
RD-RI64 122 KNONLEDGE-ORSED TRANSFORMATIONAL SYNTHESIS OF EFFICIENT 11
STRUCTURES FOR CO.. (U) KESTREL INST PALO RLTO CA

KING 36 SEP 85 KES. U. 85.5 RFOSR-TR-85-1259
UNCLSSIFIED F4962S-85-C-0015 F/G 9/2 ML*uuuuuuuuumu
*umuuuuuuuuuu
IIIIIIIIIIIIIIfflfflf
I////I/////I/Il
IIIIIIIIIIIIIIffllfllf
L/Inuuuuuuuuu/u

k%-

6*

11Uzi 1O12.2

14-4

1_11.25 1=6f4

MICROCOPY RESOLUTION TEST CHART
O 4 "' 3! ' iA S 1963-A

IyOSR-TR- 8 5 -1 25_

KES.U.85.5 Kestrel Institute

N
0 DT!C

Wi ELECTE
(mc S FEBI I1W61

Knowledge-Based Transformational Synthesis

of Efficient Structures for Concurrent Computation

by RICHARD M. KING

May 1985

4'A pp ro ve o u l

Research sponsored by the Air Force Office of Scientific Research (AFOSR), United States
Air Force, under contract F49620-85-C-0015. The United States Government is autho- :77
rized to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright notation hereon.

* This document was prepared under the sponsorship of the Air Force. Neither the U.S.
Government nor any person acting on behalf of the U.S. Government assumes any liability
resulting from the wec of the information contained in this document

86 283

1801 Page Mill Road, Palo Alto, California 94304 (415) 493-6871

14~

sEA . .SS.; C.&T.CN OF 7*iS PACE

REPORT DOCUMENTATION PAGE
.s=RA SE~R' Z.ASSP'CAT:0N 10. RSTRICTIVE %4AR.(NGS

unclassified N/A
:.. -v:A CASSF CATION A.THCRITY 3. 0,STRI BUTiON, AVAILABILITY OF AEPCAT

N/A
b. ~ DCWORAING CNEULEApproved f or public releasO 0

Nb :,'ASSFC7C',CVGA)N SnHiDUitedistribut ion unj i-ited.

A ax'.UN-G 3R A..4ZA7.CN REPORT Nk'MSES 5. %ACNITORING ORGANIZATION REPORT NuBE A S.

KES.tJ.85.5 AFOSR -TR - 8f i1 2 9
I .Av'.E :I: aE1=:MG O:RGAN ZArON 4fOP:C~e tA. EO OIOIG:)G.I -C

Kestrel Institutefo 'B AMEO NOIGZGAITC

nc& = - A SS -Cay. S *are and .11P :Jae, I b. ADDRESS C'C)ty State and ZIP Code1

1801 Page Mill Road
Palo Alto, CA. 94304

da %AM-- OF rUNOtNG. SPONSORING b OFF!CE S r MOL0 9. PROCUREME14T INSTRU.MENT 0ENiT;F!CAT;CN NLMSER
C-G1.%1ATICN (II' .ppitcabie,

AFOSR F49620-85-C-0015

3c AZCRESS Caty. State and ZIP Code) '0. SOURCE OF ;,uNOING 14CS

PROG RAM PRC.ECT 7AS4(NCQI(L;NIT

Bolling AFB Washington, D.C. 20332 ELEMENT NO. NO0. % CNO

I . : Incimae Secatv caaafication, ci

Knowledge-Based Transformational Synthesis of Efficient Structures for Concurrent Computation

2PERSONAL AUNrORIS)

0 Richard M. Kinq
;z& TY'E VP AEDCR T 13b. TIME COVEqED 14, DATE OP REPORT Yr. Mo.. Day, IS. PAGE -OtNT

Final Technical I ROM 310484. TO.,5 1985 Septemrber 30 195
'8. S-00P'E -ENTAR Y NOTAT ;CN

VTCCSA . CCES 18. SUB.;ECT TERMS Canfinue an reverse it lecesmarY and ide"Lify 5y LOCR lumbe ,

3RCUP I SU GR. Multi-processor synthesis; Tree-structured
I multiprocessors; Concurrency; Closures;

Divide and conquer; Trees; Actors
!9 ,&3S7TRAT Congj,,ue ore reverie if necers and identify by bilocil number,

The object of our research is the codification of programming knowledge for the synthesis of concurrent pro-
gramns. This is important because concurrency is a way of securing better performance on amenable problems
than is available on non-concurrent computers. We divide this knowledge into two sections: knowledge for
the synthesis of arrays of processors that could be connected in a geometrically regular manner (crystalline
concurrency), and knowledge for the synthesis of tree structures (tree concurrency). We divide synthesis
of crystalline concurrency, in turn, into several subsections: synthesis of declarations of multiple processors
and the wires implied by the dependencies among the values they contain, reduction of this wire network
to a smaller wire network, creation of subnetworks to replace an overly-broad fanout network, virtualization
which is the creation of additional array elements and processors to reflect the internal enumerations that
comprise the computation of a datum, and aggregationt which is the merging of several processors into one.
We use a transformational approach. The transformational system has rulesa, each of which contains two
predicates: an antecedent and a cons.equent. If the antecedent of a rule is true of a given object, the rule
applies and the object is modified to make the consequent true. i;

:G. 5q5. NA AS<.5. " 0 A&S-NAC- ^3ASTORACT SE-CN04TY ZLASSPICATICN

4CASSI C- . 'co %0-E: :i a S .S As C cS. 7sa 2 Unclassified

:2a .AMC : F 4SA%S 9-z %7- . :: 'E..fICNF st NM6E4 A- :: F _ 5m

-x~~~~1 2)~ .3g *-76., ,/

Do FORM 1473.893 APR SO * % -1 1A% 73 S o55CLAEI1

SE:IRATv !'ASSPr CAT ON -m.S PAG

©1985
* Richard M. King

ALL RIGHTS RESERVED

AIR FORT! OTITI

Thi

.- L 7 -

ABSTRACT

Knowledge-Based Transformational Synthesis

of Efficient Structures for Concurrent Computation

by RICHARD M. KING

The object of our research is the codification of programming knowledge for the syn-

thesis of concurrent programs. This is important because concurrency is a way of securing

better performance on amenable problems than is available on non-concurrent computers.

We divide this knowledge into two sections: knowledge for the synthesis of arrays of proces-

sore that could be connected in a geometrically regular manner (crystalline concurrency),

and knowledge for the synthesis of tree structures (tree concurrency).

We divide synthesis of crystalline concurrency, in turn, into several subsections: syn-

thesis of declarations of multiple processors and the wires implied by the dependencies

among the values they contain, reduction of this wire network to a smaller wire network,

" creation of subnetworks to replace an overly-broad fanout network, "rtualization which is

the creation of additional array elements and processors to reflect the internal enumera- -4

tions that comprise the computation of a datum, and aggregation which is the merging of

several processors into one.

We also divide tree concurrency synthesis. Our primary technique is divide and conquer,

'. but to make this technique effective we must take another view of the specification. We

S" respecify a given requirement, that of computing a new array whose values are pointwise

;* computable as a function of an existing array and an index, as a requirement to compute a

*" functional object whose side effect is to satisfy the original specification, together with the

' requirement that said object be called with the proper arguments. We call the computed 0

,* functional object a closre.

ii

. ". *

*<..ff.

L

We use a transformational approach. The transformational system has rules, each of

which contains two predicates: an antecedent and a consequent. If the antecedent of a rule
• .p .'%-j%

is true of a given object, the rule applies and the object is modified to make the consequent

true.

We demonstrate these techniques' ability to synthesize one or more solutions to each of

several classical problems from the literature. These solutions are topological descriptions

of arrays of computing elements ("processors"). The resulting elements' complexities range

* from a couple of gates to something comparable to a microprocessor. We do not attempt p

to actually lay out the processors and interconnections.

I. ____ __•____

Accesion For

NTIS CRA&I
OTIC TAB "
U. anno'i oed -
yJ,,tlictiu,, _ B yI.. --::...

Availability Codes

I' OH Avail ar-d/or

Di
AII

,.. - :. ;. .

Acknowledgements
I would like to thank all of the following:

* My wife, Rebecca, for being herself during this project,

* Robert Paige, for advising me on various matters and for introducing me to Ernst

Mayr,

* The Kestrel Institute, for providing me with an economically and intellectually sup-

portive environment for completing a Ph. D. thesis, z.

* Professor Ernst Mayr; for providing guidance on this work, for reading innumerable

rough drafts and for holding me to high standards,

9 Cordell Green, for maintaining the supportiveness of the Kestrel Institute and for

criticizing some of my ideas and writing style,

* Lydia Skinner and Maria Pryce, for reading the "final" draft one last time and finding "

a surprising number of typographical errors,

• Gordy Kotik, Tom Pressburger, Doug Smith, Steve Wetfold, and the rest of the

gang at the Kestrel Institute, for listening patiently but critically whenever I got an

inspiration and helping me to squeeze out the junk, and

e Janet Willis and Elsie Jackson, for helping me with the logistics of a 4500 kilometer

separation.

Were it not for these forms of support you would be reading somebody else's thesis.

iv

° -"...

~~. .oO-o,°%°°.- ,. . .. o... o-

Contents

List of Illustrations xi -

1 Introduction and Approach1

1.1 The Need for a VLSI Design Assistant......................... 2

1.2 Goals.. 4

1.2.1 Previous Work................................... 8

1.3 Approach... 10-

1.3.1 Parallel Structure Refinement 11

1.3.2 Crystalline Methods. 12

1.3.3 Tree Methods. 13

1.3.4 Additional Techniques. 14

1.4 Organization. 15 -

v

2 FomalDesciptons17

2.1 Multiprogramming..................................... 18

2.2 Single Process per Processor.............. 23

2.3 Clocked.. 26

2.4 Fixed Delay Level..................................... 28

1 ~2.5 Summary... 31 -

3 Case Studies of TRLANSCONS Techniques 32

3.1 Polynomial-Time Dynamic Programming....................... 32

3.1.1 Preparatory Rules................................. 40

fob
3.1.2 Optimization Rules................................ 48

3.2 Fast Matrix Multiplication................................ 57

3.3 Virtualization and Aggregation............................. 61

3.3.1 An Informal Description............................. 61

3.3.2 Definitions of Virtualization and Aggregation............... 63

3.3.3 Systolic Structure Synthesis. 65

3.3.4 Use of Virtualization and Aggregation for Matrix Multiplication .. 68

3.3.5 What Virtualization Can and Cannot Accomplish. 72

3.4 User-Assisted Aggregation. 73

vi

-ga7

4 Trees, Closures and Divide & Conquer 76

4.1 Motivation..76 P4 .

4.2 Divide & Conquer.. 77 ~4

*4.3 Description of Closures 84

4.4 Transmission of Closures. 89

4.5 Completeness Arguments 92

4.6 Trees of Processors in TRANS CONS. 98

5 Tree Structures Synthesis Examples and Closure Removal 1L02 I

5.1 Broadcast. 103

* 5.2 Parallel Prefix Summation.................................. 105

5.2.1 Overview.. 105

0 ~5.2.2 Derivation.. 106

5.2.3 Derivation Summary................................. 109

5.3 Closure Reduction... 112

5.3.1 CGF Reduction Rules 113

5.4 Connected Components. 118

5.4.1 Derivation of a Tree Structure. 120

5.4.2 Alternative Data Structures. 130

5.4.3 Results of Storing the Map in Internal Nodes 133

vii

6Use of Additiona Techniqe - Binar Additio 141

6.1 Notation 142

6.2 Carry Look-ahead Circuit................................ 143

6.2.1 Quantifier Levelling............................... 143

6.2.2 Data Path Width Reduction.......................... 147

6.3 Ripple-carry and Bit Serial Circuits.......................... 148

7 Conclusions and Sumumary 151

7.1 Overview. 151

7.2 Essential Points 152

7.3 Foundations. 153

7.3.1 Models. 154

7.3.2 Processor Assignment. 155

7.3.3 Connectivity Restructuring. 156

7.3.4 Divide &Conquer, and Closures. 157

7.3.5 Miscellaneous Techniques 158

7.4 Future Work. 159

7.4.1 Routing Problems. 160

7.4.2 Average- vs. Worst-came Behavior 161

7.4.3 Efficiency Estimation for Parallel Structures. 161

7.5 Accomplishments. 162

viii

Appendix 163

* A TRANSCONS Usage Examples............................. 163

A. 1 Usage Conventions for V............................. 163

A.2 Specific Rules for TRANSCONS........................ 166

B Correctness Considerations............................... 177

C Quantifier Levelling Proofs............................... 183

D Theorem Reduction Forms 185

References 190

ix

a- 7p

.'44

3.1 Specification of 0(n) Dynamic Programming 36

3.2 Processor Interconnections. 37

3.3 Final Form of Main Processors Declaration in P-time Dynamic Program-

ming Derivation. 53

3.4 Many Processors Use or Build the Sane, Data. 56

3.5 Resulting Structure From Sharing 1/0 Connections. 56

3.6 Simple Parallel Structure for Broadcasting 66

3.7 Virtualized Broadcast Structure. 66 -

3.8 Virtualized Broadcast Structure with Chains for 1/0O.. 67

3.9 Aggregation of Virtualized Broadcast Structure 67

3.10 Unvirtualized Structure. 71

3.11 Virtualization. 71

3.12 Aggregation to be performed 72

3.13 Aggregated (Systolic) Structure 72

4.1 Simplified Parallel Prefix Internal Node 91

x

6.1 The "Standard" Specification of Binary Addition 142

*6.2 "Grade School" Specification for Binary Addition 143

,6. Synthesized Look-Ahead Circuit for Binary Addition. 146

6.4 Ripple Carry Parallel Structure. 150

6.5 Serial Adder. 150

'4

xi

Chapter 1

Introduction and Approach

1 p. . -

Computation power can be delivered in several denominations, ranging from chips that

can execute a few hundred eight-bit instructions per second up to large-scale computers

that can approach a hundred million 64-bit instructions per second. There is no reason

to suppose that the larger computers deliver more computation power per dollar than

the smaller ones. At present, cheap computer power seems to come in small packages.

We can informally argue that a given problem requires a certain number of gates for a

solution in a given amount of time, whether these gates are contained in a single large

package or several small ones. Additionally, in the large processor there are constraints .

that force use of extra logic to keep track of some of the work that the machine is trying to

overlap with other related work. Some of those gates may, at times, lie fallow, as may some

computational gates in the large machine if the mix of tasks is instantaneously different

from that which the designer assumed during construction. Additionally, we argue that

the electronics industry produces a much greater volume of computation in small chunks

than of computation in large chunks, and therefore enjoys the economics of scale.

We could accept slow but cheap computation, allowing us to afford many computers.

There are situations where this is the proper course of action. An arcade owner does better

~. ,,o

to have a small computer in each game of his arcade instead of a single large processor to

power all of the games, even ignoring the reliability and engineering problems of the latter

.I- %

2

approach. Companies are beginning to supply each of their employees with a desk-top •
computer rather than with a terminal into a large computing system.

Slow computation is not, however, acceptable in all cases. There are classes of situations

in which a certain minimum amount of computer power must be provided. These situations

range from fast real-time systems such as avionics, through situations such as weather

forecasting where we might attempt to model 48 hours of atmospheric behavior in 24 hours,

where more computation power would allow a finer-grained model of the atmosphere, to

aerodynamic modeling where an increase in computer power improves the situation from

the point where it's better to experiment on actual hardware to the point where it is better

to experiment on computer models.

1.1 The Need for a VLSI Design Assistant

The number of devices that can fit on an integrated circuit continues to increase. It is

expected [MeCSO] that there will be at least one more factor of ten reduction in the feature

size of integrated circuits before physical limits are reached, giving a hundredfold increase

in the number of devices that can be integrated on a chip of a given size. Additionally, it

would not be unreasonable to expect some increase in the maximum size of chips.

At present it is practical for a designer to specify all of the functional blocks of his

design. Current technology allows for a number of gates on a chip approaching a million, .

but computer aided design tools can allow him to deal with the complexity that this allows

by specifying circuit information as logic diagrams rather than as circuit masks, and in

some new systems a more convinient form than logic diagrams is used (for example in

MACPITTS [SSCS2] the design is specified in a LISP-like language). Still, the entire

functional design comes from the designer.

In the future it will be possible to squeeze a hundred times as much function on a

chip as is now possible. Good ways must be found to exploit this capability and to create

.................. . .. •••". "•""-.•. ;.' .-' ""."....

3-0d * .-

.- '.'- =3I

chips which make good use of a hundred times as many gates as current chips have. One

technique would be to have a number of functional blocks on a chip comparable to the S

number in current designs. Most blocks will have to be larger than those of current chips

in order to put as much functionality on a chip as will be possible without tremendously

increasing the number of blocks.

One method for allowing these larger blocks is to have a library of large blocks available

to the designer. This would be undesirable because it is plausible that the number of blocks

desired by various designers is a rapidly growing function of their size. For example, since £ -

the sizes of functional blocks would be at least comparable to the size of current chips,

and since one of the major constraints on modern chip designs (pin limitations) wouldn't

apply, it would seem reasonable to suppose that there should be at least as many functional

blocks available as there are chip types now. This would be unacceptable.

Another approach is to use hierarchical design methods. In effect each designer creates

an ad hoc library. This approach has the problems inherent in private subroutine libraries,

including difficulties of sharing effort in a large project.

We have a fairly close analogy between the future situation regarding the ability of VLSI

fabricators to make large chips and the current ability of software designers to "fabricate"

software. Language designers can either provide more primitive operations and therefore -

hope to cover the needs of programmers, or they can provide the programmer with the

option of building his own large building blocks out of smaller ones. These are called

subroutines. Designers of languages like COBOL, APL and SNOBOL attempted to provide

numerous primitive operations and precisely the correct ones for certain problem domains

(although they felt it necessary to provide the ability to define subroutines as well). Other

languages such as LISP provide few primitive operations but are intended to facilitate

creation of subroutines. Limits to this approach have been recognized. See, for example,

[Sch80] in which it is pointed out that modularity facilitates software construction at

t •

-.

77 ,7 -.. 77..

4 .7,i _

the expense of efficiency, and [DoDB3J in which it is pointed out that currently proposed

software tasks not only cannot be done efficiently but cannot even be done reliably without

using something more advanced than modular techniques.

At our laboratory [GCPSl] and others [HorSIL] work is proceeding on knowledge based

software assistants, which are systems that allow their user to describe a desired system

behavior is a specification language. This thesis describes the beginning of a knowledge
based VLSI designer assistant.

1.2 Goals

Several steps must be take to exploit the cost-effectiveness of small denominations of

computation:

9 The processors need to communicate. If a system has a large number of small

processors and no wires between them the only thing it can do is solve a large number

of small problems simultaneously. This is not always an accurate reflection of what

people want. The nature of the problems that the processors will be able to solve

quickly depends critically on the way they are interconnected. Unfortunately, so

does the cost of the multiprocessor system, and it turns out that the most versatile

topologies are those that cost the most to wire.

* The processors need to be scheduled. Somebody must decide what each pro-

cessor will do when. One can not merely take an algorithm that is carefully crafted

to run on a single large processor and make it run on a multiprocessor system with

little change. In [AMaS4] it is shown that some problems can be solved by efficient

single-processor algorithms that have no concurrent analog. There are concurrent

solutions to the original problem, but the sequential algorithm produces a speic-,

solution. No algorithm, sequential or concurrent, can solve the problem of finding

.9

* * - . .. •. *.* * A *,

..-.. - - . .,.. • . , - •%. °. . '_

the specific solution that the sequential algorithm would have produced faster than

in polynomial time (unless P C MWC where (for problem instances of size n) P is the

set of problems solvable in O(n) time (for some constant i) on a single processor

and W4C is the set of problems solvable in 0(log') time using O(n') processors (for

constants i and j). It is believed that P g AC.).

The processors need to be loaded. Normally some entity outside of the problem-

solving computer presents the data representing a problem instance at a single source,

and the computer is required to deliver the results to a single destination. The .4

program would also normally be stored on a single device for economic reasons. We -

must address the issues of how instruction loading, input and output will take place

across the single-stream/multiple-stream interface. p .

We use the approach of synthesizing a concurrent version of a specification expressed

in an extremely "high style". The reason for this is that specifications are turned into P 2

programs by the addition of specialized information (such as data structure selection), and -" ".-:-

the removal of this specialized information is difficult. This information imposes constraints

on the manner in which the calculation is carried out, and these constraints make it more - -

difficult to produce a program optimal according to one set of criteria from another program

that was (previously) optimized for another set.

Our system, which we call TRANSCONS (for the TRANSformational CONcurrency

Synthesizer), accepts input/output specifications in a high level language. It transforms

these into descriptions of parallel structures.
0

We will not concern ourselves with the placement of processing nodes or gates on a .

surface or in space, even though the quality of the placement can drastically affect efficiency

by altering wire lengths and therefore path delays and costs. We feel that our system meets -

its need despite this omission for the following reasons:

-a. *- :".--a.

-. ,. v'.'o -,

-. . p - ~ * -. -. °t, -"-Lb p

-. - . -

6 r~
*% . -.

9 the topology could be adequate for our needs

* systems for laying out circuits, given the topologies, exist

e the topologies that TRANSCONS synthesizes have fairly obvious layouts (i.e., the

coordinates of the position of a processor are linear functions of its indices)

One possible use of the output of a TRANSCONS run is to control the operation of a

universal" parallel computer such as a shuffle exchange or cube-connected cycle system.

Such a use of TRANSCONS output might be made for testing purposes, but the expense

of the universal parallel computers and the O(log n) factor speed loss for simulation of

an n-processor system with direct interconnections as specified by TRANSCONS make it

unlikely that this will be a standard use of this technology.

Universal architectures described above all have the unattractive property that some of

the wires must be long, and the total wire length is long. They also have some extremely

untidy wiring layouts in any physical implementation (necessarily so; since every surface

that bisects the network must be pierced by a large number of wires, the wiring arrangement

contains few bundles of wires tracing adjacent paths.). Wiring is one of the least reliable

parts of a modern digital computer system. In addition, the log n speed factor can be a

serious matter.

It would therefore be desirable in some cases to reduce the average length of the wires

0 and increase the orderliness of the interconnections, so intermodule connections can be

reduced to interboard interconnections, which can be reduced to printed circuit connections

and in turn to connections within a chip. This reduces cost and increases reliability.

The techniques of TRANSCONS produce topologies that could easily be laid out by

computer as tidy layouts. This is because the various expressions controlling the intercon-

nections between the processors are restricted to be from Presburger Arithmetic, and they

are simple expressions linear in the processors' names.

...

If TRANSCONS produces a crystalline interconnection pattern with higher dimension- "

ality than an available network, it is still possible to find an assignment of logical processors

to physical ones that incurs only a moderate speed penalty. For example, there is a simple

mapping of a r x rx array of processors onto a two dimensional array such that ,.

the cost of communication along two of the simulated dimensions is 0(l) and that of the

third is O(n /). The constant factor would perhaps be one third of that of a simulation on

a universal computer, because only one of the three directions would have this problem.

Since Ig n < -" only for n > 64000, the universal computer would only excel on rather large , '-.-'

problem instances.

It should probably be pointed out that circular reasoning was used in the above argu-

ment. We selected a simple form of enumerated expression (for other reasons) and observed

that the parallel structures that result can be simply laid out in Euclidean spaces of vari-

ous dimension. This may make it necessary to provide mechanisms to included "canned"

subnetworks (i.e., for sorting), but once these are provided the system will be reasonably

general and will retain the property that it generates easy-to-lay-out networks.

We explore a series of problems from the literature of computer science that are known

to have good parallel solutions. We used classical problems from the literature of computer

science, rather than, in any sense, selecting a "random cross section" of problems (whatever

that would mean), because it is fairly well known what is possible in terms of parallel

structures for these problems and we therefore had targets for the tools we were trying • .

to build, as well as a yardstick against which to measure the results. We conjecture that -

most real problems that take a lot of computer resources reduce to a series of classical -

problems. For example, in [Knu69] and fKnu73] respectively the point is made that .'. .

array manipulation and sorting are major consumers of computing resources as they are

used today.

* C '. S.

.-'.'

1.2.1 Previous Work

A technique similar to our virtualization technique is described in RMlr83] and
S. * .J.

tMWi841. Their technique is to duplicate all scalers or array elements that receive multi-

pie assignments and then to compute the data flow based on stereotyped constructs of a

FORTRAN-like specification language. Their system finds interconnection nets that meet

certain linear algebraic properties.

The main differences between the techniques in the above paragraph and our virtual-

ization is in the form of data dependency allowed. The use of linear algebra for dependency

analysis allows application of these techniques only when information flows from an array

element to another array element whose coordinates are linear functions of the coordinates

of the first element. While the prototype TRANSCONS uses linear algebra in place of a

more general theorem prover and therefore shares this property, the form of the rule and

the compartmentalization of the information makes addition of new knowledge simple.

One consequence of this is that there is no notion of aggregation. Because of the

finality of the result it can not be aggregated conveniently, and it is therefore a reasonable

technique only where there is a constant amont of work per processor element already.

Numerous systems exist for creating VLSI layouts or VLSI topological descriptions

from low level description languages. In each case we will only cite one or two examples,

with no intent to imply anything about those that are chosen on the one hand or left out

on the other.

MACPITTS ([SSC82]), from the MIT Lincoln Laboratory, can produce VLSI layouts

from a LISP-like language which includes constructs like (SETQ ...) to create a signal,

(+...) etc. to specify arithmetic or logical operations on signals, and looping constructs.

.- . ..

. - . .€- ,

9 S

MACPITTS determines and places the minimum number of functional modules to "exe-

cute" a given "program", creates a programmed logic array (PLA) to control these modules,

and lays out the wires among these parts.
. . .'. :

The Palladio system ([HTF83) allows a user to interactively create a VLSI topology

by "discussing" with the system what is to be done.

These VLSI design systems have as their primary goal the avoidance of the electronics

pitfalls such as capacitance problems or delays on long lines and violations of the "design

rules" of the technology that would make fabrication unreliable.

The communication of actors or closures between processors to model communication -

of problem data between processors has been current since [AHe77] and [The82]. Here ft..
actors are separate objects that do their work by sending and receiving messages. Such

a transmission is an event. A message can be an actor. Conceptually the actors have

independent existence, but of course they must have some physical realization and, as-

suming machines capable of processing messages by and for actors contained therein are

called processors, the passing of messages among actors in different processors can model "

communication among the processors. In this work the actor is an object that entitles its

holder to perform some action by invoking it, and it can be passed from one process to

another. The receiving process can invoke it, and the work is performed in an environment

derived from the processor that created the actor. In this thesis we will use closures, which "":

are objects similar to actors that can only be invoked once and then cease to exist.

Divide & conquer is a powerful synthesis technique for efficient sequential programs (see

[Sml83a] and [Smi83b]), but it has not been widely used to synthesize tree-structured col-

lections of communicating processors, even though such an application would seem obvious

because of the correspondence between the division process of divide & conquer and the

branching structure of the desired collection of processors. The reason for this is that the

synthesis process encounters technical problems when one tries to perform such a synthesis

---...-

-- -- -- -.-... - .-

10 .

I . .

in the obvious manner. The use of closures, similar to actors, mitigates these technical

problems at the expense of requiring a more general theorem prover than is required to

perform divide & conquer syntheses of sequential programs.

1.3 Approach

TRANSCONS specializes in two areas. As the first specialty it can synthesize crystalline

networks of processors, in which members of a family of processors can be described by

vectors of indices (integers initially; in principle any ordered set). In such a structure, each

procesmor is connected to those other processors, each at a fixed distance and direction

from this processor, that exist (if we visualize the network as a group of processors, each

occupying a point with integer coordinates in Euclidean space of appropriate dimension). -

As the other specialty it can synthesize balanced binary tree structures in which the internal

nodes all run the same procedure.

In all cases the synthesis process starts with specifications in the V language (see

[Gre8l], [GCP81], and [ResS5]). V is a broad-spectrum language based on first order

logic (FOL) but containing locutions ranging from FOL to LISP- or Pascal-like specifica-

tions of individual operations, data structures, and values. We use this language for several

reasons:

The language is a good one for specifying rules used to transform specifications as

well as the specifications to be transformed. It shares with LISP and RAPTS [Pa182]

the property that programs in the language are normally expressed as instances of

the data structures such programs most easily manipulate.

e These specifications are similar to first order logic expressions. A theorem proving

capability is essential, and much work has been done on the problems of automatic

theorem proving in first order logic expressions.

."

. . .• .

* %

11 S

... °o

9 Use of a broad-spectrum language facilitates a stepwise refinement. If the source

and target languages were distinct rather than being parts of a single language, the

creation of target text from source text would need to be conceptually a single step.

An intermediate form that could hold both source and target locutions would have

to be provided unless the process actually was so simple that a single examination of

any source object was sufficient.

We augment the V language cited above with several constructs designed to specify

interconnected collections of similar processors.

1.3.1 Parallel Structure Refinement

We develop a series of models of the parallel computation process. In the highest level,

most details are unspecified; in the intermediate level, the order, but not the timing, of

various communications and computations is described; and finally in the two lowest levels,

the notion of a clock is introduced. In the higher of these two levels, the time at which

various operations can take place is determined algebraically. In the lower level, time

differences between actions are computed. This can be used directly in a VLSI synthesis.

A computation in which operands are available simultaneously and the result is needed

one cycle later can, for example, be performed by combinatorial logic with a single "latch"

connected to the output. L

The last stage of the refinement is future work, but we argue that it will meld well

with the rest of TRANSCONS, and that TRANSCONS will then be able to transform first

order logic specifications into circuit descriptions lacking only device placement steps to be

complete VLSI chip descriptions.

The series of models is such that a coherent parallel structure results from stopping the

synthesis process at any level. Some levels can not be reached by some specifications, and

• I,'-'

.,W W-r.:

12

the lowest levels may contain more detail than is desired. The user can control the extent

of the synthesis process. -

1.3.2 Crystalline Methods

Crystalline structure synthesis begins with transformations embodying data flow anal-

ysis and analysis of expressions comprising indices of references to array elements. Each

intermediate datum in an array of the specification is assigned to a processor whose index

corresponds to the index of the datum. The results of this simple analysis is generally a

clumsy structure in which each processor is connected to many other processors - too many

to be practical. Often there are other weaknesses in the structures. Additional techniques

are therefore necessary to produce usable parallel structures, and TRANSCONS contains

rules that embody these.

The first and most important of these techniques is communication reduction. In this

technique, a rule seeks a set of communication lines whose transitive closure is equal to (or

includes) a distinguishable subset of a given communication network. After replacing that

portion of the network with the smaller set, we repeat the process.

A second technique is aggregation, or the collection of many processors into one. This

technique has two important uses; reducing the number of processors in a system when

*-i each has too little work to do, and gluing together simple networks to make more complex -
0

ones.

A third technique is virtualization, or the increase of the dimensionality of a data struc-

ture by explicating a loop that repeats assignments to an internal register. TRANSCONS

normally uses virtualization together with aggregation, because the former creates numer-

ous processors with little work for each of them to do, and the latter combines processors.

Every virtualization has an inverse aggregation, but whenever a virtualisation creates an

array of processors with more than two dimensions there is more than one aggregation, and

. . . . - A -

13

TRANSCONS has the option of choosing a different one from the inverse of the original

virtualization.

The fourth technique is chain creation. When an asymptotically large number of con-

nections exists between an I/O processor and the working processors, and TRANSCONS

wants to reduce this number, it tries to apply this technique. If the sets of values used in ,-

the working processors can be grouped properly, then the wiring can be rearranged so only

a few distinguished working processors are connected to input processors, and the rest can

receive information "second hand" from other working processors. Similarly, for output,

information can be collected from several working processors connected in a chain and sent

to the outside world via a few distinguished processors.

We restrict the forms of the expressions in the declarations describing the processors

and their interconnections, because use of a theorem prover is required for all of these

techniques and the restrictions make this much more feasible.

We argue the adequacy of TRANSCONS's techniques for crystalline synthesis by show-

ing some syntheses of parallel structures for dynamic programming and two structures for

* multiplication of matrices. .

1.3.3 Tree Methods

We use divide & conquer as the primary synthesis tool for the creation of tree parallel

structures. This technique has a long history of creating efficient sequential programs from

specifications. While it would appear that the synthesis of a tree structure by divide &
4' It

conquer should be immediate because of the correspondence of subproblems and subtrees,

there are issues that require resolution.

4' We therefore introduce the notion of passing a closure, or functional object, between ..

processors. While this is not novel (see, for example, [Hew76]), our use of it is. We are

"..--...-..,.'." t. . k.. --...-. ..- .."..?'L . -. ."''' '- -'. '' .'i'2'i' ". "'. " -i "" .'

14

en a specification of I/0 behavior of two arrays (one an input and one an output). We

transform this into two specifications: 1/0 behavior mapping an input array into a func-

- tional object exhibiting certain behavior given the input array of the original specification,

and a request that this functional object be applied. As we demonstrate, using the com-

bination of divide & conquer and the computation of well-chosen closures, TR.ANSCONS

is able to synthesize a variety of tree parallel structures which can solve problems ranging

in complexity from census functions [LIV811 (which require no closures) to parts of a con-

nected components computation, in which a graph's adjacency matrix is read in row by

row, and the parallel structure "learns' what the sets of points are such that there exists

a path from any node in a set to any other node in the same set.

1.3.4 Additional Techniques

As part of a demonstration of the power of our techniques, we synthesize three cir-

cuits for the addition of binary numbers. The use of different combinations of techniques

produces circuits occupying three places in a spectrum of speed/cost tradeoffs.

The first order logic specification for binary addition has nested bounded quantifiers

arranged in such a manner that the bounds of the inner quantifier depend on the bound

variable of the outer one. Therefore, the parallel structure synthesized by the previous

metbods of this thesis has 0(n 2) boolean values to compute for addition of two n-bit

numbers. To accomplish this in O(log n) time would require 0(n2) processors. We use

a series of axioms and theorems relating the max, min, A, V, 3 and V operators. An %

example of a necessary theorem is VI < z < u[P(z)- max. <,[- P(z)] _ 1, which restates

a universally quantified expression bounded by an integer subrange into a maximization.

The axioms and theorems, the proofs, and their use are described in Chapter 7. The

process requires a theorem prover general enough to accept the axioms and to either prove

or accept the theorems relating these operators. We achieve a specification in which a

• ..-.. •. • +..°..".......................-..-............-....'.."...........-...-.,.-....--..-..........

pair of nested quantifiers is replaced by an arithmetic comparison of two bounded max

operations. We call the entire process quantifier levelling.

1.4 Organization ... '"

The next Chapter (after this introduction) gives formal descriptions of the four levels ""

of synthesis detail that TRANSCONS will be capable of when it is complete. The third

Chapter describes the abilities of TRANSCONS that facilitate crystalline synthesis.

Chapter four discusses the divide-and-conquer method for synthesizing treelike parallel

structures, explores some of the problems that must be solved to make it work, introduces

the notion of a closure to solve these problems, and introduces the language we use to

describe resulting structures. Chapter five gives several examples of the synthesis of tree

structures by these methods, and discusses in detail methods for removing the closures,

which are a necessary "scaffolding" for the synthesis process but not intended for the final

product.

The sixth Chapter shows a case in which use of mathematical identities makes

TRANSCONS more powerful than it otherwise would have been. It lends credence to

our conjecture that our synthesis tools will turn out to be more powerful than it would

seem from the apparently specialized nature of problems we solve in Chapter s three and . -

six.

The seventh and last Chapter explains the significance of our results and the future

paths we expect this research to take. A successful pursuit of this future research will

enhance TRANSCONS to an extent that it will be able to automatically synthesize most

of the parallel structures that have been created by hand, plus structures of comparable

difficulty that have not been created yet, either because the need for them has not yet _

arisen or because they are so specialized that the effort has not been deemed worthwhile.

o I

16 4

The appendix contains four sections: sample dialogs with a complete TRA1NSCONS,

formal proof of correctness of one of the most important rules, formal proofs of the identities ~

used in Chapter six, and a description of the theorem proving requirements of the crystalline

synthesis portion of TRANSCONS. '

"- -e -- -. -" - -. - .

17

Chapter 2

Formal Descriptions

The target of TRANSCONS synthesis has four levels arranged in a hierarchy. These

range from a high-level description of computation activity to a level of description that P ..

lacks only device placement to be suitable for VLSI implementation. TRANSCONS refines

specifications from the higher levels of this hierarchy to the lower by adding specialized

0 information. .

A higher level differs from a lower level by requiring more capabilities in the implement-

ing hardware. As an example, the highest level ("multiprogramming") assumes that the 3-. -

implementing hardware is able to store indefinite amounts of information and to process

each piece of information using a separate virtual processor (usually called a "process").

The lowest level requires only that each processing element be able to compute some sim-

ple function of all inputs present at one clock cycle c and to present the answer(s) at its

output(s) at a clock cycle c + i where i is a constant integer dependent on the processing

element. We provide coherent synthesis levels, rather than merely describing a process in

which the specification becomes more and more refined but in which parts of the specifi-

cation may be in intermediate states that are not meant to be used by any entity except

continued TRANSCONS synthesis, for two reasons. The first is that it is not possible to L-_

reduce every specification to the lowest level, and we therefore need coherent intermediate

(. .-I ?

levels as targets for these specifications. The second is that we may have hardware avail-

able that can meet the requirements of the higher levels, so we may choose to stop even ,

though it would be possible to proceed.

We progress from higher to lower levels by adding specializing information to the spec-

ifications. To illustrate the various levels of representation we will use the following speci-

fication:

VA3A' i ... = n).
Id E(1 ... } qJJ I' -- "

The actual reduction operator, here shown as addition, is unimportant; what is important

is that it be implementable as combinatorial logic in VLSI. We intend to show implementa- 4

tions that might result from taking this specification through all four levels of TRANS CONS

synthesis. The reduction operator must be implementable in VLSI because we intend to

display an implementation of the specification which uses the reduction operation, among o

other things, as an atomic operation.

0

2.1 Multiprogramming

°. 0

A parallel structure in this level consists of procedures, proceuor, and pools. A pro-

cessor contains one or more processes, each of which contains, in turn, a procedure and a

* (possibly null) index variable binding.

A processor is described by a processors declaration, whose components are given in

this tree diagram:

"-. **LU*.. 'U ,•~U* U

....U<
"*-.. "... . ..- '''' ,.''.' ' ..- - ., .- - ' . _ . . _ .' _ - -- - - -'' -

iTg p..IT I.-1q

PROCESSORS (index variables) enumerators for index variables
HAS array name (array index variables) enumerators for same
HEARS processor family name (indices) enumerators
I (USES array name (indices) enumerators)

TALKS processor family name (indices) enumerators
I (SENDS array name (indices) enumerators)

LINKS processor family name (indices) p f name 2 (indices) enumers
I (PASSES array name (indices) enumerators)

Any of the subclauses can have a condition attached to it which will specify that the j

subclause only applies to instances of the processor family or enclosing clause for which the

condition is true. The condition is restricted to Presburger Arithmetic expressions whose

free variables are variables that are bound further outward in the processors statement, p I

or not bound at all. The theorem prover will assume nothing (beyond type information) . '_

about an unbound variable, which we will call a superglobaL in the following. We use the

10 phrase (sub)clavee intantiatioa to describe the instance of any clause or subclause with

specific values of the bound variables. A processors declaration is a type that is attached

to a name, which becomes the name of a processor family.

There are consistency requirements. If processor A HEARS or LINKS from processor

B, then processor B must TALK (to) or LINK to processor A. If a HEARS clause has a

USES subclause, the HEARd processor must either PASS or SEND that value within

the corresponding LINKS or TALKS clause. Note that this imposes a condition on clause

instantiations, not merely clauses.

A procedure contains one or more statements from the V language. These include . 4

references, assignments, reduction operations, other operations, enumeration descriptions

and block structure. For every reference in the procedure of a process it must be true that

the PROCESSORS statement for that process has either a USES clause or a HAS .

clause for that reference.

- ~.--. ~s..:,~.aAz *

20

Each reference to a value that is only available from another processor is an abbreviation

for a "guarded command' [HoaTS] whose guard is the availability of the datum and whose

action is the retrieval of the datum to the point of invocation of the reference.

Each 6

HEARS/TALKS, HEARS/LINKS(to), LINKS(from)/TALKS and LINKS(from)

/INKS(to) pair denotes a pooL In addition there in a single pool in each processor for

local memory. The consistency rules require that there will be corresponding subclauses

in each of these clause pairs. This means that, for example, everything that is SENt is

USEd. It also requires that both ends of a link be present. Each of these subclause pairs

represents a name. The variable name together with its indices is used as the name in

the local memory pool. Each SENDS clause instantiation must match a USES clause

instantiation, and this condition can only be met if the clauses themselves match.

There are relationships between this model and the data flow machine models. See, for

example, [TAmS3], although the mechanism of that model differs from the mechanism we -

use. With data flow machines, each operation is represented by an object (sometimes a

word in a memory, sometimes a physical processor) which has a name and which gives the

name of one or more operands. Its name can be used as an operand in other operations. . a

With our model the code fragments for the processors correspond to the operators, the

USES clauses to the operand names, and the SENDS clauses to the exported operands.

. E-

There are two ways that multiple processes in one processor can be opecified. One is

by declaring multiple procedures in one processor. The other way is with enumeration .

statements. These are of the form

.............................. +...-

~~. L ". """" "". " '.' "
. _. . . ++' .++.. , . ._.

21

.... ..

(in processor P):
VvE

procedure

end

where s is set-valued. (The fragment (in processor P) is the declaration that the following

procedure runs in processor P.) There is no commitment to a specific order. In this form

of multiprogramming, a process is created for each instantiation of the V variable. The

processes have identical procedures except for this instantiation.

A pool contains triples of the form (name, index, value). Several operations are defined

on pools, and the accesses to the pools that appear in the procedures must be drawn from

this set.

A reference has the form GET(options, pool) or GET(options, pool, name) or

GET(options, pool, name, index), options is a two-tuple of one of destructive, mark =

(mark), and nil; and either hang or test. The semantics of this is that the pool is checked

for the presence of any datum matching as much as we know about the name and index.

We return the value if there is one and we either return false if there isn't and we were

testing, or we suspend progress of the process if we weren't. The first part of the option

describes what we do next if the retrieval was successful. If we were destructive, we delete

the item; if we were marking, we mark the item so that a subsequent retrieval with the

same mark = (mark) will not succeed with this item, and if the first option was nil we do

nothing (and another retrieval request might pull the same item).

A store is of the form PUT(pool, name, index, value). This modifies the state of the

world so that a GET(options, pool) can equal (index, value), GET(options,pool, name) =

value, and GET

(options, pool, name, index) = value.

0 •

22

Grouping of the processes within a processor into superprocesses, which are collections

iFof proceses that intercommunicate more than other pains of processes within a procesor, Is

are provided. They are specified by collecting the processes within a group into a suppos-

edly incicpn~dent 'processor", and then collecting the "processors" with an AGGREGA-

TION declaration. The AGGREGATION declaration ha. all of the components of a 1

PROCESSORS declaration, plus a possibly enumerated list of the processors it contains.

There is a consistency rule that requires that each AGGREGATION HAVE, HEAR

etc. everything that its components HAVE, BEAR etc.

All of the values described in this Section can be closures (see Chapter 5) a. well a.

ordinary values.

k.

A simple multiprogramming solution to our sample specification,

VA3A' [(I .. (1 n) [a! aj

Iwould be described a.:

A Istype INBOUND ARRAY({1 ... n))
Pa Istype PROCESSORS HAS &~i E (1 .. .n}

TALKS Pb,j E(i +1... n) (SENDS A.)
A' istype OUTBOUND ARRAY({1 ... n))
Pa' Istype PROCESSORS HAS A.,i E (Il... n}

HEARS Pb, (USES B,)
B Istype ARRAY({1 ... n))
Pb istype PROCESSORS i,i E (1 ... n} HAS B,

HEARS Pa (USES A.)
TALKS Pbj (SENDS B.)

* B' Istype ARRAY({1 ... n))
Pb' Istype PROCESSORS i,i E {1 . .. n) HAS Bi

HEARS Pb, (USES B,)
If 1< i<n, then

LINKS Pb'l1 Pb'1+
(PASSES Bj E{(I... i- 1))

Ifl1< ithen
HEARS Pb 1 (USES B,, (I... i- 1))

23

(in Pb)
temp - 0
Vj E {1... i)

temp - temp+ Bi
end V

B4 +- temp

p.....

Some irrelevant detail has been ignored, but key points are that all enumerations are

unordered, and that in B there are i processes waiting to finish. The enumeration is an

abbreviation for text that updates temp and keeps track of whether it is complete so the

assignment B .- temp can be made.

2.2 Single Process per Processor

This model is similar to "Multiprogramming" except for three features. V-A

* The memory pools in this model are ordered. There are potentially multiple pools L

per HEARS, etc. clause, as one must be provided for each USES, etc. clause. These

pools are either stacks or push-down lists, and the enumerations within the USES,

etc. clauses must be ordered (enumerating through a sequence rather than a set). _

* The SENDS and corresponding USES clauses can either have instantiations in

the same or the opposite order, making the communication channel a pipeline or a

pushdown stack respectively. This applies to communications links (where the source

and destination are different processors) and to memory pools (where they are the

same).

* Only one process is allowed in each processor.

-7 12 ,

• - .-. -'." .'. .- .- -" ' " -"- ' " - " -' " .' -" .. " i" " " " " " " " " ' ' ' ' " -' -" " ' -

24

This is a lower-level model than 'Multiprogramming because of the lack of the require-

ment that the hardware processing elements be able to run multiple programs effectively

simultaneously. As before, more information must be supplied, consisting of modifications

to the program to explicitly test for the availability of required data, and declarations of

pools as separate objects.

It is possible to transform a static collection of simultaneously running programs into a

single program with the same effect, provided that none of the constituent programs enters a

nonterminating loop that performs no access to any pool. One such set of transformations

would supply a master control program which would have as coroutines copies of the

procedures of each of the multiple processes to be simulated. Each access to a pool in one

of the simulated processes must be preceded by a test to see whether there is something

there, and if there isn't the 'process" co-returns to the master control program. It is clear

that this preserves correctness, and if we assume that the processor has enough power to

do the work assigned to it, we will not see a situation in which some work does not get

done because some process's program runs indefinitely, always finding work to do.

This transformation can only be performed if a constant number of processes are to be

folded. Code that satisfies the previous model may have a process per pool datum. For

this reason we must impose the restriction that unordered enumerations are not permitted.

The pools must be turned either into queues or pushdown stacks.

A pool is an object whose type is pool. It has a stack? property and it can have (or

lack) a name. A pool is associated with every USES, etc. clause. Every pool is shared

by one SENDS or PASSES clause as a source and one USES or PASSES clause as a

sink'. The pool has source and sink properties, and the USES, etc. clauses have pool

properties. • q

'It is poesible for different instantlation , of a single PASSES clause to be both the source and the sink.

• ° ° ,

• , .-. .- '. - " . '.°....-.-. .• ..-. . ,. , .- • - ,.. *,.-.,_ - .. -'- .: . .' '-,- - . , . '

25

Only a single process per processor can exist. The procedure may contain enumera-

tions, but they must be ordered and they denote sequential composition and not parallel

composition of tasks.

On this level it is important how many uses are made of a given datum, because the

logical connection between a datum and its use is made by counting. For this reason some

streams are duplicated, i.e., information is put in at one stream and removed at several. .

In this case, language like

(USES a. .

S .. ~ .

(SENDS b...)

(SENDS c...)

(in Pz): t
b,c4- a

will be used to describe the copying of the stream that supplies a into ones that supply

b and c.

Part of a parallel structure that satisfies the benchmark specification on this level

follows:

.:,...,. _-.,,_..:.. :. : ,-..................................:................................:.........:::

26

A istype INBOUND ARRAY([1 ... n])
Pa Istype PROCESSORS HAS A, iE [1... n]

TALKS Pb,j E [i +.1... nJ (SENDS A,)K

B' Istype ARRAY([1 ... n])
Pb' Istype PROCESSORS i,i E [I ... n] HAS Bi

HEARS Pb, (USES B,)

U If 1< i < n then
LINKS Pb...1 , Pb'i1

(PASSES B,jEJi - 1.1])
If i <ni then

LINKS Pb,,Pb:'+1
(PASSES B,)

If 1 < i then
HEARS Pb'il(SSB~ i-1 1

(in Pbi:
temp
for j E[i - I... 11

temp - tenp + Bi
end for

B - temp

The difference between this solution and the previous one is that all orderings are

explicit. Note that the jenumerations are 'backward". The for operator replace the

V operator of the previous parallel structure description. Instead of specifying unordered

and therefore potentially concurrent executions in one processor, it specifies "ordinary"

* looping.

0 2.3 Clocked

In the clocked level there is an object called a clock. It is permitted to take values from

an ordered domain (conceptually, vectors of integers; usually a scalax of type integer). The

print prototypes (syntax declarations) of TRANSCONS allow every USES, etc. clause to

have an AT clause. Consistency rules require that effect follow cause. For example, no .

SENDS clause instantiation occurs AT any time before the computation it depends on *

,,~~ M6 i4s

27

USES all of its values, plus an amount that depends on the nature of the computation as

described below.

The additional specializing information beyond "Single Process" is the AT information.

The value of the AT property of a USES, etc. clause is a parametric expression in variables

* bound in the scope of the clause. This allows the hardware of a processor to be simplified

in several ways, depending un some of the values of the AT clauses.

The programs can be rewritten to not test whether data is available. Data is assumed to

be available at the appropriate times, and the hardware can merely "gate in" data, or read

the port without regard to signals describing the presence or absence of data. Similarly,

data can be written without regard as to whether there is room for it.

All information present in "Single Process" is present for this level also. A few additional

elements are added. There is a mapping T:s--* i where a is an element of V syntax (a

node type) and i is an integer. T(s) will be called the intrinsic delay of type 8. The

interpretation of this is that if a is an operator (e.g., +) then T(s) is the time required

to perform the operation, and if 8 is atomic then T(s) is the time required to develop the

value. The time to evaluate a + b, for example, is 2T((variable reference)) + T(+).

T(m) where m is a reduction operation is the time for a single step. This means that

a single value or set of values will necessarily be absorbed after i time units.

A "Single Process" specification can be converted into a "Clocked" specification by

addition of a clock declaration, and assigning times to each of the USES clauses. The

transformation rules assign a time of 0 to the first instantiation of each SENDS clause,
I

and use propagation techniques to assign times to other events. The AT expression of an

instantiation of an output of a node must at least equal the highest of the sums of the AT

values of the node's inputs and its intrinsic delay.

The implementation of our specification to this level is:

..-.... . . .

............. •

28

(Here we focus only on the actions of the Pb' processors, which are the ones that do

* the actual computation)

C istype CLOCK [I... 3n] .

B' istype ARRAY((1 ... n])
Pb' istype PROCESSORS i,i E [1 ... n] HAS Bl

BEARS Pb, (USES B~AT C 0)
I <i<n then

LINKS Pb'i-, Pb'i~ J
(PASSES B,j E[- I... 11AT C 3(i -j) +2)

Iffi<n then
LINKS Pbj, Pb'i1

(PASSES B, AT C 2)
If 1 <i then

HEARS Pbil- (USES B,j E[ji-lI...l11 AT C 3(i -,

(in Pb:')
temp4-O0AT C I
for je[i -1I...]

temp 4- temp + B AT 3(- + 1
end for

B: 4.- temp

There in an invisible notation on the nodes whose printed representations are Otevnp

temnp + Bitm and temnp .- 0 giving them AT properties. We have depicted the temp 4

temp + Bi and temp -0 lines as having visible AT clauses for clarity.

* 2.4 Fixed Delay Level

A possible endpoint of a synthesis is a structure amenable to VLSI implementation.

In order for this to be feasible, several conditions must be met that aren't necessary for a

parallel structure in which many Van Neumann computers cooperate. An example of this .

is the fact that the memory buffering a link between two computing elements must have a

definite length, specified when the circuit is burnt.

29

The restrictions we must impose, that things happen at definite times and are separated ,. .

by definite intervals, can best be modeled by providing declarations that the times things _-_._

happen (AT clauses) are relative to the times other things happen. If the time difference is

equal to an explicit constant, a VLSI synthesis system could use a shift register to control .;.:.

the timing and to model the data path. If the time difference is a superglobal this is still

possible, although the circuit cannot actually be sized until the value of the superglobal is

known.

At this level, the internal nodes of the processors' computation nodes as well as the

USES, etc. clauses, except for the SENDS clauses of the input processors' TALKS

clauses, have AT properties. The values of these properties are sets of pairs of other nodes

and strictly positive integer constants instead of an expression. For each node n there is one

AT property for each node m from which n receives data flow. The property will be the

pair of m and a positive integer i, and the semantics of this is that n finishes its computation

and makes available its output values i units of time (clock cycles) after m does. If there f-

is a list (m, ml,m2,..., Mk,n) such that (mk,ik) E (AT n), (mi, E (ATm,+1), ." -'

(m, io) E (AT) then there is said to be an AT-path from m to n with delay Eo_< . --

The graph whose nodes are the nodes of the specification and whose edges are the AT-links ft

is a DAG, but it is not necessarily a tree. Two paths from m to n must have the same

delay. The delay of each node must be greater than or equal to the intrinsic delay of the

node's type.

The motivation for this level of description is that a specification that meets these

conditions can be simply transformed into suitable input for a VLSI placement program 0

by taking several steps, assuming that all nodes of the specification have types whose

operator can be implemented as a single object in VLSI. If this is not the case (for example

if the specification includes a multiplication node and the library has only addition), the L

offending node must first be broken down into simpler nodes. The intrinsic delay of each

I

. - .v-. - - .".'. -
'

-
' w

-
" -

-- ' i

30

node type should equal the number of clock cycles required for the circuit that implements

the function to work. If (m,i) E (ATn) and the intrinsic delay of n is. = i- k, then

fabricate a wire from the circuit implementing m to a shift register with k elements whose

output is connected to the appropriate input port of n.

- 4

It is more difficult to display the implementation of our specification on this level,

because the AT clauses do not equate C with a form whose free variables are indices but

instead with an object with two slots; another node and an integer constant. The structure

that results is circular. We will display this by giving names of the form (script alphabetic:)

to some nodes so they can be referred to by AT clauses. Again we will depict the temp 4- .

temp + Bi and temp -0 lines as having visible AT clauses.

C Istype CLOCK 11... .n

B' Istype ARRAY([l ... n])
Pb' Istype PROCESSORS i,i El ... ni HAS B-

HEARS Pb. (A: USES B~AT C 0) -

*i I<i<n then
LINKS Pb'-, Pbi'+

(2: PASSES Bi, E i - I... 1] AT t-I + 1)
If i<n then

* LINKS Pb,,Pbi .
(C :PASSES B, AT 1+ 1)

If 1 < i then
HEARS Pbi' (D USES BiE i - 1...11 AT Bi + 1)

, (in Pl):
C: temp -0 AT A + I
for jE [i-1... 11

Y:temp temp + Bi AT P, + 1
end for

B 4-- temp

* ...
. .

Ru "k: --k~

(31

2.5 Summary

We have seen that there are four useful description levels for parallel structures.

The highest level, multiprogramming, is useful when a processor that can efficiently

* perform context switching and can contain memory pools would not be objectionable.

This would be the case when a typical microprocessor with sufficient memory could be

provided for each processor.

The second level, single process, is useful when a general purpose processor, but no

context switching or memory pool management mechanism, can be provided. An example

of such a situation would be the use of a typical microprocessor with no memory in addition

to its internal memory. This internal memory is normally insufficient to hold several "L

inactive contexts.

The third level, clocked, covers situations in which a processor siwple enough to do

things in a specific, fixed manner and order is desirable, but enough logic and memory can

be provided to allow for the storage and retrieval of some intermediate values. An example

of a technology that would be appropriate is interconnections of finite state machines and .<,.

FIFO and LIFO devices.

The lowest level, fixed delay, must be reached when the computation elements are

restricted to combinatorial logic and latches. Only fixed time differences between the I

occurrences of various events are allowed.

We therefore have a series of synthesis levels and corresponding computation models

for the four main technologies in which one would want to implement a parallel structure.

- . -.
.P.. . .. t. . ~ .. , .. .~...r....&g....~ - -. I. Vathi . - ,

32 N

P

Chapter 3

Case Studies of TRANSCONS Techniques

* 4,

To develop the techniques described above, we have explored efficient parallel structures

for several classical problems and algorithms, described in the following Sections. In all

cases there will be a series of specifications, separated by rules and prose3 describing a

series of states of a node currently being transformed by TRANSCONS. We will highlight

the changes with a vertical stroke (1) in the left margin, but will supply the entire current

state of the node for reference. A node in V roughly corresponds to a syntactic object in

a syntax tree.

3.1 Polynomial-Time Dynamic Programming

We have examined a class of polynomial time (P-time) dynamic programming algo-

rithms for which it is possible to synthesize an optimal parallel scheme. The synthesis

uses rules displayed below, and inference capabilities described in [Bro82]. Abstractly

* programmed algorithms in this class include the Cocke-Younger-Kaai parsing algorithm

for a fixed, possibly ambiguous Chomsky Normal Form grammar, described in [AMlT2];

* the Optimal Binary Search Tree algorithm, described in IAnu73]; and Optimal Multiple

Matrix Multiplication, described in [AHU 74]. All of the algorithms fit into the following

scheme.

"9

..

...
p...

7 7 F --- --

33

Each algorithm generates the "solution' to a problem whose input is a sequence S of

n items by using a dynamic programming technique. This technique generates a solution

for a sequence of items by combining solutions for contiguous subsequences. The solution

V(K) for a sequence K of length n is found by:

1. Generating the n - I possible partitions of K into contiguous nonempty subsequences

I and J such that l[J =K;

2. Forming for each partition a partial solution for IIIJ by applying a function F to

V(I) and V(J);

3. Obtaining V(IjJJ) by combining (using a binary operation O) all of the partial

solutions. This is expressed formally below:

V(K) = 0 F(V(1),V(J))

In order to obtain the following parallel structure and have it run in time e(n), two

conditions must hold:

.Both O(z, y) and F(z, y) must take constant time,

e 0 must be associative. This allows F(V(I),V(J)) values to be included in the.L

running 0-total in any order they become available.

34 -

These conditions are met by a sizable class of problems, e.g., the problems mentioned 2'

above. The dynamic programming scheme described above generates the solution V(S) for -

the original problem S of length n. The process starts with V((1)) for each si E S, then

generates solutions for subsequences of length 2, 3, and so on, up to n. We give below two

dynamic programming algorithms that fit into this scheme.

The Cocke-Younger-Kaami algorithm parses a sequence of terminal symbols according

to a fixed context free grammar in Chomsky Normal Form. This form specifies that each

production rule in the grammar is either of the form N -- t for some nonterminal N

and terminal t, or N - PQ for nonterminals N, P, and Q. In this parsing algorithm,

each problem is a sequence of terminal symbols, T, and the solution V(T) is the set of

nonterminal symbols that derive T. Let the initial terminal sequence be (t, ... t,). Then

V((t,)) are those nonterminals N for which there is a production rule in the grammar of

the form N --+ ti. Given two contiguous sequences of terminals A and B, the nonterminals

that produce AI(B include those nonterminals N fr which there is a rule N -- PQ where

P E V(A) and Q E V(B). The nonterminals that produce a sequence S are obtained by

dividing the sequence S into two subsequences in all possible ways and taking the union

of the results. In our formalism,

F(V(S),V(T)) = {NI[N PQ E G P E V(S) A Q E V(T)) *o - i

and

) is the union operation, which is indeed associative.

Another example of a dynamic programming algorithm fitting our scheme is finding

the complexity of the optimal grouping to multiply a given sequence (MI, M 2,..., M.) of

matrices. Since matrix multiplication is associative, multiplying the matrices in different

,. groupings produces the same result matrix, but different groupings may have different

• ~~~~~~~~.. -. - . "... -?.i'.-....... :._. ".............

35 •

execution efficiencies. If M is a p x q matrix, and N is a q x r matrix, then the product

M x N will be a p x r matrix, and the multiplication will execute in time proportional to

pqr (if a simple matrix multiplication algorithm is used).

, .'j ..-

This problem fits into the scheme presented above in the following fashion. The "so- .-

lution" for each matrix subsequence V((Mi,... , Mi)) is a triple (p, q, c): p is the row size

of Mi; q the column size of Mi (since multiplication using any grouping of (Mi,... , M)

results in a p x q matrix) and c is the optimal execution cost for computing Mi x .-. x Mi.

The F for this algorithm is defined below:

F((pl, qj, cl), (p2, q2, C2)) (Pl, 0s, CI + C2 -+ Pjqjqs)-"--".

0 for this algorithm returns the triple with the minimum cost element. (Since only the

costs can differ among triples, 0's choice is arbitrary if the costs happen to be the same.)

The minimum operation is associative and commutative.

A high-level specification of the dynamic programming algorithm is presented below. A

subsequence can be represented by its length and where it begins. The array A used below

contains solutions to subsequences: the element Ai,, contains V((i,. . . , i+,n_ 1)), where I

is the initial sequence. The complexity of each "executable" statement is presented at the

right.

The algorithm specification is as follows:

• 'I -

......................................

36 .

A Istype ARRAY(1,m),<!5:n, 1 1 -I+ I -
V istype INPUT ARRAY (1), 1:5 !5 _n
VlE(1...n)

A, = i 6(n)
VmE (2...) (1)
VE(1 ...- ,m + 0(n)

kM= 0 (AjOA+kmh) 8(n3)
& e {, ... ,, -) , ,

Figure 3.1: Specification of 9(n 3) Dynamic Programming

F and 0 because it is given that a single evaluation of both F and 0 takes constant

time.

The time complexity of the specified algorithm is indeed 0(n s) when executed on a

sequential machine. A trick is available for one of the problems, Optimal Binary Search Tree

of IKnu73]. This trick involves bounding k in Figure 3.1 more narrowly than (I... m- 1}.

This trick reduces the algorithm's running time to 0(n 2), but it does not generalize to the o

other algorithms.

It is possible to implement the specification on a two-dimensional array of e(n 2) pro-

cessors and the resulting structure will solve n-element problem instances in 0(n) time.

We know of no analog to the trick mentioned above for parallel structures. The memory

size of each processor is O(n). Below we describe the operation of the structure, and then

prove that it is a e(n) algorithm. This parallel structure has been reported in the literature

JGKT79).

The network of processors is displayed in Figure 3.2. Observe that Pg,. is connected

to Pg,mi and Pj+I,.-- Each processor Pg,. will compute the value of Aj,.. To do this it

needs two streams of information: A4,k and A1+k,m_, where k < m. These streams of data

come respectively over wires from processors Pja,I and Pg+1,m.-. Each processor Pg,,,,

(except PI,.) will send every A-value received from PI,m-. to Pl,.+, and from P1+.,m.-"I

";:::

I

to Pgl,,m+i as soon as Pl, gets it. Each processor will also compute F-values and merge

them into a running ()-total as soon as it gets the necessary A-values.

PI,1 P2,1 P3.1 p4 .1

P1.2 P2.2 P3,2

Pi's P2,3

P1,4

Figure 3.2: Processor Interconnections

p p

At first glance, it might appear that this algorithm has time complexity 0(n2). Each

processor needs to receive e(n) A-values from each of its incoming wires; it must at same

time perform e(n) worth of computation on the data received before it sends its result on

each of its outgoing wires. However, a careful timing argument shows that an execution

time of e(n) can be achieved.

Definition 3.1 Within P1,m., for any k where 1 < k < mn, Aj,k and Ai+k,m,,k are called a

complementary pair of A-valueo.

Processor Pl,,,, will apply F to each complementary pair of A-values.

The next lemma shows that each processor Pg,m receives all 2m - 2 values it needs,

though it waits 09(m) for its first complementary pair, AgF.. /21 and A1i r./2j,",-rFm/2jP

S. . .', . . . *

S..•. .- '.

38

Lemmna 3.1 Each processor Pi^m where 1: n !5 <n -rn+ 1 receives the values A1,W~ where

1 <rn < mn and (separately) Ajm.,miwhere 1 :5 m' <irn, in order of increasing rn' *

Proof: By induction on mn. Clearly this is true for PI,2, which receives only one value

on each of its incoming wires. Now suppose it is true for PI,.-I and PI+1,,,n. 1. Then Pl,m.

will receive A-values in the proper order from PI,... and P1+i,.-I through m' r n - 2,

following which it receives Ag,m-, and Ai+l,... from those procesaors. But the latter two

A-elements are just those required to preserve the sequences.*

Let T be a time-dependent variable such that at system startup T =0, and after z

units of time T x . The time unit satisfies the first condition of the following lemma.

Lemama 3.2 If all of the following condition. are met:

*All of the following takes processor PLjm no more than one unit of time: receiving

two values, one each from Pl,,,... and Pa+I,,nI; sending these values on to PI.,+,

and PI_...+I; applying the function F twice to two complementary pairs of A-values

if all values are available; and merging the resulting value into a running Q-total.

* The A-values come into Pg,,, in the order indicated by Lemma 1.2.

* Each processor PI,. sends values received from P1 ,,.. 1 reap. P1+.,.-I 1 tio Pi,,,+i resp.

PI1.1no later than one time unit after receipt.- 4

e At T =0 processor P1,1 transmits A1,.

39

then PI,m will compute AI,m no later than T = 2m.

Proof: By induction: P1,1 is initialized to know A1, 1. Now suppose the lemma is true

for m < i and we wish to show it for m = i. We first show the following claim: that at

T = m+j PI,, will have included at least max(, 2(j- rm/over2l)) F-values in its running

(Q-total. This claim is proven by induction on j. When reading the proof of the claim,

keep in mind that the "life" of a processor PI,,, is divided into three epochs:

1. When T < m, the processor may have received no A-values.

2. When m _ T < m, the processor will have received at least T - m A-values from

each of its input lines. Since the first half of the A-values from each inbound wire

form complementary pairs with the last half of the values from the other inbound

wire, PI,, may not have been able to perform any calculations of any F-values yet.

3. When T > 1m, the processor will have received at least half (more accurately, at least _

m - T) of the values from each inbound wire. During each unit interval, it will receive

one A-value from each inbound wire, which will form a complementary pair with some

value that was stored from the other wire during epoch 2. Two F-calculations will .

be possible - one pairing each of the just-received inbound data with a previously

received input datum from the other side (unless m is odd and T = m + !!mTiin

which case the two values arriving at this time form a complementary pair).

If j = 0 the claim requires nothing. If > 0, consider the situation at T = 2(i - b). All

processors P, and P+kt,, where k < i - b will have completed their work. Their answers

will have had time to reach PI,i after b time units, or at time T = 2i - b. But j = s- b, so

by T i + j at least 2j A-values will have arrived from each input connection, and since .- '. -.

there only i complementary pairs if j > only 2(i - j) pairs can be incomplete, meaning - .

that at least 2(i - [ji) pairs are complete. Since, by induction on j, two time units ago

.

-' *.. .

40

2U- r i)- 2 F-values had already been merged into the running -- total there is plenty of

time to merge two new F-values into the running 0-total, completing the induction step

of the claim.

Lemma 3.2 follows immediately from the claim and the observation that the merging

of m - 1 F-values into the running 0-total in Pi,,,, constitutes a calculation of A,,.

Theorem 3.3 The time to compute Al,,, is O(n).

Proof: Immediate from Lemma 3.2
I... .

A similar but more general result will be shown in Appendix Section B. We will show

how this parallel structure can be derived from the specification in Figure 3.1.

3.1.1 Preparatory Rules

The problems amenable to TRANSCONS synthesis have internal arrays of storage, and

the requirement must be to fill in an array by computing a value for each element. Our

strategy will be to assign a processor to each element of the array. The first preparatory

rules, MAKE-PSS and MAKE-IOPSS declare a processor family for each array of

the probk and compose a single enumerated PROCESSORS declaration. This decla-

ration ha. several clauses: the processors definition clause, the HAS clause, the HEARS

clause(s), and the USES clause(s). PROCESSORS declarations were described in

Section 2.1, but we will give a more complete example below. Any part of the PROCES-

SORS declaration except the processors definition clause can be made conditional.

• •

. . ..•" - . ..' .- . ..- . . . "" """- -. ..-.. - ". _. ., ,', -- . , - _,'.'L ' ,- - -- - "

1' . . ,...-..'k-. W....W. " - 'C

41

P istype PROCESSORS (1, m),I <m < n, (< n -m +
* HAS At,,m

If m = 1 then HEARS Q (USES vj)
ff 2<m < nthen

HEARS F~mi(USES Aj,t, I < k < m - 1)
HEARS FP+imn- (USES Al+km,,,k, 1 < k < m - 1)

* if 1:m<n-I then

TALKS P,,+i (SENDS AL,kt, 1 < kv < m + 1)
if 1 <m <n -1 A1> 2 then

TALKS Pi-i,m,+i (SENDS A.kmk,1 < k < m + 1)
* ~ ~ ~ i I1 <m < n-1A 1 <m <n -I then

LINKS k9m-i, kM+i

(PASSES Aj,k, 1 < k < m - 1
if 1 <m < n -1 A1 < m < n -1A I> 2 then

LINKS P1+i1...iF-..m+1

(PASSES 1 < k <rn-i1)

This declaration means all of the following:

0

A family of processors exists. The family name is P. Each member of the family is

named by two indices, and any member Plmexists ifl1 < m< nAlI < I< n - m+ 1.

* The value n is an externally defined constant value (for any instance of the problem)

defining the problem size. This PROCESSORS declaration actually declares some

facts about every processor in the family.

*Each element, Pi,mn, of this family is responsible for computing the value of (i.e.,

HAS) Aj,m. A is an array declared elsewhere in the specification that contains the

PROCESSORS declaration.

o If P1,1 is defined it needs vi to compute its HAS values, and it expects to get these

values from (i.e., HEARS) the (only) processor in the Qfamily.

o Ilf PI,in is defined and 2 < m < n, then P1,m needs the values of Alk for any kv,

1 < k < rn-i1. It also needs Aj+kt,m.... for any k in that range. It expects to get these

42

values from processors in the P family, namely P1,.-i and Pl+l,m-1. The scope of the

bound variables list (in this case, ", m") is the entire PROCESSORS declaration.

. Similarly, processors whose indices meet certain conditions TALK to other processors

and SEND certain values as specified by the enumerated expressions. Processors

are also declared as LINKing pairs of other processors and PASSing sets of values.

The TALKS/SENDS and LINKS/PASSES information is redundant; this infor-

mation can be inferred from the HEARS/USES data. In what follows, I will omit this , '

redundant information to enhance readability except where I judge it to be critical to an

understanding of the declaration.

3.1.1.1 Rule MAKE-PSS: Give Each Non-I/O Array Element Its Own Pro-

cessor

04 - *- "i

Dy our conventions, the portion before the M " is the antecedent and the rest is the

consequent. Variables free in the antecedent are implicitly existentially quantified and the 4

scope of this quantification is the entire rule. Variables free only in the consequent are

universally quantified (but this is rare). A rule is said to apply if the antecedent is true;

when this happens the semantics of the rule is to make the consequent true. It is explicitly *

permissible for the consequent to make the antecedent no longer true.

.

"._.-"..".._..'...'..." ".".

V1 43

rule MAKE-PS. (**) TRANSFORM
* ** = 'bind NAME lstype X'

AX='ARRAY(Q,m),l < m< n,1:5 1:_ n-m+1'
" undefined (10 X)
A Y = (gensym 'PROC) -

A Z = 'PROCESSORS (BOUND) ENUMERS HAS NAMEBOUND' k"I* -" p...

**='bind ... Y istype Z'

MAKE-PSs applied to Figure 1 binds as follows:

bindings:

((entire specification))

= 'ARRAY (1,m), 1 < m < n, 1 << n - m+ 1'
NAME= 'A'

BOUND= '1,m'
ENUMERS='I < m < n, 1 <1 < n - m+ 1'

Y= 'pI
Z='PROCESSORS (,m),15m<n,1<in-m+1

*A HAS At,.' "

* 8obtaining

A istype ARRAY (1, m), 15 m < n, 1:l < n - m + 1
I P Istype PROCESSORS (,m),1 m< n,1<l < n-m+1 HASA,.

v istype INPUT ARRAY (1), 1 < I < n
O lstype OUTPUT ARRAY

A1,1 = vi9(n)

VmE ((2...n)) e(1)
* VIE(l... n-m+l} 6(n)

A,, 1 (2) F(A,k,AL+k,,-A:) 0(n 3)
kE({..,. -1)

o = A te,. o() t- -.a.-

aste e taeo tedta-e

S'-

44

3.1.1.2 Rule MAKE-IOPSS: Assign 1/O Arrays to Procesors

This rule assigns a sinigle processor to each input or output array. The reason only a

single processor is assigned in that it is assumed that input values will reside in a single

entity, such as a tape drive.

rule MAKE-PSs (**) TRANSFORM
= 'bind NAME lstype X

AX'AkRAYQ,m),1:5 m:5 n,1:5 1:< n-vn+1'
A defined (10 X)
A Y = (gennymn 'ROC)
A Z = 'PROCESSORS HAS NAMEBOUND'

*='bnd ... Y stype Z'

Rules MAKE-PS.s and MAKE-IOPSs make PROCESSORS declarations that

do not have USES and BEARS clauses yet. The next rule i in those clause, and

subsequent rules improve them.

Rule MAKE-lOPS. applies for two sets of bindings:

**=((entire specification)) **=((entire specification))
X ='OUTPUT ARRAYO0' X ='INPUT ARRAY vi, 1 1:5n'

10O='OUTPUT 10O='INPUT
NAME = 0 NAME= v

BOUND = (empty binding list) BOUND = 'I'
ENUMERS = (empty binding liat) ENUMERS = '1: <1: n'

Y=R Y=Q
Z ='PROCESSORS R Z ='PROCESSORS Q

0HAS 0' HAS wi, 1<15< n'

resulting in

(P.1) A Istype ARRAY (1, m), 1mn,:51:n - m +I
P Istype PROCESSORS (1, m), :5m:5n, 151:5n- n + I

HAS A,,,
v Istype INPUT ARRAY (),:<1< n

I Q Iatype PROCESSORS HAS ul, 1: 1 < n

45 .' "o "

0 istype OUTPUT ARRAY "

R Istype PROCESSORS HAS O
V I E (1...n) n))

(P.la) Aj,1 = vi 0(n)V ME (2 ..1)):::}:
ViE {1...n-m+1} (n)

(P.1b) A4,1 ® F(Aj,k,Aj+jt,._A) 9(ns)
-0 A kE(1...m-1)

So far, all rule application can be done in a straightforward manner, without inference.

3.1.1.3 Rule MAKE-USES-HEARS: Determine Processors' Inputs -.- -

. --We need rules to describe the connections between processors and the data that pro-

cessors need to produce results. This rule is very conservative - it determines what array

values each processor P* needs, and it specifies a direct connection from the processors

holding those values to P'. The USES clause describes the valuea that a processor needs;

the HEARS clause describes the processors that have (HAS) these values.

To determine this, consider the innermost loop which assigns values to array elements

indexed by non-region-constants. Note that the form of the rule shown below evidences a

: "need for elaborate flow analysis. Non-constant array index expressions are used as processor

indices. The indices for those array eiements whose values can affect the assigned value

comprise the index expressions for the USES and HEARS sets. A reference at the same

loop level will normally generate USES and HEARS clauses with null enumerations. A

reference contained in a deeper loop will normally generate instances of such clauses with

inherited enumerators from the loops.

S.... *-..-.

1~~ ~ ~ 7, -1- .7.; , 777 7

48

* rude MAKE-USES-HEARS (')TRANSFORM

j ~CB ='bid' *..

A ** =

'PDCL Istype PROCESSORS (PBV) PENUMER HAS ANAMERIvDEx'
A X = (INNER-LOOP-THAT-DEFINES ANAME CB)
A Y E (ARRAY-REFERENCES-AFFECTING X)
A Z = (EFFECTV7-ENUMRATOR-OF Y X)
A W. CONDITIONS

CB. CONDITIONS U(INFERRED-CONDITIONS X)
A W. CLASS = USES-CLAUSE
A W. ARC = ANAME

(REL.BV PBV X. DEF-OF. INDEX-EXPR Y Z)
(RELENUMER PBV X. DEF-OF . INDEX-EXPR Y Z)'

A Q. CONDITIONS
* CB. CONDITIONS U(INFERRED-CONDITIONS X)

A Q. CLASS = HEARS-CLAUSE
A HISBV = ANAME. PROCSTMT . PROC-By-OF
A Q. ARC 'ANAME. PROC-OP

(REL-BV HISBV
X. DEF-OF . INDEX-EXPR Y Z)

(RELENUMER HISBV X. DEF-OF .INDEX-EXPR Y Z)'

W 6 **.clanses .

A Q E *.clause*

The INNER-LO OP-THAT-DEFINES function finds an innermost locality where

an element from the argument array is defined (not merely used). The ARRAY-

REFERENCES-AFFECTING function returns a set of all points in the program where

an array is referenced and the value returned can affect the results of its operand, a pro-

gramn point. The EFFECTIVEo-ENUMERATOR-OF function determines what (pos-

sibly implicit) enumerators its first argument (an array reference) is controlled 6iy, beyond

the enumerators that control its second argument (an array definition in this case).

The map, x.CONDITIONS, allows any node z to be placed under the influence of

conditions (an If clause). INFERRED-CONDITIONS is a function that produces an If

...... . - . - -. . -yl

47

clause that specifies exactly those conditions that must be true for the point representing

the argument to be reached (a form of assertion propagation).

REL-BV and RELENUMER give a piece of text that respectively will serve as a

bound variable and an enumerator for the fragment enumerated by the fourth argument

to be valid for the third argument in the context of the second argument, using the bound

variables of the first argument. This would be the bound variables of the fourth argument

unless there is a variable name clash._-.

This modifies the first PROCESSORS type declaration, which becomes

P istype PROCESSORS (,m),1< m<n l<1<n-m+l.
HAS A,m

Sif m 1 then HEARS Q (USES vi)

Application to the assignment to Aj,m in (P.16) produces

P lstypePROCESSORS(!,m),1<m<n,1<1<n-m+I

HAS A,,,.
if m = I then HEARS Q (USES vj)

If 2< m 5 n then

I HEARS PI'k, 1 < k < m (USES A4,, I < k < m)
HEARS P+k, -k, 1 < k < m (USES Aj+t,mi-, 1 _ k < m)

Finally, apply MAKE-USES-HEARS one last time, to the null "enumeration",

(P.lc), that sends the output value to the output "array", 0. This forces us to modify R's

PROCESSORS declaration as follows:

•~ 4-"iT[

.. *.-,

48

R Istype PROCESSORS HAS 0

EI B ARS Pj,, (USES Ai,,)

This declaration is in its final form.

The applications of MAKE-USES-HEARS require flow analysis and some ability

to reason about enumeration (to construct If clauses).

3.1.2 Optimization Rules

The rest of the rules described in this section will transform the simplest parallel struc-

tures into more efficient ones. They do this by detecting and removing redundant inter-

connections.

3.1.2.1 Rule REDUCE-HEARS: Improve HEARS clauses

It may be that a HEARS clause of a PROCESSORS declaration requires each

processor to be connected to an asymptotically growing number of other processors. This

is undesirable, because the number of interconnections in the whole collection of processors

would grow faster than the number of processors, and the cost of interconnections would

exceed the cost of processors for sufficiently large problems. This would, in turn, decrease

the size of the largest problem that could be handled by a given parallel structure.

However, often it is not necessary for each processor to be connected to all other

processors whose values it needs. If processor P. needs values from processors P& and P,

but Pb needs a value from processor P,, it may not be necessary for P. to be connected to *

P. P. must be connected to Pb, but P& will be able to get the value that P. wants from

P, so it (Pb) can pass that datum along.

This form of this observation only secures a constant factor reduction in the number of

interconnections (in this case, from two to one), but it is possible to do better by extending

.-I * " 4

49

the principle. Suppose, for example, that a structure includes a family of processors Pi for

1 < i < n. Further suppose that Vi,j where j < i, Pi needs values from Pi. In this case,

Pi+1 will need all the values Pi needs, plus the value in P3 itself.

Basic Observation 3.1 If Pi is capable of supplying all of the information that Pj+1

needs, so it is possible to modify the structure to replace the 4(n) connections required by

this HEARS clause by a single connection.

Definition 3.2 In a parallel structure, a family of processors is the set of processors de-

fined by a single PROCESSORS declaration when enumerated over the PROCESSORS

clause's enumerator. That family is generated by that PROCESSORS declaration.

Definition 3.3 The set of processors in a processor Pa's family HEARd by P. due to a

HEARS clause Ho will be written Ho(P.), and is called the induced set of Ho at P..

o0 Definition 3.4 Consider Ho(P.) and Ho(Pb). Suppose that each is a subset of the same

family as P. and Pb (which are in the same family because they both have the same HEARS

clause, Ho). The interconnections defined by Ho telescope if these sets HO(P4) and

Ho(Pb) either are disjoint or one strictly contains the other, for any choice of P. and Pb in

the family. We also say that Ho telescopes. If Vp.,p6EIm,,,, : [0 C Ho(P.) C Ho(Pb) =

3pC-f*,ni, :[Ho(P.) U{P.} = Ho(P,)fl then Ho snowballs. The notion of a USES clause

telescoping is defined similarly. A partition is induced by a telescoping clause co if two

processors are in the same partition whenever the sets defined by co overlap.

Theorem 3.4 If a HEARS clause Ho snowballs, it can be replaced by another HEARS

clause that only specifies input from a single processor.

I2.

Proof. Consider the family of processors described by the PROCESSORS declaration -4

that contains the HEARS clause. Consider also the induced partition II. If the cardinality

of an equivalence class E E n is (say) c, then VP. E E: IHo(P.)11 < c. (No processor can

HEAR itself because it would never be able to complete its calculation if it needed its own

res ult to do so.) Since Vz,y: :$ y*o IIHo(Pj)II IHo(P,)II, and since II{0. .. c-II = c

teprocessors in E can be completely ordered by the cardinalities of their HEARd sets. By

the basic observation and the snowballing property, each processor can get the information

that Ho requires from the processor that is its predecessor in this ordering.*

op

Deflnition 3.5 We call replacing a HEARS clause, as in the previous theorem, reducing

the clause.

The following is proven in Appendix Section B.

Theorem 3.5 Reducing a snowballing HEARS clause will produce a parallel structure

whose aeymptotic speed is the same a. the speed of the original structure.

We can now state this rule in English as follows: "If a HEARS clause snowballs then

reduce it", and more formally as follows:

51

rule REDUCE-HEARS (stmt) TRANSFORM4
etmt = 'PNAME latype PROCESSORS ($PDV) $PENUMER...

If COND1 then
HEARS PNAME$HBV $HENUMER

(USES UVUBV$UEN,...)...'
A (THE OREM

(181 ={HBV: HENUMER[PDV \PDV]}
A ISla ={HBV: HENUMER[PDV\ PDV2]}
A 152 ={PDV : HENUMER A HBV =PDV}

A PROC 1 = {PDV1)
" PROC2 = {PDV}
A PROCh = {HEXPR}
A PROCA, = (HIEXPR}
" (isiflISla)E{(0 IS1 ISla)

A ((0 C 151 c ISla A COND1)
*ISI UPROC1 I18I2)

A (COND2 CONDI A 151 U PROCh = S2)
A (- COND2 =:, PDV3[IS1 c {HBV:

HENUMER[PDV \PDVs]}])
A (COND3 -+COND2 A CONDI [PDV\ HIEXPR)
A (HIEXPR[PDV \HEXPR] =PDV)))

stmt = 'PNAME istype PROCESSORS ($PDV) $PENUMER ...

If COND3 then
LINKS PNAME$HEXPR, PNAMESHIEXPR

(PASSES UVUBV$UEN,...)
If COND2 then

HEARS PNAMEHEXpR **

when this rule is applied to the current state, the bindings will be as follows:

.7-17Jy - 7-

52

*PROCESSORS PIm,I <m < n, < 1:5n- m+ I

BEARS _ikmk : : ..
PNME= 'P'

PDV= 'l,m'
PENUMER='1m <n, :1:5n -m + V

HEV=' + k, m -k'
HENUMER='15 < m - 1'

SET1= (yi + k$m1 - k): : k < m-1)
SETla= {(12 + k,m 2 - k): 1 < k5 (M2 - 1

PROCl= {(11,vni)}
SET2= ((I + k. m - k): 1:5 k:5 m - 1)

PROC2= ((I, m))
PROCh= ((I + 1, m - 1))

HEXPR= '(1 + 1, m - W)
CONDl= '2 < m <n'
COND2= true

THEOREM is a function whose argument is a symbolic set-theoretic expression

whose atomic terms are set expressions. These expressions are principally created by the

BOUNDBY function, whose inputs are the bound variables list of the processor name id,

an identity parameter, the form that defines the array references that comprise the array

definition, and the enumerator (if any) for the array reference.

This rule reduces the HEARS clauses from the large PROCESSORS declaration

of the current state to

HEARS P,.M-

HEARS Pi+j,m,-j

The resulting PROCESSORS declaration is

53

P Istype PROCESSORS (L,m),1 m < n,151 < n-m+bl

HAS A,,
if m = 1 then HEARS Q (USES vj)

If2 < m <n then

HEARS P1,,,j (USES A&,1 I< k < m)
HEARS Pl+l,i-I (USES A4+k,n-k, 1 m) <-"k<

Figure 3.3: Final Form of Main Processors Declaration in P-time Dynamic Programming
Derivation - "9

3.1.2.2 Rule A5: Write the Individual Processors' Programs

The general idea of the rule is that the first rule isolated the deepest enumeration in

the specification which assigned a value to an array element, and built the beginnings of a

parallel structure where each array element within the domain of that enumeration had its .

own private processor. Since the enumeration in time has been replaced by an enumeration

in space, the layers of enumeration that get us to the point which induces the creation of

the first parallel structure can be stripped away.

A technical note is that the enumerations can only be completely discarded when there

is no calculation at intermediate levels. If there is such calculation, the system will have .

to add it to the appropriate processors when it strips away the layers of enumeration

that include such calculation as well as the deeper enumeration. This does not make

the asymptotic behavior of the parallel structure any slower except when the calculations S

include enumerations. When this is the case, it might be possible to respecify the problem

to have separate copies of the array enumerated in the calculation for each cell of the target . .

array. This would require an array whose dimension is the sum of the dimensionalities of .

the two arrays.

we' .•

54

This rule is as follows: 'Supply each processor specified by a PROCESSORS decla-

ration with a copy of those enumerations from the original program that occurred within

the region that included the assignment to array elements that generated that PRO CES-

SORS declaration. The references to array elements are replaced by associative lookups

from the table of information that the processor has HEARd. The outer enumerations e

are stripped from the program, and uses of the variables that were bound in these outer

enumerations are replaced by constants reflecting the processor's ID."

The derivation of the P-time dynamic programming parallel structure is almost com-

plete. It remains only to reduce the depth of enumeration to the single level implicit in

* the segment,

Aim = F(Alk, Ai+k.k)
bE{1... M-1}

Rule A5 does this. The complete parallel structure that results is as follows:

A istype ARRAY (1,m), :5m <n, 1<I< n- m+1
P istype PROCESSORS (1,m),1 mn,1:51<n-rn+1

HAS A4m
If m =1I then HEARS Q (USES vj)
If 2:5 m < n then

HEARS P1.- I (USES Aj~k 1 <k <in
HEARS Pi+i,.-. (USES Aj+j,^-k, 1: A: < m)

V Istype INPUT ARRAY (1), <I <n
Qistype PROCESSORS HAS vi, I <1I< n

0 Istype OUTPUT ARRAY
R Istype PROCESSORS HAS 0

S (in Pp,,1:51:5n):

A(in P'. - m: ,(: <n-m))

Aa,~ - Oei. n F(AI,k, AI+k,M...k) 0(n)4

* (in P1,n):

0. Al,..

55

3.1.2.3 Rules HEAR-BY-CHAIN, SENDS-BY-CHAIN: Improve Topology

*; of Input/Output

We see that the rules described so far will produce a parallel structure in which every

processor is directly connected to the input and output processors when given a specifi-

cation of array multiplication. Only one I/O processor is created per I/O array, and for

many problems, including array multiplication, it is necessary to get some input or output

from/to every processor. (P-time dynamic programming is an exception, in which only

0(n) of the 0(n 2) processors receive input values and the output is only a single value.)

We therefore conceived another rule to attempt to reduce the excessive connectivity - -

that results from every processor needing access to input or output.

If the following conditions are met: .

* * the number of processors n, in a family that receives input from or sends output to L

a given processor is asymptotically unacceptable, and

- there is a HEARS clause H0 such that the number of processors that do not HEAR
o

any processor using H0 clause (if input) or that are not HEARd by any processor

using that clause (if output) is asymptotically less than ni,

4)

then the I/O HEARS clauses can be reduced so that only those processors at a source

(or terminus if output) of H0 are directly connected to the I/O processor.

Pictorially, we convert structures that look like these:

-AI

56

Figure 3.4: Many Processors Use or Build the Same Data

into these:

Figure 3.5: Resulting Structure From Sharing 1/0 Connections

We are not, however, prepared to do this yet. We need to have the chains of processors

required by this rule in order to improve the connections to the I/0 processors. For this

p we must introduce another definition and another rule.

3.1.2.4 Rule MAKE-CHAIN: Create Interconnections In a Family to Reduce

1/0 Connectivity

Rules HEAR-BY-CHAIN, etc. allow the reduction of connections from/to an 1/0

* processor where a set of interconnections already exists to solve the I/O-free portion of the

57
*0

problem. In some problems, including array multiplication, no convenient set of intercon-.. "

nections exists and one must be introduced solely to distribute I/O values. Fortunately, 0..-.).

the rule that would do this is fairly simple to state and is evidently implementable, given

the mechanisms already required for REDUCE-HEARS. First we extend Definition 3.7 >., .,

of induced sets to USEd values (the original definition covers only HEARd processors, ".'-'

but it extends in the obvious manner to USEd, SENt and PASSed variables as well as

TALKed and PASSed to processors.). We then define the notion of telescoping, which

heuristically describes a situation in which a set of processors can be split into subsets such

that the subsets share interest in a restricted portion of the I/O data.

joint, or one contains the other. Whenever a clause telescopes, that clause defines a par-Definition 3.6 A clause telescopes if its induced acts for two processors are either di.- F

tition, the induced partition, where two processors are in the same partition element if

the induced sets for the two processors have a non-empty intersection. (Without loss of .

generality we consider only non-empty sets. Empty sets are not considered 6ecause they

impose no interconnection requirements.)

The rule is: where a single USES clause telescopes, order the induced partition by the

processor indices and interconnect the processors in each partition with a new HEARS

clause where each processor is connected (only) to its immediate predecessor (if any) in

this ordering. Place the USES clause within the new HEARS clause instead of within R_ __

the old one.

3.2 A Derivation of a Fast, Parallel Matrix Multiplication Structure
.---- -_

Many parallel structures for the matrix multiplication problem have been proposed

in the literature, probably because of the problem's practical importance and its obvious

suitability for parallel processing. One of the prettiest parallel structures is described .

°%",*

1- " '7,v-:W~V~.

58

in [uL76]. Kung's structure multiplies two n x n matrices in e(n) time using 4(n 2)

processors of constant size. (Kung makes the assumption that a solution that involves

9(n) processors in communication with the outside world is acceptable. This subsection
follows that assumption, which is obviously necessary to multiply n x n matrices in e(n)-

time.) There are sequential algorithms with sub-cubic execution time, but there are no

obvious mappings of these algorithms into parallel structures.

Some new techniques must be introduced to derive the systolic array of [KuL76]. This

will be the subject of the next Section. It is, however, possible to derive a different parallel S

structure with linear execution time. We added rule MAKE-CHAIN with this derivation

in mind, but do not feel that MAKE-CHAIN is contrived or impractical.

Our parallel structure uses more processors than a systolic array on a restricted clas

of matrices called 'band matrices," in which all but a narrow diagonal band of the input

matrices (and therefore of the output matrices) contains zero values. It does, however, use

fewer processors on general matrices.

The starting point of this derivation is a specification of matrix multiplication (we are

assuming square matrices to simplify the discussion):

A stype INPUT ARRAY , m),11n,1 < m < n
B istype INPUT ARRAY (1, m), 1 < ! <n, 1 < m < n
C tstype ARRAY (1, m), 1 < l1 n, 1 < m < n
o Istype OUTPUTARRAY(1,m),I<I<nI<m~n <
Vi E {1... n) 0(I)

SVjE {l...n} 9(n)
Ciad = .. Bk 0(n3)

D, = Ci 9(n2)

The use of arrays C and D seems redundant, but its purpose is technical - our rules

would not permit us to assign multiple processors to a single array if that array were an

INPUT or OUTPUT array. Duplicating all of the arrays in this manner, to avoid all

. -.-- .o..

S. . . - .. ."

-- -:7 : 7W

C 59

appearances of "prejudicing the case" of which array's parallelism would be important,

would change the resulting parallel structure only py replacing each processor by a set of

three processors.

MAKE-PSs and MAKE-IOPSa add PROCESSORS declarations,

A Istype INPUT ARRAY (1,m),I < 1 n, 1 < m n.
I PA Istype PROCESSORS HASA ,m,11<l 1< <"-m<n

B Istype ARRAY(1,m),<I<n, I<m<n INPUT
I PB Istype PROCESSORS HASB1,.1,<l<n, <m<n

. C Istype ARRAY(l,m),1<<n, <m<n
PC Istype PROCESSORS (1,m),l < I < 1 < m < n HAS C1,.-
D istype OUTPUT ARRAY (1,m),1 < I < n, 1< m < n

I PD istype PROCESSORS HAS D!,,,,1 <n,1 M < n
V iE{J1 ... n) 49(1)

V jE {I...n} e(n)
Ci A., Bk9(n 3)

D,, .. n)e , . .,
D= Ci, 9(n 2)

MAKE-USES-HEARS completes the rough form of these declarations.

A istype ARRAY(,m),1<n,I:m<n INPUT
PA Istype PROCESSORS HAS A,., I < 1 < n, 1< m < nL
B Istype ARRAY(1,m),l11<n,I<m<n INPUT
PB Istype PROCESSORS HAS Bir,, 1 < l < n, 1 < m < n
C istype ARRAY(l,m),1 <1<n,l < m<n
PC Istype PROCESSORS (1,m), 1 <1 < n,1 < m < n HAS C,,

HEARS PA(USES Al,k, 1 < k < n)
HEARS PB(USES Bi,m, 1 < k < n)

D istype OUTPUT ARRAY(1,m),1<I<n,l1_m<n
PD istype PROCESSORS HAS D,^, 1 < I < n, 1 < m < n

HEARS PCI,m, 1 < 1l n, 1 < m < n
(USES CJ,,, 1 <_ I < n, 1 < m < n)

Vi E {1...n} e(1)
Vj E {I... n} 9(n)

Ci, = A.,kBk,i 49(n 3)
kE({...-}

D,, = C,,, e(n 2)

60 d

REDUCE-HEARS is unable to improve this parallel structure, because there are no

interconnections among the PCs to improve. Rule HEAR-BY-CHAIN i. also helpless,

although the topology of the interconnection graph is too rich (9(n') rather than the goal '

r of 9(n)). Rule MAKE-CHAIN comes to the rescue. Adding the HEARS clauses

allowed by MAKE-CHAIN and by the USES clauses of PC produces:

A istype ARRAY (, n),1: l1 < n, 11em :5n INPUT
PA istype PROCESSORS HASAj,,151:n,l m<n
B Istype ARRAY (1,m),l1 < nI<m < nINUT
PB Istype PROCESSORS HAS.~j.m,1:5l:n,1<5m<n
C Istype ARRAY (,), 1 1:5n 1:5m 5n
PC istype PROCESSORS (1, m),l I : n,l1:<sn 5sn HAS C,.

NEARS PA(USES A1,1; 1: <k < n)
HEARS PB(USES Bi,., 1:5 k <- n)

I If m > 1 then HEARS PC,,.,,
0..V I > I then HEARS PC,-,,,,m

D Istype OUTPUT ARRAY (,m),l 15n,l:5 n:5n
PD) Istype PROCESSORS HAS Dl,, <5n, 1:<m< n

HEARS PCI,l I : n, 1:5 m < n
(USES C1,., 1: 1:I n, 1:5 m < n)

ViE{(I... n) (
VjE (I1... n) e(n)1

Cd= A.,,Bkj e(n3)

D =C,,, 0(n2)

Then rule HEAR-BY-CHAIN is applied twice, and rule SEND-BY-CHAIN

* once, finishing the derivation.

A istype ARRAY (,m), 51I< n,1<m < n INPUT
PA Istype PROCESSORS HAS Al.,1: 1I:< n, I< m < n
B Istype ARRtAY (, m), 15<n, I< m <n INPUT

*PB istype PROCESSORS HAS Bz,.,I 1: n, 1:5m 5n
C itype AR.RAY (,), 11<n,1:5< nn
PC istype PROCESSORS (1, m), 1: 5 n, 1: <m< n HAS CI.L

If m =lIthen HEARS PA(USES A.,k15 k <n)
I If I = I then HEARS PB(USES Bk,,, 1:1, k!5)-

N Im>1I then BEARS PCj,m-j(USES A1,, 1:<k < n)

I~ ~~I 1>1I then BEARS PCI-...(USES BAt^, 1 < k:5 n) :':

61 C*a3

D Istype OUTPUT ARRAY (l,m),1 < l < n, 1! m < n

PD Istype PROCESSORS HAS Di,m, 1 < I <n, 1:< m < n
1 USES C',,, 1 << n, 1:< m < n

HEARS PCI,., 1:<n <n, 1 < m <n
(InPC,.,11< n 1<<m n):

c,,,, E AjeBkm 4(n)

S(in PD): :(.n

3.3 Virtualization and Aggregation

3.3.1 An Informal Description

In virtualization we select a variable (which might be a hidden variable such as the

accumulation variable in a reduction operation) that receives assignments in a loop, ex-

plicate it if necessary, and provide it with enough indices to meet the single assignment

condition. If this is done as often as possible to a specification, the value of each variable

will depend on a constant amount of computation, independent of the problem size. Since

the size of the virtualized structure will not be independent of the problem size, and since

communication in such that the running time of the problem will be polynomial in that ""

size, a fully virtualized structure will make light use of each processor. - -. -

We can make use of this fact either by pipelining or aggregation.

Consider the enumeration:

There is an enumeration, but only over values, not destinations. For this reason, use

of separate processors will not be generated for the steps of the enumeration. I Now one

can make a few changes to the specification in order to generate separate processors for

the steps of the enumeration. (We will see the need for separate processors below.)

• . ~ ~~~ ~~. - -. .'. . , --.h ± S .- *. '...... . . "

62

Generate the following virtualization, creating the array C

S". C

C Istype ARRAY ({1,...,n),{i, , .'

V kE (1,...,n) do
CIM, CIm,k- + subki-j

This structure represents several changes:

' First, it introduces a new dimension to the main array for each level of enumeration

performed to find a value for the old elements of the array.

Second, the enumeration k - {1 ... n) into the enumeration k E (1... n) is changed.

This in perfectly legitimate-the set enumeration does not forbid enumeration in a

specified order. When we consider automating this process, however, we should re-

member that there are n! ordered enumerations corresponding to a specific unordered

one of length n. The best orderings to try will probably include the arrival order-

ings inferrable from HEARS and HAS clauses, and the "natural orderings, i.e.,

numerical order and inverse numerical order (where numbers are involved).

Of course, this only applies when the inner enumeration(s) enumerate over a set.

When the enumerand is already a sequence, this step is unnecessary.

e An identity for the enumeration's operation is selected. This can be artificial, a

special null value that is checked for.

, Fourth, an ordering for the enumeration is selected.

. Fifth, explicit code to create running totals is generated.

[:.:...:. : ... :. !!!

63 p

In aggregation, instead of multiplying the number of processors we group processors

into one. We require that each processor have insufficient work to occupy the time that S

the parallel structure requires for solution. This can arise because the processors need to

wait for partial results from other processors.

When this is the case, the processors can be collected into groups that don't share any .

processing times. Each group is then replaced by a single processor that is responsible for

all of the values computed by any member of the group.

Aggregation is needed to get efficient parallel structures after virtualization, because

virtualization produces specifications that would be transformed into structures that have a

constant amount of work per processor. This is much less than the amount of time available

to the system, because after virtualization there must be chains of processors whose length

is linear in some measure of the size of the problem. Heuristically, virtualization makes

too many processors and aggregation is necessary to undo this.

The power of the techniques arises from their ability to together arrange for different

parts of the work of computing a single element of the answer to be performed in different " "-

processors.

3.3.2 Definitions of Virtualization and Aggregation

Definition 3.T A virtualization of a parallel structure is a new parallel structure that

results from

* adding a dimension to an array, say A, producing A as follows: if A1 is a defined

element of A, and the computation of Al is performed by enumerating n elements of

some set or vector S and performing a binary operation on a running total and each
element of S as it is enumerated, then Allm for 0 < m < n will be a defined element

of the new array, A;

"."

p - -~ -

64

* making the enumeration of S an ordered one; and

* replacing the original enumeration/calculation with a calculation that explicitly folds .3

the j9" value of the ordered enumeration as performed for Agr by operating on AID-,..

and that j'" element.

The process of creating a virtualization is also called virtualization.

Definition 3.8 An aggregation of a parallel structure it a new parallel etructure that

results from partitioning the old sct of processors of a family into equivalence classes and

creating a processor for each equivalence class. A processor in the aggregation HEAR.

another such proceuor if any processor in the first equivalence class HEARd any processor

in the second.

The process of creating an aggregation is also called aggregation.

There are, of course, an intractable number of possible aggregations according to this

definition. Only simple aggregations are worthy of consideration, because allowing complex

ones would lead to a combinatorial explosion; also, the complex ones would tend either to

leave too many interprocessor connections or to have too much work being done in some

of the processors.

Suppose that the unaggregated family of processors is defined as

P21,22.... m, (e....B*P 31 ,3g,...U., (e?.mer.) ,... ...

We will use Px to represent this below. We use a notation for aggregations that describes

sets of processors that are identified by the aggregation. As an example, suppose we have

an m x n array of processors with a family name P, and we want to create a processor

..

.................................• C',- -- ' -- -

-. 4.- -7-

65

family with n processors, one from each column. The one from column i will be Qj. The

notation in

Q Istype AGGREGATION (i), 1 <i < n - 1; (Pij: 1 < j < m - "-

(where the usual HAS, HEARS, TALKS follows).

The aggregations we will consider for a family of processors organized as an d"

dimensional array whose bounds are the vectors L and U can be categorized as follows:

Consider the d element vectors each of whose elements is either -1, 0 or 1 and some of

whose elements are non-zero. We will consider an aggregation that produces a new pro-

cessor for each set of processors (Px+ 1 : L _ X + jI _ U} where L < X has the usual

meaning of V1 j ! d[li < z,]. ":

3.3.3 Systolic Structure Synthesis

We now study distributional problems preferably implemented by a systolic array. For

a specific example, suppose we are evaluating

ViE (1,..., m) ; must be enumerated in order
VjE (1,.. ,n} ; may be enumerated in any order

B ..A.

and suppose that I and n are of the same order of magnitude, or that all of the B-values

are in a single place and we choose not to distribute them. A systolic structure is preferable

to a tree.

Consider the structure below:
•-..° ..'

.-- ...--.

66 I

.. 4- B1 - B2 1i- .. i 3 (feed in m A-values) %

Figure 3.6: Simple Parallel Structure for Broadcasting -

in which each of the m A-values is added to each of the n B-values. Note that no source

of B-values is given; each processor must be connected to B's 1/0 processor.

We explicate the m partial sums, using virtualiation. This creates a separate processor

for each step in the summation process for each of the B-values.

[P~-~~}-* feed in A,.

PB11 I PB2 1 P- i-- B,I 1 ~ feed in Al

(partially done sum flow upward)

(feed--- PBw - PB2o 4 4P 3
B-values

here)

Figure 3.: Virtualized Broadcast Structure

Then we modify that slightly to feed in A-values in only one plece.

67

feed in A-
values, withdraw

P i. PB2m *4 0 P nmn answers

(partially done sums flow upward,

A-values go down)

PB11 PB21 ... PB~1

(partially done sums flow upward)

(feed -B 1o- PB20 PB,0
B-values

h here) I
Figure 3.8: Virtualized Broadcast Structure with Chains for I/O

We then identify Pij with Pi+kj.-.t for all appropriate k:.:]

I

take out answers

feed in B vector -- -- +[]4- ---.. 4-

feed in A vector I
Figure 3.9: Aggregation of Virtualized Broadcast Structure

This parallel structure is better than a structure synthesized directly from the speci-

fication because it does not impose strenuous requirements on the I/O capabilities of the

system. The specification does not say how B-values get to the various Bi. If this were

exposed, we would see that the assumption is made either that the broadcast problem

was embedded in a larger problem that allows the data to already be there, or that all n"

B-processors HEAR the I/O processor. The systolic array shown above allows the I/O L

processors to be connected to only a single processor.

• I %-- *

68

3.3.4 Use of Virtualization and Aggregation for Matrix Multiplication

Consider the case of synthesizing parallel structures for matrix multiplication that work

in linear time. Application of the techniques previous to virtualization and aggregation

produces the following parallel structure:

A Istype ARRAY (1, m),l<lI<n,& 1<m <n DYPUT
PA Istype PROCESSORS HASA,,1Sl:5n1<5m:5n
B Istype ARRAY (1,m),I<1(<nIr& 1m :5n INPUT
PB Istype PROCESSORS HASB,m,1 SL:5n,1<m<n
C Istype ARRAY (1, m), 11 <n, 1<m< n
PC Istype PROCESSORS (,m),:51:5n, 1:5m <n HASCI,,,.L

Vfm = Ithen HEARS PA(USES A,, <-k 5n)
ff I = 1 then HEARS PB(USES i, 1 !5 k < n)
Iffm> 1 then HEARS PCI,m-i(USES Al,k, 1 5 k < n)
ff 1>I then HEARS PCi,m,(USES B,,, 1:5 k:5 n)

D Istype OUTPUT AR.RAY (1,m),1:51< n,! 1m:5n
PD Istype PROCESSORS HAS Di,,m, 15 15 n1,1 !5fl m -

USES di,., 1: 1 < n, 1 < m5 n

HEARS PCI,,,51:5 n, 1 <m n -5 n

CLjm4 + AjkBk,, 0(n)
kE{1 ... f)

The asymptotic behavior of this parallel structure seems to be the same as that for

Kung's parallel structure [KuL761. However, there can be an advantage of Kung's parallel

structure over the simpler one. When multiplying "band matrices", where j -- i<k0,0 V

j-i>klo *Aj 0 and j-iczko,1 v j~ l~ -0, * 0, it is possible to use fewer

processing elements. if kipo - k0,0 + 1 =wa and k1j - ki,o + 1 =wI, then it can be

shown that only (wo + tv1)n of the n2 processors of our parallel structure can have non-

* zero answers, and only that many processors have to be provided. With Kung's parallel

* structure, however, only ulow, processors have to be provided. The multiplication takes

* e4(n) time. (It is possible to use the 9((wo+avi)n) processors to multiply the band matrices

in 49(wo + ai1) time, but this parallel structure cannot be synthesized automatically using

T~ ~~~b T"R IIT w I

69

these techniques, and in any event the time/processors tradeoff offered by Kung's parallel

structure may be desirable.)

The virtualization process, alone, is not enough to synthesize Kung's systolic arrays.

Notice that the number of processors in the parallel structure that results from the obvious

virtualization is e (n3). Partial sums of product array elements reside in different processors

at different times. This feature makes some technique like virtualization necessary to

separate the computation of partial products, but processors have to be grouped to prevent

this processor count blowup. Another more difficult technique, aggregation, will reduce the

processor count to the target level.

Heuristically, aggregation is the grouping together of processors, each of which does a

small r.mount of work, into groups of processors, each represented by a single processor.

Each processor does all of the work that any processor in the original group did, but this

can still be done quickly because each of the processors in the original group had a small 4.,

amount of work to do, and no two processors had to do their work at overlapping times.

The reamon why Kung's parallel structure can multiply matrices in linear time using t.

constant space per processor is that he has performed a virtualization on the summation

of result array elements. He avoids the need for ns processors by a process called processor

aggregation. Each processor is responsible for computing e(n) elements of the virtual array.

*° Reasoning similar to that performed in the change-of-basis generator and theorem

prover will serve us well here. The target interconnection structure is

70

P Istype PROCESSORS (1, m), -n5m <n, -n:5I< n- m+1
HAS Ci,k,1i5,l.<j:5n,1 < k:5 ni- = 1-m,k =miti(n-+1,n+m+ 1,n)
11 vn < n then

BEARS Ij^,,1 (USES Aij I i:5 n,1 !5j.-5 n, i- j=
ff -n<in<nthen << 1~ nijd

LINKS Fj^j, ,.-, (PASSES Aj : ,1: : ,i- 1
IfI> -n then

REARS Ii..j,,, (USES Bi,, I n, 1: j:5 n, i-j m)
ff ni>1> -n then

LINKS I-,liim(PASSES Bi, ,1: i < n, 15 j 5 n, i-j m)
ffII<nAM>-n then

HEARS)iir-
(USES Cik1 : : ,15j 5n : ,i- m

n-mi(n -I+1,n +m + 1,ui))
ff11> -nA m <n then

TALKS Ii-i^ 1
(SENDS Cj, 15i:5n, 1:5 :5n, < k:5n, i-jIl- m, k

min(n -I1+1,n+m+ 1,n))

which is Kung's structure. This requires two changes of basis of input matrices (i -j

of both A and B, rather than either i or j), and a change of basis for the C array, as well

I as replacement of the summation of each C-array element over a set of integers with a

summation over a sequence of integers.

The figures below illustrate the virtualization and aggregation processes as they apply

to an n 3 instance of a matrix multiplication problem.

Figure 3.10 shows the basic topology of the matrix multiplication parallel structure;

-- 7

~y y ~ - -~777 V: -.r _V__E ii

71

C OUT

1. B IN

A_ I

* Figure 3.10: Unvirtualized Structure

Figure 3.11 shows the topology after the virtualization has been performed over the

summation;

UC COUT

B IN

A IN

Figure 3.11: Virtualization

Figure 3.12 shows the sets of processors that are to be collapsed into a single processor;

p 2h72.

. P

A1>

raha tn'e nlaeagated prr:esscrs ""

Al

IN.

Figure 3.1: Aggregation (ytolic) perucrme---

I 14

And iportan measur sows the costo a taresucture is th routht wof the nmbr :-

orcnzeors the stuzent ec one and6] th mutoieteprallsrcuetkst

do aU caclain.W wl-.l-ti tePS eaue

A "

.-I ' / S / .. -. ,

* , ./ -, - .. :.

Figure 3.1: Aggregatiod (ytolie perore"-" "

a.3d Figur 3.13tshowsatheonfiguatio hat resumlts inafr ht ol emr

reonial tmothet estue of [hKotuL7 paallstutrei6h pout ftenubr?. ''

• ". -. -.-

,'- .>--

oN,",,

.iN' ".-N
". " - -.- . . '. " . . . -' . " _ . . - .. -. . -. . " " .. " .' . '- ." " ". " ' .' '. - .' ' '. ." . - . -' " " - -" -' = " ' , --" -_ ,A

'.- ." .- ".' .'..' .''- .:L " " " -" .""-' " . .. " "" " •. " -"

. X- Y ..w, ,L

PST= O((wo + wl)n2) for the simpler parallel structure for matrix multiplication,

when applied to band matrices of widths wo and wi. Virtualization and aggregation can

improve this to 6(towin) by reducing the number of processors while allowing the size of

the processors and the running time of the algorithm to remain the same.
,. * .

* It is possible to achieve PST = e((wo + wo) 2 n 2) by other means. This is equivalent 4 :

whenever w, = o(wo). Divide the n x n array of potential processors into (wO + wI) x

(wo + w1) blocks and introduce input and output connections at the appropriate edges of

each such block. This is impossible to derive by techniques shown so far, or reasonable .

extensions to them. It has the further disadvantage that the number of connections to

input and output processors is e(n), while the same number is 9(wowl) for the systolic

array parallel structure that results from virtualization and aggregation. A complexity |

measure that took into account the connections to the I/O processors would favor the

systolic array structure even over the improved simple matrix multiplication scheme.

It should be noted that the parallel structure resulting from partitioning the potential -

processors has the same PST as systolic arrays, but P and T are different. Different

measures, such as PST2 may make different parallel structures more desirable.

3.4 User-Assisted Aggregation

We have an arbitrary set of aggregations we will consider in order to keep the size of

the algorithm search tree reasonable, but there may be cases where it would be advisable

to consider other aggregations. For this reason, when the system considers an aggre-

gation it codes this information without hidden information, allowing the user to insert

AGGREGATE declarations of his own. The reason we chose to allow this rather than

to make an attempt to have the aggregation finding machinery be complete are:

The bounds of arrays are often arbitrary.

,(" " -S

.. t

- ~ ~ ~ ~ ~ ~ ~ ~ ~ - ..- -- - .-- S* -

74 ,

* There are many aggregations available; it is not clear which are useful.

* It is not uncommon for two logical data to share parts of an array. . ,

* It is possible for one array to match the combination of two others.

For these reasons, TRANSCONS understands the AGGREGATION type, of the

form:

Name Istype AGGREGATE (bound) iter- Petb,-_
HAS Asetb .-

(HEARS Pname2p(b.und) iters2#" '
(USES Aaet2,m...))

HAS...; S

This statement is a parameterized statement. The itera is a predicate defining permis-

sible bindings of the variables in the list bound. It means that those processors in the set

Pet&..w (which is a set-valued expression) are aggregated (i.e., identified to form a single

processor named Name&..) for each binding of the variables in bound that is permitted

by the predicates in itere. It is explicitly permitted that the set-valued expression can

include enumerated elements and explicit setformers.

The HAS, HEARS and USES elements are analogous to those of a PROCESSORS

declaration (see above), although in an AGGREGATION type there can be more than

one HAS clause. HEARS clauses are associated with specific HAS clauses.

When the user provides such assistance, searching a potentially enormous set of possible

interfamily aggregations is avoided. TRANSCONS's abilities are used to check the validity

of the user-proposed aggregation.

The following consistency checking is performed on AGGREGATION declarations:

(i) formally specified conditions:

" PAet is disjoint for all distinct settings of bound and for all settings of the respective

bounds for two AGGREGATION declarations.

" Name((specific bound)) HAS (array element) iff 3P(F) E Fbet((specific bound))

that HAS (array element).,.

ft "

if Pname2 = Name, then
Vbound s.t. iters, bound2 = F(bound), bound $ bound2:

3Pb3 E PSETbound, P E Fketbound2: -

Pb3 HEARS Pb 4 (USES A)

(meaning that the HEARS clauses of the AGGREGATION declaration are those

induced by the underlying processors);

(ii) informally specified conditions: - . -

" The order of total amount of computation done by processors underlying a given

node does not exceed the length of the longest chain. .

* It is not true that A HEARS B and B EARS A for the same USES datum.

p (But violation of this condition is likely to imply violation of others) t .

It is important to note that a user's aggregation declarations are indistinguishable (to

the system) from automatically inserted ones.

.°

.

-..- - -. - - .-

76 d,

Chapter 4

Trees, Closures and Divide & Conquer .

or, LAMBDA: The Ultimate Transceiver -

4.1 Motivation

Suppose information must flow from processor B to processor A, but there is a concep-

tual advantage to viewing the problem as if information were flowing the other way. We

have two motivating situations in which this is the case. One is the handshake problem,

in which an intermediate processor in a pipelined chain of processors must be able to de-

clare its readiness to handle another datum after it has processed a first. The second is

problems requiring tree-structured collections of interconnected processors. We would like

to use divide & conquer (D&C) to synthesize these trees, but that technique is difficult to. ..-.
,_I

apply if data conceptually flow both up and down the tree. It becomes easier if the flow

is conceptually one way. We claim that D&C is a powerful synthesis technique that can

produce a large class of tree structured architectures if problems can be rephrased in terms .

of one-way data flow.

We want to bring about a structure in which information flowing from a processor A to

another processor B tells B what to do with other information computed in B but needed

" With apologies to Guy Steels [Stel'?] .-...

400

• -o . a --.

77

by A. We then want to restrict our synthesis task to reasoning about, computing and

sending the datum from A to B. We need a new type of datum, the closure. Processor Aved

sends processor B a closure, and B can later use it to cause data to be sent back to A and

to be used properly. We explore a series of requirements that must be met for D&C to

be used to synthesize tree structures. We show that if these requirements are met we get

efficient tree parallel structures. We then describe closures, including some technical issues

that make plausible that they are implementable in a reasonable computation model. This

allows us to show that the D&C requirements are not restrictive, provided we allow closures,

by exhibiting a constructive proof that there is a structure that meets our requirements

equivalent to any member of a broad class of structures that do not. We end this Chapter

by exhibiting the syntax we use to describe trees and some formal axioms about them.

4.2 The Divide & Conquer Paradigm and Tree Synthesis

D&C is a widely used technique for the synthesis of single-processor programs, and one

I, feels that it should be a good technique for the synthesis of tree-shaped parallel structures. k

Trouble often arises, however, when we try to use D&C for this purpose.

Consider what the D&C technique actually is. "To solve a 'large' problem instance,

break it into pieces, solve the problem for each of the pieces, and combine the solutions".

This is a technique for generating 0(n) and O(n log n) time, single processor solutions to

a wide variety of problems. See, for example, [SmIS31, fKnu69] and [AHUT4].

Intuition would lead us to believe that D&C is useful for synthesizing tree-structured

parallel structures, because the structure of a solution closely matches the structure of the

desired set of processors. Three classes of problems arise, however:

- S S ; . .- * S.°*

. . . 'o !

78 S

0 rootlock: When we try to combine solutions for subproblems, the amount of in-

formation traveling either from one subproblem to another or from the subproblems

to the combination operator, or the amount of work necessary to combine, may be
asymptotically large in the problem size. A naively synthesized parallel structure

would have to perform all of this work in one processor, namely a *root' processor

that has responsibility for combining partial solutions into a solution to the whole

problem.

e sequentiality: In a variant of D&C, one solves one of the subproblems first, and

uses some function of the solution as a parameter to the process that takes place

elsewhere. It is clear that in this case no problem element can enter the computation

until all previous elements have been used. There is no concurrency. "

e bidirectionality: Information might have to flow both up and down the tree to

obtain a solution. This situation can make formal description of a combination

operator for D&C hard. It might appear that this condition is intrinsic to D&C,

but that is not the case. The data could already be distributed among an array of

processors (or available to be so distributed) and the division step can manipulate

indices only.

It is possible to have bidirectionality without sequentiality, but not vice versa. Rootlock

is independent of the other two situations.

These three properties of D&C solutions to specifications are impediments to easy

synthesis of tree-structured parallel structures for these specifications.

A specification, three of whose natural D&C solutions have one of these features each,

is Prefix Summation. In this specification, we have a one dimensional vector A of length

* n, and we want to create a vector A such that V1 i5 i:5 n[ai = Eji aj]. In what follows

.

*

. ,.-..-..-..- --... ,.....-...- ..- :

79

we use the words "left" and "right" as if the array were arranged in a row with a, leftmost 4"

and a, rightmost.

One solution is "to perform prefix summation on a non-trivial vector, divide it into two

halves, perform prefix summation on each half, and add the rightmost element of the left

result to each element of the right result". This solution has bidirectionality.

A second solution is to first define "augmented prefix summation with augend z" as

V1 < i < n[ai = z + F'1:<j<i aj]. We then say that to perform augmented prefix summation

with augend z on a non-trivial vector aj:u, divide it into two halves aj:u and au+1:u, per-

form augmented prefix summation with z on the left half, and perform augmented prefix

summation with z + au on the right half. This is intrinsically sequential.

-

A third solution is similar to the first, except that the result vector is carried up the

tree as the value of the D&C step rather than having, as the goal, to develop the new

values at the leaves. This has rootlock, i.e., it is an 0(n) solution when implemented on .

a tree-structured multiprocessor system in a natural manner as it requires funnelling the - --..-

entire result vector through the root.

In the remainder of this Section we formalize the problems described above. We also

show that if a D&C formulation has none of these problems then there exist fast parallel

structures that are functionally equivalent. We then exhibit the syntactic structures we use

L_ -- AIto describe trees. We then describe the closure concept and we argue that use of closures

makes the imposition of our requirements much less restrictive than otherwise by showing

that a broad class of structures not meeting them can be syntactically transformed into
I

ones that do. Finally we show that use of these closures causes no loss of computation

speed (within a constant factor). ...

In the following, we will describe programs generically using schemata, in the usual

sense. A scheme is a program fragment in which some operators are merely given names

I... -

• - . . .

80

rather than being described. If all of the names are given an interpretation a scheme

becomes a program or a scheme instance or an instance of the scheme. Below we define

sequentiality and bidirectionality and a notion, P-combination, or a combination operator

that makes the scheme suitable for an implementation in which solutions to the subprob-

lems are developed in parallel in separate processors, delivered to a third processor, and

combined by that processor.

In the schema that follow, upper case letters with subscripts and superscripts are

parametrized functions of appropriate arity. The subscripts and superscripts are inte-

gers representing a range of elements from the problem instance, and the actual problem

represented by a function in this notation depends on the values of the range parameters

and on the values from the problem instance in that range.

Definition 4.1 A specification is P-combinational if it is an instance of thi. scheme:

{ G(Vu,,V.+), otherwise

A specification is sequential if it is not P-combinational and it is an instance of one

of these schemata:

-

IW, i =U :

(Wa IfUtv. --=

G(V , H.u+ (V" u)), otherwise

or* W,, if i =u -:

(G(H,(V', +),V+) , otherwise

A specification is bidirectional if it is not P-combinational or sequential and it i an

instance of one of these schemata:

. . . * * -- o....- .. .*.. .

81

4.

W5, If I= u

* tG(V , Hu+1 (Vj1 ,Vu+1)), otherwise

or
'"-"

W,* If I

,l [G(H j(V u+Vj u),V +) , otherw ise ."- - "

.~

the parts of the problem after the division step is used as an argument to the function that .. .- /

computes the other part of the result (Hi'). The treatment of half of the problem depends-.:...".

on the solution of the other half.ot

There are some lemmas to prove before the main results of this Chapter. In what

follows, we will use T((a value)) or T((a function)) to denote the time required for an

optimal parallel structure to compute the value or the function. T((a processor)) is the time

for that processor to generate its result (where the meaning is obvious). In all cases where

we use this notation, it will be obvious how the evaluation is to take place. We also assume

that there exists a monotonically increasing function F such that T(Gu) < F(u - I + 1).

Lemma 4.1 If we have a D&C scheme instance of the following:

w1, if I =U4-:.:I, I

tG(Vu, V+), otherwise

e T(V"i) max(T(V +)/J T(Vr,+u+l)/21)) + O(T(G)).

.../...

. .. .

82

Proof. By the definition of T(. ..), there exist two parallel structures, one that computes
V1L+u)/2J in T(VL('+)/ 2j) 21 in T(V[t++,)/2l).

* Let the processor that develops VL(+u)/2 J be called lj and that which develops

V+u(,+l/21 be called P. Connect a new processor to each of 19 and P, and call it

P.

/ and P, develop their results in T(VLt(a+u)/ 2j) an T(V,+,+l)/2 l), respectively. The

amount of time required to communicate both of these results is

0 V + O+-+ ll))

S<_0(F(r(u - 1 + 1)/21)) (by monotonicity of F.)

This requires the observation that the time required to develop a result is at least

proportional to the result's length.

Once the results are both delivered to P, it computes its result in T(G), making the

total time for the computation

- max (T(vj L(I+u)/2J), T(Vr1 +u+1)/21)) (develop partials) a

+O(F(r(u - 1+ 1)/21)) (by above observation)

+O(F(u - I + 1)) (by hypothesis)

and the two last bounds coalesce by the fact that F is monotonically increasing. *

We can now prove that the computation of the closure in the root node is fast:

,' --.. , ..- ,.-.......... .' .-.-. ".".'..""" -",-,"s'
•.,..-.-. -........... ..

83

Theorem 4.2 Suppose a problem fits a D&C scheme with P-combination. That is, that

the computation of the result in question for the substring of the problem ranging from I to

u is

* = rw,, fl1W1, if I =U €N

G G(Vu, V+I , otherwise

and T(G) (the time to compute G) is < O(F(u - I + 1)), where F is a nondecreasing

* function. Then T(V 0) = O(F(n) log n).

Proof: Note that the form of the definition of V u precludes sequentiality and bidi-

rectionality. We are using value semantics for the call to G. T(Vi') = T(V), so T(V) p

is bounded. Say T(G) _ coF(u - I + 1). We prove by induction that T(Viu) <

coF(u - I + 1) lg(u - I + 1) + T(V), where co is the constant of T(Vf)= O(F(n) log n).

* p
The base case is immediate.

If I u then

T(Vtu) = max T(vtl+uv2J),T(Vru(j+u+,)/j)) + T(G) (definition, nonsequentiality)

<coF((u - 1+ 1)/2) lg((u - I + 1)/2) + T(V) + T(G) (by induction)
_coF(u - I + 1) lg(u - I + 1) + T(V) (monotonic F)

This is O(F(u - I + 1) log(u - I + 1)), which is O(F(n) log n) at T(Vn). *

The proof requires that sequentiality and bidirectionality not be present. If we have

=,(ruu 1V21) T(G) does not hold

sequentiality then T (V iu) = m ax T (V L(+u /J),T (+ + l)/ l) + (d o

because the computation of the V's can not proceed in parallel. If bidirectionality is present

then we must have sequentiality. The proof goes through even if rootlock is present, but

in such a case the theorem produces a weak result, since F(n) would be large.

AO-A164 622 KUOULMSE-OASED TRANSFORNATIONAL SYNTHESIS OF EFFICIENT 24
STRUCTURES FOR CO.. (U) KESTREL INST PALO ALTO CA
R H KING 36 SEP 85 ICES. U.85. 5 RFOSR-TR-95-1259

UNCLSSIFIED F49620-85-C-0015 F/O 9/2 ML

1.0.

1jij
11111 1132 .2

11111- * 11136

IIIJI25 M1

MICROCOPY RESOLUTION TEST CHART-
14~~' ' NDARDS 19(, A

84

*% ,°.. .

We must now briefly describe closures, which are the objects we intend to build using

D&C. After we describe them, we show that use of closures does not produce slow parallel

structures.

4.3 Description of Closures .%

Our solution to the problem of D&C formulations that do not meet our conditions of

lacking bidirectionality, sequentiality and rootlock is based on the idea of pasing a form

of data called a clou re up the tree, and therefore computing "big" closures (ones that

perform a service for a large interval in the original problem vector) from 'small" ones.

A closure is a procedure or function definition together with an environment, i.e., a set

of name/value pairs. When a closure is invoked, the procedure or function is invoked in

the included environment as augmented by parameter binding. When processor A passes

processor B a closure, A is said to be the closure's AoMt and B the recipient.

A closure consists of a procedure, and bindings for some of the procedure's free variables.

The procedure, in turn, consists of a piece of program and a binding list. The concept was

first described in Church's A-calculus [Chu5l]. Closures are valued for their expressive

power even on single-processor algorithms. They are elements primarily of dialects of LISP.

See, for example, [Ste77], [Moo82], [XER83]. A similar concept, actor8, is also found in

other languages (see, for example, PLASMA in [SmHTSI.) Actors are also described as a

* method of expressing interprocessor communications concepts [AHe77]. We here explore

a case in which our similar concepts aide a parallel structure computerized synthesis task.

The notation AX[F(X, Y)] denotes an abstraction of a function of n (n > 0) parameters

from a function of n + rn (m > 0) parameters. X represents n bound variables; these

variables are bound to the values of the n actual parameters when the function is called.

Y represents m free variables, and the values used for them when F(X, Y) is evaluated are

determined by some of the context in which the abstracted function is evaluated.

•

~~~~. . . ' ". ... . -........ ...-. , , . . . . , . . - - . , . . . .- -. ,- : -,, . , ,, .. .



.........e
85

We will use "AV[F(X, Y, Z)]", where again X, Y and Z denote three groups of (respec-

tively) n, m, and o variables, to denote a closure generating form (CGF). This is a piece

of program text that, when evaluated, makes a closure that can be applied to as many -* 'i

parameters as there are elements of the X group. X is the group of bound variables and Y

is the group of variables whose current values will be stored in the closure. Z is the group

of free variables whose values at application time are to be used.

When a closure is applied, the X-values from the actual parameters in the application,

the Y-values available at closure creation time and the Z-values at application time will be

used. The Y group is constituted from the closed variables. We will use ='[F(X, Y, Z)],

which would be created by the above CGF if Y = V at the time the CGF is evaluated, to -

denote the closure in which Iyl = v1, y2 = v2,..., = v ..

An example of a CGF, taken from the synthesis of a parallel prefix summation unit, is

AII.-caC(C1(z) C,(z + V))]. The semantics of this is that when the form is evaluated

its value is a closure, which is a functional object of one argument. The values of V1, V,-

C1, and C, at the time the CGF is evaluated are "frozen" into the closure, and when that

is applied the values are used. We get the closure AK="v=b~cI=.cv=[(C,(z) II C,(Z + VI1 -

when we evaluate the CGF in an environment in which V1 = a, V, = b, C1 = f, and C, = g.

We see that C1 and C, are, themselves, closures. The CGF calls for the creation of a closure

that, when applied, binds four variables (one of which, V, does not appear in the form) to

four saved values and z to the argument. It then applies z to one of the saved values and

z + V1 to the other simultaneously.

TRANSCONS will only generate a restricted subset of the possible closure generating 0

forms. They will be of the form C = Av'v"w[G(Z,Vs,V,,W)]. V (reap. V) are the values,

including closures which we will call i.e., C1 (reap. C,), received from left (resp. right) chil-

dren. W includes locally available values which may have been computed during previous

upward communication phases, and G is of the form G(V ,V,)(Z) = (C1(GI(Z,V,V,, W))

.-..S .



86

L.,(Gj5VjV, GI.r,,V,VVJJJJ). I '"- (Here is concurrent~n application, and GI and G, can -I impose side effects on W.)

We want to show that if the closure generat~ing form has this property, ie., that if a

* generated closure can be applied by doing a small amount of computation and applying

other similar closures in turn, then application of the generated closure is fast. For conve-

nience we will call this type of closure generating form a tail applicable form (by analogy

with the term 'tail recursion").

Theorem 4.3 Suppose a closure is computed in the root of.a balanced binary tree. That

closure can con tain closures whoe hosts are its children. Tkoe closures, in term, gas

contain closures whose hosts are their children, etc. The leaves of the tree are closure heat.

- whose closures can be applied in time 0(l). Each leaf ha. a distinct indez such that the

set of indices of leaves is ezactig a range of integers. The aet of indices of every p ubtree'.

leaves is also a range of integers and is identified by the endpoints of that range, and the4

node heading the subtree w~hoae leave.' indices are I through u is called i"i. Suppose all

* closures computed within the tree are tail applicable. If, in n,", max(T(G), T(Ga), T(O,))=

*O(F(l - u + 1)), then T(C~n) 0 O(F(n) log n).

Proof: Refer tomax(T(G),T(G,),T(G,)) in ns" as T(nr"). T(n:) =0(1), so call it k. Say

* T(G) !5 coF(u-I+ 1). We prove by induction that T(nu)! <coF(u-l+1)lg(u-1+1)+c,

* where co is the constant of T(n~j) =O(F(&) log as)

The base case is immediate.

If Ilu then

T(nr) =max ((nil"")/2J),T(n~y+u+),2j) + T(G) (definition, nonsequentiality, tree balance)

<coF((u - I1+ 1)/2) Ig((u - 1 + 1)/2) + k + T(G) (by induction)

5co F(u -I+ 1) lg(u - I+1) +k (monotonic F)

7............................................



87

This is O(F(u - I + 1) log(u - I + 1)), which is O(F(n) log n) at T(n'). m .-

Note the similarity between this proof and that of Theorem 4.2
*oV ".,L'- o'q

Our technique will be to reformulate the problem from that of creating some new array

that is a function of an existing array to that of creating a closure which, when invoked, will

*Q perform a given action on the leaves of a tree. This action is the creation of an element of .

the new array in each leaf. The original specification is transformed into a specification that

declares the existence of a closure that, when invoked, will satisfy the original specification,

followed by a specification that the new closure be invoked. In the synthesis process, the 4 ...

specification that a closure with certain properties exists is transformed into code that

creates such a closure. This code has, as input, closures having the desired property in -

relation to subproblems of the problem.

Consider the process of combining two closures. The result will be a closure. In D&C

with closures, it is normal to combine a pair of vectors, each containing computed values

and closures, into a new vector with similar texture. We will consider the computation of

a closure for the output vector, and the use of the resulting closures. We give informal

reasoning to justify our assertion that closure generation is an effective technique for pro-

ducing tree structures by D&C; we then prove formal versions of the informal assertions

we make.

The combination operator can operate on values and closures from the input vectors to

produce a new closure. The code before the closure generating form (CGF) may compute

values that will be included in the closure, and the CGF itself will create an environment

in which these values, as well as other values and some closures that were part of the *
input vectors, are saved. The combine operator is neither bidirectional nor sequential if we

have reformulated the problem properly, and it avoids rootlock if pairwise combination of "."-

results from vectors produces new results not much larger than those that were combined,

in an amount of time not much longer than the amount of time used to develop each

. .- . - "-

-' ~ f * 1~ a fl& * &.a~. .- ,-.



of the old results. For our purposes we would want these amount to increse at most

polylogarythmically in the length of the string incorporated in the results. S

When the computation uses the computed closures, each host will have computed the
,,-.. 5.

closure it hosts by computing and storing some values, storing received closures from its

children, and arranging that when the closure is applied, formal parameters (if any) be

bound to actual parameters, a computation be performed to obtain actual parameters for

its closures' incorporated closures, and such closures, in turn, be applied. The computations

of a closure must meet similar conditions to those met by the combination process and

described above. It should be noted, however, that the incorporated closures can be applied

in parallel and that there is no need for the calling procedure to await completion of any

applications. 6

We have exchanged the difficulty of reasoning about two-way data flow with the need

to reason about closures. We feel that this is a good bargain because reasoning about

closures only requires the addition of new axioms to a theorem prover's data base, while

two-way data flow requires changes in the way we look at D&C. In Section 4.2 we showed

that this change of view costs little speed, and in Section 4.5 we show that no expressive

power is lost.

We conjecture that this technique can bring most O(log n) and O(log2 n) tree parallel

structures within the reach of a D&C-based synthesis method. We support this conjecture 4
". .."-7v

by several syntheses in the next Chapter. Since a tree-structured processor is inexpensive

to manufacture compared to more highly interconnected machines and seems to be reason-

ably powerful, we feel that automatic tools that make use of this family of topologies easier * -.

*i would be an important contribution to the technology of synthesis of parallel structures.

In summary, the technique of computing closures from component closures is a tech-

nique which, together with D&C, provides the ability to synthesize a wide variety of tree

structures with few of the technical problems that other synthesis methods might encounter
,-'..~

• • 9 ___

• . .. .'/ . - :.. - *-. .. . .. : ...* ' - : . . . . . ...



.

concerning reasoning about path lengths or the cardinality of sets of nodes. It allows us

to do this and to still produce the 0 (log n) (or 0 (log' n) for small i) parallel structures we

expect from trees.
~. .. 2

4.4 Transmission of Closures

To transmit a closure from one processor to another, it is not necessary to transmit

the entire program and all of the environment values, provided that the host processor

stands willing and able to perform the work. All that is necessary is that the transmitting

processor send a token of some sort. The receiving processor can save the token and later

use the closure by sending back the arguments, the token, and control information.

When this is done, the processor sending the closure (and willing to do the work) is

called the closure's host, and the receiving processor (which has a license to use the closure)

is called the recipient. " i

We say that a closure is live if there is a possibility that it will be invoked at a given t..

time. A closure becomes live when it is sent and remains live until the recipient reaches a - .",-

point in its procedure past which it can not invoke the closure. We will have more to say

about issues concerning the liveness of closures during the remainder of this Section.

Closures can be efficiently implemented in a reasonable machine model. Internally,

a closure can be implemented as a block of memory locations containing a "pointer" to

the program fragment and a list of all closed variables and the corresponding values. A

pointer to the block could be used as the token. When a closure is applied, the recipient

can send the host a copy of the token, together with whatever other information is needed .

(primarily the argument(s)). The host can, using the received token, invoke the proper

fragment together with the proper environment including the arguments bound to the L

parameters, by using the information contained in the closure and message.
-.,,,* .

I--.. .-I .



90

A piece of program text (in the host processor) that creates a closure is called a closre

generating form or CGF, and a piece of text (in the receiving processor) that invokes one

is called a closure invoking form or CIF. The class of closures generated by one CGF is

a family. An instance of the family of closures generated by a specific CGF named C

will be called a C instance or an instance from C. Members of a family differ only in the

environments, since the code will be the same.

The required data transmission can be reduced in came where it is possible to infer

various things about the use of a closure. For example, if it is known that only one

instance from a given CGF is live at a time, the host needs not send the token, but only

the name of the CGF. That name would not vary and can be "assembled into' the CIF.

This can be true even if there can be several CGF instances for a given CGF, provided

that the host knows in what order the recipient will use the closures it receives. If there is

only one CGF in a processor, and only one instance of the closures that it generates can

be live at one time, the token can vanish; the fact that the *receiving' processor wants

to apply any closure is information enough! The closure has been completely swallowed

up; information only travels from the recipient to the host, even though the synthesis was

performed as if data flowed only in the other direction.

A further simplification, of interest for the problem of synthesizing parallel structures

that will later be reduced to VLSI, is available. Suppose the following conditions are met:

Applying a closure does not include changing state in the host processor. (In this case,

for the application to be useful it must cause other applications in the host.) Assume also

that there is only one live closure in a given family at any time. Assume further that the

values used in that closure to call other closures hosted elsewhere can be computed, using

only values available to the host, by means of combinatorial logic (the code fragment is

loop-free and consists only of operators chosen from a library of integrateable operators).

* . .. *..** .- . - ~•*.-*-:.

. . . . . . . . - • o o . . -

-,. .. . ,...- ..-.....--.. .. ..



91

.' .% .

In this case it is possible to perform the closure using only "combinatorial logic" in the

host processor. Specifically, no register need be provided to hold the closure's parameter

in the host processor. Instead, logic must be provided to map a signal representing an

application of the closure to signal(s) representing application(s) of the subsequently called

closure(s). Registers are provided to hold all of the values of the closure. An example taken

from the Parallel Prefix structure (whose derivation sketch is in the next Chapter ) will

make this clear.

We have the code fragment to synthesize a closure, namely APLC¢'J'[C1(z) li C,(V1+Z)]'.

Here we will observe that there is only one outstanding instance of the closure at any

time, because the variable in which the closure is stored in the recipient is not indexed.

The closure does nothing more than apply other closures to a function of its argument.

Furthermore, the computation performed on the argument is "easy" (and can be directly

implemented in VLSI). We can therefore use the circuit of Figure 4.1:

b . - . -'. ' .

44<7] o • .° o°.

4 b

• .•.,,-%
,~ --- I-° • •- o-

partial s urns whence they are 4tter'al Ino(des and the total
acsend sent to the rig~ht duplicate is built in

lefI half sums ,lescendlanis values from each leaf
t. (CU ll ula te if] abhove

ifil ernal nodes

"111isste S

Figure 4.1: Simplified Parallel Prefix Internal Node

'For clarity, the exposition assumes that the prefix operation is addition, and that an addition module
exists in our VLSI module library.

0 ---.'

71 .' '. °.



92

4.5 Arguments for the Completeness of Closures Pii

In this Section we formalize the notions we use to argue that restricting communication

to the upward direction in trees is a harmless restriction, not preventing the synthesis of

tree parallel structures to meet any specification that could have been met absent this

restriction, provided only that we also allow upward communication closures and that we

not consider the application of a closure that was communicated upward to be a downward

communication.

We need a formal definition of a tree parallel structure, and in order to do that we need

to define some preliminary concepts.

Definition 4.2 We define a binary tree in the usual manner. A tree either has a node

called a leaf or a node called a root connected to the roots of two subtrees by edges

which for these purposes we call wires. The root of a subtree is called an interior node.

The connection from a root to one of its subtrees is called the left connection, and that

to the other subtree is called the right connection. A root is called the parent of the two

subtree roots it is connected to, and the connection from a node to it. parent is called the

parent connection.

-. .. '..

Note that each wire is known as the parent connection at one end and either the left or

the right connection at the other. This defines an ordinary binary tree. We further state

that there is an ordering of the leaves.

. . . . . .. •.. . . . . . . . . . . .



r - - .. J0_ . !0 . - r r . -*

93 p

%

Definition 4.3 The aet of ancestors of a node is recursively defined as the union of the

node's parent (if any) and the parent's ancestors. The set of descendants of a node is

recursively defined as the union of the node's left child, right child and their descendants. -

The set of left descendants (resp. right descendants) of a node is the left reap. right

node together with its descendants. A tree's leaves are ordered if the leaves are indexed by

a totally ordered set and if the index of leaf A is less than that of leaf B iff there exists a

node of which A is a left descendant and B is a right descendant.

So far we have only described standard binary tree structures and names of intercon-

nections. We would also like to describe a computation structure, which is a structure

together with a set of computations and communications attached to each node. Each -

node has an associated program.

For our purposes, we will require trees to be homogeneous, meaning that one program

will be run in all of the internal nodes, and another single program, with the leaf index as

a parameter, will be run in all leaf nodes. Programs may do reasonable computations and

may send and receive on the attached wires. We also require, however, that the structure

be singly buffered, meaning that when a program tries to receive information over a given

wire, it will do nothing else until the program of the node at the other end of the wire tries

to send, and when a program tries to send on a wire twice without the other program having

tried to receive, the sending program will do nothing else until the other program tries to

receive. Programs may perform closure application with no regard to these restrictions,

but the transmission of the closures must have obeyed these conditions. Programs may

test whether a line has, or can accept, data and therefore avoid waiting if it can't. The

situation where neither program at either end of the wire can send or receive is possible,

but only for a bounded amount of time (assuming correct, terminating programming). .

Now we can define the primary parallel structure of this portion of TRANSCONS.

-. 6 . .



94

Deflnltion 4.4 A tree parallel structure (tree structure) is a collection of processors

together with programs that is a tree with numbered leaves, is homogeneous, and is singly - 4

buffered.

We need a definition of a tree parallel structure with upward communication only:

Definition 4.5 An upward tree parallel structure is a tree parallel structure in

which no communication is specified from any parent to any child. Closure application

is not regarded as communication in this contezt. .

This is a formal definition of the objects described by TREES declarations, and in the

rest of this Section we will explore some of the implications of this definition. In particular, -.

we are interested in an assertion that limiting communication to an upwards direction, but

allowing closures, gives the same expressive power as allowing communication in both

directions but not using closures. °

First we need a lemma.

Lemma 4.4 Suppose we have two processors A and B with two wires abl and ab2 from -

A to B. These wires obey the 'singly buffered' condition above. It is possible to simulate

those two sires with a single wire with no more than a constant factor speed los.

0. .""

Proof: The wire is driven by commands of the form read(abi, z) which accepts infor-

mation from the wire abi and stores it in z while making abi no longer have information

to offer; send(abi, z), where i = I or 2 which waits for the wire to be receptive and then .

puts the contents of z on the wire which makes it unreceptive but gives it data that can

be read; readable(abi) which returns true if data are present (and can be read); and

.0_ sendable(abi) which returns true if data can be sent on the wire. It is possible to replace .*-,

forms according to the following table:

7 4

.. .. , . .



95

read(abi,z) becomes (in B)

while undefined(vabi) do
check()"

z +- vabl
vabl - undefined 

e..

readable(abi) becomes

defined(vabi)

send(abi, x) becomes (in A)

while defined(wabi) do

check() 
wab" 4-z

sendable(abi) becomes

undefined(wabi)

Insert "checkO" sufficiently often in the procedure running in both A and B to guar-
* S•..

antee execution periodically, with a period short compared to the time it takes to com-

municate between processors. The check() call in A checks whether wabl and wab2 are

defined. If either is defined, say vabl, check() sends the pair (1,wabl) over the wire and

does wabl +- undefined. The check call in B is a finite state machine. In its initial state,

it checks whether there is anything to read on the wire; if there is, it reads it. This should

be a number i; the FSM enters a state Si. If check() is in Si, then it will check whether

vabi is empty; if and only if so, it will read the next object from the wire and enter the

initial state.

Enumeration of the sequences of actions on the two wires, actual and simulated, serve

to establish correctness. That there is only a constant-factor slowdown can be derived

0_

.~ . . .. . .



. - . . . - . .. . . . . . . . . . . . . . . .

ge - ° • r96°

from the fact that check() does a constant amount of work unless it waits, that it only

waits if (and as long as) the simulated machine would have waited, and that it replace each

communication with a constant number (two) of communications. "

Now we can prove a fundamental theorem about unidirectional communication in a ,*. ,.

tree.

Theorem 4.5 Suppose we have a tree parallel structure T without transmission of closures.

Then it is possible to perform the same computation that T perform, on an upward tree -

parallel structure.

Proof: Simulate a second wire from the left (reep. right) child to its parent per the

previous theorem. Call that wire C1 (reap. C,) where it impinges on the parent and C,

where it impinges on the child. In what follows we describe the treatment for left children;

the treatment for right children is analogous. The parent may contain send(left, z) and

aendable(left); the child may contain read(parent,z) and readable(parent). Each of

these is replaced by new text as follows:

send(left, z) becomes (in the parent)

read(Cs, C)
C~x) .°.

sendable(left) becomes

readable(Ci)

read(parent, z) becomes (in the child)

while undeflned(v) do

check()
Z+- v
v -- undefined

"-

................. ...........7-. . . . . . . . .



97 •

send(Cp, A"[v 4- z])

readable(parent) becomes

defined(v)

check() is similar to that of the previous theorem. Additionally, the fragment

send(Cp,AXw[v 4-zj)

must be prepended to the child's program and

read(C1,C)
C(X)

appended to the parent's.

*That this causes correct information to be seen in the recipient is evident from the

observation that each closure is used to send exactly one value to the recipient, exactly

that value is used as an argument to the closure as was previously being sent, and it is

* only used once (and immediately rendered undefined). That this causes the programs to

"hang" at exactly the right times can be easily seen from the fact that there is a closure

in (say) C1 exactly when the recipient would have been receptive, and there is a value in v

exactly when there would have been a value available. I

The key point to note is that all downward communication is expressed as closure

application. This suggests that it will be possible to express a problem that apparently

can not be solved by D&C as the corresponding problem of creating, in the root, a closure

that has a desired result when applied.

We have therefore shown that we do not surrender any expressive power when we limit

tree declarations to upward communication.

..................-. . .-... ..... ....

. .. . . . . . . . - . -% °~ * __. i-L-,j... . , 4 . .



b ..- -. .. - -

98

4.6 Trees of Processors In TRANSCONS

Trees of processors can be used to efficiently implement many specifications because the

tree is that topology with fixed arity and lowest connectivity that allows a distinguished

node to have contact with all other nodes in O(log n) steps, which is clearly the best 4

possible. TRANSCONS ([Kln83]) therefore has facilities for specifying, synthesizing and

manipulating trees.

The description of a tree is specified in TREE declarations, described below. Before

describing the syntax of a TREE declaration, we will describe some of the semantics we

intend for it.

The trees we intend to address are used to shorten the longest path lengths within

the collection of processors, and to balance the workload of a computation. There are

problems amenable to a tree solution, portions of which are in some sense more important

than others (for example Optimal Binary Search Trees), but in these problems there must

be a specification of relative importance that has a size comparable to the size of a good

specification of the solution. We will therefore model solutions to problems of this sort

by building separate trees and AGGREGATEing them. Each tree described in a single

locution will be balanced.

Several principles govern the design of the tree system of TRANSCONS.

0 * All trees are as balanced as possible. (We use binary trees; extensions to trees of

higher arity introduce no new principles.) No flexibility in terms of shape is assumed,

nor is any say provided for ezpressing shape.

* A tree specification must include a size, which can be any integer greater than one.

... . •

. . . .. . . . . .. " .-. . . . . . . . ' . , '. - . " .. ' ," ." " ,- - -.. - ', . ..



or ._amo -I

99

The shapes of two trees of the same size are identical. That is, there is an isomor-

phism = between two trees of the same size that maps parents, left children and

right children respectively into parents, left children and right children. There are

"compile-time" constructs in the TRANSCONS language that allow for the specifi-

cation of connections to the node that is = to a given node, or AGGREGATION _____

between corresponding nodes of different trees. One way to achieve this identity of

shape is to have a left-biased tree that is as balanced as possible. In other words,

path lengths from root to leaves differ by at most one and if one such path is longer

than a second the first path must be to the left of the second.

The nodes of a tree are divided into three groups. They are the root, the internal

nodes, and the leaves. The leaves are further distinguished by indices. References p

to any of these classes of tree nodes, either to attach procedure, to specify commu-

nication such as HEARS, or to AGGREGATE can be made. Tags are provided

*for a node to refer to a node of another tree that is !" to it if the two trees are the

same size. This allows nodes in "-equivalence classes to be AGGREGATED or to

HEAR each other. For this to work, values have to be declared properly. Note that

* a leaf has to offer instances of values that are HEARd upward, and the root has to

offer values that are HEARd downward.

To support these stipulations we have the TREE data type. A tree is declared and its

components laid out using the type facility of CHI. As an example, we will describe below

a situation where there are two trees, T and U. Each is of size n. Each internal node of T

passes a value to its children after having multiplied it by a value from the corresponding

internal node of U. Each internal node of U adds values from its two children. The

procedures at the leaves of T and U, respectively, are described by functions H and G, not

interpreted here.

7
- . . . **~**g- .* o

- - - .... -.. ". - .
....- ..-.- .-..



T Istype TREE (i) alze n
root HAS v TALKS Ic! taon (SENDS v)

TALKS righteon (SENDS v)
HEARS source (USES outside-value)
HEARS UMroot (USES ts-value)

Inter HAS v TALKS lefteon (SENDS v)
TALKS rightaon (unakipSENDS v)
HEARS parent (USES v)
HEARS U.inter (USES u-value)

IsyeTE IEleaf (i) HAS 1, HEARS parent (USES v)

root HAS u TALKS T.root (SENDS u)

HEARS Ieftaon (USES v as v.le It)
HEARS right eon (USES v as v.right)

Inter HAS u TALKS T.inter (SENDS u as u-value)
HAS v TALKS parent (SENDS v)

HEARS leftaon (USES v as v.lec t)
HEARS rightaon (USES v as v.right)

leaf (i) HAS v TALKS parent (SENDS v)
HEARS 8ome, (USES A.)

* (in T.root)
v +- outside-value x a-value

(in T.inter)
V . v X u-value

(in Tica I.)

(in U.root)
vs Cle ft + v.right

* (in U.inter)
V 4- v.left + v.right
u 4-_v

* (in U.Lea I,)

Note the SENDS u AS u-value locution. This causes a value to be known as u in

the Intermediate node but to be known as u-value in the recipient.

This example displays three features of tree structures. The U tree has upward commu-

nication and uses v to name links on which information flows from the leaves to the root.



101

There is also cross communication using u-value. Finally, there i. downward information

flow in T again using the name v.

In the next Chapter we explore the syntheses of several tree structures in detail.

Ok I

R- .--



102

Chapter 5

Tree Structures Synthesis Examples and Closure "

Removal

In this Chapter, we will consider the broadcast problem, the prefix summation problem,

and a part of one solution to the connected components problem that is amenable to tree

solution.

Our motivation is to display the tree synthesis methods of TRANSCONS in some detail.

We first show the use of D&C to synthesize some tree structures that include closures. We -

then exhibit closure removal techniques that convert these into structures that can be

' implemented in computation models that do not permit closures.

The division step requires some explanation. Our basic technique is to assert that there

exists a closure whose action is to make true the required first order logic (FOL) predicate,

and then to make the goal to compute this closure and to apply it. The next step is to assert

that there is a solution to the problem, if there is a solution to appropriate subproblems.

The problems are expressed as input/output behavior on vectors, and all problems and

subproblems are concerned with (contiguous) subvectors of the problem instance vector. 4

Different methods of performing the division step result in different tree structures.

Specifically, we have the hypothesis 3SC, u'[actlon(Cq'O) = Vi E (I. .. u}[P(i)]1 A CIO

G(Clu',C.+ ). This isn't strong enough for us to synthesize a tree structure, because we

have to know more about usable values of u' given I and u. If we have 3C7' VI < u' <

'A'



103

J.
u[actlon(Cq0) = Vi E {I... u)[P(i)]] A ( G(Cu',C",+ ), then we can certainly make a

balanced binary tree (or any other tree structure we choose); our choice of u' is unrestricted

(except that it has to split the range into two nonempty pieces).

Other interesting possibilities include ... [u' I + 1 A action.., or ... [U' u - I A C "

action..., both of which would create trees that are as unbalanced as possible (identical S

to chains), and 3Cu,u'[u - I < 3(u' - 1) 5 2(u - 1) A action..., which gives us a tree

structure with logarithmic depth, if the u' can be found at compile time. These cases

provide interesting future research but are beyond the scope of this thesis.

5.1 Broadcast

In the broadcast problem, value(s) known in a central location are distributed to many .'

locations. The broadcast problem can be described formally as Vi[a! i- F(ai, z)] or perhaps -

D
Vj[Via 4-- F(a 3 , zx)1. One method of synthesizing solutions to this problem might be to I

recognize it as a distinct pattern and carry a synthesis rule that produces a broadcast tree

when supplied an instance of a broadcast problem. Another solution is to produce a chain

of processors as a bucket brigade to distribute the information, and then to successively

split the chain in half. The problem with this solution is that the synthesis process is

iterated a variable number of times. With the new mechanism of closure passing, it is

possible to provide more general rules that handle broadcast problems as a special case

without multiple reformulations.

Consider the application of D&C. We want to produce a closure that, when applied

to z, performs Via: 4-- F(ai, z)]. We hypothesize that to solve the problem for a whole

subarray, we can solve the problem for each of two pieces of the subarray and combine the

two solutions in some manner. Giving the names fl and fr to the closures for the left and

right halves of the problem, and Iw to one for solving the whole problem, we then show that

....................................... *. ...*..*."-....

........... .o. ......



104

to combine closures fJI Az[Vj C= rita '- F(a,x))] and f r =Ax[Vj E rs [a'. P-(ai, )]]

we have only to create f w - )4Jr[f (y) 11 f r(y)]. We go through the following sequence:

VA, z3A' [Vi E [1 ... nja'= ajzj
3 C(z)[act~on(C(z)) =VA, z[Vi E[1 ... njfa: P (ai,z)]] (abstraction)

hypothesis: 3C'",Vu',l <u'<ua[actlon(Cru(z)) =VA,z[ViE[ .1.. .u][a '= F(ai,z)] (division)
A C',(Z) MG(Cr'(GL(z)),C 1 +i(Gr(Z)))j]

The abstraction step is the step of asserting that there is a function whose application4W

makes true the FOL predicate that is being abstracted. The division step is the step of

asserting that it is possible to build a closure that solves a large problem, given closures

that solve subproblemns (and possibly other data).

In this case it is possible to assert that any us', I1< u' < u, meets the requirements, and

that in this case a balanced binary tree solution to the problem will certainly work because

the division ui' =u + riwill provide one.

Setting G(Cz(x),C,(1,)) Ci(z) jJC2(y) (Iis concurrent evaluation) and Gi(x)

G,(z) = will cause the division hypothesis to be true.

It only remains to describe the procedure for handling a singleton array. This is the

closure A.Ia Jai' (ai, x)].

The computation of the top level closure is 0O(log n) where n is the size of the problem.

This is clear from the theorems of the previous Chapter and from the observation that

T(G) = 0(1). (G is creation of a closure enclosing two given closures.) Similarly, the

time consumed by an application of the top closure will be O(log n) from the fact that

inax(T(Ga),T(G,)) =0(i). (Ga and G, are identity operations.)



105

5.2 Parallel Prefix Summation

Prefix summation is a mapping of arrays onto arrays of the same size such that the

sth element of the output array is the sum of the first i elements of the input array. This

generalizes to other reduction operations; it makes sense to talk about prefix product,

prefix and, etc. The only restriction, shared with other reduction operations, is that the

operation be associative.

Handmade parallel structures that solve the prefix summation problem have appeared

in the literature. See, for example, [LFi80] and the more recent [Fic83]. Below we describe

methods to synthesize such structures.

5.2.1 Overview : .'

To use the closure technique on a given specification, reformulate the problem from

something like VX,... 3Y[P(X,Y) to BC[VX,.. actlonC() = P(X,Y)]. Heuristically,

the problem is reformulated from that of satisfying a specific input/output specification

to that of producing a closure wherein the I/O specification1 will be satisfied when it is '- -

applied. -.

We will need to define "augmented prefix summation with augend z" as VI < i <

n[a: = z + Z,<,< ai]. We then say that the task is to deliver, to the root of the tree,

a closure that will perform augmented prefix summation. To create a closure that will

perform augmented prefix summation with augend z on a non-trivial vector, divide it into

two halves, get such a closure from each half together with the grand total of the input

values for that half, and invoke the left half's closure with z as an augend and the right

half's with the left half's sum added to z. We deliver, to each node of the tree, closures

that will perform augmented prefix summation on the vector comprising its leaves, together

'More precisely, the problem of satisfying the 1/0 specification that requires no Input and produces that
closure.

. . . ,. . . . ,. . .- . . .. ,, .. -.



106

with the leaves' sum. Note that the closure delivered to each node's parent has to include

the left subtree's sum, which is available now but won't be later. A more formal description

follows.

Assume that a vector Al..,] is divided into All....,] and A.,+,..J* Further assume that

we are trying to compute F(A[I....j) which we will denote Fl. Further assume that we want

to have some effects, local to the array elements. We would therefore want to compute a

closure, (7", that would have the desired effect.

The generic combination operator for the values is F" = G(Fl', F 1, u, u') and it

is a synthesis task to derive the properties of G. Similarly, C -- G(Cu,C+ 1 ,,u,u'). ""

If the closure has an argument, the situation is slightly more complex; we have 1 (z) =

G(Cr'(G(z, Fu', Fu,+i,,u,u')),Cu,+,(G.(z, F", Fuo+,,, u,u'),1,u,u')) where the F vec-

tors are the values available to (and incorporated in) Cru. This general schema need only

be used with specific combiners (i.e., G, G1, etc.). As a simple example, prefix summation

can be performed by this schema if G (Clqg IICi,) (where fI is concurrent applica-

tion), Gj(z) = z, and G,(z) =z + vi. v, in turn, is computed as . + v,. Singleton v- and

C-expressions are C, Az [a' 4 ai + zI and v,= ai.

5.2.2 Derivation

In prefix summation, the specification to meet is Vi E (I ... n)[a -- iE (}..) ail. We

will introduce the abbreviation l - i (e...u) ai. This then becomes Vi E (I ... n)[a -"

]. We change the specification to one requiring the computation of a closure which,

when applied to no arguments, performs this action, together with the application of that

closure.

VA3A' Vi E {1.. .n) a: ="

= 3CVA [actlon(CO) = Vi E {1... a) [a = (abstraction)

.. . . . . . . . . . ~ o .• , o . , - - ...: - ° o . .. . . o - - . . .. .. .



V d. . , .-

107

hypothesis: 3CG'VA [aCtlOn(Cj"()) =Vi E .. u) [a = (division)

A Cu G(Cr 'C:.+ o)]

But actlon(Cuu+1 O) = Vi E {u' + 1 ... u)[a4 =,,, so it is impossible for G to do

anything to C, to make its action ... d = u C+ 1 must have a parameter in

order to allow G to provide enough information.

We modify the closures so instead of action(C'(o) we have action(CZ'(z))=0

ViE (I.. l[a = H (f, z,, i)]. We do not yet know the properties of H.

We now have:

action(CAu(z))= Vi E{It...u') [a:= H '1

action (Cuu,+1 (z))= Vi E {u' +1... .u} [a! H p''

So we observe

action(Cru(z))

(V i EIt... ul[a:= H(±z~li)]) (above)

G( (Vi E {I ... U') a H

i E U'+I .. U [d , (, 1 i) 1,(expansion)

=Vi E{(I... u'[a H(Z z 1,i)} 1AVi E u' + 1... U}[aH( Z 'i1, i) (V identity)

Assuming G merely generates a closure to produce application of both of its parameters,

then H(F,,z,,i) =H(F,,Gj(z,1,i),1,i) and H(F'1 ,z,l,i) =H(E',+ 1 ,Gr(zs,1,iIi.

The first solves as z GI(z,I, i). The second needs a bit more attention. If we



108 -'

represent I as +ELI-2-u+,, we learn that H( 2,z,1,i)-- H('-I-., 1 ,z,li) =

H(E+1, G,(z,1, i),1,i), so H(r + q,z,L,i) = H(q, Gr(z,1,i),1,i) where r -

Letting H = Az, V, z, w[y + z] we get Gr = Az[r + x]. This can lead to two problems. '.

One is that H(z,y,z,z) = z must be satisfied, so it must be possible to satisfy v+z = z for .

some y. At this point, if there is no identity to the operation, we have to say G1(z, z, z)=

(a special value), and H = Az, Vz,ud y 9 zj where (special value) E z z. The other

problem is that there isn't enough information around to compute G,. We have to expand

the problem again to bring about the availability of intermediate values for the intermediate

closures. In this cae we need X''. Instead of

action (C'(z)) action (c (Cu'(Ga(z,1, i)), C,,i(G7 (zl,'))))

we want

= J(V1U%,UU,+1)=

and

action(Clu(z)) action (G (c'(Ga(vru', tu 1 , z)), Cuu41 (G,.(vu',ev..., z)))

Taking a more intuitive view for the moment, we observe that we want to compute

a pair (vi, C,) in which vj = i and in which action(Ciu(z)) is the computation of an

augmented prefix summation, where a .- z + E instead of a4-

We want G,(,iu , u,+ ,z) = z + " so we must use v ' -u' or u -- .-

We lack only one step to a complete solution. Initially we wanted to compute a closure

which, when computed for that "sub-array" which is the whole array and applied to no

argument, computes the prefix sum. We will get, instead, a pair of results. One of the

results is a value, and the other is a closure which, when applied to one value, computes a

generalization of the prefix sum. It remains to convert this back into a closure that can be

applied to no arguments.

. -* . .. .. ..... . .. . .

-7 7-



109 S

We have

* action(Cl(z)) = Vi E {1...u} a = -I- +

and we want

action(F'O)- Vi E {I ... n[ a c I ... n} [a - + z]

for some z. Clearly z = 0 works. The operation will always have an identity because the

creation of H will require a new operation to be created if the basic operation lacks one.

5.2.3 Derivation Summary

We have taken all of the following steps:

V * We transformed an I/O specification whose input and output were vectors into an P

I/O specification taking vectors into a closure;

" We have substituted the I/O specification into a general D&C scheme;

" We established that the subclosures need an argument to fill their role in the closure

that is being computed and modified the specification to reflect this;

* We augmented the specification to compute another value that is needed to compute

the argument that subclosures will need;

" We performed backwards inference to determine the I/O behavior of generic functions

from the D&C formulation; and

" We returned to the original problem of computing a closure to solve the original prob-

lem in terms of the new specification that specifies a closure that is a generalization -

of the function desired.

I

..- - , - - -i .. .. .. .. . . ,. i. - . - - - .. ' . . , . . - . .. . - i _ - ' . . , . , ' , - .' - - ",.-., .. -i... ,- , . . ,, ., ..- ,- ,-.- ,. .. ." -'.,'y



110 A 2

In slightly more detail, the stpps are as shown below:

action(CO) = VIi:5 nla:=ij

action(CrO) VI<s<uC4

V < u' a= ]

A VU'+ 1:5i:5u a=

A Yu' +1 :5 j: u ai + i

We must supply a new parameter: .

actlon(C(zo)) =VI :5 i :5 n [a' s H( ZO)

H(I,z,,i) =H(F,+u'+ ,,l,i) H(IEL+1 ,Gr-(z),1,i), which works if

H(z, Y) Z) W)- z + y and G,(z) Ei +z, but the latter requires having El" +z available.

We therefore further modify the problem by requiring the collection of another value.

U

The last observations we need (the base case) are:

Vi a

C1 =z : zai i



We therefore have J(z,y) =z + y making yr' = u'+ CIO(s) applies Clu'to Z,

and CJ,+.I to Z + v.Creating new symbols for the values (vi, v, and v) and closures (C,

C,, and C) received from the subproblems and passed to the superproblemn, we finally get

the following:

V =V1 + VT 6
v.Ieaf, =aj

G(C,Cr) =C(G(z)) fjC,(G,(z))
Gj(z) =Z
Gr.(z) =-z + v,

C [.~~ aG (C,C,)1
Ciceaf, =Az[i< = z + ail

C.root =.(AO-Cv 'O[G(C, C?)(0)]

We have G(C,,) Cj(Gg(z)) C,(G(z)). We would therefore have a synthesized

TREE declaration to read, in part,

inter HAS C, v
HEARS leftso& (USES C as C1, USES v as v,)

0 HEARS right eon (USES C as C, USES v as v,)
TALKS parent (SENDS C, SENDS v)

and the program for the internal nodes to read, in part,

(in T.inter)
C )+- Awbu,,Cr C [01 (Ga (z)) IC, (G, (z))]

where G,(z)=z
where G,(az) =z + v,

V 4-V1 + V,

4 This can be converted to a tree structure free of closures by simple rewrite rules to be

described in the next Section.

-S .. . . . . . . .



112

5.3 Closure Reduction

The parallel structure that results from the parallel prefix synthesis contains closure

generating forms and closure applications. Permitting this makes the D&C synthesis pro-

cess work-but the resulting structure is not a desirable one because the multiprogramming

model must be used. Closure generating forms (CGF's) are not part of the lower levels

* .because they require the processors to be capable of efficient context switches. Even if the

* multiprogramming model is satisfactory, there is one other reason for developing technol-

ogy to eliminate closures from parallel structures. Any direct implementation of closures

requires two messages to be sent in each of two directions: the closure from the host to

the recipient, and the application message from the recipient to the host. This is waste-

ful because the closure carries no information beyond collation (matching recipient-to-host

-. messages tvith corresponding host-resident data) and indication of readiness.

Both collation and readiness information are redundant in some parallel structures such

* as the one we have just synthesized for parallel prefix. Even where collation is necessary

we will see that it can be realized by sending data only from the recipient to the host.

For all of these reasons we are motivated to provide transformation rules that remove

closures from a specification, replacing them with equivalent transmissions of argument

data and possibly collation data. We call the process of transforming a parallel structure

that includes closures into an equivalent one that does not, closure reduction.

There are two cases to consider: either there can be more than one live CGF instance

* at once, or there can not. We will call the first type of CGF a multiple CGF and the second

a simple CGF. It is only required that the recipient send the host collation information to

apply an instance of a multiple CGF, not of a single one. We will see below that the same

reduction methods can be used for the two cases, with the redundant transmission being

removed by further processing of the parallel structure that results from closure reduction.

.- ".



113

5.3.1 CGF Reduction Rules

.....y

We describe an example of a case in which a CGF would support multiple instances. A

two dimensional array of numerical values will be available from an external source. This P..

array will be described as having m rows and n columns in what follows. The information

will be available a row at a time. Each row has some maximal elements and some non- ..

maximal ones. The problem is to determine, for each column, the sum of all elements that P

are maximal in their row.

There is a simple, fast, and memory-efficient tree-structured solution to this problem.

A processor is assigned per column, and the column processors are connected by a binary

tree. As the rows of the array arrive, the structure initiates a maximization calculation to

determine the maximal element(s) of the row and send back, to those columns' processors

that had maximal elements, a copy of that element. Each processor sums the replies it

receives. It is possible to pipeline, i.e., to initiate subsequent maximizations before the

results return from the first.

We reformulate the problem to that of computing, for all i in range, C = Az[Vj E

(1... n)[ai *-- If b,, - z then a3 + z else oil] and V, = maxk(l ..n) bk together with the

application C, (v,) for all i in range. We will use a division step in which substrings' closures

are both applied either to the value of the maximal columns if the substring contains at least

one, or 0 if the substring contains no maximal columns. We eventually get the following

parallel structure:

.



114

Inter HAS C,, 1<1 i< m
R EARS leftaon (USES Ci, 1< i:5m as Cl,, USES vi, 1:5 i

m as V4j)
HEARS rightaon (USES Ci, 1:5i <m as Cri, USES vi, 1:51<

m as vri)
TALKS parent (SENDS Ci,,'i, 1< i < m)

p.. (in T.inter):

C, i F(vi, vri,,Cli,Cr,)
G- G(vl.,vr,)

define F(vo,vtb, Co,Cb)
(return AE4Vb.bc[(If z =vo then Ca(z) else Ca(O)

defne ~va ti) ~ If z =va then Ca(z) else Ca(O))I)

(return max (va, vb))

(i Ticafi, 1:5j <n):

vi <Iqs

C, A' i [if z vi then a, s- a + z]
(in T.root):

V1 <i <l

C, 4- (u4,Vr,,C~iCr,)
v- G(V4,'Vri)

In the parallel structure above we see that TRANSCONS must make certain changes.

The transmission C, (CGF) where C, is a communication variable must be changed

into a mapping (in an appropriate map variable) of the point (i, (CGF name)) -. V where

V is the vector of relevant values that are enclosed. A closure application C,(z) must

be changed into transmission of the triple (i, (CGF name), z) to the host. The host must

include a new process whose procedure is the procedure portion of the closure augmented to -

take an input the values sent according to the previous change. A new pool must be created.



115

to accomodate transmissions of triples to the host, and the pool that carries closures to

the recipient can be removed.

We also make the cosmetic change of expanding the function definition G(va,vb) in

line. This definition results from the method we use of inserting a D&C scheme instance

first and determining the necessary properties of the included functions later, and it will p

not be inserted in later examples. This example becomes

Inter HAS C, I < i < m
HEARS leftson (USES vi, 1 <i < m as vi,)
HEARS rightson (USES vi, 1 <i < m as vr,)
TALKS parent (SENDS vi, 1 < i ! m)
TALKS leftson (SENDS wI,, 1 < i _< m as wt)
TALKS righteon (SENDS wr, i< i < m as w)

HEARS parent (USES wt, 1< i < m)

(in T.inter)
V1 < i < m

.(A, vlj,vri) ;this is a map assignment that creates a 'cosure
v -max(Vl,, yri)

(in Tinter)
V1 < i < m

F(i, to,) ; this awaits "closure applications"

define F'(i, ww) ; when a "closure application' arrives...
if Mj = A then

let z = ww, va =M ,2 , vb = M,, do

wl, -- (if z = va then z else 0) ; apply"
wr -- (if z = vb then z else 0) ; contained closures

-- undefined

(in T.leaf,, 1 5 j 5n

V i < m.-

Vl < i < m '

let wu = wi do 1.-
If M, = B then

.I 4-.'

- . .. .



116

let z =w do If z- then #j +z

- undefined
(in Tioot):

A - (v,, vr)
* 4- ~maxv4r)

Here A is the name given to the CGF SAOSU,cacb[(if = va then Ca(z) else Ca(O) II

If z = vb then Cb(z) else Cb(O))]" and B the name of "Ali[lf z = v, then as *" ai + z]".

The enabling conditions of the transformation rule are that a CGF exists, and that a

communication variable exists that must be assigned an object of type closure. The CGF .

is given an arbitrary name. Creation of a closure is replaced by creation of a tuple giving

the name of the CGF and the values of those elements of the closure that occur free in the

procedure of the CGF. Assignment of the closure to a communication variable is replaced

by entering the indices and name (if necessary) of the variable into a map, M, that maps

it into the tuple that represents the closure. We add to any processor that contains one or

more CGF's a process that awaits communications, decides which CGF it was based on by

using M sets up the environment also stored in M and performs the procedure. A closure -

application is replaced by a transmission of index and argument information to the host.

If a CGF is situated so only one instance can be live at a time (determined by data

flow), further simplification is possible. The simplification process begins as above, but

after the closure passing and application is reduced the index portion of the transmission 5 '

resulting from the closure application can be determined by flow analysis and need not be

* tincluded. It can also be determined that the map will never contain more than a single

element-so map insertion can be replaced by assignment of a variable and map retrieval --

by reference to the variable.

* . . ,



77 777 7,r -

117

J;.
Below we show the parallel structure for parallel prefix summation of n-element vectors

before and after closure reduction. Observe that the possibility of multiple CGF instances

does not arise because within any one processor a CGF is only used once per computation.

Inter HAS C
HEARS leftson (USES C as C1, USES v as Wi)
HEARS right son (USES C as Cr, USES v as vr)
TALKS parent (SENDS C, SENDS v)

* (in T.inter):
C 4-F(vl,vr,CI,Cr)

V 4-vi + yr

define F(va, vb, Ca, Cb)
6 ~ (retUrn Xa~ovuICab[(Co(Z) Cb(va + z))])

(in~ T.Leafi,~ 1 < j !5 n):
V 4-a 3

C -A: [a, - z+ ail
* (in T.root):

C 4- F(vl,vr,Cl,Cr)
C(O)

The result of the closure removal process is

Inter HAS C
HEARS leftaon (USES v as Wi as vt)

BEARS righteon (USES v as vr)
TALKS parent (SENDS v)
TALKS lefteon (SENDS wi as w)
TALKS rightaon (SENDS wr as w)
BEARS parent (USES W)

(in T.inter)
M +-(A,Vi, Vr)
V.- Wi+vWr

(in T.inter)



-'r - - *

118W

'(O, W)

define F'(i, ww)
Uf M = A then

let z=wtuw, va=M2 , vb=Ms do
tul * - ". .'.*.

tvr v-ta + z -

M - undefined

(in ea, 1:5 j:5 n)
'

V +- aej

let tuw = w, do
if M, =,B then

let z = utul, ao= M2 do a, .z +a-

M *-- undefined
(in T.root):

M - (v, Vr) -
ii 4-- V1 + Vr
F'(O, v)

The fact that the index into the map can only take a single value and in therefore

redundant is immediate here, because the index is a vector of length sero In other cases,

preexisting value flow techniques such as those of [Ken8l], [SPnSl] and [CRI81] would

be used to establish this fact.

5.4 Connected Components

We now explore another specification that raises some additional issues about D&C to

synthesize tree structures and about closure removal. In this structure use of a closure

causes another closure to be sent, because the use of a closure adds an element to a set

that is being built up and this can be done repeatedly. We describe a closure removal

technique that copes with this complication, and we sketch two possible implementations. *

The problem, together with one of the implementations, is described in [EMS84].

* .--. 'i

I9



119 S

The problem is to find the connected components of a graph, given an adjacency matrix

(a matrix A in which a,, - true iff node i is (directly) connected to node j in the graph).

The adjacency matrix will be available for input one row at a time, and a solution is

preferred that reads the rows at equal intervals.

In this Subsection we will derive a tree structure that solves part of the problem and

meets certain worst cae time constraints. The derived structure will operate while the

rows of the adjacency matrix are read in.

Formally, we will assume that there exists a source of rows of the adjacency matrix that

can provide one row at a time. Each column will be read by its own processor. Columns

and rows have integers in the range [1,2,. .. , n] as names. When column i's processor reads .

row j it receives the value true if there is a graph edge between i and j or false otherwise.

The network we derive will then store the information in such a manner that it or some

other network can identify connected components of the graph whose adjacency matrix .

was read.

The adjacency matrix contains O(n2) bits, and any system capable of storing this let-

amount of information must obviously occupy proportional area. We would like to perform

filtration or reduction of the n2 bits of information into n logi n for constant i, in order to

make a more compact implementation of a circuit possible.

The column processor nodes of the network must read elements of the rows of the

adjacency matrix at such a time (in relation to the time other processors read their elements

of the same row) that the network will not confuse elements of different rows of the matrix,

and the net must build a representation of the (partial) connected components information..

in some useful manner. The representation should be compact and the computation should

be fast.

:I



120

First we will derive the structure up to one important implementation decision; then

we will describe the two resulting parallel structures. *

5.4.1 Derivation of a Tree Structure

In the connected components problem, we do not necessarily want to change the state

of the leaves of the tree or develop a value at the root. Instead, we want to change some .

state so questions about connected components become easier to answer.

We will use the notation CC(i) to denote the set of nodes in the same connected

component as the node i. CC'(N) is a predicate indicating whether all nodes of N, a set of

nodes, are in a single connected component. Since the state of knowledge of the connected

components of a graph can vary with time and, in a multiprocessor system, with location,

we will later introduce other variants of the CC' predicate.

We will read the rows of the adjacency matrix one by one. After we have read all of the

rows we will then engage in another computation not described here, to put reduce,,{j:

j E CC(i)) in leaf i. In what follows, we will call the processing that takes place between

the reading of consecutive rows of the matrix a phase.

There are several solutions to the connected components problem which we reject be-.

cause they have certain undesirable features. One solution, for example, would be to have

each node record the row numbers of all rows of the adjacency matrix in which it is men-

tioned. This would require a lot of storage. Another solution is to have each leaf, after

each row, find reduce..n{ji j E CC(i)) so far. The problem with this solution is that

the time between the reading of rows can vary over a wide range (see [LiV81]).

,-* .'



121 p

Our derivation requires a certain amount of invention. We will assume that the user

provides this by defining several intermediate predicates and by providing some informa-

tion. Two ideas are involved in our conception: the idea of a map to store the state of the

connected components so far, and the idea that the map is limited.

We start with axioms about connected components:

CC'({e)

CC'(A) ACC'(B) A AflB CC'(A UB)

CC'(A) A A' C A =0 CC'(A')

p We observe that the following is true:

CC'(A) A CC'(B) A 3a, bla E A Ab E B A CC'({o, b))]* CC'(A U B)

First, we supply TRANS CONS with a divide-and-conquer formulation. In what follows,

V will be a set of connected components, each of which is a set of graph nodes; W is a

connected component or a subset of one; CC (CC', etc.) is a predicate indicating whether

a certain one of its arguments is known to be contained in a connected component; and M

is a mapping of nodes to nodes.

. ...-... o...

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .



--r .- -- V- -. • . .. T- -" " - " '" " " "- - "- - " "" " .

122

W ,W E V[cC,(W)].
where ...

CC'(W) _ IW <1
V

VWI'wI
W=PIWW.

= CC(WI)
A CC(W,)
A (W# 0 A W 0 Va E WI,b E WICC({a,b})]))

TP.ANSCONS can easily check that this meets the axioms, but the combination of the

two halves by a pair of arbitrary elements, one from each half, constitutes a user-supplied

invention.

The user must observe that the current state of CC' is represented by the choices of

pairs of arbitrary elements, and introduces M to carry this information. Since M repre-

sents the state of knowledge of connected components, we will define a new binary predicate

CC(M, X) which denotes that the mapping M asserts that there exists a connected com-

ponent C such that X c C. Taking a finite difference against the addition of a new set X

that is known to be connected, we get:

VX,M3M'[ CC(M',X)AVW[CC(M,W) = CC(M',W)]
A Va, b[ ,- CC(M, (a, b})

A VY, Z[CC(M, (a) U Y) A CC(M, {b} U Z)
YnX=ovznx=0] ii

*,.,- CC(M', {a, b})] ]
where

CC(M,W) - IWl_< 5..:
V

V w w, W W,
[ w =w~w, ..

, CC'(WI)
A Cc'(Wr)
A( Wa#0AW # 0

3a E W1,b E W.iM(a,,b))..
0 . ? . .

:::: : --

,'%* .



123

The long conjunct on the second through fifth lines state simply that no connected

components are implied by M' that aren't either implied by M or forced by X.
* •

We invite the user to make another critical observation, namely that VW[CC (M, W) ..

CC(M',W)] can be satisfied by Va, b[M(a, b) =* M'(a, b)]. (S)he can further observe from

the original axioms that CC({a,b} A a E A A CC({b,c)) A c E C = CC(AUC). We can ..-

thus liberalize the condition on M in CC as follows:

VX,MM'[CC(M',X) A M(a,b) * M'(a,b) A ...
where

CC(M,W)=- IWI<1
V

'VW, W,

[ w=WJWW
=* CC'(WI)

A CC'(W,)
A( W9I$ AWT--

* = a E W I, b[M(a, b) A (b E W, v CC(M, {b} U W,))])

This specification is suboptimal because it allows M to be multivalued. We will examine

this solution in detail and see how it translates into a tree that maintains M in internal

state. We will then see what can be done to improve this.

We therefore make a change in CC to express the fact that the divisions will always be .

made in the same manner, and that M need only be defined for one set of subsets of the

universe. This change is the addition of a parameter, a subset of the universe (of nodes

in the graph whose connected components we are seeking). Later we will repair another

deficiency of this specification: that it allows M to be larger than we would like.

M will be made a ternary rather than a binary relation. M(S, a, b) is true if a connects

to b relative to S. The purpose of this is to limit the size of M.

I



124

The new parameter to CC ranges over particular subsets of the universe. It has two

roles: it tells what version of M to use, and it restricts acceptable solutions to CC.

CC(S, M, X) is true only if there exist elements of M(S', z, y), where S' C S, that show

that X is connected. This is a stronger condition than the original CC(MW).

In addition to making M and CC relative to a given set S, we will introduce functions

L and R such that L(S) W R(S) = S. The motivation for this is that we are trying to

establist a tree structure of sets and subsetathat together comprise those sets; L and R are

a Skolemization of the assertion that there is a way of dividing the universe, each of its

two subsets, etc. that meets further conditions. The domain and range of L and R must

meet domain(L) = domain(R) = range(L) Urange(R) U{U} - U.

To formalize the new parameter of CC we write:

"W, X, M, W E V3M'Va, b[CC(M, W) A CC(., X) A M(S, a, b) V M'(S, a, b) A...
where

CC(M ,W) = CC(U,M,W)
andcc(s,MW)-IJWl_ -""5,.

V, R
L(S) R(S)= S

A W=wfL(S)
A W,=W.R(s)
SCC(L(S), M, Wj)
A CC(R(S), M, W,)
A( W,$OAW,#. .

3 a E W,,b E W[IM(S, a, 6)1)1

In what follows we will use the locution Ps to denote "the processor responsible for the

set S".

A closure is needed here to satisfy CC(L(S),M,W|) and CC(R(S),M,We). This

closure requires no arguments, because the processors for L(S) reap. R(S) have all of the

......................................
. . . . ..O

.' 1



MT-TI T.- ,, , .

125

infnrmation they need to do their work. All elements of Wi reap. W, are in the subtree

headed by processor L(S) remp. R(S).

Application of the closure serves notice on descendant processors that they should be

ready to add to their maps in a manner that comes from the fifth conjunct in the large

expression. The need will be described below.

Now we can continue the synthesis process by applying transformation rules to

satl fy(VV, X,M,W E V3M'V, b[CC(M,W) A CC(M,X) A M(S,a,b) * '(Sa, b)]). P..

We soon find ourselves transforming satisfy(MP(S, a', Y)).

Suppose we add an additional condition, M(S, a, b) A M(S, a, c) =* b = c. After we

have replaced occurrences of M by occurrences of M' (as a constraint propagator would

do when analyzing "CC(S,M,W)") and imposed this condition, we get the following:

A( W,#60AW 7 O0
• = 3a E WI, b E W.[A'(S, a, b) A Vc[(S,a, * c = c)])

We can not satisfy this last clause (the implicand) when 3c W[M'(S, a, c)] because

this conflicts with M(S,a,b) = A(S,a,b). M(S,a,c) is required by M(S,a,c) and

forbidden by the requirement that 3c' E W, [M(s, a, c')].

However, we have M(S,a,c) = CC(S,{a,c}) and CC(R(S),(c)UW) A

CC(S, (a, c}) CC(S, {a) UW.).

We therefore use V to expose the fact that there are alternatives:

::;:-.;.



126

A(WI14 AW,96O
*:3aE WI,bE W,[ (M'(S,a,b) AOC Ob[M(S,a,c)]

V 3c[M(S, a, C) A CC(S, M', (C) U W,)])]) -

As it in known that M(S, a, x) can only be asserted by the above, an inductive proof is

available that c E R(S). This can therefore be replaced by

* A( W9#OAW00
=*3aE WI,b EW 7[ (M'(S,a,b) A C $b[M(S,a,c)]

v ~c[MP(S, a,C) A CC(R(S), M, {C U W7 )])])

This gives two alternative ways to satisfy the specification. We can satisfy M'(S, a, b)

if M(S, a, b.) V 0, [M(S, a, c)]. satisfying the other disunct is harder than this because it %

requires satisfaction of a predicate containing R(S), so we prefer the first disjunct when

it can be satlsfyed. If we can't use the first disjunct, then we know 3c[M(S, a, c)] so we

have only to satisfy CC(R(S),Mh,{(c)U W,) for that c. This leads to:

*satisfy(3a E W, bE W,
[( M(S,a,b) A C $b[M(S,a,c)]

V 3c[M'(S, a, C) ACC(R(S),M' ,{c) U W,)])])

bind a to arb(WI), b to arb(W7 ) In
Vf M(S, a, b) V ,[M(S, a,c)] then satlsfy(M'(S, a, b))

ekse satisfy(M(S, a, c) *CC(R(S), M', (c) U W,))



_-.r -- 77747 ow - r.-- . - . . . . . . -. - . .V .

127 -

5.4.1.1 Closure Requirements

In order to be able to satisfy CC(R(S),',(c)UW,) we wil need a closure. This

closure requires an argument because only PS knows c. Since we have CC(R(S), M, W,)

we will need a closure CC(R(S), M, ,) action(C,(z)) = CC(R(S), M', (c)U W,).

* Expanding CC(... ) and renaming the variables with a prime (i.e., v becomes v'),

we need W, W#, CC(L(S),M',Wl), CC(R(S),MW), and (Wl 6 0 A ... V 3c[... A

CC(R(S),J{ .UW,)]) Since we know that W,' - W, V W,' - {z}UW, for some

z E R(S) and similarly for Wj, we see that to establish CC(S, MW, {c} U W) we establish

(and need a closure to so establish) CC(L(S), AV, {c}U W) (or ... R(S) ... W,).

Each node Ps applies C1 o -ce or not at all, and C, zero, one or two times. We therefore

need two features in order to sLtisfy our requirement that each closure be applied exactly

once: we need to have a distinguiL.hable null message to apply each closure to when a node

knows that it will not be needing t, and we need to have the application of a closure

cause the host to send another closure that has the necessary capability. We index the

communication variable to allow successive closures to be distinguished.

There is an important fact that must be noted in this case. Because one result of using

a closure is the generation of a similar one, a CGF for a closure must be included in the

procedure attached to that CGF. This requires the ?rocedure to call itself recursively.

T---
The final version of the CGF that ad, s a element to P5 's connected component is: i:'"

,.- * . .. . . ..• ",o o . • . . ,o . o o , •* " " " . " .



128

CC-odd-el ene nt(z)
case

* = nil: ~N
CS(nil) 11 C,(nII)

z E L(S) A W1 #6
W1 . zUPWI
CI(z) C . '~W~~[CC -add- elemenat(z)]

z E R(S) A W, 960:
VI, 4- Z U V,
C,(Z) 11 C - ATVaWrC, [CC-add-element(z)]

z E L(S) A W1 =0 A W, = emptyeet:

C 4- AT- [1'CC-add-element(z)]
z E R(S) A W1, 0 A W, = emptyeet:

VI, - zUW
C -A',R.IC [CC-odd-el ement(z)]

q. zEL(S) AWI =0AW, #60:
W8 -, W
Map-add-or-call-Cr()

C SAaWaC [CC- add- element (z)]
z E R(S) A WS # A W, =:-

VI, 4- zUVI, oP..~

Map-odd-or-call-CrC)
C +- A:',W,-CI.Cr [CC-add-element(z)]

Map-add-or-call-Cr()
let a =arb Wt, b =arb Wt. do

Vf M(S, a, b) V 0 c[M(S, a, c)]
then M'(S,oa,b)

C 4--A:WIWrCI.C,[CC-add-element(z)]

else let c =M(S,oa) do C, (c) *.-

C -- CAT" W" ,C",C [CC-odd-el ement(z)]

C A:"Wci,WCI,, CC-odd-el emevtt(z) I

We winl now explore the issues involved in transforming this specification containing 4

closures into an equivalent one with downward communication.



129

5.4.1.2 Closure Removal Issues

Only CC-add-dement can create a closure C-there is only one Call to this routine P, ,

outside of itself, and it is tail recursive. This implies that there is no way two CGF-instances

can be live at once, allowing downward communication to consist of only the argument of

the closure application. I.. 4

As in the previous case we eliminate the closure by replacing the application with a

setting of a communication variable and making the body of the CGP a piece of code that

awaits such settings. The tail recursion that will occur unless the value of the communica-

tion variable is nil, is replaced by looping which tests for that terminating condition. The

resulting code with closures eliminated is displayed below. -
P

CC-add-element(z)

case

ZI-nIl; Z' --nl 

z E L(S) A W $ 0:
W8 4- AZUWI, *-- XU ... '"
ZI '- Zg","-"=

* E R(S) A W, 6 $0: -A
w, W, .--

zE L(S) A W1 = 0 A W, = emptyaet:

W1 ,- zUW-
z E R(S) A W1 = 0 A W, = emptyet :

w4- ZUW,
*6 L(S) A W, 0 A W, $ 0:

W1 -- UW'
Map-add-or-call-Cr0 .

z E R(S) AW, 6 0w =:
W, -- zUW, "

Map-add-or-a -..Cr0

Map-add-or-call-Cr()
let a = arb Wi, b = arb W, do

If M(S, a, b) V c c[M(S, a, c)]

a 1.



130

then M'(S,o,b)
else let c = M(S, a) do z,c.--

(in T.inter):
until zz = nil do

await defined(z)

CC-add-element(zz)

This completes the synthesis of the downward communication portion of a parallel

structure for collecting connected component information from a series of rows of an adja-

cency matrix.

5.4.2 Alternative Data Structures

It is now necessary to consider the options for storing M. The type of M is T x U -- U,

where U is the set of nodes in the graph whose connected components are being determined,

and T is a set of sets such that U E T A (SE T A ISI > I R(S) E T A L(S) E T). The

genesis of T is such that each intermediate node plus the root of the tree has as its set of

leaves some element of T if each element of U is represented by a leaf.

Because of the type of M, we have four simple options to represent the mapping: We

can represent it in one processor's memory, in the memory of one processor per element of

T, in one processor per element of U, or in one processor per element of T x U. The first

possibility would lack concurrency and the last would require too many processors. The

remaining possibilities include using interior nodes of the tree (corresponding to elements

of T) or leaves (corresponding to elements of U) as the repository for information about

parts of M.

Inspection of the specification yields the information that the tree node represent- 4

ing a set S must be able to answer questions of the form 3c[M(S, a,c) A c b] and

*.. .... .•~..... ............. _........-.....-_. -...... ... .,,- .- _ ,.. , .. .. , __J. ,..,,:.,



131

find c suchthat M(S,a, c), and must be able to satlsfy(M(S, a, 6)). This requires either

keeping M(S, z, y) in S's node or providing that node with appropriate closures.

That node

must also be able to satisfy(CC(L(S),M,WW)) to satlsfy(CC(R(S),M',W,)), and to

satisfy(CC(R(S),M,cUW,)) given c E R(S) A CC(R(S),AV ,W,). This requires an-

other handful of closures.

Since closures to aatiafy(CC(L(S),M',W1)) and satisfy(CC(R(S),M',W,)) would

require only information available below L(S) and R(S) respectively, and since there is

no control flow path by which the need to satisfy these two predicates would be evaded,

we observe that each interior node requires a = arb W1, b = arb W,, and the closure

A '."'[satisfy( M'(R(S), a, z))]. S S

We are building a map that maps at most one leaf of the right subtree to each leaf

of the left subtree. As described, the map is stored in the node that has the appropriate

subtrees. However, other alternatives are possible.

There are three natural places to store the assertion M(S, a,b). They are the node - -

whose subtree's leaves are S, leaf a, and leaf b. If the information is stored in S, there

must be one cell for each leaf of the left subtree, and if the information is stored in a then

there must be one cell for each ancestor representing S. If the information is stored in b,

we have no limit (beyond the size of the problem) for the amount of storage that must be

provided in b. We therefore reject this alternative.

Storing M in the node heading S minimizes communication (information is where it is

used) making the algorithm take O(log n) steps. These steps are not constant-time steps,

however, because they require access to a random access memory whose size is O(n), itself -.-

an 0(log n) operation. The algorithm therefore has an 0(log' n) running time. It should

-. 7-

...............-. S . .......-

S -* S. . . . . . . . . .



132

be noted, however, that in current technology the constant factor is very small compared

to constant factors on log n terms until the problem instance becomes very large.

The result could be transformed to place the fact of M(S, a, 5) in a. This would result

in a different algorithm, one that requires the leaves to stipply closures to access and modify

the map.

There is an interesting problem here. We would prefer that the leaves not have to know

about elements of T. It would therefore be necessary to have the M table within each leaf

organized in a certain order and to have use made of this information in that fixed order.

This requires that a £flame front" of subtree handling be arranged such that initially, the

root is the tree for which you are trying to associate pairs of elements, and on succeeding

subphases, the level at which we are trying to match descends. This algorithm has an

O(log 2 n) execution time because there are log n subphases, each of which is O(log n).

We prefer the former data structure, in which M(S, a, b) is represented in S, because

the issue described in the previous paragraph does not arise. That structure will always

be available to us unless the size of a change to M is proportional to the size of S, and

this can not be because the combination step of the divide and conquer scheme must be

fast for the specification to parallelize well in a tree structure.

Below we describe in detail the algorithm that results from this decision, followed

by that which results from storing the map in the leaves and a brief description of that e _

synthesis path.

I



133

5.4.3 Results of Storing the Map in Internal Nodes

In this structure we have a cell in each subtree root (i.e., each internal node) for each

of that subtree's leaves. This structure requires nlogn cells, one for each lea/ancestor

pair, and it should lay out nicely in VLSI because the bigger nodes are closer to the root of

the tree. Each cell must accommodate one of n vales, requiring log n bits. This imposes a

total memory requirement of n log' n bits. Each internal node contains a map which maps

names of leaves of the left subtree into either nil or names of leaves of the right subtree.

The overall view of the algorithm is as follows:

Each leaf sends its parent its name if its active, or nil. Each intermediate or root node

sends its parent either the name of any active node it receives from its children, or nul if p

it receives nil from both children. If it receives two names it chooses arbitrarily. Each

intermediate node also remembers what it received from its children.

In addition, suppose it receives a name from both children. There are two cases: If the

name from the left node maps (in the node's internal mapping from leaves to values) into

nil, make it map into the name from the right node and do nothing else. If it maps into

(say) i, send awaken i to the right child and do nothing else.

If an intermediate node receives an awaken i node from its parent, it checks to see

whether i is in its right or left subtree. It also checks to see what it has received before.

If a node receives an awaken i message and has already received a name from i's subtree

it sends awaken i message to the appropriate child. If it hasn't received one it considers

itself to have so received. (This can have one of three effects: modification of reaction to

further awaken messages, lookup of i in the local mapping if i belongs in the left subtree,

or lookup of a previously received name in the local mapping if i was in the right subtree

and that previous name was in the left. If a lookup is performed we then either extend the

mapping or create a new awaken menage.)

I .



134

The root sends its children a termination message when it's done. Intermediate nodes

relay such messages. Each leaf reads the next line of the adjacency matrix when it receives

this termination, and starts a new cycle.

The 'wrapup', where each leaf gets the name of a representative of its connected

component, is also faster under this arrangement. The root sends its right child its corre-

spondences one by one, followed by "end". When a node receives a -b 6 it replaces b -c "

(if it has one) by a -c c. This is not done for b -- nil. Intermediate nodes also relay

correspondences received from parents. When an intermediate node receives 'end" from

its parent, it dumps its own correspondences as they now stand and then sends its own

Send'. A leaf node initializes a cell to its own name and a cell named b changes this value

to a if it receives a -b 6. A leaf node knows it has the right value when it sees "end".

To derive this structure we make a different decision when creating the closures required

by the synthesis. Rather than assuming that Ps needs no closure to satlsfy(M(S, a, 6))

or to test 3c[M(S, a, c)] we assume that closures necessary for either of these functions are

available from Pg(), and ultimately from P.. By a series of steps similar to the ones taken

to synthesize the previous algorithm, we obtain a structure in which each leaf has a cell s

for each of its ancestors. This structure is described in [HMS84].

In this structure there are potentially e(log n) communications, because there are

potentially log n phases in which it is learned that a left subset must link with a right

subset, and each such phase requires e(log n) communications to operate on the map

data.

The parallel structure is (informally) as follows:

There is a balanced binary tree of processors where each leaf of the tree correspond * .

to a node of the graph. For simplicity of exposition we will write the following as if the

I S i~i



135 .4

leaves were rather than 'corresponded to the nodes. For simplicity we will assume that

the entire adjacency matrix is supplied, rather than only a triangular matrix.

The leaf nodes build approximations to the answer as the algorithm grinds on. Each 0,

leaf node has one memory cell for each ancestor. Consider the memory cell for ancestor

a in leaf i. It is initialized to the distinguished value nil, and during the course of the

algorithm it will come to contain some j such that the least common ancestor (LCA) of j

and i is a, and i and j are known to be in the same connected component, provided that

some such jexists.
t

The algorithm works as follows: A leaf is called active if its bit is set in the current row

of the adjacency matrix. After a row is read in, information is passed upward so each node

can determine whether both of its subtrees contain active leaves, and what the highest

and lowest active leaves are for such nodes. Information is then passed downward so each 9 ..
internal (or root) node can determine whether it is the top such node. That node sends a

message to those two extreme nodes informing them of each other's identity.

The following cycle is repeated:

TU computes spans, TD distributes span information and keeps track of the topness

of nodes.

. . . : : - .o•



136

TU Istyp TREE (i), iE 11,..njsize n
root HAS vninact, maxact, topp, listop, ristap

5HEARS lefteon (USES upmin)
HEARS rig htson (USES upmaz)
TALKS leftson (SENDS Li atop)
TALKS rightaon (SENDS ristop)

Inter HAS minact, mazact, topp, isatop, riatop
HEARS lef teon (USES tupmin)
HEARS rig htso& (USES tupmax)
TALKS leftson (SENDS list op)
TALKS righteon (SENDS riatop)

hTALKS parent (SENDS upmnin)
(SENDS upmax)

leaf HAS active,, ccmatej,j E ancestors
HEARS INPUT (UJSES adj , j E 1,...n])
TALKS parent (SENDS tupmin)

* (SENDS upmaz)

(in TU.leafi,)
Vj E ancestors

ccmate3 4 nil
Vj E(1..

temp i*-
upmin 4- upmax I-f temp then i else nil
dmin ~-downmin
dmaz x dotvnmax
other nil
pivot +- pivot
if dmin =i then other 4-dmax

Nf dmax i then other ~-dmin
Vf other 96 nil then

if ccmate,,,,0 , = il
then awaken 4- nil; ccmatei,,t. other
else awaken 4-ccmate,.pi.,,

* (in MUinter)
* ,; first establish my status

(Irangel,lrangeh) +- 1 range
(rrangel, rrangeh) 4-rrange

* ~range -(rnin(lrangel,lIrangeh) ,max(rrangel ,rrangeh))
livep 4-rangel A range2



- ., t .. , ,

137 •S

;; This is a once - per - minor - phase activity

while dstatus 6 'dead

*

(in TU.root)

(Irangel, lrangeh) -- lrange -.

(rrangel, rrangeh) 4- rrange
range -- (min(rangel,lrangeh),max(rrangel,rrangeh))
livep 4- range, A range2

while dstatus # 'dead

(in TD.inter),
If pstatus E {'live, 'top)

then status 4- 'live
range 4- prange

elself livep then status 4- 'top

range -- range

else status -- 'dead

while status $ 'dead

(in TD.root)
If livep then status 4 'top

range - range

else status -- 'deado L

In each minor phase the leaves send up awakening information and get back a packet

of information very similar to the one they received in the beginning.

Each leaf, when it dies by finding that the node just above it is dead, sends up an "init".

message. When every node has done so, the root broadcasts its own form of "init" and the

leaves can read from the I/O processor that contains the next row of the adjacency matrix.

Here we describe the overall behavior of the algorithm, considering the parallel structure

to be a single entity that can do things sequentially. To actually have this effect, there

are synchronization problems, and below we describe a node's eye view of the situation,

including the work that each node has to do to coordinate with its neighbors.

...--. .i

. . ..... . . . . . . . .. ....-. -, , - . . . . • .. -. -,- . .. . ,



V. 138

Initialize: Have each node read in its element of the adjacency matrix. Those nodes

reading a "I" in the adjacency matrix turn themselves on, as does the

node whose index corresponds to that of the row of the matrix. Mark the

root as the "focus".

Survey: Every leaf sends information telling whether it is awake. Using this infor-

mation, the internal nodes below a focus find out which of them has awake

descendants in each of the two trees ("has two active subtrees"). This is

a straightforward "up" problem.

New root: The highest node with two active subtrees is determined. This is the LCA

of active leaves. It becomes the new focus, nodes between it and leaves

become "active", and nodes above it but below and including the old focus

become "dead".

Tournament: Select an arbitrary active leaf node in each of each focus's two subtrees.

Report the identities of the two leaves to their focus. Simultaneously report

the identity of the focus and of the other leaf to each of the two leaves.

Lookup: The leaves contain a variable mapping mapping their ancestors into a leaf

index or the distinguished value nil. The leaves look up the focus in this

mapping. If it is nil, they store the other leaf's identity. If the left leaf's

value is not nil, report the value to its focus.

New awakening: If its left tree reports a leaf ID per Lookup, a focus sends a message to

that leaf commanding it to awaken. * -

Refocus: Each focus sends a message to those of its children that are not leaves

telling them to become new focuses, and dies.

Repeat (Maybe):If not all leaves have a dead parent, go back to New Root.

oo



139

As can be seen above, the algorithm has several subphases, a the focus moves down

towards the leaves, and each of these subphases has several sub-sub-phases: Survey, New

root, Tournament, Lookup, New Awakening, Refocus, and Repeat (maybe). Internal nodes

of the tree have the status dead, focus or live, and leaf nodes either have status awake or .. :.

asleep. The behavior of each node during each sub-sub-phase will be described. '._e

Survey: Leaves tell parents whether they are active. Intermediate nodes: (live and focus

only) Get status from descendants. Remember and (live only) tell parent how many sub-

trees have one or more active subtrees. Remember which subtree was active if exactly one

was.

New root: If a focus has two active subtrees it tells its left (reap. right) child "focus above

you= (node), you are left (rep. right)". If it has one, tell that one "focus at or below you" A

and the other "die'. It is impossible for a focus to have no active subtree.

Intermediate nodes below a focus (i.e., those nodes that are live) listen to their parents.

If one hears "die" it dies. If one hears "focus above = zzz ... ' it relays the message and

becomes or remains live. If one hears "focus at or below" it acts as in the paragraph above. .

Leaves that receive a "die" message send their parent an "I died" message and prepare to

read the next line of the adjacency matrix.

Active leaf nodes record the name of their focus.

Tournament and Lookup: Each leaf contains a mapping M relating the name of each of its

ancestors to either nil or the index of a leaf. A sleeping leaf node sends nil to its parent. An .

awake leaf node i that receives a "focus above you= (node), you are left" message sends to

its parent either (empty, i) if M(node) = ill, or (loaded, M(node)). If it receives "focus

above you= (node), you are right", it sends i to its parent.

A live internal node which receives ni from both children sends the same to its parent; p

one that receives something else from one child sends that value to its parent, and one that

..p .-.-

* . . . . . . . . . .. .



-- - '.,---w--w, -,--.--y , 6 - - V k - - . ,w ' ?- .-.- -, ;.-.* r - - - -
o

140_

receives non-nil values from both children sends either to its parent. The correctness of

the algorithm does not depend on this choice, which can be random, pseudo-random, or -

onsistent.-

Each focus receives a message from each child. Say the right child's message isj. If the

left child's message is (empty,i), then (record, focus,i,j) is sent to the left child and il

is sent to the right. If the left child's message is (loaded, i), then nil is sent to the left

child and (awaken, i) is sent to the right.

Lookup and New Awakening: Internal nodes relay parents' messages to their children. .

If leaf node i receives (record, focus, i,j) it sets M(focus) -- j. If it receives (awaken, i)

it awakens. (If i doesn't match, it does nothing.)

Refocus: Each focus sends its children a "become a focus' message and dies. A live node

receiving such a message from its parent changes its status to "focus'. A leaf receiving

such a message form its parents sends the latter an "I died' message.

Repeat (maybe): At all times, a node receiving two "I died" messages sends one upward. If

a node receives a "become a focus3 message it sends its children a 'begin survey' message.

Live intermediate nodes relay such a menage, and leaf nodes receiving a "begin survey"

message proceed as in Survey.

. .- - o. ..



141
"-, " ..

.. -..-.

Chapter 6
%0% %

Use of Additional Techniques - Binary Addition

There are three important classes of circuits for the addition of integers represented as

vectors of 'bits" in radix 2. These occupy three positions on a spectrum of cost/speed

tradeoffs. The fastest and most expensive circuit is a carry-look-ahead adder, described in

[Hwa79], which performs addition of two n-bit integers in 6(logn) time using e(n) logic

elements. An intermediate circuit, the ripple carry adder, takes linear time and also uses

a linear, but smaller, amount of logic. The slowest and cheapest circuit is a serial adder

which uses a small constant amount of logic to perform additions in linear time (with a

larger proportionality constant than that of a ripple-carry adder).

There are three reasons for studying the synthesis of these addition circuits in S

TRANSCONS. They are:

* There is a large and interesting space of alternative implementations. If we can not P

synthesize all of the implementations there is cause to wonder whether TRANSCONS

is general enough.

* The three implementations of binary addition to be discussed here fit well into VLSI.

* The synthesis paths shown here demonstrate well how general mathematical knowl-

edge fits together with TRANSCONS techniques to develop VLSI circuits that can

not be developed using either alone.



142

In the remainder of this Chapter we expose the necessary set of synthesis techniques to

create implementations of the three solutions to the problem of adding numbers represented

as bit vectors.

6.1 Notation

In what follows, we will assume that a problem instance resides in vectors A and B,

each containing individual "bits ai reap. bi for 0 < i < n - 1. The two states of a bit

are represented by the values 0 and 1. (This discussion is specialized to binary integers,

but any radix can be used by reinterpreting the logical operators in an obvious manner.)

We apply logical operators to the values 0 and 1, interpreting 0 as false and 1 as true.

The vectors A (resp. B) represents 0<,<n-i aj2 ' (resp. b,2'). The answer is similarly " -

represented in C. We will have occasion to refer to carrik, the carry coming into position

i. We use I& as the symbol for "exclusive OR". We will use n only as the size of the vectors

to be added throughout this chapter.

Our starting point for all of the syntheses in this chapter will be the following specification,

which produces a vector C given vectors A and B as above:

V 0: <i < n -1
C' ai "bi ®(3j <i)[a A bA (Vj <k <i)[a V bk]J

Figure 6.1: The 'Standard" Specification of Binary Addition

We will be deriving the following "grade school" specification for binary addition (so called

because it corresponds closely to the algorithm taught to grade school pupils for decimal

-.addition) from the standard specification. A derivation of the standard specification from

" "the grade school specification is possible by the methods of [Sto77], but will not be given

here.

- * ,.... . . . . *



143

carro = 0
V 0 i < --

*i = aj ®D bi ®& carryi
carr.,.+, = (carr, A (ai V b,)) V (ai A b)

Figure 6.2: 'Grade School' Specification for Binary Addition

6.2 Carry Look-ahead Circuit

Consider the standard specification. If we try to use the methods of TRANSCONS that -

l..
have been described so far to synthesize a carry-look-ahead circuit for addition, we get a

circuit with 9(n 2 ) computing elements. The reason for this is the nesting of quantifiers

such that the bound variable of the outer quantifier is one end of the range of the inner

one. This fact forces the computation of 9(n) boolean values, namely (Vj < k < i)[at V bt]

for each 0 : j < i 5 n - I (a total of n(n - 1)/2 (ij) pairs).

We would like to do better.

6.2.1 Quantifier Levelling

The problem with the standard specification is that it has a pair of nested quantifiers,

with the range of the inner quantifier equal to the bound variable of the outer, used as

a predicate. Specifically, we have q = ai bi @(3j < i)[ay A bi A (Vj < k < i)[ak v bh]].

Evaluating this predicate is expensive. Even reusing values, i.e., using (Vj+ I < k < i)[a$, V

bk] to compute (Vj < k <i) [akvb], (n) computing elements are required to evaluate the

form. However, it is possible to proceed in a series of steps to a form that can be evaluated

using only e(n) elements.

First we use the following identity

(VI < z < u)[P(z)] mnax[ P(z)] :5 1 (v-to-max)

-. -° a.-

-. 2.,/



144

which gives us a tool to exprs a doubly bounded quantifier as an inequality applied to

a max operator. The benefit of doing this is that it reduces the multiplicity of values to

be computed. Rather than have a 6(n) aet of booleans to compute for each jwe have a

single log n bit integer to compute and compare with j

This doesn't solve the problem. We are left with

i~

where the substituted expresion is underscored.

e are still faced with the problem of computing the max operator for each of the i's and

using a quantifier as a boolean to establish a wary bit for each i. We are therefore going

to take advantage of another identity to turn a singly bounded quantifier into a doubly

bounded one:

(3z < u)IP(z) A F(u) z:1 (3F(u) z < u)[P(z)I (con atroint-to-binder)

providing the following:

i= aj®bjI®O(3max[ (akvbk)1 5j<i)[aiAb]
k<i

where again the new form is underscored.

* This does not completely solve the problem, because it would still require a max operation

* for each i, but it allows us to apply one last identity,

(31: z < u)[P(z)J nax[P(z)] 2:1(3-to-max)

S<I



145

which give. us .-

c= ai 0 , ®(max jai A bil maxi (aj; V bk)
J~i k<i

Now we have an inequality involving the fruits of two max operations. While each of these

max 'es must be computed for each i, this is a form that can be treated by the methods

* of Section 5.2. It is therefore only necessary to build two tree structures in which the

computing elements contain 9 (log n) logic gates.

The specification is nowA

VO <si<n-1
C= ai b, (rnaxlai A 6,] max[- (ak V bj.)J)

3<ti

It is possible to express this as an inequality between corresponding elements of the results -

* of two parallel prefix computations as follows:

VO!<i <n-i
and, ad A bi
nord =~. (ad v b,)
mazland, = If and, then i else -oo

mazlnor, = If nori then i else -oo

mazand, = max frnazland~J

inaznor, = max fmazlnor,]
0O5j < i

C, ad® bi 08(mazond, maznori)

There are two parallel prefix trees in the addition parallel structure: one for the variable

named mazand and another for maznor. The overall structure is shown below.



146

-, A A A

Figure 6.3: Synthesized Look-Ahead Circuit for Binary Addition

There are two important differences between this structure and the standard one of

[-wa 79].

o Because of the nature of the parallel prefix network synthesized by TRANSCONS,

each node is partially responsible for the choreography in its local region. The im-

portance of this fact is that either the nodes need be big enough to participate in

an asynchronous data transfer protocol with a handshake, or a global clock must be ft

provided.

This is not a serious problem because the methods of Section 5.3 enable us to remove

dependence on local handshaking, reducing the computation nodes to combinatorial logic.

*D e Because the parallel prefix trees are required to handle integers in the interval [0, n],

the size of the nodes and the width of the data paths within the trees are O(log(n)).

In the standard network it would be e(1).

This disadvantage can be alleviated by some careful reasoning, to be described below.



-Y.W- -T ~ 'y I -j- r --p -. F 7.r r

147

6.2.2 Data Path Width Reduction

To reduce the width of the data paths and still use a parallel prefix network, an as-

.ociative operation with constant range and domain must be used. We see that this

might be possible because either maxosqsifmaclandi] = maxo<,<,5+ 1[mnaxland,] or

maxO:5pi 1 rn~azandij = i + 1, and similarly for mazinor. We have four cases from

the four possible values of a1.~. and bi,i, or similarly from and,+, and noij For brevity

we will give the name Pi to maxand. maznori. We can show that P+l depends only on

Pi, and%+, and noi+ from the fact that if neither and,+, nor noi+ we have P,., 1  Pi,

if and,+, we have Pi,, and if noi+ we have Pi.,.. This information can be summarized

in the following table:

maxand, 2! maznor,
true false

4J an4j+1L nori+i $ __

and true true
Dnor false false

both* true true
neither true false

(*this is impossible but knowledge of this fact is unnecessary for the argument)

The effect of and,+,, nor.+z, and.,. 2 and nor.+2 on the truth of maxand,.+2 2! maxnori.2

given maxand, 2! maznori can also be summarized as below. (Here the impossible combi- .'

nations have been omitted for brevity.)

maznd,> 'nanor *true false
Land,+,, nori,, ands,+2, nlO +2A

none true false
andi+1 true true
nor,+1 false false

and-+2true true
and*+2and,+,true true
and,+2,nrj~jtrue true

nor,+2 false false
norj+ 2,and,+i false false
ftor,+2,floT,+l falsefas

7-



148

A similar (although lengthy) table can be made encompassing three and/nor value pairs.

We see from the two pair table that any two input bit pairs is an operator that can do one

of three things: it can act like an aj = bi = true bit pair (called (and) below), like an a ="

=i false bit pair (called (nor)), or like an ai # bi bit pair (called (other)). From the above

table it can be seen that the binary operator I = A,,,,[if y (and) then (and) elseif y =

(nor) then (nor) else z] describes the result of combining two adjacent columns. A case

analysis on all possible triples shows that this operator is associative. Using F(aj, bi) as

an abbreviation for if a A bj then and elseif (ai V bi) then nor else other, it is therefore

possible to write c€ i- aj ® bi @(sj < ,iF(ai, b)]- (Oand)). The identity of this operator

is (other), and mazand, > maznor, - (eo<<, - (and)). This is precisely what was needed

to perform a parallel prefix summation with constant-width data paths: an associative

operator with finite range and domain.

Use of a specification based on this operator will yield a network similar to that of Fig-

ure 6.3, except that there will only be a single parallel prefix tree, each bit's carry will be

used directly rather than computed from the two parallel prefix trees, and (of course) the

widths of the data paths and the size of the nodes will be smaller.

6.3 Ripple-carry and Bit Serial Circuits
Io

Consider our *standard specification" of Figure 6.1. If we apply the quantifier levelling of

subsection 6.2.1, we get:

VO< i n-i

= a^ b (rnax[ai A by] maxf- (ak v bt)])
i<i k<t

If we change this to

I



h 149

COFT SIi4 false

VO0 5i < n -
carry, 4-- rax~ai A bi1 max[e- (ak V bil,)

VO5s<n-1
= aj bi®carryi...

we can repeat the reasoning of the first part of the last section, obtaining the recurrence

relation. This gives us

carry-,1  false
V* O< i< n-i

carry, 4- (ai A b,) v (carryi..I A (ai v b,))
VO0 < i < n- I

=i ai bi carryi-1

This is logically identical to the gradeachool specification of Figure 6.2. More importantly,

it can be transformed into

PC Istype PROCESSORS (i),0 < i < n -,

HAS cj
B EARS PA (USES ai)
HEARS PB (USES b,)
HEARS Pcy... 1 (USES carrt-1
TALKS ...

Pcij Istype PROCESSORS (i), -I1 i < n -1
HAS carryj
Nf i > 0 thei- HEARS PA (USES ai)
If £ >!0 then HEARS PB (USES b,)
"f i> 0 then HEARS Pcy,1I (USES cart yi-1)
"f i < n - 1 then TALKS Pcy,+1 (SENDS carry,)

(in Pcy...1)
carry-, 4-- false

(in Pcyj, 0 < i: <n - 1):
carryj #4- (aj A b,) V (carryi... A (aj V b,))

(in PC,, 0:< i:5 n - 1):
C, 4- a~bi carry,



Nog 7-7,. v -

150

using the methods of crystalline synthesis described earlier in this thesis. A diagram of

the resulting parallel structure (after explicating all values internal to the computations)

is shown below.

Y- 181__ -- ffse

"ii
C A 3  C F2 AZ C I 1  A2  C0 0 AO

Figure 6.4: Ripple Carry Parallel Structure

The aggregation of Section 3.3 is then applicable. This technique replaces a related series

0 of processing elements by a single element that receives a series of related data. The circuit

of Figure 6.4 is an indexed series of identical modules, and identifying corresponding nodes

of the series of modules gives the bit serial addition circuit shown below.

- ..

Figure 6.5: Serial Adder

* We have seen that quantifier levelling, recurrence relation analysis, crystalline synthesis

and aggregation together are sufficient to synthesize the three types of binary addition

circuit in common use. It remains to prove the identities used in quantifier levelling. We

o do this in Appendix Section C.

We have seen that the use of general mathematical identities considerably increases the

power of TRLANSCONS to synthesize VLSI circuit topologies.

:':"'-'~ " ."-- - . .- . "- . :: "

.. .. . . . . . . . . . . . . . .. . ._- • ._ ,



151

Chapter 7

Conclusions and Summary

6 3

7.1 Overview

o TRANS CONS is a collection of tools and methods for creating parallel structures from first

order logic specifications. This collection of capabilities interacts in various ways to act

as a VLSI assistant. We have described the three major divisions of these abilities in the

body of the thesis and will summarize them below.

We have also described, and will summarize, the theoretical framework in which a VLSI
ST Nsynthesis system must work. This includes models underlying the various structures that

can be created, the theory needed to justify the application of some of the transforma-

tional rules of TRANSCONS, and the underlying assurtions that justify the incorporated

heuristics.

In this chapter we summarize this thesis by stepping back and describing its results, its

main points, suggested future lines of research, and the meaning.

I I

* -........



~. *... ... - . . .. -- . . . . . . . . . -. .. '-

152 -

7.2 Essential Points

We claim that we have devised theory for the following forms of transformational synthesis

of concurrent structures:

* creation of lattice-like arrays of processors from specifications in a very high level

language resembling first order logic;

e modifications of intermediate forms synthesized while creating lattice-like arrays by

several techniques called aggregation, virtualization, communication reduction, and

chain creation to improve the lattices that eventually result from some that it would

be impractical to build to others that would be practical;

* creation of tree structures of processors from FOL specifications using a variant of

D&C in which only certain ways of combining problems' partial solutions are per-

mitted;

• use of closures, or communicable functional objects, to facilitate reasoning about

bidirectional communication. Instead of reasoning about a message from A to B,

reason about a closure sent from B to A. This enables a later transmission from A

to B whose effect has already been studied by the closure synthesis process;

* combinations of any of the above, using user supplied aggregations.

We further claim that this is done in a manner so as to facilitate use of expected

future advances in theorem proving technology.

We further claim that, using these techniques, a system can be built to do all of the

following on a practical basis:

* synthesize regular interconnections of regular arrays of processors, together with pro-

grams for the processors, to perform interesting and useful computations which are -

specified in a very high level language similar to first order logic;

pI



IV ~ ~ W.7 k- -. o]7 L

153

* synthesize systolic arrays;

o synthesize tree interconnections of processors; *

* synthesize lower level specifications from any of the above, in some cases down to

something suitable for direct VLSI implementation after a placement and routing

algorithm (not discussed here) has been run.

TRANSCONS will be an effective tool for allowing integrated circuit designers to cope with

the million gates that will shortly be available on a single chip in a manner that does not

merely provide larger versions of circuits already available. Automatic programming tools I- -. -

have the ability to bring problem decomposition and program combination knowledge to .

bear on the task of synthesizing programs too large and complex to write by hand. In an

analogous manner, TRANSCONS's ability to bring processor interconnection and problem

decomposition knowledge to bear on the task of synthesizing VLSI will make possible the

creation of accurate integrated circuits too complex to create by hand.

7.3 Foundations

There are several fundamental points upon which this work rests.

In order to rationally discuss the synthesis of concurrent systems, we must have at least

one computation model in mind. TRANSCONS has a series of four models, each more

restrictive, more descriptive, and able to use simpler processing elements than the previous

one. I

There are transformation rules dealing with processor assignment. We initially make very

simple assumptions of how things will be organized in a parallel structure, and refine these

with other transformation rules. "



154

The models, processor ssignments, and refinements are three fundamental parts of

TRANSCONS that we have described in previous chapter. and will summarize below.

7.3.1 Models .

5 4

We distinguish four types of processing elements for which it might be desirable to write

specifications. These models of processing elements occupy positions along a continuous

spectrum of minimum complexity to implement. They range from models that require

a general purpose processor capable of rapid "context switching" among several loosely

related jobs and having sufficient memory to keep track of each of the jobs and associated

data, down to one whose minimum processing element would be a latch connected to a

minor piece of combinatorial logic such as an AND gate.

The first part of TRANSCONS transforms a supplied specification from its FOL form into

a parallel structure that meets the requirement of the first model only. Following this, a

series of transformations can proceed from model to model until the lowest level in which 0

the specification can be solved is reached.

We provide the multiple models because it is not always desirable or even possible to V

transform a specification to the lowest level. Each level corresponds to an implementation

decision that can be correct under certain assumptions of component availability, future *

* transformation of the output by other systems, and finality of the design.

....... ...-.... ........................ ......-



I~F 7 70 •.

155

7.3.2 Processor Assignment

• ,.o ..

The fundamental unit of responsibility in parallel structures that TRANSCONS synthesizes .-.

is the array element. If two processors cooperate in any way to produce part of an answer,

that cooperation must be expressed as use of values computed in one processor by another.

Such uses of communicated values constitute the fundamental unit of computation.

When the specification is delivered to TRANSCONS, it may not be possible to isolate

a natural array around which processors can be multiplied. In such a case, whenever -

there is enough work to make it profitable to split the problem among a large number of

processors, there must be a reduction operation within the specification that generates a

series of intermediate values. The technique of virtualization, or explicating the multiple .

assignments to this variable into assignments to different elements of a corresponding array,

can be applied.

If the result of applying TRANSCONS to a specification produces a parallel structure that

has more processors than desirable, the technique of aggregation can be applied to group * -

together processors that perform similar operations on different data at different times,

and arrange for all of the computations in each group to take place in a single processor.

There is an aggregation that reverses any virtualization, but when one aggregation can be * 4

performed several can be performed (on any but a one-dimensional structure). We have

found the technique of performing a virtualization, and then an aggregation that merges

diagonal groups of processors (picturing the array of processors geometrically) to be an

effective technique for producing one- and two-dimensional systolic arrays.

I 4

................................................................



7- --. -V.. % -----.--

156

7.3.3 Connectivity Restructuring

After responsibility for computing array elements is allocated among processors, there

is an immediately suggested network of interconnections among the processors, i.e., the

particular networi that has a wire running directly from the processor computing each

datum to each of those processors needing the datum. If this structure is satisfactory, the , .9
synthesis process is complete, but in none of the problems we examined ha this obvious

network been satisfactory.

Two solutions to this problem are reduction of snowballing induced sets, and chain forma-

tion.

Snowball reduction involved the discovery that there is a series of processors, each of which .

requires (in part) some of the set of values required by its predecessor, if any, plus that

computed by that predecessor itself. If this and several other minor conditions are met,

the set of connections in which each processor is connected to all previous processors in

the series can be replaced by the set of connections in which each procemor is connected

only to its predecessor.

When a large number of processors each need to be connected to an I/0 processor, we -'A

.* have an opportunity for chain formation. If it can be established that the set of values

required from this I/0 processor falls into groups such that each value in each of the

groups is required by a distinguished group of processors, then it is possible to firt form

those groups of processors into a Obucket brigade" chain and then to introduce the values

required by the processors in the chain at one end only.

Another opportunity for chain formation arises when the acceptable time for delivering the

distributed result of a computation to the I/0 processor is sufficiently large to allow the

"- -processors to form a bucket brigade to deliver these results rather than having each do it '

with its own connection. In this case the collection of processors into groups is arbitrary.

1k7'



157 5-e

7.3.4 Divide & Conquer, and Closures

*b

Many specifications are amenable to solution by parallel structures in which the processors

are connected in a binary tree. We use D&C to find tree solutions where they exist. The

temptation to do this, of course, is the commonality of form between the nodes of a call

graph that would result from execution of a program that fit the D&C scheme and the tree

structure.

We have isolated several problems that frequently arise when we try to perform such a

synthesis in an obvious manner. In some cases a simple D&C solution would require

solution of half of the problem before solution to the other half can be attempted. In other

related cases each half of the divided problem can be solved without reference to the other

but combination of the two halves' solutions requires significant work. In yet other cases

the combination requires the handling of significant data in processors close to the root. All

of these problems can be met by changing our view of the problem. For some specifications

several D&C solutions are available, but each has one of these three problems.

Instead of considering our task to be computing some array from some other array, we

consider our task to be the computation of a functional object which, when applied to 1...

a given argument list, produces the desired effect. In the many cases we explored, this

solves the group of problems described in the previous paragraph. In addition, this solves

another problem facing the use of D&C to synthesize tree structures, i.e., the fact that read

problems often require communication both up and down the tree but D&C seems suited

to reasoning about upward communication only. It solves this problem by allowing the

upward flow of a closure to stand for the downward flow of information.

It is possible to implement a structure including closures using the highest level model of

TRANSCONS. We do not wish to leave closures in the finished product, however, because L q

closures' implementation requires extra communication and also requires the structure to

-7

..........................................................4... ."•%' '



.. %.-.

158

be implemented in this highest level model. We therefore provide methods for removing the

closures, modifying a parallel structure that contains them into one that contains explicit

communication, replacing the information that flows from the closures' recipients to the

hosts when they are applied.

The closure can be used to make D&C a more powerful tool for program synthesis, as well

as for making it a practical tool for concurrency synthesis. A frequent difficulty in using

D&C, even for sequential program synthesis, is the synthesis of the combine operator, i.e.,

the program to handle the boundary conditions when combining partial solutions. If we

augment the specification to require that the solution to each subproblem supply both the

desired information and a closure that performs the gluing operation at the boundaries,

the synthesis task becomes easier.

-" 7.3.5 Miscellaneous Techniques

* If TRANSCONS is limited to a few specific techniques it will not be a very useful tool. It

will synthesize a limited set of parallel structures from their specifications, but it will not

extend well because it will not enjoy the use of general mathematical knowledge.

We show, however, that general mathematical knowledge can work well with the

TRANSCONS concurrency knowledge to produce better parallel structures than would

otherwise be achievable. In one case, the synthesis of networks for solving a version of

the Connected Components problem, use of set theory axioms and axioms describing the

transitivity of the "same connected component" relation is vital. In another case we ex-

plore, the synthesis of circuits for the addition of binary integers, we show purely algebraic

techniques without which n bit integers required 0(nl) computing elements to solve. The

use of a series of techniques allows this to be successively reduced to 9(n log n) and then

o•°•° '. ,.. . . .. .. . . , ;- . .. oo . . ° • • .-: •2 i - : & .: . _ o. , . ° . ° .



159
iIlk

to 0(n). Further techniques allow the direct synthesis of a slower network with 1(n) el-

ements, and the use of aggregation allows this to be reduced to a circuit with a constant

amount of logic.

.'. ,.,;

7.4 Future Work S/..,

There is a lot of effort required before this work can be considered complete. We will

describe this work from the most direct extensions of work already performed to that

portion most requiring future theoretical findings. The latter part will be described in

more detail under separate headings.

First, some of the basic knowledge of TRANSCONS has to be codified. Recent improve-

ments to the CHI system to improve the efficiency of knowledge storage and retrieval, and

facilitating inclusion of theorem provers, impel modifications to the crystalline synthesis

section. The tree rules and data structures exist only in the most rudimentary form because

of the newness of the conception of the use of closures for this purpose.

This will yield a TRANSCONS in which the designer has a savant assistant at his dis- : "

posal, but (s)he must supply assertions and inventions at critical places. The inclusion .

of backwards inference, or the inference of the form of a functon from assertions about

its behavior, will make especially the tree synthesis portion of TRANSCONS much more

capable of performing on its own.

There are also four more important extensions to the framework that require some fun-

damental work. When this is done, we claim that the new rules will mesh well with the

prototype system.

I'o S %

-'.-,F.. .. .. .. .. .... .



160

7.4.1 Routing Problems

Suppose we need an implementation of the APL statement A[I] B, where all are vectors . ..

" and where it is known that no two values of I are the same but all are within range. In "S__

short, suppose we want to perform a general permutation where each processor knows

where to send its value. (The similar case, A = BIll, in which each processor knows where

it wants to get its value from, can be handled by asserting that each processor knows where

to send a closure to and having the closure accept a value.) This problem is closely related

to sorting.

There are several parallel structures for the permutation/sorting problem. Particularly

- well-known structures include the flashsort [ReV82], Batcher's Sort [Bat68], and an in-

teresting relatively new one [AKS83]. These are all couched in the language of sorting.

There is also a Benes network available; it takes longer to compute Benes network set-

tings than it takes for the other networks to work, but once the settings are computed

the permutation is faster INaS82. The settings can be represented by a word slightly

smaller than twice the size of a processor ID (and they can replace the latter, which can -

be computed from the former). This can be used when the same permutation will be used

repeatedly.

We have a situation that the data flow information would seem to require a complete

interconnection among the processors in the case where each of the processors holds one

rO of the values to be permuted and is expected to hold one possibly distinct value after the U

permutation. It requires deeper knowledge than flow analysis to derive a net such as the

shuffle interconnection that is less than complete, but that can accomplish a permutation

rapidly. Codification of what it is that a person does when he proves that a smaller networkK can be adequate for the job, is a good subject for future investigation.

Ii - -

vc~~>.:: K.. >~'.:*.K.*~ '>::>.* ... < ~ -.. .-..- "



161

7.4.2 Average- vs. Worst-cue Behavior

To develop a good practical solution to the permutation/sorting problem may require

ability to reason about average- vs. worst-case behavior. For example, there is an O(log n)

time, 0(n) processor sorting algorithm with very reasonable constant factors that has .

only one problem - it fails with small and asymptotically decreasing probability [keV82].

Another solution with the same asymptotic behavior and which never fails is described

in JAKS83], but the constant factors are comparable to Avogadro's constant, making an

implementation obviously impractical.

Our synthesis system should reject the latter solution in favor of the former in cases where

0(logn) time and 0(n) processor count is required. We must solve questions of what

heuristics to use to generate such parallel structures in cases where sufficiently good worst-
tI..J

case behavior can not be achieved, and when to accept the disparity and report the derived - .

circuit as meeting the designers' requirements.

7.4.3 Efficiency Estimation for Parallel Structures

A third problem is extension and integration of an efficiency expert. It has been shown

[Kan79] that sequential programs that arise in practice can be analyzed and an estimate of

performance derived. This is especially true where the program is synthesized from higher

level specifications and the synthesis process is designed with the needs of the efficiency

expert in mind. It is not known whether the same is true for concurrent specifications,

with interactions among processors making timing analysis more difficult and with more

performance criteria than sequential programs, but it seems likely.

" -" " - 4...&...' .., ... L.t..tL. L... . ".. - - .." 4 .J-" -'.-. ". -...2 - . .- " .. . 2 " A t". .JI .,,... ".. 2.. " C " - -' "- - " ... t . . t . -". -. 2 t- " S.e "." ,,,,' "



162

7.5 Accomplishments

The main tangible accomplishment of this work is the beginning of TRANSCONS, a VLSI

design assistant. Within the system's limitations, a designer can write input/output speci-

fications in first order logic, guide TRANSCONS at some critical places, and produce a top

level block diagram of a circuit that will have that input/output behavior. The blocks it

uses are, themselves, specifications that can be exposed to the same process. -' -

TRANSCONS's has two domains of applicability: The first is the synthesis of crystalline

parallel structures that are, loosely speaking, those in which the various functional blocks

or processors bear fixed relationships to their neighbors. The second is the synthesis of

tree structures.

In addition to providing design functions, TRANSCONS provides a framework upon which

a structure of further analysis tools can rest. We demonstrate this by exhibiting a synthesis

that depends on some forms from set theory, and another that depends on certain theorems

concerning quantifiers. These can either be entered by a human as axioms, entered as

hypotheses to be proven by an internal theorem prover, or found by the system using the

"weakest precondition" work of (SmI83b]. TRANSCONS is designed to grow by accepting

new transformation rules, new heuristics as to what rules to select for application, or new . -

theorem proving technology.

-€

" o S'



163 a 4

Appendix
en ~---.

*@  A TRANSCONS Usage Examples t

A.1 Usage Conventions for V

To enter a V program and start working on it, one starts up the CHI system in the manner

prescribed for your machine. Currently only INTERLISP/TOPS-20 and SYMBOLICS

36xx implementations are available.

One can then give directives to the CHI system. Such directives are in the syntax of LISP,

except that in the function name position there will usually be the locution "#>" which

has two purposes: it commands the underlying LISP system to interpret the input stream

according to V syntax rules, and it requests CHI to parse the V program into an abstract . . -

syntax tree.

1 In what follows the numbers followed by a dot are prompts; they are typed out by the .

computer.

1. (#> (the V program))

V analyzes the program and either accepts it, in which case the whole program becomes .

the current node, or rejects it, giving an error message in which the location of the error

is highlighted. As with most compilers, the actual error can be in a different place from 6 a

where the compiler thinks it is. Unlike with other compilers, however, it is possible to

get more information from the system concerning the location of the error. Simply type

*, (resume) (LISP machine implementation) or (RETURN) (INTERLISP implementation) .

to be shown another error guess.

• -'- , -'. -'-*

! "-". . "

. . -



164

The basic operation on nodes in rule application. Other operations include focus changing

(to narrow the focus of attention from a whole program to one of its parts or vice versa) 21No
and various methods of printing out nodes.

In addition to the current nodes there are named nodes. It is possible to make a named

node by suppling

2. (#> RULE prograrmname (the rest of the program)')

After doing this, the name program-ame is attached to the node created by the reader.

A node must be named to not disappear when you make a new current node.

There are several commands for manipulating the current node or named nodes, or for

printing them out in various formats. The HELP function of the CHI system will help you

find them, but we summarize some of the more important ones below:

(PU F) Prints the current node Using the F format (as a list of properties). Not
9

usually necessary except for TRANSCONS implementors.

(PU I) prints the node as a V expression (in the same format as it could be read

in). I stands for Infix notation.

(MCN L) interprets a locator L and makes it the Current Node. L can either be

the name of a named node or a prototype, a number, or an index into the

current node. Such an index is either a positive integer if the current node

is a list, a property name if the current node is a general object, or 0 if the ;..-

current node has a parent.

S:; p

If the locator is the name of a named node or a prototype, that object

is made the current node. If the current node is a list, than a locator of

i makes the it element of that node the current node. If it is a general V

node having a property p than a locator of p will make the current node

-...- -~--- -. ...... .. . . .



165
S

the value of the p property. Finally, a locator of 0 will select the parent of

the current node as the current node.

It is quite possible for any or all of the last three types of selector to be

applicable.

PU can be used with a second argument. If this is done than the object

found by the locator is printed, not the current node.

The basic operation for making a named node is (DEFV (name) (type) #V ... ). This

text should appear in a ZWEI buffer or a file and it should be EVALuated or LOADed,

* respectively. Procedures for doing this are found in the LISP Machine Manual. Valid

(type)s include RULEs, PROGRAMs, OPERATIONs and PROPERTYs. OPERATIONs

and PROPERTYs are primarily the concern of implementers.

0 .

RULEs are used to define input/output specifications for TRANSCONS (or any other

system implemented in CHI). The TRANSCONS system consists of CHI together with

other files consisting of rules (and some properties and operations).

I I

A rule always has a name. Whenever a node to which a rule named name should be applied

is the current node, incant (AR name) to apply the rule. The result of the rule application

will be displayed. (If the attempt at application was incorrect, and the rule didn't apply

to that node, the system prints "rule name did not apply", instead.)

?I



166

A.2 Specific Rules for TRANSCONS

The first step in transforming a specification to a parallel structure via TRANSCONS is to

express the specification in V and enter it into the system. The process of entering the spec-

ification in V is briefly discussed here and discussed more fully in [GreSI], [BKPWS4].

TRANSCONS operates on specifications whose primary data structures are arrays. In

general a higher level data structure would be selected for expressing the task, so the

higher level structure has to be transformed. The Chi system, in which TRANSCONS is

embedded, has facilities for performing this transformation. See [Kot84].

In the following discussion we will use the matrix multiplication problem to show the

various techniques and intermediate states. The initial specification is:

Vi ,i E {1,..., n}

C', - x:,kE ,..,,} Ai B ..".'-'

To describe the bounds of arrays and of the various structures they are transformed into,

TRANSCONS has an enumeration object that is slightly less general than that of V to

allow for easy handling by a theorem prover. This is described below.

A.2.1 Multiple Objects

The basic stuff of TRANSCONS's parallel structures is the multiple object. Examples of

these include array elements, processors, and clumps of processors referred to by HEARS

clauses.

We use bound variable lists and enumerators to control these multiple objects. We do

not supply complete generality, because this would lead to certain problems in proving - "

theorems about the domains, ranges, intersections, unions and subset properties of the

sets enumerated by these constructs. An example of an inadmissible form is

4

p- I~

-------------------------------- -------------------------------- -------------------------------- ------------------------------.



- - :.--.. ?------'.--'-' -..--- - -----... - _-_ -_ - _- -. - - .- - * rr-r -

167

A istype AtRAY (bx c) bES, cET

P. p

The multiplication is inadmissible because admitting it would create problems where ques- ..

tions about induced sets would be undecidable. We limit the sets to those definable in

Presburger Arithmetic without multiplication, although we allow the bound variable of

an outer quantifier to be considered a constant in inner quantifiers. This turns out to be

slightly too restrictive because it is impossible to specify a tree finitely in this language, so

we also include special constructs designed solely to specify trees.

Valid bound-variable-list/enumerator pairs for object XXX are of

the form XXX , (enumr)* where an (ezpr) is linear in all of the bound variables

C" of the enumerations and an (enumeration) is of the form (bound-variable) E (Oet), where

a (set) is in turn a set definable in Presburger arithmetic. This means that integer sub-

ranges and equality modulo a constant are the basic building blocks, and that definite

* union and intersection are allowed. .

A.2.2 Inclusion of ARRAY declarations

L -

It is necessary to decorate the program with ARRAY declarations to allow for a proper

synthesis of multiple processors1 . It is not necessary to declare all arrays; only those which

you would like the system to consider expanding into a multiprocessor configuration.

There are two methods for inserting the necessary ARRAY declarations. One is to edit the

ascii form of the specification (the one in the file) and have it reread by the CHI reader. An

* alternative is to insert the ARRAY declaration at the appropriate point of the specification.

First the program must be enclosed in a binding block if it is not already in one. Then go

to some point in the bound variable set and use the command (: (arraydedaration)). The

'In the future, this step will be automated, at least where the bounds of arrays can be determined at
'compile time" by data flow.

|6



.. - .- . -

array declaration will be read by the V reader and inserted at the appropriate point. It is

conventional to place all of the array declarations at the beginning of the program, but it

doesn't matter as long as they are at the appropriate level of block structure, usually the

top. We prefer editing the source because doing this documents the session in a permanent

form.

There are ordinary ARRAY declarations describing arrays of data that are computed

during the course of a problem, and there are I/O ARRAY declarations that describe

arrays of data that come from or go to the outside world. I/O arrays should always be

declared because there are important efficiency issues that will be ignored if they are not.

These issues are principally those of excessive interconnections being necessary between

the I/O channels and the outside world. It will never be assumed that an I/O array is ever

resident in more than one processor. For the matrix multiplication problem a proper array

declaration is:

bind
A istypeMOUND ARRAY (ij) i E "{1,, n),En),
B Istype MNOUND AIRAY (j) ,i E {1,...,n), {,...,n}
result Istype OUTBOUND ARRAY (ij) ,i E {1,... ,n}, E {,... ,n) -.

C stype ARRAY (j) ,i E {,...,n), e{1,..., n
do
V, ,ir {1,...,n}vj ,yjE{1,...,n} E

* C,, ' ~E1..n Aik~k,

result,- C--

The inbound and outbound arrays are declared separately. There is yet another declaration

for the Ci, array because otherwise the system would not be willing to allocate separate

processors to the elements of the answer. This separate array is called a shadow array.

Shadow arrays can be created automatically by a rule named MAKE-SHADOW-ARRAYS.

Simply type (AR MAKE-SHADOW-ARRAYS) if a shadow array for each I/O array is

.- 4

* . *-x. .. . . .* .. • * . . t. o



169 S

desired. In this cwe (for simplicity of exposition) we choose not to do this; instead we add

a single shadow array by hand i .

A.2.3 Inclusion of PROCESSORS declarations

* After you include all of the ARRAY declarations for arrays that the system should ex- p.,

pand, you can have the system introduce tentative PROCESSORS declarations. An

alternative, to be discussed in a later Section, is to perform a virtualization, which must be

6 done before the PROCESSORS declarations are introduced. The rules that introduce

PROCESSORS declarations are called MAKE-IOPSs and MAKE-PSs.

The console session looks like this

A lstype INBOUND ARRAY (ij) ,iE {1,.... ,}, jE n),.-.,--
INBOUND ARRAY B, ,iE E{...,-n), En),.••,n}
OUTBOUND ARRAY result,, ,iE {I,...,n}, j {1,... ,n}"
C istype ARRAY (ij) ,i E{1,..., , j 1,...,n}
Vj ,jE 1,.. n} 11)

resuti* Ci"

* (AR MAKEPSe)

INIBOUND ARRAY A, ,i E ,...,n), E { n,...,)
INBOUND ARRAY B,, ,iE E ... ,n}, j E {,.,n}.
OUTBOUND ARRAY resultii
C istype ARRAY (ij) ,i {1,...,}, j E {1,...,n)
PROC01istype PROCESSORS (i) ,iE {,...n, E 1,...,n)

HAS C,,
V. ,i r{: ... ,n}

E. -.{1,..,,n)
C,, E- k,kE{1......) A.-kBk,

'To be strictly correct and to allow to use all of the 'intelligence' at Its disposal, we should
probably have assigned separate shadow arrays to A.1 and Bi, too. On a problem of this simplicity this
would be pedantic. There Is a simple correspondence between the final result achieved by
after all rule applications when MAKE-SHADOW-ARRAYS is used and the one we will obtain here, but
the former Is visually much more complex.

7.--7..,.
AL -7.



170

(AR MAKE-IOPSa)

InBOUND ARRAY Ai e1,...,n,jE {1,...,n)
PROC002 Istype PROCESSORS HAS Aqbi E {1,...,n}, E {1,. .. ,n)
INB OUND ARRAY Bq , ,iE{ n),.j.Enn)
PROC003 Istype PROCESSORS HAS B,3 ,iE{1..n), jE{1..n)
OUTBOUND ARRAY reautt,
PROC004 Istype PROCESSORS HAS result,, ,iE {1..n},je {1..n)
C Istype ARRAY (j) , iE{,..n, jE{1.n)
PROCOO1 istype PROCESSORS (ij) ,iE{1 n)fl, jE{1,..n)Z

HAS C,,

Vi ,je(1r=..n}

result3 4-i

* There are several things to note: User input (shown in roman) is not case-sensitive, so

any combination of upper and lower case can be used. Output is shown in other f onts.

As present TR.ANSCONS uses GENSYM's for processor family names rather than forming

elegant ones out of the name of the corresponding variable. Only the family PROC001

contains more than one processor. The USES and HEARS clauses have not been filled

in yet.

A.2.4 Adding the HEARS/USES Clauses

0 ~After this it is necessary to add the HEARS clauses and their USES subclauses. The --

rule that does this is called MAKE-USES-HEARS.

The dialog continues...



171

(AR MAKE-USES-HEARS)

A istype INBOUND ARRAY (ij) ,i E {1,.. .,n), E {1,...,n)
PROCO02 Istype PROCESSORS HAS A, ,iE {l,...,n}, jE {,...,n}
B istype INBOUND ARRAY (ij) ,i En,...,n}, j E,.),}
PROCO03 Istype PROCESSORS HAS Bj ,i E {1,...,n), jE {1,..,n} 4

result Istype OUTBOUND ARRAY (ij)
PROCO04 Istype PROCESSORS HAS result ,iE {1,... ,n},jE {1,... ,n)

HEARS PROC001ii ,i{1,.. ,, n, jE{ ,n)
(USES C,, ,i{1,... ,n), j E 1,...,})

C istype ARRAY (:) ,i E{1,...,n}, jE {,...,n}
PROCO01 Istype PROCESSORS (ij) ,i E 1,...,n, j {,... ,n}

HAS C,-
HEARS PROCO02 (USES A,, ,k E {l,...,n})
HEARS PROCO03 (USES Bt ,ke {E,...,n})

V ,i E {1,...,)

Ci. ,,- E,kE{1,...,) &tkB.j
result, * C,#iji"°

A.2.5 Clause Reduction: Simple and Complex

The next step is reducing the awesome connections to PROCO04 (and those to PROCO02

and PROCO03 which become evident when the SENDS clauses are added). Normally

REDUCE-HEARS can be used, but it won't work here.

(AR REDUCE-HEARS)

Rule failed to apply.

If there were a clause eligible for such treatment, the operator would have used the CHI

structure editor to find the clause and add the reducible property to it. He would have

done this by using the editor to make the reducible clause the current node, applying the

rule MARK-HEARS-CLAUSE-AS-REDUCIBLE to the node, and then making the whole

* 4

-................................-.-...........-.................... . ...-.-.........- ,........,..',,
" ". "" " "" _'._,-_'.,.'..'*,...' -_' .','.-.' '.' -. '. ., -'.- . ., . 2-.



172 -

program the current node again. This was not done - there was no reducible HEARS

clause.

The solution to this lies in a rule that partitions the induced sets of instantiations of a

HEARS clause in such a manner that the claus can be replaced by a pair of clauses;

one clause to connect each partition to the outside world, and one that builds a chain

within the partition to distribute the data. The telescoping property IKlnS2] is necessary

to validate the transformation; at present the operator has to give a little help.

(PU I)

A Istype INBOUND ARRAY (ij) ,iE f1..n), jE {1.n)
PROC002 Istype PROCESSORS HAS A(, ,iE {1..n), jE {1..n)
B Blstype INBOUND ARRAY (ij) i E{(I....,n), E{(1,.-..,n}
PROC003 Istype PROCESSORS HAS B,, ,iE {1..n), jE {1.n)

* result Istype OUTBOUND ARRAY (i3 )
PROC004 Istype PROCESSORS HAS result 3 i~E {1,...,n},jE {1,...,n}

HEARS PROCOO1,, ,i E{1 n), j E(1..n)
(USES Cj, ,iE{ . n), j E{1 .n}))

C CIstype ARRAY (ij), i E{1,..., n}, jE{1, -,.n)
PROCOOI Istype PROCESSORS (ii) ,iE{(1,...n), j E{1 .n)

HAS C,,
HEARS PROC002 (USES Ak , ,kE {1.n}))*
HEARS PROC003 (USES B1, , ,k E {1 n))

Vij ,E{1..n)
Cii 1 k&E1..,n jjB1
resutt, 4 Cii

*STEPSI

(... lists the parts of the program

PROCOO1 istype PROCESSORS (ii) ,iE {1..n), jE {1.n)
HAS C,,



173

HEARS PROCO02 (USES Ak k E {I,...,n}) .
HEARS PROCO03 (USES B&, ,ke (E,...,n) .:'--

* HEARS-CLAUSES

(HEARS PROCO02 (USES Ak ,k E {,. n)) Ile
EARS PROCO03 (USES Bki ,k {,...,n)))

EARS PROCOO02 (USES A1 ,k E (1,...,n))

(AR MARK-HEARS-CLAUSE-FOR-TELESCOPING)

Please give a V ezpression for the telescopee

(# > PROC002ik ,k E (1 n)) '"- "

Please give a V ezpression condition for a processor to be connected to the

outside world

(# > PROC002,1)

Please give a pair of V expressions describing the connections

(# > PROC002ij) HEARS (#> PROC002 , -1)

o m l: o

The marking process causes no change in the appearance of the program under a (PU I).

The new properties are invisible. They would show up under a (PU F) performed when k -

the current node was the marked HEARS clause, and of course they are visible to the

rules.

Now that properties have been attached to the chosen EARS clause two rules can be

applied. One rule, MAKE-CHAIN, produces a new HEARS clause building the chains

of processors; the other, INPUT-ONLY-AT-BEGINNING-OF-CHAIN, takes advantage of

this to reduce the power of the original clause by giving it a condition that makes it

( I:)iii



W.. . . . . . . . .. . .,. . . . . . . . . . . . . .

174

apply only to the processor at the beginning of a chain. This also moves the -USES

clause, removes the now-spurious properties, and does a bit more housekeeping. There

is an analogous rule, OUTPUT-ONLY-AT-END-OF-CHAIN, that reduces the power of a

HEARS clause in an output device.

The function of exploiting telescopes to reduce a HEARS clause is split into two rules for

two reasons: the second rule is different for input and output, and it will not always be

necessary to perform both operations. If a chain is already there one of the I/O-ONLY...

p rules can be applied.

The dialog continues...

.0

.0

*0 to get to the top level (computer's printouts omitted for
brevity.)

K . (AR MAKE-CHAIN)

PROCOO1 istype PROCESSORS (if) , iE{1..n), jE{1 .n)
* HAS C,,

K: If j> 1 then
HEARS PROC0O1ij-1

LiHEARS PROC002 (USES A., ,k E .n}))
0 HEARS PROC003 (USES Bk, ,k E{1.. ,n))

(AR INPUT-ONLY-AT-BEGINNING-OF-CHAIN)

PROC001 Istype PROCESSORS (if) ,iE {1.n), jE {1..n)
-. HAS Ci,

ff j> I then
HEARS PROCO0lj-1

j> I> A j< n then
LINKS PROC001i... 1, PROCOO1ij+ 1

(PASSES AA; k kE{1. nl))

Ifj then



IT5

HEARS PROCO02 (USES Ak k E {1,...,n))
HEARS PROCOO3 (USES Bk E ,.n})

Voila! The size of the induced set of HEARS PROCO02... has been reduced from 0(n)

to 1.

A.2.6 State of the Implementation

We divide the state of the implementation into three parts; that which is done, that which

is just engineering and likely to be done within a few months, and that which may require

more serious thought.

Already Done

We have integrated most of the "prototypes" (internal descriptions of processor structures)

and rules for lattice synthesis, except for the selection of individual processors' programs,

into CHI and have performed test syntheses. The places where a theorem prover is neces-

sary have been replaced by a dialog with the user such as "Is ... a theorem?" and "What

must the expression A be to make P(A) a theorem?".

Immediate Next Steps

Next we integrate the prototypes for tree structures, and those rules for same that do not

require backwards inference. A theorem prover, probably LMA, will be connected to the

(THEOREM ... ) calls in the lattice synthesis section. There is one instance of backwards

inference in the lattice synthesis section, but this need can probably be met with an ad hoc e

procedure.

We will implement MightyMouse (see below).

And Finally,

. - . . . . . . . ...



I .. - - . o .' U-,

176

We integrate backwards inference, which will be able to find a form that has a given

property. This is, of course, a difficult problem, but one in which some progress has been

made. Research is being done in this because of its importance to divide & conquer. See,

for example, ISmI82].

In addition we will supply rules for the rephrasing of array problems as closure computation

problems.

These steps together will make the tree synthesis subsystem complete.

A.2.7 MightyMouse

Exploring a fairly large program in Chi in general and TRANSCONS in particular can be

a laborious undertaking because of the need to move around the structure. To do this

the user has to know what property he wants to use for his descent. This is rather more

internal knowledge than we feel that a user should need; he should have a fair idea of what

text he wants to think about, but how the levels of the tree divide and what the names of

things are should not be part of this knowledge.

MightyMouse is entered by evaluating (mmouse) to edit the current node or (mmouse

(node)) to edit (node). When you do this, two panes will be flashed on the screen: a

e the Position Pane, which is used for noodling through the data. This pane shows

a prettyprinted version of the data. Parts of it are "mouse-sensitive". This means a

that whenever you position the mouse so that the pointer points to a character, the

computer will know what commands apply to. The indicated text is the smallest

block of text corresponding to one tree node that includes the character pointed to • ..

by the mouse.
"" - -'i-1'

I*



• ...... o. o

177

When you 'click' on indicated text a tree node is chosen as follows: the left button

selects the highest tree node represented by the text, the middle button selects an

intermediate node, and the right button selects the lowest. If there are more than

three choices and the middle button is used, a menu "pops up' that invites the user

to select a choice.

Once a node is selected a menu pops up with several options: you can make the node

current, select a subnode, select a supernode, change the value of the slot that the

node sits in, or choose to apply an applicable rule. Rules can be applied in automatic -

or semiautomatic mode. In automatic mode, the rule is fully applied, i.e., it is applied

at 1ll places where it can be applied. In semiautomatic mode, every time a pattern

match is successful the matching node is highlighted and the user can either click one

button to apply the rule, another button to skip that application, or a third button -

to exit completely.

o the History Pane, which shows the last sixteen current nodes. You can make any one .

of them current. The history pane remembers its history from one call of MMouse

to the next, so several unrelated data can be explored together.

* o

B Correctness Considerations

Below we show the formal reasoning required to validate the primary rule that performs .

HEARS clause reduction. The motivation for this rule is the fact that the intercon-

nections inferred from the data flow information can be unacceptably rich. We want to

j4 reduce these interconections, hence the name REDUCE-HEARS of the rule primarily

responsible for this change. We want neither to cut off a processor from information it

needs to compute its answer, nor to create such circuitous paths for data that the converted

architecture is significantly slower than the original. 'Significantly slower" here will mean

'slower, by more than a constant factor".

. . .- . . . . °. " ' •



. - . - . .. . . . . . . • . .. .. ,-, ,- r - ~

178 , r-

The REDUCE-HEARS transformation establishes a pipeline from one processor

through a series of other processors instead of a wire from the first processor to each
C

of the other processors. We intend to show that the use of this transformation neither

renders the specification incorrect nor less efficient (up to a constant factor). We will use

two separate theorems.

The first theorem claims that if a specification is correct, here meaning that all of the data

it needs to do its work is available at some time, than the specification resulting from an

application of REDUCE-HEARS will also be correct in this sense. The rule does not

cause other changes to the specification except for the replacement of HEARS clauses

with smaller HEARS clauses in combination with PASSES clauses.

S The first lemma to the second theorem makes a much broader claim than is necessary

merely to limit this rule to a constant factor slowdown. It states that whenever there is

a collection of processors such that the longest path length is 1(n), the largest number of
C

values computed in one processor is v(n), the highest in-degree of any processor is i(n) and

the largest amount of calculation per input value is c(n), the connections form a DAG, and

a couple of other reasonable conditions are met, then the runtime of the parallel structure

is at most O(i(n)v(n)1(n)c(n)). The second theorem will then claim that this establishes

a speed-preserving property for REDUCE-HEARS

* rde REDUCE-HEARS (stint) TRANSFORM
stit :'PNAME Istype PROCESSORS ($PDV) $PENUMER...

If COND1 then
HEARS PNAMEHBV $HENUMER

(USES UVUBV$UEN....
A (THEOREM .

(IS1 = {HBV: HENUMERIPDV \PDV]} ; (1)
A ISla = {HBV: HENUMR[PDV \PDV]} ; (2)
A IS2 = {PDV: HENUMER A HBV = PDV} ; (3)
A PROCf = {PDVI} ;(4)

A PROC2 = {PDV) ; (5)
A PROCh = {HEXPR} ;(6)

,'oa



179

A PROChi = {HIEXPR} ;(7)
A (ISIn ISla) E {0 iS1 IS1a) ;(8)

SA ((0 C IS1 C ISla A COND1) ;(9) p

= IS1 UPROC = IS2) ;(10)
A (COND2 , COND1 A IS1 U PROCh = IS2) ; (11)
A(,.COND2= 0-PDV3[ISI c {HBV:

HENUMER[PDV \PDVs])]) ;(12)
A (COND3 -, COND2 A CONDI[PDV \HIEXPR]) ;(13) p
A (HIEXPR[PDV \HEXPR] = PDV))) ;(14)

atmt : 'PNAME istype PROCESSORS ($PDV) $PENUMER ...
if COND3 then

LINKS PNAMEHEXPR, PNAME$HIXPR

(PASSES UVSUBV$UEN,...)
If COND2 then

HEARS I-NAMEHEXPR ... '

The intent of this rule, especially that of the call of the theorem prover that makes up its

bulk, is not obvious. We will explain it before proving theorems about it:

As in all TRANSCONS transformation rules, free variables on the left hand side of the

rule (in this case, everything above the "-..") are implicitly existentially quantified. The

o objects IS1 through PROChi receive setformer-valued expressions, some of which (i.e.,

PROCh) form singleton sets. COND2 and COND3 are instantiated to boolean predicates

with free variables chosen from PDV by a similar process. "Backward inference", or the

determination of the form of an expression from assertions about its value, must be used

in four caes; to get values for HEXPR, HIEXPR, COND2 and COND3.

The setformer expressions of the theorem above give us sets of vectors of values, whose

dimension is the same as PDV which is the vector of bound variables in the original PRO-

CESSORS declaration. The subscripts on instances of PDV in the setformer produced

distinguished names, so (for example) if the first element of PDV is i then the first element

of PDVI is i,, a different object that need not unify to the same thing i unifies to.



A, D-Rft S22 KNONLEDGE-BASED TRANSFORMATIONAL SYNTHESIS OF EFFICIENT 3/3
STRUCTURES FOR CO..(U) KESTREL INST PALO ALTO CA

RNKING 39 SEP 95 KES. U. 85. 5 RFOSR-TR-85-1259
UNCLR$$CFIED F49620-85-C-015 F/G 9/2 NL

Ilflfl.,lllmoI'IEN



1&01

El--

MICROCOPY REOU 3O6ET HR

0'IJ....... 1.63



1801

Theorem B.1 Suppose REDUCE-HEARS applies to a given HEARS clause. Then

every processor of the epecification resulting from the application will have all data available

to it that the corresponding processor had in the original specification.

Proof: REDUCE-HEARS applies to HEARS clause Ho. The THEOREM conjunct

contains a large conjunction that implies several things. By lines 1, 2 and 8 we have

that two induced sets of H0 (called 1SI and ISla) are either disjoint or telescoping (one

contains the other). By 1, 2, 3, 9 and 10 we have that if two induced sets telescope and

one is strictly smaller than the other there is a singleton set (called PROCI which we can

add to the smaller one to make a different induced set (called IS2). Line 4 gives the name

PDVI to the indices of the processor comprising the singleton set. Line 6 asserts that

there is an index expression HEXPR that generates the singleton set PROCh and that

has PDV for free variables, such that PROCh indexes the processor that must be added

to IS1 to get IS2, and that this is possible whenever COND2 is true. Line 12 asserts

that COND2 is true whenever such a processor can be found. Lines 7 and 14 assert that

the HEXPR mapping has an expression that is its inverse, called HIEXPR, and line 14

asserts that a given processor is mapped into by the HEXPR relationship for some other

processor. It must be shown that wherever the original specification had a HEARS A

clause that allowed data to flow from point A to point B and satisfy a USES clause, the

new specification will have a HEARS C clause, and either C = A or there is an unbroken

* chain of processors that PASS the data from A to B. We will do this by induction on the

size of the induced set of H0 .

If B HEARS one processor then clearly the only way to satisfy lines 9-11 is with that

* processor as PROCh (and IS1 = 0). If B HEARS more than one, then it hears IS2 and

by 9-11 there is a processor PROCh whose induced set is ISI such that IS1 W PROCh "

IS2, so PROCh's induced set is smaller than IS2. PROCh therefore has access to the

data it needs.

.. . . . . . . . .. .-

.... 1'-.--**. .. .. -. .. .

S. -, -_. .. - . ,..s -.- ... ~ -. . . . .. .. .. - . . . .. -



181

We further know that PROCM needs information available Only from II and from all-

of ISI. The passes clause of the third line from the bottom of the rule assures that

information available to PROCh will be available to PROC2 as well. This completes the

induction and the proof. ,

Now we show that there in not too much of a slowdown assuming certain reasonable re-

strictions on the computation performed in the processors.

First we need a definition:

Definition B.1 Each processor performs a computation. The form of the computation can

be represented as a tree. Call the highest node(#) with ezecution time of 0(1) outermost

fast nodes. Each outermost fast node is either the highest node of the computation or is .

used an asymptotically nonconstant number of times. Call the sets of values used by the -A

several uses of outermost fast nodes fast sets.

It is clear that the size of a fast set must be 0(l).

* Now we can show that the asympttic performance of the parallel structure that results L

from REDUCE- HEARS is equal (to a constant factor) to that of the unreduced parallel

structure.

Lemma B.2 Suppose there is a collection of processors such that the longest path length is

/(n), the largest number of values computed in one processor is v(n), the highest in-degree

44 of any processor is i(n), the connections form a DAG, and the fast sets are disjoint and t. _

contain at most one datum from each input path. If use (by the enclosing node) of the

value generated by a fast node takes 0(1) time, and if a processor that receives at most v

values on any of its input lines #ends at most v copies of values that it has received on its

output lines, then all processors finish their jobs within 0(i(n)v' (n)l(n)) units of time. We

"- "-' -'- -.--"- ""*- ----- -'



182

"#*me that during each time unit a processor can receive one alue .from each input, send

one eopy Of 1 previouS1 received value on each output, and do some computation.

Proof: By induction on the length of the longest path ending in a processor. Let F(P)

be the length of this path for processor P (the length of a path is the number of nodes

on the path, so F(q) = I if q has no inputs). The induction hypotheses are: (MI) that

P completes its work in O(i(n)v2(n)F(P)) time, and (X2) that by F(P) + O(j) it has

received j values on each of the input lines that has that many values to send. Processor

P receives at most v(n)F(P) input values on each input line, and per (M2) it will take at

most F(P) + cgrk time units to receive rk values from an input line that is due to send k.

Supposer = -- j.,O <8 < 1. After F(P) + c2rk it will have received rk values, which is

all but 41k, and by one time unit later it will have retransmitted them all. This validates

( 2) for processors in {Q F(Q) < F(P) + 1}.

We have a ftcond induction on the amount of time that has passed. Say the constant of .- '* -

(Mi) is cl. cl 2 c2 or processor P would be able to complete its work before it received all

of its input. If P must complete and use m fast node computations then (X3) is that by

the time clv2(n)F(P){-ij it will have been able to complete reml of them. The base case

8=0 requires nothing, and at the time clv2(n)(P)!(j there will be at most r(i - s)ml

fast sets for which all values have not been received. If M3 is true for a given s then it must

be true for a + ; the information will be available by M2 and it will be possible to use it

sufficiently fast for some cl by X3.

MI is immediate from 3, and the theorem is immediate from Ni.

Theorem B.3 The aqnptotic speed of the result of a reduction is equal to that of the

unreduced parallel structure.

/ .. . .



183

Proof: The reduced parallel structure finishes in O(i(n)O(n)l(n)) units of time. For any

single reduced structure i(n) and v(n) will be constant functions, so it must only be shown

that the performance of the unreduced structure is no better than 0(1(n)). But by the

snowballing property a chain of length I(n) can only have arisen if there was a processor in

the unreduced structure that receives 1(n) values, which it would certainly require O((n))

time to procem. -

C Quantifier Levelling Proofs '.

We used three identifiers on quantifiers during the quantifier levelling of Chapter 6. The

need for these identie arises from the fact that we have a predicate with a quantifier whose 1..

bound variable is bounded on both ends and which occurs in a context in which a series of

values obtained by varying 5etA bounds is desired. The computation is expensive because

a two dimensional array of values is needed, and nothing analogous to a parallel prefix

operation is directly available.

The values that are found in this two dimensional array are by no means independent,

and with some manipulation the array can be "squashed" into a pair of vectors. What

we accomplish by the identities that we exploit in Section 6.2 and demonstrate here is

this squashing of the array by summarizing intervals over which predicates with bounded

quantifiers are true as pairs of integers.

We display the identities below and then give the proofs.

VI < X <u[P(z) -mRaxf P() < (V-to-ma) "

3z < u[P(x) A F(u) <:x =-3F(u) _< z < ufP(z)] (con.train-to-.binder)

31 z < u[P(z)] max [P(z)] I1 (3-to-maz)

............... . .................................... ................ . . . . .
7. .. . .-



184 "

Theorem C.1

(VI < z < )[P(Z)] max[ P(z)] <1 (V-to-maz) t. .'.

Proof: By convention, max. <.[false] = -co where (Vi)[-oo <i]. We have

X[P(Z) = p P(V) A (Vt< Z < u)[ P(z)]

and
Max[P( ) < =(V-- < U)[ P(f)] V (3w < g)[P(W) A (VW < z < u)[ P(w)]] (2)

rpf~ • . . .

These are from the definition of max.< 1P(z)] as that z such that P(z) is indeed true and

that P(z) is false for any z < z < u. -.

We also have

, <U=s-((vW < X < U)[ P(W)] M ((Vw < Z: y )[ P(W)] A (fy < W < U)[ P(w)])) (3a) ""'
and

V < U s((VZ < U)[ P()]= ((VW < p)[ P(W)] A (V < W < u)[ P(v)])) (3b)

as these forms merely split a quantified predicate, which in a statement about a range of

integers, into a conjunction of statements about portions of that range.

So (2) becomes:..

MaX[P(=)] - < (Vi :5 )[ P(Z)] A (Vy <tW< U)[ P(W)]

V(3w <)[P(w) A (VW <:< y)[ P(Z)] A (V <z < u) P(z)]] (4)

Factoring (4), (and observing that the inner quantifier of (4) is independent of the outer

quantifier's bound variables) we get

Vma[P(-)] < y (Vz < y)[ P(z)] V (3w y)[P(w)A (VW < < P)[P()]]

A(Vy < W < u)[ P(w)] (5)
.1, I

but the first conjunct of (5) is true by the definition of V in terms of 3, the law of the

excluded middle, and the fact that any nonempty subset of a finite set of integers has a

maximal element. So we have max.<.[P(z)] !< true A (Vy< W < u)[ P(w)]. .

- ' .-.--



185

The next identity simply rmtates a singly boundedly quantified predicate which includes a

restriction on the bound variable of the quantifier as a doubly bounded quantified predicate

without the restriction. This is obvious from the definitions. 1W

Theorem C.2

(3z < U)[P(Z) A F(u) _z- (3F(u) :< x< u)[(P(z) (conatraint-to-binder)

Proof: Immediate from the definition (31 << )[P(z)] (3z)[P(z) A L < a A z < u]. -

Theorem C.3

(31 <x < )1)[P(1)] max[P(z)] > I (3-to-ma)

Proof: This is the dual of (-to-max). *

D Theorem Reduction Forms
fe

Below are the rules used to transform TRANSCONS's (THEOREM .. )forms into Pres-

burger Arithmetic with restricted quantifier depth:



186

pos .ble - theorem aboolean boolean [ A / v / etc. sboolean] I ~boolean -'

aboolean sed = adeI bedEtexplicit -ad - of - ds I et Deset
I jbsetlj + constant - Ibset2l A bset2 bet 1-

sd ad [U/ NI- ] Ib e-

bet (ordinary setformers)

The sufficiency of these concts can be argued from the following observations:

e Telescoping and Snowballing can be expressed in this language, provided the under-

lying sets are expressible with legal setformers. (This proviso will not be reated in

what follows.) - .

* The answers to value-flow questions (eg. REACHES) can be phrased in this form.

A node reachable from two places will generate a U, an IF may generate an n or an

A or a -, and nested loops generate setformers with multiple bindings.

o A question of whether a processor from a given set is connected to a processor from

another given set can be asked in this form if the two sets of processors are expressable

by ITCONST rules.

We have a form, (THEOREM ... ), where the argument is a V expression conforming to

the above syntax. Rules, to be displayed below, are used to reduce these expressions to

longer but simpler ones from P. A. This language is adequate for the REDUCE-HEARS

rule, which reduces the communication paths of an amenable network to a smaller one.

We claim it will prove to be adequate for future needs.

The form of a setformer is {(expr) : ((bvlist))(exprlist) I (predicate)).

(expr) is an expression linear in all variables of ((bvlist)). ((bvlist)) is a list of variables.

A (lexical) binding scope is created for each variable that includes the whole set former

:. I



187

(and no more). The (expr iat) had better be a Hot of expressions. For simplicity we require

that each be of the form bw E set where bu is from the (bvlist) and set is itself either an

admissible set former, an integer subrange, or the finite union/intersection of the above.

61(predicate)" is optional, but where present it is a boolean expression. (When not present, ........

-true' is used.)

The (THEOREM ... ) function receives a general V expression and applies the transfor-

mations given above until no change. It passes the result, a P. A. expression, to the real

theorem prover. ...

Below we list the rules for converting forms from the (THEOREM ...) language. The

transformations below all preserve semantics. If we group the allowable connectives as

follows: JIetlJ + (const) - fset2j ... ,U/n,E,,D we can easily observe that the trans-

formations below always strictly reduce the number of occurences of the highest ranked

connective that they touch at all. Since an instance of the highest ranked non-P. A. form

in an expression is always reducible, the process terminates with no such forms left.

Each of the rules given below performs some of the reduction by decreasing the number

of places it applies without increasing the number of places that rules appearing earlier in -.-.-

this list apply.

rule SPECIFIC-SIZE-DIFFERENCE-SUPERSET (a) TRANSFORM
s : 'lsetll + (constant) = IIset211 A set2 D eilu'

a: '3X1,X 2 ,... X.,t)Vl _< i, _< (Conat)
[Xi XI A Vy E et2[E eetl V Y -X Y -X2 ... V Y =X(C ]]' S

rile TEST-IF-ANY-EQUAL (s) TRANSFORM

a: 'z= , {1 V z 2V... Vz V
_. I .



18

rule SETFORMER-INCLUSION-TO-FUNCTION-TEST (a) TRANSFORM
#:'{F(bi): bi C= I I Ti(bd) D {Fi( 2): :b2 E8 2 1IT2(b2)}'

a 'Vbl[ bi E &I A TI(bi) -. 3b2[b2 E 82 A T:(bs) A F1(b1) =F 2(b2)]]'

flrule SET- =-TO-2-WAY -INCLUSION ()TRANSFORM
a: 'ael s et2'

as 'setlI D sed2Aaset2 D aetl

rule EMPTY -SET-FROM- SETFORMER (a) TRANSFORM
s '(F(b) :(b)b a IT(b)} 0

a: 'Vb[b -E ev -Tb]

rule UNION-TO-OR (a) TRANSFORM
s: 'a EzUs/

a: 'a E zV aE Y'

rule INTERSECTION-TO-AND (s) TRANSFORM
* :'a E zfl y

& :'a E z A a E

lb

rule INTEGER- SUBRANGE- MEMBERSHIP-TO- INEQUALITIES ()TRANSFORM
s : 'a E{(ow ... high)'

#: 'a> low A a < high'

rule MEMBER-S ETFORMER ()TRANSFORM
#:'a r{ F(b): bE sIT(b)}'

S: '3b[b E A T(b) A a =F(b)J'



189

rule TWO- LAYER.- MEMBER-SESTFORMER (a) TRANSFORM
8: 'a E (F(b,c): :b Ea,c E t(b) I P-bc)-

a: '3b[ b. C68 A 3c[c E t(b) A P(b, C) A a Fb )]

10~

£-:. .7



*19

References

[AU172] Aho and Ullman, aThe Theory of Parsing, Translation and Compiling"; Volume
1, Prentice-Hall, pp. 3144520

(AHU74] Aiho, Hopcroft and Ullman, 'The Design and Analysis of Computer Algorithms",
Addison Wesleypp. 67.68 q

JAKS83] M. Ajtai, J. Kornl6s and E. Szemer6di, "An O(nalogns) Sorting Net-
work" Proceedinga of the 1514 ACM Symposium on Theory of Computing, pp.
1-9, 1983

[ AG79] W. Armstrong J. Gecaei, "Architecture of a Tree-Baaed Image Processor" Tech
Report, Uniersity of Montreal, Publication 291, 1979

[AHe77] R. Atkinson and C. Hewett, "Synchronization in Actor Systemns" Symposium on
Programming Languages, Jan 1977

[Bar82] C. Bartet, 'Policy-Protocol Interaction in Composite Processes'MIT AI Lab

Memo 692, September 1982

[Bat68] K. Batcher, "Sorting Networks and their Applications" AFPIPS Spring Joint A
Computer Conference, pp. 507-814, 1968

*[BKu79] J. Bentley and H. Kung, 'Two Papers on a Tree-Structured Parallel
Compruter" Carns ge-Mellun Univiersity Tech Report CM U-CS- 79.14 2, Septem-

* ber 1979

[BIe82I Sandeep N. Bhatt and Charles E. Leiserson, 'How to Assemble Tree M&-
chines" Proceeding8 of the 14'h Symposium on Theory of Computing, pp. 77-88,
1982

[Bro82] Thomas C. Brown, "Inference Requirements Analysis and Implementation Pro-.
poa for Two Synthesis Rules", Kestrel Tech Report #KES.U.82.1o, 1982,
Chapter 2

(Brw8O] Sally A. Browning, "The Tree Machine: A Highly Concurrent Computing Envi-
ronment", California Institute of Technology Ph. D. Thesis, 1980

e_4



191

,% .".7 7=

[BSdJ82 R. Byrd, S. Smith and S. de Jong, "An Actor-Based Programming System"IBM

Research Report #RC 9204 (#4044), January 1982

[CMi781 K. Chandy and J. Misra, "Specification, Synthesis, Verification and Perfor-

mance Analysis of Distributed Programs; a Case Study; Distributed Simula-

tion" University of Tezas, Austin Tech Report TR-86, November 1978

JCMe821 M. Chen and C. Mead, "Formal Specifications of Concurrent Systems" Technical
* report 5042:TR:82, California Institute of Technology, 1982

[Cho-82] Y. Choo, "Hierarchial Nets - A Structured Petri Network Approach to Concur-

rency" Cal Tech Report TR:5044:82, November 1982

*[Chu511 A. Church, "The Calculi of Lambda-Conversion" Annals of Mathematical Studies

# 6, Princeton University Press

[Cla78] E. Clarke, "Concurrent Programs are Easier to Verify than Sequential Pro-
grams" Duke University Tech Report CS-1978-6, July 1978

p .
[Cli8l] W. Clinger, "Foundations of Actor Semantics", PhD Thesis, MIT AI Lab Tech

Report AI-TR-633, May 1981

[CLW79] K. Chung, F. Luccio and C. Wong, "A Tree Storage Scheme for Magnetic Bubble

o Memories"IBM Research Report # RC 8116 (#34797), December 1979

[Coo72] D. C. Cooper, "Theorem Proving in Arithmetic Without Multiplica-

tion" Machine Intellegence # 7,1972, pp. 91-99

ICRi81] L. Clarke and D. Richardson, "Symbolic Evaluation Methods for Program Anal-
ysis", from Program Flow Analysis, Theory and Applications, 1981, Prentice Hall

[CPa82] K. Cil and J. Pachl, "Folding and Unrolling Systolic Arrays" University of Wa-

terloo Research Report CS-82-11, April 1982

[Den751 J. Dennis, 'First Version of a Data Flow Procedure Language" Project MAC,
MIT, May 1975

[DoD83] Department of Defense, "Software Technology for Adaptable, Reliable Systems

(STARS) Program Strategy" ACM-SIGSOFT Engineering Notes, Vol 8 # 2,

April 1983, pp. 56-84

[Edw78] N. Edwards, "Configurable Pipelined Application Logic Systems" IBM Research

Report # RC 7313 (#31451), September 1978

[Fic83] Faith E. Fich, "New Bounds for Parallel Prefix Circuits"Proceedings of the 153 "_
ACM Symposium on Theory of Computing, pp. 100-109, 1983

-" .



192

[FPa8OI M. Fischer and M. Paterson, 'Optimal )ee Layout' University of Washington
KTech Report 80-08-02, February 1980 A

[FiR71] M. Fischer and M. Rabin, "Super-Exponential Complexity of Presburger Arith-
metic"Mit Tech Report MAC-TM-43, 1971 '

[GPa83] Z. Galil and W. Paul, 'An Efficient General-Purpose Parallel Computer' Journal
of the ACM, vol. SO #2, pp$60-487, April 1983

[GaIBO] C. Galtieri, "Architecture for a Consistent Decentralized System"IBM Research
Report #RJ2846(S6132), June 1980

[ GOP81] Cordell Green, Daniel Chapiro, and Thomas Presaburger, 'Research on Synthe-
sis of Concurrent Computing Systems", 1981, KestreL Tech Report

* [GKT79) L. J1. Guibas, H. T. Kung and C. D. Thompson, "Direct VLSI Implementation
of Combinatorial Algorithms"Proceding. of the Caltech Conference on VLSI,

* January 1979

[Gre8l] Cordell Green, et. al., "Research on Knowledge-Based Programming and Algo-
rithm Design - 198 1", 1981, Kestrel Tech Report # KES. U. 81. 2

*[Gri75] P. Griffiths, 'SYNVER: An Automatic System for the Synthesis and Verification
of Synchronous Proces"Harvard PhD Thesis and Tech Report TR-f 0-75, June-
1975

[Hac75] M. Hack, 'Decidability Questions for Petri Nets" PhD Thesis, MIT MAC Tech
Report MAC-TR-161, December 1975

[Hai~i] B. Hailpern, "Modular Verification of Concurrent Programs" IBM Research Re-
port #RC 9130 (#39971), November 1981

[Hal78] R. Halstead Jr., 'Multiple-Processor Implementations of Message-Passing Sys-
tems", Masters Thesis, MIT Tech Report MIT-LCS- TR-1 98, January 1978

*[Har8O] S. Harbison, 'A Computer Architecture for the Dynamic Optimization of High-
Level Language Programi'PhD Thesis, CMU, Tech Report CMU-CS-80-149,
September 1980

*[Hil~i] W. Hillis, "The Connection Machine (Computer Architecture for the New
Wave)" MIT Al Memo 646, September 1981

- [HMS83] P. Hochachild, E. W. Mayr, and A. Siegel, "1iechniques for Solving Graph Prob-
lems in Parallel Environments" Proceeding. of the 01w Symposium on Founda-
tions of Computer Science, November 1983 K



193

[HMS84] P. Hocbschild, E. W. Mayr, and A. Siegel, "Parallel Graph Algorithms' St anford
Tech Report STAN-.CS- 84.1028, December 1984

[Hoa78] C. A. R. Hoare, "Commnunicating Sequential Procemss'Commtinication. of the
A CM Vol. 21 # 8, August 1978, pp. 666-677

[Hwa79] K. Hwang, 'Computer Arithmetic; Principles, Architecture and Design", John
Wiley & Co., 1979

fKan791 Elaine Kant, "Efficiency Considerations in Program Synthesis: A Knowledge-
Based Approach", Stanford Ph. D. Thesis, 1979

[Kensi] K. Kennedy, 'A Survey of Data Flow Analysis Techniques", from Program Flow
Analyis, Theory and Applications, 1981, Prentice Hall

[Kin82] R. King, 'Synthesis of Concurrent Computing Systems', Kestrel Tech Report
# KES.U.82.10, 1982, Chapter 1

6 [Kin83] R. King, *Research on Synthesis of Concurrent Computing Systems' Proceeding.
of the 101h Symposium on Computer Architecture, pp. $9-4 6, 1983

[KiB83] R. King and T. Brown, 'Proposal for Research On Automatic Synthesis of Tree-
Structured Concurrent Computing Systems", Kestrel Tech Report #KES.L.83.1,
1983

[Knu69] Donald Knuth, "The Art of Computer Programming"; Volume 2, Addison Wes-
ley, 1969

* [Knu73] Donald Knuth, "The Art of Computer Programming'; Volume 3, Addison Wes-
ley, 1973

[Kun76I H. T. Kung and Charles E. Leiserson, 'Systolic Array. for VLSI", Sparse Matrix
Proceedings, 1978

jKLe79] H. Kung and P. Lehman, "Systolic (VLSI) Arrays for Relational Database Oper-
ations' Carnegie Mellon Universuity Tech Report CMU-CS-80-114, October 1979

[KuL76] H. T. Kung and Charles E. Leiserson, "Systolic Arrays for VLSI"Spzree Matrit
Proceedings, 1978

[LFi8O] R. Ladner and M. Fischer, "Parallel Prefix Computation' Journal of the ACM,
vol. 17 #4, PP. 891-898, 1980

[Lap8OJ A. LaPaugh, "Algorithms for Integrated Circuit Layout: An Analytic Ap-
proach'MJT Tech Report MJT-LCS-TR.148, August 1980



194

(Lei~l] F. T. Leighton, 'A Layout Strategy for VLSI Which in Provably
Good' Proceedings of the 14 th ACM Symposium on Theory of Computing, pp.
85-97, 1982

[Lei84] F. T. Leighton, 'Tight Bounds on the Complexity of Parallel Sort-
mg" Proceedinos of the 10h Annual Symposium on the Theory of Computing,
1984

[LS&8l] C. Leiserson and J. Saxe, 'Optimizing Synchronous Systems" Proceedings of the
22nd Annual Symposium on the Foundations of Computer Science, pp. 29.96,
1981

[Len82] C. Lengauer, 'A Methodology for Programming with Concurrency" U. of
Toronto Tech Report CSRG-142, April 1982

* [Li V81] Richard J. Lipton and Jacobo Valdes, "Census Functions: an Approach to VLSI
Upper Bounds", IEEE Symposium on the Foundations of Computer Science,

* l9llpp. 13-22

[MaA84] R. Anderson and E. Mayr, 'Parallelism and Greedy Algorithms"Stanford Uni-
versity Tech Report STAN- CS- 84-1003,April 1984

[MJu83] D. McBride and R. Juels, "Directed Graphs for VLSI High-Level Synthesis"IBM
Research Report RC 9842 # 49417, January 1983

[MeC8O] C. Mead and L. Conway, "Introduction to VLSI Systems' Addison- Wesley, 1980

[Mil78] R. Mtilner, -Algebras for Communicating Systems" Tech Report, University of
Edinburgh #CSR-25-78, April 1978

(MWi84] W. Mirancer and A. Winkler, 'Spacetime Representation of Computational
Structures" Computing 82, 1984 pp. 93-114

[Opp78] D. Oppen, 'A 2 2"" Upper Bound on the Complexity of Presburger Arith-
metic" Journal of Computer and System Sciences 16, 1978 pp. 323-332

[Pai79] R. Paige, "Expresion Continuity and the Formal Differentiation of Algo-
rithms" Technical Report #15, Courant Institute, New York, pp. 269-658, 1979

( Pai82] R. Paige, 'Transformational Programming - Applications to Algorithms and
Systems" Technical Report DCS- TR-118, Rutgers University, September 1982

( Ram75] J. Rambaugh, 'A Parallel Asynchronous Computer Architecture for Data Flow
Programs"PhD Thesis, MIT MAC Tehch Report MAC-TR-150, May 1975



-J,

195

[Ram73] C. Ramchandani, 'Analysis of Asynchronous Concurrent System by timed Petri
Nets' PAD Thesis, MIT MA C Tech Report MA C- TR-1 20, July 1973

[Re V82] J. Reif and L. Valiant, 'A Logarithmic Time Sort for Linear Size Networks',
Harvard Tech Report # TR-13982, 1982

jSch8O] J. Schwartz, 'Ultracomputers'ACM TOPLAS, vol. 2 #4 pp. 4 84-521, October
S 1980

[Smi83aj D. Smith, "Derived Preconditions and Their Use in Program Synthesis' Tech
Report, Naval Postgraduate School, Montery, CA 99940, November 1983

[Smi83b] D. Smith, -Top..Dw Synthesis of Simple Divide & Conquer Algorithms" Tech
6 Report, Naval Post graduate School, Montery, CA 99940, November 1983

[SPn8l] M. Sharir and A. Pnueli, 'Two Approaches to Interprocedural Data Flow Anal-
ysis', from Program Flow Analysis, Theory and Applications, 1981, Prentice
Hall

[SSC82] Siskind, Southard and Crouch, 'Generating Custom High-Performance VLSI
Designs from Succinct Algorithmic Descriptions' Proceedings of the Conference
on Advanced Research in VLSI, January 1982

* fto77] J. Stoy, "Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory', MIT Press, 1977

jTAxn83] N. Takahashi and M. Amaniiya, 'A Data Flow Processor Array Sys-
tam'7 Proceedings of the i1&h Symposium on Computer Architecture, pp. 24 9-250,

* 1983

[The82j D. Theriault, "A Primer for the Act-i Language' MIT Al Lab. Memo 672, April
1982

[Wag83] R. Wagner, 'The Boolean Vector Machine [BVM]' Proceedings of the loth Sym-
posium on Computer Architecture, pp. 59-66, 1983

[Vit82] Vitanyi, 'Real-Time Simulation of Multicounters by Oblivious One-Tape Turing
Machines' Proceedings of the 14th' Annual Symposium on Theory of Computing,
May 1982

[Wen79] K. Weng, 'An Abstract Implementation for a Generalized Data Flow Lan-
guage PhD Thesis, MIT Tech Report MIT-LCS-TR-228, May 1979

(W6l82] P. Wolper, 'Synthesis of Communicating Processes from Temporal Logic Spec-
ifications' Stanford Tech Report STAN-CS-82-925, August 1982



'V

- VK.
* 1

FILMED
Wi
1~

0

DTIC
* .**-.*.*- - - - * **%.*. *5~','%. -

-fd~I ~ **.~..-,*-;*

- -* - 'a." '. - *...**

(b! -


