
AD-R154 026 A NATURAL LANGE PROCESSOR AND ITS APPLICATION TO A 1/4
DATA DICTIONARY SYSTEM() AIR FORCE INST OF TECH
URIGHT-PATTERSON RFl OH SCHOOL OF EMI. S A MOVFE

UNCLASSIFIED DEC 85 AFIT/GCS/ENG/BSD-9 F/I 9/2 L

w I I. ', ~ ~ ~), - -- M- -' .

Woo

J~lL __l'F: L3ML
ILO.

t"•...MICROCOPY RESOLUTION TEST CHART
" ND.FqOS 19('

,:. ;.~

. "*%

- -. .*,b * *,* *,.. . .

S~ DTIC"-

L "%* h. ',-J'L'-.. .9. .. -.-.-

• " Z~LECTE .!l?:

: D-THESIS

Stephen A. Wolf

CD

A PARL EN LANGUA E RSORCADE T

TH UIESI Y

AIR FRCE ISTITBUTE OFATECHNOLOGY

--. _ t ;..)5,-

AIRTFORC ANTIUTGE POFCECHR NOLOGY:''&

W right- Patterson Air Force Base, Ohio

TS4-

S.... . ..
! .5 . C . . ,

*- ._q.& .o. v -..

?W -. W -. A -J rA-jr J -.x - -- V-

AFIT/GCS/ENG/85D-19

.ZCTEK
FEB 1 3 1986.

A NATURAL LANGUAGE PROCESSOR AND ITS
APPLICATION TO A DATA DICTIONARY SYSTEM

THESIS

Stephen A. Wolfe
Captain, USAF

Approved for public release; distribution unlimited

. r77 -. %. '..Xrt 7-7 - - -.- i- *.

.-. AFIT/GCS/ENG/85D-19 -e%

-1." °I

A NATURAL LANGUAGE PROCESSOR AND ITS

APPLICATION TO A DATA DICTIONARY SYSTEM.

THESIS

Presented to the Faculty of the School of Engineering -

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

A-COSon For"

NTIS CRA&I
DTIC TAB E"

rc* ;ted D

Stephen A. Wolfe, A.B. By"
D t ib .tc /

Captain, USAF -
A,.Lia, ty Co.'s

DaA , Av;j.,

December 1985 All

Approved for public release; distribution unlimited .
°.-''

.....

o" • "p- • p "

Acknowledgmen ts

I would like to thank my thesis advisor, Dr. Gary B.

Lamont, for his guidance throughout this effort, and my

readers, Dr. (Captain) Stephen E. Cross and Captain Duard S.

Woffinden, for their time and efforts. I am also indebted

to the people of Rome Air Development Center/COE, especially

Major Mark Stasiak and Mr. Douglas White, for their I
sponsorship. Finally, I wish to thank my wife, Andrea, for

her helpful comments concerning this thesis and for putting

up with me for the past year and a half.

Stephen A. Wolfe

7

o p .9

S +%-t

.- I \

0,°. I

° . .

i-i-.

4 .o

Table of Contents

Page .'

Acknowledgments.........................ii

List of Figures vi

List of Tables vii

List of Acronyms......................viii

Abstract...........................ix

I . Introduction............... 1

Thesis Objectives........ 1

Background.............. 1

Natural Language...............1- 2

The Software Development Life Cycle. 1- 4

The Software Development Workbench . 1- 5 -

Scope of Effort................1- 6

Standards................1- 7

Approach Taken 1- 8

Ii. Requirements Definition..............2- 1

* Introduction.....................2- 1

Automatic Programming 2- 2

* ~~~~~Grammar Constructor Requirements . . . 2- SytmRqieet82

Sentence Interpreter Requirements . .2-10V. Data Dictionary Access Requirements . 2-12

Grammar Requirements 2-15

Data Dictionary Content Requirements .2-15

SDW Interface Requirements 2-16

j Conclusion.................2-17

*III. Design 3- 1

Introduction 3- 1

System Design.................3- 4

Natural Language Processor Design . . . 3- 6

Data Dictionary Tool Design. 3-1l

Grammar Design..............3-17

Interface Design............3-18

Conclusion.................3-18

* 5IV. Implementation................. 4- 1

Introduction.......... 4- 1

System Implementation............4- 1

CoIn Implementation 4- 5 -

DDT Implementation...........4- 8

Grammar Implementation..........4- 9

Interface Implementation.........4-11

Integration into the SDW...........4-12

Conclusion 4-13

V. Conclusion and Recommendations..........5- 1

Introduction 5- 1

Development Summary 5- 1

Analysis of the Current System 5- 2

iv

Recommendations for Future Work. 5- 3

CoIn 5- 4

DDT. 5-

The Grammar................5- 6

The Interface 5- 7

Appendix A: System Data Dictionary A- 1

Appendix B: Structure Charts B- 1

Appendix C: Grammar Definition C- 1

Appendix D: Implemented Grammar............D- 1

Appendix E: DDT object Definition...........E- 1

Appendix F: Interface object Definition F- 1

Appendix G: Test Plan.................G- 1

IAppendix H: CoIn User Manual H- 1

Appendix I: DDS User Manual....... I1

*Bibliography.....................BIB- 1

Vita......................... T-i I.

Source Code.......................Vol 2

v

List of Figures

Figure Page

2.1 Automatic Programmer Data Flow Diagram 2- 3

2.2 Top-Level Requirements Data Flow Diagram . . . 2- 6

2.3 Data Dictionary System Data Flow Diagram . .. 2- 7

2.4 Construct Grammar Data Flow Diagram 2- 9

2.5 Interpret Sentence Data Flow Diagram 2-11

2.6 Access Data Dictionary Data Flow Diagram . . .2-13

3.1 Sample Structure Chart.............3- 2

3.2 System Design Data Flow Diagram 3- 5

3.3 Natural Language Processor Data Structures . 3- 7

p3.4 Sample Object Hierarchy Chart 3-13

4.1 AFIT ISL VAX-11/780 Hardware Configuration 4- 2

4.2 Sample Grammar Production 4-10

5.1 Example of a Valid Sentence Entered into DDS 5- 4

5.2 Example of an Invalid Sentence Entered into

DDS........................5- 4

vi

List of Tables

Table Page

III-1 Sample Module Interface Table 3- 3...

:*. -%.

. -V . .

.I< •.

I- .

- -- * *~-.-:- V.*. ... - o

List of Acronyms

AFIT Air Force Institute of Technology , ,

AFIT/ENG AFIT School of Engineering, Department of '%'.)

Electrical and Computer Engineering

BNF Backus-Naur Form

CD Conceptual Dependency

CoIn Constructor/Interpreter (the natural language
processor)

DBMS Data Base Management System

DFD Data Flow Diagram

DDS Data Dictionary System

DDT Data Dictionary Tool (the data dictionary access
subsystem)

~.DEC Digital Equipment Corporation

HIPO Hierarchy plus Input, Process, Output

ISL Information Sciences Laboratory

MIT Massachusetts Institute of Technology

NIL New Implementation of Lisp

SADT Structured Analysis and Design Technique

SEl Software Development Workbench

SDWE SDW Executive

viii

• . ,

y . WON rw 77 F7 -.-. g

AFIT/GCS/ENG/8 5D-19 °

Abstract .

The development of a human-computer interface

construction and interpretation tool capable of processing

English-like or natural language user input is discussed.

The utility of the tool is demonstrated by using it to

create the natural language interface for a data dictionary

system. The data dictionary's development is also

documented and is used as the overall context for the

presentation.

ixI

ix "2

• - .

- •... o.-
. .

I. Introduction

Thesis Objectives

The principal objective of this thesis investigation is

the development of a human-computer interface construction

and interpretation tool capable of processing English-like

or natural language user input. The tool is generic in

nature. That is, it has the capability to create grammars

and interpret input sentences for a wide variety of

applications. A secondary objective of this effort is to
0

demonstrate the utility of the tool by using it to create a

natural language interface for a useful software engineering

environment.

Background

This section summarizes the background material on

which the remainder of this thesis effort is based. The

first part of this section provides an introduction to

natural language and systems designed to interpret natural

language. Next, since this thesis describes the development

of a software system, a general introduction to the software

development process is provided. The section concludes with

a description of AFIT's Software Development Workbench

(SDW). As part of this thesis effort, the developed system

0 '

) .% -1

was interfaced with the SDW. Numerous references are

provided for the interested reader.

Natural Language. Natural languages are the languages

that we speak, read, and write. Throughout our lives we are

inundated with one or more natural languages. Therefore we

are quite comfortable with natural languages. They seem

"natural" to us. This feature is exactly what is needed in

a computer environment to make it seem natural and

consequently easy to use.

Because natural languages develop in a complex,

constantly-changing, uncontrolled environment, they are

themselves complex and ill-defined. They are "informal"

systems. These are traits which make natural languages

unnatural to a computer, traits which make it difficult for

a computer to interpret natural language. Computers demand

completely defined, "formal" systems. Because of this

difficulty (and many others), the area of natural language

interpretation has been widely researched (Bobrow, et al,

1977) (Harris, 1977) (Hendrix, 1977) (Hendrix, 1978) (Rich,

1984) (Schank and Riesbeck, 1981) (Waltz, 1978) (Woods,

1970).

The meaning of the term natural language when used to

describe a human-computer interface is different than when

used to describe a human-human interface. Human-computer

.- natural language interfaces do not contain the richness (all

1-2.

LA~ ~ ~ Y _" V %

of the grammar rules or vocabulary) of, say, English. The

guiding principle in building a natural language .

human-computer interface is to include enough of a natural

language so that one can command the computer, in a

"natural" way, to do all of the required functions. The

interface must be complete enough so as to be a help rather

that a hindrance to the user; it must be "simple" enough so

that it can be interpreted by a computer within any time and

space constraints imposed by an application.

* A general introduction to natural language and its

interpretation is provided The Handbook of Artificial

Intelligence, volume I (Barr and Feigenbaum, 1981:225-232),

Artificial Intelligence (Rich, 1983:295-344) , and Artificial

intelligence (Winston, 1984:291-334) . In addition Barr and

Feigenbaum (Barr and Feigenbaum, 1981:239-321) include an

introduction to grammars and their representations and a

description of several parsing techniques. They also present

an overview of several natural language interpreting systems

* including Woods' LUNAR, Winograd's SHRDLU, Schank's MARGIE,

Schank and Abelson's SAM and PAM, and SRI International's

LIFER. More detailed descriptions of these and other

*specific systems can be found in "GUS, A Frame-Driven Dialog

System" (Bobrow, 1977) , "User Oriented Data Base Query with

the ROBOT Natural Language Query System" (Harris, 1977),~:~:

"Developing a Natural Language interface to Complex Data"

1-3

(Hendrix, et al, 1978) , "Human Engineering for Applied

Natural Language Processing" (Hendr ix, 1977) , Inside

Computer Understanding (Schank and Riesbeck, 1981:318-372) ,

"An English Language Question Answering System for a Large

Relational Database" (Waltz, 1978) , and "Transition Network

Grammars for Natural Language Analysis" (Woods, 1970) . The

LIFER system is of particular interest since it provided

many of the ideas for the natural language processor of this

investigation.

The Software Development Life Cycle. The software

development life cycle has been characterized many different

ways (Peters, 1981:8). In this thesis effort, the cycle is

broken up into five phases. They are the functional

requirements analysis phase, the design phase, the

implementation phase, the integration phase, and the

maintenance phase. As requirements change or errors are

found, this cycle is executed iteratively.

During the functional requirements analysis phase, the

* emphasis is on "what" the system should do. These

requirements are assigned to various hardware and software

components during the design phase. Also during the design

* phase, the defined software components are refined into

interacting modules. During implementation, the modules are

encoded into a computer language and are tested individually

and as groups. The hardware and software components are

1-4

e.-. g-.z-

assembled into a system and are subjected to testing as a

whole in the integration phase. Finally, in the maintenance

phase, the system is used and modified as necessary.

For a detailed discussion of the requirements phase,

see Structured Analysis and System Specification (DeMarco,

1979) . The design phase is covered in Reliable Software

Through Composite Structured Design (Myers, 1975) and

Software Design: Methods and Techniques (Peters, 1981).

Various aspects of the the implementation phase are covered

in The Design and Analysis of Computer Algorithms (Aho, et

al, 1974) , Fundamentals of Data Structures in Pascal

(Horowitz and Sahni, 1984) , and Algorithms + Data Structures

=Programs (Wirth, 1976).

The Software Development Workbench. The Software

Development Workbench (SDW) , which resides on the AFIT

Information Sciences Laboratory (ISL) Digital Equipment

Corporation (DEC) VAX-11/780 computer, was conceived and

designed to help the software engineer manage the inherent

* complexity of developing computer software. The SDW

consists of "an integrated set of automated tools to assist

the software engineer in the development of quality and

* maintainable software" (Hadfield and Lamont, 1983:171).

The original work on the SDW was done by Steven M.

Hadfield for his master's thesis (Hadfield, 1982). In his

thesis, Hadfield provided motivation for the development of

61-5

P3.. .P

an interactive and automated software development

environment. He maintained that such an environment should

be integrated, traceable, flexible, and user-friendly.

Eventually the SDW will consist of a comprehensive set of

software development tools which will help the engineer

throughout the entire software development cycle. While the

current SDW is usable, it does not contain a complete set of

integrated tools.

Currently, the tools contained in the SDW are

integrated by a menu system, the SDW Executive or SDWE,

which allows one to execute any of the tools. The menu

system is hierarchical. First one chooses a category of

tools such as DESIGN TOOLS from the top-level menu. A menu

of the tools in the chosen category is then displayed from

which one designates the particular tool to be executed.

Scope of Effort

The scope of this thesis effort includes the design and

implementation of the natural language processor. The

processor allows a software developer to define and

implement a natural language human-computer interface. It

allows the developer to construct a grammar by entering and

modifying the productions of the grammar. It includes an

interpreter which compares user input sentences against the

1-6

.. .-

7~- -7 -. .

:- - - - - - - - - - . -P 7 - . .. ,

defined grammar and executes any code included with the•4
grammar productions. The processor is generic in nature and b -

can be used to create and use a grammar for any application

domain. As part of this effort the natural language

processor is integrated into the SDW.

The second area that is included within the scope of

this development is the design and implementation of a data

dictionary system and particularly its natural language

front-end. The data dictionary system is used primarily as

an extended example to demonstrate the usefulness and

usability of the natural language processor, but it is also

meant to be a useful tool.

Standards

This section first presents standards associated with

the natural language processor and then presents standards

associated with the data dictionary system. Since the

emphasis is on the natural language processor, the standards

directly associated with it are of greatest importance.

The natural language processor should allow a software

engineer to easily construct a natural language

human-computer interface to a software system. If it does,

then this thesis effort should be considered a success. To

fulfill this goal the grammar constructor needs to provide

all of the functions necessary to create and modify a

1-7

grammar, the external interfaces to these functions shouldA

be consistent, and the interpreter should be able to

correctly parse grammatical sentences for any grammar

created with the processor.

The sentence interpreter should be able to parse

quickly enough so as to not annoy the application user. By

providing positive feedback to the user to assure him/her

that the program is running and performing the desired task,

this time can be extended from a few seconds to perhaps a

minute or more.

The data dictionary system should allow its user to

manage all of the data associated with a software

development effort. Not only does the data dictionary

system need to provide for the storage of this data, but its

human-computer interface needs to include the functionality

necessary to enter and modify the data.

Approach Taken

The software development cycle as described in the

Background section is followed in this development.

Throughout the chapters that follow, the natural language

processor is treated as a subsystem of the data dictionary

system. Doing so simplifies the structure of this thesis.

0KAlso, when the natural language processor is used to

L 1-8

71.. W 67-T"
41.' "-

implement a human-computer interface, it becomes a subsystem

of the application. :-

The next chapter, Chapter II, describes the functional

requirements analysis phase of this effort. The design

phase is the subject of Chapter III, and the implementation

phase is the subject of Chapter IV. To conclude, Chapter V

summarizes this development effort, presents an evaluation

of the developed systems based on the standards of the

previous section, and enumerates a set of recommendations

for follow-on work to this effort.

Complete documentation sets, including a data

dictionary, structure charts (described in Chapter III) and

j-- various other design documents, a test plan, and user

manuals for both the natural language processor and the data

dictionary system, are included as appendices to this

thesis. Volume 2 contains complete source code listings.

1-9

..................................

* . - * ** . *. *. U.%,..,

. -. ,. -.-.. .,* .

-M-

II. Requirements Definition

Introduction

This chapter presents the functional requirements used

in this thesis effort. First very high level, "blue sky"

requirements are described. Then the overall requirements

of the data dictionary system are presented. After defining

the high-level requirements, the more detailed requiremenbs

of the various subsystems are discussed.

The requirements are presented in the form of data flow

diagrams (DFDS). DFDs were chosen for use in this effort

because of their simplicity. Structured Analysis and Design

Technique (SADT) charts (Peters, 1981:63-64), another

possible representation, show more information than do DFDs, , ,

but are correspondingly more difficult to create, maintain,

and understand.

DFDs consist of four basic elements: processes, data

flows, data stores, and sources/sinks. Processes, which are

represented by circles, transform data. That is, they

modify their inputs in some way to produce their outputs.

Data flows, as their name implies, are paths along which

information moves between the other three element types. .-

Data flows are represented by arrows. Data stores are files

or data bases. They are represented by a line segment or by

two parallel line segments. Finally, sources and sinks,

2-1

* . .- *.;.* * , - . .'- *-* *-*- **** -**--. --. *---1*

which are represented by rectangles, are entities outside of

the system which originate and receive data respectively.

Each element of a DFD has associated with it a label which a

describes that element. For an excellent description of the

mechanics and use of data flow diagrams, see Structured

Analysis and System Specification (DeMarco, 1979).

In addition to the DFDs of this chapter, Appendix A

contains a system data dictionary which provides more

information about each of the elements contained in the

DFDs.

Automatic Programming

0 It would be nice to have an automatic design and

programming system that, given a set of inconsistent,

incomplete, and ambiguous requirements, could query the user..

i to resolve these problems and then generate, modify as

requested, optimize, and fully document a program which

meets the requirements (Figure 2.1). Such a system should

allow input in whatever mode is most comfortable to the

user, including written and spoken natural language,

graphics, menu selections, examples, and mathematical

formulae. Its set of output modes, for responses and

queries to the user, should be similarly varied and should

be user selectable. That is, if the output mode chosen by

the system does not include the mode desired by the user,

2-2

J

4z- '2. - - - - - - - - - - - -

-a,,

00
1-0

0 I

W
IL 4-

La.G
Laii

EE-

2-3-

he/she should be able to specify the use of additional

modes.

The documentation generated by such a system should

include all documentation normally generated during the

software development life cycle including, but not limited

to, requirements specifications, high- and low-level design

specifications (including the algorithms and data structures

used), source code listings, a test plan, test

specifications, and test procedures, including an extensive

set of test cases. In addition, when desired by the user,

the system should be able to provide correctness

verification of any portion of the generated code.

4. All code generated by an automatic programmer should be

traceable through the design to the requirements level. The

same is true of the test procedures; all tests should be

traceable to the requirements that they validate.

In addition, the generated system should be

user-modifiable at any level--requirements, design, or

implementation. The user should have ultimate control, but

the system should recognize potential problems and advise

the user as appropriate.

The Handbook of Artificial Intelligence, Volume II

(Barr and Feigenbaum, 1982:295-379) includes an excellent

introduction to automatic programming as well as an overview

of the recent research in the field.

2-4

-: . -... .-.- "., . - .

System Requirements

The previous section described several ideas about what

a computer, via an automatic programming system, should be

able to do. A system which can generate quality software .- Y -

directly from requirements without extensive intervention by

a human programmer is probably many years in the future, if

it is even possible. A possibly more practical approach,

given today's technology, is to concentrate on developing a

set of integrated and automated tools which aid the human

engineer in developing software. This is the approach taken

in the SDW and is among the justifications for this thesis

effort.

° (0 This section describes one such tool in terms of its

functional requirements: the data dictionary system, DDS,

developed for this thesis effort. Figure 2.2 shows a

top-level model of the system. This model illustrates the

scope of DDS: it accepts natural language input sentences

from the user, interprets the sentences as commands (using

the natural language processor), and retrieves information

from and/or modifies the information in the data dictionary.

Figure 2.3 breaks DDS down into its major subsystems,

the grammar constructor and sentence interpreter, which

together comprise the natural language processor, and the

data dictionary access process. The remainder of this
I." section discusses the more detailed requirements of these

2-5

* .- ° . "

.1 .i - -.X . -2--' . -. '2-i.
' .' .. ' .

2 .. '...".-- ----. .-'...--.--...--< ''i.i'.' -'" '."- - . .- --. . ..' -? •
.
.i. .: .. -

ti - I

I',

z
0

I-

a

I-

a

S
Q

LaS
I-. 0 I-~a I->

~0
a

Iii

r
0

E
0 W
U

0

Lii

0

* Figure 2.2. Top-Level Requirements Data Flow Diagram

2-6

0

. . . .

.- - . . .

rC.
Q! .

24

C 1
1-0 09

IfI

00

CU

2-76

SW -A

subsystems followed by a discussion of DDS's grammar

requirements, its data dictionary content requirements, and,

finally, its SDW interface requirements.

Grammar Constructor Requirements. The grammar

constructor allows the user to define a set of production

rules which collectively define a grammar. Figure 2.4

depicts the data flow for the grammar constructor. As is

shown in the diagram, the grammar constructor consists of

three subfunctions: SAVE GRAMMAR, LOAD GRAMMAR, and MODIFY

GRAMMAR. Each of these processes is discussed in turn.

When a save command is entered by the user, the SAVE

GRAMMAR process stores the current working grammar to a

(S permanent file. This is necessary so that the grammar does

not have to be created each time it is needed. The file

must be in a format that allows the grammar to be retrieved

into working storage.

Since the grammar is stored in a file, a method for

retrieving the contents of the file is needed. This is the

function of the LOAD GRAMMAR process. If a grammar is

already in working storage, then it is overwritten by an

incoming grammar.

The MODIFY GRAMMAR process consists of several

functions which allow a user of the constructor to define

the rules of a grammar. To insure that the grammar

environment is in the proper condition before a grammar is

2-8

0a

0-jj

z 0

(3 W

rur

z Sz

E

Iz
IxI

0

Wa

UjU 0

- > z

(I CC) j

Fiue240osrc rma aaFo iga

2-9

defined, an initialization function is needed. To allow the

user to initially enter the grammar's production rules, a

create function is needed. To allow the user to determine

what production rules exist, a list function is needed. To

allow the user to view the existing production rules, a

display function is needed. To allow the user to modify

existing production rules, a modification function is

needed. Finally, to allow the user to remove production

rules which are no longer needed, a delete function is

needed.

The MODIFY GRAMMAR process should be able to determine

if an invalid request has been entered. If it detects an

invalid request, it generates an error message.

Sentence Interpreter Requirements. The sentence

interpreter has two' functions: a parsing function and a

command generation function. The parsing function, PARSE

SENTENCE in Figure 2.5, provides the capability to determine

if an input sentence is valid within the defined grammar.

The parsing function also provides the capability to inform

the application user that it cannot parse an input sentence.

To make the system more "user-friendly", the parser should,

if it is unable to parse a sentence, attempt to show the

user where in an input sentence an error occurred. It

should also offer suggestions as to how to correct the - -

problem.

2-10

7- 7. -.7 7-7 7. T T--

s-a 0

aru

at T
'U

La

La

aa
*W

LOh
LaK

'U

Laa

-' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 -if.- W* 17 7 IIIuuu..u .,...,.

The command generation function, GENERATE DD COMMAND in

Figure 2.5, provides the capability to syntactically

translate the results of a valid sentence parse into the

proper execution commands of the application tool (the data

dictionary access process in this case).

Data Dictionary Access Reqluirements. The data

dictionary access process executes the commands sent from

the sentence interpreter. it provides the means to update

and display the data stored in the data dictionary (Figure

*2.6). Therefore, it must be "complete" in the sense that it

have full access to all the information stored in the data

dictionary file. It must also maintain the "consistency" of

ie the data in the data dictionary. For instance, if a module

entry is deleted from the dictionary, then ALL references to

that module need to be deleted. If this is not done by the

access process, the information in the data dictionary can

easily become inconsistent.

The UPDATE DATA DICTIONARY process shown in Figure 2.6

* consists of several functions which allow the user of DDS to

define the information to be stored in the data dictionary.

To allow the user to define new entries in the data

* dictionary, an addition function is needed. To allow the

user to change existing information, a modification function

is needed. A reinitialization function which resets the

information in an entry to its initial state can be handy,

2-12

Wk~nd ses ow

I.-'

*0 C

*I,..+ .

M0

I- I- U,'.- .'

I---
E4 4

zza 0 0

00 0

, ; : th" 0 I

z z I W+

4W
QZZO

0 4 0 - - " "0

I,' O I" -" '-

0 I I Z

9- 401 .r.,

Figure 2.6. Access Data Dictionary Data Flow Diagram-.,

"20.W13 -E

4402

,' + .. o , + . -. %,, , - .. . -: ,- ., . .,•. ++. ,-o-

p- o-. .+. , -+ . ". . . . % + . . % ., . . +.+o

(;." " .'-.' -;.-. - -;. -.. . --. -; -. : -- v- I IE". IE " U" U- " ° r . , yw :/ - b. t

* .--.-

especially when the modifications to be made to the entry

are extensive. Finally, a deletion function, which allows .. ".

the user to remove an entry from the data dictionary, is . .

needed. As is shown in Figure 2.6, the UPDATE DATA

DICTIONARY process can generate its own update command.

This is necessary to enforce the data consistency discussed

in the previous paragraph. If the information requested to

be modified is not contained in the dictionary, this process

displays an error message.

The second process shown in Figure 2.6, DISPLAY DATA

DICTIONARY, retrieves, formats, and presents the information

stored in the data dictionary. Again, if the information

* - requested is not contained in the dictionary, an error

message is displayed.

The data dictionary access process should be

independent of the natural language interpreter. That is,

it should be usable without the natural language front-end.

Therefore, it needs to implement all the requirements of DDS

except for those that deal specifically with the

natural-language human-computer interface. By making the

actual data dictionary tool independent of the

human-computer interface, prototypes of various kinds of

interfaces and various designs of natural language

interfaces can be developed and easily tested with the

2-.

2-14 ...

. .. •- %.

V7.- 777 _ v

access tool; then one or more can be selected and fully

developed.

Grammar Requirements. The main requirements of a

grammar in a natural language human-computer interface are

that it be functionally "complete" for the application

environment and that it be flexible. A functionally

complete grammar provides at least one way for the

application user to specify each function of the

application. A flexible grammar provides multiple ways to

specify those functions of the application that are

naturally" specified in multiple ways. Flexibility

enhances ease of use.

0Since DDS is to have a natural language human-computer

interface, its grammar should be functionally complete and

flexible. DDS's grammar should allow sentences which

specify each of the operations provided by the data

dictionary access mechanism. The grammar should allow

access to any of the entries contained in the data

dictionary. The grammar should provide for needed

meta-operations, that is, operations that deal with the

environment (such as exiting from the system) vice the

information in data dictionary.

Data Dictionary Content Requirements. A data

dictionary needs to provide storage for the information

needed by an engineer during the entire software development -

2-15

process. AFIT/ENG's Development Documentation Guidelines

and Standards (AFET/ENG, 1984) was written with the intent

of standardizing the composition of this information. The

contents of the data dictionary should be consistent with

this document since this is an AFIT thesis project.

AFIT/ENG's documentation standard specifies several

data dictionary entry types for each of the software life

cycle phases. For the functional requirements analysis

phase, it specifies three entry types: Activity, Data

Element, and Alias. Process, Parameter, and Alias entries

are specified for the design phase. The implementation

phase requires Module and Variable entry types. No entries

are specified for the later life cycle phases as the

documentation standard is not yet complete. For each entry

type, the standard describes a set of data elements which

should be included in the data dictionary entry.

The data dictionary should provide for all of these

entry types. As the documentation standard is updated and

completed, the data dictionary contents should also be

revised to remain consistent with it.

SDW Interfa-ze Requirements. Since both the data

dictionary system and the natural language processor are

tools which may be of help to the software developer, they

should both be interfaced into the SDW. Doing so makes them

easier to access and, one hopes, easier to use.

2-16

. .. ~.

VA VA t..a-. . . *' .****** . ** *

77~ 77 •7

Conclusion

This chapter has presented and attempted to justify the

results of the functional requirements analysis phase of

this thesis effort. As a prelude to the discussion of the

requirements, the symbology of data flow diagrams was

introduced. The concept and feasibility of an automatic

programming system was also briefly discussed. The next

chapter describes the design phase of this effort.

2-17

III. Design

Introduction

In this chapter, the design of the natural language

processing system, Coin (Constructor/Interpreter), and the

data dictionary system, DDS, are described and justified.

The description begins with the overall functional system

design of DDS. Following this, more detailed functional

descriptions of Coin's design, the data dictionary tool's

(DDT) design, the grammar's design, and the grammar-to-DDT

interface's design are given.

The system-level design is presented in the form of a

data flow diagram (see Chapter II for a description of

DFDs). The lower-level designs are in the form of structure

charts which are included as Appendix B. Figure 3.1 shows

an example of a structure chart. Structure charts depict

the modules of a program as rectangular boxes. Each box is

labeled with the name of the module it represents. The

boxes are interconnected with arrows from the invoking to

the invoked modules. Each arrow is labelled with a number

which corresponds to a number in an accompanying table. The

tables tell what information is passed between the modules.

As an example, Table III-1 corresponds to the structure

chart of Figure 3.1.

3-1

-~~~0 Ge...-

5 I

10

PA.

*Figure 3. 1. Sample Structure Chart

3-2

*4

-7 _'w

parse Interfaces

Passed Parameters Type Returned Parameters Type

1 sentence data
grammar data

2 sentence data result data

sub-grammar-list data

3 result data successful parse? flag

4 (none)

5 sentence data result data
sub-grammar data

6 sentence data result data
function data

7 cdr*(sentence) data result data
sub-grammar-list data

8 sentence data result data
sub-grammar-list data

9 cdr*(sentence) data result data
sub-grammar-list data

10 sentence data result data
sub-grammar data

11 sentence data result data
function data

The cdr function returns a list of all but the first

element of a list passed to it. For instance, the cdr of
the list (a b c) is the list (b c).

Table III-1. Sample Module Interface Table.

3-3

. .° -.

.. .. .

Structure charts were used to document the design

because their notation is simple and therefore easy to use

and understand, and because the SDW provides a tool (SYSFL)

which partially automates their generation. Other notations

which can be used to document software design include

Leighton diagrams, Hierarchy plus Input, Process, Output

(HIPO) charts, and structure trees. Again, for the reasons

noted above, structure charts were chosen for use in this

thesis effort. For more information about these design

* documentation methods, see Software Design: Methods and

Techniques (Peters, 1981:44-62).

System Design

The design of DDS is divided into four functional

elements: CoIn, DDT, the grammar, and the interface. As

shown in Figure 3.2, CoIn consists of the GRAMMAR

CONSTRUCTOR and SENTENCE INTERPRETER processes, DDT consists

of the DATA DICTIONARY ACCESS process and its associated

* data store, the grammar consists solely of the GRAMMAR

store, and finally, the interface consists of the INTERFACE

process and its data store.

*The EXECUTION COMM4AND shown in Figure 3.2 is built into

the grammar and is sent to the INTERFACE process by the

SENTENCE INTERPRETER process at the end of a successful

-sentence parse. Similarly, the DATA STORAGE COMMANDs are

3-4

IIO

I- I

4z I
aL

x

WE

*Z 0

Figure ~ L 3.2 SytmDsinDt loiga

3- 1-5

.................... .W

built into the grammar and are executed by the INTERPRETER

process as the input sentence is traversed. These commands

tell the INTERFACE process what actions are desired and upon

which data dictionary items these actions should be

performed. The DATA DICTIONARY COMMANDs are generated by

the INTERFACE process upon receipt of the EXECUTION COMMAND.

They are based on the information in the INTERFACE DATA data

store and are sent to the DATA DICTIONARY ACCESS process to

be acted upon.

* Natural Language Processor Design. As suggested by the

requirements in Chapter II, the natural language system

consists of two distinct subsystems: a grammar constructor

and a sentence interpreter. The design of both of these is

described in this section, but first the data structures

used to represent the grammar are defined.

Data Structures. The first decision in the design

of Coin was the form of the data structures in which the

grammar is maintained. Three structures were defined: the

production record, the function record, and the meta-symbol

list (Figure 3.3) . These structures and their purposes are

described in the following paragraphs.

Production Records. Production records are

used to store the productions of a grammar and consist of

three fields. The first field is the element which the.-

current word of the input sentence must match for a parse to

3-6

I1 NAME I SU-PODCTO LIT OE !9
9! +----+------------------+---------+I

91 (a) Pruction Record Fields If

-- -- - -- -- ----------------------

-- - - - - - - - -------------------- 9

I! (b) Funti-yo Recor Fields 9

--- 9

* ~ ~ ~ ~ Fgr 3.3 9!tra MEASMO !MT-YBLnug 2 Processor
9! ~ ~ ~ ~ ~ Dt Structures----+------------+----+9

conumay fgure 3.3.t Natal, Langa enrosr n

parceed his maculd be an litea whitectewr us ac

eaTyhe nmeme of a sbproduction record to be uised as

theibl gramabi-arcurosveicl ton te pse ouotine the

Snpame sof uncinreodtdapyt the current word, ans ucesul. aho

en-o-podctonmake wih lwysmachs utdos7o

these sub-productions are identical in structure to the

parent production record. This eases the parsing task by

allowing recursion.

The third and final production record element is a

piece of executable source code to be invoked if the

production is successfully traversed.

Function Records. The second structure

needed by CoIn is called a function record. Function

records consist of a name and a piece of executable source

code which is used to determine if the word passed to a

function is a member of the function's domain. If it is, . -

then the parse of the word is considered successful.

The Meta-symbol List. The meta-symbol list

structure is simply a list of the names of a grammar's

production and function records. These names are called

meta-symbols because they are names and not terminal symbols

of the grammar. The meta-symbol list is used to keep track

of the meta-symbols that have been defined so they are not

accidentally redefined and so they can be easily stored by

the grammar save routine.

The Constructor. The grammar constructor consists

of eight subprograms which are used to build the structures

described above. These include routines to initialize a

grammar, create production records, create function records,

add productions to an existing production record, modify an

3-8

. ..

.-... ,......... . ..*"*. , -* " .","-, -"-.• ° -• -"."* "-"--,- - . '.-,-. . '.- -,'" " ,

existing function record's executable code, destroy

production records, destroy function records, and save a -

grammar. Each of these subprograms is described below.

The grammar initialization subprogram

(initialize-grammar) destroys all of the production records

and function records of the current working grammar. It

also empties the list of meta-symbols. This subprogram

requires no input parameters.

The grammar constructor subprogram that creates

* production records (create-production) takes as input the

name of the production record to be created and, optionally,

a piece of executable code to be executed whenever the

production record is successfully traversed by the

interpreter. Before attempting to create a production

record, this subprogram confirms that the name passed to it

has not already been used.

The grammar constructor subprogram that creates

function records (create-function) is similar to the one

* that creates production records. It too requires a name

which it assigns to the function and an optional piece of

executable code. It too confirms that the name passed to it

* has not already been used.

The subprogram that adds productions to a production

record (add-production) requires three input parameters:

the grammar production, a piece of executable code to be-

3-9

executed whenever the production is successfully traversed

by the interpreter, and the name of the production record

that the production is to be added to. This subprogram

first determines whether the name passed to it is a defined

production record. If it is, then the subprogram adds the

production and the code to the record. Otherwise, it

displays an error message.

The subprogram that modifies the executable code of a

function record (modify-function) requires the new code and

the name of function to modify as input parameters. This

subprogram determines whether the name is a defined function

record and, if it is, replaces the old code with the new.

Otherwise, if the name is not a defined function, it

"" displays an error message.

The production record and function record destruction

subprograms (destroy-production and destroy-function,

respectively) purge the production or function record whose

name matches their input parameter. If the production or

function record does not exist, then an error message is

displayed.

The grammar save subprogram (save-grammar) stores all

of the production records and function records of the

current grammar to a disk file. It also stores the list of

meta-symbols. This subprogram requires no input parameters.

3-10

............................. .* . .. *. *

-4 ,' _ "o_ '' ' y.',C,-_'- ';- ._'. _..-.
-

-;. '.-'.- --- '- ..'-' ,..,.. . .-..-..-.. .-.'.,-..," .'-,°*'-,.

IThe Interpreter. The sentence interpreter

consists of a single user-callable routine. The user

- provides an input sentence and a grammar to the interpreter.

It attempts to match the sentence to the grammar. As a

successful parse continues, the interpreter executes the

associated code built into the grammar. If the interpreter

is unable to successfully parse a sentence, it displays an

error message on the user's terminal screen.

AS was discussed in the section on data structures, the

0 interpreter uses recursion to traverse the grammar. The

objective was to model the interpreter after the data

structures in order to make the code as simple and easy to

eunderstand as possible.

Data Dictionary Tool Design. DDT was designed from an

object-oriented viewpoint. Goldberg defines an object as a

I ."uniform representation of information that is an

abstraction of the capabilities of a computer" (Goldberg,

1984:76) . An instance of an object has associated with it a

set of memory locations, called instance variables, and a

set of operations, called methods, which can access the

instance variables. An object's instance variables can be

I accessed only through its methods. This trait forces a

*well-defined interface to the information stored within the

*instance. Each "type" of object has associated with it a

I schema which defines the information that can be stored.

3-11

The set of objects which are instances of a particular

schema is called a class. For more information about

object-oriented programming, see Smalltalk-80, The Language

and Its Implementation (Goldberg, 1984:76-80) and

Smalltalk-80, The Interactive Programming Environment

(Goldberg and Robson, 1983:6-9).

Object Classes. This subsection defines the

object classes which make up the data dictionary. Appendix

E provides a set of diagrams which show the hierarchical

structure of the high-level data dictionary object classes.

In these diagrams, solid lines indicate that the lower level

class is explicitly part of the higher level class. Dashed

lines are used when the lower level class is implicitly part

of the higher level class. Figure 3.4 is an example of one

of these diagrams. In this example, the PROCESS object

class is only implicitly a part of the DESIGN object class. - -

The DESIGN class actually contains a reference to the SLOT

class in which is stored a set of pointers to instances of

the PROCESS object class. Appendix E also includes a

detailed description of each of the defined object classes

including their corresponding methods. Appendix B contains

structure charts for each of the defined high-level methods.

Structure charts were not included for the low-level methods

(i.e. methods which retrieve or set the value of a single

instance variable) because of their simplicity. The

3-12

0
- *1

, ' "," "AL :"2 l" . •" .-. ". "'......".. .. .• ...--

at M

(n

go Ix

Ic

Figue 3.. SmpleObjct Herachy har

3-13

remainder of this subsection presents a textual description

of the object classes.

ACTIVITY. This class corresponds to the

Functional Requirements Analysis Phase 'Activity' data

dictionary entry.

ACTIVITY-ALIAS. This class corresponds to

the Functional Requirements Analysis Phase 'Alias' data

dictionary entry for activities.

ALIAS. This class is a common component of

the ACTIVITY-ALIAS, DATA-ELEMENT-ALIAS, PARAMETER-ALIAS, and

PROCESS-ALIAS object classes. It consists of the instance

variables common to all of these objects.

j(. ASSOC. This is a primitive-level object

class used to define the ASSOC data type and its operations.

The ASSOC data type is similar to Lisp's association list.

An association list consists of a list of pairs. The first

element of the pairs can be searched by using the 'assoc'

function. The 'assoc' function returns the matching pair or

NIL if no match is found.

ATOM. This is a primitive-level object class

used to define the ATOM data type and its operations. The

ATOM data type is similar to Lisp's atom.

DATA-ELEMENT. This class corresponds to the

Functional Requirements Analysis Phase 'Data Element' data

dictionary entry.

3-14

_N 2.

DATA-ELEMENT-ALIAS. This class corresponds

to the Functional Requirements Analysis Phase 'Alias' data

dictionary entry for data elements.

DATE. This is a primitive-level object class

used to define the DATE data type and its operations.

DESIGN. This is a high-level class which is

used to keep track of all the aliases, parameters, and

processes in a program design. It also is used to maintain

a list of the main processes (i.e. those processes which are

not invoked by another process in the design) of a program

design.

ENTRY. This is a low-level object class

(O- which is used to define instance variables which contain the

version number and date of entry of the object instances in

which it is included. This class is included as a subclass

of the ACTIVITIES, ALIAS, DATA-ELEMENT, DESIGN,

IMPLEMENTATION, PARAMETER, PROCESS, and REQUIREMENTS object

classes.

HEADER. This is a low-level object class

which is used to define instance variables which contain the

name, type, and project name of the object instances in

which it is included. This class is included as a subclass

of the ACTIVITIES, ALIAS, DATA-ELEMENT, DESIGN,

IMPLEMENTATION, PARAMETER, PROCESS, and REQUIREMENTS object

classes.

3-15

.................... .,.

• 2 -. . .'-- -. •,' :.. ".-.-'' :- '- -. ,. 'i ,- .- .;- . -" ,>..- - - . . .-- . .. L--,.,-.- .' -. , , .- i .., . " .h"., .,. . •-.

- :... q . * *:** .q .*

IMPLEMENTATION. This is a high-level class

which is used to keep track of the modules and variables of

a program. It is also used to maintain a list of main

modules (i.e. those modules which are not invoked by another a.

module in the implementation) of a program implementation.

MODULE. This class corresponds to the

Implementation Phase 'Module' data dictionary entry.

LIST. This is a primitive-level object class

used to define the LIST data type and its operations. The

LIST data type is similar to Lisp's list.

PARAMETER. This class corresponds to the

Systems Design Phase and Detailed Design Phase 'Parameter'

0 O- data dictionary entries. It is also included as a subclass
~70

of the DATA ELEMENT and VARIABLE object classes.

PARAMETER-ALIAS. This class corresponds'to

the Systems Design Phase and Detailed Design Phase 'Alias'

data dictionary entries for parameters.

PROCESS. This class corresponds to the

Systems Design Phase and Detailed Design Phase 'Process'

data dictionary entries. It is also included as a subclassKi
of the MODULE object class.

PROCESS-ALIAS. This class corresponds to the

Systems Design Phase and Detailed Design Phase 'Alias' data

dictionary entries for processes.

3-16

S a

PROJECT. This is the highest-level object

class. It is used as a pointer to the REQUIREMENTS, DESIGN,

and IMPLEMENTATION object instances of a project.

REQUIREMENTS. This is a high-level class

which is used to keep track of the activities, data

elements, and aliases of a requirements analysis.

SLOT. This is a low-level class which is

used to store pointers to the primitive value-storing object

instances. It is also used to define which instance

0, variables are reguired to be filled in and which instance

variables have been filled in. Finally it is used to store

a label to be printed when an instance variable's value is

displayed.

TEXT. This is a primitive-level object class

used to define the TEXT data type.

VARIABLE. This class corresponds to the

Implementation Phase 'Variable' data dictionary entry.

Grammar Design. The design of the grammar consists of

ttwo parts. For each desired action type (e.g. add, delete,

display, etc.), English-like sentences which describe the

action and its object must be defined. This can be a

*never-ending process, since there are many sentences with

the "same meaning" in the English language. The best that

can be done is to try to define and implement the sentence

* structures that most people will use most of the time. The

3-17

77 "7' .7 .T o

minimum that must be done is to define at least one

English-like way to describe each action that the data

dictionary tool is capable of performing. Since the

emphasis of this thesis effort was on the grammar

constructor and interpreter, the second of these two

approaches was taken.

The second part of the grammar definition task is to

define the pieces of source code which transform the input

English-like requests into a form usable by the

grammar-to-DDT interface. From this perspective the grammar

is really part of the interface, but, for presentation

purposes, it will continue to be described separately from

the interface.

Interface Design. The interface design makes use of

object-oriented techniques. Here a single object class,

called EVENT, is defined. This class is used to store

information about what actions are to be executed by the

data dictionary tool. The methods of EVENT send messages to

the data dictionary to perform the desired actions.

Appendix F provides a description of EVENT and its methods.

Conclusion

This chapter has described the design of DDS including

the natural language processor, CoIn, and DDS's other

subsystems. Structure chart and object-oriented design

3-18 .- -I

* -.. .- V.*:*i*.

methods were introduced and were then used in the design

specification. Chapter IV continues the description of this

effort by presenting the implementation phase.

3-19 .- -

-. * .. "' .. .- -. - - - -' --. - ".- . -.*'_'- wf -l W fl ' W .-. " -w vw- ' v -'. -v trw
-

w I-.-,- +r _-- -. - -. . J --. - .-- -

IV. Implementation

Introduction

This chapter discusses the implementation of DDS

including CoIn. As in previous chapters, the system level is

looked at first, followed by a more detailed discussion of

each of its subsystems. The final section of this chapter

describes the integration of CoIn and DDS into the Software

Development Workbench. Volume 2 of this thesis contains

complete source code listings of the data dictionary system.
04

System Implementation

DDS was implemented on the AFIT Information Sciences

Laboratory's DEC VAX-11/780 minicomputer under the VMS

operating system Version 3.6. Figure 4.1 is a diagram of

the configuration of this computer system during the time

DDS was being implemented. The ISL VAX was chosen as the

target machine for two reasons. First, it was available and

not overloaded compared to other machines at AFIT. Second,

it is the host machine of the SDW (Hadfield, 1982:17-18).

After deciding upon the target machine, the next major

decision made during the implementation phase was the choice

of the implementation programming language. Several

languages were available on the target machine at the

beginning of this phase, including C, Fortran, Lisp, Pascal,

4-1

+...

7-7 ~ ~ -7-7-

ILn

ata

U'B

* Figure 4.1. AFIT ISL VAX-11/780 Hardware Configuration

4-2

r - - - . - -

and Prolog. Of these, Lisp was chosen for three reasons.

These are described in the next paragraphs.

The first and most important reason for choosing Lisp

as the implementation language is the development

environment provided by Lisp systems. Lisp systems

generally provide an interpreter, compiler, editor, and

debugger combined into one nicely integrated environment.

This allows the Lisp programmer to easily jump back and

forth between these different tools. As each subroutine is

developed, it can be tested; debugged, modified, or

redesigned as necessary; compiled into object code; and

integrated into the system, all without leaving the Lisp

environment.

The second reason for choosing Lisp is pedagogical in

nature: a student of artificial intelligence is generally

expected to learn to program in Lisp. Writing code in Lisp

is a necessary part of fulfilling this goal. The thesis

effort provided an excellent opportunity to pursue this

goal.

The existence of a large amount of Lisp code that could

possibly be used in DDS was the third reason for choosing

Lisp as the implementation language. Prototypes of both the

grammar constructor/interpreter and the software design part

of the data dictionary tool were built in other projects

(Wolfe, 1985a) (Wolfe, 1985b).

4-3

. ~ . .'. . -

The particular implementation of Lisp used is called

NIL (Burke, 1984) which is an acronym for New Implementation

of Lisp. NIL was developed at MIT and is based on Common

Lisp (Steele, 1984) . NIL is a fairly complete

implementation of Lisp. Its most serious lack is that it .1

does not include a garbage collector (a routine which

reclaims discarded memory cells) . The lack of a garbage

collector means that one must periodically exit NIL, restart

it, and then reload DDS and one's database. Fortunately,

this needs to be done seldom enough that it should not be a4

major problem. The reason for choosing NIL was that it was

the only version of Lisp installed on the ISL VAX-11

__ computer at the time this effort was begun.

While the entire DDS is implemented in Lisp, parts of *
it (the data dictionary tool and the interface) are

implemented using an object-oriented language built on top

of Lisp. This language is called Flavors and is included in

NIL (Burke, 1984:170-178) . Flavors is an environment which

* allows one to define and manipulate objects (Chapter III

contains a discussion of objects) . Since Flavors is built

on top of Lisp, one can still access all of the functions of

*Lisp. This makes the Flavors system ideal for implementing

an object-oriented system which must interface with a system

written in Lisp.

4-4

' ~ .,E ' *5 I .5 -.. .-

CoIn Implementation. This subsection describes the

implementation of the natural language processor. CoIn was

by far the most difficult part of the data dictionary system

to design and implement. Implementation of the grammar data

structures was straightforward--the record structures

discussed in the last chapter were simply implemented as

Lisp lists. However, the grammar constructor routines were

difficult to implement properly, and the development of a

workable design for the sentence interpreter was an

iterative process of prototype development and throwaway.

The Grammar Constructor. The grammar constructor

consists of an implementation of all of the subprogram

designs described in Chapter III. Each of the subprograms,

except for the grammar initialization and saving routines,

is implemented as a Lisp macro (along with any needed

lower-level subfunctions). Macros were used to simplify the

user interface. Unlike a Lisp function, a macro does not

evaluate its arguments before the body of its code is

executed. Since the parameters that are passed to these

macros are not meant to be evaluated, using macros saves the

user the trouble of quoting the parameters. Since neither

the grammar initialization nor the grammar saving

subprograms require any arguments, they were implemented as

Lisp functions.

4-5

.- ." .o
o.

Implementing the grammar constructor presented a couple

of problems. One difficulty was the necessity of making the

constructor's routines "destructive" in nature. That is,

any changes made to the grammar using the constructor must

permanently alter the global data structures of the grammar.

Otherwise, if the change is not global, it will be lost, and

the grammar will remain unchanged. In order to facilitate

this requirement, a slightly modified version of the editor

presented in Chapter 7 of Artificial Intelligence

Programming (Charniak, et al, 1980:84-97) was heavily relied

upon in the constructor implementation. This editor is

destructive in nature. The original editor was designed to

a * edit Lisp function definitions, but since the data

structures of a grammar are not functions but lists, it was

necessary to modify the editor to enable it to edit any Lisp

symbolic expression. A side benefit of implementing this

editor is that not only is it used in the grammar

constructor, but it can be used as a standalone tool to edit

the grammar data structures or any other Lisp symbolic

expressions one wishes to modify.

Keeping track of the positions of the expression editor

global pointers within the grammar data structures was a

second source of difficulty in the constructor

implementation. The data structures of a complex grammar

are themselves complex. To overcome these problems, many

4-6

hours of tracing code while keeping track of pointers on a

hand-drawn representation of the structures was done.

The Sentence Interpreter. As mentioned

previously, the design and implementation of the sentence

interpreter turned out to be an iterative process. The

original version of the interpreter was developed as part of

a project in EE 6.23, Artificial Intelligence System Design

(Wolfe, 1985a). This version provided insight into the

problem but no executing code.

The second design/implementation followed the form of

the data structures much more closely. It was capable of

correctly interpreting a grammatical sentence (if the

* grammar had been carefully designed) but could not always

recognize a nongrammatical sentence as being invalid. The

problem was that not enough information was being returned

by the low-level subroutines for the driver subroutine to

recognize an error. Correcting this problem was one of the

major changes in the third (and present) version of the

sentence interpreter.

The present module structure of the sentence

interpreter is very similar to the previous one. Most of

the differences are in the detailed design and

implementation of the mid-level subroutines. Both the

high-level driver routines and the low-level data structure . -

access routines are essentially unchanged from the second

4-7

oO , -..

version. However, the module interfaces between the

high-level and the mid-level routines were modified so as to

return the information necessary for the top-level module to

detect nongrammatical input sentences.

The interpreter parses an input sentence left-to-right --

comparing the words of the sentence to the grammar. As it

successfully parses the sentence, it executes the associated

Lisp source code contained in the grammar. If it is unable

to fully parse a sentence using a production of the grammar,

it backtracks to a previous branch point in the grammar and

tries again. If the interpreter is unable to fully parse a

sentence using any of the grammar productions, then the

sentence is considered nongrammatical and an error handling

routine is invoked. Currently the error handling routine

displays only a message that the sentence was invalid within

the context of the supplied grammar.

Data Dictionarx Implementation. The data dictionary

tool (DDT) was implemented as a set of Flavors objects and

their associated methods. For most of the defined object

classes of the data dictionary tool (not all were

implemented due to time constraints) , a Flavors object was

declared. The slots of the Flavors objects correspond

exactly to the instance variables defined in Appendix E.

Similarly, the implemented Flavors access methods correspond

exactly to the defined methods listed in Appendix E.

4-8

;%. .

Since the low-level objects were needed by all of the

higher level objects, they were implemented first (except

for the TEXT object which was not implemented in this

effort). Next the objects associated with the software

design phase were implemented. This choice was made because

some of the code already existed from a prior project

(discussed above). Finally the highest-level object

(PROJECT) was implemented. Also the objects concerned with

the requirements phase and implementation phase were

minimally implemented at this time.

Grammar Implementation. Once the grammar had been

defined, implementing it was quite straightforward. The

grammar productions of Appendix C were entered verbatim

using the grammar construction routines of CoIn. Figure 4.2

shows an example of one of these productions (the notation

used in the figure is defined in Appendix C). Entry errors

were corrected either by making use of the expression editor

in CoIn or by deleting and reentering the erroneous

productions. Implementation of the grammar brought out a

need for several more grammar modification subprograms.

These are further discussed in Chapter V. The Lisp code

that was included within the grammar is really part of the -

interface, so it is discussed in the next subsection.

4-9

* *. . * .. .

- - - - - -r - - - - --- - ------- - -. -* * - ----------

(~grammar>..
* (please) (aux-grammar>

--

Figure 4.2. Sample Grammar Production

h The defined grammar was not completely implemented

during this thesis effort. Effort was concentrated on the

presentation part of the grammar as it was thought to be

psimple enough to fully implement, yet complex enough to be a

valid demonstration of that CoIn can be used to implement a

useful natural language human-computer interface. The

j (e presentation part of the grammar was considered relatively

simple because during presentation of the data, there is no

new information being added. The information that is

Icontained in an input sentence can all be checked

word-for-word against the grammar and database. The

*presentation part of the grammar was considered complex

I enough because it needs to have the capability of accessing

the entire database, and it makes use of all the

capabilities of the interpreter.

Other parts of the grammar that were implemented during

*this thesis effort include the initialization productions

*and the data save and quit commands. The initialization

4 -10

IT Ii

productions were implemented because it was quite simple to

do so, and the data save and quit commands because of their

obvious importance.

Interface Implementation. The interface between the

sentence interpreter and DDT was implemented as a single

Flavors object class called EVENT. A set of methods to

access this class and the internal Lisp code of the grammar,

which invokes these methods, constitute the remainder of the

interface implementation.

The EVENT object class was modeled after Schank's

Conceptual Dependency (CD) theory (Schank and Riesbeck,

1981:10-26). According to the CD theory, every event has an

actor, an action, an object, and a direction. The actor is

the entity which performs the action. The action is

performed upon an object and is oriented in a direction. In

the case of the interface, the actor is always the computer,

the action is one of the defined commands of the interface,

the object is an instance of one of the data dictionary's

objects, and the direction is either from the data base to

the user's terminal or vice versa.

A second idea of CD theory is best described by Schank

and Riesbeck: "When two sentences describe the same event

in such a way that these descriptions have the same overall

meaning but quite different forms, we expect out CD

4-11
, 4 .

.o

--. - -? .:- -

representations to be identical for both descriptions."

(Schank and Riesbeck, 1981:14). This idea was also used in

the design and implementation of the interface. A set of

command types corresponding to the operations of DDT was

defined in the grammar. The various sentence forms of each

of the command types is mapped into an identical

representation by the interface. Upon completion of a

successful parse, this representation is converted into a

command that can be executed directly by the data dictionary

tool. Any response by DDT is sent directly to the user's

terminal.

Integration into the SDW

Using the Software Development Workbench Executive

Maintenance Guide (Hadfield, 1982:355-364) as a guide, DDS

and CoIn were integrated into the SDW. The first decision

made for each of these systems was the choice of a two

letter code to be entered by the SDW user to invoke the

tool. The codes 'DD' for DDS and 'NL' for CoIn were chosen

because they were available and because of their obvious

mnemonic nature.

The second decision made was to determine to which of

the SDW's functional groups of tools each system should be

added. Since the design phase part of DDS was concentrated

* upon during implementation, it was decided to initially add

DDS to the Design Tools functional group of the SDW. When

4-12

.

the requirements phase part of DDS is completed, DDS should

be added to the Requirements Definition Tools functional

group. Likewise, when the implementation phase part of DDS

is completed, DDS should be added to one of the

implementation tools functional groups, possibly the Text

Editors group. The grammar constructor portion of CoIn is

essentially a grammar editor, so CoIn was added to the Text -, -.

Editors group.

Conclusion

This chapter discussed the implementation of DDS and

its subsystems, including CoIn. The choice of the target

j - machine was discussed, as was the choice of implementation

language. This chapter concluded with a discussion

concerning the integration into the SDW of DDS and CoIn.

The next chapter, Chapter V, concludes this thesis by

reviewing and analyzing this thesis effort and providing

suggestions for further work.

4-13

p: : :

W-; P.-----'.;x M -7% "777.

.;...--*, ,.

V. Conclusion and Recommendations

Introduction

This thesis has described the development of a natural

language processor, CoIn, and its application to a data

dictionary system. DDS, the data dictionary system,

consists of several distinct but interacting parts: a I

natural language human-computer interface implemented using

CoIn, a data dictionary access mechanism, and an interface

between the grammar and the data dictionary tool. The

emphasis in DDS was on the first of these subsystems.

Although the other subsystems make DDS a usable system,

their primary role was to show that the interface

constructor and interpreter is a useful and usable tool.

This final chapter first presents a short summary of the

system development. Following this, an analysis which

relates the current system back to the standards described

in Chapter I is presented. Finally, a list of

recommendations for the completion and enhancement of the

system is included. -

Development Summary

CoIn and DDS were built using a variation of the .

classic software development life cycle. First an extensive

literature search was done to gain a better understanding of

5-1

4

.-. . '._ ... ?. p.. - ,,-..,........,..-,....-.- p. % ..

-- .- "-""..----•,--.---

natural language systems, the software development process

and its problems, and how these problems might be diminished

by automation. The information gleaned from this search,

along with prior knowledge, was used as the input to the

requirements analysis phase. In this phase, sets of

requirements were defined for the natural language

processor, for the entire data dictionary system, and for

each of its subsystems.

After generating the initial set of requirements, an

iterative process of design-implement-test had to be done.

This process provided necessary feedback about the

completeness and consistency of the requirements. This

feedback was used to modify the requirements as required.

The design and implementation of the sentence interpreter in

particular was a cyclic process of prototype development.

Throughout the implementation, routines were tested as they

were developed, both isolated from and integrated into the

system. The testing done is by far inadequate (mainly due

to its informality) but does suggest that DDS is reasonably

error-free.

Analysis of the Current System

As has been shown in this thesis effort, CoIn does

allow one to construct a usable natural language

human-computer interface. The constructor does provide at

5-2

. v. *..-.*.

least the minimum set of routines necessary for building a

grammar, and their interfaces do seem consistent with each

other. The interpreter is able to correctly parse -,

grammatical sentences within the implemented DDS grammar

(Figure 5.1). The interpreter is also able to recognize and

report non-grammatical sentences (Figure 5.2). Therefore,

from the point of view of the natural language processor,

this project should be considered a success.

The data dictionary itself is not complete and needs to

be extended. This is discussed more in the next section.

Enough of the system is implemented to show that it is a

reasonable project. What is implemented does show the

O. -utility of the natural language processor, so the data

dictionary should be considered fairly successful.

Finishing DDT should be easy, albeit time-consuming.

Finally, DDS does operate in a reasonable amount of

time. Several timing test were made with an moderate load

on the computer system (4 users logged in). DDS was able to

consistently respond in 1 to 3 seconds.

Recommendations for Future Work

DDS is incomplete. Not all of the requirements have

been fulfilled by the design. Not all of the design has

been implemented. More, formal testing, in accordance with

the test plan (see Appendix G), needs to be done. The

5-3

,' L ' ' 4 -, ,-; ¢ - ,Z'r ,L', ' L'_,-'. _' Z4"L.,_ ' ' , " ,-' -' -,-'_-' -' '..' .:. :,.._. . - ." -'. -' ." " .' •' " . " . " ", '.- .. .---'-

i'-,.r r- .r '°.' - -- - - - --" --' " "- - - --- -- -.. .. . - ' -- - - -- -- - - ---. - -' '' \ ' ' L , . '.- '- -, - - -
4'"

1 Data Dictionary System (DDS) I[
1(Type (help) for help.

I, DDS-> (please show me the version and date of process
- is-process) f
II
If Entry Version: 1

Entry Date: 29 Aug 85

DDS->

Figure 5.1. Example of a Valid Sentence Entered
into DDS

+--f '- --.

11 DDS-> (what are the calling processes of foo aliasl)
If , .
If * Error - Can't parse sentence * .If .
I[DDS-> >-
f .

Figure 5.2. Example of an Invalid Sentence Entered
into DDS

following subsections describe some of the work that needs

to be done for DDS to become a usable system.

CoIn. Of the subsystems, CoIn is probably the closest

to being a "complete" implementation. This is natural since

the emphasis of the thesis work was on this part of the
0q

system. The most severe lack in CoIn is in its handling of

nongrammatical input sentences. The sentence interpreter's

error handling routine needs to be greatly enhanced. As it

5-4

. '"

is implemented now, it provides virtually no information to

a user of the system. This is a serious limitation and

needs to be investigated and corrected as soon as possible. ,

In Chapter IV, the statement was made that several ___

grammar modification subprograms need to be added to the

grammar constructor. There are at least two such routines.

First, a routine to remove a production from a production

record is needed. This can currently be done either by

destroying the production record and reentering all but the

production to be deleted or by using the s-expression error.

Neither of these solutions is good a good one. The first

can be very time consuming; the second, due to the recursive

nature of production records, is difficult and error-prone.

The second subprogram that needs to be added to the

grammar constructor is one that would allow the modification

of the Lisp source code contained in the grammar. The need

for this routine is not as critical as the need for the

production deletion routine--modification of the Lisp code

is fairly easy using the s-expression editor. This is more

of a "nice to have" routine.

DDT. The emphasis in DDT was on the objects needed

during the design phase of the software development life

cycle. Therefore, the implementation of these objects is

closer to being complete than the objects associated with

the requirements or implementation phase. However, even the

5-5 . ". .•

...

design phase objects still need work. Files for source code

have been created and instance variables have been defined

for all of the object classes. Several of these object

definitions have not yet been entered. While the defined

access methods have all been implemented, the access methods

of several object classes have not yet been defined. Before

DDS can be used throughout the life cycle, these

deficiencies must be eliminated.

DDT was implemented using the Flavors language of NIL.

0 A subject worth investigating is the rehosting of DDT using

a data base management system (DBMS) . Unfortunately, NIL

provides no means for interfacing to an external DBMS.

(. However, DEC's VAX Lisp is now available on the ISL VAX.

VAX Lisp may provide the capability needed to access

external systems. Whether this is indeed the case needs to

be determined.

The Grammar. It is felt that the grammar as defined is

adequate for interacting with DDS. This is not to imply

that the grammar is all inclusive, but that it does provide

at least one way to specify each of the possible operations

of DDT. Extending and refining the DDS's grammar could

0 probably be a thesis project all by itself.

K.one of the primary deficiencies of the grammar is that

it was not completely implemented during this thesis effort.

Completing the implementation should be possible for a Lisp

5-6

programmer with reasonable knowledge of the structure of

DDS.

The Interface. How close the interface is to being

complete is difficult to judge. As the grammar is

implemented, the corresponding Lisp interface code must be

included. Whether changes will be necessary to the rest of

the interface depends on how this code is implemented.

5---7 -

5.7°°

* * - **-* . . >-->-c~ ~- 2 -~,.*:.-*~.-:.e.• . °-.

C. *. *..

C..-..

* -C.

'C.

4.

.- *b.~

*

p

I

Appendix A

System Data Dictionary V. - -

- .4.

r..~. C.)

I

I

I

p.

A-i

'C .

4 . . , . . C.............

- . C.-

Introduction

This appendix contains the data dictionary for DDS and

CoIn. Currently there are four entry types: ACTIVITY,

ALIAS, DATA FLOW, and PROCESS. The ACTIVITY, ALIAS, and

DATA FLOW types are all associated with the functional

requirements analysis phase of the software development

lifecycle. The PROCESS type is associated with the design

phase.

A-2_ .

.:.

7I p.

.-2:-

.................................... ~ l

DDS System Data Dictionary

NAME: ACCESS DATA DICTIONARY
TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: DATA DICTIONARY ACCESS COMMAND

DATA DICTIONARY DATA
OUTPUTS: DATA DICTIONARY DATA

DATA DICTIONARY ERROR MESSAGE
CONTROLS:

MECHANISMS:
ALIASES:
PARENT ACTIVITY: DATA DICTIONARY SYSTEM
VERSION: 1
DATE: 22 OCT 85

NAME: ADD-PRODUCTION (MACRO)
TYPE: PROCESS
PROJECT: DDS
NUMBER:

SDESCRIPTION:
INPUT DATA: PRODUCTION

CODE TO EXECUTE
PRODUCTION RECORD NAME

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *EDIT-EXP*
GLOBAL DATA CHANGED: *EDIT-EXP*
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: IS-PRODUCTION

ED-RESET
AUX-ADD-PRODUCTION

RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A-3

p ::-. .: :,::::" :.:,: .<:::.:::: : :.:k: ,:: . :::::::::::: : :.:. : :::: .: ":-, . . . , "" -:: ;"?:: ic :~

NAME: ADDITION COMMAND
*TYPE: DATA FLOW

PROJECT: DDS
PART OF: DATA DICTIONARY ACCESS COMMAND
COMPOSITION:.-
ALIASES: .

SOURCES: UPDATE DATA DICTIONARY
DESTINATIONS: UPDATE DATA DICTIONARY
VERSION: 2
DATE: 22 OCT 85

NAME: AUX-ADD-PRODEJCT ION
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: PRODUCTION
CP TCODE TO EXECUTE
INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *EDIT.PTR*
GLOBAL DATA CHANGED:
FILES READ: "
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: ED-RIGHT

INSERT-PRODUCT ION
ED--DOWN

LOOP &
AUX-ADD-PRODUCTION (RECURSIVE)
ED-UP

* RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A- 4

...................................

NAME: COMMAND
TYPE: DATA FLOW
PROJECT: DDS
PART OF:
COMPOSITION: CONSTRUCTION COMMAND

SENTENCE
ALIASES:
SOURCES: USER
DESTINATIONS: DATA DICTIONARY SYSTEM
VERSION: 2
DATE: 22 OCT 85

NAME: CONSTRUCT GRAMMAR
TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: CONSTRUCTION COMMAND

GRAMMAR
OUTPUTS: CONSTRUCTION ERROR MESSAGE

GRAMMAR
CONTROLS:
MECHANISMS:

(ALIASES:
PARENT ACTIVITY: DATA DICTIONARY SYSTEM
VERSION: 2
DATE: 22 OCT 85

NAME: CONSTRUCTION COMMAND
TYPE: DATA FLOW
PROJECT: DDS
PART OF: COMMAND
COMPOSITION: GRAMMAR LOAD COMMAND

GRAMMAR MODIFICATION COMMAND
GRAMMAR SAVE COMMAND

ALIASES:
SOURCES:
DESTINATIONS: CONSTRUCT GRAMMAR
VERSION: 2
DATE: 22 OCT 85

A
.. - .•

, ,..

..] - ." .- - -.-" '.-y - - --- .. vv'iW r T.. .. u- , j _y' -. " -i .J ' P - .- -- ..' .j *j- . _,-. .. r

NAME: CONSTRUCTION ERROR MESSAGE
TYPE: DATA FLOW
PROJECT: DDS
PART OF: RESPONSE
COMPOS ITION:
ALIASES:
SOURCES: CONSTRUCT GRAMMAR

MODIFY GRAMMARI
DESTINATIONS:
VERSION: 2
DATE: 22 OCT 85

NAME: CREATE-FUNCTION (MACRO)
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: FUNCTION RECORD NAME

6INPUT FLAGS: FUNCTION CODE
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: CREATE-META-SYMBOL

SETF*
MS G

RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A-6

- .ADWR WRITTE: .] .

[CALIN PRCESES:-.-

71 .7 '-

NAME: CREATE-META- SYMBOL

TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: META-SYMBOL NAME

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *META-.SYMBOLS*

GLOBAL DATA CHANGED: *META-SYMBOLS*
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTrEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1 '-S

DATE: 29 OCT 85

NAME: CREATE-PRODUCTION (MACRO)

TYPE: PROCESS
PROJECT: DDS

NUMBER:
DESCRIPTION:"
INPUT DATA: PRODUCTION RECORD NAME

CODE TO EXECUTE

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:

GLOBAL DATA USED:

GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: CREATE-METASYMBOL

SETF*
MS G

RELATED ACTIVITY:

'JERSION: 1
DATE: 29 OCT 85 -:-

A-7

.................................-. 'RO...O)."--.-

NAME: DATA DICTIONARY ACCESS COMMAND

TYPE: DATA FLOW

PROJECT: DDS

PART OF:
COMPOSITION: ADDITION COMMAND

DELETION COMMAND

INITIALIZATION COMMAND

MODIFICATION COMMAND
PRESENTATION COMMAND

ALIASES:
SOURCES: GENERATE DD COMMAND

INTERPRET SENTENCE

DESTINATIONS: ACCESS DATA DICTIONARY

VERSION: 1
DATE: 22 OCT 85

NAME: DATA DICTIONARY DATA

TYPE: DATA FLOW

PROJECT: DDS
PART OF: RESPONSE

COMPOSITION:
ALIASES:
SOURCES: ACCESS DATA DICTIONARY

DISPLAY DATA DICTIONARY

UPDATE DICTIONARY

DESTINATIONS: ACCESS DATA DICTIONARY
DISPLAY DATA DICTIONARY

UPDATE DATA DICTIONARY

VERSION: 1
DATE: 22 OCT 85

NAME: DATA DICTIONARY ERROR MESSAGE

TYPE: DATA FLOW

PROJECT: DDS

PART OF: RESPONSE

COMPOSITION:
ALIASES:
SOURCES: ACCESS DATA DICTIONARY

DISPLAY DATA DICTIONARY
UPDATE DATA DICTIONARY

* DESTINATIONS:
VERSION:1
DATE: 22 OCT 85

A-8
*' ..

NAME: DATA DICTIONARY SYSTEM

PROJECT: ADIVTYS
NUMBER:
DESCRIPTION:

INPUTS:COMM4AND
INPUTS:DATA DICTIONARY

S OUTPUTS: DATA DICT'IONARY
RE SPON SE

* CONTROLS:
MECHANISMS:
ALIASES: DDS
PARENT ACTIVITY: (NONE)
VERSION: 2
DATE: 22 OCT 85

*NAME: DDS
TYPE: ALIAS
DD TYPE: ACTIVITY
PROJECT: DDS

- NUMBER:
* DESCRIPTION:
*SYNONYM: DATA DICTIONARY SYSTEM

VERSION: 2
DATE: 22 OCT 85

NAME: DELETION COMMAND
*TYPE: DATA FLOW

PROJECT: DDS
*PART OF: DATA DICTIONARY ACCESS COMMAND

COMPOSITION:
ALIASES:
SOURCES: UPDATE DATA DICTIONARY
DESTINATIONS: UPDATE DATA DICTIONARY
VERSION: 2
DATE: 22 OCT 85

A- 9

- ,

-, 4. ,

[_ I

NAME: DESTROY-FUNCTION

TYPE: PROCESS

PROJECT: DDS

NUMBER:
DESCRIPTION:
INPUT DATA: FUNCTION RECORD NAME

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: IS-FUNCTION

DESTROY-META- SYMBOL- ~MSG % .

RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

NAME: DESTROY-META-SYMBOL

TYPE: PROCESS

PROJECT: DDS

NUMBER:
DESCRIPTION:
INPUT DATA: META-SYMBOL NAME

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *META-SYMBOLS*

GLOBAL DATA CHANGED: *META-SYMBOLS*

* FILES READ: -

FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:

* PROCESSES CALLED: IS-META-SYMBOL

RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A- 10

..........._:.... :.........................*. . " _

17,1.-~~ ~ ~ ~ ~ 7 -.V777 7 7 %"-_-

NAME: DESTROY-PRODUCTION (MACRO)
TYPE: PROCESS . "

PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: PRODUCTION RECORD NAME
INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: IS-PRODUCTION

DESTROY-META-SYMBOL
MSG

RELATED ACTIVITY:
VERSION:

DATE:

NAME: DISPLAY DATA DICTIONARY
TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: DATA DICTIONARY DATA

PRESENTATION COMMAND
OUTPUTS: DATA DICTIONARY DATA

DATA DICTIONARY ERROR MESSAGE
CONTROLS:
MECHANISMS:
ALIASES:
PARENT ACTIVITY: ACCESS DATA DICTIONARY
VERSION: 2
DATE: 22 OCT 85

A-11

.

- 4 .07-177' 5 -77' .' 16 - V7 - -w -r i. .. .7 -,

.'o. to

NAME: DISPLAY-PARSE-ERROR
TYPE: PROCESS
PROJECT: DDS
NUMBER:DESCRIPTION":" '

INPUT DATA:
INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:

GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: MSG
RELATED ACTIVITY:VERSION :1 .-.

DATE: 04 NOV 85

NAME : FTN-CODE ""'
TYPE: PROCESS

PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: FUNCTION RECORD
INPUT FLAGS:
OUTPUT DATA: FUNCTION CODE
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:

HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:

VERSION: 1
DATE: 04 NOV 85

A-12

- p 2A1a .7

,%, %.. ..*'/

- ..% ,.*

. ' .'"%

NAME: FTN-NAME
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: FUNCTION RECORD
INPUT FLAGS:
OUTPUT DATA: FUNCTION NAME
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:

VERSION: 1
DATE: 04 NOV 85

NAME: FTN-PARSE
(o TYPE: PROCESS

PROJECT: DDS
NUMBER:
DESCRIPTION: *

INPUT DATA: SENTENCE
FUNCTION RECORD

INPUT FLAGS:
OUTPUT DATA: RESULT
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: FTN-NAME

FTN-CODE
RELATED ACTIVITY:
VERSION:
DATE:

A-13

WAN_.

NAME: GENERATE DD COMMAND
TYPE: ACTIVITY

*PROJECT: DDS
* NUMBER:

DESCRIPTION:
INPUTS: PARSE RESULTS .V

C.,OUTPUTS: DATA DICTIONARY ACCESS COMMANDS CONTROLS: *

MECHANISMS:
ALIASES:
PARENT ACTIVITY: INTERPRET SENTENCE
VERSION:15DATE: 22 OCT 85

NAME: GRAMMAR
TYPE: DATA FLOW
PROJECT: DDS
PART OF:
COMPOSITION:
ALIASES:
SOURCES: CONSTRUCT GRAMMAR

LOAD GRAMMAR
MODIFY GRAMMAR
PERMANENT GRAMMAR
SAVE GRAMMAR
WORKING GRAMMAR

DESTINATIONS: CONSTRUCT GRAMMAR
INTERPRET SENTENCE
LOAD GRAMMAR
MODIFY GRAMMAR
PARSE SENTENCE
PERMANENT GRAMMAR
SAVE GRAMMAR
WORKING GRAMMAR

VERSION: 2
DATE: 22 OCT 85

A-14

," ':' ',, ' -. . .

NAME: GRAMMAR LOAD COMMAND
TYPE: DATA FLOW
PROJECT: DDS
PART OF: CONSTRUCTION COMMAND
COMPOSITION:
ALIASES:SOURCES : --

DESTINATIONS: LOAD GRAMMAR
VERSION: 1
DATE: 22 OCT 85

NAME: GRAMMAR MODIFICATION COMMAND
TYPE: DATA FLOW
PROJECT: DDS
PART OF: CONSTRUCTION COMMAND
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS: MODIFY GRAMMAR
VERSION: 1
DATE: 22 OCT 85

NAME: GRAMMAR-CODE
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: PRODUCTION RECORD
INPUT FLAGS:
OUTPUT DATA: PRODUCTION CODE
OUTPUT FLAGS:
GLOBAL DATA USED: . -,

GLOBAL DATA CHANGED:
FILES READ:

a FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1
DATE: 04 NOV 85

A-15
S -.

NAME: GRAMMAR-LIST
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: PRODUCTION RECORD
INPUT FLAGS:
OUTPUT DATA: SUB-GRAMMAR LIST
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:

* FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1 .' -.-
DATE: 04 NOV 85

NAME: GRAMMAR-NAME
(. TYPE: PROCESS

PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: PRODUCTION RECORD
INPUT FLAGS: ..--

OUTPUT DATA: PRODUCTION NAME
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1
DATE: 04 NOV 85

A-16

6

•. ..' *,. ".
.

NAME: GRAMMAR-PARSE
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: SENTENCE

SUB-GRAMMAR LIST
INPUT FLAGS:
OUTPUT DATA: RESULT
OUTPUT FLAGS:
GLOBAL DATA USED: " ""
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES :C EG M O
CALLING PROCESSES:
PROCESSES CALLED : GRAMMAR-CODE

GRAMM4AR- NAME
GRAMMAR-LIST

IS-PRODUCTION
SUB-PARSE
IS-FUNCTION(;- FTN-PARSE
RESULT-LIST
GRAMMAR-PARSE (RECURSIVE)
RESULT- SENTENCE

RELATED ACTIVITY:
VERSION: 1
DATE: 04 NOV 85

NAME: GRAMMAR SAVE COMMAND
TYPE: DATA FLOW
PROJECT: DDS
PART OF: CONSTRUCTION COMMAND
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS: SAVE GRAMMAR
VERSION: 1
DATE: 22 OCT 85

A-17.'o

- . 2 & . .- - .C AP . -K . <.P

NAME: INITIALIZATION COMMAND

TYPE: DATA FLOW

PROJECT: DDS
PART OF: DATA DICTIONARY ACCESS COMMAND

COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS: UPDATE DATA DICTIONARY " .- "

VERSION: 2
DATE: 22 OCT 85

NAME: INITIALIZE-GRAMMAR
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA:
INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *META-SYMBOLS*
GLOBAL DATA CHANGED: *META-SYMBOLS*
FILES READ:

(. FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: FOR&
RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A-18
...-...-

,'%"
•

--
v

.-. z 77. IN.M 77 K- K77 VC-r:

NAME: INSERT-FUNCTION

TYPE: PROCESS

PROJECT: DDS

NUMBER:
DESCRIPTION:
INPUT DATA: FUNCTION CODE

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *EDIT-PTR*

GLOBAL DATA CHANGED: *EDIT-PTR*
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: SETF*
RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

NAME: INSERT-PRODUCTION

TYPE: PROCESS

PROJECT: DDS

NUMBER:
DESCRIPTION:

* INPUT DATA: PRODUCTION
CODE TO EXECUTE

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *EDIT-PTR*

GLOBAL DATA CHANGED: *EDIT-PTR*
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: ED-DOWN

0AUX-ADD-PRODUCTION

RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A-19

Ip

NAME: INTERPRET SENTENCE
TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: GRAMMAR

SENTENCE

OUTPUTS: DATA DICTIONARY ACCESS COMMAND
INTERPRETER ERROR MESSAGE

CONTROLS:
MECHANISMS:
ALIASES:
PARENT ACTIVITY: DATA DICTIONARY SYSTEM
VERSION: 2
DATE: 22 OCT 85

NAME: INTERPRETER ERROR MESSAGE
TYPE: DATA FLOW
PROJECT: DIS
PART OF: RESPONSE

COMPOSITION: PARSE ERROR MESSAGE
ALIASES:
SOURCES: INTERPRET SENTENCE

DESTINATIONS:
VERSION: 2
DATE: 22 OCT 85

A-20

*

Osa..*

R-0164 026 A NATURAL LANGUAG PROCESSOR AND ITS PPLICATIO TO V4
AOT2 A ICTIONARY SYSTE U) AIR FORCE INST TO TECH
WRIGHT-PATTERSON RFO OH SCHOOL OF ENGI.. S A WOLFE

UNCLRSSIFIEO DEC 85 RFIT/GCS/ENG/85D-19 F/G 9/2

mhh/ilm/hm/il
flll..lflflflflll
mhmhhhhmhhmhhl

I Ihhhhhhhhhhhl,
lflflflflfllllllll
LIIIII-IlI.

1111.0 LIM
11- 13 .21111 1"a 0 11112.0

III11-'25 1

MICROCOPY RESOLUTION TEST CHART
M) "90990S 1963 A

%6

,1..-..

- .-.- : N i
1~ t. - t.~ % . ..t . . A t~ 9 .2. a 2 ~ U ~..- ..?l

NAME: IS-FUNCTION

TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: SYMBOL TO CHECK
INPUT FLAGS:
OUTPUT DATA: -.
OUTPUT FLAGS: IS-FUNCTION
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

NAME: IS-META-SYMBOL
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: SYMBOL TO CHECK
INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS: IS-META-SYMBOL
GLOBAL DATA USED: *META-.SYMBOLS*
GLOBAL DATA CHANGED:
FILES READ: " "
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A-21 " -

• • ~., .,.. . " . • , , .•,-... -. • ,. -*-4. , .- . • .,.., • . --. ' o-. - .

k-1 Vw -hw4 .1 V . _-r~ W- _x?

NAME: IS-PRODUCTION
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: SYMBOL TO CHECK .- ,-p*

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS: IS-PRODUCTION
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1 4
DATE: 29 OCT 85

NAME: LOAD GRAMMAR
TYPE: ACTIVITY
PROJECT: DDS '

NUMBER:
DESCRIPTION:
INPUTS: GRAMMAR

GRAMMAR SAVE COMMAND
OUTPUTS: GRAMMAR
CONTROLS:
MECHANISMS:
ALIASES:
PARENT ACTIVITY: CONSTRUCT GRAMMAR
VERSION: 2

* DATE: 22 OCT 85

A-22

....................................
* . ,....- *

,. q

NAME: MODIFICATION COMMAND

TYPE: DATA FLOW

PROJECT: DDS

PART OF: DATA DICTIONARY ACCESS COMMAND

COMPOS ITION:
ALIASES :
SOURCES: UPDATE DATA DICTIONARY

DESTINATIONS: UPDATE DATA DICTIONARY

VERSION: 2

DATE: 22 OCT 85

NAME: MODIFY-FUNCTION (MACRO)

TYPE: PROCESS

PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: FUNCTION CODE

FUNCTION RECORD NAME .

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *EDIT-PTR* IN
GLOBAL DATA CHANGED: *EDIT-PTR*

FILES READ:
FILE26 WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:

PROCESSES CALLED: IS-FUNCTION
ED- RESET
INSERT-FUNCTION
MSG

RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

A-23

. . .* * ,

*
--- -

~ **-~ * - * - -- * . - **. -. * . . ** -*-

* ii-....... up

~W..P. .'*.4 - .]

NAME: MODIFY GRAMMAR
TYPE: ACTIVITY
PROJECT: DDS
NUMBER: --
DESCRIPTION: L

INPUTS: GRAMMAR
GRAMMAR MODIFICATION COMMAND

OUTPUTS: CONSTRUCTION ERROR MESSAGE
GRAMMAR

CONTROLS:
MECHANISMS:71ALIASES :
PARENT ACTIVITY: CONSTRUCT GRAMMAR

VERSION: 1
DATE: 22 OCT 85

NAME: PARSE 2
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: SENTENCE

INPUT FLAGS:GRMA

OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: "
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: GRAMMAR-LIST

GRAMMAR-CODE
GRAMMAR-PARSE
SUCCESSFUL
DISPLAY-PARSE-ERROR

RELATED ACTIVITY:
VERSION: 1
DATE: 04 NOV 85

A-.24
* -*~**:*.::

NAME: PARSE ERROR MESSAGE
TYPE: DATA FLOW
PROJECT: DDS

*PART OF: INTERPRETER ERROR MESSAGE
COMPOSITION:
ALIASES:
SOURCES: PARSE SENTENCE

* DESTINATIONS:
* VERSION:1

DATE: 22 OCT 85

NAME: PARSE RESULTS
TYPE: DATA FLOW
PROJECT: DDS
PART OF:
COMPOSITION:
ALIASES:
SOURCES: PARSE SENTENCE
DESTINATIONS: GENERATE DD COMMAND
VERSION:1
DATE: 22 OCT 85

_NAME: PARSE SENTENCE
*TYPE: ACTIVITY

PROJECT: DDS
NUMBER:
DESCRIPTION:

*INPUTS: GRAMMAR
SENTENCE

OUTPUTS: PARSE ERROR MESSAGE
PARSE RESULTS

* CONTROLS:
- MECHANISMS:
* ALIASES:

PARENT ACTIVITY: INTERPRET SENTENCE
VERSION:1LDATE: 22 OCT 85

A-25

NAME: PRESENTATION COMMAND
TYPE: DATA FLOW
PROJECT: DDS
PART OF: DATA DICTIONARY ACCESS COMMAND
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS: DISPLAY DATA DICTIONARY
VERSION: 2
DATE: 22 OCT 85

NAME: RESPONSE
TYPE: DATA FLOW
PROJECT: DDS
PART OF:
COMPOSITION: CONSTRUCTION ERROR MESSAGE

DATA DICTIONARY DATA
DATA DICTIONARY ERROR MESSAGE
INTERPRETER ERROR MESSAGE

* ALIASES:
SOURCES: DATA DICTIONARY SYSTEM
DESTINATIONS: USER
VERSION: 2

*DATE: 22 OCT 85

NAME: RESULT-LIST
TYPE: PROCESS
PROJECT: DDS
NUMBER:

* DESCRIPTION:
INPUT DATA: RESULT
INPUT FLAGS:
OUTPUT DATA: SUB-GRAMMAR LIST
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:

* HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:

* ~VERSION: 1..
DATE: 04 NOV 85

A-26

NAME: RESULT-SENTENCE
TYPE: PROCESS

*PROJECT: DDS
NUMBER: N
DESCRIPTION:

*INPUT DATA: RESULT
INPUT FLAGS:
OUTPUT DATA: SENTENCE
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:

HARDAREWRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:

* VERSION:1
DATE: 04 NOV 85

NAME: SAVE GRAMMAR
(*TYPE: ACTIVITY

PROJECT: DDS
NUMBER:

* DESCRIPTION:
*INPUTS: GRAMMAR

GRAMMAR SAVE COMM4AND
OUTPUTS: GRAMMAR
CONTROLS:
MECHANISMS:
ALIASES:
PARENT ACTIVITY: CONSTRUCT GRAMMAR
VERSION: 2
DATE: 22 OCT 85

A- 27

mt

p..,..n

h

NAME: SAVE-GRAMMAR "
TYPE: PROCESS
PROJECT: DDS .-. -"
NUMBER:
DESCRIPTION:
INPUT DATA:
INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:
GLOBAL DATA USED: *META-.SYMBOLS*
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN: GRAMMAR.LSP
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED:
RELATED ACTIVITY:
VERSION: 1
DATE: 29 OCT 85

NAME: SENTENCE
eTYPE: DATA FLOW

PROJECT: DDS
PART OF: COMMAND
COMPOSITION:
ALIASES:
SOURCES:
DESTINATIONS: INTERPRET SENTENCE

PARSE SENTENCE
VERSION: 2
DATE: 22 OCT 85

A-2 -:-

"i
*:,*ii.*

NAME: SUB-GRAMMAR-PARSE
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION: - -
INPUT DATA: SENTENCE

SUB-GRAMMAR LISTIINPUT FLAGS ::.q,

OUTPUT DATA: RESULT
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: GRAMMAR-CODE

GRAMMAR-NAME
GRAMMAR-LIST
IS-PRODUCTION
SUB-PARSE
IS-FUNCTION-' -- ~FTN-PARSE ..-''
RESULT-LIST

SUB-GRAMMAR-PARSE (RECURSIVE)
RESULT-SENTENCE

RELATED ACTIVITY:
VERSION: 1
DATE: 04 NOV 85

A- 29

•I?[

*J ... %-

"'"" ..- -. *'-

NAME: SUB-PARSE
TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: SENTENCE

GRAMMAR
INPUT FLAGS: ..- -
OUTPUT DATA: RESULT
OUTPUT FLAGS:
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: GRAMMAR-LIST

GRAMMAR-CODE
SUB-GRAMMAR-PARSE
RESULT-LIST

RELATED ACTIVITY:
VERSION: 1 . -

DATE: 04 NOV 85

A- 30
.

NAME: SUCCESSFUL

TYPE: PROCESS
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUT DATA: RESULT .*

INPUT FLAGS:4
OUTPUT DATA:
OUTPUT FLAGS: SUCCESSFUL
GLOBAL DATA USED:
GLOBAL DATA CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE READ:
HARDWARE WRITTEN:
ALIASES:
CALLING PROCESSES:
PROCESSES CALLED: RESULT-SENTENCE

RESULT-LIST

RELATED ACTIVITY:
VERSION:1
DATE: 04 NOV 85

(.NAME: UPDATE DATA DICTIONARY

TYPE: ACTIVITY
PROJECT: DDS
NUMBER:
DESCRIPTION:
INPUTS: ADDITION COMMAND

DATA DICTIONARY DATA
DELETION COMMAND
INITIALIZATION COMMAND
MODIFICATION COMMAND

OUTPUTS: ADDITION COMMAND
DATA DICTIONARY DATA
DATA DICTIONARY ERROR MESSAGE
DELETION COMMAND
MODIFICATION COMMAND

CONTROLS:
MECHANISMS:
ALIASES:

* PARENT ACTIVITY: ACCESS DATA DICTIONARY

VERSION: 2

DATE: 22 OCT 85

A-31

Appendix B

Structure Charts

B-1.

Appendix B
Table of Contents

Page

Grammar Constructor. B- 3

Sentence Interpreter B- 20

S-expression Editor B- 23

DESIGN Methods....................B- 44

EVENT Methods B- 51

IMPLEMENTATION Methods.................B- 59

PARAMETER Methods B- 64

PARAMETER-ALIAS Methods B- 71

PROCESS Methods. B- 78

4Lj PROCESS-ALIAS MethodsB- 93

PROJECT Methods....................B-100

REQUIREMENTS Methods B-107

B- 2

4 -:

4

4.

I
r -u-4%

* 1
.~ .v

Grammar Constructor

(0

0

0

B- 3

....................................- - . . . - *...............4 4 4 4 4 4 -
.....-. ~:.-.-..............-..-. 4 4~4~~*~*

.................... 4 4 4
- 4 4*4 4*4 4~~4.....- _4,_% ._-. ~.__._4.__.~_.~*4 . P. L.~.. ~k2

2
~ ~

LdL

LL

0.

B-

-. -

add-production Interfaces

Passed Parameters Type Returned Parameters Type

1 sentence data
code data
production name data

2 production-name data is production? flag

3 *edit-exp* data
edi t-exp data
nil data

4 sentence data
code data

5 (none)

6 (none)

7 (none)

- 8 sentence data
code data

9 cdr* (sentence) data
code data

10 (none)

11 cdr* (sentence) data
code data

The cdr function returns a list of all but the first

element of a list passed to it. For instance, the cdr of
the list (a b c) is the list (b c).

B-5

.

.- : '..J:

-AMA.:

' .°v- *°".

0

(..

B-6

-. • . *

- *. -.

- - --.- ... :.--* - -

create-function Interfaces L..h

Passed Parameters Type Returned Parameters Type

1 function-name data
code data

2 function-name data function created? flag

B-7

lzca ac.c

B-8

- ~ 11111 i-l I I

. .. • .

create-production Interfaces

Passed Parameters Type Returned Parameters Type

1 production-name data
code data

2 production-name data production created? flag

I - '

B-9

i" .

4A en 4A. W.'w L--w

La M w

B-10 .,

destroy-function Interfaces

Passed Parameters Type Returned Parameters Type_

1 function name data

2 function name data is function? flag

3 function name data

4 error message
text data

5 function name data is meta-symbol? flag

0.

B-li

B- 12

p destroy-production Interfaces

Passed Parameters Type Returned Parameters Type

1 production name data

2 production name data is production? flag

3 production name data

4 error message

htext data

5 production name data is meta-symbol? flag

B-13

-- r~.r r.r -~--.....................-

I.

p

*1
0

LAIN ~

JE

-C,

0

U
0

0

B- 14

4

...

initialize-grammar Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

to-o

(0B"1

S!1i

.

S .o

B-1

MR F JWVT Rh I

0.,
V

LL.w-

* .0~

c-u '

B- 1

Ol

modify-function Interfaces

* Passed Parameters _Type Returned Parameters Type

1 function name data

2 function name data is function? flag

3 *edit.ptr* data
edit,,ptr data

nil

4 code data

error message
text data

B-.'--

. • t xt.d ta -

,.

B- 1

save-grammar Interfaces

* Passed Parameters Type Returned Parameters Type

1 (none)

B3-19

Sentence Interpreter

B-20

-7 m. . . .

IA' 4A

Uo

4La

ww

T- 4A

ac IL

14LL

0 . .. ,

I. -' .- -'-

parse Interfaces

Passed Parameters Type Returned Parameters Type

1 sentence data 5-

grammar data

2 sentence data result data

sub-grammar-list data

3 result data successful parse? flag

4 (none)

5 sentence data result data
sub-grammar data

6 sentence data result data
function data

7 cdr*(sentence) data result data
sub-grammar-list data

8 sentence data result data
sub-grammar-list data

9 cdr*(sentence) data result data
sub-grammar-list data

10 sentence data result data
sub-grammar data

11 sentence data result data
function data

The cdr function returns a list of all but the first

element of a list passed to it. For instance, the cdr of
the list (a b c) is the list (b c).

02

',? .1

..- B~~~~1-22 "-"""---

. . -. -. ,.. ./ . - . ., , -, , . , , . -.
.- _~ - j '. _,.- .'_ _ " / . , .. _' li ,- . '.

_
-' -. _ - .- '."-_ _. ". -. .i . .

- . - III

~ ..~. ,~

*6

.~ -

I

S-expression Editor

j(i

I

~6
6~

B- 23

CA

B-24

-- ", ' ._- j. r - . .- . . . --, _. .4 . _ : _ .. - .- . • - . - . - S ." - - .. . - . -

1.7. 1.

V

sedit Interfaces

t Passed Parameters Type Returned Parameters Type

1 expression data

2 expression (edit
pointer) data
expression (edit
line) data
nil (edit stack) data

3 number of levels
to display data

4 error message text data

B-25

i-[.I
S-- ~- °

B-26

*~~~~W -- -- v A .- - - - - - . .1

ed-down Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

2 new edit pointer data
new edit line data
new edit stack data

B-27

LA

0a

LLf

LLS

* =u

Ow

B-28

T- .

ed-find Interfaces

* Passed Parameters Type Returned Parameters Type

1 (none)

2 *key* data
edit pointer data
edit line data
edit stack data

3 (none)

4 (none)

5 (none)

6 edit pointer data
*edit line data

edit stack data

7 error message text data

B-29

07

B-30

ed-left Interfaces

* Passed Parameters Type _Returned Parameters Type .-.

1 (none)

2 edit line data new edit pointer data
current edit
pointer position data

B- 31

C.-L

B-32

fm-s a

* K..

I-
w
'A
ia1, .4
a
w

*

0 -'s--s.-

~

V

B-33

ed-reset Interfaces %,,&.,

Passed Parameters Type Returned Parameters Type

1 new edit pointer data
new edit line data
new edit stack data

B-.34

................ . .
... " -

I

- ~ -1
xa ~.-. -.-

a
- -1

*

* I

B-35

4

-------... q,.-*.~-....*.- p .

-- ~~~~------ LAIw~.-- ~.J U

Na

UA tu

B-36~

ed-up Interfaces

* Passed Parameters Type Returned Parameters Type

1 (none)

2 newedit ointe datI 2 new edit piner data
new edit linek data

B-3

42.

C.,

B-38

inplace Interf3ces

$ Passed Parameters Type Returned Parameters Type

1 car (new edit
pointer) data
cdr + (new edit
pointer) data

The car function returns the first element of a list

passed to it. For instance, the car of the list (a b c)
is a.

+ The cdr function returns a list of all but the first

element of a list passed to it. The cdr of the above list
is the list (b c).

B- 39

B-40

mark-pos Interfaces

Passed Parameters Type Returned Parameters Type

1 position to mark data
list data m "

2 position to mark data
cdr * (list) data

The cdr function returns a list of all but the first

element of a list passed to it. For instance, the cdr of
the list (a b c) is the list (b c).

B-41

........-........ "

0

IA)

B-42

show Interfaces

passed Parameters Type Returned Parameters Type

1 number of levels
of the edit stack
to display data

2 car (edit pointer) data

3 edit pointer data
edit line data
edit stack data

4 edit pointer data
edit line data

5 stack data top of stack data

The car function returns the first element of a list

passed to it. For instance, the car of the list (a b c)
is a.

B-43
...................... .. .

B -43 .2,

L
4

I

v,~. ~
.~ 4

4

4

0 4
DESIGN Methods

(0

0 4

0 -

B-44

0-0

04

z N7

B-45n

w WE . .

to'

ow

uuv

6 10

A

B-4

(design :present) Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

2 list of instance
variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

. !

B-47

.~~~~ . ..
"

. . .

w c

w 4n

w-sA

0(0I

B-48

law 4j l- '- , -p -'

L9e

- W I'

* 4m

MOO9

IL . -.

(design :save) Interfaces

Passed Parameters Type Returned Parameters Type

1 project instance
pointer data
stream data

2 list of instance

pointers data

3 (none) name data

4 (none) main-program data

5 (none) list of process
instance pointers data

6 process instance
pointer data

7 (none) list of process-
alias instance
pointers data

8 process-alias

instance pointer data

9 (none) list of parameter
instance pointers data

10 parameter
instance pointer data

11 (none) list of parameter-
alias instance
pointers data

12 parameter-alias

instance pointer data

13 (none) version data

14 (none) date data

B-50

AN,- A °,*
. . . . *

EVENT Methods

B- 5

f-5

(event :add-attribute) Interfaces

Passed Parameters Type Returned Parameters Type

1 attribute data

2 (none) list of attributes data

3 list of attributes data

B .5.. .

.".'.' .

.- .-.

z 0

bob

,.-.

(event :execute) Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

2 (none) action type data

3 (none) object data

4 (none) action data

5 (none) attributes data

6 object data
action data
attributes data

B-55

I---

-S'

S.. """

..-.? - -

pi11"ii

B--5-5

I"

7, 7.]

* 4

I I

p-,. *.-~

w
ti..
- w

W- -

-~ I 4

* I

* I

L I

*

4 4

* I

B-56

1 4

w

w L

B-57

.~~~- W7- -

9 (event :present) Interfaces

Passed Parameters Type Returned Parameters Type_

1 (none)

2 data to display data

*3 (none) action data

4 (none) action-type data

5 (none) object data

6 (none) list of attributes data

4

4
~* .

~ I

I

0
r. ~'

IMPLEMENTATION Methods

I

-4

*

* 4

B-59

...
~b ~~ . . .~ * *.~' *-.*~:* *

j~ t

ow

a

z~ W
at-

SIc

B-60

(implementation :present) Interfaces

Passed Parameters Type Returned Parameters Type *

1 (none)

2 list of instance U

variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

B- 61

4z4

-AU

ILJ

B-62

(implementation :save) Interfaces

* # Passed Parameters Type Returned Parameters Type ..

proectinstance

pointer data
stream data ~

2 (none) name data

3 (none) version data

4 (none) date data -A

*B-6

PARAMETER Methods

~K3

B-64

II

w~ N

II .. -

II

B-65

I- -

cuu

B66

I (parameter :present) Interfaces

* Passed Parameters Type Returned Parameters Type

1 (none)

I2 list of instance
variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

BI-6

S

. . o- .-

I.-: r-

la

a. z

W I
_jh
P--

B-68.1

4AA

Lisn

v J.

* 'A

B-SL

Cc4

............................ .-.....................

- -- - - - - - - -.-.- -. --

(parameter :save) Interfaces

Passed Parameters Type Returned Parameters Type-

1 design instance
pointer data -" -

stream data

2 (none) name data

3 (none) aliases data

4 (none) passed-from data

5 (none) passed-to data

6 (none) version data

7 (none) date data

B-70

Midi*

PARAMETER-ALIAS Methods

B-71

-7.7 - -. - -- - -,- ----- - - . T

LW&

~-"#
W..JIC
I.-01:

mzI 9a

j. IfN4

W.A 0

a.- I-

lz~ If

LW a

IL~
>N

B-72

%A Ak
ae

LJa
> I-

m0 0

da I-

LA

uj~ a-

pB-73

(parameter-alias :present) Inter faces

Passed Parameters Type Returned Parameters Type

1 (none)

2 list of instance
variables data

K3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

B3-74

4

A I

I- ca.

4-

CW.

IN
WK

&L.

a n.

0.-

B-75

4K $A

I- Ih

IWW a-

0 44

Cw

B-76

(parameter-alias :save) Interfaces

* Passed Parameters _Type Returned Parameters Type

design instance
pointer data
stream data

2 (none) name data

3 (none) dd-type data

4 (none) synonym data

5 (none) passed-from data

6 (none) passed-to data

7 (none) version data

8 (none) date data

B-7q

;5 ~B- 77"-.-.

..- - - - - - - - - - - - - -

~. .r'. -i

. ,.-

4*

~ 7

.4.-

~ 4*

I ~-- -

p ,-. -

PROCESS Methods

S

0

0

S
B-78 -.

A

InI

B-79

th

-~~ Z..#A .

(process :add-calling-processes) Interfaces

Passed Parameters Type Returned Parameters Type

1 list of process
names data

,. . ".;

2 (none) pointer to design
instance data

3 list of process

names data

4 process name data is process? flag

5 (none) name of current
process data

6 (none) list of calling
processes datad. -

7 name of current
process data

process name data pointer to new
process instance data

M66

a.-. . :,

B- 80-.°

,- *-* .
"o' . "-

.

. % * .. °",

LL
la C

call 0

S.--

ca..
93* IL

* IL

u-q

494

- .- . - - - S * S * - . - N

(process :add-processes-called) Interfaces ...-

Passed Parameters Type Returned Parameters Type

1 list of process -

names data '

(none) pointer to design
instance data

3 list of process
names data

4 process name data is process? flag

5 (none) name of current
process data

6 (none) list of calling
processes data

7 name of current
process data

08 process name data pointer to new
process instance data

B- 82

4.,

-a, : U i:z.

o q

LftZ up

-a" / A .- w

0

t!00

B-83

(process :delete-calling-processes) Interfaces

- Passed Parameters Type Returned Parameters Type

1 list of process
names data

2 (none) pointer to design
instance data

3 process name data is process? flag

4 (none) list of calling
processes data

5 name of current
process data

0 6 list of process
names data

7 (none) name of current
process data

B-84

i.-.',.-..

- L

00-

Ba-85L

. - 'I
t~~~~~ '- %.. 4- .' C < A

AD-RI64 026 R NATURAL LANGUAGE PROCESSOR RHO ITS APPLICATION TO A 3/4
DATA DICTIONARY SYSTEM() AIR FORCE INST OF TECH
URIGHT-PATTERSON AFI OH SCHOOL OF ENGI.. S A WOLFE

UNCLASSIFIED DEC 05 AFIT/GCS/ENG/85D-i9 F/O 9/2 NL

Lillw...2

1j.6.II--i-

11111.25 11(11 ,=1 1 1.

MICROCOPY RESOLUTION TEST CHART K
" NDA DS "963 A

L

1. % -i--2- '-"

..... *t*.............. il...I

A.

2'..

'p " (process :delete-processes-called) Interfaces

Passed Parameters Type Returned Parameters Type

1 list of process
names data

2 (none) pointer to design p.' '

instance data

3 process name data is process? flag

4 (none) list of calling
processes data

5 name of current
process data

6 list of process
names data

7 (none) name of current
process data

Bp.8

.- '...-

B-8 6,. 4c°

-. - "o

. . -p.

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r .-- ' 'r--r--rrr Cr r-r. 1 j W v. v --. r-. r - .

"~ I

X I

U, Ld

Wo- a

B-on',
COL, 0 a U.

at.

a-

t>.1

B-8-

(process :present) Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

2 list of instance
variables data

3 (none)

4 list of instance
variables data ,

5 list of invalid
instance variables data.ii...

6 (none)

B-8 '1

"-9

- .- ..-.- .-- l,

4ft- wo

-Z-J

B-90 I

4nq

.j.

*o -

0

ILla

6*n

6if

40ma'At

B-9 1

(process :save) Interfaces

Passed Parameters Type Returned Parameters Type

1 design instance S
pointer data
stream data

2 (none) name data

3 (none) input-data data

4 (none) input-flags data

5 (none) output-data data

6 (none) output-flags data

7 (none) global-data-used data

8 (none) global-data-changed data

9 (none) aliases data

10 (none) calling-processes data

11 (none) processes-called data

12 (none) version data

13 (none) date data

4-7

2-.

-- "-- ".- °

4 4 4 44... -.. .44...44 .. '.

.~ .. ~

~. ~

I..... ~

? .~ .~

.~ %.

-~. .~. .~
*.~ .. -

a- A-

1~ -

I.

L
PROCESS-ALIAS Methods

I %.
*** .r-'

.1~

I I

I 9

B- 93

I I

.

............... ~ ~ ~. . .

II
IL=

4-al
ox,.S S ~lB

ILF

dI;FA

B-9 4

sS

II

-

WC

%nj

01 ~ a -

II

B-95

(process-alias :present) Interfaces

* Passed Parameters Type Returned Parameters Type

1 (none)

2 list of instance
variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

B- 96

La

4

.. ,

o

0h

SC

B-97

OA 0-

I

CA

~a

L --- J

IAI

0W

B-98

(process-alias :save) Interfaces

* Passed Parameters Type_ Returned Parameters Type

1 design instance
pointer data
stream data

2 (none) name data

3 (none) dd-type data

4 (none) synonym data

5 (none) version data

6 (none) date data

B- 99

. ° .

. * *° .

PROJECT Methods

B- 100

-
., .-1*

-"-
.' .,

°-.-

: I .)i

• -.0

2:
i2 9" -

B- 1O01 ""

.p.

. -'. .. ,.-"**.-- ..- *.**-...*.....

" " """" " -"". '" -". """-.- '-. .-.. .-..-..-.. . -.* .- ,", ,,.,- **. '.-.'' -. ''. """, ,''.'" , ."*. -'

La

.IA

B--0

F- a -W n- 7-.. 2 2 2.* -y.w - -

(project :present) Interfaces

Passed Parameters Type Returned Parameters Tp

1 (none)

2 list of instance
variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

6 (none)

B-103

i
*

~ ~fi%,

9.

U-.'

0-..~

-K-i
~*0.

9..

S -~

~1

B- 104

I

. V . .

-a--

MTN '% w V 'T-K QI 7,

% %

4n.'

IlI

IV

-M 'A5

PIE

B- 105

F..

(project :save) Interfaces

Passed Parameters Type Returned Parameters Type

1 (none)

2 (none) project name data

3 (none) pointer to
requirements
instance data

4 pointer to project
instance data
output stream data

5 (none) pointer to design
instance data

6 pointer to project
instance data
output stream data

7 (none) pointer to
implementation
instance data

8 pointer to project
instance data
output stream data

B-i106

. *..-

REQUIREMENTS Methods

B3-107

>. I-

Co

c~ w

I aa

IL

B- 108

(requirements :present) Interfaces

Passed Parameters Type Returned Parameters Type ,.-

2 list of instance
variables data

3 (none)

4 list of instance
variables data

5 list of invalid
instance variables data

p6 (none)

B-109

. .~ *.* . .~~~~-- .- ..- .:

z

01

(requirements :save) Interfaces

Passed Parameters Type Returned Parameters Type

1 project instance
pointer data
stream data

2 (none) name data

3 (none) version data

4 (none) date data

B-ill

c - I

Appendix C
Table of Contents -

Page "-

Introduction C- 3

Grammar Definition (BNF) C- 4

Correspondence Between Instance Variables
and Attribute Values C-10

C- -2

- -. -.:.

Introduction

This appendix defines the grammar of the Data Dictionary

System (DDS). The first part of this definition specifies

the productions of the grammar using a Backus-Naur Form

(BNF) notation. The second part defines the correspondence

between the instance variables of the various object types

and literal values contained in the <attribute> production

of the grammar.

C-3

. - .. ° .. " ,
•- - - - - t o- .t.a a a--,.p ~ -

* v-*-...- - ...-----.---. . . . -. .

Grammar Definition

Notation
is defined to be
select one

() optional
<> class symbol
St comment
1 or
• user input

<grammar>
please) <aux-grammar>

<activity> *

Sa user-defined member of the object class ACTIVITYt

<activity-alias> :
Sa user-defined member of the object class

(. ACTIVITY-ALIASt

<activity-alias-instance>
activity alias <activity-alias>

<activity-instance>
activity <activity>

<add>
add I append concatenate include insert

<add-command>
[add> <literal> to (the) <attribute> [of by
<instance> 1 <add> <literal> to <instance> <attribute>

the <attribute> of <instance> is <literal>
<instance> <attribute> is <literal> I[
<module-instance> <process-instance>] [calls
invokes] <literal> I [<module-instance> I-
<process-instance>] [is called by is invoked by
is a submodule of < (literal>]

C-4 ***.7* ***** ****'.-.** .-..

(attribute>::
activities I1 activity number I activity numbers where
used 9I activity # I alias I1 aliases I1 attributes I1
called modules I called processes I calling modules
calling processes I common data changed I1 common data
used I common parameters changed I1 common parameters
used I1 common variables changed I common variables
used I component data elements I1 component parameters
I1 component variables I1 components I composition Ii
control inputs I1 controls 91 data dictionary type I1
data elements I1 data type I1 date I dd type I
description Ij design I design data I1 design
information 91 destination I1 destinations I driver 91
drivers I entry date I1 entry version I files input I ..
files output I1 files read I1 files written I1 input

* files I global data changed I global data used I!
global parameters changed global parameters used I1
global variables changed 91 global variables used I1
globals changed I1 globals used I1 hardware input I
hardware output 91 highest-level activity I1
implementation I implementation data I1 implementation
information I1 input data I input files I input flags I
inputs I1 invoked modules Ii invoked processes I
invoking modules I1 invoking processes instance
variables I1 legal range 91 legal values I list of
activities I list of aliases I list of called modules
I list of called processes if list of calling modules I
list of calling processes I1 list of component data
elements I list of component parameters 91 list of
component variables I list of components I1 list of
controls I1 list of data elements I list of input data
I1 list of input flags 11 list of inputs 9I list of
invoked modules I1 list of invoked processes I1 list of
invoking modules 11 list of invoking processes I1 list
of legal values I1 list of mechanisms 91 list of modules
91 list of modules called 91 list of modules invoked 9

* list of output data 91 list of output flags 9! list of
outputs 91 list of parameter aliases 91 list of
parameters I1 list of process aliases 91list of
processes I1 list of processes called I1 list of
processes invoked I1 list of related items 91 list of
related parameters 91 list of related requirements 91

* list of submodules 91 list of subprocesses I1 list of
values I! list of variables 91 main activity 91 main
module 91 main modules 9I main process 91 main processes
I main program main programs I1 max legal value I1 max
value If maxcimum legal value 9! maximum value I1
mechanisms 91 min legal value 91 min value 91 minimum
legal value 91 minimum value 91module number 91module

C- 5

if modules name 1 node node number node #
number I output data I output files 11 output flags 91
outputs 1 parameter aliases 91 parameters I parent
activity if parent data element I parent parameter 9.
parent variable 91 part of 1 passed from I passed to I'
process aliases 11 process number 91 process * 9-
processes I processes called I processes invoked 91
project I project name I range I related items 91
related parameters I related requirement 9 related
requirements I related requirement number related
requirements numbers I requirement number -
requirement # I requirements I requirements data I1
requirements information I SADT activity numbers where
used M slots I source I sources I storage type 9 q
submodules I subprocesses I synonym t synonyms I title
M top-level activity s top-level program I top-level
programs 91 type 11 values I variables 91 version 9 * 1

<attribute-list>
<attribute> ([and <attribute> 9 <attribute-list>])

<aux-grammar> :
<command> I <meta-command>

0 - < C I S > : :" "
cIS Im clear screen clear the screen .

<command>
<add-command> I <create-command> I <delete-command> 9!
<destroy-command> I <initialize-command> I
<modify-command> 9 <present-command> "

<create>
create I make]

<create-command>
[<create> (a) (new) <object-class> (called)
<literal> M <literal> is (a) (new) <object-class>

<data-element> = *

Sa user-defined member of the object class
DATA-ELEMENTt

<data-element-alias> = .
Sa user-defined member of the object class

DATA-ELEMENT-ALIASt

C--6

<data-element-alias-instance>
data element alias <data-element-alias>

<data-element-instance>
data element <data-element>

<delete>

(delete I purge remove]

<delete-command>
< (delete> <literal> (from) <attribute> of <instance>

< (delete> <literal> (from) <instance> <attribute>]

<design> *
§a user-defined member of the object class DESIGNt

<design-instance>
design <design>

<destroy>
destroy

<destroy-command>
<destroy> <instance>

<exit>
[all pow I exit quit]

<(help>
h help ?

<implementation> *
Sa user-defined member of the object class

IMPLEMENTATIONt

< implementation-instance>
implementation <implementation>

<initialize>
init I initialize I reinit I reinitialize reset

<initialize-command>
<initialize> <instance>

C- 7

-. . %

<instance> ::
[<activity-instance> I <activity-alias-instance>
<data-element-instance> I-
<data-element-alias-instance> <design-instance>
<implementation-instance> <module-instance>
<parameter-instance> <parameter-alias-instance> 7 ,. .
<process-instance> <process-alias-instance>
<project-instance> <requirements-instance> .
<variable-instance>]

<literal> ::= *
Sany string of characters delimited by blankst

<meta-command>
<cls> <exit> <help> <save> [

<modify>
alter change mod modify replace -

<modify-command>
<modify> <attribute> of <instance> to <literal>
<modify> <instance> <attribute> to <literal> -

<module> = ** (- §a user-defined member of the object class MODULEt

<module-instance>
module <module>

<parameter> :
§a user-defined member of the object class PARAMETERt

<parameter-alias> = *
§a user-defined member of the object class

PARAMETER-ALIASt

<parameter-alias-instance>
parameter alias <parameter-alias>

<parameter-instance>
parameter <parameter>

<present>
[display present I print I show (me) tell (me)
1 type if what [is 1 are] who is] .-.

C-8

.,7

<present-command>
<present> the <attribute-list> [of by] <instance>

< (present> <instance> (<attribute-list>)]

(Process> *

Sa user-defined member of the object class PROCESSt

<process-alias> =
Sa user-defined member of the object class

PROCESS-ALIASt

<process-alias-instance>
process alias <process-alias>

<process-instance>
process <process>

<project> = *
Sa user-defined member of the object class PROJECTt

<project-instance>
project <project> *project*

<requirements> ::= ,
-a user-defined member of the object class

._ REQUIREMENTSt

<requirements-instance> : ,.
requirements <requirements>

<save>
[keep save store]

<variable> ::= *
§a user-defined member of the object class VARIABLEt

<variaole-instance>
variable <variable>

C-9

.'.. .. ~~~!

Correspondence Between Instance variables
and Attribute Values

Instance Variable Attribute Value Implemented?
activities

activities
list of activities

aliases
alias
aliases Y
list of aliases

calling-processes
calling modules
calling processes Y
invoking modules
invoking processes Y
list of calling modules
list of calling processes
list of invoking modules
list of invoking processes

composition
component data elements
component parameters
component variables
components
composition
list of component data
elements -

list of componen
parameters

list of component variables
list of components

controls .
control inputs
controls
list of controls

data-elements
data elements
list of data elements

C-10

. . - .* ** *

• . , • - , , ° - ,,

Instance Variable Attribute Value Implemented?
data-type

data type

date ',

date Y
entry date Y

dd-type
data dictionary type
dd type Y

description
description

design
design Y
design data
design information

files-read
files input
files read
input files

files-written
files output
files written
output files

global-data-changed
common data changed -

common parameters changed
common variables changed
global data changed Y
global parameters changed
global variables changed
globals changed Y

global-data-used
common data used
common parameters used
common variables used
global data used Y
global parameters used
global variables used
globals used Y

C--11

. - . ,"" " '- "'-"-"" "" '" ' " °"" k-""k~i"" "-" "-" .- "- '.- - "- " " ' - ' - " '"-""." --. . '-

Instance Variable Attribute Value Implemented?
hardware- input ,-- .

hardware input
hardware read

hardware-output
hardware output
hardware write

implementation
implementation Y
implementation data
implementation information

input-data
input data Y
list of input data

input-flags
input flags Y
list of input flags

inputs
inputs
list of inputs

main-program
driver
drivers
main module
main modules
main process Y
main processes Y
main program Y
main programs Y
top-level program
top-level programs

max-value
max legal value
max value
maximum legal value
maximum value

mechani sms
list of mechanisms
mechanisms

C--12

• ' ° I
0 .-° .

.-----. - - - . ---- ,..

Instance Variable Attribute Value Implemented?
min-value

min legal value
min value
minimum legal value
minimum value

modules
list of modules
modules

name
name Y
title

number
activity number
activity .
node
node number
node #
number

output-data
list of output data
output data Y

output-flags
list of output flags
output flags Y

outputs
list of outputs

outputs

parameter-aliases
list of parameter aliases
parameter aliases Y

parameters
list of parameters
parameters Y

parent-activity
parent activity

C-13

. .•... . .

-- -. - -. '-. -. -o . .-7- i- .. , .J' -.. N'- -- . ' . .. "..-W -
'

- " ' kW1.1rrs,, ' flrE- j ' -.- , ,w -

Instance Variable Attribute Value Implemented?
part-of tparent data element

parent parameter
parent variable
part of

passed-from
passed from Y
source Y
sources y

passed-to
destination y
destinations y
passed to Y

process-aliases
list of process aliases
process aliases Y .

processes
list of processes
processes y

* processes-called
called modules
called processes Y
invoked modules
invoked processes Y
list of called modules
list of called processes
list of invoked modules
list of invoked processes
list of modules called
list of modules invoked
list of processes called
list of processes invoked
list of submodules
list of subprocesses
modules called
modules invoked
processes called Y
processes invoked Y
submodules
subprocesses Y

C-14%

ft.V.

Instance Variable Attribute Value Implemented?
project..,f-

project Y
project name y

range f~tttf.f~tt

legal range
range

related-items
list of related items
list of related parameters
list of related

requirements
related items
related parameters
related requirements
related requirements number

* related requirements
numbers

related requirements #
related SADT activity
related SADT data items
requirement number

Cl0 requirement

requirements
requirements Y
requirements data
requirements information

slots
attributes f

instance variables
slots

* storage-type -
storage type

synonym
synonym Y
synonyms y

top-level-activity
highest-level activity
main activity ~
top-level activity

C-15

ft f ft - ft ft . ft %

-' -,r-.- -- - -.-- - .- - - ." -w --. - - - l-- .

-- "

Instance Variable Attribute Value Implemented?
type

type Y

values ,,-
legal values
list of legal values
list of values
values

variables
list of variables
variables

version
entry version Y
ver sion Y

where-used
activity numbers where used
SADT activity numbers where

used
where used

C--16

Appendix D

Implemented Grammar

D- 1

Appendix D__
Table of Contents

Page

Introduction .. D- 3

- ~Implemented Grammar Listing D- 4

D-2

,-. .. .

Introduction

This appendix contains a listing of the Data Dictionary

System's (DDS) implemented grammar. It is presented in the

same Lisp-readable format as the actual grammar disk file. C.:

D -3..
*!X~

"0i:!:

0i"--;:

D-3. ::

(DECLARE (SPECIAL *META-SYMBOLS*))
(SETQ *META-SYMBOLS* NIL)

(DECLARE (SPECIAL <GRAMMAR>))
(CREATE-PRODUCTION <GRAMMAR>)
(SETQ
<GRAMMAR> '(<GRAMMAR> ((PLEASE ((<AUX-GRAMMAR> (($ NIL

NIL)) NIL)) NIL)
(<AUX-GRAMMAR> (($ NIL NIL)) NIL))

(SEND *NEW-EVENT* :EXECUTE)))

(DECLARE (SPECIAL <AUX-GRAMMAR>))
(CREATE-PRODUCTION <AUX-GRAMMAR>)
(SETQ <AUX-GRAMMAR>

'(<AUX-GRAMMAR>
((<COMMAND> ((* NIL (SEND *NEW-EVENT* :SET-ACTION-TYPE

NIL))) NIL)
(<META-COMMAND>

((* NIL (SEND *NEW-EVENT* :SET-ACTION-TYPE 'META)))
NIL))

NIL))

(DECLARE (SPECIAL (COMMAND>))
(CREATE-PRODUCTION <COMMAND>)
(SETQ <COMMAND> '(<COMMAND> ((<PRESENT-COMMAND> ((* NIL
NIL)) NIL)

(<INITIALIZE-COMMAND> ((* NIL NIL))
NIL))

NIL))

(DECLARE (SPECIAL <ADD-COMMAND>))
(CREATE-PRODUCTION <ADD-COMMAND>)
(SETQ
<ADD-COMMAND> '(<ADD-COMMAND> NIL (SEND *NEW-EVENT*

:SET-ACTION ':ADD)))

(DECLARE (SPECIAL <CREATE-COMMAND>)) 4
(CREATE-PRODUCTION <CREATE-COMMAND>)
(SETQ <CREATE-COMMAND>

'(<CREATE-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
:CREATE)))

(DECLARE (SPECIAL <DELETE-COMMAND>))
(CREATE-PRODUCTION <DELETE-COMMAND>)
(SETQ <DELETE-COMMAND>

'(<DELETE-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
:DELETE)))

D

:., ~D- 4"":+

................ i •. n+.......................................- lI%.....++ .- "+ , + -- "- .t,- "*.j " " +' - S . - '- .- °. ' ' - " . . % . ,. -" " ' "" + . - -* . t - . - - ". "o , . - + ". " ' + + -,, . - ' ' . .

-.

(DECLARE (SPECIAL <DESTROY-COMMAND>))
(CREATE-PRODUCTION <DESTROY-COMMAND>)

(SETQ <DESTROY-COMM4AND>

'(<DESTROY-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
:DESTROY)))

(DECLARE (SPECIAL <INITIALIZE-COMMAND>))
(CREATE-PRODUCTION <INITIALIZE-COMMAND>)
(SETQ (INITIALIZE-COMMAND)

'(<INITIALIZE-COMMAND>
((<INITIALIZE> ((<INSTANCE> ((* NIL NIL)) NIL)) NIL))
(SEND *NEW-EVENT* :SET-ACTION ':REINITIALIZE)))

(DECLARE (SPECIAL <MODIFY-COMMAND>))
(CREATE-PRODUCTION <MODIFY-COMMAND>)
(SETQ <MODIFY-COMMAND>

'(<MODIFY-COMMAND> NIL (SEND *NEW-EVENT* :SET-ACTION
':MODIFY)))

(DECLARE (SPECIAL <PRESENT-COMMAND>))
(CREATE-PRODUCTION <PRESENT-COMMAND>)
(SETQ
<PRESENT-COMMAND>
'(<PRESENT-COMMAND>

(((PRESENT>

((<INSTANCE> ((* NIL NIL) (<ATTRIBUTE-LIST> ((* NIL
NIL)) NIL)) NIL)

(THE ((<ATTRIBUTE-LIST> ((BY ((<INSTANCE> NIL NIL))
NIL)

(OF (((INSTANCE> ((* NIL NIL)) NIL))
NIL))

NIL)
NIL))

NIL))
(SEND *NEW-EVENT* :SET-ACTION ':PRESENT)))

(DECLARE (SPECIAL <ADD>))
(CREATE-PRODUCTION <ADD>)
(SETQ
<ADD> '(<ADD> ((ADD ((* NIL NIL)) NIL) (APPEND ((* NIL

NIL)) NIL)
(CONCATENATE ((* NIL NIL)) NIL)

p (INCLUDE ((* NIL NIL)) NIL) (INSERT ((* NIL NIL))
NIL))

NIL))

D-5

-~~~~~~~~...._.-._.-.................... ,.....................,.-...,....-.... .. -........ -.. --

L..- A- -L

4
•

o - .%* .. °*

(DECLARE (SPECIAL <CREATE>))
(CREATE-PRODUCTION <CREATE>)
(SETQ
<CREATE>
'(<CREATE> ((CREATE (W* NIL NIL)) NIL) (MAKE ((* NIL NIL))

NIL)) NIL))

(DECLARE (SPECIAL <DELETE>))
(CREATE-PRODUCTION <DELETE>)
(SETQ
<DELETE> '(<DELETE> ((DELETE ((* NIL NIL)) NIL) (PURGE ((*

NIL NIL)) NIL)
(REMOVE ((* NIL NIL)) NIL))

NIL))

(DECLARE (SPECIAL <DESTROY>))
(CREATE-PRODUCTION <DESTROY>)
(SETQ <DESTROY> '(<DESTROY> ((DESTROY ((* NIL NIL)) NIL))
NIL))

(DECLARE (SPECIAL (INITIALIZE>))
(CREATE-PRODUCTION <INITIALIZE>)
(SETQ <INITIALIZE>

'(<INITIALIZE>
((REINIT ((* NIL NIL)) NIL)
(REINITIALIZE ((* NIL NIL)) NIL) (RESET ((* NIL NIL))

N IL)
(INIT ((* NIL NIL)) NIL) (INITIALIZE ((* NIL NIL))

NIL))
NIL))

(DECLARE (SPECIAL <MODIFY>))
(CREATE-PRODUCTION <MODIFY>)
(SETQ
<MODIFY> '(<MODIFY> ((ALTER ((* NIL NIL)) NIL) (CHANGE ((*

NIL NIL)) NIL)
(MOD ((* NIL NIL)) NIL) (MODIFY ((* NIL

NIL)) NIL)
(REPLACE ((* NIL NIL)) NIL))

NIL)) -:

D--6

~.4 % A~ * ...

(DECLARE (SPECIAL <PRESENT>))
(CREATE-PRODUCTION (PRESENT>)
(SETQ
<PRESENT>
'((PRESENT> ((WHO ((IS ((* NIL NIL)) NIL)) NIL)

(WHAT ((IS ((* NIL NIL)) NIL) (ARE ((* NIL NIL))

NIL)) NIL).

NIL))NIL)(TYPE ((* NIL NIL)) NIL)
(TELL ((ME ((* NIL NIL)) NIL) (*NIL NIL)) NIL)
(SHOW ((ME ((* NIL NIL)) NIL) (*NIL NIL)) NIL)
(PRINT ((* NIL NIL)) NIL) (PRESENT W(NIL NIL))

NIL)
(DISPLAY (*NIL NIL)) NIL))

NIL))

(DECLARE (SPECIAL <META-COMMAND))
(CREATE-PRODUCTION <META-COMMAND>)
(SETQ
<META-COMMAND>-
'(<META-COMMAND> (((SAVE> ((* NIL NIL)) NIL) ((HELP>

NIL NIL)) NIL) .*

((EXIT> ((* NIL NIL)) NIL) (CLS> ((* NIL
NIL)) NIL))

NIL))

(DECLARE (SPECIAL (CLS>))
(CREATE-PRODUCTION (CLS>)
(SETQ
<CLS>
(<CLS>

((CLS ((* NIL NIL)) NIL)
(CLEAR

((THE ((SCREEN (*NIL NIL)) NIL)) NIL) (SCREEN (*NIL
NIL)) NIL))

NIL))
(CLS.-.

(DECLARE (SPECIAL <EXIT>))
(CREATE-PRODUCTION <EXIT>)
(SETQ EXIT '((EXIT> ((EXIT ((* NIL NIL)) NIL) (QUIT ((* . -

NIL NIL)) NIL)
(ALL ((POW NIL NIL)) NIL)) NIL))

(SETQ *EXIT* T)))

D-7

6 -°,

(DECLARE (SPECIAL <HELP>))
(CREATE-PRODUCTION <HELP>)
(SETQ
<HELP> r
'(<HELP>

((HELP ((* NIL NIL)) NIL) (H ((* NIL NIL)) NIL) (? ((*
NIL NIL)) NIL))

(HELP)))

(DECLARE (SPECIAL <INSTANCE>))
(CREATE-PRODUCTION <INSTANCE>)
(SETQ <INSTANCE>

'(<INSTANCE> ((<VARIABLE-INSTANCE> ((* NIL NIL)) NIL)
(<REQUIREMENTS-INSTANCE> ((* NIL NIL)) NIL)
((PROJECT-INSTANCE> ((* NIL NIL)) NIL)
(<PROCESS-ALIAS-INSTANCE> ((* NIL NIL)) NIL)
(<PROCESS-INSTANCE> ((* NIL NIL)) NIL)
(<PARAMETER-ALIAS-INSTANCE> ((* NIL NIL)) NIL)
(<PARAMETER-INSTANCE> ((* NIL NIL)) NIL)
(<MODULE-INSTANCE> ((* NIL NIL)) NIL)
(<IMPLEMENTATION-INSTANCE> ((* NIL NIL)) NIL)
(<DESIGN-INSTANCE> ((* NIL NIL)) NIL)
(<DATA-ELEMENT-ALIAS-INSTANCE> ((* NIL NIL))

NIL)
(<DATA-ELEMENT-INSTANCE> ((* NIL NIL)) NIL)
(<ACTIVITY-ALIAS-INSTANCE> ((* NIL NIL)) NIL)
(<ACTIVITY-INSTANCE> ((* NIL NIL)) NIL))

NIL))

(DECLARE (SPECIAL (ACTIVITY-INSTANCE>))
(CREATE-PRODUCTION <ACTIVITY-INSTANCE>)
(SETQ <ACTIVITY-INSTANCE>

'(<ACTIVITY-INSTANCE>
((ACTIVITY ((<ACTIVITY> ((* NIL NIL)) NIL)) NIL))

NIL))

(DECLARE (SPECIAL <ACTIVITY-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <ACTIVITY-ALIAS-INSTANCE>)
(SETQ
<ACTIVITY-ALIAS-INSTANCE>
'(<ACTIVITY-ALIAS-INSTANCE>

((ACTIVITY ((ALIAS ((<ACTIVITY-ALIAS> ((* NIL NIL))
NIL)) NIL)) NIL))

NIL))

D- 8

°*°.•° - ,

. ,. . .°.0~~0

(DECLARE (SPECIAL <DATA-ELEMENT-INSTANCE>))
(CREATE-PRODUCTION <DATA-ELEMENT- INSTANCE>)
(SETQ <DATA-ELEMENT-INSTANCE>

'(<DATA-ELEMENT-INSTANCE>
((DATA ((ELEMENT ((<DATA-ELEMENT> ((* NIL NIL)) NIL))

NIL)) NIL))
NIL))

(DECLARE (SPECIAL <DATA-ELEMENT-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <DATA-ELEMENT-ALIAS-INSTANCE>)
(SETQ
<DATA-ELEMENT-ALIAS-INSTANCE>
'(<DATA-ELEMENT-ALIAS-INSTANCE>

((DATA
((ELEMENT

((ALIAS ((<DATA-ELEMENT-ALIAS> ((* NIL NIL)) NIL))
NIL)) NIL)

NIL))
NIL))

(DECLARE (SPECIAL <DESIGN-INSTANCE>))
(CREATE-PRODUCTION <DESIGN-INSTANCE>)
(SETQ
(DESIGN-INSTANCE>
'(<DESIGN-INSTANCE> ((DESIGN ((<DESIGN> ((* NIL NIL))

' NIL)) NIL)) NIL))

(DECLARE (SPECIAL <IMPLEMENTATION-INSTANCE>))
(CREATE-PRODUCTION <IMPLEMENTATION-INSTANCE>)
(SETQ
<IMPLEMENTATION-INSTANCE>
'((IMPLEMENTATION-INSTANCE>

((IMPLEMENTATION ((<IMPLEMENTATION> ((* NIL NIL)) NIL))
NIL)) NIL)

(DECLARE (SPECIAL <MODULE-INSTANCE>))
(CREATE-PRODUCTION <MODULE-INSTANCE>)
(SETQ
<MODULE-INSTANCE>
'(<MODULE-INSTANCE> ((MODULE (((MODULE> ((* NIL NIL))

NIL)) NIL)) NIL))

(DECLARE (SPECIAL <PARAMETER-INSTANCE>))
(CREATE-PRODUCTION <PARAMETER-INSTANCE>)
(SETQ <PARAMETER-INSTANCE>

'(<PARAMETER-INSTANCE>
((PARAMETER ((PARAMETER> ((* NIL NIL)) NIL)) NIL))

NIL))

D-9

" .. * . --_.--.. . .

(DECLARE (SPECIAL <PARAMETER-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <PARAMETER-ALIAS-INSTANCE>)
(SETQ <PARAMETER-ALIAS-INSTANCE>

'(<PARAMETER-ALIAS-INSTANCE>
((PARAMETER

((ALIAS ((<PARAMETER-ALIAS> ((* NIL NIL)) NIL))
NIL)) NIL))

NIL))

(DECLARE (SPECIAL <PROCESS-INSTANCE>))
(CREATE-PRODUCTION (PROCESS-INSTANCE>)
(SETQ <PROCESS-INSTANCE>

(< PROCESS- INSTANCE>Iq
((PROCESS ((<PROCESS> ((* NIL NIL)) NIL)) NIL)) NIL))

(DECLARE (SPECIAL <PROCESS-ALIAS-INSTANCE>))
(CREATE-PRODUCTION <PROCESS-ALIAS-INSTANCE>)
(SETQ
<PROCESS-ALI AS- INSTANCE>

'(<PROCESS-ALIAS-INSTANCE>
((PROCESS ((ALIAS ((<PROCESS-ALIAS> ((* NIL NIL)) NIL))

NIL)) NIL))
NIL))

- -- (DECLARE (SPECIAL <PROJECT-INSTANCE>))

(CREATE-PRODUCTION <PROJECT-INSTANCE>)
(SETQ
(PROJECT-INSTANCE>
(<PROJECT-INSTANCE>

((*PROJECT* ((* NIL (SEND *NEW-EVENT* :SET-OBJECT
PROJECT))) NIL)

(PROJECT ((<PROJECT> ((* NIL NIL)) NIL)) NIL))

NIL))

(DECLARE (SPECIAL <REQUIREMENTS-INSTANCE>))
(CREATE-PRODUCTION <REQUIREMENTS-INSTANCE>)
(SETQ <REQUIREMENTS-INSTANCE>

'(<REQUIREMENTS-INSTANCE>
((REQUIREMENTS ((<REQUIREMENTS> ((* NIL NIL)) NIL))

NIL)) NIL))

(DECLARE (SPECIAL <VARIABLE-INSTANCE>))
(CREATE-PRODUCTION <VARIABLE-INSTANCE>)
(SETQ <VARIABLE-INSTANCE>

'(<VARIABLE-INSTANCE>
((VARIABLE ((<VARIABLE> ((* NIL NIL)) NIL)) NIL))

* NIL))

•- .: -'.

D-10

p-

(DECLARE (SPECIAL <ACTIVITY>))
(CREATE-FUNCTION <ACTIVITY>) r
(SETQ <ACTIVITY> '(<ACTIVITY> (LAMBDA (K) NIL)))

(DECLARE (SPECIAL <ACTIVITY-ALIAS>))
(CREA"E-FUNCTION (ACTIVITY-ALIAS>)
(SETQ <ACTIVITY-ALIAS> '(<ACTIVITY-ALIAS> (LAMBDA (X) NIL)))

(DECLARE (SPECIAL <DATA-ELEMENT>))
(CREATE-FUNCTION <DATA-ELEMENT>)
(SETQ <DATA-ELEMENT> '(<DATA-ELEMENT> (LAMBDA (X) NIL)))

(DECLARE (SPECIAL <DATA-ELEMENT-ALIAS>))
(CREATE-FUNCTION <DATA-ELEMENT-ALIAS>)
(SETQ <DATA-ELEMENT-ALIAS> ' (<DATA-ELEMENT-ALIAS> (LAMBDA
(X) NIL)))

(DECLARE (SPECIAL <DESIGN>))
(CREATE-FUNCTION <DESIGN>)
(SETQ <DESIGN>

'(<DESIGN>
(LAMBDA (X)

(LET ((INSTANCE (SEND *PROJECT* :IS-DESIGN X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT

INSTANCE)))))))

(DECLARE (SPECIAL <IMPLEMENTATION>))
(CREATE-FUNCTION <IMPLEMENTATION>)
JSETQ <IMPLEMENTATION>

'(<IMPLEMENTATION>
(LAMBDA (X)

(LET ((INSTANCE (SEND *PROJECT* :IS-IMPLEMENTATION
X)))

(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT
INSTANCE)))))))

* (DECLARE (SPECIAL <MODULE>))
(CREATE-FUNCTION <MODULE>)
(SETQ <MODULE> '(<MODULE> (LAMBDA (X) NIL)))

D-"11

I

(DECLARE (SPECIAL <PARAMETER>))
(CREATE-FUNCTION <PARAMETER>)
(SETQ
<PARAMETER>
(<PARAMETER>
(LAMBDA (X)

(LET ((INSTANCE
(SEND (SEND *PROJECT* :DESIGN-INSTANCE)

:IS-PARAMETER X))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT

INSTANCE)))))))

(DECLARE (SPECIAL <PARAMETER-ALIAS>))
(CREATE-FUNCTION <PARAMETER-ALIAS>)
(SETQ
<PARAMETER-ALIAS>
'(<PARAMETER-ALIAS>

(LAMBDA (X)
(LET ((INSTANCE

(SEND
(SEND *PROJECT* :DESIGN-INSTANCE)

:IS-PARAMETER-ALIAS X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT

INSTANCE)))))))

(DECLARE (SPECIAL <PROCESS>))

(CREATE-FUNCTION (PROCESS>)
(SETQ (PROCESS>

'(<PROCESS>
(LAMBDA (X)

(LET ((INSTANCE
(SEND (SEND *PROJECT* :DESIGN-INSTANCE)

:IS-PROCESS X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT

INSTANCE)))))))

(DECLARE (SPECIAL <PROCESS-ALIAS>))
(CREATE-FUNCTION <PROCESS-ALIAS>)
(SETQ
<PROCESS-ALIAS>
'(<PROCESS-ALIAS>

(LAMBDA (X)
(LET

((INSTANCE ".
(SEND (SEND *PROJECT* :DESIGN-INSTANCE)

IS-PROCESS-ALIAS X)))
(COND (INSTANCE (SEND *NEW-EVENT* :SET-OBJECT

INSTANCE)))))))

D-12

I' T

(DECLARE (SPECIAL <PROJECT>))
(CREATE-FUNCTION <PROJECT>)
(SETQ <PROJECT>

'(<PROJECT>

(LAMBDA (X) (COND ((EQUAL X (SEND *PROJECT* :NAME))
(SEND *NEW-EVENT* :SET-OBJECT

PROJECT))))))

(DECLARE (SPECIAL <VARIABLE>))
(CREATE-FUNCTION <VARIABLE>)(SETQ <VARIABLE> '(<VARIABLE> (LAMBDA (X) NIL)))

(DECLARE (SPECIAL <ATTRIBUTE-LIST>))
(CREATE-PRODUCTION <ATTRIBUTE-LIST>)
(SETQ <ATTRIBUTE-LIST>

'(<ATTRIBUTE-LIST>
((<ATTRIBUTE> ((AND ((<ATTRIBUTE> ((* NIL NIL)) NIL))

NIL)
(<ATTRIBUTE-LIST> ((* NIL NIL)) NIL) (* NIL

NIL))
NIL))

NIL))

D-j13

-,° -. °

(DECLARE (SPECIAL <ATTRIBUTE>))
(CREATE-PRODUCTION <ATTRIBUTE>) *?-.i.

(SETQ
<ATTRIBUTE>
'(<ATTRIBUTE> -J

((GLOBAL
((DATA
((CHANGED

((* NIL
(SEND *NEW-EVENT* :ADD-ATTRIBUTE

'GLOBAL-DATA-CHANGED)))
NIL)

(USED
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'GLOBAL-DATA-USED)))
NIL))

NIL))
NIL)

(DESTINATIONS
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'PASSED-TO))) NIL)
(SOURCES

((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'PASSED-FROM))) NIL)

(SYNONYMS ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE -
'SYNONYM))) NIL)

(DESTINATION
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'PASSED-TO))) NIL)
(SOURCE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'PASSED-FROM))) NIL)
(PASSED

((TO ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'PASSED-TO))) NIL)

(FROM
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'PASSED-FROM))) NIL))

NIL)
(OUTPUT

((FLAGS
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'OUTPUT-FLAGS))) NIL)
(DATA

((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'OUTPUT-DATA))) NIL))

NIL)

D- 14

. .•. - ...

(INPUT
((FLAGS
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'INPUT-FLAGS))) NIL)
(DATA ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'INPUT-DATA))) NIL))
NIL)

(ALIASES ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'ALIASES))) NIL)

(GLOBALS
((USED ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'GLOBAL-DATA-USED)))
NIL)

(CHANGED
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'GLOBAL-DATA-CHANGED)))
NIL))
NIL)

(INVOKING
((PROCESSES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'CALLING-PROCESSES)))
NIL))
NIL)

(ENTRY
((DATE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'DATE))) NIL)
(VERSION ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'VERSION))) NIL))
NIL)

(SYNONYM ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'SYNONYM))) NIL)

(REQUIREMENTS
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'REQUIREMENTS))) NIL)
(SUBPROCESSES

_ ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'PROCESSES-CALLED))) NIL) -

(INVOKED
((PROCESSES
((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'PROCESSES-CALLED)))
* NIL))

NIL)

D-,15

......................................

".o.

~-:7-- .- ,.-z-...--.-~--..-.--.--. -~--------~- . -. ~-*~ -~~.--~---- -.- - --- *- 0.7 - -

* (CALLED
((PROCESSES

(*NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'PROCESSES-CALLED)))

NIL))
NIL)

(PROCESSES
((INVOKED

(*NIL (SEND *NEW-.EVENT* :ADD-ATTRIBUTE
'PROCESSES-CALLED)))

NIL)
(CALLED

(*NIL (SEND *NEW-.EVENT* :ADD-ATTRIBUTE
'PROCESSES-CALLED)))

NIL)
(NIL (SEND *NEW-.EVENT* :ADD-ATTRIBUTE 'PROCESSES)))
NIL)

(PROCESS
((ALIASES

(*NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'PROCESS-ALIASES)))

NIL))
NIL)

(PARAMETERS
(*NIL (SEND *NEW..EVENT* :ADD-ATTRIBUTE

'PARAMETERS))) NIL)
(PARAMETER

((ALIASES
(*NIL (SEND *NEW-.EVENT* :Abb-ATTRIBUTE

'PARAMETER-ALIASES)))
NIL))
NIL)

(MAIN
((PROGRAM
(*NIL (SEND *NEW-.EVENT* :ADD-ATTRIBLJTE

'MAIN-PROGRAM))) NIL)
* (PROGRAMS

((* NIL (SEND *NEW-.EVENT* :ADD-ATTRIBUTE
'MAIN-PROGRAM))) NIL)

(PROCESS
(*NIL (SEND *NEW..EVENT* :ADD-ATTRIBUTE

'MAIN-PROGRAM))) NIL)
* (PROCESSES

(*NIL (SEND *NEW-.EVENT* :ADD-ATTRIBtJTE
'MAIN-PROGRAM))) NIL))

NIL)
(IMPLEMENTATION

(*NIL (SEND *NEW-.EVENT* :ADD-ATTRIBIJTE
'IMPLEMENTATION))) NIL)

D- 16

-7

(DESIGN ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'DESIGN))) NIL)
(DD ((TYPE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'DD-TYPE))) NIL)) . .

NIL)
(CALLING

((PROCESSES __-'

((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'CALLING-PROCESSES)))
NIL))
NIL)

(VERSION ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE
'VERSION))) NIL)

(TYPE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'TYPE)))
NIL)

(PROJECT
((NAME ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE

'PROJECT))) NIL)
(* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'PROJECT)))
NIL) -

(NAME ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'NAME)))
NIL)

(DATE ((* NIL (SEND *NEW-EVENT* :ADD-ATTRIBUTE 'DATE)))
NIL))

NIL))

(DECLARE (SPECIAL <LITERAL>))
(CREATE-FUNCTION <LITERAL>)
(SETQ <LITERAL> '(<LITERAL> (LAMBDA (X) NIL)))

(DECLARE (SPECIAL <SAVE>))
(CREATE-PRODUCTION <SAVE>) J
(SETQ <SAVE> '((SAVE> ((STORE (*NIL NIL)) NIL) (KEEP W(
NIL NIL)) NIL)

(SAVE ((* NIL NIL)) NIL))
(SEND *PROJECT* :SAVE)))

D-1

ElE--

-- A

Appendix E
Table of Contents

Page

introduction E- 3

DDT object Hierarchy Charts E- 4

DDT object Definitions E- 8

(-E--

.7-' 7°. .7 -

Introduction

This appendix defines the object-oriented structure of

the Data Dictionary Tool (DDT). The first part of this

definition shows the hierarchy of DDT's object classes. The

second part defines the structure of each object class in

terms of its included subclasses, its instance variables,

and its associated access methods.

E--3

.I. .

E-4!

rr

zz
Laii I.- #A-

6.l-

w-

E-5

II

E-6U

- -- w lrw .~~ u ~ - -
.r ~*.~-- ~ *. .- .. . -. ~ ~~ - - - *. '& - ~ --..- -- -

LL J

La.

'II

EL-]

Object Class: ACTIVITY

Subclasses
HEADER
ENTRY

Instance Variables
NUMBER Node number of activity .. 4

DESCRIPTION Textual description of activity
INPUTS Assoc-list of input parameter

names and numbers
OUTPUTS Assoc-list of output parameter

names and numbers
CONTROLS Assoc-list of control parameter

names and numbers
MECHANISMS Assoc-list of mechanism parameter

and numbers
ALIASES List of activity alias names
PARENT-ACTIVITY Name of parent activity
RELATED-ITEMS Paragraph number of textual

requirements statement

E--8

.. z- W 7;1 .-[

Object Class: ACTIVITY-ALIAS

Subclasses
ALIAS

Instance Variables
WHERE-USED List of SADT activity numbers

E--9

.7,

Object Class: ALIAS

Subclasses
HEADER
ENTRY

Instance Variables
DD-TYPE Data dictionary type

("ACTIVITY", "DATA ELEMENT",
"PARAMETER", "PROCESS")

SYNONYM Name of a defined module or
parameter

Methods
dd-type Returns the value of DD-TYPE
set-dd-type (VAL) Sets the value of DD-TYPE to VAL

synonym Returns the value of SYNONYM
set-synonym (VAL) Sets the value of SYNONYM to VAL - -"

E- 10

S":¢:

Object Class: ASSOC __

N Subclasses
none

Instance Variable
VALUE

Methods .
initialize Initializes all of ASSOC's

instance variables
present Displays an ASSOC instance

value Returns the value Of VALUE4
set-value (VAL) Sets VALUE to VAL

E-11

Object Class: ATOM

Subclasses
none

Instance Variables
VALUE

Methods
initialize Initializes all of ATOM's

instance variables
*present Displays an ATOM instance

value Returns the value of VALUE
set-value (VAL) Sets VALUE to VAL

E- 12

L7 W.7 ..

object Class: DATA-ELEMENT

Subclasses
PARAMETER

Instance Variables
none

E-13

* *~~ ~~~-

Object Class: DATA-ELEMENT-ALIAS

Subclasses
ALIAS

Instance variables
WHERE-USED List of SADT activity numbers

E- 14

*.~ ~Whim

object cls:DATE

Subclasses

none

Instance Variables
VALUE

Methods
Initialize Initializes all of DATE's

instance variables
present Displays a DATE instance

value Returns the value of VALUE 5

set-value (VAL) Sets VALUE to VAL
day Returns the value of the DAY

subfield of VALUE
month Returns the value of the MONTH

subfield of VALUE
year Returns the value of the YEAR ..

subfield of VALUE

E-15

i:::

Object Class: DESIGN

Subclasses
HEADER
ENTRY

Instance Variables
MAIN-PROGRAM Name of main program
PROCESSES Assoc-list of module names and

pointers to module instances
PROCESS-ALIASES Assoc-list of process alias names

and pointers to alias instances
PARAMETERS Assoc-list of parameter names and

pointers to parameter instances
PARAMETER-ALIASES Assoc-list of parameter alias

names and pointers to alias
instances

Methods
create Creates a DESIGN instance
initialize Initializes all of DESIGN's

instance variables
present (ATTRIBUTE- .1
LIST) Displays the instance variables

listed in ATTRIBUTE-LIST of a
DESIGN instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of DESIGN's
instance variables except NAME,
TYPE, and PROJECT

save (PROJECT,
STREAM) Saves a DESIGN instance and all

of its sub-instances to STREAM

initialize-date Initializes DATE

initialize-main-
program Initializes MAIN-PROGRAM

main-program Returns the value of MAIN-PROGRAM
set-main-program

(VAL) Sets the value of MAIN-PROGRAM to
VAL

initialize-name Initializes NAME

E-J

- *--** *-* *. *-***-*--. *.

create-parameter-
alias Creates a PARAMETER-ALIAS

instance and adds it to the list
of PARAMETER-ALIASES

initialize-parameter-
aliases Initializes PARAMETER-ALIASES

parameter-aliases Returns the value of
PARAMETER-AL IASES

parameter-alias-
instance-list Returns a list of pointers to the

PARAMETER-ALIASes of a DESIGN
set-parameter-aliases

(VAL) Sets the value of
PARAMETER-ALIASES to VAL

is-parameter-alias
(VAL) Returns a pointer to the

appropriate instance if VAL is a
PARAMETER-ALIAS, otherwise
returns NIL .\

create-parameter Creates a PARAMETER instance and
adds it to the list of PARAMETERS

initialize-parameters Initializes PARAMETERS
parameters Returns the value of PARAMETERS
parameter-instance-

list Returns a list of pointers to the
PARAMETERs of a DESIGN

set-parameters (VAL) Sets the value of PARAMETERS to
VAL

is-parameter (VAL) Returns a pointer to the
appropriate instance if VAL is a
PARAMETER, otherwise returns NIL

E- 17

~~~~... . . . . . . . . . . . .



create-process-alias Creates a PROCESS-ALIAS instance
and adds it to the list of
PROCESS-AL IASES

initialize-process-
aliases Initializes PROCESS-ALIASES

process-aliases Returns the value of
PROCESS-ALIASES

process-alias-...

instance-list Returns a list of pointers to the
PROCESS ALIASes of a DESIGN

set-process-aliases
(VAL) Sets the value of PROCESS-ALIASES

to VAL '-a --

is-process-alias 
to VAL

(VAL) Returns a pointer to the
appropriate instance if VAL is a
PROCESS-ALIAS, otherwise returns
NIL

create-process Creates a PROCESS instance and
adds it to the list of PROCESSES

initialize-processes Initializes PROCESSES
processes Returns the value of PROCESSES
process-instance-list Returns a list of pointers to the5-- PROCESSes of a DESIGN

set-processes (VAL) Sets the value of PROCESSES to
VAL

is-process (VAL) Returns a pointer to the
appropriate instance if VAL is a
PROCESS, otherwise returns NIL

initialize-project Initializes PROJECT

initializ -type Initializes TYPE

initialize-version Initializes VERSION

-18

* .. ... . . . .. . . . . . . . . . . . . . . .

~~~~~~~~~~,... . . . . . . . . . . . . . . . . .. . . . . . .


Object Class: ENTRY

Subclasses
none"'"

Instance Variables
VERSION Version number of entry
DATE Date of entry

Methods
date Returns the value of DATE

version Returns the value of VERSION
increment-version Increments the value of VERSION I- -

by 1

E- 19

... -. °.

Object Class: HEADER

Subclasses
none

Instance Variables
NAME Name of instance
TYPE Type of instance

("ACTIVITY", "ALIAS", "DATA
ELEMENT", "DESIGN",
"IMPLEMENTATION", "MODULE-,
"PARAMETER", "PROCESS",
"REQUIREMENTS", "VARIABLE") - -'-"

PROJECT Name of project

Methods
name Returns the value of NAME
set-name (VAL) Sets the value of NAME to VAL

project Returns the value of PROJECT

type Returns the value of TYPE

0- .

* .-.-..- °.

Object Class: IMPLEMENTATION

Subclasses
HEADER ,
ENTRY

Instance Variables
MAIN-PROGRAM Name of main program
MODULES Assoc-list of module names and

pointers to module instances
VARIABLES Assoc-list of variable names and

pointers to variable instances

Methods
create Creates an IMPLEMENTATION

instance
initialize Initializes all of I

IMPLEMENTATION' s instance
variables

present (ATTRIBUTE-
LIST) Displays the instance variables

listed in ATTRIBUTE-LIST of an
IMPLEMENTATION instance; if
ATTRIBUTE-LIST is empty, displays
all instance variablesP-- reinitialize (DUMMY) Initializes all of t..

IMPLEMENTATION' s instance I
variables except NAME, TYPE, and
PROJECT -

save (PROJECT,
STREAM) Saves an IMPLEMENTATION instance

and all of its sub-instances to
STREAM

E-21.,.'- - .. - .,,.-..--..-

. .. .

Object Class: LIST

Subclasses
none

Instance Variables
VALUE

Methods
initialize Initializes all of LIST's

instance variables
present Displays a LIST instance

value Returns the value of VALUE
set-value (VAL) Sets VALUE to VAL

E--22

------------------ ~......-....-..-......-C. 2..

- . .". -', --. P- J-r. .1 .7 .. - -- -

* "Object Class: MODULE

Subclasses
PROCESS

Instance Variables
none

o

0l ::

E-23i

s~~:_:>~ ~.:I.:j~j ~ i~cI.: ~.cK-;.:-:;. :-.--.* * :..*.. - ** .* -.

Object Class: PARAMETER

Subclasses
HEADER
ENTRY

Instance Variables
DESCRIPTION Textual description of

parameter/variable/data element
DATA-TYPE Data type of

parameter/variable/data element
MIN-VALUE Minimum value of

parameter/variable/data element
(if applicable)

MAX-VALUE Maximum value of
parameter/variable/data element
(if applicable)

RANGE Range of parameter/variable/data
element (if applicable)

VALUES List of legal values of
parameter/variable/data element
(if applicable)

STORAGE-TYPE Storage type of
parameter/variable/data element
("FILE", -GLOBAL", "HARDWARE",
"I/O", or "PASSED")

PART-OF Name of parent
parameter/variable/data element
(if applicable)

COMPOSITION List of
sub-parameter/variable/data
element names (if applicable)

ALIASES List of parameter/variable/data
element alias names (if any)

PASSED-FROM List of process/module/activity
names passed from

PASSED-TO List of process/module/activity
names passed to

RELATED-ITEMS List of related
SADT-data-item/parameter/require-
ment names/numbers

E-,24

* -°'°- -.

Methods
create Creates a PARAMETER instance
initialize Initializes all of PARAMETER's

instance variables
present (ATTRIBUTE-

LIST) Displays the instance variables
listed in ATTRIBUTE-LIST of a
PARAMETER instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of PARAMETER's
instance variables except NAME,
TYPE, and PROJECT

save (DESIGN, STREAM) Saves a PARAMETER instance to
STREAM

initialize-aliases Initializes ALIASES
aliases Returns the value of ALIASES
set-aliases (VAL) Sets the value of ALIASES to VAL

initialize-
composition Initializes COMPOSITION

composition Returns the value of COMPOSITION
set-composition (VAL) Sets the value of COMPOSITION to

VAL

initialize-data-type Initializes DATA-TYPE
data-type Returns the value of DATA-TYPE
set-data-type (VAL) Sets the value of DATA-TYPE to

VAL

initialize-date Initializes DATE

initialize-
description Initializes DESCRIPTION

description Returns the value of DESCRIPTION
set-description (VAL) Sets the value of DESCRIPTION to

VAL

initialize-max-value Initializes MAX-VALUE
max-value Returns the value of MAX-VALUE
set-max-value (VAL) Sets the value of MAX-VALUE to

VAL

initialize-min-value Initializes MIN-VALUE
min-value Returns the value of MIN-VALUE
set-min-value (VAL) Sets the value of MIN-VALUE to

VAL

E- 25

S -1I

initialize-name Initializes NAME

initialize-part-of Initializes PART-OF
part-of Returns the value of PART-OF -
set-part-of (VAL) Sets the value of PART-OF to VAL L.J
initialize-passed-

from Initializes PASSED-FROM
passed-from Returns the value of PASSED-FROM
set-passed-from (VAL) Sets the value of PASSED-FROM to

VAL

initialize-passed-to Initializes PASSED-TO--i

passed-to Returns the value of PASSED-To
set-passed-to (VAL) Sets the value of PASSED-TO to

VAL

initialize-project Initializes PROJECT jjj
initialize-range Initializes RANGE
range Returns the value of RANGE
set-range (VAL) Sets the value of RANGE to VAL

initialize-related-
items Initializes RELATED-ITEMS

related-items Returns the value of
RELATED- ITEMS

set-related- items
(VAL) Sets the value of RELATED-ITEMS(VAL)A

initialize-storage-
type Initializes STORAGE-TYPE

storage-type Returns the value of STORAGE-TYPE
set-storage-type

(VAL) Sets the value of STORAGE-TYPE to
* VAL

initialize-type Initializes TYPE

initialize-values Initializes VALUES
values Returns the value of VALUES
set-values (VAL) Sets the value of VALUES to VAL

initialize-version Initializes VERSION

E- 26

.-.........
. . - -- ,--- - - - - - - - --. *..---

Object Class: PARAMETER-ALIAS

Subclasses
ALIAS

Instance Variables
PASSED-FROM List of process names parameter '

is passed from
PASSED-TO List of process names parameter

is passed to

Methods
create Creates a PARAMETER-ALIAS

instance
initialize Initializes all of

PARAMETER-ALIAS' instance
variables

present (ATTRIBUTE-
LIST) Displays the instance variables

listed in ATTRIBUTE-LIST of a
PARAMETER-ALIAS instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of
PARAMETER-ALIAS' instance

-~ variables except NAME, TYPE,
PROJECT, and DD-TYPE

save (DESIGN, STREAM) Saves a PARAMETER-ALIAS instance
to STREAM

initialize-date Initializes DATE

initialize-dd-type Initializes DD-TYPE

initialize-name Initializes NAME

initialize-passed-
from Initializes PASSED-FROM -----

passed-from Returns the value of PASSED-FROM
set-passed-from (VAL) Sets the value of PASSED-FROM to

VAL

0 initialize-passed-to Initializes PASSED-TO
passed-to Returns the value of PASSED-TO
set-passed-to (VAL) Sets the values of PASSED-TO to

VAL

initialize-project Initializes PROJECT

E-27
.o-

initialize-synonym Initializes SYNONYM

initialize-type Initializes TYPE

initialize-version Initializes VERSION

-4

E-28

Object Class: PROCESS

Subclasses
HEADER '. .' "
ENTRY

Instance Variables
NUMBER Number of process/module
DESCRIPTION Textual description of *

process/module
INPUT-DATA List of input data

parameter/variable names
INPUT-FLAG List of input flag

parameter/variables names
OUTPUT-DATA List of output data

parameter/variable names
OUTPUT-FLAGS List of output flag

parameter/variables names
GLOBAL-DATA-USED List of globals used
GLOBAL-DATA-CHANGED List of globals changed
FILES-READ List of filenames of files read
FILES-WRITTEN List of filenames of files

written
HARDWARE-INPUT
HARDWARE-OUTPUT
ALIASES List of process/module alias

names
CALLING-PROCESSES List of calling process/modulenames ..
PROCESSES-CALLED List of processes/modules calledn a m e s .. '

RELATED-ITEMS List of related
SADT-activity-names/process-names

E- 29

. L

Methods
create Creates a PROCESS instance
initialize Initializes all of PROCESS'

instance variables
present (ATTRIBUTE-

LIST) Displays the instance variables
listed in ATTRIBUTE-LIST of a A~a
PROCESS instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of PROCESS'
instance variables except NAME,
TYPE, and PROJECT

save (DESIGN, STREAM) Saves a PROCESS instance to
STREAM

initialize-aliases Initializes ALIASES
aliases Returns the value of ALIASES
set-aliases (VAL) Sets the value of ALIASES to VAL -

initialize-calling-
processes Initializes CALLING-PROCESSES

calling-processes Returns the value of
CALLING-PROCESSES

set-calling-processes
(VAL) Sets the value of

CALLING-PROCESSES to VAL
-add-calling-processes

(LIST) For each process name in LIST:
Adds to CALLING-PROCESSES; If
necessary, Creates PROCESS
instance; Adds NAME to
PROCESSES-CALLED Slot

delete-calling-
processes (LIST) For each process name in LIST:

Deletes from CALLING-PROCESSES;
Deletes NAME from
PROCESSES-CALLED slot

initialize-date Initializes DATE

initialize-description Initializes DESCRIPTION
description Returns the value of DESCRIPTION
set-description (VAL) Sets the value of DESCRIPTION to

VAL

E--30

l4

~ ---.

initialize-files-read Initializes FILES-READ
files-read Returns the value of FILES-READ
set-files-read (VAL) Sets the value of FILES-READ to

VAL

initialize-files-
written Initializes FILES-WRITTEN

files-written Returns the value of
FILES-WRITTEN

set-files-written
(VAL) Sets the value of FILES-WRITTEN

to VAL

initialize-globals-
changed Initializes GLOBAL-DATA-CHANGED

globals-changed Returns the value of
GLOBAL-DATA-CHANGED

set-globals-changed
(VAL) Sets the value of

GLOBAL-DATA-CHANGED to VAL

initialize-globals-
used Initializes GLOBAL-DATA-USED

globals-used Returns the value of
GLOBAL-DATA-USED

set-globals-used (VAL) Sets the value of
GLOBAL-DATA-USED to VAL

initialize-hardware-
input Initializes HARDWARE-INPUT

hardware-input Returns the value of
HARDWARE-INPUT

set-hardware-input
(VAL) Sets the value of HARDWARE-INPUT

to VAL

initialize-hardware-
output Initializes HARDWARE-OUTPUT

hardware-output Returns the value of
HARDWARE-OUTPUT

set-hardware-output
(VAL) Sets the value of HARDWARE-OUTPUT

to VAL

initialize-input-data Initializes INPUT-DATA
input-data Returns the value of INPUT-DATA
set-input-data (VAL) Sets the value of INPUT-DATA to

VAL

E_-3

. . . .-* S ° • - .°*

initialize-input-flags Initializes INPUT-FLAGS
input-flags Returns the value of INPUT-FLAGS
set-input-flags (VAL) Sets the value of INPUT-FLAGS to

VAL
initialize-name Initializes NAME..

initialize-number Initializes NUMBER

number Returns the value of NUMBER
set-number (VAL) Sets the value of NUMBER to VAL

initialize-output-
data Initializes OUTPUT-DATA

output-data Returns the value of OUTPUT-DATA
set-output-data (VAL) Sets the value of OUTPUT-DATA to

VAL

initialize-output-
flags Initializes OUTPUT-FLAGS

output-flags Returns the value of OUTPUT-FLAGS
set-output-flags (VAL) Sets the value of OUTPUT-FLAGS to

VAL " -"

initialize-processes-
called Initializes PROCESSES-CALLED

processes-called Returns the value of
PROCESSES-CALLED

set-processes-called
(VAL) Sets the value of

PROCESSES-CALLED to VAL
add-processes-called

(LIST) For each process name in LIST:
Adds to PROCESSES-CALLED; If
necessary, Creates PROCESS
instance; Adds NAME to
CALLING-PROCESSES slot

delete-processes-
called (LIST) For each process name in LIST:

Deletes from PROCESSES-CALLED;
Deletes NAME from
CALLING-PROCESSES slot

initialize-project Initializes PROJECT

E-32
,-...-.......................................

initialize-related-
items Initializes RELATED-ITEMS

related-items Returns the value of
RELATED- ITEMS

set-related- items
(VAL) Sets the value of RELATED-ITEMSj to VAL

initialize-type Initializes TYPE

initialize-version Initializes VERSION

E-3

-2,

- - .-- - - - - - - - - - - - - - - -,

Object Class: PROCESS-ALIAS

Subclasses
ALIAS

['. ~'. '

Instance Variables
none

Methods
create Creates a PROCESS-ALIAS instance
initialize Initializes all of PROCESS-ALIAS'

instance variables
present (ATTRIBUTE-

LIST) Displays the instance variables
listed in ATTRIBUTE-LIST of a
PROCESS-ALIAS instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of PROCESS-ALIAS' "'-'"'
instance variables except NAME,
TYPE, PROJECT, and DD-TYPE

save (DESIGN, STREAM) Saves a PROCESS-ALIAS instance to
STREAM

initialize-date Initializes DATE

initialize-dd-type Initializes DD-TYPE

initialize-name Initializes NAME

initialize-project Initializes PROJECT

initialize-synonym Initializes SYNONYM

initialize-type Initializes TYPE

initialize-version Initializes VERSION

E-"34

..

~t~p ~ lpa ~ s - - - - - - - - -o -"-.*,

Object Class: PROJECT

Subclasses
ENTRY ,. -p

Instance Variables
NAME Name of project
REQUIREMENTS Assoc-list of requirements names

and pointers to requirements
instance (s)

DESIGN Assoc-list of design names and
pointers to design instance(s)

IMPLEMENTATION Assoc-list of implementation
names and pointers to
implementation instance(s)

Methods
create Creates a PROJECT instance
initialize Initializes all of PROJECT's

instance variables
reinitialize (DUMMY) Initializes all of PROJECT's

instance variables except NAME
present (ATTRIBUTE-
LIST) Displays the instance variables

listed in ATTRIBUTE-LIST of a
PROJECT instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

save Saves a PROJECT instance and all
of its sub-instances to STREAM

create-design (NAME) Creates a DESIGN instance whose
name is NAME and adds it to
DESIGN

initialize-design Initializes DESIGN
design Returns the value of DESIGN
design-instance Returns a pointer to the DESIGN

instance -

set-design (VAL) Sets the value of DESIGN to VAL
is-design (VAL) Returns a pointer to the

appropriate instance if VAL is a
DESIGN, otherwise returns NIL

E-35

-- .L. -" . i. .:- . -. .--."- - . - .-a . -. a.- . - * . -. *.. . . a.- .- -.. . .-. --- .- . .- " .-- .- .-.

create- implementation
(NAME) Creates an IMPLEMENTATION

instance whose name is NAME and
adds it to IMPLEMENTATION

initialize-
implementation Initializes IMPLEMENTATION

implementation Returns the value of
IMPLEMENTATION

implementation-
instance Returns a pointer to the

IMPLEMENTATION instance
set- implementation

(VAL) Sets the value of IMPLEMENTATION
to VAL

is-implementation
(VAL) Returns a pointer to the

appropriate instance if VAL is an
IMPLEMENTATION, otherwise returns
NIL

initialize-name Initializes NAME
name Returns the value of NAME
set-name (VAL) Sets the value of NAME to VAL

(:0 create-requirements
(NAME) Creates a REQUIREMENTS instance

whose name is NAME and adds it to
REQU IREMENTS

* - initialize-
requirements Initializes REQUIREMENTS

requirements Returns the value of REQUIREMENTS
requirements-instance Returns a pointer to the

REQUIREMENTS instance
set-requirements

(VAL) Sets the value of REQUIREMENTS to
VAL

* is-requirements
(VAL) Returns a pointer to the

appropriate instance if VAL is an
REQUIREMENTS, otherwise returns
NIL

E- 36

-W. 1.r.

object Class: REQUIREMENTS

Subclasses
HEADER
ENTRY

Instance Variables
TOP-LEVEL-ACTIVITY Name of the highest level

activity
ACTIVITIES Assoc-list of activity names and

pointers to activity instances
DATA-ELEMENTS Assoc-list of data element names

and pointers to data element
instances

ALIASES Assoc-list of alias names and
pointers to alias instances

Methods
create Creates a REQUIREMENTS instance

*initialize Initializes all of REQUIREMENTS'
instance variables

present (ATTRIBUTE-
LIST) Displays the instance variables

listed in ATTRIBUTE-LIST of a
REQUIREMENTS instance; if
ATTRIBUTE-LIST is empty, displays
all instance variables

reinitialize (DUMMY) Initializes all of REQUIREMENTS'
instance variables except NAME,
TYPE, and PROJECT

save (PROJECT,
STREAM) Saves a REQUIREMENTS instance and

all of its sub-instances to
STREAM

E-37

-AO-A164 026 A NATURAL LANGUAGE PROCESSOR AND ITS APPLICATION TO A 41
DATA DICTIONARY SYSTEMC) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. S A WOLFE

UNCLASSIFIED DEC 85 RFIT/GCS/ENG/85D-i9 F/G 9/2 N

mohEEohhhhmhhE

m flllllllfffffff

2.5'-J&V.6

IL

1111=1 =6

MICROCOPY RESOLUTION TEST CHART
,-

-''. .' '.

lOF 128, *93,

-

jjjJJ .1 I'a*'aW." "

6~. tall-
- 4 11111.25 11111. 1111.

• :.i ::£ -." -" .-'-- -.'-.-'- .'.. '..'. '.'-. MICROCOPY. RE O UTO TEST CHART" - . ,.-. --°--- '' . -- - -.- . - --, ." . - •' .

m I

"U.~~ WL2 9

Object Class: SLOT

Subclasses
none

*Instance Variables%%
VALUE Pointer to low-level value

instance
REQUIRED Boolean -"YES" if entry required

"NO" otherwise
SET Boolean -"YES" if value has been

set
"NO" otherwise

PRESENT-LABEL Label to be displayed for present
operation

Methods
create Creates a SLOT instance
initialize Initializes all of SLOT's -

instance variables
present Displays a SLOT instance

present-label Returns the value of
PRESENT-LABEL

set-present-label
(VAL) Sets the value of PRESENT-LABEL

to VAL

required Returns the value of REQUIRED
set-required (VAL) Sets the value of REQUIRED to VAL

set Returns the value of SET
set-set (VAL) Sets the value of SET to VAL

value Returns the value of VALUE
set-value (VAL) Sets the value of VALUE to VAL

E- 38

object Class: TEXT

Subclasses
none

Instance Variables
VALUE

Methods
initialize initializes all of TEXT's

instance variables
present Displays a TEXT instance
value Returns the value of VALUE
set-value (VAL) Sets the value of VALUE to VAL

E- 39

.-......... !~w ry-~p.' .

Object Class: VARIABLE

Subclasses
I L.

PARAMETER

Instance Variables
none

7-7

E- 40

............................... *...~

Appendix F

Interface Object Definition L

-F 1

Appendix F
Table of Contents

Page

Introduction . . . I F- 3

Interface Object Definitions F- 4

*,.o.'

F-21

Introduction -

This appendix defines the object-oriented structure of

* the Data Dictionary System's (DDS) natural language

front-end to Data Dictionary Tool (DDT) Interface. The

* Interface's EVENT object class is specified in terms of its

included subclasses, its instance variables, and its

associated access methods.

IF-3

.2. - "1. v ~. . X~V~~'. ~K1L' V q -* -- - - -. -

Object Class: EVENT

Subclasses
none *.-

Instance Variables
ACTI ON Action to perform
ACTION-TYPE Type of action - either NIL if

an action upon a data
dictionary object of META if
not

OBJECT Data dictionary object on
which to perform the action
specified by ACTION

ATTRIBUTES A list of instance variables
of OBJECT on which to perform
the action specified by ACTION

Methods
execute Interprets an EVENT instance
initialize Initializes all of EVENT's

instance variables
present Displays all of EVENT's

instance variables

intaie-cinIntaiesATO
initialize-action-tp Initializes ACTION-TP

initialize-attributes Initializes ATTRIBUTES

add-attribute (LIST) For each attribute in LIST:
verifies not already a member
of ATTRIBUTES; If not, adds to
ATTRIBUTES

initialize-object Initializes OBJECT

F-4

-'ft..

ft......

.~ ..-
~ 'ft.J...ft

-- '-p

.. ft ft..
..

~. -4%.

-ft

Appendix G
ft-ft,~

.-- ft~.

Test PlanI~ft-9-

G-l

g

--- ft. -- ft.-.. -ft -ft ~*~ft~* ft9ft.~.ft.-~ft~*ftftI .. *ft ft. - _ ft ------ *ftft* ~ ft ft ft..ft ft' *ftt*ft~'*~*~ -~ -. ~.Vftft~bft.'ft1ftft>ft ~
ft ft ft. -- ft--ft.- - ft ft ft ft ft ft ft ft ft ft ft-ft.- * ftft.-'-..-.- ft*~ft~ft~*ft~

Appendix G
Table of Contents -v.

Page

Introduction......................G- 3

*System-Level Tests G- 3 .

Grammar Constructor Tests G- 4

Sentence Interpreter Tests G- 6

Data Dictionary Access Tests.............G- 7

* Grammar Tests......................G-10

iData Dictionary Content Tests G-11

SDW Interface Tests..................G-11

- Conclusion.......................G-12

G- 2

Introduction

This appendix specifies the test plan to be used in

formally testing the DDS data dictionary system including

the CoIn natural language processor. This plan consists of r

a series of functional tests which specify what is being

tested, how the test should be performed (at a high level),

and what the results of the test should be. This test plan

is organized to follow the System Requirements section of

the requirements chapter of this thesis, Chapter II.

System-Level Tests

1. This test is to determine if DDS is able to accept a

valid input sentence from the user, interpret the sentence

as a command, and retrieve and/or modify the requested

information from the data dictionary. The test should be

performed by entering several valid requests into the

system. Any information requested to be displayed should be

displayed. Any information requested to be modified should -

be modified.

2. This test is to determine if DDS is able to reject an

invalid input sentence from the user. The test should be

performed by entering several invalid requests into the

system. Each of the requests should cause an error message

to be displayed. . .

G-,3

:- 4H

* .- . *- .* * . ~ . . . *. .

- ~~~~~~~ ~~~ ~7 -V I.--- . u - - . - -~1.~~4- -4~

Grammar Constructor Tests

1. This test is to determine if the grammar constructor is

* able to save a grammar from the working grammar file to a

permanent grammar file. The test should be performed by

entering a valid request to save a working grammar. The 4

grammar should be saved to a permanent file.

2. This test is to determine if the grammar constructor is

able to load a grammar from a permanent grammar file to the

working grammar file. The test should be performed by

*entering a valid request to load a permanent grammar. The

grammar should be loaded to the working grammar file.

3. This test is to determine if the grammar constructor is

able to initialize the working grammar. The test should be

performed by first loading the working grammar from a

permanent grammar and then entering a valid request to

initialize the working grammar. The working grammar should

~*initialized.

4. This test is to determine if the grammar constructor is

* able to create production rules. The test should be

performed by entering a valid request to create a new

production rule. The production rule should be created.

*5. This test is to determine if the grammar constructor is

able to display the existing production rules. The test

should be performed by entering a valid request to display a

G- 4

production rule. The requested production rule should be

displayed.

6. This test is to determine if the grammar constructor is

able to display a list of the existing production rules.

The test should be performed by entering a valid request to

display a list of the existing production rules. A list of

the existing production rules should be displayed.

7. This test is to determine if the grammar constructor is

able to modify an existing production rule. The test should

* be performed by entering a series of valid requests to

modify production rules. At least one entry should be made

for each defined modification command. The requested

k. modifications should be made to the proper production rules.

8. This test is to determine if the grammar constructor is

able to delete an existing production rule. The test should

be performed by entering a valid request to delete a

production rule. The specified production rule should be

deleted.

*9. This test is to determine if the grammar constructor is

able to reject invalid construction requests. The test

should be performed by entering a series of invalid

0. requests. At least one entry should be made for each of the

defined commands of the the constructor. Each of the

requests should cause an error message to be displayed.

G-5

Sentence Interpreter Tests

1. This test is to determine if the sentence interpreter is

L'. able to accept input sentences that are valid within the

defined grammar. The test should be performed by entering a

series of valid sentences. At least one entry should be

made which exercises each of the defined grammar

productions. The interpreter should correctly parse each

entry.

2. This test is to determine if the sentence interpreter is I
able to reject input sentences that are invalid within the

defined grammar. The test should be performed by entering a

series of invalid sentences. At least one sentence should

be entered for each of the following cases: a sentence

whose first word is not valid within the grammar, a sentence

whose last word is not valid within the grammar, a sentence

which contains a word that is not valid within the grammar

and in which the word is neither the first nor the last word

of the sentence, a sentence which is correct within the

grammar except that it contains at least one extra word at

the end, and a sentence that is correct within the grammar

except that it ends before the defined end-of-sentence. The

interpreter should reject each entry and display an error

message. The error message should attempt to show where in

the input sentence the error occurred. The error message

should offer suggestions as to how to correct the problem.

G- 6

4'.-

'.- . ..,

3. This test is to determine if the sentence interpreter is

- able to syntactically translate the results of a valid

sentence parse into the proper execution commands of the

application tool. The test should be performed by entering

a series of valid sentences should generate all (if this is

reasonable) or several (if it is not reasonable to generate

all) of the execution commands of the application tool. For

each input sentence, the proper application commands should

be generated.

Data Dictionary Access Tests

1. This test is to determine if the data dictionary access

(i process is able to access all of the information stored in ..

the data dictionary file. The test should be performed by

entering a series of valid requests to access the data

dictionary. As a minimum, an entry should be made which

accesses an instance of each object type in the data

dictionary. Also as a minimum, an entry should be made

which causes each access type (add, delete, display, etc.)

to be performed. For each entry, the proper access to the

information stored in the data dictionary should be done.

2. This test is to determine if the data dictionary access

process is able to maintain the "consistency" of the data in

the data dictionary. The test should be performed by

entering a series of valid requests which cause each of the

G-7

defined consistency routines to be invoked. For each entry,

the data dictionary access process should maintain the

consistency of the information stored in the data

dictionary.

3. This test is to determine if the data dictionary access

process is able to add new objects to the data dictionary.

The test should be performed by entering a series of valid

requests to add new object instances. As a minimum, an

entry should be made which adds a new instance of each

defined object type. The specified instances should be

added to the data dictionary.

4. This test is to determine if the data dictionary access

process is able to modify existing information in the data
LI

dictionary. The test should be performed by entering a

series of valid requests to modify existing object

instances. An entry should be made which exercises each

defined modification function. For each entry, the

requested modification should be made.

5. This test is to determine if the data dictionary access

process is able to reinitialize existing information in the

data dictionary. The test should be performed by entering a

series of valid requests to reinitialize existing object

instance. As a minimum, an entry should be made which

reinitializes an instance of each defined object type. The

G- 8

.. * *.. • . 1 .* -.. :--

specified instances should be reinitialized to their

respective initial states.

6. This test is to determine if the data dictionary access

process is able to delete existing information in the data

dictionary. The test should be performed by entering a

series of valid requests to delete existing object

instances. As a minimum, an entry should be made which

deletes an instance of each defined object type. The

specified instances should be deleted from the data

dictionary.

7. This test is to determine if the data dictionary access

process is able to reject modification requests which

reference information not contained in the data dictionary.

The test should be performed by entering a series of

modification requests which reference information not

contained in the data dictionary but which are otherwise

valid. An entry should be made which exercises each defined

modification function. For each request, the data

dictionary access process should respond with an error

message.

8. This test is to determine if the data dictionary access

0 process is able to display information stored in the data

dictionary. The test should be performed by entering a

series of valid presentation requests. As a minimum, an

entry should be made which displays an instance of each

G -9

define object type. The specified instances should be

displayed.

9. This test is to determine if the data dictionary access w

process is able to reject presentation requests which

reference information not contained in the data dictionary.

The test should be performed by entering a series of

presentation requests which reference information not

contained in the data dictionary but which are otherwise

valid. For each request, the data dictionary access process

should respond with an error message. .4.-

10. This test is to determine if the data dictionary access

process is independent of the natural language processor.

This test should be performed by inspecting the source code

listings of the data dictionary to verify that it does not

reference any of the modules or data local to the natural

language processor. No references to the modules or data of

the natural language processor should be found.

Grammar Tests

1. This test is to determine if the defined grammar of DDS

is functionally complete. This test should be performed by

entering a series of valid requests which invoke each of the

operations provided by the data dictionary access process.

Requests should be made which access instance of each of the

..G- 1.0

G- 1 0 '

...-...

"- ' .- ,- -- -

defined object types. The specified operation should oe

performed on the specified object instance.

2. This test is to determine if the defined grammar of DDS .

is sufficiently flexible. No test is specified to validate

this requirement. The entries of users of varying expertise

should be monitored to determine flexibility shortcomings.

Data Dictionary Content Tests

1. This test is to determine if the data dictionary

contents of DDS is consistent with the requirements

specified in Development Documentation Guidelines and

Standards (AFIT/ENG, 1984). This test should performed by

'Q7 inspecting the source code listings to verify that they are ,i'

consistent with this document. No inconsistencies should be

found. .

SDW Interface Tests

1. This test is to determine if the data dictionary system

is interfaced into the Software Development Workbench (SDW).

This test should be performed by executing the SDW and

entering the proper codes to invoke DDS. The SDW should

execute DDS.

2. This test is to determine if the natural language

processor is interfaced into the SDW. This test should be

performed by executing the SDW and entering the proper codes

G-11

- . 1 - .. . , W- -7 -7 -Kr

" "to invoke the natural language processor. The SDW should

execute the natural language processor. *5
I .

Conclusion

This test plan has specified a suite of tests that

validate the requirements of DDS. As the requirements

change, this document should be updated to remain consistent

with them.

G-.'2*_

4 . .•. .. *

" ~~G-12"'"""

* *-.....

- 1~.- .~

~.

- -.

... J-

p b~

I

- -

p
Appendix H

CoIn User Manual

I
r

I

I

H-i

coin User manual

version 1.0

Capt Stephen A. Wolfe, USAF

AFIT/GCS-8 5D .*

December 1985

H- 2

* -* '-* '-*-~~-~- -~ -* -~ *7

Table of Contents

Page

List of Figures H- 4

I. Introduction...................H- 5

II. scope.......................H- 6

III. Using the Grammar Constructor H- 7

Getting Started H- 7

Creating a Grammar..............H- 8

Modifying a Grammar..............H- 8

Exiting H-14

IV. Using the Sentence Interpreter...........H-15

V. A Short Example................. H-16

~"' Grammar Productions.............H-16

Constructor Commands H-16

Sample Interpreter Inputs..........H-17

VI. Conclusiono. H-18

Bibliography............ H-19

H1-3

*~ ~~ 1 1- **. WY . *. t

List of Figures

Figure Page

I Production Record Fields...............H- 9

2 Function Record Fields...............H-10

H-4

I. introduction

CoIn is a natural language processing system. It is

implemented on the AFIT Information Systems Laboratory

VAX-11/780 computer. CoIn is a part of AFIT's Software -

Development Workbench (SDW). CoIn is written in NIL Lisp

and runs within the NIL interpreter environment.

CoIn consists of two subsystems: a grammar constructor

and a sentence interpreter. The grammar constructor allows

you to define a grammar consisting of production records and

function records (these are described in Chapter III).

Using a grammar built with the constructor, the sentence

interpreter is able to parse input sentences and execute

Lisp code that you have built into the grammar.

H-.5

W e-. .-...

II. Scope

This manual describes the use of the CoIn natural

language processing system. It is assumed that the reader

has a minimal working knowledge of the VMS operating system

(see DEC, 1984, for more information), the SDW (Hadfield,

1982), and the NIL interpreter (Burke, et al, 1984).

91-6.]

H- 6 .

.................... ~

. *.**.,..

III. Using the Grammar Constructor

This chapter describes how to use the grammar

constructor subsystem of Coln. This chapter is divided into

four sections: Getting Started, which explains how to

execute Coln; Creating a Grammar, which explains how to

create a new grammar and how to permanently store it when

you're done; Modifying a Grammar, which explains how to

create new production and function records and how to alter

and delete existing production and function records; and

* Exiting which explains how to exit from Coln to the SDW.

Getting Started

Coln is integrated into the SDW. This makes it very

easy to execute. FirE' log into the SDW account, enter the

SDW, and move to your project directory. Return to the

top-level menu and enter 'ED' (the Text Editors functional .

group) at the prompt. The EDITOR (ED) MENU will be

displayed. when prompted, enter 'NL' (the Coln Natural

0- Language Grammar Editor) . NIL will be invoked, and Coln

will be loaded. When NIL is done loading, the message

Coln Loaded *** will be displayed. At that time, Coln is

ready for input.

H-7

:.'<. : , 4 . -

Creating a Grammar _____

Most of the time you will probably not want to create a

grammar from scratch. You'll probably just want to add to

or modify an existing grammar. However, it is possible to

create a new grammar. To do so, first invoke CoIn as

described in the previous section, then type

"(initialize-grammar)". Be careful! If you have loaded a

grammar, modified it, and not saved it, this command will

destroy all of your changes!

After initializing the grammar, you can then proceed to

create your grammar by using the commands as described in -

the next section, Modifying a Grammar. When your grammar is

complete (or anytime you want to save a partial definition),

you can type "(save-grammar)" to store it on a disk file.

The grammar will be saved in a file called GRAMMAR.LSP in
'. .

the current NIL working directory (your default directory

unless you have told NIL otherwise).

Modifying a Grammar

A grammar consists of a set of production records and

function records. Production records are used to store the

productions of a grammar and consist of three fields: NAME,

SUB-PRODUCTION LIST, and CODE (see Figure 1). The NAME

field contains the element which the current word of the

input sentence must match for a parse to proceed. The 4

H-.-.8

"

,

-- -

I NAME I SUB-PRODUCTION LIST I CODE I
+--I

ii -.

Figure 1. Production Record Fields

SUB-PRODUCTION LIST field contains a list of possible

sub-productions which can be used to continue the parse

should the current word parse successfully. The CODE field

contains a-piece of Lisp code which is executed if the

production it is associated with is successfully traversed.

A production must end with an end-of-sentence marker ($) if

it is at the top level of the grammar. Otherwise, it must

end with an end-of-production marker (*)

Function records are used to store "functions". A

function is equivalent to a Lisp predicate function. The

function is applied to the current word of an input sentence

and, if the word is part of the function's domain, non-NIL
40-

is returned. Otherwise, NIL is returned. A function record

consists of two fields: NAME and CODE (see Figure 2). The

NAME field contains the name of the function, and the CODE
0

field contains the Lisp code to be applied.

The following subsections describe how to create a new

production record, create a new function record, add a

H-9

..o

+--

I A

II +--------+--------+

I NAME I CODE
Ii 4.------------------

1

Figure 2. Function Record Fields

grammar production to an existing production record, modify

the CODE field of an existing function record, destroy an

existing production record, destroy an existing function

0 record, and do other miscellaneous modifications.

Creating a Production Record. To create a new

production record, type "(create-production PRODUCTION-NAME

(LISP-CODE))" where PRODUCTION-NAME is replaced by the name

of the production record you wish to create and LISP-CODE is

replaced by the Lisp code that you want executed when the

production record is successfully used. For instance, if -

you want to create a production record called

<display-message-l> that displays the message "message 1"

when it is traversed, then you should enter:

(create-production <display-message-l>
(msg "message 1"))

If the production record <display-message-l> already exists,

an error message is displayed and the existing production

H-10

. .. °°°-°-.......... . ..°- . o .° ", -.o. *. ,° ° , . .- °. ° .. , .- ' - - . . ." - . o . ° - , " . ° - ,,

~.. -

record is left as is. The LISP-CODE field is optional.

Creating a Function Record. To create a new function

record, type "(create-function FUNCTION-NAME (LISP-CODE))"

where FUNCTION-NAME is replaced by the name of the function

record you wish to create and LISP-CODE is replaced by the

Lisp code that defines the function. For instance, if you

want to create a function record called <number> that is

defined using the Lisp "numberp" predicate, then you should

enter:

(create-function <number>
(lambda (x) (numberp x)))

The LISP-CODE field is optional but if left out, must

subsequently be modified before using the grammar. If this

is not done, the sentence interpreter will crash when it

tries to use the function record. As is true for production

records, an error message is displayed if you try to create

a function record using a name that already exists.

Adding a Production. To add a grammar production to an

existing production record, type "(add-production

(PRODUCTION) (LISP-CODE) PRODUCTION-NAME)" where PRODUCTION

is replaced by the grammar production to be added, LISP-CODE

is replaced by the Lisp code you want executed when the

production is successfully traversed, and PRODUCTION-NAME is

.%;%

- H- 11

- ,~~~~~~.....-......,.'.. '-,-'.j......'..'-.' "-... "... -..... ,...... ..-.-

replaced by the name of the production record to which you

* want the production added. For example:

(add-production (what is <)(display>)

p..

adds the production "(what is *"to the existing production

record <display>. As is shown, the LISP-CODE parameter may

be empty. However it is not optional. The parentheses must

be included. If the <display> production record does not

exist, an error message is displayed.

Note the use of the end-of-production marker w All

productions that are not at the top level (that is, they are

not part of your highest level production record) must end

with an end-of-production marker. All productions at the

top level must end with an end-of-sentence marker($

Modifying a Function. To modify the CODE field of an

existing function record, type "(modify-function (LISP-CODE)

FUNCTION-NAME)" where LISP-CODE is replaced by the new Lisp

code that defines the function and FUNCTION-NAME is replaced

by the function to be modified. For example:

(modify-function (lambda (x) (null x)) (empty-list>)

modifies the CODE field of the function record <empty-list>

to be the Lisp expression (lambda (x) (null x)). If the

specified function record does not exist, an error message

is displayed. The LISP-CODE may be empty, but, as is true

H1-12

....................... *.--..... .. .***.°..*;, .
existing function a--- recrd type*-*- "(odf-fncin..S.COE.

.7~ --~•-- -- -•

for the add-production operation, the parentheses must be

included.

Destroying a Production Record. To delete an existing

production record from a grammar, type "(destroy-production

PRODUCTION-NAME)" where PRODUCTION-NAME is replaced by the

name of the production record to destroy. For instance, to

destroy the production record <display>, enter:
j

(destroy-production <display>)

As usual, if the specified production record does not exist,

an error message is displayed.

Destroying a Function. To delete an existing function

(.- record from a grammar, type "(destroy-function

FUNCTION-NAME)" where FUNCTION-NAME is replaced by the name

of the FUNCTION to destroy. For example:

(destroy-function <number>)

deletes the <number> function record. Again, an error

message is displayed if the function record does not exist.

Other Operations. In addition to the operations

described above, a grammar can be modified by using a Lisp

s-expression editor that is included in CoIn. The editor is

a slightly modified version of a Lisp function editor

described in Artificial Intelligence Programming by

Charniak, Riesbeck, and McDermott (Charniak, et al, 1980).

H- 13.....................*.. i * . .

.,

b.

• -.-. ..-:-G -

To specify a production or function record to edit, type

"(sedit STRUCTURE-NAME)" where STRUCTURE-NAME is replaced by

the name of the production or function record that you wish

to edit. Once you have entered this command, the editor is
used exactly as described in Chapter 7 of Artificial

Intelligence Programming.

Exiting

To exit from NIL and return to the SDW, type "(quit)".

This will return you to the Text Editors functional group of

the SDW.

H-1-4

?I

* * . <. .~ .. * . . * * . . . *... . . * ..* .,*,

J ,. .'

IV. Using the Sentence Interpreter

This chapter describes how to use the sentence

interpreter subsystem of CoIn. This chapter has only oneIL
section, Interpreting A Sentence, which explains how to

enter a request to interpret a sentence. Invoking and

exiting the system is the same as is described in Chapter 3.

Inter.reting a Sentence

To invoke the interpreter to parse a sentence, type

"(parse '(SENTENCE) TOP-LEVEL-PRODUCTION)" where SENTENCE is

replaced by the sentence to be parsed and

TOP-LEVEL-PRODUCTION is replaced by the name of your

top-level production record. For instance:

(parse '(show me module MI) <grammar>)

tells the interpreter to parse the sentence "show me module

MI" using the grammar specified by the top-level production

record <grammar>. If your input sentence is not valid

within the specified grammar, an error message is displayed.

H-15

po "o

%i, ,"

V. A Short Example

This chapter provides a short, but one hopes useful,

example of the use of CoIn. First a grammar is defined,

then the constructor commands to implement it are shown.

Finally, several sample interpreter commands are included.

The defined grammar accepts any sentence consisting of a

string of one or more occurrences of the word "a".

Grammar Productions

<grammar> -> <a>

<a> -> a

<a> -> a <a>

Constructor Commands

(initialize-grammar)

(create-production <grammar> (msg "Parse complete" N))

(add-production (<a> $) (grammar>)

(create-production (<a>)

(add-production (a *) (msg "Using (a *)" N) <a>)

(add-production (a <a> *) (msg "Using (a <a>)" N) <a>)

. -16

..........

Sample Interpreter Inputs

(parse ' (a) <gramnmar>)

(parse '(a a) (grammar>)

(parse '(a a a a a) (grammar>)

H- 17

vI. Conclusion

This manual has described how to use the CoIn natural

language processor. For an extended example of the use of

CoIn, see (Wolfe, 1985), which describes the implementation

of a natural language human-computer interface for a data

dictionary system.

H-l8

---------------------.-. ,-. -.-------.-.-- -

Bibliography

Burke, Glenn S., et al. NIL Reference Manual. Laboratory
for Computer Science, Massachusetts Institute of
Technology, Cambridge MA, 1984.

Charniak, Eugene, et al. Artificial Intelligence .. .
Programming. H-llsdale NJ: Lawrence Erlbaum Associates,
Publishers, 1980.

DEC. Introduction to VAX/VMS. Maynard MA: Digital
Equipment Corporation, 1984.

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment. MS Thesis,
AFIT/GCS/EE/82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

Wolfe, Capt Stephen A. A Natural Language Processor and its
Application to a Data Dictionary System. MS Thesis,
AFITiGCS/ENG7 55-9. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,

S(.- December 1985.

H-19

..... .- . -

. . . . ~ ~ ~ ~ ~ °-, *

17--

Appendix I

DDS User Manual

I A

DDS~~ Usr ana

Version 1.0

Capt Stephen A. Wolfe, USAF

AFIT/GCS-8 5D

December 1985

1-2

Table of Contents :.~

Page

I. Introduction- 4

Ii. Scope I- 5

*III. Using DDS- 6

IV. Conclusion I - 9

Bibliography........................-10

1-3

-77

I. Introduction

DDS is a data dictionary system which employs a

natural language human-computer interface. To interact with

DDS, one enters English sentences which specify to DDS the

actions it is to perform. DDS is implemented on the AFIT

Information Systems Laboratory VAX-11/780 computer. It is a

part of AFIT's Software Development Workbench (SDW). DDS is

written in NIL Lisp and runs within the NIL interpreter

environment.

1-4

- . -. --._.

.

II. Scope

4 This manual describes the use of the DDS data

dictionary system. It is assumed that the reader has a

minimal working knowledge of the VMS operating system (see

DEC, 1984, for more information), the SDW (Hadfield, 1982),

and the NIL interpreter (Burke, et al, 1984).

* 1-5

.. ..

III. Using DDS __--

: .- -

This chapter describes how to use DDS. This chapter

is divided into 3 sections: Getting Started, which explains

how to execute DDS; Using the System, which explains how to

enter commands to the system; and Exiting which explains how

to exit from DDS to the SDW.

Getting Started

DDS is integrated into the SDW. This makes it very

easy to execute. First log into the SDW account, enter the

SDW, and move to your project directory. Return to the

top-level menu and enter 'DS' (the Design Tools functional

group) at the prompt. The DESIGN TOOL (DS) MENU will be

displayed. When prompted, enter 'DD' (the DDS data

dictionary system). NIL will be invoked, and DDS will be

loaded. When DDS is done loading, the message "*** Data

Dictionary System (DDS) Loaded * will be displayed. To

execute DDS, type "(dds)" (without the quotes). DDS will be

invoked and will display the message "Data Dictionary System

(DDS)" followed by a prompt "DDS->". At that time, DDS is

ready for input.

1-6

Using the System

Currently the capabilities of DDS are very limited.

The only data manipulation operations that are implemented

are the initialization and presentation functions. Also

implemented are the clear screen, help (again limited), and

exit meta-functions. The best source for determining what

the current system can and cannot do is Appendix D

(Implemented Grammar) of A Natural Language Processor and

its Application to a Data Dictionary System (Wolfe, 1985).

This chapter presents examples of valid input sentences for

the current grammar. Please note that the input sentences

are enclosed within parentheses, and that they contain no

punctuation. This format must be used, or NIL will complain

unmercifully.

Clearing the Screen. The following examples show how

to clear the terminal screen in DDS:

(please clear the screen)

(cls)

Displaying the Help Message. The following example

shows how to display the help message in DDS:

(help)

Exiting from DDS. The following examples show how to

exit from DDS:

(quit)

(exit) 1" -

I-7

~... *. % :- *- .*,.*-. .. * .*.,. ..- , - .. . - , ,.... ... ,* ,, ,....., .

Initializing a Data Dictionary Entry. Before an entry

can be initialized, it must exist. Currently, the only way

to create an entry is to modify your data base (the file

DB.LSP) using a text editor. In the following examples, it

is assumed that P1 is a defined process and PARAM is a

defined parameter.

(initialize process P1)

(please init parameter PARAM)

Displaying a Data Dictionary Entry. Before an entry

can be displayed, it must exist. See the discussion in the

previous subsection concerning creation of an entry. In the

following examples, it is again assumed that P1 is a defined

process and PARAM is a defined parameter.

(please show me process P1)

(what are the processes called by process P1)

(display the name type and version of parameter PARAM)

Exiting

To exit from DDS and return to NIL, type "(quit)". To

exit from NIL and return to the SDW, type "(quit)" again.

This will return you to the Design Tools functional group of

the SDW.

4

S. .. * . . ,

IV. Conclusion

This manual has described how to use the DDS data ~.-

dictionary system. For a more complete description of DDS, .

see (Wolfe, 1985).

1-9

..............S - S..

V. - " -

.% %

Bibliography

Burke, Glenn S., et al. NIL Reference Manual. Laboratory
for Computer Science, Massachusetts Institute of Technology,
Cambridge MA, 1984.

DEC. Introduction to VAX/VMS. Maynard MA: Digital
Equipment Corporation, 1984.

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment. MS Thesis,
AFIT/GCS/EE/82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

Wolfe, Capt Stephen A. A Natural Language Processor and its
Application to a Data Dictionary System. MS Thesis,,
AFIT/GCS/ENG785D-I9. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1985.

I-10

Bibliography

BIB-

Bibliography
W,

AFIT/ENG. AFIT/ENG Development Documentation Guidelines and
Standards, Draft #2. Department of Electrical and
Computer Engineering, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
1984.

Aho, Alfred V., et al. The Design and Analysis of Computer
Algorithms. Reading MA: Addison-i-Wesley Publishing
Company, 1974.

Barr, Avron and Edward A. Feigenbaum. The Handbook of
Artificial Intelligence, Volume I. Los Altos CA:
William Kaufmann, Inc., 1981.

-... The Handbook of Artificial Intelligence, Volume II.
Los Atos CA: Wiliam Kaufmann, Inc., 1982.

Bobrow, Daniel G., et al. "GUS, A Frame-Driven Dialog
System," Artifica--Intelligence, 8: 155-173 (April
1977) .

Burke, Glenn S., et al. NIL Reference Manual. Laboratory
for Computer Science, Massachusetts Institute of -.

Technology, Cambridge MA, 1984.

Charniak, Eugene, et al. Artificial Intelligence
Programming. f-[l-sdale NJ: Lawrence Erlbaum Associates,
Publishers, 1980.

Davis, Richard M. Thesis Projects in Science and
Engineering. New York: St. Martin's Press, 1980.

DeMarco, Tom. Structured Analysis and System Specification.
New York: Yourdon Press, 197T-

Goldberg, Adele and David Robson. Smalltalk-80, The
Language and Its Implementation. Reading MA:
Addison-Wesley Publishing Company, 1983.

Goldberg, Adele. Smalltalk-80, The Interactive Programming
Environment. Reading MA: Addison-Wesley Publishing
Company, 1984.

Hadfield, 2Lt Steven M. and Gary B. Lamont. "The Software
Development Workbench: An Integrated Software
Development Environment," Proceedings of the Digital
equipment Computer User Society. 171-177. 1983.

BIB-2

,-..-... -....- 'o -.-..

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development E-nvironment. MS-Thesis,
AFIT/GCS/EEi82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

Harris, L. R. "User Oriented Data Base Query with the ROBOT
Natural Language Query System," International Journal of
Man-Machine Studies, 9: 697-713 (November 1977).

Hayes-Roth, et al. Building Expert Systems. Reading MA:
Addison-Wesl-ey Publishing Company, 1983.

Hendrix, Gary G. "Human Engineering for Applied Natural
Language Processing," 5th International Joint Conference
on Artificial Intellig-nce - 1977, Proceedings of the
Conference, Volume One. 183-191. Department of
Computer Science, Carnegie-Mellon University, Pittsburg
PA, 1977.

Hendrix, Gary G., et al. "Developing a Natural Language
Interface to Complex Data," ACM Transactions on Database
Systems, 3: 105-147 (June 1978).

Horowitz, Ellis and Sartaj Sahni. Fundamentals of Data
Structures in Pascal. Rockville MD: Computer Science
Press, 1984.

Kowalski, Robert. "AI and Software Engineering,"
Datamation, 30: 92-102 (Nov 1, 1984).

Mihaloew, Reed A. SYSFL, A Systems Flowcharting Routine
Using Interactive Graphics. Aeronautical Systems
Division Computer Center, Air Force Systems Command,
Wright-Patterson AFB OH, undated.

Myers, Glenford J. Reliable Software Through Composite
Design. New York: Van Nostrand Reinhold Company, 1975.

Peters, Lawrence J. Software Design: Methods and
Techniques. New York: Yourdon Press, 1981.

Rich, Elaine. Artificial Intelligence. New York:
McGraw-Hill Book Company, 1983.

-. "Natural-Language Interfaces," Computer, 17: 39-47
(September 1984).

BIB-3

-. o. 0 , ,. ... -.... °... .. *... ° • ,.,.
. | -

d- V%

Schank, Roger C. and Christopher K. Riesbeck. Inside
Computer Understanding. Hillsdale NJ: Lawrence Erlbaum
Associates, Publishers, 1981.

Steele, Guy L., Jr. Common LISP. Burlington MA: Digital
Press, 1984.

Thomas, Capt Charles W. An Automated/Interactive Software
Engineering Tool to Generate Data Dictionaries. MS
Thesis, AFIT/GCS/EG/84D-29. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB
OH, December 1984.

Waltz, David L. "An English Language Question Answering
System for a Large Relational Database," Communications
of the ACM, 21: 526-539 (July 1978).

Winston, Patrick Henry. Artificial Intelligence. Reading
MA: Addison-Wesley Pu5-ishing Company, 1984.

Wirth, Niklaus. Algorithms + Data Structures = Programs.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1976.

Wolfe, Capt Stephen A. George: A Tool for Building and
j (* Parsing Semantic Grammars. Unpublished report. School

of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 1985a.

..... .Course Project: A Software Design Tool.
Unpublished report. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
1985b.

Woods, W. A. "Transition Network Grammars for Natural - -

Language Analysis," Communications of the ACM, 13:
591-606 (October 1970).-

BIB-4

, .°o . • o. -. %

in-.

* . .

~*. V...

Vita

j
0 4

A

VIT-1

K

~~~1



VITA

Captain Stephen A. Wolfe was born on 23 February 1956

in Portland, Oregon. He graduated from high school in

Spring Valley, California, and attended San Diego State

University from which he received the degree of Bachelor of

Arts in Computer Science in May 1979. He graduated with

high honors and with distinction in the major. After

graduating, he received a commission in the United States

Air Force through the officer Training School program. His

first assignment was at Space Division in Los Angeles,

California, where he was a systems analyst and applications

programmer. In April 1982, he was transferred to

Washington, DC, where he became the lead software engineer

for the procurement of the Ground Launched Cruise Missile

Weapons Control System. He entered the School of

Engineering, Air Force Institute of Technology, in May 1984.

Permanent address: 1221 Purdy Street

Spring Valley, CA 92077

VIT-2



- - - -.. ~ - * .-. -- - - --. .- ... ... .- - .- 2- 1?" 3 -~ 7- VE -

UNCLASSTFT ..
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
i..IEPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

:,-'...-'LASSIFIED_ _ _ _...._,.-_

CURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT _-h-

Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERS)

AFIT/GCS/ENG/85D-19 .-'

6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) t,-,

School of Engineering AFIT/EN

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP CodeJ

Air Force Institute of Technology
Wright Patterson AFB, OH 45433

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Rome Air Development Ctr RADC/COES

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB, NY ELEMENT NO. NO. NO, NO.

11. TITLE (Include Security Classificationl

See Box 19

'1 PERSONAL AUTHOR(S)

"phen A. Wolfe, A.B., Capt, USAF
,PE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo.., Day) 15. PAGE COUNT,iS Thesis FROM TO 1985 December 343 "=,'

16. SUPPLEMENTARY NOTATION

17. COSATICODES 18. SUBJECT Te.RMS fContinue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. I Natural Language Data Dictionary
09 02 Automated Tools Software Development

19. ABSTRACT rContinue on reverse if necessary and identify by blockg number)

Title: A NATURAL LANGUAGE PROCESSOR AND ITS
APPLICATION TO A DATA DICTIONARY SYSTEM.

Thesis Chairman: Dr. Gary B. Lamont -.".-:.:

LV 'Ew ~ /va A at&
WIQ* fo Rsarch cmd Prgaoal"agl DIWOl0,

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

" .'.'.ASSIFIED/UNLIMITED K: SAME AS RpT, L. DTIC USERS 0 UNCLASSIFIED

2 a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
tinclude .1rea Codr) , •

r. ary B. LamontDr. Gr 255-3150 AEAFIT/ENG OFTH..A,

OD FORM 1473, 83 APR EDITION OF JAN 3 S OBSOLETE. UNCLA_0, FED
SECURITY CLASSIFICATION OF THIS PAGE P "



. tD
- 1 I i ! - -- - . .. .. o

UNCLASSIFIED

• SECURITY CLASSIFICATION OF THIS PAGE

,.., The developmf'nt of a human-computer interface construction and
l cerpretaLtion tool capable of processing English-like of natural ,__

'anguage user input is discussed. The utility of the tool is demonstrated
by using it to create the natural language interface for a data dictionary
system. The data dictionary's development is also documented and is used
as the overall context for the presentation. -.

0f

SECURITY CLASSIFICATION OF TI-IS PAGE

A - . -



L

'ft 

~

ft 

. ft

-
V.
V.,:

FILMED ft..

7 ft

ft.

ft. 

ft.

-ft

I.-.

'ft 

DTIC
*Ift'ft 

ft.

ft~ ~ 
- - -* -

~

* V. ~ '


