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'Preface

This study shows that optimization techniques can be

applied to the solution of complex, boundary-layer flow prob-

lems. It builds on previous work done by students and facul-

ty at the Air Force Institute of Technology. Captain Karen

Lange working with Major James K. Hodge developed a computer

code to solve boundary-layer problems. Captain Lange's com-

puter code was modified, and optimization codes studied by

1st Lieutenant Bruce K. Boyd and Captain Sal A. Leone were

added. Without the work of these individuals, my extension

of both studies to optimization of two-dimensional, boundary-

layer code would not have been possible.

I would like to take this opportunity to especially

thank my advisor, Dr. Sal A. Leone, for his guidance, know-

ledge, and assistance throughout this study. Of course.

this study could not have proceeded very far, without theU
knowledge and expertise of Major Hodge in Computer Fluid

Dynamics. I thank him for always willingly sharing his ex-

pertise when I needed it. Lastly, I thank Lt. Col.. Eric

J lumper and Dr. M. L. Rasmussen for giving me the foundation

in theoretical, fluid dynamics that enabled me to understand

the physics of the flow problem. If in some small way, this

study helps further studies of similar problems or advances

the study of hypersonic, fluid dynamics, it is a success.

Donald E. Coffey, Jr.
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Abstract

This study develops an adaptive-grid method which mini-

mizes the truncation error in the finite-difference solutiot.

The study solves compressible, steady-state, boundary-layer
I.M

* equations assuming perfect-gas flow over an isothermal wall.

The Dorodnitsyn, compressibility transformation changes the,

boundary-layer equations, as expressed in two-dimensional,

cartesian coordinates, into an incompiessible form. The

equations are then transformed into variables of a compu-

tational plane. Implicit Succestive-Over-Relaxation (SOR)

solves the finite-differenced. computational, boundary-layer

equations. Comparison of the computed solution for incom-

pressible flow over a flat plate to Blasius'. exact solution

shows the boundary-layer code is accurate.

The adaptive-grid method uses Powell's method to opti-

mize the solution grid by minimizing the sum of the third

derivative in the computational plane of the tangential velo-

city component. Powell's method finds the grid, control

function, Q. in an elliptic, grid equation, Y + QY-=0,

which minimizes a specified function. The grid equation

generates the grid spacing at the end of the plate. This

spacing is then streamwise scaled across the remaining grid,.

Minimizing the sum of the square of the third derivative in

* the computational plane of the tangential velocity component,

-U1? over the entire domain 'decreases the truncation error

xi



the best of the functions tested. This study tests the sum

of the squares 'of the' first, second, and third derivative'of

the tangential velocity as minimized functions. The accuracy

of the optimized, adaptive-grid solution is greater than the

original, fixed-grid solution. The study then applies the

t
optimization to supersonic and hypersonic problems. The

computed, adaptive-grid solutions show good correlation with

theoretical models for supersonic and hypersonic flow devel-

oped by Van Driest and Eckert.

I'
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ADAPTIVE-GRID OPTIMIZATION FOR

MINIMIZING STEADY-STATE, TRUNCATION ERROR

e .

Chaj..Urx1. Introduction

Every flight of the Space Shuttle highlights the know-

ledge aeronautical engineers have of hypersonic flight. The

success of each flight shows a basic understanding of the

problems involved with flight at high altitudes and at speeds

above Mach 5. However, if future aeronautical engineers are

to build better shuttles or to develop 'a transatmospheric

vehicle, increased understanding of hypersonic flight will be

necessary. Presently, experimentation in the wind tunnel and

ft Space Shuttle flights validates portions of the hypersonic

theory. Unfortunately, experimental work of this sort is

very expensive. Newer methods of modeling flow using compu-

ters offer hope for simulating characteristic, fluid proper-

ties in the hypersonic regime without the experimental ex-

pense. Using computational fluid methods, unexpected exper-

imental results can be confirmed, and, conversely, experi-

ments can be designed to validate results from computational

fluid modeling. In this way, better understanding of hyper-

sonic fluid behavior can be gained and can lead to more effi-

cient hypersonic vehicles.

An example of the usefulness of computational modeling

for explaining the results of experimental data is the non-

i1

I ,-



. r . .- • o 0 o . . - o .- -

isothermal wall effects which have occurred on the Space

Shuttle. The surface of any body travelling at high speeds

through any fluid heats up. The effect the heated surface

has on the flow field or boundary layer around the vehicle

depends on the heat transfer coefficient of the surface. If

the body is one material and is heated evenly, the convection

which takes place is isothermal. However, if, as is the case

Swith the Space Shuttle, there are several different materials

joined together on the same surface, non-isothermal convec-

tion o .urs. Non-isothermal convection can change the air

and heat flow on the vehicle. Boundary-layer theory for thep

hypersonic, non-isothermal wall predicts a discontinuity in

wall temperature in the area of a material change (11). How-

ever, wind tunnel data suggests a much slower, wall-temper-

ature recovery than theory suggests (21:2). Roberts and

Lange, in two separate studies, investigated the non-isother-

r mal-wall effect using computational fluid dynamics (CFD)

(15,21). Roberts modeled flows with two-dimensional Navier-

Stokes equations. Lange modeled flow using an unsteady,

boundary-layer analysis. Both studies showed a non-isother-
0

mal, wall effect. However, in the case of the boundary-layer

analysis, inaccuracies in the method tended to smear the

quantitative results. The disadvantage with most computer,

modeling techniques is truncation error and round-off error

smear the results in' high-gradient areas. These high-grad-

ient areas also are the parts of the f'ov where the non-iso-

thermal, wall effect takes place., Therefore, the engineer



r

must decrease the errors in the high-gradient areas to more

1 accurately model flow conditions. In this way, computer

fluid modeling can more accurately predict flow conditions

such as the non-isothermal, wall effect, which otherwise

would not be seen.

Backtround

Using an adaptive grid which is changed after each solu-

tion of the modeling equations is a way to increase the ac-

" .curacy of the computer solution without increasing the number

of solution, grid points. The easiest way to increase reso

* lution of regions where fluid properties, like temperature

, .and pressure, are changing rapidly is to increase the number

of grid points. The other way is to use an adaptive grid for

<a * solving the model equations. The adaptive grid concentrates

grid points in high-gradient areas, (i.e. boundary layers),'

to increase resolution and spreads out grid points in low-

I gradient regions. This keeps the total number of grid points

small, but places grid points to produce the best resolu-

tion. For a time-dependent problem, Ghia, Ghia, and Shin

develop a flow-dependent, adaptive-grid method to increase

the accuracy of the computer solution. This adaptive-grid

method reforms the 'solution grid after each time iteration of

* the modeling equations by minimizing the magnitude of the
;7-
*""convective terms of the governing equations which indirectly

minimizes the truncation error in the governing equations

* : (7:36-37). Their treatment of the two-dimensional, boundary-

F"3



layer equations adapts the grid in normal and streamwise

directions. However, since the gradients in a boundary layer

are not very large in the streamwise direction, it may be

• possible to optimize the solution grid in only the n-rmal

I L direction and still get an accurate solution. If the parti-

4ular, flow solutions do not have similar, velocity profiles,

the solution grid can be coupled with a parabolic-grid gener-

ation method (9). Regardless, one-dimensional, grid, optimi-

zation techniques can be applied to optimize the grid in the

normal direction. Leone and Hodge suggest optimizing the

adaptive grid in one dimension with Powell's minimization

method (16). Boyd also uses a method to optimize the adap-

tive grid in one dimension. 'Using a least squares curve fit

to model a quadratic equation and a Newton-Raphson optimiza-

tion of a grid control function, Q, Boyd attempts to' minimize'

the tru-cation error of the third derivative of the dependent

variab,- to get a more accurate one-dimensional, flow solu-

tion (3:11). After optimizing the solution grid in the

normal direction with one-dimensional techniques, the charac-

teristics of the boundary layer solution can be used to scale

the normal optimization in the streamwise direction. The

resulting optimized, solution grid generates more accurate

flow solutions.

This thesis develops a method for optimizing, a steady-

state, adaptive-grid solution of two-dimensional, flow prob-

I .



lens by minimizing the truncatlion error in the streamwise

velocity component. The adaptive 'grid minimizes the sum of

the square of the third derivative of the streamwise velocity'

in the transformed plane, , using Powell's minimization

method. Powell's method iterates on an n-dimensional array

using conjugate directions until finding the minimum of the

function without calculating the derivatives of the function

on that array. In this study, Powell's method primarily

minimizes the, third derivative of the streamwise velocity

component by optimizing the grid control function, Q., in the

equation, Y q+QYq M0. Because of the flexibility of Pow-

el's' method, the effect of optimizing the solution grid by

minimizing the first, second, or a combination of all three

streamwise velocity derivatives is checked to verify trunca-

tion error argument's. Rega'rdless of the specific minimized

function used, the method optimizes the grid in the normal

direction. The grid is then scaled in the streamwise direc-

tion using boundary-layer theory. A modification of Lange's

boundary-layer code then solves the flow problem. Comparing

the incompressible and compressible flow solutions to exact

solutions and Lange's non-adaptive numerical solutions veri-

fies the accuracy of the adaptive-grid solution. The in-

crease in, accuracy with the optimized,' adaptive grid should

be evident in the velocity calculations and in the comparison

of heat transfer along the surface.

.5
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Chapter II: Theory
-,

SBoundary-Laver Eguations

The complete Navier-Stokes equations predict fluid char-

acteristics for all flow conditions (23:64). This set of

equations is however very difficult to solve. Since the

- majority of viscous effects and heat transfer effects appear

in a thin layer adjacent to the flow surface, this study

-" investigates only the portion of flow in that region, known

as the boundary layer. Flow properties in the boundary 'layer

allow several simplifying assumptions which result in a sim-

pler set of flow, modeling equations than the Navier-Stokes

equations. For %igh Reynold's number flows, viscous effects

in the form of shearing stress at th'e wall, Tw = u(u/y)y=0 "

.. and velocity gradients in the normal direction, '8u/8y, are

- very large inside the boundary layer. Outside the boundary

U layer, flow is essentially inviscid with negligible, velocity

gradients (23:128-129).. Therefore, within the boundary layer

' thickness, 6, it is assumed that:

a. gradients in the normal directions are much larger

than gradients in the streamwise direction,

b.the normal velocity, v, is much smaller than the

streamwise velocity, u,and

c. all terms of order B/L or smaller are negligible.

For laminar flow over a flat plate or wedge, the pressure

* gradient in the streamwise direction, 8p/ax., of the iuviscid

6
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region iu impressed on the boundary layer. This pressure

gradient is assumed *to be zero for a flat plate parallel to

the flow. Further, the boundary layer equations are non-di-

mensionalized using the following relationships.

I

.-. ; Y- ILLy" . t- t'u',_ , Ut , a v ' ,
LP L' LV U #D U a(1)

- H H, T- Co'T' p= of , a ' , P= o'
U U P ' U ' .' p p .,

The resulting non-dimensionalized, boundary-layer equations

for compressible, laminar flow are:

Continuity: 8o+a+ov -'0 (2)

at ax ay

Momentum: D 0u+ + -ouv F -8.2 + - C bu (3a)
at ax ay ax Oy Re 8y

.. 0o (3b)
ay

r Energy: ao_+ao! +aovH = aR+a jL.t U.at 8x ay at Dy RePr Oy

+ 8 u(Pr-l) au_/L. (4)
ay RePr ay

Boundary conditions for the boundary layer equations are

u'= v'= 0 at y"= 0 and u- Ue at y'=6. Assuming incompressi-

ble flow or' transforming the compressible equations into an

incompressible form using the Dorodnitsyn transformation

further simplifies the above equations (22:101).

Incompressible, Boundary-Layer Theory

If the flow density is constant, the veloci'ty profile,

7



as well as the heat transfer characteristics near the wall,

have already been derived theoretically for both exact and

approximate cases. In the incompressible case, the boundary

layer equations are:

Continuity: U+OV 0 (S)
al ay

Momentum: U+U+VU -1 82+ au (6a)
at ax aY p ax axRe ax)

_ 0 (6b)
aY

Energy: LH+UaH+VaH = 1 +a anu
at ax aY p at aY RePr

+ L(Pr.L) au /2 ) (7)
aY RoPr a /

where u-U, v-V, x -X, 'and yY

Blasius developed the exact solution to incompressible, boun-

. dary layer flow over a flat plate. The results of his exact

solution define the thickness of the boundary layer.. If the

edge of the boundary layer is assumed to be where U1/U is

.994, the boundary layer thickness, 6, at any streamwise

location, x1, is

SWx) 5,S2x'18

• - r-

ex.

where Rex=P®'u'x'/p'. Blasius' solution also gives an

. exact value for the skin friction coefficient, Cf.

Cf(x') - 0 664 (9)

L..



The computer solution of the incompressible, flat, plate

problem should match this exact Cf result.

Though Blasius' incompressible, flat, plate solution is

exact and is the best description of this velocity profile,

the von Karman-Pohlhausen, approximate solution of the two-

dimensional, flow problem offers more easily obtainable velo-

city profile results. The von Karman-Pohlhausen method

solves the momentum-integral equation (23:160). The velocity

distribution is a fourth-order polynomial where wy'/&(x).

U = U_ = aw + b% 2 + cW3 + dw 4  (10)
Ue

The four boundary conditions required to solve the coeffi-

cients in Eq (10) are

* y'= 0 U = 0 82U = 1 -u dUe
Pj27 P_ X dX

y'&6 U = 1 aU =0, a2U '0 (11)

The coefficients, a-d, in Eq (10) are

a- 2+0/6 , b= -0/2 , c=-2+0/2, d= 1-0/6

where G- 6 dUe (12)

pdX

(23:207). 01 is the Pohlhausen pressure, gradient parameter.

. For flat plate and wedge flows with no streauwise,. pressure

gradient, 0 is zero. The von Karman-Pohlhausen solution

provides another verification for numerically-derived, velo-

city profiles in this study. After verifying the accuracy of

9* 'C



the boundary-layer and adaptive-grid code with the Blasius or

Von [arman-Pohlhausen results, then compressible forms of the

boundary-layer equations are solved.

Compressibilitv Considerations -

Since the incompressible, boundary-layer equations, Eqs

(5), (6). and (7). already have approximate and'exact solu-

tions. the solution of the compressible, bouaidary-layer equa-

tions. Eqs (2), (3). and (4). is possible if the change in

density and viscosity across the boundary layer can be ac-

counted for. The Dorodnitsyn transformation changes the

compressible equations into an incompressible form. The

compressible equations can then be solved as incompressible

equations. The Dorodnitsyn transformation is fa nonlinear

stretching of the normal coordinate* (20). The transformation

takes the normal coordinate. y, in the physical space and

stretches it into a new normal coordinate, Y, in the trans-

formed space. The transformed, space coordinates are now

expressed in X and Y where

x , Y - j-.dy (13)

The transformed, grid coordinates lead to a change in the

velocity components, as shown in Appendi A. The transform-

ed. velocity components are

U = u, V = pv+ aY/at + uaY/ax (14)

Using the transformed variables in Eqs (13) and (14). changes k

10
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the compressible, boundary-layer equations, Eqs (2) -(4),

into the incompressible form in Sqs (5) - (7). The boundary

layer thickness, 6(x), also changes into a transformed, boun-

dary-layer thickness, A(1. Assuming a calorically-perfect

gas, the density ratio, P'/P'., equals the inverse of the

specific enthalpy ratio, hse'/hs', and

a(x) hs .LZ.dY (15)

Jo h s a

*An explicit expression for A(z) comes from an integral analy-

sis of the newboundary-layer equations (20).

AMZ _2BI (16)
P a' Uo~fa *(2a +1)

where B =dU/U e
d(YIA)

and fe =' U/Ue(l-U/Ue) d(YIA)

a, in the above equation, is 0 for two-dimensional flow and 1

for aiisymmetric flow'(Appendix P). Assuming flow over the

flat plate or wedge de. elops a cubic, velocity profile such

that

U/U e =1.5 (y/5) 0.5(y/6)3 (17)

the value of 2 B/fe is 290/13. Known flow conditions then

determine A(M. After solving the flow for the incompres-

sible form, invei.se transformations compute the solution in



the physical space. The inverse transformations result from

integrating the computed, enthalpy ratio to recover the phy-

sical-grid, normal coordinate, or

y 4 s dY (18) ' '

J0 hs.'

The compressible solution of the boundary layer equations in

the physical plane for a given set of flow conditions is then

couplet.

Flow P.verties %

Obliaue. Shock-Wky. Theory,

For supersonic flow over a flat plate, the flow condi-

tions such as density, pressure, temperature, and velocity

remain relatively constant outside the boundary layer. How-,

ever. f the flat plate is inclined to the direction of flow

to simulate a wedge, the flow conditions change as flow pas-

sea through the shock wave which develops in front of the -.

wedge. This study assumes a perfect, gas flow with no dis-

sociation of the gas molecules. For the perfect gas,

p- p'R T', and P y. (19)
y-1 T,

where the gas constant, R, is 1715 ft-lb/slug-0 R and the

specific heat ratio, y, is 1.4. Oblique, shock-wave theory

applies to this flow problem. To find the conditions behind

the shock wave, the shock angle, P, must be found. Liepmann

and Roshko use an explicit form of the shock-angle equation

12
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(17:87). However, the implicit form.

me M 2 sin 2 A 1 Y+1 u,. 2 sin~s'inO (20)
2 cos(A-e)

is more useful for iteratively comprting the shock angle, A,

given a deflection angle, e, and a freestream; Mach number,

X.. With the shock angle and freestream values of Mach, U,,

pressure, p., and temperature, T., the equations

Me2 sin 2 (p-e) 2 +T-1)i.. 2 sin 2 B (21)
2M. sinZt (T-1)

P. p.[1 + 2Y (M. asin 2 0-1)] (22)
,O r Te T. RT +

To Z(Y4 1 ' sin 2 B -(BYM m sin 2 8 +1 (23)

e (y~l) KM.* sin't +)

define the edge conditions behind the shock wave for Mach

number, pressure, and temperature (17:86). All other edge

conditions such as enthalpy and density can be found from

these quantities. These edge conditions affect the solution

of the boundary-layer equations over the given surface.

Viscosity.

Viscosity is not a constant across the boundary layer.

* -Since viscosity is a function of the fluid temperature which

changes across the boundary layer, viscosity also changes.

Generally, engineers use Sutherland's, viscosity law,

P 2,2685 % 0_ 8 T' 3 / 2  slugs (24)
T' + 198.6 OR ft-sec

for calculating viscosity as the fluid temperature changes.

13
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However, Fiore suggests Sutherland's law is not valid for the

low temperatures resulting from hypersonic, flow experiments

(,6:56). Flow temperatures in hypersonic, wind-tunnel testing

generally range from 3001 to 2000R (6:56). A more, exact

expression for low-temperature viscosity applies. Keyes
*t

obtains better low-temperature calculations of viscosity

* . using the relation

' 2.32 x 10-8 T'1 /2  slurs (25)
1+[220/T'1(10V/')] ft-sec

(13). 'In addition, this low-temperature, viscosity law gives

virtually the same results for temperatures rbove 3000R.

* . Cappelano states "variation between the alternate form and

Sutherland's law is negligible above a temperature of T-

300°R (4:20). Below 3000R there is a difference. The

new, viscosity law is more accurate for low temperatures.

Therefore, unless computational results must be compared with

r previous studies which use Sutherland's law, this study uses

Keyes' viscosity law where appropriate.

Convective Heat Transfer Coefficient.

Convection is the primary method of heat transfer across

the boundary layer. For a constant 'temperature surface, the

heat flow, q, is calculated by the convective, heat relation

q = hA(Tw - T) (26)

where T. is the wall temperature. Taw is the adiabatic, wallw aw

temperature, and A is the wall surface area. Thus, it is not

14
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surprising that the ability to accurately compute the convec-

tive, heat, transfer coefficient, h, iS important to any

boundary-layer study. Numerically, the computer code calcu-

lates the heat flow rate per unit area from the flow solution

using

t. q/A = -k 8T'lIy' (27)

where k is the thermal, conductivity coefficient for a fluid.

The wall temperature.-T w is specified. Taw varies with Mach

number and fluid temperature by the adiabatic, wall tempera-

ture,

Taw T e[+(Pr)1 / 2 (v-11)M 2 1  (28)

2

The Prandtl number is assumed constant and is

Pr = 1 /k (29)

The factor, Pr 1 2 . in Eq (28) is the adiabatic, recovery

factor for laminar flows (12:213). In assuming an adiabatic

wall, Schetz explains,

the temperature that the wall attains at equili-
-. + brium will depend on how much of this kinetic ener-
S.gy [kinetic energy of the flow] is recovered on

the wall. This is expressed in the recovery fac-
tor. (22:5)

Solving Eq (26). using Eqs (27)-(29), gives a numerical solu-

- tion for h. There is also a theoretical solution for h.

The theoretical solution comes from Blasius' solution of the

flat-plate problem as well as Eckert's, flat-plate theory.

From Blasius'. exact solution for flat plate flow, Eq (9)

P, L gives a value for Cf. Cf is also related to the Stanton

-2 .. 15
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number, St., by

Cfx - 2StxPr2 /3  (30)

and
Stx h (31)

. (12:195). Substituting Eq (31) into Eq (30). equating the

result to Eq (9), and solving for h gives a theoretical value

of h:

hit .332 C[iPeue (32)

This value of h is only for flows where viscosity and density

" are constant, the wall is isothermal, and the fluid is a

perfect, .single-species gas with no dissociation of molec-

S•ules. It applies therefore to incompressible flows treated

in this study. However, for compressible, boundary-layer

flows, where density and viscosity vary, the theory must be

modified slightly. Eckert suggests the use of a reference

temperature which is representative of the temperatures ac-

ross the boundary layer in the previous constant property

Lrelations (22:96). Defined as

T' = Teo+'S(Tw'Te ')+.22(Taw'-T.) (33)

the reference temperature is used to calculate referencep

- values of viscosity and density, p*' and p ', -respectively.

Then, Stanton number and h for compressible flows are ,alcu-

lated using the~reference, * conditions. Another reference

12: ':i-16
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enthalpy, href, is calculated by using p., p., and u. in

place of the edge conditions in Eq (32). To evaluate how h

changes from its freestream value, the theoretical h values

for the incompressible and compressible cases are compared to

the freestream h. For incompressible flow over a flat

plate, with edge conditions equal to freestream conditions.

h/href should be one for both numerical and theoretical val-

Iues of h. How close the numerical h/href is to the theoreti-

ca'l h/href indicates how well the computed solution models

the exact, incompressible solut-ion.

Theoretical Limitations

The assumptions which form the theoretical basis for the

-o boundary-layer theory of this study pose several limitations

on the general application of the solutions for all flow

• cond.tions in an experimental setting. The flows are as-

sumed to be perfect Sases. This limits the results to air

flows whose temperatures and pressures guarantee negligible,

rarefied-gas effects, i.e. molecular vibration or dissocia-

tion. Also, the requirement of a zero streamwise pressure

gradient across the boundary layer limits 'the shapes to which

it can be applied without modification. These shapes include

flat plates, wedges, and cones. Most important is a limita-

tion on the physical effects which can be predicted in the

hypersonic regime. Boundary-layer theory is incapable of

predicting the effects of shock-boundary-layer interaction.

The shock wave produced at the leading edge of a sharp-nosed

17
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body, like a wedge, is relatively far away from the surface

- and the boundary layer at low Mach numbers except in the

immediate vicinity of the point (Fig. 1). However, at hyper-

sonic Mach numbers, the shock wave comes close to the surface

(Fig.2). In explaining his experiments on shook interaction,

Nagamatsu comments,

The shock wave and boundary layer seem to be merged

before separating into distinct shock wave and
boundary layer. As the flow Mach number was in-
creased, the merged region extended over a larger
portion of the plate(18:461).

He also points out some of the variations in flow properties

this interactions causes.

Vhen the shock wave and the boundary layer were
merged, the pressure from the shock wave to the
surface for a given location from the leading edge
was approximately constant. After the shock wave
became separated from the boundary layer, the pres-
sure behind the shock wave was greater than the
surface pressure at the same location (18:462).

Boundary-layer theory is not able to predict any of these

interactive results. Therefore, any solution at the leading

edge of the body probably has an inherently, large error.

This error at the leading edge should be ignored to get an

indication of the overall error of the boundary-layer code

over the surface. The finite-difference method also has

problems predicting the large gradients at the leading edge.

Therefore, neglecting, large leading edge errors due to the

boundary layer solution also leads to neglecting a large

leading error due to the finite-difference method.

18
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Qan~.e Il.: Finite Difference Solution

The boundary-layer equations'. Eqs (2) -(5), are a non-

linear set of partial differential equations which describe

fluid flow cloae to a surface. Their mathematical solution

is difficult. However, using finite-difference techniques,

the solution of the boundary-layer equations and the resul-

ting description of the flowfield is possible. First. the

domain of the flow field must be divided, or differenced, into

a grid pattern. This grid may be in any form which makes

solution of the problem easiest. For this study, three dif-

ferent grids which characterize three different, solut-ion

spaces are of interest: the physical grid, the Dorodnitsyn-

transformed grid, and the computational grid. The physical

hgrid is an orthogonal, surface-normal grid which describes

the flow pattern, in the physical, compressible plane. In the

physical plane, the boundary-layer equations are highly non-

linear and vary with viscosity and density. Therefore, the

Dorodnitsyn transform is introduced to take the density de-

pendence out of the problem. This transformation adjusts the

normal coordinate, y, to put the density dependence into the

definition of a new normal coordinate, Y. instead of in the

boundary-layer equations. This creates coordinates, land Y,

for the Dorodnitsyn-transformed grid. The final step is to

take all non-linearity out of the grid by transforming X and

Y to computational variables, 4 and 1. Expressing the boun-

dary-layer equations in terms of the new, computational varia-

20
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bles results in solution equations which are more easily

* solved in a uniform, computational space. The computational

grid with coordinates. 4 and n, has a constant, step size of

- one in both the streamwise and normal directions. The physi-

cal and Dorodnitsyn grids have varying step sizes. Boundary

i
. conditions and initial conditions are then added to the solu-

tion equations, and the equations are solved in the computa-

"* tional space using an implicit, Successive-Over-Relaxation

* (SOR) method.

The Solution Grid'

The solution grid divides the flow field into exact,

* coordinate locations. The solution of the flow problem des-

cribes the velocity, enthalpy, and other flow conditions

3at the grid locations. For each flow problem, there is an

optimum grid which best resolves the flow field. The accur-

acy of the solution reflects how well the grid Oetermines the

gradients in the flow field. With very large spacing between

grid points, rapidly changing flow conditions in a particular

" area may not appear due to lack of resolution on the grid.

Increasing the number of grid points increases resolution but

* also increases computational time. It is also a crude, brute

force approach to the problem. An ideal solution is to put a

" large number of grid points in the high-gradient regions and

- fewer points in low-gradient regions without increasing the

total number of grid points. The boundary-layer problem

- needs the majority of the points in the boundary layer, es-

21



pecially near the leading edge, where flow conditions are

changing rapidly. The least concentration of points should

be in the inviscid-flow region outside the boundary layer

where conditions are essentially constant. The particular

way this type of grid is built depends on the grid equation

chosen.

This study uses a one-dimensional, grid equation to de-

" termine the grid spacing in one dimension, analagous to a

. multi-dimensional Poisson equation (an elliptic, partial dif-

ferental equation). The other dimension is then scaled using

a velocity profile of Blasius', boundary-layer'solution.

The one-dimensional grid equations are

x + PXI - 0 , (streamwise direction) or (34)

Y + QYI - 0 (normal direction) (35)

where

S- (x,y,t)

11 II(x,y't) (36)

P and Q are control functions. The grid equations stretch

- the grid points depending on the control functions P and Q.

The grid used to verify results for Lange's non-adaptive grid

boundary-layer program defines the points in the streamwise

direction first. Setting P equal to zero forms a constant

spacing in the x direction. Then, using a parabolic velocity

profile, U/Ue (Y/6)I /2 for 6 defined by Eq (8), determines

the y coordinates. Due to the constant, x spacing and the

parabolic characteristics of the power law, the power-law

. z2



grid is several expandingparabolic curves, as Fig. 3 shows.

The flow solution which comes from using this power-law grid

can be compared with the optimized grid solution. The opti-

mized-grid solution also us'es constant spacing in the x di-

rection. However, it uses Eq (35) to fix the y coordinates

at an z location and then scales the rest of the grid using

Eq (8). Unified Difference Relations (UDR) -given by Hodge,

Leone, and McCarty solve the grid equation (9). The UDR for

Eq (35) are

Yi+l - (1 +e-Q)y. + e-Q Y 0 (Q > 0) 37a1
1 ~ i-1 Q>0 3a

eY Yi+l - (eQ+l)Yi + Y = 0 (Q < 0) (37b)

A tridagonal iteration scheme solves Eqs (37) (3:10). To

scale the grid, a ratio of 6's at different x locations is

set up and like terms cancelled. The relationship between

any two x locations becomes

Y2= Y1 (X2 /1 1 )
1 /2  (38)

This study defines Y, and X, and solves the normal grid equa-

tion at the far end of the plate. For each given X2 loca-

tion, a Y2 value results. Fig. 4 shows the initial grid for

the optimized solution. To optimize the grid, the Q that

minimizes the truncation error in the third derivative of the

tangential velocity in the computational plane, U must be

". found. Therefore, the grid must now be transformed into the

computational plane.

Although the grid is computed in the form preseuted

23
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above. this grid is related to computational plane variables.

TI~, and T, by metric coefficients. The functional' rela-

ti ,nships between the transformed variables and computat'ional

variables are

T .t~

Using t he chain rule and solving for the derivative of each

computational variable with respect, to the transformed varii.-

bles, the metric coefficients are

4x- Yi /I' - jV - 0

C- - x In3 = 4~/1 - 0 (40)

4ta(X 11Yt' XtY 7 )/j t (Xty~ - x 4Yt)/3

For this study, X does not change in the normal '-ection, so

X TIis zero. Also, for ste&dy-state solutions where the grid

is not changing withi time, I and Y are zero. The steady-

state metrics are

4=IxIx - //XY q= 1/y, (41)

if the adaptive grid changes with time, the metrics also

include the time dependent metricsL

4t~~~~ ~~ ~ 5'S it - 'qY(2

These metric relationships, Eqs (41) and (42), make it pos-
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Ssible to convert the boundazy-layer equations into computa-

* tional variables. The Dorodnitsyn transformation changes

the physical grid shown in Fig. 5 to a transformed grid.

shown in Fig. 6. The metrics then mathematically change the

transformed grid into the uniform, rectangular grid. shown in

I. Fig. 7. The uniform, computational grid makes solving the

boundary-layer equations simpler.. It also allows for finding

an optimium solution grid which is not possible in the physi-

cal plane.

The Numerical. Differencina Equationj

Whether the equations are incompressible or Dorodnitsyn-

transformed, the boundary-layer equations are more easily

solved if they are transformed into variables of the computa-

tional plane. The constant, normalized mesh size of the

computational plane simplifies the differencing equations.

"*" Eqs (5)-(7) when changed from X and Y in the transformed

"r plane to 4 and n in the computational plane become

Continuity: 4xU4+ xU +nyV7 = 0 (43)

*-- Momentum: Ut+U(U4x+U x)+VU1 Y l /ReyoI(U iy)]y (44)

Energy: Ht + U(Hx+HnqX) + VHnn Yy

pt/P + (LP-Hn1y)1y + [op(Pr-1) qy(U 2 /2) ]' ny (45)
PrRe 2RePr

(15:23). For the momentum and energy equations, the differ-

encing methods used are three-point, windward differencing on

the first derivative terms, second-order, central differ-

encing on second derivative viscous terms such as U, H1

S .F and T, *and two-point, backward differencing on the time

and -a2
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terms. At the boundaries, where three points cannot approx-

us imate the first derivatives. the diffetencing is two-point,

upwind. This method is first-order accurate in time and

*second-order accurate in space, except at the boundaries

* where it is first-order accurate in space. Lange uses this

., .,.method because, "this differencing ,scheme guarantees' diagonal

dominance and is second-order accur~te in the -computational

plane"M except at the boundazy points as noted above (15:24).

After applying the differencing to Eqs (44) and (45), and

solving for U and t ij , the solution equations 'result.

Momentum: 11n,j U'i,j + aCX AtUU. 1,

-bC 1 AtUUn i-2,j +' (O11XU At + GiiYV At
W% n At((PL)J..1 /2 1,y)/Re]Uni J.~j

-[dTIiU At .diiyV At]Uni~j-2

+ ii At[PPj+1 /2 1iy]Uni~j+l,/Re)/Ucoef

where Ucoef =1+etxu At + f 1 U At + fiiyV At +

r ' Energy: an1 i,j Hn-l,,j + atU, Attn _,. - b4,U AtHn i 2,3

+[01I 1 U At + CiIYV At + ULY At((PPI)j-l/2 'iY)] i~-

PrRe

(dii1U At + diiyV Pt)Hn,.j-2 +'.Y-AIt(PA)j+l/2 Y]Hnilj+l

..a~...... (P)+1I2 Y(Uui,j+l)
2(1-Pr)Re

- PU j+/ ny + (PPU)j-1/2 ,~)(Un,,j) 2

(PA) ])/ H(47)
r + ~P~J-1/2 1tY(Un~j-l)]) coef

Hcoef 1 + 64U-1, At + fqXUn-I -j At + fqYV n-1 ,j At

+ n.TYAj[(PIJ)j~t.12 lnY + (PI) j-112 AY

RePr

. 31



The i and give the abscissa and ordinate locationsrespec-

tively, in the computational plane. In the equations above,

the coefficients, a - f, change depending on the grid point.

* Using two-point backward or forward. or three-point forward

or backward differencing cbanges the coefficients. Table I

has the coefficients for each case. To linearize the equa-

tions, Lange lags the the 'first iteration solution in time so

U, V. and H are calculated based upon the U, V, and H at the

same location but previous time step. For subsequent itera-

tions, U, V. and H are calculated based upon the U, V. and H

C' from the previous iteration step. Next, the metric coeffi-

cients need to be differenced.

. From the previous discussion of the metrics, the only

non-zero metrics are C1, 11, and ny. The inverse relation-

1 ships from Eq (41) generate the expressions for the differ-

, %I enced metrics. Since CX equals X and a constant spacing

between streamwise points is used, a first-order, central

I r difference for Xt determines a constant X. qy is found

TABLE I

- COMPUTATIONAL PLANE DIFFERENCE COEFFICIENTS

i j a b c d 8 f

2 2 1.0 0.0 1.0 0.0 1.0 1.0

2 3- 1.0 0.0 2.0 0.5 1.0 1.5

2 jmax-l, 1.0 0.0 -1.0 0.0 1.0 1.0

3- 3- 2.0 -0.5 2.0 -0.5 1.5 1.5

3- jmaz-1 2.0 -0.5 -1.0 0.0 1.5 -1.0

imax-1 jmax-1 2.0 -0.5 '-1.0 0.0 1.5 -1.0
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similarly by using Y, which is not constant. The spacing in

the normal direction does change with each streamwise loca-

tion. Lange uses three, different schemes depending on the

location of in the equation (15:26). Y in the viscous

terms is differenced with a second-order, central scheme

3-
about the j+,/2 or j1l/2 points. This gives an overall sec-

ond-order accurate Y term. Y for all other te.rms is repre-
•* l

sented by a second-order, central difference for the interior

poin'ts. This study uces a three-point windward scheme at the

boundaries. This guarantees second-order accuracy for all YI

differencing. For Y , Lange uses an analytic calculation

for the metric. Lange explains,

Initially, Y was calculated using a central dif-
ference with a backward difference at the end of

the domain. A large amount of leading edge error
was induced by this method (15:27).

This study uses an analytic metric different from Lange's.

w- .5Y (48)

r x -x

However, since an analytic solution over the entire plate

limits the method's general applicability, it is preferable

to use the analytic solution only at the leading edge. Lead-

ing-edge error is inherent in the boundary-layer solution

if Yt is numericaly calulated. However, if Yt is calculated

analytically with Eq (48) at the first couple of streamwise

locations, the numerical solution can then be calculated on

the remaining points downsteram of the leading edge with less

error. Consequently, Yt is calculated with Eq (48) at the
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first two streamwise locations and with numerical, difference

equations at the rest of the streamwise locations. The nu-

merical, difference equations use central differencing on

the interior and three-point, backward differencing at the

back of the plate. This results in Yt with the same second-I.
order accuracy as Y and X Lange gives an eiample of ti

I

resulting fully-differenced, linearized, momentum and energy

equations (15:28). Using Lange's SOR method to compute U and

H from the differenced equations gives values used in the

continuity solution for V (15:30-32).

The transformed, continuity equation, Eq (43), now con-

tains only one unknown. V has not been solved. Expressing

V in terms of the known metrics and U, V becomes

V, = -YU + Y (49)

* Lange integrates Eq (49) with the trapezoidal rule for a

constant step of one. Finite differencing on Ut is a three-

point, windward scheme (15:32). The integration of U used

in this thesis is different than Lange's treatment. The U

term separates into two parts.

Y U =-[Y U fU(Yt)n dn] 1  (50)

The integral is evaluated using a trapezoidal rule with Y

averaged about the J-l/ 2 point prior to the integratiov.

After collecting terms, the difference equation for the in-

terior points is
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Vi'j =Vij-1 + ((Y ,J Y -1) (Ui.j - Uij )

+ (Y3ij - Yi,j-1)f[-0.75(Ui,j + Uij-1)

+ 1.0(Ui-l j + Ui_lj_ 1 ) - 0.25(U'i 2 0 , + Ui-2,j-1)]}

Solving for V c ompletes the flow solution. All parameters of

the boundary layer problem are then known or can be deter-

mined from U, V. and H.

To determine how close the computed boundary layer solu-

tion duplicates the heat transfer coefficient, h, Eqs (26)

and (27) are solved numerically. Since

kP= o'C /Pr (52)

the transformed, heat equation becomes

Pr dY Y0

The dT'/dY')yf0 term is non-dimensionalized and Eq (53) isyis.

then transformed to the computational space (15:33).. This

equation is

qo -"LT2 0 d-T). (54)

PrLRe di/

where dT/dl - (-3 Ti, + 4 Ti, 2 -Ti,3)/2 and

'ly f 1/Y = 2/(-3Yil1 + 4Y i ,2- Yi 3 )

The equation differencing is three-point upwind for the me-

tric Yand dT/dTI. Eq (26) is rearranged so that

hll= qol/(Tw'-Taw,) (55)
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(22:95). The heat transfer coefficient calculated is then

compared to the theoretical h from' Eq (32). If the numerical

scheme is accurate the ratio of the two h's should be 1.0 for

incompressible cases.

Another parameter that is calculated to compare the

computer solution to theoretical incompressible results is

Cf. Eq (9) gives the Blasius solution for the skin friction

,oefficient. This relation is derived from the definition of

Cf which is

pu 
Y =pu0

" The non-dimensionalized, transformed equation is

Cf ( Ii2gw. - (57) ii

p.UL/ Y Y=O

" Three-point, backward differencing evaluates U and Y at the

wall. When the Cf computed from Eq (57) is divided by the

theoretical Cf from Eq (9), the best solution produces a

*ratio closest to 1.0 for the incompressible case.

Boundary Conditions

The flow conditions at the wall and the upper boundary

. of the domain fix the boundary conditions. Assuming no slip

conditions at the wall, uw and U w are zero. Also, there is

no flow through the boundary surface, therefore, v and Vw

are zero. The surface temperature, Two for the isothermal

wall cases is 530 0 R. Freestream temperature is also 5,300R
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for most of the incompressible runs. These cases come close

to an adiabatic, wall condition. At the domain's upper boun-

dary, the edge conditions depend on the given Mach number.

For subsonic flows, the edge conditions are the same as the

freestreem conditions. At Mach 1 and above, oblique shook

wave theory sets the flow conditions behind the shock. The

conditions behind the shock are the edge conditions for su-

personic flows. Unlike these fixed boundary conditions, the

initial conditions change.

I n i t i a l C o n d i t i o n

For the first iteration of the numerical solution, an

initial approximation of U, H, and V must be assumed. A

cubic., velocity profile is a relatively simple approximation

to the boundary layer and, as shown in Schlichting, it comes

close to Blasius', exact, boundary-layer, velocity profile

(23:206). The cubic, velocity profile is

u = ue '[1.5 (y'/8) - .5 (y'/&) 3 ]/u, (58) !

" For compressible solutions, Y' replaces y' and A(X) replaces

8(x) in Eq (58). The enthalpy profile is derived from a

temperature, profile which is an approximate solution of the

energy equation (22:34).

T Tw_ 1.5 L vR- R (59)" Te Tw 1 tT. T

Since the total enthalpy, H, is C T+T 2 /2 for isentropic

flows, Eq (55) yields the non-dimensionalized guess for H.
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bt . J ""

- '(U)2[ 1 . 5  
- .S('-?)3] (60)

The thermal, boundary-layer thickness, 6 t, in Eqs (59) and

(60) is.

68 = 6/(1.026 Pr 1 / 3 ) (61)

This value for 6 t is valid if the entire plate surface is

heated and if 6 is zero at the front of the plate (22:35).• t.

For Pril, 6 t will be less than 6. Finally, initial v values

are assumed to be zero throughout the domain. These complete

the initial guess for the flow solution. The guess is input

along with the grid, and solution of the difference equations

gives a final, numerical solution for the flow characteris-

tics. Unfortunately, the input grid may not be able to ado-

quately resolve some of the gradients in the solution.

Therefore, an optimized grid which minimizes' the truncation

error and produces better flow solutions must be found.
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CQtj_. IV: G Optimization

Using finitu-difference methods to solve the boundary-

laver equations requires polynomial approximation of the

first derivatives of velocity and enthalpy. The polynomial

approximations are not exact. Truncation error is inherent

in the so.ution since all terms of the approximation are not

included in the calculations. In the case of second-order

differencing of velocity derivatives, truncation error is

some multiple of the third derivative terms such as U and

U Minimizing the third derivative terms insures the

truncation error is small, and the velocity solution is con-

sequently most accurate. Since the velocity gradients in

the streamwise direction are small compared to the velocity

gradients in the normal direction, this study minimizes only

U terms. Also, as U approaches zero, U approaches

a constant and U4,t approaches zero. Finding the solution

grid which minimizes U thus optimizes the boundary-layer

solution. Poiell's, %;onjugate-direction method which iter-

ates on an n-dimensional array until finding the minimum of a

desired function without calculating the derivatives of the

function, is well-suited to this problem. Powell's method

finds the grid control function, Q, in Eq (35) which forms

the optimum grid.

Truncation error is present in any finite-difference

solution which uses polynomial approximations to define gra-
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dient terms. The finite differencing of the boundary-layer

equations, uses Taylor, polynomial expansions of the gradient

terms. For example, the first-order, three-point, backward

difference of a gradient term, W is
71

=3 'i°J -4 Wi•J-i + i~ j .- 2 + 1 Wi + 1 W +.•• (62)
4oitTIT

assuming An is 1. Since the first three terms replace a

gradient term, like U,• in the finite-differenced, boundary-

layer equations, the truncation error is the sum of all the

higher derivative terms. The most heavily weighted term of

the truncation error is the WT term. if V is zeru,

W is zero, Therefore, minimizing the third derivative

terms should significantly decrease the truncation error in

the finite-difference solution.

The boundary-layer equations are two-dimensional equa-

tions. For a completely, accurate solution, two-dimensional,

grid equations should define the solution grid. However,

this study uses 'the characteristics of the incompressible,'

boundary layer to simplify the grid selection. One of the

boundary-layer simplifications of the Navier-Stokes equations

is that the normal velocity gradients are much greater than

the Streamwise, velocity gradieLts. Therefore, any error in

the normal velocity gradients has a larger impact on the rl
overall error of the computer so'lution than error in the

streamwise gradients. Making thex locations constant in

the adaptive grid allows the grid to concentrate on optimiz-
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ing only the gradients in the normal direction. Primarily,

the adaptive grid tries to minimize the sum of UnTV 2, but it

can also minimize the sums of U 2 U 2 or some other com-

, bination of these terms. Once the normal direction is opti-

IL mized, the streamwise dimension is scaled according to Blas-

ius' description of the incompressible, boundary layer. A

parabolized. grid scheme can be used to avoid this scaling.

Eq (38) shows a square-root dependence on each streamwise

coordinate of the Blasius solution. Ordinate locations found

using a given grid control function and the normal grid equa-

r" tion, Eq (35), at one x location are scaled on the rest of

the grid using Eq (38). Powell's minimization method finds

the optimum, grid control function. Q, which produces an

j optimized flow solution.

• " Powell's Method

Powell's, minimization method has several features which

* make it attractive for optimizing the normal gradients.

Powell's method does not require calculating derivatives of

the function being minimized. This is especially helpful in

this study where no explicit function' is being minimized.

Powell's method is flexible. Any computed quantity can be

minimized. Any parameter can become the minimized function

in Powell's algorithm. This allows the optimization of the

grid with several, different, minimized parameters to find

the best optimization technique. Powell's method assumes a

locally, quadratic form between points rather than a linear
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. form. Powell's method also converges quickly in a finite

number of steps. Powell explains,

when the procedure is applied to a quadratic form
... the ultimate rats of convergence is fast when
the method is used to minimize a general function
(19:155).

Powell's use of two conjugate directions to search for the

minimum achieves this fast convergence. Therefore. Powell's

method is accurate, allows fast convergence, is flexible, and

does not require further derivatives of U to minimize this

parameter.

This study adapts Powell's method to minimize the sum of

U 2. U 2 U 2, or any combination of these sums over the

* .- entire solution grid. One iteration of.Powoll's minimization

procecure is explained below.

(i) For r=l,2,...,n calculate Xr so that
f(Ar- 1 + XEr) is a minimum and define

" Ar = Ar-l +rEr

() Find 'the integer m, 1 J m < n, so that

(f(AX l)-f(Am)]is a maximum, and define

(iii) Calculate fn= f( 2 An-AO), and define

fl = f(A 0 ) and f2 = f(An).

(iv) If either f3  f, and/or
IL (f 1 - 2fi +f 3 )*(fl-f 2 -A) .5A(fl-f 3)2 use the

old directions E1 , E2 ... , En for the next itera-
tion Pnd use An for the next A0 , otherwise

(v) defining E= (An-A), calculate ). so that
f(A n + XE) is a minimum, use E1 , E2 , ... &Em-l Em ,

m E+ 1, Em+2* .*E nE as the directions and A +)E as

the starting point for the next iteration 19:156).
2~ 2OraomiaFor this study, the sum of U 2 U U or a combina

tion of any of these terms is the above function, f. The A0

to An parameters above are A( 1 ), A(2),.... A(n). Q, the con-
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trol function, is some function of the A(1) to A(n) parame-

ters.
4%

Q - Q (A(), A(2),....A(a)) (63)

a. The X directions that' Powell mentions are the directions

the algorithm searches to find the function's minimum. Ini-

tially, this study uses two parameters so that

Q - Al) + A(2) (64)

The first-step in the minimization procedure is finding f(A0 )

which is also fl, The flow chart in Appendix C shows how

program MNTRER in Appendix D applies Powell's algorihm.

The program MNTRER in Appendix D finds each )r by iter-

ating over k iterations until it reaches a minimum of

f(Ar I + XrEr) For each r. X is initially zero. 'Two other

- values of I. X+ and X-, are also chosen a fixed percentage

r distance from X. The k iteration then begins. Three new

parameters, A+, A-. and Ab, are calculated for each r with

i'X D, 
-  and X.

Ar() = Ar( ) + ,rEr (65)

The new A values add according to Eq (64) and form Q+, Q-,

and Qb. Three new grids are then generated for the +, - and

b cases. Three sets of boundary-layer equations are solved.

Taking the three boundary-layer solutions, subroutine NEYPI

calculates U• U , and U and three functional values of
11 71 I11

f, f and f- Subroutine NEW also fits a quadratic to
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X X-, and X. It then finds the minimum of the quadratic to

5produce a new X. Eq (65) then finds a new AN.' From this a

new q is found, and the solution grid it generated. Then,

the boundary-layer equations are solved, and fN is deter-

I. mined. The minimum of f+ f-, f, and fN is determined. The

X associated with the minimum becomes the new X for the next

k iteration. A new value of Ar is also found with the new

1. Then, the k iteration increments and continues until

reaching preset maximum k or the difference between the new

and old X is sufficiently small.

After the k iteration, Powell's step (i) is c,,:,!leteo

The program then continues with the other steps. Step (ii)

compares the f values for each final Ar and determines the r

which maximizes f(Ar- 1 -A.) Program MNTRER then finds f3

in Powell's step (iii). The program then performs the tests

-. in step (iv). If the tests are true, the Er values of the

first iteration remain the same and another iteration-is

run. If the tests are false, step (v) calculates a new value

- of E equal to An-A 0 . Using the same steps as the previous k

iteration, the program finds the X which minimizes f(An+XE).

An+XE then replaces A0 as the starting point for the next

full iteration of the procedure. The new E calculated in

hstep (v) also replaces the Er in which the largest decrease

was made in the last iteration. The whole procedure is re-

peated until the changes between Ar s are sufficiently small

or the maximum number of iterations is reached. Powell's

optimization is then complete.

44

IF



Powell's optimization method, as adapted in program

MNTRER, provides some flexibili'ty to test which minimized

function gives the most accurate results. Since Powell's

method minimizes the function, f, any function f can be cho-

m _ sen. This study checks the affect of minimizing other deriv-

atives, or a combination of derivatives, on the accuracy

of the final, optimizei. boundary-layer solution. The sum of

,2, U 2 or, any combination of these three can be

- the minimized function, f. These are the three functlons

this study investigates, but any, definable parameter can be

t* minimized by the optimization method. Based on the trunca-

. tion error argument, minimizing U with Powell's method

should produce the most, accurate, finite-differenced, boun-

I dary-layer solution.
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Chapter V: Reults and Discussion

This study shows how an optimized, adaptive-grid solu-

tion of a boundary-layer code produces a better description

of flow characteristics in the boundary layer. Before look-

ing at the optimization of the boundary-layer code, the

characteristics, capabilities, and limitations of the boun-

3 dary-layer code must be'understood. For example, questiona

which must be answered are how do initial conditions affect

the solution, or how many iteration and time steps are neces-

m r" sary to get a converged solution.' The boundary-layer program

used to solve the finite-differenced. boundary-layer equa-

tions has several improvement's to Lange's boundary-layer

a l code. Comparison of the computed, boundary-layer solution

and Blasius', theoretical solution for incompressible flow

over a flat plate shows the increased accuracy of the new,

E . boundary-layer code.. Powell's optimization method is then

applied to the new, boundary-layer code to optimize the adap-

tive grid. The optimized, adaptive grid is more accurate

than the non-adaptive grid, incompressible solution. TheS

'effect of different parameters on the optimization method is

investigated. These investigations of the incompressible

• cases verify the new, boundary-layer code and the optimiza-

tion method. Then, the optimized, adaptive grid is applied

to supersonic and hypersonic, compressible, flow problems.

Solutions for compressible flow over the flat plate and wedge
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are compared to previous theoretical development. This

3comparison shows the applicability of the optimized, adaptive

grid and the boundary-layer code to compressible, flow prob-

lems. The first step however is to verify that the boundary-

.L layer code can solve for the correct, incompressible results.

Incompressible Flow

The first step in determining the, applicability of the

optimization method verifies, that the code reproduces the

" exact, theoretical results for incompressible flow over a

flat plate. The boundary-layer code is set up to handle

compressible, flow problems where density and viscosity are

, changing. The input flow conditions need to model incompres-

sible flow where dei sity and viscosity should be essentially

i S constan't. To do this, the incompressible cases are run at

Mach .01. Freestream temperature and pressure are set at

530°R and 2116.2 psf. Surface temperature is also a constant

I j 530 0 R. For these conditions density and viscosity are essen-

tially constant. Throughout the runs, the non-dimensional-

ized density ranges from .99941217 to .99941725 in the nor-

mal, flow direction. The density computed at the edge boun-

dary is .99941725. The non-dimensionalized density should be

1.0 for the entire domain and especially at the edge boun-

* dary. The computed p is 5,8 X 10-4 S in error. This is

insignificant, but the error, is present. Lack of more sig-

nificant figures in the gas constant used and round-off

error in the computer cause this error. The computed den-
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sity changes less than 5 x 10-4% over the domain. The densi-

* ty is therefore essentially constant. The viscosity ranges

from 3.7989885 x 10- 7 to 3.7989486 x 10- 7 , the freestream

N value. With this error of 1 x l0-3%, viscosity is also

essentially constant. The input freestream conditions cause

. the boundary-layer code to calculate essentially an incom

pressible problem. To compare various characteristics of the

boundary-layer code, a 61x30 solution grid is used, except as

noted.

Bgundary Laye Code,

Convergence Parameters.

Several, input parumeters control whether the boundary-

layer solution converges on a final solution and how fast it

converges on that solution. These parameters are the number

of time iterations (NT), the number of iterations at each

time step (KT), the size of the time step (DT), the conver

gence criteria (EPS), and the initial conditions for the

solution. Subroutine BLIMP, listed in Appendix D, represents

the variables as NT,KT,DT, and EPS, respectively. For a

particular time step, the solution is converged when the

maximum of the differences of U, V, or H at the old, itera-

tion level and the new, iteration level is :below a specified

error value. Picking a smaller minimum error tolerance. EPS,

results in a more precise answer. However, it also means the

. *solution will need more iterations and computer time to con-

v verge. For this study, EPS is 1.0 x 10- 6. This gives ac-

ceptable precision without unnecessary use of computer time.,
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Table IIA outlines several different runs of the bounda-

ry-layer code using various input parameters.

TABLE IIA

Non-Adaptive Incompressible Grid Solutions- Inputs

I Run NT KT IMET DT Pr

1 1 4 3 106, .72

2 5 4 3 106, .72

3 10 4 3 106, .72

4 15 4 3 106, .72

5 20 4 3 106 .72

6 5 10 3 106. .72

7 .10 10 3 106. .72

8 15 10 3 106" .72

9 20' 10 3 106 , .72

10 5 4 3 106, .72

11 10 4 3 106, .72

12 15 4, 3 106. .72

13 20 4 3 , 16. ,72

14 1 4 3 106 .72

15 20 4 3 106. .72

16 5 4 3 102 .72

17 10 4 3 102  .72

18 15 4 3 102 .72

19 20 4 3 102 .72

Note: All solutions use a 61x30 Power Law solution grid.

* - number of analytic points in the solution
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The ratio, Cf/Cft, listed in Table lIB shows how close the

computed solution comes to Blasius', theoretical solution.

TABLE lib

Non-Adaptive Incompressible Grid Solutions- Results

Run Cf/Cft Cf/Cft DELT DELK

(leadint edge) (trailina edae) (xlO - 4 ) (xlO - 4 )

1 •91378 .90550 4,840 4.1

2 .97052 .97400 5.5 .117

3 .98740 .98961 6.1 .185

4 .99203 .99193 .916 .0277

5 .99328 .99229 .168 .00592

6 .98827 .99231 7.84 .00996

7 .99332 .99239 .742 .00625

8 .99370 .99241 .0505 .00433

£ 9 .99373 .99241 .00199 .00199

10 .97052 .97398 55.3 1.17

11 .98740 .98971 6.1 .186

12 .99203 .99193 .918 .027

13 .99328 .99229 .168 .00592

14 .91378 .90 50 342.0 8.99

15 .99328 .99228 .119 .000688

i6 .97051 .97374 4821.8 40.9

17 .98740 .98956 55.67 1.178

18 .99203 .99193 6.18 .1887

19 .99328 .99229 .1685 .00060
* : DELK= maximum difference in U, V. or H between itera-
tion steps: DELT= maximum difference in U, V, or H between
time steps
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The numbers shown are values of Cf/Cft at the x locations one .o

Vpoint inside the leading edge and at the trailing edge.
• , o

'Figs. 8 - 12 show the trend for how Cf/Cft changes in the

streamwise direction. Flow properties at the first two

points inside the leading edge are calculated analytically

and are not changed by the numerical solution. These analyt-

" ical points are theoretically the closest the solution can

come to the flow properties. Leading edge error distorts

the results after the analytically calculated points. How-

ever, as the solution varies in the streamwise direction,

the numerically calculated solution recovers to its true

value toward the back of the plate. Therefore, the first

- point shows the analytic value of the ratios, and the trail-

* ing, edge value shows the best, numerical solution for the
5L

run. Two other results shown are DELT, the maximum differ-

I ence of U.V. or H between time stepi, and DELK, the maximum

difference for U, V, or H between iteration steps. DELT

shows the improvement in the solution between successive time

steps. If the maximum difference for U, V, or. H between

iterations steps, DELI, is below lxlO-6 , the solution is

converged. The comparison of values in Table II shows the

effect of the input parameters on the boundary-layer solu-

* tion.

A parameter chosen to reduce computer time is the size

of the time step, DT. For each iteration of time, the time

;, in the solution increases by DT. Since the boundary-layer

equations are solved implicitly by SOR, large, time steps do

12: Si
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not cause any instability in the solution of the boundary-

layer equations. The problem will still converge on to the

steady-state answer, regardless of the size of the time

step. Therefore, to get a converged solution in as few

time steps as possible, this study uses a large, non-dimen-

sionalizedtime step of 1.0t,06. In runs 16-20, the solu-

tion still converges in 20 time steps using DT equal to 100.

Larger DT produces better convergence, however. DELK and

DELT go down as higher DT's are used. DELT and DELK in runs

1-5 is smaller than the same two parameters in runs 10-13,

and runs 10-13 are smaller than runs 16-19. Other than this

improvement in DELT and DELK, increasing DT does not change

the solution much. Therefore, to be guaranteed the best,

converged solution possible the larger DT is used in the

steady-state solutions.

The number of iterations per time step, KT, determines

how accura:e the results are at each time step. If the

number of iterations per time step is large, i.e. 10 in runs

6-9, the program does more iterations of the equations per

time step. The question arises whether it 'is better to have

more iterations per time step and fewer time steps for con-

vergence or fewer iterations and more time steps. Runs 6-9

set KT at 10. Runs 1-5 set IT at 4. As expected, conver-

gence at each time level listed is better than for corres-

ponding time steps of runs 1-5. With KT at 10, better

results, for Cf/Cft are obtained at 15 time steps (run 8) than

are obtained after 20 time steps with KT of 4 (run 5).
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However. 15 time steps with KT at 10 takes 37.5 CPU seconds d

on the CYBER . For KT at 4, 20 time steps takes 30 CPU

seconds. This indicates there are more iterations of the

solution with the larger KT. More iterations produce better,

results for Cf/Cft, DELK, and DELT. Since a large DT ensures

the solution is converged, the total number of iterations is

the important factor. Whether the iterations are mostly with

each time step or with more time steps, the converged solu-

tion occurs when enough total iterations have been made.

Therefore, since acceptable convergence is achieved with

/ / less computer time for smaller IT values in runs 1-5, the

inputs for run S are used as a set of baseline inputs for the

rest of the study.

Prozram Lotic Choices,

In this study, three major changes have been made to

Lange's, boundary-layer code. The initial conditions are

slightly different, the integration of the continuity equa-

tion is improved, and some of the metrics are solved more

precisely. These changes help the boundary-layer program to

more closely conform to boundary-layer theory. The improve-

ment is seen in each case by comparing the ratio of the H
computed and theoretical values for Cf. The closer this

ratio is to 1.0 indicates better accuracy. Therefore, each

of the changes is compared to find the best method to get

closest to Blasius', exact, incompressible, boundary-layer

solution.

The choice of initial conditions depends on the physics K.
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of the flow problem. kiowever. the finite-ditzerence solution

zonverges on the same answer regardless of the initial condi-

tions chosen. The boundary-layer code changes Lange's, ini-

tial guess for the enthalpy profile, the 'thermal, boundary-

layer thickness, and the U and B values given to the jmax+l

points. Although the points outside the jmax location are

not of interest to the solution, the finite-difference schene

requires that points at jmax+l be defined. In Lange's pro-

gram, these jmax+l values of U and H are set at 0.0. Since

these points are on the boundary, well outside the boundary

layer, the jmax+l points should equal the jmax values. These

values are equal to the edge conditions. Therefore, it jmax

and jmax+l positions, U and H are defined as Ue and He.

Lange also assumes the thermal, boundary-layer thickness, b t s,

equals the boundary-layer thickness, 6. This approximation

is acceptable, but it is more accurate in the hypersonic

limit and for flows with Pr equal to 1. However for the

incompressible case, Eq (59) is accurate in tht more, generail

case where Pr is non-unity and the surface is uniformly

heated along its entire length. This study ,es this equa-

tion to also form Eq (58), a better guess of thz enthalpy

profile. Lange's guess does not include the last two terms
• o.

of Eq (58). These three changes to the initial conditions do

not affect the final solution. Boundary-layer solutions with

all other inputs constant but different, initial conditions

converge to the same final solution. Runs 1-5 and 14-15

compare the results of the two runs. The new, initial condi-
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tions decrease the accuracy of tho solution at the first time

step. But the final solution is slightly more accurate with

* the new initial conditions. Although it is not necessary to

-' know the physics of the problem fully to get the correct

initial conditions, accurate initial conditions increase the

accuracy of the boundary-layer solution by decreasing the

iterations need for convergence.

Another change to Lange's program is in the integration

of the coatinuity equation to solve for V. Eq (51) shows the

integration of V .. Fig. 8 shows the dramatic increase in the

CI accuracy of the new, boundary-layer code. Both runs are

converged. The solution shown using Lange's integration

method for V uses a two-point, windward difference at the

boundaries with the two leading-edge points defined analyti-

cal-ly. The new, boundary-layer code uses thr'ee-point, wind-

S.ward difference with three leading edge points defined ana-

lytically. This accounts for the large overshoot for Lange's

". solution, while the new code undershoots slightly. The

" "important result, seen in Fig. 8, is the new code recovers to

more, accurate values of Cf!Cft. Lange's code approaches

.93319, while the new' code approaches .99229. The errors are

.6.7% and .71%,, respectively. The order of magnitude increase

. , in accuracy for Cf/Cft indicates he new, boundary-layer code

) . is better at predicting the incompressible solution.

As mentioned earlier, the new, boundary-layer code uses

- a different, finite-difference approximation of the metrics,

Y4 and Xt. Using the three-point windward scheme at the
:-? .35
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" boundaries gives second-order accuracy throughout the metrics

* solution. One differencing method tried uses two-point,

windward differencing which is only first-order accurate.

For the 1t metric, the differenc"sg does not change the

P solution. Since the atreamwise grid spacing is constant,,

either differencing scheme gives the same values of X. The

differencing on Yt does matter, though. Using the new inte-

gration of VT, solutions with three-point and two-point,

windward differencing on Y4 are run., Fig. 9 shows the ratio

for Cf/Cft 'at each streamwise location for each solution.

With the two-point, windward scheme leading edge error influ-

" .ences the solution far downstream. The three-point, windward

scheme damps the error out more effectively, converging on

* better values. The three-point, windward scheme is therefore

more accurate. Part of the reason for reduced leading edge

error in the three-point, windward scheme is this scheme uses

three analytic points at the leading edge. The two-point,

differencing method only uses two analytic points at the

* leading edge. In the analytic solution, the Yt metric is

known exactly. It is calculated by knowing the exact, form

of the boundary-layer shape. Eq (48) computes the Y instead

of calculating it from numerical differencing. This takes

* the numerical error cut of the t metric. With a completely

- analytic Yt metric and density and viscosity forced to remain

constant, the best Cf ratio obtained with a 61x30 grid is

.99361. Figs. 10 compares this completely analytical case to

the case with Yk computed numerically except at the first
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three, streamwise locations. Density and viscosity are held

constant in both runs. The completely analytic case is

definitely more accurate for predicting flow in the ooundary

layer. However, if the analytic metric is used, the boun-

dary-layer code could only be used with a solution grid which

has been scaled according to a square-root of I function as

in Eq (38). This scaled grid is accurate for similar bounda-

ry layers. Since the boundary-layer code needs to be applied

to more general problems, the numerical metric is used. Also

plotted in Fig. 10 is the solution with the numerical Y and

* changing density and viscosity. There is a very slight error

between the two numerical Yt solutions caused by allowing

density and viscosity to vary. This error does not affect

the results, significantly. The new method of detormining V

*" and three-point differencing on Y4 significantly improves the

solutions computed by the boundary-layer code. The grid

r dependence of the finite-difference solution also cannot

be ignored.

"Grid Denendence.

The number of points in the solution grid and the way

they are generatedaffect the boundary-layer solution. As

the number of points in the solution grid increases, the

solution's accuracy increases, and the computer time, or

iterations, required for a converged solution also increas-

es. Fig. 11 shows the solutions for three, different, size

grids. By increasing the number of grid points Cf/Cft ap-
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proaches one. However, the 61X59 grid requires 75 time

steps and 206.78 CPU seconds to converge on the solution.

The 61x30 grid takes 20 time steps and 29 CPU seconds. The

21x19 grid takes 5.97 CPU seconds for 20 time steps. In-

creasing t he number of grid points does, increase accuracy

but with a considerable increase in computer time..

Using the correct guess for a solution grid also in-

creases the accuracy of a non-adaptive grid solution. Lange'

uses an optimized grid developed by Hodge, and the non-adap-

tive-grid solutions' in this study use an optimized, power-law

rgrid to solve the boundary-layer code (10). However, the

adaptive grid solutions in this study use an exponential grid

* generated by a solution of the grid equation in the normal

IIdirection. Fig. 12 demonstrates the gr id dependence of the

boundary-layer code. The exponential grids are generated

* with Q equal to -.3. The 61x30 power law grid results are

much better tha~n the results for either a 61x30 or a 2lx19,

exponential grid. The type of grid chosen for the boundary-

* * layer solution does affect the accuracy of the solution.. The

power law grid is a ccurate for boundary-layer problems since

the boundary layer is close to, a power-law shape except at

the surface. But the exponential grid has the control func-

tion, 0. which can be varied depending on the characterist'ics

of the flow solution. Optimizing Q yields an exponential gri~d

which gives accurate results and does not require any fore-

knowlege of the exact solution.
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Non-Adiabatic, Wall Effects,

The test cases previously mentioned use input conditions

which result in a nearly, adiabatic flow. The wall tempera-

ture is close to the adiabatic, wall temperature calculated

, [from Eq (28). The approximately, adiabatic wall magnifies

the effect of roundoff error for the calculation of h. The

finite-difference solution uses Eq (55) to find h. The

denominator in Eq (55) is very small for a nearly, adiabatic

wall. Dividing q by a very, small number produces good re-

. suits which give an h/href near 1.0, but computer, round-off

error causes the computed h to overshoot the values. Fig. 13

. compares h/href for the nearly, adiabatic wall case and a

non-adiabatic case. The non-adiabatic case uses a wall

temperature of 550 0 R, instead of 530°R as in the adiabatic-

wall case. The two solutions use a 61x59 solution grid and

an analytic definition of Y . The non-adiabatic case does

. not overshoot the theoretical solution, but it does have

some error due to compressibility.

The non-adiabatic wall case highlights the behavior of

the finite-difference solution toward, h. With the non-adia-
a-

batic variation in wall temperature, compressibility effects,

are much greater than previous cases. The density ranges

from .9963075 to .99941725 across the boundary layer. There-

fore,, there is some error in the solution due to this com-

pressibility. Fig. 14 shows CfICft is not affected much by

rthe wall temperature change. However, h is affected. The

non-adiabatic cases also make the solution for the total
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enthalpy much more difficult. For the adiabatic cases, it

takes 20 iterations to converge to EPS of IxlO6. and U was

the usually the property that determined DELI. For the

non-adiabatic cases, it takes over 80 time iterations to

converge to EPS of lxj0 - 4 . The finite-difference solution

definitely has more trouble resolving H for the non-adiabatic

cases. The finite-difference solution does converge to

values close to the theoretical values, though. Using the

same finite-difference solution with % Thomas-algorithm,

iteration method, Hodge has computed ratios for Cf/Cft and,

h/href of .9998 and 1.00, respectively (8). Therefore, the

finite-difference solution of the incompressible, boundary-

layer solution closely reproduces Blasius'. exact solution.

Optimized Boundary Layer Code.

The adaptive-grid solution of the steady-state. boun-

dary-layer problem finds the solution grid which best re-

solves boundary-layer flow. The finite-difference solution

of the boundary-layer equations is very, grid dependent. If

an optimized, solution grid is found, the accuracy of the

computed solution increases'. Using Powell's method to mini-

mize the sum of the squares of tLe streamwise velocity gradi-

ents optimizes the grid and increases the accuracy of the

computed solution. The increase in accuracy is more easily

seen with a course grid, so the computer solutions use a

21x19 exponential grid. After showing that Powell's optimi-

zation method produces an optimized grid, this study tests
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the use of different minimizing functions in the optimiza-

tion. These functions are the sum of U U 11 2, or U 2

Minimizing some functions produces better optimization than

others. The number of iterations, KT, and other input para-

meters such as the initial guess for Q also affect the opti-

mization. If the initial guess for Q is too far off, Pow-

ell's method may not reach a converged solution in a small

number of iterations. Without a converged solution, the

optimized solution for the particular function may not be

reached. Powell's method does minimize most of the input

functions in very few, iteration steps.

Opt imizat ion Performance.

The computer solution generatesthe solution grid using

th'- grid equation in Eq (35). The optimization finds the

control function, Q. which generates a grid that'minimizes

the desired function and increases the accuracy of the boun-

dary-layer solution. The flexibility of Powell's method

allows the sum of U 2, U 2, or U 2 to be minimized.
1111 1111 A

Comparison of these three cases determines which minimization

gives the best results. -As in the non-adaptive case, a

better solution comes closer to a value of 1.0 for Cf/Cft.

In addition, the optimization which reduces the error in the

computed solution is a better method. The root-mean-square

(RMS) of the difference between the computed solution and the

von Karman-Pohlhausen approiimate solution measures the error

in the computed solution. The different optimization solu-

tions are also cimpared to the Blasius'. exact solution.
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With these comparisons, it is possible to discover how the

adaptive grid is best used to get more. accurate, comp-ited

solutions'to general, boundary-layer-type problems.

Table III summarizes test cases of the adaptive-grid

tn

solution or the incompressible flow over a flat plate. The

input parameters for solution of the boundary-layer code

within the optimization do not change. The only change in

the boundary-layer code inputs is the solution grid calculat-

ed in the optimization. The boundary-layer code, input

parameters are 20 time steps, 4 iterations per time step, a

time step of lxl06 seconds, error tolerance of lx10-6, a Pr

of .72, and recalculation of the SOR parameter every fifth

time step.' These are the same inputs as run 5 of the non-a-

daptive, incompressible solution. Optimizing 21x19 and

"6ix30 exponential grids is tested. Setting the minimum and

maximum values of Y at the x location where the grid equation

7 [ is solved determines the physical size of grid. These Y

values are YMIN and YMAX in Table IIIA. The grid is then

;caled in the streamwise direction with the Y spacing solved

O by the grid equation at the x location chosen. For this

study, the grid equation is solved at the trailing edge

of the surface. The parameter, Q, shows the initial input

for the control function, The results of using a non-adap-

tive, exponential grid with the input Q's are given in Table

IV. KT represents the number of iterations allo.ed to find

each X value. PCT is the percentage of Xr added and sub-
rr

tracted to X r to get + and X- The error tolerance between
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TABLE liA

Adaptive Exponential Grid Solutions-Inputs

Run KT PCT YMIN YMAX WHi WB2 WH3

RE=2xI0 6 . Grid-21319

1 3 .2 0.0 0.015 -. 3 0 0 1

2 6 .2 0.0 0.015 -. 3 0 0 1

3 3 .5 0.0 0.015 -. 3 0 0 1

4 3 .2 0.0 .0004 -. 3 0 0 1

5 3 .2 0.0 0.030 -.3 0 0 1

6 3 .2 0.0 0.015 - .3 1 0 0

7 6 .2 0.0 0.015 -. 3 1 0 0

8 6 .2 0.0 0.015 -. 2 1 0 0

9 3 .2 0.0 0.015 -. 3 .1 0 .9

10 3 .2 0.0 0.015 -. 3 .5 0 .5

11 3 .2 0.0 0.015 -. 3 0 1 0

12 3 .2 0.0 0.015 -. 3 .25 .25 .5

13 3 .2 0.0 0.015 -. 3 0 .5 .5

14 3 .2 0.0 0.015 .3 0 0 1

15 3 .5 0.0 0.015 .3 0 0 1

16 3 .2 0.0 0.015 -.6 0 0 1

17 3 .2 0.0 0.015 .05 0 0 1

RE=5xl05 . Grid- 2 1x19
18 3 .2 0.0 0.030 -. 3 0 0 1

19 3 .2 0.0 0.030 - .3 0 1 0

20 3 .2 0.0 030 -.3 1 0 0

21 6 .2 0.0 0.030 -.3 0 0 1

RE=5xiO 5 , Grid- 21x19
22 3 .2 0.0 0.300 -. 3 0 0 1
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TABLE liA (cont.)

. RE=2x10 6'. Grid-21z10
23 3 .2 0.0 0.015 -. 3 0 0 1

24 3 .2 0.0 0.015 -. 3 1 0

25 3 .2 0.0 0.015 -.3 1 0 0

RE=2zl0 6
. Grid-61z30

26 3 .2 0.0 0.015. -.2 0 0 1

For boundary layer solution inputs soe Run , Table II.

TABLE IIIB

Adaptive Ezponential Grid Solocions- Results

Run Cf/Cf Cf/Cft F RMS(U-Uexact)
(leading edge) (trailing edge) (initial-final) (initial-final)

1 .99135 .98781 .093644-.028,57 .029654-.028736

* - 2 ,99135 .98781 .093644-.02255 .029654-.02836

3 .99135 .98781 .093644-.028557 .029654-.028736

.. 4 .99589 .99590 .220564-. 00611 .032002-.033511

- 5 .98473 .98394 72.308 - 70.934 .019075-.019598

S6 .98624 .98281 2.2295 - 2.2073 .029654-.029671

7 .98636 .98292 ?.2;44-2..07 .029654-.029671

, 8 .99039 .98637 2.0612 -2.0403 .029797-.029946

9 .99107 .98760 .3C723 -.23333 .029654-.029764

* 10 .99053 .98707 1.16154-1.0384 .029654-.029925

11 .99139 .98735 .24103 '.10459 .029654-.028933

I 12 .99084 .98'38 .66444 -.56026 .029654-.029861

. 13 .99138 .98784 .16734 -.063586 .029654-.028809

14 .64983 .64920 72.308 -71.503 .019075-.019381

15 .65324 .65259 72.308 -70.934 .019075-.019598

- 16 .94844 .94325 6.176 - 6.1275 .02993 -.029903
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TABLE IIIB (cont.)

Run Cf/Cft Cf/Cft F RMS(U-Uezact)
._..._Cleading edae) (trailina edte) (initial-final) (initial-final)

17 .99137, .98783 2,367 -.022564 .027888-.02877

18 .99135 .98785 .09365-.022259 .029654-.028732

19 .99135 .98785 .24102-.10455 .029654-.028834

20 .98686 .98292. 2.229 - 2.203 ,029654-.026815

21 .99135 .98781 .093654-.022544 ,Q29654-.02.1736

22 .99135 .98781 .093655- .022544 .029654- .028736

23 .96920 .96591 .866760-.605740 .036949-.037135

24 .97324 .96990 .690502-.690086 .036949-.036962

25 .95975 .95656 4,38803-3.73679 .036949-.038336

26 .99237 .99378 .008120-.007551 .027758-.026635

TABLE IV

Non-Adaptive Grid Solutions

Run YMIN YMAX Q CfCft

(lead.edge) (trail. edge)

Grid - 21x19 Exponential
1 0.0 0.015 -. 3 .89979 .90335

2 0.0 0.015 -. 2 .91203 .91488

* 3 0.0 0.015 +.05 1.01017 1.04270

4 0.0 0.030 -. 6 .89949 .89888

5 0.0 0.015 .3 .69791 .65252

Grid-21x19 Power Law
6 0.0 0,0147 -- .98369 .98025
* For boundary layer solution inputs see Run 5, Table II.

* ,. iterations of each Xr value and between iterations of the

overall optimization scheme are not shown in Table III.
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These are set at lxl0 - . The last input parameters shown in

Table III are the weighting parameters, WHI, WH2, and WH3.

These weightings determine which velocity derivative, or

combination of velocity derivatives, is the minimized funa-

tion. The minimized function is represented by F and is

defined by

F, WHI*LU 2 +WH2*LEU 2+VH30ZU 2 (66)

WH1 is the weighting on minimizing ZU 2. WH2 is the weight-

ing on minimizing ZU 2 'and WH3 is the weighting on minimiz-

"inl 2. The values in Table IIIB are the range of re-

sults showing the performance of the particular. adaptive-

grid solution.

Powell's method minimizes the input function. As a

result, the computed, boundary layer solution gets closer to

* theoretical values. This study seeks to minimize the compu-

tational error by minimizing truncation error. From an

analysis of the truncation error terms, minimizing U

should reduce solution error. Therefore, this study concen-

. trates on minimizing the input function, ZUq 2 , with Pow-

- ell's minimization method. Solution runs 1-4. shown in

Table III, summarize the results of optimizing the grid with

'1":~ 2. The differences between the runs are the various

input parameters. All of the solutions show a decrease in

22 T1 T1 2  represented by F. from the start of the program to

its converged solution. Each of the solutions also comes

closer to the theoretical solution than the initial grid.
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The range of values for Cf/Cft is closer to 1.0 than similar

results with either the initial, exponential grid or the

non-adaptive, power-law grid solution shown in Table IV.

Additionally, the optimized solution reduces the overall

error in U. In run 1, the RMS of U-Uexact across the whole

domain is .029654 at the start of the minimization. The

final RMS U-Uexact value is .028736. This is a 3.096% de-

crease in the U error. Fig. 15 shows how close the solution

comes to the exact u velocity profile over a flat plate.

Therefore, the Powell's minimization method applied to the

input function LU 2 reduces the error in U and increases

the accuracy of the computed solution by minimizing the input

function, F.

Although minimizing ZUi4 2 meets the objective of re-

ducing the error of the computed solution and increasing

its accuracy, it may not be the only function which can meet

these objectives. Using EU12 , LU 1
2 , or some combination of

p
the three velocity gradients as minimizing functions produces

different results than those optimizations on LU 2 . Each
1nA

of the different cases performs similar to minimizing LU I

-by. decreasing F and increasing the solution accuracy. Howev-

er, the error in U is not decreased in all cases. Minimizing

U 2 does nct decrease the error in U. Optimizing this
1

function increases the error in U by .06%. Cf/Cft for this

* solution, run 6, is also below that of the runs 1-4. Since

the function did decrease, an increase in the error is not

expected. Closer examinatioa of the solution shows the
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optimization is not totally converged. The solution was

i therefore rerun with a higher number of iterations. A Q

closer to the results of previous runs was also input to help

the solution converge faster. This solution, run 8 in Table

III, did give better results for Cf/Cft. The results are

still not as good as those in run 1. The error in U also
increased by .496%. Minimizing LU 2 does keep more points in

T1

3 the boundary layer than other solutions. Run 1 keeps I1

points in the boundary layer. Runs 6-8 keep 14 points in the

boundary layer. With more points in the boundary layer, the

solution should resolve flow conditions better and produce

better results. However, this does not occur. Fig. 16 shows

the velocity profile produced by minimizing LU 2 . It-is

close to the theoretical answer. However, Fig. 17 shows, the

velocity profile solved by minimizing LU 2 is farther from
it

the exact solution than either minimizing LU i2 or ZU 2

Regardless of the number of points in the boundary layer, the

solution from optimizing LU 2 is not better than optimizing

EU 2

Optimizing with LU 1 2 is better than optimizing UTITII 2

in some ways. Minimizing ZU 2 in run 11 gets almost as

close to the theoretical results as'runs 1-4. Cf/Cft starts

. out higher than case 1 but recovers to values lower than

run 1. The decrease in error for U is only 2.766%. Minimi-

zing resolves the leading edge gradients better .o get

better values at the leading edge. But it does not produce
I

better results at the trailing edge where the leading edge
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errcr does tot affect the solution as much. Over the eutire

domain, the sum of U 2 does not reduce the error in U as

'well as minimizing the sum of U1 2 Fig. 17 shows that

minimizing U minimizes the error in U better and pro-

duces a velocity profile closer to the exact solution than

minimizing either the sum of U or the sum of U

Using each of the three, different, velocity gradients

separately as the minimizing function in Powell's method

shows the sum of U 2 to be the best minimizing, function.

Using'combinations of the three velocity gradients also does

V not improve the solution. In runs 6-13, different weightings

are applied to the different gradients. The weighting deter-

mines how much a part of the minimized function the specific

i gradient is. When U 2 is any part. of F, the velocity error

increases and the computed solutions are worse than run 1

where only 2is minimized. Combining the sum of U 2
l ii

and U 2
, as in run 13, gives slightly better results for

Cf/Cft. In the combination, the U 71 2 contribution resolves

the leading edge error while U raises the trailing edge

values. The combination of the two functions thus produces a

grid which gets the closest values to the Blasius', theoreti-

cal solution. The error in U only decreases by 2.85%.

Minimizing U 2 still reduces the error in U better than

any of the functions tested. There may be some combination

of tht. U 2 and U 2 not tested which may roduce the error

in U better in addition to computing better results for Cf.

Several of the-input parameters affect the behavior of
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the optimization-method. Inputs KT, PCT. and Q affect the

I convergence of the method, and YMAX affects the accuracy of

the solution. Inoreasing KT only aff.ects those optimizations

which need many iterations to converge. powell's method has

many levels' at which it iterates. The iteration of Xr and

" iteration of the total solution are two of the levels. Al-

* though a problem may fail to converge at one level, succeed-

ing levels take out this error' to converge with a small XT.

Using a large KT for quickly converging problems converges

the solution in the iteration of Xr' All steps which follow

r merely check this convergence. This checking uses computer

time but adds nothing to the solution. The latter steps of

the method are therefore wasted. This occurs in run 2.

However, for slow converging p-oblems, increasing KT is

ezsential to reach converged answers. Optimizing onD 2

* requires many iterations. 'For example, run 6 does not con-

verge with a low KT. Runs 7 and 8 converge with only double

the KT of run 6. The results of the converged probiem are

better than those of the unconverged problem. In run 8, the

initial Q is changed to help convergence. If the initial Q

is very far away from the final, optimum Q, the solution

needs more iterations to converge. Runs 14 and 15 are solu-

tions with an initial Q of .3. From solutions 1-3. the

optimum Q for the same minimized function and grid size is

-. 14.4. In runs 14 and 15, Q only decreases from .3 to .297

" in three iterations. This solution is not converged. The

s,:tien r-id resulting is not optimized, as shown by the
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values of Cf/Cft. When the initial Q is changed to .05 in

run 17, the bolution converges to -. 144 the same as runs

1-3. This shows positive guesses for Q can converge, but the

initial guess must be relatively close to the optimum Q for a

smull KT. Large, negative guesses for Q also do not con-

* verge. W 4th Q initially set at -. 6, the solution converges

on Q of -. 594. This is a long way from therun 1 solution of

-. 144. Negative& initial guesses for Q cannot be too far.

*" away from the final Q. There is a another limit on negative,

Q values. Q cannot at any time in the iterations be allowed

to get too small for proper resolution of U in the finite

difference. In the 21x19 grid, this Q is -. 8. For a 61i59

grid, Q of -. 3 compresses the grid too much. The U veloci-

ties for a very, compressed grid are virtually the same for

the y locations next to the wall. Therefore, the vulocity

. gradients go to zero, and the solution diverges. Large,

negative guesses for Q should be'chosen carefully. Choosing

a large PCT also can cause the solution to diverge. PCT

determines how far away from ), + and X- are. This optimi-

zation method performs like any iterative scheme. If guessed

values are too widely spaced, more iterations are required to

converge to a solution , or the solution may even diverge.

* /Run 3 which uses PCT of .5 converges on the same answer as

* run 1. Run I converges in 6 iterations, but run ; converges

in 9. The larger PCT is therefore n'ot as efficient, unless

S the initial guess is very far away fro* the optimum Q.

Choosing PCT, KT, and the initial Q correctly leads to a
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converged answer, but the 'size of the physical grid affects

the accuracy of the solution. Choosing YMIN and YMAX deter-

mines the physical size of the grid. The exponential grid is

built within these limits. For most of the solutions, YMAX

is .015. This is approximately 46 for Re of 2x10 6 . In run

4, YMAX is de.,reascd to .004, or approximately B. This puts

the majority of the points inside the boundary layer. The

optimization solves the boundary layer better when only the

bou-,daky layer is included in the domain. 'As expected,

solution 4 is very close to the Blasius' solution. If YMAX

is expanded to 86 as in rusi 5 , the solution is not a, good

as solutions with thinner, solution grids. Therefore, the

choice of YMAX does affect the optimized solution. If solu-

tions are made with-variable, flow conditions, YMAX should be -"

varied to keep the same 48 grid size in the y direction. r

Otherwise, the results are Dot compatible. '

Various, input parameters and minimizing different func-

tions affects the optimized solution. Changing the flow

conditions or the number of grid points does not change the

behavior of the -solution for gier minimizing functions. In

run's i8-22, putting in differe: Reynold's numbers for cases

minimizing 2 or U 2 tests the effect of differ-

eat, flow conditions. The solutiou4 from runs 18. 19, 20, or

21 are no different at Pe of 5xlO5 than the corresponding

runs 1, 6. 11, or 2 Re of 2x10 6 . For minimizing U 2 ,

'c-re is no difference for any of the solutions in runs 1, 2,

I . 2:, :-r 22. Clanging Revnold's number has no affect on
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which minimizing function optimizes the solution best.

Changing the number of grid points alters the accuracy

of the solution. In run 26, a 61x3O grid definitely gives

better values of Cf/Cft than the 21x19 grid used in run 1

This is expected. Decreas'ng the number of grid points
. ,

decreases the accuracy of the solution. Runs 23-25 are two

to three percent less accurate than similar runs 1, 7,' and 11

with the 21x19 grid. However, using the courser, 21:10 grid

S. I  changes the relative accuracy of the three minimizations
procedures. Minimizing the sum of U 2 gives better results

* for the course grid than does minimizing the sum of U 2 or

. 2 The optimum value of Q also changes with the number

of grid points'. A larger number of grid points requires an

optimum Q closer to 0. The 21x10 grid in run 23 converged on

a Q of -. 33361. The 21!9'grid in run 1 converged on a Q of

S.-.14426, while the 61x30 grid in run 26 required an optimum Q

of -. 0848. As the number of grid points increases, the

optimum solution comes closer to a uniform grid. Therefore,

the number of grid points does affect the accuracy and the

method which best optimizes the boundary-layer solution.

Powell's method optimizes the incompressible, boundary-

layer solution. The sum of U 2 is the .best minimizing
... 1

function to minimize the error in the streamwise velocity.

Parameters. YMAX, KT, PCT, and the initial Q determine how

fast and what values the solution converges on. Changing the

Reynold's number of the flow problem does not affect the

behavior of the optimization. Increasing the number of grid
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* I points does increase the accuracy of the solution and does

change the optimization behavior for course, solution grids.

Incompressible, flow problems can be solved more accurately

with an adaptive grid using fewer, grid points. The optimi-

zation can also be applied to resolve more variable, compres-

sible, or turbulet, boundary-layer problems.

Compressible Flow

The behavior of thr optimization and boundary-layer

codes has already been examined for the incompressible, flow

problems. Since the programs were initially set up to handle

compressible, flow problems and had to be fooled to treat

incompressible flow, the extension of the optimization to

supersonic and hypersonic, compressible, flow problems is an

2 1 easy step. The two, largest problems are defining an initial

grid for the finite-difference solution and comparing the

results with previous, theoretical data. In the incompressi-

I r ble cases, the boundary-layer thickness determined the physi-

cal size of the computational domain, YMAX, the height of

S-- *,the grid at the surface's trailing edge, was set at approxi-

S * mately 46 to get consistent results. For the compressible

cases, the boundary layer is not constant. The physical size

of the boundary layer changes with flow velocity. Also, the

* transformed, boundary-la--er thickness used with the compres-

sibility transformation changes with the ratio Tw/T, not

with the velocity. Therefore, as the compressible solutions

0 are applied to different velocities and temperature condi-
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tions, some method of defining a consistent, transformed-

grid size must be found. The othei problem with the compres-

sible cases is determining the accuracy of the computed

solution. There is no exact solution for compressible flow

over a flat plate or wedge. There is no equivalent to the

incompressible, Blasius' solutions. Eckert theory predicts

approximate values for Cf and h across a high-speed flow.

Also, Van Driest's study of compressible, boundary-layer flow

over a flat plate provides a theoretical development to

;ompare with the computed results. These comparisons show

* the validity and limitations of the boundary-layer code.

The major difference between the compressible and incom-

pressible, boundary-layer solutions is the activation of

ii the compressibility transformaLion. As flow velocity in-

creases and temperature variations occur across the boundary

layer, compressibility affects the flow more and cannot be

ignored. This study assumes compressibility effects to 'be

important beginning at about Mach .05. Above Mach .05, the

Dorodnitsyn transformation applies to the problem. The

problem is set up with the same equations as the incompressi-

ble problem. However, a new, boundary-layer thickness, A(X),

is calcuizted with Eq (16). Above the transformed, boundary

layer, the flow is inviscid. Initial conditions are the same

as the incompressible case, except that the initial thermal

boundary-layer thickness is assumed equal to the transformed

boundary-layer thickness. Since A(X) varies depending on

the edge conditions, differing Mach number, Reynold's num-
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ber, or temperature conditions require a variable definition

on the physical size of the solution grid. In 'the incompres-

sible cases studied. YMAX, the height of the solution grid at

the surface's trailing edge, is a fixed input. For the

Icompressible cases, YMAX varies with the size of A). It

can be set at any multiple of AM) depending on the require-

ments of the flow problem. The effect of using different

multiples of A(M) on the solution is shown in Fig. 18. This

figure shows the computed, velocity profile at the trailing

edge for different, solution methods. Similar to the incom-'

1' pressible cases, the closer YMAX is to A(X) the better the

solution is to theoretical results. The solution for YMAX at

2A(X) is closer to the theoretical result than 3A(X) or 4A(X)

solutions. The application of the Dorodnitsyn transformation

leads to computed solution which behaves like the incompres-

sible solutions in other ways, also.

Although the compressible, boundary-layer problem does

not have an exact solution similar to the Blasius' solution

for flat plate flow, this study compares the computed solu-

tion to theoretical results obtained by E. R. Van Driest.

Van Driest solves the laminar, compressible, boundary-layer

equations for flow problem over a flat plate using Crocco's

method (24:1). Van Driest's conditions on the flow problem

are

Prandtl number was taken at 0.75, the specific
heat constant, and the Sutherland's law of viscos-r ity-temperature variation was assumed to represent
viscosity data starting with an ambient temperature
of -67.6 0 F (24:1).
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Van Driett's assnmptions coincide with approximations made

in this study. Van Driest solves the flow problem for many,

different, flow parameters. Rather than show a comparison

with the extensive results of Van Driest's development, this,

study examines a few cases to compare computed solutions to

Van Driest's, theoretical solutions.

The computed solutions are very close to Van Driest's

solutions. The cases solved are for Pr of .75, the ratio of

Sutherland constant, 198.60R, to free stream temperature at

.505, and TwITO at 1. This study tests supersonic and hyper-

sonic cases for Mach 2 to 8. Figs. 19 and 20 compare the

. computed velocity and temperature profiles across the plate

for the Mach range. These solutions set the upper limit of

the domain at 3A(X) away from the plate and optimize on the 4

sum of Ui 2 . The computed, velocity profiles are very close

to Van Driest's profiles. In fact, the Mach 4 theoretical

velocity profile lies exactly over the computed solution.

Fig. 21 shows several, different, optimized solutions for

Mach 4. All of the optimizations are so close that an expan-

sion of the graph is needed to see any difference in the

solutions. 'Fig. 18 shows the Mach 4 velocity profiles that

result from optimizing on the sum of U 2 and on the sum of

U. 2 . Optimizing with the sum of U 2 is slightly better
111 T1111

than optimizing with the sum of U 2. This is consistent

with the results of the incompressible cases. Although the

Mach 8, velocity profile shows more error than the Mach 4

case, the Mach 8, velocity profile is also close. Since this
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stuiy is restricted to flows where a perfect-gas assumption

is valid, some variation from the Van Driest's, theoretical

model is expected for Mach numbers above 6. The tempera-

ture profiles in Fig. 20 are not quite as exact. The com-

puted, temperature solutions are less than the theoretical

solution at some points. Since the boundury-layer code

reduces the error in U by minimizing the sum of U 2 the

computed solution should be close to the theoretical solu-

tion. However, the temperature profile results show the code

does not necessarily produce optimized temperature results

for Prandtl number not equal to one. 'It does achieve the

goal of reducing the error in U.

The computed results also come close to'values of h

predicted by high-speed Eckert theory. For high-speed prob-

lems, Eckert recommends using an approximate temperature,

T . to calculate an approximate density, j , and viscosity,

for the, compressible, boundary layer. Eq (33) gives a

value for T The approximate, heat convection coefficient,

h is then calculated by putting the *conditions in Eq (32)

a- an approximation for h across the compressible, boun- -

dary layer. Eq (32) only applies to ltminar flow with Re not

greater than 5xiO (12:213). By restricting flow conditions

to Re less than this limit, the computed results for h come

close to Eckert's, high-speed predictions. Fig. 22 shows the

computed solutions for Mach 2, 4, 6, and 8 relative to

Eckert's solution. A solution at Mach 14.24 over a 200 wedge

is also included to show the solution does work over a wedge.
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Both the theoretical and coaputed solution are divided by

href ,  the heat convection coefficient calculated for free- .

stream ccnditions. All of the solutions shown in Fig. 22

optimize the solution grid with the sum of U 2 over .
in 1 T1

If a IA(X) solution grid is used. the computed h should get

closer to Eckert's thecry. Fig. 23 shows this is not the

case. Fi3., 23 presents h/href results for Mach 4 with YMAAX

at different multiples of A(X). The increase in h/href for

lA(X) solutions results because less than the true, trans-

form d, boundary-layer thickness is included in the domain.

The ,nitiul guess for the boundary-layer thickness, A(X), is

too small. The computed solution actually uses about l.5A(X)

as ,:he point where inviscid flow occurs and Ue/Uin f is one.

Com-. arisons of the results in Fin. 23 indicate that the t'--

closer YMAX is to the true, boundary layer, the better the .*.*

results for h are. Hfowever, the entire boundary layer must

be included. Since the iLitial guess is not precise, it is

diff'.crlt to pick the YMAX position to get only the boundary

la. r. Including too much of the tnviscid flow above the

boundiry layer also dilutes the boundary-layer results.

Some problems may require the solution )f more than the flow

inside the boundary layer. When the problem is set up, the

de, ired accuracy and size of the problem domain must be con- ,

siuered for the best results possible. The optimized, boun-

dary-layer solution provides the most fVexibility for dealing

with compressible, laminar, bouudary-layer, flow problems and

still achieving results close to thaeoretical predictions.
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Chaoter VI: Conclusions

In incompressible, flow problems, the' theoretical solu-

tion gives a clue that the solution grid should be a power-

3- law grid. For most flow problems, however, theoretical solu-

tions do not exist to give a guess for the solution grid.

Being able to input a general, exponential grid, which can.be

optimized to give the best flow solution, allows the most

general application of a boundary-layer code.

The boundary-layer code presented in this study is an

'improvement over Lange's, boundary-layer code. For the non-

adaptive solutions, the modifications made to Lange's code

improve the solutions. Non-adaptive solutions for Cf calcu-

lated by the new code are cl~ser to the Blasiu's', exact solu-

tion for flow over a flat plate. In addition, the new code

includes a minimization method which optimizes an adaptive.

grid to find better solutious of boundary-layer problems.

Optimizing the adaptive grid with Powell's method pro-

- duces more accurate, boundary-layer solutions, but the inputs

must be chosen carefully to get the best optimization. The

boundary-layer solution is very, grid dependent. The number

of grid points, physical size, and type of grid definitely

affects the results of the finite-difference solution. In

both non-adaptive and adaptive cases, the solution with the

largest number of grid points gives the best results. The

problem whose domain includes less of the inviscid region
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outside the boundary layer produces the better results. For

. example, problems that included only 16 in the normal direc-

tion had better results than problems that used 48 as the

* . height of the grid. More grid points are in the boundary

layer with only 16 as the domain limit. In the non-adaptive

cases, the power-law-type, solution grid gives better results

than an arbitrary, exponential grid. However, the power-law

Sgrid only applies to a specific, boundary-layer, problem

type. Although the initial, exponential grid input may give

worse results than the power-law grid,,using Powell's method

,L to find the optimized, exponential grid produces the best

results. The initial, control function, Q, must be chosen

close to the final, optimized value. If it is chosen too far

away from the final Q, Powell's method will not converge.

Convergence is also affected by the number of iterations

*allowed and the spread between minimization guesses. If too,

I r few iterations are done, the solution does not converge on an

optimized value. If too many iterations are used, all of the

convergence takes place in the initial steps of Powell's

method. This wastes all subsequent calculations which check

the convergence and is inefficient. Choosing a large spread

• "between minimization guesses also is less efficient. Pow-

eli's method calculates a central, functional value, f, two

. functional values on either side of the central value, f+ and

f, and the minimum functional value of a quadratic fit

*'" through the previous three functional values, fn. If the

spread between the, f, f+, and f is too large, the solution
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takes more iterations to converge. The successive iterations

! tend to continually overshoot the final value until getting

very close. A large spread may be useful in problems where a

good initial guess is not known, though. The function mini-

mized also affects the efficiency of the adaptive-grid solu-

tion.

Powell's method can minimize any input function. This

study optimizes the solution grid with the sum, of U 2

U 2 , U 2 , and of combinations of these three functions. Of

the first three functions,Lminimizing the sum of U 2 best1111.1

minimizes the error in U. It produces better results for

Cf. The solution reduces the RMS of the' error between the

computed U and the von Karman-Pohlhausen approximation of U

! most. The computed velocity profile is also closest to Blas-

ius', exact,,velocity profile. Minimizing the, sum of U 2

* does not produce good results. The minimization does not

E converge on an optimum grid with this function. It does put

more points into the boundary layer, but the results are

worse for Cf and the velocity profile. In fact, minimiz-

ing U increases the error between the computed U and the

von Karman-Pohlhausen solution. If is included with any

of the other derivative functions, the results are ilways

worse. This is not the case with minimizing U 2 Mini-

mizing with 2 gets results very close to the results of

minimizing the sum of U 2. Minimizing U better re-

solves the flow at the leading edge, while minimizing.U Rnl

better resolves flow at the trailing edge. Consequently, the
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combination of 2U 2 and iu 1q2 shows improved results over

minimizing IU 12 separately. The 2U 2 still produces the

least error in U. however. Some other combination of the

2U2 IITIand the U 11 2 may produce better results. Changing

Reynold's number for the problem does not significantly

change which minimized function produces the best results.

Changing the number of grid points in the y direction seems

to make the U U2the best, minimizing function. For prob-

lems with smaller numbers of grid points, the affect of mini-

mizing the U2 increases. The number of grid points also

r affects the optimized Q value and the initial Q guess., Grids

with more grid points converge on Q's closer to 0. Since the

optimization inputs do affect the accuracy and behavior of

a the minimization process and final solution, the problem must

be examined carefully to determine the' inputs which give the

best, adaptive-grid solution.

Using the adaptive-grid solutions in compressible, boun-

dary-layer problems also produces good results. Computed

velocity profiles are an excellent match to Van Driest's.

theoretical solutions for high-speed flow over flat plates.

- The temperature, profile results are not quite as exact, but

the computed, temperature profiles follow Van Driest's, theo-

retical profiles closely. The adaptive-grid results also

,* compare well with high-speed Eckert theory prediztions for

the heat convection coefficient. Like the incompressible

cases, minimizing the 2 produces the best results in

compressible cases. Throughout the range from Mach 2 to
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Mach 8, the computed h does not vary from Eckert's theoreti-

cal values by more than three percent. This is good correla-

tion to an approximation like Eckert theory. Therefore, the

adaptive grid solutions succeed' in minimizing the error in U

to give excellent velocity profiles for high speed, compres-

sible flow and good agreement with high speed Eckert theory.

The boundary-layer code presented in this study is an

improvement over previous methods. The non-adaptive, grid

solutions are better than Lange's solutions and are close to

Blasius,' exact,incompressible solution. Adaptive-grid solu-

r tions improve on the solutions using a non-adaptive grid and

* use fewer grid points. The adaptive grid also provides the

flexibility'to optimize the grid for any desired function and

for general boundary-layer problems that may not have exact

solution such as high-speed compressible or turbulent flow.

The adaptive grid successfully solves compressible, flow

rproblems. 'The application of the optimized, exponential,

adaptive-grid method to these compressible problems shows

- that the method can be applied to more complicated problems

than incompressible flow over a flat plate. Using a non-
I

adaptive grid structured around a grid optimized for the flow

solution, limits the application of the boundary-layer meth-

-od. The udaptive grid has no such 'limi'tations. Further

application of the adapt!ve-grid method could solve even more

complizated problems. The solution of these problems may

extend the engineer's knowledge of hypersonic, flow problems.
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Chapter VII: Recommendations

This study has not investigated all possible applica-

tions or affects of the adaptive-grid optimization. Further

studies of the optimization procedure could make some changes

which could improve the efficiency of the optimization.

Other changes to the boundary-layer code could also expand

the applicability of the code to a much larger class of prob-

lems.

Two improvements to the optimization code could improve

its efficiency. The biggest shortcoming in the adaptive-grid

solution is that it requires much more computer time than a

non-adaptive scheme since a solution of the boundary-layer

code is required for each iteration of the method. Even

though the number of grid points may be less, the number of

iterations required for the adaptive-grid solution increases

r the overall, computer time. If a Thomas'-algorithm, iterative

solution is used instead of the SOR, the time required to

compute the boundary-layer solution decreases. Chen has

included a quad-diagonal solver in this same, boundary-layer

code to study turbulent, flow problems (5). This would dra-

matically reduce the computer time needed for adaptive-grid

solutions. Also, minimizing some other combination of the

and the sum of U 2 may produce better overall

results than cases tested in this study. Other minimizing

'functions could also be tested. The parameters that form the
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control function could also be changed. This study splits Q
.

/ into two parts and minimizes each part. Q could be split

into more parts, or a linear functional relationship between

the parts could be used to form Q. Many different parame-

ters can be varied to find the best optimization method. The

flexibility of Powell's method provides many avenues which

might result in better answers for various problems.

There are additions that can be made to apply the opti-

* mization grid to a larger class of problems. To further

reduce the error in the boundary layer ,code and make it a

true, two-dimensional problem, the adaptive grid could be

applied to both streamwise and normal directions. Thi's study

only optimized in the normal direction and then scaled the

exponential stretch,ing in the streamwise direction. Turbu-

lence models, and nonisothermal wall effects could be in-

serted. The axisymmetric, boundary-layer equations could be

used to solve flows over axisymmetric bodies. This would

allow the solution of a wide variety of boundary-layer flows

* with the adaptive grid. The possibilities for using the

basic optimization method presented in this study are limit-

less. But much more study is required to determine the ap-

plication of adaptive-grid and boundary-layer solutions to'

investigations of hypersonic, flow regimes.

102

102, Uo



Biblioprahy

1. Acton, Forman S. Numerical Methods That Work, New York:
Harper and Row, 1970.

.y

2. Anderson, D. A., 3. C. Tannehill, and R. H. Plecher.
Computational Fluid Mechanics and Heat Transfer. New
York:McGraw-Hill Book Company, 1984.

3. Boyd, Bruce D. Adaptive qi Generation for Numerical
Solution of Burger's Eouation M.S. Thesis, School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Ohio, December 1983.

4. Ca ppelano, P. T. Heat Transfer/Boutdary Layer Investi-
tation of Heating Discrepancies in Wind Tunnel TestinE.
of Orbiter Insulating Articlep, M.S. Thesis, School of'
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Ohio, December 1982.

5. Chen, Alice I., research for M.S. Thesis to be submitted
March 1986, School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB, Ohio. .'.

6. Fiore, A. W. "Vi',cosity of Air." Journal of Spacecraft

and Rockets, L_(5): 56-58 (May 1966).

7. Ghia, K. N., U. Ghia, and C. T. Shin. "Adaptive Grid
Generation for Flows with Local High Gradient Regions,"
Advances in Grid Generation, FED-Vol. 5, AMSE, June
20,22, pp.35-47, (1983). r,

8. Bodge, James K., Associate Professor of Aeronautics, Air
Force Institute of Technology, October 1985.

9. Hodge, James K., Sal A. Leone, and McCarty, R.L.,
"Non-Iterative Parabolic Grid Generation for Para-
bolized Equations," presented at the AIAA 7th Com-
putational iluid Dynamics Conference, AIAA Paper
85-1528-CP. 1985.

10. Hodge, J.K. and A.L. Stone, "Numerical Solutions for
Airfoils Near Stall in Optimized Boundary Fitted Curvi-
linear Coordinates," AIAA Parer 78-284,AIAA 16th Aero-
space Schences Meeting, Huntsville, Alabama, January
16-18, 1978.

11. Hodge, James K., Y. K. Woo, and P. T. Cappelano. "Pa-
rameter Estimation for Imbedded Thermocouples in Space
Shuttle Wind Tunnel Test Articles with a Nonisothermal
Wall," AIAA 83-1533, June 1983.

103



.*.". ."- . . V .- r- - .J .f t.. '. . ~ = . .-* . '. . -

12. Holman, 3. P. Heat Transfer, New York: McGraw-Hill,
Inc., 1981.

t
13. Keyes, F.G., "A Summary of Viscosity and Beat Conduction

Data for He, A, H2, NCO. H2 0, and Air," Transactions
of ASME, 73:589-596, 951).

14. Kuethe, A. M. and A. Y. Chow. Foundations of Aerodyna-
mics.New York, John Wiley and Sons, Inc., 1976.

15. Lange, Karen I.. Unsteady Solution of the Boundary
Layer Eauations with Aunlization to Space Shuttle Tiles.
M.S. Thesis, School of Engineering, Air Force Institute

of Technology (AU), Wright-Patterson AFB, Ohio, May
1985.

16. Leone, Sal A. and James K. Hodge. "Minimizing the
Steady State Truncation Error,* Society of Industrial
and Applied Mathematics Fall Meeting, Arizona State
University, Tempe, Arizona, October 1985.

17. Liepmann, H.W. and A. Roxchko. Elements of Gasdynamics,
New York: John Wiley and Sons,Inc., 1957.

18. Nagamatsu, H.T. and R.E. Sheer,Jr. "Hypersonic'Shock
Wave Boundary Layer Interaction and Leading Edge Slip,"
ARS Journal, pp. 454 -462. May 1960.

19. Powell, M.J.D. "An Efficient Method for Finding the
Minimum of a Function of Several Variables Without Cal-
culating Derivatives." Computer Journal, Vol. 7, pp.155-
162, 1964.

20. Rasmussen, M. L. Lecture Notes distributed in AE 630,
Reentry Aerodynamics. School of Engineering, Air Force
Instutute of Technology (AU), Wright-Patterson AFB.OH,
April 1985.

21. Roberts, Timothy K. A Numerical Solution of a Noniso-
thermal Wall Usint the Two-Dimensional Nayier-Stokes L..
Eauations,.M.S. Thesis, School of Engineering. Air'Force
Institute of Technology, Wright-Patterson AFB, Ohio,
December 1984.

22. Schetz, Joseph A.. Foundations of Boundary Layer The-
2r, Englewood liffs, N.J.: Prentice-Hall, Inc., 1984. L

23. Schlichting, H.. Boundary Layer Theory. New York:
McGraw-Hill Book Company, 1979.

24. Van Driest, E. R.. "Investigation of Laminar Boundary
Layer in Compresible Fluids Using the Crocco Method,"
NACA Technical Note, 2597: Washington (Jan 1952).

104



Apipejndii A Compressibility Transfo-rmat'ion

The boundary-layer equations under most conditions are

density dependent. Compressiblity makes the solution of

the mon-linear, boundary-layer equations more difficult.. If

the equations are trausformed into equations similar to the

incompressible, boundary-layer equations, a solution might be

easier. To transform the compressible equations, some form,

of a Compressibility transformation is used. The transforms-

tion puts the density dependence into the varibles of the

equations. In the physcial space, the dimensional variables

are x', ye. and t'. The variables are non-dimensionalized

using

1= X, y= L. = t''- U= u v V=V

* U*, 'UPC, (A-1)

=H' T= C.L4L' P= D P1 2LZ..UI U .'P.

The transformed variables are

y
X Xz Y = j dy, tl-t (A-2)

0 Pe

The non-dimensional, compressible, axisymmetric boundary-

layer equations are

Continuity: rm~ + armou + Qrmv 0 (A-3)
a t a x8

Momentum: 8O + QUf + 13DUV -a, + a a~ .u (A-4a)
at ax ay al a y (Re a y)
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momentum: _ajp 0 (A-4b)

Energy: O + aDH+ 8Dni. a + a1 (M &M
at ,ax ay a t Oy RePr a y/

+ (&Pr-1L. 8u/2 (A-5)
b'y (Reftar

where m =0 for two-dimensional problems and m=1 for axi-

symmetric proble ms (Appendix B).. The transformed variables

must be substituted into the compressible, boundary-layer

equations. To substitute for the partial derivative terms

.use the following relationiships:

aw a w ax + aw aY, aw a w Ox + aw OY, aw =aw (A-6)
ix ax Ox bY ax ay OX b-y iY ay at at

where 8X= aY= at= at.= 8X=0 and bY p
it aOt ax ay ay ay

W in the above equations represents any variable of interest.

After expanding Eq (A-3) using the chain rule and then sub"

stituting relations from Eq (A-6), the transformed, continu-.

ity equation becomes ~r

rmq2+rmjk OY+urm a +Pr m a+au bY Irm a Y +pr'8V jI=0(2 )rm( Y)at. a bt ax iOX bY a y aY, ay
(A-7)

The desired form of the incompressible, axisymmetric, coati-

nuity equation is

armTJ + ariny 0 (A-8)

The continuity equation in axisymmetric, physical space co-
ordinates is
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+ army 0 (A- 9)
8 x y

Compare Eqs (A-B) and (A-9) to determine what U is.'

8 m rmau OX =rm3u =rmaU (A-10)
aIx ax ax ax ax

Ther efore,*
U=U (A-11)

Taking out the aUiaX term in Eq (A-7), the remaining terms,

are the second term in Eq (A-&).

rma+ur' tk+prm!U LY+8rmov =army =prmUll

a t ax ay ax ay ay ax

where p= aYlay (A-12)'

rma x + rmu823Y + rmau ax+arpv.- Pr84V (A-i3)
ayat ayax ay ax ay ay

and
rmpv= rtmV -rmaY/at - urmaY/ax (A-14)

Therefore,
V= Pv+ ax/at + uaY/ax (-S

The transformed. velocity components, U and V, satisfy Eq

(A-8). When they are substituted into Eqs *(A-4) and (A-5),

equations similar to the incompressible,,momentum and energy

equations result (15:81-93). These equations are

Nomentu.. au~uau+vau =-1. a.la f U A-16a)
Ot ax ax PX ax \Re ax/

0 (A-i6b)
ay

Energy: a1+UaH+VH 1 i. k~L an~
at ax ax- - at axiRP O

+ a Up-)a 2 (A17

ay\ RePr ax /%
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Appendix B: Axisymmetric, Boundary-Laver Eguations
4

The two-dimensional analysis of boundary-layer equations

is easily applied to axisymmetric shapes. Axisymmetric

shapes have one axis such that a plane passed perpendicular

through this axis slices out a circle of varying radius.

Fig. B-1 shows a general, axisymmetic, coordinate system.

Ary location on the surface is described by coordinates x, y,

and ,. The 'scale factors are h i , Velocity components are

V i. hi and V i are

h= 1 + y/R 1  v1 - u .

h2 = 1 V2 - v (B-1) "

h 3 = Re(x) + ycosa V3  0

R is the local radius of the surface and varies with x. R

is the local radius of curvature. For a cone, a is 00, and

there is no x-dependence in y. The only non-unity, scale

factor is h3 which becomes Re(x), or just r. To make the'

two-dimensional equations 'more appli.able to two-dimensiona-

and conical, axisymmetric problems, the superscipt m is add-

ed.. For two-dimensional problems, m is 0. For axisymmetric

problems. m is 1. In this study, the two-dimensional, incom-

pressible, boundary-layer equ'ations were transformed into a

computational plane where

= (X, Y, t)
= 1(X, Y, t) (B-2)
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After the metric relationships are applied, the transformed,

two-dimensional', incompressible, boundary-layer equations are

*Continuity: aru4 + am + 6rm l 0 (B-3)

Momentum: Ut+U(Utx+Un1Ix)+VUy O 1/Rebap(U T1 y) Ily (B-4)

Energy: H + (t ~ l~x + VH 11Y (B-5)

ptP+ (u H 7y) Ijy +'(ou(Pr-l) ny(u.l)1  
1ny

PrRe 2RePr 2

The momentum and energy equations are not affected by the

changing radius of a cone' s surface. 'Consequently, the fi-

nite-difference equations for finding U1 and H do not change.

The solution of V requires integrating the continuity aqua-

tion which does depend on the changing radius.

h The continuity equation is rearranged to isolate V.

The resulting eqaution is then integrated to solve for V.

The integrable equation is

II '(rmV)q, -Yj4(rmU)t + Y4rm)q(B-6)
x x

The right-hand, side term with (rmU) is differenced with a

S 'three-point, windward scheme about the j+1/2 point. The

second term splits up into parts.

r mU) ' l( (rtmJ -frmu)(Y dP I d ] (B-7)

The integral is evaluated using a trapezoidal rule with Y

* -averAged about the j-1/2 point prior to the integration.'
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Y4/x 4r U)71= 1/X t (E(YtrmU)i.j-(Yt rUt)i - (B-8)

- 5E(rMUq)i +(r"U) ~-l yi~ -Yt1,'.. 1])

*=1/(21Q t ((Y~rm u) j-YIr m u~ij 1  (B-9)

I+ ,. +Yij..(rmU). -Ytij(rJ)i...1 ]

a1/2X (( Ytij j , ((rmU). .-(rmU), 1)

1With the other terms of V added in, the fini-te difference

for V i is

+ 1/(2X 0(.5(Y. .-.Y.jl) (-3(rmU)i j+(r'Ul)i -l

I 5 + (Yuij+ ti~.i)[(r) i~j-(rmU)i~j-i])) (-l

This finite difference is then iterated to solve for V at

each location in the domain.
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Avupeudjjx C, OiDtimizat ion Flow Chart

ieDefine Q(A

-~ I. (Subroutine PCAL)

P Crea'te the grid
(Y TI+ QY=O)

(Subroutine IXPGRD)--

* Solve for U.
(Subroutine BfA!P)

F in d'U UU a

LFind f r -n 2

5 Step 1

N'

~old

Find A(r)+' t(rr, A(r)b~ or r~l, nmax
[WOO =Ai r) + It fE(r,r)]

Block A Find 'Q, Qf, Qb

(Subroutine PCAL)

F Find grida for Q+, Q-, Qb
Subroutine EXPGRD)
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Block 'A ISolve 'for U+ U. - Ub.
(Subroutine nBLiP)

Find U, U, U a
leach iDJ for +D , aTnd batcasesl

Find fb, f+, f-
imax -iLx

(S.R. NEWPI) 1j=

Fin miimum of'quadratic through
X. +, X-1 Xb . N

Fin'd AN A(r) + XN E(r~r)l

Find QN

S.R. PCALJ

Find grid for QN

S.R. EXPGRD)

Find UN
(S.R. BLiA)l

Fin d
(S. R. NWP)

Find minimum of
f +, f-, fb, fN = ffmin)

if f( )=f(min),

X(Error)
(old X1/ol

Blcck A Step 1

f(A(rsave) )=inax

= f Step 2
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Define A3(r) =2A(r) -AO(r) "Step 3

Find Q3

Create the grid

(SR.EPGD

Find U3.
(S.. LI)
Flid

S. R.N P)Step

Define E(r,rsave)=A(r)-A0 (r) StepS5

-~~ 
i ~ 1 d X + ,D x
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Appendix D: Optimization Proqram

PROGRAM MNTRER
C
C THIS PROGRAM USES POWELL'S METHOD OF CONJUGATE DIRECTIONS
C TO MIN THE TRUNCATION ERROR IN A BOUNDARY LAYER
C THIS PROGRAM WILL COMPUTE THE FOLLOWING:
C NUMERICAL GRID SOLUTION USING POWELL'S METHOD AND
C THE CONTROL FUNCTION P TO MINIMIZE TRUNCATION ERROR

. C IN THE'TRANSFORMED ETA DIRECTION OF A BOUNDARY LAYER
C GRID
C IN ALL CASES THE THIRD DERIVATIVE (DUUU) IS CALCULATED NUMERICALLY
C
C

DIMENSION UEXACT(21 0:20),P(19),X(21),DUUU(21)
DIMENSION Y(21,19),YPLUSDL(21,19),YMINDL(21,19)
DIMENSION P3(19),D3U(21),Y3(21,19),U3(21,0:20)
DIMENSION AAA(19),BBB(19),CCC(19),DDD(19),GGG(19),WWW(19)
DIMENSION PPLUSDL(19).PMINDL(19)
DIMENSION U(21,0:20),UPLUSDL(21,0:20),UMINDL(21,0:20)
DIMENSION A(5),ASAVE(5),A3(5),APLUSDL(5),AMINDL(5)
DIMENSION ABAR(5),ZI(2,2),DELTA(21),ABAR2(5)
DIMENSION POLD(19)
OPEN(UNIT=8,FILE='RESTART')
OPEN(UNIT=9,FILE='WALLQ')
OPEN(UNIT=1O,FILE='FIELD)
OPEN(UNIT=11,FILEs'GRID')
OPEN(UNIT=12.FILE='HREF')
OPEN(UNIT=13,FILE='CFCF')
REWIND 6
REWIND 8
REWIND 9
REWIND 10
REWIND 11
REWIND 12
REWIND 13,'i" C

CALL SECOND(CPI)
READ (7,*) IMAXJMAX,KMAX,ERMXL
READ (7,.) YMIN,YMAX,PERCENT
READ (7,*) NMAX,ITMAX
READ (7,*) ERPOWMXICOL.IRST
READ (7,*) (A(IR),IR=1,NMAX)
READ (7,*) WHOWH2,WH3
READ (7,*) Z
CALL DATE(ADATE)
CALL TIME(ATIME)
WRITE(6,100) ADATE,ATIME

100 FORMAT('',/,5X,A1O.2X,A10)
WRITE(6,200) IMAXJMAX,YMIN,YMAX,KMAX,ERMXLPERCENT,

1 (A(IR),IR=1,NMAX)
200 FORMAT(IX.'NUMBER OF GRID PTS, IMAX=',I3,3X,'JMAX=',

1 I3/,1X,'MIN Y VALUE, YMINz',E13.5.,/,IX,
2 'MAX Y VALUE, YMAX=',E13.5./,1X.
3 'MAX NUMBER OF ITERATIONS FOR ONE',

- 4 'PARAMETER OPTIMIZATION, AMAX=',I5,/,1X,
5 'MAX PERCENT ERROR IN ONE PARAMETER'.
6 ' OPTIMIZATION FOR CONVERGENCE, ERMXL =',

. 7 E13.5,/,1X,'PERCENT CHANGE IN PARAMETERS USED',
a 'TO CALCULATE QUAD EQ FOR ONE PARAMETER OPT=',
9 E13.5,/,1X,'INITIAL A ",5E13.5,/,/)

WRITE (6,209) WHO,WH2,WH3
209 FORMAT tlX,'THE WEIGHTING FOR DU = ',E7.2,2X,

1 'DUU =' E7 2 2X,'DUUU '.E7.2,/)
WRITE (6,211) ITMAX

211 FORMAT(IX,'MAX NUMRrR OF ITERATIONSIN OUTER LOOP',
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b4

1 'TO POWELL METHOD, ITMAX=',15)
WRITE(6.213) ICOL

213 FORMAT(1X,'OPTIMIZED COLUMN IS' ,lX,I3)
c PI=ACOS(-lI)-

C
C SETTING UP BOUNDARY CONDITIONS

XSTEPal/(FLOAT(IMAX)-l.)
DO 5 l=1.IMAX
X(I)zFLOAT(I-1)OXSTEP

5 CONTINUE
Y(ICOL 1)-YMIN

* Y(ICOLJMAX)=YMAX
C
C THIS SECTION CALCULATES THE OPTIMIZED NUMERICAL SOLUTION
C USING POWELL'S METHOD (1964).r.
C

DO 50 J-1,NNAX
ASAVE(J)=A(J)
DO 70 IR=1,NMAX
ZI(J,IR)=O.0

70 CONTINUE
* ZI(J.J)IA(J)00.1

IF (ZI(J.J).EQ.0.0) ZI(J,J)=.Ol
*50 CONTINUE

IBuo
CALL PCAL(A,NMAX.JNAX)

55 CAL XPRDXYPAAA,CCC,DDD,GGG,WWW,YMIN,
1 YAXiIMAX JMAX ICOL)

CALL RLIMP(Xy IMAX,JMAX,U,IfiUE,DELTA,RE)
WRITE(6.') 'DLTA- ',DELTA(IMAX)

IF (YMAX.LT.Z*DELTA(IMAX)) THEN
YMAX=DELTA (IMAX) .Z
Y(ICOLJMAX) =YMAX
GO TO 55

ENDIF
CALL NWP (UDUUU,Hl,IMAX,JMAX,ICOLWHO,WH2.WH3)
H=Hl
CALL POHL(Y.DELTA,UE,IMAXJNAXUEXACT)
WRITE (6,402)

402 FORMAT (3X, 'I' ,4X, 'J' ,09X. 'P 2X. 'X' ,12X, 'Y' ,1OX,
1 'UEXACT'.8X.'U',llX,'U-UEXACT')

-DO 611 I1.1,IMAX

IF(I.EQ.2.OR.I.EQ.IMAX) THEN

WRITE (6,602) 1 J P(J) X(I),Y(I.J).UEXACT(IpJ),
1 U(IlJ),Udf,3)-UEXACT(I, J)

502 FORMAT (lXp213.6E13.5)
612 CONTINUE

ENDIF
611 CONTINUE

WRITE (6.602)
602 FORMAT (lX,' P'IS JUST A FUNCTION OF THE INITIAL A',

1 'VALUES AND NOT OF RLAMBA OR ZI',I)
CALL ERROR(U,UEXACT,IMAXpJMAX)

IF (ITRT.GT.NMAX) GO TO 580
DO 370 ITERATE=ITRT,ITMAX

HOLD-H
IRSAVE=O
HDELMAX=O.0
ERRORPWO0.0

DO 150 IR=1,NMAX
ERRORPW=ERRORPWtABSCA(IR)-ASAVE(IR))
ASAVE(IR)2A(IR)

150 CONTINUE
ERRORPW=ERRORPW/NMAX
IF (ERRORPW.LE.ERPOWMX.AND.ITERATE.NE.1) GO TO 580
WRITE (6,122) ITERATE
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122 FORMAT (lX,/,/,/,.............BELOW ITERATEm'.15.

IF(IRST.EQ.l) THEN

C

IRimi
DO 160 IRzIR1.NMAX

RLAMBA=0.*0
DLTA=PERCENT*RLAMBA
IF (ABS(DLTA).LE..O5) DLTA=.05
RLAMPL=RLARBA .DLTA
RLANMN=RLAMBA-DLTA

C
C ITERATION FOR ONE PARAMETER OPTIMIZATION
C

DO 250 Kzl,KMAX
RLAMOLD=RLAMBA
DO 180 J=1,NMAX,
APLUSDL(J)2A(J) 'RLAMPL*ZI(J IR)
ANINDL(J)=A(J)+RLAMMN*ZI(J iR)
ABAR(J)=A(J).RLAMBA.ZI(J,IA)

i8o CONTINUE
CALL PCAL(APLUSDLNMAXPPLUSDLJMAX)
CALL PCAL(AMINDL,NMAX,PMINDL,JMAX)
CALL PCAL(ABARI.NMAXDP.JMAX)

CALL EXPGRD(X,Y,P,AAA,CCC,DDD,GGGWWW,YMIN,
I YMAX,IMAX,JMAX,ICOL)

CALL EXPGRD (X,YPLUSDL.PPLUSDL,AAA.CCC,DDD,GGG,WWW, YMINeYMAX,
CALL EXPGRD (X.YMINDLPMINDL,AAA(dCC.DDD,GGG,WWW.YMIN,YMAX,

1 IMAXI.JMAX,ICOL),
C

CALL BLIMP(X,Y.IMAX,JNAX,U,ITERATE,UEDELTA,RE)
CALL BLIMP(X.YPLUSDL, IMAXJMAXUPLUSDL,ITERATE,UE,DELTA.RE)
CALL BLIMP(X,YMINDL,.IMAX,JMAX,UNINDL.ITERATE,UE,DELTA,RE)
CALL NEWP1 (U,P,UPLUSDL,UMINDL,DUUU,RLAMPLRLAMMN,

1 RLAMBARMSDUUU,H,K,PERCENT IMAX JMAX,
2 ABAR2.NMAX X Y AAA CCC DDDGGGWWW,YMfN,YMAX,ICOL,
3 I'TERATE,UE,6ELTA.P3.Y3,t3U,U3,AZI,IR,WHO,WH2,WH3)

WRITE(6,800) IR (A(J),J=1,NMAX)
800 FORMAT(1X. ABOVE AESULTS ARE FOR INNER OPT AND',

1 -A(IR) PARAMETER, IR=',I5,I,* THE OLD A(I)',
2 'VALUES ARE=',5El3.5).

WRITE (6,801) (ZI(J,IR),J=1,NMAX)
801 FORMAT (iX.' THE OLD ZI(J.IR) VALUES=',5El3.5,

1 1X'o POLD IS CALCULATED BY USING',
2 1 A=A(OLD)+(RLAMBA OLD)*(ZI OLD)'./,/)

ERRORL=ABS(RLAMOLD-RLAMBA 9'00.O
IF (RLAMOLD.NE.O.O) ERRORL=ERRORL/ABS(RLAMOLD)

IF IERRORL.LT.ERMXL) THEN
WRITE(6,*) 'K-CONVERGED'
GO TO 290
EtDIF

250 CONTINUE
290 CONTINUE

DO 310 Jxl,NNAX
A(J)=A(J)+RLAMBA*,ZI(J,IR)

310 CONTINUE
C
C STEP 2: FIND THE INTEGER IRSAVE SO THAT H(A(IR-1))-
C H(A(IR)) IS A MAXIMUM, AND DEFINE THE MAXIMUM AS HDELTMAX
C

HDELTA=HOLD-H

HOLD=H

IF(HDELTA.GT.HDELMAX) THEN '
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END IF
160 CONTINUE

C
C STEP 3: CALCULATE H3=H(2*A(NMAX)-AcO)), AND DEFINE Hl=H(A(O)).
C AND H2'H(A(NMAX)) v
C4
163 H2,tH

IRSTx0
DO 320 IR=1.NMAX
A3(IR) =2*A(IR) -ASAVE(IR)

320 CONTINUE
CALL PCAL(A3,NMAX,P3,JMAX)
CALL EXPGRD(X.Y3,P3,AAA,CCCDDD,GGGDWWWYMINYMAX,IMAX,JMAX,ICOL)
CALL BLIMP(X,Y3,IMAX,JMAX.U3,ITERATE,UE,I)ELTA,RE)

WRITE(6,9) 'THIS NWP CALLED IN STEP 3' 4

CALL NWP(U3,D3U,H3,IMAX,JMAX,ICOL,WHO,Wqi2,WH3) C
C STEP 4: IF EITHER H3.GE.Hl AND/OR
C (2.(Hl-2.H2.H3)'(Hl-H2-HDELMAX)*"2).GE.(HDELMAX*(Hl-H3)*"2)
C USE THE OLD DIRECTIONS Z1 FOR THE NEXT ITERATION AND
C USE A(NMAX) FOR THE NEXT ACO) (GO TO STEP 1), OTHERWISE
C GO TO STEP 5
C

RLHS-2...(Hl-2. 'H2+H3) w(Hl-H2-HDELMAX) '.2
RHS=HDELMAX' (Hl-H3)'9"2
IF (H3.GE.H1..OR.RLHS.GE.RHS) GO TO 550

C
C STEP 5:DEFINE ZI=A(NMAX)-A(0) CALCULATE RLAMBA SO'THAT
C H(A(NMAX)+RLAMBA*ZI) IS A MINIMUM AND REPLACE THE
C ZI(IRSAVE) VALUE BY THE 21 VALUE ABOVE AND'USE
C A(NMAX)+RLAMBA'ZI AS THE STARTING POINT FOR THE NEXT
C ITERATION
C

IRi =1
391 IF(IRST.EQ.1)'THEN

READ(8..)1R1,HDELMAX,IRSAVE,((ZI(JI),J=1.NMAX).1=1,NMAX)
IRST=0
ENDIF6
IF(IRl.GT.NMAX) GO TO 392
DO 390 IR=IR1,NMAX
ZI(IR.IRSAVE) =ACIR) -ASAVECIR)
IF (ZI(IR,IRSAVE).Eg.O.O) ZI(IR.IRSAVE)=.Ol

390 CONTINUE
392 CONTINUE

RLAMBA=0.0
DLTA= PERCENT' RLAMBA
IF (ABS(DLTA).LE..05) DLTA=.05
RLAMPL= RLAMBA DLTA
RLAMMN=RLAMBA-DLTA

C
C ONE PARAMETER OPTIMIZATION FOR STEP 5 OF ALGORITHM
C

DO 480 IC:1,KMAX
RLAMOLD=RL.AMBA
DO 440 JnlNMAXy
APLUSDL(J)AJtRLAHPL.2I J,IRSAVE)
AMINDL(J)=A(J) tRLAMMN.ZI (J, IRSAVE)
ABAR(J)=A(J).RLANBA'ZI(J,IRSAVE)

440 CONTINUE W.
CALL PCAL (APLUSDL,NMAX ,PPLUSDL, JMAX)
CALL PCAL(AMINDL,NMAX,PMINDL,JMAX)
CALL PCAL(ABAR,NNAXP,JMAX)

CALL EXPGRD(X Y P AAACCC.DDD,GGG,WWW,YIN,
1 ~~MAWIMAX,JNAX ICOL)
CALL EXPGRD (X,YPLUSDL,PPLtJiDLIAAA,CCCDDD,GGG.WWW, YMIN,YMAX,
1 IMAX.JMAXoICOL)
CALL EXPGRD (X.YMINDL.PMINDL,AAA.CCC.DDD.GGG.WWW,YMIN,YMAX,

1 IMAXJMAX,ICOL)
CALL BLIMP(X Y IXAX JMAXU,ITERATEUEDELTA,RE)
CALL BLIHP(X.YPLUSDL.IMAX,JMAX,UPLU5DL,ITERATEUE.DELTA.RE)
CALL BLIMP(X,YMINDL,IMAX,JMAXUMINDL,ITERATE UE,DELTA,RE)
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CALL NEWP1(UP,UPLUSDL.UMINDL.DUUURLAMPL,RLAMIN,
I RLAMBA,RMSDUUU,H.,KIPERCENTPIMAXJMAX,
2 ABAR2,NMAX XY,AAA,CCC,DDD.GGG,WWW,YMIN,YMAXICOL,
3 ITERATEUE.6 ELTA. P3,Y3,D3U,U3,A,ZI,IRSAVE.WHO,WH2,WH3)

WRITE(6.900) 'IRSAVE (A(J) J-1 NMAX)
900 FORMAT.(lX 'ABOVE REHULTS ARE frOR OUTER OPT AND',

1. fRAAVEz',15,/,' THE OLD A(I) VALUES ARE=',
2 5EI3.5)

WRITE (6,901) (ZI(J,IRSAVE),J=1,NMAX)
902. FORMAT (11,' THE OLD ZI(J,IRSAVE) VALUES=',5El3.5,/,

I 1X,' POLD IS CALCULATED BY USING',
2 ' A*A(OLD)t(RLAMBA OLD)*(ZI OLD)',/,/)

ERR0RL=ABS(RLAMOLD-RLAMBA) .100.0
IF (RLAMOLD.NE.0.0) ERRORL=ERRORL/ABS(RLAM0LD) GO TO 540

480 IF (ERRORL.LT.ERMXL) GO TO 540
486 CONTINUE

540 'CONTINUE
DO 490 J=1.NNAX
A(J) =A(J) .RLAMBA*ZI (J,IRSAVE)

490 CONTINUE

550 CONTINUE
370 CONTINUE
580 CONTINUE
C
-CC

C CALL POHL(Y.DELTAUE,INAX,JMAX,UEXACT)
WRITE (6,400)

400 FORMAT (2X,'I',5X,'J' ,12X ,'P',12X,'X',12X,'Y',12X.
1 'U',12X,'UEXACT',8X,'U-UEXACT')

DO 610 Iz1,IMAX
IF(I.EQ.2.OR.I.EQ.IMAX) THEN

DO 613 Jml,JNAX
WRITE (6,500) 1,JP(J),X(I),Y(IJ),U(I,J),

1 UEXACT(I,J),U(I,J)-UEXACT(I,J)
500 FORMAT (1X 215,6E13.5)
613 CONTINUE

ENDIF
610 CONTINUE

CALL PCAL(ANMAX P,JMAX)
CALLEXPGRD(X,U,6 AAA.CCC,DDD,GGG,WWW.YMIN.
1 YMAX,IMAX,JMAX,ICOL)
CALL BLIMP(X,Y,IMAX,JMAX,U,ITERATE,UE,DELTA,RE)

WRITE (6,600) H,RMSDUUU
600 FORMAT (lX,'SUM OF THE SQUARES OF DUUU, H=',E13.5,

1 /,lX,'RNS VALUE OF DUUU. RMSDUUU=',E13.5,/,/)
CALL ERROR(U, UEXACT, IMAXJMAX)
DO 630 I=2,!MAX
DO 640 J=1,JMAX
ETA=Y(I,J).SQRT(RE/X(I))
WRITE(11,10) ETA,UEXACT(I,J)

640 CONTINUE
630 CONTINUE
1.0 FORMAT(2E13.5)

ENOFILE 8
ENDFILE 9
ENDFILE 10
E'4DFILE 11
ENDFILE 12
ENDFILE 13
CALL SECOND (CPF)L
CPU=CPF-CPI
WRITE (6,700) CPU

700 FORMAT (lX,'CPU=',El3.5)
STOP
END
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SUBROUTIK?- PCAL (A,NMAX,PINAX)
DIMENSION A(NMAX) .P(IMAX)
DO 10 I=1.IMAX

C P(I)=A(1)*I+A(2)
P(I)YA(1).A(2)

.0 CONTINUE
RETURN
END

C . -

C THIS SUBROUTINE SOLVES THE UNIFIED DIFF RELATION FOR THE C GRID EQ
USING A TRIDIAGONAL SOLVER
C

SUBROUTINE EXPGRD(X,Y,P,AC,D.G,W,YMIN,YMAX, IMAX,JMAX,L)
DIMENSION P(JMAX) ,A(JMAX)
DIMENSION C(JMAX),D(JMAX),G(JMAX),W(JNAX).
DIMENSION X(IMAX) ,Y(IMAXIPJMAX)
WRITE (6,100) -

100 FORMAT U/Tl5,'GRID CAL',/,T5,'USING A UNIFIED DIFFREL')

Y(L.JMAX) =YMAX
DO 190 J:2,JMAX-1

D(J)=0.0
190 CONTINUE

,G (1)=Y(L.*1)
W(l)=0.0
DO 290 J=2,JMAX-1

20 G(J)=(D(J)+A(J)uG(J-1))/(l..A(J).W(J-1))
20 CONTINUE

DC 190 J=JMAX-1,2,-l
Y(L,J)=G(J)-W(J) .Y(L,J+l)

390 CONTINUE
DO 490 I=1,IMAX
DO 590 J=1.JMAX
IF(I.EQ.L) THEN .

ELSE)

ENDIF
590 CONTINUE
490 CONTINUE

C WRITE(14,*) 'ADAPTIVE GRID COORDINATES'
C WRITE(14,1) ((X(I),Y(I,J),I=1,IMAX),J1,JM,X)

1 FORMAT(2E13.3) *-
WRITE (6.200)

200 FORMAT(10X,'TRIDIAGONAL SUBROUTINE IS USED FOR GRID EQ')
RETURN
END

C
C THIS SUBROUTINE CALCULATES CONVERSION FOR PHYSCAL TO
C DORODINITSYN PLANE. TRAPEZOIDAL INTEGRATION.
C

SUBROUTINE TRAPZ(H,Y,I,IMAX,JMAX,SUM.HEND)
DIMENSION H(IMAX,0:JMAX.D),Y(MAX,JMAX)
s'l-, 0
DO 10 k-2,J

AREA= F/2.(HiI,K)+H(I,K-1))/HEND
SUM=SUN.AREA

10 CONTINUE
RETURN
END
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C THIS SUBROUTINE CALCULATES U VELOCITY FOR THE ITERATION.
C

SUBROUTINE BLIMP(X,Y,IMAXJMAX,U,IB,UE,DELTA,RE)
DIMENSION X(IMAX),Y(IMAXJMAX),U(IMAXO:JMAX I), 4

& V(21,19),H(21,O:60),W(19)
DIMENSION DX(21),DY(21.19),DYXI(21,19),DYB(21,19)
DIMENSION ETAX(21,19),RHO(19),RM(19).T(19),DYRE(21,19)
DIMENSION UNM1(21,19),HNM1(21,19),VNM1(21,19),UIMI(19) *" ,'

DIMENSION HIM1(19),UIM2(19),HIM2(19),O(21),HHREF(21) ,• '*4
DIMENSION YP(21,19) R(21,19),DELTA(IMAX),DYF(21,19)
DIMENSION TAU(21),Cf(21),UD(21 19) TW(21)
REAL MU,MUINF L M MINF MUW MUE6G,ME,MUSTAR
DATA NT,ICNT,kT.NTW,IRhT/02,OO10,O05,O/
DATA MINFPINF,TINF/.01,2116.2,550./

C DATA MINFPINF,TINF/14.24,.50343,48.6/
C DATA DT,L,PR,EPS/200.,28.95,1.,.O0001/

DATA CP.RG,GAN/6006.,1715..1.4/
DATA FSOR/1.0I
REWIND 13
REWIND 12
REWIND 11 4
REWIND 10

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C THIS PROGRAM SOLVES THE UNSTEADY BOUNDARY LAYER EQUATIONS ..
C ALSO IT SOLVES FOR THE HEAT RATE AT THE WALL AND
C DETERMINES A HEAT TRANSFER'COEFFICIENT
C
C SYMBOLS:
C AE EDGE SPEED OF SOUND
C AINF INFINITY SPEED OF SOUND
C CF SKIN FRICTION COEFFICIENT
C COSJ SOR CONSTANT
C CP COEFFICIENT OF HEAT(FT-LB/SLUG/R)
C DEL CHANGE IN VALUE AFTER ITERATION
C DELM MAX DEL
C DELTA BOUNDARY LAYER THICKNESS
C DX DERIVATIVE OF X WRT XI
C DY DERIVATIVE OF Y WRT ETA
C DYXI DERIVATIVE OF Y WRT XI
C DYB Y DIFFERENCE BETWEEN'J AND J-1
C DYC CENTRAL Y DIFFERENCE
C DYF Y DIFFERENCE BETWEEN J i AND J
C DT DELTA TIME
C EPS CONVERGENCE EPSILON
C EMAX MAX ERROR
C GAM RATIO OF SPECIFIC HEATS (GAMMA)
C GGMi GAMMA/GAMMA-I
C H TOTAL ENTHALPY
C HC HEAT COEFFICIENT(BTU/FT2/S/R)
C HE EDGE ENTHALPY %
C HNMI TOTAL ENTHALPY AT OLD TIME LEVEL
C HIM1 ENTHALPY AT I-I LOCATION
C HIM2 ENTHALPY AT 1-2 LOCATION
C HINF INFINITE ENTHALPY
C HHREF H/HREF CALCULATED
C HREF REFERENCE HEAT COEFFICTENT(BTU/FT2/S/R) -.

C "T THEORETICAL NONISOTHERMAL HEAT COEFF
C I COUNTER IN XI DIRECTION
C ICNT THE NUMBER OF TIMESTEPS BETWEEN PRINTOUTS
C ICOMP INCOMPRESSIBLE CASE FLAG
C IMAX MAX NUMBER OF STEPS IN XI DIRECTION
C IMET NUMERICAL YXI CALCULATION FLAG
C IPRT FIELD LISTING FLAG
C IR OUTSIDE DELTA CALCULATION FLAG
C IRST RESTART INDICATOR
C J COUNTER IN ETA DIRECTION
C JMAX MAX NUMBER OF STEPS IN ETA DIRECTION
C JMM2 JMAX-.
C K COUNTER IN ITERATIONS
C KT MAX NUMBER OF ITERATIONS
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C L LENGTH OF PLATE (FEET)
C M AXISYMIIETRIC COEFF.
C MINF MACH AT INFINITY *'
C MU VISCOSITY, NONDIMENSIONAL
C MUEDG EDGE VISCOSITY
C MUINF VISCOSITY AT INFINITY(SLUGS/FT/S)
C N COUNTER IN TINE
C NNTS
C NT MAX NUMBER OF TIME STEPS
C NTS
C NTW NUMBER OF TIME STEPS TO CALCULATE OMEGA
C PHI NONISOTHERMAL CORRECTION FACTOR
C PINF PRESSURE INFINITY
C PRESS NONDIMENSIONALIZED EDGE PRESSURE
C PRESSO NONDIMENSIONALIZED INITIAL PRESS
C PR PRANDTL NUMBER
C PE PRESSURE AT THE EDGE OF B.L.(1.B/FT2)
C Q HEAT RATE AT THE WALL(BTU/FT2/S)
C RE REYNOLD'S NUMBER ON L
C REE EDGE REYNOLDOS NUMBER ON L
C RG GAS CONSTANT (FT-LB/SLUG-R)
C RHO DENSITY

C RHCE EDGE DENSITY
C RM DENSITY TIMES VISCOSITY i

C RE REYNOLD'S NUMBER
C RINF DENSITY AT INFINITY- (SLUG/FT*.3)

C T TEMPERATURE
C TAU SKIN FRICTION(LB/FT2)
C TEO EQUIVALENT TEMPERATURE(R)
C THETA. WEDGE/CONE HALF ANGLE
C TIME TOTAL TIME ACCUMULATED
C TE TEMPERATURE AT THE EDGE OF B.L.(R)
C TINF TEMPERATURE AT INFINITY (DEG RANKINE)
C TOINF TOTAL TEMPERATURE AT INFINITY (RANKINE)
C TS -

C TW TEMPERATURE AT THE WALL(R)
C TW1 TEMPERATURE AT WALL'BEFORE PANEL L
C TW2 TEMPERATURE AT WALL AT PANEL
C U VELOCITY IN X DIRECTION
C uNMi VELOCITY, X DIRECTION AT OLD TIME LEVEL
C UE VELOCITY AT THE EDGE OF B.L.(FTIS)
C UIMi VELOCITY VECTOR AT I-1 LOCATION
C UIM2 VE~LOCITY VECTOR AT 1-2 LOCATION
C fJINF VELOCITY AT INFINITY CONDITION (FT/SEC)
C V VELOCITY IN Y DIRECTION
C VNM1 VELOCITYPY DIRECTION AT OLD TIME LEVEL
C W OPTIMIZATION OMEGA
C XTW2 POSITION OF PANEL ON WEDGE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C WRITE(6,*)'NUMERICAL YXI METRIC AFTER IMET~'

READ(5,'IMET 6*"
C WRITE(6.*)'L(FT)=, PR~'

READ(5, ')L,PR
C WRITE(6,*v 'INPUT: CONE=1.,WEDGE=O.'

READ(5,') M
C WRITE(6,*) 'IR=O,R=F(X) ONLY'
C WRITE(6,*. 'IR~'

READ(5,.) IR
C WRITE(6,.w)'lINFPINF,TINF='

READ(5,.*)MINF,?INF,TINF
C WRITE(6,-)'TW1,TW2,XTW2=1

READ(5. ')TWI .TW2,XTW2
C WRITE(6.*)'IPRINT=O NO LISTING ON FILE FIELD'
C WRITE(6,o)'IPRT:'

READ(5,*)IPRT
C WRITE(6,.)'NT,ICNTXT,IRST,NTW='

READ(5,'.NT,ICNT,KT,IRST,NTW
C WRITE(6,*)'DT,EPS~'

READ(5,*~)DT,EPS
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C WRITE(6,') 'THETA,BETA GUESS?'
READ(5,*) THETAPO

JMl=JMAX-1.
GGN1='GAM/(GAM-1.),
MUINF%(TINF..l .5*2.2685E-8)/ (TINr.198.6),

* AINF=SQRT(GAM*RG*TINF)
UINF=MINF-AINF
RINF=PINF/(RG*TINF)
rOINFSTINF*(l,(GAM-1.)..5.HINF..2)
HINF-CP*TINF+UINF.02/2
COSJaCOS(PI/FLOAT(JMAX) ).FSOR
RE=RINF*UINF*L/NUINF
THETAliTHETA*PI/18O.
IF(THETA.NE.O.O.AND.MINF.GE.1 .0)THEN

* & CALL 8ETA(THETA,MINF,PINF,TINF,PO,CP,RG,NE,PETE,

AE=SQRT(GAM*RGRTE)
MUEDG=(Te..1.5.2.2685E-8)/(TE.198.6)
RHOE=PE/ (RG*TE)
REE=RHOE*UE*L/MUEDG

EL~SE
* AE=AIWF

ME=MINF
PE=PINF
TE=TINF
HE=HINF
UE=UINF
RHOE=RINF
REE=RE
flUEDG=MUINF
END IF

* HEMD=HE/UINF..2
IF(IB.EQ.O) THEN
WRITE 9,.)'RE=,PR= ',REPPR
WRITE(9.') 'RINF,UINF,MUINF=' ,RINF,UINFNUINF

P WRITE(9,u,'NINF.AINF.TINF.PINF:',MINF,AINF.TINF.PINF
WRITE(9,')'ME,PE,7-E,AEUE=' ,ME,PE,TE.AE.UE
WRITE(9.9) 'NTICNT KT IRST DT,EPS,NTW,IMET-.',

1 NTICNTKTIRSTDT.EPS,NTW,INET
ENDIF

* PRESS:PE/(RINF.UINF'*w2)
PRESSO=.PRESSr .HREF=.132*CPISQRT(NUINF*RINF*UINF)/PR**(2./3.)

CALL FIRST(INAX.JMAX.REE,CP.TW.TE.UE.UINFX,Y.UV.H.PR.
* & XTW2,TW1.TW2.IMETpPERG,M,RHOE,MINF.DELTA.L)

IF (Y(INAX,JNAX).LT.DELT.A(INAX).AND.MINF.GT..05)
1 GOTO920
DO 15 I=1,!NAX

HUU,0)=O.O
U( I,JMAX.1) =UE/UINF

15 H I.JMAX+J)=HEND
C

DO 20 Iz1.IMAX
U( I.JNAX) =UE/UINF

20 H(I.JMAX)=HEND
* C
-*C CALCULATE METRICS

CALL METRIC(X.YRE,IMETDX,DY.DYXIDYB,DYC,DYF.ETAX.
& DYRE.IMAX,JMAX,JNM1)

* C
C PUT INFORMATION INTO THE OLD TIME LEVEL INITIALLY

DO 30 I=1,INAX
DO 30 J=1,JMAX
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VNM1(I,J)=V(I,J)
30 HNMl(I.J):H(IJ)

* ~DO 40 Jul.JMAX
IF Q(;.LE.11) THEN
W(J) 1.6-(J-i) '.06
ELSE

W(J)=1.0
,* ..- ENDIF

40 CONTINUE
* .- C

C START THE TIME LOOP
t TIME=0.0

DO 100.N=1,NT
TIME-TIME.DT
DPDT: PRESS-PRESSO)
PRESSO=PRESS

C
C START BACK AT, BEGINNING OF GRID--REINITIALIZE VECTORS
CS * ~ 120 DO 130 J-1.JMAX

30 UIM1(J)=0.0
A.0 HIM1(J.I=0.0

C
CALCULATE THE OPTIMIZATION FACTOR OMEGA EVERY NTW TIME STEPS
C

IF(N.Eg.(N/NTW)*NTW)THEN

r 1 CALL MURHO(H:UpGGM1 .PRESS.UINV,CP,MUINF,IMAX,JMAX,RM,
S CALL ONEGA(U,V,DT.DX,DY,DYB,DYFDYREETAX,RMWWN,

& IMAX,JMM1IJMAXCOSJ)
ENDIF
IF(IR.EQ.l) CALL RADIUS(X,Y,DELTA,IMAX,JMAX,THETA,RIR)

C
C START I LOOP--MARCH IN XI DIRECTION
C

* ~ DO 200 I=2.IMAX
* I II 1=I-1

1M2=I-2
DELM=O.0

C PUT NEW INFORMATION INTO THE VELOCITY AND ENTHALPY
*C VECTORS AT THE I-1 AND 1-2 LOCATIONS

C
DO 210 Jzl,JMAX
UIM2(J)=UIM1(J)

HIM2(J)=HIM1(J)
210 HIM1(J)=H(I-1,J)

C DEFINE CONSTANTS TO DETERMINE THE COEFFICIENTS FOR THE
C U AND V VELOCITY EQUATIONS AND THE ENTHALPY EQUATION

C IF(I.EQ.2)THEN'

* CIJ1=1.
CIm1~1.
CIM2=0.
CVIJ'- -.5
CVIM1=.5
CVIM2=0.

ELSE
:t CIJ1=1.5

* C!Ml=2.0
CIM2=-.5
CVIJ=-.75
CVIM1=1.
CVIM2=-.25

ENDIF

C START THE ITERATION LOOP
C

* DO 300 K=1,KT
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* EMAX=O.O
EUMAX=O.

* EVMAX=0.
EHMAX=O.

C CALCULATE NEW VALUES FOR TEMPERATURE ,DENSITY, AND VISCOSITY USING
C THE NEW VALUES OF U, V, AND H (CALCATED AT THE OLD ITERATION LEVEL)

* - C
* -: DO 310 Jxl,JMAX

TEXP=T(J) .UINF*2. ICP
RHO(J) =GGM1.PRESS/T(J)

IF(TE.LT.200.) THEN

* EL E P*.*.28E8/TEMP F )/NUINFIN

* ENDIF
310 RM(J)=RHO(J).MU'I C
C START J LOOP- -MARCHING IN ETA DIRECTION
C

DO 400 J=JMM1.2.-l
* JM1~J-1

JM2=J-2
JP=J.1

* UOLD=U(I,3)
* * HOLD=H(I.J)

U IF(K.EQ.1)THEN
WOPT:1.O

ELSE
WOPT-W(J)

END2IF
C
C SETUP CONSTANTS TO DETERMINE COEFFICIENTS IN U, V,. AND H EQUATIONS
C
C SOLVE FOR U.V,AND H
C

DRMF=(RM(JP)+RM(J))/DYF(I J)* .5
DRMB=(RM(J).RM(JMI))/DYB(I,J)'.5

* CON=ETAX(I.J*UI.J .* V(I,J)/DYCI.J)
IF(CON.LT.0.O)THEN

* - IF(J.EQ.JMN1) THEN
CIJ2=-1.0
CJN1=-1 .0Pr CjN2=0.0O
ELSE

* CIJ2=-1.5
CJM1'--2.0
CJM2=.5
ENDIF
DRM1=DRNF
DRM2=DRMB
*i1=JP
J2=J*2

ELSE
IF(J.EQ.2)THEN
CIJ2=1.
CJN1~1.
CJM2=0.

ELSE
CIJ2=1 .5
CJM1=2 .0
CJM2=- .5

ENDIF
DRM1 =DRMB
DRM2=DRNF
J1~JM1

41 -J2=JM2
J3=JP
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ENDIF
C SOLVE FOR U VELOCITY

-'CIJ=I. +CIJl*DT/DX(I)*U(I.J) *CIJ2'.DTvCON
+ DT*DYRE(I.J)*(DRMF+DRMB)

CONJ1=CJM1'DT*CON + DT*DYRE(I.J)'DRM1
CONJ2=CJM2*DT*CON
CONIM=DT/DX(I)OU(I,J)
CON VS=DT*DYRE(I .J) *DRN2
US2(UNM1(I,J) + CINl*CONIE.U141(J) + CIM2'CONIM.UIM2(J;
& CONJ1*U(I,J1) + CONJ2'U(I.J2) + CONVS'U(I.J3))/C.J
U(I9 J)=WOPT*US +(l.-WOPT)*U(I,J)

C SOLVE FOR ENTHALPY
COM=ETAX(IJ)*U(I,J) + V(I,J)YDY(I,J)
IF(CON.LT.O.O)THEN

IF(J.EQ.JN2.) THEN
CIJ2=-1.O
CJN1:-1.0
CJM2=O.O
ELSE
CIJ2-1 .5

CJN2=.5
ENDIF
DRM1=DRMF
DRM2=DRMB
Jl=JP
J2-J-2
J3=JNI.

ELSE
IF(J.EQ.2)THEN
CIJ2=li
CJMl=1.
CJN2=O.

ELSE
CIJ2-1.5
CJMI=2.O
CJM2=-.5

ENDIF
DRM1=DRIB
DRM2=DRNF

J2=JN2
J3=Jp
ENDIF

FCIJ=1. +CIJ1'DT/DX(I)*U(I.J) +CIJ2%OT*CON
& * DT*DYRE(I,J)*(DRMF'DRM8)/PR
CONJI=CJMI'DTCON t DT*DYRE(I,J)vDRM1/PR
CONJ2=CJM2*DT*CON
CONIM=DT/DX(I)*U(I,J)

* CONVS=DT'DYRE(I,J)*DRM2/PR
TCON=DYRE(I,J)DT.( (PR-i. )/PR)4 .5
HS=(HNN1(I,J) + Clfl*CONIM*HIMI(J) + CIM2*CONIM*HIN2(J)+
& CONJ1.H(I,JI) + 'ONj2*H(I.J2) + CONVS.H(I,j3)+

& DPDT/RHO(J) +TCON'(DR'F'fJ(I,JP) .#2-(DRMF+DRMB)*U(1.J)*.24

&. DRMB.U(I,,JM1)..2))/CIJ
H(I,J)=WOPT*HS + (I.-WOPT)*H(I,J)

C
C COMPUTE THE ERROR
C

EU=ABS(U(IJ)-UOLD)
EH=ABS(H(I ,J -HOLD)
IF(EU.GE.EUAX)EUMAX=EU
IF(EH.C-E.EHMAX)EHMAY=EH

IF(EUMAX.GE.EMAX)EMAX=EUNAX
IF (EHMAX. GE. EMAX) EMAX='EHMAX

C
C END J LOOP
400 CONTINUE
C CALCULATE V VELOCITY
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DO 320 Jz2,JMlM1
JN1:J-1
VOLD=V(I,J)

C IF (IR.EQ.O) THEN

1 (U(IJ)-U(I,JM1))+(Y(I J)-Y(I,JH1))*
2 (CVIJO(U(I.J)+U(I.JN1))+

-*3 CvIm1'(UIMt1(J)*UIN1(JN1))+
4 CVIM2'(UIM2(J).UIM2(JM1))))/DX(I)

C ELSE
C +VIJ=1RIJu~)(RIJ1.MVIJ1 R(I,J)**M
C &.VCNIJ*U(I,J).R(IN1,i)**M.CVIM1*Dl*UIMI(J) +R(IM2,J)**M
C &.CVIM2.Dl.UIN2(J)*R(I,JX1)'.M'VCNJl'U(I ,JM1).R(IN1 .JM1)a.M
C &.CVIM1.Dl.UIN1(JM1).R(IM2,JM1)..M*CVIM2*Dl*UIM2(JH1))
C ENDIF

EV=ABS(V(I,J)-VOLD)
IF(EV.GE.EVAX)EVMAX=EV
IF(EVMAX .GE.ENAX)EMAX=EVMAX

*320 CONTINUE
C
C CHECK CONVERGENCE.
C

IF(ENAX.LE.EPS) GO TO 420

C END ITERATION LOOP
300 CONTINUE
420 DO 430 J:2,JNM1

IF (DEL. GT. DELi4)DELM=DEL
DEL=ABS(H(I,J) - HNM1(I,J))
IF( DEL. GT .DEL ) DELN2 DEL

*430 CONTINUE'
V(I',JMAX)=V(I.JNH1)
DO 330 J=1,JMAX
U(1,J)=U(2,J)
H(l.J)zH(2,J)

5330 V(1.J)=V(2.J)
C MOVE THE RESULTS INTO THE OLD TIME LEVEL
C

DO,440 Jzl.JMAX

440 VNN1(I,J)=V(I.J)
C
C CALCULATE THE HEAT RATE AT THE WALL
C

FDELY=(-3.*Y(I.1) *4.*Y,(I.2) -Y(I,3))/2.

IF MT.LT.200.) THEN

ELSE
MUW=(TW(I).'1 .5.2.2685E-8)/ (TW(I).198.6)
ENDIF

C CONDUCTIVITY IS EQUAL TO MUW*CP/PR=K
0(I)=MUW*RHO(1).(-3.*T(1) + 4.*T(2) - T(3))* RINF
& *UINF*-2/(2..L-PR*FDELY*RHOE)

C
C TAW SHOULD USUALLY BE BASED ON EDGE CONDITIONS FORMALLY
C BUT CAN BE BASED ON FREESTREAM IF YOU ARE CONSISTENT!!!!

TAW=TE*(.U.SRT(PR(GAM1.).5IE%*2)
HC%:Q(I)/(TAW - TW(I))
HHREF( I)=HC/HREF*SQRT(X (I) *L)
TA* MWUIF(3UI,)4UI2)U13).
1 /(L*FDELY*RHO(l))

C
C END I LOOP
200 CONTINUE
C
C WRITE OUT SOLUTION AT A TIME STEP
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C
IF(N.EQ.1.OR.N.EQ. (N/ICNT)'ICNT)THEN
WRITE(10,1)N,TIME
WRITE(6,')'DELT' 1,DELN,'K=',K,'U,V,H ERRz'.EUMAX.EVMAX,EHNAX
WRITEU10,.'DELT='.DELM.'KZ'PK.'U,V,H ERR:'.EUMAX.EVMAX,EHMAX
WRITE(9,12)
DO 150 1u1,IMAX
IF (I.EQ.2.OR.I.EQ.INAX) THEN
WRITE(10 2I,X(I)
IF(IPRT.EQO)GO TO 161
WRITE(10,3)
DO 160 JslJNAX
T(J)-H(I.J)-U(I.J)**2/2.
TEMPuT(J)*UINF**2/CP

160 CONTINUE
ENDIF

161 IF(I.EQ.l) GO TO 150

TINEPzTINE*L/UIMF
C CF RATIO TO BLASIUS CAN BE BASED ON EDGE OR FREESTREAN RE

C'FCF-CF(I)/.664*SQRT(REE*X(I))
WRITE(9.7)TINEP,X(l) ,CFCF,HHREF(I) .TW(I)
IF(MINF.LE..05.AND.N.EQ.NT) THEN
WRITE(13,10) X(I),CFCF
WRITE(12,10) X(I).HHREF(I)
ENDIF

150 CONTINUE
ENDIF

C END TIME LOOP
100 CONTINUE
C
C COMPUTE PHYSICAL YI VALUES

IF (MINF.LE. .05) THEN
DO 700 I=2.IMAX
DO 710 J=1,JNAX
ETA-Y(I,J)*SQRT(RE/XUl))

70WRITE'(11.10) ETA,U(I,J)

ENDIF
DO 800 Jsl.JMAX
YP(1,J)=0.0rC WRITE(11.1O)X(1),YPQ.J)

800 CONTTNUE
C WRITh-(13.11)

DO 810 I=2,IMAX
* DO 820 J:1.JMAX

T(j)=H(I.J) -'U(I,J)**2/2
820 RHO(J)zGGMIePRESS/T(J)
C

pC WRITE11.,10)X(I),YP(I,1)
DO t.30 J=2.JMAX

C YP(I.J)=YP(I,J-l) # (1/RH(J) + I/RHO(J-j))/2*(Y(I.J)-YtI,J-1))
CALL TRAPZ(H,Y,I,J,IMAX.JMAX,SUM.HEND)
YP(I,J)=SUM
ETAC:YPUI.J).SQRT(UE.RHOE.L/(NUEDG.X(I)))

c WRITE(11,10)X(I),YP(I,J)
T(J) :T(J) 'UINF**2. /(CP*TE)
UD(I,J)2U(I,J)*UINF/UE

WRITE(13,10) ETACI.UD(I,J)
C WRITE(13,8) T(J),U(I,J),ETAC
830 CONTINUE
810 CONTINUE

DO 825 I-1,IMAX
DO 826 J-1,JMAXrWRITE(11,10) ()YIJ
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826 CONTINUE
825 CON TINUE

C THIS SECTION FIGURES OUT THE THEORETICAL NONISOTHERMAL VALUES
C FOR H/HREF,
C
C CAUTION? TSTAR BASED ON TW1t DO YOU WANT CONSTANT REFERENCE
C OR ACTUAL TW?
840 TAWzTE.(1.,SQRT(PR)u(GAN-1.)*.5ONEO.2)'

TSTAR-TE'.5.(TW1-TE)i.22*(TAW-TE)
RSTAR=PEI (RG*TSTAR)

IF(TE.LT.200.) THEN

ELSE
NUSTARB(TSTAR..1 .5*2.2685E-8)/ (TSTAR.198.6)

ENDIF
DO 900 I=1,INAX
HISOu 3 2CPSQRT(MUSTARRSTARUE)'SQRT(X(I)uL)/(PR.(2./3.).HREF)
WRITE(9.*) X(I).'IiISO=',HISO

900 CONTINUE
920 CONTINUE
I FORMAT(///,2X, 1',6,5X,ITIMEzl,Fl5.6.IX,ISECI)

2 FORNAT(//,2X,' sD3,5X,'X-LOCATIONx',Fl3.5)
3 FORMAT(/.3X.'J',7X,'Y-LOC',IOX,'U',11X,'H',11X,'T'.11X,

&TEMP (R) ' ,X ' lIX ' RHO')
4 FORMAT(1X,I3,5F13.-5.2Fl5.8)
5 FORMAT(2X,'HEAT RATE (Q);',F136 5X,'H/HREF='.Fl3.6)'

-6 FORNAT('THIS SOLUTION CONVRGED WITH KT ITERATIONS')
7 FORMAT2X,F15.5,4(2X,Fl3.5))
8 FORMAT(3(2X,E13.5))
9 FORMAT(34X.2(2XF13.5))
10 FORNAT(E13.5)
11 FORNAT(5X.'T/TINF',gX,'U/UINF'.1lX,'ETAC')
12 FORMAT(/,7X,'TIME',15X,'X',13X,'CF/CF'.11X.'HHREF',

1 1OX, 'TWALL')
REWIND 5
RETURN
END I

C
C, THIS SUBROUTINE CALCULATES BETA AND EDGE CONDITIONS
C

SUBROUTINE BETA(THETA,NINF,PINF,TINFPO,CP,RG,XE,PE,,TE,
&HEI,UE)

C CALCULATES EDGE CONDITIONS GIVEN DEFLECTION ANGLE
C SHOCK ANGLE CALCULATED TO 1.OE-08 TOLERANCE

*REAL HINF,XE,HE
Q(X)=( (GAN+I.)/2..SIN(X).SIN(THETA)/COS(X-THETA).

GAM=1.4
TOL=1.0E-08
PO=PO*PI/ 180.
Y=Q(PO)-PO
DO 10 I=1,50
XNEW=O(PO)
Y=Q(XNEW)-XNEW

* EROR=ABS(XNEW-?O) /ABS(XNEW)
* IF(EROR.LT.TOL.OR.ABS(Y).LT.TOL) GO.TO 30

PO=XNEW
10 CONTINUE
30 NE=((2.+(GAM-1.'*(INFSIN(XNEWle.2.)/u2.GAl.(NINF*

&SIN(XNEW)"*2-(GA-1.))CSIN(XNEW-THETA))--2.))-..5
TE INF( 2.(AN- 1.)).(INFSIN(X NEW-THETA))..2.
&UE(GM.RT(MuRIoTE -HT))-.
UE=NEPST(GAM*RG*/2
HP *TE(2'GAN/2GN1.(IFSNX~).z1)pN

RETURN
END
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C THIS SUBROUTINE TAKES THE BLASIUS SOLUTION, MODIFIES IT BY
C THE DENSITY, AND FORMS A GRID. IT ALSO DETERMINES INITIAL
C CONDITIONSI

SUBROUTINE FIRST(IMAXDJMAX.,RE.CP,TW,TE,UE.UINF,
&X,Y,U,V.H,PR.XTW2,TWI.TW2,IMET,PE.RG,MRHOE.MINF.DELTA,L)
DIMENSION X(IMAX),Y(IMAX,JMAX),U(INAX,O:JMAX.1).H'(INAX,O:JMAX*l)
DIMENSION V(IMAXI,JMAX)DTW(IMAX),DELTA(IMAX)
REAL N.IIINF,.UWDL

C
C TO USE ANALTICAL METRIC FOR YXI FOR I:1 TO IMET
C Y POINTS AT I-IMET ARE SCALED BY SQRT(X)
C THIS WILL NOT GUARANTEE A SMOOTH GRID PAST I=IMET

DO 30 Iul.IMET
DO 30 Jul.JNAX
Y(I,J)=Y(INET,J)aSQRT(X(I)/X(IMET))

30 CONTINUE
C
C DEFINE THE WALL TEMPERATURES- IF TW1:TW2 NO TEMP STEP
C IF TW1<TW2 TEMP STEP
C

DO 40 IllINAX
IF(X(I) .LE.XTW2)THEN
TW(I):TWI

ELSE
TW(I)=TW2'

ENDIF
40 CONTINUE

HE-(CP*TE+UE**2./2.)/UINF*.2.
DELTA(l) :0.0
DO 50 I=2pIMAX
HW=CP*TW(I) /UINF**2
HSUB=HE - HW
IF (MINF.LE. .O5)THEN
DELTA(I):5.2/SQRT(RE).SQRT(X(l))
DELTATSDELTA(I)/(1.026*PRW.(l./3.))
ELSE
RHOW=PE/(RG*TW(I))
IF(TE.LT.200.) THEN

ELSE

ENDIF
DELTA(I)s(280uRHOWeMUWuX(I)/((13.oRHOE.RHOE.Li UE.U.+2M))))**.5
DELTAT=DELTA (I)
ENDIF
DO 60 J=1,JMAX
IF(Y(IJ) .LE.DELTA(I) )THEN
U(IJ)=LE/UINF*(u.5'Y(I,J)/DELTA(l) .*(Y(I,J)/DELTA(I) ) *3.)

ELSE
U(I,J)=UE/UINF

END IF
V(IPJ):0.0
IF(Y(I.J) .LE.DELTAT)THEN
H(IJ)=HW + HSUBu(1.5*Y(I,J)/DELTAT -. 5*(Y(IOJ)/DELTAT)*.3)
+ (U(IoJ)/UINF)u..2./2. + (UE/UINF)**2./29

&'(1.5*Y(IpJ)/DELTAT-.5.(Y(I,J)/DELTAT)**3.)
ELSE
H(I,J)=HE,
ENDIF

60 CONTINUE
50 CONTINUE

DO 70 J=1,JMAX
V(1,J)=0.O
H(1,J)=H(2.J)

70 CONTINUE'
RETURN
END
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C COMPUTE THE DENSITY TIMES VISCOSITY FOR EVERY J LOCATION4
C

SUBROUTINE MURHO(H,UPGGM1 ,PRESS,UINFDCPUMUINF.IMAX,jMAX,
&RM.W.TE)
DIMENSION H(IMAX.0:JMAX.1),U(IMAX,O:JMAX+1),RMcJMAX),W(JMAX)
REAL MUDMUINF
DO 10 I=2,IMAX
DO 20 J=1,JNAX -

DEN=GGMX *PRESS/TEMP
TEMP-TEMP*UINF**2/CP
IF(TE.LT.200. )THEN
MU-(2.32E-8.TEMPu..5/B1..220.-/(TEMP.10.c"(9./TEMPfl))/MUINF
ELSE
NU= (TENP..l .5.2.2685E-8)/(TEMP-198.6)/MUINr
ENDIF
RN(J) UDEN*MU

20 W(J)=1.85
10 CONTINUE

RETURN
END

C
C
C THIS SUBROUTINE CALCULATES THE SOR OMEGA

C SUBROUTINE OMEGA(U.V,DT,DX.DY,DYB,DYF.DYRE,ETAX,RM.

&WI,WN, IMAXJMM1 ,JMAX,COSJ)
DIMENSION U(IMAXO:JMAX1VIAXJMAX,DX(UMAX),DY(MAX,JMAX)
DIMENSION DYB(IMAX,JMAX) ,DYF(IMAX1 JMAX) ,DYRE(IMAX,JMAX) .
DIMENSION RM(JMAX) ,W(JMAX) ,ETAX(IMAX,JMAX)
REAL LAM
DO 10 Iz2,IMAX
DO 20 J*2,JNM1

DIV=I./DT + 1.5*(U(I,J)/DX(l) *ABS(U(I,J)*ETAX(I.J)
& V(I.J)/DY(I.J))) + DYRE(I.J)*.5*
L (URM(JP)+RM(J))/DYF(I,J) #((RM(J).RM(JM))/DYB(I.J)))

LAM=(-2.*SQRT(ABS(ABS((ETAX(I.J)*U(I.J) +V(IpJ)/DY(IJ))
& .5.DYRE(I,J)*((RM(j).RM(JM))/DYB(I,J)))
& (.5*DYRE(I.J)*( (RM(JP)*RM(J))/DYF(I.J))))))/DIV.COSJ

IF(LAM.GT.O.97)LAM=0.97

IF(WN.LT.W(J) MJ(J)=WN
20 CONTINUE
10 CONTINUE

RETURN C
END

C
C COMPUTES H3 FOR A CONE-ASSUME CONSTANT TRANSVERSE RADIUS 

O
C ASSUME YCOS(ALPHA) SMALL. IF NOT DELETE NEXT LINE.
C

SUBROUTINE RADIUS(X,Y,DELTA,IMAX,JMAX,THETAR, IR)
DIMENSION X(IMAX),Y(IMAX,JMAX),R(IMAXJMAX),DELTA(IMAX)
DO 10 Izl,IMAX
DO 20 Jzl,JMAX
IF(Y(I,J).LE.DELTAIl)) THEN,

ELSE
IF(IR.EQO THEN
R(I,J)=XU')SIN(THETA)
ELSE
R(IJ)=X(I)SIN(THETA.*YUI,J*CS*THETA)
ENDIF
ENDIF
IF(R(I,J).EQ.O.0) R(I,J)zl.E-

20 CONTINUE
10 CONTINUE

RETURN
END
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SUBROUTINE METRIC(X.Y,RE.IMET,DXDY,DYXIPDYBDYC,DYF,
& ETAX.DYRE.IMAXJMAX,JMM1)

C 'CALCULATES DERIVATIVES XI WRT Xp ETA WRT Yo AND ETA 'iRT X
C XI WRT X =1/DXETA WRT Yq,/DYAND ETA WRT X= -DYXII(DX*DY)

DIMENSION X(IMAX),Y(IMAXPJMAX),DX(IMAX)PDY(IMAXJMAX)
DIMENSION DYXI(IMAXJMAX) ,DYB(IMAX.JMAX)
DIMENSION DYF(IMAX,JMAX),ETAX(IMAX,JMAX) ,DYRE(IMAX,JMAX)

DX(l)z.5.(-3..X(1).4..X(2)-X(3))
DO 10 Im2,IMAX

IM2*I-2
IPsI~1
rF(I.EQ.IHAk)THEN
DX(I)z.5.(3.*X(l)-4..X(IM1)+X(IM2))
ELSE

ENDIF
DYXI(I,1)2O.0
IF (I.GT.IMET) THEN

C DYXI(IJMAX):Y(IJMAX)-Y(IMIJMAX)
DYXI(I,JMAX)=.5(3.Y(I,JMAX)-4.Y(IM1,JMAX)+Y(IM2,JMAX))
ELSE
*DYXI(I,JMAX)=Y(I.JMAX)'.5.DX(I)/X(I)
ENDIF

DO 10 J-2,JMM1
JP=J.1
Jm1.=J-1
JM2=J-2
DY(I,J)=(Y(I.JP)-Y(I,JM1) )/2
IF(I.GT.IMET)THEN

C DYXI(I,')=Y(I,J)-Y(IN1,J)
DYXI(I,J)=.5.(3.*Y(I,J)-4.. Y(IN1,J)+Y(IM2,J))
ELSE
DYXI(I,J)=Y(I,J)9.5*DX(I)/X(l)

ENDI F

DYC=(Y(I,jvY-Y(I,JMI) )/2.

ETAX(I,J)=-DYXI(T,J)/(DX(I).DY(IJ))

RETURN
END

C THIS SUBROUTINE CALCULATES THE ERROR IN U-UEXACT

SUBROUTINE ERROR(U,UEXACT, LNAX,JMAX)
DIMENSION U(IMAX,0:JMAX.D),UEXACT(IMAX,O:JMAX~lD
URMS=0.0
DO 10 Izl,IMAX
DO 20 J=1,JM
UER=UI,J)-UEXACTI,J)
URMS=URMSUER*2.20 COTINU

20 CONTINUE
RMSU=SQRT(URMS/(IMAXIJMAX)O
WRITE(6,*) 'RI S VALUE OF U-VELOCITY ERROR =',RMSU
RETURN

END
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SUBROUTINE NWP(U,DUUU,H,IMAX,JMAX,ICOL,WHO,WH2,WH3)
DIMENSION '(IMAX,O:JNAX-.1) DUUU(JNAX)
RMSDU= 0.0
RMSDUU=0.0
RMSDUUU=0.0
HO=O .0
H2=0.0
H3=0.0
WRITE (6,100)

100 FORMAT (3X,'ETA',07X,'DU',9X,'DUU',1OX,'DUUU',7X,'DUUU..2')
DO 10 Izl,IMAX

C I=ICOL
IF(I.EQ.2.OR.I.EQ.IHAX) WRITE(6,O)'I=' 4
DO 20 X:1,JMAX
IF (J.EQ.1.OR.J.EQ.JMAX) THEN
IF '(J.EQ.l) THEN

ELSE

DUU-U(I,JNAX)-2.*UdI,JMAX-1)U(I,JMAX-2i
END IF

ELSE

DUU=U(I.J.1)-2.*U(I,J)-U(I,J-1)
END IF
IF (J.LE.2.OR.J.GE.JNAX-1) THEN
IF (3.LE.2) THEN

DUUU(J)=.5.(-3.*U(I,J.4)14.U(I,J+3)-24.U(I,J.2)
ELSE*(,+1-.U(,)
ELSE =5o5O(,J-8U(IJ1,4.UIJ2

2. -14=5*(..U(I,J)-1).3.U(IJ-14. ,42
ENDIF(IJ3) *UIJ-)

ESEF
ELSE=5((IJ2-.UI,.)2.(,J1-(,-)
ENDIF5*UIJ2)2*(,JI+.U(,-)U(,-)
E3HDUU( .
H23 H2DUUU..2. ?
H2= HO *DU'*2.
RHO= RM+DU *DU"
RMSDUU= RSDUU + DUU2.f
RMSDUUU RMSDUUU+ DUU(J).2 .

IF(I.EO.2.RMSI.EO.IMAX()*
rF(IEQ(200)JD.DUDUUJ),UU(J)X)

20 FORATE (6X,20)5,D .D. U()DUUJ*2
200 ONMT(X,5UE3.)
2.0 CONTINUE

10 CONTINUEUH *WH'H
HR=WSH3 + H/IMA*JMA+X))*
RMSDISRT(H/(MDU/(MAX)J))
RMSDUU=SQRT(RMSDU/( IMAXJMAX))
RMSDUUU'SO!T(RSDUU/IMAXJMAX))
RTE600 HRSHRMSDU ,RTRMDUU( MSDUU.RMSDU

30 FRMT(1,'THE HRMS,E15.9,X,'THERMS O HE3.,/
300 ORMTHE RHE OFDU',E1.,3X,'THE RS OF DU'E3.,

2 /,lX,'THE RMS OF DUUU=',El3.5,/)

END
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C THI S SUBROUTINE CALCULATES THE POHLHAUSEN APPROXIMATE SOLUTION
C FOR INCOMPRESSIBLE. FLAT PLATE.

SUBROUTINE POHLY,DELTA PUEIMAX,JMAX.UEXACT)
DIMENSION Y(IMAX,JMAX),DELTA(MAX,UEXACT(IMAX,:JMAX~l) ....

AMBDA=O .0
A=0.0
B=2.0+AMBDA/6.
C=-AMBDA/2.
D=-2. .AMBDA/2.
E=I.-AMBDA/6.
DO 30 Iul.IMAX
UEXACT(I,0)=0.0

30 CONTINUE
DO 10 I=2,INAX
DO 20 JzlJMAX
IF(Y(I,J) .LE.DELTA(I) )THEN

1 D*((Y(I,J)/DELTA(I))**3.)+E.( (Y(I,J)/DELTA(I))'.4.))
ELSE
UEXACT(I.J):UE/UE

ENDIF
20 CONTINUE
10O CONTINUE

DO 60 J=1,JMAX
UEXACT(l.J)=UEXACT(2,J),

60 CONTINUE
RETURN
END

C
C
C THIS SUBROUTINE CALCULATES THE NEW GRID GENERATION CONTROL
C FUNCTION P. IT IS BASED ON A GLOBAL TRUNCATION ERROR
C ANALYSIS FOR THE FLOW SOLUTION IN THE TRANSFORMED PLANE
C

SUBROUTINE NEWP1 (U.P.UPLUSDC,UMINDC,DUUU ,CPLUSDC,
1 CMINDCC,RMSDUUU.H,K.PERCENT,IMAXJMAX,
2 ABAR2.NMAXX ,AAA.CCC.DDD,GGG,W1W.YMIN,YNAX,ICOL,
3 ITERATE.UE.DELTA.P3,Y3,D3U.U3,A.ZI.IRWHOWH2.WH3)

DIMENSION DUUU(JMAX) ,P(JMAX)
DIMENSION UPLUSDC(IMAX.O:JMAX+ID,UMINDC(IMAX.0:JMAX.1,)
DIMENSION U(IMAX.0:JMAX+iJU3(IMAX,0:JMAX.1)
DIMENSION P3(JMAX) ,Y3(IMAX.JMAX) .D3U(JMAX)
DIMENSION X(IMAX) DY(IMAXPJMAX) ,DELTA(IMAX)
DIMENSION ABAR2(NMAX) ,A(NMAX) ,ZI(NMAX,NMAX) ,WWW(JMAX)
DIMENSION AAA(JMAX),CCC(JMAX) ,DDD(JMAX).GGG(JNAX)
WRITE(6. 100)

100 FORMAT(/,15X.'.**,..w* NEW RLAMBA CALCUiLATION #.".J
1 3X, 'ETA' ,5X, 'DU' ,11X, 'DUU' ,1OX,
2 'POLD',1OX,'DUUU'.7X,'DUUU**2')

RMSDU=0.0*
RNSDUU=0.0
RMSDUUU=0.0
H2=0.0
H3=0.0
HP2=0.0
HP3=O,. 0
HM2=0.0
HM3=0.0
HPO=0.0
HMO=0.O
HO=0.0

COLDzC
DO 20 I=1,INAX

C I=ICOL
IF(I.EQ.2.OR.I.EQ.IMAX) WRITE(6,*)'I= ',I
DO 10 J=1,JMAX
IF (J.EQ.1.OR.J EQ.JMAX),THEN
IF (J.EQ.1) THEN
DU:.5.(-3.*U(1,1).4.*U(I.2)-U(I.3))
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DUP=.S'(-3.*UPLUSDC(I.1)+4.'UPLUSDC(I,2) -UPLUSDC(I .3))

DUUP=UPLUSDCI.1-2.*UPLUSDCUP2)*UPLUSDC(I.3)
DUUM:U?INDCUI,1)-2..UNINDC(I.2).UNINDC(I,3)

ELSE
DU=.5.(3.*U(I.JMAX)-4..U(I,JNAX-1)+U(I.jNAX-2))
DUP=.5-(3.-UPLUSDC(I,JMAX)-4.*UPLUSDC(I,JMAX-1)+

i UPLUSDC(IJMAX-2))
DUM=.r3.(3.'UMINDC(I,JftAX)-4.'UMINDC(I,JMAX-1)+

IUNINDC(I,JMAX-2)) S

DIIU=U(I.JMAX)-2.*U(I,JMAX-1)'U(I.JNAX-2)
DUUP=UPLUSDC(IJMAX)-2.'UPLUSDC(I,JNAX-1)+

I. UPLUSDC(I,.JMAX-2)
DUUM=UNINDC(I.JNAX) -2.'UMINDC(I.JMAX-1)+

1 EN IFUNINDC(I..JMAX-2)

ELSE
DU=.5*(U(IJ+1)-UUI,J-1))
DUP=,5'dPLUSDCI,J.D)-UPLUSDC(I.J-1))

DUU=U(I.J+1)-2.*U(I,J).U(IJ-1)
DUUP=UPLUSDC(I,J*1)-2.*UPLUSDC(IT)+UPLUSDC(I,J-1)

END IF
IF (J.LE.2.OR.J.GE.JMAX-1) THEN
IF (J.LE.2) THEN

1 18.*U(I,3*1)-5.*U.J))
DUUUP=.5*(-3.*UPLUSDC(I,J.4)+14..UPLUSDCUI,J+3)-

1 24. UPLUSDC(I,J+2) '18.'UPLUSDC(I,J+1)-5.*UPLUSDCU,.J))
DUUUN=.5'(-3.'UMINDC(I,J44).14,*UMINDCUoj.3)-

1 24.*UMINDC(I,J+~2).18..UMINDC(I,J.1)-5..UMINDC(I,J))
ELSE

1. 3.*U(I,J-4))
DUUUP:.5*(5.,UPLUSDC(I,J)-l'8..UPLUSDC(I.J-1),24..UPLUSDC(.J.2)-

1 14.*UPLUSDC(I,J-3)+3.*UPLUSDC(I,J-4))
DUUUN=.5'(5..UMINDC(I,J)-18.*UMINDC(I,J-1).24. 'UMINDC(I,j-2)-

1 14.'UMINDC(I.J-3)+.3.*UMINDC(I.J-4)')
ENT) IF

ELSE

DUUUP=.5'(UPLUSDC(I,J2)-2.UPLUSDC.J1)2.UPLJSDC(I,J-1l)-
2. UPLUSDC(I.J-2))

DUUUfl=.5*(UNINDC(I.J+2)-2..UNINDC(I ,J+1).2..UNINDC(I.J-1)-
1 UMINDC(IJ-2))

END IF
IF(I.EO.2.OR.I.EQ.IMAX) THEN
WRITE (6,200) J,DU,DUU,P(J).DUUU(J.DUUU(J)*"2.

200 FOPMAT (15,5E13.5)
ENDIF
RMSDUUU=RNSDUUU+riUUU(J)"2
RMSDU=RMSDU'DU**2
RMSDUU=RNSDUU+DUU**2.
HO=HO*DU*.'2.
H2=H2*DUU**2.
H3=H3.DUUUlJ "*2
HPO=HPO+DUP*"2.
HP2=HP2+DUUP' '2.
HP3:HP3+DUUUP**2. L
HMO=HM0+DUM**2.
HM2=HM2+DUUM"*2.
HM3=HM3+DUUUN"*2

10 CONTINUE S-

20 CONTINUE
H=WH3*H3 +WH2*H2 -WHO'HO
HPLUSDCzWH3*HP3 +WH2*HP2 *WHO.HPO
HMINDC=WH3*HM3.WH2*HM2 + WHO*HMO
DET= (CPLUSDC"*2) *(C-CMINDC) -CPLUSDC'tC-C-CMINDC.'2)-
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C"C*CMINDC-(CMINDC"*2)*C
RNUNM (CPLUSDC*2) '(H-HIIINDC) -HPLUSDC. (C*C-CMINDC..2)-

I (C**2)*HMINDC-(C21INDC**2)*H
DEN=HPLUSDC. (C-CMINDr) -CPLUSDC' (H-HMINDC) .H*CMINDC--

I HMINDC*C -

IF (DET.NE.O.0) THEN
C=-.5wRNUM/DEN
IF (DEN/DET.LT.O.O) THEN
HMIN=MIN (HMINDC.H,HPLUSDC) ..

IF (HNINDC.EQ.HHIN) C=CMINDC
IF (HPLUSDC.EQ.HMIN)C=CPLUSDC
IF(a.EQ,.HMIN) C=COLD
ELSE
'DO 40 JJ~lNNAX
ABAR2(3J)=A(JJ)+ C * ZI(JJIR)

40 CONTINUE
CALL PCAL(ABAR"PNNAX,P3,JMAX)
CALL EXPGRD(X,Y3,P3,AAACCC.DDDI.GGGPWWWYMIN.

1 YMAX,IMAX,JMAX. ICOL)
CALL BLIMP(X,Y3,IMAX,JMAX,U3,ITERATE,UE,DELTA,RE)
CALL NWP(U3,D3U.H4 IIIAX,JMAX,ICOLWHO.WH2.WH3)
HMIN=NIN(HMINDC,H,HPLuSDC. H4)
IF(H4.EQ.HMIN.AND.H4.NE.H) GO TO 220
:F (HMINDC.EQ.HMIN) C:CMINDC
IF (HPLUSDC.EQ.HMIN)C=CPLUSDC
IFU4.EQ.HMIN) C=COLD

220 CONTINUE
END IF
ELSE
HMIN=MIN (HMINDC,H,HPLUSDC)
IF '(HMINDC.EQ.HMIN) C=CMlINDC
IF (HPLUSDC.9g.HMIN) C=CPLUSDC
IF (H.EQ.HMIN) C=COLD

END IF-
EPSILON= .005
IF (ABS(C).LT..Ol) EPSILON=.01
DCmPERCENT-C+EPSILON
CPLUSDC=C+DC
CMINDC=C-DC
WRITE (6,300) HPHNINHPLUSDC,HMINDC,C.(

300 FORMAT (!X,'H=',E15.9,/,
1 IX,'HMIN=',El5.9.1,

2 1X,'HPL= ,E15.9,/.
3 IX,'HMN=',El5.9,/,
4 1X,'NEW RLAMBA=',E15-.9,/,
5 1X.'ITERATION NUMBER, K=',15./)
RMSDUUU=SQRT(RMSDUUU/ (IMAX*JMAX))
RMSDUU= SQRT(RMSDUU/(IMAX.JMAX))
RMSDU= SQRT(RMSDU/(IMAX*JMAX))
WRITE (6,400) RMSDU.RMSDUU,RMSDUUU,COLD

400 FORMAT (1X,'RMSDU =',El3.5,3X,'RMSDUU =,E13.5,3X,'RMSDUUU='
1 RETURN El3.5,/,lX.'RLAMBA OLD=',E15.9,/)

END

ir
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