
746-fl164 835 REAL-TIME FLIGHT TEST PCN DATA ACQUISITION NONITOR(U) 1/3
AIR FORCE INST OF TECH IRIGHT-PAlTTERSON AFB ON SCHOOL
OF ENGINEERING J R CROASDALE SEP 85 AFIT/GE/ENG/85S-i

UNCLASSIFIED F/G 17/2 UL

EhhhmhmhEEEEEI
EhhhEEEEEEohEE
EhhhhEmhEEEmhE
EEmhEEEEEEEEEE
EEEEEEEEmhEEEE

omEohEEEEEohE

k'g

,,' ,,,

0
1. 0 112

*.. ,,,~- 3

1 40 2.0

'I'l

lII~l °

1.25 11W .1111. 611111-NII~l III

MICROCOPY RESOLUTION CE1(+AI

N A T IO N A j B I flIA t 10 A N 4 R 'P I '

Sr

.. '..-

* . ..

0

kOF$

REAL-TIMF FLIGHT TEST PCM

DA.TA ACQUISITION MONITOR

AITUIESITY

AIR ~ ~ Jh FORC INTTUEOF TaECNLG

Wrigh ePatersn ACoe BSeh

4l
FTG/N/5-

SS
.t p 621

AFIT/GE/ENG/85 s-i

REAL-TIME FLIGHT TEST PCM

DATA ACQUISITION MONITOR

THESIS DTIC
Af F IECTE

John R. Croasdale 1 EB .
Lieutenant Colonel, USAFW FEB 13 W6

AFIT/GE/ENG/85S-I

Approved for public release; distribution unlimited

-

AFIT/GE/ENG/85S-l

REAL-TIME FLIGHT TEST PCM

DATA ACQUISITION MONITOR

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

John R. Croasdale, B.S.

Lieutenant Colonel, USAF

September 1985

Approved for public release; distribution unlimited.

- S ?

Preface

The purpose of this undertaking was to provide the 4950th Test

Wing with an inexpensive way to monitor data being recorded during a

test flight and prevent the circumstance where faulty instrumentation

equipment could waste valuable flight time if undetected. Although

only a prototype, the system developed will provide the baseline upon

which further development of the PCM monitor into a flight qualified

unit will proceed.

This project is dedicated to my wife for all the inconveniences

and the hours she had to watch the kids when I was working on it.

I would like to thank the Instrumentation Engineering Branch of

the 4950TEST WING's Directorate of Flight Test Engineering for the help

'provided in defining the requirements and final test of the system.

04 Without their support, the PCM MONITOR could not have been produced.

I would also like to thank my advisor, Captain Dave King, for the

help he gave me in the preparation of this thesis.

Accpession For

Td toe

P4

'p *.. *,p'~.*.- - - ,- -'p - -

TABLE OF CO1NTENTS

* Preface ii

List of figures v

List of Tables .. vii

Abstractviii

I. INTRODUCTION

Purpose I-I

Scope.......................................1-2
Background 1-2
Requirements 1-9
System Description 1-9

II. PCM PROCESSOR

Overview II-1
Signal Conditioner11-6
System Clock 11-8
Bit Timer 11-8

_ v ooShift Generator 11-13
Shift Selector 11-16
Word Processor 11-23
System Controller 11-27
Reset Circuitry 11-35
Random Access Memory (RAM) 11-37
I/0 Port RAM 11-39
Power Requirements and Design 11-39
Software 11-41

III. DISPLAY PROCESSOR

System Overview .. II-...............1-1
Color Computer Interface 111-5
Program MAIN 111-8
Program FSE[P 111-9
Program PSETJP 111-14

- Program DSETUP I1-22

Program EXECUTE 111-28

IV. TEST AND EVALUATION

*Methodology IV-1
Testing The System IV-2

iii

| g * 4~

S'

,~~...'.'.. ."-.... '--".,, - .--,'.,--"h .' - "-", " ,'',"", * .',..'-.-" '-".-,.'- .- .."-"-" .-. ---..-.

V. RECOMMENDATIONS AND CONCLUSIONS

Recommendations V-i

Conclusions V-3

Bibliography -i......... BIB-i

Appendix A: Programmer's Manual

Overview A-2
PCM PROCESSOR A-4
DISPLAY PROCESSOR A-17
Flowcharts A-33
References A-51

Appendix B: User's Manual

Overview B-2
System Description B-2
Getting Started B-3
Setting Up Frame Specifications B-5
Setting Up Parameter Files B-10
Defining Display Pages B-18
Displaying the Data B-23
Manual Reset B-32
Exiting The System B-32
References................................... B-33

Appendix C: Program Listings

PCM PROCESSOR Listing C-I
Program CONVERT Listing C-6
Program MAIN Listing C-9
Program FSETUP Listing C-i
Program PSETUP Listing C-18
Program DSETUP Listing C-27
Program EXECUTE Listing C-38

Appendix D: Application Notes D-I

Appendix E: Parts List E-1

Appendix F: Acronym List.............................. F-1

i

iv

oI

List of Figures

(g Figures
1 PCM MONITOR Pictorial 1-3
2 Standard PCM Formats 1-7
3 Block Diagram 11-2
4 NRZ - Bi-Phase Wavefors 11-5
5 Signal Conditioner 11-7
6 System Clock 11-9
7 Bit Timer Schematic II-11
8 Bit Timer Waveforms........................... 11-12
9 Shift Generator Schematic 11-15
10 PCM Decoding Part I 11-18

* 11 PCM Decoding Part II 11-18
12 Shift Selector Schematic 11-20
13 Bi-Phase-L Synchronization 11-21
14 Word Processor Schematic 11-25
15 System Controller Schematic 11-33
16 Reset Circuit Schematic 11-36
17 RAM Memory Schematic 11-38
18 I/O Port Schematic 11-40
19 DISPLAY PROCESSOR Data Flow Diagram............. 111-4
20 Color Computer Interface 111-7
21 MAIN Master Menu III-10
22 SETUP Menu III-10
23 FSEmJP Master Menu 111-12
24 Frame Specification Page 111-12
25 PSETUP Master Menu 111-16
26 Add New Data Page 111-16

o27 Save Page 111-18
28 Command Prompts From Edit Function 111-20
29 Listing Display II-20
30 DSETJP Master Menu 111-23
31 ADD/EDIT Display Page 111-23
32 Display Page Listing 111-26
33 Display Page Listing Contued 111-26
34 EXECUTE Master Menu 111-29
35 Status Display Page 111-29
36 Engineering Display Page 111-31
37 Bar Graph Disolay 111-35
38 Plot Display Page 111-35
39 PCM PROCESSOR Flowchart Part 1 IV-3
40 PCM PROCESSOR Flowchart Part 2 IV-4
41 Walk ErrorAnalysisPart1......................Iv-8
42 Walk Error Analysis Part 2 IV-9
43 Command Structure Overview A-3
44 Flowchart Symbols and Explanations A-7
45 PCM PROCESSOR Flowchart Part 1 A-9
46 PM PROCESSOR Flowchart Part 2 A-10
47 Software Data Flow Diagram A-33
48 LINE INPUT Flowchart A-34
49 TOGGLE INPUT Flowchart A-35
50 Program MAIN Flowchart A-36

v
Ie e e e o ~ ee e o e e

*- .. i

51 Program FSEIUJP Flowchart A-37
52 EDIT Flowchart Part 1 Flowchart A-38
53 EDIT Flowchart Part 2 Flowchart A-39
54 Program PSETUP Flowchart A-40
55 LIST DATA WORDS Flowchart A-41
56 RETRIEVE Part 1 Flowchart A-42
57 RETRIEVE Part 2 Flowchart A-43
58 Program DSEIUP Flowchart A-44
59 LIST DISPLAY CATALOG Flowchart A-45
60 Program EXECUTE Part 1 Flowchart A-46
61 Program EXECUTE Part 2 Flowchart A-47
62 PLOT POINT Flowchart A-48
63 BAR CHART Flowchart A-49
64 PLOT CHART Flowchart A-50
65 Command Structure Overview B4
66 MAIN MASTER MENU B-6
67 SETU~P Menu B-6
68 FSETUP Master Menu B-8
69 Frame Specification Page B-8
70 PSETUP Master Menu B-12
71 Add New Data Page B-12
72 Save Page B-14
73 Command Prompts From Edit Function B-16
74 Listing Display B-16
75 DSETUP Master Menu B-20
76 ADD/EDIT Display Page B-20
77 Display Page Listing B-22
78 Display Page Listing Contued B-22
79 EXECUTE Master Menu B-24
80 Status Display Page B-24
81 Engineering Display Page B-26
82 Bar Graph Display........................ B-29
83 Plot Display Page B-29

:--"*"vi

List of Tables

1 PCM fMNITOR Memory Map .I.-.4............11-29

2 EXPANDED Memory Map 11-42
3 I/O Control Block -5
4 File Specification for PARAM.DAT A-19
5 File Specification for DISPLAY.DAT A-19
6 Frame Specification Layout A-22

.

vii

0%

AFIT/GE/ENG/85S-I

Abstract

A computer based system utilizing an inexpensive off-the-shelf personal

computer and original interface design centered around a 68000 microprocessor

for real-time monitoring of a time division multiplexed pulse code modulated

(TDM/PCM) data stream was designed and constructed. This system is a

*prototype of a low-cost, portable PCM data acquisistion monitor intended for

use in flight test programs by the 4950th Test Wing at Wright-Patterson AFB,

Oh. It will accept a single Armed Forces Instrumentation Standard NRZ or

split-phase (Manchester) baseband data stream at rates up to 100 KBPS,

display selected data words in graphical or numerical format, and alarm the

user when data exceeds certain limits. It will provide a real-time

verification that the data being generated and recorded during a test is of

AV acceptable quality, allowing the option of continuation of the test, or

termination. The system is capable of automatically determining the data

* rate and signaling format and synchronizing itself with the incoming signal.

viii

I

- .- - -

I. Introduction

Purpose

This thesis describes the design of a microprocessor controlled

Pulse Code Modulation (PCM) display system (mnitor) which can be used

to present selected data inbedded within a PCM stream. The unit will

be referred to as the PCM monitor throughout this report. Its intended

use is to provide a flight test program with a real-time display

capability of test parameters which could be used by a test director to

evaluate the progress of his/her test during a flight. Current methods

involve recording an entire PCM data stream on an analog tape recorder

and reading it back later on the ground at a reduced rate using

laboratory equipment. This method provides the accuracy required in a

test report but in cases where malfunctioning instrumentation equipment

supplies erroneous data or no data at all, an entire test flight can be

wasted. An inexpensive PCM monitor could be used to verify the

integrity of the data while it is being recorded and alert the test

director of problems before valuable flight time costing as much as

$5000 per flight hour is lost. If it is determined that the quality of

the PCM data is unacceptable, the test flight profile could be altered

to improve performance, or terminated.

There are a few commercial systems costing around $80,000 that

could provide such a monitoring function. The procurement costs for

the approximately 18 units required by the 4950th Test Wing, however,

would be prohibitive. This thesis describes one alternative which

could be used to supply this urgently needed function at an estimated

cost of around $5,000 per unit.

I".

Scope

The scope of this project was limited to to the design and

construction of a laboratory based PCM monitor tailored to the types of

PCM commonly used in the 4950th Test Wing. These PCM types are NRZ-L

and Bi-Phase-L at rates of around 50Khz. The design and construction

of a flight qualified unit will be left as a follow-on effort by people

in the Wing qualified in that area.

The effort resulted in a PCM monitor system which consists of two

parts: the PCM processor and the PCM display processor. The system is

portrayed in figure 1. The software for the PCM processor was written

to provide several features such as automatic bit rate calculations and

automatic PCM type selection. The display processor software was

written to provide a user-friendly environment to allow access to the

required data without extensive documentation or research. The

software design was limited to a demonstration quality showing the

feasibility and flexibility of the PCM monitor system.

Background

The 4950th Test Wing provides for flight testing for various

4 systems in different stages of development. It performs development

and operational testing of avionics systems, aero evaluations of

aircraft Class II modifications, and system test support of some fairly

. 4large programs such as the Space Shuttle and MX missile using the

Advanced Range Instrumentation Aircraft (ARIA). In each phase of these

functions, data collection and recording is paramount to the test

effort. Without such collection and recording, all data would have to

1-2

... '" "N""" "" K
" " " °

0 0 0

VIDE

NMONITO

DISPLAY
M

PRCSO PROCESSOR CARD

00 0
PCM~ ENOEM

00

Figure ~ ~ ~ PC D.ATAoiorPctraV 1-3
I.0

PC E NODER*-

o N ~ -- -

.

be analyzed during the flight where it would be extremely difficult if

* ~not impossible. It is therefore imperative to record many different

data sources in the most expedient way possible. A common way to do

this is with the use of Time Division Multiplexing (TDM)/ Pulse Code

Modulation (PCM) techniques.

A TDM/PCM signal is a serial digital data stream. It consists of

a sequence of frames. Each frame in turn is composed of a specified

number of digitized samples of data called data words, each a specified

number of bits in length. Within the frame, several of the data words

contain a unique series of bits which are used to establish

synchronization between the transmitting and receiving equipment. PCMI

allows a large number of slowly varying types of data to be packed into

a single electronic data stream which can be recorded easily. Many

data items or parameters sampled during a flight test require very slow

sample rates on the order ten times a second or less. Such parameters

include control surface position, altitude, airspeed, engine

temperature etc. Recording items like these independently would be

very wasteful; therefore, PCM is used.

Electrically, the data is encoded as different voltage potentials

between two wires. Normally one of the lines is at ground potential

and the other is either at a higher positive voltage representing a

digital "l", or grounded represented a digital "0". By varying the

voltage with respect to time, a serial data word is transmitted to a

receiving unit as a series of 0's and l's. Groups of these bits, as

they are called, form words of data while series of words form frames.

In PCM, the signal train consists of one or more frames, each

1-4

I', . ..

containing one or more synchronization words and one or uvre data

words. The synchronization words must be of sufficient composition and

length to be distinguished from the data words. Normally two to three

synchronization words provide a bit pattern unique enough for all

practical purposes and provide high reliability. The receiving unit

reads in the data bits looking for the synchronization words. When it

detects a match, it is considered to be synchronized and begins reading

in the data correctly. Without proper synchronization, reading groups

of bits into words would be meaningless as each bit has a value

depending on its relative position in the word.

Normally each data word has a specific meaning. Perhaps the user

wants to record the deflection angle of all control surfaces in the

aircraft with respect to time during a test flight. This type of test

is conminly done in airworthiness evaluations of new aircraft. Each

control surface such as ailerons, rudder, elevator, flaps, trim tabs

etc., would have a device known as a transducer which outputs a signal

which relates to the deflection angle of the surface it is measuring.

This signal is sampled, quantized, and encoded, then combined with all

other control surface words into a PCM data stream consisting of l's

and 0's. Common requirements are that all words must be the same

length, the number of words must be the same for each frame, and the

words must be in the same order within the frame. The PCM system which

accepts these words and forms the stream is known as a PCM encoder. It

samples the data inputs, inserts them into a predefined order, attaches

synchronization words, then transmits to one of several types of

equipment. Once the last data word is sent, the frame is complete and

1-5

0i

:;2*

the whole process starts over. The method of building the PCM train is

commonly known commutation. Likewise, the method of separating the

data stream into distinct data words is called decommutation.

There is a method called subcommutation which actually changes the

meaning of a specific data word according to the frame number in a very

precise order. For example, data word one in frame one might represent

the left aileron position. In frame two it might represent the right

aileron position. In frame three it might revert back to the left

aileron position etc. If this type of commutation is used, some sort

of frame identification must be incorporated in one or several of the

data words. The decoder at the other end must use this identification

to deccmmutate PCM stream. Subccuntation is not used in the 4950th

Test Wing and is not requirement for the PCM monitor.

PCM as a most general type of serial transmission of data. Unlike

the RS-232 standard which allows computers to send asynchronous data to

terminals, modems, and printers etc, PCM does not have start or stop

bits, nor a dead time between packets or words of information. PCM is

always active which makes it considerably more complicated to decode.

PCM also comes in a wide variety of formats. Nine commonly used

signalling formats are explained below in figure 2.

Only two of the formats mentioned are utilized in the 4950th Test

Wing, NRZ-L and Bi-Phase-L and are described in detail in figure 4.

The primary advantage of NRZ-L is the its high bandwidth

efficiency of 2 bits/Hz. For example, the bit sequence of "1,0,1,0"

would represent two cycles of a square wave but 4 bits of information.

The frequency for Bi-Phase-L, on the other hand, would have to be twice

1-6

I-" . .--.. i . - - - . % • •,

iNR2-LEV'EL

:ONE IS REPRESENTED (REP) BY A NIGH LEVEL
,ZERO IS REP BY A LOU LEVEL

a.a a a aNR2-MARK

NRZ-N N aGa LEVE

a a a I a a
i a I l a ai

a a a a a NRZ-SPACE

NRZ-S aA ZERO IS REP BY NO LEVEL CHANGE
a a aA ONE IS REP BY A CHANGE IN LEVEL

", a.i* aIa

' -' RZ ! A ONE IS REP BY A HALF BIT WIDE PULSE
0 , , , A ZERO IS REP BY NO PULSE

I I,

"a a i a a a

'-i".[TRANtITIO14 AT CENTER OF EVERY BIT PERIOD
81B -PHA-L : N S TASTO R MHG OLUI E

.;,.. ,.. .ZERO IS TRAtNSITION FROMH LOY TO HIGH

B, .A- TRANSITION AT EVERY BEGINNING OF BIT PER
Raa:ONE IS REP BY TRANSITION AT MID BIT PER

aZERO IS REP BY NO PID BIT TRANSITION

- a, aa.a B I-PHASE-SPAE
1.A a. I a aTRANSITION AT EVERY BEGINING OF BIT PER

),,,, BI-PHAL a I I a

aNE Ia REP BY NO MID BIT TRANSITION
a aaaa ZERO iS REP BY TRANSITION AT MID BIT PEP

a I a

r"+' +.:, M ',:,'ONE IS REP BY TRANSITION AT MID SIT TIME

___ tl :ZERO FOLLOWED BY A ZERO IS REPRESENTED BYA TRANSITION AT THE END OF THE FIRST ZERO

ZERO IS REP BY TRANITIO AT MID BIT TI EaONE FOLLOED BY A ORD IT REPRESENTED BYTRANSITION AT THE END OF THE FIRST OE BIT

... - ,.Fi gure 2. Standard PCM Formats
.E I- R B T A I I P

- a a a a a a
a a a a a

a. , . . + . , a - . a. % , a. a . a, - a, . a . + ' a a. a,, , -. . . -

as large to achieve the same bit rate since it requires a transition

during each bit time.

The disadvantage of NRZ-L is that it requires a recording system

which has a DC response and thus doesn't lend itself to recording on

magnetic tape directly. Since tape recorders have a low end to their

frequency response curve, they can't record direct current. Therefore

recording a long series of l's or 0's would cause data dropouts on the

tape and a subsequent loss of data unless expensive frequency

modulation (FM) techniques are used. In addition to the recording

problems, a long series of l's or 0's would cause the synchronization

circuitry at the receive end to lose frame synchronization because a

non-varying signal could be interpreted as no signal at all.

Bi-Phase-L, on the other hand, is readily adapted to both

recording and synchronization. It is the standard PCM type used when

the data rate is low and needs to be recorded. In the 4950th Test

Wing, recorders exist which have the capability of recording

frequencies up to 1MHZ which relates to 1 megabits per second of

Bi-Phase data or 2 megabits per second of NRZ. The majority of data is

recorded, however, at rates of 50 Khz and below which allows long

recording periods consisting of up to an hour or more on a single tape.

Recording at 2 megabits of NRZ-L would allow only 12.5 minutes of

continuous recording.

As mentioned above, PCM is one of the most comonly used methods

of collecting the vast amounts of data needed on any particular test

program. The PCM monitor will provide a valuable window into the test

data while it is gathered to allow the test director to make decisions

L. I-8
0L

S.}. about how to alter the test to maximize its efficiency. It is the

purpose of this thesis to provide an economical way to accomplish this

monitoring task.

.4.

Requirements

The requirements for the PCM monitor system are based on current

types of PCM used in the 4950th Test Wing. These requirements are

summarized below. The PCM monitor must:

.Jp.

1. Fit in a standard rack, 19" by 4.5" by 17".
2. Handle data rates from 1000hz to 100khz.

* 3. Decode NRZ-L and Bi-phase-L.
4. Decode word length of 8 to 16 bits.
5. Accept frame sync words of 16 to 48 bits in length.

v 6. Have a display rate of at least 10 data words per second.
7. Allow the user to display data in engineering units.
8. Allow the user to display data in bar graph format.
9. Be expandable.

System Description

In order to meet the above requirements, a fast and flexible

system is needed. Modern day microprocessors can provide this

capability so the PCM monitor was designed around them. The monitor is

broken down into two modules: the PCM processor and the display

-processor.

The PCM processor's function is to receive, condition,

synchronize, deconutate, and store PCM data into a memory buffer

common to itself, and the display processor. To perform these

-" . functions, an MC68000 16 bit microprocessor is used because of its

- speed, asynchronous capabilities, and ease of interface. The software

is written in assembly language because of the speed requirements. It

.4.- 1-9

'', -m "' { -m ' '" ' -" " '.. . . "."." (-4 .y.'

will not need to be altered under normal conditions and is programed

into Read Only Memory (ROM).

The display processor reads in the decommutated data and provides

user interaction as to how it is to be displayed. It is built around a

Radio Shack Color Computer II microcomputer using an MC68@9 processor

to provide commonalty between it and other systems under development in

the 4950th Test Wing. It also has a very powerful BASIC language, has

a large easily readable display format, is small, light, reliable,

inexpensive, and available off-the-shelf. The majority of the display

software is written in BASIC to provide for the ease of modification.

Portions of the display software which are awkward to handle in BASIC

and slow are coded in assembly language.

This multiprocessing approach partitions the tasks into two

independent sections to allow for maximum speed and flexibility. Since

the tasks are completely independent except for synchronization

explained later in the display processor software section, the PCM

processor can be used in any other system with only minimum re-work of

the interface.

1-10

n

° ~.*-.~~*- . V . - -.- .

II. PCM processor

Hardware Overview

The PCM monitor is partitioned into two sections, the PCM

processor, and the display processor. Because the display processor

uses an off-the-shelf Color Computer II from Radio Shack, its design

was primarily a software development effort (see chapter III). The PCM

processor, on the other hand, is hardware intensive and is the primary

thrust of this project. Its primary purpose is to perform the bit

synchronization and decommutation for a standard NRZ-L and/or

bi-phase-L PCM signals. To do this function, the PCM processor

consists of nine sections: l)signal conditioner, 2)system clock,

3)system controller, 4)bit timer, 5)shift generator, 6)shift selector,

-2' 7)word processor, 8)random access memory, and 9)1/0 port ram. Each of

these sections will be explained in this chapter. Figure 3 shows the

overall block diagram and pictorial of the system.

The PCM processor receives the PCM data, reduces most of the noise

and drift, synchronizes to it, performs a serial to parallel

conversion, then places it into a dual port RAM buffer as 16 bit

parallel data words which can be accessed by the display processor.

There are two built-in automatic features which can be overridden if

the user desires. These features provide for automatic clock

&- generation and PCM type determination. In other words, the user does
-

7 not have to know the data rate or the PCM type (NRZ-L or bi-phase-L).

In order to perform these functions, the PCM processor must first

clean up the PCM data stream to eliminate noise, square up the signal,

A I

, C .o ,r W

PCM MONITOR "ER 1.e
JOHN R. CROASDALE SEP 85

-m

PCM PROCESOR

'RAW SIG
.IN,' CONDO

SINAL SHIFT SHIFT SIG UORD PROCESSOR FIG 14
.. SIGN SIAL BIT TIMER GENERATOR ' SELECTOR BUFI FER COUNTER SYSTEM

CONDITIONERJ FIG 7 1 FIG SHIFTI1 FIG 12 SNIFT2I
-4 - - -4L DATA CONTROLLER

FIG 5 EN DAA L EM DATA EN R/.

f t FIG 15

16 MHZ

I

ii -41
. _ _CONTROL BUSI ENABLE OT MC 68@e@

ADDRESS MICRO

- (PROCESSOR

RU AND
16 MHZ OUT R/ DATA EN EMI DATI ADI RWI

CLOCK FIG 6 RANDOM ACCE$S I I/0 PORT
P

MEMORY FIG 1 1K BY 16 DUAL ROM
8M OT2K BY 16 JADDRES. PORT RAM FIG 188 NMZ OUT I

L DAT2 AD2 RW2 Ei2

CLorC. IN

'' "" /7/y 7777777777

INTERFACE CABLE -4

lL DATA A-A. R.' EN m i-- 1 I1I
DISPLAY PROCESSOR I -

MICROCOMPUTER SYSTEM
D

IOIl ,'
EM

TANDY COLOR CMPUTER

,IENMAMCEMEMT-.

I NOTE WITH EVERY ENABLE THERE IS ALSO
A DATA ACKNOWLEDGE ,DT'. THE
ROM'S EN AND DT ARE INCLUDED IN
THE SYSTEM CONTROLLER.

KFigure 3. Block Diagram

11-2

,-I . I -

eliminate any drift or DC offset, and convert any signal levels to TTL

levels before the PCM processor will work. The signal conditioner is

responsible for this task.

Once a clean fTL level signal is obtained, the PCM processor must

"[obtain the bit rate of the incoming PCM signal. It does this in the

bit timer section by counting the time interval between two bits at a

high count rate, then dividing by two. In this case, a 16Mhz clock is

used so each bit time is represented by a number of counts of the 16Mhz

clock. Once the count is obtained, it is easy to generate a clock

using another counter circuit. Since the same system clock is

generating the bit rate clock from the signal, any deviation of the

nominal bit rate from the actual bit rate is taken care of and will not

cause any tracking error.

The shift generator uses the count obtained by the bit timer and

generates shift pulses that occur at the center of the bit interval.

The term "shift" is used because they will control the shift function

in the word processor section described below. The level of the signal

when this pulse occurs will either be at a TIL high level, or at a TTL

low level. This level will represent the data bit of the transmitted

message. The polarity of the signal will determine whether a high TTL

level will represent a "1" or a "0". The display processor tells the

PCM processor what the polarity is and the processor software accounts

*' for it. A TTL high level will be assumed to be a "I" for this report.

Figure 4 illustrates this process. The shift generator resynchronizes

the shift pulses with each positive going transition of the input PCM

signal. This insures that the pulses are continuously being

11-3
0 I-

synchronized to the signal.

The shift selector modifies the shift pulses when bi-phase PCM is

being transmitted to allow for proper decoding of the signal. Its

output is a shift pulse that occurs at the correct time so that the

input signal can be read into the word processor. For NRZ signals, the

shift pulse from the shift generator is unmodified.

- The word processor reads in the signal and performs the serial to

parallel conversion. The heart of the word processor is a shift

register which collects the incoming l's and 0's. The system

controller can then read the shift register's output buffer 16 bits at

"- a time and at two different rates. By reading the data after each bit

is shifted in, (bit rate), the frame synchronization data word can be

captured. After frame synchronization, reading the data at the word

rate, (8 to 16 bits at a time), gives the controller ample time to read

data word, do error checking, and perform the data transfer to the I/O

Port/buffer. Once the data is in the I/O buffer, it can be read by the

display processor.

The system controller is based on an MC68000 16 bit microprocessor

and does the coordinating and calculations needed by the PCM processor.

It reads the bit count from the bit timer, transfers the count into the

shift generator, writes the number of words per frame into the word

..': processor, calculates the PCM type, performs frame synchronization, and

transfers the data from the word processor to the I/O PORT. If frame

sync is not found, the user is alerted if the option is set (see

software section) and the system keeps trying. The controller program

is stored in EPROM. During initialization, it is moved into fast RAM

11-4

.• C..t _- , C " C.. . ., , , , ..'

L -
T 2-

7 I I I I 1 t I B I 1 1 1 B B

SHIFT PULSES OCCUR IN THE
CENTER OF THE BIT TIME. THE
VOLTAGE LEVEL DURING A SHIFT TYPICAL NRZ-L WAVEFORM
PULSE DETERMINES THE VALUE OF
THE BIT. IN THIS CASE, A WHEN THE VOLTAGE IS AT A HIGH LEVEL, NORMALLY 5 VOLTS FOR TTL,
HIGH VOLTAGE (5 VOLTS> IND- THE BIT IS CONSIDERED A 1. IF IT IS AT A LOW LEVEL, e VOLTS,
ICATES A 1, A LOW, B ETC. IT IS CONSIDERED TO BE A B.

0++

T+2

V .

B 1 B 1 1 1 B B 1 B 1 1 B 1 1 B I

SOME PCM TYPES USE PLUS AND MINUS VALUES TO REPRESENT THE DATA.
IN THI CASE, A SIGNAL LEVEL OF +5 VOLT IS STILL CONSIDRED A 1,
NOW -5 VOLTS REPRESENTS A B. THE SIGNAL CONDITIONER MUST CON-
VERT PCH LEVELS SUCH AS THIS TO LEVELS REPRESENTED BY THE TOP
WAVEFORM.

BITPERIODS

- I I I I I &) I

* ~ ~ V5+ II

T 2

"- TYPICAL B1-PHASE-L WAVEFORM

BI-PHASE-L GUARANTEES A TRANSITION DURING EACH BIT PERIOC. IF
THE TRANSITION IS FROM A LOY LEVEL TO A HIGH LEVEL, THE BIT IS
CONSIDERED TO BE A B. IF THE TRAMSISTION IF FROM HIGH TO LOW

*THE BIT IS CONSIDERED TO BE A 1. OTHER TYPES OF BI-PHASE ARE
USED BUT NOT FOR THIS APPLICATION.

Figure 4. NRZ, Bi-Phase Explanation

11-5
0--I-

where it runs at maxiimum speed.

The following sections explain in detail the hardware design and

- " function of each of the above mentioned parts of the PCM monitor's PCM

processor.

Signal Conditioner

-The main function of the signal conditioner whose schematic shown

in figure 5, is to clean up the PCM signal, and convert it to a

fl standard 0 to 5 volt TTL signal. Since the input signal levels are not

known (assumed to be at least in the 0 to 5 volt range or more), signal

*clipping may be necessary to avoid exceeding the input requirements of

TTL chips. The diode pair keeps the signal in the 0 to 5 volt range

approximately. Germanium diodes should be used to keep the junction

voltage drop to around .3 volts. For example consider an input signal

which uses -10 volts for a 0, and +10 volts for a 1. When the signal

is at -10 volts, it will forward bias D2 and keep the level at the

*input of 74LS14 schmitt trigger around 0 volts. When the signal is at

+10 volts, Dl will now be forward biased and clip the signal to +5

volts. If the signal is already 0 to 5 volts, no clipping will occur

and the signal will be applied directly to the schmitt trigger input.

The resistor is used for current limiting to keep the circuit from

loading signal source excessively if the signal is clipped.

The first schmitt trigger is used to square up the incoming

signal. The trigger has very high gain so any incoming signal will

either be saturated, or cutoff. This causes the output to occupy only

two states, high or low. Any variation in between will be eliminated.

11-6

;'.'- SIGNAL CONDITIONER VER 1.01
:.; JOHN A. CROASDALE SEP 85

;.?5 sVOLTS

74S1

SCHMITT TRIGGERS

'- - 'CC6 CC6

' "470 OHSI 4, 0 CONDITIONE SIAL
INUIIGANK\ \

988KHZ

I ~ D2
"\"888KHZ1I

SC0@KM

788KH-

60KH2 DATA POINTS

C uf F KHZ

.47 29@.-500KH2 .22 60

F .1 158
P .847 268
E EMPIRCALLY DERIVED E.2TION e33 8

488K.Z FOR DETERMINING CUTOFF FREQUENCY .81 1888-,,.,j.U 4WYK
E 13.45 2Pi

F - ROUGHLY 1.5-
C C C
Y

38@KHZ F IS IN KH2

C IS IN UFD

. ,." .288KHZ

!ILL
i . 0

-"- I 101 I I ! I I

e .85 .1 .15 .2 .25 .3 .75 .4 .45 .5 .55 .6 .65

VALUES OF C

, . Figure 5. Signal Conditioner

11-7

4V-- -: . . - .- P -.

The capacitor and next schmitt trigger filter any high frequency noise

according to the equation shown in figure 5. The filter has a very

high Q factor and a sharp cuttoff which has been limited to around

500Khz. Noise spikes shorter than 2 microseconds will be eliminated.

The graph shown in figure 5 shows the cuttoff frequency in relation to

the capacitor.

System Clock

The system clock provides two clock signals, a 16Mhz square wave

for a counting clock for the bit timer and shift generator circuits,

and an 8Mhz square wave for the microprocessor.

The circuit uses a Saronix 32 Mhz crystal controlled hybrid clock

which is divided to both 16 Mhz and 8 Mhz by a 74LS93 divider IC.

Exact clock frequency is not critical but the stability is; therefore,

a crystal controlled device is necessary. Figure 6 shows the schematic

of the system clock. The MC 68000 microprocessor does not require any

elaborate time phasing or quadrature clock so a plain square wave at

TIL levels is all that is necessary.

[•Bit Timer

The main function of the bit timer is to determine the incoming

PCM bit rate automatically. In order to do this, a high speed counter

senses the incoming pulses and starts counting the 16 Mhz clock pulses

from the system clock when the conditioned signal goes from a low to a

high (see figure 7). The bit timer toggles off when a second positive

going pulse is received and makes the count available to the system

11-8

SYSTEM CLOCK VER 1.0

JOHNR. CROASOALE SEP 85

p16 MH2 TO BIT TIMER AND
SHIFT GENERATOR

+5 VOLTS +5 VOLTS 8 H TO MC 68888 PROCESSOR

I I THESE VALUES WILL CHANGE WITH

* 14) EXTERNAL CLOCK. INPUTS

SAROMIX 98 VC

Z!2MH2 [OUT BINARY COUNTER

R8(1 G 82'GN

EXTERNAL CLOCK IN VI

Figure 6. System Clock

11-9

controller (see section on system controller). The controller will

monitor a series of count cycles and keep track of the shortest one.

If a binary series of "0 1 0 1" is received anywhere in the data

stream, the count will represent 2 bit times. The controller will try

to synchronize using the minimum count and if it breaks lock, increment

the count by one. Since the minimum count is chosen, the actual count

must lie somewhere between this minimum count and some maximum value.

If there is any jitter in the signal, the minimum count will probably

not be sufficient for high bit rates. See PCM processor software later

this chapter. For a signal of 100000 bits per second (BPS), the number

of counts per bit time will be 160. The bit timer will therefore reach

a count of 320 since it counts two bit periods.

To understand how the bit timer performs its function, consult

figure 8. The circuit utilizes a 74LS74 flip flop to toggle the count

gate (CA2) on, then off, one toggle per each positive transition of the

input signal. During the on time, gate (CA2) allows the 16 Mhz clock

signal to enter the binary counter network (CBI and CB2). At the same

time, the flip flop's Q output triggers a 74LS123 monostable

multivibrator to generate a very short lOns pulse to clear the counters

for the upcoming next count period. When the signal toggles the flip

S.flop a second time, the gate is closed and the count stops. Also, the

Q' output enables the two 74HC374 latches which clocks in (receives)

the count. The count therefore remains stable during the off time.
' ii[The controller reads the count by strobing the output enable lines of

the latches. When it is not reading the count, the latch outputs are

II-10

0

• .

* I BIT TIMER VER 1I
JOHN R. CROA$ALE SEP 85

+5

1/22

1 2 3 1 2 c o t 1 2 C B 2

SC - 1 741334 74 347

SI EN DATA PUTSIN 2 DATA APUTS

N. III!-II ~IlII I

S08 1 02 03 04 05 06 07 18 09 l 012 3 14o

4 GNO Z 5 t1 t1

-3 I0

18 It141 4 7 8 4

to 11151N t, N C

1L/2

12---- OTi I OCTA LAATA EN OCALLAC

F12

: .-. Figure 7. Bit Timer
" -11

9 I

-S.., .- ' -. ~.v tt ~ . *-- - .--. *...... 0-

.r

, ,BIT TIMER WAVEFORMS

TWO BIT TIMES

COUNTER COUNTER COUNTER COUNTER COUNTER COUNTE'
ON Orr ON OFF O OFF-.. t t t t t t

INPUT SIGNAL

8'' 1 8 1 1 1 B 8 1 B 1 1 B 1 1 8 8

rrrrrrrrrrr rrrrrrrrrrrrr lllTTTlmul iT! Til
COUNTING PULSES 13 COUNTS 1! COUNTS 25 COUNTS

* - REACNING THE
2 COUNTERS

COUNTING PULSET+ CONTINGPULSES

FROM THE SYSTEM
CLOCK (I6MHN>

DURING THE COUNTER OFF PERIOD, THE SYSTEM CONTROLLER READS THE COUNT. IN THIS CASE, THE
CONTROLLER WILL READ THREE COUNT1, 1!? U. AND 25. THE CONTROLLER WILL REAlD MANY TIME^ TO
OBTAIN THE SMALLEST COUNT WHICH REPRESENTS A BIT STREAM OF lel. THE OBTAINED COUNT WILL BE
TWICE THE BIT RATE. THIS EXAMPLE IS OQEP EAERATEO BECAUSE THE COUNTING CLOCK I;S VEPY CLOSE

J • TO THE BIT RATE. USUALLY A COUNT OF 608 TO 106e IS EXPECTED FOR BIT RATES APOUND 2B@H2.

IF THE SIGNAL WERE 81-PHASE, THE LARGEST COUNT WOULD ONLY BE TWICE THAT OF THE SMALLEST.
"-" .SEE SECTION ON SHIFT SELECTOR.

-'

Figure 8. Bit Timer Waveforms

[I-. 11-12

at a high impedance will increase to a value of 65280, or $FF00 hex.

This will enable the 74LS30 NAND gate and shut off the second stage of

the gate. It does this by generating another short negative pulse with

a 741S133 monostable multivibrator which clears the input flip flop

CAL. The purpose of this feature is to stop the count when a maximum

value is received and provide a means to alert the user that an out of

limits or no signal is present. If the counters wre allowed to

continue counting, they would wrap around back to a zero value after

the 65236th pulse was received and provide erroneous data to the user.

The remaining circuitry provides a data acknowledge output to

- alert the system controller that data is available on the system's data

bus. A more detailed explanation of this asynchronous operation of the

"- MC 68000 microprocessor will be described in the section on the system

controller. The address of the bit timer is $2000.
I0

Shift Generator

The shift generator's main function is to provide a positive going

pulse to the shift selector at the calculated bit rate and in the

center of the bit interval. For the purposes of shift generation,

bi-phase-L signals are treated like NRZ-L. The shift pulses are

modified in the shift selector to distinguish between NRZ and bi-phase

type of PCM signals. Because the count obtained from the bit timer is

digital in nature, the shift pulse cannot occur at exactly the bit

rate. The result is a walking error due to the difference between the

generated bit rate, and the exact bit rate. To minimize the walk

error, the best possible time to read the bit is in the center of the

11-13

*r 0-1

, w<.

-. -. , -, -. -.- , . . - -,.... .. w- -- , -w-rrr
4

_|- -r- C! - u- fl- C. Si - r- ,4 - -- - - - - - - - - - -. -

bit time. This is obvious since the walk error can be + or - 1/2

count. See the section on the walk error in part IV, Test and

Evaluation.

The shift generator is one of the more complicated designs of the

PCM processor (see figure 9). For the shift pulse to occur in the

center of the bit interval, it must occur under certain circumstances.

When a positive going signal pulse occurs, a shift must occur at half

the signal time later to capture the bit. After that, and until the

next positive signal pulse, a shift must occur at the bit rate in the

center of the bit time as depicted in figure 4.

In order to meet these requirements, the shift generator is

designed around two similar sections named the half counter and the one

counter. The counters consist of two 74LS374 octal latches and four

741S193 up/down counters each. The latches are used to load the count

calculated by the system controller from the data read in by the bit

timer. Data is loaded into the latches only once and remains there

until the system is reset. After that, the logic loads the counters

with the latch data as described below.

In figure 9, the top set of counters is the half counter and the

bottom set is the one counter. Assuming that the half and one data is

loaded into the 74LS374 latches, the operation is as follows. When a

positive going signal enters the 74121 monostable multivibrator (AC3),

a short 20ns negative pulse is generated and applied to the irputs of

the two AND gates, CA2. This allows the latch outputs to load the

counters with the count data. The 20ns pulse also sets the RS flip

flop (AB3) causing the Q output to go high. This opens the AA5 AND

II-14

II
- ~ .-. -- -- - - -

14SHF GNRAO
F-4 10 EP8

JOHN R.COADL

SILG S~3LA S~3LA S33LA 83

AMF OP C A C2 7 LOP CCAD UPFTG U V3H37 LADI
(5 O U pR CC Up .5 CONTR

0801. 020 04050LDLS93P607 0830801 1201
4 13 4 113 1 3 1 3 0 1

14 1 4 1 4 1

23 1

Do6 01 0203 CL 0801"0203 0801i 020D3 C ID

2AA1 6N 63152 GNO212 HD611 GN
C20C OUTPUTS ADL29PT OUTPUT S AD UTPtUTS T HF

18 OCTAL LATCH 18 OCTAL LATC:H

IF t? 73!1C374 LOAD FT1 73HC374 LOAD
I --oOUT CTRL CLK #-oOUT CTRL L

AB 0 As INPUTS (. ONE)INPUTS IPT . ONE)IPT

LS7 M 3 418 17 781141131 GND 3411811 782f4131

I8 DO 0I 2 03 04 05 06 07 08 09 018 O11 0I 1 014D1

F, _ _1_ _ _ _ _ _ _ __CC4_UL VSC4AB,
*I)L A LS 3 I A

12~DI 01 II S13 L Kli

rB4 P411-151

So D O W B " " - -- 1 4..

gate and lets the 16Mhz clock through to the half counter. The Q

' ioutput is also negated and applied to another AA5 AND gate which

prohibits the clock fromn entering the one counter. Since the half

counter contains the count for half the bit rate, a borrow will occur

on ABl half the bit time later and cause a positive going shift pulse

to appear at the center of the first bit interval.

The borrow generated one half bit time later is then applied to

the reset input pin of the RS flipflop. This action causes the Q

output to go low and reverse the clock steering AND gates AA5. The

half counter is now stopped but the one counter is receiving count

* pulses from the clock. The one counter contains the count for 1 bit

time so the borrow output of AB4 will go low 1 bit time later. This

borrow generates another shift pulse like the first one generated from

the half counter. The borrow also causes the one counter to re-load

and start over. This operation will continue to generate shift pulses

at the bit rate until another positive going signal is input to the

system.

The next positive going signal sets the RS flipflop again and the

cycle is starts over. Using this technique, the system is

re-calibrated at each positive transition of the input signal. If the

signal consists of a long series of l's or O's with no transitions in

between, the walk error discussed in section IV may be encountered.

Shift Selector

The purpose of the shift selector is to modify the shift pulses so

* that they will be able to decode bi-phase PCM signals. The methodology
411.

i "'.L'"1I -16

,,-< .;. ..: .,.:.....-...........-...-.........

was designed around a simple observation concerning bi-phase signals.

Figure 10 shows a typical bi-phase signal. The shift generator

generates shift 1 pulses as if the signal were NRZ. Shift pulses are

shown as vertical bars at the bottom of the waveform. The value of the

input signal during every other shift pulse (figure 11), will equal the

value of the data bit. This is true only if the correct alternate bit

is chosen. In figure 11, the correct bit has been selected. The shift

selector's task is therefore to forward the correct alternate shift

pulses to the word processor.

The task of halfing the shift 1 pulses to make shift 2 pulses is

acccmplished by a 74LS74 D type flip flop (see figure 12). The 741S74

is configured as a toggle flip flop which changes state at the

occurrence of a shift pulse at pin 3. The toggle action is obtained by

connecting the Q' output to the D input. The output of the flip flop

. "is not in the correct form of the pulse needed by the word processor.

The output instead, is a square wave which must be converted to a short

negative going pulse. The NAND gates (BD4), perform both this

function. These gates also select which type of PCM (bi-phase or NRZ)

is to be decoded.

For NRZ, the first BD4 NAND gate is shut off not allowing the

output from BA5 to get through. For bi-phase, the gate is open and the

output of BA5 reaches the second BD4 NAND gate. The input signal is

also fed to this NAND gate where it is used to shape the square wave

from BA5 to a short negative going pulse which is applied to the word

processor.

The job of synchronizing the incoming series of shift pulses so

11-17

PCM DECODING

BI-PHASE BIT TINES
BIT TIMES IF SIGNAL

WERE NR2

--- ,.ECT ECT

w',~

I III I I I I

INPUT i a i
SINA i] ttl J jt -1 ' I II II

I I I I I

Il

SHIFT I PULSES FROM SHIFT GENERATOR (DECODED AS IF PCM UERE HR2)

:J

Figure 10. PCM Decoding Part I

THE VALUE OF THE INPUT SIGNAL AT THE TIME OF THE SHIFT PULSE BEFORE THE TRANSITION IN THE CENTER OF THE BIT TIME IS THE
THE DPTA BIT VALUE, I OR 0. THEREFORE EVERY OTHER SHIFT PULSE WILL YIELD THE APPROPRIATE DATA VALUE. BY SYNCHRONIZING
THE E'T'EP' THER SHIFT PULSE WITH THE WAVEFORM, THE CORRECT DATA VALUE WILL BE READ INTO THE VORO PROCESSOR.

II TA -I I I I I
I I I II I I I I IiI

SHIFT 2
PULSES '-] . . ETI I1 4 ETC

VALUE OF SIGNAL AT TIME OF SHIFT 2 PULSE IS THE VALUE OF THE DATA BIT

4

Figure 11. PCM Decoding Part 2

11-18

[-

that the correct phasing of BA5 is accomplished is done by the two

74IS175 D type flip flops, BE5. As mentioned above, the incoming shift

pulses are generated as if the signal were NRZ. When this is

acccmplished, a bi-phase "1" would decode to a "1,0" in NRZ. This is

true since a transition from high to low is considered a "1" in

bi-phase-L. Likewise, a bi-phase "0" would be a "0,1" in NRZ decoding.

* Disallowed values are "0,0" and "1,1". These values occur all the time

but they straddle the bit interval boundaries instead of occurring

' "during them (see figure 13). If two NRZ decoded values of "0,0" occur,

-- the next NRZ decoded value must occur in the second half of the

*" bi-phase bit interval, and must be the inverse of the bi-phase bit

value. The same reasoning is valid for an NRZ decoded bit pattern of

- "1,1". By looking at the input signal at the time of the next shift

pulse after the "0,0" or "1,1" bit patterns, the data bit value can be

obtained. By looking at the signal during the second "0" or "1" shift

pulse, and every other shift pulse after that, the data can be obtained

*] directly. The circuit shown in figure 12 does just that.

To accomplish this function, the trailing edge of a negated

incoming shift pulse clock the signal bit into the first D flip flop.

[- The 74LS175 clocks on a positive going transition so the shift pulse

must be negated. The shift pulse is significantly shorter than to the

input signal, approximately 1/200th for a 100Khz signal, so the signal

level will still be valid after the shift pulse is over. The bit must

be shifted in on the trailing edge to avoid race problems and to allow

all transitions to stabilize before the next shift pulse occurs. The

11-19

-_L-K-

'E--

1*'SHIFT SELECTOR 'VEP I.e
JOHN R. CROASALE SEP 85

DELAY,'+,A4 14"+ 4
. LS04 12 1- o-

81-PHASE SYCHROMI2ER ' PR 5 -U-.

, A -' - . S H I F T 2

- I 6 I - --_ LSOO -* TO WORD

SIGNAL 2 LS32 1 -' BE6 .6 I t PROCE^SOR
FROM SIGNAL +5 5' Sl L52
CONDITIONER BI-HASE OR NO7

80 4 7 GNO
SHIFT k BES BE-' "- TPULSE If\,,2 .+ _ _l { 91

FROM SHIFT 40-- -;'LS1751
GENERATOR L 1 , - +I 5

J HC@4 1 U

SON!&

V.".,"GH[I

ENCODING SELECTOR 12
'1BE6 11 2 FAB3 4 9 r I FOR 81-PHASE

HCC4 17 /LS32 -- S 9-
311/ 9 t FOR NR2

"-L0 4"' 3/ + BE 8 -.o 11
LSA L12)

SEE WORD PROCESSOR

R,'w EM4 De DTACK

S8000

NTES. THE SHIFT SELECTOR GENERATES SHIFT PULSE" AT THE BIT RATE FOR EITHER !l-PHASE OP HR EMHC ,
SWHICH gILL BE USED BY THE W ORD PPOCE" S TO DECODE THE PCM DATA. SEL TIP. E.-PHAE IS AC:OMP-LIHEC !'YPRITING AN ODD WORD 1;IT no I :' TO LOCATION IFF5CCC, SELECTING NRC IS ACCOMPLISHED

BYWRITING BAN E'.E' ,'C TO LOCATION IFF30,e. READING FROM SFFS80 INPUTS THE PCM WORD AFTER
THE NET SI SHIFTED INTO THE L'ORD PROCESSOR. SEE WORD PROCESSOR.

Figure 12. Shift Selector

11-20

SX
.~~ ~~~~~~~~........... ,... -.._ , .,.. ,

= ,+ + I : + + , + . - ' + ' + + " + " ' " + " P . P - ". " A -- - - . , * s '."N -

-'o-

! 81-PNASE-L SYNCHRONI2ATION

BIT VALUE IF THIS BI-PHASE-L
SIGNAL WERE DECODED AS HRZ-L

THE VALUE OF THE SECOND SANE MR' DECODED BIT IS THE VALUE OF THE BI-PHASE BIT. IF THIS BIT! AND EVERY OTHER BIT WERE
DECODED, THEN THE O1-PHASE SIGNAL COULD BE EXTRACTED. SEE BELOW.

SGA SI I I
I II I

I I I I I

B1-PHASE 0 0 1 1 1 0 0 1 8 1 1 8 1 1 8 0 1
DECODED
SIGNAL

THE SHIFT SELECTOR SYNCHROHIEs THE SHIFT 2 PULSES SO THAT THEY OCCUR DURING THE SECOND MPZ DECODED BIT OF LIKE VALUE,
- AND EVEPY OTHER ONE AFTER THAT. IT DOES THIS BY DETECTING TWO SEQUENTIAL O'S AND SETTING A DI"IDING FLIP FLOP TO A

KNOWN VALUE SO THAT IT WILL FILTER OUT EUERY OTHER SHIRT I PULSE FROM THE SHIFT GENERATOP. IT CONTINUES TO SZYNCROMI2E
DURING EACH HATCH OF LIKE BITS TO KEEP THE SYNCHRONIZER IN TUNE WITH THE DATA STREAM.

.4,

1

'I

! .22.' Figure 13. Bi-Phase-L Synchronization

I -.. - . - • . - . -+. - - - .-. . - V•-.. . . .

next shift pulse clocks the bit into the second flip flop, and the next

bit into the first. In this way, two successive bits are continuously

mnitored. When a pattern of "0,0" occurs, both OR gates, BE6, are

open, awaiting the next shift pulse.

When the next negated shift pulse occurs, the BA5 flip flop is

cleared to a known state. At the trailing edge of the negated shift

pulse, and after a slight two gate delay to avoid race problems, BA5 is

toggled back to where the Q output is a "l". It can be noted that at

any time Q is high, the next shift pulse will not get through the BD4

NAND gate and will be deleted from the shift pulse stream. It will

therefore take the next two shift pulses to open the gate and generate

the output pulse denoted as shift 2. By observation, this is exactly

the pulse which occurs at the time of the valid bi-phase data bit. All

* the word processor needs to do is to clock in the incoming signal using

the generated shift 2 pulse.

The PCM type, NRZ-L or bi-phase-L, is selected by writing either a

"0" or "1" into the SR latch, AB3. This is accomplished by writing an

even data word to address location $FF8000 for NRZ decoding, or an odd

data word to the same location for bi-phase. When EN4 is high, or R/W'

is high, a high is applied to all inputs of of the latch. This

designates a no change condition at the output. The only time that

both EN4 and R/W' are low is when the system controller writes to

location $FF8000. hhen this happens, BD3's output goes low, opening

the BE6 OR gates. This allows the least significant data bit, DO, to

reach the inputs of the latch. If DO is low, the reset input goes low

causing the Q output to go low to select NRZ decoding. If DO is high,

11-22

the set input is toggled low causing the Q output to go high and select

bi-phase. The system controller guarantees that both R/W' and D0 are

valid before EN4 and are held valid until after EN4. This assures that

no race problems or glitches occur during the writing operation.

It should be noted that reading from $FF8000 affects the word

processor discussed below.

Word Processor

The word processor consists of two sections. The first section

-performs the serial to parallel conversion required of the PCM

monitor's PCM processor. The second section does the bits per word

counting.

The serial to parallel conversion is simple because most of the

work has already been accomplished by the SIGNAL CONDITIONER, shift

generator, and shift selector. The circuit, see figure 14, consists of

two 74LS299 tri state output shift registers. The clock is the shift 2

pulse from the shift selector, and the input is the input signal. Each

time a shift 2 pulse arrives, a new bit from the signal is shifted in

from the left or right depending on the position of the PCM order

switch, SW2. The PCM order can be most significant bit first (MSB) or

least significant bit first (LSB) and must be set by the user before

using. Iben this occurs, the bits already in the register are shifted

one bit position, left or right depending on SW2. SW2 controls the

select inputs to the shift registers, Sl and S2, and thus tells the

register which way to shift. The signal, however, must be applied to

both ends of the register pair as shown in figure 14.

11-23

As mentioned in the overview, there are several ways to read the

data. Data can be read bit by bit so that a frame synchronization or

some other pattern can be found. Data can also be read in one word at

a time for reading the actual data words. The key is to assert the

data acknowledge (DTACK) signal at the correct time to specify that the

data is valid and the system controller can continue processing. See

section on the system controller.

When reading data at the bit rate, the DTACK signal (DT4) must be

asserted at the bit rate and at the right time. Since data is valid

during the shift 2 pulse, it is used to trigger the lower left AB3 SR

latch. The Q output of this latch is held high until EN4 is asserted

low. This makes the set inputs high, releasing the latch. The next

shift 2 pulse triggers the reset input low which makes the Q output,

and likewise DT4, go low. The latch will remain in this state until

EN4 again goes high, toggling the latch output high again. Also, when

EN4 goes low, the EN2 enables of the shift registers are asserted

through the 74LS02 NOR gate. To complete the enables, the R/W' line

must be high for ENl to be asserted.

The action is summarized as follows. First the system controller

reads from location $FF8000 causing the R/W' line to go high, and EN4

to go low. This action enables the outputs of the shift registers and

applies them to the systems data bus. When the next shift 2 pulse

occurs, AB3 is toggled causing DT4 to be asserted and tell the system

controller that data is valid. The system controller then captures the

data from the data bus and removes EN4. This causes DT4 to return high

where it will remain until another bit read cycle is encountered.

11-24

WODPROCESSOR VER 1.8
JOHN R. CROASDALE SEP 85

+5 13 6

." ~3,Kv . 3K

WORD BUFFER SECTION - - 0

5L-----4 GNO

1 19 2 1 2 320 2e 9 "
VCC CLR SO S1 EH1 ENj VCC CLR S1 S8 ENI EN2

SHIFT2 -12 CLK 8 St. - 2 CLK C5

SIGNAL) 11 SR SHIFT FEiTR' 1Q SHIFT REGISTER
COHO ~ ~ ~ ~ ~ H toS2 0 I0 5040 20

015 D14 013 D12 Oil DI8 0 5 04 D 02

7 13 6 14 5 15 4 16 GND 7 13 6 14 5 15 4 16 GM"

DELAY 605
,, 12 HC04

,,---- 10 11 ,l/ CA2]-1 2 /) BD
a CA2 LSe8 -MC 04

L588 9A
+5 2 1 A

I B06 -4#-0
-#(L362 3

WORD COUNTER SECTION 16

11 086 80 5
LL:LOAD L S 111. NC841 -
4 _13 115 FAB3 13 L8

-DOWN BORROo- I -S
14 I1.4 9

03 02 D D108 LS279

B9 1 1 15 CR 141

+5 1 1oi 16 72 D6le

le AS! 5 19 92 91 68

P 9 VCC 8C6 EN
1/ C75 137

5. 6 111 03 02 0108

1 0---40! 71 6 31 21 2
/112005'

HC04

D15 13 Oi 0 8 07 D6 D5 04 V3 D2 01 DO*

PROCESSOR DATA BUS- - -

DT 04 075 CMT R.'W
EN4 A READ FROM SAM88 INPUTS THE DATA WORD AT THE WORD PAT ENS

I-NOTES: A WPITE TO SAM88 LOADS THE WORD LENGTH INTO THE COUNTRI
..F88O A READ FROM $8e8e INPUTS THE DATA WORD AT THE BIT PATE I SFFhB

Figure 14. Word Processor

11-25

0)

Reading data at the word rate is accomplished by reading from

location $FFA000. Since the word length must be able to vary according

to customer needs, another stage in the word processor is needed. This

stage counts bits. When enough bits have been counted according to the

word length, it tells the system controller that a word is now in the

shift register.

Reading from $FFA000 causes the R/W' line to go or remain high,

and the EN5 enable line to go low similar to the bit read function

above. To perform the read function, the shift registers must be

* enabled, and a DTACK, in this case DT5, must be asserted. The R/W'

line is inverted which causes ENI to go low just as before. In

addition, it causes output pin 4 of the NOR gate, BD6, to go low. This

always occurs regardless of the level of EN5. At the same time, the

pin 1 output goes high enabling the shift registers through EN2, and

* <.> releasing the SR latch AB3. When the 74LS193 down counter BB6 times

out, a borrow is asserted low causing the SR latch Q output to go low

and also DT5 through an inverter, and NOR gate. The borrow signal is

extremely short so the reset line returns high almost immediately. The

system controller, after receiving DT5, will release EN5 high and cause

the SR latch set input to go low. This causes Q to go high along with

DT5 in turn.

Counter BB6 must have the correct bit count loaded in for the

system to work. This is done by writing the word length into the quad

Mlatch BC6 where it will be stored indefinitely. The circuit also loads

the counter to initialize it after a frame sync. See software section.

Loading the latch and counter are done by writing to location $FFA000.

11-26

~%
• - - -*.

" -. When this happens, the R/W' line will go low along with EN5. Two lows

at the input pins 5 and 6 of the BD6 NOR gate will cause its output to

go high. This will cause Yr5 to go low and alert the system that data

* . has been read. While this occurs, the quad latch, BC6, is enabled.

The enabling signal is also fed, after being inverted by BD5 and

delayed by CA2 to allow the Q outputs of BC6 to stabilize, to an AND

gate, the second CA2. This low input to the AND gate will cause its

output to go low and load the counter, BB6.

Once loaded, the counter will count shift 2 pulses until a borrow

is generated. The borrow then re-loads the counter for the next word

* cycle, and, as mentioned above, resets the SR latch to assert DT5.

Writing to $FF8000 affects the shift selector as explained in the

previous section. The maximum count that can be loaded into the word

processor is 16, $O00F hexadecimal. The least significant 4 bits of

the data word, D3 - D0, should contain the bits/word count.

System Controller

The system controller's function is to control the PCM processor

functions of the PCM monitor. It executes the software that performs

autcmatic functions such as the calculation of bit rate and PCM type.

The system controller is based on an MC68000 16 bit microprocessor

because of its asynchronous operation, speed, ease of interfacing to,

and flexibility. Figure 15 depicts the schematic of the system

controller. The processor is used in a very basic manner and takes

advantage of its zero page short addressing and asynchronous I/O

capabilities. Because the controller is used in a special application

11-27
0""

61

- - - - - - - -

.

and not as a general purpose computer, address decoding is kept to a

minimum to avoid an excessive chip count. In fact, the memory map

shown on the next page consists of only 8 sections called pages.

The Memory Map, as shown is arranged into 8 pages. Therefore only

3 address bits are decoded, A15, Al4, and A13. The 74LS138 decodes

,these three lines and enables one of 8 areas of memory. These pages

are described below.

Page 0, the program RCM area, is assigned address from $000000 to

$001FFF. This area spans 8K bytes or 4K words. Each instruction's

operation code (OP-CODE) must reside at an even address for the

processor to function correctly. Because only 16 bit words will be

used, byte addressing is not allowed. This means that only even

addresses can be accessed. See section below for more explanation on

addressing. The program memory chip currently used is a 2K by 8 2716

EPRCM. The design allows for a 2732 4K by 8 or a 2764 8K by 8 EPROM to

be used if expansion is desired. The 2764 must be manually switched to

select which bank of 4K is desired since only 4K words of address space

is dedicated to ROM.

The EPROM is very simple to access. Address lines Al thru A13 are

connected in parallel to the ROM HI and ROM .D0 chips. A0 is an

internal address line to the MC68000 processor and is used to address

bytes. In this implementation, byte addressing is not used so A0 will

always be at a low logic level or tri-state as the situation dictates.

Data lines DO thru D7 are connected to the data lines of ROM 1O and D8

thru D15 are connected to ROM HI. All enable pins are connected

together to form a common enable line for the ROM memory. Since ROM

11-28

1-'

I.

PCM monitor MEMORY MAP

ADDRESS USED FOR REMARKS

$FFFFFE
1---.>l RANDOM ACCESS MEMORY 2K words, use $FFF800

$FFEOO0 to $FFFFFE
$FFDFFE

1---->l I/O DUAL PORT MEMORY 1K words, use $FFCOOO
$FFCOOO to $FFC7FE
$FFBFFE

1--->l WORD LENGTH COUNTER 1 word, use $FFA000
$FFAOOO
$FF9FFE

1--->l WORD BUFFER 1 1 word, use $FF8000
$FF8000

"* $007FFE
--..>1 ONE OJUNTER 1 word, use $006000

$006000
$005FFE

---- >l HALF COUNTER 1 word, use $004000
$004000
$003FFE

1--->> BIT TIMER i1 word, use $002000
$002000
$001FFE

1---> PROGRAM MEMORY 2K words, use $000000
$000000 to $OOOFFE

NOTE: 1. Address in the MC68000 are BYTE address. Therefore 2K

words will span 4K of address space etc.

2. Zero page includes the first 32K bytes and the upper 32K

bytes in an address range of 16.8 Megabytes. Therefore
address from $000000 to $007FFF and $FF8000 to $FFFFFF
are considered zero page.

Table 1. PCM PROCESSOR MEMORY MAP

11-29

S-1 .. ,.-.r . . ? _, - * " / , - • j , - , - , - . - , * ,-

can only be read from, the enable line must not be valid during a write

cycle. This is accomplished by negating the read/write line (R/W')

from the processor, and OR'ing it with the RCM enable line from the

74LS138 address decoder. If the processor tries to write to the ROM

memory, the enable line will be high causing the ROM to be deselected.

In addition to enabling the RCM memory, the RCM enable line from

the decoder starts a small counter to delay the data acknowledge line

from signaling the processor that the data is ready. This is needed

because the access time of the 2716 (350ns to 450ns) is much slower

than the processor (2.5 clock cycles, 312ns for 8Mhz or 156ns for 16

* Mhz). This circuit counts 4 clock cycles and then drives DTACK low.

%b en this happens, 2 clock cycles later, the processor latches the data

into an internal buffer and the read cycle is terminated. The count of

4 was chosen to allow for the expected worst case.

Page 1 resides from memory locations $002000 to $003FFE and is

used to access the bit timer. Since the bit timer is only one

location, a read from any one of the 4K locations will result in a

successful read. For consistency sake, address $002000 has been chosen

to access the bit timer.

Page 2 resides from memory locations $004000 to $005FFE and is

used to program the half counter section of the shift generator,

explained later in this report. The processor can either read or write

te to this location without problems but a read will be meaningless.

K. Again, the half counter section is only one location so the processor

can write to any one of the 4K locations with the same effect. Address

*" $004000 has been chosen for the half counter to be consistent.

#14
11-30

w W.-

Page 3 resides in the next 4K of memory space, $006000 to $007FFE

and is used to load the one counter of the shift generator. Like the

half counter, any of the 4K address are valid but $006000 will be used.

Page 4 uses locations from $FF8000 to $FF9FFE to access the word

buffer and the shift selector. Writing an odd word to to page 4 causes

the shift selector to select Bi-Phase decoding. Writing an even word

causes it to select NRZ. Reading from page 4 causes the word processor

to output the data word at the bit rate. Address $FF8000 will be used

to write and read as described above.

Page 5 comprises locations $FFA000 to $FFBFFE. Writing to this

location loads the word length into the word processor. Reading from0

this location loads the data word at the word rate (versus the bit rate

from page 4) into the system controller. Address $FFA00 will be used

for these functions

* . Page 6 is the I/O RAM port consisting of two dual port 1K by 8

static RAMS. Page 6 consists of locations $FFC00 to $FFDFEE but since

the I/O RAM is only 2K bytes long (K words), only address $FFC000 to

$FFC7FE will be used. Although only intended to be written to, the I/O

PORT has certain reserved locations to pass control parameters from and

to the display processor. See software section for this description.

The RAM chips are dual ported and transparent to both the controller

and to the display processor without any arbitration logic needed.

Page 7 is the RAM area. Two 2K by 8 IMM2016 static RAMs are used

to provide 2K words of fast memory. The program is transferred to this

RAM from the ROM where it can run at maximum speed. The stack for the

MC68000 processor and a scratch pad area also reside here. The top 8K

11-31

locations of the address space, $FFE00O to $FFFFFE are accessible but

"* - only $FFF800 to $FFFFFE will be used in this implementation.

*Some other features of the system controller should be explained.

The MC68000 microprocessor has an elaborate interrupt and error

exception processing capability. None of these will be used because

they are not needed. As a result, the exception inputs are tied high.

These inputs are IPL, BR, BGACK, VPA, BERR and HALT.

The RESET and HALT lines are connected to an RC network to reset

S. the processor upon power up. The values were chosen to allow enough

. - reset time (at least 100 milliseconds upon power up) to do the job.

•* As mentioned earlier, each I/O device must return a data

acknowledgement when data is valid or has been read. Each of these

lines, DTI thru DT7 plus the ROM DT line from the cycle counter, is

NOR'ed and applied to the DTACK line of the processor. The combination

~ .. of the NAND gate (BE3) and the inverter (BE4) acts like a NOR gate for

negative logic and applies a negative signal to DTACK when one of the

DT lines goes low. Otherwise, DTACK is high.

The address decoding logic would normally operate using the

S.ADDRESS STROBE (AS), UPPER DATA STROBE (UDS) and LOWER DATA STROBE

(LDS) lines as required. The AS line from the processor is valid (low)

when a valid address is present on the address bus. This normally

tells the decoding logic that the address is valid. To keep the chip

count as low as possible, it is not really necessary to use the AS line

because the UDS and LDS lines operate in much the same way when only

word addressing is allowed.

For a read operation, the UDS, LDS, or both are valid (low) at the

11-32

." .

+5 +5 2764/2732./2716
SYTMCONTROLLER VER I e +5 +2S

JOHN R. CROASDALE SEP 85 BAHK SELECT 02A2
- 1- 213 At

ROM .1K2-0 281
v 1 16 25 Aef VC

41 1 BIA0 - 7 1 1

vcc 42 2 I SCNT 2 s 2716 054 A05 2P

4A1 - I Yc13 - -- 5 7 0 .0 06-A04 6-- vcc 43 1 1 ICNT -0 BEI Q -: VVl SQ2' 87- Ae3 NC-*
22 A3 S2 Y3- 2 - - 112 S15 0 9L-4 8- A02 2
BER WU - D8 9- AOI 7

25~~~~~I - ACY0 t 3 e PGM
IPLO LSI38 t CNT D I 14 C GH0 2732/2764 FFr

0 CLK 1/ 18- [14
23 -Yft OQ17- 013

CLR RA 16- D12

1 8RLZ 7 018
12 - AS -HC Is12- 089

BGACK- --- ---- --- I 088e BFI

UPA UDSo-~ '.26 ROM HI

oRESET LOS I.4 N EOO8
3 TO

B0 FFFF
BE4 PL88 I4

1HALT - 9 \2 LS32 2 OE CE

15 13 ROMEN G O 2 1 2

A12L81 Ijj~jjj ~ ~~ 82A12

A'All 391 21- At@ 2
A t 38-

34 A V 85GNO AOC OZ6 W!A I I
53A87k! 84 HA06 YPP

* GtIC Aft-3 85- AC I
Aer 4-4 0 6-41104 1611

AC4~i e- 7 HAV3 HC-+

GNC AG21 ZT e?- Ael
Ael 25? li0-18-4AeO PGN

014 - H RO

2h -5'- TO
1 -58 FFF

0O?' 62 e
086 6z 1- e
D8S -64- 7 O

2 -0 tEfis 0

14112 1 1OE
2 E 2LI NNeR

I EPPOS

D TI 0T2 073 0T4 DT5 OT6 0T7 RAN BIT SrC I(WBF WrT 1.!0 +
REZ HALT BIT S5C IC YBF WCT I.'0 RAN SEO 128 148 S6C 180 SAO StC CLOC0

DATA ACKNOULEDGE LINE, ENABLE LINEi 015 DATA BUS 08 A12 ADD BUS A@ ;-W

Figure 15. System Controller
11-33

.e -j

-Y I

same time as the AS line. UDS and LDS actually reflect the state of

the internal address line, AO and are used for byte operations.

Because only word addressing is allowed, both UDS and LDS lines are

valid at the same time. In this case, the AS line, UDS line, or LDS

line can be used to tell the decoder (BDl) that the address is valid.

The OR'ed combination of UDS and LDS was chosen because of write cycle

considerations explained below.

The MC68000 timing diagrams show that during a write cycle, the AS

line is valid one clock cycle before the data is valid (valid UDS and

LDS). This was designed into the processor to give the address decoder

o sufficient time to decode the address during a write operation.

Because of the simple and fast decoder design utilized in the system

controller, this excess time is not needed. A consideration exists

during a write cycle if the data acknowledge line, DTACK, is asserted

too early in the cycle. This is not critical for the ROM section

because the DTACK signal is delayed 4 clock cycles anyway. It does

make a difference, however, for the shift generator and word counter

where DTACK is generated directly from the decoder's output lines. For

these sections, DTACK occurs only a few nanoseconds after the decoder

is enabled. If the AS signal were used as an enable, it would cause

non-valid data to be written. The UDS or LDS lines, however, are

asserted when data is valid and provide a better enable signal. Both

UDS and LDS are OR'ed together so that either one can enable the

decoder. This prevents possible hang up if an error in programming

results in a byte access.

As mentioned earlier, the system controller is a very simple

11-34

WIN

utilization of the MC68000 microprocessor. Used in this configuration,

* I high speed, asynchronous I/O access, and minimal chip count is

realized. It also allows for easy system debugging and modification.

If at a later date expansion is required, further address and exception

processing logic can be added at the expense of speed and complexity.

Reset Circuitry

The reset circuitry is fairly simple. The circuit causes the

initial power-on reset and allows the user to reset the system

manually. To reset the MC68000 on power-up, the reset line and the

* halt line on the processor must be brought low for at least 100ms. For

a system reset, only the reset line must be brought low. Consult

figure 16.

A 555 timer integrated circuit in the monostable configuration

performs the power-on reset function. When the power is first turned

- on, the trigger at pin 2 is held low causing the output at pin 3 to go

* high. Also, C2 begins to charge through R2. Since the trigger is

connected to a smaller RC network (R1 and Cl), it will reach a high

"' state before the threshold voltage and allow the system to time out.

* Time out occurs when the threshold voltage at pin 6 of the 555 reach

2/3 of 5 volts. When this happens, the output goes low and remains

there until the system in turned off then on again. The time to charge

•- C2 to the threshold is approximately I.I*R2*C2, or in this case, 517ms.

The output is negated by one section of CC4 and applied to the

- halt line of the processor. It is also NOR'ed with the manual reset

circuitry. When the output is high, the reset line is low causing the

11-35

RESET CIRCUIT VER I.a
1 H RCROASO LE SEP8

4 +5 VOLTS

P0O1ER 00 RESET

I MEG 4.71K 1 MEG

r CC4N M ALT

~2
VCC

4 RS55TO MICROPROCESSOR

RES 555

TIMER OUT '~C4 6 RESET

2 p
TRIG

THRESH

DISC GI-4

GND

.1 MFD______
+5 VOLTS

GHE' PUSH TORSE ANHLLY

12 LS02
4'0

-C C 4 N'% 8
SLSO2

[@1@

478
OHM ~

Figure 16. Reset Circuit

11-36

0%

processor to perform the reset function.

Manual reset is accomplished by two sections of CC4 configured as

an RS latch. When the reset button is pressed, pin 9 of CC4 goes high

causing pin 8 to go low. Also pin 13 is pulled low by a resistor. TWo

lows at the input of a NOR gate cause its output to go high. This

output is applied to the NOR gate as mentioned in the previous

"-- paragraph. hen the button is released, the latch resets back letting

*' the output go low as before. The user must keep the button depressed

for at least 1/10th of a second for a system reset which is no problem

except for the very quick.

Random Access Memory

The random access memory section of the PCM monitor is very simple

and consists of two, 2K by 8 static RAMs (see figure 17). Each RAM is

connected to the address bus, AO thru A10, and the respective portions

of the 16 bit data bus. The output enable is grounded so that it will

be valid when the RAM is selected by accessing addresses $FFEOOO to

$FFE7FE. As mentioned earlier, the MC68000 requires a DTACK signal

when data is valid. This acknowledgement is shown on the system

controller schematic and is explained above. The TMM 2016 static RAM

chip has an access time of 250ns so the delay required by the ROM is

not needed for the RAM.

The RAM is used to provide an area for fast program execution to

enable the PCM processor to perform at its maximum capability. It is

also used as a program stack for the MC68000 processor and as a scratch

pad for calculations needed by the system software.

11-37

I7

0' - '"""" """'":i / . "° -" """'."" . .; " """" "% """"""" ". . . "-

. Ii " "~O VER 1.8

JOHN P. CROASDALE SEP 85

TMM2616

e VCC 24
-I?- AI18 vcc
22- AW

-21- A0
-f AV6

84 A 4

8 6 A82
-88 - A88

H Ai -17-1015I 16 -o14
-1 014

-I.

-14- D I)
-13 : 011

82 1S

F I.

TMM2016

83 AIO VCC

84 AO
85 A87
0 86 A82

87 A0588 A82

15 085

-1 4 084

-fl 083
081

"- 08M

I 1-3
i e

21 -

OE 6 CS

44

15-----------08 Al --------- AlI

DATA BUS ADOPESS BUSOP Al

P/WENABLE IFFEW8

Figure 17. RAM Memory

11-38

0

L. - :7-- - - - -- - - -

-..'

I/) Port Ram

Figure 18 shows the I/O PORT schematic. The advent of the IDT

7130 dual port 1K by 8 bits RAM chip makes the interface of two running

computers or processor very easy. The chip has two sets of address,

data, and control lines and allows each set to be accessed

asynchronously by two different systems.

Each system treats the I/O PORT as a static RAM which, in fact, it

is. The PCM processor treats the 7130 as 1K 16 bit words mapped into

locations $FFC000 to $FFC7FE. The display processor treats the 7130 as

2K 8 bit words mapped into Color Computer locations $E000 to $E7FF.

See the display processor section below. The 7130 operates the sane

way as the random access memory explained above.

Power Requirements and Design

.-The PCM monitor requires a single 5 volt regulated power supply

capable or producing 2 amp with no more than 100mv of ripple. The

system itself draws only about 1.2 amps in its current configuration

*' but there must be room for expansion.

* The unit is constructed on a 6 by 10 inch wire wrap board so it

can be easily modified. In its final configuration (separate effort)

it will be mounted on a printed circuit card, the size of which is

4V unknown at this time. It will be compatable with the bus structure

adopted by the 4950th Test Wing so that it could easily be added to

current cc puter systems if required. See appendix E for a parts list.

11-39

VI.P - % -.

'< - , ', '- - ". -,. , -. -, -, -, , -. 4 ... - . * , - . -. 4.,',- ---. -- .- - -, .-- - . .. -4-. -- - , ''''

1/ RT VER I.8

IOT 7183S 2

+5
t48

A18 0- - 33- A09 A09 15
SYSTEM 34- A08 Af8 -14 0

CONTROLLER A1 A17 -Il
ADDRESS BUS 37- AeS AO5 -11 -. HS38 A804 A84 -1 -ADRS

33 IIIA3 BUS48e AN2 AN- 8
AI42- Ae8 A81 6 T

38- 013 D13 -21
29- O12 D12 -28SYSTEM TDI DIDT

CONTROLLER27Ci 1BU

DATA BUS 2-0 9-6 0AHG

SYSTEM./ - 2FC8-
CONTOLLE EN6 33 A89 A8 1

IffO
OE A OE A 51

3 8 8
36e 24 862

25NT08L088 16 0e'j

1/00

Figure 1A8. 8O P1r
11-0 A9I

-3 Ae AV1

Software

The programming of the PCM processor is done in machine language

to allow the real-time interactions with the PCM data stream at bit

rates up to 100KBPS. The system must first interact with the display

processor to allow a user to control its different special features.

These features are described in the display processor software sections

and listed below.

1. Auto bit rate calculation.
2. Manual bit rate entry.
3. Auto PCM type calculation.
4. Manual PCM type calculation.
5. Normal polarity.
6. Inverse polarity.

, -7. Variable word length of 8-16 bits.
8. Continuous mode of operation.
9. Trace mode of operation.

The user controls these features through the I/O control block

located at addresses from $C7E0 through $C7FE with respect to the PCM

processor. These addresses map into the display processor at locations

$E7E0 through $E7FE because of the independent nature of the dual port

RAM. Each system sees the RAM independently and can therefore map it

anywhere it needs it. The I/O control block is just a few memory

locations used to pass information back and forth between the two

systems. See table 2 for a listing of the I/O control block locations.

The most important location in the I/O control block is the valid

flag. The PCM processor has two modes of operation, continuous and

trace. With this flag, the user tells the PCM processor to start one

. ,d of these operations, or reset.

The continuous mode of operation provides the user with a
*7 [; 11-41

0

...

SOFIWARE MAP
L %'."FOR PCM mnitor

$F800 - $FFFF RAIM
,. $C000 - $C7FE I/O RAM

$C7EO - $C7FE I/O CONTROL BLOCK

I/O CONTROL BLOCK DEFINITIONS

$C7FE valid FLAG INPUT: 0=continuous MODE
1-00FF--TRACE MODE, NUMBER=DATA WORD
> $7FFF'3TOP AND WAIT

$C7FC USER BIT RATE INPUT: 0=ALTO, <>0=RATE IN WORD COUNT
$C7FA PCM TYPE INPUT: "C"=CALC, "N"=NRZ, "B"=BI-PHASE
$C7F8 WORD LENGTH INPUT: HEX VALUE 8 - 16 BITS
$C7F6 FRAME LENGTH INPUT: HEX VALUE 0 - $FFFF
$C7F4 FRAME SYNCI INPUT: HEX VALUE
$C7F2 FRAME SYNC2 INPUT: HEX VALUE
$C7FO FRAME SYNC3 INPUT: HEX VALUE
$C7EE ERROR COUNT OUTPUT: NUMBER OF SYNC ERRORS
$C7EC POLARITY INPUT: "N"=iNOR4AL, "I"=INVERSE
$C7EA FRAMES/BUFFER INPUT: HEX VALUE
$C7E8 CALCULATED TYPE OUTPUT: "N"=NRZ, "B"=BI-PHASE

'2. $C7E6 CALCULATED RATE OUTPUT: RATE IN WORD COUNT
$C7E4 CORRECTION OUTPUT: NUMBER ADDED TO COUNT TO SYNC IN
$C7E2 STATUS OUTPUT: 0=NOT IN SYNC, <>0=IN SYNC
$C7EO DATA ADDRESS OUTPUT: ADDRESS OF LAST DATA VALUE WRITTEN

$C000 - C7DE OUTPUT: DATA

$A000 WRD LENGTH COUNTER
WRITE = STORES WORD LENGTH
READ = DATA WORD 16 bits at word rate

$8000 WORD BUFFER
WRITE ODD = BI-PHASE

6 WRITE EVEN = NRZ
READ = DATA K)RD 16 bits at bit rate

$6000 ONE COUNTER
$4000 HALF COUNTER
$2000 BIT TIMER
$0000 - $OFFE PROGRAM EPROM

TABLE 2 PCM PROCESSOR EXPANDED MEMORY MAP and 1/0 CONTROL BLOCK

11-42

S

continuous update of inputted PCM data regardless of whether or not the

display processor can read it all. If the display processor is slow,

data will be lost as the PCM processor will keep writing data to the

buffer whether it is read out or not. In other words, it is up the the

display processor to use the data as it sees fit.

trace nde, on the other hand, is synchronized to the display

processor in that it fills the memory buffer with sequential frames of

only one data word. When the buffer is full. the PCM processor remains

in sync but stops storing data. A user input telling it to begin

another trace by resetting the valid flag with another data word value,

* or the same one will start the trace over again. If the valid is

negative, the system resets and is returned to the continuous mode.

While in trace mode, the display processor can read each and every

-i ' frame of one data word and use the information to catch glitches etc.

This process is described also in the display processor software

section and in Appendix B.

Upon startup, the PCM processor sets the valid flag to all F's,

all bits high. When the display processor inputs all the PCM stream

data into the I/O control block, it signals the PCM processor to start

0 looking for the PCM signal by setting the valid flag to 0. If it wants

it to stop, the valid flag must be set to some negative number (bit 15

must be set). If the trace mode is desired, the display processor must,i-
a set the valid flag to some positive value. That value must be the

number of the data word in the PCM stream to do the trace on. No error

checking is accomplished and if a data word number larger than number

*of words per frame is entered, the system will lose sync and reset.

11-43

Z

The contents of the user bit rate location determines whether the

. user wishes to use an automatic calculation of the bit rate or not.

Placing a 0 in this location will force the PCM processor to use a

calculated value. If a manual rate is desired, the rate in counts of

the 16Mhz clock per bit time (word count) must be entered. The display

processor converts the user input frequency to word count and places it

here if required.

The word length is obvious, the number of bits per words.

, -: Actually any value will be processed up to 16 but for word lengths of

less than 8, the time between words at high data rates may not be

sufficient for the system to process the data and lose sync. Values

above 16 will be yield the same results as 16. The PCM processor uses

this value to create a mask to mask out the unwanted bits in a data

word. If, for example, the value of 8 was chosen, the upper 8 bits of

the 16 bit word read from the word processor would be masked out. This

is necessary because the word processor shifts in all bits and can hold

two 8 bit words at a time. Looking at a whole 16 bit word without

masking would yield two data words when only one was needed and would

never find the sync words.

The frame length is the number of words per frame not including

the synchronization words. The PCM processor uses this value to set

counters which will alert the system when to look for the next sync

word/s. If the wrong value is entered, synchronization will occur but

for only one frame at a time as the sync words will be in a different

place with respect to where the system thinks they are.

'' The next three addresses should contain the sync word values. The

11-44

.--.. U

value three was determined from past history of PCM usage within the

4950th Test Wing. The first location should contain the first value,

the second is next and the last address should contain the third. A

special note here to the the programner who wishes to modify the

display processor software: The polarity must be applied to the sync

word definitions before sent to the I/O control block. The PCM

processor reads in all data in normal format and inverts it, if

necessary, if inverse POLARITY is in effect. There is enough time to

do this when reading data at the word rate but not at the bit rate. If

the polarity is inverse and the user inputs a sync word value of

"00001111", it should be converted to "11110000" before sending it to

the I/O control block.

Location $C7EE is an output location in which the PCM processor

sends the error count to the display processor to be used in the status

page in program EXECUTE. The error count is incremented each time

synchronization has been established and then lost. If no signal were

present, no errors would be reported. In other words, an error implies

that the system was in sync at some time. If the system wasn't in

sync, there could be no error.

Polarity is inputted to the PCM processor through location $C7EC

in the I/O control block. Polarity is simply the reversal of the

voltages and the bit values they represent. Normally all PCM signals

represent a "0" as a low voltage level and a "l" as a high level. In

Bi-Phase, a transition from low to high normally represents a "0" and a

transition from high to low represents a "l". In some systems tested

in the past on flight test programs, the Bi-Phase transition meanings

11-45

-- V - +.''''i, + ". .. •

L..°r-"

were reversed. The PIARITY capability was added to allow for such

non-standard systems.

The frames/buffer input was added to avert additional division

routines in the PCM processor software. The calculation is done in the

display processor software to take advantage of the division operation

of the BASIC language. The value is used to determine when the buffer

is full.

The PCM processor outputs the calculated pcm type as an ASCII

value in the next location, $C7E8. Whether or not the user wants to

use a preset PCM type, the PCM processor does the calculation anyway

and returns it to the user. The value is displayed on the status page

of the display processor.

Likewise the calculated PCM rate is returned in location $C7E6.

The PCM rate is calculated regardless of whether the user wishes it to

be or not, and returned on the status page. This value can be used to

determine if the PCM stream is at the proper bit rate or not.

The correction value is returned in location $C7E4 and is

indicative of the jitter in the PCM stream. The calculate rate routine

finds the minimum number of counts between two positive going pulses.

For an entirely stable PCM data rate, the minimum will always be the

same within one count. If jitter is present, the minimum count will be

somewhat less than the actual bit rate times two. Note that the count

between two positive going signal pulses is twice that which occurs

during one bit time. If the bit rate is high enough and the jitter is

bad enough, the walk error explained in section IV will become

*substantial and cause the system to break sync. The PCM processor

11-46

.- -

corrects for this by adding 1 to correction each time synchronization

is lost. If the value becomes larger than 10, it is reset to 0. In

this way, the system keeps on track with even the most varying PCM

signal. The maximum value of 10 was chosen as an educated guess and

laboratory test explained in section IV. The correction counter is

returned in the I/O control block location correction.

The status location of the I/O control block contains a value of

non-zero (true) when the PCM signal is in sync, and zero (false) when

not. When the display processor finds a false value in status, updates

of data values are halted.

* The remaining locations in the I/O buffer are for data word

values. As the system controller reads in the data words, it stores

4.' them here beginning at address $CO00 and ends at the integer value of

* $C000 + WORD LENGTH times FRAME LENGTH. The maximum value assures that

the buffer will not be overfilled.

The system controller interfaces to the rest of the PCM processor

system through the remaining addresses listed in table 2. These were

described fully in the hardware section and will not be repeated here.

See appendices B and C for flowcharts and listings of the PCM processor

• software.

°-

. .

-''

11-47

.°°

III. Display Processor Design

System Overview

*The display processor's main function is to control and read the

data from the PCM processor then display it in a format conducive to

the user's desires. In order to accomplish these functions, the

display processor is organized into two sections: A microcomputer with

interface to the PCM processor card, and the system software.

The microcomputer was chosen to be a Radio Shack Color Computer II

because of the size and capability. The interface to the PCM processor

is described below in the hardware section but in essence, the PCM

processor is interfaced to the display processor much like that of

ordinary RAM.

The system software was written primarily in the BASIC language

1 -for ease of programming and maintenance. Since the overall operation

" .- of the display processor is performed in software, this overview will

concentrate on how the system software works. Later sections describe

*. in detail the operations of each function.

Requirements for the system call for a display in engineering

*' units. A few added features are provided to display bar graphs and

plots of selected parameters. Also, the system must be able to accept

from 8 to 16 bit wide words and a PCM stream of up to several hundred

data words or parameters. The incoming PCM signal can be anywhere from

1 Khz to 100 Khz. Because this system will be used to monitor data

only, it will not be necessary to capture each and every data word.

For a PCM signal of 16 bit words as a rate of 100 Khz, the word rate

would be about 6250 words per second. Although the PCM processor can

[11--1

...0 I -

capture words at this rate, only a sample of the data need be processed

to be effectively monitored. This allows the use of a high order

language like BASIC to be used for ease of programming and maintenance.

A special routine has been be added to extract up to 1000 frames of one

data word to search for glitches etc. This will be referred to as

trace mode of operation. During normal operations of a flight test,

all data words are independently recorded on tape for laboratory

investigation.

The system software is designed to do five major functions.

1. Allow entry of system frame specifications.
2. Allow entry of parameter data to the system.
3. Define what data is to be displayed.
4. Display the data in various formats to the user.
5. Alert the user of system problems.

All functions are integrated into an environment which is completely

menu driven with appropriate cammand prapts and error checking

throughout. Som examples fully explained later in this section are as

follows: The system won't accept erroneous data as input; the user is

notified before a function abort; when conflicting data is entered such

as setting an alarm beyond the range limits of the input data, the user

is prompted, returned to the area where the conflict occurs, and given

the opportunity to resolve the problem; and changing the number of

sync words from 3 to 2 erases the 3rd sync word as it no longer

applies. Many other subtle considerations such as these are scattered

throughout the environment to make it a professional package which can

be used quickly and easily.

System layout is shown on the data flow diagram in figure 19. The

programs within the environment are all version 1.0 and are as follows:

111-2

-1 1. MAIN. BAS
2. FSETIP.BAS

. 3. PSETUP.BAS
4. DSETUP.BAS
5. CONVERT.BIN
6. PARAM.DAT
7. DISPLAY.DAT

The Color Computer Disk Operating System appends the extension BAS to

BASIC files and DAT to data files. The user can choose a different

extension if desired.

The user begins his interaction with the program titled MAIN.

- This menu driven program allows the user to do one of five functions.

He/she can create a new system data base by clearing the old one, enter
>..

- - parameter data, enter display data, enter frame specifications, or

display the data set up in previous sections. There are two data files

0called PARAM.DAT, and DISPLAY.DAT. Each of these files are accessed by

all programs as shown on the diagram. There is also a short machine

language program called CONVERT.BIN which does some the data

conversions done very efficiently in machine language. Such

conversions are hexadecimal to binary or hexadecimal to octal.

The system works as follows: First the user clears the old data

files with the "CREATE" option from MAIN. This option is actually a

section of MAIN because of its simplicity. Once cleared, new data can

be entered. The user mist then describe the frame specifications using

i0" -the "F)RAME SPECIFICATION" option. This option must be accomplished

before the user uses the "X)ECUTE" option as the PCM specifications

• . will most likely be wrong. The "F" option runs a program called FSETUP

_ which allows the user to tell the system how many and what the sync

111-3
S",

-"SOFTWARE DATA FLOW DIAGRAM VER 1.@
JOHN P. CROASDALE SEP 85

MAIN MENU

CREATE SYSTEM PARAM SETUP DISPLA SETUP FRA 1EP DISPLAY DATA

* SET NUMBER D \E
TO ZERO IN //CINL \L, ', OCT,
BOTH FILES / NUMBER BIN MUMBEP
RECORDS a ,

• DISPLAY \ RM
/ PAGES FRAME

PARAMETER /PARAMETER DATA / \\ SPECSA
DATA // D TDA/A'TO 1T2 CONVERSIO N

.. / / /\

PARAMETER DATA DISPLAY DATA 0 1I

(PARAM.DAT, SIZE=6E8 (DISPLAY.DAT, SIZE=250)E I
NUMBER OF NUMBER OF
PARAMETERS DISPLAY PG$
STORED IN STORED IN
FILE I' IN FILE I4 IN
REC 281 REC 101

Figure 19. Display Processor Data Flow Diagram

111-4

words are in the PCM stream, the number of bits per word, the number of

words per frame, the PCM type and polarity, and the bit rate. FSETUP

stores the frame specification in record 102 of DISPLAY.DAT to avoid

unnecessary data files. See appendix A for a listing of the file spec

protocol.

The next thing is to define the parameters or data words in detail

using the "P)ARAMETER SPECIFICATIONS" option from MAIN. This ption

calls the program called PSETUP. The system can hold up to 200

parameters at one time.

Once the data word data base has been defined the user must

* arrange the previously entered data into a display page format using

the "D)ISPLAY FORMATS" option. This option runs the program DSETUP.

Each page can consist of up to 10 parameters. Only one page can be

4P seen at one time but up to 50 pages can be accessed for prompt display.

By defining page formats in advance, execution speed during display

time is greatly enhanced because most of the disk access work is done.

In summary, FSETUP specifies the frame definition, PSETUP fills

PARAM.DAT. DSETUP then uses data from PARAM.DAT to create files in

DISPLAY.DAT. EXECUTE uses this data along with the frame specification

in record #102 to display the appropriate data to the user. More

explicit explanation follows.

Color Computer Interface

The design of the display processor hardware interface to the PCM

processor is very simple due to the dual ported RAM explained earlier.

The interface schematic is shown in figure 20. The PCM processor

111-5
S,% % %:

-,, III-5
- *g , * * 1& % .. ,.,/.'.*. .

appears to the Color Computer's I/O port like 2048 bytes of RAM. The

interface maps the RAM at locations from $E000 to $E7FF. To make the

circuit even simpler, the RAM is also mapped into locations $E800 to

$EFFF. By doing this, only the four highest address bits need to be

decoded. Whenever address bits A15, A14, A13, and Al2 are at states 1,

1, 1, 0, respectively, the output side of the I/O RAM will be selected

by the display processor.

Because the PCM processor is a 16 bit system, it writes to the

dual port RAM in 16 bit chunks. The MC68000 microprocessor, however,

addresses only bytes so the address range is the same to both the PCM

processor and display processor (2k bytes). Only the locations are

different. If the MC68000 microprocessor writes a word to location

$C000 with respect to the PCM processor (see section on the System

Controller), it will write the high 8 bits to $COOO and the low 8 bits

to $CO01. This data will be presented to the display processor at

locations $EOOO and $E001 respectively. Location $E000 contains the

high order byte while $E001 contains the low order byte. This applies

to every even and odd address throughout the dual port memory.

The interface decodes the address range $E000 to $EFFF, and enable

either the low byte with an odd address (AO0 is a 1), or an even

address (A00 is a 0). This is done by first decoding the four high

address bits, A12 - A15 with the NAND gate AB6 and AND gate AC6. When

$Exxx is addressed (x means don't care), pin 6 of AC6 will go high and

allow the other sections of AB6 to pass address bit A00 through. When

this occurs, A00 enables either the even byte, or odd byte of the dual

port RAM depending on whether it is at a logic level 1 or 0. For even

111-6

.

UI COLOR COMPUTER INTERFACE VER 1.0
nJOHN R. CROASDALE SEP 85

e* COLOR COMPUTER

I/0 PORT

SIGNALS

. FROM PCM INTERFACE

PROCESSOR CABLE
J2

ADDRESS BUS

AF5 BF5-15 AS9 29- AIS 29 29- At@
AF5BBFB-14 A8 28- A 9 28- 28- Aa
AF5!BF5-13 AS7 27- Ae8 27- 27- A68
AF5/BF5-12 A86 26- AS7 26- 26- AV
AF5/BF5-11 AS5 25- A66 25- 25- A06
AFSIBF5-10 A84 24 Ae5 24- 24- ASS
AF5/BF5-09 Ae3 27- A64 23 -23- A4
AF'B6F5-88 A82 22- Ae3 22- 22- AS
AFB/BF5-S7 A0e 21- A2 -21 - 21- A02
AF,!BF5-06 ASS 2e- Ael 28 28 AeI

A2 1 19- ASe 19 19 ASS

AF5-22 D14
AF5-21 D13
AFS-20 D12
AFB-19 Oll
AF5-18 015
AFS-17 089 I
AFS-16 D08

ENALE ENL:2 39- A15 39-99- AI5

'E -0l,'54 LS l0 I6(AC:6 - 38- A14 -38 38- A14
LOU LS2 43

27 A12 -31 31 A12

0 131 A2 -I-A

R/W

AFS/BF5-464- *- 18- R.'W 18 15 VU

BF5-22 D06.-4 I 16- 6 16 16- D6
BF5-21 D05 - 15- 05 15--- 15
-- 5-20 0e4 4-f J 14- 04 14 14- 04
F5 -14 063 13- 03 13! 13 -0!

BF5-18 -2 12- 02 12 12- D2
SF5-1 Del -It- 1 I 01 1t 11 -D!
BF5-I6 Dee le- De Ie Ie - e

-4 74- 34- G34
EMM ..L

ENABLE t 11 AB6 1-
NIAF5-01/5------- LSSS 13 6 A6--

Figure 20. Color Computer Interface

111-7

0 ;: . ,,,. ,; x;;,. ,.,- -.-.,.-- -.'.,,b.-.. v- ..-:-,-

- W

addresses, AN0 is low causing pin 8 of AB6 to go high, deselecting the

low I/O RAM chip. It is also negated by one section of AB6 and applied

to pin 13 of AB6. Since both pins 12 and 13 are now at a high logic

level, pin 11 goes low enabling the high I/O RAM chip.

When the processor addresses an odd byte, A00 is now at a logic

level 1 which performs the reverse operation to the I/O RAM chips.

The interface is built on the PCM processor card to avoid

duplication of effort. A cable linking the two systems is connected to

" J2 on the processor card. This cable must be kept as short as possible

(less than one foot) to avoid interfering with the Color Computer's

l system bus. To avoid confusion, the pin numbers for J2 are kept the

same as those in the Color Computer.

In summary, the display processor will read data in the same order

as the PCM processor writes it. That is, even bytes will contain the

high order bits of the data, and the odd addresses will contain the low

order bits. To obtain the full data word value, the display processor

must multiply the high order byte by 256 and add it to the low order

,. byte. This will yield the full value of the 16 bit word.

MAIN

Program MAIN's function is to provide as an interface between the

other modules of the system. See figure 21 for the MAIN master menu.

The menus shown here and throughout this chapter are actual page

formats from the display processor system. Since the Color Computer

presents data in 32 columns by 16 rows max, each page was designed to

fit within this limitation.

111-8

.o

s + 5..--+'--.-.,,. " ,+'..'.,-.- + ..- ,+. . . - ,,'".*,.. -. + . .: ., + . "- .- , . - '. .-. • .'.". . - .- .- '.".
- + + : • + + + 14 I & + - + ' T , , - . + + ' +" -' i '. . ,. , % + * , "' .° ,+ ". ,''.', ,* " V"

MAIN calls other programs from this menu and gets recalled when

the quit option is selected from them. It acts as the arbiter for the

system. MAIN does have another function, however, and this function

is to setup new data bases. See figure 22 for the setup menu. Only

one data base at a time is allowed under the current configuration.

This data base is contained in two files named PARAM.DAT and

DISPIAY.DAT. The user is responsible for saving old files under a new

name if they are to be kept for later use. Setting the number of

". records stored in each file to 0, makes them ready to accept new data.

The current number of records stored in PARAM.DAT is placed in it's

* 201'st record. Likewise, DISPLAY.DAT's 101st record contains the

number of display pages entered in the system. The data entry

programs, PSETUP and DSETUP, keep these records updated at all times

A.because many of the sub-programs in the system check the number of

records stored and use the information to alert the user if access of

non-existent records is attempted.

Program MAIN alerts the user when the "S)ETUP NEW SYSTEM" option

S." is selected that the data base will be erased if he/she chooses to

'-, continue.

FSETrJP

The first thing a user should do after clearing the data files is

to describe the frame specification using the "FRAME SPECIFICATION"

option from MAIN. Calling this option brings up the FSEIUP master menu

shown in figure 23 below.

* As in the program MAIN above, selections are made by typing the

111-9
• .II -

N-*. -- I- -

* MAIN MENU *

F)RAME SPECIFICATION
P) ARAMETER SPECIFICATIONS
D) ISPLAY FORMATS
X)ECUTE TO BEGIN PCM MONITOR
S)ETUP NEW SYSTEM
Q)UIT

WHICH ONE-->?

Figure 21, MAIN MASTER MENU

S* * ** **** ** ******** ** **** *** **** *

* SETUP NEW SYSTEM *

S******* *** * **** ** ***** **** ** **

WARNING i&RNI NC VARN ING WARN ING

THIS PROGRAM WILL DELETE YOUR
DISPLAY FILES. BE SURE YOU'VE
SAVED THEM TO ANOTHER FILENAME

DO YOU WISH TO ONTINUE OR ABORT
PRESS C ORA-?

- Program MAIN has a master menu page shown in the top of this figure.
If the S function is called, the lower page will be displayed. If the
user responds with a "C", the program will set up a new system data
base. Any other key will revert back to the main menu.

*Figure 22, SETUP MENU

-11-1

first letter in the line before the parenthesis followed by the "ENTER"

key. The FSETUP program gives the user the options of creating a new

frame specification, editing a specification in memory created during

this session, loading the frame specification saved on disk from a

previous session, or quitting. The system can hold only one frame

specification at a time. It stores the specification in the

DISPIAY.DAT data file in record #102. Appendix A describes the disk

format for the frame specification.

The first option, "C)REATE", brings up the data entry page shown

in figure 24. There are seven items which need to entered to describe

the frame format. The arrow keys are used to move up and down the

seven line entries and to scroll left and right within a line. The

first line is "BITS/WORD". Here the user types a number up to 16 bits.

The normal size of a PCM word is around 10 to 12 bits but for greater

resolution, 16 bits can be used. The number of bits, as well as all

the other entries on this page, is dictated by the PCM encoder and not

the PCM monitor. The user must use what is in the PCM stream.

The second line entry is "WORDS/FRAME". Any number of words are

allowed up to a total of 200. "PCM/TYPE" is either NRZ-L or

bi-phase-L. These types are explained in the introduction. A third

option on this line is "AUTO". The PCM monitor has the capability of

determining whether the signal is in NRZ format or bi-phase. Selecting

"AUTO" allows the system to use the calculated type.

Perhaps the most important innovation of the PQC processor is its

capability to capture a PCM bit rate from 1Khz to 100Khz automatically.

The user has the option of manually setting a bit rate by typing a

Ihl--l

**** *** *** ** **** *** ****** *** ** **

* FRAME SPECIFICATION PAGE *
**** *** * *** ****** *** ********* ***

C)REATE NEW FRAME SPECIFICATION
E)DIT SPECIFICATION IN MEMORY
L)OAD FRAME SPECIFICATION
Q)UIT

WHICH ONE->?

i Figure 23, FSETUP MASTER MENU

- * ** * * ***** *** * *** ***** **** *** *

* FRAME SPECIFICATION PAGE *
* ** **** **** **** **** ** ******* ** **

BITS/WERD 10 MAX IS 16
S" WORDS/FRAME 34 MAX IS 200

PCM TYPE AUTIO NRZ BI-PHASE
PCM BIT RATE AUTO KHZ A)UTO
PCM ORDER LSB MSB
PCM POLARITY NORMAL INVERSE
OF SYNC WORDS 3 MAX # IS 3
SYNC DEF-> 1111101011

1100110011

* 0100000000

USE NUMBERS, ARROWS, OR CLEAR

Figure 24, FRAME SPECIFICATION PAGE

111-12

4.

*,.-

*-°

I .. number in the PCM bit rate line. Such a number could be 25.5 meaning

25.5 thousand bits per second. By typing the letter A, the "AUTO"

feature is selected. If a number is used, the PCM processor will use

this number but it will return the calculated value to the user. The

calculated value will be displayed on the status page of the EXECUYTE

program explained later.

PCM order can be either Most Significant Bit (MSB) first, or Least

Significant Bit (LSB) first. The is determined by the PCM encoder.

Looking at a digital word of (10110100), for example, the MSB is on the

left and is a "1". The LSB is on the left "0". The MSB has the

i, highest weight or value while the LSB has the lowest. Generally, PCM

systems send data LSB first. If the PCM monitor is not told what this

order is, the data may become transposed and be meaningless. The word

above has a value of 180 decimal. If it were transposed to (00101101),

its value would be 45. The order is switch selectible on the PCM

processor card.

The PCM polarity option is used to switch from a high level

meaning "1" to a high level meaning "0" etc. It is normally used for

bi-phase as some systems use a transition from low to high to mean "0"

and high to low to mean "l". Other systems use the reverse. The

polarity function is accomplished in the PCM processor software to

allow for any type of encoder polarity outputs. Consult the software

section of the PCM processor for more information on polarity.

The number of synchronization words is entered on the next line.

The word length for the sync word must be the same as the normal word

length. Up to 3 sync words can be used. The "SYNC DEFINITION" lines

111-13

:..-.~9x--l.x

follow to allow the user to enter the binary representation of the

word. If only one sync word is allowed, the program will allow only

one to be entered. If two are allowed, only two can be entered. The

same for three. The program also checks the word size from line one

and allows the user to enter only those number of bits. If the

BITS/WRD is changed for some reason, the "SYNC DEFINITION" display

area is erased and must be re-defined. This keeps the user from

entering erroneous data

Pressing the "CLEAR" key at any time during the data entry process

saves the data displayed shown on the page to disk. If items are left

* blank, the default options shown in inverse are used.

The next option from the master menu is "E)DIT". This allows the

* user to re-enter the frame specification page without re-loading from

disk. The "L)OAD" option brings in the saved file from disk and enters

the specification page. "Q)UIT" returns the user to the MAIN program.

PSEpoUP

The parameter setup program, PSEEJP, allows the user to set up

parameter file, PARAM.DAT. Parameters are those items which are to be

measured and used to determine if the system under test is functioning.

A parameter, for example, might be motor temperature for the left

outboard flap motor. A parameter could also be the cabin altitude

aboard an aircraft. Because not all parameters need to be placed into

a PCM data stream, the parameter number and data word number do not

necessarily need to be the same. Mien the user puts a parameter list

0 together, he decides which parameters need to go into the PCM system.

111-14

..-

PSETUP therefore allows the user to have different parameter numbers

than data word numbers. Data word numbers depict the position in the

PCM stream where the parameter is located. Parameter number 15 might

be the 2nd word in the data stream for example.

When called from the MAIN program, PSEUP displays the master menu

.- page depicted in figure 25 below. The user is offered the options to

"A)DD" new words, "E)DIT" words already in the system, "I)NSERT" data

words between others, "D)ELETE" data words, "L)IST" all the data

entered in the system, or "Q)UIT".

The "A)DD" selection brings up the page shown in figure 26. All

the data needed by the system is shown on this data entry page. By

adding a new data word, the system looks up how many have been entered

before and adds one to it. It then displays this number in the top

* line of the page.

The next entry the user must provide is a parameter name. Because

of the limited number of columns available on the Color Coputer, only

seven characters are allowed for the parameter name. This number was

- /arrived at because of other page limits in the PCM Monitor system. The

, figure shows a parameter name of "ALTITUD' (not a typo) for aircraft

*± altitude. Its position on the users parameter list is four so its

parameter number is four but it is the first word in the data stream.

By keeping track of the parameter number, the user can relate data

shown on the PCM Monitor with the master list. Parameter units are

obvious, feet.

The range minimum and range maximum relate to the full range of

the expected output of the transducer supplying the data to the PCM

111-15
0

r.-...i5

* DATA WORD DEFINITION PAGE*

A)DD NEW DATA WORD
E)DIT DATA WORD
I)NSER' DATA WORD
D) ELETE DATA WORD
L) 1ST PARAMETER TABLE
Q)UIT

WHICH ONE?

Figure 25, PSETUP MASTER MENU

-0

DATA WORD DEFINITION PAGE

ADDING DATA WORD # 1

PARAMETER NAME ->ALTI IUD
PARAMETER NUMBER-> 4

* PARAMETER UNITS -> FEET

RANGE MINIMUM -> -100
RANGE MAXIMUM -> 50000

V ALARM MINIMUM -> 200
ALARM MAXIMUM -> 45000

ENTER FOR NEXT, CLEAR TO ACCEPT

* r,,gure 26, A)DD NEW DATA PAGE

111-16

[his.

V.

encoder. For example, when the digital data for this data word is

zero, (all bits are 0), the user should expect to see a certain value

on the display which is set up during the transducer calibration. In

this case, a zero reading would be scaled to -100 feet. If the data

words were 16 bits long, the maximum absolute data read into the system

would be 65535 or all bits set high (1). The system would then be

calibrated to give a maximum reading of, in this case, 50000 feet. In

no way could the system display values lesser or greater than range

- minimum or range maximum respectively. The absolute readings from the

16 data bits in this example would then be mapped or scaled to fall

within the range high and range low limits and be presented to the

user. This process is described in the EXECUTE section.

Alarms are set to alert the user if the data is exceeding a preset

value. In this case, the user wants to know when he/she is getting

close to the ground so alarm low was set to 100 feet. In addition, a

high alarm was set to 45000 feet to alert the user when the aircraft is

*above a save limit. Alarms are displayed only on the bar chart display

- explained in the EXECUTE section. These useful prompts can tell the

user of imminent brake damage due to excessive temperature, or when the

cabin altitude is dangerously high etc. Very few systems units on the

market have this feature in i:heir PCM display units.

At the bottom of the page are several comand prompts. The

"ENTER" keys on the Color Computer is used to jump from one line to the

next. In addition, the arrow keys are also used to move within a line,

--. or from one line to another. Pressing the "CLEAR" key brings up the

save page shown below in figure 27.

111-17

n

The user can either "SAVE" the data just entered to disk and

return to the master menu, "TRY" again to change data just entered, or

"RETURN" to the master menu without saving the data. Data is saved in

the PARAM.DAT file in a format explained in appendix A.

Error checking is done throughout to prevent the user from

entering data which would bomb the system at a later time. For

example, if an alarm were set outside the range limits, the user would

be alerted and returned to the alarm entry position on the add data

word page. Alarms out of limits would cause the plot function, for

example, in the EXECUTE program to plot off the screen. Trying to

.. specify a parameter name as a number, however, is allowed as the system

doesn't care what the user calls his/her parameters. Alpha characters

*-°' such as "A" or "D" are accepted as a zero value in cases when a number

is expected to add flexibility.

The "E)DIT DATA WORD" option allows the user to edit a previously

S)AVE DATA WORD # 1
T)RY AGAIN
R)ETURN 'T MENU

WHICH ONE ->?

Figure 27, Save Page

.- 111-18

*4,- P-

*'' defined parameter. When this option is selected, the user is asked

* . which data word he/she wishes to edit. At this point, a number will

bring in the specified data word to a page exactly like the add page

- described above. The user has several options other than editing a

data word. These options are EXIT and List. "EXIT" returns the user

* * ,to the master menu. "LIST" presents a display shown in figure 29 which

-' is a summary of all the parameters entered in the system. This "LIST"

command is exactly the same as the "L)IST" function on the master menu

with the exception that pressing a number will bring up that data word

-. into the edit data word page. If the "LIST" function is brought up

* from the master menu, pressing a number will only return the user to

• .the master menu as the system does not know what to do with it, edit,

delete, insert or whatever?.

Listing a data base helps the user get his/her bearings if the

data word number for a particular parameter can't be remembered. It is

- also very useful in checking to see if all parameters are entered

correctly. Of course, the characteristics of the parameters are not

displayed but at least its position in the data stream can be verified.

The user has three options from the listing page, all of which are

* effective when called from the "EDIT" option. Pressing a number will

bring the selected parameter into the edit parameter part of the

program. The user can edit at will and save as mentioned above. A

*- carriage return, or "ENTER" key on the Color Computer, will continue

the listing if more than ten data words are entered into the system.

The listing displays only ten lines at a time to allow the user time to

*see them. Pressing the "E" key exits the listing and returns the user

111-19

ENTER DATA WORD TO EDIT ->?

PRESS L TO LIST, E TO EXIT

Figure 28, Command prompts from EDIT function

-

44 DATA WORD LISTING OF 12 REGJRDS

WORD # NAME PA1R

1 ALTITIUD 4
2 AIRSPED 5
3 CAB ALT 6
4 CAB TEM 7
5 BRK1 TP 10
6 BRK2 TP 11
7 BRK3 TP 12

N8 BRK4 TP 13

9 AI RPRS 19
10 OAT 25

NUMBER=SEL, CR=CflNT, E=EXIT ?

Figure 29, LISTING DISPLAY

11-20

ra

.77

-" to the master menu.

The "I)NSERT DATA WORD" option allows the user to insert data word

2 specifications between other data words. This feature is very useful

if changes to the parameter list or sequence of the data word order

have been made for some reason. Selecting this function brings up a

hAP user prompt page similar to that which was brought up if the "E)DIT

DATA W)RD" were selected. The user has the same options, "ENrER" a

data word number, "LIST", or "EXIT". If a data word number is entered,

the insert data word page will be displayed. This page is exactly the

same as the add data word page except for the title. The new data word

* will be inserted before the number selected by the user. The user can

abort at any time but if he/she chooses the "SAVE" option, the data

base will be re-ordered to reflect the inserted word. This operation

is entirely disk based so for large data bases, the time to complete

the operation could take up to 15 minutes. For this reason, the user

9. is continually prompted of the disk operations performed during the

operation. He/she cannot abort once the operation is underway.

The "D)ELETE DATA WORD" option allows the user to delete a data

word. The file is then re-arranged to assure sequential data word

* numbers. This feature is exactly the same as the "I)NSERT DATA WORD"

- option except that the user is shown the data word he/she has chosen in

detail on the same page format as the add or edit data word page. At

this time, the user is re-asked if it is to be deleted. If yes is

chosen, the file is re-arranged in the same process as the "INSERT"
option.

W The "LIST" option does exactly the same function as the "L)IST"

111-21
41

option in in the edit, insert, and delete modules. Thtere is one

exception and that is if a data word is selected from the listing, the

program returns to the master menu instead of displaying the selected

word. This option is intended to be used to double check all data

entries before moving on to the "D)ISPIAY FORMAT" option from the MAIN

program.

The final option of PSETUP is "Q)UIT". Calling this function

returns the user to the MAIN module and allows him to call other

programs in the system.

DSETUP

The fourth option in the MAIN program is "D)ISPLAY FORMATS". This

option runs the DSETUP program and allows the user to set up the

display page data. The formats for the display are built into the

system in the EXECUTE program explained below. DSETJP allows the user

to specify which parameters or data words he/she wishes to see at one

time. Up to 10 words can be inserted into one display page. These 10

can be any combination of the data words defined using the previous

*<. PSE'IUP program. The user can choose to make a page of just one data

word iterated 10 times to allow for a higher szumpling rate in program

EXECUTE. Another example would be to show the data for a particular

parameter scaled to the range limits along with its raw value from the

PCM processor is displayed. These options are available as explained

later in the USERS MANUAL.

The DSETUP master menu is shown in figure 30. The user is

presented with seven options described below. The first option is

111-22

1.-1-

* DISPLAY DEFINITION PAGE *

A)DD NEW DISPLAY PAGE
E)DIT DISPLAY PAGE
I)NSERr DISPLAY PAGE
D)ELETE DISPLAY PAGE
L)IST CURRENT DISPLAY PAGES
P)ARAMETER LISTING
Q)UIT

WHICH ONE->?

Figure 30, DSEI JP MASTER MENU

ADDING DISPLAY PAGE # 2

POS DW# PAR NAME TYP
1 1 4 ALTII JD DEC
2 1 4 ALTIIUD HEX
3 1 4 ALTITJD OCT
4 1 4 ALTITUD BIN
5 1 4 ALTI'lUD SWI
6 2 5 AIRSPED DEC
7 2 5 AIRSPED DEC
8 3 6 CAB ALT DEC
9 4 7 CAB TEM DEC

10 10 25 OAT DEC

ENTER=NEXT CLEAR=ACCEPT SP-TOG

Figure 31, ADD/EDIT DISPLAY PAGE

111-23

d "A)DD NE DISPLAY PAGE". Selecting this option will present the page

shown in figure 31.

The same scrolling technique is used in this page as in all the

others before. The arrow keys move the cursor from left to right. The

enter key scrolls the user to the next field for data entry. Only two

fields per line are allowed. By typing a number in the first field of

the line followed by the "ENTER" key, that data word will be brought

into memory from disk and its parameter number and name will be

displayed. The next field is asking the user which data type it is to

be displayed in. Five data types are allowed and toggled through using

the space key. The types are DECimal, HEXadecimal, OCTal, BINary, and

SWItch. The first four are self explanatory but the SWItch is a new

feature. This simply tells the user if the data is non-zero, or zero.

If it is zero, the EXECUTE program will show the data as "OFF". If it

is non-zero, it is "ON". It is designed to be used as event markers

for discrete actions such as whether a system is turned on or is

receiving a signal. Pressing the space bar will toggle through the

five types and when the user sees what is desired, the "ENTER" key

accepts the data and scrolls to the first field on the next line. The

example shows that the user wants to see "ALTITUD" in all five

different data types, "AIRSPD" in two sequential frames, and a sampling

of CABin ALTitude, CABin TEMperature, and Outside Air Temperature. All

this data will be displayed as page one in program EXECUTE. When the

user is finished describing the page, the "CLEAR" key is pressed to

"SAVE" the data, "TRY" again to edit the data, or "RETURN" to the

4 master menu without saving. This is the same process used in the

111-24

4

PSE' UP program for saving parameter specifications.

The "E)DIT" option is handled much like the "E)DIT" option from

the PSETUP program. The user is prompted for a page number and has the

choice of entering one, LISTing the display page file, or EXITing back

to the master menu. The prompts are not shown here but are the same as

those found in PSETUP and work the same way. If a number is selected,

that page will be displayed in a format exactly like the "A)DD" page

except that the header will show that the user is editing rather than

adding.

Selecting "LIST" will bring up the display listing page shown in

* figure 32. Because of the limited column capability of the Color

Computer, the listing is rather busy. Along the top, the listing shows

how many pages are defined in the system. In this case there are 12

pages, the first 10 are shown in the listing. If the "ENTER" key is

pressed, the last two pages will be presented as shown in figure 33.

The line between the asterisks shows the position number of the 10

entries per page. The left column shows the page number with the data

word numbers on that page across the line. This format allows the user

to see what data words will be displayed when a particular page is

*" displayed in EXECUTE. The user can bring a page into EDIT by simply

typing its number so long as it is shown on the catalog page. Pressing

"ENTER" will bring up the next 10 pages, if there are 10 more. This

cycling will continue at the users prompt until the entire catalog is

displayed. The user can elect to quit using the "EXIT" option. When

entered from the "EDIT" option on the master menu page, the catalog

will return back to the "EDIT" option if "EXIT"ed. This is the same

111-25

CATALOG LISTING OF 12 PAGES
-- , * ************** *** **** ** *** *** **

'll!"1PG!2!13! !4! !5! 16! !7!18! !9!10

1 1 1 1 1 1 2 2 3 4 10
2 11 12 13 14 15 16 17 18 19 20
3 21 22 23 24 25 26 27 28 29 30
4 31 31 31 31 31 31 31 31 31 31
5 32 32 32 32 32 33 33 33 33 33
6 34 35 36 37 38 39 40 41 42 43
711 15 17 19 23 35 43 44 45 46
8 89 9 9 9 9 9 9 9 9 9
9 50 51 52 53 54 55 56 57 58 59
1060 61 62 63 64 65 66 67 68 69*** *** *** ** **** **** ** ** *******

NUMBER--SEL, ENTER=ONT, E=EXIT ?

Figure 32, DISPLAY PAGE LISTING

V.','i CATALOG LISTING OF 12 PAGES

PG!1! !2!113!!4!5!!6!!7!!8! !9!!10
[ii**** **** **** **** ** ** ******** *** *

111 1 1 1 1 2 2 3 4 10
1211 12 13 14 15 16 17 18 19 20

',. * **** * ****** ** **** **** *** ** **** *

NUMBER=SEL, ENTER=cDNT, E=EXIT ?K. Figure 33, DISPLAY PAGE LISTING cont

111-26

C -
'. ' . * *..c... 4I. * , , . '-

methodology as that used for the previous listing pages in PSETUP and

in the other options in DSEdUP. The calling routine will be returned

to if "EXIT" is used from the catalog.

The "I)NSERT" option from DSETUP's master menu will perform the

insert utility similar to that is PSETUP. The user will be asked where

S.. to insert the display page, "LIST" the catalog, or "EXIT". By using

the list function the user can see where he wants to insert a page.

Typing a page number will bring up a blank DISPLAY PAGE for the user to

fill in. The page will be inserted in the DISPAY.DAT data file before

the number page number selected and assume its value. Like the

* "INSERT" function in PSETUP, inserting a page can be quite a lengthy

process so it must be used wisely.

The "D)ELETE" option will delete a display page in the same

fashion as the "INSERT" option except the selected page to delete will

- be presented to the user for a final go ahead. At this time he/she can

- delete the page or abort the operation.

*The "L)IST" option from master menu will display a catalog listing

exactly the same as used before but will return to the master menu if a

page is selected as the program will not know whether to edit, insert,

* or delete the page.

The "P)ARAMETER LISTING" option will list values of the selected

data word exactly the same as in the PSETUP program. Consult the

section on listing parameters for more information on this option.

The "Q)uit" option exits the program and returns to the MAIN

programs master menu.

111-27S...:

n. . . . ,. -,- . ~ .-. .-.-- ..-.

EXECUTE

The EXECUTE program is the workhorse of the system. It is the

program responsible for displaying the data set up in PSETUP and DSETUP

and presenting it in user readable formats. It also performs the

function of providing system status feedback to the user. Calling the

"X)ECUTE" option from MAIN will run the EXECUTE program. EXECUTE will

prcmpt the user to set the PCM order switch on the PCM processor card

to either MSB or LSB depending on what was input to the system during

the frame specification setup procedure. After a few seconds, the

-,' EXECUTE master menu will be displayed. This menu is shown in figure

.1". 34.

Calling the "S)TATUS" option brings up the status display page

shown in figure 35. This page is for display only, no input is

possible. Pressing any key returns the user to the master menu. Much

of the display is the frame specification entered earlier. The two

columns, "USER" and "CALCULATED" display the data entered by the user,

"' and calculated by the system respectively. Where items are not

"° " calculated, the display is filled with dashes. By looking at the

sample system, it can be seen that the bits/word and words/frame were

* user entered during the frame specification procedure. The user

selected auto PCM type calculation and the system calculated NRZ. The

*. . user wanted to manually enter a bit rate of 25.5 Khz but the system

6' calculated 25.9. Since the system is running off a separate clock

which may or may not be as accurate as the encoder system, the

."calculated rate may not be exact. The important thing is that the

system is tuned to the calculated rate since it uses the incoming PCM

111-28

.4

' • "' :" " '" "" "- " :' •" "" , '" . -'. .* ' 4>, : ,% % -'. .' - 4 -.. :;_ 2 ,% 2." ' -,."

'V

* PCM DISPLAY MODULE *

S) TATUS PAGE
B)EGIN DISPLAY PROCESSING
Q)UIT

WHICH ONE->?

Figure 34, EXECUTE MASTER MENU

* *** *** *** ** ***** ***** *** ******

* STATUS PAGE, KEY TO EXIT *

USER CALCULATED
BITS/WORD 10
WORDS/FRAME 30

PCM TYPE AUTO NRZ
BIT RATE 25.5 25.9
PCM ORDER MSB
PCM POLARITY NORMAL

A SYNC ERFCRS 10
PCM HEALTH -- 3

SYNC WORDS 1- 1111101011
INVERSE 2- 1100110011

IF IN SYNC 3- 01 00000

Figure 35, Sf xVJS DISPLAY PAGE

iI-29

,,' ... ,

RD-A164 825 REAL-TINE FLIGHT TEST PCN DATA ACQUISITION MONITOR(U)
RlIB FORCE INST OF TECH WRIGHT-PATTERSON AF8 OH SCHOOL
OF ENGINEERING J R CROASDALE SEP 85 RFIT/GE/ENG/85S-i

UNCLASSIFIED F/G 17/2 ML

-0.3

-A"

.11

I. IA s-6.

M-ROCOPY fouIN'S p

signal to synchronize on. It knows what the best rate to use is and

that is 25.9 Khz. The system will, however, use what the user wants,

25.5 Khz but the system may not lock on to the signal as well as it

should. The main reason for allowing manual entry is if the PCM signal

is erratic such as that received from a recorder or telemetry signal.

In this case, the calculated rate may be too low for an accurate lock.

The system iterates to zero in on the signal but it does have its

limits. See the section on the PCM processor software.

PCM order and polarity are user set and not calculated. Sync

errors are generated once sync is established and then broken. If no

* signal is present, then no sync errors will occur since the signal was

never synchronized. If however, a good signal was obtained, the error

counter in the system is set and incremented each time a break lock is

encountered. The only way to reset it is to exit the EXECUTE program

o- - and re-enter.

PCM health is a generic term which tells the user how stable the

signal is. This calculation is explained in the PCM processor software

-> section but results in a number from 0 to 10 with 0 being a good stable

signal and 10 being rather erratic. An absolute value cannot be

* obtained from this except that it, along with the sync error counter

above, tells the user if the signal is erratic or stable. The health

calculation is actually the number of counts that have to be added to

the minimum count to keep the signal synchronized.

The last three lines on the status page are for the sync words.

They are repeated here for user information. The word "SYNC" in "SYNC

WORDS" will be written in inverse video if the PCM stream is

111-30
4.-, -

synchronized. If it isn't, it will be displayed in normal video. The

difference between inverse and normal depends on the type of display

being used. Most video monitors display white characters on a black

background to inverse is black characters on a white background. If a

television set is used, the display is black on a white background so

inverse is white on black. In all cases, the word "SYNC" will be

Vi displayed opposite from all other words on the screen if the signal is

in sync.

After returning the master menu, the only other option remaining

except quitting, is to display the data. Selecting the "B)EXGIN DISPLAY

0 PROCESSING" option brings up the engineering display page shown in

figure 36.

When the engineering data display page appears, the user is asked

to input a page number. The user must enter a number at this point and

press "ENTER". This will bring up the selected display page. The

ENGINEERING DISPLAY PAGE 1

DW# NAME VALUE UNITS TY

1 ALTITUD 13429.41 FEET D
1 ALTITUD 0276 HEX H <-
1 ALTITUD 1166 OCT 0
1 ALTITID 1001110110 B
1 ALTIIUD ON SWI S
2 AIRSPED 250.4 KNOTS D
2 AIRSPED 250.6 KNOTS D
3 CAB ALT 8018 FEET D
4 CAB TE4 78 DEG F D
10 OAT -22.5 DEG C D

********** **** **** ****** *

0 NUM, T)YP, B)AR, P)LT, E)XIT

Figure 36, ENGINEERING DISPLAY PAGE

111-31

sample shows the page defined earlier using DSETUP. At this point, the

data is being displayed and continually updated as fast as the display

processor program can run. The data is updated from top to bottom and

is converted on-the-fly using whatever conversion was selected. The

conversion selected for each data word is shown in the far right

column.

When the display line is set for decimal, the data is scaled and

offset to engineering data reflecting the minimum and maximum range

described during the parameter setup procedure in PSETUP. At any other

setting, such as HEX for example, the data is presented in raw data as

it is read in from the PCM processor. The units column shows the

selected conversion type if other then decimal to alert the user that

the data is not presented in engineering units. A mistake would be

made if the user thought that 1166 OCTAL was the actual altitude in

feet. For a 10 bit word, $3FF would be the maximum absolute value read

in to the system. It would them be ranged and scaled to read 50000

Efeet, the maximum range set up in PSETUP for "ALTITUD". In this

example, the raw data $276 which is converted to 13429.41 feet using

simple linear interpolation techniques. Defining ABSMAX as the maximum

* •absolute value of the data word in raw format, the scale would be

(RANGE MAXIMUM - RANGE MINIMUM)/(ABSMAX). The value displayed would

then be SCALE * raw value + RANGE MINIMUM. This value would be

[displayed in decimal format only.

The user has the option of changing the displayed conversion type

at will by pressing the "T)YP" function shown at the bottom of the

page. Just as described in DSEIUP, the data types will toggle for the

11-32

0

selected line. The selected line is shown by the inverse character in

the far right column under the heading "TY" for type. The example

shows this as an arrow because typewriters can't type in inverse. The

type will change from "D" to "H", "0", "B", and "S", and then revert

back to "D". All the time, the program continues to update the data

values in whatever type is selected. To change the selected line, use

the arrow keys to scroll the inverse select symbol.

A special feature of the program EXECUTE is that duplicating data

word numbers using different data types will show the same value under

different conversion types. The first five lines shows "ALTITUD" in

five different formats. Another feature is that by duplicating data

word numbers using the same data type, such as "AIR SPD" in the

example, the display will show two successive frames of the same word.

This will only occur if the two data words are sequential on the page

- V" without another parameter inserted in between. The program checks to

see if the previous data word displayed is the same as the current. If

it is and the type is the same, it skips a frame and continues. If the

type is different, it uses the same raw data for presentation.

Pressing the right or left arrow brings in the next or previous

page for display. Pressing a number puts the user in the page number

entry field at the top of the page so he/she can manually select a page

for display. During the process of bringing in new pages, data update

is temporarily suspended for obvious reasons.

Two other very important functions of the EXECUTE program are the

"B)AR" graph and "P)LT" (plot) functions. Selecting the "B)AR"

function displays the page in bar graph format. See Figure 37.

111-33

I:-.- ',:-.,_- -. _ ? '."": :'-._ '-;y : ; ; -. .:;'; .2 :.2 ' ,. - :,: k :' / ::-:':.:.:- -:-::" ::'':?.: ;

The top line of the display shows which page is being displayed.

In this example it is display page 1 consisting of the same parameters

shown on engineering page 1. In fact, whatever page is shown on the

engineering display page will be shown on the bar graph page. The only

way to get to the bar graph is through the engineering page. This

holds true for the plot page shown next. The vertical bars are the

alarm limits in percent of full scale which were set up during the

parameter setup procedure. AT the left side of each bar is a mark

which shows a rough value in percent of the data word number shown at

the botton of the page. Notice that the value for data word #3 is

4 above the alarm limits. In this case, the user can elect to monitor

only that data word using the P)W.T function described below. Above

the bar at the top of the page is the actual percent value of the data

word.

After any key is pressed, the user is returned to the engineering

display page. From here, he/she can elect to see a plot of the

selected value. The selected value is shown in inverse at the right

hand column of the page, the "TY" colunn. Selecting "P)LT" puts the

user on the page shown in figure 38. This page is similar to the bar

graph page however only one data word is plotted at a time. Each point

represents one frame. The intent of this feature is to look at a

particular data word in detail for intermittent spikes etc. The sample

*rate, or time between samples as it is used here, is a function of the

data rate and words per frame and is shown at the bottom of the page in

milliseconds.

There are two modes of operation in "P)LT": "C)ONT" for

111-34

BAR GRAPH DISPLAY FOR PAGE 1
** ****** *** *** ** **** ****** ***** *

% 65 65 65 65 65 69 22 32 65 12
90* *
80* * * * * * * ** *
70* * * * * * ** ** * ** *
60*** ** ** ** * * * * *
50* * * * * * * * * * *
40* * * * * * * * * * *
30* * * * * * * * *

'," 20* * * * * * * * * *10* * * ***

0**
** **** * **** **** ** **** **** * *** *

::. : 1 1 1 1 1 2 2 3 4 1

DW# 0

Figure 37, BAR GRAPH DISPLAY

PLOT FOR DATA WORD # I ALTITUD

90*
80*
70*
60*
50* *** *

40**** ****** ******* * *

30* **
20*

0*

TIME= 305.14MS C)ONT, T)RACE
E)XIT, <> TO SCROLL, PG 1 OF 34

Figure 38, PLOT DISPLAY PAGE

L 111-35

SKZ

continuous, and "T)RACE". In "C)ONT" mode, the plot routine scans each

frame in the data buffer for the particular data word being plotted.

It keeps updating the value in a continual basis until halted by the

user. In this way, the plot is kept updated with the latest data input

to the system. Because the display processor is slow compared to the

*" PCM processor due to the BASIC language, a particular frame could be

updated twice before the display processor displays it and data will be

lost. To solve this problem, the "T)RACE" feature was added.

"T)RACE" commands the PCM processor to fill the memory buffer with

one and only one data word. When the buffer is full, it stops and

waits for the user to begin another trace. Up to 1000 data words can

be stored in the memory buffer at one time so up to 1000 frames will be

captured. Each frame will be continuous with no data loss. The user

can scan the buffer 29 frames at a time by using the left and right

S ""arrows. This equates to 1000/29 or 34 pages of information. By

.- pressing "C)ONT", the user will be returned to the "C)ONT" function.

*By pressing "T)RACE", a new trace will begin. Pressing "E)XIT" returns

the user to the engineering display. While scrolling through the 34

pages of trace data. If a spike is present on the plot, its time can

* be roughly measured by counting the samples. This will have to be done

manually at this time but an automatic time measurement system using

cursors could added later. There is a problem and that is if the data

rate is very slow and the number of words per frame is very large, the

time to fill the buffer will be quite long. For example, if the words

were 16 bits wide, the number of words per frame were 200, and the bit

rate was 1Khz, it would take 3.2 seconds per frame which equates to

V" III-36

S-.L! L

Y 1-

. -53.33 minutes. For this reason, the "T)RACE" algorithm will display a

page when it is ready and not wait until the memory is full. In fact,

the user can see the data being plotted as it is read in if he/she

keeps scrolling fast enough. A more reasonable set of data such as 10

bits per word, and 30 words per frame at 25 Khz would yield one frame

0 per .3 sec or 5 minutes to fill memory. This is not a limitation of

the PCM monitor system, only the data rates and PCM specifications.

0

"11-37

_°~..

"9

IV. Test and Evaluation

Methodology

The PCM monitor system was tested under laboratory conditions

using basic equipment such as an oscilloscope, logic probe, and volt

meter etc. To test the PCM processor software, a signal generator and

logic analyzer was used. The system was tested and analyzed in three

steps. First, the PCM processor was tested as a system. Then the

display processor software was tested using patches and canned data.

The last was system test utilizing both the PCM processor and the

display processor together. In this method, the success of the final

test was assured with a high confidence factor.

Testing of each hardware section of the PCM processor was done

during the design and construction phase of the project. This greatly

reduced the risk during the system test. In fact, the only problems

encountered with the PCM processor was software which was corrected.

In order to verify that the PCM processor was working, a preset signal

was input to the system. A Hewlett Packard HP1630D logic analyzer

which incorporates a disassembler was used to analyze how the system

reacted to the signal. See below for the results of the test.

The display processor software was tested incrementally as is was

written. After each program in the system was ccmpleted, several short

diagnostic programs were written to analyze the data in the systems

data files. Once verified, the entire software system was tested using

actual parameters from a recently conducted flight test.

The PCM monitor was tested as a system in the laboratory using the

signal generator, logic analyzer, and the display processor itself.

IV-I

.:--:#:......

Testing the System

The primary thrusts of the test were to see whether the system

would synchronize with various frequencies, determine the maximum

frequency it could accept, and determine the maximum number of

non-varying data bits could be sent within a frame before losing

synchronization.

To start the test, the data base was set up with the display

processor to reflect no alarms, a minimum range of 0 and a maximum

range of 65235. The purpose for this was to display raw data and not

a "data which is normalized to some minimum or maximum. Next the PCM

system frame specifications were set up for a normal PCM data stream

utilizing the auto bit rate calculation, 10 data words of 16 bits each,

NRZ PCM type, normal polarity, and LSB first. Two synchronization

words used were $5400, and $5454. For initial test purposes, all data

words were set to the value of 1 in the signal generator and the bit

rate was set to around 25Khz. The results were as follows.

The signal generator was set to begin trace just after the bit

rate calculation at point 1 in figure 39 to determine what the word

count was. Without going into too much detail, a trace is set into the

logic analyzer by programming in a certain address or data value. When

the analyzer sees this value, it begins capturing all data until its

buffer of 1024 data points is full. Each data point contains both

address and the data bus information of the microprocessor under test.

The HP1630D can then display this data in various formats but the one

IV-2

0

• y.. * "- -"

PCN ROCESORSOFTWARE FLOWCHART PART I
- - ~~JOHN R. CROASOALE SEP 85 f~~~i

ERROR-I AND
STATUS 8 HMALF COUNTERS

ALCULAT

HO 1ALID\
TYPE

YESYE

mYES VALID \NO/ P CN\11\ EGATIVE)TYE)

NO' YES

2 -

=CALCULAT
BI RTEE T HER SET OURS

LOA RE

COUNT YES 1/0 OLK

N O READ DAT

YES VALID

HO USER
!RATE

= 8? INCREMiENT0 ? ERROR COUNT
STATUS

USE THEI S AlCORRECTION11

AMD US OURSIF CORRECTION
18 THEN

CORRECTION =81

* (2$

Figure 39. PCt1 Processor Flowchart Part 1

S
IV- 3

...........................

PCIM PROCESSOR SOFTWARE FLOWCHART PART 2READ
JOHN R. CROASOALE SEP 85 CI 3 I

WORD=POINTER

NAS -STATUSTR 653 =I

YES EP \

IT Y~ ~ A BIuTE~ RATE,

TR COUTER RAC

NODE NOV 2N\

YESV/4/

,~ 0 -- SYNC

STARTE WODNVINRMN

READ WR

TR OUHER1 STR WO R D

YESS" NOAID

SY INRCREMET

NO TRYWORDWORDTE

•-. RAD PONR

RETURN STORE WORD

-"REA D AT -
.-" ~~~WORD RATE LIMIU l4 I

WORD INCREMENT

I ADD POINTER

Y ES L ,

E-YESND O I

"MEMORY JA(MOEPOR

SYNC \FE_

SV

READ ATD F
WORD RATERY

<-I

SYNC R'\ND/ND N

YES"- /~STV

A'- .S/

IV- 4L - - .. SYNC
OR ... AA . r P 2-,--

- . used in this test was the dissassembly display.

By setting the trace point at position 1 shown in the flowchart,

the 65235 iterations of the bit rate calculation loop is avoided. The

trace revealed that the routine returned with a value of $276 hex, 630

decimal. If the signal were exactly 25Khz, the count should have been

640 but since the signal generator used an analog setting for bit rate

(a pot), the frequency could not be set exactly. It was measured on

the oscilloscope to be just under 25Khz which was conensurate with the

reading of 630. The trace showed that the half counter was loaded with

$13B and the one counter with the $276. Looking at the status page of

the display processor, 25.39khz was displayed which gave a good

indication that the auto bit rate calculation was working.

The next trace was begun at point 2 in figure 40, the beginning of

the critical loop where the first sync word was being searched for.

The logic analyzer showed the data bits being shifted in, one bit at a

time. When the $5400 (0101010000000000) started in, the first word

seen on the logic analyzer was an $8000. The next was $4000 ($8000

shifted one bit to the right). Next came an expected $A000

(1010000000000000). Three shifts later the magical $5400 appeared and

the trace exited the critical loop and started the word counter, just

as predicted. The next word read in was a $5454, the second sync word.

The routine jumped to the routine which reads in the data and places it

into the buffer memory. The system was working!

The logic analyzer has a chart display which looks at the entire

1024 samples at one time in a graphical display which shows collected

data all at once. In this case, is was used to show address bus

IV-5

utilization. Using this display, it was clear to see when the system

was in sync, and when it wasn't. For example, when the software is in

a tight loop, the addresses present a regular pattern on the display.

When the system was in sync, the display had a completely different

appearance as the address range was now spanning the entire I/O buffer

area instead of just a small section of the program.

Looking at the engineering data page of the display processor, all

ten words reflected the value of 1 for all data types except switch

which was "ON".

To determine the maximum frequency the system would respond to,

the bit rate was increased gradually. It broke lock almost immediately

but re-calculated the bit rate and re-synchronized. When the word

count reached about 100, the system would not lock up again. A word

count of 100 represents a bit rate of 160 Khz using the present system

clock. This was apparently the upper limit of the system with the

present software configuration.

The last items to test was the walk error or the number of

non-varying data bits (sequential l's or O's) which could be sent

without synchronization problems.

The walk error is the prime reason, other than loss of signal,

that the PCM monitor will lose synchronization with the PCM bit stream.

It is caused by the difference between the actual bit rate, and the

generated one. It is only encountered during a long series of

successive l's or 0's for NRZ, and never for Bi-Phase. The term walk

error is actually a misnomer in that the larger it is, the more

* non-varying bits the system will tolerate. The following discussion

IV-6

"6.V.,

concerns NRZ signals only. See figures 41 and 42.

Figure 41 shows a typical section of an NRZ-L PCM waveform. The

top section shows the relationship between the sync pulses generated

within the shift generator, and the shift pulses generated by the shift

generator. The PCM signal is synchronized by the sync pulses which

occur at each positive transition of the incoming signal whether it be

NRZ or Bi-Phase. During a long series of l's or 0's, the signal is not

re-synchronized and any error between the actual bit rate and the

calculated bit rate is accumulated. The maximum error can

theoretically be adjusted to one resolution of the 16Mhz counting clock

* or 62.5ns by careful analysis of the output of the BIT TIMER, an

iterative process, or accounting for the delays in the counting

circuits. In practicallity, however, an accuracy of 2 to 3 resolution

elements is all that is expected depending on the stray delay times,

and jitter of the incoming PCM stream. The PCM processor software has

been programmed to do an iterative process and return to the user a

correction factor that reflects the quality of the waveform.

The lower section of figure 41 shows a consecutive series of l's

and the resultant walk error. The figure shows a gross example where

the number of counts per bit time is only 7 to allow examination.

Figure 42 shows the derivation of the equation to determine the number

of consecutive l's or O's needed to generate a bit error because of the

walk error.

To measure the walk error, the frame setup was changed to reflect

20 data words at 16 bits each. This would yield a maximum of 20 X 16

IV-7

- A.A,.,...A,

SHIFT PULSE AMD I PART I
WALK ERROR ANALYSIS SEP 65

EXPLANATION Of SYNC AND SHIFT PULSES

1 S 1 e I 1 I 1 S S S 0 1 a S I I I S

SHIFT PULSES

NSYN
PU!~ 1

•.5 1 .5

SYNC PULSES OCCUR AT EACH POSITIVE TRANSITION Of THE PCH INPUT SIGNAL. THIS GENERATES A SHIFT AT .5 TINES THE BIT RATE.

_ AFTER THAT, AND UNTIL ANOTHER SYNC PULSE OCCURS, SHIFT PULSES OCCUR AT THE BIT RATE - THE WALK ERROR.

THE WALKING ERROR:

A CONSECUTIVE SERIES OF I'S OR O'S ILL EVENTUALLY CAUSE THE BIT STREAM TO LOSE SYNC BECAUSE OF THE WALK ERROR. BECAUSE

OF THE DIFFERENCE BETWEEN THE DIGITAL COUNT, AND THE REALo INFINITE RESOLUTION COUNT. VALK ERROR IS NAXIMIZED AT ONE

CLOCK PER PCN BIT TIME. SEE BELOW. REAL COUNTS ARE $NOUN AS DOTTED LINES. DIGITAL (ACTUAL) COUNTS ARE SOLID.

: 'm_ .-. : CONSECUTIVE I's--

'x8 O HIS PULSE i i
IS IN SYNC I I I I

2. SIFT :

WALK ERROR RESULTS IN THE SECOND WALK THIRD WALK ERROR FOURTH WALK ERROR RE-SYNC
RE-SYNCS HERE EARLY SHIFT PULSE. NOT ERROR OCCURS. RESULTS IN PROBABLE DEFINITELY RESULTS

A BIT ERROR YET. BIT ERROR. IN A BIT ERROR. BIT
SHOULD BE 0, IS A 1.

TO CALCULATE N, THE NUNBER OF CONSECUTIVE S's OR I's DECODED BEFORE A BIT ERROR IS FOUND IS

.'-'."(%at pat 2 for dartvwtion of N)
"CLK FREG

• ..FREG "16066000

N INT FOR A CLK OF 16Mhz AND A PCH FREQ OF 100Khz, N INT @o@5 79[I 2

Ns. Figure 41. Walk Error Analysis Part 1

IV-8

SHIFT PULSE AND PART 2
WALK ERROR ANA.YSIS SEP 85

C

I G
I/7MhzIi

,SYNC PULSE

J~JyjF T PUSES

CLOCK

,12 4 456,7a 1061112 1Z14 15
d 3-It

1 count

4-.- real count=7

" (is enough to cause a
count error or I

THE GOAL IS TO DETERMINE ONG, THE NUBER OF CONSECUTIVE I'S OR O'S DECODED BEFORE RECEIVING A BIT ERROR.

BY INTUITIVE REASONING, WE CAN DETERMINE THAT THE WALK ERROR IS THE DIFFERENCE BETWEEN THE REAL COUNT AND

THE ACTUAL COUNT. THIS ERROR OCCURS BECAUSE THE REAL COUNT IS A REAL NUMBER AND THE COUNT IS AN INTEGER.

IN FACT, THE COUNT IS THE INTEGER PORTION OF THE REAL COUNT z INT(REALCOUNT). IF THE PCM FREQUENCY WAS

AN EXACT MULTIPLE OF THE CLOCK FREe, THEN COUNT WOULD z REALCOUNT AND THERE WOULD BE NO WALK ERROR. TO

DETERMINE THE HAXIMUN WALK ERROR, CONSIDER THE CASE WHEN COUNT = REALCOUNT - c WHERE c IS CLOSE TO BUT

UNEQUAL TO 2ERO. THEN COUNT WOULD BE INT(REALCOUNT) OR REALCOUNT *c - 1.

IN THE ABOVE EXANPLE, THE CLOCK AMD PCH FREQUENCIES ARE CLOSE TO ALLOW FOR AN EXAI"ATIOM OF WHAT IS GOING

ON. IN THE REAL ORLD, THE CLOCK TO PCH RATIO WOULD BE MUCH GREATER.

WAL KERROR = REALCOUNT - COUNT

REALCOUNT = CLOCK/PCM

COUNT : INT(REALCOUNT - WALKERROR) FOR WORST CASE, ALSO USE CLOCK AND PCM FREQUENCIES

DEFINE R = RATIO OF WHERE THE FIRST SHIFT PULSE IS TO OCCUR TO THE BIT TIME

d = INT(R * COUNT)

* SINCE d IS THE NUMBER OF CLOCK CYCLES TO WHICH THE WALKERROR MUST BE APPLIED TO (the st~rting point etc.)

N = d/ALKERROR

.. IF VALKERROR WERE 0, N WOULD BE UNDEFINED OR ESSENTIALLY INFINITE

THE NAX LIMIT OF THE VALKERROR IS 1 SO THE MAX N WOULD BE

-' . Nd
M INT(R m (INT(CLK/PCM) - 1))

TO GET THE BEST POSSIBLE SECTION OF THE PCM WVAEFORM, WE CHOOSE TO LOOK A THE PC" SIGNAL AT THE CENTER

OF THE BIT TINE SO R z 1/2 AND

N = INT(.5 (INT(CLK/PCM) - 10)

A FOR THE SAPLE ABOVE, CLK/PC M 7 SO N INT.S N 6) m 3

* FOR A PCN SIGNAL OF 1"8hz AND A CLOCK OF 16Mhz, N = INT(.5 K 169-1) 79

...- ,-, Figure 42. Walk Error Analysis Part 2

IV-9

reI
.%%

.0...... rFW (W ", "."% ,, ' "-,o '.-' .,.o., ". "'".-". - -, -.--- , .

or 320 non-varying bits. Each data word was programmed to zero in the

signal generator.

The frequency was reduced again to 25Khz and the previous test was

repeated. The word count was now 635 and the system synchronized. At

this rate, the walk error should be around 319 according to the

calculation. This error, of course, is the worst case so there

shouldn't be any problem with synchronization.

.T en the rate was increased to beyond 40Khz, the system became

very touchy to frequency and began to lose sync. This was expected

because in the walk error analysis, if the bit frequency were an exact

* multiple of the 16Mhz clock, there would be no walk error. Any

variation from the optimum would increase the risk of problems.

To determine the walk error at 100Khz, the signal generator was

set to 100Khz which caused the PCM monitor to break lock. As each data

" word was modified to a non-zero value starting in the middle and

,* - working towards the ends the synchronization of the system was checked.

If the signal synchronized, the last data word changed back to zero and

a new one was which gave a larger number of non-varying sequential bits

was modified. Finally the limiting bit was found and the walk error

* was counted. In this case it was 124. The calculated maximum walk

error was 79. Remember that the walk error is a misnomer. The larger

it actually is, the less the error and the more non-varying bits the

W- system will accept before losing sync. The value of 124 was

encouraging. Varying the frequency a little, however, caused the

system to break lock again.

*By setting the data word values so that only 79 sequential bits

IV-10

4 .."-."........-... .. "..........

- .were zero, there was no problem with synchronization even when the

frequency was shifted from 90 to 110 Khz. During one test, the system

actually remained in synchronization after 320 sequential zeroes at a

rate of 132Khz. Moving the frequency adjust control just a little,

however, caused the system to break lock and not recapture.

There The conclusion is that the walk error calculations are

correct and the system can reliably accept 79 sequential non-varying

bits at data rates up to 100Khz without breaking lock.

. There was one problem observed from time to time during the test

and that was that at certain undocumented frequencies, the system

* would not synchronize. This occurred even when the walk error should

have not been a factor. By varying the frequency a minor amount the

problem disappeared. This problem occurred in all frequency ranges and

£_ : .indicates that there may be a race problem of some sort in the word

processor. Inspecting the dissassembly of the PCM processor software

indicated that when this occurred, the value read from the word

processor was all F's as if the registers were not enabled. Other than

noting the difficulty, the problem was not persued and will be left to

follow on investigations.

Final testing was done by setting random data words at varying bit

-'- rates using different POLARITY and ORDER. The system worked in each

case and the testing was terminated.

V.1

o2-'2IV-II

0O

...................... V V .. '.-p:~- -

V. Recommendations and Conclusions

Although the development and test of the PCM monitor system was a

success, there is need for improvement in both the PCM processor and

the display processor.

The PCM processor could be improved in at least four ways listed

below.

1. Increase the microprocessor clock frequency to 12 Mhz or more
to allow a shorter execution time of the critical loop and the
subsequent increase in bit rate capability.

2. Increase the bit count frequency to at least 32 Mhz to minimize
the walk error.

3. Include a self test feature.
4. Provide an improved bit rate calculation utilizing a

* statistical method rather than an iterative one.
5. Continue development to eliminate the frequency sensitivity

problem.

The state-of-the art clock frequency for the MC68000

microprocessor is presently 12Mhz and is predicted to be 16Mhz before

long. The PCM processor should be built on a printed circuit board to

take advantage of this improved capability.

Since the bit timer counting clock is independent from the

processor clock, the maximum frequency should be used to reduce the

walk error. The only limiting factor is the speed of the IC devices.

Utilizing new high speed devices like the Emitter Coupled Logic (ECL)

series and making the PCM processor into a printed circuit board, there

is no reason that the bit counting clock frequency could not be

increased to above 50 Mhz. The software would have to be modified,

however, to account for the larger word count figures.

A self test feature could be added to present canned displays to

the test director convincing him that the PCM monitor is functioning

V-1

N.-~~~~~' -. -'L**. . *- *

* .'

"4 ' '' " '', . *'"'
" " ' .

" 4 ,'. ' . . 4 Z ., . ' . . ,. / . - •., , .. , -' - " . - , . - , , , ,. ,

correctly when problems are indicated with the PCM stream. Such a self

test could be an on-board simulated PCM signal generated using shift

registers and counters.

The current method to zero in on the actual word count that

provides a reliable synchronization is iterative. This causes the

system to take longer to provide reliable data than is actually

-[necessary. A statistical method utilizing data collected during the

bit rate calculations could provide a better best guess starting point

than the current method does using the minimum word count.

The display processor was not meant to be the final solution. As

the system matures, many ideas will occur which will need to be

included to provide a better window into the test system. The display

software is currently maxed out in both size and execution time. The

EXECUTE program, for example, leaves only approximately 2000 bytes of

memory for improvements out of a total of 22800 when the computer is

empty. In addition, the software is so slow that each display takes

about 1.2 seconds to update. That relates to an update rate of 0.83Hz.

To improve both size of the program and execution speed, an

optimizing compiler should be used to compile the EXECUTE program.
-"

4This should reduce its size by removing the many included comments. In

addition, a compiled program runs from 10 to 1000 times faster than a

. BASIC program depending on the operation involved. The average

increase in speed judged from other compilers is around 200% so the

update rate should be around 16.5hz as compared to 0.83Hz.

Such improvements would allow more calculations on the data before

display and better display pages showing more data at once such as

V-2

!7 -j

..... . / ,.,...,,.-..-..,....,.-..-- ,.-.... .. ,,.............. , , ... ,... ., ..-q

" " " l .. .
" ' -

. - _- . . :_ -', '_.t .- .- . "- - • . ' . - .

II

multiple graphs etc.

Conclusions

The development of the PCM monitor was a success. It met or

exceeded all the requirements specified at the outset of the project.

It has been demonstrated in a laboratory environment to lock on to a

PCM data stream of unknown frequency and display the data in various

formats at bit rates exceeding 100Khz. Its autcmatic feature of PCM

type determination was a success as was its ability to re-synchronize

when the bit rate was changed from one frequency to another.

IThe system will provide a valuable test monitoring capability when

modified for flight. It now provides the basic tools which will

inspire increased development and capability.

A. This low cost system could be very easily adapted to the mission

of the 4950th Test Wing with minimum of effort and provide the test

director with the real time monitoring capability needed.

4

i0

V-3

4-

Bibliography
1. Owen, Frank F. E. PCM and Digital Transmission Systems. New York,

McGraw Hill, 1982

2. High Speed CMOS Products. Integrated Device Technology, Inc, 1985.

3. TrL Data Book. Mountain View, CA. Fairchild Camera and Instrument
Corporation, 1978.

4. Kaine, Gerry, Doug Hawkins, and Lance Leventhal, 68000 Assembly
" " Language Programming; Berkeley, CA, OSBORNE/McGraw Hill, 1981.

*. "5. Leventhal, Lance A. 6809 Assembly Language Prograruing; Berkeley,
CA, OSBORNE//McGraw Hill, 1981.

6. Motorola, 16 Bit Microprocessor User's Manual, Englewood Cliffs,
N.J., Prentice-Hall, 1979.

7. Getting Started With Extended color Basic, Tandy corporation,
* FortWorth, Texas, 1984.

8. Radio Shack TRS80 Color Conputer Disk System Owner's Manual and
Programming Guide, Tandy corporation, FortWorth, Texas, 1981.

'N. -o

;='N

o. %

s6-

. .,..*

-.-'- -- - - - - - r.- .

Appendix A

REAL-TIME FLIGHIT TEST PCM

DATA ACQUISITION MO9NITOR

PROGRAMMER' S MANUAL

BY

JOHN R. CROASDALE, LTC, USAF

1.-r - l- P

Programmer's manual

Overview

This manual is intended to provide the programmer with enough

information about the software of the PCM processor and display

processor to allow modification at a later date. Each program is

described and contains flow chart with an explanation of how the

program works. The program's overall command structure is shown in

figure 43 and the listings are shown in appendix C of the thesis (1).

Some commonly used terms and definitions are included here for

reference.

1. Data Word: The actual word as it appears in the PCM data
stream. Data word #1 is the first word after the
synchronization words etc.

2. Parameter: The test item which is to be measured. Data word
#1 could be the 3rd parameter in the test etc.

3. Wraparound: The feature which folds the end of a list to the
beginning and reverse. That which is incremented beyond the
bottom of a structure reverts back to the top.

4. Case: A structure which decodes an input of some store and
branches to a particular routine depending on the code.

5. Quit: A function used to terminate a program and return to the
MAIN program.

6. Exit: A function used within a program to exit from a certain
section back to the calling routine.

Flow chart standards used in this manual are depicted in figure 44.

Please refer to the main thesis (1) for an overall description of the

system.

The programs described in this manual are:

1. PCM MONITOR ver 1.0 - Assembly program which does the function

A-2

COMMAND STRUCTURE OVERVIEU;" " I TOTAL SYSTEM I

MAI N

I I 1 IlI

*CREATE NEU FRAME FRAME SPECIFICATION PARAM SPECIFICATION DISPLAY FORMATS EXECUTE QI
* SPECIFICATION

CONTINUE -LOAD SPEC -ADD NEW DATA UORD -ADD NEU DISPLAY PAGE -STATUS DISP

ABORT -EDIT SPEC -EDIT DATA WORD -EDIT DISPLAY PAGE -BEGIN DISP

CREATE NEW SPEC -INSERT DATA VORD -INSERT DISPLAY PAGE LQUIT

QUIT -DELETE DATA W0RD -DELETE DISPLAY PAGE

LIST DATA VORD TABL -LIST DISPLAY PAGES

QUIT -PARAMETER LISTING

QUIT

Figure 43. Command Structure Overview

A-3

for the PCM processor.

2. MAIN.BAS ver 1.0 - BASIC program which acts as main
coordinating program for the display processor.

3. FSETUP.BAS ver 1.0 - BASIC program which sets up frame
specifications.

4. PSETUP.BAS ver 1.0 - BASIC program which sets up the parameter
data base.

5. DSETJP.BAS ver 1.0 - BASIC program which sets up the displays.

6. EXECUTE.BAS ver 1.0 - BASIC program which displays data to the
user.

7. CONVERT.BIN ver 1.0 - Assembly program which does type data
type conversions.

* PCM Processor

• "The flow chart for the PCM processor software is shown in figuLes

- 45 and 46. All information transfer between the PCM processor and

display processor is through the I/O control block shown in table 3.

The most important location in the I/O control block is the valid

flag. With this flag, the user tells the PCM processor to start

O* operations, quit operations, move to the trace mode or return to the

continuous mode. Upon startup, the PCM processor sets the valid flag

to all F's, (all bits high). When the display processor inputs all the

* QPCM stream data into the I/O control block, it signals the PCM

processor to start looking for the PCM signal by setting the valid flag

to 0. If it wants it to stop, the valid flag must be set to some

S- negative number (bit 15 must be set). If the trace mode is desired,

the display processor must set the valid flag to some positive value.

That value must be the number of the data word in the PCM stream to do

0 the trace on. No error checking is accomplished and if a data word

. 4

A-4

LIZ!

I/O control block

$C7FE VALID FLAG INPUT: 0=(ONTINUOUS MODE
"-OOFF-TRACE MODE, NUMBER-DATA word
> $7FFF=STOP AND WAIT

$C7FC USER BIT RATE INPUT: 0=AUTO, <>0=RATE IN word COUNT
$C7FA PCM TYPE INPUT: "C"=CALC, "N"NRZ, "B"=BI-PHASE
$C7F8 word LENGTH INPUT: HEX VALUE 8 - 16 BITS
$C7F6 FRAME LENGTH INPUT: HEX VALUE 0 - $FFFF
$C7F4 FRAME SYNC1 INPUT: HEX VALUE
$C7F2 FRAME SYNC2 INPUT: HEX VALUE
$C7F0 FRAME SYNC3 INPUT: HEX VALUE
$C7EE ERROR COUNT OUTPUT: NUMBER OF SYNC ERRORS
$C7EC POLARITY INPUT: "N"=NORMAL, "I"=INVERSE
$C7EA FRAMES/BUFFER INPUT: HEX VALUE
$C7E8 CALCULATED TYPE OUTPUT: "N"=NRZ, "B"=BI-PHASE
$C7E6 CALCULATED RATE OUTPUT: RATE IN word COUNT
$C7E4 CORRECTION OUTPUT: NUMBER ADDED TO COUNT TO SYNC IN

" $C7E2 STATUS OUTPUT: 0=NOT IN SYNC, <>0=IN SYNC
$C7EO DATA ADDRESS OUTPUT: ADDRESS OF LAST DATA VALUE WRITTEN

The addresses used in this table are with respect to the PCM processor.
They are essentially the same for the display processor except they are
mapped $2000 addresses lower. Addresses for the I/O control block
according to the display processor range from $E7E2 to $E7FE.

Table 3. I/O Control Block

A-5

,~~..... --. . --. -- -.... . -".-.,,. ' - . ,...'., o•. '-i

I1
. " %

number larger than number of words per frame is entered, the system

will lose sync and reset.

The user bit rate location is used to pass PCM rate to the PCM

processor. If the user wishes to use an automatic calculation of the

bit rate, he/she places a 0 in this location. If a manual rate is

desired, the rate in word count must be entered. The display processor

converts the user input frequency to word count and places it here if

required.

The word length contains the number of bits per words. The PCM

processor uses this value to create a mask to delete the unwanted bits

from a data word value. Actually any word length value will be

processed but for word lengths of less than 8, the time to process

between reading words may not be sufficient and the system will lose

i * .sync. Values above 16 will be yield the same results as 16. This is

because the mask generation routine continually shifts l's in the mask

register from the left. More than 16 shifts will continue to keep the

register full or l's regardless. See the program listing.

The frame length is the number of words per frame not including

the synchronization words. The PCM processor uses this value to set

counters which will alert the system when to look for the next sync

word/s. If the wrong value is entered, synchronization will occur but

for only one frame at a time as the sync words will be in a different

place with respect to where the system thinks they are.

The next three address should contain the sync word values. The

first location should contain the first value, the second is next and

-- the last address should contain the third. A special note here to the

A-6

SZ "

V,- -

.- 4

FLOWCHART SYMBOLS AND EXPLANATIONS
' "°= ,

' : JOHN R. CROASDALE SEP 85

, .THE FOLLOWING FLOWCHARTfNG STANDARDS AND SYMBOLS USED THROUGHOUT THIS SECTION.

I I.DEFINES A PROCESS IN GENERAL TERMS. LINE NUMBERS ARE GIVEN WHEN APPLICABLE.

SOMETIMES A SMALL SUBROUTINE ARE INCLUDED. LARGER SUBROUTINES HAVE SEPARATE FLOWCHARTS.

A SEPARATE ROUTINE WHICH DOES A FUNCTION. OTHER SUBROUTINES MAY BE CALLED FROM WITHIN.
* . SUBROUTINE>

/ ALL SUBROUTINES ARE EXITED WITH A RETURN PROCESS BLOCK.

- O A DECISION BLOCK WHICH HAS A BRIEF STATEMENT OF THE DECIDING CRITERIA. YES AND NO MAY
\No

ECISION 1-4 MAY EXIT FROM ANY OF THE FOUR CORNERS OF THE BLOCK.• \/
*YES

AN ON PAGE CONTINUATION OR GOTO INDICATION. SOMETIMES IT'S IMPOSSIBLE TO SHOW ACTUAL FLOW
M~ Ill

*_JLINES AND STILL KEEP THE FLOWCHART UN-CLUTTERED. UNIQUE NUMBER SETS OF TWO MUST BE ADHERED TO.

OFF PAGE EXIT OR ENTRY CONTINUATION BLOCKS WHICH PASS CONTROL TO ANOTHER PAGE OF THE SAME SET.
THE NUMBERS MUST BE UNIQUE TO THE SET BUT NOT NECESSARILY TO THE SYSTEM. NUMBER 1, FOR EXAMPLE

ON PART I OF A FLOWCHART MUST BE CONTINUED TO ANOTHER PART Of THE SAME FLOWCHART.

CASE A PASCAL-LIKE CASE STATEMENT WHERE THE DETERMINING FACTOR, (KEY etc. DECIDES WHICM PATH TO

OF EXIT THE STATEMENT FROM.

A B C D E

7 O FA DOB DO DOD DO

. "Figure 44. Flowchart Symbols and Explanations

'.', A-7
0'

,.. .''.; ." .' .''" '.." '- .- ';-' :,, - .- ". .- ". -- ,-, ,4t. .>:K t... .. t.... - ,..* -, . . --.. _

the programmer who wishes to modify the display processor software:

The polarity must be applied to the sync word definitions before sent

to the I/O control block. The PCM processor reads in all data in

normal format and inverts it, if necessary, if inverse polarity is in

effect. There is enough time to do this when reading data at the word

rate but not at the bit rate. If the polarity is inverse and the user

- inputs a sync word value of "00001111", it should be converted to

"11110000" before sending it to the I/O control block.

Location $C7EE is an output location in which the PCM processor

sends the error count to the display processor to be used in the status

* page in program EXECUTE. The error count is incremented each time

*..- synchronization has been established and then lost. If no signal were

present, no errors would be reported. In other words, an error implies

that the system was in sync at some time. If the system wasn't in

sync, there could be no error.

Polarity is input to the PCM processor through location $C7EC in

the I/O control block. Polarity is simply the reversal of the voltages

and the bit values they represent. Normally all PCM signals represent

a "0" as a low voltage level and a "1" as a high level. In bi-phase, a

*Q transition from low to high normally represents a "0" and a transition

from high to low represents a "1". In some systems tested in the past

on flight test programs, the bi-phase transition meanings were

reversed. The polarity capability was added to allow for such

non-standard systems.

The frames/buffer input was added to avert additional division

A-8

|kn7

,. . -. . . - ,.. .. . -- . '..

PCM PROCESSOR SOFTUARE FLOYCHART PART I
- * JOHN R. CROASOALE SEP 85 II

LOAD ONE
IERROR = AN
STATUS HALF COUNTERS

I
ALCULAT

NO OALIBTYPE

ER ,CALC TYPE

YES TYPE

YES VALI H O PCM
GATIVE) TYPE

1N~ YES

SET THEIRS SET OURS

,"" "RATE

LOAD REG

•" s" COUNT YES 10

0)=32648 READ DAT

N

CALC RATE

RATE
YES VALID

4 HINUS

NO USER
aE INCREMENT

ERROR COUNT
STATUS 0

ADD CORRECTION

S sE ouR IF CORRECTIO

CORRECTION :6

Figure 45. PCM Processor Flowchart Part 1

A- 9S'-- -

SPC" PROCESSORS8FTWARE FLftoNA6T PART 21 READ
JoN R. ROASDALE P 8b cct K ,) I

WORD POINTER
CALCULATE :1
MlASK

TRY 65535 STATUS

4 ~YES? SER
I READ WORD I YRECALL?

L-"NOR
RETURN IYES DINTER-

DECREMENT No SYNC UI

TRY COUNTER OR I RWOD\IES
N01ODENO

YES

START WORD N DINCREET
I COUNTER I _j

NO TRY 'WORD POINTER
COUNTER'> READ WORD

e STORE WORD

NO , AO2ND\,YES' SYNC >NRNN
VORDL INCREMENT

ADD POINTER]

ESR

RETUR STORE WORD

READ AT('L WORD RATE

.
INCREMENT

MgEMORY ADD POINTER]
SYNC NO //
ORD 2,'N

YESYESYND OF\

NO.RD\ ENDO NO

E, ES

READ AT

1441

SYNC \NO
ORD 3

YES' VALI D",NO
YES OSITI'JE

Figure 45. PCM Processor Flowchart Part 2

A-10

routines in the PCM processor software. The calculation is done in the

display processor software to take advantage of the powerful

instructions of the BASIC language. The value is used to determine

when the buffer is full and to start over.

The PCM processor outputs the calculated PCM type in the next

Vi location, $C7E8. Whether or not the user wants to use a preset PCM

type, the PCM processor does the calculation anyway and returns it to

the user. The value is displayed on the STATUS page of the display

processor.

Likewise the calculated PCM rate is returned in location $C7E6.

The PCM rate is calculated regardless of whether the user wishes it to

be or not, and returned on the STATUS page. This value can be used to

- - determine if the PCM stream is at the proper bit rate or not.

*- The correction value is returned in location $C7E4 and is

indicative of the jitter in the PCM stream. The CALCULATE RATE routine

finds the minimum number of counts between two positive going pulses.

For an entirely stable PCM data rate, the minimum will always be the

same within one count. If jitter is present, the minimum count will be

* - somewhat less than the actual bit rate times two. Note that the count

0 between two positive going signal pulses is twice that which occurs

during one bit time. If the bit rate is high enough and the jitter is

bad enough, the walk error explained in section IV of the thesis will

become substantial and cause the system to break sync. The PCM

processor corrects for this by adding 1 to correction each time

synchronization is lost. If the value becomes larger than 10, it is

* reset to 0. In this way, the system keeps on track with even with a

A-ll

S.

widely varying PCM signal. The maximum value of 10 was chosen as an

educated guess and tested in the laboratory. The value of the

correction counter is returned in the correction location of the I/O

control block

The status location of the 1/0 control block simply returns a

value of non-zero (true) to the display processor) when the PCM signal

is in sync, and zero (false) when not. When the display processor

finds a false value in status, updates of data values are halted.

The data address is the address pointer to the last I/O buffer

*location written to. It is used in the TRACE routine to synchronize

0 the display processor with the PCM processor. As data is read in, the

pointer is updated to tell the display processor where in the trace the
Ip.

system is.

The remaining locations in the I/O BUFFER are for data word

values. As the system controller reads in the data words, it stores

them here beginning at address $C000 and ends at the integer value of

$COOO + word length times frame length. The maximum value assures that

the buffer will not be overfilled.

The system controller interfaces to the rest of the PCM processor

* system through the remaining addresses listed in table 2. These were

described fully in section I of the thesis and will not be repeated

here. See appendices B and C for flowcharts and listings of the PCM

processor software.

The continuous mode of operation provides the user with a

continuous update of input PCM data regardless of whether or not the

display processor can read it all. If the display processor is slow,

A-12

So

|..........................* -. ,

data will be lost as the PCM processor will keep writing data to the

buffer whether it is read out or not. In other words, it is up the the

display processor to use the data as it sees fit.

Trace mode, on the other hand, is synchronized to the display

processor in that it fills the memory buffer with sequential frames of

only one data word, keeping the data address pointer in the I/O control

N.. block updated at all times. When the buffer is full. the PCM processor

sets the valid flag to minus and waits for a user input telling it to

begin another trace. This is done by by resetting the valid flag with

another data word value. If the user sets the valid flag to 0, system

is returned to the continuous mode. Note that the user cannot directly

cause the system to reset from this position. To do this, a 0 must

first be placed in the valid flag to exit from the wait loop, then a

reset conand must be given.

Part 1 of the PCM processor flowchart shows the general control

flow for the system. The first block initialized the correction factor

to zero. This is only done during initial startup, and when the user

forces a restart after the system has been running. The reason for

this is that the correction factor is determined over a long period of

time and should not be reset indiscriminately. The user may want to

set up the system for an alternate signal, in which case, a new set of

* 1PCM data will be entered. The user must then force a restart to bring

•- up the system.

The next few blocks check for a valid signal from the user saying

that the I/O control block has been set. The user starts the system by

*0 placing a positive value in the valid flag. If the value is 0, the

A-13

0

,A ,.., - -..

-- ..

"-' system runs in continuous mode. If it is non-zero, it uses this value
4'" -. ,-

in trace mode to identify the data word to trace on. Part 2 of the

flowchart shows this feature.

After the go ahead, the system does a bit rate calculation. If

the count is larger than $7F00, 32640, the bit timer has maxed out.

Note in the listing that the word count is divided by two in the

*' CALCULATE BIT RATE subroutine before returning. The bit timer

actually maxes out at $FFOO.

If there is a signal, the system sends the word count value to the

user through the I/O control block and checks to see whether or not to

use it. The selected count is loaded into the counters and the PCM

type is calculated.

The CALCULATE TYPE routine simply does a maximum word count

calculation and checks it with the minimum calculated in the CALCULATE

BIT RATE routine. If the maximum is two times or less than the

minimum, the signal must be bi-phase and the routine returns with a "B"

in the Dl register. If it is not, an "N" is returned for NRZ. This

*" value is fed back to the user. If the user wishes to use the

" calculated type, a "C" will appear in the PCM type location. The
"4.

program checks this and sets whatever the user desires.

The value to be placed into the word buffer address must be even

or odd to set the PCM type. See table 2. The value returned is either

an ASCII "N" or "B". Therefore the value is complemented and shifted

to make the "N" and even number, and the "B" odd. This number is

written to the word processor address which sets the PCM type.

* The READ subroutine is called next and explained later. The

A-14
to

-w ,. .

-. ~~~~ T T* T4dr.~ V Trw W .Tr W T-. .. .

-

subroutine has two return conditions. If the valid flag is positive,

then the return must be an error. If it is negative, it is a user

recall. A user recall resets the system as shown but the error return

increments the error counter and the correction factor. It also sets

the status flag to zero showing that the system is not in sync.

It is assumed that the calculated rate is in error so the

iterative process adjusts the correction factor by one. If the

correction gets larger than 9, it is reset to 0 as it must be assumed

that another type of error is occurring. The user can keep track of

the errors by looking at the status page from program EXECUTE.

* The READ subroutine looks complicated but in fact is very simple.

• '." It first calculates a mask according to the word length in the I/O

control block. This mask is necessary to avoid confusion when the data

* words, and sync, are read from the word processor. The mask is used in

the sync determination logic blocks, as well as in the read logic

blocks. Consult the listing.

To find the first sync word, the PCM stream must be read, bit by

bit. To keep from reading forever, a TRY counter is set to a maximum

value of $FFFF. If the system reads this many bits without a sync,

* there must be an error of some sort and returns. The TRY counter is

not cleared until READ is called from the main program. Again this

assures that the system won't keep trying forever to sync on a signal

0- without telling the user that an error has occurred. If the first sync

is found but the second isn't, the TRY counter keeps counting.

To account for systems with only 1 or 2 sync words, the sync word

* glocation in the I/O control block is checked to see if there is

A-15

.2 - . - --,

- actually is one. A zero indicates that there is no sync word so the

system bypasses the remaining synchronization steps.

When the system is in sync, the program stores a 1 in the STATUS

flag to alert the user that the system is lock to the PCM signal.

As mentioned earlier, if the valid flag is 0, the user wants

continuous mode. The flowchart shows this check in the second column

in figure 47.

continuous mode does a continual transferring of data from the

word processor to the I/O buffer (2nd column). The code first checks

" "to see if there is a user recall. If not, it reads a word, stores it,

* updates the memory address counters, and continues. At the end of each

frame, the sync process is invoked and the process is started over. If

at the end of memory, the address pointer is reset to 0 and the process

is started over again. This continues until the system is recalled by

the user, or an error occurs.

In trace mode, only one data word out of the frame is stored in

* sequential memory locations. Since the data word is stored in the

valid flag, it is compared with a word counter started at the beginning

of each frame. If there is a match, the word is stored and the address

* pointer is incremented and the routine returns to the synchronization

*. -,portion to look for the next frame sync. At the end of memory, the

valid flag is set to a negative value and waits. If the user chooses

0 to do another trace, the value of the data word to be traced must be

placed in the valid flag as before. If continuous mode is desired, a

-. zero must be placed in the flag. If the user wants to restart the

i •system, a zero must be inserted first followed by a negative value.

A-16

!0

Display Processor

The software written for the display processor is in BASIC with

the exception for a few routines which do data conversion for display

3] on the engineering display page. See the Radio Shack BASIC book (2).

The main thesis (1) describes the page formatting and descriptions in

"." detail. This manual describes some of the algorithms and flowcharts to

will help the programmer maintain the display processor software. Some

of the easy to follow subroutines will not be discussed but are

connented heavily in the software listings (1 appendix C). For

* convenience, all of the flowcharts for this discussion appear at the

end of this manual.

Since BASIC is not a structured language, every attempt was made

to overcome this deficiency. Case like structures are used throughout

as the flowcharts depict. Variable assignments are of two types, those

which a subroutine can use without worrying about, and those which

* can't be. The common value variables such as I, J, K, N etc. (mostly

"-" single letter variables) are considered expendable. They are used as

counters, etc., and can be used for the most part within a routine

* without worrying about entry or exit conditions. The important

variable, A$, is used to pass string information from one subroutine to

another. Values stored in A$ change constantly so the programmer must

0 save any data in A$ in another variable if it will be needed later.

* "- Most of the two letter variables, arrays, and strings other than

"" A$ are meant for one purpose, to store a piece of data throughout the

* •program. For example, N$ always contains the name of the parameter as

A-17

W J

it is read off the disk. N$(I) contains the name of the parameter for

data word I. This is used constantly when a certain parameter is

assigned to line I for display. The listing has a full explanation of

these variables and how they are used. Figure 47 shows the data flow

diagram for the flow of information between the software modules. This

was explained in the SOFTWARE section in chapter III. The actual byte

assignments in each file is shown in tables 4 and 5 below.

There are two data files in which system information is stored.

These files are called PARAM.DAT, and DISPLAY.DAT. Each of these files

is a direct access file which allows the programmer to access any

" record directly without a sequential search. It also means that each

record within a file must be the same length. For PARAM.DAT, the

length is 60 bytes and for DISPLAY.DAT, it is 250.

* €Each record in the file is stored as a single ASCII text string.

Two disk access routines appear in each program except MAIN to allow

V- data to be written or read from either file. Their names are DISK

* OUTPUT, and DISK INPUT. They are very simple and not shown in a

-flowchart but the operation is as follows. The calling routine stores

a formatted string into a variable A$. This string contains the

* •records data variables appended to each other at specific positions

within the string. For PARAM.DAT, A$ = N$ + PN$ + U$ + MN$ + MX$ + AL$

,. + AH$. See Table 4. DISPLAY.DAT is structured the same way using the

S -variables depicted in table 5.

After A$ has been formed, the size of the file, the name of the

file, and the record number to access are set, the DISK OUTPUT routine

*" can be called which will write the record to disk. If the DISK INPUT

A-18

FILE SPECIFICATION FOR PARAM.DAT

BYTE DATA NAME # CHARACTERS

1- 7 PARAMETER NAME (N$) 7
8 - 10 PARAMETER NUMBER (PN$) 3

11 - 15 UNITS (U$) 5
16 - 21 MINIMUM RANGE (MN$) 6
22 - 27 MAXIMUM RANGE (MX$) 6
28 - 33 ALARM MINIMUM (AL$) 6
34 - 39 ALARM MAXIMUM (AH$) 6
40 - 60 (RESERVED FOR FUTURE USE)

Table 4, FILE SPECIFICATIONS FOR PARAM.DAT

FILE SPECIFICATION FOR DISPIAY.DAT

BYTE DATA NAME # CHARACTERS

1 - 3 POSITION 1 DATA WORD NUMBER 3
* 4 - 42 PARAMETER VALUES FOR DATA WORD 39

43 - 43 DEFAULT DATA TYPE 1
- .-- 44 - 46 POSITION 2 DATA WORD NUMBER 3

47 - 85 PARAMETER VALUES FOR DATA WORD 39
86 - 86 DEFAULT DATA TYPE 1
87 - 89 POSITION 3 DATA WORD NUMBER 3

* 90 - 128 PARAMETER VALUES FOR DATA WORD 39
129 - 129 DEFAULT DATA TYPE 1
130 - 132 POSITION 4 DATA WORD NUMBER 3
133 - 171 PARAMETER VALUES FOR DATA WORD 39
172 - 172 DEFAULT DATA TYPE 1
173 - 175 POSITION 5 DATA WORD NUMBER 3
213 - 214 PARAMETER VALUES FOR DATA WORD 39
215 - 215 DEFAULT DATA TYPE 1

" 216 - 250 (RESERVED FOR FUTURE USE)

* Table 5. FILE SPECIFICATIONS FOR DISPLAY.DAT

• . *. .* A 1

,--..A-I-9

routine is called, the record will be returned in AS. It is up to the

calling routines to form or parse the string A$ into its appropriate

parts. For this reason, each variable in the system must be the

correct length. If they weren't the parsing routines throughout the

system would not function correctly. There are other ways to set up a

disk structure but this one was chosen because of simplicity and speed.

See the Radio Shack book on the Disk Operating System (3).

There are an additional two basic subroutines found throughout the

.- display processor software system. These are titled LINE INPUT and

TOGGLE INPUT. Their flowcharts are found in figures 48 and 49

* respectively. The purpose for the LINE INPUT subroutine is to input a

line of code. A basic INPUT statement from BASIC was insufficient for

this purpose. The programmer must pass three parameters to LINE INPUT,

a position on the screen at which the data is to be displayed, the

number "N" of characters to be typed in, and a default string in A$ to

be displayed upon entry. The routine then prints the default string,

places brackets around it, creates a flashing cursor to tell the user

where the next input will fall, and decodes the control keys for either

exit, move within the window, or move to another line. The only area

°* the user is allowed to move around in is the N character space. The

flowchart shows the position in the window as "PSN" and prints A$ when

it prints the brackets.

The TOGGLE INPUT routine has a similar function but does it in an

- entirely different fashion. See figure 49 for the flowchart for TOGGLE

INPUT. The purpose for the routine is to allow the user to only input

0 a few selected entries. These entries are toggled back and forth using

A-20

...

several control keys shown on the flowchart until the up, down, clear,

or enter keys are pressed. When this happens, the selection shown on

*-' the screen is returned to the calling program. The programmer calls

*" the routine with the position on the screen to present the display,

each value to be toggled between, and the number of them.

Program MAIN's flowchart is shown in figure 50. This simple

program displays a master menu and implements a CASE function to

perform the selected option. Even though BASIC does not have a CASE

statement, its structure is used throughout the display processor

software using various BASIC statements. The flowchart is self

explanatory.

Program FSETrP's flowcnart chart is shown in figure 51. It first

initializes some key variables and system defaults, then displays a

master menu of selections to choose from. Four inputs are allowed, "L"

for load, "E" for exit, "C" for create, and "Q" for quit. The

subroutine to convert a record to system variables is necessary because

each record is stored as one string as mentioned above.

The record used to store the frame specification is 102 of

DISPLAY.DAT. Its length is 250 bytes which allows plenty of room for

* the 76 bytes needed to specify the frame data. The structure of the

record is shown in Table 6 below. Once the record is read in from

disk, it is broken out into variables shown in the table. The main

S 0-subroutine in FSETUP is EDIT which is called by three options, "L",
'A

"E", and "C". Its flowchart is shown in figures 52 and 53.

The EDIT subroutine is essentially one large CASE function. The

[* FSETUP entry page consists of 10 lines, each line requires special

A-21

K%%V

4I'

Sj•

.. .",-. -*,".-,*"-',:-.-..'..-.-.., 5"..-o- .,,. .. .-. -"-.-".-.-,'- '',-,,..,'.*-', , ' ?-,.. .'- . .

"S.,

considerations for data entry. The flowchart shows each consideration

for each line number. Note the extensive use of the LINE INPUT and

TOGGLE INPUT subroutines. For those lines which require error

checking, the flowchart shows a return to the beginning of the column.

For example in line 1, no more than 16 bits are allowed for the

wordlength. Therefore if the entry is larger than 16, the user is

-:-, returned to the beginning. Line 1 also creates a pad of blank
<5-

characters to be used for the sync word definition string in lines 8,

"A. 9, and 10. To work, each entry must be the correct number of

characters long for the disk access procedures discussed above. For

the sync word entry, the number is 16. If the wordlength was 10 bits,

then a pad of 6 would have to be added to the sync entry to make it 16

characters long.

PPart 2 of the flowchart shows the return sequence form the pseudo

case structure. The line number is incremented and checked against the

FRAME SPECIFICATION LAYOUT IN RECORD 102 OF DISPLAY.DAT

BYTE DATA NAME # CHARACTERS

1 - 2 BITS PER WORD (B$) 2
3 - 5 W)RDS PER FRAME (W$) 3
6 - 13 PCM TYPE (TY$) 8
14 -17 PCM BIT RATE (RA$) 4
18 - 20 PCMORDER(0$) 3
21 - 27 PCM POLARITY (PO$) 7
28 - 28 NUMBER OF SYNC WORDS (SW) 1
29 - 44 SYNC WORD 1 (SWI) 16
45 - 60 SYNC WORD 2 (SW2) 16
61 - 76 SYNC WORD 3 (SW3) 16
77 - 250 (NOT USED) 174

Table 6. FRAME SPECIFICATION FILE STRUCTURE

A-22

-' . . .S . ,. -" . - " ' ' - " - .- " -; ' '. ' - : ' """"". - . " '" . ' "-"-"- - "-"- . -.

limits 0 and 10. If they are reached, wraparound occurs which places

the line pointer to either the top or bottom line number. This is

common practice and used throughout the display processor system

software.

The PSE.JP program flowchart is shown in figure 54. Again the

case structure is used extensively with several new subroutines, LIST,

and RETRIEVE DATA.

The LIST routine is shown in figure 55 and does several functions.

When called by a program, its purpose is to display a listing of the

parameters in the data base PARAM.DAT. A simple loop would do fine if

the display page were long enough but only ten lines of data are

allowed at one time; if ten are present, the program gives the user the

option of continuing, selecting a number, or exiting. To do this

function, it first outputs the basic list page without any data. It

- then reads the maximum number of records from record 201 in the

PARAM.DAT FILE. This number becomes the variable MAX shown in the

flowchart. The loop reads and displays ten records in at one tine

unless it gets to MAX first. It then gives the user the options

mentioned above. If "E" is chosen, the return variable A$ is 0 and the

calling program will take this as no entry. If a number is selected,

(one of the numbers on the listing page), that number will be returned

to the calling routine to be processed. In this case, the calling

routine was EDIT so the selected parameter will be displayed on the

EDIT PAGE. If any other key is pressed, the listing will continue.

The RETRIEVE subroutine shown in figures 56 and 57 presents a

display page which interacts with the user for data input. This

A-23

A _ ' -. - -' 4 - - _ " ¢ • " . "" . _ . . " • -"•'•"."• .". . " ' . - ' . ' .,., .- " . ..

-4,

- .- routine is very similar to the EDIT routine used in FSETUP and acts the

same way. Its structure is shown in the figure and implements many

small CASE structure. After each line of data is input using the LINE

INPUT subroutine explained earlier, the users exit key is decoded to

either backup one line, move down one line, or quit. The wraparound

mode is implemented a different way than the one in the EDIT subroutine

was but it works just as well. The user stays in the loop, editing a

line at a time until the quit conmand is given. One major difference

in the RETRIEVE subroutine from EDIT is that it has the capability of

storing data before returning to the calling program. Upon the quit

* command, the alarm entries are checked against the maximum and minimum

entries to detect a conflict. If there is one, the user is returned to

- where the conflict occurred. If there isn't an error, another case

type structure gives the user the option of saving the file, returning

to the major line entry loop, or returning to the calling program. A

trick used throughout the display processor system is to use the BASIC

statement RUN. This has the nice feature of clearing all variables by

starting the program from scratch, and saving a few lines of code. It

is only used when a RETURN statement would do the same thing.

* Now that the major subroutines are explained, the structure of

PSETUP will make a little more sense. PSETJP, as mentioned earlier, is

*..- a 6 element case structure each exiting with a RUN statement. The ADD

option reads in the max number of records stored and adds one to it.

This will be the new record number. Next the RETRIEVE subroutine is

called. If the returned key is "T" for Try again, the user is placed

* back into the RETRIEVE routine. If an "S" is returned, the RErRIEVE

S .,A-24

e , '.e. .

subroutine has already saved the data so the only thing left to do is

up the max record value stored in record #201.

The "E" function gives the user the options to list the data base,

enter a number or exit gracefully. If a number is entered, it is

checked against the limits of the system and either read in or aborted.

The record is then read in and dumped to the RETRIEVE routine as shown.

The next two functions require moving records around on disk and

thus take quite a bit of time to do. The sub-options of "NUMB", "L",

and "E", are the same as in the last option discussed. For "INSERT",

the old record is read into a temporary variable so that roan can be

* made for a new one. The RETRIEVE subroutine is called with blank data

because of the RUN command explained earlier. The user puts in new

data and returns from RETRIEVE as before. If the "SAVE" option was

used, the new record will now be on the disk instead of the record

-" previously saved. The remainder of the code moves all records above

the saved record up one record starting from the top and working down.

This will leave a space for the record saved in the temporary variable.

"DELETE" works just the same way except that the file that the use

chose to delete is brought into the DISPLAY PAGE using the DISPLAY DATA

subroutine. DISPLAY DATA simply prints out the data to the screen

without any tricks. It does call for a user key input which is acted

upon when returned. IF the key is "Y" as shown, all records are moved

down one record starting at the record just above the one deleted. If

"Y" is not selected, the command is aborted. The final option form the

PSETLP MAIN MENU is "QUIT". This simply runs the program MAIN.

The program DSETUP is structured almost exactly like program

A-25

.. ft - ft

PSETUP described above. The only differences are the data file and an

added option from the master menu. See figure 58 for the flowchart.

The data file is titled DISPIAY.DAT and structured as shown in

table 5. DSEIUP is structured around ten display lines per page but

each record can only store the data from five parameters. This

requires the use of two records per display page. The flowchart shows

only reading one record in at a time but this actually means read one

display page in at a time. In actuality, two physical records are read

in for each logical record. A physical record is the actual record as

it is written on disk. For DISPLAY.DAT, an arbitrary maximum number of

data records is set to 100. Since each display page (logical record)

requires two physical records, only 50 display pages can be in the

system at one time. A small calculation converts the logical records

to two physical records and converts the data therein to variables to

be used by the program. See the listing.

The additional option which can be called from the master menu, is

the "LIST DISPLAY PAGE" feature. The user has the option of either

listing the parameter (data word) database, or the display page

database. A separate flowchart is shown in figure 59 for this

* subroutine. Its structure is exactly the same as that for the "LIST

DATA WORDS" routine except each logical record read is actually two

disk records as explained above.

The EXECUTE program flowchart is shown in figures 60 and 61 with

special subroutine flowcharts in figures 62 thru 64. The main flow of

control is shown in figure 60. The structure is complicated by the

fact in that the main routine is not a master menu as it was in all

A-26

7 -.... . -A

other programs in the system. There is a master menu of course, but it

is called as a subroutine from the engineering display function. This

simplifies data flow because all control functions such as changing

data types, displaying bar graphs and, plotting data words are based

around the engineering display page. To the user, the structure is

exactly the same as other programs in the system but to the programmier,

it's different.

The program first initializes some basic variables as is done in

all other programs. Next the master menu subroutine is called to allow

the user to see the status page, display engineering data as it is read

in, or quit. The routine for showing the status is simple as all it

does is print a few variables in a specific format on the screen. Any

key will return the user to the master menu. The quit function will

run program MAIN as all other programs do. When the user wishes to see

engineering data, a RETURN is issued and the program continues.

The program then displays the raw display format and headers calls

the LINE INPUT routine shown as read line in the flowchart. The user

must input a page number to be displayed before the program continues.

It then reads the appropriate logical record corresponding to the page

number selected and prints the static information to the page. Static

data are those items that aren't updated such as the parameter name,

parameter units, data type etc. Next, the major update loop reads the

*" data from the memory buffer and displays it to the user.

The major loop is shown in figures 60 and 61. The synchronization

status is checked first by reading the status flag in the I/O control

block (table 3). This is done before any information is displayed to

.
A-27

.

prevent wrong data from entering the system. If the status flag is

true (not zero), the system is synchronized with the PCM data stream

and the program continues. If not, it waits for the status to become

true, or a user key input of "E" for exit. If the status becomes true,

one data value is read in from the I/O memory buffer, converted to

engineering units if its type is decimal, or converted to its

non-decimal format as raw data and displayed. The program then checks

to see if there is a user command and if not, reverts back to the

status check and the loop continues.

Figure 61 shows the case structure of the key decode routines.

4Nine options are available as shown, one option for each column of the

flowchart. If the keys are left arrow, right arrow, or a number, the

loop is exited and a new page is brought in to be displayed. Wrap

around mode is implemented if the user C2ects to use arrows. If the up

and down arrows are used, the selected line shown by an inverse data

type indicator will be changed, either up or down. The algorithm uses

a selected line pointer, variable L14 in the listing, and just increment

and decrements it using wraparound techniques. toggle type and plot

options use LJ4 to identify the data word to perform their respective

operation on.

The toggle type function uses a routine much like the TOGGLE INPUT

routine used within the system but doesn't expect a user input. It

just changes the type identifier in the selected line's type column by

reading the screen location directly using PEEK and POKE statements.

The main loop reads this type and does the respective conversion. The

toggle function also replaces the units column on the selected line to

A-28

E

the data type if not decimal. If it is, the units identifier is

displayed.

The next three figures, 62 - 64, show the flow diagrams for the

plotting functions. Figure 62 is a routine called by the BAR CHART and

PLOT GRAPH routines which plots a point on the text screen using

special text-graphic characters. By using these special characters,

the lengthy and time consuming graphics capabilities of the Color

Ccputer are avoided which makes the routine easy to modify. The

routine is quite simple but tricky because it has to select the

appropriate character to print. The characters used are blocks instead

of alphanumerics. There are many types of blocks, each with their own

number. The number is an extension of the ASCII character set and

ranges from 128 to 255. Only two blocks are used in the plot routine,

," they are numbers 147 and 156. The number 147 prints an inverse block

one character width wide and one half character tall at the bottom of

the character space. Number 156 does the same but places the block at

the top of the character space. In this way, 20 points can be plotted

with only 10 lines available on the screen.

The plot routine is called with an X and Y value, X being the

* column (0-31) to print the character block and Y being a percentage in

'- the range 0-99. The routine converts these values to an absolute

- number beginning with 0 to 511 which represents the character location

* on the screen. Zero is the upper left character position and 511 is

the lower right. The numbers increase from left to right and top to

bottom much like that of the scanning of a TV picture. The conversion

*is simple because of the in-line nature of character position

A-29

..

numbering. Since Y is in the range from 0 to 99, the first thing to do

is convert it to a vertical position from 0 to 19. If the position is

even, the bottom block, number 147, should be used. If odd, 156 should

be used. To determine this, the value is divided by 2 and checked to

see if it is an integer or not. An integer will denote an even number

so 147 is selected. If not, 156 is chosen. To offset to the correct

line number and allow room at the bottom of the page for prompts etc.,

an offset of 3 is added. The resultant Y value is the line number

counting from the bottom of the screen where the chosen character is to

be placed. Since the leftmost character position on the screen is the

* line times 32 counting from the top, the actual position on the left

side of the screen is 480 - (Y * 32). Adding X to this gives the

correct location on the screen to place the selected character. Before

*t printing the new block character, however, the old one must be erased.

This is done by the remaining code in the routine using a double

buffering method. The flowchart shows how this is done.

* The BAR CHART routine flowchart is shown in figure 63. The

routine is a misnomer in that bars are not actually shown except for

the alarm limits. Only a point is plotted to show the value in percent

of full scale. The routine is basica-ly a major loop which plots ten

* data values at one time against a bar showing the alarm range. The

-- first thing the routine does is draw the chart display and static data

* much like the engineering display routine did. It next draws in the

d1arm limits in bar format by plotting the maximum alarm point, the

minimum alarm point, then all points in between. If the alarm limits

" are zero, the routine is bypassed. Once the pointers are initialized,

A-30

"- the routine waits for sync using the same method used before. If in

sync, it reads in the data, converts it to an X and Y value, and then

plots it. Any keypress will return control back to the engineering

section because there is no user interaction for BAR CHART plotting.

If a key wasn't pressed, the data word pointer is incremented using

wraparound and the loop continues.

The PLOT CHART routine of program EXECUTE has two modes of

operation, continuous and trace. The flowchart appears in figure 64.

After converting the word count read from the I/O CONTROL BLOCK to a

*' sample time in microseconds, (time = word count/16), it displays it on

the screen, Then the type of mode is checked and the appropriate path

taken.

Continuous mode is much like that of the bar chart option except

that 29 different values of the same data word are plotted instead of

10 different data words. If, at any time, the user presses "T", the

mode is changed to trace and the trace path is taken. See the

flowchart. If "E" is pressed, the program reverts back to the

engineering display page. Any other key will keep plotting in the

continuous mode.

* The trace mode is a little more complicated in that

- synchronization between the PCM processor and the display processor is

now important. After setting the PCM processor in trace mode by

• placing a data word value in the valid flag of the I/O control block,

the PCM processor begins a trace at the beginning of the memory buffer.

If the data rate is slow, it could take some time to fill so the

* program must check to see if data is ready to be read by looking at the

A-31

S+ ' +J - m ' " ' • " + ° , +' ', Y " , , - • ' . ,+ • • "' ," " • " " "

data address word in the I/O control block. If the returned address

from the PCM processor is less than the address the display processor

is ready to access, the system checks for a user halt and, unless

received, continues waiting for the addresses to match. Once the data

address is larger, the data is valid and the program displays it and

checks for the end of page. When at the end of the page, 29 points

have been plotted. The buffer can hold 1024 points so there is more

data to be displayed. To do this, the user must use the left and right

arrows to scan the memory buffer and plot points accordingly, one page

at a time. If at this point, the exit option is invoked, the PCM

* processor is returned to continuous mode and the user is placed back

into the engineering display page. If CONTINUOUS is selected, the mode

flag and PCM processor are reverted back to continuous operation.

The flowcharts for the short machine language CONVERT routines are

not shown but described in the listing.

A-3.

(O--

', A-3 2

S.'

4 ***

I SOFTWARE DATA FLOU DIAGRAM VER 1.0
JOHN R. CROASDALE SEP 85

MAIN MENU

CREATE SYSTEM PARAM SETUP I DISPLAY SETU FRAME SETUP DISPLAY DATA
(MAIN) (PSETUP) (DSETUP (FSETUP (EXECUTE)

./ •1'

SET NUMBER
TO 2ERO IN L HEX OCT)
BOTH FILES INBE NUMBER
RECORDS #

PAGES FRAME

PARAMETER/ / P/ARAMETER DATA TO 102 CNE
DATA /DATA

i2

PRMTRDATA 81 DISPLAY DATA

-.
1 2

(PARAM.DAT, SIZE=60) I(OISPLAY.DAT? SIZE=250)

" / ?

L NUMBER OF NUMBER OF
PARAMETERS DISPLAY PGS
STORED IN STORED J"
FILE IS IN FILE IS IN
REC 281 REC 181

Figure 47. Software Data Flow Diagram

A- 33

0 " IPReOT IE O[I(IPAA: IEZO

--....................................... .- - - - - - - . *. . .. *

FLOWCHART FOR SUBROUTINE LINE INPUT SUBROUTINE
JOHN R. CROASOALE SEP 85

\LINE INPUT

PRINT BRACKETS
SANE=@
PSN:1

TOGGLE CHAR
AT PSN WITH
CURSOR-

NO /KEY

PRESSED

YESI

* CASE

KEY or

UP, DOWNY ENTER, CLEAR

CLETLEFT ARROW RIGHT ARROW OTHER

LINE CHAR
INTO At PSN=PSN-ISAE

REMIOVE

BRACKETS S=Mt

RETURN

WITH
LINME IN Ail

PSHNN

* K\YES

PRCT
AT P SNH

Figure 48. Line Input Flowchart

A- 34

FLOWCHART FOR SUBROUTINE TOGGLE INPUTURUTN
JOHN R. CROASOALE SEP 85 OGLE INPU

-DISPLAY

DEFAULT
LINE

WAIT

"% TIME

DISPLAY
'V CURRENT

LINE

WAITI T N

.

TIM

CASE

KEY OF

UP ARROW DOWN ARROW CLEAR'ETRLFIRO TE

*IELN I

RETURN I IE4~
WITH

KEY IN KY LINE=!U1
IF LINE (I

Figure 49. Toggle Input Flowchart

A-35

S . ." , - - -".' ' . " " ',". '" '. " ,% " . " % " . " . " . " . % % " , " "'

FLOWCHART FOR PROGRAM MAIN
- * JOHN R. CROASDALE SEP 85

PROGRAM

MAINH

CASE

USER INPUT

OUTPUT RNRNUNEXIT

SETUP PAGE PSTPOEU STPTO BASIC

GET

IUSER INPUTI

A)SORT C)ONTINUE

RUN RESET=
MAINRECORDS @I

RUN
MAIN

Figure 50. Program MAIN Flowchart

A- 36

.
.

"L~CART FOR PROGRAM FSET4JP PROGRAM
JOHN R. CROASDAI.E SEP 85 FSETUP

INIT

SET
FRAME DEFAULT

CASE Of

REC fFROM DISK, RM EAUT, MI

CONVERT RA A
TORD INRIAFLES

AW SETSE

EDIT HEADER CREATE HEADERj

OUTPUT
FRAME SPEC

PAGE

LINE z:1

EDIT
FRAME SPEC

PAGE

SAVE NEW

SPECIFICATION/

Figure 51. Program FSETUP Flowchart

A- 37

A

FLOWCHART FOR SUBR EDIT/FSETUP PART 11JOHIN R. CROASDALE SEP 85 UBROUTINE
FROM PART 2 EDIT

CASE

LINE OF

LINE=1 LINE=2? LINE:31 LINE:41 LINE:51 LIP4E=6 LINE: 1 LINE=8 LINE= JYM.NDI JYACW0 3

TEMlP= TEMP= TEP= TEIIPz _TENP: TE P=PCh I TENP=# OF TEMP=SWI TEMPzSW2 TENP=SW3

BITS/WORD sOF WORDS IPCM TYPE IPCM RATE PCM ORDER POLARITY SYNC WORDS'

LINE E OGGLE O&GLE N OGGLE LINE LINE LINE LINE

INPUT / INPUT IUT INPUT,)' INPUT INPUT INPUT INPUT / INPUT INPUT

ZT :TN : P -TEN i!::p LTENP I TEMP zTEMP

YES \YES
SISl W=V+ S~S3

ITSNO. \AE\NO. YE PAD PAD PAD
)16 OR~ WORDS >100 OR) WORDS

o 1)208 YES < AU1'

NO No No

CREATE UE SYC
PYAD H FOR WORD SPACEI

-~ NEW \YES
ENTRY

ERASE ALL
SYNC WORD

SPACE

TO PART 2

Figure 52. EDIT Flowchart Part 1

A- 38

FLWHRSO SO DTFETUP PART 21 FROMI PART 1
JOH L ~R. A OASDLE SEP 85 K

LIMEmLIME+1

CASE KEY Or
(RETlipMED

FROMl .iPUT
ROUTINES)

CERLEFT ARROW OTHER

TYPEi ORDER, IELN-

YES,~

INo
LINE=16

/I4E\0YES

0

LINE=@

2

TO PART I

Figure 53. EDIT Flowchart Part 2

A- 39

FLOWCHART FOR PROGRAM PSETUPPRRA
JOHIN R. CROASOALE SEP 85 PEU

MASTER MENU

157 DATA

VORDS

CASE OF L
USER INPUT

A El I D Q
EAD NO. 0 OUTPUT OUTPUT OUTPUTRU

RECORDS IN
FILE <REC.' EDIT MENU IINSERT MENUI DELETE MENUI MI

4Ph=*REC+I CASE USER CASE USER CASE USER

1INPUT OF INPUT OF INPUT OF

NUMB L E NUMB L E NUMB L E

LIST NO LIST No LIST
zO *<MC #< MA
8(MA\ ATA WORDS -ORg: DATA WORDS OR * ~ DATA WORDSOR 28, 266 206

ETRIEVE' Es CASE RETURN ES CASE RETURN EA ES C S I 1 M
DATA RAIN KEY OF K)KEY OF REOD IKEY OF

REOD N75 E :)NUMB E NUMB E
SAVE SAVE 7 E

RECORD DATA RnECOARDHNMB"
CASE OF IN TEMP VAR JIN TEMP VARI

KEY

7 PETRIEVE DISPLAY
DATA DATA

UPDAT RUN RUN
NO.RECRDSPSETUP CASE OF CASE OFPEU

F lIE RETURNED R ETUNE
KEY KEY

0~~ S.......... T R Y '>y

RNMOVE ABOVE MOVE HIGHER
AAU N DATA DOWN I

RECORD LOC RECORD LOC

SAETM UPDATE
*IN NEW REC 0. RECORDS)

OCATION FILE /

UPDATE\
0. RECORDS> RUN

FIE / R

Figure 54. Program PSETUP Flowchart

A- 40

%

FLOUCNART FOR SUBROUTINE LIST DATA WORDS
JOHN R. CROASDALE SEP 85 SUBROUTINE)

LIST D~s/

OUTPU

L ISTPAGE1

REA

UMIBER OF
ERX 4REC

OUTPUT
NUMBER OF

MAX RECORDS

(READ
RECORD/

REC=\ YES

MA'

NOl

REC \YES
MULTIPLE
Of

OUTPUT
PROMPT LINE
AND GET KEY

NOL CASE

EKEY OF

E MUMBERI OTHEP

A
IRETURVTH NUBER) YEfS / C:

IN At

[RETURN
/C U TU T

WITN NUMBjER
IN AtteHADN

Figure 55. LIST DATA WORDS Flowchart

A- 41

0

FLOWCHART FOR SUBROUTINE RETRIEVE PART 1 SUBROUTINE\
JOHN R. CROASOALE SEP1

RETRIEVE

OUTPUT
DISPLAY
PAGE/

INU

LIN

(NME

UP CSE QI

4. .. Figure 56. RETIV lOwcarar
OTH42

NPTU

* - - -4 - .- . . - . LIN.E

.~~~~
4

4
d*,D

(PRA a)/*.

*.4 %UP.% CAS QUI-T

FLOWCHART FOR SUBROUTINE RETRIEVE PART 2
JOHN R. CROASOALE SEP 85

A L ARM' YES OUTPUT

LOW MESSAGE
R ANGE

INO
I DELAY

IGH
OUTPUT YES ALARM
ERROR)OUTPU'T
MESSAGE HIGH DISPLAY2

RANGE

No

2
OUTPUT
RETURN/

SELECT PAGEI

OUTPUT

(PAGE/

INPUT

K~EY

-'Figure 57. RETRIEVE Flowchart Part 2

A- 43

FLO~NARTFORPROGRAM OSETUP PROGRAM

JOHN R. CROASOALE SEP 85 LDSETUP I

(INIT

OUTPUT
MASTER MENUI

NO 1~LST DATPL NO 11-T\ .S IIS L I NO 1STD P

CAAODS fR CATALOG

4 ETRIEQE CASE ER N CASE ER CASE ER N

CAPUE OF CAPUE OF INPU TUO
NUMB L E NRE UMBLNMB L

IOSTUP DATAL UP ONE S ISL N STDSL
REC AALGORD > L C ATAEOGORD L C ALO

L~ ~ ~ ~ AV TEMP
TD S

LOCTAAION

I ~ ~ O REODS EDI
F1 ILE

RUN

SAE

RECOR DAT REOR NUMB. . .
CASE~~- OF IN TEM VAR IN EMP,

v- 74

FLWHRT FOR SUBROUTINE LIST DISPLAY CATALOG1

JNR. CROASOALE SEP 85 SUBROUTINE
1ST DSP

SREAD
NUMBER OF
MAX REC

OUTPUT
CATALOG

DISPLAY PAG

OUTPUT
NUMBER OF

MAX RECORDS

(READ
RECORD

REC= YES

MAX/

/

/ REC \ YES
MULTIPLE

OF /
\18/ OUTPUTv PROMP~TLINE
NOAND GE EY

CASE

PEI IN At

A-45X

. .. .V.

A-45l

- - -ww -r -ry.W W. - -'7
' . ~ - - - t A - -Vw --

l~.-r

FLOUCHART FOR PROGRAM EXECUTE PAR PROGRAM
JOHN R. CROASDALE SEP 85

EXECUTE

."

. "IMIT '

ASTER MEN
AND USE

",~~ .. .NOGE I

OUTPUT
ENGINEERING
DISPLAY PAGE

PAGE NUMB/

A

AGE\
no UMBER\

IN
I .MA.

READ IN

PRINT S TATICJ
DATA

TO PAGE

iiYES/KEY\ No TU4PESSE- STAU
TRUES

YESV

* CONERT AND
IDISPLAY ITI

KEY

* PRESSED!

Y S

Figure 60. Program EXECUTE Flowchart Part 1

A-46

- .-.--, - ,- ~~- •.... , "..,-...-..... .-.. - .- ...-.....-..-.... -".. ...- , .. ""

FLOWCHART FfOR PROGRAM EXECUTE PART 2
JOHN R. CROASOALE SEP 85

CASE KEY E

or 2

*RIGHT ARROW LEFT ARROW UPIARROW DOWN ARROW NUMB Tj 8 P

CURRENT TYP CURRENT TYP LT CHAR
PAGE=PAGE4 1 PAGE=PAGE- 1 TOGGLE TYP BAR CHART) OR SELEC

NORMAL NORMAL TYPE

DECREMENT INCREMENT
AND WRAP AND WRAP CASE TY'PEI

TYP POINTER TYP POINTER

or OUTPUT "
\NO NOENGINEERING"PA o PAE o ISPLAY RAG'

EIA SHOW NEW SHIOW NEW

I TYP INVERSE1 TYP INVERSEI C

YE~j YE~jSHOW UNT SNOW TYPE
YE YS HIN INH

1 UNITS COL UNIS COL
PAGE=l PAGE=MAA

DISPLAY IT

4-4

5

Figure 61. Program EXECUTE Flowchart Part 2

A- 47

0: i~i

FLOWChART FOR SUBROUTINE PLOT POINT
JOhN R. CROASOALE SEP 85

SUBROUTINE

PLOT POINT

CONVERT
XfY TO

SCREEN NUMB

FERASE
OLD0 POINT

SELECT
CORRECT
CNARACTER

PLOT

CHARACTER

OLD POINT

NEW POINT

Figure 62. PLOT POINT Flowchart

A- 48

FLOW9CHART FOR SUBROUTINE BAR CHART
JOHN R. CROASDALE SEP 85 SUROUTIE

BR CHT

DRAW
STAT IC
CHART

INITIALIZE

L7NO,

0O KEYf
oT ATUS ; - RESSEDM
TRUE

YES YES

CALCULATE

IADDRESS J

READ

DATA WORD

CONVERT

LOT POINT

KEY\

POINTERS PRESSED

ES

Figure 63. BAR CHART Flowchart

A- 49

FLOWCHART FOR SUBROUTINE PLOT CHART] SUBROUTINE
JOHN R. CROASOALE SEP 85"OT

_ LOT CHART

CALCULATE NTCUER

SAMPLE TINE PAiE=O, X=:3WANDF4OUTPUT ADESO

MODEPRCSO

CONTINUOUSINTAEOD

CASE TRACE CALCULATE

A\

ATACACLAEKEY \ NO AODRESS\1
PRESSED' ADDESPRE SSES

FO ES

READ DATA

CONVERT
________________ DATA TOu

'p PERCENNh lee

LEFT OTOEROINENT>

kE CPOINT

KEYH

RESSRESET

MEN

A- 50

REE

S'.,

References Used in This Manual

1. Croasdale John R. Real-Time Flight Test PCM Acquisition Monitor.
AFIT Thesis 85S-I.

2. Kaine, Gerry, Doug Hawkins, and Lance Leventhal, 68000 Assembly
Language Programing; Berkeley, CA, OSBORNE/McGraw Hill, 1981.

3. Leventhal, Lance A. 6809 Assembly Language Programing; Berkeley,
CA, OSBORNE/McGraw Hill, 1981.

4. Motorola, 16 Bit Microprocessor User's Manual, Englewood Cliffs,
N.J., Prentice-Hall, 1979.

5. Getting Started With Extended color Basic, Tandy corporation,
FortWorth, Texas, 1984.

6. Radio Shack TRS80 Color Conputer Disk System Owner's Manual and
Programming Guide, Tandy corporation, FortWorth, Texas, 1981.

..

''p

; A- 51

I

Appendix B

REAL-TIME FLIGHT TEST PCM

DATA ACQUISITION MON1IOR

0

USER'S MANUAL

BY

JOHN R. CROASDALE, LWI, USAF

A6 .

Appendix B

User's Manual

Overview

This manual provides the basic step-by-step procedures needed to

operate the Real Time Flight Test Data Acquisition Monitor, PCM monitor

for short. It first provides a basic description of the system

followed by a walk through of setting up and using the PCM monitor

system in a basic test. The main thesis describes the system in more

detail and should be consulted if more information about a particular

function is needed. The user is assumed to know about PCM transmission

protocols.

a' System Description

The PCM monitor consists of two major parts, the PCM processor,

and the display processor. The PCM processor is the interface

*circuitry and software needed to convert a PCM data stream to a series

of data words which can be read by the display processor. There is no

user interaction with the PCM processor except the PCM order switch and

the manual reset explained below. All other interaction is through the

display processor.

The display processor is a host computer system with software

which controls the PCM processor. The user interacts with the display

processor by entering PCM data word and frame specifications, and then

displaying selected information in various formats.

The software in the display processor is completely menu driven

B-2

7,0"

with the exception of a few items. These items will be explained as

"4 they arise in the discussion below. The basic overview of the software

command structure is shown in figure 65 and should be reviewed before

proceeding with this section.

Throughout this discussion, instructions within quotes must be

typed exactly as shown. Instructions enclosed within apostrophes are

-* Color Computer keys which should be pressed. Any time a command such

as "L)IST" is seen on the menu, only the first character needs to be

typed followed by the 'ENTER' key to invoke invoke it. Some commands

do not require the "ENTER" key to be pressed such as the arrows and

* toggle type functions described below.

Getting Started

The PCM monitor is presently housed in two sections. One section

is the PCM processor card with power supply and the other is a Radio

Shack Color Computer II with disk drive and video monitor. Connect the

PCM signal cable to the PCM processor's input jack and make sure the

ribbon cable from the Color Computer is connected to the PCM processor

card. The cable must be extending away from the processor board and

not across it. Turn on the power to all systems: computer, disk drive,

and PCM processor card. Check the power supply for the PCM processor

card for a reading of about 1.5 amperes. If it exceeds a value of two,

turn the system off immediately and check for short circuits. A

" standard 5 volt power supply capable of delivering 2 amps is required

.. for the PCM processor card.

Make sure the system diskette is inserted in drive 0. The BASIC

B-3

, .- .,' .'. ' ." "... '.-. ... ,,./ . '.-t -' -.A--' -' .' .,,. ," -, ".W.,--..' .'$.,,,4 " ,..',,., - " . '- ". . " .,'" ."o, .'.''. "n

-S

J.,, CONMOA STRUCTURE OVERVIEWI
." .- " TOTAL SYSTEMl

MAIN

CREATE NEU FRAME FRAMIE SPECIFICATION PARAMi SPECIFICATION DISPLAY FORMIATS EXECUTE QU]

CONTINUE -LOAD SPEC -ADD NEW DATA VORD -ADD NEU DISPLAY PAGE -STATUS DISP

ABORT -EDIT SPEC -EDIT DATA VORD -EDIT DISPLAY PAGE -BEGIN DISP

CREATE NEW SPEC -INSERT DATA UORD -INSERT DISPLAY PAGE -QUIT

QUIT -DELETE DATA WORD -DELETE DISPLAY PAGE

-LIST DATA WORD TABL -LIST DISPLAY PAGES

QUIT -PARAMETER LISTING

LGUII

U--

,'v" |

i

0q

Fiur 5.C [n Stutr Oeve
" nB-4

0"..

- pronpt will be displayed on the monitor when the Color Computer is

turned on. To start operations, program MAIN must be run by typing

"RUN MAIN" then the 'ENTER' key. The disk drive should come on and

after a few seconds, the display shown in figure 66 will be displayed.

The user is given six options to choose from.

For new systems, the first option should be "S)ETUP NEW SYSTEM",

selected by pressing "S" follc.ed by 'ETER'. The page shown in figure

67 will be displayed. The user responds by typing a "C" for continue

or "A" for abort. Since the old data will be replaced with new data,

the old data base, PSEStJP.DAT and DISPLAY.DAT, must be saved under a

new filename before entering the PCM monitor system. By pressing "A"

and then "Q" for quit, the user will be placed into BASIC for the

filename change. If the "C" key is pressed from the setup page, the

program will continue and set up the data files for a new system.

Old data systems and newly created ones can be added to by using

the other options. Since this example assumes a new data system, all

following discussion will be from the new system viewpoint.

Setting up Frame Specifications

Once a new system has been initialized, the frame specification

should be entered. Pressing "F" from the MAIN master menu, bring up

the FSETUP master menu shown in figure 68 below. Since this is the

first time through the system, the "C)REATE NEW FRAME SPECIFICATION"

option should be invoked by pressing the "C" key followed by the

'ENTER' key. The other two options, "E)DIT" and "L)OAD" are used to

* modify previously entered data from either memory using the "E)DIT"

B-5

S

S* ** * ******* ** **** ***** ** ******

"* MAIN MENU *

)RE *SPECIFICAT*ION

F) RAME SPECIFICATION
P) ARAMETER SPECIFICATIONS

D) ISPIAY FORMATS
X)ECUTE TO BEGIN PCM MONITOR
S) ETUP NEW SYSTEM
Q) UIT

WHICH ONE-->?

Figure 66. MAIN MASTER MENU

- --* * *- -

* * SETUP NEW SYSTEM *

. ' ** ******* ** **** ******* **** *

WARNING WARNING WARNING WARNING

THIS PROGRAM WILL DELETE YOUR
DISPLAY FILES. BE SURE YOU'VE
SAVED THEM TO ANOTHER FILENAME

DO YOU WISH TO CONTINUE OR ABORT
9. PRESS C OR A ->?

Program MAIN has a master menu page shown in the top of this figure.
If the S function is called, the lower page will be displayed. If the
user responds with a "C", the program will set up a new system data
base. Any other key will revert back to page 1.

Figure 67. SETUP MENU

B-6

iS

| - -

option or the disk file using the "L)OAD" option. Only one frame

specification can be active at one time. All three options bring up

the data entry page shown in figure 69.

The frame specification page in figure 69 shows an example of a

typical PCM frame specification. When running the program, the

"CREATE" function will display the default values. These values are

shown as a number or in inverse text as required. There are no

defaults for the "SYNC DEF" values so this area of the page is left

blank (not shown in figure 69). There are seven items which need to

entered to describe the frame format. The arrow keys are used to move

up and down the seven line entries and to scroll left and right within

a line.

Upon entry, the cursor is placed on the first line, "BITS/WORD".

Here the user types a number from 1 to 16. The normal size of a PCM

word is around 10 to 12 bits but for greater resolution, 16 bits can be

used. The number of bits, as well as all the other entries on this

*page, is dictated by the PCM data stream format and not the PCM

monitor. The user must use what is in the PCM stream.

The second line entry is "WORDS/FRAME". Any number of words are

allowed up to a total of 200. "PCM/TYPE" is either NRZ-L or

BI-PHASE-L. A third option on this line is "AUTO". The PCM monitor

has the capability of determining whether the signal is in NRZ format

or bi-phase. Selecting "AUTO" allows the system to use the calculated

type.

Perhaps the most important innovation of the PCM processor is its

capability to capture a PCM bit rate from 1Khz to 100Khz automatically.

B-7

' "* **** ***** ******* ** ******* *** ***

n FRAME SPECIFICATION PAGE *

C)REATE NEW FRAME SPECIFICATION
E)DIT SPECIFICATION IN MEMORY
L)OAD FRAME SPECIFICATION

Q)UIT

WHICH ONE->?

Figure 68. FSETUP MASTER MENU

-A

* FRAME SPECIFICATION PAGE

BITS/WCRD 10 MAX IS 16* WORDS/FRAME 34 MAX IS 200

PCM TYPE AUTO NRZ BI-PHASE
PCM BIT RATE AUTO KHZ A)UTO
PCM ORDER LSB MSB
PCM POLARITY NORMAL INVERSE

OF SYNC WORDS 3 MAX # IS 3
SYNC DEF-> 1111101011

- "1100110011
"" 0100000000

./ USE NUMBERS, ARROWS, OR CLEAR

Figure 69. FRAME SPECIFICATION PAGE

U.-

[2 B-8

The user has the option of manually setting a bit rate by typing a

number in the "PCM BIT RATE" line. Such a number could be 25.5 meaning

25.5 thousand bits per second. By typing the letter "A", the "AUTO"

feature is selected. If a number is used, the PCM processor will use

this number but it will return the calculated value to the user. The

calculated value will be displayed on the status page of the EXECUTE

program explained later.

"PCM ORDER" can be either Most Significant Bit (MSB) first, or

Least Significant Bit (LSB) first. The order is determined by the PCM

encoder. Generally, PCM systems send data LSB first, then the next to

least etc. It then gets the next word and sends it out in the same

*.- manner. If the PCM monitor is not told what this order is, the data

may become transposed and be meaningless. The order is switch

selectable on the PCM processor card.

The "PCM POLARITY" option is used to switch from a high level

meaning "l" to a high level meaning "0" etc. It is normally used for

bi-phase as some systems use a transition from low to high to mean "0"

and high to low to mean "l". Other systems use the reverse. The

polarity function is accomplished in the PCM processor software to

allow for any type of encoder polarity outputs. Consult the

thesis'software section on PCM processor for more information on

polarity.

The number of synchronization words is entered on the next line.

The word length for the sync word must be the same as the data word

length. Up to 3 sync words can be used. The "SYNC DEFINITION" lines

follow to allow the user to enter the binary representa-ion of the

B-9

• " °1

-word. If only one sync word is allowed, the program will allow only

one to be entered. If two are allowed, only two can be entered. The

same for three. The program also checks the word size from line one

and allows the user to enter only those number of bits. If the

"BITS/WORD" is changed for some reason, the "SYNC DEFINITION" display

area is erased and must be re-defined. This keeps the user from

entering erroneous data

Pressing the 'CLEAR' key at any time during the data entry process

-." saves the data displayed shown on the page to disk. If items are left

blank, the default options shown in inverse are used. There is no way

to abort this page without saving the displayed data to disk unless the

'BREAK' key is pressed. If this happens, the system should be

re-started by running MAIN. All data entered, however, is still in

contact and need not be re-entered.

Setting up Parameter Files

To set up the parameter data base, select the "P)ARAMETER

SPECIFICATIONS" options from the MAIN master menu. The data word

definition page shown in figure 70 will be displayed. The user is

* offered the options to "A)DD" new words, "E)DIT" words already in the

system, "I)NSEIRT" data words between others, "D)ELETE" data words,

"L)IST" all the data entered in the system, or "Q)UIT". Press the "A"

* key to add a new data word and the system will bring up the data entry

page placing the cursor in the first data entry line. Notice that the

system automatically calculates the data word number and displays it on

*the screen. In this case, the data word being entered is 1.

B-10

-.: -, .- ,,*... 'd~~

A brief explanation is in order here to distinguish between a

parameter and a data word. Parameters are those data words in the PCM

stream which are to be displayed and used to determine if the system

under test is functioning. Data words are numbered according to their

locations in a frame with data word number 1 being the first and data

word N being the last; N being the number of data words in the frame.

Parameter number 1, for example, might be cabin altitude represented by

the 4th data word in the frame. In this case, the data word number

would be 4 while the parameter number would be 1.

The flashing cursor designates the position for text entry. In

this case, the system is asking for a parameter name. Up to 7

characters may be entered in this line. The brackets show the limits.

Both letters and numbers may be entered to make parameter

identification unambiguous. The limits were needed because of other

page limits in the PCM Monitor system due to the limited display

capability of the Color Computer screen. Type in the first data word

jname, "ALTITUD" and 'ENTER'. The cursor will move to the next line and

ask for a parameter number.

In this example, altitude is item number 4 on the parameter list

so press "4" and 'ENTER'. Actually the parameter number does not have

to be a number. The user can use this entry as some other type

identifier as needed such as "ACF" showing that it is an aircraft

parameter rather than a system one. Its intended use, however, is to

. help the user to keep track of his parameter listings.

' The next entry is the units of the parameter. Dimensionless data

will have no units but in this case, altitude is measured in feet so

L'" B-I1

r0..-, , , ,, - : :,rv -, .,..:,, '> ..- , . .. v - - ". . - • . --- -

* DATA WORD DEFINITION PAGE *

.,* ************ *

A)DD NEW DATA WORD
E)DIT DATA WORD
I) NSERT DATA WORD
D)EIJETE DATA WORD
L)IST PARAMETER TABLE

- Q)UIT

WHICH ONE?

Figure 70. PSETUP MASTER MENU

DATA WORD DEFINITION PAGE

ADDING DATA WORD # 1

PARAMETER NAME -- > ALTIlUD
PARAMETER NUMBER-> 4
PARAMETER UNITS -> FEET

RANGE MINIMUM -> -100
RANGE MAXIMUM -> 50000

- ALARM MINIMUM -> 200

ALARM MAXIMUM -> 45000

ENTER FOR NEXT, CLEAR TO ACCEPt

AV Figure 71. A)DD NEW DATA PAGE

1B 1
dLB-i2

I -I ." - " 2 - . ",, " . " . " , " 5 , " , ' . . '"" " ' - - - - -, - - -' ' - - ." " - ' - " . " - " - " . '

6. V65

type -FEET" 'ENTER'.

The range minimum and range maximum relate to the full range of

* i, * the expected output of the transducer supplying the data to the PCM

4-1 encoder. These are engineering or real-life units to which the

engineering display will be calibrated to. For example, when the

digital data for this data word is zero, (all bits are 0), the user

should expect to see a certain value on the display which is set up

during the transducer calibration. In this case, a zero reading would

be scaled to -100 feet. Unsigned numbers are assumed to be positive.

If the data words were 16 bits long, the maximum absolute data read

into the system would be 65535 or all bits set high (1). The system

.1 would then be calibrated to give a maximum reading of, in this case,

50000 feet. In no way could the system display values lesser or

* greater than "RANGE MINIMUM" or "RANGE MAXIMUM" respectively. The

absolute readings from the 16 data bits in this example would then be

mapped or scaled to fall within the range high and range low limits and

be presented to the user.

Alarms are set to alert the user if the data is exceeding a preset

value. In this case, the user wants to know when he/she is getting

* close to the ground so "ALAR LOW" was set to 100 feet. In addition,

an "AIARM HIGH" was set to 45000 feet to alert the user when the

aircraft is above a save limit. Alarms are displayed only on the bar

chart display explained later. These useful prompts can tell the user

of imminent aircraft damage due to an altitude of 100 feet or lower

V.. At the bottom of the page are several command prompts. The

"ENTER" keys on the Color Computer is used to jump from one line to the

B-13

n42

next. In addition, the arrow keys are also used to move within a line,

or from one line to another. Pressing the "CLEAR" key brings up the

accept page shown below in figure 72.

The user can either "SAVE" the data just entered to disk and

return to the master menu, "TRY" again to change data just entered, or

"RETURN" to the master menu without saving the data. Data is saved in

the PARAM.DAT file in the record synonymous with the data word number

and in a format explained in appendix A.

Error checking is done throughout to prevent the user from

entering data which would bomb the system at a later time. For

example, if an alarm were set outside the range limits, the user would

be alerted and returned to the alarm entry position on the add data

* word page. Once saved, the user will be placed back in the master menu

" L J / tp a g e .

The "E)DIT DATA WRD" option allows the user to edit a previously

S)AVE DATA WORD # 1
T)RY AGAIN

,. R)ETURN TO MENU

WHICH ONE ->?

Figure 72. Save Page

B-14

SL

defined parameter. When this option is selected, the user is asked

which data word he/she wishes to edit. At this point, a number will

bring in the specified data word to a page exactly like the add page

described above. The user can then make changes to the parameter entry

and save as before. Several otions are available at this point other

than editing a data word. These options are "EXIT" and "LIST".

"EXIT" returns the user to the master menu. "LIST" presents a

display shown below in figure 74 which is a summary of all the

parameters entered in the system. Since only one parameter was

entered, only one will be listed. This "LIST" comnand is exactly the

same as the "L)IST" function on the master menu with the exception that

pressing a number will bring up that data word into the edit data word

page. If the "LIST" function is brought up from the master menu,

AI. pressing a number will only return the user to the master menu as the

system does not know what to do with it, edit, delete, insert or

whatever?.

Listing a data base helps the user get his/her bearings if the

data word number for a particular parameter can't be remembered. It is

also very useful in checking to see if all parameters are entered

correctly. Of course, the characteristics of the parameters are not

displayed but at least its position in the data stream can be verified.

The user has three options from the listing page, all of which are

effective when called from EDIT. Pressing a number will bring the

selected parameter into the edit parameter part of the program. The

user can edit at will and save as mentioned above. A carriage return,

or "ENTER" key on the Color Computer, will continue the listing if nore

B-15

ENTER DATA WORD TO EDIT ->?

PRESS L TO LIST, E TO EXIT

0 Figure 73. Command prompts from EDIT function

DATA WORD LISTING OF 1 RECORDS

WORD # NAME PAtM

1 ALTITUD 4

NUMBERSEL, CR=CNT, E=EXIT ?

Figure 74. LISTING DISPLAY

B-16

,S

n .

than ten data words are entered into the system. The listing displays

only ten lines at a time to allow the user time to see them. Pressing

the "E" key exits the listing and returns the user to the master menu.

The "I)NSERT DATA WORD" option allows the user to insert data word

specifications between other data words. This feature is very useful

if changes to the parameter list or sequence of the data word order

have been made for some reason. Selecting this function brings up a

user prompt page similar to that which was brought up if the "EDIT DATA

WORD" were selected. The user has the same options, "ENTER" a data

word number, "LIST", or "EXIT". If a data word number is entered, the

* •insert data word page will be displayed. This page is exactly the same

as the add data word page except for the title. The new data word will

C . be inserted before the number selected by the user. The user can abort

at any time but if he/she chooses the "SAVE" option, the data base will

be re-ordered to reflect the inserted word. This operation is entirely

disk based so for large data bases, the time to complete the operation

could take up to 15 minutes. For this reason, the user is continually

advised of the disk operations performed during the operation. He/she

cannot abort once the operation is underway.

0 The "D)ELETE DATA WORD" option allows the user to delete a data

word. The file is then re-arranged to assure sequential data word

numbers. This feature is exactly the same as the "INSERT DATA WORD"

option except that the user is shown the data word he/she has chosen in

detail on the same page format as the add or edit data word page. At

this time, the user is re-asked if the data word is to be deleted. If

*" yes is chosen, the file is re-arranged in the same process as the

B-1 7

* "INSERT" option.

The "L)IST PARAMETER TABLE" option does exactly the same function

as the "LIST" option in in the edit, insert, and delete modules. There

is one exception and that is if a data word is selected from the

listing, the program returns to the master menu instead of displaying

the selected word. This option is intended to be used to double check

all data entries before moving on to the "DISPLAY FORMAT" option from

the MAIN program.

K The final option is "Q)UIT". Calling this function returns the

user to the MAIN module and allows him to call other programs in the

* system.

-. Defining Display Pages

Once all of the desired parameters are set up the next step is to

define which of them are to be displayed and in which order. Any

combination of up to ten parameters may be displayed at one time. The

combination is called a display page. Up to 50 display pages can be

entered into the data base at one time. To define these pages, press

"D", "D)ISPLAY FORMATS", from the main master menu. The display

definition page shown in figure 76 will be presented with 7 options.

To add a display page definition, press "A" then 'ENTER', figure

77 will be displayed and the cursor will be placed under the DW# for

data word prorpt near the top left of the page. To add the first

parameter, just type in its data word number and 'ENTER'. The program

will look up the data word and present the parameter number, name, and

* default display type. Pressing any key except the 'ENTER' key will

B-18

• toggle between the different allowable display types. Display types

can be of five types: DECimal, HEXadecimal, OCTal, BINary, or SWItch.

.', Pressing the 'ENTER' will assign the display type shown and step to the

next line. The first four types are self explanatory but the SWItch

type is a new feature. SWItch simply tells the user if the data is

non-zero, or zero. If it is zero, the "X)ECUTE" display will show the

data as "OFF". If it is non-zero, it will show "ON". Designed to be

used as event markers for discrete actions such whether a system is

turned on or is receiving a signal etc.

There are a few special features which make the display more

useful when presented using the "X)ECUTE DISPLAY PAGE" function from

main master menu. If two or more entries of the same parameter are

entered on sequential lines, the data will be displayed during

"X)ECUTE" as follows. If the data types are the same as well as the

data word number, sequential frame values will be displayed. For

* example, to see 5 sequential frame values of data word 1, enter 5 lines

of data word number 1 as shown in figure 77 positions 1 thru 5. If the

data types are different, then the displayed values will be of the same

frame but in the display types indicated. Lines 6 and 7 will show the

same frame of "AIRSPED" in both decimal and hexadecimal. The decimal

value will be scaled according to the minimum and maxinum range of the

parameter entered during the parameter setup procedure. The

hexadecimal value will be the actual value of the data without scaling.

In this way,k the user can check transducer calibrations in any format

S- desired.

" When finished describing the display page, press the "CLEAR" key

B-19

S%

"',

* DISPLAY DEFINITION PAGE *

A)DD NEW DISPLAY PAGE
E)DIT DISPLAY PAGE

I)NSERT DISPLAY PAGE
D)ELETE DISPLAY PAGE

L)IST CURRENT DISPLAY PAGES
P)ARAMETER LISTING

Q)UIT

WHICH ONE->?

Figure 75. DSETUP MASTER MENU

ADDING DISPLAY PAGE # 2

- POS DW# PAR NAME DISP

1 1 4 ALTITUD DEC
2 1 4 ALTITUD DEC

3 1 4 ALTITUD DEC
4 1 4 ALTITJD DEC

* 5 1 4 ALTITUD DEC
6 2 5 AIRSPED DEC
7 2 5 AIRSPED HEX

4' 8 3 6 CAB ALT DEC
9 4 7 CAB TEM DEC

10 10 25 OAT DECS " ********** **********************

1 ENTER=NEXT CLEAR=ACCEPT SP--TOG

Figure 76. ADD/EDIT DISPLAY PAGE

B-20

- -7

and the same exit menu is displayed as in the parameter definition

,. procedure.

To edit a previously entered display page, select the "E)DITvi>
DISPLAY PAGE" option from the master menu by pressing "E", then

'ENTER'. This option is handled exactly like the "E)DIT" option from

the parameter setup procedure before except that choosing the "L)IST"

option will list the display page data base instead of the data word

data base. See figures 78 and 79 below.

Both "I)NSERT DISPLAY PAGE" and "D)ELETE DISPLAY PAGE" functions

perform exactly the same way as for data word insertion and delete

functions explained earlier.

Selecting "L)IST DISPLAY PAGES" from the master menu will bring up

the display page listing page shown in figure i8. The display shows a

n olisting of 12 pages which were entered as an example. Because of the

Color Computer display is only 32 columns, the listing is rather busy.

Along the top, the listing shows how many pages are defined in the

Ssystem. In this case there are 12 pages, the first ten are shown in

the listing. If the "ENTER" key is pressed, the last two pages will be

presented as shown in figure 79. The line between the asterisks shows

41 the position number of the ten entries per page. The left column shows

the page number with the data word numbers on that page across the

line. This format allows the user to see what data words will be

* .displayed when a particular page is displayed in EXECUTE. The user can

->2 bring a page into edit by simply typing its number so long as it is

shown on the catalog page. Pressing "ENTER" will bring up the next ten

pages, if there are ten more. This cycling will continue at the users

B-21

...... -.:-.

-. '..._- . -.-- ~-

L -1- .- v

CATALOG LISTING OF 12 PAGES

PG!1112! 13!! 4! 15! !6! 17! !8! !9!110

1 1 1 1 1 1 2 2 3 4 10
2 11 12 13 14 15 16 17 18 19 20
3 21 22 23 24 25 26 27 28 29 30
4 31 31 31 31 31 31 31 31 31 31
5 32 32 32 32 32 33 33 33 33 33
6 34 35 36 37 38 39 40 41 42 43

S711 15 17 19 23 35 43 44 45 46
89 9 9 9 9 9 9 9 9 9
9 50 51 52 53 54 55 56 57 58 59
1060 61 62 63 64 65 66 67 68 69

NUMBER=SEL, ENTER=CONT, E=EXIT ?

Figure 77. DISPLAY PAGE LISTING

'

CATALOG LISTING OF 12 PAGES

PGI! !2!!3!!4!!5!!6!!7! !8!!9!!10

111 1 1 1 1 2 2 3 4 10

1211 12 13 14 15 16 17 18 19 20

:iNUMBER=SEL, ENTER=CONT, E=EXIT ?

)I. Figure 78. DISPLAY PAGE LISTING cont

B

i'I

...

AD-Ai6; 035 REAL-TIME FLIGHT TEST PCH DATA ACQUISITION NONITOR(U) V
A IR FORCE INST OF TECH IRIGHT-PATTERSON AFS OW SCHOOL
OF ENGINEERING J R CROASOALE SEP 85 AFIT/GE/ENG'B5S-i

U NCLEDF /G 7/2 L

MEEEEENEEEEE

• 1.0 13|g.... -

a2=2

14.o Ill11 .0

1.2 11111 IIIII1 ______

MItROCOPY RKSOLUI MI N tSi C NA'I

I
",

R,

: :w
w.::4?4:

*.

-;-*4

prompt until the entire catalog is displayed. The user can elect to

quit using the "EXIT" option. When entered from the "EDIT" option on

the master menu page, the catalog will return back to the "EDIT" option

if exited.

The "P)ARAMETER LISTING" option can be used to peruse the

parameter data base if desired to display previously entered parameter

data. This option is exactly the same as the "L)IST DATA WORDS" except

that data cannot be recalled into the system. It is used for

informational purposes only.

To terminate entering display page definitions, press "Q" from the

master menu and the MAIN master menu will appear.

Once all desired parameter and display information is programmed

into the data base, the final step is the "X)ECUTE TO BEGIN PCM

MONITOR" option. Press "X", then 'ENTER' to select this option.

Displaying The Data

This option is the workhorse of the system. It is responsible for

displaying the data set up in previous procedures and presenting it in

user readable formats. It also performs the function of providing

system status feedback to the user. Calling this option will first

prompt the user to set the order switch to either MSB or LSB depending

on what was input to the system during the frame specification setup

procedure. After a few seconds, the execute master menu will be

displayed. This menu is shown in figure 80. Be sure that the PCM test

system or encoder is generating the type of PCM set up in the frame

specification procedure.

B-23

* PCM DISPLAY MODULE *

S)TAT JS PAGE
B)EGIN DISPLAY PROCESSING
Q)UIT

WHICH ONE->?

Figure 79. EXECUTE MASTER MENU

**** ** ******* **** ** ******* *** ***

. . * STATUS PAGE, KEY TO EXIT *

USER CALCULATED
BITS/WORD 10

RDS/FRAME 30
PCM TY(PE ALTOJ NRZ
BIT RATE 25.5 25.9

PCM ORDER MSB
PCM POLARITY NORMAL
SYNC ERRO)RS 10
PCM HEALTH --- 3

- SYNC WORDS 1- 1111101011
INVERSE 2- 1100110011

IF IN SYNC 3- 0100000000

a Figure 80. STATUS DISPLAY PAGE

B-.

.' B-24

-S -' .4 4. - -v . ,,4 '. '- .- -,-. -', '.- . "'- ""-"-".." ."-","-."-v .' ' '-- -'

-~. Calling the "S)TATUS" option brings up the status display page

shown in figure 81. This page is for display only, no irput is

possible. Pressing any key returns the user to the master menu. Much

of the display is the frame specification entered earlier. The two

columns, "USER" and "CALCULATED" display the data entered by the user,

4 and calculated by the system respectively. Where items are not

1 calculated, the display is filled with dashes. If the sample data was

entered correctly during the frame setup procedure, it should be the

* .-. , same as that in figure 81. The four types of information returned by

- the PCM processor are shown in the "CALCULATED" column. These values

will be returned whether the user selects any of the automatic features

-{ or not. In the sample, 25.5Khz was selected as the manual bit rate and

the system calculated 25.9Khz. If there is too much difference between

these two rates in the actual system, check the frequency of the PCM

encoder or use Auto calculation mode. The main reason for allowing

manual entry of the PCM signal rate is to determine if the PCM signal

is erratic or stable. If the system has trouble locking on to the

signal, this may be an indication of why.

"PCM ORDER" and "POLARITY" are user set and not calculated. "SYNC

ERRORS" are generated once sync is established and then broken. If no

signal is present, then no sync errors will occur since the signal was

-. never synchronized. If however, a good signal was obtained, the error

counter in the system is set and incremented each time a break lock is

encountered. The only way to reset it is to exit the EXECUTE program

and re-enter.

-PCM HEALTH" is a generic term which tells the user how stable the

8-25

S.;.

. . . . * .

signal is. This calculation is explained in the PCM Processor software

section but results in a number from 0 to 10 with 0 being a good stable

signal and 10 being rather erratic. An absolute value cannot be

obtained from this except that it, along with the sync error counter

above, tells the user if the signal is erratic or stable. The health

calculation is actually the number of counts that have to be added to

the minimum count to keep the signal synchronized.

The last three lines on the status page are for the sync words.

They are repeated here for user information. The word "SYNC" in "SYNC

WORDS" will be written in inverse video if the PCM stream is

*i synchronized. If it isn't, it will be displayed in normal video. The

difference between inverse and normal depends on the type of display

ENGINEERING DISPLAY PAGE 1
..-. ****** ** * **** * *** *** ****

DW# NAME VALUE UNITS TY
. ** ********** **** * **** **** ***** **

1 ALTITLJD 13429.41 FEET D
1 ALTITUD 13433.23 FEET D <-
1 ALTITUD 13440.44 FEET D
1 ALTITUD 13445.94 FEET D
1 ALTITUD 13452.22 FEET D
2 AIRSPED 250.4 KNOTS D
2 AIRSPED 00FE HEX H
3 CAB ALT 8018 FEZr D
4 CAB TEM 78 DEG F D
10 OAT -22.5 DEG C D

.'-I. <> NUM, T)YP, B)AR, P)LT, E)XIT

Figure 81. ENGINEERING DISPLAY PAGE

B-26

I b

- ---

being used. Most video monitors display white characters on a black

background so inverse is black characters on a white background. If a

television set is used, the display is black on a white background so

inverse is white on black. In all cases, the word "SYNC" will be

displayed opposite from all other words on the screen if the signal is

in sync.

After returning the master menu, the only other option remaining

except quitting, is to display the data. Selecting the "B)EGIN DISPLAY

PROCESSING" option brings up the engineering display page shown in

figure 82.

When the engineering data display page appears, you are asked to

input a page number. Select "l" then 'ENTER' and the system will bring

in the display page 1 information entered earlier. The sample should

show the page defined earlier. At this point, the data is being

displayed and continually updated as fast as the display processor

program can run. The data is updated from top to bottom on-the-fly.

The format type for each data word is shown in the far right column.

When the value is displayed in decimal, the data is scaled and

offset to engineering data reflecting the minimum and maximum range

described during the parameter setup procedure. At any other setting,

such as HEX for example, the data is presented in raw data as it is

read in from the PCM processor. The units column shows the selected

conversion type if other then decimal to alert the user that the data

is not presented in engineering units.

To change the displayed conversion type, press the "T)yp" function

shown at the bottom of the page. The data types will toggle for the

B-27

A

- 5•. - l l i i i Hi i i I i. . i . .. | -

selected line. The selected line is shown by the inverse character in

the far right column under the heading TY for TYPE. The example shows

this as an arrow because typewriters can't type in inverse. The type

will change from "D" to "H", "0", "B", and "S", and then revert back to

"D". All the time, the program continues to update the data values in

whatever type is selected. To change the selected line, use the arrow

keys to scroll the inverse select symbol.

Pressing the right or left arrow brings in the next or previous

page for display. Pressing a number puts the user in the page number

entry field at the top of the page so he/she can manually select a page

for display. During the process of bringing in new pages, data update

is temporarily suspended but begins automatically when the page is

displayed again.

Two other very important functions of the EXECUTE program are the

bar graph and "P)LT" (plot) functions. Selecting the "B)AR" function

displays the page in bar graph format. See Figure 83. Although there

is no user interaction in the bar graph display page some of the

features are described.

The top line of the display shows which page is being displayed.

In this example it is display page 1 consisting of the same parameters

shown on engineering page 1. In fact, whatever page is shown on the

engineering display page will be shown on the bar graph page. The only

way to get to the bar graph is through the engineering page. This

holds true for the plot page shown next. The vertical bars are the

alarm limits in percent of full scale which were set up during the

parameter setup procedure. AT the left side of each bar is a mark

B-28

1. A IS 1

-,.

BAR GRAPH DISPLAY FOR PAGE 1
******* *** ***** ***** * ****** **** *

% 65 65 65 65 65 69 22 32 65 12
90* *
80* * * * * * * * * *
70* * * * * * ** ** * **
!6*** ** **** , , * * •

I. 50* * * * * * * * * * *
40* * * * * * * * * * *
30* * * * * * * * *

S20* * * * * * * * * *0* * ***
0* *

111 1 1 2 2 3 4 1

DW# 0

Figure 82. BAR GRAPH DISPLAY

- PLOT FOR DATA W3RD # 1 ALTITUD
** ** **** **** *** ** **** *** **** **

90*
80*
70*
60*
50* *** *z[z 0**** ****** ******* * *

30* **
20*

* 10*
0*

p TIME= 305.14MS C)ONT, T)RACE
E)XIr, <> To SCROLL, PG 1 OF 34

Figure 83. PLOT DISPLAY PAGE

,.-. . -<-.

B-29

o

,...... I

,, , .- . ., , , . ., . , , . .,,. .,, ,..., .. , .. ., . ..- . , ,, ", 'b " " ., , ,,.... .',',,, , .I .1 ,' P..' e,.", ,, .

which shows a rough value in percent of the data word number shown at

the bottom of the page. Notice that the value for data word #3 is

- above the alarm limits. In this case, the user can elect to monitor

only that data word using the P)LOT function described below. Above

the bar at the top of the page is the actual percent value of the data

word.

After any key is pressed, the user is returned to the engineering

display page. From here, he/she can elect to see a plot of the

selected value. The selected value is shown in inverse at the right

hand column of the page, the TY colum. Selecting "P)LT" puts the user

Son the page shown in figure 84. This page is similar to the bar graph

page however only one data word is plotted at a time. Each point

represents one frame. The intent of this feature is to look at a

* particular data word in detail for intermittent spikes etc. The sample

• "rate, or time between samples as it is used here, is a function of the

data rate and words per frame and is shown at the bottom of the page in

microseconds.

There are two user selected modes of operation in plot: "C)ONT"

for continuous, and "T)RACE". In "C)ONT" mode, the plot routine scans

* each frame in the data buffer for the particular data word being

plotted. It keeps updating the value in a continual basis until halted

by the user. In this way, the plot is kept updated with the latest

'- data input to the system. Because the display processor is slow

compared to the PCM processor due to the BASIC language, a particular

. frame could be updated before the display processor displays it and

data could be lost. To solve this problem, the "T)RACE" feature was

B-30

L1S

added.

"T)RACE" commands the PCM processor to fill the memory buffer with

one and only one data word. When the buffer is full, it stops and

waits for the user to begin another trace. Up to 1000 data words can

be stored in the memory buffer at one time so up to 1000 frames will be

captured. Each frame will be continuous with no data loss. The user

can scan the buffer 29 frames at a time by using the left and right

arrows. This equates to 1000/29 or 34 pages of information. By

pressing "C)ONT", the user will be returned to the "C)ONT" function.

By pressing "T)RACE", a new trace will begin. Pressing "E)XIT" returns

* the user to the engineering display. While scrolling through the 34

pages of trace data. If a spike is present on the plot, its time can

be roughly measured by counting the sample times. This will have to be

, done manually at this time but an automatic time measurement system

using cursors could added later. There is a problem and that is if the

data rate is very slow and the number of words per frame is very large,

the time to fill the buffer will be quite long. For example, if the

words were 16 bits wide, the number of words per frame were 200, and

the bit rate was 1Khz, it would take 3.2 seconds per frame which

* equates to 53.33 minutes. For this reason, the "T)RACE" algorithm will

display a page when it is ready and not wait until the memory is full.

In fact, the user can see the data being plotted as it is read in if

*- he/she keeps scrolling fast enough. A more reasonable set of data such

as 10 bits per word, and 30 words per frame at 25 Khz would yield one

frame per .3 sec or 5 minutes to fill memory. This is not a limitation

* of the PCM monitor system, only the data rates and PCM specifications.

V B-31

= .1*,

-S..4" ''

Manual Reset

The manual reset function is performed by depressing the reset

button on the PCM processor card. This function should be used if for

some reason the system hangs or for test purposes. Since the PCM

-processor card program is stored in ROM but executed in RAM, a memory

fault may cause the system to malfunction. Manually resetting the

system causes a reload of the RAM. There is no other practical reason

•. for resetting the system manually. The display processor must be

re-executed once the PC4 processor has been reset.

Exiting The System

To exit the PCM monitor there are several methods. The best

*, - method is to "EXIT" the program running and then "QUIT" from the MAIN

master menu. A quicker way is to open the disk drive door, remove the

disk and shut off the Color Computer. Since all data is stored on

disk, power failures or accidentally pressing the 'BREAK' or resetting

the computer will not harm it unless, of course, something happens

during the time when the system is storing data to disk. If that

* happens, some data may be lost but most should still be intact.

B-32

0 %°

I. > - '

References Used in This Manual

1. Croasdale, John R. Real-Time Flight Test PCM Acquisition Monitor.
AFIT Thesis 85S-1.

2. Getting Started With Extended color Basic, Tandy corporation,
FortWorth, Texas, 1984.

3. Radio Shack TRS80 Color Computer Disk System Owner's Manual and
Programming Guide, Tandy corporation, FortWorth, Texas, 1981.

'%B3

I'.'-B-33

S!:

--- M 77

Appendix C

REAL-TIME FLIGHT TEST PCM

- DATA ACQUISITION MONITOR

PROGRAM LISTINGS

BY

JOHN R. CROASDALE, LTC, USAF

FILE: PCMMONIT:CROAS HEWLETT-PACKARD: 68000 Assembler
Mon, 16 Sep 1985, 2:47 PAGE 1

LOCATION OBJECT CODE LINE SOURCE LINE

1 "68000"
2 ORG O000H

4* *
5 * PCM MONITOR PROGRAM *
6 * VERSION 1.0, SEPT 85 *
7 * THIS PROGRAM IS INSTALLED INTO READ ONLY MEMORY (ROM) *

8 * LOCATED INT HE PCM MONITOR CARD. ITS PRIME FUNCTION IS *
9 * TO CONTROL THE PCM MONITOR CIRCUITRY AND TRANSFER THE PCM *

10 * DATA FROM THE INPUT REGISTER TO THE MEMORY BUFFER START- *
11 * ING AT $COO. THIS BUFFER. IS 1K WORDS IN LENGTH BUT THE *

12 * MC68000 ADDRESSES BYTES ONLY, THEREFORE THE ADDRESS RANGE *
13 * OF THIS PROGRAM IS FROM $C000 TO SC7FF (2K BYTES). *
14 * THE PCM MONITOR IS DESIGNED TO ACCESS WORDS ONLY THERE- *
15 * FOR IT IS IMPERATIVE NOT TO TRY TO READ OR WRITE TO ODD *
16 * ADDRESSES. UNPREDICTABLE RESULTS MAY OCCUR.
17 *
18 * BECAUSE OF THE SPEED REQUIRED BY THE SYSTEM, MAXIMUM CON- *
19 * SIDERATION IS GIVEN TO THE TIME UTILIZED BY EACH INSTRUC- *
20 * TION. MOST OF THE TIME CRITICAL FUNCTIONS THEREFORE USE *
21 * REGISTERS, DO-D7, AND AO-A3, AS MUCH AS POSSIBLE. IN
22 * ADDITION, THE ZERO PAGE IS USED TO AVOID UNNECESSARY

0 23 * MEMORY ACCESSES. ZERO PAGE IS FROM $0000-$TFFF AND FROM *
24 * $FFFF8000-SFFFFFFFF.

c: . 25 *f

~27

28 * EQUATES
29

(FFFFCTFE> 30 VALID EQU OFFFFC7FEH COMMAND FLAG TO PROCESSOR
(FFFFCTFC> 31 USERATE EQU OFFFFCTFCH USER INPUT PCM RATE, O-CAL
(FFFFCTFA> 32 PCMTYPE EQU OFFFFCTFAH USER INPUT PCM TYPE, "C"-CAL
<FFFFCTF8> 33 BITPWRD EQU OFFFFC7F8H USER INPUT FOR LENGTH OF WORD
<FFFFC'F6> 34 FRAMLEN EQU OFFFFC7F6H USER INPUT FOR WORDS/FRAME

" FFFFCTF4> 35 FRASYN3 EQU OFFFFCTF4H LAST FRAME SYNC WORD
'FFFFC7F2> 36 FRASYN2 EQU OFFFFCIF2H SECOND FRAME SYNC WORD
<FFFFC7FO> 37 FRASYN1 EQU OFFFFC7FOH FIRST FRAME SYNC WORD
<FFFFCTEE> 38 ERRCNT EQU OFFFFCEEH ERROR ACCUMULATOR
<FFFFC7EC> 39 PLARITY EQU OFFFFC7ECH USER INPUT FOR POLARITY "N"-NORM

.- <FFFFC7EA> 40 FRPBUFF EQU OFFFFCTEAH USER INPUT FOR FRAMES PER BUFFER
<FFFFC7E8> 41 CALTYPE EQU OFFFFCTEBH RETURNED CALCULATED PCM TYPE
-FFFFC7E6> 42 CALRATE EQU OFFFFCTE6H RETURNED CALCULATED PCM RATE
<FFFFCTE4> 43 CORRECT EQU OFFFFC7E4H RETURNED VALUE OF PCM CORRECTION

. <FFFFCTE2> 44 STATUS EQU OFFFFCTE2H RETURNED STATUS, O-NOT IN SYNC
<FFFFC7EO> 45 DATADD EQU OFFFFCTEOH ADD POINTER TO BUFFER

46 *
"47 *

48 * SYSTEM FUNCTION ADDRESSES

49 f

- d - ' . r -" - . ". " . .-

-2-

<2000> 50 RATECNT EQU 2000H BIT TIMER INPUT, READ ONLY
<4000> 51 HLFCNTR EQU 4000H HALF COUNTER OUTPUT
<6000> 52 ONECNTR EQU 6000H ONE COUNTER OUTPUT

<FFFF8000> 53 SETTYPE EQU OFFFF8000H WRITE SETS PCM, READ AT BIT RATE
<FFFFAO00> 54 WORDLEN EQU OFFFFAOOOH WRITE ST WD CNTR, RD @ WD RATE
<FFFFCOOO> 55 BUFFER EQU OFFFFCOOOH START OF BUFFER ADDRESS

56 *
58 * OTHER EQUATES
59

<FFFFF800> 60 RSTART EQU OFFFFFBOOH START OF RAM PROGRAM ADDRESS
61 *
62 *
63 * START OF PROGRAM
64 *
65 * FIRST SET STACK AND PROGRAM COUNTER
66*

000000 FFFF 67 DC.W OFFFFH SET STACK TO TOP OF RAM
000002 FFFE 68 DC.W OFFFEH
000004 0000 69 DC.W 0000 SET PROGRAM COUNTER
000006 0008 70 DC.W 0008

71 * NEXT MOVE ROM IMAGE OF PROGRAM INTO RAM
000008 307C 0018 72 BEGIN MOVE.W #STARTAO
OOOOOC 327C F800 73 MOVE SRSTART,A1
000010 3208 74 LOOPI MOVE [AO]+,[A1]+
000012 BOFC 1000 75 CMP #1000HAO MOVE 2048 BYTES
000016 65F8 76 BCS.S LOOPI
000018 31FC FFFF 77 START MOVE #-1,VALID FIRST INITIALIZE COUNTERS ETC
00001E 4278 C7E4 78 CLR CORRECT
000022 4278 C7EE 79 CLR ERRCNT
000026 4278 C7E2 80 USRECAL CLR STATUS
00002A 4278 C7E6 81 CLR CALRATE
00002E 4A78 C7FE 82 WAIT1 TST VALID WAIT FOR USER TO START
000032 6BFA 83 BMI.S WAITi NOT READY YET SO WAIT
000034 4A78 C7FE 84 WAIT2 TST VALID USER RECALL ENTRY
000038 6BEC 85 BMI.S USRECAL
00003A 6176 86 DORATE BSR.S RATE CALCULATE PCM RATE
00003C 0C40 FFO0 87 CMP *OFFOOH,DO IS THERE A SIGNAL?
000040 64F2 88 BCC.S WAIT2 NO, THEN KEEP TRYING
000042 31C0 C7E6 89 MOVE DO,CALRATE TELL USER WHAT THE RATE IS
000046 4A78 C7FC 90 TST USERATE USER INPUT RATE?
00004A 6704 91 BEQ.S CONTi NO, THEN USE OURS
00004C 3038 C7FC 92 MOVE USERATE,D0 YES, THEN USE HIS
000050 D078 C7E4 93 CONT1 ADD CORRECTDO ADD CORRECTION IF ANY
000054 31C0 6000 94 MOVE DO,ONECNTR SET ONE COUNTER
000058 E248 95 LSR #1,DO DIVIDE BY 2

00005A 31C0 4000 96 MOVE DOHLFCNTR AND SET HALF COUNTER
00005E 616A 97 BSR.S TYPE CALCULATE PCM TYPE
000060 31C1 C7E8 98 MOVE DI,CALTYPE TELL USER WHAT WE FOUND
000064 0C78 0042 99 CMP #"B",PCMTYPE A USER FORCED TYPE?
0 00006A 6704 100 BEQ.S CONT2 NO, THEN USE OURS

- 00006C 3238 C7FA 101 MOVE PCMTYPE,D1 YES, USE HIS
000070 0A41 FFFF 102 CONT2 EOR #-1,D1 TRICk TO MAKE TYPE EVEN OR ODD
000074 E449 103 LSR #2,D1
000076 31C1 8000 104 MOVE D1,SETTYPE SET THE TYPE

2

0Z.A7003

-3-

00007A 3838 C7F6 105 MOVE FRAMLEN,D4 SET UP REGISTERS FOR READ ROUTINE
00007E 3A38 C7F4 106 MOVE FRASYN3,05
000082 3C38 C7F2 107 MOVE FRASYN2,D6
000086 3E38 C7FO 108 MOVE FRASYN1,D7
O000BA 307C 8000 109 MOVE #SETTYPE,AO THIS ADDRESS READS AT BIT RATE
O0OOBE 327C AO00 110 MOVE #WORDLEN,A1 THIS ADDRESS READS AT WRD RATE
000092 6164 111 BSR.S READ BEGIN READING DATA
000094 4A78 C7FE 112 TST VALID IS IT A USER RECALL?
000098 6B00 FF6E 113 BMI BEGIN YES THEN START OVER
00009C 5278 C7EE 114 ADDQ #1,ERRCNT INCREMENT ERROR COUNTER
OOOOAO 5278 C7E4 115 ADOQ #1,CORRECT ALSO CORRECTION
O000A4 0C78 O00A 116 CMP 10,CORRECT MAX CORRECTION IS 9
OOOOAA 658E 117 BCS.S DORATE TRY AGAIN
O0O0AC 4278 C7E4 118 CLR CORRECT
0000BO 6088 119 BRA.S DORATE

120 *
121 *
122 * RATE ROUTINE CALCULATES PCM RATE BY GETTING MINIMUM COUNT
123 * FROM BIT TIMER
124 *

000082 303C FFFF 125 RATE MOVE #-1,D0 SET ACCUMULATOR TO MAX
000086 3400 126 MOVE DO,D2 GET MINIMUM COUNT IN 00

l 000088 3238 2000 127 LOOPR MOVE RATECNT,Di
OO0OBC 6240 128 CMP DO,Dl IS DO MINIMUM?
OOOBE 6402 129 BCC.S CONTRI NO THEN KEEP TRYING]
DODOCO 3001 130 MOVE D1,DO YES, THEN MAKE IT SO
0000C2 5342 131 CONTRI SUBQ #1,D2 DECREMENT COUNTER
0000C4 66F2 132 BNE.S LOOPR KEEP LOOKING IF NOT DONE

--- 0000C6 E248 133 LSR #1,DO CONVERT TO BIT TIME
0000C8 4E75 134 RTS AND RETURN

135*
136 *
137 * TYPE ROUTINE CALCULATES PCM TYPE BY COMPARING RATE WITH
138 * TWICE THE MAX COUNT. IF LESS THEN MUST BE 61-PHASE
139 *

OOOCA 4278 8000 140 TYPE CLR SETTYPE SET NRZ MODE
ODOOCE 6112 141 BSR.S MAXCNT GET MAXIUM COUNT
OOO0DO 323C 0042 142 MOVE #"B",D1 PRIME PUMP FOR 81-PHASE
0000D4 E448 143 LSR #2,DO GET MAX BIT TIME

* -144 *
000006 8078 C7E6 145 CMP CALRATE,DO IS IT LESS THAN HALF?
OGOODA 6504 146 BCS.S CONTT YES, THEN 61_-PHASE

* OOOODC 323C 004E 147 MOVE #"N",D1 NO, THEN SELECT NRZ
OOOOEO 4E75 148 CONTT RTS

. 000E2 4240 149 MAXCNT CLR DO SET ACCUMULATOR TO MIN
O000E4 343C FFFF 150 MOVE #-I,D2
O000E8 3238 2000 151 LOOPM MOVE RATECNT,DI READ RATE
OGOEC 8240 152 CMP DO,D1 GET MAX COUNT IN DO
OOOOEE 6502 153 BCS.S CONTM
O 000FO 3001 154 MOVE D1,DO
O000F2 5342 155 CONTM SUBO #I,D2
0oooF4 66F2 156 BNE.S LOOPM NOT DONE, THEN CONTINUE
0000F6 4E75 157 RTS
O000F8 4240 158 READ CLR DO CALCULATE MASK, PUT IN DO

3

4-4-

O0O0FA 3238 C7EA 159 MOVE FRPBUFF,D1 DO SO BY SHIFTING X INTO DO
OOOFE 3438 C7F8 160 MOVE BITPWRD,D2 USE D2 AS COUNTER

"," 000102 007C 0010 161 LOOPMA OR *16,SR SET X FLAG IN SR
000106 E350 162 ROXL #1,DO SHIFT IT IN
000108 5342 163 SUBQ #1,D2 ARE ALL BITS SHIFTED IN
00010A 6AF6 164 BPL.S LOOPMA

165 *
166 *
167 * SYNCHRONIZE THE BIT STREAM
168 *

00010C 343C FFFF 169 MOVE #-1,02 USE 02 AS A MAX TRY COUNTER
000110 347C COOO 170 SYNC MOVE #BUFFER,A2 A2 IS BUFFER POINTER
000114 3610 171 SYNC1 MOVE [AOI,D3 READ AT BIT RATE
000116 C640 172 AND DO,03 MASK UNWANTED BITS
000118 8647 173 CMP 07,03 D7 HAS FIRST SYNC WORD
O0011A 57CA FFF8 174 DBEQ D2,SYNC1 CONTINUE FOR 65535 BITS
0011E 6706 175 BEQ.S CONTS1 A MATCH, THEN LOOK FOR MORE
000120 4278 C7E2 176 RTSERR CLR STATUS NO MATCH, NO SYNC
000124 4E75 177 RTS RETURN AS AN ERROR
000126 3288 C7F8 178 CONTS1 MOVE BITPWRD,[A1] START WORD COUNTER
00012A 4A46 179 SYNC2 TST D6 IS THERE A SECOND SYNC?
00012C 6714 180 BEQ.S READATA NO SO BEGIN READING DATA
0 00012E 3611 181 MOVE [All,D3 YES SO READ IT AT WORD RATE
000130 C640 182 AND DO,D3 MASK IT
000132 8646 183 CMP 06,03 IS IT THERE?
000134 66EA 184 BNE.S RTSERR NO, THEN ERROR
000136 4A45 185 SYNC3 TST D5 IS THERE A THIRD SYNC?
000138 6708 186 BEQ.S READATA NO, SO READ DATA
0 O0013A 3611 187 MOVE [A1],D3 THIRD SYNC?
00013C C640 188 AND DO,D3
0 "0013E 8645 189 CMP 05,03

. 000140 66DE 190 BNE.S RTSERR NO, THEN ERROR
000142 31FC FFFF 191 READATA MOVE #-I,STATUS TELL USER WE'RE IN SYNC
000148 4A78 C7FE 192 TST VALID IS USER RECALLING US?
00014C 6BD2 193 BMI.S RTSERR YES, THEN RETURN
00014E 662E 194 BNE.S TRACE IF NOT 0 THEN MUST BE TRACE
000150 3838 C7F6 195 CONTOUS MOVE FRAMLEN,D4 USE 04 AS WORD COUNTER
000154 3491 196 LOOPRI MOVE [A1],[A2] READ AND STORE RAW DATA
000156 0C78 004E 197 CMP #"N",PLARITY NORMAL POLARITY'
00015C 6704 198 BEQ.S CONTRDI YES SO DON'T INVERT
00015E 0A52 FFFF 199 EOR #-1,[A2] NO, THEN MUST BE INVERSE
000162 CISA 200 CONTROl AND DO,[A2]. MASK DATA AND INCREMENT PNTR
000164 5344 201 SUBO 41,04 WORD-WORD-1
000166 66EC 202 BNE.S LOOPRI FRAME NOT DONE SO CONTINUE
000168 3611 203 MOVE [A1],D3 FRAME DONE SO LOOK FOR SYNCI
00016A C640 204 AND DO,D3 MASK OF COURSE]
00016C B647 205 CMP D7,D3 GOOD SYNC?
00016E 6680 206 BNE.S RTSERR NO, SO RETURN WITH ERROR

- 000170 5341 207 SUBQ #1,D1 IS THIS THE LAST FRAME?
000172 6686 208 BNE.S SYNC2 NO SO CONTINUE 3YNC SEARCH
000174 347C CO0O 209 MOVE *BUFFERA2 YES, THEN RESEt qnINTERS]
000178 3238 C7EA 210 MOVE FRPBUFFD1
00017C 60AC 211 BRA.S SYNC2 AND CONTINUE SYNC SEARCH

212 *

4

0+ .

.K- ...+.+ . .+

213 *

. 214 * TRACE MODE FILLS BUFFER WITH ONE DATA WORD, THE ONE STORED
215 * IN THE VALID FLAG
216*

00017E 383C 0001 217 TRACE MOVE #1,D4 USE D4 AS WORD POINTER
000182 3611 218 LOOPTI MOVE [AI],D3 READ DATA WORD
000184 8878 C7FE 219 CMP VALID,D4 ARE WE POINTING TO RIGHT WORD?
000188 6704 220 8EQ.S CONTTI YES, TO STORE IT
00018A 5244 221 ADDQ #1,D4 INCREMENT POINTER AND
00018C 60F4 222 BRA.S LOOPTi KEEP LOOKING
00018E 3483 223 CONTTI MOVE D3,[A2] STORE DATA WORD
000190 0C78 004E 224 CMP #"N",PLARITY CHECK POLARITY
000196 6704 225 BEQ.S CONTT2 NORMAL
000198 0A52 FFFF 226 EOR #-1,[A2] INVERSE IT IF NECESSARY
00019C 31CA C7EO 227 CONTT2 MOVE A2,DATADD TELL USER WHERE WE'RE AT
O001AO CISA 228 AND DO,[A2]+ MASK AND INCREMENT
0001A2 B4F8 C7DO 229 CMP BUFFER 07DOH,A2 IS BUFFER FULL
0001A6 641A 230 BCC.S WAIT3 YES, SO WAIT FOR USER
0001A8 343C FFFF 231 MOVE #-1,D2 RESET TRY COUNTER
O001AC 8878 C7F6 232 CMP FRAMLEN,D4 IF DATA WORD IS NOT THE
000160 6600 FF62 233 BNE SYNCI LAST THEN MUST RE-SYNC
000184 3611 234 MOVE [AI],D3 IF IT IS, THEN NOT
000186 C640 235 AND DO,D3 NECESSARY
000188 6647 236 CMP DT,D3 IS FIRST SYNC NEXT
001BA 6600 FF64 237 BNE RTSERR NO, THEN AN ERROR
O001BE 6000 FF6A 238 BRA SYNC2 YES, THEN CONTINUE SYNC SEARCH

239 *
240 *
241 * WAIT LOOP FOR USER TO START ANOTHER TRACE OR STOP
242 *

0001C2 31FC FFFF 243 WAIT3 MOVE #-l,VALID TELL USER WE'RE WAITING
0001C8 4A78 C7FE 244 LOOPWI TST VALID
0001CC 6BFA 245 BMI.S LOOPWI
O001CE 31FC C000 246 MOVE #BUFFER,DATADD READY TO TY AGAIN
0001D4 6000 FF3A 247 BRA SYNC SO RESET AND RE-SYNC

248 END

5

.t,~EDTASM+/01.00.00 PAGE 1

00100 ***
00110* *
00120 * CONVERT *

00130* *
00140 * THIS PROGRAM DOES THREE FUNCTIONS. *
00150 * AFTER READING A NUMBER FROM "INPUT" AND: *
00160 * IF D=I THEN IT DISPLAYS THE NUMBER IN HEX *
00170 * IF D=2 THEN IT DISPLAYS THE NUMBER IN OCTAL *
00180 * IF D=3 THEN IT DISPLAYS THE NUMBER IN BINARY
00190 * IF D<>I, 2, OR 3 THEN IT JUST RETURNS *
00200* *
00210 * THE NUMBER IS DISPLAYED AT ADDRESS "SCREEN" *
00220 * BOTH "INPUT" AND "SCREEN" ARE PASSED TO THE *
00230 * ROUTINE AT LOCATION $600 - $603 AND IN THE D *
00240 * REGISTER USING THE INTCNV ROUTINE FROM BASIC *
00250 * *

00260 ***
7000 00270 ORG $7000 *USR1 IS CALLED FROM 2048e 0600 00280 INPUT EQU $0600 *VARIABLE HIGH ADDRESS (VH)

0602 00290 BPWSTG EQU $0602
0604 00300 TEMP EQU $0604

- B3ED 00310 INTCNV EQU $B3ED *CALL HERE RETURNS INT IN D
A002 00320 COUTI EQU $A002 *INDIRECT CALL OUTPUTS CHAR

00330 *AT CURSOR POSITION IN $88
-. 00340
7000 BD B3ED 00350 START JSR INTCNV
7003 Cl 01 00360 CMPB #$01
7005 27 09 00370 BEQ HEXOUT
7007 Cl 02 00380 CMPB #$02
7009 27 24 00390 BEQ OCTOUT
700B Cl 03 00400 CMPB #$03
700D 27 62 00410 BEQ BINOUT
700F 39 00420 RTS *EXIT IF INVALID CALL

00430 **
00440* *
00450 * HEXIDECIMAL OUT *
00460 * *

00470 * THIS PROGRAM CONVERTS A HEXIDECIMAL NUMBER IN *
00480 * REGISTER D TO A HEX ASCII OUTPUT *
00490 * *
00500 * CORRECT NUMBER OF BITS. UNUSED BITS ARE SET *
00510 ***

7010 EC 9F 0600 00520 HEXOUT LDD [INPUT] *GET DATA
7014 8D 05 00530 BSR PRBYTE *PRINT A IN ASCII
7016 IF 98 00540 TFR B,A
7018 8D 01 00550 BSR PRBYTE
701A 39 00560 RTS *EXIT
701B 34 02 00570 PRBYTE PSHS A *GET FIRST BYTE
701D 44 00580 LSRA

' *r ' 4 , 4 ' ',. ,4 ' ,-', , ,* -,., ,- . ,. .". ,- " , . , . -. -... .-- "- , -, .- '". ,.,'..', ., ,.. ., .',

EDTASM+/01.00.00 PAGE 2

701E 44 00590 LSRA
701F 44 00600 LSRA
7020 44 00610 LSRA
7021 SD 02 00620 BSR PRHEX
7023 35 02 00630 PULS A
7025 84 OF 00640 PRHEX ANDA #$OF *USE LOW NIBBLE ONLY
7027 81 OA 00650 CMPA #$OA *NUMBER OR CHAR?
7029 25 6D 00660 BCS COUT

* 702B 8B 07 00670 ADDA #$07 *SKIP UNWANTED CHARACTERS
702D 20 69 00680 BRA COUT

00690
00700 ***
00710 * *

00720 * OCTAL OUT *

00730 * *
00740 ***

702F EC 9F 0600 00750 OCTOUT LDD [INPUT] *GET DATA
7033 BE 000F 00760 LDX #$OF *OUTPUT 16 BITS, 1ST IS FREE

* 7036 FD 0604 00770 STD TEMP *SAVE FOR LATER
7039 4F 00780 CLRA *ROTATE FIRST BIT INTO A
703A 5F 00790 CLRB *USE B AS LEADING 0 INDICATOR
703B 78 0605 00800 LSL TEMP+I
703E 79 0604 00810 ROL TEMP
7041 4. 00820 ROLA

4 042 27 04 00830 BEG OCONTI *DON'T OUTPUT LEADING 0'S
-.17044 CB 01 00840 ADDB #$01 *MARK B AS NO MORE LEADING 0'S
7046 SD 50 00850 BSR COUT

" 7048 4F 00860 OCONT1 CLRA *GET READY FOR NEXT NIBBLE
7049 SD 10 00870 BSR ROTATE *GET 3 BITS IN A
704B 26 05 00880 BNE OCONT2
704D 5D 00890 TSTB *IF 0 IS IT LEADING?

, 704E 26 02 00900 BNE OCONT2
7050 20 04 00910 BRA OCONT3
7052 CB 01 00920 OCONT2 ADDB #$01 *MARK
7054 BD 42 00930 BSR COUT
7056 30 iD 00940 OCONT3 LEAX -3,X
7058 26 EE 00950 BNE OCONTI *GET NEXT NIBBLE
705A 39 00960 RTS

C 705B 78 0605 00970 ROTATE LSL TEMP+I
* 705E 79 0604 00980 ROL TEMP

7061 49 00990 ROLA
7062 78 0605 01000 LSL TEMP+I
7065 79 0604 01010 ROL TEMP
7068 49 01020 ROLA
7069 78 0605 01030 LSL TEMP+I
706C 79 0604 01040 ROL TEMP
706F 49 01050 ROLA
7070 39 01060 RTS

01070

EDTASM /01.00.00 PAGE 3

01080 **
01090 * *
01100 * BINARY OUT *

01110 * .
01120 * THIS PROGRAM CONVERTS A HEXIDECIMAL NUMBER IN *
01130 * REGISTER D TO A BINARY ASCII OUTPUT IN OUTBUF *
01140 * IT CONSULTS BITS PER WORD (BPW) AND OUTPUTS A *
01150 * CORRECT NUMBER OF BITS. UNUSED BITS ARE SET *
01160 * TO SPACES *

01170 * .
01180 **
01190

7071 EC 9F 0600 01200 BINOUT LDD [$06003 *READ DATA
7075 BE 0010 01210 LDX #$10
7078 BC 0602 01220 BLOOPI CMPX BPWSTG
707B 27 06 01230 BEG BCONT1 *IF X HAS # BITS THEN START
707D 30 IF 01240 LEAX -1,X
707F 58 01250 LSLB *SHIFT OUT UNWANTED BIT

* 7080 49 01260 ROLA

7081 20 F5 01270 BRA BLOOP1
7083 58 01280 BCONT1 LSLB *GET BIT
7084 49 01290 ROLA
7085 34 02 01300 PSHS A *SAVE FOR LATER
7087 24 04 01310 BCC BCONT2

0.7089 86 01 01320 LDA #$01 *CARRY SET = A "1"
-708B 20 02 01330 BRA BCONT3
708D 86 00 01340 BCONT2 LDA *$00
708F 8D 07 01350 BCONT3 BSR COUT *OUTPUT CHAR
7091 35 02 01360 PULS A
7093 30 IF 01370 LEAX -1,X
7095 26 EC 01380 BNE BCONT1
7097 39 01390 RTS *DONE THEN EXIT

01400 ***

01410 * *

01420 * CHARACTER OUT *
01430 * *

01440 * THIS ROUTINE DISPLAYS A NUMBER TO THE TEXT *
01450 * SCREEN AT LOCATION PASSED IN THE Y REGISTER *
01460 * *

7098 01470 ***
7098 8B 30 01480 COUT ADDA #$30 *CONVERT TO ASCII
709A AD 9F A002 01490 JSR ECOUT1J *OUTPUT ASCII CHARACTER
709E 39 01500 RTS *AND RETURN

0000 01510 END

00000 TOTAL ERRORS

'4 8
S*

PROGRAM MAIN

PROGRAM MAIN *

* "* Version 1.0, Sep 85 *

" * THIS PROGRAM IS THE MAIN HUB OF THE PCM *

• *"= ' * MONITOR SYSTEM. *

10 REM PROGRAM MAIN

20 CLS
30 REM PRINT MAIN MENU
40 PRINT@O, STRING$(32,"*");
50 PRINT"* *" ;
60 PRINT"* MAIN MENU *" ;

70 PRINT"* *" ;
80 PRINT STRING$ (32, "*")

90 PRINT" F)RAME SPECIFICATION"
100 PRINT" P)ARAMETER SPECIFICATIONS"
110 PRINT" D)ISPLAY FORMATS"

120 PRINT" X)ECUTE TO BEGIN PCM MONITOR"
130 PRINT" S)ETUP NEW SYSTEM"

140 PRINT" Q)UIT"
150 PRINT
160 REM GET INPUT
170 PRINT" WHICH ONE? -- >";:INPUT A$

180 IF A$="P" THEN RUN "PSETUP"
190 IF A$="D" THEN RUN "DSETUP"
200 IF A$="F" THEN RUN "FSETUP"
210 IF A$="S" THEN 340
220 IF A$="X" THEN RUN "EXECUTE"

230 IF A$="Q" THEN CLS:PRINT"BYE!":END
240 GOT040

250 REM ************************
260 REM* *

270 REM * SETUP ROUTINE *

280 REM* *

* 290 REM * SETS RECORD NUMBER *

.... 300 REM * STORED TO 0 IN BOTH *

310 REM * PARAM & DISPLAY.DAT *

297 REM * *
320 REM ************************
330 REM

340 CLS:PRINT STRINGS(32,"*");

350 PRINT"*
360 PRINT"* SETUP NEW SYSTEM

370 PRINT"*
380 PRINT STRING$(32, "*") ;
390 PRINT

* 400 PRINT"warning warning warning warning";

410 PRINT
420 PRINT"THIS PROGRAM WILL DELETE YOUR"

9

.. . .,- <,. ,....

PROGRAM MAIN

" V. 430 PRINT"DISPLAY FILES. BE SURE YOU'VE"

C 440 PRINT"SAVED THEM TO ANOTHER FILENAME."

450 PRINT
460 PRINT"DO YOU WISH TO CONTINUE OR ABORT";
470 INPUT"PRESS C OR A ->";A$
480 IF AS<>"C" THEN RUN
490 OPEN "D", #1, "PARAM.DAT", 60
500 WRITE #1,"0"
510 PUT #1,201
520 CLOSE #1
530 OPEN "D", #1. "DISPLAY.DAT", 250
540 WRITE *1, "0"
550 PUT *1,101
560 CLOSE #1
570 RUN

,-1

~i.

, -C

I

a: 10
.0-;

,/,-.% x-.N..s•.~- - n--- . '-

-, . - 4 . - - ' - - - -- - N

- - 4,o- -N - I .it - j.- .i. t.

z wV

PROGRAM FSETUP

10 REM PROGRAM FRAME SETUP
: -'.. 20 CLEAR 2000:REM MAKE STRING SPACE

30 GOTO 1960:REM START OF PROGRAM
40 REM ************************
50 REM * FRAME SET UP PROGRAM *
55 REM * Version 1.0, Sep 85 *
60 REM * *
70 REM * THIS PROGRAM ALLOWS *
80 REM * THE USER TO INPUT *
90 REM * FRAME SPECIFICATIONS*
100 REM * INTO THE PCM MONITOR*
110 REM ***********************
120
130'
140
150 REM ************************
160 REM * *
170 REM * VARIABLE DEFINTIONS *
180 REM * *

260 REM* *
270 REM ************************
280'
290 •
300 ' NAME$=NAME OF DATA FILE TO ACCESS
310 ' REC = RECORD NUMBER IN NAME$ TO ACCESS
320 ' TY$=TYPE OF PCM: NRZ-L OR BI-PHASE-L
330 ' TY=VARIBLE TO SHOW WHAT PCM TYPE IS, I=NRZ, 2=BI-PHASE
340 " RA$=PCM RATE: AUTO OR VALUE
350 " RA=VARIABLE TO SHOW BIT RATE, AUTO OR NUMBER
360 ' O$=PCM ORDER: MSB FIRST OR LSB FIRST
370 ' O=VARIABLE TO SHOW WHAT PCM ORDER IS, I=MSB, 2=LSB

FIRST
380 ' PO$=PCM POLARITY: NORMAL OR INVERSE
390 ' PO=VARIABLE TO SHOW WHAT POLARITY PCM IS. 1=NORMAL,

2=INVERSE
400 ' SW$=# SYNC WORDS
410 ' SW$(1-3)=STRING FOR SYNC WORD 1-3
420 ' I, J, K = COUNTER VARIABLES
430 ' X=GENERAL PURPOSE RESULT VARIABLE
440 ' TIME=CURSOR FLASH RATE
450 ' SP(I)=SCREEN POSITION FOR DISPLAY LINE I

" ."460 ' VP(I)=SCREEN POSITION FOR NON-BINARY DATA IN LINE I

- 470 ' SAME=USED IN GET ROUTINE TO TELL IF KEY WAS PRESSED
. 480 ' PSN=POSITION POINTER USED IN LINE INPUT ROUTINE

490 ' CH=CHARACTER READ FROM SCREEN IN GET ROUTINE
500 ' KY=VALUE OF KEY USED IN GET ROUTINE
510 ' KY$=STRING OF KEY INPUT

520 ' SIZE=SIZE OF DATA RECORD. PARAM.DAT=60,
DISPLAY.DAT=250

j"', 530 ' W$()=#WORDS=FRAMELENGTH
540 ' B$=STRING CONTANING BITS PER WORD
550 ' B=VALUE OF B$

"-' 11

.0;

PROGRAM FSETUP

560 ' N=NUMBER OF CHARACTERS USED IN INPUT LINE ROUTINE
570 ' TP=TYPE POINTER, POINTS TO DISPLAY TYPE

4580 ' PAD=CHARACTER SPACES TO MAKE SW$()=16
590 ' LN=POINTER FOR LI4E NUMBER
600'

610'
620'

630 REM *************************
640 REM * *

650 REM * INITIALIZATION *

660 REM * SUBROUTINE *

670 REM * *

680 REM *************************
690 REM
700 POKE 65495,0:REM SET FAST SPEED
710 TIME=50:REM CURSOR TIME DELAY

720 "
730 REM SETUP SCREEN POSITIONS FOR THE INPUT ROUTINES

740 SP (1) =142: SP (2) =173: SP (3) =206: SP (4) =237:SP (5) =270
745 SP(6)=302:SP(7)=336:SP(B)=366:SP(9)=398:SP(10)=430

750'
760 REM SETUP DEFAULTS
770 TY=I RA=I: 0=1: PO=l:RA$="auto" :SW$="3" SW$ (1) ="

775 SW$(2)=" SW$ (3)

B$=" 10": W$=i 100
780 TY$(O)="AUTO NRZ BI-PHASE"
790 TY$(1)="auto NRZ BI-PHASE"

800 TY$(2)="AUTO nrz BI-PHASE"

810 TY$(3)="AUTO NRZ bi-phase"

820 0$(0)="LSB MSB"
830 0$(1)="lsb MSB"
840 O$(2)="LSB msb"

850 PO$(0)="NORMAL INVERSE"
860 PO$(1)="normal INVERSE"
870 PO$(2)="NORMAL inverse"

880 RETURN
890

0 900'
910 REM HEADER OUT SUBROUTINE

920 CLS: PRINT STRING$(32,"*");
930 PRINT "*";
940 FOR 1=1 TO (30-LEN(A$))/2:PRINT" ";:NEXT I
950 PRINT A$;
960 IF POS(0)=31 THEN 980
970 PRINT '- ";:GOT0960

980 PRINT "*";
990 PRINT STRING$(32, "* ' ');
1000 RETURN
1010

" "-1020 '
1030 REM ***********************

12

0o

4' o ./ 4 - • . .

PROGRAM FSETUP

1040 REM * *

1050 REM * LINE INPUT *
1055 REM * SUBROUTINE *

1060 REM: * *

1070 REM: ***********************
1080
1090 SAME=0:PSN=I:PRINT@SP(LN),"["+A$;.:PRINT@SP(LN)+N+1,"J;

1100 REM MAKE FLASHING CURSOR
1110 IF PSN=N+I THEN 1160:REM END OF LINE
1120 X=SP(LN)+PSN+1024:REM DIRECT READ OF SCREEN
1130 CH=PEEK(X)
1140 POKE X,109:FOR I=1 TO 2*TIME:NEXT I:POKE X,CH:FOR 1=1

TO TIME:NEXT I

1150 REM 109 = "..
1160 A$=INKEY$: IF A$="" THEN 1110

1170 KY=ASC(A$)
1180 IF KY=12 OR KY=13 THEN 1270:REM CLEAR OR ENTER
1190 IF KY=8 AND PSN =1 THEN 1160:REM LEFT ARROW
1200 IF KY=8 THEN PSN=PSN-1:GOT01160:REM LEFT ARROW
1210 IF KY=10 OR KY=94 THEN 1270:REM DOWN OR UP

' 1220 IF PSN <1 OR PSN >N THEN 1160 ELSE PRINT@SP(LN)+PSN,
1T MEA;
1230 IF KY=9 THEN 1240 ELSE SAME=I:REM NEW DATA ENTERED

1240 PSN=PSN+I
1250 GOT01160
1260 REM COLLECT CHARACTERS INTO A$
1270 A$="
1280 FOR PSN=I TO N:X=PEEK(SP(LN)+PSN+1024):IF X>95 THEN

X=X-64
1290 A$=AS+CHR$(X):NEXT PSN
1300 PRINT@SP(LN)," ";:PRINT@SP(LN)+N+1,' ";:REM REMOVE

BRACKETS
1310 RETURN
1320 REM
1330 REM
1340 REM ************************
1350 REM * *

1360 REM * DISK INPUT ROUTINE *

1370 REM * *

1380 REM * RECORD # IN PN *

1390 REM * RECORD NAME IN NAME$*
1400 REM * RETURNS DATA IN A$ *

1410 REM * *
1420 REM ************************
1430 IF REC=O THEN RETURN

1440 OPEN"D", #1, NAME$,SIZE
1450 GET#l, REC

1460 INPUT #1,A$
1470 CLOSE #1
1480 RETURN
1490 REM ************************
1500 REM * *

13

Sl " . .• , .. - . , , , . , ,

PROGRAM FSETUP

1510 REM * DISK OUTPUT ROUTINE*
1520 REM **
1530 REM * RECORD # IN PN
1540 REM * RECORD NAME IN NAME$*
1550 REM * DATA IN A$
1560 REM **
1570 REM ************

1580 IF REC=0 THEN RETURN
1590 OPEN "DD", #1, NAME$, SIZE
1600 WRITE #1,A$
1610 PUT #1,REC
1620 CLOSE #1
163-0 RETURN
1640 REM
1650 REM************
1660 REM *
1670 REM * CONVERT A$ TO SPEC
1675 REM * SUBROUTINE
1680 REM **
1690 REM************
1700 REM
1710 B$=LEFT$(A$,2):W$=MID$(A,3,3):TY$=MID$(A$,6,8)
1715 RA$=MID$(A$,14,4):O$=MID$(A$,18,3):PO$=MID$(A$,21,7)
1720 SW$=MID$(A$,28,1): SW$(l)=MID$(A$,29,16):

SW$(2)=MIDS(A$,45, 16)
1725 SWS(3)=MID$(A$,61,16)
1730 TY=l:IF TY$="NRZ goTHEN TY=2
1740 IF TY$='B1-PHASE' THEN TY=3
1750 IF RASK>"auta" THEN RA=2 ELSE RA=1
1760 IF 0$="MSB" THEN 0=2 ELSE 0=1
1770 IF PO$="INVERSE' THEN P0=2 ELSE P0=1
1760 RETURN
1781'
1782'
1763 REM************
1784 REM **
1765 REM * TOGGLE INPUT *

1786 REM * SUBROUTINE
1787 REM **
1788 REM************
1790 PRINT@SP(LN,AS0:FOR I=1 TO TIME:NEXT I
1800 PRINT@SPLN,A$J):FOR 1=1 TO TIME:NEXT I:AS=INKEY$:IF

A$="" THEN 1790
1810 KY=ASC(A$)
1815 REM CHECK FOR UP, DOWN, CLEAR, OR ENTER KEYS
1820 IF KY=94 OR KY=10 OR KY=12 OR KY=13 THEN RETURN
1830 IF KY=8 THEN J=J-1 ELSE J=J.-
1840 IF J>N THEN J=1
1850 IF J(1 THEN J=N
1860 GOTO 1790
1670 REM
1880 REM

14

7A*
. . A A.

PROGRAM FSETUP

%, :1 .~~ 1890 REM ***********

1900 REM *

1910 REM * START OF PROGRAM *

1920 REM* *

1930 REM **********************
1940 '
1950 '
1960 GOSUB 700:REM INIT
1970 A$="FRAME SPECIFICATION PAGE":GOSUB 920: REM OUTPUT

HEADER
1980 PRINT
1990 PRINT"C)REATE NEW FRAME SPECIFICATION";

2000 "
2010 PRINT:PRINT"L)OAD FRAME SPECIFICATION"
2020 PRINT "E)DIT SPECIFICATION IN MEMORY"
2030 PRINT"Q)UIT"
2040 PRINT
2050 INPUT "WHICH ONE ->";A$
2060 IF A$="L" THEN 2180
2070 IF AS="E" THEN 2410

* 2080 IF AS="C" THEN 2310
2090 IF A$="Q" THEN RUN"MAIN"

2100 GOTO 1970:REM NOT ANY THEN TRY AGAIN
2110
2120'
2130 REM ***********************
2140 REM * *
2150 REM * LOAD*

2160 REM * *

2170 REM ***********************
2180 A$="LOADING FRAME SPECIFICATION":GOSUB 920:REM OUTPUT

HEADER

2190 NAME$="DISPLAY.DAT":SIZE=250:REC=102:REM 102 HAS FRAME
SPEC

2200 GOSUB 1430:REM READ SPEC IN A$
2210 GOSUB 1710:REM CONVERT AS

2220 A$="CURRENT FRAME SPECIFICATION":REM SET CREATE HEADER
2230 GOTO 2420:REM NOW EDIT IT

2240'
2250
2260 REM ***********************

2270 REM * *

. 2280 REM * CREATE *

2290 REM * *

* 2300 REM ***********************
2310 GOSUB 700:REM RE-INIT AND SET DEFAULTS
2320 A$="CREATE FRAME SPECIFICATION":REM OUTPUT HEADER
2330 GOTO 2420: NOW FILL IN VARIABLES AND EDIT

2340 '
2350 •
2360 REM ***********************

-/,' "2370 REM * *

15
p.

w " - -r- , -n r rr .- &t JIL WI --- s, r.} rr-. " - -. ~- - - -" -- - - tn

PROGRAM FSETUP

2380 REM * EDIT *

2390 REM * *

2400 REM ***********************
2410 A$="EDIT FRAME SPECIFICATION"
2420 GOSUB 920:REM OUTPUT HEADER
2430 PRINT@448,STRING$(32, "*");
2440 PRINT@480," USE NUMBERS, ARROWS, OR CLEAR";
2450 PRINT@128,"BITS/WORD ";B$;" MAX IS 16"
2460 PRINT "WORDS/FRAME ";W$;" MAX IS 200"
2470 PRINT "PCM TYPE ";TY$(TY)
2480 PRINT "PCM BIT RATE ";RA$;" KHZ A)UTO"
2490 PRINT "PCM ORDER ";0$(0)
2500 PRINT "PCM POLARITY ";PO$(PO)
2510 PRINT"# OF SYNC WORDS ";SW$;" MAX # IS 3"
2520 PRINT"SYNC DEF->";
2530 PRINT@367,SW$(1)
2540 PRINT@399,SW$(2)
2550 PRINT@431,SW$(3);
2560 LN=1
2570 GOSUB 2700: REM EDIT SUBROUTINE
2580 CLS:PRINT"SAVING NEW FRAME SPECIFICATIONS"
2590 NAME$="DISPLAY. DAT" :SI ZE=250: REC=102
2595 REM NOW BUILD STRING AND SAVE IT
2600 A$=B$+W$+TY$+RA$+O$+PO$+SW$+SW$ (1) +SW$ (2) +SW$ (3)
2610 GOSUB 1580: REM SAVE TO DISK
2620 GOTO 1970:REM START OVER AGAIN
2630
2640 '
2650 REM ***********************
2660 REM * *
2670 REM * EDIT *

2675 REM * SUBROUTINE *
2680 REM * *

2690 REM ***********************
2700 IF LN<>1 THEN 2760
2705 REM NOW GET LINE FROM LINE INPUT ROUTINE
2710 N=2:A$=B$:GOSUB 1090:B$=A$:IF VAL(BS)>16 OR VAL(B$)<1

THEN 2710
2720 IF VAL(B$)=16 THEN 2740:REM DON'T PAD
2725 REM CREATE PAD TO MAKE LENGTH OF SW()=16
2730 PAD$="":FOR I=1 TO 16-VAL(B$):PAD$=PAD$+" ":NEXT I
2735 REM CLEAR SYNC DATA IF SIZE CHANGES
2740 IF SAME=1 THEN PRINT@SP(8),"":PRINT@SP(9),"II:

PRINT@SP(10),
";•,: SW$ (1) ="...: SW$ (2) =" ": SWS (3)-=""

2750 GOTO 2930
2760 IF LN=2 THEN N=3:A$=W$:GOSUB 1090:W$=A$:IF VAL(W$)<1

THEN 2760 ELSE 2930
2770 IF LN=3 THEN N=3: J=TY: A$(O)=TYS(0): A$(1)=TY$(1):

A$(2)=TY$(2): A$(3)=TY$(3): GOSUB 1790: TY=J:GOTO 2930:
REM TOGGLE INPUT

2780 IF LN<>4 THEN 2820

16

,. .,.. . . .

*PROGRAM FSETUP

2790 N=4:AS=RAS:GOSUB 1090:RAS=AS
V~>:2800 IF VAL(AS)=0 THEN RA$="auto":PRINT@SP(4)+1,RA$,.

I GOTO 2930
2810 IF VAL(RAS)>100 THEN 2780
2820 IF LN=5 THEN N=2: J=O: A*(0)=0S(0): A$(1)=O$(1):

AS(2)=O$(2): GOSUB 1790:O=J:GOTO 2930:REM TOGGLE INPUT
2830 IF LN=6 THEN N=2: 3=PO: A$(0)=POS(0): A$(1)=PO$(1):

A$(2)=PO$(2): GOSUB 1790:PO=J:GOTO 2930:REM TOGGLE
INPUT

2840 IF LNK >7 THEN 2900
2850 N= 1: A$SWs:GOSUB1O9O: sws=A$: REM DISK INPUT
2860 IF VAL(SW$)>3 THEN 2850
2870 IF VAL(SW$)=1 THEN SWS(2)="

":PRINT@SP(9) ,SW$(2)
2880 IF VAL(SWS)=1 OR VAL(SWS)=2 THEN SWS(3)-"

":PRINT@SP(10) ,SW$(3)
2890 GOTO 2930
2900 IF LN=8 THEN N=VAL(BS):A$=SW$(1):GOSUB 1090:

SW$(1)=A$+PAD$:GOTO 2930:REM MUST PAD 61.1(N) TO =16

CHAR FOR SAVING
*2910 IF LN=9 AND VAL(SWS)>1 THEN N=VAL(BS):A$=SW$(2):GOSUB

1090: SW$ (2) =A$+PAD$:60T02930
2920 IF LN=10 AND VAL(SWS)>2 THEN N=VAL(B$): A$=SWS(3):

GOSUB 1090: SW$(3)=A$-PADS: GOTO 2930
2930 IF KV=12 THEN 2990:REM CLEAR SETS VARIABLES AND SAVES

- -' THEM

2940 LN=LN.1:REM ADVANCE LINE
O --2950 IF KV=94 THEN LN=LN-2:REM MOVE BACK ONE LINE
*2960 IF LN(1 THEN LN=10:REM WRAP AROUND

- ~2970 IF LN>10 THEN LN=1
-. 2980 GOTO 2700

2990 IF TV=1 THEN TY$='AUTO s

3000 IF TV=2 THEN TYS="NRZ o

* -. 3010 IF TY=3 THEN TYS="BI-PHASE'
3020 IF 0=2 THEN OS="MSB" ELSE OS='LSB"
3030 IF P0=2 THEN POS="INVERSE" ELSE PO$="NORMAL
3040 RETURN

17

PROGRAM PSETUP

10 REM ********************************
. 20 REM* *

30 REM * PROGRAM PSETUP *
40 REM * *
50 REM * THIS PROGRAM ALLOWS THE USER
60 REM * TO INPUT DATA WORD SPECIFI- *
70 REM * CATIONS INTO THE PCM MONITOR *
80 REM * WORDS IN THE FILE "PARAM.DAT *
90 REM * *

100 REM *******************************
110 REM
120 REM
130 REM *************************
140 REM * *
150 REM * VARIABLES USED IN *
160 REM * PSETUP *

170 REM * *

180 REM *************************
190
200 ' MR$=MAX NUMBER OF RECORDS STORED IN DISPLAY.DAT
210 " NAME$=NAME OF DATA FILE TO ACCESS
220 ' REC = RECORD NUMBER IN NAMES TO ACCESS
230 ' AS=GENERAL PURPOSE STRING VARIABLE
240 ' RS=ALTERNATE FOR MAX RECORDS STORAGE
250 ' SV$=GENERAL PURPOSE SAVE STRING VARIABLE
260 " SV=GENERAL PURPOSE SAVE VALUE VARIABLE
270 ' I, J = COUNTER VARIABLES
280 ' X=GENERAL PURPOSE RESULT VARIABLE
290 ' TIME=CURSOR FLASH RATE
300 7 DLAY=DELAY FOR WAIT LOOPS
310 ' PSN=POSITION POINTER USED IN LINE INPUT ROUTINE
320 ' CH=CHARACTER READ FROM SCREEN IN GET ROUTINE
330 ' KY=VALUE OF KEY USED IN GET ROUTINE
340 ' PN$=DATA WORD NUMBER
350 ' N$=PARAMETER NAME

360 ' FP$=PARAMETER NUMBER
370 " U$=PARAMETER UNITS
380 ' MN$=MINIMUM VALUE FOR PARAMETER
390 ' MX$=MAXIMUM VALUE OF PARAMETER
400 ' AL$=ALARM LOW VALUE
410 ' AH$=ALARM HIGH VALUE
420 ' D$()=DISPLAY TYPE, DECIMAL, HEX ETC
430 ' W$()=*WORDS=FRAMELENGTH
440 ' LN=SCREEN LINE NUMBER USED IN LINE INPUT ROUTINE
450 ' N=NUMBER OF CHARACTERS USED IN LINE INPUT ROUTINE
460 '
470 REM PROGRAM PSETUP
480 GOT01890:REM START OF PROGRAM
490 REM *************************
500 REM * *

510 REM * INITIALIZATION *
520 REM * SUBROUTINE *

• / . 18

.,-..~~~....-.... -..

PROGRAM PSETUP

530 REM * *

-'A." '" 540 REM *************************
550 REM
560 POKE 65495,0:REM SET FAST SPEED
570 DIM SP(16)
580 DLAY=500:REM DELAY FOR WAIT LOOPS
590 FOR I=1TO16:READ SP(I):NEXTI
600 DATA 0,0,0,0,147,179,211,241,273,305,337,369,0,0,0,0
610 N$=" ":REM SET DEFAULTS
620 FP$=" ":US= . .:MN$=" It:MX$= it: ALS="

i":AH$=" "

630 RETURN
640 REM
650 REM************
660 REM * *

670 REM * LINE INPUT ROUTINE *
680 REM: * N = # OF CHARACTERS *
690 REM: * SP= SCREEN POSITION *
700 REM: * RETURNS STRING IN AS*
710 REM: * N = MAX CHARACTERS *

720 REM: * I = TEMP COUNTER *

730 REM: * PSN = LOCAL POSITION*
740 REM * LN= LINE ON SCREEN *
750 REM: * *

760 REM: ***********************
770 REM

i 780 PSN=I:PRINT@SP(LN), "[+A$;:PRINT@SP(LN)+N+1,'J";
790 REM MAKE FLASHING CURSOR
800 IF PSN=N I THEN 850
810 X=SP(LN)+PSN+1024
820 CH=PEEK(X)
830 POKE X,109:FOR I=1T040:NEXT I:POKE X,CH:FOR I=1TO20:NEXT
I
840 REM 109 =
850 A$=INKEY$: IF A$="" THEN 800
855 KY=ASC(A$):REM GET RETURN KEY
860 IF KY=12 THEN QUIT=I:GOTO 950:REM CLEAR KEY
870 IF KY=13 THEN 950

6 880 IF KY = 8 AND PSN =1 THEN 850:REM LEFT ARROW BUT AT LEFT
SIDE ALREADY

890 IF KY = 8 THEN PSN=PSN-1:GOT0850:REM LEFT ARROW TO BACK
UP

* * 900 IF KY=10 OR KY=94 THEN 950:REM USE UP AND DOWN ARROWS
910 IF PSN <1 OR PSN >N THEN 850 ELSE PRINT@SP(LN)+PSN, AS;

5 920 PSN=PSN+I
930 GOT0850
940 REM COLLECT CHARACTERS INTO A$
950 A$=":FOR PSN=I TO N:X=PEEK(SP(LN)+PSN+1024):IF X>95
THEN

X=X-64
960 A$=A$+CHR$(X):NEXT PSN
970 PRINT@SP(LN)," ";:PRINT@SP(LN)+N+I, ;:REM REMOVE

19

-,.,,- ,. . *.. * - N-

PROGRAM PSETUP

BRACKETS

980 RETURN
990 REM
1000 REM
1010 REM ****************
1020 REM * *

1030 REM * DISK INPUT ROUTINE *
1040 REM *
1050 REM * RECORD # IN PN *
1060 REM * RECORD NAME IN NAMES*
1070 REM * RETURNS DATA IN A$ *

1080 REM *
1090 REM **********************
1100 OPEN "D", #1, NAMES,60
1110 GET#l, REC:REM 201 FOR #RECORDS

1120 INPUT #1,A$
1130 CLOSE #1

1140 RETURN
1150 REM **********************
1160 REM * *

0 1170 REM * DISK OUTPUT ROUTINE *
1180 REM **
1190 REM * RECORD # IN PN *
1200 REM * RECORD NAME IN NAMES*
1210 REM * DATA IN A$ *
1220 REM **
1230 REM ******************4**
1240 OPEN "D", #1, NAMES, 60
1250 WRITE #1,A$

' 1260 PUT #1,REC
1270 CLOSE #1
1220 RETURN
1290 REM

1300 REM
1310 REM
1320 REM **********************
1330 REM **
1340 REM * SUBROUTINE *

* 1350 REM * LIST DATA WORDS *1

1360 REM **
1370 REM *********************
1380 CLS:PRINT"DATA WORD LISTING OF RECORDS";
1390 PRINT@32,"********************************";
1400 PRINT" WORD # NAME PARM"
1410 PRINT
1420 REC=201:GOSUB 1100
1430 R$=A$

1440 PRINT@20,R$;
1450 PRINT@128,"";
1460 FOR 1=1 TO VAL(R$)
1470 REC = I
1480 GOSUB 1100:REM READ IN RECORD

20

..°.'.

'.S4.

PROGRAM PSETUP.9

<'. 1490 PRINT" ";I,LEFTS(A$,7);" ";MIDS(A$,8,3)
- 1500 IF INT(I/10)=I/10 THEN 1520

1510 NEXT I
1520 PRINT:INPUT"NUMBER=SEL, CR=CONT, E=EXIT ";A$
1530 IF A$="E" THEN 1600
1540 IF VAL(A$)<>0 THEN 1600
1550 IF I=>VAL(R$) THEN 1600
1560 CLS:PRINT"DATA WORD LISTING OF ";R$;" RECORDS";
1570 PRINT"********************************";
1580 PRINT" WORD * NAME":PRINT
1590 GOTO 1510
1600 RETURN

9,1610 '
1620 REM *******************************
1630 REM * *

1640 REM * SUBROUTINE *
1650 REM * DISPLAY DEFINITION PAGE *
1660 REM * *
1670 REM *******************************
1680 CLS:PRINT" DATA WORD DEFINITION PAGE "

6 1690 PRINT"*******************************";

1700 PRINT A$;PN
1710 PRINT
1720 PRINT"PARAMETER NAME -- > ";N$

1730 PRINT"PARAMETER NUMBER-> ";FP$
1740 PRINT"PARAMETER UNITS -> ";Ut

C 1750 PRINT
"- 1760 PRINT"RANGE MINIMUM -> ";MN$

1770 PRINT"RANGE MAXIMUM -> ";MX$
1780 PRINT"ALARM MINIMUM -> ";AL$
1790 PRINT"ALARM MAXIMUM-> ";AH$
1800 PRINT
1810 PRINT"********************************";
1820 PRINT"ENTER FOR NEXT, CLEAR TO ACCEPT";
1830 RETURN
1840 REM ************************
1850 REM * *

1860 REM * START OF PROGRAM *
1870 REM * *

1880 REM ************************
1890 GOSUB 560:REM INIT
1900 REM PN=DATA WORD NUMBER (3 SPACES)
1910 REM N$=PARAMETER NAME (7 SPACES)
1920 REM FP$=PARAMATER NUMBER (3 SPACES)
1930 REM U$=PARAMETER UNITS (5 SPACES)
1940 REM MN$=MIN VALUE (6 SPACES)
1950 REM MX$=MAX VALUE (6 SPACES)
1960 REM AL$=ALARM LOW VALUE (6 SPACES)
1970 REM AH$=ALARM HIGH VALUE (6 SPACES)
1980 CLS
1990 NAME$="PARAM.DAT"
2000 CLS

21
a.

0

PROGRAM PSETUP

2010 PRINT STRINGS(32,"*");
2020 PRINT" *" ;STRING$(30, ");"*" ;

2030 PRINT"* DATA WORD DEFINITION PAGE *";
2040 PRINT"*";STRING$(30," ..);"*";
2050 PRINT STRING$ (32,"*");
2060 PRINT @192,"A)DD NEW DATA WORD"
2070 PRINT"E)DIT DATA WORD"
2080 PRINT"I)NSERT DATA WORD"
2090 PRINT"D)ELETE DATA WORD"
2100 PRINT"L)IST PARAMETER TABLE"
2110 PRINT"Q)UIT"
2120 PRINT:INPUT"WHICH ONE";KY$
2130 IF KY$="A" THEN 2250
2140 IF KY$="Q" THEN RUN"MAIN"
2150 IF KY$="E" THEN 3150
2160 IF KY$="D" THEN 3340
2170 IF KY$="I" THEN 3580
2180 IF KY$="L" THEN GOSUB 1380
2190 GOTO 2000
2200 REM ***********************
2210 REM *

2220 REM * ADD DATA WORD *
2230 REM * *

2240 REM ***********************
2250 REC=201:REM DATA WORD COUNT IN 201
2260 GOSUB 1100:REM READ # RECORDS IN FILE
2270 PN=VAL(A$)+1
2280 AS="ADDING DATA WORD #1'
2290 GOSUB 2430:REM GET NEW DATA
2300 IF AS="T" THEN 2280:REM TRY AGAIN
2310 PRINT:PRINT"UPDATING # DATA WORDS RECORD"
2320 REC=201: A$=STR$ (PN)
2330 GOSUB 1240
2340 RUN: REM START AGAIN WITH MAIN MENU. CLEARS STRING
SPACE
2350 REM
2360 REM
2370 REM ***********************
2380 REM * *

2390 REM * RETRIEVE DATA *
2400 REM * SUBROUTINE *
2410 REM * *
2420 REM ***********************
2430 TEMP$=A$:REM SAVE TYPE OF PAGE WE'RE IN
2440 GOSUB 1680:REM OUTPUT DISPLAY PAGE
2450 QUIT=O:DS=I:REM SET DEFAULT DISPLAY TYPE INT
2460 LN=5:N=7:A$=N$:GOSUB780:REM GET NAME
2470 N$=A$
2480 IF QUIT=I THEN 2860:REM QUIT THIS ENTRY
2490 IF KY=94 THEN 2780:REM UP
2500 LN=6:N=3:A$=FP$:GOSUB780:REM GET PARAMETER NUMBER
2510 FP$-A$

22

-, . :

PROGRAM PSETUP

2520 IF QUIT=1 THEN 2860
2530 IF KY=94 THEN 2460
2540 LN=7:N=5:A$=U$:GOSUB 780:REM GET UNITS
2550 U$=A$
2560 IF QUIT=l THEN 2860
2570 IF KV=94 THEN 2500
2580 '

2590 ' GET MINIMUM OF RANGE
2600 LN=9:N=6:A$=MNS:GOSUB 780
2610 MN$=A$
2620 IF QUIT=1 THEN 2860
2630 IF KY=94 THEN 2540
2640 '
2650 ' GET MAXIMUM OF RANGE
2660 LN=10:N=6:A$=MX$:GOSUB 780
2670 MX$=A$
2680 IF QUIT=1 THEN 2860
2690 IF K'Y=94 THEN 2600
2700
2710 ?GET ALARM LOW

0, 2720 LN=11:N=6:A$=AL$:GDSUB 780
2730 AL$=A$
2740 IF QUIT=1 THEN 2860
2750 IF KV=94 THEN 2660
2760
2770 P GET ALARM HIGH
2780 LN=12:N=6:A$=AH$:GOSUB 780
2790 AH$=A$
2800 IF QUIT=1 THEN 2860

2810 IF KY=94 THEN 2720
2820 G0T02460
2830
2840
2850 REM CHECK ERRORS AND PRINT SAVE SCREEN
2860 CLS:PRINT:PRINT
2870 QUIT=0:REM RESET QUIT BECAUSE WE AREN'T QUITTING
2880 A$=TEMP$:REM RETURN TYPE OF PAGE IF NEEDED FOR ERROR
2890 IF VAL(AH$)>VAL(MX$) THEN PRINT"ALARM OUT OF

S LIMITS":FOR
I=1TO DLAY:NEXT I:GOSUB 1680:60T02780

2900 IF VAL(AL$)<VAL(MN$) THEN PRINT"ALARM OUT OF
LIMITS":FOR I=1TO DLAY:NEXT I:GOSUB 1680:GOTO 2720
2910 PRINT"S)AVE DATA WORD #";PN
2920 PRINT"T)RY AGAIN?"

2930 PRINT"R)ETURN TO MENU7 "
2940 PRINT: INPUT"WHICH ONE>";A$
2950 IF A$="S" THEN 3030:REM SAVE RECORD
2960 IF AS="T" THEN 2990:REM RETURN WITHOUT SAVING
2970 IF A$="R" THEN RUN
2980 GOTO 2860
2990 RETURN:REM A$ HAS RETURN CONDITIONS
3000

23

PROGRAM PSETUP

3010'
" ""3020 REM BUILD SAVING STRING AND DO IT

3030 A$=N$+FP$+U$+MN$+MX$+AL$+AH$

3040 REC=PN
3050 GOSUB 1240:REM SAVE DATA WORD

3060 PRINT:PRINT"DATA WORD #";PN;N$;" SAVED"

3070 FOR I=1TO4*DLAY:NEXT I

3080 A$="S":REM SHOW CALLING PROGRAM THAT REC WAS SAVED
3090 RETURN

- ~- 3100 REM ***********************
3110 REM *

3120 REM * EDIT DATA WORD *

3130 REM * *
3140 REM ***********************
3150 CLS:PRINT@484,"PRESS L TO LIST, E TO EXIT

":PRINT@35,"ENTER
DATA WORD TO EDIT ";:INPUT A$

3160 IF A$="L" THEN GOSUB 1380

3170 IF A$="E" THEN 3280:REM DON'T EDIT
3180 PN=VAL(A$): IF PN=O THEN 3150:REM MUST BE NUMBER

. 3190 REC=201:GOSUB 1100

3200 IF PN>VAL(A$) THEN PRINT"YOU ONLY HAVE";A$;" RECORDS
SAVED":FOR I=1TO2000:NEXT I:GOT03150

3210 IF PN>200 THEN PRINT"MAX NUMBER IS 200":FOR
I=1T02000:NEXT

I:GOT03150
3220 REC=PN
3230 GOSUB 1100:REM GET OLD DATA
3240 N$=LEFT$(A$,7): FP$=MID$(A$,8,3): U$=MID$(A$,11,5):

- '"MN$=MID$(A$,16,6): MX$=MID$(A$,22,6):
AL$=MID$(A$,28, 6):

AH$=MID$(A$,34,6)
3250 A$="EDITING DATA WORD #

* * 3260 GOSUB 2430

3270 IF AS="T" THEN 3250
3280 RUN: REM USE RUN TO CLEAR STRING SPACE

3290 REM ***********************
3300 REM * *

. 3310 REM * DELETE DATA WORD *

3320 REM * *
3330 REM ***********************
3340 CLS:PRINT@484,"PRESS L TO LIST, E TO EXIT
":PRINT@32,"ENTER DATA WORD TO DELETE ";:INPUT A$
3350 IF A$="L" THEN GOSUB 1380
3360 IF A$="E" THEN 3570
3370 PN=VAL(A$): IF PN=O THEN 3340:REM MUST BE A NUMBER

3380 REC=201:GOSUB 1100
3390 IF PN>VAL(A$) THEN PRINT"YOU ONLY HAVE".A$;" RECORDS

-- SAVED": FOR 1=1 TO 2000: NEXT I: GOTO 3340

3400 IF PN>200 THEN PRINT"MAX NUMBER IS 200":FOR I=1 TO
2000:NEXT I:GOTO 3340

3410 REC=PN

24k -

* .. * * * * *

.... .. .= * -- ' n ,, "- i * - ** - . -* * _ - + - ;+ ; .. " .,-

PROGRAM PSETUP

3420 SV$=A$:REM SAVE # RECORDS IN FILE
-. ,. 3430 GOSUB 1100:REM GET OLD DATA

3440 N$=LEFT$(A$,7): FP$=MID$(A$,8,3): U$=MID$(A$,11,5):
MNS=MIDS (A$, 16,6): MX$=MIDS (A$,22,6):

AL$=MID$(A$,28,6):
AH$=MID$(A$,34,6)

3450 A$="DELETE DATA WORD #
3460 GOSUB 1680
3470 PRINT@448,"DELETE THIS DATA WORD? Y/N ";:INPUT A$

3480 IF A$<>"Y" THEN RUN
3490 CLS:PRINT" DELETING DATA WORD";PN

- 3500 FOR I=PN+I TO VAL(SV$)

3510 REC=I:GOSUB 1100:REM READ OLD RECORD
3520 REC=I-1:GOSUB 1240:REM PUT IN NEXT LOWER POSITION
3530 NEXT I
3540 REC=201:A$=STR$(VAL(SV$)-I):REM UPDATE # RECORDS STORED

3550 GOSUB 1240
3560 RUN
3570 RUN
3580 REM

* 3590 REM ***********************
3600 REM * *
3610 REM * INSERT DATA WORD *

3620 REM* *
3630 REM ***********************
3640 REM

ES 3650 CLS:PRINT@484,"PRESS L TO LIST, E TO EXIT
":PRINT@32,"ENTER

WORD# TO BE INSERTED";:INPUT AS

3660 IF A$="L" THEN GOSUB 1380
3670 IF A$="E" THEN RUN:REM EXIT
3680 PN=VAL(A$): IF PN=O THEN 3650
3690 REC=201:GOSUB1100

3700 SV=VAL(A$):REM SAVE TOTAL RECORDS STORED SO FAR IN SV
3710 IF PN>SV THEN PRINT"YOU ONLY HAVE";A$;" RECORDS

SAVED":FOR
I=1T02000:NEXT I:GOT03650

3720 IF PN>200 THEN PRINT"MAX NUMBER IS 200": FOR
* I=1TO2000:NEXT

I:GOT03650
3730 REC=PN:GOSUB 1100:REM SAVE RECORD IN SV$
3740 SV$=A$
3750 AS="INSERTING BEFORE WORD #"
3760 GOSUB 2430:REM GET NEW DATA WORD AND SAVE IT

3770 IF A$="T" THEN 3750
3780 IF A$="R" THEN RUN
3790 CLS:PRINT"INSERTING BEFORE DATA WORD #";PN
3800 FOR I=SV TO PN+I STEP -1
3810 REC=I:GOSUB 1100:REM GET TOP RECORD IN A$

3820 REC=I+I:GOSUB 1240:REM STORE IT ONE HIGHER
* 3830 NEXT I

3840 REC=PN+I:A$=SV$: GOSUB 1240:REM NOW SAVE OLD RECORD

25

.........

S"v.. r.u.' rrr rrwvwr'rrw-rwv- r - - -. -. -
* I*

PROGRAM PSE 11*

~ % Si 3850 REC=201:A$=STRSSY+1):60SU81240:REM UPDATE S RECORDS
STORED
3860 PRINT'INSERTION COMPLETED':FOR I=1T02000:NEXTI:RuN

*-

.4.'--.

4..,.

.4.

0

2"

(S
-- 4.

V.'

.4-k'

0

S
Ax

-. 4-

S

'S

0

26
54

S
*6~t

A - 4. .4 . .. '.4- * . - - - -

PROGRAM DSETUP

10 REM ********************************
.v 20 REM* *

30 REM * PROGRAM DSETUP *
35 REM * Version 1.0, Sep 85 *
40 REM * *

50 REM * THIS PROGRAM ALLOWS THE USER
60 REM * TO INPUT DISPLAY DATA PAGE *

70 REM * SPECIFICATIONS INTO THE PCM *
80 REM * MONITOR SYSTEM. IT STORES *
90 REM * CREATED PAGES IN THE FILE, *
100 REM * DISPLAY.DAT. *
110 REM * *

120 REM *******************************
130 REM
140 REM *************************
150 REM* *
160 REM * VARIABLE DEFINITIONS *
170 REM * *

180 REM *************************
190 REM
200 ' MRS=MAX NUMBER OF RECORDS STORED IN DISPLAY.DAT
210 ' NAMES=NAME OF DATA FILE TO ACCESS
220 ' SN() = SYNC NUMBER. A CONSTANT FOR BIN-DEC CONVERSION
230 'CORRECTION = CORRECTION FACTOR TO OFFSET PCM MONITOR

i DELAYS
240'

* 250'
260 ' THESE ADDRESSES ARE USED FOR INFORMATION TRANSFER TO
THE
270 ' PCM MONITOR
280 VLID = VALID ADDRESS TO TELL PCM PROCESSOR THAT DATA
IS

GOOD
290 ' BITRATE = ADDRESS TO STORE BIT RATE IN
300 ' PCMTYPE = ADDRESS TO STORE PCM TYPE, NRZ OR BI-PHASE
310 ' WORDLENGTH = ADDRESS FOR BITS PER PCM WORD

l" "lN 320 ' FPERBUS = ADDRESS FOR # OF FRAMES PER BUFFER MEMORY.
-- 330 ' FRAMELENGTH = ADDRESS FOR NUMBER OF WORDS PER FRAME
* 340 ' SH,SM,SL = SYNC WORD ADDRESSES (HIGH, MIDDLE, LOW)

350 ' EROR = ERROR ACCUMULATOR
* 360 ' PLARITY = ADDRESS FOR POLARITY, NORMAL OR INVERSE

370 ' CALRATE = ADDRESS SHOWING WHAT THE CALCULATED PCM RATE
is
380'

i @ 390'
.'-7 400'

410 ' REC = RECORD NUMBER IN NAMES TO ACCESS
420 ' B$=BITS PER WORD

* . 430 ' B=MAX VALUE OF WORD ACCORDING TO B$

440 ' W$=WORDS PER FRAME
* 450 ' TY$=TYPE OF PCM: NRZ-L OR BI-PHASE-L

460 ' TY=VARIBLE TO SHOW WHAT PCM TYPE IS, I=NRZ, 2=BI-PHASE

27

I

S- ..i k :' I : ' --" - -- . ". . -'' N' T * '

PROGRAM DSETUP

470 ' RA$=PCM RATE: AUTO OR VALUE

480 RA=VARIABLE TO SHOW BIT RATE, AUTO OR NUMBER
490 ' O$=PCM ORDER: MSB FIRST OR LSB FIRST

500 ' O=VARIABLE TO SHOW WHAT PCM RDER IS, I=MSB, 2=LSB
FIRST
510 ' PO$=PCM POLARITY: NORMAL OR INVERSE

520 ' PO=VARIABLE TO SHOW WHAT POLARITY PCM IS. 1=NORMAL,

2=INVERSE
530 ' SW$=# SYNC WORDS
540 ' SW$(1-3)=VALUE OF SYNC WORD 1-3
550 ' SW(1-3)=DECIMAL ACCUMULATOR FOR SYNC WORD VALUE
560 ' FB=NUMBER OF FRAMES PER BUFFER
570 ' DA=DATA ADDRESS FOR DATA WORD IN BUFFER
580 ' BO=BIT OFFSET USED IN BIN-DEC CONVERSION OF SYNC WORDS
590 ' I, J = COUNTER VARIABLES
600 ' X=GENERAL PURPOSE RESULT VARIABLE
610 ' TIME=CURSOR FLASH RATE

620 ' SP(I)=SCREEN POSITION FOR DISPLAY LINE I
630 7 VP(I)=SCREEN POSITION FOR NON-BINARY DATA IN LINE I
640 ' BP(I)=SCREEN POSITION FOR BINARY DATA IN LINE I
650 ' TP=TYPE OF PAGE. 1=MENU, 2=ENG DATA
660 ' NC=NUMBER OF CHARACTERS ON LINE USED IN DISPLAY PAGE

ROUTINE
S670 SAME=USED IN GET ROUTINE TO TELL IF KEY WAS PRESSED

680 ' PSN=POSITION POINTER USED IN GET ROUTINE
690 ' CH=CHARACTER READ FROM SCREEN IN GET ROUTINE
700 ' KY=VALUE OF KEY USED IN GET ROUTINE
710 7 SIZE=SIZE OF DATA RECORD. PARAM.DAT=60,

DISPLAY. DAT=250
720 ' P$=PARAMETER NUMBER
730 U$=PARAMETER UNITS
740 MN)=MINIMUM VALUE FOR PARAMETER

* 750 " MXo=MAXIMUM VALUE OF PARAMETER
760 ' ALo=ALARM LOW VALUE
770 ' AHo=ALARM HIGH VALUE
780 D$()=DISPLAY TYPE, DECIMAL, HEX ETC
790 W$()=#WORDS=FRAMELENGTH
800 ' FC=FRAME COUNTER
810 SCALEo=SCALE FACTOR FOR DATA MAPPING INTO PARAMETER
RANGE
S082 ' LN=SCREEN LINE NUMBER USED IN GET ROUTINE
830 ' N=NUMBER OF CHARACTERS USED IN GET ROUTINE
840 ' LP=LINE POINTER, POINTS TO DISPLAY TYPE IN MAIN LOOP
850 ' TP=TYPE POINTER, POINTS TO DISPLAY TYPE

860'
870 REM START OF PROGRAM DSETUP

880 CLEAR 2000
890 GOT03710:REM START OF PROGRAM
900 REM *************************
910 REM * *

* 920 REM * INITIALIZATION *

930 REM * ROUTINE *

28

0

PROGRAM DSETUP

940 REM * *
. 950 REM *************************

960 REM
970 CLS
980 POKE 65495,0:REM SET FAST SPEED
990 DIM SP(16)
1000 FOR I=ITO10:READ SP(I):NEXTI
1010 DATA 134,166,198,230,262,294,326,358,390,422

1020 DT$(1)="DEC": DT$(2)="HEX": DT$(3)="OCT": DT$(4)="BIN":
DT$ (5) ="SWI"

1030 RETURN
1040 REM~1050 REM ***********************- .1050 REM

1060 REM * *
1070 REM * LINE INPUT ROUTINE *

1080 REM: * SP= SCREEN POSITION *

1090 REM: * RETURNS STRING IN A$*
1100 REM: * N = MAX CHARACTERS *

1110 REM: * I = TEMP COUNTER *

1120 REM: * PSN = LOCAL POSITION*
1130 REM * LN = LINE OF ENTRY *

01140 REM: *
1150 REM: ***********************
1160 REM

1170 SAME=O:PSN=1:PRINT@SP(LN),"["+A$;:PRINT@SP(LN)+N+I, "]";
1180 REM MAKE FLASHING CURSOR
1190 IF PSN=N+I THEN 1240:REM END OF LINE

tO 1200 X=SP(LN)+PSN+1024:REM DIRECT READ OF SCREEN
1210 CH=PEEK(X)

1220 POKE X,109:FOR I=1T040:NEXT I:POKE X,CH:FOR
I=1TO20:NEXT I
1230 REM 109 =

1240 A$=INKEY$: IF A$="" THEN 1190
1250 KY=ASC(A$)

1260 IF KY=12 THEN QUIT=I:GOTO 1350:REM CLEAR
1270 IF KY=13 THEN 1350:REM ENTER
1280 IF KY=8 AND PSN=I THEN 1240:REM LEFT ARROW

1290 IF KY=8 THEN PSN=PSN-1:GOT01240
1300 IF KY=10 OR KY=94 THEN 1360:REM USE UP AND DOWN ARROWS
1310 IF PSN <1 OR PSN >N THEN 1240 ELSE PRINT@SP(LN)+PSN,
AS;
1320 IF KY=9 THEN 1330 ELSE SAME=1:REM NEW DATA ENTERED

1330 PSN=PSN+I
1340 GOT01240

1350 REM COLLECT CHARACTERS INTO AS

1360 A$="
1370 FOR PSN=I TO N:X=PEEK(SP(LN)+PSN+1024):IF X>95 THEN

X=X-64
1380 AS=A$+CHR$(X):NEXT PSN
1390 IF VAL(A$)>200 THEN 1170:REM MAX NUMBER OF RECORDS
1400 PRINT@SP(LN),' ';:PRINT@SP(LN)+N+1, .:REM REMOVE
BRACKETS

29

Z.l- - -P

PROGRAM DSETUP

1410 RETURN
1420 REM
1430 REM

".1i 1440 REM ************************
1450 REM * *

1460 REM * DISK INPUT ROUTINE *

1470 REM * *

1480 REM * RECORD # IN PN *
1490 REM * RECORD NAME IN NAMES*

C 1500 REM * RETURNS DATA IN A$ *

1510 REM *
1520 REM ************************
1530 IF REC=O THEN RETURN

#1 1540 OPEN"D", #1, NAMES,SIZE

1550 GET#1, REC

1560 INPUT #1,A$
1570 CLOSE #1

1580 RETURN
1590 REM ************************
1600 REM *

* 1610 REM * DISK OUTPUT ROUTINE *
1620 REM * *

1630 REM * RECORD # IN PN *

1640 REM * RECORD NAME IN NAMES*

1650 REM * DATA IN A$ *

1660 REM *
1670 REM ************************
1680 IF REC=O THEN RETURN

1690 OPEN "D", #1, NAME$, SIZE
1700 WRITE #1,A$
1710 PUT #1,REC
1720 CLOSE #1
1730 RETURN

1740 REM
1750 REM

1760 REM
1770 REM ***********************
1780 REM * *

1790 REM * LIST DATA WORD NAMES*
1800 REM * SUBROUTINE *
1810 REM * *

1820 REM ***********************
1830 GOTO 1910
1840 CLS:LN=4:PRINT" CATALOG LISTING OF";A1$;" WORDS";

1850 PRINT@32,STRING$(32, "*");

1660 PRINT" WORD # NAME PARM"

1870 PRINT STRINGS(32,"*");
1880 PRINT@44BSTRING$(32, "*");

1890 PRINT@128,"";

1900 RETURN

1910 REC=201:NAMES="PARAM.DAT":SIZE=60:GOSUB 1530

1920 A1$=A$:REM SAVE NUMBER OF REC

30

-[*t . ,~ -

PROGRAM DSETUP

1930 GOSUB 1840:REM PRINT PAGE
1940 FOR I=1 TO VAL(A1$)

1950 REC I
1960 GOSUB 1530:REM READ IN RECORD

1970 PRINT@LN*32," ";I,LEFT$(A$,7);" ";MID$(A$,8,3);

1980 LN=LN+I
1990 IF INT(I/10)=I/10 THEN 2010

2000 NEXT I
2010 PRINT@480," CR=CONT, E=EXIT ";:INPUT A$

2020 IF A$="E" THEN 2060
2030 IF I=>VAL(AI$) THEN 2060

2040 GOSUB 1840

2050 NEXT I
2060 RETURN
2070

...,.1 2080 REM **********************
2090 REM * *

2100 REM * OUTPUT DISPLA PAGE *

2110 REM * SUBROUTINE *

2120 REM * *

* 2130 REM ***********************
2140 CLS:PRINT A2$;PN

2150 PRINT"********************************;
2160 PRINT" POS DW# PAR NAME DISP"

2170 PRINT" ------------------------------------
2180 FOR I=tT09:PRINT" .;I;.. ";DW$(I);" ";P$(I);",., t- o " N$(1) ; "

";D$(I):NEXT I
2190 PRINT" 10 ";DW$(10);" ,;P$(10)., .-";N$(10);-"
";D$(10)

*. . 2200 PRINT"******************************";
2210 PRINT" ENTER=NEXT CLEAR=ACCEPT SP=TOG";
2220 RETURN

2230 REM
2240 REM
2250 REM- .- p
2260 REM ***********************
2270 REM * *

. 2280 REM * LIST DISPLAY CATALOG*

2290 REM * SUBROUTINE *

2300 REM * *

2310 REM ***********************
2320 GOTO 2400:REM ENTRY POINT FOR SUBROUTINE
2330 CLS:PRINT' CATALOG LISTING OF";AI$;" PAGES"
2340 PRINT STRING$(32,"*");
2350 PRINT"PG'I! ''2! !3! !4! '5 !6! !7''! !9: !10";
2360 PRINT STRING$(32,"*");
2370 PRINT@448,STRING$(32, "*");

2380 PRINT@128,"":REM SET TO TOP OF DISPLAY AREA
2390 RETURN

k 2400 CLS:J=I:LN=4:REM LINE COUNTERS

2410 NAME$="DISPLAY.DAT":REC=101:SIZE=250:GOSUB 1530:REM GET

31

PROGRAM DSETUP

#
., DISPLAYS IN FILE

2420 AI$=A$:REM SAVE # PAGES
2430 GOSUB 2330:REM PRINT DISPLAY (INTERNAL SUBROUTINE)
2440 FOR 1=1 TO 2*VAL(A15) STEP 2:REM 2 RECORDS FOR 1
DISPLAY

PAGE

2450 REC=I
2460 GOSUB 1530:REM READ IN FIRST RECORD
2470 REM GET LINE TO PRINT IN LIS

2480 LI$=LEFT$(A$,3) + MID$(A$,44,3) + MID$(A$,87,3) +
MID$(A$,130,3) + MID$(A$,173,3)

2490 REC=I+1:GOSUB 1530:REM NOW GET SECOND HALF

2500 LI$=LI$ + LEFTS(AS,3) + MIDS(A$,44,3) + MID$(A$,87,3) +
MID$(AS,130,3) + MID$(A$,173,3)

2510 PRINT@LN*32,RIGHTS(STR$(J),2) :PRINT@LN*32+2,LIS;
2520 IF INT(J/10)=J/10 THEN LN=4:GOTO 2550
2530 J=J+1:LN=LN+1:REM INCREMENT LINE
2540 NEXT I

2550 PRINT@480, "NUMB=SEL, ENTER=CONT, E=EX IT";: INPUT A$
2560 IF AS="E" THEN 2620

2570 IF VAL(A$)<>O THEN 2620
2580 IF J=>VAL(AI$) THEN A$="E":GOTO 2620
2590 GOSUB 2330:REM RE-DRAW DISPLAY

2600 J=J+I:REM NOW GET NEXT RECORD
2610 NEXT I

g0 2620 RETURN

• ,2630 REM
2640 REM
2650 REM ***********************
2660 REM * *
2670 REM * RETRIEVE DATA *

" 2680 REM * SUBROUTINE *

2690 REM * *

2700 REM ***********************
2710 GOSUB2140:REM OUTPUT DISPLAY PAGE
2720 QUIT=O
2730 LN=I:N=3: AS=""

2740 GOSUB 1170:REM GET DATA WORD NUMBER IN A$

. 2750 IF SAME=O THEN 2850:REM SAME DATA SO DON'T READ AGAIN
2760 IF VAL(A$)=O THEN 2740:REM NOT A NUMBER
2770 DW$(LN)=A$:REM SAVE DATA WORD NUMBER
2780 REM NOW READ IN PARAMETER VALUES
2790 REC=VAL (AS) : NAME$="PARAM. DAT" :SI ZE=60: GOSUB 1530: REM

GET
7' PARAMETER

2800 TP$(LN)=A$:REM SAVE TOTAL PARAMETER VALUES OR CHANGES
THERETO

S-" 2810 N$(LN)=LEFTS(AS,7) :P$(LN)=MID$(AS,8,3)

2820 PRINT@(LN+3)*32+12,P$(LN);:PRINT" ";N$(LN)"
* 2830 GOSUB3570:REM GET DISPLAY TYPE IN DT$
7'S 2840 D$(LN)=DT$(J):REM SAVE IT IN D$

32

S,-
,,1F " % , , -. -. . .

IP j

PROGRAM DSETUP

2850 IF QUIT=I THEN 2910:REM CLEAR KEY PRESSED

" 2860 IF KY=94 THEN LN=LN-2:REM BACKUP
2870 AS=""
2880 LN=LN+I:IF LN=11 THEN GOTO 2730
2890 IF LN=O THEN LN=10
2900 GOTO 2740

N -. 2910 CLS:PRINT:PRINT:PRINT"S)AVE DISPLAY #";PN

2920 PRINT"T)RY AGAIN?"
2930 PRINT"R)ETURN TO MENU?"
2940 PRINT: INPUT"WHICH ONE>";A$
2950 IF AS="S" THEN 2990
2960 IF AS="T" THEN 2710
2970 IF A$="R" THEN RUN:REM START OVER WITH MAIN MENU
2980 GOTO 2910
2990 AS="":FOR I=1TO5:REM COLLECT 5 LINES
3000 D$(I)=LEFT$(D$(I),I):REM SAVE ONLY 1 CHAR
3010 IF TP$(I)="" THEN TP$(I)="
":REM FILL NULL STRING
3020 A$=A$+DW$(I)+TP$(I)+DS(I):REM COLLECT FIRST HALF OF
DISPLAY

DATA
3030 NEXT I
3040 NAME$="DISPLAY. DAT" :SIZE=250
3050 REC=2*PN-I:REM SAVE FIRST PART OF PAGE
3060 GOSUB 1680

93070 AS="":FOR I=6 TO 10
3080 D$(I)=LEFTS(DS(I),I)
3090 IF TP$ (I)="" THEN TP$(I)="

3100 A$=A$+DW$(I)+TP$(I)+D$(I):NEXT I
3110 REC=2*PN:GOSUB 1680
3120 PRINT:PRINT"DATA WORD #";PN;N$;" SAVED"
3130 FOR I=1TO2000:NEXT I
3140 A$="S":REM SHOW CALLING PROGRAM THAT REC WAS SAVED

'A 3150 RETURN

3160 REM
N,.", 3170 REM ***********************
C 3180 REM * *

3190 REM * DISPLAY DATA ENTRY *
3200 REM * PAGE SUBROUTINE *
3210 REM * *

3220 REM ***********************
3230 REM
3240 CLS:PRINT@484,"PRESS L TO LIST, E TO EXIT

c. ":PRINT@35,A25;:INPUT A$
3250 IF AS="L" THEN GOSUB 2320: IF A$="E" THEN 3240
3260 IF A$="E" THEN RETURN:REM DON'T EDIT
3270 PN=VAL(A$): IF PN=O THEN 3240:REM MUST BE NUMBER

. 3280 NAME$="DISPLAY.DAT":SIZE=250:REC=101 :GOSUB 1530
6 3290 MR$=A$:REM SAVE MAX RECORDS

3300 IF PN>VAL(A$) THEN PRINT"YOU ONLY HAVE ";AS;" RECORDS":
-, FOR I=1T02000:NEXT I:GOT03240

S33
S

..........--- ,'-., . . .,,' , - .- : .- .. --- . -, - - . ,-- . -...... 2 . .2 -- ; " - 2- .- '.

PROGRAM DSETUP

3310 IF PN>50 THEN PRINT"MAX NUMBER IS 50":FOR I=1T02000:
NEXT I:GOT03240

3320 REC=2*PN-I:REM GET FIRST HALF
3330 GOSUB 1530:REM GET OLD DATA
3340 FOR 1=1 TO 10
3350 IF I<6 THEN X=(I-1)*43+1 ELSE X=(I-6)*43+1
3360 IF 1=6 THEN REC=2*PN:GOSUB 1530:REM GET NEXT HALF OF
RECORD
3370 TP$(I)=MID$(A$,X+3,39):REM SAVE DATA WORD IN TP$ AS IT

COMES IN
3380 DW$(I)=MID$(AS,X,3)
3390 N$(I)=MID$(A$,X+3,7)
3400 P$(I)=MID$(A$,(X+10),3)
3410 D$(I)=MID$(A$,X+42,1)
3420 IF D$(I)="D" THEN D$(I)= "DEC"
3430 IF D$(I)="H" THEN D$(I)="HEX"
3440 IF D$(I)="O" THEN D$(I)="OCT"
3450 IF D$(I)="B" THEN D$(I)="BIN"
3460 IF D$(I)="S" THEN D$(1)="SWI"
3470 NEXT I
3480 RETURN
3490 REM ***********************

. 3500 REM * *

3510 REM * GET DATA TYPE *
3520 REM * SUBROUTINE *

* . 3530 REM * *
3540 REM ***********************

.•3550 REM
3560 REM
3570 3=1
3580 PRINT@(LN+3)*32+26," at;
3590 FOR I=1T040:NEXT I:PRINT@(LN+3)*32+26,DT$(J);:

FOR I=1TO40:NEXT I
3600 KY$=INKEY$:IF KY$="" THEN 3580
3610 IF ASC(KY$)=13 THEN RETURN:REM ENTER
3620 IF ASC(KY$)=12 THEN QUIT=1:RETURN:REM CLEAR
3630 J=J+I:IF J>5 THEN]=1
3640 GOTO 3580
3650 REM
3660 REM ************************
3670 REM * *
3680 REM * START OF PROGRAM *
3690 REM * *
3700 REM ************************
3710 GOSUB 970:REM INIT
3720 CLS
3730 PRINT@O, STRING$(32,"*");
3740 PRINT"* DISPLAY DEFINITION PAGE

- 3750 PRINT STRING$(32,. "*")
3760 PRINT@128,"A)DD NEW DISPLAY PAGE"

* 3770 PRINT"E)DIT DISPLAY PAGE"
3780 PRINT" I)NSERT DISPLAY PAGE"

34
• .

PROGRAM DSETUP

"- 3790 PRINT"D)ELETE DISPLAY PAGE"
* 3800 PRINT"L)IST CURRENT DISPLAY PAGES"

3810 PRINT"P)ARAMETER LISTING"
3820 PRINT"Q)UIT"
3830 PRINT: INPUT"WHICH ONE";KY$

3840 IF KY$="A" THEN 3970
3850 IF KY$="Q" THEN RUN"MAIN"
3860 IF KY$="E" THEN 4140
3870 IF KY$="D" THEN 4250
3880 IF KY$="I" THEN 4430
3890 IF KY$="L" THEN GOSUB 2400:REM LIST DISPLAY PAGES
3900 IF KY$="P" THEN GOSUB 1830:REM LIST PARAMETERS IN
RECORD
3910 GOTO 3720:REM WRONG KEY? THEN START AGAIN
3920 REM ***********************

-4 3930 REM * *

3940 REM * ADD DISPLAY PAGE *

3950 REM * *

3970 NAMES$="DISPLAY.DAT": REC=101:SIZE=250:REM MAX # RECORDS
COUNT

3980 GOSUB 1530:REM READ # RECORDS IN FILE
3990 PN=VAL(A$)+I:REM MAKE A NEW RECORD NUMBER
4000 A25=" ADDING DISPLAY PAGE #"
4010 GOSUB 2710:REM GET NEW DATA
4020 IF A$="T" THEN 4010:REM TRY AGAIN

0 4030 PRINT:PRINT"UPDATING TOTAL # OF RECORDS"
4040 NAMES$="DISPLAY.DAT":REC=101:A$=STR$(PN)

4050 GOSUB 1680:REM WRITE NEW MAX RECORDS
4060 RUN: REM START AGAIN WITH MAIN MENU. CLEARS STRING
SPACE
4070 REM
4080 REM

4090 REM ***********************
4100 REM * *

4110 REM * EDIT DISPLAY *
4120 REM * *

4130 REM ***********************
4140 A2$="ENTER DISPLAY # TO EDIT"
4150 GOSUB 3240:REM GET DISPLAY INFO
4160 A2$=" EDITING DISPLAY #"

4170 GOSUB 2710:REM NOW EDIT IT
4180 IF A$="T" THEN 4160
4190 RUN: REM USE RUN TO CLEAR STRING SPACE
4200 REM ***********************
4210 REM * *

4220 REM * DELETE DISPLAY PAGE *
4230 REM * *

4240 REM ***********************

4250 A25=" DELETE DISPLAY #
4260 GOSUB 3240:REM READ DATA
4270 IF A$="E" THEN RUN

35
b

J

* .I - .". ', " ' . " ," - -. . .- ., * - .- -jy .. - ., . - o. . ,,.'- - - - - -

PROGRAM DSETUP

4'~>Q4280 A2$=" DELETE DISPLAY #

4290 GOSUB 2140:REM OUTPUT DISPLAY PAGE
4300 PRINT@480,"DELETE THIS DATA WORD? Y/N ";:INPUT A$
4310 IF A$<>"Y" THEN 4250
4320 CLS:PRINT" DELETING DATA WORD";PN
4330 FOR I=PN+I TO VAL(MR$):REM MRS HAS MAX# RECORDS FROM

PREVIOUS CALL
4340 PRINT" MOVING RECORD # " ;I
4350 REC=2*I-1:GOSUB 1530:REM READ OLD RECORD
4360 REC=REC-2:GOSUB 1690:REM PUT IN NEXT LOWER POSITION
4370 REC=2*I:GOSUB 1530:REM READ RECORD
4380 REC=REC-2:GOSUB 1690:REM WRITE IT TO PREVIOUS NUMBER
4390 NEXT I
4400 REC=101:A$=STR$(VAL(MR$)-1):REM UPDATE # RECORDS STORED
4410 GOSUB 1690
4420 RUN
4430 REM
4440 REM ***********************
4450 REM * *

4460 REM * INSERT DATA WORD *
4470 REM * *

4480 REM ***********************
4490 REM
4500 CLS:PRINT@484,"PRESS L TO LIST, E TO EXIT
":PRINT@32,"ENTER

WORD# TO BE INSERTED";:INPUT A$
4510 IF A$="L" THEN GOSUB 2400: IF A$="E" THEN 4500
4520 IF A$="E" THEN RUN:REM EXIT
4530 PN=VAL(A$): IF PN=O THEN 4500
4540 NAMES="DISPLAY.DAT":REC=101:SIZE=250:GOSUB1530
4550 MR$=A$:REM SAVE TOTAL RECORDS STORED
4560 IF VAL(MR$)=50 THEN PRINT"YOU HAVE 50 RECORDS, MUST

DELETE";:FOR I=1T02000:NEXT I:GOT04500
4570 IF PN>50 THEN PRINT"MAX NUMBER IS 50": FOR I=1T02000:

NEXT I:GOT04500
4580 REC=2*PN-I:GOSUB 1530:REM SAVE RECORD
4590 SI$=A$:REM SAVE FIRST HALF
4600 REC=2*PN:GOSUB 1530:REM NOW SAVE SECOND HALF

- 4610 $25=A$
4620 A25=" INSERTING BEFORE WORD #"
4630 GOSUB 2710:REM GET NEW DISPLAY
4640 IF A$="T" THEN 4500:REM START ALL OVER AGAIN
4650 IF A$="R" THEN RUN
4660 CLS:PRINT"INSERTING BEFORE DISPLAY #";PN
4670 PRINT
4680 FOR I=VAL(MR$) TO PN+I STEP -1
4690 PRINT" MOVING DISPLAY PAGE #";I
4700 REC=2*I:GOSUB 1530:REM GET TOP RECORD IN AS
4710 REC=REC+2:GOSUB 1680:REM STORE IT ONE HIGHER

4720 REC=2*I-I:GOSUB 1530
4730 REC=REC+2:GOSUB 1680
4740 NEXT I

36

.... "-.'.p.. . . . -: ..-
...0..,. :

PROGRAM DSETUP

4' - 4750 REC=2*PN+1:AS=S1$:GOSUB 1680:REM NOW SAVE OLD RECORD
-* 4760 REC=REC+1:AS=S2$:GOSUB 1680

4770 REC=101:AS=STR$(VAL(MR$)+1):GOSUB 1660:REM UPDATE*
RECORDS

STORED
- ~4760 PRINT1 1INSERTION COMPLETED":FOR I=1T02000:NEXTI:RUN

4790 END_

PROGRAM EXECUTE

V. ,'--. 10 REM *********************************
20 REM* *
30 REM * PROGRAM EXECUTE *
35 REM * Version 1.0, Sep 85 *
40 REM * *

50 REM * THIS PROGRAM READS DISPLAY *
60 REM * PAGES FROM DISPLAY.DAT AND *
70 REM * PRESENTS THEM TO THE USER *
80 REM * IN ONE OF THREE FASHIONS. *
90 REM * 1. ENGINEERING UNITS *
100 REM * 2. BAR GRAPH REPRESENTATION *
110 REM * 3. PLOTS OF A SINGLE WORD *

V 120 REM * *
130 REM ********************************
140 ' MRS=MAX NUMBER OF RECORDS STORED IN DISPLAY.DAT
150 ' NAME$=NAME OF DATA FILE TO ACCESS
160 ' SN() = SYNC NUMBER. A CONSTANT FOR BIN-DEC CONVERSION
170 '
180 ' THESE ADDRESSES ARE USED FOR INFORMATION TRANSFER TO
THE
190 ' PCM MONITOR
200 ' VLID = VALID ADDRESS TO TELL PCM PROCESSOR THAT DATA
IS

GOOD
210 ' BITRATE = ADDRESS TO STORE BIT RATE IN
220 ' PCMTYPE = ADDRESS TO STORE PCM TYPE, NRZ OR BI-PHASE
230 ' WORDLENGTH = ADDRESS FOR BITS PER PCM WORD

240 ' FPERBUF = ADDRESS FOR # OF FRAMES PER BUFFER MEMORY.
250 ' FRAMELENGTH = ADDRESS FOR NUMBER OF WORDS PER FRAME
260 ' SH,SM,SL = SYNC WORD ADDRESSES (HIGH, MIDDLE, LOW)
270 ' EROR = ERROR ACCUMULATOR
280 ' PLARITY = ADDRESS FOR POLARITY, NORMAL OR INVERSE
290 ' CALRATE = ADDRESS SHOWING WHAT THE CALCULATED PCM RATE
IS

• - 300 7 CORRECTION = RETURNED VALUE FOR CORRECTION NEEDED FOR
SYNC

.. 310 ' STATUS = ADDRESS FOR RETURN CODE FOR IN SYNC OR NOT
* 320 ' REC = RECORD NUMBER IN NAMES TO ACCESS

330 ' TY$=TYPE OF PCM: NRZ-L OR BI-PHASE-L
340 ' TY=VARIBLE TO SHOW WHAT PCM TYPE IS, I=NRZ, 2=BI-PHASE
350 ' RAS=PCM RATE: AUTO OR VALUE
360 ' RA=VARIABLE TO SHOW BIT RATE, AUTO OR NUMBER
370 ' O$=PCM ORDER: MSB FIRST OR LSB FIRST
380 ' O=VARIABLE TO SHOW WHAT PCM RDER IS, I=MSB, 2=LSB
FIRST
390 ' PO$=PCM POLARITY: NORMAL OR INVERSE
400 ' PO=VARIABLE TO SHOW WHAT POLARITY PCM IS. 1=NORMAL,

"v, 2=INVERSE
410 ' SW$=# SYNC WORDS
420 ' SW$(1-3)=VALUE OF SYNC WORD 1-3
430 ' SW(1-3)=DECIMAL ACCUMULATOR FOR SYNC WORD VALUE
440 ' FB=NUMBER OF FRAMES PER BUFFER

................

PROGRAM EXECUTE

450 ' DA=DATA ADDRESS FOR DATA WORD IN BUFFER
460 ' DB=ALTERNATE FOR DA, POINTS TO BEFINNGING OF BUFFER
470 ' DC=ALTERNATE FOR DA, END OF BUFFER USUALLY
480 ' BO=BIT OFFSET USED IN BIN-DEC CONVERSION OF SYNC WORDS
490 ' I, J, K = COUNTER VARIABLES
500 ' X=GENERAL PURPOSE RESULT VARIABLE
510 ' TIME=CURSOR FLASH RATE
520 ' SP(I)=SCREEN POSITION FOR DISPLAY LINE I
530 ' VP(I)=SCREEN POSITION FOR NON-BINARY DATA IN LINE I

. 540 ' BP(I)=SCREEN POSITION FOR BINARY DATA IN LINE I
550 ' TP=TYPE OF PAGE. 1=MENU, 2=ENG DATA
560 ' NC=NUMBER OF CHARACTERS ON LINE USED IN DISPLAY PAGE

ROUTINE
570 ' SAME=USED IN GET ROUTINE TO TELL IF KEY WAS PRESSED
580 ' PSN=POSITION POINTER USED IN GET ROUTINE
590 ' CH=CHARACTER READ FROM SCREEN IN GET ROUTINE
600 " KY=VALUE OF KEY USED IN GET ROUTINE
610 ' KY$=STRING OF KEY INPUT

620 7 SIZE=SIZE OF DATA RECORD. PARAM.DAT=60,
DISPLAY.DAT=250

0 630 PS=PARAMETER NUMBER
640 ' U$=PARAMETER UNITS
650 ' MNo=MINIMUM VALUE FOR PARAMETER
660 ' MXo=MAXIMUM VALUE OF PARAMETER
670 ' ALo=ALARM LOW VALUE
660 " AHo=ALARM HIGH VALUE

690 ' D$()=DISPLAY TYPE, DECIMAL, HEX ETC
700 ' W$()=#WORDS=FRAMELENGTH
710 ' B$=STRING CONTANING BITS PER WORD
720 B=VALUE OF B$
730 ' FC=FRAME COUNTER

740 'FD=ALTERNATE FRAME COUNTER
750 " SCALE()=SCALE FACTOR FOR DATA MAPPING INTO PARAMETER
RANGE
760 ' LN=SCREEN LINE NUMBER USED IN GET ROUTINE
770 ' N=NUMBER OF CHARACTERS USED IN GET ROUTINE
780 ' LP=LINE POINTER, POINTS TO DISPLAY TYPE IN MAIN LOOP
790 ' TP=TYPE POINTER, POINTS TO DISPLAY TYPE
800 ' LM=LINE NUMBER OF SELECTED DISPLAY TYPE IN ENG DISP
PAGE
810 ' BUFFER=START OF MEMORY BUFFER ($EOO0)
820 CLEAR 1000: REM MAKE ROOM FOR STRINGS
830 TEST=O:REM SET TEST MODE SO SOFTWARE WILL RUN WITHOUT

p. PCM PROCESSOR
840 GOTO 5620:REM START OF PROGRAM

850 REM *************************
860 REM * *

870 REM * INITIALIZATION *
880 REM * ROUTINE *
890 REM * *

* 900 REM *************************
910 REM

%% 3

PROGRAM EXECUTE

920 POKE 65495,0:REM SET FAST SPEED
930 CLS
940'

960
970
980 'SET UP FUNCTIONS FOR HIGH AND LO BYTE POKES
990 DEF FNBL(X)=X-256*INT(X/256)
1000 DEF FNBH(X)=INT(X/256)
1010
1020
1030
1040
1050'**************
1060 '

1070 1 /O CONTROL BLOCK
1080 '*EQUATES*

1090 '

1100 **************

1110 BUFFER=57344:REM $E000 = START OF DATA INPUT BUFFER
V.,1120 VLID = 59390:REM $E7FE

1125 POKE VLID,255:REM STOP SYSTEM IF RUNNING
1130 BITRATE = 59388:REM $E7FC 0=CAL, NUMBER=RATE
1140 PCMTYPE = 59386:REM $E7FA, C,N,B
1150 WORDLENGTH =59384:REM SE7F8, B-16
1160 FRAMELENGTH 59382:REM $E7F6
1170 SH=59380:REM $E7F4 FRAME SYNC HIGH
1180 SM=59378:REM $E7F2 FRAME SYNC MIDDLE
1190 SL=59376:REM $E7FO FRAME SYNC LOW
1200 EROR=59374:REM $E7EE
1210 PLARITY = 59372:REM $E7EC NORMAL R INVERSE
1220 FPERBUF = 59370:REM $E7EA
1230 RPCMTYPE =59368:REM $E7E8 RETURNED PCM TYPE
1240 CALRATE = 59366:REM $E7E6
1250 CORRECTION = 59364:REM $E7E4
1260 STATUS = 59362:REM $E7E2 0 IF NOT IN SYNC, 1 OR MORE IF
IN SYNC
1270 WC =59360:REM $E7EO: WORD COUNTER OR DATA ADDRESS
RETURNED FOR SYNCHRONIZING TRACE MODE

-- -,1280

1290
1300
1310
1320 'READ IN NUMBER OF RECORDS STORED
1330 NAME$="DISPLAY. DAT : SIZE=250:REC=101:60SUB4580
1340 MR$=A$
1350
1360
1370
1380

01390 REM READ IN FRAME SPECIFICATIONS
1400 DIM SN(16)

40

O-"

PROGRAM EXECUTE

1410 DIM Y(30):REM USED IN PLOT ROUTINE
1420 DIM N$(11):REM NAME OF VARIABLE
1430 DIM D$(11):REM DATA TYPE OF VARIABLE
1440 SN(I)=32768: SN(2)=16384: SN(3)=8192: SN(4)=4096:
SN(5)=2048: SN(6)=1024: SN(7)=512:SN(8)=256:

- SN(9)=128:SN(10)=64
1450 SN(11)=32:SN(12)=16:SN(13)=8:SN(14)=4:SN(15)=2:SN(16)=1
1460 REC=102:GOSUB4580
1470 '
1480 '

.'-"1490 '
15 7 CONVERT AS TO FRAME VALUES

1510 '
1520 B$=LEFT$(A$,2): W$=MID$(A$,3,3): TY$=MID$(A$,6,8):
RA$=MID$(A$,14,4): O$=MID$(A$,18,3):

PO$=MID$ (AS, 21,7)
1530 SW$=MID$(AS,28,1): SW$(1)=MID$(AS,29, 16):
SW$(2)=MID$(A$,45,16): SW$(3)=MID$(A$,61,16)
1540 PRINT:PRINT:PRINT" PLEASE SET ORDER SWITCH TO ";0$

0 1550 DEFUSR1=4096:REM SET TO $1000
1560 LOADM"CONVERT":REM MACHINE PROGRAM TO DO CONVERSIONS
1570 TY=1:IF TY$=°NRZ " THEN TY=2

" 1580 IF TY$="BI-PHASE" THEN TY=3
1590 IF RA$<>"auto" THEN RA=2 ELSE RA=I
1600 IF O$="MSB" THEN 0=2 ELSE 0=1

- 1610 IF PO$="INVERSE" THEN PO=2 ELSE PO=1
1611 TIME=50:REM CURSOR FLASH RATE
1612 LM=I:REM LINE POINTER FOR TYPE IN ENG PAGE

,.1613 '

1614
1615 ' SET UP SCREEN POSITIONS
1616 '
1617 SP(0)=27: REM DISPLAY NUMBER
1618 FOR 1=1 TO 10
1619 SP(I)=32*I+96:VP(I)=SP(I)+14:YP(I)=SP(I)+1055
1620 NEXT I
1621 VH=1536:VO=1537:REM VARIABLE STORAGE FOR CONVERT
ROUTINE ($600)
1622 RETURN
1623
1630 REM ***********************
1631 REM * *
1632 REM * SET I/O CONTROLS *
1633 REM * SUBROUTINE *
1634 REM * *
1635 REM ***********************
1650 '
1660 P MOST VALUES ARE 8 BIT SO SET HIGH BYTE=O
1670 ' LOW ADDRESS HERE = HIGH BYTE FOR PCM PROCESSOR
1680 POKE BITRATE,O:POKE BITRATE+1,0
1690 IF RA<>2 THEN 1730:REM AUTO IS SELECTED
1700 RA=INT(16000/VAL(RA$)-CORRECTION):REM CALCULATE RATE AS

41

S°

PROGRAM EXECUTE

*A WORD COUNT
1710 POKE BITRATE, FNBH(RA):REM CALC HIGH BYTE
1720 POKE BITRATE+l,FNBL(RA):REM LO BYTE
1730 POKE PLARITY,0:POKE PLARITY+1,ASC(LEFT$(PO$,1))
1740 POKE PCMTYPE,0:POKE PCMTYPE+1,ASC("C"):REM C IS DEFAULT
1750 IF TY=2 THEN POKE PCMTYPE+1,ASC('N"):REM N FOR NRZ
1760 IF TY=3 THEN POKE PCMTYPE+1,ASC("B'):REM B FOR BI-PHASE
1770 FB=INT(1016/VAL(W$)):REM MAX NUMBER OF FRAMES PER
BUFFER
1780 POKE FPERBUF,0:POKE FPERBUF+1,FB
1790 POKE FRAMELENGTH, FNBH(VAL(W$)):POKE
FRAMELENGTH+ 1, FNBL (VAL (W$))
1600 POKE WORDLENGTH,0: POKE WORDLENGTH+1, VAL (B$) -1:REM
OFFSET TO BASE 0
1810 POKE EROR,0:POKE EROR+1,0
1820 POKE CALRATE,0:POKE CALRATE+1,0:REM INIT CALRATE
1830 POKE CORRECTION,0:POKE CORRECTION+1,0:REM INIT
1640
1850
1860 ' CONVERT SYNC WORD BINARY STRING TO NUMBER
1870 BO=16-YAL(B$):REM BIT OFFSET SINCE SW IS LEFT JUSTIFIED
1880 FOR J~1 TO 3
1890 FOR 1=1 TO VAL(B$)

*1900 IF VAL(MID$(SW$(J),I,1))=0 THEN 1920
1910 SW(J)=SW(J)--SN(I+BO)
1920 NEXT I

41930 NEXT J
1940 POKE SH, FNBH(SW(1)):POKE SH+1. FNBL(SW(1))
1950 POKE SM, FNBH(SW(2)):POKE SM+l, FNBL(SW(2))
1960 POKE SL, FNBH(SW(3)):POKE SL+1, FNBL(SW(3))
1970 POKE WC,0:POKE WC+1,0:REM INIT WORD COUNTER TO 0 WORDS
1980
1990
2000 'NOW TELL PCM PROCESSOR THAT DATA IS VALID
2010 POKE VLID+1,0:POKE VLID,0
2020 RETURN
2030

*2160 REM
2170 REM ************

2180 REM **
2190 REM * HEADER OUTPUT
2200 REM * SUBROUTINE
2210 REM ************

2220 REM
2230 REM
2240 REM TP=TYPE PAGE. 1 FOR MENU. 2 FOR ENG DATA
2250 CLS:NC=30
2260 IF TP=2 THEN NC=32:GOTO 2290
2270 PRINT STRING$(32,"*");
2280 PRINT ;

2290 FOR 1=1 TO (NC-LEN(A$)-LEN(PG$))/2:PRINT" ";:NEXT I

2300 PRINT A$;

4 2

%PROGRAM EXECUTE

> , w 2310 IF POS(0)=31 THEN 2330

2320 PRINT ' .. :GT02310
2330 IF TP=2 THEN PRINT " ; ELSE PRINT '*";

2340 PRINT STRINGS(32,"*");
2350 RETURN
2360 REM *************************
2370 REM *

2380 REM * ENGINEERING DATA *
2390 REM * HEADER OUTPUT ROUTINE *
2400 REM • *
2410 REM *************************

2420 REM
2430 A$="ENGINEERING DISPLAY PAGE ":TP=2
2440 GOSUB 2250
2450 PRINT"DW# NAME VALUE UNITS TY";
2460 PRINT STRING$(32,"*");
2470 PRINT@448,STRING$(32, "*");
2480 PRINT CHR$(95)fCHR$(94);" NUM, T)YP, B)AR,, P)LT,
E) XIT";
2490 PRINT@128,"";:REM SET TOP OF SCREEN
2500 RETURN
2510 REM *************************
2520 REM * *

2530 REM * PLOT POINT *
2540 REM * SUBROUTINE *
2550 REM * *
2560 REM * THIS ROUTINE PLOTS A *
2570 REM * POINT AT XY ABSOLUTE *
2580 REM * *
2590 REM * X=0-31, Y=0-99 *
2600 REM *************************
2610 Y=INT(Y/5)/2+3:REM CONVERT TO ABSOLUTE COORDINATES
2620 IF INT(Y)=Y THEN CH=147 ELSE CH=156
2630 Y=480-32*INT(Y)+X
2640 PRINT@Y(J),CHR$(144);:REM ERASE OLD POINT
2650 PRINT@YCHR$(CH);:REM PLOT NEW POINT
2660 Y(J)=Y:REM SAVE POINT ADDRESS
2670 RETURN
2680 REM *************************
2690 REM * .
2700 REM * BAR CHART *
2710 REM * ROUTINE *
2720 REM * .
2730 REM *************************
2740 7 FIRST DRAW CHART
2750 CLS:PRINT" BAR GRAPH DISPLAY FOR PAGE";PN
2760 PRINT STRING$(32,"*");
2770 PRINT RIGHT$("%",I):REM TRICK TO PRINT IN FIRST COLUMN
2780 FOR J=90 TO 0 STEP -10
2790 PRINT RIGHT$(STR$(J),2);CHR$(154):REM PRINT VERT LINE
2800 NEXT 3
2810 FOR J=1TO1O:Y(J)=O:NEXT J

43

I,>v:

42.o

PROGRAM EXECUTE

- 2820 PRINT@416," ";CHR$(156);:REM LOWER LEFT CORNER
2830 '
2840 '

. 2850 ' NOW PRINT DATA WORD NUMBERS
2860 FOR J=ITO 10
2870 PRINT MID$(DW$(J),1,1);CHR$(156);CHR$(156);
2880 NEXT J
2890 PRINT@448,sDW
2900 FOR J=ITO 10
2910 PRINT MID$(DW$(J),2,1);" it;
2920 NEXT J
2930 PRINT@480,' .;
2940 FOR J=1TO10
2950 PRINT . ";MID$(DW$(J),3,1);
2960 NEXT J
2970 '
2980 '
2990 ' PLOT ALARM LIMITS
3000 FOR J=l TO 10

0 3005 IF AL(J)=O AND AH(J)=O THEN 3160:REM NO ALARMS
3010 L=MX(J)-MN(J):IF L=O THEN 3160:REM MUST BE SWITCH
3020 YH=INT(20*(AH(J)-MN(J))/L)/2+3
3030 YL=INT(20*(AL(J)-MN(J))/L)/2+3

--3040 X=3*J+I:REM HORIZ POS
3050 IF YH=INT(YH) THEN CH=130 ELSE CH=138:REM BOT LFT OR
ALL LFT
3060 YH=INT(YH)
3070 Y=480+X-32*YH:PRINT@Y,CHR$(CH);
3080 IF YL=INT(YL) THEN CH=138 ELSE CH=136:REM ALL LEFT OR
BOT LFT
3090 YL=INT(YL)
3100 Y=480+X-32*YL:PRINT@Y,CHR$(CH);

* 3110 ' FILL IN LINE

3120 IF YL=YH THEN 3160
3130 FOR K=YL+I TO YH-1
3140 PRINT@480+X-32*K,CHR$(138);
3150 NEXT K
3160 NEXT J
3170 '
3180 " CLEAR PLOT VARIABLES
3190 FOR J=1TO1O:Y(J)=O:NEXT J
3200 '
3210 ' START OF MAIN PLOT LOOP
3220 FOR FD=I TO FB
3230 FOR J=l TO 10
3240 IF PEEK(STATUS) THEN 3260
3250 IF INKEY$="E" THEN RETURN ELSE 3240
3260 X=3*J:DA=BI+B2*FD+B3*VAL(DW$(J)):REM POSITION AND DATA
ADDRESS

* 3270 Y=256*PEEK(DA)+PEEK(DA+1):REM READ DATA
3280 Y=INT(100*Y/B):REM CONVERT TO %

" 3290 PRINT@X+62,INT(Y);:REM PUT UP PERCENTAGE

44
,II A

~.

PROGRAM EXECUTE

3300 GOSUB 2610
3310 IF INKEY$<>"" THEN RETURN
3320 NEXT J,FD
3330 GOTO 3220
3340 '
3350 '
3360 REM *********************************
3370 REM * *
3380 REM * PLOT DATA WORD ROUTINE *

* ** 3390 REM * *
3400 REM * THIS ROUTINE PLOTS 29 SEQ- *
3410 REM * ENTIAL POINTS OF ONE DATA *
3420 REM * WORD IN DW$(LM). LM IS THE *

3430 REM * POINTER FROM THE ENG DATA *
3440 REM * PAGE. *
3450 REM * *
3460 REM *********************************
3470
3480 ' FIRST DRAW CHART

* 3490 CLS:PRINT" PLOT FOR DATA WORD# ";DW$(LM);" ;N$(LM);
3500 PRINT STRING$(32,"* ");
3510 PRINT "."
3520 FOR J=90 TO 0 STEP -10
3530 PRINT RIGHT$(STR$(J),2);CHR$(154):REM VERT LINE
3540 NEXT J
3550 PRINT@416,. ";CHR$(156);:REM LOWER LEFT CORNER
3560 FOR J=1T029
3570 PRINT CHR$(156);
3580 NEXT J
3590 '
3600 A$="c)ont, T)RACE":REM DEFAULT
3610 PRINT@448, "RATE="; :PRINT USING
"###. ##"; (256*PEEK (CALRATE) +PEEK (CALRATE+I)) /16;:

PRINT"MS A$
3620 PRINT"E)XIT,_" TO SCROLL, PG 0F34";
3630 IF LEFT$(A$,I)="C" THEN 3860:REM MUST BE "t" FOR TRACE
3640 '
3650 7 MAIN PLOT LOOP FOR cont
3660 DA=BI+B2+B3*VAL(DW$(LM)):REM FIRST ADDRESS
3670 DB=DA:REM KEEP DB=START ADDRESS
3680 DC=BI+B2*FB+B3*VAL(DW$(LM)):REM LM HAS SELECTED LINE
NUMBER
3690 FOR J=1T029:REM X POSITION FOR POINT
3700 IF PEEK(STATUS) THEN 3720
3710 IF INKEY$="E" THEN RETURN ELSE 3700
3720 X=J+2
3730 Y=256*PEEK(DA)+PEEK(DA+I):REM GET DATA
3740 Y=INT(100*Y/B):REM CONVERT TO %
3750 GOSUB 2610:REM PLOT THE POINT
3760 KY$=INKEY$:IF KY$<>"" THEN 3810
3770 DA=DA+B2:REM SKIP TO NEXT FRAME
3780 IF DA>DC THEN DA=DB:REM START OVER FROM FIRST FRAME

45
0

PROGRAM EXECUTE

3790 NEXT J
3800 GOTO 3690
3810 IF KY$="E" THEN RETURN
3820 IF KY$="T" THEN A!="C)ONT, t)race"
3830 GOTO 3610
3840
3850 ' MAIN PLOT ROUTINE FOR trace
3860 J=I:REM USED FOR X POSITIONING
3870 K=0:REM USED FOR PAGE COUNTING
3880 A=0:REM USED FOR ADDRESS COUNTING
3885 POKE WC,192:POKE WC+I,0:REM SET ADDRESS TO BEGINNING OF
$COOO
3890 X=3:REM START AT LEFT SIDE
3900 POKE VLID,255:POKE VLID+I,VAL(DW$(LM)):POKE VLID,0:REM
START TRACE
3910 PRINT@503,1;
3920 DA=BUFFER+A+K:REM DATA ADDRESS
3930 IF TEST=1 THEN 3960:REM USED TO TEST TRACE MODE. TEST
IS SET IN LINE 10

0 3940 IF PEEK(WC)*256+PEEK(WC+1)+8192 >=DA THEN 3960:REM
PROCESSOR IS AHEAD OF DISPLAY
3950 KY$=INKEY$: IF KY$="" THEN 3940 ELSE 4030:REM PROCESS
KEY
3960 Y=256*PEEK(DA)+PEEK(DA+1)
3970 Y=INT(100*Y/B):REM CONVERT TO %
3980 GOSUB 2610:REM PLOT POINT
3990 J=J+1:A=A+2:X=X+1
4000 IF A<>58 THEN 3920:REM PLOT NEXT POINT
4010 A=0:X=3:J=I:REM REWIND TO LEFT SIDE
4020 KY$=INKEY$: IF KY$="" THEN 4020
4030 IF KY$="E" THEN POKE VLID,255: FOR I=1T0100:

NEXT I:POKE VLID+I,0:POKE VLID,0:RETURN:REM STOP AND
START OVER
4040 IF KY$="C" THEN POKE VLID,255:FOR I=1T0100:NEXTI:POKE

VLID+I,0:POKE VLID,0:GOTO 3600
4045 IF KY$="T" THEN 3860:REM RESTART TRACE FROM BEGINNING
4050 IF KY$<>CHR$(6) THEN 4080:REM LT ARROW
4060 K=K-58: IF K<0 THEN K=1914
4070 GOTO 4090:REM DO NEXT PAGE
4080 K=K+58:IF K>1914 THEN K=O:REM ANY OTHER KEY ADVANCES
PAGE
4090 PRINT@503,K/58+1;:REM PRINT PAGE NUMBER
4100 GOTO 3920
4110 REM
4120 REM ***********************
4130 REM * *

4140 REM * INPUT ROUTINE *
4150 REM: * SP= SCREEN POSITION *
4160 REM: * RETURNS STRING IN A$*
4170 REM: * N = MAX CHARACTERS *

4180 REM: * I = TEMP COUNTER *

4190 REM: * PSN = LOCAL POSITION*

46

5'I

PROGRAM EXECUTE

4200 REM * LN =LINE OF ENTRY
4210 REM: *
4220 REM: ***********

4230 REM
4240 SAME=0:PSN=1:PRINT@SP(LN) ,"("+A$;:PRINT@SP(LN)+N+1,"J";
4250 REM MAKE FLASHING CURSOR
4260 IF PSN=N+1 THEN 4310:REM END OF LINE
4270 X=SP(LN)+PSN+1024:REM DIRECT READ OF SCREEN
4280 CH=PEEK(X)
4290 POKE X,109:FOR I=1T0 rIME:NEXT I:POKE X,CH:FOR I=1TO
TIME:NEXT I
4300 REM 109
4310 A$=INKEY$: IF A$="" THEN 4260
4320 KY=ASC(A$)
4330 IF KY=12 OR KY=13 THEN 4410:REM CLEAR OR ENTER
4340 IF KY=8 AND PSN =1 THEN 4310:REM LEFT ARROW
4350 IF KY=8 THEN PSN=PSN-1:60T04310:REM LEFT ARROW
4360 IF KY=10 OR KY=94 THEN 4420:REM DOWN OR UP
4370 IF PSN <1 OR PSN >N THEN 4310 ELSE PRINT@SP(LN)+PSN,

* A$.*
4380 IF KV=9 THEN 4390 ELSE SAME=1:REM NEW DATA ENTERED
4390 PSN=PSN+1
4400 60T04310
4410 REM COLLECT CHARACTERS INTO A$
4420 A$=""
4430 FOR PSN=l TO N:X=PEEK(SP(LN)+PSN+1024):IF X>95 THEN

* X=X-64
-~ 4440 A$=A$+CHR$(X):NEXT PSN

4450 PRINT@SP(LN),"l ";:PRINT@SP(LN)+N+1," ";:REM REMOVE
BRACKETS
4460 RETURN
4470 REM
4480 REM
4490 REM ************

4500 REM **
4510 REM * DISK INPUT ROUTINE*
4520 REM *

4 4530 REM * RECORD # IN PN
4540 REM * RECORD NAME IN NAME$*
4550 REM * RETURNS DATA IN A$
4560 REM**
4570 REM ************

4580 IF REC=0 THEN RETURN
4590 OPEN"D", #1, NAME$,SIZE
4600 GET#l, REC
4610 INPUT #11 A$
4620 CLOSE #1
4630 RETURN
4640 REM ************

* 4650 REM**
4660 REM * DISK OUTPUT ROUTINE*
4670 REM **

47

-7

PROGRAM EXECUTE

.. '.4680 REM * RECORD *IN PN*
4690 REM * RECORD NAME IN NAME*
4700 REM * DATA IN A$*
4710 REM *

4720 REM ************
4730 IF REC=0 THEN RETURN
4740 OPEN "D', #1, NAME$, SIZE
4750 WRITE #1,A$
4760 PUT 4*1,REC
4770 CLOSE #1
4780 RETURN
4790 REM

-~~~~ ~4800 REM ***********

4810 REM *
4820 REM * READ IN RECORD AND
4830 REM * CONVERT TO VARIABLES*
4840 REM *
4850 REM************
4860 REM
4870 REM

04880 REM
4890 REC=2*PN-1:REM GET FIRST HALF
4900 GOSUB 4580:REM THEN READ IT IN
4910 B=2'VAL(B$)-1:REM ABSOLUTE MAX VALUE FOR WORD
4920 FOR I=1TO1O
4930 IF 1<6 THEN X=(I-1)*43+1 ELSE X=(I-6)*43+1
4940 IF I=6 THEN REC=2*PN:GOSUB 4580:REM GET NEXT HALF OF
RECORD
4950 DW$(I)=MID$(A$,X,3):REM DATA WORD NUMBER
4960 N$(I)=MID$(A$,X+3,7):REM NAME
4970 P$(I)=MID$(A$,X.10,3):REM PARAMETER NUMBER

*4980 U$(I)=MID$(A$,X+13,5):REM UNITS
4990 MN(I)=VAL(MID$(A$,X+18,6)):REM RANGE MINIMUM

*5000 MX(I)=VAL(MZD$(A$,X+24,6)):REM RANGE MAXIMUM
*5010 AL(I)=VAL(MID$(A$,X+350,6)):REM ALARM LOW

5020 AH(I)=VAL(MID$(A$,X+36,6)):REM ALARM HIGH
*5030 DS(I)=MID$(A$,X+42,1):REM DISPLAY TYPE
*5040 '

5050
5060 'CALCULATE SCALE FACTOR MAPPING 0-MAX VALUE FOR WORD

- TO
5070 RANGE MIN AND MAX
5080 SCALE(I)=(MX(I)-MN(I))/B: REM SCALE FOR ENGINEERING
UNITS
5090 NEXT I
5100 RETURN
5110 REM ***********

5120 REM *
5130 REM * STATUS OUTPUT *

*5140 REM * ROUTINE*
5150 REM *
5160 REM************

48

PROGRAM EXECUTE

5170 A$=" STATUS PAGE. KEY TO EXIT":TP=1:GOSUB 2250
5180 PRINT" USER CALCULATED"
5190 PRINT"BITS/WORD "; B$; "o

5200 PRINT"WORDS/FRAME ";W$;" ----...

5210 PRINT"PCM TYPE ";TY$
5220 IF RA$="auto" THEN A$="AUTO" ELSE A$=RA$:REM MAKE CAPS
5230 PRINT"BIT RATE ";A$
5240 PRINT"PCM ORDER "; 05; ----...

5250 PRINT"PCM POLARITY ";PO$;" ----
5260 PRINT"SYNC ERRORS
5270 PRINT"PCM HEALTH

4...5280 PRINT"SYNC WORDS 1 - ";SW$(1)
t 5290 PRINT" ";CHR$(94)r " INVERSE 2 - ";SW$(2)

5300 PRINT"IF IN SYNC 3 - ";SW$(3)
5310 PRINT@217,CHR$(PEEK(RPCMTYPE+I));
5315 X= 256*PEEK(CALRATE)+PEEK(CALRATE+1): IF X<16.0001 THEN
X=16.0001:REM MAX RATE FOR DISPLAY
5320 PRINT@245,"";:PRINT USING "###.##";16000/X;:PRINT"KHZ";
5330 PRINT@344, 256*PEEK (EROR) +PEEK (EROR+1)

* 5340 PRINT@376, PEEK (CORRECTION+1)
"" 5350 IF PEEK(STATUS)=O THEN A$="SYNC" ELSE A$="sync"

5360 PRINT@384, AS;
5370 A$=INKEY$:IF A$="" THEN 5310
5380 RETURN
5390 GOTO 5390

ftb 5400 REM ***********************

5410 REM * *

5420 REM * MAIN MENU *

5430 REM * ROUTINE *

5440 REM * *

5450 REM ***********************
5460 REM
5470 AS="PCM DISPLAY MODULE":TP=1:GOSUB2250:REM OUTPUT MENU
PAGE

5480 PRINT@128,"S)TATUS PAGE"
-' 5490 PRINT"B)EGIN DISPLAY PROCESSING"

5500 PRINT"Q)UIT"
* 5510 PRINT:INPUT "WHICH ONE->";A$

5520 IF A$="Q" THEN RUN"MAIN"
5530 IF A$="B" THEN RETURN

" 5540 IF A$="S" THEN GOSUB 5170
5550 GOTO 5470

• -'.", 5560 REM **********************
5570 REM * *

5580 REM * START OF PROGRAM *

5590 REM * *

- • 5600 REM **********************
5610 REM
5620 GOSUB 920: REM INIT

- 5625 GOSUB 1680: REM LOAD AND START PROCESSOR
5630 GOSUB 5470:REM MENU PAGE

-. 5640 GOSUB 2430: REM OUTPUT ENG DATA PAGE

-49* 4 49

0 %.

. PROGRAM EXECUTE

5650 A$=" "

5660 LN=O:N=2:GOSUB 4240:REM LINE INPUT ROUTINE
5670 IF VAL(A$)=O OR VAL(A$)>VAL(MR$) THEN 5650
5680 PN=VAL(A$):REM PN=ABSOLUTE RECORD #
5690 GOSUB 4890:REM READ IT IN AND CONVERT TO DISPLAY
VARIABLES
5700 FOR I=1TOIO
5710 X$=U$(I)
5720 IF D$(I)="H" THEN X$="HEX "
5730 IF D$(I)="0" THEN X$="OCT "
5740 IF D$(I)="B" THEN X$="BIN "
5750 IF D$(I)="S" THEN X$="JI "
5760 PRTNT@SP(I),DW$(I); . ;N$(I);" .. X$;"

";D$(I)
5770 NEXT I
5780 '
5790 "
5800 '
5810 " START OF MAIN LOOP

* 5820 '
5830 ' PUT AS MUCH IN VARIABLE FORM TO INCREASE SPEED
5840 I=1:FC=I:REM FIRST DATA WORD, FIRST FRAME
5850 B1=BUFFER-2*VAL(W$)-2
5860 B2=2*VAL(W$)
5870 B3=2

lqw 5880 POKE YP(LM),PEEK(YP(LM))-64:REM INVERSE TYPE IN LINE LM
5890 '
5900 : MAIN LOOP
5910 '
5920 IF PEEK(STATUS) THEN 5940
5930 IF INKEY$="E" THEN 5630 ELSE 5920:REM WAIT FOR SYNC OR
EXIT KEY
5940 DA=BI+B2*FC+B3*VAL(DW$(I))
5950 PRINT@VP(I)-1," ";:REM CLEAR LINE BEFORE PRINTING
5960 IF D$(I)="H" THEN PRINT@VP(I),;";: X=INT(DA/256): POKE
VO,DA-256*X:POKE VH,X:A=USR1(1):GOTO 6060
5970 IF D$(I)="O" THEN PRINT@VP(I),"";:X=INT(DA/256): POKE
VO,DA-256*X:POKE VH,X:A=USR1 (2):GOTO 6060
5980 IF D$(I)="B" THEN PRINT@VP(I),"";:X=INT(DA/256): POKE
VO, DA-256*X: POKE VH, X: POKE VO+2, VAL (B$) :POKE
VH+2.,O"A=USRI(3):GOTO 6060
5990 IF D$(I)<>"S" THEN 6020
6000 IF PEEK(DA)=0 AND PEEK(DA+I)=O THEN PRINT@VP(I),"OFF";
ELSE PRINT @VP(I),"ONs" ;
6010 GOTO 6060
6020 X=256*PEEK (DA) +PEEK (DA+I): REM READ DATA
6030 X=SCALE(I)*X+MN(I)
6040 PR I NT@VP (I) -1 ';

6050 PRINT USING "#####.##";X;
6060 A$=INKEY$:IF ASK>"" THEN GOTO 6130
6070 ' SKIP FRAME IF SAME LINE TO SEE TWO SEQUENTIAL VALUES
6080 IF N$(I)=N$(I+I) AND D$(I)=D$(I+I) THEN FC=FC+I:REM

Aso*" 50
I

PROGRAM EXECUTE

FRAME
6090 I=I+I:IF 1=11 THEN I=I:FC=FC+I:IF FC>=FB+1 THEN FC=1
6100 GOTO 5920
6110 p
6120 ' KEY DECODE ROUTINE
6130 IF ASC(A$)=9 THEN PN=PN+1: IF PN>VAL(MR$) THEN PN=1:REM
RT ARROW
6140 IF ASC(A$)=8 THEN PN=PN-1: IF PN<1 THEN PN=VAL(MRS):REM
LEFT ARROW
6150 PRINT@27,PN:REM DISPLAY IT
6160 IF VAL(A$)<>0 THEN 5660:REM A NUMBER
6170 IF ASC(A$)=8 OR ASC(A$)=9 THEN 5690:REM ALREADY DECODED
SO GO BACK
6180 IF ASC(A$)<>94 THEN 6220:REM UP ARROW
6190 POKE YP(LM),PEEK(YP(LM))+64:REM NORMAL CHAR
6200 LM=LM-I:IF LM<1 THEN LM=10:REM DECREMENT SELECT LINE
POINTER
6210 POKE YP(LM),PEEK(YP(LM))-64:REM MAKE SELECTED TYPE
INVERSE
6220 IF ASC(A$)<>10 THEN 6260:REM DOWN ARROW
6230 POKE YP(LM),PEEK(YP(LM))+64:REM MAKE OLD SELECTED TYPE
NORMAL
6240 LM=LM+I:IF LM>10 THEN LM=I:REM INCREMENT LINE POINTER
6250 POKE YP(LM),PEEK(YP(LM))-64:REM MAKE NEW TYPE INVERSE
6260 IF A$="E" THEN GOTO 5630:REM EXIT
6270 IF A$<>"T" THEN 6370:REM TOGGLE TYPE

3 •6280 '
6290 : DO THE TYPE TOGGLE FUNCTION
6300 IF PEEK(YP(LM))=4 THEN POKE
YP(LM),8:D$(LM)="H":PRINT@VP(LM)+5, " HEX ";:GOTO
6390:REM DEC TO HEX
6310 IF PEEK(YP(LM))=8 THEN POKE
YP(LM),15D$(LM)="O":PRINT@VP(LM)+5," OCT ";:GOTO
6390:REM HEX TO OCTAL
6320 IF PEEK(YP(LM))=15 THEN POKE
YP(LM),2:D$(LM)="B":PRINT@VP(LM)+6, " BIN ";:GOTO
6390:REM OCTAL TO BINARY
6330 IF PEEK (YP(LM))=2 THEN POKE
YP(LM),19:D$(LM)="S""PRINT@VP(LM)+5," SWI ";:GOTO
6390:REM BINARY TO SWITCH
6340 IF PEEK(YP(LM))=19 THEN POKE
YP(LM),4:D$(LM)="D":PRINT@VP(LM)+5," . .;U$(LM)r' ";:REM
SWITCH TO DECIMAL
6350 '
6360 : CALL BAR CHART ROUTINE IF RED
6370 IF A$="B" THEN GOSUB 2750:GOSUB 2430:PRINT@27,PN;:GOTO
5700:REM DO BAR FUNCTION THEN ENS PAGE
6380 IF A$="P" THEN GOSUB 3490:GOSUB 2430:PRINT@27,PN;:GOTO
5700: REM DO PLOT FUNCTION THEN RETURN TO ENS PAGE UPON
KEYPRESS
6390 GOTO 6090

51

- .4.Appendix D

REAL-TIME FLIGHIT TEST PCM

DA.TA ACQUISITION MONITIOR

APPLICATION NOTES

BY

JOHN R. CiRYASDALE, LTC, USAF

MOTOROLA (468M0z)
MC6800L6SEMICONDUCTORS (6 MHz)

3501 ED BLUESTEIN BLVD. AUSTIN. TEXAS 78721 M 6 0 0L

Advance information MC8SMOOz)
(10 MHz)

16-BIT MICROPROCIESSING UNIT 1 MAC6800OL12
Advances in semiconductor technology have provided the capability (12.5 MHz)

,.o place on a single silicon chip a microprocessor at least an order of
magnitude higher in performance and circuit complexity than has been
previously available. The MC68000 is the first of a family of such VLSI HMOS
microprocessors from Motorola It combines state-of-the-art IHIGH-DENSITY, N-CHANNEL.
technology and advanced circuit design techniques with computer SILICON-GATE DEPLETION LOADI
sciences to achieve an architecturally advanced 16-bit microprocessor.

The resources available to the MC68"0 user consist of the following: 16BIT
* 32-Bit Data and Address Registers MICROPROCESSOR
0 16 Megabyte Direct Addressing Range_____________________

-0 -56 Powerful Instruction Types
* Operations on Five Main Data Types

Memory Mapped I/O0UFI
* 014 Addressing Modes

As shown in the programming model, the MC6800 offers seventeen cERAMiC PAcKAGE

32-bit registers in addition to the 32-bit program counter and a 16-bit CASE 74,

status register. The first eight registers IDO-D7) are used as data
registers for byte 18-bit), word (16-bitl, and long word (32-bit) data PNASGMN
operations. The second set of seven registers (AO-A61 and the system PNASGMN

stack pointer may be used as software stack pointers and base address D4 0 64:05
4registers In addition, thale registers may te used for word and long D3C 2 63 :1D6

word address operations- All seventeen registers may be used as index 0 2 0
registers 02l 3 61 08)D

Do 5 60 :3D9
C 6 59 0I10

PROGRAMMING MODEL UIDSC 7 58 01I11
*31 1615 87 0 L1 -D8r 57 0:)12

IIDO RW 9 56 0J13
IDI DTACK (:10 55 0)14

D2 WG C 1 54 0)15
D3 Eight BGACK C12 53 O3ND

Data PC 13 52 :3A23
D4 Registers VCCC 14 51 :3A22

D5CLKC 15 50 A21
D6 GNDC 16 49 V

D7 HAT C17 48 A20
116 15 0 RESETC 18 47 A19

IAO VMr 19 46 A18
IAl E 20) 45 A17

IA2 Seven VPA 21 44 A16

A3Address FE__R4 A15

I A4 TP L2 23 42 A14

IA5 Tmr_ 24 41 A13
_______________I_ _ IA6 IPLO 25 A12

- C2 26 38 All
* sr tck Ponter 1 Two Stack FCI 27 38 A10

LSupervisor Stack Pointer A7Pointers FCO 37 A9

31 0 Al 36 A8
_________________________ Program A2 3 35 A7

Counter
15 8a7 0 A3 31 34 6

IytrBye'ue ye Status A4 2 33 5
* Register

D- 1

$ ~ i %I
0

.~
L- I

MC68000L49 MC68000L69 MC68000L8* MC68000L10 MC68000L 12

,-.. INSTRUCTION SET OVERVIEWT Ne TRUCTION SET set long words and most instructions can use any of the 14 ad-. .. ~The MC613000 ,ns*,ruci,¢" set is sh~owrn in Table 10 SomedesgmosCmb g srcontpsdaayes

additional instructions are variations, or subsets, of these dressing modes Combining instruction types, data types.
1 e e i b gand addressing modes, over 1000 useful instructions are pro• -" - and they appear in Table I1I Special emphasis has been givenar-id thyapawnTbevded These instructions include signed and unsigned

' to the instruction set's support of structured high-level mi ply Thes e u ins i nu e sig e ad onsigned

languages to facilitate ease of programming Each instruc- multiply and divide, "quick" arithmetic operations, BCD

tion. with few exceptions, operates on bytes, words, and arithmetic and expanded operations (through traps)

TABLE 10 - INSTRUCTION SET

Mnemonic Description Mnemonic Description Mnemonic Description
ABCD Add Decimal wit, Extend EOR Exclusive Or PEA Push Effective Address
. ADD Add EXG Exchange Regsters RESET Reset External Devices
AND Logical And E)T Sign Extend ROL Rotate Left without Extend
ASL Arithmetic Shift Left JMP Jump ROR Rotate Right without Extend
ASR Arithmetic Shft Right JSR Jump to Subroutine ROXL Rotate Left with Extend

BCC Branch Conditional[y LEA Load Effective Address ROXR Rotate Right with Extend

BCHG Bit Test and Change LINK Link Stack RTE Return from Exception

BCLR Bit Test and Clear LSL Logical Shift Left RTR Return and Restore
BRA Branch Always LSR Logica Shift Right RTS Returr frorr Subroujtre
BSET Bit Test and Set MOVE Move SBCD Subtract Dec,ral Ar, Exte,,
BSR Brance to Subrojutine MOVEM Move Multiple Registers SCC Sei Cond,.onai
BTST Bit Test MOVEP Move Periphera Data STOP Stop
CHK Check Reg-ste, Agars: Bcunds MULS Signed Miltiply SUB Subtact
CLR Clear ODera-d MULU Unsigned Multiply SWAP Swap Data Reg.ste' r a'es

CMP Compare NBCD Negate Decimal with Extend tAS Test and Se' Ope'a'

DBCC Test Condr on Deceme-t ar d NEG Negate TRAP Trap

Branch NOP No Operation TRAPv Trap or Ove,flov

DIVS Signed D'voe NOT Ones Complement TST Test
DiVU Unsigned Divde OR Log'ca Or UNLK Unlink

TABLE 11 - VARIATIONS OF INSTRUCTION TYPES

Instruction Intructon
Type Variation Description Tyi Variation Description

ADD ADD Add MOVE MOVE Move
ADDA Add Address MOVEA Move Address
ADDO Add Quick MOVEd Move Quick
ADDI Add Immediate MOVE from SR Move from Status Register

* ' ADDX Add with Extend MOVE to SR Move to Status Regster

AND AND Logical And MOVE to CCR Move to Conditron Codes

*k ',ANDI And Immediate MOVE USP Move User Stack Pointe,

CMP CMP Compare NEG NEG Negate
- CMPA Compare Address NEGX Negate wtt- Exterd

CMPM Compare Memory OR OR Logical Or
CMPI Compare Immediate ORI Or Immediate

EOR EOR Exclusive Or SUB SUB Subtract
EORI Exclusive Or Immediate SUBA Subtract Address

" SUBI Subtract Immedrate
SUBO Subtract Quick
SUBX Subtract with Extend

MOTOROLA Semiconductor Products Inc.

D--2

l. .

, --_- - - r• • , -

MILITARY / INDUSTRIAL / COMMERCIAL TEMPERATURE RANGES

FEATURES: DESCRIPTION:
a High-speed access The IDT7130 is a CMOS 1Kx8 high-speed Dual Port Static

Mlitary/Industrial-100/120ns (max) RAM It is fabricated using IDTs high performance CEMOS'" II
Commercal-90'100ns (max technology This state-of-the-art technology combined with

I Low-power operaton innovative circuit design techniques, provides low power alterna-
IDT7130S tives to fast NMOS-type memories

Active-325mW (typ) The IDT7130 provides two ports with separate controls,
Standby-200W (typ) address and I/O that permit independent access for reads or

IDT7130L writes to any location in memory The IDT7130 has an automatic
Active-325mW (typ) power-down feature controlled by CE The C E controls on-chip
Standby-50AW (typ power-down circuitry that permits the respective port to go into a

* CEMOS'" 11 process virtually eliminates alpha particle induced standby mode when not selected (CE high)
soft errors The interrupt flag (INT) permits communication between ports

or systems If the user chooses to use the interrupt function, a- On-chip port arb~tration logic memory location (mail box or message cener) is assigned to
9 INT and BUSY flags each port. The left port interrupt flag (INT, is set when the right
* Fully asynchronous operation from either port port writes to memory location 3FE -ihe left port clers the

' - * Battery backup operation-2V data retention interrupt by reading address locat~jn 3FE Likewise, the right
* Single 5V 10% power supply port interrupt flag (TNTR) is set when the left port _rites to

memory location 3FF and to clear the interrupt flag (-TR), the
9 TTL compatibility right port must read the memory location 3FF The message
* Fully static operation (8-bits) at 3FE or 3FF is user-defined If the interrupt function is
* Three state output not used, address locations 3FE and 3FF are not used as mail
I Military product 100% screened to MIL-STD-883, Class B boxes but as part of the random access memory

S The BUSY flags are provided for the situation when both ports
I simultaneously access the same memory location When this

FUNCTIONAL BLOCK DIAGRAM situation occurs, on-chip arbitration logic will determine which
port has access and sets the BUSY flag of the delayed port BUSY

&AWL is set at speeds that permit the processor to hold the operation
at ef, and its respective address and data The delayed port will have

access when BUSY goes inactive
Access times as fast as 90ns are available with typical

"AI operating power of only 325mW The low power (L) version also
AT, A7, offers a battery backup data retention capability where the circuit
Ou,.c- u L 10 typically consumes only 2.5pW off a 2V battery

OI VO , UL The IDT7130 Dual Port RAM is designed to take into consider-
" o7 1om ation the 2Kx8 Dual Port RAM The INT function is not available

OWL - u', on the 2Kx8 organization because the pin is needed for address
MA MR A10 Other than this difference, the 2Kx8 is pin-for-pin compatible

•SIC I~ with the 1Kx8 The 2Kx8 Dual Port RAM, IDT7132, doubles the
A% density for the same package size, thus improving the system

Aover all reliability and power requirements System reliability will
be improved by halving the part count and the system power

- - eI hATI-o • requirement and, as an added side benefit valuable board space
WnMMLWT and power is freed up for other system requirements

, a LG The IDT7130 is packaged in either a 48-pin DIP or a 48-pin
ix, leadless chip carrier. Military parts are 100% processed in

compliance to the test methods of MIL-STD-883, Method 5004,
making them ideally suited to military temperature applications
demanding the highest level of performance and reliability.

0

cEMOS 3 S ?'a&e'-8A 01& ~fg'apC Dp Cp Tg L',1

-- A.

F..
*TOSHIBA MOS MEMORY PRODUCTS

-2040 WORD W R BIT STATIC RAM TM M 20 1I6P
N CHANNEL SILICON GATE DEPLETION LOAD TM M 2OI6P -I

DESCRIPTION

Tn hi,7 'V201c 6is a 16354 I-i s~aj c rarJum - ac is inl V,, le\ cle d e is in lovv power slandt.,

ces c,an, .- as 20431 .%,j Ly 8 !:,s arid mode, and !i ar,, current is reduced to 7n A

Or'%ror- a S ~,~ cce ~;' cc) cr 'irm 60-TA FT,17 dal

e e~L 0% E_ I n C 0 n j- TMVI 2016P is iatrcate-Jiih on implanted N

*pa! >t~ t 2 7 u v;De E PR 0VM VMM323C 1 a1 ow" channe! silicon qaie techniology, This technotog, pro

a Aide aD~,, ,d rrr /ircsl perlpherar vides high per formarce and high reliahility. The &!p

memor , is moulded in a 24 pin standard plastic package, 0.6
In memory ex:oarsi- lo,' C% e aprllcation is inch in AdJth

poss Lie b) ,s n n*rcrICiV~Ihe CS

FEAYURES

0 Pin corrpa'ib!- ;.i 76 E ROM Outpuit Lu'le, conl,,' - QE

* S ngle 5V V ~cc '_A *c- Easy memrr~) e x ar's u)n - CS

*Acces o an, e Sat~c ol:eral on - No clock or rnirrg strobe e-
i~i'a LOured

7M21*DreCtIy TTL rcrmpaitbe - All inpjts and outp25. 0d

Access t mrei MAX I5~riS 100 ns.
/~~- - _OrncpM 72T~7~A tOn * Commo-,cn da-ta iriput and Outiput :

-- -9 Three s-ate oi~p! ts - WVred OR capaty 10

*Inputs protected - All inputs have protecton
Pciver d) A fea -ir CSagaInst static charge

PIN CONNECTION BLOCK DIAGRAM

At 23 AB

A
3

22 AE A4

AlOc - 8 I As (20 6 8

''30
A0 ~ ~ NE A3 13W riAiC4slL<

i AY AI Rc.2 Addes irc..

PIN NAMES e04A

-, D AlrA2 '

VVE ~ ~ ~ ~ D Vil4a- n ;

1/01 ~ ~ - - . ..w Ip lO to lC

STOSHIBA MOS MEMORY PRODUCTS
TMM20 I 6P
TMM20 I 6P- I

MAXIMUM RATINGS

SYMBOL ITEM RATING UNT

VCC Power SupDly V0taa- -0 5 - 7 C, V

VIN, OUT Input and Out~ut Voltaoe -05-7.0 V

TOPR. Operating Temperatjre 0 70 Ic

TSTG. Storage Tentperature -55- 150 'C

TSOLDEP Soldering TemDerature Ti
m e 260 10 'C se:

PD Power Dissipation (Ta = 70C) 1.0 1

D.C. RECOMMENDED OPERATING CONDITIONS (Ta = 0 - 70'C)

SYMBOL PARAMETER MIN TYP MAX 7 UNIT

VIH Input High Voltage 2 2 - VCC 1 0 V

V, Input Low Voltage -05 -08 .

* CC Supply Voltage 4 5 50 r 55 V

D.C. CHARACTERISTICS (Ta = 0 - 70'C, Vcc 5V t 10%)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNIT

M 1IL Input Leakage Current VIN = 0 5 5V ± 10 A

!1 CO IOH Output Hgh Cjrrent VOT = 2 4V -1 0 - - mA

. IOL Output Low Current VOUT = 04V 2 1 - mA

VOH Output High Voltage 1oUT
=

- 1.0mA 24 - - V

VOL Output Low Voltage IOUT = 2.1mA - 04 V

CS
= VIH or WE = VIL

ILO Output Leakage Current or OE = VIH ±10 wA

VOUT = 0 VCc

)Sep Peak Power-on Current CS = VCC, OUT OmA- - 30 mA
durng power on

ISB Standby Current CS = VIH - OUT = OmA - 7 15 mA

r Current
= VIL TMM2016P - - 100 mA

IOU-T =0mA TMM2016P-1 - - 120

* Note ICC "¢OmcIt e SB maximumr dur~rg pDoier on A PulI up resistor to VCC on the CS input is reeluirs to keep the clevC*c cdsOl$ected Othlviise

power-Ofn current IprOaChes ICC activl

* CAPACITANCE (Ta = 25'C, f = 1 MHz)

SYMBOL PARAMETER CONDITIONS MAX UNIT

CIN Input Capacitance VIN = A C Ground 5 pF

COUT Output Caaitance VOLr A.C Ground 10 pF

* Note This pereamnt.r is perichcllly sampleCI and is not 100% t"tl d

TOSHIBA AMERICA INC.
0

D-5

"--- - - - -

7 U TOSHIBA MOS MEMORY PRODUCTS
TMM201I6P
TMM2O I6P- I

*A.C. CHARACTERISTICS (Ta =0 -70'C, Vcc =5V ±10%)

* READ CYCLE

SYMv'BOL PAP AME TER T2OP Mj('1UNIT
______ _______________________ MIN. MAX NPIN MAX

I R ead Cj 1. 7 T ic 150___ J 1oO ns

I ACC Address Ac.-cess. Timec-15 00n
Ch.-, Seie Access, T-, u 5

10E Outru! Enat le TimeF 5 35 n

Ou,4 0tr -j Ho'1 Tirnc Pr' Adjdress Chanw,1 -1 ns

ICLZ Out1iL 01.r Low Z fro" Its 10 -______ 10___ ______________

ICH2 OLl.' . HiQFIZ fPon CS 55__4__
t()LZ j Otncu . LowZ f'o" D 5 - rs-
t
O)H7 Outpul: H o Z fror', 5E ______ 50 35____ ______ ____

1 tP,, Chs Seep~t-rj 1C) Puwer ' 7 Te 0 - { ______ _____

1p[) Chir Dese'ei1,or tc Powe, dlown Tmr~q - 60 .50 n

WRITE CYCLE c

SYMBOL PAPAMETER TMO6 MO6PUNT 11
___MIN. MAX. MIN, MAX 0___

twc W't-e Cyc- Time 150 -100 -ns

Ch. Selr-etiori to End of Write 120-90-n
tAS Address Se-, Ti- e 20 -20 -ns

-Write Pulse iidli 100 -70 - ns

t R Write Rtc-overy Ti-ric 10 -10 flns

IDS Data SeL tin Time 60 -40 - n

TH Data Hojd Time 15 _____10 - fls

tWLZ Out 'ut in' LowZ frm WE - 5 -

I*V tH- Output in High Z fror', WE - - -50 -35 ______

A.C. TEST CONDITIONS

Inlput Pulse Levels 0 3.5 V
In~put Rise and Fa!1 Times 10ns

Input and Output Timing Reference Levels 1.5V

Output Load See, Note

Note Outaut Leed - ITTL Gae ea CL 10lOpF
oneciudr 0 SCope and pg

t

* TOSHIBA AMERICA INC.

:gI;'

Appendix E

i

REAL-TIME FLIGHT TEST PCM

DATA ACQUISITION MONITOR

I

PARTS LIST

BY

n

JOHN R. CROASDALE, LTC, UISAF

A

6

('A
4

5~*--'*-
- -.

Parts List

PCM Processor

Integrated Circuits

Quantity IC number Remarks

I MC-68000 Motorola 8 Mhz Microprocessor
2 IDT 7130S Dual Port RAM 120ns
2 TMM 2016P 2K by 8 RAM, 150ns
2 TMM 2716 EPROM 450ns

* 1 NCT070C Saronix 32Mhz clock hybrid
2 741S00 Quad 2 input NAND gate
2 74LS02 Quad 2 input NOR gate
2 74LS04 Hex inverter
1 74HC04 CMOS hex inverter

" 2 74LS08 Quad 2 input AND gate
1 74L14 Hex Schmitt trigger
1 74LS21 Dual 4 input AND gate
2 74LS30 8 input NAND gate
1 74HC32 Quad 2 input OR gate

- 1 74LS32
2 74LS74 Dual D type flip flop
1 74HC75 4 bit bistable latchs
1 74LS93 Binary counter

- 1 74121 Monostable multivibrator with clear
1 74123 Dual monostable multivibrator
1 74LS138 3 to 8 line decoder
2 74LS175 Quad D type flip flop
9 74LS193 Up/Down binary counter
1 74LS279 Quad SR latches
2 74LS299 8 bit bidirectional shift register
4 74HC374 Octal D type flip flops
2 74LS374
2 74LS393 Dual 4 bit binary counters
1 555 Timer

S
Other Parts

1 Single pole signle throw switch 2 amps, 5 volts minimum
1 Double pole double throw switch 2 ampa, 5 volts minimum

20 .1 microfarad dipped ceramic capacitors
1 10 microfarad tantalum capacitor
1 .033 microfarad mica capacitor
1 27K ohm 1/4 watt resistor
1 18K ohm 1/4 watt resistor
1 470 ohm 1/4 watt resistor
2 general purpose signal diodes
1 Wire Wrap board

E-2

Appendix F

Acronym Listing

The listing below shows some of the common acronyms used in this

thesis to be used for reference for the reader as needed.

ARIA Advanced Range Instrumented Aircraft
AS ---------- Address Strobe
BAS Short for BASIC appended to BASIC files
BIN ---------- Binary, numb~er system based on 2
BPS ------ Bits per second
DAT -------- Short for data appended to BASIC files
DC Direct Current

DEC Decimal, number system based on 10
DTACK ------- Data Acknowledge signal on the MC68000
EPROM--------- Erasable Read Only Memory
HC ------------ High speed Complementary Metal Oxide Silicon (CMOS)
HEX --------- Hexadecimal, number system based on 16
I/O Input and Output
IC --------- Integrated Circuit
K Thousand
KHZ---------- Thousand Hertz (cycles) per second
LDS Lower Data Strobe signal for the MC68000
LS --------- Low Power Shottky type of IC

.- - LSB Least Significant Bit
MHZ --------- Million Hertz (cycles) per second
MSB ----- Most Significant Bit
OCT Octal, number system based on 8
PCM Pulse Code Modulation
R/W -------- Read and Write signal on the MC68000
RA-M Random Access Memory
RC Resistor and Capacitor network

-- ROM ----------- Read Only Memory
SWI ------- - Switch
-TL - Transistor Transistor Logic, type of IC
UDS Upper Data Strobe signal for the MC68000

F-1

%l

VITA

John R. Croasdale was born on 28 October 1944 in Ottumwa, Iowa.

He graduated from Oviedo High School in Oviedo Florida in 1962 and

attended the University of Florida where he received his Bachelor's of

Science in Electrical Engineering in 1967 along with a commission in

the United States Air Force. He attended pilot training at Moody AFB,

Georgia and received his wings in 1968. His first assignment was in

the Strategic Air Comumand flying KC-135 tanker aircraft at Warner

Robins AFB, Ga. In 1972, he attended training at Castle AFB,

California where he transitioned into the B-52 aircraft. He spent a

it total of 572 days flying in Southeast Asia in both tankers and bombers.

In 1975 he was assigned to Wurtsmith AFB, Michigan as a B-52 Aircraft

Comwuander and remained there until 1979 when he received a rated

supplement job in engineering at Wright Patterson AFB, Ohio. He also

received a Master of Arts degree in Industrial Management from Central

Michigan University in 1979. When assigned to Wright Patterson AFB, he

entered the School of Engineering, Air Force Institute of Technology as

a part time student.

Permanent address: 405 Lake Drive

Chuluota, Florida 32766

- Unclassified
* . CURITY CLASSIFICATION OF THIS PACE

REPORT DOCUMENTATION PAGE

r-IaREPORT SECURITY CLASSIFICAl ION lb. RESTRICTIVE MARKINGS

~ nclassified None
2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAI LABILITY OF REPORT

0 Approved for Public Release
2b, DECLASSIFICATION/DOWNGRAOING SCHEDULE Distribution unlimited

A PERFORMING ORGANIZATION REPORT NUMBERIS; 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/85S-1
15s, NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

fit applIcable)

School of Engineering AFIT/EG

*
6

c. ADDRESS (City. Slate and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

On. NAME OF FUNDING/SPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

4950th Test Wing 4950TE5 1W/FFS

SC. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

*PROGRAM PROjECT TASK WORK UNIT
Wright-Patterson AF'-B, OH 45433 ELEMENT NO. NO. NO. NO

11 TITLE (Include Security Classificaion)

See Box 19
12. PERSONAL AUTHOR(S)

(S1&John R. Croasdale, Lt Col, USAF
q 34 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Y,, Mo., Day) 15 AECOUNT

MS Thesis IFROM _ ___TO ____ 1985, September26
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS lContinue on reverse if neceunary and identify by bloctk number)

FIELD GROUP SUB. GR. -Pulse Code Modulation, Time Division Multiplexing,
17 Data Acquisition, Microprocessor Applications

1g. ABSTRACT (Continue on reverse if necessary and identify by btocte numberl

Title: Real-Time Flight Test PCM Data Acquisition Monitor

Thesis Chairman: David A. King, Captain, USAF
Instructor of Electrical Engineering

Dean to eerhadPefilauho l D.lO puCIIIIIIII
ArFreInstitute at ?t5.nyf (M

Wright-Patteson AF3 O 04N

20. DISTal BUTION/AVAILABI LITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

4 * ,JNCLASSIFIED/UNLIMITED X1 SAME AS RPT 0OTIC USERS Unclassified

4 22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Davi AKigCatiUSFitrclude % 'ea (ode,

Dai .Kn, atiUA 513-255-3576 AFIT/ENG

* DD FORM 1473,83 APR EDITION OF 1 JAN173 IS OBSOLETE jclassified
SECURITY CLASSIFICATION OF THIS PAGE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Block 19.

Abstract

A caniputer based system utilizing an inexpensive off-the-shelf
personal computer and original interface design centered around a 68000
microprocessor for real-tim monitoring of a time division multiplexed
pulse code modulated (TDM/PCM) data stream was designed and constructed.
This system is a prototype of a law-cost, portable PCM data acquisition
monitor intended for use in flight test programs by the 4950th Test Wing
at Wright-Patterson AFB, Oh. It will accept a single Armed Forces
Instrumentation Standard NRZ or split-phase (Manchester) baseband data
stream at rates up to 100 KBPS, display selected data words in graphical
or numerical format, and alarm the user when data exceeds certain
limits. It will provide a real-time verification that the data being
generated and recorded during a test is of acceptable quality, allowing
the option of continuation of the test, or termination. The system is
capable of autcratically determining the data rate and signaling format

4 and synchronizing itself with the incoming signal.

U s

S

.+

0

S °

* . °

~;(~V ~:
,' ~

~'.:

0

*

U-

~0~ Tic K
I

* .*.*a*~ ~-'- 1..' --*t -~

