln(o))) {sin(pAg)sin(0))
-~ d) (RApPLcOS(MI s in(nt) + Rdzéemn(sm(mr“)cos(n() f_‘
Sj.'j
+ d“[RAmntsm(m(l)cos(n‘l) + Bmm‘[cos(nr[l)sm(n‘l)]) :?.::Z‘f
RSN
-\'-..-'
* (sin{pAYsin(qu)) d§ = @ (93) AN
‘ any
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Substituting into Eq. (59) we have

- o {0l
2.2 . . 2
:1n§1SOSo(-dMA""m ¢ sm(mtt)snn(n(‘l)fR(dIZO-d“)Amnmnt cos(m(§)cos(nxN)

2 2.2 , 2.2 . .
- R d2¢.Amnn L sin(m(g)sin(nkW) dééanm Lsin(mI8)sin{nAM)

2 -~ 2.2 . .
2Rd268mmn( cos(mX§)cos(niR) R d228nnn Lsin(mA&)sin(nxN)

+

2 . . .
Ks A“ansln(n(t)smm{\) - kRu“Cmntun(m'(q)cos(n('l)

+

(52/12)Bnnsin(mt!)sin(n(ﬂ)) {sin(pA¥)sin(qaN)) d§ dm

1
OJ; { dMAmnn‘lcos(O)sm(n'ﬂ) + Rduannlsm(a)cos(n’("l)

+

d tRAmnntsin(G)cos(nﬂl) + anm(cos(e)sin(ntﬂ)]} {sin(@)sin(qIM?

46

{ dwhmnmtcos(m‘[)sin(n{‘ﬂ) + Rdzdamnntsm(m()cos(n(ﬁ)

e

d“[RAmntun(m()cos(n(‘!) + anr(cos(m‘()sm(ntﬂ)])

{sin(p)sin(qiM)} dn

1
4J; { dlennn!cos(n'(t)sln(O) + Rdzannn(un(nti)cos(O)

+ dy [RA nYsin(maE)cos() + anu(cos(n(t)sin(e)]} {(sin(pXg)sin(ad))
-{ 612AMMcos(mt§)sin(n() + Rdzannnisin(m‘u)cos(n'()

+ dzélRAmntsin(th)cos(ni) + B Mcosmi)sin(niD 1)

# (sin(pi)sin(qx)) dy = @ (94)

44
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And finally substituting into Eq. (63) we have

- - {el
2.2 . . C
X Iz faf { ksassAmnnr[cos(m‘(a)sin(niﬂ) ka550mnm £ sin(m§)sin(nLW ——
n=1 n=| 8
- KRsa..B nIsin(mxs)cos(nt®) - kRZa,,C n2t2sin(nt8)sin(nx o
44 nn 44 mn T
e
2,2 2 . .
+ kle(R /s )Cmnm fzsm(m‘u)sm(ntﬂ)
¢ 2K (R3/62In, C__mn¥lcos(mA8) cos(nTN)
3 1 mn -
+ k. (RYsDHn € nZePsin(m8) sintatm
1 1 mn
+ (RYsD,C sincatg)sin(ntn) (sinCprs)sin(gIn) d& dn .
1 _ s
+J; (ksassnmnsm(e)sm(n(ﬂ) + Kasscnnm(cos(e)sm(ntﬂ)) {(sin{@)sin{qXMN)
® - (ksasshnnsm(nrnsin(ntﬂ) + K355Cmn{cos(nt)sm(nt1l))
* {sin{pTsin(qIM?} dn o
‘ _;'.!.
4.’: (ksa“Bmsin(m(§)5|n(9) + Rka“Cnnntsln(nti)cos(e))(snn(ptt)sm(%)) ..
- (ksa448nn5|n(m(§)sin(n() + Rka440mnn‘[sin(m’!t)cos(n‘!)} :
* (sin(pI§Isin(g)) dt = @ (95)
The indicated multiplications are performed after noting that sini®) =
sin(pX) = sin(qR) = @ (p and q are integers) and cos(®) = {. -
RS
z.';‘r'
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From Bq. (93) _\.L-&
= * alal 22
I I ff -d“Amnm X sin(m‘n)sin(p(i)sin(ntﬂ)sin(qtﬂ) :
m=] n=] ¢/g g -
+ 2Rd16Amnnn'(2cos(m§)sin(p(t)co:(n(ﬂ)sin(q(!)
R2 2.2 . . .
- d“Amnn « sm(mt!)sln(pt!)sln(n("l)sln(q‘[‘l)
- dy 4B s in(aE)8inCpEE) 8 in AN sincqLn) e
2 . . E
+ R(dlzfd“)Bnnmn( cos(mﬂ)sln(pﬂ)cos(n‘[‘l)snn(q(ﬂ) .::
2 2.2 . . . ‘.
- R dzéB n"« 5|n(m(;)sm(p‘u)sm(niﬂ)sin(q‘n)
mn
2 : . . \
ks assAMsm(mk)san(pﬁ)sln(n(‘l)snn(q‘n) o
.;-:'v:‘
" Ksag O mMcos (M) SinCpAY) s in(nXM s in(qEN) o
) e
+ (@ /IZ)Aunsin(n(t.)sin(pﬂ)sin(ntﬂ)sin(qtﬂ) A di=¢ (96) Ry
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From Eq. (94)

ff 6A nt sin(m‘(!)sln(p(i)sm(n‘(ﬂ)sln(q{"l)
m-1 n={

R(d,  +d )A mntzcos(m‘u)sln(pt!)cos(n{i)snn(qiﬂ)

+ R %%

2 2.2 . . . . .
- R dzéﬁmn L sin(mXg)sin(pAgIsin(nAMsinl{qxM) i
2.2 . : . .
- d“Bmm Xsin(mXE)sin(pAR)sin(nXM)sin(qAM) S

+ 2Rd268mnmn(2cos(m‘(!)sin(p(t)cos(ntﬂ)sin(qtn) .-l.
* - R%d,.B__n’1lsin(m8)sin(prR)sin(nxM sin(quM
2728 T $in gsin(prf)sin(n sin(qX ot

- ks 144ansin(mt!)sin(pt;)sln(ntﬂ)sin(qt‘n)

- kRu“Cmntsin(mt!)sin(pi!)cos(n‘[‘!)sin(qtﬂ)

tate

2

(o /12)Bnnsin(n‘(%)sin(p‘(()sin(n(ﬂ)sin(q(ﬂ) d§ di = @ 97
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m=1 n=i

From Eq. (95)

1l
j;J; ksassnmm(cos(m(i)un(p‘u)snn(n(ﬂ)sun(qt"l)

2.2

- kasscmnm x

sin(mIE)sin(pX&)sin(ntMsin{qgXM)

+ kRsa, B nntsin(m‘(%)sin(pti)cos(n(‘ﬁ)sin(qtﬂ)

44 " m

_ el 2.2
kRa44m

2,2 2.2

*KZAI(R /s )Cmnm <

+ 2k3(R3/s2

+ kI (R4/52))‘l

+ (R4/52)A2

number of terms we have

c iy A sin{m§)sin(prgdsininkMsin(qxM)

sin(m(g)sin(prE)sin(ntM) sin(qxN)

2

)xlcmnmn‘[ cos(mK¥)sin(pxX§cos(nXMsin(q1)
212 . . . .
Cmnn sin(mg)sin(pxXElsin(nXMN)sin(qxM)

Cmnsin(m(!)sin(pﬂ.)sin(n‘l“l)sin(qﬂl) didn = @

(98)

We can now integrate Eqs. (94), (97), and (98) using the same integrals from the

previous section. Thus, upon integrating , simplifying, and taking only a finite
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From Eq. (76)

2 2 2,2 Y- 2
[X°¢% or 8)(% or 8)(-md n°R d66 Ks ass/t

11

+ 527126 .

nMZ

M
=
=l n=\

(8 or 8 even,2p odd)(8 or 8 even,2q odd)

2

(2Rmnd, )/ ((p %) (g2-n?

N1 Amn

w

2 2, _ 2.2 -
+ (X°¢% or B)Y(X or B)(-n dlé n"R d26) R

*

(8or® even,2p odd)(8or8 even,2q odd)

2 2.2 2
(mnR(d12+d66))/((p -mQ -n"))] B

*”

mn

2_2
-m )] Cﬁn = 8 (99

{€(8 or 8 even,2p odd)(% or 0)(mksa55)/(p

» From Bq. (97)

M N
£ I (€% or 8)(K or cm-mzdl -nR%d. )

=1 n={ 6 26

(8or® even,2p odd)(Bor® even,2q odd) B

2. 2.2
(mnR(d‘2+d66))/((p a7 )(qQ"-n

21 &
mh

™

2, _ .22, _ 2 2
dgqy = MRy, = (Ksa, 070

[ 2ad AU SN
PO A e

tx2¢% or 8)(K% or 8)(-m ¢ 92/120%)

+

+ (@ or @ even,2p 0dd)(8 or 8 even,2q odd)

2_2 ,2 2
W(p T mTI(qT™-nTI))] an

»
A et

1"‘

(2Rnnd26

7 <y

we8-n21 ¢ = 8 (188 ;
mn o~

(¥<X or 8)C@ or @ even,2q odd){(nRksa

44
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And from Eq. (98) L
:. 3 M N s 2 R
‘] I I - %B or 8 even,2p odd)(X or B)(mksag)/(pimS) A S
m=l n=1 KON
8 2 7
+ X(% or 8)(8 or 8 even,2q odd)(ansa44)/(q -n) an
. 2 2, 2.2 .
+ (€7 (X or 8)CX% or @)(-m ka,‘:.'5 n'R ka44
+ koam2(RE/e2 ek x n2(RY/sZan, (RY 122> L
21 1™ 2 5
‘ + (8 or 8 even,2p odd)(8® or O even,2q odd) Tl
i 3 2,2 2,2 2
»* (2k3mnR xl)/(s (p"mTI(q"n"M1 Cmn = 8 (16e1) ~-_‘
;E Equations {99), (108), and (101) are now ready to be programmed to generate "\-f
L _-> the Galerkin equations as before. " :
| -:'
r ‘e -
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m - S8j -8 rt oundar ndjti

For a plate clamped on two opposite sides and simply-supported on two

opposite sides, one has the following boundary conditions.

atx =9,
(182)
wsy 39 =0
X Y
and

aty=6,b
ws= 'x =@ (1e3)
"7 = Diz et D22 vy’y + 926 (vm + vx,y) =0

Therefore, we shall choose for our admissible functions

¥ = I I A sin(mx/a) sin(nty/b)
X mn
m=1 n=i
-» o
¥ = I I B _ sin(mx/a) cosi{nXy/b) (164)
4 m=] n=i
W= x I Can $iR(M/2) sin(nXy/b)
=1 n=1
or in terms of normalized coordinates
- L J
V.= £ I A sin(mKg) sin(nt®)
8 paln=g 0
- [ J
iﬂ = L I B  sin(nat) cos(nx®) (165)
=] n=i
- -« L )
W = I X Cm sin(n¥g) sin(nxkW)
m={ n=i
53
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To substitute into Eqs. (56), (59), and (63) we need the following derivatives

{note: all £X are over m=} to = and n={ to =),

-1
L}

g8 LI

a4t

'g.ﬁﬂ =X

!g" =zI

=IZ

'g,ﬂﬂ =ZZ

'ﬂ,Q =XX

'ﬂ,;i =X

'ﬂ,gn =ZX

7",‘ =X

Yo,an = LI
“,g =L X
w’q! =3 X

w"n = XX

w’ﬂ =IX

A
mn

-A
mn

A
mn

A
mn

-A
mn
an
-Bhn

mn

mn

X cos(mi§) sin(nx®W)
m2{2 sin{mX§) sin(n¥X")
mnt2 cos{mX§) cos{nxXM)
nX sin(mi§) cos(niW)
n2c2 sin(nky) sin(nxm)
mA cos(mA¥) cos{nAW)
n2(2 sin{mX§)> cos(n¥N)
antZ cos(ntd) sin(nxm)
nX sin{mI) sin(nxW)
212 sin(nis) cos(nam
mY cos(mAg) sin(nxM)
n2t% sin(na&) sin(nAm
nn12 cos{n¥X§) cca(nx)
nx sin(m%) cos(nx®)

nztz sin{mXg) sin(nxM)

34
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Now substituting into En. (36) we have

- - 1 1
T }:f (-d, A m2x2sin(mEg) sin(naM) + 2Rd, A mnx2cos(mIt) cos(nI)
m=!{ n={ 9 1"mn ma

_ 2 2.2 _ 2.2
R d“ﬁmnn L sin(mA§)sin(nxN) dMB n L sin(mi&)cos(nkN)

—R(c!l2 “)B mntzcos(nrlﬁ)sm(ntﬂ) Rd B a" Izsln(mti)cos(n(ﬂ)

2 . .
Ks assamnsm(n‘“) sin{nAM) knsscmnm(cos(mﬂ.) sin(ndm

((7)2/12)Annsin(m(&)sin(n(ﬂ)} {sin(pxg)sin(qXM)) d&§ d3

+

1
+J; { d“AmnMCos(O)sm(n‘ﬂ) - Rdlzannlsln(O)sm(n‘("I)

+

dM[RAmnntsin(O)cos(n(ﬂ) + anmlcosw)cos(nﬂl)]) {sin(@)sin(qxWM?

{ d“Amm‘lcos(M)sm(nt'l) - RdIZann(sin(m‘[)sln(ntﬂ)

+

d, ,[RA_ nTsin(mX)cos(nXq) + B mYcos(ml)cos(n¥M)12
14 mn mn

*

{sin(p)sin(qLW)} dW

1
4J: { duﬁnnn(cos(n(!)sin(e) - RdzéB’mn(sin(n{t)sin(O)

+*

d [Rﬁnnn‘(sln(lllt)cosw) + Bnnm(cos(ntt)cos(ﬂ)]) {sin(pr§)sin(B))

64

{ dunmnr(cos(mtl)sin(n() - Rdzésmn!sin(n‘u)sin(nt)

-+

d lRAmn‘(sin(m(&)cos(n() + Bmmtcos(m%)cos(ni)])

64

{(sin(pX¥)sin(qu)) d§ = @ (187)
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Substituting into Eq. (59) we have

YA mn‘(zcos(mtg)cos(n(ﬂ)

- o imi
2.2 . .
X Z S S (-dléﬁnnm « snn(m‘(%)mn(n‘[’l)+R(d12+d66 o
m=1n=1408008
2 2.2 . . 2.2 .
R dzéﬁmn L sin(mA¥)sin(nkMN) dédamnm 1L sin(m(§)cos(nkMN)
2 2

- 2Rd268mmn‘[2cos(m‘!§)sln(nt"!) - R™d n tzsin(m(g)cos(n(ﬂ)

228nn

- ksza B sin(mX§)cos{nIN) - kRsa

448mn Cmn‘[scn(nrt%)cos(n(ﬂ)

44

2

-

(B /12)Bnnsin(m‘(l)cos(n("!)) {sin(pX§)>cos(quAN)} d& dn

1
+J: { d“AmnmIcos(O)sm(n‘["D - Rdzéann‘lsm(O)sm(n‘["l)

+

d“[RAmn(sm(O)cos(n‘lﬂ) + anm(costo)cos(n(ﬂ)]) {sin(8)cos(qIM))

-{d Amancos(m‘[)sin(ntﬂ) - Rd nKsin{m)sin(nyn)

16 268mn

+

i T
d“(RAmntsln(M)cos(n(ﬂ) + annr(cos(nr[)cos(n‘[.)])

n

{sin{(pl)cos(qaN)} dn

1
#J: { dlzﬁnnmtcos(mts)sm(e) - Rdzzsnnn(sm(mtusin(e)

-+

dzélRAmnntsm(Mt)cos(O) + anm‘(cos(ntt)cos(e)]} {sin(pX¥)cos(@))}

-{ dlemnr[cos(Mg)sin(n‘() - Rd nMsin(n&)sin(n)

228mn

+

d26[RA'mn{SI n{mi§)cos(nk) + anr(cos(nr[!)cos(nt) 1)

(sin(pA¥)cos(qu)) d§ = @ (188
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- And finally substituting into Eq. (63) we have

. e = 101
‘ I oz .ﬁ;f. ( Ksagh mlcos(mi8)sin(nXM - Kag L m2Zsin(mig)sin(nx®
L m={ p=| 9
. . 2 2.2 . .
- kRsaManntsnn(n‘(&)snn(nt‘!) - kR 144Cmnn L sin(mX§dsin(nLM)
2,2 2.2 . .
+ kzkl(R /s )Cmnm 1 sin(mXg)sin(pxM)
3,2 2
+ 2K, (R7/¢7)N. C__mnK"cos(mX&)cos(nLW)
3 1 mn
R kl(R4/52)xlcmnn2{25in(m(g)sin(n(ﬂ)

+ (R4/52)xzchnsin(m(;)sin(ntﬂ)) {sin¢pAB)sinCquM} d§ dn

1
OJ’G (ksaﬁamnsmw)sm(nt’l) + kasscmnnrlcos(e)sm(ntﬂ)) (sin(B)sin(gXN)J

Cmnnr(cos(n‘l) sin(nxm)

‘ P - (ksasshmsin(m‘()sin(ntﬂ) + kass

N * (sin(pO)siniqEM) dn

1
+J; (ksa“Bmsm(mt!)cos(O) + Rka44cnnn‘(sln(m‘[i)cos(O))(sm(pt%)sin(e))

- (Ksa“Bnnsin(mIQ)cos(n() + Rka“t:nnn‘(sin(m(ncos(nt))
* {(sin(pI8)sin(qu)) d§ = @ (1689)

Again, performing the indicated multiplications and noting that sin(® =

o sin(pX) = sin(qX) = & (p and q are integers) and cos(®) = { we have
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From Eq. (107)

- - i i
I f f -d1lﬂmnmz‘(zsin(m‘(%)sin(pt%)sin(ntﬂ)sin(qt‘l)
=] n={ ¥g @

+ 2Rd16ﬁmnnn12cos(m(‘)sin(p(!)cos(n(ﬂ)sin(qtﬂ)

RZd, A nPPsintmut) sin(pTa)sinntMsincqra)

des

dléqmnmztzsin(nil)sin(pt!)cos(ntﬂ)sin(qtﬂ)

2 . . :
R(dlz*déé)qmnmn( cos(mig)sin(pAg)sin(nAM)sin(qAM)

- R%d,,B nPCsin(mut)sin(pIa)cos(nINsin(qLM
- kszassahnsin(mtt)sin(pt!)sin(ntﬂ)sin(q(ﬂ)

- ksasschnm(cos(mti)sln(ptt)sun(n(ﬂ)snn(qtﬂ)

2

(@ /12)Ahnsin(n(!)sin(pt%)sln(ntﬂ)lin(q(ﬂ) g4 du = @

<+

Al -l i S Jniara o

(118)
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From Eq. (188)

- - 1 i

I I ff -4, A s in(mI8)sin(pXs) sin(nxN) cos(gqaM
mn

m=] n=] &3 &/@

2 .
R(dlz*déé)Amnmnt cos(mXE)sin(puAg)cos(ntN)cos(qXMN)

+

- dezénmnztzsin(mu)sin(pu)sintntm:os(qﬂ)

2.2 . .
dééqmnm X sin(mXE)sin(pA§lcos(nAi)cos(qxN)

2Rd,, 6anmntzcos(mg>sin(pﬂ>sin(nﬂ)cos(qﬂ)

- dezzemnn212sin(mu)sin(pﬁ)cos(ntmcos(qn)

2 . .
Ks 344ans|n(m1§)5|n(ptﬁ)cos(n{ﬂ)cos(q{ﬂ)

- kRsa44Chnntsin(m(§)sin(p(!)cos(ntﬂ)cos(qtﬂ)

>

(52/12)§mnsin(nt%)sin(pt%)cos(ntﬂ)cos(qtﬂ) d§ da

1
+ .I; dzélRAmnnIS|n(m(§)S|n(ptﬁ) + ann(cos(mlg)sin(pti)]

- d26[annn(cos(nt)cos(qt)sin(m(!)sin(p(%)

+ Bhnm(cos(nt)cos(qt)cos(mt!);ln(ptﬁ)] d§ = @ (111)




From Bq. (189)

- - i i
T = ff KSag A MECOS(IN)Sin(PTR)$in (AL 5in(gIn)
mn
nm=] p=j ¥g ¥y ..
- KaeeC. mAZsin(mI®)sin(pXA)sindnLR)sinqAM)
35 'mn

- kRu“anntnn(mﬂi)sin(p‘(%)sm(n‘(‘n)si n{qXM

- kRza“cmnnztzsin(mt#.)sin(ptg)sin(nﬂ)sin(qtm

KA (Rz/szmmnmztzsin(mg)sin(pxgm (AT sin (XM

+ 2k3(R3/52))\1Cmnmntzcos(m'(t.)sin(pt&)cos(nt‘l)sin(q‘ﬂ)

e

+ kl(R‘/sz)xlcmnnztzsin(mﬂ)sin(pﬂ)sin(nm)sin(qn)

4

+ (R /sz)xzcmnsin(lﬁ!)sin(ptl)sin(nlﬂ)sin(q{ﬂ) ddy = @ (112D

We can now integrate Eqs. (110), (111), and (112) using the same integrals from the
previous sections. Thus upon integrating, simplifying, and taking only a finite

number of terms we have

[ ERENEAEHS

'
e 2l h
AlALP

A NS B A
“‘ e .

"
N f'f‘d"t‘
AR

[N

60 S




T P . e - S S e 0eec i T -/l ectiit it S 4

From Eq. (119)

M N
I T (2% or 0Kk or 0(md,, - nPR%d,, - kslaga? + @12t
11 4é 3
m={ n={
+ (0 or @ even,2p odd)(8 or @ even,2q odd)
22,2 2
* (2Rnnd16)/((p -a7) (g -n"))1] Amn
2 2
- [A(8 or 8 even,2p odd)(X%X or 0)(mnR(d12 + déé))/(p “m)
2 2.2 2 2
A(% or 0)(dor® even,2q odd)(m d16+n R dzé)/(q n)l an
- [0 or 0 even,2p odd)(X or 0)(mk5355)/(p2-m2)] Chn = @ (113
From Bq. (111)
M N 2 2

T I 1%¢9 or @ even,2p odd)(X or 8)(nnR(d12 \ déé))/(p -m)
m=] n=|

2

- %(% or 8)(0ord even,2n odd)(m™d %R2 2.4

16+n R dzé)/(" -q7)

+ (% or 8)(nRd, (1-cos{n)cos(qX)))] A

26 mn
2 2 _ .22 - 2 2, =2 2
+ [X7(% or 8)¢X% or B)(-m d66 n“R d22 (Ks 344)/1 + 0°/1207)
- 2 2.2 2
(@ or B even,2p odd){@ or @ even,2n odd)(ZRnndzé)/((p - ){(n“-q"))
+ (8 or 8 even,2p odd)(ndzé(l-cos(n()cos(q()))/(pz—mz)] B
)1 C = @ (114)

-~ [”A<(% or B8)(X or 0)(ansa4

4 mn

e e W e
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And from Bq. (112)
H N 2 2 '."'.:.":
T I (8 or 0 even,2p odd){(% or 0)(mksa55)/(p -m°) A aiate

mn .
me=i n={ R

- A(X or B)(X% or 0)(nRKsa44) an

2 2.2 e
¢ 1% (% or 8)¢% or 8)(-m Kag -n"RKa,,

¢ kon m2RE/82 4k n, n2(RY 62 (RY /1262y -

2"1 171 2 ,
+ (8 or 8 even,2p odd){® or ® even,2q odd)

3 2,22, 2 2 -

#* (2k3mnR kl)/(s (p"-mI(q"-n"))] Cmn ] (115) .

Bquations (113), (114), and (11¥) are now ready to be programmed to '«- J

generate the Galerkin equations as before.




111. Digcussion and Results

This chapter u;ill describe the computer programs used to solve the
eigenvalue problem formulated in the last chapter. It will also discuss the two

types of laminated plates used in the programs and the subsequent analysis

performed with those plates. We will begin by describing the computer algorithms.

r jthm

Four computer programs were written to set up and solve for the

approximate natural frequencies and mode shapes for the three boundary

conditions considered. The first program determines the nondimensional bending
and extensional stiffness elements for a symmetric laminate. The second program
formulates the eigenvalue problem [Alx=A[Blx where [A] is the stiffness matrix
and [B] is the combined mass and inertia matrix. The third program solves the
eigenvalue problem. The last program generates the data for the mode shape

plots, A description of each program follows.

Program One determines the nondimensional stiffness elements and the
density of the plate. It is divided into three basic sections and allows for a
laminate to be built up from different materials and orientations. The three basic
sections are 1) the input, 2) the computation of the dimensional bending and
extensional stiffnesses, and 3) the computation of the nondimensional stiffnesses.

The input section gathers the following data:

1) Orientation angle, 6

2)8l
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4) Yy

2

3) 012

Poisson’s ratio, V“. is calculated from v12 by the equation v,, = w1 X (EZIEI)'

24 2
The shear moduli terms, 623 and 013; are computed from 612. 613 is set equal to

G,, and (‘v2

12 is set equal t0 80% of G

3 12°

The second section of this program is the longest. It calculates the
dimensional bending and extensional stif{fnesses far a lamina and then loops back
to the beginning for more input data. If the material properties are the same, it
will only ask for the new orientation angle. It will continue to sum these
stiffnesses together until the laminate lay-up is completed. The stiffness
elements are determined by computing the reduced stiffness terms (Q”’s) from Bq.
{14) and then computing the transformed reduced stiffness terms (aij’s) using Eq.
(13). The extensional and bending stiffnesses are then determined using Eqs. (28)
and (30). After the laminate buildup is complets, the program moves on to the

third section.

The third section takes the dimensional stiffnesses and computcs the
nondimensional stiffnesses using Bq. {53) from the previous chapter. These
stiffnesses are then printed. A listing of this program may be found in Appendix

A.

The second program computes the mass and stiffness matrices for the
eigenvalue protilem. Like the first, it too is divided into three sections. The first
section contains the plate data generated from Program One. The second section
builds the stiffness and mass matrices and the third section outputs these

matrices to a file.
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Section one is the input section. It contains all of the required material
properties, geometrical plate data, and integers which determine the number of

terms in Galerkin‘s equations and the number of Galerkin equations.

Section two genarates the stiffness and mass matrices. It takes the

algebraic equations (Eqs. 85-87 for the first boundary condition, Eqs. 99-161 for

the second boundary condition, and Bqs. 113-115 for the third boundary condition),
determines the value of the integrated sine and cosine terms, and then builds the
family of Galerkin equations. The stiffness and mass (or inertia) terms are o q
separated and the matrices are constructed. It should be noted here that the :

buckling terms (those multiplied by k‘. K2. and Ke) were not used in this analysis

and will not appear in the computer listing.

Section three outputs the two matrices to a file. A listing of this program

can be found in Appendix B.

The third program sclves the eigenvalue problem. It is also divided into the
input, process, output format. The input section reads in the stiffness and mass

matrices generated from Program Two. The process section solves the eigenvalue

problem by calling the EIGIS routine from the IMSL library [71. The output section
writes the eigenvalues and the eigenvectors to a file. A listing of this program

may be found in Appendix C.

The fourth program generates the data base which is used to produce a

contour plot of the mode shape. It can do this as a result of solving the

eigenvalue problem. OQur admissible functions for each boundary condition were
made up of an infinite series of sine functions (each term the product of a sine
function of x and a sine function of y) multiplied by an infinite number of

undetermined coefficients (the C m n's). When we solved the eigenvalue problem, the
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bottom third of our eigenvector was the solution for the Cmn's. Therefore to
generate the displacement w, as a function of x and y we only need this portion of j-'.:',.'-{,
the eigenvector multiplied by its appropriate sine functions (see Egs. (67), (91),
and (185)), That’s exactly what the last program does. It reads in the eigenvector

for the desired mode, strips off the last third and then normalizes that portion of

it. The program then generates a value for w as a function of x and y over the
domain of the plate. This datafile is then used by the SUPERPROC #ile on the
CYBER (developed by Captain Hinrichsen and appended to by Major Hodge) to plot __ S
the contours of the mode shape. A listing of the last program may be found in

Appendix D.
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n is Performed

E Several different characteristics of both the Galerkin Method and shear

r A
»

TR R R

deformation and rotatory inertia effects were investigated. To explore the

e

"

[
s
)
y
v

Galerkin method, convergence characteristics and comparison to closed-form
solutions were researched. To study the effects of shear deformation and rotatory

inertia, several cases varying the length to thickness ratio were investigated. We

, \-:"
will begin our discussion by describing the type of plates used in the subsequent n
analysis. - ..
Laminated Plate Properties i

Two different types of laminated plates were used in this thesis. Both .:.
consisted of a graphite-epoxy material (AS/3581) with the following properties:
‘ E1 = 21 08406 psi.

B, = 1.40E+05 psi. .
Vio® 8.3 (116) r
R
Gy, = 0.60B+06 psi. ::‘{ .
' . 3 |‘:;-‘__‘:
P = 0,655 1b./in, PR

L \

- where P is the mass density and the other material properties have been

t previously defined. One plate had a ply layup of [0/90]2. and the second had a

P, layup of t:45)2 5 The thickness of the plates was held constant at one inch but E' ' !

b the length and width dimensions varied (between 5 and 2069 inches) depending on

b B
the type of analysis being performed. Tables 3.1 and 3.2 contain the stitfness N

elements computed from Program One for these two plate layups.




.» —:' ."‘-.' ..' ..' *

Graphite-epoxy [8/90 325

One inch thick

Element Dimensional Value Nondimensional Value

A 549,000 8.385714

45

ASS 540,000 @.385714

0, 1,555,160 1.11683

D12 35,211.3 8.8251589

016 ) e

022 322,778 8.23055

026 e )

066 Se,e00 6.6357143

Units for the dimensional Ai j terms are 1b./in.

Units for the dimensional Di j terms are in.- lbs.

Table 3.1 Stiffness Elements for Plate {
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N

. Graphite-epoxy [+4351,

- One inch thick

:-_:: Element Dimensional Value Nondimensional Value

i

. A“ 540,800 8.385714
A45 8 9

' ASS 540,800 9.383714

I

b D, 537,889 9.383635

v
012 437,089 8.312207
()16 368,899 0.22807
022 537,889 9.383435
026 308,099 8.22007
Déé 451,878 9.32277

Units for the dimensional Aij terms are 1b.7in.

Units for the dimensional Di.i terms are in.c ibs,

Table 3.2 Stiffness Rlements for Plate 2
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In using the Galerkin Method for solving our set of three coupled partial
differential equations, we have to ask ourselves some questions. First, does the
technique converge to a solution and second, how does the solution compare with

accepted theory? We will now look at these two questions,

A discussion of the proof of convergence for the Galerkin Method may be
found in Reference [9]). A criteria based on the method for convergence is whether
the assumed functions form a complete set of functions. We will not attempt to
prove convergence for the work completed herein. We will, however, show the
necessary (but not sufficient) condition tha% the frequency drops by smaller and
smaller amounts as the values of M and N are increased. Tables 3.3 and 3.4 show

the values of normalized frequency [waz(pls ha)) for the three boundary

2
conditions considered for the two plates with increasing values of M and N. The
tables are based on a length to thickness ratio (s) of 20. Boundary condition #1 is
the simply-supported case. Boundary condition #2 is the clamped case and boundary
condition #3 is the clamped (two opposite sides) simply-supported {two opposite

sides) case. The author could not compute frequencies greater than M and N = 8

due to computer memory limitations.

As can be seen in Table 3.3, the simply-supported case for the [0/90]23
layup converges from the start. This is to be expected as the boundaries are
completely satisfied. All of the other cases have not converged but display
characteristics that makes one believe they will converge as N and N get larger.

That is, for avery increase in M and N, the normalized frequency drops by a smaller

and smaller amount.

A plot of the normalized frequency vs M and N for BC #2 for the i‘.t45]25

plate (third mode) is presented in Figure 3.1. This condition tends to have one of

N . ..I"‘A
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Non-dimensional Natural Frequencies t0/90325

graphite-epoxy, a/b=1, s229
N 1st Mode 3rd Mode

Boundary Condition #1
11.758 36.864
11.758 36.844
11.758 . 34.864
11.758 34.864

OO N

Boundary Condition #2
31.751 69.838
23.734 49.483
22.992 48.549
22.774 48.328

[ <3« S V)

Boundary Condition #3
24.870 45.3046
21.233 45,443
20.814 45.256
28.697 45.22%5

W0 osN

Table 3.3 Normalized Frequencies for Plate |
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Sth Mode

42.573
42.573
42.573

57.062
55.463
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52.438
51.832
51.464
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Non-dimensional Natural Frequencies [*45 ]2 s
graphite~epoxy, a/b=i, =20

M N 1st Mode 3rd Mode Sth Mode
! Boundary Condition #!
2 2 14.699 36,164 -
q 4 14.418 35.444 57.883
é é 14,283 34.734 55.882
8 8 14.285 34,4613 54.856
Boundary Condition #2
2 2 31.691 69.925 2 -we--
4 4 22,343 44,353 72.196
é é 21.412 42,944 64,264
8 8 21.1180 42.449 63.895
i e
Boundary Condition #3
2 2 24.300 66.437 ——
4 4 18.954 41,549 59.475
I é é 18.337 49.438 58.116
8 8 18.126 49.041 57.473

Table 3.4 Normalized Frequencies for Plate 2

12
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the “worst” convergence tendencies of the group. However, even it dces show very

- good converging behavior.

These tables are by no means offered as proof af convergence, but they do

display good convergence characteristics. They also point ocut a drawback with tiis
mothod. As M and N increase, the required computer memory space to generate the __J_c‘
mass and stiffness matrices and to solve the eigenvalue problem becaomes quite
large. Thus, if one wants a very accurate answer, particularly for a higher mode,

they will need the appropriate computer resources. - .

‘

The next question that must be addretsed is the "How well do the solutions 5
generated here compare to commonly accepted theory?® We will address that ‘
gquestion by investigating & very long, narrow plate. Thare are several reasons for ) i

this, First, because of the nature of the system of equations for our plate, we can
2ero out the rotatory inertia but we tannot zero out the shear deformation effect.
When shear deformation is zeroed, the equations become very ill-tonditicned and
the problem cannot be solved. Therefore, we must looK to commonly accepted theory
that includes either shear deformation or shear deformation and rotatory inertia

effects. We would also like to find a simply-supported case for an orthotropic

plate because our Galerkin Method converges quickly there. Reference [191 did ;f{f_.:‘

contain a closed-form solution for an infinitely long, simply-supported,

R
orthotropic plate including shear deformation effects, and this is what the author - A
hd
used to validate his program. o
o
From Reference [19] we have 23
..
A 2,2 2.2 2
mm L) m“ (D“m x )/(D“m X *KASSA )] (147 i:::::
where :
A4, A% (118) =
[
mm-(D“m(lpa) -4
74 R
2
Kn.!
4
;. Sl adh S5 .," .' . _~‘-'-'s'.‘ . '\:}.‘




RN

Here w'm is the natural frequency calculated from the classical theory based on the
Kirchhoff hypothesis. 1f we use the properties for Plate | (Table 3.1) and compute
the fundamental frequency for an infinitely long, 1@‘' wide plate we have

m’m = 1641.61 Hz

(149

W, = 1417.56 Hz
This author cannot place an “infinitely” long plate into his Galerkin algorithm.
However, he can use a very long plate such as one {9 inches wide and 200 inches
long. From Reference [{], we can compute the natural frequency without shear

deformation and rotatory inertia effects from

2, 4,4 .22 4,4
QP D“(oz‘ /a’)+ 2(D‘2¢2D66)/(o:2/a b )4-D2,‘,(c::3 /b7) (120)
where
@, = m¥
@, * nx (121)
0:3 = mznz‘[4

for all m and n (m and n determine the modse).

Again using the properties from Table 3.1 for our 18’ by 209’' plate we have

W= {,641.26 Hz {122)

This compares to {,641.641 Hz for Whitney’s infinitely long plate so we can conclude
that our 209'‘ plate reasonably approximates an infinitely long one and we can
therefors use Eq. (117) to compare with our Galerkin program output. Table 3.5

stiuws the comparison between the closed formed solution and the output from the
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Galerkin Method. As can be seen, excellent agreement was obtained. Table 3.5

o also shows the effect of rotatory inertia for this condition.

The author could not find information to compare with the other two

boundary conditions.

Mode Closed-Form Solution Galerkin Method Galerkin Method
with SD with SD no Rl with 5D and R} .-
M=N=35 L
: 1 1417.56 1417.56 1414.32 e
- 2 1418.5 1418.38 1415.09 e
3 1420.1 1419.97 1416.60
4 1422,41 1422.42 1418.96
5 1425.51 . 1425.68 1422.00 T
‘.A' Note: All freguencies are in Hz. == ':.';

Table 3.5 Galerkin Method and Closed-Form Solution
Comparison Plate #1

LN P o oe e oot
, NI IIN
) R N
Lt
A :
W e
- ,'-".. PR
S P
: PR ] : ot

PR

B i
NS "




Shear Deformation and Rotatory Inertia Effects

The second area of investigation was to determine the effect of shear
deformation and rotatory inertia for the boundary conditions considered. This was
accomplished by varying the length to thickness ratio and comparing those results

to classical laminated plate theory. Only square plates were considered.

For the [0/90]25 plate, simply-supported, the length to thickness ratio was
viaried from 5 to 50. The results are plotted in Figures 3.2 and 3.3 as normalized
frequency s thickness ratio for the first and fifth bending modes. It can be seen
that shear deformation effects can be significant (up to 33% lower for the first
mode and 52% lower for the fifth mode for a length to thickness ratic of 5) while
rotatory inertia effects account for only a 2% lower frequency at the worst point,
Notice that as the length to thickness ratio approaches 50, we asymptotically

approach the classical laminated solution,

These same trends are seen for the [£451, simply-supported plate also.

2%
Figures 3.4 and 3.5 plot the normalized frequency vs length to thickness ratio for
the first and fifth modes for this plate. Although the frequencies are slightly
higher, the same behavior occurs as before. The shear deformation effect becomes
significant for length to thickness ratios of less than 35 and rotatory inertia
effects are very small. Table 3.6 presents this data. There were no classical
solutions avaliable (0 compare these results with, but, based on the behavior of

the first plate, we could estimate a first mode normalized frequency of about 135

and a fifth mode normalized frequency of about 63.

Tables 3.7 and 3.8 show the comparisons for the second and third boundary
conditions for the CO/?OJ“ plate. They too show the same type of trends as the

previous two Cases. Shear deformation is a significant effect below length to
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Nondimensional Frequency maz(p/Ezhs)K

s 13t Mode Sth Mode
SD no RI SD and RI SD no RI SD and RI

3 ?.62 ?.57 25.66 25.51

10 12.83 12.77 42.86 41.69
15 13.88 13.84 58.79 58.39
20 14.31 14.28 55.42 55.088
25 14.53 14.51 58.85 57.77
30 14.45 14.43 59.45 59.43
35 14.72 14.71 68.47 40.49
40 14.76 14.75 61,37 61.23
ST 14.88 14.87 62.23 62.i83
Classical Laminated Plate Frequency: None available
Simply-Supported Boundary Condition [£451] M=N=4

2s

Table 3.4 Shear Deformation and Rotatory Effects for Plate 2




Nondimensional Frequency (:)az(p/fizhia)’6

ist Mode 3th Mode
SD no RI SD and RI SD no RI SD and RI
5 10.89 10.85 25.10 24,82
18 17.27 17.21 41.44 41.81
15 28.89 28.84 51.30 58.86
20 23.683 23.60 57.45 57.84

25 24.39 24.36 61.33 é1.21

36 25.32 25.30 65.23 65.80

35 26.01 25.99 48.89 67.93

Classical Laminated Plate Frequency 1st Mode: 26.47 O5th Mode: 74.25

Clamped Boundary Condition [0/90]2s M=iN=4

Table 3.7 Comparison of Shear Deformation and Rotatory
Inertia Effects to Classical Laminated Plate Theory.
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Nondimensional Frequency waZ(p/Eth)K

s 1st Mode Sth Mode
SD no RI 8D and RI 8D no RI SD and RI

5 9,58 9.41 24.26 23.94

10 15.25 15.20 34.88 36.28

15 18.76 18.72 45.12 44.8¢ o

28 20.85 28.81 52.89 51.83 _

25 22.16 22.13 56.97 56.77

38 23.85 23.83 60.48 60.31 L

35 23.78 23.48 63.08 62.94

Classical Laminated Plate Frequency 1st Mode: 24.53 5th Mode: 78.26 :}

. o

Clamped Simply-Supported Boundary Condition [8/98]25 M=N=6

Table 3.8 Comparison of Shear Deformation and Rotatory
Inertia Effects to Classical Laminated Plate Theory.

...............................
.............................................................
........
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thickness ratics of 3@ and rotatory inertia has little effect on thege bending

modes., These were not plotted because a value of M=N=6 wag used to generate the

data. This was done to conserve time and computer resources. However, the f’_‘:.j:
frequencies did not have enough terms to converge and at s=30 they overshat the ',
classical solution by about 3%. For the purpose of showing trends between M
rotatory inertia and shear deformation the author feels this approach was
wstified, e
:f_lvlr.}.jj
.
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o Mode Shape Determination

As stated in the discussion on the last computer program, when we solve
the eigenvalue problem we also get back the values of the undetermined
toefficients to determine the mode shape for a particular frequency (this includes

the torsional modes also). Figures 3.8 thru 3.1 are contour plots of the first

modes for both plates for cll three boundary conditions. A length to thickness

ratio of 1@ was used when generating these plots.
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Figure 3.6 Mode Shape Plot Simply-Supported Boundary

Plate #1 First Mode
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Figure 3.7 Mode Shape Plot Clamped Boundary

Plate #! First Mode
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Figure 3.8 Clamped Simply-Supported Boundary

Plate #1 First Mode
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IV. Con ion

Based on the analysis presented in this thesis, the following conclusions
are presented. They are organized in terms of some general comments on the
Galerkin Method, some specific comments on the three boundary conditions, and

then some general comments comparing the boundaries.

rkin th ommen

{. The Galerkin Method is a valid approach to solving the plate equations of motion

and yields excellent results for the simply-supported boundary condition.

2. The convergence tendencies of the solution are easily checked with this method
by generating more terms, and therefore more equations (provided the assumed

functions are a complete set of functions).

3. More terms were required to achieve & converged salution for problems
considered in this study whose assumed functions did not identically satisfy the
natural boundary conditions than those whose assumed functions did identically

satisfy them.

4. For a problem that requires a large number of terms to reach a converged
solution, the eigenvalue problem becomes quite large. Because of this, the
author could not use more than 8 terms in the Galerkin equations. This effected
the quality of results for the clamped and clamped simply-supported boundary

conditions.

imply - ed ndary Comment

{. The natural frequency for a square orthotropic plate, simply-supported, for the

first mode is 10% lower than the Classical Laminated Plate Theory (CLPT)
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frequency at a length to thickness ratio (represented by s) of {1 and drops to
33% lower for an s of 5. For the fifth mode, the frequency is {0% lower atans

of 23 and drops to 52% lower for an s of 5.

2. For a cross-ply laminate with the same conditions as above, the same type of
shear deformation effects were seen. No CLPT solution was found in the current

literature, therefore no comparison could be made.

3. For both types of plates above, the analysis of rotatory inertia effects showed

a lowering of the natural frequency from the shear deformation frequency by one

to two percent for s’s below 25 for the first five modes.

igm ndar n

i. The natural frequency for a square orthotropic plate, clamped on all sides, for
the first mode, is 18% lower than the CLPT frequency for an s of 21 and drops to
59% lower for an s of 5. For the fifth mode, the frequency is 10% lower atan s

of 33 and drops to 6% lower for an s of 5.

~N

For the same case above, the value of the asymptotic limit for the natural
frequency was 3% higher than the CLPT solution. This was due to the fact that
an M and N of six was used to generate the data. To achieve closer results, a

larger value of M and N would have to be used.

w

The analysis of rotatory inertia effects showed a lowering of the natural
frequency from the shear deformation frequency to be at maost 1%, occuring at an

s of 3.
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Clamped Simply-Supported Boundary

1. The natural frequency for a square orthotropic plate, clamped on two apposite
sides, simply-supported on two opposite sides, for the first mode, is 10% lower
than the CLPT frequency for an s of 25 and drops to 6{% lower for an s of 3.
For the fifth mode, the frequency is 10% lower at an s of 35 and drops to 65%

lower for an s of 5.

2. For the same case above, the value of the asymptotic limit for the natural
frequency was 1.5% higher than the CLPT solution. This 1s again due to the fact

that a value of M and N equal to six was used to generate the data.

3. The analysis of rotatory inertia effects showed a lowering of the natural
frequency from the shear deformation frequency to be at most 1%, occuring at an

s of 3.

General Comments

i. The effects of shear deformation are more significant for the two clamped

boundary conditions than for the simply~supported boundary.

2, The effects of shear deformation intrease with increasing mode for all three

boundary conditions.

3. Analysis shows that rotatory inertia has very little effect for all three modes.
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A REM THIS PROGRAM COMPUTES THE EXTENSIONAL AND BENDING
| REM STIFFNESS ELEMENTS FOR A SYMMETRIC LAMINATE BUILD
REM UP, GIVEN LAMINA PROPERTIES.
REM
A1=0
A2=0
A3=0
D1=0
D2=0
D3=0
D4=0
DS=8
Dé=80
PS=8 -
INPUT*DO YOU WISH TO ADD ANOTHER LAYER" ;N$ -
IF N$="N" THEN GOTO 848 e
REM
REM THIS SECTION GETS THE LAMINA DATA.
REM
INPUT"ORIENTATION ANGLE *;TD o
TH=TD*3.1415927/180 oo
INPUT*ZK DIMENSION *;ZK .
INPUT*ZK-1 DIMENSION *;Z1 T
INPUT*ARE THE REST OF THE LAMINA DATA THE SAME AS THE LAST TIME " ;Ms$ e
IF M$="Y" THEN GOTO 446 s
INPUT"E1 *;E1 L
INPUT"E2 *;E2 et
INPUT*V12 *;V1 L
U2=U1 %(E2/E1) N
INPUT*G12 " ;Gl1
G3=G1
G2=0 .8xG1
INPUT*"MASS DENSITY *;RHO
REM o
REM COMPUTE THE A AND D ELEMENTS FOR THIS LAYER. el
REM e
QI=E1/C1- (U1 #Y2)) T
Q2=(V1*E2)/(1-(V1*2)) N
Q3=E2/(1-(V1#U2)) L
Q4=G2 —
Q5=G3 .
Q6=61 -
435 REM Tf-’:::?
REM COMPUTE THE QBARS. oy
445 REM P
B1=Q1 #(COSCTH) )[4 + 2%(Q2+2*#Q8) *(SINCTH))[2 #(COSCTH))>[2 + Q3%*(SINCTH)>L4 -
B2=(Q1+Q3-4%Q4) *(SINCTH))[2 #* (COS(TH))>[2 + Q2%((SIN(TH))>[4 + (COSC(TH)>[4) O
B3=Q1 #(SINCTH) )[4 + 2%(Q2+2%Q8)*(SIN(TH))[2 % (COSCTH)>)>[2 + Q3%(COS(TH))[4 e
B4=(Q1-02-2%Q&) *SINCTH) #*(COS(TH))[3 + (Q2-Q3+2%Q6)*(SINCTH) )L 3%COS(TH) S
B5=(Q1-Q2-2%Q&) #(SINCTH) ) [ 3#COS(TH) + (Q2-Q3+2#0Q4)*SINCTH) #<COSCT 1)) 3 le
Bé=(Q1+Q3-2%02-2*%Q6) #(SINCTH) Y[ 2%(COS(TH)>[2 + Q&#C((SINCTH)>[4 + (COS(TH)>I[4 *

B7=Q4%(COS(TH))[2 + QS*(SINC(TH>>[2 e
BE8=(Q4--Q5) *COSC(TH) #*SIN(TH) St

100 S



.. 53
0 550
540
578
580
598
s8e
618
620
438
648
650
668
678
&80
698
708
710
720
738
740
750
760
778
788
_ 790
L 8ee
®* 510
820
838
849
850
854
855
856
848
870
8880
899
9@e
910
920
938
940
958
968
979
980
998

BP=@5*#(COS(TH)>[2 + Q4*(SIN(TH))>[2
REM

REM COMPUTE THE A ELEMENTS.
REM

A4=B7%(2ZK-21)

AS=B8*(ZK-21)

AS=BPR(ZK-21)

P=RHO%*(2ZK-21)

REM

REM COMPUTE THE D ELEMENTS.
REM

D2=(2ZKI[3-21(3)
Fi=(1/3>%B1»D2Z
F2=(1/3)%B2%DZ
F3=(1/3)%B4x*xD2Z
F4=(1/3)>%B3*D2Z
FS=(1/3)%BS5*D2
F&6=(1/3)%B&x%D2

REM

REM SUM THE A’S AND D’S WITH THE PREVIOUS LAYERS.
REM

Al=A1+A4

AZ=A2+AS

A3=A3+AS

D1=D1+F1

D2=D2+F2

U3=D3+F3

D4=D4+F4

D5=DS+F5

D&=D&+F &

PS=PS+P

60TO 158

REM

REM PRINT OUT THE A AND D ELEMENTS.
REM

LPRINT"A44 = ";Al

LPRINT"A45 = ";A2

LPRINT"AS55 = *;A3

LPRINT*D11 = *;D1

LPRINT*D12 = *;D2

LPRINT*D16 = *;D3

LPRINT*D22 = ";D4

LPRINT*D26 = *3;D5

LPRINT*D&6 = *;Dé

LPRINT*P = ";PS

REM NOW COMPUTE THE NORMALIZED STIFFNESSES.

INPUT" INPUT THE PLATE THICKNESS"® ;H
Al=Al/(E2%H)
A2=A2/(E2%H)

10086 A3=A3/(E2%H)

1010 Di=D1/(E2%HL 3>
1826 D2=D2/(E2*HIL3)
1830 D3=D3/(E2%H( 3
1848 D4=D4/(E2%HI[ 3)
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1858 DS=DS/(E2®HI3)
184608 D&=D&/C(EZ2%HL 3
1876 LPRINT ~
1686 LPRINT"a4d4
1898 LPRINT"a45
1188 LPRINT®aSS
1118 LPRINT"d11
1120 LPRINT"d12
1138 LPRINT"dl1é
1140 LPRINT"d22
1158 LPRINT"d26
1168 LPRINT"dés
1178 LPRINT
1188 END
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PROGRAM BCTUMO(INPUT qOUTPUT4TAPES=INPUT o TAPES=CUTPUT)
REAL F1loF2¢F3gFa9FS oF6oFT9FByFI9F10 KoK 9KS4PL
INTEGER MoNoyPoQoITESTYILITEST2oMMANsAMAX
REAL A1€10920)9A2C10910)9A3C10910)981¢10910)9B2(10410)
REAL Bl(104910)¢C1¢10010)9C2(10410)¢C3C10910)

s REAL IM(108,4108),FC(108)9STC1084108)9MAC(1084108)

INPUT DATA FOR THE COMPCSITE PLATE.

s EaNal

MMAX=®
: NMAX=MPAX
b= PI=2e1415927
P, - R=1.0
=10e9
. B=A R
- Hz1.0 S
. S=A/H '
! Pl=1e8245E-04 -
- K=Se/6 *
K4=1a0 ’ ‘
. 4
Rk
1

KSz1e0
AN4=3,8571F-01 o
AS3=3.8571E-01 A
. D11-1.11083 .
- D12:20492515G9 S
D16=0."
D22=04230SS
D26=049
D6E=".T357143
£T=144°¢06

7 h C DETERMINZ THE VALUE OF THE INTECERATED TERMS,
. C

I=1
J=1
N0 190 P=1eMMAX
D0 130 G=19NMAX
DO S7 MH=1gsMMAX
DO 50 N=1,NMAX
ITEST1= MOD(MeP2)
ITEST2= MCO(N+Q,2)
IF (M.ZQ.P) THEN
F1=Ce5
F3=Ce0
Fa=Ced
ELSE
F1=040
IF (ITEST14EQ.D) THEN
I=0e0
FA=0.0
: ELSE
. Fiz2em
~ FAa=2ep
- ENDIF
o~ ENCIF
, . IF (Ne£QeQ) THEN
o RN F220.5
'.': i FS5=Ce9
;_ F6=3e0
o FLSE
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F22J.0
IF (ITEST24ECQeC) THEN
ZzJe0
FE=3eC
ELSE
FS=2eN
Fu=2eg
ENDIF
ENOIF
FTI=(Nep)=-(PeP)
F8= =-F7
IF (F1.FQe0e) THEN
F1=1.
F8=1,.
ENDIF
FI=(N+«N)~-(QQ)
F10==FS
IF (F9.CQ«0e¢) THEN
FI9=1.
F10=1.
ENCIfF

COMPUTE THE STIFFNCSES MATRIX.

AL(MgN)=PIsPI*F1aF2s(-HoMaD11-NoA?R2R*2"EL-KeSesS*ASS/(PI*P]))
1+FAsFCo(2o0MeNeReD16)/(FB*F10)
BI1(MgN)=PIoPIeF1eF22e(-MeNaD16-N?*heR2R2C26)
1+FAeFGe (MeNeRe(D12+L6E))/(F82F10)
Cl(MyN)I=-FAeF2e (MasK*S+ASS)/F8

A2CH gN)=P IePIeF12F2a(-MeMaD16~N2hoReReD26€)
1+F4«FGCe(MaNeRe(012+CEE)I/(FB82F10)
B2(MgN)I=PIioPIeF12F20(-MeMoaDEE~N2NSReR2D22-KeSeSeA44/(PIsPI))
1+FAeFce(2eMseNeRoD26/(FB2F10))
C2(MyN)==FleFEe(NeRoKeSeA44/F10)
ASCMeN)I=FA»F2e(PeKeSeASS)/F8B
BI(MyN)-FleFGe(ReRe p*SwAQA)/F 10
CI(MeN)=PIePIeFl1oFle(~M2RaKeASS-NoNaReRaK* 244)
ST(TIed)==A1(MeN)

STCIoJ*MMAX*NMAX)==B1(NMy¢N)

STC(T gJo22MMARENMAX)==C1(MyN)
STCI*MMAXONMAXJI==A2(M¢N)
STCIeMMAXONMAX g JEMMAXeNMAX)==B2 (MoN)
STCI*MKAXONPAX gJ*2¢ FMAXENMAX)==-C2(MyN)
STCIeZ2+MMAXeNPFAXeJI==AJ(NyN)
STCIe2aMMAXONFAX g JE*MMAXENMAX)I==-EI(MyN)

ST(I*2e MMAXeNPAX g JOZoMMAXENNAX)==CI(MyN)

J=Jel

CONTINUE

I=1-1

J=1

CONTINUE

COMPUTZ THE MASS MATRIX,

D0 20 I=14(3*NRAXeNVAX)
D0 27 J=14(3*NRAX*NPFAX)
IF (1.5Ged) THEN
IP(I¢Jd)I=1.0
ELSE
IR(IsJI=0.0
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ENDIF
20 CONTINU:
00 10 I=19(2¢MHAXSNFAX)
MCCI)=KSe(P12A#A)/CABoCoHIET)
3¢ CONTINUE
DO 47 I=C2eRMAX*NMAX#1)¢(3eMMAX sAMAX)
MC(1)=Kae ((Re44)e (Bend)*P1)/(4el2SaS*ETA(Hs*3))
aC CONTINUE
: DO €0 I=1s(3#MMAXSNFAX)
] DO €0 J=19(ZeMMAXSNFAX)
- MACTod)=IN(Tpd) #MCCu)
60 CONTINUE

- -

C

C WRITE THS STIFENESS AND MASS MATRICES TC A DATA FILte.
2 C
R DO 151 [=193*#MMAXeNPAX

N0 151 J=1e3¢MMAXSNMAX
WRITE(ES1S0) STCI9d)gMACT V)
150 FORMAT(2T1345)
151 CONTINLS
- ﬂ STTP
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Equations for Boundary Condition #1
COMPUTE THE STIFFNESS MATRIX.

Al(H.N)=PI-PIOFI-FZ'(-H'HtDIl-NﬂNthR'D66-K-S'S'ASS/(PI-PI))
1~F34F6e(2«ReMoN*D16)/(FT+F10)
20F6-(N-Rtoleo(I-COS(MOPI)tCOS(P'PI)))/FIO

81(H,N)=PI'PI'FltF2-(-n-N'Rt(012¢066))
1-F3-F60(HtH'DIBONON'Rﬁnﬁozﬁ)I(FT'FIO)
20F6~(H'016'(1-COS(H'PI)-COS(PtPI)))IFIO

Cl1(MoN)=~PIeF1leF2sMaK*SeASS

Az(H,N):PItPIﬁFl«FZt(-H'N'Rt(0120066))
1-F4'F5t(H0H'0160N'N'R'R0026)/(F8'F9)
20th(N'R'026t(1-COS(N'PI)0COS(G'PI)))/Fe

B?(H'N)=PI'PI'F1'F2'(’H'H'DSS-N'N'R.R'DZZ-K'S'S'AQQI(PI'PI))
1~FaeFSe(2eMeNeReD26/(FB*FI))
20F§-H-026-(1-COS(N-FI)0COS(QtPI))/F8

C2(MyN)=~PI*F1eF2+¢( NeReK*S2A44)

A3(MyN)==PIleF1leF2eMeKsSeASS

B3(MeN)=~-PI2F1eF2eNeRoK#Se AN

C3(HoN)=PI'P10F1~F2-(-H*H'KtASS-N'NthRtK-AQQ)

ST(I9Jd)=~A1C(M9N)

ST(IeJeMMAX®NMAXI==B1(MeN)

ST(I gJ*2¢ MMAX *NMAX) ==C1(MyN)

STC(I+MMAXONMAX9JI=—A2(MoN)

STCI+MMAXSNMAX g JEMMAXE#NMAX) ==B2(NsN)

STCI+MMAX ¢NMAX g Jo2¢ MMAXENMAX)==C2(MyN)

STC(I*2e MMAX*NMAXy J) ==AJ(NyN)

ST(l*?-ﬂHAX¢NHAx,Jonnlx-NHAx)=-83(H.N)

SY(I'ZOHHAXtNHaYQJ02'HHAX'NHAX)=-C3(NgN)
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Equatlions for Boundary Condition #3

COMPUTE THE STIFFNESS MATRIX.

AL(H NI =PI ePIeF1eF2a(-HeNa(l1-RrheReROCCE~K*SeS+ASS/(PT 2P
1+4FAeF 6+ (22R*MeN2D16)/(F8*F10)
BI{MeN)I=-=F1l+FEePIa(t2PaD1E+NaNasRaRe2€)/F 10
1=Fo«F2¢PIo(FaNaRe(D12+0€6))/F8
Cl(MgN)==~FasF2eMeKe SeASE/FS
A2CMyR)I=~FLleF SoaPIa(PeMeDIGeNeNaRoRe02€)/F9
1+FaesF2ePTa(MefrRe(D1240€C)) /FB
2¢F1ePIeNaReD26#(1~CCSIN*PII«CCE(G*PI))
B2(MaNIZPIePIeFleofF22(-NeN2DE6~-NoN*R*R2T22-K2SeSxAG4/(PIP
1-F4eFSe(2oNeNeR2026/(FB2FI))
2¢FAaeMeD2450(1~COS(N*FI)2CUS(Q»P1))I/FB
C2lMgN)==PI+F12F2a(ReRaXeSrARY)
AS(MyNIZFAsFR2eMeKe+SsACE/F8
B3(MyN)I=~PI+FloF2eNeRek*SeANA
C3(M NI =PTIePIoFleF2a(-FapaKesASE«NeNsReRaKe234)
STCIed)==A1(H9N)
STCIgJ+MMAXTNMAX)Z~EL1(MyN)
STC(TIgJe2oMMAXCNMAX)==CL(RyN)
STCISMRAXANPAX 9 J)==A2( M 4N)
STCI*MMAXENNAR g JEMMAXARMAX)==B2(MyN)
STCIeMPAXONKMAX 9 S+ 24 FPAXCNMAX)I==C2(MosN)
STC(I*2eMMAXINMANGJ)==AT(MyN)
STCI+2oMMAXeNFAX g J*PMANSNRAX)IZ-EI(M9N]
STCIS20¥MAXENFAN g J+ZaMNAXPNNAXDZ-CI(MgN)
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DA B A A A e e A g I B s S ah Sud a0 aes 0l o

PQ¢GRHV IGFINCINFUT o CUTPUT o TAFESZINPUTH»TAFL6=CLTPUT)
TIRLAL S IGZS

Q‘ AL ACTR) 9 QT8 ) 22091 0)

QAL STOI3458)9yMA(SEZTR)

IMT-073 TedeRgi. sMMAX YNy TJCH G IZ2ZWIER

s0C12) suK(15E

Mgy =D
NTleMMIYEMMAY
STIFFNLZSS VFATRICES,.

Lorad IN TH® MAGS ANC

D0 17 T=1,A

De 17 Wzl g h

ROATCTy Ny STATwd) e MACT )

FoRAT (- 2heD)

CINTTH,

PUT TH  CTIIFFNCSS AND MASS PATRICES IN CYMMCTRIC FORM,.
T=1

DY PS5 Tl 9N

Y 37 U1 eF
ACTHY-57( 90
BEIY=M. (2, ()
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