MO-R164 026 A NATURAL LANGURGE PROCESSOR AND ITS APPLICATION TO R 174
DﬁTﬁ DICTIONARY SVSTEII(U) AIR FORCE lNST OF TECM
IGHT-PATTERSON AFB OH SCHOOL OF ENGI
UNCLASSIFIED DEC 85 AFIT/GCS/ENG/83D-19 9/2

Rl

T, M AT ARG gV gy T MR o Dol V. S
SR ORI L LIV SR i i

=
B
i

(%]

L
2.0 .::E-:._-:
-

e »
)

FPFTERER
FEEF
=
&

==
l=

22 s

B

MICROCOPY RESOLUTION TEST CHART
TTONMAL QOREAIL OF CTANDARDS 1962 A

A
'/'-

re,
s
(o
7 L)

Mol A
.

o't

*. "%

D T e
.‘.'.'.".'..‘-.~..-.~',-,.' o ..
I R N R T I S L W
v

PP LIPS WS- SRR

s
[

[3 Dt B

«
’
IO

{
n -'\
"

AD-A164 026

A NATURAL LANGUAGE PROCESSOR AND ITS
APPLICATION TO A DATA DICTIONAPY SYSTEM

THESIS

- Stephen A. Wolfe
% Captain, USAF
(-

b DISTRIBUTION STATEMENT A_

Approvad for public releass;
Distribution Unlimited | S

— DEPARTMENT OF THE AIR FORCE o
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio \
°g o 17 tyg

AFIT/GCS/ENG/85D-19

DTIC =

ZLECTE -
FEB1 3 1986 - %
D ?ff_iti?}é

A NATURAL LANGUAGE PROCESSOR AND ITS
APPLICATION TO A DATA DICTIONAPRY SYSTEM

THESIS ot
Stephen A, Wolfe
Captain, USAF

Approved for public release; distribution unlimited

AFIT/GCS/ENG/85D-19

A NATURAL LANGUAGE PROCESSOR AND ITS

APPLICATION TO A DATA DICTIONARY SYSTEM

THESIS

. Presented to the Faculty of the School of Engineering
. of the Air Force Institute of Technology
(._ Air University
: In Partial Fulfillment of the
' Requirements for the Degree of /
Master of Science in Computer Engineering €"
. Accesion For \
) NTIS CRA& N
N OTIC TaAB O
._ Uiianrcu.iced 0
- Justiticutio.; ’
- Stephen A. Wolfe, A.B. By !
- Doty tie 4 i
- Captain, USAF [e]
.-; P ! Avaiebuity Co.'es
3 Dist DGt
\:'
= December 1985 ﬂ,’ l
Approved for public release; distribution unlimited

Acknowledgments

I would like to thank my thesis advisor, Dr. Gary B.
Lamont, for his guidance throughout this effort, and my
readers, Dr. (Captain) Stephen E. Cross and Captain Duard S.
Woffinden, for their time and efforts. I am also indebted
to the people of Rome Air Development Center/COE, especially

Major Mark Stasiak and Mr. Douglas White, for their

sponsorship. Finally, I wish to thank my wife, Andrea, for
her helpful comments concerning this thesis and for putting

up with me for the past year and a half.

Stephen A. Wolfe

............
~

RN OT YN A

i - Table of Contents

I Page
A Acknowledgments « « o ¢« o ¢ o s s s e 2 s s e e & o @ ii
h List Of FIiQUILES « o « o o o o ¢ o o ¢ o o o o « o 2 & vi
List of Tables « ¢ ¢ o & o ¢ ¢ o ¢ o o o o o o s o = vii
List Oof ACronyms « « o ¢ & =« ¢ o ¢ ¢ o o o o o o o« o« viii

ADSEract o o ¢ o« o o o o o s o o s o 4 o s o s e = ix

I. Introduction . ¢ ¢ o« ¢ ¢ o« o s o o o o o ¢ o o« 1=-1

Thesis Objectives . . « ¢ ¢« v ¢« « & & +» o« « 1=-1

Background . . « « o « o o s s 8 s o o o o 1=-1

Natural Language .« « « « o o o o » &« o« 1=2

(5— The Software Development Life Cycle . . 1- 4
The Software Development Workbench . . 1= 5

Scope of Effort « ¢ ¢« ¢ ¢ ¢« & ¢« o o« ¢ o « « 1-6

Standards .« . « ¢ o o s s s s+ s s e o s o 1=-7

Approach Taken . . . ¢ ¢« + &« +« o « o o +« + 1- 8

II. Requirements Definition . « ¢« + + ¢ « &+ « o &« « 2=1

Introduction . « ¢« ¢« ¢« & « 4 4 o s e & o o 2=1
Automatic Programming « « ¢ « ¢ o o o ¢ o o 2= 2
System Requirements . « « « ¢ o o o « ¢ o« » 2= 5
f‘ Grammar Constructor Regquirements . . . 2- 8

Sentence Interpreter Requirements . . . 2-10

Sttt

Data Dictionary Access Requirements . . 2-12

N hOSAAAGE

iii

e et s el e T T e T e s e T
A AT A WA A e e T T N T T N N T e N e T N e e T T e
B Y LIPS RN L ILAELI A LR PR P PP AT VWL VI v WA W TP D W SR SR SR o, WO R) '.X\'..&‘I‘..P\-L\J\.l..‘h‘n}

B
At

cel.

.o

(o

Crammar Requirements

Data Dictionary Content Requirements

SDW Interface Requirements

Conclusion . « « .« .« .
III. Design L] . L] -* [] - L] L] L] -
Introduction

System Design

Natural Language Processor Design

Data Dictionary Tool Design

Grammar Design . .

Interface Design .

Conclusion . . . « .+ &

Iv. Implementation . . « « .
Introduction

System Implementation .

CoIn Implementation

DDT Implementation

Grammar Implementation

Interface Implementation

Integration into the SDW

Conclusion . « « « « &

V. Conclusion and Recommendations

Introduction e o e e s

Development Summary . .

Analysis of the Current System

iv

.

2-15
2-15
2-16
2-17

Recommendations for Future Work

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
; Appendix G:
i (o Appendix H:
Appendix 1I:
Bibliography

l vita

Source Code .

f 2P EAPSIP UG IR PR Sl DA T WA DAY W U WAL

CoOIN ¢ o o o« o o o o o o @
DDT ¢« . o & o o o o o o o &
The Grammar « « &
The Interface « . .
System Data Dictionary . . .
Structure Charts
Grammar Definition
Implemented Grammar . . .«
DDT Object Definition . . .
Interface Object Definition
Test Plan « ¢« ¢ o o o o & =
CoIn User Manual
DDS User Manual . . « .« . .

SV TR R TR R,

.« 5=
.« 5=
« 5=
.« 5=
« 5-
. A~
. B-
. C-
. D=
. E-
. F-
. G-
. H-
. I-
.BIB~-
SVIT-

. Vol

-

—

' - List of Figures

Figure Page
2.1 Automatic Programmer Data Flow Diagram 2- 3 e
2.2 Top-Level Requirements Data Flow Diagram . . . 2- 6
2.3 Data Dictionary System Data Flow Diagram . . . 2= 7

2.4 Construct Grammar Data Flow Diagram . . « . . « 2- 9

I 2.5 Interpret Sentence Data Flow Diagram « 2-11 binird

2.6 Access Data Dictionary Data Flow Diagram . . . 2-13 ﬁi?;

3.1 Sample Structure Chart . ¢« ¢ ¢« + o ¢ ¢ ¢« o o « 3= 2 lﬁ:&f

A 4

3.2 System Design Data Flow Diagram . . . + « « « « 3= 5 nm

3.3 Natural Language Processor Data Structures . . 3= 7
3.4 Sample Object Hierarchy Chart « . « « « + « . « 3-13 :;;ff
4.1 AFIT ISL VAX-11/788 Hardware Configuration . . 4- 2 T
4.2 Sample Grammar Production . . . « ¢ « « « o« . » 4-10 e

5.1 Example of a valid Sentence Entered into DDS . 5- 4

5.2 Example of an Invalid Sentence Entered into RESE
DDS ¢« ¢ « o o o o o o o & e e v e e s+ e s o e » 5- 4 ‘-'j'-' ‘.‘:

- .‘ "
)
.
)
. ‘--\ -\:-
- -.- -

4

.
.

L

.'v IS
-’:{-f,{.'-

vi nleln

. P L T R P P S L RPE S T . . et SSe Lt e e e e S e e g sel el e N T T e el et e
R P P T A L i T 3 . IS e B TR S PRSI SNt el ST ISt I AL ST SRR
................. e L - R Y PR A A R L I S S B R A S St T S T .

e e e e e AT A A A et B -j-‘— Y 0N PIAN N RN i TR TSSOV YL L Y B iataa e

i)

) A PR R T 'S -....\...\..... ... ! ’ St E c.

IR e S a4

L el Mk Y Bl S e Ay
Page

Elal B Al
. .

A
.

-

o
.

Tables

ist of

L
Sample Module Interface Table

Table
IITI-1

o
lo,

AFIT

AFIT/ENG

BNF
CD

Coln

DBMS
DFD
DDS

DDT

DEC
HIPO
ISL
MIT
NIL
SADT
SLI

SDWE

...........

List of Acronyms

Air Force Institute of Technology

AFIT School of Engineering, Department of
Electrical and Computer Engineering

Backus~Naur Form
Conceptual Dependency

Constructor/Interpreter (the natural language
processor)

Data Base Management System
Data Flow Diagram

Data Dictionary System

Data Dictionary Tool (the data dictionary access

subsystem)

Digital Eguipment Corporation
Hierarchy plus Input, Process, Output
Information Sciences Laboratory
Massachusetts Institute of Technology
New Implementation of Lisp

Structured Analysis and Design Technique

Software Development Workbench

SDW Executive

......... CaNC 48 .\‘_f,":-;-A-_r‘..-\?".

- . '-l\..A.' - . -, ‘
IR [A CH R T P e e e e e - LT PR -
o B e e T e, IR R A I . - vt . P L T R e P S
g A A 2% a Lo Ca s PP P P LR r U VS P VT VR VR /AT R W VR VRS, R VAP R UL T, O Y 4

AFIT/GCS/ENG/85D-19

Abstract

The development of a human-computer interface
construction and interpretation tool capable of processing
English-like or natural language user input is discussed.
The utility of the tool is demonstrated by using it to
create the natural language interface for a data dictionary
system. The data dictionary's development is also
documented and is used as the overall context for the

presentation.

ix

. >, Sl Nt e
-t et . P U AU R PR . R P PSR)

.'..-.(‘ -_.,».- NEARA \«--.~“‘-~ ..\

it \‘_ _‘,'_‘,'»\lh' !".“-: \"-“ i A Y N oM RSP AR el Clalt iy . T R RS s T e e AR B 1

A T Y, rL Y, e YT YT,

I. Introduction ataz

Thesis Objectives

The principal objective of this thesis investigation is

the development of a human-computer interface construction oy
and interpretation tool capable of processing English-like
or natural language user input. The tool is generic in

nature. That is, it has the capability to create grammars S
and interpret input sentences for a wide variety of
applications. A secondary objective of this effort is to fﬁi
demonstrate the utility of the tool by using it to create a
natural language interface for a useful software engineering

environment.

Background .

This section summarizes the background material on Sene

which the remainder of this thesis effort is based. The
first part of this section provides an introduction to
natural language and systems designed to interpret natural
language. Next, since this thesis describes the development
of a software system, a general introduction to the software
development process is provided. The section concludes with

a description of AFIT's Software Development Workbench s

(SOW) . As part of this thesis effort, the developed system

was interfaced with the SDW. Numerous references are
provided for the interested reader.

Natural Language. Natural lanquages are the languages

that we speak, read, and write. Throughout our lives we are

inundated with one or more natural languages. Therefore we
are quite comfortable with natural languages. They seem
"natural” to us. This feature is exactly what is needed in
a computer environment to make it seem natural and
consequently easy to use.

Because natural languages develop in a complex,
constantly-changing, uncontrolled environment, they are
themselves complex and ill-defined. They are "informal"
systems. These are traits which make natural languages
unnatural to a computer, traits which make it difficult for
a computer to interpret natural language. Computers demand
completely defined, "formal" systems. Because of this
difficulty (and many others), the area of natural language
interpretation has been widely researched (Bobrow, et al,
1977) (Harris, 1977) (Hendrix, 1977) (Hendrix, 1978) (Rich,
1984) (Schank and Riesbeck, 1981) (wWaltz, 1978) (Woods,
1970).

The meaning of the term natural language when used to
describe a human-computer interface is different than when

used to describe a human-human interface. Human-computer

natural language interfaces do not contain the richness (all

VTRV W T
Pafids

of the grammar rules or vocabulary) of, say, English. The
gquiding principle in building a natural language
human-computer interface is to include enough of a natural
language so that one can command the computer, in a

"natural" way, to do all of the required functions. The

interface must be complete enough so as to be a help rather
that a hindrance to the user; it must be "simple" enough so oiat
that it can be interpreted by a computer within any time and

space constraints imposed by an application,

A general introduction to natural language and its <

interpretation is provided The Handbook of Artificial

Intelligence, Volume I (Barr and Feigenbaum, 1981:225-232),

Artificial Intelligence (Rich, 1983:295-344), and Artificial

Intelligence (Winston, 1984:291-334). 1In addition Barr and

Feigenbaum (Barr and Feigenbaum, 1981:239-321) include an

introduction to grammars and their representations and a
description of several parsing techniques. They also present
an overview of several natural language interpreting systems
including Woods' LUNAR, Winograd's SHRDLU, Schank's MARGIE,
Schank and Abelson's SAM and PAM, and SRI International's
LIFER. More detailed descriptions of these and other

specific systems can be found in "GUS, A Frame-Driven Dialog

-

RS
-
t“‘
o™
o
ot

U

A I

L
LA RS

System” (Bobrow, 1977), "User Oriented Data Base Query with

the ROBOT Natural Language Query System" (Harris, 1977),

» S
l'
s

"Developing a Natural Language Interface to Complex Data"

‘4

...........

<~

(U AR L A, ,_?'—-" M b AUt e Lt i Rl i Al Bl il Yd ol A S ut b b S e dert e]

(Hendrix, et al, 1978), "Human Engineering for Applied
Natural Language Processing" (Hendrix, 1977), Inside

Computer Understanding (Schank and Riesbeck, 1981:318-372),

"An English Language Question Answering System for a Large
Relational Database" (Waltz, 1978), and "Transition Network
Grammars for Natural Language Analysis" (Woods, 1970). The
LIFER system is of particular interest since it provided
many of the ideas for the natural language processor of this
investigation.

The Software Development Life Cycle. The software

development life cycle has been characterized many different
ways (Peters, 1981:8). 1In this thesis effort, the cycle is
broken up into five phases, They are the functional
requirements analysis phase, the design phase, the
implementation phase, the integration phase, and the
maintenance phase. As requirements change or errors are
found, this cycle is executed iteratively.

During the functional requirements analysis phase, the
emphasis is on "what" the system should do. These
requirements are assigned to various hardware and software
components during the design phase. Also during the design
phase, the defined software components are refined into
interacting modules. During implementation, the modules are
encoded into a computer language and are tested individually

and as groups. The hardware and software components are

assembled into a system and are subjected to testing as a
whole in the integration phase. Finally, in the maintenance
phase, the system is used and modified as necessary.

For a detailed discussion of the requirements phase,

see Structured Analysis and System Specification (DeMarco,

1979) . The design phase is covered in Reliable Software

Through Composite Structured Design (Myers, 1975) and

Software Design: Methods and Technigques (Peters, 1981).

Various aspects of the the implementation phase are covered

in The Design and Analysis of Computer Algorithms (Aho, et

al, 1974), Fundamentals of Data Structures in Pascal

(Horowitz and Sahni, 1984), and Algorithms + Data Structures

= Programs (Wirth, 1976).

The Software Development Workbench. The Software

Development Workbench (SDW), which resides on the AFIT
Information Sciences Laboratory (ISL) Digital Equipment
Corporation (DEC) VAX-11/780 computer, was conceived and
designed to help the software engineer manage the inherent
complexity of developing computer software. The SDW
consists of "an integrated set of automated tools to assist
the software engineer in the development of quality and
maintainable software" (Hadfield and Lamont, 1983:171).

The original work on the SDW was done by Steven M.
Hadfield for his master's thesis (Hadfield, 1982). In his

thesis, Hadfield provided motivation for the development of

ot DA

rre
B

b

Ll T)
S

M A O i A A GLAC A A A A by A b A A i o AP D000 A M phe S B S0 Dule s B A 0s A s 4t it e S R
LI -

an interactive and automated software development
environment. He maintained that such an environment should
be integrated, traceable, flexible, and user-friendly.
Eventually the SDW will consist of a comprehensive set of
software development tools which will help the engineer
throughout the entire software development cycle. While the
current SDW is usable, it does not contain a complete set of
integrated tools.

Currently, the tools contained in the SDW are
integrated by a menu system, the SDW Executive or SDWE,
which allows one to execute any of the tools. The menu
system is hierarchical. First one chooses a category of
tools such as DESIGN TOOLS from the top-level menu. A menu
of the tools in the chosen category is then displayed from

which one designates the particular tool to be executed.

Scope c¢f Effort

The scope of this thesis effort includes the design and
implementation of the natural language processor. The
processor allows a software developer to define and
implement a natural language human-computer interface. It
allows the developer to construct a grammar by entering and
modifying the productions of the grammar. It includes an

interpreter which compares user input sentences against the

VORI O .

Y
''''''

_—,
|.|

defined grammar and executes any code included with the
grammar productions. The processor is generic in nature and
can be used to create and use a grammar for any application
domain. As part of this effort the natural language
processor is integrated into the SDW.

The second area that is included within the scope of
this development is the design and implementation of a data
dictionary system and particularly its natural language
front-end. The data dictionary system is used primarily as
an extended example to demonstrate the usefulness and
usability of the natural language processor, but it is also

meant to be a useful tool.

Standards

This section first presents standards associated with
the natural language processor and then presents standards
associated with the data dictionary system. Since the
emphasis is on the natural langquage processor, the standards
directly associated with it are of greatest importance.

The natural language processor should allow a software
engineer to easily construct a natural language
human-computer interface to a software system. If it does,
then this thesis effort should be considered a success. To
fulfill this goal the grammar constructor needs to provide

all of the functions necessary to create and modify a

e TR ' 4 e ., DN T R At et i i e et B e i)

e
» Ca
PR
Y, o »
, .
. o’a
e

'

i".

. .'-.'.Al.r(’
e s %: 2 PN

)

”;"

- .’
l"I."-'

-
'v'n

Poe e o~ - -
[N -l

PECTE M el A T T S it it i e e S Ao A i L At AT

grammar, the external interfaces to these functions should
be consistent, and the interpreter should be able to
correctly parse grammatical sentences for any grammar
created with the processor.

The sentence interpreter should be able to parse
quickly enough so as to not annoy the application user. By
providing positive feedback to the user to assure him/her
that the program is running and performing the desired task,
this time can be extended from a few seconds to perhaps a
minute or more.

The data dicfionary system should allow its user to
manage all of the data associated with a software
development effort. Not only does the data dictionary
system need to provide for the storage of this data, but its
human-computer interface needs to include the functionality

necessary to enter and modify the data.

Approach Taken

The software development cycle as described in the
Background section is followed in this development.

Throughout the chapters that follow, the natural language

processor is treated as a subsystem of the data dictionary
system. Doing so simplifies the structure of this thesis.

Also, when the natural language processor is used to

PGP VAL DAl W DAl VA DA LIRS DAL IS T T i

A R

s EER Y e,

implement a human-computer interface, it becomes a subsystem
of the application.

The next chapter, Chapter II, describes the functional
requirements analysis phase of this effort. The design
phase is the subject of Chapter III, and the implementation
phase is the subject of Chapter IV. To conclude, Chapter Vv
summarizes this development effort, presents an evaluation
of the developed systems based on the standards of the
previous section, and enumerates a set of recommendations
for follow-on work to this effort,

Complete documentation sets, including a data
dictionary, structure charts (described in Chapter III) and
various other design documents, a test plan, and user
manuals for both the natural language processor and the data
dictionary system, are included as appendices to this

thesis. Volume 2 contains complete source code listings.

'..-_Q - ERE N
Ll e et s

Sl kil Do

.....

II. Requirements Definition

Introduction

SR A S
PP IPOE A PP STy

This chapter presents the functional requirements used
in this thesis effort. First very high level, "blue sky"”
requirements are described. Then the overall requirements
of the data dictionary system are presented. After defining
the high-level requirements, the more detailed requirements
of the various subsystems are discussed.

The requirements are presented in the form of data flow
diagrams (DFDs). DFDs were chosen for use in this effort
because of their simplicity. Structured Analysis and Design
Technique (SADT) charts (Peters, 1981:63-64), another
possible representation, show more information than do DFDs,
but are correspondingly more difficult to create, maintain,
and understand.

DFDs consist of four basic elements: processes, data
flows, data stores, and sources/sinks. Processes, which are
represented by circles, transform data. That is, they
modify their inputs in some way to produce their outputs.
Data flows, as their name implies, are paths along which
information moves between the other three element types.
Data flows are represented by arrows. Data stores are files
or data bases. They are represented by a line segment or by

two parallel line segments. Finally, sources and sinks,

DaA i it st T i i B A L el S Y v o e

which are represented by rectangles, are entities outside of
the system which originate and receive data respectively.
Each element of a DFD has associated with it a label which
describes that element. For an excellent description of the
mechanics and use of data flow diagrams, see Structured

Analysis and System Specification (DeMarco, 1979).

In addition to the DFDs of this chapter, Appendix A
contains a system data dictionary which provides more
information about each of the elements contained in the

DFDs.

Automatic Programming

i (6‘ It would be nice to have an automatic design and
programming system that, given a set of inconsistent,
incomplete, and ambiguous requirements, could query the user
i to resolve these problems and then generate, modify as
requested, optimize, and fully document a program which
meets the requirements (Figure 2.1). Such a system should
allow input in whatever mode is most comfortable to the
user, including written and spoken natural language,
graphics, menu selections, examples, and mathematical
formulae. 1Its set of output modes, for responses and
queries to the user, should be similarly varied and should
be user selectable. That is, if the output mode chosen by

the system does not include the mode desired by the user,

AN SANAS

A

T

Ty

P

NOILVANIWMIOO

WoHO0¥d

¥IUUYNOONd
J11ui0LNY

-

SINIUNINOIY

SISNOdSIN/SITHIND

_.4

Automatic Programmer Data Flow Diagram

Figure 2.1.

he/she should be able to specify the use of additional
modes.

The documentation generated by such a system should
include all documentation normally generated during the
software development life cycle including, but not limited
to, requirements specifications, high- and low-level design
specifications (including the algorithms and data structures
used), source code listings, a test plan, test
specifications, and test procedures, including an extensive
set of test cases. In addition, when desired by the user,
the system should be able to provide correctness
verification of any portion of the generated code.

All code generated by an automatic programmer should be
traceable through the design to the requirements level. The
same is true of the test procedures; all tests should be
traceable to the requirements that they validate.

In addition, the generated system should be
user-modifiable at any level--requirements, design, or
implementation. The user should have ultimate control, but
the system should recognize potential problems and advise
the user as appropriate.

The Handbook of Artificial Intelligence, Volume II

(Barr and Feigenbaum, 1982:295-379) includes an excellent

introduction to automatic programming as well as an overview

of the recent research in the field.

I . System Requirements
The previous section described several ideas about what
a computer, via an automatic programming system, should be

able to do. A system which can generate quality software

. v sy s 2 &
. v
-‘.'a'n ele ey

directly from requirements without extensive intervention by
a human programmer is probably many years in the future, if
i it is even possible. A possibly more practical approach,
given today's technology, is to concentrate on developing a
set of integrated and automated tools which aid the human
;- engineer in developing software. This is the approach taken

in the SDW and is among the justifications for this thesis

effort.
ﬁ (5 This section describes one such tool in terms of its
ff functional requirements: the data dictionary system, DDS,

developed for this thesis effort. Figure 2.2 shows a
i top-level model of the system. This model illustrates the
a8 scope of DDS: it accepts natural language input sentences
- from the user, interprets the sentences as commands (using
® the natural language processor), and retrieves information
from and/or modifies the information in the data dictionary.
Figure 2.3 breaks DDS down into its major subsystems,
® the grammar constructor and sentence interpreter, which
together comprise the natural lanquage processor, and the
data dictionary access process. The remainder of this

® » section discusses the more detailed requirements of these

AP S A W W, DU S W N PN L SN)

C
AYNOILOIQ wivd
ISNOdS I
WILSAS
ANUNOILIIA ¥3sn
vivd ANYWUWOD

Top-Level Requirements Data Flow Diagram

Figure 2.2.

ANUNOTLOLA YLY]

ANUNOILOIA
Y1vd
$83J00v

ANYNOILIIGQ wivd

ANYUHOY S$530Y
AYUNOILIIQ Y.LYQ

ITYSSIY AONYI
Y3LINdYILNT

JDUSSIW HONNI
ANUNOJL10X0 Wivd

YYD ORINNON

IINILN3IS
13Nd¥ILN]

JON3LINIS

F9USS3W YOI
NOIL1INYLSHOD

YYWWVAD
LONY¥LSHOD

ANUUNOD NOILINYLSHOD

Data Dictionary System Data Flow Diagram

Figure 2.3.

Py

ialdedod

W

g
LYW e,

.

I AN
acadal

v e :
i ol AP

2-17

‘s ’.' ', '-.
eV Sl P

A

1}
-
.

AR iR S A T A o

subsystems followed by a discussion of DDS's grammar PN
requirements, its data dictionary content requirements, and, PN
finally, its SDW interface requirements.

Grammar Constructor Requirements. The grammar -

constructor allows the user to define a set of production AN
rules which collectively define a grammar. Figure 2.4

depicts the data flow for the grammar constructor. As is

v e

shown in the diagram, the grammar constructor consists of

v

three subfunctions: SAVE GRAMMAR, LOAD GRAMMAR, and MODIFY W

W
". .

GRAMMAR. Each of these processes is discussed in turn.

.V.)

When a save command is entered by the user, the SAVE
GRAMMAR process stores the current working grammar to a
permanent file. This is necessary so that the grammar does

not have to be created each time it is needed. The file

must be in a format that allows the grammar to be retrieved
into working storage.

Since the grammar is stored in a file, a method for jff
retrieving the contents of the file is needed. This is the at;
function of the LOAD GRAMMAR process. If a grammar is .
already in working storage, then it is overwritten by an BN
incoming grammar. gff

The MODIFY GRAMMAR process consists of several -
functions which allow a user of the constructor to define
the rules of a grammar. To insure that the grammar ;%‘

environment is in the proper condition before a grammar is

2-8 =
\\‘
-
=~
..
RS
________ -) e T e e e et e e e e e e e e e e -
PP S I I S S S A O S S I S N Sl S AP A PP B I AP A IO D S It T S S AP Rt

b ol e A i i

NOANETS

YT

e

e

>

)

- h

A

~

e S A Al A

A0v553U ONYI aMYUWod
e JUYNUYND
NOLLONNLISNOD Adlgou HOTLIWITJTqOU dBWUYYYD

HYWWYND OMINNON

HYNWGAD
anvs
, L3 §

YYUWYAYD LNINUWNE3G

—

ANV 0D
3NYS AYLINYAD

aNYWWOod

ay07 dulWYND

Construct Grammar Data Flow Diagram

Figure 2.4.

2«9

Ol S nai A Y0 - BAn 54 St a8 oe uuny o]

defined, an initialization function is needed. To allow the

user to initially enter the grammar's production rules, a

create function is needed. To allow the user to determine ;
what production rules exist, a list function is needed. To ﬁéis
allow the user to view the existing production rules, a :éiﬁ
display function is needed. To allow the user to modify | i

existing production rules, a modification function is R
needed. Finally, to allow the user to remove production -

rules which are no longer needed, a delete function is fﬁi}
needed. S

The MODIFY GRAMMAR process should be able to determine
if an invalid request has been entered. If it detects an
Y invalid request, it generates an error message. o

Sentence Interpreter Requirements. The sentence

interpreter has two functions: a parsing function and a

command generation function. The parsing function, PARSE
SENTENCE in Figure 2.5, provides the capability to determine
if an input sentence is valid within the defined grammar.
The parsing function also provides the capability to inform
the application user that it cannot parse an input sentence. -
To make the system more "user-friendly", the parser should,
if it is unable to parse a sentence, attempt to show the
user where in an input sentence an error occurred. It

should also offer suggestions as to how to correct the T

problem.

A A

Y

" ot
Sl

S daS

AN

S 1 .. - M . k IR ‘ ' 3 .< -4
.Av..-A
£
[
[9
&0
«
o~y
a
z
(o]
~
fx,
©
-+
[
(o]
IDYSSIU HONYI 3SHYd o
(8]
=4
()
o
ANUWWOD SS3IY b -
-— aNYUNOD a0 |e- IONIINIS e ")
A¥YNOTAOIQ V1vG JLoy¥INGD S11NS3y 3539d 3I5¥Yd IONILN3S o
+
22 12 by
Q.
HYNNYED b
+
=)
—-
0
o
(]
L.
3
&)
ot
f
. 9
.4
1 B
L]! N

‘o

LIPR PR PRI WAL W

The command generation function, GENERATE DD COMMAND in
Figure 2.5, provides the capability to syntactically
translate the results of a valid sentence parse into the
proper execution commands of the application tool (the data
dictionary access process in this case).

Data Dictionary Access Requirements. The data

dictionary access process executes the commands sent from
the sentence interpreter. It provides the means to update
and display the data stored in the data dictionary (Figure
2.6). Therefore, it must be "complete" in the sense that it
have full access to all the information stored in the data
dictionary file. It must also maintain the "consistency” of
the data in the data dictionary. For instance, if a module
entry is deleted from the dictionary, then ALL references to
that module need to be deleted. If this is not done by the
access process, the information in the data dictionary can
easily become inconsistent.

The UPDATE DATA DICTIONARY process shown in Figure 2.6
consists of several functions which allow the user of DDS to
define the information to be stored in the data dictionary.
To allow the user to define new entries in the data
dictionary, an addition function is needed. To allow the
user to change existing information, a modification function
is needed. A reinitialization function which resets the

information in an entry to its initial state can be handy,

.....

v
‘
r‘. .‘4”_2' ,"-l I.

B |
L]

AR . S
IR PR
i . R RN
PRV ISP U NDRON

.
'_' 'l |‘
ER § L
Y I

q

™ e d
q

o A |
TN
:-sj:\j
-. A.‘-\
.u. '~|"
-“‘."‘.
SN
s

3 .‘ '_..l.-.l..iiq.lﬁll. ..-.A- .A > n....... .\.
. . . . N .

I
[
L
,
A
L
p g
- (4]
. .
w0
¥i¥d ANYNOILOTA wivq s
9 ' (=]
s z
o]
- —
3 vivd [ANUNOILOIQ (INYUWOD €.
L > Yivd -
. ANYNOILIIQ YLva AU1dSIa NOTLY.LNISIdd s
[- o
1 o a
. >
- — S
3 3I99SSIL ANAYI ©
AUUNOILO [0 ¥ivd o
o o
X o
p.)
s ANBWWOD NOTLYITSIaON -t ™
GNYWWOD NOIL3130 IYSSIW YOUN] a -
_ ONYLLIOD NOILIAQY ANYNOILIIQ ¥ivq © &
9. . L
h- a
b a
g 1°€ “
. ANYNOILIIC 0
., - viyd by
g YLY¥Q ANYNOILOIO YLYG 31vadn o
b, <
, .
¥ O
. ANYWMOD NOTLYITA1QOW .
' ANYUMOD NOTLYZITYILINI o
: ANVWWO) NCT11313a
) ANUWKWOJ NOILIQQY g
' 3
X o0
3 -~
9 e
|
.
"\.
k.
“.. . |
.., . . _ . H
» ‘ - :
4
Yy - e e s e e e e L) I . . . e e e e . Yy
m. DAY I T ANANPIRIES . IR el .. DY, N | RV, RO VEAE JONSSCUORIULE SRR

L O AMEIAETEE AL e AVCAR ML soe. iy sucubacuen e

l especially when the modifications to be made to the entry

L
‘s
]

j are extensive., Finally, a deletion function, which allows :igﬁj
. :.:‘:.-;.
; the user to remove an entry from the data dictionary, is ;ﬁ};
8 .-‘{-' ‘:~
' needed. As is shown in Figure 2.6, the UPDATE DATA e

DICTIONARY process can generate its own update command.
This is necessary to enforce the data consistency discussed

in the previous paragraph. If the information requested to

W=

be modified is not contained in the dictionary, this process
displays an error message.

L The second process shown in Figure 2.6, DISPLAY DATA
DICTIONARY, retrieves, formats, and presents the information
stored in the data dictionary. Again, if the information

i (!f requested is not contained in the dictionary, an error

message is displayed.

The data dictionary access process should be

i independent of the natural language interpreter. That is,

it should be usable without the natural lanquage front-end.

Therefore, it needs to implement all the requirements of DDS

f except for those that deal specifically with the

| natural-language human-computer interface. By making the
actual data dictionary tool independent of the

E human-computer interface, prototypes of various kinds of
interfaces and various designs of natural language

interfaces can be developed and easily tested with the

.....

LA T I

-

-
PO PR .
PSP W AP PR P

BN SN A M A AN g aou oy e nah Sam ars s o E R AR e e

R R R R R T S N I Ty O TV LY TN [W P P oI~ A R = 7P o
‘r o .'-

el

access tool; then one or more can be selected and fully
developed.

Grammar Requirements. The main requirements of a

grammar in a natural language human-computer interface are
that it be functionally "complete" for the application
environment and that it be flexible. A functionally
complete grammar provides at least one way for the
application user to specify each function of the
application. A flexible grammar provides multiple ways to
specify those functions of the application that are
"naturally" specified in multiple ways. Flexibility
enhances ease of use.

Since DDS is to have a natural language human~computer
interface, its grammar should be functionally complete and
flexible. DDS's grammar should allow sentences which ‘
specify each of the operations provided by the data
dictionary access mechanism. The grammar should allow
access to any of the entries contained in the data
dictionary. The grammar should provide for needed
meta-operations, that is, operations that deal with the
environment (such as exiting from the system) vice the
information in data dictionary.

Data Dictionary Content Requirements. A data

dictionary needs to provide storage for the information

needed by an engineer during the entire software development

L T S oL T e T e - R
. A . . PO o - B .

P A T R S St SR SRR LR SR SR ST S S L S

N B aty et . - c T e T T e e e T e et T e T e
S — e DRV AN GG L LI LT W VC VR VRV I TR VS VEVE WL V8 VR WA W VPO W W D

Sl "."\‘~.'-_'I~."-‘.7‘.".".!.\.-".-_- Ol P e

K

process. AFIT/ENG's Development Documentation Guidelines

and Standards (AFIT/ENG, 1984) was written with the intent

of standardizing the composition of this information. The
contents of the data dictionary should be consistent with
this document since this is an AFIT thesis project.

AFIT/ENG's documentation standard specifies several
data dictionary entry types for each of the software life
cycle phases. For the functional requirements analysis
phase, it specifies three entry types: Activity, Data
Element, and Alias. Process, Parameter, and Alias entries
are specified for the design phase. The implementation
phase requires Module and Variable entry types. No entries

(" are specified for the later life cycle phases as the
documentation standard is not yet complete. For each entry
type, the standard describes a set of data elements which
should be included in the data dictionary entry.

The data dictionary should provide for all of these
entry types. As the documentation standard is updated and
completed, the data dictionary contents should also be
revised to remain consistent with it.

SDW Interfuce Requirements. Since both the data

dictionary system and the natural language processor are
tools which may be of help to the software developer, they
should both be interfaced into the SDW. Doing so makes them

easier to access and, one hopes, easier to use.

N
I

14

L.
................

. . - Lo~ . . “ - . - - - b N
e e e e et EUR . REJRRIN Lt e e . -
A AT AT A A et Tl A) P, endeadaia i s aa e s g .A_'\.A._xn_. o S ,J

Conclusion

This chapter has presented and attempted to justify the
results of the functional requirements analysis phase of
this thesis effort. As a prelude to the discussion of the
requirements, the symbology of data flow diagrams was
introduced. The concept and feasibility of an automatic
programming system was also briefly discussed. The next

chapter describes the design phase of this effort.

T R N AP IL UL IUC A D S e e T T T .Y .~
IPW- N WL BRI IS DSy P Y I, PSSP RNV U DNE TR W I W DR I WS TP AT W D Uy U, Y

-

III. Design

Introduction

In this chapter, the design of the natural language
processing system, Coln (Constructor/Interpreter), and the

data dictionary system, DDS, are described and justified.

The description begins with the overall functional system ;l@y

design of DDS. Following this, more detailed functional

descriptions of ColIn's design, the data dictionary tool's
(DDT) design, the grammar's design, and the grammar-to-DDT
interface's design are given.

The system-level design is presented in the form of a

data flow diagram (see Chapter II for a description of :ﬂj
DFDs). The lower-level designs are in the form of structure

charts which are included as Abpendix B. Figure 3.1 shows

an example of a structure chart. Structure charts depict T
the modules of a program as rectangular boxes. Each box is

labeled with the name of the module it represents. The

boxes are interconnected with arrows from the invoking to
the invoked modules. Each arrow is labelled with a number
which corresponds to a number in an accompanying table. The

tables tell what information is passed between the modules.

-—

As an example, Table III-1 corresponds to the structure ffﬁ

chart of Figure 3.1. :;:f
RRCO
TRt

e

AL S i Aal i

-

avl

o -
- AChA

e S 4

v"\g

~HuLVHD
~ans

35Y¥vd-NLd ISHvd-ENS
1 2] (3
3S¥vd
-dAIYED
-ing
]

3SUYd-NL Y

ISHY4-ENS

Sample Structure Chart

Figure 3.1.

T

Yowu3 35394
-35Mvd N455339N5 - NN
-AY1dS1a

€ 2
25HYd
v
'e
2

parse Interfaces

Passed Parameters Type Returned Parameters Type
1 sentence data
grammar data
= LT
o 2 sentence data result data AR
2 sub-grammar-list data -
ii 3 result data successful parse? flag 3
! 4 (none) -
}' -
! 5 sentence data result data :
' sub-grammar data
6 sentence data result data =
function data T
7 cdr*(sentence) data result data
sub-grammar-list data
\e 8 sentence data result data ’
sub~grammar-list data
9 cdr*(sentence) data result data
sub-grammar-list data
10 sentence data result data _.
sub-grammar data
11 sentence data result data :
function data :
The cdr function returns a list of all but the first T
element of a list passed to it, For instance, the cdr of
the list (a b ¢) is the list (b c¢).
Table III-1. Sample Module Interface Table, N
3-3 RS
I R O R R S -_.-;.;;:'-‘.'- el T _'-._ B R P .; AR SR

s i MRSt il e s e s Sr it ne -7",'.. N PSP aC _"‘W_ B S A SN i R e rut s S S e o b o @ AL i e S O

Structure charts were used to document the design
because their notation is simple and therefore easy to use
and understand, and because the SDW provides a tool (SYSFL)
which partially automates their generation. Other notations
which can be used to document software design include
Leighton diagrams, Hierarchy plus Input, Process, Output
(HIPO) charts, and structure trees. Again, for the reasons
noted above, structure charts were chosen for use in this
thesis effort. For more information about these design

documentation methods, see Software Design: Methods and

Techniques (Peters, 1981:44-62) .

System Design

The design of DDS is divided into four functional

elements: ColIn, DDT, the grammar, and the interface. As iffﬁG
shown in Figure 3.2, Coln consists of the GRAMMAR

CONSTRUCTOR and SENTENCE INTERPRETER processes, DDT consists

of the DATA DICTIONARY ACCESS process and its associated Eii;ﬁ
data store, the grammar consists solely of the GRAMMAR ;i_!
store, and finally, the interface consists of the INTERFACE
process and its data store.

The EXECUTION COMMAND shown in Figure 3.2 is built into
the grammar and is sent to the INTERFACE process by the

SENTENCE INTERPRETER process at the end of a successful

sentence parse. Similarly, the DATA STORAGE COMMANDs are

y3sn
GNUWWOD 39WH0LS ..Chcn

ANYNOILIIA WivQ

35N04SIY

P o

N\

$$30Jv

HYWUYYD

System Design Data Flow Diagram

ANYNOILDIA IIYAYILNL UILIWNILNL FOLINHISNOD
vivq JONILN3S YYLIYED
wn
(" 4 am..
) ANYLINOD
GNYMOD ANYNOTLILA Ylvd ONIUNIS ummnwuupmzoo
Yivd 3JOYJHILNIT
¥3sn o
(NVLNO) NOTINJIXI .
(o]
(0]
1 9
o 1
&)
e
[£ 5
z 1o K

built into the grammar and are executed by the INTERPRETER
process as the input sentence is traversed, These commands S
tell the INTERFACE process what actions are desired and upon g
which data dictionary items these actions should be
performed. The DATA DICTIONARY COMMANDs are generated by
the INTERFACE process upon receipt of the EXECUTION COMMAND.
They are based on the information in the INTERFACE DATA data
store and are sent to the DATA DICTIONARY ACCESS process to
be acted upon.

Natural Language Processor Design. As suggested by the

requirements in Chapter II, the natural language system
consists of two distinct subsystems: a grammar constructor
and a sentence interpreter. The design of both of these is
described in this section, but first the data structures
used to represent the grammar are defined. :fi

Data Structures. The first decision in the design _

of ColIn was the form of the data structures in which the Qﬁi
grammar is maintained. Three structures were defined: the g;;
production record, the function record, and the meta-symbol ;_*
list (FPigure 3.3). These structures and their purposes are |
described in the following paragraphs.

Production Records. Production records are -

used to store the productions of a grammar and consist of
three fields. The first field is the element which the

current word of the input sentence must match for a parse to -

3-6 N

- [N 28 SRR N AR Wt MR, St Aad, Sl e e, PR B S Sal N B e v B R ma i R A e n hee e AR hatiictaiar g o

e
et D ettt + o
1 1 -
| | s
1 S Bttt i fommm——— + 9
4 4 NAME ¢ SUB-PRODUCTION LIST ¢ CODE ¢ 9
9 tom———— R e e L B L Ll B tr————— + 1
| 1
| (a) Production Record Fields 1 -
1 1 .
L] 1
1 bm—————- fmm———— + |
| Y NAME ¢ CODE ¢ |
1 R b +] -l
1 1 -
1 (b) Function Record Fields q A
| 1 A
v 1 PN
| Fomm e e to-——— + | e
| 4 META-SYMBOL 1 ¢ META-SYMBOL 2 ¢ ... | “ <
q e e e L L e L L P tem——— + 1 e-
1 v 5
1 (c) Meta-Symbol List Fields 1 y
1 1 -
T D ittt + -

Figure 3.3. Natural Language Processor
Data Structures

proceed. This could be a literal, which the word must match e

exactly, the name of a sub-production record to be used as
the grammar in a recursive call to the parse routine, the
name of a function record to apply to the current word, an
end~of-production marker which always matches but does not
consume any of the input sentence, or an end-of-sentence
marker which matches the end of a sentence.

The next member of a production record is a list of
possible sub-productions which can be used to continue the

parse should the current word parse successfully. Each of

R R S LI _..'.._‘._.‘-_-...._ P N S S S S P .
A AR P LA PSSP RPN, W4 5. WAL I Pk W WAL IRyl WA WA WP s W N A g R i i

RS TA Yhea G DA R Sl el Gub Aol a3 LA datind ot ta Akt
B N

these sub-productions are identical in structure to the

parent production record. This eases the parsing task by

& allowing recursion.

The third and final production record element is a

piece of executable source code to be invoked if the

production is successfully traversed.

Function Records. The second structure _}j

needed by Coln is called a function record. Function

records consist of a name and a piece of executable source

code which is used to determine if the word passed to a o
function is a member of the function's domain. 1If it is, KA
then the parse of the word is considered successful.

The Meta-symbol List. The meta-symbol list

structure is simply a list of the names of a grammar's }gf;
production and function records. These names are called

meta-symbols because they are names and not terminal symbols
of the grammar. The meta-symbol list is used to keep track

of the meta-symbols that have been defined so they are not

accidentally redefined and so they can be easily stored by
the grammar save routine,

The Constructor. The grammar constructor consists

of eight subprograms which are used to build the structures
described above. These include routines to initialize a igt
grammar, create production records, create function records,

add productions to an existing production record, modify an

3-8 R

existing function record's executable code, destroy
production records, destroy function records, and save a
grammar. Each of these subprograms is described below.

The grammar initialization subprogram
(initialize-grammar) destroys all of the production records
and function records of the current working grammar. It
also empties the list of meta-symbols. This subprogram
requires no input parameters.

The grammar constructor subprogram that creates
production records (create-production) takes as input the
name of the production record to be created and, optionally,
a piece of executable code to be executed whenever the
production record is successfully traversed by the
interpreter. Before attempting to create a production
record, this subprogram confirms that the name passed to it
has not already been used.

The grammar constructor subprogram that creates
function records (create-function) is similar to the one
that creates production records. It too requires a name
which it assigns to the function and an optional piece of
executable code. It too confirms that the name passed to it
has not already been used.

The subprogram that adds productions to a production
record (add-production) requires three input parameters:

the grammar production, a piece of executable code to be

3-9

----- e o L

. - - .t o . - . P I, S PLAR SRR S PR S B
-t e A UL . e T e et e e e e e L. R .. -
PE N VA VR Y S SR o R PRI RO AN gt e e e

AUl Wl o el i nd A0 gt G A E SALA*E SF0 I U S ang e e pan 1nd e e sie e p s il

S

K|

ISR ENCIMERAL A A A e s i i S it St P MDRLRRA s Sy ko e g

'-,‘5,_‘,_" i a s ¢

‘l

N
]

executed whenever the production is successfully traversed

g - gN

'l

by the interpreter, and the name of the production record

-
o7

that the production is to be added to. This subprogram

LAY

3,

first determines whether the name passed to it is a defined
production record. 1If it is, then the subprogram adds the
production and the code to the record. Otherwise, it
displays an error message.

The subprogram that modifies the executable code of a
function record (modify-function) requires the new code and

the name of function to modify as input parameters. This

subprogram determines whether the name is a defined function
record and, if it is, replaces the old code with the new.
Otherwise, if the name is not a defined function, it
displays an error message.

The production record and function record destruction
subprograms (destroy-production and destroy-function,
respectively) purge the production or function record whose
name matches their input parameter. If the production or
function record does not exist, then an error message is
displayed.

The grammar save subprogram (save-grammar) stores all

of the production records and function records of the

current grammar to a disk file. It also stores the list of

- meta-symbols. This subprogram requires no input parameters.

.
.
1
'

- -~ - . ‘e - - . .
.0, e e .
U DO P O S

I) The Interpreter. The sentence interpreter
consists of a single user-callable routine. The user AR
provides an input sentence and a grammar to the interpreter. by

It attempts to match the sentence to the grammar. As a

CEEEL Y L e

successful parse continues, the interpreter executes the
associated code built into the grammar. If the interpreter
[is unable to successfully parse a sentence, it displays an e
error message on the user's terminal screen. f?;{
As was discussed in the section on data structures, the -

interpreter uses recursion to traverse the grammar. The

‘W

objective was to model the interpreter after the data
structures in order to make the code as simple and easy to
d (e understand as possible.

Data Dictionary Tool Design. DDT was designed from an

object-oriented vie&point. Goldberg defines an object as a

i ‘"uniform representation of information that is an

- abstraction of the capabilities of a computer" (Goldberg,
1984:76). An instance of an object has associated with it a

» set of memory locations, called instance variables, and a
set of operations, called methods, which can access the
instance variables. An object's instance variables can be

; accessed only through its methods. This trait forces a

| well~-defined interface to the information stored within the
instance. Each "type" of object has associated with it a

J schema which defines the information that can be stored.

........

.........................
. A atw

...........

Nt Bt aia g v —— A A s S B
Bt et A " — ——— - 3 e
. W W T TS \ PRI T AP S v AR ATl S T S0 i T e ————w oy

The set of objects which are instances of a particular
schema is called a class. For more information about

object-oriented programming, see Smalltalk-80, The Language

and Its Implementation (Goldberg, 1984:76-80) and

Smalltalk-80, The Interactive Programming Environment

(Goldberg and Robson, 1983:6-9).

Object Classes. This subsection defines the

object classes which make up the data dictionary. Appendix
E provides a set of diagrams which show the hierarchical
structure of the high-level data dictionary object classes,
In these diagrams, solid lines indicate that the lower level
class is explicitly part of the higher level class. Dashed
i {;‘ lines are used when the lower level class is implicitly part
of the higher level class. Figure 3.4 is an example of one
3 of these diagrams. 1In this example, the PROCESS object
i class is only implicitly a part of the DESIGN object class.
The DESIGN class actually contains a reference to the SLOT
class in which is stored a set of pointers to instances of
the PROCESS object class. Appendix E also includes a
detailed description of each of the defined object classes
including their corresponding methods. Appendix B contains
structure charts for each of the defined high-level methods.
Structure charts were not included for the low-level methods
(i.e. methods which retrieve or set the value of a single

instance variable) because of their simplicity. The

SYIwY

¥313UYdvd

SYI1Y SYl v
-653004d $63004d -y4343Wvabd
- ", Y

'll""' llll/ "
ll"l'l I'III ”
St { . PR

e,

Sample Object Hierarchy Chart

Figure 3.4,

3-13

a e,

remainder of this subsection presents a textual description
of the object classes.

ACTIVITY. This class corresponds to the
Functional Requirements Analysis Phase 'Activity' data
dictionary entry.

ACTIVITY-ALIAS. This class corresponds to

the Functional Requirements Analysis Phase 'Alias' data
dictionary entry for activities.

ALIAS. This class is a common component of

the ACTIVITY-ALIAS, DATA-ELEMENT-ALIAS, PARAMETER-ALIAS, and
PROCESS-ALIAS object classes. It consists of the instance
variables common to all of these objects.

ASSOC. This is a primitive-level object
class used to define the ASSOC data type and its operations,
The ASSOC data type is similar to Lisp's association list.
An association list consists of a list of pairs. The first
element of the pairs can be searched by using the 'assoc'
function. The 'assoc' function returns the matching pair or
NIL if no match is found.

ATOM. This is a primitive-level object class
used to define the ATOM data type and its operations. The
ATOM data type is similar to Lisp's atom.

DATA-ELEMENT. This class corresponds to the

Functional Requirements Analysis Phase 'Data Element' data

dictionary entry.

. e

B 7 AR

PR
A PRPC I

Lagrater yncdee g <._-.‘ e e TG P NER T ST TN

-

I.‘I

DATA-ELEMENT-ALIAS. This class corresponds

to the Functional Requirements Analysis Phase 'Alias' data
dictionary entry for data elements,

DATE. This is a primitive-level object class
used to define the DATE data type and its operations.

DESIGN. This is a high~level class which is
used to keep track of a}l the aliases, parameters, and
processes in a program design. It also is used to maintain
a list of the main processes (i.e. those processes which are
not invoked by another process in the design) of a program
design.

ENTRY. This is a low-level object class
which is used to define instance variables which contain the
version number and date of entry of the object instances in
which it is included. This class is included as a subclass
of the ACTIVITIES, ALIAS, DATA-ELEMENT, DESIGN,
IMPLEMENTATION, PARAMETER, PROCESS, and REQUIREMENTS object
classes.

HEADER. This is a low-level object class
which is used to define instance variables which contain the
name, type, and project name of the object instances in
which it is included. This class is included as a subclass
of the ACTIVITIES, ALIAS, DATA-ELEMENT, DESIGN,

IMPLEMENTATION, PARAMETER, PROCESS, and REQUIREMENTS object

classes.

LR ROt A A A S N e e Sl el e I Gl e e

E - IMPLEMENTATION. This is a high-level class
which is used to keep track of the modules and variables of

o a program. It is also used to maintain a list of main

(Y

modules (i.e. those modules which are not invoked by another

module in the implementation) of a program implementation.

MODULE. This class corresponds to the

Implementation Phase 'Module' data dictionary entry. -

',‘.'c"rfr v -
Al i .
S VAT
1
1

LIST. This is a primitive-level object class _fi:ﬂ
used to define the LIST data type and its operations. The 1

LIST data type is similar to Lisp's list.

PARAMETER. This class corresponds to the

Systems Design Phase and Detailed Design Phase 'Parameter'

Y data dictionary entries. It is also included as a subclass

of the DATA ELEMENT and VARIABLE object classes.

PARAMETER-ALIAS. This class corresponds'to

the Systems Design Phase and Detailed Design Phase 'Alias'
data dictionary entries for parameters.
PROCESS. This class corresponds to the

Systems Design Phase and Detailed Design Phase 'Process'

data dictionary entries., It is also included as a subclass

of the MODULE object class.

o PROCESS-ALIAS. This class corresponds to the

;
E, Systems Design Phase and Detailed Design Phase 'Alias' data

dictionary entries for processes.

PR L P S ISR TR YRS S S Y

e e e T e e e T e e e T Tt e e e T N e e N e e T - e T
VP R AR S VI AP L R AP o SR S P W S U P PSS VT VPSR SUPVRE TR Y i W AT VL VAT U i v s I R W

T T N N T T T T N R ™ T P TV Vo W e v a5

\e

..............

PROJECT. This is the highest-level object
class. It is used as a pointer to the REQUIREMENTS, DESIGN,
and IMPLEMENTATION object instances of a project.

REQUIREMENTS. This is a high-level class

which is used to keep track of the activities, data
elements, and aliases of a requirements analysis.

SLOT. This is a low-level class which is
used to store pointers to the primitive value-storing object
instances. It is also used to define which instance
variables are required to be filled in and which instance
variables have been filled in. PFinally it is used to store
a label to be printed when an instance variable's value is
displayed.

TEXT. This is a primitive-level object class
used to define the TEXT data type.

VARIABLE. This class corresponds to the
Implementation Phase 'vVariable' data dictionary entry.

Grammar Design. The design of the grammar consists of

two parts. For each desired action type (e.g. add, delete,
display, etc.), English-like sentences which describe the
action and its object must be defined. This can be a
never-ending process, since there are many sentences with
the "same meaning” in the English language. The best that
can be done is to try to define and implement the sentence

structures that most people will use most of the time. The

(V%)
|

17

e e s L B - L 4 e -
D LI

‘e
FRT Y AT

PR D T T T e P . ST sty
A A . DRI I T S S P O S P T A P
o WV TV AL RAF I ST SN L G W D PP SAPE W PSP RS S W WD W WA VAR L PO O T)

LS -

L A Wl 2 g N eI AN A g U L S A A et S e e o Bm e SemCast Ane e b e B =y e ma e 0 o
o . - - - - . . . - - - . . S “w . " - - . - - - - - - . M - . -

minimum that must be done is to define at least one

KR COSISNDL J 2o

-

English-like way to describe each action that the data

dictionary tool is capable of performing. Since the

M
W

emphasis of this thesis effort was on the grammar

‘.
.-
I

constructor and interpreter, the second of these two

approaches was taken.

The second part of the grammar definition task is to
define the pieces of source code which transform the input

English-like requests into a form usable by the

grammar-to-DDT interface. From this perspective the grammar
is really part of the interface, but, for presentation
purposes, it will continue to be described separately from
the interface.

Interface Design. The interface design makes use of

object-oriented techniques. Here a single object class,
called EVENT, is defined. This class is used to store

information about what actions are to be executed by the

data dictionary tool. The methods of EVENT send messages to f7§3
the data dictionary to perform the desired actions, | ‘i%

Appendix F provides a description of EVENT and its methods.

Conclusion
This chapter has described the design of DDS including
the natural language processor, ColIn, and DDS's other

subsystems. Structure chart and object-oriented design

St it o AU Al
R

E o IV. 1Implementation

Introduction

This chapter discusses the implementation of DDS

including ColIn. As in previous chapters, the system level is R
looked at first, followed by a more detailed discussion of
each of its subsystems. The final section of this chapter
describes the integration of CoIn and DDS into the Software
Development Workbench. volume 2 of this thesis contains

complete source code listings of the data dictionary system.

System Implementation

DDS was implemented on the AFIT Information Sciences
Laboratory's DEC VAX-11/780 minicomputer under the VMS
operating system Version 3.6. Figure 4.1 is a diagram of
the configuration of this computer system during the time
DDS was being implemented. The ISL VAX was chosen as the

target machine for two reasons. First, it was available and

not overloaded compared to other machines at AFIT. Second,
it is the host machine of the SDW (Hadfield, 1982:17-18). Tf’;

After deciding upon the target machine, the next major o
decision made during the implementation phase was the choice
of the implementation programming language. Several

languages were available on the target machine at the

beginning of this phase, including C, Fortran, Lisp, Pascal,

.....

e L T N T T T T v T T Vv
@
a
W S
zY
L ad
[
a
4
o~
N
-t
-y
x
<
-3
o
o
[
-~
> g
T
S <
£ o
uln N
c0 -
@
w ¥
-
g o
3 ‘
o 2
x -
w)
= z
z S
=)
a <
P
<@ g w
= w
= e %
£ £ &
3 o
y -
J ‘-
E .
z
8 .
- ~
- .
gv
- O - F
ag -
o

Figure 4.1. AFIT ISL VAX-11/780 Hardware Configuration

4-2

. "3_""_ v, s ..'-' - ,‘_'_‘_...'-_. - ’_.. et et

LY. v - - -.‘
RPN A PP IR PR PR TR Y

and Prolog. Of these, Lisp was chosen for three reasons.
These are described in the next paragraphs.

The first and most important reason for choosing Lisp
as the implementation language is the development
environment provided by Lisp systems. Lisp systems
generally provide an interpreter, compiler, editor, and
debugger combined into one nicely integrated environment.
This allows the Lisp programmer to easily jump back and
forth between these different tools. As each subroutine is
developed, it can be tested; debugged, modified, or
redesigned as necessary; compiled into object code; and
integrated into the system, all without leaving the Lisp
environment.

The second reason for choosing Lisp is pedagogical in
nature: a student of artificial intelligence is generally
expected to learn to program in Lisp. Writing code in Lisp
is a necessary part of fulfilling this goal. The thesis
effort provided an excellent opportunity to pursue this
goal.

The existence of a large amount of Lisp code that could
possibly be used in DDS was the third reason for choosing
Lisp as the implementation language. Prototypes of both the
grammar constructor/interpreter and the software design part
of the data dictionary tool were built in other projects

(Wolfe, 1985a) (Wolfe, 1985Db).

The particular implementation of Lisp used is called
NIL (Burke, 1984) which is an acronym for New Implementation
of Lisp. NIL was developed at MIT and is based on Common
Lisp (Steele, 1984). NIL is a fairly complete
implementation of Lisp. 1Its most serious lack is that it
does not include a garbage collector (a routine which
reclaims discarded memory cells). The lack of a garbage
; collector means that one must periodically exit NIL, restart

it, and then reload DDS and one's database. Fortunately,

this needs to be done seldom enough that it should not be a
major problem. The reason for choosing NIL was that it was
the only version of Lisp installed on the ISL VAX-1l
computer at the time this effort was begun.

While the entire DDS is implemented in Lisp, parts of
it (the data dictionary tool and the interface) are
implemented using an object-oriented language built on top
of Lisp. This language is called Flavors and is included in
NIL (Burke, 1984:170-178). Flavors is an environment which
allows one to define and manipulate objects (Chapter II1I
contains a discussion of objects). Since Flavors is built
on top of Lisp, one can still access all of the functions of
Lisp. This makes the Flavors system ideal for implementing T <
an object-oriented system which must interface with a system '

written in Lisp.

y“.". e R I e P e WA S A ing 2 &0 h e .—_»-—__.—_A.f\f_r.m_H_ Ty R e B R i bk ek B B drie) T

i B CoIn Implementation. This subsection describes the

v implementation of the natural language processor. Coln was

€ T
[t

[g

by far the most difficult part of the data dictionary system

s
[

.
.,

7
. to design and implement. Implementation of the grammar data
-
structures was straightforward--the record structures
= discussed in the last chapter were simply implemented as

F Lisp lists. However, the grammar constructor routines were

e difficult to implement properly, and the development of a
workable design for the sentence interpreter was an
iterative process of prototype development and throwaway.

The Grammar Constructor. The grammar constructor

consists of an implementation of all of the subprogram
designs described in Chapter IIl. Each of the subprograms,
except for the grammar initialization and saving routines,
is implemented as a Lisp macro (aleng with any needed
lower-level subfunctions). Macros were used to simplify the

user interface. Unlike a Lisp function, a macro does not

evaluate its arguments before the body of its code is gfib

executed. Since the parameters that are passed to these ' q
macros are not meant to be evaluated, using macros saves the if&j

user the trouble of gquoting the parameters. Since neither :Z:}f

’
4
b
3
"'.

hd the grammar initialization nor the grammar saving

4
»

subprograms require any arguments, they were implemented as

Lisp functions.

",v. on A
. P

>
1
(2]

[2a sun nes ang -
hl AR SN

e summam . o v % ovow

[P I

Implementing the grammar constructor presented a couple
of problems. One difficulty was the necessity of making the
constructor's routines "destructive" in nature. That is,
any changes made to the grammar using the constructor must
permanently alter the global data structures of the grammar.
Otherwise, if the change is not global, it will be lost, and
the grammar will remain unchanged. In order to facilitate
this requirement, a slightly modified version of the editor

presented in Chapter 7 of Artificial Intelligence

Programming (Charniak, et al, 1980:84-97) was heavily relied

upon in the constructor implementation. This editor is
destructive in nature. The original editor was designed to
edit Lisp function definitions, but since the data
structures of a grammar are not functions but lists, it was
necessary to modify the editor to enable it to edit any Lisp
symbolic expression. A side benefit of implementing this
editor is that not only is it used in the grammar
constructor, but it can be used as a standalone tool to edit
the grammar data structures or any other Lisp symbolic
expressions one wishes to modify.

Keeping track of the positions of the expression editor
global pointers within the grammar data structures was a
second source of difficulty in the constructor
implementation. The data structures of a complex grammar

are themselves complex. To overcome these problems, many

4-6

u-‘.“ \" .

. ."_’." A e T e e '.‘- ."‘.'.' ¥
s i odbodh o eoihedhee i dedn o in o

o
o
A
‘

.2 I SR A

\o

hours of tracing code while keeping track of pointers on a
hand-drawn representation of the structures was done.

The Sentence Interpreter. As mentioned

previously, the design and implementation of the sentence
interpreter turned out to be an iterative process. The
original version of the interpreter was developed as part of
a project in EE 6.23, Artificial Intelligence System Design
(Wolfe, 1985a). This version provided insight into the
problem but no executing code.

The second design/implementation followed the form of
the data structures much more closely. It was capable of
correctly interpreting a grammatical sentence (if the
grammar had been carefully designed) but could not always
recognize a nongrammatical sentence as being invalid. The
problem was that not enough information was being returned
by the low~level subroutines for the driver subroutine to
recognize an error. Correcting this problem was one of the
major changes in the third (and present) version of the
sentence interpreter.

The present module structure of the sentence
interpreter is very similar to the previous one. Most of
the differences are in the detailed design and
implementation of the mid-level subroutines. Both the
high-level driver routines and the low-level data structure

access routines are essentially unchanged from the second

version. However, the module interfaces between the

high-level and the mid-level routines were modified so as to
return the information necessary for the top-level module to
detect nongrammatical input sentences.

The interpreter parses an input sentence left-to-right
comparing the words of the sentence to the grammar. As it
successfully parses the sentence, it executes the associated
Lisp source code contained in the grammar. If it is unable
to fully parse a sentence using a production of the grammar,
it backtracks to a previous branch point in the grammar and
tries again. 1If the interpreter is unable to fully parse a
sentence using any of the grammar productions, then the
i ‘;» sentence is considered nongrammatical and an error handling

routine is invoked. Currently the error handling routine
f displays only a message that the sentence was invalid within
i the context of the supplied grammar.

Data Dictionary Implementation. The data dictionary

tool (DDT) was implemented as a set of Flavors objects and
g their associated methods. For most of the defined object

classes of the data dictionary tool (not all were

implemented due to time constraints), a Flavors object was

declared. The slots of the Flavors objects correspond

exactly to the instance variables defined in Appendix E.

Similarly, the implemented Flavors access methods correspond

; exactly to the defined methods listed in Appendix E.

[I B
- » LA . ’ o

S L '".'-. . -.' e .« ,-",'- P A e .
L B L B Tl ol ol el bt AP PPT A N PWPT R

P P I areg gl e
AT TN T T T

AR Ao acreg e NS e oo e A o e

. R R o R T N TP o P P P
t
’

Since the low-level objects were needed by all of the
higher level objects, they were implemented first (except
for the TEXT object which was not implemented in this
effort). Next the objects associated with the software
design phase were implemented. This choice was made because
some of the code already existed from a prior project
(discussed above). PFinally the highest-level object
(PROJECT) was implemented. Also the objects concerned with
the requirements phase and implementétion phase were
minimally implemented at this time.

Grammar Implementation. Once the grammar had been

defined, implementing it was quite straightforward. The

65‘ grammar productions of Appendix C were entered verbatim
using the grammar construction routines of ColIn. Figure 4.2
shows an example of one of these productions (the notation
used in the figure is defined in Appendix C). Entry errors
were corrected either by making use of the expression editor
in CoIn or by deleting and reentering the erroneous
productions. Implementation of the grammar brought out a
need for several more grammar modification subprograms.
These are further discussed in Chapter V. The Lisp code
that was included within the grammar is really part of the

interface, so it is discussed in the next subsection.

4-9

P T S Tl N T I N TP SR PRI N L P UL IR M Y P N T AP e S R

St . A e e e e T e T e e . e . e
HIEEEELER SR S O S P S APPSR I B . W Dy . B, B S I I i S-S 200 SO DI S S Sl o St STt S et S)

PRy
¢

']
]

- ik adny o . v Py " .o e \ — oy
RN AN L ot et gt ey PN vl RAEACAME SN i AAE A A A A A A Al St i i Al il SRR el S Sie %S - e JAe B Baa A B e o T

i it e e +
1 |
1 1
L {grammar> ::= %
b (please) <aux-grammar> q
1 1
| 1
o e e +

Figure 4.2. Sample Grammar Production

The defined grammar was not completely implemented
during this thesis effort. Effort was concentrated on the
presentation part of the grammar as it was thought to be
simple enough to fully implement, yet complex enough to be a
valid demonstration of that CoIln can be used to implement a
useful natural language human-computer interface. The
presentation part of the grammar was considered relatively
simple because during presentation of the data, there is no
new information bein; added. The information that is
contained in an input sentence can all be checked

word-for-word against the grammar and database. The

presentation part of the grammar was considered complex

» enough because it needs to have the capability of accessing

the entire database, and it makes use of all the
; capabilities of the interpreter.
» Other parts of the grammar that were implemented during
;j this thesis effort include the initialization productions
ff and the data save and quit commands. The initialization
f
: 4-10 T
) .
- R
- o
P N e L e e S e T e e e e T e

v

et et

JaE T W NI - LN [A . <,
S, TSI Wi U Tl T Nl DAL TP S Ay

productions were implemented because it was quite simple to
do so, and the data save and quit commands because of their
obvious importance.

Interface Implementation., The interface between the

sentence interpreter and DDT was implemented as a single
Flavors object class called EVENT. A set of methods to
access this class and the internal Lisp code of the grammar,
which invokes these methods, constitute the remainder of the
interface implementation.

The EVENT object class was modeled after Schank's
Conceptual Dependency (CD) theory (Schank and Riesbeck,
1981:10-26). According to the CD theory, every event has an
actor, an action, an object, and a direction. The actor is
the entity which performs the action. The action is
performed upon an object and is oriented in a direction. In
the case of the interface, the actor is always the computer,
the action is one of the defined commands of the interface,
the object is an instance of one of the data dictionary's
objects, and the direction is either from the data base to
the user's terminal or vice versa.

A second idea of CD theory is best described by Schank
and Riesbeck: "When two sentences describe the same event
in such a way that these descriptions have the same overall

meaning but guite different forms, we expect out CD

P
LT -

.

. .
- .

S
~—-—-!

e e e

BARE A A e o AL e e S Ty —— W‘
RN LR = s N E RN oS e Sl i Sl R A M S S Sl N Rl Ut Al Mot e Ml e Sl eall Sl Sl i A st Sl A b il arac

representations to be identical for both descriptions.”
(Schank and Riesbeck, 1981:14). This idea was also used in
the design and implementation of the interface. A set of
command types corresponding to the operations of DDT was
defined in the grammar. The various sentence forms of each
of the command types is mapped into an identical
representation by the interface. Upon completion of a
successful parse, this representation is converted into a
command that can be executed directly by the data dictionary
tool. Any response by DDT is sent directly to the user's

terminal.

Integration into the SDW

Using the Software Development Workbench Executive

Maintenance Guide (Hadfield, 1982:355-364) as a guide, DDS

and ColIn were integrated into the SDW. The first decision
made for each of these systems was the choice of a two
letter code to be entered by the SDW user to invoke the
tool. The codes 'DD' for DDS and 'NL' for CoIn were chosen
because they were available and because of their obvious
mnemonic nature,

The second decision made was to determine to which of
the SDW's functional groups of tools each system should be
added. Since the design phase part of DDS was concentrated
upon during implementation, it was decided to initially add
DDS to the Design Tools functional group of the SDW. When

4~12

e

. e L a Lt o P A M - FORRT R A TR P SEPNE P S T S
- - - ol - PRSP Ly P, PR WG B DU P U W P NS DU SO DR SR IRE TPy TP Py, T T P, D G . W |

‘.1 .

R L

TS T e e

T P R R S S S AL PR DO S M S T -
LR VI VN VR T 8 A A P N W gL YR S N OR) W S S P T S o T T P P R S R D R Y)

"‘

.......

the requirements phase part of DDS is completed, DDS should
be added to the Requirements Definition Tools functional
group. Likewise, when the implementation phase part of DDS
is completed, DDS should be added to one of the
implementation tools functional groups, possibly the Text
Editors group. The grammar constructor portion of Coln is
essentially a grammar editor, so Coln was added to the Text

Editors group.

Conclusion

This chapter discussed the implementation of DDS and
its subsystems, including CoIn. The choice of the target
machine was discussed, as was the choice of implementation
language. This chapter concluded with a discussion
concerning the integration into the SDW of DDS and Coln.
The next chapter, Chapter Vv, concludes this thesis by
reviewing and analyzing this thesis effort and providing

suggestions for further work.

- ‘. -L_‘ Ce ve

-

st e
A

-
v fe

.
P R §

.
AR A

o
-

Yo Ank Nt ~F Y. "l r v v " oy . v
Y il f _\ "..'".. " :l_\,‘:_f_‘t RiSa% _*:-_‘I.'_ i A Sl ie Tt ™ ol e St S e N W o A R T T e ™ Y Y T WY LY WY UV LY LY VN IWwLw e
.

v
» Py

¥,

iz A

-y "T'-""o"}"'fk\\ T RS i Aok e v 3 ek Sl el Gd' Gud A AR IV EIL AV SUA M0 2 ol 40ar A0 “aAe A i N S it Sntt gttt

ARS V. Conclusion and Recommendations

Introduction

This thesis has described the development of a natural
language processor, CoIn, and its application to a data
dictionary system. DDS, the data dictionary system,
consists of several distinct but interacting parts: a
natural language human-computer interface implemented using
CoIn, a data dictionary access mechanism, and an interface
between the grammar and the data dictionary tool. The
emphasis in DDS was on the first of these subsystems.
Although the other subsystems make DDS a usable system,
their primary role was to show that the interface

(§- constructor and interpreter is a useful and usable tool.
This final chapter first presents a short summary of the
system development. Following this, an analysis which
relates the current system back to the standards described
in Chapter I is presented. Finally, a list of

recommendations for the completion and enhancement of the

oot Y. * e ot

R e

. R A A .
g RO

system is included. -

Development Summary

‘e a'a’ .

CoIn and DDS were built using a variation of the -
classic software development life cycle. First an extensive

literature search was done to gain a better understanding of

5-1

Pt TNt e
LAY

SN W e, St
- EIRIRTA A

L o« . .
. ['\-".'--'-.. M I . - A
R P N N e p e st

>

:
x
LY

ARASERCAARAAL QNS ESENL MG CREAR SIECEL SO K A ast s ACALIE e sacuc i e o e e e e e e e S

natural language systems, the software development process
and its problems, and how these problems might be diminished
by automation. The information gleaned from this search,
along with prior knowledge, was used as the input to the
requirements analysis phase. 1In this phase, sets of
requirements were defined for the natural language
processor, for the entire data dictionary system, and for
each of its subsystems.

After generating the initial set of reqguirements, an
iterative process of design-implement-test had to be done.
This process provided necessary feedback about the
completeness and consistency of the requirements. This
feedback was used to modify the requirements as required.
The design and implementation of the sentence interpreter in
particular was a cyclic process of prototype developmen€.
Throughout the implementation, routines were tested as they
were developed, both isolated from and integrated into the
system. The testing done is by far inadequate (mainly due
to its informality) but does suggest that DDS is reasonably

error-free.

Analysis of the Current System

As has been shown in this thesis effort, CoIn does
allow one to construct a usable natural language

human-computer interface. The constructor does provide at

’
’

)
atar

" least the minimum set of routines necessary for building a
- grammar, and their interfaces do seem consistent with each

other. The interpreter is able to correctly parse

*

O

grammatical sentences within the implemented DDS grammar
{({Figure 5.1). The interpreter is also able to recognize and
report non-grammatical sentences (Figure 5.2). Therefore,
from the point of view of the natural language processor,
this project should be considered a success.

The data dictionary itself is not complete and needs to

be extended. This is discussed more in the next section,

Enough of the system is implemented to show that it is a

reasonable project. What is implemented does show the
}3 (‘- utility of the natural language processor, so the data A
: dictionary should be considered fairly successful.

Finishing DDT should be easy, albeit time-consuming.

Finally, DDS does operate in a reasonable amount of

time. Several timing test were made with an moderate load
on the computer system (4 users logged in). DDS was able to

.; consistently respond in 1 to 3 seconds.

Recommendations for Future Work

o DDS is incomplete. Not all of the requirements have -

been fulfilled by the design. Not all of the design has

RO
been implemented. More, formal testing, in accordance with RN

the test plan (see Appendix G), needs to be done. The

4 Data Dictionary System (DDS)
4 Type (help) for help.

¥ DDS-> (please show me the version and date of process
1 is-process)

f Entry Version: 1
§ Entry Date: 29 Aug 85

4 DDS->

==
+ R R AR R RSk A |

Figure 5.1. Example of a valid Sentence Entered

AL .. S
r
»

into DDS
o e e e e e e e e et e, - - — + -~ .- j
1 1 Lol
f¥ DDS-> (what are the calling processes of foo aliasl) 1 el
1 1 e
§ *** Error - Can't parse sentence **x* 1 ST
1 1 T
4 DDS~> 1 - - !
b 1 S
R e ittt ettt D Lt et L L + o
Figure 5.2. Example of an Invalid Sentence Entered SR
into DDS o
-4
following subsections describe some of the work that needs Z?ii
to be done for DDS to become a usable system. ffiﬁ
CoIn. Of the subsystems, CoIn is probably the closest —
to being a "complete" implementation. This is natural since

the emphasis of the thesis work was on this part of the ot
(
system. The most severe lack in ColIn is in its handling of ACAOA

nongrammatical input sentences., The sentence interpreter's

error handling routine needs to be greatly enhanced. As it

I e S O K FO0 S A A S A e M A M I B ACIA B s £ o i Sl s ol o b ot o e o S

..
\
.‘-:. -
is implemented now, it provides virtually no information to FACAGH
. . o s
a user of the system. This is a serious limitation and N
. . , Y
needs to be investigated and corrected as soon as possible. AT

"
>

" s
L

In Chapter 1V, the statement was made that several
grammar modification subprograms need to be added to the
grammar constructor. There are at least two such routines.
First, a routine to remove a production from a production
record is needed. This can currently be done either by
destroying the production record and reentering all but the
production to be deleted or by using the s-expression error.
Neither of these solutions is good a good one. The first
can be very time consuming; the second, due to the recursive
nature of production records, is difficult and error-prone.

The second subprogram that needs to be added to the

grammar constructor is one that would allow the modification
of the Lisp source code contained in the grammar. The need
for this routine is not as critical as the need for the
production deletion routine--modification of the Lisp code

is fairly easy using the s-expression editor. This is more

of a "nice to have" routine,

DDT. The emphasis in DDT was on the objects needed jJﬁﬁf
during the design phase of the software development life ;;'.
cycle., Therefore, the implementation of these objects is

closer to being complete than the objects associated with

the requirements or implementation phase. However, even the o [

.......

T R T ST S S
A O VAT YR R W T PPy Wy W T, Y Py

-

‘@ |'.

Iv—r'wv-v-——rv.
. . Vl.|

LA
. LA

ST
ey

W W Y. T Tw
B T A .
' . -
., . s

.y

design phase objects still need work. Files for source code
have been created and instance variables have been defined
for all of the object classes. Several of these object
definitions have not yet been entered. While the defined
access methods have all been implemented, the access methods
of several object classes have not yet been defined., Before
DDS can be used throughout the life cycle, these
deficiencies must be eliminated.

DDT was implemented using the Flavors language of NIL.
A subject worth investigating is the rehosting of DDT using
a data base management system (DBMS). Unfortunately, NIL
provides no means for interfacing to an external DBMS.
However, DEC's VAX Lisp is now available on the ISL VAX.
VAX Lisp may provide the capability needed to access
external systems. Whether this is indeed the case needs to
be determined.

The Grammar. It is felt that the grammar as defined is

adequate for interacting with DDS. This is not to imply
that the grammar is all inclusive, but that it does provide
at least one way to specify each of the possible operations
of DDT. Extending and refining the DDS's grammar could
probably be a thesis project all by itself.

One of the primary deficiencies of the grammar is that
it was not completely implemented during this thesis effort.

Completing the implementation should be possible for a Lisp

5-6

ATSTNTN R KTNTI TN

LR I AP

programmer with reasonable knowledge of the structure of

DDS.

K The Interface. How close the interface is to being

i complete is difficult to judge. As the grammar is
implemented, the corresponding Lisp interface code must be
included. Whether changes will be necessary to the rest of

the interface depends on how this code is implemented.

B S

- . - - - o . -
L. DAL T AT P R R e L S R L.
AP ISR IR L Y. WY SR SO AT WA AP Wy S i D Ty VL

L 2 g a4 e dcn e

- Appendix A

o System Data Dictionary
a (@

AN L N YL LR W e W,

.
l-l [

o, my 4

-

R v

.......
P I S I

Introduction

This appendix contains the data dictionary for DDS and
CoIn. Currently there are four entry types: ACTIVITY,
ALIAS, DATA FLOW, and PROCESS. The ACTIVITY, ALIAS, and
DATA FLOW types are all associated with the functional
requirements analysis phase of the software development
lifecycle. The PROCESS type is associated with the design

phase.

I ANARS IR

g

DDS System Data Dictionary

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUTS:

OQUTPUTS:

CONTROLS:
MECHANISMS:
ALIASES:

PARENT ACTIVITY:
VERSION:

DATE:

NAME :

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:
VERSION:
DATE:

ACCESS DATA DICTIONARY
ACTIVITY
DDs

DATA DICTIONARY ACCESS COMMAND
DATA DICTIONARY DATA
DATA DICTIONARY DATA
DATA DICTIONARY ERROR MESSAGE

DATA DICTIONARY SYSTEM
1
22 OCT 85

ADD-PRODUCTION (MACRO)
PROCESS
DDS

PRODUCTION
CODE TO EXECUTE
PRODUCTION RECORD NAME

EDIT-EXP
EDIT-EXP

IS-PRODUCTION
ED-RESET
AUX~ADD-PRODUCTION

1
29 OCT 85

» T Ve A e TR NE ETRORES

NAME :

TYPE:
PROJECT:

PART OF:
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS:
VERSION:
DATE:

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:
VERSION:
DATE:

ADDITION COMMAND

DATA FLOW

DDS

DATA DICTIONARY ACCESS COMMAND

UPDATE DATA DICTIONARY
UPDATE DATA DICTIONARY
2

22 OCT 85

AUX~ADD-PRODUCTION
PROCESS
DDS

PRODUCTION
CODE TO EXECUTE

EDIT-PTR

ED-RIGHT

INSERT-PRODUCTION

ED-DOWN

LOOP&

AUX-ADD-PRODUCTION (RECURSIVE)
ED-UP

1
29 OCT 85

NAME:

TYPE:
PROJECT:
PART OF:
COMPOSITION:

ALIASES:
SOURCES:
DESTINATIONS:
VERSION:
DATE:

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUTS:

OUTPUTS:

CONTROLS:
MECHANISMS:
ALIASES:

PARENT ACTIVITY:
VERSION:

DATE:

NAME:

TYPE:
PROJECT:
PART OF:
COMPOSITION:

ALIASES:
SOURCES:
DESTINATIONS:
VERSION:
DATE:

COMMAND
DATA FLOW
DDS

CONSTRUCTION COMMAND
SENTENCE

USER

DATA DICTIONARY SYSTEM
2

22 OCT 85

CONSTRUCT GRAMMAR
ACTIVITY
DDS

CONSTRUCTION COMMAND
GRAMMAR

CONSTRUCTION ERROR MESSAGE
GRAMMAR

DATA DICTIONARY SYSTEM
2
2Z OCT 85

CONSTRUCTION COMMAND

DATA FLOW

DDS

COMMAND

GRAMMAR LOAD COMMAND

GRAMMAR MODIFICATION COMMAND
GRAMMAR SAVE COMMAND

CONSTRUCT GRAMMAR
2
22 OCT 85

NAME:

TYPE:
PROJECT:
PART OF:
COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:

VERSION:
DATE:

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUT DATA:
INPUT FLAGS:
OUTPUT DATA:

OUTPUT FLAGS:

GLOBAL DATA USED:
GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:
HARDWARE READ:

HARDWARE WRITTEN:

ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:

VERSION:
DATE:

CONSTRUCTION ERROR MESSAGE
DATA FLOW

DDS

RESPONSE

CONSTRUCT GRAMMAR
MODIFY GRAMMAR

2
22 OCT 85

CREATE-FUNCTION (MACRO)
PROCESS
DDS

FUNCTION RECORD NAME
FUNCTION CODE

CREATE-META-SYMBOL
SETF*
MSG

1
29 OCT 85

s

L]
Pl

F’,

et e Y —— —— v v
ik aetAG b et e At B BRI Rt A I S A A A A AN A

NAME:

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:

GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION:

DATE:

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:,
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:

GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES
PROCESSES CALLED:

RELATED ACTIVITY:
JERSION:
OATE:

CREATE-META-SYMBOL
PROCESS
DDS

META-SYMBOL NAME

META-SYMBOLS
META-SYMBOLS

1
29 OCT 85

CREATE-PRODUCTION (MACRO)
PROCESS
DDS

PRODUCTION RECORD NAME
CODE TO EXECUTE

CREATE~META-SYMBOL
SETF*
MSG

1
29 OCT 85

R Ancatedn e Bicty inda b S a bt b bt S L N R

sl

e

.
o
v
»
-

S
1 e

T
o o]

v‘r.'r 'r“ v. '... .o ‘v i ‘,“.

1)

»
I

T

S A
TR T MR

- -
RN

B}

c¥
.

PR

- Vv TY Y wy P A B I S G e :

N LA

NAME:

TYPE:
PROJECT:
PART OF:
COMPOSITION:

ALIASES:
SOURCES:

DESTINATIONS:
VERSION:
DATE:

NAME:

TYPE:
PROJECT:
PART OF:
COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:

VERSION:
DATE:

NAME:

TYPE:
PROJECT:
PART OF:
COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:
VERSION:
DATE:

.

DATA DICTIONARY ACCESS COMMAND
DATA FLOW
DDS

ADDITION COMMAND
DELETION COMMAND
INITIALIZATION COMMAND
MODIFICATION COMMAND
PRESENTATION COMMAND

GENERATE DD COMMAND
INTERPRET SENTENCE
ACCESS DATA DICTIONARY

1
22 OCT 85

DATA DICTIONARY DATA
DATA FLOW

DDS
RESPONSE

ACCESS DATA DICTIONARY
DISPLAY DATA DICTIONARY
UPDATE DICTIONARY
ACCESS DATA DICTIONARY
DISPLAY DATA DICTIONARY
UPDATE DATA DICTIONARY
1

22 OCT 85

DATA DICTIONARY ERROR MESSAGE
DATA FLOW

DDS

RESPONSE

ACCESS DATA DICTIONARY
DISPLAY DATA DICTIONARY
UPDATE DATA DICTIONARY

1
22 OCT 85

.....................................

Larul ab T TR T W VT T T T

E N NAME : DATA DICTIONARY SYSTEM

TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: COMMAND

DATA DICTIONARY
OUTPUTS: DATA DICTIONARY

RESPONSE
CONTROLS:
MECHANISMS:
ALIASES: DDS
PARENT ACTIVITY: (NONE)
VERSION: 2
DATE: 22 OCT 85
NAME : DDS
TYPE: ALIAS
DD TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
SYNONYM: DATA DICTIONARY SYSTEM
VERSION: 2
DATE: 22 OCT 85
NAME : DELETION COMMAND
TYPE: DATA FLOW
PROJECT: DDS
PART OF: DATA DICTIONARY ACCESS COMMAND
COMPOSITION:
ALIASES:
SOURCES: UPDATE DATA DICTIONARY
DESTINATIONS: UPDATE DATA DICTIONARY
VERSION: 2
DATE: 22 OCT 85

A-9 :

...

NAME:

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:

INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OQUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:
VERSION:
DATE:

NAME:

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
QUTPUT DATA:
QUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION:

DATE:

DESTROY-FUNCTION
PROCESS
DDS

FUNCTION RECORD NAME

IS-FUNCTION
DESTROY-META-SYMBOL
MSG

1
29 OCT 85

DESTROY-META-SYMBOL
PROCESS
DDS

META-SYMBOL NAME

META~SYMBOLS
META-SYMBOLS

IS-META-SYMBOL

1
29 OCT 85

A-10

NAME :

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:

INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
QUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ: °
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:
VERSION:
DATE:

NAME :

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUTS:

OUTPUTS:

CONTROLS:
MECHANISMS:
ALIASES:

PARENT ACTIVITY:
VERSION:

DATE:

Dt 24

o

I
a
%
.
-+

ALY)
Fa

"
,

: .
'
.
”
» .
. P

DESTROY-PRODUCTION (MACRO)
PROCESS
DDS

PRODUCTION RECORD NAME

IS-PRODUCTION
DESTROY-META-SYMBOL
MSG

1

DISPLAY DATA DICTIONARY
ACTIVITY
DDS

DATA DICTIONARY DATA
PRESENTATION COMMAND
DATA DICTIONARY DATA
DATA DICTIONARY ERROR MESSAGE

ACCESS DATA DICTIONARY
2
22 OCT 85

Py

NAME:

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OQUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION:

DATE:

NAME:

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:

GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
AL IASES:

CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION:

DATE:

. RS T P

R “.' DR ST ‘,' Lm T, .
A NI B AL B SR AT P N

DISPLAY-PARSE-ERROR
PROCESS
DDS

MsSG

1
04 NOV 85

FTN-CODE
PROCESS

DDS

FUNCTION RECORD

FUNCTION CODE

1
04 NOV 85

''''''''''''''''

H NAME : FTN-NAME

o TYPE: PROCESS
- PROJECT: DDS
- NUMBER:
> DESCRIPTION:
b INPUT DATA: FUNCTION RECORD
i INPUT FLAGS:

OUTPUT DATA: FUNCTION NAME

OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:

VERSION: 1

DATE: 04 NOV 85
NAME : FTN-PARSE
TYPE: PROCESS
PROJECT: DDS
NUMBER:

DESCRIPTION:

INPUT DATA: SENTENCE

FUNCTION RECORD

INPUT FLAGS:

OUTPUT DATA: RESULT

QUTPUT FLAGS:

GLOBAL DATA USED:

GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:

HARDWARE READ:

HARDWARE WRITTEN:

ALIASES:

CALLING PROCESSES:

PROCESSES CALLED: FTN-NAME
FTN-CODE

RELATED ACTIVITY:

VERSION: 1

DATE:

.....................
.....
''''''''''

b e
a NAME : GENERATE DD COMMAND

TYPE: ACTIVITY
o PROJECT: DDS
- NUMBER:
= DESCRIPTION:
o INPUTS: PARSE RESULTS
.‘ OUTPUTS: DATA DICTIONARY ACCESS COMMAND
- CONTROLS :
v MECHANISMS:
n ALIASES:
b PARENT ACTIVITY: INTERPRET SENTENCE
VERSION: 1
DATE: 22 OCT 85
NAME: GRAMMAR
TYPE: DATA FLOW
PROJECT: DDS
PART OF:
COMPOSITION:
ALIASES:
SOURCES: CONSTRUCT GRAMMAR

LOAD GRAMMAR
MODIFY GRAMMAR
PERMANENT GRAMMAR
SAVE GRAMMAR
WORKING GRAMMAR

DESTINATIONS: CONSTRUCT GRAMMAR
INTERPRET SENTENCE
LOAD GRAMMAR
MODIFY GRAMMAR
PARSE SENTENCE
PERMANENT GRAMMAR
SAVE GRAMMAR
WORKING GRAMMAR

VERSION: 2

DATE: 22 OCT 85

L AT

i T NAME : GRAMMAR LOAD COMMAND

TYPE: DATA FLOW -
- PROJECT: DDS S
< PART OF: CONSTRUCTION COMMAND T
i COMPOSITION: Co
~ ALIASES: o
i SOURCES : e
N DESTINATIONS: LOAD GRAMMAR
.. VERSION: 1
e DATE: 22 OCT 85
i NAME : GRAMMAR MODIFICATION COMMAND
TYPE: DATA FLOW R
PROJECT: DDS S
PART OF: CONSTRUCTION COMMAND RN
COMPOSITION: pORES
ALIASES: L
» SOURCES: -
e DESTINATIONS: MODIFY GRAMMAR
= VERSION: 1
- DATE: 22 OCT 85
‘i (!; NAME: GRAMMAR-CODE
" TYPE: PROCESS
- PROJECT: DDS
- NUMBER: :
e DESCRIPTION:
2 INPUT DATA: PRODUCTION RECORD
] INPUT FLAGS:
OUTPUT DATA: PRODUCTION CODE

OUTPUT FLAGS:

GLOBAL DATA USED:

GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:

HARDWARE READ:

HARDWARE WRITTEN:

ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:

VERSION: 1
DATE: 04 NOV 85

R B L
» e e e
[T Wb

.."... N. ..".'l"‘l‘.‘.'. ?'.. ot .

@

T
£

ot TR e 3 e . 8o
DRI LA S A oy t e R R T R T T r————

,..--_- .
A Y u -
AECRIR ALY O
‘

NAME: GRAMMAR-LIST

OUTPUT DATA: SUB-GRAMMAR LIST
OUTPUT FLAGS:

o GLOBAL DATA USED:

- GLOBAL DATA CHANGED:
- FILES READ:

K FILES WRITTEN:

o HARDWARE READ:

o HARDWARE WRITTEN:

N ALIASES:

L CALLING PROCESSES:

R PROCESSES CALLED:
RELATED ACTIVITY:

! TYPE: PROCESS

- PROJECT: pDS

= NUMBER:

o DESCRIPTION:

. INPUT DATA: PRODUCTION RECORD
i INPUT FLAGS:

VERSION: 1
DATE: 04 NOV 85
o NAME: GRAMMAR-NAME
(o TYPE: PROCESS
o PROJECT: DDS
NUMBER:
DESCRIPTION:

INPUT DATA:
INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:

GLOBAL DATA USED:
GLOBAL DATA CHANGED:

FILES READ:
FILES WRITTEN:
HARDWARE READ:

PRODUCTION RECORD

PRODUCTION NAME

HARDWARE WRITTEN:
ALIASES:

PROCESSES CALLED:
RELATED ACTIVITY:

E CALLING PROCESSES:
®

VERSION:
DATE:

1
04 NOV 85

A-16

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:
VERSION:
DATE:

NAME :

TYPE:
PROJECT:

PART OF:
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS:
VERSION:
DATE:

GRAMMAR-PARSE
PROCESS
DDS

SENTENCE
SUB-GRAMMAR LIST

RESULT

GRAMMAR-CODE
GRAMMAR-NAME
GRAMMAR-LIST
IS-PRODUCTION

SUB-PARSE

IS-FUNCTION

FTN-PARSE

RESULT-LIST
GRAMMAR-PARSE (RECURSIVE)
RESULT-SENTENCE

1
04 NOV 85

GRAMMAR SAVE COMMAND
DATA FLOW

DDS

CONSTRUCTION COMMAND

SAVE GRAMMAR
1
22 OCT 85

TS

2 s v oA L "

Sy

NAME :

TYPE:
PROJECT:
PART OF:
COMPOSITION:
ALIASES:
SOURCES:

DESTINATIONS:

VERSION:
DATE:

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUT DATA:
INPUT FLAGS:
OUTPUT DATA:
QUTPUT FLAGS:

GLOBAL DATA USED:
GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:

ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:

VERSION:
DATE:

INITIALIZATION COMMAND

DATA FLOW

DDS

DATA DICTIONARY ACCESS COMMAND

UPDATE DATA DICTIONARY
2
22 OCT 85

INITIALIZE-GRAMMAR
PROCESS
DDS

META~SYMBOLS
META~SYMBOLS

FOR&

1
29 OCT 85

A-18

e S 08 i it AN Ay “"\ L‘v} " 'l-“Al‘w‘v-‘:*»iT'- LAl i ek Aaf Ll “(k' ek * Al *.r“l L % A g v

~—E AT T

PR
i
- ,?
NAME : INSERT-FUNCTION S
TYPE: PROCESS e
PROJECT: DDS o
NUMBER: T
DESCRIPTION: N
INPUT DATA: FUNCTION CODE e
INPUT FLAGS: A
OUTPUT DATA: ..
OUTPUT FLAGS: e
GLOBAL DATA USED: *EDIT-PTR* e
GLOBAL DATA CHANGED: *EDIT-PTR* RN
FILES READ: S
FILES WRITTEN: -
HARDWARE READ: -
HARDWARE WRITTEN: O
ALIASES: A
CALLING PROCESSES:
PROCESSES CALLED: SETF* AR
RELATED ACTIVITY: =T
VERSION: 1) e
DATE: 29 OCT 85 =7
_ NAME: INSERT-PRODUCTION T
Y TYPE: PROCESS o
o PROJECT: DDS IR
NUMBER: el
DESCRIPTION: m
INPUT DATA: PRODUCTION e
CODE TO EXECUTE S
INPUT FLAGS:
OUTPUT DATA: ="
OUTPUT FLAGS:
GLOBAL DATA USED: *EDIT-PTR*
GLOBAL DATA CHANGED: *EDIT-PTR*
FILES READ:
FILES WRITTEN:
HARDWARE READ: o
HARDWARE WRITTEN: AR
ALIASES: o
CALLING PROCESSES: N
PROCESSES CALLED: ED-DOWN
AUX~ADD-PRODUCTION
RELATED ACTIVITY: o
VERSION: 1 o~
DATE: 29 OCT 85 s
A-19

«,r . D S S S . B - . - - - .
S RS f et Tt e e et R - et AT e e e T L
N W A T T T T RN . e s e WA TN -

ey AR A S ORI “ . . T T A T et e,
EVRPRIACUIIPY IS D W N PRPUE BT S S WA IT IS TP Do T, I 5. S0 e - PP W AP PPN DYV PRV PR PP Py ~aatay

...............

NAME : INTERPRET SENTENCE

TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: GRAMMAR
SENTENCE
OUTPUTS: DATA DICTIONARY ACCESS COMMAND
INTERPRETER ERROR MESSAGE
CONTROLS:
MECHANISMS:
ALIASES:
PARENT ACTIVITY: DATA DICTIONARY SYSTEM
VERSION: 2
DATE: 22 OCT 85
NAME: INTERPRETER ERROR MESSAGE
TYPE: DATA FLOW
PROJECT: bD2S
PART OF: RESPONSE
COMPOSITION: PARSE ERROR MESSAGE
ALIASES:
P SOURCES: INTERPRET SENTENCE
e DESTINATIONS:
VERSION: 2
DATE: 22 OCT 85

BT S - . . e R - - B T T T N T N

''''''''''''''''''''' W oe ™ o. .u\.-.' .

"t e T . . - B B - « " - . T e - R s . . L ST TR UL S 'v. . -
PN I I PP AT SR PP SR S WP LW R S L..w:-n.a‘n;;_\gg-;“-AA;L--.--A-A

'S

b Al Tal SV Sab Iud

LA I

_ RAD-A164 926 A NATURAL LANGURGE PROCESSOR AND ITS APPLICATION TO R 274
D ﬁ DICTIONRRV SVSTEH(U) AIR FORCE INST OF TECH
T-PATTERSON AFB OH SCHOOL OF ENGI.. S R MWOLFE
UNCLASSIFIED DEC 85 RFIT/GCS/ENG/850-19 F/6 9/2

J
-
I
%

Wit

%

N

W AP BN PN et 8y

h)

it

A

v

iy s,

ar i,

B

-
.

- S ‘- N
PR JLN VAN

T Amal gt

-
.

EEE
s EEF

m—m—m_m_.._..:.._._m
O__ —_

iz i

s

i

1.4
=

MRS

ATl RNRTANY OF STANDARDS. 1963.A

MICROCOPY RESOLUTION TEST CHART

P
felilr e

s ‘e

i \ HEAADA M

@

.....

NAME:

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION:

DATE:

NAME:

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION:

DATE:

IS-FUNCTION
PROCESS
DDS

SYMBOL TO CHECK

IS-FUNCTION

1
29 OCT 85

IS-META-SYMBOL
PROCESS
DDS

SYMBOL TO CHECK

IS-META-SYMBOL
META-SYMBOLS

1
29 OCT 85

e

e, I
l/.""v,'lj ."’.‘...‘.’,‘ K -
’ (‘"'A ' ‘. ." ..- ." ! B .

e
0
(4

Wit
LA
"' .2
4,

S
2

<
.
L]
.
o .

- AN
- \5&“
' N
. _.}..‘\.
L N
" NAME: 1S-PRODUCTION >
5 TYPE: PROCESS '
N PROJECT: DDS ToL
N NUMBER: oY
. DESCRIPTION: S
- INPUT DATA: SYMBOL TO CHECK
- INPUT FLAGS:

OUTPUT DATA:
Y OUTPUT FLAGS: I1S-PRODUCTION
.. GLOBAL DATA USED:
- GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

A RELATED ACTIVITY:
o VERSION: 1
- DATE: 29 OCT 85
o NAME : LOAD GRAMMAR
s (o TYPE: ACTIVITY
, - PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: GRAMMAR
. GRAMMAR SAVE COMMAND
OUTPUTS : GRAMMAR
CONTROLS:
: MECHANISMS:
o ALIASES: RS
- PARENT ACTIVITY: CONSTRUCT GRAMMAR S
- VERSION: 2 o
o DATE: 22 OCT 85 g

A~-22

ANt St it B

PROJECT:
PART OF:
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS:
VERSION:

R 'J'4'. o

PROJECT:

DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILE> WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

'
l"

RELATED ACTIVITY:
VERSION:

4

........................
.....................

.......

MODIFICATION COMMAND

DATA FLOW

DDS

DATA DICTIONARY ACCESS COMMAND

UPDATE DATA DICTIONARY
UPDATE DATA DICTIONARY
2

22 OCT 85

MODIFY~FUNCTION (MACRO)
PROCESS
DDS

FUNCTION CODE
FUNCTION RECORD NAME

EDIT-PTR
EDIT-PTR

IS-FUNCTION
ED-RESET
INSERT-FUNCTION
MSG

1
29 OCT 85

A-23

4

\

-
i
B, A

[

v

&y
2l 1)

’

'y ."

X
2
.

2,

AN
“
)

% 'y by
JI

'.
‘7

NAME: MODIFY GRAMMAR

TYPE: ACTIVITY

PROJECT: DDS

NUMBER:

DESCRIPTION:

INPUTS: GRAMMAR
GRAMMAR MODIFICATION COMMAND

OQUTPUTS: CONSTRUCTION ERROR MESSAGE
GRAMMAR

CONTROLS :

MECHANISMS:

ALIASES:

PARENT ACTIVITY: CONSTRUCT GRAMMAR
VERSION: 1

DATE: 22 OCT 85

NAME : PARSE

TYPE: PROCESS

PROJECT: DDS

NUMBER:

DESCRIPTION:

INPUT DATA: SENTENCE
GRAMMAR

INPUT FLAGS:

OUTPUT DATA:

OUTPUT FLAGS:

GLOBAL DATA USED:

GLOBAL DATA CHANGED:

FILES READ:

FILES WRITTEN:

HARDWARE READ:

HARDWARE WRITTEN:

ALIASES:

CALLING PROCESSES:

PROCESSES CALLED: GRAMMAR-LIST
GRAMMAR-CODE
GRAMMAR-PARSE
SUCCESSFUL
DISPLAY-PARSE-ERROR

RELATED ACTIVITY:

VERSION: 1

DATE: 04 NOV 85

. A e —
----- AR AN S SN M ath g e e of

E L0
E
]
N
i NAME : PARSE ERROR MESSAGE
\ TYPE: DATA FLOW
2 PROJECT: DDS
- PART OF: INTERPRETER ERROR MESSAGE
N COMPOSITION:
A ALIASES:
I SOURCES: PARSE SENTENCE
- DESTINATIONS:
- VERSION: 1
= DATE: 22 OCT 85
. NAME: PARSE RESULTS
» TYPE: DATA FLOW
PROJECT: DDS
PART OF:
COMPOSITION:
ALIASES:
SOURCES: PARSE SENTENCE
DESTINATIONS: GENERATE DD COMMAND
VERSION: 1
DATE: 22 OCT 85
) NAME: PARSE SENTENCE
- TYPE: ACTIVITY
PROJECT: DDS
NUMBER: .
DESCRIPTION:
INPUTS: GRAMMAR
SENTENCE
OUTPUTS: PARSE ERROR MESSAGE >
PARSE RESULTS ;
CONTROLS : RO
MECHANISMS: RORRS
ALIASES: S
PARENT ACTIVITY: INTERPRET SENTENCE S
VERSION: 1 f*"Aﬂ
. DATE: 22 OCT 85 :
-)
°
T
X
:
3 .
& A-25 R
L.' | N
. |
E‘;'c:'(.::._-;.;_.:j.l-: e e e T e e e T e e e L T e

Lt e i i A et ek e

C cum— ey o2 or

-

NAME : PRESENTATION COMMAND

TYPE: DATA FLOW

PROJECT: DDS

PART OF: DATA DICTIONARY ACCESS COMMAND

COMPOSITION:

ALIASES:

SQURCES:

DESTINATIONS: DISPLAY DATA DICTIONARY

VERSION: 2

DATE: 22 OCT 85

NAME : RESPONSE

TYPE: DATA FLOW

PROJECT: DDS

PART OF:

COMPOSITION: CONSTRUCTION ERROR MESSAGE
DATA DICTIONARY DATA
DATA DICTIONARY ERROR MESSAGE
INTERPRETER ERROR MESSAGE

ALIASES:

SOURCES: DATA DICTIONARY SYSTEM

DESTINATIONS: USER

VERSION: 2

DATE: 22 OCT 85

NAME: RESULT-LIST

TYPE: PROCESS

PROJECT: DDS

NUMBER:

DESCRIPTION:

INPUT DATA: RESULT

INPUT FLAGS:
OUTPUT DATA:

SUB-GRAMMAR LIST

OUTPUT FLAGS:

GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1

DATE: 04 NOV 85

9
P

NAME: RESULT-SENTENCE
TYPE: PROCESS
PROJECT: DDS
.NUMBER:
DESCRIPTION:

' INPUT DATA: RESULT

| INPUT FLAGS:
OUTPUT DATA: SENTENCE

OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
_ FILES READ:
i FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:

- VERSION: 1
DATE: 04 NOV 85
N NAME : SAVE GRAMMAR
i (;- TYPE: ACTIVITY
, = PROJECT: DDS
: NUMBER:
- DESCRIPTION:
g, INPUTS: GRAMMAR
g GRAMMAR SAVE COMMAND
l OUTPUTS: GRAMMAR
: CONTROLS :
MECHANISMS:
ALIASES:
PARENT ACTIVITY: CONSTRUCT GRAMMAR
- VERSION: 2
DATE: 22 OCT 85

A-27

it R Salole' Aat et ie® fig" gt 0t St Sl LoV A ol - PR e A, & W L N Lt 0 ¥ A
,..::':": g
A
[SRy
s
g
s
2
NAME : SAVE-GRAMMAR La,
TYPE: PROCESS -
PROJECT: DDS 30
. NUMBER: e
.‘ DESCRIPTION H -:::-.;'-_5
. INPUT DATA: R
| INPUT FLAGS: P
OUTPUT DATA: f e
OUTPUT FLAGS: R
GLOBAL DATA USED: *META-SYMBOLS*
GLOBAL DATA CHANGED:
- FILES READ:
i FILES WRITTEN: GRAMMAR.LSP
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
- PROCESSES CALLED:
) RELATED ACTIVITY:
K VERSION: 1
DATE: 29 OCT 85
. . NAME : SENTENCE
i (o TYPE: DATA FLOW
- PROJECT: DDS
PART OF: COMMAND
COMPOSITION:
ALIASES:
- SOURCES:
] DESTINATIONS: INTERPRET SENTENCE
: PARSE SENTENCE T
VERSION: 2 S
DATE: 22 OCT 85 PR
' - b
’ -
X
:
)
) A-28
)
e R R R LTS

: TN
P
c "‘_'.'_“ *
E .::::. ;.:::E::'.
' NAME: SUB-GRAMMAR-PARSE N
TYPE: PROCESS .
PROJECT: DDS A
NUMBER: RO
DESCRIPTION: o
. INPUT DATA: SENTENCE KR
i SUB-GRAMMAR LIST]
! INPUT FLAGS: PR,
N OUTPUT DATA: RESULT o
. OUTPUT FLAGS: e
- GLOBAL DATA USED: A
. GLOBAL DATA CHANGED: R
i FILES READ: e
FILES WRITTEN: °* e
HARDWARE READ: L
HARDWARE WRITTEN: g
ALIASES: Tl
CALLING PROCESSES: Ry
) PROCESSES CALLED: GRAMMAR-CODE oo
- GRAMMAR-NAME :
: GRAMMAR-LIST
1S-PRODUCTION
SUB-PARSE
I IS-FUNCTION
i (o FTN-PARSE
RESULT-LIST
SUB-GRAMMAR-PARSE (RECURSIVE)
RESULT-SENTENCE
RELATED ACTIVITY:
3 VERSION: 1
] DATE: 04 NOV 85
) -
)
’T . -
A-29 -
. o
' -— -
OISO RS Rk S ’v.’x:’.’-." T T T DRSO RILINEIN IR SR .

2 WS e

INPUT FLAGS:
OUTPUT DATA: RESULT
OUTPUT FLAGS:
GLOBAL DATA USED:
_ GLOBAL DATA CHANGED:
] FILES READ:
- FILES WRITTEN:
HARDWARE READ:
- HARDWARE WRITTEN:
N ALIASES:
. CALLING PROCESSES:

i NAME: SUB-PARSE
y TYPE: PROCESS

. PROJECT: DDS

N NUMBER:

N DESCRIPTION:

N INPUT DATA: SENTENCE
j GRAMMAR

PROCESSES CALLED: GRAMMAR-LIST
GRAMMAR-CODE
SUB-GRAMMAR-PARSE
RESULT-LIST

RELATED ACTIVITY:

, VERSION: 1
Qe DATE: 04 NOV 85
A-30
et e e e N T T T T e R A ey T A T T e T s

NAME :

TYPE:

PROJECT:

NUMBER:
DESCRIPTION:

INPUT DATA:

INPUT FLAGS:
QUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:

CALLING PROCESSES:
PROCESSES CALLED:

RELATED ACTIVITY:
VERSION:
DATE:

NAME:

TYPE:
PROJECT:
NUMBER:
DESCRIPTION:
INPUTS:

QUTPUTS:

CONTROLS:
MECHANISMS:
ALIASES:

PARENT ACTIVITY:
VERSION:

DATE:

SUCCESSFUL
PROCESS
DDS

RESULT

SUCCESSFUL

RESULT~-SENTENCE
RESULT-LIST

1
04 NOV 85

UPDATE DATA DICTIONARY
ACTIVITY
DDS

ADDITION COMMAND

DATA DICTIONARY DATA
DELETION COMMAND
INITIALIZATION COMMAND
MODIFICATION COMMAND
ADDITION COMMAND

DATA DICTIONARY DATA

DATA DICTIONARY ERROR MESSAGE

DELETION COMMAND
MODIFICATION COMMAND

ACCESS DATA DICTIONARY
2
22 OCT 85

A-31

)

o«
v s Troe
LA A
»

. A)
CRPUS oS
ot e e N
e et fat e

N .
,
’

2, 'l 'l

vl
RSAnA
’:. S :-
e
oG 5]
v -l

AR A e B S AR S e g

i ool M A A N A Sl Sl S e b N e ke 3 kg S

Appendix B K
Structure Charts
(o &

Appendix B
Table of Contents

Page
Grammar CONSErUCLOr . . + &+ ¢ o o+ o o o o« s o o s« o « B= 3
Sentence Interpreter . . . « « ¢ o ¢ ¢ ¢ o o o + o« o B= 20
S-expression EAitor . . . « & ¢ o o ¢ 4 & s « o & » o B~ 23
DESIGN Methods . ¢ o ¢ & ¢ ¢ ¢ ¢ o o o« o o o« s o« « « B= 44
EVENT Methods . . ¢« ¢ ¢ o o o ¢ ¢ o s 2 s o o o« « » « B=51

IMPLEMENTATION MethOdS . . e« o o o LI } . B~ 59

PARAMETER Methods . ¢« + « ¢ ¢ o & o 4« « 2 « « « ¢« o« « B=- 54
PARAMETER-ALIAS Methods . + . « & &« & ¢ o« « o o o« +» o« B= 171
PROCESS Methods . « &+« « &4 « « « 4 o« s o o o o « o« o+ « B=- 178
PROCESS-ALIAS Methods . « o ¢ o o o o o 2 s « « « « « B=093
PROJECT Methods .+ « ¢ ¢ ¢ & « ¢ o« o « s « o« &« o s « « B=100

REQUIREMENTS MethOdS) ¢« o o . « o . . . B—107

" - «‘ * li‘ - .‘. II’\WtJ v- i.l

.Iv“-ﬁ it

1Y)
(o]
o
O
3
)
T
&
[e] ¢
&
)
a
=]
=]
«
]
(&)

NOJ 1000084
~qay-xny

1

NO1LINAOYNd
-aay-xny

NOILINAQONd

~L¥3ISNI

1HO1Y¥-a3

dN-a3

NOTLINA0Nd
-qav-xXny

1353¥-03

NO110NG0Y
-5l

NOI112NA0Y¥d
~aqvy

- add-production Interfaces

o d

a

Passed Parameters Type Returned Parameters Type :fln
e
- 1 sentence data AN
v code data R,
production name data]
2 production-name data is production? flag o
3 *edit-exp* data e
edit-exp data Tl
nil data -
4 sentence data s
code data RSN
' 5 (none) o
®
- 6 (none) S
7 (none)
(e 8 sentence data
‘» code data
9 cdr*(sentence) data
code data
10 (none) R
11 cdr*(sentence) data T
code data R
Py * The cdr function returns a list of all but the first SR
' element of a list passed to it. For instance, the cdr of =

the list (a b ¢) is the list (b c).

i
4 A

(4

()

.
»
-

CREATE-
FUNCTION
CREATE-
META-SYNBOL

B-6

U4

e "‘t."l

N
< Iy

i create-function Interfaces

3] # Passed Parameters Type Returned Parameters Type

function-name data
code data

J
L
—

2 function-name data function created? flag

T
- B-7 g

108UAS-YL3W
-3193¥)

NO11ONA0Nd
=31v3¥)

. ey P e e i
R S EENNN .« ENNNEE §

P TR LR . DY s I A RN W IOV, J W S R e

PR SRR T % ..

PR AR

M A

create-production Interfaces

$ Passed Parameters Type Returned Parameters Type

1 production-name data
code data
2 production-name data production created? flag

(o

“‘A L EaR ".—'

Y

™y

Ay

o

708U4AS-¥13W
-s1

osu

108WAS-VL3N
~A0¥1530

NOILINNI-ST

NOILONNS
-A0¥1530

[

'Y

B-10

AW T TR TR WL

AAC AR D St e e 20 et It Bt A e

destroy-function Interfaces

Passed Parameters Type Returned Parameters Type

1 function name data
2 function name data is function? flag
3 function name data

4 error message

text data
5 function name data is meta-symbol?
(o
B-11

.t LA e T . 2 L
B .~ L I T U ST}
- - - o e, R

- - » ~ . . -
" aw S, e P R T LI S et AT IR -
I S TP T T R BV T S I S S T T Tl U S hetdedbadadale {aaazs o ta e a0 0"’

X R
v_\\.-.\~-s.-s~_-\.-
(I I BT
RS L

r- By 4 n-l-

. 108WAS -9L3W
, -s1

‘ 95U 108MAS-Y 13U NOT10NA0Y¥d
" -A081530 -51

B-12

" NOTLINA0Nd
" -A08153d

T T R TP T T Iy yrre— Ll Al Ty - L A
- ST T L AR S RESEASA AR AR AL M AR AR St A st ateiin-stn - e S BaLIME g4 R NPe IR0 S 0 S-S gl
Wl Wt

-
i ' destroy-production Interfaces
N % Passed Parameters Type Returned Parameters Type
- 1 production name data
)
. 2 production name data is production? flag
3 production name data
4 error message
i text data
) production name data is meta-symbol? flag
LA
A o
5
D
]
> ,
B B-13 S
! .
- S

1 g Sk iar i e i g e

INITIALIZE-
GRAMNMAR

B-14

initialize~-grammar Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

osH

NOTLONNS
~1¥3SN1

1353

¥-q3

HOILONNA
-51

B-16

1

‘» g

modify-function Interfaces a

y LA I
o e
o # Passed Parameters Type Returned Parameters Type e
- o
- 1 function name data e
- ... N-

2 function name data is function? flag

3 *edit-ptr* data e
. *edit-ptr* data s

4 code data

5 error message
text data

‘\
.". |

3
o
- .
s
. -
>
@

- B~17

-

Catic e

.-

et o

-

gt

e ol g gt

JYUUYAY
-3INYS

B-18

.

G A AUE A A AU A Sk Sl Sl A R TR R e

save-grammar Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

LY i
-k
N
>

L

-
P
w
S
-——
-

Sentence Interpreter

youH3
~35¥9d
~-AY1d$10

3Suvd-N1d

1"

ISyvd-Ens

Syvd
-V YD
-4ns

3IS¥vd
-¥YLWYYD

3SYvd-NL4

NISSININS

IS¥vd

3Suvd
~HuNUYED

354vd-ENS

35uvd
~UYLERID
-4ns

B-21

EEREREEN JP AP T S I R e A B DA N T 2 A L I A S et Al O DR oAl S A S A il At

v

BN M

i . parse Interfaces

Passed Parameters Type Returned Parameters Type

- 1 sentence data
T" grammar data
; 2 sentence data result data
! sub-grammar-list data
3 result data successful parse? flag
4 (none)
5 sentence data result data
sub-grammar data
6 sentence data result data
function data
7 cdr*(sentence) data result data
sub-grammar-list data
8 sentence data result data
sub-grammar-list data
9 cdr*(sentence) data result data
sub-grammar-list data
10 sentence data result data
sub-grammar data
11 sentence data result data R
function data sl
* The cdr function returns a list of all but the first ’ff"ﬂ
element of a list passed to it. For instance, the cdr of e
the list (a b ¢c) is the list (b c).

S~expression Editor
B-23

x

-

L ani o8

oSW

“

-

1353¥-03

FEm; ¢/ Il

B-24

'.=.~.=.5"‘.,‘- e e S TR TG T B T TR W .‘lll-"'!- "I!l"-l.!'.'v R Bk e S Thadt B 0 2 S e |
. NERRC i o Lo A SN TN

e Tt T s e . A . N AR A A A el sy

sedit Interfaces

Passed Parameters Type Returned Parameters Type

1 expression data

2 expression (edit
pointer) data
expression (edit
line) data
nil (edit stack) data

3 number of levels
to display data

4 error message text data

-
t. .

P, e e .»,'_~ ':_"-. R :.‘ '-‘,.'-‘.'\—. '-.'r‘ e *_.“...‘ DR R A e e e . ‘.. ‘...":. .
- o o B

IR I JY A PP AP PR

1353¥-@3

NMoad-a3

B-26

AR R

e A e o ey

ed-down Interfaces

Passed Parameters Type Returned Parameters Type
1 {none)
2 new edit pointer data
new edit line data
new edit stack data
| (e
B-27

1HOI

N1 4-Q3

B-28

Pi At Jan e e At et S ity 5 ML E A o e AU R A A St A e e e A i bt S At At S e e S e St tat, tn |

ed-find Interfaces e

Prassed Parameters Type Returned Parameters Type

1 (none)
2 *key* data
edit pointer data
edit line data
edit stack data
3 (none)
4 (none) 7}5
5 (none) .
6 edit pointer data IR
edit line data D
edit stack data s
7 error message text data -

]
t

*a
R
RS
R
e
---.A
-
T
o
s

15114NS

ed-left Interfaces

Passed Parameters Type Returned Parameters Type
(none)
edit line data new edit pointer data
current edit
pointer position data

B-31

s,
2
.

-

-

-

-

a2

dHOT1Y-a3

dn-a3

1X3N-a3

ED-RESET

e
'

I T)
FRTRYVRYT ST S T e

. v
LA

ed-reset Interfaces

Passed Parameters

Type

Returned Parameters

Type

new edit pointer
new edit line
new edit stack

data
data
data

IHO1¥-03

" 1353¥-03

B-36

dn-a3

LT MmaTa CAL/EM Sl

& 8 " - - .
| LAl Atalils

ed-up Interfaces

Passed Parameters Type Returned Parameters

Type

1 (none)

2 new edit pointer data
new edit line data
new edit stack data

4"'
@ N

. e e Lt - . et e .
PR - - S L * > = . * - M .
LTSI N S Tl Sy GAPL P, i, VAR

RS RC RS Ak i

- A =
Clad JRA RN A 1000 Syae it St oI e vl ke J0Ae - b e sl 0 4
e TTT———————

INPLACE

PR R P

A ara e e el b el o S oh e s e g sl B e ge 0 QUi e SR gPu g YA S o A AV G Sl An Al SR A A Sl Al ind S Aol Al Al fnd Nl Anf e Aal)
Rl omT N . s A A AR A AR S R Al - ST N . e e e e]
S

inplace Interfaces

i Passed Parameters Type Returned Parameters Type

1 car*(new edit

pointer) data
cdrt (new edit
pointer) data

The car function returns the first element of a list

passed to it. For instance, the car of the list (a b c¢) -

is Ae * e _-0.
*+ The cdr function returns a list of all but the first .ii'f

element of a list passed to it. The cdr of the above list AR

is the list (b c).

L _al

®

1
MARK-POS

MARK -POS

T X T . 8 e 2 Ao aea i
- S TS TR TR NTREN AR A e 4 PR S eI At A 1040 Sade A SR A S B Ak 0 At A0 Ak he 0 o ARS A GBS ot 4 a0 o

| mark-pos Interfaces
. # Passed Parameters Type Returned Parameters Type
. 1 position to mark data
I list data
2 position to mark data
cdr (list) data
i * The cdr function returns a list of all but the first
element of a list passed to it. For instance, the cdr of
the list (a b ¢) is the list (b c¢).
;
i e
-
i
g
: B-41

N R N S Y T el ATt
. P LS -

B A I TS IR
RPN S PR PT IR PR Vil A T Nl

g

d0d

S0d- Xdvu

%4001

nOoHS

osuW

B-42

Aalasala

.........

T T W T WI IV eR,

show Interfaces

¥ Passed Parameters Type Returned Parameters Type
1 number of levels
of the edit stack
to display data
2 car*(edit pointer) data
3 edit pointer data
edit line data
edit stack data
4 edit pointer data
edit line data
5 stack data top of stack data

*

The car function returns the first element of a list
passed to it. For instance, the car of the list (a b ¢)
is a.

R

43

w
|

“ s

R N T
DR N T Y RS
IR PC T . W WY

ISR NN

U
e 2 9y o

44

DESIGN Methods

t31vq (NOISH3N SYIIV-¥3IL vV (SHILINVEYd 5351 T¢¥~-553J0Ud
-3ZIWILING S -3Z1TVILINIS ~3ZIWILINIS ~3ZITYILINDS -321WILINSS
NDIS3M) NDIS30) NOIS3ID ND1530) ONISI)
($355300ud (UWGHI0HI-NIVU (103rond (3dAL (v
~3ZITVILINI S ~3Z1MILINI S ~321MILINIY -3Z1TVILINIL IZTWILINT?
NDIS3) N21IS30) NDIS3Q) NO1§30) NOIS3)

CIZTWILINI:

NOIS3)

(41N3S3Nd1
4015

yOMY3
~3LNgIHLLY
-A¥1dsS1d

o4

oS

1

CINIS Y
N91530)

B-46

LV P PTI Pe vey

ar SAa i aiare hatt R il st e ey e 4 R e A S i S A S A ‘S A RN v o B A e
P \ (design :present) Interfaces
Zj # Passed Parameters Type Returned Parameters Type
.j 1 (none)
2 list of instance
variables data
3 (none)
4 list of instance
. variables data
X 5 list of invalid
instance variables data
‘ 6 (none)
3 (o
.

{31vq (NOISHIN Y1 17-§31 JWvavq
-3ZIWILINIS ~3Z1WILINTS =3Z1WVILINI®
NOIS3IM) ND153Q) N91S830)
¥

!

(S¥3LNvNvd 359 179-553208d (535530084 (NYYD0Nd-NIVW
~3ZITWILINIG -3Z1TYLLINI: =JZIWILINIS ~3Z1WILINIS
ND1IS3Q) N3IS3IM) N9153Q) NO1S3Q)
(IZIWILINIIYS
N31530)

Y
' ..n.A. ..._pl e ... 4.

[e0)
~

]
m

'V,
v
N
»

'y
:}:
Iy

.
\

Pl A M AN LE A 02 B 0 4

- fhe)

MO T A P gty

S

N

i

Mt e geag s

ST AT

Pl M N

(34901
NOIS3Q)
3]
FINYLSNI~SUI v (1ST1-3INVLSNT
(NOIS¥ING (3098 -4313Wvavd (IS ~¥313INTNYdL (30Vs1
N91530) 119-43L IWvvd) N9I530) YLV N91530) SYTIY-553208d)
(3] 21 13 ot s
(161 T1-FINYLSNT (1S171-IIMULSN]
-$Y11Y-553908d? (3nYS1 ~-$53904d? (MUND0¥d-NIVM ¢ CINUNT woJ
NDISIA) §$3908d) ND152Q) NDIS3T) NDIS30)
r 4
o 9 s v ?

(3INYS?
NOIS3IM)

B-49

o

BTMETLENWLNUN ‘_~"s‘."l-=.l‘,t I~ l\l‘! l‘ll‘ !! HI\I\'-_'\'I"-"'.“".“\.-,-'- L e e e T gE T

(design :save) Interfaces

A

rPassed Parameters Type Returned Parameters Type
1 project instance
pointer data
stream data
2 list of instance
pointers data
3 (none) name data
4 (none) main-program data
5 (none) list of process
instance pointers data
6 process instance
pointer data
7 (none) list of process-
alias instance
‘; pointers data
8 process-alias
instance pointer data
9 (none) list of parameter
instance pointers data
10 parameter
instance pointer data
11 {none) list of parameter-
alias instance
pointers data
12 parameter-alias
instance pointer data
13 (none) version data
14 {none) date data
B-

EVENT Methods

B-51

L (SNETHLLY
) ~-4351
IN3ND)

(SLNELYLLYS
ININD)

. (31NEIY¥LLIYV-TAVS
dNIND)

B-52

Lo

Y

e ..-
Ay
[N

X

X ¥,
oty

(event :add-attribute) Interfaces

Passed Parameters Type Returned Parameters Type

attribute data

{none) list of attributes data A

list of attributes data

NOILOV
433r€0

(S3LNETYLIV?
iN3ND)

(NOTLOV
4N3INI)

(4231601
4N3IN3)

(3dAL-NOTLOV!
IN303)

(3LNIINIs
N3N

B-54

< v g d d - e e —
AR It el A Rt Jant e e SR T TR TN TS E T T TG T T T T A e e e N Lt bty PC it i DA i e S S A A i A A Al Rl Sk b i

v

(event :execute) Interfaces

Passed Parameters Type Returned Parameters Type

[P I S S S A £ .
PAAAFLAFY - N

1 (none)

[

(none) action type data
3 (none) object data

. 4 {none) action data

E 5 (none) attributes data
6 object data

action data
attributes data

.- A e -
e e A e A e T T NS
A AT T e e e) T T e T T T T
PRI VS WA, POAPCT O L

W Y Y YL,
A

-n..«..f.-- ..df e

a e -\ ‘2 A
'o.... Wy _..»l.- L.

(S3iNgIyiLY (123rao (3dAL-NOTLIY (NOTI LDV
N ~3ZIWILINGS -3Z1WILINIDS -3ZITYILINIS ~3ZIWILINIS
AN3AT) ININI) N3IND) ININT)

(32IWILINDS
ANINT)

LA Sl e i A hall e 1o

< V¥,

4

o

oY,

\

(534NqYLLY:
iN3NI)

1203rgo:
IN3ND)

(3dAL-NOILDVSE
1NN

(NOILJV!
AN3IND)

o5u

(1N3IS3dd:

IN3INT)

B-57

(event :present) Interfaces

Passed Parameters Type Returned Parameters

Type

(none)

data to display data

{(none) action

(none) action-type

(none) object

(none) list of attributes

data
data
data

data

—

R P PR
B

N e e
Y WO o ey P PP L

I R
- W . PN P W W Y

. et

-\ -L . .
Caala e,

0
Kol

(o]
=
Y

(]
=
zZ
O
—
&
<
=
Z
=]
=
m
=B
]
=
-

ML oA L el f

‘\‘K' ‘.'-'L' - ('—‘.r\v'—tv\' L -4’7\ ‘ri « -

.

(1N3S3Iyd:
1015)

O3
-31ngd1y811Y
~Av1dS1d

os5u

(IN3SIYd:
INOTLVANINITdWI)

B-60

(implementation :present) Interfaces

Passed Parameters Type Returned Parameters Type
1 (none)
2 list of instance
variables data
3 (none)
4 list of instance
variables data
5 list of invalid
instance variables data
6 (none)
e G T T T

o
< v ". }‘l‘r’
Y)

o -r,"'f‘r

o T S Y Yl ") N

Ladinnd

TOnh

¢ 3ivqs
YiNIWITdU]

)

(NOIS¥ING
MO TLYLIN3UITSHT)

(JoNS
1LYiINIUIdKL

)

(3INYS
NOTAWLININITINT

> BRI R SO AR A T e I el -t i 2 20

CAACRAAR LA AR S e Sl S R R S K]

(implementation :save) Interfaces

Passed Parameters Type Returned Parameters Type

1 project instance
pointer data
stream data

2 (none) name data
h 3 (none) version data

4 ({none) date data

~—
5 N

w
]

63

e et e et P T o Ty (UL RO . . B S
. N . T R TR T T T o ., R T A T A
PN SN Y) Tt (N & LR b abetuinadanibiotedbinioconihacl PSP WO Y U YA T Ui WP PRI DS L U T A PO, Syt L. LA S P

PARAMETER Methods

(3194
-3ZITVILINTS
¥313uvdivd)

(NOIS¥IN
-3Z1WILINIS

¥343UVHYd)

t0L-Q3SSud
~3ZITWILINIE
¥ILIUVNYY)

({UOY4-03ISSYd
-IZITYILINT
¥3L3WVNvud)

(SISWIW
=3Z1IVILINDS
¥3L3vlvd)

(433r0ud
=3ZYWILINIS
Y3L3UvEud)

(3dAL
-3Z1WILINIS
43L3Uvdvd)

CJUUN
-321TVILINTS
Y313NvYd)

(3ZITVILINT:
H3L3IWvNYd)

B=65

_a

AP I

N

ol al

¥ouy3
CIN3S 34 =31N4I¥lLY
1015) ~-AY1dS1da

25U

S0

CINIS NIt
¢uwu:@¢¢au

B-66

t

(parameter :present) Interfaces

Passed Parameters Type Returned Parameters Type

1 ({none)

2 list of instance

"y s s e s T W s 88 s s

- variables data
3 {none)
i 4 list of instance
variables data

5 list of invalid
instance variables data

6 {none)

S O

w
]

67

(31va (NOIS¥3IN 101-0355vd (WO 3-QISSvd (SISVI W
-3Z1TvILINTS ~3Z1TVILINI ~321TVILINI S =3Z1TYELINIS =32IILINI:
Y31 3uivd) ¥313uudvd) YILIuvdvd) HILNVNYD) ¥313uvubd)
CAZTIVILINTI NS
¥343uHvd)

! Y
-

Lt

B-68

e

3 a

Db

(31uqs
¥3IL3Nvavd)

(NOISHINS
¥313uvdivd)

(01-0335vd?
YL Y YYd)

(WO¥I-GISSYd e
¥313uvEvd)

(SISYITvs
¥313uviud)

(YN?
H3LWYHYd)

— R

(3Nvse
¥ILuYd)

B-69

(parameter :save)

Interfaces

Passed Parameters Type Returned Parameters Type
1 design instance

pointer data

stream data
2 (none) name data
3 (none) aliases data
4 (none) passed-£from data
5 (none) passed-to data
6 (none) version data
7 (none) date data

B-70

I L
g el et e al gty

Al S M AN il Aak Ankc AafiuR b o Aalio)

. .

- LN

. e

N . ". .
o

Lat

.
Grn

o

PARAMETER-ALIAS Methods

USRI PR AP G IL WY WAL 1. P 1L RN Py

A 2 e el Tl Sl M A

PO T S

(34va
-321TWWILINT
1Ty -43LIuvdvd)

(NOIS¥3IN
=3ZITWILIND
1V-¥3LuYAYd)

(01-3355v4
=3Z1WILINIS
1= 430 VN

(WOY4-Q3ISSYd
-3ZIWILINTS
170-4313uVaYd)

(UANONAS

-3ZITWILINI®
1TY-43L YY)

(3dAL-0Q (1337 0¥d (3dAL (3WYN
-32I¥1LINI e ~32TTIVILINIG -3Z1IYILINDS ~3ZI1 LINTs
1v-4313Uvdvd) I v-¥34 WVdVL) 1v--43.3UvEYd) 1M¥-y313UWvavd)

(3ZIVILINDS
1Y-¥313Wvdvd)

B-72

C(LNISINd?
4015)

yoyN3
-31N4I¥LLY
-AY1dS1q

o5W

AN

CIN3S3ds
SYI Y
-¥313WWdYd)

B=-73

a e (parameter-alias :present) Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

2 list of instance
variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

vr,_'
e Ol

-
e e

[

PRI i——'k PTG R S A TG ST LG G VR VR VR YIEEPEPN PR U WV

>

A s B

LIRS A% 1 e e ey

(31va (NO1S¥3N (04-0358vd (NO¥I-QISSYd C(NANONAS
-3Z1ILINTS -3ZITYILINLS -321TWILINDS ~321VILINGS =321 WILLINTS
179431 JuUVEYd) 11¢-¥32 IWVavd) 119-4313W%Hvd) 119--33L3U0HVd) 11v-43L3wHvd)
C(AZTIVILINI NS

1W-¥34vavd)

2l

.

a2l

«* e

- ATV N

‘et
.
T
W PN

BRI
a3

4
o

4
5

B-75

(3ivds (NOISHN3N: (Q4-Q355Vdt
syllv SY11Y SYI Y
~¥3L3WvNvd) =431 3uvdvd) -y 3Wvdvd)

(WO¥4-0ISSYd?
SYIW
-4303UYNYd)

(WANONAS ¢
SYI1
~¥3L3wNvd)

(3dAL-Qas
SvI1Y
~¥3ILuwyYd)

C3UUNL
SYI1Y
-¥313WYHYd)

(INYS1
SYIlv
-4313WY8Y¥d)

(parameter-alias :save) Interfaces

RO

Passed Parameters Type Returned Parameters Type S?@;i

.:\;.:- -

1 design instance ﬁn{ﬂ

pointer data

stream data -

s

2 (none) name data -

3 {none) dd-type data .

4 (none) synonym data ;E

5 (none) passed-from data ey
6 {none) passed-to data
7 (none) version data

8 (none) date data .

B-77

)]
e
o]
f=
s
[
=
12
0
<3]
|9
O
(44
[a7]

S ok

LA

S
o am Sa

Y

M)

EA
RIS Wy Ny 2PN

(NI (53553208d
-$3553008d -0V} (InWYN? =ON11WI-1358
§5300Nd) $$3004d) $53204d)

(§$320d8d (§3553004d
~31V3Y0s =DNITHS (653008d-511 (NDIS3Qs
NOIS3M) $53202d) NO1IS3Q) 133r0¥d)

€$3553008d
-ONITIVD-daus
$$300¥d)

B-79

AL At a

P

Bandin

"

.’ h.' - "' .
A eaia,

Lo

o

A S e,

. AN o o it oSS b S SIS S ’_".‘_ Ll .'- A-w-‘.-'..'-.’_- _'.. '-.". il ot ARGl aShIE atie aends- s aou AN skl et Be s are g PR g

WP
»

-. .:;
: b
N bt
i ‘ (process :add-calling-processes) Interfaces &
2
) # Passed Parameters Type Returned Parameters Type
j 1 list of process
i names data
’ 2 (none) pointer to design
: instance data
- 3 list of process
‘ names data

4 process name data is process? flag

5 (none) name of current
X process data
P 6 (none) list of calling
: processes data

7 name of current
. process data

\e :
F 8 process name data pointer to new
L process instance data
.
B-80

- B R S N L SE TRA S R
D e T i e P IR O I
PP P WAL WA L PR WS P WS . U PR IPLTG S, W

P oL
Co S R
Y,
g
v-
"
Y,
3
p
3
<
.
P,
r,
(535539084 (63773
-5N1T11YI-0qve € ubH1 -5355390¥d-435
§5390¥d) §53908d) $53908d)
4
€§5390¥d (0431790
319341 ~$3§5390ud (553208d-511 (ND16301
ND1530) $53201d) NOI1S3Q) 193008d)
(0431199
-$3553908d-0QYs
$53004d)
'
4
;.. A -.m
- o

(process :add-processes-called) Interfaces

AR Ao S~ s A S i g e e

Passed Parameters Type Returned Parameters Type
list of process
names data
{(none) pointer to design

instance data
list of process
names data
process name data is process? flag
(none) name of current

process data
(none) list of calling

processes data
name of current
process data
process name data pointer to new

process instance data

RCIOTRTCTY
Cae

I-53553008d

~343730¢
$5300%d)
]
(5355300ud ($355300%d
(YN =ONIT1TVI-13Ss =ONITV¥Ys (§S3J0¥d~S1: (NO1S3AY
$53204d) $53d0ud) $53008d) HO1S30) 4933rodid)

$3908d-INITIVD
313130
$5320484)

(process :delete-calling-processes) Interfaces

Passed Parameters Type Returned Parameters Type
list of process
names data
(none) pointer to design

instance data
process name data is process? flag
{none) list of calling

processes data
name of current
process data
list of process
names data
(none) name of current

process data

M S St A e A A At e e S S RO A T e e

~t

J
by
<4
3
-
1

'

S $3208d-OMITIVWD

3 -31313q

) S$5300%d)

T¥I-5$355330ud (4371190

. (3WUN? =135 =535530044d1 ($$300¥d-S1s (NO1S3G:
; §5300%4d) §53205d) $5300¥4) HOIS3M) 4337 08d)

B-85

19I-53553004d
’ -343130
$53004d)

AD-A164 026 A NATURAL LANGUAGE PROCESSOR AND ITS APPLICATION TO A 3/4
DRTH DICTIONARY SYSTEM(U) AIR FORCE INST OF TECH
HT-PATTERSON AFB OH SCHOOL OF ENGI.. ﬂ UOLFE
UNCLASSIFIED DEC 85 AFIT/GCS/ENG/85D-19

SAL AN o Nl T R v
SRR SRR N LRI AR - 2o ey

i.ﬂ

FEFEERR
o

| 5

F

o

EEF
s

[« ¢]

.—
err
£
Fr
o

L2 e s

MICROCOPY RESOLUTION TEST CHART
..... MR RHRT AN O STANDARDS 1963-A

ORI
: %
vapl
P

"

A

-
’ s s
’

LSRR A

271

T T N T N T Y . L DY TV T T TV N LWL W o e O e ™
s

&
._'\ o
\ L]

(process :delete-processes-called) Interfaces

Passed Parameters Type Returned Parameters Type

1 list of process

names data
2 {none) pointer to design
instance data
3 process name data is process? flag
4 (none) list of calling
processes data
5 name of current
process data
6 list of process "o
names data LA
7 (none) name of current RN
process data Py
AN
e,
ANy
'.~_‘.~_'.t
Fowte W
N ".',
PR
g
g
B-86
i
o‘\:._

s g St A CaT e, : g e e T e e e, A
WAENNAPALY APy 3 ¥ . of " ' ._(:,1':;‘.‘ '..-'_..':.h')}- Tttt

P i

B

N

Cad

(3100 (NOISH3IN 12 -6§3553008d $3008d-ONI TV
~3Z1WILLINDY ~3Z1WILING Y ~32TWILINGS -3Z1WILINGS
$$3004d) $5300ud) $53%0ud) 5533044d)
(S3Sv]1v HO-YLYa-1vE01D SN-viva-~1ve019 (S9Y14-4NdLN0 (vivd-4ndiNo
-32191LINTS =321WILIND -321WILINDS -321TVILINTS ~JZITUILINDS
$530004d) $53508d) $83208d) $53008d) $5300ud)
(SOVN4-LNdNT (Yivg-LNdNI (433r0dd (3dAL (UYN
=3ZIWILINDS -3Z1WILINIL =321IvILINTS -3ZITVILINI ~3Z1WILIND:
$$300%d) $63208d) §$53208d) $$3004d) $5300%d)
(3ZITVILINTE

$5300M8d)

B-~87

TR I

LML TR L o . i
W ot -.-.:....,- ...-o- f-” %-,-f.ﬁ- v, e i
ltlx!nv'-?;-b-. Nluﬂ-la’lﬂl 2 b !

H¥ONY3
C(IN3ISINd? =31n3TyLLY 404 osu S
1015) -AY1dS1a

B-88

C(INISINd:
$53204d)

AR AT LRI AR U ST B0 B i S/ U i ity 404, S B b A Sl e B M A A Y N A M A S g e T

(process :present) Interfaces

Passed Parameters Type Returned Parameters Type

1l (none)

2 list of instance
variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

Cetat Mgy, -
. -~

- R IO I SR S N S I e
. - e ALY - - " e -t .t . * T CURARER
e A) 'J\A';"'J'_-t_.‘_;'_.h‘,'-~‘-..: al o

(3190
=3Z1ILIND
$5330%d)

B-90

(NOISYIN 11vI-53553208d $3208d-IN111VD (SASYITV HI-¥ivd-1vE01D
~321TVILINT: «~3JZITVILING -3ZIWILINIs -3Z21WILINTS =321l INDS
$$304d) §6330u4d) 65§33048d) §$3008d) §$53008.4)
SN-vivad-1veo1H) (S 14-4iNdLN0 (9lvg-LNdino (SOY14-LNdNT (Y LY0-LMNdNT
~321TVILINT S ~3ZITVILINTS ~3ZIVILINIE -3JZ1WILINIS =-3Z1WILINI®
§532084d? £533034) $53204d) $53%08d) $5320u4d)
(Z2ITWILINT I
§53904d)
3
Je
o
B e e

(a1 ($3553008d (QIINVH)
(31vqs (NOISHIN ~5$355300ud* =ONITIWO ($3SVIV) -¥ivd-1ve0791
$53008d) $5330ud) $6$3204d) $$3004d) $53204d) $5300ud)
€l et 1] o
(aisn
~¥iva-Ive019¢ (SIVT4-1NJLNOY (VLYG-1NctiNO? tSOV14-LNdNIt (Yivd-4NdNIs (N
$533044) $5330ud) §533044d) §53008d) §$3004d) $S3I0¥d)
S L4 2
(3NVSt
$§53004d)
}
K

1|

(o)}
1

m

<He vy

T W YV,

-

L 28

(process

ALY,

:save)

D DA A A S CeS

Interfaces

Passed Parameters Type - Returned Parameters Type
1 design instance
pointer data
stream data
2 (none) name data
3 (none) input-data data
4 (none) input-~-flags data
5 (none) output-data data
6 (none) output-flags data
7 {(none) global-data-used data
8 (none) global-data-changed data
9 (none) aliases data
10 (none) calling-processes data
11 (none) processes-called data
12 {none) version data
13 {none) date data
B-92

.....
-, ¢,
NS

£ 8 ‘ . \
-.\u.\(>a.......-
~ -.I Y % A-h-- _r. .-.. -;. DA 2 -4
7 P ...\ LA PRI

B-93
R

)]
e
(o]
K
o
Q
=
0
<
-
-1
-

1
]
1]
]
19
(o]
(<4
(«7]

'y ! _ . P .,.--

e et— A . 0 a2 ® ., WM. . B A, va-m g, SRS . - a a4 v . . a ama. O - s . oM

S-S - Al A

g

(3ivq

=3Z1TVILINT ¢
SY11v-55330d)

(NOISHIAN
-3ZIWILINIE
SYI1v-55300d8d)

(WANONAS

~JLTIVILINDS
SVYI Iv-5530044d)

(3dAr-0d
=32IWILINTS

(133royd
~3Z1WILINIY
SYITY-5£300¥8d)

(3dAL
~3Z1V1LINEE
SY1TY-5530084)

&
=3Z1W1LIN]:
SYITv-5530¥d)

S$Y11v-5$300ud)

(IZITMILINI S
SY1Tv-$5300ud)

I‘h.h

e r v v v
LA R B &

ot

(IN3ISIYd?
4018)

¥OuN3
-3iN4THLLY
-A¥1dSIQ

004 o5W

S$10

(INISIyd!?
SYIlv
=§53308d)

{process-alias :present) Interfaces

Passed Parameters Type Returned Parameters Type

(none)

list of instance
variables data

(none)

list of instance
variables data

list of invalid
instance variables data

(none)

™

(31vd
~3ZIWILINTY
SY1°1Y-55300d8d)

(NOISH3IN
~3ZTWILINIS
SYITU-55.3004d)

(WANONAS
~3ZIWILINIS
SUI1Y-55300ud)

(3dAl-ad
=3ZITWILINIS
SYITv-~553208d)

B-97

<

2

RV

(3Z1TVILINIIN:
SYIIY-553304d) e

',

/.

o ._

(31vqt (NOISY¥INS (HANONAS ¢ (3dAL-Cqs (3WYN
SYITV-SSD0¥a) SYIT¥-55300¥d) SYIT-553304d) SYT'IV-5$3)08d° SYITY-$5330ud)

B-98

(3InVSe

SYIT1¥~553)0u8d)

(process-alias :save) Interfaces

Passed Parameters Type Returned Parameters Type
design instance

pointer data

stream data

(none) name data
(none) dd-type data
(none) synonym data
{(none) version data
(none) date data

B-99

-

A .
PR S B]
P,

5, 4 0 L0,

n
ol
o]
Ko}
Fs
(]
=
B
Q
(]
e
O
[+ 4
n,

. a. DR LT Ay e Te 77
I NI, [NN N
[- oA, ¢
u “_Wh o3 ...un.-.w r.m-) u..m.-\.-ﬁ”.- B

HOTLYINIIdUT (ND1S3Q (SANIWININOIY (YN -
-3ZITWILINT: -3ZITWILINIS ~IZITWILINIE ~3ZIWILINDT:
123roud) 493rodd) 433roud? 433road)
o
]
m
(3ZIWILINT:

L33roud)

(LN3IS T
1015)

youY3
~31N81814Y
-AY1d514a

Wos oSN

S

(ANIS3Nd:
4231 0¥d)

B-102

(project :present) Interfaces

Passed Parameters Type

Returned Parameters

Type

(none)

list of instance
variables data

(none)

list of instance
variables data

list of invalid
instance variables data

(none)

B-103

oW

LI R A Y

HOTLVINIWITdWI (NDIS3G (S5iNINIYINO
-3Z1TVILINT: -JZ1WILINTS =3Z1M1LINTS
423roud) 423royd) 403royd)
(3Z1TVILINIIY?
423r08d)

B-104

(IONUISNI-NOTL
(3nYSt NOLL ~YiNIITAUT { INVSS
~¥lN3W3dul) 123roud) NOIS30)
'3 9
C3IONVISNI (IONYLSNI
-H915308 (ISt -S4N3W3YIN0O3S (YN
1031 0¥d) SINIWIVINOIY) 193roud) 133roNd)

(3nYss
1433004

B-105

(project :save)

Interfaces

Passed Parameters Type Returned Parameters Type
(none)
(none) project name data
(none) pointer to

requirements

instance data
pointer to project
instance data
output stream data
(none) pointer to design

instance data
pointer to project
instance data
output stream data
{none) pointer to

implementation

instance data
pointer to project
instance data
output stream data

i‘-\u\q ﬁ-x\hl‘u\ 1
| AP W Y

REQUIREMENTS Methods

R ', . ‘e » »

L A, e 8 0 gy

B-107

(1N3S3dds
1018)

-1k
-31ng1¥llv
-AY1dSla

04

osu

$19

CIN3S3udt
SININININOIY)

B-108

(requirements :present) Interfaces

.CEET T A e

Passed Parameters Type Returned Parameters Type -5.3

(none) yYQE

list of instance . K
variables data

(none)

list of instance -
variables data =

list of invalid
instance variables data

(none)

-
i.l

LA
R

L IVL RN L .
R .

.
[Jp——

B-109

o
L -
- -" N ..-

t3iva: (NOL1SN3N? (YN
SIN3W3NINON) SINIWININOINY) SINIWININOI)
’ € e
(3nvYS:
S1NIUININOIY)

B-110

E A A o i A b it /o A M A A sl SR Ml Jed ael ettt Jel dad

Rl Ml Ml aad ol \ap it ol Snl el S lac)

(requirements :save) Interfaces

Passed Parameters Type Returned Parameters Type

project instance

pointer data

stream data

(none) name data .

{none) version data

(none) date data :.
B-111

Appendix C

Grammar Defin

ition

Appendix C
Table of Contents

Introduction .« ¢ ¢ ¢ o o o s o o 5 o e .
Grammar Definition (BNF) e o o o o s o

Correspondence Between Instance Variables
and Attribute values+ ¢« ¢ ¢ + .

C-2

Introduction

This appendix defines the grammar of the Data Dictionary
System (DDS). The first part of this definition specifies
the productions of the grammar using a Backus-Naur Form
(BNF) notation. The second part defines the correspondence
between the instance variables of the various object types
and literal values contained in the <attribute> production

of the grammar.

Ll L S = o ey & e s S o - ., s e, e &G ARCHINE R~ AT Jhgr afir pARC M S S SR Ab g aeh gl aiih ads W i BRg sae ars of

--------------- LA AR A A

Grammar Definition

YOAEY
ot
Notation : I
T ::= is defined to be g
(1 select one P
() optional Lavinr
<> class symbol
§t comment
1 or
* user input

<grammar> ::=
{ please) <aux-grammar>

cactivity> ::= * : :
§a user-~-defined member of the object class ACTIVITY?t

<activity-alias> ::= *
§a user-defined member of the object class
ACTIVITY-ALIASYT

<activity-alias-instance> ::=
activity alias <activity-alias»>

<activity-instance> ::=
activity <activity>

<add> ::=
{ add ¢ append { concatenate § include ¢ insert |

<add-command> ::=

[<add> <literal> to (the) <attribute> [of ¥ by]
<instance> ¢ <add> <literal> to <instance> <attribute> -
4 the <attribute> of <instance> is <literal> ¢ :
<instance> <attribute> is <literal> ¢ [
<module-instance)> Y <process-instance>] [calls ¢
invokes] <literal> ¢ [<module-instance> %
<process-instance>] [is called by ¢ is invoked by ¢
is a submodule of] <literal)>)}

<attribute> ::=
{ activities ¢ activity number ¢ activity numbers where
used ¢ activity # ¢ alias ¢ aliases ¢ attributes ¢
called modules ¢ called processes Y calling modules ¢
calling processes ¢ common data changed 4 common data
used ¢ common parameters changed § common parameters
used § common variables changed § common variables
used Y component data elements 4 component parameters
1 component variables 4 components § composition
control inputs 9 controls 'Y data dictionary type ¢
data elements § data type ¥ date ¢ dd type ¢
description q design ¢ design data ¢ design AEAEN
information ¢ destination 4 destinations ¢ driver ¢ FRI
drivers 4 entry date ¢ entry version ¢ files input ¢ L -
files output ¢ files read § files written ¥ input Ry
files 9 global data changed Y global data used ¢
global parameters changed Y global parameters used ¢
global variables changed ¥ global variables used ¢
globals changed Y globals used ¢ hardware input ¢
hardware output § highest-level activity ¢
implementation § implementation data ¢ implementation
information ¢ input data ¢ input files ¢ input flags ¢
inputs ¢ invoked modules { invoked processes ¢
invoking modules 4 invoking processes 4 instance RN
‘5 variables 4 legal range ¢ legal values § list of LR
- activities ¢ list of aliases ¢ list of called modules - e
% list of called processes { list of calling modules ¢ Lo
list of calling processes Y list of component data
elements 4 list of component parameters § list of SN
component variables 4 list of components § list of e
controls 4 list of data elements 4 list of input data T
1 list of input flags ¢ list of inputs ¢ list of v
invoked modules ¢ list of invoked processes { list of U
invoking modules 4 list of invoking processes ¢ list
of legal values 9§ list of mechanisms § list of modules
9 list of modules called ¢ list of modules invoked ¢
list of output data ¢ list of output flags q list of
outputs ¢ list of parameter aliases ¢ list of ——
parameters § list of process aliases {list of
processes 4 list of processes called ¢ list of
processes invoked ¢ list of related items ¢ list of
related parameters § list of related requirements ¢
list of submodules ¥ list of subprocesses ¢ list of
values 9 list of variables § main activity ¢ main T
module ¢ main modules § main process § main processes U
{ main program § main programs ¢ max legal value ¢ max e
value ¢ maximum legal value Y maximum value ¢ e
mechanisms ¢ min legal value § min value ¢ minimum
legal value 4 minimum value 4 module number ¢ module #

.o
»

.
b

1 modules ¢ name 4 node § node number ¢ node # ¢
number ¢ output data § output files 4 output flags ¢
outputs § parameter aliases § parameters Y parent
activity ¢ parent data element § parent parameter ¢
parent variable ¢ part of 4 passed from § passed to ¢
process aliases § process number § process # ¢
processes Y processes called 1 processes invoked ¢
project ¢ project name ¢ range § related items ¢
related parameters Y related requirement ¢ related
requirements { related requirement number 4 related
requirements numbers 4 requirement number ¢
requirement # Y requirements ¢ requirements data ¢
requirements information § SADT activity numbers where
used 9 slots ¢ source ¢ sources 4 storage type 9
submodules ¢ subprocesses Y synonym § synonyms § title
% top-level activity ¢ top-level program § top-level
programs ¢4 type Y values Y variables ¢ version { #]
<attribute-list> ::=
<attribute> ([and <attribute> ¢ <attribute-list>])

<aux-grammar> :
[<command>

Y <meta-command>]

<cls> ::=
{ ¢cls ¢ clear screen ¢ clear the screen |

<command> ::=
[<add-command> 4§ <create-command> ¢ <delete-command> ¢
<destroy-command> ¢ <initialize-command> ¢
<modify-command> § <present~command>]

{create> ::=
[create 4 make |}

{create~-command> ::=
[<create> (a) (new) <object-class> (called)
<literal> ¢ <literal> is (a) (new) <object=-class>

]

<data-element> ::= *
§a user-defined member of the object class
DATA-ELEMENTt

<data-element-alias> ::= *

§a user-defined member of the object class
DATA-ELEMENT-ALIASY

......

«, .
AN
-
e
Ve
LI
DO |
o
e
DA

-~ A

Sl 7N

v I,
B 00, s

ryv -
!

'l

. - . e - - -
P TR
LIRGPAS I I, WAy TR

RV S Y N A AR AL Al Sl Al R el M A S A Y L el ARt DAL AR A ot Dt A L P Al ad

<data-element-alias-instance> ::=
data element alias <data-element-alias>

<data-element-instance> ::=
data element <data-element>

<delete> ::=

[delete ¢ purge §{ remove]

<{delete-command)> ::=
[<delete> <literal> (from) <attribute> of <instance>
4 <delete> <literal> (from) <instance> <attribute>]

<design> ::= *
§a user-defined member of the object class DESIGNt

<design-instance> ::=
design <design>

<destroy> ::=
destroy

<destroy-command> ::=
<destroy> <instance>

<exit> ::
[all pow 4§ exit §q quit]

[h' 9 help v 2)

<implementation> ::= * et
§a user-~defined member of the object class
IMPLEMENTATIONY

PR
L AL

RN

'
l‘.'
’

<implementation-instance> ::=
implementation <implementation>
<initialize> ::=
[init ¢ initialize ¢4 reinit ¢ reinitialize 4§ reset |

<initialize-command> ::=
<initialize> <instance>

, N

' T
Lo

. <instance> ::= Ll

I [<activity-instance> ¢ <activity-alias-instance> ¢

. <data-element-instance> ¢ NN

i <data-element-alias~-instance> ¢ <design-instance> ¢ i

: <implementation-instance> 4 <module-instance> ¢ AL

! <parameter-instance> { <parameter-alias-instance> Y §¢ﬁ§

<{process-instance> 4 <process-alias-instance> ¢ o
' <project~instance> Y <requirements-instance> {

<variable-instance>]

<literal> ::= *
Sany string of characters delimited by blankst

l <meta-~command> ::= .. en-
" [<cls> § <exit> ¢ <help> ¢ <save>] R

<modify> ::=
[alter § change 9 mod § modify 4 replace]
), <modify-command> ::= — -
: [<modify> <attribute> of <instance> to <literal> ¢ T
<modify> <instance> <attribute> to <literal>] e
_ <module> ::= * RS
i ';. §a user-defined member of the object class MODULEt P
. <module-~instance> ::=
: module <module>
- {parameter> ::= *
' §a user-defined member of the object class PARAMETER?t
{parameter-alias> ::= * 7
- §a user-defined member of the object class
j PARAMETER-ALIAS?
, <(parameter-alias-instance> ::=
parameter alias <parameter-alias>
(parameter-instance> ::=
parameter <{parameter>
) {present> ::= -
; [display ¢ present ¢ print § show (me) ¢ tell (me) e
i Y type ¥ what [is § are] ¢ who is] AR
- ." ~\ b\
g .':‘~s\-.
3 ::‘:s"':n
:' _.:'_-\)
- NN
]

N T et T e et et ot A .
Ve e AN . M e At et et e A ,
AP B A S P P AR ST ST A ST i S YO

S . L S S L SR P SO P,
P P IR I TS STt e e .
AP W U RSP YU GA) o O WA v (PR 2PN AP AT W A S RE oy

-

e N T T e N N Ny s T DY T T T T T U oI o T W U = I e o,

cat

- . 'A‘.l '.u '.h
ARl el alal

<present-command> ::=
{ <present> the <attribute-list> [of § by] <instance>
Y1 <present> <instance> (<attribute-list>)]

{process> :;:= *
§a user-defined member of the object class PROCESSt

<process-alias> ::= *
§a user-defined member of the object class
PROCESS-ALIASYt

{process~alias-instance> ::=
process alias <process-alias>

<process-instance> ::=
process <process>

{project> ::;= *
§a user-defined member of the object class PROJECT*?

<project-instance> ::=
[project <project> { *project*]

{requirements> ::= *
§a user-defined member of the object class
REQUIREMENTSt

<requirements-instance> ::=
requirements <requirements>

{save> ::=
| keep ¢ save § store |

<variable> ::= *
§a user-defined member of the object class VARIABLEY

<variaple-instance> ::=
variable <variable>

R AR R SN

T Sl BV Yl ol GBI U T - "_L.'.A_JI 2

Correspondence Between Instance Variables
and Attribute values

,,-
£ -
DN

. v . .
»

Instance Variable Attribute value Implemented?
activities

L)
T
.
a

LY Y S |
.

E]

activities
list of activities

-

aliases
alias
aliases Y
list of aliases

calling-processes
calling modules

calling processes Y
invoking modules
invoking processes Y

list of calling modules
list of calling processes
list of invoking modules
list of invoking processes

“ composition
component data elements
component parameters
component variables
components
composition
list of component data
elements
list of componen
parameters
list of component variables
list of components

controls
control inputs
controls
list of controls

data-elements
data elements
list of data elements

SR O A &/ St A Al A A A i A S A Pt N

Instance variable Attribute value Implemented?

data-type
data type
date
date Y
entry date Y
dd-type

data dictionary type
dd type Y

description
description

design
design Y
design data
design information

files-read

files input
files read
input files

] Q’ files-written

‘ files output
: files written
. output files
‘ global-data-changed

common data changed

common parameters changed
common variables changed
global data changed Y
global parameters changed
global variables changed
globals changed Y

global-data-used
common data used
common parameters used
common variables used
global data used Y
global parameters used
global variables used
globals used Y

. et e et

L T T T o T L TR IR SR S
e e Y Rt Lt e T T e L L T e Tl L T e e T e
REF. L ERE WY Wl Sl WES W ST W AT S R T S A T A T S E A O MR SRR SR P PPN YR R S WAL SRS WA W ATV

te

Instance Variable

Attribute Value Implemented?

hardware-input

hardware-output

implementation

input-data

input-flags

inputs

main-program

max-value

mechanisms

hardware input
hardware read

hardware output
hardware write

implementation Y
implementation data
implementation information

input data Y
list of input data

input flags Y
list of input flags

inputs
list of inputs

driver

drivers

main module

main modules

main process

main processes
main program

main programs
top-level program
top~-level programs

KKK

max legal value

max value

maximum legal value
maximum value

list of mechanisms
mechanisms

|
P
P A VR

-
.
-
.
-

P

¢
-
s

T .2 @ * 0w
LR
. et

r

PN

ot
..

L@ T e

Y
Sdata

AR
N

.
LA

. 4

CASABNERE

Instance Variable

Attribute value

Implemented?

min-value

modules

name

number

output-data

output-flags

outputs

parameter-aliases

parameters

parent-activity

min legal value

min value

minimum legal value
minimum value

list of modules
modules

name
title

activity number
activity #

node

node number
node #

number

#

list of output data
output data

list of output flags
output flags

list of outputs
outputs

list of parameter aliases

parameter aliases

list of parameters
parameters

parent activity

\e

Instance Variable

Attribute value Implemented?

part-of

passed-from

passed-to

process-aliases

processes

processes~called

parent data element
parent parameter
parent variable
part of

passed from
source
sources

<R

destination
destinations
passed to

<o

list of process aliases
process aliases Y

list of processes
processes Y

called modules

called processes Y
invoked modules

invoked processes Y
list of called modules

list of called processes

list of invoked modules

list of invoked processes

list of modules called

list of modules invoked

list of processes called

list of processes invoked

list of submodules

list of subprocesses

modules called

modules invoked

processes called Y
processes invoked Y
submodules

subprocesses Y

Il At

AR A LA AN AR A A ML A AR SO R AR et e i e Byt Byt bt B it e s

Instance Variable Attribute Value Implemented?
project
project Y
project name Y

range

related-items

requirements

slots

storage-type

synonym

top-level-activity

legal range
range

list of related items

list of related parameters

list of related
requirements

related items

related parameters

related requirements

related regquirements number

related requirements
numbers

related requirements #§

related SADT activity

related SADT data items

requirement number

requirement #

requirements
requirements data
requirements information

attributes
instance variables
slots

storage type

synonym Y
synonyms Y

highest-level activity
main activity
top-level activity

B il 2Pe whe poe 3 - ——— - m
L SACRR I IEN I SN AL IR AN I g S ST b iR S R Ty LRI e A g gt e G gt bl S U

.
SRIE o A D

(AL

v,

Instance Variable Attribute Value Implemented?
type

*
”
|

type Y

‘v by 0
ALY

values

s
L3 4

L

YR
o o

legal values
list of legal values b
list of values
values

.
]

[}

variables
list of variables
variables

version
entry version Y
version Y

where-used
activity numbers where used re .

SADT activity numbers where S

used o

where used RO

[N
} e
- -

o
.
-
.
by

A

e

EE TR PR “ e -
e e .. ESA
3

CA ettt T e S
MPAP PRI . | Abad s 20 ot a’ B 2" o

T ok v N 4~....] , - R -
I
t
u
2]
. =
‘ =]
]
0 [
e (&)
o o n
[+ a
Q c
’ 0 o
Q4 (=]
X o [}
' —
. Q.
|5
=]
u~ t 0
’ [y -L
: £y
v v o
B Lo
3 oy
y e
’ o
. X
0 L L.
. ...L.-.
. ‘-.‘

-
re
L 2PN 3

[N SN R PPN I ST R L. s 4 . " AT e . Lt ., e L . . ta N o JCO [P o [
e .:‘3#.-..-. DUATAASEMENT. B o o, ﬁ. - KN AR f L, L et - .

A i bt Ak AL ,_'FA'.’“.' Pl it i S A N AN S g fhe 8 = bhn 0l i Oulbtni Al e cap tah Sed tnk Aol d 4ol b b ol D ANE SN R SUL RS g}

Appendix D
Table of Contents

Introduction« o « o e e o . D~- 3

Implemented Grammar Listing . « . . . ¢« + ¢+ ¢ « « « . D= 4

« vt
L
o
e

- |
‘
v

PR
L A

NN AT }".*“ _-.'.-" RO

- . [N -t - . t‘.".‘.~‘-‘h V~“‘
LTS PRI TRV IV I YL WS

e e w—y
_ o
Introduction

]
v

This appendix contains a listing of the Data Dictionary

N A

L 2

System's (DDS) implemented grammar. It is presented in the

same Lisp-readable format as the actual grammar disk file.

. P R cLsL KR . L . .
P T T I N T PR PR A AT - e . RS .. e e
PURCPIRANT PRI PR TP B i PN St PRy DR IPAT A R WAL P T P P S PR PSR AMIAS IR . W ST DU Lote o P PR W Y

i

vy

ol
L

.....................

(DECLARE (SPECIAL *META-SYMBOLS*))
{SETQ *META-SYMBOLS* NIL)

{DECLARE (SPECIAL <GRAMMAR>))
(CREATE-PRODUCTION <GRAMMAR>)
(SETQ
<GRAMMAR> ' (<GRAMMAR> ((PLEASE ((<AUX~-GRAMMAR> (($ NIL
NIL)) NIL)) NIL)
(<AUX-GRAMMAR> (($ NIL NIL)) NIL))
(SEND *NEW-EVENT* :EXECUTE)))

(DECLARE (SPECIAL <AUX-GRAMMAR>))
(CREATE-PRODUCTION <AUX~GRAMMAR>)
(SETQ <AUX-GRAMMAR>

' (<AUX-GRAMMAR>

((<COMMAND> ((* NIL (SEND *NEW-EVENT* :SET-ACTION-TYPE
NIL))) NIL)

(<META-COMMAND>
((* NIL (SEND *NEW-EVENT* :SET-ACTION-TYPE 'META)))

NIL))

NIL))

(DECLARE (SPECIAL <COMMAND>))
{CREATE-PRODUCTION <COMMAND>)
(SETQ <COMMAND> ‘' (<COMMAND> ((<PRESENT-COMMAND> ((* NIL
NIL)) NIL)
(<INITIALIZE-COMMAND> ((* NIL NIL))
NIL))
NIL))

(DECLARE (SPECIAL <ADD-COMMAND>))
(CREATE-PRODUCTION <ADD-COMMAND>)
{SETQ
<ADD-COMMAND> ' (<ADD-COMMAND> NIL (SEND *NEW-EVENT*
:SET-ACTION ':ADD))})

(DECLARE (SPECTAL <CREATE-COMMAND>))
(CREATE-PRODUCTION <CREATE-COMMAND>)
(SETQ <CREATE-COMMAND>
' (<CREATE-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
' :CREATE)))

(DECLARE (SPECIAL <DELETE-COMMAND>))
(CREATE-PRODUCTION <DELETE-COMMAND>)
(SETQ <DELETE-COMMAND>
' (¢<DELETE-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
' :DELETE)))

................
........
........

I
PP AN AN
0 0%t
fll'l
LS A
'l'l'l.
’

-~
-
-

..............

. EEEReTs P vV

ST,

(DECLARE (SPECIAL <DESTROY-COMMAND>))
(CREATE-PRODUCTION <DESTROY-COMMAND>)
(SETQ <DESTROY-COMMAND>
' (<DESTROY-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
' :DESTROY)))

(DECLARE (SPECIAL <INITIALIZE-COMMAND>))

(CREATE-PRODUCTION <INITIALIZE-COMMAND>)

(SETQ <INITIALIZE-COMMAND>
' (<INITIALIZE-COMMAND>
((CINITIALIZE> ((<INSTANCE> ((* NIL NIL)) NIL)) NIL))
(SEND *NEW-EVENT* :SET-ACTION ':REINITIALIZE)}))

(DECLARE (SPECIAL <MODIFY-COMMAND>))
{CREATE-PRODUCTION <MODIFY-COMMAND>)
(SETQ <MODIFY-COMMAND>
' (<MODIFY-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
' :MODIFY)))

(DECLARE (SPECIAL <PRESENT-COMMAND>))
(CREATE-PRODUCTION <PRESENT-COMMAND>)
(SETQ
<PRESENT-COMMAND>
' (<PRESENT-COMMAND>
{ (<PRESENT>
((KINSTANCE> ((* NIL NIL) (<ATTRIBUTE-LIST> ((* NIL
NIL)) NIL)) NIL)
(THE ((<ATTRIBUTE-LIST> ((BY ((<INSTANCE> NIL NIL))
NIL)
(OF ((<INSTANCE> ((* NIL NIL)) NIL))
NIL))
NIL))
NIL))
NIL))
(SEND *NEW-EVENT* :SET-ACTION ' :PRESENT)))

(DECLARE (SPECIAL <ADD>))
(CREATE-PRODUCTION <ADD>)
(SETQ
<ADD> ' (<ADD> ((ADD ((* NIL NIL)) NIL) (APPEND ((* NIL
NIL)) NIL)
(CONCATENATE ((* NIL NIL)) NIL)

(INCLUDE ((* NIL NIL)) NIL) (INSERT ((* NIL NIL))

NIL))
NIL))

,.,..-
l.'.'.l
Iy

X XA

.
2

‘l
Pl

.
.,
-

.

»
.

.ﬁi

-

1.'
-
)

(@

(DECLARE (SPECIAL <KCREATE>))
(CREATE-PRODUCTION <CREATE>)
(SETQ
<CREATE>
' (KCREATE> ((CREATE ((* NIL NIL)) NIL) (MAKE ((* NIL NIL))
NIL)) NIL))

(DECLARE (SPECIAL <DELETE>))
(CREATE~PRODUCTION <DELETE>)
(SETQ
<DELETE> ' (<DELETE> ((DELETE ((* NIL NIL)) NIL) (PURGE ((*
NIL NIL)) NIL)
(REMOVE ((* NIL NIL)) NIL))
NIL}))

(DECLARE {SPECIAL <DESTROY>))

(CREATE-PRODUCTION <DESTROY>)

(SETQ <DESTROY> ' (<DESTROY> ((DESTROY ((* NIL NIL)) NIL))
NIL))

(DECLARE (SPECIAL <INITIALIZE>))
(CREATE~-PRODUCTION <INITIALIZE>)
(SETQ <INITIALIZE>
' (<INITIALIZE>
((REINIT ((* NIL NIL)) NIL)
(REINITIALIZE ((* NIL NIL)) NIL) (RESET ((* NIL NIL))
NIL)
{INIT ((* NIL NIL)) NIL) (INITIALIZE ((* NIL NIL))
NIL))
NIL))

(DECLARE (SPECIAL <MODIFY>))
(CREATE-PRODUCTION <MODIFY>)
{SETQ
<MODIFY> '{<MODIFY> ((ALTER ((* NIL NIL)) NIL) (CHANGE ((*

NIL NIL)) NIL)

(MOD ((* NIL NIL)) NIL) (MODIFY ((* NIL
NIL)) NIL)

(REPLACE ((* NIL NIL)) NIL))

NIL))

i tal A Gt AR g SENAC GG I SN AL (A I b S g g o S

..........

oo ‘-{'.' S R A A R TR T e el - e o : - - R N
AP S I I SRS P e Bt g 22 2 PO R A PO TPy I St s CIRRISL S I I 8

..

(DECLARE (SPECIAL <PRESENT>))
(CREATE-PRODUCTION <PRESENT>)
(SETQ
<PRESENT>
' (KPRESENT> ((WHO ((IS ((* NIL NIL)) NIL)) NIL)
(WHAT ((IS ((* NIL NIL)) NIL) (ARE ((* NIL NIL))
NIL)) NIL)
(TYPE ((* NIL NIL)) NIL)
(TELL ((ME ((* NIL NIL)) NIL) (* NIL NIL)) NIL)
(SHOW ((ME ((* NIL NIL)) NIL) (* NIL NIL)) NIL)
{PRINT ((* NIL NIL)) NIL) (PRESENT ((* NIL NIL))
NIL)
(DISPLAY ((* NIL NIL)) NIL))
NIL))

(DECLARE (SPECIAL <META-COMMAND>))
(CREATE-PRODUCTION <META-COMMAND>)
(SETQ

<META-COMMAND>

' (<META-COMMAND> ((<SAVE> ((* NIL NIL)) NIL) (<HELP> ((*
NIL NIL)) NIL)

(KEXIT> ((* NIL NIL)) NIL) (<KCLS> ((* NIL
NIL)) NIL))
NIL))

Y

(DECLARE (SPECIAL <CLS>))
(CREATE-PRODUCTION <CLS>)
(SETQ
<CLS>
' (<CLS>
((CLS ((* NIL NIL)) NIL)
(CLEAR
((THE ((SCREEN ((* NIL NIL)) NIL)) NIL) (SCREEN ((* NIL
NIL)) NIL))
NIL))
(CLS)))

(DECLARE (SPECIAL <EXIT>))
{(CREATE-PRODUCTION <EXIT>)
(SETQ <EXIT> ' (<KEXIT> ((EXIT ((* NIL NIL)) NIL) (QUIT ((*
NIL NIL)) NIL)
(ALL ((POW ((* NIL NIL)) NIL)) NIL))
(SETQ *EXIT* T)))

S
. e ALY

. S B 9 . .

PR P R VR G TR R W WS WL T v TP W U L. pRE PV VL L PR P VL 0,y w5 Py,

P

u.l"'

....................................

Chalttd gl A . e . CAR L B B il i e T *L 4 W e e g
IR

{DECLARE (SPECIAL <HELP>))
(CREATE-PRODUCTION <HELP>)
{SETQ
<HELP>
' (CHELP>
((HELP ((* NIL NIL)) NIL) (H ((* NIL NIL)) NIL) (2 ((*
NIL NIL)) NIL))
(HELP) })

{DECLARE (SPECIAL <INSTANCE>))

(CREATE-PRODUCTION <INSTANCE>)

(SETQ <INSTANCE>

' (CINSTANCE> ((<VARIABLE-INSTANCE> ((* NIL NIL)) NIL)

(<REQUIREMENTS-INSTANCE> ((* NIL NIL)) NIL)
(<PROJECT-INSTANCE> ((* NIL NIL)) NIL)
(<PROCESS-ALIAS-INSTANCE> ((* NIL NIL)) NIL)
(<PROCESS-INSTANCE> ((* NIL NIL)) NIL)
{<PARAMETER~ALIAS~-INSTANCE> ((* NIL NIL)) NIL)
(<PARAMETER-INSTANCE> ((* NIL NIL)) NIL)
(<MODULE-INSTANCE> ((* NIL NIL)) NIL)
(<IMPLEMENTATION-INSTANCE> ((* NIL NIL)) NIL)
(<DESIGN-INSTANCE> ((* NIL NIL)) NIL)
(<DATA-ELEMENT-ALIAS-INSTANCE> ((* NIL NIL))

NIL)
(<DATA-ELEMENT-INSTANCE> ((* NIL NIL)) NIL)
(<ACTIVITY-ALIAS-INSTANCE> ((* NIL NIL)) NIL)
{(CACTIVITY-INSTANCE> ((* NIL NIL)) NIL))

NIL))

(DECLARE (SPECIAL <ACTIVITY-INSTANCE>))
(CREATE~PRODUCTION <ACTIVITY-INSTANCE>)
(SETQ <ACTIVITY-INSTANCE>

' (<ACTIVITY-INSTANCE>

((ACTIVITY ((<ACTIVITY> ((* NIL NIL)) NIL)) NIL))
NIL))

(DECLARE (SPECIAL <ACTIVITY-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <ACTIVITY-ALIAS-INSTANCE>)
(SETQ
<ACTIVITY-ALIAS-INSTANCE>
' (CACTIVITY-ALIAS-INSTANCE>
{ (ACTIVITY ((ALIAS ((<ACTIVITY-ALIAS> ((* NIL NIL))
NIL)) NIL)) NIL))
NIL))

....................
.................................

P SN LR L PP PP AT W WL IR AL PR, WAL WA TR S A W ST AT Y o,

S A A A A AN A A AR AR e IS ey aeai) o A S

..................

(DECLARE (SPECIAL <DATA-ELEMENT-INSTANCE>))
(CREATE-PRODUCTION <DATA-ELEMENT-INSTANCE>)
(SETQ <DATA-ELEMENT-INSTANCE>

' (<DATA-ELEMENT-INSTANCE>

((DATA ((ELEMENT ((<DATA-ELEMENT> ((* NIL NIL)) NIL))
NIL)) NIL))

NIL))

(DECLARE (SPECIAL <DATA-ELEMENT-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <DATA-ELEMENT-ALIAS~INSTANCE>)
(SETQ
<DATA-ELEMENT-ALIAS~-INSTANCE>
' (<DATA-ELEMENT-ALIAS-INSTANCE>
((DATA
((ELEMENT
((ALIAS ((<DATA-ELEMENT-ALIAS> ((* NIL NIL)) NIL))
NIL)) NIL))
NIL))
NIL))

(DECLARE (SPECIAL <DESIGN-INSTANCE>))
(CREATE-PRODUCTION <DESIGN-INSTANCE>)
(SETQ

<DESIGN~INSTANCE>

' (<DESIGN-INSTANCE> ((DESIGN ((<DESIGN> ((* NIL NIL))
NIL)) NIL)}) NIL))

({DECLARE (SPECIAL <IMPLEMENTATION-INSTANCE>))
(CREATE-PRODUCTION <IMPLEMENTATION-INSTANCE>)
(SETQ
<IMPLEMENTATION-INSTANCE>
' (<IMPLEMENTATION~INSTANCE>
((IMPLEMENTATION ((<IMPLEMENTATION> ((* NIL NIL)) NIL))
NIL)) NIL))

(DECLARE (SPECIAL <MODULE-INSTANCE>))
(CREATE-PRODUCTION <MODULE-INSTANCE>)
(SETQ

<MODULE-INSTANCE>

' (<MODULE~-INSTANCE> ((MODULE ((<MODULE> ((* NIL NIL))
NIL)) NIL)) NIL))

(DECLARE (SPECIAL <PARAMETER-INSTANCE>))
(CREATE-PRODUCTION <PARAMETER-INSTANCE>)
(SETQ <PARAMETER~-INSTANCE>

' (<PARAMETER-INSTANCE>

((PARAMETER ((<PARAMETER> ((* NIL NIL)) NIL)) NIL))
NIL))

= m—

P AR AR RS

(DECLARE (SPECIAL <PARAMETER-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <PARAMETER-ALIAS~-INSTANCE>)
(SETQ <PARAMETER-ALIAS-INSTANCE>

' (<PARAMETER-ALIAS-INSTANCE>

((PARAMETER

((ALIAS ({<PARAMETER-~ALIAS> {((* NIL NIL})) NIL))

NIL)) NIL))

NIL))

(DECLARE (SPECIAL <PROCESS-INSTANCE>))
(CREATE-PRODUCTION <PROCESS-INSTANCE>)
(SETQ <PROCESS-INSTANCE>
' (<PROCESS-INSTANCE>
((PROCESS ((<PROCESS> {((* NIL NIL)) NIL)) NIL)) NIL))

(DECLARE (SPECIAL <PROCESS-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <PROCESS-ALIAS-INSTANCE>)
(SETQ
<PROCESS-ALIAS-INSTANCE>
' (<PROCESS-ALIAS-INSTANCE>
((PROCESS ((ALIAS ((<PROCESS-ALIAS> ((* NIL NIL)) NIL))
NIL)) NIL))
NIL))

(DECLARE (SPECIAL <PROJECT-INSTANCE>))
(CREATE-PRODUCTION <PROJECT-INSTANCE>)
(SETQ
<PROJECT-INSTANCE>
' (<PROJECT~-INSTANCE>
({(*PROJECT* ((* NIL (SEND *NEW-EVENT* :SET-OBJECT
PROJECT))) NIL)
(PROJECT ((<PROJECT> ((* NIL NIL)) NIL)) NIL))
NIL))

(DECLARE (SPECIAL <REQUIREMENTS-~INSTANCE>))
(CREATE-PRODUCTION <REQUIREMENTS-INSTANCE>)
(SETQ <REQUIREMENTS-INSTANCE>

' (<REQUIREMENTS~-INSTANCE>

((REQUIREMENTS ((<REQUIREMENTS> ({(* NIL NIL)) NIL))
NIL)) NIL))

(DECLARE (SPECIAL <VARIABLE-INSTANCE>))
(CREATE-PRODUCTION <VARIABLE-INSTANCE>)
(SETQ <VARIABLE-INSTANCE>

' (<VARIABLE~INSTANCE>

((VARIABLE ((<VARIABLE> ((* NIL NIL)) NIL)) NIL))
NIL))

D-10

. o v
2 FRAVRIERA

—
A

{DECLARE (SPECIAL <ACTIVITY>))
(CREATE-FUNCTION <ACTIVITY>)
(SETQ <ACTIVITY> ' (<KACTIVITY> (LAMBDA (X) NIL)))

”
LNt

(DECLARE (SPECIAL <ACTIVITY-ALIAS>))
(CREATE-FUNCTION <ACTIVITY-ALIAS>)
{SETQ <ACTIVITY-ALIAS> ' (<ACTIVITY-ALIAS> (LAMBDA (X) NIL)))

(DECLARE (SPECIAL <DATA-ELEMENT>)) e
(CREATE-FUNCTION <DATA-ELEMENT>) e
(SETQ <DATA-ELEMENT> ' (<DATA-ELEMENT> (LAMBDA (X) NIL))) N

(DECLARE (SPECIAL <DATA-ELEMENT-ALIAS>))

(CREATE-FUNCTION <DATA-ELEMENT-ALIAS>)

(SETQ <DATA-ELEMENT-ALIAS> ' (<DATA-ELEMENT-ALIAS> (LAMBDA
(X) NIL)))

(DECLARE (SPECIAL <DESIGN>})
(CREATE-FUNCTION <DESIGN>)
(SETQ <DESIGN>
' (<DESIGN>
(LAMBDA (X)
(LET ((INSTANCE (SEND *PROJECT* :IS-DESIGN X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT
INSTANCE)))))))

(DECLARE (SPECIAL <IMPLEMENTATION>))
(CREATE~FUNCTION <IMPLEMENTATION>)
lSETQ <IMPLEMENTATION>

' (<IMPLEMENTATION>
{LAMBDA (X)
(LET ((INSTANCE (SEND *PROJECT* :IS-IMPLEMENTATION
X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT
INSTANCE)))))))

(DECLARE (SPECIAL <MODULE>))
(CREATE-FUNCTION <MODULE>)
(SETQ <MODULE> ' (<MODULE> (LAMBDA (X) NIL)))

1. I‘."...:""‘ v'A'n N .'

f‘l’
et T

PR PN

T T T TTmR—me——

(DECLARE (SPECIAL <PARAMETER>))
(CREATE-FUNCTION <PARAMETER>)
(SETQ
<{PARAMETER>
' (<PARAMETER>
(LAMBDA (X)
(LET ((INSTANCE
{SEND (SEND *PROJECT* :DESIGN-INSTANCE)
: IS-PARAMETER X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT
INSTANCE)))))))

(DECLARE (SPECIAL <PARAMETER-ALIAS>))
(CREATE-FUNCTION <PARAMETER-ALIAS>)
(SETQ
<PARAMETER~ALIAS>
' (<PARAMETER-ALIAS>
(LAMBDA (X)
(LET ((INSTANCE
(SEND
(SEND *PROJECT* :DESIGN-INSTANCE)
: IS-PARAMETER-ALIAS X)))
{(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT
INSTANCE)})))))

(DECLARE (SPECIAL <PROCESS>))
(CREATE~-FUNCTION <PROCESS>)
(SETQ <PROCESS>

' (¢<CPROCESS>

(LAMBDA (X)

(LET ((INSTANCE
(SEND (SEND *PROJECT* :DESIGN-INSTANCE)
: IS-PROCESS X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT

INSTANCE)))))))

(DECLARE (SPECIAL <PROCESS-ALIAS>))
(CREATE-FUNCTION <PROCESS-ALIAS>)
(SETQ
<PROCESS-ALIAS>
' (<PROCESS-ALIAS>
(LAMBDA (X)
(LET
{ (INSTANCE
(SEND (SEND *PROJECT* :DESIGN-INSTANCE)
: IS-PROCESS-ALIAS X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT
INSTANCE)))))))

D-12

AR A ASEA R e bt el ta kot et b el Wl ol tab Gl Rl ad d i b A8 & LYY
'd -

(DECLARE (SPECIAL <PROJECT>))
{CREATE-FUNCTION <PROJECT>)
(SETQ <PROJECT>
' (<PROJECT>
(LAMBDA (X) (COND ((EQUAL X (SEND *PROJECT* :NAME))
(SEND *NEW-EVENT* :SET-OBJECT
PROJECT))))))

(DECLARE (SPECIAL <VARIABLE>))
(CREATE-FUNCTION <VARIABLE>)
(SETQ <VARIABLE> ' (<VARIABLE> (LAMBDA (X) NIL))})

(DECLARE (SPECIAL <ATTRIBUTE-LIST>))
(CREATE-PRODUCTION <ATTRIBUTE-LIST>)
(SETQ <ATTRIBUTE-LIST>
' (<ATTRIBUTE-LIST>
((KATTRIBUTE> ((AND ((<ATTRIBUTE> ((* NIL NIL)) NIL))
NIL)
(<ATTRIBUTE-LIST> ((* NIL NIL)) NIL) (* NIL
NIL))
NIL))

PR W W W W ', % SRl -1_&1;7\;;7—741‘r ™ v Rty

e (DECLARE (SPECIAL <ATTRIBUTE>))
X (CREATE~PRODUCTION <ATTRIBUTE>)
~) (SETQ
) <ATTRIBUTE>
R ' (<ATTRIBUTE>
o ((GLOBAL
e ((DATA

((CHANGED

((* NIL

(SEND *NEW-EVENT* :ADD-ATTRIBUTE
'GLOBAL-DATA-CHANGED)))
NIL)
. (USED
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'GLOBAL-DATA-USED)))
NIL))
NIL))
: NIL)
- (DESTINATIONS
9 ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
8 'PASSED-TO))) NIL)
(SOURCES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE B
' PASSED-FROM))) NIL) SREOT
(SYNONYMS ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE T
' SYNONYM))) NIL) S
(DESTINATION NI
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE AR
'PASSED-TO))) NIL) S
(SOURCE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE by
'PASSED-FROM))) NIL)
& (PASSED N
. ((TO ((* NIL (SEND *NEW-~EVENT* :ADD-ATTRIBUTE S
"PASSED-TO))) NIL) e
(FROM L
) ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE e
'PASSED-FROM))) NIL)) ‘
NIL) T
(OUTPUT
((FLAGS
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'QUTPUT-FLAGS))) NIL) A
(DATA -
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE RN
'OUTPUT-DATA))) NIL))
NIL)

@

D-14

(INPUT
((FLAGS
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
* INPUT-FLAGS))) NIL)
(DATA ((* NIL (SEND *NEW-EVENT* :ADD~ATTRIBUTE
' INPUT-DATA)})) NIL))
NIL)
(ALIASES ((* NIL (SEND *NEW~EVENT* :ADD-ATTRIBUTE
'ALIASES))) NIL)
(GLOBALS
((USED ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'GLOBAL-DATA-USED)))
NIL)
(CHANGED
((* 9IL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'GLOBAL-DATA-~CHANGED)))
NIL))
NIL)
(INVOKING
((PROCESSES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
*CALLING-PROCESSES)))
NIL))
NIL)
(ENTRY
((DATE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'DATE))) NIL)
(VERSION ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'"VERSION))) NIL))
NIL)
(SYNONYM ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
' SYNONYM))) NIL)
(REQUIREMENTS
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
' REQUIREMENTS))) NIL)
(SUBPROCESSES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
' PROCESSES-CALLED))) NIL)
(INVOKED
((PROCESSES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
' PROCESSES-CALLED)))
NIL))
NIL)

D-15

..........
......

(CALLED
((PROCESSES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'PROCESSES-CALLED)))

NIL))

NIL)
(PROCESSES alat

((INVOKED

((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
' PROCESSES-CALLED)))
NIL)
(CALLED R
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE Tata
' PROCESSES-CALLED))) .
NIL) R
(* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'PROCESSES))) o
NIL) J‘,:.
(PROCESS o
((ALIASES LT
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE N
' PROCESS-ALIASES))) N
NIL))
NIL)
(PARAMETERS SO
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE N
'PARAMETERS))) NIL) ———
(PARAMETER SO
((ALIASES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE T
' PARAMETER-ALIASES))) s
NIL)) PO
NIL) ®T
((PROGRAM :‘_._\:.
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE ARG
"MAIN-PROGRAM))) NIL) -
(PROGRAMS '
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE —
'MAIN-PROGRAM))) NIL) -
(PROCESS
{((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'MAIN-PROGRAM))) NIL) o
(PROCESSES T
((* NIL (SEND *NEW-EVENT* :ADD~ATTRIBUTE ~—
'MAIN-PROGRAM))) NIL)) AR
NIL)
(IMPLEMENTATION
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
' IMPLEMENTATION))) NIL)

D-16 i

...................................
..

.............

(DESIGN ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'DESIGN))) NIL)
(DD ((TYPE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'DD-TYPE)})) NIL))
NIL)
(CALLING
((PROCESSES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'CALLING-PROCESSES)))
NIL))
NIL)
(VERSION ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'VERSION))) NIL)
(TYPE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'TYPE)))
NIL)
(PROJECT
((NAME ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'PROJECT))) NIL)
(* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'PROJECT)))
NIL)
(NAME ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'NAME)))
NIL)
(DATE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'DATE)))
NIL))
NIL))

{DECLARE (SPECIAL <LITERAL>))
(CREATE-FUNCTION <LITERAL>)
(SETQ <LITERAL> ' (<KLITERAL> (LAMBDA (X) NIL)))

(DECLARE (SPECIAL <SAVE>))
(CREATE-PRODUCTION <SAVE>)
(SETQ <SAVE> ' (<SAVE> ((STORE ((* NIL NIL)) NIL) (REEP ((*
NIL NIL)) NIL)
(SAVE ((* NIL NIL)) NIL))
(SEND *PROJECT* :SAVE)))

D-17

PP ot o P00l o Sus 4]
. .

Appendix E

DDT Object Definitions

‘e . EY - - - - - - « . - - "
. s
Aachicada o dy

FOPE W PE T

. e A e T PO TS
20 AA‘.._‘_I_!LLL"‘L‘F‘_‘. o g

. v
.

A

Qo Appendix E
Table of Contents

r_wg-
A .‘:‘-{'\
- \ 5
t:. . ‘..:~:." ?
"~ . A
= Page RN
Y. NS
L N .*%’ "'4

\ IntrOdUCtiOD . . ¢ & o 8 & o ® s e & s & e e s o o o E- 3 (W A»

DDT Object HierarChy Charts . e o & 4 e 8 e s & o ¢ o E- 4

DDT Object Definitions . « « ¢« ¢« ¢ ¢« ¢ ¢ &+ o « o« o« o« E= 8

R S A SR
S oat h S R

DI A Al BULSM e o gnd n

"
)
P
’
-
i Introduction

- This appendix defines the object-oriented structure of

. the Data Dictionary Tool (DDT). The first part of this
. definition shows the hierarchy of DDT's object classes. The
- second part defines the structure of each object class in

terms of its included subclasses, its instance variables,

. and its associated access methods.

"' l"'-_'... ‘," R

v
h

P
' e
. .l - L

NOILYL
=N 343Nl N91S3d SANIUININON

/
\
\\

4
\

103r08d 3

Py

Y
S
.
)

»ie
-

i
Y
Lttt
S
£, LA
Ll e
'
.
:

:

)

.

*

P

,

.

f

.

.

7]

-

3

4

s

-

_v»

»

.

B

.

3

-

A

P .

A

3

.

»

o«

»

b

SYIY

SYllY
-1N3U3T3-Viva

(¥313UvaEYd)
INFWITI-v1v]

n"ol‘
-
Sea.
~——
-~

J
S

S

o T
""‘
e,

-,

.
",
-,

cl"’

/’

SVIY
=ALINILDY

ALINILOY

-,
- -, rd
"'J -

SININIYINO3IN

E-5

A

g s St 4

B e G e B

3

o

SYI Y SUllv
=55300d4d £5$3204d =434 3uYdbd ¥313uvdvd
llnl " td
".l""" lll/ \\\\
'll.l"" IIII
"""‘”’/I
,"””" \\ \\
ND1530

t o

'’
- . - . U N -l

E-6

(N¥3L3UYAYd)
318YI¥YN

N #

(553008d)
31Nqou

HOlLYL
~N3u3duI

E-T

N

..».. ..«] N A
. aa. .;; - 4 a .»;:LL.»V.I

PRRANNY L

AR A A S R A RS b S kel St i S S b Sab))
S b
o

R)

Object Class: ACTIVITY

Subclasses

HEADER

ENTRY

Instance Vvariables

NUMRER Node number of activity

DESCRIPTION Textual description of activity

INPUTS Assoc-list of input parameter
names and numbers

OUTPUTS Assoc-list of output parameter
names and numbers

CONTROLS Assoc-list of control parameter
names and numbers

MECHANISMS Assoc-list of mechanism parameter
and numbers

ALIASES List of activity alias names

PARENT-ACTIVITY Name of parent activity

RELATED-ITEMS Paragraph number of textual

requirements statement

................................ -.-_.'.‘.'-‘~.'.-.‘.~.’.".'..'.'.'.-.A'-'.'.~V".
P A S B L e AP A S R TS S
AN L . . A e s T A Tt e Nt L, . -
W R PN I T N A YR A A ettt Al A A A

~ bl Yol bl
LR AT Wl ool ioliad ' A" SdE ARCALE GURIECE N IR e A SR A AL 3 A & e g

»
AN
p Object Class: ACTIVITY-ALIAS

o Subclasses
ALIAS

o Instance Variables
WHERE-USED List of SADT activity numbers

- -
w e,
St e

) it
: Ly
. A
. * >l“"'

S
=" R
- S
~a e

.-

» .-' >
.-‘._ e
" " n‘
Li._:’.
(S
& l.' »
-

. -
L

.

P BSOS

K1 BRI

Object Class: ALIAS
Subclasses "{f‘f{\-
~ HEADER AN
S ENTRY N
5 PR
. Instance Variables LAY,
i DD-TYPE Data dictionary type o v
o ("ACTIVITY", "DATA ELEMENT", "_.“-.,‘_-,.
- "PARAMETER", "PROCESS") Rt
- SYNONYM Name of a defined module or -:.‘-,L:-j.
b parameter AR
. :";1"..
' Methods T
dd-type Returns the value of DD-TYPE ~

set-dd-type (VAL) Sets the value of DD-TYPE to VAL T
- synonym Returns the value of SYNONYM
"' set-synonym (VAL) Sets the value of SYNONYM to VAL Wl
E e
g (o
b

ry =

v

S A A ST e IR S o T T T e e e e T T e e e T e e e e N e e T e e e e R M
T e YRR RN AR L e T e B T A R L A S T S N S

Object Class: ASSOC

Subclasses
none

Instance Variable

VALUE

Methods
P ———.
initialize

present

value
set-value (VAL)

Initializes all of ASSOC's
instance variables
Displays an ASSOC instance

Returns the value of VALUE
Sets VALUE to VAL

E-11

L 4
.
o
»

ST

. I

o o L
s S

j
4
P

-
{3l]
AR
rs :
-

57
T
'y 4y !
. " "l, '.

T —_ - — o e S e oo aa e — ey
’ S R T T T T T

Object Class: ATOM

Subclasses
none

Instance Variables

VALUE

Methods
initialize

present

value
set-value (VAL)

N

Initializes all of ATOM's
instance variables
Displays an ATOM instance

Returns the value of VALUE
Sets VALUE to VAL

E-12

Object Class: DATA-ELEMENT

Subclasses
PARAMETER

Instance Variables
none

o e e

E-13

AT L L PR S Tl VAR SN N
PRSPPI, VO, R . L PP SPL I . I S

») (Y r 3, # 7
B - Ealat “ A, w - - Ly €% Lo Flaatl aie L o) A TR 8 v - TR rLav
K L e
.I. ..\~.~!
- »"a®a
&) Co W, w'y
A R
. a

2
X

'n;’;):
s

4
""F 'I
e
L

Object Class: DATA-ELEMENT-ALIAS

[y

Y Subclasses
ALIAS

,-n
4 éﬂ
b B

‘l
e
-,

Woe
%
o

Instance Variables
: WHERE-USED List of SADT activity numbers

.
.

-

N

.

~

I

. e
8 NESR
-t FCTRA N
c. Ve
.. s
~ .t
-~ >ra
— —

Object class: DATE

Subclasses
none

Instance Variables

VALUE

Methods
initialize
present

value
set-value (VAL)
day

month

year

''''''''' ". '- "- .'- '.1 . -ﬂ.. '-'I‘,

B AT I . . % A
P WA PP IEIT IR PE PR PR PP PP

Initializes all of DATE's
instance variables
Displays a DATE instance

Returns the value of VALUE
Sets VALUE to VAL

Returns the value of the DAY
subfield of VALUE

Returns the value of the MONTH
subfield of VALUE

Returns the value of the YEAR
subfield of VALUE

. .. -

SN
A

\.~

4
M)

E-15

R
~l

.
.
L

(o

~

ALY

Object Class: DESIGN

Subclasses
HEADER
ENTRY

Instance variables
MAIN-PROGRAM
PROCESSES

PROCESS~-ALIASES
PARAMETERS

PARAMETER-ALIASES

Methods

Ccreate
initialize

present (ATTRIBUTE-
LIST)

reinitialize (DUMMY)

save (PROJECT,
STREAM)

initialize~date

initialize-main-
program

main-program

set-main-program
(VAL)

initialize-name

Name of main program

Assoc-list of module names and
pointers to module instances
Assoc-list of process alias names
and pointers to alias instances
Assoc-list of parameter names and
pointers to parameter instances
Assoc-list of parameter alias
names and pointers to alias
instances

Creates a DESIGN instance
Initializes all of DESIGN's
instance variables

Displays the instance variables
listed in ATTRIBUTE-LIST of a
DESIGN instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables
Initializes all of DESIGN's
instance variables except NAME,
TYPE, and PROJECT

Saves a DESIGN instance and all
of its sub-instances to STREAM

Initializes DATE
Initializes MAIN-PROGRAM
Returns the value of MAIN-PROGRAM

Sets the value of MAIN-PROGRAM to
VAL

Initializes NAME

E-16

Ccreate-parameter-
alias

initialize-~parameter-
aliases
parameter-aliases

| OOy < SRR SR

parameter-alias-
instance-~list

set-parameter-aliases
(VAL)

is-parameter-alias
(VAL)

Create-parameter

initialize~-parameters

parameters

parameter-instance-
list

set-parameters (VAL)

is-parameter (VAL)

Creates a PARAMETER~ALIAS
instance and adds it to the list
of PARAMETER-ALIASES

Initializes PARAMETER-ALIASES
Returns the value of
PARAMETER-ALIASES

Returns a list of pointers to the
PARAMETER-ALIASes of a DESIGN

Sets the value of
PARAMETER~-ALIASES to VAL

Returns a pointer to the
appropriate instance if VAL is a
PARAMETER-ALIAS, otherwise
returns NIL

Creates a PARAMETER instance and
adds it to the list of PARAMETERS
Initializes PARAMETERS

Returns the value of PARAMETERS

Returns a list of pointers to the
PARAMETERs of a DESIGN

Sets the value of PARAMETERS to
VAL .

Returns a pointer to the
appropriate instance if VAL is a
PARAMETER, otherwise returns NIL

E-17

.........................
..........

s N
W v v

Y W W T N T T T R}

Y T,

i

P il IR R R
\ .‘.n-" .

Create-process-alias Creates a PROCESS-ALIAS instance
and adds it to the list of
PROCESS-ALIASES
initialize-process~-

aliases Initializes PROCESS-ALIASES
process~aliases Returns the value of
PROCESS-~ALIASES

process—~alias-
instance-list Returns a list of pointers to the

PROCESS ALIASes of a DESIGN ey
set-process-aliases R
(VAL) Sets the value of PROCESS-ALIASES -
to VAL
is~-process-alias .
(VAL) Returns a pointer to the e
appropriate instance if VAL is a e
PROCESS-ALIAS, otherwise returns Ry
NIL LT
Create-process Creates a PROCESS instance and ~ S
adds it to the list of PROCESSES i!ﬁ:
initialize-processes Initializes PROCESSES ot
processes Returns the value of PROCESSES
process-instance-list Returns a list of pointers to the
(S‘ PROCESSes of a DESIGN
set-processes (VAL) Sets the value of PROCESSES to -
VAL
is-process (VAL) Returns a pointer to the

appropriate instance if VAL is a
PROCESS, otherwise returns NIL

initialize~-project Initializes PROJECT T
initializ -type Initializes TYPE
initialize-version Initializes VERSION
SRS
E-18

v m T — w e -,

-
-

]

S -

A N

Object Class: ENTRY

Subclasses
none

Instance Variables
VERSION
DATE

Methods
date

version
increment~version

P T e e P S
LRSS ARG N Wl WA W Al O W U I B 1 Y

Version number of entry

Date of entry

Returns the value of DATE
Returns the value of VERSION

Increments the value of VERSION
by 1

E-19

| FAFLPAVRFALIS LRI

R AR

Object Class: HEADER

Subclasses
none

Instance Variables
NAME
TYPE

PROJECT
Methods

name

set-name (VAL)
project

type

.............
............

Name of instance

Type of instance
("ACTIVITY", "ALIAS", "DATA
ELEMENT", "DESIGN",

" IMPLEMENTATION", "MODULE",
"PARAMETER", "PROCESS",
"REQUIREMENTS", "VARIABLE")
Name of project

Returns the value of NAME
Sets the value of NAME to VAL
Returns the value of PROJECT

Returns the value of TYPE

E-20

..................
......

Object Class: IMPLEMENTATION
Subclasses
HEADER
ENTRY

Instance Variables

MAIN-PROGRAM Name of main program

MODULES Assoc-list of module names and
pointers to module instances

VARIABLES Assoc-list of variable names and

pointers to variable instances

Methods .

Create Creates an IMPLEMENTATION
instance

initialize Initializes all of
IMPLEMENTATION's instance
variables

present (ATTRIBUTE-
LIST) Displays the instance variables

listed in ATTRIBUTE-LIST of an
IMPLEMENTATION instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of
IMPLEMENTATION's instance
variables except NAME, TYPE, and

y]
O

£ rery o r
1 4",

PROJECT y
save (PROJECT, -
STREAM) Saves an IMPLEMENTATION instance . 9
and all of its sub-instances to o
STREAM :
E-21

e Ly

S PR .
insomtertmmitiatlndialokelea sl o’

L e Jugsae 4 e e taas B ate A i s A e minve et dfar ao et o itee

Object Class: LIST

Subclasses

none

Instance Variables

VALUE

Methods

initialize Initializes all of LIST's
instance variables

present Displays a LIST instance

value Returns the value of VALUE

set-value (VAL) Sets VALUE to VAL

(o

E-22

T
P AP R P R R D W v P N P)

S R A R T T N R T e o P S P T R oo

Object Class: MODULE

Subclasses
PROCESS

Instance Variables
none

E-23

et T T T T e s T R . SO e e
- - - - - - - . - - i . - - - v . . - e T, - - - . - " . Y. At - *
a LA W R RS ST R SR S A AL R PP Ry PR GRT R PRI R P AT P VT VI

K
J
3

K A

S

Y

¢« 1 v u

|

t
a

*

Y

N

!

o

.

i | KTR TN w A vy . WOV
DARANAS A A S A A A S

B o e e ooy w . - - b hee 2
B M N NIC A - “,-'.-'_Z‘,I‘,.“_.‘ et SO A A T A T A St e e

Object Class: PARAMETER

Subclasses
HEADER
ENTRY

Instance Variables

DESCRIPTION Textual description of
parameter/variable/data element

DATA-TYPE Data type of
parameter/variable/data element

MIN-VALUE Minimum value of
parameter/variable/data element
(if applicable)

MAX-VALUE Maximum value of
parameter/variable/data element
(if applicable)

RANGE Range of parameter/variable/data
element (if applicable)

VALUES List of legal values of

STORAGE-TYPE

PART-OF

COMPOSITION

ALIASES

PASSED-FROM

PASSED-TO

RELATED-ITEMS

to

Bt b a2l o a2

parameter/variable/data element
(if applicable)

Storage type of
parameter/variable/data element
("FILE", "GLOBAL", "HARDWARE",
"1/0", or "PASSED")

Name of parent
parameter/variable/data element
(if applicable)

List of
sub-parameter/variable/data
element names (if applicable)
List of parameter/variable/data
element alias names (if any)
List of process/module/activity
names passed from

List of process/module/activity
names passed to

List of related
SADT~-data-item/parameter/require-
ment names/numbers

PRl R R Aty Sty At

(AR AL A

R A

Methods
create
initialize

present (ATTRIBUTE-
LIST)

reinitialize (DUMMY)
save (DESIGN, STREAM)

initialize—-aliases
aliases
set-aliases (VAL)

initialize-
composition

composition

set-composition (VAL)

initialize-data-type
data-type
set-data-type (VAL)

initialize-date

initialize-
description

description

set-description (VAL)

G TR s,

......................

Creates a PARAMETER instance
Initializes all of PARAMETER'Ss
instance variables

Displays the instance variables
listed in ATTRIBUTE-LIST of a
PARAMETER instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables
Initializes all of PARAMETER's
instance variables except NAME,
TYPE, and PROJECT

Saves a PARAMETER instance to
STREAM

Initializes ALIASES
Returns the value of ALIASES
Sets the value of ALIASES to VAL

Initializes COMPOSITION

Returns the value of COMPOSITION
Sets the value of COMPOSITION to
VAL

Initializes DATA-TYPE

Returns the value of DATA-TYPE
Sets the value of DATA-TYPE to
VAL

Initializes DATE
Initializes DESCRIPTION

Returns the value of DESCRIPTION
Sets the value of DESCRIPTION to

VAL

Initializes MAX-VALUE
: max-value Returns the value of MAX-VALUE
o set-max-value (VAL) Sets the value of MAX-VALUE to
® VAL

initialize-max-value

Initializes MIN-VALUE
Returns the value of MIN-VALUE
Sets the value of MIN-VALUE to

L initialize-min-value
- min-value
{C set-min-value (VAL)

.t VAL

o

T

’ ..‘

;.

Vv

.o

- E-25

O

o

=S

i o S N S I PR W
R N N S Lot ettt hontrdlotininatiobeibittndinativiodhuintiint ot o POV T VA P L ek dedadababaode Rodho's haaad

initialize-name Initializes NAME

initialize-part-of Initializes PART~OF
part-of Returns the value of PART-OF
set-part~-of (VAL) Sets the value of PART-OF to VAL

initialize-passed-

from Initializes PASSED-FROM
passed-from Returns the value of PASSED-FROM
set~passed-from (VAL) Sets the value of PASSED-FROM to
VAL

initialize-passed-to Initializes PASSED-TO

passed-to Returns the value of PASSED-To

set-passed-to (VAL) Sets the value of PASSED-TO to
VAL

initialize-project Initializes PROJECT

initialize-range Initializes RANGE
range Returns the value of RANGE
set-range (VAL) Sets the value of RANGE to VAL

initialize~related-
items Initializes RELATED~-ITEMS
related-items Returns the value of

RELATED-ITEMS
set-related-items
(VAL) Sets the value of RELATED-ITEMS
to VAL

initialize~storage-

type Initializes STORAGE-TYPE
storage-type Returns the value of STORAGE-TYPE
set-storage-type
(VAL) Sets the value of STORAGE~TYPE to
VAL

initialize-type Initializes TYPE

initialize-values Initializes VALUES
values Returns the value of VALUES
set-values (VAL) Sets the value of VALUES to VAL

initialize-version Initializes VERSION

....................................
PR PR

-0, T T ta et ST L L A e P P P R A A R S
L JPRL PN WL WK R WD, T . W, WP PR W P R P SR A W W A‘..:..'..- PP WO WP WY WAV PP PSP P IO, A WINPT S TS VI

dba, e Aot

...... it Bt as Aaf Ao LSS B S8 ot el Tt daoh N FTRT YWY

Object Class: PARAMETER—~ALIAS
Subclasses
ALTIAS
Instance Variables
PASSED-FROM List of process names parameter
is passed from
PASSED-TO List of process names parameter

is passed to

Methods

create Creates a PARAMETER-ALIAS
instance

initialize Initializes all of
PARAMETER-ALIAS' instance
variables

present (ATTRIBUTE-
LIST) Displays the instance variables

listed in ATTRIBUTE-LIST of a
PARAMETER-ALIAS instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of
PARAMETER-ALIAS' instance
variables except NAME, TYPE,
PROJECT, and DD-TYPE

save (DESIGN, STREAM) Saves a PARAMETER~ALIAS instance

to STREAM
initialize-date Initializes DATE
initialize-dd-type Initializes DD-TYPE
initialize-name Initializes NAME
initialize-passed-
from Initializes PASSED-FROM
passed~from Returns the value of PASSED-FROM
set-passed-from (VAL) Sets the value of PASSED-FROM to
VAL
initialize-passed~to Initializes PASSED-TO
passed-~to Returns the value of PASSED-TO
set-passed-to (VAL) Sets the values of PASSED~-TO to
VAL

initialize-project Initializes PROJECT

..r_v_._\:—r‘z'.f_,'_'. Ly

N e e

initialize-synonym Initializes SYNONYM

initialize-type Initializes TYPE

initialize-version Initializes VERSION
E-28

. .._'.:“_.._. RO

DIPTSR Py . P

Object Class: PROCESS

Subclasses
HEADER
ENTRY

Instance Variables
NUMBER
DESCRIPTION

INPUT-DATA
INPUT-FLAG
OUTPUT-DATA
OUTPUT-FLAGS
GLOBAL-DATA-USED
GLOBAL-DATA-CHANGED
FILES~READ
FILES-WRITTEN
HARDWARE-INPUT
HARDWARE-OUTPUT
ALIASES
CALLING-PROCESSES
PROCESSES-CALLED

RELATED-I1ITEMS

Number of process/module
Textual description of
process/module

List of input data
parameter/variable names
List of input flag
parameter/variables names
List of output data
parameter/variable names
List of output flag
parameter/variables names
List of globals used

List of globals changed
List of filenames of files read
List of filenames of files
written

List of process/module alias
names

List of calling process/module
names

List of processes/modules called
names

List of related
SADT-activity-names/process-names

Methods
create
initialize

present (ATTRIBUTE-
LIST)

reinitialize (DUMMY)

save (DESIGN, STREAM)

initialize-aliases
aliases
set-aliases (VAL)

initialize-calling-
processes
calling-processes

set-calling-processes
(VAL)

, add-calling-processes
(LIST)

delete-calling-
processes (LIST)

initialize-~date

initialize-description
description
set-description (VAL)

T et v et um et sy - e L T T A
..‘:.f. e P LR ASAT AR A S Al e
PAFRT LRy PSS 4“.‘_-.‘"

.
YR » ‘}ALA'..!:I) A_."L__ Oy

Podinte Bate Bk e loe 2

Creates a PROCESS instance
Initializes all of PROCESS'
instance variables

Displays the instance variables
listed in ATTRIBUTE~LIST of a
PROCESS instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables
Initializes all of PROCESS'
instance variables except NAME,
TYPE, and PROJECT

Saves a PROCESS instance to
STREAM

Initializes ALIASES
Returns the value of ALIASES
Sets the value of ALIASES to VAL

Initializes CALLING-PROCESSES
Returns the value of
CALLING~PROCESSES

Sets the value of
CALLING~PROCESSES to VAL

For each process name in LIST:
Adds to CALLING-PROCESSES; 1If
necessary, Creates PROCESS
instance; Adds NAME to
PROCESSES~CALLED slot

For each process name in LIST:
Deletes from CALLING-PROCESSES;
Deletes NAME from
PROCESSES-CALLED slot

Initializes DATE
Initializes DESCRIPTION

Returns the value of DESCRIPTION

Sets the value of DESCRIPTION to
VAL

E-30

..........

b A Rt e Baiche e e R

.- - me

o B

v
256 a7a"8" s
LIS Dy 0

L 4
A
»
.
v

-

:

O

'

AR e

initialize-files-read
files-~-read
set-files-read (VAL)

initialize-files-
written
files~written

set-files-written
(VAL)

initialize-globals-
changed
globals-changed

set-globals-changed
(VAL)

initialize-globals-
used
globals~used

set-globals-used (VAL)

initialize-hardware-
input
hardware-input

set-hardware-input
(VAL)

initialize-~hardware-
output
hardware-output

set-hardware-output
(VAL)

initialize-input~-data
input-data
set~input~-data (VAL)

Initializes FILES-READ
Returns the value of FILES-READ
Sets the value of FILES-READ to

VAL

Initializes FILES-WRITTEN
Returns the value of
FILES-WRITTEN

Sets the value of FILES-WRITTEN
to VAL

Initializes GLOBAL-DATA-CHANGED
Returns the value of
GLOBAL-~DATA-CHANGED

Sets the value of
GLOBAL~-DATA-CHANGED to VAL

Initializes GLOBAL-DATA-USED
Returns the value of
GLOBAL~DATA-USED

Sets the value of
GLOBAL~DATA-USED to VAL

Initializes HARDWARE-INPUT
Returns the value of
HARDWARE~INPUT

Sets the value of HARDWARE-INPUT
to VAL

Initializes HARDWARE-QUTPUT
Returns the value of
HARDWARE~QUTPUT

Sets the value of HARDWARE-QUTPUT
to VAL

Initializes INPUT-DATA

Returns the value of INPUT-DATA
Sets the value of INPUT-DATA to
VAL

E-31

Ty

RARK Saf Ang

B AR

initialize-input-£flags
input-£flags
set-input~-flags (VAL)

initialize-name

initialize-number
nunber
set-number (VAL)

initialize-output-
data

output-data

set-output-data (VAL)

initialize-output-
flags

output-£flags

set-output-£flags (VAL)

initialize-processes-
called
processes-called

set-processes~called
{VAL)

add-processes-~called
(LIST)

delete-processes-
called (LIST)

initialize-project

‘‘‘‘‘‘‘‘

TP WL W, NP DA o PR

Initializes INPUT-FLAGS

Returns the value of INPUT-FLAGS
Sets the value of INPUT-FLAGS to
VAL

Initializes NAME

Initializes NUMBER
Returns the value of NUMBER
Sets the value of NUMBER to VAL

Initializes OUTPUT-DATA

Returns the value of OUTPUT-DATA
Sets the value of OQUTPUT-DATA to
VAL

Initializes OUTPUT-FLAGS

Returns the value of OUTPUT-FLAGS
Sets the value of OUTPUT-FLAGS to
VAL

Initializes PROCESSES-CALLED
Returns the value of
PROCESSES~CALLED

Sets the value of
PROCESSES-CALLED to VAL

For each process name in LIST:
Adds to PROCESSES-CALLED; If
necessary, Creates PROCESS
instance; Adds NAME to
CALLING-PROCESSES slot

For each process name in LIST:
Deletes from PROCESSES-CALLED;
Deletes NAME from
CALLING-PROCESSES slot

Initializes PROJECT

E-32

L S ™ Ly s,

T RN s

.’.-“') s e

TN Lt
ST et e
L « e .

SO gt
P .
e ' e e

A A

T
-®
.,
a®
AN,
LA

initialize-related-
items
related-items

set-related-items
(VAL)

initialize-type

initialize~version

PAalAS A gttt i i A A St s Aol Tt adh ‘Sl ok Bad A Ca B SR A A A

Initializes RELATED-ITEMS
Returns the value of
RELATED-ITEMS

Sets the value of RELATED-ITEMS
to VAL

Initializes TYPE

Initializes VERSION

E-33

Object Class:

Subclasses
ALIAS

Instance Variables
none

Methods
create
initialize

present (ATTRIBUTE-
LIST)

k reinitialize (DUMMY)

save (DESIGN, STREAM)

initialize-date
initialize-dd-type
initialize-name
initialize-project
initialize-synonyn
initialize-type

initialize~-version

L T e e e e e e

PROCESS~ALIAS

Creates a PROCESS-ALIAS instance
Initializes all of PROCESS-~ALIAS'
instance variables

Displays the instance variables
listed in ATTRIBUTE-LIST of a
PROCESS-~ALIAS instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables
Initializes all of PROCESS-ALIAS'
instance variables except NAME,
TYPE, PROJECT, and DD-TYPE

Saves a PROCESS-ALIAS instance to
STREAM

Initializes DATE
Initializes DD-TYPE

Initializes NAME

Initializes PROJECT
Initializes SYNONYM
Initializes TYPE

Initializes VERSION

E-34

.................

IORARS

L

A A

e
.
L
-

T

Object Class: PROJECT

Subclasses
ENTRY

Instance Variables
NAME
REQUIREMENTS

DESIGN

IMPLEMENTATION

Methods

create
initialize

reinitialize (DUMMY)

present (ATTRIBUTE-
LIST)

save

create-design (NAME)

initialize-design
design
design-instance

set-design (VAL)
is~-design (VAL)

Name of project

Assoc-list of requirements names
and pointers to requirements
instance (s)

Assoc-list of design names and
pointers to design instance(s)
Assoc-list of implementation
names and pointers to
implementation instance(s)

Creates a PROJECT instance
Initializes all of PROJECT's
instance variables

Initializes all of PROJECT's
instance variables except NAME

Displays the instance variables
listed in ATTRIBUTE-LIST of a
PROJECT instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

Saves a PROJECT instance and all
of its sub~-instances to STREAM

Creates a DESIGN instance whose
name is NAME and adds it to
DESIGN

Initializes DESIGN

Returns the value of DESIGN
Returns a pointer to the DESIGN
instance

Sets the value of DESIGN to VAL
Returns a pointer to the
appropriate instance if VAL is a
DESIGN, otherwise returns NIL

WD

PN A A AE A At it Rl Sl e el Waiutel St sk, e Al i d ta b Sl A tel Sl el el Aad A bk ad wq el tef Aed e Ant \nh ol Sne Rl ted td bR

create~implementation
({NAME)

initialize~
implementation
implementation

implementation-
instance

set-implementation
(VAL)

is-implementation
(VAL)

initialize-name
name
set-name (VAL)

create~requirements
(NAME)

initialize-
requirements

requirements

requirements-instance

set~-requirements
(vaL)

is-requirements
(VAL)

Creates an IMPLEMENTATION
instance whose name is NAME and
adds it to IMPLEMENTATION

Initializes IMPLEMENTATION
Returns the value of
IMPLEMENTATION

Returns a pointer to the
IMPLEMENTATION instance

Sets the value of IMPLEMENTATION
to VAL

Returns a pointer to the
appropriate instance if VAL is an
IMPLEMENTATION, otherwise returns
NIL

Initializes NAME
Returns the value of NAME
Sets the value of NAME to VAL

Creates a REQUIREMENTS instance
whose name is NAME and adds it to
REQUIREMENTS

Initializes REQUIREMENTS

Returns the value of REQUIREMENTS
Returns a pointer to the
REQUIREMENTS instance

Sets the value of REQUIREMENTS to
VAL

Returns a pointer to the
appropriate instance if VAL is an
REQUIREMENTS, otherwise returns
NIL

E~36

Object Class:

1.“’

-~

Subclasses
HEADER
ENTRY

Instance Variables
TOP-LEVEL-ACTIVITY

ACTIVITIES

DATA-ELEMENTS

ALTIASES

Methods
create
initialize

present (ATTRIBUTE-

LIST)

reinitialize (DUMMY)

save (PROJECT,
STREAM)

REQU IREMENTS

Name of the highest level
activity

Assoc-list of activity names and
peinters to activity instances
Assoc-list of data element names
and pointers to data element
instances

Assoc-~list of alias names and
pointers to alias instances

Creates a REQUIREMENTS instance
Initializes all of REQUIREMENTS'
instance variables

Displays the instance variables
listed in ATTRIBUTE-LIST of a
REQUIREMENTS instance; if
ATTRIBUTE~LIST is empty, displays
all instance variables
Initializes all of REQUIREMENTS'
instance variables except NAME,
TYPE, and PROJECT

Saves a REQUIREMENTS instance and
all of its sub-instances to
STREAM

- . - w -

LIPS O I P Ry R

.- AD-R164 026

A_NATURAL LANGUAGE PROCESSOR AND ITS ﬁPPLICﬂTIOﬂ TO A 4“4
DATA DICTIONARY SVSTEH(U) RIR FORCE INST OF TECH
NRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. H HOLFE
UNCLASSIFIED DEC 83 HFITIGCS/ENGIBSD 19

1.6
==

S EEE

o O on - EE]
& EEFREYPR

'm'(b

|.4
eott—
—
—
 —
 —

SATAMAL BIRCAI OF CTANDARDS. 1963 A

MICROCOPY RESOLUTION TEST CHART

ofll —m w
——— — 2
.
—— n—— —
— — —_
-0
O ¥ -1. ‘% X R p vt .;. ... Jen ..s-v-q.-ﬁ. Yot "y-.!-. -.- .¢<..¢- .ﬂn SRR o NN AN [ate . ..: -- a\.A ¢ ,... ° ..., ”, VIR

\.

R A

~ .

': -‘,‘):: .

N s.\i\.

e o AN
- ":-.“ D ‘.\},‘-:

RS

Object Class: SLOT

- Subclasses }E?E
- none e
o N
- Instance Variables ;:-_'.::;.
VALUE Pointer to low-level value alng
. instance
y REQUIRED Boolean - "YES" if entry required
) "NO" otherwise
: SET Boolean - "YES" if value has been
b " set
"NO" otherwise
PRESENT-LABEL Label to be displayed for present
: operation
> Methods
- create Creates a SLOT instance
‘ initialize Initializes all of SLOT's
- instance variables rowgp
- present Displays a SLOT instance e
- R e
present-label Returns the value of L
.. PRESENT-LABEL R O
s (o set-present-label wn th
B (VAL) Sets the value of PRESENT-LABEL
to VAL
3 required Returns the value of REQUIRED
- set-required (VAL) Sets the value of REQUIRED to VAL
set Returns the value of SET =
set-set (VAL) Sets the value of SET to VAL e
- value Returns the value of VALUE
. set-value (VAL) Sets the value of VALUE to VAL :
o
. ::;‘::::f
i
Lo
g o
g E-38 N
- N

Object Class: TEXT

Subclasses
none

Instance Variables

VALUE
Methods
initialize

present
value
set-value (VAL)

Initializes all of TEXT's
instance variables

Displays a TEXT instance
Returns the value of VALUE
Sets the value of VALUE to VAL

E-39

Creee,
7, ~ 5{9
s_.fi)

N

LA

)

,' 1 -
O IRCRLALR

Object Class: VARIABLE)

S
Subclasses P

I \.5
Prnsuostoeii sl R CNLY
PARAMETER .:. },:::

Instance Variables '?ﬂa
none g

v
DERARTA TN
e
E-40
. LR NPT M D R A
PLPEIRC N AL PR AR VICRE AT WAL VAL VR WP I v WA WP

- Appendix F

. Interface Object Definition

>

Lo . N
. . -

) ‘.
~ «
- X

~ . “~
<, R
N

Ll . !

Appendix F
Table of Contents

InttOduction o & e & 6 & & e e & o & & o o s e+ *o s o F- 3

e SRR, R I A R R

Interface Object Definitions . . « ¢+ ¢ ¢« ¢ & ¢ o« ¢« « F= 4

s,
(Y

N
%

(S

@7

0
- -~
‘™ L .
* e « V. S
' e .
G B .
[N ~
"'- .
- - Py
(3 W
B
. o
F-2 :
ber
“t e
m

[AR

..

Bl S

e ww T 0,

.

Introduction

This appendix defines the object-oriented structure of
the Data Dictionary System's (DDS) natural language
front-end to Data Dictionary Tool (DDT) Interface. The
Interface's EVENT object class is specified in terms of its
included subclasses, its instance variables, and its

associated access methods.

.

.
.
.
,
1
)

.
b AN
o)

Object Class:

EVENT

Subclasses
none

Instance Variables
ACTION
ACTION-TYPE

OBJECT

ATTRIBUTES

Methods
execute
initialize

present
initialize-action
initialize-action-type

initialize-attributes

add-attribute (LIST)

initialize-object

Action to perform

Type of action - either NIL if
an action upon a data
dictionary object of META if
not

pata dictionary object on
which to perform the action
specified by ACTION

A list of instance variables
of OBJECT on which to perform
the action specified by ACTION

Interprets an EVENT instance
Initializes all of EVENT's
instance variables

Displays all of EVENT's
instance variables

Initializes ACTION

Initializes ACTION-TYPE
Initializes ATTRIBUTES

For each attribute in LIST:
Verifies not already a member
of ATTRIBUTES; If not, adds to
ATTRIBUTES

Initializes OBJECT

Pl i A e B S Sia b o o i

Appendix G

Test Plan

i

I N N

- - - .’ " . .. fe e .l' .
PP I M I IENEAENA

Appendix G
Table of Contents

Introduction
System-Level Tests
Grammar Constructor Tests . .
Sentence Interpreter Tests .
Data Dictionary Access Tests

Grammar Tests « . « « « « o« &
Data Dictionary Content Tests
SDW Interface Tests

Conclusion . ¢« ¢« ¢ ¢ o ¢ o

"]

. e

S A N N 1t LA N i) e 8o Sha i Mk S S N i Sade S S St

Y
LIRS

. . . e o . . . G-lo
. G-ll
. o e e o . e o G-ll

e e o e o o e o G-lz

T [,

»
Pl

.
.

~
!

-
ke
-

~
i

Introduction

This appendix specifies the test plan to be used in
formally testing the DDS data dictionary system including
the CoIn natural language processor. This plan consists of
a series of functional tests which specify what is being
tested, how the test should be performed (at a high level),
and what the results of the test should be. This test plan
is organized to follow the System Requirements section of

the requirements chapter of this thesis, Chapter 1I.

System-Level Tests

1. This test is to determine if DDS is able to accept a
valid input sentence from the user, interpret the sentence
as a command, and retrieve and/or modify the requested
information from the data dictionary. The test should be
performed by entering sevgral valid requests into the
system. Any information requested to be displayed should be
displayed. Any information requested to be modified should
be modified.

2. This test is to determine if DDS is able to reject an
invalid input sentence from the user. The test should be
performed by entering several invalid requests into the
system. Each of the requests should cause an error message

to be displayed.

ASNL RGN S o e DA N S RSN A DAL | P A, el et N, Al i d, S Nt i Rt Aud, Sl "al Se e e |00 Y oy "B i GRS ANl 4% A Vel gl

0

[N

v v v 8
Y AN
i.,' A

v
7.

n“ L
s Y

e
y

a
_»_r A

Grammar Constructor Tests

1. This test is to determine if the grammar constructor is
able to save a grammar from the working grammar file to a
permanent grammar file. The test should be performed by
entering a valid request to save a working grammar. The
grammar should be saved to a permanent file.

2. This test is to determine if the grammar constructor is
able to load a grammar from a permanent grammar file to the
working grammar file. The test should be performed by
entering a valid request to load a permanent grammar. The aRA
grammar should be loaded to the working grammar file.

3. This test is to determine if the grammar constructor is

(@ able to initialize the working grammar. The test should be

]

‘J
-
‘®

performed by first loading the working grammar from a
permanent grammar and then entering a valid reguest to
initialize the working grammar. The working grammar should

o initialized.

4. This test is to determine if the grammar constructor is
0 able to create production rules. The test should be T
| performed by entering a valid request to create a new

production rule. The production rule should be created.

0 5. This test is to determine if the grammar constructor is

.
P

Pl

able to display the existing production rules. The test

[

7]
o
*,

f)
P4

4y %
5

P

.
s
vt

should be performed by entering a valid request to display a

-7
5t

.

“»
e

.

.

oo
.

)

production rule, The requested production rule should be
displayed.

6. This test is to determine if the grammar constructor is
able to display a list of the existing production rules.

The test should be performed by entering a valid request to
display a list of the existing production rules. A list of
the existing production rules should be displayed.

7. This test is to determine if the grammar constructor is
able to modify an existing production rule. The test should
be performed by entering a series of valid reguests to
modify production rules. At least one entry should be made
for each defined modification command. The requested
modifications should be made to the proper production rules.
8. This test is to determine if the grammar constructor is
able to delete an existing production rule. The test should
be performed by entering a valid request to delete a
production rule. The specified production rule should be
deleted.

9. This test is to determine if the grammar constructor is
able to reject invalid construction requests. The test
should be performed by entering a series of invalid
requests. At least one entry should be made for each of the

defined commands of the the constructor. Each of the

requests should cause an error message to be displayed.

DA A AL A A Gl e bk A ot ok LA S GOt M e ol e e pig yie |
[

atee
LA
e
"
|

RN

Y

b .

a_»_u
ey
" v

\J (‘; .'“.l.
AR
b2y 4 4 v Yy

LEROTS ANAAGINE - R E NS

P B
ey

P
LA

Sentence Interpreter Tests

1. This test is to determine if the sentence interpreter is
able to accept input sentences that are valid within the
defined grammar. The test should be performed by entering a
series of valid sentences. At least one entry should be
made which exercises each of the defined grammar
productions. The interpreter should correctly parse each
entry.

2. This test is to determine if the sentence interpreter is
able to reject input sentences that are invalid within the
defined grammar. The test should be performed by entering a
series of invalid sentences. At least one sentence should
be entered for each of the following cases: a sentence
whose first word is not valid within the grammar, a sentence
whose last word is not valid within the grammar, a sentence
which contains a word that is not valid within the grammar
and in which the word is neither the first nor the last word
of the sentence, a sentence which is correct within the
grammar except that it contains at least one extra word at
the end, and a sentence that is correct within the grammar
except that it ends before the defined end-of-sentence. The
interpreter should reject each entry and display an error
message. The error message should attempt to show where in
the input sentence the error occurred. The error message

should offer suggestions as to how to correct the problem.

3. This test is to determine if the sentence interpreter is
able to syntactically translate the results of a valid
sentence parse into the proper execution commands of the
application tool. The test should be performed by entering
a series of valid sentences should generate all (if this is
reasonable) or several (if it is not reasonable to generate
all) of the execution commands of the application tool. For
each input sentence, the proper application commands should

be generated.

Data Dictionary Access Tests

1. This test is to determine if the data dictionary access
process is able to access all of the information stored in
the data dictionary file. The test should be performed by
entering a series of valid requests to access the data
dictionary. As a minimum, an entry should be made which
accesses an instance of each object type in the data
dictionary. Also as a minimum, an entry should be made
which causes each access type (add, delete, display, etc.)
to be performed. For each entry, the proper access to the
information stored in the data dictionary should be done.
2. This test is to determine if the data dictionary access
process is able to maintain the "consistency" of the data in
the data dictionary. The test should be performed by

entering a series of valid reguests which cause each of the

Lt i ™ i S

r

-
LA

R

5 A
*ﬁ%

o
o,
El

A Y

L

s
LA
o
5

(S

1Y

DD
AN
WA

oy by
o«

defined consistency routines to be invoked. For each entry,
the data dictionary access process should maintain the
consistency of the information stored in the data
dictionary.

3. This test is to determine if the data dictionary access
process is able to add new objects to the data dictionary.
The test should be performed by entering a series of valid
requests to add new object instances. As a minimum, an
entry should be made which adds a new instance of each
defined object type. The specified instances should be
added to the data dictionary.

4. This test is to determine if the data dictionary access

process is able to modify existing information in the data

dictionary. The test should be performed by entering a iﬁ{i
A
series of valid requests to modify existing object i:i}
LS
RS
: . . AL AL
instances. An entry should be made which exercises each (PN Y

defined modification function. For each entry, the

requested modification should be made.

5. This test is to determine if the data dictionary access
process is able to reinitialize existing information in the
data dictionary. The test should be performed by entering a
series of valid requests to reinitialize existing object
instance. As a minimum, an entry should be made which

reinitializes an instance of each defined object type. The

.......
.......

- T - - - e e .t AN RIS N -

specified instances should be reinitialized to their
respective initial states.

6. This test is to determine if the data dictionary access
process is able to delete existing information in the data
dictionary. The test should be performed by entering a
series of valid requests to delete existing object
instances. As a minimum, an entry should be made which
deletes an instance of each defined object type. The
specified instances should be deleted from the data
dictionary.

7. This test is to determine if the data dictionary access
process is able to reject modification requests which
reference information not contained in the data dictionary.
The test should be performed by entering a series of
modification requests which reference information not
contained in the data dictionary but which are otherwise
valid. An entry should be made which exercises each defined
modification function, For each request, the data
dictionary access process should respond with an error
message.

8. This test is to determine if the data dictionary access
process is able to display information stored in the data
dictionary. The test should be performed by entering a
series of valid presentation requests. As a minimum, an

entry should be made which displays an instance of each

LB LT

FLrA
¥ 2L
vy

-
¥

e .
*
e

v

)
“

[

‘:}.

define object type. The specified instances should be
displayed.

9. This test is to determine if the data dictionary access
process is able to reject presentation requests which
reference information not contained in the data dictionary.
The test should be performed by entering a series of
presentation requests which reference information not
contained in the data dictionary but which are otherwise
valid. For each request, the data dictionary access process
should respond with an error message.

10. This test is to determine if the data dictionary access
process is independent of the natural language processor.
This test should be performed by inspecting the source code
listings of the data dictionary to verify that it does not
reference any of the modules or data local to the natural
language processor. No references to the modules or data of

the natural language processor should be found.

Grammar Tests

1. This test is to determine if the defined grammar of DDS
is functionally complete. This test should be performed by
entering a series of valid requests which invoke each of the
operations provided by the data dictionary access process.

Requests should be made which access instance of each of the

G-10

PR i i

defined object types. The specified operation should pe
performed on the specified object instance.

2. This test is to determine if the defined grammar of DDS
is sufficiently flexible. No test is specified to validate
this requirement. The entries of users of varying expertise

should be monitored to determine flexibility shortcomings.

Data Dictionary Content Tests

1. This test is to determine if the data dictionary
contents of DDS is consistent with the requirements

specified in Development Documentation Guidelines and

Standards (AFIT/ENG, 1984). This test should performed by
inspecting the source code listings to verify that they are
consistent with this document. No inconsistencies should be

found.

SDW Interface Tests

1. This test is to determine if the data dictionary system
is interfaced into the Software Development Workbench (SDW).
This test should be performed by executing the SDW and
entering the proper codes to invoke DDS. The SDW should
execute DDS.

2. This test is to determine if the natural language

processor is interfaced into the SDW. This test should be

performed by executing the SDW and entering the proper codes

R

2

WSy

L b R

AR, AL

to invoke the natural language processor. The SDW should

execute the natural language processor.

Conclusion

This test plan has specified a suite of tests that
validate the requirements of DDS. As the requirements
change, this document should be updated to remain consistent

with them.

- Appendix H

g CoIn User Manual

B R 2 qun\,,\ ¢ \‘.\.A I .---.- L

Y ") LA Ny Y AR AL S

-l LI A S IR .
PR A S, Ve s,
T Wi -1-.‘-»-...-\5A ﬁ\ S RA LI S g

)
]
3 ()
] <
0
)
-
~ Q
a U4 w
o) o -4 0 fee)
o « 0 wn o
.. A
_ c . (2] ~
b o < O)
4 - (&) Q0
0 [0} [>IN €
,] ~ o B [
. c 2 8 & 9
L) Q N (a]
Q Y]
&) 0
: o
, <R
5]
; 18]
'
.
2 Je
2 L *V
5

Table of Contents

List of Figures . . « « o o o o o o =
I. Introduction . . « . ¢ ¢« & & . .
II. SCOPE v v & o o 4 o o o o » o
III. Using the Grammar Constructor .
Getting Started
Creating a Grammar . . .« .
Modifying a Grammar . . .
Exiting . ¢« &« o o o o « &
Iv. Using the Sentence Interpreter .
V. A Short Example, « ¢« « .
Grammar Productions . . .
Constructor Commands . . .
Sample Interpreter Inputs
vI. Conclusion . « 4+ ¢ o o « o« ¢ « &

Bibliography . . . ¢« ¢« « &« &« ¢ « o o &

.t R G TR

LA S S A) .

R
PR R R

o W TR T T

- T

Page
H-10

W N T, F R T T
. .
- .

™

r. L] a
W o L
m .
0
Y v . e
v W
=] o .
o
ot . L
(<T] <r
1)) . [}
U] ko] o o]
(o) — n
[} o
2 ot -
)] fxy [+
ot ord
1 el <0}
-
o] o
Q 1
[T o}
a4 O
[V]
[+

.

Production
Function

- Figure

5 * b

’l
4

I. Introduction

CoIn is a natural language processing system. It is
implemented on the AFIT Information Systems Laboratory
VAX~11/780 computer. CoIn is a part of AFIT's Software
Development Workbench (SDW). ColIn is written in NIL Lisp
and runs within the NIL interpreter environment.

CoIn consists of two subsystems: a grammar constructor

and a sentence interpreter. The grammar constructor allows

you to define a grammar consisting of production records and

function records (these are described in Chapter III). B it

Using a grammar built with the constructor, the sentence
interpreter is able to parse input sentences and execute

Lisp code that you have built into the grammar.

-

T P RS I II L

'-'.'J.'.'.'- e et 3 oAt e TN e L T e s te ST et e .-

K A e T e e T T e T e e e PR e e T e e DR R Sttt et et e e o

S S SRRV NRL PN, V. P PN L AL P T DAL ST S o POy) L L T L L _""_~.\-‘.~ - .
hodabadnbainiobohotnmndtndotodndinbotondotin Sicanliedion it S B8 A

e

Calinr et

RSNt AR AT NI g o ptr i BASL 8 '.A.. '~ '~' I'.'.I'.._‘.' R N S T N T T Y W W W W W W s (= gy
- v
e

II. Scope

This manual describes the use of the Coln natural
language processing system. It is assumed that the reader
has a minimal working knowledge of the VMS operating system
(see DEC, 1984, for more information), the SDW (Hadfield,

1982), and the NIL interpreter (Burke, et al, 1984).

{

s

-y “r e

C'-,’. '
P
A, A,
»

r

Vet

~
.
-

III. Using the Grammar Constructor

This chapter describes how to use the grammar
constructor subsystem of CoIn. This chapter is divided into
four sections: Getting Started, which explains how to
execute ColIn; Creating a Grammar, which explains how to
create a new grammar and how to permanently store it when
you're done; Modifying a Grammar, which explains how to
create new production and function records and how to alter
and delete existing production and function records; and

Exiting which explains how to exit from ColIn to the SDW.

Getting Started

Coln is integrated into the SDW. This makes it very
easy to execute. Firc*- log into the SDW account, enter the
SDW, and move to your project directory. Retur; to the
top-level menu and enter 'ED' {(the Text Editors functional
group) at the prompt. The EDITOR (ED) MENU will be
displayed. When prompted, enter 'NL' (the ColIn Natural
Language Grammar Editor). NIL will be invoked, and Coln
will be loaded. When NIL is done loading, the message "**=*

ColIn Loaded ***" yjll be displayed. At that time, Coln is

ready for input.

S e

W

Creating a Grammar

Most of the time you will probably not want to create a
grammar from scratch. You'll probably just want to add to
or modify an existing grammar. However, it is possible to
create a new grammar. To do so, first invoke Coln as
described in the previous section, then type
"(initialize-grammar)". Be careful! If you have loaded a
grammar, modified it, and not saved it, this command will
destroy all of your changes!

After initializing the grammar, you can then proceed to
create your grammar by using the commands as described in
the next section, Modifying a Grammar. When your grammar is
complete (or anytime you want to save a partial definition),
you can type " (save-grammar)"” to store it on a disk file,
The grammar will be saved in a file called GRAMMAR.LSP in
the current NIL working directory (your default directory

unless you have told NIL otherwise).

Modifying a Grammar

A grammar consists of a set of production records and
function records., Production records are used to store the
productions of a grammar and consist of three fields: NAME,
SUB-PRODUCTION LIST, and CODE (see Figure 1). The NAME
field contains the element which the current word of the

input sentence must match for a parse to proceed. The

T Wy +
.)| |
. L] 1
. Y R o — e pmmm———t 1
T 4 1 NAME § SUB-PRODUCTION LIST ¢ CODE {]
% 1 - S e L E TS $mmm——— + 1
- Y b

1 1 P

il e + e

Figure 1. Production Record Fields e

SUB-PRODUCTION LIST field contains a list of possible LR

sub-productions which can be used to continue the parse

should the current word parse successfully. The CODE field

contains a-piece of Lisp code which is executed if the

production it is associated with is successfully traversed.
A production must end with an end-of-sentence marker ($) if
it is at the top level of the grammar. Otherwise, it must pﬁfj
end with an end-of-production marker (*). :

Function records are used to store "functions". A

function is equivalent to a Lisp predicate function. The :fij
;i function is applied to the current word of an input sentence ;Eg
:i and, if the word is part of the function's domain, non-NIL :iiﬁ
®. is returned. Otherwise, NIL is returned. A function record D
?1 consists of two fields: NAME and CODE (see Figure 2). The
;~ NAME field contains the name of the function, and the CODE

field contains the Lisp code to be applied.
y The following subsections describe how to create a new EE?
. SASL
T production record, create a new function record, add a :ai

TR P S)

- - - - — - —— —— - - - - —— > - - D D - - - — - - — - - — - -

Figure 2. Function Record Fields el

grammar production to an existing production record, modify
the CODE field of an existing function record, destroy an
existing production record, destroy an existing function
record, and do other miscellaneous modifications.

Creating a Production Record. To create a new

production record, type " (create-production PRODUCTION-NAME
(LISP-CODE))" where PRODUCTION-NAME is replaced by the name

of the production record you wish to create and LISP-CODE is

replaced by the Lisp code that you want executed when the
production record is successfully used. For instance, if ~- o

you want to create a production record called

<display-message-1> that displays the message "message 1"

when it is traversed, then you should enter: =
(create~production <display-message-1> %ﬁ%

(msg "message 1")) P

If the production record <display-message-1> already exists, N

an error message is displayed and the existing production e

. . ._'.4..:.::.:\ P I

DAL LT TR SRR T R TR T
al oA lala ettt B Lol Lo N S S g o a A e a S g

v
.I
.
RS

FALIRAY
v’
3
[
.‘

record is left as is. The LISP-CODE field is optional. RNase

L

Creating a Function Record. To create a new function

¥
o~
lk '- ,}

LI

..-.,-

feny et
.

& 4y

% record, type "(create-function FUNCTION-NAME (LISP-CODE))"

Y
s
R A

)
i

5{8
v

where FUNCTION-NAME is replaced by the name of the function
N record you wish to create and LISP-CODE is replaced by the

Lisp code that defines the function. For instance, if you

want to create a function record called <number> that is

Eﬁ defined using the Lisp "numberp" predicate, then you should

enter: e

P (create-function <number> N
:’ (lambda (x) (numberp x)))
;E] The LISP-CODE field is optional but if left out, must l}fi
?; (;_ subsequently be modified before using the grammar. If this :;;;
i: is not done, the sentence interpreter will crash when it igé:
? tries to use the function record. As is true for production 3%3;
E records, an error message is displayed if you try to create ;;;;
{; a function record using a name that already exists. ;Eiﬂ
; Adding a Production. To add a grammar production to an .ﬁﬁf
i existing production record, type " (add-production .
'f (PRODUCTION) (LISP-CODE) PRODUCTION~NAME)" where PRODUCTION

is replaced by the grammar production to be added, LISP-CODE

is replaced by the Lisp code you want executed when the g
S. production is successfully traversed, and PRODUCTION-NAME is Ei&;
H-11 3
2 NIl
=
L e R A ER s e e

N

RARNE

e

replaced by the name of the production record to which you OO
want the production added. For example: :*5{:
"~ L

N

"y L]

(add-production (what is *) () <display>))

C o . £

adds the production " (what is *)" to the existing production Lo

record <display>. As is shown, the LISP-CODE parameter may

be empty. However it is not optional. The parentheses must i
be included. 1f the <display> production record does not
exist, an error message is displayed.

Note the use of the end-of-production marker (*). All SE
productions that are not at the top level (that is, they are
not part of your highest level production record) must end
with an end-of~-production marker. All productions at the -
top level must end with an end-of-sentence marker ($).

Modifying a Function. To modify the CODE field of an j;;i

existing function record, type " (modify-function (LISP-CODE) 2
FUNCTION-NAME)" where LISP-CODE is replaced by the new Lisp

code that defines the function and FUNCTION-NAME is replaced

by the function to be modified. For example:

(modify-function (lambda (x) (null x)) <empty-list>) j,;f

: SO

modifies the CODE field of the function record <empty-list> ~
N

to be the Lisp expression (lambda (x) (null x)). If the NG

specified function record does not exist, an error message

is displayed. The LISP-CODE may be empty, but, as is true

Al 4 . N b . K a i S A - . - T U RT R g W o e O haSai ot Al & 4 ol A N O A gl il ane

for the add-production operation, the parentheses must be
included.

Destroying a Production Record. To delete an existing

production record from a grammar, type " (destroy-production
PRODUCTION~NAME)" where PRODUCTION-NAME is replaced by the
name of the production record to destroy. For instance, to

destroy the production record <display>, enter:
(destroy-production <display>)

As usual, if the specified production record does not exist,
an error message is displayed.

Destroying a Function. To delete an existing function

record from a grammar, type " (destroy-function
FUNCTION~NAME)" where FUNCTION-NAME is replaced by the name

of the FUNCTION to destroy. For example:

(destroy-function <number>)

deletes the <number> function record. Again, an error
message is displayed if the function record does not exist.

Other Operations. In addition to the operations

described above, a grammar can be modified by using a Lisp
s-expression editor that is included in ColIn. The editor is
a slightly modified version of a Lisp function editor

described in Artificial Intelligence Programming by

Charniak, Riesbeck, and McDermott (Charniak, et gl, 1980) .

OB 8 B e e e h e A e e g

To specify a production or function record to edit, type

! "(sedit STRUCTURE-~-NAME)" where STRUCTURE-NAME is replaced by
> the name of the production or function record that you wish

- to edit. Once you have entered this command, the editor is

used exactly as described in Chapter 7 of Artificial

Intelligence Programming.

Exiting
To exit from NIL and return to the SDW, type " (quit)".

L abd
s

s

LA

This will return you to the Text Editors functional group of

the SDW.

IV. Using the Sentence Interpreter

This chapter describes how to use the sentence

interpreter subsystem of CoIn. This chapter has only one

section, Interpreting A Sentence, which explains how to

enter a request to interpret a sentence. Invoking and

2xiting the system is the same as is described in Chapter 3.

Interpreting a Sentence

To invoke the interpreter to parse a sentence, type

" (parse ' (SENTENCE) TOP-LEVEL-PRODUCTION)"

replaced by the sentence to be parsed and

TOP-LEVEL~PRODUCTION is replaced by the name of your

top-level production record. For instance:

(parse ' (show me

tells the interpreter
M1" using the grammar

record <grammar>. If

within the specified grammar, an error message is displayed.

module M1l) <grammar>)

to parse the sentence "show me module
specified by the top-level production

your input sentence is not valid

H-15

where SENTENCE is

R gl Ol L SR PR N . L. " R R A Ao e i N NP UE LW . v :)

V. A Short Example BAS

This chapter provides a short, but one hopes useful,

example of the use of CoIn. First a grammar is defined,

! then the constructor commands to implement it are shown.
Finally, several sample interpreter commands are included.
The defined grammar accepts any sentence consisting of a

string of one or more occurrences of the word "a".

Grammar Productions

<grammar> => <a> . .-
<a> -> a
_ <a> -> a <a>
i ‘? ». -

Constructor Commands

(initialize~grammar)

(create-production <grammar> (msg "Parse complete" N))
{add-production (<a> §) () <grammar>)
(create-production <a> ())

(add-production (a *) (msg "Using (a *)" N) <a>)

(add-production (a <a> *) (msg "Using (a <a>)" N} <a>)

H-16

St e T e T T
PR R A SR P PO

RSP
SRR PP NP

e

Vet
S
£ .

s r ‘2

5?5
-

X

,l
g
'l
v,

X
n'v,

2
"8

Sample Interpreter Inputs

1ot
Kl
L

(parse ' (a) <grammar>) X
(parse '(a a) <grammar>)

(parse '(a a a a a) <grammar>) -

AT

. NN
) NN
L YA

LSRN

4-17 RN

S AN

P PUN

S
t
!

et T T K i S SRR
IR et s P T e

s
'otla

'®
ln

Vvi. Conclusion

This manual has described how to use the Coln natural
language processor. For an extended example of the use of
Coln, see (Wolfe, 1985), which describes the implementation
of a natural language human-computer interface for a data

dictionary system.

-
-
I] |

LM CRASAC A O R > ™

Bibliography

Burke, Glenn S., et al. NIL Reference Manual. Laboratory
for Computer Science, Massachusetts Institute of
Technology, Cambridge MA, 1984.

Charniak, Eugene, et al. Artificial Intelligence
Programming. Hillsdale NJ: Lawrence Erlbaum Associates,
Publishers, 1980.

DEC. Introduction to VAX/VMS. Maynard MA: Digital
Equipment Corporation, 1984.

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment. MS Thesis,
AFIT/GCS/EE/82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

Wolfe, Capt Stephen A. A Natural Language Processor and its
Application to a Data Dictionary System. MS Thesis,
AFIT/GCS/ENG/85D-19. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1985.

PRI}

e

-~

A

<

.

-

-

L e aan

LS Y e

.. e a3 0, VLT Lt -
RN YRR . AN

Appendix I

Manual

DDS User

. Ve e T e » e o't
T at.-»-&u\.-\. N e . RSPV
,l-c- PR 4 [N ; s o
ettt ’ ' ! .o P S
wiatali s . . 4 P T st . to
-t e . : —te PRI T Ll

version 1.0
AFIT/GCS-85D
December 1985

I

A ta ot

DDS User Manual

A

Capt Stephen A. Wolfe, USAF

o
-4
. Y
.
’ ‘Y
w O
3
. g
Yy
‘.
\. .
‘o
" o
e -.M
2 .4
o
" .
., ...-
i .
g .
g - 9
-A .
b’)
s 9
. RN ;
N Ay ey evw e -

LN N N

Table of Contents

¥

A

Introduction

Il

Scope

II.

Using DDS

III.

.

Conclusion

1v.

Bibliography

L L X . . A A . T T TR e TR RN e PPNl A Rad Jhul Nk S " R o N T N A A A -8 e s b

N

>

? .

S I. Introduction

,ﬂ DDS is a data dictionary system which employs a

E natural language human-computer interface. To interact with

DDS, one enters English sentences which specify to DDS the

= actions it is to perform. DDS is implemented on the AFIT

:} Information Systems Laboratory VAX-11/780 computer. It is a

o part of AFIT's Software Development Workbench (SDW). DDS is ws .

o written in NIL Lisp and runs within the NIL interpreter :

E; environment.

o -~
=

: o
O

a2 (o '

o

~

- Ll

o

‘L KRN

. :.‘»:.‘{

AN
's:‘:.‘.

: RO

- I-4 ey

o

N ARNE R A S S TU N At i ae

II. Scope

This manual describes the use of the DDS data
dictionary system. It is assumed that the reader has a
minimal working knowledge of the VMS operating system (see
DEC, 1984, for more information), the SDW (Hadfield, 1982),

and the NIL interpreter (Burke, et al, 1984).

v,

~my T
‘.?\.
AR

LR

Sy
i

3
”I
&4

:

L e ate o s

e e T N N
P

III. Using DDS

This chapter describes how to use DDS. This chapter
is divided into 3 sections: Getting Started, which explains
how to execute DDS; Using the System, which explains how to
enter commands to the system; and Exiting which explains how

to exit from DDS to the SDW.

Getting Started

DDS is integrated into the SDW. This makes it very
easy to execute. First log into the SDW account, enter the
SDW, and move to your project directory. Return to the
top-level menu and enter 'DS' (the Design Tools functional
group) at the prompt. The DESIGN TOOL (DS) MENU will be
displayed. When prompted, enter 'DD' (the DDS déta
dictionary system). NIL will be invoked, and DDS will be
loaded. When DDS is done loading, the message "*** pata
Dictionary System (DDS) Loaded ***" ywill be displayed. To
execute DDS, type "(dds)" (without the quotes). DDS will be
invoked and will display the message "Data Dictionary System
(DDS)" followed by a prompt "DDS->". At that time, DDS is

ready for input.

I-6

.
¥
s

Using the System

Currently the capabilities of DDS are very limited.

The only data manipulation operations that are implemented

are the initialization and presentation functions. Also
implemented are the clear screen, help (again limited), and et

exit meta-functions. The best source for determining what

the current system can and cannot do is Appendix D

(Implemented Grammar) of A Natural Language Processor and

its Application to a Data Dictionary System (Wolfe, 1985).

This chapter presents examples of valid input sentences for e

the current grammar. Please note that the input sentences

are enclosed within parentheses, and that they contain no ‘ﬁﬁf‘

(if punctuation. This format must be used, or NIL will complain SRS

{

unmercifully.

Clearing the Screen. The following examples show how

to clear the terminal screen in DDS: e
(please clear the screen)

(cls)

Displaying the Help Message. The following example S

shows how to display the help message in DDS:
(help) Efﬁﬁ

Exiting from DDS. The following examples show how to RESN

exit from DDS:

(quit)

(exit)

GO i e i o b e ot o A

it~ A Y - LT il i b S e B AL Al A B Ak il ot tu aagt]

Initializing a Data Dictionary Entry. Before an entry

can be initialized, it must exist. Currently, the only way
to create an entry is to modify youf data base (the file
DB.LSP) using a text editor. 1In the following examples, it
is assumed that Pl is a defined process and PARAM is a
defined parameter.

(initialize process Pl)

{please init parameter PARAM)

Displaying a Data Dictionary Entry. Before an entry

can be displayed, it must exist, See the discussion in the
previous subsection concerning creation of an entry. In the
following examples, it is again assumed that Pl is a defined
G;- process and PARAM is a defined parameter.
(please show me process Pl)
(what are the processes called by process Pl)

(display the name type and version of parameter PARAM)

Exiting

To exit from DDS and return to NIL, type "(quit)". To
exit from NIL and return to the SDW, type "(quit)" again.
This will return you to the Design Tools functional group of

the SDW.

TTermw 1 .

et AN T e h

> L -. w e P e e e e et Rl el W VLN WL, ¥ -
T Iv. Conclusion

This manual has described how to use the DDS data

dictionary system. For a more complete description of DDS,

see (Wolfe, 1985).

¢ EEEe T x - a = - -

R N

[P A

A B

e,

- 5 €« = ¢ 9
P I B S S

s s
<t

Bibliography

Burke, Glean S., et al. NIL Reference Manual. Laboratory
for Computer Science, Massachusetts Institute of Technology,
Cambridge MA, 1984.

DEC. Introduction to VAX/VMS. Maynard MA: Digital
Equipment Corporation, 1984.

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment. MS Thesis,
AFIT/GCS/EE/82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

Wolfe, Capt Stephen A. A Natural Language Processor and its
Application to a Data Dictionary System. MS Thesis,
AFIT/GCS/ENG/85D-19. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1985.

L B S TEot T S O R RN . . - “ o v R .
a e, e e e Y Lt e e et e N . et PN T U T S R TR P

- . . O S TP AP IR e - st . -
A o AR A P S ERES TR o R . . K R o “teta M . e -
R AP N A A B - P R R B D e S G P S e
et T . . LI T L PO A R TR AT IR ST AL N o et e Y
alth ikl e dala R T I T I N A A PR R TR R G T %, A R TR AL P Wy

A U LAV GV 0 S SO0 gt UAE - g i o 30 ol oAb agtd -

. .‘-;"‘u.‘ s -..‘- 4
C R R ST Y
h‘)-.)_‘- L PRI

Bibliography
BIB~-1

Bibliography

AFIT/ENG. AFIT/ENG Development Documentation Guidelines and

Standards, Draft #2. Department of Electrical and
Computer Engineering, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
1984.

Aho, Alfred V., et al. The Design and Analysis of Computer
Algorithms. Reading MA: Addison-Wesley Publishing
Company, 1974.

Barr, Avron and Edward A. Feigenbaum. The Handbook of
Artificial Intelligence, volume I. Los Altos CA:
William Kaufmann, Inc., 1981.

————— . The Handbook of Artificial Intelligence, Volume II.
Los ATtos CA: William Kaufmann, Inc., 1982.

Bobrow, Daniel G., et al. "GUS, A Frame-Driven Dialog
System,"” Artificial Intelligence, 8: 155-173 (April
1977) .

Burke, Glenn S., et al. NIL Reference Manual. Laboratory
for Computer Science, Massachusetts Institute of
Technology, Cambridge MA, 1984.

Charniak, Eugene, et al. Artificial Intelligence
Programming. HilIsdale NJ: Lawrence Erlbaum Associates,
Publishers, 1980.

Davis, Richard M. Thesis Projects in Science and
Engineering. New York: St. Martin's Press, 1980.

DeMarco, Tom. Structured Analysis and System Specification.
New York: Yourdon Press, 197/9.

Goldberg, Adele and David Robson. Smalltalk-80, The
Language and Its Implementation. Reading MA:
Addison-Wesley Publishing Company, 1983.

Goldberg, Adele. Smalltalk-80, The Interactive Programming
Environment. Reading MA: Addison-Wesley Publishing
Company, 1984.

Hadfield, 2Lt Steven M. and Gary B. Lamont. "The Software
Development Workbench: An Integrated Software
Development Environment," Proceedings of the Digital
equipment Computer User Society. 171-177. 1983.

BIB-2

L T
L R T
oot

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment. MS Thesis,
AFIT/GCS/EE/82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

Harris, L. R. "User Oriented Data Base Query with the ROBOT
Natural Language Query System," International Journal of
Man-Machine sStudies, 9: 697-713 (November 1977).

Hayes~Roth, et al. Building Expert Systems. Reading MA:
Addison-Wesley Publishing Company, 1983.

Hendrix, Gary G. "Human Engineering for Applied Natural
Language Processing," 5th International Joint Conference
on Artificial Intelligence - 1977, Proceedings of the
Conference, Volume One. 183~191. Department of
Computer Science, Carnegie-Mellon University, Pittsburg
PA, 1977.

Hendrix, Gary G., et al. "Developing a Natural Language
Interface to Complex Data," ACM Transactions on Database
Systems, 3: 105-147 (June 1978).

ﬁif Horowitz, Ellis and Sartaj Sahni. Fundamentals of Data S
- Structures in Pascal. Rockville MD: Computer Science TN
Press, 1984. R

Kowalski, Robert. "AI and Software Engineering,"
Datamation, 30: 92-102 (Nov 1, 1984).

Mihaloew, Reed A. SYSFL, A Systems Flowcharting Routine ’ NI
Using Interactive Graphics. Aeronautical Systems DRDREES
Division Computer Center, Air Force Systems Command, !
Wright-Patterson AFB OH, undated.

Myers, Glenford J. Reliable Software Through Composite
Design. New York: vVan Nostrand Reinhold Company, 1975.

Peters, Lawrence J. Software Design: Methods and
Techniques. New York: Yourdon Press, 198l.

Rich, Elaine. Artificial Intelligence. New York:
McGraw-Hill Book Company, 1983.

----- . "Natural-Language Interfaces," Computer, 17: 39-47
(September 1984).

BIB-3

.....
e

T

AT ST NIRRT T

R A RO SO L i S L A iy A SCAACR A M iaca A a e ey
. Schank, Roger C. and Christopher K. Riesbeck. Inside
Computer Understanding. Hillsdale NJ: Lawrence Erlbaum

Associates, Publishers, 1981l.
Steele, Guy L.,

Press, 1984.

Jr. Common LISP. Burlington MA: Digital

Thomas, Capt Charles W. An Automated/Interactive Software
Engineering Tool to Generate Data Dictionaries. MS
Thesis, AFIT/GCS/ENG/84D-29. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB
OH, Decemver 1984.

Waltz, David L. "An English Language Question Answering
System for a Large Relational Database," Communications
of the ACM, 21: 526-539 (July 1978).

Winston, Patrick Henry. Artificial Intelligence. Reading

MA: Addison-Wesley Publishing Company, 1984.

Wirth, Niklaus. Algorithms + Data Structures Programs.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1976.

Wolfe, Capt Stephen A. George: A Tool for Building and
Parsing Semantic Grammars. Unpublished report. School
of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 1985a.

(o

(st

Course Project: A Software Design Tool.
Unpublished report. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
1985b.

Woods, W. A. "Transition Network Grammars for Natural
Language Analysis," Communications of the ACM, 13:
591-606 (October 1970).

BIB-4

...............

...........
.......................

200 3

W oa e .
LN I]
- s 2 3 2 & N

1t

M AAS A A Al A Sl i

VITA I

Captain Stephen A. Wolfe was born on 23 February 1956

in Portland, Oregon. He graduated from high school in

Spring valley, California, and attended San Diego State e
University from which he received the degree of Bachelor of o
Arts in Computer Science in May 1979. He graduated with

high honors and with distinction in the major. After e
graduating, he received a commission in the United States .
Air Force through the Officer Training School program. His
first assignment was at Space Division in Los Angeles, AR
California, where he was a systems analyst and applications f;f;

programmer. In April 1982, he was transferred to

Washington, DC, where he became the lead software engineer s -

for the procurement of the Ground Launched Cruise Missile

Weapons Control System. He entered the School of

Engineering, Air Force Institute of Technology, in May 1984.

Permanent address: 1221 Purdy Street .

Spring valley, CA 92077

VIT-2 ENN

L. RSN RN
e T e e et e e
aa 2 ‘= 3 a0 % ..l .IA.-I.) .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

TN AT

REPORT DOCUMENTATION PAGE

.

REPORT SECURITY CLASSIFICATION

CTT’LASSIFIED

'
Vo e

'
3
.
:

1b. RESTRICTIVE MARKINGS

~CURITY CLASSIFICATION AUTHORITY

2. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/85D-19

5. MONITORING ORGANIZATION REPORT NUMBER(S)

b. OFFICE SYMBOL
(If applicable)

AFIT/EN

6a. NAME OF PERFORMING ORGANIZATION
School of Engineering

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright Patterson AFB, OH 45433

7b. ADDRESS (City, State and ZIP Code)

8b. OFFICE SYMBOL

8a. NAME OF FUNDING/SPONSORING
(If applicable)

ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Rome Air Development Ctr [|RADC/COES
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB, NY ELEMENT NO. NO. NO. NO.
11. TITLE (Inciude Security Classification)
See Box 19
12 PERSONAL AUTHORI(S)
~-_<2phen A. Wolfe, A.B., Capt, USAF
(\’._ YPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
1S Thesis FROM TO 1985 December 343
16. SUPPLEMENTARY NOTATION
17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number;
FIELD GROUP SUSB. GR. Natural Language Data Dictionary
09 02 Automated Tools Software Development
19. ABSTRACT (Continue on reverse if necessary and identify by block number:
Title: A NATURAL LANGUAGE PROCESSOR AND ITS
APPLICATION TO A DATA DICTIONARY SYSTEM

Thesis Chairman: Dr. Gary B. Lamont

.,

A lov.dli:Sp lic release: 1AW AFR ln-ﬂ
ﬁ%:??o vER /6 vt
@ ol

an for

g

i
i
H
§

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

-

Cles.assiFleD/uNLIMITED K same as et T oTic users O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

Dr. Gary B. Lamont

22c OFFICE SYMBOL

AFIT/ENG

22b TELEPHONE NUMBER
tInclude Area Code)

255=3450

EDITION OF 1 JAN 73

DD FORM 1473, 83 APR

S OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

WA T oL oY
WA A PN A,

TR TP T TR RF VISR TY "n’vri"v'\“

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

~

N The development of a human-computer interface construction and
A_Lerpretaulou tcol capable of processing English-like of natural
®anguage user input is discussed. The utility of the tool is demonstrated
by using it to create the natural language interface for a data dictionary
system. The data dictionary's development is also documented and is used
as the overall context for the presentation. -

e e
AT

'
.

b
s
)
o

fa 0, 4 o Rpay u &

I) |'.>.'.
g rﬁ
"n l"

e f

’-.,Ar’a'.a,_n’

et

By
R
e

SECURITY CLASSIFlCATION OF TS PAGE
" [. ‘e e M . . - . :

R SR S BJCIRY ...-.'.-‘-.".'.'-‘-
e e e e e T A T A
AA‘JAJAJJJJA‘JJJAJ'A._A

.\ .
W
T N

a.
]
R

.
L
.,.’ -7

“ore z
- o e

-

R A
T o i

L e
PP P

