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DAL
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iy . . . . . ~AEG
This study develops a new technique for generating flow field grids around arbi- hars,
N

trary configurations such as transatmospheric vehicles. missiles. advanced fighters AN
-::;\;-:‘

etc. Since flight and wind tunnel testing are very expensive. it is advantageous to T Y o8
t _,_‘

generate computational solutions first to minimize the wind tunnel testing. There- S
'\1\}

L S

fore. it is crucial to construct grids for these computational solutions in such a
manner that the flow field is accurately represented on the grid. At the present
time representative grids are generated by elliptic partial differential equations at
the cost of a great deal of computer resources. This study will demonstrate how
representative grids can be generated by parabolic partial differential equations in a
fraction of the time used by elliptic partial differential equations. It should be noted

that the type of grid that should be utilized is dictated by the method used in the

flow solver. The scope of this thesis is limited to the development of grid generation

procedures and not in the generation of flow solutions. Flow solutions should be Fa
(A _:.'..'
obtained with this grid procedure and compared with solutions using other grid ;';:._"-ﬂ:-
S
O Y
. - Ly .- .

procedures. Due to a lack of time and computer resources the flow solutions can
not be accomplished. e

I would like to thank Major James K. Hodge for suggesting the thesis topic and
the many helpful discussions. I would also like to thank Dr. Joseph Shang and Dr.
Sal Leone for serving as members of my thesis committee.
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Abstract

Two- and three-dimensional surface normal grids are generated in Cartesian co-
ordinates around a supersonic/hypersonic waverider configuration using parabolic
partial differential equations. The elliptic partial differential equations for grid gen-
eration are parabolized in one direction for two dimensions. and in two directions
for three dimensions. This is consistent with spatial marching flow solutions. The
parabolized grid equations march in one direction for two dimensions and in two
directions for three dimensions. without iteration. The following problems are inves-
tigated: description of the boundary points, grid generation around the waverider’s
wing tip. approximations to the elliptic grid generation equations around a convex
corner. and grid crossover in concave regions when orthogonality is specified. The
degree of grid smoothing in the marching directions is related to the positioning
of the approximations to the elliptic grid generation equations. Highly stretched
«urface orthogonal grids are accurately generated without grid embedding for high
euold’s number flows. in less than one percent of the computer time required by

elliptic grid generators.
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I. Introduction

1.0 Background

Today in computational fluid dvnamics. it is difficult to generate flow field grids
around an arbitrary three-dimensional (3-D) aerodynamic configuration. There
are many ways to generate grids. among these are conformal mapping procedures,
algebraic methods and differential equation techniques!?. The differential equation
techniques require that elliptic. parabolic or hyperbolic partial differential equations
(PDEs) be employed. The elliptic PDEs are the most widely developed. But. the
elliptic grid generation equations are costly in terms of computer time due to the
numerous iterations involved in solving these equations. The hyperbolic PDEs are
the next most widely developed procedure. Although this procedure can produce
grids quickly with its marching techniques. the outer boundary can not be specified.
If the boundary contains a discontinuity. the discountinuity is propagated into the
interior of the flow field and can produce a grid “shock.” The parabolic PDEs
that approximate the elliptic grid generation equations. are the most promising for
rapidly generating a good solution. If one is not careful there is a danger of grid

crossover. which will yield a zero Jacobian or violate the maximum principle.

1 in another study. used

Thompsnn® in one study, and Steger and Sorenson
elliptic PDEs to generate flow field grids. The Poisson equation was used to generate
highly-stretched grids by clustering points near a boundary. The elliptic equations.
with Dirchlet boundary conditions. insure an unique solution. This guarantees a
one-to-one mapping between the physical and computational planes, although the
differenced form of the equation may not. With Neumann boundary conditions
set on the boundaries. grid lines are orthogonal to the inner boundary surface, but

may produce a zero Jacobian. The elliptic equations smooth out discountinuities

1
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from the boundaries without the danger of grid crossover. Because the domain of
influence covers the whole computational plane, all points affect each other. The
elliptic equations generate good grids, except numerous iterations are needed. The

solution of the elliptic equations is inherently expensive and grid control is difficult.

Steger and Chaussee® used hyperbolic PDEs to reduce the computer time needed
to generate a grid. The hyperbolic equations march in all directions, which is com-
putationally efficient. If there is a discountinuity on the boundary, it is propagated
into the interior of the flow field. To keep these equations stable, artificial viscosity
must be included in the finite difference equations. The hyperbolic equations can
generate grids which are nearly orthogonal, but the outer boundary points can not
be specified. On a concave surface, orthogonal grid lines will coalesce, causing a

grid "shock.” This is also true for most grid generation procedures.

To specify the outer boundary, reduce grid generation time and enhance grid
control, Nakamura® used parabolic PDEs. The parabolic equations are an initial
value and boundary value problem and can take advantage of marching techniques.
By parabolizing the elliptic equations, the parabolic equations reproduce most of
the properties of elliptic equations. The parabolized equations reproduce the dif-
fusion effect which smooths out discontinuities that may be present on the inner
boundary. The parabolic equations also allow the outer boundary surface to be
specified. The elliptic equations are parabolized in the n direction and the solu-
tion is marched from the inner boundary to the outer boundary. The parabolic
equations require that an approximation to the elliptic equations be made either
upstream or downstream of the solution position. The outer boundary is used for
this approximation in this case. Since the outer boundary is generally distant from
the inner boundary, there could be too much smoothing near the inner boundary
for a highly-curved complex geometry. The Laplace equation is parabolized instead
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of the Poisson eguation. therfore grid points have to be clustered by some other
means than specifying the source terms. Points are clustered near a boundary by
using linear relationships. Near orthogonality at the inner boundary is also accom-
plished by linear relationships and must be re-calculated after each marching step.

When generating grids in three dimensions. Nakamura®

marches in both the n and
¢ directions. Since the 3-D grid. in this case. marches from the inner boundary to
the outer boundary in one of its directions. the whole grid has to be generated and

stored before there is enough information for a flow solver to be initiated.

Edwards’ also used the Laplace equation and parabolized it in the n and ¢
directions. Points were clustered and orthogonality was imposed in much the same
way that Nakamura® did. Grid embedding was used to enhance the grid density
near the inner boundary. This option causes problems when coupled to a flow
solver. Boundary conditions between the regular grid and the embedded grid have
to be matched. If grid stretching and the outer boundary is selected correctly, grid
embedding can be advoided. In physical space. a rectangular boundary is used.
This makes it difficult to disperse points near the outer boundary where there are

no viscous effects.

Noack® also solved the parabolic PDEs to generate two-dimensional (2-D) grids
in each cross plane of a 3-D axis normal grid. The Laplace equation is parabolized
in the n direction as Nakamura® and Edwards’. Both Nakamura® and Edwards’
used the outer boundary to approximate the elliptic equations. As stated before,
this can cause too much smoothing near the inner boundary if the geometry has a
highly-curved surface. The eiliptic equations are approximated at the next station
out beyond the solution boundary. This corrects the problem of a possibility of too

much smoothing. but in some cases it may not generate enough smoothing.

Finally. Hodge, Leone and McCarty® used parabolic PDEs to generate 3-D grids.
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Instead of marching in the conventional directions 5 and <. the elliptic equations
‘ are parabolized in the ¢ and ¢ directions. This has great significance when grids

o are generated in three dimensions because only three 2-D planes or surfaces need
NS to be stored at one time. Since these solution procedures also march downstream
the whole grid is not stored at one time. decreasing memory storage requirements.

o Hodge. et al® parabolized the Poisson equations. Specifving the source terms in the
Poisson equations allows the grid to be highly-stretched for high Reynold's number

flows. without using grid embedding. The approximation of the elliptic equations

can be placed anywhere before or after the present solution. Hodge. et al® did not

extend the grids to be orthogonal near the inner boundary. but were generated

- r‘ normal to the axis only. Since the 3-D grid equations are used. changes from one
- - cross plane to another are smoothed. In addition. the grid can be adapted while

o marching.

1.2 Motivation

- Missiles with non-circular lifting body cross-sections are of current interest as

Ll

2 a means for obtaining high-performance at supersonic/hypersonic speeds. Missiles
:( = need to achieve higher performance in order to outmaneuver advanced fighters.

::' A waverider configuration will generate these high-performance characteristes. In
. the development of a waverider configuration. designs must be subjected to wind
tunnel tests and numerical simulation. Computational methods such as Navier-
Stokes or Parabolizied Navier-Stokes must be used to take into account the high-

speed thermal effects. viscosity and flow separation. These flow solvers need a

o - G N '.-,.7 K S SO S AC A '.-\‘.-:..-.:.- T ‘, a{

SO representative flow field grid.

oS

j ! A procedure needs to be developed to generate 3-D nearly orthogonal grids that
RN .. . .

" i‘u use minimal computer resources and attain some degree of smoothing. Although el-
liptic PDEs generate good grids. they use excessive computer resources. Hyperbolic
S 4
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PDEs give efficient solutions. but the outer boundary surface can not be specified.

Discontinuities on the boundaries may be propagated into the interior of the flow

field causing a grid "shock.” The desired qualities can be generated from parabolic
PDEs. Efficient grids can be generated from the parabolic grid generation equations
that will have the desired characteristics of the elliptic grid generation equations.
The parabolic grids can be generated to be highly-stretched and orthogonal to the

inner boundary with minimal computer resources.

1.3 Problems

Generating a grid around the waverider configuration is challenging. The gen-
eralized waverider used in this study has concave. convex and thin lifting body
surfaces. The waverider configuration is a stringent test for any grid generation

scheme.

In order to generate a valid grid. the inner boundary points must be able to see
its corresponding outer boundary point without the geometry's surface getting in
the way. Since the waverider is highly-curved. generating the boundary points is not
a trivial problem. Wrapping the grid around the waverider's wing tip without grid
lines crossing the geometry's surface is another problem. Specifying an orthogonal
grid on a concave surface may violate the maximum principle. because all the grid

lines will tend to coalesce.

1.4 Objectives

The first objective is to generate a wrapped 2-D nearly orthogonal grid. The
first step is to properly distribute points on the boundaries. Next a procedure to
generate the grid around the wing tip is developed. One option is for the grids
to proceed from the inner to outer boundary in almost a straight line. The other
option is for the grid lines to be orthogonal to the waverider's surface. Finally. the
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Y orthogonality criterion needs to be relaxed when the inner boundary becomes too :,_-;‘
- Lf AS
- - ﬁ\. .

- concave. :
. L )
N The second and last objective is to generate a wrapped 3-D nearly surface A 'ﬁ
Fe s O

- . .. . . . PO,
r~ 2 orthogonal grid. This is a simple extension of the 2-D grid procedure. Most of the ::.;iy
R (

1 problems with the waverider's geometry are dealt with in the 2-D grid generation

fad
- procedure. For a waverider configuration or conical structure, the cross-sections are
R invariant along a generated ray. so there will not be problems with generating the

grid as in the 2-D wrapped grid procedure.

- 1.5 Overview
- l’"‘ The following is a brief summary of what will be discussed in each chapter.
X Chapter 1I demonstrates how a waverider is constructed. and how it generates

high-performance characteristics. Chapter III gives the elliptic Poisson equations

OO
LT Bl et

- in one. two and three dimensions. The 2-D and 3-D equations are parabolized.

The finite difference form for each set of parabolized equations are generated with a :t‘_',‘.}‘

procedure on how to use them. Chapter IV explains how the 2-D and 3-D wrapped :‘:i

-::. grids are produced. Chapter V displays the results. and discusses how problems :'\-5.'\:.

0 r were solved. Chapter VI states the concluding remarks. Chapter VII gives the E::

-_ . recommendations. Appendix A discusses a 2-D slit transformed grid procedure. ::‘j

Appendix B is the 2-D wrapped grid computer code. Finally, Appendix C is the ':,:‘:\:::
f.: 3-D wrapped grid computer code.
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I1. Waverider Configuration

This Chapter defines a waverider. demonstrates how an infinitesmally thin wing
waverider is generated from a known flow field. and develops the 2-D equations of

a thick wing waverider in the base plane for extension into three dimensions.

2.1 Definition of a Waverider

Starting from a cone. it is possible to construct high-performance configurations.
These configurations are generated by identifying special stream surfaces appropri-
ately as solid surfaces from known flow fields'®. If steady inviscid flow equations
are used to generate flow fields, a stream surface has no flow across it and can be
used as a solid surface. The rest of the flow field is inviscid flow past the newly con-
structed solid surface. Numerous aerodynamic configurations can be constructed
by this method. If the resulting upper surface is aligned with the freestream flow.
it will generate a freestream pressure on this surface. If the resulting lower sur-
face is bounded ®y an attached shock. it will generate a pressure associated with
the shock on this surface. The combination of these two surfaces will generate a
high-performance vehicle. These vehicles appear to ride on a shock wave attached

beneath them. therefore they are called waveriders.

2.2 Construction of a Waverider

The waverider used in this study is constructed from a known flow field around
an axisymmetri; cone. The centerline of the cone must first be aligned with the
freestream. The known flow field is constructed by taking the freestream Mach
number along with the cone's semi-vertex angle to calculate the inclination of the
shock. A streamline starting in the freestream flow will pass through a ray on the

shock and remain in a plane as it proceeds asymptotically towards the surface of the
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cone. Other streamlines that pass through this same ray on the shock will proceed

S

downstream in the same plane. The combination of these streamlines make a plane
stream surface that is perpendicular to the cone and the shock boundary as shown

in Fig. (2-1).
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There are an infinite number of these stream surface planes that pass through

s

the centerline of the cone. Two of these stream surface planes oriented at a pesitive N

(A
} .
ey

and negative angle o. form a symmetric pair of lifting surface planes as shown in
Fig. (2-2). If the portion of the cone above the lifting surface planes is discarded.

the whole upper surface of the waverider is aligned with the freestream. The only

place where the shock is attached is along the wing tip of the waverider as shown

in Fig. (2-3). In reality. there will still be a shock wave on the upper surface due to

boundary layer iteraction. but this surface will still be close to freestream pressure. -
Thus the waverider has higher pressures on the lower surface and lower pressures :"
on the upper surface. which will generate a high-performance vehicle. ;_‘\:..E}:
oy
The configuration just developed has infinitesimally thin wings. which is impos-

sible for a realistic configuration. This configuration has a unique design condition :\‘..:
for the Mach number and orientation specified. At a different Mach number and ::::
orientation the configuration will be off design conditions, where it's performance Iv ——
will be decreased. These configurations are only applicable in the supersonic and z.;;.\::
hypersonic flow regimes. The sharp nosed. sharp wing tipped waverider is also im- ::(t' |
practical. because in a hypersonic flow they will melt or oblate. The waverider used
in this study was developed through the hypersonic small disturbance theory which o

n
idealizes the configuration. as well as making it difficult to analyze at off-design ‘ ::x‘
conditions. Therefore. using an computational method on the waverider will allow -‘
a more realistic configuration to be analyzed at various flow conditions. ’-i&
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Inclined at Angle Phi

Figure 2-2.
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Figure 2-3. Pointed Nose Waverider with Infinitesimally Thin Wings
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2.3 Equations to Generate Waverider Geometry

In general. infinitesimally thin wings are not possible. therefore a wing with
volume needs to be generated so fuel. propulsive systems. avionics. etc. can fit
inside. This problem was studied by Kim. Rasmussen and Jischke'' where equations
were developed to generate the lower and upper surfaces of the waverider in the
base plane. The wings are generated with thickness and still retained most of the
properties of a waverider. The non-dimensionalized equation that generates the

lower or compression surface is given by

NN E -1

The non-dimensionalized equation that generates the freestream surface is given by

L3 [m-d[e
FTaLE -l

The non-dimensionalized 3-D surface of the waverider is generated by scaling

n 2_
+ 4=t (2 - 2)

32
-1

the 2-D base plane geometry with respect to cone characteristics. There are two
types of waveriders. conical and non-conical. The conical waverider has a sharp
nose. A straight line can be drawn from the base plane at the wing tip to the cone's
apex. This is where the waverider intersects the shock wave. In both the x-z plane
and the y-z plane this intersection is a straight line. A straight line can be drawn
from the apex of a cone to any other point on the cone. The x-y plane cross-sections
are then scaled according to the distance downstream from the apex. The x and y
coordinates are scaled equally for a conical waverider.

For a non-conical waverider the location of the nose has to be determined first.
The nose is no longer at the original cone’s apex, but at some other position on the
shock in the lower plane-of-symmetry. Since the upper surface is aligned with the
freestream. the x coordinate of the nose is at the same x coordinate as the upper
surface plane-of-symmetry point in the base plane. The waverider is symmetrical,
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therefore the y coordinate of the nose is equal to zero. The z location of the nose is

e cr h e

£
‘s

' determined by placing the x and ¥ coordinates into the equation of a cone. A line

v, 2.

can be drawn from the base plane at the wing tip to the nose. This line projected o
I into the x-z plane is a straight line. The same line projected into the y-z plane is ‘
L a parabola. This is shown in Fig. (2-4) and in Fig. (4-3). Since the z locations of p

the cross-sections are specified by the grid control term R. the x location of these
cross-sections can be determined from the straight projected line in the x-z plane.
The y coordinate of the shock intersection is determined by substituting the x and
o z coordinates into the cone equation. The x and y cross section coordinates are

.. determined by scaling the shock intersection coordinates with respect to the base

Lo plane coordinates. For a non-conical waverider, the y coordinates are stretched
. . 2R
- more than the x coordinates near the nose. BN ant
AL
- . . . . AN
In general the symmetric configurations generated by the above equations will ,:.:}:';
O ."l e o
. not be conical. even though the shock and the flow in the shock layer are asymptot- L
A
. . . N . . . ‘S ~
ically conical. The waverider will be conical only if the compression surface touches .,-“_‘:-:5
. (ALY
., NGNS
- . . . . . . . LS LN
ol the original cone. This waverider will have a pointed nose and a sharp ridge on the N
RSN
Ry
K upper surface. The waverider will not be conical if the compression surface does not

intersect the original cone. This waverider will have a rounded nose and a rounded
corner will replace the sharp ridge on the upper surface. Although the waverider
will have a rounded nose in horizontal projected plane. the nose will be sharp in

any vertical plane.
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II1. Parabolic Grid Equations

This Chapter generates the 2-D and 3-D parabolic grid generation equations.
A finite difference equation is generated from the 1-D Poission equation to generate
boundary points. The 2-D and 3-D Poisson equations are parabolized to generate

the 2-D and 3-D parabolic grid generation equations.

3.1 One-Dimensional Grid Generation Equation
In the physical plane. the linear one-dimensional {1-D) elliptic grid generation
equation 1s given by

S = P(&) & (3-1)

This equation must be transformed from physical space into computational space
such that there is a one-to-one mapping between the spaces. If the Jacobian does
not go to zero the transformation exists. In the computational plane. the linear 1-D

elliptic grid generation equation is given by

l's + P(f) 1'5 =0 (3—2)

13
~

where the r can be any appropriate coordinate in a Cartesian, cylindrical, or spher-
ical coordinate system. The.r can also be in terms of arclength. The source term
is not modified for the cylindrical and spherical coordinate systems.

The P term in Egs. (3-1) and (3-2} is a grid control or source term. If P is
equal to zero, the 1-D grid will be evenly spaced. If P is a constant, either positive
or negative, the 1-D grid will vary exponentially from one boundary to the other. If
P is negative it will exponentially cluster points at the inner boundary and disperse
the points at the outer boundary. A positive value of P would cluster points at the
outer boundary and disperse points at the inner boundary. By varying the values

of P, a grid can be highly clustered at one boundary and constant at the other
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boundary.This approach generates a grid that can be custom-tailored to a specific
tyvpe of flow field. The computer codes in this thesis do not have this option. but
could easily be modified to include variable source terms.

The numerical solution of Eq. (3-2) is based on an exponential form. The
exponential form is based on the Unified Difference Representation ( UDR)“. If the
grid control term P is constant. UDR gives an exact solution for an exponential
grid. If the term P is varied. there will be truncation errors in the UDR solution.
The magnitude of the truncation errors depends on the size of the variation of P.
The truncation error for an exponential grid generated with UDR and a constant
grid control term is approximately zero or is on the order of the accuracy of the

computer. The finite difference equation using the UDR is given by
~[p(-P) +u(P)e” P] Fioy + 1+e "] H - [u(P)+u(-Ple P 5., =0

0ifS<0
”@)2[1w5>o (3-4)

Equation (3-3) contains two equations. one for P less than or equal to zero and one
for P greater than zero. Equation (3-3) requires no iteration. By specifying two
boundary values and P. the 1-D grid generation equation can be efficiently solved

using a tridiagonal algorithm.

3.2 Two-Dimensional Grid Generation Equations

In the physical plane, the 2-D elliptic grid generation equation is given by
€xx + &y = P(f, 77)(5)2( + E;) (3 — 5a)

mxx + My = Q& n)(nd + 7)) (3 — 5b)

These equations are transformed into computational space, such that there is a one-
to-one mapping between the spaces. A one-to-one mapping is guaranteed for the
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Y Poisson equation using Dirchlet boundary conditions with a positive. negative or e
p . .'\‘: s
u zero source term. In the computational plane. the linear 2-D elliptic grid generation
- e
equation is given by N
3 o
. - . y ":\"'
O“(-.s‘.f + Pf:c‘) + 022(1‘,,,, + Ql-'.n) = —20121'5,, (3 - 6) N
e
. The vector r is given by
X r r 13
Fr=1J)ylor}bélor|0}] < |n (3-17)
z z o ¢
Where the vector r is given by any two coordinates in a right-handed Cartesian,
cylindrical or spherical coordinate system as in Eq. (3-7). The vector r can also
r‘.'-
be written in terms of tangential and normal coordinates. The coefficients in Eq.
(3-6) are given by the ijth signed cofactor of the matrix in Eq. (3-10). The grid
control term P stretches the grid in the £ direction, whereas the grid control term
. Q stretches the grid in the 5 direction.
.. 2
Py aj = 3 CniCaj (3-8)
n=1
. Cie = (=1)*"* My (3-9)
Xe X re r
M:(f ")or(f '7) 3-10
Ye ¥n 0¢ 9, ( )
Two-dimensional grids can be generated from Eq. (3-6). but it requires many
= iterations to generate a solution. A marching or non-iterative solution can be gen-
erated. if the elliptic equations are parabolized. This has already been done by
v Nakamura®, Edwards’ and Noack®, except this solution will march in the ¢ direc-
- tion and use grid control terms for clustering grid points.
In order to parabolize Eq. (3-6) in the ¢ direction, the second derivative in £ is
-
r’ approximated by a central difference operator and is split into the difference between
. first derivatives. The first derivative with respect to £ is approximated by first order
n\‘
-~
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x oA
. directed differences and the derivatives with respect to n are approximated by the -::}'_j::
INENS
! UDR. The parabolic approximation equation is given by 5‘5, -
¥
. I - u::‘c:'ﬂ
.o apfl +pu(-P)|P Fe | — anlfy, +Qf,] = an{l +u(P)|P|| T | + 207, E:‘.r‘:
> e L 3 (R 3 s
& (3 -11) ‘
L LJ"QF I
The two terms on the right hand side of the equation are the source term. These L
0N
terms are approximated by prescribing points at some I~ location. The points oy
RN
prescribed at the I” location are the approximation to the elliptic equations. The el
. boeve
S 1~ location can be fixed or moving at a prescribed interval ahead of the solution. e
The I~ location can be anywhere between the present solution and the end of the .:’“‘
ks
r_, computational domain. The points to be prescribed at I” are represented by either "_,"" -
- a straight line or a nearly orthogonal curve with the proper Q distribution of points.
:: = As in the 1-D solution. the 2-D solution is based on the exponential UDR form.
: . The finite difference equation is given by
- —02|Q| -l 5 -
e 1—e-Q u(—Q) + u(Qe™'Y £ij_1 + |#(Q) +u(-Q)e ¥l Fijer
1 an|Ql -l s _
i * [0“[1+IP|+I*—i] + 1 —e"iQ 1+e7'Q Lij =

~ 1+ u(P)|P| -

X i"'.: L3P - L - -
T S0 G § b A 0 W RS T B B WS + ri—l,j-l] (3-12)
.
- . —an|qQ|
- - K = l—e Q@ (3 13)
N If Q is equal to zero, the denominator of Eq. (3-13) is zero. When Q is in the
A
vicinity of zero Eq. (3-13) is replaced by
PN
T - 19, 1Q7 _1QP , 19I'] . -6
: I\——in——i—‘i' 6 —24+120 lf|Q|<10 (3—14)
] T' Equation (3-14) is a five-term Maclaurin expansion. The I™ — i factor scales the
]
. “ approximation to the elliptic equations according to it’s distance from the solution
o |:\
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point. Since Eq. (3-12) is quasi-linear. it may require iteration to improve the

l coefficients. Nakamura® and Edwards” did not iterate their solutions. Noack® and
) Hodge. et al® have an option to iterate.

The parabolic grid generation procedure requires that the inner (j=1) and the

. outer (j=JMAX) boundary surfaces be specified with the proper P distribution of

‘ points. To start the 2-D grid generation algorithm from a plane-of-symmetry, the

- boundary points at i=2 are used by the 1-D grid generation equation to generate

either a straight line or orthogonal curve with the proper Q distribution of points.

g T This is the projected solution at I". This solution is reflected to the other side

of the plane-of-symmetry at i=0 to get the soiution at the prior station. The

- boundary points at i=1 are used in Eq. (3-3) to generate a straight line with

the proper Q distribution of points, so a guess at the metrics can be generated.

The metrics and coefficients can now be approximated with either a backward or

i a central differencing technique. The 2-D grid generation equations are solved by Ig
. a tridiagonal algorithm. In order to march, the projected solution must be re- :{.\._:
calculated for each marching step. The generation of the metrics and the 2-D :;:%-.:
K grid generation equations are solved for each marching step. At the last solution .f:f
3 station. at the plane-of-symmetry, the projected solution is generated by reflecting “_::
: the previous solution. at IMAX-1, across the plane-of-symmetry. The metrics and E:’j:"%
. ... coefficients are calculated and the tridiagonal matrix is solved. This step completes =
" the 2-D grid generation procedure.
.' 3.3 Three-Dimensional Grid Generation Equation
. In the physical plane, the 3-D elliptic grid generation equations are given by
i
x + &y + & = P(Enc)(& + & + &) (3 - 150)
- Mo + Ty + My = QUEmiG)nE + nd + nf) (3 - 155)
: Gx + Gy + G = REnOE + & + ) (3 - 15¢)
L 19
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These equations are transformed into computational space. assuniing there is a

' one-to-one mapping between the spaces. and are given by

' - ~ - - -1
oy |Tee + Pl’g] + ()22[1',,,7 + Qryl + aj3if + Rr,) =

*—2[()]2!_'.6" + ()]3F5< + Oggi'-,,‘-j (3—' 16)

L
" The vector r is given by Eq. (3-7) in either a Cartesian. cylindrical or spherical
right handed coordinate system. The coefticients in Eq. (3-16) are given by the ijth
signed cofactor of the matrix in Eq. (3-18). The grid control term P stretches the
grid in the ¢ direction. the grid contol term Q stretches the grid in the n direction.
and the grid contol term R stretches the grid in the ¢ direction.
? 3
aj = _ CpiCj (3-17)
n=x}
Xe Xp X, T¢ Ty T¢ T¢ Ty re
R M= 1lye vop y;| or |0 0, 6,]| or | 8 8, 6 (3-18)
. e 2, Z; e zy I o Op O

In order to parabolize Eq. (3-16) in the ¢ and ¢ directions. the second derivatives

" again must be approximated by a central difference operator and split into the
£ difference between first derivatives. The first derivative with respect to § and ¢ are
5 approximated by first order directed differences and the derivative with respect to
n are approximated by the UDR. The parabolic approximation equation is given

by

-

- an[l+u(=P)|P||Tg, | + as[l+u(-R)R||F. = — anlfy+Qf) =
i- .

}

0 an(l+u(P)Pl| g | + awnll+u(R)R] 7

) 3
+ 2[0]2?{,, -+ 013]7“ -+ 023Fm-] (3—19)

There are now three terms on the right hand side of the equation. These three

r'!i terms are the source term that must be approximated. In the 3-D case, points both

at the I" and K™ locations must be prescribed.
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Again the 3-D solution is based on the exponential form of the UDR. The finite

difference equation is given by

—ap|Q}
1-e Q

[M—Q)+MQF"Q]ﬁyu + MQ)+M-QkQ]ﬂﬁu]

1 1
ﬂwb+M+rﬁ]+M++m+Ftﬂ

l+e Q” Lijk =
- 1
ap |1+ #(-PHPI] fiojk + |1+ M(P)|P|] C. rl*,j.k}

- 1 -
+az3(|1+ ﬂ(‘R)lRl] fijk-1 + 1+ﬂ(R)|RI] " ri.j.l\"]

3V - - - -
- 2T ek T TisLenk T OTI Gk + ri-l,j—x.k]
+ 201 F F F + 7
; = « K = T ike1 — Tic1iK- Tio1.jk-
(I- =i+ 1)(K~ -k +1) 1)K 1= jk-~1 i-1LjiK i-1jk-1

033 - - - -
+m[ri,j.K‘ ~ Fij k- — Fijo1k-1 + fi,j-l.k—l] (3-20)

Equation (3-20) is quasi-linear and may require iteration to improve the coefficients.

The 3-D parabolic grid generation procedure is almost identical to the 2-D
procedure. The differences include: specifying inner and outer boundary values in
three dimensions. having an extra marching direction, more complex metrics and
coefficients. and calculating an extra projected solution at K~. This procedure also

requires the use of nested loops.
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IV. Numerical Procedure

This Chapter explains in detail how the 2-D and 3-D grid generation procedures
were constructed. It explains the rationale behind what was done in the computer
code. so modification can be accomplished more readily. See Appendix B for 2-D

wrapped grid listing. See Appendix C for 3-D wrapped grid listing.
4.1 Two-Dimensional Wrapped Grid Procedure

4.1.1 Program Setup

Key parameters must be specified. before the waverider geometry and the grid
can be generated. Subroutine SETUP controls 21 of these parameters. SETUP
initially specifies all 21 parameters. The user can interactively modify any of the
parameters through a menu generated at the computer terminal.

The shock angle needs to be calculated before the waverider geometry can be
generated. The shock angle is used as one parameter in Egs. (2-1) and (2-2) to
generate the base plane geometry of the waverider. Subroutine SHOCK uses the
Mach number and cone’s semi-vertex angle to iterate on the transcendental shock

relation. An initial guess of the shock angle is generated by

A E—b 4]
- «in-l4. 3 -
B8 = sin \ ML (4-1)
The transcendental shock relation is given by
8oy Nt 1 sind;siné 1 (4-2)

\" 2 cos(d, — 6) + \Tgc

Equation (4-2) is solved iteratively. starting with the initial guess from Eq. (4-1).

4.1.2 Boundary Points
In order to properly distribute points on the curved boundaries, the arclength
must be specified in Eq. (3-3). Because the waverider is highly-curved, it is im-
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practical to distribute points by specifving an increment on one of the axes. This SN
I ' process does not take into account the shape of the geometry. and would result

in an erratic distribution of points over the waverider surface. If the points are
. distributed over the curved surface according to arclength. a smooth distribution

I ] of points will result.

A table of angles. radii. and arclengths must be constructed to convert the

o distributed arclengths into cylindrical coordinates. Subroutine ARCLEN generates
! < this table. ARCLEN starts by calling subroutine GEOM. which calculates the

radius of the lower surface of the waverider. the radius of the upper surface of

\ r the waverider. and the radius of the outer boundary ellipse at zero degrees. The o

! angle is then incremented by one degree and the three radii are re-calculated at L"j_:_
Z: the incremented angle. When ARCLEN has two points from each set of radii, it ;£;$
. R
- calculates the arclength by determining the distance between the two points. At the -
! . third point and beyond. ARCLEN calculates the distance between the two points \.'g.'.\ 3
_: ',,i:: from each set of radii and adds it to the previous total arclength. This process is '.E_.z
:. B continued until the dihedral angle is reached. where the table of ¢, radius of lower *'::._t':;t
' [ surface. radius of upper surface, arclength of lower surface, and arclength of upper .
. AT A
E .. surface is completed. The table for the outer boundary is continued until the angle ‘_\’E
::: < of 180 degrees is reached. s N
’ .
~ The arclength of the outer boundary ellipse and the grid control term P are i;f::‘
.{ - used. in Eq. (3-3), to generate the points on the outer boundary. The two bound- l\::.' '
; > ary values needed are zero for the beginning of the outer boundary ellipse and the '
arclength for the end of the outer boundary ellipse. The coefficients of Eq. (3-3) :Qi‘ii
'-3 . are generated. These coefficients are used in subroutine TRIDIG. which implicitly :\"\;':. :
i f' solves the equation with a tridiagonal solver. TRIDIG outputs IMAX points with "
r the proper P distribution of arclength. The distributed arclengths are input into -C': :E
. 23
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- subroutine INTERP. where corresponding values of r and o are interpolated. IN-

i ' TERP searches for the distributed arclength in the table for the outer boundary

ellipse. A linear interpolation is done between the points stored in the table on

(o . . .

P both sides of the distributed arclength. to calculate r and ¢ for a point on the outer
[

i s boundary ellipse. The boundary points are then converted from cylindrical coordi-

nates into Cartesian coordinates. This conversion is necessary. because the origin
of the system does not reside within the waverider. This problem will be discussed

in detail in Section 5.1.1.

A

The number of points to be placed on the two surfaces of the waverider needs

. " to be calculated. Section 5.1.1 discusses three different methods for calculating the
o r—' .

,!. number of points to be placed on each surface. The best method found is discussed
- '_:7 here. A point on the upper surface is retreived from the ARCLEN table at five

degrees less than the dihedral angle. and the same for the lower surface. These

-:

v two points are averaged to generate a point that lies between the two surfaces. N
The equation of a line is generated using the averaged point and the point on the g&s
' wing tip. The intersection of this bisecting line and the outer boundary ellipse is E‘.‘.'
_.._ [ calculated. The intersecting point is then compared with the points distributed .
‘ - on the outer boundary ellipse. The position number of the closest outer boundary ::é}ﬁ:
S :‘_ point with the intersecting point is calculated. This position number is equal to the ::::::.
' = number of points to be placed on the lower surface. and IMAX minus the position
- number plus one is the number of points to be placed on the upper surface. The :‘_-:‘:
, ;::_- upper and lower waverider surfaces intersect at the wing tip. These two surfaces

< o

!.-, are kept separate until the proper distribution of points are placed upon them.

t‘ The most difficult task in generating a 2-D grid is generating a good solution

i: r around the sharp wing tip of the waverider. This difficulty will be discussed in

detail in Seltion 5.1.2. Grid spacing refinement around the wing tip proved to
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be a solution to this problem!’. A specified even number of points have their
P p 1

i spacing refined near the wing tip. These points do not lie on top of each other.
but at a closely spaced interval. If all the refined points were on top of each other
the maximum principle would be violated on the boundary. A valid grid can be
i generated with the maximum principle violated on the boundary. but it is easy to
avoid this situation. The number of points on the upper and lower surfaces are
decreased by half the specified number of refined points. The adjusted number of
points will be used to generate the proper P distribution of points on the upper

and lower surfaces of the waverider with respect to arclength. The refined points

are automatically placed on the wing tip disregarding the grid control distribution.

P ]

Subroutine INTERP evenly spaces the refined points at 1/10.000 of a unit of arc

away from the wing tip on the upper and lower surfaces of the waverider.

-
r

. . The adjusted number of points for each surface are used to generate Cartesian .E':.,:.:
i coordinates for the waverider’s surface. With the two boundary values along with \::':
i F the grid control term P. the coefficients in Eq. (3-3) are generated. The two bound-
" ary values are zero for the beginning of both upper and lower surfaces. and the total :.{:E',:'.:_
‘ arclength of either the upper or the lower waverider surface. A tridiagonal matrix ;‘;*:;
; . is solved by subroutine TRIDIG for the upper surface and another for the lower
3 surface. The proper distribution of points with respect to arclength are output. 1:\;
: Subroutine INTERP does a linear interpolation on the distributed arclengths to ;’:\E‘».
; S

get Cartesian point values for the boundary of the upper and lower surfaces of the

waverider. The boundary values of the upper and lower surfaces of the waverider are

TLTeteT4 T B e e e e e
A

now stored in one array as the inner boundary points. The outer boundary ellipse
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: F" points are stored in another array as the outer boundary points. The boundary

: , e

S points are now complete. NN
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-
‘ 4.1.3 One-Dimensional Elliptic Equation with Q Distribution :
.l Equation {3-3) must be solved repeatedly for each projected solution station Ty
SN
and ecach guess at the present solution station. so the metrics and the coefficients in ‘-‘:-};
Eq. (3-12) can be generated. The grid control term Q is used to distribute points ‘:;:"::
!-‘ between the boundaries. Q is constant in this program. therefore the tridiagonal
<olver will similarly distribute points over a different interval. The solution is stored
and mterpolated whenever the 1-D distribution of Q points is needed.
Again. it is easy to modifv the program so the source terms are variable. This
allows the points to be distributed with varying density throughout the grid. For .7~_
" example. if the waverider where at angle-of-attack. many points are desired in the
boundary laver on the lower surface. while fewer are desired in the boundary layer .P-':"f-f'f

1,

on the upper surface. The variable grid control terms would give this result. but

2,.4
et}
r

would require that the tridiagonal solver be used every time the projected solution

station or a guess at the present solution station needs to be generated.

- 4.1.4 Plane-of-Symmetry Conditions

| The station at i=1. on the lower plane-of-symmetry. is where the 2-D parabolic
grid generation procedure starts. To this point only the inner and outer boundary

points have been determined. along with the desired Q distribution of points to be

E " placed between the boundaries. The 2-D procedure starts by scaling 1-D stored Q C

distribution of points with the the boundary points at i=2 to generate the projected

. solution or the approximation of the elliptic equations at i + I". The projected so- EL‘_
; lution is reflected over to the other side of the plane-of-symmetry at i=0 to generate
. : o -
the prior solution at i-1. The projected solution can either be the scaled straight 4_;}
. line stored Q distribution of points, or can be a nearly orthogonal curve. The nearly :‘:-:.:
E r ‘ orthogonal curve will have an approximate distribution of points with respect to Q.
' The details on how to generate the nearly orthogonal curve are discussed in Sec- ::\:‘ﬁ. )
2 S
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tion 4.1.6. The boundary points at i=1 are scaled with the straight line stored Q
distribution of points solution to generate a guess at the solution station. Enough
information has now been determined to start the 2-D parabolic grid generation
procedure.

One of the parameters set in subroutine SETUP is whether second-order cen-
tral differencing or first-order backward differencing be used on the metrics. The
<olution at i=1 is at the plane-of-svmmetry. therefore the solution should be a
straight line between the boundaries. Second-order central differencing is used at
this plane-of-symietry station to get this straight line result. The projected so-
lution at the plane-of-symmetry must be one station downstream of the solution
station to acheive this result. The metrics and coefficients are calculated and the
tridiagonal matrix is solved to generate the solution at the plane-of-symmetry at
the beginning of the grid.

The station at i=IMANX is at the other plane-of-symmetry station and is also the
last solution station. A guess at this solution station needs to be made by scaling the
stored 1-D Q distribution of points. The solution at i=IMAX-1. the prior solution.
is reflected over to the other side of the plane-of-symmetry to generate the projected
solution at i + I". The 2-D procedure is completed by calculating the metrics with

central differences and solving the the tridiagonal matrix.

4.1.5 Check on Convexity

The 2-D parabolic grid generation procedure allows the projected solution to be
anywhere between the present solution and the end of the computational domain.
This can lead to problems if the surface is exceedingly convex and the projected
solution is too far from the solution station. This problem is discussed in more detail
in Section 5.1.3. A test is done to see if the projected solution is too far downstream
when there is a lot of curvature on the inner boundary. A line is generated from
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the j=2 point of the prior solution at i-1. to the j=2 point of the projected solution
at i+ I". If this line intersects the waverider geometry. the surface is too convex
and the projected solution position is not at an acceptable position for this solution
station. If this line does not intersect the waverider geometry. the projected solution

is at an acceptable position. These two situations are shown in Fig. (4-1).

This criterion is tested by checking each station between the projected solution
and the solution station to see whether the line passed through the inner boundary.
The boundary points between the projected solution and the solution station are
used to generate the equations of the lines between the boundaries. The intersection
of the line between the j=2 nodes of the prior and projected solutions and the lines
between the boundaries are calculated. A check is done to see whether the inter-
secting points lie between the inner and outer boundaries. If all the intersections
lie between the boundaries. the projected solution position is acceptable. If one or
any number of the intersecting points do not lie between the two boundaries. the
projected solution is too far downsiream and is forced back one position closer to
the solution station. A new line is generated between j=2 of the prior solution and
j=2 of the new projected solution. The intersections are re-calculated and checked
to see if they lie between the boundaries. This procedure is continued until all

intersecting points lie between the boundaries.

The proper projected solution location is now determined. The stored 1-D
Q distribution of points is scaled between these boundary points to generate the
straight line projected solution. This type of projected solution does not yield grid
lines that are nearly orthogonal to the waverider's surface, but yield grid lines that
almost run straight from one boundary to the other. How straight the grid lines
run depends on how much smoothing is used to generate the grid. The straight

line projected solution is used in generating the orthogonal projected solution. so it

28

A AT S N et e N R e e ek,
N N A NN R ATt oy S N AN N Y

{
l\..

A
l‘.l
Atk

RS

~ 1, F
¢
l.l

sl
)
s

W
-
>,
s

»
]

A A
R
a2

1)

LA

. e




. AT YA e A O A ta St b -l St A I A S et Aach iaciii S R

Figure 4-1, Criterion for Good and Bad Projected Solution Positions
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: N must be calculated regardless of whether orthogonality is specified or not. v
¢ .-
". 4.1.6 Orthogonal Grid Generation
" Many of the flow solvers that use flow field grids require that the grid be orthog-

onal to the inner houndary. This zeros out the partial derivative of the pressure
" with respect to the normal direction. A nearly orthogonal grid is generated by
making the projected solution orthogonal to the inner boundary. The projected
solution slowly bends and makes its way back to the outer boundary point. This is
accomplished by scaling the angle of a line normal to the waverider’s surface and
a line drawn between the inner and outer boundary points. This scaled angle in
combination with the proper distance from the inner boundary surface gives a point
on the nearly orthogonal projected solution. The proper distance from the inner
:j: g boundary is dictated by the straight line projected solution.
. The angle of the line between the inner and outer boundary points is generated.
The angle equals the arctangent of the slope of the line between the boundary points

'{:Z at the I™ location. A problem may arise if the orthogonal projected line will lie in

one quadrant and the line between the boundary points will lie in another quadrant.

[
If the angles are not put into the proper quadrants, the orthogonal projected curve NN
Ay
may not be generated correctly. The proper quadrant is identified by calculating x \' "j
and y quadrant factors. which are given by ‘
| =5
: X2, — X1
x factor = 1~ 1= (4 — 3a)
. %2, — X1+ |
- Y. — 1
= y factor = —~t— 17 (4 — 3b)
|Y2,- AT |
. e If the x and y factors are both positive. the angle is in the first quadrant. If the x
x factor is negative and the y factor is positive. the angle is in the second quadrant.

If the x and y factors are both negative. the angle is in the third quadrant. If the
x factor is positve and the y factor is negative. the angle is in the fourth quadrant.
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The angle of the line normal to the waverider's surface at the I° location is
generated. The true normal to a paneled surface. in the limit. is approximately
the average angle generated from the normal lines of the panels on each side of the
I" location. The arctangent of the negative inverse of the slope of one panel and
the arctangent of the negative inverse of the slope of the other panel are averaged
together to get the normal angle to the surface. This angle must also be put into
the correct quadrant. This is more difficult. because only a point and an angle are
known. This is enough information to generate a line. The intersection of this line
with the outer boundary is calculated as in Section 4.1.2. The only difference is
both boundary intersections need to be generated. The boundary intersection point
closest to the 1™ outer boundary point is the proper point that will not intersect
the geometry. The I” inner boundary point and the intersection point are used
in Eq. (4-3) to generate the x and y quadrant factors. From these two quadrant
factors the quadrant of the normal line can be identified. If the angle of the normal
line is in the first quadrant and the angle of the line between the boundaries is
in the fourth quadrant or vice versa. there will be a problem. This problem is
alleviated by subtracting 360 degrees from the angle in the fourth quadrant, so the
nearly orthogonal curve can be generated in the first and fourth quadrant. If 360
degrees were not subtracted. the orthogonal curve would be generated through all

the quadrants. which yields an incorrect projected solution.

To generate the orthogonal projected solution. an angle has to be varied from
the normal line to the line between the boundaries. The hyperbolic tangent function
is used to vary this angle. If the normal line and the line between the boundaries
are close together. the projected solution can remain orthogonal longer without the
danger of grid crossover. If these two lines differ greatly in angle, the projected
solution can leave the surface orthogonal. but must bend towards the I* outer
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: boundary point quickly so not to cause grid crossover. The hyperbolic tangent has ‘,1
. i these qualities. If the hyperbolic tangent is in the interval from one-half to minus :‘::“?
one-half. it will approximately generate a straight line. In this case. the hyperbolic ;..::
_‘ tangent will vary the angle swiftly as shown in Fig (4-2). If the hyperbolic tangent ﬁ
. 1 is in the interval from five to minus five. it stays near one for awhile then swiftly . I
" o moves to minus one. This type of distribution would cause the projected solution to \
: be orthogonal to the surface longer before it proceeds to the outer boundary point
at the I location and is shown in Fig (4-2). The factor that governs rate of change L
- of the angular distribution is given by o
:"2 - speed factor 1 = _ in radians (4 —4)
i |02 — o]
If the two lines are close together. the factor will be large. If the two lines are far
apart. the factor will be small.
. The hyperbolic tangent function is centered somewhere between the two bound-
ary points. The specified centering position is where the varied angie will bisect the
~ normal line and the line between the boundaries. If the centering is positioned too
i close to the outer boundary. a concave surface may cause the grid lines to coalesce
:-: and zero out the Jacobian. The centered value is based on lengths and can range
: from zero to one. The centering value is the length from the inner boundary to the R
. center point on the straight line projected solution. normalized by the length of the f:::
: line between the inner and outer boundary points. ;‘:;.
st
:: o The nearly orthogonal projected solution is generated from the angle of the E‘:f-:-?
4 « normal line, thé angle of the line between the boundaries. the speed factor and the

centering position. The angle that varies the angle of the normal line to the angle
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:: . Figure 4-2, Effect of Hyperbolic Tangent on the Generation of a Nearly
M e Orthogonal Curve
- 33
SR {

A

- PP IR BEICIES 18 JEat I Yot 3 - [ e T -, [ RS BN N g [ LS R IRE R S e T i <P T NT, LR s v ) "
P PPN .-.--' .-_. o W L N J‘._w “ Ty P W, (N0, Rt A !. Wy . ,'- » Ve, . \_7 XY “:“’n .l;?.j!a.“?ll .‘ LRORTE LY
Yok B Siledd) Y acsitoacall hadd L R S Pl P o R h R a X



ad "~ MO IR i e DA
.- R
‘F.! N W
' i » .
b RN
R EAIEN
o . . e
N The angle o, is that of the angle of a straight line connecting the inner and outer uj.'-:'.‘;;::
:.b._-,-.-.
n boundary points at the 1™ location. and 0, is the angle of the normal line at the I" f‘f‘:‘
. LAY
location. The term %‘%’; generates values from one to minus one, making @3 range "_'::-}:-:.:
AL
..0 . - . . ‘.I. \w
- from o, to ¢,. The angle o is varied slowly when points are clustered and quickly '.;‘,‘{_f:
-, T ]
R
- when points are dispersed. The angle o is given by b
' o = \/'(xr,j =%y, )2+ (¥- 5 - ¥l )R
o loz = o1l\/(xe. — %2 )% + vy, — %)
\rl(xl’.jcem - x1|+ )2 + (YI‘,jcem - YII- )2
. - , = > (4 —6)
loz = o1ly/(xe,. = x1,.)% + (yo,., — ¥i,.)
The speed factor term in Eq. (4-4) governs how the resulting angle will vary. The
- denominator in Eq. (4-6) is the distance between boundaries at the I location.
The first term in the numerator is the distance from the inner boundary to the
projected solution point being caiculated on the straight line projected solution.
'. Since the hyperbolic tangent is centered in the interval, the term factor in Eq. (4-5)
gives a value equal to the tanho at the first station and slowly varies to the —tanh¢
_’ at the last station. The term j is incremented from two to JMAX-1. The term
a factor is given by
: IMAX IMAX NN
MAX-1-j 1, [I-JMAX +1 IMAX-1 Pete
= — et A — -7 LA
.. factor TMAX =3 anho’ + MAx -3 1! tanh¢ (4-17) ;-\.::5:
AT
~ ‘;\"\ "
The angle ¢3. along with the first term in the numerator of Eq. (4-6), defines the AR
L
".:; point location on the nearly orthogonal projected solution.
. A problem arises in generating orthogonal curves near the wing tip. It would
- ~
¢ be difficult to trust a value of ¢3 as generated above, because the refined points
near the wing tip are so close together. If the projected solutions at the refined
points are generated nearly orthogonal to the inner boundary. the grid that will be
[ generated near the wing tip will have a big gap in it. Therefore, the first refined
point encountered on the lower surface uses the same value of ¢, as at the station
- 34

ORI . e N e e 0 Y
.\'..\‘\_.-'.\_ _.‘:_. '.‘.r AT TR Vst ‘,-1. '.\ \ .



directly upstream. The last refined point on the upper surface uses the same value

. of 0, as at the station directly downstream. The number of remaining refined points

e
~ plus two are divided into the difference in 0, of the first and last refined point. This

is the interval that will be added to the o, value of the first refined point to each

(4 consecutive refined point between the first and last refined points. The calculation

of ©; and the rest of the nearly orthogonal curve generation is the same as before.

4.1.7 Grid Crossover Check

The maximum principle may be violated when generating a nearly orthogonal

grid in a concave region. There are several ways of controlling grid crossover and

they will be discussed in more detail in Section 5.1.4. The automatic procedure
_‘ '.:j: will be discussed here. The equations of a line at the I projected solution position
.:: ’ and at I~ — 1 are generated between the boundaries. The intersection of these
- ‘ two lines is calculated. The distance between the intersection point and the inner
. boundary point is determined at I~ and divided by the total distance between the I
— boundary points. A valid result gives a value between zero and one. The calculated
I: centering value is where the hyperbolic tangent should be centered to eliminate
| grid crossover. If the centering value is closer to the inner boundary than the user
f;: l.:f: specified centering value, it will be locally inserted to control grid crossover. Even
. ‘. though the maximum principle is not violated. this procedure will still produce grid
—';'. lines that are fairly close together if the boundary is highly-concave.
= 4.1.8 Two-Dimensional Parabolic Grid Equation Procedure l
: :' The 2-D parabolic grid generation procedure solves Eq. (3-12) with a tridi- -‘::{E
_J - agonal solver. Before the tridiagonal solver can be initiated, the metrics and the E,:ﬁ:
: [{! coefficients have to be determined. First a guess at the solution station has to be
- generated for use in determining the metrics. This is accomplished by scaling the
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stored 1-D Q distribution or points between the boundary points at the solution
station. The metrics can be generated by using either a second-order central differ-
ence or a first-order backward difference. At the plane-of-symmetry stations. the
metrics are calculated by the central difference. The central difference will vield a
straight line solution at the plane-of-symmetry. At all other solution stations. the
metrics are generated by the backward difference. If the projected solution is one
station downstream of the solution station and central differencing has been speci-
fied. central differences will be used to generate the metrics. The coefficients in Eq.
(3-12) are determined by combining the metrics properly. The coefficients are sent
into subroutine TRIDIG. were the 2-D parabolic equation is solved. This process

has to be done twice. once for the x coordinate and once for the y coordinate.

The program allows the solution to be iterated. This is done by recalculating
the metrics using the newly solved solution instead of the initial guess. If central
differencing is used on the metrics. iteration is unnecessary. because the solution
station values are not used in determining the metrics. After the solution station
is solved. the values are written into an output file. The solution station values are
then rotated back into the prior solution position, and the next solution station is

solved.
The following is a summary of the procedure for generating 2-D parabolic grids:

1) Generate the outer boundary points with 1-D grid generation equation. Eq.

(3-3), with P distribution and with IMAX points.

2) Calculate the number of points needed to go on lower and upper surface of the

waverider.

3) Generate inner boundary points with 1-D grid generation equation, Eq. (3-3),

with P distribution and with the number of points calculated for each surface.

4) Generate and store solution to 1-D grid generation equation, Eq. (3-3), with Q
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11)

distribution and JMAX points.

Initialize 2-D grid generation process by scaling the solution from step 4 between
the plane-of-symmetry boundaries (i=1) and between the i=2 boundaries. The
solution at i=2 can be a straight line or can be put into nearly orthogonal form
for a nearly orthogonal grid. The straight line or orthogonal solution at i=2 is
reflected over the plane-of-symmetry at i=0 to create the prior solution.

The projected solution is calculated with a straight line or a nearly orthogonal
curve at the I location. At the plane-of-symmetries the projected solution is
calculated at i=2 or i=IMAX+1, otherwise at a good projected solution posi-
tion.

The metrics and coeflicients are generated and can be approximated by either a
first-order backwards difference or a second-order central difference. A second-
order difference is used at the plane-of-symmetries.

The 2-D parabolic grid generation equation given by Eq. (3-12) is solved by a
tridiagonal algorithm.

The present solution is rotated back into the prior solution position for the next
marching step.

Steps 6 through 9 are repeated until the other plane-of-symmetry is reached.
At the last plane-of-symmetry the prior solution is reflected across the plane-
of-symmetry to create the projected solution and the process is completed by

doing steps 7 and 8.

4.2 Three-Dimensional Wrapped Grid Procedure

The 3-D wrapped grid procedure is a relatively simple extension of the 2-D

wrapped grid procedure. The highly-curved surface of the waverider only occur

in the x-y planes. The waverider is wedged-shaped in the x-z plane, and parabolic

shaped in the y-z plane. This is shown in Fig. (4-3). The geometry is invariant along
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a generated ray in the x-z and y-z planes. Therefore. there will not be problems :‘_.\".:'
Sy
i with the positioning of the projected solution. generating the grid around sharp -
LS
corners. or the nearly orthogonal grid lines coalescing in concave regions in the :}:Z:-:.':-
-, LS N
- added dimension. Most of the procedures in 3-D are the same as in 2-D; therefore. t*:-::::'
e
L only the new techniques will be discussed in detail here. =

]
v
R
v

1

4.2.1 Boundary Points

The 3-D program initialization routines are the same as the 2-D procedure.
except for the generation of the waverider geometry. Before the waverider geometry

can be generated in three dimensions. the waverider nose has to be located, the

v length has to be calculated, and the ¢ locations of the cross sections have to be o
| b
. . . . 3 . h .‘b
determined. The length of the waverider is determined by dividing the tangent RS
O
RS
of the shock angle into the non-dimensional distance from the z axis to the shock N
LRI SN

i i wave in the base plane. Since the upper surface of the waverider is aligned with the
freestream flow and the nose is in the plane-of-symmetry, the x and y coordinates of
TSy the nose are known. The z coordinate of the nose is determined by putting the x and
| y coordinates of the nose into the cone equation. Since the upper surface is parallel
with the z axis. the arclength is not needed to distribute points in the ¢ direction.

The z coordinates of the nose and the base plane, along with the grid control term

: R are used to generate the coefficients of Eq. (3-3). These coefficients are input to

Lol 3
subroutine TRIDIG, which implicitly solves the equation with a tridiagonal solver. SGNG
u.\.".\-:_
TRIDIG outputs the z locations of the cross sections in the ¢ direction with respect _3',\:.,-:
* -“"5‘:4
. to the grid control term R. "
. The waverider geometry can now be generated in three dimensions. The wa- :"-?.i_:
L . . . AN
. verider geometry is generated in the base plane as in the 2-D wrapped grid pro- :{_-c N
. . A ‘-.'
i i cedure. This procedure is referred to in Section 4.1.2. The geometry generated in it
s the base plane is stored for scaling the other cross sections upstream of the base :n.:isj;_
TS
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plane. The scaling factors depend on where the wing tip will intersect the shock on
each cross section upstream of the base plane. The equation of a line is generated
in the x-z plane between the nose and wing tip in the base plane. The x location
of the cross section’s wing tip can be generated by putting the z coordinate of each
cross section into the equation of the line. Figure (4-3) shows the location of the
shock intersection in the x-z plane. The x and z coordinates of the wing tip are
put into the cone equation to generate the y coordinate of the wing tip. Figure
(4-3) also shows the location of the shock intersection in the y-z plane. These three
coordinates are where each cross section intersects the shock. The factors that scale

the base plane waverider geometry are given by

tactor — . XSHOCK; - XNOSE s — 8a)
X2 1actor = YSHOCKxmax — XNOSE (4 = 8a

YSHOCK{
vz factor = YSHOCKrvax (4 — 8b)
outer boundary factor = yz factor (4 - 8¢)

The x location of the nose has to be subtracted from the xz scaling factor if it does
not reside on the axis. The outer boundary scaling factor scales the semi-major and
the semi-minor parameters that generate the outer boundary ellipse.

A non-conical waverider has a rounded nose and is parabolic in the y-z plane.
A small problem arises when generating the 3-D outer boundary. A straight line
can not be drawn from the nose of the waverider to the outer boundary near the
wing tip in the base plane without crossing the waverider's surface. The scaling
factor has to force the outer boundary to stay the same relative distance away
from the wing tip at all the cross sections. Both the x and y coordinates of the
outer boundary are scaled the same way to simplify the geometry. The geometry
is stored as inner and outer boundary points. One cross section downstream of the
base plane is generated and stored for use in generating the metrics and coefficients

40




TEE Y.

)

'l;"-f.' T . o

WL A W
P Y Sy

N A

¥ L L
TAOSERAIN

R
w5

‘e 4
.
PR T

for the base plane solution. The z location of the inner and outer houndary points

at each cross section are the same.

Equation (3-3) is solved and stored using the grid control term Q and JMAX
points. As stated in Section 4.1.3. the stored solution is used for generating the
projected and present solutions. It is more efficient to store this result in 3-D.

because it will be used approximately IMAX by KMAX times.

4.2.2 Three-Dimensional Starting and Stopping Procedures

The 2-D grid generation procedure used three grid lines to generate the solution.
The 3-D grid generation procedure uses three grid lines in the solution cross section.
three grid lines in the cross section just upstream of the solution cross section. and
three grid lines in the downstream projected cross section. The finite differencing

scheme is shown in Fig. (4-4).

The plane-of-symmetry conditions are the same in the x-y plane as in the 2-
D wrapped grid procedure. These plane-of-symmetry conditions were discussed
in Section 4.1.4. Starting and stopping the solution in the ¢ direction is different
than the plane-of-symmetry conditions for the 2-D grid generation procedure. To
simplify this procedure three 2-D arrays are used. one at the prior solution plane at
k-1. one at the solution plane at k. and one at the projected solution plane at K~.
The prior solution plane contains known or previously calculated grid lines. The
solution and projected solution planes are intitially filled with nearly orthogonal
curves that are an estimated grid. The 3-D grid generation procedure starts at the
second cross section. At the start up. the prior solution plane contains the nose
coordinate. The 3-D grid generation procedure concludes with a solution in the
base plane. The projected solution plane uses extrapolated boundary values.
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Figure 4-4. Finite Differencing Nodes Used in 3-D
Parabolic Grid Generation
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4.2.3 Orthogonal Projected Solutions

The most complicated part of the 3-D grid generation procedure is filling the

- solution and projected solution 2-D arrays with the nearly orthogonal curves. The
L procedure is similar to the 2-D wrapped grid procedure stated in Section 4.1.6.
The solution and projected solution 2-D arrays are first filled with straight lines

with the proper Q distribution of points. This is done by scaling the stored 1-D Q

distribution of points between the inner and outer boundary points in the solution

and projected solution planes.

Calculating orthogonality for the 3-D nearly orthogonal curve is analogous to
the 2-D procedure. An additional set of angles in the x-z plane is required for three
dimensions. These angles are shown in Fig. (4-5). The angle of the line between
the boundaries and the angle of the normal line to the surface in the x-y plane are
calculated the same way as in Section 4.1.6. Since the inner and outer boundary
points of a cross section have the same z coordinate. the angle of the line between
the boundaries in the x-z plane is zero. The angle of the normal line to the surface
in the x-z plane is calculated by taking the arctangent of the negative inverse of the
slope of the upstream panel. The geometry is invariant along a generated ray in
the x-z plane. so it is unnecessary to average the arctangents between the panels on
each side of the node point in the x-z plane. Since the waverider is wedge shaped in

the x-z plane. the quadrant of the lines normal to the inner boundary are already

specified. If this code is used on another geometry that is highly-curved in the x-z

plane. angles in the x-z plane have to be calculated like those in the x-y plane. G

.. The rest of the 3-D nearly orthogonal curve generation procedure is similar s

: to the 2-D wrapped grid procedure. The factor that will retard or accelerate the

hyperbolic tangent is calculated by Eq. (4-4) for the x-y plane and the factor for
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the x-z plane is given by

1 . .
speed factor 2 = - —-— in radians (4 —9)
vy ~

The distance between the inner and outer boundary and the centering position are
calculated in three dimensions. The automatic grid crossover check is done the
same way as the 2-D wrapped grid procedure. This procedure was discussed in
Section 4.1.7. Since there are no concave regions in the x-z plane. the automatic
grid crossover check is only utilized in the x-y plane. Again, if there are concave
regions in the x-z plane, the x-y plane procedure can be used in the x-z plane. The
angle that controls the orthogonal curve is generated in the x-z and x-y planes the
same way as the 2-D wrapped grid procedure. The angle in the x-y plane is given
by Eq. (4-3). the angle in the x-z plane uses the same equation, but with the ¢’s
replaced with v's. The x. y and z coordinates of the nearly orthogonal curve are
generated by using o3. ¥3 and the distance from the inner boundary to the point
of concern on the straight line solution. The x and y coordinates are generated in
the same manner as in the 2-D wrapped grid procedure as stated in Section 4.1.6.
The z coordinate uses the sing; and the distance from the inner boundary. If after
the solution marches downstream once in the ¢ direction and K~ equals one, the
previous projected solution plane is now equal to the present solution plane. The
previous solution plane values are rotated into the present solution plane. Only the
nearly orthogonal curves that fill the projected solution plane needs to be calculated.

Now that the three 2-D arrays have been filled. the 3-D parabolic grid generation
procedure can be started. For each marching step taken in the ¢ direction, IMAX
marching steps are taken in the £ direction. The 3-D parabolic grid generation
procedure is basically doing the 2-D procedure KMAX times, but with different
metrics and coefficients. Since the geometry is highly-curved in the x-y plane the
same convexity check that was discussed in Section 4.1.5 has to be used to calculate
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the proper I” location. The convexity check is not done in the x-z plane. because
there are no convex surfaces. Although. there could be problems with placing
the projected solution position too far downstream in the ¢ direction. but these
problems would be associated with too much smoothing. In general. there will be

a lot of smoothing if the projected solution is far away from the solution station.

If another geometry is used. the x-v plane procedure can easily be used in the x-z

plane to check for convex surfaces. The metrics and coefficients of Eq. (3-20) are

generated with either a first-order backward differencing or a second-order central
differencing. Again the metrics and coefficients at the first and last £ solutions
at the plane-of-symmetries are calculated with the second-order central difference.
Central differencing can be used if I~ and K~ are equal to one. The coefficients
are calculated and the finite difference matrix. Eq. (3-20), is sent to subroutine

TRIDIG where the 3-D parabolic equation are solved. This process is done three

times. once for each of the three coordinates. Again the program is set up so it

can iterate. but unless backward differencing is used on the metrics. iteration is oY

-:.‘ .,'1

futile. The values in the 2-D solution plane are rotated into the 2-D prior solution DY
AN

I'--:"u'

plane. The procedure continues until the solution has marched KMAX times in the gt

—

¢ direction. S

The following is a summary of the procedure for generating 3-D parabolic grids: :::w.:f-;

Pt

1) Locate nose of waverider, calculate length of waverider, and use Eq. (3-3) to -

calculate location of cross sections in the ¢ direction with respect to the grid

. e
P
.
d S,
X .

control term R.

f4

P
"
‘l

Ty By s
P A
g PRl

2) Generate and store waverider geometry in base plane. calculate cross section

._'_
5
a_ 8 @

wing tip intersections of the shock. calculate geometry scale factors. and scale

g
Y,
.l-'4 s &

’,

v,

base plane geometry to generate inner and outer boundaries.

2
"

¥

I's

3) Generate and store solution to 1-D grid generation equation. Eq. (3-3), with Q
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8)

10)

11)

distribution and JMAX points.

Load waverider nose point into 2-D prior solution plane array.

Generate nearly orthogonal curves in the 2-D solution plane array and the 2-D
projected solution plane array.

March one step in the £ direction.

Check for grid crossover and a good I~ location in the x-y plane.

Calculate metrics and coefficients with a first-order backward difference or a
second-order central difference. Second-order central differences are used at the
plane-of-symmetries.

The 3-D parabolic grid generation equation given by Eq. (3-20) is solved by a
tridiagonal algorithm.

Go to step six until the solution marches IMAX times in the ¢ direction.
Rotate present solution plane in prior solution plane and take another marching
step in the ¢ direction by going to step six. If finished marching KMAX times

in the ¢ direction. the 3-D grid generation procedure is finished.
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. V. Results
|
= 5.1 Two-Dimensional Wrapped Grid Problems and Results
. ] 5.1.1 Boundary Generation Problems
S The first problem encountered was the location of the origin of the coordinate
svstem with respect to the waverider. The waverider geometry was generated in Egs.
(2-1) and (2-2) using polar coordinates. These equations construct the waverider ... :‘_._
such a way. that the origin does not reside within it's boundaries. The origin will
sit on the upper surface of the waverider at the plane-of-symmetry if the variable
. 6, is equal to one. a conical waverider. There is still a problem with the origin. r—‘-
T even if it lies on the waverider surface. The outer boundary varies from 0 to 180 "'."-_.'
degrees. The waverider varies from 0 degrees to the dihedral angle and back to
i O degrees. This will cause a big problem with generating grid lines on the upper r'“
) surface. For exampie. at the plane-of-symmetry on the upper surface. the outer o
E boundary has a value of 180 degrees, whereas the waverider symmetry point has a
[' value of 0 degrees. It is impossible for the 2-D parabolic procedure to vary ¢ and {:_’:
: still get the correct distribution of points on the straight plane-of-symmetry line. _*‘__
: The parabolic procedure will vary ¢ and produce a wildly curved grid line. ;.j
. [
. There are two immediate solutions to this problem. The first one would be o
to move the origin between the upper and lower surfaces of the waverider on the :
o plane-of-symmetry. This would require that the inner and outer boundary points
» be modified to reflect the change of the origin. The other solution is to convert the
, polar boundary points into Cartesian coordinates. The polar type grid distribution ﬁ:ég-
; ' is still achieved. because the boundary points have already been calculated. There f";‘;‘
- ,
: I are no problems with the way x and y vary as did r and ¢. é
: - The second problem encountered was how to distribute the points on the wa- T':‘::l -
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verider surface. In order to properly distribute points on the curved boundaries,
‘ the arclength must be specified in Eq. {3-3). Since the waverider is highly-curved.
points distributed from one of the axes would lead to an erratic distribution of
o points along the waverider's surface. If the points are distributed over the curved

L. surface according to arclength. a smooth distribution of points will result.

The number of points to be placed on the upper and lower surfaces where first
determined by their arclengths. The lower surface, for example. would take it-
arclength and divide it by the total waverider arclength to generate a fraction. This
fraction times the number of points (IMAX). would be the number of points to be
placed on the lower surface. This strategy did not work because the arclengths of the
3 lower and upper surfaces are generally about equal, no matter what dihedral angle

was used to generate the geometry. The maximum principle was violated. because
i a straight line can not be drawn between the boundaries at all positions without

crossing over the geometry's surface. The wing tip grid line for this situation is

s

’

shown in Fig. (5-1). and it is plain to see that grid lines generated near the wing tip

Phf)
S
.
.

o

Kl

on the lower surface will have to cross the geometry to get to the outer boundary.

The second method of placing points on the lower and upper surfaces of the
waverider was to use the dihedral angle. The number of points to be placed on
the lower surface, for example. was determined by dividing 180 degrees into the

- dihedral angle to generate a fraction. Again. this fraction times the number of
points (IMAX). would be the number of points placed on the lower surface. This
strategy gave bétter results than the arclength scheme. but violated the maximum

- principle. The waverider is constructed in such a way that the wing tip is cusped at

LA St
et etateta T

an angle greater than the dihedral angle. Therefore. this procedure also caused grid

.
- -
[

. lines to cross the configuration’s surface, because not all of the inner boundary points
can see their corresponding outer boundary point without crossing the waverider's
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surface. This scheme is also shown in Fig. {5-1).

As a rule of thumb for generating boundary points. a straight line has to be

LS AU N B

PaPL

drawn from the inner boundary to the outer boundary without crossing the con-

- figuration's surface. Because the wing of the waverider is cusped. a line has to be

constructed that locally bisects the upper and lower surfaces near the wing tip.

O N
e [

The intersection of this line with the outer boundary is determined. The number
of points that reside between the start of the outer boundary ellipse and the in-
‘ . tersection point is the number of points placed on the lower surface. The rest of
the points plus one are the number of points placed on the upper surface. This
scheme works extremely well, because all inner and outer boundary points can be
connected without intersecting the geometry. This scheme is shown in Fig. (5-1).
Because of the dihedral angle, the lower surface usually contains less points than
the upper surface for a constant spaced outer boundary. Since the shock wave is
attached to the lower surface, there should be enough points to discriminate the
higher pressures. If a negative P distribution of points is used on the outer boundary
ellipse. more points can be pulled down onto the lower surface. The outer boundary
no longer has an equal distribution of points with respect to arc, but the desired
number of points on the lower surface can be achieved without much additional

clustering on the outer boundary.

5.1.2 Wing Tip Grid Wrap Around Problem

The third problem encountered was how to make the 2-D parabolic grid genera-

tion procedure march around the wing tip. Since the wing tip is thin, the parabolic
grid procedure has to march around an almost 180 degree turn. The 2-D grid gen-
erated around this corner has one or more grid lines that intersect the waverider’s
surface or each other. Even though a straight line can be drawn from all inner

boundary points to their respective outer boundary points without crossing the o
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surface. the maximum principle is still violated.

One solution to this problem is to refine the points near the wing tip. This is
shown in Fig. (5-2). The added points at the wing tip fan out the grid lines. so
the grid lines in the area of the wing tip do not lie close to the inner boundary.
This process eases the 2-D grid generation procedure around the wing tip. The
other solution to this wrap around problem is to use a slit transformation. which is

discussed in Appendix A.

5.1.8 Projected Solution Convexity Problem

The fourth problem encountered was the projected solution being too far down-
stream around a convex surface. A test case was run, where a grid was generated
between two half circles. The projected solution was set at the far boundary. Q
was set at zero so the grid would be constant in the n direction. The 2-D solution
resulted in grid points crossing the inner boundary and the first plane-of-symmetry,
as shown in Fig. (5-3).

The 2-D parabolic grid generation procedure needs to check and see if the
projected solution is too far downstream over a convex surface. This is accomplished
by drawing a line through the j=2 nodes of the prior solution and the projected
solution. Lines are constructed from the boundary points between the present and
projected solutions. The intersections of the line between the two nodes and the lines
between the boundaries are calculated. The intersections are checked to see if they
lie between the boundaries. If all the intersections are between the boundaries. the
projected solution position is acceptable. If any of the intersections are below the
inner boundary. the projected solution has to be retarded by one position. The check
has to be repeated until all intersections are between the boundaries. Figure (5-4)
shows the projected solution set at the far plane-of-symmetry where the convexity
criterion has moved it to an acceptable position. Maximum smoothing occurs when
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the projected solution is as far away from the solution station as possible. Figure

I E (5-4) shows the result of the projected solution being as far away from the solution
) station as the convexity criterion will allow. Figure (3-3) shows minimumsmoothing
r :::f where the projected solution is one station downstream of the solution station. If
l i the grid is highly-clustered near the inner boundary. this procedure will not allow

the projected solution to be too far downstream of the solution position, because

the second grid points are barely off the geometry’s surface. The projected solution

' is limited to be at least one station downstream of the solution station.
) 5.1.4 Grid Crossover Problem
i ¥ The last problem encountered with the 2-D wrapped grid procedure was grid

crossover in concave regions when orthogonality has been specified. This problem

results because the hyperbolic tangent in Eq. (4-5) is centered too far away from the

h ‘ inner boundary. This caused the orthogonal projected solution to stay orthogonal

‘ B too far from the inner boundary. The result is grid crossover, which violates the ‘,n-

k - maximum principle. The solution was to move the centering position closer to the E‘;
. o,
- I inner boundary. _: -
o 5.1.5 Results ",
I -

;: o The first 2-D wrapped grid generated. after all the problems stated above were .
solved, was non-orthogonal to the waverider surface. This grid is shown in Fig.

. (5-6). There are no problems with grid crossover in this case. because the grid

‘. - lines basically proceed straight from the inner to the outer boundary. Eight refined

: points were placed near the wing tip to fan out the grid lines in the wing tip area.

; This helps the 2-D parabolic grid generator march around the wing tip corner.

;. '{\: Fewer refined points can be used near the wing tip. but would make the grid lines

lie closer to the waverider's surface in the area of the wing tip. More refined points
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|
: can be used at the wing tip. but since there is a one-to-one correspondence between
t u inner and outer boundary points. less points would actually be put on the rest
by
) of the waverider's surface. In order to get the best definition of the waverider’'s
’ surface. as few as possible refined points should be placed near the wing tip. This
i ] grid has 60 points in the £ direction and 20 points in the n direction. More points
are placed on the lower surface. because the outer boundary points were generated
with a P distribution of -.02. The negative P distribution of points on the outer
l boundary clusters points near the lower plane-of-svmmetry. This P distribution
.;t results in a close to equal spacing of points on the waverider surface. If P is made
:: more negative. more points will accumulate on the lower surface. If P is made
N
i e more positive, more points will accumulate on the upper surface. The points are

also clustered near the inner surface with a Q distribution of -.15. By decreasing
Q further. points can be highly-clustered near the surface. The projected solution
in this case was one station downstream of the solution station. This grid used
central differencing on the metrics. but this approximately generates the same grid
as the backward differencing would generate. The 2-D parabolic grid generated an

acceptable non-orthogonal grid.

The next grids that were generated were orthogonal to the inner boundary and

slowly curved towards the outer boundary. Many grids were generated without
grid crossover problems when a coarse grid in the ¢ direction was used. When the e

grid was densified, grid crossover occured in concave regions. This is shown in Fig.

(5-7). The same parameters are used to generate this grid as were used to generate

. - < gs . . s .
the non-orthogonal grid in Fig. (5-6). The Q distribution was set to zero, which .::x_\:'.:;
IS

(3% P
generated a constant grid in the n direction. The hyperbolic tangent was centered :::'\?..
:J‘ N
Ad

on the tenth point, which is centered between the inner and outer boundaries. At
this centering point the orthogonal curve bisects the normal line and the line that
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connects the inner and outer boundaries. This resulted in grid crossover in the ) I:_-f:jf,‘
‘ concave region. because the nearly orthogonal centering is locally positioned too 1 {
- T
R close to the outer boundary. The grid lines everywhere else are okay. -:::::-:':-
The first way of solving this problem was to simply move the point where the :::—'.:::f}‘
-’,\- =
' hyperbolic tangent was centered. The result of this variation is shown in Fig. (5-8). : q
" ..-',_F':
The same parameters are used in this grid as used in the grid in Fig. (5-7). except ST

the centering point was moved from the tenth point to the sixth point. This solves o
the problem with the grid crossover in the concave region, but also decreased the o

orthogonality everywhere else.
The second way of solving the grid crossover problem is similiar to the first.
" Instead of moving the c.entering point. the points are clustered closer to the inner
boundary. This grid is shown in Fig. (5-9). Even though the hyperbolic tangent is

still centered on the tenth point. the tenth point is pulled closer to the waverider's

. surface with the user specified Q distribution.

The third way of solving the grid crossover problem, is to contol the centering

position locally in a concave region. This grid is shown in Fig. (5-10). Again. the

F grid is generated with the same parameters that caused the grid crossover in Fig.

(5-7). except the program locally controls the centering position.

. The grids used in Figs. (5-7) through (3-10) have 1200 grid points. The total
L. CPU time to generate these grids on a Cyber 170-845 is .24 seconds. This translates ._____’

into .2 milliseconds per grid point.

~ 5.2 Three-Dimensional Wrapped Grid Problems and Results L
The only significant problem encountered in generating the 3-D grid was in >

generating the boundary points. This was not a trivial task. The inner and outer

'“ boundaries had to be fully visualized before a grid could be generated. If the
waverider is conical. the nose is at the apex of the shock c