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An analytical study was conducted to determine the natural frequencies and

mode shapes for laminated anisotropic plates, including the effects of shear

deformation and rotatory inertia, by using the Galerkin Technique. Three different

boundary conditions, simply-supported, clamped, and two opposite sides clamped,

two opposite sides simply-supported, were considered. Two different graphite-

epoxy symmetric plates were used in the analysis. Convergence characteristics and

the effects of length to thickness ratios were investigated. Comparison to

classical results and contour plots for several mode shapes are provided.

It was found that as the length to thickness ratios were reduced, shear

deformation effects significantly lowered the natural frequencies. Analysis also

showed that rotatory inertia effects were very small. Convergence characteristics

for all three boundary conditions were very good and excellent agreement with

classical solutions was achieved.

ii

I' . . o

I1

• ° -

viii°



r w v~ ._ T~ w .. .:. . - - r r r."- -''r".- " -- - ..• - .. r - r

Ii

Introduction

Backaround

In recent years interest in the use and application of composite materials

has greatly increased. This is due in part to their high strength to weight ratios

and the fact that they can be tailor made for specific applications. Because of

their unique properties, they have opened up numerous fields of research and

analysis.

Past developments have shown that the dynamic response of composite

plates departs more from Classical Thin Plate Theory than isotropic ones do.

Classical Thin Plate Theory is based on the assumption that plane sections remain

plane after deformation occurs. It has been found that vibration analyses based on

this theory yield frequencies that are too high. Therefore, to gain better

agreement with reality, the theories used to analyze the response of composite

plates need to include the effects of shear deformation and rotatory inertia.

A number of theories including shear deformation and rotatory inertia have

been proposed to date. Mindlin [ I1 introduced a two dimensional theory of

flexural motion for isotropic elastic plates. This theory is based on the fact that

the change of displacement results from two rotations due to bending and two

rotations due to shear deformation. This theory assumes that no warping of the

plane section due to shear occurs, but does include a correction factor to account

for this inconsistency.

Yang, Norris, and Stavsky [21] extended this theory (commonly referred to

as the YNS theory) to laminates consisting of an arbitrary number of bonded

anisotropic layers. They considered the frequency equations for the propagation [
" of harmonic waves in a two- layer, infinite, isotropic plate.
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Whitney and Pagano C193 applied the YNS theory to laminated plates

consisting of an arbitrary number of bonded anisotropic layers, each having one

plans of symmetry parallel to the central plane of the plate. They employed this

theory to study the cylindrical bonding of antisymmetric cross-ply and angle-ply

plate strips under sinusoidal loading and presented a closed form solution for the

free vibrations of antisymmetric angle-ply plate strips. Following Whitney and

Pagano, Bert and Chin [23 presented a closed-form solution for the free vibration I
of simply-supported rectangular plates of antisymmetric angle- ply laminates.

Finite element analysis of laminated plates including transverse shear

effects began with Pryor and Barker [133. Their model was based on Reissner's

plate theory and was applied to the cylindrical bending of a symmetric cross-ply

laminate. Reddy E4] developed a simple finite element model based on the YNS

theory and applied it to the free vibration of antisymmetric, angle-ply plates.

*0 Reddy and others [15] also applied this technique to orthotropic laminates of

bimodulus materials.

Up to this point, all of the methods discussed could not be applied to

laminates which possessed bending/torsional stiffness parameters. This implies

coupling of the equations of motion. Recently, Sathyamoorthy and Chia E16] used

the nonlinear von Karman equations to develop the theory to study the large

amplitude vibrations of anisotropic skew plates for simply-supported, clamped, and

clamped simply-supported boundary conditions. This theory did include the

bending 'torsional stiffness parameters. They solved these equations using the

Galerkin method and the Runge-Kutta procedure, however, their applications were

limited to homogeneous laminated plates.

Thus, a need exists for a method that will take Into account shear

* "deformation and rotatory inertia effects that includes the bending/torsional

2
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stiffness parameters, yet is not burdened by large computational requirements.

Objectives

The purpose of this thesis is threefold. First, it will present a method to

determine the natural frequencies and mode shapes for anisotropic symmetric ....

laminated plates, including the effects of shear deformation and rotatory inertia,

using existing theories and techniques. This method will include the use of

bending/torsional stiffness parameters. Second, the method will be used to analyze

the effects of shear deformation and rotatory inertia on two different symmetric

laminated plates. And third, comparison of this study with classical solutions,

where available, will be accomplished to validate the method.

The approach used for achieving the desired objectives is straightforward.

The motion of an anisotropic symmetric laminated plate will be modelled using the

YNS extension of the Hindlin Plate Theory E203 and the resulting differential

equations of motion will be solved using the Galerkin Technique. To do this,

assumed functions will be selected for each boundary condition and the Galerkin

equations will be established. From these equations the eigenvalue problem will

be formulated. A computer program(s) will then be written to compute the."

stiffness and mass (or inertia) matrix elements and to solve the eigenvalue

problem. The solution of this problem will yield the desired natural frequencies

and coefficients to determine the mode shapes. Comparison of these results with

classical solutions, where avaliable, will be accomplished. Also, to insure valid

results, a study of the convergence characteristics will be performed by increasing

the number of terms in each Galerkin equation.

3



Shear deformation and rotatory inertia will be studied by computing the

natural frequencies over a range of length to thickness ratios. These frequencies

will then be compared with classical results. This will first be done without

rotatory inertia, thus determining when shear deformation becomes important.

Then, rotatory inertia will be included and the frequencies will be recalculated

over the same range of length to thickness ratios, thus ascertaining the effects of

rotatory inertia.

4
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II. Theory and Modellin.

We will begin our discussion of the theory used in this thesis by starting

with some results from Classical Laminated Plate Theory. From there, we will

discuss the equations of motion for a thick laminated plate using the )indlin Plate

Theory, and then discuss an approximate method of solution for differential

equations called the Galerkin Technique. Galerkin's technique will then be applied

to our differential equations of motion for three different boundary conditions.

Anisotropic Thick Plate Theory with Rotatory Inertia

Classical Laminated Plate Theory (commonly referred to as CLPT)

incorporates constitutive relationships for an orthotropic lamina through the plate

thickness resulting in expressions which approximate force resulants in terms of

displacement functions. The concepts from CLPT are essential for the later

* development of the equations of motion. We will begin by describing the basic

constituitive relationships for an individual lamina. The reader should refer to

References [I ] and ES] for an in-depth development of these relations.

The basic constitutive relationships for a single orthotropic layer in the

fiber oriented reference system, as shown in Figure 2.1, are:

' 2

Figure 2.1 Definition of Coordinate System

5
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S 11  12 13 1

2 2 22 s23  2

(3 S ~13 S 2 3  S 3 3  9 6 8 03

(4 6 44 8 4

9 6 S a S 05
S 6 6  06

where ~ 2 n 3are the normal strains# (4. (.p and (6are the shear strains, -

11 02' and 03 are the normal stresses, and 04t 050 an 6arthshrsres.

The S.i terms form the compliance matrix and, expressed in terms of the

engineering constants, are:

S mI/E

11 A

* 12 i- 2 1/E 2

S1 3 m- 3 1 /E 3

~22 mE 2 (2

S23 -V 2 3/E2 (2

S -I/E 3

S 44  1 "2

S55 /031

S -1/666 12

where B. are Young's moduli in the ith direction, v is Poisson's ratio for



transverse strain in the ith direction when stressed in the ith direction, and 0. is

the %hear modulus in the i-j plane.

If we invert Sq. Q1) to got stresses in terms of strains we have

W0 * Q'J3E (3)

where E' is the reduced stiffness matrix and has the form

011 001 13 0 0

12i 22 236

co'~ - 13 ~23 033 (4

B 44 0 9

55

* where

Q11  ( 22S33-S23 )I

(at a( S SSV
12 13 23 Ui S33

a. 2 (S 33 81 1 -S13 2) VS

*(S12S13-8S S)US

5 1/S 55
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W I/I
Q' 6 6 =1/S 6 6

S S= S2 2 S3 3 - S 1 1 S2 3 2 S2 2 S1 3 2 - 33S 12 +2S 1 2 S2 3 S13  "'"4

If we wish to rotate our principal lamina axis an amount 0 (in the 1-2 plan.)

with respect to some geometrical axis (refer to Figure 2.1) then our stiffness

matrix must under go a tensor transformation. The transformation matrix would be

defined as

-M 2  n . q

n m2  a a a -win

* 6 1 6 6 9 . --.,.

IT.' (6)
9 6 6 m -n 6 ...,

8 9 8 n m 9

-2un 2an a a a (M2n2)

where mcos(e) and nasin(O). The transformed stiffness matrix would then be

[Q'3 = [T] [Q'] [T]T (7)

and

(0) * M (8)

where

1 12 13 16 '

12 22 23 26

, 13 23 33 36

* 6 6 a. 6
44 45

0 45 ,55  L-. *%,,

16 26 36 66

..



At this point we shall assume for a thin laminae a state of plane stress.

Therefore, O 0. From Eq. (8), we have

0 z -- '13x + Q 2 3 y +yQ 3 3 z +Q' 3 6 xy (10)
or

(Q' + W(a1XW)rQ1)
z 1 ' 33x + 23/33 3633 xy

Substituting Iq. 1i) back into Eq. (8) the resulting CQ'] matrix becomes a 5x5

matrix referred to as [Q].

11 12 16

12 22 26

(01 - 4 e 45 S (12)

45 5
16 26 6 0 066

where

42 2 4Qi cos4O + 2(Qi 2 +2Q 6 6 )sin Ocos e + Q2 2 sin -

Q (Q + 4,)i snOcs0
12 1 G 2 4Q6 6 sin2 cos 2 0 + Q12 (sin4 0cos4 0)

Q Q Q 6 )sinecos3 0 + (Q 62Q )sin GcosO

-4 2 2 42 Q 1
s i nj 0 + 2(Q 2+2Q 66)sin Ocos 0 + 22 cos .

Q26 (QIj-Qi 2 -2Q 6 6 )sin3 0cose+ (Q12 -Q2 2 42Q 6 6 )nco 3 0 (1 U 3)

Q Q44 Cos2  + Q 5
s in2 0

Q (Q44 Q5 )cos~sin0 *
Q45 "(44-"35Ossn """

C o s 2 0 Q4 4 sn 2  "

9
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2 24 4
Q (QI 1+Q22 -2Q 12-2Q 66)sin2 ecoso Q6 6 (sin +cos e)

and
*II 11 lI'VI2 V2 1) ,]'''.."-.

a /V V (-~ '11 12 21Q V a M--. V-9 MI-V-
L2 =  12 2 1-v2 21 ) = 21 1/ 1v2 211

Q22 z B 21U-V 12 V21)" ''i
(14)."- ""

Q S
44 23

Q55 •031

Q 2  012

We can, therefore, write Sq. (8) as

x 1i 12 16 x

y 1i2 (22 ( 26  'yI

y a44 a45 y -...

(i6 '-4 (""" "'"

We now wish to build a laminate from N perfectly bonded lamina and express

the forces and moments acting on this laminate in terms of displacement functions. j

Before we do this, we need to maKe an assumption concerning E for the laminate

and we need to discuss our sign convention.

to.

... .- '. ." .' '. %.. ., .. '- ./ .' " .. .. %. ..- ,, %° " . ,.. . .. - .... . . . ." . . ... . . . ', '. ", -. : ._....._ -_,- %%N .
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We shall assume that ( u=. This implies that a line perpendicular to the

midplane will not stretch under deformation and is an accepted inconsistency in

plate theory. In reality, ( is not zero, but is small compared to the other strains.z
For our laminate, it means there will be discontinuities in f at the lamina

2

boundaries (they too, will be small). With this assumption we can assume a

displacement field of the form

u u0 (xyt) + zqr (X,y,t)

v v (x,y,t) Zy (x,y, t) (17)

w . w(x,y't)

where u,v, and w are the xty, and z coordinate displacements respectively, u° and

v are the displacements of the midplane of the laminate, and V and T are
x y

rotations of a line perpendicular to the midplane due to bending. It is important to

note here that in this thesis Vx and Vy will be thought of as rotations. Thus, for

an axis system as defined in Figure 2.2, a right hand rotation about the positive y

axis will give us a positive 9 rotation. On the other hand, we will think of w

and w (the commas denote differentiation) as rates of change of displacement
Dy

with respect to the appropriate coordinate. Some authors look at the rotations IV
x

and V as rates of change of displacements also isee Ref. U133). Depending upon
y

the point of view one takes, the sign on these rotations is different. However, if

one is consistent throughout his development with his notation then either

approach will yield the same result related to generalized functions such as

eigenfunctions and eigenvalues.

C -
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We can recall that for small strains

u

y (18

Y u +v s-xy ,y ,x

Thus, for our displacement field in Sq. (10), our strains are

v 0 + y (19)
y ly yty

~ u0  + v + T +9q

or

0K
x x x

0 0 *z x (26)
yy y

0K
x xy xy

where the middle surface strains are

0 0
x U'

o 0 ( -v (21)
y S

o 0 0
r' U + V

and the middle surface curvatures due to bending are

is.



K = Y(22)

y Y 4y

xy XY YX

At this point we have not modelled shear, deformation and one should take note

that the above curvatures do not include their effects. Now Eq. (1) can be written

(4or the kth layer of a laminate) as

0 U 0
x I11 12 16 UXx x

00 0 V0  + V (23)
y 12 22 26 l

0 0a' Q u +V+
xy k L-16 26 66 k ,y 'x x,> y Yx

The resulant forces and moments acting on a laminate are obtained by

*integrating the stresses in each layer through the laminate thickness. Thus, we

have (ste Figure 2.3 for the geometry of an N layered laminate)

2 ~
ZI zMM09E SU2FACE

I NN

LLAYER NUMBEI

Figure 2.3 Geometry of an N Layered Laminate

L

14
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h/2 N z

(N x,NyN)xy (0 3xy, xy) dz Z f (O xyx dz (24)

-h/2 k= 1 1(1

and

h/2 N ,

(M ,M ,M (0 30,,x) zdz - Z f (OxOy,' x) zdz (25)SYYx y xy y xYy

-h/2 k=I Zk-I

The integrations in Eqs. (24) and (25) can be rearranged to take advantage of

the fact that the stiffness matrix for a lamina is constant within the lamina. We

can also recall that E1 (  1 '0 f Kt Ky, and K are not functions of z but are

middle surface values of the laminate and can be removed from under the

summation signs. Therefore, Eqs. (24) and (25) can be written as

N A A A (0 B B Bax 11 12 16 x 11 12 16 x

o 12  A22  26  y + B1 "22  26 K(2

N A 1  A 6  A 

(26)B

xy A66 A2 6 r XY 16 a26 B66 xy

and

081 62 BI ( D D
x I 12 16 x it 12 16 x

y B12  B22 26 + D12  D2 6  (

N 0
xy L16 26 66 Y D1 6 D 2 6  D6  xy

where "I .""*

15,.:::..

I I---L :::



L j

N
A.. ( (z -Z ) (28)

k-i ii k k-I

N
Bij k-X Qii (k 2 K k-i (9

D..=1/3Z( X ( kz k -zk- (30)

In Iqs. (28), (29), and (38) the A. /5 are called the extensional stiffnessest the

Bii 's are called the coupling stiffnesses, and the D. .',s are called the bendingj

stiffnessts.

We now need to determine an expression for the transverse shear forces Qx

and Q in terms of displacement functions. To do this we need to discuss )4indlin
y

Plate Theory.

In classical plate theory the Kirchhoff hypothesis states that straight lines

perpendicular to the neutral axis in the undeformed state remain straight and

perpendicular to the neutral axis after deformation. Hindlin discarded this

assumption and assumed that these lines would remain straight (no warping) but

would not remain perpendicular to the midplano after deformation. The assumption

of no warping is not correct and he did introduce a factor, k, as a means of

compensating for it. Therefore, the slope of the mldplane (w and w )now

consists of a rotation due to bending (v~ V and a rotation due to shear
X y

deformation (Vxz 'r) See Figure 2.4.yz y.

. . .. . . . . , .
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From the definition of engineering strain we have

V au *w (31)xz z x 

Substituting the first expression in Eq. (7) into Eq. (31), we have

Utz T x (32)

Therefore

w +V (33)xz OX x.-i.

and from similiar reasoning

V w +V (34)
yz Wy y

Here we can see that the curvature is a function of both bending and shear

deformation. Substituting Eqs. (33) and (34) into Eq. (16) and introducing k, the

correction factor for assuming the shear warping to be a straight line, we have

4 1 . "- - .

I 44  4 5  , y
xz K 5 L 0 5 %5 x+V'~

The shear forces, Q and Q may now be determined by integrating the shearx y

stresses rxz and Yz through the lamina thickness and summing over the laminate.

We have

h/2 N zk
" "- " dz KI kZ {xzK di (36)Ox f-h/2 xz I("1 Zk _1  z'..

I-f,2 fYz dz K (Yzk di (37)

k- -I :i'-

d- L Ii'-

' - ' "" 1 8



As before the integration can be rearranged to take advantage of the fact

that the stiffness matrix for a laminate is constant within the lamina. We can also

note that w, W 0 ,, and . are not functions of z but are midplane values of they x y

laminate. Therefore, we have

r-Yj K A44 A45 ?y+"Y j ("8
= (8)

x 45 55] r x x

where the A . terms are defined in Eq. (28). We now have the required forces and

moments in terms of displacement functions as we desired and may proceed on to

the governing equations of motion for a plate.

The governing equations of motion for a plate may be derived by formulating

the Lagrangian function (in terms of plate variables) for the plate and applying

Hamilton's principle to that Lagrangian. This approach will also yield the required

* boundary conditions. Reference 163 formulates the Lagrangian for a plate

including the effects of transverse shear and rotatory inertia (modelled using the

Mindlin Plate Theory). Following the derivation from that text, we have, after

applying Hamilton's principle and Green's theorem, the following:

ft2 (E-I + M 4 -0 1 if + E -14 4 M + M -0 1 if
t f x X,X XYY X x y y,y xy,X y Y

+ l+ 0 + q w dA dt
x,x Y,Y

+t2f M dx-Mxdy]Y + CM dx-MxdylY + 10 dx-G dy]6w)dt 9 (39) "
Jt [rxy x y y Y y x

where the double integral over the domain represents the equations of motion for
,. . , ,. .' * ,

the plate and the line integral around the contour represents the required

boundary conditions. Also

7.19
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i!h/2 z2

I h/ p dz (46)
-h/2

To determine the equations of motion for the plate at any time tj we take

the double integral expression over the domain and note that the variation cannot

be zero over this region. Therefore, the coefficients for each variation coordinate "

must be equal to zero. Thus we have

M +M -Q J-
XIX xy9y x x

M +M -M -= (41)xy'x YIY Y Y-

0 4Q, +q P Q

If we assume the time dependance to be harmonic, then we can seperate out

*e the time variable in Sq. (41) and we have

M 4 M + 21 a (42a)Xx xyly x x

H + - a + (a2  = S (42b)xyx Y Y Y-

a *Q + N w 42N w + N 2 + Pw - 9 (420

x'x y'y x ,xx xy ,xy y ,yy

where 6) is the frequency of vibration and we have let q • Nxwx x + 2Nx yWtxy +

N wy. This will allow the use of our equations to solve the linear bifurcation
y tyy

problem. We will retain this expression throughout our equation development but

will not consider it when solving the vibration problem. Thus, Sqs. (42a) thru (42c)

are our equations of motion.

Before we proceed we must determine the appropriate boundary conditions

for the system of equations which are sufficient to assure a unique solution.
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These can be determined from the line integral expression in Eq. (39). The

boundary conditions associated with Eq. (42a) are represented by SY x and its

coefficient. Thus, we have

(-(3dy + M>dx) V(3

Similiarly, the associated boundary conditions for Eqs. (42b) and (42c) are,

respectively

(MydX M dy) Svy I (43b)

fr {l4 x 4Y

r + Qdx) Sw 8 (43c)

We now have the equations of motion and the required boundary conditions

and can proceed with finding a solution for this system. Before we do this,

"* however, we need to apply a restriction. This thesis will only be concerned with

symmetric laminates. Therefore, all of the coupling stiffnesses (B 's) are equal

to zero and the extensional stiffness term, A4 5 , is also equal to zero. With this

restriction Eqs. (27) and (38) become

M D D D
X 11 12 16 x,x

M D D2 2  D26 y (44)
Y 12 2 26 yIy

D D 0D 4
xy 16 26 66 Kx ' yx

Y= k 4 
y
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Galerkin's Technioue

Since we have arrived at a set of partial differential equations that

describe the motion of our plate, we now need to solve them. This thesis will use

an approximate method called the Galerkin technique. As opposed to a technique

like the Ritz method, this technique involves the direct use of the differential 4

equation and does not require the existence of a functional. Thus, it has a broader

range of application than the Ritz method. However, in the area of solid

mechanics, the two are closely related. 4

The basic idea behind the Galerkin technique can be discussed quite briefly.

Suppose we want to solve the equation
I

L(u) = 0 (46)

where L is some differential operator in two variables whose solution satisfies

homogeneous boundary conditions. We will look for an approximate solution in the

form

N
u(xy) Z ci.(xy) (47)

-i--I 'i

where $ (xy) is a system of functions which satisfy the boundary conditions and c.

are undetermined coefficients. We will assume the functions *i(xy) to be linearly .

independant. It is important to note here that if we are to get an "accurate"

answer, the system of functions 0.(x,y), must be complete in the given region. If
1

they are not, then we are excluding part of the solution and our results will be

very misleading. If U(xy) is to be an exact solution, then L(O) will be identically

equal to zero. If L(u) is continuous then we are saying that L(u) is orthogonal to

all of the functions of the system .(xy). Mathematically speaking we have
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f N

fD L(U(x,y)) i(x,y) dxdy 1 L( X c.*.(x,y))#i(x,y) dxdY = 0 (48)
j=a1

where i a l,...,N individual equations. From this system of equations we can solve

for the undetermined coefficients and therefore arrive at our solution.

The question now arises what happens if our assumed function does not

satisfy the boundary conditions. If it doesn't, wt want to force our approximate

functions *.(x,y) to satisfy them also. Thus, for the case of two variables we
i

would set up a Galerkin equation as a line integral around the boundary that would

force the function to satisfy the boundary. For homogeneous boundary conditions

this line integral in and of itself would also equal zero.

23
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Dalerkin's Bouations for Anisotrooic Laminated Plates

At this point we are ready to formulate the GalerKin equations for the plate

equations of motion. Our approach will be to formulate the GalerKin equations,

make appropriate substitutions# and then norma.ize the equations.

In formulating the Galerkin equations we must be careful. If we could find

approximate functions which would satisfy both the geometric and natural boundary

conditions, then we could apply Eq. (48) to each of our three equations of motion ..

and our GalerKin equations would be formulated. However, finding such functions

is extremely difficult, if not impossible. We can, however, find functions which

satisfy the geometric boundary conditions. This does impose the added condition

that we now must formulate a Galerkin equation for the boundaries as well as the

equations of motion. We'll start by formulating the Galerkin equations for Eqs.

(42a) and (43a). If we assume that 4 is the approximate rotation function aboutQx

the y axis and use Eq. (48), we have for Eq. (42a)

f bfa( M l - x + 2 ) " dxdy 8 (49)

e, x~ xy y x x x r .. j

where x is made up of a series of functions (each which satisfy the geometric

boundary conditions) where each term in the series is multiplied by an
undetermined coefficient, A ' on the other hand, is a single term of the --

approximate series and has no undetermined coefficient associated with it. This is

a result of the Galerkin derivation and several examples of this may be found in

References [5] and [17]. For each term in the approximate Vx series, a new

equation will be generated. We should note here that one of the conditions for

solving for the undetermined coefficients is that there are as many equations as

there are undetermined coefficients. Thus, if we have men undetermined

coefficients in our approximate series, E Rq. (49) will generate men equations.
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We will now turn our attention to the formulation of the GalerKin equation

for the boundary, Eq. (43a). Eq. (43a) is different from Eq. (42a) in that it still

contains the variation of 9 This poses no real problem in that the Galerkin
x

method can be related to the functional expression in Eq. (39). Using Eq. (43a) and

following the procedure from Reference 15) we have

(_f x- dy + H dx)~ = 0 MSa)

where f' xis again a single term of the If5 approximate series and does not contain

an undetermined coefficient. The undetermined coefficients are hidden in the M4
X

and N 4 terms (so@ Eq. (44) where T is replaced with x ). If we use the plate

coordinates (set Figure 2.2) to define the contour for the integral in Eq. MSa), it --

becomes (see Ref. (18])

C (M (8,Y)Y (0,Y) -M (a,y)Y' (a,>')) dy

a+" (M (xS)Y' (x,8) -M (xgb)v'x(x,b)) dx 0 (56b)
xy x xy

Bqs. (49) and (59b) form the GalerKin equations for the first coordinate IV In

order to reduce the size of the eigenvalue problem we will be solving later# we can

approximate the two Eqs. (49) and (59b) by combining them into one equation. We

have therefore

a(M + M a 4 If) dxdy

x yyx x x

*f (Mx>'(x,O) V'(x,@) - H (x,b) V(x,b)) dx 0
~8 x x

25
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Now substituting Sq.(44) and (45) into (51) and combining terms we have

+ D 9yy - kA kA -kA + 1W 2  'dx dy

2 y 55? x x5 I~ Y)

*J(D ~0 ,iY) + D + D ((9 Y) 4 4f (9,Y))) Y"(6,Y)

(D- (a,y) + D12 YY(a~Y) + D 16 (i~ ,l(a~>')+i Y,,(a~y))) x (a,y) dy

(D (X,O) 4 D (f (X,8)+v (X,@))) V /(x,B)
lxx" +D6y,y 66 x,>' Y,x x

16 xd,x~xb4 26 , * '66 (x,b)+i (x,b)))V'(x,b)dx 0 (52)

oWe choose to normalize Iq. (52) using the normalization scheme similiar to

the one used in Reference [183.

3

a m AI A2h

R ma/b

-2 2 2,()
S pa W /E 2h

~ X/a

where dJ and aj are the normalized bending and extensional stiffnessets

respectively, 192 Is Young's Modulus in the direction normal to the lamina fibers, R

is the aspect ratio, s is the length to thickness ratio, ~iis the normalized
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frequency, p is the product of lamina density and lamina thickness summed over the

laminate, q is the normalized x coordinate, 1 is the normalized y coordinate, and h

is the plate thickness. We will also make the substitution

h/2 2 - -

_hf Pz2 dz Ph3 /12 m ph /12 (54)

where

N
p - x Pktk 55)

k-l i

The reason for this substitution is that it will allow us to build up a laminate of

different materials. Thus, we can use our homogeneous theory to handle hybrid

composite plates. After these substitutions and subsequent simplifications, Bq.

(52) becomes

(d+ d1Vl1j 2-d '1 +c1 kk 4 -d )Y1 1 4,11 12 66 11

+ R2d -ks5aj ksa55,,u +w2/12) V) - dt d.

(dll Ll(@,I) + Rdl2 ID$,l + d1 (R?, (0 ,1) +f (9l,1))} i'18,11) :: :o.-
26e 11 1 9k 1

({d 1 ,( ,S) + Rd2 ,e11(q,9) + d66(Rf , (IS)+ 1 , (,)) (,9) -I-

- 1l ( 6Rd6t q( ,, 1) '1,%

+d66T( t , I ~l+V tl(4,l))}(%,I) dA 0 ( 56) -'"
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We are now ready to formulate GalerIin's equation for Eqs. (42b) and (43b).

Using the same procedure as before, we arrive at

; a+ M - 0 + w Iv dxdy
xyx YY Y Y Y-

( (M (0,Y) i (S,Y) - (a,y) T'(a,y)) dy
Ky Y Ky Y

S (H (x,O) VylX,$) - M (x,b) i (x,b)) dx " 6 (57)

where y is the assumed rotation function about the x axis. As before the doubleY

integral will force our approximate rotation function to satisfy the plate domain

while the two line integrals will force the function to satisfy the natural boundary - -

conditions. Now substituting Rqs. (44) and (45) into (57) and combining terms we

have

e {D6x,xx + (D 12 +D 66 x,xy + D26x,yy D66 Vy,xx + 2D26 rT Y,XY

2A4 kA44 i~y + l 2Y) YW dx dy

fb
{Di6%,x(O,Y) + D26  (S,, 0,(,y+Yxy))) /OY

- D (a,y) + D + D 6 (ay)+ir (ay))) Y (a,y) dy
16a ,x 2 6v ,Y(a Y) 66 xy Yx Y

-fD (Dt 2 ixxl6) * D2 2 y (x,6) D2 (x, (lx ))y (x,)) ?'r(X,8)

12. y~ 2 y 26 x,y y,x y
-2 yXbb x,b) y(X,bdx = B (58).
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IL

If we normalize Eq.(58) using the same normalization scheme as before, we

have

aI .r {d16IiL,lt4 (d12 4d66)I,,,l . ~261, + d6+, .2d l ."]7]"'"'..

2

+Rd21 - ksa 4 4 - ksa + (42/12)i i' dt dl

- (dl 1  (,1) + Rd2611 ,1 (l,1) + d66 (R , (l, ) + (B(,))) v(1,I) d

{d 2 l, (4,0) + Rd22Yli1(1t,,) + d2 6(R '(l 0)+4 ,9,lI,))) '(,...

- 12 4~l~l1) 22 'q, 11 4 9) 26 4,1"1' I

Ssystem, Iqs. 42c1 and 14c1. We have . .

* N w + P 2w) -W dxdy"-'

{QiX+ y iy + Nx,xx +2xy ,Xy Y ,YY ..-''

-(d V /,DR

+ J Iy) wig,y) - (aiy) W+a,y)) dy -

were 4 is the assumed displacement function. Again, the double integral is to

satisfy the domain and the two line integrals are to satisfy the boundary. ;,-.

Substituting Iqs. (44) and (45) into (60) and combining terms we have hav
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faf {K~ 5 ~~ k 55w~ kA~V 4V +kA4  ~ - Now

+ 2k PO wI>. -k Nw'y P dxdy

4j kA5jx (B,y) + kA5ewx(S,y)) W(O,Y)

- kA5 5 ~(ay) + kA 55 w,x(a,y)) W(a,y) dy

-f 44*x9 A4 4w ,7x1 )) WxO

-(kA I( b)+kA44  (b)) Wx,b) dx - (1

where N *k z-k1N0. an Mxu 3N0

We will now normalize Eq.(61)t however, we need to define two more

normalization factors. They are

%I N b 2/C h
~ o 2 h(62)

2 4 2 3

Therefore, Sq.(6i) will become



2.(ksa 4 ika ~ kRsa 4 4kR a K R/ _
55 55, IM 44 'I,11 44, I 2 1M

12) 4/2).4S))? qdd
+ 2k 3 (Rs Ix ir W Is +).w1  (Rs 2

*f ksa 5 5 1( ,11) ka (,11)) We'll)~- -

- (sa 5  1 11) + ka55 ~~1 1 ) W(1,11) dil

if (ksa 44iq(4,B) + Rka44 ,(fl)) W(qS)

* ksa 4 4 T 1 (4,1) + Rka4 i 1 (,) W(4,1) A~= (63)

At this point we are ready to pick a boundary condition, find approximate

functions for IF Y and w for that condition, and substitute into Slqs. (56), (59),

and (63).
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Simoly-Supoorted Boundary Conditlin

Since the Galerkin equations have been formulated it is possible to choose

the displacement and rotation functions (w, v x, 9 ) which satisify the three
x y

equations for each boundary condition being considered. These differential

equations can be integrated resulting in three algebraic equations (for each

boundary condition). The eigenvalue problem can be formulated from which the

natural frequencies and mode shapes can be obtained. Let us begin with the

simply-supported boundary condition.

For a plate simply supported on all sides, we know from plate theory that:

at x 0a

wY =0 (64)

y

x it xx 1D2 yy 16 yx xy"

and

at y G 0,b

WY W * (65)
my D + D D (v

Hy D1 2  ,i D2 2 y,y D2 6 y y )-,

Therefore, we shall choose for our admissible functions (functions which satisfy

the geometric boundary conditions and are continuously differentiable one time)

V = I Z Amn cos(rntx/a) sin(n(y/b)
rnal n=1rn

a 40

Y Z nZ B sin(ml(x/a) cos(nlty/b) (66)
M=l n=1

W X Cn sIn(ml(x/a) sin(nty/b)
Mal n1t
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or in terms of normalized coordinates

X Z A mncos(mt'l) sin(nV))

mn

W C Bn sin(mW) cs(nVI) (7
Mall naI

= X I -A m in(mi~ i~n(niC)
~ mn

Y II-A m X s(mX) sin(n)

X Z -A coXs(mK) cs(nV)
mn

X X A nt cos(mt) cos(nt'I)
mn

I X -A n t2 cos(nlkq) sin(ntl)

mn

2 2
-II-B m 1 Sin(att) COS0nVI)

2V 114- X -B mn n cos(m~tA) sin(AID~ (68)

Z X -8~ nt sin(int) sin(n)

in

W X X C mt( cosWm4) sin(ntlI)n

W - X x -C~ isK t in(nlk) sin(nM)

W41- X I C run ni cosirntk) cos(ntll)

X X C nil sin(intq) cos(nVDlran

= X X -C n t2 sin(nK%) sin(ntI)
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Thus from Eq. (56)

- 2 2 22
x (-dAn 1 co cO.~S(rVnV V Z~ diB 6i A K sin(m tk~s(nKlk)

- ,m, s~ 4d nB mn~O M~n)i~ - R dm M in 2"k 2 co(inM)o~n

Rd12 4d66 )S n nt2csm4innl-R2d 26 9mnn2t2 imgconV

-s 2i a55fm cos(mt4)sin(nV) - ksa.55Cn intcos(m()sin(nV)

+ (c 2 /12)A cos(nK~)in(n~lq)) (cos(p0,)sin(q[V) dt dl)

+ (-d Agiin(S)sin(nlll) -Rd Bntsin(8)sinOnV
11 ins 12Bin

+ di6ERmntcos(@)coS(nfV)) + B8rto()cos(nl))]) {cos(@)sin(qlD)

-(-d A rwKml~in(iwK)sin(nK(') -Rd 12% nlsin(uw~sin(nV) -

+ d IRA nicos(nti)cos(n 1() B m~os(nrtcos(nVD)16 mn int

*(cos(pK~sin(qtV)) dil

+f (-d 1AmnuK'in(mKt)sin(G) -Rd 2 6 Bmn tin(wKtsin(@)

+ d 66 CR~nnn~cos(IU%)cos(G) + B mgcos(m'kq)cos(9) 3) {cos(pK(%)sin(9))

-(-d 6A ~w~in(mk)sin(nV -Rd 26Bn n~sin(mK(4)sin(nt)

I mn~sm2

*(cos(p%)in(qK)) d% - (69)
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- UE* I I 7.1 - j . -l -Y

From E~q. (59)

-dl 6%nm2 csm[, i~lVRd1 d6A mnt 2 i(cosn(l

-R 2 d n 2t2co<t)snn - d B tsi(%csnq
26Amn~ o~~l~nn~ 66 m inm)osnl

- 2Rd B n(cs")i~t - R 2 dBn2K2S nm9csn
26 an 22 mn

- ks B 6jf(nVcos(nV) kRsa Cnlsin~m'K)co(VK')
44%ns' 44n'na

+ (62Z/12)8ftflin(m()cos(fl)) (%in(p%)cos(qlVO) dt d~i

mmn

+ (-d A64ns nmKi(rmKsin~t') Rd 20nt nOsnnl

d66ERA ntcos(mK~cos(ntV) + B ,,cos(mI~cos(nV0))

*(sin(pt)cos(qt'l)) d~l

+ (- 12A mn t~sin(m()iin<9) -Rd 22Bn nIl(sin( )sifl(S)

* 26 RMnnto(m~csB B mcos(m%4Vcos(S)J) {Sin(ptt)cos(9))

-(-d 2A r(i n (mtt)s inn) - Rd Bntsin(mi(4)sln(n%()
Inn% 22%n

+ d 26ER nfco%(iwvf4cos(nt) # 9 atcos(m")cos(nV 2)

*(sin(pt4)cos(qt)) ett 0 (79) .
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7- R 7 -

And 4-iom Sq. (63)

4* 401 1
xII(-ka 5 A ~s in(UK~sin(nV1) -a 55 C Mnm t sin1sin(nrqV

Mn-1 n:1fwS

kRsa 8ntsn(mf.)sin(n ') - kR 22 nO )si n
44 mn 44 mn

21 R2 s2) m 2C Isin(m~k)sin(nl')
322 C mnr 2

4 2k (R 3/S2xC Ian'2 cos(rnX)cos(n(KV

4 k (R /S )k C n itsin(m1)sin(n13

4 2
4 (R /S )k Ca sin(%Usin(ntVK)) (sin(ptk)sin(q(C)) dt dl)

4Jtka ~no()in(nVI) + ka 5 C mmcos()sin(nVl))) (sin(8)sin(qII))

- (sa 5eA cos(mK),in(nVDi + ka5C n mcos(msi n(nulID)

( sin(pt~sin(qVDI) d')

+f ksa 9Bsin(mIwQcos(Q) 4Rka 44C nisin(mKt)cos(8))Cin(p'C~sin(8))

-Csa 44  ,n(rnKAVcos(nK) + Rka44C nsin("q()cos(nC)

*(sin(pt[%)sin(qK()) dt 0 (71)

The indicated multiplication% are performed after noting that sin(D)

sin(p%) sin(qi) I (p and q art integers) and cos(O) 1.
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From Eq. (69)

x di A Mnm K cos(m() cos(pK)sin(nlDin(qVD~

2 ~22R Rd A n Iino(mlkA)cos(pQ#)cs(ntVI)sin(qVlt)6Amn

2 22
-d 6d 8mnf t s(int)cos(pt)si(nVli)sn(qKil)

2
- R(ci2 *d6)%mn co(n )co(p4)sin(nt)sin(q'i)

2 26m2

- R d 26B8m n I sin(m()cos(pt)co(nti)sin(q1i)

-2- (( /12)A nc os(mK()cos(ptkUin(ni)sin(qK 1)d d

- d16 5c Amn m(c os(mll)co(p)os in (Ws i n(qVD

d B R m nosmcos(p)co(pnKI1(I)sin(qt q (2
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From Eq. (70)

22
-R~d1 +d -d )A mnmn si (m)in(p)s(nV)co(q'O

- 2 d 2.d6 )Aini iin(m1t)csi(lot)cos(q VI)

- 2Rd B mnflcos(rnt)sin(pKt)sin(n1 q)cos(qt[')
26 mn

-R
2d22B n ins.In)sin(pt)cos(nt)cos(qK~l)

22 n

- ks 't44 B %nn(rtitsin(pt)cos~n)cos(q1Ik)

- kRsa44 ,.nsin(mK4)sin(ptt)cos(nK(I)cos(q11)

S -2
+ (G /12)B fansin(rn)sin(pll)co(nI)cos(q(Wt) A dl

dj4  d2 [Arnncos(mt%)sin(plk) + B mlco(rk)sin(pl4)]

-d ERA ni(cos(nK)cos(qK)co(mOk)sin(ptq,)
26 mn

+ * B*rnlcos(ncos(qK)cos(m)sin(pt4)I dt 8 (73)



- - - - - . . . . . . .hC

And from Eq. (71

x" I ksa 5 mnKtsn(mt)sin(pA)si n(ntllsin(ql()

- ka 5 5C*n m2 tin s in(p%)s in Tv n q101)

- kRsa C n2(sin(m4)sin(pt)sin(n(1II)sin(qV1q)

- IR a44c m 2 2sin(m)sin(pKii)sin(nV)in(qK)

3 2 2
4 2k (R /S )X1 C ~mnt cos(mt)sin(pl()cos(ni()sin(qtl)

4 2 2 2+ k (R /S ) C n I sin(mti)sin(pt)sin(ntl)sin(q'll)I Imn

4 2
+ (R /S )X C sin(mK~t)sin(ptt)sin(nV1)sin(qtli) dfd - (74)

2 mn

In order to integrate these equations, we %hall use the following integrals taken

from E33.

Whn m p (or n q)

cos(mtx) cos(pKx) dx EUJ~ + (1/4m1K) sin(2zwkx)] =(75)

sin(mllx) sin(pKx) dx 14CJx -(1/4marU sin(2mix)] (76)

2S

sin(m~x) cos(ptx) dx Ea/fi)sn mx1a(7
., 0~
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When m p (or n q)

=sin(m-v)(x sin~m+D~fx
cs(mIx) cs(ptx) dx (9

r in(milx) csn(plx) d~x s(m-)%X- sin(m+)IXJ
2Em-p) 2C(m p

21K(m-p> 2iw mp)

S- cos(M-D)% + cpM m D) (-o$+RC + IM
2tC(m-P) 21(rm 2V -p)mp)

=(-coS(M-D)fl 4 )SM+o) (-cOS(m4o)t( + WO)m-)

2 2
2(m _ p)

a I for (m~p) an even integer (~

and

a 2m/Vm 2  p p2  for (m+p) an odd integer (81)

Similarly for

,1 sin(pilx) cos(uV(x) dx 0 for (p~m) an even integer (82)

2 2
a2p/KVp -m )for (p~m) an odd integer (83)

We shall now introduce the notation

~ 1cos(mIx) cos(pitx) dx * A or 6) (84) *

whop@ the value on the left side of the parenthetical axpression is the va'ue of the

integral when ma-p and the value on the right side of the expression is when m~p.

4,
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Thus, upon integrating, simplifying, and taking only a finite number of terms we

have (note: even and odd tests are for the sum of the indices):

From Eq. (72)

M N 212n22 2 2 2 2
z z t2(4 or 0)(4 or 8)(-md - nRd ks2a A 5 +/121)
ml n=l 66 55

- (0 or 8 even,2m odd)(0 or 9 even,2q odd)(2Rnndl)/((m 2-p 2)(q2 2))

22

4 (8 or 8 even,2q odd)(nRd (l-cos(m[)cos(p)))/(q 2-n ) A
16 mn

+ 012( or 8)(* or )(-rnnR(dl2 + d 66))

2 2 2 2 22 2
(orB even,2m odd)(BorB even,2q odd)(mdl +n R d )/((m-p )(q -n2))

22
* (0 or 0 even,2q odd)(md06 (l- cos(ml)cos(pI)))/(q -n2)] Bmn

- [EVAi or 0)(Yi or 8)(mksa5)] C = 6 (85)
55) Cmn

From Eq. (73)

M N 2
Z Z Ell (4 or 0)(A or 0)(-mnR(d12 + d6 6 ))

m=1 n=t

2 2 2 22 2_2
- (9orO even,2p odd)(Bor@ even,2n odd)(m d2+n R d))/((p -n n q

16 22

+ (8 or 9 even,2p odd)(nRd (1-cos(nlCcos(qV))/(p 2-m2)] A
26 mn

* 2 2 d 2 2 -2 2(4 or 8)(4 or 8)(-m d - n2R2 d - (ksa4)/I[ + /1212
66 22 s44(*w1~

- ( or B even,2p odd)(0 or 6 even,2n odd)(2Rmnd26 )/((p 2--m 2 )(n2-q2))

2 2
+ (9 or S even,2p odd)(md (l-cos(nVcos(q)))/(p2-) Bn "

26 mn

W- C( or 0)(4 or O)(nRksa4)] C = a (86) .
44 fan
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And from Sq. (74)

H N
Z - ( or @)(A or 8)(mksa 55) A
m=1 n=l

- ( or 8)(Y or e)(nRksa4) B
44 mn

I2 2 2+ (4 or 0)(y or S)-m ka5 5-n R ka44

+ k2),lm2(R2/s )+k x n (R/S+). (R4/1s 2))
2 1 11 2

+ (0 or 8 even,2p odd)(0 or 0 even,2q odd)

* (2k 3mnR3xl)/(s2(p2-m2) (q 2-n 2))] Cm 9 (87)
run

Equations (85), (86), and (87) are now ready to be programmed. The process

to generate the Galerkin equations is to pick an M and N (they must be equal), then

cycle through p and q (which are equal to M and N). Thus, 1 and N determine the
*'

number of terms in each Galerkin equation and p and q determine the number of

GalerKin equations.

4- ..
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Clamped Boundary Condition

For a plate clamped on all sides, one k~nows from plate theory that:

at x O=

x y

and

at y Ot
(89)

W y

Therefore, we shall choose for our admissible functions

vY X X A nsin(mirfx/a) sin(nty/b)
m=1- n=1

Y = Z I B sin(mlx/a) sin(nty/b) 9)
~ n=Imn

W X Z C in(mftx/a) in(nily/b)

M=1 n=I1m

or in terms of normalized coordinates

A =n s in(m) sin(nil))
n-1 n=1

Z mim n~ mn sin(mS. sin(nM 91

W =X IC sin(ruKt) sin(nilq)

M=I n=1 . .n
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In order to substitute into Eqs. (56)p (59), and (63) one needs the following

derivatives (note: all EX are over m=1 to -and ni1 to )

X I A mnl: cos(ft[4) s(n~i)
4,4 mn

X X -A m A C nt in(mf) co(nt)
amn

Z X A B rat cosmlt) s(nt)

I X A sin(rk) csi(nl)ran
02 2

X Z 8 B ran cos(m) s(n ) 92
mn

x = x -B m 11 sin(rattU sin(nt)

y = C x ti cos(m(4) s(nVD(92
ran

W " = X X -C m t sin(au[4) cs(nVD1

2

X X C rant cos(q) s(nVD1mn

w =4 x x -C mn~ m a in(m~t) sin(nl11)

ran

2 2
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Now, substituting into Iq. (56) we have

Ii (-d A m lr sin(mV4)sin(ntn) + 2Rd A mnEnl cos(mltVcos(nl(V

.= ~ ~ ~ ~ ~ 1 mn189 11m 6m

R(d +d )9 t co%(ml(4)cos(nVD1 - R 2d B n 2 C *in (mV)i n (nVD112 66)%n 26 mn

-ks 
2a 6iAms'n(mtk.)sin(ncq) - ksa 55Cmntc os(mt)sin(nlV)

+ (a /12 )An sin(iw(4sin(nVt1 )) (sin(pt%)sin(qt1)) dit dl

+d A mltcos(SUsin(nvq) 4Rd B ntsin(B)cosOnMi11 mn 12 mn

+ d IRA ntsin(@)cos(ntl) + Bmc(Gsin(nlI)J) (sin(@)sin(q l))16 mn %mcse

-{d A milcos(m~sin(vOi) Rd 8 nl~in(m~co(nl1)11 mn 12 nn

*d ERA ntsn(mtcos(nl() + B mcos(mi~sin(nVDi3)16 %n n

(sin(p~)sin(qilD) dli

4d A "wcos(raQ~sin(S) 4Rd 2 8 ntsin(rmt)cos(9)

4d tRA ntin(fcos(8) 4 8 lcsmKsn61 (sin(pt4)sin(9))

-Cd A mn~cos(mVL)sin(nK) * Rd 6 ,nlisin(nUcos(n()
16 mn 2%

4d 6 IRA nl~sin(m%,)cos(nK) 4 B mmc os(nvli) i n 010J1

*(sin(pl(4)sin(qE)) d% 6 (93)
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Substituting into Kq. (59) wip have

221C2 rnnt2R n in(m)sin(nK 1DR - d ) in co4si(mcotn'
mn 2 66 mn

2 R 22 2 2

ds2 An sin(mA)sin(nI ) -k Bs ra Isin(Iwtl)ci(ntl)44 ~ ~ m 4mn

22*z 1R2 ) 8 mnf si(mC osi(nD) - Rin B n2Ii sinq mK)) int dl

+ - I Bm nko~s( )in(nq) + R Cm t in(mQ)c os nI'1

+ dw / 2IR)mn nsin(mIUci(nKD+B nm~))@s~lA (sin(p9)sinqll)) V d

d6 A wcos(msin(nl 4 R B nsin()co(nVD
14 Rd 26 mn

*d 66 RA mn ntin(mBcosOnVM + B mlco9) sin(IM sn8snqD

4 d A mCos(Isn(ne) + Rd B% nsin(mrtI)cos(9)

162%n 226mn

4d 6 CRA ntsin(nlk)cos(nV 4t B,,mcos(mVsin(nVlD)2.6' mn

(sin(p~sin(qVI) dfl9(4

*rf 12A u~cs(IAsin8) +Rd6



And finally substituting into Sq. (63) we have

CF~ ksa 5 AmMc os(TKK4)sin(ntq1 ) -ka C mn mt in(wKA)si(nfV)

44 Mn 44 mn

+ k (R 2 /s 2 )C m2 fr2 sn(n%)sin(nVIq)
In

4 2 2
+ k (R /S )X Cmnt cs(mt~con(nVD~31 O

+ (R 4 /S 2)x2 C mnsin(mt4)sin(n11 I) {sin(pt4)sin(qV) cJ d1)

+ f ks in* ksinCntm) + k )sin(nl)) (sin(@)sin(q'I))

- (sa 55 mn sin(nI~sin(lVI) + ka 55 C Mnm~co(m)ifl(nVD)

*(sin(pt~sin(qVDI) c1l

(ksa 4 4 Bm Sin(m(Osin(g) + Rka 4C,nnin(3t)cos(8))Csin(ptt)sif(B))

- (sa 0sin(t)in(nt) + Rica C ntsjn(mf%)cos(nV)
44ran 44 run

*(sin(ptk)sin(qIU) A 9 (95)

The indicated multiplications are performed after noting that sin(O)

sin(pIK) usin(qlK) 0 (p and q are integers) and cos(O) =1.
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From Eq. (93)

+ 2Rdle6Arait 2 cos(mtt)sin(PK(%)Cos(n(I)sin(qtia)

S
2d Af 2t2sjfn(miUEt n~~s~~tI)il,~Rd66 Amn nnP(snn~inqI

42 2

a- i sin5 Alhf(K~sin(pi~sjnn(fl) (ql)

4 -2+ I cl(oi)5f(p't)sin(pnk1)Ijf(qn1ll)sine 
(96)(/12 ) dq,

R 2 B n2 12 si~mtt sinptt~in~nll~in~q.5.

26 48



From Sq. (94) 
b

m1u nw I e6

*R(d12+d6 )A mni cos(mi)sin(pl~)co(n(I)in(q'1)

R Rd A n I sin(mt)sin(pl()sin(nlh)sin(qVll)26 mm

-d" % m2 f2s in ("t) s in(p4) sI n(ni) s in (qlI)

2
4 2Rd 261 nmhfl" cos(mf)i n(pt)co(nV)si n(qVi)

- R2d B n I sin(nitt4)sin(ptt)sin(nViq)sin(q(~l)
22 in

- kRsa 44Can sin(mf)si n(pU()cos(nl(Vin(q'I)

Wf 2) sin(l)sin(it)sin(iI q d4 d~l e (97) .-
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From Eq. (95)

+ ka B m Isin(mftt)sin(p1~k)csn(ntl)sin(qI)

*kR 2a C n2ts in (mI) s in (pIC)i (AID i n (qVIO
44 mn

+k R 2/4 24 Cmn m 2 K sinin(in(p(4)sin(ntl)sin(q )

3 2 2+ 2k (R /s Ax C mnt cos(in)sin(p)cos(n))sin(qt)3 1mn

4 k (R 4/S 2 AIC nn 2 s in(inIt)sin(pKt)sin(n'i)sin(qti) 14

+ (R /S2 A )xC sin(finel)sin(pI(%)sin(nl)sin(qtl) d~d'I - (98)

We can now integrate Eq%. (96)t (97), and (98) using the samie integrals from the

previous section. Thus, upon integrating ,simplifying, and taking only a finite

number of terms we have

5.



From Sq. (96)

M N [it201 or 9)(4 or S(-rn2 d n n2R 2d -s 2 2 +-2116a5 / 4W/12%2)

M-1 n=l

*-(S or 0 evon,2p odd)(0 or 9 even,2q odd)

(2Rznd 6)/((p -mn )(q -nM] A

4 or 8)(A or *)( 2 d -n2 R

16 ~26)

- (BorB even,2p odd)(BorO even,2q odd)

* (mnR(d 12+d 66))/((p -m2 )(q-n))] B

1 6/(p2 m m2 nl

- I(8 or 8 even,2p odd)(4 or 8)(mksa5  - ) Cmn 8 ()

* From Eq. (97)

E Z [I 2(4 or )(J4 or )(-2d -nR2.d
.- ~ l-i16 26

- (SorO even,2p odd)(BorS even,2q odd)

(mnR(d12+d66))/((p
2 2  22))] -mn-.M

I * 2 0 or 9)( or 6)("n 2d - n2R2d - (k 2a 4)/2 @ 2/,2t2)

4 (8 or S *ven,2p odd)(@ or 0 even,2q odd)

S(21nd )/((p 2-m2 (q 2-n2))] Ba
26 mn

- 1((l or 6)(6 or I ,ven,2q odd)(nRksa44 )/(q 2-n 2)] C a (1,0)
44 mn



And from Eq. (98)

X X -X ( or 8 even,2p odd)(. or e)(mksa55)/(p -m 2 A
m-1 n=1

44 m n* 1K(J or S)(8 or B even,2q odd)(nRksa4 4)/(q -n ) B .:::::

+ cI:2 (K or 0)(6 or *)(-m 2 ka -n2R2 ka
55 44

2 2 2 2 4 2 4 2 2k2 x m (R /s ) Ik x n (R /S+ 2 (R4 s )/)I
211 1 2

+ (9 or B even,2p odd)(@ or 0 even,2q odd)

3:k .x s2(p2-m2 Mq 2-n2 M C-..*2InR 1)/(s
2 = (1B1)-n2)' -.= 8(181

<2k~mnR )] Cmn..-.

Equations (99), (160), and (11) are now ready to be programmed to generate

the Galerkin equations as before.

L.

,.' .'%.'
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Clamved - Simply -Suggorted Boundary Condition

g For a plate clamped on two opposite sides and simply -supported on two

opposite sides, one has the following boundary conditions.

at x G o&
(102)

x y
and

at y OCb

xx

IL Therefore, we shall choose for our admissible functions

- X A sin(mIx/a) sin(nly/b)
x m1 n-i m

X X 8 sin(mt~x/a) cos(nly/b) (164)
rn- n-i
M *

W X n X C ansin(mix/a) sin(nly/b)
rn-i I1

or in terms of normalized coordinates

X A sin(rn%) sin(niKl)

rnta-I n-i

W X X C sin(rn~t) sin(niKq)
rn-in-imn

M-I -



To substitute into Eqs. (56), (59)t and (63) we need the following derivatives

(note: all ME are over ma to and nz to )

V ZX A an t cos(iw(U sin(nV)

X X -%a m2 1 gin(mitA) sin(nK 1)

V % Z qq I A in mt cos(m) cos(nI'D)

X X -Z A nY sin(mt) osi(nt)

X X Pan ml cos(mtq) cosOInI)

I - I -,~ 212 sin(mtt) cos(ntq)

z 1Z -8B nV cos(ntt) sin(ntVq) (196)

X X -Bn nt sin(mil) sin(ntl)

K n -8 n sin(tq) cos(nt)

X X mt cos(muv(U sin(ntll)

X X -Cana2[ sin(att) sin(ntq)

i - I C~ an 2 cosWmrt) ces(nVl)

W it X Cn rvt sin(uft%4) cos(n(l)

p w I ~ 212 sinWm4q) sin(ntq)7
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Now substituting into Eq. (56) we have

Z I i (-d A a~ t sin(mt)sin(nM) + 2Rd A 2n cos(rnl)cos(n11)
MMIn nuIi.ee 11 mn 16I

2 A %2 2C2s
R d6  n sin(m%4)sin(nV) d ,Bma (sn(mt~co(n'l)

-~ 12 +d66 )%mnt comsinnlV - R 2 ,6nntdnmi~o~i

(~2

4 (Q2/12)A fe in(mi()sin(n'M) (sin(pl(O)sin(qt'Ifl dt dl

d A flcos()sin(ntl) -Rd 2Bmntsil(8)sin(l)

d dI6 RAmnnlKsin(9)cos(nV) + )c.nll3 (sin(G)sin(q(%l))

him imn

+ d IRA nllsin(mlt:cos(nI:M 4 B mrcos(m()cos(n))
16 an a

*(sin(pK~sin(ql)) dl

+4 d A,6%n"cos(mK(%)sin(B) Rd 26am ntsin(at%)sin(9)

+ d66 ER mnltfl(m1)COS(B) 4 Ba MjcoS(Mj~t)CoS($)]) (sin(ptk)%in(8))

d , 1 A ar~cos(Iu4)sin(nV)- Rd 6 nlsin(it4)sin(nV

4 d IR, nflsin(ratl)coisnK) + Bmcos(mI%)cos(nV)

(sin(pK(4iin(qK)) dt 8 Sl7
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Substituting into Sq. (59) we have

f.O-d A n 2K sin(mnk)si n(nVO+R(d 12+d 66)A mn nK( cos(mKci)COS(nVDl

2 2t2 2[2sR d A n K in(mK4)sin(nfq) -d ,B m Kin(nfk)cos(nVI)

26 mn 22 mn

-ks
2 &4m a n(mt4)cos(nfV) kRsa44C n'tsin(intVcos(nE'q) -

+ D/28m sin(nrt%)cos(nVD)) (sin(pKt~ros(q(')) d~l

+ d ,A,,wco()sin(ntVI Rd 8Bnsin()sin(ntVI

+ d66ERA ntsin(@)cos(nV) + B'cos)cos(ntq)]) fsin(6)cos(qI)

-(dA nrcos(in1)sin(nlq) Rd,,, ntsin(inK)sin(nV)l6 mn n6m

*d [RA rvtsin(mK~cos(nKII) + B ~o~Icos(ntV,)JI
66 mn %nlcsm(

*(sin(pVcos(ql')) dl

+~ d 2Am mtcos(iw~k)sin(@) -Rd 2 nls i n (mK( si n (0)

+ d ERA n in(inK%)cos(6) + B in~cos(inK~cos(0)3) (sin(pKtcos(O))26 inn in

d (d 2A,,incos(rrrK~sin(nK) Rd BnElsin(mtK~si n(nv()
22%n

4d ERA ntsin(mt%)cos(nK) 4 6 incos(m(Ucos(nK)]I26 mm m

*(sin(p(.)cos(qi)) dt 0 (168)
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And finally substituting into Eq. (63) we have

~ ~% ksa 5emn mcos~mV;sinnK'VD ka55Cmn 21[2s in(mt sin(ntq)

-R
2  

2 2

kRsa 8 rVtsin(rnlAOsinOn(k) a C n it sin(m()sin(nCDV44 mn 44 mn

R2  2 2 24
+ kC x( /S )C M -f sin(mrnUsin(nV2 1 mn

+ 2k (R 3IS2 )k mnit cos(rnk) cos(nMtI)
3 1 mn

+ k1 (R
4 /S 2 )x C n 2 [ 2 s in (mtts innOCR)

4 R4/S2 )x 2 C ,n sin(m(Vsin(nVI)) {sin(pIE4)sin(qV)) dt dl

+ (sa (@sinnI(D4 ka C i~os(9)sin(nIV)) Csin(O)sin(qI(l))
.Jes mns 55~n'r

* - {I(ksa55  sn(rntsin(nK1) + ka C rncoS(rn)sin(nI(li

*(sin(p1Osin(qKi)V) dii

(ksa B sin(mIl4cos(n) + Ra C n~sin(nK~cos()sipu)i() ->44 mn 44 ran

*(sin(pt4)sin(qV) dt 6 1?

Again, performing the indicated multiplications and noting that sin(l)

sin(pV O sin(qi) I (p and q are integers) and cos(l) i we have
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From Eq. (107)

2Rd A n cos(m~f)sin(pt)co(nti)in(q 1 ll)

66 mn

2
- Rs d pK ny)sin(l'

- di C 6% m tsn(m(t)in(pt)ir(nKl)sin(q 1)

- (d2 12 d) sinm~nt o(pt)sin(nVD~sin(qV1)sdin d~ 8 (118

mnn
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From Eq. (108)

x x dp n (~ ~in (m%%)s n (pK.) s in 0nVI) cos qt'I)

ITI' n=1J~ d 6A~22-

+ R(d12ed6 )AM mn(2cos(ml%sin(pt)cos(n1)cos(qi1)

-~~~ R 6A ,n2~ in(int)sin(pKA)sin(nV1l)cos(qVi)

- d6686nm tsit)sin(pK)cos(ni(cos(qI)

2
- 2Rd26B* inn cos(mtt)sin(pt)sin(nV1)cos(q)

22 22

- 2 8~ ks ain(it)si n(pcos(n)cos(q'W

* - ksa 44C nsin(mK)sin(pq)cos(nV~)cos(q1 )

-2
4(a /12)8 siin(m()sin(pk)cos(nVil)cos(qV1) dt dl

+ d2d IRA an ntsin(mKlfsin(PEI) + . n'~ o~m()i~t)

d d 6 Rncos(nt)cos(ql)si n(ml)si n(pt%)

+ B micsn~o~tcsm~~i~t) d% 6 (111)
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From Sq. (189)

*2 2

-~ ninl snmc)i~p()i~KI~i~tl

- ka 4 m isin(mUsin(pl)sin(n1)sin(q(1D)

- KR2a4 nn2~ m(% pk nI n (qVD

- 3R 22 2

a R4 S2C n 2 si(2s in(p(t)sin(nVt)sin(q~i)i~tmn

4 2

*+ (R /S 2 AJ n22~tsin(p)sin(l)sin(11 )in~I 6 (12
1 mn

We can now integrate Eqs. (110), (IMP) and (112) using the same integrals from the

previous sections. Thus upon integrating, simplifying, and taking only a finite

number of terms we have
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From gq. (IM0

M N 2 2 n2R 2 2 2 22)
x It 01(or 0)(1 orS)(-m d11  n- 66 ks a(a5/1t

rn-i n-I

*(6 or I even,2p odd)(S or 6 oven,2q odd)

*(2Rmknd 16)/((p -m M)q -in M) A m

WO(( or S ayenj2p odd)(J4 or S)(rnnR(d 12 4 d 66 ))/(p -M
2

V4 or( Os )(SorS evon,2q odd)(m 2d +n 2R 2 d2 )/(q 2 _n 2 )l

E (9 or S even,2p odd)(4 or 0)(rnksa 55 )/(p -l
2) C~ - (113)

from sq. (I111)

M N
X X Z [(( or S even,2p odd)(Yt or W)(nR(d 12 4 d 66))/(p 

2 -M2

mni n-i

V4i( or S)(SorB ovtn,2n odd)(m d 6 nRd 26 )/(n -q 2

* (4J or S)(nRd26(i-cos(nl~cos(qV))M26 %n

4t 06(J or 9)(4 or 9)(-u d - in R d - (ks a )/2Vt 212

2 2
+ (9 or 9 tven,2p odd)(nd26(i-cos(n~)cos(qK)))/(p -ai )l 826 mn

- ((J or 9)(34 or S)nRksa )l C 0 (114)
44 an
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And from Eq. U112)

Z Z (6 or 8 even,2p odd)(14 or 0)(mksa 55)/(p -in 2 A k
m-1I n-I

t K(Ji or S)(I or S)(nRksa44  B
44 mn

+ 91 i rS(~o )(_m 2ka 5-
2 2k

* V2S 0 or 6)(4,p dd o r a evn,2 odd)

*(2kpnR\Q, /(s2(P2 _"2) ((1 -n2)) Cn g=15

Equations (113) (114)t and (1S) are now ready to be programmed to

generate the Galerkin equations as before.
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Ill. Discussion and Results

This chapter will describe the computer programs used to solve the

eigenvalue problem formulated in the last chapter. It will also discuss the two

types of laminated plates used in the programs and the subsequent analysis

performed with those plates. We will begin by describing the computer algorithms.

Comouter Algorithms

Four computer programs were written to set up and solve for the

approximate natural frequencies and mode shapes for the three boundary

conditions considered. The first program determines the nondimensional bending

and extensional stiffness elements for a symmetric laminate. The second program

formulates the eigenvalue problem CA~xu).B~x where EA3 is the stiffness matrix

and [B3 is the combined mass and inertia matrix. The third program solves the

eigenvalue problem. The last program generates the data for the mode shape

plots. A description of each program follows.

Program One determines the nondimensional stiffness elements and the

density of the plate. It is divided into three basic sections and allows for a

laminate to be built up from different materials and orientations. The three basic

sections are ) the input, 2) the computation of the dimensional bending and

extensional stiffnesses, and 3) the computation of the nondimensional stiffnesses.

The input section gathers the following data:

-11

1 Orientation angle, .

2) R

3) 12
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r.- .. 4) V .1 2 --

4)4
1 012

Poisson's ratio, Y is calculated from V 1 2 by the equation V2  t2 x (a/E

The shear moduli terms, G23 and GtU are computed from G 12. G 3 is set equal to 4

G and G23 is set equal to 80% of G 2 .
12. 2"

The second section of this program is the longest. It calculates the

dimensional bending and extensional stiffnesses for a lamina and then loops back

to the beginning for more input data. If the material properties are the same, it

will only ask for the new orientation angle. It will continue to sum these

stiffnesses together until the laminate lay-up is completed. The stiffness

elements are determined by computing the reduced stiffness terms (Q's) from Sq. -.
ij

(14) and then computing the transformed reduced stiffness terms (Q s) using Lq.

(13). The extensional and bending stiffnesses are then determined using Eqs. (28)

and (30). After the laminate buildup is complete, the program moves on to the

third section.

The third section takes the dimensional stiffnesses and computos the

nondimensional stiffnesses using Eq. (53) from the previous chapter. These
k". ..

stiffnesses are then printed. A listing of this program may be found in Appendix -

A.

The second program computes the mass and stiffness matrices for the

eigenvalue problem. Like the first, it too is divided into three sections. The first I.

section contains the plate data generated from Program One. The second section

builds the stiffness and mass matrices and the third section outputs these

matrices to a file.
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Section one is the input section. It contains all of the required material

properties, geometrical plate data, and integers which determine the number of

terms in GalerKin's equations and the number of Galerkin equations.

Section two generates the stiffness and mass matrices. It takes the

algebraic equations (Eqs. 85-8? for the first boundary condition, Eqs. 99-10t for

the second boundary condition, and Eqs. 113o-15 for the third boundary condition),

determines the value of the integrated sine and cosine terms, and then builds the

family of Galerkin equations. The stiffness and mass (or inertia) terms are

separated and the matrices are constructed. It should be noted here that the

buckling terms (those multiplied by kI, 2' and K3) were not used in this analysis

and will not appear in the computer listing.

Section three outputs the two matrices to a file. A listing of this program

can be found in Appendix B.,. -

The third program solves the eigenvalue problem. It is also divided into the

input, process, output format. The input section reads in the stiffness and mass

matrices generated from Program Two. The process section solves the eigenvalue

problem by calling the IGZS routine from the IMSL library E73. The output section

writes the eigenvalues and the eigenvectors to a file. A listing of this program

may be found in Appendix C.

The fourth program generates the data base which is used to produce a

contour plot of the mode shape. It can do this as a result of solving the

eigenvalue problem. Our admissible functions for each boundary condition were

made up of an infinite series of sine functions (each term the product of a sine

function of x and a sine function of y) multiplied by an infinite number of

undetermined coefficients (the C mns). When we solved the eigenvalue problem, the
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bottom third of our eigenvector was the solution for the C mn's. Therefore to

agenerate the displacement w, as a function of x and y we only need this portion of

the eigenvector multiplied by its appropriate sine functions (see Eqs. (67), (1),

and (1W5)). That's exactly what the last program does. It reads in the vigenvector

for the desired mode, strips off the last third and then normalizes that portion of

it. The program then generates a value for w as a function of x and y over the

domain of the plate. This datafile is then used by the SUPERPROC file on the

CYBER (developed by Captain Hinrichsen and appended to by Major Hodge) to plot

the contours of the mode shape. A listing of the last program may be found in

Appendix D.

p.- .
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Analysis Performed

S. Several different characteristics of both the Galerkin Method and shear

deformation and rotatory inertia effects were investigated. To explore the

GalerKin method, convergence characteristics and comparison to closed-form

solutions were researched. To study the effects of shear deformation and rotatory

inertia, several cases varying the length to thickness ratio were investigated. We

will begin our discussion by describing the type of plates used in the subsequent

analysis.

Laminated Plate Prooerties

Two different types of laminated plates were used in this thesis. Both

consisted of a graphite-epoxy material (AS/3501) with the following properties:

: 21.61+06 psi.

12 1.40&+06 psi.

20.3 (116)

1i2 -0.61+06 psi.

P 0.055 lb./in.3

where P is the mass density and the other material properties have been

previously defined. One plate had a ply layup of C/190 2 , and the second had a

layup of E±453 2s' The thickness of the plates was held constant at one inch but

the length and width dimensions varied (between 5 and 20 inches) depending on

the type of analysis being performed. Tables 3.1 and 3.2 contain the stiffness

elements computed from Program One for these two plate layups.
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Oraphit-poxy E9/9032

One inch thick

IElemen t Dimensional Value Nondimensional Value

A548,888 8.385714

A 4 5  6

A55  546,888 8.385714

D35,211.3 8,8251589

D2 2 322,778 0.23955

D26 86

D6  58,868 6.6357143

Units for the dimensional Aterms are lb./in.

Units for the dimensional D terms are in. -lbs.

Table 3.1 Stiffness Clements for Plate i
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a On@ inch thick

Element Dimensional Value Nondimensional Value

A 4  548,886 9.385714

A45 6

A53 546,866 6.385714

Dl 537,089 0.383635

D1 437,089 6.312287

D1 368,099 8.22887

D537,889 8.383635

D2 398,899 6.22097

D6  451,878 8.32277

Unit for the dimensional A terms are lb.Iin.

Units for the dimensional Dterms are in.. lbs.

Table 3.2 Stiffness Clements for Plate 2
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Galerkin Method Characteristics

In using the Galerkin Method for solving our set of three coupled partial

differential equations, we have to ask ourselves some questions. First, does the

technique converge to a solution and second, how does the solution compare with

accepted theory? We will now look at these two questions.

A discussion of the proof of convergence for the Galerkin Method may be

found in Reference [9]. A criteria based on the method for convergence is whether-.

the assumed functions form a complete %et of functions. We will not attempt to

prove convergence for the work completed herein. We will, however, show the

necessary (but not sufficient) condition that the frequency drops by smaller and- I
smaller amounts as the values of H and N are increased. Tables 3.3 and 3.4 show

the values of normalized frequency twa 2 (p/ 2 h3 )] for the three boundary

conditions considered for the two plates with increasing values of H and N. The .

* tables are based on a length to thickness ratio (s) of 20. Boundary condition #1 is

the simply-supported case. Boundary condition #2 is the clamped case and boundary

condition #3 is the clamped (two opposite sides) simply-supported (two opposite
p

sides) case. The author could not compute frequencies greater than M and N = 8 .

due to computer memory limitations.

As can be seen in Table 3.3, the simply-supported case for the [8/903]2s

layup converges from the start. This is to be expected as the boundaries are

completely satisfied. All of the other cases have not converged but display

characteristics that makes one believe they will converge as H and N get larger.

That is, for every increase in 4 and H, the normalized frequency drops by a smaller

and smaller amount.

A plot of the normalized frequency vs H and N for BC #2 for the L+ 4 5 12 5

plate (third mode) is presented in Figure 3.1. This condition tends to have one of
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Non-dimensional Natural Frequencies EO/9032 s

graphite-epoxy, a/bu1, s=2-

M N Ist Mode 3rd Mode 5th Mode

Boundary Condition #1

2 2 11.758 36.866
4 4 11.758 36.866 42.573
6 6 11.758 . 36.866 42.573

8 8 11.758 36.866 42.573

Boundary Condition #2
2 2 31.751 69.938 -----

4 4 23.734 49.483 67.568 .... -

6 6 22.992 48.569 57.062 .?.'"

8 8 22.776 48.328 55.665

Boundary Condition #3
2 2 24.878 65.386
4 4 21.233 45.463 52.438
6 6 29.814 45.256 51.832-r
8 20.697 45.225 51.664

Table 3.3 Normalized Frequencies 4or Plate I

7.
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Non-dimensional Natural Frequencies U±453

graphite-epoxy, Va.it s=29 2

M N 1st Mode 3rd Mode 5th Mlode

Boundary Condition #1
2 2 14.699 36.164---
4 4 14.418 35.444 57.883
6 6 14.283 34.734 55.082
8 8 14.285 34.613 54.856--

Boundary Condition #(2
2 2 31.091 69.925---
4 4 22.363 44.553 72.156
6 6 21 .412 42.964 64.264
8 8 21.110 42.449 63.995

Boundary Condition #3
2 2 24.300 66.437---
4 4 18.956 41 .549 59.675
6 6 18-337 49.438 58.116
8 8 18.126 49.961 57.673

Table a.4 Normalized Frequencies for Plate 2
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the Oworst" convergence tendencies of the group. However, even it does show very

good converging behavior.

These tables are by no means offered as proof of convergence, but they do

display good convergence characteristics. They also point out a drawback with this

mathod. As M and N increase, the required computer memory space to generate the

.4
mass and stiffness matrices and to solve the vigenvalue problem becomes quite

large. Thus, if one wants a very accurate answer, particularly for a higher mode,

they will need the appropriate computer resources.
I

The next question that must be addressed is the "How well do the solutions

generated here compare to commonly accepted theory?" We will address that

question by investigating a very long, narrow plate. There are several reasons for

this. First, because of the nature of the system of equations for our plate, we can

zero out the rotatory inertia but we cannot zero out the shear deformation effect.

When shear deformation is zeroed, the equations become very ill-conditioned and

the problem cannot be solved. Therefore, we must look to commonly accepted theory

that includes either shear deformation or shear deformation and rotatory inertia

effects. We would also like to find a simply-supported case for an orthotropic

plate because our GalerKin Method converges quickly there. Reference L93 did

contain a closed-form solution for an infinitely long, simply-supported,

orthotropic plate including shear deformation effects, and this is what the author

used to validate his program.

From Reference E193 we have

'" ( CI(D m it2)/(D im 2 2 +KA 5 a2 ) (")

where

Y u(D m4 14Ip 4 ) ""8

""- - 74 ""
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Here w' is the natural frequency calculated from the classical theory based on the
m

Kirchhoff hypothesis. If we use the properties for Plate I (Table 3.1) and compute

the fundamental frequency for an infinitely longt I" wide plate we have

"a 1641.61 Hzm Qi9 M "

Wm 1417.56 Hz (119)-.

This author cannot place an infinitely" long plate into his Galerkin algorithm.

However, he can use a very long plate such as one 10 inches wide and 20 inches

long. From Reference [10, we can compute the natural frequency without shear

deformation and rotatory inertia effects from

2 a4I 2(D +2D M /a2 b2 + a 4 /b 4  (120)
P =D 1i l /a 4 ) + 12 66)/( 2/ 2b + 3

where

a I

a nX (121)
22

3

for all m and n (m and n determine the mode).

Again using the properties from Table 3.1 for our 10" by 200" plate we have

w a 1,641.26 Hz (122)

This compares to 1,641.61 Hz for Whitney's infinitely long plate so we can conclude

that our 200" plate reasonably approximates an infinitely long one and we can

therefore use Sq. (117) to compare with our Galerkin program output. Table 3.5

sf'ijws the comparison between the closed formed solution and the output from the
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Galerkin Method. As can be seen, excellent agreement was obtained. Table 3.5

also shows the effect of rotatory inertia for this condition.

The author could not find information to compare with the other two

boundary conditions.

Mode Closed-Form Solution Galerkin Method Galerkin Method
with SD with SD no RI with SD and RI

M N 5

1 1417.56 1417.56 1414.32

2 1418.5 1418.38 1415.89

3 1428.1 1419.97 1416.68

4 1422.41 1422.42 1418.96

5 1425.51 1425.68 1422.e

Note: All frequencies are in Hz.

Table 3.5 Galerkin Method and Closed-Form Solution

Comparison Plate #1
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Shear Deformation and Rotatory Inertia Effects

The second area of investigation was to determine the effect of shear

deformation and rotatory inertia for the boundary conditions considered. This was

accomplished by varying the length to thickness ratio and comparing those results -. -

to classical laminated plate theory. Only square plates were considered.

For the [/9632s plate, simply-supported, the length to thickness ratio was

varied from 5 to 50. The results are plotted in Figures 3.2 and 3.3 as normalized

frequency '. thickness ratio for the first and fifth bending modes. It can be seen

that shear deformation effects can be significant (up to 33% lower for the first

mode and 52% lower for the fifth mode for a length to thickness ratio of 5) while .

rotatory inertia effects account for only a 2% lower frequency at the worst point.

Notice that as the length to thickness ratio approaches 50, we asymptotically

approach the classical laminated solution. .

These same trends are seen for the 1± 4 5 12s simply-supported plate also.

Figures 3.4 and 3.5 plot the normali-ed frequency vs length to thickness ratio for

the first and fifth modes for this plate. Although the frequencies are slightly

higher, the same behavior occurs as before. The shear deformation effect becomes

significant for lengt~i to thickness ratios of less than 35 and rotatory inertia

effects are very small. Table 3.6 presents this data. There were no classical

solutions avaliable Lo compare these results with, but, based on the behavior of

the first plate, we could estimate a first mode normalized frequency of about 15

and a fifth mode normalized frequency of about 63. L .

Tables 3.7 and 3.8 show the comparisons for the second and third boundary

conditions for the [9/9032s plate. They too show the same type of trends as the %

previous two cases. Shear deformation is a significant effect below length to
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2 3 X
Nondimensional Frequency Wa (p/E h)

s Ist Mode 5th Mode

SD no RI SD and RI SD no RI SD and RI

5 9.62 9.57 25.66 25.51

is 12.83 12.77 42.96 41.6?

15 13.88 13.84 58.79 50.39

28 14.31 14.28 55.42 55.08

25 14.53 14.51 58.85 57.77

Ik38 14.65 14.63 59.65 59.43

35 14.72 14.71 60.67 69.49

49 14.76 14.75 61.37 61.23

*50 14.88 14.87 62.23 62.i3

Classical Laminated Plate Frequency: None available

Simply-Supported Boundary Condition [±45] m

Table 3.6 Shear Deformation and Rotatory Effects for Plate 2
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2 3" .
Nondimensional Frequency wa (p/E-h-

s 1st Mode 5th Mode

SD no RI SO and RI SD no RI SD and RI

5 10.89 18.85 25.10 24.82

Is 17.27 17.21 41.44 41.01

15 20.8? 28.84 51.38 58.86

29 23.83 23.00 57.45 57.86

25 24.3? 24.36 61.53 61.21

30 25.32 25.38 65.23 65.08

35 26.81 25.99 68.89 67.93

Classical Laminated Plate Frequency 1st Mode: 26.47 5th Mode: 74.25

Clamped Boundary Condition (6/961 2s M=W6

Table 3.7 Comparison of Shear Deformation and Rotatory

Inertia Effects to Classical Laminated Plate Theory.

83..

. .j

.' . - . .*



2 3 4
Nondimensional Frequency Wa (p/E h)

s 1st Mode 5th Mode

SD no RI SD and RI SD no RI SD and RI

5 9.50 9.41 24.26 23.96

1@ 15.25 15.26 36.88 36.28

15 18.76 18.72 45.12 44.86

28 28.85 28.81 52.09 51.83

25 22.16 22.13 56.97 56.77

38 23.05 23.03 60.48 60.31

35 23.78 23.68 63.08 62.94

Classical Laminated Plate Frequency 1st Mode: 24.53 5th Mode: 78.26

Clamped Simply-Supported Boundary Condition [6/98] M=N--6
2s

Table 3.8 Comparison of Shear Deformation and Rotatory
Inertia Effects to Classical Laminated Plate Theory.
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thickness ratios of 38 and rotatory inertia has little effect on these bending

modes. These were not plotted because a value of M=MN6 was used to generate the

data. This was don* to conserve time and computer resources. However, the

frequencies did not have enough terms to converge and at s=30 they overshot the

classical solution by about 3%. For the purpose of showing trends between

rotatory inertia and shear deformation the author feels this approach was

jiustified,
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Mode Shape Determination

As stated in the discussion on the last computer program, when we solve

the eigenvalue problem we also got back the values of the undetermined

coefficients to determine the mode shape for a particular frequency (this includes

the torsional modes also). Figures 3.6 thru 3.11 are contour plots of the first

modes for both plates for dl three boundary conditions. A length to thickness

ratio of 10 was used when generating these plots.
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Figure 3.6 Mode Shape Plot Simply -Supported Boundary

Plate #1 First Mode

87

. A



.~~~~ .............

0-

0.0 1

Figue 3. Mod Shae Pot Campe Boudar

Plat #1FrtMd



clamped

1.0-

00 1.0
clamped
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IV. Conclusions

Based on the analysis presented in this thesis, the following conclusions

are presented. They are organized in terms of some general comments on the

Galerkin Method, some specific comments on the three boundary conditions, and

then some general comments comparing the boundaries.

Galerkin Method Comments

1. The GalerKin Method is a valid approach to solving the plate equations of motion

and yields excellent results for the simply-supported boundary condition.

2. The convergence tendencies of the solution are easily checked with this method

by generating more terms, and therefore more equations (provided the assumed

functions are a complete set of functions).

3. More terms were required to achieve a converged solution for problems

considered in this study whose assumed functions did not identically satisfy the

natural boundary conditions than those whose assumed functions did identically

satisfy them.

4. For a problem that requires a large number of terms to reach a converged

solution, the eigenvalue problem becomes quite large. Because of this, the

author could not use more than 8 terms in the Galerkin equations. This effected

the quality of results for the clamped and clamped limply-supported boundary

conditions.

Simoly-Suaoorted Boundary Comments

1. The natural frequency for a square orthotropic plate, simply-supported, for the

first mode is 10% lower than the Classical Laminated Plate Theory (CLPT)
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frequency at a length to thickness ratio (represented by s) of 11 and drops to

33% lower for an s of 5. For the fifth mode, the frequency is 18. lower at an s

of 23 and drops to 52% lower for an s of 5.

2. For a cross-ply laminate with the same conditions as above, the same type of I
shear deformation effects were seen. No CLPT solution was found in the current

literature, therefore no comparison could be made.

3. For both types of plates above, the analysis of rotatory inertia effects showed

a lowering of the natural frequency from the shear deformation frequency by one

to two percent for s's below 25 for the first five modes.

Clamoed Boundary Comments

1. The natural frequency for a square orthotropic plate, clamped on all sides, for

the first mode, is 0% lower than the CLPT frequency for an s of 21 and drops to

59% lower for an s of 5. For the fifth mode, the frequency is 10. lower at an s

of 33 and drops to 66% lower for an s of 5.

2. For the same case above, the value of the asymptotic limit for the natural

frequency was 3% higher than the CLPT solution. This was due to the fact that

an H and N of six was used to generate the data. To achieve closer results, a

larger value of H and N would have to be used.

3. The analysis of rotatory inertia effects showed a lowering of the natural

frequency from the shear deformation frequency to be at most L., occuring at an

S of 5.
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Clamped Simoly-Suoported Boundary

1. The natural frequency for a square orthotropic plate, clamped on two opposite

sides, simply-supported on two opposite sides, for the first mode, is 10% lower

than the CLPT frequency for an s of 25 and drops to 61% lower for an s of 5.

For the fifth mode, the frequency is 1M% lower at an s of 35 and drops to 65%

lower for an s of 5.

2. For the same case above, the value of the asymptotic limit for the natural

frequency was t.5% higher than the CLPT solution. This is again due to the fact

that a value of M and N equal to six was used to generate the data.

3. The analysis of rotatory inertia effects showed a lowering of the natural

frequency from the shear deformation frequency to be at most 1%, occuring at an

s of 5.

General Comments

1. The effects of shear deformation are more significant for the two clamped

boundary conditions than for the simply-supported boundary.

2. The effects of shear deformation increase with increasing mode for all three

boundary conditions.

3. Analysis shows that rotatory inertia has very little effect for all three modes.
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SREM THIS PROGRAM COMPUTES THE EXTENSIONA~L AND BENDING
* REM STIFFNESS ELEMENTS FOR A SYMMIETRIC LAMINATE BUILD

30 REM UP, GIVEN LAMINA PROPERTIES.
48 REM
58 A16@
68 A2--8
78 A3=0
86 DI=O
98 D2--8
188 D3=e
118 D4=8e
128 D5--@
138 D6=8@
148 PS=8O
158 INPUTODO YOU WISH TO ADD ANOTHER LAYER-;N*
168 IF N$=-No THEN GOTO 860
178 REM
188 REM THIS SECTION GETS THE LAMINA DATA.
198 REM
288 INPUTOORIENTATION ANGLE ";TD
218 TW$-TD*3.1415927/180
228 INPUT'ZK DIMENSION -;ZK
238 INPUTmZK-1 DIMENSION ";Z1
248 INPUTOARE THE REST OF THE LAMINA DATA THE SAME AS THE LAST TIME -M
258 IF M$=OY THEN GOTO 448
268 INPT"E1 ';E1

0INPUT"E2 3;E2
L8b INPUTOV12 m;V1
298 V2=V1*(E2/EI)
386 INPUT"G12 ";G1
318 G3=G1
328 G26@.B*GI
336 INPUTOMASS DENSITY -;RHO
348 REM
358 REM COMPUTE THE A AND D ELEMENTS FOR THIS LAYER.
36e REM
378 Q1=E1/(1-(V1*V2))
388 Q2=-(V1*E2)/(1-(V1*V2))
398 Q3=-E2/(1-CV1*Vj2))
488 04=G2

* 418 Q5=G3
420 Q6=G1
435 REM
448 REM COMPUTE THE QBARS.
445 REM
45e8B1=Q1*(COS(TH))(4 + 2*(Q2+2*Q6)*(SIN(TH))E2 *(COS(TH))[2 + 03*(SIN(TH))E4
168 BQ+03-4*6)*(SIN(TH))[2 * (COS(TH))E2 + Q2*((SIN(TH))E4 +(COS(TH))[4)
478 B3=Q1*(SIN(TH))C4 + 2*(0242*Q6)*(SIN(TH))[2 * (COS(TH))E2 + 03*(COS(TH))E4
4808 4=(Q1-02-2*06)*SIN(TH)*(COS(TH))[3 + (02-Q3+2*06)*(SIN(TH))E3*COS(TH)
4908B5=(Q1-Q2-2*Q6)*(SIN(TH))(3*COS(TH) + (02-Q3+2*6*SNTH*COScr*i))[3
588 B6--(Q1+Q3-2*Q2-2*Q6)*(SIN(TH))E2*(COS(TH))[2 +Q6*((SIN(TH))E4 +(COS(TH))E4

B704*(COS(TH))C2 + 4 (INT)1

528 BB=(Q4-Q5)*COS(TH)*SIN(TH)
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530 B9=QS5*(COS(TH))E2 0 4*(SIN(TH))E2
550 REM
560 REM COMPUTE THE A ELEMENTS.
570 REM
588 A4.-B7*(ZK-Z1)
598 AS=88B*(ZK-Z1)
600 A6=B9*(ZK-Z1)
618 P-RHO*(ZK-Z1)
620 REM
630 REM COMPUTE THE D ELEMENTS.
648 REM
650 DZ=(ZK[3-Z1[3)
660 F1=(1/3)*B1*DZ
678 F2=-(1/3)*B2*DZ
688 F3=(1/3)*B4*DZ
698 F4=( 1/3)*B3*DZ
788 FS=-(1/3)*BS*DZ
718 F6=-(l/3)*B6*DZ
728 REM
738 REM SUMl THE A'S ANJD D'S WITH THE PREVIOUS LAYERS.
748 REM

*758 AI=A1+A4
*76e A2=-A2+A5

778 A3=A3+A6
* 788 DI=D1'-F1

798 D2=-D2+F2
S 888 L'3=D3+F3

810 D4=D4+F4
828 DS=-D5+F5
838 D6=064F6
840 PS=-PS+P
858 GOTO 150
854 REM -

855 REM PRINT OUT THE A AND D ELEMENTS.
*856 REM
*868 LPRINT'A44 = w;A1
*870 LPRINT'A45 = ";A2
*880) LPRINTOA55 = O;A3

898 LPRINT'D11 = ";Dl
908 LPRINT*DI2 = m;D2
918 LPRINT'D16 = "03

*928 LPRINT*D22 = 104
938 LPRINT'D26 = *;D5

*948 LPRINT*D66 = m;D6
958 LPRINTOP = ";Ps

* 968 REM NOW COMPUTE THE NORMAiLIZED STIFFNESSES.
*978 INPUTOINPUT THE PLATE THICKNESS;H
*988 A1=AI/(E2*H)
*998 A2=-A2/(E2*H)
* 1888 A3=A3/(E2*H)

1818 O1=D/(E2*H[3)
1820 02-D2/(E2*HE3)L
1838 D3=D3/(E2*HE3)
1848 D4=D4/(E2*HC3)
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1858 DS=-D5/(E2*HE3)
1868 D6-D6/(E2*H[3)
1878 LPRINT
1088 LPRINToa44 = ;A1
1898 LPRINTa45 = ;A2
1188 LPRINTa55 = ';A3

*1118 LPRINTod1I = ;Dl

1138 LPRINTd16 =;D3
1148 LPRINTmd22 = ;D4
1150 LPRINTmd26 = ;D5
1168 LPRINTd66 = ;D6
1170 LPRINT
1188 END
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PROGRAP f3CTO(IKPUT ,OUTPUTTAPE!=INPU7gTAPL6=CUTPUT)
0 REAL FI.F2tF3,F'.,F5,F6,F~tF8,F9 F10 ,KK4,K5,Pl

INTEGER MqNqPQI7EST1 ,ITES72,I'P'*XMAX
REAL AI(10,ID),A2(1 O9lO),A3(1O,1O),81C1O,1O) ,82(l0,10)
REAL El (1~O,1),Cl(l0,10)gC2C10 ,1O),C3(10,10)
REAL IP(10891DR), (108)9STC108 9108 )sPA(108,9108)

C INPUT DATA FOR 7HE COP'PCSITE PLM7E.
C

NMA X:NP AX
PI3.*1 i15921

HR1.0

K=5 .i6.
K4=1.0

A44=3*8571F-02
A55=3.8571E-O1
D11=1 .11083
0 12 =0 a.02 5 15G9

OL~ 0 16 =0 . C
D22=0e2J05'
0 2 6=0 .

C OETERM'!IC THE VALUE OF THE 1hTEC-RATED 7ERPS.
C

J-1
')0 110 P=19PMAX
DO 100 C=1,IMAX
00 50 M=1MNAX
DO 50 N= 1 AMAX
ITESTt= MOD(M*P,2)
ITEST2= MCO(N*0,2)
IF CP9.E'Q*P? THEN

Fl=G.5

ELSE
F I= 0 . 0
IF (ITEST1.EQo0) THEAt

F =0.C
pF4=Oo0

ELSE
F3=2*P
Fq:2*P

E ,EOIF
ENDIF
IF (ftoEQeQ) THEN.

* P2=G.5

ELSE
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IF (ITES72*EQ*C) THEh
F 0A .0
F f.. 0 C

ELSE

END IF
END IF
F 7 M (P* 11 (P *P)

IF (F7d.o0*) THEN

F'3=1.
ENDIF
F9=CN*N)-(Q*Q)

F10=-FS
IF (F5.FO.0o) THEN

F9=1 EN4

C COMIPUTE THE STIFFNESS MATRIX.
C

Al (M.N)=PI.PI.F1.F2.(-I4,J4.OllhthiR*R*-66-K*S*S*A5'5/CPI*PI) )
1.F'.FE*C24M*N*R'D16)/(Fe*Fl0)
Bl(MN,-P1.PI.F1.F2.(-M*PMt0l6-N*A*R*R*C26)
l.F4.F.C(q.N.R*(012.L6EJ)/(F8*FIC)

A2(PN)=PI.PI*Fl*F2.(-M.M.Dl6-h.A.R*R.D26)
l.F4'F6.(M.N.R*(Ol2.E66) )/(F8*FlC)
B2CMN)=PI.PIoFl'F2*C-MMO66-N*IhR*R*D22-K*S*S*A44/(PI*Pl))

C?(PN)=-Fl.F6*(N*R*K*S*A44/FIOJ
A3(PtN)=F4*F2*CP*K*S*A55)/FB
B3(MPr1)7Fl.F6*('f*R*P*S.A44)/FIO
C3 CM ,N )=P IPI'Fl.F2*'(-PMp*K*A55 -f'N'R*R*Ke A44)
ST( 1,J)=-AlCMN)
ST(19J4MlAV*NMAX)=-F1CPN)
ST C! j*2.pqpAX.NPAX) c-Cl (M,fi)
ST I I.1PAX*NMAX#J)'=-*2(M ,N)
STI !.MPAX*NMAXJM4MAX.NPAX)=-B2(MN)
ST(I.1'MAX.NPAX9,J2PM*NMAX)=-C2(MN)A
ST(I+,7MMAX*NPAXJ)=-A3(Mqh)
ST CI.7.%MhqAXNPAX, J.P'PAX*NMAX )=-E2 (MN)
ST(1,2.MMAX.NPAXJ.2.MMA*X.V4AX)=-C3(MN)

50 CONTINUE

Jzl
100! CONTINUL

C COMPUTE THE MASS MATRIX*
c

DO 20 I=1,(3'MMAX*NPAX)
DO 21) J=l(3*PMAX*NPAX)
IF (IorQ.oJ) THENI

IM(IIJ):00
ELSE

IMCIJ)10.
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END IF
20 CONTINL -

rDo !j 11,(2*MMAX*NPwAN
MCCI)=K-* CP*A*A)/C 48*.:*H*ET

3C CONTINUE
00 U0 Iz( 2MMAX*NMA)#.I I * RPMAX 'AMAX)

MC(I)Z(4 (R4)R4)*Pl)/(4C*S*S*ET(H**3))
4 C CONTINUE

DO ED Iz1,(3*PPAX*N?'AW)
DO Ei) ~j=lqt3.IPAX*NPAX)

6C CON1fU-
C
C WRITE TH;- STIFFNESS AND PASS MATRICES TO A DATA FILE.

C
* DO 151 I=1v3*PMAX*NPAX

1O lil Jzl,3o1'MAX*NI'AX
WR ITE Ce ,1 t0 ST(I ,J ) MA CI J)

150 F 'JR FA T ( 2 1 5
151 CONTINUF

ST 1:p
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Equations for Boundary Condition #~1

COMPUTE THE STIFFNESS MATRIX&

Al(M,N)=PI*PIFlF2CMMND1I-hN*R*R*066-K*S*A
5 5 /(PI~prI

1-F3*F6*2*RMN*D16 )/(F7'FlO)

2.F6*CN*R*Dl6*C1-COS(M*PI)iCOS(P*Pl)))/FlO
:1PP)PI.PIiFl*F2*(-M*N*R (D1c4D66))

1-F3*F6*(M*M*D6NN*RRD26)/CFl*FIO)
,F6*(M*D6C1lCOS(M*Pl)bCOSCPPI)))/FlO
Cl CM N)=-PI*F1*F2*M*KSA55
A2 CMN)PI*PIF*FZCMN*R*(D12+D

6 6 ))

1-F4*F5' (M.P*06N*N*R*R*026)/(F8*F9)

f ~2.F4.NR*26*C1-COS(NPI)COSQPI)/2.4,P*PI),

1-F4*F5*(2.P0*N*R*D26/CF8F9) b

?.F4.M*D26*(l-COS(N*FI)COSCQt1Pl))/F
8

C2(MN)PIFl*F2(RKS*A44
A3C MN)=-PI*Fl*F2 *K*S*A55

ST (I J)=-A1(MvN)
ST( IJ+MMAX*NMAX)=-Bl(MN)
S TC(I ,J*2, MMA*NMAX ) Cl(MN)

ST( I+MMAX*NMAXJ)A2CMtN)

ST C!4MMAX*MAKJ4M'AXNMAX)C2CMN)
ST C *2*MMAX*NMAX* J) =-A3CM,N)
ST (1.2 4AXINPAX9J ?4AXNMAX)=-B3(MN)

ST C I2*MMAX'NMAY, J.2*1MAX*NMAX)=-C3 iMN)
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Equations for Boundary Condition #~34

C COMPUTE THE STIFFNESS PATRIX4
c

Al (MN)JP*PI.Fl*F2.C-M*MtO1l-h*h.R.R.CbE-K*ZO*S*A55/CPI4P

l+FA*F6*2*R*MC*N**(12,OF8))/F

Cl CMoN)=-F4*F2*M*K..'A55/F8
A2(MN[=-F.F5Pe(PM'DlE6ft'N.R'R'*026)/F9

1+4*F2* PI *CP*tvs'R* (132*06)) /F8
2.)Fl.Pi.N*ft.26*C-CCS(N.Pl)*CCI~(Q*PZ))
B2 CM ,N )P J.PJFIoF2 .(-14*14066-haA .R*ReC22'-K*S*S*A44/(PI*P
1-F4*V5.(2*M*N*R.O26/(FB*F,9))

CP(P,h)=-PI.F1*F2*( b*R*K*S*A44)
A3C P' N)=F4*F2*M*K*S*A! 5/F8
83(P9,N =-Pi.Fl*F2.k.RII*S*AAq
C3(PN)=PI.PI.f1.F2.(-P*MtKA55-4.NRRKA4)

4 ST( IJ*MMAK.Nl4AV)=-El(P*N)
ST Ci J#2.'MMqX*NMAX)=-C (9Nf)
ST( I.MqAX*NP4AX9.J)-A2CPsN)
STC I. MA * NPA~, J. MAX. NMAX) :-82 CM )
STC T.MPAX'NIAX,*2*IPPAX*?vMAXt)-C2MPk)
SIC I.2'MMA)I'NPAV9J) :-A3(P9N)

SI (1.2' 4Ax*NPAX,4,2.CMMAX*ftFAXI:-C3(NI)
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