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Abstract

A computer program is developed to model a spinning

Intercontinental Ballistic Missile (ICBM) during the first

stage boost phase. The equations of motion are derived and -"

presented and a full rotation matrix is used to show the .

relationship between a launch-centered, nonrotating earth,

inertial reference frame and the missile body reference frame.

The moments of inertia and aerodynamic forces are derived and

presented. A feedback controller is derived which proved to

be a necessary addition to the system in order to reduce the

angle of attack. The angle of attack of the missile produced

adverse effects on the burnout vector without the feedback

controller but the effects are reduced considerably with the

* controller included. Problem areas include possibly excessive

nozzle gimbal rates caused by the feedback controller and the

need to change the initial kick angle if the missile is

spinning in order to achieve the same burnout conditions as a

. nonspinning missile.
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S. . . . . . . . C* -- .......... . ...
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-. STABILITY OF SPINNING ICBM IN FIRST STAGE BOOST PHASE

Chapter One Introduction

Statement of the Problem

In the near future, Intercontinental Ballistic Missiles

(ICBM) may be vulnerable to airborne and space-based lasers.

The most vulnerable stage of the ICBM's flight is during the

Stage 1 burn when it is moving slowly away from a well known

* position at the launch site. If the ICBM is to survive this

stage of flight defensive measures will have to be taken. One
t of the ways to accomplish this would be to spin the missile

. about its symmetry axis to reduce the dwell time of a beam on

a particular point on the missile. But, when this spin is
j ~ introduced, other problems may arise. The missile's flight

will describe a coning motion about its symmetry axis that may

cause an excessive angle of attack. If the angl.- of attack

I ~ remains small it is possible that the position and velocity

errors at the end of the boost phase may be unacceptably

large. That is the problem that this research effort will

address.

Introduction

Since the first days of computers, modelling of missiles

has been attempted at varying levels of complexity. A review

of the technical literature available shows that everything

from spinning mortar shells to sophisticated ICBMs have been

1. '
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modelled. Even though other specific cases have been modelled

no one seems to have analyzed the case of a spinning ICBM.

The remainder of this chapter presents a summary of related

efforts. '-

Synopsis of Related Efforts

. In 1976 the Aerophysics Laboratory conducted research on

statically stable missiles that were given a nominal roll rate

to average out lifting effects of configuration assymmetries

(1). They showed that even with a steady roll, lift

variations can cause dispersion and lift nonaveraging. This

study was done for artillery rounds spinning at about 40

rad/sec after thrust termination. Another study of small,

m spinning missiles presents the effects of variable spin rate

and thrust misalignment on the natural frequencies and mode

shapes of the trajectory (2). The effects were significant

for small missiles but there is some question as to how this

applies to ICBMs.

The second category of related work presents trajectory

simulation programs for space vehicle launchers and ICBMs.

They all develop the equations used and present specific uses

for their programs but never consider the effects of steady

spin on the trajectory (3,4,5). These research works, though,

were good sources for programming techniques and missile

property computations.

*. :The most beneficial reference materials are the textbooks

2



on rocket propulsion and spaceflight dynamics. The material

covered is better explained than in research papers and some

textbooks cover the case of spinning missiles. There are

several good reference texts available (6,7), but the most

complete presentation is given by Cornelisse and others in

their book entitled "Rocket Propulsion and Spaceflight

Dynamics" (8). This book is the main source of reference for

this thesis.

'U-X

;. >..N
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Chapter Two Derivation of Equations of Motion

SP_ Introduction to the Derivations

In order to describe the motion of a missile analyti- , /

cally, the equations of motion must be derived as a function

of time and numerically integrated. The equations of motion

can be set up as a set of ordinary differential equations and

integrated using a predictor-corrector algorithm to arrive at

a solution at each time step. The predictor-corrector algo-

rithm used in this research is of the fourth order, meaning

that it carries along the last four values of the state vector

and extrapolates these values to obtain the next value. It

then corrects the extrapolated value to find a new value for

s the state vector. It was first used by Haming and bears his

name (9).

Once the integration method has been chosen the equations

of motion must be set up so they are compatible with the in-

tegrator. One of the problems to be solved is choice of

reference frames. Some of the forces and moments are more

easily expressed in a body reference frame and others in an

inertial reference frame. The solution to this problem is to

introduce a rotation matrix which will relate the reference

-- frames chosen. The two reference frames are shown in Figure

2.1. The inertial reference frame, E = (X,Y,Z), has the

launch point as its origin and the vehicle reference frame,

r = (x,y,z), has the vehicle center of mass, (COM), as its

4



.r - r r r ' rF .
-  w W'vr qVL-- w u W'- . " W" - .~ . -' Z . . ----r--- . -o-''. .$ Z -- -. -_ -- -- a -w

origin and is fixed to the vehicle. The vehicle reference P ,

frame will, in general, be rotating and translating with tK .A

respect to the inertial frame.

As stated before, Cornelisse's book, "Rocket Propulsion

I. and Spaceflight Dynamics" (8), will be referenced heavily in

this report. Any departures or additions to his derivations

S,-will be noted but otherwise only the highlights of his

derivations will be presented here.

IX

" ~~.. .'. "

.

Figure 2.1 Reference Frames

6 The Dynamical Equations of Motion

The dynamical equations of motion describe how the forces

41 and their associated moments effect the velocity and rotation
7

of the center of mass of the vehicle. The force equation is

* given by (8:78):

M4(dVcr/dt) =T + W + F )

5



where

M = instantaneous missile mass

Vcm= velocity of the COM of the missile

T = thrust of stage 1

W = gravitational force

F = aerodynamic forces - - -

The moment equation is (8:78):

d(I-Jt)/dt = -mre X (Ax re) + e X F + Ma (2)

where

I = moment of inertia about the principal axes

11 = angular velocity of vehicle about the body axes

m= mass flow rate

re = position vector from the COM to the center of mass

flow

- Ma = aerodynamic moments

Eqs (1) and (2) are vector equations of motion that can

* be separated into six scalar equations. The vectors occurring

in Eqs (I) and (2) are resolved like this (8:79):

Vcm = (u,v,w)E = velocity of the COM

JI = (p,q,r)Er = rotational velocity about the COM

T = (TxTyTz)E  = thrust of stage 1

F = (XaYaZa)E = aerodynamic forces

Ma  = (L, M, N)E r  = aerodynamic moments

r = (xeYeZ)E = position vector from the COM to
-* the center of mass flow

= (gx,gy,gz)E = gravitational acceleration

6



= (xxIyyIzz)Er = the moments of inertia

It should be noted that second-order terms involving Ye' Ze'

Ty. and T z are neglected because they are small compared to

xe and Tx, respectively. Substituting into Eqs (1) and (2)

- yields (8:79):

Mdu/dt = T +Mg x + Xa

Mdv/dt = Ty + Mg + Y (4)

* - Mdw/dt = Tz +Mg a (5)

Sxxdp/dt = -pdIxx/dt + rq(Iyy-Izz) + fnxe(yeq+zer)

+ L - m lp (6)

Syydq/dt -qdIyy/dt + prlIz- ) 2 ez

+ ZeFx + M (7)
I dr/dt = -rdlzz/dt + pq(Ix-Iyy) r + xF

zz z / x ye e y

-yeFx + N (8)

where p1= offset distance of the COM flow from the missile's

.'- centerline

Eqs (3), (4), and (5) differ from Cornelisse's equations

' because he presents all of the vectors in the body frame and

thus includes an additional term necessary to decompose the -

Vcm into the body frame. That was avoided in this treatment

by leaving all of the terms in Eqs (3), (4), and (5) in the

6. inertial reference frame.

The last term in Eq (6) is not in Cornelisse's equation

* . but it is included here because otherwise the spin of the

missile is not properly modelled (7:225). As the propellant

7
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is burned and exhausted, it takes with it a small amount of

ingular momentum. If this term is not included in Eq (6) the _

computer simulation would show that the missile spins faster

and faster as the propellant is burned when this isn't

necessarily true.

The Kinematical Equations of Motion

In the dynamical equations, the forces and the moments

are dependent on the position and orientation of the missile.

The kinematical equations are needed to relate the position

and orientation of the missile to the translational and

rotational velocity. The first three kinematical equations

are represented by the vector equation (8:81):

dRcm/dt Vcm (9)Ac m 1W:

where Rcm = (X,Y,Z)E = the position of the COM

i5 Or, in component form:

dX/dt u (10)

dY/dt = v (11)

dZ/dt = w (12)

Once again, by leaving the Vcm vector in the inertial frame,

a coordinate transformation is avoided that is included in

Cornelisse's text.

The last set of equations necessary is the transformation

matrix that converts vectors from the inertial frame to the

8
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body frame. They are, in vector form (8:81):

dAr/dt jr 0 p
dA0 A 1~ (13)

* - q -p

where 6r is a 3X3 matrix of the direction cosines between the

*body reference frame and the inertial reference frame. Eq

(13) can be expanded into the nine equations that it

represents:

d~rl/dt cos~,X) qcoszX)(14

dArii/dt =rcos(y,X) - qcos(z,X) (14)

dAri2 /dt =rcos(y,Y) - qcos(z,Y) (15)

dAri 3 /dt = rcos(,) + qcos(z,) (16) L

dAr2i/dt = -rcos(x,X) + peos(z,X) (17)

dAr23/dt = -rcos(x,Y) + pcos(z,Y) (18)

dAr3 l/dt =qcos(x,X) -pcos(y,X) (20)

dAr 3 2 /dt =qcos (x,Y) -CO po(Y Y) (21)

SdAr 3 3/dt =qcos(x,Z) -pcos(y,Z) (22)L

-where cos(i,j) indicates the cosine of the angle between i and

j which are also elements of Br

r = xyzr=the axes of the body frame

Rcm (X,Y,Z)E the axes of the inertial frame

* The use of a full rotation matrix avoids the singularities

*associated with any particular set of orientation angles. The

set of 18 equations of motion that fully describe the behavior

* of the missile are Eqs (3)-(8)p, (10)-(12) , and (14)-(22).

9



- Chapter Three Derivation of Missile Parameters and

Aerodynamic Forces

Introduction to Missile Data

All of the forces and moments in Eqs (3) - (8) vary with

* time, position, or orientation of the missile. In order to

find relationships for each of these terms several assumptions

were made. Some of the higher order terms were assumed to be

small and thus ignored leaving linear relationships. The mis-

sile data used in all analyses in this report resemble that of

g a Minuteman III (MM III) ICBM but this is only for convenience

* since the data was available (10). Other approximations were

* . made that will be presented throughout this chapter.

To avoid the added complication of launching from a vert-

ical position and at some later time initiating a pitchover

maneuver for a gravity turn, a cold launch system was assumed.

This is a departure from current hardware configurations since

MM III missiles can't be cold launched. The assumptions

associated with the cold launch are that the stage 1 engine

starts at 50 feet above mean earth radius with the center of

mass moving at 50 ft/sec vertically. It is also assumed the

desired initial angular velocities have been achieved when the

thrust begins. To simulate a gravity turn trajectory an ini-

tial kick angle was input by misaligning the body axes with

the inertial axes at the beginning of the simulation.

10
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Gravity and Thrust Terms

The most important external forces acting on the missile

'..o++

are the gravitational forces and the thrust. The gravita-

tional forces are dependent on the distance from the center of .-

!the Earth and can be represented by (8:75):

g = GMRcm/Rcm (23)

where

9 (gxog y,g z = gravitational acceleration vector

GM 1 .407646882E+16 ft3/sec 2 
=the gravitational

parameter of the Earth

Rcm =the magnitude of the position vector from the
Earth's center to the COM of the missile

~.m (X,Y,Z)F osto vector from the Earth's

center to the COM of the missile

*This vector can be resolved into its three components, gx

y and gz and multiplied by the instantaneous missile

I 1mass, M, to produce the respective terms in Eqs (3) -(5).

The thrust is assumed to be a constant throughout the

duration of the first stage burn. This is never achievable in

actual engine firings but the fraction of a second that it

takes for the thrust curve to level off is not worth including

in this study. In order to use the thrust in Eqs (3) -(5)

though, it must be transformed from the body frame to the

inertial frame. This is done by multiplying the transpose of

A by the body frame thrust, F:

= ~ ITF (24)
11

-.. . "-.' ..- .' .N '. . * _ _-._ _

------- . . . - * . .** *f*



"L -. 7,- o

where

= (TxTyTz)E = thrust in the inertial frame

A = transformation matrix from inertial to body frame

F = (FxFyFz)Er = thrust in the body frame

T is then resolved into its t ree components for use in Eqs

(3) -()

Moments of Inertia and Their Derivatives

The moments of inertia and their time derivatives are

very important to this study because of their effects on |

rotational velocity. The best source of accurate data for

this would be experimental results where the moments have been

determined but this data is not readily available in the

unclassified literature. Also, in order to use this computer

program to simulate other missiles, it would be better if the

program computed an estimate of the moments of inertia from a

few standard inputs since the actual moments are hard to find.

In order to calculate the moments and keep the calculations

generic, several assumptions were made. The first assumption "

is that each stage is a solid, homogeneous cylinder so that

the mass distribution is known. This, of course, is not the

case in a real missile but the results are probably close

enough for this study. The next assumption is that the fuel

in the first stage motor burns uniformly from the inside out

-, to within one inch of the outer radius. In the time

derivatives of the moments of inertia, the burn rate is then

12
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considered to be a constant given as:

db/dt = = bf/burnt (25)

where

bf = radius of stage 1 minus one inch (for outer shell

thickness)

burnt = burn time of stage 1

The final assumption is that the missile is an

axisymmetric, rigid body with the y and z body axes' moments

of inertia the same. Their time derivatives are also

considered to be the same. .

There are several preliminary calculations that are

necessary for the final moment of inertia equations to be

easier to understand. The distances are defined in Figure

3.1.

The equations are:

= m - it (26)

where

M= instantaneous mass of stage I

M initial mass of stage 1

m = mass flow rate form stage 1

t = elapsed time in seconds

mtop = m2 + m3 + m4  (27)

where

mto p = total mass of stages 2, 3, and 4

13
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r12 = mass of stage 2 p

m= mass of stage 3

mass of stage 4 .

I N

A41

Figure 3.1 Missile Dimensions

Xbt LI/2 (28)

x= LI. + L2/2 (29)

x= LI + L2 + L3/2 (30)

x= Li + L2 + L3 + L4/2 (31)

where .--

Xbot =location of COM of stage I from bottom of missile

=location of COM of stage 2 from bottom of missile

=location of COM of stage 3 from bottom of missile

=location of COM of stage 4 from bottom of missile

14



Li = length of stage 1

L2 = length of stage 2

LW length of stage 3

L4 =length of stage 4

X top (x2m2 + x3m3 + x4m4 )/mt0o 32

di= I - Xbot (34) k.

d op- (35)

where

Xtop =location of COM of the top 3 stages from bottom
of missile

x=distance between COM and bottom of missile

di moment arm distance for stage 1

3 d2  moment arm distance for top 3 stages

M =tmass - t(36)

where

tmass =total mass of the missile at launch

M =instantaneous missile mass

The standard equations for the moments of inertia of a solid,

homogeneous cylinder are:

=mass*radius
2 /2 (37)

= =mass(3*radius
2 + length 2 )/12 (38)

The moments of inertia for a four-stage missile are:

15



= m(r 2
-x 2  + m2r2

2  + m3r3
2

+ r42)/2 (39)

I 1 =z (ml(3r1
2  3 Lir +m( 2  + L2)

+m 2+L3 2) 2 2 A~~

m3(3r 3  + + m4 (3r 4  + L4)

P.-3mb 2t2 )/12 + m 0 d 2  d md 2  (40)

where

r= stage 1 radius

r= stage 2 radius

r= stage 3 radius

4= stage 4 radius

I = moment of inertia about the body frame x axis

Iy moment of inertia about the body frame y axis

m = moment of inertia about the body frame z axis

The derivatives of the moments of inertia are given by:

dI 'dt = (-2m + 3rnb2t2)/2 (41)

IFdI /dt =dIzz/dt (-mt 0 pd 2d, + l,)2in/M

-(3r,
2 + Li 2 )!h/12 - mt/2

+ 36 2 ;~t 2 / 7nd 2 (42)

The moments of inertia and their derivatives appear in Eqs (6)

* Aerodynamic Forces

The aerodynamic forces and their moments are extremely

* hard to model in a concise way without oversimplifying the

terms. They depend on the velocity of the missile with

16



respect to the air, the local atmospheric pressure, density,

Iand temperature as well as the missile's shape and angle of

attack. The force equation will be presented first and each

of the terms in the equation will be defined thereafter. The

aerodynamic forces, in vector form, can be given by:

Fa = -CdpAJVcmI Vcm/2 (43)

where

F a = (XaIYaIZa)E = aerodynamic forces in the
inertial frame

Cd = coefficient of drag of the missile

= local atmospheric density

*A = effective area of the missile

Vcm = velocity of the COM of the missile

The coefficient of drag varies with Mach number,

Reynold's number, angle of attack, and shape of the missile,

to name a few. The Cd used in this report is:

Cd = Cd0 + Cd (44)"

where

Cd = drag coefficient

Cd = base drag coefficient

Cdt = drag coefficient variance with angle of attack

= angle of attack

Most references on the subject give good, accurate descrip-

tions of the factors that influence Cd but few, if any,

present the data required in this report. Reference 11

presents a graph (11:88) that shows that the base drag

17
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coefficient varies with Mach number. A value of Cd= 0.3 was " • .
P0 .

obtained from Reference 11 (11:88). There was no data

available for Cd for this particular missile shape. There

,- are, however, references to conical bodies in Krasnov (12)

, .with Cd = 0.1 so that is the value used for this study. ,

The variation of the density of the atmosphere with - -

* altitude was simulated using a simple atmospheric model

(6:18-19). It uses the thermal lapse rate at varying heightsI-

, . above the Earth's surface to extrapolate between values in a

* lookup table.j

- The area of the missile effecting the aerodynamic forces

is given by (9):

A = Afcoso + Assina (45)

where

A = effective area of the missile

Af = frontal area of the missile

As = surface area of the missile

= angle of attack

The frontal area is given by:

Af =ITr I
2  (46)

where rI is the radius of the largest stage of the missile

(stage 1). The surface area is given by:

As  I r1  + 21(rlLl + r 2 L2 + r 3 L3 + r 4 L4) (47)

All of these variables have been defined earlier in this

18
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chapter.

The angle of attack is defined as the angle between the p

velocity vector in the body frame and the x axis of the body

frame. The velocity vector can be decomposed into its three

components which produces the three components of the * .
aerodynamic forces, namely, Xa' Ya' and Za-

The aerodynamic moments are given by:
*_ _ j.

Ma =d X F (48) --

where

Ma = (L,M,N)Er = aerodynamic moments in the bodyWa frame p

d the moment arm which is given by:

d- Xcp) (49)

where

3= distance between COM and bottom of missile

Xcp distance between the center of pressure and the
n bottom of missile

The center of pressure is usually determined experimentally

but since that is not possible in this case the data from

Krasnov (12:442) will suffice. Krasnov reports that for a

pointed body of revolution with a length of six to eight

diameters, the center of pressure is approximately equal to

52% of the missile length, according to wind-tunnel tests. He *
chooses the top of the missile as his zero reference so 48% of

the total missile length, 28.7 feet, will be used for this

study. The length of this missile is about 11 diameters but
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this difference should be insignificant. Since the center of

pressure is behind the center of mass the missile has an

inherent stability called "arrow stability".

Since the moment equations are in the body frame the

aerodynamic moments must also be in the body frame. The S..

transformation is made by use of the transformation matrix,

and after the cross product is performed, Eq (48) expands .* ".

to:

L10 (50)

M = -(i/2)dCdAIVcm (A3 1u + A 3 2v + A 3 3w) (51)

N = (l/2)dCdpAIVcmj (A2 lu + A 2 2v + A 2 3w) (52)

All of the variables above have been defined earlier in this

chapter.

Momentum Loss Term

As the burned propellant is exhausted out the nozzle it

-* takes a small amount of angular momentum with it. A term must

be included to account for the angular momentum imparted to

*" the exhausted propellant or else the angular momentum will

remain with the missile causing the spin rate to increase.

This is not treated in Cornelisse's presentation but it is

added to this analysis. Thomson shows that this angular

momentum loss can be accounted for by (7:225):

Mx -mfl2p (53)

where
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-,x

= moment in the body frame x direction due to
momentum loss

in = mass rate of flow

2= the square of the offset distance of the COM flow

and is estimated to be approximately (1/2)r, 2

This term is then included in Eq (6) as shown. If this term

is not included the spin rate rises to unacceptable rates and

the system is not properly modelled.
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Chapter Four Checkout of Equations

Introduction to Checkout

In order to ensure that the computer model of the

missile's trajectory is accurate, each term was checkedILL
individually as it was added to the equations of motion. In

addition, there are a number of tests that can be performed to

make sure the computer results match with hand calculations.

* The first tests involve setting up driver routines to make

sure the numerical integrator works satisfactorily. This was

done and it showed that the numerical integrator gave consid-

erably better results when the inputs were double precision

*" rather than single precision. For example, if an input error

*" was made in the fourth significant digit the error was obvious-L

in the final results with single precision but it wasn't quite

as pronounced with double precision accuracy. This is to be

expected, of course, since the algorithm used extrapolates and

corrects thousands of times in a single test case. As a

result, double precision variables were used throughout the

program.

Torque-Free Axisymmetric Rigid Body

The first terms to be checked out were the terms which

make up Euler's equations for a torque-free, axisymmetric,

rigid body. They are:

dp/dt = (Iyy - Izz)qr/Ixx (54) -.'.
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dq/dt = (Izz- Ixx)Pr/Iyy (55)

dr/dt = (Ix - Iyy)pq/Izz (56)

. .'i-.-'..'.-.

These equations are readily identifiable as simplifications of

p Eqs (6) - (8). Since I I for an axisymmetric body,
yy 

.

dp/dt = 0 or p = constant. This leaves a pair of constant

coefficient, linear differential equations whose solution is

known (13). The magnitude of the angular velocity vector must ...

remain constant and the period of oscillation can be calcu-

lated by hand and compared with computer results. They

compared favorably to the fourth significant digit. The angle

between the angular velocity vector and the missile's symmetry

axis must also remain constant and this also proved to be

true.

.. Gravity and Position-Velocity Relations

i The next terms to be checked were the gravity terms and

the position-velocity relationships. The gravity terms are

those found in Eqs (3) - (5) and represent the first terms

* _ that effect the translational velocity of the missile. Since

the velocity of the missile is the time derivative of its

position, Eqs (10) - (12) were included at the same time. The

* " checkout used for these terms was to set the missile's

velocity equal to the orbital speed at the altitude chosen and

, see if the missile would orbit the earth in the same period

that hand calculations predicted. This checked out to be

23
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true .- "1%

Transformation Matrix ''

The transformation equations were the next set of

* equations to be installed and checked. They are given by Eqs

(14) - (22). In order to check the equations the missile was

forced to cone about its angular momentum vector. This was

done by choosing AN1  - cosO where * is the angle between the
angular momentum vector and the symmetry axis of the missile.

The angular momentum vector in the body frame is given by

6 ((13:16):

Hbod = IxxP + Iyyq + A (57)

, The l component is chosen to be zero. The transformation

matrix will be computed so that:

.bod = 0'g + 0Jg IHJIg (58) 1
where

Hin = the angular momentum vector in the inertial
frame

l g, 1g, kg the unit vectors in the inertial frame

This represents a set of equations that can be solved

simultaneously with the standard equations which relate

* elements of rows and columns of a transformation matrix,

namely, the sum of the squares of the elements of any row or

column must equal one. After solving for the Aij's and using

*, them in the program, the A3 1 element should not vary with

24
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time because it is a constant in a coning motion. That is

p what the computer results showed so it checks.

Jet Damping Terms.

The jet damping terms are caused by the exhaust jet in a

spinning missile and have a damping effect on the angular

velocities. In Eqs (6) - (8) they are the terms,

respectively:

2, -r 2mxe(yeq + zer), -mqxe 2  -mrxe

They result from the cross product of the angular velocity

- with the center of mass flow offset vector, re. The higher

order terms have been dropped since they are negligibly small

"- compared to the terms retained. The magnitudes of the jet

- damping terms are several orders of magnitude larger than the

moment of inertia terms already in place so an approximate

solution can be used to check the jet damping terms' effects.

The approximation is:

Izzdr/dt = Mqxe 2  (59) L_

Sdr/r =- (Mxe 2 /Iz)dt (60)

r(t) = r(to)exp(Mxe2 (t-to)/Izz) (61)

where I

r(t) = the angular velocity about the z body axis at
time t

r(to) = the initial angular velocity about the z body
axis at time t = to = 0

By substituting the values that the program used for Izz, M,

25
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xe , and r(to ) the approximate solution can be compared to

the program's results as shown in Figure 4.1. The results

show that the moment of inertia terms are almost insignificant

and that the program is producing the predicted results.

Figure 4.2 shows that the jet damping terms do reduce the

angular velocities with time. In other words, jet damping has

the desirable result of reducing the coning motion.

S

Thrust

The addition of the thrust terms to Eqs (3) - (5) is the

next step. The thrust is in the body axis x direction and -

must be transformed to the inertial coordinate system by using

the transformation matrix, r" In the next chapter, thrust

misalignment will be used to control the angle of attack but

for now the thrust will be in the body axis x direction only.

The thrust terms were tested by simulating a vertical flight

and a gravity turn trajectory. The simulations worked as

expected with the flight path angle remaining at zero for the

vertical flight and growing steadily in the gravity turn

simulation.

Aerodynamic Forces and Moments

The aerodynamic forces and moments are extremely .

difficult to model accurately and also very expensive in

computer time consumption. They are included in this report .-

with many simplifying assumptions so that the computational
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time of the program could be kept lower and to provide a

certain amount of completeness. The terms were all hand

checked at various stages of a flight simulation and the

atmospheric model was tested by checking the density the

IL program output at various altitudes.

Moments of Inertia

Up to this point, the moments of inertia were estimated

by calculating the moments of a solid cylinder with the radius

of the first stage and the length of the missile as its

dimensions. With the arrival of more extensive data (10), a

more accurate model was constructed. Again, the program's

output was checked against hand calculations at various stages

of a flight simulation and the results were the same. The

equations for the moments of inertia are presented in Chapter

Three in Eqs (39) and (40). Table 4.1 shows the values that

were used in all the simulations after these equations were

implemented.

Table 4.1 Minuteman III Data

Length,ft Radius,ft Initial Mass,slugs

Stage 1 25.3 2.75 1571.14

Stage 2 13.1 2.15 482.38

Stage 3 7.1 2.15 253.31

Stage 4 14.1 2.15 55.32

Totals 59.9 -- 2362.15
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The stage I. thrust used was 202,000 lbf and the stage 1

* propellant mass was 1424.44 slugs.

The derivatives of the moments of inertia are given in

.1 * .%"

Eqs (41) and (42) and were checked in the same way. Since the

moments of inertia are decreasing with time because of the 1

decrease in mass, the derivatives of the moments are negative.

* Since they are subtracted from the other moments in Eqs (6)-.

L -.%

(8) their net effect is positive or, they decrease the jet -

damping effect. This is also the prediction of Cornelisse

(8:78).

I--
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:ioure 4.1 z-axis Rotational Velocity (r) as a Function
of Time

Computer results- jet damping and
moment of inertia terms
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Figure 4.2 Coning Motion Decay Caused by the Olet Damping
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Chapter Five Feedback Control to Reduce Angle of Attack

Motivation for Feedback Controller

After all the equations had been included and all the

IL terms checked individually, the set of equations was analyzed.

Some of the same characteristics that were mentioned in

* Chapter Four must still be true for the complete system.

-Namely, the missile should fly a gravity turn trajectory and

the angle of attack should drop off quickly and stay small.

*Figure 5.1 shows the flight path angle of the trajectory as a

function of time. The flight path angle used throughout this

report is defined as the angle between the inertial vertical

axis, X, and the velocity vector in the inertial frame.

*Notice that the flight path angle rises to 0.59 radians or

* about 330 and stays there. This isn't normal. Figure 5.2

* shows the angle of attack plotted as a function of time and

*that the missile flight simulation is flying the missile at a

- rather high angle of attack throughout the 61 seconds of

* .flight. The angle of attack used throughout this report is

defined as the angle between the missile's symmetry axis and

*the velocity vector in the body frame. The initial kick angle

* for the plots was 150 and the majority of the flight the

- missile is flying at an angle of attack greater then 0.0873

* *. radians or 50. Figures 5.1 and 5.2 were produced with only

the thrust, gravity, and moment of inertia terms included in

* the simulation. The reason the angle of attack increases
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during the flight is because the velocity vector falls away in

a gravity turn but the nose of the missile doesn't follow it

because it is coning about the angular momentum vector. So

the feedback controller is implemented to reduce the angle of

attack. .

Derivation

The general idea behind the feedback controller is to * a

compute the angle of attack about the y and z body frame axes

and to feed back a restoring torque to the moment equations

given in Eqs (7) and (8). These two angles of attack are .

related to the angle of attack that is being reduced through

spherical trigonometry. The restoring torque is computed by

* first finding the missile's velocity in the body frame. The .. -

transformation matrix, A is multiplied by the inertial

• .velocity vector to find the components of the body frame

3velocity vector. Next, the angles of attack about the y and z

body frame axes are computed by:

ey = arctan(vk/v i ) (62)

0' = arctan(vj/v i) (63)

where

= the angle of attack about the y body frame axis
*|

O= the angle of attack about the z body frame axis

vi  velocity component in the x body frame direction

j velocity component in the.y body frame direction

v = velocity component in the z body frame direction
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Figure 5.3 shows how the angles of attack are related to the

body frame velocity components. .

Figure 5.3 Angles of Attack Diagram

014 'ri " 6 -

, -[ ~Next, the y and z components of the position vector from..[.].

• " the missile's CON to the center of mass flow are computed.

This is done by (14) : t_:

Ye= Kr + COz  (64) '-'-:

Ye z

ze  = Kq + CO y (65)"-.-[,

"- where

ye = y axis component of the position vector to the [[---

• ~~COM f low ,['

z e =z axis component of the position vector to the
. ~COM f low --

• " " K =gainl "-'

q = angular velocity about the y body frame axis L
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r = angular velocity about the z body frame axis

The gains, K and C, will be discussed a little later in this

chapter. The three components of the body frame thrust can be

computed from the components of the position vector to the COM

flow using: ...-.-.-66

F = T (66)
[ Fz  = TZe/jrej (67) |-

Fx = (T2  2 F Fz2)1/2 (68)

where
[I

Fx, Fy, = the three components of the body frame
thrust

Ire magnitude of the position vector to the COM

flow

E T = thrust, a constant

The feedback terms added to Eqs (7) and (8) are:

MFEEDJ = FxZe (69) L

MFEEDK = -FxY e  (70)

where

MFEEDJ = feedback torque about the y body frame axis

MFEEDK = feedback torque about the z body frame axis

The gains, K and C, must be chosen so that the feedback

4 torque will drive the angle of attack to an acceptably small 0

value in a short period of time. They can not be too large,

though, or else the gimbal limits of the missile's stage 1

nozzle will be exceeded. The gimbal limits for a MM III

missile happen to be about 400. By starting with Euler's
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equations with a restoring torque term added, a simplified set

of equations can be solved to produce approximate values for

the gains. Euler's equations are:

Ixx + (Iyy - Izz)qr = 0 (71)

1-Iyyq + (I - Izz)pr - FxZe = 0 (72)

Izzr + (Iyy - Ixx)pq- Fxye = 0 (73)

Since I = Izz for an axisymmetric body, Eq (71) reduces to L

_ p = constant. Next, the assumption is made that the velocity

vector is a constant on the timescale of the coning motion so

that Eqs (72) and (73) become a set of two equations with two

* [unknowns. This assumption means that:

9,= q, , = 9 = , iG .-.-.-.

Using this, along with Eqs (64) and (65), Eqs (72) and (73)

change to:

y + (I Iy)pG F y + C = 0 (74)-.yy - Ixyy I Y

Iyy~a I (iyy I xx)P y - Fx(Kk + C9%) = 0 (75)

Putting Eqs (74) and (75) into matrix form:

[IF- 0 0 [ K P(I-I Y)FX

0Ly F xI) ~P(I yy ixx)/Fx J\K.

= 0 (76)• + 1C-0~1 "'
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Substituting the following for (V O)

| ;.'.- % *

yields:

[Iyy Fx KX C -P(I yy-Ixx)/FI /F )F I CF .K-X C

[pX(yy-xx )/FX yyX1 /Fx _ KX -C U (ii.
1P2

Which produces the following fourth order equation:

Iy2 /Fx2 - 2KIyy /Fx + (P2 (Iyy-xx) 
2/Fx 2

- Cyy/Fx + K2)~ + 2KCX + C2 = 0 (78)

By substituting values for the known constants Ixx, Iyy,

F1 ,and p a fourth order equation can be set up in K and C.

Routhe's stability criterion (15:185-188) can be used to show

I that in order for the system to be stable, K < 0. By means of L

trial-and-error it was found that for K = -0.9 and C = -10 the

roots are = -0.3019 t j3.139, X3.4 = -0.1538 t j1.599.

These roots are all stable with the longest damping period

being about six seconds. This result is satisfactory because

- for shorter damping periods the missile goes through wild

oscillations to achieve the desired angle of attack causing

the aerodynamic forces to take control. Figures 5.4 and 5.5

show the missile's response without the feedback controller

and Figures 5.6 and 5.7 show the same test case run with the
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' feedback controller installed. Comparing Figures 5.4 and 5.6,

notice that the angles of attack around the y and z body axes

are reduced quicker with the controller installed than without

it, which is the result desired. A comparison of Figures 5.5

and 5.7 shows that without the feedback controller the total

angle of attack keeps oscillating even after a long period of

time but with the controller installed, the angle of attack

goes to zero in about 25 seconds. A decaying exponential . -

curve is superimposed on the angle of attack plot in Figure

. 5.7. The exponential curve was generated by:

t= oexp(-Xt) (79)

where

angle of attack

4= initial kick angle

= the longest decay constant = 0.1538

Notice that the simulation stays well below the predicted

angle of attack during the first 25 seconds. This is probably

due to the jet damping terms which help damp out the angle of

attack.
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Figure 5.1 Flight Path Angle nithout Feedback Controller
Moment of Inertia terms only
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;igure 5.2 Angle of Attack Without Feedback Controller

Moment of Inertia Terms Only
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Figure 5.4 y-direction vs. z-direction Angles of Attack
with All Terms Included Except Feedback Controller
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F-igure 5.5 Angle of Attack with All Terms IncludedI, Except Feedback Controller
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Figure 5.6 y-direction vs. z-direction Angles of Attack
with CQntroler-

IVV

C

0

*'0 .1 .2

y-direction angle of attack (radians).
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Chapter Six Results and Conclusions

Position - Velocity Errors

The first noticeable difference in the comparison of the

trajectories of a spinning and nonspinning missile is that the

stage 1 burnout state vectors are different. Table 6.1 lists

the burnout position and velocity, relative to the launch

point, for three cases, namely, 150 initial kick angle with p

and without symmetry axis spin and 16.50 kick angle with

spin.

Table 6.1 Position- Velocity Comparisons

150, no spin 150, spin 16.50, spin "

X, ft 131,680 134,650 131,760

Y, ft 0 10,418 11,072

Z, ft -80,106 -72,713 -78,954

u, ft/sec 5,086 5,246 5,092

v, ft/sec 0 487 516

w, ft/sec -3,723 -3,394 -3,673

IVcmI , ft/sec 6,303 6,267 6,300

In the last two cases the spin rate was 1.571 rad/sec. The

altitude, represented by x in the table, differs by about 3000 p

ft between the spinning and nonspinning cases with the same

initial kick angle. By spinning the missile, the altitude

achieved from the same initial kick angle is greater but the
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downrange distance is less. The differences between the y

direction position and velocity is explained by the fact that

the missile's flight path describes a coning motion in the

spinning case which causes some dispersion in the y direction.

PThis could probably be eliminated by introducing a small

initial kick angle in the negative y direction. The Vcm

:" row in the table represents the magnitude of the velocity

vector for each case. Notice that the 16.50, spinning case

and the 15° , nonspinning case are nearly the same. The x and

z position components compare favorably for these two cases

also, so it seems that spinning the missile at the relatively

* slow rate of 1.571 rad/sec forces the trajectory analyst to .4

choose a slightly larger initial kick angle in order to

S achieve the same burnout vector as the nonspinning case.

-, Figure 6.1 shows the relationship between stage 1 burnout

altitude and initial kick angle in the same flight regime as

Sthat of Table 6.1. The altitude that the 150, nonspinning

case achieves corresponds to the 16.5 ° , spinning case just as

* .* Table 6.1 shows. The conclusion is that there is almost no

performance penalty due to spin.
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Figure 6.1 Burnout Altitude vs Initial Kick Angle
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Gimbal Angles

The stage I engine's expansion nozzle on most missiles is

gimballed so that minor corrections can be made to the flight

path during the boost phase. As stated before, the MM III

* gimbal angle limit is about 400 so this is a hardware

limitation that must be considered in this study. Figure 6.2
I ___

shows a "worst case" plot of gimbal angle variation with time.

The feedback controller produces the largest restoring moments

*during the first few seconds of flight when the angle of

attack is the largest due to the initial kick angle. A high

" spin rate, 20 rad/sec, was chosen with an initial kick angle

of 150 to see if the spin rate produced gimbal angles that

were too large. The plot shows that even at high spin rates 7
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the gimbal angle only changes about 110 at most. This is

well within the hardware limits of the missile system. The

rate at which the gimbal angle changes may be of concern

though. The gimbal angle changes about 110 in 0.4 seconds.

I. This may be a concern if the gimbal actuator can not respond

at this rate.

Conclusions

The model tested and discussed in this report was

subjected to varying spin rates and compared to nonspinning

cases. It was necessary to design a feedback controller to

. minimize the angle of attack and with this modification

included it seems to be possible to spin a missile without1' *

S adverse effects to the trajectory. Some adjustments in the

trajectory must be made to produce the same stage 1 burnout

state vector as the nonspinning model but the variations are

predictable so the burnout vector is also predictable.
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Figure 6.2 Nozzle Gimbal Angle as a Function of Time
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Appendix A

A listing of the program which was used for this study is

shown below. It was run with the input file shown in Appendix

B on a VAX 11/785 computer with a VMS operating system.

L

*************************** * *** *** *** ** * **** ** ***- .

c
program misspin

c

c program misspin is a simple dynamics propagator
c it takes input state vector y and propagates
c it from to to tf.
c written by: Capt Robert W. Bandstra AFIT/GA-85D
c
c yy(i) is an array to read the a matrix into.
c t is the time
c to is the initial time
c tf is the final time
c y(i,j) is the array that contains the state vectors

3 c n is the number of equations
c h is the timestep
c mode is not currently used
c n1 is the number of times the outside loop is performed
c n2 is the number of times the inside loop is performed
c nstp is used as an input to vary the step size
c

common /ham/ t,y(18,4),f(18,4),err(18),n,h,mode
double precision t,y,f,err,h,tf
common /miscon/ 11,12,13,14,mO,m2,m3,m4,rad,r2,r3,r4,
1 bdot,mtop,xtop,xbot,alfa,flpa
double precision l1,12,13,14,mO,m2,m3,m4,rad,r2,r3,r4,

* 1 bdot,mtop,xtop,xbot,alfa,flpa
common /count/ j
common /feedbk/ mfeedj,mfeedk,xe,ye,ze,fx,fy,fz,
1 thetaj,thetak
double precision mfeedj,mfeedk,xeye,ze,fx,fy,fz,
1 thetaj,thetak

* real*8 yy(18)
c

- ~~j -- 0.--.,
c j is a switch that makes sure a section of atmos is only
c executed once. .
c
c open input file
c

. 4.



open (2 ,file=' input .dat2 ,status='old I
C

c open output files
* c

open(3,file=loutput.dat2' ,status='old')P
open(4,file='plot.dat3',status='old')
open(7,file='plot.dat4',status='old')

c ea input

read (2,10)to,tf
read (2,20) (y(i ,1) , i=1, 3)
read (2,20) (y (i ,1) ,i=4,6)
read (2,20) (y(i,1),i=7,9)4
read (2,20) (yy(i) ,i=10,12)
read (2,20) (yy(i),i=13,15)
read (2,20) (yy(i) ,i=16,18)

10 format(2x,2e20.13)
20 format(2x,3e20.13)

c dir. cos must be converted from y (angles) to cos(y)

do 25 i =10,18

y y(i ,1) =dcosd (yy (i))
25 continue

y(12,1) = -y(12,1)S c
c read mode, number of steps for numerical integration,

*c and plot flag
c

read (2,30)mode,nstp,iplot
30 format(2x,i5,i6,i5)

c print ics
c

50 format(//,2x,'dynamics propagator',//,2x,'to, tf:',
1 2e20.13,//,2x,'initial state vector',
2 / ,2x ,3e20.13,/, 2x ,3e2 .13,!, 2x ,3e20 .13,!,

.. 3 /,2x,3e20.13,/,2x,3e20.13,/,2x,3e20.l3,/,
4 2x,'mode, stps:',2i6,/)
write (3,50) to ,tf ,(y(i,1) ,i=1,18) ,mode,nstp
call strtup

c
c setup rest of haming initialization
c
c number of odes:

n = 18
t = to

c
c timestep calculation
c n1 sets the number of points sent to the output files
c
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n1i min0(244,nstp)
n2 = 1 + nstp/nl

0 h =(tf - to)/(n1*n2)
C
c initialize haming

nxt = 0

c haming initialization flag
call haming (nxt)
if(nxt.eq.0) stop 99

c
c numerical integration loop -one tirnestep per call

* C
do 1000 mnt = l,nl
do 900 nit2 = l,n2
call haming(nxt)

900 continue
write(3,61) t,alfa,flpa,thetaj ,thetak -.

61 forrnat(2x,lt =',e16.9,/,2x,
'alfa =',e20.13,' fipa =',e20.13,/,2x,

3 'thetaj =',e16.9,' thetak =',e16.9)
c write(3,60)t,(y(i,nxt),i=l,18),alfa,flpa,thetaj,thetak

60 format(/,2x,'t =',e20.13,/,2x,'y =',3e20.13,/,2x,
1 3e2 .13,/, 2x ,3e20 .13,!,2x ,3e2 .13,/, 2x ,3e20 .13,!,2x,
2 3e20.l3,/,2x,'alfa =',e20.13,' fipa =',e20.13,/,2x,
3 'thetaj =',e16.9,' thetak =',e16.9)
write(4,95) t,alfa 1-
write(7,95) t,flpa

95 format(2x,2e10.3)
if(iplot.ge.0) write(4,90) y(8,nxt),y(9,nxt)

90 format(2x,2e20.13)
1000 continue

* c
c print final position
c

write(3,70)(y(i,nxt),i=1,18)
70 format(/,2x,'at time tf:',/,2x,'state vector is',!,

I 2x,e20.13,/,2x ,e20.13,/,2x,e20.13,/
* 2 2x,e20.13,/,2x,e20.13,/,2x,e20.13 ,/

3 2x,e20.13,/ ,2x,e20.13 ,/,2x ,e20.13 ,/
4 2x,e20.l3 ,/,2x,e20.13,/,2x,e20.13,/
5 2x ,e20.13,/, 2x ,e20.13,/, 2x ,e20 .13,!
6 ,2x ,e20.l3,/, 2x ,e20.l3,/, 2x ,e20.l3,/)
close (unit=2)
close (unit= 3)
close (unit=4)
close (unit=7)
stop
end

c
subroutine strtup
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7. -

c

c set up missile parameters at beginning of flight

c tmass is the total mass of the missile at launch in slugs
c rad is the radius cf stage i in ft.
c r2 is the radius of stage ii in ft.
c r3 is the radius of stage iii in ft.

5 c r4 is the radius of stage iv in ft.
c 11 is the length of stage i in ft.
c 12 is the length of stage ii in ft.
c 13 is the length of stage iii in ft.
c 14 is the length of stage iv in ft.
c tlen is the total length of missile at launch in ft. A

c gm is the gray. parameter of the earth in ft**3/sec**2
c thrust is the thrust of stage i in lbf.
c mO is the initial mass of stage i in slugs
c m2 is the mass of stage ii in slugs

m3 is the mass of stage ivi in slugs
c m4 is the mass of stage iv in slugs
c mtop is the sum of m2, m3, & m4 in slugs
c xtop is the location of the com of the top 3 stages in ft ."-

c maspro is the init. mass of the stage 1 prop. in slugs
c mdot is the mass flow rate of stage i in slug/sec
c burnt is the stage 1 engine burn time in sec.
c bdot is the rate of change of inner radius
c of stage I propellant in ft/sec
c bf is the final inner rad. of stage 1 at end of burn in ft
c rho2sq is the square of the offset distance of the center
c of mass flow in ft**2
c

common /misdat/ gm,thrust,mdot,tmass,burnt,maspro,mass,
3 1 xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar,gainl,

2 gain2,gain3,gain4
double precision gm,thrustmdot,tmass,burnt,maspro, .--.-
1 mass,xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar, .--.

2 gainl,gain2,gain3,gain4 ....

common /miscon/ 11,12,13,14,mO,m2,m3,m4,rad,r2,r3,r4,
1 bdot,mtop,xtop,xbot,alfa,flpa
double precision ll,12,13,14,mO,m2,m3,m4,rad,r2,r3,r4,
1 bdot,mtop,xtop,xbot,alfa,flpa
double precision tlen,bf,x2,x3,x4

c
c read missile parameters
c

read(2,10) tmass,rad,tlen
read(2,l0) thrust,mdot,burnt 7'1
read(2,10) 11,12,13
read(2,10) 14,mO,m2
read(2,10) m3,m4,maspro
read(2,10) r2,r3,r4 
read(2,11) gainl,gain2
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read(2,11) gain3,gain4
10 format (2x 3e20 .13)
11 format(2x,2e20.l3)

c
c print missile parameters
C

write(3,20) tmass ,rad,tlen,thrust,mdot,burnt,ll,12,13,
20I 14,mO,m2,m3 ,m4,maspro,r2,r3,r4,gainl,gain2,gain3,gain4
20format(/,2x,'tmass =',el6.9,' rad =',e16.9,/,2x,
1'tlen =',e16.9,' thrust =',e16.9,/,2x,'mdot =',e16.9,
2' burnt =',el6.9,/,2x,'1l =',e16.9,1 12 =',e16.9,/,2x,
3113 =',el6.9,' 14 =',e16.9,/,2x,ImO =I,e16.9,' m2 '

4 e16.9,/,2x..'m3 =',e16.9,' m4 =',e16.9,/,2x,'maspro 1

5 e16.9,' r2 =',el6.9,/,2x,'r3 =',e16.9,' r4 =',e16.9,
6 /,2x,'gainl =',e16.9,' gain2 =',e16.9,
7 /,2x,'gain3 =',e16.9,' gain4 =I,e16.9)
9r m 1.407646882d+16
bf =rad - 0.08d+00
bdot =bf/burnt
mtop = m2 + m3 + m4
xbot = 11/2.0d+00
x 2 = 11 + 12/2.0d+00
x3 = 11 + 12 + 13/2.0d+00
x4 = 11 + 12 + 13 + 14/2.0d+00
xtop = (x2*m2+x3*m3+x4*m4)/mtop
rho2sq = rad**2.d+00/2.d+00
pwrite(3,30) bf,bdot,mtop,xbot,xtop,rho2sq

30 format(2x,'bf =',e20.13,' bdot =I,e20.13,/,2x,'mtop =

1 ,e20.l3,' xbot =',e20.13,/,2x,'xtop =',e20.13,
2 ' rho2sq =',e20.l3)
return

end

C

c

c haming is an ordinary differential equations integrator
c it is a fourth order predictor-corrector algorithm
c which means that it carries along the last four

*.c values of the state vector, and extrapolates these
c values to obtain the next value (the prediction part)
c and then corrects the extrapolated value to find a
c new value for the state vector.
c
c the value nxt in the call specifies which of the 4
c values of the state vector is the 'next' one.

Lc nxt is updated by haming automatically, and is zero on
4c the first call

c
c the user supplies an external routine rhs(nxt) which
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c evaluates the equations of motion
common /ham/ x,y(18,4),f(18,4),errest(18),n,h,mode
double precision x,y,f,errest,h,hh,xoc

c all of the good stuff is in this common block.
c x is the independent variable ( time)
c y(18,4) is the state vector- 4 copies of it, with nxt
c pointing at the next one
c f(18,4) are the equations of motion, again four copies |-,-
c a call to rhs(nxt) updates an entry in f
c errest is an estimate of the truncation error
c - normally not used
c n is the number of equations being integrated
c h is the time step
c mode is 0 for just eom, 1 for both eom and eov
c

tol = 0.0000000001
c switch on starting algorithm or normal propagation

if(nxt) 190,10,200
c
c this is hamings starting algorithm .... a predictor -
c corrector needs 4 values of the state vector, and you
c only have one - the initial conditions.
c haming uses a picard iteration (slow and painfull) to
c get the other three.
c if it fails, nxt will still be zero upon exit,

S c otherwise nxt will be 1, and you are all set to go
c

10 xo = x
hh = h/2.0d+00
call rhs(i)
do 40 1 = 2,4
x = x + hh
do 20 i = l,n

20 y(i,l) = y(i,l-l) + hh*f(i,l-l)
call rhs(l)
x = x + hh
do 30 i = l,n

30 y(i,l) = y(i,l-1) + h*f(i,l)
40 call rhs(l)

jsw = -10
50 isw = 1

do 120 i = l,n
hh = y(i,l) + h*( 9.0d+00*f(i,l) + 19.0d+00*f(i,2)

1 - 5.0d+00*f(i,3) + f(i,4) ) / 24.0d+00
if( dabs( hh - y(i,2)) .1t. tol ) go to 70
isw = 0

70 y(i,2) = hh
hh = y(i,l) + h*(f(i,l)+4.0d+00*f(i,2)+f(i,3))/3.0d+O0 .-
if(dabs(hh-y(i,3)) .1t. tol) go to 90
isw = 0

90 y(i,3) = hh
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hh =y(i,1) + h*( 3.0d4+00*f(i,1) + 9.Od+00*f(i,2)
1 + 9.0d+00*f(i,3) + 3.0d+00*f(i,4) ) B.Od+00
if( dabs(hh-y(i,4)) .1t. tol )go to 110
isw = 0

110 y ( i,4) = hh
120 continue

x xo . .

do 130 1 =2,4

x. x x +h
130 call rhs(1)

if(isw) 140,140,150
140 jsw =jsw + 1

if (jsw) 50,280,280
150 x = xo

isw = 1
jsw=1
do 160 i = ,n

160 errest(i) =0.0

nxt 1
go to 280

F190 jsw = 2
nxt = iabs(nxt)

c
c this is hamings normal propagation ioop-
c

200 x = x + h
3npl. = mod(nxt,4) + I

go to (210,230) ,isw
c permute the index nxt modulo 4

210 go to (270,270,270,220) ,nxt
220 isw = 2
230 nm2 = mod(npl,4) + 1

p.nml = mod(nm2,4) + 1
npo = rod(nml,4) + 1

c
c this is the predictor part

* c
do 240 i = 1,n
f(i,nm2) = y(i,npl) + 4.Od+00*h*( 2.Od+00*f(i,npo)
1 - f(i,nml) + 2.Od+00*f(i,nm2) )/3.0d+00

240 y(i,npl) = f(i,nm2) - 0.925619835*errest(i)
c
c now the corrector - fix up the extrapolated state
c based oh the better value of the equations of motion
c

call rhs(npl)
do 250 i = 1,n
y(i,npl) = (9.Od+00*y(i,npo) -y(i,nm2) + 3.Od+00*h*

1 (f(i,npl) + 2.Od+00*f(i,npo) -f(i,nml)))/8.Od+00

errest(i) =f(i,nm2) -y(i,npl)

250 y(i,npl) =y(i,npl) + 0.0743801653 *errest(i)
go to (260,270) ,jsw
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260 call rhs(npl)
270 nxt =npl

280 return
end

subroutine rhs(nxt)

c rhs calculates the equations of motion of a spinning
c missile in flight.
c y(l-3,nxt) are the x,y,z comp. of the position vector
c y(4-6,nxt) are the x,y,z comp. of the trans. vel. vector
c y(7-9,nxt) are the x,y,z comp. of the rot. vel. vector
c rcm is the mag. of the COM position vector in ft
c y(l0-18,nxt) are the dir. cos relationships between the
c body frame and the inertial, earth-centered frame.
c thrx is the inertial frame x-dir. thrust in lbf.
c thry is the inertial frame y-dir. thrust in lbf.
c thrz is the inertial frame z-dir. thrust in lbf.
c

common /ham/ t,y(18,4),f(18,4),errest(18),n,h,mode
double precision t,y,f,errest,h
common /misdat/ gm,thrust,mdot,tmass,burnt,maspro,mass,
1 xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar,gainl,
2 gain2,gain3,gain4
double precision g m, thrust, mdot, tmass, burnt, maspro,
1 mass,xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar,
2 gainl,gain2,gain3,gain4
common /aero/ xa,ya,za,l,m,nl
double precision xa~ya,za,l,m,nl

I if common /feedbk/ mfeedj,mfeedk,xe,yeze,fx,fy,fz,
1 thetaj,thetak
double precision mfeedj,mfeedk,xelyelze,fxlfy,fz,
1 thetaj,thetak
double precision rcm,thrx,thry,thrz
call mominr (nxt)

m call feedbk(nxt)
thrx = y(l0,nxt)*fx + y(13,nxt)*fy + y(16,nxt)*fz
thry = y(l1,nxt)*fx + y(14,nxt)*fy + y(17,nxt)*fz
thrz = y(12,nxt)*fx + y(15,nxt)*fy + y(18,nxt)*fz
rcm =dsqrt(y(l,nxt)**2.d+00 + y(2,nxt)**2.d+00
I + y(3,nxt)**2.d+00)

mf(1,nxt) = y(4,nxt)
f (2,nxt) = y(5,nxt)
f (3,nxt) = y(6,nxt)
f(4,nxt) = -gm*y(l,nxt)/rcm**3.0d+00 + thrx/mass

1 + xa/mass
f f(5,nxt) = -gm*y(2,nxt)/rcm**3.0d+00 + thry/mass

1 + ya/mass
f(6,nxt) = gm*y(3,nxt)/rcm**3.0d+00 + thrz/mass
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1 + za/mass

1 + (mdot*xe*(ye*y(8,nxt)+ze*y(9,flxt)))/xxi
2 - y(7,nxt)*dixxdt/xxi
3 + 1/xxi -mdot*rho2sq*y(7,nxt)/xxi

f (8,nxt) ((zzi-xxi)/yyi) *y(7,nxt) *y(9,nxt)
1 - (mdot*Y(8,nxt)*xe**2.Od+OO)/yyi
2 - y(8,nxt)*diyydt/yyi

*~ + m/yyi
4 + mfeedj/yyi
f(9,nxt) = ((xxi-yyi)/zzi)*y(7,nxt)*y(8,nxt)

1 - (mdot*y(9,nxt)*xe**2.Od+OO)/zzi
2 - y(9,nxt)*dizzdt/zzi
3 + nl/zzi-
4 + mfeedk/zzi
f(1O,nxt) = y(9,nxt)*y(13,nxt) - y(B,nxt)*y(16,nxt)
f(ll,nxt) = y(9,nxt)*y(14,nxt) - y(8,nxt)*y(17,nxt)
f(12,nxt) =y(9,nxt)*y(15,nxt) - y(8,nxt)*y(18,nxt)
f(13,nxt) = y(9,nxt)*y(1O,nxt) + y(7,flxt)*y(16,lxt)
f(14,nxt) = y(9,nxt)*y(11,nxt) + y(7,nxt)*y(17,nxt)

r f(5,nx) = y(9,xt)*(12,xt) y(7nxt)ylot..t
f(16,nxt) -y(9,nxt)*y(1,nxt) + y(7,nxt)*y(1,nxt)
f(17,nxt) = y(8,nxt)*y(11,nxt) - y(7,nxt)*y(14,nxt)
f(17,nxt) = y(8,nxt)*y(l2,nxt) - y(7,nxt)*y(14,nxt)

return
end

subroutine mominr (nxt)

Uc mominr computes the moments of inertia and their first
c derivatives as a function of time.
c xxi = mom. of iner. about the body x axis in slug-ft**2

*c yyi = mom. of iner. about the body y azis in slug-ft**2
*c zzi = mom. of iner. about the body z axis in slug-ft**2

c dixxdt is the der. of xxi w.r.t. time in slug-ft**2/sec
c diyydt is the der. of yyi w.r.t. time in slug-ft**2/sec
c dizzdt is the der. of zzi w.r.t. time in slug-ft**2/sec
c ml is the instantaneous stage i mass in slugs
c xbar is the distance between the corn and the bottom of
c the missile in ft.
c di is the moment arm distance for stage i in ft. 6
c d2 = moment arm dist. for the rest of the missile in ft.
c cdO is the base drag coefficient (nondim)

*c cdalfa is the drag coeff. variance with angle of attack
c vcm is the speed of the corn in ft/sec
c flpa is the flight path angle of the missile in rad.
c alfa is the angle of attack in rad.
c cd is the drag coefficient (nondim)
c pi is not something you eat
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c af is the frontal area in ft**2
c as is the missile surface area in ft*2
c area is the effective aerodynamic area in ft**2
c rho is the air density in slug/ft**3

kc aaa is a convenient grouping of terms used later
c xcp is the distance of the center of pressure from the
c base of the missile in ft.
c d is the moment arm for the aero. moment in ft
c xa is the aero. force in the inertial frame x-dir in lbf
c ya is the aero. force in the inertial frame y-dir in lbf
c za is the aero. force in the inertial frame z-dir in lbf
c 1 is the aero moment around the body fr. x-axis in lbf-ft
c mn is the aero moment around the body fr. y-axis in lbf-ft
c n1 = aero. moment around the body fr. z-axis in lbf-ft
c

common /hamn/ t,y(18,4),f(18,4),errest(18),n,h,mode
double precision t,y,flerrest,h
common /misdat/ gm,thrust,mdot,tmass,burnt,naspro,mass,
1 xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar,gainl, ~ -.

2 gain2,gain3,gain4
double precision gm,thrust,rndot,tmass,burnt,maspro,
1 mass,xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar,
2 gainl,gain2,gain3,gain4
common /iniscon/ 11,12,13 ,14,mO ,m2 ,i3 ,m4 ,rad ,r2 ,r3 ,r4,
1 bdot,mtop,xtop,xbot,alfa,flpa
double precision 1l,12,13,14,mO ,m2 ,m3 ,i4 ,rad ,r2,r3 ,r4,

* 1 bdot,mtop,xtop,xbot,alfa,flpa
common /aero/ xa,ya,za,llm,nl

* double precision xa,ya,za,1,m,nl -

double precision il,dl,d2,cdO,cdalfa,vcm,cd,
1 pi ,af,as,area,rho,aaa,xcp,d,alj

IF ~ mass = tmass-indot*t L
if(t.gt.burnt) mass = tmass-maspro
ml = mO - idot*t
xbar = (xbot*ml + xtop*intop)/(ml + intop)
dl = xbar - xbot
d2 = xtop - xbar
xxi =(ml*(rad**2.d+OO-bdot**2.d+OO*t**2.d+OO) +

1 m2*r2**2.d+OO + m3*r3**2.d+OO + m4*r4**2.d+OO)/2.d+OO
dixxdt = (-2.d+OO*rnuO*t*bdot**2.d+OO - idot*rad**2.d+OO
1 + 3.d+OO*mdot*bdot**2.d+OO*t**2.d+OO)/2.d+OO

* *yyi = (ml*(3.d+OO*rad**2.d+OO + ll**2.d+OO) + m2*
1 (3.d+OO*r2**2.d+OO+12**2.d+OO) + i3*(3.d+OO*r3**2.d+OO
2 + 13**2.d+OO) + m4*(3.d+OO*r4**2.d+OO + 14**2.d+OO)-
3 3.d+OO*inl*bdot**2.d+OO*t**2.d+OO)/12.d+OO
4 + mtop*d2**2.d+OO + ml*dl**2.d+OO
diyydt = (2.d+OO*mdot/inass)*(intop*d2*(-dl)
1 + ml*dl**2.d+OO) - (mdot/12.d+OO)*(3.d+OO*rad**2.d+OO

* -. 2 + l1**2.d+OO) - bdot**2.d+OO*mO*t/2.d+OO
3 + *75d+OO*bdot**2 .d+OO*indot*t**2 .d+OO-mdot*dl**2.d+OO
Zzi = yyi
dizzdt =diyydt
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C
c next, calculate the aerodynamic forces and moments

cd0 = 0.3d+00
cdalfa = O.ld+00
vcm = dsqrt(y(4,nxt)**2.d+00 + y(5,nxt)**2.d+00 +IN

1 y(6,nxt)**2.d+00)
fipa =dacos(y(4,nxt)/vcm)

IPalj =dsqrt(y(l0,nxt)**2.d+00 + y(ll,nxt)**2.d4.00 +
1 y(12,nxt)**2.d+00)
alfa = dacos((y(4,nxt)*y(lO,nxt) + y(5,nxt)*y(ll,nxt)
1+ y(6,nxt)*y(12,nxt))/(vcm*alj))

Kcd = cd0 + cdalfa*alfa
hpi = 3.1415926535898d+00

af = pi*rad**2.d+00
as = pi*(2.d+00*(rad*l1 + r2*12 + r3*13 + r4*14)
1 + rad**2.d+00)
area = af*dcos(alfa) + as*dsin(alfa)
zin = sngl(y(1,nxt)) - 2.0925673e+07

r call atmos(zin,dens)
rho = dble (dens)
aaa = -0.5d+00*cd*rho*area*vcm
xa = aaa*y(4,nxt)
ya = aaa*y(5,nxt)
za = aaa*y(6,nxt)
xcp = 28.704d+00
d = xbar - xcp
1 = 0.Od+00
m = d*aaa*(y(16,nxt)*y(4,nxt) + y(17,flxt)*y(5,nxt) +
1 y(18,nxt)*y(6,nxt))
n1 = -d*aaa*(y(l3,nxt)*y(4,nxt) + y(14,nxt)*y(5,nxt) + S

1 y(15,nxt)*y(6,nxt))
3 return

end

subroutine atmos(zin,dout)
c

c this subroutine is an atmospheric model that calculates
c pressure, density, and temp at altitudes up to 300km.
c input is altitude, zin(meters) , in call statement.
c subroutine parameters are gas const, r(joules/kg-deg-k),

- c and the S.L. values of the gray. const, gO(m/sec-sq) ,
c atmospheric pressure at sea level, pO(n/m-sq),
c and the density, dO(kg/m-cu).
c the first order gravitational constant is b(1/m).
c the following subscripted variables are used:
c z(i) is the altitude (kmn)
c t(i) is the molecular temperature (deg-k)
c p(i) is the pressure (n/m-sq)y
c d(i) is the density (kg/in-cu)
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c 1(i) is the thermal lapse rate (deg-k/km) .'a

common /count/ j
dimension z(22),t(22),p(22),d(22),l(22)
i f(j eq. 1) goto 2 00

r =287.0

gO -9.806

p0 1 .01325e+05
dO =1.225

b =3.139e-07

c units change form ft to km
zin = zin/3.281e+03
data (z(i) ,i=1,22)/
1 00.00, 11.019, 20.063, 32.162, 47.350,
2 52.43, 61.590, 80.00, 90.00, 100.00,
3 110.00, 120.00, 150.00, 160.00, 170.00,
4 190.00, 230.00, 300.00, 400.00, 500.00,
5 600.00, 700.00/
data (t(i) i=1,22)/

1 288.10, 216.65, 216.65, 228.65, 270.65,
2 270.65, 252.65, 180.65, 180.65, 210.65,
3 260.65, 360.65, 960.65, 1110.65, 1210.65,
4 1350.65, 1550.65, 1830.65, 2160.65, 2420.65,
5 2590.65, 2700.65/
data (p(i) ,i=1,22)/
1 1 .000e+00 ,2 .284e-01 ,5 -462e-02 8 . 567e-03 ,I. 09 5e-03 ,I2 5. 823e-04 1. 797e-04 1 .024e-0 5 1. 622e-06 2 .980e-07 ,
3 7 . 220e-08 , 2. 488e-08 , 5. OOOe-09 ,3. 640e-09 ,2. 7 56e-09 ,
4 1 -660e-09 6. 869e-10 1 .860e-10 ,3. 977e-11 1 .080e-11 ,
5 3.400e-12, 1.176e-12/
do 100 i = 1,22
Z(i) = Z(i) * 1000

U p(i) = P(i) * p0
d (i) = p (i)/(r*t i))

100 continue
do 200 i =1,21

200 continue
do 300 i = 1,21
if(zin.ge.z(i+1)) go to 300
if(abs(1(i)).lt.1.Oe-05) go to 400

q2 =(ql*g0) / (r * 1(i)
tout = t(i)+1(i)*(zin-z(i))
q3 = tout/t(i)
q4 = q3**(-q2)
q5 = exp((b*gO*(zin-z(i)))/(r*l(i)))
q6 = q4*q5
pout = p(i)*q6
q7 = q2 + 1
dout d d(i)*(q3** (-q7))*q5/515. 4
g o to 500
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400 tout t tWi
q8 = (..1.)*gO* (zin-z(i) )*(l...b/2.)*(zin+z(i) )/(r*t(i))
pout = exp(q8)*p(i)

c units change from kg/m**3 to slug/ft**3 (density)
dout = exp(q8)*d(i)/515.4
go to 500

300 continue
500 return

* end

subroutine feedbk(nxt)
C

*c feedbk calculates the missile's angle of attack in the
c body frame and returns a restoring moment to rhs

*c vi = missile vel. in the body frame, x-dir. in ft/sec
*c vj = missile vel. in the body frame, y-dir. in ft/sec
rc vk = missile vel. in the body frame, z-dir. in ft/sec

c thetaj is the angle of attack about the body frame y axis
c thetak is the angle of attack about the body frame z axis
c xe is the offset of mass flow from the body x axis in ft
c ye is the offset of mass flow from the body y axis in ft
c ze is the offset of mass flow from the body z axis in ft -..

c fx is the thrust in the body frame x-dir. in lbfmc fy is the thrust in the body frame y-dir. in lbf

c fz is the thrust in the body frame z-dir. in lbf
mfeedj is the feedback mom. required to null out the AOA *

*cabout the body fr. y axis
cmfeedk is the feedback mom. required to null out the AQA
cabout the body fr. z axis L

*c gainl is the damping constant for ye
c gain2 is the gain coefficient for ye
c gain3 is the damping constant for ze
c gain4 is the gain coefficient for ze
c

common /ham/ t,y(18,4) ,f(18,4) ,errest(18) ,n,h,mode
* double precision t,y,f,errest,h

common /misdat/ gm,thrust,mdot~tmass,burnt,maspro,
1 mass,xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar,
2 gainl,gain2,gain3,gain4
double precision gm,thrust,mdot,tmass,burnt,maspro,
1 mass,xxi,yyi,zzi,dixxdt,diyydt,dizzdt,rho2sq,xbar,

*2 gainl,gain2,gain3,gain4
common /feedbk/ mfeedj,mfeedk,xe,ye,ze,fx,fy,fz,
1 thetaj,thetak
double precision mfeedj,mfeedk,xe~yelze,fx,fy,fz,
1 thetaj,thetak
double precision vi,vj,vk

c
xe =-xbar

61



vi =y(1O,nxt)*y(4,nxt) + y(ll,nxt)*y(5,nxt)
1 + y(12,nxt)*y(6,nxt)

01 +i + y(14,nxt)*y(5,nx
vk = y(16,nxt)*y(4,nxt) + y(17,nxt)*y(5,nxt)
1 + y(1B,nxt)*y(6,nxt)
thetaj = datan(vk/vi)
thetak = datan(vj/vi)
ye = gainl*y(9,nxt) + gain2*thetak I,
ze = gain3*y(8,nxt) + gain4*thetaj
if (dabs (ye/xe) .ge.O.8391d+OO)ye = dsign(17.619d+OO,ye)
if(dabs(ze/xe).ge.O.8391d+OO)ze = dsign(17.619d+OO,ze)
fy = thrust*ye/dsgrt(xe**2.d+OO+ye**2.d+OO+ze**2.d+OO)
fz = tbrust*ze/dsqrt(xe**2.d+OO+ye**2.d+OO+ze**2.d+OO) 4
fx = dsqrt(tbrust**2.d+OO fy**2.d+OO fz**2.d+OO)
mfeedj = ze*fx
mfeedk = -ye*fx
return
end

L .

I
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Appendix B

S A sample of the input file used to support program

misspin is listed below. This file is referred to in line 42

of misspin as 'input.dat2' and contains all the inputs
t

required to run the program.

tO tf .
O.O000000000000d+O0 0.6100000000000d+02

x y z
2.0925722570000d+07 0.0000000000000d+00 0.0000000000000d+00

u v w
5.0000000000000d+Ol 0.0000000000000d+00 0.0000000000000d+00

. p q r
1.5707963705063d+00 0.0100000000000d+00 0.0100000000000d+00

all a12 a13
0.1500000000000d+02 0.9000000000000d+02 0.7500000000000d+02

a21 a22 a23
0.9000000000000d+02 O.O000000000000d+O0 0.9000000000000d+02

a31 a32 a33
0.7500000000000d+02 0.9000000000000d+02 0.1500000000000d+02

mode nstp iplot
- +0000+15000- 1

tmass rad tlen
2.3621558000000d+03 2.7500000000000d+00 5.9900000000000d+Ol

thrust mdot burnt ..

. 2.0200000000000d+05 2.3351510000000d+01 6.lO00000000000d+Ol -

* 11 12 13
2.5300000000000d+01 1.3100000000000d+Ol 7.1000000000000d+O0

" " 14 mO m2

1.4400000000000d+0l 1.5711444000000d+03 4.8237707000000d+02

A m3 m4 maspro

2.5331013000000d+02 5.5324175000000d+01 1.4244421000000d+03
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r2 r 3 r 4
2.1500000000000d+00 2.1500000000000d+00 2.1500000000000d+00

gaini gain2

-' -O.9000000000000d+OO-1 .OOOOOOOOOOOO0d+O1
gain3 gain4

-O.9000000000000d+00-1 .OOOOOOOOOOOO0d+OI

I

IFI
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* Appendix C

A sample of the output file produced by program misspin

* is listed below. This file is referred to in line 46 of

misspin as 'output.dat2' and contains the output from a

I-, standard run of the program. A large number of iterations has .

been deleted between t = 2.0 and t = 60.0.

*" Dynamics Propagator

* to, tf: 0.0000000000000e+00 0.6100000000000e+02

Initial State Vector , "

0.2092572257000e+08 0.O000000000000e+00 0.0000000000000e+00

0.5000000000000e+02 0.0000000000000e+00 0.0000000000000e+00

* 0.1570796370506e+01 O.lO0000000000Oe-0l 0.1000000000000e-0l

0.9659258262891e+00 0.0000000000000e+00-0.2588190451025e+00

. 0.0000000000000e+00 0.lO00000000000e+01 0.O000000000000e+00

0.2588190451025e+00 0.0000000000000e+00 0.9659258262891e+00

mode, stps: 0 15000

tmass = 0.236215580e+04 rad = 0.275000000e+0l

tlen = 0.599000000e+02 thrust = 0.202000000e+06

mdot = 0.233515100e+02 burnt = 0.610000000e+02
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J. ;. -. TM VT r- *--.- *,p . V

11 = 0.253000000e+02 12 = 0.131000000e+02 K

13 = O.710000000e+O1 14 = 0.144000000e+02 1.

* mO = 0.157114440e+04 mn2 = 0.482377070e+03

m3 = 0.253310130e+03 m4 0 .553241750e+02

U ~maspro = 0.142444210e+04 r2 - O.215000000e+Q1,*l

r3 0 .215000000e+O1 r4 = .215000000e+O1

* . gaini =-0.900000000e+00 gain2 =-0.100000000e+02

gain3 =-0.900000000e+00 gain4 =-0.100000000e+02 .-

bf 0 .2670000000000e+O1 bdot 0 .4377049180328e-01

mtop = 0.7910113750000e+03 xbot 0 .1265000000000e+02

xtop = 0.3654265231710e+02 rho2sq 0 .3781250000000e+Ol -~

t 0 .250000000e+00

alfa 0 .1183984109802e+00 fipa = 0.1135910610128e+00

Sthetaj = 0.110650524e+00 thetak =042778e1

t = 0.500000000e+00 .~

alfa = 0.1349027162445e-01 fipa 0 .1576384415400e+00

I thetaj = O.134869061e-O1 thetak =-0.301353252e-03

t 0 .750000000e+00

. alfa = 0.6806496272313e-01 fipa 0 .1633206205755e+00

- thetaj =-0.949918648e-02 thetak =-0.674028930e-01

t 0 .lOOOOOOO0e+O1

* .. alfa = 0.1080837271381e+00 fipa 0 .1492277787722e+00

thetaj = 0.193839957e-01 thetak =-0.106357830e-00

* . ~t = O.125000000e+Ol .. ,

alfa = 0.1119415232809e+00 fipa 0 .1.282593230884e+00

thetaj 0 .563485640e-01 thetak =-0.969292474e-01
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t 0 .150000000e+O1

alfa = 0.8545213815704e-01 fipa 0 .1105389365479e+00

thetaj = 0.657428036e-01 thetak =-0.547463508e-01

t = 0.175000000e+O1

alfa = 0.4292624643032e-01 fipa = 0.1021869574191e+00

thetaj 0 .407005270e-01 thetak =-0.136580155e-01

t 0 .200000000e+O1

alfa 0 .1116573412999e-02 fipa 0 .1040975924051e+00

thetaj 0 .827320623e-03 thetak 0 .749851508e-03

* ~ ~ portion of output deleted for the sake of brevity**

t 0 .600000000e+02

alfa 0 .1183470727665e-02 fipa 0 .5760804791962e+00

thetaj =-O.487526051e-03 thetak =-0.107838847e-02

S t 0 .602500000e+02

* .alfa 0 .1627084792226e-02 fipa 0 .5767944135272e+00

thetaj =-0.149348123e-02 thetak 0 .645693414e-03

t = 0.605000000e+02

alfa =O.2458572367868e-02 fipa 0 .5774826214918e+00

thetaj =-0.170839995e-02 thetak = .17680384le-02

t 0 .607500000e+02

alfa 0 .1542471668112e-02 fipa 0 .5781562255459e+00

thetaj =-0.816599337e-03 thetak 0 .130858163e-02

t 0 .610000000e+02

alfa = 0.7942141257230e-03 fipa 0 .5788422181625e+00

* thetaj 0 .727413518e-03 thetak =-0.318819283e-03
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at time tf:

state vector is

0. 2106036754946e+08

o0.1041772883904e+05

-0.7271338505948e+05 :

0.524 6253808848e+04

o0.4870780460679e+03

-0. 3393730020379e+04

0.15166159396 57e+01

o0.7507226603557e-02

0. 9808649397234e-02

0.8366785173822e+00

0. 7759364221237e-01

U -0-5421699781792e+00

-0. 3489327010687e+00

0.838529 5590313e+00

P -0.4184664248041e+00

0.4221552186846e+00

0.53393027028031e+00

0. 7286546273920e+00
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