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e The purpose of this effort was to demonstrate that
BN A
TS
{ s moving-bank multiple model adaptive estimation algorithms
e

h@g could be applied to s realistic and practical control
)
KR problem. Moving-bank multiple model adaptive estimation/
Nt
Al
j§$ control is an atempt to create from full-bank multiple model
R
IR
fﬁﬁ adptive estimation/control an adaptive estimation/control
e technique which maintains its desirable on—-line parameter
o
,f% adaptation, but which reduces the intensive computational
) .Q

7
&E& loading which makes the full~bank method impractical. The
’n‘-f‘Q

:. results of this thesis do indicate that the moving—-bank
it

; multiple model adaptive algorithm can be successful in this
fg goal.
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Abstract

This investigation applies moving-bank multiple model
adaptive estimation/control algorithms to the conttoi of a
realistic model of a large flexible spacecraft. Moving-bank
multiple model adaptive estimation differs from conventional
(full-bank) multiple model adaptive estimtion in that a
substantially reduced number of elemental filters is
required for the moving-bank estimator (9 vs. 100 for the
system modeled in this thesis). The positions in parameter
space that the redunced number of elemental filters occupy
are dynamically re-declared; i.e., the moving—bank slides
about the parameter space in search of the true parameter
point.

»Critical to the performance of the moving-bank multiple
model adaptive estimator is the decision logic used to
determine which elemental filters are implemented in the
bank, and when to change this decision. The decisiomn logics
discossed focus on three situations: imitial acquisition of
the unknown parameter values, through reducing bank
discretization; tracking the unknown parameter values,
through bank movement; and reacquisition of the unknown
parameters following a large jump change in their values,
through expandiﬁg bank discretization., Ambiguity function

analysis is used to predict performance in these situations.
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. -The system to be controlled is a simplified model of a
I R0
[m" "
A & large scale space structure. Its equations of motion are

developed and placed in state space form, the states being

the positions and velocities of the rigid body mode and the

| TP e

second and fourth bending modes. The state space matrices

t
E- describing the system are computed based on nominal values
;; for all physical parameters with the exception of the mass

% density of the structure arms and their modulus of
> elasticity. These two parameters are allowed to vary in
13 discrete steps, estaplishing the parameter space. It is

m then attempted to control the states to the quiesent state,
; using moving-bank multiple model adaptive algorithms.

3 The results indicate that, although the system under

: . study did not have a great need for adaptive estimation and
& m control, the multiple model adaptive estimator performs
K
RN essentially identically to a single filter artificially
i knowledgeable of the uncertain parameter values. In
; addition changing bank discretization for the initial
)
‘z parameter aquisition phase speeded acquisition. However, the
Ei bank was unable to expand following a jump change in the
%, uncertain parameter values, in order to restart the
g acquisition phkasep the bank tracked the jump change through
3‘ movement alone. Ambiguity function analysis proved to be an
9 excellent predictor of bank performance, and should be used
i as a design tool.

R M

) \{
+ (NI
» WY viii
.
D
NN IO 4 v BT AL o ieh b 15 T L T T e A L L S5 e 4T L, Lo L e e o
4 AN YR Y O NS AN y N, AN, 5 s A R R N S Lt L
4 ‘ a\‘-‘"ﬂu ")?'b‘-ln ) " . ' I TR AN Y, . “Mh‘ ‘ 5 "h 2 b ik v, o R b ! WLOLNS, ’ S




2 Y B,

L) MOVING-BANK MULTIPLE MODEL ADAPTIVE ALGORITHMS
‘ APPLIED TO FLEXIBLE SPACECRAFT CONTROL

e
'wd"“—‘f

I. Introduction

- AIEERS

A common problem in estimation and control problems is

o~

'g the uncertainty of parameters used in the design of the

Hal

;: system model and embedded in the estimator or comtroller.

; These parameters can be initially unknown but unchanging,
Tl

{E or they can vary slowly, or they cam undergo abrupt changes
’; as in the case of partial system failure. If these

; parameters vary enough, it may be necessary to estimate

Ej their values along with the system state, and adapt the

i' estimator, controller, or both, to incorporate the current
i ‘I! value of the uncertain parameters. This requirement is not
,% ) based soley upon the magnitude of the parameter variation

% but also upon the sensitivity of the system to the
;i variation. Some parameters may vary widely with no

#: degradation in system performance, while a small variation
'? in another parameter may cause the system to become

3 unstable. This thesis expands the exploration of one method
;: for accomplishing this, known as moving-bank multiple model
'ﬁ adaptive estimation.

i

9 I.1 Background

Dl

In a large class of problems, which can be modeled as

s
@ o
[ R S Y

i
a

4

-

linear stochastic systems with uncertain parameters
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i& §§$v affecting the matrices defining the state model,
AL Y
g characteristics of driving noises, or measurement devices,
“‘ t’.\
‘Qﬁ Kalman filters can be used for the estimation/control
AR
A
A algorithms if a means for adapting them to the uncertainties
,:2 can be found.
1L
:?ﬁ Multiple model adaptive estimation (MMAE)
o
A
oed (1,2,3,4,5:129-135] is a means of adapting the Kalman
a filters for the case where the uncertain parameters can be
AN
;{x modeled as assuming only discrete values, as opposed to a
-
'Q& value in a continous range; this may either be physically
!.'.‘ '
reasonable (as in the case of failure states) or
T
1 . .
1oy representative values can be chosen from a continuous range
10ad
Y
.j? of possible values. This approach creates a bank of
A
(; elemental Kalman filters, one for each possible value of the
cat 4
;:; uncertain parameter vector. The output of each elemental
}ii filter is then weighted by the a posteriori probability of
EnAle
C) that particular parameter value vector being correct,
"AY,
]
:#b conditioned on the observed history of measurements. The
E; conditional probabilities are computed iteratively based
2N
‘t upon the observed characteristics of the filter residuals.
et
L) "
S .
b~ The adaptive state estimate is then the sum of the weighted
o
‘ -"'-l
a:x elemental filter outputs. The equations for this algorithm
. -'i\.
o are fully developed in the next chapter. As an altermnative,
f? using maximum a posteriori (MAP) criteria for optimality,
¢ \‘
o™

the output of the elemental filter with the largest

LR
LA

Y associated conditional probability cam be used as the state
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s ;§§ The convergence of the MMAE algorithm estimate to the

' true state has been shown for the case of uncertain but

e

constant parameters [6, 7]. Convergence has not been

=\ 2%

shown for varying parameters; however, promising results

E

have been obtained for an ad hoc approach where constant

s
T

THACT

¥ parameters are assumed for algorithm design, but the

o~
RN

e

computed conditional probabilities are lower bounded to

e

B

prevent ’‘locking onto’ a single parameter value [5,8,9].
RN

-

§§, If the possible parameter time variations are modeled,
?%;‘ the optimal state estimate can be obtained as the weighted
S

;v sum of the estimates produced by filters matched to all

A;€ﬂ possible parameter time histories [5]. This approach

ﬁ%ﬂ is, however, impractical as Ki elemental filters at sample
JJt @E: time t; would be required. Even when the parameter temporal
?ﬂé variation can be well modeled as a Markov process, it has

l% been shown that the number of elemental estimators required
33J would be K2 {5,10]. Thus if only 2 uncertain parameters
§§¢ were each discretized to 10 values, K would be equal to 100,
;:&; and K2 = 10,000: still impractical for implementation [5].
&@H For control applications, the state estimate obtained
§'§ from a multiple model adaptive estimator can be

g ; premultiplied by a controller gain established via forced
an

equivalence design [12]. The gain may be based on a

—

single nominal parameter value, or can be evaluated using

L

the estimated values of the uncertain parameters provided

"’
R
S AN

<)

|’
15

by the estimator, If a separate controller gain is

y&g associated with each elemental filter in the bank, the
Ve

N rn [Tt e
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%&p control can be produced as the probabilistically weighted
average of the elemental filter/controller ountputs, in the
same way the state estimate is obtained in a multiple model
adaptive estimator. This is known as multiple model
adaptive control (MMAC) [12:253,11]. An alternative, using
MAP criteria, is to select that filter/controller output
associated with the highest weighting probability [11].

MMAE has successfully been applied to several practical
problems. The trackinmg of maneuvering targets has been
shown to lend itself to this approach [13,14,15,16,17].
Other applications have been demonstrated in flight control
[11], multiple hypotheses testing [18], detection of
incidents on freeways [19], adaptive deconvolution of

(ii seismic signals [20]), 2nd problems in which initial
uncertainties are so large that nonadaptive extended Kalman

filters diverge [21,22].

In implementations where there are a large number of
uncertain parameters, or where the uncertain parameters can
take on a large number of discrete values, the storage
required for the elemental filters, and the computational
loading required become unwieldy. Consider, if there are
only 2 uncertain parameters, each of which can assume 10
discrete values, the number of elemental filters is

:‘3 102 = 100; this may be implementable but it can be seen

that the number of filters required will grow quickly with

3
&, additional uncertain parameters or finer levels of

discretization. Approaches to reducing the computational

e % YN \ - .
) ACET d
.t&'.vﬁ'i.\_




burdea include: use of Markov models for parameter
variation [5,10,23]; 'pruning’ and 'merging’ of branches in
a 'tree’ of possible parameter time histories [24,25],
hierarchical structuring [26], and dynamic coarse-to-fimer
rediscretization [27].

A method proposed by Hentz and Maybeck [28,29]
involves implementing only a smaller number of elemental
filters selected from the total bark. This 'moving-bank’' is
adjusted by replacing filters currently implemented with
others from the larger bank in response to the changes in
the weighting probabilities and filter residuals, In the
above example, only the filters with the three closest
discrete values to each of the estimated parameter values
might be implemented. This would result in only aine
filters being implemented, and as the estimate of the
parameters changed, the implemented bank of filters would
'move’; see Figure I-1, This approach was shown to achieve
performance essentially equivalent to that of a single
Kalman filter artificially knowledgeable of true parameter
values, for a simple but physically motivated example of a
single input/single output second order system with
upncertain damping ratio, and undamped natural frequency.
This corresponds, for example, to a bending mode in an
aerospace vehicle [28:15,57-101; 29:17-27]., The algorithms
used for implementing the moving-bank are developed in

detail in Chapter II.
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Figure I-1. Moving-Bank Multiple Model Adaptive Estimator.

I.2 Problem

Full-scale MMAE requires too large a computational
load to be practical for most applicatiomns requiring
adaptive estimation/control. Moving-bank MMAE has been
shown to be feasible for a simple but physically motivated
application., However, it still needs to be demonstrated
that moving-bank MMAE can be useful in a more complicated

and realistic application requiring sdaptive estimation/

control.
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The purpose of this effort is to apply moving-bank MMAE
to a practical application with a higher level of complexity
and further evaluate its performance potential., In addition
alternative decision logics for chosing which of the
eleméntal filters in the parameter space to implement in the

moving—bank will be evaluated.

I.3 Scope

A moving-bank multiple model adaptive estimator/
controller is evaluated for a realistic application. A
simplified model of a large flexible spacecraft, consisting
of a central rigid hup with four radiating flexible arms, is
used. The flexible arms are representative of the flexible
appendages such as solar panels or antennas attached to
actual spacecraft. The spacecraft is described in terms of
its physical parameters (mass, height, length of the arms,
etc.), with two nmcertain parameters (mass density of the
arms, and the modnolus of elasticity of the arms). The
uncertain parameters are discretized into 10 values each, to
provide a ten by tem (100 point) parameter space. Three
point actuators (represenmtative of the pulse rocket motors
used on actual spacecraft) provide the control imput, and
five position sensors along with five velocity sensors
provide the measurements for updating the state estimates.
The dynamics and measurement noise characteristics are
assumed known with no uncertainty, and are modeled as white

Gaussian processes with strengths Q and R respectively.

%

-----

L T A RTRE" -3 A AN Tt T ot Y T et N oV L SR oy
R T O Db Lo e T R o T e WP NN -‘~ T $"$I& ;{i\oh.. 'u"-c.-';?h f"&}:'k‘)_\&ﬁ Y




I.4 Approsch

The perfomance of the moving—bank multiple model
adaptive estimator/controller, its ability to estimate both
the states and parameters as well as to apply adequate
control to the true system is compared to a benchmark of a
single Kalman filter/controller based on (artificial)
perfect knowledge of the true parameter value. Estimator
performance is evaluated under the following conditions:

a. The true parameter value is constant and exactly
equal to one of the discretized parameter values within the
initial conditions chosen for the bank.

b. The true parameter value is constant and lies
outside the initial comditions chosen for the bank (but
within the overall parameter space).

c. The true parameter value undergoes jumps in value
from one of the discretized parameter values to another,
the values chosen so that the new true parameter point is

outside the area covered by the moving bank.

True parameter values which are not exactly equal to omne of
the discrete parameter values must be investigated before a
full evaluation of moving-bank multiple model adaptive
estimation/control can be done [28]); however, due to time
constraints, they are not treated in this thesis,

The effect on performance and computational burden of

various algorithms that can be used for initial acquisition

e ﬁf of the true parameter values, and for identification of when
3
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s:'i @ a jump change has taken place, are of interest. Specific
) algorithms developed in Chapter II will be tested to
it
Ay
‘\::“: determine their effect on estimator performance.
e
Q’?‘: Comparison of contoller design strategies, contrasting
r\‘l
:-'tq-'; a single fixed—-gain controller, a single changeable-gain
XV
.:::5 controller, and a moving-bank multiple model adaptive
a
NQ
';::‘ controller, will also be accomplished.
Ya© fp
f: ;| I.5 Orgapization
%k The remaining sections of this thesis are organized as
F‘ “
" follows. Chapter II develops the algorithms used for both
:' full-scale MMAE and moving-bank MMAE. Chapter III presents
7
't.{ the flexible spacecraft structure model. Chapter IV details
o
B G the simulati n used for the moving—bank estimator/controller
:3% performance evaluation. Chapter V contains an analysis of
ey
;':: the results of the evaluations. And Chapter VI presents
!‘|
:_'f'n' conclusions and recommendations.
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II. ALGORITHM DEVELOPMENT

IT.1. 1Igtzoduction

This chapter details the algorithms for two of the
adaptive estimation techniques introduced in the first
chapter. First full-scale Bayesian Multiple Model Adaptive

Estimation is developed, them the modifications necessary

for the moving-bank case are discussed.

I1.2, Bayesian Estimation Algorithm Development
Full-scale Bayesian Multiple Model Adaptive Estimation

algorithms are presented in this section. For a more

complete development of concepts, see referemce [5:129-136],

Let the system under consideration be described by the

following:

z(t;) = H(t,;)x(t;) + x(t;)

where, letting the '_' demote random process:

-~

x2(t;): state vector
Ot q,t,): state transiton matrix
slt,;): known input vector
By(t;): control input matrix
walt;): white Gaussian dynamics noise vector
Galt): noise input matrix
10
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o
2(t;): measurement vector
H(t,): measurement matrix
x(ti): white Gaussian measurement noise vector

and the following statistics apply:
E{wg(t;)} = 0
E{;d(ti)!dT(tj)} = Qu(t;)6,
E{;_(ti)]~= ']
E{%(ti)zr(tj)} = R(t;)8,;

where &i is the Kronecker delta function. It is also

J

assumed that x(ty), w,(t;), and w(t;) are independent for

~

all t,.

Now, let a be the uncertain p—-dimensional parameter

-~

vector which is an element of A, where A is a subset of RP,

a8 may be uncertain but constant, it may be slowly varying,

or it may under go jump changes. The parameter vector a8 can
affect any or all of the following: ¢, By, G4, Q4. H, and R,
The Bayesian estimator computes the following conditional

probability density function:

) (II-1)

where Z(ti) is a vector of measurements from tg to tg,

~
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The second term on the right side of Equation (II-1)

can be further evaluated:

falz(e;) (alZi) = f4150e 0,206 q) (alaiaZi-0)

falelzle; ) @ilZi-1)

£ (z;la.2; 9)f (alZ._1)
z(t:)la,2(t;_q)'2il2-&i-g lz(t,_,)(2lZi-1

Conceptually, Equation (II-2) can now be solved
recursively, starting from an a priori probability density
of fé(g), since fé(ti)lé'%(ti—l)(Lilé'Zi'l) is Gaussian with a
mean of H(ti)l(ti—) and covariance [H(ti)P(ti-)ﬂT(ti)+R(ti)],
where x(t; ) and P(t; ) are the conditional mean and
covariance respectively of ;(ti) just prior to the
measurement at ti. assumingna particular realization a of a.

~

Using the conditional mean, the estimate of x(t;) can

~

be generated as:

E{x(t;)1Z(t;) = Z;} = I ;f!‘_(ti”yti)(;lzi)g;

= I_QX[fAfi(ti),ilz(ti)(i'llzi)gglgl (II-3)
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ﬁw ) where the term in brackets is the estimate of x(t;) based on a
fﬁf dg& particular value of the parameter vector, This would be the
\;1 output of the Kalman filter based on a particular parameter

< valve. When a is continuous over A, this would require an

) ~

infinite number of filters in the bank. In the continunously

Qe distributed parameter case, what is typically dome is to

s

: % discretize the parameter space, yielding a finite number of
] A',(

ey filters. The integrals over A in Equations (II-2) through

(I1-4) then become summations: letting pk(ti) be defined

ktD® elemental filter being

)

gl; as the probability of the
3§

p p]

DLy correct, conditioned on the measurement history, (II-2) and

(II-4) are replaced by:

-1,- [ NP

o faeiylg,z(ei1)(zilag.2; Ipy(t;y)

GE‘ P lty) = (II-5)

K
e
?l*,i' 2 f (t_)Ii.z(ti_l)(Lilijyzi_l)pj(ti_l)

Elx(t)1Z(ty) = Z;)

iy K

~ ~

)
?
h{; where a (a;,29,....85] and gk(ti+) is the mean of x(t;)

conditioned on a = a, and Z(t;) = Z,, i.e. the output of the

. i
ey ~ ~
k'P Kalman filter in the bank, based on the assumption that

a = ay. Pictorially the algorithm appears as in

~

Figure II-1.
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Figure II-1. Multiple Model Filtering Algorithm
The probability weighting factors for each Kalman
Lo
(& filter are calculated from Eguation (II-5), where:

PETE T )I(llz)exp[-(I/Z);kT(ti)Ak_l(ti)g,k(ti)]
ki

and

Apg(t;) = H (e P (e, B T(e) + Ro(t))

) = z3- B ()X (e;7)

£k(t =i

i
m = dimension of z (the number of measurements)

Both the residual covariance Ak(ti) and the residual ;k(ti)

itself are readily available from the kt? elemental filter.

14

(II-7)
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;q: The estimate of the parameter and the covariance of the

:S!_o % parameter are given by:

a
~

K
and

e E(la - a(t)10a - a(e)1T1ZCe,) = 2;) =

#, ~ ~ ~

lay - a(t)Ila,- 8(t;)) py(ty) (II-9)
1

N1

k

The covariance of the state estimate is given by:

»
2
e
o~
(o4
+
~—
"

= 1 = 1 = 1 o 1 =1

E(lz(ty) - 2(t;M10x(ey) - 20,91 1z = 2;)

0‘
i) = J“n[; - 2 +)][! - x(t +)]Tf (t }.I%(t )(I;IZ

Ay K

.2 pp(t) 0 [z - x(¢;910z - 2,17
k=1

-

-

-
[

Pp(t) (P (e, ™) + [z (6,%) - 2(t; )]

LB
[
N INA R

ana A +y _ A +\1 T _
e [;k(ti ) ;(ti )1 %) (I1I-10)
”'&‘\ where Pk(ti+) is the covariance of the state estimate of the

Y
‘) kth elemental filter.
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It is important to note that it is not necessary to
compute the covariance of the parameter estimate and the
covariance of the state estimate online. They are used for

the evaluation of estimator performance during estimator

design and tumning.

I1.2.1. The elemental

estimators are each constant gain-Kalman filters, the gains
of which are dependent upon the associated point in the
Thus,

parameter space. each is designed on the basis of a

time invariant system model, and a stationmary noise model,
and the initial transient in the resulting filter is
ignored.

The kP elemental filter estimate of x{(t), denoted by
gk(t). is propagated from just after the last measurement to

just before the next measurement by:

A -
T 06;7) = 0px (e, ") + Byt q) (1I-11)
and is updated by:
x *) = % ) 2 7)1 (II-12
In these equations, the subscript 'k’ indentifies each
vector and matrix as being specifically based on the kth

point in the parameter space.
16
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.*‘vt‘
ﬁé; 11.2.2, Convergence. The adaptive estimation
s
Toh RO algorithm just developed is optimal under the conditions
?ﬁ' that the discretized parameter space is a true model of the
R
%5: physical parameters, and the true parameter vector remains
3
i A
L at a constant, but unknown, value. Under these conditions
)
N the algorithm will converge to the true parameter value
S
;i§ (61, i.e.,
(L4
%! .
k§§ lim py(t;) = 0 for a # a,
i-oq: -~
: ﬁ %im pe(t;) = 1 for a = ag
"f’! 1—® ~
¢
g
jﬁ' When the true parameter space is in fact continuous and the
WA
,,u true parameters lie somewhere between the discrerized
}Q; points, the algorithm converges to the single discrete
;- :.
{}{ parameter point that is ’‘nearest’, as defimed in [6], to the
. C_.: true parameters.
o
'327 These results were extended by Dasgupta and Westphal
3fi f30] for the case of unknown biases in the measurement
%% process, (E[%(ti)] = my(t;), where m,(t;) can be affected by
% ; the parameter vector). Under these conditions the algorithm
2'$ mey converge to a parameter point that is not close to the
.} true value, and erroneous estimates may result.
i}i It is important to remember that the algorithm is able
b
2 3 to identify the closest parameter point only by observing
h
49,73
 , which elemental filter consistently has the smallest value
TR
) -
j.{ of lkTAk lgk: the smallest residual relative to the kth
o
M
% ’ filter-predicted residual squared value., If the residuals
‘:‘t'e
5. are of the same size, Equation (II-7) shows that the filter
!':4'.
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)
;ﬂ
o
:i ‘ with the smallest valune of |Ak| will be identified as the
;5':'\' 'ﬁ' correct filter., Since 'Akl is independent of both the
ag‘:s‘. residuals and the elemental filter’s correctness, if
§$'£ psenvdonoise is added durimg the filter tuning process, to
:?‘- account for model inadequacies, it must not be so strong as
:' to mask the correctness/incorrectness of the elemental
:,‘;EE filters. Such strong pseudonoise may well allow the
i adaptive filter to comnverge to am erroneous parameter
4 value [30].
N
?}E-&j As noted in the introduction, no satisfactory
::3.3' theoretical convergence results are available for more
. general conditions, such as slowly varying parameters,
E‘_\ although empirical information sumggests convergence. The
.
\’:: most sucessful approach used to prevent the algorithm from
i Cév locking onto one elemental filter before the parameters have
t%; varied significantly has been to lower bound the Py's to
wa

O

prevent them from converging to zero [5,10].

»
o PN

Oz

v 11.2.3. Contzol. There are several ’'assumed
-
-::; certainty equivalence design’ [12:241] approaches to
L

"
L)

1‘ controlling systems with uncertain parameters that can be
= ssed with a multiple model adaptive estimator. In the
:L:.: first, the estimator provides only a state vector estimate

T
<0 to a fixed-gain controller robustified around a nominal
O
L value of the uncertain parameter vector, 2 om+ The
S5
2.' controller design method and controller gains are
o
':.‘-: independent of the adaptive nature of the estimator.
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F
f
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i

W
o
&:::c The controller algorithm is of the form:
S8
) e
Lo 1> . +
: A _
v sl(t;) = -6, [t ,a,,1%(t;7) (II1-13)
p
.:.‘ or the steady-state constant—-gain version:

.ﬂ

o

7 L ] ~ +
- a(t;) = ~6, la ,plx(t;™) (I1-14)
A
c',z:.
!
‘i A second approach is to have the estimator provide both
I

fe
k)
?;f:‘. anestimate of the state vector and an estimate of the
a-. uncertain parameter vector (Equation II-8) to the
Il
")
“}: controller. The controller gain then becomes dependent on
RS
)
"yﬁ' the parameter vector estimate:
L
* A - n +
a(t;) = -6, [t,,a(t; )]1z(e;7) (II-15)
S
i
ENe L or the steady-state constant-gain version:
C

Ty >t -
2% alty) = -6, [alt,; )1zt (1I-16)
j
K
‘q where i(ti—) (as generated at the previous sample time) is
[
:"). used instead of g(ti+) to reduce computational delay. It is
B )
sl
:t ~ important that the control input be applied as close to the
\:g :
;0;':.' start of the sample period as possible, as the filter
I!O
,‘ propagation equation is written on the assumption that the
40
-{ control input is present for the entire sample period.

"
:k. A third approach, referred to as multiple model

M adaptive control, [12:253], is to form K elemental
¢
g’: controllers, each associated with one of the elemental
[\
.,," estimators in the parameter space. Then the final control
|r

) input becomes the probabilistically weighted average of the
!‘ h >
*’h" .',1‘)'3
B R
&
ot
@
o
X /L4
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gty
ok
0
-
.éﬂ;‘
o
4;% individual controller results in the same manner as the
'::;'h \%} state estimate was achieved:
e . A g +
e x
i S
Y l(ti) = p(ti)gk(ti) (I1I-18)
(X k=1
::, !
i
“ For this thesis, the controllers to be used will be
hHhe
e linear, quadratic cost, (LQ) full-state feedback optimal
.4
;3; deterministic controllers, designed to regulate the system
B
::::: to the quiescent state, incascade with the state estimator
Yy
' (invoking assumed certainty equivalence). The basic
[ structure of all the controllers described above will be
A
I3
\,}s similar, where the gain matrices will be dependent upon a
3
E; particular parameter vector value.
'.4 If we are given the stochastic system [28:33-35]:
'
it
14 z(t) = Fx(t) + By + Gw(t) (I1-19)
LG ~ ~ ~ ~
E;il" where
.t:::
4 T
:::;: E{w(t)} = 0 and E{w(t)w(t+t)} = Qb(<)
".‘ ~ ~ ~

and the quadratic cost function to be minimized is:

g gy P

s

J = E{ I (1/2)[;T(t)wx;(t) + lT(t)Wug(t)]dt} (I1-20)
0 ~ ~ ~ ~

o q

e wilm
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e

o
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) where 'x and W, are weighting matrices describing the

e o

B §m3 relative costs associated with deviations of the system
iy states from the quiescent state, and the cost of control
; inputs. The solution for the optimal control, assuming

N
.)

'y full-state access, is thenm the LQG optimal regulator:

: )

3 vlt;) = —Gc';(ti) (I1-21)

..thntminimizel are given by

£ 8 where the constant gains.Gc

ﬁ'ﬁ [12:68-21:

: . _ T -1(p.T T -
° G, = [U + By K Byl " [By K b + 571 (11-22)

where K, satisfies the algebraic Riccati equation

l‘-‘

o K, = x + 0Tk 0 - (B,Tk & + sT1Tc,* (I1-23)

g ’ and

. ti+l
'f\.- X =f ! .T(t'ti"'l)'x.(t’ti)dt

l‘ .
. t;

, tivl g -
"“-': U = [B (t;ti)'xB(t,ti) + Vlu]dt
l-‘\'n | g

W !

t.
+1 -
s=f AT, W BTt ) e
t

i
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B(tnti) =f O(t.t)B dt
t.

Bd = B(ti"’l'ti)

.(tz'tl) is the state transition matrix from t; to t, and:

Note that Equationm (II-21) is also the solutiom to the
deterministic LQ optimal control problem with no driving

noise w(t), and that if the assumption of full state access

~

is replaced by noise-corrupted measurements being available,

then x(t;) in Equation (II-21) is replaced by the state

estimates i(ti+) generated by a Kalman Filter. This assumed
equivalence is valid if all system parameters are known

perfectly. Therefore for the uncertain parameter case Gc
should be a function of the uncertain parameter vector a,
and 'forced’ or 'assumed' certainty equivalence design is

used for synthesis [12:241],

I1.3. Moving-Bank Algorithm Development

As the number of uncertain parameters to be estimated
grows larger and the discretization of the parameter space
becomes finer, the MMAE algorithm becomes computationslly
Maybeck and Hent:z

impractical for real time applications.

[28,29] have demonstrated that it is feasible to begin
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PNk o with the entire bank of Kalman filters used for MMAE but
ﬁib only compute the state estimate and parameter estimate for
%ﬂ; those filters ’'closest’ to the curremt estimate of the
f parameter vector. The pk's of the unimplemented filter are
<) inherently set to O, and all of the probability weighting is
s v distributed amongst the implemented filters. As the
parameter vector estimate changes, the implemented bank
‘slides’ within the larger bank: those implemented filters
‘farthest’ from the current estimate of the parameter vector
are dropped from the bank (no longer computed), and new
filters 'closer’ to the current parameter vector estimate
are implemented instead. It is also possible for the moving
bank to change discretization level, i.e., the filters
implemented need not be adjacent in the full bank. Maybeck
and Hentz examined changing discretization level, starting
with a coarse discretization during an acquisition
period, then changing to a fine discretization once

Parameter acquisition was achieved [28,29].

11.3.1. The ¥Yeighted Average. The outputs of each

elemental filter, ij(ti+). are put through a weighted

‘
fﬂ} average in the same manner as in Equation (II-6), except
AR
ﬁ’* that instead of summing over the full set of K filters, only
N
. those implemented in the moving bank are summed. Thus if J
.:' o
Vi
L) '.h:
vk
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e e
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filters are implemented, Equation (II-6) becomes:

J

(e, = }’gj(ti*)pj(ti) (I1-24)

j=1
Similarly, Equation (II-5) describing the pj(ti)'s becomes:

Pj(ti) = (I1-25)
J
k=1
where, as before:
foale )= 1____ expl-(1/2)g; T(e A, e g (e )]
() B 2A G T
and
= - . T
Aj(ti) lePj(ti YHj -+ Rj
£;(t;) = z;- Bz (e;7)
m is the dimension of z (number of measuvrements)
Rj is the measurement noise strength
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I11.3.2 Slidipng the Movipng Bapk. When the true

iﬂ& parameter vector is associated with a point within the
moving bank, the moving bank operates esentially like a
smaller version of the full-bank estimator. However, when
the true parameter point lies outside the moving bank, this
condition must be detected and some action must be taken to
bring it within the moving bank or the estimate will be
erroneous [28:22,29:10), Since the true parameter point is
both unknown and uncertain, some means detecting when it is
not within the moving bank must be determined, Addition-
ally, the estimator can be expected to operate best when the
moving bank is centered on the true parameter point,
therefore even if the true parameter point is within the

’ bank but is close to the perimeter, the bank should be
‘g’ moved. Maybeck and Hentz [28:22-24,29:10:12] investigated

four means of detecting when the true parameter point was
not within the moving bank.
11.3.2.1 Residual Monitoring. Let a likelihood

quotient Lj(ti) be defined of the quadratic form
appearing in Equation (II-5):

- T -1 -
When the true parameter point is outside the movimng bank,
all of the likelihood quotients for the elemental filters

within the moving bank can be expected to exeed some

threshold level T, the numerical value of which is set in an

25
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ad hoc manner during performance evaluations. This

detection method would indicate that the moving bank should

be moved at time tiif:
min{Ll(ti). Lz(ti)’ coeoy LJ(t1)} L T (11-27)

The bank should be moved in the direction of the filter with
the smallest Lj’ as that filter can be expected to be
nearest to the true parameter point. This method of
detection responds effectively and quickly to a real need to
move the bank but is also apt to respond erroneously to a

single instance of large measurement corruption noise.

I1.3.2.2. Parameter Position Estimate Monitoring.
The current estimate of the parameter vector is adapted from

Equation (II-8):

alt,) =

i gjpj(tl) (11—28)
B

1

L

Using this logic would require a move anytime the bank was
not centered on the point closest to the estimated parameter
point. Since g(ti) depends on a history of measurements,
this method of detection is not as sensitive to a single
instance of large measurement noise as is residual

monitoring.
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I11.3.2.3. Parameter Positiop and Velocity Estimate

Monitoring. The history of parameter position estimates

can be used to generate an estimate of the velocity of the
true parameter point im the case where the parameters are
varying slowly amd steadily in time, In this case, the bank
is moved after the current update but before the next
propagation cycle, to center it upon the point closest to

the projected parameter point. In Maybeck and Hentz's
investigations, this method of detection was found to perform
worse than did parameter position estimate monitoring or

probability monitoring described below [28:85,29:23].

11.3.2.4 Probability Momitorimg. The conditional

hypothesis probabilities pj(ti) computed via Equation

(1I-25) are monitored, and if the largest Pj(ti) is larger
than a chosen threshold, the bank is centered on that filter.
Maybeck and Hentz [28:85,29:23] found that this method of
detection, when used by itself, provided pe£fornance as good
as parameter position monitoring and required less

computation.

11.3.3. Changing the Discretization The filters in

the moving bank need not be those associated with adjacent
points in the parameter space. As seen in Figure II-2, it
may be more appropriate to space the filters implemented in
the moving bank widely over the parameter space. This can
be expected to decrease the accuracy of the estimate, but

the probability that the true parameter point will lie

217
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Figure II-2. Bank Discretizations: a. fine, b. coarse.

within moving bank can be expected to increase. Maybeck

and Hentz [28:87,29:25] found that parameter acquisition was
enhanced in some cases by starting the moving bank with a
discretization coarse enough to cover the entire parameter
space, then contracting it to a finer discretization when a

scalar distance meassure associated with the covariance of

28
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x

-

n:'t'

E(la - a(t10a -~ a(eD1Tz(e) = 2;) =

™ J

5',

§y 2 A A T

W [a - a(t.)]1la.- a(t.,)]1 p.(t;) (II-29)
) . i j i jiti

e ji=1

*P,

’%3: drops below some selected threshold. The contraction from
> )

5 " the coarsest discretization to the finest discretization can
R 2

be done either in one step or several.

i"!"

WP

1y5 The bank can also be expanded during normal operation.
‘.'.\4_

‘&~ This would be appropriate if the trune parameter point

@ . underwent a large jump change in position (due perhaps to
'I&? some large and sudden physical change in the system). Such
AN

ﬂk; a condition can be detected by the residual monitoring

N o

‘. discussed earlier [28:84,29:20]; in this case all of the

"4_\

yﬁ% Lj's would be expected to be large and close to each other
158
:ﬂ; in value., Probability monitoring may also give some

e

indication of this condition by the pj's all becoming close

O

P

e

-~ to each other in value. After the bank is expanded, it is
B
‘:ﬁ( then allowed to contract subsequently about the new
Y-
i s
.‘ parameter point, in the manner discussed earlier,
‘I 11.3.4 Initialization. When the moving bank is
N
Wi
tﬁ% moved, expanded or contracted, it is necessary to
L »
3 initialize any filters that were not implemented in the
ﬁX moving bank before the action took place. Each new filter
h...).
h .“,"_ \
i ., B,., K., H., G,., (t.),
oo must be assigned values for 03’ dj j i dj ;J( i
;g% PN and pj(ti) [28:28,29:13]. All of these except ij and P;
) DA N
e e
.
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Lol
n".:::,
:_:*- are determined by the point in the parameter space the
A N ‘
fl'{

filter occupies. }

i Sl |
< . . I

';_‘; An appropriate choice for the ;_j(ti)'s is the current
Ay moving-bank estimate of the system states ;—(ti+)' The new

="a
Yo

P values for the pj(ti)'s will be dependent on the number of
x:.\,{ new filters, For a move this will be some fraction of the
1R

~ . . . .
_ﬁ_‘: total number of filters in the moving bank; as seen in
r':-").

g:«'f Figure II-3, for the case of nine filters in the moving
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bank, it would either be ihxee or five filters. Good

» wilo
b v
&
T

performance may be achieved by dividing the total

s\
% probability weight of one minus the sum of the unreset pj'
o9
_.-:.‘f among the new filters. This can either be divided equally,
‘Wl
Lahs o
v or it can be apportioned in a manner indicating the new
’i
_A.\' filters’ expected correctness as described in Equation
W\
o (I1-30) [28:29,29:13]:
",
A
- )
““‘f fj(;_(ti))(l Px(t;))
N % nnch
o . (ts) = (I1-30)
P Pien ti }
1.‘ chfk(_z_(ti))j
@
4SS
:k‘ where ch = changed, uvanch = unchanged, and:
ey
Y
=::'|‘ AT -1 A
- (.. fj(g(ti))= 1 expl- (1/2)1' (t, )A (ti);j(ti)]
- (2m)®/2)a (e ) 1(1/D)
s
150
ﬂ Aj(ti)' m, and R are as defined before, and:
240
<, A - - A +
od
nY,
N _
”‘. This may require enough additionmal computation time that
-,‘-' there is no net performance improvement over dividing the
‘_1:.
"»:-:-: net probability weight evenly among the changed filters.
L "
h'-;-; For an expansion or contraction, it is likely that all of the
L
:‘ filters are changed or that the old pj(tx"" are no longer
i
I'-\
"": valid, in which case setting all the pj(ll)'l to 1/J is
'
e sppropriate.
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I1.3.5. Moving-Bapk Adaptive Comtrol. The controller

for use with the moving-bank multiple model adaptive
estimator can be designed following any of the three methods
discussed for the full-bank estimator in Sectiom II.2.3.
The only difference is that for the moving bank case, the
multiple model adaptive controller only uses the controllers
associated with the filters currently implemented in the
moving bank. Maybeck and Hentz received good and
essentially identical results with a single changeable-gain
controller and a moving—-bank multiple model adaptive
controller. The single fixed-gaim controller performed
poorly when the true parameter vector differed significantly
from the nominal parameter vector for which the controller
was designed. In addition, performance was sensitive not
only to the magnitude of the error made in estimating the
parameter vector, but also was more sensitive to errors in
one parameter than the other, and whether the parameter was
overestimated or underestimated [28:104-105, 29:25-27].
Maybeck and Hentz also found it necessary to shut off
contro}l for the initial period during which the moving bank
was acquiring the parameter estimate. If control was
applied before the parameters were identified, the wrong
control was often applied, driving the system unstable
{28:104, 29:25]., Turning off the comtrol was also necessary
for the same reason after 2 jump change in the true
parameter point, This led to the recommendation that an

appropriate method of deciding when to enable control be

32




investigated, based on a determination that parameter

acquisition had taken place. The possibility of using the
fixed gain controller based on a nominal parameter vector
during the acquisition phase, rather than simply disabling

control entirely was also suggested [28:106].

I1.4  Ambiguity Functions Apalysis

A tool that can be used to predict the ability of the
moving~bank multiple model adaptive estimator to center
itself correctly on the filter in the bank which is closest
to the true parameter point, is sambiguity function analysis

[5:97]. The generalized ambiguity function is qivenm by:
fo Sc
Aila,ag) =) oo Lla:Zid fa(eplg(ep(Zilagiaz; (1I-31)

where a is the parameter vector, a, is the true parameter
vector, and L[;.Zi] is a likelihood function ([5:97-99]. For
a8 qiven value of a,., this function of a yields information
about the expected ability of the adaptive filter to
estimate parameters. When plotted on a8 three dimensional
surface, over the plane of the two-dimensional parameter
space, the curvature of the ambiguity function at a,
predicts the precision with which the adaptive estimator can
estimate the parameters. The wmoving bank will center itself
on the highest local peak within its area; if there is no
local peak, the moving bank will move uphill until it

encounters either a local peak or the edge of the parameter
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‘,::: % space. If there are multiple peaks in the parameter space,
.l,. v
| the moving bank may converge to incorrect parameter values,
’.:.Q"
0
:ht: depending on the bank starting position. 1In addition, the
13
:3'. greater the curvature at the peak, the greater is the
LN
"? precision [28:332). Examination of the ambiguity functions
AR
:.'g may be nseful in determining starting points for the moving
i‘.
:::' bank, appropriate discretization levels, and contraction and
L3O
expansion strategies. It is important to note that the
i
:gg ambiguity function varies with a,; thus a different plot is
!
:‘;' required for each true parameter point of interest,
GO
(A
. The curvature of the ambiguity functiom is inversely
&gy
:C‘ related to the Cramer Rao lower bound on the estimate error
_‘.:':"' covariance matrix by [5:97]):
Y
$)
m’g E{la - a,1[a - 1T 2 [-(d%3a32) A.(a,a)l -1 (II-32)
&- The ambiguity function (Equation (II-31)) camn be
r) calculated through the evaluation of covariance analysis
(R}
r~
:‘ results in which the trune system is based on a4 and the
A
"'L:.' estimator is a single Kalman filter of the same structure as
' the true system, but based on a instead of a,. The
"‘ ambiguity function can thus be written [5:98, 28:333]:
¥
‘!
R
.".: A;(a,8,) = m/2 1n(2n) ~ 1/2 1n[|A(ti;_a_)|]
AR
[ &
- _
' - 1/2 te (AT 0t Ga) [HCE P (¢, sa,, a)HT (¢ )+R(t )]}
o
o - n/2 1n(2n) - 1/2 1allPCe; %2011
L
N bus - 1/2 e (P (e, 0P (¢ 5a,0)) (I1-33)
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&" where

§¢ Qﬁﬁ A(t.;a) = [H(t;)P(t, ; yET (¢ ) + R( )]-1

A : isa) = ti)Plt; :a i ti

Y

.g for the Kalman filter based on g

3

% +

En Po(t;-;24,8) is the covariance matrix of the

1 error between the state estimates of
W the Kalman filter based on g and the
fz states of the true system based on
N a,, where '-' or '+' denotes befgre
\‘ of after incorporation of the it

U measurement.

o ‘m' is the number of measurements.

ol

?} and 'n' is the number of states.

r.

Xy

D

'. The first three terms are in actuality summed over the last
ié N sample times; here N is set equal to one, which reduces
%: the size of the fluctuations in the value of Ai(g_.;t)

K ﬁ (flattens the plotted surface). This does not aid the
;;§ ) analysis of the plots, but does make it computationally

)

O

-

simpler.

n

-

(U=

I1.5 Summary

-
-
-t e

The algorithms for full-scale MMAE and the moving—bank

Kb S

P

multiple model adaptive estimator have been developed in

IS

this chapter. Both estimators are expected to give accurate
adaptive estimates of true system states in many appli-
cations; however, the moving-bank estimator is expected to

be a more practical estimator for implementation because of

R*s ' .')rl' |' l. l',-l
Pl PP i

=

-

the reduced computational loading.
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1 Several areas specific to the moving-bank estimator

4

b )

% were explored. Four means of detecting when movement of the

+ g

R %ﬁP moving bank is required were discussed:

5 a. residual monitoring

W

2 b. parameter position estimate monitoring

K

o

»
©
.

parameter position and velocity estimate

'
% monitoring

; d. probability monitoring

K Changing the discretization of the moving bank was

i. discussed both as an approach to initial acquisition of the

3 unknown parameter vector and as means for reacquisition

§ after a jump change in the unknown parameter vector.

;5 Parameter estimate covariance monitoring and probability

i: monitoring were discussed as means of detecting when the

; bank should be contracted. Residual monitoring and

£ a' probability monitoring were discussed as means of detecting

"

% when the bank should be expanded.

) ¥hen moving, expanding, or contracting the movimg bank,

it is necessary to reset the state estimates and probability

K

%f weightings of the new filters in the bank. The current

y overall state estimate is appropriate for resetting the
5 individual state estimates. After the bank has been

2 expanded or contracted, it is appropriate to reset the

. \
'g probability weightings of all of the filters to 1/J. After ?
% the bank has been moved, only the probability weightings of

?i the new filters should be reset by dividing among them the

:} total probability weight left after subtracting the

h
A9 ‘::;:-:. 36

[y

)

vy ) (N W0 » "l aP a P . LSS T SR L L TR LR
ARG SIS i 0 {{ v o' A Y
utel ‘l"‘k".”’ﬁh.“‘!.‘,“q'".."."“‘!"‘"’." K MEAFE N 4'.’. '. "‘o’l ;‘l‘-‘ e * ‘ \ 5 .'0 L) .\.‘._ LR .0 > " 2 * .\ a‘.' X " “’6.0, ¢

» *



3 r ‘nﬁ‘.

._32"
T A

.ﬁg probability weightings of the unchanged filters from the

-
»

S

total weight of one. The remaining weight can be divided

%N either evenly or in a manner reflecting the estimated

gﬂ correctness of the new filter.

ﬁ% This research is intended to explore and expand these
vy

ﬁg movement, expansion, and contraction decision making and
% reset methods, as applied to the control of the bending
et

modes in a realistic model of a large flexible space

-
-
-»

structure. The model of the flexible space structure is

Ny g
oL

‘e
-
'

developed in the fallowing chapter.
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L @ III.  SPACE STRUCTUEE MODEL
ic*§:!
;:;5 II1.1. Introduction
’.'cg',_
ﬁb This chapter describes the system equations for the
) '‘Draper Labratory / Rocket Propulsion Labratory (RPL)
%ﬁ Configuration’ model of a large flexible space structure,
i
\
Evg illustrated inm Figure III-1, The structure consists of a
.1
rigid central hub with four structurally identical flexible
PN
%,. appendages cantilevered radially from the hub. Experimental
rl
1
N J wvork concerning the planar rotational/ vibrational dynamics
of this U.S.A.F. Rocket Propulsion Laboratory demonstration
L4
2% model is being conducted at the Charles Stark Draper

a R
f&fl.

} <
3 = Laboratory, where 8 physical model of the structure is
20
’ (h supported on an air bearing table [31].
‘ ¢ The differential equations describing the model are
et
};a developed from the equations of motion for the unforced
A5
3; system by Muckenthaler [32]; the expressioms for the kinmetic
§( and potential enmergy are developed and discretized, using
i
.mg the assumed modes method with terms of higher order than two
?‘ i
0\
zﬁ" ignored. This allows the mass and stiffness matrices to be
lgﬁ identified. The integral equations for the mass and
3
1{@ stiffness matrices are solved symbolically and a closed form
‘kﬁ expression for them is achieved., The second order
}tﬁ differential equations are then placed in the standard state
z&; space form for a stochastic system model. This allows the
"
‘: construction of the elemental Kalman filters used in this
g&" f%§ thesis for the investigation of moving-bank MMAE.
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Figure III-1, Draper/RPL Configuration Model.
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Al II1.2, Second Order Form
*ﬁ_ As described by Muckenthaler [22] the motion of the
\
q{: uncontrolled Draper/RPL configuration model can be described
SN
»
.uq by the second order vector differential equation [32:25]
1
S Mg+Cg+Kg=20 (11I-1)
e where:
R
M: is the Nx N symmetric and positive definite mass

WY
auy matrixz
4]
’». C: is the N x N structural damping matrix
Y .

y)
'.h K: is the N x N symmetric positive semi-definite

5

RN stiffness matrix
{1~ : : : .

aiu g: is the N dimension vector of generalized coordinates
QY T
_(1=[9.U-.-U.V...V ]

) (i 1 P 1 P

Ax where 6 is the rotational displacement of the hub,
A
'1; and U; and V; are the generalized displacement

coordinates of the arms, and N = 2p + 1, where p is

®

the number of modes of interest.

-':—.
F

I11.2.1. Assumptions. The equations developed to

ST
S

describe the Draper/RPL configuration model are based on the

|
L .

following assumptions [32:111]:

s

a) The longitudinal and out-of-planme vibrations of the

-
e "l
o

-
»

arms are of much higher frequency than the transverse

.3
.{5: vibrations and are negligible.
vi; b) Anti-symmetric deformations are such that the
ﬁy deflections of the first arm are equal in magnitude but
{}a opposite in direction to the second arm, and the deflections
40
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;: Figure III-2. Anti-Symmetric Deflections [32:11],.
3
1%
A
.
".:4
- f%' of the third earm are equal and in magnitude but opposite in
:Jj direction to the fourth arm; see Figure III-2.
s,
L,
Y ¢) Since the hub of the physical model is supported by
h Y
:) an air bearing table, the force of gravity can be neglected
‘: in the derivation of potential energy.
.‘."\
N d) The structural damping coefficients are very small;
N
1Ty therefore the structural damping matrix C is approximated as
tf the zero matrix.
v
Mi e) All four arms are structurally identical with:
; L1=L2=L3—L4=L
‘:j tl = tz = ts = t4 =t
i hy = hy = k3 = hy = h
- and the four tip masses are identical and equal to m,.
- —\-*‘l
'-; 41
K
XN
@
~
SO
S
A




I11.2.2. Mass and Stiffness Eguations. The mass and

; Sﬁi ____________
A * stiffness matrices can found by solving for the kinetic and
potential energy of the free vibation system. Neglecting

the terms of order three or higher, the kinetic and potential

energies can be written in the form [32:23]:

where the elements of the mass matrix are given for

) i = 1,...,p ; and j = 1,...,p ; by:

]

: M(1,1) = 2 (I_ + I,.)

R+L

! J

? M(l,i+1) = Zpth xﬂi dx + 2m2(R+L)0i(z=x—R=L)
3 R

f + 212c0'1(2=x-R=L)

3 qii R+L

M(I,i+p+1l) = 2pth I

. Gi dy + 2m2(R+L)Gi(z=y-R=L)
‘ R
; + 2I,.0';(z=y-R=L)
M(i+1,1) = M(1,i+1)

; M(i+p+1,1) = M(1,i+p+1)
(

! R+L

X M(i+1,j+1) = 2pth I 9,9, dx

3

4

k] R

)

" + 2m2¢i(z=X‘R=L)oj(Z=X—R=L)
o + 2I,.9';(z=x-R=L)@';(z=x-R=L)
l

{
b
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R+L

M(i+p+1,j+p+1) 2pth I Diﬂj dy
R
+ 2m,8; (z=y-R=L)# (z=y-R=L)

+ 21200'i(z=y—R=L)alj(z=y_R=L)

[
(=]

M(i+1, j+p+1)

[}
S

M(i+1+p,i+1)

where Oi is a function describing the bending modes of the
arms, defined as:
8;(z) = 1 - cos(inz/L) + (1/2)(-1) #*1(inz/1)?
z = x - R (or y - R)
and @', is the first derivative of @, with respect to z.
The pysical dimensions of the model t, h, m,, Iner T4
R, and L, are as shown in Figure III-1. In addition p is

the mass density of the arms, and:

[}

I

2
¢ = (1/2)1_ + 2I; + 2m,(R+L)

R+L

R

The elements of the stiffness matrix are given for

i=1,...,p ; and j = 1,...,p : by:
K(1,1) =0
K(i+1,1) = 0

K(i+l+p,1)

[}
(=]

E(1,j+1) = 0
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e e K(1,j+p+1)
o L

ot K(i+1,j+1)

2EI J oi"(Z)Oj"(l) dz
:ﬁ‘ 0

e K(i+l+p, j+1+p) = K(i+l1, j+1)

;“' K(i+l+p,j+1) = 0

;E* K(i+1, j+1+p) = 0

. where E is the Modulus of Elasticity of the arms, and I is
ﬁ;»: the area moment of inertia based only on t and h as:

“: I = (1/12)ht3

:" and #''; is the second derivative of @, with respect to z.
Sé: The equations for the elements of the M and K matrices
h:: are simplified and evaluated in Appendix A.

x4 (.é_: I11.2.3. Eigenvalues of the free system. The

;iﬁ eigenvalues of the free system can be found by solving the
i:_}' generalized eigenvalue equation:

__ Kx = AM:x (III-2)
;;3; The square roots of the eigenvalues represent the

ﬁﬁs vibrational frequencies of the modes depicting the relative
g; motion of the free arms. The modes appear in pairs, very
Giz close in frequency, depicting what Junkins [31] calls

E;i 'unison’ and 'opposition’' modes. The opposition modes are
;E simple cantilever beam modes characterized by the adjacent
Eﬁ} beams moving in opposition. He states the unison modes are
;EE perturbed cantilever modes, with just slightly higher

e frequencies, with all four beams moving in unison and the

44

I S YA S S L RS
CSIOO _.J\i:\-k~-f_-}_—,- <

.

- “® .



A g
- R
R n.:l’,_s...l"‘.

g
»

. e
I

‘el b o

)

By _am
« u"‘vt ‘_"W'. .
Sl e

.

(3

MuThel
P

X4

LB e e vt g 44 "“‘.'T

L a
22 |
‘{°!. Opposition Mode Unison Mode

Figure III-3., Opposition and Unison Modes [32:26].

G hub having non—zero rotation. The hub rotation is necessary
to counter the unison movement of the arms and tip masses
to conserve angular momentum in the system [32:26]; see

Figure III-3.

ITI.3  State Space Form

The second order differential equation describing the
free system, Equationm (III-1), can be modified to describe
the controlled system as:

Mg+Kg-=B8 (III-3)

e

where B is an N x M control matrix and u is an MMdimensional
control vector added to the original Equatiom (III-1).
Recall that structural damping was assumed to be very small

:ﬁ so the damping matrix C has been neglected.
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%% 2%% If the generalized coordinate vector g is augmented
ey
’ with it derivative:
el
.‘ g = [ _qT, iT 1T
[re
»35 then Equation (III-3) cam be rewritten as:
\ 0 I 0
s g = g + 'Y (III-4)
4 -n1lk o -n"1p
iyl
.- in first order form.
Al
On the Draper/RPL configuration model, actuators are
,‘s
o
ﬁ% located one on the hub and one halfway along each arm,
b
as These apply a torque u; to the hub, a torque u, at z=L/2
o
°® to arms 1 and 2, and a torque u3 at z=L/2 to arms 3 and 4.
{¥ Recall Figure III-2, in which the arms are numbered. Matrix
3
It% B then becomes [32:30]:
Sy

Q:' 1 2 2

o
%‘ B = 0 29", (2=L/2) 0
i 0 0 20", (2=L/2)

where §;(z) is of dimension p (the number of modes of

g

; interest). B is therefore am N x 3 matrix,
A
2¢ Position and velocity measurements of the model are
‘3 available from colocated position and velocity sensors on
i
E: the hub and at positions along each arm. For the state
{ space model, the measurement equation (assuming for the
.W- moment noise-free measurements) is thus:
o
B H o0
"
\
A z = 2 (11I-5)
¢ 0 H
v, T
:
;g s
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§ _&q‘. where the measurement matrix H is [32:30]:
-4, %y i,
i 1 o of
A T T
b‘ 0 2 i(l‘L/Z) 0
b E= J|o T, (z-L) oT
{
Qg [0 o 87, (z=L/2)
H
1
::'l \-0 QT lTi(z=L)d
e
NS ~
1 column p columms p columns
g
F ]
{, H is thus a 5 x N matrix.
Q .
Y I11.4. Stochastic Form
0
u
® The mathematical model can be placed in stochastic form
e
%s by adding a noise matrix G, mulitiplying the control imput
e
?- noise w, to Equation (III-4), and a measurement noise vector
' I
" ‘Zé to Equation (III-5). If it is assummed that input noise
fﬂ will enter through the actustors and measurement noise
i\ through the sensors, then G, becomes identical to the
<\
F) avgmented B matrix. The system is thus described by:
K
- . 0 I 0 0
o a = g + u + w (III-6)
] -u"1g o -u~1p -N"1B
. and

w4 B 0
S: z = [ ] g+ v (III-7)

0 H
(]
9'
Z“:E ITI.5 Physigcal System Copstants
'w¥ The nominal constants describing the physical system

y

}* &ﬂg are listed in Table III-1. For the purpose of setting up a
o AN
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parameter space in which to test moving-bank MMAE

)
s
o
g :

-, v

algorithms, p, the mass density of the arms, and E, the

'fn modulus of elasticity for the arms, were allowed to vary -

)

9‘f 20% to +16% from their nominal values in discrete steps of
A\

&j 4%, yeilding a 10 by 10 point parameter space. This is an
ﬁiv unrealisticly large amount of variation in these parameters,
? f but it proved to be necessary for the purpose of

L

investigating moving-bank MMAE algorithms as applied to this

system.,

Table III-1. Configuration Constants for Draper/RPL Model

R: hub radius = 1 ft
I,: hub rotary inertia = 8 slng-ft2
p: mass density of the arms = 5.22 slng—ft3
E: arm modulus of elasticity = 1.584E09 1b/ft?
; t: arm thickness = 0.0104166 £t
f h: arm height = 0.5 £t
i L: arm length = 4.0 ft
! my: tip mass = 0.156941 slug
: IZc’ tip mass rotary imetria = 0.0018 slug-ft

ITI.6. State Rednction

If pis taken to be two (two opposition and two unison
modes) then N is five, and this results in a tenm-state model

for the augmented system. A ten—-state model is needlessly

*ﬂgﬁﬁﬁ

more complex than is required for this thesis. If the

- A e e 3

:" hypothetical purpose of this estimator/controller is to
X
i
5% eliminate uncommanded torque to the hub of the spacecraft 1
bl
g\ (as might be required if it is desired to point an apparatus
o ;
= . on the hub in a specified direction), thenm it is only
< e
~ T
> ‘-’
T
) 48
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necessary to control those bending modes which produce a
torque on the hub,

As discussed earlier, only the uwnison modes produce a
torque on the hub [32:26]. Junkins [31] determined that the
unison modes were the even numbered modes (i.e. 2,4,6,...).
If the opposition modes are assummed to be stable the
matrices describing the system can be simplified by
eliminating those state variables depicting the positions
and velocities of the opposition modes., The state vector is
then reduced to six states and the matrices describing the
system need to be simplified by eliminating the rows and
columns pertaining to the opposition modes. Thus for the
F matrix, every other row and column is eliminated, and
the result is a8 six by six matrix. For the augmented B and
G' matrices, every other row is eliminated making them six
by three matrices, For the augmented H matrix, every other
column is eliminated, leaving a ten by six matrix. Sample
matrices for a nominal case are shown in Appendix A.

IT1.7. Summary

This chapter developed equations describing a realistic
model of a large flexible space structure. The stochastic
state space mathematical model derived is dependent on the
physical parameters describing the real-world system.
Variation in the physical parameters will create variation
in the stochastic model, and this will allow investigation

into the use of moving-bank MMAE to estimate both the system

states and the varying parameters of the physical system.
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IV. Sipulation

IV.1. 1Introductiop

In order to evaluate the performance of the moving—bank
multiple model adaptive estimator/controller, it is
necessary to simulate the space structure and the
estimator/controller operation. The computer simulation
used provides a Monte Carlo analysis of both the space
struocture model and the estimator/comntroller. This chapter
contains a brief discussion of Monte Carlo analysis, an
outline of the computer software used to accomplish the
analysis, and the plan for analyzing the performance of the
moving-bank algorithm and the specific logics used for the

move, contract, and expand decisions.

IV.2. Monte Carlo Apalysis

The random nature of the input and measurement noise
processes makes it impossible to select a single typical
example of them. Thus in order to characterize the
performance of the moving—bank multiple model adaptive
estimator/controller statistically, it is necessary to
examine the ensemble average of the estimator/controller
performance using many samples of the error process. Monte
Carlo analysis does precisely this: a number of imdividual
time simulations of the estimator/controller are made and
sample statistics (means and covariances) are computed

directly for each sample time [33:29].
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For the analysis performed in this thesis, the true
system model is described by the linear time-invariant

stochastic difference equation:
L(ti) = b‘(ti-l) + Bdn(ti'l) + Gd-‘-(ti“l) (Iv-1)

where
O is the state transition matrix from t;-1 to t,
By is the control input matrix
Gy is the noise input matrix
Recall that, for the Draper/RPL model as shown in Equation
(III-6), the noise input matrix is idemtical to the control
input matrix, therefore:
By = G4
vhere By is the discrete—-time equivalent of the augmented B
matrix of Equation (III-6), given by [33:171]:
Jr
By = O(ti.t)B dt
ti-1
and é(ti) is the discrete time equivalent of the augmented
state vector @ of Equation (III-6). Also note that $,
and By (and therefore G4) are all functions of the true

parameter vector a,, where

Pt
4, =
Et
The model is driven by both the known control g(t;_y) and a

discrete zero-mean white Gaussian noise w(t;_j) of

covariance Q4. Noise-corrupted measurements of the systén
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states are provided to the estimator in the form of:

z(t;) = Hx(t;) + w(t;) (IV-2)

where H is now the augmented version of the measurement
matrix shown in Equation (III-7) and the measurements are
corrupted by a discrete—-time zero-mean white Gaussian
measurement noise 1(ti) of covariance R.

The true syst:m and the estimator/controller are
operated from time t, to time tg for a sufficient number of
runs that the computed sample means and covariances of the
random variables of interest are good approximations to
ensemble averages (expectations). It is possible to
determine the number of rums that is sufficient by observing
how the computed sample statistics change as the number of
after a sufficient number of rums, the

runs is increased:

sample statistics will converge to a constant [33:29]. For
this problem that entails on the order of 10 or more runms.

Figure IV-1 depicts the simulation of the true system,
The variables of

the estimator, and the controller.

interest are:
the system (’truth model') states - x, (t;)

the error in the estimate of the system states -

(t;)

'e'x(tl) = lt(ti) - i

>
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<

L Figure IV-1, System, Estimator, and Controller Simulation.

by At
v,

,

R

[P L

the error in the parameter estimate -

SRR

a(ti) = acglty) - a(t)
"
J'x and the control input - %(ti)

i) The means and covariances of the variables of interest are
%?4 all computed similarly; for example, the mean of the error

e
i&& in the state estimate is computed as:

et N

o . R 5

?,.:Elﬁ Efe (t;)) =~ M (t;) = (1/N)k lgxk(ti) (IV-1)
] ~~ =

ki< where N is the total number of runs performed in the Monte

<% - Carlo anmalysis, and e, ,(t;) is the value of ¢ (t;) during the

-~
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run. The covariance of e,(t;) is computed as:

A
Elle,(t;) ~ Ele,(t;))1le,(t;) - E[%}(ti)}]T] ~ Py (t;) =

T A AT
(1/(1-N) £ o (t)e p(t;) - (1/71-N)) M, (e )M (¢
k=1

i) (IV-4)
When evaluating the estimator alone the controller
block in Figure IV-1 is replaced by a dither signal which
excites the system states, but is independent of the
performance of the estimator., The dither signal is used
based on the experiance of Hentz [28:58], who found that
system identifiability was enhanced by sufficiently and
persistently exciting the true system modes with a known
periodic input, Without the dither, the estimator had
considerable difficulty in identifying the uncertain
parameters, and little basis for evaluating various decision
algorithms was found because the system would essentially
reach a quiescent state reqardless of the algorithm used
[28:57-58]. The specific dither signal to be used
(magnitude, frequency, etc.) is determined experimentally as
a rigorous determination of the optimal input to enhance
system identifiability is beyond the scope of this effort.
It is most appropriate to look at the statistics of the
error in the state estimate and the error in the parameter
estimate in evaluating the performace of the estimator. The

error in the state estimate gives the best means of

54

N S e e
‘ . - -

S T SR S N A SN S

A oy




< e A g

“n

X

-,

(o

e, -'It'" B
o "g‘ Rl

comparing the estimator to other types of estimators, and
the primary reason for adaptation is to enhance state
estimation precision, rather than to provide accurate
parameter estimates for their own sake. The characteristics
of the error in the parameter estimate reveals the accuracy
of the parameter estimates that may later be fed to the
controller. The error in the parameter estimate can also
give insight into how good a job of identifying the closest
elemental filter the moving-bank is doing, thereby giving a
means of evaluating the various move, contract, and expand
algorithms; statistics on the location of the center of the
bank are also valuable inm this evaluation.

When evaluating the estimator/controller combination it
is more appropriate to look at the statistics of the true
state values and commanded controls., In this thesis, the
object of the control input will be to drive the states to
the quiescent state; therefore, deviations from zero are
undesirable characteristics to be analyzed in evaluating
controller performance. It may also be useful to examine
the control input to detect unreasonable commanded control

levels.

Iv.3. Software Description

The Monte Carlo analysis of the moving—bank estimator/
controller required the development of three computer
programs (for a detailed discussion, see Appendix C.). The

first program is a preprocessor which creates the parameter




space. The second program is a primary processor which
perfoms the Monte Carlo simulation runs and generates the
data describing each run. The third program is a
postprocessor which computes the means and covariances of
the variables of interest and generates plots based on their
values. In addition, a program which computes the ambiguity
functions and generates their plots was developed as a
separate analytical tool; it requires & variation of the
preprocessor to set up the parameter space values it uses.
The preprocessor sets up the parameter space. That is,
for each realization of the uncertain parameter vector, it
computes the matrices necessary to describe that parameter
point uniquely in the equations used to describe the truth
model and filters. This requires that, for the rth
parameter point, the bk' Byy. Hy, Ky, P (t;7), Ak—l. and
the Gk‘ matrices and the determinant of Ak be computed. The
preprocessor takes as input the temn discrete values each
parameter can assume, and the weighting matrices W_, and Wu
which describe the quadratic cost function used in the
design of the LQG controller gain (G') matrices. The
preprocessor outputs a file containing all the matrices
calculated, the weighting matrices, the strength of the
input noise, and the covariance of the measurement noise.
Unless the inputs change, the file containing the output can
be used for all of the simulation runs, making it

unnecessary to rerun the preprocessor.
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The primary processor performs the Monte Carlo
simulations. It consists of an executive routine which
calls several subroutinmnes. After input and initialization,
the executive routime consists of an outer loop that counts
the desired number of Monte Carlo runs, and an inner loop
that performs the operations necessary for each sample
period from the starting time of the simulation (to)to the
ending time (tf). For each sample period, separate routines
are called to propagate the true system from the last
sample time, propagate the filters currently implemented in
the moving bank from the last sample time, take a noise-
corrupted measurement of the true system, update the filters
in the moving bank, calculate the control inpﬁt. and finally
make the decision whether to move, expand, or contract the
bank. If it is decided to alter the bank, separate routines
are called to perform the move, expansion, or contraction.
After the computation for each sample period is complete,
the variables of interest are written to a data file.
Following each run, the outer loop reinitializes all
necessary variables before begining another run. Inputs to
the primary processor are the file containing the
description of the parameter space, true system parameters,

8 mode input which specifies the move/contract/expand

algorithms to be used and associated thresholds, initial
probability weightings for the filters in the moving bank,
and initial filter states. The output of the primary

processor is a data file for each variable of interest
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_ . covering all of the runs, and 2 more detailed print file
. . L]

SN o . L . .

-~ covering just the first run which includes information
describing the exact filters implemented in the moving bank

ﬂ% and the variable affecting the decision algorithms. The

' print file allows detailed analysis of unexpected or unusual
results, but avoids excessive output.
The post-processor takes a data file of a variable of
interest and calculates the sample means and covariances for
4 each sample time from t, to tg. The post-processor then
al

'?: generates plots of time histories of the means of each

4 variable of interest + lo, where o is its standard

°

o deviation. Thus each data file generated by the primary

X1

1R processor requires a separate run of the post-processor;

8

' } R this provides for simplicity and flexibility in determining

®
- which variables to plot.

j% The simulation requires that the driving noise !(ti_l)
and the measurement noise !(ti) be zero-mean white Gaussian
processes. Fortran provides a random number generator which

<

iﬁ can be used to approximate the required random variable’s

b

»;ﬁ realizations at each time. If y, is the random variable

e ~
available directly from the random number generator,

.53 uniformly distributed between 0 and 1, then a zero-mean

N
Gaussian random variable with a variance of 1 can be

!P approximated by:

e

%

_',.t_ 12

o r = y; - 6 (IV-5)

“~ .
,‘ ~ 1=1~
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In order to simulate a zero~mean Gaussian random vector with

covariance Qg, the following operation is performed:

x=D

L L]

where the elements of r are computed by independent calls to

~

Equation (IV-1) for each scalar component, and where

D= Vag; i.e. Qg = DDT
For the sake of simulation, the Cholesky decomposition is

used to generate the square root [33:408].

Iv.4. Simplation Plan

A systematic approach will be used to study the
performance of the moving—-bank estimator/controller. The
performance analysis will be divided into two main parts,
First the performance of the estimator alone, without
feedback control (i.e., the controller block in Figure IV-1
is replaced with a dither signal independent of the state
estimates), is evaluated. Analysis in this portion of the
study will concentrate on qualitatively identifying the
'best’ estimator configuration which will then be used for
the analysis of the controllers to identify the 'best’
adaptive estimator/controller combination.

The performance of the estimator alone is accomplished
by driving the true system with a zero-mean white noise in
combination with a dither signal for each of the
move/contract/expand decision algorithms to be tested.

For each decision algorithm being evaluated, the true
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Rl
j ’E parameter vectors gt(ti) will be chosen which exercise
g ‘ that algorithm. The estimator will be evaluated first uwsing
b
:"‘ only movement at the finest discretization level, and the
E’N: issue of initializing the probability weightings of the new
.3% filters added to the bank will be explored. Then the
31. effects of contraction from a coarse discretization to a
'f' fine discretization will be explored and contrasted to

‘ straight movement. If contractiom proves beneficial,
f‘.:' expansion to a coarse discretization following the detection
32: of a jump change in the true parameter point will be
J investigated.
;'. To evaluate the effect of computing probability

'J.i weightings for new filters added to the bank during a move
‘._" > based on their expected ’'correctmess’ (e.g., based omn how

'::’ far the new filters’ a values are from the current
'\‘t i(ti)) vs. setting the probability weightings of the new
"- filter to an equal share of the total probability of the
;Eg; filters removed, the system uncertain parameters will be
"' constant over t_ to tg, and set equal to onme of the
:.f.\:; discretized points in the parameter space different from the
:_'" initial bank center. The effect of the probability

Y
:§I weightings can then be seen in the speed with which the
:..::.‘ parameter estimate converges to the true system parameter
:’f‘j point, and in the error in the state estimates. Movement
t;:j primarily takes place when the true parameter point lies
Ej: outside the area encompassed by the moving bank; it does not
\, e matter whether the true parameter point is exactly equal to
Q-'%'_ 60
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" dgg one of the discrete parameter points or not as long as it is
) v
'. initially outside the moving bank area; therefore, the true
.:. N
¢
5 parameter point is set equal to one of the discrete

)
&3 parameter points for simplicity. The issue of how the
e\
l? moving bank tracks s slowly varying true parameter point is
LW
7.4
%4 not investigated by this thesis due to time comstraints.
bV
“; For the evaluation of simple bank movement, the bank size
y v

will begin at the finest discretization and no expansiom or

0
*- contraction will take place.
)
i. y
fq In order to evaluate the effect of contraction of the
0
® bank about the current parameter estimate, the true system
)
g parameters will be chosen the same as for the probability
B
:i computation evaluation, and the performance of the estimator
g
(\ry

-

® with bank contraction and movement can then be compared

directly to the performance of the estimator using only

[AEP S P

movement to identify the uncertain parameter. For this

portion of the evaluation, no expansion will be allowed to

R SN
Op o

W
|i take place.
A
*:i The evaluation of the expansion algorithm using
P, ¢
gl residual monitoring will be conducted by using a jump change
.% in the uncertain parameters from one discrete parameter
4} point to another discrete parameter point at a time tj where
o
:2 to(tj<tf; and tj is greater than t by an amount sufficient
{2; to allow the estimator to converge to the first uncertain
an
?z parameter point. The expansion algorithm’s purpose is to
}
)
ol allow the estimator to react more quickly to a jump change
$§ -JE} in the uncertain parameter vector's value (as if there had
M) -
iy
()
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i
,,::; ‘1 ;. been a catastrophic failure in one of the arms of the space
RPN 7
" structure model) than would be possible by allowing the
it
1,%
:3:;' estimator to converge to the new point by movement alone.
Sole
A,
:;;:& Therefore, the results of the simulations using expansion
THNY
'j will be compared to simulations using the same jump changes
bt
‘:ug:: in parameter value where expansion is not allowed.
i
L
::::. After the evaluation of the individual estimator
algorithms, a composite 'best’ estimator will be determined,
ity
s made up of the move/contract/expand algorithms that
/§ performed the 'best’. The determination of 'best’ will be
1M )
® based upon a tradeoff between added computational loadinmng
.(f_:,;, and faster state and parameter aquisition times, lower state
5%
-;1._-, and parameter estimate biagses, and lower state and parameter
W
(ir estimate error variances. The goal in moving from full-
AN
;é:':.i scale MMAE to moving—-bank MMAE is to obtain an estimator
g:'::' with similar performance but which has enough of a reduction
Wtle :
:) in the computational loading required to make it practical
! ‘:: for more applications. Therefore, any decision algorithm
"h'
‘-l'd which increases computational loading is a step in the wrong
\ _”
’- direction unless this additional loading is outweighed by
AR
x_'(-'.' significant gains in performance.
(RS
A
z}.‘-; When the best composite estimator has been determined,
e
AN
that composite estimator will be used to evaluate the
."'f{ controller configurations disscussed in Chapter II:
e . . .
b a, single fixed—-gain controller
14t
)
"2 b. single changeable~gain controller
:':‘: “a ¢. moving-bank multiple model adaptive controller
SR
s, '
by
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3?! o~ The estimator/controller combination will be evaluated using
+, P

both constant true system uncertain parameter values and
)
‘ AN
ﬁ}: jump changes in the true system uncertain parameter values.
e
:}: In addition, an evaluation will be made of the effect of
A
) turning off control during the parameter acquisition phase
XX
:13 vs. using the the adaptive controllzr from time tys or a
f&: nominal fixed gain controller until parameter acquisition
)

takes place then transferring to the adaptive controller.
e
QQ, As in the estimator-only case, any increase in computational
A
5&. complexity must be offset by significant gains in
Sy
AN
® performance (lower state biases and variances from the
?*a quiescent state) in order to justify the decrease in
D
;" O
'4z practicality associated with the increase in computational
4
LN .

@ loading.

* .“
:AJ
b T IV.5  Summazry
‘ i
};: This chapter has discussed the overall method of Monte

Carlo analysis, the specific organization of the software

2

used for the simulation, the plan and criteria for

0. 5
)
'n
;Nc evaluation of the various estimation and control algorithms,
,“W‘ and associated move, contract, and expand logics. It was
s
;43 noted that increases in the estimator/controller performance
Ny
{
%ﬁg at the expense of increased computational loading must be
::‘ significant to justify the decrease in practicality. The
o
#'t results of the simulations are presented in the next
[, Cr,
i) chapter.
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e RESULTS
gt I .
A V. Introduction
i..'."‘-
fﬁ; This chapter presents the results of the Monte Carlo
Wy
e
2% simulations. The goals of the simulations were to evaluate
]
L] "
&“ the effectiveness of moving-bank multiple model adaptive

Q'.
)
ﬁi, estimation/control when applied to the realistic situation
’\
W described in Chapter III, and specifically to evalulate the
R0 various move, contract, expand, and algorithms described inmn
N
:" Chapter II. These goals were only partially met due to
L

K}
ﬂf numerical difficulties which forced the use of approx-

o
oﬁ' imations in computing probability weightings, and the

< .
AE} ambiguity function. In addition the system being controlled
$Hhat
*2’ proved not to require adaptive comntrol, despite the

‘.

il ' uncertainties in the parameters describing it. This made
é{; the evaluation of the control algorithms impossible.

o
e
L) V.2, Numerical Pzoblems

}5 The covariance matrix P at time ti+ for all of the
:AS elemental filters proved to be numerically ill-conditioned

(a function of there being a accurate data on some of the
states from the measurements). Therefore it was impossible

to compute the ambiguity function as described by Equation

(I1I-33), as that equation requires the determinant of

I

RN

-
-

P(ti+). Since the P(ti+) matrix was used to compute P(ti_).

which is used in the computation of the A matrix used in

e g ol

& Equations (II-7), (II-25), (II-30) and (II-33), more
St .

Y 5?& problems resulted, as the computed determinants of all of }
.': Y |
N ‘
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the A matrices proved to be negative. Tunning of the
filters could result in improving the numerical comdition of
P(t;7), and could prevent the A matrices determinants from
being negative., However; this would envolve the use of less
realistic moise strengths for Q and R, this could be
worthwile as an academic exercise but time constraints
prevented that from being dome for this thesis,

In order to overcome these numerical difficulties, the
expressions for the probability weighting factors (Equation
(I1-25)), and the ambiguity fumction (Equation (II-33) were
approximated to remove the necessity to use the determinants

of the P(ti+) and the A matrices. In Equation (II-25)

the density function is approximated as:
£,02(t;)) = expl-(1/2);T(e A (e ()]

Note this is no lonmger a true density funmction becange the
scale factor is now incorrect; but because of the
denominator in Equation (II-25) the probability weightings
are still scaled correctly. This change is also reflected
in Equation (IXI-30) describing how the probability weighting
for a new filter in the bank can be computed based on its
expected correctness., This approximation is reasonable as
long as the A matrices of the the elemental filters are
close enough to each other so that their determinants, in
the absence of numerical problems, would be expected to be
of approximately equal magnitudes. The ambiguity function

described in Equation (II-33) was approximated by removing
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ﬂs& the terms containing the determinants of P(ti+) and A; it

then became:

A;(a,a,) % m/2 1n(2n) - n/2 1n(2n)
- 1/2 tx{A™ (e ;a) [B(t)P, (¢, 58, )BT (£ )+R(t )]}
- 1/2 te(P (e, Y0P (¢, 50,00))

This approxcimation is reasonable as the determinants of

P(t:*), and A (in the absense of the numerical difficulties)

1 »
can be expected to have minimal impact on the ambiguity
function as the primary sensitivity of the ambiguity

function is in the quadratic terms which are being

preserved.

IT1.3 Ambiguity Function Agalysis

(Z? Analysis of the ambiguity function was based on three-
dimensional view plots which show the magnitude of the
ambiguity fumction as a continuous surface over the
two dimensional parameter space, for specific true parameter
values. Recall that the two uncertain parameters are the
mass density of the spacecraft arms and the modulus of
elasticity of the arms. Three typical plots are included as
Figures V-1, V-2, and V-3, based on true parameter points
(5,5), (3,7), and (7,3) respectively, the arrow on the plot
indicates the true parameter point. The numbers for the
uncertain parameters are not the true values of the
parameters at those points, but indices indicating which of

the ten discrete values for each uncertain parameter is

Y- used. As can be seen the ambiguity functions are fairly
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Figure V-1, Ambiguity Function at point (5,5).
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Figure V-2. Ambiguity Function at point (7,3).
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% . flat, which indicates possible sensitivity problems, and

? - \ there are several ripples, which indicates possible problems
identifying the correct parameter values. The large peak at
the (0,0) point should be ignored as it is an artificial
result of the curve fitting routine used to generate the
contours and of the fact that there is no data point at

(0,0). In addition, the plots for different true parameter

points are very similar. This indicates that the moving

"3; . bank multiple model adaptive estimator will have

K7,

EE? difficulties identifying the correct parameter point, this
;&ﬁ is especially true when the true parameter point is not

_;;_ located on at least a local peak, as is the case in Figure |
g&; V-3 for true parameter point (7,3). However, evemn if the
?3 N true parameter point cannot be identified, the state

S8 (éf estimates may still be accurate, if the different models are
A

'Iﬁ all doing a good job of estimating the states even though
Y%

'éﬁ. based on the incorrect system model. The true parameter

point not being located on a local peak in the ambiguity

- '.h
s
NS . s
;*i surface as occurs in Figure V-3 was not anticipated, nor
W=,
‘t; believed possible, and is likely due to the approximations
n:fv used in the calculation of the ambiguity function. However,
R . .
A a rigorous proof that the true parameter point must lie on
N
& . . .
'Ei at least a local peak is not easily done and is beyond the
‘I scope of this thesis.
w'.."l
"
e R .
&;, The ripples and multiple local peaking argue for the
ol
;:i nse of a contraction algorithm to aid initial acquisitiom of
Loty
e the true parameter point. Without a contraction algorithm,
e
O 70
4 :\.
e
o
‘at
N
04
"-‘ A R T BONT G TS e T L T S T e AT A T LT N N MR REAY B LA AP AT T ¥




can. LS Ak o s el & o agh o \r,‘r’ji’!"’?‘q

the moving bank must start at its smallest discretization

v..
LX)
P
2
g"
%

and move to center itself on the local peak with the

: y greatest height. If a local peak not due to the true

E ' parameter point is within the area of the bank, or if while

‘:f " the bank moves it reaches an erromeous peak first, the bank

:_, may remain there (noise may make it move off). The goal of
o

::‘.E_“‘ the contraction algorithm is not only to speed the initial

h“ movement of the bank, but by covering more area, the bank

__.-: may be able to contract to the neighborhood of the correct

:E:’_ parameter point and ignore local peaks not due to the true

;,_ parameter point.

.)_ Conversely, the flatness of the surfaces argues against

P:‘; residoal monitoring using the likelihood quotient being able
j:{.. - to signal an expansion of the bank by identifying when a

" (L jump change in the true parameter point has taken place. On
)

3::.3 a flat ambiguity function surface it is likely that changes

il,, in the residuals due to the jump change will be masked by

‘.O~

.
'-

the normal changes in residuals seen as the effects of the

e 0,
R- v, . . . . .
b dynamics and measurement noises. For residual monitoring
Iy
O
: using the likelihood quotient to work, the jump change in
L
2o the true parameter point has to cause a change in the
AN
:-'_:: residuals greater than the flucuations due to noise. If not
SRS
{ a jump event detection threshold level can not be set,
s
~o because the noise changes would signal a jump change.
:-'_:_‘:: The flatness of the ambiguity surfaces also indicates that
"'::": adaptive estimation and control, of any kind, is probably
~\"{.- . not worthwhile for this system. In fact, a filter based on
1S S
‘J' o
)
:a'n T
P
L
P".,.*:
s
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a nominal parameter point may provide adequate state
estimates and an acceptable controller gain matrix. Of
course the definition of nmadequate state estimatesn, and
nacceptable controller gain matrixn are based on the level
of accuracy required by the individual implementation. The
flatness of the surfaces was not anticipated, considering
the large changes in the parameters used to create the
parameter space, and the corespondingly large changes in the
eigenvalues of the bending modes that were observed (see
Appendix A for a listing of the eigenvalues). The
approximations used in computing the ambiguity function may
be one reason that the surfaces are so flat, The wealth of
measurement data (five position measurements and five
acceleration measurement) available for this model also
worked to minimize the impact of the changes in the model
used to set up the paramater space upon the precision of
state estimation or control., This was seen by examining the
Kalman filter gain matrices in conjunction with the
measnrement matrices and observing that a heavy weight was
put on the measurements as opposed to the estimated states
before the measurements., The inaccurate estimated states
are thus essentially ignored.

The academic solution to the difficulties encountered
at this point might be to reduce the number or precision of
the measurements to obtain a problem for which adaptive

estimation and control would be more useful. For this
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?% problem it would be more useful to reduce the amount of
:"\‘: A Lo . .
Aty "t adaptivity by only using one uncertain parameter, or by
SO
ﬁr[ taking the adaption off line entirely and only using a
g
'Wg robustified filter/controller. However; despite the
zkc potential difficulties forcast by the ambiguity fumction
S :
k‘- analysis, the addaptive estimator was applied to this
N & problem. This was donme to confirm the usefulness of the
b/
1,
§t$ ambiguity function as a predictor of estimator performance,

and to evaluate how large an effect the difficulties had on

’,jg estimator perfomance. The following sections describe the
! ]
N
;&b algorithm characteristics for this application.
0]
®
V.4. Bank Movement
%:: The first simulations started the moving bank at it
3]
b 1)) - (‘“ finest discretization level, and located the bank center at
@
'}& - (5,.5), chosen as the approximate center of the parameter
NS
(1]
; ; space, and allowed it to move using the probability
L)
x.‘_ .
f.\ monitoring movement algorithm developed by Maybeck and Hentz
:P@: (26,271 described in Chapter II, where the bank is centered
1
t“& over the filter having the largest probability weighting.
kD) Y ¥
HON e
ﬁ’ The points (2,2), (3,7), (5,5), (8,8), and (7,3) where
u:{ chosen as the true parameter points to test the bank’s
‘Iﬁﬁ ability to move in different directions. Before making
::ﬁ? multiple Monte Carlo rums to test the probability
g
A initialization algorithms, single runs were made to set the
Sy
,;{ﬁ probability move threshold, and to determine a strength for

R the dither signal be used to excite the system states and
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allow parameter point acquisition in the sbsence of any

3 Bl 1 Y

| grdan .

@Eﬂ feedback control. A dither signal of 200 amplitude, divided

equally between the three inputs, at 20 Hz was applied to

9%

g:ﬁ all the control inputs. The dither signal was determined by
;3% trial and error as a determination of an optimal signal (see
wa [5:68-151,12:223-260] for a discussion of optimal inputs)
5_5 would be beyond the scope of this thesis.

§¥: Maybeck and Hentz found that a probability move

g threshold of 0.05 enabled the bank to move anytime the bank
;hé was not centered on the filter having the highest

‘ig probability weighting [26:62,27:19]. This will be true for
o

any threshold below 1/9 = 0.111, which is the lowest

probability weighting the center filter can have, and still

B LA .
A5 @F

ﬁw be weighted equal to, or heavier than the other filters. In
L £

" !ﬁ this application however, it was found that a threshold

| b slightly larger than 0,111 speeded acquisition of the true
*"% parameter point by eliminating movement (possibly in the
i}ﬂ wrong direction) due to noise when the filter probability
E§S weightings were all close in value. A threshold of 0.15
i%é allowed the bank to center itself onm the (3,7) true

tz& parameter point after 0.98 seconds vs. 1.54 seconds with a
o~

Ek: threshold of 0.05. Increasing the threshold further to 0.2
S%é however increased the acquisition time to 1.28 seconds. A
:& threshold level of 0.15 was therefore used for all

E%E subsequent runs. For the single runs, the pseudo-random

é; number generator used to generate the noise signals was

'iﬁ always seeded with the same starting number to ensure that
j{ I 74
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the runs were directly comparable.

Monte Carlo studies of the bank’s ability to move to
each of the five chosen true parameter points, using ten
runs apiece, were made for both the simple method of
initializing the probability weightings of the new filters
brought into the bank by weighting each new filter equally,
and for the more complicated method of estimating a
probability weighting for each new filter based on Equation
(II-30). The results can be seen in Appendix B in Figures
B-1 through B-10.

These figures are plots of the statistics (meam *+ one
standard deviation) of the error in the parameter estimates.-
EA(1) is the error in the estimate of the parameter
reflecting the mass density of the arms, and EA(2) is the
error in the estimate of the parameter reflecting the
modulus of elasticity of the arms. Once the matrices
describing the system at a particular parameter point have
been calculated, the true values of the two uncertain
parameter were no longer used. It is far more convienent to
index the parameter values to the whole numbers one through
ten reflecting their position in the parameter space. Thus,
the (1,1) parameter point is where the uncertain parameters
take on the discrete value 20% less than their nominal
values, and the point (6,6) is where they are equal to their
nominal values. An increase of one in the parameter index
corresponds therefore, to an increase of 4% of the nominal

value. The errors in the parameter estimates are calculated

75




N ——t - had e e Lak el il bk o ok O N W W RN W -—-w

R0
Ay
%,-: in terms of the parameter indices; if the true parameter
:: ;&,) point is at (4,5) and the location of the estimated
,“.|( parameter vector is (3.5,6.0), the error in the parameter
'Q’ estimate plots will show a value of 0.5 for the mass density
: parameter, and a value of -1,0 for modulus of elasticity
‘@2 parameter. It is important to note that because the
"‘ estimated parameter vector is a weighted average of the
‘5 indices of the discrete parameter points whose associated
. filters are currently implemented in the moving bank, the
.
:‘w location of the estimated parameter vector is not likely to
5’:‘5:: be exactly equal to one of the discrete parameter points.
The first set of plots shows the error in the parameter
‘;-t estimate (e,) when the probability weightings of the new
5._1 filters in the bank were calculated using Equation (II-30)
““ C.:_ (Figures B~1 through B-5). The second set of plots shows [
:”:" when the new filters are initialized by equally distributing
:g the unused probability (Figures B-6 through B-10). A
b comparison shows that there is no appreciable difference in
:.‘: the results of the two methods. However, it is a
::'t% considerably larger computational burden (by several orders
P of magnitude, depending on the architecture of the
"-"::3 processor) to compute the probability weightings using
JJ’%‘; Equation (II-30).
‘ The performance predicted by the ambiguity function
;-._ analysis can also be seen in the plots of egq ©ITOr
2.‘{:3 statistics for the case of only moving the bank without
‘I-c changing its size, using either of the filter initialization
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algorithms. In all cases the estimator does a better job of

S
A%
i

estimating the second parameter than the first: it is always

" identified within one standard deviation by the time one

“

3; second has elapsed. However, only the true parameter points
;} at (5,5) and (3,7) were correctly identified, for both

; parameters, within one standard deviation. These statistics
bé: are matched by center of the bank statistics: in all cases
§5 the bank center had moved to the correct second parameter by
. 0.8 seconds.

fg Examination of the ambiguity function plots shows .

i: ridges running diagonally across the surfaces. The bank

2.

: will not move down into the valleys between the ridges,

;ﬁ seeking instead the peaking regions of the abiguity function
é: surface, Therefore, when the true parameter point is not at
;i tz; a local peak accessable from the ridge on which the starting
)é ‘ point (5,5) is located, the estimator is forced to make a

Aﬁ choice as to which parameter it will do a8 good job

}. estimating. The reasonm it is the second parameter that is
:3 favored can be seen by examining Tables A-1 and A-2 in

3:} Appendix A, These tables show the eigenvalues of the second
& and forth bending modes at the various parameter poinmts. It
:;% can be seen that a change in the second parameter (E; the

E; modulus of elasticity) causes a larger change in the

ff eigenvalues than does a change in the first parameter (p:
‘*3 the mass density). Thus the filters on the ridge with the
;3 more correct value of E recieve a higher probability

'& weigating than the filters with the more correct value of

4 ;;‘5;«
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density, and the bank moves toward the correct value for the
second parameter,
The overall flatness of the ambiguity surfaces was

reflected in the plots of the statistecs of the errors in

the state estimates (g.). These plots showed ex to be
essentially independent of eg. Figure B-11 shows ex
statistcs for the case where the true parameter point was at
(3,7), and Figure B-12 depicts gy fOr the case where the
true parameter point was at (8,8). The states 1-6 reflect
the position of the rigid body, the second bending mode, and
the fonrth bending mode respectively, and then the
velocities in the same order. Both sets of plots are
identical, as were the plots no matter where the true
parameter point was set. The point is especially
illustrated by Figores B-13, and B-14, which show e,
characteristics for just a single filter based on assumed
parameter values at (5,5). In the first case (Figure B-13)
the true parameter point was at (3,7), and in the second
case the true parameter point was actually at (5,5): the
filter with parameters at (5,5) does an equally good job of

estimating the states in both cases.

V.s. Bank Contraction

Begining the run with an acquisition phase using a
coarser bank discretization, them contracting the bank to
the finest discretization in two steps was tested to see if

it speeded parameter acquisition. Parameter error

78
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%ﬁﬁ covariance monitoring was used to detect the acquisition of
.

§§§ %&? the parameters, and signal the change in discretization.
;L,‘ The scalar measures associated with the parameter estimate
A

35{3 covariance matrix, selected to signal contraction, were the
i;: parameter variances (the diagonal elements of the covariance
‘:)‘ matrix). The variances of both parameters were compared to
EREA L

é’ﬁ a contraction threshold and the result was used to signal
2R .

ngz contraction.

-f"‘ Single runs were used to set the contraction

N

éﬁs thresholds. Two were required, ome for each level of

§§$ contraction. The first coarsest discretization level places
);& the filtesr four parameter points apart, The second

:;§§ intermediate discretization level places the filters two
:ﬁii parameter points apart. And the final finest

¥

discretizationlevel places the filters one parameter point

§®

§%§ apart. An additional comsideration was whether to require
ggl both or only one of the variances to be below the threshold
ij& in order to signal the contraction. It was found that

ﬁi; requiring both variances to be below the threshold gave a
5{% more accurate determination of when contraction was

o

warranted; however, this required tradeoffs in the
determination of the threshold, as the same threshold was
not necessarily most appropriate for both variances. The
threshold values were then chosen equal to the larger of the
two variances at the time when the true parameter point
would lie within the area of the bank after it contracted

about the estimated parameter point. This required
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gg artificial knowledge of the true parameter point, and the
gk @gg printout of the time period by time period statistics on the
;: bank location and estimates. A threshold was thus selected
24 for each of the four test points (the same test points as
k' for the move analysis with the exception of (5.5)) and

:i smallest of the five then selected as the best overall.

% This threshold level setting mechanism worked well for

i% signaling contraction from coarsest discretization level to
R the intermediate discretization level. But it could not be
&; used in all cases to select a threshold for signaling the

second contraction to the finest discretization level. When

‘; the true parameter point was at (8,8), the parameter
f; estimate never moved closer to the true parameter point
‘ﬁé after the first contraction., Therefore a comtraction
. ci; threshold based only on the other three points was used.
;z ' The contraction thresholds chosen were 6.0 for the four—-to-
‘%E two contraction, and 2.6 for the two-to-one contraction.

The contraction thresholds proved to be sensitive to

the probability weight lower bound used to keep the bank

x.,-U v

from locking on to a single filter. When the probability

"
Xt

e

weight lower bound is set too high, it prevents the the

\

variances from decreasing below the thresholds in all cases.

e

Therfore, the contraction thresholds need to be reset if the

- e e -

;ﬁ probability lower bounds change. Lower bounding the

"»w probability weights also causes a larger error in the

i

) parameter estimate, and possibly the state estimate

LA

W (although that was not true inm this implementation), as it

s’;‘ )«)
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requires an artificially high probability weight be assigned
to a poor estimate in steady state. The purpose in lower
bounding the probability weights is to allow the bamnk to
react to a change in the true parameter point after the
initial true parameter point has been identified. There is
thus a tradeoff to be made between keeping the probability
lower bound high enough to enable quick reaction to changes
in the true parameter point, and low enough not to interfere
with the contraction algorithm nor cause too great anm error
in the parameter and state estimates. A lower bound of 0.01
worked well in this implementation; when it was raised to
0.05, the bank would not contract from the coarsest
discretization.

The results of using the contraction algorithm can be
seen in Figures B-15 through B-18, which show the plots of
€, statistics vs. time for the true parameter points (2,2),
(3,7), (7,3), and (8,8) respectively. The results can be
compared to the plots of e, characteristics vs. time for the
movement—only options depicted in Figures B-1 through B-10.
It can be seen that the use of the contraction aquisition
phase is successful in correctly identifying parameter two
(E) more quickly; however only small improvements in
reducing the error in parameter one (p) are achieved and
only temporarily. The expense is the larger standard
deviations which result from the coarser discretizations.

In terms of the shape of the ambiguity function; the

acquisition cycle is successful because the flatness of the
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‘§ surface, and the ripples and local peaks slow the movement
E g of the bank.
} ' v
‘ There is very little added (and perhaps less)
E; computation due to the contraction algorithm. Either one or
E} three additional comparisons are required in the logic (one
}' to determine if the bank is at a coarse discretization; if
'ﬁ so, each of the two parameter error variances is compared to
'3 the appropriate threshold), but the operations required for
i,
the actual contraction are very similar to those required

!ﬁ for a move and, as all of the probability weights are reset
ﬁ? to 0.111 upon contraction, less initialization computation
s is required than is required following a bank move. In
;‘ addition some computation is saved, since with contraction
;j fewer moves are required to get the bank to its final

et cii location. Thus computation is saved in the short rum, but
5 as the run continues, in the absense of a re-expamnsion to
;Q the coarse discretization, the total computation will
}; eventually be slightly greater. If re-expamsiom occurs

§ following the signaling of a jump change in the true
g‘ parameter values there is again a savings during the
ig reacquisition of the true parameter values. The real issue
é here is the amount of computation per sample period; and the
%ﬁ contraction algorithm is essentially equal to the non-

% contraction algorithm in that regard.
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t? V.6. Jump Changes

?Ef %S? It was hoped that residual monitoring would be able to
':. detect jump changes in the true parameter point. Unfortu-
%E nately, when an attempt to set a detection threshold was

,}5. made, the likelihood functiom proved much more semnsitive to
:ib the noise inputs tham to the difference in the residuals due
B\

“33 to the change in the trune parameter point. When the attempt
? ?; to set a threshold was made, on one run the likelihood

o function actually decreased at the time of the jump change
i'3§ due to a smaller noise input that sample period. The

;rﬁ failure of the jump change detection by residual monitoring
‘; ' can be explained in terms of the flatness of the ambiguity
EES function as noted earlier. Therefore, no evaluation of the
f?g effectiveness of a reacquisition period, using the bank

aekd :“ expansion and contraction algorithms, following a jump

| i; o change in the true parameter point could be made.

:Ei% A plot of ey statistics vs. time for a case where the
N bank was started at its largest discretization, allowed to
ﬁ&u contract and move to a true parameter point at (3,7), and
:%g react to a jump change in the parameter point to (5,5) at
!gﬁ$ 1.0 second, reveals that the move algorithm does continue to
:ki track the true parameter point via bank movement without a
i%i change in the bank discretization level (Figure B-19). As
u\f before parameter two is consistently estimated better, both
f;ﬁ before and after the jump change. For the same situation,
{§§ Figure B-20 reveals that, as before, the state estimates for
:%; this implementation do not suffer.
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o :\ V.7 Controller Apalysis

;;: @3? The evaluation of the effectivmness of the various

i b adaptive control algorithms was also sbandoned due to the

\

3_3 accuracy of the state estimates, independent of the accuracy
gﬁb of the parameter estimate., In addition, inspection of

k&i sample By patrices reveals little change due to p, and

:’J almost none due to E; so no large errors in the control

%;. input can be expected as a result of the unse of the wrong Bd
i matrix.

%

, V.8 Summary

kfi The results of the simulations were presented in this
:i Chapter. Initial problems due to numerical difficulties

t%i were overcome through the use of judicious aproximationms.
;5; A Analysis of the ambiguity function revealed several insights
kY Q;- into the expected performance of the multiple model adaptive
£§% estimator, and the probable lack of a need for an adaptive

controller. These insights were borne out by the actual

b4

O

simulation results. The two movement algorithms worked

>

‘l

equally well but were unable to move across the valleys

depicted in the ambiguity functionm plot. The estimator

P o
e .f.:'l'

proved more sensitive to the second uncertain parameter (E =

- r »
’t; the modulus of elasticity of the arms) tham to the first (p
L
*ig = the mass density of the arms). The contraction algorithm
- gave some increase in performance, but essentially only for

the second uncertain parameter. Importantly, none of the

movement or contraction logics affected the overall accuracy
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z\:ﬂ of the state estimates in any discernible manner. Residual
s

_-{.'1' sA monitoring proved ineffectual in detecting jump changes in
Kot Ty

35 ¥
. true parameter points, making an evaluation of a
143
A reacquisition phase, using the bank comtraction and

-i"‘
!‘i expansion algorithms, impossible. The evaluation of the
»
,'_) adaptive controllers was also abandoned due to the accuracy
f'_' of the state estimates. Conclusions regarding these results
2
.}u; and recommendations for areas of further study are presented
PN
e in Chapter VI.
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- . VI. Conclusions and Recommendations

SN T

ol )-_'
e VI.1 Introduction
j;: The initial, obvioms, conclusion to be drawn from this
o
)
§¢ research is that, for this system model, adaptive estimation
v . : . - . . ;
ke and control is not required. Despite this disappointing

‘!

r

:f conclusion, this thesis does provided valuable insight on
At
W the performance of multiple model adaptive estimation. For

. the class of problems where very accurate estimates of the
53 system states are required, adaptive estimation may prove
:ﬁ worthwhile, if the adaptation provides only marginally better
® state estimates. This research provides information on the
: problems that may a:ise when the measurement accuracy is
4
ii} great, resulting in insemsitivity to incorrect modeling of
b “n.

QT. uncertain parameters, similar problems may also arise if the

&
x: uncertain parameter variation is small. Additionally, even
AR
'i- for problems which require adaptation over a wide range of
1N
C) uncertain parameters, where parameter variation sensitivity
:il is good , some of the problems discussed here may have
SN
::% applicabillity in what may be local spots of parameter
S

e variation insensitivity, The importance that early
n

"-
3{ ambiguity function analysis was discovered to have, should
’.-I
- have impact ¢m estimator/controller design reqardless of the
11\
Yl

. amount of system adaptation required, or sensitivity of the
i? system to uncertain parameter variation.
-‘:".
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A VI.2  Conclusions

.ﬁ‘ ﬁ&& Ambiguity function analysis was able to predict/explain
;ﬁ most of the problems encountered in the simulations of the
;%f multiple model adaptive estimator/controller. It proved to
?? be a valuable tool that should be used early in the design
;; of the adaptive estimator in order to aid in the selection
-

?: of appropriate parameters for estimation, and of workable
;; move/contract/expansion stategies. This is especially true,
KN as the results of the simulations showed that each of the
f? strategies investigated have shortcomings which need to be
ﬁ‘ overcome, The bank may not be able to reach all points by
,? movement alone, or at all. This occurs when the points are
33 located in a valley in the ambiguity function, or if the

%j bank encounters a local peak while moving towards the

3 ti; correct parameter values. Square contraction may require
} compromise in the setting of the contraction thresholds,

% which will hinder its performance. This occurs when the

i bank does a better job of estimating one parameter than

:é another. Separate contraction thresholds which enable the
g: bank to contract separately in each direction, when it is
gy most appropriate to contract in that directiom, should

f? improve performance. And residual monitorimng via the

.

likelihood quotient may not be able to detect jump changes,

A
o

. depending on the relative effect on the residuals of noise
‘O

¥

%L vs., system changes.
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A: RS VI.2.1 Ambigpity function Anslvsis. The first

;ﬂ' qk& question that early ambiguity function analysis can answer
§W' is whether adaptive estimation/control is needed at all.
2@} This is not always known in the initial stages of system
§$ design, as was the case for the model used for this

%; investigation, Once it is determined that adaptive

% estimation/control is required, the ambiguity function

analysis can determine which of the uncertain parameters

3:\ need to be estimated and which may be ignored. It may be
Egg possible to combine multiple uncertain parameters into a
“ft single artificial parameter, or into a reduced number of
:§3 artificial parameters, to be used by the adaptive

ff: estimator/controller. This enables the estimator to

3

%i concentrate on estimating the uncertain system parameters

(either physical quantities, or deriv.d quantities) that
have the greatest impact on system performance.

Once the parameter space is chosén. further analysis of
the ambiguity function may be useful in chosing the

discretizations used as a basis for elemental filter design.

7
?& The discretization could be finer in regions of greater
J?{ parameter variation sensitivity, and coarser in regions of
1;3 lesser parameter variation sensitivity, instead of being
°5# spread evenly over the entire parameter space. Ambiguity
s function analysis may thenm be helpful in chosing the initial

)
:35 conditions for the moving bank: bank center and

-\
Eﬁ; discretization level. As seen, from certain starting
X ; s positions, the bank may not be able to move to the true

X N
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ﬁ' n parameter point. Judicious choice of the starting position
fﬂ 5&b may alleviate this problem for a large class of true

;Q. parameter points., Then thought can be given to the bank

?3 contraction and expandsion strategies to be implemented. If
?f multiple local peaks are present, contraction strategies may
% be especially valuable, as contraction about the estimated
g parameter values could prevent the bank from moving to, and
Ry remaining on, a local peak positioned between the bank

L. starting position and the true parameter point.

}% VI.2.2. Bank Movement. Despite the overall lack of a
iﬁ ‘ requirement for adaptive estimation in this application,

;‘ because all of the elemental filters did am acceptable job
‘E of state estimation, the probability momitoring method of

)

moving the bank was able to do a surprisingly good job.

Even when the bank was not able to center itself over the

J

? true parameter point, it was able to move in the right

E% general direction. Two refinements to the algorithm were
}* discovered. Calculation of the probability weightings for
%; initialization of new filters in the bank based on the

ﬁa distance from the estimated true parameter point is not

worthwhile, Evenly deviding the total probability weighting

Pyl

e T g

taken from the filters removed from the bank, amongst those
added to the bank gave equally good performance with less

computation, And, it may be worthwhile to raise the bank

o

"_-

movement threshold above 0.111, in order to prevent noise

jitter movement of the bank, If the threshold is set below

&Y

0.111, it is unnecessary and can be eliminated, simply check

v
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to insure the bank is centered on the filter with the
highest probability weighting.

Vi.2.3. Contractiop. Contraction of the bank from an
initial coarse discretization to a fine discretization,
proved to be useful in improving the speed of parameter
acquisition. Little additional computation is involved imn the
use of this strategy; however, there is a price to pay in
larger standard deviations of the parameter estimate error,
as noise causes a greater change in the parameter estimate
when the bank is in the coarser discretization.

The best contraction thresholds for the two uncertain
parameters were not identical and a compromise threshold had
to be chosen. This meant that contraction did not always
move the bank center in the right direction relative to the
true value of the first uncertain parameter, wheras the

bank center always move towards the true value of the second
uncertain parameter. A two-step contraction was used, but
an advantage of the two step contraction vs. a one-step
contraction is unproven.

VI.2.4. Residual Mopitoring. Monitoring the residuals

through the use of a likelihood quotient in order to detect

8 jump change in the true parameter vector value did not

f"j"cfa-r“u‘l-‘c- )
[ S A

prove useful because of the lack of sensitivity in either

44

state estimate precision, or residual characteristics, to
assumed paremeter value. The magnitude of the likelihood
quotient varied more as a result of the system noises than

as a result of the changes in the uncertain parameters,

90
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making it impossible to select a threshold value at which to
qu trigger an expansion. It must be remembered however, that

the residuals are the only real source of informatiom on the

true system and must be the basis for all move/contract/

expand strategies.

VI.3. Aress of Further Study

Further study in all areas of moving bank multiple model
adaptive control is still needed. A specific area where
further study is needed was revealed by the importance
ambiguity function analysis was found to have, If the
ambiguity function could be shaped, by changes in the
uncertain parameters chosen to be estimated, or by changes in
the uncertain parameter discretization, to reflect desirable

characteristics for the move/contract/expand logics,

0

estimator/controller performance may be enhanced. The

e

'
R

ambiguity function could be shaped through selection of

artificial uncertain parameters and choice of discretized

A O

-

parameter points.

T,
o )

s

T
-
- -

AP,
-

An evaluation of the advantages/disadvantages of
rectangular contraction vs, square contraction to eliminate
the undesirable compromises necessary in the selection of a
contraction threshold would be worthwhile., Rectangular
contraction could allow the contraction in each direction
when it is most appropriate, making bank size in one
direction independent of bank size in the other.

Rectangunlar contraction could prevent the movement of the

91
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xz:’;\! \:;,. . bank center away from the true value of one of the uncertain
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parameters because of the current inacurate estimate of that

parameter. These posible advantages would have to be

[/

ga{ weighed against the required increase in computational

r< loading. Evaluation of two-step vs. one-step contraction
é_ﬁ under different conditions might reveal when one is more

égg valuable than the other. Other methods of triggering the
RO

contractions could also be workable. It may be possible to

contract awvay from filters with very small probabdbility

T )

weightings.

L’l

o

Methods of detecting jump changes in the uncertain

parameter values still need further investigation, Residual

. Y
Rl

monitoring using the likelihood function may be adequate in

-
o

v“‘

aplications, unlike the application investigated here, where

o
o

:{ wrongly assumed parameter values do affect state estimation.
o
?:; It may be possible to make modifications to the likelihood
;EJ quotient method to prevent noise from masking the results of
33 uncertain parameter jump changes by adding additional
::;E conditions. An evaluation of the changes in the probability
Eg; weightings relative to each other may also be capable of
o indicating jump changes. If all of the probabilities

- converge on a value of about 0.111, this may furnish the

-Yk-:

;73 necessary indication.

-

gL The use of artificial intelligence techniques to
ay

”ﬁ: evaluate the residuals and trigger all of the manipulations
'-3.1

f;ﬂ of the moving bank has been suggested. This has the
;“i {Q} advantage of looking directly at the real source of
‘S Ay

oo 92
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f:;q

g

a4

mg g@@ true system information., However, artificial intelligence
W

i techniques tend to be computationally intensive, which is
;:;E?, the opposite of the goal of moving-bank MMAE as opposed to
%: full-bank MMAE, so there is s tradeoff inherent in this

o

O proposal.

{#g Finally, issues which were identified prior to this

i*g thesis still need to be addressed. These include the

S evaluation of the controllers for a realistic system

;?' (which had to be abandoned here). Also the study of slowly
‘%ﬁ varying uncertain parameter values, and uncertain parameter
%? values not equal to the discrete parameter values was not
e addressed here.

B

.g“ VI.4. Sopmmpary

. (é? This thesis has addressed the evaluation of moving-bank
gzg multiple model adaptive estimation and control algorithams,
S;E as applied to a model of a large flexible spacecraft. It

-

was seen that, although the model turned out not to require

O

P
Aty

o

adaptive control, that moving-bank MMAE could still provide

af

4# estimates of the uncertain parameters. Based on the
KX
i performance of the moving bank estimator, several
5
" refinements in the move and contraction decision logics were

made, In additiom, it was revealed that ambiguity function

Cx 4
[FRAASS

analysis can be an invaluable tool in designing a moving

.q'

e

SIS

bank estimator. The moving bank technique continues to show

great promise as a practical adaptive estimation/control

-
T
=

-

design strategy, and research in this area should continue.
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Appendix A.

i&? Detailed Model Development

The equations for the elements of the mass and
stiffness matrices were given in Chapter III in integral
form. They are repeated here for clarity, then the
simplified closed form is presented. The equations for the
control and Measurement matrices are also developed in a
more complete form, Then samples of the M (mass), K
(stiffness), B (control), and H (measuvrement) matrices are
given, followed by two tables showing how the free system
eigenvalues of the second and fourth bending modes vary
throughout the parameter space,

The equations for the elements of the mass matrix are

(E? repeated from Chpter III for i = 1,...,p ; and j = 1,...,p

M(1,1) = 2 (I, + I,,.)
R+L
M(1,i+1) = 2pth I 28, dx + 2my(R+L)P,(z=x-R=L) !
o |
+ 21, .90’ ;(z=3-R=L)
R+L

M(I,i+p+1l) = 2pth I y9;, dy + 2my(R+L)®;(z=y-R=L)

R
+ ZIzco'i(z=y—R=L)
I) M(i+1,1) = M(1,i+1)

.t)

({0
g(\‘)'}:’ M(i+p+1,1) = M(1,i+p+1)

. ~)
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R+L
N(i+1,j+1) = 2pth I Oilj dx
R
+ 2n2¢i(z=x-R=L)Dj(z=x-R=L)

+ ZIzc.'i(z=x-R=L)¢'j(z=x—R=L)

R+L

R
+ 2m29i(z=y—R=L)0j(z=y-—R=L)

+ 2Izcﬂ'i(z=y—R=L)¢'j(z=y—R=L)

]
o

M(i+l, j+p+1l)

]
[}

M(i+l+p,i+l)

where Oi is a function describing the bending modes of the

arms, defined as:
#,(z) =1 - cos(inz/L) + (1/2)(-1)i+1(inz/L)2
z =x - R (or y - R)

and #'; is the first derivative of @, with respect to z.

The pysical dimensions of the model t, h, m,, Iyer Igo

R, and L, are as shown in Figure III-1. In addition p is

the mass density of the arms, and:

Ic

(1/2)I, + 21; + 2m,(R+L)?2

R+L
[

R

pth dx
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The elements of the stiffness matrix are given for

\' 2\ i=1,...,p 5 and j = 1,...,p ;5 by:
K(1,1) =0
K(i+1,1) = 0
K(i+1l+p,1) =0
KE(1,j+1) =0
K(1,j+p+l) = 0
L
K(i+l1l,j+1) = 2EI I Oi"(z)Qj"(z) dz
0
E(i+1+p, j+1+p) = K(i+1l,j+1)
K(i+1+p,j+1) = 0
K(i+1, j+1+p) = O
where E is the Modulus of Elasticity of the arms, and I is
(ii the area moment of inertia based only on t and h as:

I = (1/12)nt3

and ﬂ”i is the second derivative of 'i with respect to z.

When the necessary substitutions are made and the

Ly &
S

X
&

integrals are evaluated, the simplified equations become:

a1
e

‘s

M(1,1) = 1, + 4th(L3/3 + RLZ + RZL)

+ my(RZ + 2RL + L2) + 21,

M(1,i+1) = 2pth (L%2/2 + [(-0U*D) 4 4)1/(im?

+ (0D (3m2(L/8 + R/6) + RL}

+

2my(R + L)[1 + (- D1+ (im2/2))

+

21,,(-1) (i*1) 12,4/

M(1,i+p+1)

M(i+p+1,1) = M(i+1l,1) = M(1l,i+l)
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Kx

v

» ) .

% M(i+1,j+1) = 2pth (L+[(-1)(i*1) 32 4 (1)(j+1) ;2,216

*" . N

3& 2N + (UL ri2/Ri2 + Ri2/Rj2
O + (ijﬂ)zlzoll
s

w +2mpl1 + (-1 D+ (im2/2))
S?J (1 + (-1 (1 4+ (jm2/2)]
- + 20, (-1 (Y3 (i5n/1) 2

';-

o + {0: i#j; pthL: i=j}

~ ’l'

iy

i M(i+p+1, j+p+1) = M(i+l, j+1)

R

#‘, M(i+1,j+p+1) = M(i+p+1,j+1) = 0

20

4 and

e

g K(i+1,j+1) = Et3n(-1) (i*i)L(ijm2/(6L%)

L

1%

:i; + (0: i#jp Ee3n(ijn)2/(12L3): i=j)

B s

K(1,1) = K(i+1,1) = K(1,i+1) = K(i+p+1,1) = K(1,i+p+1)
_ 'z: = K(i+1, j+p+1) = K(i+p+1,j+1) = 0
2
Jﬁ The B matrix is given by:

1
o
vt
re 1 2 2

.

[, ’
-‘..-: B = 0 28’ ;(2=L/2) 0
i
sr 0 0 207 (z=L/2)

.
{4 where §.(z) is of dimension p (the number of modes of
l' [}

-

interest), and i

- %‘ -
-,

b -

-’ .*— =

9.,(2=L/2) = (in/L)sinCin/2) + (-1)i*1)(in)2/8
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§ A The H matrix is givem by:
"ot
‘—"b .c.‘{ _ -
‘?ﬂ* T T
poy 0 8" ,(z=L/2) [1]
i
A8
[y : T T
W H = 0 . (z=L) 1]
b Bt
»l 0 oT 8T, (z=L/2)
5
) T T
(O . =
%-# | 0 1] g°;(z L)J
i
S

" 1 colemn p columns p columns
WY H is thus a8 5 x N matrix. and

4
'?7; 9,(2=L/2) = 1 - cos(in/2) + 0.5(-1)(1*1)(in)2
R
l:..., and
L .
8.(z=L) = 1 - (-1){i+1) ()2
N 1
¥

__}
o .

' G;‘ Vhen these expressions are evaluated for the comstant
:?E values given in Table III-1 (this equates to the (6,6) point
ALY
}ﬁ- in the p/E parameter space), and for p = 2, the following
55‘ matrices result:

-N

-

,."‘::: r T
..“- 28.19 13.02 -36.09 13.02 -36.09
55 13.02 17.65 -49.07 0.0 0.0
V%‘

o

g M= -36.09 -49.07 137.50 0.0 0.0
£

y, Tr. " 13,02 0.0 0.0 17.65 -49.07
50 -36.09 0.0 0.0 -49.07  137.50 |
o

fd;

[ ]

4 " PR
e
e
o
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2 d bl L Eas Sec gon gon ]

[0.0 0.0 0.0 0.0 0.0
0.0 340.61 -908.30 0.0 0.0
K = 0.0 -908.30 5449.83 0.0 0.0
0.0 0.0 0.0 340.61 -908.30
0.0 0.0 0.0 -908.30 5449.83
(1.0 2.0 2.0 |
0.0 4.04 0.0
B = 0.0 -9.87 0.0
0.0 0.0 4.04
(0.0 0.0 -9.87]
1.0 0.0 0.0 0.0 0.0 ]
0.0 2.23 -2.93 0.0 0.0
B = 0.0 4.93  -17.73 0.0 0.0
0.0 0.0 0.0 2.23 -2.93
| 0.0 0.0 0.0 4.93  -17.73

As seen in Chapter IIl the free system eigenvalues of the

system can be found via Equation (III-2):
Kx = Az

The eigenvalues of the second and forth bending modes
(the unison bending modes to be controled inm this
application) are tabulated in tables A-1 and A-2 for all the

discrete values of p and E in the parameter space.
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Appendix B,

*15' Simulation Plots
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A Appendix C.

Simulation Softwage

izg’ Four main problems were used for this invesigation. A

iﬁg preprocessor (PROGRAM SETUPS), used to creste the parameter

.W. space; a primary processor (PROGRAM BANK), used to

! gonerate the simulation data; a post processor (PROGRAM

My RESLT), used to plot the results; and a program to perform

ambiguity function analysis (PROGRAM AMBIG). For each

3% program this Appendix contains a structure chart, and the

e program and subroutine headers (which describe each module

° and present pseudocode for the algorithms performed). The

i§:$ actual FORTRAN code is not included but is available through

'V:i Dr. P. 8. Maybeck at the Air Force Institute of Technology,

(!; Department of Electrical Engineering, The programs make use
of four Libraries available on the Aeronautical Systems
Division CDC Cyber computer: IMSLS, LQGLIB, DISSPLA, and

AF CCLIB.
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ER PROGRAN SETUPS
’ 4‘, ‘..‘........O‘...O.‘...OO...‘..O..O..‘.....‘.O...O.....‘....‘.....‘0.0.0..O..O..
L]
Y * PROGRAN SETUPS
[ ]
:":: 0000000365000 0000800000000CCR00O0COSCEIIN0002000C80000CSEC00SS0C88S0CS0OCEEICRIEOIOITSTS
iy PY
. DESCRIPTION: THIS PROGRAM CALCULATES ALL OF THE CONSTANT MATRICES
pﬁ; » REQUIRED BY PROGRAN BANK AND ANBIG.
) . .
""5' . AUTHOR : KARL BENTZ AND PAUL G. RILIOS
B . VERSION: 3.03
%ﬂ, . DATE : 15 AUG 85
D) .
§
X . INPUT: FILE xPARANTRx - CONTAINS THE DISCRETE PARAMETER VALURS
@ . FOR THE TVO UNCERTAIN PARAMETERS
Ny b
t;\; . OUTPUT: FILE xSPACEsm - CONTAINS ALL OF THE CONSTANT NATRICES FOR
%x%- . EACB DISCRETE PARAMETER POINT
T, [ ]
\{. PO00CO0P00P0CSO0OCO0O0CCOSCCOEN000CO0SO0ROCOOSSO000OSBP000000SS00SCO000000OCOSOOOTS
‘ ! L ]
4 . TEIS 18 THE MNAIN PRROGR AN
L ] .
2, %\? CE0000 0000000000000 0CCSPOOROEPCINCORSOOOCCRPISOUERNOCOINEENOORTIOSEOPOIROOOOOREESTS

( . PSEUDOCODE:
S . READ IN THE PARAMETER VALUES
LR . FOR EACE PARAMETER POINT
Y . COMPUTE THE CONTINUOUS TIME SYSTEM MATRICES
Lot . DISCRETIZE THE NOISE INPUT MATRIX
D . DISCRETIZE THE PLANT AND INPUT NATRICES
ey . COMPUTE THE COVARIANCE MATRIX AND THE FILTER GAIN MATRIX
.g': . COMPUTE THE A INVERSE MATRIX
- . CONPUTE THE DETERMINANT OF A
W . SAVE THE MATRICES TO LARGER STORAGE ARRAYS
) . CONTINUE
. WRITE THE MATRICES TO TEE OUTPUT FILE
By 2 L4 END
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SUBROUTINE SYSTEM (DEN, E, FMAT, BMAT, BNAT)
0000000000000000000000000¢0000000C000000000000000000008000000080000080000008008
.

. SUBROUTINE SYSTEMN

S0000000000008000800000000000000080000C0080000000080000000000800000008000080000080880
®

. DESCRIPTION:
c THEIS PROGRAN COMPUTES M (MASS), T (STIFFNESS), SUBB (CONTROL)
. AND SUBR (MEASUREMENT) MATRICES FOR THE DRAPER/RPL SINMPLIFIED
. LARGE SPACE STRUCTURE, TEEN USES THEN TO COMPUTE THE STANDARD
. STATE SPACE F, B, AND 1 MATRICES,
¢
c AUTHOR: PAUL 6. FILIOS
c VERSION: 1.0
c DATE: 29 JUL 198S
[ ]
. INPUT: DEN, E - THE VALUES FOR THE TWO UNCERTAIN PARAMETERS
[ ]
. OUTPUT: FMAT, BNMAT, HMAT - CONTINOUS TIME MATRICES THAT DESCRIBE
. TEE SYSTEN
c
0S80GOS OO0000OO00R000DDOCOPO000000OIP0R00C0000C000CSSOPSOOEISOONS0CRR0OOSSESDY
PSEUDOCODE:
BEGIN

CALCULATE THE DIMENSIONS OF TRE MATRICES
CALL SUBROUTINE THAT CONPUTES THE M AND K MATRICES
CALL EIGENVALUR/EIGENVECTOR ROUTINE
FORM SNAT NATRIX
FORN SUBB MATRIX
FORN SUBE NATRIX
CALCULATE SNAT TRANSPOSE * SUBB = NEVWB
FORM BNAT MATRIX
CALCULATE SUBR ®* 8 = NEVE
FORN HNAT MNATRIX
END

[ B BN BN B BE BN BN Ne Ko NeNe Nel
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SUBROUTINE NATRIXI (MODES, M, K,

+ R, 10, DEN, B, T, B, L, TMASS, I2C, P2)
COPS0B00E0008C0CO2C00000005000000000000008800C00C0800000000080008000008000000008¢0
c
c SUBROUTINE MATRIZX
c
CO0C000000C000C0BPODPIOIS00SO0CR0O00C00CICCNS000CS00000C00R0CCI0R00N0SSIOEESROIOSTOGTS
L]
. DESCRIPTION: TRIS ROUTINE COMPUTES THE M (MASS) AND K (STIFFNESS)
. MATRICES FOR THE DRAPER/RPL LARGE SPACE STRUCTURE MODEL.
[ ]
. AUTBOR : PAUL G. FILIOS
. VERSION: 2.0
. DATE 10 JUN 8$
[ ]
. PARANETERS PASSED: MODES, R, 10, DEN, E, T, B, L, TMASS, I2C, P2
[ ]
. PARAMETERS RETURNED: N, K
[ ]
S00000C00000000000PS00CSOPCEOV0OBPS0000BCOPEEI0ROCO0CCEI0000R000CE000SOOOISOOOSODS
C PSEUDOCODE:
@r_ € BEGIN
NI c DETERNINE M AND K ELEMENTS NOT DEPENDENT ON AN INDEX
. c FOR I = 1 TO MODES
c DETERNINE M AND K ELEMENTS DEPENDENT ON A SINGLE INDEX
c FOR J = 1 TO NODES
c DETERNINE N AND K ELEMENTS DEPENDENT ON TWO INDICIES
c NEXT J
c NEXT I
cC END
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o PROGRAM BANK
:-: ...‘..O........‘..‘...‘.‘.....‘.........‘...........‘..‘...‘...........‘.‘......
o .
) . PROGRAN BANTIK
R \p .
..........“...“.‘....................“.................‘......‘.....““....
ey . DESCRIPTION: THIS PROGRAM SIMULATES A MOVING BANK MULTIPLE MODEL
, ADAPTIVE EALMAN FILTER, BASED ON THE TRUTH MODEL DESCRIBED BY
SUBROUTINE TRUE AND CONTROLS TEE SYSTEN BASED ON TAR
CONTROL SYSTEM DESCRIBED BY SUBROUTINE CNTRL.
Y
? j AUTHOR : KARL NENTZ AND PAUL 6. FII108
& VERSION: 2.4
DATE : 02 OCT 8$
o
.$-$ INPUT: FILE ‘SPACE’'y WRITTEN BY TAE SETUPS PROGRAN, CONTAINS TBE
v\ﬁ MATRICES FOR EACH FILTER IN TEE PARANETER
5 SPACE.

FILE 'PARAMTR'y CONTAINS TEE DISCRETE PARAMETER VALUES FOR
BACB VARYING PARAMETER.

FILE 'CONDIT'y CONTAINS TBE INPUT CONDITIONS FOR TRE
SITUATION UNDER STUDY.

OUTPUT: FILE ‘OUT1'y CONTAINS THE RAVW DATA FOR THE RESLTS

;zi PROGRAN TO PUT INTO GRAPR FORN.

. FILE 'OUT2'y CONTAINS THE DATA GENERATED BY THE FIRST

5t MONTE CARLO RUN IN A FORM SUITABLE FOR

|,. 1. PRINTING.

\ FILE *STATES'y CONTAINS THE VALUES OF THE SYSTEM STATE

ﬂ;) VARIABLES AT EACH SANPLE TINE OF THE FIRST
MONTE CARLO RUN,

‘}i NOTE: THIS PROGRANM BAS BEEN MODIFIED TO USE ONLY AN APPROXIMATION

b FOR THE BANK VEIGATING PROBABILITIES DUE TO NUMERICAL DIFFICULTIES

Rl IN COMPUTING ADET IN THE SETUPS PROGRAN., ONLY SUBROUTINE sFx

;%$ 18 AFFECTED.
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. Y
1: . TEIS 18 TBE MAIN PROGERAN
[} [ ]
3!‘ 0008000000000 CSCECPOICEOR0OCOR00CR0OCURROCIOSICOOOCSOOCOO0SSEIRRUOCOESROBOEINCGEIEGRESS
PSEUDOCODE :
_‘ READ THE INPUT VALUES
2} INITIALIZE OUTPUT FILES
Ty FOR EACE MONTE CARLO RUN
Ig INITIALIZE THE TRUE PARANETERS
h INITIALIZE THE BANK VARIABLES AND MATRICES
. FOR EACH SANPLE PERIOD
2 PROPAGATE THE TRUE SYSTEM
® PROPAGATE TEE ESTIMATE
T TAKE A MEASUREMENT
N UPDATE TEE BANK ESTINATES
0 DETERMINE THE BANK PROBABILITIES
1 DETERMINE THE NEV ESTINATE

COMPUTE THE CONTROL INPUTS
FOR TBE FIRST RUN
OUTPUT THE PROBS, STATES, AND THRESHOLD VARIABLES
MOVE, CONTRACT, OR EXPAND THE BANK IF NBCESSARY
COMPUTE THE PERFORNANCE STATISTICS
OUTPUT THE STATISTICS OF INTEREST
LooP
LooP
END
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SUBROUTINE CNTRL (ABIST,XBATA,U,TIN,ALPHAB,IHATB,PROB)
0000000000000 0S0S00C00000000000S00000RE0000000CEE00000000008800C00000000¢
.
. SUBROVUVTINE CNTZRL hd
.
0000000000000 000300000800000C00000000C0E000C0030008000000800000080808008088000

] L]
. DESCRIPTION: THIS ROUTINE CONPUTES THE CONTROL INPUT .
L]
. AUTBOR : KARL HENTZ AND PAUL G. FILIOS
. VERSION : 3.0
. DATE : 17 SEP 8S
L ]
. PARAMETERS PASSED:
. ABIST: THE RSTIMATES OF THE PARANETER VALUES FOR THE LAST 10
. TINE PERIODS, USED FOR ADAPTIVE CONTROL
. IBATA: THE WEIGRTED AVERAGE OF STATE ESTIMATES, USED FOR ADAPTIVE
. CONTROL
. U: THE CONTROL INPUT VECTOR, COMPUTED BERE
. TIN: THE CURRENT SINNULATION TIME PERIOD
. ALPBAB: THE INDIVIDUAL PARANETER ESTINATES OF TBE BANK FILTERS
. IBATB: TBE INDIVIDUAL STATE ESTIMATES OF THE BANK FILTERS
. PROB: THE PROBABILITY WEIGHTINGS OF THE BANK FILTERS
[ ] L J
0000000 00000000000CC00R000000S000CCRCPCR0000CCRRRI00000000LCSEII0SSO0C000SCO000ROOS
PSEUDOCODE:
CASE OF

DITHER SIGNAL
FIXED GAIN CONTROLLER
COMPUTE CONTROL
VARIABLE GAIN CONTROLLER
SELBCT GAIN
COMPUTE CONTROL
NMAC
FOR EACE FILTER
CONPUTE CTONTROL
ACCUMULATE WEIGRTED AVERAGE
LOOP

END
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el SUBROUTINE TRUE (X,U,ATRUE,RNSTP,TIN)
OO0 0CSSICOCOPOOCPICPRTRCOCON0P000CCOO0RPICOPCONO0C00CCOOISERNISOISCOIOSROROOGOSDSESOSTYS

U .

‘.Q* . SUBROUTINE TRUE
RV .
l'.!l 0608080000000 C0000000000080000C00CR00RSPOCCERNUTPCO0CORPNPEOOPIODN0SE0SCCCORSIO0TS
*
e . DESCRIPTION: THIS ROUTINE PROPAGATES THE TRUE SYSTEM .
g . FROM ONE SANPLE TINE TO THE NEXT, ADJUSTING TEE TRUE
N;J . PARAMETER POINT WEEN DESIRED -
M .
KL . AUTHOR : KARL HENTZ AND PAUL G. FILIOS
Al . VERSION : 4.0
- . DATE  : 23 SEP 83
' L]
s . PARANETERS PASSED:
5 . I: TEE TRUE SYSTEM STATES
oy . u: TEE CONTROL INPUT VECTOR
W . ATRUE: TEE TRUE PARAMETER POINT
ot . RNSTP: TINE OF TEE END OF TBE SIMNULATION
il . TIN: TEE CURRENT SIMNULATION TIME PERIOD
» L] ]
]

. PSEUDOCODE:
b4 IF TBE TRUE PARAMETER VARIES
. GET THE NEV MATRICES FRON THE PARAMETER SPACE
3 b MULTIPLY THE STATES BY TBE STATE TRANSITION NATRIX
o b MULTIPLY TBE CONTROL BY THE TRUE BD MATRIX
d GET A NOISE VECTOR
. MULTIPLY THE NOISE VECTOR BY BD
4 ADD ALL THE PRODUCTS FOR THE NEV TRUE STATES
b END
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3 SUBROUTINE RW(V)

:' \ PO 0CICEI0 SO0 OSSOSO CESSRO0PBCNNBORP0200SCO0SCECORPO00RCESRICOEICNSOOOOECEROERIRTITTY
§

) .
y . SUBROUTINE RY
i#\' .
0000800000000000000008000000000000000003000000000000000R00E0000I00000000000000
.
DESCRIPTION: GENERATES A WBITE GAUSIAN RANDOM VECTOR.

AUTHOR : KARL HENTZ AND PAUL 6. FILIOS
VERSION: 2.0
DATE : 26 JUN 85§

*
®
[ ]
[ ]
[ ]
]
. PARANETERS PASSED:

. V: A RANDOM NOISE VECTOR
[ ]

L ]

; 0080000000080 000C00000008800000000800C000000000000000CCVCOOROCRROOROITSOPSOOIBOINDY
-
L

PSEUDOCODE:
FOR EACE ELEMENT OF THE NOISE VECTOR
DO 12 TIMES
ACCUMULATE A UNIFORMLY DISTRIBUTED RANDON NUMBER
LOOP
SUBTRACT SIX
LOOP
END

* £
>
\g
[ 3K BN BN BN BN BN BN J
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) SUBROUTINE PROPGT(XHATB,PHIB,BDB,U)
.1 o ‘..‘.‘.........‘..........‘...................................‘....“.‘........
. [ ]
-i . SUBROUTINE PROPGT
) ’-‘- [ ]
'.' PSS 0O0B0COOCO0EOROEECSOUCOOCOICORCCECOOCENIOCOOOCCINCOREICEEEOCCISECEITRECOSOIOREOICESESOTS
i . DESCRIPTION: THIS ROUTINE PROPAGATES THE STATE ESTIMATES OF EACE
e, . FILTER IN THE MOVING BANK FROM THE END OF ONE SANPLE PERIOD TO
. JUST BEFORE THE MEASUREMENTS ARE TAKEN OF TRE NEXT.
[ ]
St . AUTHOR : KARL HENTZ AND PAUL 6. FILIOS
K . VERSION: 2.2
!". . DATE : 3 AUG 8S
) [ ]
W
.!.:;' . PARANETERS PASSED:
A . XBATB: CURRENT STATE ESTINATE FOR EACH FILTER IN THE BANK, THESE
° . VALUES ARE ALTERED
s . PHIB: PEI MATRIX FOR EACE FILTER IN TEE BANK
W . BDB: DISCRETE INPUT MATRIX FOR EACB FILTER IN THE BANK
: - . u: CONTROL INPUT VECTOR
. ]
:\ y CGS00C0SCOOOOOO0NSOO0P0000000000000000000800000C¢00C00C0CC00CEOR00000080C0000CCROSTS
‘el
AL . PSEUDOCODE:
. FOR EACE FILTER
- g., . NULTIPLY PHI BY XBAT
Bea Tl . NULTIPLY BD BY U
& . ADD THE PRODUCTS TOGETHER
Y . LooP
N . END
!
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SUBROUTINE MEAS(X,BNATT.Z,X)
SS00000ERE0C000C000E00000CC00000000000CP0C00000000000000000000020000800000000000
o .

. SUBROUTINE MEAS
)
080000000000 00000000000000000000000800080000800000000000000000000080004508000080000

DESCRIPTION: TBIS BROUTINE TAKES A MEASUREMENT OF TEE TRUE SYSTENM.
AUTHOR : KARL EENTZ AND PAUL 6. FILIOS
VERSION: 2.02
DATE : 3 AUG 85
PARANETERS PASSED:
X: TRUE STATES
BMATT: TRUE MEASUREMENT MNATRIX
Z: THE NBASUREMENT RETURNED
R: TEE COVARIANCE OF THE MEASURENENT NOISE

0SSOSO 0000000CE00000000000000050000080000000000C0000002 000000000000 008080000

PSEUDOCODE:
CALL THE PSUEDO-RANDON NUMBER GENERATOR FOR TEHE V VECTOR
NULTIPLY THE V VECTOR BY THE SQUARE ROOT OF R
MULTIPLY X BY EMATT
ADD THE NOISE TO THE NEASURBMENT
END




A A

%

,“L‘
b xS D, Ay

”

-

Py

Ho b ® P

-

N
b}
.

N
S

5rsh;\*r

4

T L

SUBROUTINE RESID(Z,XNATB, BMATB,RESB,LIKE,AINVB)
00000000080000000000000000000800000000300000080000000000000C0000000000800080800
.

hd SUBROUTINE RESID

[ ]
0000000000 C0C00000N0C000000000080008050000000800008000000000000000000800008000000

DESCRIPTION: THI1S ROUTINE COMPUTES TBE RESIDUALS FOR EACH OF THE
ELEMENTAL FILTERS IN THE SLIDING BANK, AND THE LIKELIHOOD
QUOTIENT FOR EACR FILTER

AUTBOR : EKARL HENTZ AND PAUL G. FILIOS
VERSION: 2.03

DATE : 3 AUG 85

PAIAI!TBIS PASSED:
THE MEASUREMENTS TAKEN
XIATB TRE CURRENT STATE ESTIMATES FOR EACB FILTER IN TBE BANK
BMATB: TBE MNEASUREMENT MNATRICES FOR EACE FILTER IN TBE BANK
RESB: TEE RESIDUALS RETURNED
LIKE: THBE MININUN LIKELIHOOD QUOTIENT RETURNED
AINVB: THE A INVERSE MATRII FOR EACB FILTER IN THE BANK

0800000000000 0000000¢0000000000000000000000CE000C00000E0000000200000000R0CE0S
PSEUDOCODE:
FOR EACE FILTER
MULTIPLY BNAT BY XEAT TO DETERNINE Z BXIPECTED
COMPUTE TBE RESIDUAL = Z - Z EXPECTED
FORM TBE QUADRATIC R * AINV ¢ R(TRANSPOSE)
IF TBAT IS LESS TBAN THE MININUM LIKELIEOOD QUOTIENT TREN

MAKE IT TBE NEW MINIUM LIKELIBOOD QUOTIENT
LooP

END

® # 8 0 8 O 8 00 6O 0 O SN S SN O e s e s
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SUBROUTINE UPDTE(RESB,XHATB,PNINB,AINVB,CENATB, TIN)
000000000 COSEOOOTCOOCOOSOOSPCOEDNOOICIBOSOIOCONOSOSP0000000000000808008000800000080
e
. SUBROUTINE GUPDTE
-
G000V O00COO0NBOOCSICECEOO000BO00TCOSCOPOSOPITOBOIISEONOSOO0COOBOCOROO000C0OSOBOISSYS
L ]

DESCRIPTION: THIS ROUTINE UPDATES EACE OF THE FILTBRS IN THE
SLIDING BANK VWITH THE RESULTS OF TBE MNEASUREMENTS.

AUTBOR : KARL HENTZ AND PAUL 6. FILIOS
VERSION: 2.03
DATE : 3 AUG 85

PARANETARS PASSED:
RESS: TBE RESIDUALS FOR EACH FILTER IN TEE BANK
XHATB: TBE CURRENT STATE ESTINATES FOR EACR FILTER IN THE BANK
PMINB: THE COVARIANCE MATRIX BEFORE UPDATE FOR EACH FILTER
AINVB: THE A INVERSE MATRIX FOR EACE FILTER IN THE BANK
CKMATB: THE KALMAN FILTER GAIN MATRIX FOR EACH FILTER IN TRE BANK
TIN: THE CURRENT TIME IN THE SINULATION

PSEUDOCODE:
FOR EACH FILTER
MULTIPLY THE GAIN NATRIX BY THE RESIDUALS TO GET THRE CHANGE IN
TBE STATE ESTIMATES
ADD THE CBANGE TO THE CURRENT STATE ESTINATES
LooP
END

® 2 00 0 00 8 00 P e 08 6 OP eSS N DS
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SUBROUTINE PROBL(RESB,AINVS,ADETB,PROB,PLOV)
00080030082, 000280000000000080000080080000003003000800008000000000000088000000 0000
[ ]
. SUBROUTINE PROBL
L ]
808000800000 00000000C0SCOP000CCOER00RCOO0CSRUREORROCINEOCOOPP00CCLPEEOOCO0OGROTSTS
DESCRIPTION: TBIS ROUTINE COMPUTES THE PROBABILITY VEIGEATING
FACTORS FOR EACE FILTER IN THE BANK

AUTBOR : KARL HBENTZ AND PAUL G. FILIOS
VERSION: 2.00
DATE : 20 JUOL 85

PARAMETERS PASSED:
RESB: THE RESIDUALS FOR EACH FILTER IN TEE BAMNK
AINVB: THE A INVERSE MATRIX FOR EACB FILTER IN TBE BANK
ADETB: THE DETERNINATE OF THE A MATRIX FOR BACE FILTER
PROB: THE CURRENT PROBABILITY VEIGHTINGS FOR EACH FILTER, RETURNED
PLOW: THE PROBABILITY WEIGHTING LOVWER BOUND

PSEUDOCCDE:
FOR EACH FILTER

‘g%: GET THE PROBABILITY DENSITY FUNCTION FOR EACH FILTER
e MULTIPLY IT BY THE LAST PROBABDILITY WEBIGRTING
ACCUNULATE THE TOTAL VALUES FOR USE IN THE DNOKINATOR
LOOP
DIVIDE ALL PROBABILITY VALUERS BY THE ACCUNULATED TOTAL
END
148
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SUBROUTINE F(RES,AINV,ADEBT,DNSTY)
SE0000IP0000000CIS0000E0020C000003000000000000800080000008800080¢0080808000808000¢
.

* SUBROUTINE F

.

808000080000 08000006000USSS000000000000000CC00000000000000800880000080000000¢¢
.

DESCRIPTION: THIS ROUTINE COMPUTES TBE PROBABILITY DENSITY
USED IN COMPUTING THE BANK FILTER PROBABILITIES,

AUTBOR : KARL HENTZ AND PAUL G. FILIOS
VERSION: 2.00
DATE : 20 JUL 85

.
.
.
.
.
.
)
. PARAMETERS PASSED:

. RES : INPUT RESIDUALS FOR ONE FILTER

b AINV: INPUT, THE INVERSE A MATRIXI FOR ONE FILTER

. ADET: INPUT, TBE DETERNINANT OF TEE A MATRIX FOR ONE FILTER
. DNSTY: OUTPUT, THE PROBABILITY DENSITY COMPUTED

.

.

.

.

L ]

.

NOTE: BECAUSE OF NUMERICAL DIFFICULTIES IN CALCULATING ADET
DNSTY IS8 INCOMPLETELY CALCULATED. TBE TRUE VALUE OF DNSTY
CAN BE IMPLEMENTED BY REMOVING THE nx®x COMMENT SYNBOL FROM

THE LINE BEFORE TRE RETURN STATEMENT.
0000000000000 000080000080000000000000000000000000600000000¢0000000¢0000008000s

b PSEUDOCODE:

. MULTIPLY THE RESIDUALS TRANSPOSE BY A INVERSE

. MULTIPLY THE PRODUCT BY THE RESIDUALS

4 DIVIDE THE PRODUCT BY -2

. RAISE E TO TBE RESULTING QUOTIENT

d SCALE BY 2°P] ®¢ 5 ¢ SQUARE ROOT OF THE DETERNINANT OF A
b END

i49
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SUBROUTINE AVG(XBATB,ALPHAB,PNINB,PALPH,PROB,XHATA,ABIST)

P 0080000000000 00008000000000000000000000C00000000008C0000000000000000800800000800
“ * SUBROUTINE AV G

5 .

: $00000000000000000000000000060008C00000000000¢00000000000C00000008000800080000¢8
< .

DESCRIPTION: THBIS ROUTINE TAKES THE WEIGEATED AVERAGE OF TRE
INDIVIDUAL FILTER'S STATE AND PARANETER ESTIMATES

AUTHOR : KARL BRENTZ AND PAUL 6. PILIOS
VERSION: 2.00
DATE : 20 JUL 85

PARAMNETERS PASSED:
XBATB: THE STATE ESTIMATES FRON TBE FILTERS IN THE BANK
ALPEAB: THE PARAMNETEBR ESTINATES FRONM TRE FILTERS IN TERE BANK
PNINB: THEE COVARIANCE OF THE PARAMETER ESTIMATES BEFORE UPDATE
PALPR: THE COMPUTED COVARIANCE OF TEE OVERALL PARAMETER ESTINATE
RPROB: TBE PROBABILITY WEIGHTINGS FOR EACE FILTER
IBATA: TEE AVERAGED STATE ESTIMATE COMPUTED AND RETURNED
ABIST: THE NISTORY OF THE LAST 10 PARAMETER ESTIMATES, UPDATED

AND RETURNED

$0000000000800000000000000¢0000028802CCtSC0CEETUCI0ICCEEEICE0008030800OOROTSTS
PSEUDOCODE:

o SHIFT THE OLD VALUES OF ALPHA IN THE RISTORY ARRAY
FOR EACR FILTER
ACCUMULATE XHAT ¢ THE PROBABILITY WEIGHTING
ACCUNULATE ALPEA ¢ TRE PROBABILITY WEIGETING
LOOP
COMPUTE PALPB
END
150
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SUBROUTINE DSEID(ABIST,PALPH,LIKE,AINVB,PNINB,PRIB,BDB,XNATS,
+ HMATB,ADETB,ALPHAB, CKMATB,PROB,Z, XHATA, ICENT, ISIZE)

0000000000080 00000000000000000800000S200R0CCEeNCEE0CER00C0BCC0CP0ERESORIROBOIRRY

SUBROUTINE DSEID

0200000000000 00000000030000000280008000C00000000008000C000000000000000000008800008)

DESCRIPTION: TBIS ROUTINE EXANINES TBE SLIDING BANK AND DESIDES
IF IT NEEDS TO BE NOVED, EXPANDED, OR CONTRACTED, THEN CALLS
THE APPROPRIATE ROUTINE TO ACCONPLISEH ANY NECESSARY ACTION.

AUTHOR : PAUL @. FILIOS
VERSION: 3.00
DATE : 16 AUG 85

PARANETERS PASSED: :

AINVB, PNINB, PHIB, BDB, XBATB, RMATB, ADETB, ALPHAB, CKNATSB,
PROB: THE ARRAYS THAT DESCRIBE TEE FILTERS IN THE BANK, IF THE
BANK MOVES, CONTRACTS, OR EXPANDS THESE ARRAYS WILL BE UPDATED
TO REFLECT THE NEV FILTERS IN THE BANK

PALPH, LIKE, PROB: THE VALUES OF THESE PARANETERS ARE USED IN THE
DECISION LOGIC

ICENT, ISIZE: DESCRIBE THE CURRENT CENTER AND SIZE OF TBE BANK

ABIST: CONTAINS THE LAST ESTINATE OF THE UNCERTAIN PARANETERS,
USED TO DETERMINE THE NEV BANK CENTER AFTER A CONTRACTION

XBATA: THE CURRENT STATE ESTIMATE, USED TO INITIALIZE NEW FILTERS

8008000000000 030000000000C880C0008CC000PPCORESOORCEOOCOROCEO00CEO0NCSOOSEIORRROS

PSEUDOCODE:
IF TRE BANK NEEDS TO CONTRACT
CONTRACT
IF THE BANK NEEDS TO MOVE
MOVE
IF THE BANK NEEDS TO EIPAND
EXPAND
END
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P, SUBROUTINE CNTRCT (ICENT,ISIZE,PHIB,BDB,PNINB,AINVB,ADETB,CKNATB,

‘A R PROB, ENATB, XHATB, XEATA, ALPEAB)

3 ’&3 I R R A N N N R N R R R R R R R N A R N R R R S N A A R R N R A R R T N Y E N R R PN R YR ERNRZINYRRER Y Y

h A\, .

WL

o . SUBROUTINE CNTRCT

W :

"‘ (X X A Y Y R N R R R R N N N R R N R R R R R R R Y R R R P R SRR R IR XY I
.

£a DESCRIPTION: THIS ROUTINE CONTRACTS TEBE SLIDING BANK TO A FINER

g DISCRETIZATION,

iﬁ ' AUTBOR : PAUL 6. FILIOS

) VERSION: 1.00

W DATE : 20 AUG 85§

e

o PARANETERS PASSED:

"y ICENT, ISIZE: THE NEV CENTER AND SIZE OF THE BANK

dei PEIB,BDB, PHINB,AINVE,ADETB, CKNATB, PROB, BNATB, XEATB, ALPEAB: THE

W ARRAYS DESCRIBING THE FILTERS IN THE BANK

‘R IBATA, THE CURRENT STATE ESTINMATE, USED TO INITIALIZE THE NEVW

- FILTERS IN THE BANK

el

£ 1%

000000000000 000C000000000000000000000000000000E00000820C00000E000C00000000008¢
PSEUDOCODE:
ENSURE ICENT VWILL KBEP SLIDING BANK INSIDE PARANETER SPACE
IF NOT ADJUST ICENT
REASIGN THE PBI MATRICES
REASIGN THE X MATRICES
REASIGN TEE BD MATRICES
REASIGN TBE B MATRICES
REASIGN TEE P MINUS MATRICES
REASIGN THE AINV MATRICES
REASIGN THE A DETERMINATES
REASIGN THE ALPHAS
REASIGN TBE PROBABILITIES
ASIGN XBAT TO NEV FILTERS
o END
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SUBROUTINE EXPAND(ICENT,ISIZE,PHIB,BDB,PNINB,AINVB,ADETB, CKNATB,
+ PROB, EMATB, XEATB, XHATA, ALPHAB)

0000000000900 0C0000000CCEERCCRNSITRSEOCELPSBTRETOCEORIPOROSOOPSEOOEOSIEROOOIOIPIEGCEOTSFS
.
. SUBROUTINE EXPAND
L ]
GOS0 COSCOVPOTEOO00OSPOPCONO00P00C0RECCPO00008000080008200000030080000088080800800°
L
DESCRIPTION: THRIS ROUTINE EXIPANDS TEE SLIDING BANK TO ITS

LARGEST DISCRETIZATION. ‘

AUTBOR : PAUL G. FILIOS
VERSION: 1.00
DATE : 20 AUG 85

PARAMETERS PASSED:
JCENT, ISIZE: THE NEW CENTER AND SIZE OF THE BANK
PBIB,BDB,PNINB,AINVB,ADETB, CKNATB, PROB, ENATB, XHATB,ALPEAB: THE
ARRAYS DESCRIBING THE FILTERS IN THE BANK
XBATA, TEE CURRENT STATE ESTINATE, USED TO INITIALIZE THE NEW
FILTERS IN TEE BANK

00000800000 8000000800082000CEE0ECCERR0ITENUELELNEILLVTVLELLTIILTOCLRINEERIOENTS
PSEUDOCODE:
SET ISIZE TO 4
SET THE BANK CENTER TO THE PARAMETER SPACE CENTER
RESET PHIB, BDB, BNAT, CKMAT, PMINB, AINVB, ADETB,
ALPHAB, PROB, AND IBATB
END
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SUBROUTINE MOVE (ICENT,ISIZE,PHIB,BDB,PMINB,AINVB,ADETB, CKNATB,

+ PROB, BMATB, XEATB,XHATA,ALPHAB,NOVDIR, 2Z)
S80E00E00000000000080002C00080000000000S0000000¢00000000000000000000000086000000
.

. SUBROUTTINE M OVE

.

0000080000000 ¢08000000000000C00C00S00O0NTI0SR0000C00C00000C00R000000030000000F8
.

DESCRIPTION: TBIS ROUTINE MOVES TBE SLIDDNG BANK ONE STEP IN ANY
DIRECTION

AUTHOR : PAUL 6. FILIOS
VFRSION: 3.00
DATE : 20 AUG 85

PARANETERS PASSED:
ICENT, ISIZE: THE NEVW CENTER AND SIZE OF THE BANK
PHIB,BDB,PNINB,AINVB,ADETB, CKNATB,PROB, ENATB,XBATB,ALPHAB: THE
ARRAYS DESCRIBING THE FILTERS IN THE BANK
XBATA, TBE CURRENT STATE ESTINATE, USED TO INITIALIZE THE NEVW
FILTERS IN THE BANK

PSEUDOCODE:
COMPUTE NEV BANK CENTER
IF MOVE PUTS PART OF BANK OUTSIDE PARAMETER SPACE
THEN RETURN
RESET PHIB, BDB, ENAT, CKEMAT, PNINB, AINVB, ADETB,
ALPHAB, AND IBATB
ASSIGN NEV PROBABILITIES
END
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PROGRAN RESLT
000000000000 000800000000000000000000000400003000C0E0000000803080000000800000008

L ]

. PROGRAMN RESLT

[ ]

GCP000N00PCCSIOCEICOCINOOSEO0SIDCSSSO080008000000C0008050000C00E0CESRIO0OROICRTSTS

L ]

DESCRIPTION: TRIS PROGRAM IS THE POST PROCESSOR FOR PROGRAM BANK,
ORGANIZING THE RAW DATA INTO A FORM TEAT CAN BE PLOTTED BY THE
CALCONP PLOTTER, :

AUTBOR : KARL EENTZ AND PAUL 6. RILIOS
VERSION: 2.3
DATE : 20 OCT 83

INPUT: FILE 'OUT1’ CREATED BY PROGRAN BANK.

OUTPUT: FILE 'TAPE99' READY FOR ROUTING TO THE CALCOMP PLOTTER.

COCI0CITOPCO00000C00C00000OSNOOS0CONONSICONOEOO00SCO0EB000000PCRP0000OCOOISOOESOSCOTS

TBIS 1s TBE M AIN PROGRAMN

CO0000CC0000800C000000SCEPEOCOCORCENSOCOUIORICOOOSP00C0CCO000C0CSECRONICSOCSOOSOOOTS

PSEUDOCODE:
INITIALIZE INPUT ARRAYS TO O
READ IN RAW DATA, SUNNING THE MONTE CARLO RUNS
NORNALIZE DATA BY THE NUMBER OF MONTE CARLO RUNS
SET UP THE PLOT TITLES
PUT TRE DATA INTO THE PLOT ARRAYS
PLOT THE DATA

END
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oL SUBROUTINE SLOTS (DATA,NPNTS,LTITL,.YTITL,MODE,NN,X,Y,NS,IU,
M . MOVE,EXPD, CONTHR, NBR, IPVAR, PSTRT)
‘.} SO O 0000000000 COCCSOPORINIBOOPCEO0PSO0CSOS0COROIOS000CROCOR0CCOCESLECEOGESIPRPOSCRIOIOSISETYS
) .
ey . SUBROUTINE SLOTS®S
Q!. »

G000 COPISSCOOROCICTORICEOSOOCIOSRCCEI00COSCOPOCIP00CEO0COPORO0000CEOCOOROTTOOOTSE

.y ®
M . DESCRIPTION: THIS ROUTINE PLOTS TEE DATA PREPARED IN THE MAIN
ﬁ%{ . PROGRAN USING CALCOMP PLOTING ROUTINES.

~ [ ]
?.i . AUTHOR : KARL HENTZ AND PAUL 6. FILIOS

¥ . VERSION: 2.2

K . DATE : 21 OCT 83

. ]
v . PARANETERS PASSED: (ALL ARE INPUT)

i . DATA: THE DATA POINTS TO BE PLOTED
S » NPNTS: TBE NUMBER OF DATA POINTS
R . LTITL: TRE TITLE OF THE PLOT
O . YTITL: AN ARRAY OF TITLES, ONE FOR THE Y AXIS OF EACE SUB-PLOT
Ny . MODE: THE MODE THE SLIDING BANK WAS OPERATING IN
T . NOVE,

. EIPD,
- {%&; . CONTHR: TBE THRESHOLDS USED FOR MOVE, EXPAND, AND CONTRACT DECISIONS.
)ﬂ' YW . NBR: THE NUNBER OF MONTE CARLO RUNS MADE.

; . IPYAR: CODE SIGNIFYING THE VARIABLE OF INTEREST BEING PLOTTED.
I . PSTART: TBE TIME IN TBE MONTE CARLO RUNS WHEN THE PLOT STARTS.
|‘ L ]

[Py [

»
-
»_a

::) . PSEUDOCODE:
. WRITE TITLE AND NOTES

AN . FOR EACH SUB-PLOT
] ) . DRAW AND LABLE TBE AXIS
A . DRAW THE MEAN LINE

AN » DRAV THE PLUS ONE SIGMA LINE

F . DRAY THE MINUS ONE SIGMA LINE

} . ADJUST STARTING POINT FOR NEXT SUB-PLOT
! . END
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RN PROGRAN ANBIG
“,:’ 0000002000000 02000C000000000000080000000000000000000000000¢00000000000 00000088
'“" [}
oy ’ PROGRAN ANBIG
e .
i‘!.’_ 0880800300080 000000000C000800000000800000008008030800000000080000008080000000080000
L J
" DESCRIPTION: PERFORMS ABIGUITY FUNCTION ANALYSIS OF PARANETER POINTS
f : IN THE PARAMETER SPACE OF A SLIDING BANK MULTIPLE NODEL ADAPTIVE
e ESTIMATOR,
P
3 AUTROR : KARL HENTZ AND PAUL 6. FILIOS
! VERSION: 2.0
Ry DATE : 20 JUN 85
. INPUT: FILE sANSPACEx CONTAINING THE MATRICES DESCRIBING THE PARANETER
e SPACE
e
%' OUTPUT: xTAPES9x PLOT FILRE FOR THE CALCONP PLOTTER
" 0800008008000 800000080080C0C8080CRVCOOCPSSCEPPROREOOROSROCROOOSPEPEGO0PCOS0OPSSOOOOTSGYS

THNILIS 18 THRE NAIN PROGR AN

000000800000 000000080000000000¢000003000000000000000006000080000000083000008000¢
PSEUDOCODE:
READ IN THE PAAMETER SPACE
SET UP TRE TRUTH NODEL
FOR EACH FILTRR
SET UP TNE FILTER
DETERNINE THE ANBIGUITY FUNCTION
LooP
PREPARE DATA FOR PLOTTING
PLOT DATA
END
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SUBROUTINE SETTR(P1,P2,PNIT,GDT,ANATT)

(I A Y R N R Y N R L R R R A I R R I R Y Y R R R I I R T Y R R P Y R R R R X X X I Y Iy
]

. SUBROUTINE SETTR

[ ]
COSOOB0O0CO000C0COROCOR0C0SO00000000CCOS00CO000000C00PCO000CPSER0C0SC0OCRROCORCOOTS
[ ]

DESCRIPTION: SETS UP TEBE TRUTH MODEL FOR THE PARANETER POINT DESIRED

AUTHOR : KARL EENTZ AND PAUL 6. -FILIOS
VERSION: 2.0
DATE : 25 JUN 85

PARANETERS PASSED:
P1,P2: INDICES TO TAE TRUE PARAMNETER POINT IN THE PARANETER SPACE
PEIT: TRUE PRI MATRIX, RETURNED
6DT: TRUE NOISE INPUT MATRIX, RETURNED
SNATT: TRUE MEASUREMNENT MATRIX, RETURNED

GOS80 0000000000000000000000000000000000000000000008000000000008000000008080808000

PSEUDOCODE:
GET PEIT FRON PARAMNETER SPACE
GET 6DT FROM PARANETER SPACE
GET ENATT FRON PARANETER SPACE
END
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SUBROUTINE SETFI(P1,P2,.PRI, ENAT,CENAT,.PMIN,PPLUS AINV, ADET)
0000000000000008000800000000000000000000000000800000000000000000000000000000800

BROUTINE SETEF I

. DESCRIPTION: SETS UP THE FILTER MODEL FOR THE PARANETER POINT
. DESIRED.

[ ]

. AUTHOR : EARL NENTZ AND PAUL 6. FILIOS

. VERSION: 2.0

. DATE : 25 JUN 8$

[ ]

. PARAMETERS PASSED:

. PI.P2: INDICES TO TEE PARANETER POINT DESIRED

. PNI: STATE TRANSITION MATRIXZ FOR DESIRED POINT

. ENAT: MEASUREMENT MATRIX FOR DESIRED POINT

. CEMAT: FILTER GAIN MATRII FOR DESIRED POINT

. PNIN: COVARIANCE OF STATE ESTINATES BEFORE UPDATES
. PPLUS: COVARIANCE OF STATE ESTIMATES AFTER UPDATES
. AINV: A NATRIX FOR DESIRED POINT

. ADET: DETERMINANT OF A MATRIX

[ ]

COPOO0 00000000000 00000000000000C00ECPPCO00R0UTNOCEOOCCO0000080000580308000000000TS8FS
. PSEUDOCODE:

. GET PBI FRON PARAMETER SPACE

. SET PMIN FROM PARAMETER SPACE

. GET PPLUS FROM PARAMETER SPACE

. GET CENAT FROM PARANETER SPACE

. GET ENMAT FROM PARAMETER SPACE

. GET AINV FROM PARAMETER SPACE

. GET ADET FRONM PARANETER SPACE

. END

R oI
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N SUBROUTINE ANBIG(PEI,ENAT,CEMAT,PMIN,PPLUS,AINV,ADET,

N . . ENATT,PRIT,6DT,R,A)

k G00000C000C080000ODOOCOO0OBSUCSROO0EC0COBORO00000CR0000000000008000C00000000O0O0F0
[ ]

;ﬂo_ . SUBROUTINE ANBIG
[ ]
SO0 0000000000C00CCCE0000CO0RREO0000CCSO0OO000SEIOPRORB0000CS00C00CERIOIOOIOODROORT0S
L .
;#~ . DESCRIPTION: PERFORNS THE ANBIGUITY FUNCTION EVALUATION FOR A POINT
U . IN TRE PARAMETER SPACE. USES A MONTE CARLO SINULATION TO COMPUTE
N . TEE ENSENBLE AVERAGE.
L ]
‘ Ll
Ko . AUTEOR : KARL EENTZ AND PAUL 6. FILIOS
s . VERSION: 2.0
4 . DATE : 25 JUN 85
col .
e . PARANETERS PASSED:
s . PEI, ENAT, CEMAT, PMIN, PPLUS, AINV, ADET: NATRICES DESCRIBING
[~ . TEE FILTER AT TNE PARANETER POINT OF INTEREST
. . ENATT, PNIT, GDT, R: MATRICES DESCRIBING TAE TRUE SYSTEN
¥, . A: THE VALUE OF THE AMBIGUITY FUNCTION AT TEE POINT OF INTEREST
g ) .
4'!1 CO0CEOS0ONVOOOOOBROBSOOSSO00SC 00000200 CC0NSO0008P000C000S00008000000C0C0080000¢
~ D
b . PSEUDOCODE:
L . FOR TEE NUMBER OF MONTE CARLO RUNS DESIRED
B . FOR BACE TINE PERIOD
oY . PROPAGATE TEE STATE ESTINATE
i . TACE A NEASUREMENT OF TEE TRUE SYSTENM
. . UPDATE TAE FILTER WITH THE MEASUREMENT
®) . ACCUNULATE BRROR STATISTICS
¥ . Loop
s . Loor
15 . COMPUTE ANBIGUITY FUNCTION FRON BRROR STATISTICS
j‘ . END
t'
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SUBROUTINE TRUE(X,PRIT,GDT)

006000000000 000000000000000000C00SOROSSI00PR0000CSCOR0R0SCOS00R00C00CSICIORECEOIRPOITSETSE
[

o SUBROUTIINE
.

TRUE

DESCRIPTION: PROPAGATES TBE TRUE SYSTEMN FROM ONE SANPLE TIME TO TRE
NEXT. .

]
[ ]
®
. AUTHOR : KARL BENTZ AND PAUL G. FILIOS
. VERSION: 2.0

. DATE 25 JUN 85

L

. PARANETERS PASSED:

. x: TRUE SYSTEM STATES

. PRIT: TRUE STATE TRANSMISSION NATRIX
. 6DT: TRUE NOISE INPUT NATRIX

L

[ ]

0000000000000 0800000008800000880000080020000800000C080080¢C002008000880050000080

PSEUDOCODE:
GET A RANDON NOISE VECTOR
MULTIPLY PHIT BY X
NULTIPLY 6DT BY THE NOISE VECTOR
ADD THE PRODUCTS

END
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SUBROUTINE RW(V)
980800080000 0000000000000000080000000000000800000800000880003000300809089000883000

[ ]
. SUBROUTINE. R V¥
]
00000000 0CC0SOCGO00CORB0000000C0I00R80RCPOCSCCREPPOOOCEOPELIOSEOEOOPEOOISOORSEOS
L ]
. DESCRIPTION: GENERATES A WBITE GAUSIAN RANDOM VECTOR,
Sal 9 [ ]
)
éu . AUTHOR : KARL HENTZ AND PAUL 6. FILIOS
\ . VERSION: 2.0
o . DATE : 26 JUN 8S
p “.% .
' . PARAMETERS PASSED:
2 . V: A RANDOM NOISE VECTOR
[ ]
K ‘ 90000000000 00800000000500000000080000000800000000000000000008800000800000000008090
K.
S e  PSEUDOCODE:
s . FOR EACH ELEMENT OF TBE NOISE VECTOR
o) . DO 12 TIMES
ity . ACCUNULATE A UNIFORNLY DISTRIBUTED RANDOM NUNMBER
1% . LOOP
re . SUBTRACT SIX
pry . LOOP
T ¢ END
e\
{.
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& SUBROUTINE MEAS(X,BNATT,Z,R)
\’\ ...‘..................‘..‘.‘.....‘....‘.............‘.....“....‘...'Ol....‘...
B .
o . SUBROUTINE MNEAS
N .
"76 SC00S000 0008000030000 00SCSO0CRCOSOCCNPORBOROPIROOPRRO0CRPCEOCOISISONOINSEIOSEOSOOGS
[ ]
o . DESCRIPTION: THIS ROUTINE TAKES A NEASUREMENT OF THE TRUE SYSTEN.
A3 [ ]
»
o . AUTHOR : KARL HENTZ AND PAUL 6. FILIOS
RS . VERSION: 2.02
Sy . DATE : 3 AUG 8S
:.;N. .
a2 . PARAMETERS PASSED:
° . 3: TRUE SYSTEM STATES
~— . ENATT: TRUE SYSTEN MEASUREMENT MATRIC
e . zZ: MEASUREMENTS TAEKEN
;‘, . R: COVARIANCE OF TBE MEASUREMENT NOISE
e, .
r%'_- 0000000000000 0CO00S00000CCESPSSOCICOCIOOPEPOCOOREUOCORERNSOCSOOSSEORDOOCSOIOSSCOBOINSCOYS
o . PSEUDOCODE:
. . GET A RANDOM NOISE VECTOR
, % . NULTIPLY EACB ELEMENT BY THE SQUAREROOT OF R
o . NULTIPLY BNATT TIMES X
“ . ADD THE NOISE TO THE PRODUCT
(4 . END
4
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SUBROUTINE UPDTE(Z.XNB,HMAT, CKNAT)
0000000000000800000002000000000800000000038000¢00088000000000080000000088000800
[ 4
hd SUBROUTINE UPDTE
.

900008000000 0¢00000000E000000000000000003000000000000000C0000000¢00008000088000

CONMPUTE RESIDUAL

COMPUTE CHANGE IN STATE ESTINATE

ADD CHANGE TO CURRENT STATE ESTIMATE
END

. DESCRIPTION: THIS ROUTINE UPDATES THE FILTER WITE THE NEASURENENT.
[
. AUTHOR : EARL RENTZ AND PAUL G. FILIOS
. VERSION: 2.04
. DATE : 8 SEP 8$
[ ]
. PARANETARS PASSED:
. z: THE CURRENT NEASUREMENT
T . 18: THE CURRENT FILTER STATE ESTINATE
o . EMAT: THE FILTER MEASUREMENT MATRIX
&5 . CEMAT: THE EALMAN FILTER GAIN MATRIX
K. < .
'?{ C0C0000000000C00S00C000002CRROIPPPEROCO00000CEECPESORRCEENSEO00RRIC0E0CRGSCOOIONIORSOERNTOGTS
LY . PSEUDOCODE:
= [ ]
L ]
[ ]
[ ]
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