AD-A164 022 KNONLEDGE-BASED TRRNSFORHRTIONﬁL SYNTHESIS OF EFFICIENT 4/
SYRUCTURES FOR CO. . (U) KES TREL INST PALO AL CII
KING 30 SEP 85 KES U. 85. 5 RFOSR-TR-85- 1
UNCLASSIFIED F49620-85 C-0013

T T
'SEREENENENEEER
INNEEEEEEEEEEN

0} L A . . > A i

O 4 oY ¥, -.4.. g . . < - s 0 4, A R Ay 2y Y Y s

6 . AR AN AR e
P . o L P L h.h:.ﬁ.?hr?

- T

w

X

“ 2___ ol ol o g <
X - o= = - 58
: = = 0 —ili S 2
2 = = g8
: Ol ~g o - o g
3 = n_ A ;2
aanani .
v K EEERFTS 3 x
: = S .
. —— (2
: @ %
i - — 0 g ;
p ! — — 2 g
! — g
¥ — 1l g !

—— e — —— =

e S

L e

.
.........

XFOSR-TR- 85-1 259 000008

| . @ &
.. - ’ . §$ 0
¥

KES.U.85.5 Kestrel Institute T
S
o S
N R
e . .o ® :f_:n:.:\:.
S DTIC o
® < ELECTE ,
© "
- FEB1 11386
| ‘ é e] -;-j::' "‘
< Knowledge-Based Transformational Synthesis
¢ of Efficient Structures for Concurrent Computation i’
by RICHARD M. KING
o i
May 1985 S
{:E-."_::‘
SR
° L
APPI‘OVed .‘ T
d for I
1Stribut1cn$l;_lfgfiee-s9:' -
‘-(Research sponsored by the Air Force Office of Scientific Research (AFOSR), United States

Asr Force, under contract F4{9620-85-C-0015. The United States Government is autho-
rized to reproduce and distribute reprints for governmental purposes notunthstanding any
copyright notation hereon.

This document was prepared under the sponsorship of the Air Force. Neisther the U.S. O
Government nor any person acting on behalf of the U.S. Government assumes any liability L.q
resulting from the use of the snformation contasned in this document RO

N MW
SEC.® *v 5_A55.7 CAT:CN OF THIS PAGE zzLéz sz g

] REPORT DOCUMENTATION PAGE
-3 FEICAT SECWAITY SLASSIF.CATION 15, RESTRICTIVE MARKINGS
Unclassified N/A
Se. 5838 TV CLASSIF CATION adTrCRITY 3. CISTRIBUTION,AVAILABILITY CF REPCAT ‘
N/ 2 release’ A
- Approved for publicTele ’ Sl
Py §:E:"°s""“ > CN.DCWNGRADING SCHEDULE UnlimiteddiStribUtion unlimitede. o . o
- .:
4 3€AZTAUING JRGANIZAT.CN REPORT NLUMBEAS) 5. MONITORING CRGANIZATION AREAPCRT NUMBER.S, o
) i - S
KES.U.85.5 AFOSR-TR- 85-1259 Bt
[
sa NAME OF PEITTAMING CTRGANIZATION o. QFFiCE 3vMBCL Ta. NAME CF MONITORING SAGANIZATCN s
If appiicadie: R .'.'
Kestrel Institute 7 . ;;y/ S
| Ll [agz/-,ai el
3c. AZSAZI3 -City. State ana ZIP Code: Tb. ADDRAESS 'C.ty, State and Z!P Code) SR
1801 Page Mill Road RIS
Palo Alto, CA. 94304 Pt
da. NAM3I OF FUNDING.SPCNSORING Bb, OFF!CE STMBO 3. PROCUREMENT INSTRAUMENT IDENTIFICATICN NLMBER RO
CRGANIZATICN (Huppiicubnz‘;, S
AFOSR %/¢/ / F49620-85-C~-0015
3¢ ASCRESS City. State and Z:P Code) - 10. SOURCE OF FUNDING NCS e
PROGRAM PRC.ECT Tasx | wcex umiT
Bolling AFB Washington, D.C. 20332 ELEMENT NO. | NO. NC : No.
GOWCAT A3 A .
11. TiT L& Inciuae Security Classification) l '
Knowledge-Based Transformational Synthesis of Efficient Structures for Concurrent Computation |
*2, PEASSNAL AUTHORIS)
Richard M. King
ica TYPE CF AESCRT 13b. TIME COVEAED 14. DATE OF REPCRT (Yr. Mo.. Day) 15. PAGE SCUNT
Final Technical FRom 10/84 705,85 | 1985 September 30 195

8. SUPP_EMENTARY NCTATICN

17 CCSAT. CCCES 18. SUB.ECT TERMS .Coninue on reverse if necessary and .dentify by diocr rumber:
cg.z | sAcee | SUB_GA. Multi-processor synthesis; Tree~structured

: | multiprocessors; Concurrency; Closures;

' ! Divide and conquer; Trees; Actors

‘9 ABSTARACT Continue on reverse if necessary and (dentify by dlock number:

™ The object of our research is the codification of programming knowledge for the synthesis of concurrent pro-
grams. This is important because concurrency is a way of securing better performance on amenable problems
than is available on non-concurrent computers. We divide this knowledge into two sections: knowledge for
the synthesis of arrays of processors that could be connected in a geometrically regular manner (crystalline
concurrency}, and knowledge for the synthesis of tree structures (tree concurrency). We divide synthesis
of crystalline concurrency, in turn, into several subsections: synthesis of declarations of multiple processors
and the wires implied by the dependencies among the values they contain, reduction of this wire network
to a smaller wire network, creation of subnetworks to replace an overly-broad fanout network, virtuaiization
which is the creation of additional array elements and processors to reflect the internal enumerations that
comprise the computation of a datum, and aggregation which is the merging of several processors into one.
We use a transformational approach. The transformational system has rules, each of which contains two
predicates: an antecedent and a conseguent. If the antecedent of a rule is true of a given object, the rule
applies and the object is modified to make the consequent true. <_

16 1STAMALTICN A A LAl TY 6 ARSTALCT 2 ABSTRACT SECLAITY C_ASS.FICATICN
JNC_ASSIF €5 LN MITED X SawE aS 28T _ = C _sgwes _ Unclassified
122 NAVE SF MESPTNS 8.: NI . ToA. 1Tt TELEANCNE VLMEER. 23c SEF CE5vMECL
. . . _ uimcrge arealoar. T . I oA ,/’
* IOyl * 17 (202) T67-00NR . = L
- /
DO FORM 1473, 83 APR £2.° CN TF 1 .aN 73 S J8SCLETE /i

. . At T L TP L
5 .) C e . - - . . AN . . B I) - LR T et e Y ta" - \-" .~ a0t ~\ -.
S . PR S v - dnodmedioendnadvnchebduiuih il OSSP RPE PLUE VS VI VL VPO DT W DR WP ol i, SR W

© 1985
Richard M. King
ALL RIGHTS RESERVED

AIR FORC™ OrTT AT
NOTIC -
Thi« -

e

A Obd DA

Yo e s
PR

ABSTRACT

Knowledge-Based Transformational Synthesis
of Efficient Structures for Concurrent Computation

by RICHARD M. KING

The object of our research is the codification of programming knowledge for the syn-
thesis of concurrent programs. This is important because concurrency is a way of securing
better performance on amenable problems than is available on non-concurrent computers.
We divide this knowledge into two sections: knowledge for the synthesis of arrays of proces-
sors that could be connected in a geometrically regular manner (crystalline concurrency),

and knowledge for the synthesis of tree structures (tree concurrency).

We divide synthesis of crystalline concurrency, in turn, into several subsections: syn-
thesis of declarations of multiple processors and the wires implied by the dependencies
among the values they contain, reduction of this wire network to a smaller wire network,
creation of subnetworks to replace an overly-broad fanout network, virtualization which is
the creation of additional array elements and processors to reflect the internal enumera-
tions that comprise the computation of a datum, and aggregation which is the merging of

several processors into one.

We also divide tree concurrency synthesis. Our primary technique is divide and conquer,
but to make this technique effective we must take another view of the specification. We
respecify a given requirement, that of computing a new array whose values are pointwise
computable as a function of an existing array and an index, as a requirement to compute a
functional object whose side effect is to satisfy the original specification, together with the

requirement that said object be called with the proper arguments. We call the computed

functional object a closure.

L J {

i

-_'

@ [

[t el
-

S

. N
-

._.‘_\

SN

At .

T

BUEAEY

Cate .

." .

b Nl

‘
We use a transformational approach. The transformational system has rules, each of

° which contains two predicates: an antecedent and a consequent. If the antecedent of a rule
is true of a given object, the rule applies and the object is modified to make the consequent
true.

L We demonstrate these techniques’ ability to synthesize one or more solutions to each of
several classical problems from the literature. These solutions are topological descriptions
of arrays of computing elements (“processors”). The resulting elements’ complexities range

e from a couple of gates to something comparable to a microprocessor. We do not attempt
to actually lay out the processors and interconnections.

N

|®

o

' Accesion For R

: NTIS CRA&l | ®)

. OTIC TAB d

3 U. aunou ‘ced]

" Jasttications

: BY e e

: Di:t ibstio.. |

; A;/allnbillty Codes

I e e e

Aviil and/or
Qist Spucial

A-|

iii

Acknowledgements
I would like to thank all of the following:

e My wife, Rebecca, for being herself during this project,

e Robert Paige, for advising me on various matters and for introducing me to Ernst

Mayr,

o The Kestrel Institute, for providing me with an economically and intellectually sup-

portive environment for completing a Ph. D. thesis,

o Professor Ernst Mayr; for providing guidance on this work, for reading innumerable

rough drafts and for holding me to high standards,

e Cordell Green, for maintaining the supportiveness of the Kestrel Institute and for

criticizing some of my ideas and writing style,

e Lydia Skinner and Maria Pryce, for reading the “final” draft one last time and finding

a surprising number of typographical errors,

e Gordy Kotik, Tom Pressburger, Doug Smith, Steve Westfold, and the rest of the

; gang at the Kestrel Institute, for listening patiently but critically whenever I got an

inspiration and helping me to squeeze out the junk, and

e Janet Willis and Elsie Jackson, for helping me with the logistics of a 4500 kilometer

separation. TS

Were it not for these forms of support you would be reading somebody else’s thesis.

TATEER e T TV e TR T Tl

AT .-

Contents

List of Illustrations

1 Introduction and Approach

1.1 The Need for a VLSI Design Assistant

1.2 Goals e

121 PreviousWork

13 Approach

1.3.2 Crystalline Methods

133 TreeMethods

1.3.4 Additional Techniques

14 Organization
- .::-‘-_..,. 8O _;.~.‘_~:-_ N .-- - :..:_.\ e

.....................

..............

..............

......................

...........................

..........................

..............

xi

2
v

.t'.-f'..'. :
B
.
,

Q‘

S
,'.." f.f. e
AN

o ARNTORCON!

7

7

A
':L\.-\l.\-

s
.

[N AR e T]

B AR

e ' 5]

2 Formal Descriptions

2.1 Multiprogrammingttt
22 Single Process per Processor. ccuvutineenennn
23 Clocked i ittt e
24 FixedDelay Levelt iienennnens.
25 Summary e e e e e e e e e e e e e e

3 Case Studies of TRANSCONS Techniques

3.1 Polynomial-Time Dynamic Programming
311 PreparatoryRules
312 OptimizationRules.

3.2 Fast Matrix Multiplication.

3.3 Virtualization and Aggregation
3.3.1 An Informal Description B R
3.3.2 Definitions of Virtualization and Aggregation
3.3.3 Systolic Structure Synthesis
3.3.4 Use of Virtualization and Aggregation for Matrix Multiplication

3.3.5

What Virtualization Can and Cannot Accomplish

..........

3.4 User-Assisted Aggregation

vi

>
4 Trees, Closures and Divide & Conquer 76
» A1 MotiVabtion st e 76
42 Divide & Conquer e e e e 77
e 4.3 Descriptionof Closures. i, 84
44 Transmissionof Closures, 89
@ 4.5 Completeness Arguments 0o 92
4.6 Trees of Processorsin TRANSCONS 98
¢ 5 Tree Structures Synthesis Examples and Closure Removal 102
51 Broadeast e e e e e e e e e 103
® 5.2 Parallel Prefix Summation, ..., 105
521 Overview e e e e e e e e 105
10 52.2 Derivation e e e e e 106
5.2.3 Derivation Summary e 109
" 53 Closure Reduction 112
531 CGF ReductionRules 113
« 5.4 Connected Components 118
1 5.4.1 Derivation of a Tree Structure 120
5.4.2 Alternative Data Structures 130
."
5.4.3 Results of Storing the Map in Internal Nodes 133
vii
)

...........

b
:
2
g 6 Use of Additional Techniques — Binary Addition 141
l 61 Notation ittt etensntossessaas 142
- 6.2 Carry Look-ahead Circuit 143
. 6.2.1 QuantifierLevelling 143

6.2.2 Data Path Width Reduction 147

6.3 Ripple-carry and Bit Serial Cireunits 148 SN :“:'.

7 Conclusions and Summary 151 ‘:‘.f'.
T.1 Overview i e e e e e e e e e e e e e e e 151 R
) o
- 72 Eesential Points00iiuinuunnnnnnn 152 y
73 Foundations it e 153 -
| > 9
) 731 Models i e 154
" 7.3.2 Processor Assignment000000... 155 STy
: .
) 7.3.3 Connectivity Restructuring 156
7.34 Divide & Conquer,and Closures 157
> 7.3.5 Miscellaneous Techniques 158 * f,r_fj-
74 Fature Work e e e 159
; 7.4.1 Routing Problems e e e 160 d ’ - ¢
"_-.' 7.4.2 Average- vs. Worst-case Behavior 161 "
i 7.4.3 Efficiency Estimation for Parallel Structures 161
-l 75 Accomplishments, 162
o viii

(S
Appendix 163
® A TRANSCONS UsageExamples 163
Al UsageConventionsfor V.. 163
® A.2 Specific Rulesfor TRANSCONS 166
B Correctness Considerations 177
C Quantifier Levelling Proofs 183
D Theorem ReductionForms. 185
References 190

____________________________ e e e R RANS SRS T\ Rl (il Jhy (L0 P o5 S N --:-F.,"
%
. A
-
b
- ‘ -
- [4
7: N
:_ :'.::'-\:
. . e
) List of Illustrations 3
N :':'\-')
: A
: P
o
3.1 Specification of @(n®) Dynamic Programming 36 iy
I
3.2 Processor Interconnections 37
3.3 Final Form of Main Processors Declaration in P-time Dynamic Program-
. ming Derivation 53 .
3.4 Many Processors Use or Build the Same Data 56
3.5 Resulting Structure From Sharing I/O Connections 56 .
3.6 Simple Paralle]l Structure for Broadcasting 66
3.7 Virtualized Broadcast Structure 66 .
3.8 Virtualized Broadcast Structure with Chains for IO 67 e
3.9 Aggregation of Virtualized Broadcast Structure 67 :'::.-'::
. L4
f 3.10 Unvirtualized Structure0, 71
g 311 Virtualization i e e e 7
(J 4
g 3.12 Aggregationtobeperformed 72 ::- -,
3.13 Aggregated (Systolic) Structure, 72 E::::::‘
’ et 4
4.1 Simplified Parallel Prefix Internal Node 91
x R
‘ -—

°® 6.2
6.3
6.4

L
6.5

The “Standard” Specification of Binary Addition

“Grade School” Specification for Binary Addition 143
Synthesized Look-Ahead Circuit for Binary Addition 146
Ripple Carry Parallel Structure 150

Serial Adder e e e, 150

Chapter 1

Introduction and Approach

Computation power can be delivered in several denominations, ranging from chips that
can execute a few hundred eight-bit instructions per second up to large-scale computers
that can approach a hundred million 64-bit instructions per second. There is no reason
to suppose that the larger computers deliver more computation power per dollar than
the smaller ones. At present, cheap computer power seems to come in small packages.
We can informally argue that a given problem requires a certain number of gates for a
solution in a given amount of time, whether these gates are contained in a single large
package or several small ones. Additionally, in the large processor there are constraints
that force use of extra logic to keep track of some of the work that the machine is trying to
overlap with other related work. Some of those gates may, at times, lie fallow, as may some

computational gates in the large machine if the mix of tasks is instantaneously different

from that which the designer assumed during construction. Additionally, we argue that
the electronics industry produces a much greater volume of computation in small chunks

than of computation in large chunks, and therefore enjoys the economics of scale.

We could accept slow but cheap computation, allowing us to afford many computers.

There are situations where this is the proper course of action. An arcade owner does better
to have a small computer in each game of his arcade instead of a single large processor to L.

power all of the games, even ignoring the reliability and engineering problems of the latter

approach. Companies are beginning to supply each of their employees with a desk-top

computer rather than with a terminal into a large computing system.

Slow computation is not, however, acceptable in all cases. There are classes of situations
in which a certain minimum amount of computer power must be provided. These situations
range from fast real-time systems such as avionics, through situations such as weather
forecasting where we might attempt to model 48 hours of atmospheric behavior in 24 hours,
where more computation power would allow a finer-grained model of the atmosphere, to
aerodynamic modeling where an increase in computer power improves the situation from
the point where it’s better to experiment on actual hardware to the point where it is better

to experiment on computer models.

1.1 The Need for a VLSI Design Assistant

The number of devices that can fit on an integrated circuit continues to increase. It is
expected [MeC80] that there will be at least one more factor of ten reduction in the feature
size of integrated circuits before physical limits are reached, giving a hundredfold increase
in the number of devices that can be integrated on a chip of a given size. Additionally, it

would not be unreasonable to expect some increase in the maximum size of chips.

At present it is practical for a designer to specify all of the functional blocks of his
design. Current technology allows for a number of gates on a chip approaching a million,
but computer aided design tools can allow him to deal with the complexity that this allows
by specifying circuit information as logic diagrams rather than as circuit masks, and in
some new systems a more convénient form than logic diagrams is used (for example in
MACPITTS [SSC82] the design is specified in a LISP-like language). Still, the entire

functional design comes from the designer.

In the future it will be possible to squeeze a hundred times as much function on a

chip as is now possible. Good ways must be found to exploit this capability and to create

&

g "
T

-

chips which make good use of a hundred times as many gates as current chips have. One
technique would be to have a number of functional blocks on a chip comparable to the
number in current designs. Most blocks will have to be larger than those of current chips
in order to put as much functionality on a chip as will be possible without tremendously

increasing the number of blocks.

One method for allowing these larger blocks is to have a library of large blocks available
to the designer. This would be undesirable because it is plausible that the number of blocks
desired by various designers is a rapidly growing function of their size. For example, since
the sizes of functional blocks would be at least comparable to the size of current chips,
and since one of the major constraints on modern chip designs (pin limitations) wouldn’t
apply, it would seemn reasonable to suppose that there should be at least as many functional

blocks available as there are chip types now. This would be unacceptable.

Another approach is to use hierarchical design methods. In effect each designer creates
an ad hoc library. This approach has the problems inherent in private subroutine libraries,

including difficulties of sharing effort in a large project.

We have a fairly close analogy between the future situation regarding the ability of VLSI
fabricators to make large chips and the current ability of software designers to “fabricate”
software. Language designers can either provide more primitive operations and therefore
hope to cover the needs of programmers, or they can provide the programmer with the
option of building his own large building blocks out of smaller ones. These are called
subroutines. Designers of languages like COBOL, APL and SNOBOL attempted to provide
numerous primitive operations and precisely the correct ones for certain problem domains
(although they felt it necessary to provide the ability to define subroutines as well). Other
languages such as LISP provide few primitive operations but are intended to facilitate
creation of subroutines. Limits to this approach have been recognized. See, for example,

[Sch80] in which it is pointed out that modularity facilitates software construction at

@
".' . ':';’ . P

' ane ot SR TSR BN KR S

. (
- 4 A
) fj‘ "

the expense of efficiency, and [DoD83] in which it is pointed out that currently proposed '\

software tasks not only cannot be done efficiently but cannot even be done reliably without

I using something more advanced than modular techniques.

At our laboratory [GCP81] and others [Hor81] work is proceeding on knowledge based
software assistants, which are systems that allow their user to describe a desired system
behavior is a specification language. This thesis describes the beginning of a knowledge

based VLSI designer assistant.

1.2 Goals

Several steps must be take to exploit the cost-effectiveness of small denominations of

computation:

e The processors need to communicate. If a system has a large number of small -
processors and no wires between them the only thing it can do is solve a large number
of small problems simultaneously. This is not always an accurate reflection of what
people want. The nature of the problems that the processors will be able to solve 3.:
quickly depends critically on the way they are interconnected. Unfortunately, so
does the cost of the multiprocessor system, and it turns out that the most versatile

topologies are those that cost the most to wire. -

e The processors need to be scheduled. Somebody must decide what each pro-

cessor will do when. One can not merely take an algorithm that is carefully crafted

to run on a single large processor and make it run on a multiprocessor system with ERRE
little change. In [AMa84)] it is shown that some problems can be solved by efficient \
single-processor algorithms that have no concurrent analog. There are concurrent
solutions to the original problem, but the sequential algorithm produces a specific ¢ D

solution. No algorithm, sequential or concurrent, can solve the problem of finding

the specific solution that the sequential algorithm would have produced faster than
in polynomial time (unless P C NC where (for problem instances of size n) P is the
set of problems solvable in O(n*) time (for some constant §) on a single processor
and NC is the set of problems solvable in O(log*) time using O(n’) processors (for

constants ¢ and j). It is believed that P Z NC.).

o The processors need to be loaded. Normally some entity outside of the problem-
solving computer presents the data representing a problem instance at a single source,
and the computer is required to deliver the results to a single destination. The
program would also normally be stored on a single device for economic reasons. We
must address the issues of how instruction loading, input and output will take place

across the single-stream/multiple-stream interface.

We use the approach of synthesizing a concurrent version of a specification expressed
in an extremely “high style”. The reason for this is that specifications are turned into
programs by the addition of specialized information (such as data structure selection), and
the removal of this specialized information is difficult. This information imposes constraints
on the manner in which the calculation is carried out, and these constraints make it more
difficult to produce a program optimal according to one set of criteria from another program

that was (previously) optimized for another set.

Our system, which we call TRANSCONS (for the TRANSformational CONcurrency
Synthesizer), accepts input/output specifications in a high level language. It transforms

these into descriptions of parallel structures.

We will not concern ourselves with the placement of processing nodes or gates on a
surface or in space, even though the quality of the placement can drastically affect efficiency
by altering wire lengths and therefore path delays and costs. We feel that our system meets

its need despite this omission for the following reasons:

o the topology could be adequate for our needs

o systems for laying out circuits, given the topologies, exist

e the topologies that TRANSCONS synthesizes have fairly obvious layouts (i.e., the

coordinates of the position of a processor are linear functions of its indices)

One poesible use of the output of a TRANSCONS run is to control the operation of a
*“unjversal” parallel computer such as a shuffie exchange or cube-connected cycle system.
Such a use of TRANSCONS output might be made for testing purposes, but the expense
of the universal parallel computers and the O(log n) factor speed loss for simulation of
an n-processor system with direct interconnections as specified by TRANSCONS make it

unlikely that this will be a standard use of this technology.

Universal architectures described above all have the unattractive property that some of
the wires must be long, and the total wire length is long. They also have some extremely
untidy wiring layouts in any physical implementation (necessarily so; since every surface
that bisects the network must be pierced by a large number of wires, the wiring arrangement
contains few bundles of wires tracing adjacent paths.). Wiring is one of the least reliable
parts of a modern digital computer system. In addition, the logn speed factor can be a

serious matter.

It would therefore be desirable in some cases to reduce the average length of the wires

and increase the orderliness of the interconnections, so intermodule connections can be

reduced to interboard interconnections, which can be reduced to printed circuit connections

and in turn to connections within a chip. This reduces cost and increases reliability.

The techniques of TRANSCONS produce topologies that could easily be laid out by
computer as tidy layouts. This is because the various expressions controlling the intercon-
nections between the processors are restricted to be from Presburger Arithmetic, and they

are simple expressions linear in the processors’ names.

If TRANSCONS produces a crystalline interconnection pattern with higher dimension-
ality than an available network, it is still possible to find an assignment of logical processors
to physical ones that incurs only a moderate speed penalty. For example, there is a simple
mapping of a ¢/n x {/n X {n array of processors onto a two dimensional array such that
the cost of communication along two of the simulated dimensions is O(1) and that of the
third is O(¥/n). The constant factor would perhaps be one third of that of a simulation on
a universal computer, because only one of the three directions would have this problem.
Since lgn < ? only for n > 64000, the universal computer would only excel on rather large

problem instances.

It should probably be pointed out that circular reasoning was used in the above argu-
ment. We selected a simple form of enumerated expression (for other reasons) and observed
that the parallel structures that result can be simply laid out in Euclidean spaces of vari-
ous dimension. This may make it necessary to provide mechanisms to included “canned”
subnetworks (i.e., for sorting), but once these are provided the system will be reasonably

general and will retain the property that it generates easy-to-lay-out networks.

We explore a series of problems from the literature of computer science that are known
to have good parallel solutions. We used classical problems from the literature of computer
science, rather than, in any sense, selecting a “random cross section” of problems (whatever
that would mean), because it is fairly well known what is possible in terms of parallel
structures for these problems and we therefore had targets for the tools we were trying
to build, as well as a yardstick against which to measure the results. We conjecture that
most real problems that take a lot of computer resources reduce to a series of classical
problems. For example, in [Knu69| and [Knu73] respectively the point is made that
array manipulation and sorting are major consumers of computing resources as they are

used today.

.......................

.............

......

R AN RS S o St e Bos ot dCa Bof M Jeh Jece lea Bon ine Sk S S we B ars 22 YreTEIAC

s » f >~
LN AN 3
AT T N
NN

1) ,"

2

S)
e
'

LN 4
3
PN

PR
5,

LN
P
.

AL

‘.':v"’
N
»
)

..........

1.2.1 Previous Work

A technique similar to our virtualization technique is described in [Mir83] and
(MWi84]. Their technique is to duplicate all scalers or array elements that receive multi-
ple assignments and then to compute the data flow based on stereotyped constructs of a
FORTRAN:-like specification language. Their system finds interconnection nets that meet

certain linear algebraic properties.

The main differences between the techniques in the above paragraph and our virtual-
ization is in the form of data dependency allowed. The use of linear algebra for dependency
analysis allows application of these techniques only when information flows from an array
element to another array element whose coordinates are linear functions of the coordinates
of the first element. While the prototype TRANSCONS uses linear algebra in place of a
more general theorem prover and therefore shares this property, the form of the rule and

the compartmentalization of the information makes addition of new knowledge simple.

One consequence of this is that there is no notion of aggregation. Because of the
finality of the result it can not be aggregated conveniently, and it is therefore a reasonable

technique only where there is a constant amont of work per processor element already.

Numerous systems exist for creating VLSI layouts or VLSI topological descriptions
from low level description languages. In each case we will only cite one or two examples,
with no intent to imply anything about those that are chosen on the one hand or left out

on the other.

MACPITTS ([SSC82]), from the MIT Lincoln Laboratory, can produce VLSI layouts
from a LISP-like language which includes constructs like (SETQ ...) to create a signal,

(+ ...) etc. to specify arithmetic or logical operations on signals, and looping constructs.

e

L "2 .

............
.

e MR SN RN A i e S it A AR M- A i Fh i A . WA P g w

MACPITTS determines and places the minimum number of functional modules to “exe-
cute” a given “program”, creates a programmed logic array (PLA) to control these modules,

and lays out the wires among these parts.

The Palladio system ([HTF83]) allows a user to interactively create a VLSI topology

by “discussing” with the system what is to be done.

These VLSI design systems have as their primary goal the avoidance of the electronics
pitfalls such as capacitance problems or delays on long lines and violations of the “design

rules” of the technology that would make fabrication unreliable.

The communication of actors or closures between processors to model communication
of problem data between processors has been current since [AHe77] and [The82]. Here
actors are separate objects that do their work by sending and receiving messages. Such
a transmission is an event. A message can be an actor. Conceptually the actors have
independent existence, but of course they must have some physical realization and, as-
suming machines capable of processing messages by and for actors contained therein are
called processors, the passing of messages among actors in different processors can model
communication among the processors. In this work the actor is an object that entitles its
holder to perform some action by invoking it, and it can be passed from one process to
another. The receiving process can invoke it, and the work is performed in an environment
derived from the processor that created the actor. In this thesis we will use closures, which

are objects similar to actors that can only be invoked once and then cease to exist.

Divide & conquer is a powerful synthesis technique for efficient sequential programs (see
[Smi83a] and [Smi83b]), but it has not been widely used to synthesize tree-structured col-
lections of communicating processors, even though such an application would seem obvious
because of the correspondence between the division process of divide & conquer and the
branching structure of the desired collection of processors. The reason for this is that the

synthesis process encounters technical problems when one tries to perform such a synthesis

A A DR
. P

L0

SNV

s
S0,

._'.:'

hatien ten s tmg Sud e A ol te e Bl Sl AA g gt st SV PR e 8 A A At ot A UL A MAIE AR AL s A N A A A A A E A

10

in the obvious manner. The use of closures, similar to actors, mitigates these technical
problems at the expense of requiring a more general theorem prover than is required to

perform divide & conquer syntheses of sequential programs.

1.3 Approach

TRANSCONS specializes in two areas. As the first specialty it can synthesize crystalline
networks of processors, in which members of a family of processors can be described by
vectors of indices (integers initially; in principle any ordered set). In such a structure, each
processor is connected to those other processors, each at a fixed distance and direction
from this processor, that exist (if we visualize the network as a group of processors, each
occupying a point with integer coordinates in Euclidean space of appropriate dimension).
As the other specialty it can synthesize balanced binary tree structures in which the internal

nodes all run the same procedure.

In all cases the synthesis process starts with specifications in the V language (see
[Gre81), [GCP81), and [Kes85)). V is a broad-spectrum language based on first order
logic (FOL) but containing locutions ranging from FOL to LISP- or Pascal-like specifica-
tions of individual operations, data structures, and values. We use this language for several

o The language is a good one for specifying rules used to transform specifications as
well as the specifications to be transformed. It shares with LISP and RAPTS [Pai82]
the property that programs in the language are normally expressed as instances of

the data structures such programs most easily manipulate.

o These specifications are similar to first order logic expressions. A theorem proving
capability is essential, and much work has been done on the problems of automatic

theorem proving in first order logic expressions.

11

e Use of a broad-spectrum language facilitates a stepwise refinement. If the source
and target languages were distinct rather than being parts of a single language, the
creation of target text from source text would need to be conceptually a single step.
An intermediate form that could hold both source and target locutions would have
to be provided unless the process actually was so simple that a single examination of

any source object was sufficient.

We augment the V language cited above with several constructs designed to specify

interconnected collections of similar processors.

1.3.1 Parallel Structure Refinement

We develop a series of models of the parallel computation process. In the highest level,
most details are unspecified; in the intermediate level, the order, but not the timing, of
various communications and computations is described; and finally in the two lowest levels,
the notion of a clock is introduced. In the higher of these two levels, the time at which
various operations can take place is determined algebraically. In the lower level, time
differences between actions are computed. This can be used directly in a VLSI synthesis.
A computation in which operands are available simultaneously and the result is needed
one cycle later can, for example, be performed by combinatorial logic with a single “latch”

connected to the output.

The last stage of the refinement is future work, but we argue that it will meld well
with the rest of TRANSCONS, and that TRANSCONS will then be able to transform first
order logic specifications into circuit descriptions lacking only device placement steps to be

complete VLSI chip descriptions.

The series of models is such that a coherent parallel structure results from stopping the

synthesis process at any level. Some levels can not be reached by some specifications, and

- 12

the lowest levels may contain more detail than is desired. The user can control the extent

of the synthesis process.

1.3.2 Crystalline Methods

Crystalline structure synthesis begins with transformations embodying data flow anal-

ysis and analysis of expressions comprising indices of references to array elements. Each

intermediate datum in an array of the specification is assigned to a processor whose index

. corresponds to the index of the datum. The results of this simple analysis is generally a ‘
' clumsy structure in which each processor is connected to many other processors — too many 1
’;:-': to be practical. Often there are other weaknesses in the structures. Additional techniques]
are therefore necessary to produce usable parallel structures, and TRANSCONS contains - :‘ i
rules that embody these. =

The first and most important of these techniques is communication reduction. In this

technique, a rule seeks a set of communication lines whose transitive closure is equal to (or
includes) a distinguishable subset of a given communication network. After replacing that

portion of the network with the smaller set, we repeat the process.

A second technique is aggregation, or the collection of many processors into one. This
technique has two important uses; reducing the number of processors in a system when ~_'» 'j-'.
each has too little work to do, and gluing together simple networks to make more complex - q
ones. ’

A third technique is virtualization, or the increase of the dimensionality of a data struc-

-) '

ture by explicating a loop that repeats assignments to an internal register. TRANSCONS R
normally uses virtualization together with aggregation, because the former creates numer-
ous processors with little work for each of them to do, and the latter combines processors.
Every virtualization has an inverse aggregation, but whenever a virtualization creates an TE

array of processors with more than two dimensions there is more than one aggregation, and

..............
et T el v w Ve
aa

L e St R it =i T ST A

13

TRANSCONS has the option of choosing a different one from the inverse of the original

virtualization.

The fourth technique is chain creation. When an asymptotically large number of con-
nections exists between an 1/O processor and the working processors, and TRANSCONS
wants to reduce this number, it tries to apply this technique. If the sets of values used in
the working processors can be grouped properly, then the wiring can be rearranged so only
a few distinguished working processors are connected to input processors, and the rest can
receive information “second hand” from other working processors. Similarly, for output,
information can be collected from several working processors connected in a chain and sent

to the outside world via a few distinguished processors.

We restrict the forms of the expressions in the declarations describing the processors
and their interconnections, because use of a theorem prover is required for all of these

techniques and the restrictions make this much more feasible.

We argue the adequacy of TRANSCONS’s techniques for crystalline synthesis by show-

ing some syntheses of paralle] structures for dynamic programming and two structures for

multiplication of matrices.

1.3.3 Tree Methods

We use divide & conquer as the primary synthesis tool for the creation of tree parallel
structures. This technique has a long history of creating efficient sequential programs from .
specifications. While it would appear that the synthesis of a tree structure by divide & PR

conquer should be immediate because of the correspondence of subproblems and subtrees,

there are issues that require resolution.

We therefore introduce the notion of passing a closure, or functional object, between

processors. While this is not novel (see, for example, [Hew76)), our use of it is. We are RO

AR ad R

given a specification of I/O behavior of two arrays (one an input and one an output). We
transform this into two specifications: 1/O behavior mapping an input array into a func-
tional object exhibiting certain behavior given the input array of the original specification,
and a request that this functional object be applied. As we demonstrate, using the com-
bination of divide & conquer and the computation of well-chosen closures, TRANSCONS
is able to synthesize a variety of tree parallel structures which can solve problems ranging
in complexity from census functions [LiV81] (which require no closures) to parts of a con-
nected components computation, in which a graph’s adjacency matrix is read in row by
row, and the parallel structure “learns” what the sets of points are such that there exists

a path from any node in a set to any other node in the same set.

1.34 Additional Techniques

As part of a demonstration of the power of our techniques, we synthesize three cir-
cuits for the addition of binary numbers. The use of different combinations of techniques

produces circuits occupying three places in a spectrum of speed/cost tradeoffs.

The first order logic specification for binary addition has nested bounded quantifiers
arranged in such a manner that the bounds of the inner quantifier depend on the bound
variable of the outer one. Therefore, the parallel structure synthesized by the previous
methods of this thesis has O(n?) boolean values to compute for addition of two n-bit
numbers. To accomplish this in O(logn) time would require O(n?) processors. We use
a series of axioms and theorems relating the max, min, A, Vv, 3 and V operators. An
example of a necessary theorem is Vi < z < u[P(z)] = max, < [~ P(z)] < I, which restates
a universally quantified expression bounded by an integer subrange into a maximization.
The axioms and theorems, the proofs, and their use are described in Chapter 7. The
process requires a theorem prover general enough to accept the axioms and to either prove

or accept the theorems relating these operators. We achieve a specification in which a

T

(NN g e an e o

pair of nested quantifiers is replaced by an arithmetic comparison of two bounded max

operations. We call the entire process quantifier levelling.

1.4 Organization

The next Chapter (after this introduction) gives formal descriptions of the four levels
of synthesis detail that TRANSCONS will be capable of when it is complete. The third

Chapter describes the abilities of TRANSCONS that facilitate crystalline synthesis.

Chapter four discusses the divide-and-conquer method for synthesizing treelike parallel
structures, explores some of the problems that must be solved to make it work, introduces
the notion of a closure to solve these problems, and introduces the language we use to
describe resulting structures. Chapter five gives several examples of the synthesis of tree
structures by these methods, and discusses in detail methods for removing the closures,

which are a necessary “scaffolding” for the synthesis process but not intended for the final

product.

The sixth Chapter shows a case in which use of mathematical identities makes
TRANSCONS more powerful than it otherwise would have been. It lends credence to
our conjecture that our synthesis tools will turn out to be more powerful than it would

seem from the apparently specialized nature of problems we solve in Chapter s three and

six.

The seventh and last Chapter explains the significance of our results and the future
paths we expect this research to take. A successful pursuit of this future research will
enhance TRANSCONS to an extent that it will be able to automatically synthesize most
of the parallel structures that have been created by hand, plus structures of comparable
difficulty that have not been created yet, either because the need for them has not yet

arisen or because they are so specialized that the effort has not been deemed worthwhile.

- /e h i ATg s
— - - - P iRtat et SR i WIRTET T ST TN L,
ot - g SuD A PLBS A RS Rt Tt

The appendix contains four sections: sample dialogs with a complete TRANSCONS,
formal proof of correctness of one of the most important rules, formal proofs of the identities

used in Chapter six, and a description of the theorem proving requirements of the crystalline
synthesis portion of TRANSCONS.

R

gt gt ey
A
; < ¢
'4"_7_ '.»'.'1:

B g
v
a ty

.
'V

s
R

17

Chapter 2

Formal Descriptions

The target of TRANSCONS synthesis has four levels arranged in a hierarchy. These
range from a high-level description of computation activity to a level of description that
lacks only device placement to be suitable for VLSI implementation. TRANSCONS refines
specifications from the higher levels of this hierarchy to the lower by adding specialized

information.

A higher level differs from a lower level by requiring more capabilities in the implement-
ing hardware. As an example, the highest level (“multiprogramming”) assumes that the
implementing hardware is able to store indefinite amounts of information and to process
each piece of information using a separate virtual processor (usually called a “process”).
The lowest level requires only that each processing element be able to compute some sim-
ple function of all inputs present at one clock cycle ¢ and to present the answer(s) at its
output(s) at a clock cycle ¢ +¢ where s is a constant integer dependent on the processing
element. We provide coherent synthesis levels, rather than merely describing a process in
which the specification becomes more and more refined but in which parts of the specifi-
cation may be in intermediate states that are not meant to be used by any entity except
continued TRANSCONS synthesis, for two reasons. The first is that it is not possible to

reduce every specification to the lowest level, and we therefore need coherent intermediate

I‘p
b
oL

r
-
P
A

a 0‘:

w
U)

"

.

' S T 8
»

A
:

.
;

al
1
rd

N
e,

N
L) [)

L)

By S J
A
L
A% S By A A

.,
v
£]

o

Ll

a

Lorah v el

\-:
e
»
w

BEODEE

1‘. s

.................
..............
.......

18

levels as targets for these specifications. The second is that we may have hardware avail-
able that can meet the requirements of the higher levels, so we may choose to stop even

though it would be possible to proceed.

We progress from higher to lower levels by adding specializing information to the spec-
ifications. To illustrate the various levels of representation we will use the following speci-

fication:
VA3A' [Vi €{l...n} [a:- = Z a,-]] .
s€{1..4}
The actual reduction operator, here shown as addition, is unimportant; what is important
is that it be implementable as combinatorial logic in VLSI. We intend to show implementa-
tions that might result from taking this specification through all four levels of TRANSCONS
synthesis. The reduction operator must be implementable in VLSI bo:cause we intend to

display an implementation of the specification which uses the reduction operation, among

other things, as an atomic operation.

2.1 Multiprogramming

L
A paralle] structure in this level consists of procedures, processors, and pools. A pro- .
cessor contains one or more processes, each of which contains, in turn, a procedure and a T
)
(possibly null) sndez variable binding. S
A processor is described by a processors declaration, whose components are given in ® =
this tree diagram: RN
o

......

DA RS i A Sl 45 5 A i c["‘&'.‘;‘lvv\“\"t““
RN,
SO

PROCESSORS (index variables) enumerators for index variables
® | HAS array name (array index variables) enumerators for same
| HEARS processor family name (indices) enumerators
| | (USES array name (indices) enumerators)
| TALKS processor family name (indices) enumerators
| | (SENDS array name (indices) enumerators)
® | LINKS processor family name (indices) p f name 2 (indices) enumers
| | (PASSES array name (indices) enumerators)

@ Any of the subclauses can have a condition attached to it which will specify that the
subclause only applies to instances of the processor family or enclosing clause for which the

condition is true. The condition is restricted to Presburger Arithmetic expressions whose

' free variables are variables that are bound further outward in the processors statement,
or not bound at all. The theorem prover will assume nothing (beyond type information)
about an unbound variable, which we will call a superglobal in the following. We use the
® phrase (sub)clause instantiation to describe the instance of any clause or subclause with
specific values of the bound variables. A processors declaration is a type that is attached

to a name, which becomes the name of a processor family.

There are consistency requirements. If processor A HEARS or LINKS from processor
B, then processor B must TALK (to) or LINK to processor A. If a HEARS clause has a
USES subclause, the HEARd processor must either PASS or SEND that value within
the corresponding LINKS or TALKS clause. Note that this imposes a condition on clause

instantiations, not merely clauses.

A procedure contains one or more statements from the V language. These include
references, assignments, reduction operations, other operations, enumeration descriptions
and block structure. For every reference in the procedure of a process it must be true that

' the PROCESSORS statement for that process has either a USES clause or a HAS

clause for that reference.

- ‘- -.' ..' --' . N -.' - N ..‘ - M -.‘ ..' '''''' RS . -.. ..- "« e - ..' -' . ..' - L -.' .." ‘.. . -0 et . . . - .. " Bl c.' q.. -" ________
AN T T e T T e T T T T e T T e e T e T e s S TP R T S L
A W DAL TR A Sl ARSI S T L, U VA SO Sl S0, Sl Y ¥ Y . O P PV VR PRV TR AP S i T W S S A VR R W W

Each reference to a value that is only available from another processor is an abbreviation
for a “guarded command” [Hoa78] whose guard is the availability of the datum and whose

action is the retrieval of the datum to the point of invocation of the reference.

Each
HEARS/TALKS, HEARS/LINKS(to), LINKS(from)/TALKS and LINKS(from)
JLINKS(to) pair denotes a pool. In addition there is a single pool in each processor for
local memory. The consistency rules require that there will be corresponding subclauses
in each of these clause pairs. This means that, for example, everything that is SENt is
USEdJ. It also requires that both ends of a link be present. Each of these subclause pairs
represents a name. The variable name together with its indices is used as the name in
the local memory pool. Each SENDS clause instantiation must match a USES clause

instantiation, and this condition can only be met if the clauses themselves match.

There are relationships between this model and the data fiow machine models. See, for
example, [TAm83], although the mechanism of that model differs from the mechanism we
use. With data flow machines, each operation is represented by an object (sometimes a
word in a memory, sometimes a physical processor) which has a name and which gives the
name of one or more operands. Its name can be used as an operand in other operations.
With our mode] the code fragments for the processors correspond to the operators, the

USES clauses to the operand names, and the SENDS clauses to the exported operands.

There are two ways that multiple processes in one processor can be specified. One is
by declaring multiple procedures in one processor. The other way is with enumeration

statements. These are of the form

.................

EaME N A S O Sl MO A B ot pte o eyt N JAe o o0 . 200 M ain-ste - et/ et i T N N T N T e T T

21

(in processor P):
| VveEs
procedure
end

) where s is set-valued. (The fragment (in processor P) is the declaration that the following
procedure runs in processor P.) There is no commitment to a specific order. In this form
of multiprogramming, a process is created for each instantiation of the V variable. The

) processes have identical procedures except for this instantiation.

A pool contains triples of the form (name, index, value). Several operations are defined
on pools, and the accesses to the pools that appear in the procedures must be drawn from

this set.

A reference has the form GET(options, pool) or GET(options, pool, name) or
GET (options, pool, name, indezx). options is a two-tuple of one of destructive, mark =
(mark), and nil; and either hang or test. The semantics of this is that the pool is checked
for the presence of any datum matching as much as we know about the name and index.
We return the value if there is one and we either return false if there isn’t and we were
testing, or we suspend progress of the process if we weren’t. The first part of the option
describes what we do next if the retrieval was successful. If we were destructive, we delete
the item; if we were marking, we mark the item so that a subsequent retrieval with the
same mark = (mark) will not succeed with this item, and if the first option was nil we do

nothing (and another retrieval request might pull the same item).

A store is of the form PUT(pool,name,indez,value). This modifies the state of the
world so that a GET(options, pool) can equal (indez, value), G ET (options, pool,name) =
) value, and GET

(options, pool, name, sndez) = value.

. .- [P B
"ataa aatiladan

Grouping of the proceases within a processor into superprocesses, which are collections

.
i of processes that intercommunicate more than other paiis of processes within a processor, .

.
- are provided. They are specified by collecting the processes within a group into a suppos- :Z:;::j
::: edly indepcndent “processor”, and then collecting the “processors” with an AGGREGA- _\
N ,:’

'l TION declaration. The AGGREGATION declaration has all of the components of a &
‘ PROCESSORS declaration, plus a poesibly enumerated list of the processors it contains.
There is a consistency rule that requires that each AGGREGATION HAVE, HEAR

ri etc. everything that its components HAVE, HEAR etc. . j)
All of the values described in this Section can be closures (see Chapter 5) as well as
ordinary values.
. ¢
A simple multiprogramming solution to our sample specification, 'i-'-j;f'-
VA3A' [Vi €{l...n} [a: = z a,-]]
_ je{l...‘} N ':. .
i .-
would be described as: o

A istype INBOUND ARRAY({1...n})

. Pa istype PROCESSORS HAS A;,i€ {1...n} -

TALKS Pbj,j€{i+1... n} (SENDS 4;) R

: A' istype OUTBOUND ARRAY({1...n}) e

Pd' istype PROCESSORS HAS A,i€ {1...n}

- HEARS P}; (USES B;)

B istype ARRAY({l...n})

Pb istype PROCESSORS i,i € {1...n} HAS B; AP
HEARS Pa (USES A,)
TALKS Pb, (SENDS B;)

= B' istype ARRAY({1...n})

" PV istype PROCESSORS i,i € {1...n} HAS B! ° ;'f

HEARS Pb; (USES B;) e
if 1<i<n then R

LINKS P¥,_,, Pb,, sl

2 (PASSES Bj,je{1...i-1}) A

'.‘ if 1<{ then

- HEARS Pb,_, (USES Bj,j€{1...i~1)})

»

...................................

.............................
..

.......................................

T T e T RN S e Wt AR O N LT NI S e Y

...

23

(sn PY.):
temp«— 0
Vie{l...i}
temp «— temp + B;
end V
B! — temp

Some irrelevant detail has been ignored, but key points are that all enumerations are
unordered, and that in B} there are { processes waiting to finish. The enumeration is an
abbreviation for text that updates temp and keeps track of whether it is complete so the

assignment B] «— temp can be made.

2.2 Single Process per Processor

This model is similar to “Multiprogramming” except for three features.

e The memory pools in this model are ordered. There are potentially multiple pools
per HEARS, etc. clause, as one must be provided for each USES, etc. clause. These
pools are either stacks or push-down lists, and the enumerations within the USES,

etc. clauses must be ordered (enumerating through a sequence rather than a set).

o The SENDS and corresponding USES clauses can either have instantiations in
the same or the opposite order, making the communication channel a pipeline or a
pushdown stack respectively. This applies to communications links (where the source
and destination are different processors) and to memory pools (where they are the

same).

e Only one process is allowed in each processor.

P N S P A e
T N AT AL I ST Y . NS cr s T T T T T
. PR R APNLIPY . TSP § ol FAPNL W, S WA PR Ay Ny W

This is a lower-level model than “Multiprogramming” because of the lack of the require-
ment that the hardware processing elements be able to run multiple programs effectively
simultaneously. As before, more information must be supplied, consisting of modifications
to the program to explicitly test for the availability of required data, and declarations of

pools as separate objects.

It is possible to transform a static collection of simultaneously running programs into a
single program with the same effect, provided that none of the constituent programs enters a
nonterminating loop that performs no access to any pool. One such set of transformations
would supply a master control program which would have as coroutines copies of the
procedures of each of the multiple processes to be simulated. Each access to a pool in one
of the simulated processes must be preceded by a test to see whether there is something
there, and if there isn’t the “process™ co-returns to the master control program. It is clear
that this preserves correctness, and if we assume that the processor has enough power to
do the work assigned to it, we will not see a situation in which some work does not get

done because some process’s program runs indefinitely, always finding work to do.

This transformation can only be performed if a constant number of processes are to be
folded. Code that satisfies the previous model may have a process per pool datum. For
this reason we must impose the restriction that unordered enumerations are not permitted.

The pools must be turned either into queues or pushdown stacks.

A pool is an object whose type is pool. It has a stack? property and it can have (or
lack) a name. A pool is associated with every USES, etc. clause. Every pool is shared
by one SENDS or PASSES clause as a source and one USES or PASSES clause as a
sink!. The pool has source and sink properties, and the USES, etc. clauses have pool

properties.

11t is possible for different instantiations of a single PASSES clause to be both the source and the sink.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ v R - o TF“_':‘VV-‘V_‘ S St S e S0 A /iR A A i Se i e e e Jenh A)
. 25 »
>
Only a single process per processor can exist. The procedure may contain enumera- o
. tions, but they must be ordered and they denote sequential composition and not parallel
composition of tasks.
o
On this level it is important how many uses are made of a given datum, because the .
logical connection between a datum and its use is made by counting. For this reason some "'.-
¢ streams are duplicated, i.e., information is put in at one stream and removed at several.).
In this case, language like
¢ :
L
(USES a..)) it
9 . . | N
(SENDS b...) o
(SENDS ¢...) :-':
A (in Pz): v
bce—a
| -
will be used to describe the copying of the stream that supplies a into ones that supply .
b and c. ."-',:
Ly
Part of a parallel structure that satisfies the benchmark specification on this level !_’

S e .
o tiad

follows:

vy Y

Ly

98
(N
o
gt

Can g
0

Ce 4 M) e

7~ S i 200r ECaur
-._ -

26

A Bstype INBOUND ARRAY([1...n])
Pa istype PROCESSORS HAS 4;,s€ [1...n]
TALKS Pbj,j€[i+1... n] (SENDS 4;)
B' istype ARRAY([1...n))
PV’ istype PROCESSORS i,i € [1...n] HAS B]
HEARS Pb; (USES B;)
if 1<i<n then
LINKS Pb,_,, Pbj,,
(PASSES Bj,j€[i-1...1))
if 1 <n then
LINKS Pb;, PY,,
(PASSES B;)
if 1<s¢ then
HEARS Pb,_, (USES Bj,jeli~1...1))
(sn POY):
temp « O
forjelf-1...1]
temp «— temp + B;
end for
B! — temp

The difference between this solution and the previous one is that all orderings are

explicit. Note that the 5 enumerations are “backward”. The for operator replaces the

V operator of the previous parallel structure description. Instead of specifying unordered
and therefore potentially concurrent executions in one processor, it specifies “ordinary”

looping.

2.3 Clocked

In the clocked level there is an object called a elock. It is permitted to take values from bt ‘ ‘1‘
an ordered domain (conceptually, vectors of integers; usually a scalar of type integer). The N *
print prototypes (syntax declarations) of TRANSCONS allow every USES, etc. clause to
have an AT clause. Consistency rules require that effect follow cause. For example, no e’ ,,j

SENDS clause instantiation occurs AT any time before the computation it depends on

e VL LV R W NS, A LA GEALA A EA A M M A R N S e St A gt S sab e Sl Sk Syl

27

USES all of its values, plus an amount that depends on the nature of the computation as

described below.

The additional specializing information beyond “Single Process” is the AT information.
The value of the AT property of a USES, etc. clause is a parametric expression in variables
bound in the scope of the clause. This allows the hardware of a processor to be simplified

in several ways, depending un some of the values of the AT clauses.

The programs can be rewritten to not test whether data is available. Data is assumed to
be available at the appropriate times, and the hardware can merely “gate in” data, or read
the port without regard to signals describing the presence or absence of data. Similarly,

data can be written without regard as to whether there is room for it.

All information present in “Single Process” is present for this level also. A few additional
elements are added. There is a mapping T : 8 — 1 where s is an element of V syntax (a
node type) and i is an integer. T(s) will be called the sntrinsic delay of type s. The
interpretation of this is that if s is an operator (e.g., +) then T(s) is the time required
to perform the operation, and if s is atomic then T'(s) is the time required to develop the

value. The time to evaluate a + b, for example, is 2T ((variable reference)) + T'(+).

T(m) where m is a reduction operation is the time for a single step. This means that

a single value or set of values will necessarily be absorbed after ¢ time units.

A “Single Process” specification can be converted into a “Clocked” specification by
addition of a clock declaration, and assigning times to each of the USES clauses. The
transformation rules assign a time of O to the first instantiation of each SENDS clause,
and use propagation techniques to assign times to other events. The AT expression of an
instantiation of an output of a node must at least equal the highest of the sums of the AT

values of the node’s inputs and its intrinsic delay.

The implementation of our specification to this level is:

8, 4™

ol

T Ty R L
S RO

P

28

(Here we focus only on the actions of the P} processors, which are the ones that do

the actual computation)

C istype CLOCK [1...3n]
B' istype ARRAY((1...n])
PV istype PROCESSORS i,i € [1...n] HAS B!
HEARS Pb; (USES B; AT C =0)
if 1<i<n then
LINKS Pb,_,, Pb.,,
(PASSES Bj,j€[i—1...1 AT C =3(i -) + 2)
if i<n then
LINKS Pb;, PV,
(PASSES B; AT C=2)
if 1< then
HEARS PV,_, (USES Bj,j€[i—1...1] AT C =3(i - j))
(in PY)) :
temp— 0 AT C=1
forjeli-1...1
temp «— temp + B; AT 3(i — 5) +1
end for
B! — temp

There is an invisible notation on the nodes whose printed representations are “temp «—
temp + B;” and temp «— O giving them AT properties. We have depicted the temp «

temp + B; and temp « O lines as having visible AT clauses for clarity.

2.4 Fixed Delay Level

A possible endpoint of a synthesis is a structure amenable to VLSI implementation. .

In order for this to be feasible, several conditions must be met that aren’t necessary for a

parallel structure in which many Van Neumann computers cooperate. An example of this
is the fact that the memory buffering a link between two computing elements must have a e

definite length, specified when the circuit is burnt. '..-‘.'_"5.':‘

{ 29

The restrictions we must impose, that things happen at definite times and are separated
Py by definite intervals, can best be modeled by providing declarations that the times things
happen (AT clauses) are relative to the times other things happen. If the time difference is

equal to an explicit constant, a VLSI synthesis system could use a shift register to control

@ the timing and to model the data path. If the time difference is a superglobal this is still
' possible, although the circuit cannot actually be sized until the value of the superglobal is
: known.

[
je
! At this level, the internal nodes of the processors’ computation nodes as well as the

USES, etc. clauses, except for the SENDS clauses of the input processors’ TALKS

clauses, have AT properties. The values of these properties are sets of pairs of other nodes
and strictly positive integer constants instead of an expression. For each node n there is one
AT property for each node m from which n receives data flow. The property will be the
pair of m and a positive integer 1, and the semantics of this is that n finishes its computation
and makes available its output values ¢ units of time (clock cycles) after m does. If there
is a list (m,my,my,...,my,n) such that (mg,s:) € (AT n), (m;,i; € (ATm;4y1), ...,
(m,i0) € (AT) then there is said to be an AT-path from m to n with delay o< < ;-
The graph whose nodes are the nodes of the specification and whoee edges are the AT-links
is a DAG, but it is not necessarily a tree. Two paths from m to n must have the same
delay. The delay of each node must be greater than or equal to the intrinsic delay of the

node’s type.

The motivation for this level of description is that a specification that meets these
conditions can be simply transformed into suitable input for a VLSI placement program
by taking several steps, assuming that all nodes of the specification have types whose
operator can be implemented as a single object in VLSI. If this is not the case (for example
if the specification includes a multiplication node and the library has only addition), the

offending node must first be broken down into simpler nodes. The intrinsic delay of each

v v

b

node type should equal the number of clock cycles required for the circuit that implements
the function to work. If (m,s) € (ATn) and the intrinsic delay of n is j = ¢ — k, then
fabricate a wire from the circuit implementing m to a shift register with k elements whose

output is connected to the appropriate input port of n.

It is more difficult to display the implementation of our specification on this level,
because the AT clauses do not equate C with a form whose free variables are indices but
instead with an object with two alots; another node and an integer constant. The structure
that results is circular. We will display this by giving names of the form (script alphabetic:)
to some nodes so they can be referred to by AT clauses. Again we will depict the temp «

temp + B; and temp « 0 lines as having visible AT clauses.

C istype CLOCK (1...3n)

B' istype ARRAY([1...n))
PV istype PROCESSORS i,i € [1...n] HAS B}
HEARS Pb; (A: USES B; AT C =0)
if 1<i<n then
LINKS Pb;_,, Pb,,
(8 : PASSES Bj,j€[i—1...1) AT ;-1 +1)
if ¢ <n then
LINKS Pb;, PY,,,
(C : PASSES B; AT 7 +1)
if 1 <1 then
HEARS Pb,_, (D :USES Bj,j€([i—1...1] AT B; + 1)

(in PY)):
£:temp—O0 AT A+1
forje[f-1...1]
7 :temp «—temp + B; AT D; +1
end for
B! «— temp

2.5 Summary

We have seen that there are four useful description levels for parallel structures.

The highest level, multiprogramming, is useful when a processor that can efficiently
® perform context switching and can contain memory pools would not be objectionable.
This would be the case when a typical microprocessor with sufficient memory could be

provided for each processor.

The second level, single process, is useful when a general purpose processor, but no
context switching or memory pool management mechanism, can be provided. An example
of such a situation would be the use of a typical microprocessor with no memory in addition
¢ to its internal memory. This internal memory is normally insufficient to hold several

inactive contexts.

The third level, clocked, covers situations in which a processor simple enough to do
things in a specific, fixed manner and order is desirable, but enough logic and memory can
be provided to allow for the storage and retrieval of some intermediate values. An example
of a technology that would be appropriate is interconnections of finite state machines and

FIFO and LIFO devices.

The lowest level, fized delay, must be reached when the computation elements are
. - restricted to combinatorial logic and latches. Only fixed time differences between the

occurrences of various events are allowed.

We therefore have a series of synthesis levels and corresponding computation models

for the four main technologies in which one would want to implement a parallel structure.

. .
...........

......

. N ‘aka Bty Afe 8w e dah ot Al Ana et A 4 MU IR Y ‘e b it S S Aa M S AL S A * At e s Ml S
fa ate avd. aHh of Ratibart oAl Al Sadufol Sy ol e Rl i te b Aol Jhdh It A AL AL R R S i B L

32

y .‘t"'i'
I. .|' .< \'

</
atal

-?

[]
e 32 !
ety

&, 2
LA
KN MY
L}

Chapter 3

C‘ RS
AN
e
Case Studies of TRANSCONS Techniques
Sl
To develop the techniques described above, we have explored efficient parallel structures
for several classical problems and algorithms, described in the following Sections. In all b “_‘ v “'
cases there will be a series of specifications, separated by rules and prose, describing a V
series of states of a node currently being transformed by TRANSCONS. We will highlight
the changes with a vertical stroke (|) in the left margin, but will supply the entire current - '-‘

state of the node for reference. A node in V roughly corresponds to a syntactic object in

a syntax tree.

3.1 Polynomial-Time Dynamic Programming

We have examined a class of polynomial time (P-time) dynamic programming algo- © M—r'
rithms for which it is possible to synthesize an optimal parallel scheme. The synthesis :_'.:
uses rules displayed below, and inference capabilities described in [Bro82]. Abstractly ; ~

programmed algorithms in this class include the Cocke-Younger-Kasami parsing algorithm
for a fixed, possibly ambiguous Chomsky Normal Form grammar, described in [AU172];
the Optimal Binary Search Tree algorithm, described in [Knu73); and Optimal Multiple
Matrix Multiplication, described in [AHUT74]. All of the algorithms fit into the following
scheme.

....................

Each algorithm generates the “solution” to a problem whose input is a sequence S of
b n items by using a dynamic programming technique. This technique generates a solution
for a sequence of items by combining solutions for contiguous subsequences. The solution

V(K) for a sequence K of length n is found by:

1. Generating the n~1 possible partitions of K into contiguous nonempty subsequences

® I and J such that I||J = K;

2. Forming for each partition a partial solution for I||J by applying a function F to

V() and V(J);

3. Obtaining V(I]|J) by combining (using a binary operation () all of the partial

solutions. This is expressed formally below:

ViK) = O FV@,vEI)

LJ:IJ=K

In order to obtain the following parallel structure and have it run in time €(n), two

conditions must hold:

e Both (O(z,y) and F(z,y) must take constant time,

e O must be associative. This allows F(V(I),V(J)) values to be included in the L--,_

running (O-total in any order they become available.

S T S e e
A TN T T A et T e e
LR N R I e .

........
....................

é
~
“
.
.
-
o
-
o
i
"o
ok}
\.‘_
.-
-
-
>
o~
i
-
B

These conditions are met by a sizable class of problems, e.g., the problems mentioned
above. The dyimmic programming scheme described above generates the solution V (S) for
the original problem S of length n. The process starts with V ((s;)) for each s; € S, then
generates solutions for subsequences of length 2, 3, and so on, up to n. We give below two

dynamic programming algorithms that fit into this scheme.

The Cocke-Younger-Kasami algorithm parses a sequence of terminal symbols according
to a fixed context free grammar in Chomsky Normal Form. This form specifies that each
'E production rule in the grammar is either of the form N — ¢t for some nonterminal N
and terminal ¢, or N — PQ for nonterminals N, P, and Q. In this parsing algorithm,
each problem is a sequence of terminal symbols, T, and the solution V(T') is the set of
nonterminal symbols that derive T'. Let the initial terminal sequence be (¢;...¢,). Then
V((t:)) are those nonterminals N for which there is a production rule in the grammar of
the form N — ¢;. Given two contiguous sequences of terminals A and B, the nonterminals
that produce A||B include those nonterminals N for which there is a rule N — PQ where
P € V(A) and Q € V(B). The nonterminals that produce a sequence S are obtained by
dividing the sequence S into two subsequences in all possible ways and taking the union

of the results. In our formalism,

F(V(S),V(T))={N|[N - PQleGAPeV(S)AQeV(T)}

and

@ is the union operation, which is indeed associative. S ,._) _ j

Another example of a dynamic programming algorithm fitting our scheme is finding \

the complexity of the optimal grouping to multiply a given sequence (M;, My, ..., M,) of '_:: '_l‘\-',:
L]

matrices. Since matrix multiplication is associative, multiplying the matrices in different BRARS

groupings produces the same result matrix, but different groupings may have different

...........

. N
...............

35

execution efficiencies. If M is a p X ¢ matrix, and N is a ¢ X r matrix, then the product
® M x N will be a p x r matrix, and the multiplication will execute in time proportional to

pgr (if a simple matrix multiplication algorithm is used).

9
This problem fits into the scheme presented above in the following fashion. The “so-
lution” for each matrix subsequence V((M;,...,M;)) is a triple (p,¢,c): p is the row size
of M;; q the column size of M; (since multiplication using any grouping of (M;,...,M;)
L Lo
results in a p x ¢ matrix) and c is the optimal execution cost for computing M; x - -- x M;. . o
The F for this algorithm is defined below: N :
. ,
F((p1,q1,¢1), (P2, 92, ¢2)) = (P1,92,€1 + €2 + P11 42)
)
© for this algorithm returns the triple with the minimum cost element. (Since only the
© costs can differ among triples, O’s choice is arbitrary if the costs happen to be the same.)

The minimum operation is associative and commutative.

A high-level specification of the dynamic programming algorithm is presented below. A
subsequence can be represented by its length and where it begins. The array A used below
contains solutions to subsequences: the element A;,, contains V((s;,...,514+m-1)), where I
is the initial sequence. The complexity of each “executable” statement is presented at the

right.

The algorithm specification is as follows:

''''''
.........

A istype ARRAY (I,m),1<i<n,1<I<n—1+1
v istype INPUT ARRAY (I),1<I<n

Vie(l...n) 6(1)

A=y 6(n)

Vme(2...n) 6(1)

vie{l...n-m+1} 6(n)

Al,m = @ F(Al,h Al+h,m—t) 6(”’)
kE{l..m-1}

Figure 3.1: Specification of 6(n®) Dynamic Programming

F and © because it is given that a single evaluation of both F and © takes constant

time.

The time complexity of the specified algorithm is indeed ©(n3) when executed on a
sequential machine. A trick is available for one of the problems, Optimal Binary Search Tree
of [Knu73]. This trick involves bounding k in Figure 3.1 more narrowly than {1...m—1}.
This trick reduces the algorithm’s running time to ©(n?), but it does not generalize to the
other algorithms.

It is possible to implement the specification on a two-dimensional array of 6(n?) pro-
cessors and the resulting structure will solve n-element problem instances in ©(n) time.
We know of no analog to the trick mentioned above for parallel structures. The memory
size of each processor is 6(n). Below we describe the operation of the structure, and then
prove that it is a ©(n) algorithm. This parallel structure has been reported in the literature
[GKT79).

The network of processors is displayed in Figure 3.2. Observe that Py, is connected
to Py -1 and Py m-1. Each processor P; m will compute the value of A;m. To do this it
needs two streams of information: A;x and Ajyxm-2, where k < m. These streams of data
come respectively over wires from processors Pys-; and P4y m-1. Each processor Pym

(except Py) will send every A-value received from Pyy,_3 to P4y and from Piyymo

P St i)

A I A M

CMNCRAL S o i rn At e i e S e o ARl S i Al DRl

37

to Pi—1,m+1 a8 soon as Py, gets it. Each processor will also compute F-values and merge

them into a running ()-total as soon as it gets the necessary A-values.

Ps

Ps2

Pys P2s

P14

Figure 3.2: Processor Interconnections

At first glance, it might appear that this algorithm bas time complexity 6(n?). Each
processor needs to receive ©(n) A-values from each of its incoming wires; it must at some
time perform ©(n) worth of computation on the data received before it sends its result on
each of its outgoing wires. However, & careful timing argument shows that an execution

time of ©(n) can be achieved.

Definition 3.1 Within Py, for any k where 1 < k<m, A and Ajypm—p are called o

complementary pair of A-values.

Processor Py will apply F to each complementary pair of A-values.

The next lemma shows that each processor P;,, receives all 2m — 2 values it needs,

though it waits ©(m) for its first complementary pair, A; [m/2] and Aiy(m/2),m—[m/2]-

..........

AR A S o 3 AR e i T A i JA
L

A}

38

Lemma 3.1 Each processor Py, where 1 < m < n—m+1 recesves the values Ay where

1< m' <m and (separately) A im—m'm' where 1 < m' <m, in order of increasing m'.

Proof: By induction on m. Clearly this is true for P 3, which receives only one value
on each of its incoming wires. Now suppose it is true for P g1 and Pi41m—1. Then Pim
will receive A-values in the proper order from P;,,_; and Pjyj m-; through m’ = m ~ 2,

following which it receives A; ,»—; and A;.,.l,,,._;‘from those processors. But the latter two

Al

A-elements are just those required to preserve the sequences. [

Let T be a time-dependent variable such that at system startup T = 0, and after z

units of time T = z. The time unit satisfies the first condition of the following lemma.

Lemma 3.2 If all of the following conditions are met:

B

e All of the following takes processor Py, no more than one unit of time: receiving
two values, one each from P; -y and Piyy m-1; sending these values on to Pim+1

and P;_j m+1; applying the function F twice to two complementary pairs of A-values

’
. . .i. _ .

if all values are available; and merging the resulting value into a running (-total.

e The A-values come into P;,, in the order indicated by Lemma 1.2.

¢ Each processor P, sends values received from Py m-1 resp. Pryim—1 t0 P4y Pesp.

Pi_1,m+1 no later than one time unit after receipt.

e At T = 0 processor P;; transmits A; ;.

b Siae“Biaaie AAatid

- \. . —. .-l
. I
o

39 []

then P, will compute A;,, no later than T = 2m.

Proof: By induction: Py is initialized to know A;;. Now suppose the lemma is true
for m <4 and we wish to show it for m = i. We first show the following claim: that at
T = m+j Py will have included at least max (0, 2(5 — [m/over2])) F-values in its running
(O-total. This claim is proven by induction on . When reading the proof of the claim,

keep in mind that the “life” of a processor P, is divided into three epochs:

1. When T < m, the processor may have received no A-values.

2. When m< T < %m, the processor will have received at least 7' — m A-values from
each of its input lines. Since the first half of the A-values from each inbound wire
form complementary pairs with the last half of the values from the other inbound

wire, Py ,, may not have been able to perform any calculations of any F-values yet.

3. When T > %m, the processor will have received at least half (more accurately, at least
m —T) of the values from each inbound wire. During each unit interval, it will receive
one A-value from each inbound wire, which will form a complementary pair with some
value that was stored from the other wire during epoch 2. Two F-calculations will
be possible — one pairing each of the just-received inbound data with a previously

1

received input datum from the other side (unless m is odd and T = m + %, in

which case the two values arriving at this time form a complementary pair).

If 5 = O the claim requires nothing. If j > 0, consider the situation at T = 2(¢ — b). All
processors P; » and Py, ;, where k < ¢ — b will have completed their work. Their answers
will have had time to reach P;; after b time units, or at time T'= 2i — b. But § =i — b, 80
by T =1 + 7 at least 25 A-values will have arrived from each input connection, and since

there only ¢ complementary pairs if 5 > % only 2(¢ — 5) pairs can be incomplete, meaning

that at least 2(j — [§]) pairs are complete. Since, by induction on j, two time units ago

.‘,-."'ﬂ'.".'»"" e
T N : -

40

2(5—[£]) — 2 F-values had already been merged into the running O-total there is plenty of
time to merge two new F-values into the running (O-total, completing the induction step
of the claim.

Lemma 3.2 follows immediately from the claim and the observation that the merging

of m — 1 F-values into the running (-total in P; ., constitutes a calculation of A; .

Theorem 3.3 The time to compute Ay, s 6(n).

Proof: Immediate from Lemma 3.2 g

A similar but more general result will be shown in Appendix Section B. We will show

how this parallel structure can be derived from the specification in Figure 3.1.

3.1.1 Preparatory Rules

The problems amenable to TRANSCONS synthesis have internal arrays of storage, and
the requirement 1nust be to fill in an array by computing a value for each element. Our
strategy will be to assign a processor to each element of the array. The first preparatory
rules, MAKE-PSS and MAKE-IOPSS declare a processor family for each array of
the probl.. and compose a single enumerated PROCESSORS declaration. This decla-
ration has several clauses: the processors definition clause, the HAS clause, the HEARS
clause(s), and the USES clause(s). PROCESSORS declarations were described in
Section 2.1, but we will give a more complete example below. Any part of the PROCES-

SORS declaration except the processors definition clause can be made conditional.

- T T T Te T
e e -andaia e MR MY

A A A S UL AN GV M G N N g Jha- o - W ae S0 g - mtn ol s

P istype PROCESSORS (I,m),1<m<n,1<I<n-m+1
9o HAS A
if m =1 then HEARS Q (USES v;)
if 2<m < n then
HEARS A,,-1 (USES A;;,1<k<m-1)
HEARS Fii1m-1 (USES Aitem-,1<k<m-1)
® ifl<m<n-1then
TALKS P mi1 (SENDS Ajp,1<k<m+1)
ifl1<m<n—-1A1l>2 then
TALKS Pi_ym+1 (SENDS Ai_gmsk, 1 <k<m+1)
ifl<m<n-1A1<m<n-1then Rt
LINKS Fim-1,Pim+1]
(PASSES Aj;,1<k<m-1)
ifi<m<n-1A1<m<n-1Al>2 then
LINKS Py m-1, P-1m+1
(PASSES Ay m+r,1 <k<m-1)

..
This declaration means all of the following:
| .
e A family of processors exists. The family name is P. Each member of the family is i
named by two indices, and any member Py, existsif 1l <m<nAl<I<n-m+1.
The value n is an externally defined constant value (for any instance of the problem) Al

defining the problem size. This PROCESSORS declaration actually declares some

facts about every processor in the family.

e Each element, Py, of this family is responsible for computing the value of (i.e., l <o
HAS) A;,,. A is an array declared elsewhere in the specification that contains the B

PROCESSORS declaration.

e If P;; is defined it needs v; to compute its HAS values, and it expects to get these -'
values from (i.e., HEARS) the (only) processor in the Q family.
o If P;,, is defined and 2 < m < n, then P;,, needs the values of A, for any k, Lv_»
1< k <m-1. It also needs A m—i for any k in that range. It expects to get these K :_'.‘:‘;‘_-
,

—r ~ T
a2 e Ve gre e i b o AR Cadt A AR AR Aot AR A)

values from processors in the P family, namely Py p,_; and Piy) m-1. The scope of the

bound variables list (in this case, “/,m”) is the entire PROCESSORS declaration.

o Similarly, processors whose indices meet certain conditions TALK to other processors

PEIATY

and SEND certain values as specified by the enumerated expressions. Processors

e "s ‘a
‘I-I

l' are also declared as LINKing pairs of other processors and PASSing sets of values.

The TALKS/SENDS and LINKS/PASSES information is redundant; this infor-
mation can be inferred from the HEARS/USES data. In what follows, I will omit this
redundant information to enhance readability except where I judge it to be critical to an

understanding of the declaration.

PR e T
- .Yr"' _,'.v. AT YL T T
ERCIRL IR G, .

3.1.1.1 Rule MAKE-PSS: Give Each Non-I/O Array Element its Own Pro-

cessor

DBy our conventions, the portion before the “—” is the antecedent and the rest is the
consequent. Variables free in the antecedent are implicitly existentially quantified and the ’ 7:;:‘-—;-'.-
scope of this quantification is the entire rule. Variables free only in the consequent are

universally quantified (but this is rare). A rule is said to apply if the antecedent is true;

when this happens the semantics of the rule is to make the consequent true. It is explicitly

permissible for the consequent to make the antecedent no longer true. ll_iﬁ?'ff'.

Ve
% - - e e e . vl e,
(MNP AL ACH. AF PR I AP 2 2% g

-

.

.

43

rule MAKE-PSs (*») TRANSFORM
*+ = ‘bind NAMEPE istype X’
AX=‘ARRAY(I,m),1< m< n,1< < n—-m+1
Aundefined (IO X)
AY = (gensym 'PROC)
A Z = ‘PROCESSORS (BOUND) ENUMERS HAS NAM Egounp’

—

*+ = ‘bind ... Y istype 2’
MAKE—PSs applied to Figure 1 binds as follows:

bindings:

s+= ((entire specification))
=‘ARRAY (I,m),1<m<n1<I<n-m+1?1
NAME="‘A’
BOUND=‘l,m’
ENUMERS=1<m<n1<l<n-m+?
Y=‘P
Z=‘PROCESSORS (I,m),1<m<n,1<l<n-m+1
HAS 4’

obtaining

istype ARRAY (I,m),1<m<n,1<I<n-m+1
istype PROCESSORS (I,m),1<m<n,1<!<n-m+1 HAS A;;m
istype INPUT ARRAY ({),1<!<n
istype OUTPUT ARRAY
vie((1...n)
A=y
Vme ((2...n))
Vie{(l...n-m+1}

Am = @ F(Ak, Aty rm—k)
k€{l..m-1)

Q<9I

0= Al,n

as the new state of the database.

3

.
a

L JON R T E T P R T RPN
L T 2 e R L U R P S} R T S S
P » e Y a g A AL - RN LT e, . . YT L P P A

s N N W W VT TN T W W Ty T Wy

8(1)
8(n)
6(1) R
6(n) e
0(n®)

6(1)

4
3.1.1.2 Rule MAKE-IOPSS: Assign I/O Arrays to Processors

This rule assigns a single processor to each input or output array. The reason only a
single processor is assigned is that it is assumed that input values will reside in a single

entity, such as a tape drive.

rule MAKE—-PSs (*+) TRANSFORM
** = ‘bind NAME istype X’
AX‘ARRAY(I,m),1< m< n,1< < n-m+1
A defined (IO X)
AY = (gensym 'PROC)
AZ ='PROCESSORS HAS NAMEgounp’

—

*x = ‘bind ... Y istype 2°

Rules MAKE-PSs and MAKE—-IOPSs make PROCESSORS declarations that
do not have USES and HEARS clauses yet. The next rule fills in those clauses, and

subsequent rules improve them.

Rule MAKE-IOPSs applies for two sets of bindings:

o3 = ((entire speci fication)) *% = ((entire speci fication))
X =‘0UTPUT ARRAY O’ X =*INPUT ARRAY y,1 <I<n’
I0 ='OUTPUT Io ='INPUT
NAME =0 NAME =v
BOUND = (empty binding list) BOUND ="
ENUMERS = (empty binding list) ENUMERS =“1<1l<n’
Y=R : Y=Q
Z = ‘PROCESSORSR Z =*PROCESSORS Q
HAS O’ HASy,1<l<n
resulting in
(P.1) A istype ARRAY (I,m),1<m<n,l1<l<n-m+1
P lstype PROCESSORS (I,m),1<m<n,1<i<n-m+1
HAS Ay
v lstype INPUT ARRAY (I),1<!<n

| Q fstype PROCESSORS HASu,1<I<n

.............................. . kAl D GG s o o S
45 .
.

oY
O istype OUTPUT ARRAY RO
| R Istype PROCESSORS HAS O Sy
vie(l...n) 8(1) afay
(P.1a) A=y 0(n) ,'
Vme(2...n) 0(1) RO
vie{l..n-m+1} 0(n) ::_‘::.':::
(P.1b) Am= (O F(Aik Atvem-i) 6(n®) R
ke{)..m-1) Lt

(P.1c) O=An 6(1) L.

So far, all rule application can be done in a straightforward manner, without inference.

3.1.1.3 Rule MAKE-USES—HEARS: Determine Processors’ Inputs DA

We need rules to describe the connections between processors and the data that pro-
cessors need to produce results. This rule is very conservative — it determines what array :
values each processor P* needs, and it specifies a direct connection from the processors _-_':}'i:
holding those values to P*. The USES clause describes the values that a processor needs;

the HEARS clause describes the processors that have (HHAS) these values.

To determine this, consider the innermost loop which assigns values to array elements

indexed by non-region-constants. Note that the form of the rule shown below evidences a

need for elaborate flow analysis. Non-constant array index expressions are used as processor

indices. The indices for those array eiements whose values can affect the assigned value

T -'?. 3
e TN

. [N LA

o .

comprise the index expressions for the USES and HEARS sets. A reference at the same
loop level will normally generate USES and HEARS clauses with null enumerations. A

reference contained in a deeper loop will normally generate instances of such clauses with

AR B
e Sl
A P
PRI .

inherited enumerators from the loops.

.............

.......
..................
P I e T RV AT PV I S 2 BN

-

ool
: “ »
Ry
rule MAKE-USES-HEARS (++) TRANSFORM € ;:'.:-f-:;“
] CB=bind’ *+ ...’ i
- Ane = A
‘PDCL istype PROCESSORS (PBV) PENUMER HAS ANAMEp;npgx’ L
A X = (INNER-LOOP-THAT-DEFINES ANAME CB) -
N AY € (ARRAY-REFERENCES-AFFECTING X) SR
| A Z = (EFFECTIVE-ENUMERATOR-OF Y X) S
AW. CONDITIONS = o
CB. CONDITIONS {J(INFERRED-CONDITIONS X) s
e AW.CLASS = USES-CLAUSE

o o
AW.ARG = ‘ANAME Sl
(REL-BV PBV X.DEF-OF .INDEX-EXPR Y 2)

(RELENUMER PBV X.DEF-OF .INDEX-EXPR Y 2)’
A Q. CONDITIONS =

v
CB. CONDITIONS |J(INFERRED-CONDITIONS X) - ..
AQ.CLASS = HEARS-CLAUSE :f;'.-l"-'
AHISBV = ANAME.PROCSTMT . PROC-BV-OF O
AQ. ARG = ‘ANAME.PROC-OF . _tff_~_f-‘.
(REL-BV HISBV T
X.DEF-OF .INDEX-EXPR Y 2) -~ l-»"r’
(RELENUMER HISBV X. DEF-OF .INDEX-EXPR Y 2) N
e
- L _"-_'.'
W € s+.clauses ;::'.j:_::',::
AQ € *». clauses R
-
The INNER-LOOP-THAT-DEFINES function finds an innermost locality where
an element from the argument array is defined (not merely used). The ARRAY- '
REFERENCES-AFFECTING function returns a set of all points in the program where T
an array is referenced and the value returned can affect the results of its operand, s pro-
gram point. The EFFECTIVE-ENUMERATOR-OF function determines what (pos- .
sibly implicit) enumerators its first argument (an array reference) is controlled by, beyond - ”—+
the enumerators that control its second argument (an array definition in this case). -
-9 __
The map, z.CONDITIONS, allows any node z to be placed under the influence of e
conditions (an if clause). INFERRED-CONDITIONS is a function that produces an if .
; -

clause that specifies exactly those conditions that must be true for the point representing

the argument to be reached (a form of assertion propagation).

®
REL-BV and RELENUMER give a piece of text that respectively will serve as a
® bound variable and an enumerator for the fragment enumerated by the fourth argument
to be valid for the third argument in the context of the second argument, using the bound
variables of the first argument. This would be the bound variables of the fourth argument
L J unless there is a variable name clash.
. This modifies the first PROCESSORS type declaration, which becomes
(

P istype PROCESSORS (I,m),1<m<n,1<i<n-m+1
© HAS A
| if m =1 then HEARS Q (USES v)

© Application to the assignment to A, in (P.15) produces

P istype PROCESSORS (I,m),1<m<n,1<I<n-m+1
¢ HAS A
if m =1 then HEARS Q (USES y))
| f2<m<nthen
| HEARS Py;,1< k< m (USES A;4,1<k <m)
| HEARS Pytm-k,1 <k <m (USES Aipem—t,1 < k<m)

Finally, apply MAKE-USES—HEARS one last time, to the null “enumeration”,
. (P.1c), that sends the output value to the output “array”, O. This forces us to modify R’s
PROCESSORS declaration as follows:

C i e i e ax o - Jhar

Al

2 Y UATCAPIEAY
1) a M

L] 'l

e, .". .,

Y -‘ .

"
R
'l

.,
[l

0 ’o{'l

e la 0 3 00

D
La 4

=y
- - t-‘
~

g

L e

T
SRS
A
‘!‘ ‘- v. -i.
IRV
.-"-- ~ .'.‘.
SATNING
OACA
e
et ..\.‘

~ %

48

R istype PROCESSORS HAS O
| HEARS P,, (USES 4;,)

This declaration is in its final form.

The applications of MAKE-USES—HEARS require low analysis and some ability

to reason about enumeration (to construct if clauses).

3.1.2 Optimization Rules

The rest of the rules described in this section will transform the simplest parallel struc-
tures into more efficient ones. They do this by detecting and removing redundant inter-

connections.

3.1.2.1 Rule REDUCE—-HEARS: Improve HEARS clauses

It may be that a HEARS clause of a PROCESSORS declaration requires each
processor to be connected to an asymptotically growing number of other processors. This
is undesirable, because the number of interconnections in the whole collection of processors
would grow faster than the number of processors, and the cost of interconnections would
exceed the cost of processors for sufficiently large problems. This would, in turn, decrease

the size of theblargeut problem that could be handled by a given parallel structure.

However, often it is not necessary for each processor to be connected to all other
processors whose values it needs. If processor P, needs values from processors P, and P,
but P, needs a value from processor P,, it may not be necessary for P, to be connected to
P.. P, must be connected to P,, but P, will be able to get the value that P, wants from

P., so it (P;) can pass that datum along.

This form of this observation only secures a constant factor reduction in the number of

interconnections (in this case, from two to one), but it is possible to do better by extending

R
St
LA A
l.ﬂ""_ .

et e T T T T A T e CaMIC A S SIS gk it Nt Evacinbis aihd e et bvi g P s

. 49

the principle. Suppose, for example, that a structure includes a family of processors P; for
° 1 < ¢ < n. Further suppose that V¢, j where j <4, P; needs values from P;. In this case,
Pi;1 will need all the values P; needs, plus the value in P; itself.

® Basic Observation 3.1 If P; is capable of supplying all of the snformation that P;,,
needs, 8o it 18 possible to modify the structure to replace the ©(n) connections required by

this HEARS clause by a single connection.

Definition 3.2 In a parallel structure, a family of processors is the set of processors de-

fined by a single PROCESSORS declaration when enumerated over the PROCESSORS

~—

| clause’s enumerator. That family 1s generated by that PROCESSORS declaration.

Definition 3.3 The set of processors in a processor Py’s family HEAR by P, due to a

HEARS clause Hp will be written Ho(P,), and ss called the induced set of Hj at P,.

|0 Definition 3.4 Consider Ho(P,) and Ho(Py). Suppose that each is a subset of the same

family as P, and Py (which are in the same family because they both have the same HEARS

clause, Hy). The interconnections defined by Hy telescope if these sets Ho(P,) and
- Ho(Py) either are disjoint or one strictly contains the other, for any choice of P, and Py in
the family. We also say that Hy telescopes. If Vp, p,cramily : [0 € Ho(P,) C Ho(Ps) =
3p.efamity : [Ho(Pa) U{Ps} = Ho(P.)]] then Hy snowballs. The notion of a USES clause
telescoping is defined similarly. A partition s induced by a telescoping clause co if two

processors are in the same partition whenever the sets defined by ¢y overlap.

i‘b Theorem 3.4 If a HEARS clause Hp snowballs, it can be replaced by another HEARS

clause that only specifies input from a single processor.
y

..

Proof: Consider the family of processors described by the PROCESSORS declaration
that contains the HEARS clause. Consider also the induced partition II. If the cardinality
of an equivalence class E € II is (say) ¢, then VP, € E : || Ho(P:)|| <¢c. (No processor can
HE AR itself because it would never be able to complete its calculation if it needed its own
result to do 80.) Since Vz,y : z # y = ||Ho(P:)l| # ||Ho(Py)]|, and since ||{0...c-1}|| =¢,
the processors in E can be completely ordered by the cardinalities of their HEARd sets. By
the basic observation and the snowballing property, each processor can get the information

that Hp requires from the processor that is its predecessor in this ordering. g

Definition 3.5 We call replacing s HEARS clause, as in the previous theorem, reducing

the clause.

The following is proven in Appendix Section B.

Theorem 3.5 Reducing & snowballing HEARS clause will produce o parallel structure

whose asymptotic speed ss the same as the speed of the original structure.

We can now state this rule in English as follows: “If a HEARS clause snowballs then

reduce it”, and more formally as follows:

PN A B o i o A e A e 2 B A A A S n e S e s e Adan e e e o o o B I

51

rule REDUCE-HEARS (stmt) TRANSFORM
stmt = ‘PNAME istype PROCESSORS ($PDV) $PENUMER...
if COND1 then
HEARS PNAMEygpy SHENUMER
(USES UVgypy$SUEN,..)...’
A (THEOREM
(IS1={HBV : HENUMER|PDV \PDV,]}
AISla={HBV : HENUMER[PDV\ PDV,|}
AIS2={PDV : HENUMERA HBV = PDV}
A PROC1 = {PDV,}
A PROC?2 = {PDV}
APROCh = {HEXPR)
A PROChi = {HIEXPR}
A(IS1NIS1a) € {@ IS1 IS1a}
A((®<c IS1c ISlaACONDI)
= ISIYPROCI = IS2)
A(COND2 « COND1 A IS1UPROCh = IS2)
A(~COND2 = 3PDV4[IS1 C {HBV :
HENUMER(PDV \PDV;}}))
A(COND3 < COND2ACONDI{PDV\ HIEXPR])
A(HIEXPR|PDV \ HEXPR|= PDV)))
-
stmt = ‘PNAME istype PROCESSORS ($PDV) $SPENUMER ...
if COND3 then
LINKS PNAMEsggxpr, PNAMEsg expr
(PASSES UVyypy SUEN, ..)
if COND2 then
HEARS PNAMEgexpr ...°

when this rule is applied to the current state, the bindings will be as follows:

-~ .

52

ss= ‘PROCESSORS P;,,,1<m<n,1<i<n-m+1

HEARS Piyam-2,1<k<m-1...°
PNAME="'P’
PDV="9m’
PENUMER=1<m<n,1<l<n-m+71
HBV=‘1+km-k
HENUMER=1<k<m-1Y
SET1={(li+k,m - k):1<k<m; -1}
SETIO:{(Iz'l-k,mz—k):lSksmz—l}
PROC1= {(lI},m)}
SET2={(l+k,m-k):1<k<m-1}
PROC?2= {(I,m)}
PROCh= {(I+1,m - 1)}
HEXPR=‘(l+1,m-1)
COND1=2<m<n’
COND2= true

THEOREM is a function whose argument is a symbolic set-theoretic expression

whose atomic terms are set expressions. These expressions are principally created by the

BOUNDBY function, whose inputs are the bound variables list of the processor name id,

an identity parameter, the form that defines the array references that comprise the array

definition, and the enumerator (if any) for the array reference.

This rule reduces the HEARS clauses from the large PROCESSORS declaration

of the current state to

HEARS P -1
HEARS Py

The resulting PROCESSORS declaration is

53

P istype PROCESSORS (I,m),1<m<n,1<I<n-m+bl
HAS Aj;m
if m =1 then HEARS Q (USES v))
if 2 < m < n then
HEARS P (USES A, 1<k< m)
HEARS Piy1m-1 (USES Ajpm—i,1 < k< m)

Figure 3.3: Final Form of Main Processors Declaration in P-time Dynamic Programming
Derivation

3.1.2.2 Rule A3: Write the Individual Processors’ Programs

The general idea of the rule is that the first rule isolated the deepest enumeration in
the specification which assigned a value to an array element, and built the beginnings of a
parallel structure where each array element within the domain of that enumeration had its
own private processor. Since the enumeration in time has been replaced by an enumeration
in space, the layers of enumeration that get us to the point which induces the creation of

the first parallel structure can be stripped away.

A technical note is that the enumerations can only be completely discarded when there
is no calculation at intermediate levels. If there is such calculation, the system will have
to add it to the appropriate processors when it strips away the layers of enumeration
that include such calculation as well as the deeper enumeration. This does not make
the asymptotic behavior of the parallel structure any slower except when the calculations
include enumerations. When this is the case, it might be possible to respecify the problem

to have separate copies of the array enumerated in the calculation for each cell of the target

array. This would require an array whose dimension is the sum of the dimensionalities of

the two arrays.

N - e e e T . L
MR . e Ta e T B S P R s

et - T . N . - Lo NI
L R AN et tat T . B MR
. v e’y . BRI, I

« .
[T I U
i T W W A S B ° e

".“.\4 I
. . L

This rule is as follows: “Supply each processor specified by a PROCESSORS decls-
ration with a copy of those enumerations from the original program that occurred within
the region that included the assignment to array elements that generated that PROCES-
SORS declaration. The references to array elements are replaced by associative lookups
from the table of information that the processor has HEARd. The outer enumerations
are stripped from the program, and uses of the variables that were bound in these outer

enumerations are replaced by constants reflecting the processor’s ID.”

The derivation of the P-time dynamic programming parallel structure is almost com-
plete. It remains only to reduce the depth of enumeration to the single level implicit in

the segment,

Am= (O FlAis Avem-i)

ke{l..m-1}

Rule A5 does this. The complete parallel structure that results is as follows:

A istype ARRAY (I,m),1<m<n,1<i<n-m+1
P istype PROCESSORS (I,m),1<m<n,1<i<n-m+1
HAS A,
if m =1 then HEARS Q (USES v)
if 2 <m < n then
HEARS Pim-1 (USES A;4,1 <k <m)
HEARS Py -1 (USES Ayypmos, 1< k< m)
istype INPUT ARRAY (l),1<l<n
istype PROCESSORS HAS y;,1<1<n
istype OUTPUT ARRAY
istype PROCESSORS HAS O
(in P;3,1<1<n):
Ay~ vy 6(1)
(ln Pym,2<m<n,1<i<n-m+1):
Aim — Orer... m-1} F(ALr, Atrim-t) 0(n)
(in Pyn):
O— An 0(1)

wOLO =

A
. e .
. N
W . «
» e .
(AP I Y "

_a* W

55

3.1.2.3 Rules HEAR-BY~-CHAIN,SENDS~-BY -CHAIN: Improve Topology

"3 of Input/Output

We see that the rules described so far will produce a parallel structure in which every
processor is directly connected to the input and output processors when given a specifi-

cation of array multiplication. Only one 1/O processor is created per 1/O array, and for

- many problems, including array multiplication, it is necessary to get some input or output
from/to every processor. (P-time dynamic programming is an exception, in which only | H

0(n) of the 8(n?) processors receive input values and the output is only a single value.) :'i:.-..-'

We therefore conceived another rule to attempt to reduce the excessive connectivity

that results from every processor needing access to input or output.

If the following conditions are met: l e

o e the number of processors n; in a family that receives input from or sends output to l_.-)

a given processor is asymptotically unacceptable, and .

o there is a HEARS clause Hj such that the number of processors that do not HEAR

=
»

-

any processor using Hy clause (if input) or that are not HEARJ by any processor

using that clause (if output) is asymptotically less than n;,

then the I/O HEARS clauses can be reduced so that only those processors at a source

(or terminus if output) of Hy are directly connected to the I/O processor.

Pictorially, we convert structures that look like these:

- - . [- F N
et .t .. T e et P T e vt e LR T B - P L e . L e e et ey
e e v - . . S . B .

- . . . Te Te - . . [. - . - te -
R SR RS CHAY SNt

s

!.y. ["r.. .'\ . o .‘..'

-
r-
’
-
\..A
h.‘,
o
@

NS
B e e e e e e i
YOS, B ALY,) T YL A &Y

into these:

Figure 3.5: Resulting Structure From Sharing 1/O Connections

We are not, however, prepared to do this yet. We need to have the chains of processors

required by this rule in order to improve the connections to the I/O processors. For this

we must introduce another definition and another rule.

3.1.2.4 Rule MAKE-CHAIN: Create Interconnections in a Family to Reduce

I/0 Connectivity

Rules HEAR-BY -CHAIN, etc. allow the reduction of connections from/to an [/O

processor where a set of interconnections already exists to solve the 1/O-free portion of the

..................

........
S I N RN

242 N0

3

SR A,
R N PP I P

57

problem. In some problems, including array multiplication, no convenient set of intercon-
nections exists and one must be introduced solely to distribute I/O values. Fortunately,
the rule that would do this is fairly simple to state and is evidently implementable, given
the mechanisms already required for REDUC E—HEARS. First we extend Definition 3.7
of induced sets to USEd values (the original definition covers only HEARAd processors,
but it extends in the obvious manner to USEd, SENt and PASSed variables as well as
TALKed and PASSed to processors.). We then define the notion of telescoping, which
heuristically describes a situation in which a set of processors can be split into subsets such

that the subsets share interest in a restricted portion of the 1/O data.

Definition 3.6 A clause telescopes if its induced sets for two processors are either dis-
joint, or one contains the other. Whenever a clause telescopes, that clause defines a par-
tition, the induced partition, where two processors are in the same partition element iff
the tnduced sets for the two processors have a non-empty intersection. (Without loss of
generality we consider only non-empty sets. Empty sets are not considered because they

impose no interconnection requirements.)

The rule is; where a single USES clause telescopes, order the induced partition by the
processor indices and interconnect the processors in each partition with a new HEARS
clause where each processor is connected (only) to its immediate predecessor (if any) in
this ordering. Place the USES clause within the new HEARS clause instead of within

the old one.

3.2 A Derivation of a Fast, Parallel Matrix Multiplication Structure
Many paralle]l structures for the matrix multiplication problem have been proposed

in the literature, probably because of the problem’s practical importance and its obvious

suitability for parallel processing. One of the prettiest parallel structures is described

cadad

RN

i'-'-(!

LA
1

{v
¢

vas N

"

S -A" .l '. -I
2y

, ".n
A

LA
't

Py
.

oy

A Y

e St e,
A .

. V‘
. .)
4 o
N »

'r,').‘n, L)
. , ’l"!llfﬂ"

S}
rs
.
.

aaladadel.n

3t Actuha et AL R Pl T T S0 S
Sulaf it Al

30t a0 e dnt atubg i lat i ot)

58

in [KulL76]. Kung’s structure multiplies two n X n matrices in ©(n) time using 6(n?)
. processors of constant size. (Kung makes the assumption that a solution that involves
6(n) processors in communication with the outside world is acceptable. This subsection
follows that assumption, which is obviously necessary to multiply n x n matrices in 6(n)
time.) There are sequential algorithms with sub-cubic execution time, but there are no

obvious mappings of these algorithms into parallel structures.

Some new techniques must be introduced to derive the systolic array of [KuL76]. This

will be the subject of the next Section. It is, however, possible to derive a different parallel
structure with linear execution time. We added rule MAK E-CH AIN with this derivation

in mind, but do not feel that MAKE-CHAIN is contrived or impractical.

Our paralle] structure uses more processors than a systolic array on a restricted class
of matrices called “band matrices,” in which all but a narrow diagonal band of the input N
matrices (and therefore of the output matrices) contains zero values. It does, however, use N
.
fewer processors on general matrices. R
The starting point of this derivation is a specification of matrix multiplication (we are ';'_
assuming square matrices to simplify the discussion): - »ﬁn
A istype INPUT ARRAY (I,m),1<I<nl<m<n '~
B istype INPUT ARRAY (I,m),1<!l<n,1<m<n
C istype ARRAY (I,m),1<!l<n,1<m<n
D istype OUTPUT ARRAY ({,m),1<I<n,1<m<n 'S
Vie{l...n} . e(1) T
Vie{l...n} 6(n) .
Cij= Y. AixBij 6(n%) :
&€{1..n} -
D;; = Ci; 6(n?) o
The use of arrays C and D seems redundant, but its purpose is technical - our rules
would not permit us to assign multiple processors to a single array if that array were an e - ~
INPUT or OUTPUT array. Duplicating all of the arrays in this manner, to avoid all
.)

T v— v

appearances of “prejudicing the case” of which array’s parallelism would be important,

would change the resulting parallel structure only py replacing each processor by a set of

three processors.

MAKE-PSs and MAKE-IOPSs add PROCESSORS declarations,

A istype INPUT ARRAY (I,;m),1<l{<n,1<m<n

| PA istype PROCESSORS HAS A;j,,,1<I<n,1<m<n
B istype ARRAY (I,;m),1<I<n,1<m<n INPUT

| PB istype PROCESSORS HAS B;,,,1<I<n,1<m<n
C istype ARRAY (I,m),1<I<n,1<m<n

| PC istype PROCESSORS (I,m),1<I<n,1<m<n HASCim

D istype OUTPUT ARRAY (I,m),1<l<n,1<m<n
PD istype PROCESSORS HAS D;,,,1<I<n1<m<n

Vie{l...n}
Vie{l...n}
Cij= Z Ai kB j
ke(l...n}
D.',j = C,' ;

A istype ARRAY (I,m),1<!<n,1<m<n INPUT

PA istype PROCESSORS HAS Ajn,1<{<n,1<m<n
B istype ARRAY (I,m),1<{<n,1<m<n INPUT

PB istype PROCESSORS HAS B;,,1<I<n,1<m<n
C istype ARRAY (I,m),1<l<n,1<m<n

HEARS PA(USES A3,1< k < n)
HEARS PB(USES By m,1 < k < n)

D istype OUTPUT ARRAY (I,m),1<l<n,1<m<n
PD istype PROCESSORS HAS D;,,,1<I<n,1<m<n
HEARSPC;,,,1<I<n,1<m<n

(USESCim,151<n,1<m<n)

Vie{l...n}
Vie{l...n}
Cij= Y. AixBy;
ke{1...n}
D;; = Ci;

MAKE-USES—-HEARS completes the rough form of these declarations.

PC istype PROCESSORS (I,m),1<1<n,1<m<n HASC;,

59

6(1)
6(n)
6(n?)

6(n?)

y
o
e(1)
6(n)
e(n?)
6(n?)

REDUCE—-HEARS is unable to improve this parallel structure, because there are no

interconnections among the PCs to improve. Rule HEAR—BY —CHAIN is also helpless,
although the topology of the interconnection graph is too rich (6(n?) rather than the goal
of 8(n)). Rule MAKE-CHAIN comes to the rescue. Adding the HEARS clauses
allowed by MAKE—-CHAIN and by the USES clauses of PC produces:

A lstype
PA istype
B istype
PB istype
C Istype
PC istype

D fistype
PD istype

ARRAY (I,m),1 <l < n,1lem < n INPUT
PROCESSORS HAS 4,,,,1<I<n,1<m<n
ARRAY (I,m),1<1<n,1 <m<n INPUT
PROCESSORS HAS B,,,,1<!l<n,1<m<n
ARRAY (I,m),1<I<n,1<m<n
PROCESSORS (I,m),1<I<n,1<m<n HASCy,

HEARS PA(USES A;3,1 < k< n)

HEARS PB(USES Bim,1 < k< n)

ifm>1 then HEARS PC;m-1

if{>1 then HEARS PC;_, ,,
OUTPUT ARRAY (I,m),1<1<n,1<m<n
PROCESSORS HAS Dy, ,1<!<n,1<m<n

HEARS PCj,,,1<I<n,1<m<n

(USESCip,1<1<n,1<m<n)

Vie{l...n} e(1)

Vie{l...n} 6(n)

Cij= 3. ApBuy 6(n%)
k€(1...n}

D;;=Ci; 6(n?)

Then rule HEAR-BY —~CHAIN is applied twice, and rule SEND-BY -CHAIN

once, finishing the derivation.

— — — r—

A listype
PA istype
B 1istype
PB istype
C istype
PC istype

ARRAY (I,m),1<l<n,1<m<n INPUT
PROCESSORS HAS A4;,,,1<I<n,1<m<n
ARRAY (I,m),1 <1< n,1 < m<n INPUT
PROCESSORS HAS B;,,,1<l<n,1<m<n
ARRAY (I,m),1<I<n,1<m<n
PROCESSORS (I,m),1<1<n,1<m<n HASC,,
if m = 1 then HEARS PA(USES A;,,1< k< n)
if!/ =1then HEARS PB(USES B;,,,1 <k <n)
ifm>1 then HEARS PC;p—1(USES A1x,1 < k < n)
if/>1 then HEARS PC;_ym(USES B;m,1 < k < n)

D istype OUTPUT ARRAY (I,m),1<I<n,1<m<n
PD istype PROCESSORS HAS Dj,1<I<n,1<m<n
® USESCjpm,1<1<n,1<m<n
HEARSPCim,1<I<n,1<m<n
| (mPCipm,1<I<n,1<m<n):

| Cim+— 9. AxBim 6(n)
ke{l..n}
° | (inPD):
l Dijm ~— C;’m 9(1)
P 3.3 Virtualization and Aggregation

3.3.1 An Informal Description

~(' In virtualization we select a variable (which might be a hidden variable such as the
accumulation variable in a reduction operation) that receives assignments in a loop, ex-

plicate it if necessary, and provide it with enough indices to meet the single assignment

o condition. If this is done as often as possible to a specification, the value of each variable
will depend on a constant amount of computation, independent of the problem size. Since

the size of the virtualized structure will not be independent of the problem size, and since

o communication is such that the running time of the problem will be polynomial in that

size, a fully virtualized structure will make light use of each processor.

We can make use of this fact either by pipelining or aggregation.

Consider the enumeration:

Gi= Y, aikh S
ke(l,...,n-1} e

X There is an enumeration, but only over values, not destinations. For this reason, use

of separate processors will not be generated for the steps of the enumeration. 1 Now one

can make a few changes to the specification in order to generate separate processors for ;_) _i

1 the steps of the enumeration. (We will see the need for separate processors below.)

..

LA, S P N e . ._‘.'.L'-.','.'.‘_‘“.,_ln‘n-.- VTP VRV VS UL AR LN

o 2t U SO SNl N i

Generate the following virtualization, creating the array C

e
e
s

r.

N
o
"

I..‘
I‘..
i

¢ istype ARRAY ({1,...,n},{1,...,n},{0,...,n})

€m0 =0
Vke(l,...,n) do
Cl,mk = Clmk-1 + 8ikbyj

This structure represents several changes:

o First, it introduces a new dimension to the main array for each level of enumeration

performed to find a value for the old elements of the array.

t'_i' e Second, the enumeration k € {1...n} into the enumeration k € (1...n) is changed.
F This is perfectly legitimate—the set enumeration does not fordid enumeration in a

specified order. When we consider automating this process, however, we should re-
B member that there are n! ordered enumerations corresponding to a specific unordered
P one of length n. The best orderings to try will probably include the arrival order-
ings inferrable from HEARS and HAS clauses, and the “natural” orderings, i.e.,

numerical order and inverse numerical order (where numbers are involved).

Of course, this only applies when the inner enumeration(s) enumerate over a set.
When the enumerand is already a sequence, this step is unnecessary.
..- o An identity for the enumeration’s operation is selected. This can be artificial, a

special null value that is checked for. :j.}
o Fourth, an ordering for the enumeration is selected.

o Fifth, explicit code to create running totals is generated.

63

In aggregation, instead of multiplying the number of processors we group processors
into one. We require that each processor have insufficient work to occupy the time that
the parallel structure requires for solution. This can arise because the processors need to

wait for partial results from other processors.

When this is the case, the processors can be collected into groups that don’t share any
procesging times. Each group is then replaced by a single processor that is responsible for

all of the values computed by any member of the group.

Aggregation is needed to get efficient parallel structures after virtualization, because
virtualization produces specifications that would be transformed into structures that have a
constant amount of work per processor. This is much less than the amount of time available
to the system, because after virtualization there must be chains of processors whose length
is linear in some measure of the size of the problem. Heuristically, virtualization makes

too many processors and aggregation is necessary to undo this.

The power of the techniques arises from their ability to together arrange for different
parts of the work of computing a single element of the answer to be performed in different

processors.

3.3.2 Definitions of Virtualization and Aggregation

Definition 3.7 A virtualization of a parallel structure ts a new parallel structure that

results from

e adding a dimension to an array, say A, producing A as follows: if A; is a defined
element of A, and the computation of Ay is performed by enumerating n elements of
some set or vector S and performing a binary operation on a running total and each
element of S as it is enumerated, then Ay, for 0 < m < n will be a defined element

of the new array, A;

Pt
AR
................

e making the enumeration of S an ordered one; and

e replacing the original enumeration/calculation with a calculation that explicitly folds

the 5** value of the ordered enumeration as performed for A; by operating on Ay

and that 5** element.
The process of creating a virtualization is also called virtualization.

i Definition 3.8 An aggregation of a parallel structure ss a new parallel structure that
' results from partitioning the old set of processors of a family into equivalence classes, and
creating a processor for each equivalence class. A processor in the aggregation HEARSs

." another such processor if any processor in the first equivalence class HEARd any processor

sn the second.

i The process of creating an aggregation is also called aggregation.

There are, of course, an intractable number of possible aggregations according to this
i definition. Only simple aggregations are worthy of consideration, because allowing complex
ones would lead to a combinatorial explosion; also, the complex ones would tend either to

leave too many interprocessor connections or to have too much work being done in some

of the processors.

Suppose that the unaggregated family of processors is defined as
» Pg, 23,0, (enumers)
We will use Py to represent this below. We use a notation for aggregations that describes
lj'.: sets of processors that are identified by the aggregation. As an example, suppose we have
.’ an m X n array of processors with a family name P, and we want to create a processor
v
o

M gu it AT Nl Rl R

...............

[)}

v _s
vy,

r""'

Y

‘
.

.o
OO
L

."'l‘
|

.‘A

Rn S Al Uy Sl e P S B RS S M0 S A N S MM A St il e e T At alior ut et gt s S A A AR ERE ACA LS 20 A Sttt nd B 1AL R
65
family with n processors, one from each column. The one from column ¢ will be Q;. The
notation in
|]
Qistype AGGREGATION (§),1<é<n-1;{Pi:1<j<m-1}...
(where the usual HAS, HEARS, TALKS follows).
[
The aggregations we will consider for a family of processors organized as an d-
dimensional array whose bounds are the vectors L and U can be categorized as follows:
B
Consider the d element vectors each of whose elements is either —1, 0 or 1 and some of
whose elements are non-zero. We will consider an aggregation that produces a new pro-
cessor for each set of processors {Px;jr: L < X + jI < U} where L < X has the usual
i
meaning of V1 < j < d|l; < z;].
® 3.3.3 Systolic Structure Synthesis
We now study distributional problems preferably implemented by a systolic array. For
@

a specific example, suppose we are evaluating

Vie(l,...,m) ; must be enumerated in order
vie{l,...,n} ; may be enumerated in any order
B; = B; + A;

and suppose that [and n are of the same order of magnitude, or that all of the B-values
are in a single place and we choose not to distribute them. A systolic structure is preferable

to a tree.

Consider the structure below:

. v e e . e e
. h.“- ..i' A . Te T '.- Y '-.. .'l -.

R A -t et e Nt - P Te TamL Y, P .

RIS 3 G SRSV W YA U T W VA W ST

L’-
@
b
'
-

v+ ¢—— [By]e—— [Bs]e—— -+ ———[Ba]—— (feed in m A-values)

Figure 3.6: Simple Parallel Structure for Broadcasting

in which each of the m A-values is added to each of the n B-values. Note that no source

of B-values is given; each processor must be connected to B’s 1/O processor.

We explicate the m partial sums, using virtualization. This creates a separate processor

for each step in the summation process for each of the B-values.

---«—— food in A
PBn 4——|PBz1 l‘—-—"'O——— PB,.; -— feed in A1

(partially done sums flow upward)
(feed —°|PBlo|_'|PBzol——0"'—' PBno
B-values

here)

Figure 3.7: Virtualized Broadcast Structure

Then we modify that slightly to feed in A-values in only one place.

feed in A-
values, withdraw

FBim}——[FBamh——+——{PBam}— nswer
(partially done sums flow upward,

soe

A-values go down)

PBu Ple b PBnl
(partially done sums flow upward)
(feed — [PByo (— {PByo ——0---—-——0|PB'.0|
B-values
here)

Figure 3.8: Virtualized Broadcast Structure with Chains for 1/O

We then identify P;; with P;44 ;_i for all appropriate k:

take out answers

feed in B vector ——» aee *—>

feed in A vector

Figure 3.9: Aggregation of Virtualized Broadcast Structure

This parallel structure is better than a structure synthesized directly from the speci-
fication because it does not impose strenuous requirements on the I/O capabilities of the
system. The specification does not say how B-values get to the various B;. If this were
exposed, we would see that the assumption is made either that the broadcast problem
was embedded in a larger problem that allows the data to already be there, or that all n
B-processors HEAR the I/O processor. The systolic array shown above allows the I/0

processors to be connected to only a single processor.

5@

68 v L 1
: 3.34 Use of Virtualization and Aggregation for Matrix Multiplication
2
‘ Consider the case of synthesizing parallel structures for matrix multiplication that work

A istype
PA istype
B istype
PB istype
C istype
PC istype

D istype
PD istype

in linear time. Application of the techniques previous to virtualization and aggregation

produces the following parallel structure:

ARRAY (I,m),1<l<n,1<m<n INPUT
PROCESSORS HAS 4;,,,1<I<n,1<m<n
ARRAY (I,m),1<l<n,1<m<n INPUT
PROCESSORS HAS Bjp,,1<I<n,1<m<n
ARRAY (I,m),1<l<n,1<m<n
PROCESSORS (I,m),1<l<n,1<m<n HASC;m
{f m=1then HEARS PA(USES A;;,1 <k <n)
ifi=1then HEARS PB(USES By ;»,1 <k <n)
#fm>1 then HEARS PC,,—1(USES A4;;,1 <k <n)
ifI>1 then HEARS PC;.j m(USES Bt m,1 < k < n)
OUTPUT ARRAY (I,m),1<l<n,1<m<n
PROCESSORS HAS D;,,,1<l<n,1<m<n
USESCim,1<I<n,1<m<n
HEARSPCi;m,1<I<n,1<m<n

Kung’s parallel structure [KuL76]. However, there can be an advantage of Kung’s parallel

structure, however, only wow; processors have to be provided. The multiplication takes :“ *

Cim+— . AixBim 6(n)
ke{1l..n}
Digm + Ciym 6(1)
The asymptotic behavior of this parallel structure seems to be the same as that for

structure over the simpiér one. When multiplying “band matrices”, where j -- 1<kop V ——
J—1>k10=> Ai; =0 and 5 —i<koy VJ—>k1) = Ai;j =0, it is possible to use fewer
processing elements. If k10 — koo + 1 = wo and ki3 — k10 + 1 = w;, then it can be
shown that only (wp + wy)n of the n? processors of our parallel structure can have non- -

gero answers, and only that many processors have to be provided. With Kung’s parallel

6(n) time. (It is possible to use the 6((wo+w;)n) processors to multiply the band matrices —-

in 6(wp + wy) time, but this parallel structure cannot be synthesized automatically using

69

these techniques, and in any event the time/processors tradeoff offered by Kung’s parallel

structure may be desirable.)

The virtualization process, alone, is not enough to synthesize Kung’s systolic arrays.
Notice that the number of processors in the parallel structure that results from the obvious
virtualization is ©(n3). Partial sums of product array elements reside in different processors
at different times. This feature makes some technique like virtualization necessary to
separate the computation of partial products, but processors have to be grouped to prevent
this processor count blowup. Another more difficult technique, aggregation, will reduce the

processor count to the target level.

Heuristically, aggregation is the grouping together of processors, each of which does a
small amount of work, into groups of processors, each represented by a single processor.
Each processor does all of the work that any processor in the original group did, but this
can still be done quickly because each of the processors in the original group had a small

amount of work to do, and no two processors had to do their work at overlapping times.

The reason why Kung’s parallel structure can multiply matrices in linear time using
constant space per processor is that he has performed a virtualization on the summation
of result array elements. He avoids the need for n® processors by a process called processor

aggregation. Each processor is responsible for computing ©(n) elements of the virtual array.

Reasoning similar to that performed in the change-of-basis generator and theorem

prover will serve us well here. The target interconnection structure is

-

- "I '4" ','

DA .n'

A

4

s

TWOW AT 478" YT T .

.....

.......

P istype PROCESSORS (I,m),-n<m<n,-n<I<n-m+1
HAS Cjjx,1<i<n,1<j<nl1<k<nji-j=l-mk=min(n-14+1,n+m+1,n)
if m <n then

HEARS Py m41 (USES A;;,1<i<n,1<j<n,i-j5=1)
if —~n<m<n then

LINKS P m+1, Pm-1 (PASSES Aj;,1€i<n,1<5< n,i—j=l)
if > —n then

HEARS P_1m (USES B;;,1<i<n,1<j<n,i—j=m)
ifn>1>-n then

LINKS A-1m, Ps1m (PASSES B,j,1<i<n,1<j<n,i—5=m)
ifl<nAm>-n then

HEARS Fi41,m-1

(USES Cijx-1,1<i<n,1<j<nl1<k<ni-j=l-mk=
min(n — 14 1,n 4+ m + 1,n))
ifl>-nAm<n then
TALKS Pi_i1m+1
(SENDS Cix,1<i<n,1<j<nl1<k<ni-j=l-mk=
min(n — 1+ 1,n+ m+ 1,n))

- which is Kung’s structure. This requires two changes of basis of input matrices (¢ — 5
- of both A and B, rather than either s or j), and a change of basis for the C array, as well
i as replacement of the summation of each C-array element over a set of integers with a

summation over a sequence of integers.

The figures below illustrate the virtualization and aggregation processes as they apply

) to an n = 3 instance of a matrix multiplication problem.

‘\

'vl‘ .-' 'n'. "L
oot s B te te

. R4 ".".'n"
e ,"-'-'-' ¥
. oA ..

Figure 3.10 shows the basic topology of the matrix multiplication parallel structure;

C 71
couT
O i)
. ' g i
: .
: !
-
2 S—— - BIN
} s h
‘ i
® |
! |
Q 2 V)
A IN
e Figure 3.10: Unvirtualized Structure
“\
Figure 3.11 shows the topology after the virtualization has been performed over the
summation;
hd C OUT
<° ERERRL IR]
) - o -)
Od—D 4 o'
Y DY
L L T |
| ou—or—+to" BIN
<& O ® !
o4
- "o- A".',. .. .‘.':,
o -0 D
0« LD o]
A IN

Figure 3.11: Virtualization

Figure 3.12 shows the sets of processors that are to be collapsed into a single processor;

.~ et

R .
S e . . .) PSS S R I
aet e e T T e T e e - A S e e T A L e e
BV B WL SN T TSI PP TP T S A e L AT e 2t o e e LR e e

PN PO

72
.:... P == ..,
"3 » 0 . -
O Q< o'
‘A’ : Al
N B -
- -+ -3
O <~ O <6—@' '
A A A
!',...... ; .'.',..... e
10 10 (3

<
Q= ©= ©
diagenal ines indicate aggragated processcrs

Figure 3.12: Aggregation to be performed

and Figure 3.13 shows the configuration that results, in a form that would be more

recognizable to the student of [KuL76].

A
ST ' P
A /\i . B
A - - . - - \
N ‘} SN N ‘. ~
w7 f ~l ? ~.
P ‘/‘\ , i
N T ISy
~ - i -~ L
=~ -,’//?\\!-// : L F L
PN ,/2
OB N i
S TN
™~ 5//; P
~ NG

Figure 3.13: Aggregated (Systolic) Structure

3.3.5 What Virtualization Can and Cannot Accomplish

An important measure of the cost of a parallel structure is the product of the aumber
of processors, the size of each one, and the amount of time the parallel structure takes to

do a calculation. We will call this the PST measure.

o e a, Lol ol

............. N
......... R e T LR P Y
ol DIPRATE. VAT VO S Wi Sy e - 1

L L I
LRESINY S W B TP ey Sy

73

PST = 6((wp + w1)n?) for the simpler parallel structure for matrix multiplication,
when applied to band matrices of widths wg and w;. Virtualization and aggregation can
improve this to ©(wowin) by reducing the number of processors while allowing the size of

the processors and the running time of the algorithm to remain the same.

It is possible to achieve PST = 6((wp + w1)?n?) by other means. This is equivalent
whenever w; = &(wg). Divide the n x n array of potential processors into (wo + w;) X
(wo + w)) blocks and introduce input and output connections at the appropriate edges of
each such block. This is impossible to derive by techniques shown so far, or reasonable
extensions to them. It has the further disadvantage that the number of connections to
input and output processors is ©(n), while the same number is 6(wow,) for the systolic
array parallel structure that results from virtualization and aggregation. A complexity
measure that took into account the connections to the I/O processors would favor the

systolic array structure even over the improved simple matrix multiplication scheme.

1t should be noted that the parallel structure resulting from partitioning the potential
processors has the same PST as systolic arrays, but P and T are different. Different

measures, such as PST? may make different parallel structures more desirable.

3.4 User-Assisted Aggregation

We have an arbitrary set of aggregations we will consider in order to keep the size of
the algorithm search tree reasonable, but there may be cases where it would be advisable
to consider other aggregations. For this reason, when the system considers an aggre-
gation it codes this information without hidden information, allowing the user to insert
AGGREGATE declarations of his own. The reason we chose to allow this rather than

to make an attempt to have the aggregation finding machinery be complete are:

o The bounds of arrays are often arbitrary.

o There are many aggregations available; it is not clear which are useful.
e It is not uncommon for two logical data to share parts of an array.

o It is possible for one array to match the combination of two others.

For these reasons, TRANSCONS understands the AGGREGATION type, of the

form:

Name istype AGGREGATE (bound) iters = Psetyound
HAS Asetyound
(HEARS Pname2p(ound) ters2iound
(USES Asct2yound - -)
HAS. . ;

This statement is a parameterized statement. The sters is a predicate defining permis-
sible bindings of the variables in the list bound. It means that those processors in the set
Psetyouna (which is a set-valued expression) are aggregated (i.e., identified to form a single
processor named Nomey,ung) for each binding of the variables in bound that is permitted
by the predicates in sters. It is explicitly permitted that the set-valued expression can

include enumerated elements and explicit setformers.

The HAS, HEARS and USES elements are analogous to those of a PROCESSORS
declaration (see above), although in an AGGREGATION type there can be more than
one HAS clause. HEARS clauses are associated with specific HAS clauses.

When the user provides such assistance, searching a potentially enormous set of possible
interfamily aggregations is avoided. TRANSCONS'’s abilities are used to check the validity

of the user-proposed aggregation.
The following consistency checking is performed on AGGREGATION declarations:

(i) formally specified conditions:

s g e ane. i s o i G IME U TS A R

15

¢ Pset is disjoint for all distinct settings of bound and for all settings of the respective
bounds for two AGGREGATION declarations.

e Name((specific bound)) HAS (array element) iff 3P(F) € Pyet((specific bound))

that HAS (array element).

if Prame2 = Name, then -Zj_..:j
Vbound s.t. iters, bound2 = F(bound), bound # bound2 : Sl
apbs € PSETbound’ Pb4 € Retbonndz : -.t"

P;s HEARS PF,((USES A) . " q

(meaning that the HEARS clauses of the AGGREGATION declaration are those L

induced by the underlying processors);

(ii) informally specified conditions:

e The order of total amount of computation done by processors underlying a given

node does not exceed the length of the longest chain.

e It is not true that A HEARS B and BHEARS A for the same USES datum.

'0 (But violation of this condition is likely to imply violation of others)

It is important to note that a user’s aggregation declarations are indistinguishable (to

the system) from automatically inserted ones.

- 16
X
Chapter 4

Trees, Closures and Divide & Conquer
or, LAMBDA: The Ultimate Transceiver

4.1 Motivation

Suppose information must flow from processor B to processor A, but there is a concep-
tual advantage to viewing the problem as if information were fiowing the other way. We
have two motivating situations in which this is the case. One is the handshake problem,
in which an intermediate processor in a pipelined chain of processors must be able to de-
clare it readiness to handle another datum after it has processed a first. The second is
problems requiring tree-structured collections of interconnected processors. We would like

to use divide & conquer (D&C) to synthesize these trees, but that technique is difficult to

apply if data conceptually flow both up and down the tree. It becomes easier if the flow
is conceptually one way. We claim that D&C is a powerful synthesis technique that can
produce a large class of tree structured architectures if problems can be rephrased in terms

of one-way data flow.

We want to bring about a structure in which information flowing from a processor A to

another processor B tells B what to do with other information computed in B but needed

* With apologies to Guy Steele [Ste77]

3

T T eR

v - -

+ Tam

717

by A. We then want to restrict our synthesis task to reasoning about, computing and
sending the datum from A to B. We need a new type of datum, the closure. Processor A
sends processor B a closure, and B can later use it to cause data to be sent back to A and
to be used properly. We explore a series of requirements that must be met for D&C to
be used to synthesize tree structures. We show that if these requirements are met we get
efficient tree parallel structures. We then describe closures, including some technical issues
that make plausible that they are implementable in a reasonable computation model. This
allows us to show that the D&C requirements are not restrictive, provided we allow closures,
by exhibiting a constructive proof that there is a structure that meets our requirements
equivalent to any member of a broad class of structures that do not. We end this Chapter

by exhibiting the syntax we use to describe trees and some formal axioms about them.

4.2 The Divide & Conquer Paradigm and Tree Synthesis

D&C is a widely used technique for the synthesis of single-processor programs, and one
feels that it should be a good technique for the synthesis of tree-shaped parallel structures.

Trouble often arises, however, when we try to use D&C for this purpose.

Consider what the D&C technique actually is. “To solve a ‘large’ problem instance,
break it into pieces, solve the problem for each of the pieces, and combine the solutions”.
This is a technique for generating O(n) and O(nlogn) time, single processor solutions to

a wide variety of problems. See, for example, [Smi83], [Knu69] and [AHUT4).

Intuition would lead us to believe that D&C is useful for synthesizing tree-structured
parallel structures, because the structure of a solution closely matches the structure of the

desired set of processors. Three classes of problems arise, however:

G 8ot et
¥ v, * . _»
T Wy
J < ey d

T8

e rootlock: When we try to combine solutions for subproblems, the amount of in-
formation traveling either from one subproblem to another or from the subproblems
to the combination operator, or the amount of work necessary to combine, may be
asymptotically large in the problem size. A naively synthesized parallel structure
would have to perform all of this work in one processor, namely a “root® processor
that has responsibility for combining partial solutions into a solution to the whole

problem.

e sequentiality: In a variant of D&C, one solves one of the subproblems first, and
uses some function of the solution as a parameter to the process that takes place
elsewhere. It is clear that in this case no problem element can enter the computation

until all previous elements have been used. There is no concurrency.

e bidirectionality: Information might have to flow both up and down the tree to
obtain a solution. This situation can make formal description of a combination
operator for D&C hard. It might appear that this condition is intrinsic to D&C,
but that is not the case. The data could already be distributed among an array of
processors (or available to be so distributed) and the division step can manipulate

indices only.

It is possible to have bidirectionality without sequentiality, but not vice versa. Rootlock

is independent of the other two situations.

These three properties of D&C solutions to specifications are impediments to easy

synthesis of tree-structured parallel structures for these specifications.

A specification, three of whose natural D&C solutions have one of these features each,
is Prefix Summation. In this specification, we have a one dimensional vector A of length

n, and we want to create a vector A such that V1 < ¢ < nfa; = 3°,¢;<; 8;]. In what follows

LR AL T W NI A d 2 - P e d)

79

we use the words “left” and “right” as if the array were arranged in a row with a, leftmost

and a,, rightmost.

One solution is “to perform prefix summation on a non-trivial vector, divide it into two
halves, perform prefix summation on each half, and add the rightmost element of the left

result to each element of the right result”. This solution has bidirectionality.

A second solution is to first define “augmented prefix summation with augend 2” as
Vi<i<nfg=z+ T1<j<i 8j]- We then say that to perform augmented prefix summation
with augend z on a non-trivial vector a.y, divide it into two halves a;., and ay41.,, per-
form augmented prefix summation with z on the left half, and perform augmented prefix

summation with z + a, on the right half. This is intrinsically sequential.

A third solution is similar to the first, except that the result vector is carried up the
tree as the value of the D&C step rather than having, as the goal, to develop the new
values at the leaves. This has rootlock, i.e., it is an O(n) solution when implemented on

a tree-structured multiprocessor system in a natural manner as it requires funnelling the

entire result vector through the root.

In the remainder of this Section we formalize the problems described above. We also

show that if a D&C formulation has none of these problems then there exist fast parallel

structures that are functionally equivalent. We then exhibit the syntactic structures we use
to describe trees. We then describe the closure concept and we argue that use of closures
makes the imposition of our requirements much less restrictive than otherwise by showing
that a broad class of structures not meeting them can be syntactically transformed into
ones that do. Finally we show that use of these closures causes no loss of computation

speed (within a constant factor).

In the following, we will describe programs generically using schemata, in the usual

sense. A scheme is a program fragment in which some operators are merely given names

................................
...

..................

rather than being described. "If all of the names are given an interpretation a scheme
becomes a program or a scheme instance or an instance of the scheme. Below we define

sequentiality and bidirectionality and a notion, P-combination, or a combination operator

>
-
2
2

3

%

that makes the scheme suitable for an implementation in which solutions to the subprob-
lems are developed in parallel in separate processors, delivered to a third processor, and

combined by that processor.

In the schema that follow, upper case letters with subscripts and superscripts are
parametrized functions of appropriate arity. The subscripts and superscripts are inte-
gers representing a range of elements from the problem instance, and the actual problem
represented by a function in this notation depends on the values of the range parameters

and on the values from the problem instance in that range.

Definition 4.1 A specification is P-combinational ¢f it is an instance of this scheme:
wi, fi=u
W=
G(V*,V¥,1), otherwise

A specification is sequential ¢f it is not P-combinational and it is an instance of one

of these schemata:

Wb i=uy
V=
G(V*, Hg4a(V")), otherwise
or
’ Wh Hl=u
V'“ _
- G(H,"(!:‘+1)’V:+l): otherwise

A specification is bidirectional if it is not P-combinational or sequential and it s an

instance of one of these schemata:

Wg, ifil=u
V=
® G(Vl“’ H:+l (Vlu’ :-H))’ otherwise
or
®
Wb ifl=u
V=
G(HMVi41, V"), Vi), otherwise
L
The important point of these definitions is that the result of the recursion for one of
the parts of the problem after the division step is used as an argument to the function that
¢ .
computes the other part of the result (H}). The treatment of half of the problem depends
on the solution of the other half.
®
There are some lemmas to prove before the main results of this Chapter. In what
follows, we will use T'((a value)) or T'({(a function)) to denote the time required for an
optimal parallel structure to compute the value or the function. T'((a processor}) is the time
@

for that processor to generate its result (where the meaning is obvious). In all cases where
we use this notation, it will be obvious how the evaluation is to take place. We also assume

that there exists a monotonically increasing function F such that T(G}') < F(u -+ 1).

Lemma 4.1 If we have a D& C scheme instance of the following:

{Wh ifl=u
V=

- G(V,V4,), otherwise

then T(V;*) < max(P(V; (%), 7V, 1y) + O(T(G)).

S

R I I S A IR P
P SN R0 SUPLNT AL S S E 2

CIR g I
AN
A
0 (s
Pt X o

] r
P AL A0

o

{
)
i

r

L4
)
"y

]
&
oh
l"

Y,

» el

A
! |
LA _’-

o1

N 82
X
o Proof: By the definition of T'(...), there exist two parallel structures, one that computes
< V,w'"")/ % in T(V,w“')/ 21) and one that computes Vitrurnya 0 T(Viiusnym)-
' Let the proceasor that develops V,KH")/ 2l be called P, and that which develops

Vﬁ, +ut1)/7] be called P,. Connect a new processor to each of P, and P,, and call it
P.

P, and P, develop their results in T(V,'-(H'")/ zj) an T(V((,,y41)/27)> Tespectively. The
amount of time required to communicate both of these results is

o (W] + Vitwrnyml)

9 <O(F([(u—1+1)/2])) (by monotonicity of F.)

This requires the observation that the time required to develop a result is at least

proportional to the result’s length.

Once the results are both delivered to P, it computes its result in T(G), making the

total time for the computation

max (T(Vz “‘*"’/’J),T(Vr'it +ut1)/2])) (develop partials)
. +O(F([(u-1+1)/2])) (by above observation)
' +O(F(u—-1+1)) (by hypothesis)
o

and the two last bounds coalesce by the fact that F' is monotonically increasing. g

We can now prove that the computation of the closure in the root node is fast:

PRI
7
a_A T

AR
P X

¥ ¥ T
3,
<’

. Y
.
t"f'

.\
A PSR

.
vy

et Lt et .
AP L PN 2PN KPR P S WY W) p3

83

Theorem 4.2 Suppose a problem fits a D& C scheme with P-combination. That ss, that
the computation of the result in question for the substring of the problem ranging from | to

u s

W;, ifil=u
V=
G(Vi*,Vi41), otherwise

and T(G) (the time to compute G) 18 < O(F(u — [+ 1)), where F s a nondecreasing

Junction. Then T(V*) = O(F(n)logn).

Proof: Note that the form of the definition of V| precludes sequentiality and bidi-
rectionality. We are using value semantics for the call to G. T(V{) = T(V), so T(V)
is bounded. Say T(G) < coF(u — 1+ 1). We prove by induction that T(V}¥) <

coF(u—1+1)lg(u —1+1)+ T(V), where cp is the constant of T'(V}*) = O(F(n)logn).
The base case is immediate.

If I # u then

T(V*) = max (T(Vl l(""")/zj),T(V['fHu +1) /fl)) + T(G) (definition, nonsequentiality)

<coF((u—-1+1)/2)lg((u—-1+1)/2) + T(V)+ T(G) (by induction)
<coF(u—1+1)1g(u—-1+1)+T(V) (monotonic F)

This is O(F(u — I + 1)log(u — I + 1)), which is O(F(n)logn) at T(V}*). ¢

The proof requires that sequentiality and bidirectionality not be present. If we have
sequentiality then T(V}*) = max (T(V,L(H'")/ 21),T(V[‘f, +ut1) /2])> + T(G) does not hold
because the computation of the V’s can not proceed in parallel. If bidirectionality is present
then we must have sequentiality. The proof goes through even if rootlock is present, but

in such a case the theorem produces a weak result, since F(n) would be large.

[AR S AL S S

-

_ RD-R164 022 KMOWLEDGE-BASED TRANSFORMATIONAL SYNTHESIS OF EFFXCIEIT 2/

STRUCTURES FOR CO.. (WD KESTREL INST PALO ALTO Ci
G 30 SEP 85 KES. U 5 AFOSR- TR-85-1259
UNCLASSIFIED F49620-85-C-001

Wl Yy

A Ty

. .._‘.._..._'-_'._._ .
LR A SO TRT LT S |

2

fl2

——

|

==
N
==
s
u,

N
N

FTEEER
EEE

n
(]

rrr
F
rr

— =
i> [l

ll=
5

MICROCOPY RESOLUTION TEST CHART
LeTIARAL QiIRC Al OF CTANDARDS 1967 A

e

SN [

AT

We must now briefly describe closures, which are the objects we intend to build using
D&C. After we describe them, we show that use of closures does not produce slow parallel

structures.

4.3 Description of Closures

Our solution to the problem of D&C formulations that do not meet our conditions of
lacking bidirectionality, sequentiality and rootlock is based on the idea of passing a form
of data called a closure up the tree, and therefore computing *big” closures (ones that
perform a service for a large interval in the original problem vector) from “small” ones.
A closure is a procedure or function definition together with an environment, i.e., a set
of name/value pairs. When a closure is invoked, the procedure or function is invoked in
the included environment as augmented by parameter binding. When processor A passes

processor B a closure, A is said to be the closure’s host and B the recipient.

A closure consists of a procedure, and bindings for some of the procedure’s free variables.
The procedure, in turn, consists of a piece of program and a binding list. The concept was
first described in Church’s A-calculus [Chu81]. Closures are valued for their expressive
power even on single-processor algorithms. They are elements primarily of dialects of LISP.
See, for example, [Ste77], [Moo82], [XERS3]. A similar concept, actors, is also found in
other languages (see, for example, PLASMA ip [SmH75).) Actors are also described as a
raethod of expressing interprocessor communications concepts [AHe77]. We here explore

a case in which our similar concepts aids a parallel structure computerized synthesis task.

The notation AX[F(X,Y)] denotes an abstraction of a function of n (n > 0) parameters
from a function of n + m (m > 0) parameters. X represents n bound variables; these
variables are bound to the values of the n actual parameters when the function is called.
Y represents m free variables, and the values used for them when F(X,Y) is evaluated are

determined by some of the context in which the abstracted function is evaluated.

e N S T R s N Ty

85

We will use “A%(F(X,Y, Z)]”, where again X, Y and Z denote three groups of (respec-
tively) n, m, and o variables, to denote a closure generating form (CGF). This is a piece
of program text that, when evaluated, makes a closure that can be applied to as many
parameters as there are elements of the X group. X is the group of bound variables and Y
is the group of variables whose current values will be stored in the closure. Z is the group

of free variables whose values at application time are to be used.

When a closure is applied, the X-values from the actual parameters in the application,
the Y-values available at closure creation time and the Z-values at application time will be
used. The Y group is constituted from the closed variables. We will use AL~V |F(X,Y, 2)],
which would be created by the above CGF if Y =V at the time the CGF is evaluated, to

denote the closure in which y; = vy,y2 = v2,...,Ym = Vm.

An example of a CGF, taken from the synthesis of a parallel prefix summation unit, is
ANV=.CuCr((Cy(2) || Cr(z + V1))]- The semantics of this is that when the form is evaluated
its value is a closure, which is a functional object of one argument. The values of V;, V,,
Ci, and C, at the time the CGF is evaluated are “frozen” into the closure, and when that
is applied the values are used. We get the closure AY1=2V-=3.Ci=/.Cr=0((C)(2) || C\(z + V1))]
when we evaluate the CGF in an environment in which V; = a4, V, =b,C; = f,and C, = g.
We see that C; and C, are, themselves, closures. The CGF calls for the creation of a closure
that, when applied, binds four variables (one of which, V;, does not appear in the form) to
four saved values and z to the argument. It then applies z to one of the saved values and

z 4+ V; to the other simultaneously.

TRANSCONS will only generate a restricted subset of the possible closure generating
forms. They will be of the form C = /\‘z'"v"w [G(Z,W,V,,W)]. Vi (resp. V,) are the values,
including closures which we will call i.e., Cj (resp. C,), received from left (resp. right) chil-
dren. W includes locally available values which may have been computed during previous

upward communication phases, and G is of the form G(V;,V;}(Z) = (Ci(Gi(Z, Vi, V;,W)) ||

.............

it A W
A
P

1, &
. 4y
':'"' h i

g

%
L-’

]
13
"

-
1
|
1

-~

»

AW,
LI P
s

........

oy e
Ba Aoch e it biing Ml 20 N 20 aA i R i

86

C.(GiVi, Ve || Gr(Z2,V1,V;,W)))). (Here || is concurrent application, and G; and G, can

impose side effects on W.)

- vy v ww T e
i . NCENTARMENO ! PN
.
1

We want to show that if the closure generating form has this property, i.e., that if a
generated closure can be applied by doing a small amount of computation and applying
other similar closures in turn, then application of the generated closure is fast. For conve-
nience we will call this type of closure generating form a tas! applicable form (by analogy

with the term “tail recursion”).

Theorem 4.3 Suppose & closure 18 computed in the root of a balanced binary tree. That
closure can contain closures whose Aosts are its children. Those closures, in turn, can
contain closures whose hosts are their children, etc. The leaves of the tree are closure Rosts
whose closures can be applied in time O(1). Each leaf has a distinct indez such that the
set of indices of leaves is exactly a range of integers. The set of indices of every subtree’s
leaves is also a range of integers and s sdentified by the endpoints of that range, and the
node heading the subtree whose leaves’ indices are | through u is called n}'. Suppose all
closures computed within the tree are tail applicable. If, in n}', max(T'(G),T(Gi),T(G,)) = N
O(F(l — u+ 1)), then T(CT) = O(F(n)logn). - SR

Proof: Refer to max(T(G),T(G;), T(G,)) in n* as T(n}’). T(n!) = O(1), so call it k. Say
T(G) < coF(u—1+1). We prove by induction that T(n}) < coF(u—-1+1)lg(u—1+1)+k,

where cg is the constant of T'(n]) = O(F(n) logn). .

The base case is immediate. :
If | # u then S
T(n}) = max (T(n,l(”")/ 2J),T(n'r‘(, +ut1))2))) + T(G)(definition, nonsequentiality, tree balance)
<coF((u-1+41)/2)1g((u—1+1)/2) + k+T(G) (by induction) R
ScoF(u—-Il+1)gu-14+1)+k (monotonic F) - -j'.?:
&
R

L

This is O(F(u — I + 1) log(u — I + 1)), which is O(F(n)logn) at T(n?). 3

Note the similarity between this proof and that of Theorem 4.2

Our technique will be to reformulate the problem from that of creating some new array
that is a function of an existing array to that of creating a closure which, when invoked, will
perform a given action on the leaves of a tree. This action is the creation of an element of
the new array in each leaf. The original specification is transformed into a specification that
declares the existence of a closure that, when invoked, will satisfy the original specification,
followed by a specification that the new closure be invoked. In the synthesis process, the
specification that a closure with certain properties exists is transformed into code that
creates such a closure. This code has, as input, closures having the desired property in

relation to subproblems of the problem.

Consider the process of combining two closures. The result will be a closure. In D&C
with closures, it is normal to combine a pair of vectors, each containing computed values
and closures, into a new vector with similar texture. We will consider the computation of
a closure for the output vector, and the use of the resulting closures. We give informal
reasoning to justify our assertion that closure generation is an effective technique for pro-
ducing tree structures by D&C; we then prove formal versions of the informal assertions

we make.

The combination operator can operate on values and closures from the input vectors to
produce a new closure. The code before the closure generating form (CGF) may compute
values that will be included in the closure, and the CGF itself will create an environment
in which these values, as well as other values and some closures that were part of the
input vectors, are saved. The combine operator is neither bidirectional nor sequential if we
have reformulated the problem properly, and it avoids rootlock if pairwise combination of

results from vectors produces new results not much larger than those that were combined,

in an amount of time not much longer than the amount of time used to develop each

of the old results. For our purposes we would want these amounts to increase at most

polylogarythmically in the length of the string incorporated in the resuits.

When the computation uses the computed closures, each host will have computed the
closure it hosts by computing and storing some values, storing received closures from its
children, and arranging that when the closure is applied, formal parameters (if any) be
bound to actual parameters, a computation be performed to obtain actual parameters for
its closures’ incorporated closures, and such closures, in turn, be applied. The computations
of a closure must meet similar conditions to those met by the combination process and
described above. It should be noted, however, that the incorporated closures can be applied
in parallel and that there is no need for the calling procedure to await completion of any

applications.

We have exchanged the difficulty of reasoning about two-way data flow with the need
to reason about closures. We feel that this is a good bargain because reasoning about
closures only requires the addition of new axioms to a theorem prover’s data base, while
two-way data flow requires changes in the way we look at D&C. In Section 4.2 we showed
that this change of view costs little speed, and in Section 4.5 we show that no expressive

power is lost.

We conjecture that this technique can bring most O(log n) and O(log? n) tree parallel
structures within the reach of a D& C-based synthesis method. We support this conjecture
by several syntheses in the next Chapter . Since a tree-structured processor is inexpensive
to manufacture compared to more highly interconnected machines and seems to be reason-
ably powerful, we feel that automatic tools that make use of this family of topologies easier

would be an important contribution to the technology of synthesis of parallel structures.

In summary, the technique of computing closures from component closures is a tech-
nique which, together with D&C, provides the ability to synthesize a wide variety of tree

structures with few of the technical problems that other synthesis methods might encounter

(89

concerning reasoning about path lengths or the cardinality of sets of nodes. It allows us
Py to do this and to still produce the O(log n) (or O(log' n) for small ¢} parallel structures we

expect from trees. .

4.4 Transmission of Closures

To transmit a closure from one processor to another, it is not necessary to transmit
the entire program and all of the environment values, provided that the host processor
stands willing and able to perform the work. All that is necessary is that the transmitting
processor send a token of some sort. The receiving processor can save the token and later

use the closure by sending back the arguments, the token, and control information.
(*

When this is done, the processor sending the closure (and willing to do the work) is

called the closure’s host, and the receiving processor (which has a license to use the closure)

iO is called the recipient.

We say that a closure is live if there is a possibility that it will be invoked at a given

: time. A closure becomes live when it is sent and remains live until the recipient reaches a .::i:":}a
@ '
point in its procedure past which it can not invoke the closure. We will have more to say

about issues concerning the liveness of closures during the remainder of this Section. - ~j.'_-".'~:

:I Closures can be efficiently implemented in a reasonable machine model. Internally,

a closure can be implemented as a block of memory locations containing a “pointer” to

the program fragment and a list of all closed variables and the corresponding values. A
) pointer to the block could be used as the token. When a closure is applied, the recipient ;

can send the host a copy of the token, together with whatever other information is needed

(primarily the argument(s)). The host can, using the received token, invoke the proper RN

| fragment together with the proper environment including the arguments bound to the L

parameters, by using the information contained in the closure and message.

T R R L S T
ot et At A ., - - -
lod w e e e e L Lte Lt e e

‘et T - " e - . P T Y L
g7 IV R S R, S SIS, T S S St I g e S0 TR S e i G

e ' - e TG I B it T
-_-\\\-,__‘,‘I_'..-.U.‘h---.‘n‘-‘~‘-"" -

A piece of program text (in the host processor) that creates a closure is called a closure
generating form or CGF, and a piece of text (in the receiving processor) that invokes one
is called a closure invoking form or CIF. The class of closures generated by one CGF is
a family. An instance of the family of closures generated by a specific CGF named €
will be called a C snstance or an snstance from C. Merhbers of a family differ only in the

environments, since the code will be the same.

The required data transmission can be reduced in cases where it is possible to infer

i various things about the use of a closure. For example, if it is known that only one
: instance from a given CGF is live at a time, the host needs not send the token, but only
the name of the CGF. That name would not vary and can be “assembled into™ the CIF.
This can be true even if there can be several CGF instances for a given CGF, provided
that the host knows in what order the recipient will use the closures it receives. If there is
only one CGF in a processor, and only one instance of the closures that it generates can
i be live at one time, the token can vanish; the fact that the “receiving” processor wants
to apply any closure is information enough! The closure has been completely swallowed

up; information only travels from the recipient to the host, even though the synthesis was

_‘ performed as if data flowed only in the other direction.

A further simpliﬁcaﬁon, of interest for the problem of synthesizing parallel structures -—'—!
that will later be reduced to VLSI, is available. Suppose the following conditions are met:
Applying a closure does not include changing state in the host processor. (In this case,

for the application to be useful it must cause other applications in the host.) Assume also

. that there is only one live closure in & given family at any time. Assume further that the
values used in that closure to call other closures hosted elsewhere can be computed, using :
;::'-: only values available to the host, by means of combinatorial logic (the code fragment is N vjrf.“
] e
- loop-free and consists only of operators chosen from a library of integrateable operators).

-

Dafala SR A el S I A S ANLASC AT AA T W S A s

91

In this case it is possible to perform the closure using only “combinatorial logic” in the
host processor. Specifically, no register need be provided to hold the closure’s parameter
in the host processor. Instead, logic must be provided to map a signal representing an
application of the closure to signal(s) representing application(s) of the subsequently called
closure(s). Registers are provided to hold all of the values of the closure. An example taken
from the Parallel Prefix structure (whose derivation sketch is in the next Chapter) will

make this clear.

We have the code fragment to synthesize a closure, namely ASC7*1[Ci(z) || Cr(vi+2)) .
Here we will observe that there is only one outstanding instance of the closure at any
time, because the variable in which the closure is stored in the recipient is not indexed.
The closure does nothing more than apply other closures to a function of its argument.
Furthermore, the computation performed on the argument is “easy” (and can be directly

implemented in VLSI). We can therefore use the circuit of Figure 4.1:

2 a®a®aa®ar

4 4
s « T 7T _
4 > < 4 <
) . . . BRI
partial sums vhence they are 1nternal nodes and the total
acsend sent 1o the right duplicate is built in
teft haif sums descendants values from each leal

accumutate in
interndl nodes
registers

above

Figure 4.1: Simpiijed Paralle! Prefix Internal Node

1For clarity, the exposition assumes that the prefix operation is addition, and that an addition module
exists in our VLSI module library.

R R I ST I
ataa'a®a"

. A
a‘alal

RN
m et

ATt e e e e e T T T e T T T e e e e T e e
P W TN SR W W VAL WA WL W VI W WAL W RPN P LBRr R LIRY P Wy

-’ . "o .

B . .
. P R
. DAL

soa, s, k0,
e’

e
0N e i ot aN /e et g it ek dniua i At at e i 41 a it AR R TYTUITETATAT A STt
A ") gt

92

4.5 Arguments for the Completeness of Closures

B FAEER

In this Section we formalize the notions we use to argue that restricting communication
to the upward direction in trees is a harmless restriction, not preventing the synthesis of
tree parallel structures to meet any specification that could have been met absent this
restriction, provided only that we also allow upward communication closures and that we

not consider the application of a closure that was communicated upward to be a downward

i communication.
We need a formal definition of a tree parallel structure, and in order to do that we need
i to define some preliminary concepts.

Definition 4.2 We define a binary tree in the ysual manner. A tree esther has a node
called a 1eat or a node called a Toot connected to the roots of two subtrees by edges
which for these purposes we call wires. The root of a subtree is called an interior node.

The connection from a root to one of sta subtrees is called the left connection, and that

to the other subtree is called the right connection. A root is called the parent of the two
o subtree roots it is connected to, and the connection from a node to sts parent ig called the
parent connection.

J

&

ot Note that each wire is known as the parent connection at one end and either the left or
n

] the right connection at the other. This defines an ordinary binary tree. We further state

that there is an ordering of the leaves.

—— -v--_
AARN DO
L. 1 ..
.
.

i '-'-'-'-."'-‘.'.'."-'-' - . E T T
LS N S R O R I S0t Jhdl Sot sl S S0~ Sr.J

....................... v

93

Definition 4.3 The set of ancestors of a node is recursively defined as the union of the
node’s parent (if any) and the parent’s ancestors. The set of descendants of a node is
recursively defined as the union of the node’s left child, right child and thesr descendants.
The set of 1ett descendants (resp. right descendants) of a node ss the left resp. right
node together with its descendants. A tree’s leaves are ordered if the leaves are indezed by
a totally ordered set and sf the index of leaf A ts less than that of leaf B iff there exists a

node of which A is a left descendant and B 18 a right descendant.

So far we have only described standard binary tree structures and names of intercon-
nections. We would also like to describe a computation structure, which is a structure
together with a set of computations and communications attached to each node. Each

node has an associated program.

For our purposes, we will require trees to be homogeneous, meaning that one program
will be run in all of the internal nodes, and another single program, with the leaf index as
a parameter, will be run in all leaf nodes. Programs may do reasonable computations and
may send and receive on the attached wires. We also require, however, that the structure
be singly duffered, meaning that when a program tries to receive information over a given
wire, it will do nothing else until the program of the node at the other end of the wire tries
to send, and when a program tries to send on a wire twice without the other program having
tried to receive, the sending program will do nothing else until the other program tries to
receive. Programs may perform closure application with no regard to these restrictions,
but the transmission of the closures must have obeyed these conditions. Programs may
test whether a line has, or can accept, data and therefore avoid waiting if it can’t. The
situation where neither program at either end of the wire can send or receive is possible,

but only for a bounded amount of time (assuming correct, terminating programming).

Now we can define the primary parallel structure of this portion of TRANSCONS.

CAEGEC AU AL Wl AN A sl A A

94

Definition 4.4 A tree parallel structure (tree structure) is a collection of processors
together with programs that is a tree with numbered leaves, is Aomogeneoss, and s singly

buffered.

We need a definition of a tree parallel structure with upward communication only:

¥ Definition 4.5 An upward tree parallel structure is a tree parallel structure sn O

which no communication s specified from any parent to any child. Closure application

ts not regarded as communication in this context.

This is a formal definition of the objects described by TREES declarations, and in the
rest of this Section we will explore some of the implications of this definition. In particular,

we are interested in an assertion that limiting communication to an upwards direction, but

allowing closures, gives the same expressive power as allowing communication in both

directions but not using closures. *. ¢

First we need a lemma.

Lemma 4.4 Suppose we have two processors A and B with two wires abl and ab2 from SERRER
A to B. These wires obey the “singly buffered” condition above. It is posaible to simulate
those two wires with a gingle wire with no more than & constant factor speed loss.

hd 4

Proof: The wire is driven by commands of the form read(abi, z) which accepts infor-

mation from the wire abf and stores it in z while making abf no longer have information
to offer; send(abs, z), where s = 1 or 2 which waits for the wire to be receptive and then * - - ‘
puts the contents of r on the wire which makes it unreceptive but gives it data that can
be read; readable(ab) which returns true iff data are present (and can be read); and
sendable(abs) which returns true if data can be sent on the wire. It is possible to replace

forms according to the following table:

e X . ..) . . R o L. Bt SR IRACIRT I
. . S . - B Sl . . R T T R e N UL P L I L R I LT T Ir ST IS IR
FERIEIN P P B L T T TR T SRR ST T T S e s - ~
et LS e T T T L L SR SR S N N P LI AT D . O »
e Attt Al a

R ~ .

read(abs,z) becomes (in B)

while undefined(vabi) do
check()

z + vabl

vabl — undefined

readable(abi) becomes

defined(vabs)

send(abt, z) becomes (in A)

while defined(wabs) do
check()

wabi — z

sendable(abi) becomes

undefined(wabr)

Insert “check()” sufficiently often in the procedure running in both 4 and B to guar-
antee execution periodically, with a period short compared to the time it takes to com-
municate between processors. The check() call in A checks whether wabl and wab2 are
defined. If either is defined, say vabl, check() sends the pair (1,wabl) over the wire and
does wabl — undefined. The check call in B is a finite state machine. In its initial state,
it checks whether there is anything to read on the wire; if there is, it reads it. This should
be a number ¢; the FSM enters a state S;. If check() is in S;, then it will check whether
vabi is empty; if and only if 8o, it will read the next object from the wire and enter the

initial state.

Enumeration of the sequences of actions on the two wires, actual and simulated, serve

to establish correctness. That there is only a constant-factor slowdown can be derived

LT N
L Tl e

C

o .

e e w s

e e T

. . e

S e M

2 X
RN
.

2

‘rll\."!."'r.

+

1]
-

oy
i

o

from the fact that check() does a constant amount of work unless it waits, that it only
waits if (and as long as) the simulated machine would have waited, and that it replace each

communication with a constant number (two) of communications. g

Now we can prove a fundamental theorem about unidirectional communication in a

tree.

Theorem 4.5 Suppose we have a tree parallel structure T without transmission of closures.
Then it is possible to perform the same computation that T performs on an spward tree

parallel structure.

Proof: Simulate a second wire from the left (resp. right) child to its parent per the

previous theorem. Call that wire C; (resp. C,) where it impinges on the parent and C,

where it impinges on the child. In what follows we describe the treatment for left children;
the treatment for right children is analogous. The parent may contain send(left,z) and

sendable(left); the child may contain read(parent,z) and readable(parent). Each of

st ARSI NG
LN b T

these is replaced by new text as follows:

send(left, z) becomes (in the parent)
read(C;,C)
C(z)

sendable(left) becomes

readable(C))

read(parent, z) becomes (in the child)

while undefined(v) do
check()
v

v « undefined

...........

F':‘;'.‘T'."'_':-‘_'F»‘,-"_-")\-‘v‘_.\..ﬁ-.‘_.i‘.‘ KAC ATl At Sh S A A e i A S A S i S~ -t A e S R i S e Apia il el o ee B 2 G B RAL et ~war o n Sl S e ‘vw.-\‘:.‘:f'j
_~ Ve
%S
. 97 D)
(N g,
L ¥]
NS
send(Cp, AY[v — 2]) e
s
o
9 .
readable(parent) becomes :'"
defined(v) ;‘:"
- -“‘.. .
° check() is similar to that of the previous theorem. Additionally, the fragment P
b s::“
Gl
send(Cp, A}[v « 2]) o
.
must be prepended to the child’s program and e
read(C;,C)
C C(z)
appended to the parent’s.
¢ That this causes correct information to be seen in the recipient is evident from the
observation that each closure is used to send exactly one value to the recipient, exactly
that value is used as an argument to the closure as was previously being sent, and it is
IO only used once (and immediately rendered undefined). That this causes the programs to
“hang” at exactly the right times can be easily seen from the fact that there is a closure
in (say) C) exactly when the recipient would have been receptive, and there is a value in v
. exactly when there would have been a value available. g
The key point to note is that all downward communication is expressed as closure -
application. This suggests that it will be possible to express a problem that apparently
.
can not be solved by D&C as the corresponding problem of creating, in the root, a closure _
that has a desired result when applied. 5
.\ We have therefore shown that we do not surrender any expressive power when we limit ; -
tree declarations to upward communication. ’.:' s
1}

. N RN .
P AP AT e et et et T et et e e Tt T T T e e T T e T T e e e T T T T e e e e e e e e
DRF ISP S IS STV LS SAN IS S I I SRS O R PV A W VAV A T T T, W D VA Y TS TRV I T TR VR T, 98, D YR VT VA

.......

r T T W L N e S R TUOTS T TS e TR
A e e TR v N - s ~

4.6 Trees of Processors in TRANSCONS

Trees of processors can be used to efficiently implement many specifications because the
tree is that topology with fixed arity and lowest connectivity that allows a distinguished
node to have contact with all other nodes in O(logn) steps, which is clearly the best

possible. TRANSCONS ([Kin83]) therefore has facilities for specifying, synthesizing and

manipulating trees.

The description of a tree is specified in TREE declarations, described below. Before
describing the syntax of a TREE declaration, we will describe some of the semantics we

intend for it.

The trees we intend to address are used to shorten the longest path lengths within
the collection of processors, and to balance the workload of a computation. There are
problems amenable to a tree solution, portions of which are in some sense more important
than others (for example Optimal Binary Search Trees), but in these problems there must
be a specification of relative importance that has a size comparable to the size of a good
specification of the solution. We will therefore model solutions to problems of this sort
by building separate trees and AGGREGATEing them. Each tree described in a single
locution will be balanced.

Several principles govern the design of the tree system of TRANSCONS.

o All trees are as balanced as possible. (We use binary trees; extensions to trees of
higher arity introduce no new principles.) No flezibility in terms of shape is assumed,

nor is any way provided for ezpressing shapeo.

o A tree specification must include a size, which can be any integer greater than one.

i SRS

[
e

P R AR e e s S e el e T e T

LIPS O R i, R, i, 0, i (RSB Yl it S B Ne i Sa o An Ty et Aty hatpit pil e e et At Ak e hrariar o)

. 99

e The shapes of two trees of the same size are identical. That is, there is an isomor-
phism =~ between two trees of the same size that maps parents, left children and
right children respectively into parents, left children and right children. There are
“compile-time” constructs in the TRANSCONS language that allow for the specifi-
cation of connections to the node that is ~ to a given node, or AGGREGATION

between corresponding nodes of different trees. One way to achieve this identity of

shape is to have a left-biased tree that is as balanced as possible. In other words,
path lengths from root to leaves differ by at most one and if one such path is longer

than a second the first path must be to the left of the second. Rt

e The nodes of a tree are divided into three groups. They are the root, the internal
$ nodes, and the leaves. The leaves are further distinguished by indices. References .- T
to any of these classes of tree nodes, either to attach procedure, to specify commu-

nication such as HEARS, or to AGGREGATE can be made. Tags are provided

® for a node to refer to a node of another tree that is ~ to it if the two trees are the
same size. This allows nodes in ~-equivalence classes to be AGGREGATED or to
HEAR each other. For this to work, values have to be declared properly. Note that

@ a leaf has to offer instances of values that are HEARJ upward, and the root has to

™

offer values that are HEARd downward.

bod ML aet am a
. Tt el a0
P B T B I
s
.
' e
ot LN
S .
. . .
D e e
. L A A

To support these stipulations we have the TREE data type. A tree is declared and its

components laid out using the type facility of CHI. As an example, we will describe below

——
-

a situation where there are two trees, T and U. Each is of size n. Each internal node of T'

—

passes a value to its children after having multiplied it by a value from the corresponding

internal node of U. Each internal node of U adds values from its two children. The

' procedures at the leaves of T and U, respectively, are described by functions H and G, not

I aes 2 4 Ba oo an e g on o o

interpreted here.

—r———— e ot R et e Thte YRR Vo AL INUL L PR A
T R - D cmbech tn DR C MR DAL R N

-~ 100 .

>

T istype TREE (s) size n o
- root HAS v TALKS leftson (SENDS v) 4 .
“ TALKS rightson (SENDS v) e

HEARS source (USES outside—value)
HEARS U.root (USES u-value)

inter HAS v TALKS leftson (SENDS v)
TALKS rightson (unskipSENDS v)
HEARS parent (USES v)

HEARS U.inter (USES u—value)

: leaf (i) HAS I; HEARS parent (USES v)

U istype TREE SIZE n

root HAS u TALKS T.root (SENDS u)
HEARS leftson (USES v as v.left)

ALY
)

rorT v,
s PR
H PR R

<, AL L NPT R

Y v ¥
PP

HEARS rightson (USES v as v.right) B

inter HAS « = TALKS T.inter (SENDS u as u—value) L
HASv TALKS parent (SENDS v) o' '
HEARS leftson (USES v as v.left) el

HEARS rightson (USES v as v.right)
leaf () HAS v TALKS parent (SENDS v)
HEARS some; (USES 4A;)
(in T.root)
v « outside—value x u—value DO
(in T.inter) ;
v« v X u~value
(In Tleaf;)
I.‘ — H (0)]
(in U.root) r
v« vleft + v.right :
(in U.snter)
v — vleft + v.right

Ue—v g ..,..J,>

(in Uleaf;) R
v — G(4;)

Note the SENDS u AS u—value locution. This causes a value to be known as u in ® '

the Intermediate node but to be known as u—value in the recipient.

This example displays three features of tree structures. The U tree has upward commu- 4 -~

nication and uses v to name links on which information flows from the leaves to the root.

SRpLA SO EARAS

. 101

There is also cross communication using u—value. Finally, there is downward information

® flow in T again using the name v.

In the next Chapter we explore the syntheses of several tree structures in detail.

. - - -) L S et toe T Lt e Tt . N . LY - - A T S NP \\.
P A, T T Tl e NI P AN TR R C O R
AL R LS A e RN ST T R P N S T ey A S A LR . S
PP) I I PP PO PP RIS IR S IR N JE IR A A S N A PSPPI P T AL AT AT T T PRV RV P

ariae e et aiate 1t R piniuts e S pte At S UL N p iR NGRS A >

-
s

PR L AR N |

Chapter 5

| Tree Structures Synthesis Examples and Closure
Removal

In this Chapter, we will consider the broadcast problem, the prefix summation problem,
and a part of one solution to the connected components problem that is amenable to tree

solution.

Our motivation is to display the tree synthesis methods of TRANSCONS in some detail.
We first show the use of D&C to synthesize some tree structures that include closures. We
then exhibit closure removal techniques that convert these into structures that can be

implemented in computation models that do not permit closures.

The division step requires some explanation. Our basic technique is to assert that there

exists a closure whose action is to make true the required first order logic (FOL) predicate,

and then to make the goal to compute this closure and to apply it. The next step is to assert
that there is a solution to the problem, if there is a solution to appropriate subproblems.
The problems are expressed as input/output behavior on vectors, and all problems and
subproblems are concerned with (contiguous) subvectors of the problem instance vector.

Different methods of performing the division step result in different tree structures.

Specifically, we have the hypothesis 3C}’, u'[actlon(CP()) = Vi € {I...«}[P(\)]|AC} =
G(C,‘",C.'.‘. +1)- This isn’t strong enough for us to synthesize a tree structure, because we KAMAEN

have to know more about usable values of u' given ! and u. If we have 3C}Vi< ' <

o ere el ._.._...__",J_;:. e el
P R KA N NF D A iy

At W N AN A (o AR R i A tad A A G SAC AL TE K RS ST SO i A i~ i i A L s B S Sl s SOk ot pes it o e et ae o e

103

ulaction(CP()) = Vi € {I...u}[P(s)]] AC} = G(C},CY,), then we can certainly make a
balanced binary tree (or any other tree structure we choose); our choice of u' is unrestricted

(except that it has to split the range into two nonempty pieces).

Other interesting possibilities include ...[u' = I+ 1 Aaction...or ...[0' =u—-1A
action.. ., both of which would create trees that are as unbalanced as possible (identical
to chains), and 3C¢,uw'{u — ! < 3(u' —) < 2(u — {) A action..., which gives us a tree
structure with logarithmic depth, if the u' can be found at compile time. These cases

provide interesting future research but are beyond the scope of this thesis.

5.1 Broadcast

In the broadcast problem, value(s) known in a central location are distributed to many
locations. The broadcast problem can be described formally as Vi{a] «— F(a;,)] or perhaps
Vj[Vi{a}; — F(ai;,z;)]]. One method of synthesizing solutions to this problem might be to
recognize it as a distinct pattern and carry a synthesis rule that produces a broadcast tree
when supplied an instance of a broadcast problem. Another solution is to produce a chain
of processors as a bucket brigade to distribute the information, and then to successively
split the chain in half. The problem with this solution is that the synthesis process is
iterated a variable number of times. With the new mechanism of closure passing, it is
possible to provide more general rules that handle broadcast ;;oblems as a special case

without multiple reformulations.

\ Consider the application of D&C. We want to produce a closure that, when applied
to z, performs Vi[a] «— F(a;,z)]. We hypothesize that to solve the problem for a whole

subarray, we can solve the problem for each of two pieces of the subarray and combine the

‘ two solutions in some manner. Giving the names fI and fr to the closures for the left and

right halves of the problem, and fw to one for solving the whole problem, we then show that

rad d LR A A AR
- L e s e 2 8 BACRA I Sl ek el SabSatsag Salb tud A Sel S Adh LA RS R AN R
A A At Sl tag Sai i A Ao ik Kad

104

to combine closures fl = Az|Vj € ry[a} «— F(a;,2)]) and fr = Az[Vj € r3[a} « F(a;,z)]]

we have only to create fw = AJi(fi(y) || fr(y)]. We go through the following sequence:

VA, z3A'Vi € [1...n][a} = F(a;,2))]
= 3C(z)[action(C(z)) = VA, z[Vi € [1...n][a] = F(ai, 2)]]] (abstraction)
= 3CH,Vu',l<u' < ulaction(CP(z)) = VA, z[Vi € [...u][a} = F(ai,z)] (division)
A CP(2) = G(CY'(Gi(2)), C41(Gr(2)))]

hypothesis:

The abstraction step is the step of asserting that there is a function whose application
makes true the FOL predicate that is being abstracted. The division step is the step of
ssserting that it is possible to build a closure that solves a large problem, given closures

that solve subproblems (and possibly other data).

In this case it is possible to assert that any u', [< u’ < u, meets the requirements, and
that in this case a balanced binary tree solution to the problem will certainly work because

the division ' = u + ["1—"] will provide one.

Setting G(C1(z),Ca(y)) = Ci(z) || Ci(y) (]| is concurrent evaluation) and Gi(z) =

G,(z) = z will cause the division hypothesis to be true.

It only remains to degcribe the procedure for handling a singleton array. This is the

closure Ai[a! — F(a;,z)].

The computation of the top level closure is O(log n) where n is the size of the problem.
This is clear from the theorems of the previous Chapter and from the obeervation that

T(G) = O(1). (G is creation of a closure enclosing two given closures.) Similarly, the

time consumed by an application of the top closure will be O(log n) from the fact that

max(T(G;),T(G,)) = O(1). (G, and G, are identity operations.)

............................
...........................

PR S e A A o AN SO SOV ST S AL L L Me ghe s set ave aud gre g are RACAE A g G it et i Anh A i st ik Sad e e e e 0

105

5.2 Parallel Prefix Summation

Prefix summation is a mapping of arrays onto arrays of the same size such that the
i** element of the output array is the sum of the first 1 elements of the input array. This
generalizes to other reduction operations; it makes sense to talk about prefix product,
prefix and, etc. The only restriction, shared with other reduction operations, is that the

operation be associative.

Handmade parallel structures that solve the prefix summation problem have appeared
in the literature. See, for example, [LFi80] and the more recent {Fic83]. Below we describe

methods to synthesize such structures.

5.2.1 Overview

To use the closure technique on a given specification, reformulate the problem from
something like VX,...3Y[P(X,Y)] to 3C|VX,.. actionC() = P(X,Y)]. Heuristically,
the problem is reformulated from that of satisfying a specific input/output specification
to that of producing a closure wherein the I/O specification® will be satisfied when it is

applied.

We will need to define “augmented prefix summation with augend 2” as V1 < ¢ <
nla; = z + Tjcj<i aj]. We then say that the task is to deliver, to the root of the tree,
a closure that will perform augmented prefix summation. To create a closure that will
perform augmented prefix summation with augend z on a non-trivial vector, divide it into
two halves, get such a closure from each half together with the grand total of the input
values for that half, and invoke the left half’s closure with z as an augend and the right
half’s with the left half’s sum added to z. We deliver, to each node of the tree, closures

that will perform augmented prefix summation on the vector comprising its leaves, together

IMore precisely, the problem of satisfying the I/O specification that requires no input and produces that
closure.

s A 0 B b he MR AT ACLE S el A Eaith S oaUatoe it e A AICN AR AN
106

with the leaves’ sum. Note that the closure delivered to each node’s parent has to include
the left subtree’s sum, which is available now but won't be later. A more formal description

follows.

Assume that a vector Ay, is divided into Aji..w) and Ajyyy . o) Further assume that
we are trying to compute F(Ay,) which we will denote F;. Further assume that we want
to have some effects, local to the array elements. We would therefore want to compute a

closure, C}, that would have the desired effect.

The generic combination operator for the values is F = G(F;“',F;‘,“,I,u,u') and it
is & synthesis task to derive the properties of G. Similarly, C} = G(C,‘",C,‘,‘.H,l, u,u').
If the closure has an argument, the situation is slightly more complex; we have C¥(z) =
G(C¥ (Gi(z, FY, e, o)), C8. (G2, B, v+ b4, ¢'),l,4,u')) where the F vec-
tors are the values available to (and incorporated in) CP. This general schema need only
be used with specific combiners (i.e., G, Gy, etc.). As a simple example, prefix summation
can be performed by this schema if G = (Ci.z¢ || Crighe) (Where || is concurrent applica-
tion), Gi(z) = ¢, and G,(z) = 2 + v;. v, in turn, is computed as v; + v,. Singleton v- and

C-expressions are C; = Az [a] + a; + 2] and v; = a;.
5.2.2 Derivation

In prefix summation, the specification to meet is Vi € {1...n}[a} «— Yie(1..5) a5]- We
will introduce the abbreviation 3} = 3;¢(;. u) a;- This then becomes Vi € {1...n}[a} —
'1] We change the specification to one requiring the computation of a closure which,

when applied to no arguments, performs this action, together with the application of that

closure.
i
VA3A' [Vs'e {1...n} [a:- = 2]]
l 3 .h- -
- s i ._“
~ = 3CVA [action(C()) =Vi€{l...n} [P = 2” (abstraction) e
I B
. 1 AR
} o
’ -~
L T A T U S AR N A S A TR N

..... T A T TR SR T I, Dy S e T T T U e Wi Aoy

cali) i) _‘»‘\ e Tl T “B o N) LAt e 4 _"--.ﬂ“..v‘ B R T T

................

107

]
hypothesis: = 3C}'VA |action(C}*()) =Vie {l...u} [a:- = Z] (division)
1

ACY = G(CF(),Clh110)]

But action(C%,()) = Vi € {v' +1...u}|a} = T41,,] o it is impossible for G to do
anything to CJ,, to make its action ...a] = Sl C% +1 must have a parameter in

order to allow G to provide enough information.

We modify the closures so instead of action(C}*()) = ... we have action(CP(z)) =

Vie {l...u}al = H(X},21,5)]. We do not yet know the properties of H.

We now have:

action(CP(z))=Vie {l...u} [aﬁ =H (i,z,l,i)]

i

action(C}¥(z))=Vie {I...v'} [a:- =H (z‘:,z,l,i)]

1

action(Cyi . (2))=Vie{u' +1...u} [a§ =H (i,z,l,i)]

w41

So we observe

action(C}'(z)))
E(Vie{l...u} [:~=H(Z,z,l,i>]) (above)
i
=action (G(C!' (Gi(2,4,)), Clh11(Gr(2,1,9)))) (D&C)
EG((v.‘ e{l...v} [a: =H (L‘.‘,c,(z,t,.'),z,.')]) ,
I
Vie{u+1...u}|al=H Z ,Gr(z,1,8),1,4 (2) (expansion)

'+1 .
i

=vie{l...d"} [i=H (i,z,l,i)] AVie (v +1...u} [a:- =H (Z,z,l,i)] (V identity)
1

Assuming G merely generates a closure to produce application of both of its parameters,
then H(TS,z,1,6) = H(ZS,Gi(z,1,9),1,¢) and H(T}, 2,0,6) = H(Th1,Ge(2,0,9),1,1).

The first solves as z = Gy(z,l,5). The second needs a bit more attention. If we

w——— S aas es e Sdonred Adorai el AR IL A S AU R SRR DA

A e - G- s AENCaha - A S st s AN PR AUl AR TR
= 108

represent Y| as 2}"+2:".+1, we learn that H(T,z,0,§) = H(;"+2‘;:+1,z,l,i) =
H(XE 1,Ge(2,1,6),1,), 80 H(r + ¢,2,1,5) = H(g,G,(2,1,5),1,5) where r = T}’

Letting H = Az,y,2,w|y + z] we get G, = Az[r + z]. This can lead to two problems.
One is that H(z,y, z,z) = z must be satisfied, 8o it must be possible to satisfy y+2z = z for
i some y. At this point, if there is no identity to the operation, we have to say Gi(z,2,z) =

(a special value), and H = Az,y,z,wly ® z] where (special value) ® z = z. The other

problem is that there isn’t enough information around to compute G,. We have to expand
i the problem again to bring about the availability of intermediate values for the intermediate
closures. In this case we need T°}''. Instead of

- action (C(z)) = actlon (G(CY (Gi(,1,1)), C2h41(Gr(2,1,1))))

we want

of = J(vf", v84y)

and

action(C}'(z)) = action (G (C¥ (Gi(v}", 0841, 2)), Cl s (G (v, 041, 2))) -

Taking a more intuitive view for the moment, we observe that we want to compute

a pair (v}*,C}) in which v = 3°} and in which action(C(z)) is the computation of an

-

= augmented prefiz summation, where a! — z + Y| instead of o} « T°i.

- .

@ ' .
: We want G, (v}, v¥,,,2) = 2+ T}, 50 we must use v}’ = o or o=
. We lack only one step to a complete solution. Initially we wanted to compute a closure
o . . : e 4
H which, when computed for that “sub-array” which is the whole array and applied to no - =
B '

argument, computes the prefix sum. We will get, instead, a pair of results. One of the
results is a value, and the other is a closure which, when applied to one value, computes a

generalization of the prefix sum. It remains to convert this back into a closure that can be NGARE

T ————

applied to no arguments.

..............

We have

® action(C}(2)) =Vie {l...u} [P = z': + z]
;

and we want

1

*. action(F'())=Vie {1...n} [az = z.:] = action(CP(2)) =Vie {1...n} [a§ = z': + z]
1

for some z. Clearly z = 0 works. The operation will always have an identity because the

creation of H will require a new operation to be created if the basic operation lacks one.

5.2.3 Derivation Summary

We have taken all of the following steps:

© e We transformed an 1/O specification whose input and output were vectors into an »

I/0 specification taking vectors into a closure;
e We have substituted the I/O specification into a general D&C scheme;

o We established that the subclosures need an argument to fill their role in the closure

that is being computed and modified the specification to reflect this;

Il

o We augmented the specification to compute another value that is needed to compute

the argument that subclosures will need;

e We performed backwards inference to determine the I/O behavior of generic functions

from the D&C formulation; and

e We returned to the original problem of computing a closure to solve the original prob-

't lem in terms of the new specification that specifies a closure that is a generalization L 3

of the function desired.

......................

el T & a2 o ' T — T %
4 L Al - i Sl dhdh AR e i e PR . AR e
IR BRI MK adu i A At M2kt Bl AT A T S R e Ve 202 S R R ARt S Al ST S TR IR E e e '

........

110

In slightly more detail, the steps are as shown below:

action(C())= V1<i<n ’a:- = z.:]
: 1
action(C())= Vi<i<ulai=

¢
/\Vu'+1_<_t'$u[a:-=2]
¢

]
<
A
-,
A
e-
.°~
It

]

A

.‘l“,
M--0-:

| P
\d
AV +1<i<ulal =)

o
AV +1<i<yu a§=z+a§']
1

We must supply a new parameter:

action(C(z)) =V1<é<n [a' =H (i, lo)] ;
' 1
action(CP(z)) =action(C}' (Gi(2)), Cl1(Gr(2)))

H(E{azsl)") = H(E}"+Ei’+1,l,l,") = H(z:"h“,af(l),',l-), which works if

H(z,y,z,w) = z+y and G,(z) = £} +2, but the latter requires having T +2 available.

We therefore further modify the problem by requiring the collection of another value.

- -~ 4

= J('J‘“ ',v“l,',l) ST

L) 11 -: “. "-

=J (E, z:) e

1 w4l AR,

S

The last observations we need (the base case) are: \
‘ “_,'E':

vf: Z = @, -:_‘- -

o i pa—

Ci= Az [Vt. <j5< [a;- =z+ E]] = Az[a: =z4 a‘-] '..'.:".‘_-‘_‘_’
‘ ..‘ .-~'

P

111

We therefore have J(z,y) = z + y making v} = v} + v¥,,. CP(z) applies C¥ to 2,
and C2,, to z+ v}. Creating new symbols for the values (v;, v, and v) and closures (C;,
C,, and C) received from the subproblems and passed to the superproblem, we finally get

the following:

J(z,¥)=z+y
v =y + v
vieaf; =a;
G(C1,C,) =Ci(Gi(2)) | C+(Gr(2))
Gi(z) =z
G, (z)=z+y

C =2 (G(C,, Cr)]
Cleaf; =)z[a} = z + a}]
C.root =A()c‘ Creon [G(ci,C,)(0)]

We have G(C;,C,) = Ci(Gi(2)) || C+(Gr(2)). We would therefore have a synthesized

TREE declaration to read, in part,

inter HAS C, v
HEARS leftson (USES C as C;, USES v as v)
HEARS rightson (USES C as C,, USES v as v,)
TALKS parent (SENDS C, SENDS v)

and the program for the internal nodes to read, in part,

(in T.snter):
C « Ay S [C(Gi(2)) || € (G (2))]
where Gi(z) =z
where G,(z) =z+y
vVe— vy + v,

This can be converted to a tree structure free of closures by simple rewrite rules to be

described in the next Section.

y R AARCEIN SRl St 4 2 Jatte "Ml e Jane —Sav-ivbe Se B R M ot 2 S - MR G e A A O A A A SR At A S I S A A~ S/l Sl St

...........................

112 -
: e
5.8 Closure Reduction \
ZZ:Z The parallel structure that results from the paralle] prefix synthesis contains closure ‘
- generating forms and closure applications. Permitting this makes the D&:C synthesis pro- \
: cess work—but the resulting structure is not a desirable one because the multiprogramming < i
model must be used. Closure generating forms (CGF’s) are not part of the lower levels i
because they require the processors to be capable of efficient context switches. Even if the
5 multiprogramming model is satisfactory, there is one other reason for developing technol- z e
ogy to eliminate closures from paralle] structures. Any direct implementation of closures ' :
requires two messages to be sent in each of two directions: the closure from the host to
the recipient, and the application message from the recipient to the host. This is waste- < e
‘-’:: ful because the closure carries no information beyond collation (matching recipient-to-host ;
messages with corresponding host-resident data) and indication of readiness. R
<

Both collation and readiness information are redundant in some parallel structures such
as the one we have just synthesized for parailel prefix. Even where collation is necessary
we will see that it can be realized by sending data only from the recipient to the host.

For all of these reasons we are motivated to provide transformation rules that remove

closures from a specification, replacing them with equivalent transmissions of argument --

data and possibly collation data. We call the process of transforming a parallel structure :?:Ei

e that includes closures into an equivalent one that does not, closure reduction. N MO
There are two cases to consider: either there can be more than one live CGF instance

;) at once, or there can not. We will call the first type of CGF a multiple CGF and the second e -,T .

a simple CGF. It is only required that the recipient send the host collation information to

apply an instance of a multiple CGF, not of a single one. We will see below that the same -:.::'-‘

reduction methods can be used for the two cases, with the redundant transmission being b

removed by further processing of the parallel structure that results from closure reduction.

113

5.3.1 CGF Reduction Rules

We describe an example of a case in which a CGF would support multiple instances. A
two dimensional array of numerical values will be available from an external source. This
array will be described as having m rows and n columns in what follows. The information
will be available a row at a time. Each row has some maximal elements and some non-
maximal ones. The problem is to determine, for each column, the sum of all elements that

are maximal in their row.

There is a simple, fast, and memory-efficient tree-structured solution to this problem.
A processor is assigned per column, and the column processors are connected by a binary
tree. As the rows of the array arrive, the structure initiates a maximization calculation to
determine the maximal element(s) of the row and send back, to those columns’ processors
that had maximal elements, a copy of that element. Each processor sums the replies it
receives. It is possible to pipeline, i.e., to initiate subsequent maximizations before the

results return from the first.

We reformulate the problem to that of computing, for all ¢ in range, C; = Az[Vj €
(1...n)[a; « if b;; = z then a; + z else q;]] and v; = maxyg(;.) bix together with the
application C; (v.-).‘for all 1 in range. We will use a division step in which substrings’ closures
are both applied either to the value of the maximal columns if the substring contains at least
one, or 0 if the substring contains no maximal colurnns. We eventually get the following

parallel structure:

R i e tanirgndigtuiut g Ign it g et B 4 A A O S Shet Aa

- R MR X R R T o W
B At tn e ech e A e s s A AR AR A AR A e e bt A A AR C o N AR NGRS

¥
o 9
’ “‘ N
g inter HAS C;, 1<s<m . —_—
'. HEARS leftson (USESC;, 1<i<masCl;, USESy;, 1<s< -_f:.'-'.'-:-
- 3 m as vl;) i
o HEARS rightson (USES C;, 1<i<masCr;, USESy;, 1<§< ;;:;:-
s m as vr;) b
o TALKS parent (SENDS Cj,v;, 1 <4 < m) €
e
(in T.inter) : j::_:::.::'
ViI<i<m S
C.' Ao F(vl;,vr.-,Cl,-,Cr.-) e Ta
vi — G(vl;,vr;) . x
define F(va,vb,Ca,Cb)
(return A$3+4.Ca.CH((if ; = ya then Ca(z) else Ca(0) e
|| if z = va then Ca(z) else Ca(0))]) “ I
define G(va,vb) T
(return max(va, vb)) o
(in Tleaf;, 1< j5<n): ;
'j -— 0 . Y e
Vi<i<m o
vi < a5 e
Ci — A[if z = v; then s; — 8; + 2] -_.f
(in T.root) : S
VI<i<m .
C; « F(vl;,vr;,Cl;,Cr;) '_-'_‘.'-;'.
g v — G(vl.-,vr;) -
- Ci(v)
.. . «
In the parallel structure above we see that TRANSCONS must make certain changes.
The transmission C; — (CGF) where C; is a communication variable must be changed
into a mapping (in an appropriate map variable) of the point (i, (CGF name)) — V where . e
V is the vector of relevant values that are enclosed. A closure application Ci(z) must :
be changed into transmission of the triple (5, (CGF name), z) to the host. The host must
include a new process whose procedure is the procedure portion of the closure augmented to p
take as input the values sent according to the previous change. A new pool must be created :
®

\ 115

to accomodate transmissions of triples to the host, and the pool that carries closures to

the recipient can be removed.

"

F We also make the cosmetic change of expanding the function definition G(va,vb) in

| line. This definition results from the method we use of inserting a D&C scheme instance

® first and determining the necessary properties of the included functions later, and it will
not be inserted in later examples. This example becomes

e

inter HAS Ci, 1<i<m
HEARS lefteon (USES v, 1<i<m as vl))
HEARS rightson (USES v;, 1<{<m as vr;)
TALKS parent (SENDS v;, 1 <1 <m)
C TALKS leftson (SENDS wl;, 1 <i<m as w;)
TALKS rightson (SENDS wr;, 1<i<m as w;)
HEARS parent (USES w;, 1<i<m)

(In T.snter) :
© Vi<i<m
M; — (A,vl;,vr;) ; this is a map assignment that createe a “closure”
v; +— max(vl;, vr;)
(In T.inter) :
Vi<si<m
© F'(s, w;) ; this awasts “closure applications”

Lok ot o

define F'(i,ww) ; when a “closure application” arrives...
if M;; = A then
let 2 =ww, va= M3, vb=M;s do
wl; — (if z = va then z else 0) ; “apply”
wr; + (if 2 = vb then z else 0) ; contasned closures
M; — undefined

. L e -
[]

P V.
L4

(in T.deaf;, 1<j<n):
8 +—0
Vi<i<m
v + a5
M=(B;vi)
Vi<i<m
let ww = w; do
if M;; =8 then

S nd G Ao den ted Tde d fad Sl Ak tal G LA Ny

a1, &5 W
s

A

o
L Aol S T SN N A A A ok Ribh e CIE SN

116
let :=ww) doif 2=M,; then ¢;— s;+3
M; — undefined
(in T.root) :
Vi<si<m

M -— (vl.-,vr.-)
v; — max(vl;,vr;)
F'(t', v.-)

Here A is the name given to the CGF *At8*»Co.CY((if z = ya then Ca(z) else Ca(0) ||
if z = vb then Ci(z) else Cb(0))]” and B the name of “AY[if z = v; then &; — &; + z|*.

The enabling conditions of the transformation rule are that a CGF exists, and that a
communication variable exists that must be assigned an object of type closure. The CGF
is given an arbitrary name. Creation of a closure is replaced by creation of a tuple giving
the name of the CGF and the values of those elements of the closure that occur free in the
procedure of the CGF. Assignment of the closure to a communication variable is replaced
by entering the indices and name (if necessary) of the variable into a map, M, that maps
it into the tuple that represents the closure. We add to any processor that contains one or
more CGF’s a process that awaits communications, decides which CGF it was based on by
using M sets up the environment also stored in M and performs the procedure. A closure

application is replaced by a transmission of index and argument information to the host.

If a CGF is situated so only one instance can be live at a time (determined by data
flow), further simplification is possible. The simplification process begins as above, but
after the closure passing and application is reduced the index portion of the transmission
resulting from the closure application can be determined by flow analysis and need not be
included. It can also be determined that the map will never contain more than a single

element—so map insertion can be replaced by assignment of a variable and map retrieval

by reference to the variable.

EAS A A o e A AR ane S s o

~

RS A S St A el Sad A i At N el A Sut i g Muh Sl e e

L R W T Ty Y T Y TN P I PR N T W OO T W e Ry
DS IS
L

117

>
Below we show the parallel structure for parallel prefix summation of n-element vectors
before and after closure reduction. Observe that the possibility of multiple CGF instances
» does not arise because within any one processor a CGF is only used once per computation.
» inter HAS C
HEARS leftson (USES C as Cl, USES v as vl)
HEARS rightson (USES C as Cr, USES v as vr)
TALKS parent (SENDS C, SENDS v)
® (in T.inter) :
C « F(vl,vr,Cl,Cr)
ve—vl+or
define F(va,vb,Ca,Cb)
. (return X;**4CeCH(Ca(2) | Cb(va + 2))))
(in Tleaf;, 1< j<n):
v+ aj
C — N} — z+a))
° (in T.root) :
C « F(vl,vr,Cl,Cr)
c(0)
¢
The result of the closure removal process is TR
. inter HAS C R
HEARS leftson (USES v as ol as vr) |
HEARS rightson (USES v as vr) SRS
TALKS parent (SENDS v) AASRTR
TALKS leftson (SENDS w! as w) o
. TALKS rightson (SENDS wr as w) °
HEARS parent (USES w) .'f.:f‘_.‘
(in T.inter) : L
M — (A,vl,vr) x _"::'j
] ve—vl+vr ’.#
(In T.inter) : S
el T T a R : T T e SOV -.":;';:;l- o

Tt vt ail sl e et - - R
| e e oo e sten aeet and ang s el arae NG gRiL ao 5 S dPALISTLAE Al Tl Bl S -

" o oan saan o — — BN A~ 2 A - -

et e o h el mtus st s At BN Rt el e sl dRu AR LA - Ao ~

[]

F'((),w)

define F'(s,ww)
if M; = A then
let 2 = ww, va = M;, vb= M do
wl+— ¢
wre—va+z
M «— undefined

»

[2]

(in Tleaf;, 1<5<n):
v 4-—0,'
M+~ (3,0")
let ww = w, do h
i if M; = 8 then
let z = ww;, aa = M; do a;-¢-2+aa
M — undefined
(in T.root) : 7
M « (vl,vr) S
ve—vl+or

F'((),v)

The fact that the index into the map can only take a single value and is therefore

redundant is immediate here, because the index is a vector of length zero! In other cases,
. preexisting value flow techniques such as those of [Ken81], [SPn81] and [CRi{81] would -
i be used to establish this fact. -
5.4 Connected Components - %
; ,
We now explore another specification that raises some additional issues about D&C to

synthesize tree structures and about closure removal. In this structure use of a closure - _%
|

causes another closure to be sent, because the use of a closure adds an element to a set !
4

that is being built up and this can be done repeatedly. We describe a closure removal

technique that copes with this complication, and we sketch two possible implementations.

The problem, together with one of the implementations, is described in [HIMS84).

T T W T P T S e e e e e mpmrme g

119

The problem is to find the connected components of a graph, given an adjacency matrix
(a matrix A in which a;; = true iff node 1 is (directly) connected to node j in the graph).
The adjacency matrix will be available for input one row at a time, and a solution is

preferred that reads the rows at equal intervals.

In this Subsection we will derive a tree structure that solves part of the problem and
meets certain worst case time constraints. The derived structure will operate while the

rows of the adjacency matrix are read in.

Formally, we will assume that there exists a source of rows of the adjacency matrix that
can provide one row at a time. Each column will be read by its own processor. Columns
and rows have integers in the range [1,2,...,n] as names. When column s’s processor reads
row j it receives the value true if there is a graph edge between ¢ and j or false otherwise.
The network we derive will then store the information in such a manner that it or some
other network can identify connected components of the graph whose adjacency matrix

was read.

The adjacency matrix contains &(n?) bits, and any system capable of storing this
amount of information must obviously occupy proportional area. We would like to perform
filtration or reduction of the n? bits of information into n log’ n for constant 3, in order to

make a more compact implementation of a circuit possible.

The column processor nodes of the network must read elements of the rows of the
adjacency matrix at such a time (in relation to the time other processors read their elements
of the same row) that the network will not confuse elements of different rows of the matrix,
and the net must build a representation of the (partial) connected components information
in some useful manner. The representation should be compact and the computation should

be fast.

PRAL P, WL AP U, I U VAL TP L TP APIT wr WK Do WA, ¢

TS TATW VTV VTN L KR AN S ek St le™ i 2t (NE LA A R

At e S Mt St et e R Ol N

120

First we will derive the structure up to one important implementation decision; then

we will describe the two resulting parallel structures.

5.4.1 Derivation of a Tree Structure

In the connected components problem, we do not necessarily want to change the state
of the leaves of the tree or develop a value at the root. Instead, we want to change some

state so questions about connected components become easier to answer.

We will use the notation CC(s) to denote the set of nodes in the same connected
component as the node s. CC'(N) is a predicate indicating whether all nodes of N, a set of
nodes, are in a single connected component. Since the state of knowledge of the connected
components of a graph can vary with time and, in a multiprocessor system, with location,

we will later introduce other variants of the CC' predicate.

We will read the rows of the adjacency matrix one by one. After we have read all of the
rows we will then engage in another computation not described here, to put reducep, {7 :

J € CC(1)} in leaf 1. In what follows, we will call the processing that takes place between

the reading of consecutive rows of the matrix a phase.

There are several solutions to the connected components problem which we reject be-
cause they have certain undesirable features. One solution, for example, would be to have
each node record the row numbers of all rows of the adjacency matrix in which it is men-

tioned. This would require a lot of storage. Another solution is to have each leaf, after

each row, find reducen, {5 : 5 € CC(s)} so far. The problem with this solution is that

the time between the reading of rows can vary over a wide range (see [LiV81]).

Lo/t den \ah Suge ten el Wa UL Ane et Aan e g s Seh i Jenihei Jeh e St A it s ke b o mnts Mt i SR A B S B4 & T Gl S I & A St AR S e ST G I S Sl o N SN P NN
------ t. . - - - - -~ - - - - - - R - . - N A - - . - - - it N - - - - .-

121

Our derivation requires a certain amount of invention. We will assume that the user

provides this by defining several intermediate predicates and by providing some informa-

b
tion. Two ideas are involved in our conception: the idea of a map to store the state of the
connected components so far, and the idea that the map is limited.
. .
We start with axioms about connected components: ~
. "
CC'({e}) o
; cC'(A) ACC'(B)A A(B # 8= cC'(a| B) v
CC'(A)AA'c A= CC'(A")
D
P We observe that the following is true:

CC'(A)ACC'(B) Ada,bla € ANbE BACC'({a,b})] = CC'(A|B)

' First, we supply TRANSCONS with a divide-and-conquer formulation. In what follows, »
V will be a set of connected components, each of which is a set of graph nodes; W is a
connected component or a subset of one; CC (CC’, etc.) is a predicate indicating whether

| a certain one of its arguments is known to be contained in a connected component; and M ! . -

is a mapping of nodes to nodes.

WIvW e V[CcC'(W)]]
) where
I cc'w)= |W|<1
' v
3 VW;,W'
- [W=wuW,
! = CcCc'Ww)
i A CC'(W,)

A (Wg # AW, #0=>VacW,,be W,[CC'({a,b})])]

TRANSCONS can easily check that this meets the axioms, but the combination of the

two halves by a pair of arbitrary elements, one from each half, constitutes a user-supplied

invention.

. The user must observe that the current state of CC' is represented by the choices of
g pairs of arbitrary elements, and introduces M to carry this information. Since M repre-
o sents the state of knowledge of connected components, we will define a new binary predicate
CC(M, X) which denotes that the mapping M asserts that there exists a connected com-
ponent C such that X ¢ C. Taking a finite difference against the addition of a new set X

that is known to be connected, we get:

VX, M3M'| CC(M',X)AYW[CC(M,W)= CC(M',W)] -

AVa,b[~CC(M,{a,b}) -

AVY,Z[CC(M,{a}UY) ACC(M,{b}U 2) SRR

g >YNX=0VvZNX=10 .. e

o =~ CC(M',{a,b})]] :

where 1’.:

l' coM,w) = W<t B

! v IR

S VW[,W' . - .

d [W=wuW, -
- = CC'(m)
. ACC'W,)

:;:j Al Wi#0AW, #£0

A = 3a € W;,b € W,[M(a, b)) e

’) . €

po

'

1]

Il

g

»

’

P

3
'l
3
b
.'
\,
b
p
b
p

123

The long conjunct on the second through fifth lines state simply that no connected

components are implied by M’ that aren’t either implied by M or forced by X.

We invite the user to make another critical observation, namely that YW [CC(M,W) =
CC(M',W)] can be satisfied by Va,b[M(a,b) = M'(a,b)]. (S)he can further observe from
the original axioms that CC({a,b} Aa € AACC({b,c}) Ac € C = CC(AUC). We can

thus liberalize the condition on M in CC as follows:

VX, M3M'[CC(M', X) A M(a,b) = M'(a,b) A ...]

where
cC(MwW)= [W|<1
\"
YW, w,
[W=WuW,
= CC'(W{)
ACC'(W,)

A (Wi #0AW, #0
= 3a € W,,b[M(a,b) A (b € W, vCC(M, (b} UW,))))

This specification is suboptimal because it allows M to be multivalued. We will examine
this solution in detail and see how it translates into a tree that maintains M in internal

state. We will then see what can be done to improve this.

We therefore make a change in CC to express the fact that the divisions will always be
made in the same manner, and that M need only be defined for one set of subsets of the
universe. This change is the addition of a parameter, a subset of the universe (of nodes
in the graph whose connected components we are seeking). Later we will repair another

deficiency of this specification: that it allows M to be larger than we would like.

M will be made a ternary rather than a binary relation. M(S, a,b) is true if a connects

to b relative to S. The purpose of this is to limit the size of M.

124

The new parameter to CC ranges over particular subsets of the universe. It has two
roles: it tells what version of M to use, and it restricts acceptable solutions to CC.
CC(S, M, X) is true only if there exist elements of M(S’,z,y), where S’ C S, that show
that X is connected. This is a stronger condition than the original CC(M,W).

In addition to making M and CC relative to a given set S, we will introduce functions
L and R such that L(S) & R(S) = S. The motivation for this is that we are trying to
establist a tree structure of sets and subsetsthat together comprise those sets; L and R are
a Skolemization of the assertion that there is a way of dividing the univerae', each of its
two subsets, etc. that meets further conditions. The domain and range of L and R must

meet domain(L) = domain(R) = range(L) Urange(R) U{U} - U.

To formalize the new parameter of CC we write:

W, X, M,W € VIM'Va,b[CC(M,W) ACC(M', X) A M(S,a,8) = M'(S,a,b) A..]

where
CC(M,W) =CC(U,M,W)
and
CC(S,M,W)= |W|<L1
\"2
VL,R

[L(S)¥ R(S) =
AW =WNL(S)
AW, =W (\R(S)
= CC(L(S), M, W)
ACC(R(S), M,W,)
Al Wi£0AW, #0
= da € W],b € Wr[M(s:“’b)])]

In what follows we will use the locution Pg to denote “the processor responsible for the
set S”.

A closure is needed here to satisfy CC(L(S), M,W,) and CC(R(S),M,W,). This

closure requires no arguments, because the processors for L(S) resp. R(S) have all of the

-

-

WY

|

. “ «

2 g

-':;":'5

Ve al

e

RO

W _q

NN
.

}~ .‘1‘:1

information they need to do their work. All elements of W; resp. W, are in the subtree

headed by processor L(S) resp. R(S).

Application of the closure serves notice on descendant processors that they should be
ready to add to their maps in a manner that comes from the fifth conjunct in the large
expression. The need will be described below.

Now we can continue the synthesis process by applying transformation rules to
satisfy(VV, X, M,W € VIM'Va,b[CC(M,W) A CC(M',X) A M(S,a,b) = M'(S,a,b))]).

We soon find ourselves transforming satisfy(M'(S,d’,¥')).

Suppose we add an additional condition, M(S,a,d) A M(S,a,c) => b = c. After we
have replaced occurrences of M by occurrences of M’ (as a constraint propagator would

do when analyzing “CC(S,M',W)”) and imposed this condition, we get the following:

;\ (6’; # OAW,#0
= 3a € W}, b € W, [M'(S,a,b) AVc|M'(S,a,¢) = ¢ = b]])

We can not satisfy this last clause (the implicand) when 3¢ ¢ W,[M'(S, a,c)] because
this conflicts with M(S,a,b) = M'(S,a,b). M'(S,a,c) is required by M(S,a,c) and

forbidden by the requirement that 3c' € W, [M'(s,a,?’)].

However, we have M(S,a,c) = CC(S,{a,c}) and CC(R(S),{c}UW,) A
ccC(S,{a,c}) = CcC(S,{a} UW,).

We therefore use v to expoee the fact that there are alternatives:

r~=.-. RaNCaN AN aA A an At e e Mg AU I i et S it e e e e S it e 8 s A M S b e e L AN LR AR S s 212 am st e b cal cat aah ool pd el calh o g tad bl
...... -) EARE At - - - Al A

;\ (z"’l #FOAW, #£0
=>3aeW,beW,| (M'(S,a,b)A7c#bM(S,a,c)]
v 3e[M'(S,a,¢) A CC(S, M", {c} UW,)])])

As it is known that M(S,a,z) can only be asserted by the above, an inductive proof is
available that ¢ € R(S). This can therefore be replaced by

;\ (?”’1 # AW, # 0
=>3JaeW,beW,[(M'(S,a,b)AZc#bM(S,a,c)
v3c[M!(S,a,¢) A CC(R(S), M', {c} UW,)])])

This gives two alternative ways to satisfy the specification. We can satisfy M'(S,a,})
if M(S,a,b) v Z.[M(S,a,c)]. satisfying the other disjunct is harder than this because it
requires satisfaction of a predicate containing R(S), so we prefer the first disjunct when
it can be satisfyed. If we can’t use the first disjunct, then we know 3c[M(S, a,c)] so we

have only to satisfy CC(R(S), M',{c} UW,) for that ¢. This leads to:

satisfy (aa € W,beW,
[(M'(S,a,b) AZc#bM(S,a,c)
v 3c[M'(S,a,¢) A CC(R(S), M", {c}U W,)])})
bind a to arb(W;),b to arb(W,) in
if M'(S,a,b) Vv 3. [M(S,a,c)] then satisfy(M'(S,a,d))
else satisfy(M(S, a,c) = CC(R(S), M',{c} UW,))

(A

v v

T YT

-v--.,

< ®
»
1]

P STy

5.4.1.1 Closure Requirements

In order to be able to satisfy CC(R(S), M’,{c} UW,) we will need a closure. This

closure requires an argument because only Ps knows ¢. Since we have CC(R(S), M,W,)

we will need a closure CC(R(S), M,W,) = action(C,(z)) = CC(R(S), M',{c} UW,).

¢ Expanding CC(...) and renaming the variables with a prime (i.e., v becomes v'), '.)
we need W/, Wi, CC(L(S),M",W}), CO(R(S), M',W}), and (W] # BA...v3c[...A »
CC(R(S),M",{c}UW})]). Since we know that W! = W, v W! = {z}UW, for some .
z € R(S) and similarly for W/, we see that to establish CC(S, M, {c} UW) we establish 0
(and need a closure to so establish) CC(L(S), M, {c} UW}) (or ... R(S)...W,). '

Each node Pg applies C o ~ce or not at all, and C, zero, one or two times. We therefore

need two features in order to s.tisfy our requirement that each closure be applied exactly

once: we need to have a distinguirhable null message to apply each closure to when a node :\.f\-::'.j

knows that it will not be needing it, and we need to have the application of a closure

cause the host to send another closure that has the necessary capability. We index the

communication variable to allow successive closures to be distinguished.

There is an important fact that must be noted in this case. Because one result of using o
a closure is the generation of a similar one, a CGF for a closure must be included in the ! ‘
procedure attached to that CGF. This requires the procedure to call itself recursively. S
The final version of the CGF that ad\1s ¢ 1 element to Pg’s connected component is:
°

* e L L S S T e e e T e e e e e e e e T e e e e o et
W Sl D R ST T el N Tl U Sl S I UAPUIP T T e foe il Aea dg Soaden o PR T AN PP LRV SR TR R S ST)

CC-add—element(z) =
case

z=mnil:

Ci(nil) || C,(nil)
t€L(S)AW #£80:

Wi — zUW,

Ci(2) | C ~
zER(S)AW, #0:

W, — 2UW,

Ce(2)]| C +~ AFWe CuCy [cC—-add—element(z)]
z€L(S)AW; =0 AW, = emptyset :

W, — zUW,;

C — AWiW:.Ci.Cr [CC—add—element(z))
zER(S)AW;=0AW, = emptyset :

:v,,W..Ca'- '[Cc_add—dement(')]

: W, — zUW,

E. C — MWW .Ci.Cr [CC—add—element(z))
. t€EL(S)AW; =0 AW, #£0:

ﬁ’ W, — zUW;

- Map—add—or—call-Cr()

C — AW .CiCr [CC~add—element(z))
zER(S) AW #£0AW,=0:

W, ~ 2UW,

Map—add—or—call-Cr()

C — MWW .Ci.Ce [CC—add—element(z))

Map—add—or—call-Cr() =
let a=arb W;, b=arb W, do
if M(S,a,b) vAc|M(S,a,c)
then M'(S,a,b)
C « AW 018 (CC—add—element(z))
else let ¢ = M(S,a) do C,(c) ®_ .
C — AN1Wr L€ 00 —add—element(z)] B

C — AW .Ci.C [OC —add—element(z))

We will now explore the issues involved in transforming this specification containing

closures into an equivalent one with downward communication.

5.4.1.2 Closure Removal Issues

Only CC—add—element can create a closure C—there is only one call to this routine

outside of itself, and it is tail recursive. This implies that there is no way two CGF-instances

can be live at once, allowing downward communication to consist of only the argument of

the closure application.

As in the previous case we eliminate the closure by replacing the application with a
setting of a communication variable and making the body of the CGF a piece of code that
awaits such settings. The tail recursion that will occur unless the value of the communica-

tion variable is nil, is replaced by looping which tests for that terminating condition. The

CC-add—element(z) =
case

z=mpil:
z; —nil; z, « nil

zeL(S)AW; #0:
W —:zUwW,;
5z

ZER(S)AW, #£0:
W, —z W,
2y — 2

2 € L(S)AW; =0 AW, = emptyset :
W —zUW,;

z€ R(S)AW; = 0 AW, = emptyset :
W, — zUW,

2€L(S)AW;=0AW, #£0:
W‘ - IUW‘
Map—add—or—call-Cr()

W, — zUW,
Map—add—or—call-Cr()

Map-add—or—call-Cr() =
let a=arb W, b=arb W, do
if M(S,a,b) v Ac[M(S,a,c))

resulting code with closures eliminated is displayed below. S

2€ R(S) AW, #0AW, =0: o

130

then M'(S,a,b)
else let c = M(S,a) do z, — ¢

(in T.snter):

until zz =nil do
await defined(z)
22—z

CC—add—element(zz)

This completes the synthesis of the downward communication portion of a parallel
structure for collecting connected component information from a series of rows of an adja-

cency matrix.

5.4.2 Alternative Data Structures

It is now necessary to consider the options for storing M. The typeof Mis T xU — U,
where U is the set of nodes in the graph whose connected components are being determined,
and T is a set of sets such that U e TA(S € TA|S|>1=> R(S) € TAL(S) € T). The

genesis of T is such that each intermediate node plus the root of the tree has as its set of

leaves some element of T if each element of U is represented by a leaf.

Because of the type of M, we have four simple options to represent the mapping: We
can represent it in one processor’s memory, in the memory of one processor per element of
T, in one processor per element of U, or in one processor per element of T x U. The first
possibility would lack concurrency and the last would require too many processors. The
remaining poesibilities include using interior nodes of the tree (corresponding to elements
of T') or leaves (corresponding to elements of U) as the repository for information about

parts of M.

Inspection of the specification yields the information that the tree node represent-

ing a set S must be able to answer questions of the form 3¢[M(S,a,c) Ac # b] and

. . - PN . e Wt S T P I
e e . O T T Tt N S B P BN RPN S S . T T Y
L T P L I i T NI VAT SN VSR SRS NPl SE NS .

N, - N A .‘* v - - - - -~ .
et R e e e T D N S A R RS AR PR N N
B T L T T et e e T e At e et et o RO P P PR AT RV PP TSI P VU A I TR R R Y TR

L et A M R S Ren i S aad Lal MR AR Avn st I T W0 e 4w MRS AR B e e BACRAL A S AL A AS nd ans e Tl Mol AR A A Y Bt el SAR el e - anr iy

131

find ¢ suchthat M(S,a,c), and must be able to satisfy(M(S,a,b)). This requires either

keeping M(S,z,y) in S’s node or providing that node with appropriate closures.

That node
must also be able to satisfy(CC(L(S), M',W;)) to satisfy(CC(R(S),M',W,)), and to
satisfy(CC(R(S),M',cUW,)) given ¢ € R(S) A CC(R(S),M',W,). This requires an-

other handful of closures.

Since closures to satisfy(CC(L(S), M',W;)) and satisfy(CC(R(S), M',W,)) would
require only information available below L(S) and R(S) respectively, and since there is
no control flow path by which the need to satisfy these two predicates would be evaded,

we observe that each interior node requires a = arb W, b = arb W,, and the closure

AM adigatisfy(M'(R(S),q, 2))].

We are building a map that maps at most one leaf of the right subtree to each leaf
of the left subtree. As described, the map is stored in the node that has the appropriate

subtrees. However, other alternatives are possible.

There are three natural places to store the assertion M(S,a,$). They are the node
whose subtree’s leaves are S, leaf a, and leaf b. If the information is stored in S, there
must be one cell for each leaf of the left subtree, and if the information is stored in a then
there must be one cell for each ancestor representing S. If the information is stored in b,
we have no limit (beyond the size of the problem) for the amount of storage that must be

provided in b. We therefore reject this alternative.

Storing M in the node heading S minimizes communication (information is where it is
used) making the algorithm take O(log n) steps. These steps are not constant-time steps,
however, because they require access to a random access memory whose size is O(n), itself

an O(log n) operation. The algorithm therefore has an O(log? n) running time. It should

...

--s.

132

be noted, however, that in current technology the constant factor is very small compared

to constant factors on logn terms until the problem instance becomes very large.

The result could be transformed to place the fact of M(S,a,b) in a. This would result

in a different algorithm, one that requires the leaves to supply closures to access and modify

the map.

There is an interesting problem here. We would prefer that the leaves not have to know
about elements of T. It would therefore be necessary to have the M table within each leaf
organized in a certain order and to have use made of this information in that fixed order.
This requires that a “flame front” of subtree handling be arranged such that initially, the
root is the tree for which you are trying to associate pairs of elements, and on succeeding
subphases, the level at which we are trying to match descends. This algorithm has an

O(log? n) execution time because there are log n subphases, each of which is O(logn).

We prefer the former data structure, in which M(S,a,b) is represented in S, because
the issue described in the previous paragraph does not arise. That structure will always
be available to us unless the size of a change to M is proportional to the size of S, and
this can not be because the combination step of the divide and conquer scheme must be

fast for the specification to parallelize well in a tree structure.

Below we describe in detail the algorithm that results from this decision, followed
by that which results from storing the map in the leaves and a brief description of that

synthesis path.

[}

o

Y e m T, = T v
gy e n e e St d Akt R T VT T T T .

-

«*h

e e A S s e A S A e R St M S T <3 g S i e, ¥yl N S S S SR T T DA

5.4.3 Results of Storing the Map in Internal Nodes

In this structure we have a cell in each subtree root (i.e., each internal node) for each
of that subtree’s leaves. This structure requires nlogn cells, one for each leaf/ancestor

pair, and it should lay out nicely in VLSI because the bigger nodes are closer to the root of

the tree. Each cell must accommodate one of n vales, requiring log n bits. This imposes a
total memory requirement of nlog? n bits. Each internal node contains a map which maps

names of leaves of the left subtree into either nil or names of leaves of the right subtree.

The overall view of the algorithm is as follows:

Each leaf sends its parent its name if its active, or nil. Each intermediate or root node

sends its parent either the name of any active node it receives from its children, or nil if »

it receives nil from both children. If it receives two names it chooses arbitrarily. Each

intermediate node also remembers what it received from its children.

' In addition, suppose it receives a name from both children. There are two cases: If the .

name from the left node maps (in the node’s internal mapping from leaves to values) into

nil, make it map into the name from the right node and do nothing else. If it maps into

-

(say) ¢, send awaken ¢ to the right child and do nothing else. .

If an intermediate node receives an awaken s node from its parent, it checks to see

whether ¢ is in its right or left subtree. It also checks to see what it has received before.

If a node receives an awaken ¢ message and has already received a name from ¢’s subtree
it sends awaken ¢ message to the appropriate child. If it hasn’t received one it considers

itself to have so received. (This can have one of three effects: modification of reaction to

AT ! .

further awaken messages, lookup of ¢ in the local mapping if s belongs in the left subtree,

or lookup of a previously received name in the local mapping if was in the right subtree

and that previous name was in the left. If a lookup is performed we then either extend the ® "

mapping or create a new awaken message.)

...

AT

5L T

I
[AN

' ——— el Rad il . v . > .
CEN M S o ad o Sa S St J G B AT e Ate A - Yein i Ak et S et Anf Pad el A A AL "

134

The root sends its children a termination message when it's done. Intermediate nodes
relay such measages. Each leaf reads the next line of the adjacency matrix when it receives

this termination, and starts a new cycle.

The “wrapup”, where each leaf gets the name of a representative of its connected
component, is also faster under this arrangement. The root sends its right child its corre-
spondences one by one, followed by “end”. When a node receives a — b it replaces b — ¢
(if it has one) by @ — ¢. This is not done for 5 — nil. Intermediate nodes also relay
correspondences received from parents. When an intermediate node receives “end” from
its parent, it dumps its own correspondences as they now stand and then sends its own
“end”. A leaf node initializes a cell to its own name and a cell named b changes this value

to a if it receives a — b. A leaf node knows it has the right value when it sees “end”.

To derive this structure we make a different decision when creating the closures required
by the synthesis. Rather than assuming that Ps needs no closure to satisfy(M(S,a,}))
or to test 3c[M(S, a, c)] we assume that closures necessary for either of these functions are
available from Py (s), and ultimately from P,. By a series of steps similar to the ones taken
to synthesize the previous algorithm, we obtain a structure in which each leaf has a cell

for each of its ancestors. This structure is described in [HMS84].

In this structure there are potentially ©(log?n) communications, because there are
potentially logn phases in which it is learned that a left subset must link with a right
subset, and each such phase requires ©(logn) communications to operate on the map

data.

The parallel structure is (informally) as follows:

There is a balanced binary tree of processors where each leaf of the tree correspond

to a node of the graph. For simplicity of exposition we will write the following as if the

......................................

.....

leaves were rather than “corresponded to” the nodes. For simplicity we will assume that

the entire adjacency matrix is supplied, rather than only a triangular matrix.

The leaf nodes build approximations to the answer as the algorithm grinds on. Each
leaf node has one memory cell for each ancestor. Consider the memory cell for ancestor
a in leaf [;. It is initialized to the distinguished value nil, and during the course of the
algorithm it will come to contain some j such that the least common ancestor (LCA) of 5
and 1 is a, and 1 and j are known to be in the same connected component, provided that

some such j exists.

The algorithm works as follows: A leaf is called actsve if its bit is set in the current row
of the adjacency matrix. After a row is read in, information is passed upward so each node
can determine whether both of its subtrees contain active leaves, and what the highest
and lowest active leaves are for such nodes. Information is then passed downward so each
internal (or root) node can determine whether it is the top such node. That node sends a

message to those two extreme nodes informing them of each other’s identity.

The following cycle is repeated:

TU computes spans, TD distributes span information and keeps track of the topness

of nodes.

¥ v — .
I TTTe
- el .

— w.vv‘v‘ -

136

TU istype TREE (i), s€(1,...,n] size n
root HAS minact, mazxact, topp, lsstop, ristop
HEARS leftson (USES upmin)
HEARS rightson (USES upmaz)
TALKS leftson (SENDS Listop)
TALKS rightson (SENDS ristop)
inter HAS minact, mazact, topp, listop, ristop
HEARS leftson (USES upmin)
HEARS rightson (USES upmaz)
TALKS leftson (SENDS Iistop)
TALKS rightson (SENDS ristop)
TALKS parent (SENDS upmin)
(SENDS upmaz)
leaf HAS active;, ccmate;;,j € ancestors
HEARS INPUT (USES adj;,j €/1,...,n))
TALKS parent (SENDS upmin)
(SENDS upmaz)

(sn TUleaf:)
Vj € ancestors
ccmate.-,- «— nil
Vie(l,...,n)"
temp «— a;;
upmin «— upmaz — if temp then ¢ else nfl
dmin — downmin
dmaz «— downmazx
other «— nil
pivol «— pivot
if dmin = 1 then other — dmazx
if dmaz =i then other « dmin
if other # nil then
if cemate; piyot = nil
then awaken «— nil; cemate,; pivor +— other
else awaken «— cemate; pivot

(sn TU.inter)
15 first establish my status
(lrangel,lrangeh) «— lrange
(rrangel,rrangeh) — rrange
range «— (min(irangel,lrangeh), max(rrangel,rrangeh))
lsvep « rangey A range;

st e

. T ERRCAIE

i . Ve
e 0,0

. 3 N ST M T N e A A L A A

| SRS o AR R SR A Al e aviied o At A ILALE" SV S AN YOS TR S it At e JA e A A A R b e e Dt Bt IS i e e e
137 e
13 This 18 a once — per — minor — phase activity

while dstatus # ’dead

(sn TU.root)
(Irangel,lrangeh) « lrange
® (rrangel,rrangeh) «— rrange

range — (min(Irangel,lrangeh), max(rrangel, rrangeh))
livep «— range; A range;
while dstatus # ’dead

p—

(sn TD.inter),

if pstatus € {’live, 'top}

then status — ’live
, range «— prange o
{ elseif livep then status — 'top » o
range — range

else status — ’dead
while status # ’dead

ey

-

(sn TD.root) ‘
if livep then status — ’top S

range «— range -

else status «— ’dead

In each minor phase the leaves send up awakening information and get back a packet

b

!

p - -
i of information very similar to the one they received in the beginning. :::f.'_t.'_'
J

b

Each leaf, when it dies by finding that the node just above it is dead, sends up an “init”

message. When every node has done 8o, the root broadcasts its own form of “init” and the

leaves can read from the I/O processor that contains the next row of the adjacency matrix.

Here we describe the overall behavior of the algorithm, considering the parallel structure
to be a single entity that can do things sequentially. To actually have this effect, there

are synchronization problems, and below we describe a node’s eye view of the situation,

including the work that each node has to do to coordinate with its neighbors.

T e e T e e e e e T e L T L L L P
T AT T T s e s e e N T T o e e YN T e T e e N e T
e S cdidideccidniincdideiabnidedidbdvicbldviode

vy o ww vy A ek D ik Il AR]
rﬁw‘,‘:, "0 Ak A e ™ At e S R At b i A A Wl e I A NS AN A A S AN ot il e e A Sl S’ Rl ATITNTIT
-

Initialize: Have each node read in its element of the adjacency matrix. Those nodes
reading a “1” in the adjacency matrix turn themselves on, as does the
node whose index corresponds to that of the row of the matrix. Mark the

root as the “focus”.

Survey: Every leaf sends information telling whether it is awake. Using this infor-
mation, the internal nodes below a focus find out which of them has awake
descendants in each of the two trees (“has two active subtrees”). This is

a straightforward “up” problem.

New root: The highest node with two active subtrees is determined. This is the LCA
of active leaves. It becomes the new focus, nodes between it and leaves

become “active”, and nodes above it but below and including the old focus

become “dead”.

Tournament: Select an arbitrary active leaf node in each of each focus’s two subtrees.
Report the identities of the two leaves to their focus. Simultaneously report

the identity of the focus and of the other leaf to each of the two leaves.

Lookup: The leaves contain a variable mapping mapping their ancestors into a leaf
index or the distinguished value nil. The leaves look up the focus in this

mapping. If it is nil, they store the other leaf’s identity. If the left leaf’s

value is not nil, report the value to its focus. A

New awakening: If its left tree reports a leaf ID per Lookup, a focus sends a message to

that Jeaf commanding it to awaken. - o

Refocus: Each focus sends a message to those of its children that are not leaves

telling them to become new focuses, and dies.

Repeat (Maybe):If not all leaves have a dead parent, go back to New Root.

.......
..............
o e

CSICNMO GRS o G A At eI A it ¥ AN N, T aL T~ e i elit o AT e oM aid S A are-ang -abe JUIC oot aut aa oBa g~ ade A A
N 139

As can be seen above, the algorithm has several subphases, as the focus moves down

towards the leaves, and each of these subphases has several sub-sub-phases: Survey, New
9

root, Tournament, Lookup, New Awakening, Refocus, and Repeat (maybe). Internal nodes

of the tree have the status dead, focus or live, and leaf nodes either have status awake or
° asleep. The behavior of each node during each sub-sub-phase will be described.

Survey: Leaves tell parents whether they are active. Intermediate nodes: (live and focus

only) Get status from descendants. Remember and (live only) tell parent how many sub-
® trees have one or more active subtrees. Remember which subtree was active if exactly one

was.

New root: If a focus has two active subtrees it tells its left (resp. right) child “focus above
¢ you= (node), you are left (resp. right)”. If it has one, tell that one “focus at or below you”

and the other “die”. It is impossible for a focus to have no active subtree.

Intermediate nodes below a focus (i.e., those nodes that are live) listen to their parents.
If one hears “die” it dies. If one hears “focus above = zzz ...” it relays the message and

becomes or remains live. If one hears “focus at or below” it acts as in the paragraph above.

e Leaves that receive a “die” message send their parent an I died” message and prepare to

read the next line of the adjacency matrix.

Active leaf nodes record the name of their focus.

Tournament and Lookup: Each leaf contains a mapping M relating the name of each of its
ancestors to either nil or the index of a leaf. A sleeping leaf node sends nil to its parent. An \
awake leaf node ¢ that receives a “focus above you= (node), you are left” message sends to Z;..l:l‘:;‘;;'
its parent either (empty,s) if M(node) = nil, or (loaded, M(node)). If it receives “focus

above you= (node), you are right”, it sends s to its parent.

. A live internal node which receives nil from both children sends the same to its parent;

one that receives something else from one child sends that value to its parent, and one that

...............

..
...
.............................

140

receives non-nil values from both children sends esther to its parent. The correctness of
the algorithm does not depend on this choice, which can be random, pseudo-random, or

consistent.

Each focus receives a message from each child. Say the right child’s message is 5. If the
left child’s message is (empty,), then (record, focus,s, 5) is sent to the left child and nil
is sent to the right. If the left child’s message is (loaded,s), then nil is sent to the left

child and (awaken,) is sent to the right.
Lookup and New Awakening: Internal nodes relay parents’ messages to their children.

If leaf node s receives (record, focus, s, j) it sets M(focus) « j. If it receives (awaken,s)

it awakens. (If { doesn’t match, it does nothing.)

Refocus: Each focus sends its children a “become a focus” message and dies. A live node
receiving such a message from its parent changes its status to “focus”. A leaf receiving

such a message form its parents sends the latter an “I died” message.

Repeat (maybe): At all times, a node receiving two “I died” messages sends one upward. If
a node receives a “become a focus” message it sends its children a “begin survey” message.

Live intermediate nodes relay such a message, and leaf nodes receiving a “begin survey”

message proceed as in Survey.

[
LA AP

X
,[{‘(‘-’ I
we'e

o
.".‘ -' W "‘-
i
-bells

., - :
’ Y, r et e

e i

PP A P

P . . T
v % A .

0 v

s, £y PR

i P

-
-

T’r. M AN S aidh A SN e Ty LA S Sl Wi B g el Al S A Al i Al Mad vl el Wl o b e e 4 R N A e oy ta SRR R R NP A, 0 R 0 b At Bt iy el]
ot S Tt LI P T

LS 141

Chapter 6

Use of Additional Techniques — Binary Addition

There are three important classes of circuits for the addition of integers represented as

vectors of “bits” in radix 2. These occupy three positions on a spectrum of cost/speed
tradeoffs. The fastest and most expensive circuit is a carry-look-ahead adder, described in
[HwaT79], which performs addition of two n-bit integers in ©(logn) time using 6(n) logic
elements. An intermediate circuit, the ripple carry adder, takes linear time and also uses
a linear, but smaller, amount of logic. The slowest and cheapest circuit is a serial adder
which uses a small constant amount of logic to perform additions in linear time (with a

larger proportionality constant than that of a ripple-carry adder).

There are three reasons for studying the synthesis of these addition circuits in

TRANSCONS. They are:

e There is a large and interesting space of alternative implementations. If we can not ! —
synthesize all of the implementations there is cause to wonder whether TRANSCONS

is general enough.
o The three implementations of binary addition to be discussed here fit well into VLSI.

e The synthesis paths shown here demonstrate well how general mathematical knowl-

edge fits together with TRANSCONS techniques to develop VLSI circuits that can

not be developed using either alone.

..

In the remainder of this Chapter we expose the necessary set of synthesis techniques to
create implementations of the three solutions to the problem of adding numbers represented

as bit vectors.

6.1 Notation

In what follows, we will assume that a problem instance resides in vectors A and B,
each containing individual “bits” a; resp. b; for 0 < ¢ < n — 1. The two states of a bit
are represented by the values 0 and 1. (This discusesion is specialized to binary integers,
but any radix can be used by reinterpreting the logical operators in an obvious manner.)
We apply logical operators to the values 0 and 1, interpreting O as false and 1 as true.
The vectors A (resp. B) represents Tocicn-1 62' (resp. ...5;2"). The answer is similarly
represented in C. We will have occasion to refer to carry;, the carry coming into position
1. We use ® as the symbol for “exclusive OR”. We will use n only as the size of the vectors

to be added throughout this chapter.

Our starting point for all of the syntheses in this chapter will be the following specification,

which produces a vector C given vectors A and B as above:

vVo<i<n-1
i = a; Qb Q35 <)[a; Abj A (V5 <k <i)[arV by

Figure 6.1: The “Standard” Specification of Binary Addition

We will be deriving the following “grade school” specification for binary addition (so called
because it corresponds closely to the algorithm taught to grade school pupils for decimal
addition) from the standard specification. A derivation of the standard specification from
the grade school specification is possible by the methods of [Sto77], but will not be given

here.

L
D@
e Y
\‘
'

-

"
]
Sl

K

2 143

carryo =0
V0<i<n-1

v e = a; @b @ carryi

carry;i1 = (carryi A (@i V §)) V (e A b;)

Figure 6.2: “Grade School” Specification for Binary Addition

L
6.2 Carry Look-ahead Circuit
¢ Consider the standard specification. If we try to use the methods of TRANSCONS that
q have been described so far to synthesize a carry-look-ahead circuit for addition, we get a
L circuit with ©(n?) computing elements. The reason for this is the nesting of quantifiers
C such that the bound variable of the outer quantifier is one end of the range of the inner

one. This fact forces the computation of @(n?) boolean values, namely (V5 < k <t)[a; v b;]

for each 0 < j<i < n~—1 (atotal of n(n — 1)/2 (s, 5) pairs).

We would like to do better.

6.2.1 Quantifier Levelling

The problem with the standard specification is that it has a pair of nested quantifiers,
with the range of the inner quantifier equal to the bound variable of the outer, used as
a predicate. Specifically, we have ¢; = a; @ b ®(35 <1)[a; A b; A (V5 <k <i)[ar V b))
Evaluating this predicate is expensive. Even reusing values, i.e., using (Vi + 1<k <t){a; vV
bs) to compute (V5 < k <1)[ax V3], @(n?) computing elements are required to evaluate the
form. However, it is possible to proceed in a series of steps to a form that can be evaluated

using only ©(n) elements.

First we use the following identity

M<z<ulP@)=ma P <I (tomas) R

| SRR A i
P

| NN
M _.": .y ‘.' .'. o a. l. " ‘

which gives us a tool to express a doubly bounded quantifier as an inequality applied to
a max operator. The benefit of doing this is that it reduces the multiplicity of values to
be computed. Rather than have a ©(n) set of booleans to compute for each j, we have a

single log n bit integer to compute and compare with j.

This doesn’t solve the problem. We are left with

e = 0; Qb Q37 <1)a; A b; Amax| (ax v b))} < j]

where the substituted expression is underscored.

e are still faced with the problem of computing the max operator for each of the ¢’s and
using a quantifier as a boolean to establish a carry bit for each i. We are therefore going
to take advantage of another identity to turn a singly bounded quantifier into a doubly
bounded one:

(3z < w)[P(z) A F(u) < z] = (3F(u) € z < u)[P(z)] (constraint-to-binder)

providing the following:

C = c‘-®b.' ®(3!;1<a)'([(ag Vbh)] <i< ")[ai A bi]

where again the new form is underscored.

This does not completely solve the problem, because it would still require a8 max operation

for each ¢, but it allows us to apply one last identity,

(3 < z<u)|P(z)] = !'ng[P(z)] > I(3-to-maz)

...........

which gives us

a=aQ@b ®(l;_1<l)‘('l¢j A b} 2 max] (ax v ba))])

L
Now we have an inequality involving the fruits of two max operations. While each of these
max’es must be computed for each ¢, this is a form that can be treated by the methods
® of Section 5.2. It is therefore only necessary to build two tree structures in which the
computing elements contain 6(log n) logic gates.
< The specification is now
V0 <i<n-1
& = 0: @ b @ (max(o; A bj] > max~ (ar v b))
¢
It is possible to express this as an inequality between corresponding elements of the results
e of two parallel prefix computations as follows:
vVo<i<n-1
and; =a; A b;
nor; =~ (a; v &)
. mazland; = If and; then ¢ else — oo
mazlnor; = if nor; then ¢ else — oo
mazand; = ogx’_ai(._[mazlandj] *
maznor; = max [mazlnor;] .
0<s <
. Ci=a; ®b.~ ®(mazand.~ > maznor;)
. There are two parallel prefix trees in the addition parallel structure: one for the variable
named mazand and another for maznor. The overall structure is shown below.
Y

...........
...........

(!f'_ [

o e 4 b = o i o o
| G G — g SR

C, B,A A By G «, B, A, Ay, B

Figure 6.3: Synthesized Look-Ahead Circuit for Binary Addition

There are two important differences between this structure and the standard one of

[Hwa79).

o Because of the nature of the parallel prefix network synthesized by TRANSCONS,
each node is partially responsible for the choreography in its local region. The im-
portance of this fact is that either the nodes need be big enough to participate in

an asynchronous data transfer protocol with a handshake, or a global clock must be

provided.

This is not a serious problem because the methods of Section 5.3 enable us to remove

dependence on local handshaking, reducing the computation nodes to combinatorial logic.

e Because the parallel prefix trees are required to handle integers in the interval [0, n],
the size of the nodes and the width of the data paths within the trees are &(log(n)).

In the standard network it would be 6(1).

This disadvantage can be alleviated by some careful reasoning, to be described below.

(2}

[N

6.2.2 Data Path Width Reduction

To reduce the width of the data paths and still use a parallel prefix network, an as-
sociative operation with constant range and domain must be used. We see that this
might be poassible because either maxocj<i{mazland;] = maxocj<is1|mazland,] or
maxogjci+1|mazland;] = i + 1, and similarly for mazlnor. We have four cases from
the four possible values of a;+; and b1, or similarly from and;,; and nor;;;. For brevity
we will give the name P; to mazand; > maznor;. We can show that P, depends only on
F;, and;;, and nor,,; from the fact that if neither and;y) nor nor;,; we have P, = F,,

if and, ;) we have F;;, and if nor;.; we have P;;;. This information can be summarized

in the following table:

mazand; > maznor; =

true | false
{ and;y; noriyy §
and true | true
nor false | false
both* true | true
neither true | false

(*this is impossible but knowledge of this fact is unnecessary for the argument)

The effect of and,,, nor;yy, and;,; and nor;,3 on the truth of mazand;, s > maznor;,s

given mazand; > maznor; can also be summarized as below. (Here the impossible combi-

nations have been omitted for brevity.)

mazand; > maznor; =>

true | false
§ and;y;, noris), and;s3, norisy

none true | false
and; 4+ true | true
nor; 1 false | false
and, ;2 true | true
and; 2,and, true | true
and;,3,nor,, true | true
nor;,3 false | false
noriy3,and;.q false | false
nor; 2, N0Ti41 false | false

S C ot T
PRI

.
)

-_—— -

s e

e - .

o T .
sle e la et m A

148

A similar (although lengthy) table can be made encompassing three and/nor value pairs.

We see from the two pair table that any two input bit pairs is an operator that can do one
of three things: it can act like an a; = b; = true bit pair (called (and) below), like an a; =
b; = false bit pair (called (nor}), or like an a; # ¥; bit pair (called (other)). From the above
table it can be seen that the binary operator @ = A, [if y = (and) then (and) elseif y =
(nor) then (nor) else z] describes the result of combining two adjacent columns. A case
analysis on all possible triples shows that this operator is associative. Using F(a;,b;) as
an abbreviation for if a; A b; then and elseif (a; V b;) then nor else other, it is therefore
possible to write ¢; «— a; @ b; @(®; <i|F(a5,b;)] = ((Jand)). The identity of this operator
is (other), and mazand; > maznor; = (@o<j<i = (and)). This is precisely what was needed
to perform a parallel prefix summation with constant-width data paths: an associative

operator with finite range and domain.

Use of a specification based on this operator will yield a network similar to that of Fig-
ure 6.3, except that there will only be a single parallel prefix tree, each bit’s carry will be
used directly rather than computed from the two parallel prefix trees, and (of course) the

widths of the data paths and the size of the nodes will be smaller.

6.3 Ripple-carry and Bit Serial Circuits

Consider our “standard specification” of Figure 6.1. If we apply the quantifier levelling of
subsection 6.2.1, we get:

vVo<i<n-1
e = 0; @ b () (maxa; A b;] 2 max(~ (a v b))

If we change this to

et LT

T e e ST i "_. A I ‘.',A. . .‘_.." e '."A. ".:'..' LRSS

EUREE Y

L. . AT
e e e e e e o e e n : L . A e TN T T
A A T T A A, W AP L et N e T e e g e S adalatalatavaiatlal

RAATIC A IMCAN A s At AT S b v St e jaidcah daiiins e e e B it A RS ASRA S B RN A ALy

carry_; « false
YVo0<t<n-1
. . d > ~
carry; — x’x_lgs[a, Abjl > rzu(u'([(ar Vv b))
vo<i<n-1

&G =a; ® b; ® carryi—;

we can repeat the reasoning of the first part of the last section, obtaining the recurrence

relation. This gives us

carry_ «— false
e Vo<i<n-1
carry; — (a; A b))V (carryi_y A (a; V b;))
Vo<i<n-1

ei = a; Qb X carryi_y

This is logically identical to the gradeschool specification of Figure 6.2. More importantly,

it can be transformed into

PC istype PROCESSORS (§),0 <i <n—i
HAS Cs
© HEARS PA (USES a;)
HEARS PB (USES b,)
HEARS Pcy;_; (USES carry;_1)
TALKS . .
Pecy istype PROCESSORS (i),-1<i<n -1
N HAS carry;
if « > 0 the.. HEARS PA (USES q;)
if i >0 then HEARS PB (USES b;)
if 1 > 0 then HEARS Pcy;_; (USES carry;-3)
if i<n—1 then TALKS Pcy,+1 (SENDS carry)

(in Pcy_1):

carry.y « false
(in Pey;, 0<i<n-1):

carry; — (a; Ab;)V (carryi—1 A (a; V)
(in PC;, 0<i<n-1):

¢ — a; @b @carry;

. NN . -
» et v - L P P e M S DT RS S I Y R el S - . - e e e s
NS BT, VTS G RS S ES N S ST T S Y Wl AT AT PR SGTRY SR TN W W A e MR L P P

............

Yy w yor holnl AR i e ot dha oflh - SHCuL el sid A A Akl
A i NAN Senarn s i giedea s aaca e ANl e At 0 el ta A B A At A adiiet i et Sat it ol AR A Lole’ datalntt i ulia> it ! e

;

150

using the methods of crystalline synthesis described earlier in this thesis. A diagram of

the resulting parallel structure (after explicating ali values internal to the computations)

is shown below.

4(»-0 ()4 <) ¢ b

aee /a/se

>
>
»—

Figure 6.4: Ripple Carry Parallel Structure

The aggregation of Section 3.3 is then applicable. This technique replaces a related series
of processing elements by a single element that receives a series of related data. The circuit
of Figure 6.4 is an indexed series of identical modules, and identifying corresponding nodes

of the series of modules gives the bit serial addition circuit shown below.

— —_——.
e - — : f
' /\‘ . -~ S~ ! Ve
-, - - [) | e ae .
T el e e
- i — > -
- e - can —_—— —I8/se
T Y memEe it B
X A iR S e m— g w0
-t e e R0 2 R X — e oo
e O~ o~ fe8 1 [S
i—e—dz, = . P! :
—_— | —— | ——
: "
o .
. EA A.‘ d -“1 :. i —_—A, -\l A
' 3

Figure 6.5: Serial Adder

We have seen that quantifier levelling, recurrence relation analysis, crystalline synthesis
and aggregation together are sufficient to synthesize the three types of binary addition
circuit in common use. It remains to prove the identities used in quantifier levelling. We

do this in Appendix Section C.

We have seen that the use of general mathematical identities considerably increases the

power of TRANSCONS to synthesize VLSI circuit topologies.

Chapter 7

Conclusions and Summary

7.1 Overview

TRANSCONS is a collection of tools and methods for creating parallel structures from first
order logic specifications. This collection of capabilities interacts in various ways to act
as a VLSI assistant. We have described the three major divisions of these abilities in the

body of the thesis and will summarize them below.

We have also described, and will summarize, the theoretical framework in which a VLSI
synthesis system must work. This includes models underlying the various structures that
can be created, the theory needed to justify the application of some of the transforma-
tional rules of TRANSCONS, and the underlying assumtions that justify the incorporated

heuristics.

In this chapter we summarize this thesis by stepping back and describing its results, its

main points, suggested future lines of research, and the meaning.

L
4

R R SRR T e B 08 ot

~ v ¥y I ¥ s oAGgp s
Ve el . '

-
0

Lo

7.2

RS OE B A A SR Sl A A N A A e A i - e A iRt St e it St gt R

Essential Points

We claim that we have devised theory for the following forms of transformational synthesis

of concurrent structures:

........
.....

creation of lattice-like arrays of processors from specifications in a very high level

language resembling first order logic;

modifications of intermediate forms synthesized while creating lattice-like arrays by
several techniques called aggregation, virtualization, communication reduction, and
chain creation to improve the lattices that eventually result from some that it would

be impractical to build to others that would be practical;

creation of tree structures of processors from FOL specifications using a variant of
D&C in which only certain ways of combining problems’ partial solutions are per-

mitted;

use of closures, or communicable functional objects, to facilitate reasoning about
bidirectional communication. Instead of reasoning about a measage from A to B,
reason about a closure sent from B to A. This enables a later transmission from A4

to B whose effect has already been studied by the closure synthesis process;

combinations of any of the above, using user supplied aggregations.

We further claim that this is done in a manner so as to facilitate use of expected

future advances in theorem proving technology.

We further claim that, using these techniques, a system can be built to do all of the

following on a practical basis:

synthesize regular interconnections of regular arrays of processors, together with pro-
grams for the processors, to perform interesting and useful computations which are

specified in a very high level language similar to first order logic;

e

[.—r-\ LR A Sl el s o Y Sl i

e synthesize systolic arrays;

® e synthesize tree interconnections of processors;

o synthesize lower level specifications from any of the above, in some cases down to

something suitable for direct VLSI implementation after a placement and routing

o algorithm (not discussed here) has been run.
g
TRANSCONS will be an effective tool for allowing integrated circuit designers to cope with
. ¢ the million gates that will shortly be available on a single chip in a manner that does not
E merely provide larger versions of circuits already available. Automatic programming tools
'(have the ability to bring problem decomposition and program combination knowledge to
]

bear on the task of synthesizing programs too large and complex to write by hand. In an
analogous manner, TRANSCONS’s ability to bring processor interconnection and problem
decomposition knowledge to bear on the task of synthesizing VLSI will make possible the

creation of accurate integrated circuits too complex to create by hand.

7.3 Foundations

There are several fundamental points upon which this work rests.

In order to rationally discuss the synthesis of concurrent systems, we must have at least
one computation model in mind. TRANSCONS has a series of four models, each more
restrictive, more descriptive, and able to use simpler processing elements than the previous

one.

There are transformation rules dealing with processor assignment. We initially make very
simple assumptions of how things will be organized in a parallel structure, and refine these

with other transformation rules.

...............

.....................

..........................
................................

..................

154

The models, processor assignments, and refinements are three fundamental parts of

TRANSCONS that we have described in previous chapters and will summarize below.

7.3.1 Models

We distinguish four types of processing elements for which it might be desirable to write
specifications. These models of processing elements occupy positions along a continuous
spectrum of minimum complexity to implement. They range from models that require
a general purpose processor capable of rapid “context switching” among several loosely
related jobs and having sufficient memory to keep track of each of the jobs and associated
data, down to one whose minimum processing element would be a latch connected to a

minor piece of combinatorial logic such as an AND gate.

The first part of TRANSCONS transforms a supplied specification from its FOL form into
a parallel structure that meets the requirement of the first model only. Following this, a
series of transformations can proceed from model to model until the lowest level in which

the specification can be solved is reached.

We provide the multiple models because it is not always desirable or even possible to
transform a specification to the lowest level. Each level corresponds to an implementation
decision that can be correct under certain assumptions of component availability, future

transformation of the output by other systems, and finality of the design.

...........

~
-

R AT
P
T

P I I -

. -
'7{':?: 'r’
P

r*s
.'l'l
1)
r
‘rr

"f‘l
¥ el

P
8 4
. I..

e
2

...........................

7.3.2 Processor Assignment

The fundamental unit of responsibility in parallel structures that TRANSCONS synthesizes
is the array element. If two processors cooperate in any way to produce part of an answer,
that cdopera.tion must be expressed as use of values computed in one processor by another.

Such uses of communicated values constitute the fundamental unit of computation.

When the specification is delivered to TRANSCONS, it may not be possible to isolate
a natural array around which processors can be multiplied. In such a case, whenever
there is enough work to make it profitable to split the problem among a large number of

processors, there must be a reduction operation within the specification that generates a

series of intermediate values. The technique of virtualization, or explicating the multiple
assignments to this variable into assignments to different elements of a corresponding array,

can be applied.

If the result of applying TRANSCONS to a specification produces a parallel structure that

has more processors than desirable, the technique of aggregation can be applied to group , - _!

together processors that perform similar operations on different data at different times,

and arrange for all of the computations in each group to take place in a single processor.
There is an aggregation that reverses any virtualization, but when one aggregation can be . «
performed several can be performed (on any but a one-dimensional structure). We have
found the technique of performing a virtualization, and then an aggregation that merges

diagonal groups of processors (picturing the array of processors geometrically) to be an

3 effective technique for producing one- and two-dimensional systolic arrays.

.....................
.....

v Al) s) qui/Sn S St il o A Ae i S e e i Al NRAs b ha 0 An e 0iin R Al S Rt a2 et k. ullng S Sl Gl Sl S Nk R G

156

7.3.3 Connectivity Restructuring

After responsibility for computing array elements is allocated among processors, there
is an immediately suggested network of interconnections among the processors, i.e., the
particular network that has a wire running directly from the processor computing each
datum to each of those processors needing the datum. If this structure is satisfactory, the
synthesis process is complete, but in none of the problems we examined bas this obvious

network been satisfactory.

Two solutions to this problem are reduction of snowballing induced sets, and chain forma-

tion.

Snowball reduction involved the discovery that there is a series of processors, each of which
requires (in part) some of the set of values required by its predecessor, if any, plus that

computed by that predecessor itself. If this and several other minor conditions are met,

the set of connections in which each proceasor is connected to all previous processors in - . g
the series can be replaced by the set of connections in which each processor is connected

only to its predecessor.

When a large number of processors each need to be connected to an 1/O processor, we fj_

have an opportunity for chain formation. If it can be established that the set of values

required from this I/O processor falls into groups such that each value in each of the jzi:
- (

groups is required by a distinguished group of processors, then it is possible to first form T

those groups of processors into a “bucket brigade” chain and then to introduce the values

required by the processors in the chain at one end only.

Another opportunity for chain formation arises when the acceptable time for delivering the
distributed result of a computation to the 1/O processor is sufficiently large to allow the -".-f.t‘_;
processors to form a bucket brigade to deliver these results rather than having each do it SR y

with its own connection. In this case the collection of processors into groups is arbitrary. RO

.....
Y

DA AP IPURS DI AR S T

Pt Dt it i Bufoie ' Net el by Ao e i Ba gy
* . .- . .. -' ‘

157

7.3.4 Divide & Conquer, and Closures

Many specifications are amenable to solution by parallel structures in which the processors
are connected in a binary tree. We use D&C to find tree solutions where they exist. The
temptation to do this, of course, is the commonality of form between the nodes of a call

graph that would result from execution of a program that fit the D&C scheme and the tree

SRR
2

structure.

We have isolated several problems that frequently arise when we try to perform such a ; h

synthesis in an obvious manner. In some cases a simple D&C solution would require

solution of half of the problem before solution to the other half can be attempted. In other
related cases each half of the divided problem can be solved without reference to the other
but combination of the two halves’ solutions requires significant work. In yet other cases
the combination requires the handling of significant data in processors close to the root. All
of these problems can be met by changing our view of the problem. For some specifications

several D&C solutions are available, but each has one of these three problems.

Instead of considering our task to be computing some array from some other array, we

consider our task to be the computation of a functional object which, when applied to

a given argument list, produces the desired effect. In the many cases we explored, this .‘;-l s

solves the group of problems described in the previous paragraph. In addition, this solves
another problem facing the use of D&C to synthesize tree structures, i.e., the fact that real l__,!
problems often require communication both up and down the tree but D&C seems suited \
to reasoning about upward communication only. It solves this problem by allowing the R

upward flow of a closure to stand for the downward flow of information.

It is possible to implement a structure including closures using the highest level model of
TRANSCONS. We do not wish to leave closures in the finished product, however, because

closures’ implementation requires extra communication and also requires the structure to

o . . Pt P T S L T I B P WL R, ST

....... ey R A e e I T ~

F‘“.‘.".“‘.‘.-"". AN St i) S e Tae o) be i il e e A e e CpaCRaciia ek a e bt A O SN LR e i E S A C A C M SRR

158

be implemented in this highest level model. We therefore provide methods for removing the
closures, modifying a parallel structure that contains them into one that contains explicit
communication, replacing the information that flows from the closures’ recipients to the

hosts when they are applied.

The closure can be used to make D&C a more powerful tool for program synthesis, as well
as for making it a practical tool for concurrency synthesis. A frequent difficulty in using
D&C, even for sequential program synthesis, is the synthesis of the combine operator, i.e.,
the program to handle the boundary conditions when combining partial solutions. If we
augment the specification to require that the solution to each subproblem supply both the
desired information and a closure that performs the gluing operation at the boundaries,

the synthesis task becomes easier.

7.3.5 Miscellaneous Techniques

If TRANSCONS is limited to a few specific techniques it will not be a very useful tool. It

will synthesize a limited set of parallel structures from their specifications, but it will not

extend well because it will not enjoy the use of general mathematical knowledge.

;;‘ We show, however, that general mathematical knowledge can work well with the
{ | TRANSCONS concurrency knowledge to produce better parallel structures than would
Ll ?, otherwise be achievable. In one case, the synthesis of networks for solving a version of
F. the Connected Components problem, use of set theory axioms and axioms describing the
: transitivity of the “same connected component” relation is vital. In another case we ex-

plore, the synthesis of circuits for the addition of binary integers, we show purely algebraic

techniques without which n bit integers required O(n?) computing elements to solve. The

use of a series of techniques allows this to be successively reduced to &(nlogn) and then

Ratbate el A A S A AL LA AEMES LWL AL LA T OO QR T O TR et TRT T T G S R PSS T VTN T TR TR TR TR T R TSRy VT

< 159

to ©(n). Further techniques allow the direct synthesis of a slower network with 6(n) el-

ements, and the use of aggregation allows this to be reduced to & circuit with a constant

o
amount of logic.
L 7.4 Future Work
e There is a lot of effort required before this work can be considered complete. We will
describe this work from the most direct extensions of work already performed to that
portion most requiring future theoretical findings. The latter part will be described in
) more detail under separate headings.
(
First, some of the basic knowledge of TRANSCONS has to be codified. Recent improve-
1' ° ments to the CHI system to improve the efficiency of knowledge storage and retrieval, and
| facilitating inclusion of theorem provers, impel modifications to the crystalline synthesis
section. The tree rules and data structures exist only in the most rudimentary form because
' ° of the newness of the conception of the use of closures for this purpose.

This will yield a TRANSCONS in which the designer has a savant assistant at his dis-

posal, but (s)he must supply assertions and inventions at critical places. The inclusion

of backwards inference, or the inference of the form of a functon from assertions about
its behavior, will make especially the tree synthesis portion of TRANSCONS much more ;':.f-

- capable of performing on its own.

There are also four more important extensions to the framework that require some fun-

(damental work. When this is done, we claim that the new rules will mesh well with the

prototype system.

IR R TANE N R
e R T RN

R T g YT R,

—— -~ o TV Y Y Y, Y, Waav Y v v v
»
t.
Bt
L,
-
AR
I.'

160

7.4.1 Routing Problems

Suppose we need an implementation of the APL statement A[I] = B, where all are vectors
and where it is known that no two values of I are the same but all are within range. In
short, suppose we want to perform a general permutation where each processor knows
where to send its value. (The similar case, A = B[I], in which each processor knows where
it wants to get its value from, can be handled by asserting that each processor knows where
to send a closure to and having the closure accept a value.) This problem is closely related

to sorting.

There are several parallel structures for the permutation/sorting problem. Particularly
well-known structures include the flashsort [ReV82], Batcher’s Sort [Bat68], and an in-
teresting relatively new one [AKS83]. These are all couched in the language of sorting.
There is also a Benes network available; it takes longer to compute Benes network set-
tings than it takes for the other networks to work, but once the settings are computed
the permutation is faster [NaS82]. The settings can be represented by a word slightly
smaller than twice the size of a processor ID (and they can replace the latter, which can
be computed from the former). This can be used when the same permutation will be used

repeatedly.

We have a situation that the data flow information would seem to require a complete
interconnection among the processors in the case where each of the processors holds one
of the values to be permuted and is expected to hold one possibly distinct value after the
permutation. It requires deeper knowledge than flow analysis to derive a net such as the
shuffle interconnection that is less than complete, but that can accomplish a permutation
rapidly. Codification of what it is that a person does when he proves that a smaller network

can be adequate for the job, is a good subject for future investigation.

161 S ot

7.4.2 Average- vs. Worst-case Behavior

®
To develop a good practical solution to the permutation/sorting problem may require
ability to reason about average- vs. worst-case behavior. For example, there is an O(log n) :
e time, O(n) processor sorting algorithm with very reasonable constant factors that has b .
only one problem - it fails with small and asymptotically decreasing probability [ReV82)].
Another solution with the same asymptotic behavior and which never fails is described
¢ in [AKS83], but the constant factors are comparable to Avogadro’s constant, making an ;)

implementation obviously impractical.

I"T"‘-.' N

Our synthesis system should reject the latter solution in favor of the former in cases where
O(logn) time and O(n) processor count is required. We must solve questions of what
heuristics to use to generate such parallel structures in cases where sufficiently good worst-
case behavior can not be achieved, and when to accept the disparity and report the derived

circuit as meeting the designers’ requirements.

7.4.3 Efficiency Estimation for Parallel Structures

A third problem is extension and integration of an efficiency expert. It has been shown
[Kan79] that sequential programs that arise in practice can be analyzed and an estimate of
performance derived. This is especially true where the program is synthesized from higher .
level specifications and the synthesis process is designed with the needs of the efficiency
expert in mind. It is not known whether the same is true for concurrent specifications,

with interactions among processors making timing analysis more difficult and with more

performance criteria than sequential programs, but it seerns likely.

- '-."-'v'v.'v'-'x
e . e

" - - ' e e e e LT T P IO T S SR WY
.......................

RIS T S, R R S . SIS I, SV, N T S P, P AP DN S I B I S T ST 0 I I R I B St A 0 Yol MR I)

s 162 :
)
0 3
~ 7.5 Accomplishments o
_ o
| The main tangible accomplishment of this work is the beginning of TRANSCONS, a VLSI ..
B design assistant. Within the system’s limitations, a designer can write input/output speci- -::',::.'.::
fications in first order logic, guide TRANSCONS at some critical places, and produce a top :;‘E;:::
' level block diagram of a circuit that will have that input/output behavior. The blocks it b TR
uses are, themselves, specifications that can be exposed to the same process.
. TRANSCONS’s has two domains of applicability: The first is the synthesis of crystalline N,
ﬁ parallel structures that are, loosely speaking, those in which the various functional blocks T
or processors bear fixed relationships to their neighbors. The second is the synthesis of
g tree structures. LR
)) N
In addition to providing design functions, TRANSCONS provides a framework upon which '.':'_:'::'.'_
a structure of further analysis tools can rest. We demonstrate this by exhibiting a synthesis ’L
i‘ that depends on some forms from set theory, and another that depends on certain theorems <N
concerning quantifiers. These can either be entered by a human as axioms, entered as
hypotheses to be proven by an internal theorem prover, or found by the system using the :‘f::':::4
o e
' “weakest precondition” work of [Smi83b]. TRANSCONS is designed to grow by accepting <

new transformation rules, new heuristics as to what rules to select for application, or new

theorem proving technology.

D Ty . Lo Pl N R N e e LI S I A A S
Patararae rate Soate gt Bl BRI NPT o

Appendix

o A TRANSCONS Usage Examples

Ca g aa o

A.1 Usage Conventions for V

To enter a V program and start working on it, one starts up the CHI system in the manner
prescribed for your machine. Currently only INTERLISP/TOPS-20 and SYMBOLICS

36xx implementations are available.

! One can then give directives to the CHI system. Such directives are in the syntax of LISP,

except that in the function name position there will usually be the locution “# >” which

o has two purposes: it commands the underlying LISP system to interpret the input stream
according to V syntax rules, and it requests CHI to parse the V program into an abstract

syntax tree.

In what follows the numbers followed by a dot are prompts; they are typed out by the

computer.

1. (##> (the V program))

T
V analyzes the program and either accepts it, in which case the whole program becomes

the current node, or rejects it, giving an ervor message in which the location of the error

-

is highlighted. As with most compilers, the actual error can be in a different place from

where the compiler thinks it is. Unlike with other compilers, however, it is possible to

T v YYa vy yyywyy

get more information from the system concerning the location of the error. Simply type
S (resume) (LISP machine implementation) or (RETURN) (INTERLISP implementation)

to be shown another error guess.

......................

»:} 164

R
b
L
»

The basic operation on nodes is rule application. Other operations include focus changing
(to narrow the focus of attention from a whole program to one of its parts or vice versa)

and various methods of printing out nodes.

In addition to the current nodes there are named nodes. It is possible to make a named

node by suppling
2. (# > RULE programname (the rest of the program))

After doing this, the name programmname is attached to the node created by the reader. L

A node must be named to not disappear when you make a new current node.

There are several commands for manipulating the current node or named nodes, or for
printing them out in various formats. The HELP function of the CHI system will help you - B 4

find them, but we summarize some of the more important ones below:

(PUF) Prints the current node Using the F format (as a list of properties). Not

usually necessary except for TRANSCONS implementors.

(PUI) prints the node as a V expression (in the same format as it could be read

in). I stands for Infix notation.

(MCN L) . interprets a locator L and makes it the Current Node. L can either be
the name of a named node or a prototype, a number, or an index into the

current node. Such an index is either a positive integer if the current node

is a list, a property name if the current node is a general object, or 0 if the \

current node has a parent.

‘\

If the locator is the name of a named node or a prototype, that object
is made the current node. If the current node is a list, than a locator of
¢ makes the i** element of that node the current node. If it is a general e)

node having a property p than a locator of p will make the current node N

........

the value of the p property. Finally, a locator of O will select the parent of

the current node as the current node. L

It is quite possible for any or all of the last three types of selector to be N
applicable. ! .
PU can be used with a second argument. If this is done than the object v .

found by the locator is printed, not the current node.

The basic operation for making a named node is (DEFV (name) (type) #V ...). This
text should appear in a ZWEI buffer or a file and it should be EVALuated or LOADed,
respectively. Procedures for doing this are found in the LISP Machine Manual. Valid ! ‘
(type)s include RULEs, PROGRAMs, OPERATIONs and PROPERTYs. OPERATIONs
and PROPERTYs are primarily the concern of implementers.
i,“
RULEs are used to define input/output specifications for TRANSCONS (or any other
system implemented in CHI). The TRANSCONS system consists of CHI together with '
other files consisting of rules (and some properties and operations). -
v
A rule always has a name. Whenever a node to which a rule named name should be applied '--.’_.;’.
is the current node, incant (AR name) to apply the rule. The result of the rule application
will be displayed. (If the attempt at application was incorrect, and the rule didn’t apply !
to that node, the system prints “rule name did not apply”, instead.) R

A.2 Specific Rules for TRANSCONS

The first step in transforming a specification to a parallel structure via TRANSCONS is to
express the specification in V and enter it into the system. The process of entering the spec-

ification in V is briefly discussed here and discussed more fully in [Gre81], [BKPW84].

! TRANSCONS operates on specifications whose primary data structures are arrays. In
general a higher level data structure would be selected for expressing the task, so the
higher level structure has to be transformed. The Chi system, in which TRANSCONS is

| embedded, has facilities for performing this transformation. See [Kot84].

In the following discussion we will use the matrix multiplication problem to show the

various techniques and intermediate states. The initial specification is:

V.' ,l.e {1,...,“}
v;,j€{1,...,n}
Cij — Xhe1,...ny AitBij
To describe the bounds of arrays and of the various structures they are transformed into,

TRANSCONS has an enumeration object that is slightly less general than that of V to

i allow for easy handling by a theorem prover. This is described below.

A.2.1 Multiple Objects

The basic stuff of TRANSCONS’s parallel structures is the multiple object. Examples of
these include array elements, processors, and clumps of processors referred to by HEARS

clauses.

We use bound variable lists and enumerators to control these multiple objects. We do
not supply complete generality, because this would lead to certain problems in proving

theorems about the domains, ranges, intersections, unions and subset properties of the

L R A P

sets enumerated by these constructs. An example of an inadmissible form is

A istype ARRAY (bxc),beS, ceT

L J
The multiplication is inadmissible because admitting it would create problems where ques-
tions about induced sets would be undecidable. We limit the sets to those definable in
'. Presburger Arithmetic without multiplication, although we allow the bound variable of

an outer quantifier to be considered a constant in inner quantifiers. This turns out to be
slightly too restrictive because it is impossible to specify a tree finitely in this language, so

we also include special constructs designed solely to specify trees.

Valid bound-variable-list/enumerator pairs for object XXX are of
the form XXX (.m)*,(enumr)* where an (expr) is linear in all of the bound variables
e« of the enumerations and an (enumeration) is of the form (bound—variable) € (set), where
a (set) is in turn a set definable in Presburger arithmetic. This means that integer sub-
ranges and equality modulo a constant are the basic building blocks, and that definite

p (-] union and intersection are allowed.

A.2.2 Inclusion of ARRAY declarations

It is necessary to decorate the program with ARRAY declarations to allow for a proper

synthesis of multiple processors!. It is not necessary to declare all arrays; only those which

you would like the system to consider expanding into a multiprocessor configuration.

There are two methods for inserting the necessary ARRAY declarations. One is to edit the
ascii form of the specification (the one in the file) and have it reread by the CHI reader. An
alternative is to insert the ARRAY declaration at the appropriate point of the specification.
First the program must be enclosed in a binding block if it is not already in one. Then go

to some point in the bound variable set and use the command (: (arraydeclaration)). The

'In the future, this step will be automated, at least where the bounds of arrays can be determined at
Scompile time® by data flow.

o S e T e e - . . P - oo . .
L T R A E L S L T PN T UL
.....

N e L - 0 e RS RPN P e
L SRR ST . Uy R PP R I T I R SR S R WS S N T IR0 S P . S S

array declaration will be read by the V reader and inserted at the appropriate point. It is
conventional to place all of the array declarations at the beginning of the program, but it
doesn’t matter as long as they are at the appropriate level of block structure, usually the
top. We prefer editing the source because doing this documents the session in a permanent

form.

There are ordinary ARRAY declarations describing arrays of data that are computed
during the course of a problem, and there are I/O ARRAY declarations that describe
arrays of data that come from or go to the outside world. I/O arrays should always be
declared because there are important efficiency issues that will be ignored if they are not.
These issues are principally those of excessive interconnections being necessary between
the I/O channels and the outside world. It will never be assumed that an I/O array is ever
resident in more than one processor. For the matrix multiplication problem a proper array

declaration is:

bind
A lstype INBOUND ARRAY (ij) ,s€{(1,...,n}, j€{1,...,n}
B istype INBOUND ARRAY (ij) ,i €{1,...,n}, j€{1,...,n)
result istype OUTBOUND ARRAY (sj) ,s€{l1,...,n}, 5€{1,...,n}
C istype ARRAY (ij) s €{l,...,n}, j€{1,...,n}
do
Vi ,8 € {l,...,n}
V" »JE {l,...,ﬂ}
Cij «— Lrre(1,...n} AitBij
result;; «— C;;

The inbound and outbound arrays are declared separately. There is yet another declaration
for the C;; array because otherwise the system would not be willing to allocate separate
processors to the elements of the answer. This separate array is called a shadow array.
Shadow arrays can be created automatically by a rule named MAKE-SHADOW-ARRAYS.
Simply type (AR MAKE-SHADOW-ARRAYS) if a shadow array for each I/O array is

..........

‘ 169

desired. In this case (for simplicity of exposition) we choose not to do this; instead we add

a single shadow array by hand!.

®
A.2.3 Inclusion of PROCESSORS declarations
® After you include all of the ARRAY declarations for arrays that the system should ex-
E pand, you can have the system introduce tentative PROCESSORS declarations. An
alternative, to be discussed in a later Section, is to perform a virtualization, which must be
€ done before the PROCESSORS declarations are introduced. The rules that introduce

PROCESSORS declarations are called MAKE-IOPSs and MAKE-PSs.

The console session looks like this

A istype INBOUND ARRAY (ij) ,i €{1,...,n}, j€{L,...,n}
INBOUND ARRAY B;; ,i€{l,...,n}, j€({1,...,n}

3

! OUTBOUND ARRAY result;; ,i€{l,...,n}, j€{1,...,n}
i‘ C istype ARRAY (ij) ,i€{1,...,n}, j€{1,...,n}

s v;,i€{l,...,n}

X v;.5€{1,...,n}

Cij « Xrre(u,...n} AieBij
rcault;,- — C.','

. (AR MAKE-PSs)

INBOUND ARRAY 4;; ,i€{l,...,n}, j€{1,...,n}
INBOUND ARRAY B;; ,i€{l,...,n}, je{1,...,n}
OUTBOUND ARRAY result;;
C istype ARRAY (ij) ,s€{1,...,n}, 7€{1,...,n}
PROCO001 istype PROCESSORS (ij) ,s € {1,...,n}, 5€{1,...,n}
HAS C;;

V; ,8 € {l,...,ﬂ}

V,' ,jE{l,...,n}

Ci; — Xrre(n,..n} AirBij

Aan e st

—
'l Y

17To be strictly correct and to allow to use all of the ®intelligence® at its disposal, we should
probably have assigned separate shadow arrays to A;; and B;j, too. On a problem of this simplicity this
would be pedantic. There is a simple correspondence between the final result achieved by
after all rule applications when MAKE-SHADOW-ARRAYS is used and the one we will obtain here, but
the former is visually much more complex.

* .t - - Ve
A R S
ANV, B, V)

Cum a2 e
. e IR

L aRe ofn a'h S50 IR ol ol i e S T R
9

170

rcault.-,- “— C.'"
. (AR MAKE-IOPSs)

INBOUND ARRAY 4; i€{l,...,n}, j€{1,...,n}
PROCO02 Istype PROCESSORS HAS Aj,i € {1,...,n}, j€{1,...,n}
INBOUND ARRAY B;; ,i€{l,...,n}, 5€{1,...,n}
PROCO03 istype PROCESSORS HAS B;; ,i€ {1,...,n}, j€{1,...,n}
OUTBOUND ARRAY result;;
PROCO004 istype PROCESSORS HAS resulty; ;i € {1,...,n},j € {1,...,n}
C istype ARRAY (ij) ,s€{1,...,n}, 5€{1,...,n}
PROCO01 istype PROCESSORS (5) ,i € {1,...,n}, j€{1,...,n}
HAS C;;
Vi, i€{l,...,n}
V,' ,JE {l,...,n}
Cij «— Zapre(t,..n) AitBij
result;; «— C;; ’

There are several things to note: User input (shown in roman) is not case-sensitive, so

any combination of upper and lower case can be used. Output is shown in other fonts.

As present TRANSCONS uses GENSYM’s for processor family names rather than forming
elegant ones out of the name of the corresponding variable. Only the family PROC001

contains more than one processor. The USES and HEARS clauses have not been filled Rt

Mo
in yet. Ve
.
A.2.4 Adding the HEARS/USES Clauses .
s
After this it is necessary to add the HEARS clauses and their USES subclauses. The T
rule that does this is called MAKE-USES-HEARS. R
; TN,
The dialog continues... -1:::'.'::‘.

e o o on o o1

PP

. (AR MAKE-USES-HEARS)

A istype INBOUND ARRAY (ij) ,i €{1,...,n}, j€{1,...,n}
PROCO002 istype PROCESSORS HAS 4;; ,s€{1,...,n}, j€{1,...,n}
B istype INBOUND ARRAY (¢5) ,s€{1,...,n}, j€{1,...,n}
PROCO003 istype PROCESSORS HAS B;; ,i€{1,...,n}, j€{1,...,n}
result istype OUTBOUND ARRAY (s7)
PROCO004 istype PROCESSORS HAS result;; ,i €{1,...,n},5€{1,...,n}
HEARS PROCO001;; ,i € {1,... ,n}, 7€{1,...,n}
(USES C;; ,i€{1,...,n}, j€{1,...,n})
C istype ARRAY (sj) ,i€{1,...,n}, s€{1,...,n}
PROCO001 istype PROCESSORS (sj) ,s €{1,...,n}, j€{1,...,n}
HAS C.'j
HEARS PROCO002 (USES A;; ,k€{1,...,n})
HEARS PROCO003 (USES B,; ,k€{1,...,n})
Vi ,i€{l,...,n}
Vi ,J€ {1,...,"}
Cij ~ Lrre(1,..n) AieBr;
reeult.-,- — C.','

A.2.5 Clause Reduction: Simple and Complex

The next step is reducing the awesome connections to PROC004 (and those to PROC002
and PROC003 which become evident when the SENDS clauses are added). Normally
REDUCE-HEARS can be used, but it won’t work here.

. (AR REDUCE-HEARS)

Rule failed to apply.

If there were a clause eligible for such treatment, the operator would have used the CHI
structure editor to find the clause and add the reducible property to it. He would have
done this by using the editor to make the reducible clause the current node, applying the
rule MARK-HEARS-CLAUSE-AS-REDUCIBLE to the node, and then making the whole

» ..‘ < .
.’._.v,_-ﬁ-‘

g A AR S T A A A I Pt B e A s o A e R A AR A AR AT AT B e A A A A SALR A 2 L A T R e AR
AR Ll s oA Eall e ST W T T A A . - Bl SO T T 0 . B R I

£ 172 -
:.:Z; program the current node again. This was not done — there was no reducible HEARS
:':-: clause.

.
o

- The solution to this lies in a rule that partitions the induced sets of instantiations of a

HEARS clause in such a manner that the clause can be replaced by a pair of clauses;

»

i one clause to connect each partition to the outside world, and one that builds a chain
within the partition to distribute the data. The telescoping property [Kin82] is necessary

to validate the transformation; at present the operator has to give a little help.

. (PUT)

: A istype INBOUND ARRAY (i5) ,i € {1,...,n}, j€{1,...,n}
‘ PROC002 istype PROCESSORS HAS 4;; ,i€{1,...,n}, 5€{1,...,n}
B istype INBOUND ARRAY (s5) ,i€{1,...,n}, 5€{1,...,n}
PROC003 istype PROCESSORS HAS B;; ,i € {1,...,n}, j€{1,...,n}
result istype OUTBOUND ARRAY (ij)
PROC004 istype PROCESSORS HAS result;; ,s € {1,...,n},5€{1,...,n}
HEARS PROCO00,; ,i € {1,...,n}, jE€{1,...,n}
(USES C.',' ,$ € {l,... ,n}, JE€ {l,... ,n})
C istype ARRAY (ij) ,i€{l,...,n}, € {1,...,n}
PROCO01 istype PROCESSORS (i5) ,i € {1,...,n}, € {1,...,n}
HAS C;;
HEARS PROCO02 (USES A, ,k€{1,...,n})
HEARS PROC003 (USES B,; ,k€{l,...,n})
V; ,s € {1,...,13}
V" »J € {l,...,n}
Cij « L re(1,...n}) AitBij
rcault.-,- — C.‘j

. STEPS

(... lists the parts of the program

PROC001 istype PROCESSORS (i) ,s € {1,...,n}, 7€ {1,...,n}
HAS C;;

.......

r'_‘.r"\"-" e VT

HEARS PROC002 (USES A;; ,k€{l1,...,n})
HEARS PROC003 (USES By, k€ {1,...,n})

@
| . HEARS-CLAUSES
|
|
| (HEARS PROC002 (USES 4, ,k€({1,...,n)})
| HEARS PROC003 (USES By, ,k e {1,...,n)}))
®
1
)
" HEARS PROCO002 (USES A ,k€{l,...,n})
P . (AR MARK-HEARS-CLAUSE-FOR-TELESCOPING)

Please give a V expression for the telescopes
(# > PROCO002;, ,k € {1,...,n})

Please give a V ezpression condition for a processor to be connected to the
outside world

(# > PROC002,,)
Please give a pair of V expressions describing the connections

(#> PROC002;,) HEARS (# > PROC002;,_,)

The marking process causes no change in the appearance of the program under a (PU I).
The new properties are invisible. They would show up under a (PU F) performed when
the current node was the marked HEARS clause, and of course they are visible to the

rules.

Now that properties have been attached to the chosen HEARS clause two rules can be
applied. One rule, MAKE-CHAIN, produces a new HEARS clause building the chains
of processors; the other, INPUT-ONLY-AT-BEGINNING-OF-CHAIN, takes advantage of

this to reduce the power of the original clause by giving it a condition that makes it

..............

.--, TE O, e .
W
ta

»;: apply only to the processor at the beginning of a chain. This also moves the —USES
;“:'; clause, removes the now-spurious properties, and does a bit more housekeeping. There
L is an analogous rule, OUTPUT-ONLY-AT-END-OF-CHAIN, that reduces the power of a
i HEARS clause in an output device.

>

The function of exploiting telescopes to reduce a HEARS clause is split into two rules for

two reasons: the second rule is different for input and output, and it will not always be

necessary to perform both operations. If a chain is already there one of the I/O-ONLY...

rules can be applied.

The dialog continues. ..

. 0
. 0

. 0 to get to the top level (computer’s printouts omitted for
brevity.)

. (AR MAKE-CHAIN)

PROC001 istype PROCESSORS (ij) ,s € {1,...,n}, s€{1,...,n}
HAS C;;
if >1 then
HEARS PROCO01, ;_,
HEARS PROCO002 (USES A;; ,k€({1,...,n})
HEARS PROCO003 (USES B,; ,k€{1,...,n})

. (AR INPUT-ONLY-AT-BEGINNING-OF-CHAIN)

PROCO001 istype PROCESSORS (ij) ,s €{1,...,n}, j€{1,...,n}

HAS C;;
if 7> 1 then

HEARS PROCO001; ;-1
if j>1A5<n then

LINKS PROC001;;-,, PROCO0],

(PASSES Ai: ke (1,...,n})

if =1 then

..................
..............................

r?'_a,._'r. T Ehdari s St e diate et Jiliee it S A it iy I £ PO A ARl il S IR S e RO Al b e wai e) S e A A RIS A i iy

HEARS PROCO002 (USES A ,k€{1,...,n})
HEARS PROCO003 (USES B,; ,k€({1,...,n})

Voila! The size of the induced set of HEARS PROC002... has been reduced from O(n)

® to 1.

A.2.6 State of the Implementation

®)
We divide the state of the implementation into three parts; that which is done, that which

is just engineering and likely to be done within a few months, and that which may require

more serious thought.

.
Already Done
We have integrated most of the “prototypes” (internal descriptions of processor structures)
[
and rules for lattice synthesis, except for the selection of individual processors’ programs,
into CHI and have performed test syntheses. The places where a theorem prover is neces-
sary have been replaced by a dialog with the user such as “Is ... a theorem?” and “What
&
must the expression A be to make P(A) a theorem?”.
Immediate Next Steps
. Next we integrate the prototypes for tree structures, and those rules for same that do not
require backwards inference. A theorem prover, probably LMA, will be connected to the
(THEOREM ...) calls in the lattice synthesis section. There is one instance of backwards
] inference in the lattice synthesis section, but this need can probably be met with an ad hoe
procedure.
We will implement MightyMouse (see below).
L)
And Finally, ...
.

T M L. . - . e e T e e T T e e e . R WAttt
.................. . e e Y e et et P L AR A TR IR PR T . P TR

PRt b e S S i M

176

We integrate backwards inference, which will be able to find a form that has a given
property. This. is, of course, a difficult problem, but one in which some progress has been
made. Research is being done in this because of its importance to divide & conquer. See,
for example, [Smig82].

In addition we will supply rules for the rephrasing of array problems as closure computation

problems.

These steps together will make the tree synthesis subsystem complete.

A.2.7 MightyMouse

Exploring a fairly large program in Chi in general and TRANSCONS in particular can be

a laborious undertaking because of the need to move around the structure. To do this
the user has to know what property he wants to use for his descent. This is rather more
internal knowledge than we feel that a user should need; he should have a fair idea of what
text he wants to think about, but how the levels of the tree divide and what the names of

things are should not be part of this knowledge.

MightyMouse is entered by evaluating (mmouse) to edit the current node or (mmouse

(node)) to edit (node). When you do this, two panes will be flashed on the screen:

e the Position Pane, which is used for noodling through the data. This pane shows
a prettyprinted version of the data. Parts of it are “mouse-sensitive”. This means
that whenever you position the mouse so that the pointer points to a character, the
computer will know what commands apply to. The indicated text is the smallest
block of text corresponding to one tree node that includes the character pointed to

by the mouse.

.............

177

When you “click” on indicated text a tree node is chosen as follows: the left button
selects the highest tree node represented by the text, the middle button selects an
intermediate node, and the right button selects the lowest. If there are more than
three choices and the middle button is used, a menu “pops up” that invites the user

to select a choice.

Once a node is selected a menu pops up with several options: you can make the node
current, select a subnode, select a supernode, change the value of the slot that the
node sits in, or choose to apply an applicable rule. Rules can be applied in automatic
or semiautomatic mode. In automatic mode, the rule is fully applied, i.e., it is applied
at all places where it can be applied. In semiautomatic mode, every time a pattern
match is successful the matching node is highlighted and the user can either click one
button to apply the rule, another button to skip that application, or a third button

to exit completely.

e the History Pane, which shows the last sixteen current nodes. You can make any one
of them current. The history pane remembers its history from one call of MMouse

to the next, so several unrelated data can be explored together.

B Correctness Considerations

Below we show the formal reasoning required to validate the primary rule that performs .
HEARS clause reduction. The motivation for this rule is the fact that the intercon-
nections inferred from the data flow information can be unacceptably rich. We want to

reduce these interconections, hence the name REDUCE—-HEARS of the rule primarily

BT DRI
PR
. PR .,
e e

responsible for this change. We want neither to cut off a processor from information it .;'.:'i';.-j.'
needs to compute its answer, nor to create such circuitous paths for data that the converted
architecture is significantly slower than the original. “Significantly slower” here will mean

“slower, by more than a constant factor”.

T e e e e e e e e e e T T e e SO e o, RSN e .
UL PR I WL T W U I, 0, AP kWP Y L. N b . . | L WP W e) s 3 o PO WU WS S WIS Wy ey vy

The REDUCE-HEARS transformation establishes a pipeline from one processor

through a series of other processors instead of a wire from the first processor to each x O
of the other processors. We intend to show that the use of this transformation neither e

renders the specification incorrect nor less efficient (up to a constant factor). We will use

Y e
I'I

T
two separate theorems. . PO
-
The first theorem claims that if a specification is correct, here meaning that all of the data
it needs to do its work is available at some time, than the specification resulting from an :
application of REDUCE—-HEARS will also be correct in this sense. The rule does not d .
cause other changes to the specification except for the replacement of HEARS clauses
with smaller HEARS clauses in combination with PASSES clauses. :
..
The first lemma to the second theorem makes a much broader claim than is necessary -
merely to limit this rule to a constant factor slowdown. It states that whenever there is :
a collection of processors such that the longest path length is I(n), the largest number of .
L 4
values computed in one processor is v(n), the highest in-degree of any processor is {(n) and T
the largest amount of calculation per input value is c(n), the connections form a DAG, and
a couple of other reasonable conditions are met, then the runtime of the parallel structure
o
is at most O(s(n)v(n)l(n)c(n)). The second theorem will then claim that this establishes -
a speed-preserving property for REDUCE—-HEARS
rule REDUCE-HEARS (stmt) TRANSFORM ‘.
stmt: ‘PNAME istype PROCESSORS ($PDV) $SPENUMER...
if COND1 then
HEARS PNAMEsgpy SHENUMER
(USES UVyypv$UEN,...)..! o
A (THEOREM T
(IS1={HBV : HENUMER|PDV \PDV,]} i (1)
AISla={HBV : HENUMER|PDV \PDV,]} i (2)
AIS2={PDV : HENUMERA HBV = PDV} i (3) e
A PROC1 = {PDV}} i(4) o
A PROC2 = {PDV} ; (5) 'f_,'_T
A PROCh = {HEXPR)} ; (6) "
o

AC AR oM a B bt D p ANt i~ i A e e i A St s s it lt art At e i AR e P iR SA MO AR ARt sAS v S0l v g oo
- - - L) . . - - - e - - sl - ~ ~ - N . . - -

. 179 »,
A PROChi = (HIEXPR} (7 -
A (IS1NIS1a) € {® IS1 IS1a} i (8) -
® A((9 C IS1 C IS1a ACOND1) :(9) »
= IS1|UPROC1 = 152) ; (10) =
A(COND2 < CONDI1 A IS1|YPROCh = IS2) ;(11) N
A(~COND2 = APDVy[IS1 c {HBV : !
, HENUMER[PDV \PDV3)}]) :(12) &
e A (COND3 <+ COND2ACONDI1|PDV \HIEXPR)) : (13) '}

A(HIEXPR[PDV \HEXPR] = PDV))) ; (14) '

-
stmt : ‘PNAME lstype PROCESSORS ($PDV) $PENUMER ...

if COND3 then
¢ LINKS PNAMEsgexpr, PNAMEsgiExPR »
(PASSES UVyypy$SUEN,...)
if COND2 then .
_ HEARS FNAMEggxpr ... '
» 't"

(
X The intent of this rule, especially that of the call of the theorem prover that makes up its

bulk, is not obvious. We will explain it before proving theorems about it:

As in all TRANSCONS transformation rules, free variables on the left hand side of the
rule (in this case, everything above the “—”) are implicitly existentially quantified. The
objects IS1 through PROChs receive setformer-valued expressions, some of which (i.e., '}
PROCH) form singleton sets. CON D2 and CON D3 are instantiated to boolean predicates

with free variables chosen from PDV by a similar process. “Backward inference”, or the

e,

determination of the form of an expression from assertions about its value, must be used

in four cases; to get values for HEXPR, HIEXPR, COND?2 and COND3.

The setformer expressions of the theorem above give us sets of vectors of values, whose !
dimension is the same as PDV which is the vector of bound variables in the original PRO- .
CESSORS declaration. The subscripts on instances of PDV in the setformer produced

distinguished names, so (for example) if the first element of PDV is ¢ then the first element l

of PDV; is 1), a different object that need not unify to the same thing ¢ unifies to.

. R S e e e N - PSR L AN e R,
L Y Y P R D PP S S SR Yy Wy ey e e LAPU NP WP LA S S S GAL Sy . S Ty 2 L. L_‘-..:;_{-.}A.'-_AL‘ Ll Aol o s o A - o b

AD-R164 022 KIOHLEDGE-B!ISED TRRNSFORHHTIONRL SWITHESIS oF EFFIC!EIT 373
STR CTU ES FOR CO.. (U) KESTREL INST PRLO ﬁ 'l'0 CR
KING 30 SEP 85 KES. U. 85. 5 AFOSR-TR-8!
UNCLASSIFIED F49620-85-C-..15 /B 9/2

!\..‘....
I-...-.-.. .-..»(ﬂ
’ '

[
A L.'P
c-— -
. [
2 NI I
o~ -— d I3
= - -
== = c g
adaa -
3] 4«—____ m M
OR of - —— =
dAdd3a4.23 —— Hily 2z
= ? 3
—— (75—
o ci
. -— W) z?
— — N 8 :
. Q¢
— x *
— ——— — QL
_— == = =
%
o
b .u)
-‘ .‘-l
Vs
.T.CJ. ..-nv
% X
(Y] o
% LM
v A -
g ¥
. -l

.
2.

Theorem B.1 Suppose REDUCE—-HEARS applies to a given HEARS clause. Then
every processor of the specification resulting from the application will have all data avaslable

to it that the corresponding processor had in the original specification.

Proof: REDUCE—-HEARS applies to HEARS clause Hy. The THEOREM conjunct

contains a large conjunction that implies several things. By lines 1, 2 and 8 we have F',‘“‘T-_'j
N
that two induced sets of Hy (called IS1 and IS1a) are either disjoint or telescoping (one ‘

contains the other). By 1, 2, 3, 9 and 10 we have that if two induced sets telescope and

one is strictly smaller than the other there is a singleton set (called PROC1 which we can oA
add to the smalier one to make a different induced set (called /S2). Line 4 gives the name -
PDV; to the indices of the processor comprising the singleton set. Line 6 asserts that s ,
there is an index expression HEXPR that generates the singleton set PROChA and that] "*"
bas PDV for free variables, such that PROCHh indexes the processor that must be added

to IS1 to get IS2, and that this is possible whenever CON D2 is true. Line 12 asserts
that CON D2 is true whenever such a processor can be found. Lines 7 and 14 assert that
the HEXPR mapping has an expression that is its inverse, called HIEXPR, and line 14

asserts that a given processor is mapped into by the H EX PR relationship for some other

processor. It must be shown that wherever the original specification had a HEARS A DARAN
clause that allowed data to flow from point A to point B and satisfy a USES clause, the
new specification will have a HEARS C clause, and either C = A or there is an unbroken
cbain of processors that PASS the data from A to B. We will do this by induction on the —

size of the induced set of Hp.

If B HEARS one processor then clearly the only way to satisfy lines 8-11 is with that

processor as PROCh (and IS1 = @). If BHEARS more than one, then it hears 752 and :
by 9-11 there is a processor PROChA whose induced set is IS1 such that IS1w PROChA =)
IS2, so PROCMA’s induced set is smaller than IS2. PROCh therefore has access to the e

data it needs.

...........

A I M I RS A A Aot MO o At S AN A e i S AL A AR SN SEALACAR I P A S SIS S ST e e i

............

[\ 181

We further know that PROCh needs information available only from IS1 and from all
of IS1. The passes clause of the third line from the bottom of the rule assures that

o
information available to PROCh will be available to PROC?2 as well. This completes the
induction and the proof. g
T‘ Now we show that there is not too much of a slowdown assuming certain reasonable re-

strictions on the computation performed in the processors.

First we need a definition:

Definition B.1 Each processor performs a computation. The form of the computation can
be represented as a tree. Call the highest node(s) with ezecution time of O(1) outermost
fast nodes. Each outermost fast node is esther the highest node of the computation or ts
used an asymptotically nonconstant number of times. Call the sets of values used by the

several uses of outermost fast nodes fast sets.

It is clear that the size of a fast set must be O(1).

Now we can show that the asympt.cic performance of the parallel structure that results

from REDUCE~HEARS is equal (to a constant factor) to that of the unreduced parallel
structure.
Lemma B.2 Suppose there is a collection of processors such that the longest path length is

I(n), the largest number of values computed in one processor is v(n), the highest in-degree l.

of any processor is i(n), the connections form a DAG, and the fast sets are disjoint and i-._‘_-

contain at most one datum from each snput path. If use (by the enclosing node) of the

value generated by a fast node takes O(1) time, and if a processor that receives at most v
values on any of its input lines sends at most v copies of values that st has recesved on sts -

output lines, then all processors finish their jobs within O(i(n)v?(n)i(n)) wnits of time. We

. '» p ". }l /- ‘.l "n "l "' -
. PRI | L

...................

>

v
a

182 - ‘
R
sssume that during each time unit a processor can receive one value from each input, send :?::::l
vIada
one copy of a previously received value on each output, and do some computation. - :,:.i::
-»
-
A
Proof: By induction on the length of the longest path ending in a processor. Let F(P) o 1R
be the length of this path for processor P (the length of a path is the number of nodes z N

on the path, so F(g) = 1 if ¢ has no inputs). The induction hypotheses are: (¥1) that
P completes its work in O(i(n)v?(n)F(P)) time, and (¥2) that by F(P) + O(j) it has

received 5 values on each of the input lines that has that many values to send. Processor

P receives at most v(n)F(P) input values on each input line, and per (¥2) it will take at

most F(P)+ cark time units to receive rk values from an input line that is due to send k.

Suppose r = "."—‘-(53,0 <& < 1. After F(P) + cark it will bave received rk values, which is
all but ;-(}.’k, and by one time unit later it will bave retransmitted them all. This validates
(¥2) for processors in {Q : F(Q) < F(P)+1).

We have a second induction on the amount of time that has passed. Say the constant of

(¥1) is ¢1. €1 > c3 or processor P would be able to complete its work before it received all

of its input. If P must complete and use m fast node computations then (¥3) is that by

the time c;v?(n) F(P)£r)32 it will have been able to complete [sm] of them. The base case

s = 0 requires nothing, and at the time cw’(n)F(P)ﬂ.%? there will be at most [(1 - s)m] ::::'.E“_.-
fast sets for which all values have not been received. If ¥3 is true for a given s then it must -
be true for o + #; the information will be available by ¥2 and it will be possaible to use it e
sufficiently fast for some ¢, by ¥3.
6 DA

X1 is immediate from X3, and the theorem is immediate from ¥1. g e
Theorem B.3 The asymptotic speed of the result of a reduction s equal to that of the —
unreduced parallel structure. \"_
lj'.':::t::

‘-'}(:‘l

A

S S " T s it e

183

Proof: The reduced parallel structure finishes in O(i(n)v?(n)l(n)) units of time. For any
single reduced structure i(n) and v(n) will be constant functions, so it must only be shown
that the performance of the unreduced structure is no better than O(I(n)). But by the
snowballing property a chain of length {(n) can only have arisen if there was a processor in
the unreduced structure that receives I(n) values, which it would certainly require O(I(n))

time to process. g

C Quantifier Levelling Proofs

We used three identifiers on quantifiers during the quantifier levelling of Chapter 6. The
need for theae identies arises from the fact that we have a predicate with a quantifier whose
bound variable is bounded on both ends and which occurs in a context in which a series of
values obtained by varying dotk bounds is desired. The computation is expensive because
a two dimensional array of values is needed, and nothing analogous to a parallel prefix

operation is directly available.

The values that are found in this two dimensional array are by no means independent,
and with some manipulation the array can be “squashed” into a pair of vectors. What
we accomplish by the identities that we exploit in Section 6.2 and demonstrate here is
this squashing of the array by summarizing intervals over which predicates with bounded

quantifiers are true as pairs of integers.

We display the identities below and then give the proofs.
Vi<z<ulP(z) = x‘ng[P(z)) <! (V-to-maz)
Jz<u[P(z) A F(u) < 2] =3F(u) < z<u[P(z)] (constraint-to-binder)

3 < z < u[P(z)] Et.ng[}’(z)] >1 (3-to-maz)

.............

Theorem C.1

(Vi<z<u)[P(z)] = r'ng[P(z)] <1 (V-to-maz)

Proof: By convention, maz, < y[false] = —co where (Vi)[—co0 <s]. We have

max|P(z)] = y =P(y) A (Yy < z <u)[P(z)] (1)
and
max|P(z)] <y =(Vz < u){ P(z)] v Bw <y)[P(w) A (Vw<z<u)| P(w)] (2)

s o NP

These are from the definition of max, < ,[P(z)] as that z such that P(z) is indeed true and

. that P(z) is false for any z < z<u.
We also have
w<y<u=((Vw<z<u)| P(w)] = ((Vw<z < y)| P(W)A (Vy<w<u)[P(w)])) (3a)
(] and
y<u=((Vz<u)[P(z)] = (Y < y)] P)] A (Y <w <)] P(w)]) (3)

as these forms merely split a quantified predicate, which is a statement about a range of

i integers, into a conjunction of statements about portions of that range.
::. So (2) becomes:
i max(P(z)]<y= (V2 < y)| P(z)] A (Vy<w<u)| P(w)] R
i V(3w < y)[P(w) A (Vw<z < y)[P(z)] A (Vy<z<u)[P(z)] (4) DR
. Factoring (4), (and observing that the inner quantifier of (4) is independent of the outer - }'."-I";:;
. —
{ quantifier’s bound variables) we get R
max(P(z)|<y= (Vz <y)[P(2)] v (3w < y)[P(w) A (Vw <z < y)[P(2])]
i A(Vy < w < u)[P(w)] (5)
b
S
but the first conjunct of (5) is true by the definition of V in terms of 3, the law of the PR
AN
excluded middle, and the fact that any nonempty subset of a finite set of integers has a Ly

maximal element. So we have max, < 4[P(z)] < y = true A (Vy<w<u)[P(w)]. g

The next identity simply restates a singly boundedly quantified predicate which includes a
restriction on the bound variable of the quantifier as a doubly bounded quantified predicate

without the restriction. This is obvious from the definitions.

Theorem C.2

(3z < w)[P(z) A F(u) < z] = (3F(u) < z < u)[P(z)) (constraint-to-binder)

Proof: Immediate from the definition (3 < z < u)[P(z)] = (3z)[P(z) Al<zAz<u]. g

Theorem C.3

(8! < £ < u)[P(z)] = max[P(z)] >! (3-to-maz)

Proof: This is the dual of (V-to-max). g

D Theorem Reduction Forms

Below are the rules used to transform TRANSCONS’s (THEOREM ...) forms into Pres-

burger Arithmetic with restricted quantifier depth:

possible — theorem := sboolean | sboolean [A /V /=> etc. sboolean] | ~ sboolean

_|. aboolean 1= set = set | baet € explicit — set — of — sets | set D set
’ | |bsetl] + constant = |bset2] A bset2 D bsetl

: set = set [U/N/— oet] | dset

bset := (ordinary setformers)

The sufficiency of these concts can be argued from the following observations:

o Telescoping and Snowballing can be expressed in this language, provided the under-
lying sets are expressible with legal setformers. (This proviso will not be reated in

what follows.)

o The answers to value-flow questions (eg. REACHES) can be phrased in this form.
A node reachable from two places will generate a |J, an IF may generate an [} or an

i A or a —, and nested loops generate setformers with multiple bindings.

o A question of whether a processor from a given set is connected to a processor from
another given set can be asked in this form if the two sets of processors are expressable

by ITCONST rules.

We have a form, (THEOREM ...), where the argument is a V expression conforming to
the above syntax. Rules, to be displayed below, are used to reduce these expressions to
longer but simpler ones from P. A. This language is adequate for the REDUCE-HEARS
rule, which reduces the communication paths of an amenable network to a smaller one.

We claim it will prove to be adequate for future needs.
The form of a setformer is {{expr) : ((bvlist))(exprlist) | (predicate)}.

p (expr) is an expression linear in all variables of ((bvlist)). ((bvlist)) is a list of variables.

A (lexical) binding scope is created for each variable that includes the whole set former

tan. . S ah el Tt I B Bl B B

187

(and no more). The (exprlist) had better be a list of expressions. For simplicity we require
that each be of the form bv € set where bv is from the (bvlist) and set is itself either an
admissible set former, an integer subrange, or the finite union/intersection of the above.
“|(predicate)” is optional, but where present it is a boolean expression. (When not present,

“true” is used.)

The (THEOREM ...) function receives a general V expression and applies the transfor-
mations given above until no change. It passes the result, a P. A. expression, to the real

theorem prover.

Below we list the rules for converting forms from the (THEOREM ...) language. The
4 transformations below all preserve semantics. If we group the allowable connectives as
follows: |setl] + {(const) = |set2|...,U/),E,=,D we can easily observe that the trans-
formations below always strictly reduce the number of occurences of the highest ranked
) connective that they touch at all. Since an instance of the highest ranked non-P. A. form

in an expression is always reducible, the process terminates with no such forms left.

Each of the rules given below performs some of the reduction by decreasing the number
of places it applies without increasing the number of places that rules appearing earlier in

this list apply.

rule SPECIFIC-SIZE-DIFFERENCE-SUPERSET (s) TRANSFORM
8 : ‘||setl]| + (constant) = ||set2|| A set2 D setl’

-
8:'3X1,X,. .. Xiconat)V1 < 6,5 < {conet)
\ [Xi# X;AVy€set2y€ceetlvVY =X VY = XaV...VY = Xeonm]l'

rule TEST—-IF-ANY-EQUAL (¢) TRANSFORM
s:'z€ {Vhw, (XX ,VG'},

—

s:'z=yVz=pV...Vz=¢y

rule SETFORMER-INCLUSION-TO-FUNCTION-TEST (s) TRANSFORM
o ‘{Fl(bg) hen | Tx(h)} D {Fg(bz) : by € 82 I Tg(bz)}'

—

8: ‘Vb;[heagA T;(bl) — 353[63 €A Tg(bz) A F;(bl) = Fg(bg)]]'

rule SET—- = -TO-2-WAY-INCLUSION (s) TRANSFORM
8 : ‘setl = set2’

—

8 : ‘setl D set2 A set2 D getl’

rule EMPTY -SET-FROM~-SETFORMER (s) TRANSFORM
o:(F(d): (b)bes|T(R)=9

o : Vbb ~€E 8V ~ T(b))'

rule UNION-TO-OR (s) TRANSFORM
s:‘aezly

—

s:'‘a€zVacey

rule INTERSECTION-TO-AND (s) TRANSFORM
s:‘aczNy

-

s:‘a€zNhacy

rule INTEGER-SUBRANGE-MEMBERSHIP-TO-INEQUALITIES (s) TRANSFORM
s:‘a € {low... high)
—
8:'a>lowAa< high'

rule MEMBER-SETFORMER (s) TRANSFORM
s:‘ac{F(b):bes|T(d))
-

s:3bjbe s AT(d) Aa= F(b))

S S
W R

SR,

L
—
o

(]
B
2]
W J
T o
=]
| B b
)] > ;'
= =]
. s ™ 7
&y~ I ...w
Be 2]
]) ol
T8 3 b
s % 5
M v = .
T = "]
_ RS i
M - - 4
o S, D
5 & < i
. <= o gy
;) w -
. iv s X
5 g e D i
: 5% % %
L]
3

N

it
o -':n")

-
)

¢ o

..

& g ainacy
-

°
L
.
-
o
{
r;'::‘

- - e .
- . e e e ot ot . e R 4 % b _S_ . .4 WA s o se o WLy 4 S L Tl M WRL.taTa A A LA . s e

190

References

[AUI72] Aho and Ullman, “The Theory of Parsing, Translation and Compiling”; Volume

& 1, Prentice-Hall, pp. 314-320
: [AHU74] Aho, Hopcroft and Ullman, “The Design and Analysis of Computer Algorithms”,
i Addison Wesleypp. 67-68
[[AKS83] M. Ajtai, J. Komlés and E. Sgemerédi, “An O(nlogn) Sorting Net-
: work” Proceedings of the 15* ACM Symposium on Theory of Computing, pp.
- 1-9, 1983
9. [AGT9] W. Armstrong J. Gecsei, “Architecture of a Tree-Based Image Processor” Tech

Report, Univereity of Montreal, Publication 291, 1979

[AHe77] R. Atkinson and C. Hewett, “Synchronization in Actor Systems” Symposium on
Programming Languages, Jan 1977

[Bar82] C. Bartet, “Policy-Protocol Interaction in Composite Processes” MIT AI Lab ~
Memo 692, September 1982 e

[Bat68] K. Batcher, “Sorting Networks and their Applications® AFIPS Spring Joint - ., K|
Computer Conference, pp. 8307-814, 1968 R

[BKu79] J. Bentley and H. Kung, “Two Papers on a Tree-Structured Parallel
Ny Computer” Carnage-Mellun Unsversity Tech Report CMU-CS-79-142, Septem-
® ber 1979

[BLe82] Sandeep N. Bhatt and Charles E. Leiserson, “How to Assemble Tree Ma- .’;-.:"t::'i
chines” Proceedings of the 1{** Symposium on Theory of Computing, pp. 77-88, SN

3 1982 ~

A -t
’_j [Bro82] Thomas C. Brown, “Inference Requirements Analysis and Implementation Pro-

o posal for Two Synthesis Rules”, Kestrel Tech Report #KES.U.82.10, 195,

ax Chapter 2

[Brw80] Sally A. Browning, “The Tree Machine: A Highly Concurrent Computing Envi-
ronment”, California Institute vf Technology Ph. D. Thesis, 1980

”~

L SN N R e gAY

Y

191

(BSdJ82] R.Byrd, S. Smith and S. de Jong, “An Actor-Based Programming System” IBM

[CMiTe)

[CMe82]

[Cho-82]

(Chu51]

[Cla78]

[Cli81)

[CLW79)

[CooT2]

[CRi81)

[CPa82]

|Den75)

[DoD83]

[Edw78]

[Fic83)

Research Report #RC 9204 (#40424), January 1982

K. Chandy and J. Misra, “Specification, Synthesis, Verification and Perfor-
mance Analysis of Distributed Programs; a Case Study; Distributed Simula-
tion” University of Tezas, Austin Tech Report TR-86, November 1978

M. Chen and C. Mead, “Formal Specifications of Concurrent Systems” Technscal
report 5042:TR:82, California Institute of Technology, 1982

Y. Choo, “Hierarchial Nets — A Structured Petri Network Approach to Concur-
rency” Cal Tech Report TR:5044:82, November 1982

A. Church, “The Calculi of Lambda-Conversion” Annals of Mathematical Studies
6, Princeton University Press

E. Clarke, “Concurrent Programs are Easier to Verify than Sequential Pro-
grams” Duke Unsversity Tech Report CS-1978-6, July 1978

W. Clinger, “Foundations of Actor Semantics”, PhD Thesis, MIT AI Lab Tech
Report AI-TR-633, May 1981

K. Chung, F. Luccio and C. Wong, “A Tree Storage Scheme for Magnetic Bubble
Memories” IBM Research Report # RC 8116 (#34797), December 1979

D. C. Cooper, “Theorem Proving in Arithmetic Without Multiplica-
tion” Machine Intellegence # 7, 1972, pp. 91-99

L. Clarke and D. Richardson, “Symbolic Evaluation Methods for Program Anal-
ysis”, from Program Flow Analysis, Theory and Applications, 1981, Prentice Hall

K. Cil and J. Pachl, “Folding and Unrolling Systolic Arrays” Unsversity of Wa-
terloo Research Report CS-82-11, April 1982

J. Dennis, “First Version of a Data Flow Procedure Language” Project MAC,
MIT, May 1975

Department of Defense, “Software Technology for Adaptable, Reliable Systems
(STARS) Program Strategy” ACM-SIGSOFT Engineering Notes, Vol 8 # 2,
April 1983, pp. 56-84

N. Edwards, “Configurable Pipelined Application Logic Systems” IBM Research
Report # RC 7818 (#81451), September 1978

Faith E. Fich, “New Bounds for Parallel Prefix Circuits” Proceedings of the 15h
ACM Sympostum on Theory of Computing, pp. 100-109, 1983

[FPa80] M. Fischer and M. Paterson, “Optimal Tree Layout” University of Washington
Tech Report 80-08-02, February 1980

[FiR71] M. Fischer and M. Rabin, “Super-Exponential Complexity of Presburger Arith-
metic” Mit Tech Report MAC-TM-48, 1971

[GPa83] Z. Galil and W. Paul, “An Efficient General-Purpose Parallel Computer” Journal
of the ACM, vol. 80 #28, pp. 860-887, April 1983

[Gal80] C. Galtieri, “Architecture for a Consistent Decentralized System” IBM Research
Report #RJ2846(36132), June 1980

[GCP81] Cordell Green, Daniel Chapiro, and Thomas Pressburger, “Research on Synthe-
sis of Concurrent Computing Systems”, 1981, Kestrel Tech Report

[GKT79] L.J. Guibas, H. T. Kung and C. D. Thompson, *Direct VLSI Implementation
of Combinatorial Algorithms” Procedings of the Caltech Conference on VLSI,
January 1979

[Gre81] Cordell Green, et. al., “Research on Knowledge-Based Programming and Algo-
rithm Design — 1981”, 1981, Kestrel Tech Report # KES.U.81.2

[Gri75] P. Griffiths, “SYNVER: An Automatic System for the Synthesis and Verification
of Synchronous Processes” Harvard PhD Thesis and Tech Report TR-20-75, June
1975

[Hac75] M. Hack, “Decidability Questions for Petri Nets” PAD Thesis, MIT MAC Tech
Report MAC-TR-161, December 1975

[Hai81] B. Hailpern, “Modular Verification of Concurrent Programs®IBM Research Re-
port #RC 9130 (#39971), November 1981

[Hal78] R. Halstead Jr., *Multiple-Processor Implementations of Message-Passing Sys- - --‘
tems”, Masters Thesis, MIT Tech Report MIT-LCS-TR-198, January 1978

[Har80] S. Harbison, “A Computer Architecture for the Dynamic Optimization of High-
Level Language Programs” PhD Thesis, CMU, Tech Report CMU.CS-80-143,
September 1980

[Hil81] W. Hillis, “The Connection Machine (Computer Architecture for the New
Wave)” MIT AI Memo 646, September 1981

[HMs83] P. Hochschild, E. W. Mayr, and A. Siegel, “Techniques for Solving Graph Prob-
lems in Parallel Environments” Proceedings of the 24** Symposium on Founda-
tions of Computer Science, November 1983

B TR U S e e Te Me N S TR, T T e, el
C T e GTe T T T e e RO Pt et e el el le N et
. .'-._'_-.'_-"_-.':-, S e ey "\‘.‘-:.'y.i"p“}:._"\ P T T I G WY TP W I i, Sy

LN I bt Se e el i e S S e A S et e L ant Ll St A et et ds S SRS R R A ARSI T T AR R R A S A R B e g

. 193

[HMS84] P. Hochschild, E. W. Mayr, and A. Siegel, “Parallel Graph Algorithms” Stanford
Tech Report STAN-CS-84-10£8, December 1984

A4 [Hoa78] C. A. R. Hoare, *Communicating Sequential Processes® Communications of the ®. ..
ACM Vol. 21 # 8, August 1978, pp. 666677 -
[Hwa79] K. Hwang, “Computer Arithmetic; Principles, Architecture and Design”, John
° Wiley & Co., 1879

[Kan79] Elaine Kant, “Efficiency Considerations in Program Synthesis: A Knowledge-
Based Approach”, Stanford Ph. D. Theeis, 1979

[Ken81] K. Kennedy, “A Survey of Data Flow Analysis Techniques”, from Program Flow .
Analyeis, Theory and Applications, 1981, Prentice Hall 4

[Kin82] R. King, “Synthesis of Concurrent Computing Systems”, Kestrel Tech Report
KES.U.82.10, 1988, Chapter 1

[Kin83] R.King, “Research on Synthesis of Concurrent Computing Systems” Proceedings 9.
of the 10°» Symposium on Computer Architecture, pp. 39-46, 1983 NOCE

[KiB83] R.King and T. Brown, “Proposal for Research On Automatic Synthesis of Tree-
Structured Concurrent Computing Systems”, Kestrel Tech Report # KES.L.83.1,
1983

[Knu69] Donald Knuth, “The Art of Computer Programming”; Volume 2, Addison Wes-
ley, 1969

[Knu73] Donald Knuth, *The Art of Computer Programming®; Volume 3, Addison Wes-
ley, 1973

[Kun76] H. T.Kung and Charles E. Leiserson, “Systolic Arrays for VLSI”, Sparse Matrix
Proceedings, 1978

{KLe79] H. Kung and P. Lehman, “Systolic (VLSI) Arrays for Relational Database Oper-
ations” Carnegie Mellon Unsversity Tech Report CMU-CS-80-114, October 1979

[KuL76] H. T. Kung and Charles E. Leiserson, *Systolic Arrays for VLSI” Sparse Matriz
Proceedings, 1978

[LFi80] R. Ladner and M. Fischer, “Parallel Prefix Computation”™ Journal of the ACM,
vol. 27 #4, pp. 831-838, 1980

[Lap80] A. LaPaugh, “Algorithms for Integrated Circuit Layout: An Analytic Ap-
proach® MIT Tech Report MIT-LCS-TR-28, August 1980

...

.. F_t.f_:j
- [Lei81] F. T. Leighton, *A Layout Strategy for VLSI Which is Provably ;-::;.‘_.':::

% Good” Proceedings of the 14** ACM Symposium on Theory of Computing, pp. :Q:-'!':-

85-97, 1982 P

=T

_ .\' -.'.-

- [Lei84] F. T. Leighton, *Tight Bounds on the Complexity of Parallel Sort- {_:

:: ing” Proceedings of the 16* Annual Symposium on the Theory of Computing, :'.:4.

R 1984 A

£y -

[LSa81] C. Leiserson and J. Saxe, “Optimizing Synchronous Systems” Proceedings of the .tj-_'.:f'_:
2274 Annual Symposium on the Foundations of Computer Science, pp. £3-36, :'-',j:::'_'
1981 R
< [Len82] C. Lengauer, “A Methodology for Programming with Concurrency”U. of - h)
- Toronto Tech Report CSRG-142, April 1982
[LiV81]) Richard J. Lipton and Jacobo Valdes, “Census Functions: an Approach to VLSI n
Upper Bounds”, JEEE Symposium on the Foundations of Computer Science, . .
® 1981pp. 13-22 “.
[MaA84] R. Anderson and E. Mayr, “Parallelism and Greedy Algorithms” Stanford Uni-
versity Tech Report STAN-CS-84-1008,April 1984
[MJu83] D.McBride and R. Juels, *Directed Graphs for VLSI High-Level Synthesis” IBM < - -
Research Report RC 9842 # 43417, January 1983 e
[MeC80] C. Mead and L. Conway, “Introduction to VLSI Systems” Addison- Wesley, 1980

N [Mil78] R. Milner, “Algebras for Communicating Systems® Tech Report, University of * mrel
Edinburgh #CSR-25-78, April 1978 N -
.‘i [MWis84] W. Miranker and A. Winkler, “Spacetime Representation of Computational

. Structures” Computing 32, 1984 pp. 93-114 .

® -

[Opp78] D. Oppen, “A 22" Upper Bound on the Complexity of Presburger Arith-
metic” Journal of Computer and System Seiences 16, 1978 pp. 323-332
, [Pai79] R. Paige, “Expression Continuity and the Formal Differentiation of Algo- -

". rithms” TecAnical Report #15, Courant Institute, New York, pp. 269-658, 1979 AN
- [Pai82] R. Paige, *Transformational Programming — Applications to Algorithms and -
T'\- Systems” TecAnical Report DCS-TR-118, Rutgers University, September 1982 S
: o .

o [Ram75] J. Rambaugh, “A Parallel Asynchronous Computer Architecture for Data Flow g

Programs” PhD Thesis, MIT MAC Tech Report MAC-TR-150, May 1975 R
. o

..

P Y T O R U

. 195
[Ram73] C. Ramchandani, *Analysis of Asynchronous Concurrent Systems by timed Petri
Nets® PhD Thesis, MIT MAC Tech Report MAC-TR-120, July 1973

[ReV82] J. Reif and L. Valiant, “A Logarithmic Time Sort for Linear Size Networks”,
Harvard Tech Report # TR-13-82, 1982

[Sch80] J. Schwartz, “Ultracomputers” ACM TOPLAS, vol. £ #4 pp. 484-521, October

|
]
Y
I
h 1980

[Smi83a] D. Smith, “Derived Preconditions and Their Use in Program Synthesis” Tech
Report, Naval Postgraduate School, Montery, CA 93940, November 1983

[Smi83b] D. Smith, “Top-Down Synthesis of Simple Divide & Conquer Algorithms” Tech .
Report, Naval Postgraduate School, Montery, CA 93940, November 1983 »

[SPn81] M. Sharir and A. Pnueli, “Two Approaches to Interprocedural Data Flow Anal-
ysis”, from Program Flow Analysis, Theory and Applications, 1981, Prentice

Hall

[ssC82] Siskind, Southard and Crouch, “Generating Custom High-Performance VLSI "
Designs from Succinct Algorithmic Descriptions” Proceedings of the Conference ' . _:';_-_j
on Advanced Research sn VLSI, January 1982 RS

[Sto77] J. Stoy, “Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory”, MIT Press, 1977

[TAm83] N. Takahashi and M. Amamiya, “A Data Flow Processor Array Sys-
tem” Proceedings of the 10F* Symposium on Computer Architecture, pp. 243250,
1083

[The82] D. Theriault, “A Primer for the Act-1 Language” MIT Al Lab Memo 672, April
1982

[Wag83] R. Wagner, “The Boolean Vector Machine [BVM]” Proceedings of the 1¢** Sym- s
posium on Computer Architecture, pp. 59-66, 1983 L~—

[Vit82] Vitanyi, “Real-Time Simulation of Multicounters by Oblivious One-Tape Turing
Machines” Proceedings of the 14* Annual Symposium on Theory of Computing,

May 1982
[Wen79] K. Weng, “An Abstract Implementation for a Generalized Data Flow Lan- .
guage” PhD Thesis, MIT Tech Report MIT-LCS-TR-228, Mey 1979 _Z ;
[Wol82] P. Wolper, “Synthesis of Communicating Processes from Temporal Logic Spec-
ifications” Stanford Tech Report STAN-CS-82-925, August 1982 L.
.

.
.......

" ., "
C

s
o
)

D

' .

