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"" Preface

This study develops a new technique for generating flow field grids around arbi-

trarv configurations such as transatmospheric vehicles, missiles, advanced fighters

etc. Since flight and wind tunnel testing are very expensive, it is advantageous to

generate computational solutions first to minimize the wind tunnel testing. There-

fore. it is crucial to construct grids for these computational solutions in such a

manner that the flow field is accurately represented on the grid. At the present

time representative grids are generated by elliptic partial differential equations at

the cost of a great deal of computer resources. This study will demonstrate how

r ,representative grids can be generated by parabolic partial differential equations in a

fraction of the time used by elliptic partial differential equations. It should be noted

that the type of grid that should be utilized is dictated by the method used in the

a iflow solver. The scope of this thesis is limited to the development of grid generation

procedures and not in the generation of flow solutions. Flow solutions should be

obtained with this grid procedure and compared with solutions using other grid

" procedures. Due to a lack of time and computer resources the flow solutions can

not be accomplished.

i .. I would like to thank Major James K. Hodge for suggesting the thesis topic and

the many helpful discussions. I would also like to thank Dr. Joseph Shang and Dr.

. Sal Leone for serving as members of my thesis committee.
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Abstract
.' - .'

Two- and three-dimensional surface normal grids are generated in Cartesian co-

ordinates around a supersonic/hypersonic waverider configuration using parabolic

partial differential equations. The elliptic partial differential equations for grid gen-

eration are parabolized in one direction for two dimensions, and in two directions

for three dimensions. This is consistent with spatial marching flow solutions. The

parabolized grid equations march in one direction for two dimensions and in two

directions for three dimensions. without iteration. The following problems are inves-

tigated: description of the boundary points, grid generation around the waverider's

wing tip. approximations to the elliptic grid generation equations around a convex

corner, and grid crossover in concave regions when orthogonality is specified. The

degree of grid smoothing in the marching directions is related to the positioning

of the approximations to the elliptic grid generation equations. Highly stretched

.,urface orthogonal grids are accurately generated without grid embedding for high

.' .e".,o~d'~. number flows, in less than one percent of the computer time required by

elliptic grid generators.

,
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i i I~. Introduction ..

1.0 Background

Today in computational fluid dynamics. it is difficult to generate flow field grids

around an arbitrary three-dimensional (3-D) aerodynamic configuration. There

are many ways to generate grids. among these are conformal mapping procedures.

algebraic methods and differential equation techniques 1
,
2. The differential equation

* - techniques require that elliptic, parabolic or hyperbolic partial differential equations

(PDEs) be employed. The elliptic PDEs are the most widely developed. But. the

elliptic grid generation equations are costly in terms of computer time due to the

numerous iterations involved in solving these equations. The hyperbolic PDEs are

the next most widely developed procedure. Although this procedure can produce

grids quickly with its marching techniques. the outer boundary can not be specified.

If the boundary contains a discontinuity, the discountinuity is propagated into the ",

interior of the flow field and can produce a grid "shock." The parabolic PDEs

r. that approximate the elliptic grid generation equations. are the most promising for

rapidly generating a good solution. If one is not careful there is a danger of grid

crossover, which will yield a zero Jacobian or violate the maximum principle.

Thompson3 in one studv, and Steger and Sorenson' in another study, used

elliptic PDEs to generate flow field grids. The Poisson equation was used to generate

highly-stretched grids by clustering points near a boundary. The elliptic equations.

with Dirchlet boundary conditions, insure an unique solution. This guarantees a

S-.- one-to-one mapping between the physical and computational planes, although the

: .differenced form of the equation may not. With Neumann boundary conditions

set on the boundaries, grid lines are orthogonal to the inner boundary surface, but N
may produce a zero Jacobian. The elliptic equations smooth out discountinuities



from the boundaries without the danger of grid crossover. Because the domain of

influence covers the whole computational plane, all points affect each other. The

elliptic equations generate good grids, except numerous iterations are needed. The

solution of the elliptic equations is inherently expensive and grid control is difficult.

Steger and Chaussee5 used hyperbolic PDEs to reduce the computer time needed

to generate a grid. The hyperbolic equations march in all directions, which is con-

putationally efficient. If there is a discountinuity on the boundary, it is propagated

into the interior of the flow field. To keep these equations stable, artificial viscosity

must be included in the finite difference equations. The hyperbolic equations can

generate grids which are nearly orthogonal, but the outer boundary points can not

be specified. On a concave surface, orthogonal grid lines will coalesce, causing a

grid "shock." This is also true for most grid generation procedures.

To specify the outer boundary, reduce grid generation time and enhance grid

control. Nakamura6 used parabolic PDEs. The parabolic equations are an initial

value and boundary value problem and can take advantage of marching techniques.

By parabolizing the elliptic equations, the parabolic equations reproduce most of

the properties of elliptic equations. The parabolized equations reproduce the dif-

fusion effect which smooths out discontinuities that may be present on the inner

boundary. The parabolic equations also allow the outer boundary surface to be

specified. The elliptic equations are parabolized in the 17 direction and the solu-

tion is marched from the inner boundary to the outer boundary. The parabolic

equations require that an approximation to the elliptic equations be made either

upstream or downstream of the solution position. The outer boundary is used for

this approximation in this case. Since the outer boundary is generally distant from

rthe inner boundary, there could be too much smoothing near the inner boundary

for a highly-curved complex geometry. The Laplace equation is parabolized instead

~r. 2



of the Poisson equation. therfore grid )oints have to be clustered by some other
means than specifying the source terms. Points are clustered near a boundary by

using linear relationships. Near orthogonality at the inner boundary is also accom-

plished by linear relationships and must be re-calculated after each marching step.

When generating grids in three dimensions. Nakamura 6 marches in both the ?? and

. directions. Since the 3-D grid. in this case. marches from the inner boundary to

. '. the outer boundary in one of its directions, the whole grid has to be generated and [""7

stored before there is enough information for a flow solver to be initiated.

Edwards also used the Laplace equation and parabolized it in the ?7 and I;

directions. Points were clustered and orthogonality was imposed in much the same

way that Nakamura6 did. Grid embedding was used to enhance the grid density

--. near the inner boundary. This option causes problems when coupled to a flow

solver. Boundary conditions between the regular grid and the embedded grid have

U to be matched. If grid stretching and the outer boundary is selected correctly, grid

embedding can be advoided. In physical space. a rectangular boundary is used. -.- ,

This makes it difficult to disperse points near the outer boundary where there are

no viscous effects.

Noack8 also solved the parabolic PDEs to generate two-dimensional (2-D) grids

in each cross plane of a 3-D axis normal grid. The Laplace equation is parabolized

!- in the q direction as Nakamura6 and Edwards7 . Both Nakamura , and Edwards7

used the outer boundary to approximate the elliptic equations. As stated before,
* %this can cause too much smoothing near the inner boundary if the geometry has a

highly-curved surface. The elliptic equations are approximated at the next station

out beyond the solution boundary. This corrects the problem of a possibility of too

much smoothing. but in some cases it may not generate enough smoothing.

Finally, Hodge, Leone and McCarty 9 used parabolic PDEs to generate 3-D grids.

3
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Instead of marching in the conventional directions q and . the elliptic equations

are parabolized in the and ( directions. This has great significance when grid.

are generated in three dimensions because only three 2-D planes or surfaces need..

to be stored at one time. Since these solution procedures also march downstream

the whole grid is not stored at one time. decreasing memory storage requirements.

Hodge. et a19 parabolized the Poisson equations. Specifying the source terms in the

. Poisson equations allows the grid to be highly-stretched for high Reynold's number

flows, without using grid embedding. The approximation of the elliptic equations

can be placed anywhere before or after the present solution. Hodge. et a19 did not

*: extend the grids to be orthogonal near the inner boundary. but were generated

normal to the axis only. Since the 3-D grid equations are used. changes from one

cross plane to another are smoothed. In addition. the grid can be adapted while

marching.

1.2 Motivation.

Missiles with non-circular lifting body cross-sections are of current interest as

a means for obtaining high-performance at supersonic/hypersonic speeds. Missiles

need to achieve higher performance in order to outmaneuver advanced fighters.

A waverider configuration will generate these high-performance characteristcs. In

the development of a waverider configuration. designs must be subjected to wind

tunnel tests and numerical simulation. Computational methods such as Navier-

Stokes or Parabolizied Navier-Stokes must be used to take into account the high- L '

speed thermal effects, viscosity and flow separation. These flow solvers need a

representative flow field grid.

A procedure needs to be developed to generate 3-D nearly orthogonal grids that

S use minimal computer resources and attain some degree of smoothing. Although el-

liptic PDEs generate good grids, they use excessive computer resources. Hyperbolic

4
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PDEs give efficient soltion,. but the outer boundary surface can IlOt be specified. 1..,_

Discontinuities on the boundaries may be propagated into the interior of the flow

field causing a grid "'shock." The desired qualities can be generated from parabolic

PDEs. Efficient grids can be generated from the parabolic grid generation equations

that will have the desired characteristics of the elliptic grid generation equations.

The parabolic grids can be generated to be highly-stretched and orthogonal to the

inner boundary with minimal computer resources.

1.3 Problems

Generating a grid around the waverider configuration is challenging. The gen-

eralized waverider used in this study has concave, convex and thin lifting body

surfaces. The waverider configuration is a stringent test for any grid generation

scheme.

In order to generate a valid grid. the inner boundary points must be able to see

its corresponding outer boundary point without the geometry's surface getting in

- "' the way. Since the waverider is highly-curved, generating the boundary points is not .

a trivial problem. Wrapping the grid around the waverider's wing tip without grid

lines crossing the geometry's surface is another problem. Specifying an orthogonal

grid on a concave surface may violate the maximum principle, because all the grid

- lines will tend to coalesce.

1.4 Objectives

The first objective is to generate a wrapped 2-D nearly orthogonal grid. The

first step is to properly distribute points on the boundaries. Next a procedure to

generate the grid around the wing tip is developed. One option is for the grids

S"-. to proceed from the inner to outer boundary in almost a straight line. The other

option is for the grid lines to be orthogonal to the waverider's surface. Finally. the

5
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orthogonalitv criterion needs to be relaxed when the inner boundary becomes too

concave.

The second and last objective is to generate a wrapped 3-D nearly surface

orthogonal grid. This is a simple extension of the 2-D grid procedure. Most of the

i L problems with the waverider's geometry are dealt with in the 2-D grid generation

procedure. For a waverider configuration or conical structure, the cross-sections are

invariant along a generated ray. so there will not be problems with generating the

grid as in the 2-D wrapped grid procedure.

1.5 Overview

The following is a brief summary of what will be discussed in each chapter. ".

Chapter II demonstrates how a waverider is constructed, and how it generates

high-performance characteristics. Chapter III gives the elliptic Poisson equations

in one. two and three dimensions. The 2-D and 3-D equations are parabolized.

The finite difference form for each set of parabolized equations are generated with a

procedure on how to use them. Chapter IV explains how the 2-D and 3-D wrapped
..-. 

.

grids are produced. Chapter V displays the results, and discusses how problems

were solved. Chapter VI states the concluding remarks. Chapter VII gives the

recommendations. Appendix A discusses a 2-D slit transformed grid procedure.

Appendix B is the 2-D wrapped grid computer code. Finally, Appendix C is the

3-D wrapped grid computer code.

-r
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" II~~1. Waverider (Configuration"-""

This Chapter defines a waverider. demonstrates how an infinitesmally thin wing

waverider is generated from a known flow field. and develops the 2-D equations of

a thick wing waverider in the base plane for extension into three dimensions. ,

2.1 Definition of a Waverider

Starting from a cone. it is possible to construct high-performance configurations. .

These configurations are generated by identifying special stream surfaces appropri-

ately as solid surfaces from known flow fields' 0 . If steady inviscid flow equations

are used to generate flow fields, a stream surface has no flow across it and can be

used as a solid surface. The rest of the flow field is inviscid flow past the newly con-

structed solid surface. Numerous aerodynamic configurations can be constructed
by this method. If the resulting upper surface is aligned with the freestream flow.

. . it will generate a freestream pressure on this surface. If the resulting lower sur- %a.

face is bounded %Yy an attached shock, it will generate a pressure associated with

rthe shock on this surface. The combination of these two surfaces will generate a

high-performance vehicle. These vehicles appear to ride on a shock wave attached

beneath them. therefore they are called waveriders.

t.-. L-4

2.2 Construction of a Waverider

.* . The waverider used in this study is constructed from a known flow field around * 2.

an axisymmetric cone. The centerline of the cone must first be aligned with the

*.. freestream. The known flow field is constructed by taking the freestrearn Mach

number along with the cone's semi-vertex angle to calculate the inclination of the

shock. A streamline starting in the freestream flow will pass through a ray on the

shock and remain in a plane as it proceeds asymptotically towards the surface of the

W,-
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cone. Other streamlines that pass through thi- same ray on the shock will proceed

downstream in the same plane. The combination of these streamlines make a plane

stream surface that is perpendicular to the cone and the shock boundary as shown

in Fig. (2-1).

.. %,'

There are an infinite number of these stream surface planes that pass through
.one*

the centerline of the cone. Two of these stream surface planes oriented at a positive

and negative angle o. form a symmetric pair of lifting surface planes as shown in

Fig. (2-2). If the portion of the cone above the lifting surface planes is discarded.

the whole upper surface of the waverider is aligned with the freestream. The only

place where the shock is attached is along the wing tip of the waverider as shown

in Fig. (2-3). In reality, there will still be a shock wave on the upper surface due to

boundary layer iteraction. but this surface will still be close to freestream pressure.

Thus the waverider has higher pressures on the lower surface and lower pressures

on the upper surface, which will generate a high-performance vehicle. --

• - - %

r- The configuration just developed has infinitesimally thin wings. which is impos-

sible for a realistic configuration. This configuration has a unique design condition

for the Mach number and orientation specified. At a different Mach number and

orientation the configuration will be off design conditions, where it's performance

will be decreased. These configurations are only applicable in the supersonic and --

hypersonic flow regimes. The sharp nosed, sharp wing tipped waverider is also im- ,

practical. because in a hypersonic flow they will melt or oblate. The waverider used

in this study was developed through the hypersonic small disturbance theory which

idealizes the configuration. as well as making it difficult to analyze at off-design

conditions. Therefore. using an computational method on the waverider will allow

a more realistic configuration to be analyzed at various flow conditions.

8%
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2.3 Equations to Generate Waverider Geometry

In general. infinitesimally thin wings are not possible. therefore a wing with

volume needs to be generated so fuel. propulsive systems. avionics, etc. can fit

inside. This problem was studied by Kim. Rasmussen and Jischke'' where equations

were developed to generate the lower and upper surfaces of the waverider in the

* base plane. The wings are generated with thickness and still retained most of the

properties of a waverider. The non-dimensionalized equation that generates the

lower or compression surface is given by

F32ll1
rb T2o-J J I + (2--1)

The non-dimensionalized equation that generates the freestream surface is given by

3 2  2 '. n ____

rf2 z--+ ? (2-2)
:. ~ 3 o ) 2.'.-

The non-dimensionalized 3-D surface of the waverider is generated by scaling

the 2-D base plane geometry with respect to cone characteristics. There are two

types of waveriders. conical and non-conical. The conical waverider has a sharp

F nose. A straight line can be drawn from the base plane at the wing tip to the cone's

" apex. This is where the waverider intersects the shock wave. In both the x-z plane

and the y-z plane this intersection is a straight line. A straight line can be drawn

from the apex of a cone to any other point on the cone. The x-y plane cross-sections

*. are then scaled according to the distance downstream from the apex. The x and y

coordinates are scaled equally for a conical waverider.

For a non-conical waverider the location of the nose has to be determined first.

The nose is no longer at the original cone's apex, but at some other position on the % !

shock in the lower plane-of-symmetry. Since the upper surface is aligned with the

freestream. the x coordinate of the nose is at the same x coordinate as the upper

surface plane-of-symmetry point in the base plane. The waverider is symmetrical,

'1
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therefore the y coordinate of the nose is equal to zero. The z location of the lJose i.

determined by placing the x and y coordinates into the equation of a cone. A line

can be drawn from the base plane at the wing tip to the nose. This line projected

-' into the x-z plane is a straight line. The same line projected into the y-z plane is
- .- '. '.'

. a parabola. This is shown in Fig. (2-4) and in Fig. (4-3). Since the z locations of t

the cross-sections are specified by the grid control term R, the x location of these

cross-sections can be determined from the straight projected line in the x-z plane.

The y coordinate of the shock intersection is determined by substituting the x and

z coordinates into the cone equation. The x and y cross section coordinates are

determined bv scaling the shock intersection coordinates with respect to the base

plane coordinates. For a non-conical waverider, the y coordinates are stretched

more than the x coordinates near the nose. :,-

In general the symmetric configurations generated by the above equations will

not be conical. even though the shock and the flow in the shock layer are asymptot-

ically conical. The waverider will be conical only if the compression surface touches ,.. .

the original cone. This waverider will have a pointed nose and a sharp ridge on the

I ~ upper surface. The waverider will not be conical if the compression surface does not

intersect the original cone. This waverider will have a rounded nose and a rounded

corner will replace the sharp ridge on the upper surface. Although the waverider

will have a rounded nose in horizontal projected plane. the nose will be sharp in

any vertical plane.

'°." 13
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I1. Parabolic Grid Equations

This Chapter generates the 2-D and 3-D parabolic grid generation equations.

A finite difference equation is generated from the I-D Poission equation to generate

boundary points. The 2-D and 3-D Poisson equations are parabolized to generate

the 2-D and 3-D parabolic grid generation equations.

* 3.1 One-Dimensional Grid Generation Equation

In the physical plane. the linear one-dimensional (l-D) elliptic grid generation

equation is given by

Prr = , r) -- ' (3-.1)

This equation must be transformed from physical space into computational space

" "such that there is a one-to-one mapping between the spaces. If the Jacobian does

Snot go to zero the transformation exists. In the computational plane. the linear 1-D

elliptic grid generation equation is given by

r,, + P( )r = 0 (3- 2)

where the r can be any appropriate coordinate in a Cartesian. cylindrical, or spher-

ical coordinate system. The.r can also be in terms of arclength. The source term

is not modified for the cylindrical and spherical coordinate systems.

The P term in Eqs. (3-1) and (3-2) is a grid control or source term. If P is

- equal to zero, the 1-D grid will be evenly spaced. If P is a constant, either positive

or negative, the 1-D grid will vary exponentially from one boundary to the other. If

" "P is negative it will exponentially cluster points at the inner boundary and disperse

the points at the outer boundary. A positive value of P would cluster points at the '-V

Siouter boundary and disperse points at the inner boundary. By varying the values

-.- of P, a grid can be highly clustered at one boundary and constant at the other "

-15
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" * - boundary.This approach generates a grid that can be custom-tailored to a specific

type of flow field. The computer codes in this thesis do not have this option. but

could easily be modified to include variable source terms.

The numerical solution of Eq. (3-2) is based on an exponential form. The

exponential form is based on the Unified Difference Representation (UDR) 1 . If the 4

grid control term P is constant. UDR gives an exact solution for an exponential

grid. If the term P is varied, there will be truncation errors in the UDR solution.

The magnitude of the truncation errors depends on the size of the variation of P.

The truncation error for an exponential grid generated with UDR and a constant

grid control term is approximately zero or is on the order of the accuracy of the

computer. The finite difference equation using the UDR is given by

-[P(-P) + .(P)eP1 i-i + [I + e- F. - [p(P)+ p("P)e"'P.] Fi

(3-3)0 if < 0 
j,4A.L

.M(S) = (34)
1if S> 0

Equation (3-3) contains two equations. one for P less than or equal to zero and one

rfor P greater than zero. Equation (3-3) requires no iteration. By specifying two

boundary values and P. the 1-D grid generation equation can be efficiently solved

using a tridiagonal algorithm. %

3.2 Two-Dimensional Grid Generation Equations

In the physical plane, the 2-D elliptic grid generation equation is given by

Gxx + Cyy =P(,1) (a + Y) (3 -5a)

.Xx +" lyy = Q(C,?7)(72 + ?7y) (3-5b)

These equations are transformed into computational space, such that there is a one-

i ,° to-one mapping between the spaces. A one-to-one mapping is guaranteed for the

• '." 16
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Poisson equation using Dirchlet boundary conditions with a positive, negative or

zero source term. In the computational plane. the linear 2-D elliptic grid generation .

equation is given by

o1 l1 (FC + PF) + o 2 ,r' 7+Qi,) = -2o 12 - (3-6) _._

The vector r is given by

F = y or 0 or 0 7 (3- 7)__
z z "t -.

Where the vector r is given by any two coordinates in a right-handed Cartesian,

cylindrical or spherical coordinate system as in Eq. (3-7). The vector r can also

be written in terms of tangential and normal coordinates. The coefficients in Eq. _

(3-6) are given by the ijth signed cofactor of the matrix in Eq. (3-10). The grid

control term P stretches the grid in the c direction, whereas the grid control term

SQ stretches the grid in the q direction.

2
a* = i CnJi (3 -8)

n= _

U Cjcj (-)"'. Mkt (3 -9)

M = xf x17 or rf r,, (3-10)

Two-dimensional grids can be generated from Eq. (3-6). but it requires many

iterations to generate a solution. A marching or non-iterative solution can be gen-

erated, if the elliptic equations are parabolized. This has already been done by
Nakamura 6 , Edwards7 and Noack 8 , except this solution will march in the direc-

tion and use grid control terms for clustering grid points.

In order to parabolize Eq. (3-6) in the direction, the second derivative in is

approximated by a central difference operator and is split into the difference between

first derivatives. The first derivative with respect to is approximated by first order
": 17
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directed differences and the derivatives with respect to ?I are approximated by the

p I'DR. The parabolic approximation equation is given by

01111 + P(-P)IPII - A22 1F, ', + W171= (Il [1 + P(P)IPI] F .,I + 2a, 2F

(3- 11)

The two terms on the right hand side of the equation are the source term. These

terms are approximated by prescribing points at some I- location. The points

prescribed at the I- location are the approximation to the elliptic equations. The

I- location can be fixed or moving at a prescribed interval ahead of the solution.

The I- location can be anywhere between the present solution and the end of the

computational domain. The points to be prescribed at I- are represented by either

a straight line or a nearly orthogonal curve with the proper Q distribution of points.

As in the 1-D solution, the 2-D solution is based on the exponential UDR form.

The finite difference equation is given by

_oi,0 [ ]- [ ']-.
"1Q11 -[,(-Q) + P(Q)e - Q rI + [(Q) + (-Q)e - '

[ ] 1 22QI ]]
+ [11 1+ IPI + + i 1 + e-  ,j =

[ 1 + (-P)IPI] ilj + i + -P rIj

+ 1 2__ 
-

+ 1 f, J -j- I - rI,j~l + i.-Ij-I (3-12)

-: K =- 1QK (3-13)

If Q is equal to zero, the denominator of Eq. (3-13) is zero. When Q is in the

vicinity of zero Eq. (3-13) is replaced by

K.- =--k2 LQ Q - LQ- + 1-w6 if JQJ < 10-6 (3 -14)
2 6 24 1200-13-4

Equation (3-14) is a five-term Maclaurin expansion. The I- - i factor scales the

approximation to the elliptic equations according to it's distance from the solution

,MIS
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point. Since Eq. (3-12) is quasi-linear, it iay require iteration to improve the

coefficients. Nakamura6 and Edwards 7 did not iterate their solutions. Noack and

Hodge. et a19 have an option to iterate.

. The parabolic grid generation procedure requires that the inner (j=l) and the

outer (j=JMAX) boundary surfaces be specified with the proper P distribution of a

points. To start the 2-D grid generation algorithm from a plane-of-symmetry, the

boundary points at i=2 are used by the I-D grid generation equation to generate

either a straight line or orthogonal curve with the proper Q distribution of points.

This is the projected solution at 1-. This solution is reflected to the other side

of the plane-of-symmetry at i=O to get the solution at the prior station. The

boundary points at i=1 are used in Eq. (3-3) to generate a straight line with

the proper Q distribution of points, so a guess at the metrics can be generated.

The metrics and coefficients can now be approximated with either a backward or

a central differencing technique. The 2-D grid generation equations are solved by

a tridiagonal algorithm. In order to march, the projected solution must be re-
V.

calculated for each marching step. The generation of the metrics and the 2-D

grid generation equations are solved for each marching step. At the last solution

station. at the plane-of-symmetry. the projected solution is generated by reflecting

the previous solution. at IMAX-1, across the plane-of-symmetry. The metrics and ,,-

coefficients are calculated and the tridiagonal matrix is solved. This step completes

. ,the 2-D grid generation procedure.

3.3 Three-Dimensional Grid Generation Equation

In the physical plane, the 3-D elliptic grid generation equations are given by

CX + CYY + Czz = P(cln. )(e + C + (3 -15a)

* Ixx + Tlyy + ?Iz = Q(Cq7)(1?2 + ?Y+ Fb(3 -15b)

.., + + zz = + 2 + 2 ) (3-15c)

19
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These equations are transformed into cMilputational !.pace. assuming there is a

.one-to-one mapping between the spaces. and are given b%

+ P.;m--w 2.-+. + Q F + (133i Fr c + R F,--

2n&47+ (3 + 0 23 F, (3- 16)

t
The vector r is given by Eq. (3-7) in either a Cartesian. cylindrical or spherical

- right handed coordinate system. The coefficients in Eq. (3-16) are given by the ijth

signed cofactor of the matrix in Eq. (3-18). The grid control term P stretches the

grid in the c direction. the grid contol term Q stretches the grid in the '. direction,

and the grid contol term R stretches the grid in the direction.

t 3
>li CniCnj (3 - 17) -

nl-

x ,, x ( r C r ,, r , r C r . 1  r
(xe 0,1  0~o 9 ,7 0( 0" or 0(e (3- 18)

In order to parabolize Eq. (3-16) in the C and i directions. the second derivatives

again must be approximated by a central difference operator and split into the

Sndifference between first derivatives. The first derivative with respect to and area

approximated by first order directed differences and the derivative with respect to

* q are approximated by the UDR. The parabolic approximation equation is given

by

oii[ + p-P~fU ~ + a 3 3[1 + (-R)IRIJ -a 2 r 1 i+QJ=

a I [I + P ,(P))PJ 1 , + 0k33 [1 + ,r(R)R II',.

+ 2fa 12Ft, + a 3F(; + a 23 r, (3- 19)

There are now three terms on the right hand side of the equation. These three

terms are the source term that must be approximated. In the 3-D case, points both

at the ' and K- locations must be prescribed.

20
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Again the 3-D solution is based on the exponential form of the UDR. The finite

difference equation is given by 94

-o221Qt .
.(-Q) +U(Q)e Q ri-.k + [UM +/l(-Q)e QrJ~ik-

19+ + a33 IRI+ +

loll [+ 0]]+++Fi_
( 221Q-,4- l -- Q " "-JI e 1 + =

0111 L + U(-P)IPI r-lj.k + 1+ A A-)IP -:-- i,k

+C)33 I + p(-R)IRI ij,k-I + 1+ (R)IRI K 1 k ri'jiK'
r.'?l'..-]

I- [4 J Lk - ,J-I.k FI- .k + --a,]

+ + (I--i+ 1)(K - -k+ FIJK- - F+-1J-) - fi-k,j,K- +  i-iJ-I..

_023 [ k+ 1 L" I. -- ](3 - 0)?-'.- _
+ K- F+1i.K- - rj .K- - Fi,j-,1.k-i + rij-Ik-] (3 -20)

Equation (3-20) is quasi-linear and may require iteration to improve the coefficients.

- The 3-D parabolic grid generation procedure is almost identical to the 2-D

procedure. The differences include: specifying inner and outer boundary values in

. 'three dimensions, having an extra marching direction, more complex metrics and

"." coefficients. and calculating an extra projected solution at K. This procedure also "-,

requires the use of nested loops.

-A-
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IV. Numerical Procedure -

This Chapter explains in detail how the 2-D and 3-D grid generation procedures

were constructed. It explains the rationale behind what was done in the computer

code. so modification can be accomplished more readily. See Appendix B for 2-D

wrapped grid listing. See Appendix C for 3-D wrapped grid listing.

4.1 Two-Dimensional Wrapped Grid Procedure

4.1.1 Program Setup

Key parameters must be specified. before the waverider geometry and the grid
r

can be generated. Subroutine SETUP controls 21 of these parameters. SETUP

initially specifies all 21 parameters. The user can interactively modify any of the

parameters through a menu generated at the computer terminal.

-II The shock angle needs to be calculated before the waverider geometry can beL

generated. The shock angle is used as one parameter in Eqs. (2-1) and (2-2) to,..

generate the base plane geometry of the waverider. Subroutine SHOCK uses the ..

Mach number and cone's semi-vertex angle to iterate on the transcendental shock

relation. An initial guess of the shock angle is generated by

-,-I M2

- +

The transcendental shock relation is given by ~... ..

.., + I sin3nsinh 1
= \ 2 cos(j,_-6_) + M42 (4-2)

Equation (4-2) is solved iteratively. starting with the initial guess from Eq. (4-1).

4.1.2 Boundary Points :-.

In order to properly distribute points on the curved boundaries, the arclength

must be specified in Eq. (3-3). Because the waverider is highly-curved, it is im- -

22
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practical to distribute points by specifying an increment on one of the axes. This

Sprocess does not take into account the shape of the geometry. and would result

in an erratic distribution of points over the waverider surface. If the points are

-. distributed over the curved surface according to arclength. a smooth distribution

of points will result. 7.-.

A table of angles. radii, and arclengths must be constructed to convert the

distributed arclengths into cylindrical coordinates. Subroutine ARCLEN generates

this table. ARCLEN starts by calling subroutine GEOM. which calculates the

radius of the lower surface of the waverider. the radius of the upper surface of

*the waverider. and the radius of the outer boundary ellipse at zero degrees. The

angle is then incremented by one degree and the three radii are re-calculated at

the incremented angle. When ARCLEN has two points from each set of radii, it

calculates the arclength by determining the distance between the two points. At the

third point and beyond. ARCLEN calculates the distance between the two points

r%" from each set of radii and adds it to the previous total arclength. This process is

continued until the dihedral angle is reached. where the table of o. radius of lower

surface, radius of upper surface, arclength of lower surface, and arclength of upper

surface is completed. The table for the outer boundary is continued until the angle 4.

"- of 180 degrees is reached. <.'

- The arclength of the outer boundary ellipse and the grid control term P are

used. in Eq. (3-3), to generate the points on the outer boundary. The two bound-

ary values needed are zero for the beginning of the outer boundary ellipse and the

arclength for the end of the outer boundary ellipse. The coefficients of Eq. (3-3)

are generated. These coefficients are used in subroutine TRIDIG. which implicitly

solves the equation with a tridiagonal solver. TRIDIG outputs IMAX points with

the proper P distribution of arclength. The distributed arclengths are input into "

23
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sulbroutine INTERP. where corresponding values of r and o are interpolated. IN-

3TERP searches for the distributed arclength in the table for the outer boundary

ellipse. A linear interpolation is done between the points stored in the table on

both sides of the distributed arclength. to calculate r and 0 for a point on the outer

I ~ boundary ellipse. The boundary points are then converted from cylindrical coordi-

"- nates into Cartesian coordinates. This conversion is necessary. because the origin

of the system does not reside within the waverider. This problem will be discussed

in detail in Section 5.1.1.

The number of points to be placed on the two surfaces of the waverider needs

*" to be calculated. Section 5.1.1 discusses three different methods for calculating the

number of points to be placed on each surface. The best method found is discussed

". here. A point on the upper surface is retreived from the ARCLEN table at five

degrees less than the dihedral angle, and the same for the lower surface. These

two points are averaged to generate a point that lies between the two surfaces.

.N
The equation of a line is generated using the averaged point and the point on the

wing tip. The intersection of this bisecting line and the outer boundary ellipse is

.I calculated. The intersecting point is then compared with the points distributed

on the outer boundary ellipse. The position number of the closest outer boundary
°* €, - *1

point with the intersecting point is calculated. This position number is equal to the

- -number of points to be placed on the lower surface. and IMAX minus the position

number plus one is the number of points to be placed on the upper surface. The

upper and lower waverider surfaces intersect at the wing tip. These two surfaces

are kept separate until the proper distribution of points are placed upon them.

The most difficult task in generating a 2-D grid is generating a good solution

- 1around the sharp wing tip of the waverider. This difficulty will be discussed in

detail in Seltion 5.1.2. Grid spacing refinement around the wing tip proved to

24
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be a solution to this problem' A specified even number of points have their

spacing refined near the wing tip. These points do not lie on top of each other.

but at a closely spaced interval. If all the refined points were on top of each other

the maximum principle would be violated on the boundary. A valid grid can be "

[, generated with the maximum principle violated on the boundary. but it is easy to

avoid this situation. The number of points on the upper and lower surfaces are

decreased by half the specified number of refined points. The adjusted number of

points will be used to generate the proper P distribution of points on the upper a

and lower surfaces of the waverider with respect to arclength. The refined points

are automatically placed on the wing tip disregarding the grid control distribution.

Subroutine INTERP evenly spaces the refined points at 1/10.000 of a unit of arc

away from the wing tip on the upper and lower surfaces of the waverider.

The adjusted number of points for each surface are used to generate Cartesian

coordinates for the waverider's surface. With the two boundary values along with
N.%N

the grid control term P. the coefficients in Eq. (3-3) are generated. The two bound-

ary values are zero for the beginning of both upper and lower surfaces. and the total

" arclength of either the upper or the lower waverider surface. A tridiagonal matrix

is solved by subroutine TRIDIG for the upper surface and another for the lower

surface. The proper distribution of points with respect to arclength are output.

Subroutine INTERP does a linear interpolation on the distributed arclengths to

get Cartesian point values for the boundary of the upper and lower surfaces of the

waverider. The boundary values of the upper and lower surfaces of the waverider are
5.

now stored in one array as the inner boundary points. The outer boundary ellipse

points are stored in another array as the outer boundary points. The boundary

points are now complete.

25
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4.1.3 ()ne-Dimensional Elliptic Equation with Q Distribution

Eqiiation 13-31 iiiust be olved repeatedly for each projected solution station

and each gue-s at the present -olution station. so the metrics and the coefficients in

Eq. 3-12) can be generated. The grid control term Q is used to distribute points

butween the boundaries. Q Is constant in this program. therefore the tridiagonal

solver will similarly distribute point, over a different interval. The solution is stored

and interpolated whenever the I-D distribution of Q points is needed.

Again. it is easy to modify the program so the source terms are variable. This

allows the points to be distributed with varying density throughout the grid. For

example. if the waverider where at angle-of-attack, many points are desired in the

boundary laver on the lower surface, while fewer are desired in the boundary laver

on the upper surface. The variable grid control terms would give this result, but

would require that the tridiagonal solver be used every time the projected solution

1 station or a guess at the present solution station needs to be generated.

4.1.4 Plane-of-Synnnetry Conditions

I ~ The station at i=I. on the lower plane-of-symmetry. is where the 2-D parabolic

grid generation procedure starts. To this point only the inner and outer boundary

points have been determined, along with the desired Q distribution of points to be

0_. placed between the boundaries. The 2-D procedure starts by scaling 1-D stored Q

distribution of points with the the boundary points at i=2 to generate the projected

solution or the approximation of the elliptic equations at i + I. The projected so-

lution is reflected over to the other side of the plane-of-symmetry at i=O to generate

the prior solution at i-1. The projected solution can either be the scaled straight

line stored Q distribution of points, or can be a nearly orthogonal curve. The nearly

r" orthogonal curve will have an approximate distribution of points with respect to Q.

*i The details on how to generate the nearly orthogonal curve are discussed in Sec-

26
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tion 4.1.6. The boundary )oint- at i= 1 are scaled with the straight line stored Q.

distribution of points solution to generate a guess at the solution station. Enough

information has now been determined to start the 2-D parabolic grid generation

procedure.

One of the parameters set in subroutine SETUP is whether second-order cen-

tral differencing or first-order backward differencing be used on the metrics. The

solution at i=1 is at the plane-of-symmetry. therefore the solution should be a

straight line between the boundaries. Second-order central differencing is used at

this plane-of-symmetry station to get this straight line result. The projected so-

lution at the plane-of-symmetry must be one station downstream of the solution

station to acheive this result. The metrics and coefficients are calculated and the

- tridiagonal matrix is solved to generate the solution at the plane-of-symmetry at

the beginning of the grid.

II The station at i=IMAX is at the other plane-of-symmetry station and is also the

last solution station. A guess at this solution station needs to be made by scaling the

stored I-D Q distribution of points. The solution at i=IMAX-1. the prior solution.

Iis reflected over to the other side of the plane-of-symmetry to generate the projected

solution at i + 1-. The 2-D procedure is completed by calculating the metrics with

central differences and solving the the tridiagonal matrix.

4.1.5 Check on Convexity

The 2-D parabolic grid generation procedure allows the projected solution to be

-* anywhere between the present solution and the end of the computational domain.

This can lead to problems if the surface is exceedingly convex and the projected ..

solution is too far from the solution station. This problem is discussed in more detail

[" in Section 5.1.3. A test is done to see if the projected solution is too far downstream

when there is a lot of curvature on the inner boundary. A line is generated from
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the j point of the prior solution at i-1. to the j 2 point of th lro.jected ohtioiit"•

3 I at i + I-. If this line intersects the waverider geonletry. the surface is too convex .

-. % -.-

and the projected solution position is not at an acceptable position for this solution

P station. If this line does not intersect the waverider geometry. the projected solution

is at an acceptable position. These two situations are shown in Fig. (4-1).

This criterion is tested by checking each station between the projected solution

- and the solution station to see whether the line passed through the inner boundary.

The boundary points between the projected solution and the solution station are

used to generate the equations of the lines between the boundaries. The intersection

of the line between the j=2 nodes of the prior and projected solutions and the lines

between the boundaries are calculated. A check is done to see whether the inter-

secting points lie between the inner and outer boundaries. If all the intersections

lie between the boundaries, the projected solution position is acceptable. If one or

any number of the intersecting points do not lie between the two boundaries, the

projected solution is too far downstream and is forced back one position closer to

the solution station. A new line is generated between j=2 of the prior solution and

j=2 of the new projected solution. The intersections are re-calculated and checked

to see if they lie between the boundaries. This procedure is continued until all

intersecting points lie between the boundaries.-. S

' The proper projected solution location is now determined. The stored 1-D

Q distribution of points is scaled between these boundary points to generate the

straight line projected solution. This type of projected solution does not yield grid

lines that are nearly orthogonal to the waverider's surface. but yield grid lines that

almost run straight from one boundary to the other. How straight the grid lines

r run depends on how much smoothing is used to generate the grid. The straight

line projected solution is used in generating the orthogonal projected solution, so it

28
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Figure 4-1. Criterion for Good and Bad Projected Solution Positions
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must be calculated regardless of whether orthogonality is specified or not.

4.1.6 Orthogonal Grid Generation

Many of the flow solvers that use flow field grids require that the grid be orthog-

onal to the inner boundary. This zeros out the partial derivative of the pressure

with respect to the normal direction. A nearly orthogonal grid is generated by .

making the projected solution orthogonal to the inner boundary. The projected

solution slowly bends and makes its way back to the outer boundary point. This is

accomplished by scaling the angle of a line normal to the waverider's surface and

a line drawn between the inner and outer boundary points. This scaled angle in

combination with the proper distance from the inner boundary surface gives a point

on the nearly orthogonal projected solution. The proper distance from the inner .,-

boundary is dictated by the straight line projected solution.

The angle of the line between the inner and outer boundary points is generated.

The angle equals the arctangent of the slope of the line between the boundary points

at the I location. A problem may arise if the orthogonal projected line will lie in

one quadrant and the line between the boundary points will lie in another quadrant.

--If the angles are not put into the proper quadrants. the orthogonal projected curve

may not be generated correctly. The proper quadrant is identified by calculating x

and y quadrant factors, which are given by

x factor = X21 - (4 - 3a);: Ix2,. - ,N1.x,.j,::::-;:

y factor = -(4 - 3b)
1Y2 1  - Yt-( I

If the x and y factors are both positive, the angle is in the first quadrant. If the x

factor is negative and the y factor is positive, the angle is in the second quadrant.

% "If the x and y factors are both negative, the angle is in the third quadrant. If the

x factor is positve and the y factor is negative, the angle is in the fourth quadrant.
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The angle of the line normal to the waverider's surface at the I location is

,generated. The true normal to a paneled surface. in the limit, is approximately

the average angle generated from the normal lines of the panels on each side of the

I- location. The arctangent of the negative inverse of the slope of one panel and

the arctangent of the negative inverse of the slope of the other panel are averaged

together to get the normal angle to the surface. This angle must also be put into

the correct quadrant. This is more difficult, because only a point and an angle are

known. This is enough information to generate a line. The intersection of this line

with the outer boundary is calculated as in Section 4.1.2. The only difference is

both boundary intersections need to be generated. The boundary intersection point

closest to the I- outer boundary point is the proper point that will not intersect

the geometry. The I- inner boundary point and the intersection point are used

in Eq. (4-3) to generate the x and v quadrant factors. From these two quadrant

factors the quadrant of the normal line can be identified. If the angle of the normal

line is in the first quadrant and the angle of the line between the boundaries is

in the fourth quadrant or vice versa, there will be a problem. This problem is

ralleviated by subtracting 360 degrees from the angle in the fourth quadrant, so the

nearly orthogonal curve can be generated in the first and fourth quadrant. If 360

degrees were not subtracted, the orthogonal curve would be generated through all

the quadrants, which yields an incorrect projected solution.

To generate the orthogonal projected solution, an angle has to be varied from

the normal line to the line between the boundaries. The hyperbolic tangent function

is used to vary this angle. If the normal line and the line between the boundaries

are close together, the projected solution can remain orthogonal longer without the

danger of grid crossover. If these two lines differ greatly in angle, the projected

solution can leave the surface orthogonal. but must bend towards the I+ outer
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boundary point quickly so not to cause grid crossover. The hyperbolic tangent has

these qualities. If the hyperbolic tangent is in the interval from one-half to minus

one-half. it will approximately generate a straight line. In this case. the hyperbolic

tangent will vary the angle swiftly as shown in Fig (4-2). If the hyperbolic tangent

is in the interval from five to minus five, it stays near one for awhile then swiftly

moves to minus one. This type of distribution would cause the projected solution to

be orthogonal to the surface longer before it proceeds to the outer boundary point

at the I- location and is shown in Fig (4-2). The factor that governs rate of change

of the angular distribution is given by

speed factor I -1 in radians (4-4)

If the two lines are close together. the factor will be large. If the two lines are far

apart. the factor will be small.

a The hyperbolic tangent function is centered somewhere between the two bound-

ary points. The specified centering position is where the varied angle will bisect the

normal line and the line between the boundaries. If the centering is positioned too

r close to the outer boundary, a concave surface may cause the grid lines to coalesce

and zero out the Jacobian. The centered value is based on lengths and can range ." .s. -

from zero to one. The centering value is the length from the inner boundary to the

center point on the straight line projected solution, normalized by the length of the

line between the inner and outer boundary points.

The nearly orthogonal projected solution is generated from the angle of the

normal line. the angle of the line between the boundaries, the speed factor and the

. centering position. The angle that varies the angle of the normal line to the angle

of the line between the boundaries is given by /

tanho (0 11+P2+0

03 2 t - 2 (4-5) ,.5,

6. %U. .
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.2 Figure 4-2. Effect of Hyperbolic Tangent ctn the Generation of a Nearly
r Orthogonal Curve
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The angle ol is that of the angle of a straight line connecting the inner and outer

boundary points at the I location, and o2 is the angle of the normal line at the I .. l&."

location. The term anho generates values from one to minus one. making Oa range .

from 02 to 0l The angle o is varied slowly when points are clustered and quickly %

when points are dispersed. The angle o is given by

\ (xi j - x' )I + ( " - )2

02 0lI\(X 2 1 ., X11 )2 + (y 2 , 1 - )

\'(Xl-,jcent xl ,) 2 + (Y_ ,en, - Y,- )2(

102 - 01 1\,(x 2,! x)2 + (Y2,-, Y ) 4

The speed factor term in Eq. (4-4) governs how the resulting angle will vary. The

denominator in Eq. (4-6) is the distance between boundaries at the IV location.

The first term in the numerator is the distance from the inner boundary to the

projected solution point being calculated on the straight line projected solution.

i Since the hyperbolic tangent is centered in the interval, the term factor in Eq. (4-5)

gives a value equal to the tanho at the first station and slowly varies to the -tanh"

at the last station. The term j is incremented from two to JMAX-1. The term

factor is given by

factor = JMAX- 1 J tanho + j- JMAX +1 tanhO'M A x - 1 (4- 7)
JMX-3JMAX -3 lahMX

The angle 03. along with the first term in the numerator of Eq. (4-6), defines the

-" point location on the nearly orthogonal projected solution.

A problem arises in generating orthogonal curves near the wing tip. It would

be difficult to trust a value of 03 as generated above, because the refined points

near the wing tip are so close together. If the projected solutions at the refined

points are generated nearly orthogonal to the inner boundary, the grid that will be

generated near the wing tip will have a big gap in it. Therefore, the first refined

point encountered on the lower surface uses the same value of 02 as at the station
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directly upstreati. The last refined point on the upper ,urface uses the same value

of o02 as at the station directly downstream. The number of remaining refined points

plus two are divided into the difference in o2 of the first and last refined point. This

is the interval that will be added to the 02 value of the first refined point to each

I. consecutive refined point between the first and last refined points. The calculation .

of ol and the rest of the nearly orthogonal curve generation is the same as before.

4.1.7 Grid Crossover Check "

The maximum principle may be violated when generating a nearly orthogonal

grid in a concave region. There are several ways of controlling grid crossover and

they will be discussed in more detail in Section 5.1.4. The automatic procedure

will be discussed here. The equations of a line at the I- projected solution position

and at I- - 1 are generated between the boundaries. The intersection of these

two lines is calculated. The distance between the intersection point and the inner

boundary point is determined at I- and divided by the total distance between the I'

boundary points. A valid result gives a value between zero and one. The calculated

[" centering value is where the hyperbolic tangent should be centered to eliminate
.. ,""'ii"

grid crossover. If the centering value is closer to the inner boundary than the user

.- specified centering value, it will be locally inserted to control grid crossover. Even

though the maximum principle is not violated, this procedure will still produce grid

lines that are fairly close together if the boundary is highly-concave. -

4.1.8 Two-Dimensional Parabolic Grid Equation Procedure

The 2-D parabolic grid generation procedure solves Eq. (3-12) with a tridi-

agonal solver. Before the tridiagonal solver can be initiated, the metrics and the

-E coefficients have to be determined. First a guess at the solution station has to be

generated for use in determining the metrics. This is accomplished by scaling the

,. p . V
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stored I-D Q distribution or points between the boundary, points at the solution

" station. The metrics can be generated by using either a second-order central differ-

ence or a first-order backward difference. At the plane-of-symmetry stations. the "-

metrics are calculated by the central difference. The central difference will yield a."

straight line solution at the plane-of-symmetry. At all other solution stations, the

metrics are generated by the backward difference. If the projected solution is one

station downstream of the solution station and central differencing has been speci-

fled. central differences will be used to generate the metrics. The coefficients in Eq.

*, (3-12) are determined by combining the metrics properly. The coefficients are sent

into subroutine TRIDIG. were the 2-D parabolic equation is solved. This process

If .- has to be done twice, once for the x coordinate and once for the y coordinate.

The program allows the solution to be iterated. This is done by recalculating

the metrics using the newly solved solution instead of the initial guess. If central

differencin is used on the metrics. iteration is unnecessary. because the solution

station values are not used in determining the metrics. After the solution station , '

- is solved, the values are written into an output file. The solution station values are

r" then rotated back into the prior solution position, and the next solution station is

solved.

The following is a summary of the procedure for generating 2-D parabolic grids:

1) Generate the outer boundary points with 1-D grid generation equation. Eq.

(3-3). with P distribution and with IMAX points.

2) Calculate the number of points needed to go on lower and upper surface of the

waverider. N. %AS

:" "3) Generate inner boundary points with 1-D grid generation equation, Eq. (3-3),

with P distribution and with the number of points calculated for each surface.

4) Generate and store solution to I-D grid generation equation, Eq. (3-3), with Q

36" I5
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distribution and .IMAX point-. :ii.
5) Initialize 2-D grid generation process by scaling the solution from step 4 between

the plane-of-symmetry boundaries (i=l) and between the i=2 boundaries. The

solution at i=2 can be a straight line or can be put into nearly orthogonal form

n .. for a nearly orthogonal grid. The straight line or orthogonal solution at i=2 is

reflected over the plane-of-symmetry at i=O to create the prior solution.

6) The projected solution is calculated with a straight line or a nearly orthogonal

curve at the I- location. At the plane-of-symmetries the projected solution is

calculated at i=2 or i=IMAX+I, otherwise at a good projected solution posi-

t-ion.

7) The metrics and coefficients are generated and can be approximated by either a

" -first-order backwards difference or a second-order central difference. A second-

order difference is used at the plane-of-symmetries.

i8) The 2-D parabolic grid generation equation given by Eq. (3-12) is solved by a

tridiagonal algorithm.

9) The present solution is rotated back into the prior solution position for the next

S-: marching step.

10) Steps 6 through 9 are repeated until the other plane-of-symmetry is reached.

11) At the last plane-of-symmetry the prior solution is reflected across the plane-

.- of-symmetry to create the projected solution and the process is completed by

doing steps 7 and 8.

4.2 Three-Dimiensional Wrapped Grid Procedure

The 3-D wrapped grid procedure is a relatively simple extension of the 2-D

wrapped grid procedure. The highly-curved surface of the waverider only occur

in the x-y planes. The waverider is wedged-shaped in the x-z plane, and parabolic

shaped in the y-z plane. This is shown in Fig. (4-3). The geometry is invariant along
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a generated ray in the x-z and N-z planes. Therefore. there will not be problems %.""'

with the positioning of the projected solution, generating the grid around sharp

corners, or the nearly orthogonal grid lines coalescing in concave regions in the

*:': added dimension. .Most of the procedures in 3-D are the same as in 2-D; therefore. .

a only the new techniques will be discussed in detail here. %

4.2.1 Boundary Points

The 3-D program initialization routines are the same as the 2-D procedure.

* except for the generation of the waverider geometry. Before the waverider geometry

can be generated in three dimensions, the waverider nose has to be located, the

length has to be calculated, and the q locations of the cross sections have to be

determined. The length of the waverider is determined by dividing the tangent

"" of the shock angle into the non-dimensional distance from the z axis to the shock

wave in the base plane. Since the upper surface of the waverider is aligned with the

freestream flow and the nose is in the plane-of-symmetry, the x and y coordinates of

the nose are known. The z coordinate of the nose is determined by putting the x and

y coordinates of the nose into the cone equation. Since the upper surface is parallel

with the z axis, the arclength is not needed to distribute points in the direction.

The z coordinates of the nose and the base plane, along with the grid control term

R are used to generate the coefficients of Eq. (3-3). These coefficients are input to

subroutine TRIDIG, which implicitly solves the equation with a tridiagonal solver.

TRIDIG outputs the z locations of the cross sections in the " direction with respect

to the grid control term R.

" The waverider geometry can now be generated in three dimensions. The wa-

verider geometry is generated in the base plane as in the 2-D wrapped grid pro-

cedure. This procedure is referred to in Section 4.1.2. The geometry generated in

the base plane is stored for scaling the other cross sections upstream of the base
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plane. The scaling factors depend on where the wing tip will intersect the shock on

each cross section upstream of the base plane. The equation of a line is generated

in the x-z plane between the nose and wing tip in the base plane. The x location

,, of the cross section s wing tip can be generated by putting the z coordinate of each

L cross section into the equation of the line. Figure (4-3) shows the location of the

shock intersection in the x-z plane. The x and z coordinates of the wing tip are

put into the cone equation to generate the y coordinate of the wing tip. Figure

(4-3) also shows the location of the shock intersection in the y-z plane. These three

" coordinates are where each cross section intersects the shock. The factors that scale

- the base plane waverider geometry are given by

XSHOC~~k --NS

xz factor - XSHOCKi - XNOSE (4 - 8a)
XSHOCKKMAX - XNOSE

YSHOCKk
yz factor = YSHOCKKMAX (4 - 8b)

outer boundary factor = yz factor (4 - 8c) -

The x location of the nose has to be subtracted from the xz scaling factor if it does

i .r"not reside on the axis. The outer boundary scaling factor scales the semi-major and

the semi-minor parameters that generate the outer boundary ellipse.

A non-conical waverider has a rounded nose and is parabolic in the y-z plane.

A small problem arises when generating the 3-D outer boundary. A straight line

can not be drawn from the nose of the waverider to the outer boundary near the

wing tip in the base plane without crossing the waverider's surface. The scaling

factor has to force the outer boundary to stay the same relative distance away

" from the wing tip at all the cross sections. Both the x and y coordinates of the

outer boundary are scaled the same way to simplify the geometry. The geometry

S "is stored as inner and outer boundary points. One cross section downstream of the

-~.base plane is generated and stored for use in generating the metrics and coefficients

40
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for the base plane solution. The z location of the inner and outer boundary point,

at each cross section are the same.

Equation (3-3) is solved and stored using the grid control term Q and .JMAX

points. As stated in Section 4.1.3. the stored solution is used for generating the

projected and present solutions. It is more efficient to store this result in 3-D.

because it will be used approximately IMAX by KMAX times.

4.2.2 Three-Dimensional Starting and Stopping Procedures

The 2-D grid generation procedure used three grid lines to generate the solution.

The 3-D grid generation procedure uses three grid lines in the solution cross section.

three grid lines in the cross section just upstream of the solution cross section. and

three grid lines in the downstream projected cross section. The finite differencing

scheme is shown in Fig. (4-4).

The plane-of-symmetry conditions are the same in the x-y plane as in the 2-

S D wrapped grid procedure. These plane-of-symmetry conditions were discussed

* in Section 4.1.4. Starting and stopping the solution in the q direction is different

than the plane-of-symmetry conditions for the 2-D grid generation procedure. To

simplify this procedure three 2-D arrays are used. one at the prior solution plane at

k-1. one at the solution plane at k. and one at the projected solution plane at K'.

The prior solution plane contains known or previously calculated grid lines. The

solution and projected solution planes are intitially filled with nearly orthogonal

curves that are an estimated grid. The 3-D grid generation procedure starts at the

second cross section. At the start up. the prior solution plane contains the nose

i coordinate. The 3-D grid generation procedure concludes with a solution in the

base plane. The projected solution plane uses extrapolated boundary values.
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4.2.3 Orthogonal Projected Solutions

The most complicated part of the 3-D grid generation procedure is filling the

solution and projected solution 2-D arrays with the nearly orthogonal curves. The

procedure is similar to the 2-D wrapped grid procedure stated in Section 4.1.6.

The solution and projected solution 2-D arrays are first filled with straight lines

with the proper Q distribution of points. This is done by scaling the stored 1-D Q

distribution of points between the inner and outer boundary points in the solution

and projected solution planes.

Calculating orthogonality for the 3-D nearly orthogonal curve is analogous to

the 2-D procedure. An additional set of angles in the x-z plane is required for three

dimensions. These angles are shown in Fig. (4-5). The angle of the line between

the boundaries and the angle of the normal line to the surface in the x-y plane are

calculated the same way as in Section 4.1.6. Since the inner and outer boundary

points of a cross section have the same z coordinate, the angle of the line between

the boundaries in the x-z plane is zero. The angle of the normal line to the surface

in the x-z plane is calculated by taking the arctangent of the negative inverse of the

slope of the upstream panel. The geometry is invariant along a generated ray in

the x-z plane. so it is unnecessary to average the arctangents between the panels on

each side of the node point in the x-z plane. Since the waverider is wedge shaped in

the x-z plane. the quadrant of the lines normal to the inner boundary are already

S.-specified. If this code is used on another geometry that is highly-curved in the x-z

. .plane. angles in the x-z plane have to be calculated like those in the x-y plane.

,°.~

The rest of the 3-D nearly orthogonal curve generation procedure is similar

to the 2-D wrapped grid procedure. The factor that will retard or accelerate the

hyperbolic tangent is calculated by Eq. (4-4) for the x-y plane and the factor for
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the x-z plane is given by

speed factor 2 in radians (4 9)

." "The distance between the inner and outer boundary and the centering position are

calculated in three dimensions. The automatic grid crossover check is done the

same way as the 2-D wrapped grid procedure. This procedure was discussed in

Section 4.1.7. Since there are no concave regions in the x-z plane. the automatic

grid crossover check is only utilized in the x-y plane. Again, if there are concave

regions in the x-z plane. the x-y plane procedure can be used in the x-z plane. The

angle that controls the orthogonal curve is generated in the x-z and x-y planes the

same way as the 2-D wrapped grid procedure. The angle in the x-y plane is given 4

by Eq. (4-5). the angle in the x-z plane uses the same equation, but with the O's

replaced with Cfs. The x. y and z coordinates of the nearly orthogonal curve are '::

generated by using 03. '3 and the distance from the inner boundary to the pointI
of concern on the straight line solution. The x and y coordinates are generated in

the same manner as in the 2-D wrapped grid procedure as stated in Section 4.1.6.

r- rThe z coordinate uses the sinP 3 and the distance from the inner boundary. If after

the solution marches downstream once in the q direction and K equals one, the

previous projected solution plane is now equal to the present solution plane. The

previous solution plane values are rotated into the present solution plane. Only the

nearly orthogonal curves that fill the projected solution plane needs to be calculated.

Now that the three 2-D arrays have been filled, the 3-D parabolic grid generation

procedure can be started. For each marching step taken in the q direction, IMAX

marching steps are taken in the direction. The 3-D parabolic grid generation

procedure is basically doing the 2-D procedure KMAX times, but with different

metrics and coefficients. Since the geometry is highly-curved in the x-y plane the

same convexity check that was discussed in Section 4.1.5 has to be used to calculate %
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the proper P location. The convexity check is not done in the x-z plane. because .. :-.

there are no convex surfaces. Although. there could be problems with placing

the projected solution position too far downstream in the q direction. but these

problems would be associated with too much smoothing. In general, there will be

a lot of smoothing if the projected solution is far away from the solution station.

If another geometry is used. the x-y plane procedure can easily be used in the x-z

plane to check for convex surfaces. The metrics and coefficients of Eq. (3-20) are

generated with either a first-order backward differencing or a second-order central

differencing. Again the metrics and coefficients at the first and last solutions

at the plane-of-symmetries are calculated with the second-order central difference.

Central differencing can be used if I- and K- are equal to one. The coefficients

are calculated and the finite difference matrix. Eq. (3-20), is sent to subroutine

TRIDIG where the 3-D parabolic equation are solved. This process is done three

times, once for each of the three coordinates. Again the program is set up so it

can iterate, but unless backward differencing is used on the metrics, iteration is

. .. futile. The values in the 2-D solution plane are rotated into the 2-D prior solution

r plane. The procedure continues until the solution has marched KMAX times in the

q direction.

The following is a summary of the procedure for generating 3-D parabolic grids:

--1) Locate nose of waverider, calculate length of waverider, and use Eq. (3-3) to

calculate location of cross sections in the q direction with respect to the grid

control term R.

2) Generate and store waverider geometry in base plane. calculate cross section

wing tip intersections of the shock, calculate geometry scale factors. and scale

base plane geometry to generate inner and outer boundaries.

3) Generate and store solution to 1-D grid generation equation. Eq. (3-3), with Q
46,-.r,
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distribution and JMAX points.

4) Load waverider nose point into 2-D prior solution plane array.

5) Generate nearly orthogonal curves in the 2-D solution plane array and the 2-D

projected solution plane array.

6) March one step in the direction.

7) Check for grid crossover and a good I- location in the x-y plane.

8) Calculate metrics and coefficients with a first-order backward difference or a

second-order central difference. Second-order central differences are used at the

plane-of-symmetries.

9) The 3-D parabolic grid generation equation given by Eq. (3-20) is solved by a

tridiagonal algorithm.

10) Go to step six until the solution marches IMAX times in the { direction.

11) Rotate present solution plane in prior solution plane and take another marching

* Istep in the direction by going to step six. If finished marching KMAX times

in the " direction. the 3-D grid generation procedure is finished.

-.
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V. Results

5.1 Two-Dimensional Wrapped Grid Problems and Results

5.1.1 Boundary Generation Problems

The first problem encountered was the location of the origin of the coordinate

* system with respect to the waverider. The waverider geometry was generated in Eqs.

(2-1) and (2-2) using polar coordinates. These equations construct the waverider ii

such a way. that the origin does not reside within it's boundaries. The origin will

sit on the upper surface of the waverider at the plane-of-symmetry if the variable

61 is equal to one. a conical waverider. There is still a problem with the origin, .. -

* . 'even if it lies on the waverider surface. The outer boundary varies from 0 to 180

degrees. The waverider varies from 0 degrees to the dihedral angle and back to

0 degrees. This will cause a big problem with generating grid lines on the upper

surface. For example. at the plane-of-symmetry on the upper surface. the outer

boundary has a value of 180 degrees, whereas the waverider symmetry point has a

S.value of 0 degrees. It is impossible for the 2-D parabolic procedure to vary o and

still get the correct distribution of points on the straight plane-of-symmetry line. 4.

" . The parabolic procedure will vary o and produce a wildly curved grid line.

There are two immediate solutions to this problem. The first one would be

to move the origin between the upper and lower surfaces of the waverider on the

plane-of-symmetry. This would require that the inner and outer boundary points

-_ be modified to reflect the change of the origin. The other solution is to convert the

polar boundary points into Cartesian coordinates. The polar type grid distribution

is still achieved, because the boundary points have already been calculated. There

are no problems with the way x and y vary as did r and 0.

The second problem encountered was how to distribute the points on the wa-
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verider surface. In order to properly distribute points on the curved boundaries.

the arclength must be specified in Eq. (3-3). Since the waverider is highly-curved.

points distributed from one of the axes would lead to an erratic distribution of

points along the waverider's surface. If the points are distributed over the curved

t. surface according to arclength. a smooth distribution of points will result. 4

The number of points to be placed on the upper and lower surfaces where first

determined by their arclengths. The lower surface, for example, would take it-

arclength and divide it by the total waverider arclength to generate a fraction. This

fraction times the number of points (IMAX), would be the number of points to be

placed on the lower surface. This strategy did not work because the arclengths of the

lower and upper surfaces are generally about equal, no matter what dihedral angle

was used to generate the geometry. The maximum principle was violated, because

a straight line can not be drawn between the boundaries at all positions without

crossing over the geometry's surface. The wing tip grid line for this situation is ..

shown in Fig. (5-1). and it is plain to see that grid lines generated near the wing tip -.

on the lower surface will have to cross the geometry to get to the outer boundary.

The second method of placing points on the lower and upper surfaces of the

waverider was to use the dihedral angle. The number of points to be placed on

the lower surface, for example. was determined by dividing 180 degrees into the

dihedral angle to generate a fraction. Again. this fraction times the number of

points (IMAX).. would be the number of points placed on the lower surface. This

strategy gave better results than the arclength scheme, but violated the maximum

principle. The waverider is constructed in such a way that the wing tip is cusped at

an angle greater than the dihedral angle. Therefore. this procedure also caused grid

lines to cross the configuration's surface, because not all of the inner boundary points

can see their corresponding outer boundary point without crossing the waverider's
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surface. This scheme is also shown in Fig. (5-1).

I I .As a rule of thumb for generating boundary points, a straight line has to be

drawn from the inner boundary to the outer boundary without crossing the con- :

-A. ... figuration's surface. Because the wing of the waverider is cusped. a line has to be

constructed that locally bisects the upper and lower surfaces near the wing tip.

The intersection of this line with the outer boundary is determined. The number .'-

of points that reside between the start of the outer boundary ellipse and the in-

tersection point is the number of points placed on the lower surface. The rest of

the points plus one are the number of points placed on the upper surface. This

scheme works extremely well, because all inner and outer boundary points can be

r- connected without intersecting the geometry. This scheme is shown in Fig. (5-1).

Because of the dihedral angle. the lower surface usually contains less points than

the upper surface for a constant spaced outer boundary. Since the shock wave is

I attached to the lower surface, there should be enough points to discriminate the

higher pressures. If a negative P distribution of points is used on the outer boundary

ellipse, more points can be pulled down onto the lower surface. The outer boundary -

r. no longer has an equal distribution of points with respect to arc, but the desired

number of points on the lower surface can be achieved without much additional

clustering on the outer boundary.

5.1.2 Wing Tip Grid Wrap Around Problem

The third problem encountered was how to make the 2-D parabolic grid genera-

tion procedure march around the wing tip. Since the wing tip is thin, the parabolic

grid procedure has to march around an almost 180 degree turn. The 2-D grid gen- ,. *. -

erated around this corner has one or more grid lines that intersect the waverider's *.".

'4 . surface or each other. Even though a straight line can be drawn from all inner

boundary points to their respective outer boundary points without crossing the

to". "-51
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surface. the maximum principle is still violated.

One solution to this problem is to refine the points near the wing tip. This is

• : shown in Fig. (5-2). The added points at the wing tip fan out the grid lines. so

the grid lines in the area of the wing tip do not lie close to the inner boundary.

I LThis process eases the 2-D grid generation procedure around the wing tip. The

other solution to this wrap around problem is to use a slit transformation, which is

discussed in Appendix A.

5.1.3 Projected Solution Convexity Problem

The fourth problem encountered was the projected solution being too far down-
-. b

stream around a convex surface. A test case was run, where a grid was generated

between two half circles. The projected solution was set at the far boundary. Q

was set at zero so the grid would be constant in the ?7 direction. The 2-D solution

resulted in grid points crossing the inner boundary and the first plane-of-symmetry,

as shown in Fig. (5-3).

The 2-D parabolic grid generation procedure needs to check and see if the : .

projected solution is too far downstream over a convex surface. This is accomplished

by drawing a line through the j=2 nodes of the prior solution and the projected

solution. Lines are constructed from the boundary points between the present and

* projected solutions. The intersections of the line between the two nodes and the lines

between the boundaries are calculated. The intersections are checked to see if they

lie between the boundaries. If all thi intersections are between the boundaries, the

i* projected solution position is acceptable. If any of the intersections are below the

inner boundary. the projected solution has to be retarded b, one position. The check

has to be repeated until all intersections are between the boundaries. Figure (5-4)

shows the projected solution set at the far plane-of-symmetry where the convexity

criterion has moved it to an acceptable position. Maximum smoothing occurs when
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the projected solution is as far away froin thC solution ,tation a. pos,ible. Figure

I I (5-4) shows the result of the projected solution being as far away from the solution

station as the convexity criterion will allow. Figure (5-5) shows minimum smoothing

where the projected solution is one station downstream of the solution station. If

L t h the grid is highly-clustered near the inner boundary. this procedure will not allow

the projected solution to be too far downstream of the solution position, because

the second grid points are barely off the geometry's surface. The projected solution

is limited to be at least one station downstream of the solution station.

5.1.4 Grid Crossover Problem

r" The last problem encountered with the 2-D wrapped grid procedure was grid

crossover in concave regions when orthogonality has been specified. This problem

results because the hyperbolic tangent in Eq. (4-5) is centered too far away from the

inner boundary. This caused the orthogonal projected solution to stay orthogonal

too far from the inner boundary. The result is grid crossover, which violates the

". maximum principle. The solution was to move the centering position closer to the

-r inner boundary.

5.1.5 Results

The first 2-D wrapped grid generated. after all the problems stated above were

solved, was non-orthogonal to the waverider surface. This grid is shown in Fig.

(5-6). There are no problems with grid crossover in this case. because the grid

lines basically proceed straight from the inner to the outer boundary. Eight refined lr "

points were placed near the wing tip to fan out the grid lines in the wing tip area.

This helps the 2-D parabolic grid generator march around the wing tip corner.
Fewer refined points can be used near the wing tip. but would make the grid lines

lie closer to the waverider's surface in the area of the wing tip. More refined points
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can be used at the wing tip. but since there is a one-to-one correspondence between

inner and outer boundary points, less points would actually be put on the rest

of the waverider's surface. In order to get the best definition of the waverider's

surface, as few as possible refined points should be placed near the wing tip. This

grid has 60 points in the ,, direction and 20 points in the rj direction. More points

are placed on the lower surface. because the outer boundary points were generated

with a P distribution of -.02. The negative P distribution of points on the outer

boundary clusters points near the lower plane-of-symmetry. This P distribution

results in a close to equal spacing of points on the waverider surface. If P is made

more negative, more points will accumulate on the lower surface. If P is made

more positive, more points will accumulate on the upper surface. The points are

also clustered near the inner surface with a Q distribution of -. 15. By decreasing

Q further. points can be highly-clustered near the surface. The projected solution "

3l in this case was one station downstream of the solution station. This grid used

central differencing on the metrics, but this approximately generates the same grid :

as the backward differencing would generate. The 2-D parabolic grid generated an

~ if acceptable non-orthogonal grid.

The next grids that were generated were orthogonal to the inner boundary and

slowly curved towards the outer boundary. Many grids were generated without -

grid crossover problems when a coarse grid in the ' direction was used. When the

v grid was densified, grid crossover occured in concave regions. This is shown in Fig.

(5-7). The same parameters are used to generate this grid as were used to generate

the non-orthogonal grid in Fig. (5-6). The Q distribution was set to zero, which

generated a constant grid in the 77 direction. The hyperbolic tangent was centered ,

on the tenth point, which is centered between the inner and outer boundaries. At

this centering point the orthogonal curve bisects the normal line and the line that
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:-, connects the inner and outer boundaries. Til- resulted in g-rid cros sover in the

[] concave region. because the nearly orthogonal centering is locally positioned too

, ~~~close to the outer boundary. The grid lines everywhere else are okay. ", "- .

- 'The first way of solving this problem was to simply move the point where the

1. hyperbolic tangent was centered. The result of this variation is shown in Fig. (5-8). 4

The same parameters are used in this grid as used in the grid in Fig. (5-7). except

the centering point was moved from the tenth point to the sixth point. This solves

the problem with the grid crossover in the concave region, but also decreased the

orthogonality everywhere else.

The second way of solving the grid crossover problem is similiar to the first.

Instead of moving the centering point, the points are clustered closer to the inner

-. boundary. This grid is shown in Fig. (5-9). Even though the hyperbolic tangent is

still centered on the tenth point, the tenth point is pulled closer to the waverider's

a surface with the user specified Q distribution.

' .The third way of solving the grid crossover problem, is to contol the centering

position locally in a concave region. This grid is shown in Fig. (5-10). Again. the

F grid is generated with the same parameters that caused the grid crossover in Fig.

(5-7). except the program locally controls the centering position.

. The grids used in Figs. (5-7) through (5-10) have 1200 grid points. The total

CPU time to generate these grids on a Cyber 170-845 is .24 seconds. This translates

into .2 milliseconds per grid point.

5.2 Three-Dimensional Wrapped Grid Problems and Results

- ' The only significant problem encountered in generating the 3-D grid was in

generating the boundary points. This was not a trivial task. The inner and outer

boundaries had to be fully visualized before a grid could be generated. If the

waverider is conical, the nose is at the apex of the shock cone. Therefore, it is

60
- *.



. U

CD U

It

I- CD

C)

(yiA



LII

L CL

LUL

0~0

c:) 0

0L

(aL

0 aSI
00

L

U-L
06



LL

0

C5 L

0 L

0i L

LU

L

(/).2 -

63c



.0

(n L

Q0

II (N

zz

-)) c-\2

L.%5



..-

resonable to start the outer boundary there also .. Since the waverider is wedged

.2 shaped in the x-z and y-z planes. the outer boundary will also be conical.

* "The problem arises for a non-conical waverider where the nose is not on the

apex of the shock cone. but at some other location on the shock in the plane-of-

symmetry. The outer boundary at the nose is elliptical and extends outside the

actual shock wave. The nose of the waverider will sit near the lower side of the

outer boundary ellipse in the plane-of-symmetry. This point is at a distance away

from the lower side of the outer boundary ellipse, according to how far the outer

boundary is away from the shock. All the grid points that describe the waverider's

surface and all the grid lines that go from the lower surface of the waverider to the

shock wave are described by that one point. The grid lines originating from the

lower surface will have most of its points at the single nose point and then stretch

a few points out to the outer boundary. This will generate a discountinuity at the

beginning of the grid. Therefore. the outer boundary must start at the nose of the

waverider with the outer boundary translated with respect to the x coordinate of "-

-r the nose.

Since the outer boundary of a non-conical waverider is itself non-conical, it isK important to discuss shock fitting versus shock capturing. Shock fitting calculates

the outer boundary in a space marching scheme as it is needed. The outer boundary

in this case would be at the ideal inviscid shock location. This causes a problem

for the ideal case, because the shock sits directly on the wing tip. Since a grid can

not be generated in the 27 direction if the inner and outer boundary points are at

the same point, shock fitting may not be appropriate. Shock capturing can be used

in place of shock fitting. Shock capturing is enhanced if the shock is coincident

with a grid line. The waverider grid is generated in such a way that a grid line

will not be coincident with the shock. The shock can still be captured if a grid line ,
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is not coincident with the .hock. Shock capturing or shock fitting are appropriate

I for the parabolic grids, since the outer boundary can be specified. However. grids

appropriate for shock capturing are generated.

- Figure (5-11) shows the upper surface paneling representation of the waverider.

Figure (5-12) shows the lower surface paneling representation of the waverider.

The base plane waverider equations in Chapter Two will generate many different

shaped waveriders. The design conditions chosen for this waverider were Mach

number equal to 5. dihedral angle equal to 60 degrees. original cone semi-vertex - -

angle equal to 5 degrees. lower surface of the waverider in the plane-of-symmetry

to be 1.05 from the original cone origin in the base plane where 1.0 is the original

cone s surface, and shape factor equal to 8.

The 3-D grid generation procedure generated a nearly surface orthogonal grid.

Since the original cone angle was five degrees, there is little variation in the grid lines

in the z direction. This is most evident when the inner and outer boundary points

of a cross section are at the same z location. Figure (5-13) shows the 3-D grid in

the x-z plane-of-symmetry. Since the upper surface is aligned with the freestream. .,'

the grid lines on the upper plane-of-symmetry are fully orthogonal to the surface.

The lower surface is inclined at an angle to the freestream. therefore the grid lines

start orthogonal to the surface and bend back towards the outer boundary point.

: The grid in the x-y plane is very similar to the 2-D wrapped grid results.

The 3-D wrapped grid is similar to the 2-D wrapped grid. but there is more

smoothing. The 3-D parabolic equations use 19 nodes, shown in Fig. (4-5). to

generate the coefficients for one node point. The 2-D parabolic equations use 9

nodes to generate the coefficients for one node point. Therefore, one would expect

differences in the solutions. Figure (5-14) shows a nearly surface orthogonal 3-

D parabolic grid around a non-conical waverider. This picture of the 3-D grid

L. 66"I
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system (Inhow how well this procedure works. The grid is smoothed around the

discountinuity of the wing tip.

The grid used in Fig. (5-14) has 18.000 grid points. The total CPU time on a

Cyber 170-845 was 7.2 seconds. This translates into .4 milliseconds per grid point.

This result is two orders of magnitude faster than elliptic grid generation. To save a

great deal of iteration with an elliptic grid generator. this parabolic grid can be put

into the elliptic generator as the first guess. One of the best developed hyperbolic

grid generation techniques 14 takes .24 milliseconds per grid point on a Cray-XMP-

- 12. Considering that the scalar speed of the Cray is approximately six times faster

than the Cyber 170-845 or faster. this parabolic procedure is comparative to the

V hyperbolic procedure. except for the fact that the parabolic scheme does not have

all the limitations of the hyperbolic scheme.
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VI. (oxjclusion

Parabolic grid generation equations were used to generate 2-D and 3-D surface

orthogonal grids around a non-conical waverider configuration in terms of Cartesian

coordinates. The grids were generated without iteration. Specified grid control

terms allowed the grid to be exponentially stretched in any direction, which allowed

* the grid to be highly-clustered near any boundary without using grid embedding,.

The parabolic grid generation procedure generated a smooth grid, even around

an almost 180 degree corner of the wing tip on the waverider. The parabolic grid

generation procedure is efficient with respect to memory requirements and computer

time. The 3-D grid generation procedure requires three tridiagonal solutions per

grid line and takes approximately .4 milliseconds per grid point on a Cyber 170-845.

The 2-D grid generation procedure requires two tridiagonal solutions per grid line

and takes approximately .2 milliseconds per grid point on a Cyber 170-845. The

parabolic grid generation procedure coupled with a marching flow solver allows the

grid to be generated along with the flow solution. The degree of grid smoothing is

controlled by the positioning of the projected solution with respect to the solution

station position. Grid crossover is controlled in concave regions when orthogonality

is specified.
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VII. Reconumendations

Further extensions of this research is recommended in several areas. First.

the grids generated with the parabolic procedure should be used by a flow solver

and compared with the results from grids generated by elliptic or other methods.

Second. make this code easily adaptable to other geometries. This can be done by

putting the convexity test. and grid crossover test into the third dimension. Instead J
of using straight lines to approximate solutions. curves or a combination of lines

could be used. Third, the program can be extended to use variable grid control

terms. Presently, the Q distribution of points is calculated once and stored. Using

a variable Q distribution would require IMAX more tridiagonal solutions in 2-D

and IMAX by KMAX more tridiagonal solutions in 3-D. Last, this grid should be

adapted with an adaptive grid generation procedure that utilizes a space marching

flow solution.
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Appendix A: Two-Dimensional Slit Transformed Grid Procedure

A.I Computational Domain

Another means of generating a grid around the waverider's wing tip is to use a

slit transformed grid procedure. The previous grids were transformed from physical

space into a rectangular computational plane in computational space, as shown

in Fig. (A-1). One side of this rectangular computational plane represents the

inner boundary, the opposite side represents the outer boundary. and the other

two sides represent the plane-of-symmetry above the upper surface and the plane-

of-symmetry below the lower surface. The slit transformation requires that an

extra line be constructed inside of the rectangular computational plane, as shown

• .in Fig. (A-i). This extra line leaves the inner boundary side of the rectangular

computational plane and proceeds part way towards the outer boundary side of

-.the rectangular computational plane. This slit represents the slender wing. The

* . inner boundary side of the computational plane is now split by the slit. The side

of the computational plane adjacent to the slit on the left represents the lower

* [surface of the waverider up to the segment represented by the slit. The other side

of the computational plane adjacent to the slit represents the upper surface of the

" "' waverider up to the segment represented by the slit. The slit has double values on

-- it. one for the lower wing surface and one for the upper wing surface. Where the

slit leaves the wing and becomes a grid line, the double values are equal to each

other.

A.2 Boundary Points

The boundary points can be determined now that the computational plane is

defined. The outer boundary is to be divided into two sections. The division is at

the intersection of the bisecting line of the wing tip with the outer boundary. This
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was previously discussed in the 2-D wrapped grid procedure. Section 4.12. The

waverider geometry that the slit will physically represent has to be determined.

The surface of the wing is analogous to a two-sided grid line. therefore the proper

Q distribution of points is placed on each side of the slit. In order for the doubled-

W. valued slit to have the same values beyond the wing tip. the same Q distribution

will have to be placed on the double-valued slit over the same interval. In order for

the lengths to be the same. the arc length of slit surfaces must be equal. Therefore.

the arc length of the upper and lower surfaces of the waverider must be equal in

. order to generate the proper grid points beyond the wing tip. This severly reduces

flexibility. And there is no guarantee that the wing tip will be represented by one

of these points.

After the surfaces that will be represented by the slit have been determined.

points can be distributed along the surface of the geometry that are not represented

by the slit. Clustering grid points near the waverider's surface not represented by

the slit is accomplished by using a positive value of P. Points have to be highly-

clustered away from the plane-of-symmetry on the upper and lower surfaces that are , *h

.fnot represented by the slit, to get the grid lines to lie near the surface represented by

the slit. Points also have to be highly clustered away from the plane-of-symmetry

,-. "on both segments of the outer boundary near the bisection point. The grid does

. not need to be dense near the outer boundary. because of the nature of the far field.

The slit transformed grid becomes expensive to use with a flow solver, because of :

the large number of points needed to represent the grid.

A.3 Orthogonal Projected Solutions

The goal of this thesis is to generate nearly orthogonal grids around a waverider. %

The slit transformation procedure is not too difficult if a non-orthogonal grid is

constructed. Since the waverider's surface is highly curved, the projected solution

%* 
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has to take on the same shape as the wing'., surface in the vicinity of the wing*s - e

surface in order to cluster points there. The projected solution will not only have to

take on the shape of the wing's surface in the vicinity of wing. but also an orthogonal

curve off of the main body's surface. There are too many constraints to contend

with. Orthogonality can be enforced near the plane-of-symmetries. But as the

wing's surface is approached the projected solution has to take on the shape of the

wing's surface and not the shape of an orthogonal curve. Some weighting criteria

must be introduced. To get grid lines to be nearly orthogonal on the wing's surface.

. either the points on the wing must be moved or the points in the projected solution

must be moved. Moving the specified points on the wing is not the solution. Moving
t the points in the projected solution would change the Q distribution of points and

affect whatever representation of orthogonality that is left. Near orthogonality to

the slit requires that points be altered more near the wing's surface and less the

farther the solution is away from the wing's surface.

The slit transformation procedure is complicated if a nearly orthogonal grid is

to be generated around the waverider. Many points are needed to represent the

" ,grid properly. Points are inappropriately clustered on the outer boundary near the

wing tip bisection. The grid can not be orthogonal and cluster points near the

geometry s surface. It is difficult to specify orthogonality in two directions. Since

there is not enough time to program this procedure along with the problems stated

above, the 2-D slit transformed grid will not be programmed.

... 

..

%- °%
!" 7"

.'-" 

j$ ,

f



Appendix B Two-Dimensional Wrapped Grid Computer Code
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PROGRAM GRID2D
COMNON/SET/DIMEN ,RNACH ,PHIL, DELTA, DELTA1,.N, IMAX, JMAX ,P. Q,IPLUS ,MIN
+OR. MAJOR. CENTRA. ITERAT.TEST. CONVX, 1PM, ORTHO .JCENTI
COMNON/TRI/A(100) .C(100) .0(100)
COMNON/BETA/BETAPI
COMMON/BOUND/Xl(100) .Y1(100) ,X2(100) .Y2(100)
COMMON ANS(100)
COMNON/ARC/APHI(0:180),ARB(O:180) ,ARFS(0:180) ,ARCB(O:180) ,ARCFS(0:
-180) .ARE(0: 180) ,ARCE(0: 180)
COMMON/LENGTH/BARC ,FSARC .EARC
DIMENSION X(100),Y(100).XNI(100).YM1(100),XPROJ(100),YPROJ(100)
DIMENSION NODE(3) ,ARC(100) ,A2D(100),C2D(100),D2D(100,2)
REAL MAJORMINOR,LENGTH(3) ,INTERI,.INTER2,K
LOGICAL CENTRA,TEST. CONVEX, ORTHO, TEST2,DIMENI..REWIND7

I. PI=ACOS(-1 .0)

C
C GET INITIAL VALUES FOR RUN
C

CALL SETUP
IM.XN1=IMA-1
JMXM1=JMAX- 1

C IF(TEST) THEN

C CALCULATES HALF CIRCLES FOR TEST CASE
C

WRITE(*. (A)')'ENTER RADIUS OF INNER TEST CIRCLE'
READ(*,*) RINNER

WRITE(*.'(A)')'ENTER RADIUS OF OUTER TEST CIRCLE'
READ(*,*) ROUTER

C
C CALCULATES INNER AND OUTER BOUNDARY POINTS FOR TEST CASE

I C
DO I I=1.INAX
PHI=FLOAT(I- 1) PI/INXM1
Xl (I)=RINNER*COS(PHI)
Y1 (I)=RINNER*SIN (PHI)
X2(I) =ROUTER*COS (PHI)

1 Y2 (I) =ROUTER*SIN(PHI)
ELSE

* . C

C CALCULATE WAVERIDER, ELLIPSE BOUNDARY POINTS
C CALCULATE SHOCK ANGLE

* ,*.*;C
CALL SHOCK(DETA)

C .\.,

C CALCULATE ARCLEUGTH OF OUTER BOUNDARY ELLIPSE, AND LOVER AND UPPER SURFACES
9%C OF WAVER IDER. EARC, ARCLENCTH OF ELLIPSE. BARC, ARCLENGTH OF LOWER SURFACE.

C PSARC, ARCLENGTH OF FREESTREAN OR UPPER SURFACE OF WAVERIDER.
K Cr CALL ARCLEN

1=0
* . LENGTH(1)=EARC ,
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LENGTH(2)=BARC

LENGTH (3) =FSARC

NODE(1)=IMAX
2 I=I1-

C
C GENERATE COEFFICIENTS FOR 1-D ELLIPTIC EQUATION

C
BB=1.,EXP ( -BS(P)).-->.' -

L AA=-l./BB

CC=-EXP(-ABS(P))/BB
A(1)=0 0
A(NODE(I))=.O
C(1)=O.O

C(NODE(I))=O.O

D(1)=.O 0

ANS(1)=O.O
D(NODE(I))=LENGTH(I)

ANS(NODE(I) )=LENGTH (I)
IF(P LE. 0.0) THEN
DO 5 J=2,NODE(I)-"

r A(J)=AA
C(J)=CC "

6 D(J)=0
ELSE

DO 10 J=2,NODE(I)-I

A(J)=CC
C(J)=AA

10 D(J)=O.O
ENDIF

C
C SOLVE 1-D ELLIPTIC EQUATION FOR DISTRIBUTION P AND FOR NODEI) POINTS.

C
CALL TRIDIG(NODE(I) -1)

C NOW THAT THE ARCLENGTH DISTRIBUTION IS KNOWN. CONVERT ARCLENGTH INTO ELLIPSE

C AND WAVERIDER BOUNDARY POINTS.
S . .C
" . CALL INTERP(NODE(),I)

C
C CALCULATE THE INTERSECTION OF LINE BISECTING UPPER AND LOVER SURFACES OF
C WAVERIDER AND THE OUTER BOUNDARY.
C

P=0.0

' . IF(I EQ. 1) THEN

SLINIT=10000.
C

C GO 5 DEGREES BACK FROM THE WING TIP AT PHIL AND GET X3,Y3 ON LOWER BODY

C SURFACE AND X4, Y4 ON UPPER BODY SURFACE. AVERAGE X3,*Y3 AND X4,Y4 TO GET
C XMID.YMID POINT.
C IPHIL=PHIL

IPOS=IPHIL-6

ANGLE=FLOAT(IP0S) *PI/180.
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X3=AR ( IPOS) =COS (ANGLE)
Y3=ARB(IPOS) *SIN (ANGLE)
X4=ARFS (IPOS) *COS5(ANGLE)S ~Y4=ARFS(IPOS) SSIN(ANGLE) ~-

C
* .C CALCULATE POINT ON WING TIP

-' XMID=X3+ (X4-X3) /2.

Y?4ID=Y3+(Y4-Y3) /2.
IF(IPHIL EQ. PHIL) THEN
A?GLE=FLOAT(IPHIL) *PI/180.
XEND=ARB (IPHIL) *COS (ANGLE)
YEND=ARB(IPHIL)*SIN(ANGLE)
ELSE
ANGLE=PHIL*PI/180.
XEND=ARB(IPHIL+1) *COS (ANGLE)
YEND=ARB(IPHIL+I) *SIN(ANGLE)
ENDIF

C
C CALCULATE SLOPE AND Y-INTERSECT OF LINE BISECTING WAVERIDER GEOMETRY.

*C THERE ARE TWO SPECIAL CASES WHEN THE SLOPE IS EQUAL TO ZERO OR INFINITY.
C

* . IF(XEND-XNID EQ. 0.0) THEN
* . XCROSS=O.O

* . YCROSS=MAJOR
ELSE
SLOPE1=(YEND-YNID)/(XEND-XJ4ID)

IF(SLOPE1 EQ. 0.0) THEN
XCROSS=MINOR
YCROSS=0.0
ELSE
INTER1=YNID- SLOPEl *XJID

F C
C CALCULATE INTERSECTION POINT OF BISECTING LINE AND OUTER BOUNDARY
C ONLY THE POSITIVE RADICAL TERM OF THE QUADRATIC EQUATION IS NEEDED
C

XCROSS=(-2. *MINOR**2*SLOPE1*INTERI+(4.*NINOR**4*SLOPEI**2*INTER
*1**2-4. *(MAJOR**2+MINOR**2*SLOPE1**2)*(NINOR**2*INTERI**2-MAJOR
***2*MINOR**2))**.6)/(2.*(MAJOR**2.NINOR**2*SLOPEI**2))
YCROSS=SLOPE1 *XCROSS+INTER1
ENDIF

ENDIF
C

* .C DETERMINE WHICH POINT ON THE OUTER BOUNDARY IS CLOSEST TO THE INTERSECTION
C POINT
C

DO 3 J=1.IWA
XDELTA=ABS(X2(J) -XCROSS)
YDELTA=ABS (Y2 (3)-YCROSS)
DISTAN=(XDELTA**2+YDELTA**2) ** .5
IF(DISTAN .LE. SLIMIT) THENr SLINIT=DISTAN
HODE(2)=J
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ENDIF

3 CONTINUE

C

C NODE(2) IS THE NUMBER OF POINTS TO BE PLACED ON LOWER SURFACE. IF POINTS ARE

C REFINED, SUBTRACT HALF THE REFINED POINTS FROM THE LOWER SURFACE TO GET THE

C PROPER DISTRIBUTION OF POINTS ON THAT SURFACE.

C

NODE(2)=NODE(2) -IPM/2

NODE(3) =IAX-NODE(2) +1-IPM
- ENDIF

C
C INITIALIZE INNER BOUNDARY POINT ON OTHER SIDE OF PLANE OF SYMMETRY, TO BE USED

C IN ORTHOGONALITY GENERATION.

C
IF(I .LT. 3) GO TO 2

ENDIF

X1(IMAX+1)=Xl(IMAX-1)
Y1(IMAX+1)=-Yl(IMAX-1)

C
C INITIALIZE GRID LOCATION nOUNTER, AQ, EQ, AND K

rC
CALL SECOND(CPI)

ICOUNT=-2

AQ=ABS(Q)

IF(AQ .LT. 1.E-6) THEN

EQ=1.-AQ+AQ**2/2.-AQ**3/6.+AQ**4/24.-AQ**6/120.

K=1./(1.-AQ/2.+AQ**2/6.-AQ**3/24.+AQ**4/120.)
ELSE

EQ=EXP(-AQ)

K=AQ/(l-EQ)

" c ENDIF

C
C GENERATE COEFFICIENTS FOR 1-D ELLIPTIC EQUATION

F C

A(1)=0.0

A(JMAX) =0.0-

C(1)=0.0

C(JNAX)=0.O

D(1)=O.O

ANS(1)=D(1)
D(JMAX) =10.0

ANS(JMAX)=D(JMAX)

BD=1.+EXP(-ABS(Q))

" ' AA=-1./BB
CC=-EXP(-iBS(Q))/BB

IF(Q LE. 0.0) THEN

DO 16 J=2,JNXM1

A(J)=AA

C(J)=CC

16 D(J)=O.O

ELSE

DO 17 J=2,JXXI
A(J)=CC
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C (J) =AA
17 D(J)=O.O

ENDIF

C
C SOLVE 1-D ELLIPTIC EQUATION

C
CALL TRIDIG(JMXMI)

C
C SINCE Q IS CONSTANT THROUGHOUT GRID, SOLVE 1-D ELLIPTIC EQUATION ONCE AND
C STORE IN ARC AND THEN CAN SCALE FOR BOTH INITIAL GUESS AT I AND AT IPLUS, THE

C PROJECTED SOLUTION

C
DO 18 J=I,JAX

18 ARC(J)=ANS(J)

C

C BEGINNING OF 2-D GRID GENERATION LOOP, INCREMENT COUNTER
C JPLUS IS THE LOCATION OF PROJECTED SOLUTION, JPLSM1 IS IPLUS-I IN 2-D EQUATION

C
IF(TEST) GO TO 20

TEST2=.TRUE.

LCOUNT=O
19 LCOUNT=LCOUNT+1

IF(LCOUNT EQ. 3) THEN
TEST2=.FALSE.

IF(ANG1 GT. PI) ANG1=ABG1-2.*PI
ANG3= (ANG2-ANG1)/FLOAT(IPM)

GO TO 20
ENDIF
IF(LCOUNT EQ. 1) THEN

JPLUS=NODE (2) -

ELSE
JPLUS=NODE(2) +IPM+1

ENDIF

GO TO 58
20 ICOUNT=ICOUNT+1

JPLUS=ICOUNT+ IPLUS

JPLSM1=IPLUS

C
C TO START 2-D GRID GENERATION, PROJECT SOLUTION AT SECOND POSITION AND REFLECT
C ON OTHER SIDE OF PLANE OF SYMMETRY. NEED A GUESS AT POSITION I AND NEED
C PROJECTED SOLUTION AT SECOND POSITION. THIS FORCES IPLUS TO EQUAL ONE AT

C PLANE OF SYMMETRY.

t IF(ICOUNT EQ. -1) JPLUS=2

IF(ICOUNT EQ. 0) JPLUS=l
IF(ICOUNT EQ. 1) THEN

S IJPLUS=2

JPLSM1=1
ENDIF

C
C DON'T WANT PROJECTED SOLUTION TO PASS FAR PLANE OF SYMMETRY
C

IF(JPLUS GT. IMAX) THEN

H
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JPLUS=IMAX
JPLSN1=JPLUS - ICOUNT
ENDIF

C HAVE TO DO THE SAME KIND OF SOLUTION AT THE FAR PLANE OF SYMMETRY AS DONE IN
C STARTING THE ORIGINAL SOLUTION
C

IF(ICOUNT -EQ. IMAX) THEN
JPLUS= IMXM1
JPLSX1=1
DO 21 I=I.JMAX

21 YPROJ(I)=-YM1(I)

GO TO 56
ENDIF

C
C DO A CHECK ON CONVEXITY IF NOT SOLVING EITHER PLANE OF SYMMETRY AND THE
C CONVEXITY SWITCH IS ON
C

IF(ICOUNT .GT. I AND. ICOUNT .LT. IMAX AND. CONVEX) THEN

C DETERMINE THE SCALING FACTOR FOR CURRENT JPLUS LOCATION FROM THE STORED 1-D .
C ELLIPTIC DISTRIBUTION
C

22 FACT1=(X2(JPLUS)-XI(JPLUS))/1O-
, FACT2=(Y2(JPLUS) -YI(JPLUS))/1O.

DIFF=ARC(2) -ARC(1)

C
C CALCULATE THE SECOND POINT FROM THE PROJECTED SOLUTION AWAY FROM BODY SURFACE
C

XPROJ(2)=X1(JPLUS)+DIFF*FACT1

YPROJ (2) =Y1 (JPLUS) +DIFF*FACT2 -

C GET EQUATION OF LINE FROM THE SECOND POINT OF PROJECTED SOLUTION TO THE SECOND
C POINT OF THE PRIOR SOLVED SOLUTION

C
" ." SLOPE1=(YPROJ(2)-YM1(2))/(XPROJ(2)-XMI(2))

INTERI=YN1(2)-SLOPEI*XN1(2)

C
C CHECK IF BODY INTERSECTS THE LINE JUST CALCULATED. CALCULATE EQUATION OF LINE

C FOR EACH GRID LINE BETWEEN PRIOR SOLUTION AND PROJECTED SOLUTION AND DETERMINE
C WHETHER THE SURFACE IS TOO CONVEX
C

DO 23 I=JPLUS-1,ICOUNT,-'
SLOPE2=(Y2(I)-YI(I))/(X2(I)-X1 (I))

INTER2=Y1 (I) -SLOPE2*XI (I)
XCROSS= (INTER2-INTERI)/ (SLOPEl-SLOPE2)

S,. IF(XI(I) .LT. X2(I)) THEN
IF(XCROSS GT. Xl(I) AND. XCROSS LT X2(I)) THEN

. .ELSE
C
C SURFACE TOO CONVEX, MOVE PROJECTED SOLUTION BACK ONE
C
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JPLUS=JPLUS- 1
JPLSMI=JPLSN1 -1

II IPLUSIF(JPLUS-ICOUNT EQ. 1) THEN

C ILSIS NOW EQUAL TO ONE AND THIS IS AS FAR AS WE CAN GO AND STILL GET A

C PROJECTED SOLUTION
C

FACTI=(X2(JPLUS)-xi(JPLUS)D/10.
FACT2=(Y2(JPLUS) -Yl(JPLUS))/10.

UG GTO 26
ENDIF
GO TO 22
ENDIF
ELSE
IF(XCROSS .LT. Xl(I) AND. XCROSS .GT. X2(I)) THEN
ELSE
JPLUS=JPLUS- 1
JPLSN1=JPLSNI -1
IF(JPLUS-ICOUNT EQ. 1) THEN
FACT1=(X2(JPLUS) -XI (JPLUS) )/1O.
FACT2=(Y2(JPLUS)-Yl(JPLUS))/1O.

GO TO 26
ENDIF

GO TO 22
ENDIF

ENDIF
23 CONTINUE

C
C NOW THAT WE DETERMINED A GOOD IPLUS LOCATION. LOAD THE PROJECTED SOLUTION
C WITH SCALED VALUES OF 1-D ELLIPTIC DISTRIBUTION
C* *

26 XPROJ(1)=XI(JPLUS)
XPROJ (JMAX) =X2 (IPLUS)

DO 24 1=2.JNXMi
* . DIFF=ARC(I)-ARC(I-1)

XPROJ (I) =XPROJ(I- 1) +DIFF*FACTI
24 YPROJ(I)=YPROJ(I-1)+DIFF*FACT2

ELSE
C
C LOAD PROJECTED SOLUTION FROM SCALED VALUES WITHOUT CHECKING FOR CONVEXITY
C

XPROJ(1)=X1(JPLUS)
XPROJ(JMAX) =X2(JPLUS)
YPROJ(1)=Y1(JPLUS)

* YPROJ(J MAX )=Y2(JPLUS)
* - FACTI=(XPROJ(JMAX)-XPROJ(1))/10.

FACT2=(YPROJ(JMAX) -YPROJ(1))I1O.
* - DO 25 I=2.JMXNI

DIFF=ARC(I) -ARC(I-1)
* XPROJ(I)=XPRDJ(1-1)+DIFF*FACTI

25 YPROJ(I)=YPROJ(I-1)+DIFF*FACT2
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ENDIF
C
C LOAD INITIAL GUESS TO START 2-D SOLUTIONU C

IF(ICOUNT Eq. 0) THEN
DO 55 I=1.J.AX

55 Y(I)=YPROJ(I)
GO TO 20
ENDIF

C
C IF ORTHOGONALITY SWITCH IS ON, TURN THE PROJECTED SOLUTION FROM A STRAIGHT
C TO A CURVE THAT STARTS ORTHOGONAL TO SURFACE AND ENDS UP AT OUTER BOUNDARY

*C SURFACE
C

IF(.NOT.ORTHO) GO TO 61

C
C CALCULATE ANGLE OF LINE BETWEEN INNER AND OUTER BOUNDARIES
C

* - THETA1=ATAN((Y2(JPLUS)-Y1(JPLUS))/(X2(JPLUS)-XlIPLUS)))
C
C PUT ANGLE IN PROPER QUADRAT, HAVE SPECIAL CONSIDERATIONS WHEN SLOPES ARE
C EITHER ZERO OR INFINITY

C
IF(X2(JPLUS)-XI(JPLUS) EQ 0.0) THEN

FACT 1= 1
ELSE

k.NDIF

IF(Y2(JPLUS)-Y(JPLUS) Eq. 0.0) THEN

FACT2=1.
ELSE
FACT2=(Y2(JPLUS)-YI(JPLUS))/ABS(Y2(JPLUS)-Y(JPLUS))

ENDIF
C
C SINCE QUADRAT NOW KNOWN, CHANGE ANGLE TO REFLECT QUADRAT

* C
IF(FACT1 Eq. -1 AND. FACT2 .Eq. 1) THETA1=PI+THETAI
IF(FACT1 Eq. -1 AND. FACT2 Eq. -1) THETAI=PI+THETAl
IF(FACT1 EQ. 1 AND. FACT2 EQ. -1) THETAI=2*PI+THETAI

C
C CALCULATE ANGLE OF NORMAL LINE TO BODY SURFACE USING AN AVERAGE OF PANELS ON
C EACH SIDE OF THE PROJECTED SOLUTION
C -

IF(JPLUS GT. NODE(2)-L AND. JPLUS LT. NODE(2)'IPX.,) THEN

THETA2=ANGI +ANG3*FLOAT (ICOUNT-NODE (2))
GO TO 57
ENDIF

58 THETA2=(ATAN((XI(JPLUS1)-X(JPLUS))/(Y(JPLUS)-YI(JPLUS-1)))ATA
+ N( (X(JPLUS)-XY(JPLUS+1) )/(Y(JPLUS+) -Y.(JPLUS))))/2

SSLOPEI=TAN(THETA2)
C

C HAVE A QUADRAT PROBLEM AGAIN. HAVE SLOPE AND POINT AD THEREFORE EQUATION
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C OF LINE INTERSECT THIS LINE WITH OUTER BOUNDARY WITH BOTH POSITIVE AND

C NEGATIVE SIGNS ON THE RADICAL OF THE QUADRATIC EQUATION SPECIAL PROBLEMS

C AGAIN WITH SLOPES EQUAL TO ZERO AND INFINITY

C IF(SLOPE1 EQ. 0.0) THEN

YQUAD1=Y1(JPLUS)I
XQUADI=((l.-Yl(JPLUS)**2/MAJOR**2).MINOR**2)**.5

IL XQUAD2=-XQUADI
* ELSE

IF(SLOPE1 GT. 10000.) THEN
XQUADI=Xl(JPLUS)
XQUAD2=X1 (JPLUS)
YQUADI=((l.-X1(JPLUS)**2/MINOR**2)*MAJOR**2)**.S
YQUAD2=-YQUADI
ELSE
INTER1=Yl(JPLUS) -SLOPEI*X1(JPLUS)
FACTI=-2*NINOR. *2*SLOPEI*INTER1
FACT2=2* (MAJOR**2.NINOR**2.SLOPE1**2)

RADICA=(FACT1**2-2 *FACT2*(NINOR**2*INTER1.*2-A~JOR**2*NINOR**2

XQA1(FACTI+R.ADICA)/FACT2
XQUAD2= (FACTI-RADICA)/FACT2

* YQUAD1=SLOPE1*XQUAD1+INTER1
YQUAD2=SLOPEI sXQUAD2+INTERI

* ENDIF
ENDIF

C
C CALCULATE DISTANCE BETWEEN INTERSECTIONS AND OUTER BOUNDARY POINT. THE
C SHORTER DISTANCE DETERMINES THE PROPER QUADRAT
C

QUAD1=((XQUAD1-X2(JPLUS))**2+(YQUAD1-Y2(JPLUS))**2)-.
[ QUAD2=(CXQUAD2-X2(JPLUS))**2+(YQUAD2-Y2(JPLUS))**2)*..5

IF(QUAD1 .LT. QUAD2) THEN
XCROSS=XQUAD1 z

* YCROSS=YQUADI
* ELSE

XCROSS=XQUAD2
YCROSS=YQUAD2 r-
ENDIF
IF(XCROSS -XI(JPLUS) .EQ. 0.0) THEN
FACTI=1.
ELSE
FACTI=(XCROSS-Xl(JPLUS))/AJS(XCROSS-XI (JPLUS))
ENDIF

* IF(YCROSS-YI(JPLUS) EQ. 0.0) THEN
b- *.*-

FACT2=1.
* ELSE

FACT2=(YCROSS-Yl(JPLUS))/ABS(YCROSS-Yl(JPLUS))
ENDIF

C CHANCE ANGLE TO REFLECT QUADRAT ~
C
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IF(FCT1EQ.-1 AND FACT2 EQ1) THETA2=PI+THETA2
IF(FACTI EQ.- N AT EQ -)TEA~ITEA
IF(FACT1 EQ, -1 AND. FACT2 EQ -1) THETA2=PI+THETA2

IF(TEST2) THEN
IF(LCOUNT EQ. 1) THEN
ANG1=THETA2
ELSE
ANG2=THETA2

IL ENDIF
GO TO 19
ENDIF

C
C FACTOR USED TO ACCELERATE OR RETARD HYPERBOLIC TANGENT
C

57 IF(THETA2-THETAl -EQ. 0.0) THEN
* . ATH=25.

* - ELSE

ATH=1-/ADS(THETA2-THETAl)
MFATH GT. 25.) ATH=25.
ENDIF

C
C LENGTH OF PROJECTED SOLUTION
C

SPAN=((X2(JPLUS)-Xl(JPLUS))**2+(Y2(JPLUS)-Yl(JPLUS))**2)*.
C
C CENTER OF PROJECTED SOLUTION WITH RESPECT TO THE MIDDLE POINT

CENTER=(((XPROJ(JCENT)-XPROJ(1))**2+(YPROJ(JCENT)-YPROJ(1))**2)**
.5)/SPAN '-

C
*C CHECK TO SEE WHERE THE HYPERBOLIC TANGENT SHOULD BE CENTERED, SO THERE WON'T

C BE GRID CROSS OVER DUE TO THE ORTHOGONALITY. CALCULATE EQUATION OF
C ORTHOGONAL IPLUS LINE AND AT PRIOR STATION. CALCULATE INTERSECTION AND USE

FC MORE RESTRICTIVE CENTERING CRITERION.
C

IF(DINEN) THEN
CHANGE= 10000.
IF(JPLUS GT. 2 AND. JPLUS LT. NODE(2) OR. JPLUS GT.
NODE(2)+IPN~l AND. JPLUS LT. IMAX) THEN
SLOPE1=TAN (THETA4)
SLOPE2=TAN (THETA2)
INTER1=Yl(JPLUS-1) -SLOPEI*Xl(JPLUS-1)

* . INTERt2=Y1 (JPLUS) -SLDPE2*XI (JPLUS)
XCROSS=(INTER2-INTERI)/ (SLOPE1-SLOPE2)

* YCROSS=SLOPE2*XCROSS+INTER2
IF(XPROJ(JKAX) GT. XPROJ(1)) THEN

* IF(CROSS GT. XPROJ(l) AND. XCROSS LT. XPROJ(JNAX)) THEN
CHANGE=((XCROSS-XPROJ(1))**2+(YCROSS-YPROJ(i))**2)*i.5/SPAN *

- 05/SPAN
ENDIF : X

ELSE
IF(CROSS .LT. XPROJ(1) AND. XCROSS GT. XPROJ(J MAX )) THEN
CHAICE=((XCROSS-XPROJ(1)).*2+(YCROSB=YPROJ(l))**2)*.S/SPAN
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ENDIF
ENDIF
ENDIF

IF(CHANGE LE. CENTER) CENTER=CHANGE
THETA4=THETA2
ENDIF
DO 54 I=2.,JMXN1

IL R=((XPROJ(I)-XPROJ(1))**2+(YPRO3(I)-YPROJ(1))**2)*..5
* ANGLE=ATH* (R/SPAN-CENTER)

IF(I EQ. 2) THEN
ANGLE 1=TANH (ANGLE)
ANGLE2=TANH(-ATH*(1 -CENTER))
ENDIF
FACTOR=FLOAT(JNXN1-I)*ANGLEl/FLOAT(JNXN1-2)+ANGLE2*((FLOAT(I-JMX

ANGL /LA(MM-)--
N1/LA(NX12)1

CAGETHAT STARTS OUT AT THE ORTHOGONAL ANGLE AND GOES TO THE STRAIGHT LINE
C ANGLE

* C
r ~ IF(ABS(THETA2-THETAI) GT. PI*.5) THEN

C
IC FOR ANGLES THAT ARE IN BOTH FIRST AND FOURTH QUADRAT

C
THETA3=(TANH (ANGLE) /FACTOR* (THETA2-2*PI-THETA1)+THETA2-2*PI+THET

+ Al)12

ELSE

C EW E;!A3=(TANH(ANGLE)/FACTOR* (THETA2-THETA1) +THETA2.THETA1) /2

C
CNW ROGONAL =RCSTA)+PROJECEDSOUTO

C

C LOAD INITIAL SOLVED SOLUTION ON OTHER SIDE OF THE PLANE OF SYMMETRY
C - *

* -61 IF(ICOUNT EQ. -1) THEN
DO 50 I=1.JMAX

- XN1(I)=XPROJ(I)
* .50 YN1(I)=-YPROJ(I)

GO TO 20

- C ENDIF

*C ITERATION LOOP
C

56 DO 85 I=1.ITERAT
C
C USE SCALED 1-D DISTRIBUTION TO CALCULATE INITIAL GUESS IF ON FIRST ITERATION

*C ONLY. SUCCESSIVE ITERATIONS WILL USE VALUES CALCULATED FROM PREVIOUS
C ITERATION.
C

IF(I EQ. 1) THEN
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XC1)=Xl(ICOUNT)
X(JNAX)=X2(ICLJNT)

j3 Y(1)=Yl(ICOUNT)
Y(JMA.X)=Y2(ICOUNT)

* FACT2='(Y(JMAX)-Y(l))/10.
* DO 60 J=2.JMXM1

OIFF=ARC(J) -ARtC(J-1)

IL X(J)=X(J-i)-DIFF-FACT1
60 Y(J)=Y(J-1)tDIFF*FACT2

ENDIF
C
C FIRST TIME THROUGH THE LOOP, IT CALCULATES THE X-COMPONENT, THE SECOND TIME
C THROUGH THE LOOP. IT CALCULATES THE Y-COMPONENT.

C 2 ( )= .

A2D(JMAkX)=0.O
C2D(1)=0.O
C2D(JWA)=0.0
D2D(1 ,1)=X(l)

r D2D(JMAX.1)=X(JMAX)
D2D(l.2)=Y(l)
D2D(JM4AX,2)=Y(J3NAX)
DO 65 L=2,JNXN1
LPI=L-i

C

C AT BOTH PLANES OF SYMMETRY, THE METRICS HAVE TO BE CALCULATED WITH
C CENTRAL DIFFERENCE.

* * C

*IF(ICOUNT EQ. 1 OR. ICOUNT EQ. IMAX) THEN
XETA=(X(LPI) -X(LM1))/2.
rYETA=(Y(LPl)-Y(LM1))/2.
ALPH11=XETA**2+YETA**2
ALPH22=O .0
ALPH12=0 .0
ELSE

C
C DO CENTRAL DIFFERENCE ON METRICS IF IPLUS IS EQUAL TO 1 AND
C CENTRAL DIFFERENCING SWITCH IS ON.
C

IF(JPLUS-ICOUNT EQ. 1 AND. CENTRA) THEN
XXSI=(XPROJ(L) -XN1(L))/2.
YXSI= (YPROJ(L) -Yl (L) )/2.
ELSE

C
C DO FIRST ORDER BACKWARD DIFFERENCING IF CENTRAL DIFFEREUCIEC
C SWITCH IS OFF.

XXSI=X(L) -XN1(L)
YXSI=Y(L) -YM1 (L)
ENDIF

XETA=(X(LPI)-X(LMl))/2.
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* -. YETA=(Y(LPI)-Y(LM1))/2
ALPH11=XETA,-2*YETA* -2
ALPH22=XXSI*-2-YXSI-*2
ALPH12z-XXSI*XETA-YXSI*YETA
ENDIF

* . BBB=ALPH11-(l +ABS(P)+l./FLOAT(JPLSN1)).ALPH22.K*(l *EQ)
* - AAA=-ALPH22-K/BBB

CCC= -ALPH22-K*EQ/BBBII IF(Q -LE. 0.0) THEN
A2D(L)=AAA
C2D CL) =CCC
ELSE
A2D(L)=CCC
C2D(L)=AAA
ENDIF
DDD=ALPH12 'XPROJ(LPl)-XPROJCLN1)-XN1(LP1)+XN1(LNX))/CFLOATCJPLSN1

IFCP LE. 0.0) THEN
D2D(L.1)=(ALPH11*CXN1CL)*C1 +ABSCP))+XPROJ(L)/FLOAT(JPLSN1))-DDD)
+/BBB

r ELSE
D2DCL.I)=(ALPH11*CXN1(L)+XPROJCL)*C1.+ABS(P))/FLOAT(JPLSNI))-DDD)

+ /BBBa
ENDIF

DDD=ALPH12*(YPROJ(LPl)-YPROJCLN1)-YN1(LP1)+YN1CLN1))/(FLOAT(JPLSN1

IFCP LE. 0.0) THEN

D2DCL.2)=(ALPH11*(YN1CL)*(l.+ABS(P))+YPROJ(L)/FLOATCJPLSX1))-DDD)

ELSE
D2D(L,2)=CALPHII*(YXiCL)+YPROJ(L)*C1<+ABSCP))/FLOAT(JPLSX1))-DDD)

+ /BBB
ENDIF

6 CONTINUE
DO 80 J=1,2
DO 66 N=1,JNAX
A (N)=A2D CM)
CCX) =C2D(N)

66 D(N)=D2DCM.J)
ANSC1)=DC1)
ANSCJMAX)=D(JMAX)

C
C SOLVE 2-D PARABOLIC EQUATION
C

CALL TRIDIGCJNXX1)
C
C LOAD SOLUTION INTO X AND Y VECTORS
C

IF(J EQ. 1) THEN
DO 70 N=2,JMXN1

A70 XCN)=ANS(N)

ELSE 4
DO 75 M=2,JNXXN
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75 Y(M)=AS(M)

ENDIF

80 CONTINUE

85 CONTINUE

C

C WRITE OUT SOLUTION
C

DO 90 I=1.,JMAX

90 WRITE(7,'(2(Fl3.8.lX))')X(I).Y(I)

C

C MOVE PRESENT SOLUTION TO THE NOW PRIOR SOLUTION FOR NEXT MARCHING STEP

C

DO 95 I=iJNAX

x141(i)=X(I)

95 YNI(I>=YCI)

IF(ICOUNT .LT. IMAX) GO TO 20

CALL SECOND(CPF)

CPU=CPF-CPI

WRITE(-'(A.F8.4))2-D GRID GENERATION TIME =',CPU

STOP

r END

ILI
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* SUBROUTINE SETUP

CONNON/SET/DIMEN.RMACH,PHIL,DELTA.DELTAl.NII.IAX,JMAX.P.Q.IPLUS.MIN

-OR.NAJOR CENTRA.ITERAT, TEST. CON VEX. 1PM. ORTHO. JCENT

LOGICAL DIMENCENTRATEST. CONVEX, ORTHO

REAL MAJORMINOR

C

C INITIALIZE VARIABLES

DINEN= TRUE.

RMACH=5 0

PHIL=60 0

DELTA=5 0

DELTA1=1 05

N=8

IKAX=60

P=O 0

IPLUS~l

MAJOR=4 0

rCENTRA= TRUE.

a ITERAT=I
NINOR=4. 0

TEST=.FALSE.

CONVEXs TRUE.

IPM=B
ORTHO=.TRUE

JCENT=1O

C
C WRITE OUT M4ENU

C

5 WRITE(-, '(A)')'MENU TO GENERATE GRID AROUND A WAVERIDER'

rWRITE(.. '(A)')'O) GENERATE GRID'
* . WRITE(*. '(A)')'l) RE-PRINT MENU*

IF(DIMEN) THEN

WRITE(*, '(A)')'2) AUTOMATIC GRID CROSSOVER CHECK ON'
ELSE .

WRITEk~ '(A)')'2) AUTOMATIC GRID CROSSOVER CHECK OFF'
ENDIF
WRITEC.. '(AF6.3)')'3) MACH NUM4BER = ',RJEACH
WRITE(.. '(AF63)')'4) DIHEDRAL ANGLE = '.PHIL
WRITE(*. '(A,F6.3)')'5) BASIC-CONE SEMI-VERTEX ANGLE = ',DELTA
WRITE(*, '(A.FG.3)')'6) BASIC-CONE SEMI-VERTEX ANGLE < DELTA! < SHO
+CK ANGLE, DELTAI = ',DELTAl
WRITEC., '(A.I4)')'7) SHAPE FACTOR, AN EVEN INTEGER =',
WRITE(*,'(A,I4)')'8) NUMBER OF GRID POINTS ALONG BODY SURFACE ='
+IMAX

WRITE(s.'(A.I4)')'Q) NUMBER OF GRID POINTS NORMAL FROM BODY SURFAC
+= ',JMAX
WRITE(*.'(A,F6.3)')'1O) STRETCHING IN BODY DIRECTION ON OUTER BOUN

.tDARY ONLY) = ',P
WRITE(.. '(A,F6.3)')'11) STRETCHING IN DIRECTION NORMAL TO BODY SUR
+FACE=
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WlRITE(-. '(A.14)')'12) PARABOIC UPSTREAM BOUNIDARY ,IPLUS

WRITE(-. '(A,F6 3)')'13) SEMI-MAJOR AXIS FOR OUTER BOUNJDARY ELLIPSE
* MAJOR

'iRITE(-. '(A.F6.3)')'14) SEMI-MIN-OR AXIS FOR OUTER BOUNDARY ELLIPSE

*='.MINOR

IF(CENTRA) THEN
* WRITE(-. '(A)')'15) SECOND ORDER CENTRAL DIFFERENCING ON METRICS'

ELSE

WRITE(".'(A)')'15) FIRST ORDER BACKIWARDS DIFFERENCING ON METRICS'

ENDIF .--

WRITE(-,'CAI4)')'16) NUMBER OF ITERATIONS 'ITERAT

IF (TEST) THEN

WRITE(*. '(A)')'17) TEST CASE ON'

ELSE

WRITE(-. 'CA)')'17) TEST CASE OFF'

ENDIF

IF(CONVEX) THEN

WRITE(-. '(A)')'1B) TEST FOR CONVEXITY ON'

ELSE

WRITE(*, '(A))'18) TEST FOR CONVEXITY OFF'

V ENDIF

WRITE(-.'(A)')'19) NUMBER OF EXTRA POINTS ON WING TIP'

WRITE(-. 'CA14)')' (EVEN INTEGER) =',IPM

* - IF(ORTHO) THEN

WRITE(-.'(A)')'2O) GRID WILL BE SURFACE ORTHOGONAL'

ELSE

WRITE(..'(A)')'2O) GRID WILL NOT BE SURFACE ORTHOGONAL'

ENCENT

C RT(,(,4''1 ~ POINT AT WHICH HYPERBOLIC TANGENT IS CENTER

10WRITE(-,' (A) ') 'ENTER DIRECTIVE'

C M DIVRIABL

C

GO TO (15,20,25,30,35,40,45,50,55,60,65,70,76,80,85,90,95, 100. 105,

15 RETURN

20 GO TO 5

25 DIMEN=.NOT.DIMEN

GO TO 10

30 WRITE(*. '(A) ') 'ENTER MACH NUMBER'
READ(*.*) RMACH

GO TO 10 --
35 WRITE(*, '(A))'ENTER DIHEDRAL ANGLE' N

READ(*,*) PHIL

GO TO 10

40 WRITE(*.'(A)')'ENTER BASIC-CONE SEMI-VERTEX ANGLE'

READ(*.*) DELTA

GO TO 10

45 WRITE('. '(A)')'ENTER DELTAl'

READ(*,*) DELTAl
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GO TO 10

50 WRITE(., '(A)')'ENTER SHAPE FACTOR'

READ(-.,) N

GO TO 10

56 WRITE(-, '(A)')'ENTER IMAX'

* -. READ(-,*) IMAX
GO TO 10

60 WRITE(-, '(A)')'ENTER JAX'

READ(-,*) JPAX

GO TO 10

65 WRITE(.,'(A)')'ENTER STRETCHING FACTOR IN BODY DIRECTION'

READ(-,*) P

GO TO 10

70 WRITE(., '(A)')'ENTER STRETCHING FACTOR NORAL TO BODY DIRECTION'

READ(*,*) I

GO TO 10
75 WRITE(,'(A)')'ENTER UPSTREAM BOUNDARY'

READ(*,*) IPLUS

GO TO 10

80 WRITE(*, '(A)')'ENTER SEMI-MAJOR AXIS FOR OUTER BOUNDARY ELLIPSE'

READ(*,*) MAJOR

GO TO 10

85 WRITE(C,'(A)')'ENTER SEMI-MINOR AXIS FOR OUTER BOUNDARY ELLIPSE'

READ(-.*) MINOR

GO TO 10

90 CENTRA=. NOT. CENTRA

GO TO 10

95 WRITE(.,'(A)')'ENTER NUMBER OF ITERATIONS'

READ(*,*) ITERAT

GO TO 10

100 TEST=.NOT.TEST

GO TO 10

105 CONVEX=. NOT. CONVEX

GO TO 10

110 WRITE(* ,'(A)')'ENTER EXTRA POINTS TO BE PLACED ON WING TIP (EVEN I
±NTEGER)'

READ(*,*) JPM

SGO TO 10
115 ORTHO= .NOT. ORTHO

GO TO 10

120 WRITE(*, ' (A) ') 'ENTER POINT LOCATION WHERE TANH IS TO BE CENTERED'
READ(*,*) JCENT

* .GO TO 10

END

.
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SUBROUTINE SHOCK
COMMON/SET/DIMENRNACH,PHIL,DELTADELTA1,NIAXJt4AXP,QIPLUSMIN
+OR ,MAJOR. CENTRA, ITERAT, TEST. CONVEX. 1PM, RTHOJCENT4

COMMON/BETA/BETA, PI

REAL MAJOR,MINOR

C
C INITIAL GUESS AT THE SHOCK ANGLE
C

BETA=ASIN(((GAN4A+1 )*RIACH**2*DELTA*PI/(36O.*(RN4ACH**2-1.)*. )+i
+. ) /ftJACH* *2)
DELTAR=DELTA*PI/180. -

C
C ITERATE TO GET SHOCK ANGLE
C

DO 5 I=1,15
5 BETA=ASIN((CGANMA+1.)*SINCBETA)*SIN(DELTAR)/C2*COS(DETA-DELTAR))+l
+ RJACH**2)**.5)
BETA=BETA* 180. /PI
RETURN
END
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SUBROUTINE TRIDIG(MAX)
COMNONM/TRI/A(l00) ,C(100) ,D(100)

COMMON ANS(100)

C USED MODIFIED THOM4AS ALGORITHM FOR TRIDIAGONAL SOLVER
C

DO 5 I=2,MAX

D(I)=(D(I)-A(I)*D(I-1))/AC
5 C(I)=C(I)IAC

DO 10 II=2,MAX
I=MAX-II+2

10 ANSCI)=D(I)-C(I)*ANS(I-1)
RETURN
END-
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SUBROUTINE GEOM(PHI.RB.RFS,RE,SWITCH)
COMI4ON/SET/DIM4EN , RMACH .PHIL. DELTA. DELTAI N. IMAXJMAX. P.Q. IPLUS , IN

K *OR,.MAJOR,CENTRLA,ITERAT,TEST,CONVEX. IPM,ORTHO,JCENT
COMMON/BETA/BETA. PI
REAL MAJORMINOR
LOGICAL SWITCH

* RPHI=(PHI+9O )*PI/18O.

IF(SWITCH) GO TO 5
SIGM.A=BETA/DELTA

* ANGLE=PHI/PHIL
C
C RADII FOR LOWER BODY. UPPER BODY AND ELLIPSE GEOMETRY
C

RB=( CSIGMA-*2-DELTAI**2)*ANGLE**N+DELTAI**2)*s .5
RFS=SIGMA* ((SIGMA**2-DELTA1**2) *ANLE**N/ (SIGMA**2-12.) *(DELTA1**2-

-1 )/CSICM4A**2-1.))**.5
5 RE=(MAJOR**2*MINOR**2/(MAJOR**2*SIN(RPHI)**2+MINOR**2*COS(FRPHI)**2

RETURN
END

*10
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* - SUBROUTINE ARCLEN
CO?MON/SET/RMACH.PHIL,DELTA,DELTAIN.INAX,JNAX.KMAX.P,Q.R.IPLUS.KP

-LUS ,MINOR ,MAJOR, CErJTRA, ITERLAT.1PM, JCENT3 CONNON/ARC/APHI(0:18O),ARB(0 180) .ARFS(0 180) ,ARCB(0 100) .ARCFS(O

* ~~COI4MON/BETA/BETA,PI. RADIAN .*

CONNON/LENGTH/BARC FSARC,.EARC
REAL MAJORMKINOR
LOGICAL SWITCH
SWITCH=.FALSE.

* C
C LOAD TABLE OF ANGLE, RADII AND ARCLENGTH FOR LOWER, UPPER BODY AND ELLIPSE
C GEOMETRY
C

PHI=0.0
CALL GEOM (PHI, RB. RFS .RE .SWITCH)
APHI(0)=0.0
ARB (0)=RB
ARFS (0)=RPS
ARCB(0)=0.0

r ARCFS(O>=O.0
ARE (0)=RE

* ARCE(0)=0.0
IPHIL=PHIL

C
C LOAD TABLE FROM 0 Ta DIHEDRAL ANGLE, THIS CREATES THE WAVERIDER GEOMETRY
C AND PART OF OUTER BOUNDARY ELLIPSE
C

DO 5 1=1,IPHIL
* PHI=I

* CALL GEON(PHI,RB.RFS.RE.SWITCH)
APHI(I)=PHI
ARB(I)=RBr ARFS(I)=RFS b

ARE(I)=RE
ANGLE1=APHI (I) *RADIAN
ANGLE2=APHI(I-1) *RADIAN
ARCB(I)=( (ARB(I)*COS(ANGLEl) -ARE(I-i) *COS(ANGLE2) )**2+(ARB(I) *SI(

+ANGLEI)-ARB(I-1)*SIN(ANGLE2) )**2)*. .+ARCB(I-1)
ARCFS(I)=((ARFS(I)*COS(ANGLEI)-ARS(I-)*CS(ANGLE2))**2+(AFS(I)* hr

+SIN(ANGLEI)-ARFS(1-1)*SIN(ANGLE2))**2)*.+ARCFS(I-1)
6 ARCE(I)=((ARE(I)*COS(ANGLEI) -ARE(1-1)*COS(ANGLE2))**2+(ARE(I)*SIN(

* +ANGLEl)-ARE(I-1)*SIN(ANGLE2)).a.2)**.S+ARCE(I-1)
BARC=ARCB(IPHIL)
FSARC=ARCFS(IPHIL)
SWITCH=.TRUE.

C ~
C LOAD ELLIPSE VALUES FROM DIHEDRAL ANGLE TO 180 DEGREES
C

DO 10 I=IPHIL+1,180

r- PHI=I
CALL GEON(PHI,RB,RFS,RE,SWITCH)
APHI(I)=PHI
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ARE(:) =RE
ANGLE1=APHICI) *RADIAN
ANGLE2=APHI(I-1) *RADIAN

10 ARCE(I)=((ARE(I).COS(ANGLEI)-ARE(I-1)SCOS(ANGLE2))**2.CARE(I)*SIN(
-ANGLEl)-ARE(I-1)*SIN(ANGLE2))-*2)*s .5,ARCE(I-1)

- EARC=ARCE(180)
C

*C IF THE DIHEDRAL ANGLE IS NOT AN INTEGER FINISH LOADING TABLE FOR VAVERIDER
C WING TIP POINT

IL C
* IF(IPHIL EQ. PHIL) THEN

RETURN
* * ELSE

CALL GEOM(PHILRB.RFSRE,SWITCH)
I=IPHIL-
APHI(I+1)=PHIL
ARB(I+1)=RB
ARFS(I*1)=RFS
ARE(I+1)=RE

* ANGLE1=APHI (I+1) RADIAN

r ANGLE2=APHI (I) *RADIAN
ARCB(I+1)=((ARB(I+1)*COS(ANGLEl)-ARB(I)*COS(ANGLE2))**2+(ARB(I+l)
+ SIN(ANGLEl)-ARB(I)*SIN(ANGLE2))**2)**.5+ARCB(I)
ARCFS(I.1)=((ARFS(I+I) *COS(ANGLEl) -ARFS(I) *COS(ANGLE2) )**2+(ARPS(
+I+1)*SIN(ANGLEl)-ARFS(I)*SIN(ANGLE2))**2).*.5+ARCFSCI)
BARC=ARCD (I+1)
FSARC=ARCFS(I+1)a RETURN
ENDIF
END

10
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SUBROUTINE INTERP (MAX. I)
COMMON/SET/RJACH.PHIL.DELTA,DELTA1,N,IM4AX,JMAXKMAX,P.Q.R.IPLUS,KP
-LUS .MINOR, MAJOR. CENTRA, ITERAT.IPM, JCENT

* ~~COMMON ANS(100) ..--

CONNON/ARC/APHI(0: 180) ,ARB(O: 180) .ARFS(0: 180) .ARCB(0: 180) ,ARCFS(O:-*
N", 180).ARE(O:180) .ARCEW018O)
* COMNON/SBOUND/XYZS1(100,2) .XYZS2(100,2)

COMMON/BETA/BETA PI,.RADIAN S
CONNON/LENGTH/BARC,.FSARC,.EARC .

K =0
GO TO (35,5.20).l

5 ITAB=MAX+IPN/2
C
C IF USING REFINED POINTS. CALCULATE THOSE POINTS NEAR THE WING
C TIP4
C .

IF(IPN GT. 0) THEN
MWA=MAX. IPN/2
ANS(4AX) =ANS (NMAX-IPN/2)

r DO 6 J=1,IPN/2
6 ANS(MNAX-J)=BARC-J/10000. j

C
C INTERPOLATE TO FIND VALUES OF LOWER BODY THAT CORRESPOND TO THE ARCLENGTH
C DISTRIBUTION
CU DO 15 J=1,MNAX

10 IF(ARCB(K) -LE. ANS(J AND. ARCB(K+1) -GE. ANS(J) THEN
FACTOR=ABS((ANS(J)-ARCB(K))/(ARCB(K+1)-ARCB(K)))
RR=FACTOR*ABS (ARB (K+1) -ARB (K)) iARB (K)
PHI=FACTRABS(APHI(K+1)-APHI(K))+APHI(K)
XYZS1(J. 1)=RR*COS(PHI*RADIAN)
XYZS1 (J, 2)=RR*SIN(PHI*RADIAN) r.~

ELSE
K=K~1,%.l*

GO TO 10 -

ENDIF
15 CONTINUE __

RETURN
C
C AGAIN CALCULATE REFINED POINTS ON UPPER SURFACE NEAR WING TIP -

U. C
20 IF(IPM GT. 0) THEN

NMAX=MAX+ IPN/2
ANS(AX) =ANS(NKAX-IPM/2)
DO 21 J=1,IPM/2

21 ANSO(Ax-J)=FSARC-J/10000.
ENDIF

C
* *.C INTERPOLATE TO FIND VALUES OF UPPER BODY THAT CORRESPOND TO THE ARCLENGTH

C DISTRIBUTION

DO 30 J=1,MWA
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2S IF(ARCFSCK) LE. ANS(J AND. ARCFS(K-1) GE ANS(J) THEN
FACTOR=ABS((ANS(J)-ARCFS(K))/(ARCFS(K'1) -ARCFS(K)))
RR=FACTOR-AflS(ARFS(K+1)-ARFS(K) )-ARFS(K)
PHI=FACTOR*ABS(APHI (K+1) -APHI (K)) .APHI (K)

C
C LOAD POINTS BELOW LOWER BODY POINTS-

* I- .*

-' XYZSI(ITAB+Ml4AX-J. 1)=RR*COS(PHI*RADIAN)
XYZSI (ITADBN?4A-J,2)=RR*SINCPHI*RADIAN) ' '

ELSE
KnK+1
GO TO 25

ENDIF
30 CONTINUE

RETURN
35 DO 45 J=1,MAX

C
C INTERPOLATE TO FIND VALUES ON ELLIPSE THAT CORRESPOND TO THE ARCLENGTH
C DISTRIBUTION

* C
40 IFARCE(K .LE. ANS(J AND. ARCE(K+l) GE. ANS(J) THEN

FACTOR=ABS((ANS(J)-ARCE(K))/(ARCE(K+1)-ARCE(K)))
RR=FACTOR*ABS (ARE (K+ 1) -ARE (K)) +ARE (K)
PHI=FACTOR*ABS (APHI (K+ 1) -APHI (K)) +APHI (K)
XYZS2(J,i)=RR*COS(PHI*RtADIAN)
XYZS2(J,.2)=RR*SIN(PHI*RADIAN)

* ELSES K=K~l
GO TO 40

- * - ENDIF

45 CONTINUE
RETURN
END

1. A
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Appendix C Three-Dimensional Wrapped Grid Computer Code .

subroutines SHOCK. TRIDIG. GEO.M. and ARCLEN are the same as those

found in Appendix B.%0

105
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.V I .S - P. -7 - -7-

PROGRAM GR1030
COMMON/SET/RMACH PHIL, DELTA, DELTA , N. IMAX JMAX .KNAX ,P. Q R,IPLUS ,KP
-LUS .MINOR. MAJOR, CENTRA, ITERAT,1PM, JCENT
COMNONITRI/A(100) ,C(100) .0(100)
COMMON/BETA/BETA. PI RADIAN
COMMON/BOUND/XYZI(100.25.3) ,XYZ2(100,25.3)
COMMON ANS(100)
COMMNON/SBOU'nD/XYZS1(100,2) ,XYZS2(100,2)

I'COMNON/AR / APHIC0: 180) ,ARBCO. 180) ,ARFSCOS 180) ,ARCa(0: 180) .ARCFS(0:
-180) .ARE(0. 180) ,ARCE(0: 180)
COMNON/LENGTH/BARC .FSARC ,EARC

DIMENSION A3D(1OO) .C3D(100) .03D(100,3)
DIMENSION XYZM1(0:100.S0.3),XYZ(0:100,S0.3).XYZPRO(0:100,50,3)
DIMENSION NODE(3).ARC(100)

REAL MAJOR.MINOR.LENGTH(3) ,INTER . INTER2 ,K
LOGICAL CENTR.TEST
REWIND 7
PI=ACOS(-1 .0)
RADIAN=PI/ 180.

C
C GET INITIAL VALUES FOR RUN
C

CALL SETUP
C
C CALCULATE SHOCK ANGLE
C5 CALL SHOCK(BETA)

IMXM1=IMAX- 1
JMxm1=JwA- 1
KMJXM I=KMAX- 1

C
C CALCULATE WHERE NOSE OF WAVERIDER IS LOCATED
IC

XNOSE=O 0
YNOSE=O.0
ZNOSE=O 0 '

C
C CALCULATE LENGTH OF WAVERIDER
C

RLENG=BETA/ (DELTA*TAN(BETA*RADIAN))
C
C Y-COORDINATE OF NOSE IS ZERO, X-COORDINATE OF NOSE IS EQUAL TO THE UPPER
C POINT IN THE BASE PLANE BECAUSE THE UPPER SURFACE OF WAVERIDER IS ALIGNED
C WITH THE FREESTREAN, THE Z-COORDINATE COMES FROM THE CONE EQUATION
C

IF(DELTAI NE. DELTA) THEN
SLOPE1=1 ./TAN(BETA*RADIAN)

XNOSE=DETA/DELTA*((DELTA1**2-1.)/C(DETA/DELTA)**2-1.))*. .
ZNOSE=SLOPEi *XNOSE '

ENDIF
;* r C

C CALCULATE THE Z LOCATIONS OF THE VAVERIDER, CROSS-SECTIONS
C
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BB=l -EXP(-ABS(R))

AA=-l /BB

CC=-EXP(-ABS(R))/BB

A(1)=O 0 --

A(KNAX)=O 0
C(1)=O 0

C(KNAX)=0 0
D(1)=ZNOSE

31~ D(MAX) =RLENG
ANS(i)ZNOSE
ANS (KNAX) =RLENG

IF(R LE 0.0) THEN
DO 6 I=2,KMX.
A(I)=AA,-

C(I)=CC

5 D(I)=O.O

ELSE
DO 10 I=2,KNXN1

A(I)=CC

9- C(I)=AA

10 D(I)=O0.

ENDIF

CALL TRIDIC(KNXN1)" ~~ANS(K.'X-, 2*ANS(K.tAX)-ANS(K,'X-, ::i:::
C
C LOAD Z-COORDINATES INTO THE INNER AND OUTER BOUNDARY POINTS
C

DO 20 J=1,KMAX+I

DO 15 I=1,IMAX
XYZ1(I,J,3)=ANS(J)

15 XYZ2(I,J,3)=ANS(J)

20 CONTINUE

C STORE Z CROSS-SECTION LOCATIONS

C
DO 25 I=I,KMAX+I

25 ARC(I)=ANS(I)
C
C THE BOUNDARY POINTS OF THE INNER AND OUTER BOUNDARY POINTS AT THE FIRST

C CROSS SECTION IS THE NOSE OF THE WAVERIDER WHERE IT INTERSECTS THE SHOCK
C WAVE
C

DO 30 J=1,IMAX
XYZI(J,1,1)=XNOSE

XYZ1(J.1,2)=YNOSE
* XYZ2(J1,1)=XNOSE

30 XYZ2(J,1.2)=YNOSE
C
C CALCULATE WAVERIDER, ELLIPSE BOUNDARY POINTS

r C
CALL ARCLEN

C
C CALCULATE ARCLENGTH OF OUTER BOUNDARY ELLIPSE, AND LOWER AND UPPER SURFACES
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C OF 'AVERIDER EARC, ARCLEJGTH OF ELLIPSE BARC. ARCLENGTH OF LOWER SURFACE

C FSARC. ARCLENGTH OF FREESTREAN OR UPPER SURFACE OF WAVERIDER

1=0

LENGTH (1) =EARC

LENGTH (2) =BARC

LENCTH (3) =FSARC

NODE(1)=I4A

35 I=I-1
C

C GENERATE COEFFICIENTS FOR 1-D ELLIPTIC EQUATION

C

BB=1. =EXP(-ABS(P))

AA=-l./BB
CC=-EXP C-ABS (P) )/BB
A(1)=0.0

A(NODE(I))=0.0

C(1)=O.0

C(NODE(I))=0 0

D(1)=O.0

ANS(1)=O00h

D(NODE(I) )=LENGTH(I)
ANS(NODE(I) )=LENGTH(I)
IF(P LE. 0.0) THEN

DO 40 L=2.NDDE(I)-l

A(L)=AA
C(L)=CC

40 D(L)=O.0
ELSE

DO 45 L=2,NODE(I)-l

A(L)=CC
C(L)=AA

45 D(L)=O.0

ENDIF
C

C SOLVE 1-D ELLIPTIC EQUATION FOR DISTRIBUTION P AND FOR NODEMI POINTS.

C

CALL TRIDIG(NODE(I)-l)

C

C NOW THAT THE ARCLENGTH DISTRIBUTION IS KNOWN, CONVERT ARCLENGTH INTO ELLIPSE
C AND WAVERIDER BOUNDARY POINTS.
C

CALL INTERP(NODE(I) .I.XNOSE)
C

-C CALCULATE THE INTERSECTION OF LINE BISECTING UPPER AND LOWER SURFACES OF
C WAVERIDER AND THE OUTER BOUNDARY.

* C
P=0.0
IF(I EQ. 1) THEN.
SLIMIT=10000.

C GO 5 DEGREES BACK FRON THE WING TIP AT PHIL AND GET X3,Y3 ON LOWER BODY
C SURFACE AND X4,Y4 ON UPPER BODY SURFACE. AVERAGE X3,*Y3 AND XI. Y4 TO GET
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C XMID.YMID POINJT
C

IPHIL=PHIL
IPOS=IPHIL-5
ANGLE=FLOAT(IPOS)*RADIAN

Y3=ARB(IPOS)*SIN(ANGLE)
X4=ARFS(IPOS) *CO5(ANGLE)
Y4=ARFS(IPOS) *SIN(ANGLE)

CI
Ci CALCULATE POINT ON WING TIP

C
XMID= (X3-X4) /2.
YNID= (Y3+Y4) /2.
IF(IPHIL EQ. PHIL) THEN

ANGLE=FLOAT (IPHIL) *PADIAN
XEND=ARB (IPHIL) *COS (ANGLE)
YEND=ARB(IPHIL) *SIN(ANGLE)
ELSE
ANGLE=PHIL*RADIAN

F XEND=ARB(IPHIL+1)*COS(ANGLE)
YEND=ARB(IPHIL+1) *SIN(ANGLE)

ENDIF
C
C CALCULATE SLOPE AND Y-INTERSECT OF LINE BISECTING WAVERIDER GEOMETRY.
C THERE ARE TWO SPECIAL CASES WHEN THE SLOPE IS EQUAL TO ZERO OR INFINITY.
C IIF(XEND-XNID EQ. 0.0) THEN

XCROSS=0 .0
YCROSS=MAJOR

ELSE
SLOPEI= (YEND-YNID) /(XEND-XMID)
IF(SLOPE1 EQ. 0.0) THEN
iXCROSS=MINOR
YCROSS=0.0

ELSE
INTER1=YNID-SLOPEI*XNID

C
C CALCULATE INTERSECTION POINT OF BISECTING LINE AND OUTER BOUNDARY

S *C ONLY THE POSITIVE RADICAL TERM OF THE QUADRATIC EQUATION IS NEEDED
C

XCROSS=(2 *(MAJOR**2*XNOSE-MINOR**2*SLOPEI*INTERI)+ (4.* (NINOR*
2.SLOPE1*INTER1-MAJOR**2*XNOSE)s*2-4. *(MAJOR**2+MINOR**2*SLOPE1
**2)*(MAJOR**2*XNOSE**2+MINOR**2*INTERI**2-MAJOR**2*XINOR**2))*
*:~ :.5)/(. * XJR*+IO***LPI*)
YCROSS=SLOPE1 *XCROSS+INTER1

ENDIF

ENDIF
C
C DETERMINE WHICH POINT ON THE OUTER BOUNDARY IS CLOSEST TO THE INTERSECTION

V C POINT

C DO 50 L=1,IMAX
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XDELTA:ABS(XYZS2(L, 1)-XCROSS)

YDELTA=ABS(XYZS2(L.2) -YCROSS)

P DISTAN=(XDELTA..2-YDELTA-.2).. 5

IF(DISTAN .LE. SLIMIT) THEN

SLIXIT=DISTAN

NODE(2) =L

ENDIF
50 CONTINUE

C L

C NODE(2) IS THE NUMBER OF POINTS TO BE PLACED ON LOWER SURFACE. IF REFINED

C POINTS ARE USED, SUBTRACT HALF THE ADDED POINTS FROM THE LOWER SURFACE TO

C GET THE PROPER DISTRIBUTION OF POINTS ON THAT SURFACE.

C

NODE(2)=NODE(2) -IPM/2

NODE(3)=I NAX-NODE(2) - IPM

ENDIF

C

C INITIALIZE INNER BOUNDARY POINT ON OTHER SIDE OF PLANE OF SYMMETRY, TO BE USED

C IN ORTHOGONALITY GENERATION.

C
r IF(I LT 3) GO TO 35

C
C CALCULATE EQUATION OF LINE FROM NOSE OF WAVERIDER TO THE WING TIP IN

C THE BASE PLANE

C

SLOPE1 =(RLENG-ZNOSE) / (BETA/DELTA*COS (PHIL*RADIAN) -XNOSE)

INTERi=RLENG- SLOPEI.BETA/DELTA*COS (PHIL*RADIAN)

DO 56 I=2.KMAX-1

C CALCULATE THE X AND Y LOCATIONS WHERE THE WING TIP OF THE CROSS SECTION

C SHOULD INTERSECT THE WAVERIDER AND GENERATE SCALING FACTORS SO THE BASE ,

C PLANE GEOMETRY CAN BE SCALED ACCORDINGLYr C
XSHOCK=(ARC(I)-INTER1)/SLOPE1

FACTI= (XSHOCK-XNOSE) / (BETA/DELTA*COS(PHIL*RADIAN) -XNOSE)
YSHOCK=BETA/DELTA*((ARC(I)/RLENG)*.2-(XSHOCK*DELTA/BETA)**2)**. 5

'. "e FACT2=YSHOCK/YEND

FACT4=FACT2

DO 55 J=1.IMAX

C
C SCALE THE INNER AND OUTER BOUNDARIES OF THE BASE PLANE GEOMETRY WITH RESPECT

C TO THE SCALE FACTORS JUST CALCULATED

C

XYZ1(JI,.)=(XYZSI(J,1)-XNOSE)*FACTI XNOSE

XYZI(J.I,2)=XYZSI(J,2)*FACT2

XYZ2(JI,I)=(XYZS2(J,1)-XNOSE)*FACT4-XNOSE

55 XYZ2(J,I,2)=XYZS2(J,2)*FACT4

XYZ1(IMAX 1.,I 1)=XYZ1(IMAX-1 ,1,1)

56 XYZI(IMAX+1,I.3)=XYZ1(IMAX-I .I3) '.

C

C GENERATE COEFFICIENTS FOR 1-D ELLIPTIC EQUATION

C
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CALL SECOND(CPI)

* . C

IC CALCULATE Q DISTRIBUTION OF POINTS AND STORE

C
A(1)=O 0

A(JMAX)= 0o

C(1)-O 0

C(JP4A)=0 0
D(1)=0.0

ANS(1)=D(1)

D(JMAX)=10.0
ANS(JMAX)=D(JMAX)
BB=1 EXP(-ABS(Q))

AA=- 1 /BB

CC=-EXP(-ABS(Q))/BB

IF(Q LE. 0.0) THEN

DO 60 J=2,JMXM1

A(J) =AA

C(J)=CC

60 D(J)=O.O

ELSE
DO 65 J=2,JMXM1

A(J)=CC

C(J)=AA

65 D(J)=O.O

ENDIF

UC
C SOLVE 1-D ELLIPTIC EQUATION

C

CALL TRIDIG(JMXM1)

C
C SINCE Q IS CONSTANT THROUGHOUT GRID, SOLVE 1-D ELLIPTIC EQUATION ONCE AND

C STORE IN ARC AND THEN CAN SCALE FOR BOTH INITIAL GUESS AT I AND AT IPLUS, THE

C PROJECTED SOLUTION

C

*DO 70 J=1,JNAX

* - 70 ARC(J)=ANS(J)

C
. C INITIALIZE AQ, EQ, AND K

C

AQ=ABS(Q)
IF(AQ.LT. 1.E-6) THEN

EQ=1.-AQ+AQ**2/2.-AQ**3/6.+AQ**4/24.-AQ*.5/120.
• - ~~~K=1./(i, -AQ/2. +AQ** 2/65 -AQ*.3/24. +AQ*.4/120. ) " -

ELSE

EQ=EXP (-AQ)

K=AQI(1-EQ)

ENDIF

C
C BEGINNING OF 3-D GRID GENERATION LOOP, INCREMENT COUNTER, JPLUS IS THE

C LOCATION OF PROJECTED SOLUTION IN THE XI DIRECTION, JPLSM1 IS IPLUS-I, LPLUS

C IS THE LOCATION OF THE PROJECTED SOLUTION IS THE ZETA DIRECTION, AND LPLSN1

C IS KPLUS-K vt.

.' .1.
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C
KCOUNT=O

75 KCOUNT=KCOUNT+ 1

C CALCULATE POSITON OF PROJECTED SOLUTION IN THE ZETA DIRECTION \,,

* LPLUS=KCOUNT+KPLUS
i LPLSX1=KPLUS

IL, IF(LPLUS .GT. KMAX) THEN

LPLUS=KMAX
LPLS-1=LPLUS-KCOUNT

ENDIF "
IF(KCOUNT .EQ. KIMX) THEN
LPLUS=KNAX+ 1
LPLSNX= 1 q

ENDIF

IF(KCOUNT EQ. 1) THEN
C
C LOAD NOSE POINTS INTO THE MINUS ONE 2-D CROSSECTION

C
DO 85 I=O.IMAX+l

DO 80 J=1,JNAX
XYZN1(IJ,1)=XYZ1(1,1,1)

XYZM1(I,J,2)=XYZI(1,1,2)
XYZM1(IJ,3)=XYZI(1,1,3)

C
C THE INITIAL PLANE IS A POINT, SO WRITE IT OUT INTO THE OUTPUT FILE
C

IF(I GT. 0 AND. I .LT. INAX+I) THEN
WRITE(7, '(3(F13.8,IX)) )XYZNI(I.J,I) ,XYZNI(I,J,2) .XYZNI(I.J,3)

ENDIF
80 CONTINUE

85 CONTINUE
GO TO 75

ENDIF

C
C IF KPLUS IS EQUAL TO ONE AND AT SECOND MARCHING POSITION ONLY THE NEW
C PROJECTED PLANE NEEDS TO BE FILLED WITH NEARLY ORTHOGONAL CURVES. THE
C NEW SOLUTION PLANE IS THE OLD PROJECTED SOLUTION PLANE AND THE NEARLY

. C ORTHOGONAL CURVES CAN BE ROTATED IN
C

IF(KCOUNT GT. 2 AND. IPLUS EQ. 1) THEN
* -" DO 96 I=O,INAX+I

DO 90 J=1,JNA
XYZ(I.J, 1)=XYZPRO(I,J, 1)
XYZ(IJ.2)=XYZPRO(I,J,2)

90 XYZ(I,J,3)=XYZPRO(IJ,3)

96 CONTINUE

JCOUNT=l

GO TO 106

ENDIF
C
C IF AT THE FIRST SOLUTION STATION OR IF KPLUS IS GREATER THAN OnE, BOTH THE
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C SOLUTION AND PROJECTED SOLUTION PLANES NEED TO BE FILLED WITH NEARLY

C ORTHOGONAL CURVES. THE STORED 1-D Q DISTRIBUTION OF POINTS IS SCALED

C BETWEEN ALL THE BOUNDARY POINTS IN THESE TWO PLANES

C

JCOUNT=0

C

C THIS PROCEDURE CALCULATES THE NEARLY ORTHOGONAL CURVES IN THE SOLUTION PLANE
C

DO 105 I=1,IJ4A

XYZ(I, 1.1)=XYZ1(I .KCOUNT, 1)

XYZ(I, 1.2)=XYZI(I.KCOUNT,2)

XYZ(I, 1 3)=XYZ1(I,KCOUNT,3)

XYZ(I,JMAX, 1)=XYZ2(I,KCOUNT,1)
XYZ(I,JKAX.2)=XYZ2(I.KCOUNT,2)
XYZ(I,J MAX 3)=XYZ2(I,KCOUNT,3)

FACT1=(XYZ(I,JNAX,2)-XYZ(I,1,1))/10.
FACT3=(XYZ(I,J4AX.3)-XYZ(I. 1,3))/10.
DO 100 =2(,JX -YZI13)/

DOIFF =ARC J AR(1)
XYI.AJ)-XYZ(J-1.)+DF~AT
XYZ(I,J.2)=XYZ(I .J-1,2)+DIFF*FACT2

10XYZ(I,.2)=XYZ(I,J-1,).DIFF*FACT2

100 CONTINUE =Y(IJ13+DF*AT

C0 ONIU
C TI RCDR EEAE H ERYOTOOA UVSI H RJCE

C SOLUTION PLANE

C
106 DO 115 I=1,INAX

XYZPRD(I, 1.1)=XYZ1(I,LPLUS,1)
* XYZPRO(1,1,2)=XYZI(I,LPLUS.2)

XYZPRO(I, 1,3)=XYZ1(I,LPLUS,3)
XYZPRO(I,JNAX, 1)=XYZ2(I.LPLUS.1)
XYPOIJF,)=Y2ILLS2
XYZPRO(IJNAX,3)=XYZ2(I,LPLUS,3)
FAYT=P XZR(IA ,) XZ2(ILPRO(S,3)1
FACT2=(XYZPRO(I,JNAX,2)-XYZPRO(I.,12))/10.
FACT2=(XYZPRO(I.JKAX,3)-XYZPRO(I,1,3))/10.
DOA1103=Z ,J J4X3)XZROI13)/O
DO 10 =ARCJNXNRCI-

'- DFF=R(J)ARC(J-1) ,)+IF*FCT

XYZPRO(I,J. 1)=XYZPRO(I.J-1,2)+DIFF*FACT1
10XYZPRO(I,J,2)=XYZPRO(I.J-1,3)+DIFF*FACT3

110 CYOINUE )XZPOI31,)t.FAT
* 115 ONTINU

C TH C OLWN EEMNSWIHCOSSCINI H IETO SBIGUE

C THaOLWN.EENNSWHC RS ETO NTE IETO SHlOUE
C2 CUTJON~

* -, 120 JCOUNT. C)UTTEY
IF(J=COUNTE.1)TN

ELSE

ENDIF
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C

C CALCULATE THETA2 OF THE NODE POINTS BEFORE AND AFTER THE REFINED POINTS

C FOR USE IN NEARLY ORTHOGONAL CURVE GENERATION AND CALCULATE THE INTERVAL

C TO BE ADDED TO EACH REFINED POINT

C

TEST=.TRUE. --

LCOUNT=O

121 LCOUNT=LCOUNT~1

IF(LCOUNT EQ. 3) THEN

TEST=.FALSE.

IF(ANG1 .GT. PI) ANG1=ANG1-2.*PI

ANG3=(ANG2-ANG1) /FLOAT(IPN)

GO TO 129

ENDIF

IF(LCOUNT EQ. 1) THEN

ICOUNT=NODE(2) -1

* ELSE
* ICOUNT=NODE (2) +IPN-l

ENDIF

GO TO 133
129 ICOUNT=0

130 ICOUNT=ICOUNT+1

C

C IF ORTHOGONALITY SWITCH IS ON, TURN THE PROJECTED SOLUTION FRON A STRAIGHT
C TO A CURVE THAT STARTS ORTHOGONAL TO SURFACE AND ENDS UP AT OUTER BOUNDARY
C SURFACE
C

IF(ICOUNT EQ. 1 O.ICOUNT EQ. INAX) THEN
THETA 1=0.0
THETA2=0.0
ATH1=1.
GO TO 131

C ENDIF 2
C CALCULATE ANGLE OF LINE BETWEEN INNER AND OUTER BOUNDARIES
C

* THETA1=ATAN((XYZ2(ICOUNT,KPOS2)-XYZ(ICOUNT,KPOS,2))/(XYZ2(ICOUN
* * T,KPOS, 1)-XYZI(ICOUNTKPOS, 1)))

C
C PUT ANGLE IN PROPER QUADRAT, HAVE SPECIAL CONS IDERATIONS MHN SLOPES ARE
C EITHER ZERO OR INFINITY
C

* IF(XYZ2(ICOUNT,KPOS,1)-XYZI(ICOUUT,ICPOS,l) EQ. 0.0) THEN
* - FACT1=1.

* ELSE
FACT1=(XYZ2(ICOUNT,KPOS,1)-XYZ1(ICOUNT,KPOS. 1))/ABS(XYZ2(ICOUNT.

+ KPOS,1)-XYZI(ICOUNT,KPOS,1))

ENDIF
IF(XYZ2(ICOUNT,KPOS,2)-XYZI(ICOUNT,KPOS,2) EQ. 0.0) THEN

FACT2=1.
ELSE XZ(CUTPO,)/BXY2IOT
FACT2=(XYZ2(ICGUNT,KPOS,2)-YIIUT[O2 ) /B(Y2 ONT
,KPOS,2)-XYZI(ICOUNT.KPOS.2))
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ENDIF
C
C SINCE QUADRAT NOW KNOWN, CHANGE ANGLE TO REFLECT QUADRAT
C

IF(FACT1 EQ. -1. AND. FACT2 EQ. 1.) THETA1=PI-THETAl

IF(FACT1 EQ. -1. AND. FACT2 EQ. -1.) THETA1=PI-THETAI
IF(FACT1 EQ. 1. AND. FACT2 EQ. -1.) THETAI=2.*PI+THETA1

C

C CALCULATE ANGLE OF NORMAL LINE TO BODY SURFACE USING AN AVERAGE OF PANELS ON
C EACH SIDE OF THE PROJECTED SOLUTION
C

IF(ICOUNT GT. NODE(2)-1 AND. ICOUNT .LT. NODE(2).IPN~l) THEN
THETA2=ANG1ANG3FLOAT(ICOUNT-NODE(2))
GO TO 132

ENDIF
133 THETA2=(ATAN((XYZI(ICOUNT-1,KPOS,1)-XYZI(ICOUNT.KPOS.1))/(XYZ1(

+ ICOLNT.KPOS.2)-XYZI(ICOUNT-1 .KPOS.2)) )-ATAN((XYZ1(ICOINT.KPOS. 1)-
+ XYZ1(ICOUNT+1,KPOS,1))/(XYZI(ICOUNT+1,KPOS.2)-XYZI(ICOUNT.KPOS,2)

SLOPE1=TAN (THETA2)
C
C HAVE A QUADRAT PROBLEM AGAIN. HAVE SLOPE AND POINT AND THEREFORE EQUATION
C OF LINE. INTERSECT THIS LINE WITH OUTER BOUNDARY WITH BOTH POSITIVE AND
C NEGATIVE SIGNS ON THE RADICAL OF THE QUADRATIC EQUATION. SPECIAL PROBLEMS
C AGAIN WITH SLOPES EQUAL TO ZERO AND INFINITY
C

FACTS=FACT4*MAJOR
FACT6=FACT4*NINOR

* IF(SLOPE1 EQ. 0.0) THEN
YQUAD1=XYZ1(ICOUNT,KPOS,2)
YQUAD2=XYZ1 (ICOUNT .KPOS .2)
XQUADi=((l.-xYZ1(ICOUNT,KPOS.2).*2/FACTS*.2)*FACT6*.2)** 6

( XQUAD2=-XQUAD1
ELSE
IF(SLOPEI GT. 10000.) THEN

XQUAD1=XYZ1(ICOUNTKPOS. 1)
* . XQUAD2=XYZ1 (ICOUNT,KPOS. 1)
* YQUADI=((1.-XYZI(ICOUNT,KPOS.1)**2/FACTG**2)*FACT4**2)*..

YQUAD2= -YQUAD 1
ELSE
INTER1=XYZI(ICOUNT,KPOS,2)-SLOPEI*XYZI(ICOUNT,KPOS,l)
FACTI=-2. .FACTO.*2*SLOPEI*INTER1+2. .FACTS**2*XNOSE
FACT2=2. .(FACTS**2+FACT6**2*SLOPE1**2)

b-. RADICA±((-2.*FACT5**2*XNOSE+2..FACTG**2*SLOPE1*INTERI)**2-4.*(F
+ ACTS**2+FACTG**2*SLOPEI**2) *(FACTS**2*XNOSE**2+FACT6*.2*INTERI*

+ *2-FACTS**2*FACT6**2))**.S

XQUAD1= (FACTI+RADICA) /FACT2

XQUAD2= (FACTI-RADICA) /FACT2
YQUADI=SLOPE1 *XQUAD1IINTERI
YQUAD2=SLOPEI *XQUAD2+ INTERI

r ENDIF
ENDIF
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C CALCULATE DISTANCE BETWEEN INTERSECTIONS AND OUTER BOUNDARY POINT. THE
C SHORTER DISTANCE DETERMINES THE PROPER QUADRAT
C-

QUAD1=((XQUADI-XYZ2(ICOUNT.KPOS.1))**2-(YQUAD1-XYZ2(ICOUNT.KPOS,2

QUAD2=((XQUAD2-XYZ2(ICOUNTKPOS.1))**2-(YQUAD2-XYZ2(ICOUNT.KPOS,2

IF(QUAD1 .T. QUAD2) THEN
XCROSS=XQUAD1
YCROSS=YQUAD1

ELSE
XCROSS=XQUAD2
YCROSS=YQUAD2
ENDIF
IF(XCROSS-XYZ1(ICOUT.CPOS, 1) EQ. 0.0) THEN
FACT 1= 1

* - ELSE

FACTI=(XCROSS-XYZlCICOUNT,KPOS,1))/ABS(XCROSS-XYZ1(ICOUNT.KPOS.1

* . ENDIF
r IF(YCROSS-XYZ1(ICOUNT.KPOS.2) -EQ. 0.0) THEN

FACT2=1.
ELSE
FACT2=(YCROSS-XYZ1 (ICOUNT ,KPOS,2)) /ABS(YCROSS-XYZ1 (ICOUNT.KPOS,2

ENDIF
C4

C CHANGE ANGLE TO REFLECT QUADRAT
C

* . IF(FACT1 -EQ. -1. AND. FACT2 EQ. 1.) THETA2=PI+THETA2
IF(ACI Q.-1.ADFCT Q -1.) THETA2=PI+THETA2

IF(FACTI +EQ. 1. AND. FACT2 EQ. -1.) THETA2=2.*PI+THETA2r IF(TEST) THEN
IF(LCOUNT .EQ. 1) THEN
ANG1=THETA2

ELSE
ANG2=THETA2 r

ENDIF
GO TO 121

C ENDIF

C FACTOR USED TO ACCELERATE OR RETARD HYPERBOLIC TANGENT
* . C

*132 IF(THETA2-THETA1 EQ. 0.0) THEN
ATH1=25.

ELSE
ATH1=1 ./ABS(THETA2-THETAl)
IF(ATH1 .GT. 25.) ATH1=25.

ENDIF

CCALCULATE ANGLE OF LINE BETWEEN INNER AND OUTER BOUNDARIES

131 PSII=0.0
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C
C CALCULATE ANGLE OF NORMAL LINE TO BODY SURFACE USING AN AVERAGE OF PANELS ON
C EACH SIDE OF THE PROJECTED SOLUTION
C

PSI2=ATAN((XYZ1(ICOUNT.KPOS-1.1)-XYZ1CICOUNT,KPOS,1))/(XYZI(ICOUN
T.KPOS.3)-XYZ1(ICOUNT.KPOS-1,3)))

C
C FACTOR USED TO ACCELERATE OR RETARD HYPERBOLIC TANGENT
C4

IF(PSI2-PSIl EQ. 0.0) THEN
ATH2=25.

ELSE
* ATH2=1 ./ABS(PSI2-PSIl)

* IF(ATH2 GT. 25.) ATH2=25.
ENDIF

C LENGTH OF PROJECTED SOLUTION

C
SPAN=((XYZ2(ICOUNT.KPOS,1)-XYZI(ICOUNT.KPOS,1))**2.(XYZ2(ICOUNT,K
POS.2) -XYZ1(ICOUNT.KPOS.2))**2+(XYZ2(ICOUNT.KPOS,3)-XYZI(ICOUNT,K

*r +POS.3))**2).* 5
C -

C CENTER OF PROJECTED SOLUTION WITH RESPECT TO THE MIDDLE POINT
C

IF(JCOUNT EQ. 1) THEN
CENTER=(((XYZ(ICOUNTJCENT,1)-XYZI(ICOUNT,KPOS,1))**2.(XYZ(ICOUN

+ T,JCENT,2)-XYZI(ICOUNT.KPOS.2))**2.(XYZ(ICOUNT.JCENT.3)-XYZI(ICO

. UNT,KPOS,3))**2)*.5)/SPAN
ELSE

* CENTER=(((XYZPRO(ICOUNT.JCENT,1)- "YZI(IECOUNT,[POS,l))**2+(XYZPRO
+ (ICOUNTJCENT.2)-XYZICICOUNTKPDS,2))'.*2+(XYzPRO(ICOLil,JCENT.3)
. -XYZ1(ICOUNT.KPOS,3))**2)*. )/!PAN
ENDIFr C

C CHECK TO SEE WHERE THE HYPERBOLIC TANGENT SHOULD BE CENTERED, SO THERE WON'T
C BE GRID CROSS OVER DUE TO THE ORTHOGONALITY. CALCULATE EQUATION OF .

C ORTHOGONAL IPLUS LINE AND AT PRIOR STATION CALCULATE INTERSECTION AND USE
C MORE RESTRICTIVE CENTERING CRITERION
C

CHANGE=10000 bq.q

IF(ICOUUT GT 2 AND. ICOUNT LT NODE(2)+1 O ICOUNT .GT. NOD
*E(2)+IPN.1 AND. ICOUNT LT. IMAX) THEN

SLOPEI=TAN (THETA4)
SLOPE2=TAN (THETA2) * *

INTERI=XYZI(ICOUNT-1,KPOS.2)-SLOPEI*XYZ1(ICOUIT-1.KPOS.1)
INTER2=XYZ1(ICOUNTKPOS,2)-SLOPE2*XYZI(ICOUUT,KPOS.1)

XCROSS=(INTER2-INTERI) /(SLOPEI-SLOPE2)
YCROSS=SLOPE2*XCROSS+ INTER2
IP(XYZ2(ICOUNT,[POS,1) .GT. XYZ1(ICOUNT,IrPOS.1)) THEE V
IF(CROSS GT. XYZ1(ICOUNT,KPOS,1) AND. XCROSS .LT. XYZ2(ICOUU

+ T,KPOS,1)) THEN X1(CNTPO.)*2(COSYZICU.K
CHANGE=((XCROSS-Y(IO TKPS ).2(CO-XZICU ,K

+ OS,2))**2)*.S./SPAN- .15/SPAN

1'7



"I v K -7 '

ENDIF
ELSE
IF(XCROSS LT. XYZ1(ICOUNT,KPOS.1) AND. XCROSS .GT. XYZ2(ICOUN
T,KPOS,1)) THEN -

CHANGE=((XCROSS-XYZ1(ICOUNT.KPOS, 1))**2+(YCROSS-XYZI(ICOUNT,KP
OS, 2))-* 2)* . /SPAN-. 15/SPAN

ENDIF
ENDIF .. ~

ENDIF
IF(CHANGE .LE. CENTER) CENTER=CHANGE
THETA4=THETA2

K C
C GENERATE THE ORTHOGONAL CURVE IN 3-D
C

DO 135 I=2.JMI
IF(JCOUNT EQ. 1) THEN

* . DISTAN=((XYZ(ICOUNT,I. 1)-XYZI(ICOUNT.KPOS. 1))**2+(XYZ(ICOUNT.I.2
+ ) -XYZI(ICOUNT,KPOS.2))**2+(XYZ(ICOUNT.I,3)-XYZICICOUNT,KPOS.3))*

* ELSE
DISTAN=((XYZPRO(ICOUNT.I. 1)-XYZI(ICOUNT.KPOS.1))**2+(XYZPROCICOU

*NT,I.2) -XYZI(ICOUNT.KPOS,2))**2+(XYZPRO(ICOUNT.I.3)-XYZI(ICOUNT,
+ KPOS,3))**2)**.S

ENDIF
ANGLE1=ATH1* (DISTAN/SPAN-CENTER)
ANGLE2=ATH2*(DISTAN/SPAN-CENTER)
IF(I EQ. 2) THEN
ANGLE3=TANH (ANGLEl)
ANGLE4=TANH(-ATH1. (1.-CENTER))

* ANGLES=TANH (ANGLE2)
ANGLE6=TANH (-ATH2* (1 .-CENTER))

ENDIF
FACT1=FLOAT(JNXN1-I)*ANGLE3/FLOAT(JNXN1-2)+ANGLE4*((FLOAT(I-JNXN1I
)/FLOAT(JMXNI-2))+ 1.)
FACT2=FLOAT(JMXXN-I) .ANGLE5/FLOAT(JNXN1-2)+ANGLEG ( (FLOAT(I-JXXNI

+ )/FLOAT(JXN1-2)).1.)
* . C

*-C ANGLE THAT STARTS OUT AT THE ORTHOGONAL ANGLE AND GOES TO THE STRAIGHT LINE
C ANGLE

* C
IF(ABS(THETA2-THETAl) GT. Pl*.S) THEN v'

C
C FOR ANGLES THAT ARE IN BOTH FIRST AND FOURTH QUADRAT
C I.

* THETA3=(TANH(ANGLEI)/FACT1s (THETA2-2. *PI-THETAI).THETA2-2. *PI+TH
+ ETA1)/2.
ELSE

THETA3=(TAN(AICLE1)/FACTI*(THETA2-THETA1).THETA2eTHETA1)/2.

C ENDIF ~

C ANGLE THAT STARTS OUT AT THE ORTHOGONAL ANGLE AND GOES TO THE STRAIGHT LINE
C ANGLE
C
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IF(ABS(PSI2-PSIl) CT PI- 6) THEN

C

PS13=(TANH(ANGLE2)/FACT2*(PSI2-2 .PI-PSI1)+PSI2-2.*PI+PSI1)/2.
ELSE
PS13=(TANH(ANGLE2)/FACT2*(PSI2-PSI1)+PSI2+PSI1)/2.

ENDIF
C

C NEW ORTHOGONAL PROJECTED SOLUTION
C

IF(JCOUNT -Eq. 1) THEN
XYZ(ICOUNT.I. 1)=DISTAN*COS(THETA3)+XYZ1(ICOUNT,KPOS.1)
XYZ(ICOUNT,I.2)=DISTAN*SIN(THETA3)+XYZICICOUNT,KPOS.2)
XYZ(ICOUNT.I.3)=DISTAN*SIN(PSI3)+XYZI(ICOUNT.KPOS,3)

ELSE
XYZPRO(ICOUNT,I.1)=DISTAN*COS(THETA3)+XYZ1(ICOUNT,KPOS

XYZPRO(ICOUNT,I,2)=DISTAN*SIN(THfETA3)+XYZ1(ICOINT,KPOS
+ .2)

XYZPRO(ICOUNT,I,3)=DISTAN*SIN(PSI3)XYZ1(ICOUNTICPOS,3)
ENDIF

135 CONTINUE
C
C LOAD INITIAL SOLVED SOLUTION ON OTHER SIDE OF THE PLANE OF SYMMETRY
C

IF(ICOUNT .LT. IMAX-1) 00 TO 130

IF(JCOUNT Eq. 1) THEN
DO 140 I=1,JMAX
XYZ(O,I,1)=XYZ(2.I,1)
XYZ(O, I.2)=-XYZ(2.I.2)

140 XYZ(OI,3)=XYZ(2,I.3)
ELSE
DO 145 I=1,JM4AX
XYZPRO(0,I. 1)=XYZPRO(2, 1,1)
XYZPRO (0, I2)=-XYZPRO(2,I,2)
XYZPRO(0 I ,3)=XYZPRO(2, 1.3)
XYZPRO(IMAX+1,I, 1)=XYZPRO(IMAX-1.I.1)
XYZPRO(IMAX+1,I.2)=-XYZPRO(IMAX-1.I.2)

145 XYZPRO(IMAX+1,I,3)=XYZPRO(IKAX-1,I,3)
ENDIF
IF(JCOUNT Eq. 1) GO TO 120

C
C ITERATION LOOP
C

DO 185 I=1.ITERAT
DO 180 J=1,IMA

P . JPLUS=J+IPLUS
JPLSNI=IPLUS
IF(J .Eq. 1) THEN

JPLUS=2
JPLSNIs1

ENDIF
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IF(JPLUS GT IMAX) THEN

JPLUS= IMAXi ~ ~~JPLSNI=JPLUS- J . l

ENDIF
IF(J .EQ. IMAX) THEN

JPLUS=INAX*1

JPLSMI=1

ENDIF

C -

* C DO A CHECK ON CONVEXITY IF NOT SOLVING EITHER PLANE OF SYMMETRY AND THE

C CONVEXITY SWITCH IS ON

C
IF(J GT. 1 AND. J .LT. IMAX) THEN

C
C GET EQUATION OF LINE FROM THE SECOND POINT OF PROJECTED SOLUTION TO THE SECOND

C POINT OF THE PRIOR SOLVED SOLUTION

C
150 SLOPEI=(XYZ(JPLUS,2,2)-XYZ(J-1,2,2))/(XYZ(JPLUS2,1)-XYZ(J-1.2.1)

INTER1=XYZ(J-1,2,2)-SLOPEI*XYZ(J-1.2, 1)

r C

C CHECK IF BODY INTERSECTS THE LINE JUST CALCULATED. CALCULATE EQUATION OF LINE
C FOR EACH GRID LINE BETWEEN PRIOR SOLUTION AND PROJECTED SOLUTION AND DETERMINE

C WHETHER THE SURFACE IS TOO CONVEX

C
IF(JPLSN1 EQ. 1) GO TO 160

DO 155 L=JPLUS-1,J,--

SLOPE2=(XYZ2(L.KCOUNT,2)-XYZI(L.KCOUNT,2))/(XYZ2(L,KCOUNT.1)-XYZ1
+ (LKCOUNT,I))

INTER2=XYZ (L, KCOUNT .2) -SLOPE2*XYZ1 (L.KCOUNT, 1)
XCROSS= ( INTER2-INTER1) / (SLOPEt-SLOPE2)

IF(XYZ1(L,KCOUNT,1) .LT. XYZ2(LKCOURT,1)) THEN

IF(XCROSS GT. XYZ1(LKCOUNT.1) AND. XCROSS .LT. XYZ2(L.KCOUNT,
-) ))THEN

ELSE *- "

* C A..'.
C SURFACE TOO CONVEX, MOVE PROJECTED SOLUTION BACK ONE

C *-

JPLUS=JPLUS- 1

JPLSNI=JPLSN1-1

IF(JPLUS-J EQ. 1) GO TO 160

GO TO 160
ENDIF %.

., ELSE .

IF(XCROSS LT. XYZI(LKCOUNT,1) AND. XCROSS GT. XYZ2(L.KCOUNT.
+ 1)) THEN

ELSE "

JPLUS=JPLUS- 1
JPLSXt=JPLSI- 1 ,

IF(JPLUS-J *EQ. 1) GO TO J60r GO TO 150
ENDIF

ENDIF
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155 CONTINUE
END IF

C
C FIRST TIME THROUGH THE LOOP, IT CALCULATES THE X-COMPONENT. THE SECOND TIME
C THROUGH THE LOOP, IT CALCULATES THE Y-COMPONENT. THE THIRD TIME THROUGH THE

C LOOP IT CALCULATES THE Z-COMPONENT

160 A3D()-O 0
A3D(JI4AX)=0 0
C3D(1)=0 0
C3D (JMAX) =0 0
D3D(l, 1)=XYZ(J, 1.1)
D3D(1,2)=XYZ(J, 1.2)
D3D(l.3)=XYZ(i, 1,3)
D3D(JWM. 1)=XYZ(J .JIAX .1)
D3D(JMAX.2)=XYZ(J. JNAX.2)
D3D(JWMX3)=XYZ(J ,JMAX.3)
DO 165 M=2.JMXN1

r C
C AT BOTH PLANES OF SYMMETRY. THE METRICS HAVE TO BE CALCULATED WITH -

C CENTRAL DIFFERENCE.
C

IF(J EQ. 1 OR. J -EQ IMAX OR. CENTRA) THEN
C
C DO CENTRAL DIFFERENCE ON METRICS IF IPLUS IS EQUAL TO 1 AND
C CENTRAL DIFFERENCING SWITCH IS ON.
C

XXSI=(XYZ(JPLUS.,1)-XYZ(J-1.N.))/2.
YXSI=(XYZ(JPLUS.N,2)-XYZ(J-1 .M,2))/2.
ZXSI=(XYZ(JPLUS,N,3)-XYZ(J-1,N3))/2.
XETA=(XYZ(J,MP1. 1)-XYZ(J,.NM.1))/2.
YETA=(XYZ(J.MPI,2)-XYZ(J.MM,2))/2.
ZETA=(XYZ(J.MP1 ,3)-XYZ(J,NN,3))/2.
XZETA(XYZPRO(J,M,1)-XYZM1(J,M1))/(2.*FLOAT(LPLSM1))

YZET=(XZPROJN2)-XZN1JM2))/2.*LOATLPNI%

YZETA=(XYZPRO(JN,)-XYZ1(J,,3))/(2.FLOAT(LPLSN1))

ELSE
C
C DO FIRST ORDER BACKWARDS DIFFERENCINO IF CENTRAL DIFFERENCING
C SWITCH IS OFF.
C

XXSI=XYZ(J,N. 1)-XYZ(J-1, .,)
YXSI=XYZ(J..2)-XYZ(1-1,N,2)
ZXSI=XYZ(J,N,3)-XYZ(J-1,N,3)
XETA=(XYZ(J.MP1I.)-XYZ(J,MM1 .1))/2.
YETA=(XYZ(J.NP1 .2)-XYZ(J,NMI ,2))/2.
ZETA=(XYZ(JMPI,3)-XYZ(J,MM1 .3))/2.
XZETAXYZ(J.N, 1)-XYZNI(J,N.l)

r YZETA=XYZ(J.M,2)-XYZM(J.M.2)
ZZETA=XYZ(J.X.3) -XYZN(J.,3)

ENDI?
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Cli =YETA-ZZETA-YZETA-ZETA
c22=X.XSI-ZZETA-XZETA* ZXSI

C33=XXSI .YETA-XETA-YXSI
C12=-YXSI*ZZETA-YZETA*ZXSI
C13=YXSI.ZETA-YETA*ZXSI
C23=-XXSI sZETA+XETA*ZXSI
C21= -XETA*ZZETA.XZETA*ZETA
C3 1=)ETA*YZETA- XZETA*YETA

C32= -XXSI*YZETA-XZETA*YXSI
ALPH11=Cll**2+C21**2.C31**2
ALPH12=Cll*C12+C21*C22+C31*C32
ALPH13=Cll*Cl3+C21*C23*C31*C33
ALPH22=C12**2+C22**2+C32**2
ALPH23=Cl2*Cl3+C22*C23+C32*C33
ALPH33=Cl3**2+C23**2+C33**2
BBB=ALPH11*(l.+ABS(P)+l./FLOAT(JPLS1))+ALPH33*(1*ABS(R)+l1/FLOAT

+ (LPLS1) ) +ALPH22sK* (1. EQ)

AAA=-ALPH22*K/BBB
CCC= -ALPH22*K*EQ/BBB

IF(Q -LE. 0.0) THEN
A3D(E)=AAA

C3D (N)=CCC
ELSE

A3D (N) =CCC
C3D(ME=AAA

ENDIF
DO 184 L=1,3
IF(P .LE. 0.0) THEN

DDD1=ALPH11*((l.+ABS(P))*XYZ(J31,N,L)+1./FLOAT(JPLSN1)*XYZ(JLUS,
4. + M.L))

ELSE
DDDI=ALPH11*(XYZ(J-1.NL)+( .+ABS(P))/FLOAT(JPLSN1)*XYZ(JPLUS,N,L+I)

ENDIF
IF(R .LE. 0.0) THEN

DDD2=ALPH33*((l.+ABS(R))*XYZX1(J.M,L)+1./FLOAT(LPLSX1)*XYZPRO(J.M

ELSE
DDD2=ALPH33*(XYZN1(JM.L)+(l.+ABS(R))/FLOAT(LPLSN1)*XYZPRO(J,.NL)

ENDIF
D3D(N.L)=(DDDI+DDD2+ALPH12/FLOAT(JPLSM1+1)*(XYZ(JPLUSNP1.L)-XYZ(J
+.lNMP,L)-XYZ(JPLUSN1,L)*XYZ(.JI,NN1,L))+2.*ALPH13/(FLOAT(JPLSXI
++l)*FLOAT(LPLSN1+1))*(XYZPRO(JPLUSM,L)-XYZXI(JPLUS,N.L)-XYZPRO(J-
+1,N.L)+XYZN1(J-1,N,L))+ALPH23/FLOAT(LPLSX1+1)*(XYZPftO(J.MPl,L)-XYZ
+PRO(J.NN1,L)-XYZN1(J,MP1,L)+XYZXI(J.NX1.L)))/DDD

164 CONTINUE *

165 CONTINUE
DO 175 L=1,3
DO 166 N=1,jMAx

A(M) =A3D (N)
C (N)-C3D (N)

D(N)sD3D(N,L)
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166 CONTINUE

ANS(1)=D(l)K ANS(JNAX)=D(JMAX)
* C

C SOLVE 3-D PARABOLIC EQUATION

* C

CALL TRIDIG(JNXM1)

C .-

C LOAD SOLUTION INTO X AND Y VECTORS

C

DO 170 M=2.JN4XM1
170 XYZ(J,NL)=ANS(M)
175 CONTINUE

IF(3 EQ. IMAX-1) THEN

DO 176 M=1,JMAX

XYZCIMAX+1 .N,2)=XYZ(INAX-1 .1,)

16XYZ(IMAX.1,M.3)=-XYZ(IMAX-1.M,)

ENDIF

180 CONTINUE
T 185 CONTINUE

C

C WRITE OUT SOLUTION

C

DO 200 I=1,IJ4AX

DO 195 J=1,JMAX

IDO 190 L=1,3
190 XYZ?41(I,J,L)=XYZ(IJ,L)

WRITE(7. '(3(F13.8. lX)) )XYZ(I.J. 1) .XYZ(I.J,2) ,XYZ(I,J,3)

195 CONTINUE

200 CONTINUE

IF(COUNT .T. KNAW GO TO 75

[ CALL SECOND(CPF)

CPU=CPF -CP I

WRITE(*,'(AF8.4)')'3-D GRID GENERATION TIME = ,CPU

STOP

END

L
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IF

SUBROUTINE SETUP

COMMON/SET/RMACH PHIL. DELTA. DELTA1,N. IMAXJMAX. KMAX.P ,Q R, IPLUS ,KP

-LUS MINOR, MAJOR, CENTRA. ITERAT, 1PM. JCENT

LOGICAL CENTRA

REAL MAJURMIOR

C

C INITIALIZE VARIABLES

RMACH=5 .0

PHIL=60.0

DELTA=5 0

DELTA1=1 .05

N=8

IMAX=60

JMAX=20

KNAX= 15
P=0 .0

Q=0 .0

CENTRA= TRUE.

ITERAT=1

MINOR=4.0

IPM=8

JCENT=10

C

C WRITE OUT MENU

C
5 WRITE(*, '(A)')'NENU TO GENERATE GRID AROUND A WAVERIDER'

WRITE(*,'(A)')'O) GENERATE GRID'r WRITE(. (A)')il) RE-PRINT MENU'
WRITE(*. '(A,F6.3)*)2) MACH NUMBER = *,RMACH

WRITE(*,'(A.F6.3)P)'3) DIHEDRAL ANGLE = '.PHIL
*WRITE(*,'(A.FO.3)')'4) BASIC-CONE SEMI-VERTEX ANGLE ' ,DELTA

*WRITE(*. '(A.F6.3)')5) BASIC-CONE SEMI-VERTEX ANGLE < DELTAl < SHO
+CK ANGLE. DELTAl ='.DELTAl
WRITE(*. '(A.I4)'P*6) SHAPE FACTOR, AN EVEN INTEGER = ',N
WRITE(*, '(A,I4)')'7) NUMBER OF GRID POINTS ALONG BODY SURFACE=
+IMAX
WRITE(*.'(A.14)')'8) NUMBER OF GRID POINTS NORMAL FROM BODY SURFAC

* +. E= JMAX
WRITE(*''A,I4)')9Q) NUMBER OF GRID POINTS IN STREANWISE DIRECTION

+ = ',KMAX

WRITE(*'(A,F6.3)'V'1O) STRETCHING IN BODY DIRECTION ON OUTER BOUl
* +DARY ONLY) = ',P

WRITE(*, (A.F6.3)')*ll) STRETCHING IN DIRECTION NORMAL rO BODY SUR

+FACE =,

WRITE(*, '(A.F6.3)1)'12) STRETCHING IN STREANVISE DIRECTION - ',R
WRITE(*.'(A,I4)') 13) PARABOLIC UPSTREAM BOUNDARY IN BODY DIRECTIO
+= '.IPLUS
VRITE(*, '(A,I4)')'14) PARABOLIC UPSTREAM BOUNDARY IN STREAJKWISE DI
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-RECTION '',KPLUS

WRITE(.,'(AF6 3)')'15) SEMI-MAJOR AXIS FOR OUTER BOUNDARY ELLIPSE

'.MAJOR

WRITE(.,'(AF6 3)')'16) SEMI-MINOR AXIS FOR OUTER BOUNDARY ELLIPSE

,MINOR

IF(CENTRA) THEN
- ,WRITE(. '(A)')'17) SECOND ORDER CENTRAL DIFFERENCING ON METRICS'

ELSE

WRITE(-.'(A)')'17) FIRST ORDER BACKWARDS DIFFERENCING ON METRICS'

ENDIF

WRITE(-,'(A,14)')'18) NUMBER OF ITERATIONS = ',ITERAT
WRITE(.,'(A)')'19) NUMBER OF EXTRA POINTS ON WING TIP FOR A PRANDT

L-MEYER TYPE EXPANSION'
WRITE(, '(AI4)')' (EVEN INTEGER) = ',IPM
WRITE(,.'(A,14)')'20) POINT AT WHICH HYPERBOLIC TANGENT IS CENTER
-FOR ORTHOGONALITY = ',JCENT

10 WRITE(*.'(A)')'ENTER DIRECTIVE'

READ(.,*) IDIR
IDIR=IDIR l

C

C MODIFY VARIABLES

C

GO TO (15,20,25.30,35.40,45,50.55,60,65.70.75,80.85,90,95,100.105,
+110,115).IDIR

15 RETURN

20 GO TO 5

25 WRITE(*.,'(A)')'ENTER MACH NUMBER'

READ(*.*) RMACH
GO TO 10

30 WRITE(*,'(A)')'ENTER DIHEDRAL ANGLE'
READ(*,*) PHIL

GO TO 10

35 WRITE(*., '(A)')'ENTER BASIC-CONE SEMI-VERTEX ANGLE'
1 READ(*,.*) DELTA

GO TO 10

40 WRITE(. '(A)')'ENTER DELTAl'

READ(*,*) DELTAl

GO TO 10
45 WRITE(*,'(A)')'ENTER SHAPE FACTOR'

-- READ(*,*) N

GO TO 10

50 WRITE(*.'(A)')'ENTER IMAX'

READ(*.*) IMAX
GO TO 10 "'

5 56 WRITE(*,"(A)')'ENTER JKAX-

READ(*,*) JMAX
S.- GO TO 1o
* 60 WRITE(*,'(A)')' ENTER KNA.X'

READ(*,*) KNAX

GO TO 10

65 WRITE(*.'(A)')'ENTER STRETCHING FACTOR IN BODY DIRECTION'
READ(*,*) P

GO TO 10

125

; Ll



4

'. o
%%

" '~'~ 70 WRITE(*,'(A)')'ENTER STRETCHING FACTOR NORMAL TO BODY DIRECTION'
READ(*,*) .
GO TO 10

75 WRITE(*, '(A)')'ENTER STRETCHING FACTOR IN STREAMWISE DIRECTION'? ~~READ(*,.*) R "'; -
." ,'-- ~GO TO 10 -" -

So WRITE(*,'(A)')'ENTER UPSTREAM BOUNDARY IN BODY DIRECTION'

READ(*,*) IPLUS

GO TO 10

L 85 WRITE(* '(A)')'ENTER UPSTREAM BOUNDARY IN STREANISE DIRECTION'

READ(*,*) KPLUS

GO TO 10

90 WRITE(*, '(A)')'ENTER SEMI-MAJOR AXIS FOR OUTER BOUNDARY ELLIPSE'
READ(*,*) MAJOR

GO TO 10~~95 WRITE(* ,"(A)')'ENTER SENI-MINOR AXIS FOR OUTER BOUNDARY ELLIPSE' .

READ (*.,*) MINOR.'- --

GO TO 10
100 CENTRA=-.NOT. CENTRA

GO TO 10-'-.
105 WRITE(*,'(A)')'ENTER NUMBER OF ITERATIONS'

READ(*,*) ITERAT
GO TO 1o

" 110 WRITE(*,'(A)')'ENTER EXTRA POINTS TO BE PLACED ON WING TIP (EVEN I

+NTEGER)'
READ(*,*) IPM .

- 115 GO TO 10

115 WRITE(*,'(A)')'ENTER POINT LOCATION WHERE TANH IS TO BE CENTERED'

READ(*,*) JCENT
GO TO 10
END

1...
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SUBROUTINE INTERP(NAX. I.XIOSE)
COMNON/SET/RNACHPHILDELTA. DELTA , N, IMAX, JMAX. KAX.P, Q,R, IPLUS ,KP

+LUS ,MINOR, MAJOR, CENTRA. ITERAT, 1PM, JCENT
COMMON ANS(100)
COMN(ON/ARCIAPHI(0: 180) ,ARB(O: 180) .ARFS(O: 180) .ARCB(0: 180) ,ARCFS(O:

+180) ,ARE(0 180) .ARCE(0: 180)
COMNON/SBOUND/XYZS1(100,2) .XYZS2(100,2)
COMMON/BETA/BETA .PI. RADIAN
COMNON/LENGTH/BARC ,FSARC ,EARC
K=0
GO TO (35.5,20),1

5 ITAB=MAX±IPM/2
C
C IF USING REFINED POINTS, CALCULATE THOSE POINTS NEAR THE WING
C TIP

* C
IF(IPN .GT. 0) THEN
MWA=MAX+IPN/2
ANS (NA) =ANS (KAX- IPN/2)
DO 6 J=1,IPN/2

6 ANS(NXA-J)=BARC-J/1O0O0.

ENDIF
C

**C INTERPOLATE TO FIND VALUES OF LOWER BODY THAT CORRESPOND TO THE ARCLENGTH
C DISTRIBUTION
C

DO 15 J=imAS 10 IF(ARCB(K) .LE. ANS(J) AND. ARCB(K-1) GE. ANS(J)) THEN
FACTR=ABS((ANS(J)-ARCB(K))/(ARCB(K+1)-ARCB(K))) ~ '

RR=FACTORABS(ARB(K+)-ARBCK))+ARB(K)
PHI=FACTOR*ABS(APHI(K+1) -APHI(K))+APHI(K)

XYZSI(J, 1)=RR*COS(PHI*RADIAN)

r ELS J.2)=RR*SIN(PHI*RADIAN)

K=K~1
GO TO 10

* ENDIF
15 CONTINUE

RETURN
C
C AGAIN CALCULATE REFINED POINTS ON UPPER SURFACE NEAR WING TIP
C

20 IF(IPK GT. 0) THEN
NMAX=NAX+IPN/2

* ANS (NAX) =ANS (NNAX - IPN/ 2)
D0 21 J=1.IPN/2

21 ANS(NNAX-1)=FSARC-1/10000.
* .. ENDIF

C
C INTERPOLATE TO FIND VALUES OF UPPER BODY THAT CORRESPOND TO THE ARCLENGTH
C DISTRIBUTION
C

DO 30 J=1,NMAX
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25 IF(ARCFS(K) LE ANS(J) AND ARCFS(K-1) GE ANS(J) THEN
FACTOR=ABS( (ANS(J) -ARCFS(K) ) /(ARCFS(K'i) -ARCFS(K)))
RR=FACTOR-ABS(ARFS(K+1) -ARFS(K) ) ARFS(K)
PHI=FACTOR*ABS(APHI(K.1) -APHI(K))-APHI(C)

C
C LOAD POINTS BELOW LOWER BODY POINTS '-

C
XYZS1(ITAB±MNAX-J, 1)=RR*COS(PHI*RADIAN)
XYZSI(ITAB+MMAX-J,2)=RR*SIN(PHI.RADIAN)

ELSE
IC=K~l
GO TO 25

ENDIF
30 CONTINUE

RETURN
3S DO 45 J=1.NA

C
C INTERPOLATE TO FIND VALUES ON ELLIPSE THAT CORRESPOND TO THE ARCLENGTH
C DISTRIBUTION

I-. 40 IF(ARCE(K LE. ANSCJ AND. ARCE(K+l) GE. ANSCJ) THEN

FAC70R=ABS((ANS(J)-ARCECK))/(ARCE(K+1)-ARCE(K)))
RR=FACTOR*ABS(ARE(K+1) -ARE (K)) +ARE(K)
PHI=FACTOR*ABS(APHI(K+1)-APHI(K))-APHI(K)
XYZS2(J, 1)=RR*COS(PHI*RtADIAN)*XNOSE
XYZS2(J.2)=RR*SIN(PHI*RADIAN)

ELSE

ENDIF
45 CONTINUE

RETURN
F. END
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