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-Preface

This study shows that optimization techniques can be

E' ' _;ppliod to the solution of complex, boundsry-layer flow ptob-_

p lems, It .bnilds on previous work done by students and facul-

B ty at the Air Force Institute of Technology. .Cuptain Karen
Lange working with Major James K. Hodge developed s computer
code to solve bonndaty-laygt problenms., ‘C;ptnin Lange's com-

- puter code ';c modified, and optimization codes studied by
1st Ljentenait Bruce K. Boyd and Captain S:i A. Leone were

P added. VWithout the work of these in&ividunls. oy ext;nsipn

;. of both studies to optimization of two-~dimensional, ﬁoundnry-

'éf ' layer code would not ﬁ:vg been p;ssiblo.

. : I yonld like to take this opportunity to especially
thank my advisor, Dr. Sal A, Leone; for his guidance, know-

i ledge, and assistance throughout tﬁis'stidy. Of course,

' this itudy could not have proceedoé very far, without the

! knowledge and expertise of Major Hodgs in Computer Fluid
Dynamics. I thaﬁk him for ilwlys‘villingly sharing his ex-
pertiie when I needed it. Lastly, I thank Lt, Col. Erie

t{ Jumper and Dr. M. L. Rasmussen fof giving me the foundation

) in theoretical, fluid dynamics that enibled me fo uﬁdetstand

i ' Ithe‘phyiics of the flow probl;m. _If in some small way, this

. study helps further stndie; of similar ftobl;-s or ldv;nces‘

S: the study of hypersonic, flnia dynamics, it is a success.

R y | | . :

r , ' " Donald E. Coffey, Jr.
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Abstra

“‘v . . .

This study develéps an adaptive-grid method which mini-
mizes the truncntibn error in the 'finite-difference solutior,

The study solves compressible, steady-state, boundary-layer

‘equations assuming perfect-gas flow over an isothermal wsll.
fé . The Dorodnitsyn, compressibility transformation chaﬁges the,

boundary-layer eqaations, as expressed in two-dimensional,

cazrtezsian coordinates, into an inconpxessiblg form, The
equations are then transformed into variables of a compu-
tationsl plane. Impiicit Successive-Over-Rolazation (SOR)

solves the finite~differenced, computational, boundary-layer

equations, Comparison of the computed solution for incom-

pressible flow over a flat plate to Blasius'’, exact solution

shows the boundary-layer code is accrurate.

The adaptive-gria method uvses Powell’s method to opti-
mize the sglutiqn'gtid by minimizing the sum of the third
derivative in the computational pluné of the tlng?ntinl velo-
city component. Powell’s method finds the grid, comtrol

function, Q, in an elliptic, grid e¢quation, Yﬂﬂ + QYn=0.

which minimizes a specified function. The grid equation
gen?rates the grid spacing at the end of the flate; This
spacing is then streamwise sct}ed scross the remaining grid.
Minimizing the sum oflth; square of the third derivative in
the couput;?i;nal plane of the tangential velocity conﬁonent,

Unﬂﬂz' over the entire domain decreases the truncationm error

xi




the best of the functions tested. This study tests the sum

of the sdnares"of the first, second, ﬁnd third derivative of
E thé tangential velocity as minimized functions. The accuracy
- of the optinized. adaptive-grid solution is greater than the

original, fixed-grid solution. . The stndy then applies the
optimization to supersonié and hypersonic problems. ‘The

computed, adaptive-grid solutions show good correlationm with

thearetical models for supersonic and hypersonic flow devel-

oped by Van Driest and Eckert.

xii-
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ADAPTIVE-GRID OPTIMIZATION FOR

MINIMIZING STEADY-STATE, TRUNCATION ERROR

Chapter I: Introduction

Every flight of the Space Shuttle higylights the know-
ledge aeronauntical engigeers'have of hypersonic flight. The
;nccass of each flight shows a basic nnderstapding of thg
probleﬁs involved with flight ;t high altitudes and at speeds
above Mach 5. However, if future geron;utical engineers are
to gnild better shnttle; or £o'develop ‘2 transatnbspheric ’
vehicle, increased understanding of hypersonic flight will be
necéssatﬁ. Pfesently. Oxporin;ntation in the wind tunnel and
Space Shuttle fiights validates portibn§ of the hypersonic

theory. ‘Unfortnnatély. experimental work of this sort is

very expensive, Newer methods of modeling flow using compu-

ters offer hope for simulating characteristic, fluidvp:oper—

ties in the hypersonic regime without the experimental ex-
pense. Using computational fluid methods, unexpected exper—

imental results can‘bé confirmed, and, convensely.'experi-

. ments can be designed to vniid:te results from computational

fluid modeiing. In this way, better understanding of hyper-

sonic fluid behavior can be gained and can lead to more effi-

"cient hypersonic vehicles.

An example of the nsefu{ﬁess of compu.ationsl modeling

for explaining the results of experimental data is the non-

e T T T e A S S e R e TR T TR T e Ty AMEAEAS SO RO A A A At Al ot A0 Al bh Ah A8 S
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§ - iso?hernallwnll effects which have occurred on the Spacg

y ‘ Shuttle. The surface of any body travelling at high speeds
? } o through any fluid heats up. The effect the hoated surface

; § has on the flow field or boundary layet.lronnd the venicle

i L depends on Fhe hen? transfer coefficieat of the sntfage. ‘If
é- - ' the body is one material and is heated evenly.‘tbe convection
E‘ q. .which tak§s place is isothermal. Bowever.lif. as is the case
i ;ﬁ vith‘;ﬁe Space Shuttle, there are sevaral different materials
ﬁ; joined together on the same surface, non-isothermal convec~
i? tion o. :urs, Nonfiséthetmal convéction can ﬁhange the air

;: f; and heat flow on the vehicle., Boundary-layer fheofy for Fhe
E} - "hypersonic, nbn-isotherual wall ptedict:ll difcontinnity in

t. B wall tonperntﬁée in the area of a material change.(ll). _How-

ever, wind tunne]l datas suggests a much slower, wall-temper—
ature recovery than theory suggests (21:2). Roberts and

Lange, in two separate studies, investigated the non-isother-

LA R A AR . o '.. .
L AL e
. .

4

i w—

mal-wall effect using computational fluid dynamics (CFD)

(15,21). Roberts modeled flows with two-dimensional Navier-

‘v oW v
A .
’

Stokes equations., Lange modeled flow using an unsteady,

J—

:

r
[P

. boundary-layer analysis. Both stndieslshowed 2 non-isother-
gj (; wal, wall effect. However, in thevcas; of the bonndaty—lny;r
gf ] anai}sis, inlccnftcies in the neth;d tended to smear the

g; i; quantitative results. The disadvaita;e with most conpntei.

modeling tpchiiques is truncation error and round-off error
smear the results in high-gradient areas. These high-grad-
ient areas also are the parts of the f_ ow where the non-iso-

thermal, wall effect takes place., Therefore, the cngineer

”n
)

¥ oFL. A b ~ - S D T A L
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: must decrease the errors in the high-gradient areas to more
t accurately model flow conditions. In this way, computer
fluid modeling can more accurately predict flow conditions
= » " such as the non-isothermal, wall effect, which otherwise

would aot be seen.

‘Background

Using an.adaptive grid which is changed after asach solu-

0 e LIRS

l N | tion of the modeling equations is a way to increase the ac-
curacy of the computer solution without increasing the number
= i of solution, grid ﬁoints. The easiest way tc increase reso-
i + o luation of regions where fluid properties, like temperature
and pressure, are changing rapidly is to 1nct§ase th; number
of grid points. The other way is to use an adaptive grid for
i . _ solving the model equations. The adaptive grid concentrates
grid poings in high-grlaient sareas, (i.e. bonndary layers),’

o " to increase resolution and spreads out grid points in low-

gradient regions. This keeps the total number of grid points

SER
- :

small, but places grid points to produce the best resolun-

EaY

; %f tion. For Q time-dependent problem, Ghia, Ghia, and Shin

: . vdeveIOp s flow-dependent, adaptive-grid method to increase

L | the sccuracy of the computer solution. This adaptive-grid

a method reforms the solution grid after ;lch time iteration of
: -, the modeling equations by minimizing the nngnit;de of the

g convective terms of the governing equations which indirectly
E? ‘ minimizes the truncation error in the governing equation;'

: fi (7:36-37). Their tre‘tnent of the two-dimensional, boundary-

:i 3
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layer equations adapts the grid in normal and streamwise
directions. However, since the gradients in a boundary liyer

are not very large in the streamwise direction, it may be

possible ‘to optimize the solution grid in only the n.rmal

direction and still get an accurate solution. If the parti-
sular, flow solutioss do not have similar, velbcity profiles,
the solution grid can be‘coupled with a parnbglic—g:id gener~
1tion method (9). Regardless, one—dinehiionnl. grid, optimi-
zatio# techniqnesvcan be applied to optimize the grid in the
normal direction, Leone and Hodge suggest optimizing the
adlptiQe grid in one dimension with Poweli': minimization
method (16). ﬁoyd also uses a method fo'optinize the adap-
tive grid ain one dimq#sion. "Using ; least sqnareilcnrve fit

to model a quadratic equation and a Newton-Raphson optimiza-

R L I R

tion of a grid control fuamction, Q, Boyd attempts to minimize’

the trv-cation error of the third derivative of the dependent

 variab.- to get a more accurate one-dimensional, flow solu-

tion (3:11),. After optimizing the solutionm grid in the
normal direction with one-dimensional techniques, the charac-
teristics of the boundary layer solution can be used to scale

the normal optimization in the streamwise direction. The.

resulting optimized, solution grid gemerates more accurate

flow solutions.

Ohieggixg
This thesis develops a method for opfiuizing. a steady-

state, adaptive-grid solution of two-dimensional, flow prob-
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lems by minimizing the truncation error in the streanmwise
velocity compénent. The adaptive grid minimizes ghe sum of
the square of the third derivative of the streamwise velocity
in the transformed plane, EUnn“', using Powell's minimization
method. Povell'g method iterates on an n-dimensinnal array
niing conjugate directions unfil finding the nininnn of the
fqnction without calculating the derivntive£ of the fnnctién
cn that sarray. In this study, Powell'’s method primarily
nininiies the thi;d derivative of the streamwise velocity
component by oﬁtinizing the grid control fnnction.lqm in the
equation, Yn“+QY“ =), Because of the flexibility_ofléoi-
o}l's'nethod, the effect of optimizing thé solution grid by
minimizing the firsf. second, or a combination of all three
streamwise velocity derivativgs is checked to ¥erify trunca-
tion error arguments. Regardless of the specific minimized
function used, th; method optimizes the grid in the normal
diiect{on. Tie grid is then ;caled in thelstteamwise direc~
tion using boundary-layer theoryr A modification of Lange's
bonndnty-layef code thesn iolves_the‘fléw problem. éonpnting
the incompressible and conpre:sible flow solutions to exnﬁt
solutions and Lange'’s non-adaptive nnieticnl solutions veri-

fies the accuracy of the adaptive-grid solution., The iﬁ—

crease in accuracy with the optimized, adaptive grid should
be evident in the velocity calculations and in the comparison

of heat transfer along the surface.




Chapter II: Theory

Boupdary-Layer Egpations

The complete Navier—Stokes eqﬁations predict fluid char-
acteristics for all flow conditions (23:64)., This set of
equastions is however very difficult to solve. Since the
majority of viscou; éffects and heat transfer effocts appear’
in a thin layer tdjacenf to the flow surface; this stuvdy
investigates only tﬂe bortion of flow in that regiom, known
as the bonndlryrllyer. Floi properties in the boundary layer
‘allow several simplifying assumptions which result in a sim-
pler set of flow, modeling equations than the Navier-Stokes
equations; For “igh Reynold’s number flaws. viscous effects
in the form of shelting stress at the wall, t = n(aulay)y_o.
and velocity gradients in the normal direction, du/dy, lt;
very large inside the boundary layer, O;tside the boundary
layer, flow is eskenti;lly inviscid with negligible, velocity
gradients (23:128-129). . Therefore, within the boundary layer
thickness, &, it is assumed that:

a. gradient; in the normal directions are much larger

than gradients in the streamwise direction, |

b.the nofﬁal velocity, v, is n;ch smaller than the

streamwise velocity, u, and

c. all terms of order 8/L or smaller are negligible.
For laminar flow over a flat plate or wedge, the pressure

- gradient in the streamwise direction, 9p/dx, of the iuviscid
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region is inpt?ssed on the boundary layer. This pressure
gradient is assumed to be zero for a flat plate paiallel to
the flow. Further, the boundary layer equations are non-di-

mensionalized using the following relationships.

=zl L, y= pl, t= _£'0',, w= g’ , va=yg'l

L' L’ L' u’, : U', (1)
= g’ = ‘T - v = og! = !
B B, T CUT L opo_pl L el pm ol
. U Uy : Po

Pe’'U' ) LT

The resulting non-dimensionalized, boundary-layer equations

for compressible, laminar flow are:

Continuity:  3p+dpu+dpy =0 ' ‘ (2)
it Ix Jy .
Momentum: ' dpun + aggz + 3dpuy = -3p + @ u_ du (3a)
. at ax . ay ax Qy Re 3y
ap = 0 | (3b)
oy
Energy: dpH+3puR+3pvH = 3p+d _y _ aH

at ax dy dt 3y RePr 3y

+ 3 w(Pr-1) ag’/2 - (&)
ay RePr dy

Boundary conditions for the boundary layer egnltions are

n'='v'= 0 at y’'= 0 and u'= U, at y’=8. Assuming incompressi-

'ble flow or transforming the compressible ethfions into am

incompressible form usfng the Dorodnitsyn transformation

further simplifies the above equations (22:101),

Iggomngeg;ihle, Bogggagx—Lgxer Theory

If the flow density is constant, the velocfty profile,
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as well ls-the.heat transfer characteristics near the wall,
have already been derived theoretically for both exact and
:gproxihate cases. In the incompressible case, the boundary

iayer equations are:

Continuity: 3U+3V = 0O . (s)
' X aY
Momentum: " QU+U3U+VvaU = -1 3ap+d [ up aU (6s)
at dX Y p 84X 9Y \ Re 9Y
dp = 0 | S (6b)

oY

Energy: QE+UJE+Vad = 1 3_n+3_(_.|w_ a_n)
’ p at

-9t dX dY dY\RePr aY

+ a_(mzz;u au_’&) S
Y RePr Y

where u=U, v=V, x =X, and y=Y

Blasin§ developed the exact solution to incompressible, boun-
dary layer flow over a flat plate. The results of his exact
solution define the thickness of the boundary laye:.i If the

edge of the boundary layer is assumed to be where U'/U. is

.994, the boundsry layer thickness, 85, at any streamwise

location, x', is

8(x') = sizé' , ~ (8)
’ -] x .

vhere Re =p,'u’x'/p’'y. Blasius’ solution also gives an

exact value for the skinm friction coefficient, Cf.

Ce(x') = 0,664 (9
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The computer solution of the incompressible, flat, plate
problem should match this exact Cf ;esnlt.

Though Blasius’ incompressible, flat, plite solution is
exact and is the best do;ctiption of this velocity profile,
the von Karman—-Pohlhausen, lpproxinate.solution of the two-
dimensional, flow problem offers more easily obtainable velo-
city profile results. The von Karnan-Pahlhlnsen method
sélves the momentum—integral equation (23:160). The‘vqlocity

distribution is a fourth-order polynomial where w=y'/8(x).

U=10'= se + bu?

+ cms + du4 (10)
v . ‘

' The four boundary conditions required to solve the coeffi-

cients in Eq (10) are

y'=0 : U =0 ' 3%y = 1 3p = -U, 4uU
aY?  p ax ° ax°
R

y'=8: U =1 au = 0, 2°U = 0 (11)
aY ax" ,

The coefficients, a—d, in Eq (10) are

a= 2+0/6 , b= -0/2 , o= -2+0/2, d= 1-8/6

where Q= 5’ggge o ‘ ' c(12)
pdx'

-(23:207). G is the Pohlhins;ﬁ p;es;ure. gradient parameter.
For flat plate and wedgg flows with no streamwise, pressure
gradient, O is zeto.v-The von Karman-Pohlhausen solution
provides another verification for numerically~derived, velo-
city profiles in this study. After vérifying the accuracy of
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the boundary~layer and adaptive-grid code with the Blasius or
von Knrman-Pohlhtn§en resnlt;. then compressible forms of the

boundary-layer equations are solved.

Compressibility Consjderstions -

Since the incompressible, boundary—layer eqnation;. Eqs
(5), (6), and k7). already have apptoximu£e and 'exsct solu-
tions, the solution of tte conprés;ipie. bou:iidary~-layer equa-
tions, Eqs (2), (3), and (4), is possible if the change in
density und viscosity ncr;ss the boundary layer can be ac-
counted for. The Dorodnftsyn f;nnsforna;ion changes the
conprossibie equations into an incompressible forn. The
compressible equations can then be solved ss inconprqssible
eqnntions. Thg Dorodnitsyn transformation is "a nonlineat.
stretching of the normal coordinate” (20); The transformation
takes the normal coordinate, y, in the phy;ical space and
stretches it into & new normal ;oordinage. Y, in the trans-
formed space. The transformed, space coordinates are now
expresscd in X and Y where

b4
X = x, Y = ! dy (13)
0 e’

The transformed, grid coordinateQ'iead to a change in the
velocity cononents, as ;hovn in Appendi,lA. The transform-

ed, velocity components are

U = u, V= pv + aY/3t + udY/dx (14)

Using the transformed variables in Eqs (13) and (14), changes
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the compressible, boundary-layer eqn;tions. Eqs (2) - (4).
into the inconpressiblevfo:m iﬁ Bqs (5) - (7). The boundary
layer thickness, 8(x), also chaﬁges into a transforumed, boun-
dary~layer thickness, A(X). Assuming a calorically-perfect
gas, the density ratio, p'/p',, equals the inve-se of the |
specific enthalpy ratio, hse'/hs'. and
’ A(X) ,
8(x) = P dY (15)
0 hsy'

An exzplicit expression for A(x) comes from anm integral analy-

sis of the new, boundary=layer equations (20).

a(xy = [fo' ~yT % 2BXT . (16)
P'y Ug*fg *(20 +1) '

;here B = dU[Ue
' a(Y/A)

and £y = jt U/0,(1-0/T,) d(Y/A)

o, in the above equation, is 0 for tvo-dinensionll flow and 1
for axisymmetric flow (Appendix P). Assuming flow over ;he'
" flat plate or wedge de elops a cubic, velocity profile such

that
U/T, = 1.5(X/8) < 0.5(1/8)3 , o an

the value of 2 B/fg is 280/13. EKnown flow conditions then
determine A(X)., After solvin; the flow for the incempres—

sible form, inveise transformations compute the solutiom in
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the physical space. The inverse transformations resclt from

integrating the conputea, enthalpy ratio to recover the phy-

.sicni-gfid. normal coordinate, or

Y

y ha' 4y . (18)
o hs,’

-The compressible solution of the Sonndtry layer equations ia

the physical plane for a given set of flow conditions is then

completc.

Flow Preperties
Obligue, Shock-VWave Theozy,
For supersonic flow over a flat plate, the flow condi-

tions such as density, pressure, temperature, and velocity

remain relatively constant outside the boundary'liyer.v How-

ever, .f the flat plate is inclineg to the direction of flow

to simulate a wedge, the flow conditiqns change is flow pas-

ses through the shock wave which develops in front of the

'

wedge. This study assumes a perfect, gas flow with no dis-
socistion of the gas molecules. For the perfect gas,
p’' = p'R T', and p = X 3 : (19)
' -1 T ,
where the gas constant, R, is 1715 ff-lb/slngf°k and the
specific heat ratio, v, is 1.4, Oblique, shock-wave theory

applies to this flow problem. To find the conditions behind

the shock wave, the shock angle, B, must be found. Liepmann

"and Roshko nse sn explicit form of the shock-angle equation

v

12
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(17:87). However, the implicit form,

M2 sin2p - 1 = vl M_2 sinBsin® - (20)

cos(p-90)

is more useful for iteratively comprting the shock ingle. B,
given a deflection angle, 6, and a freestream, Mach number,
M_,. Vith the shock angle and freestfenm values of Mach, M,

pressure, p,, and temperature, T,, the equations

M2 sin2(p-0) = 2 + (y-1) M2 sin’p (21)
2M_ sin“p - (y-1)

P, = pull + 2y (M sin?p-1)] (22)

T+l : '

Te= Tof1 + 2(y-1) u.° ﬁinzﬁ —(yM_ > sin2p +1)] (23)
(y+1) M, sin“p

define the edge cqnditions bohind the shock wave for Mach
number, pressure, and temperatﬁte (17:86). All other edge
conditions suchvas enthalﬁy and density can be found from
fhese'quantities. These edge conditions affect the solution

of the boundary-layer equations over the given surface.

Viscosity.

Viscosity is not a constant across the boundary layer,
4Si£ce viscqsiky is a function of the fluid temperature which
chaﬁge; 4CTross thé boundary layer, viscosity also changes.

Generally, engineers use Sutherland’'s, viscosity law,

p' = 2,2685 3 10”8 7:3/2 4.0, (24)
T' + 198.6 OR ft-sec

for calculating viscosity as the fluid temperature changes.

13
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However, fiore suggests Sutherland’s law is not valid for the
low temperatures resnlting from hipersonic, flow experiments
(5:56). Flow temperatures in hypersomic, wind-tunnel g;sting
generally range from 30°R to 200°R (6:56). A more, exact
expression for lov-tenbétltgre vjscosity applies.‘ Keyes
obtains better low-tenpe:atur; calculations of vis;osi;y

using the relation

p ' = 2,32 3 1078 7:/1/2 slugs (25)

1+[220/T'(1097T7)] ft-sec

- (13), 'Ia ad@ition. this low-temperature, visccosity law gives
virtually the same results for'tempetntures tbove 300°R,
Cappelano states "varistion between the alternate form and
Sutherland’s law is negligible above a temperature of T=
300°R ” (4:20). Below 300°R, there is a differemce. The
new, viscosity law is more accurate for low tenperitntes.
Therefore, unless computational results must be compared with
previous studies which use Sitheti(nd's la'; this study uses

. Keyes’ viscosity law where appropriate.

Convective Heat Transfer Coefficient,

Convection is the primary method of hest transfgt'actoss
the boundary layer. For a con;tant‘temperatnte surface, the

heat flow, q, is calculated by the convective, heat relation

qa = BA(T, - T,,) (26)

where T, is the wall temperature, T, is the adiabatic, wall

tempetatﬁre, and A is the wall surface area, Thus, it is not

14
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ORI ' ‘surprising that the ability to sccurately compute the convec—

' ) :

by 'k ' tive, heat, transfer coefficient, h, is important to any

boundary-layer study. Numerically, the computer code cnlcu;
lates the heat flow rate per unit areas from the flow solution
using , .

q/A = -k 3T'/3y’ ‘ (27)
where k is the thermal, conductivity coefficient for a_flnia.
The wall temperature, T, is specified. T, varies with Mach
number and fluid temperature by the adiabatic, wall fenpera;
.ture,

Tyw = Tol1+(Pr)1/2 (1—_21)11.,21 . (28)

The Prundt]l number is assumed constant and is

Pr = Cpu/k (29)

s The factor, Prllz. in Bq (28) is thé'adilb:tic. recovery

factor for laminar flows (12:213). In assuming an adisbasic

- R

wall, Schetz explains,

L it e o
N

the temperature that the wall attains at equili-
brium will depend on how much of this kinetic ener-
8y [kinetic erergy of the flow]l is recovered on

the wall, This is expressed in the recovery fac-
tor... (22:5)

AN () Ayt
RN S

Solving Eq (26), using Eqs (27);(29). gives a nnnefical solu-

tion for h. There is also a theoretical solution‘for h.

- 'Y!""
AR
‘:

The theoretical soiution comes from Blasius’ solution of the
flat-plate problei as well as Eckert's, fl:t-ﬁlate'theo:yf
From Blasius’, exact solution for flat plate flow, Eq (9)

{ give; a value for Cf. Ce is als& related to the Stanton

135
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aumber, St,, by

Cgy = 28t Pr2/3 - (30)
and
Sty = —-1%fL—- , (31)
P CpUy .

(12:198). Snbstitutiﬁg Eq (31) iato Eq (30), equating the
result to Eq (9), and solving for h gives a theoretical value

of h:

' re 1ty 1 /er11/2 )
by = 332 Gp [ng'py’u, /x'] " (32)

This viine of h is‘only for flows where viscosity and density
are constant, the wall is isothermal, and the fluid is a

perfect, single—~species gas with no dissociation df molec~-

-ules. It applies therefore tO'inconpressibie flows treated

in this study. However, for compressible, boundary-layer
flows, where deﬁ:ity ai& vﬁscésity vary, the theory must be
modified slightly. Eckert suggests the use of a reference
tempetatnfe vﬂich is_represontntive‘of the temperatures ac-—
ross the bou;dary layer in the previous constant property

relatioﬁs (22;96). Defiqed as

T = T, '+.5(T,'-T,")+.22(T,'~-T,") (33)

the reference temperature is used to. caslculate reference
values of viscosity and density, u.' and p.'.'tespoctively.'
Then, Stanton number and h for compressible flois are calcu-

lated uiing the reference, *, conditions. Another referemce

16
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enthalpy., h is calculated by uvsing pg, Pes and vy in

ref’

place of the edge conditions in Eq (32). To evaluate how h

.changes from its freestream value, the theoretical h values

for the incompressible and compressible cases are compared to
the freestream h. For incompressible flow over a flat
plate, with edge conditions equal to freestream comditions,

h/href should be one for both numerical and the&reticnl val-

‘wes of h. How close the'nnmericul h/h:ef is to the theoreti-

cal h/href indicates how well the computed solution models

the exact, inconpressible solution,

Theoretical Limjtatjons

The assumptions vhich,fotn the theoretical basis for the
bopnda?y-layer fhoo:y of this study pose seversl limitations
on th; gehertl applic;tibn of the solitions for all flow
cond.tions in an experimgntal setting. The flows are as-
sumed to be perfect ;n;e;. This limits the results to sir
flows whose temperatures and pressures guarantes negligible,
rarefied—~gas eff;cts, i.e. molecular vibration or dissocia~
tion. Also, the‘Qequironent of & zero streamwise pressure
gradient across the boundsary layer limits ‘the sﬁupes to which
it can be apﬁfied jithont modification. These ;hapes include

flat ﬂlates. wvedges, and cones. Most important is a limita-

tion on the physical effects which can be predicted in the
hypersonic regime. Boundary-layer theory is incapable of
predicting the effects of shock-boundary-layer interaction.

The shock wave produced at the leading edge of a sharp-nosed

17
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body, like a wedge, is relatively far away from the surface

‘and the boundary layer at low Mach numbers except in the

immediate vicinity of the point (Fig. 1). However, at hyper-
sonic Mach numbers, the shock wave comes close to ;he :nifnce
(Fig.2)., 1In eipl.ining his experiments on shock interaction,
Nagamatsu comaents,

The shock wave and boundary layer séen to be merged

before separating into distinct shock wave and

boundary layer. As the flow Mach number was in-

creased, the merged region extended over a llrger

portion of the plate(18:461).
He also points out sone of the variations in flow properties
this interactions causes.

¥Vhen the shock iave and the boundary layer were

merged, the pressure from the shock wave to the

surface for a given location from the leading edge

was approximately constant., After the shock wave

became separated from the boundary layer, the pres-

. sure behind the shock wave was greater than the

snrf:ce pressure at the same location (18:462),
Boundnry-luyer theory is not able to predict any of these
interactive tcsults. Therefore, any solution at the leading
edge of the body probably has an inherently, large error.
This error at the leading edge should be ignored to get an.
indication of the overall error of the boundary-layer code
over the surface. The finite-difference method also has
problems predicting the large gradients at the leading edge.

Therefore, neglecting large leading edge errors due to the

boundary layer solution also leads to neglecting a large

leading error due to the finite-differemce method.

18
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Chapter III: Finite Differemce Solution

The b&undary;layeiqunationsu Eqs (2) -(5), are a non-
linear set of batti;l @iffetentinl equatioﬁ# which describe
fluid flow closs to ; surface. Their mathematical solution
is difficn{t.' However, nsing finite-difference techniques,
the solution of the boundary-layer equations Qnd the resul-
ting description of the flow field is possible. First, the
domain of the flow field must be divided. or differenced, into
a grid pattern. This grid may be in ;hy form wﬁich makes
solution of the problem ea;ie;t.: For this study, three dif-
ferent grids whickh characterize three diffe;ent,sglntion
spaces are of interest: thé physical grid, the Dorodnitsyn-
transfo;ned grid, and the computationsl grid. The physical
grid is an orthogonal, s;tftce—normal grid which describes
the flow pattern in the physical, compressible planme. In the
physical plane, the boundary-layer equations are highly noa-
linear i;d vary with viscosity ;nd density. Therefore, the
Dorodnitsyn transform is introduced to take the density de-
pendence out of the problem. This transformation adjusts the
normal coordinate, y, to put the density dependence imnto the
dcfinitionlof a new normal coordinate, Y, instead of.in the
boundary-layer eqnation;. This creates coordinates, X and Y,
for the Dorodnitsyn-tran#formed gfid; The final step is to
take all nq;~1ineltity out of the grid by traﬁsfotnin;‘x and
Y to computational variables, E‘;nd n. Expressing the boun-
dnry;layer equations in terms of the new, computational varia-

29
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bles results in solantion cqnatioﬁ: which are more easily
solved in a uniform, ;onputationaj space, The computational
grid with coordi?ntes. ¢ and n.‘has a'constant,steﬁ size of
one in both the‘st:ean'isi‘lnd normal directions. The physi-

cal and Dorodnitsyn grids have varying step sizes. Boundary

.conditions and initial conditions are then added to thé solu-

tion equations, and the eqnatiohs sre solved in the computa-
tional space using an implicit, Successive-Over-Relaxation

(SOR) method.

The Solution Grid'

The solution grid divides tbe flow field into exachv

. coordinate locations, The solution of the flow problem des-

cribes the velbcity,lonthalby. and other flow conditions

at the grid locations. For ea&h flow problenm, fﬁere is an
optinun grid which b;st resolves the fiov field. The accur-
acy of.tﬁe solution reflects how weli the grid fetermines the
gridients in the flow field. VWith very large spacing botveen
grid points, rapidly changing flow conditions in a particular
area may not sppear due to lack of resolﬁtion‘on t;e grid.,
In?reasing the ﬁnnber of gria points imcreases resolﬁtion but
also increases computational time. It is also a crude, brute
force ipproach to the problem. An ideal solution is to put a
large number of grid points in the high—gradient regions and
f;ver péints'in lov";ridient regions without incressing the
total number of grid p;ints. The.bonnda;y—ltyor_problen

needs the majority of the points in the boundary layer, es—

21

G v e P v e s e gaa

LR o FAFSF I AN B A N

o w s ovgmegr ¢ v

-




.pecially near the leadiﬁg edge, where flow conditions are
ch;nging rapidly. The least concentration of points should
be in'the inviscid=flow regioﬁ outside the boundary layer
‘where conditions are essentially constant. The particular
way this type of grid is built depends on the grid ?qnatiqn
chosen.

This study uses a one—dimensional. grid equation to de-
termine the grid'spacing in one dinension,anaisgonn to a
multi~dimensional Poi;son equation (an eliiptig partial dif-
ferental equation). The other dimension is then sc;led using
8 velocity profile of Blasius’, bonndary-iayer'solntion.

The ope-dimensional grid equations are

Xgg+ PXg = 0, (streamwise direction) or. (34)

Y _+ QY = 0 (normal direction) (35).

nn n

ihere‘
¢ = &(x,y.,t)

n = alx,y,t) . (36)

‘P and Q are contral functions, The grid equations stretch
the grid point; depending on the control functions P and Q.
The gria used to verify results for Langq'§ non-udaptive grid
boundary~layer program defines the points in the streamwise
direction first, Settiﬁg P equal to zero forms a cons;ant
spacing in the x'di;ection. Then, using a parabolic velocity
profile, U/Ue =.(Y/6)'1/2 for‘b‘defined by Eq (8), deternines.
the y coordinnte;. Due to the eonstant; x spacing';nd the
parabolic ch;tacteristics of the power law, the power—law
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grid is several, expanding, parabolic cﬁrves. as Fig. 3 shows.
The flow solution which comes from using this power=law grid
can be compared with the optimize& grid solution., The opti-
mized=grid solution also uses constant spacigg in the x di-
rection. However, it uses Eq (35) to fix the y coordinates

at an x location and then scales the rest of the grid using

"Eq (8). Unified Difference Relations (UDR) given by Hodge,

Leone, and McCarty solve the grid equation (9). The UDR for

Eq (35) are

Tipp - (14 DY, + ey, 1 =0 (> 0) (37a)

Y, - B Y, v Y, ;=0 (<0 (37B)

A tridagonal iteration scheme solves Eqs (37) (3:10). To

scale the grid, a ratio of &'s at different x locations is
set up and like terms cancelled. The relationship between

any two x locations becomes
Y, = Y, (X,/%)3/2 | . (38)

This study defines Y; and X; and solves the normal grid ;gna-
tion at the fgi end of the plate, For each given Xz loca—-
tion, a Y, value results. Fig. 4 shows the i;itial g?id for
the optimized solution, To optimize the grid, the Q that
minimizes the truncation error in the third derivative of the

tangential velocity in the cdmputatioﬁal plane, U must be

nan*
found. Therefore, the grid must now be transformed into the
computational plane,

Although the grid is computed in tie form presented
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above, this grid is related to computational plane variables.
t, n, and v, by metric coefficients. The functional rela-
tiunshifs between the transformed variables and computationsl

variables are

e b {(X.Y.t)
A o= (X, Y, t) ‘ : (39)
T =t
Using the chain rule and solving for the derivative of each

computational variable with respect to tbe transformed varis-

bles, the metric coefficients are

Iy = Y“/J nx ='—Y§/J ty = 0
ty = -X,/3 | ny = X /7ty =0 (40)
By = (XY, - XY )/T me = (X Yy - XY)/T

For this study, X does not change in the normal  ‘~-ectiomn, so
Xn is zero. Also, for stesdy;stnte solutions where the grid

is not changing with time, Xt and Y, are zero. The steady-

state néttics are
tx = 1/%, g = oY XY, nY = 1/Y,  (41)

If thé adaptive grid changes with time, the metrics also

include the time dependent metrics

Se = ~X¢/Xg | ng = -Yy/ny (42)

These metric ielationships, Eqs (41) and (42), maske it pos-
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sidble to convert the boundazy-layer equations intovcomfﬁtl—
tional variables. The Dorodnitsyn‘tran:formatipn changes

the physical grid shown in Fig. 5 to a transformed grid,
shown in Fi;: 6. The ;etrics then mathematically change the
transformed grid into the uniforwm, rectangular gtid; shown in
Fig. 7. The uniform, computational grid makes solvini'the
boundary-layer equations simpler. It also allows for finding
an optini@n solntidﬁ grid which is not possible in the physi-

cal plane,

The Nnmg;iég;. Differepcing Eguations

WVhether the oﬁnitioﬁs are incompressible or Dorodnitsyn-
‘transformed, the boundlfy-luyet equations are more casily
solved if they are transformed into variabl;s of the computa-
tional plane. The constant, dormalized:nesy size of the
computational p}nne simplifies the differencing equations.
Eqs (5)-(7) when changed from X and Y in the transformed
plane to § and n in the computational plane become‘
Continnity: &xutfnxun+nyvn =0 (43)
Momentum: Ut+U(U§§x+Unnx)+VUan = 1/Re[pﬂ(Unny)]nY (44)
Energy: H, '+ U(H§§x+nnnx) + VHny =

Pe/p + (o Honydng + [ou(Pr=1) nyg(U2/2). 1. ny (45)
t PrRe M T T 2BoPr ¢ nin Y

(15:23). "For the momentun and eﬁergy eqnltion;. the differ—
encing methods used are three-poinmt, vindvnrd differencing on
the firs; derivative terms, seéond-ordet. central differ-
encing onm second derivative.viscous terms anh as Uﬂﬂ' B"n.

and Tn“._and two-point, backward differencing on the time
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terms, At the bougdaries. where three points cannot approx-
imste the first derivatives, the differencing is two-point,
upwind. This netﬁod is :irst—orQer accurate in time and
second-order accurate in space, except at the boundaries
where it is first—-order accurate in space. Lange uses this
method because, "this differencing scheme guarantees diagonal
dominance and is second-order accnrqée in the computational
plane” except at the boundary points as n&ted above (15:24).
After applying the differencing to Eqs (44) and (45)) and
st')lving for U,

i,J

Momentum: uni.j = {Un—li’j + alx AtUUni;l,J

- bly AtUUni_z)j + [enxU At + enyV At

and Hi,j , the solution eqnationsrtesult.

+ ny At((pll)j_l/z ny)/kelluni'j-l :
= [dnyU At + dnyV At1U; o
*ony AtlCpp) jo1ya nylU%, je1 /Re}/Ugoer  (46)

where U, ¢ = 1+e§xU At + fn}U At + fnyV At +
my At [ pu)J+1/2 ny + (Pﬂ)j -1/2 nyl/Re

= n—1
i,j = (B 74,5

+ lenyU At + enyV At + ngAL((ou) j-q/2 ny)] By, 4-1

Energy: HT, + alyU AtH®;_ 4 o - biyU AtH®, ,

|

= (dngUu At + dnyV pt)l!ni‘j-z +’%Y_%_§[(Pﬂ)j+1/2 y]ﬂni,j+1
' r

+ _ay At [(pp) (ye )2
3(15Pr)Re jr1/z 10,54

= (o) iy ny + Com) j-1/2 ﬂy)(Uni'j)z |
+ (o) o179 ny(U% o121/ B oo, ' (47)
Hooer = 1+ e2x0°7%, ;A + eng0 1 At + engv®™l, o oae

+ 1 [lpu) ny + (pu);:_ 1
afi&l H)j+1/2 MY u)j-1/2 Ny
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The i and ! give the abscissa and ordinate locations.respec-v

tively, in the computational plane. In the equations above,

~the coefficients, a - f, change depending on the grid point.

Using two-point backward or forwsrd, or three-point forward
or backward differencing ciangos the coefficients. Table I
has the coefficients for each case. To linearize the equa-~-
tions, Lange lags the the first iteintion.solntioﬁ in time so
U, V, and H'are calculated based upon the U, V, and'H at the
same locaéion Sut previous time step. For snbseqnenf itera-
tions, U, V. and H are caslculated based upon the U, V, and H
from th§ previous iteration step. Noif, the'nekric coeffi-
cients need to be differenced.

From the previous discussion of the metrics, fhe only
non-zero -etrigs are 3y, 0y, ana ny- ‘The inverse relation-
ships from Eq (41) genet;te‘the expressions for ;he differ—
enced metrics. Since $x eqnnlslxg and i constant lpacini
between streamwise points is used, a first-order, central
diffetenéo for Xg determines a constant {y. ny is found

| TABLE f , '

COMPUTATIONAL PLANE DIFFERENCE COEFFICIENTS

i ' k] s b ¢’ ‘ Q [ f

2 2 1.0 0.0 1.0 0.0 1.0 1.0
2 3- 1.0 ©0.0. 2.6 0.5 1.0 1.5

2 jmaz-1. 1.0 0.0 ~-1.0 0.0 1.0 1.0

3-  3- 2.0 -0.5 2.0 -0.5 1.5 1.5

3-  jmaz-1 2.0 -0.5 -1.0 . 0.0 1.5 -1.0
imax-1 jmaz-1 2.0 -0.5 '-1.0 0.0 1.5 -1.0
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similarly by using Yn,'whiéh is not constant. The spacing in
the normal direction does change with each streamwise loca-~
tion. Lange uses three, different schemes depending on the

n

terms is differenced with a second-order, central scheme

location of Yn in the equation (15:26). Y, in the viscous

"about the j+1/2 or j-llz.points. This gives an overall sec-

[

ond-order accurate Xn term. ]Yn for all other terms is repre—

sented by a second-order, central difference for the interior

points. This study uces a three—point windward scheme at the

boundaries. This guarantees second-order accuracy for all Yﬂ

differencing. For Y{‘ Lange uses an analytic calculation
for the metric. Lange oxpluins;
Initially, Y§ was calculated using a central dif-
ference with a backward difference at the end of
the domsin, A large amount of leading edge error
was induced by this method (15:27).

This study uses an analytic metric different from Lange's.

»
Y§ =  5Y (48)
X, - X ' .
§ ) .
However, since an analytic solutionm over the entire plate
limits the method's general applicibility. it is preferable
to use the analytic'solntiqn only at the leading edge. Lead-
ing~edge error is inherent in the boundary-layer solution‘
if Yg is numericaly calulated. However, if Yg is calculated
analytically with Eq (48) at the first couple of streamwise

locations, the numerical solutiom cap then be calcunlated on

the remaining points downsteram of the leading edge with less

error. Consequently, Y& is calculated with Eq (48) at the
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first two streamwise locations and with numerical, difference
equations at the rést of thelstr?amwise lo¢ations. The nu-
merical, differ?nce equations use central differencing on
the interior and three-point, backward differencing at the
back of the plate. This results in Yg with the same second-
order accuracy as Yﬂ and Xt. Lange gives an example of}tt
resulting fnlly-di(fetenced, linearized, momentum and erergy
equations (15:28). Using Lange’'s SOR method to compute U and
H from the differenced equations gives values used in the
continuity solution for V (15:30-32).

The transformed, continuity‘eqnation;.Eq (43), now con-
tains oﬁly one unknown, V has not been solved. Expressing

Vn in terms of the known metrics and U, V becomes

Vn = ;§§_U§ + %g_ui (49)
Lange integrntes Eq (49) with the trapezoidal rule for ;
constant step of ogé. Finite differencing on UE is a thrqe;
point, windward scheme (15:32). The integration of Uﬁ used
in this thesis is different than Lange's treatment. The Uﬂ
term separatés into two parts.

%g Un = %;[YE.U - J%(Yt)n dn]lj_1 (50)

The integral is evaluated nsing a trapezoidal rule with Ye

" averaged about the j—~1/2 point prior to the integratior.

After collecting terms, the difference equationvfor the in-
terior points is
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Vi = Vi, g1 WWgg, 5+ Yy, 510000, 4 = Uy 1y)

STy 5 - Xy o) =0.T5(T, 4 + Uy gog) (51)

+ 1.0(Ui_l'j + Ui‘l,j"l) - 0.25(0'1-2’j + Ui_z'j_l)]}
Solving for V Eonpletes the flow solution. All parameters of
the boundary layer problen aie then known or can be deter-

mined from U, V, and H,
To determine how close the computed boundary layer solu-
tion duplicates the heat transfer coefficient, h, Eqs (26)

and (27) are solved numerically., Since
k' = y'C,/Pr S (52)

the transformed, heat equation becomes

) T

The dT'/dY')y.o term is non-dimensionalized and Eq (53) is
then transformed tc the computational space (15:33).  This

equation is

9" = -2 o, (aT\ny . (54)
PrLR, \dn '
where dT/dn = (=3 T, 3 + 4 T; 5 - T, 3)/2  and

“Y II,Y“ = 2/(—3Yi.1 + 4Yi,2 ‘- Yi‘a)

The equation differencing is three—point upwind for the me-

tric Ypand dT/dn. Eq (26) is rearranged so that

h" = qor/(-r"__vra"

) : (55)

3s
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(22:95). The heat tramsfer coefficient calculated is then

compared to the theoretical h from Eq (32). If the numerical

scheme is accurate the ratio of the two h’s should be 1.0 for

incompressible cases.
Another parameter that is calculated to compare the
computer solution to theoretical incompressible results is

C¢. Eq (9) gives the Blasius solution for the skin friction

noefficient. This relation is derived from the definition of

Cf which is

Cp = _23,,= 2u' (a_tg (56)
pu'y pu’y \9Y/ yoo

The non-dimensionalized, transformed equation is

¢ = (2u¥e,.) (L, ' (57)
PoU L Y“ Y=0 .
Three-point, backward differencing evaluates Uﬂ and Yﬂ at the

wall. VWhen the C; computed from Eq (57) is divided by the
theoretical Cf from Eq (9), the best solution produces a

ratio closest to 1.0 for the incompressible case.

Boundary Conditions
The flow conditions at the wall and the ﬁpper boundary
of the domain fix the boundary conditions. Assuming no slip

conditions at the wall, u, and U' are zero. Also, there is

no flow through the boundery surface, therefore, v, and V,

are zero. The snrfice temperature, T', for the isothetial

wall cases is 530°R., Freestream temperature is also 530°R
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for most of the incompressible runs, ‘These cases come close
to an adiabatic, wall condition. At the domain’s upper boun-
dafy. the edge conditions depend on the given Mach ﬁumber;
For subsonic flows, the edge conditions are tho_sane as the
ffeestteam conditions, At Mach 1‘and above, ob;ique shock
wave theory sets the flow conditions behind the shock. The
conditions behinq the shock are the edge‘conditions'for su-
personic flows. Unlike these fixed boundary conditions, the

initial conditions change.

Initial Copditions

For the first iteration of the numerical s&lnfion. an
initial approximation of U, H, and V must be assumed. A
~cubic, 'velocity ﬁrofile is a relatively simple approximation
to the boundary layer and, as shown in Schlichting, it comes
close to Blasins’, exact, boundary-layer, velocity profile

(23:206). The cubic, velocity profile ,is
uo=u (1.5 (y'/8) - .5 (y'/8)31/u, (58)

For compressible solutions, Y’ replaces y’ and A(X) replaces
l8(x) in Eq (58). The enthalpy profile is derived from ;
gemperatute‘profile which is an approximate s§1ution of the
energy equation (22:34). |

T-T,_ = 1.5 (g4 - .Sfly’ | (59)

Since the total enthalpy, H, is CpT+02/2 for isentropic
flows, Eq (55) yields the nbn—dimensionnlized‘guess for H.
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1 3 ‘ LY 2
By,; = By + (Bg-B 1.5 vy - .5 ( g\ + .5y, .
' ' 5t : 6t UO

- sfu, N2 1.5 v - .53\ (60)
LI 8¢ 8,
The thermal, boundary-layer thickness, bt' in Eqs (59) and

(60) is:

5, = 8/(1.026 Pc1/3) (61)

This value for st is vayid if the entire plate surface is
heated and if &, is z;ro at the front of the plate (22:35).
For Pr=1, st will be le;s than 8. Finally, initial v values
are assumed to be zero througbout the domain. These'complete
the initial guess for the flow solutioi. The guess is input
along with the grid, and solution of the difference equations
gives 4 final, numerical solution for the floQ characteris-
tics. Uﬁfortunttely, th; ;dput-grid may not be able t6 ade=
qnately resolye some of the gradients in the solution.
Therefore, an bptimized grid 'hich minimiz§§ fhe truncation

error and produces better flow solutions must be found.
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Chapter IV: Grid Optimization

Using tinite—~difference methods to solve the 5oundnry-

laver equations requires polynomial approiimation'of the

first derivatives of velocity and enthalpy. The polynomial

‘approximations are not exact, Truncation error is inherent
in the so.iution since all terms of the approximation are not
included in the calculationsﬂ In the case of secomd-order
differencing of‘valocity derivatives, truncation error is
some mu1tip1e of the third derivative terms such as Unﬂﬂ,'n
Uﬁﬁﬁ' Higinizing the thind derivative terms insgres the .
truncation error is small, and the velocity solutionlis con-
sequently most sccurate., Since the velocity gradients in
the streamwise direction are small compared to the velocity

gradients in the normal direction, this study minimizes only

approaches zero.'Unn afproaches

nnn nmn

a constant and U€§<approaches zero., Finding the solution

R Y terms. Also, as U

f

grid which minimizes Uﬂﬂ thus optimizes .the boundary-layer

n
solution. Powell’s, conjugat;—direction method which iter-
ates on an n-dimensional array until finding the minimum of
desired function without calculating the derivatives of the
function.'is well-suited to this problem, Powell's method
'fiﬁds ;he grid control function, Q, in Eq (35) wbicﬁ forms
the optimum grid. |

Truncation error is present in any finite-difference

solution which uses pdlynomial approximations to define gra-
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dient terms, The finite differencing of the boundary-layer
equations, uses Taylor, polynomial expamsions of the gradient
terms. For example.‘xhe first-order, three-point, backward

difference of a gradient term, Wn is

"‘ = 3 "ilj "5 'i'j_i + 'ilj.-z + ;_'wnnn + 4_‘ 'n"nn +.e (62)

1o

§ ‘

‘assuming An is 1. Since the first three terms replace a

)

gradient term, 1like U“, in the finite-differenced, boundary-
layer equations, the truncation error is the sum of all the
highei derivative terms. The most heavily‘weighted‘term of
tye truncation error is the 'ﬂﬂﬂ term, If wﬂﬂﬂ is zeru,

'ﬂﬂﬂﬂ is zero. fherefofe. minimizing the third derivative
fetms shoqld significantly Qecreaéa the truncatiog error in
the finite~difference solution. |

The bonndary:layexleqnatiohs are twé-dimensionnl equa-—
tions., For a completely, accurate solution, two-dimensiéna],
grid equations should define the solution grid, However,
this study uses:the characteri;tics of the incompressible,’

boundary layer to simplify the grid selection. One of the

boundary-layer simplifications of the Navier-Stokes equations

is that the normal velocity gradients are much gréater than

thg,stieamwise, velocity gradie;ts. Therefore, ény error in
the normal veiocity gfadiénts ﬁas a‘latgqr impact on th;
overall error of th; computer solution than error in the
streamwise gradients. Hakiﬂg the x locations constant in

the adaptive grid allows the grid to concentrate om optimiz-

40

AT

.
A

() 't
»
.

., R

.
P

2
.
V"

Y
!

SR RRRR0R

L.




.

W

.-.
s
P
e‘ate

4

SO

£

[

r.r
‘

ing only the gradient§ in the normal direction. Primarily,

the adaptive grid tries to minimize the sum of Uﬁ“nz. but it

can also minimize the sums of Uﬂﬂz' Unz, or some other com-

bination of these terms. Once the normal direction is opti-

‘mized, the streumwise dimension is scaled according to Blas-

iuns’ description of the incompressible, bonndaryAlnyer. A
parsbolized, grid scheme can be nsed to avoid this scalimg.
Bq (38) shows a square—-root dependence on each streamwise

coordinate of the Blasius solution. Ordinate locations found

"using a given grid control function and the mormal grid equa4

tion, Eq (35), at one x location are scaled on the rest of
the grid using Eq (38). Powell's minimization method finds

the optimunm, grid control function, Q, which produces an

optimized flow solution,

Powell's Method

Powell's, minimization method has several features which
make it attractive for optimiziag the ;ormal gradients,
Powell’'s method does not rquire qalcnlating derivatives of
the function being minimized. This.is especially helpfpl in’

this study where no explicit function' is being minimized,

., Powell's method is flexible. Any computed quantity can be

hiqimized. Any parameter can becoms the minimized function
in Powell's algorithm. This nilowsvthe oétimization of the
grid with several, different, minimized faram?tets to find
the best optimization technique., Powell’'s method assumes a

locally, quadratic form between points rather than a linear
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form. Powell's method also converges quickly in a finite

number of steps. Powell explains,

#hen the procedure is applied to a quadratic form
«+o.the ultimate cate of convergence is fast when

the method is used to minimize a general funmction
(19:155).

Powell’s use of two conjugate directiong to search for the

QiniQnm achieves this fast convergence. Therefore, Powell'’s
method is accurate, allows fast convergence, is flexible, and
does'th require.fuffher derivi&ives of Uﬂﬂﬂ to minimize this

parameter. ' '
This study adapts Powell'’s method to minimize the sum of

Uﬂﬂnz‘ U 2. Unz. or any combination of these sums over the

entire solution grid., One iteration of Powell's minimization
procecure is explained below.
(i) For r=1,2,...,n calculate A, so that
f(A_y + ALE.) is a minimum and define
"Ar = At‘l + xtEt'
(:1) Find'the integer m, 1 {( m { n, so that

{f(A__ 1)-f(A ) }is a maximum, and define
a=e (X1 -e R,

(iii) Calcnlate f.= £(24, Ao), and define
f1= f(Ao) and fz— f(A )

(iv) If either f3>f; and/or

(£, - 265 +£3)9(3y-1,-0)2 > .5A(£4-£5)2 use the
old directions Bl' Ez,..., En for the next itera-
tion and use An :0: the next Ao. otherwise

(v) defining E= (A, -Ay, calculate A so that

f(A, + AE) is a mxnxuum, use Ey, EZ""'Em—l' En.
En+1: Em+2....E E as the directions and +AE as .
the starting po1nt for the next iteration ?19 156).

; 2 -2 2 soa
For this study, the sum of Unﬂﬂ R Unn R U“ , Or a combina
tion, of any of these terms is the above functionm, f. The Ao

to A  parameters above are A(y), A(2),..., A(n). @, the con-
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‘trol function, is some function of the A(1) to A(n) parame-

térs.
Q= Q (A(l)n A(Z)o‘-opA.(ﬂ)) . (63)

The A directions that Powell mentions are the directions
“the algorithm searches to find the function’'s minimum, Ini-

tinlly,‘this study uses two parameters so that
Q = A(1) + A(2) (64)

The f;rst-step in the minimization proceQure is finding f(Ad)
which is also f,. "The flow chart invAppendix C shows how
program MNTRER in Appendix D applies Powell’s algorithm.

. fhe program MNTRER in Appendix D finds each A, by iter~
ating over k iterations until it reaches a minimum of
f(Ar—i + irEr). For each f. A s iniiially zero. Two other
values of x._x* and A~, are also chosen a fixed percentage
"distance from A, The k iterationm them begins. Three new
parameters, A*. A", and Ab. are calculated for Qach T vitﬁ

at, A", and 2.
ALY = A O v N e, (65)

The new A values add according to Eq (64) and form Q%, @~,

and QY. Three new grids are thpn generatea for the +, -, and
b case;. Three sets of boundary-layer equations are solvsd,
Taking the three boundary-layer solutions, subroutinme NEWP1
and U and three functional values of

'’ nmn
£, £%, and f~., Subroutine NEW  also fits a quadratic to

calcnlates’Uﬁ. u
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A*, A7, and A. It them finds the minimum of the guadratic to
produce a new .. Eq (65) then finds a new AN From this a
new A is found, and the solution grid is generated. Then,
the boun&aty—layef equations are solved, and fN is detexr~
mined. fhe minimum of £, £7, f, and fy is determined. The
A associated with the minimum becomes the new A for the next
k iteration. A new value of A, is also found with the new
A. Then, the k iteration increments and continues until
rea;hing preset maximum kX or the diffprence between the new
and old & if sufficiently small,

After the k ite;ltian. Powell's step (i)lis cutp;ete.
The programitheq continnés vith’the other steps. Step (ii)
compares the f values for each Eingl Ar and determines the r
which maximizes f(Ar_1 -Ar)' Progr#m MNTRER then finds f3
in Powell’s step (iii). The program then performs the tests
in step (iv). If the tests are trﬁe,lthe Er values of the
.first iteratién remain the same and anotherviteration-is
r;n. If the tes‘s are false, step (v) calculates a new value
of E equal to An-Ao. ﬁsing'the same steps as t§e previous k
itetafion,‘the program finds the ) which minimizes f(An+AE).
A +AE thea replaces Ap as the starting point for the next
fuli itefation of the procedure. The new E calculated in
step (v) also teplaées the E. in which the largest decrease
was made gn the last iteration. The whole procedure is re-
peated until the change; between Ar's are sufficie;tly small
or the maximum number of iterations is reached. Powell's
;pgimization is then complete.
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Powell's obtimiz:tion method, as adapted in program
MNTRER, provides somevf1e§ibilfty to test whichvminimized
function gives the‘iost sccurate results. Since Powell's
method minimizes the fnnctioﬁ. f, any functiom f can be cho-
sen. This study checks the affect of minimizing other dgriv-
atives, or a cépbinntion of derivatives, on the sccuracy
of the final, optimized. boundary-layer sqlution. The sum of
0“2. Uﬂﬂzf Unﬁnz, or, any combination of these three can bﬁ
the minimized funct?on, f. These are tkhe thre; functions
.this study‘investigates. but any, definable parameter cin be
minimized by the optimization method. Bssed on the trunca-
tion error argument, mininizinglunnn with Powell's method

should produce the most, accurate, finite-differenced, boun-

dary-layer solution,
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Chapter V: PResults and Digscussion

This study shows how an optimized, adaptive~grid solu-
tion of a'bbundary-lnyer code produces a better description

of flow characteristics in the boundary layer. Before look-

"ing at the optimization of the boundary-layer code, the

characteristics, capabilities, and limitations of the boun-'
dary~layer code n;st be understood. For example, questions
which must be answered are how do initial conditions affect .
the solution, or how many iterafion and time steps afe neces-—
sary to gdt a‘cénv;rged solution. The‘youndary—layqt program
used to solve tbe finite~differenced., boundary-layer equa-
tions has several improvement's to Lange'i boundafy-layet 
code., Comparison of tﬁe computed, boundary—lgyer solution
and Blasius’, theoretical solutior for incompressible flow
over a flat plate shows the i;creased accuracy of the new,
boun&nry-liyer code., . Powel}'s optimization method is then
apilied to the new, boundary-layer code to éptimize the_adap—
tive grid. The optimized, adaptive grid is more accurate

than the non-adaptive grid, incompressible solutionm. The

‘effect of different parameters on the optimization method is

inves;igated.' These investigations of the incompressible
cases verify the new, boundary-layer code and the optimiza-
tion method. Then, thp optimized, adaptive gfid Is applied
fo supersonic and hypersonic, compressible, floﬁ problems,

Solutions for compressible flow over the flat plate and wedge
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are compared to previous theoretical development. This
comparison shows the applicability of the optimized, tdnﬁtivc
grid and the boundaty—liyér code to compressible, flow prob-

lems. The first step however is to verify that the boundary-

layer code can solve for the correct, incompressible results.

Incompressible Flow
" The first step in detefmining the applicability of the

optimization method verifies that the code reproduces the

exact, theoretical results for incompressib1§ flow over a

flat plate; The boundary-layer code is set up to h‘ndle
compressible, flow problems where densify and viscosity are
chl;ging. The input flow condifions need to model incompres-
sible flow vhet; dersity and vi;;osipy,shonld be essentially
constant, To do this, tﬁe,incompresiible cases are run at
Mach .01. Freestresm temperature and piessure,;te set at
530°R and 2116.2 psf. Surface temperature is also s constant
530°R. For these conditions density and viscosity are essen-
tially éonstant. Throughout the runs, the non-dimensional-
ized density ranges from .99941215 to ;99941725 in the nor—
mal, flow direction. The density computed at the eodge boun~
dary is’.9§941725. The nopn-dimeusionalized density ;hogld be
1.0 for the entire doﬁ;in and espeéially at the edge‘bohn-
dary. Thelcomputed p is 5.8 X 1074 ¢ in error. Thi§ is
ingignificant, bﬁt the etror.i;'ptesent. Lack of,no:evsig—
nificant figﬁres in the gas eonstint used and round-off

error in the computer caunse this error. The computed den-—
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sity changes less than 5§ x 10°4% over the domain. ‘The Aensi—
ty is therefore egsentially constanﬁ. The viscosity ringes
from 3.7989885 x 10”7 to 3.7989486 x 10”7, the freestream
value., With this error of 1 x 1b'3%. vis;osity is also
essentially constant. The input freestream conditions cause

the boundary-layer code to calculate essentially an incom-

pressible problem. To compare various characteristics of the

boundary-layer code, 1 61x30 éolntion grid is used, except as
noted. .
Boupdary Laver Code,
Copvergence Parameters.

-‘Several, input_pufaﬁeters control whether tﬁo boundary-
layer solution converges on s final solu?ion and ﬁov fast it
converges on that solntgog. These parameters are the number
of time iterations (NT), the number of iteratioﬁs at each
time step (KT), th; size of tﬁe time step (DT), the conver-
gence criteria (EPS), and the initial conditions for the
solntio#. Subroutine BLIHP. listh in Appendix D, represents

the variables as NT,KT,DT, and EPS, respectively. For a

particular time step, the solution is conQersed when the

maximum of the differences of U, V, or H at the old, itgfl-
tion level ;nd the new, iteration lev;l is below a specified
error value. Picking a smaller minimum error tolerahce. EPS,
tesulfs in‘a more precise answer. However, it also means the
solution will n?od more iterations and computer time to con-
verge. For this study, EPS is 1.0 x 10;6.‘ Thi; gives ac-
ceptable precision without unns2cessary use of computer time.
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Table IIA outlines several différent runs of the bounda~-

ry-layer ¢ode using various input parameters.
TABLE IIA

Non-Adaptive Incompressible Grid Solutions- Inputs

Run NT KT IMET® __ pT Pr
1 1 4 3 106, .72
2 5 4 3 106, .72
3 100 4 3 106, - .12
4 1S 4 3 106, .12
5 20 4 3 106, .12
6 5 10 3 106, .72

1 10 10 3 106, .72
8 15 10 3 106, .12
9 20 10 3 106, .72
10 - 5 4 ' 3 106, 12
11 10 4 3 106, .12
12 15 4 3 106, .72
13 20 4 3 106, 12
14 1 4 3 106 .12
15 20 4 3 106, 12
16 5 4 3 102 .12
17 10 4 3 102 .72
18 15 4 3 102 .12
19 20 4 3 102 L12

Note: All solutions ﬁse a8 61x30 Power Law solution gtid.
* - number of analytic points in the solution
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The ratio, Cf/Cft. listed in Table IIB shows how close the
computed solution comes to Blasius’, theoretical solution.
TABLE ITb

Non-Adaptive Incompressible Grid Solutions— Results

Run ce/ct, ce/ce, DELT® DELK}
— (leading edge) (tgailing edge) (x10~7) (10™%)
1 .91378 .90550 4,840 4.1
2 . .97052 .97400 5.5 .117
3 .98740 .98961 6.1 .185
4 .99203 .99193 .916 0277
5 ,99328 99220 168 ,00592
6 .98827 .99231 7.84 .00996
7 " .99332 .99239 42 | . .00625
8 .99370 .99241 L0505 .00433
9 ,99373 ,99241 00199 ,00199
10 97052 . .97398 |<  55.3 1.17
11 - ,98740 .98971 6.1 .186
12 .99203 .99193 - .918 .027
13 99328 ' 99229 168 00592
14 .91378 .90£50  342.0 8.99
15 ,99328 ,99228 119 000688
i6 - .97051 .97374 © 4s21.8 40.9
17 8140 98956 55.67 © 1.178
18 .99203 .99193 6;18 .1887
19 99328 99229 , 1685 ,00060

* : DELK= maximum difference in U, V, or H between itera-
tion steps: DELT= maximum difference in U, V, or H between
time steps
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The numbers shown are values of Cf/Ct‘t at the x locations one

point inside the leading edge and at the trailing edge.

'Figs. 8 - 12 show the trend for how Cf/Cf, chinges in the

streamwise direction. Flow properties at the first two

. points inside the leading edge are calculated analytically

and are not changed by the numerical solution., These analyt-
ical points are theoretically the closest the solution can
come to the flow properties, Leading edge error distorts

the results after the analytically calculated points., How-

ever, as the solution varies in the streamwise direction,

the numerically calculated solution recovers to its true-
value toward the back of the bllte. Therefore, the first

point shows the analytic value of the ratios, and the trail-

‘ing, edge value shows the best, numerical solution for the

run, Two other results shown are DELT, the maximum differ-
ence of U,V, or H between time steps, and DELK, the maximng
difference for U, V,vor H between iteration steps. DELT
shoys‘the improvement in the solnti&n between successive time
steps., If the maximunm difference‘foé U, V, or H between
iterations steps, DELK, is below 1x10'6, the solution is
converged. The comparison of valn;s in Table II shows the
effect of the input parameters on the boundary-layer solu-
tion.

A parameter chosen to reduce computer time is the size

‘of the time step, DT. For each iteration of time, the time

in .the solution increases by DT. Since the boundary-layer

equations are solved implicitly by SOR, large, time steps do
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not cause any instability in the solutionm of the boumndary-
layer equations. The problem will still‘converge on to the
sgeady-s£lte answer, regardless of the size of fﬁe time
~step. Therefore, to get a converged solutionm in as fe;

time steps as possible, this study uses a large, non-dimen-
sionalized,time step of 1.0x106, In runs 16-20, the solu-
"tion still converges in 20 time steps using DT equal t& 100,
Larger DT produces better convergené?, however, - DELK and
DELT go down as higher DT’s are used. DELT and DELK in runss
1-5 isvsmaller than thels;me two parameters in runs 10-13,
and runs 10-13 are smaller than runs 16-19. Other than this
impr;vement‘in DELT and DELK, increasing DT does not change
the soluntion mn;h. Therefore, to be gnarante;d the best,
converged solution possiblé the larger DT is use¢ ia the’
steﬁdy-state solutfons.

Ihe number of itetation;-per time step, KT, determines
how accura‘e ghe ;esults.are at each time Step. }f the
anumber of iterations per time step is large, i.e. 10 in runs
6-9, the program does more iterations of the equations per
time step. The qne#tion arises whether it is better to ﬂave
more iterations per tim; step and fewer time step; for con-
vergence oOr fewer iterations and more time steps. Runs 6-9
set KT at 10. Runs 1-5 set KT at 4. As expected, conver-
gence at each time lbvgl listed is better than f;r corres-
ponding time steps of runs 1-5, With KT at 10, better
lresglts for Cf(Cft are obtained at 15 time stefs (run 8) than
are obtained after 20 time steps with KT of 4 (rum 5).
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Howev?r. 15 time steps with KT at 10 takes 37.5 CPU seconds Eii
on the CYBER 4070. For KT at 4, 20 time step;'takes 30 CPU FL
. S

seconds. This indicates there are more iterations of_the fig
solution with the larger KT, More iterations produce better EEE
results for Cf/Cft. DEL;. sand DELT, Since a large DT ensures E%
the solution is converged, the total number of iterations is ;E
the important flcto;. Vhetbher the iterations are mostly with ' 55
each time sfep or with more time steps, the converged solu- Ej
tion oceurs when enough total itgrations have been made. jgﬁ
Therefore, since icceptable convergence is achieved with ;?
. : [y

less computer time for smaller KT values in runs 1-5, the é;
‘inputs for run Slire used as & set of baseline inputs for the 'Ei
rest of the study. ' | 52
Program ngig Choices, ' ;5

In this study, three mijor changes have been made to léﬁ
Lange’s, boundary—-layer code. The initial conditions are EE

7

YK“?%»f

Y

slightly different, the integration of the coptinuity equa-

tion is improved, and some of the metrics are solved more e
. : .)\

PP

precisely. These changes help the boundary-layer program to t?-
. *.,'\.*‘:

more closely conform to boundary-layer theory. The improve- S

L

meit is seen in.each case by compariné the ratio of the

A v
4
; 4’ l' .

e
»

L o St

computed and theoretical values for Cf. Thé closer this

»
']

o

H

ratio is to 1.0 indicates better accuracy. 'Therpfore,'eacﬁ

i, oot
3

of the changes is compared to find the best method to get

g

closest to Blasiuns', exact, incompressible, boundary-layer

solution.

iy L0

The choice of initial conditions depends on the physics

|.'\;'l

s
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of the flow problem. However, the finite-ditterence solution

. converges on the same answer regardless of the initial condi-

tions chosen, The boundary—-layer code changes Lange'’s, ini-
tial guess for the enthalpy profile, the thermal, boundary-
layer thickness, and the U aﬁd B values giv;n to the jmax+l
points. Although the'poihts outside‘the jmax location are
not of interest to the solution, th; finite-difference séhenq
requires that points at jmax+l se'defined; In Lange’s pro-

. gram, these jmax+l values of U and H afe set at 0.0. Since
these‘points ar? on the boundary, well outside the boundary
layer, the jmax+l poin;s shogld ;qual the jmax values. These

values are equal to the edge conditions., Therefore, 4at jmax

and jmax+l positions, U and H are defined as U, and H,.

Lange also assumes the thermal, boundary-layer thickness, St.

equals the boundary-la}er thickness, 6. This approximation
is acceptable, but‘it is more accurate in the hypersénic
limit and for flows with Pr equal to 1, Howeve:r, for the
incompressibie case, Eq (59) is accurate in the wmore, generui
_case where Pr is ncn-unify and the surface is nniformly
he;t?d along itslentire length; This study .:e«s this equa-
tion to also form Egq (58)._; better guess of thc enthalpy
profile., Lange's gness‘do;s aot include the 1as£ two terus
of Ed (58). These thr;e changes to thg initial corditions do
not affect the final soiution. Boundaty-layef solutions with
.aii other inputs constanf but differeat, initial conditionms
converge to the same final solntioﬁ. Runs 1-5 and 14-15
compare the results of the two rusms. Thé new, initial comndi-
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tions decrease the accurac& of the sqlution at the first.time
step. But tﬂe final solution is slightly more accnr;te with
the new initial conditions. Although it is not necessary to
know the physics of the problem fully tb got the correct
initial conditions, ;cpnrite initial con&itions increase the
accuracy of the boundary-layer solution by decreasing tﬁe
iterations need for convergence. |

| Another change to Lange’s program is in the integration
of the coutinuity equation to solve for V. Egq (51) shows the
integration of Vn.. Fig. 8 shows the drimatic inéfease.in the
accuracy of the nev, boundary-layer code. Both runs are
converged, The solution shown niing Lange's integf:tion
method for Vn uses a two-point, windward difference'at ﬁhe
boundaries with the two leading-edge points defined analyti-
cally. The new, boundary-layer code uses three-point, wind-

ward difference with three leading edge points defined ana-

vlytically. This acccunts for thellarge overshoot for Lange's

'solution, while the new code undershoots slightly. The

important result, seen in Fig. 8, is the new code recovers to
more, accurate values of Cf/Cft. Lange's code approaches

.93319, while the new code approaches .99219. The errors are

. 6.7% and .71%, respectively. The order of magnitude increase

in accuracy for Cf/Cft indicates 'he new, boundary-layet code
is better at predicting the‘incompressible Qolution.

As mentioned earlier, the new, boundary-layer code uses
aldiffetent, finite-difference approximation of the metrics,
YE and Xg. Using the thtec-point_windward'schem§ at the
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- boundaries gives second-ordgr iccnrlcy thfo;ghont the metrics

i solution. One a'ifferencing method tried uses two-point,

‘ ‘wiﬁdvard diffe}encing which is only firit-ordet accurate,

Eh For the Xg metric, the differenci=g dbe; not change Ehe

i . soLutiqn. Since the sttfanvise grid spacing is comstant, .

g either differencing scheme gives thgvsame‘values of Xt. The .

: differencing on YC does matter, though, Using the new inte-

’ ‘ gration of Vn, solutions with three-point and two-point,

" .windvatd differencing on Y§ are run, . Fig: 9 shows the iltio
for Cf/Cft‘at each streamwis; location fo; each solution;

- With the two-point, windward s;ﬁeme leading edge error influ-

.- ences the solution far downstream. The three~point, windward

- : scheme damps the error out nﬁre effec?iiely. convetxingidn

ii better values. ‘ThQ thre;-point. vindvardlscheﬁe is the&efore

nore.accura;e; Part of the rens&n for reduced leading edge
- _ error in the three-point, windward scheme is this scheme uses
three analytic points at the leading edge. The}two—point.
- differgncipg method only uses‘tio analytic points at the
. leaaing edge. I; the analytic solnfion, the YE metric is

known exactly. It is calculated by knowing the exact form

ff of the bqundary—l;yer shape., Eq (48) computes the YE instead
of calculatiag it from numerical differencing; 'Thisnenkes‘
}n i : the pumecrical error cut of the Y& metric. With a completely
5 analytic Y§ metric and density and viscosity forced to remﬁin
- constant, the best C; ratio obtained with a 61x30 grid is
;j .99361. Figs. 10 compares this completely analytical case to. °

the case with YE computed numerically except at the first
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three, streamwise locations. Density and viscosity are held

‘ constant in both runs. The completely analytic case is

¥

definitely more accurate for predicting flow in the houndarj

T T
SRS A

N layer, However, if the amalytic metric is‘nsed, the boun-
dary-lnyet_cpde could only be used with a solution grid which
has been scaled according to a square-root of X function as .
in Eq (38). This scaled grid is accurate for similar bounda-
ry layers. Since the boundary-layer cod; needs to be applied
to nore.general problems, the numerical metric is nsed. Also
plotted in Fig. 10 is the solution jigh the numerical Y& and
changing density and viscosity. There is a very §light errof

between the two numerical YC solutions caused by allowing

density and viscosity to vary. This error does‘not affect
the results, significantly. The new ngthod of determining Vn
and three-point differencing on Yg significantly improves the’
solutions computed by the boundarf-l;yer code. The grig
dependence‘of.the finite-difference solution al?o cannot

be igmored.

Grid Dependence,

The number of points in the solution grid and the way
they are generated affect the boﬁndnty—luyet solution. As
the number of points in the solution grid increases, the

solution’s accuracy increases, and the computer time, or

]

RIDGL I aconoom
e b ".‘,'. s

iterations, required for a converged solution also increas-

i
v
.

el IRy
-

- es, Fig. 11 shows the solutions for three, different, size

grids. By increasing the number of grid points Cf/Cft ap-
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proaches one. However, th§ 61x59 grid requires 75 time

steps and 206.783 CPU ;econds to converge on the solution.

o —
’
o

The 61x30 grid takes 20 time steps and 29 CPU secomnds. The

21x19 grid takes 5.97 CPU seconds for 20 time steps. In-

.k__

creising fhe nnnber.of grid points does increase accuracy

sut with a considerable i;crease in computet‘tine.- |
Usini the correct guess for a solution grid also in-

l cresses the accuracy of a non-adaptive griA solution. Lange’

~ uses an optimized grid developed by Hodge, and the non-adap-

tive-grid solutions in this study use an optimized, power-law

grid to solveée the boundary—layer code (10), However, the

BN aall SRR TP

adaptive grid solntibns in this stndy use an oxponentini grid
generated by a solution of the grid equation in the normal
i ‘ direction, PFig. 12 Id.enonstr:tes the grvild dependence of tae
boundary~layer code. The exponential grids are generated
- ' with Q equal to -.3., The 61x30 power law grid results are
' r' : much better than the results for either a 61x30 or a 21x19
exponential grid. The type of grid chosen for the boundiry-
T layer solution does affect the accuracy of the solutibq. The
' powver law grid is accurate for boundary-layer ﬁroblem; since
the bonndafy layet'is close to 2 power—lgw shape except at
the surface. But the exponential grid has the control func-
tion, @, which can be varied depending on the characteristics
of the flow solution. Optimizing Q yields an exponentigl grid
which gives accurate results aﬁd does not requite’any fore-b

' f\ knowlege of the exact solution.
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O~ 61x30 Power Law Grid

- 61x30 Exponential Grid

‘- 21x19 Exponential Grid
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Fig. 12 Solution Comparison for Different Grid Types




Non—-Adjabatic, Wall Effects,

The test cases previously-mentiéned use input comnditions
which result in a nearly, {diabatic flow, The wall tempera-
ture is.ciose to the adiabatic, wall temperature calculated
from Eq {(28). The spproximately, adiabatié‘wail magnifies
the effect of roundoff error for the Falculation of h. The
finit;;difference solﬁtion uses Eq (55) to find h. The
denominator,in‘Bq (55) is very small for s nearly; adiabatic
vall. Dividing q by a very, small number produces good re-
sults which/give an h/href hearll.o,.but computer, round-off

error cavses the computed h to overshoot the values, Fig. 13

.compares h/href for the nearly, adiabatic wall case and a

non-adiabatic case. The non—-adiabatic case uses a wall
temperature of 550°R, instead of 530°R as in the adiabatic~
wall case. Theltwo solutions uge a 61x59 ;olution grid and
an analytic definition of Yﬁ' Thg non—-adiabatic case does

not overshoot the theoretical sointion, but it does have

some error due to compressibility.

The non-adiabatic wall case highlights the behavior of

‘the finite-difference salution toward h. With the non—-adia-

batic variation in wall temperature, compressibility effects

are much greltef than ﬁfevioas cases,. The density rangesl
from .9963075 to .99941725 across the boundary layer. Thero-
fore, there is some error in the solutién due to this com—
pressibility., Fig. 14 shows Cf/Cft is notlaffected much by
the wall temperature change. However, h is affected, The
non—adiabati? cases.also make the solutionm for the total
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enthalpy much more. difficult., For the adiabatic cases, it

- takes 20 iterations to converge to EPS of 1x10-6. and U was

the usually the property that determined DELK; For the
non-adiabatic cases, it takes over 80 time iterationms to
convetg;.to EPS of 1210”4, The finite-difference solution
definitely has more trouble resolving H for the non-adiabatic
cases. The finite-difference solution does converge to
v;lues ;lose to the theoretical values, though., Using th§
same finite*diffetence solgtion with 4« Thomas—algorithm,
iteration method, Hodge has computed ratios for Cf/Cf, and
h)href of .9998 and 1,00, respectively (8). Therefore, the
finite~difference solition of the incompressible, boundary-

layer soluticn closely zeproduces Blasius’, exact solution.

Optimized Boundarv Layer Code,

The adaptive-grid solution of the steady-state, boun-—
d;ry-layer problem finds the Qolntion grié which best re~
solves boundary;layer.flow. The finite—difference solution
of the boundary—-layer equations i; very, grid dependent. If
an optimized, solution grid isufonnd, the accuracy of the
computed solution incre;ses} U;ing Powell’s method to mini-
mize the sum of the squares of tle streamwise velocity zfadi-»
ents optimizes the grid and increases tﬁe accutacy}of the
'compnted solution., The increase‘inlaccurncy is more easily
seen with a coarse grid, so the,conpgtet solptions use a
21x19.exponenti|1 grid. After showing that Powell's Opiimi—

zation method produces an optimized grid, this study tests
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.allows the sum of Uﬂz' U

the use of different minimizing functions in the optimiza-
tion. These functions are the sum of Unz,'Unnz. or U““nz.
iininizing some functions produces better optimization than
others. vThe nniber of iterations, KT, and other input para-
metors :ucﬁ as the initial guess for Q «1so iffect the opti-
mization. If the initial guess for Q is too far off, Pow~
eil': method may not reach a converged sélution in & small
number of iterations. Without a conv€rged solution, the
Optihized solufioﬁ.for the p;rticular function may not be
reached. Powell's n?thod does niniﬁize most of the input
’fnnctjois in‘very few, iteration steps.

Optimization Performance.

The'cénputer solution generates\tﬁe solution grid using
thQ grid eqna?ion in Eq (35).I The o;timization finds the "
control fumnctiom, @, which g;derutes a grid that minimizes
the desired fnnqtion and increases the accuta&y of the boun-
dary-layer solution. The flexibility of Powell's method
2, or U 2 to be minimized.

nm nan

Comparison‘of these three cases determines which minimization

‘gives the best results. -As in the non-adaptive case, a

better solution comes closer to a value of 1.0 for Cf/Cft.

In addition, the optimization which reduces the error in the

"computed solution is a better method. The root-mean-squsare

(RMS) of the difference between the computed solution and the

von Karman-Pohlhausen apptoximaté solution measures the error

in the computed solution. The different optimization solu-
tions are alsobcémpated to the Blasius’, exact solution.

68

O N o vy +

-

A e
h
1

v
4

- PR
.'lll..l_':l l}" AN
. A
2 e%al e

»
LR
» .

e v e
i) »
-

s
»

¢

':‘l. -" |" -;' (N l:—l.‘
AN U‘, |‘.‘

T
1

£

C NASATRERSO R

e
'l"
.

$ 1
A

v - .
LI
s

o1y

o)
B

6o
Sl

'y
Ld PR

3
"

.
.
o

.
Ay

-3 -
[ I WV SR

A

e et
.,

v

!
1

rr

o wne v
T e
.l‘ ! .J' i‘ l'i
- w'-'- DI “

L
i

el

v

ey -,
P.' AT
LI A A

T

W

LSLN




e

ATRANAY N TR LS Y R LN N CUUATALC N . N T, At e R R R T R T I T

=

-

With these comparisons, it is possible to discover how the
adaptive grid is best used to get more, accurate, compited
solutions ‘to geneiai. boundary-layer-type problems.
TubleIIII summarizes test cases of‘the adaptive-grid
;olufion ifor the incompressible flow over a flat plate. The
input par;neters for solufion}of the boundafj-layet co#e
vithin the oytimizntion‘do not éhange. The only chaage in
the boundary-layer code inputs is the solution grid calculat-
ed in the optimization, The boundary—layer code.‘inpntv
parameters are 20 time steps, 4 iterations per time step,
tine step of 1x106 seconds, error tolerance of 1x10-6, a Pr

of .72, and recalculation of the SOR parameter every fifth

"time step. These are the same inputs as run 5 of the non-a-

daptive, incomptessible solution. ‘Optihizing 21;i9 and
6§1x30 exponential grids‘is gested. Settiﬂg the minimum and
maximum values of Y a? the x location‘vhete ;hclgfid equation
is solved determines the physical size of grid. These Y
valunes are YMIN and YMAX in Table IIIA. The grid is then
;caléd in the streamwise direcfion with fhe Y spacing solved
by the grid equation at the x locagion chosen. For this
study, the g;id equation is solyed at the trailing edge

of the surface. The parameter, Q, shows the initial input
for the control function. The results of using a non-adap-
tive, exponential grid with the input Q's are given in Table
IV. KT represents the nomber of iterations alloued fo find
each A valwe. PCT is the percentage of A,  added and sub-
tracted to A, to get At and A7. The erro:r tolefance between
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TABLE IIIA

Adaptive Exponential Grid Solntions-Inputs.

Rug KT PCT __ YMIN . YMAX _ Q___ WHl ___WB2___WH3
RE=2x108, Grig-21x19 .
1 3 .2 0.0 0.015 -.3 0 0 1
2 6 .2 0.0 0.015 -.3 o o 1
3 3 .5 0.6 0.015 -.3 0 0 1
4 3 .2 0.0 .0004 -.3 0 0 1
5 3 .2 0,0 0.030 -.3 0 0 1
6 3 2 0.9 0.015 -3 1 0 0
7 6 .2 0.0 0.015 -.3 1 o 0
8 6 .2 0.0 0.015  -.2 1 o o
9 3 2 0.0  0.015  -.3 .1 o .9
10 3 .2 0.0  0.015 -.3 .§ 0 .5
11 - 3 .2 - 0.0  0.015 -3 0 10
12 3 .2 0.0 0;01§ -3 .25 .25 s
13 3 .2 0.0 0.015  -.3 o .5 .5
14 3 .2 0.0 0.015 .3 0 0 1
15 3 5 0.0  0.015 3 o o 1
16 3 .2 0.0 0,015 -6 0 o 1
17 3 .2 0.0  0.015 .05 0 o 1
RE=5x105, Grid- 21219 |
18 3 .2 0.0 0.030  -.3 0 o 1
19 3 .2 0.0 0.030 -.3 . 0 1 0
20 3 .2 0.0  0.030 -.3 1 0 0
21 6 .2 0.0 0.030 -.3 o o1

RE=5:103, Grid-— 21419 :
22 3 .2 0.0 0.300 -.3 0 o 1
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' TABLE IIIA (cont.)

RE=2310%, Grig-21x10

3 .2 0.0
3 .2 0.0
3 .2 . 0,0

RE=22105, 61id-61230

26

Run

10

11

12

13

14

15

16

3 .2 0.0

0.015

0.015

0.015

0.015.

-.3 0
-.3 0
-.3 1
-.2 0

TABLE IIIB

R e e

1 0
0 0
0 1

For boundary layer solution inputs sce Run 5, Table II.

Adaptive Exponential Grid Solucions~ Results

cr)Cft ce/ct,
(leading edge) (trailing edge):
.99135 .98781
.991358 98781
.99135 .98781
.99589 .99590
.98473 .98394
.98624 .98281
.98636 .98292
.99039 .98687
99107 .98760
99053 .98707
.99139 .98735
.99084 .98738
.99138 98784
.64983 .64920
.65324 .65259
.94844 94325

F
(initial-final)

.093644-.028%57
.093644-,02255

.093644-,028557
.2205§4—.000611
72.308 ~ 70.934
2.2295 - 2.2073
9.22544-2,2:07

2.0612 -2.0403

" .30723 -,23333

1.16154-1.0384

.24103 +,10459
.66444 -,56026
.16734 -.063586
72.308 -71.503
72.308 -70.934

6.176 - 6.1275

71

RMS{U-Uexact)

(ini;ill-finnl)

.029654-.028736
.029654-,02836
.029654-.028736
.032002-.033511
.019075-.019598
.029654-.029671
.029654-,029671
.029797-,029946
.029654-,029764
.029654-.029925
.029654-.028933
.029654-,029861
.029654~,028809
.019075-.019381
.019075-.019598

.02993 -.029903

L R )
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TABLE IIIB (cont.)

Run cf/ce, cf/ct, RMS (U-Uexact)
L : ial-fi (initial-fi
17 ,99137 ,98783 2,367 -.022564 027888~ 02377
18 .99138 .98785 .09365-.022259 .029634—.028732
19 .99135 .9878s .24102—.10455. .029654—-,028834
20 ..98686 ‘ .98292. 2,229 - 2,203 ,029654-,026815
21 99135 ,98781 ,093654~,022544 ,029654-,022736
22 ,99135 98781 ,093655-,022544  ,029654—,028736 -
23 . ;96920 .96591 .866760-.605740 .036949-.035135
24 .97324 .96990 .690502~,690086 .036949-,036962
25 295975 . 95656 4,38803-3,73679 .036949-,038336
26 19923;7 299378 .068120—.007551 ,027758-,026635
TABLE IV
Non-Adaptive Grid Solutions®
Run fMIN YMAX Q Cf/Cft
(lead.edge) (trail. edge)
Grid - 21x19 Exponential
1 .0.0 0.015 -.3 .89979 .90335
2 0.0 0.015 -.2 .91203 .91488
3 6.0 0.013 +.65 1.01017 1,04270
’4  0.0 0.030 -6 .89949 '.89888
S 0.6 0.015 .3 .69791 .65252
Grid-21x19 Power Law
6 0.0 0,0147 == 298369 198025
* For boundaxry layer solution inputs see Runm 5§, Table II,

iterations of each A, value and between iterations of the

overall optimization scheme are not shown in Table III,
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These are set at 1x10-5. The last input pnraﬁeters shown in

‘ Table III are the weighting parameters, WH1, WH2, and WH3,
These weightings determine which velocity derivative, or
:j : : conbinnfion of velocity derivatives, is the minimized func-
tion. The minimized function is represented by F and is
L . ,
- defined by
‘B o= . 2 . 2 . 2 | '
. F = WH1eZU, “+wH2ZU, “+WH3ZU (66)
. WH1 is the weighting on minimizing Eﬂnz.' WH2 is the weight-
) "ing on minimizing ZUnnz.'nnd WH3 is the weighting on minimiz-
f‘ ing ZUnnnz. The values in Table IIIB are the range of re-

sults showing the performance of the particular, adaptive-
grid solution.

Powell's method minimizes the input function, As‘a
result, the ébnputed. boundary layeé solution gefs closer to
- theoretical innes. This studyvseeks to minimize the cénpu-
tational error by minimizing trumcation error. From an
'nnllysis of the.tiuncation error terms, iininizipg uﬁﬂﬂ

e ‘ shonld reduce solution error. Therefore, this stndy'concen—

trates on minimizing the input fumction, XUn“hz. with Pow-

ell’'s minimization method. Solution runs 1-4, shown iz
Table I1I, summarize the results of optimizing the grid with
;? 'ZUnnnz. The differences between the runs are the various
'inpnt paranetet:.' All of the solutions show a decrease in
S : : 2 L , '

- Zmﬂﬂﬂ , represented by F, from the start of the program to
its converged solution. FEach of the solutions also comes

closer to the theoretical solution than the inmitial grid.

3: 73




The range of values for Cf/Cft is closer to 1,0 than similar

PPV
« -y

resnits Qith either the initial, exponential grid or the
non-adaptive, power—la; grid sol#tion shown in Table IV.
Additionally, the optimized solution reduces the overall
error in U, In run Iﬁ the RMS of U-U, . .. across the whole
domain is .029654 at the start of the minimization. The

final RMS U-U,__ . value is .028736. This is a 3.096% de-

exAacC

crease in the U error. Fig. 15 shows how close the solution
comes to the exact u:velocity profile over a flat plate.

Therefore, the Powell's minidf;ation method applied to the

2
n

the accuracy of the computed solution by minimizing the input

input funqtion'EUnn reduces the error in U and increases

funétion. F.

2 peets the objective of re—

Althongh nxnlm{zxng 2anﬂ
ducing the error of the computed solution and inéreasing
.its accuracy, it may not be the only function whick can meet
these objectives. Using ZUnz, Zﬁnnz, or some combination of

the three velocity gradients as minimizing functions produces

different results than those optimizations on Zunnnz' Each

2

of the different casesipetforms similar to nihimiziﬁg EUnnn

"by decreasing F and increasing the solutionm accuracy. Howev-
er, the error in U is not decreased in all‘cases. Minimizing
Equ does nct decrease the error im U. Optimizing this

 fnncti6n increases the error in U by .06%. cf/cf, for this
solution, run 6, is also below that of the runs 1-4. Since
the function did decrease, an increase in the error is not
expected. Closer examinatioz of the sélntibn shows the
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-optimization is not totally converged. The solution was

therefore rerun with a higher number of iterations. A Q

closer to the results of previons runs was also input to help

the solution converge faster. This solution, run 8 in Table

.III, did give better results for Cf/Cft. The results are

still not as good as those in run 1, The error in U also
increased by .‘96%. Minimizing 20“2 does keep Qoro points in
th§ boundary layer tham other solutions. Run 1 keeps 11
points in the boundn;y layer. Runs 6-8 keep 14 points in the
boundary lnjer. Vith more points in thé boundary layer, thcb
soluti§n should resolve flow conditions better and produce
better results. However, this does not Bccnr. Fig. 16 shows
the velocity profile produced by uininizing'ZUnz. It is
close to the theoretical nnsQer. However, Fig. 17 sﬁo's. the
veloéity profile solved ﬁy minimizing ZUnz is farther from

the exact solution than either minimizing XU or ZUnnz.

2
nan

Regardless of the number of pbints in the béundaty layer, the

solution from optimizing £Un2 is not better tham optimizing
) v
Eunnn .

2

2 is better than optimizing‘f:u'm'l

Optimizing with Zunn
in some ways. Minimizing ZUnﬂz in run 1; éets almost'ns

close to the theoretical results as runs 1-4, Cf/Cft starts
out higher thanm case 1 but recovers to values lower than

run 1, The decrease in error for U is only 2.766%. Minimi-
zing annz resolves the leading edge gradients better .o g?f
better values at the leading edge. But it does not produce

better results at the trailing edge where the leading edge
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errrr does not affect the solution as much, Over the eutire
domain, the sum of Uﬂﬂz does not reduce the error in U as

‘'well 2s mknimizing the sum of Uml 2, Fig. 17 shows that

n
minimizing EUn“nz minimizes the error in U better and pro-
duces a velocity profile closer to the exact solution than

2 2,

n
Using each of the three, different, velocity gradients

minimizing either the sum of U'm or the sum of U

separately as the minimizing function in Powell'’s method

shows the sum of U“nnz to be the best minimizing function.

Using combinations of the three velocity gradients ;lso does
Aot imp;ove the solutionm. Tn runms 6-13, different weightings
sare applied to tﬁe different ;Fadi?nts. The weighting deter-
mines how much a part of the miiimized function the specific
gradient is. ih;n EUnz is any part of P, the velocity error

increases and the computed solutions are worse than run 1

2

where only }U 2 is minimized. Combining the sum of Uﬂﬂ‘

nnn

and Uﬂnnz' as in run 13, gives slightly better results for

Cf/Cft. In the ccmbination, the Eunnz contribution resolves

i

values., The combinmation of the twe functions thus produces a

the leading edge error while EU 2 raises the trailing edge

gridvvhicy gets the closest valu;s to tﬁe Blasiuns', theoreti— .
cal solution. The error in U only Aecreases.by'z.ssi.‘
Minimizing Eunﬂnz still reduces the error in U better than
any of.the functions tested. There may be some combination
of the EUnn2>ahd EUH"“Z not tested which may reduce the error
in U better in addition tolconpﬁting better results for C,.

Several of the input narameters affect the behavior of

79

" e s e e




f

the optimization method. Inputs KT, PCT, and Q affect the
convergence of the method, and YMAX affects the accﬁracy of

the solution. Increasing KT ohly affects those optimizations

f

which need many iterations to converge. Powell’s method has

many leéelsvat’vhich it iterates. The iteration of A, and’
iteration of the total solutiomn are two of th; levels. Al-
though a problem may fail to converge at one level, succeed-
ing levels take out this errgr'to convergé with a small XT.
“sing a large KT for quickly converging problems converges .
the solntio; in the itérgtion of A.. All steps which follow
merely check this conver;encé. Thi; checking uses computer
time but sdds'nothing to the soluntion. The latter steps of
the method ate‘therefore w;sted. This occurs in rum 2,
However, fo¥ slow converging pcoblenms, incfeaéing KT is
escential to reach converged answers. Optlimizing on qu
tequires many iterations. 'For example, run 6 does not con-
vétge with a low KT. Runs 7 and 8 converge with 6nly dopble
fhe KT of run‘6. The results of the converged probiem are
bette? than those of the unconverged problem. Ia run 8, the

initial Q is changed to help convergence. I'f the initial Q

s very far away from the final, optimum Q, the solution

needs more it&fations to converge:. Runs 14'ind 15 are solu-
tions with aﬁ initial Q@ of .3. Fr&m sglutions 1-3. the
optimum Q for the same minimized function and grid size is
-.144, In runs 14 and 15. Q only decteas?s from .3 to .291
in three iterations. This sdlution is not converged. The
sec.untion grid reswlting is not optimized, as shown by the
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values of Cf/Cft. Vhen the initial Q is changed'to .05vin
run 17, the ;olution converges to —;144 the same as'tuns

1-3, This shows positive gussses for @ can converge, but the
initial gaess nust be relatively close to the optimum Q for s
smell KT, Large, neggtiée guesses for d also do not con-
verge. Wi+th Q initially set a£ -.6, the solution conve;ges
on Q of -.594., This is a long way fromlthe\rnn 1 solution of
-.i44. Negative, initial guesses for Q cannot be too far,
away from the final Q. There is a another limit on negative,
Q valuss. Q cannot at any time im the ‘iterations be allowed
to get too small for proper resolution of U in the finite
difference. Im the 21x19 grid, this Q is -.8. For a 61159 .
grid.'Q of ;.3 compresses the g;id too much. The U veloci-
tie§ fpt a very, compressed grid are virtually thglsame for
the y locations next to the wall. Therefore, the vulocity
gradients go fo zero, and'the'solution diverges., Largé,

negative guesses for Q should be chosen carefully., Choosing

- a large PCT also can cause the solution to diverge, PCT

determines how far away from ., AY and A~ are. This optimi-
zation method performs like any iterative scheme. If guessed
vﬁlnes are too widely spaced, more iterations at; required to
converge to a:solufion , Or the'solution may even diverge,
Run 3 which uses PCT of .5 converges on the same answer as
run-1, Run 1 converges in 6 iterations, but run 5 converges
in 9. The larger PCT is therefore not as efficient, unles#
the ;nitinl guess is very far away from the optimum Q.

Choosing PCT, KT, and the initial @ correctly leads to a
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converged answer, but the size of the physical grid affects
the accuracy of the solution. Choos;ng YMIN and YMAX deter-
mines the physical size of the grid. The expohential grid is
built within these linits.‘ For most of the solutions, YMAX
is .015. This is approximately 48 for ke of 2%x108. In rum
4, YMAX is de.reascd to .004, or approximately 8. . This puts
the majority of the points inside the boﬂndury layer. The
optimization solves the bonndnty'layer better when on{y'the
bou-dary layer is included im the domain. 'As expected,
sclution 4 is very close to the Blasius'’ ;olution. If YMAX
is expanded to 8% 8s in run 5 , the solution is not as good
.as solutions with thinmner, solution grids. Therefqre, the
choicelof YMAX does affect tﬁe optimized solution. If solwu-
tions are maﬁe with varidble, flow conditions, YMAX should be
varied to keep the same 45 gria size in.the y direction.
Otherwise, the results are pot compatibdle,

Various, inpﬁt parameters and minimizing different func-
tions affects the optimized solution. Changing the flow
conditions or‘the number of grid points does ﬁot éhange iﬁe
bchﬁvior of‘the solution for giver ﬁinimizing'functions. In
runs i8-22, putting in differe: . Reynold’'s numbers for cases

s 2 Sq 02 2 - ‘ s _
minimizing }U , ZUn“ , OT }U“ lteéts the effect.of d1ff§t

ann
ent, flow conditions. The solutionus from runs 18, 19, 20, or
21.are no different at Pe of 5x105 than the corresponding
runs 1, 6, 11, or 2 > Re of 2:106. For minimizing E“nnnz'
there is no differezce for lnf of the solutions inm rums 1, 2,

* b
4" %
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r 22. Changing Reynold’s number hss no affect on
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which minimizing function optimizes the solution best,
Changing the number of grid points alters the accuracy
of the solution. In run 26, a 61x30 grid definitely gives
better values of Cf/Cf, than th; 21x19 grid used in run 1.
Tﬁis is ;xpected. Decreasing the number of grid points
decreases‘the accuracy of the solution. Ruas 23-25 are two
to three percent less accurate than similat Tuns i, 7, and 11
with the 21x19 grid; However, using the courser, 21x10 grid

changes the relative accuracy of the three minimizations

2

procedures, Minimizing the sum of an

gives better results
for. the course grid than does minimizing the sum of Un2 or

'

Unnnz.l The optimum value of Q also changes with the numbder
of grid points. A larger number of grid points teguireé an
optimum Q closer to 0. The 21x10 grid in‘run 23 convgrged on’
a Q of ~,33361. The 21x19 grid in run 1 converged on a Q of
~.14426,vihile the 61x30 g;id in run 26 required an o?timum Q
of -.0848, As the numper of grid points increases, the
optimum 561ntion comes.qloser to a uniform grid. Therefore,
the number of grid péints does affect the sccuracy and the

method which best optimizeé the boundary—-layer solution.

Powell’'s method optimizes the incoﬁptessible. boundary-

2

layer so}ntxon. The sum qf U“m1

is the best minimiz}ng
function to minimize the error in the streamwise velocity.
 Paremeters, YMAX, ET, PCT, and the initial Q determine how
fast and what values the solutionm converges on. Ch;ngihg the
Reynold’s number of the flow problem does not affect the

behavior of the optimization. Increasing the number of grid
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points does increase the accuracy of the solution and does
change the op;imizatioﬁ behavior for course, solution g{ids.
Incompressible, flow problems can pe solved,moie_accurntely
with an edaptive grid using fewer, grid poiﬁts. The optimi-
zation can also be applied to resolve more variable, compres-

sible, or tutbulbnt.'boundlfy—layer problenms.

Cgmp;e;;ihlg.glg!

The behavior of the optinizat}on ;nd boundary-layer
codes has already been examined for the incompressible, flow
problems. Sinc; the programs were initially set up to handle
gomptessible. flpv problems and had to be foqled to treat
incompressible floﬁ, the extension of the optimization to
supersonic and hypersomic, compressible, flow problems is an
easy.step, The two, largest problems are defining an inigial
grid for the finitefdifference solution and comparing the
results with previous, theoretical dati. In the incompressi-
ble c;sds, the boundary—-layer thickness determined Fhe physi-
cal size of the cémﬁut#tionnl domain, YMAX, the height of
the grid at the surface’'s trailing edge, was set af approxi-

mately 46 to get consistent results. For the compressible

cases, the boundary layer is not constanq.‘ The physical size

of the boundary layer chhngqs with flow velocity. Also, the
transformed, boundary-laver thickmess used with the compres-
sibility transformation changes with £he rafio T'/T;. not

with the velocity. Theref&re; as the compressible solntions.

'

are applied to different velocities and temperature condi-
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tions, some method of defining s gonsistent, transformed-
grid size must be found. The othe. problem’with the compt;s-
sible cases is determining the accﬁracy of tﬁe computed
soluti;n. There is no exact solution for compréssible flow
over a flat plate or wedge. There is no equivalent to the
incompressible, Blasius'’ solutions. E&kert theory pr;dicts
approximate values for Cf and h across a high-speed flow,
Alsb, Van Driest's study of compressible, boundary-layer flow
over a flat plate provides & theotegical development to
compare with the computed results. These cbmﬁat%sons show
theiialidity and limitations of the boundary~layer code.
The'mnjo; difference between the cgmpressible and incoﬁ—
pressjble,boundary—iayer solutions is the activatiom of

the compressibilify transformaiion. As flow velocity in-

creases and temperature variations occur across the boundary

‘layer, compressibility affects the flow more and cannot be

ignored. This study assumes compressibility effects to be
importént beginning at about Machk .05, Above Mach .05, the

Dorodnitsyn transformation applies to the problem. The

problem is set up with the same equations as the incompressi- .

ble problem. However, a néw, boundary-layer thickness, A(X),

" is calcuiated with Eq (16). Abovpvthe transformed, boundary

layer, tbhe flow is inviscid, fhitial ?onditions are fhe same
as the incompressible case, excoept that the initial thermal
bouqdaty-layet ibickness is assuhed equal to the transformed
bound;ry—layer thickness, Since A(X) varies depending on
the edge conditions, differing Mach number, Reynold's num-
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ber, or temperature conditions require a variable definition
on the physical size of the solution grid. In 'the incompres-
sibl; cases studied, YMAX, the beight of the solntibn grid at
the sorface’s trailing edgo, is a fixed input. For the
compressible cases, YMAX yaries with the siie of.A(X). It
can be set at any multiﬁle of A(X) depending on the require-
ne;ts of the flow problem. The effect of using different
multiples of A(X) on the solution is shown }n Fig. 18. This
fignre'sﬁows the cﬁmpifed. velocity profile at the tr;iling
edge for different, solufion methods, Simil#r to the incom— '
pres;ible'c;ses, ihe closer YMAX is to A(X) the better the
solution is to theoretical results. The solution for YMAX at
2A(X) is closer to fhe theoretical tesulF than 3A(X) or 4A(X)
solutiéns. The application of the Dorodnitsin transformation
leads to computed solution which b?haves like ‘the inéompres—
sible solutions in chér ways, also,

Although the compressible, boundary-layer problem does

not have an exact solution similar to the Blasius’ solution

for flat plate flow, this study compares the compnted‘soln—

tion to theoretical results obtained by E. R. Van Driest.
Van Driest solves the laminar, compressible, boundary-layer
equations for flow problem over a flat plate using Crocco's
method (24:1). Van Driest’s conditions on the flow problem
are
Prandtl number was taken at 0.75, the specific
heat constant, and the Sutherland's law of viscos~-
ity-temperature variation was assumed to represent
viscosity data starting with an ambient temperature

of -67.6°F (24:1).
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Van Driecst’'s assnmptions coincide with approximations made
in this stady. Van Driest solves the flow problem for many,

different, flow parameters. Rather than show a comparison

with the extensive results of Van Driest's development, this

study qxnminés a few cases to compare computea solutions to
Van Driest’'s, theoretical solutions.

The computed solutions are very close to Van Driest's
solutions. The cases solved are for Pr of .75, the ratio of
Sutherland constant, 198,.6°R, to free stream tempefature at
.505, and T /Ty at 1. This study tests s;personic and hyper-
sonic cases EOt'Hach 2 to 8. Figs. 19 and 20 compare the
computed velocity and tempégatnre pfofilos across the plate
for the Mach range. These solutions set the upper limit of
the domai? at 3A(X) away from the plgt;'and optimize on the

saum of U 2

nnn
to Van Driest’s profiles. In fact, the Mach 4 theoretical

. The computed, veiocity profiles are very close

veldcity.profile lies exactly over the co%puted‘solntiOn.
Fig. 21 shows several, different, optimized solutions for
Mach 4. All éf the optimiiations are so close that an expan-
sion of the graph is needed to see any.difference i; the

solutions. ' Fig. 18 shows the Mach 4 velocity profiles that

2
n

2 is slightly better

result from optimizing on the sum of Uﬂ and on the sum of

v, 2, Optimizing with the sum of U

nn nmmn

than optimiziig with the sum of Uﬂﬂz' This is consistent

with the results of the incompressible cases. AlthonghAthe
Mach 8, velocity profile shows more error than the Mach 4
case, the Mach 8, velocity profile is also close. Since this
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study is testricted‘to flows where a perfect-gas assumption
.is valid, some varjation from the Van Driest’s, theoretical
model is expected for Mach numbers above 6. The teipeta-
ture profiles in Fig., 20 are not quite as exact. The com-
puted, temperature solutions are less than the th&oretical
solntioﬁ.at some poidts. Since the boundary;llyer code

reduces the error in U by minimizing the sum obenq 2. tie

n
computed solution should be close to the theoretical solu-
tion. However, the temperature profile results show the c&de
does not necessarily produce optiﬁized temperature rgsnlts
for Prandtl number not equal to onme. It doe's acﬁieve the
goal of ;educing the error in U,

The computed results also come close to valmes of ﬁ
predicted by high-speed Eckert theory. For high-speed prob-
lems, Eckert recommends using an apprnximate temperature,

T*, to calculate an approximate density, y‘, and viscosity,
u‘, for the.éonptessible, boundary layer. Eq.(33) gives 8
value for T®. The npproximate; heat convection coefficient,
n*, is then calculated by pntting‘the * conditions in Eq (32)
‘ac an ;pproximation for h across the compressible, boun-

dary layer. Eq (32) only upplie§ to lrminar flow with Re not
greater than 52105 (12:213). By‘;estricting flow conditions
to Re less than this limit, the computed results for h come
close to Eckert’s, high~speed predictions. Fig. 22 shows the
coﬁputed solutions for Mach 2, 4, 6, and 8 relative to
Ecke}t‘s ¢colution. A solution at Mach 14.54 over a 20° wedge
is also included to show the solution does work over a wedge.
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Both the thecretical and computed solution are divided by

h the heat convection coefficient calculated‘for free-

ref’
stream ccanditicas. All of the solutions shown in Fig. 22

optimize the solution grid with thf sum of Uﬂﬁﬂz over 3,(X).
If a 1A(X) solution grid is used., the computed h should get
closer fo Eckert’'s thecry. Fig. 23 shois this is not the
case. Fig. 23 presents h/href results for Mach 4 with YMAX
at different multiples of A(X). The increase in h/href for
1A(X) solutions results because less than the trume, trans-
form d, boundsrg—layer thickness is included in the domain.
The“nitiuliguess for the bonn@ary-layerlthickness.lA(X). is
too small{. The computed solution actually uses sbont 1.5A(X)

as :he point where inviscid flow occurs and 0,/ is oae.

inf
Com; arisons of the results in Fiz. 23 indicate that the
;io,er YMAX is to the true, boundary lay;t, the better the
resalts for h are. However, the entire boundary layer must
be included. Since the initial guess is not precise, it is
difficrlt to pick the YMAX posit;o; to get only the boundary
lay r. Iﬁclnding too much of the invis;id flow above the
bound:'ry layer also dilutes tﬁe boundary-layer results,
Some‘ptoblems‘may require the solution »f more than the flow
inside the bo;ndary l;yer. When thg problem is seﬁ up, the
de:ireq accurncy'and size of the problem domain must be con-
sidered for the best results possible. The optimized, $oun—
dary-layer solution provides the most f'exibility for dealing

with compressible, laminar, boundary—rayef, flow prohlems and

still achieving results close to theoretical predictions.
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Chapter VI: Conclusions

In incompressible, flow problems, the theoretical solu-
tion gives a clue that the solution grid should be a power-
law grid. For most flgw problems, however, theoretical solu-
tions db not exist to give a guess.fOt the solntionlgrid.
Being aple to input a general, exponential grid, yhich can be
optimized to give the best flow solution, allows the most

1

géneral appfication of a boundary-layer code.

The boundary-layer code presented in this study is ;n.
'improvement over Lange’s, boundary-layer code. For the noﬁ;
ndaptiye solutions, the modificagions made to ﬂauge's code
improve the solutions. Nén—adaptive solutions for C, c‘lcu-
lated by the new code are cluser to the Blasius’, eiac@ solu-
tion for flow over a flat plate. I# adqifion. the new code
includes a minimization metkhod which optimizes an adaptive
grid to find‘better‘solntions of boﬁndary—layer problems,

Optimizing the adaptive grid withlPowell's method pro-
duces more accurate; boundary-l?yer solutions. but the inénts
must be chosen carefully to get the best optimization. The
boundary~layer solution is very, grid dependent, The number
"of grid points, physical-;ize. and type of grid definitely
affects the results of th? finite-differencé solution. In
both non—adaptivé and adaptive cases, the solution with the
largest number of grid points gives the best results. The

problem whose domain includes less of the inviscid region
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outside the boundary l;yer produces the better results. For
example, problems that included only 15 in the normal direc-
tion had better ;esqlts than pt?blems ghat used 48 as the
height of the grid. More grid points are in the boundary
layer with only 15§ ;s the domain limit. In the non-a&aptive
cases, the power-law-type, solution grid gives‘better results
than an arbit;lty, exponen¥131 grid, However, the power—1law
grid only applies to a specific, bbundary-layer. problem
type. Although the initial, exzponential grid input may give
worse results than the power-law grid;'usiﬂg Powell’s method
to find the optimized, expomential grid produces the best
results. The initial, control function, Q, must be chos;n
close to the final, optimized value. If it is chosen tco far
away from the final Q, Powell's mefhod'vill not converge.

Convergence is also affected by the number of iterations

-allowed and the spread between minimization gu?sses. If too,’

few iteration;'are done, the solution does not converge on an
optimized value. If too many iterations are‘nsed, all of the
convergence takes place in the initial steps of Powell’'s
method. This wastes all subsequent calculations which check

the convergence and is inefficient, Choosing a large spread

between minimization guesses also is less efficient, Pow-

éll’s metbod ca]culat?s 28 central, functional value, f, two
functional values. on either side of the central value, £t and
f‘, and the minimum functional value of 8 quadratic fit
through the previous three functional values, f%. If the
spread between the f, £, and £~ is too lacge, the solution
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takes more iterations to converge. The snécessive‘iterations
tend to continually o§ershoot the final value until getting

very close. A large spread m;y be‘usefnl iﬁ problems where a
good initial guess is not known, though. ‘Thevfunction mini~-

mized also affects the efficiency of the adaptive-grid solu-

tion.
Powell’s method can minimize any input function., This

study optimizes the solution giid with the sum of Unnnz'

‘

Uﬂﬂz' Unz, and of combinations of thése three functions, Of

"the first three functions, minimizing the sum of Ui 2 pest

nn

minimizes the error in U, It produces better results for

t

Cf.. The solution ;educes the RMS of the error between the
computed U and the yon‘Karm&n-Pohlhsusen approiimationlof U
ﬁosk. Tﬁe computed velocity profile is also closest to Blas-
ius’, exact.'velogity prqfile; Minimiziﬁg the, sum of Un2
does not ptéduce good re;ults. The minimization does not
converge on an qptimum grid witg this function, It does put
more points into the boundary layer, but the results are
worse for Cf'and‘the velocity profile., 1In fact, minimiz-

ing }ﬁnz. increases the errér between tﬁe compnfe§ 4] aqd the
von_Karman—Pohlhauseﬁ solution., If }Unz is included with any
of thg other derivative functions, the results are always
worse, This is not the case with miniﬁizing EUnnz. Mini-

mizing with }Unnz gets results very close to the results of

2
nnn

solves the flow at the leading edge, while minimizing }U

minimizing the sum of U e Minimizing EUHHZ better re-

2
mnn

better resolves flow at the trailing edge. Consequently, the
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minimizing }UnnZ separately, The,}U

shows improved results over

2
nmmn

least error in U, however. Some other combination of the

combination of Eﬂnnz and EU

still produces the

2 2
EU“n and the Euﬂﬂﬂ may produce better results, Changing
Reynold’s number for the problem does not significantly

change which minimized function produces the best results.

Changing the number of grid points in the y direction seems

to make the EUnnz the best, minimizing functiom. For frob-
lems with smaller numbers of grid points, the affect of mini-

2 increases, The number of grid points also

mizing the }Unn
affects the optimized Q value and the initial Q gpess.f'Gtids
with more'grid points converge on Q's closer to 0. Since the
optimization inputs do affect the accuracy and behavior of
the minimization process and final solution, the problem must
be eiamingd carefully to determing thé‘inputs which give the
best, adaptive-grid sointion. |

Using the ndaptive-g;id solutions in compressible, boun-
dary-layer problems also produces good tesﬁlts. Compnted‘

velocity profiles are an excellent match to Van Driest’s,

theoretical solutions for high-speed flowvovei flat plates.

The temperature, profile results are not quite as exact, bdut

the computed, temperature'ynofiles follow Van Driest’s, theo-

retical profiies closely., The adaptive—xrid‘iesults also
compare well with high-speéd Eckert theory predictions for
the heat ponvebtion'coefficient.' Like the incompressible
cases, minimizing the Euﬂﬁﬂz produces the best results 'in
compresﬁible cases. Throughout the range from Mach 2 to
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" Blasius,

Mach 8, the computed h does not vary from Eckert's theoreti-
cal values by more than three percent. This is good correla-

tion to sn approximation like Eckert theory. Therefore, the

.adaptive grid solutions succeed in minimizing the error in U

to give excellent velocity profiles for high speed, compres-

 sible flow and good agreement with high speed Eckert theory.

The boundary-layer code‘ptesented in this study is an
improvem;nt over previous methods. The non-adaptive, grid
§olntions a%e better than Lange's solutions and are close to
' exact,incompressible solution. Adaptive-grid solu-
tions impgove én the solutions using a non-adaptive grid and
use fewer grid points. 'The sdaptive grid also provides the
flexiﬁility'to optimize.thc grid fb: any desired functidn and
for gener;l boundary—layqr problems that may not haQe exacf
solution such as high-sﬁeed compressible ﬁr‘tnfbulent flow,
The ad;ptive grid successfully solves comptgssible, flow
proble;s. ‘The application of the optimized, exp;nenti;l.
adaptive-grid methodvto ihese compressible problems shows
that the metﬂod can be applied to more complicated problens
than incompressible flow over a flat plate, Using a pon-
adaptive grid structured eround a grid optimized for the flow
solution, limits the application of the boundary-layer meth-
od, The adaptive grid has no suchllimitlti;ns. Further
application of the.adaptive—gtid method could solve even more
compiicated problems. The solution of these problens nl&

extend the engineer’s knowledge of hypersomic, flow problems.
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Chapter VII: Recommendations

This study has not investigated all $ossible applica-
tions or affects of the adaptive-grid optimization. Further
studies of the optimization procedure could mnfe some changes
which could improve the efficiency of the optimizatibn.

Other changes to the boundary-layer code could also expand

.the applicability of the code to a much larger class of prob-

lems.

| Two improvements to the optimiza‘ion code could improve
its efficiency. The biggestlshortcoming in the adaptive-grid
'solotion is that it reéﬁires much more computsr time than a
non—adaptive scheme since a solution of the boundary-iayer

code is required for each iteration of the method. BEven

though the number of grid points may be less, the number of

~iterations required for the adaptive?grid solution increases

the overall, computer time, If a Thomas’'~algorithm, iterative
solntion is used instead of the SOR, the tiﬁe igquired to
compufe the boundary—l;yet solution decreases. Chen'hus
included a quad-diagonal solver in this s@me,‘boundary—laye:.
code to study'turbnlent;‘flow problems (5). This would dra-
matically reduce the compﬁfer time.needed for adaptive—grid
solutions. Also, minimizing some other combination of the

2

sum of U__2 and the sum of U may produce better overall

nn nmn
results than cases tested in this study. Other minimizing

"functions could also be tested. The parameters that form the
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control function could also be changed. This study splits Q
into two parts and minimizes each part., Q could be split
into more parts, or a linear functional relationship‘between
the parts could be used to form Q. Many different parame-
ters can be varied to find the best optimization method. The
flexiﬁility of Powell’s method provides many avenues which
might result in bettef answvers édr vntion; ptdblems.

There ;tb additions that can be made to apply the opti-
mization grid to a larger class of problems, To further
reduce the error in the boundary layer code and make it a
true, two-dimensional problem, the adaptive grié could be
applied to both streamwise and normal directions, This study
only optimized in the normal direction and then scaled the
exponeéntial stretching in the stteamwisé direction. Turba-
lence modeis. and nonisothermal wall effects could be in-
sertéd. The axisymmetric, boundary-layer equations could be
vsed to solve flows over axisymmetric bodies. This would
allow the solution of a wide variety of boundary-laver flows
with th; aéaptive grid. The possibilities for using the
basié optimizatipn method pfgsented in this study are limit-
less. Bat much m;re study is required to determine thevap—
plication of adaptive—-grid and.boundaty-liyer solutions.ﬁo'

investigations of hypersomnic, flow regimes,.
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"Appendix A: Compressibility Transformation

The boundary-layer equations under most conditioms are
density dependent. Compressiblity makes the.solution of
the non-linear, houndary-layer'equ:tions more difficult, If
the equations are trausformed into equations sinilarvto the
inconpressible; ﬁonndlry-Layet eguutions, a solation might be
easier. To fransform the compressible equations, some fornv
of a compressibility transformation is used. The transforma-
tion puts the density dependence into the vatibleé'of the
equations. In the physcial space, the dimensional v;riables
are x’', y', and t'; The variables are non-dimensiqnlliz;d

using ,

L' Ll Ll U'Q B ulo (A-l)
H= K’ , T= Cp'T' , p= D’ . =u' ., p=p'
U' Ul p 'U' " L] ’
@ @ .Pu: @ B P

The transformed variables are

oy ,
X = x, Y= o' dy, ti=t (A-2)
' 0 P’e

The non~dimensional, compressible, axisymmetric boundary-

layer equations are

Continuity: r™3p + 3rPpu + 3r%pv = 0. (A-3)
at ax dy
Momentum: dpu + 3pu? + dpuv = ~dp + [ _u au (A-4a)
3t 0x dy ax dy\Re 9y
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Momentunm: ._Qn = 0 ' (A-4b)
S 4 , v
Energy: 9oH + 9puH + 9gpovH = 9p + _3f _u oH.
at 9x dy at dy\RePr dy

+_i(|!§Pr-12 3_1;’_[_2_) (A-5)
3y \ Refr dy

where vm =0 for two-dimensional problems and =n=1 Ifor axi-
symmetric ptobléns (Appendix B). The transformgd variables
must be gnbstitqted into the comp;eﬁgible, bound;ry—laygt
equations, To.substitute for the partial derivative terms

use the following relationships:

oW = 3W 3X + 3¥ 3Y, QW = QW 3X + 3W 3¥, I¥ ='a¥W  (A-6)
ax X 9x Y 9x Ay aX dy aY ady at it ‘
where 3X= 3Y= gt= 9t=_03X=0 and 3Y= p
dt 3t 9x @8y IJy dy

W in the above equations represents any variable of interest.
After expanding Eq (A-3) using the chain rule and then sub-
stituting relations from Eq (A-6), the transformed, continu-
ity équation becomes

tP3p+c®3p 3¥+ur® 2p+pr®(aU+3U AX\+rPv[3p 3Y)+pr™AV 2Y=0
at oY at X 0 a x dY Jdy .

o]

The desired form of the incompressible, axisymmetric, comti-

nuity equation is

arMy + ar%y = 0 (A-8)
ax Y » '

The continnit} equation in axisymmetric, physical space co-
ordinates is
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-0 + 3r%v =0 , (A-9)
ax dy

Compare Eqs (A-8) and (A-9) to determine what U is.

8r®: = r®3u 3X = r™3u = "3y . (A-10)
ax 3X ax ] aX
Therefore, o .
: U=y ‘ (A-11)

Taking out the aUlaxﬂterﬁ in Eq (A-7), the remaining terms’

are the second term in Eq (A-8),

r®3p+ur® 3dp+prPaU 3¥+3r%pv =_3:Bv = prP3y

at - 9x eY ax 4ay dy aY
where »p= 3aY/dy : (5-12)'
£23%Y + P93’y + r®3u 3¥+3rPpv = pr®3V (A-13) .
dyat dydx dy ax oy oy
and o : ' '
rBpv= BV - M3Y/3t - ur®ay/ax (A-14)
Therefore, : j i fﬁqj

V= pv+ 3Y/3t + ud¥/ax : (A-15)

The transformed Qelocity components, U and V, satisfy Egq
(A-8). VWhen they are substiiuted.into Eqs (A-4) and (A-5),

equations similar to the incompressible, momentum and energy

equations result (15:81-93). These equations are ;
Momentur * U+U3U+VaU = ~1 3p+d_ é“ U o (A-162) e
at 9X oY p.8X 3Y \Re 9Y .
dp = 0 : . (A-16b)
Y ‘

Energy: QH+U3H+V3H = 1 3p+d [ ou  aH
9t @ ] -p 8t dY\RePr 3Y /

+ 3 [pp(Pr-1) 60’[2‘ kA-17)
Y RePr Y
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Appendix B: Axisymmetric, Boundary-Laver Equations

The tVOfdﬁnensional anflysis of boundury-layer equations
is easily applied to axisymmetric shapes. Axisynmqtric'
. shapes have one uxis'snch that a plane passed pétpendi;ulat
fhrongh this axis slices out a circle of varying radius.
Fig. B-1 shows a general, axisyantib. coordinste system.
Ary location on the surface is descriﬁéd by coordinates x, y;
and §. The 'scale factors are h;,. Velocity components are
v

i+ h; and V, are . .

1+ y/Ry Vi =

-
[y
"

hz = 1 o V2= v (B-l)
hy = Ro(x) + ycosa V3 = 0

.Ro is the local radius of the surfa;e and variles with'x.' Ry
is the local radius of curvature, ‘For-a cone, a is 0°, and
there is no x-dependence in y. The only non-unity, scale
factor is h; which becomes Ro(x), or just r. To make the
two—dimensional equations more appli~rable to two-dimensional
and conical, axisymmetric prbblems. the sﬁperscipt m is add-
ed.  For two—-dimensionai ptoplems, m is 0. For lxis&mne;ric
problems, m is 1. In this study,:the two;dimensiénal, incom-
p;essible. boundary-layer eqwati&ps were transformed into a

computational plane where

E = E(X, Y, t)
n = ‘\(xb Y' t) ' (3—2)
t = t
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After the metric relationships are applied, the transformed,

two-dimensional, incompressible, boundary~layer equations are

Continuity: 3170 &y + _3770 ny + ar™v iy = 0 (B-3)
2 At Y _
Momentunm: U +U(U§§x+unnx)+vunnY = 1/Re[pp(0nnY)1nY (B-4)
Enef!?‘ 'Ht + U(Hatx""ﬂnﬂx) + VHnnY = (B"S)
pe/p + (_ou Homy) ny + lou(Pr-1) nY(Uz) 1 ny
rRe 2RePr

The momentum and energy equations are not affected by the
changing rudius of a cone's surface. 'Consequently, tﬁe fi-
nite-difference equations for finding U and H do not change,
The solution of V requires integratiné the continuiéy equn;
tion ;hich does depehd on the changing radius.

The cont{nnity equation is tenfrnnged to isolate V.
The resulting eqaution is thenm integrated to solve‘for V.

The integrable equation is

m - - -
(V) = Y§ (c® U, + Yg (r U). (B-6)
§ §
The right-hand, side term with (rmU)n is diffqrenced with a
three-point, windward scheme about the j+1/2 point. The

second term splits up into parts.

: f j .
I, (:°0). = 1.( Y, (£P0) - }?:mn)(z )y dnl (B-T)
xg A Xe E o i-1

The integral is evaluated using a trapezoidal rule with Y

averaged about the j-1/2 point prior to the infegration.
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Y{/X:(tmu)n = IIX§ {[(YtrmU)i'j (Ygr U)i.j’ll . (B 8)

SREI (L ST E L DUNNPS | ¢ RIS FUTNNPS b

= 1/(ZX§) [(Y{rmu)i'j’(YgrmU)i'j_l’ (B‘g)

+ Y{i.j—l(inU)i.j-Yti,j(rmU)i.j-I]

) = s : m s P and m :

the other terms of V“-added in, the finite difference

for vi,j is

¢ - V.

This

each

i,J

; ll(tm)i'j {(IDV)i‘j_l

* LR LS, 5T ) (F3GPD e (D), )

i
+4[(fm0)i-l,j*(fmU)i—l.j-ll-[(rmu)i-2.j+(‘mn)i—2,j—1]}

+ (Y

Ei.j+Y§i,j—1)[(rmU)i.j-(rnU)i.j-ll}} (B-11)

finite difference is then iterated to solve for V at

location in the domain.
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Appendix C:

N¥P)

Define Q(A_)
i.0. Q=A0(1)+A0(2)

(Subroutine PCAL)

Create the grid
(Y., + Q¥ =0)
(Subrdutine BXPGRD)

Solve for U,
(Subroutine BtiﬁP)
| '
Find.' U at
oach i Jn?ocaQQOn
|

! imax X
Find f; = E S u,mn2

i=1  j=1

teration=ITMAY ‘

A

Oﬁgimi;ation Flgw Chart

*f“-_f___~_——_,_———”—7

A= 0.0
'm

A

N

A

Find A(n) Y,
[A(z)?

(r)~, A(n)?
= A(r) + A

t or r=1,
E(r,z)]

nmax

Find 0%, @7, Q?
(Subroutine PCAL)

‘l

Find grids for %, Q7, Qb
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(Subrontine EXPGRD) |
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Step 1
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Gl N
JLIN g

] [ + A — b \ A
Block A | Solve for U 1 U N 1
. i, ¢ »
A N (Subrout ﬂgﬁ BE&M&) i.d
TV — 1
Find U U U at
each i, for +ﬂﬂ » JHH‘b cases

Find gb f+

1max max
[e0) - E

==1 =1
(S.R. NEWP1) 31 ]

|Find minimum of quasdratic through
At, A7, ab =2

] ,
AR [Find AN = A(r) + AN E(r, 1) ]
1

[ Find aN |
S.R. PCAL)|

Find grid for QN
(S.R. EXPGRD) _
i

Find UN,.
(S.R, anﬁﬁ)

F1nd eN
(S.R. NWP)

Find minimum of A
£, £7, %, N = f(min)
: f= ﬁ(mig)

1¢ £¢ 2 ;- fmin),

L__ : A - = 3}
MError) =

()'Old "l)lOO/’sold

v [-eror)i(ﬁrror) ;J : 1 A

v . .
-
>

Block A K=K+1 |

Step

Find r to maximize
f(A(-1))-£((A(T)) Step
r=rsave,
f(A(rsave))=f .

fz = f Stepl
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[Define A3(r) = 2A(r) - AO(r)]
I

Find Q3
(S.R. PCAL)

[Create the grid
(S.R. EXPGRD)

Find U3, |
(S.R. BLINP)
I

" Find f
(S.R. N¥P)

f3lf1 or

' 2

2(f1‘2f2+f3)(f1'f§§fm.x) 2_
fmax(f1-f3

Define E(r,rsave)=A(r)—Ao(r)

A= 0.0
DL=_ %*)

Fipd A+, A
A0 = pL o+ 2

P Y -~ .
o~ k"Kmax o~
N
“Find A_Y, A_", A D

A(r)( ) = d%t)+ aE(r,asavé)

\' 4

> N

Do Block A >

Y

l——{Iteration = Iteration + 10—

!OUTPUTI

—~
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NStep 3

Step 3

Step 4

Step 5§

Step §:
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Appendix D: Ogtimization Program

PROGRAM MNTRER

THIS PROGRAM USES POWELL’S METHOD OF CONJUGATE DIRECTIONS
TO MIN THE TRUNCATION ERROR IN A BOUNDARY LAYER

THIS PROGRAM WILL COMPUTE THE FOLLOWING:

NUMERICAL GRID SOLUTION USING POWELL’S METHOD AND

THE CONTROL FUNCTION P TO MINIMIZE TRUNCATION ERROR
égIEHE TRANSFORMED ETA DIRECTION OF A BOUNDARY LAYER

IN ALL CASES THE THIRD DERIVATIVE (DUUU) IS CALCULATED NUMERICALLY

DIMENSION UEXACT(21,0:20),P(19),X(21),DUUU(21)
DIMENSION Y(21,19), ?PLUSDL(21 19) YHINDL(21 19)
DIMENSION P3(19) DSU(21) Y3(21 19),U3(21,0: 20

DIMENSION AAA(IS) BBB(19) CCC(19) DDD(19) GGG(lS) wWwi19)

DIMENSION PPLUSDL(19) PMINDL(19)

DIMENSION U(21,0 :20),UPLUSDL(21,0:20).UHINDL(21, :20)
DIMENSION A(S),ASAVE(S),A3(S),APLUSDL(S),AMINDL(S)
DIMENSION ABAR(S),2I(2,2),DELTA(21),ABAR2(S)
DIMENSION POLD(19)

OPEN(UNIT=8,FILE="RESTART’)
QPEN(UNIT=9,FILE="WALLQ’)
OPEN(UNIT=10,FILE="FIELD’)

CPEN(UNIT=11, FILE=’GRID')

OPEN(UNIT=12, FILE="HREF’)

OPEN(UNIT=13 FILE='CFCF”)

REWIND &

REWIND 8

. REWIND 9

VRN WWN- -

[

REWIND 10
REWIND 11
REWIND 12
REWIND 13

CALL SECOND(CPI)

READ (7,e) IMAX,JMAX,KMAX,ERMXL
READ (7,=) YMIN,YMAX,PERCENT
READ (7,) NMAX,ITMAX

READ (7,=) ERPOWMX,ICOL,IRST
READ (7,=) (A(IR),IR=1,NNAX)
READ (7,+) WHO,WH2,WH3

READ (7,#+) 2

CALL DATE(ADATE)

CALL TIME(ATIME)
WRITE(6,100) ADATE,ATIME
FORMAT(’1’,/,5X, A10, 2X,A10)

WRITE(6,200) {:?¥R{H$g YHIN Y!AK,KHAX ERMXL, PERCENT,
FORFAT(lX.‘VUHBER ofF GRID PTS,,IHAX— »13,3X,°JMAX=",
13,7/,1X,*MIN Y VALUE, YHIN*’ El3.5, .lX,

‘MAX Y VALUE YMAX=" .513
*MAX NUMBER OF ITERATIONS FOR ONE'
’PARAMETER OPTIMIZATION, KHAX".I5 /, 1x.
*MAX PERCENT ERROR IN ONE PARAHETER' .
" QPTIMIZATION FOR CONVERGENCE, ERHXL='
E13.5,/,1X,’PERCENT CKANGE IN PARAMETERS USED'
*TQ "CALCULATE QUAD EQ FOR ONE_PARAMETER OPT=~
E13.5,/,1X,2INITIAL A ,5513 S,7,/7) '
WRITE (6, 209) WHO, WH2, WH3
FORNAT l%ﬁU'THE WEIGHTING FOR DU = '.E7 2,2X,

2,2X,°DUUU = ,E7.2./
WRITE (6,211) iT NAX ,
FORMAT(1X,”MAX NUNBER OF ITERATIONS,IN OUTER LOOP’,
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150

’TO POUELL METHOD, ITMAX=’,I3)

1 .
WRITE(6,213)IC
FORHAT(IX ’OPTIHIZED COLbHN 1s’, 1X,131

PI=ACOS(-1.)"
JHMM1=JMAX-1.

C

o] SETTING UP BOUNDARY CONDITIONS
XSTEP*I/(FLOAT(IHAX) -1.)
DO 5 1=1,IMAX
X(I)=FLOAT(I-1) *XSTEP
CONTINUE

Y(ICOL,1)=YMIN
Y(ICOL,JHMAX)=YMAX

THIS SECTION CALCULATES THE OPTIMIZED NUMERICAL SOLUTION
USING POWELL’S METHOD (1964)

DO SO J=1,NMAX

ASAVE(J)=A(J)

po 70 IR=1.NHAX

Z2I¢(J,IR)=0.0

CONTINUE

21¢J,0)=A(J)=0.1

IF (21(J,J).EQ.0.0) 2I¢(J,J)=.01

CONTINUE
IB=0

CALL PCAL(A, NKAX P, JMAX)
CALL EXPGRD(X P AAA,CCC,DDD, GGG WWW, YNIN,

HAX IHAX.JHAX fcoL)

CALL BLIMP(X, YéIHAX,JHAX é UE,DELTA,RE)

WRITE(6,*) °‘DELTA= .DELTA(IHAX)

IF (YMAX.LT.Z»DELTA(IMAX)) THEN
YMAX=DELTA(INAX)»2
Y (ICOL, JMAX) =YMAX
G0 TO 55

DIF
CAL& NWP (U,DUUU,H1,IMAX,JNAX,ICOL, WHO WH2,WH3)
CALL POHL(Y, DELTA UE, INAX,JMAX, UEXACT)

WRITE (6, 402

FORMAT (gx ’I’,4X *J’,09X, ‘P, 12X, 'X’.12X.’Y’,10X.

EXACT’ .BX.'U 11X. UZUEXACT*)

DO 611 I=1,INMAX

IF<I.EQ. 2 oa 1.EQ.IMAX) THEN
DO 612 J=1,JNAX
WRITE (6, 602) 1,J,P(D,X(1),¥(I,J),UEXACT(I,J),
vt 3, udd, D -uekacTt, "
FORMAT (1X, 213 6£13.5)
CONTINUE
ENDIF .

CONTINUE

WRITE (6,602)

FORMAT (1X. P IS JUST A FUNCTION OF THE INITIAL A’,

ALUES AND NOT OF RLAMBA OR 2I’,/)
CALL ERROR(U UEXACT, IMAX, JMAX)

.ITRT=1
IF (ITRT.GT.NMAX) GO TO 580

DO 370 ITERATE= ITRT, ITMAX
HOLD=H
IRSAVE=0
HDELHAX=0.0
ERRORPW=0.0
p0 150 IR=1
ERRORPW= ERRORPU'ABS(A(IR) -ASAVE(IR))
ASAVE(IR)=A(IR)
CONTINUE
ERRORPW=ERRORPW/NMAX
IF (ERRORPW.LE.ERPOWMX,AND.ITERATE.NE.1) GO TO S&80
WRITE (6,122) ITERATE
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122 FORMAT (1X,/,/,/,"+sseu0evss BELOW ITERATE=", IS,
c IF(IRST'EQ.l)f%ﬁéi'l....‘.'........"'..II'....'
¢ STEP 1 OF POWELL’S ALGORITHM: FOR IR=1,2,...NMAX CALCULATE RLANBA .
C S0 THAT HCASRLABBA® ST 15 & HINIAON aND’ BEEIND ACIR) =A(IR-1) +RLANBA*2I
' . IR1s1 '
DG 180 IR=IR1,NNAX
RLAMBA=0.0
. DLTA=PERCENT *RLANBA

IF (ABS(DLTA).LE..05) DLTA3.05

RLAMPL=RLAMBA+DLTA ,
. ' RLAMMN=RLAMBA-DLTA
¢ - ,
€ ITERATION FOR ONE PARANETER QPTINIZATION

DO 250 K=1,KMAX
RLAMOLD=RLANBA
DO 180 J=1,NMAX
APLUSDL (J)=A(J) +RLAMPL*21(J, IR)
AMINDL (J)=A(J) +RLAMMN#2I(J, IR)
. ABARCJ)=A(J)*RLANBA#21(J, IR)
180 CONTINUE
CALL PCAL(APLUSDL,NMAX,PPLUSDL , JNAX)
CALL PCAL (AMINDL,NMAX,PMINDL,JNAX)
CALL PCAL(ABAR,NNMAX,P,JNMAX)
CALL EXPGRD(X,Y,P,AAA,CEC,DDD, ccc WwW, YMIN,
YHAX, IMAX, JNAX, 1
CALL EXPGRD (§ Y5L332§ gggusnL AAA CCC,DDD, GGG, WWW, YMIN, YHAX.
‘CALL EXPGRD (X, YNINDL,PNINDL,AAA,CCC, DDD, GGG , W, YMIN , YHAX,
IMAX, JMAX, ICOL)'

CALL BLIMP(X,Y,IMAX,JNAX,U, ITERATE,UE,DELTA,RE)
CALL BLIMP(X,YPLUSDL,INAX, JMAX,UPLUSDL, ITERATE,UE,DELTA,RE)
CALL BLIMP(X,YMINDL,IMAX,JMAX,UMINDL,ITERATE,UE,DELTA,RE)
CALL NEWP1 (U,P,UPLUSDL,UMINDL,DUUU,RLAMPL , RLAMNN,
1 RLAHBA RMSDUUU, H, K, PERCENT, IMAX, JHAX,
2 ABAR2,NMAX,X,Y,AAA,CCC,DDD,GGE, www, YMEN, YMAX, ICOL,
3 ITERATE,UE,DELTA,P3.Y3, 630 03,4,21, IR, WHO,WH2, WH3)
WRITE(6,800) IR, (A(J),J=1,NNAX)
800 FORMAT(1X,”ABOVE RESULTS ARE FOR INNER OPT AND’,
1 *ACIR) PARAMETER, IR=’,IS,/,’ THE oLD AcD)’,
*VALUES ARE:=‘,5£13.5)
WRITE (6,801) (2I(J,IR),J=1,NMAX) .
801  FORMAT (1X,’ THE OLD 2I¢J,IR) VALUES=’,SE13.5,/,
1 1x.' POLD IS CALCULATED BY usxns'
*“A=A(OLD) *» (RLANBA OLD)#(2I OLD)*./,/)
ERRORL = ABS (RLANOLD-RLANBA) 200.0
IF_(RLAMOLD.NE.0.0) ERRORL=ERRORL/ABS(RLANOLD)
IF (ERRORL.LT.ERMXL) THEN
WRITE(6,%) ‘K-CONVERGED’

GO TO 290
ENDIF
250 . CONTINUE
290 + CONTINUE

DO 310 J=1,NMAX
: A(J)-A(J)*RLAHBA-ZI(J IR)
310 CONTINUE

IND THE INTEGER IRSAVE SO THAT H(A(IR-1))-
A MAXIMUM, AND DEFINE THE HAXIHUH AS HDELTNMAX

ggELTA=HOLD H
IF (HDELTA.GT.HDELMAX) THEN

' HDELMAX=HDELTA
IRSAVE=IR

i
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END IF O

160 CONTINUE o)

c atal
€ STEP 3: CALCULATE H3=H(2sA(NMAX)-A(0)), AND DEFINE H1=H(A(0)), :

c © AND H2=H(A(NMAX)) finy

¢ =

163 H2=H . ' X

IRST=0 ' =

DO_320 IR=1,NMAX i

A3(IR)=2¢A(IR) -ASAVE(IR) it

320 CONTINUE o)
CALL PCAL(A3,NMAX,P3,JNAX) v

CALL EXPGRD(X,Y3,P3,AAA,CCC,DDD,GGG,WWW, YNIN, YMAX, IMAX, JMAX, ICOL) Pars

CALL BLIMP(X, Y3 IMAX, JMAX, U3 ITERATE UE, DELTA,RE) ' )
WRITE(6,*) ’*THIS NWP CALLED IN STEP'3 e
CALL NWP(U3,D3U,H3, IMAX, JMAX, ICOL WHO,WH?2,WH3) C s
STEP 4: IF EITHER H3.GE.H1 AND/OR : 2
(20 (H1-2#H2+H3) » (H1-H2-HDELMAX)»=2), Gn.(HDELHAX-(Hl ~H3) #=2)
USE THE OLD DIRECTIONS 21 FOR THE NEXT ITERATION AND
- USE A(23A¥6 gngTgE NEXT A(O) (GO TO STEP 1), OTHERWISE

RLHS=2.2(H1-2,#H2+H3) » (H1-H2-HDELMAX) »#2
RHS=HDELMAX#* (H1-H3)»#2
IF (H3.GE.H1.0R.RLHS.GE.RHS) GO TO 550

STEP S:DEFINE ZI=A(NMAX)-A(0) CALCULATE RLAMBA SO THAT
H(A(NMAX) +RLAMBA#21)> IS A MINIMUM AND REPLACE THE
2I(IRSAVE) VALUE BY THE 2I VALUE ABOVE AND USE
%;gg:#%agLAHBA'ZI AS THE STARTING POINT FOR THE NEXT

IR1=1 . ‘
391 IF(IRST.EQ.1) THEN
¥§g$(8.¢)IR1 HDELHAX IRSAVE, ((21(J,1),J= l.NHAX) I=1,NNAX)
ENDIF
IF(IR1.GT.NMAX) GO TO 392
DO 330 IR=IR1,NMAX
2I(IR,IRSAVE)=A(IR)-ASAVE(IR)
IF (ZIC(IR,IRSAVE).EQ.0.0) ZI(IR,IRSAVE)=.01
390 CONTINUE
392 CONTINUE
" RLAMBA=0.0 ‘
DLTA=PERCENT»RLANBA
IF (ABS(DLTA).LE..0S) DLTA=.0S5
RLAMPL=RLAMBA+DLTA
RLAMMN=RLANBA-DLTA

c
g ONE PARAMETER OPTIHIZATION‘FOR STEP S OF ALGORITHM

DO 480 K=1,KMAX
RLAHOLD RLAHBA
DO 440 J=1,NMAX
ADLUbDL(JJ-A(J)¢RLANPL021(J,IRSAVE)
AMINDL(J)»=A(J)+RLAMMN=2I(J,IRSAVE)
ABAR(J)=A(J)+RLAMBA#»2I(J,IRSAVE)
440 CONTINUE
CALL PCAL(APLUSDL,NMAX,PPLUSDL,JMAX)
CALL PCAL(AMINDL,NMAX,PMINDL, JHAX)
CALL PCAL (ABAR NHAX,P JMAX)
CALL EXPGRD(X,Y P AAA, ccc DDD, GGG, WWW, YMIN,
InAx JNAX, ICOL)
CALL EXPGRD ‘¥,YPL§SD§ gPLuébL.AAA ,CCC,DDD, GGG, WWW, YMIN, YNAX,
MA CoL) :
CALL EXPGRD (¥HYHI§gkxP¥éNDL .AAA,CCC,DDD, GGG, WWW, YNIN, YMAX,
\A
CALL BLIMP(X,Y,IMAX JKAX U,ITERATE,UE,DELTA,RE)
CALL BLIMP(X, YﬁLUSDL IHAX.JHAX yPLUSDL, ITER&TE UE,DELT
CALL BLIMP(X,YMINDL,IMAX, JMAX, UHINDL ITERATE, UE,DELTA,

anann

[2lelololplele]

A.RE)
RE) -
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900

901

480
540

. 490
550
S80

CCC

400

S00
613

610

600

640
630
10

700

WN -

CALL NEWP1(U,P,UPLUSDL, UHINDL DUUU,RLAMPL,RLAMHN, .
RLAMBA, RHSDUUU PERCENT INAX, JHAX,
ABAR2 NMAX, X,Y, AAA ccc, DDD GGG wWw, YHIN YHAX ICOL,
ITERATE UE, 6ELTA pP3,Y3, D3U U3 A 21, IRSAVE WHO, WH2, WH3)
WRITE(S.SOO) TRSAVE (A(J) AX)
FORMAT(1X, ’ABOVE REéULTS ARE ﬁOR QUTER OPT AND’,
’ iRSAVE='.IS /,’ THE OLD A(I) VALUES ARE=" ’

2 SE13.3)

WRITE (6, 901) (21(¢(J,IRSAVE),J=1,NMAX)
FORMAT (1x, THE OLD ZI(J,IRSAVE) VALUES=’,5E13.5, /.

1 1X,’ POLD IS CALCULATED BY USING’,
2 ’ A=A(OLD)+(RLAMBA OLD)#(ZI OLD)’ ,/ /)

ERRORL=ABS(RLAMOLD-RLAMBA)*100.0
IF (RLAMOLD.NE.O.0) ERRORL= ERRORL/ABS(RLAHOLD) G0 TO 540
IF (ERRORL.LT.ERHMXL) GO TO 340
CONTINUE
“ CONTINUE
' DO 490 J=1,NMAX
A(J)=A(J) +RLAMBA#2I(J, IRSAVE)
CONTINUE

CONTINUE
CONTINUE :
CONTINUE . '

CALL POHL(Y,DELTA,UE,IXAX,JMAX,UEXACT)
WRITE (6,400)
FORNAT (2X,°1°,5X,’J’,12X,°P",12X,"X", 2x.'v',12x.
'U‘ 12X.'UEXACT 8X. 0-UEXACT*
DO 610 I=1,IMAX
IF(1.EQ.2. OR I1.EQ.IMAXD THEH
DO 613 J=1,JMAX
WRITE (6 $00) I,J,P(0),X(,Y¢1,0),u(I,N,
: UEXACT(I U, 5y -UEXAGT( (I,J) .
FORHSTTiix ,215,6E13.5)

ENDIF
CONTINU
CALL PCAL(A NHAX,P,JHAX

"~ CALL. EXPGRD(X AAA, CCC bDD GGG WWW,YMIN,

AX in.«x JHAX ICOL

1
CALL BLIMP(X,Y, IMAX.JHAX ITERATE,UE.DELTA,RE)

WRITE (6,600) H.RHSDUUU
FORHAT (1X.'SUH OF THE SQUARES QF DUUU, H=’,E1l3.5,
.“RMS VALUE OF DUUYU, RMSDUUU=’,El13.5,/,/)

1
CALL ERROR(U UEXACT IMAX,JHAX)

DO 630 I'2,IHAX
DO 640 J=1,JMAX
ETA=Y(I, J)'SQRT(RE/X(I))

URITE(ll 10) ETA,UEXACT(I,J)
CONTINUE
CONTINUE

FORMAT(2E13.5)

ENDFILE 8

‘ENDFILE 9~

- ENDFILE 10

ENDFILE 11

ENDFILE 12

ENDFILE 13

CALL SECOND (CPF)

CPU=CPF-CPI .

WRITE (6,700) CPU ‘
FORMAT (1X,’CPU=’,E13.5)
STOP
END
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SUBROUTIN.: PCAL (A,NMAX,P,INAX)
DIMENSION A(NMAX) ,PC(INM AXS
DO 10 I=1,IMAX

c P(I)=A(1)eI+A(2)
P(I)=A(1)+A(2)
10 CONTINUE
RETURN
. END

¢
c THIS SUBROUTINE SQLVES THE UNIFIED DIFF RELATION FOR THE C GRID EQ
gSING TRIDIAGONAL SOLVER

SUBROUTINE EXPGRD(X Y,P,A,C,D,G,W,YMIN, YMAX, IMAX,JMAX,L)
DIMENSION P(JMAX), ACIMAX)
DIMENSION C(JMAX), ,D(INAX), G(JIJMAX) ,W(INAX)
. DIMENSION X(IMAX) Y(IHAX.JHAX)
, WRITE (6,100)
100 FORMAT (IT15 *GRID CAL’,/,TS,’USING A UNIFIED DIFFREL’)
- Y(L,1)=YNIN <
Y(L,JMAX)=YMAX
DO 190 J=2,JMAX-1
A(J)=EXP(-P(J))/(EXP(-P(J))+1.0)
C(J)=1/(EXP(-P(J))+1.0)
D(J)=0.0 -
190  CONTINUE
G(l)= Y(L ')
W(1)=0.0
DO 290 J=2,JMAX-1
: W(I ==C(I) /7 (1.0+A(I)»W(JI-1))
» G(J)=(D(I)+A(J)2G(J-1)) /(1. +A(J)=W(I- 1))
290 CONTINUE
DC 130 J=JMAX-1,2,-1
¥Y(L,J)=G(J) U(J)-Y(L J+1)
390 CONTINUE
DO 490 I=1,INMAX
DO 590 J=1,JMAX
IF(I.EQ.L) THEN
Y(I,J)=Y(L,J)

ELSE ,
Y(I,J)=Y(L,J)*SQRT(X(I)/X(L))
ENDIF .

590 CONTINUE
490 CONTINUE
C WRITE(14,+) ’ADAPTIVE GRID COORDINATES’
c URITE(14,1)((X(I),Y(I.J).I=1.IHAX),J=1,JHAX)
1 FORMAT(2E13.3)
WRITE (6,200)
200 FORMAT (10X, ’ TRIDIAGONAL SUBRGUTINE IS USED FOR GRID EG*)

THIS SUBROUTINE CALCULATES CONVERSION FOR PHYSCAL TO
DORODINITSYN PLANE. TRAPEZCIDAL INTEGRATION.

SUBRCUTINE TRAPZ(H,Y,I,J,IMAX,JMAX,SUM,HEND)
_ gggEﬁSgON H(IMAX,0:JMAX+1),Y (IMAX,JNAX)

DO 10 k=2,J
F=Y(I,K)-Y(I,K-

AREA= F/2=(H( I, ’H(I K-1))/HEND
SUM=SUM+AREA

i0 CONTINUE
RETURN
END

QOO0
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C THIS SUBROUTI&E CALCULATES U VELOCITY FOR THE ITERATION.

SUBROUTINE BLIMP(X,Y,IMAX,JMAX,U,IB,UE,DELTA,RE)

DINENSION X(IMAX),Y(IMAX,JIMAX),U(IMAX,0:JMAX+1),
& v(21,19),H(21,0:60),W(19)

DIMENSION DX(21),DY(21,19),DYXI(21,19),DYB(21,19)

DIMENSION ETAX(21 19, RHO(19) RH(19) T(19) DYRE(21 19) '
DIMENSION UNM1(21,19), HNH1(21 19, VNH1(21 19) UIN1(19)
DIMENSICN HIH1(19) UIH2(19) HIH2(19) 0(21) HHREF (21)
DIMENSION YP(21, 19) R(21, 19) DELTA(IHAX) DYF(21 19)

DIMENSION TAU(21) C#(Zl) UD (21 19, TW(21)

REAL MU, HUINFR% H HINFéHUW HUEﬁG HE MUSTAR

DATA NT,ICNT,KT.NTWw,IR5T/0%0, 01o 1o 005,0/
DATA MINF,PINF, {'m-'/ 01,2116.2,530.

C - DATA MINF.PINF.TINF/14.24,.50343, Y

C ' DATA DT,L.PR,EPS/200.,28.55,1.,.00001/

DATA CP,RG,GAM/6006.,1715.,1.4/
‘DATA FSOR/1.0/

REWIND 13

REWIND 12

REWIND 11

REWIND 10
CCCCJCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C THIS PROGRAM SOLVES THE UNSTEADY BOUNDARY LAYER EQUATIONS
C ALSO IT SOLVES FOR THE HEAT RATE AT THE WALL AND

g DETERMINES A HEAT TRANSFER' COEFFICIENT

c SYMBOLS:

c AE EDGE SPEED OF SOUND

c AINF - INFINITY SPEED OF SOUND

c - CF SKIN FRICTION COEFFICIENT

c CcosJ SOR_CONSTANT

c CP ' COEFFICIENT OF HEAT(FT-LB/SLUG/R)

c DEL CHANGE IN VALUE AFTER ITERATION

c DELM | MAX DEL

C DELTA BOUNDARY LAYER THICKNESS

c DX DERIVATIVE OF X WRT XI

c DY BERIVATIVE QF Y WRT ETA

C DYXI - DERIVATIVE QF Y WRT XI

C DYB Y DIFFERENCE BETWEEN'J AND J-1

c DYC : CENTRAL Y DIFFERENCE

C DYF Y DIFFERENCE BETWEEN J+1 AND J

c DT - DELTA TIME

o EPS CONVERGENCE EPSILON

c EMAX - MAX ERROR

C GAM RATIQ OF SPECIFIC HEATS (GAMMA)

c GGM1 GAMMA/GAMMA-1

¢ H TOTAL ENTHALPY

c HC - HEAT COEFFICIENT(BTU/FT2/S/R)

C HE EDGE ENTHALPY

c HNM1 TOTAL ENTHALPY AT OLD TIHE LEVEL

C HIM1 ENTHALPY AT I-1 LOCATI

C HIN2 ENTHALPY AT I—2 LOCATION

C HINF INFINITE ENTHALPY

C HHREF H/HREF CALCULATED

C . HREF 'REFERENCE HEAT COEFFICIENT(BTU/FT2/S/R)
c uT THEORETICAL NONISQTHERMAL HEAT COEFF
C I , COUNTER IN XI DIRECTION

c ICNT THE NUMBER OF TIMESTEPS BETWEEN PRINTOUTS
C IcoNp INCOMPRESSIBLE CASE FLAG

c IHax MAX NUMBER OF STEPS IN XI DIRECTION
C IMET NUMERICAL YXI CALCULATION FLAG

c IPRT FIELD LISTING FLAG

C IR OUTSIDE DELTA CALCULATION FLAG

C IRST RESTART INDICATOR

C J COUNTER IN ETA DIRECTION

C JMAX MAX NUMBER OF STEPS IN ETA DIRECTION
c JMM1 JMAX-1

C K - COUNTER IN ITERATIONS

c KT MAX NUMBER OF ITERATIONS
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C L LENGTH OF PLATE (FEET)
c | AXISYMHETRIC COEFF.
C MINF MACH AT INFINITY
c MU VISCOSITY, NONDIHENSIONAL
c MUEDG ' EDGE VISCOSIT
c MUINF ' VISCOSITY AT INFINITY(SLUGS/FT/S)
c N COUNTER IN TIME
c NNTS
g g;s MAX NUMBER OF TIME STEPS
C NTW NUMBER OF TINE STEPS TO CALCULATE OMEGA
C PHI - NONISOTHERMAL CORRECTION FACTOR
c PINF PRESSURE INFINITY .
C PRESS NONDIMENSIONALIZED EDGE PRESSURE
C PRESSO . NONDIMENSIONALIZED INITIAL PRESS
C PR PRANDTL NUMBER
c PE PRESSURE AT THE EDGE OF B.L.(L.B/FT2)
C Q. HEAT RATE AT THE WALL(BTU/FT2/S)
c RE REYNOLD’S NUMBER ON L
C REE EDGE REYNOLD@S NUMBER ON L
c RG , GAS CONSTANT (FT-LB/SLUG-R)
C RHO DENSITY
c RHCE EDGE DENSITY
C RM DENSITY TIMES VISCOSITY )
C RE REYNOLD’S NUMBER
C RINF ' DENSITY AT INFINITY (SLUG/FT#e3)
, C T TEMPERATURE
C TAU . SKIN FRICTION(LB/FT2)
o TEQ EQUIVALENT TEMPERATURE(R)
o THETA . WEDGE/CONE HALF ANGLE
C TIME TOTAL TIME ACCUMULATED
C TE TEMPERATURE AT THE EDGE OF B.L.(R)
c TINF TEMPERATURE AT INFINITY (DEG RANKINE)
| g ;gINF TOTAL TEMPERATURE AT INFINITY (RANKINE)
| o TW : TEMPERATURE AT THE WALL(R)
C TWl TEMPERATURE AT WALL BEFORE PANEL
o TW2 TEMPERATURE AT WALL AT PANEL ,
c U VELOCITY IN X DIRECTION
c UNN1 VELOCITY, X DIRECTION AT OLD TIME LEVEL
C UE VELOCITY AT THE EDGE OF B.L,(FT/S)
c UINM1 VELOCITY VECTOR AT I-1 LOCATION
C UImMz : VELOCITY VECTOR AT I-2 LOCATION
c UINF VELQCITY AT INFINITY CONDITION (FT/SEC)
C v VELOCITY IN Y DIRECTION
c VNHI VELOCITY,Y DIRECTION AT OLD TINE LEVEL
C OPTINIZATION OMEGA
C XT W2 POSITION OF PANEL ON WEDGE
gCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCPCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCC
c WRITE(6,*)'NUMERICAL YXI METRIC AFTER IMET="
‘READ(S, =) IMET
c WRITE(6,*)’L(FT)=, PR=’
READ(S,»)L,BR
c WRITE(6,*) ’INPUT: CONE=3,,WEDGE=0.’
READ(S,*) N '
- C WRITE(6,#) ’IR=0,R=F(X) ONLY'
c WRITE(6,*) ’IR=’
READ(S,#) IR
C WRITE(S,»)’ MINF,PINF,TINF=*
READ(S,»)MINF ,2I¥F,TINF
c WRITE(6,=)’TW1,TW2,XTW2="
READ(S, #)TW1,TW2,XTW2
C WRITE(6,+«)’IPRINT=0 NO LISTING ON FILE FIELD’
c WRITE(S,#»)*IPRT=" '
. READ(S,')IPRT
c WRITE(6,#)’NT,ICNT,KT,IRST , NTW="
READ (5, -)NT ICNT KT IRST NTW
c WRITE(6 »)’ DT EP§=’

READ(S, O)DT EPS
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"
c WRITE(6,*) ‘THETA,BETA GUESS?
READ(S,*) THETA,PQ
. PI=ACOS(-1.)
{ 4 SMM1=JMAX 1.

GGM1=GAM/ (GAM~1.)
MUINF=(TINFee1.5¢2,2685E-8) /(TIN[ +198.6)

‘ AINF=SQRT (GAM*RGsTINF)

< UINF=MINFeAINF

. : RINF=PINF/(RGeTINF)

- TOINF=TINFe (1v(GAM-1.)® SeNINF2e2)
HINF=CPsTINF+UINFe#2/2

1 C0SJ=COS(PI1/FLOAT (JMAX))«FSOR

v ’ RE=RINF=UINF=L/MUINF
THETA=THETA*PI1/180.
IF(THETA.NE.O.O.AND.MINF,.GE.1.0) THEN
CALL BETA(THETA,MINF,PINF,TINF,PO,CP,RG,ME,PE,TE,

& HE, UE)
AE=SQRT(GAN*RG*TE)
MUEDG=(TE=#1.5#2,2685E-8) /(TE+198.6)
RHOE=PE/ (RG*TE)
REE=RHOE~UE*L/NUEDG
ELSE
AE=AINF
KE=NINF
PE=PINF
TE=TINF
s _ HE=HINF
r UE=UINF
Co RHOE=RINF
REE=RE
MUEDG=MUINF
ENDIF

N HEND=HE/UINF»#2
IF(IB.EQ.0) THEN
_; " WRITE(9,+)’RE=,PR= ’, RE,PR
‘ WRITE(9, =) RINF,UINF,MUINF=’ ,RINF,UINF,6 MUINF
URITE(Q.-)‘HINF.AINF.TINF.PINF=‘.HINF.AINF.TINF.PINF
WRITE(9,=)’ME,PE,TE,AE,UE=" ME,PE,TE,AE,UE
WRITE(3,») ‘NT,IGNT, KT, IRST, DT EPS,NTW, IHET‘ ’

1EN NT, ICNT,KT, IRST,DT,EPS,NTW, IMET
) ‘ PRESS PE/(RINF#UINFe#2)
g PRESSQ=PRESS
r c HREF=.332¢CP*SQRT (MUINF *RINF#UINF) /PR=#(2./3.)
g GENERATE A GRID AND INITIAL CONDITIONS
CALL FIRST(IHAX JMAX,REE,CP,TW,TE,UE,UINF,X,Y,U,V,H, PR
XTw2,TWl, w2, IMET,PE,RG, N, RHOE, MINF, DELTA, L)
IF (Y(IMAX,JMAX) .LT.DELTA (INAX)" AND MINF.GT..05)
GO TO 920
DO 15 1=1,IMAX
. u<I,0=0.
N H(1,0)=0.0
: UCI,JMAX+1)=UE/UINF
és «H(I,JMAX+1)=HEND

- DO 20 I=1,IMAX
- U(I.JMAX)=UE/UINF

i@,

= go H(I,JMAX)=HEND
s c CALCULATE HETRICS
A CALL METRIC(X,Y,RE,IMET,DX,DY,DYXI,DYB,DYC,DYF, ETAX.
Lo : c DYRE, IHAX JMAX,JHHI)
;Lf g PUT INFORMATION INTO THE OLD TIHE LEVEL INITIALLY

-hl
]

D0 30 I= 1 IHAX
DO 30 J=1,JMAX
UNHl(I W)= u,n

-
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VNM1(I,J)=V(I,])
30 HNM1(I,J)=H(I,J)
DO 40 J=1,JMAX
IF (J.LE.11) THEN
W(I)=1.6-(J-1)», 06

40 CONTINUE
?}ART THE TIME LOOP

DG 100 N=1,NT

TINE=TINE+DT ,

DPDT=(PRESS-PRESS0) ~ : v
PRESSO=PRESS :

START BACK AT. BEGINNING OF GRID--REINITIALIZE VECTORS
20 ' DO 130 J=1,JMAX
UIM1(J)=0.0
éao HINM1(J,=20.0 ,
'gALCULATE THE OPTIMIZATION FACTOR OMEGA EVERY NTW TIME STEPS

IF(N.EQ.(N/NTW,#NTW)THEN
CALL MURHO(H,U,GGM1,PRESS, UINF,CP, NUINF, IHAX,JHAX.RH.

1 W, TE
CALL OHEGA(U v,DT,DX,DY,DYB,DYF,DYRE, ETAX RM,W,WN,
& ENDIF IHAX JHHl JHAX, c0sy)

IF(IR.EQ.1) CALL RADIUS(X,Y, DELTA IMAX,JMAX, THETA R,IR)
START I LOOP--MARCH IN XI DIRECTION '
DO 200 I=2,IMAX

IM1=I-1

I¥2=1- 2

DELM=0.0

PUT NEW TNFORHATION IdTO THE VELOCITY AND ENTHALPY
VECTORS AT THE I-1 AND I-2 LOCATIONS

DO 210 J=1,JMAX
UIN2(J)=UIML(I)
UIM1¢J)=U(I-1,J)
HIM2(J)=HIM1(J)

i0 HIM1(J)=H(I-1,J0)

_ DEFINE CONSTANTS TO DETERMINE THE COEFFICIENTS FOR THE
U AND V VELOCITY EQUATIONS AND THE ENTHALPY EQUATION

IF(1.EQ.2)THEN"
Cl

OO0

OO0

(212 Xy]

aQOOON

START THE ITERATION LOOP
DO 300 K=1,KT '

Qa0
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EMAX=0.0
EUMAX=0,
EVMAX=0.
EHMAX=0.

CALCULATE NEW VALUES FOR TEMPERATURE,DENSITY, AND VISCOSITY USING
THE NEW VALUES OF U, V, AND H (CALCATED AT THE OLD ITERATION LEVEL)

DO 310 J=1,JMAX
T(J)= H(I J)-UCI,J)=e2/2,
TENP=T(J) »UINFre2./CP
RHO(J)=GGM1=+PRESS/T(J)
IF(TE.LT.200.) THEN
HU TEMP#e 522 ,32E-8/(1,+220./(TEMP#10,.22(9, /TEHP)))/HUINF

LSE

EggIéTEHp'.i .S5#2,2685E-8) /(TENP+198.6) /MUINF
RM(J)sRHO(J) =MU

START J LOOP--MARCHING IN ETA DIRECTION

. DO 400 J JuM1,2,-1

JM1=

ELSE
WOPT=W(J)
ENDIF

SETUP CONSTANTS TO DETERMINE COEFFICIENTS IN U, V, AND H EQUATIONS
SOLVE FOR U,V,AND H

DRMF=(RM(JP)+RM(J))/DYF (I,
DRMB=(RM(J)+RM(JIM1))/DYB(I
CON=ETAX(I,J)«U(I,J) + V(I
IF (CON.LT.8.0) THEN
IF(J.EQ.JMM1) THEN
'C1J2=-1.0
CJHI 1 0

5

Jye.
,J).5
,J)/DY(I, I

DRM1=DRMF
DRM2=DRNB
J1=JP
J2=J+2
J3=JM1

ELSE
IF(J.EQ.2)THEN
ClJj2=1.

ENDIF ‘
DRM1=DRMB -
DRM2=DRNF
J1=JM1
J2=J42
J3=JpP
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ENDIF
SOLVE FOR U VELOCITY

CIJ=1. + CIJ1«DT/DX(I)»U(I,J) + CIJ2#DT»CON

& + DT«DYRE(I,J)«(DRMF+DRNB)
CONJ1=CJM1«DT=CON « DT#DYRE(I,J)»DRN1
CONJ2=CJM2+DT»CON
CONIN=DT/DX(I)#UCI,J)
CONVS=DT#DYRE(I,J) *DRN2

US=(UNM1(I,J) + CIM1«CONIM«UIN1(J) » CIH2'CONIH'UIH2(J/ .
& CONJ1sU(I,J1) + CONJ2sU(I,J2) + CONVSsU(I,J3))/CiJ

UCI,J)=WOPT=US » (1. -UOPT)-U(I J)
SOLVE FOR ENTHALPY

CON=ETAX(I,J)=U(I,J) + V(I,J)/DY(I,J)
IF(CON.LT.0.0) THEN

IF(J.EQ.JMN1) THEN

ClJ2=-1.0

CJM1=-1.0

CJN2=0.0

DRM1=DRMF
DRM2:=DRMB
J1=JP
J2=J+2
J3=JKM1

ELSE
IF(J.EQ.2)THEN
CIJ2=1.

CIMl=1.

ENDIF -
DRM1=DRMB
DRM2=DRNF
J1=Ju1
J2=J%2
J3=Jp o ,
ENDIF :
CIJ=1. » CIILDT/DK(I)U(IJ) » CI1J280T+CON
s + DT*DYRE(I,J)*(DRMF+DRNB)/
CONJ1=CJM1xDT*CON + DT=DYRE(I, 55 %DRN1/PR
CONJ2=CIM2«DT»CON
CONIM=DT/DX(I)#U(I,J)
CONVS=DT«DYRE (I, J) *DRM2/PR
TCON=DYRE(I,J)*DT»((PR-1.)/PR)*.5

HS=(HNM1(I, 3+ CYNL#CONIMaHINICT) + CIH2*CONI!'HIH2(J) +

& CONJI’H(I J1) + CONJ2#H(I,JZ) + CONVS#H(I,J3)
& DPDT/RHO(J)‘TCON'(DRHF'U(I JP)es2- (“RHF*DRHB)’U(I Jywe2.
& DRMB#U(I,JM1)=e2))/CIJ

H(I,J)=WOPT=HS + (1.-WOPT)=H(I,J)
COMPUTE THE ERROR

EU=ABS(U(I,J)-UOLD)
EH=ABS(H(I,J)~-HOLD)
IF(EU.GE.EUMAX)EUMAX=EU
IF(EH.GE.EHMAX)EHNAY=EH
IF(EUMAX.GE.EMAX)EMAX=EUNAX
IF (EHMAX.GE.EMAX) EMAX=EHRAX

END J LOOP

CONTINUE
CALCULATE V VELOCITY
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DO 320 J=2,JMN1
JM1=J-1

VOLD=V(I,J)
IF (IR.EQ.0) THEN
V(I,J)=V(I,IN1)+( 5«(DYXI(I,J
(U(I J)- U(I JML) )+ (Y(I
(CVIJ'(U(I J)*U(I JN1)
CVIHl’(UIHi(J)*UIHl(JHi))'
ELSE CVIH2!(UIH2(J)'UIH2(JH1))))/DX(I)

V1,J)=(1/R(I, J)"ﬂ)'(R(I JN1)weMeV(I,JN1) + R(I.J)"H
&'VCNIJ*U(I J)oR(IHl JywsMaCVINL#D1#UINI(J) + R(IM2,J) eoN
&'CVIH2'DI'UIH2(J)'R(I JNM1)=2eNeVCN31#U(], JHI)*R(Iﬂl.JHI)'-H
&ESK%?l'Dl'UIHI(JHI)*R(IHZ JHI)O'H'CVIHZ'DI’UIHZ(JHI)

EV=ABS(V(1,J)-VOLD)

IF(EV,GE.EVMAX)EVMAX=EV

IF (EVMAX .GE . ENAX) ENAX=EVNAX

CONTINUE -

CHECK CONVERGENCE
IF(EMAX.LE.EPS) GO TG 420

END ITERATION LOOP
. CONTINUE
DO 430 J=2,JMNM1
DEL=ABS(U(I,J) = UNML(I, D))
IF(DEL.GT.DELM)DELN=DEL"
DEL=ABS(H(I,J) - HNM1(1,J))
IF(DEL.GT.DELM)DELM=DEL
CONTINUE -
VI, JMAX) =V (I, JNMN1)
DO 330 J=1,JMAX
U, =u(2,)
H(1,J)=H(2,J)
vi1,3)=v(2, )
MOVE THE RESULTS INTO THE OLD TIME LEVEL

' DO 440 J=1,JIMAX
UNM1(I,J)=U(I,J)
HNM1(I,J)=H(I, D)

VNM1(I,J)=V(I,J)

CALCULATE THE HEAT RATE AT THE WALL

FDELY=(-3.+Y(I,1) + 4,#Y(I,2) - Y(I,3))/2.
IF (TE.LT.200. ) THEN
HUW=2,32E- 8'TW(I)".5/(1 +220,/(TW(I)=10,#2(9,/TW(I))))

ELSE
gUgIéTW(I)'Oi .522,2685E-8)/(TW(])+1398.6)

CONDUCTIVITY IS EQUAL TQ MUWeCP/PR=K
Q(I)=MUW+RHO(1)=(~-3,%T(1) + 4,.2T(2) - T(3))=+ RINF
& !UINF"2/(2.'L'PR'FDELY'RHOE)

AW SHOULD USUALLY BE BASED ON EDGE CONDITIONS FORMALLY
UT CAN BE BASED ON FREESTREAM IF YOU ARE CONSISTENT!!!!

TAW=TE#(1.+SQRT(PR) »(GAN-1.)» ,SeNEz222)
HC=Q(I)/(TAW - TW(I))

HHREF (I)=HC/HREF*SQRT(X(I)=L)

TAUCI) =MUW=UINF#(-32U(I,1)+4~U(I,2)-U(I,3))=.5
1 /(L=FDELY*RHO(1))
CF(I)=2.+TAUCI)/(RINF#UINF=#2)

END I LOOP
CONTINUE

WRITE OUT SOLUTION AT A TIME STEP

)

» W

127




IF(N.EQ.1.0R.N.EQ.(N/ICNT)=ICNT)THEN

WRITE(10,1)N, TIME

WRITE(6,)’DELT=’,DELM,’K=’,K,’U,V,H ERR=’ ,EUMAX,EVMAX,EHMAX
WRITE(10,=)’DELT=’,DELM, K=" ,K,’U,V,H ERR=’,EUMAX,EVMAX,EHMAX
WRITE(9,12)

DO 150 I=1,IMAX

IF (I.EQ.2.0R.I.EQ.IMAX) THEN

WRITE(10,2)I,X(I)

IF(IPRT.EQ.0)GO TO 161

WRITE(10,3)

DO 160 J=1,JMAX

T(I)=H(I,J)-U(I,J)en2/2,

TEMP=T(J) »UINFe#2/CP

WRITE(10,4)J,Y(1,J),U¢1,J) ,H(I, J) TJ),TENP,V(1,T) RHO(J)

160 CONTINUE

161 IF(I EQ.1) GO TO 150
WRITE(10,5) Q(I),HHREF(I)
TIMEP=TINE«L/UINE
¢ CF RATIO TO BLASIUS CAN BE BASED ON EDGE OR FREESTREAM RE
CFCF=CF(1)/.664%SQART(REE#X (1))
WRITE(9,7) TIMEP,X(1),CFCF,HHREF(I),TW(I)
IF (MINF.LE..05.AND,N.EQ.NT) THEN
WRITE(13,10) X(I),CFCF
gEITE(IZ .10) X<IJ, HHREF(I)
150 gOgTINUE
END TIME LOOP
00  CONTINUE

COMPUTE PHYSICAL Y VALUES
IF (MINF.LE..OS) THEN
DO 700 I 2,IMAX
DO 710 J=1,JMAX
ETA=Y(I, J)»SQRT(RE/X(I))
WRITE(11,10) ETA, U,
710 CONTINUE
700 CONTINUE
G0 TO 920
ENDIF
DO 800 J=1, JHAX
YP(1,J)=0, 0
c WRITE(ll.iO)X(l).YP(l.J)-
800 ' CONTTNUE
c WRITL(13,11)
DO 810 I=2,I¥AX
, DO 820 J=1,JMAX
T(I)=H(I,J) - U(I,J)ne2/2
820 . RHO(J)=GGM1+#PRESS/T(J)

YP(1,1)=0.0
C URITE(ll 100X<IH),YP(I,
DO 630 J= 2,JM X
C YP(I, = YP(I J=1) (1/RHO(J) + 1/RHQ(J- 1))/2-(Y(I J)=-Y(I,J-1"
CALL TRAPZ(H,Y,I,J,IMAX,JHAX,SUM,HEND)
YP(I,J)=SUM
ETACsYP I1,J)=SQRT(UE«RHOE#L/ (MUEDG#X(I)))
c WRITE(11, 10)X(I) YP(I,J)
T(J)= T(J)-UINF*-2 /(CP-TE)
UDCI,J)=U(I,J)=UINF/UE
URITE(11 10) ETAC,T(J)
: wRITE(13 10 ETAC upd«I, I
C WRITE(13,8) T(J», U(I J) ETAC
830 CONTINUE
810 CONTINUE
DO 825 I=1,INMAX
DO 826 J=1 JMAX
WRITE(11, 10) XI,Y¢I,

QOO
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CONTINUE
CONTINUE

THIS SECTION FIGURES OUT THE THEORETICAL NONISOTHERMAL VALUES
FOR H/HREF

CAUTION! TSTAR BASED ON TWi! DO YOU WANT CONSTANT REFERENCE

OR ACTUAL TW?
_TAW=TE# (1. +SQRT(PR) # (GAN-1.)# .SeME#»2)
TSTAR=TE+.5# (TW1-TE) + .22 (TAW-TE)
RSTAR=PE/ (RG=TSTAR)

IF(TE.LT.200,) THEN
MUSTAR=(2. 32E 8=*TSTAR##.5/(1. 9220 /(TSTAR!IO #2(9,/TSTAR))))

ELSE
Egg;TARS(TSTﬂﬂﬁﬂl . 5%2,2685E- 8)/(TSTAR*198 6)

DO 900 I=1,IMAX
HISO*.332'CP'SORT(HUSTARIRSTAR!UE)-SORT(X(I)'L)/(PRD!(2 /3.)*HREF)
URITE(S.-) X(I),’HISC=’,HISO

CONTINUE

CONTINUE

FORMAT(///,2X,’N=’,16,5X,‘TIME=",F15.6,1X,’SEC’)

FORMAT(//,2X,”1=’,13,5X, ’X-LOCATIONs’,F13.5

FORMAT(/, 3X, ‘37, 7% ’Y-LOC’ 10X U’.11X ‘H’,11X,’T’,11X,

'TEHP(R)' 11x V',llX.'RHO

FORMAT (1X, 13, 8F13.5,2F15.8)

FORMAT (2X, *HEAT RATE (@)=’,F13.6,5X, "H/HREF=’ ,F13.6) °

FORMAT(* THIS SOLUTION CONVERGED WITH KT ITERATIONS’)

FORMAT(2X,F15,.5,4(2X,F13.5))

FORMAT (3(2X,E13.5))

FORMAT (34X, 2(2X F13,3)

FORMAT(2E13.5

FORHAT(SX.’T/TINF’,SX.‘U/UINF’.IIX.’ETAC')

FORMAT(/,7X,’TIME’,15X,’X’,13X, CF/CF’,11X, "HHREF’,

1 10X, TWALL’)

REWIND S

RETURN
END

THIS SUBROUTINE CALCULATES BETA AND EDGE CONDITIONS

&gnggUTINE BETA(THETA,MINF,PINF,TINF,PQ,CP,RG,XE,PE,TE,
CALCULATES EDGE CONDITIONS GIVEN DEFLECTION ANGLE
SHOCK ANGLE CALCULATED TO 1.0E-08 TOLERANCE
REAL MINF,ME,HE
Q(X) = ((GAN+1.)/2. !SIN(X)!SIN(THETA)/COS(X-THETA)*

&(1. /HINF--Z ))ew 5-SIN(X)+X
PI=ACOS(-1.

GAM=1.4
- TOL=1.0E-08
PO=PQ«PI/180.
Y=Q(P0)-PO ‘
DO 10 I=1,50
XNEW=Q(P0)
Y=Q(XANEW) -XNEW -
EROR=ABS (XNEW-PQ) /ABS (XNEW)
gg(EROR .LT.TOL.OR. ABS(Y) LT.TOL) GO TO 30
CONTINUE
ME=((2.+(GAN-1, )'(HINFCSIN(XNEU))’*2 Y/ (2. =GAN» (MINF»

&SIN(XNEW))"2.~(GAH 1.)) % (SIN(XNEW-THETA) Y#»2.)) #s.5S
TE=TINFe(2.+(GAN-1.)» (MINF*SIN(XNEW))#»2.)/(2.

& +(GAM-1.)*(ME=SIN(XNEW-THETA))#e2,)
UE=ME=SQRT(GAN*RG*TE)

HE=CP»TE+UE®*2/2
gET(l*(2'GAH/(GAH‘1))'((HINF'SIN(XNEW))002 1))=PINF
END

-

»

129

.
I

Wl AR RL A Al NN

RPN,

-

" o~

PLIPRILTSIFSCY aall rww

et 0 e sidke B SN R\l |

WAL IE SRk I L e

Ragee gt

TR




LRI
L)
AL

SO B

e

. THIS SUBROUTINE TAKES THE BLASIUS SOLUTION, MODIFIES IT BY

- THE DENSITY, AND FORMS A GRID. IT ALSO DETERMINES INITIAL
! C CONDITIONS

: SUBROUTINE FIRST(IMAX,JMAX ,RE,CP, TW,TE,UE, UINF, .

| . & X,Y,U,V,H,PR,XTW2, WL, TW2, IHET PE,RG, H RHOE NINF, DELTA L)
DIMENSION X(IMAX) Y(IHAX.JHAX) U(IHAX JHAX*I) H(IHAX JHAX01)
DIMENSION V(IMAX, JHAX) TU(IHAX) DELTA (INAX)
REAL M .HINF,HUU.L

C
C TO USE ANALTICAL METRIC FOR YXI FOR I=1 TO IMET
g ¥ POINTS AT I=IMET ARE SCALED BY SQRT(X)

O
Ll

(21 2]
!

_n, ,."':."»‘"-‘: .‘ -

..:

o
'.

HIS WILL NOT GUARANTEE A SNOOTH GRID PAST I=IMET S

‘ DO 30 I=1,IMET Ee

. DG 30 J=1,JIMAX o
Y(I, J)=Y(IHET J)*SQRT(X(1) /X (INET)) oy

go CONTINUE e

C DEFINE THE WALL TEMPERATURES-- IF TW1sTW2 NO TEMP STEP 3

g IF TW1<Tw2 TEMP STEP "

. DO 40 I=1,IMAX iy

IF (XD, LE XTW2) THEN -

TW(I)=TW vy

ELSE s

rw<1>=792 N

ENDIF e

. 40  CONTINUE £
. HE=(CPsTE+UE##2./2.) /UINF»+2, e
' DELTA(1)=0.0 p

. DO SO I1=2,IMAX R
: HW=CPsTW(I) /UINFes2 o
. HSUB=HE - HW P
, IF (MINF.LE..O0S)THEM o
DELTA(1)=5.2/SQRT (RE) *SQRT(X(I)) N

_ DELTAT=DELTA(I)/(1.026#PR*»(1./3.)) I
. ELSE o
) RHOW=PE/ (RGeTW(I)) :
IF(TE.LT.200.) THEN e
gggzz.azs-e-Tw(1>--.5/<1.*220./<7w<1>-10.--<9./7w<1>))) b

[ : ' N
N Eng¥F<Tw<1>--1 .592,2685E-8)/ (TW(1)+198.6) ‘ i
DELTA(I)=(280#RHOWsNUWsX (1) /((13.sRHOE«RHOEsL*UEs(1+20M))))#s.5 N

. : DELTAT DELTA(I) .
; : ENDIF .
: DO 60 J=1,JNAX _ ~
: IF(Y(I,J).LE.DELTA(I))THEN : 3
EE;&,J)=UE/UINF-(I.S’Y(I,J)/DELTA(I) ~ .5#(Y{I,J)/DELTA(I))»*3.) s

U(I,J)=UE/UINF e

ENDIF i

V(1,J)=0.0 D%
IF(Y(I,J).LE.DELTAT) THEN ,

“ H(I,J)=HW + HSUB»(1,5#Y(1,J)/DELTAT - .Se(Y(I, J)/DELTAT)-OQ) [
& + (UCI,J)/UINF)#w2./2. + (UE/UINF)we2,/2% £

© & (1.5#¥(I,3)/DELTAT-.5#(Y(1,J)/DELTAT) #+3.) ks

ELSE i

H(I,J)=HE .
, ENDIF
- 60  CONTINUE
S0 CONTINUE

u'.'

SRR G 2 e oo e e ge A, SO

70 CONTINUE -
RETURN
END

Y,
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COMPUTE THE DENSITY TIMES VISCOSITY FOR EVERY J LOCATION
SUBROUTINE MURHO(H,U,GGM1,PRESS,UINF, CP,HUINF INAX,JMAX,

&RN,W

,TE)

DIMENSION H(IHAX.O JMAX+1) ,UCIMAX,0:JMAX+1) ,RM(IMAX) ,W(IMAX)
REAL XU, MUINF
DO 1 I=2 IMAX

DO 20 J=1,JHAX
TEMP=H(I,J)-U(1,J)»e2/2,
DEN=GGM1=PRESS/TENP
TEMP=TEMP*UINF»#2/CP
IF(TE.LT.200.)THEN
MU=(2.32E-8#TEMP*»,.5/(1.+220./(TENP*10.5*(9./TENP)))) /MUINF

ELSE
EHU=(TEHP"1 .5¢2,2685E~-8)/(TENP+198.6) /MUINF

NDIF
RM(J) =DEN«NU
- W(J)=1.85
CONTINUE
RETURN
END

'

THIS SUBROUTINE CALCULATES THE SOR OMEGA

SUBROUTINE OMEGA(U,V,DT, DX DY,DYB,DYF,DYRE,ETAX,RN,

&W,WN, IMAX, JHMN]1, JHA X,C0sJ

DIMENSION'U(IMAX,0 JHAX'I) s V(IMAX, JMNAX) ,DX(IMAX) ,DY CIMAX, IMAX)
DIMENSION DYB(IHAX JMAX), DYF(IHAX JHAX) DYRE(IHAX,JHAX)
DIHEHSION RM (INAX) , W (INAK) ETAX(IHAX,JHAX)

REAL LANX

DO 10 I=2,IMAX
DO 20 J=2.JHH1

JP=Je+1 .
JN=J-1
DIV=1./DT » 1.5#(U(I,J)/DX(I) » ABS(U(I, J)’ETAX(I Jy »
& V(I,J)/DY(1,J))) + DYRE(I,J)», Se
& ((RF(JP)*RH(J))/DYF(I J) - ((RH(J)*RH(JH))/DYB(I Jyn o
LAN= (-2, »SQRT (ABS (ABS ( (ETAX(I, JysUCI,J) + V(I, J)IDY(I J)) +
& .S'DYRE(I.J)'((RH(J)’RH(JH))/DYB(I J))) «
& (.S*DYRE(I,J)»( (RM(JIP)+RM(J))/DYF(I,773))))/DIV*C0OSI
IF(LAM.GT.0.97)LAN=0,.97
WN=2,/(1.+SART(1.-LAM»»2))
IF(WN.LT. U(J))U(J) =WN
CONTINUE
CONTINUVE
RETURN
END

.COMPUTES H3 FOR A CONE-ASSUHE CONSTANT TRANSVERSE RADIUS

ASSUME YCOS(ALPHA) SMALL. IF NOT DELETE NEXT LINE.

SUBROUTINE RADIUS(X,Y,DELTA,IMAX,JMAX, THETA,R,IR)
DIMENSION X(IMAX), Y(IHAX JNAX) R(IHAX.JHAX) DELTA (INAX)
DO 10 I=1,IMAX
DO 20 J=1,JHAX
IF(Y¢(1,J) ,LE.DELTACI)) THEN
R(I,J)= X(I1)»SIN(THETA)

0) THEN
(1) *SIN(THETA)

(I)*SIN(THETA)+Y(I,J)*COGS(THETA)

' END
IF(R(I,J).EQ.0.0) R(I,J)=1.E-8
CONTINUE .

CONTINUE

RETURN

END
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' SUBROUTINE METRIC(X,Y,RE,IMET,DX,DY,DYXI,DYB,DYC,DYF,
&
'%ALCULATES DERIVATIVES XI WRT X. ETA WRT Y, AND ETA WRT X

ET AX DYRE IHAX JHAX JNM1)

I WRT X = 1/DX,ETA WRT Y=1,DY,AND ETA WRT X= -DYXI/(DX+<DY)
DIMENSION X(IHAX) Y (IMAX,JNMAX) ,DX(IMAX) ,DY(IMAX, JMAX)
DIMENSION DYXI(IHAX JHAX) DYB(IHAX JMAX)

DIMENSION DYF (IMAX, JHAX) ETAX(IHAX JHAX) DYRE(IHAX,JHAX)

DX(1)=.50(-3.2X(1)+4,2X(2)-X(3))
DO 10 I=2,INAX
IM1=I-1
‘IM2=1-2
IP=I+1
IF(I. EQ IMAX) THEN |
DX(I)*.S'(3.'X(I)-4.'X(IH1)0X(IH2))

ELSE
DXCI) = (X(IP)-X(IN1))/2.
ENDIF |

DYXI(I,1)=0.0

IF (I.GT.IMET) THEN

: DYXI(I JMAX)=Y(1,IMAX)-Y(IN1,INAX)

EE%%I(I JHQX)‘.S-(a »Y(I, JHAK - 4.*Y(IM1, JMAX) +Y (IN2,JMAX))
Dg¥§(l » JHAX) =Y (I,INMAX) ».5«DX (1) /X (1)

E
D0 10 J=2,JMM1

JP=J+1
JH1=3-1
JH2=J-2
DY(I,J)=(Y(I,JP)-Y(I,JN1))/2
IF(I.GT.IMET) THEN
DYXI(I,J)=Y(I,J)-Y(IN1,J)
EEgéI(I J)=.5¢(3.'Y(I J)~4.DY(IH1 J)+Y(IN2,J))
ED§¥I(I »J3)=Y(1,J)=.5+DX(I)/X(I)

DYB(I,J)=Y(I,J)-Y(I,JN1)
DYC= (Y(I.JD) Y¢I, i 2.
DYF(I,J)=Y(1,JP)-Y(I,J)
' ExAX(I,J)=-DYXI(I,J)/(DX(I)'DY(I.J))
DYRE(I,J)=1./(DYC=RE)
RETURN
END

THIS SUBROUTINE CALCULATES THE ERROR IN U-UEXACT

SUBROUTINE ERROR(U,UEXACT, IMAX,JMAX)
DIMENSION U(IMAX,0:JMAX+1),UEXACT (IMAX,0:JNAX+1)
URMS=0.0
DO 10 I=1, IHAX
DO 20 J=1,JMAX
UER=U(I, J) -UEXACT(I,I)
URMS=URMS+UER=*2.
CONTINYE .
CONTINUE
RMSU=SQRT (URMS/ (IMAX»JMAX))
WRITE(6,#) ‘RMS VALUE OF U- VELOCI&Y ERROR ",RHSU
END

132




- 100

10

300

SUBROUTINE NWP (Y, DUUU H, IMAX,JMAX,ICOL,WHO, UH2 WH3)
DIMENSION U(IMAX,0 1JNAX- 1) DUUL(IHAX)
RMSDU= 0.0
RMSDUU=0.0
RMSDUUU=0.0
H0=0.0
H2=0.0
H3=0
WRITE (6,100)
FORMAT (3X ’ETA’ ,07X,’DU’,9X, *DUY” 10X,’DUUU' 7X ‘DUUU»»2’)
DO 10 I=1,I
I=ICOL
IF(I.EQ.2.0R.I.EQ.INAX) WRITE(6,#)’I=’,1
DO 20 J=1,JMAX
IF (J.EQ.1.0R. J EO JMAX) THEN

IF '(J,.EQ. 1) H
DU=. 5« (- 'U(I 1)+4.U(1,2)-U(I,3))

EEgU =U(I, - 2.'U(I 2)+U<(I1,3)
DU=.S5#(3.U(I,JMAX) -4.»U(T,IMAX-1)+U(I,INAX-2)) .
DUU=U(I,JMAX)-2.2UCI,TMAX-1)+UCI,INAX-2)

END IF

ELSE

DU= .S« (U(I,J+1)-U(I,J-1))

EDUU =0(1,J+1)-2.»U¢T, Jy«U(1,J3-1)

IF
IF (J.LE.2.0R.J.GE.JMAX~-1) THEN
IF (J.LE.2) THEN
DUUU(I)=.52(-3.#U(],J+4)+14,.2U(I,J+3)-24.+U(I,J+2)
+18.#U(I,J+1)-5.»U(1,J))

ELSE
DUUL(J)=.5#(5.+U(], J) 18.2U(I1,J-1)+24.20(1,J-2)
-14.+U(I,J 3)*3.-U(I J-4))
ENDIF

- ELSE ) ’
DUUE;%;;.S*(U(I,J*Z)-Z.'U(I,J‘1)02.'U(I,J-1)7U(I.J-Z))

H43=H3+DUUU(JI> »=2
H2= H2+DUU»e2,
HO= HO + DU==2,
RMSDU= RMSDU + DUs=2
. RMSDUU= RMSDUU + DUUw»e2,
RHSDUUU=RHSDUUU*DUUU(J)'02

i IF(1.EQ.2,0R.1.EQ.IMAX
200

WRITE (6,200) J,DU, DUU puyuudn, DUUU(J)!02
FORMAT (1X,IS5, 4E13.5)
CONTINUE
CONTINUE
H = WH3*H3 + WH2#H2 + WHO*HO
RMSH=SQRT (H/ (IMAX=JMAX))
RMSDU=SQRT (RMSDU/ (IMAX »IMAX))
RMSDUU=SQRT(RMSDUU/ (IMAX=JIMAX))
RMSDUUU=SQRT (RMSDUUY/ (IMAX»JIMAX)) "
WRITE(6,300) H,RMSH,RMSDU,RMSDUU,RMSDUUY
FORMAT(1X,’THE H=’,E15.9,3X, THE RMS OF H=’,E13.5,/

1 1X,”THE RMS OF DU=’",E13.5,3X,’THE RMS OF DUU=’.El3:5,
2 /,1X,’THE RMS OF Duuu=’,E13.5,/)

RETURN
END
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“FUNCTION P. IT IS BASED ON A

P T T R Y I

THIS SUBROUTINE CALCULATES THE POHLHAUSEN APPROXIMATE SOLUTION
FOR INCOMPRESSIBLE, FLAT PLATE.

SUBROUTINE POHL(Y,DELTA,UE,INMAX,JMAX,UEXACT)
DIMENSION Y(IMAX,JMAX),DELTA(IMAX),UEXACT(IMAX,0:JMAX+1)
. AMBDA=0.0
A=0.0
B=2.0+AMBDA/G.
- C=~AMBDA/2.
D=-2.+AMBDA/2.
E=1-AMBDA/S6.
DO 30 I=1,IMAX
UEXACT(1,0)=0.0
CONTINUE
DO 10 I=2,INAX
DO 20 J= 1 JMAX
IF(Y(I, 73 .LE.DELTACI) ) THEN
UEXACT(I J)=(A+B#»(Y(I,J)/DELTA(D)
1 D-((Y(I.J)/DELTA(I)) -3 Y+E= ((Y(I

ELSE
UEXACT(I,J)=UE/UE
NDIF

E

CONTINUE
CONTINUE

DO 60 J=1,JMAX

U‘XACT(l = UEXACT(Z I
CONTINUE

RETURN

END |

J) DELTA(’))i’Z )+
A(l))eea,))

THIS SUBROUTINE CALCULATES THE NEW GRID GENERATION CONTROL
\ _ GLOBAL TRUNCATION ERROR
ANALYSIS FOR THE FLOW SOLUTION IN THE TRANSFORNMED PLANE

SUBROUTINE NEWPI‘(U P, UPLUSDC UMINDC,DUUY,CPLUSDC,

ABARZ,NMAX,X,Y

CHINDC RHSDUUU K.PERCENT IHAX JNAX,

Wwey -

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

ITERATE.UE,DELTA,P3,Y3.D3U.U3,

AAA CcCC., DDD GGG, WWW,YMIN, YHAX ICOL.
A.ZI.IR,WHO.WHZ.WH3)
DUUU(JHAX) ,P(IHAXD

UPLUSDC (IMAX,0: JHAX+1) , UMINDC(IMAX,0:JMAX+1)
UCTMAX,0:IMAX+1),U3(INAX,O:JMAX+1)

P3(JHAX) Y3(IMAX,JMAX) ,D3U(JMAX)
X(IHAX).Y(INAX;JHAX).DELTA(IHAX)

ABAR2 (NMAX) , A(NMAX) ,2I (NMAX,NMAX) , WWW (TMAX)
AAA(JNAX) ,CCC(INAX) ,DDD(JMAX) ,GGG (IMAXD

WRITE(6,100)

100  FORMAT(/,
1 3X

1SX,’=#zeesse NEW RLANBA CALCULATION seenennes’,//,
*ETA’,5X,’DU’, 11X, ‘DUU*,10 x

2 'POLD’ 10X ‘puvu’, 7X,’DUUU==2”
RMSDU=0.0 :
RMSDUU=0.0

RHSDUUU

Hm2
HM3

HMO=
0

s O0OO0O0O

0.0

0.IMAX) WRITE(6,e)’1= ’,1
JéEQ.JHAX)‘THEN
(I,1)+4.%U¢I,2)-U(1,3))
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DUP=,5#(-3.+YPLUSDC(I,1)+4.+UPLUSDC(I,2)-UPLUSDC(I,3))
DUM=,5#(-3,»UMINDC(I,1)+4.»UMINDC(I,2)~UMINDC(I,3))
DUU=U(I,1)-2.+0(1,2)+U(I,3)
DUUP=UPLUSDC(I,1>~2.+UPLUSDC(I,2)+UPLUSDC(I,3)
EDUSH=UHINDC(I,1)-2.'UHINDC(I.2)*UHINDC(I.3)

LS
DU=.52(3,#U(I,INAX)-4.+U(T,IMAX-1)+U(I,INAX-2))
DUP=,5#(3,«UPLUSDC(I,JMAX) -4.#UPLUSDC(I,JMAX-1)+
- UPLUSDC(I,JMAX-2))
DUM=,5#(3.2UMINDC(I,IJMAX) -4.»UMINDC(I, IMAX~1)+
1 UMINDC(I,JNAX-2))
DUU=U(I,IMAX)-2,U(I,JMAX-1)+U(I,INAX-2)
DUUP=UPLUSDC(I,JMAX)-2.2UPLUSDC(I,JNMAX-1)+
1 UPLUSDC(I, JMAX- 2)
DUUM=UMINDC(I,JMAX) -2, »UMINDC(I, JHAX-1)+
UMINDC(I,JMAX-2) .
END IF
ELSE
DU= 5'(U(I J+1)-U<(1,J-1)>
DUP=., Si(UPLUSDC(I J+1)-YPLUSDC(
DUM=.5# (UMINDC(I,J+1)- UHINDC(I.
DUU=U(I,J+1)-2.=UCI J)+U(I,J éz
I,

[

DUYP= UPLUSDC(I J+1)-2.»UPLUSD
~_DUUM=UMINDC(I, J51)-2" ~UMINDC(
END IF
IF (J.LE.2.0R.J.GE.JMAX~1) THEN ,
IF (J.LE.2) THEN
DUUU{J)=.5#(-3, *U(I,J+4)+14.2U(],J+3)-24.+U(I,J+2)+

UPLUSDC(I,J-1)
UMINDC(I,J- D

:K+

1 18.'U(I.J’l)-5.!U(I,J))
DUUUP=.S5=(-3,»UPLUSDC(I,J+4)+14,»UPLUSDC(I, J*3)-
1 24.'UPLUSDC(I.J42)018.'UPLUSDC(I.J*‘) «*UPLUSDC(Z,J))
i DUUUM=,5# (-3, »UMINDC(I,J+4)+14,«UMINDC(I, Je3)-
1 ELSE 24.»UMINDC(I,J+2)+18.*UMINDC(I, J’l) 5. =UMINDC(I,J))
i DUUU(J)'.S;(? -U(I J)-18.+U(I,J- 1)024 #U(I,J-2)~-14.2U(1,J- 3)*
DUyUP=, 5!(5 'UPLUSDC(I J)-18.+UPLUSDC(I,J-1)+24, OUPLUSDC(‘.J-°)-
1 4.»UPLUSDC(I1,J-3)+3,»UPLUSDC(I, itan
DUUUH 50(5 'UHINDC(I J)-18, DUHINDC(I J-1)+24.=UMINDC(I,J-2)-
1 14, , *UMINDC(I,J- 35+3. 'UHINDC(I J-4)
END IF
ELSE

DUUU(Jr=.52(UCI,J+2)-2,2U(I,J+1)+2.2U(I,J-1)-U(1,J-2))
byuup=, Si(UPLUSDﬂ(I Je2)- 2.'UPLUSDC(I Je1r+2, 'UPLJSDC(I J-1)-

7 % oen
1on
g SRR

- UPLUSDC(I,J-23)

DUUUM=, 5« (UNINDC(I,J+2)-2. *UNINDC(I,J+1)+2. SUMINDC(I,J-1)- : . g

1 UNINDC(I,J-2)) , ALY
END IF : o
IF(I.E@.2.0R.1.EG.IMAX) THEN , s
WRITE <e *205) J,DU,DUU,P(3),DUVUCI), ouuu<3>’-2. O
200 FOP??T (I5,5E13.5) NN
: R
RMSDUUU=RMSDUUU+DUUU(J)»e2 4 - ol -]
RMSDU=RNSDU+DU»»2 \ : U
RMSDUU=RMSDUU+DUU»»2. . : N

HO=HO+DU=»=2,
H2=H2+DUU=»2,
H3=H3+DUUU(J) »e2
HPO=HPO+DUP»»2,
HP2=HP2+DUUP=2,
HP3=HP3+DUUUP*»2,
HMO=HMO+DUMx =2,
HM2=HM2+DUUMnn2,
HM3= HH3*DUUUH"2
10 CONTINUE
20 CONTINUE '
H=WH32H3 + WH2«H2 ~WHO=HO
HPLUSDC=WH3=HP3 +WH2+HPZ ’NHO~HPO
HMINDC=WH3*HM3+WH2+HM2 + WHO«H
DET= (CPLUSDC"Z)'(C ~CMINDC) - CPLUSDC!(“’C ~CMINDC#»2)+

i35
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40

220

300

400

b W

C*C*CNINDC- (CNINDC##2) «C
RNUM= (CPLUSDC»#2) » (H-HMINDC) ~-HPLUSDC* (C#C~CMINDC=#2) +
(Cwe2) «HMINDC- (CHINDCR#2) oH
DEN=HPLUSDC = (C-CHIND) -CPLUSDC# (H-HNINDC) ¢HwCNINDC-
HMINDC»C
IF (DET.NE.0.0) THEN
C=-.5*RNUN/DEN \
IF (DEN/DET.LT.0.0) THEN
HMIN=MIN(HNINDC,H,HPLUSDC)
IF (HMINDC.EQ.HMIN) C=CMINDC
IF (HPLUSDC.EQ.HMIN)C=CPLUSDC
IF(n.EQ.HMIN) C=COLD
ELSE
DO 40 JJ=1,NMAX
. ABAR2(I1)=A(JJ)+ C * 2I(JJ,IR)
CONTINUE .
CALL PCAL(ABAR2,NMAX,P3,JMAX)
CALL EXPGRD(X,Y3,P3,AAA,CCC,DDD,GGG, WWW, YNIN,
YNAX, INAX, JMAX, ICOL)
CALL BLINP(X,Y3,INAX,JMAX,U3, ITERATE,UE,DELTA,RE)
CALL NWP(u3,D3U,H4,IMAX,JMAX,ICOL,WHG,WH2,WH3)
HMIN=NINCHNINDC,H,HPLUSDC,H4>
IF(H4.EQ.HMIN.AKD .H4.NE.H) GO TO 220
IF (HMINDC.EQ.HMIN) C=CMINDC
IF (HPLUSDC.EQ.HMIN)C=CPLUSDC
IF(H.EQ.HMIN) C=COLD
CONTINUE
END IF
ELSE
HMIN=MIN (HMINDC,H,HPLUSDC)
IF (HMINDC.EQ.HMIN) C=CNINDC
IF (HPLUSDC.EQ.HMIN) C=CPLUSDC
(LF (H.EQ.HMIN) " C=COLD

EPSILON .005
IF (ABS(C).LT..01) EPSILON .01
DC=PERCENT+«C+EPSILON
CPLUSDC=C+DC
CMINDC=C-DC
WRITE (6,300) H,HMIN,HPLUSDC, HHINDC C.X
FORMAT (‘X ‘H=’ 515.9./,
1X, *HNIN=" ,E15.9,/,
1X.'HPL=¢,EIS.9./.
lx.'HHN ‘,E15.9,/,
» 'NEW RLAHBA" JE15.9
1X *ITERATION NUMBER, K-’ IS,/
RMSDUUU=SART (RMSDUUU/ (IMAX*JIMAX) )
RMSDUU= SQRT(RMSDUU/(IMAX=»JMAX))
RMSDU= SQRT(RMSDU/(IMAX=JMAY))
WRITE (6,400) RMSDU,RMSDUU,EMSDUUU,COLD
FORMAT (1x *RMSDU =’ ,E13.5,3X, “RMSDUY = ,E13. 5, 3X, "RMSDUYU="
RETURN .E13.5./.1X.’RLAHBA 0LD=',El$ S, 7

END
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{lis study, develops an adaptive#&rid method which mini-
mizes the truncation error in the finits-difference solution.
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equations assuming perfect’gas flow over an isothermal wall.
The Dorodpitsyn, compressibility transformation changes the
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solves the finite#differenced, computational, boundary<layer
equations. Comparison of the computed solution for incom-
pressible flow over a flat plate to Blasius’, exact solution
shows the boundarvt}ayer‘pode is accurate.
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mize the solution grid by minimizing the sum of the third
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which minimizes a specified function. The grid eqnat1on
generates the grid spacing at the end of the plate. This
spacing is then strehmwxse scaled across the remaining grid.
Minimizing the sum of\the square of the third derivative in
the fomputatxonal plano\of the tangential velocity component,
Uﬂﬂﬂ , over the entire domain decreases the truncation error
the best of the functions tested+> This study tests the sum
of the squares of the first. second, and third derivative of
the tangential velocity as minimized functions. The accuracy
of the optimized, adaptiveAgrid solution is greater thanm the
original, fizxedfgrid solution. The study then applies the
optimization to supersonic ard hypersonic problems. The

computed, adaptivesgrid solutions show good correlation with

theoretical models for supersonic and hypersonic flow devel—
oped by Van Driest and Eckert.
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