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The purpose of this effort was to demonstrate that

moving-bank multiple model adaptive estimation algorithms

could be applied to a realistic and practical control

problem. Moving-bank multiple model adaptive estimation/

control is an atempt to create from full-bank multiple model

adptive estimation/control an adaptive estimation/control

technique which maintains its desirable on-line parameter

adaptation, but which reduces the intensive computational

loading which makes the full-bank method impractical. The

* results of this thesis do indicate that the moving-bank

multiple model adaptive algorithm can be successful in this

goal.

_ I wish to thank my thesis advisor, Dr. P. S. Maybeck

for the help he gave me at every step of this effort, and

for the insights he gave me into the algorithms explored. I

would also like to thank my classmates for thier
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valuable computer resources.
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This investigation applies moving-bank multiple model

adaptive estimation/control algorithms to the control of a

realistic model of a large flexible spacecraft. Moving-bank

multiple model adaptive estimation differs from conventional

(full-bank) multiple model adaptive estimtion in that a

substantially reduced number of elemental filters is

required for the moving-bank estimator (9 vs. 100 for the

system modeled in this thesis). The positions in parameter

space that the reduced number of elemental filters occupy

are dynamically re-declared; i.e., the moving-bank slides

about the parameter space in search of the true parameter

point.

,,Critical to the performance of the moving-bank multiple

model adaptive estimator is the decision logic used to

determine which elemental filters are implemented in the

bank, and when to change this decision. The decision logics

discussed focus on three situations: initial acquisition of

the unknown parameter values, through reducing bank

discretization; tracking the unknown parameter values,

through bank movement; and reacquisition of the unknown

parameters following a large jump change in their values,

through expanding bank discretization. Ambiguity function

analysis is used to predict performance in these situations.

vii
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-The system to be controlled is a simplified model of a

large scale space structure. Its equations of motion are

developed and placed in state space form, the states being

the positions and velocities of the rigid body mode and the

second and fourth bending modes. The state space matrices

describing the system are computed based on nominal values

for all physical parameters with the exception of the mass

density of the structure arms and their modulus of

elasticity. These two parameters are allowed to vary in

discrete steps, estaplishing the parameter space. It is

then attempted to control the states to the quiesent state,
I

using moving-bank multiple model adaptive algorithms.

The results indicate that, although the system under

study did not have a great need for adaptive estimation and

control, the multiple model adaptive estimator performs

essentially identically to a single filter artificially

knowledgeable of the uncertain parameter values., In

addition changing bank discretization for the initial

parameter aquisition phase speeded acquisition. However, the

bank was unable to expand following a jump change in the

uncertain parameter values, in order to restart the

acquisition phasep the bank tracked the jump change through

movement alone. Ambiguity function analysis proved to be an

excellent predictor of bank performance, and should be used

as a design tool.
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MOVING-BANK MULTIPLE MODEL ADAPTIVE ALGORITHMS
APPLIED TO FLEXIBLE SPACECRAFT CONTROL

I. Introduction

A common problem in estimation and control problems is

the uncertainty of parameters used in the design of the

system model and embedded in the estimator or controller.

These parameters can be initially unknown but unchanging,

or they can vary slowly, or they can undergo abrupt changes

as in the case of partial system failure. If these

parameters vary enough, it may be necessary to estimate

their values along with the system state, and adapt the

estimator, controller, or both, to incorporate the current

value of the uncertain parameters. This requirement is not

based soley upon the magnitude of the parameter variation

but also upon the sensitivity of the system to the

variation. Some parameters may vary widely with no

degradation in system performance, while a small variation

in another parameter may cause the system to become

unstable. This thesis expands the exploration of one method

for accomplishing this, known as moving-bank multiple model

adaptive estimation.

1.1 Alckground

In a large class of problems, which can be modeled as

linear stochastic systems with uncertain parameters

. ,.- 1



affecting the matrices defining the state model,

characteristics of driving noises, or measurement devices,

Kalman filters can be used for the estimation/control

algorithms if a means for adapting them to the uncertainties

can be found.

Multiple model adaptive estimation (MMAE)

[1,2,3,4,5:129-135] is a means of adapting the Kalman

filters for the case where the uncertain parameters can be

modeled as assuming only discrete values, as opposed to a

value in a continous range; this may either be physically

*0 reasonable (as in the case of failure states) or

representative values can be chosen from a continuous range

of possible values. This approach creates a bank of

elemental Kalman filters, one for each possible value of the

uncertain parameter vector. The output of each elemental

filter is then weighted by the a posteriori probability of

that particular parameter value vector being correct,

conditioned on the observed history of measurements. The

conditional probabilities are computed iteratively based

upon the observed characteristics of the filter residuals.

The adaptive state estimate is then the sum of the weighted

elemental filter outputs. The equations for this algorithm

are fully developed in the next chapter. As an alternative,

using maximum a posteriori (MAP) criteria for optimality,

the output of the elemental filter with the largest

associated conditional probability can be used as the state

2
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The convergence of the MMAE algorithm estimate to the

true state has been shown for the case of uncertain but

constant parameters [6, 71. Convergence has not been

shown for varying parameters; however, promising results

have been obtained for an ad hoc approach where constant

parameters are assumed for algorithm design, but the

computed conditional probabilities are lower bounded to

prevent 'locking onto' a single parameter value [5,8,9].

If the possible parameter time variations are modeled,

the optimal state estimate can be obtained as the weighted

* sum of the estimates produced by filters matched to all

possible parameter time histories [5]. This approach

is, however, impractical as [i elemental filters at sample

time ti would be required. Even when the parameter temporal

variation can be well modeled as a Markov process, it has

been shown that the number of elemental estimators required

would be K2 [5,10]. Thus if only 2 uncertain parameters

were each discretized to 10 values, K would be equal to 100,

and K2 =  10,000: still impractical for implementation [5].

For control applications, the state estimate obtained

from a multiple model adaptive estimator can be

premultiplied by a controller gain established via forced

equivalence design [12]. The gain may be based on a

single nominal parameter value, or can be evaluated using

the estimated values of the uncertain parameters provided

by the estimator. If a separate controller gain is

V associated with each elemental filter in the bank, the

3



control can be produced as the probabilistically weighted

average of the elemental filter/controller outputs, in the

same way the state estimate is obtained in a multiple model

adaptive estimator. This is known as multiple model

adaptive control (MMAC) [12:253,11]. An alternative, using

MAP criteria, is to select that filter/controller output

associated with the highest weighting probability [11].

MMAE has successfully been applied to several practical

problems. The tracking of maneuvering targets has been

shown to lend itself to this approach [13,14,15,16,17].

*0 Other applications have been demonstrated in flight control

[(11], multiple hypotheses testing [181, detection of

incidents on freeways [19], adaptive deconvolution of

seismic signals [20], and problems in which initial

uncertainties are so large that nonadaptive extended Kalman

filters diverge [21,22].

In implementations where there are a large number of

uncertain parameters, or where the uncertain parameters can

take on a large number of discrete values, the storage

required for the elemental filters, and the computational

loading required become unwieldy. Consider, if there are

only 2 uncertain parameters, each of which can assume 10

discrete values, the number of elemental filters is

4102 = 100; this may be implementable but it can be seen

that the number of filters required will grow quickly with

additional uncertain parameters or finer levels of

* discretization. Approaches to reducing the computational

4



burden include: use of Markov models for parameter

variation [5,10,23]; 'pruning' and 'merging' of branches in

a 'tree' of possible parameter time histories [24,25],

hierarchical structuring [26], and dynamic coarse-to-finer

rediscretization [27].

A method proposed by Hentz and Maybeck [28,29]

involves implementing only a smaller number of elemental

filters selected from the total bank. This 'moving-bank' is

adjusted by replacing filters currently implemented with

others from the larger bank in response to the changes in

+ the weighting probabilities and filter residuals. In the

above example, only the filters with the three closest

discrete values to each of the estimated parameter values

might be implemented. This would result in only nine

filters being implemented, and as the estimate of the

parameters changed, the implemented bank of filters would

'move'; see Figure I-1. This approach was shown to achieve

performance essentially equivalent to that of a single

Kalman filter artificially knowledgeable of true parameter

values, for a simple but physically motivated example of a

single input/single output second order system with

uncertain damping ratio, and undamped natural frequency.

This corresponds, for example, to a bending mode in an

aerospace vehicle (28:15,57-101; 29:17-27]. The algorithms

used for implementing the moving-bank are developed in

detail in Chapter II.

%5
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Figure 1-1. Moving-Bank Multiple Model Adaptive Estimator.

1.2 PzIbqkIeIn

Full-scale MMAE requires too large a Computational

load to be practical for most applications requiring

adaptive estimation/control. Moving-bank MMAE has been

shown to be feasible for a simple but physically motivated

application. However. it still needs to be demonstrated

that moving-bank MMAE can be useful in a more complicated

and realistic application requiring adaptive estimation/

control.
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The purpose of this effort is to apply moving-bank MMAE

to a practical application with a higher level of complexity

and further evaluate its performance potential. In addition

alternative decision logics for chosing which of the

elemental filters in the parameter space to implement in the

moving-bank will be evaluated.

1.3 Scopj.

A moving-bank multiple model adaptive estimator/

controller is evaluated for a realistic application. A

simplified model of a large flexible spacecraft, consisting

of a central rigid hup with four radiating flexible arms, is

used. The flexible arms are representative of the flexible

appendages such as solar panels or antennas attached to

actual spacecraft. The spacecraft is described in terms of

its physical parameters (mass, height, length of the arms,

etc.), with two uncertain parameters (mass density of the

arms, and the modulus of elasticity of the arms). The

uncertain parameters are discretized into 10 values each, to

provide a ten by ten (100 point) parameter space. Three

point actuators (representative of the pulse rocket motors

used on actual spacecraft) provide the control input, and

U five position sensors along with five velocity sensors

* provide the measurements for updating the state estimates.

The dynamics and measurement noise characteristics are

assumed known with no uncertainty, and are modeled as white

Gaussian processes with strengths Q and R respectively.

7
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The perfomance of the moving-bank multiple model

adaptive estimator/controller, its ability to estimate both

the states and parameters as well as to apply adequate

control to the true system is compared to a benchmark of a

single Kalman filter/controller based on (artificial)

perfect knowledge of the true parameter value. Estimator

performance is evaluated under the following conditions:

a. The true parameter value is constant and exactly

equal to one of the discretized parameter values within the

initial conditions chosen for the bank.

b. The true parameter value is constant and lies

outside the initial conditions chosen for the bank (but

0within the overall parameter space).
C. The true parameter value undergoes jumps in value

from one of the discretized parameter values to another,

the values chosen so that the new true parameter point is

outside the area covered by the moving bank.

True parameter values which are not exactly equal to one of

the discrete parameter values must be investigated before a

full evaluation of moving-bank multiple model adaptive

estimation/control can be done [28]; however, due to time

constraints, they are not treated in this thesis.

The effect on performance and computational burden of

various algorithms that can be used for initial acquisition

of the true parameter values, and for identification of when

8



a jump change has taken place, are of interest. Specific

algorithms developed in Chapter II will be tested to

determine their effect on estimator performance.

Comparison of contoller design strategies, contrasting

a single fixed-gain controller, a single changeable-gain

controller, and a moving-bank multiple model adaptive

controller, will also be accomplished.

1.5 oQt1aiiii.

The remaining sections of this thesis are organized as

follows. Chapter II develops the algorithms used for both

full-scale MMAE and moving-bank MMAE. Chapter III presents

the flexible spacecraft structure model. Chapter IV details

the simulat4 'n used for the moving-bank estimator/controller

performance evaluation. Chapter V contains an analysis of

the results of the evaluations. And Chapter VI presents

conclusions and recommendations.

I.
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II. ALGORITHM DEVELOPMENT

SI I. 1. In_ rduc i_n

This chapter details the algorithms for two of the

adaptive estimation techniques introducod in the first

chapter. First full-scale Bayesian Multiple Model Adaptive

Estimation is developed. then the modifications necessary

for the moving-bank case are discussed.

11.2. Bayesias n jmatig.j AL&zomXikR Dy&vnpae

Full-scale Bayesian Multiple Model Adaptive Estimation

algorithms are presented in this section. For a more

complete development of concepts, see reference [5:129-1361.

Let the system under consideration be described by the

following:

1(ti+l) = 6(ti+l 1 ti).(t i ) + Bd(ti)X(ti) + Gd(ti)ld(ti)

&(t = Hlti)lt i ) +

where, letting the ' denote random process:

( ) state vector

6(ti+l'ti): state transiton matrix

_(ti): known input vector

Bd(ti): control input matrix

Wd(ti): white Gaussian dynamics noise vector

Gd(ti): noise input matrix

10



zl(ti ) : measurement vector

1(t i): measurement matrix

1(ti): white Gaussian measurement noise vector

and the following statistics apply:

E(Xd(ti)) = q

E(Wd(ti)wdT (tj)) = Qd(ti)&ij

E[v(ti)) = 0

E(!(t)vT(t) = R(ti)6ij

where 6ij is the Kronecker delta function. It is also

assumed that &(to), Wd(ti), and x(t i ) are independent for

all t i .

Now, let A be the uncertain p-dimensional parameter

vector which is an element of A. where A is a subset of RP.

.1 may be uncertain but constant, it may be slowly varying,

or it may under go jump changes. The parameter vector a can

affect any or all of the following: 4, Bd. Gd- ad' H, and R.

The Bayesian estimator computes the following conditional

probability density function:

f J(ti),alZ(ti ) ( x& -11 z id = fx(tii[ .Z1lti) -l -,!i)

fallti)(lZ)

where Z(t i ) is a vector of measurements from to to ti.

Z(t i ) T T i), ti I ) ..... (t0 )]T

J JP



The second term on the right side of Equation (11-1)

can be further evaluated:

f l (t i) ( Z- 9 = f tl&( t i) t i-1) (A JLi.Zi-l)

f.gl t i ) t (i-1) (A'Zizi1

i~ f( t i) I(ti_1 ) (Z il--1

(11-2)A 1 - II-2

Conceptually, Equation (11-2) can now be solved

recursively, starting from an a priori probability density

of fa(a), since fz(t)IaZ(t i)(ZiIaZi.l) is Gaussian with a

mean of H(ti)x(ti-) and covariance [H(ti)P(ti-)HT(ti)+R(ti)],
--

where XLti-) and P(t i() are the conditional mean and

covariance respectively of x(t i) just prior to the

measurement at ti, assuming a particular realization a of A.

Using the conditional mean, the estimate of &(ti) can

be generated as:

E~x~i~l~t i ) = Z ] : fx~i~l ( :I )(x-li)
a.

= f- 0 [fAf 1 (t) ),al(t)(&'alZ-)a l d A (1I3)

S.... ).:) ( I.) Ca (IC a4)

.x (t .) a Z-i(t x .aI2(t i

12
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where the term in brackets is the estimate of &(t i ) based on a

particular value of the parameter vector. This would be the

output of the Kalman filter based on a particular parameter

value. When A is continuous over A, this would require an

infinite number of filters in the bank. In the continuously

distributed parameter case, what is typically done is to

discret ize the parameter space, yielding a finite number of

filters. The integrals over A in Equations (11-2) through

(11-4) then become summations: letting Pk(ti) be defined

as the probability of the kth elemental filter being

correct, conditioned on the measurement history, (11-2) and

(11-4) are replaced by:

(S Pk(ti) = (11-5)

j=1 ~ ~

K

= l k(ti+)pk(ti) (11-6)
k=1

where a [A 1 .a 29 .... a[] and Ak(t ) is the mean of x(t

conditioned on a = Ak and Z(t i ) = -Zi, i.e. the output of the

kth Kalman filter in the bank, based on the assumption that

A = ak. Pictorially the algorithm appears as in

6. Figure II-1.

13
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Figure II-i. Multiple Model Filtering Algorithm

The probability weighting factors for each Kalman

filter are calculated from Equation (11-5), where:

/1lim/exp[-(1/2)rkT(ti)Akl(ti)r(k(ti)1 (11-7)

~and

Ak(t.) = Hk(ti)Pk(t i )H T(t i ) + R k(t i )

rk~ti) = _ i- nk(ti)^_k(t i )

m = dimension of z (the number of measurements)

Both the residual covariance Ak(ti) and the residual rk(ti)

itself are readily available from the kth elemental filter.

.d.

14
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The estimate of the parameter and the covariance of the

parameter are given by:

alt i ) =E(aIz(t.) Zi) = aflz(ti(alzi) 4a

K

= a[ Pk(ti)(la- Ak)lda
CD_ k=1

K

= a kPk(t i ) (I1-8)
k=1

and

EH. ^( "(j T IZ _i

E:-(t[_a kt -IA(ti)]k A (ti (-9)

k=1

The covariance of the state estimate is given by:

P(ti+) = E([x(ti) - A(t i + )][x(t i ) - x(ti+)]TIZ(ti) = Zi}

- [x- (ti+)x- A^(ti x( t Iz(t )(xlZi)dx_

K

= '-Pk ti) [x_- x(t i  )] - x(t ]
k=1 f f(t Il =~t)xa'aidx

K

= Pk(ti)(Pk (t +) + [x (t i  ) - _(t i  )]

k=l [+~i ) - (ti+)] T ) (I - 0

+
where Pk(ti is the covariance of the state estimate of the

kth elemental filter.

15
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It is important to note that it is not necessary to

, compute the covariance of the parameter estimate and the

covariance of the state estimate online. They are used for
r.

the evaluation of estimator performance during estimator

- design and tuning.

11.2.1. ElementAl Esima_tor. The elemental

estimators are each constant gain-Kalman filters, the gains

of which are dependent upon the associated point in the

parameter space. Thus, each is designed on the basis of a

time invariant system model, and a stationary noise model,

and the initial transient in the resulting filter is

ignored.

The kth elemental filter estimate of x(t), denoted by

MOOt, is propagated from just after the last measurement to

just before the next measurement by:

(tkXkti l) + BdkU(ti I  (II-11)

and is updated by:

Xk(ti) = lklti )+ k[z(ti) - Hk.k(ti)] (II-12)

In these equations, the subscript 'k' indentifies each

vector and matrix as being specifically based on the kth

IL point in the parameter space.

!1



11.2.2. ConX LAAeA. The adaptive estimation

,' algorithm just developed is optimal under the conditions

that the discretized parameter space is a true model of the

physical parameters, and the true parameter vector remains

at a constant, but unknown, value. Under these conditions

the algorithm will converge to the true parameter value

[61, i.e.,

iM Pk(ti) = 0 for a t Ak

lM Pk(ti) = 1 for a = Ak

When the true parameter space is in fact continuous and the

:0. true parameters lie somewhere between the discre.ized

points, the algorithm converges to the single discrete

parameter point that is 'nearest', as defined in [61, to the

true parameters.

These results were extended by Dasgupta and Westphal

[30] for the case of unknown biases in the measurement

process, (Etv(ti)) = mv(ti), where mv(ti) can be affected by

" the parameter vector). Under these conditions the algorithm

may converge to a parameter point that is not close to the

true value, and erroneous estimates may result.

It is important to remember that the algorithm is able
V. to identify the closest parameter point only by observing

which elemental filter consistently has the smallest value

of k TAk irk: the smallest residual relative to the kth

filter-predicted residual squared value. If the residuals

are of the same size, Equation (II-7) shows that the filter

17



with the smallest value of lAki will be identified as the

correct filter. Since tAki is independent of both the

residuals and the elemental filter's correctness, if

pseudonoise is added during the filter tuning process, to

account for model inadequacies, it must not be so strong as

to mask the correctness/incorrectness of the elemental

filters. Such strong pseudonoise may well allow the

adaptive filter to converge to an erroneous parameter

value [301.

As noted in the introduction, no satisfactory

theoretical convergence results are available for more

general conditions, such as slowly varying parameters,

although empirical information suggests convergence. The

most sucessful approach used to prevent the algorithm from

locking onto one elemental filter before the parameters have

varied significantly has been to lower bound the Pk's to

prevent them from converging to zero [5,10].

11.2.3. Co ntxol. There are several 'assumed

certainty equivalence design' [12:241] approaches to

controlling systems with uncertain parameters that can be

used with a multiple model adaptive estimator. In the

first, the estimator provides only a state vector estimate

to a fixed-gain controller robustified around a nominal

value of the uncertain parameter vector, &nom* The

controller design method and controller gains are
4'..

independent of the adaptive nature of the estimator.
* tA
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The controller algorithm is of the form:

u(ti) = -Gc* ti'Anom](ti+) (II-13)

or the steady-state constant-gain version:

(ti) -Gc nom(ti+) (11-14)

A second approach is to have the estimator provide both

an estimate of the state vector and an estimate of the

uncertain parameter vector (Equation 11-8) to the

controller. The controller gain then becomes dependent on

the parameter vector estimate:

A - (t i )  = -G ce tj,iA( ti-)]I _(t i +*) ( - )

or the steady-state constant-gain version:

I(t i ) = -Gc* [(t)1( (11-16)

where a(t iJ) (as generated at the previous sample time) is

used instead of a(t ) to reduce computational delay. It is

important that the control input be applied as close to the

start of the sample period as possible, as the filter

propagation equation is written on the assumption that the

control input is present for the entire sample period.

A third approach. referred to as multiple model

adaptive control, [12:2531, is to form K elemental

controllers, each associated with one of the elemental

estimators in the parameter space. Then the final control

input becomes the probabilistically weighted average of the

19
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individual controller results in the same manner as the

state estimate was achieved:

Ak(ti) =GC[ti,Ak]Ak(t i ) (11-17)

K

1u(t i )  I P(ti)uk(ti) (11-18)
k=l

For this thesis, the controllers to be used will be

linear, quadratic cost, (LQ) full-state feedback optimal

deterministic controllers, designed to regulate the system

to the quiescent state, incascade with the state estimator

(invoking assumed certainty equivalence). The basic

structure of all the controllers described above will be

similar, where the gain matrices will be dependent upon a

particular parameter vector value.

If we are given the stochastic system [28:33-351:

i(t) = (t) + Bj + Gw(t) (11-19)

where

E(w(t)) = 0 and E(w(t)w(t+r) = Q6(r)

and the quadratic cost function to be minimized is:

I = E( f (l/2)[xT(t)Wxx(t) + uT(t)Wuuq(t)Jdt} (11-20)
0 .
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where W. and Wu are weighting matrices describing the

relative costs associated with deviations of the system

states from the quiescent state, and the cost of control

inputs. The solution for the optimal control, assuming

full-state access, is then the LQG optimal regulator:

u(t i ) -G 0 &(t) (11-21)

where the constant gains, Gc , that minimize I are given by

[12:68-2]:

SG c = [U + BdTKcBdl[BdTKC# .+ ST] (11-22)

where K c satisfies the algebraic Riccati equation

Ci K c = I + 6T[c6 - [BdTKc4I + ST]TGcC (11-23)

and

f t i +IT(,ti+l)WX6(. t i)dv
ti

ft t i +l

U = i L[T(r,ti)WxB(v,ti) + Wuldv

tit.i

21
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At
I A

SB(t~t i )  6(t.v)B d-r

ti

3d = B(ti+l-ti)

4(t 2 t 1) is the state transition matrix from tI  to t 2  and:

Note that Equation (11-21) is also the solution to the

deterministic LQ optimal control problem with no driving

noise ](t), and that if the assumption of full state access

is replaced by noise-corrupted measurements being available,

then &(t1 ) in Equation (11-21) is replaced by the state

estimates j(ti + ) generated by a Kalman Filter. This assumed

equivalence is valid if all system parameters are known

perfectly. Therefore for the uncertain parameter case G €

should be a function of the uncertain parameter vector -,

and 'forced' or 'assumed' certainty equivalence design is

used for synthesis [12:241].

11. 3. Mo vinfLeak AjLgnjithM Rpyk 1.Qn

As the number of uncertain parameters to be estimated

grows larger and the discretization of the parameter space

becomes finer, the MMAE algorithm becomes computationally

impractical for real time applications. Maybeck and Hentz

[28,29] have demonstrated that it is feasible to begin

22



with the entire bank of Kalman filters used for MMAE but

only compute the state estimate and parameter estimate for

those filters 'closest' to the current estimate of the

parameter vector. The Pk's of the unimplemented filter are

inherently set to 0, and all of the probability weighting is

distributed amongst the implemented filters. As the

parameter vector estimate changes, the implemented bank

'slides' within the larger bank: those implemented filters

'farthest' from the current estimate of the parameter vector

are dropped from the bank (no longer computed), and new

filters 'closer' to the current parameter vector estimate

are implemented instead. It is also possible for the moving

bank to change discretization level, i.e., the filters

implemented need not be adjacent in the full bank. Maybeck

and Hentz examined changing discretization level, starting

with a coarse discretization during an acquisition

period, then changing to a fine discretization once

parameter acquisition was achieved [28,29].

11.3.1. Iki !9iLhtip AM1Ljjj. The outputs of each

elemental filter, ^j(ti+), are put through a weighted

average in the same manner as in Equation (11-6), except

that instead of summing over the full set of K filters, only

those implemented in the moving bank are summed. Thus if I
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filters are implemented, Equation (11-6) becomes.

Similarly , Equation (11-5) describing the Pj (ti)'s becomes:

Pj(t) f= -~i)p~j, (11-25)

kilfk(A(ti)Pk(ti.l)

where, as before:

f~~~~~~. 1 z(i) 1)ax[(/)jT(d -lt.jt)

and

A.i(t.) =H.P.(ti-)HjT +R.

m is the dimension of z (number of measurements)

R. is the measurement noise strength

24
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11.3.2 Sl.idin_ jp !__jj Bink. When the true

parameter vector is associated with a point within the

moving bank, the moving bank operates esentially like a

smaller version of the full-bank estimator. However, when

the true parameter point lies outside the moving bank, this

condition must be detected and some action must be taken to

bring it within the moving bank or the estimate will be

erroneous [28:22,29:101. Since the true parameter point is

both unknown and uncertain, some means detecting when it is

not within the moving bank must be determined. Addition-

ally, the estimator can be expected to operate best when the

moving bank is centered on the true parameter point,

therefore even if the true parameter point is within the

bank but is close to the perimeter, the bank should be

moved. Maybeck and Hentz [28:22-24,29:10:12] investigated

four means of detecting when the true parameter point was

not within the moving bank.

11.3.2.1 Residual MonitoriniL. Let a likelihood

quotient L.(t i ) be defined of the quadratic form

appearing in Equation (11-5):

L.(ti) = rjT(ti)A j-lti) r.(t i ) (11-26)

When the true parameter point is outside the moving bank,

all of the likelihood quotients for the elemental filters

within the moving bank can be expected to exeed some

threshold level T, the numerical value of which is set in an
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ad hoc manner during performance evaluations. This

detection method would indicate that the moving bank should

be moved at time t i if:

min(Ll(ti), L 2 (t i ). .... LI(ti)) . T (11-27)

The bank should be moved in the direction of the filter with

the smallest Li, as that filter can be expected to be

nearest to the true parameter point. This method of

detection responds effectively and quickly to a real need to

move the bank but is also apt to respond erroneously to a

single instance of large measurement corruption noise.

11.3.2.2. Parameter Pojjiqon Etima e M nit&Xinz.

The current estimate of the parameter vector is adapted from

Equation (11-8):

SL(t i )  ajpj(t i ) (11-28)
j=l

Using this logic would require a move anytime the bank was

not centered on the point closest to the estimated parameter

point. Since a(t i ) depends on a history of measurements,

this method of detection is not as sensitive to a single

instance of large measurement noise as is residual

monitoring.

Z2A
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11.3.2.3. P.trailiz Po iin aA Y_!.9qitv Estimate

Monitorini. The history of parameter position estimates

can be used to generate an estimate of the velocity of the

true parameter point in the case where the parameters are

varying slowly and steadily in time. In this case, the bank

is moved after the current update but before the next

propagation cycle, to center it upon the point closest to

the projected parameter point. In Maybeck and Hentz's

investigations, this method of detection was found to perform

worse than did parameter position estimate monitoring or

probability monitoring described below [28:85,29:23].

11.3.2.4 Probabil.it Mon itotinL. The conditional

hypothesis probabilities pj(t i ) computed via Equation

(. (11-25) are monitored, and if the largest p 1(ti
) is larger

than a chosen threshold, the bank is centered on that filter.

.'. .\*. Maybeck and Hentz [28:85,29:23] found that this method of

detection, when used by itself, provided performance as good

as parameter position monitoring and required less

computation.

11.3.3. Cha-jinjL 1h Di.cretization The filters in

the moving bank need not be those associated with adjacent

points in the parameter space. As seen in Figure 11-2, it

may be more appropriate to space the filters implemented in

S.' the moving bank widely over the parameter space. This can

-. be expected to decrease the accuracy of the estimate, but

67, the probability that the true parameter point will lie
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.igure 11-2. Bank Discretizations: a. fine, b. coarse.

within moving bank can be expected to increase. Maybeck

and Hentz [28:87,29:25] found that parameter acquisition was

enhanced in some cases by starting the moving bank with a

discretization coarse enough to cover the entire parameter

space, then contracting it to a finer discretization when aI scalar distance meassure associated with the covariance of
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-i . the parameter estimate:

E([a - A(tt)][a - )T_() = T =

A a (tiA pjti) 11-29)

j=1

drops below some selected threshold. The contraction from

the coarsest discretization to the finest discretization can

be done either in one step or several.

The bank can also be expanded during normal operation.

This would be appropriate if the true parameter point

* underwent a large jump change in position (due perhaps to

%" some large and sudden physical change in the system). Such

a condition can be detected by the residual monitoring

discussed earlier [28:84,29:20]; in this case all of the

Li's would be expected to be large and close to each other

in value. Probability monitoring may also give some

indication of this condition by the pi's all becoming close

to each other in value. After the bank is expanded, it is

then allowed to contract subsequently about the new

* parameter point, in the manner discussed earlier.

11.3.4 Initializatgion. When the moving bank is

moved, expanded or contracted, it is necessary to

initialize any filters that were not implemented in the

moving bank before the action took place. Each new filter

must be assigned values for 6i, Bdj, K, Hi Gdj xj (t

and pj(t i )  (28:28,29:13]. All of these except Xj and pj

- 29



a' * * 0 4 6 6 1 6 filter no
'.'C, longer

# - -• • • 0 # O Oemp lemen ted

al elemental
- , Di 0 0 l 0 0 0 0 kalman

a filter

X estimated
# 0 r I 0 I o o 6 6 uncertain

parameter
* # 0 0 0 6 • 0 0 0 value

60 6 6 6 6 6 6 6 0

a
2

6l , 6 0 6 6 0 0 O

*9 0 6 6 6 Ifilter no
loanger

6 • 6 6 6 6 6 0 6 6 wemplemented

o elemental
. o o 0 0 0] I o o 0 6 kalman

a filter1. * 0] 0 Li I o * *o
X estimated

o , n n 0l , , , , 0 uncertain
parameter

6 6 0 60 6 0 6 value

. o,.a
2

,.'v :re II-3. Bank Move: a. horizontal, b. diagonal.

" are determined by the point in the parameter space the

filter occupies.

An appropriate choice for the xj(ti)'s is the current

moving-bank estimate of the system states K_(ti ). The new

values for the pj(ti)'s will be dependent on the number of

new filters. For a move this will be some fraction of the

total number of filters in the moving bank; as seen in

Figure II-3, for the case of nine filters in the moving
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bank, it would either be Lhz-,e or five filters. Good

performance may be achieved by dividing the total

probability weight of one minus the sum of the unreset ps

among the new filters. This can either be divided equally,

or it can be apportioned in a manner indicating the new

filters' expected correctness as described in Equation

(11-30) [28:29,29:13]:

fji(z&(ti))(1 - Pk(ti))

picht =f (11-30)

ch k(.E(ti))j

where ch = changed, unch - unchanged, and:

f = exp[-(1/2) T(ti)A l(t j

(2)m/
2 1Aj (ti) 1(1/2)

Aj(ti), m, and R are as defined before, and:

-j (t i )  = &i- ajX t

This may require enough additional computation time that

there is no net performance improvement over dividing the

net probability weight evenly among the changed filters.

For an expansion or contraction, it is likely that all of the

filters are changed or that the old p,(t 1 )'s are no longer

valid, in which case setting all the p (t )'s to 1/I is

appropriate.
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II.3.5. Noxi a&Ij Aj~lULI ~gli u ll. The controller

for use with the moving-bank multiple model adaptive

estimator can be designed following any of the three methods

discussed for the full-bank estimator in Section 11.2.3.

The only difference is that for the moving bank case, the

multiple model adaptive controller only uses the controllers

associated with the filters currently implemented in the

moving bank. Maybeck and Hentz received good and

essentially identical results with a single changeable-gain

controller and a moving-bank multiple model adaptive

controller. The single fixed-gain controller performed

poorly when the true parameter vector differed significantly

from the nominal parameter vector for which the controller

was designed. In addition, performance was sensitive not

only to the magnitude of the error made in estimating the

, V" parameter vector, but also was more sensitive to errors in

one parameter than the other, and whether the parameter was

overestimated or underestimated [28:104-105, 29:25-27).

Maybeck and Hentz also found it necessary to shut off

control for the initial period during which the moving bank

was acquiring the parameter estimate. If control was

applied before the parameters were identified, the wrong

control was often applied, driving the system unstable
U

(28:104, 29:251. Turning off the control was also necessary
..'

for the same reason after a jump change in the true

parameter point. This led to the recommendation that an

appropriate method of deciding when to enable control be

32
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investigated, based on a determination that parameter

acquisition had taken place. The possibility of using the

fixed gain controller based on a nominal parameter vector

during the acquisition phase, rather than simply disabling

control entirely was also suggested [28:106].

11.4 Ambi iitz iti Ai& A&LLLLi

A tool that can be used to predict the ability of the

moving-bank multiple model adaptive estimator to center

itself correctly on the filter in the bank which is closest

to the true parameter point, is ambiguity function analysis

- . [5:97]. The generalized ambiguity function is qiven by:

Ai(AAt) = '" L[IjZ] fz(t i ) iL(t)(ZiLt)d~i (11-31)

where & is the parameter vector, at is the true parameter

vector, and L[I,Z i] is a likelihood function (5:97-99]. For

a qiven value of l t , this function of j yields information

% about the expected ability of the adaptive filter to

estimate parameters. When plotted on a three dimensional

surface, over the plane of the two-dimensional parameter

space, the curvature of the ambiguity function at At

predicts the precision with which the adaptive estimator can
Fig"

estimate the parameters. The moving bank will center itself

on the highest local peak within its area; if there is no

local peak, the moving bank will move uphill until it

encounters either a local peak or the edge of the parameter
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space. If there are multiple peaks in the parameter space,

the moving bank may converge to incorrect parameter values,

depending on the bank starting position. In addition, the

greater the curvature at the peak, the greater is the

precision [28:3321. Examination of the ambiguity functions

may be useful in determining starting points for the moving

bank, appropriate discretization levels, and contraction and

expansion strategies. It is important to note that the

ambiguity function varies with At; thus a different plot is

required for each true parameter point of interest.

* The curvature of the ambiguity function is inversely

related to the Cramer Rao lower bound on the estimate error

covariance matrix by [5:971:

E[a - At[. - JtT) . [-(81/80) Ai(AAt)Ia=a 1-1 (11-32)

The ambiguity function (Equation (11-31)) can be

calculated through the evaluation of covariance analysis

results in which the true system is based on at and the

estimator is a single Kalman filter of the same structure as

the true system, but based on a instead of at. The

ambiguity function can thus be written (5:98, 28:333]:

A i (A,At) = m/2 ln(2n) - 1/2 In(A(ti;A)I]

- 1/2 tr(A-l(ti;)[H(ti)Pe(ti ;At0&)HT(ti)+R(ti)])

- n/2 In(2n) - 1/2 ln(P(ti ;A)Il]

- 1/2 tr(P-l(ti ;A)Pe(t+;At.A)) (11-33)
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where

A(ti;i) = [H(ti)P(t i ;A)HT(t i) + R(ti)] 1

for the Kalman filter based on £

+

Pe(ti-;jt,&) is the covariance matrix of the
error between the state estimates of
the Kalman filter based on I and the
states of the true system based on
A t. where '-' or '+' denotes before
of after incorporation of the it

measurement.

'm' is the number of measurements.

and 'n' is the number of states.

The first three terms are in actuality summed over the last

N sample times; here N is set equal to one, which reduces

the size of the fluctuations in the value of Ai(&,at)

(flattens the plotted surface). This does not aid the

analysis of the plots, but does make it computationally

simpler.

11.5 S-42MALI

The algorithms for full-scale MMAE and the moving-bank

multiple model adaptive estimator have been developed in

this chapter. Both estimators are expected to give accurate

adaptive estimates of true system states in many appli-

cations; however, the moving-bank estimator is expected to

Wbe a more practical estimator for implementation because of

the reduced computational loading.
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Several areas specific to the moving-bank estimator

were explored. Four means of detecting when movement of the
moving bank is required were discussed:

a. residual monitoring

b. parameter position estimate monitoring

C. parameter position and velocity estimate

monitoring

d. probability monitoring

Changing the discretization of the moving bank was

discussed both as an approach to initial acquisition of the

unknown parameter vector and as means for reacquisition

after a jump change in the unknown parameter vector.

Parameter estimate covariance monitoring and probability

monitoring were discussed as means of detecting when the

bank should be contracted. Residual monitoring and

probability monitoring were discussed as means of detecting

* when the bank should be expanded.

When moving, expanding, or contracting the moving bank,

it is necessary to reset the state estimates and probability

weightings of the new filters in the bank. The current

overall state estimate is appropriate for resetting the

individual state estimates. After the bank has been

expanded or contracted, it is appropriate to reset the

probability weightings of all of the filters to 1/J. After

the bank has been moved, only the probability weightings of

the new filters should be reset by dividing among them the

total probability weight left after subtracting the
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probability weightings of the unchanged filters from the

total weight of one. The remaining weight can be divided

either evenly or in a manner reflecting the estimated

correctness of the now filter.

This research is intended to explore and expand these

movement, expansion, and contraction decision making and

reset methods, as applied to the control of the bending

modes in a realistic model of a large flexible space

structure. The model of the flexible space structure is

developed in the following chapter.

0
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III. SPACE STRUCTURE MODEL

This chapter describes the system equations for the

'Draper Labratory / Rocket Propulsion Labratory (RPL)

Configuration' model of a large flexible space structure,

illustrated in Figure 111-1. The structure consists of a

rigid central hub with four structurally identical flexible

appendages cantilevered radially from the hub. Experimental

work concerning the planar rotational/ vibrational dynamics

of this U.S.A.F. Rocket Propulsion Laboratory demonstration

model is being conducted at the Charles Stark Draper

Laboratory, where a physical model of the structure is

supported on an air bearing table [31].

The differential equations describing the model are

4developed from the equations of motion for the unforced

system by Muckenthaler [32]; the expressions for the kinetic

and potential energy are developed and discretized, using

the assumed modes method with terms of higher order than two

ignored. This allows the mass and stiffness matrices to be

identified. The integral equations for the mass and

stiffness matrices are solved symbolically and a closed form
9..

expression for them is achieved. The second order

differential equations are then placed in the standard state

space form for a stochastic system model. This allows the

construction of the elemental Kalman filters used in this

thesis for the investigation of moving-bank MMAE.
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R: hub radius 12c: rotational moment

L: arm length of the tip mass

t: arm thickness 10: rotational moment

Wh: arm height of the hub

M. mass of the hub mn2 : mass of the tip mass

Figure 111-1. Draper/RPL Configuration Model.
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111.2. ___oCn 2AIL Fors

As described by Muckenthaler [32] the motion of the

uncontrolled Draper/RPL configuration model can be described

by the second order vector differential equation [32:25]

M j + C _ + K _ = 0 (III-1)

where:

M: is the N x N symmetric and positive definite mass

matrix

C: is the N x N structural damping matrix

* K: is the N x N symmetric positive semi-definite

stiffness matrix

_q: is the N dimension vector of generalized coordinates
_q - o. U1 ... up# v,... vp I T

where 0 is the rotational displacement of the hub,.

and U i and V i are the generalized displacement

coordinates of the arms, and N = 2 p + 1, where p is

the number of modes of interest.

111.2.1. Astjion. The equations developed to

describe the Draper/RPL configuration model are based on the

following assumptions [32:111:

a) The longitudinal and out-of-plane vibrations of the

arms are of much higher frequency than the transverse

vibrations and are negligible.

J * 0.' b) Anti-symmetric deformations are such that the

deflections of the first arm are equal in magnitude but

,"".: opposite in direction to the second arm, and the deflections

40
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Figure 111-2. Anti-Symmetric Deflections [32:11].

of the third arm are equal and in magnitude but opposite in

direction to the fourth arm; see Figure 111-2.

c) Since the hub of the physical model is supported by

an air bearing table, the force of gravity can be neglected

in the derivation of potential energy.

d) The structural damping coefficients are very small;

therefore the structural damping matrix C is approximated as

the zero matrix.

e) All four arms are structurally identical with:

L L LL 1 = 2 = L 3 = 4 =L

tl = t2 = t3 = t4 = t

h I =h 2 =h 3 =h 4 = h

and the four tip masses are identical and equal to m 2 .
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111.2.2. Malj and Stiffness E _ _tio. The mass and

stiffness matrices can found by solving for the kinetic and

potential energy of the free vibation system. Neglecting

the terms of order three or higher, the kinetic and potential

energies can be written in the form [32:23]:

T = 1/2 iTM

V = 1/2 oT K _

where the elements of the mass matrix are given for

i = 1,....p ; and j = l.....p ; by:

M(1,1) = 2 (Ic + I2c)

R+L

M(1,i+l) = 2pth J xOi dx + 2m 2 (R+L)0i(z=x-R=L)

R
+ 2 1

2 c 'i(z=x-R=L)

4R+L

M(I,i+p+l) = 2pth f yOi dy + 2m 2 (R+L)0i(z=y-R=L)

R

+ 212c 'i(z=y-R=L)

M(i+l,1) = M(1,i+l)

M(i+p+1,1) = M(1,i+p+l)

R+L

M(i+l,j+l) = 2pth f 0.0. dx

R

+ 2m 2 0i(z=x-R=L)0 i (z=x-R=L)

+ 212c 'i(z=x-R=L)O j(z=x-R=L)

4
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R+L

M(i+p+l,j+p+l) = 2pth f 0i0 dy

R

+ 2m 2 0i(z = y - R = L) j (z=y-R=L)

+ 212co'i(z=Y-R=L)O' j (z=Y-R=L)

M(i+l,j+p+l) = 0

M(i+l+p.i+l) = 0

where 0i is a function describing the bending modes of the

/arms, defined as:

0 Oi(z) = 1- cos(iwz/L) + (1/2)(-l)i+l(inz/L)
2

z = x R (or y - R)

and 0'i is the first derivative of 0i with respect to z.

The pysical dimensions of the model t, h, m 2 , 12cA 1oo,

R. and L, are as shown in Figure III-1. In addition p is

the mass density of the arms, and:

ic = (1/2)I ° + 211 + 2m 2 (R+L)2

R+L

11 = pth f x2 dx

:9

-.-9 The elements of the stiffness matrix are given for

i = l...,p ; and j = I....p ; by:

K(1,1) = 0

K(i+1,I) = 0

K(i+l+p,l) =0

K(Ij+l) 0
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K(l,j+p+l) = 0

L

K(i+lj+l) = 2E1 f Oi''(z)Oj''(z) dz

-0

K(i+l+pj+l+p) = K(i+l,j+l)

K(i+l+p,j+l) = 0

K(i+l,j+l+p) = 0

where E is the Modulus of Elasticity of the arms, and I is

the area moment of inertia based only on t and h as:

I = (1/12)ht
3

0 and 0"i is the second derivative of Oi with respect to z.

The equations for the elements of the M and K matrices

are simplified and evaluated in Appendix A.

111.2.3. EigvA.lIues of the free IyA.Im. The

eigenvalues of the free system can be found by solving the

generalized eigenvalue equation:

K = %Mx (111-2)

The square roots of the eigenvalues represent the

vibrational frequencies of the modes depicting the relative

motion of the free arms. The modes appear in pairs, very

close in frequency, depicting what Junkins [311 calls

'unison' and 'opposition' modes. The opposition modes are

simple cantilever beam modes characterized by the adjacent

beams moving in opposition. He states the unison modes are

perturbed cantilever modes, with just slightly higher

frequencies, with all four beams moving in unison and the
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Opposition Mode Unison Mode

/1

00

Figure 111-3. Opposition and Unison Modes (32:26].

hub having non-zero rotation. The hub rotation is necessary

to counter the unison movement of the arms and tip masses

to conserve angular momentum in the system [32:26]; see

Figure 111-3.

111.3 _sta_. •niq E~om

The second order differential equation describing the

free system, Equation (111-1), can be modified to describe

the controlled system as:

M j + K _q = B u (111-3)

where B is an N x M control matrix and q is an W-dimensional

control vector added to the original Equation (II1-1).

Recall that structural damping was assumed to be very small

so the damping matrix C has been neglected.
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If the generalized coordinate vector is augmented

with it derivative:

_ = [ T . iT ]T

then Equation (111-3) can be rewritten as:

0 I 0
0 = 0 +u(I-4

01K 0 -M-1B-

in first order form.

On the Draper/RPL configuration model, actuators are

located one on the hub and one halfway along each arm.

These apply a torque u I to the hub, a torque u2 at z=L/2

to arms 1 and 2, and a torque u 3 at z=L/2 to arms 3 and 4.

Recall Figure il-2, in which the arms are numbered. Matrix

B then becomes [32:30]:

1 2 2

B = 0 2'i(z=L/2) 0

LO 0 2#' i(z=L/2)j

where .i(z) is of dimension p (the number of modes of

interest). B is therefore an N x 3 matrix.

Position and velocity measurements of the model are

available from colocated position and velocity sensors on

the hub and at positions along each arm. For the state

space model, the measurement equation (assuming for the

moment noise-free measurements) is thus:

H0
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where the measurement matrix H is [32:30]:

1 OT  O T

0 #Ti(z=L/2) O T

H 0 T(z=L)

0 T  Ti(z=L/2)

LO OT  i (z=L)

1 column p columns p columns

H is thus a 5 x N matrix.

111. 4. Staoqhmtki£q Eo_m

The mathematical model can be placed in stochastic form

by adding a noise matrix G w * multiplying the control input

noise w, to Equation (111-4), and a measurement noise vector

to Equation (111-5). If it is assummed that input noise

will enter through the actuators and measurement noise

through the sensors, then Gw becomes identical to the

augmented B matrix. The system is thus described by:

_ 0 X][ :
M + (0+P-6)

and

I1.5 Th Physifa 1 S _ nat

The nominal constants describing the physical system

are listed in Table III-1. For the purpose of setting up a
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parameter space in which to test moving-bank MMAE

algorithms, p, the mass density of the arms, and E, the

modulus of elasticity for the arms, were allowed to vary -

20% to +16% from their nominal values in discrete steps of

4%. yeilding a 10 by 10 point parameter space. This is an

unrealisticly large amount of variation in these parameters,

but it proved to be necessary for the purpose of

investigating moving-bank MMAE algorithms as applied to this

system.

- Table III-1. Configuration Constants for Draper/RPL Model

R: hub radius I ft

1 0: hub rotary inertia 8 slug-ft 2

p: mass density of the arms = 5.22 slug-ft 3

E: arm modulus of elasticity = 1.584E09 lb/ft2

t: arm thickness 0.0104166 ft
h: arm height 0.5 ft
L: arm length 4.0 ft

m 2 : tip mass 0.156941 slug
1 2c tip mass rotary inetria = 0.0018 slug-ft 2

111 . 6. SflAjj AAARRIiig

If p is taken to be two (two opposition and two unison

modes) then N is five, and this results in a ten-state model

for the augmented system. A ten-state model is needlessly

more complex than is required for this thesis. If the

hypothetical purpose of this estimator/controller is to

eliminate uncommanded torque to the hub of the spacecraft

(as might be required if it is desired to point an apparatus

on the hub in a specified direction), then it is only
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necessary to control those bending modes which produce a

torque on the hub.

As discussed earlier, only the unison modes produce a

torque on the hub [32:26]. Junkins [311 determined that the

unison modes were the even numbered modes (i.e. 2,4.6 ....).

If the opposition modes are assummed to be stable the

matrices describing the system can be simplified by

eliminating those state variables depicting the positions

and velocities of the opposition modes. The state vector is

then reduced to six states and the matrices describing the

system need to be simplified by eliminating the rows and

columns pertaining to the opposition modes. Thus for the

F matrix, every other row and column is eliminated, and

the result is a six by six matrix. For the augmented B and

G w matrices, every other row is eliminated making them six

by three matrices. For the augmented H matrix, every other

column is eliminated, leaving a ten by six matrix. Sample

matrices for a nominal case are shown in Appendix A.

111.7. Summary.

This chapter developed equations describing a realistic

model of a large flexible space structure. The stochastic

state space mathematical model derived is dependent on the

physical parameters describing the real-world system.

Variation in the physical parameters will create variation

in the stochastic model, and this will allow investigation

into the use of moving-bank MMAE to estimate both the system

Fstates and the varying of the physical system.
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IV. iElUL2A

IV.1. Itrxu4jjj

In order to evaluate the performance of the moving-bank

multiple model adaptive estimator/controller, it is

necessary to simulate the space structure and the

estimator/controller operation. The computer simulation

used provides a Monte Carlo analysis of both the space

structure model and the estimator/controller. This chapter

contains a brief discussion of Monte Carlo analysis, an

outline of the computer software used to accomplish the

analysis, and the plan for analyzing the performance of the

moving-bank algorithm and the specific logics used for the

move, contract, and expand decisions.

IV.2. Monjq 9£Ax1 AanAiyi&

The random nature of the input and measurement noise

processes makes it impossible to select a single typical

example of them. Thus in order to characterize the

performance of the moving-bank multiple model adaptive

estimator/controller statistically, it is necessary to

examine the ensemble average of the estimator/controller

performance using many samples of the error process. Monte

Carlo analysis does precisely this: a number of individual

time simulations of the estimator/controller are made and

sample statistics (means and covariances) are computed

directly for each sample time [33:291.

so



For the analysis performed in this thesis, the true

system model is described by the linear time-invariant

stochastic difference equation:

llti  = .(ti 1 )  + BdIIlti _1)  + Gdl ti _I)  (IV-l)

where

4 is the state transition matrix from ti I to t i

Bd is the control input matrix

Gd is the noise input matrix

Recall that, for the Draper/RPL model as shown in Equation

(111-6), the noise input matrix is identical to the control

input matrix, therefore:

Bd = Gd

where Bd is the discrete-time equivalent of the augmented B

10 matrix of Equation (111-6), given by [33:171]:

~ ti1
Bd = t (ti,c)B dr

ti-

and A(t i ) is the discrete time equivalent of the augmented

state vector P_ of Equation (111-6). Also note that 4,

and Bd (and therefore Gd) are all functions of the true

parameter vector At. where

At Pt

The model is driven by both the known control i(tiI) and a

discrete zero-mean white Gaussian noise w(ti- 1 ) of

covariance Od . Noise-corrupted measurements of the system
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states are provided to the estimator in the form of:

&(t i ) = HK(t i ) + v(t i ) (IV-2)

where H is now the augmented version of the measurement

matrix shown in Equation (111-7) and the measurements are

corrupted by a discrete-time zero-mean white Gaussian

measurement noise y(t i ) of covariance R.

The true system and the estimator/controller are

operated from time to to time tf for a sufficient number of

runs that the computed sample means and covariances of the

random variables of interest are good approximations to

[ ensemble averages (expectations). It is possible to

determine the number of runs that is sufficient by observing

how the computed sample statistics change as the number of

runs is increased; after a sufficient number of runs, the

sample statistics will converge to a constant [33:29]. For

this problem that entails on the order of 10 or more runs.

Figure IV-l depicts the simulation of the true system,

the estimator, and the controller. The variables of

interest are:

the system ('truth model') states - At(ti)

the error in the estimate of the system states -

ix (t i )  = Xt(t i ) - t )
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(ti) -''truth t.system ! - za e~ati

t (t.

k(ti) esti- C 1ontrol u(t '
2 t mator

* Figure IV-1. System, Estimator, and Controller Simulation.

the error in the parameter estimate -

and the control input - u(t i )

The means and covariances of the variables of interest are

all computed similarly; for example, the mean of the error

in the state estimate is computed as:

N

Efex(ti)) - Nex(ti) = (l/N) exk(ti) (IV-l)
~ k=l

where N is the total number of runs performed in the Monte

Carlo analysis, and ex(ti) is the value of gx(ti) during the
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kth run. The covariance of k(ti) is computed as:

E([ x~t )  -E{ x(ti))]I[px(ti) - Eflx(ti))]I T )  Pex(ti)

N

T A T(1(1-N) Sexk(ti)ixk(ti)- (1/1-N)) Nex(ti)Mex(t i ) (IV-4)
k=1

When evaluating the estimator alone the controller

block in Figure IV-l is replaced by a dither signal which

excites the system states, but is independent of the

performance of the estimator. The dither signal is used
6

based on the experiance of Rentz (28:58], who found that

system identifiability was enhanced by sufficiently and

persistently exciting the true system modes with a known

01 periodic input. Without the dither, the estimator had

considerable difficulty in identifying the uncertain

parameters, and little basis for evaluating various decision

algorithms was found because the system would essentially

reach a quiescent state reqardless of the algorithm used

[28:57-58]. The specific dither signal to be used

(magnitude, frequency, etc.) is determined experimentally as

a rigorous determination of the optimal input to enhance

system identifiability is beyond the scope of this effort.

It is most appropriate to look at the statistics of the

error in the state estimate and the error in the parameter

estimate in evaluating the performace of the estimator. The

error in the state estimate gives the best means of
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comparing the estimator to other types of estimators, and

the primary reason for adaptation is to enhance state

estimation precision, rather than to provide accurate

parameter estimates for their own sake. The characteristics

of the error in the parameter estimate reveals the accuracy

of the parameter estimates that may later be fed to the

controller. The error in the parameter estimate can also

give insight into how good a job of identifying the closest

elemental filter the moving-bank is doing, thereby giving a

means of evaluating the various move, contract, and expand

algorithms; statistics on the location of the center of the

bank are also valuable in this evaluation.

When evaluating the estimator/controller combination it

is more appropriate to look at the statistics of the true

state values and commanded controls. In this thesis, the

object of the control input will be to drive the states to

- .the quiescent state; therefore, deviations from zero are

undesirable characteristics to be analyzed in evaluating

controller performance. It may also be useful to examine

the control input to detect unreasonable commanded control

levels.

IV.3. Software Desc r ipt ion

The Monte Carlo analysis of the moving-bank estimator/

controller required the development of three computer.computer

programs (for a detailed discussion, see Appendix C.). The

first program is a preprocessor which creates the parameter

.i.
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space. The second program is a primary processor which

perfoms the Monte Carlo simulation runs and generates the

data describing each run. The third program is a

postprocessor which computes the means and covariances of

the variables of interest and generates plots based on their

values. In addition, a program which computes the ambiguity

. Y functions and generates their plots was developed as a

separate analytical tool; it requires a variation of the

preprocessor to set up the parameter space values it uses.

The preprocessor sets up the parameter space. That is,

for each realization of the uncertain parameter vector, it

computes the matrices necessary to describe that parameter

point uniquely in the equations used to describe the truth

model and filters. This requires that, for the kth

parameter point, the 6k- Bdk" Bk' Kk- Pk(ti ), Ak-' and

the Gk* matrices and the determinant of Ak be computed. The

preprocessor takes as input the ten discrete values each

parameter can assume, and the weighting matrices W x , and Wu

which describe the quadratic cost function used in the

design of the LQG controller gain (G) matrices. The

preprocessor outputs a file containing all the matrices

calculated, the weighting matrices, the strength of the

input noise, and the covariance of the measurement noise.

Unless the inputs change, the file containing the output can

be used for all of the simulation runs, making it

unnecessary to rerun the preprocessor.
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The primary processor performs the Monte Carlo

simulations. It consists of an executive routine which

calls several subroutines. After input and initialization,

the executive routine consists of an outer loop that counts

the desired number of Monte Carlo runs, and an inner loop

* ~'that performs the operations necessary for each sample

period from the starting time of the simulation (t o ) to the

ending time (tf). For each sample period, separate routines

are called to propagate the true system from the last

sample time, propagate the filters currently implemented in

the moving bank from the last sample time, take a noise-

corrupted measurement of the true system, update the filters

in the moving bank, calculate the control input, and finally

make the decision whether to move, expand, or contract the

* bank. If it is decided to alter the bank, separate routines

are called to perform the move, expansion, or contraction.

After the computation for each sample period is complete,

the variables of interest are written to a data file.

Following each run, the outer loop reinitializes all

necessary variables before begining another run. Inputs to

the primary processor are the file containing the

description of the parameter space, true system parameters,

a mode input which specifies the move/contract/expand

algorithms to be used and associated thresholds, initial

probability weightings for the filters in the moving bank,

and initial filter states. The output of the primary

processor is a data file for each variable of interest
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covering all of the runs, and a more detailed print file

covering just the first run which includes information

y describing the exact filters implemented in the moving bank

and the variable affecting the decision algorithms. The

print file allows detailed analysis of unexpected or unusual

results, but avoids excessive output.

The post-processor takes a data file of a variable of

interest and calculates the sample means and covariances for

each sample time from to to tf. The post-processor then

generates plots of time histories of the means of each

variable of interest + la, where is its standard
0

deviation. Thus each data file generated by the primary

processor requires a separate run of the post-processor;

this provides for simplicity and flexibility in determining

which variables to plot.

The simulation requires that the driving noise w(ti_ 1 )

and the measurement noise v(t i ) be zero-mean white Gaussian

processes. Fortran provides a random number generator which

can be used to approximate the required random variable's

realizations at each time. If yi is the random variable

available directly from the random number generator,

uniformly distributed between 0 and 1, then a zero-mean

Gaussian random variable with a variance of 1 can be

Oapproximated 
by:

12

r = Yi 6 (IV- )~ i=1 ~
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Y. In order to simulate a zero-mean Gaussian random vector with

covariance Qd' the following operation is performed:

w = Dr

where the elements of r are computed by independent calls to

Equation (IV-1) for each scalar component, and where

D = V-d; i.e. Qd = DDT

For the sake of simulation, the Cholesky decomposition is

used to generate the square root (33:408].

IV.4. Sim-41Ation Plan

A systematic approach will be used to study the

performance of the moving-bank estimator/controller. The

performance analysis will be divided into two main parts.

First the performance of the estimator alone, without

feedback control (i.e., the controller block in Figure IV-1

is replaced with a dither signal independent of the state

estimates), is evaluated. Analysis in this portion of the

study will concentrate on qualitatively identifying the

'best' estimator configuration which will then be used for

the analysis of the controllers to identify the 'best'

adaptive estimator/controller combination.

The performance of the estimator alone is accomplished

by driving the true system with a zero-mean white noise in

combination with a dither signal for each of the

move/contract/expand decision algorithms to be tested.

For each decision algorithm being evaluated, the true
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4parameter vectors At(t i ) will be chosen which exercise

that algorithm. The estimator will be evaluated first using

only movement at the finest discretization level, and the

issue of initializing the probability weightings of the new

filters added to the bank will be explored. Then the

effects of contraction from a coarse discretization to a

fine discretization will be explored and contrasted to

straight movement. If contraction proves beneficial,

expansion to a coarse discretization following the detection

of a jump change in the true parameter point will be

investigated.

To evaluate the effect of computing probability

weightings for new filters added to the bank during a move

based on their expected 'correctness' (e.g., based on how

far the new filters' a values are from the current

t i)) vs. setting the probability weightings of the new

filter to an equal share of the total probability of the

filters removed, the system uncertain parameters will be

constant over to to tf, and set equal to one of the

-' discretized points in the parameter space different from the

initial bank center. The effect of the probability

weightings can then be seen in the speed with which the

parameter estimate converges to the true system parameter

point, and in the error in the state estimates. Movement

primarily takes place when the true parameter point lies

outside the area encompassed by the moving bank; it does not

matter whether the true parameter point is exactly equal to
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one of the discrete parameter points or not as long as it is

initially outside the moving bank area; therefore, the true

parameter point is set equal to one of the discrete

parameter points for simplicity. The issue of how the

moving bank tracks a slowly varying true parameter point is

not investigated by this thesis due to time constraints.

For the evaluation of simple bank movement, the bank size

will begin at the finest discretization and no expansion or

contraction will take place.

In order to evaluate the effect of contraction of the

* bank about the current parameter estimate, the true system

parameters will be chosen the same as for the probability

computation evaluation, and the performance of the estimator

with bank contraction and movement can then be compared

directly to the performance of the estimator using only

movement to identify the uncertain parameter. For this

portion of the evaluation, no expansion will be allowed to

take place.

The evaluation of the expansion algorithm using

residual monitoring will be conducted by using a jump change

in the uncertain parameters from one discrete parameter

point to another discrete parameter point at a time tj where

w 0 to<tf; and tj is greater than to by an amount sufficient

to allow the estimator to converge to the first uncertain

parameter point. The expansion algorithm's purpose is to

allow the estimator to react more quickly to a jump change

\ .'. in the uncertain parameter vector's value (as if there had
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been a catastrophic failure in one of the arms of the space

structure model) than would be possible by allowing the

estimator to converge to the new point by movement alone.

Therefore, the results of the simulations using expansion

will be compared to simulations using the same jump changes

in parameter value where expansion is not allowed.

After the evaluation of the individual estimator

algorithms, a composite 'best' estimator will be determined,

made up of the move/contract/expand algorithms that

performed the 'best'. The determination of 'best' will be

* based upon a tradeoff between added computational loading

and faster state and parameter aquisition times, lower state

and parameter estimate biases, and lower state and parameter

estimate error variances. The goal in moving from full-

scale MMAE to moving-bank MMAE is to obtain an estimator

with similar performance but which has enough of a reduction

in the computational loading required to make it practical

for more applications. Therefore, any decision algorithm

which increases computational loading is a step in the wrong

direction unless this additional loading is outweighed by

significant gains in performance.

When the best composite estimator has been determined,

that composite estimator will be used to evaluate the

controller configurations disscussed in Chapter II:

a. single fixed-gain controller

b. single changeable-gain controller

c. moving-bank multiple model adaptive controller
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* - The estimator/controller combination will be evaluated using

both constant true system uncertain parameter values and

jump changes in the true system uncertain parameter values.

In addition, an evaluation will be made of the effect of

turning off control during the parameter acquisition phase

vs. using the the adaptive controller from time to o or a

nominal fixed gain controller until parameter acquisition

takes place then transferring to the adaptive controller.

As in the estimator-only case, any increase in computational

complexity must be offset by significant gains in

* performance (lower state biases and variances from the

quiescent state) in order to justify the decreaie in

practicality associated with the increase in computational

loading.

IV.5 Js"3iX

This chapter has discussed the overall method of Monte

Carlo analysis, the specific organization of the software

used for the simulation, the plan and criteria for

evaluation of the various estimation and control algorithms,

and associated move, contract, and expand logics. It was

noted that increases in the estimator/controller performance

at the expense of increased computational loading must be

significant to justify the decrease in practicality. The

results of the simulations are presented in the next

F,

chapter.
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RESULTS

V.I Introduction

This chapter presents the results of the Monte Carlo

simulations. The goals of the simulations were to evaluate

the effectiveness of moving-bank multiple model adaptive

estimation/control when applied to the realistic situation

described in Chapter III, and specifically to evalulate the

various move, contract, expand, and algorithms described in

Chapter II. These goals were only partially met due to

numerical difficulties which forced the use of approx-

imations in computing probability weightings, and the

ambiguity function. In addition the system being controlled

proved not to require adaptive control, despite the

uncertainties in the parameters describing it. This made

the evaluation of the control algorithms impossible.

jV. 2. N rg Polm

The covariance matrix P at time t i + for all of the

elemental filters proved to be numerically ill-conditioned

(a function of there being a accurate data on some of the

states from the measurements). Therefore it was impossible

to compute the ambiguity function as described by Equation

(11-33), as that equation requires the determinant of
P(t i ). Since the P(t i ) matrix was used to compute P(t i.),

which is used in the computation of the A matrix used in

Equations (11-7), (11-25), (11-30) and (11-33), more

problems resulted, as the computed determinants of all of
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the A matrices proved to be negative. Tunning of the

filters could result in improving the numerical condition of

P(t(). and could prevent the A matrices determinants from

being negative. However; this would envolve the use of less

realistic noise strengths for Q and R. this could be

worthwile as an academic exercise but time constraints

prevented that from being done for this thesis.

In order to overcome these numerical difficulties, the

expressions for the probability weighting factors (Equation

(11-25)), and the ambiguity function (Equation (11-33) were

approximated to remove the necessity to use the determinants

of the P(ti + ) and the A matrices. In Equation (11-25)

the density function is approximated as:

fl(z(ti)) - exp[-(1/2l)rjT(ti)Aj l(ti)Mj(ti)]

Note this is no longer a true density function because the

scale factor is now incorrect; but because of the

denominator in Equation (11-25) the probability weightings

are still scaled correctly. This change is also reflected

in Equation (11-30) describing how the probability weighting

for a new filter in the bank can be computed based on its

expected correctness. This approximation is reasonable as

long as the A matrices of the the elemental filters are

close enough to each other so that their determinants, in

the absence of numerical problems, would be expected to be

of approximately equal magnitudes. The ambiguity function

described in Equation (11-33) was approximated by removing
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the terms containing the determinants of P(ti+) and A; it

then became:

Ai(,&t) m 3/2 ln(2n) - n/2 ln(2n)

- 1/2 tr(A-1 l(ti;J) [H(ti)Pe(ti-;At,)H T ti)+R(ti)]!

- 1/2 tr(P-'(tj+;A)Pe(t+;at.j))

This approxcimation is reasonable as the determinants of

P(ti+), and A (in the absense of the numerical difficulties)

can be expected to have minimal impact on the ambiguity

function as the primary sensitivity of the ambiguity

function is in the quadratic terms which are being

preserved.

11.3 Amiguyj Function AalXytil

OAnalysis of the ambiguity function was based on three-

dimensional view plots which show the magnitude of the

ambiguity function as a continuous surface over the

two dimensional parameter space, for specific true parameter

values. Recall that the two uncertain parameters are the

mass density of the spacecraft arms and the modulus of

elasticity of the arms. Three typical plots are included as

Figures V-i, V-2, and V-3, based on true parameter points

(5,5), (3,7), and (7,3) respectively, the arrow on the plot

indicates the true parameter point. The numbers for the

uncertain parameters are not the true values of the

parameters at those points, but indices indicating which of

the ten discrete values for each uncertain parameter is

used. As can be seen the ambiguity functions are fairly
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flat, which indicates possible sensitivity problems, and

4 1 there are several ripples, which indicates possible problems

identifying the correct parameter values. The large peak at

the (0,0) point should be ignored as it is an artificial

result of the curve fitting routine used to generate the

contours and of the fact that there is no data point at

"- (0,0). In addition, the plots for different true parameter

points are very similar. This indicates that the moving

bank multiple model adaptive estimator will have

difficulties identifying the correct parameter point, this

is especially true when the true parameter point is not

located on at least a local peak, as is the case in Figure

V-3 for true parameter point (7,3). However, even if the

true parameter point cannot be identified, the stateC.
estimates may still be accurate, if the different models are

all doing a good job of estimating the states even though

based on the incorrect system model. The true parameter

point not being located on a local peak in the ambiguity
- .4.o

surface as occurs in Figure V-3 was not anticipated, nor

believed possible, and is likely due to the approximations

0 used in the calculation of the ambiguity function. However,

- a rigorous proof that the true parameter point must lie on

at least a local peak is not easily done and is beyond the

-scope of this thesis.

The ripples and multiple local peaking argue for the

''-, .use of a contraction algorithm to aid initial acquisition of

the true parameter point. Without a contraction algorithm,
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the moving bank must start at its smallest discretization

-1 and move to center itself on the local peak with the

greatest height. If a local peak not due to the true

parameter point is within the area of the bank, or if while

the bank moves it reaches an erroneous peak first, the bank

may remain there (noise may make it move off). The goal of

the contraction algorithm is not only to speed the initial

movement of the bank, but by covering more area, the bank

may be able to contract to the neighborhood of the correct

parameter point and ignore local peaks not due to the true

parameter point.

Conversely, the flatness of the surfaces argues against

residual monitoring using the likelihood quotient being able

to signal an expansion of the bank by identifying when a

jump change in the true parameter point has taken place. On

a flat ambiguity function surface it is likely that changes

in the residuals due to the jump change will be masked by

the normal changes in residuals seen as the effects of the

dynamics and measurement noises. For residual monitoring

using the likelihood quotient to work, the jump change in

the true parameter point has to cause a change in the

residuals greater than the flucuations due to noise. If not

a jump event detection threshold level can not be set,

because the noise changes would signal a jump change.

The flatness of the ambiguity surfaces also indicates that

adaptive estimation and control, of any kind, is probably

not worthwhile for this system. In fact, a filter based on
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a nominal parameter point may provide adequate state

estimates and an acceptable controller gain matrix. Of

course the definition of nadequate state estimatesn, and

nacceptable controller gain matrixn are based on the level

of accuracy required by the individual implementation. The

flatness of the surfaces was not anticipated, considering

,the large changes in the parameters used to create the

parameter space, and the corespondingly large changes in the

eigenvalues of the bending modes that were observed (see

'. Appendix A for a listing of the eigenvalues). The

9 approximations used in computing the ambiguity function may

be one reason that the surfaces are so flat. The wealth of

measurement data (five position measurements and five

acceleration measurement) available for this model also

worked to minimize the impact of the changes in the model

used to set up the paramater space upon the precision of

state estimation or control. This was seen by examining the

Kalman filter gain matrices in conjunction with the

-, measurement matrices and observing that a heavy weight was

put on the measurements as opposed to the estimated states

-4.-, before the measurements. The inaccurate estimated states

-4. are thus essentially ignored.

The academic solution to the difficulties encountered

at this point might be to reduce the number or precision of

the measurements to obtain a problem for which adaptivc

estimation and control would be more useful. For this
'p.
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problem it would be more useful to reduce the amount of

adaptivity by only using one uncertain parameter, or by

taking the adaption off line entirely and only using a

robustified filter/controller. However; despite the

potential difficulties forcast by the ambiguity function

analysis, the addaptive estimator was applied to this

problem. This was done to confirm the usefulness of the

ambiguity function as a predictor of estimator performance,

and to evaluate how large an effect the difficulties had on

estimator perfomance. The following sections describe the

algorithm characteristics for this application.

V.4. Bajk MoyiaInI

The first simulations started the moving bank at it

-finest discretization level, and located the bank center at

(5,5), chosen as the approximate center of the parameter

space, and allowed it to move using the probability

monitoring movement algorithm developed by Maybeck and Hentz

[26,27] described in Chapter II, where the bank is centered

over the filter having the largest probability weighting.

The points (2,2), (3,7), (5,5), (8,8), and (7,3) where

chosen as the true parameter points to test the bank's

ability to move in different directions. Before making

multiple Monte Carlo runs to test the probability

initialization algorithms, single runs were made to set the

probability move threshold, and to determine a strength for

the dither signal be used to excite the system states and
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allow parameter point acquisition in the absence of any

feedback control. A dither signal of 200 amplitude, divided

equally between the three inputs, at 20 Hz was applied to

all the control inputs. The dither signal was determined by

trial and error as a determination of an optimal signal (see

[5:68-151,12:223-260] for a discussion of optimal inputs)

would be beyond the scope of this thesis.

CMaybeck and Hentz found that a probability move

threshold of 0.05 enabled the bank to move anytime the bank

was not centered on the filter having the highest

probability weighting [26:62,27:19]. This will be true for

any threshold below 1/9 = 0.111, which is the lowest

probability weighting the center filter can have, and still

be weighted equal to, or heavier than the other filters. In

Sthis application however, it was found that a threshold

slightly larger than 0.111 speeded acquisition of the true

4' parameter point by eliminating movement (possibly in the

wrong direction) due to noise when the filter probability

weightings were all close in value. A threshold of 0.15

allowed the bank to center itself on the (3,7) true

*_ parameter point after 0.98 seconds vs. 1.54 seconds with a

threshold of 0.05. Increasing the threshold further to 0.2

however increased the acquisition time to 1.28 seconds. A

threshold level of 0.15 was therefore used for all

subsequent runs. For the single runs, the pseudo-random

number generator used to generate the noise signals was

always seeded with the same starting number to ensure that
p
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the runs were directly comparable.

Monte Carlo studies of the bank's ability to move to

each of the five chosen true parameter points, using ten

runs apiece, were made for both the simple method of

initializing the probability weightings of the new filters

brought into the bank by weighting each new filter equally,

and for the more complicated method of estimating a

probability weighting for each new filter based on Equation

(11-30). The results can be seen in Appendix B in Figures

B-1 through B-10.

These figures are plots of the statistics (mean + one

* standard deviation) of the error in the parameter estimates.

EA(1) is the error in the estimate of the parameter

reflecting the mass density of the arms, and EA(2) is the

error in the estimate of the parameter reflecting the

modulus of elasticity of the arms. Once the matrices

describing the system at a particular parameter point have

been calculated, the true values of the two uncertain

- parameter were no longer used. It is far more convienent to

index the parameter values to the whole numbers one through

ten reflecting their position in the parameter space. Thus,

the (1,1) parameter point is where the uncertain parameters

take on the discrete value 20% less than their nominal

values, and the point (6,6) is where they are equal to their

nominal values. An increase of one in the parameter index

corresponds therefore, to an increase of 4% of the nominal

value. The errors in the parameter estimates are calculated

b
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in terms of the parameter indices; if the true parameter

S point is at (4,5) and the location of the estimated

parameter vector is (3.5.6.0), the error in the parameter

estimate plots will show a value of 0.5 for the mass density

parameter, and a value of -1.0 for modulus of elasticity

parameter. It is important to note that because the

estimated parameter vector is a weighted average of the

indices of the discrete parameter points whose associated

filters are currently implemented in the moving bank, the

location of the estimated parameter vector is not likely to

be exactly equal to one of the discrete parameter points.

* The first set of plots shows the error in the parameter

estimate (Ia) when the probability weightings of the new

filters in the bank were calculated using Equation (11-30)

(Figures B-1 through B-5). The second set of plots shows _k,

: :when the new filters are initialized by equally distributing

the unused probability (Figures B-6 through B-10). A

comparison shows that there is no appreciable difference in

the results of the two methods. However, it is a

considerably larger computational burden (by several orders

of magnitude, depending on the architecture of the

processor) to compute the probability weightings using

J4. Equat ion (11-30).

The performance predicted by the ambiguity function

analysis can also be seen in the plots of -a error

statistics for the case of only moving the bank without

changing its size, using either of the filter initialization
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algorithms. In all cases the estimator does a better job of

estimating the second parameter than the first: it is always

identified within one standard deviation by the time one

second has elapsed. However, only the true parameter points

at (5,5) and (3,7) were correctly identified, for both

parameters, within one standard deviation. These statistics

are matched by center of the bank statistics: in all cases

the bank center had moved to the correct second parameter by

0.8 seconds.

Examination of the ambiguity function plots shows

ridges running diagonally across the surfaces. The bank

will not move down into the valleys between the ridges,

seeking instead the peaking regions of the abiguity function

surface. Therefore, when the true parameter point is not at

a local peak accessable from the ridge on which the starting

point (5,5) is located, the estimator is forced to make a

choice as to which parameter it will do a good job

estimating. The reason it is the second parameter that is

favored can be seen by examining Tables A-i and A-2 in

Appendix A. These tables show the eigenvalues of the second

and forth bending modes at the various parameter points. It

can be seen that a change in the second parameter (E; the

modulus of elasticity) causes a larger change in the

eigenvalues than does a change in the first parameter (p:

the mass density). Thus the filters on the ridge with the

.r more correct value of E recieve a higher probability

weigating than the filters with the more correct value of
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density, and the bank moves toward the correct value for the

second parameter.

The overall flatness of the ambiguity surfaces was

reflected in the plots of the statistecs of the errors in

the state estimates (Ax). These plots showed ex to be

essentially independent of e. Figure B-I shows 9x

statistcs for the case where the true parameter point was at

(3,7), and Figure B-12 depicts 9x for the case where the

true parameter point was at (8.8). The states 1-6 reflect

the position of the rigid body. the second bending mode, and

the fourth bending mode respectively, and then the

* velocities in the same order. Both sets of plots are

identical, as were the plots no matter where the true

parameter point was set. The point is especially

illustrated by Figures B-13, and B-14, which show _.

characteristics for just a single filter based on assumed

parameter values at (5,5). In the first case (Figure B-13)

the true parameter point was at (3,7), and in the second

case the true parameter point was actually at (5,5): the

filter with parameters at (5,5) does an equally good job of

estimating the states in both cases.

V.5. lAnk gnix1i.ajn

Begining the run with an acquisition phase using a

coarser bank discretization, then contracting the bank to

the finest discretization in two steps was tested to see if

it speeded parameter acquisition. Parameter error
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covariance monitoring was used to detect the acquisition of

the parameters, and signal the change in discretization.

The scalar measures associated with the parameter estimate

V. covariance matrix, selected to signal contraction, were the

parameter variances (the diagonal elements of the covariance

matrix). The variances of both parameters were compared to

a contraction threshold and the result was used to signal

contraction.

Single runs were used to set the contraction

thresholds. Two were required, one for each level of

contraction. The first coarsest discretization level places

O the filtesr four parameter points apart. The second

intermediate discret izat ion level places the f ilters two

parameter points apart. And the final finest

discretizationlevel places the filters one parameter point

apart. An additional consideration was whether to require

both or only one of the variances to be below the threshold

in order to signal the contraction. It was found that

requiring both variances to be below the threshold gave a

more accurate determination of when contraction was

warranted; however, this required tradeoffs in the

determination of the threshold, as the same threshold was

not necessarily most appropriate for both variances. The

threshold values were then chosen equal to the larger of the

two variances at the time when the true parameter point

would lie within the area of the bank after it contracted

about the estimated parameter point. This required
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artificial knowledge of the true parameter point, and the

printout of the time period by time period statistics on the

bank location and estimates. A threshold was thus selected

for each of the four test points (the same test points as

for the move analysis with the exception of (5.5)) and

smallest of the five then selected as the best overall.

This threshold level setting mechanism worked well for

signaling contraction from coarsest discretization level to

the intermediate discretization level. But it coull not be

used in all cases to select a threshold for signaling the

second contraction to the finest discretization level. When

the true parameter point was at (8,8). the parameter

estimate never moved closer to the true parameter point

after the first contraction. Therefore a contraction

threshold based only on the other three points was used.

The contraction thresholds chosen were 6.0 for the four-to-

two contraction, and 2.6 for the two-to-one contraction.

The contraction thresholds proved to be sensitive to

the probability weight lower bound used to keep the bank

from locking on to a single filter. When the probability

weight lower bound is set too high, it prevents the the

variances from decreasing below the thresholds in all cases.

Therfore. the contraction thresholds need to be reset if the

probability lower bounds change. Lower bounding the

probability weights also causes a larger error in the

parameter estimate, and possibly the state estimate

(although that was not true in this implementation), as it
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requires an artificially high probability weight be assigned

to a poor estimate in steady state. The purpose in lower

bounding the probability weights is to allow the bank to

react to a change in the true parameter point after the

initial true parameter point has been identified. There is

thus a tradeoff to be made between keeping the probability

lower bound high enough to enable quick reaction to changes

in the true parameter point, and low enough not to interfere

with the contraction algorithm nor cause too great an error

in the parameter and state estimates. A lower bound of 0.01

worked well in this implementation; when it was raised to

0.05, the bank would not contract from the coarsest

discretization.

The results of using the contraction algorithm can be

seen in Figures B-15 through B-18, which show the plots of

ta statistics vs. time for the true parameter points (2,2),

(3,7), (7,3), and (8,8) respectively. The results can be

compared to the plots of 1 a characteristics vs. time for the

movement-only options depicted in Figures B-1 through B-10.

It can be seen that the use of the contraction aquisition

phase is successful in correctly identifying parameter two

(E) more quickly; however only small improvements in

reducing the error in parameter one (p) are achieved and

only temporarily. The expense is the larger standard

deviations which result from the coarser discretizations.

In terms of the shape of the ambiguity function; the

acquisition cycle is successful because the flatness of the
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surface, and the ripples and local peaks slow the movement

of the bank.

There is very little added (and perhaps less)

computation due to the contraction algorithm. Either one or

three additional comparisons are required in the logic (one

to determine if the bank is at a coarse discretization; if

so, each of the two parameter error variances is compared to

the appropriate threshold), but the operations required for

the actual contraction are very similar to those required

for a move and, as all of the probability weights are reset

to 0.111 upon contraction, less initialization computation

is required than is required following a bank move. In

addition some computation is saved, since with contraction

fewer moves are required to get the bank to its final

location. Thus computation is saved in the short run, but

as the run continues, in the absense of a re-expansion to

the coarse discretization, the total computation will

eventually be slightly greater. If re-expansion occurs

following the signaling of a jump change in the true

parameter values there is again a savings during the

reacquisition of the true parameter values. The real issue

here is the amount of computation per sample period; and the

contraction algorithm is essentially equal to the non-

contraction algorithm in that regard.
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V.6. j _ _kARRI

It was hoped that residual monitoring would be able to

detect jump changes in the true parameter point. Unfortu-

nately, when an attempt to set a detection threshold was

made, the likelihood function proved much more sensitive to

the noise inputs than to the difference in the residuals due

to the change in the true parameter point. When the attempt

to set a threshold was made, on one run the likelihood

function actually decreased at the time of the jump change

due to a smaller noise input that sample period. The

failure of the jump change detection by residual monitoring

* can be explained in terms of the flatness of the ambiguity

function as noted earlier. Therefore, no evaluation of the

effectiveness of a reacquisition period, using the bank

(,. expansion and contraction algorithms, following a jump

change in the true parameter point could be made.

A plot of ea statistics vs. time for a case where the

bank was started at its largest discretization, allowed to

contract and move to a true parameter point at (3,7). and

react to a jump change in the parameter point to (5,5) at

1.0 second, reveals that the move algorithm does continue to

track the true parameter point via bank movement without a

change in the bank discretization level (Figure B-19). As

before parameter two is consistently estimated better, both

before and after the jump change. For the same situation,

'.
4

,J Figure B-20 reveals that, as before, the state estimates for

this implementation do not suffer.
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V.7 c_.Ron11 J1i ARa111il

,N , The evaluation of the effectivness of the various

adaptive control algorithms was also abandoned due to the

accuracy of the state estimates, independent of the accuracy

of the parameter estimate. In addition, inspection of

sample Bd matrices reveals little change due to p, and

almost none due to E; so no large errors in the control

input can be expected as a result of the use of the wrong Bd

matrix.

V.8 Summary

The results of the simulations were presented in this

Chapter. Initial problems due to numerical difficulties

were overcome through the use of judicious aproximations.

Analysis of the ambiguity function revealed several insights

into the expected performance of the multiple model adaptive

estimator, and the probable lack of a need for an adaptive

a controller. These insights were borne out by the actual

simulation results. The two movement algorithms worked

equally well but were unable to move across the valleys

depicted in the ambiguity function plot. The estimator

proved more sensitive to the second uncertain parameter (E =

the modulus of elasticity of the arms) than to the first (p

= the mass density of the arms). The contraction algorithm

gave some increase in performance, but essentially only for

the second uncertain parameter. Importantly, none of the

movement or contraction logics affected the overall accuracy
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of the state estimates in any discernible manner. Residual

V.

monitoring proved ineffectual in detecting jump changes in

true parameter points, making an evaluation of a

"r' reacquisition phase, using the bank contraction and

expansion algorithms, impossible. The evaluation of the

adaptive controllers was also abandoned due to the accuracy

of the state estimates. Conclusions regarding these results

and recommendations for areas of further study are presented

in Chapter VI.
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VI. Concljsions and ecommendati_ s

VI.1 Introduction

The initial, obvious, conclusion to be drawn from this

research is that, for this system model, adaptive estimation

and control is not required. Despite this disappointing

conclusion, this thesis does provided valuable insight on

the performance of multiple model adaptive estimation. For

the class of problems where very accurate estimates of the

system states are required, adaptive estimation may prove

worthwhile, if the adaptation provides only marginally better

* state estimates. This research provides information on the

problems that may aiise when the measurement accuracy is

great, resulting in insensitivity to incorrect modeling of

uncertain parameters, similar problems may also arise if the

uncertain parameter variation is small. Additionally, even

- for problems which require adaptation over a wide range of

uncertain parameters, where parameter variation sensitivity

is good , some of the problems discussed here may have

applicabillity in what may be local spots of parameter

* variation insensitivity. The importanct that early

ambiguity function analysis was discovered to have, should'p.

have impact on estimator/controller design reqardless of the

*amount of system adaptation required, or sensitivity of the

system to uncertain parameter variation.

86

%



-A164 816 NOVING-BANK MULTIPLE MODEL ADAPTIVE ALGORITHMS APPLIED 2/2
TO FLEXIBLE SPACEC (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI P G FILIOS

UNCLASSIFIED DEC 85 AFIT/GE/ENG/85D-i4 F/G 22/2EIIIIIEEEIII
EEEEEEllEEEEEI
El//E//EEEEEEE
EllEEEE///EEEI
EEEEEEIIIEEIIE
EEEllEEEElhEEE
Eu'..



li 1.5~

iuul

MICROCOPY RESOLUTFM TEST CHMT

NATIONAL BUREAU OF STAN[RS1I9"F-A

ryv



VI. 2 £cq iiiiinai

Ambiguity function analysis was able to predict/explain

most of the problems encountered in the simulations of the

multiple model adaptive estimator/controller. It proved to

be a valuable tool that should be used early in the design

of the adaptive estimator in order to aid in the selection

of appropriate parameters for estimation, and of workable

move/contract/expansion stategies. This is especially true,

as the results of the simulations showed that each of the

strategies investigated have shortcomings which need to be

overcome. The bank may not be able to reach all points by
6

movement alone, or at all. This occurs when the points are

located in a valley in the ambiguity function, or if the

bank encounters a local peak while moving towards the

correct parameter values. Square contraction may require

compromise in the setting of the contraction thresholds,

which will hinder its performance. This occurs when the

bank does a better job of estimating one parameter than

another. Separate contraction thresholds which enable the

bank to contract separately in each direction, when it is

most appropriate to contract in that direction, should

improve performance. And residual monitoring via the

likelihood quotient may not be able to detect jump changes,

depending on the relative effect on the residuals of noise

vs. system changes.
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VI.2.1 Amiaitx _Lq.ln An&jiIja. The first

question that early ambiguity function analysis can answer

is whether adaptive estimation/control is needed at all.

This is not always known in the initial stages of system

design, as was the case for the model used for this

investigation. Once it is determined that adaptive

estimation/control is required, the ambiguity function

analysis can determine which of the uncertain parameters

need to be estimated and which may be ignored. It may be

possible to combine multiple uncertain parameters into a

single artificial parameter, or into a reduced number of

artificial parameters, to be used by the adaptive

estimator/controller. This enables the estimator to

concentrate on estimating the uncertain system parameters

(either physical quantities, or deriv.d quantities) that

have the greatest impact on system performance.

Once the parameter space is chosen, further analysis of

the ambiguity function may be useful in chosing the

discretizations used as a basis for elemental filter design.

The discretization could be finer in regions of greater

parameter variation sensitivity, and coarser in regions of

lesser parameter variation sensitivity, instead of being

spread evenly over the entire parameter space. Ambiguity

function analysis may then be helpful in chosing the initial

conditions for the moving bank: bank center and

discretization level. As seen, from certain starting

: positions, the bank may not be able to move to the true
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parameter point. Judicious choice of the starting position

may alleviate this problem for a large class of true

parameter points. Then thought can be given to the bank

contraction and expandsion strategies to be implemented. If

multiple local peaks are present, contraction strategies may

be especially valuable, as contraction about the estimated

parameter values could prevent the bank from moving to, and

remaining on, a local peak positioned between the bank

starting position and the true parameter point.

VI.2.2. la M!vemnt. Despite the overall lack of a

requirement for adaptive estimation in this application,

because all of the elemental filters did an acceptable job

of state estimation, the probability monitoring method of

moving the bank was able to do a surprisingly good job.

Even when the bank was not able to center itself over the

true parameter point, it was able to move in the right

general direction. Two refinements to the algorithm were

discovered. Calculation of the probability weightings for

initialization of new filters in the bank based on the

distance from the estimated true parameter point is not

worthwhile. Evenly deviding the total probability weighting

taken from the filters removed from the bank, amongst those

added to the bank gave equally good performance with less

computation. And, it may be worthwhile to raise the bank

movement threshold above 0.111, in order to prevent noise

jitter movement of the bank. If the threshold is set below

0.111, it is unnecessary and can be eliminated, simply check
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to insure the bank is centered on the filter with the

highest probability weighting.

VI.2.3. Contraction. Contraction of the bank from an

initial coarse discretization to a fine discretization,

proved to be useful in improving the speed of parameter

acquisition. Little additional computation is involved in the

use of this strategy; however, there is a price to pay in

larger standard deviations of the parameter estimate error,

as noise causes a greater change in the parameter estimate

when the bank is in the coarser discretization.

The best contraction thresholds for the two uncertain

parameters were not identical and a compromise threshold had

to be chosen. This meant that contraction did not always

move the bank center in the right direction relative to the

true value of the first uncertain parameter. wheras the

bank center always move towards the true value of the second

uncertain parameter. A two-step contraction was used, but

an advantage of the two step contraction vs. a one-step

contraction is unproven.

VI.2.4. ijil &i MnnUjkin. Monitoring the residuals

through the use of a likelihood quotient in order to detect

a jump change in the true parameter vector value did not

prove useful because of the lack of sensitivity in either

state estimate precision, or residual characteristics, to

assumed paremeter value. The magnitude of the likelihoodH quotient varied more as a result of the system noises than

, as a result of the changes in the uncertain parameters.
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making it impossible to select a threshold value at which to

trigger an expansion. It must be remembered however, that

the residuals are the only real source of information on the

true system and must be the basis for all move/contract/

expand strategies.

VI.3. Arpj L o Further S__tii

Further study in all areas of moving bank multiple model

adaptive control is still needed. A specific area where

further study is needed was revealed by the importance

ambiguity function analysis was found to have. If the

* ambiguity function could be shaped, by changes in the

uncertain parameters chosen to be estimated, or by changes in

the uncertain parameter discretization, to reflect desirable

characteristics for the move/contract/expand logics,

estimator/controller performance may be enhanced. The

ambiguity function could be shaped through selection of

artificial uncertain parameters and choice of discretized

parameter points.

An evaluation of the advantages/disadvantages of

rectangular contraction vs. square contraction to eliminate

the undesirable compromises necessary in the selection of a

contraction threshold would be worthwhile. Rectangular

contraction could allow the contraction in each direction

when it is most appropriate, making bank size in one

direction independent of bank size in the other.

Rectangular contraction could prevent the movement of the
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bank center away from the true value of one of the uncertain

parameters because of the current inacurate estimate of that

parameter. These posible advantages would have to be

* weighed against the required increase in computational

loading. Evaluation of two-step vs. one-step contraction

4under different conditions might reveal when one is more

valuable than the other. Other methods of triggering the

contractions could also be workable. It may be possible to

contract away from filters with very small probability

weightings.

Methods of detecting jump changes in the uncertain

parameter values still need further investigation. Residual

monitoring using the likelihood function may be adequate in

(f aplications, unlike the application investigated here, where

wrongly assumed parameter values do affect state estimation.

It may be possible to make modifications to the likelihood

quotient method to prevent noise from masking the results of

uncertain parameter jump changes by adding additional

conditions. An evaluation of the changes in the probability

weightings relative to each other may also be capable of

indicating jump changes. If all of the probabilities

converge on a value of about 0.111, this may furnish the

necessary indication.

The use of artificial intelligence techniques to

evaluate the residuals and trigger all of the manipulations

of the moving bank has been suggested. This has the

advantage of looking directly at the real source of
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true system information. However, artificial intelligence

techniques tend to be computationally intensive, which is

the opposite of the goal of moving-bank MMAE as opposed to

full-bank MMAE, so there is a tradeoff inherent in this

proposal.

Finally, issues which were identified prior to this

thesis still need to be addressed. These include the

evaluation of the controllers for a realistic system

(which had to be abandoned here). Also the study of slowly

varying uncertain parameter values, and uncertain parameter

values not equal to the discrete parameter values was not

addressed here.

VI.4. Surn-jX

This thesis has addressed the evaluation of moving-bank

multiple model adaptive estimation and control algorithms,

as applied to a model of a large flexible spacecraft. It

was seen that, although the model turned out not to require

adaptive control, that moving-bank MMAE could still provide

estimates of the uncertain parameters. Based on the

performance of the moving bank estimator, several

refinements in the move and contraction decision logics were

made. In addition, it was revealed that ambiguity function

analysis can be an invaluable tool in designing a moving

bank estimator. The moving bank technique continues to show

great promise as a practical adaptive estimation/control

design strategy, and research in this area should continue.
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Appendix A.

, ' ~Dtjlj Mode4l. D_.jv,_.ol..jnment

The equations for the elements of the mass and

stiffness matrices were given in Chapter III in integral

form. They are repeated here for clarity, then the

simplified closed form is presented. The equations for the

control and Measurement matrices are also developed in a

more complete form. Then samples of the M (mass). K

(stiffness), B (control), and H (measurement) matrices are

given, followed by two tables showing how the free system

eigenvalues of the second and fourth bending modes vary

throughout the parameter space.

The equations for the elements of the mass matrix are

repeated from Chpter III for i = l...,p ; and j = l .... p

M(l,l) = 2 (Ic + I2c

4R+L

M(l,i+l) = 2pth J xz i dx + 2m2 (R+L)Oi(z-x-R=L)

R
+ 212 e' (z=-R-L)

R+L
M(I,i+p+l) = 2pth f y0 i dy + 2m2 (R+L)Oi(z=y-R=L)

R + 212c'i(z~y-RL)

M(i+l,1) =M(1,i+l)

M(i+p+1,1) M(l,i+p+l)
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$' R+L

M(i+lj+l) = 2pth i j dx

R

* 2m fi(zx-R=L)'j (z = x-R =L)

+ 212,#'i(z=x-R=L)O' j (z=x-R=L)

R+L

M(i+p+1,j+p+l) = 2pth f i*j dy

R

+ 2m2 0i(z=y-R=L)O (z=y-R=L)

+ 212 0 D'i(z=y-R=L)0'j(z=y-R=L)

M(i+l,j+p+l) = 0

M( i+l+p, i+l) = 0

where O i is a function describing the bending modes of the

arms, defined as:

Oi(z) = 1 - cos(inz/L) + (1/2)(-l)i+l(inz/L)
2

z = x - R (or y - R)

and 'i is the first derivative of 0i with respect to z.

The pysical dimensions of the model t, h, m2' 
12c, roo,

R, and L, are as shown in Figure III-I. In addition p is

the mass density of the arms, and:

I c = (1/2)I + 211 + 2m 2 (R+L)
2

R+L

= pth f 2 dx

R
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The elements of the stiffness matrix are given for

i = l.....p ; and j = l....,p ; by:

[(1,1) = 0

K(i+l,1) = 0

K(i+l+pl) = 0

K(l,j+l) = 0

K(l,j+p+l) = 0

L

K(i+l,j+l) = 2El f i''(zlmj''(z) dz

0

K(i+l+p,j+l+p) = K(i+l,j+l)

_ K(i+l+p,j+l) = 0

K(i+l,j+l+p) = 0

where E is the Modulus of Elasticity of the arms, and I is

the area moment of inertia based only on t and h as:

I = (1/12)ht
3

and 0" is the second derivative of Oi with respect to z.
:11

When the necessary substitutions are made and the

inte&rals are evaluated, the simplified equations become:

I--M(,1 = 10 + 4th(L 3 /3 + RL 2 + R 2 L)

(+ m2 R2 + 2RL + L 2 ) + 2120

[ '-

r(1 i+l) -- 2pth [L /2 + [ ( +  1]L/(i) 2

-+ (-l)(i+ )(i,)2L(L/8 + R/6) + RL)

: .+ 2m2(R + L)[1 + (-l)(i+l)(1 + (in)2/2)]

! + 212€(-I) (i+l)12n4/L

' M(1,i+p+l) =M(i+p+l,l) =M(i+l'l) = (l,i+l)
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M(i+l,j+1) = 2pth (L+[(-l) (i+l) 2 + (-1)(j~l)j2 n2 L/6

+ (-1)('+j)L[ Ri 2 /Ri 2 + Ri 2 /Rj 2

+ (ijn)2 /20])

*+2=2[1 + (. 1)i+l) (1 + ( in) 2 / 2H

[1 + (-j)(j+l)( 1 + (jff) 2 /2)J

* 2I 2 0 (-l)('+j)(ijn/L)
2

* (0: i~j; pthL: i=jl

M(i+p+1,j+p+1) = (i+1,j+1)

M(i+l~j+p+1) = M(i+p+1,j+1) =0

and

4' KX(i+l,j+l) = Et~h(-l)(i+j)L(ijn)2 /(6L)

+ (0: i~jf Et3 h(ijff)2 /(12L 3 ): i=j)

[(1,1) =K(i+1,1) = K(l,i+l) = K(i+p+1,1) K(l.i+p+1)

=K(i+1,j+p+l) = K(i+p+l,j+1) = 0

The B matrix is given by:

1221
B=0 20'i(z=L/2) 0

0 [ 0 2#'i~( zL/2)_

where P.i(z) is of dimension p (the number of modes of

interest), and

Oli(z=L/2) =(il/L)sin(iw1/2) + (-1)( i+l) (i,) 2 /8
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The H matrix is given by:

1 OT O

o i(...L2

0 OT Ti(z=L/2)

1 column p columns p columns

H is thus a 5 x N matrix. and

O.(z=L12) =1-cos(iff/2) + 0.5(-1) (i+l) (ii) 2

and

0 (z=L) = 1 - (-.1)(i+1) (in) 2

When these expressions are evaluated for the constant

values given in Table II1-1 (this equates to the (6.6) point

in the pIE parameter space), and for p =2, the following

matrices result:

28.19 13.02 -36.09 13.02 -36.09

. .13.02 17.65 -49.07 0.0 0.0

M -36.09 -49.07 137.50 0.0 0.0

13.02 0.0 0.0 17.65 -49.07

-36.09 0.0 0.0 -49.07 137.50

98



0.0 0.0 0.0 0.0 0.0

0.0 340.61 -908.30 0.0 0.0

K = 0.0 -908.30 5449.83 0.0 0.0

0.0 0.0 0.0 340.61 -908.30

0.0 0.0 0.0 -908.30 5449.83

1.0 2.0 2.0

0.0 4.04 0.0

B = 0.0 -9.87 0.0

0.0 0.0 4.04

0.0 0.0 -9.87

CF 1.0 0.0 0.0 0.0 0.0

0.0 2.23 -2.93 0.0 0.0

B = 0.0 4.93 -17.73 0.0 0.0

0.0 0.0 0.0 2.23 -2.93

0.0 0.0 0.0 4.93 -17.73

As seen in Chapter III the free system eigenvalues of the

system can be found via Equation (111-2):

: ~ &i = I&J

The eigenvalues of the second and forth bending modes

(the unison bending modes to be controled in this

application) are tabulated in tables A-1 and A-2 for all the

discrete values of p and E in the parameter space.
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Appendix B.
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Appendix C.

Four main problems were used for this invesigation. A

preprocessor (PROGRAM SETUPS), used to create the parameter

space; a primary processor (PROGRAM BANK), used to

generate the simulation data; a post processor (PROGRAM

RESLT), used to plot the results; and a program to perform

ambiguity function analysis (PROGRAM AMBIG). For each

program this Appendix contains a structure chart, and the

program and subroutine headers (which describe each module

and present pseudocode for the algorithms performed). The

actual FORTRAN code is not included but is available through

Dr. P. S. Maybeck at the Air Force Institute of Technology,

ODepartment of Electrical Engineering. The programs make use

of four Libraries available on the Aeronautical Systems

Division CDC Cyber computer: IMSL5, LQGLIB, DISSPLA, and

CCLIB.
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A'

PROGRAM SETUPS

P 0 PROGRAM SETUPS

DESCRIPTION: THIS PROGRAM CALCULATES ALL OF TIE CONSTANT MATRICES
*REQUIRED BY PROGRAM BANK AND AUBIG.

* AUTHOR : KARL BENTZ AND PAUL G. FILIOS
* VERSION: 3.03
* DATE : 15 AUG 85

* INPUT: FILE wPARAMTRx - CONTAINS TIE DISCRETE PARAMETER VALUES
* •• FOR TEE TWO UNCERTAIN PARAMETERS

* OUTPUT: FILE wSPACEw - CONTAINS ALL OF THE CONSTANT MATRICES FOR
S EACH DISCRETE PARAMETER POINT

ST I S I S T ME M A I N P REO G R A MA.
PSEUDOCODE:

S READ IN TEE PARAMETER VALUES
* FOR EACH PARAMETER POINT
* COMPUTE TEE CONTINUOUS TIME SYSTEM MATRICES
* DISCRETIZE THE NOISE INPUT MATRIX
* DISCRETIZE TEE PLANT AND INPUT MATRICES
* COMPUTE TEE COVARIANCE MATRIX AND THE FILTER GAIN MATRIX
• COMPUTE THE A INVERSE MATRIX
* COMPUTE TEE DETERMINANT OF A
* SAVE THE MATRICES TO LARGER STORAGE ARRAYS
* CONTINUE
S EWRITE THE MATRICES TO TEE OUTPUT FILE

* END
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SUBROUTINE SYSTEM (DEN. I. FIAT. BEAT. SEAT)

* "• SUBROUTI NE SY STEM

* DESCRIPTION:
C TEIS PROGRAM COMPUTES I (MASS). K (STIFFNESS), SE (CONTROL)
* AND SURE (MEASUREMENT) MATRICES FOR TEE DRAPER/RPL SIMPLIFIED
* LARGE SPACE STRUCTURE, TERN USES TIEM TO COMPUTE TEE STANDARD
* STATE SPACE F. 3. AND E MATRICES.
C
C AUTBOR: PAUL G. FILIOS
C VERSION: 1.0
C DATE: 29 JUL 1985

.• INPUT: DEN, E - TER VALUES FOR TIE TWO UNCERTAIN PARAMETERS

• OUTPUT: FIAT, SEAT, BEAT - CONTINOUS TIME MATRICES TEAT DESCRIBE
* TEE SYSTEM
C

C PSEUDOCODE:
C BEGIN
C CALCULATE TER DIMENSIONS OF TEE MATRICES
C CALL SUBROUTINE TEAT COMPUTES TEE I AND K MATRICES
C CALL EIGENVALUE/EIGENVECTOR ROUTINE
* FORM SEAT MATRIX
* FORM SUER MATRIX
* FORM SUBR MATRIX
* CALCULATE SEAT TRANSPOSE * SURE - NEWS
* FORM SEAT MATRIX

CALCULATE SURE * S NEWS
S FORM SMAT MATRIX
C END
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4

SUBROUTINE MATRIX (MODES. M, K,
+ R. I0, DEN. 3, T, ,.- L, TUASS, 12C, P2)

*coo..... OOOsOOo0OOOOO S...... so.....SOO*OOOO 0000 OoOSOO SSS 500 0555Q00000

C
C S UBROU T I NE MATR I X
C
Cs0oo..oeoo0es0osoo0o....e0esoe0eesseoooo..oo0e0oe0o0oeeesoooo..eeeo..see....e.

5 DESCRIPTION: THIS ROUTINE COMPUTES TUE M (MASS) AND K (STIFFNESS)
MATRICES FOR THE DRAPER/RPL LARGE SPACE STRUCTURE MODEL.

4 AUTHOR : PAUL 6. FILIOS
* VERSION: 2.0
* DATE : 10 JUN 8S

* PARAMETERS PASSED: MODES, R, 10, DEN, E, T. U, L, TIASS. 12C, P2

* PARAMETERS RETURNED: M, K

o..oo~o..o.o..........ooo............o..............................~C PSEUDOCODE:

C BEGIN
C DETERMINE N AND K ELEMENTS NOT DEPENDENT ON AN INDEX
C FOR i - iTO MODES
C DETERMINE M AND K ELEMENTS DEPENDENT ON A SINGLE INDEX
C FOR I - 1 TO MODES
C DETERMINE M AND K ELEMENTS DEPENDENT ON TWO INDICIES

- C NEXT J
C NEXTI
C END

137

**A. L



.4,4

0~ 0

SS 3 .2

e-4

4 ce,

:AA

0 r0

go A



PROGRAM BANK
*OS0eeeeeeeeee****s****eo**o..gge.**.******ee0ee..e.****e***e***ee**e**e*******

* PROGRAM D A NK

* DESCRIPTION: THIS PROGRAM SIMULATES A MOVING BANK MULTIPLE MODEL
* ADAPTIVE KALMAN FILTER. BASED ON TUE TRUTH MODEL DESCRIBED BY
* SUBROUTINE TRUE AND CONTROLS TEE SYSTEM BAuRD ON TUE
* CONTROL SYSTEM DESCRIBED BY SUBROUTINE CNTRL.

* AUTHOR : KARL BENTZ AND PAUL 0. FIIIOS
* VERSION: 2.4
• DATE : 02 OCT 85

INPUT: FILE 'SPACRlp WRITTEN BY TEN SETUPS PROGRAM. CONTAINS THE
* MATRICES FOR EACE FILTER IN TER PARAMETER
* SPACE.
* FILE 'PARAMTR'p CONTAINS TIE DISCRETE PARAMETER VALUES FOR

* EACH VARYING PARAMETER.
* FILE *CONDIT'p CONTAINS THE INPUT CONDITIONS FOR TIE
* SITUATION UNDER STUDY.

* OUTPUT: FILE IOUTlp CONTAINS TEE RAW DATA FOR THE RESLTS

* PROGRAM TO PUT INTO GRAPE FORM.
* FILE 'OUT2°p CONTAINS TEE DATA GENERATED BY TEE FIRST

* MONTE CARLO RUN IN A FORM SUITABLE FOR
PRINTING.

* FILE 'STATES'p CONTAINS THE VALUES OF TEE SYSTEM STATE
* VARIABLES AT EACH SAMPLE TIME OF THE FIRST
* MONTE CARLO RUN.

* NOTE: THIS PROGRAM HAS BEEN MODIFIED TO USE ONLY AN APPROXIMATION
FOR TEE BANK WEIGHTING PROBABILITIES DUE TO NUMERICAL DIFFICULTIES
IN COMPUTING ADET IN TE SETUPS PROGRAM. ONLY SUBROUTINE iFx

* IS AFFECTED.

a.
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T I S I S T I E N A I N PROGRAM

-- PSEUDOCODE:

*• READ TIE INPUT VALUES
* INITIALIZE OUTPUT FILES
* FOR EACS MONTE CARLO RUN

* INITIALIZE TIE TRUE PARAMETERS
* INITIALIZE TIE BANK VARIABLES AND MATRICES
* FOR EACH SAMPLE PERIOD
*• PROPAGATE THE TRUE SYSTEM

PROPAGATE TIE ESTIMATE
TAKE A MEASUREMENT

* UPDATE TEE BANK ESTIMATES
* DETERMINE TIE BANK PROBABILITIES

* DETERMINE TIE NEW ESTIMATE
• COMPUTE TIE CONTROL INPUTS
SFOR TIE FIRST RUN
* OUTPUT TIE PRODS. STATES, AND TERESIOLD VARIABLES

* MOVE. CONTRACT. OR EXPAND TIE BANK IF NECESSARY
* COMPUTE TIE PERFORMANCE STATISTICS
* OUTPUT TIE STATISTICS OF INTEREST

. LOOP
* LOOP
S END

414'
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- SUBROUTINE CNTRL (ADISTIDATAUTIN.ALPEAD.IIATBPROD)

9 * SU BROU T I N E CN TRL 

* DESCRIPTION: THIS ROUTINE CONPUTES TEE CONTROL INPUT

* AUTHOR KARL RENTZ AND PAUL Go FILIOS
• VERSION 3.0
* DATE 17 SEP 85

* PARAMETERS PASSED:
* AHIST: TEE ESTIMATES OF TIE PARAMETER VALUES FOR THE LAST 10

* * TIME PERIODS, USED FOR ADAPTIVE CONTROL
* IDATA: TUE WEIGHTED AVERAGE OF STATE ESTIMATES, USED FOR ADAPTIVE
* CONTROL
S •U: TEE CONTROL INPUT VECTOR, COMPUTED HERE

TIM: THE CURRENT SIMMULATION TIME PERIOD
* ALPEAB: THE INDIVIDUAL PARAMETER ESTIMATES OF TUE BANK FILTERS
S EIATB: TEE INDIVIDUAL STATE ESTIMATES OF TEE BANK FILTERS
* PROD: TEE PROBABILITY WEIGTINGS OF TEE BANK FILTERS

PSEUDOCODE:
• CAsE OF
' DITHER SIGNAL
-* FIXED GAIN CONTROLLER

COMPUTE CONTROL
VARIABLE GAIN CONTROLLER

* SELECT GAIN
* COMPUTE CONTROL
* MMAC
• FOR RACE FILTER
• COMPUTE CONTROL
* ACCUMULATE WEIGHTED AVERAGE
* LOOP
* END

41 ,4



D1

SUBROUTINE TRUE (I.UATRUERNSTP.TIM)

* SUBROUTINE TRIUE

* DESCRIPTION: TBIS ROUTINE PROPAGATES TIE TRUE SYSTEM
r FROM ONE SAMPLE TIME TO TEE NEXT, ADJUSTING TIE TRUE

* PARAMETER POINT VIEN DESIRED

* AUTIOR : KARL BENTZ AND PAUL G. FILIOS
* VERSION 4.0
" DATE 23S EP 85

* PARAMETERS PASSED:
X : TER TRUE SYSTEM STATES

* U: TEE CONTROL INPUT VECTOR
ATRUE: TIE TRUE PARAMETER POINT

* RNSTP: TIME OP TIE END OF TIE SIMMULATION
S TIM: TIE CURRENT SIMMULATION TIME PERIOD

* PSEUDOCODE:

* IF TEE TRUE PARAMETER VARIES
* GET TEE NEV MATRICES FROM TR PARAMETER SPACE
• MULTIPLY TER STATES BY TER STATE TRANSITION MATRI.
* MULTIPLY TIE CONTROL BY TIE TRUE SD MATRIX
* GET A NOISE VECTOR
* MULTIPLY TIE NOISE VECTOR BY 3D
• ADD ALL TER PRODUCTS FOR TIE NEW TRUE STATES
, END
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SUBROUTINE 31(V)

SUBROUTINE Rv

* DESCRIPTION: GENERATES A WNITE GAUSIAN RANDOM VECTOR.

AUTIOR : KARL BENTZ AND PAUL G. FILIOS
• VERSION: 2.0
• DATE : 26 JUN 835

t PARAMETERS PASSED:
P •V: A RANDOM NOISE VECTOR

* PSEUDOCODE:
* FOR EACS ELEMENT OF TUE NOISE VECTOR
* DO 12 TIMES
.•ACCUMULATE A UNIFORMLY DISTRIBUTED RANDOM NUMBER• LOOP

SUBTRACT SIZ

* LOOP
* END
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SUBROUTINE PROPGT(XBATB,PIIB.BDB.U)

a SUDROUT I NI PROPGT

• DESCRIPTION: TUIS ROUTINE PROPAGATES TEE STATE ESTIMATES OF EACH

SFILTER IN TEE MOVING BANK FROM TEE END OF ONE SAMPLE PERIOD TO
* JUST BEFORE TEE MEASUREMENTS ARE TAKEN OF TIE NEXT.

* AUTEOR : KARL RENTZ AND PAUL 6. FILIOS
* VERSION: 2.2

DATE : 3 AUG 835

* PARAMETERS PASSED:
X HATS: CURRENT STATE ESTIMATE FOR EACE FILTER IN TEE BANK, TEESE

* * VALUES ARE ALTERED
* PIB: PSI MATRIX FOR LACE FILTER IN TEE BANK
* DDB: DISCRETE INPUT MATRIX FOR LACE FILTER IN TE BANK
* U: CONTROL INPUT VECTOR

* PSEUDOCODE:

* FOR RACE FILTER
MULTIPLY PII BY hAT
MULTIPLY ED BY U

* ADD TEE PRODUCTS TOGETEER
LOOP

END

144



SUBROUTINE MEAS(IZ.MATT.Z,3)
...... e..e...g..ee...eOg..eOe...eeOgg..geOeg..gOeeeegOeOeOeOggeegOeOege.*eOg** S

g

0 S UD ROUT I N E MEA S

:OooooosoooooooBoooooo0000000*OOOOOOOOO*00000000*0000000000000000000*00000000oO

* DESCRIPTION: TUIS ROUTINE TAKES A MEASUREMENT OF TEE TRUE SYSTEM.

e AUTNOR : KARL MENTZ AND PAUL 6. FILIOS
VERSION: 2.02
DATE : 3 AUG 8S

* PARAMETERS PASSED:
* 2: TRUE STATES

e MATT: TRUE MEASUREMENT MATRIE
2 2: TER MEASUREMENT RETURNED
R: TEE COVARIANCE OF TEE MEASUREMENT NOISE

*eegeeee eeeeeeeeeeo o o o eeeeeeeeeeeee0eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

PSEUDOCODE:
* CALL THE PSUEDO-RANDOM NUMBER GENERATOR FOR TEE V VECTOR

MULTIPLY THE V VECTOR BY TEE SQUARE ROOT OF R
ENMULTIPLY I Y UMATT

C ADD TER NOISE TO TEE MEASUREMENT
0 END
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SUDROUTINE RRSID(Z,XIATB°.MAT3.RESBLIKEoAINV)

S SU BROUT I NE RE S I D

* DESCRIPTION: THIS ROUTINE COMPUTES THE RESIDUALS FOR EACH OF THE
ELEMENTAL FILTERS IN THE SLIDING BANK, AND TOE LIKELIHOOD

* QUOTIENT FOR EACH FILTER

• AUTHOR : KARL RENTZ AND PAUL G. FILIOS
C VERSION: 2.03

* DATE : AUG 85

PARAMETERS PASSED:
Z: THE MEASUREMENTS TAKEN
IHATS: THE CURRENT STATE ESTIMATES FOR EACH FILTER IN THE BANK
I *NATD: TB MEASUREMENT MATRICES FOR EACH FILTER IN THE DANK
RES: TH RESIDUALS RETURNED

* LIKE: TER MINIMUM LIKELIHOOD QUOTIENT RETURNED
S AINVB: TEE A INVERSE MATRIX FOR EACH FILTER IN THE BANK

* PSEUDOCODE:
FOR EACH FILTER

C MULTIPLY BRAT BY IHAT TO DETERMINE Z EXPECTED

* COMPUTE THE RESIDUAL - Z - Z EXPECTED
• FORM THE QUADRATIC R • AINV 0 R(TRANSPOSE)
* IF THAT IS LESS THAN THE MINIMUM LIKELIHOOD QUOTIENT THEN

LO MAKE IT TER NEW MINIUM LIKELIHOOD QUOTIENT
* LOOP

* END
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SUBROUTINE UPDTE(RESB,XEATB.PMINB,AINVBCKNATB.TIN)
e0e0eeBeeee...eeOeeeeeeeeeOeeeeeOeOeeeeeeeeeeeeeeeeeOee..eeege0eeeeeeeee0eeeeee

* SUBROUTINE UPDTE

DESCRIPTION: THIS ROUTINE UPDATES RACE OF TEE FILTERS IN TEE
SLIDING BANK WITH TIE RESULTS OF TER MEASUREMENTS.

* AUTHOR : KARL BENTZ AND PAUL 6. FILIOS
VERSION: 2.03

5 DATE : 3 AUG 85

* • PARAMETARS PASSED:
RESD: TEE RESIDUALS FOR RACE FILTER IN TEN BANK

5 IRATE: TEE CURRENT STATE ESTIMATES FOR RACE FILTER IN TIE BANK
PRINB: TEE COVARIANCE MATRIX DEFORE UPDATE FOR EACH FILTER

5 AINVB: TIE A INVERSE MATRIX FOR EACH FILTER IN THE BANK
CKMATB: TIE KALMAN FILTER GAIN MATRIX FOR EACE FILTER IN TIE BANK

5 TIM: TIE CURRENT TIME IN TEE SIMULATION

> PSEUDOCODE:
• FOR EACH FILTER

MULTIPLY TEE GAIN MATRIX BY TEE RESIDUALS TO GET TIE CEANGE IN
TEE STATE ESTIMATES

ADD TEE CHANGE TO TEE CURRENT STATE ESTIMATES
* ELOOP

END
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SUBROUTINE PROBL(RESB.AINVB.ADETB.PROD°PLOW)

* SUBROUTINE PROIL

*SoSSoSSSSSS.ooSoSSoSSSSS.SSeeoooeo.eeeeooooeooo.eeelooooe.e.eaeoloeee•" DESCRIPTION: THIS ROUTINE COMPUTES TUE PROIABILITY ;EIG.TING
* FACTORS FOR RACE FILTER IN TER BANK

* AUTHOR : KARL BENTZ AND PAUL G. FILIOS
* VERSION: 2.00
* DATE : 20 JUL 85

* PARAMETERS PASSED:
O * RESD: TEE RESIDUALS FOR EACH FILTER IN TIE BANK

. AINVB: TEE A INVERSE MATRIX FOR RACE FILTER IN TIE BANK
* ADET3: TIE DETERMINATE OF TEE A MATRIX FOR EACH FILTER

. S PROD: TEE CURRENT PROBABILITY WEIGHTINGS FOR EACE FILTER. RETURNED

. * PLOV: THE PROBABILITY WEIGHTING LOWER BOUND

* PSEUDOCCOR:

FOR SACE FILTER
GET TEE PROBABILITY DENSITY FUNCTION FOR RACE FILTER

" S MULTIPLY IT BY TIE LAST PROBABILITY WEIGHTING
* ACCUMULATE THE TOTAL VALUES FOR USE IN THE DNOUINATOR
* LOOP
* DIVIDE ALL PROBABILITY VALUES BY TEE ACCUMULATED TOTAL
* END
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SUBROUTINE P(RES.AINV.ADET.DNSTY)

SUDROUTINE F

* DESCRIPTION: THIS ROUTINE COMPUTES TER PROBABILITY DENSITY
* USED IN COMPUTING TEE BANK FILTER PROBABILITIES.

* AUTEOR : KARL RENTZ AND PAUL 6. FILIOS
-N * VERSION: 2.00

. DATE : 20 JUL 85

* PARAMETERS PASSED:
* RES : INPUT RESIDUALS FOR ONE FILTER
* AINV: INPUT, TER INVERSE A MATRIX FOR ONE FILTER

ADET: INPUT. TER DETERMINANT OF TEE A MATRIX FOR ONE FILTER
*DNSTT: OUTPUT. TEE PROBABILITY DENSITY COMPUTED

* NOTE: BECAUSE OF NUMERICAL DIFFICULTIES IN CALCULATING ADET
* DNSTY IS INCOMPLETELY CALCULATED. TIE TRUE VALUE OF DNSTY
* CAN BE IMPLEMENTED BY REMOVING TUE xws COMMENT SYMBOL FROM
'a TOE LINE BEFORE TER RETURN STATEMENT.

, PSEUDOCODE:
* MULTIPLY TER RESIDUALS TRANSPOSE DY A INVERSE

* MULTIPLY TBE PRODUCT DY TUE RESIDUALS
DIVIDE TEE PRODUCT BY -2

* RAISE E TO TUE RESULTING QUOTIENT
* SCALE DY 2*PI 5* $ S SQUARE ROOT OF TEE DETERMINANT OF A
* END

Q.
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SUBROUTINE AVG(INATD.ALPNAS.PMIN3.PALP.PROB.IUATAoANIST)

* SUB RO U T I N E A VG

* DESCRIPTION: THIS ROUTINE TAKES TEE WEIGHTED AVERAGE OF TEE
* INDIVIDUAL FILTER'S STATE AND PARAMETER ESTIMATES

* AUTHOR : KARL RENTZ AND PAUL 6. FILIOS
* VERSION: 2.00
* DATE : 20 JUL 85

* PARAMETERS PASSED:
* IDATB: TUE STATE ESTIMATES FROM TIE FILTERS IN TIE BANK
* ALPHAD: TIE PARAMETER ESTIMATES FROM TUE FILTERS IN TEE BANK
* PMINB: TER COVARIANCI OF TUE PARAMETER ESTIMATES BEFORE UPDATE
* PALPE: TIE COMPUTED COVARIANCE OF TER OVERALL PARAMETER ESTIMATE
* RPROB: TEE PROBABILITY IEIGNTINGS FOR RACE FILTER

X RUATA: TEE AVERAGED STATE ESTIMATE COMPUTED AND RETURNED
* AMIST: TEE HISTORY OF TIE LAST 10 PARAMETER ESTIMATES, UPDATED
* AND RETURNED

* PSEUDOCODE:
** SHIFT TEE OLD VALUES OF ALPHA IN TEE HISTORY ARRAY

O FOR EACH FILTER
* ACCUMULATE XhAT S TEE PROBABILITY VEIGHTING

ACCUMULATE ALPHA * TER PROBABILITY WEIGHTING
* LOOP
* COMPUTE PALPB
* END

I.IS
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SUBROUTINE DSEID(AEIST.PALPELIKEAINVB.PMINBPIB,DD.XMATD.
+ DDATB.ADETBALPDABCKMATD.PRO.Z.XNATA.ICENT.ISIZE)

* SUDROUT I N E D SE I D

* DESCRIPTION: THIS ROUTINE EXAMINES TEE SLIDING BANK AND DESIDES
* IF IT NEEDS TO BE MOVED. EXPANDED. OR CONTRACTED. TEEN CALLS
** TEE APPROPRIATE ROUTINE TO ACCOMPLISE ANY NECESSARY ACTION.

* AUTEOR : PAUL 6. FILIOS
* VERSION: 3.00
* DATE : 16 AUG 85

* PARAMETERS PASSED:
* AINVB. PMINI, PRIM. IDS. ELATE. IMATD. ADETI. ALPRAB. CKMAT3.
• PROD: TEE ARRAYS TEAT DESCRIBE TEE FILTERS IN TEE DANK. IF TEE
* BANK MOVES, CONTRACTS, OR EXPANDS TUESE ARRAYS WILL BE UPDATED
* TO REFLECT TEE NEW FILTERS IN TEE BANK
* PALP2. LIKE, PROD: TUE VALUES OF TERSE PARAMETERS ARE USED IN TUE
* DECISION LOGIC

ICENT, ISIZE: DESCRIBE TEE CURRENT CENTER AND SIZE OF TEE BANK
• ADIST: CONTAINS TUE LAST ESTIMATE OF TUE UNCERTAIN PARAMETERS.

USED TO DETERMINE TEE NEW BANK CENTER AFTER A CONTRACTION
XUATA: TEE CURRENT STATE ESTIMATE, USED TO INITIALIZE NEW FILTERS

* PSEUDOCODE:
* IF TEE BANK NEEDS TO CONTRACT
* CONTRACT
* IF ThE DANK NEEDS TO MOVE
* MOVE
• IF TUE BANK NEEDS TO EXPAND
* EXPAND
* END
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SUBROUTINE CNTRCT (ICENT.ISIZE.PNIB.BDB,PNIND.AINV.ADETB.CMATB
+ PROBBNMATDhNATRDXNATA.ALPUAB)

* SU I ROUT I N E C N TR CT

* DESCRIPTION: TEIS ROUTINE CONTRACTS TEE SLIDING BANK TO A FINER
6 DISCRETIZATION.

* AUTHOR : PAUL 9. FILIOS
* VERSION: 1.00
* DATE : 20 AUG 85

* •• PARAMETERS PASSED:
* ICENT, ISIZE: TUE NEW CENTER AND SIZE OF TEE BANK
• UPIDBDB.PNINB.AINVB.ADETB,CINATU.PROBDMATB.XIATBALPEAB: THE
S ARRAYS DESCRIBING TEE FILTERS IN TEE BANK

*.*. • ZEATA, TEE CURRENT STATE ESTIMATE. USED TO INITIALIZE THE NEW
" FILTERS IN TEE DANK

* PSEUDOCODE:
* ENSURE ICENT WILL KEEP SLIDING DANK INSIDE PARAMETER SPACE
" " IF NOT ADJUST ICENT
" REASIGN THE PEI MATRICES
* REASIGN THE I MATRICES
. REASIGN TEE 9D MATRICES
* REASIGN TEE 5 MATRICES
* REASIGN TEE F MINUS MATRICES
* REASIGN TEE AINV MATRICES
* REASIGN THE A DETERMINATES
* REASIGN TEE ALPHAS
" REASIGN TBE PROBABILITIES
" ASION XBAT TO NEW FILTERS
* END
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SUBROUTINE EXPAND(ICENTISIZE,PIIB.BDB.PNINB.AINVBoADETB.CKNATB,
+ PROB°,NATBXEATB°XNATA°ALPBAB)

,S U ROUT I N E E 1 PA ND

* DESCRIPTION: TRIS ROUTINE EXPANDS TER SLIDING DANK TO ITS
* LARGEST DISCRETIZATION.

* AUTROR : PAUL G. FILIOS
- VERSION: 1.00
* DATE : 20 AUG 85

- PARAMETERS PASSED:
*IC.NT, ISIZE: TER NEW CENTER AND SIZE OF TEE BANK
*• PUIBBD3.PMINB.AINVD°ADRTDCKMATB,PROBBNATB,XNATB.ALPUAB: TEE

V *• ARRAYS DESCRIBING TIE FILTERS IN TIE BANK
* IRATA, TER CURRENT STATE ESTIMATE. USED TO INITIALIZE TIE NEI
* FILTERS IN TEE BANK

PSEUDOCODE:
SET ISIZE TO 4

* SET TEE BANK CENTER TO TRE PARAMETER SPACE CENTER
* RESET P19, 3DB, BEAT, CKNAT, PINB, AINV9, ADETI,

END ALPIAB. PROB. AND XNATB* END
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SUBROUTINE MOVE (ICENTISIZR.PHI.BBDB.PNINBAINVBADETB.CKMAT,
+ PROB.BMATB.XBATDZNATA.ALPHAB°NOVDIR.Z)

S S U B 1 0 U T I N E X 0 V E

• DESCRIPTION: THIS ROUTINE MOVES THE SLIDDNG BANK ONE STEP IN ANY
• DIRECTION

• AUTHOR : PAUL G. FILIOS
* VFRSION: 3.00
* DATE : 20 AUG 85

* 0 PARAMETERS PASSED:
* ICENT. ISIZE: TIE NEW CENTER AND SIZE OF THE BANK

PHI3.BDB.PNINB.AINVB.ADETB.CMATB.PROB.EMATB.BATB.ALPAB: THE
ARRAYS DESCRIBING THE FILTERS IN THE BANK

S IHATA. THE CURRENT STATE ESTIMATE. USED TO INITIALIZE THE NEW
* FILTERS IN THE HANK

* PSEUDOCODE:

• COMPUTE NEW BANK CENTER
*. - IF MOVE PUTS PART OF BANK OUTSIDE PARAMETER SPACE
- THEN RETURN
. RESET PBIB BDB. HAT. CIMAT. PMINB. AINVB, ADETB.
" ALPEAD, AND XBATB
• ASSIGN NEW PROBABILITIES
* END
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PROGRAM RESLT
Oeeeeeeee0e...eeOee.S...eQsOOeSO.....OOO*eOOeOOeO*e......*..................

PROGRAM R E SLT

* DESCRIPTION: THIS PROGRAM IS TIE POST PROCESSOR FOR PROGRAM BANK.
* ORGANIZING TE RAW DATA INTO A FORM TEAT CAN RE PLOTTED BY THE
* CALCOMP PLOTTER.

* AUTHOR : KARL RENTZ AND PAUL 0. FILIOS
VERSION: 2.3

* DATE : 20 OCT 85

* INPUT: FILE 'OUTI' CREATED 31 PROGRAM BANK.

. OUTPUT: FILE ITAPE99' READT FOR ROUTING TO TEE CALCOMP PLOTTER.

TAI S IS TUE MAI N PROGRAM"S

" PSEUDOCODE:
INITIALIZE INPUT ARRAYS TO 0

* READ IN RAW DATA. SUMMING TIE MONTE CARLO RUNS
NORMALIZE DATA BY THE NUMBER OF MONTE CARLO RUNS

* SET UP TER PLOT TITLES
* PUT THE DATA INTO TUE PLOT ARRAYS
* PLOT TEE DATA
* END

1
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SUBROUTINE SLOTS (DATANPNTS.LTITL.TTITLMODENN.X.Y.NS.IU
+ NOVE.EXPD.CONTBR.NBR.IPVAR.PSTRT)

"S U B R 0 U T I N E S L 0 T 8

* DESCRIPTION: THIS ROUTINE PLOTS THE DATA PREPARED IN THE MAIN
* PROGRAM USING CALCOMP PLOTING ROUTINES.

S AUTHOR : KARL BENTZ AND PAUL 6. FILIOS
* VERSION: 2.2
* DATE : 21 OCT I5

* PARAMETERS PASSED: (ALL ARE INPUT)
* DATA: TIE DATA POINTS TO B PLOTED
* NPNTS: THE NUMBER OF DATA POINTS
* LTITL: TEE TITLE OF THE PLOT

YTITL: AN ARRAY OF TITLES, ONE FOR THE Y AXIS OF BACH SUN-PLOT
* MODE: THE MODE THE SLIDING BANK WAS OPERATING IN
* MOVE°
* EXPD.

CONTER: TEE THRESHOLDS USED FOR MOVE. EXPAND. AND CONTRACT DECISIONS.
* NOR: THE NUMBER OF MONTE CARLO RUNS MADE.
* IPVAR: CODE SIGNIFYING TIE VARIABLE OF INTEREST BEING PLOTTED.
• PSTART: TEE TIME IN THE MONTE CARLO RUNS WHEN TE PLOT STARTS.

* PSEUDOCODE:

* WRITE TITLE AND NOTES
* FOR EACH SUB-PLOT
* DRAW AND LADLE TBE AXIS

DRAW THE MEAN LINE
*DRAW TEE PLUS ONE SIGMA LINE

* DRAW TEE MINUS ONE SIGMA LINO
E ADJUST STARTING POINT FOR NEXT SUB-PLOT

15 END

A
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PROGRAM ARDIS

S PRO RA N A D IP

- DESCRIPTION: PERFPORMS ADIU TT FUNCTION ANALSIS O PARAMETER POINTS
R IN T ZE PARAMETER SPACE OP A SLIDING DANK MULTIPLE MODIL ADAPTIVE

* ESTIMATOR.

AUT O KARL NENTZ AND PAUL . FILIOS
VERSION: 2.0

• DATE A20 UN
5150 INPUT: FILE nAMIPACEw CONTAINING TIE MATRICES DESCRIBING TUE PARAMETER
o • SPACE.o OUTPUT: ETAPE9SR PLOT PILE FOR TIM CALCOMP PLOTTER

TRIG IS8 TSR MAIN PROhRAM

• PSEUDOCODE:

• READ IN TUE PAAMETIR SPACE
* SET UP TUE TRUTE MODEL

• FOR RACE FILTER
• SET UP TME FILTER
• DETERMINE TEE AMBIGUITI FUNCTION

o LOOP
o PREPARE DATA FOR PLOTTING
o PLOT DATA

o END
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SUBROUTINE SETTR(PIP2.PNIT.GDT.IATT)

* SU ROUTI N E SETTA

* DESCRIPTION: SETS UP TUE TRUTI MODEL FOR TIE PARAMETER POINT DESIRED

* AUTUOR : KARL RENTZ AND PAUL G..FILIOS
VERSION: 2.0

* DATE : 25 JUN 35

* PARAMETERS PASSED:
* PI.P2: INDICES TO TIE TRUE PARAMETER POINT IN TUE PARAMETER SPACE

* * PDT: TRUE PEI MATRIX. RETURNED
O UDT: TRUE NOISE INPUT MATRIX. RETURNED

* SRATT: TRUE MEASUREMENT MATRIX. RETURNED

*SSSS..............SSO....................................*.OS......

* PSEUDOCODE:

* GET PEIT FROM PARAMETER SPACE" OSI ODT ISO% PARAMETER SPACE
* GET iNATT FROM PARAMETER SPACE
" END
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SUBROUTINE SETFI(PI.P2.PUI.EMAT.CIMAT.PMINPPLUS.AINJ.ADET)

* DESCRIPTION: SITS UP TEE FILTER MODEL FOR TIE PARAMETER POINT
* DESIRED.

S AUTBOR :KARL RENTZ AND PAUL I. FILIOS
V ERSION: 2.0

* DATE :25 JUN 85

* PARAMETERS PASSED:
* PI.P2: INDICES TO TIE PARAMETER POINT DESIRED
* PSI: STATE TRANSITION MATRIX FOR DESIRED POINT
* EMAT: MEASURMENT MATRIX FOR DESIRED POINT

CKNAT: FILTER GAIN MATRIX FOR DESIRED POINT
PMIN: COVARIANCE OF STATE ESTIMATES DIPOlE UPDATES

*PFLUS: COVARIANCE OF STATE ESTIMATES AFTER UPDATES
*AINY: A MATRIX FOR DESIRED POINT
*ADET: DETERMINANT OF A MATRIX

* GET PSI FROM PARAMETER SPACE
SRIE P31W FROM PARAMETER SPACE

* GET PPLUS FROM PARAMETER SPACE
* GET CKMAT FROM PARAMETER SPACE
* GERT EMAT FROM PARAMETER SPACE

S ET AINY FROM PARAMETER SPACE

E GET ADET FROM PARAMETER SPACE
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SUBROUTINE AMDI(PEI.MAT.CKMAT.PMINPPLUS,AINV.ADT.
NATTPNIT.GDT.EA)

*SOOeOO*SeOO**SO*O**6*****S*OOOeeesOeOSO**OOSSS***See.SeeeOe...OOO

* SUBROUTINE AUD IO

* DESCRIPTION: PERFORMS TEE AMBIGUITY FUNCTION EVALUATION FOR A POINT
* IN TIE PARAMETIR SPACE. USES A MONTE CARLO XMULATION TO COMPUTE
S TEE ENSEMBLE AVERAGE.

* AUTMOR : CARL RENTZ AND PAUL S. FILIOS
* VERSION: 2.0
* DATE : 25 JUN 5

* PARAMETERS PASSED:
SPEI. BEAT. CRAT. PRIN, PPLUS. AINY. ABET: MATRICBS DESCRIBING
* TMB FILTER AT TEE PARAMETER POINT OF INTEREST
* MNATT. PMIT, ODT. R: MATRICES DESCRIBING TE TRUE SYSTEM
* A: TER VALUE OF TER AMBIGUITY FUNCTION AT TIE POINT OF INTEREST

.• PSEUDOCODE:
* FOR TEE NUMBER OF MONTE CARLO RUNS DESIRED
SFOR BACM TIME PERIOD
* PROPAGATE TER STATE ESTIMATE
* TAKE A MEASUREMENT OF TER TRUE SYSTEM
* UPDATE TIE FILTER MITE TEE MEASUREMENT
* ACCUMULATE ERROR STATISTICS
* LOOP
* LOOP
* COMPUTE ANBIGUITY FUNCTION PROM ERROR STATISTICS
* END

1a"

162

:-



SUBROUTINE TRUE(X.PIT.GDT)

* SUSROUT I NI TRU E

* DESCRIPTION: PROPAGATES T11 TRUE SYSTEM PROM ONE SAMPLE TIME TO TUE
* NEXT.

* AUTBOR : KAIL BENTZ AND PAUL 0. PILIOS
- VERSION: 2.0
* DATE 25 JUN 85

0 PARAMETERS PASSED:
* 3: TRUE SYSTEM STATES
* PRIT: TRUE STATE TRANSMISSION MATRIX
SODT: TRUE NOISE INPUT MATRIX

" 5 PSEUDOCODE:
GET A RANDOM NOISE VECTOR

* MULTIPLY PElT BY 1
0 MULTIPLY *DT BY TIE NOISE VECTOR
" ADD TEE PRODUCTS
, END
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SUBROUTINE RV(V)

* SUBROUTINE. RI

* DESCRIPTION: GENERATES A VBITE GAUSIAN RANDOM VECTOR.

* AUTBOR : KARL RENTZ AND PAUL 6. FILIOS
* VERSION: 2.0
* DATE : 26 JUN 85

* PARAMETERS PASSED:
S V: A RANDOM NOISE VECTOR

. PSEUDOCODE:
* FOR LACE ELEMENT OF TBE NOISE VECTOR

"N * DO 12 TINES
* ACCUMULATE A UNIFORMLY DISTRIBUTED RANDOM NUMBER
* LOOP
* SUBTRACT 513
* LOOP
* END

:4.16
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SUBROUTINE MEAS(INATT.Z.)

* SUBROUT I NE MEA S

* DESCRIPTION: TIS ROUTINE TAKES A MEASUREMENT OF TEE TRUE SYSTEM.

S AUTBOR : KARL RENTZ AND PAUL G. FILIOS
0 VERSION: 2.02
* DATE : 3 AUG 85

* PARAMETERS PASSED:
* 1: TRUE SYSTEM STATES
v• EMATT: TRUE SYSTEM MEASUREMENT MATRIC
, Z: MEASUREMENTS TAKEN
" R: COVARIANCE OF TME MIASUREMENT NOISE

* PSEUDOCODE:
* GET A RANDOM NOISE VECTOR

EMULTIPLY EACE ELEMENT BY TUE SQVAREBOOT OF R
* MULTIPLY UNATT TIMES I

* ADD TIE NOISE TO TEE PRODUCT
• END

4,'

m.
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SUBROUTINE UPDTE(Z.1UNMAT.CKMAT)

SUBROUTINE UPDTE

* DESCRIPTION: THIS ROUTINE UPDATES TYE FILTER WITE TIE MEASUREMENT.

* AUTBOR : KARL RENTZ AND PAUL 6. FILIOS
* VERSION: 2.04
* DATE 8 SEP 85

* PARAMETARS PASSED:
* Z: TOE CURRENT MEASUREMENT
* IZ: TUE CURRENT FILTER STATE ESTIMATE
S BMAT: TIE FILTER MEASUREMENT MATRIX
* CKMAT: TEE KALMAN FILTER GAIN MATRIX

* PSEUDOCODE:
* COMPUTE RESIDUAL
* COMPUTE CUANGE IN STATE ESTIMATE
* ADD COANGE TO CURRENT STATE ESTIMATE
* END

'.
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discrete steps, estaplishing the parameter space. It is
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using moving-bank multiple model adaptive algorithms.

The results Indicate that, although the system under
study did not have a great need for adaptive estimation and
control, the multiple model adaptive estimator performs
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addition changing bank discretization for the initial
parameter aquisition phase speeded acquisition. However,
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'4 acquisition phasep the bank tracked the Jump change through
movement alone. Ambiguity function analysis proved to be an
excellent predictor of bank performance, and should be used
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