AD-AL164 813 THE DESIGN RND XHPLEHENTRTIDN OF A _RELATI 10

TO
NETHORK QUERY TRANSLATOR..<U)> AIR FORCE INST DF TECH
IGHT-PRTTERSON AFB OH SCHOOL OF ENGI.
UNCLRSSIFIED DEC 85 AFIT/GCS/ENG/83D-7 FIG 9/2




TN AL e

o ERP

LA I
PR

14':_'-

P3
L

a4, Sy Ty Ty s
.

3,

]

Y
~
A\
-
-

5

'

N

e ax
mmﬂzz
u =
[ F

“ 122

it e

o

i

~ mu

FIFFEEE

—
.
-—
r
r

fr

ll

i |

MICROCOPY RESOLUTION TEST CHART
SATIONAL BURTAL NF CTANDARNS.1963.A




e Joh
i

'-.. s "." .

AR

[ gy s e 2

“« s - e
f f 7
oy
S e
N AT
PP
P PR
LR A

AD-A164 013

e

i
i
-~ B
TN,
THE DESIGN AND IMPLEMENTATICN CF A frns
RELATIONAL TO NETWORK QUERY TRANSLATCR FOR A {37
DISTRIBUTED DATABASE MANAGEMENT SYSTEM e
THESIS f:;
Xevin H. Mahoney ‘t::.-',::
a Captain, USAF A
e
8 AFIT/GCS/ENG/85D= T £

= J—— DTIC =
= “DISTRIBUTION STATEMENT K o
= ——A;pxovod tor public relecse) ELECTE ':::‘.--ji
§ Distribution Unlimited FEB 1 3 1988

DEPARTMENT OF THE AIR FORCE B
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY
U

Wright-Patterson Air Force Base, Ohio

=

- e . PRI S
e e TN TN et N e e Y e S . " "

T e . - L Y PR S aY
O SO RN RO I I S v e .""-‘ o e N oY ;A

T RN, T L AR
R K O P Tt SR AT S LS




Itk e S S At JhAe e Ji it

. 1_;...:.{--.__; ._:._, ‘..:._.:.._ . '.:..‘:..,:.....'_:._,'.);.-.:.'_\-* . -'.‘:.. 2 .;‘:..:‘._. .‘"‘fr.'f-"':'-.":. o J...’u-._,;_-‘.-_-_x Y \ .- L i

AFIT/GCS/ENG/85D-7

THE DESIGN AND IMPLEMENTATION OF A
RELATIONAL TO NETWORK QUERY TRANSLATOR FOR A
DISTRIBUTED DATABASE MANAGEMENT 3YSTEM
THESIS

Kevin H. Mahoney DTIC
Captain, USAF

ELECTE

FEB1 3 1988

W B __

Approved for public release; distribution unlimited

AFIT/GCS/ENG/85D= 7

ORI ey e e

"m?

By n e
1

P

' e "

A S A e S i At S CH AP S Mt S S B N el S Sl vl s A e St e Sl D el e b aul teg el sl 0 gt At wulle Prd Wb LR by e Nl

A o
I'l "l‘ ¥
s ¥ N

¢ .
b
IS D T

! ik

>



Oy

B>,

ETINELIRI AR

“ .A.‘l“l.l‘l"’ﬁ

ARRYOORNS

et e i P et L e >t e

O AFIT/GCS/ENG/85D-7

THE DESIGN AND IMPLEMENTATION OF A

RELATIONAL TO NETWORK QUERY TRANSLATOR FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree

of Master of Science in Computer Systems

Kevin H. Mahoney

Captain, USAF

December 1985

o A e e T e e e A e T Y 3 A R LA T r R P L S
O I P - S A A R AT Y W LS C AR Y W XA LA

Y

RS T S TSI .-:.,.-;.~.\ WA

Approved for public release; distribution unlimited

oL




N Py oy .~
. - cTe T ATARL R Y N . W T e . % LT ETR N e T N T T Va ¥ & N v, ha8

,4
s 4 '

'(
‘:.
-
3
Y .
v
YN Preface
\ —_t
:5 The purpose of this study was twofold. The first purpose was to
4
b analyze and define the requirements for a universal, or global, query
language for use in a heterogeneous distributed database management e
system, and to propose query translation algorithms based on the use ":.f‘
of the relational model as the global data model. The second task was .f-¢
to design and partially implement translator software for translating :.:{3
relational queries into data manipulation language of the TOTAL
network data base management system.
. I would like to acknowledge the support and encouragement that I Nt
- received from my thesis advisor, Dr. Thomas Hartrum and from my ﬁjiil
- e reader, Dr. Henry Potoczny. I would also like to thank Dr. Gary jf_;:
\, -
- Lamont for the use of the Information Sciences Laboratory VAX-11, and AL
;: Capt Dave Gaitros for his much-needed help in learning the intricacies ;f -
- of the TOTAL DBMS and AFIT Data Base. e
X Finally, I would like to thank my wife, Mickie, and the rest of L;c;
. my family, for their constant understanding, support, and thf
AN
encouragement, without which I could not have finished this work. ?{;i
. i Accession For Kevin H. Mahoney ;Z;?ﬁ
, Frrrs omasr NS
- | tTic Tam ] e
s Unannounced i s Lt
Juatiricaticoo L—-—l
, T N
o By — SiE
o Distrirution/ DA
. | Li3 ] el
o Avallahiisty Codag .
. e BVall end/uy ‘ ‘ ! 1
= o Dist Spevtal RN
| s
v': l ' } '-'_ N
v A‘ | ] 1 NN
-, N
) 1
: IS
- '&'::;.:
e B o R S S s SN N 5 ey S PN A Qs LS R




A el 0 G G g A e A T e T A A W Y e g~ e

Ot Table of Contents

»
1

Page

i

Preface . ¢« o« o ¢ o 4 o o o o o o o o o s s o o s 8 s s e o e ii
List of Figures ¢ « o+ o o o ¢ o « o o« o 5 o o o o » s o o o« o vii
List of TableS &« & o o o o o« o « o o s o o o o s s o o o o o ix

ADSEract & & ¢ ¢ 4 4 e e s s 5 6 e s e s 4 s e e e e s e e s X

RSN
L

"' I. Introduction . .« + ¢ ¢ & & o o 5 » o ¢ o o s o » o o & 1

Background . . . & ¢ 4 ¢ 4 e 6 4 e 4 e e e e e e

Problem Statement . « ¢ + ¢ ¢« ¢ ¢ « 4 4 o o s 4 o »
Scope of Effort « « o ¢ ¢ ¢ 4 o o ¢ o s o o o o o »
ASSUMPLIONS & ¢ ¢« o ¢ ¢ o o ¢ o o s o o s o o o » o
Summary of Current Knowledge . « « & + o« &« ¢ ¢ o &
Approach « ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o ¢ 4 6 e s o s o
Sequence of Presentation .« « ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o

B

VI Froww o —

o

II. Heterogeneous DDBMS Approach Selection . . . . . . . &

\, Approaches Toward Heterogeneous DDBMSs . . . . . .
Database Terminal . « ¢ « ¢ &« o & « o o s o o «

Database Window « « ¢« & ¢ o o ¢ o o o « s o o o

Database PriSm. ¢ « ¢ ¢ o o o o o o s o o o o »

Windowed Database Prism « « « o o« ¢ « « o & o &

Choice of Heterogeneous DDBMS . . . . . « « « « «

Imker and Boeckman ThesSes « « ¢ ¢« ¢ ¢ o ¢ ¢ o o o o

Jones Thesis .+ ¢ v ¢« o ¢ o o & o o o o o o o o« o o

Roth TheSis v ¢ ¢« ¢« ¢ o ¢ o o ¢ ¢ o ¢ o o o s o o

OQOWWOOIIIO>

—_

- III. Data Partitioning and Redundancy « . « « ¢ « o o o « & 12

Partitioning of Relations . ¢« « ¢« ¢ ¢ ¢ v ¢ o &« o« & 12

.. Vertical Partitioning . . ¢« ¢ o o ¢ o o o o & & 13
Horizontal Partitioning « « ¢« « ¢« o ¢« « & o o & 13
Overlapping Partitions . « ¢ ¢ ¢ ¢« ¢ o ¢ o ¢ « « & 13
Vertical Disjoint and Overlapping « « « « o « 14
Horizontal Disjoint and Overlapping « « +» « « & 14
Overlapping Attribute Inconsistencies . « . . . . « 14
Redundancy of Data « o« o o o o o o o o s o o o o o 15
o Full Redundancy « « ¢« o ¢ o o o & o s o ¢ o« o & 16
Partial Redundancy . . « « ¢ ¢ ¢ o s & s ¢ o & 16
Partitioning/Redundancy Classes « « « ¢ « & o & o & 17

Shyh

(. Iv. Global Query Management in the DDBMS . . . . . . . . . 26

Global Query Manager Functions. . « « « « « ¢« o « « 26




O AT SR IC S e T Y S S L S LS S A A D i o A AT A AG A A A A A ek A Al Sy A

B DR AN LA Al Bale PR

R IRRAR SRR 1-' SN '
. PR e « .
. ' . B DRI £

Global Data Model . & ¢ & v « o« & o o o o o o 26
Query Decomposition . . & ¢ ¢ ¢ 4 ¢ & ¢ e . e 27
Execution Plan Generation . . « « « ¢ o ¢ o« o =« 27
Query Translation .+ « « o« o o o = « o o o o o 28
Results Integration . . . . C e e e e e e e 28
Query Management in the AFIT DDBMS e s 4 s e e 4 e 28
Global Data Model « ¢ o« ¢ o ¢ o « o o s o o o o o o 29
Query DecomposSition « « ¢ ¢ o ¢ o ¢ ¢ o ¢ o o o o o 31
Execution Plan Generation ¢ ¢« « « « o« o o o o ¢ o o 31
Query Translation . « « ¢ ¢« ¢ ¢ ¢« ¢ ¢« ¢ o o o o o @ 32
Results Integration « « « o o ¢ ¢ ¢ o o o o o o« o o 33

V. Global Schema and Query Language . « . « « o« ¢ o o o o 35

Jones' Global Relational Model . ¢« « ¢ ¢ ¢ o« o o &« 35
Normal FOPMS & « o« o o o o o o o o o o o o s o 35
KEYS ¢ ¢ ¢ v v ¢ o o o o« s o o o o o 4 e o o 36
Duplication of Information. « « « o ¢« o o« ¢ o & 36
Distributed Information . . « « ¢ o o o« o « o » 36
Network Constraints « « « « + o o « o o o o o 36
Hierarchical Constraints . « « « ¢ ¢ o o & o o« 36

Formalization of Jones' Constraints . . . « « « .« & 37
Schema Equivalence . « ¢ ¢« o« « « o o« s o o s o 37
Operation Equivalence . « « o« « o ¢ o o o o o o 38
Relational Schema Constraints « « « o« « « « « &« 38
Hierarchical Constraints . ¢ « ¢« ¢ & ¢ o « & o 39
Network Constraints . . . e e s e e s s e o » 40

The Global Relational Query Language

.
.
.
.
=
o

VI. Relational to Hierarchical (IMS) DML Translation . . . 42

Projection « ¢ « o ¢ o ¢ o o s o o o o o s o o o 42
SEleCtiON o « o o o o o o o o s o e s 2 4 o o 4 o s 43
First Case « o o ¢ o o o o o o« o o o o s o o 43
Second CaSe v v o o o o ¢ o o o o s o o & o o » 4y
Third Case .+ « o ¢ o ¢ o o s o o o s o s o s = 4y
B e « 4s
Category 1 JOIN +v o o o ¢ o o o o o o o« o o s ue
Category 2 Join ¢ v o o v ¢ o o o o s o o o o 48

VII. Relational to Network (CODASYL) DML Translation . . . 50

Query Efficiency « o o ¢ o o o o o o o o s o s o o 51
Access Path Generation and Selection . « « ¢ + o o« 51
Starting Record Selection « « o « ¢ o o o o o o 52
Access Path Characteristics . « o« ¢ ¢ ¢ « & o & 52
Intersection-Free Processing Orders . . « « « « « &« 53
Path Queries . « ¢ ¢ ¢ ¢ o ¢ o o ¢ ¢ s ¢ o o » 54
Tree Queries .« ¢« ¢ o o« ¢« o o o o o o o o o s 54
Processing Selection Algorithm . . . . . « « « « « 55
Ordered Record List « ¢« v & ¢ o ¢ o« ¢ o « o & & 56

iv




U A A - o

%W L.

B EAS YN

I

A A
."l..' y "‘I‘.
' e ) R Tttt

L R

o v v « ¥
s SRR
. ’ - . . . . .

|

L

I-;' L
et

\s

A A I I R A S et et B i b Ml G Al Al Al aa Sed 1 g JLAl AN AN ate el SNE A oAaoan et

DML Generation Algorithm . « . « « ¢ « &
Query Restrictions for Simplification .
Minor Optimizations . « « « « « ¢« ¢ + .

Example Translation . « « ¢ ¢ ¢ o« ¢ ¢« « &
Creation of Ordered List . . « . . + .
Code Generation Process . . « « o « + o
Generated Code .+ o o o o o o o o o « &«

VIII. Relational to TOTAL DML Translation . . . . .

Comparison of TOTAL and CODASYL . . . . . .
Schema Terminology .+ « o o o « o o & &
Data Structure . . . + ¢ ¢ ¢« ¢ o ¢ o« o
Data Structure Implementation . . . . .
Access Methods . . . . . . . . e
TOTAL Data Management Language (DML) .

TOTAL DML Generation Process . . . . .

Dataset Structure Creation . « « « .« .

Ordering of the Structures . . . . . . . .

Code Generation Algorithms . « . « . .« .
Driver Program . ¢ « « o« ¢ « o o o o =
Subprocedures for DATBAS Calls . . . .
TOTGEN DML Generation Algorithm . . . .

IX. A Partial Implementation of the TOTAL Translator

Translation Software Host Machine and Language

Translator Limitations and Assumptions
Query Input « ¢ o ¢ o ¢ o o o o & o o
Multiple Databases .« « ¢ ¢ « o o « & &«
Dataset Processing Order. . « « . + . &
Queries Allowed .« « « ¢ o o o o o o o @
Boolean Qualifiers . . . . ¢« ¢« .+ « &
Maximum Datasets in a Query . . . . . .

Translator Input and Output . « . « « . . .
AFITDBSC.DAT File v o o o o o o o o o &
QUERY.DAT File &+ ¢ o o o o o o o o o @
QRESULT.DAT File .« ¢ ¢ o o o o« o o o &

Processing Sequence . .+ « & « o « o ¢ o o o

The AFIT Data Base (AFITDB) . « v e e e s
Test Subschema of the AFITDB e s e e
Description of Subschema Datasets . . .

Test Query Translations « « « o « o o o o &

Analysis of Query Translation and Execution
AnalysiS .« ¢ ¢ ¢« ¢ o o o o s o s o o @
Conclusions « « o o s o s o o « s o o

X. Results and Conclusions . . « « ¢ ¢ & o o o &«
Overview of the Thesis .« « ¢ o o ¢ o o o &
Accomplishments . « ¢ ¢« ¢ ¢ ¢ o ¢ o o ¢ & &
Recommendations for Further Research . . .
Final Conclusions and Observations . . . .

POt S St Sug B Bs Bege

« .« 57
« o b1
« o B
. . 62
. . 64
« .« 65
. . 66
.. 68
. . 68
. . b8
. . 69
.« 69
.« 70
.« 70
. . 71
. . T
.. T2
.« . T4
« « 15
« s« 75
« « 75
.« 19
.« 719
. . 80

. 80
. . 80
<. 8
. . 81
. . 81
. . 82
. .« 83
. . 83
. . 84
. 86
. . 86
.. 88
. . 89
. . 89
o . 91
« « 95
« o 97
« « 99
. « 100
.« « 100
« « 101
« « 103
« « 104

v
Y

s

o 4:’—".1




ﬁ—' Appendix A: Glossary of TermS. « v « « « o o « o « « o« o » » 106 ol
Appendix B: TOTAL Data Management lLanguage . . « « « » « » « 108 v
A

Appendix C: BRoth Relational System RETRIEVE Procedures . . . 121

Appendix D: Structure Charts for TRANS.C Program . . « . . . 123 ;.'*‘-:
Appendix E: Data Dictionary for Structure Charts . . . . . . 132
Appendix F: Configuration Management for TRANS.C . . . . . . 164
,l Appendix G: TRANS.C Program Listings « « « «+ v« & + « =« « « « 166
Appendix H: Test Query Input and Results . . . . . . . . . . 204
Appendix I: Summary Paper for the Design and
Implementation of a Relational to Network
!‘ Query Translator for a Distributed
- Database Management System . .« « +» ¢« « o o o o o 217

Bibliography .« ¢ o ¢ o v ¢ o & o o o o s o o« o o o o o « » o 238

‘ VIEA v 6 6 o e e e e s s s s s s s e e s s e e s e e s oe s s 20O

l‘. ."
» :Y.':

e vi

Eamm— R SO ACAC 3 ) X VS SRR O R AR R A



N
.
»
.
!
.
.
-
)

’
s '
“
Ay 'y
s

AR R A g

FaEl

TN e « 4"

MPAFRPAA] TR | N PRI L R

S RPN

List of Figures

Figure

Class 1 Partition .+ « ¢ ¢ ¢« ¢« ¢ ¢ ¢ o 4 ¢ o &
Class 2 Partition .+ ¢ ¢ ¢« v ¢ ¢ ¢ ¢ ¢« ¢ ¢ o« »
Class 3 Partition .+ ¢ ¢ ¢ ¢ ¢ o o o o ¢ ¢ o &
Class U4 Partition . . « « o + o o ¢ o o o o &
Class 5 Partition . ¢ ¢ o« ¢ ¢ ¢ o o« o o« o « &
Class 6 Tartition .+ « ¢ ¢ ¢« ¢ o ¢ ¢« o & o o &
Class 7 Partition .« + ¢ ¢ o o o« o « o s o o &
Class 8 Partition (Horizontal Overlap Only) .
Class 8 Partition (Horizontal and Vertical). .
Class 9 Partition . « ¢ ¢ ¢ o o ¢ ¢ ¢ o o o &
Class 10 Partition (Vertical Overlap Only) . .
Class 10 Partition (Vertical and Horizontal) .
DDBMS Query Management Functions and Levels .
Projection Translation Algorithm .
Selection Translation Algorithm (First Case) .
Selection Translation Algorithm (Second Case)

Join Translation Algorithm 1 . . « . . . « . .
Join Translation Algorithm 2 . . . .« . . . . .
Join Translation Algorithm 3 . . . . « . .+ . &«
Order Selection Algerithm . . . ¢« « o &« o & &
CODASYL DML Generation Algorithm « . « . « . .
Relational Schema for Medical Database . . . .

CODASYL Medical Database . « ¢« ¢« ¢ ¢ o o o o o«

vii

Page

17
18
19
19
20
20
21
22
22

23

24
29
43
4y
45
46
u7
48
55
58
62
63

bs

¥
1\ >
¥
l\ .
o

‘“.4

Sy
l' l". l.

2,

.

oL
a4y

LA /"
LS
V.87
M
27

P
-

- Arda

Cd

o

-
[4

ES



— Padiart Ani R i S St B Bs Dt i T daok St Jogn S i B e 8 e

.
z
’
.
o
.
s
’
0
.

S 2 s
ae

MADMM. B

N
‘

e 24. Example Generated DML . 4 v ¢ 4 ¢ 4 o o « v « + o« « + o bb

F'l)
1

25. Dataset StructUre . « o o « o o o s 5 o o o s o s o o 72
26. Code Generation Driver . o v o o o o o o o o o « o o o & 74

27. TOTAL DML Generation Algorithm . . .« « + « ¢ « ¢« « o o« . 76

28. TOTAL Schema for Test Database . v « ¢ o « o o« « o o « & 88

29. Relational Schema for Test Database . ¢« ¢« ¢ o« & o « & & 91

- v -

W ()
— (@}
. .

Code Generation and Compilation Times .« . « « « ¢ . . . 96
Translated Code Execution Times . . . . . . . . « « . . 96

32. Total Processing Time for Query Execution . . . . . . . 97

[N

Rl
AR AN -

.
.

DA A

o
RO
LRSSy )

viii

Pl
“ %

i e e Y A A e e A N T P e T e

AR




L W e ey

'YK

‘ « | ’
-
.. o PolelA d
| s ' )
AN Y A ..-.\-s
t.‘rD’PPPhr LI

1]
3
. ()] O t~ N — ~
[o%4] o O t~ o
v
! ]
o
x . L] . - .
', . . . . .
M . . . . .
. . . . .
‘ . L] . - L)
‘ . . L - .
. . . . . .
. . . . .
- . . . .
d 73] . . . . .
V]
— . . >y .
0 [>9] =
3] . . o] = —
. ) —~ [ [2]
. . . [o) o tad
s Gy [= 3 [=4 -
. (o] . . o~ < (o}
g = (3]
> . . L. (@) V]
9] /)] [ 7]
K] . [l
. (] he] <
. Q o o -
= g © ~—
s 0 [} 2]
: 3] o < w1 (]
‘ Q = Q b g
N + (o] ) w0 sl
0w Q. << &
g >y (2 3 [
. [%) (4] < (@] 1]
A | 9 £~ (&} j =
(2} . o] 4
= o] [ G ()]
m Q o] 2]
(o o [V
, [} — j c 4]
[ L] o] o]
G 0 0 £
(o] O w3 -~ n.
= o4 £
(2] %] 3] >
[+}] « <t Q. 1 9
Q. o [ g (V]
) ] @] o mW
[l [ |&) (&)
U]
. —~
o} . . . . .
4] — oy A T n
f [
‘
’
. -,
. SN "
... ‘I..\ ~"
.-..
-....\. $ ) ... LR ‘.i‘- --h:-n.- ,t R .., : A.\.‘. ...‘...‘ ..n.,. NN - O ........ .,., ,...4........... | .,.-L. RN T...-..-.-...ﬂ*-\ '...,. N ..-. .,..-.. L



T Abstract

;: A translation program was implemented for the transl.c.ion of _i}
5 generic relational queries into the Data Management Language (DML) of ag;
the TOTAL data base mangement system. The objectives of this thesis 235
- were to propose and detail a method of supporting a global relational
55 query language for a heterogeneous distributed database management
system (DDBMS), design query translators for the translation of global ;-;
relational queries into local hierarchical and network DML, and f}f
partially implement translator software for the conversion of Ef;
relational queries into TOTAL DML. ;;.
L

The initial portion of the thesis presents an overall analysis of

data partitioning, query decomposition and global query management in
kli' the DDBMS. Specific proposals are advocated concerning the specific

approach to be taken toward a global query manager and the design of
the global schema over current databases.

The second portion formalizes the assumptions and constraints
present in the global relational model, and presents generic
algorithms for the translation of relational queries into hierarchical

and network DML.

The last portion details the implementation and testing of the
relational to TOTAL translator. The approach used was to "compile"

the relational query into a generated Pascal program containing the

-"‘ -
[
-

TOTAL DML commands. Only the actual code generation portion of the :;ﬁ

software was implemented. Query parsing, query optimization, and ;ii

(. results integration were not addressed. A set of sample queries :
. translated by the program were presented and evaluated. g%
IS

3

e rr
oy p
A

“ { s

u

B e e e o, .
- . - - . . . . » ‘e
SPSICRRC SRS AL SAE SNV WA A SO Wi L




..... S e ARR. oA it S diste et At e i et R A e Rt e v

I. Introduction

Background

Nearly all of the database management systems (DBMSs) in use
today are one of three general models -- network, hierarchical, and
relational. The hierarchical Information Management System (IMS) was
the first major DBMS, introduced by IBM in the 1960s. Efforts to
standardize DBMSs led to the CODASYL standard, a network DBMS known as
the DBTG model (after the CODASYL Data Base Task Group). This stan-
dard was introduced in the late 1960s and facilitated the standardized
development of many new DBMSs using the network model. However, at
about the same time, E. F. Codd proposed a DBMS based on the
mathematical principle of the relation. The relational DBMS was born,
and continues to be the object of most data base research and new
product development to this day.

At the same time that these developments were taking place, the
use of data communications, or computer networking, was growing
throughout industry as a whole. The need for common information
distributed across several locations (for example, account information
at a bank with several branches) led to the development and use of the
distributed data base management system, or DDBMS. Most of these
systems were tailor-made for the user. However, several large
companies and the government (especially the government) had already
made major investments in DBMSs, which often times were based upon the
different models (relational, network, hierarchical). A way to tie

these different DBMSs together, using a network, was needed. This

Rl D i i A

AL
S
- -'. T
bh&-—L—‘.

Frv e
P




,
)

O I

problem was originally identified by Adiba (1) as the "communication
and cooperation of heterogeneous databases".

The initial problem to overcome was that the DBMSs usually ran on
different computers. However, with the implementation of computer
networks, it became possible to tie all of these DBMSs together.
Today, even with networking, the practical distributed use of the
available DBMSs is still very limited. Users must still know which
specific system has the information that they seek, and they must also
be able to use that particular DBMS's query language in order to
access the information.

The current situation at the Air Force Institute of Technology
(AFIT) is a good example of this "heterogeneous distributed data base
problem™. AFIT has several DBMSs that it would like to tie together
using a local network. The AFIT DBMSs include: TOTAL, a network
DBMS, running on a VAX 11/780 computer using VMS, several different
relational DBMSs, including INGRES on two VAXs running UNIX and the
one running VMS, ORACLE on a Harris minicomputer, and dBase II on
several CP/M-based microcomputers. Each of these systems stores or
has the potential to store information needed by the faculty, staff,

and students of AFIT.

Problem Statement

Several efforts have been made or are currently underway to tie
these heterogeneous data bases together. However, one major area yet
to be addressed is the lack of a "universal®™ or "global" query

language that could be used to retrieve informa‘ion from any of the




< several different DBMSs. A single query language would make it much

easier for a user to get needed information, without having to know

- which DBMS holds the information and what the query language is for
A that particular DBMS. The purpose of this thesis is twofold; to
i propose a method of implementing this capability for the AFIT P
E distributed data base, and to implement a portion of the system that ?T?‘
- will translate "global" relational queries into the data manipulation 5;?;
Sy
-. language (DML) for the TOTAL DBMS. L. .
Scope of the Effort L

The research and specification will be for a read-only system,
one capable of executing typical relational queries (project, select,
and join). The initial need for the majority of current AFIT users is

iiﬁ to gain access to the distributed information, not to update it.

The partial implementation will be to develop the translator to
the TOTAL DBMS DML, since the AFIT Master Data Base (which is imple-
mented using TOTAL) is the most widely used of any of the various AFIT

data bases.

Assumptions
The relational model and query language will be used as the

universal model and language. The reason for this choice is outlined

in Jones' thesis (6). For the partial implementation of the TOTAL
translator, the Roth Relational Database query language will be the
universal language used. There are two reasons for this choice: )

First, Roth is already being used as the DBMS query language on the N E

oy
e

(SN
AL R R LA LA L IR AL RARL &N
LERCES YO . - ~ . %)

2 A AT AT N

PR T e, v DRI f o, B e e, R w s w s s W W
.t . S R . et T . - .
e e PR " . B -

E S MR

.......




LR S A" M AT SN SN Se A s M Ay i b i R A s hae e e s jun ) o a Y AR AN A A le Al b SRR I S

.
4,

T LSINET. Second, translators have already been developed to convert

,,.-.
AL
.

Roth queries to dBase II and INGRES language queries.

The query translation will be one-way from the global relational

AL ANS

- language to the local DBMS query language. It is assumed that all

-

queries will originate in the Roth language and then will be

translated into the local DBMS query languages. Local DBMS queries

will not be translated into the global language and then back into }fzi
.--, -5
another local language. [

Summary of Current Knowledge

Several research efforts are being made in this area, but there ;i;;
is a lack of recent publications. The majority of documented research
appears to be for the period 1976 through 1980. The major studies

gfi’ conducted were at the University of California, Los Angeles (UCLA), ;;44
the Computer Corporation of America, Grenoble University in France,

and the Japanese Information Processing Development Center (JIPDEC).

Several other research projects also have been done on various aspects ti:i

of heterogeneous DDBMSs, and this thesis draws heavily upon this “:{{
previous research. Most of the available literature concerns the

architecture and data mappings (schema conversions) of such a system. =

Research into the mapping of queries does not seem to be as common.

Approach
This effort was divided into three basic stages; background
research, high-level design of the query translator algorithms, and

the implementation of the relational-TOTAL translation software.

. ‘ :
R @"f After the system requirements were defined and analyzed, the issues of
L
_':-_\:’ AT ..r,.-*._:...- < ‘r'.. ‘ ._.-.‘-_..- .'\; \.:_h.:__.-_'.-‘; '-' et -._:.~,;-,:.-_:. '.,_:._;.‘:_. - .:,:_.- NS ‘\.. n.".‘ ': ONEAS N \:: DAY




Y vvw . T e
P MR . oo
g PN T T ST

.l

. "_.".

T » At s Jataiub g fae e Jn e Liatoies inl et det fut See Buh Beh S 4 % e Due e

query decomposition and mapping between the various query languages
were addressed. This was done by tracing the flow of query
transactions through the distributed data base network. The final
objective was to partially implement query translation software that
takes the information provided by the relational query, and generates

an equivalent program encompassing the required TOTAL DML statements.

Sequence of Presentation

This thesis is organized into ten chapters. Chapter Two covers
the current knowledge on heterogeneous DDBMSs in depth and proposes an
approach for the AFIT DDBMS. Chapter Three examines duplication and
fragmentation of information throughout the DDBMS. Chapter Four
addresses the global query manager and the decomﬁosition of queries.
Chapter Five defines the relational query language and restrictions
that are placed on the DBMS schema. Chapter Six describes the
mappings to IMS DML, and Chapter Seven describes the mappings to
CODASYL DML. Chapter Eight describes the mappings to TOTAL. Chapter
Nine describes the partial implementation and testing of the

relational to TOTAL translator. Chapter Ten contains the final

conclusions and recommendations.

’
s

-,
Kt
’ v"l
’o

-

~
.
o o

Z%f*\n:& .
e ISP T

AR

D

ol
! ..’-"r'r‘n'

e

2% " "r " "
A PP

-ﬂ-
o

]
ey
e

P LA ED
orle
Yy 4'1'

)
A

LA

{E

e,
L] .‘ .
et

v
"-’.-1

'T -
‘I

.0
‘e’
e

—
2

5%
’;.{'.I'- .y




II. Heterogeneous DDBMS Approach Selection

Introduction

Before proceeding with the problem analysis, the various types of
heterogeneous DDBMSs that have already been proposed and/or developed
should first be surveyed. The six types of DDBMS defined by Katz (10)
Wwill be used to describe the heterogeneous DDBMS alternatives, one of
which will be chosen as the approach to follow. That decision is then
reinforced by the following discussion of the major points of four
preceding AFIT theses whose work in relational and distributed data
bases formed much of the initial direction and foundation of this

thesis.

Approaches Toward Heterogeneous DDBMSs

In 1981 Katz defined six different approaches towards imple-
menting a heterogeneous DDBMS, based upon ongoing research in the
field. These approaches, and their respective major attributes, are

shown below in Table 1.

o —— e e e e e e e e -
g i integrated f
H separate i disjoint | overlapped |
S —— S SNy Sy, e ccamae——— H
single i Database i Database 1 Database i
global H Terminal H Prism H Prism H
model i ' ‘ i
T v —————— —+emmmcccceac—ea i
multiple | Database i Windowed ! Windowed i
global ] Window H Database ! Database '
models i ' Prism H Prism i
+ - -

Table 1 - Types of DDBMS Systems (10:36)

" .-'\ o -:.'-. ‘-"‘-n" N .'\’ \} ‘;".-' :‘ .;‘\:“ .-' N0

»

LA A M el g e S

TN
y .
:‘ '-l:ll '.1
AP

alala

\. .,
! L
., "

%
l' 7,
oo
o

SR
R




Y T Y I At A i e iy — a——— ’ e B ade s i i Shie A el o it S SR GRAaadank e - T -
A ROk - - PRChAask b . LT T T T - v T

- -

Database Terminal. The Database Terminal system would be one

. that uses a global data model and query language, but in which the
various database schemas are not integrated. This gives a common o :3
SRR
: access method to different databases. One example of this type of ::il:f
. system is proposed by Date (6:449-468). g:_~;
Database Window. The Database Window is similar to the Terminal :
i system in that the separate database schemas remain unintegrated, but ;;i3:

differs in that several models can be used as the global model. For
example, relational DML could be used to access a network database or
i network DML could be used to access a relational database, both on the
v same terminal. Zaniolo (20:189) discusses some of the issues

involved, but no prototype system has yet been proposed.

Database Prism. The Database Prism differs from the above

e

approaches in that the local database schemas are integrated into a

n .
Pl

global schema organized under a single global model. The user issues

L LR LA SSSA s AN

the query against this global schema in the DML of the global model.
The system then maps the query into a set of queries against the local
databases. The actual location of the underlying data is transparent
to the user. Katz chose the term "prism" because the system splits a
query into different parts much the same way that a prism splits a
beam of light into several colors.

The Database Prism can be further divided into two classes. The

local schemas can either be disjoint or they may overlap. If they are

Pl o8 o8
e

disjoint, the system is much simpler to implement. If they overlap,

.J'\
._-“

. then there is the problem of dealing with possibly subtle differences

AL tNONMENCMNLASARY 1 AL
Q

- ¥

P T T B B R O O S O TR AL N S P A AR O TR S P AT A SR NENE

Y

(S
F_.
.'
.
.
p

e SOl




A DS A S UM At A e A A s A A A A S A SR G A Y A e o i A A A AR A AR A ) deth AR it A L% Sl S VA hand Ag s St e Lins

.

between the same data stored at different databases. The MULTIBASE

and POLYPHEME systems are proposed overlapping Database Prisms.

AP N

%s 7y
.

Windowed Database Prism. The Windowed Database Prism is where

the features of both the Window and Prism systems are combined. The

PN S Y
g
2
L]

local database schemas are integrated into a single global schema, but :‘:E,

this global schema may be accessed through several different data

models and DMLs. This system is also divided into two classes, for
disjoint or overlapping schemas, with the same inherent difficulties
as the Prism for overlapping data. The major research into this type

'i of heterogeneous DDBMS is taking place at U.C.L.A. (5).

Choice of Heterogeneous DDBMS

Given the aforementioned different approaches to implementing a

i_ \- heterogeneous DDBMS, which one is the most appropriate one to use?

T

&j There are three major criteria for the heterogeneous DDBMS proposed

»‘- for AFIT:

E! 1. Be able to access data that spans local databases without .

Eﬁﬁ the user having to know the actual location. E

i; 2. Be able to deal with overlapping local schemas. i

ol 3. Be reconfigurable to a point that eliminates critical o

nodes in the DDBMS network.

.~ e
[ P
Sl

These requirements most closely match the Database Prism approach,

which is the method proposed by this thesis. Not surprisingly, this
is also the method that previous AFIT theses dealing with distributed B

databases (summarized below) have been heading towards. ANy

«™on g

. . B S T S, et a® et e
o LI ] ) >". LY « T .y...~’~' . >

R A A S S LSOO Y




B D KRS

IRENAF'  OPU he SO R ALty RS R

.
-

«
-

Imker and Boeckman Theses

The AFIT theses by Capt Eric Imker (1982) and Capt John Boeckman
{1984) involved the initial design and implementation of a DDBMS for
the AFIT Digital Engineering Laboratory (DEL). This work is presently

being continued by Capt James wzdertz. The main features of the

system initially proposed by Imker and expanded upon by Boeckman (3) jfljil

are as follows: T

vy

P 0
.h}; RASCRRTY

1. The DDBMS is a reconfigurable system. Nodes can be added
to or deleted from the system and the central site can be
relocated from one site to another.

2. The central site maintains the Central Network Data
Dictionary (CNDD) which maintains information on all data

stored throughout the DDBMS. o
3. Each site maintains a Local Network Data Dictionary pi:::

‘s "2
S

{LNDD) that maintains information on data stored at that
site.

{, A

N

4, Each site maintains an Extended Network Data Dictionary
(ECNDD) that maintains information on some of the data
stored at other sites in the system. The ECNDD is
permitted to grow only to a given size, usually smaller
than the size of the CNDD.

5. Status information tables are maintained on every site in
order to determine if the site is active or not.

6. Each site is capable of handling queries and updates.

Jones ' Thesis

The thesis by 2Lt Anthony Jones (1984) involved the analysis and
specification of the universal data model and Data Definition Language
(DDL) for a heterogeneous DDBMS. Jones' thesis provides the founda-

tion of this thesis by his choice of a relational model as the global

DDBMS model. NOTE: The use of Jones' term "universal" for the data

PO
YA
» » "

DO o P



e ET e ey,

K )

ACRA Bud 24w e how b ae Ben s o o

\

model and language corresponds to the term "global" in this thesis,
This change was done to avoid possible confusion with the Universal

Relation model described by Ullman (18:317-346).

of the system proposed by Jones (9) are as follows:

1.

The Relational Model was chosen as the global data model
for the DDBMS.

The DDL was specified for data translation to and from
the CODASYL model (network), the IMS model
(hierarchical), and the System R model (relational).

A Universal Data Base Administration Center (UDBAC) was
proposed to handle the formation of new databases,
deletions and updates of data, security issues, and other
DDBMS policies. This UDBAC maintains a very powerful
role in the running of the system.

There would be a seperate UDBAC computer with relational
power that would be used to assemble intermediate results
before routing the final product to the requesting node.

Only First Normal Form will be required for the global
model, although Third Normal Form will be used as often
as possible.

Duplicate keys (IMS and CODASYL) will not be allowed.

Partial replication of data must be supported, but full
replication or no replication are the preferred choices.

Only the "manual insertion class" will be allowed for
data that is stored in an underlying CODASYL database.

Roth's Thesis

The thesis by 2Lt Mark A. Roth (1979) partially implemented a

relational database system on a microcomputer.

supporting research for this thesis in regards to the query language.

The Roth DML (a relational algebra) was used as the global DML in

Boeckman's partial implementation of the DDBMS. The query parsing

The major features

His thesis was used as

oy
.

v

Cal N A

e e




bl et drt i it i gt s e Jt et S et L St I S S s et S T e T i i

e methods that Roth used (a forest of binary trees with pointers to
attribute lists) were used as the basis for a simple global query

parser for the DDBMS that was implemented by Wedertz.

Summary

A quick review of the approaches defined by Katz and the

preceding AFIT thesis work indicated that the heterogeneous DDBMS to
be implemented will be of the "Database Prism"™ type. The next three ;;;‘:

chapters of this thesis are a more detailed discussion of the

requirements that the DDBMS must meet in order to achieve an

effective implementation of a read-only global query language. e

S




LTS A S ot At Sk i v de™ plint S BRl A /e aTL aML g Si"AiCd Aak T ek Ang Jad i Sl whan g I AR Bt It St e S e S i Al Wi

I
o
[

. DATA PARTITICNING AND REDUNDANCY

Introduction

This chapter discusses the partitioning of global relations into

-

"fragments™ across the various data bases of the DDBMS. This is a
very real concern that will most probably be present in any DDBMS that
is created from existing local databases, but is also an important
consideration in DDBMSs (both homogeneous and heterc- geneous) that
are designed from the ground up. This chapter is not a discussion of
the "best" way to partition the data -- that task is not a function of
the system, and is best left to the data base administrator for the
finalized DDBMS.

What is discussed in this chapter is the range of data parti-
. tioning and redundancy that the DDBMS should be capable of handling.
The importance of such a capability becomes apparent when the DDBMS
must be able to decompose a global query into the appropriate (and
i most efficient) local DBMS queries. That aspect of the partitioning

problem will be covered in the next chapter.

Partitioning of Relations

Ll

As discussed in the previous chapter, the global relation that
the DDBMS user sees can actually be made up of several local
relations, also known as fragments. According to Ullman (18:411),

! relations can be partitioned (fragmented) in two ways, vertically

and horizontally.




Vertical Partitioning. Vertical partitioning is when the set of

attributes for each of the partitions is a subset of the global
relation's attributes. It is so named because if one views a relation
as a table, then the partitions would represent vertical columns of
the table. The method of composing the partitions into a single
relation is by using the natural join, which implies that each
fragment must contain an attribute that is shared by at least one

other fragment.
Global Relation = R1 M R2 M ... Dd Rn

Horizontal Partitioning. Horizontal partitioning is so named

because the table (relation) is being partitioned by rows, or tuples,

thus creating horizontal layers of tuples. These fragments each
contain the same attributes. The partitions are composed into a

single global relation by using the union operator.

Global Relation = R, §] R, U...U0 R

Overlapping Partitions

In both of the above classes, the partitions of the database
cannot be assumed to be disjoint. That is, data in the local
relations could possibly overlap each other. For the following
examples, assume there is a single global relation consisting of
attributes "a", "b", "c", "d", "e", and "f", with attribute "a™ being

the key for the relation.

13




S e S N A R T W O T Y N T o w W W W tw =gy

Vertical Disjoint and Overlapping Partitions. If the relation

is vertically partitioned into disjoint partitions (relations) R1, RZ'

and R_, then the intersection of each relation's set of attributes

3
(not the tuples), denoted by RiA, would show:

RAﬂRAﬂRA-{a}
(a being the key needed éo effect the join)

However, if the partitions were not disjoint, and attributes "b" e
and "d" overlap between them, then the intersection of the sets of

attributes would show:
R1AﬂR2AﬂR3A = {a,b,d} .

Horizontal Disjoint and Overlapping Partitions. If the relation

in this example was horizontally partitioned into disjoint relations ;';{

R RZ, and R?, the intersection of the relations' tuples (not the

1’

attributes) would show:

R, n Rzﬂ R3 = {} (the empty set)

If the partitions overlap, then the intersection of the

relations' tuples would show:
N R, N R {one or more tuples} ﬁ;;f
(tupies ex1st %n more than one partition) O
Overlapping Attribute Inconsistencies —
A\ -.
Overlap of attributes in vertical partitioning could cause iﬁf
N
additional difficulties. According to Katz (10:37), when the schemas vi}
* L
of local databases overlap, a way must be found to identify possibly ;::

14




subtle differences between data stored about like objects within
different databases. This incompatibility can take two forms; like
data with different local attribute names, and/or actual data
discrepancies such as the difference between "red" and "scarlet".

The first condition, different attribute names, must be addressed
through the data dictionary for the DDBMS (not within the scope of
this thesis). The data dictionary would take the global attribute
name as input, and return each of the associated local attribute names
to the system for further processing.

To handle the second condition, Katz (10:38) proposed the
creation of a separate database known as an "integration schema®",
where values of attributes that are used in comparisons can be
examined to determine if there are other valid data values, such as
"scarlet" being the same color as "red”. This method could also be
used to make data conversions, such as meters to feet, degrees Celsius

to degrees Fahrenheit, and so forth.

Redundancy of Data

The previous sections discussed the partitioning of data within
the DDBMS. The other problem that must be addressed is how to handle
the redundancy of data. When integrating several existing DBMSs into
a global DDBMS, there may be a large amount of duplication, or redun-
dancy, present in the global system. For example, a person could have
a file in a personnel database, a separate file in a student database,

and another file in a payroll database. Most of the information used

e
Sa e

. .
LA e T

o }"/’ LA

-
.
N

s
'y
o

i

5
‘.

RO

D




F' .‘v}-.‘"-," "‘.‘_“fﬂ'}‘-'f"k‘;ﬂ"‘"—‘.r\'-‘.(‘.f\° .‘r_‘r_.7j?-.~(;_r:r APt i aA AR stur-iie- o) REER S o S i A A i i SR St Ao b S A ..' "'.,
a

in each database (name, address, age, etc.) is redundant. This type

of data redundancy falls into three categories:
. 1. No Redundancy - The data is unique within the DDBMS.

2. Full Redundancy - Each relation is fully duplicated at
least at one other location, and possibly across several
locations.

3. Partial Redundancy -~ Part of a relation's attributes

and/or tuples are duplicated elsewhere, but a
complete duplicate set of the data does not exist.

Full Redundancy. In the case of full redundancy, the redundant

information can exist as exact duplicate relations, with the same
domains and cardinality. Or the duplicate data could be a subset of
another, larger, relation. Redundant data could exist across several

partitions, which could also be duplicated. A& relation could be both

fully and partially redundant at the same time, if there exists at
least two full copies, plus at least one partial copy, of the
relation. The possible combinations are nearly endless.
Partial Redundancy. In partial redundancy, there are even more
possible combinations. The most prevalent form of partial redundancy
occurs when vertical or horizontal partitions of a global relation
overlap, creating duplicate attributes or tuples, respectively, within
the relation. For effective processing, the DDBMS should be capable
of addressing all these types of redundancy, since they will most
likely be present in some form, especially when the DDBMS incorporates
' existing local DBMSs.
LN
;'.:_\:_-
- \.I
16 M
e
X '-ﬁé
s
s
NN T N e AN P S A g L e L T et e e e S R et o :;:'



N . S weoeeyeoes v AR Bl aal sy -
~ b - - A RSOl Sl A A A R SR ARG g e st She Sha g
A

Pl
Partitioning/Redundancy Classes ;Z?j
Now that the basics have been outlined, what different types of fﬁf
partitioning and redundancy should the DDBMS be capable of handling? ;-.
The next few pages define ten partitioning/redundancy classes that the 5
system should be designed to handle. The attributes of the relations fj}
are listed as "a'", "b", "c", "dn, ,.."z", with "a" considered to be S
the key attribute (possibly a composite key) of the global relation. iii?
Separate local relations are denoted as "LRel™ with a numbering %ﬁt
subscript. Each class is accompanied by a figure showing a graphical -iﬁ
representation of the partitioning. Note that in vertical lii
partitioning, the duplication of the key attribute(s) is not :T:
considered redundant, since it is needed to effect a join of the i;?
partitions. ;};
ey
Class 1 - No Partitioning and No Redundancy. In this class, the :igi
given relation is unique. The data is stored as one relation at one %;g
e

site. In Figure 1, the global relation is the same as the local

relation.

Global Relation Local Relation
a b ¢ d e a b ¢ d e L3
N
s
Figure 1 - Class 1 Partition 1::;5::
e
f.'-:,

ORI o,
A fI E
gL, .

17 wl

lz'.,‘l A tg




%QZ' Class 2 - No Partitioning and Complete Redundancy. In this
class, the global relation is composed of one local relation that is
stored entirely at a single site as a complete relation. However,

there is at least one complete duplicate copy of the information in

the DDBMS.. The duplicate relation(s) may be stored as a single

relation at one site, may be a subset of a larger relation, or it may
be partitioned. In Figure 2, the global relation can be found in its
entirety at three different sites, the third of which (LRel3) is a .

subset of a larger local relation.
Global Relation = LRel1V LRe12V VLRelN

Global Relation LRel1 LRel2
a b ¢

1l

Figure 2 - Class 2 Partitions

Class 3 - Vertical Partitioning (No Redundancy). In this class,

the data is not duplicated anywhere, but neither does the entire

d

.
-

relation exist fully in one location. The global relation is composed

v

-
o
.
.
-
)

o
&
tl‘-ﬂ

DA

"
occur. For example, in Figure 3, the global relation is vertically 3;§

. f-.:_:
partitioned into two local relations. The "(b)" in LRel2 signifies 25\

=

>

of vertical fragments, and there must be a foreign key (or the global

key) present in each of the fragments in order for the natural join to

L3 that the foreign key for the join is attribute "b", which is present

18




- ¥

Global Relation LRel1 LRel?2
a b e d e f d e f (b)

7} 7D\

Figure 3 - Class 3 Partition

N

in both LRell and LRel2. Attribute "b" is not considered redundant,

as it is needed to effect the join.
Global Relation = LRel, > LRel2 g ... D4 LRel,

Class 4 - Vertical Partitioning (Partial Redundancy). In this

ss, attributes of the global relation overlap each other within the
local relations. The duplicate attributes are eliminated in a natural
join, but knowledge of which attributes exist in each local relation
could prove useful if only part of the global relation's attributes
are to be projected in a query (possibly eliminating the need for a
join). In Figure 4, attributes "ec" and "d" overlap, in addition to

the global key attribute "a",

Global Relation = LRel, 4 LRel, 4 ... P4 LRely

Global Relation LRel1 LRel2
a b c¢c d e ¢ a b c d e f (a)

Figure 4 - Class 4 Partition

4

-t
_'.
‘at

.
[y

.

R

.r" s, L 4
Jrlelnte)
A

T
~

*




et At el ated

" -
[

\\

MRt aledtes Ao b Se gt

Class 5 - Horizontal Partitioning (No Redundancy).

e Sl e A SSanavin “Aie ARerav

.

In this

class, each of the local relations possesses all of the necessary

attributes of the global relation, but no single one of them contains

all of the tuples of the global relation.

horizontal partitioning of the global relation.

Global Relation = LRel, ) LRel, U ...

Tuple#

Global
Relation

Tuple#

LRel1

LRel?2

Figure 5 - Class 5 Partit

Figure 5 shows the

U LRe1
a b ¢ d
1
2
3
4
5
6
ion

Class 6 - Horizontal Partitioning (Partial Redundancy).

Here

each of the local relations possesses all of the necessary attributes,

and some of the tuples exist in more than one local relation.

Figure 6, tuples 4, 5, and 6 overlap.

Global Relation = LRel,() LRel,{J ... ) LRe1,

Tuple#

Global
Relation

OOVl EWN =

Tuple#

LRel1

LRel2

Figure 6 - Class 6 Partit

.

6 ’oooo

DN

ion

8

In

o v o

v e

8 8-

. &
’
LSS

r'e

[N 5
e

>

’
e




rq"_'_v.'ﬁ'_v_".,r. T."‘J(.“".v', A A A AA o M AP i oa e hadJl Pl e s e St e e TYe T T L P T Ty, T T VT N T WV Y W U Y LY — s e =y

iﬁf Class 7 - Vertical/Horizontal Partitioning (No Redundancy). This
class is a combination of classes 3 and 5. The global relation is
composed of two or more vertical partitions, one or more of which are
further divided into horizontal partitions. For proper recomposition
of the relation, the union of the horizontal partitions must be accom-
plished before the join of the vertical partitions. 1In Figure 7, the
global relation is partitioned into three local relations, LRell1/LRel2
and LRel3 forming the vertical partitions, with LRell and LRel2

partitioned horizontally.

Global Relation = (LRel1U LRel,) P4 LRel,

LRel3
d e f (a)

Y]
o
0
(8
[
o]
]
o
o]

Tuple# Tuple#

<, v,

\-“ - 1 / 1

’ Global 2 LRel1 2
Relation 3 3 "4

4 i

5 5

< 6 LRel2 6

7 / 7

8 A 8

- Figure 7 - Class 7 Partition

Class 8 - Vertical/Horizontal Partition (Partial Redundancy).

This class is a combination of classes U4 and 6. The global relation

is composed of two or more vertical partitions, one or more of which

are further divided into horizontal partitions. What is different in
this class is that the horizontal partitions are partially redundant,
and the vertical partitions could also be partially redundant.

b f{%: However, processing for both is the same as for the previous class.

- 21

. el et a0 A A T T T e S e P e T e T T e e T et
e R T e Ry S R A s A S N L S G R4

..._:’._;.':’\- n, '_._:‘..:_5;._' e s




—— Y rw——w — % —

In Figure 8, tuples 3, 4, 5, and 6 horizontally overlap. In Figure 9,

I attribute "c" also overlaps vertically.

Global Relation = (LRe11U LRel,) Pd LRel

' 3
»
. LRel3 fooa
a b ¢ d e a b c d e (a) e
Tuple# ¢= Tuple# RN
W 1 5
Global 2 LRel1 2 f A
; Relation 3 3 -
I y il s
5 5 -
6 LRel2 6 -
7 7
| A, ;
‘e ‘ 4 L:A;-J
" koo
: Figure 8 - Class 8 Partition T
: (Horizontal Overlap Only)
ST
(IAE
. LRel3
a b c d e a b ¢ d e (a)
Tuple# ; Tuple#
,; | |
' Global 2 LRel1 2 /]
N Relation 3 3
iy y Yy
5 S
- 6 LRel2 6
- 7 7
» ] 8
- Figure 9 - Class 8 Partition
- (Horizontal and Vertical Overlap)
L ) . .
P Class 9 - Horizontal/Vertical Partitioning (No Redundancy).
E This class is a combination of classes 5 and 3. The global relation
; is composed of two or more horizontal partitions, one or more of which
[] - R
4;’ are further divided into vertical partitions. For proper
. 22
]




recomposition of the relation, the join of the vertical partitions
must be accomplished before the union of the horizontal partitions.

In Figure 10, the global relation is partitioned into three local

relations, LRel1/LRel2 and LRel3 forming the horizontal partitions, o

i with LRell and LRel2 partitioned vertically.

Global Relation = (LRel, D LRel,) U LRel

3
I LRel1 LRel2 o
a b.c d e a b c d e (a)
Tuple# v, Tuple#
: / :
Global 2 / 2
) Relation 3 3
i y y
. 5 5
6 6
7 LRel3 7
8 8
- 9 9
i \. 10 A 10
E Figure 10 - Class 9 Partition
;:
. Class 10 - Horizontal/Vertical Partition (Partial Redundancy).
This class is a combination of classes 6 and 4. The global relation
is composed of two or more horizontal partitions, one or more of which
; are further divided into vertical partitions. What is different in
this class is that the horizontal partitions are partially redundant, ,f
and the vertical partitions could also be partially redundant. %li;
£ However, processing for both is the same as for the previous class. E—--¢
- SN
. In Figure 11, attributes "c" and "d" vertically overlap. In Figure :j;f{'
~ . ;.‘-:."
12, tuples 4, 5, and 6 overlap horizontally as well. t{:ﬁ:
'. ~ \‘Q
1 (=
- e Global Relation = (LRel1 ™ LRelZ) LJ LRel3
4
. 23
I
. :ﬁ}\
AR (\.,‘.'.'.' " "._;. )\.:.._‘-;,'.‘_‘.'.'-;-\‘ ) \}‘\:.x:_'.:.','_\:.'.';j




IR IR RS AR A S AU R oAb A Dt S an e e aat s AL Sua s Bog Aove la i ane oy o o - - -
PP e S N Tro Y " S v MR YR A inen SAcBen e e e e LT

LRel1 LRelZ

a b c d e a b ¢ d e (a)
Tuple# Tuple# x
1 1
2 2 \S
Global 3 3
Relation 4 4 / \
5 51, / N
6 6
7 7
8 LRel3 8
9 9
Figure 11 - Class 10 Partition
(Vertical Overlap Only)
LRel1 LRel2
a b c d e a b c d e (a)
Tuple# Tuple#
1 1
7 7
} <. Global 3 3 ,
Relation 4 4 H
5 5 1
6 6 Y/
7 7
8 LRel3 8
9 4‘!‘ 9
Figure 12 - Class 10 Partition
(Vertical and Horizontal Overlap)
Summary

In this chapter, the different types of data partitioning and

redundancy that are possible in a distributed database built from

Lo oL S L
B CHOMOTREI

existing DBMSs were examined. These issues are important for the

decomposition and optimization of queries (and updates) across the i
DDBMS, which is the subject of the next chapter. Ten different Sgi,
Q:E classes of partitioning were defined, and the global relations of the ;:;“
S
o R
R
b

.
Lt

BT At T S N e e T e e T T T T L e e e
f*f&fn.(ﬂ.‘l.fh’lﬁ&ﬁi&k'&{‘ R ST R B O a2 PO ‘;'r";.'.- ORI VRIS S S T '_.-.".'A'l:‘:‘;f;"-;-_"-;i-.";"‘A-; N ~..‘f-_';:1




system that fall under these classes will need to be identified by the
DDBMS data dictionary at the time of the query. Information returned
by the data dictionary will be used for the decomposition of queries

and recomposition of query results in the DDBMS.

Y

25

e e e T L e T e T T T e e e
R CR AP R f&‘;."\“‘;_"n_";{‘."&{ YRV AT

. TR AL I I e -
S~ AR L e
SV S WINEE T NP P WL T o Wy PN TP




W e

\>

-'x"-_).-

VRS

Introduction

~_4';_|.r A L'LL XA OOV AW \L‘h \.‘- 'y 4-1).. &1‘_.1‘\-)..\"'-. N WS, WSV A\').‘.‘A.\_.j-\‘.\l\j.\ \‘\.u

V. Global Query Management in the DDBMS

In the previous two chapters, the different types of distributed
databases and the type of data partitioning that they must handle were
outlined. In this chapter, the global query manager part of the DDBMS

architecture is examined. The majority of the DDBMS architecture has

been previously defined by Boeckman (3) and Jones (9), and the major e iad
- o
points of each were outlined in Chapter 2. What is presented here is AR

a closer look at just the query handling aspects of the system. ﬂ;

First, the general aspects of a global query manager are addressed,

and then specific correlations to the AFIT DDBMS are discussed.

Global Query Manager Functions

According to Gligor and Luckenbaugh (7:34), there are five main
functions of the DDBMS global query manager: (1) global data model
analysis, (2) query decomposition, (3) execution plan generation, (4)
query translation, and (5) results integration. These five functions
are common to all DDBMSs, both heterogeneous and homogeneous, but the
query translation and results integration pose special problems in the
heterogeneous case. The next few sections give a brief overview of

each of these functions.

Global Data Model. The global data model is the critical element

of the DDBMS global query manager. Through the global schema, it
provides the foundation for both the global view and the global query

language presented to the system user. Key to the global data model

26

et e Va e SISO SRS




Lt ad b e 2l B g &g 20

B ACNORIPAVIAY - [REN ey

v.ome Ty

AR AP AR

c\-.'.

\3

i
B

-—

D LI
-' el
A

Tata

is the presence of a data directory, usually also distributed, which
keeps track of the local schemas and information that compose the
global DDBMS. The data directory also usually contains the informa-
tion needed for query decomposition (such as the partitioning classes
noted in Chapter 3) and for query translation into other query

languages, which is the subject of the remainder of this thesis.

Query Decomposition. The query decomposer part of the global

query manager takes the data partitioning information provided by the
data directory and uses it to generate the set of local subqueries

that retrieve the requested information. In principle, the decompo-
sition strategy does not differ in heterogeneous systems from that of

homogeneous ones (7:35).

Execution Plan Generation. The execution plan generator decides

which subqueries will be sent out to the local DBMSs, which queries
must precede others, and how the intermediate local subquery results
will correspond to each other. This function is essentially the same
for both homogeneous and heterogeneous databases, but in heterogeneous
systems, the underlying local data base model may be one of the
criteria used in the decision-making process. (For example, given a
global relational model, if redundant data is present on both a
relational and network system, the subquery would be sent to only the
relational system.) For excellent in-depth discussions of this aspect
of the global query manager, the papers by Hevner and Yao (8) and

Bernstein, et al, (2) should be consulted.

27

A . ” LSRRI e e
E.:‘JL"{;_._-.A--A-J.IJ s -"- T L e

T T T —_— g e L e —r————y"r DA At A Al e ) St aon g sug aAd o b o

D SFA SRE aSa s SASE oAl o

-

P 2 LA Lt
! .
v P T
K- A .

o s
(A

-

Pt

’v




S e A A S et A At et e At Ay is i ¢ p e b e D R R i i S

Query Translation. It is assumed that the DDBMS user submits the

query in the global DDBMS language, in this case, relational. If, as
in this case, the underlying system is heterogeneous, query transla-
tion will be needed in at least two areas. After execution plan
generation and decomposition of the global query, each of the sub-
queries will need to be translated into the local DBMS query language.
After execution of the subquery, the results must be presented in, or

translated into, a format suitable for the global result integrator.

Results Integration. The result integrator, or recomposer, takes

the intermediate results generated by the subqueries and combines them
into a global schema that is presented to the user. Once again, this
process is dependent upon information that is provided by the system

data directory.

Query Management in the AFIT DDBMS

A

r‘ T w
PR
4 f

o S g

The preceding sections defined the five functions that the global
query manager must perform in a DDBMS. The following sections first
outline those functions as they have been defined by previous AFIT
thesis work, and then propose (if needed) specific recommendations for
implementing these functions within the AFIT DDBMS. If the recommen-
dation of this thesis differs from preceding works, it will be noted.
Figure 13 illustrates the various functions (and the levels at which
they are viewed) of the global qQuery manager as proposed for the AFIT

DDBMS.

Eimin it g St s e S ot s ]

2o T e
Lty
.".' "A et ata

LY ﬁt" y ‘lr "v :'

52




0

!
L

USER VIEW

GLOBAL QUERY REQUESTS GLOBAL RELATIONAL DML
GLOBAL RELATIONAL SCHEMA

GLOBAL SYSTEM VIEW AND QUERY MANAGEMENT

GLOBAL QUERY DECOMPOSITION
CNDD AND ECNDD
EXECUTION PLAN GENERATION
LOCAL RELATIONAL SCHEMA

LOCAL SYSTEM VIEW
AND
QUERY MANAGEMENT

RELATIONAL TO
LOCAL DBMS
QUERY TRANSLATION
SCHEMA TRANSLATION
CANONICAL FORMULATION
OF RESULTS

RECOMPOSITION OF RESULTS

GLOBAL RESULT

Figure 13 - DDBMS Query Management Functions and Levels

Global Data Model

The global data model for the DDBMS was defined as the relational
data model by Jones (9). The initial query language to be used by the

system is the Roth Relational Query Language (15). However, the data

directory portion of the system was defined by Boeckman in his thesis

29

.....

LRGN Tl SIS P P I e )

oo '...'..-'. T I PR A T ORI o NP et B ‘J,"..'"_.‘u)\ W e A DN, N e
BN SO PR S e e AN TS AL YRR Y .‘;.‘;u\‘:":‘:\‘ CAY -~ Sk

o
ANacE

Toy whpe——

AT S
At e i

PN SR SN

TN

Tonrvey

re
TR .
Lo et

Pl
=y

e ‘v ?
5",
4 A s

ST s s
7Y

.
v
o




YT T T T T e W W N W W T W we—w = v~ w W, v~ W W w

(3). The data directory for the AFIT system does not exist in one
single location (as proposed by several other works), but exists in
three separate levels. There is a Central Network Data Directory

(CNDD) for the system, but each node in the DDBMS also contains a copy

of a portion of the CNDD, known as the Extended Central Network Data
Directory (ECNDD), as well as the Local Network Data Directory (LNDD)
which contains the bulk of the information about the local DDBMS. In
this case, the CNDD and ECNDD contain the information needed for query
decomposition and the LNDD contains the information needed for query
translation into other query languages. Each node in the DDBMS

network contains an ECNDD and LNDD, but only one node will contain the

CNDD. However, the host node for the CNDD is not fixed, since another EZ

feature of the DDBMS proposed by Boeckman is that it is to be ;i

reconfigurable. ii—i
This thesis follows the current system approach that specific Efig

information for the translation of the queries into the local DBMS
query language should be reserved for the LNDDs. The global view
should be that the global relational schema is composed of local
relational schemas. However, some knowledge of the underlying local
DBMS (network, hierarchical, or relational) at the ECNDD and CNDD
would be beneficial for efficient decomposition of queries in cases
where data is redundant. If the same information is present at both a
network and relational database, it would be more efficient to
decompose the query in a manner such that the subquery goes to the

relational DBMS with the information.

30




ARG C AR S e A T AP GO AU AL G SN SN G- B A S AT A T S gt bl Al Sl Al AagEAh Sl Rt et Sl A AR g e Sl Ao TR Aol R At Aus A A Al s g ol

Query Decomposition S

The query decomposer portion of the AFIT DDBMS is a three step
process (3:30-36). The query first consults the LNDD to see if it is

a completely local query. If not, then the ECNDD is consulted. If

all of the needed information is available from the ECNDD, then the

query is decomposed at that point. If the necessary information is ﬂ;,j

still not available, then a request is sent to the CNDD. The CNDD f;f
-‘ '-. .

returns the location and other useful information (such as the type of L

underlying data model) to the requesting node. The query is then ::;

- decomposed at the node where it orginated. The main point to note {.'
e o
here is that query decomposition must be able to be done at each of oL

the nodes in the DDBMS. This will minimize message traffic in the

system, but will require a copy of the query decomposer at each of the

\o e
nodes of the network. e

Since the global model of the AFIT DDBMS is relational, it is i£:3
recommended that the decomposition of the queries also follow the
relational format. The global relational query will be decomposed
into a set of relational subqueries against the local databases, which
are viewed by the system as relational schemas. However, as noted
above, knowledge of the underlying DBMS may be beneficial for the

decomposition of queries involving redundant information.

Execution Plan Generation

X No specific execution plan generator has been proposed by the
f, previous works. A concurrent thesis effort by Capt James Wedertz (20)

involved continuing Boeckman's work on the data directories for the




T system, which, as noted above, are key to the generation of efficient

execution plans. Therefore, the only specific recommendations are:

; (1) that the data partitioning classes defined in the previous chapter

v; be made part of the CNDD and ECNDD, and (2) that the type of under-

: lying database model (relational, network, hierarchical) be made part .
of the information stored at all three directories. These two i;:i
recommendations will provide information that can aid in the subquery iffz

e
decision process. 1 ..
Query Translation .

3; This is the specific area of query management addressed by this
thesis. Both Boeckman and Jones defined the global query language to

E‘ be relatiznal, Boeckman using the Roth language, and Jones proposing

- " a language similar to QUEST. Query translation was assumed to be
early in the query transaction process, resulting in early "command

) binding" (13:87).

'S The approach taken by this thesis is that translation from the

:; global relational query language to the local DBMS language will be

5 done using the mapping approach, generating a procedural query that

v Will produce the same result as the relational query. Jones proposed
the use of a composite language, one that uses both relational and £;l§
procedural commands, but since the user's view of the global schema is tz%g

L a relational one, the commands that they use should also be purely Efif
‘j relational. Secondly, the translation process should take place late :ﬁ;i
? in the query transaction process, resulting in late command binding. gz;z
1 . This will entail a unique copy of translation software to be located i%%f
: R

:_ 32 55

, i.;

e e e ..‘-.."'-_.;-_;-.. AR A T T S .4'-_‘~‘_-'\).‘_-‘ - -*“‘.'--..\)-~'.'-' N ‘.".'~_'.'~'.:".‘ R ERRA AT ‘,\,.-' v_-';_-{‘-,'\(‘;. (O




ChAtadininAe v tuie fia e

at each DBMS site, but will insulate the global query management

process from changes in the local databases. This is because the Y
query decomposer generates subqueries against local relational
schemas, regardless of the underlying local database. The relational

subquery is then translated into the appropriate language at the DBMS

site.

. 3
PRSI

i Results Integration o
Jones did not discuss how local query results would be translated

% into a relational format, but did propose that the DDBMS use one node

(with a local relational DBMS) for recomposition of the subquery
results. However, in light of the reconfigurable system developed by
Boeckman, this does not seem to be either feasible or the best

§‘; approach. The recommendation and approach taken by this thesis is to
require the query translators to produce results in a canonical format
(7:42). Each separate translator will return the results to the
requesting node in the form of a relation. The advantage of this is
that for "n" local DBMSs, only 2n translators are needed, and the

f addition of more systems to the DDBMS would not affect the current

local DBMSs. In this case, each of the nodes will have query

g '.. W W =
7 l A

; translation and results integration software. L

- RN
- Lo,
- L‘;-’ N
. Summary e

- In this chapter, the overall picture of query management in the v
- - o l.'
- .. . .f\.‘
: DDBMS was examined. The five query management functions of a DDBMS ﬁ:ﬁg
S
(global data model, query decomposition, query translation, execution e
- J
{ijT plan generation, and result integration) were defined, and previous -~
.'_\::\
:_: ‘_:.
A
33 :. a:

12 r,’ N
o~




.A'..-.l

;ﬁf AFIT thesis work in distributed database systems was examined.
Specific proposals and their advantages for query management in the
DDBMS were then given. The remainder of this thesis will now deal
with the third aspect of query management, the translation of local
queries from the global relational language into the local DBMS
language.

\.

Y,

34
'\’i',".' ale) \".' LSRN NS r*- - \..".:._.....:.\4 .'-...:.\- ._-‘._-‘;\(.‘_.' ‘:\-' o .\.:_‘.'__.'...'_..:.- -

T TTTTT———————m" vi-;—-vq

3
- d
)
4

.
»
.—-,L;a

: ."'."'
SO Y

',
.
'y
» "o

LN

o

“y




LAl et da e T —— ——

Dl
,
g

A

i V. Global Schema and Query Operations

:: Introduction

E: This chapter examines the global schema and language that are to

- be used for the AFIT DDBMS and their relationships to the underlying
local schemas. The first part of the chapter presents conclusions ﬂ
about the global relational schema and the underlying hierarchical and ':;?;?
network schemas that were reached by Jones. These constraints were "‘;ii
imposed on the schemas in order to effect proper conversion of schemas ' E;
and translation of queries. The next part of the chapter presents a ‘
more formal definition of some of these constraints. The final portion

. of the chapter addresses the global query language to be used by the

f system.

;: Jones' Global Relational Model fﬁi

-: The relational model and language were chosen by Jones as the 555

:j preferred data model for a distributed data base. In his analysis, Fi;

‘: Jones stated that the global relational model would have to satisfy E;:

éi' certain constraints or would have to be extended in order to i;i

2} successfully represent underlying network or hierarchical schemas. g;i

< These findings are outlined in the following sections. %{;

Normal Forms. Jones contended that only first normal form can be ‘

.; guaranteed in the DDBMS (9:99). This is caused for two reasons, (1)

;E CODASYL has different retention classes for information and (2) hier-

ié archical systems do not allow segments (relations) to exist unless

T (!5 they are associated in a hierarchy to another segment.

AT AP A R R R e R LI ' B R e e I NS S I et SR It Iy -
.\..-"_-\(.-’ .':'. ety .:- e W, S N Tt L weeleo et e A .‘-..-" A e

A




PRFE Tl 2 N

v ¥ = -

Rl G
4

S

Rl

AL LACOUPAENERERAE] A YA

L
s

Y
.

- e v e

.
o, e, W W e, .
o WP WSS W WA and

Keys. Jones states that the primary keys for the underlying
segments and records will be known to the LNDD as an aid to query

processing. Duplicate keys will not be allowed.

Duplication of Information. Jones stated that the schema mapping

routines result in global relations that do not eliminate all of the
data redundancy present in the underlying schema, especially in the
hierarchical case (9:101). However, there is a benefit gained in that

some ambiguity in queries is removed.

Distributed Information. Allowing only none or fully redundant

data is recommended, but he admits that provisions must be made for
handling partially redundant data. This is in order to keep from

having to modify the local databases that compose the global system.

Network Contstraints. Duplicate keys are not allowed (as noted

above). Network retention classes are handled by augmenting the
relational schema to make the class known to the user. This allows
user policing of the retention, but requires some user knowledge of
the underlying DBMS. The insertion class problem is solved by not

allowing the Automatic retention class.

Hierarchical Constraints. Duplicate keys are not allowed (as

noted above), and the key of each segment will be made known to the

LNDD.

36




m_ A R RTIT vr Ty vy v yr vrvvTTT Ty wywwwy LAak e b fiad Al Seuh dia ek A ool

L

e

Formalization of Jones' Constraints

The following sections formalize the key constraints on the

global and underlying schemas and their associated sets of operations .tj:j
that were originally presented by Jones. Before formally defining ~5::i
Y

these constraints, definitions of schema and operation equivalence are

presented.

Schema Equivalence. A database is schema-equivalent to another

database if there exists a mapping that maps the schema 52 of the
second database to the schema S1 of the first database such that all

constraints in S that are essential in the context of the first

2'
database, can be preserved in S1 (19:89). One exception to
"essential" would be that set ordering in a network database has no
similar property in the relational database. Schema conversion is

defined by inductive rules (9:99-134) that are applied to the

structures. The resulting schema correspondences are depicted in

Foreign Key i Set-Typ { Hierarchical !
i Link-Record-Type! Path !

Table 2.
R e b DL P B -
i Elements of Global | Corresponding | Corresponding |
i Relational Model | CODASYL Elements | IMS Elements H
e U —— ~——mmee —tomm—emm e —————— !
' Domain | Occurrence of | Occurrence of |
L S R - temccmeaa ~——mrcc—aa termeccm e e ————— i
i Attribute i Item Name { Field Name '
' - T ——mmec—aa- e mmmcecccere————— ]
! Relation !  Record«Type | Segment-Type !
jemecacaa S PO ceemmn—en Sy H
|
i
+

Table 2 ~ Data Model Correspondence

37

- AEATILENIDL TR AT AN
S !&-J.‘... -

N T LI T N A RS ALY

Yu ‘.‘-
YO TE)



e A SR it g St St s et et b ok 2t I S i B

Operation Equivalence. If databases are schema-equivalent, and

' each operation on the first database can be mapped into a set of
. operations on the second database without loss of consistency, then

the databases can be said to be operation-equivalent. That is the

"8 0 e .

l task of the remainder of this thesis. In other words, given a set of

schema-equivalent databases, provide the ability to map the relational

operations project, select, and join to the equivalent hierarchical "-*f
and network operations. ;.._’

Relational Schema Constraints. A more formal definition of ?ufi{

Jones' requirement that all underlying entity (segment, record) keys ;53
L

must be known to the global relation is known as the foreign-key

constraint (21:186). This constraint states that if a candidate key

I o X of relation R, is also an attribute combination of relation R_, then

2'

every x-value that appears in R, must also appear in R.. This f”{“}

i 2

- constraint is described more formally by the notation below (19:90),
. which is also used in the following hierarchical operation mapping

chapter.
FCij := VALUE FK(Ri) in Rj dependent on VALUE K(Ri)

» The term FK(Ri) means that the key of Ri is a foreign key in Rj'
The term K(Ri) refers to the key of Ri. This constraint FCij means
i that VALUES FK(Ri) in RJS; VALUES K(Ri). There are other consequences

of this constraint that deal with the insertion and deletion of

tuples. However, these consequences do not affect query operations,

and so are not discussed here.

LR N sal )
-\‘
¢

38

“ata a0y

o T S O S 8 g S e 2

1




=

L]

1t is important to note that the foreign-key constraint does not
allow for null values in FX(R,). However, this is consistent with

Jones' requirement that there be no null keys within the underlying

local schema (9:92).

Hierarchical Constraints. No new constraints are placed upon the

hierarchical schema, but a more formal definition of Jones' require-
ment of making the hierarchical keys known to the global relation is
cresented.

First, all fields in the hierarchical schema must be named
uniquely. Second, each segment type must contain a hierarchical key
(this is consistent with IMS). Third, the overlying local and global
relations generated from a hierarchical segment must contain the
hierzrchical keys c¢f all the ancestor segments for that segment.
These nierarchical keys propagated into the relation can be thought of
as foreign keys of the relation. This restriction can be shown more
formally as follows (19:90):

Let 'S' be a hierarchical schema with 'k' segment types and 'm'
hierarchical links. The schema mapping is:

1« For each root segment type H, define a relation R, such

that - *
a. R, contains one attribute for each field of H,:

b. the key of Ri is equal to the hierarchical ke§ of
H..
i

2. For each dependent segment type H,, for which a relation
R. has been generated for its parént segment type H,, and
the hierarchical link in which it is a child, recursively
define a relation R, such that

J

c Ty Ty rTyyeyewey

',’.,'.1' . "-‘"i"'r".l'.'":_ /

e




a ' 2

- Y,
B AT AR A

b e T 2 Y

S TR,

EC AN Y PRFUI P
.

A AP L e ad A Ml ek A el

a. R. contains one attribute for each field of H., and
tde attributes of the key of R, J

b. the key of R, is equal to the ﬁlerarchlcal key of H
clus the keyJof R,

c. the constraint Fcij is introduced.

Network Constraints. The foreign-key constraint E‘Cij and its

implicit consequences also apply to the the network transformations.
However, unlike the hierarchical transforms, values for the foreign-
keys do not necessarily need to be specified in the network case.
Therefore, a new constraint NFC, |, which allows for null values in the
foreign-xey, may apply. However, this constraint is only considered

when inserting new values. Since this thesis deals only with queries

and not updates, this constraint is not discussed.

The Global Relational Query Language

'

Cesizn Tecision Number S in Sores' thesis (9:232) specified that
the global language would be a relationally based query language, but
would not necessarily be any presently cdesigned langugage. Boeckman
used the Hoth query language, one based upon relational zlgebrz, as
the lanzuage for his partial impliementation of the DEBME and for guery
translators to QUEL and dBase II. The follow-on work being concur-
rently done by Wedertz also uses Roth as the global language. As
such, example translations in the following chapters are based upon
Roth queries, and a description of the RETRIEVE portion of the Roth
language is included in Appendix C. However, the approach taken by
this thesis will be one consistent with Jones. No specific query
language is required by the query translation algorithms presented in

the remainder of this thesis.

uo




v, T -

’ - 3 T - BIPEARLAS B s B e i A et A T Y T Wy
»

'

]

The reason for not requiring a particular language is twofold.
First, basing the query translator on the generic operations project,
select, and join allows the potential use of any relational algebra or

calculus based query language. Second, there is a growing movement

Wwithin the government to make SQL the standard query language. Not
tying the translation software to a specific language will make the

adaption to SQL, or any other language, much easier. As such, the

translation software will be developed to handle the type of input

3 trhat would nermally Te 2xpected 1o e returned Trom an LIALD In the

CCEMS, namely the local datatase name and schema nformation.

Summary

In this chapter, Jones' constraints on the global relational

\, schema and the underlying hierarchical and network schemas were first
wQ ind tnen rformally defired. Finally, the zlobal query
language issue was addressed. The next chapter will examine the

translation of relational commands into hierarchical data manipulation

languaze (IML).
? (®
-
. 41 1
v N "'d
: E ]
[ -
2
(\
A e e e e N T e R




N rl bl S ihar i sl sr Sid Lot v coed oae i ond o - . ot ai - e o
r' B T T AN SR A Jid gl S AR Sl 4 LS e o M AL RGN Gttt A Sl e Sas Raa™ el aes

\.
-
3
-
P;
&
-
3
2

ot LAG Ad A To SR FL S 2

VI. Translation to Hierarchical CML

_ntroduction

This chapter details the algorithms that are used to map the

relational operations into the corresponding hierarchical DBMS data
manipulation language. These algorithms were originally proposed by it
Vassiliou and Lochovsky (19). The target system language is based on e
IMS, with GET-NEXT and GET-NEXT-WITHIN-PARENT as the basic commands, L
with recursive zbility assumed for the programming language and

em. MZ IZML was chosen because IMSE Is the most prevalent

nierarchical DBMS in use. The relational operations to be mapped ]??-

(project, select, join) are the ones associated with queries only.

Projection

The orolecticn of zcotributes of 2 logiczl relaticn bzsed on an

¢ v

{

underlying segment type requires a recursive algorithm, shown in
Figure 14, coupled with a sequential search of the database. This is
3 direct result of generating the relation by the propagation of
hierarchical Xeys, which neans that the relation i3 composed of

attributes drawn from more than one segment type. When these logical

nol

ions sre constructed, the different segment types are necessarily

ct

a

placed in the same hierarchical path in the order H ""Hk' with

1780
H1 being the highest level segment in the path. Since the segments

are stored as levels within a tree, the retrieval path for all
referenced segments is the same as a preorder traversal of the

database, starting at H1 and ending with H the lowest level

kl

referenced in the hierarchy.




B SNCANC ade M0 eyt tel AR sl i “ult et bt it e it St i s e S e S St et bt e S et B et L At e

"F.“?'.'.‘.‘f,‘.'?.*j

emc e —e-—- e - ——————————-——-— - —— -——— - - ——eem o ——-————— o+

while (segment exists) loop
get-next H, segment
if {(no more segments) then
exit loop
output the referenced field values
call RCU(1,k)
endwhile

]
1
!
1
L]
1
'I
1
;
1
[}
1
|
i
recursive procedure RCU(i,k) |
i:=1+1 i
if (i<=k) then |
loop i
get-next-within-parent Hi segment i

if (no more children) thén '

2xit loop ]

output the referenced field values i

call RCU(i,k) H

endloop ;

end RCU H

- [ — [ ——— -—————

§ e e e - —— o ———————— ——— . —— ——

Figure 14 - Projection Translation Algorithm

Zelzetlion

In selection, tuples of a relation are retrieved according to a
qualification condition which is composed of a Boolean (AND/OR) of
simple conditions. It is assumed that the qualification can bte split
g: into separate terms (ti) Wwhere each term applies to only one segment

s type (Hi)' There are three seperate cases of selections.

First Case., The first case of a selection is when the Boolean

»

.
L3

o operator between terms is only AND. The terms are a series of simple

. b rme
.

"
s
.
v e
(A
a'a’s

&
§

conditions on respective segment types. It 1s possible that there is

.y
‘

. .
.
v 'y
.,r

no qualification for a particular segment in the series, which in that

.
2 Va s

g case that term would be given the value TRUE. Such an algorithm is

[ shown in Figure 15.



".‘ -‘_\ T “_.‘\..'\’ ~ AR AR 4 \ﬁv)f_,'-" -.w‘v"‘ ARl e e~ it e i MRS R E Ak aatonan W ——— S ——

while (qualifying segment exists) loop
get-next H, segment where t
if (no quaiifying segment) then
exit loop
else
call RCQ(i,k)
endwhile

recursive procedure RCQ(i,k)
iz i+
if (i<=k) then
loop
get-next-within-parent H, where ¢,
if (rno more qualifying children) then
axit loop
if (izk) then
output the referenced field values
call RCQ(i,k)
endloop
end RCQ

RPN

T |
I ok

Figure 15 - Selection Translation Algorithm (First Case)

Jecond CTase. This occurs when the 3oolean operator between terms
is only OR. It is necessary to check the term for each Hi until a
TRUE condition is found. When it is found, all following ti can be
disregarded. <nce again, it is possible that there is no
qualificaticn for a particular segment in the series, but in this case

the term is assigned FALSE. This algorithm is shown in Figure 16.

Third Case. The final case of selection occurs when the Booleans

between terms are a mix of ANDs and ORs. In this situation the query

must be converted into a normal form (conjunctive/ disjunctive). Once

converted, each series of terms is processed independently using the uﬂ*

o« 7
AR

1 'i-l?'

first two algorithms. The results of these evaluations are then

»
f{? merged to give the final result. This type of selection query is not e
R

4y e




- R B e ) e e et e e e e e o e S

while (segment exists) loop
get-next H, segment
if (no more segments) then
exit loop
else if (t.) then
cail RCU(1,k)
else
call RETRIEVE-CHILDREN(1,k)

endwhile

recursive procedure RETRIEVE-CHILDREN(i,k)
i =14+ 1
if (i<=k) then
loop
get-next-within-parent H. segment
if (no more children) thén
axit loop
(t,) then
cail RCU(1,k)
else
call RETRIEVE-CHILDREN(1,k)
" endloop
end RETRIEVE-CHILDREN

if

Figure 16 - Selection Translation Algorithm (Second Case)

often asked, which is fortunate, for generating a result would entail

several passes over the database,

Join

The algorithms that follow are for translating a natural join of
iwo relations. There are a large number of different cases for joins,
so the given algorithms are somewhat simplified to minimize these
differences. Two restrictions are: (1) that the Booleans between
terms are restricted to ANDs (since an OR would require a sequential
search), and (2) that the result relation contains domains from both

of the joined relations.

45

~
%

.

..
A

ey
il

2

A

ot oat puiall A
£ ’ -
'
N
2 ' r

"
v
’

] i R
D N UL

Es
¥

Ny

.

4 5%
.
Anianl

v
N

g ”
<

-,'
.

DI A
P

=~
»

il %

3
L



—— A A 0 A A A e h ot o U h o e A AT A A L o A A A A e e e S

while (segment exists) loop
get-next H, segment
if (no moré segments) then

exit loop
loop
get-next-within-parent Hk segment
k1:VALUE(Fi1

if (no more children? then

i i
! H
i [}
I ]
1 ]
1 1
: H
] ]
) |
! i
! where (F )) AND ... i
| ]
| '
) ]
| 1
] )
] ]
1 t
] t
J i

exit loop
output referenced values
endloop
endwhile
= e e e e o e m e — e, —————————— + -

Figure 17 - Join Translation Algorithm 1

Joins fall into two basic categories: (1) where both of the T
segments to be joined are located in the same branch of the Database

Description (DBD) tree, and (2) where they are located in different

‘]‘V branches. There are also variations within each category, the most
X important of which will be addressed.
:ﬁ Category 1 Joins. In this category, both segments (call them Hi

and Hk) appear in the same branch. In the path H1""Hi’ ""Hk' with
i, being level 0, 0 < level(H,) < level(Hk). Translating this to the

logical relations gives: K(Ri)g; K(Rk). This category can be further

subdivided into several cases. Algorithms are presented for only the

extreme cases, but a discussion of others is included.

The extreme cases have to do with what is called a key-join-term.

= This is the join of the key of the first relation with its equivalent —_—
. P

\'. *,--‘\

- part in the second. This may or may not be included in the query. If RreY

(o=

it is included, the task is made easier, since the hierarchical data- 'r::;:

» o

NI base is organized for this particular access. If it is not included, A
% -
- ~
o 46 -




while (segment exists) loop
get-next H, segment
if (no moré segments) then
exit loop
reset currency-pointer to start
loop
get-next H segment
where (Fk1=VALUE(F.

11)) AND ...
«««AND (F, “=VALUE(F, ))
if (no qualifying seEment) théh
exit loop
output referenced values
endloop
reset currency-pointer to last Hi segment
endwhile

-
)

Figure 18 - Join Translation Algorithm 2

then each level of the hierarchy must be sequentially searched for
possible matching to each segment from the previous level. This is
extrenely inefficient, so a logical restriction to be placed on joins
would be to require the key-join-term to be included in the query.
When the key-join~term is included, then all descendants of a
segment will qualify according to that term. This is due to the
uniqueness of the hierarchical keys. This means that all of the
segments with the key-join-term can be retrieved sequentially and then

be joined with all of their descendants according to any additional

non-key-join terms. In the algorithm shown in Figure 17, m signifies
the number of additional non-key-join terms.
In the second algorithm, shown in Figure 18, the key-join-term is

not included as part of the query. Without this term, each Hi segment

must be sequentially retrieved in order to be joined with all of the

N Hk segments, a very expensive process.

u7

" ,t'.- "n "n '.m—"_." ' nw vw:_- fv.-1. —
By
o
i

8




S N,

DaAS

I

v
%, -"". o._ a

)
-

)

DA e dad ey

A

These algorithms are for the extreme ends of the spectrum of
Category 1 joins. One in-between case is that of a join of segments
with the same hierarchical root key. This means that only segments
within the same record are joined. Another case is when the segments
appear in different DBDs. However, the second algorithm can handle
this particular case. 1In fact, the two presented algorithms should

meet most join situations with only slight modifications.

Category 2 Joins. 1In this category, the segments Hi and Hk appear

in different branches of the same DBD. Lzt paths H1,...Hc, ...,Hi,

and H1,...HC, eos,yH be the two branches. The hierarchical keys of

k)
H1 through Hc are common attributes for both of the logical relations

Ri and Rk, since the split into different branches of the DBD does not

*-
[}
[}
1
]
[}
1
i
]
[}
{
]
1
]
1
]
1
[}
1
t
!
[}
'
]
|
]
]
1
[}
]
]
]
1
[}
]
]
1
]
t
1
]
1
]
[}
[}
[}
]
!
[}
[}
1
]
)
[}
]
[}
[}
]
[]
+

]

while (segment exists) loop H
get-next HC segment t

if (no more segments) then i
exit loop i

locp ‘
get-next-within-parent H. segment i

if (no more children)} thén i

exit loop :

loop H
get-next-within-parent H, segment :

where (F, _=VALUE(F..)) AND ... '

...AfD (F, =vatde(r. )) =

if (no more chilggen qualif?) then }

exit loop :

output referenced values i

endloop i

reset currency-pointer to last H, segment '
endloop ‘ i
endwhile ‘

B e e e m e e e e e e e e e e e e

Figure 19 - Join Translation Algorithm 3

48

AN
DRt
L)

S I SN P S S
DL DS LA SR

K

,‘.%::"i-,

L

Pd
.
[

&
LT

.

;—
A W

LA
| LA
WA,

o0

.' -
L ,
L4

{




L T W W o L o o e o R R e S T T Ty Ty e w

begin until Hc. These common attributes are called common-join-terms
when they are used as qualifications in a query, and are used to
differentiate the cases of Category 2 joins.

The first case is when a common-join-term does not appear in the
query. In this case, the join must be handled the same as the case of
the same branch without key-join-terms. This means that Algorithm 2
Will be used.

The second case is when the common-join-term is included. 1In
this case, the join need only be applied to the descendants of the HQ
segment, since the other terms are already common. HC can be easily
determined by working back up the branches from Hi and Hk until a
common ancestor is found. Algorithm 3, shown in Figure 19, is to be
used in this case. It is a generalization of several different

possibilities, all dependent on the numbter of common-join-terms that

are present as qualifications.

Summary
This chapter presented 3 set of generic azlgorithms for the

translation of the select, project, and join relational algebra

statements into IMS procedures. These algorithms are neither cor~lete
nor optimal, but give a good start to dealing with the hierarchical
translation problem. The next chapter deals in greater depth with the
associated problem of query translation to the network model data

manipulation language.




- [ A
WL

AN

]

L4

L A

VII. Relational to Network (CODASYL) DML Translation

Introduction

This chapter deals with the translation of a relational query
into network DML. The network database model chosen for the
translation is the network proposal of the CODASYL Data Base Task
Group (DBTG). The DML syntax used in these translations is consistent
with that described by Date (6:425-446).

The process of translating a query into CODASYL DML is a more
complicated proposition than it was for the nierarchical (IMS) model.
The main difference occurs in the choice of access paths that are
available for a given query, and how the proper selection of these
paths influences the DML code that is generated as a result. In IMS,
the processing sequence consists essentially of selecting the starting
sezment that Jorms the root of the hierarchy and then traversing the
tree. This amounts to a one-way traversal downward in the hierarchy.
In the CODASYL model, however, processing can go either up or down
from the starting record, and many different paths can be selected.
Since this ability is so important, this chapter first deals
extensively with the process of selecting the best types of access.
The remainder of the chapter is then devoted to the query translation
algorithm and a sample translation of a query into the equivalent DML

statements, using a sample database that was first presented in Jones'

thesis.




M | Sy T Ta T e
g LN '

e IRRSG

e ars B e auge )

(.

Bl bt A Jf S h Sadhoan 0 " p—— ’ B ma S 00 JhNecARcRS T 20t ol iy LG Gl an g e e AR SR il sk Ml on ke o o

Query Efficiency

The tactics used for optimizing a relational query are signifi-
cantly different if the interface is to the procedural DML of another
data model. The usual relational process is to perform selections and
projections first and then do joins over the reduced relations.
However, this processing strategy fails in the CODASYL model because
(11:428):

1. It is not possible to create t mporary schema objects,

such 3is those created zs a result of a selection or
projection.

2. Some joins are more efficient because they are prestored

as CODASYL sets, and so should be processed first, rather
than doing the selection or projection first.
The strategy for translating relational queries into the CODASYL
squivalent CML then becomes the minimization of navigation required

in the database.

Access Path Generation and Selection

Most of the current papers on the subject divide the task of
translating a relational query into network LML into three separate
tasks: generation of all access paths, selection of best access path,
and "compilation" of the query into the appropriate DML. In most of
these cases, the relational query language is relational calculus
based, such as QUEL (11,16), or graphical, such as QBE (12), where
select, project, join operators are not specified, leaving the choice
of specific access paths to the DBMS. In the case of this thesis, the

query language used by the DDBMS (Roth) is one based on relational

51

R/t snd el A g s |




[

[RREPL o'V IS S 4 5 25 e DAY

l'h\

I

""J

AR S a e ia s s s e i i o o o e g A A A i A A e A o o e a8

algebra, which means that these operations are specified in the query.
However, the sequence of relational operations given in the relational
algebra query may not be efficient, so all access paths must be

examined for relational algebra languages as well.

Starting Record Selection. The first task in selecting the most

efficient access path is to analyze the characteristics of all the
records that are accessed by the query with the objective of making
the translated DML as efficient as possible. Of critical importance
is iIn this regard is the choice of the starting record type. There
are three major reasons for this importance (12:91):

1. The starting record type is the one that creates the

outer loop of the DML code that must be generated for the
translated query.

2. The objective of the translation is to minimize the total
nunber of records of this type that have to be retrieved.

3. Having the starting record type closest to the root of 5
the query path helps to minimize the number of nested - jf
loops that have to be generated for the query. .

What factors determine the choice of starting record and the
sequence of following records? In the case of selections and
projections, the query specifies the record type to be accessed, but
in the case of a join, there is a choice of starting record types.
The determining factor in this case is the access path characteristic

of the record.

Access Path Characteristics. The following characteristics were

enumerated by Katz (11:430) in his paper. Only the first three

52




DA bt el oF B all 0% At A £ \inl Sak fa) Suft e tafe Sahcals dhadig Yy

f_‘-‘,
(uf~ characteristics are important to this thesis, because they deal with
the logical navigation through the database, directly influencing the
sequence of DML code generated to process the query. The remaining
characteristics deal with the actual physical placement of data in
secondary storage, which only becomes important when dealing with
certain optimization techniques that are not within the scope of this
thesis.
1. & path nas an exhaustive scan characteristic if a
retrieval of a record requires every record in %that
record type to be accessed. This is the most expensive
access.
L]
{ 2. A path has an evaluated characteristic if it can navigate b
: from the owner to the associated record via an owner g
. pointer. .
u\ o
. AN
i e 3. A set has indexed access if it can navigate from one -2
' \; record to another via a CODASYL set. One example would e
oe 21l employees belonging to a certain department. b
[a
4, A set has close proximity if the entire set can be f
accessed as a minimal cost unit. This deals with the -
physical location of data in the system. ;
" ©. A path is clustered if all of the records asre closely
placed, reducing the number of physical accesses that
must be made for retrieval of all records.
. 6. A path is well placed if both the parent and child
; records are physically closely placed. This would
- normaily occur with the CODASYL option of "storage via b
set", f
.
t\
Intersection-Free Processing Orders :::
I -
g The final product of the selection process is an intersection-

free access order for the query. This means that a record type is

accessed from only one other previously visited record type. For

)

. WA example, say a query requires access to three record types: Employee,

.

\

. 53

O P A B B S G DO T L R U P T B I AT




-
»
N
N

A" g k- e M sl ety

Department, and Project. Links exist from Employee to both of the

other record types. One example of an intersection-free query would

use Department as the starting record type. If an Employee record was

accessed through Department, then that record could not be accessed

through the Project record. These intersection-free queries fall under

two general classes, path queries and tree queries.

Path Queries. A path query is one where all clauses are:

two-variatle (at most) that are based on an squality comparison (an

squijoin), (2) supported by the underlying schema (CODASYL sets exist

between the joined records), and (3) the query is acyeclic, with no

different

node connected to more than two other nodes. There are 2N-1

orderings of a path query with N nodes. It is extremely fortunate

that most queries involve few nodes, or otherwise the selection of an

order wculd e 3 monumental task in itself. For an effective

algorithm that generates all possible orderings of a path query, the

reader is referred to (11:440).

Tree Jueries. The other class, the tree query, shares the first

two characteristics of the path gquery, but differs in that the acyclic

zraph is connected, which means that a node in a query with N nodes

can be connected to up to N-1 nodes. The problem of generating all

the possible orderings for this type of query falls under the class of

NP-complete problems, which means there currently exists no efficient

algorithm. Selection of a query ordering would most likely depend on

a heuristic approach, one that is not within the scope of this thesis.

54

et m AT
"."-.,'.‘". AN




o0 e it it e et et B i n et St e AT e S DR T ey v vy M A B A B e T
b\.

P\.

I

.

Al

.,

L%

»"

" .

N s

“:, P 0 L e = e O = - e = = = = = - -+
-

Unselected-List := query record types 1,2,...,N
Ordered-List := null

LOOP UNTIL (Unselected-List is empty)

IF (query tree has record type with CALC key) AND
(query provides values for CALC key attributes)
THEN
IF (query gives value for unique record) THEN
Pick that record as starting type
ELSE {the query has several candidate records}
Pick the record closest to the root

]
1
H
I
1
]
;
]
]
]
\
]
[]
1
|
|I
1
|
1]
1
1
[}
i
ENDIF !
ELSE {no CALC key is available} |
IF {tree has a record type that is 3z member of i
a system-owned set) i
THEN i
IF (search/sort key is available) i
Pick that record type d

ELSE {no key is available} i
Sequential search required i

ENDIF H
ELSE {not a system-owned set, either} 1
Add a link to the system-owned set closest |
to the :tree's root i

i

H

|

:

H

d

1

]

ELNDIF
ENDIF

ADD selected record type to Ordered-List
REMOVE selected record type from Unselected-List
ENCLCOP

A
-

» '3 x 0

Figure 20 - COrder Selection Algorithm

Processing Selection Algorithm
2

The algorithm of Figure 20 selects the most efficient access
order for a path query. It is derived from the separate works of Katz
(11) and Kuck (12). It does not generate all possible access

sequences, but iteratively checks all record types for the type of

55

B ST SR N P R ST T S cmem e m . . - [ L S B R N . T, S S S R S RO S ELIR S P TS N Tt e,
A~ '.':ﬁ."-."s' LRSI RN ORI G *.‘\ ‘. N N L ES T P O e W S S S S AR LR




AL M A Pt Rt el e A it i S B AV Bt bt S0 i Bien' A }

access possible for that record type and then selects the most

efficient access. Braces ({}) signify comments.

Ordered Record List. The selection algorithm produces an ordered

list of records to be accessed, with the corresponding attributes and i;ik
access characteristics. This is not unlike the Iterative Query

Language, or IQL, that was proposed by Katz (11:434). Katz's IQL

consists of nested FOR EACH statements, each of which is associated LT
With a ziven record type. For example, the following Roth query gives

~he derpartment location for the department in which John Coe works.

SELECT ALL FRCM employee WHERE (name = 'John Doe!') ;-3«
GIVING tempi o

JOIN temp!, department WHERE (works-in = dept#) RRRA

GIVING temp2 e

} PROJECT temp2 OVER dept-location o
N, GIVING temp3 Ll

ne =quivalent ILJL statements would be:
FOR EACH employee record WHERE emp.name = 'John Doe' DO
FCR EACH department record WHERE emp.works-in =
dept.dept# DO
PRINT dept.location

The most efficient processing, in this case, would be if a CALC

xey exists for the "employee" record type and a CODASYL set associated

with "works-in" links the "employee" and "department" record types.

The worst case would be if both record types have to be searched

exhaustively to find the particular record that is sought. There are ti-“
R
also many different possible combinations in between. Whatever the G
A

R

access characteristic, it will be noted along with its associated

LY

.
s,
»

-
»)
i
o
oo (5N
}

4

record type. This modified "IQL"™ would take the following form:

L4
4

z
2

) e g ¢
s

56

L
.

-
5
L
Fadl)
.

T"E

-.l’ )"'. Y .~".:'...~\-‘ St e "n‘ Teds '."\"‘.'\.‘-"“'.".

P R} et . - .
R R ST oI, TSRSy, Wiy, Wy I \J._‘__.'h$4k;!-.)g!‘!h‘ AR Y .‘- ‘;.\.‘n o ‘.'Q.;.'_.' G PGELFE ORI A'nl 5




P\ By el S i B

WL

IRV FOR EACH record-type-name

o ) WITH access-type (USING key-attribute)

l WHERE condition DO

The WITH statement gives the access type (CALC, sequential

i search, etc.). For an access type of CALC or indexed, the USING
statement gives the key attribute(s), since it might not be the same
attribute that was part of the selection condition. 1In any case, this

enumeration of the required records is what is used to generate the

appropriate DML statements that will be used to process the query.

ZML Generztion Algorithm

iﬁ Once the most efficient network access sequence has been
!j determined, the task is to generate the necessary DML code for that

particular access sequence. Generation of code was chosen over the

i \- uce of set routines because of the flexibility that it offers In
§~ handling different combinations of selects, projects, and joins.
o The DML generation algorithm shown in Figure 21 is based upon one

oroposed by Xatz (11:443), This recursive descent algorithm takes the

ordered list of record types and qualifiers and generates the DML

LS « v T
AN ‘-’
et et a 0l
et

LS
.

statements that create the equivalent CODASYL operations for a given

W

R relational query. This algorithm handles the SELECT, PRCJECT, and
?: JOIN operators all the same way, since the ordered list is what

&3 determines which code is generated. The algorithm takes the first

record and builds the outermost loop of the DML program first, and

then works recursively towards the innermost loop, which processes the

last record in the ordered list. LABEL(index) is a procedure that

(‘
Y
. b ~ S . et s " :
L4 - ” - - - * - - * - - ‘. - - -
O B AR IO G WP A \'@’-sfh'_x SEA ST o IV PN




TN

IR A A S A A IOMEN Stk i ok ot a s A A A A S e L A At s ek A A AR A e e ——

el
{
A
Ly
e oA
S creates labels by appending the index number to the beginning letter ;{:{;
OV
"L", such as L1, L2, and so forth. q
- -~ - - - - - - — - - - - - - - . - - -
procedure MAIN(ordered list)
Number FOR EACH records in ordered list as 1,2,...,N
DMLGEN( 1) :
end MAIN S
procedure DMLGEN(i) )
IF (i > N) THEN return {no more record types left} }-}fﬁ
IF (one~variable equality clause) THEN A
IF (access by identifier) THEN N
<key> := kKey name of identifier data item caT
create DML string o
"MOVE <value> to <Ri.identifier data item> PRI
IN <R.> N |
FIND ANY <K, > USING <key> IR
IF NOTFOUNDlTHEN GO TO LABEL(3%*(i=1)) ﬂ*,:
GET ZRi> S
IF NOT (boolean conditionals) THEN -
S
DMLGEN(i+1) .4

create DML string
"LABEL(3*(i-1)): ™

ELSE IF (access by indexed path) THEN
<key> := keyname of indexed path
create DML string
" MOVE <value> to <R,.value data item>
FIND ANY <R,> USING <key>
LABEL(S*(i-T)+2}: IF NOTFOUND THEN
GO TO LABEL(3*(i=1)+1)
GET <R.>
IF NOT'(conditionals) THEN
GO TO LABEL(3¥(i=1)+1)"
DMLGEN(i+1)
create DML string
"LABEL(3%#(i-1)+1): FIND DUPLICATE WITHIN
<R.> USING <key>
GO TO LABEL(3*(i-1)+2)
LABEL(3%*(i-1)): "

ELSE {exhaustive search needed}

+
t
]
:
:
:
:
1
[}
:
:
1
|
]
t
]
;
:
]
i
i
g
i

\a ! GO TO LABEL(3*(i-1))"
:
|l
:
;
:
:
;
:
:
:
:
{
|
4
]
)
1
)
1
]
]
]
[}
i
i
H FOR (each search clause j = 1 to N) DO

Figure 21 - DML Generation Algorithm

58

e .
PO N AL e,
.

. PRI AP - » LA - - .
PR TP P, o PN R LR AR P e e




= R el AR i e i Sk A iyt a? e? St A e PPN int e e g Bt A A g el Sl Sab. Mk Mute'aiciie dhe et iie Shatie Al eiiu e, Wi e o m ek a4

.
SRS | create DML string '
G i " MOVE <value> to <R,.data item >" i
1 end FOR loop t J g
o ' create DML string i
;- H " FIND FIRST <R, > '
N : USING <R,.data item list> !
. ) LABEL(3%(i-1)+2): IF NOTFOUND THEN ]
2 i GO TO LABEL(3%(i=1)) '
H GET <R.> i LA
: IF NOT'(conditionals) THEN | GO
: GO TO LABEL(3*(i-1)+1)" H
! DMLGEN(i+1) | S
i create DML string i BESAN
i "LABEL(3%*(i-1)+1): FIND NEXT <R,> i el
: USING <R, .data item list> ! B
! GC TO LABEL(3*(i-1)+2) ; gy
! LABEL(Z*(i-1)): " :
] \ ‘l
I ] «
| ELSE {system-supported two-variable clauses} i
i <S> := CODASYL set name for relationship mapping i
1 1
2 | i
- ' IF (mapping is functional) THEN !
- ! create DML string i
R : " FIND OWNER WITHIN <S> !
R L i IF NOTFOUND THEN GO TO LABEL(3%*(i-1)) H
N\ : GET <R.> :
: IF NCTlconditionals) THEN !
H GO TO LABEL(Z#®(i.1))" 1
N ' DMLGEN(i+1) i
. i create DML string i
N | "LABEL(3%*(i-1)): " '
] []
1 i
i ELSE {mapping is from member to owner} d
[ H
- ] [}
X | IF (search key is available) THEN !
1 FOR (each search clause j = 1 to N) DO ]
- ) create CML string !
i " MOVE <valued> to <Ri.data item >" !
! end FOR loop J | A
i create DML string : A
: " FIND <R,> WITHIN <S> CURRENT | Lo
! USING <R,.data item list> ! QO
- : LABEL(3%(i-1)+2): IF NOTFOUND THEN | e
- : GO TO LABEL(i) | e
= ! GET <R,> i ;t“*j
o ! IF NOT (conditionals) THEN ' o
- ! GO TO LABEL(3*(i-1)+1)" : S
p | DMLGEN(1i+1) | e
4 . Figure 21 Continued - DML Generation Algorithm #ﬁ“ﬁ
I #:f;
2 gﬁ:ﬁ
7 59 RO
v S

-

T

., . R e ! Al e R e M e e e TR Lk Te “m e _ iR "L e e m % oW LW R e T T I A R R T R R G S R
EAPAE R S Syl L) FAT R R T e T e e > 4'_.\. - .k‘ K .-*.*_2.. ERART Y .\\.-._.‘-"




it R Jatt At S A i A i el Y R T A S R e T T Ty rrrowrywrrore Cod Baad' & ol gt Bad b & AR ol SPRL S o) arus aeg o

——
[
e

N L
- S
v : create DML string ' A
- ] "LABEL(3%(i-1)+1): FIND DUPLICATE WITHIN | i
H <S> USING <Ri.data item list> | e
5 ; GO TO LABEL(1+2) | NN
D : LABEL(3%(i-1)): : NN
- | : ol
- : ELSE {USING clause will not work} | ;‘gt:{
» ' create DML string '
H " FIND FIRST <R.> WITHIN <S> H - -
i LABEL(3#*(i-1)+2): IF NOTFOUND THEN ] -
1 GO TO LABEL(3%(i-1)) )
i GET <R,> '
i IF NOT (conditionals) THEN '
| GO TO LABEL(3%(i=1)+1)" i
. ! DMLGEN(i+1) H D
T | create DML string ! R
. ; "LABEL(3%¥(i=1)+1): FIUD NEXI <R.> ) T
: WITHIN <S3 :
i GO TC LABEL(2*(i-1)+2) |
-~ { LABEL(3%(i=1)): " '
] [}
o2 | 1 AR
: | end procedure DMLGEN H o
1 ] Rt
1 ] s
. - - ——- et R
ﬂ' Figure 21 Continued - DML Generation Algorithm e
- ARG
: th o
. For the i nested record type in the list, the algorithm checks {-.
) =it
. '\ 'Li‘
A to see if any conditional clause can be supported by a set access. If I‘.'-:.'\
- this fails, then it tries to find a one-variable equality clause on
::' which tc¢ base the access. There are three cases of these. The cases L
e
. and the algorithm's action for each are: ;;)
1. The key attribute of the relation appears in a one- :_1-.-:::
variable clause. In this case, code is generated to ‘._
access the CODASYL record by its key data item. e
v 2. Indexed attributes appear in a one-variable equality s
- clause. In this case, an indexed minimum cost access ST
path is used to find the record. t_\"ﬁl‘
. _\}\
.. ey |
> 3. Value attributes appear in equality clauses. Here a FIND ;.-'.'\
- USING statement is used to access the record. This s
1 (. statement automatically does the equality test on the
- i value data item.
::j :':::::;:
XY Pt
'~ 60 b
p* f,‘f_:.
s -
" %A
3 e
.;-'......_I.:-’._-‘.".-’.:-".;-.:-'.:-'.;-;.;-'.:1' e ,;.y,:._f.j-.:.} )*‘-‘ Yo .-_:\‘-,:.-,:.'-;';~:_.}:.-::.A.‘-:.- ;;.~;:.~'.¥;'.-‘¢;;.-(- e et e ;-;;.\- -




I Sk 2 e S iage St St Jhath B San Satt Sad b Jhath Shats up St

%:f As a consequence of the intersection-free query, each record type
is accessed from at most one previously visited record type. If the
link is functional, then the FIND OWNER statement is used. If this

fails, and one-variable equality clauses are present, the FIND CURRENT

-- FIND DUPLICATE statements are used in order to take advantage of

q the USING option. Finally, if that also failed, the FIND FIRST/NEXT

[ WITHIN SET statements are generated.

h -
P?' Query Restrictions for Algorithm Simplification. There are three fifﬁ
E restrictions placed on queries in order to simplify the algorithm. -
N The first restriction is that all boolean conditions are assumed to be }AQJ

in conjunctive normal form. The second is that all conjunctions
involve, at the most, two variables. The final restriction is that OR

?- (:; clauses can only specify alternate values of the same attribute.

Minor Optimizations. The given algorithm is by no means opti-

mized, but there are a few basic improvements (11:446) that can be
made that will increase the efficiency of the generated IML code.
. These improvements include:
1. If the conditional clauses are all true (null), then the

IF (conditionals) statement does not need to be
generated.

2. If a projection requests only certain data items, and not
: the whole record, then only the requested data items need
= be retrieved by the GET statement. If no items are ~
< requested (for example, passing through the record as a ~

{ consequence of navigation) then the GET statement does :ﬂfé
o not need to be generated at all. Y
" Meve
- 3. If the functional access path is total (a mandatory/ Qf\ﬁ
¢ A automatic CODASYL set), then the NOTFOUND test can be

- - — +, L
- P
- R
: 61 NN
R b

N
)
»

L 4 |
N
S
e )
e Xle e

K
. .-~ <

e et AT tataTevatac, At R aT et At e TMTECL Y TMTAC L m e A" AR e RS P e B SR SR BN T SR SRR N TR
oo e e e '--‘.'_‘\‘.{\"-"b‘\','-".’ _-.::F..- Ot ATy .. o ;-‘v LY \1"\ » -q LGRSO TS S




S N T T Ty e o e Ty .Vf..f.""'\‘"-‘f.'.ﬂ'?
P T,
|
~ e
eliminated. This is because the record exists only if it
. has an associated link record on that access path.
& 4, If all members of a record type are to be accessed
) without restricting equality clauses, then the USING
- option in the FIND FIRST/NEXT statements can be
g eliminated.
" o e e e e e e e e e e +
S 1 1
";- ] ]
<- : ST==I=z===zz=== S=SZ=Ss==S=Z=S====R ======= :
" i = HOSPITAL = = WARD = HC = = LAB = !
| =z=z=z==zz===:z S===s=======2 =s=3==== !
[} 1
[ [ . |
| ===z=z===z=z== =zzzz=z=z==zz====z===zz=z =====zz==z=z== '
\ = DQCTOR = = STAFF = WC = HC = = PATIENT = X R
: =S=S=z2z==:== sSS=-IZzZ2=szZzZsSzZ=S=xzc== S=sS==xszs==z==2 : . :
1 ] - .
! ! _‘..'_'.‘:
; SxXsx==c-c====z=-====z=z== S=SS==Xcz===s>s=s=zZ==S=zz== : ~-_’,_';;
| = DIAGNOS. = REG# = = TEST = LAB# = REG# = : P .
| =Zz=z=z=zzz==zzzzzzz=== =Zs===xz=z=ssT=s==sSsE===s i S
- | :
i OCCUPANCY STAFF DOCTORS ]
D e e m e mc o mmm o e e - - - ]
. | SE==Tz=zZs=z===x 2 ====IZs===z:=23= |
o i\ = WC = REG# = = HC = DOC# = !
\' |I STSIZsoszD=D=== PP :
i ! DOCTOR-PATIENT :
o | ===sz==sz====z==== *#% DOCTORS ATTENDING H
i = REG# = DOC# = *% PATIENTS ATTENDED i
! ==z=s=z=z=z==z=zz=z=== H
| i
i HCSPITAL-LAB !
! ==z=z=zzzzz=zzz== ** HOSPITALS-SERVICED i
i = HC = LAB# = #*% [LABS-USED g
: S==ss======== :
S ' ]
H I
ot e e e e e e e e e e e e e e e e e +
Figure 22 - Relational Schema for Medical Database (9:122)
Example Translation
N In this section, an example translation is presented. The
‘.
i database used for this example is one that was orginally presented in
~ p Tsichritzis and Lochovsky's Data Models, but was extracted from Jones'
62
:;'.' M -. "w.\.'.',-.'-. '.'- SRY ’-.’\'”'\"\" -‘.’\',"-:;'.‘_-.:_-."-."_-. _\';-."\';-."-.."-,‘;\" "




,.";_".'V';_"._‘v'("-'_'jif_'?_ e W TR (R RO, S .. 5 Pl AN S CAS A A B A% Av A S Ahcatrbis e g B et Aeh A AL Ad Al hd A S Taddh aR AN -—-‘]

N R
:.-Z . N thesis (9:117-122). 1In Jones' thesis, the relational schema shown in
~‘:.
' Figure 22 was mapped from the CODASYL database shown in Figure 22.
" This example takes 3 Roth language query against the relational schema
j: and translates it into the appropriate DML statements for the CODASYL
e
) database.
'_' The sample query is: "Find the names of all patients who have
Smith as their doctor." This query would appear in Roth form as
" follows:
\ B T e L = - 4 o e e e e +
- i !
i g
| HOSPITAL '
M 1 []
- ] 1
g ] HOSPITAL WARDS LABS USED i
: H STAFF DOCTORS H
', ' i
ol ' '
Y ( s t !
- { WARD DOCTOR HCSPITAL LAB H
: ; ;
::: i WARD STAFF DOCTORS ATTENDING HOSPITALS |
- ! SERVICED |
5’ ! 1
i :
o | STAFF DOCTOR-PATIENT LAB i
- : i
! H
= g OCCUPANCY PATIENTS-ATTENDED TESTS i
~ : ASSIGNED |
H ; s
. ; TESTS 1 AN
¢ ] N PATIENT ORDERED TEST H "_:.“L .
. : = t]
- i H }\j
L i PATIENT DIAGNOSIS g
X ! | F~a
N | ' e
. : DIAGNOSIS | %
N ! ' Pl
> i H i
>, tomm—— ———— - e e e e e e e e e -
. /e .
. Figure 23 - CODASYL Medical Data Base (9:117) NN
u'\:;‘c:-
- (s
-\ \'ll
N
63 e
::, L::\_,':"
= i N

e e e e e e S -t " e e, R m TN et At T T U P SSRRE JH SN IR K |
--.'-.'}...- ):‘_-. R '.\'.S'(‘:."‘. ¢'-1 RN ..\‘_- RO _.\., ..t". SO L CT ‘,-‘ P T S R A -.\J.\:‘-\q\.‘ \' N : -




Ty TN T T T——————— ———

LADEL A
. DA R )

'y s

*r‘r‘

LT,
i,

NS O

3

L 4

4

SELECT ALL FROM Doctor WHERE (Doc.Name = 'Smith')
GIVING Temp!

JOIN Templ, Doctor-Patient WHERE (Templ.# = Doc-Pat.#)
GIVING Temp2

JOIN Temp2, Patient WHERE (Temp2.Reg# =
GIVING Temp3

PROJECT Temp3 OVER (Pat.Name)
GIVING Tempi

Pat.Regi)

The DML statements required to accomplish the query in the

CODASYL database are:

MOVE 'Smith' TO Name IN Doctor
FIND ANY Doctor USING Name IN Doctor
ZF NOTFCUND GO 70 ZND
FIND FIRST Doctor-Patient WITHIN Doctors-Attending
DC WHILE (NOTFQUND = False)
FIND OWNER WITHIN Patients Attended
GET PatientName IN Patient
FIND NEXT Doctor-Patient WITHIN Doctors-Attending
END WHILE
END:

Given the sample Roth gquery as input, the statements generated by
the DMLGEN algorithm should be equivalent to the above DML query. The
following sections briefly run through the translation process for

this example, with the firal generated DML statements listed in Figure

k.

Creation of Ordered List. For purposes of this example, the

access characteristics of the record types in question are as follows:
The Doctor record type has a CALC key, which is the Doc.Name data
item, and the association between Doctors and Patients is not total.
That is, a Doctor-Attending CODASYL set can be empty, meaning that a

doctor may not currently have a patient. However, the

64

T T T e LN
.

. . - . T T S - » . - ‘e e - s * t. 5 “u . L Te te e - > ® ‘-_ .
o e Tl e e e T e e A e L T e e T e e A

e o La e ’-L‘ et S e,

W AE R h*’ N N -




e e ey

.

AR e e e T e e

1R o I
YN
’

Patients-Attended CODASYL set will not be empty unless there are no
patient records within the database.

A request to the local data directory (LNDD) returns the record
type names and associated access characteristics that are needed to
translate the query. The product of the Order Selection Algorithm is
the following ordered list.

FOR EACH Doctor

WITH access-by-identifier USING Name data-item

WHERE KeyValue = 'Smith' DO

FCR ZACH Doctor-Attending

WITH no-equality-~clause
WHERE Cwner = Doctor AND Member = Doctor-Patient DO
FOR EACH Patients-Attended

WITH functional-access

WHERE Owner = Doctor-Patient AND Member = Patient
PRINT Patient.Name

Code Generztion Process. The list of FCR EACH record types is

then passed to the DML generation algorithm. The FOR EACH members of
the list are numbered 1, 2, and 3 (recursion goes down three levels).

Processing of the first level, DMLGEN(1), proceeds as follows:

. The test for a one-variable clause is satisfied (Name = 'Smith').
. The test for "access-by- identifier" is met.
. The appropriate section of code is generated.
. DMLGEN(2) is called.
5 Upon return from DMLGEN(2), generate ending code.

J‘—‘L\Jf\)—-‘

The second level proceeds as follows:

1. The test for a one-variable clause fails.

2. The test for functional mapping fails.

3. The test for available search-key fails, meaning code without a
USING clause must be generated.

4, The appropriate section of code is generated.

5. DMLGEN(3) is called.

6. Upon return from DMLGEN(3), generate ending code.

65




2.

DAL N
I3

Ry e

i

g e RARNL < S

The third level proceeds as follows:

1. The test for a one-variable clause fails.

2. The test for functionazl mapping is met.

3. The appropriate section of code is generated.

4, DMLGEN(Y4) is called, but since 4>3, this stops the recursive
process. The algorithm then backs out of the levels of recursion
one at a time.

5. Generate ending code.

Generated Code. Figure 24 shows the code produced by DMLGEN for

this sample query. Unnecessary statements are eliminated in accord-
ance with the optimizations mentioned above. Angled brackets (<)
denote wvalues that are either inserted into variables or are generated
by the algorithm (such as label indexes). Inspection of the generated
code reveals that it is equivalent to the CODASYL query listed earlier

In this chapter.

MCVE <'Smith'> to <Doctor.Name> IN <loctor>
FIND ANY <Doctor> USING <Doctor.Name>
IF NOTFOUND THEN GO TO <LO>

FIND FIRST <Doctor-Patient>
WITHIN <Doctor-Attending>
<L5>: IF NOTFOUND THEN GO TO <L3>

FIND CWNER WITHIN <Patients-Attended>
IF NOTFOUND THEN GO TO <Li>
GET <Patient.Name> IN <Patient>
<L6>:
<LY4>: FIND NEXT <Doctor-Patient>
WITHIN <Doctor-Attending>

GO TO <Ls>
<L3>:
<LO>:

o -——— - ———-d

Figure 24 - Example Generated DML




B ARCMECAI I S SR N Ak S ot At S At A EAC Al A A A Acib 't & 2 (L A0 A 0 (LI AN SO gt a A s/ Sur e LA e i e e g

. . r
R R

T Summary

This chapter detailed the process of translating a query from

relational to CODASYL DML. The selection of an efficient query

i

LA

PR

processing order and the generation of translated CODASYL DML were

v m s v =
s -

. examined. Algorithms were presented for the production of an

N efficient ordered listing of records, and for the generation of a

; CODASYL query program. A sample query translation was also presented.
. Over the next two chapters, the design and partial implementation of

similar algorithms for TOTAL, a ncn-CODASYL network database system,

Wwill be =xamined.




F.'.'-‘.‘:‘.'.".‘".‘",',".‘.‘."-'.‘."".‘_'_".‘l.'.'?.‘.‘?..‘.'.'3'1‘_'-.'?.-‘.'r.x's ety st )l ann o

b
3
Ei s YIII. Relational to TOTAL DML Translation

- Introduction
In the previous chapter, algorithms were presented for
) translating a relational query into the equivalent CODASYL DML. 1In

this chapter, the design of similar translation algorithms is examined

for a another specific network DBMS, TOTAL, marketed by Cincom 'l;ie
Systems, Inc. The chapter begins by briefly comparing the two e
systems, followed by an overview of the TOTAL DML. The chapter ends u-.bg?

Wwith descriptions of the transliaticn process and zlgorithms.

et
Comparison of TOTAL and CODASYL ‘. _i!

TOTAL is a network database management system, but it differs
from the CODASYL proposal in several ways. Cardenas (4:218) describes

he Zesign z2oncept of TCTAL as being AC to 80 percent like CODASYL,

but with a DML syntax similar to IMS. The next few sections describe

-;. some of the differences between this very popular DBMS and the CODASYL
model. Only a brief discussion of TOTAL DML commands is included

. nzre, With 2 more detailed description available in Aprendix B.

Schema Termirology. First of sll, the terminology of a TOTAL

dztatase schema is different from the CODASYL proposal. The differ-

ences between the two are shown in Table 3. Note that these terms may
- not be exactly equivalent. Usually the terms refer to the same type
of entity (i.e., Item and Field being equivalent), but for others

(i.e., CODASYL Set to Linkage Path) the physical implementations are

different.

68

c et I S R S TR R S R T e e T e T T e e T Nt T e et At R T T T T T e T e e
R e A e T R R A N T N AT A T e T e
g 5 B - L) = B n o .

Q A LG .'\.r._.r e




CODASYL Term TOTAL Term

e et e e P e e e e +
= | Data Item g Data Field ! ““]

R T ' Tt
: i ; Data Element | o
. e et L e P L L L R i RO
- ! Record Type ' Data Set i O,
. T bt — e ———————— ' e

' Records | Data Records i q

T e —— - i R

H Owner Records | Master Data Sets d

s T, T H

] Member Records ] Variable-Entry Data Sets | )

R et S LS L e e L L T i e

| CODASYL Sets i Linkage Paths/Chains i q

e o e e e e e e o -+ T

Table 3. CODASYL and TOTAL Schema Terminology

. Data Structure. Both CODASYL and TOTAL are network model DBMSs, T e

but there are significant differences. 1In the CODASYL model, a record

can be owner or member in any number of sets. In TOTAL, Master data- r;:-'

RIS

i

re the owner records and Yariable-Entry Jatasets can only te
member records. In CODASYL, set members may vary in length, can be
members of multiple sets, and are independent of the entry point
access method. In TCTAL, Variable-Entry datasets must be of fixed
length, only belong to that one set type, and can only be accessed by
a chain beginning at the first or last entry points from an owner

® Master dataset.

Data Structure Implementation. In CODASYL, Prior and Owner

- pointers are optional. These pointers, plus a Next pointer, are
k mandatory in TOTAL. All pointer implementations in CODASYL use

- physical pointers, while Owner pointers in TOTAL are symbolic.



R S LI e 1t Dt 4 vt A dat At B T P T T N WY YW wywT - ikl
r . i (AP A SN A A i A gt A g Al il A A Al e b Asiind at A\t Bl st e g

T
.
A

a0

Access Methods. All records and sets in CODASYL can be accessed .
in three ways: Physically Serial, Random, and Direct. In TOTAL, only f?
the Master datasets can use Random access (they can also be accessed Eii
serially), while Variable-Entry datasets must be accessed serially in ﬁ;
a chain, either forward or backward, through a Master dataset linkage f{
path. The only exception to this is if the actual physical location j;t
indicator for that particular data record is known. 'i;
TOTAL Data Management Language (DML). The TOTAL DML is an exten- ;{j
sion to existing rrogramming languages, consisting of a series of CALL Eé:
‘é statements to a TCTAL interface program known as DATBAS. There are ;;
three different types of DATBAS calls, each with its own parameter ;;
list.
C
‘) The first, using four parameters, is for signirng onte L.
TCTAL and for opening and clesing the database schema: ;;j
CALL DATBAS (FUNCTION, STATUS, SCHEMA, 'END.') gi;
(2) The second, using seven parameters, is for accessing ﬁ;j
Master datasets: [:
CALL DATBAS (FUNCTION, STATUS, DATA-SET, CONTROL-KEY, ﬁ;
ELEMENT-LIST, USER-AREA, 'END.') e
(3) The third, using nine parameters, is for accessing ;;
Variable-Entry datasets: L;
CALL DATBAS (FUNCTION, STATUS, DATA-SET, REFERENCE, ;3

LINKAGE-PATH,CONTROL-KEY, ELEMENT-LIST,
USER-AREA, 'END.')

. ! v".-' .‘ -.-.'-' . -

P

The various options for the FUNCTION parameter that are used in

asely

this implementation of the query translator are listed in Table 4,

3 ‘o .’: -’ﬁ”‘,’l

70




RlCAMIE AR S A A R A i Al A A Sl Aol Bl Al e et Al S8 Al A Anh Sed 4ol Bel ot ol o og

e ——————— e m - ————————————————— +
\ CODASYL { TOTAL DML FUNCTION BY DATA SET TYPE |
! RETRIEVAL |—c-emmmcmmmcmmcmmcmcmmmcmmmcemmc oo cmmme ;
i STATEMENT | MASTER i\  VARIABLE ; BOTH i ]
| mmem e mmmmm——————— tmmm———————— tmvm—mcem———— i
i READY ] ] | SINON :
I e bmm——m - S e g
i FINISH H ] H SINOF !
|mmmmccmcce e tmm————— e ———— bomm—— e ———— —t e ———————— H
{ FIND/GET H READM H READV ! !
i i RDNXT i | g
e R S S +

Table 4., Comparison of CODASYL AND TOTAL DML

llsted under their cppropriate data set type. The corresponding
CODASYL statements are also listed for comparison. For a complete
description of all available read-only functions and other parameters

in the DATBAS call statements, see. Appendix B.

P TCTiL DML Senerztion Process 2
The following sections present a set of algorithms for the ;

translation of a relational query into a program containing the 1§

requisite calls to TCTAL. The translaticn process breaks down into f?

three steps: creation of the structures used oy the [ML generator,

ordering of the structures into the optimal processing sequence, and ?
the generation of the source code with embedded TOTAL DML. im_

Dataset Structure Creation ii

The DML generation algorithms use as input a list of data g?

structures similar to the IQL-like list presented in Chapter VII.
These structures contain the information necessary for the generation
of proper DML code. This query information, obtained from the local

data directory in the DDBMS, is as follows: Tl

71

.......

- Rt P e N P T N N T LR
1{-014-‘..1-.-(‘.,1..‘..;;-"'.’.‘-‘JA-'.P“_".'-‘A."-?'




AR AN

- -
]

]

Pl

- T

B Rl
e e b,

Query operation
Name of database--to get list of all datasets required
Name and type (master or variable) of datasets
Dataset Key
All required field names for each dataset
Size of all fields
Linkpath and reference names from the master dataset
to variable dataset
Qualifier operators and operands (literal or fieldname)

This information is first placed into an array or list of
structures that are used by the generation program. The structures

are constructed as shown in Figure 25.

Crdering of the Structures

The algorithms for ordering the list are essentially unchanged

from Chapter VII (and so are not presented again), with the difference

Cataset illane
Dataset Type (M for master, V for variable)
Dataset Key Field Name
Access Indicator (1 and 2 - READM, 3 - RDNXT, U4 - READV)
Linkpath (variable data sets only - NULL otherwise)
Reference (variable data sets only - NULL otherwise)
Number of Fields Requested (i:= 1 to N)
Field,
Name
Size
Output Indicator (Y if field is to be printed)
Number of Boolean Qualifiers (i := 1 or 2)
Comparison,
Field Name
Operator
Comparison Argument Type (literal or field)
Qualifier Field (if field argument)
Qualifier Literal (if literal argument)
Compound Boolean Indicator (AND or OR)

b o iee e

Figure 25. Dataset Structure

72

s v € .
.l.-l ."

Sy

o'
-4
-

.

S RS
%
»

D
L

.
52




b s s o, BA e a - ay uraa- .vrurm'rjv',"":v‘_",_r]""_f_'\l'_-"(i_v'.-l'<-._\ HESARE o P g e e i G et A e o T

«

being that there are fewer access options available in TOTAL. Master
data sets are accessed in only two ways; directly (for an equality
comparison on a dataset key) and sequentially (all other cases).

Variable data sets must be accessed sequentially through the chain

beginning with the first or last data set in the chain. (Variable . _.{

data sets may also be accessed if the physical location pointer is
known, but user knowledge of a pointer value would be extremely
unlikely.) For simplification, variable data set access always begins . {

with the first z2a<az set in the chain, because the average search will e

[

se the same for btoth forward and backward searches through the chain.
Given the limited number of access options in TOTAL, ordering the

structures into the optimal access sequence is a much simpler than in

CODASYL. The most efficient retrieval is for a Master dataset with an :_é;{
2quality comparison on the dataset «ey. 111 other retrievals of SRCRE
Master datasets must be done sequentially. Since the retrieval of
Variable datasets must be done via an access pointer from a Master
dataset, the 2fficiency of Variable dataset retrieval is dependent
upon the owning Master dataset. This access restriction of TOTAL

zuarantees that the critical starting dataset (see Chapter VII,

Choosing the Starting Record) will be a Master dataset. If, in the

remaining datasets, a dataset key is to be provided for a Master &é{‘é
dataset by a Variable dataset field, then that Variable dataset will §fi:
immediately precede the Master in the processing order. Otherwise, gqqqg
the deciding factor in ordering will be the presence (or lack) of £ E
comparisons on Master dataset keys. Eﬂ:}s

¥

73

n .
S
I SRy




D e e e s -
. - W o ——— T

procedure MAIN(ordered list of dataset structures)
Number datasets in ordered list as 1,2,...,N
Cpen GeneratedProgram File

Create DML Code
Label Declarations (Nx3 labels plus errorlabel)
Type Definitions
Declare 'N' structures for datasets retrieved
Variable Declarations
Declare procedures for DATBAS calls (total of N+1)
One for SONOROFF
One for each READV (variable dataset)
One for each READM (master dataset)
One for each RDNXT (master dataset)

DATASETS := <concatenation of all database datasets>
Open Cutput file
Generate SinOnOff Call

TOTGEN( 1)
Create DML Code

ERRLABEL: SinOnOff Call
Close Output file

Close GeneratedFrogran rile
Compile and Execute GeneratedProgram File
Display Result File
Remove GeneratedProgram and Result Files
end MAIN
D i T D + )
Figure 26. Code Generation Driver AN
é-::}
Code Generation Algorithms p,:ﬁ!
After the order selection is complete, the structures are input :
to the DML code generation routines. The figures on these pages
. present the code-generation algorithms in pseudocode. The main
i code-generating procedure, TOTGEN, is derived from the CODASYL

algorithm in Chapter VII.

TR

Moo

[ RN
o SRS, et et -‘.'-',\J.N
S S T R R S R YRR, 2




A 2 2 TN oA ML gAML S A A e L i e S b e S W PR—— R A it e S T A Bt AJ Sl Mcaies i ghe i el Ml Wil A bl ol bd Avs ach Sodl

Driver Program. The main translation program, or driver, is

shown in Figure 26. This may be a single program with embedded system : P
calls or it may be a mix of system routines, such as command files,
and the program with its subprocedures. A subprocedure for each

generation step, such as declaration of labels and types, is assumed.

Subprocedures for DATBAS Calls. One of the more restrictive

aspects of TOTAL (from a relational viewpoint) is that the parameters

for each DATBAS call to TOTAL are fixed. This means that for each

dataset that is to be accessed by a translated query, there must be a
corresponding declared DATBAS call with the unique parameter declara-
tions. The only way to implement this and still allow any flexibility
in the queries is to declare each DATBAS call within its own sub-

(:: procedure, thus "hiding" that particular DATBAS call from all of the
others. There are four different types of procedures that must be
generated, depending on the data set. The procedures generated would
be READV, READM, and RDNXT. If a particular query involved two master
datasets read by dataset key and one variable dataset, then two
different READM procedures and one READV would be declared and

generated.

TOTGEN DML Generation Algorithm. Once the variables and sub-

procedures have all been declared, the main body of the translated

query program must be generated. This is handled by the TOTGEN

. x =

procedure, shown in Figure 27, which calls itself "N

-.’_{.
o',
A

9
; vi
o2

1
’
)




CAARA T A~k 5 Be Mae e 0t S e ch o

A L S A S sadh At M Al ) e Al Sl Ak A AR el Fad Sl Aslh va b oS0l sk A Gel e T Se ek ool

procedure TOT"""(i)
IF (i > N) THEN DO
Output all structure contents to output file
return {to previous level}
endif

-~y v e
S

[S a0 el
PT T e

Ay tetata's
TN
alataale

IF (Master Dataset) THEN
IF (one-variable equality clause) AND
(Clause is a Dataset Control Key) THEN

create ML string
"READMi(<SearchKeyi>,<UserAreai>)

- e

IF NotFound THEN GO TO LABEL(3%*(i-1)) A

IF (STATUS <> rvx#%%%1) THEN o

GO TO ERRLABEL 'S
<Structure,> iz <UserArea >" -
IF (Structure,.value(j) ==z qualifier) POV
THEN tsuccessful) (W
IF (not successful) THEN GO TO LABEL(3*(i-1))" R
N

TOTGEN(i+1)

create DML string
"LABEL(Z*¥(1i-1)): "

ELSE {sequential search - not dataset key}

create DML string
"Qualifier, := 'BEGN!'
RDNXTi(<Qualifier;,<UserArea.>)
LABEL(3*(i-1)+2): IF QUALIFIER =z 'end of chéin' THEN

GO TO LABEL(2%*(i-1))

IF (STATUS <> rt##%%%') THEN
GO TO ERRLABEL

<Structurei> := <UserAreai>"

IF (Structure, .value(j) ==z qualifier)
THEN Usuccessful)
IF (not successful) THEN GO TO LABEL(3%(i-1)+1)"

”
. »

TOTGEN(i+1)
create DML string
"LABEL(3#(i-1)+1): RDNXTi(<Qualifieri,<UserAreai>)
GO TO LABEL(3%(i-1)+2)
o>
G Figure 27. TOTAL DML Generation Algorithm

76




R GA A A S E A Bl Sud el ob B A los So it Al difdied A Al Al And And Al i ol sk Acs Ack o ol

LABEL(23¥(i-1)): "

ELSE {Variable datasets - read chain in sequence}

create DML string
"<SearchKey > :z <Dataset(i-1).KeyValue>
READV, (Reference ,<SearchKey >,
i
<Userfrea, >)

LABEL(3%*(i-1)+2): IF Reference, == 'END.' THEN lﬁafi
GO TO LABEL(3#*(i-1)) NN

IF (STATUS <> t'#%%%1) THEN S

<Structurei> := <UserAreai>" o

IF (Structure, .value(j) ==z qualifier) :Qﬁ':

THEN (successful) Ll

IF (not successful) THEN GO TO LABEL(Z*(i-1)+1)" e

£

TOTGEN(i+1) ‘a»=!

create DML string
"LABEL(3%(i-1)+1): READV, (Reference ,
<Searchkey >, <UserAreai>)

GO TC LABEL(Z¥(i-1)+2)
LABEL(Z*(i-1)):

:
]
i
:
[}
:
|
:
:
:
:
:
[]
1
:
:
i GO TO ERRLABEL
1
[}
{
:
|
;
:
:
]
[}
¥
[}
]
1
i
i
:

end procedure TOTGEN

¢ ¢ s-r 5 tx
AR
T . .
A :

Figure 27 Continued. TOTAL DML Generation Algorithm

o

recursively in order to build the proper processing order into the
program. This is essentially the same as the DMLGEN algorithm
presented in Chapter VII. In the figure, the subscript "i" signifies
the declaration of variables for the ith level of recursion, being the

same as the number of the data set that is being retrieved. The

angled brackets (<>) signify values (variables) that are generated for

‘.
vy
N A

that particular call of TOTGEN. N

t
T

n‘.".'.‘.'.'.'-.'.""“"

P PP AP S S S I ST A S AR NI R S S




R )
LI N N

v %a

O A R A}

;
Bl
etattut e -

¢

Summary

In this chapter, the design of a translator program for TOTAL, a
non-CODASYL network data base management system, was discussed. The
significant differences between TOTAL and the CODASYL proposal were
pointed out, and algorithms (modified from the previous chapter) for
the generation of TOTAL DML were presented. In the next chapter, the
partial implementation and testing of a relational to TOTAL DML

translator program is presented.

M

Ly

12
r

-
LA

b3

"l “»
A

t;: ¢

-..l.
%
A
[ 8
el

78



L et ot e e s e bg e e

»

:2 ig- IX. A Partial Implementation of tne TOTAL Translator

! Introduction

k: This chapter describes the partial implementation of the rela-
o

e tional to TOTAL DML translation algorithms of the previous chapter,

and the testing of sample queries using the AFIT Data Base (AFITDB).
The chapter is organized into three main parts. The first part

details the implementation of the translation software. The second

discusses the AFITDB, and details the portion of the database used to

create a set of sample queries. The last part of the chapter presents

the sample queries used to test the translator program and analyzes

the test results.

Translation Software Host Machine and Language

\« “mplementation of the translation software was done on the VAX-11
that also hosted the AFIT TOTAL DBMS. The translator algorithms

presented in the previous chapter were implemented using the C

programming language. The DML generator portion of the program

3 S EEEO

gererates a Pascal language program with embedded TOTAL DML statements

v
[

which, after being compiled and linked to TOTAL, actually execute the

query. The choices of the VAX and C/Pascal as the host machine and

¥
v

languages were based on the following criteria and constraints:

vy
LR R

AR DR

1. The DDBMS network link to the VAX had not been successfully
implemented, making distributed access impossible.

2. The LSI-11 microcomputers that compose the DDBMS nodes were
restricted in their memory capacity. It was doubtful that
the LSI's could accommodate network protocol software, LNDD

and ECNDD software, and the translator software all at
4!? once.,

79

',-' \-. “ S L S R ~ -\-' - _- RGO Y S SN LS -~ " H ". ‘o o
E“.-"..d..;_i.: :.L,.b_. -3 ). T .'- 2 ‘-' - "’"\ » "“L-. i '~ ™ -.‘4 L * “' " n < RO ¢ A < ""‘ 2% - )



T o o e e s

-

- - 3. C was the most efficient language available on the VAX (the
L others being Pascal and Fortran) for the handling of

N character strings, which is the major task of the DML

g program generation portion of the translation process.

4, The method of interfacing Pascal to the TOTAL DATBAS
= program (written in FORTRAN) was already known.
Development of an interface to C would be a possibly
lengthy proposition.

- Translator Limitations and Assumptions

The translation software was implemented using several limiting

design decisions and assumptions. The major assumptions and limita-
vions sre pointed out in the following subsections, along with the

criteria on which these dec¢isions were based.

2‘.
b

Query Input. The information used by the translation program is

assumed to be the information passed to the local DBMS by the LNDD at

the nost ncde in the network. The zctual parsing of the guery would
already be done at this point, and only the information returned frcm
the LNDD would be relevant to the translator. This decision was based
on the fact that the LNDD and ECNDD, which are critical to parsing,
are located on the DDBMS nodes (LEI-11 microcomputers), not the loecal

DBMS host machines. As such, query parsing would most likely be done

on the LSI-11s, not the VAX. The query information is assumed to be
sent as a file (known as QUERY.DAT) to the VAX, which would then be

read by the translator.

Multiple Databases. One early decision was that the query

- translator program must be capable of handling multiple databases

[ resident on the TOTAL DBMS. Multiple databases are a common DBMS

go

.

e e - - R - e e e et .t
i A e L T T RN . e . TSI .

Sl - " g - - - " .. - . o - -
T W 3 3 ) Y i S S S RNy



AR S T T T T T T o N X o M W T = g vy e vy

occurence. It is more unreasonable to expect a DBMS to contain only
one database. The method of handling this was to assume that the
first information present in the query file would be the six-character
database name. The translator program then uses this information to
open an input file containing the database schema. This schema
information is required by TOTAL when signing on to the database (see
Appendix B). For example, the schema for the AFITDB was located in

file AFITDBSC.DAT (SC standing for schema).

Dataset Processing Order. The most significant omission from the

algorithms presented in the previous chapter was the one for the
ordering of datasets into the most efficient processing sequence. It
was assumed, for the moment, that queries would be input in the most
QTJ' efficient processing sequence. The immediate concern was to implement
and test software that actually could translate queries. The
efficiency of the queries can be addressed later, withcut affecting

the previously implemented code generation software.

Gueries Allowed. All queries to TOTAL are assumed to be path,

not tree, queries. This is a corollary to the previous decision not
to implement the query processing order algorithm. When that
algorithm is implemented, the possibility of allowing tree queries
(and the associated implementation of more complicated ordering

algorithms) can be addressed.

Boolean Qualifiers. The implementation of multiple boolean

Vo qualifiers on the datasets in a query became an issue almost as
81
Ul Y
AN
L.-."\)l
‘.».‘ '}"_."')".-"_."_.".."-..‘-._‘-_‘..\ RN IS T A S e S LRI R A Y I I AR --'._‘- . .‘
s &:L-:' Y I W W YY) .\)\’:ﬂqi"p S W S R S DL PO TN y 'ri‘-"."..."_...:." ':-“.A'..."":A:.A.‘:J.'.‘\:-‘-J\J:‘l~ S’




A A A n e A s i e 2e e e e o e e e e e o M e et o e e v et e e

involved as the translation itself. In order to simplify the process
of generating qualifier code, the number of qualifiers on a particular

dataset was limited to two. For Read Unique Master (READM) datasets,

one extra qualifier was allowed in addition to the equality comparison
on the database key (see the previous chapter). For all other ii:{
retrievals, two qualifiers were allowed, with the AND or OR logical ;f{%;

connectives, as shown below:
<qualifying condition 1> AND/OR <qualifying condition 2>

This allows range specifications {i.e., retrieve all workers olider
than 20 AND less than 35) and multiple selection criteria (i.e., all
parts supplied by Jones OR supplied by Smith) on individual datasets
e;;ﬁ retrieved by READV or RDNXT calls to TOTAL. Although selection

criteria on a single dataset is limited to two qualifiers, a query
involving more than one dataset still can have several qualifying
conditions. A join involving three datasets could possibly have six
qualifiers, two for each dataset.

Another capatility was to allow the selection of data records
based on a subset of the dataset key. For example, in the AFITDB, one
course's dataset key is EENG650. A query involving the selection of
all electrical engineering courses would use only the 'EENG' portion
of the key. In this case, the RDNXT statement would be used, rather

than the READM.

Maximum Datasets in a Query. The list of structures presented in

- the previous chapter was implemented as a fixed-length array, thus

t J :' ?
l' \ »
.'-':‘:

N
0,
'.’l".‘

82

'l.

v

P




A sean e e o e e oo i e s ey e

4

el el B Y i Vv U NI SR BN e UL e Al S Sl Ak Sl A

placing an arbitrary limit on the number of datasets that could be o

involved in the query. The limit chosen was seven datasets, or the ﬁ?l
"Hrair Limit". The Hrair limit is the maximum number of entities that ii
the human mind can easily comprehend, and is generally considered to ;&;
be seven items, plus or minus two. Other limits placed on the *T
structures are a maximum of 40 fields in a dataset, two qualifier |
comparisons (explained above), and only one linkpath and reference
allowed per variable dataset. The latter could (and should) be )
expanded when the processing order a.gorithm Is Implemented, since
multiple access paths would then be possible.
';,
Translator Input and Output '\
All software development was done in a single directory on the \
VAX. In this directory, there are two input files to the translation BN
pregram, AFITCBSC.DAT and QUERY.DAT. There are four cutput files, :f
TCODE.PAS (the generated program), TCODE.OBJ and TCODE.EXE (compiled ;f}
and linked versions of TCODE), and QRESULT.DAT, the query result file ;“:
.-
created by running TCODE. The following sections examine the two E:;
input files and the output result file, ?S
é}
AFITDBSC.DAT File. This file contains the schema information for =
the AFIT database. As more TOTAL databases are tested, additional éi
<database name>SC.DAT files will have to be created. The information gf
£
present in the file is as follows: i:
Size of Schema Declaration ;E
Number of Following Lines in Schema Declaration S
N Schema Declaration Lines t:
83 2
g
b
N
T S S e e T B S S




P N Y N T Y O W o W W o oy o~ 9w T W {9 v W W V¥ vy Y~y =

b

The first two items of information are used simply to ease the
implementation of the translator software. The schema size is used

~ early in the translator to define the buffer size for the schema used
in the SINON/SINOF to TOTAL. The number of lines counter is to allow
the proper formatting of the schema declaration in the generated
SONOROFF routine. The declaration lines contain the required
information (program name, database name, access mode and field names)
as noted in Appendix B. For purposes of illustration, the first

schnemz line of +the AFITIE is as follows:

" 'GENTCODEAFITDBRDONLYNLFACTSHREXXXXDEPTSHPEXXXX" =

QUERY.DAT File. This file contains the query information that is

o ‘};‘ returned by the LNDD in the DDBMS. The format of the information here

A is similar to the format being used by Wedertz in his thesis (20).

(S . TRNIR RSN

N The exact format of QUERY.DAT is:
Database Name (AFITDB)
Yumber of Datasets (N) in Query -
st ) i
1 Dataset Information <
- .

Nth Dataset Information

There are two different formats for the dataset information,

d
BV s an o il S AP I SN

depending on the dataset type. These are shown on the next page.

,

3

' e ;

- ;
b o 1]
‘.. »
:. - .
» 84 :

e et
ot

et eamaegay
TR e




AD-A164 0413  THE DI ESIM MD IIPLEHEITIITIDN OF R RELR'I’IONN. ro
NETII RK QUERY TRANSLATOR. . (U) RIR FORCE INST DF TECH
1GHT-PATTERSON RFB OH SCHOOL OF ENGI..
UNCLASSIFIED DEC 85 AFIT/GCS/ENG/83D-7




7

RO BV

TETPRER

FEEE
EEF

| l [ S
. [Yew
——
—— -
S —— o
m l‘

h2s s s

MICROCOPY RESOLUTION TEST CHART
SATIONGT RYRTAID OF CTANDARDS 10631 4

AR/

31 e

B
- L,l‘




T P U ¥ P s =g g g =g ¥ e e e

MASTER DATASETS VARIABLE DATASETS
Dataset Name (4 character) Dataset Name
Type Indicator (M) Type Indicator (V)
Control (Key) Field Name Control Field Name
Nggber of Fields Requested Linkpath Name (8 character)
i”" Field Reference (4 character)
Field Name (8 character) Nggber of Fields Requested
Field Size (in characters) i Field
Output Indicator (Y or N) Field Name
I} Hber of Qualifiers (0,1,2) Field Size
i Qualifier Output Indicator
Field Name (being compared) N%Hber of Qualifiers
Comparison Operator i Qualifier ,
Argument Type (F or L) Field Name T
Coniunction Comparison Operator R
Argument Type pel
Conjunction non
A
Explanation of some of the values may be necessary. The output E;{i

indicator determines if the retieved field is to be output to the

result file. The fields actually requested by the user's query are

»
I3l

denoted by a3 'Y' for output, and the other fields needed (as deter-

=

mined by the LNDD) are marked with a N, so they are not seen in the xjij
Ny

output result file. SN
The qualifier field name is the field in the dataset that is :3?;

being compared against. The Argument Type is 'L' for a user-supplied

comparison literal, and 'F' denotes a comparison against a field from Ty

another dataset (as in a natural join). The comparison operator must

be one congruent to those used by Pascal. The operators that must be

used are:
'=' < Equal To '¢<>' - Not Equal To
'<' < Less Than '<z' - Less Than Or Equal To

'>'" < Greater Than *>=z' - Greater Than Or Equal To

e e e :

Tt T et T .
LRI, YR AL R L

“n
. o




3
E; i

.::'.: :

. Rl
RS The conjunction/disjunction field will be 'XXX' if the number of :ﬁi&
e

qualifying comparisons is 0 or 1. If it is 2, then the first 1_;

qualifier will have a 'AND' or 'OR' in the field, and the second

qualifier will have a 'XXX' (since there is no third field).

QRESULT.DAT File. The query result file is written by the

generated program (TCODE) when it is executed. The results are

written in a simple format that separates each "tuple". The requested s
output from each of the datasets involved in the query is output on a
separate line, with another line separating each distinct data

aggregate (tuple) in the result. For example, if a query requests a ;;;i
student name from one dataset, a course title from another, and the

grade from a third, a resulting tuple might be:

U )
e

ror
.

-
Smith, John A. &2”5
Advanced Database Systems R
A- e
[
o
This query result file would then be transmitted back to the s
requesting DDBMS node for further processing, possibly to be joined or
unioned with the results from a partitioned query to another database.
Processing Sequence
The processing sequence of the translator program, TRANS.C,
basically consists of a series of passes down the array of dataset
structures. First, the input from QUERY.DAT is read in, building the
array of datset structures for use by the remainder of the program.
The access characteristics of each dataset are then analyzed, with an
o
DS
‘.l
86 :i\a
o
T ._‘:_‘-.:i__‘_;:._:...-;._:...‘-'_._:;._-...-'...-:._-. S e e - da _: ............. .u_: e et A AN 1\\;\ XY




ii el access type classification of 1, 2 (both READM access), 3 (RDNXT), or
o 4 (READV) being assigned to each dataset.
:i The code generation process now begins. After opening statements
Y
j have been generated, the second pass down the dataset array checks the
size of each dataset field and computes literal sizes in order to
create the list of sizes for buffer-type declarations in the Pascal .
program. Another pass down the array creates record-types for query
3 output. A fourth pass through the datasets and all fields generates fﬂ;t
: the variatle declarations for the program. The fifth pass down the ?%i;
dataset array generates one subprocedure (for the unique DATBAS call) _.
for each dataset in the query. It is at this point (in the SONOROFF F;;:
procedure) that the database schema file (i.e., AFITDBSC.DAT) is read. ?i;;
N The sixth pass is made by the recursive module that generates the body iiﬁz
' of the Pzscal program, with other, partial, searches of the array &T"
ii occurring as needed when computing the fields required in comparison i%?i
qualifiers. The seventh complete pass is made when the recursion
stops and output statements are generated.
;_ At this point, the final code statements are generated and the
3 output file, TCODE.PAS is closed. What remains now is to compile and
link the program to TOTAL, and then execute it. Running the TCODE :’;ﬁ
executable code is what actually creates the result file. Eg;f
For a detailed description of the program, the reader is referred to Eiig
= Appendices E, F, and G, which contain, respectively, the Data %ﬁ;ﬁ
i Dictionary, Structure Charts, and source code listings. ;;Eg
y ':l':'f:

0

87

l;
o

»

LA R Y IR IR VRIS SRR S P RENANY RV PR LRI RS R P
. I-."\'\'- AP ".J" ~ 'v..'~.’\ (Y \{ '-\..‘v ~ s - Y -'- LY \-"* &

—ae . K
a0 (et

N L . - “ e m e e oaca
- e . - e
> » '_..4 ..h.'.- PRGNS ‘b.". '... A -'.li:f..n' AR
_ W A :




The AFIT Data Base (AFITDB)

The TOTAL database chosen for program testing was the AFIT Data
Base (AFITDB), which was designed to handle the scheduling of classes,
maintain student, faculty, and thesis information, and to track order

information on textbooks. The AFITDB is composed of 37 separate

datasets (15 Master files and 22 Variable files) and is resident on . ﬁéj}
Ce

the AFIT Information Sciences Laboratory's VAX 11/780 minicomputer. ;:;;J
—d

The main difficulty encountered with the AFITDB was the fact that e

“he database is still basiczlly in a2 state of infancy. Most of the 37 3;}?;
datasets presently have very little, if any, information in them, and l
several of the usable datasets do not have linkpaths connecting them
to other datasets. The usable portion of the database that was

utilized for query translation testing is outlined below.

N

.l "

S,
o

??,
.’

,
.
b

STDT

U

’

g
t

¢ .
f

v e o =,
s

',." .". l"/.'- .
[

SECL SECT

g B, e
L

o

oyt

v
”

L R N ——
)
’
s

.
v 'd

AN

Al

*;

Figure 28. TOTAL Schema for Test Database
(Subschema of the AFITDB)

- e -
EAE W AR

’

 r
YR
'ﬁ.p

-
-

o« '.-.

........ - I G G T N S
L -

u ‘. PRI P T S . LWL Y e R .
., SR TR - T “n X -.'q' S P o L




EA A A Al A el Sal, Sul Sl Pl )

A TV

LA

v
.

K .-. SN

Test Subschema of the AFITDB. The portion of the AFITDB that was

o

» e

used in this query consisted of four Master datasets and two Variable

datzsets, for a total of six datasets in the subschema. A diagram of

the subschema showing the TOTAL relationships of the datasets is shown
in Figure 28.

There were other Master datasets containing information that were
not included in the test subschema. This was because the Variable
dataset linkpaths for the Masters were not implemented, thus leaving
them Isolated. A simple select, project, or non-supported join could
be run on these Master datasets, but those queries could also be
tested on the selected datasets. As such, the isolated datasets were

removed from consideration.

Description of Subschema Datasets. The six datasets selected for

the test subschema are listed below, with their respective fields that
actually contained information. The four-letter code names shown are
the actual TOTAL names for the datasets and fields. Several of the
datasets actually possess more fields than are shown here, but in
these cases, invalid or no information was present in the omitted
fields. A specific case involved the the STDT (Student) Master
dataset. The STDT dataset actually has 22 separate fields, encom-
passing a wide range of information such as home address, spouse
names, and military date of rank. However, only the Student Name,
Rank, and Control fields contained any information. As such, only

these fields are shown below.



e b e Sy o A 2 e s LA AN S SAA MR A 0 S0 A0uat e B gl A A h A AR A Ml At AR E 0L Sut S0 do o e Jee At e e e e

o STDT - Student Master Dataset

CTRL - dataset control field (student SSAN)
NAME - student name

RANK - military/civilian rank

LKSE - linkpath tc the SECL variable dataset
LKCQ - linkpath to the VCQR variable dataset

P DAAANRA AL SRR
4
v

EPRN o e
L

SECT - Student Section Master Dataset
. CTRL - dataset control field (section number)
. NRSN - number of students in the section
o LKSE - linkpath to the SECL variable dataset

; MCRS - Courses Master Dataset
i CTRL - dataset control field (course number)

CRHR - credit hcours e
LCHR - lecture hours S
LBHR -~ lab hours

SZLM - class size limit

TITL - course title

LKCQ - linkpath to the VCQR variable dataset

MQTR - Quarters Master Dataset

- CTRL - dataset control field (quarter/year)

o STDT - start date

S SPDT - stop date

i *' LKCQ - linkpath to the VCQR variable dataset

C? YCQR - Variable Course-Juarter Dataset

0 CODE - mode control (required for retrieval/update)
- NMBR - course number

t{ IDEN - quarter-year

. SSSN - SSAN of student enrolled in class

.

SECL - Section Leader Variable Dataset
SECT - section number
STDT - SSAN of student in section

Se

!“ The conversion of the TOTAL datasets for this subschema is not

| very difficult. The schema conversion algorithms proposed by Jones

L (9:117) do not apply exactly to the TOTAL data model (due to the

5; absence of retention and membership classes in TOTAL) but do provide a
EET workable solution. The two Variable datasets become "member of" type
ES relations that are composed completely of foreign keys from the Master
i e

o datasets (relations). The resulting relational schema is shown in

4"
S
LA

»": 9 o




ey

T TR T T TR T T -

Figure 29. This is the schema that is used for the test queries

presented in the next section.

Test Query Translations

Once the translation software was implemented on the VAX, a set

c e W s s o

of sample queries was run to test the operation and efficiency of the R
both the C translator/generation program and the generated Pascal

program. Several queries resulted in the discovery of errors in the

N
-

generation program, mostly due to unexpected query ‘-V-uf
STUDENT RELATICN

i Student SSAN | Name | Rank | e

1
+
1
[}
]
i
[l
1
[}
[}
i

SECTION RELATION

+ -
i Secticn Number | Number of Students |

I " R dalal el iadad bt bl Dol L e L bl Lol +
- COURSE RELATION
. e e e e e e e e e e e +
: } Course Number | Title | Class Size | Credit Hours |
D e e T L e, ——————-———-—————- - +
l QUARTER RELATION
gy Sy g S S s rm—e——e—,———————— +
- \  Quarter-Year | Start Date | Stop Date |
e ccmccce——— e ————— cemmcmccmeer———————— +
- ENROLLED-IN RELATION
4 e e —memem——eeee—em———————— .
: i Course Number | Quarter-Year | Student SSAN |

B L L LT T RS PR T Tt -t
. MEMBER-OF-SECTION RELATION
! ! Section Number | Student SSAN |
) + - +
; Figure 29. Relational Schema for Test Database
i~
~ SR
\ 91
S
]




hdnAdaisaid ATV WEWN '_ql‘” e e LWL

but these were easily corrected. Other problems that

combinations,

were uncovered dealt with the problem of generating correct Pascal
code, given that that language is very unforgiving in terms of type
declarations. This is the reason that the first part of the trans-
lator program does nothing but generate buffer type declarations to
use throughout the remainder of the Pascal program.

The final set ¢of queries shown here were selected because they
represent a wide, but normal, range of queries that could be expected
in the system. There are seven samplie gueries, involving from cne Lo
five of the six datasets in the schema. The query is first presented

in the Roth relational query format (even though the Roth query was

not actually used in translation), and then the TOTAL processing

.- sequence that is assumed by the QUERY.DAT file is presented. The
\, . .
zctual QUZEY.DAT, TCCOPELPAS, and SFEZULT.CAT files for each test are
s included in Appendix H.
i First Query. This query requests the courses that student
A "ahoney" took in the Winter 1985 quarter, and is enrolled in for
; the Fall 1985 guarter. The Roth Query is:
‘
3
- SELZCT ALL FROM Student WHERE (Name = 'Mahoney')
GIVING Tempi
JOIN Temp1, Enrolled-In WHERE (Temp1.SSAN = Enrolled-In.SSAN)
GIVING Temp2

SELECT ALL FROM Temp2 WHERE (Temp2.Quarter~Year = 'FA85') OR
r (Temp2.Quarter-Year = 'WI85') GIVING Temp3
: JOIN Temp3, Course WHERE (Temp3.Number = Course.Number)
. GIVING Temph
- PROJECT Tempy4 OVER (Student.SSAN, Student.Name, Course.Number,
g Course.Title) GIVING Temp5
2
1 (o The processing sequence assumed by QUERY.DAT is:
7 o7
2 92
O s i E R B T L O Ot R R DB TV T

Nt MM Msia A ghut hn gt e o te 4¥ 8l

PR
£, ’I‘n.
o7
RSN

’ "0 "1 '.l "l

.....
[N

» .I [} ."4'
A
L,
"

e




»

«TaTa a2 BT

Q;:; STDT - RDNXT using Name = 'Mahoney' as qualifier

VCQR - READV using linkpath LKCQ from STDT
MCRS - READM using course number from VCQR as key
Second Query. This query asks for the name and rank of all AFIT
students with last names that begin with D, E, or F. The Roth query
is:
SELECT ALL FROM Student WHERE (Student.Name > 'C') AND
(Student.Name < 'G') GIVING Temp1
PROJECT Temp1 OVER (Student.Rank, Student.Name)
GIVING Temp2
The processing sequence assumed by QUERY.DAT is:

STDT ~ RDNXT with qualifiers (Name > 'C') AND (Name < 'G')

Third Query. This query requests the name and rank for the

student with '062084021' as his/her SSAN. The Roth query is:

CELECT ALL FRCM Student WHERE (Student.SSAN = '062084021')
GIVING Templ
PROJECT Temp’ OVER (Student.Rank, Student.Name)
GIVING Temp2
The processing sequence assumed by QUERY.DAT is:
STDT - READM with dataset key qualifier '062084021!
Fourth Query. The request here is for all the courses that the
Electrical Engineering lepartment offers. The Roth query is:
SELECT ALL FROM Course WHERE (Course.Number = 'EENG')
GIVING Temp1
PROJECT Temp! OVER (Course.Number, Course.Title)
GIVING Temp2
The processing sequence assumed by QUERY.DAT is:
MCRS - RDNXT because qualifier is a subset of the database key
(L.

93




bio i g % Lo A AR el Aa e Aot A 2* (gt A AN AN SN Pt i i A e m—— W T T N T N T Y T T T Y T e v~ —

T U oLt

.-

- Fifth Query. This query requests the names of all the students

that are in section GCS-85D. The Roth query is:

SELECT ALL FROM Member-of-~Section WHERE
(Section Number = 'GCS-85D') GIVING Templ

JOIN Tempi, Student WHERE (Temp1.SSAN = Student.SSAN)
GIVING Temp2

PROJECT Temp2 OVER (Student.Name) -
GIVING Temp3

S Y,

> -

.

L The processing sequence assumed by QUERY.DAT is:

' SECT - READM where key is 'GCS-85D' (This actually came out as bl
RDNXT, because the literal is only seven S
characters and the field is eight, so a subset of
the key was assumed by the program)

- SECL - READV using linkpath LKSE from SECT

3 STDT - READM using SSAN from SECL as key

LRk R A4

Sixth Query. This query retrieves all the GCS-85D students that

are enrolled in the Fall 1985 offering of MATH555, plus the quarter-

y=ar. The Roth query is:

SELECT ALL FROM Enrolled-In WHERE (Course Number = 'MATH555')
AND (Quarter-Year = 'FA85') GIVING Temp1

JOIN Temp?l, Student WHERE (Student.SSAN = Temp1.SSAN)
GIVING Temp2

SELECT ALL FRCM Member-of-Section WHERE (Number = 'GCS-85D)
GIVING Temp:

JOIN Temp2, Temp3 WHERE (Student.SSAN = Member-of-

Section.SSAN) GIVING Tempd

PRCJECT Temp4 OVER (Student.Name, Enrolled-In Quarter-Year)

GIVING T=mp5

The processing sequence assumed by QUERY.DAT is:

SECT - READM using 'GCS-85D' as key (Actually became RDNXT

for the same reason as outlined above)
SECL - READV using linkpath LKSE from SECT
. STDT - READM using SSAN from SECL as key
N VCQR - READV using linkpath LKCQ from STDT with additional
X qualifiers NMBR = 'MATH555' and IDEN = 'FA85!'
4
: "
Mos Aoy et e gt 8n&¢¥b;ff\u'-33$§$ﬁﬁﬁﬁﬁﬁﬂ3'V“Wuwﬁﬁfsfff



Ealir- el et e it S I i S S e San ey JAnt e fnr Jaun o e e ey e e RO N - o= N P —_ M 0 S et g Gl R e A A ek A g
. . Pl N

Seventh Query. The last query requests the names of all GCS-85D

students with last names beginning with 'A' through 'J' that are
taking a MATH deparment course in Fall 1985, with the titles for the
courses that they are enrolled in. This is the query that uses the
maximum (five) number of datasets of all the test queries. The Roth

query is:

SELECT ALL FROM Enrolled-In WHERE (Course Number = 'MATH') AND
(Quarter-Year = 'FA85') GIVING Temp1

JCIN Temp?, Student WHERE (Student.SSAN = Temp1.SSAN) AND
(Student.lame < 'L') GIVING Temp2

ELECT ALL FRCM Member-of-Section WHERE (lNumber = 'GCS-85D)
GIVING Temp?

JOIN TempZ, Temp3 WHERE (Student.SSAN = Member-of-

Section.SSAN) GIVING Tempd

JOIN Temp#4, Course WHERE (Templd.Course Number = Course.Number)
GIVING Temp5

PROJECT Temp5 OVER (Student.Name, Enrolled-In Quarter-Year,
Course.Title) GIVING Tempb

[ &]

The processing sequence assumed by QUERY.DAT is:

SECT - READM using 'GCS-85D' as key (Actually became RDNXT
N for the same reason as outlined above)
. SECL - READV using linkpath LKSE from SECT
' STDT - READM using SSAN from SECL as key with additional
qualifier NAME < 'L!
VCIR - READV using linkpath LKCQ from STDT with additional
qualifiers NMBR = 'MATH' and IDEN = 'FA85'
MCRS - REALM using NMBR from VCQR as key

Aralysis of Query Translation and Execution

All of the above queries were run over a two day period when
usage of the VAX was at a low level. Stopwatch timing was done on
each of the steps of query translation and execution: translation of
the query file, compilation of the generated code, linking the code to

the TOTAL DBMS, and executing the query. The reasoning was to see




AR Rt R AR n RSl S S T

TIME IN SECONDS

7

1 2 3 4 S 6
QAUERY NUMBER
 TRANS RUNTIME TCODE COMPILE

] TCODE LINK
Figure :0. Code Jeneration anc Compilation Times

approximately how long it would take to actually process a query in a
heterogeneous DDBMS.

A graphical illustration of the results is included to aid in

o)

§0

lyzirg the gquery sxecution. The sraph of the first three guery
translation steps is shown in Figure 30, the execution time of the

fecurth step of each query is illustrated in Figure 31, and the total

90
80
78
69}
59
49
IAF e
20L B e R

le . D ... ... .. N ...
F ° ST2 7873 1514 1S15 TST

TIME IN SECONDS

QUERY NUMBER
B TCODE RUNTIME

3 é;?? Figure 31. Translated Code Execution Times
- 96
Ca

T T e T R W N W U S = R WAV Wl W, o W, v W %, ¢ e e .

el

"
[ I
PR

£ .

[

r

IR e L. [FEAEN
’
’ " PR
4 . L !
et .
- e,

l.‘l

P
"
Pl |

e e e,
. e
r'e

v - s
Y
F)
4
B

Y
&7

..-'.
.

« 0t
l‘ff r'_".

S,
"! *
,

2/
L P A

-y 5 e =

‘o
.



OB A e e e e e e e 2 e e et o e

{ { 195
(‘.g 9@ DR
5
J
N aal e
= _
¢ R
: %
. - b R
. , b 7 A Y
1 2 3 4 5 6 7
QUERY NUMBER
Bl TRANS RUNTIME TCODE COMPILE SRR
T TCODE LINK & TCODE RUNTIME -

Fizure :2. Total Processing Time For Query Zxecution

processing time is shown by the graph of Figure 32. The actual times

for each processing step are given in Table 5.

Analysis. The time it takes for the query translation process
\» nbvicusly 1iffers by a wide margin from query to query. The average

total =xecution time from start to finish is 43.3 seconds, but the

QUERY TRANS TCODE TCODE TCODE TCTAL QUERY
NUMBER RUNTIME CCMPILE LINK RUNTIME PROCZSSING TIME
R ettt L et +
i 1 Too2.12 o12.52 0 6.1 1 27.68 1 4BL.u2 1
| vmraca—— A —— tmmmmm———— r—m————— FU R —— g !
" 2 i 1.51 1 5.13 i 6.51 1 27.68 1 8.9 i
| R 4 - - - ——— - - e m—n————— ]
i B} 1,46 1 S.14 V7409 1 1.12 0 1 14,81 i
| emm—eeea S tmm——————- tm—————— tem——————— tmmmm——em—e——a H
i 3 P 1.82 i T7.09 i 6.61 1 13.67 1 29.19 i
|emmcanaa e —t e ——— S e —— e mm e~ ———— H
i 5 i 1.8 i 15.01 } 8,09 } 7.9 1 32.8 i
|crmcaaa —temmmcae- P R VR - crtmemcccnnena— -~}
N t2.23 1 13.21 4 6.48 1 T79.53 | 101.45 '
|mmmee——— tm———————— e m————— ~tmmn——- —t———— s e T L i ?{?f?
b7 1 2.59 1 12.89 1 T.23 1 18.44 1 41.15 | N
mmsmememsesmemmsemooeoe- RN
Table 5. Query Processing Time (in seconds) RN
, » E 5

97

e e ,‘—‘. .‘,'.. .

e T, " e L AP M e T R R L AL
R e VIR AG I ST I WIS S ARy S WP YU U S L S P VR, W, N




sample standard deviation is 25.5 seconds. There is no way that one
can draw any conclusions about the efficiency of such a query trans-
lator in a heterogeneous DDBMS from such a small sample, but there are
some points that can be discerned from just seven queries. First of
all, the length of the first three steps will be fairly equal, even
for the most involved queries. The generation and linking steps are
almost identical from query to query. The main variation in time is
for the second step (compilation) where the average is 10.14 seconds,
Wwith a standard deviation of :.38. Most queries will average around
20 seconds to finish the creation of the executable code. What does
vary widely is the time it takes to actually execute the code.

Most of the execution times did not reveal any surprises. Query
2, where a single record was retrieved by use of the dataset key, was
extremely fast, running in just over a second. The speed of this
fastest query was expected. However, the slowest query, Number 6, was
not anticipated. It ran for over 79 seconds, nearly three times as
long as the next longest query. Complexity of the query would be the
obvious answer, but this query did not involve the highest number of
datasets. That was Query 7, which used five datasets, and which ran
only 18.44 seconds. Why this discrepancy? It appears that the
difference is in where the qualifications appear in the processing
order of the query. In Query 6, the qualifications appeared in the
last few datasets of the query. In Query 7, the addition of a
qualification on the second dataset (STDT) sharply reduced the

required amount of sequential searching.

98

RO AP T

R Al Sl St Al S A Al el S Boll Aok o B Sol And ek bek . ob tad el el - o

DA SN -
WS e
'
vha

RN A ]
e

efel el
e

”
‘nnv
MR

YA 'aq
- '_’ 'I

e ot g

v
»

G
‘5 “ )

v,
'y
b

]

..
*

ety
e 4
[

-

L4




i

w
-l
_
Conclusions. Few conclusions can be drawn from such a small }i::
:' N 2
sample of queries, but one significant one can be. It is apparent
v
that the criteria for the ordering of datasets in a query (which was ?ﬁx
omitted from this partial implementation) should be expanded to }S}
[ Yy
A

include an analysis of where the qualifications lie in the processing
order. Knowing the relative size of the datasets would also be
useful. The combination of these two factors would help to reduce the
execution time of the translated program, which is obviously the key
to the length of time It tzkes to process a query. This is a zrade-
off, since a complex process-ordering algorithm will add time to the
initial translation, but the time saved in the execution of the query

will probably exceed any additional cost from the algorithm.

Sumnmary
In this chapter, the partial implementation of a gquery translator
for the TOTAL DBMS was presented. The choice of the implementation

machine and language was explained, and the translation algorithm,

input, output, and assumptions and limitations of this particular

implementation were discussed. The test data base was then presented,

and seven sample queries were defined in the Roth relational format. E
o
These sample queries were translated and executed and the results of a iﬁ%
stopwatch timing of the process were presented. The chapter then kﬁt
finished with an analysis of the timing results and drew one major o
design conclusion about query processing. The next chapter concludes t;?
el
this thesis, and offers some direction for future research in the area };:
el
of heterogeneous distributed databases. tfi
o
-\ -
F.\"
99 I

‘.....

v

~.‘-;. '.'-._‘ .

R TR ST UL ORI ROR T
> .'.‘-'. ,“'~ ., ’h- o e )"- &,




AR

i3

X. Results and Conclusions

Introduction

In the nine preceding chapters of this thesis, the many
issues and considerations of implementing a global query
language for a heterogeneous distributed database system were
presented. Several methods of dealing with the problems and
tasks of such a language were presented, but there were probably
far more questions raised than answered. This final chapter
will first try to tie the ¢ .ngs and accomplishments of this
thesis together. It will then advocate certain areas that are
considered worthy of further research, and will finish with a

last few observations and conclusions.

tverview of the Thesis

This thesis could be considered as being divided into three
distinct sections. The first section, Chapters 2, 3, and 4,
addressed the problem of global query management. A specific
mocdel, the Catabase Prism, was advocated as the best approach.
This was followed by an extensive discussion of the types of
data partitioning that would likely be present in a distributed
database built over existing local databases. This partitioning
issue is particularly relevant, considering the task of decom-
posing global relational queries into local database queries.
The idea was advocated that not only the global data model
should be considered as being relational, but that the local

logical databases should be viewed by the global system as being

100

e
a Y

F

ﬁw,r,,,
T
b

¥
‘.
.

e
»
:’_

e

NOKAR)
L

AR

W
-

£ .D
[

(a7

o
rd
¢
‘.
)
P



T hutt son uya oo al

relational. This would aid in the decomposition of queries,
allowing them all to be based on the relational model.

The second part of the thesis, Chapters &, 6, and 7, dealt
with the task of translating these relational queries against
the local logical model into the data manipulation language of b
the underlying database system. Constraints on the relational,
hierarchical, and network model that were originally proposed by

Jones (9) were expanded and formalized. Algorithms for the

translation of relational queries into hierarchical and network

DML were presented, and a sample translation was shown.
-*
The final part of the thesis, Chapters 8 and 9, dealt with b d

the specific implementation of such a query translation program.

- translation algorithm for translating relational queries into ff{f

‘.-. piata
' 4

the ML of the TOTAL database management system was designed, k. ‘

and a partial implementat:on of the design was written and

tested. Results of the translator were analyzed, and some

zdditional conclusions were reached.

Accomplishments

This thesis contained only a cursory view of the global
query management problem, but it did present a detailed analysis

of the very real problem of data partitioning and redundancy.

This problem will almost always need to be addressed when
creating a global distributed database over existing local

databases. Ten different classes of partitioning were

(. presented, and the ability to deal with these classes will

l.--h
e
et

.,

. v
101 N

2

-
B

'_-’.q’.u'.-’_-"-'.n' LGP L P
A a5 P S P e




-i'f"'(i'A a0 A f~'7_.r"..r‘.f“'1"~“vl. AL Rad 2 el Jaat mad el e AR ) Shanan g T T U N T ™y T W W v T v g

most likely need to be Incorporated in any future development of
a global gquery manager for the DDBMS.

The data partitioning problem is significant, but the real
accomplishments of this thesis were in the more localized
problem of query translation. Specific algorithms were
researched and advocated for the translation of relational
queries into IMS and CODASYL DML. The CODASYL algorithm was

then modified to enatle the translation of relational queries

Lzt ra. " T TAL translation software was partially
implemented on a VAX-1", using C as the programming language.
This translator is presently isolated from the remainder of the
ODBMS, which :s lccated on a set of LSI-11 microcomputers.

CwWeoUer, ther Trun@lLlir rosrsm nas Seen Jesigned Lo deal with

il
3

Local Zata Directory information, and as such, it should be
fairly easy to interface with the DLCBMS once the communications
link tetween the VAX ind the LEI-'1s has been implemented.
The accomplisnments of this thesis can be summarized into
six main areas as follows:
1. A model (Database Prism) for dealing with the
global query management probiem was advocated and
: discussed.
2. Ten specific classes of partitioned and redundant
information were defined, and processing sequences

: for proper data recomposition were outlined.

3. The schema constraints orginally proposed by Jones
were further defined and formalized.




Ny R T T RN T e V.':_ bl gk and 2o e 4 POy

4. Algorithms for the translation of local relational
queries into hierarchical and network DML were
presented.

5. A new algorithm for the translation of relational
queries into TOTAL DML was developed and presented.

6. A partial implementation of the TOTAL translator
was developed and tested on a VAX-11 minicomputer.

Recommendations For Further Research

Although there is a great deal of information contained in
this thesis, it still has barely scratched the surface of the
heterogeneous distributed data tase problem. This problenm is
one that will require the research and efforts of the academic
community, as most indications are that the commercial computer
industry is ignoring the problem in favor -f designing new,
homogenecus, distributed systems. Specific areas of continued

research ané fcllow-on =fforts to this thesis should include:

1. Develop the global query manager. This thesis has
implemented the portion of the DDBMS that deals
only with the translation of local relaticnal
queries. Capt Wedertz's thesis dealt only with the
Data Directories. There is a pressing need to
develop the system for the decomposition of global
queries, routing of the resulting local queries,
and the recomposition of the distributed results.
This obviously will require a major effort, most
likely requiring several different theses.

2. Develop the use of SQL as the global query language
instead of the present Roth language. SQL is
rapidly gaining support within the Dept. of Defense
to become the single approved query language for
DOD database systems. Since the query translator
is designed for Data Directory information, effort
for conversion to SQL should be minimal.

3. Finish the implementation of the TOTAL translation
software. Specifically, implement the portion of

103

Q'I.“
.1

i

.

K

el

._.. o
. ,
SN
L R MY

[{'

q
"
S

]

|

b-
Lo

o N R R

).}'.-..::'ﬂ :
s
L

s
X
L

" ‘_;:{

L e e



-

T

v v v v

(N
M )

Al S BN e Al S JCA e S v At g e i o o

the software that orders the dataset structures
into the optimal processing sequence. The ability
to deal with multiple boolean conditions is also an
area that should be expanded.

4. Investigate the possibility of developing
translators for other DBMSs. TOTAL is the only
non-relational system at AFIT, but research into an
IMS~type hierarchical language and the CODASYL
model are the next logical steps in query
translation.

5. Develop a relational front end to the query
translator on the VAX. This would allow the input
of relational queries from terminals on the VAX
itself, rather than input from the LSI-11s. This
woulld require development of a local query parser
and data directory.

Final Conclusions and Observations

Query translation in a heterogeneous distributed database
system is a very real problem for business, for government, and
sarwicularly for the Department of Defense. There is 2 pressing
need to deal with the requirement of accessing several different
databases, and designing‘global schemas over the present
infermation is one approach to dealing with this need. However,
the wWwork on this thesis has iIndicated that this solution Is not
without its limitations. For example, the average time for
translating and executing a query on the system was over L0
seconds, approximately half being the translation overhead and
nalf being the actual query execution time. Admittedly, the
software implemented is by no means optimal. However, this
observation must be balanced by the realization that the tasks
of parsing of the initial query, accessing the data directories,

transmitting the local queries and results, and recomposing the

104

Y

I‘ l:'-
-.. '.. D~
\d } -l

v
b

e AL
; ';..'. 5’ ‘I .l "

3
o

‘.
I- -
K

OIS




YW T

P ITR T

LTRSSV 9 S

PN

»

P e e 6 -‘.._-
IR NPV, WA

. e
\’sks'.;AL.L AN .us..;\;.h.Ax-agm-

local results into a global format are not part of those 4Q

seconds. Still, half of the time was spent in data retrieval by
TOTAL, which is going to occur no matter if the query starts out
in TOTAL DML or not.

However, even if the tran+lation of queries is not
currently a particularly responsive solution, it is the best
approach that is presently available, short of the actual
conversion of the underlying local databases into a homogeneous
system., It appears t¢ be the only way that the "ad hoc"
qualities of relational query languages can be preserved. The
last few months of effort that were put into this thesis have
shown that the translatic. of global queries into a different
underlying DBMS query language is indeed possible. However,
this =2ffort has just scratched the surface. Future AFIT
research into distributed databases, both heterogeneous and
homogeneous, will hopefully continue to expand the body of
knowledge concerning database systems. The task for the
immediate future then becomes to take the present idea of a
DDBMS a step further and produce a truly responsive system that
can handle the ever-growing supply of information that is needed

by all phases of modern society.

105

ISR SO SIS SN U TR .-.-.':" '.5'-"-4'\5 '.5 -"-'(\4'

G L)

LSLTSA N U TR A O CIA
RIS I S N R A
'h.‘-'p ‘\ ot

v

o8

'y’
xR
- AN A' 1]
AR

%
.

.
s
.

— e ¢ v
PN
e
»
’

“p-,

i

WY‘. ‘1 n
,v.’;fl
[ W MN

A
"0 L3
SR
* 'l' P

! 3

. AT e -



Appendix A: Glossary of Terms

Access Path - The sequence of physical connections present from SN

' one set of records to another in network databases. They 23;{.
v are used to provide the means of traversing through the q}$n~
: database. N
ey

AFIT - Air Force Institute of Technology

. —
\

AFITDB - The AFIT Data Base, a database containing information e
on the students, faculty, courses, and facilities at AFIT. RN

CNDD - Centralized Network Data Directory, that contains the L
' locations of all data items in the DDBMS.

CODASYL - Conference on Data Systems Languages, which produced a
"standara" for network data bases.

DBMS - Data Base Management System, a software module executing e
at host computers that organizes and retrieves data. o4

i an B

DDBMS - Distributed Data Base Management System, software
modules executing with network protccol modules to combine
databases together over network lines into a larger, single
database.

CBTC - Catz Base Task Group, a CODASYL working group that Aty
developed the "standard" network database proposal known as EuﬁlzL
the DBTG database. N

Decomposition - The process of taking a global query and Ve
l splitting it into the respective local queries.

CML - Data Manipulation/Management Language, language used by a
DBMS to retrieve, delete, and update information in the
database.

g

ECNCD - Extended Centralized Network Data Directory, a directory
at every site in the DDBMS that contains a list of
locations of data items that are updated from locations
received from the CNDD.

Foreign Key - An attribute in a tuple for which it is not a
primary key for that relation or record, but is for some
other record or relation.

L L B R I

Generation - The process of creating a DML program, based upon
certain inputs, that will duplicate the operation of the
DML of a DBMS that uses another data model.

[ Rt

106

»
-
.
l"
'

- v B A o 7 & .7
AR .. LIV SRS

[y
y

e W, Fo g, R P RS SRR N IS L N R I I UL A LIRS 9 3 8 S S S N F AU O RS o) SLITS PR R T .S e e Nt
"o ,‘}.-;:;.- o " \':‘. R R S CR N ‘-\"- '\I’. = .'. \".'-'\.'\ BSELIRS\Y ‘J“ * ".'.‘. ‘."-‘ RO ALY ¢'- “ﬁ-.\ Y ‘-. Y

&
o
’



Clobal Schema - The relational representation of the integration
of all of the Local Logical Schemas present in the DDBMS.

Heterogeneous DDBMS - A DDBMS composed of a collection of
databases that use different data models.

Homogeneous DDBMS - A DDBMS ccmposed of a collection of
databases that use the same data model.

IMS - Information Managment System, a hierarchical database
system developed by IBM.

Integration - The process of combining several local query
results into a single result to be presented to the user.

LNDD - Local Network Data Directory, a directory at every DDBMS
site that lists data items that are located on the host's
database.

Local Logical Schema - The relational representation of the
database present at the host system.

Partitioning - The division of common global data across several
local databases.

Query - A question posed to the database system concerning the
contents of that database.

Schema - A representation of the contents of a database.
Another name for the intension of a database.

Subschema ~ A partial view of a database's contents.

TCTAL - A DDBMS marketed by Cincom Systems, Inc., based upon the
network datz model.

Translation - The process of converting the DML of one data
nmodel into that of another.

VAX=11/780 - A minicomputer manufactured by Digital Equipment

Corporation.
107
A A R, R L S S A LD L RS, ~. R OASN N CHES G

RO PO

S SRV RS




Appenaix B: TCTAL Data Management Language

| (14:h.7 - 4.54)

Functional Description

The Data Management Language (DML) is a means of accessing and 5¥w:i

manipulating a defined data base. The language operates by invoking ERR

LSS R g
s
.
;I
‘s

TOTAL through the CALL facility of the host programming language.
= When such a CALL is encountered, control is passed to TOTAL, which Lo
analyzes a parameter list to determine the function (i.,e., "command")

Lo be performed and the dzta to be acted upon. Communication tetween

LR

the application program and TOTAL is effected through work areas ";‘F
referenced in the parameter list. When control returns to the

application program from TOTAL, a status code is also returned to

indicate the result of the operation. If the operation completed

b Sy

Jd

oy successfuily, a code of "*¥%¥*" is preturned. If the operation was v

._s '-‘.‘ “ .
ht . . s R
i unsuccessful, the data base is restored to its condition before the R

. N : "

operation if necessary, and an appropriate status code is returned to o

L 3
il 2%

LR 4

indicate the cause of failure.

v e s

.

- Command Parameters

f

4 As mentioned above, the parameter list in the CALL statement is A
the method of communication between TOTAL and the user's program. The

parameters themselves are the names of areas defined elsewhere in the

PR RN

user's program. As might be expected of any called sub-program, TOTAL 3
5 demands that the parameter list be in a certain order; the order shown ﬁ:::i
ﬂ: must be strictly followed. Of the fifteen different parameters, some 3'*:
g ﬂ??. are used in every CALL tc TOTAL, some depend on the particular type of :
. R0
2 108 if %
: A
. -
e N e e ._.-.:,-‘:-.':\_Fi::l;:‘::.':'.‘:\':‘;':-:':\-‘:-;"-:"\.'"'-‘:- N R G R AN R .;r-,'-_.'-,.\_\'-_.\_.'_-..;-\.'.-;:-;.-.:'.-.:._\'.




ny

data set being accessed (i.e., master vs variable), and a few are used
' only in certain specialized functions. The following nine parameters
fall into the first two categories, i.e., they are used in all but &
few special functions:

OPERATION, STATUS, DATA-SET, REFERENCE,

LINKAGE-PATH, CONTROL-KEY, DATA-LIST,

DATA-AREA, END.
In usage they are best thought of as being grouped into three

'standard' parameter list formats.

. : ; i MASTER i VARIABLE i
i i PARAMETER i SERIAL i  DATA=-SET \ DATA-SET 1
. H i FUNCTIONS | FUNCTIONS | FUNCTIONS |
) R —tem—mm——————— e ———— —t e —————————— ]
N i OPERATION g X ] X i X i
3 i STATUS ) X i X : X \

\  DATA-SET ) X i X | X i
' : X i i b ;
| | I i X '
i g g X i X i
i DATA-LIST i X | X | X d
i DATA-AREA ] X \ X i X d
i EZND. H X H X : X ]

In the descripticns and Jdefinitions which follow, certain
rotztion cenventicns are used to express the format of a statement or

paraneter. These are explained by the following rules.

j$¥]

1. Lower case letters are to be replaced by a symbol of the user's
choosing.

2. Upper case letters are to be inserted as they appear.

3. Square brackets ([]) enclose a choice of options of which none,
one, or several may be chosen.

4, Braces ({}) enclose a choice of options of which one and only one
must be chosen.

109

E R R PP TSI R PO N . . e
f 4t et et R O Tl I S S S T O R I
WA e ._‘-"_ - '.s.,' W Wt W S T e e e et e el e e . -

.'.- -.' ) et . - - Ol
w e W, R IR T s_'.'.‘.-?=‘;.4“.‘;{._';._‘.1.‘ AR L Y




v
L S

k1900
o’

'
e @
)

R . PR

A e

PR T N S )

The nine 'standard' parameters are described in detail below,

before the discussion of the individual commands. There they will be

shown where they occur, but described only to the extent that they

- vary from the discussion below. The only exception is the parameter

OPERATION which will be shown as the operation code of the function to

be performed.

NOTE: ALL PARAMETERS MUST BEGIN ON WORD BOUNDARIES 2

3.7 CFERATICH:

This parameter is the name of ("points to") a five character s
field defined by the user into which he must place the operation b
code of the function to be performed, e.g., READM - read a master L
data set randomly.

B.2 STATUS:
Tnis parzmeter 1s the name of {"points to") 3 Tour -character

Jleld defined bty the user into which TCTAL places & code "‘g
indicating the result of the operation, e.g., "*#¥#n. the
function has successfully completed; "FNTF": File Not Found and
the function has not been performed. THIS FIELD SHOULD BE
ZXAMINED AFTER EVEPY COMMAND. A complete list of status codes
and their meanings may be found in the Diagrostics Secticn.

r

LT,

vl .
Al SN .
et

¢

RO

D Y

T
« .
-

3.2 DATA-OET: -

Tal

This parameter is the name of ("points to") a four character ,fyﬁ

field defined by the user into which the user must place the name - o

of the data set to be operated upon as defined in a data base e

cereration. L

B.4 REFERENCE: N

This parameter is the name of ("points to") a four character E‘i

- field defined by the user which is used to maintain the Internal ~~
o Reference Point of the current variable record or a position in ;55
- either a master of variable using the RDNXT function. This field TN
; is used by both TOTAL and the user to communicate information agi
. about processing along a relationship within a variable data set fzg
- or along a specific role by inserting appropriate values into the E:‘

- {13' reference field and expecting certain values to be present under >
’, T. !q:\-:
. —
v 110 -
. AsT,
2 ‘(\'

X




Aty certain conditions. This may be best described by listing the
acceptable contents of the reference field, qualified by the role
of the participant.

- B.4.1 LKxx

This is the last four characters of a linkage path name
(mmmmLKxx) as defined in the Data Base Descriptor Module.
The user places this value into the reference field to
indicate that TOTAL is to retrieve a chain (depending on
the operation code) and that processing is expected to
continue along the specified linkage path. TOTAL places
this value into the reference field to indicate that the
first record of a chain has been deleted (this will be
explained further below). q

tw
=

.. rrrr

This is the Internal Reference Point of the record NEEEAR
currently being processed. The user places such a value
into the reference field to directly retrieve a specific
record whose Reference Point was previously known. The
user also may place into the reference field a value which
he previously saved upon interrupting continuous
processing along a chain or reset a serial retrieval to
some point in a data set. TOTAL places into the reference
field the Internal Reference Pcint of the record just
read, added, or written, or the "Back Pointer" from a
deleted record {(unless the deleted record was the first of
a chain).

B.4.3 END.

This value is placed into the reference field by TOTAL
when the user, while continuously processing along a chain
of records, attempts to go beyond the end of the chain if
reading forward or beyond the beginning if reading
reverse. If this value 1s placed into the reference field
by the user prior to execution of a TOTAL command, TOTAL
Wwill return a status code of "IRLC™ or "IVRP".

B.4.4 BEGN

This value placed into the reference field by the user and
used in conjunction with the *'RDNXT' function will cause

the 'RDNXT' to start serially reading a specific data set
at the absolute beginning of that file. Upon reaching the
end of a file, 'END.' is placed in the reference by TOTAL.

The following table summarizes the effects of placing one of
4’? these values into the reference field prior to execution of a

111

fata Yt L et e e e AT T T
N R R R S, M AT O




e L TR TS TN TR v wowwex e CRMNMA AL A A 200 8 W D e S0 S iacs boiihrt Rt and et Ash Jnd Al St e Ged Ak g

DASES
- TOTAL command. (This table is not intended to comprehensively R
. ' describe the tabulated functions; a detailed explanation may be -
w found in the list of commands.) N
e
Y
PROCESSING BASED ON THE CONTENT OF DN
. REFERENCE FIELD BEFORE EXECUTION NN
: CONTENT :
| | . .
e e e e e e e e e e e e e e e e e e e e e e e o e e e e e e e - e C e e en e o ae--- |
i FUNCTION | LKxx | rrrr i END. | . .
P, fmmm—m e r—ee————— P L SR S tm—m————— ! el
it READD | The operation is noti The record addressed! IVRP | .
\ y performed, and a } by reference is | i S
\ | status code of IVRP | retrieved. i H
i ! is returned. ; : d R N
| m——————— —tmmm—cm—cem e ———————— B T +emm—n——— g sl
! READR ! The record at the | The record logically: IVRP |
i i end of the chain is| before the one J i P
i ' | retrieved. | addressed by refer- | i T
- i H | ence is retrieved. | ' '
:: oo +—— e b—m—————— :
- i ] READV | The first record in | The record logically! IVRP |
¥ \ 1 | the chain is } after the one ' i o
’ : i retrieved, i addressed by refer- | i ;
; ; ! ence is retrieved., | i
The fcllowing table shows the content of reference after
execution of a TOTAL command.
A
PN
CCMTENT OF REFERENCE FIELD AFTER EXECUTION DO
Sy
e SN0
i FUNCTION | CONTENT H L
| cmmcmce e b mmm e e e e e s cesacsacem e e~ —————— i e
i READD \ ternal Reference Point of the record just read.| :':u‘_:-'.
|emcmcmccaaa- temmereesscccescreccccca——a————— cmmeem—m—————— ——— t-f.
i READR ! Internal Reference Point of the record just read | }.;-j:_-f
1 READV i or 'END,' if the Read attempted to go off the end. VY
- ' i (or beginning) of the chain. ! —
T e - 2)
B
AISERS
y we )
- -
(RN
‘o 112 '~:.'~:.‘
": :.:"-‘

-




B.5 LINKAGE-PATH:

- This parameter is the name of ("points to") an eight character
- field defined by the user into which he must place the eight
character name of the linkage path (mmmmLKxx) as defined in the
Data Base Descriptor Module. This is the vehicle through which
u the user dynamically names a specific relationship between a
chain of variable records and a master record by the record SE§
control key. The terms "primary linkage path™ and "controlling
linkage path" refer to the linkage path named by the linkage-path
parameter. The term "secondary linkage-path" refers to any othr
linkage path defined for this record in the Data Base Descriptor.

B.6 CONTROL-KEY:

This parameter is the name of ("points to") a field defined by

the user iInto which he places the record control key. TCTAL will
"randomize" on this data, whether to locate a master record or to
link from a master record to a variable record. If, during -
further processing of this command, it is found that the Control R

Key does not agree with the corresponding field .n the user's N
_ data area, a status code of UCTL will be returned. To avoid o
{‘ this, it is recommended that the user name the control key field e
2 in the data area rather than define a separate field. The length
: . of the Control Key is taken to be that defined in the Data Base o
L Descriptor Module. NS
S -
3.7 DATA-LIST: e
P
- This parameter is the name of ("points to") a list of data names. e
.. The list is a character string defined by the user which is Koo
= composed of data names declared in the data base generation. e
This list must conform to the following format: E
5: elemlelemZelem(n).....END. g;j
- The data names in the list may include: E}f
il.'J
d - data glements [
- data items v
- control keys o
- record codes R
N b
~ The list may not include: “;i
:i - the ROOT field (master records only) ﬁ:;
:j - linkpaths (variable records only) ﬁx‘
¢ WS
xf
} The data names in the list may appear in any order and the ‘}‘
» - data elements they name will be processed in the order
- k- listed. Thus the data list is ordered in the same manner as -
- 113 e

[}
"
y e
»

XX

AR AN

¢
Sy g~
P X

L N S IR S N S PR UL S D R S SR S S
-

K e e T e et e et
RIS AL

T R R e




B W W W W W, W

B RN R R N

3

the user's data area, not necessarily as the record on the {i;ﬂ

data set. o

i e |

Cnly the data elements named in the data list will be processed, :{f:
i.e., transferred to or from the user's Data Area. 1t is };}}
suggested that the order of element names coincide with the :\i{
generated order from DBGEN. NON
vl

B.8 DATA-AREA:

This parameter is the name of ("points to") an area of memory

defined by the user which is used as an input/output area for the

data elements named in the Data List. The structure and S
characteristics of this area must conform exactly to the data ool
elements as named in the Data List and in the same order.

3.3 IuD: v
oo
This parameter is the name of ("points to") a four character :f&
field defined by the user which must contain the value "END." or e
"RLSE". This parameter serves as a delimiter to the parameter boo
liSt. b .
Description of DML Commands B
iﬁ;' The following pages list in alphabetic order all of the Data ,ﬁli
Yanagement Language commands used by the translation program with a :f;f
.'_'_"_Q
detailed description of each. f?}:
;2;:

D.12 The Read Next Function

-

This function operates as a generalized serial retrieval methoa.

The retrieval may be directed to a specific point in the dataset,

namely, to the beginning or to a specific record location. Each
record retrieved is placed in the Data Area and retrieval may continue
by simply re-executing the command until the end of the dataset is
reached. Only data records are returned; blank and control records

are bypassed.

, Required Parameters

RDNXT, STATUS, DATASET, QUALIFIER, DATA-LIST, DATA-AREA, END,

114

- - B e - ™ - .l - "Ny " Tt Tt e T T et - s " 8" a"mw" b B - . Ad - - - - - -
oS e e . AP Ca o e e . . - .
- - . . S

A HANKS 8 S TN

-® . P -'. ~'. -'. . - - -
e, w e te e . LR P S
PFCOPGIR SOPC A ATPOIE RO LA AL AT 3P S RO




- —rov
TG T
XA NP

’

-~
.’
A

RDNXT: Mnemonic for Read Next

The user must place this mnemonic into the Operation Field.

QUALIFIER: Relative Record Number Field

This parameter is the name of a field defined by the user
whichis used to maintain the current position in the dataset
being processed. The content is always binary and four bytes in
size. The field may contain:

BEGN: If the user places this into the Qualifier Field, then RDNXT
retrieves the record physically first in the dataset and places
it into the Data Area according to the Data List. The Internal
Reference Point then replaces 'BEGN' and subsequent executions
wi1ll then contirue serizlly from that point.

rrrr: (Relative Record Number) The Internal Reference Point.
At the end-of-file, 'END.' is placed in the Qualifier Field and can

optionally be placed in the Status Field by applying the appropriate
patch.

D.14 The Read Master Function

This function operates by randomizing on the contents of the
Control Key Field to find the specific record and place it into the

Data Area according to the Data List.

Required Parameters

READM, STATUS, DATASET, CONTROL-KEY, DATA-LIST, DATA-AREA, END.

REALM: Read Master Function Mnemonic

The user must place this mnemonic into the Operation Field.

STATUS: Status Code
Significant codes that may be returned are:

BCTL: Contol Key is null.
MRNF: Master Record not found.

115

e v e

. .u"-
I'.
f

i
L.
[
ko
b

't
.'

. "..

P AR A
v
P N I A

5
Z

A}

Iy ®
»

77

P

’ I

s
v



The Read Variable Function

This function operates by logically following forward pointers
along a specified linkage path. To read an entir hain, processing

is initiated by placing LKxx into the Reference Field and issuing the

READV command. TOTAL uses the Control Key to access a master record
from which the pointer to the logical beginning of the chain is
obtained. This first record of the chain is then returned to the
user. Thereafter, processing continues by reissuing the READV |
comnmand: sirce the Reference Field contains an Internal Reference
Foint, the forward chain is followed and records retrieved until the
last record in the chain is reached. When this happens, TOTAL returns

'END.' in the Reference Field to indicate processing in complete.

(?“- Required Parameters
r J

READV, STATUS, DATASET, REFERENCE, LINKAGE-PATH, CCNTRCL-KEY,
DATA-LIST, DATA-AREA, END.

READV: Read Variable Function Mnemonic

The user must insert this mnemonic into the Operation Field.
STATUS: Status Code
Significant codes which may be returned are:

BCTL: HNull Control Field

MLNF: Linkage Path is invalid for that file

IVRC: The record code in the path has not been defined
MRNF: The related Master record cannot be found

ICHN: The linkage path chain is invalid

REFERENCE: Internal Reference Point

If the Reference Field contains LKxx, the first logical record
in the chain is retrieved. If the Reference Field contains an
Internal Reference Point, TOTAL uses it to point to the record
from which to obtain the forward pointer to the next record.
5%& When sucessfully completed, the Field contains the Internal

116




LAl e b A S s Sl A s s sl fadatatsataat A AN A%e A0 are ane B\ » Ty

-

AW Lt

. Reference Point of the record just read, or 'END.' when the
- logical end of the chain has been reached.

' l_'/.'

. v ey
SO,
1

D.18 The Sign-Off Function

" This function operates by physically closing any data sets which e

! remain open and closing the log file.

= Required Parameters

I SINOF, STATUS, SCHEMA, END. o

SINCF: Sign-Off Function Mnemonic

The user must place this mnemonic into the Operation Field.

AN U

STATUS: Status Code

Significant status codes which may be returned are:

. LGAD: The file has cexceeded its load limit.
) FULL: The file is full and therefore cannot be added to.

_ Programming Considerations

S 1. All subsequent commands except a 3ign-0On Wwill return 3 status code
& of "NOSO".

- 2. The SINOF is identical to the SINON except the function changes.
-
P_ 2. This should be the last statement, logically, in the user program
- prior to termination. Q:v
9 R
tl 4. For an explanation of 'SCHEMA' refer to the 'SINON' function. }'fi-
3. \~: Ly
k‘:-. [ -_—."
!! D.19 The Sign-On Function t'.'
N o
F: This function must be the first CALL to the TOTAL system =
X s 2F

~ N

- ~

presented by the user program. This function operat-s in different

- 4

117 AR

L U ST [ LI I -
R U SR W e e e
T T SR TP Tore s S X S s

oe s

ey Y R S T e R




Y O ¢ e e

=g

MR . NN

: %o

A I

RACAR AL A
SRV

ST IEIIN NN - r

ways according to the mode of TOTAL being used (Singletask or
Multitask). In a Singletask environment this function will initialize
certain areas in TOTAL and the DBMOD which are linked to the user
program, whereas in a Multitask environment this funection will inform
TOTAL that the application program will be perfomring communication
as well as opening any files specified that have not previously been
opened by another program.

This function allows the user to state the logging options

[$?

esired, what datasets this program is to process, the mode of access

for each dataset znd the overall access provided to the task.

Required Parameters

SINON, STATUS, SCHEMA, END.

[

Sign-2n Function Mnemonic

o

(7]

The user must place this mnemonic into the Operation Field.

STATUS: Status Code

Significant status codes which may be returned are:

EXS0: This sign-on was preceded by another sign-on without an
interim SINOF.

PUPO: This file has already been opened. Fatal Condition.

FAIL: A communication error has occurred.

DBNF: The database stated has not been loaded by TOTAL.

LOCK: The file has not been recovered or is in use by another
TOTAL program and cannot be used for update processing.

FULL: The file is full and therefore cannot be added to.

LOAD: The file has exceeded its load limit.

IBVF: The schema parameter is not terinated by "END." or, one or
more of the subparameters within the schema is not the
correct length. (e.g. one of the REALM entries is not 12
bytes in length.).

118

TS

. R N T S S L S R s T, o tan T R )
RO e Ve -_{4' n AT .w_-_‘..\$~f.-\‘_\ ‘.-‘\\_.‘..'..‘_.‘,."' .‘\?. oA

o ..

LI S S e - Jn i e A o a0 B Sl e e mteos b ge

g

e
r
g

Y
I

[y
.,
.




—

TRl e o e o Ws s » + 7 7

T, TAEESN - P o« 8

T T ———— L.

e SCHEMA: Explicit Options and Files Needed for this Program Run

This parameter "points to” a field defined by the user in the

following format and containing all below stated values:

1. Program Name - eight (8) character program name of
this program

2. Data Base
Descriptor Name - six (6) character DBMOD name

3. Access Mode - 8ix (6) character field containing the
general intention of this program

RDCHNLY
UPDATE
RECQYR

RECOVR: Entire set of functions available
including WRITD if Singletask TOTAL is
being used, or full variable serial
read capability -- see RDNXT.

\‘ RDONLY: Only read functions will be permitted.

UPDATE: Entire set of DML functions available
except WRITD.

4, Logging Options - two (2) character field identifying
logging options

NL: do not log

LG: log before images only

BI: 1log before images only

FL: log functions only

BF: log functions and before images

5. Realm - a group of twelve (12) character
entries for each dataset in the data
base required for this program and
terminated by 'END.' literal.

1. File name - four (4) character field
containing a name of a dataset in the DBMOD

2. File mode - four (4) character field
containing the mode of file sharing needed.
One entry for each data set required.




STy
- e L e

R SHRE: This file may be shared among
concurrent programs (Read Only).
PRIV: This file is exclusively assigned
to this program which may have
access to it during any progranm run.
(UPDATE)

3. File Status - four (4) character field used
for unique file status at OPEN time.

Programming Considerations

; 1. A Sign-On must be the first TOTAL command executed.

2. A second 3ign-On may be issued after a Sign-Off, e.g., to change
logging options, access mod=, stc.

(V]

. If any of the status fields used in the REALM entry are not
. nkk®n  then the general status will contain the proper error
’ indicator. Checking of each REALM status is not required.

4. If any logging option other than 'NL' is used, then the desired
DBMOD must have the appropriate log definitions as determined
within the DBDL.

LA
I =. Loggirg is applied on a Tata Base Descriptor rather than a “ s
tzsk-by-task basis, and is only provided with TOTAL-Multitask. oo
. €.
Ty
o
| ..
. .o
: (o
» ('_
e g_
g 5
: .
t‘ ?_
L.

rv

120

r

e e e s LR T T L R R SL U N S

. - et T e T
.-. .._\.*. O T R S L

.. . ... ...
A . R N e T T e M
R S S Sy R S T R Sy A G S O R Wt




Cafih MARAAEE . A Sadh gt S i Y S e Al 1_4_‘.m_ n ad e O T T T e MRS S Saws Sete hath nce S Snse Snh indiomes el and

Appendix C: Roth Relational System RETRIEVE Procedures

(15:122-124)

This information is included for purposes of increasing clarity

of the example translations in the body of the thesis. No provisions

currently exist for the actual translation of a Roth query into TOTAL

DML, as no parsers or LNDD software are available.

; Type "R"™ at the system level to enter RETRIEVE and the following *
orompt line is displayed: ff L
Retrieve ops: Gl(et), S(ave), E(dit), X(ecute), D(isplay), Q(uit) ;} -+
) N
A concept central to the operation of RETRIEVE is the command .
file. A command file contains one or more relational queries. The :?
i V- c¢mmand fille can be created, modified, stored on disk, retrieved fron -
disk, and executed. The commands which can reside in a command file }éﬂi:
:
: are described below. ii&}
.n. ‘.‘---
i r!-:
'L .

Z. oJoin of two relations: -
JOIN relationl, relation2 WHERE attr?! op attrZ2 GIVING relation3

wnhere attr! is in relationl and attr2 is in relationZ, op is =, RO

o
.

<, >. The JOIN operation is a subset of the cartesian product where

e At
L
‘v '

el
) .

the condition of membership is specified in the WHERE clause. All

-'.q w’

restrictions under PRODUCT apply.

Fd
L R
e

PR AR
'v;- ‘J‘-"'I‘.J"
o'

. F. Project a relation over a subset of its attributes:

121 NI

4 Q.. A-‘ '..' ‘. hl- --. s
NP A T T SR S T
[P JPRCIIRT IR, "I, " A SO e




B 3 R T ... T DL, e e e, e
~

- .

P A
S TRE S A 'y

Ana Sl Sl A5 Ul S Je s e |

e, c e, e et
. .,
PR L,

PROJECT relation! QVER atrri,attr2,...,attrN GIVING relationg

where attributes not specified in the OVER clause will be
eliminated and any duplicate tuples will be eliminated. Relation?
must have been attached and the READ password (if any) specified if

the user does not own the relation, and relation2 must be unique.

G. Select a subset of tuples from a relation:

~

SELECT ALL FRCM relationl WHERE condition SIVING relationZ

where concition is a boolean predicate on the attributes of
relation1 of the form al AND/OR a2 AND/OR a3 ..., where each aN is of
the form attribute op value, where op is =z, <, or >, The expression
may be fully parenthesized to indicate the proper precedence of the
operators, but ifnot, then AID nas precedence over OR. OJr- Zr more
blanks or commas must be between each part ofthe command except that
the left parenthesis may be flush against an item to its right, and
the right parenthesis may be flush against an item to its left.
Relation?! must have been attached and the READ password (if any)
specified if the user does not own the relation, and relation2 must be

unique.

122

- el e el L ey L e, my w, e we DR T I I S . - -
_-_-‘- . > T . .

- - & . * . st
L T R N
” ‘A._‘- -_‘L_..- M W W TR Y

e * “u . . ‘.
T Y




IS ) N SRR

.
'
.

s

Pl
.

D

Ty
[

Appendix D: -

Structure Charts for

BRARY  (Id

L

TRANS.C Translation Program o .ii:

123

- . . . K . Ca™y - - - - .t LIPS N P ) - L, = ~ - - L S ) ] - N, - -,
e e T A e e T R R R L T PSR < . PSP
S T T o A S A ) 5T N NN A TS VRN . Ot R




Structure Chart Index

Chart Module Number and Name
C1 1.0 main

1.1 buildstruct

Cz 1.2 set_access_order
; 1.2.1 det_access_type
1 C3 1.3 generate_code
i Cy 1.3.1 decl_buftypes .
;’ : 1.2.1.1 insert_node RS
[ '.I.7.2 print_buffs LR
cs 1.2.2 decl_procedures NG
; 1.3.2.17 readv RN
o 1.3.2.2 readm »,.».‘
- 1.3.2.3 rdnxt e
1.3.2.4 sonoroff RO
(o 1.3.3 totgen
\" -
- T To2.2.1 gen qualifier
1.3.2.1.1 gen compariscn
C6 1.3.2.2 outputall : ".Vﬁ'ijf:
(L
b
;:.,:J.:.'
o 3 (




_n.f -.. ......
S

-“ . le'atets

'-

:

3

b.

p.

b.

3 1D 22U, MOIVISOHNE) VIO 0/ :
” :MIGNNN a L © 137111 :300N X

£7 z7 1

2p0> a2pI0 ¢
—aynronol “SSo00p 08 L2y SPITG )

- ;

/ \\Oviaa\u S

TrISPways 0

125

ey

Uipus

31va 7MY TN pegr <4 ™97 193104 d
¥3aVIY| s 22083 1vg Fasgtyy wa 4920 :4OH LNV




L G ot am ed ol oull B

Ll

-y

—yve

Ty

ot t sl Caty e

IR 4]

:N3IBNNN

4RI SS 2008 TS T/

3N :3QON

7"z
-

sSPoorap

z/
wapan

85330 r Y%

. .

126
AR O ~ G

. et

3iva T:A3Y

},Qvuxﬂww\l N-khlw\\e #4.5.-5\-.\0&&&0”3“&

y¥3QVIN| S5 4247 :31va

AANCHEG] (ZY L) 4O INY

e L I  HOOLALADL R [P




R n& ”.-u .aiun;!\i—\‘ -I<i .-\ -\d "I

h e T SR e v - - _
Lty ..\\q‘-)m ﬁ. DR N A AN W\-\..-s.-ﬁ
..»l-.(.nﬂ-auf \..u\h.\r\.-\- A 3

.t U LA R
- [ TR At ........J.rﬁ L.;.....-..-\..N\.\.L...

['4

S

L

o8

--“td_

A

A
o
-y

I\

L s el B d B o A ao o
.

“ " ar

L

£ usamnn AR avuns| £7 300w .

-
o
A

Y

TTAWWTYvY
- oA
LI N

DRI

bl atala

P i

Y/ 1EY
Sauprarad ~afiyng
J\Ubn“\. \*\\UU\u l\nvh\k.. y

R AR A 1
™
)
~

4
2 \
Y.
w‘. Uu..,ﬁngv.__um
. , 1
:
3 (pro-y2s oy 3 fO o \ 8 g
. Oﬂ.\w‘_w|¥¥u<un -
3
b, R 4
3 £/ e
P, e
=243V um o .m
.,....u
A
Qu&&
aiva T:AJY| TR Frigla YRUAEY: 19310Yd 0
§ CECTED) B UL I G R T T e
¢ -n-

RSN B T
I Y
RSO

SN

WA

e T e
24

o
Y

Te
e
LS
*a¥a

AN
Y%

..-...

ta




o ﬂ -~ .x.w.,..-ﬁ“ N._...............a........

SARARRRL PR p,
PROSLSLN  Woy PN P Ty

i dbde st A S

b ‘HIBNNN WUm\N&GQ W\Qv\b 3n a \uwooz

LA Jia g Jaalled And aut

ORNRS

Lt el Al s A

TIEY 11§79

L g

sgprg=jwiad ron=yo25u)

..., . 0\. 218 %

r . J : -

b -

3 . 7ET

! sodhing

- o

g

3 .
ﬁ ‘4
5 . )
£ 31va 7 A3 S CE L e S ey 193108 d .
£ ¥3av3ay| sxi>7 47:31va Asvormy (ALY V) yoH ANY A




ACalcada]

Adnd dul fas anh And o

Al ik Aus o8 g

LAk Sl Jud

Al

L

. el A A

ToywyeT

LA At At A S St Sag Sl S Ad g A

A

il Tk Sl i Sl

At GBS AT At A Gt M) Al

.

[y

S ; /- zg)
-] o v s § X 2
hU HIGNNN - \.u ’ / \3 31l *3QON
A EY c > £/ TTET
O NS \x:\\»\ )\u.nuk
e
/ J“M..uﬁd(« “ Qﬁﬁlac\—uvima

\Vd.ugvd.\.wﬁf@/ -

O >wdw

B\\u\ il .n...\.\.

31v0 Z A3Y] R i e TR 1037084
WIAVIW| 7 2°C b1 31v0| ARTONW A3y HYD¥oNANY
.. ’
>

129

-

N

)

P SN

Ld

LS. PR A Y, oA

-




LR N i ;e a0 8 -
Seleletlt, NI
LA AR I I
n-\\l‘.
s

.
S .
T YO T A P & M
et e s e A

’ .
.

vab o £EY
% 318 300N

9D

‘NIANNN

TFEY reEy
.\VQ.\Q]%
- A Y

Y Andtiatad e

Pal ()
Q\ o™
& osqep) T -
EEy
~obyey
alva T Ay YOOI g o IO Y 9310y d
y3Iavay A 1208l 3 yyq] Ay ey 45 youinv
\
..._\ ‘ﬂ-.....
~

R B TR S .
A
sy

R :
AR

A s

LR
. . *
PR ARG )




i 4

. r
FERFRTRY RFAFa] W

LD APy \._ﬂy,%n~NmW /8L
‘YIBGNNN ’ Iy :3AON !

11E €/
to\«\\&.ﬂ b

M.,
e

131

TEEY 5
.\WQS\H}\ .“....
-l

31va T AJYPITITAL 7egL 02 AYIRY 13108
YIAVIY[SE 20 H3aval AT MDY D YoMLY

.......

AN N
L] A ]

-.--! 4-. -_-

..4-4..-..4..‘...._...- Lo . PREVEERERR ety
2 ittt i foa PPN I




F
ST -‘
.
.
P

.
wa

L]

Appendix E:

v -

Data Dictionary for

TRANS.C Structure Charts

BRKE
B ¢
|
. t

B
. .
1) l’ ’

PR

vy e v

= L

132

~
»

D WY o

S IR R I T O R IR AT I S
"_: __ A Ly n\- \-. ". Y,

XA} !-.;--.--~.n~

S




AR AR S o et hs g Aty e St A AL G g 2o A L g S Al An gt ke PSS SR St o e i

Data Dictionary Entry for Process

! JAMZ: main

- TYPE: PRGCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.0

DESCRIPTION: Main driver program for the translator
INPUT DATA: Database schema size

INPUT FLAGS: fopen (file open flag)

OUPUT DATA: None

QUTPUT FLAGS: None

GLOBAL DATA USED: Database schema file

GLOBAL DATA CHANGED: None

TR LT

I FILES READ: SCHEMA.DAT (database schema file)
- FILZS WRITTEN: VNone
HARCWARE RZAD: lione

RTMmmor

AARCWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: None

X PROCESSES CALLED: buildstruct
; set_access_order
- generate_code

: . VERSION: 1.0
. < DATEZ: 10 November 1985
- AUTHOR: Capt Xevin H. Mahoney

e 2" e s
". 'l 'l ‘g

E__
A

AW e

e

133

SR Ry T

AT AT et AT
POIIOTR

 hy A A

TN AT AN e Tt At e,
_--“- "-\‘- s ->.. » -\.. ‘.. .

P B - . p e " Ly . . . v, N, N
I N RS RIS S S AT SO TP . - )

PR S P S . -

o . o )t St M o v .y Ly A R ) ; ‘52




L)

ST iwem » v~

R, Wi, Sl Sl il o -

Cata Dictionary Entry for Process

NAME: buildstruct

TYPE: PROCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.1

DESCRIPTION: Reads in data directory information and builds an array
of structures for use by the remainder of the program.

INPUT DATA: Query file

INPUT FLAGS: fopen (file open flag)

OUPUT DATA: None

OQUTPUT FLAGS: None S

GLOBAL DATA USED: dset - array of dataset structures _—

maxdset - number of datasets in query :

GLOBAL DATA CHANGED: dJset

maxdset S

FILES READ: QUERY.DAT gats

FILES WRITTEN: None T

HARDWARE READ: None e
Y

HARDWARE WRITTEN: None -
ALIASES: None ‘

CALLING PROCESSES: main .

PROCESSES CALLED: None [;
VERSICN: 1.0 T
DATE: 10 November 1085 e
AUTHOR:  Capt Kevin H. Mahoney RPNy

134 -




T P o o P PP o T o=y . g > S—
. . A DABNASAAMAISA GA SN UL i A SR A g SN AAR ICA D" A AR* i RULATA A I A S & At & 20t A anie o L AV E A

f "Qif Data Dictionary Entry for Process

NAME: set _access_order
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.2
DESCRIPTION: Orders the array of dataset structures into the most
I efficient processing sequence.

INPUT DATA: None

INPUT FLAGS: None

OUPUT DATA: None

OUTPUT FLAGS: None
; GLOBAL DATA USED: dset array
I GLOBAL DATA CHANGED: dset array
) FTLES READ: None
FILES WRITTEN: MNone ]
HARDWARE READ: None Y
HARDWARE WRITTEN: None aSe

L

- ALIASES: None e
i CALLING PROCESSES: main .
- PROCESSES CALLED: det_access_type el
: »n~:i
' VERSION: 1.0

;o\ DATE: 10 November 1985
_l e AUTHCR:  Capt Kevin H. Mahoney
»

W
4 F.A.A~
.; s
‘ .
v -

135




Data Dictionary Entry for Process

l
l

NAME: det_access_type
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.2.1 L
DESCRIPTION: Determines the access type characteristics for each Ty
' dataset in the array and assigns each of them a code specifying
: the particular access type. The types are (1) READM-file, (2)
READM-literal, (3) RDNXT, and (4) READV.
INPUT DATA: dset array
INPUT FLAGS: None . .
OUPUT DATA: dset array ko
' OUTPUT FLAGS: None
‘ GLOBAL DATA USED: dset array
GLOBAL DATA CHANGED: dset array
FILES READ: \Mone
FILES WRITTEZN: bNone
HARCWARE READ: None e
HARDWARE WRITTEN: None N
ALIASES: None AR
CALLING PROCESSES: set_access_order o
PROCESSES CALLED: None

FRNY

l ‘o JERIZCN: 1.0
DATZ: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

. .-
)
:
o AN
A yeiar
i |
I. k }
K YR
i
<. l"ﬂt“\
ol . >
Pl ~\\' -
- Wi
..O " »
! P 3 ~
e
136 RO
- * . o, .l
.. <.‘-..\
o 4
‘.'. . -“.
RSN
_g:.\:’.\
s Al e R T U °, - . R S R S P SO S ST S P P Y ®
Yo 3 3\ 2 5:4}4‘5‘.'-1 v "“:".\ e e e L, N - o “-‘ = .-A * A L e o ..\ AN "\.." N



S A S Sl Al o ) Al A

Data Dictionary Entry for Process

NAME: generate_code

TYPE: PRCCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3

DESCRIPTION: Driver for code generation portion of translator. It
generates the beginning and ending sections of the translated
program and calls subprocedures to do the rest.

INPUT DATA: dset array

INPUT FLAGS: None

OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: fopen (output file open flag)

GLOBAL DATA USED: dset array

maxdset
SLCZAL ZATA CHANGED: lone
*ZLZS REaD: None
PILES WRITTEN: TCODE.PAS (the generated %“ranslated program)

HARDWARE READ: None

HARDWAFE WRITTEN: None

ALIASES: None

CALLING PROCESSES: main

PROCESSES CALLED: decl buftypes
decl procedures
totgen

SIcN: 1.0
E: 10 November 1985
HOR: Capt Kevin H. Mahoney




Data Dictionary Entry for Process

NAME: decl buftypes R
. TYPE: PROCESS e
s PROJECT: Relational to TOTAL DML Translation Program (Thesis) ol
R NUMBER: 1.3.1 -
DESCRIPTION: Generates buffer type declarations. Builds a linked MG
list to eliminate duplicate buffer sizes before writing them. . .
INPUT DATA: dset array e
INPUT FLAGS: None
QUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None e
GLOBAL DATA USED: dset DR
maxdset :
GLCBAL DATA CEANGED: \lNone K
TILIZ FEZAZ:  lone .
FILES WRITTEN: TCODE.PAS A
- JARDWARE READ:  lNone o
g - HARDWAFE WRITTEN: None - =
" ALIASES: None K- s
- CALLING PROCESSES: generate_code T
g PROCESSES CALLED: print buffs
insert node
o =
UIRZT N 1.0 .
ZaTE: '0 November 1985
AUTHOR: Capt Kevin H. Mahoney
.-
X L
£
hy N
L O,
N
S Ei~
.- ARAN
- _".-,'-
138 S
\'&'«
E

A
» ’n
>

”,

¢
oY
LN




EASCAE S Al e Aedh Rl gl Ao bt Mt S At Rl s el e oo g
R I N N Y

Data Dictionary Entry for Process

1. S
L
R AR,
L. - -'- *
e, S
L . ERAAN
LNIATATY N SR AN .

NAME: 1insert node Rt

TYPE: PROCESS "L

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.1.1

DESCRIPTION: 1Inserts new buffer sizes into the linked list,
eliminating duplicate size values.

INPUT DATA: buffer size (integer)

INPUT FLAGS: None

OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: None

GLOBAL DATA USED: None

GLOBAL DATA CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE READ: None

HARCWARE WRITTEN: lone

ALIASES: None

CALLING PROCESSES: decl buftypes

PROCESSES CALLED: None

é

et E '.._".""
L._A__ NS

1
¢

IR |

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt revin H. Mzhoney

gt
| AR

4

D el AR &

."'_.‘,. ’

v
(8]
AP

o 3

.y, e -
[l T e

Y
S 2.

"»

E

‘,
/4




Sl Ml Il A B el dan A Yl Al ate SN S48 ous WA RS- AR Sartas vy i Sage S ) A3 v T BN b aie e fe e et el ol
v J AR A0l i Nl o e Ll il 3 b
. . . AR LT T TR - AR h A AN i S A [ R Y

Data Dictionary Entry for Process

NAME: print_buffs
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.1.2
DESCRIPTION: OQutputs the buffer declarations by following the linked
list of buffer sizes. . )
INPUT DATA: 1linked list of integers S
INPUT FLAGS: None RIS
OUPUT DATA: Pascal code statements (text) e
OUTPUT FLAGS: None AR
GLOBAL DATA USED: None L
GLOBAL DATA CHANGED: None .4
FILES READ: None .
FILZZ WRITTEI: TCCDE.PAS

HARDWARE READ: None R
HARCWARE WRITTEN: None R
ALIASES: None sl

CALLING PROCESSES: decl buftypes P4
PROCESSES CALLED: None AR

- VERSION: 1.0
\' DATE: 10 November 1085
AUTHCER: Capt ¥evin H. Mahoney

., .. ',
.

AT i U e et
-'-"‘{ ;"'-\ e

-—e
2yt
LA
2'a sl

I

‘y
s
2 e

"._‘: 'i'.'; )

()
v

.o
¢ 0y

0’
Pl

SNy

PR R e e o S S, -

e

-~ =
»

A

s
Id

o r,,(.,.;
- cc

140

o e e e A e

T L A A R AN N AR
A e mdienia L Btk e el e L




o e A g s o e T

- N . - RN . - N h co . * N - A - L Ll Dty - - - - N - ™ e T WY ,w

r oo
. .
. "o

Data Dictionary Entry for Process

NAME: decl procedures
TYPE: PROCESS
- PROJECT: Relational to TOTAL DML Translation Program (Thesis)
™ NUMBER: 1.3.2
- DESCRIPTION: Generates the subprocedure declarations within the
generated program for the different calls to TOTAL. 4
INPUT DATA: dset array STl
schema length RRAS
INPUT FLAGS: None
QUPUT DATA: Pascal code statements (text) s
QUTPUT FLAGS: None ;;L;
GLOBAL DATA USED: dset
maxdset
GLCBAL DATA CHANGED: llonre
FILES READ: JHone
- FILES WRITTEN: TCODE.PAS
- HARDWARE READ: None
HARDWARE WRITTEN: None k‘ )
ALIASES: None o
CALLING PROCESSES: generate_code S
) PROCESSES CALLED: readv T
- . readm N
“.‘ rdnxt ) :.;‘_.
scnoroff

- VERSION: 1.0 o
DA DATE: 10 November 1985 e
AUTHOR: Capt Kevin H. Mahoney ;ﬁu

-vﬂvicr'
R |
PR
RATARITA

- -
1
R

i

- o v
L
.,
’

o
s
v "

O
| SORERERE AL
Tt

.

.

PRI

1
," “‘

.

¥

Y2 lel ]

St e

141

SRR

*

Wt e p Ay

oot

v(".'v -
o



".,"l.'l

i

+ LN

8 e

o,

U I R R

Sl Safia i

”
L 2

Data Dictionary Entry for Process

NAME: readv

TYPE: PROCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.2.1

DESCRIPTION: Generates code for READ VARIABLE subprocedures.

INPUT DATA: dataset number, name, element list, buffer area size,
linkpath name

INPUT FLAGS: None

OUPUT DATA: Pascal code statements (text)

OQUTPUT FLAGS: None

GLOBAL DATA USED: None

GLOBAL DATA CHANGED: None

FILEZS READ: \None

FILES WRITTEN: TCODE.PAS

JdARDWARE READ: DNone

HARCWARE WRITTEN: None

ALIASES: \None

CALLING PROCESSES: decl procedures

PROCESSES CALLED: None

JERSION: 1.0
DATE: 10 November 1985
ACTECR: Capt Xevin H. “Mahoney

142

B R S o L
DR




L pTr ™ AT
.\iﬁi\‘.ﬂu‘

Data Dictionary Entry for Process

NAME: readm
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.2.2
DESCRIPTION: Generates code for READ MASTER subprocedures.
INPUT DATA: dataset number, name, element list, buffer area size,
key attribute size
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
QUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
FILES READ: ©None
ZLZZ WRITTEN: TCODE.PAS
HARCWARE READ: None
HARDWARE WRITTEN: None
ALTASES: None
CALLING PROCESSES: decl procedures
PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985
AUTHCR: Capt Kevin H. Mahoney

143

et e et e e AT e e e T e e T T e T e e
-~ -".. .--.. a®nty .'-. A e e .--‘- '.:'-“_‘f"

T T I R T P S G ) K R L S
ALY \"-?.v'.-'. SR AN AN




Tt w sy

TR "1'?'!""FNF!-!-!-1H1—¥_‘17
- . e LA SNy e

Data Dictionary Entry for Process

NAME: rdnxt

TYPE: PROCESS

PROJECT: Relaticnal to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.2.3

DESCRIPTION: Generates code for READ NEXT MASTER subprocedures.
INPUT DATA: dataset number, name, element list, buffer area size
INPUT FLAGS: None

QUYPUT DATA: Pascal code statements (text)

QUTPUT FLAGS: None

GLOBAL DATA USED: None

GLOBAL DATA CHANGED: None

FILES READ: None

FILES WRITTEN: TCODE.PAS

AARDWARE READ: ‘lione

AARCWARE WRITTEN: None

ALIASES: None

CALLING PROCESSES: decl procedures

PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

144

-~
.,!.4‘.[1...:;

W

LRGBS

e

L ST

.
!-.
' a

W
W gt R - .‘\. .
= ‘.‘A.AH.- *. CE NN

Rt

o
n!
v
Y.
g
N
(.
¢
|l
.I
]
[
i



P NP ot e o

’.'." .
t;;u R
el o

s
T
R
AN . . e
e atal

Ty yw
.'a'l‘-‘
v

{f{' Data Dictionary Entry for Process

. NAME: sonoroff

- TYPE: PROCES

- PROJECT: Relational to TOTAL DML Translation Program (Thesis)
L NUMBER: 1.3.2.4

) DESCRIPTION: Generates code for the SINON/SINOF subprocedure.

INPUT DATA: schema size, number of subschemas, schema file
INPUT FLAGS: None

OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: None

X GLOBAL DATA USED: None ﬁ5¥3¥
GLOBAL DATA CHANGED: None Ll
FILES READ: "database-name"SC.DAT (schema file) , 4

FILES WRITTEN: TCODE.PAS }f;{j
HARDWARE RELD: XNone Tl
AARDWARE WRITTEN: lione

» ALIASES: None

N C:LLING PROCESSES: decl _procedures

' PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985

\' AUTHOR: Capt Kevin H. Mahoney
s
.
) BN
g 145

T T et Tt et T Tt e AT e T e, LI L ) IR S S R U IS T L0 P I IS Yt SIS N T el ek YL YL AR N
AN e e ., A X .. R \ 15 SNES 5 C TR EG R Ry, SEORT
X S WA h .



e Ml A
® 2 e T,

-~

-" ;-

el ]
.
St

Data Dictionary Entry for Process

NAME: totgen
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.3
DESCRIPTION: Recursive module that generates the main body of
translated code that determines the processing order of the
query.

INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pas2z2l code statements (text)
CUTPUT FLAGS: None
GLOBAL DATA USED: dset

maxdset
GLCBAL DATA CHANGED: ‘Mcene
ZLZS READ: \lNone
FILES WRITTEN: TCODE.PAS
HARCWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: generate_code

totgen

PROCESSES CALLED: totgen

gen qualifier

outputall

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

146
B A L i T T N L T S T T O T R O A S L T L S -
- .'\)" :‘:‘.:'_.: PSP .\:'\ \-.. ..'-.\ S DA _'. \-‘. -\\.‘ & J- -h .; e .n > ERERENTNE) » *\}\‘. o X




et ]

-~
al

o BRI S S AN

-
-«

N e

Data Dictionary Entry for Process

NAME: gen qualifier

TYPE: PROCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.3.1

DESCRIPTION: Generates the proper comparison code for single
qualifiers or compound qualifiers seperated by a single AND or OR
boolean conjunction/disjunction.

INPUT DATA: dset array

INPUT FLAGS: None

QUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: None

GLOBAL DATA USED: dset array

GLCBAL DATA CHANGED: None

FILZS READ: lone

FILES WRITTEN: TCODE.PAS

HARCWARE READ: ‘lone

HARDWARE WRITTEN: None

ALTASES: None

CALLING PROCESSES: totgen

PROCESSES CALLED: gen_ comparison

VERSION: 1.0
DATC: 10 November 7985
AUTHCR: Capt Kevin H. Mahoney

147




:jif Data Dictionary Entry for Process

NAME: gen comparison

TYPE: PROCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.3.1.1

DESCRIPTION: Determines if comparison is on another dataset field or
on a given literal and generates the appropriate code.

INPUT DATA: comparison number, dset array

INPUT FLAGS: None

OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: None

GLOBAL DATA USED: dset array

CEE—— T o = v e

' GLOBAL DATA CHANGED: None
FILES READ: UNone
FILZS WRITTEN: TCODE.PAS Lo

JARCWARE READ: lione
HARDWARE WRITTEN: None

: ALIASES: None RTINS
A CALLING PROCESSES: gen_qualifier v 8
; PROCESSES CALLED: None RO
oL VERSION: 1.0 LA
i t 5 DATE: 10 November 1985 MRS
| * AUTHCR:  Capt Xevin H. Mahoney

- ’
.
) -
Ve
= AN
So
f\faf
A3
ASCS
- *
u'\.‘" N
- ¢\'\'
E >
. T DAL
RS Loe e
- AN,
- ..- bt}
- 't
= 148 r Ny
" "
. ST
‘ p
" O YL S N AP AP S A - A IR TSI AIEE . LTI N I . e Tt -’ el RIS
e e e e P T e Y PTATNRS: R e U S L A S S LI RN



S

L

Data Dictionary Entry for Process

NAME: outputall
TYPE: PROCESS

Ty~

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.3.2

DESCRIPTION: Generates the code that will output the query results

when the translated program is executed.
INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: dset
maxdset
GLOBAL DATA CHANGED: None
FILZEC REAT: lone
FILZS WRITTEWN: TCCDE.PAS
HARLCWARE READ: None
JARDWARE WRITTEN: None
ALIASES: None
CALLING PRCCESSES: totgen
PROCESSES CALLED: None

VERSICN: 1.0
DATE: 10 lovember 1985
AUTHCR: Capt rRevin H. Mahoney

149

N R TR ——r




i cAWNMAEFRNE T B

2
»
.

g

- "p..

LN
'

A

Y
he

.
(Tad

N o
4.
Ll
.

NAME:
TYPE:
PROJECT:

Pata Dictionary Entry for Parameter

PARAMETER
Relational to TOTAL DML Translation Program (Thesis)

DESCRIPTION:
DATA TYPE:
MIN VALUE:
MAX VALUE:

RANGE:
VALUES:

Name of the database being queried
six (6) character string

STORAGE TYPE:

PART OF:

process 1/0

COMPOSITION:

ALIASES:
fol akalaka
s YTy &Y V]

builldstruct

"o ~
2aS3eDd TC:

VERSION:
DATE:
AUTHOR:

10 November 1G85
Capt Kevin H. Mahoney

[}
¢
Q

-

PR e v e e s
o' " FRACDARAR
*, e e e 0

‘. . ]
.t v te
Tt VoLt

’

.
.

oy




S Data Dictionary Entry for Parameter

-3 NAME: schemasize

TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
o DESCRIPTION: Size of the database schema in characters

o DATA TYPE: Integer

MIN VALUE: 22

MAX VALUE: None

) RANGE:

o VALUES: 22 plus multiples of 12 (12, 24, 36, etc.)

. STORAGE TYPE: file

= PART CF:

i COMPOSITION:

a ALZASES: schema _size

i ?ASZED FROM: main

L PASSED TO: generate_code

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney




Data Dictionary Entry for Alias

NAME: schema_size
TYPE: ALIAS
DD TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
SYNONYM: schemasize
PASSED FROM: generate_code
PASSED TO: decl buftypes
decl procedures
COMMENTS: None

Pata Dictionary Zntry for Alies

NAME: schema_size

TYPE: ALIAS

DD TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
SYNONYM: schemasize

PASSED FROM: decl procedures

PASSED TO: sonoroff

CCHMENTS:  lione

152

T

A i i ue e e

R

vyt s




- P il - -
W «
0 -
[ o
'
L]
) >

"e

o Data Dictionary Entry for Parameter T

NAME: 1
- TYPE: PARAMETER
PROJECT: ©Relational to TOTAL DML Translation Program {Thesis)
- DESCRIPTION: Dataset number in the structure array (array subscript)
i DATA TYPE: integer
MIN VALUE: 0
MAX VALUE: 7
RANGE:
VALUES:
. STORAGE TYPE: Process I/0
@ PART OF: - -
l COMPOSITION:
ALIASES: i el
PACCED FRCM: generate code i} B
PASBED TC: totgen : .

VERSION: 1.0 o]
R DATE: 10 November 1985 ‘o

i AUTHOR: Capt Kevin H. Mahoney =

5 \-

153

R
BAGIA,!
Lt

' P SET S PN L R e e e g - W FUNT S P . ~ AR T PO A oY
& -_,.-1. I DA AR -‘ _._-‘.. RN _‘..._.. RS REARS "_»\ ‘_._ ERAR N ".». ERA) .\.“-“.._-'.:1. ...".\-... - . s '.r.‘,- ')“.r,’.’- AT -._‘f._'- S ..‘.." et e



Pata Dictionary Entry for alias

NAME: i

TYPE: ALIAS

DD TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
SYNONYM: i

PASSED FROM: totgen

PASSED TO: gen qualifier

COMMENTS: None

Data Dictionary Entry for Alias

MAME:

TYPE: ALIAS

DD TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
SYNONYM: i

PASSED FROM: gen qualifier

PASSED TO: gen_comparison

CCMMENTS: None

TR

e
e
t-.‘

o B

l" 'l
Y oy
¢

LA

&AL
. R oY
. g,
LY PP i‘l"}"}"_"’,:’ Y

4

3
I 2



INC 02 S AR PN et e Rl it Batt A S it it s it e dite i S s ittt Subs s gt St i At Jup S e 0n- Sap S SuC e St i el e SRt e L ane pe R
Data Dictionary Entry for Parameter T

RS

RN

i

NAME: head SRR

- TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

DESCRIPTION: Pointer to the head of the linked list used to eliminate
duplicate buffer sizes. : :

DATA TYPE: Pointer - d

MIN VALUE: N
- MAX VALUE: RN
RANGE: Sel
VALUES: L
STORAGE TYPE: Process I/0 el
PART OF: oo
COMPCOSITION: g}<'

ALIAZES: head

PASSED FRCM: decl buftypes

PASCED TO: insert node
print_buffs

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney




B A DA A d A v Al YNl O )

Data Dictionary Entry for Parameter

NAME: size

TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

DESCRIPTION: Size (in characters) of the particular field or literal
that requires a buffer type declaration.

DATA TYPE: integer

MIN VALUE: 1

MAX VALUE: None

RANGE: Positive integers

VALUES:

STORAGE TYPE: Process I/0

PART OF:

COMPOSITION:

ALIAZES:

PASSED FROM: decl_buftypes

PASSED TO: insert node

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

156




'-*-'-1.—'.‘.‘A*‘ﬂ*_u_—&_“f An At T e eay—m L i A s Sl Jend degh 2l s s e 2 MAML A Sud ad Gud ol And k]
A AREAL R AN DA A AL A S Ml A A St St S A d Sad el S A A

Data Dictionary Entry for Parameter

NAME: j oy
TYPE: PARAMETER o
PROJECT: Relational to TOTAL DML Translation Program (Thesis) e
DESCRIPTION: Dataset number of the dataset being processed (dset =T

array subscript). HROA

DATA TYPE: integer
MIN VALUE: 0

MAX VALUE: 7 -
RANGE: ,
VALUES: .
STORAGE TYPE: Process 1/0 el
PART OF: -
COMPOSITION: v
ALIASES: .
PASSED FRCM: decl_procedures R
PASSED TO: readv cel
readm AN
rdnxt b

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

157 "C-::'J




Data Dictionary Entry for Parameter

NAME: name

TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Name of the dataset being processed.

DATA TYPE: Four (4) character string S
MIN VALUE: A
MAX VALUE: }fr::
RANGE: i
VALUES:

STORAGE TYPE: global _
PART OF: dset structure array .
COMPOSITION: o
ALIASES: o
PASSED FROM: decl_procedurss
PASSED TO: reacv

readnm 1: 

rdnxt et

[

VERSION: 1.0 T
DATE: 10 November 1985 A,
AUTHOR: Capt Kevin H. Mahoney I3j3j
R

i

158

- . . PR . .._.... R - —.-.-.'.~--
.. . -




r
.
é {:%2 Data Dictionary Zntry for Parameter
: :
. NAME: elementlist
= TYPE: PARAMETER
- PROJECT: Relational to TOTAL DML Translation Program (Thesis)
e DESCRIPTION: This is a character string which is the concatenation of
o all the field names for the dataset being processed.
DATA TYPE: Character string terminated by "END."
MIN VALUE:
MAX VALUE:
RANGE:
VALUES: String must be multiple of eight (eight characters per field
name), plus the four characters for the "END."
STORAGE TYPE: Process I1/0
PART OF: Individual field names are part of dset array.
COMPOSITION: Field names and "ElD."
ALZASES:
PASSED FROM: decl procedures
PASSED TO: readv
% readm
L~ rdnxt
VERSION: 1.0
- . DATE: 10 November 1985
(:7- AUTHCR: Capt Kevin H. Mahoney
>
" o
LY
LS
-
SRS
R
L.t
N OO
- I.-‘l-.‘.\-’
. O
..’\~ 0‘:'::5::..
: S
- 159 RN
: R
X !' ESR
— \' ~.
3 \_-
. e e T e e T g N T e T BT T e e e e e T T P N T s e e T L S T R .'-_'.\'_\::::‘-;'-




e et AR RS A A e A e e M AN G A A A A0 0o 20 AeuiaEC A AL SA DA S Se A0 b bt e atad AL ad ot et s s SRR

21

& '

{f;'.*_

Data Dictionary Entry for Parameter

NAME: areasize
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Size required for the user area buffer where TOTAL
places the retrieved data during a query. It is the sum of the
sizes of all fields retrieved by a single call to TOTAL.
DATA TYPE: integer
MIN VALUE:
MAX VALUE:
RANGE: Positive integers
VALUES:
STCRAGE TYPE: Process I/0
PART OF:
CCMPOSITICN:
ALIASES:
PASSED FRCM: decl procedures
PASSED TO: readv
readm
rdnxt

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney




.-

vy
wfaa

Xy

g4

] - . v e .
. . et
. f oo L.

-
-
v
.

L

Data Dictionary Entry for Parameter

NAME: keysize
TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Size of the Jataset key that is needed for a READM or a

READV call to TOTAL.
DATA TYPE: integer
MIN VALUE: 1
MAX VALUE:
RANGE: Positive integers
VALUES:
STORAGE TYPE: global
PART OF: dset array structure
CCMPOSITION:
ALIASED:
PASSED FRCM: decl procedures
PASSED TO: readv

readm

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney




Cata Dictionary Entry for Parameter

NAME: 1lkpath

TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

DESCRIPTION: The linkpath identifier for the particular dataset that
requires a READV call to TOTAL.

DATA TYPE: Eight (8) character string

MIN VALUE:

MAX VALUE:

RANGE:

VALUES: The first four characters are the field name, the last four
are "LKXX".

STORAGE TYPE: global

PART OF: dset array structure

CCHMPCSITICN:

ALIASES:

PASSED FRCM: decl -rocedures

PASSED TO: readv

VERSION: 1.0

DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

162




A e S0 Jan Mee Saasl de e e T Shie e

Data Dictionary Entry for Parameter

NAME: cnum

TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: The number of the qualifier being examined (1 or 2).
DATA TYPE: integer

MIN VALUE: 1

MAX VALUE: 2

RANGE:

VALUES:

STORAGE TYPE: global

PART OF: dset array structure (number of comparisions subscript)
COMPOSITION:

ALTASES:

FASSED FRCM: gen qualifier

PASSED 70: gen_comparison

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney




FAaatt AN gl oA ath st o r.".'~'~'-"‘-iv-\'ﬂ

Appendix F: Configuration Management

for the TRANS.C Program

Required Files

There are three files in directory DUA3:[AFITDB.MAHONEY] on the
Information Sciences Laboratory VAX-11/780 that are required for the

translation process. These files are:

1. TRANS.C - source code of the translation program.

n

AFITDBSC.DAT - the irput schema information file for the AFIT
database., Additional databases will require their own schema
files. Filenames are required to be the six (6) character
database name (as defined in TOTAL) concatenated with "SC.DAT".

3. QUERY.DAT - the query input file. The format of the file is as
shown on Page 87 of this thesis. Currently the user must create
the file, but it will eventually be generated by the LNDD in
response to a local query or subquery.

Instructions for Translating a Query

There are three steps n executing a translated query, execution
of the translator, compilation and linking of the source code, and

=xecution of the generzted program. Cpecific details are as follows:

Translator Execution. After the required QUERY.DAT file has been

created, enter "RUN TRANS"™ and the source code for the TOTAL query

will be created in the file named TCODE.PAS.

Compilation. Enter "PASCAL TCODE" and the generated source code

will be compiled.

f.,

f s

,_
e

164

LY :;
Y 4,
7




v v

i &

¢
LA

RAGRA B B 2d Bt Ahc B b Ak Ak i) et St aeie g

Linking to TOTAL. The next task is to link the query to the

TOTAL DBMS, For linking of a query against the AFIT database, enter

the following statement:

LINK TCODE,DUAO:[AFITDB.TOTALINATDATBAS,NATBUF

This link statement is broken down as follows:

1. TCODE - the object code of the generated query program.
2. DUAQ: - the prefix denoting the mass storage unit (disk) of the
TAX that the TCTAL 2BMS is resident on. If TCTAL is relocated on

the system, this statemant will be different.

3. (AFITDB.TOTAL] -~ directory and filename for the AFIT database.
This will be different for other databases under TOTAL.

4, NATDATBAS,NATBUF - qualifier for the DATBAS FORTRAN interface
program to TOTAL. This is unchanged for different databases.

Zxecution of Querv. For actual sxecution of the query, =2nter

"RUN TCODE" and the TOTAL database will be queried and the QRESULT.DAT
file will be created. This query result file may then be displayed,

printed or transferred back to the requesting node.

Changes to TRANS.C

If any changes are made to the source code of TRANS.C, the
program must be recompiled and relinked. The steps are:
1. Enter "DEFINE LNK$LIBRARY SYS$LIBRARY:CRTLIB.OLB"™ to set the
system C library as the link library for the program.
2. Enter "CC TRANS" to compile the source code.

3. Enter "LINK TRANS". The program is now ready for execution.

165

Y™

- i e

ORI




T

-

D iace

Anc S i e i 2 4

M e o ks o

Appendix G

TRANS.C Program Listings

Ot e

o .
AP RN

’, ,\. ’y ....-.J\.--._-..\.. M

n

PR
«
AL R )

Al

166

PR X
PRI hTe




v

/******************************************************************

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
%
%
*
%
%
»

(2222222222 22222222222 222 2R 2 X222 R 2 R R 2R 22220 RIS S

DATE: 10/18/85
1.1

VERSION:

TITLE: Relational to TOTAL Query Translator

FILENAME:

COORDINATOR: Capt Kevin H. Mahoney
PROJECT: Thesis
OPERATING SYSTEM: VMS VERSION 4.2

trans.c

*

*

*

*

*

*

*

*

LANGUAGE: VAX-11 C *
USE: Compile and link with standard library *
CONTENTS: main - driver ¥
buildstruct ~ input query information *
set_access_order - order query processing *
generate_code - code generation driver *

decl buftypes ~ type declarations *

insert node ~ eliminates duplicate sizes *
print_Bhffs - generates buffer types *

decl proceaures - procedures declaration driver ¥

readv - read variable generator *

readm -~ read master generator *

rdnxt - read next master generator *

sonoroff - sign on/off TOTAL *

totgen - code body generator *

gen _qualifier - checks for con/disjunction *
gen_comparison - generates comparison code *
outputall - generates ocutput code *

*

FULCTION: The modules in this file tazke the query Information*

(that the local network data directory (LNDD) sent #
in response to a global relational query) and *
create a Pascal program with embedded calls to the ¥
TOTAL DBMS that produces results equivalent to *
those requested by the original relational query. ¥
The first three routines read in the query infor- #
mation from the QUERY.DAT file, get the database *
name from the query file, fill the dataset struc- *
ture array with information on each of the datasets*
in the query, and get the database schema from the *
{database>SC.DAT file. The rest of the routines *
utilize the array of dateset structues to create *
the Pascal program under filename TCOD.PAS. After ¥
TCODE.PAS has been created, it must be compiled and#*
iinked to TOTAL. The command for linking to the
AFIT database on TOTAL is:

LINK TCODE,DUAO:[AFITDB.TOTALINATDATBAS,NATBUF

It can then be executed, which places the results

*
*
*
%
*
*
of the query into file QRESULT.DAT. *
*
/

167




et s st - sns aund o T T ——— T,

JRBBXERRARFRERRRNRRERRRERERRRRRRRAENERRRNRFRRNRRNRRNR RIS ENENEEER

* *
* DATE: 10/18/85 * iy
i *  VERSION: 1.1 *
- * NAME: External Variable and Typedef Declarations ¥
. * *
y * AUTHOR: Capt Kevin H. Mahoney *
. * *
- * USE: These variables and types are external to the programs *
! * in this file. The dset structures and the dset array * .
K * size are heavily used throughout the modules, wiith * A
* only the buildstruct module modifying the structures *
* (initially filling them from the query input file), so *
* extern was considered to be the best alternative. * .
* Likewise, the external typedef of the linked list nodes * L
I * was chosen because their use was across three separate ¥ .
= * nodules. The local database schema file and the * e
* zenerzted Pascal code file, tccde.pas, were also used # S
# by several modules, so the pointers to these files were ¥ -if
* also declared as extern. % .
N * % RN
h BERERE AR AR RE RN RN R RN RN R RN RN RAR R R RN RS RRNR R R EER f”

#include stdio T

o ‘ struct dataset { RIS

o \' char name(5]; /* dataset name %/

il char morv(2]; /¥ master/variable dataset indicator */

S 2har dskey[9]; /% data set key #/

. int access_type; /* readm,readv,rdnxt access indicator */

N char 1lkpth[9]1; /* linkpath used - variable datasets */

- char lkref[51]; /% linkpath reference */

il int numflds; /% number of fields requested */

, struct f£1d {

] char nane(9l; /% Cield name */

[ int size; /% size of field %/

r char outind(2]; /% indicates (Y or l) output requested */

A } field[401; /* forty fields max for each dataset %/ :

;' int compnum; /% number of comparisons on dataset #/ e

. struct cmp { et
char cfld{9]; /* comparison field name */ R

: char op(31]; /* comparison operators <>,z,<,>,<{=,>z */ .

- char comptypel2]; /% F for dataset field, L for literal */ EUNES

- char argfld(91; /* name of field used as qualifier #*/ R

o char arglit[60]; /% literal used as qualifier #*/ [ Y

X char isandor(4]; /% AND, OR or XXX #*/ E,“

- } compl2]; /* two qualifiers allowed per dataset */ -

: } dset[71]; /* seven dataset max in a query %/ ::

. LN

; FILE %f1,%*f3,#fopen(); /* tcode.pas and 'dbmname'sc.dat files #*/ :.

g int maxdset; /* number of datasets in the query #/

o+ v A
[S
|

20 8y 0,0, 0 'u

o’ \".. *

168

< ABR

.
B
»

L S - e e e « e o m e e e, . . E N S T .l
- . IR SN BN B Ce - . . . [ .. | IR AT R S . » .
o . TR . e e, [P R S R A T s e T T .

- » . . . . . . - " - - - . N . . ~ . - . § N N
O R e S T o A LR A 1




¥y

P

/% linked list for buffer sizes #*/

struct type list {

int data;

struct type list *next;

};

typedef struct type list NODE;

typedef NODE *LINK;

G4
g ¢

.....

a
h 4 &

Ed

\\1!11‘

[} . .
(AR A
.

Lt T W
-.. ’ ‘. .. ‘. .- K
.. Avbndw i Bbdda,

R -8 o
WX , C e
! n-h‘-l.cw-n fa Jin ; -.~H--u~&°hn\wr it ..-

w,_x..u.......,..v ﬂ\w.w...\.\,\-..ww.w... N

169




/RIT1.0%/
/********************************************************************
*

*
DATE: 10/14/85 *
VERSION: 1.1 *
NAME: main *
MODULE NUMBER: 1.0 *
DESCRIPTION: main driver program for the translator *
PASSED VARIABLES: N/A *
RETURNS: N/A %
GLOBAL VARIABLES USED: None b
GLOBAL VARIABLES CHANGED: None *
FILES READ: schema.dat *
FILES WRITTEN: None *
HARDWARE INPUT: N/A ¥
HARDWARE QUTPUT: N/A *
MODULES CALLED: buildstruct - input query, place in structures *
set_access_order - optimize access order *

generate code - generate Pascal program *

CALLING MODULES: None *
*

*

#

*

*

*

*

/

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/10/85) Original Version
1.1 (10/14/85) Changed parameter passed to generate_
code from num subschemas to schemasize and
parameter passed to buildstruct to db_name.

K ook M M WM ok Kk kK Ak ok o W ok A ok N ok W ok ok ok K K

ER XTSI LSS ST EA SR EEE LA E LRSS EL RS SRR E RS

main()
{
int schemasize;
extern FILE *f2,*fopen;
char db_name(12]; /* database schema file */

/* get the database name and build the dataset structures */
buildstruct(db_name);

/* order the structures ¥/

set_access_order();

/* open the proper database schema file */

strcat(db_name, "SC.DAT");

if ((f3 = fopen(db_name, "r")) == NULL) {
printf("Can't open the schema file.\n");
exit(1);
}

fscanf(f3,"%d",&schemasize);
generate_code(schemasize);
fclose(f3);

} /% end of main %/

170

M S g o




RHENLY
/********************************************************************
*

DATE: 10/14/85

VERSION: 1.1

NAME: buildstruct

MODULE NUMBER: 1.1

DESCRIPTION: This module reads in the data directory
information that has been placed in the QUERY.DAT *
file by the DDBMS and inserts the information into#*
the fdsetf® array of structures for further
processing by the access ordering and code
generating procedures.,

PASSED VARIABLES: dbname - name of the TOTAL database accessed

RETURNS: dbname

GLOBAL VARIABLES USED: dset - array of dataset structures

maxdset - number of datasets in query

GLOBAL VARIABLES CHANGED: dset, maxdset

FILES READ: query.dat

FILES WRITTEN: None

W ok ok ok kW

*

*

*

%

*

*

*

*

*

*

HARDWARE INPUT: N/A *
HARDWARE OUTPUT: N/A *
MODULES CALLED: None *
CALLING MODULES: main *
*

*

*

*

*

*

*

*

/

*
*
*
*
*
*
*
#
*
#*
*
*
*
*
%
*
*
*
*
*
*
#
* AUTHOR: Capt Kevin H. Mahoney

* HISTORY: 1.0 (10/7/85) Original Version

* 1.1 (10/10/85) Moved fopen(} to main, added check for
* argument type (field or literal) in comparison
* 1.2 (10/14/85) Made dbname a parameter to the module
* instead of extern.

*

*

(22222 X 222222 222222222 A2 R 22222 R A2 22222222222 2 222X 2R 2L 2 2 )

buildstruct{dbname)
char dbname(];

{

FILE *£2,*fopen();

int i, j,temp;

extern struct dataset dsetl];
extern int maxdset;

if ((f2 = fopen("query.dat","r")) == NULL) {
printf("Can't open the query file.\n");
exit(1);
}

/% get the databse name and number of datasets in query #*/
fscanf(f2,"%s",dbname) ;
fscanf(f2,"%d",&maxdset);

171

———

NS
T




. {
YA

:?::'f:::

= . for (i=0; i<maxdset; i++) ey

N {

SR fseanf(f2,"%s", (dset{i].name)); /* dataset information %/

- fscanf(f2,"%s",(dsetlil.morv));

- fscanf(f2,"ss",(dset[i].dskey));

- if (tstremp((dset[i].morv),"V"))

- {

o fscanf(f2,"%s",(dset[i].1kpth)); /* variable dataset info ¥/

W) fscanf(f2,"%s", (dset[il.1lkref));

}
fscanf(f2,"%¥d",&temp);
dsetl{il.numflds = temp;
for (j=0; j<(dsetl{il.numflds); j++)
{
fscanf(f2,"§s",(dset(i).field[jl.name)}; /* element info */
fscanf(f2,"%d",&temp); A
dset[il.field[jl.size = temp; o
fscanf(f2,"%s",(dset[i].field{jl.outind));
}
fscanf(f2,"%d",&temp);
dset[i].compnum = temp;
for (j=0; j<(dset[il.compnum); j++)
o {
w fscanf(f2,"$s",(dset[il.comp[jl.cfld)); /% qualifiers %/
fscanf(f2."4s",(dset[i].comp(jl.op));
fscanf(f2,"%s",(dset[i].comp[jl.comptype));

(;?- if (!stremp((dset(il.compljl.comptype),"F")) ?ﬁ;i
o fscanf(£2,"4s",(dset({i]l.compljl.argfld)); o0
else SR

fseanf(f2,"%s",(dset[il.comp{jl.arglit));
. fscanf(f2,"%s",(dset[i].comp[jl.isandor));
- }
} /* end for - all datasets in the query have been read in #*/

felose(f£2);
} /% end buildstruct */

DA
NN A

o
-
o

.
.b. ..
et
W
——a

i

. .
BAGRA

PR

o
e

A
s a0,

4
i
[ 20

Y
-

v .,
3
¢
~
o

1 AAIANS
-
L]
i
-

[}
"

g

4
»

[ XAXA
[ -
S lel)

e

172

K
vy
%2

1 ]
ﬂd
A

%

VY
83
XA

.
.
-

ORI T RORAL TN LRLT ORI RLOTY

'h_.‘--_-'.{ e .-"J".‘-.“- CAENS -I.’w' ".:'_-".-"' L. .n;' o :"."'.:' .




/¥111.2%/
/********************************************i***********************
#*

DATE: 10/18/85
VERSION: 1.1

NAME: set_gccess_prder
MODULE NUMBER: 1.2

-

ol e P

i DESCRIPTION: This module takes the array of datset structures hﬁtéé
y and places them in the most efficient access 3:“¢:J
order for the code generation procedure. ] q

PASSED VARIABLES: None

RETURNS: None

GLOBAL VARIABLES USED: dataset array (dset)
GLOBAL VARIABLES CHANGED: dataset array (dset)
FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: N/A

HARCWARE CUTPUT: lN/A

MODULES CALLZD: det_access_type

CALLING MODULES: main

..,__ ‘, ,
AR et SER RN
Wt et T N o' N

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/10/85) Program Stub
1.1 (10/18/85) Added call to det_access_type

kM ok ok ok ok ok K ok ok W W ok W ok M Wk Kk Kk kK ok
WM ok ok ok ok ok ok o W M W ok K W K K Nk Ak ok kK

) HREEEE AN RN RN NN RN RN RN RN RN AN ANR RN RRNRERRRRRRRNR ..
. N >
- set_access _order() k

{ /* program stub except for call to det_access_type */ :
det_access_type();
return;
}

L

(™

1 73 -'::" . :::




REe ol et ol o e st ol st UM ame e b e o o ae-

/R11.2.1%/
/***!************************!*****************************!*l**l****

*

* DATE: 10/18/85

* VERSION: 1.0

* NAME: det_access_type

* MODULE NUMBER: 1.2.1

* DESCRIPTION: This module take the array of datasset structures ¥
¥ and determines what the access type for each will be.*
* It then assigns the dset.access_type field the proper¥
* indicator value. The values and their meanings are: %
* 1 - READM (Read Unique Master) with a previously

* retrieved dataset field as the key qualifier.

* 2 ~ READM with a given input literal (from the user)
* as the qualifier on the dataset key.

* 3 ~ RDNXT (Read Sequential Master) for both previous
¥ fields and literals as qualifying arguments.

* 4 < READV (read Variable) for variable datasets.
*

*

*

*

*

#*

*

#*

*

*

*

*

*

*

*

ok ok kW

PASSED VARIABLES: None

RETURNS: None

GLOBAL VARIABLES USED: dataset array (dset)
GLOBAL VARIABLES CHANGED: dataset array (dset)
FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: N/A

HARDWARE QUTPUT: N/A

MODULES CALLED: None

CALLING MOLULES: set_access_order

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/18/85) Original Version

SOkl oK e sk M O M e M ok ok kK ok ok M W & kX

AR R RN NN R R N RN RN RN RN R RN RN R R R ERE RN AR A F AR RN RRRRNRRR
det_access type()

{

extern struct dataset dset(];
extern int maxdset;

int i, literalsize;

for (izo; i<maxdset; i++)
{
if ('stremp((dset[i].morv),"M"))
/% master dataset %/

if (!stremp(dset[il.dskey),(dset[i].comp(0].cf1d)))
/% comparison is on a dataset key field */

if ('stremp((dset{il.comp(0].op),"="))
/* equality comparison #/

., Y_ ‘I- ‘-‘ i

N e

.
-
(]

»
alala®

*
2’2"




fafl Nt Al A A A L M P It RS SV B S N BERC AR Lt e A A A Av A S A auche B s 0 A bed Wb Ak A ond af a0 4 aa s o SO0 UL

gﬁfﬁ Data Dictionary Entry for Process

NAME: generate_code
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3
DESCRIPTION: Driver for code generation portion of translator. It
generates the beginning and ending sections of the translated
program and calls subprocedures to do the rest.

INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
= OUTPUT FLAGS: fopen (output file open flag)
| GLOBAL DATA USED: dset array
) maxdset

SLCRBAL DATA CHANGED: lone

FILZZ READ: None
. FILES WRITTEN: TCODE.PAS (the generated translated program)
. HARDWARE READ: None
N HARDWARE WRITTEN: None
. ALIASES: None
CALLING PROCESSES: main
PROCESSES CALLED: decl_buftypes

decl procedures
totgen

Y O A

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney




AR P

Data Dictionary Entry for Process

NAME: decl_buftypes
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.1
DESCRIPTION: Generates buffer type declarations. Builds a linked
list to eliminate duplicate buffer sizes before writing them.

INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: dset

maxdset
GLOBAL DATA CHANGED: None
FILES READ: ©None
FILES WRITTEN: TCODE.PAS
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: generate code
PROCESSES CALLED: print_buffs

insert_node

YERSICN: 1.0
CATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

138

ST e Mgt BT TN e e
. l'.- o ."‘-.. v v o '.l P



Data Dictionary Entry for Process

NAME: insert_node

TYPE: PRCCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.1.1

DESCRIPTION: Inserts new buffer sizes into the linked list,
eliminating duplicate size values.

INPUT DATA: buffer size (integer)

INPUT FLAGS: None

OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: None

GLOBAL DATA USED: None

GLOBAL DATA CHANGED: None

FILES READ: DMNone

FILES WRITTEN: lione

HARCWARE READ: None

HARCWARE WRITTEN: ©None

ALIASES: None

CALLING PROCESSES: decl_buftypes

PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985

AUTHOR: Capt Kevin H. Mahoney




-I'i ..*

i -

s

} lﬂ}ﬂ Data Dictionary Entry for Process

N NAME: print_buffs

- TYPE: PROCESS

- PROJECT: Relational to TOTAL DML Translation Program (Thesis)

N NUMBER: 1.3.1.2

- DESCRIPTION: Outputs the buffer declarations by following the linked

list of buffer sizes. .
INPUT DATA: linked list of integers o
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text) S
QUTPUT FLAGS: None <
GLOBAL DATA USED: None “—
GLOBAL DATA CHANGED: None 0
FILES READ: None
FZLES WRITTEN: T7TCCDELPAS
JARCWARE READ: lone
HARDWARE WRITTEN: None
ALIASES: None e
CALLING PROCESSES: decl_buftypes O
PROCESSES CALLED: None NS
3

. VERSION: 1.0 Lt

- \’ DATE: 10 November 1985 S
AUTHOR:  Capt Xevin H. Mahoney r

.
.

)
o
.54:ﬂ?&f"3‘
AN

:"0,.'/‘ o .

140

A AN LY,
B
,"o"t'

L R

é

.
»};I
:'- »!

‘A

e LT T e T N T e e e L Te e T e e e e e LT L Te T LTe T e T T e T e T T TR LT TR LT T U TR e T T T e T T et Y .
EARAPIRTS N A _‘-. T A e T e e e e e e e e e > N P N T e e e e e e, Ok

(Y
s




AR E it S et it Sl Bl Sk S e O e St A -t §

if ('stremp((dset{i].comp(O0].comptype),"F"))
/* comparison is on a previous field */
dset[i].access _type = 1;

else
/% comparison is on a literal ¥/

{
literalsize = strlen(dsetiil].compl(0l.arglit);

if (literalsize == (dset[i].field(0].size))
/% 3izes match exactly */
dset[i).access_type = 2;

else
/% size doesn't match, RDNXT needed ¥/
dset(i].access_type = 3;

}

else
/% was not an equality comparison ¥/

-

dset[i].access_type = 3;

else
/% was not on a dataset key field ¥*/
dset[i].access_type = 3;

else
LT /* is a variable dataaset, not a master ¥/
W’ dset{il.access_type = U;

} /* end det_access_type */

175

.. 3 \ 1.-.-"' 'i‘ KRR . SAGRRIEN
-‘Ln’ J'.'.:‘J_'d‘ . A .‘a el 1h'.h~.? WY

PR

i,
T

A T
"’l <.v .
R .

I

"-Y’;f v T

»

‘f AR
|

;,*_." T




i Sl A A Sl P A S Ak i Sl Al Aad daibdiaAa A Sl Anh Aiee b A et SR e Altatiac e ‘Al Abra A SAet A hedite b a0 41
i
.-
I‘_ii_
b /R1I1.3.%/ it
3 .:_ /******************************************************************** ._:‘.
* % “L.:_“
* DATE: 10/14/85 * L
* VERSION: 1.4 # N
* NAME: generate_code * S
* MODULE NUMBER: 1.3 * -
* DESCRIPTICN: This is the main module for the generation of the ¥ :3:
* Pascal code that will actually execute the query. * PN
* It generates the beginning and ending statements % p.
* of the program, and calls subprocedures to do the #
* remaining code generation. *
* PASSED VARIABLES: schema size - size of the schema file *
* RETURNS: None * )
* GLOBAL VARIABLES USED: dataset structure array (dset) * -
* maxdset - number of datasets in query * ®
* GLOBAL VARIABLES CHANGED: HNone *
* FILZS READ: YNone *
* FILES WRITTEN: tcode.pas * -
* HARDWARE INPUT: N/A * R
* HARDWARE QUTPUT: N/A * ooa
* MODULES CALLED: decl buftypes - generate buffertype declaration%* %,
* decl_procedures - generate “ubprocedure decls. ¥ }:t
* totgen - generate the main body of Pascal code * e
* CALLING MODULES: main * A
* * B
i‘ * AUTHOR: Capt Kevin H. Mahoney * v
ZISTGRY: 1.0 {10/5/8%) Original Version was main() * QK
1.1 (10/10/85) Renamed as generate_code when new main * ;e

’
RPCPAT
LA

was written, moved procedure declarations to a *
separate module, added call to decl buftypes. * AN
1.2 (10/11/85) Added test and generation for literals *
shorter than the test field, creating TEMPnn *
1.2 (10/13/85) Added codz for generation of indexes *
*
*

,_
s
.

?
v 2
S,

F.'J‘J
. E
LS s

for decomposition of user areas in the query
1.4 (10/14/85) Made schema size the parameter

replacing numschm, number of subschemas in file*
*

*******************-}************************************************/ T

HOK K K K K K M K AL

. .....,
0 AR
R

senerate_code(schema size)

£t

int schema_size;

{

extern struct dataset dset[];

extern FILE *f1, #*fopen();

extern int maxdset;

int 1,J,k, areasize, literalsize, index max;

.

v
L Dyl
Sy,

4y,
.

)
P

'ﬂw-%niﬂ

/*open the generated code file ¥/

ﬁff if ((f1 = fopen("tcode.pas”,"w")) == NULL) { :
0

%

o

176 N

3

- R . . - . . - - B P A T AR S
T N Tt PO R R A R MR TR NI
UL SO R P o S Y SBa NP" SJNP SO B o R 0P S RIS JPUP S S DV IO TP P S,




. AD-A164 813 THE DESIGN RND IHPLEHENTRTION OF ll RELII I0NAL TO 373
NE RK_QUERY TRRNSLRTOR (U) lIIR FORCE IIST OF TECH
HT-PATTERSON AFB OH SCHOOL OF ENGI.. K M

UNCLASSIFIED DEC 85 AF ITIICS/ENGIOSD ? /G 9/2




T —— I O R W N = ™ %a ™ A tl™ 4™ ar e e -
AT AR - n

P S s Tl e e T e T e - ~

L

J
J

Hﬂl

o
FFEERE

EEER
FE

=
N
o

A
rrer

r
re

=
=

I

iz I

I

I

s

MICROCOPY RESOLUTION TEST CHART
FATONAT RURFAN OF STANDARDG-1063.A

. -\__\’\(?{."v“ﬁ s
-




s Dl S St et e St Tk g it T 3 Ol IR ACA R A I SRS SV it A8 B i e M S T T T T T T T I T e vy

2207

Py

i

printf("Can't open the generated file.\n"); S

exit(1); S

} il

eune

/* print the opening statements of the Pascal program */ :{3;:

fprintf(f1,"PROGRAM GENTCODE(INPUT,QRESULT);\n); .'_-:.:n':.;

Y

/% declare labels #/ H;*S

fprintf(£1,"LABEL "); —

for (j=0; j<(maxdset®3)}; j++) S

fprintf(£1,"%d",3j); S

fprintf(£1,"ERRL;\n\n");

/* declare type definitions of buffers #/ e

decl buftypes(schema_size); e

/% declare structure types ¥/ : N

- for (j=0; j<maxdset; j++) L

. { o
fprintf(£1,"\nSTRUC%d = RECORD;\n",j);

for (k=0; k<(dset([jl.numflds); k++)

fprintf(f1," A%d : BUFF%d;\n",k,(dset(jl.field(k].size));
fprintf(£1,"END;\n");
} /* end for %/

o /* declare variables %/ C
k',’ fprintf(£1,"\nVAR\n"); <
forintf(f1," STATUS : BUFFU4;\n"); b
fprintf(£1," FCTN : BUFF5;\n"); e

< fprintf(f1," INDEX : INTEGER;\n");

. fprintf(f1," NOTFOUND : BOOLEAN;\n"); .
fprintf(f1," QRESULT : TEXT;\n");
index _max = 0;

o
’

AT

DY

.. for (j=0; j<maxdset; j++)
- {
. fprintf(f1," S%d : STRUC%d;\n",j,j);

o AT
nthh
S0 e ]
S
.'l.ll

»
o
o

A

T
LRt ]
»

.
.

/* this code keeps track of the maximum number of indices ¥/
/* that will be needed to decompose the TCTAL user area L4
/* into the dataset structer fields for output, etc... */
if (index max < {(dset{jl.numflds))

>
A

s
L] . [}

J,(dset[jl.field[kl.size)); .

index_max = (dset[j].numflds); o

- oA
/* generate user area sizes and key (if needed) sizes %/ p
Y areasize = 0; NN
- for (k=0; k<(dset[jl.numflds); k++) o
o { RN
¥ /% see if a requested field is a dataset key %/ hifg
< if (!stremp((dset[jl.dskey),(dset[j]l.field[k].name))) :§
(. fprintf(f1," KEY%d : BUFF%d;\n",




A A NN A A A S A A A A AN AR A O At A PSS e Nl Al A Anii Al g et 0l A N4 2005t et Anl Nl el il N ol g ey |

a
14

g
l.l

N NAF
: '::J‘,-.“
T R
: A areasize = areasize + (dset{jl.fieldlkl.size); }\5&
. .. } .
" -
fprintf(f1," UAREA%d : BUFF%d;\n", j,areasize); ;
. .
o /% declare TEMP holders in case comp literal is shorter ¥*/ RS
. for (k=0; k<(dset[jl.compnum); Kk++) Tayel
o { R
W if (!stremp((dset{j].comp{k].comptype),™L")) /% literal */ ;f‘ﬁ
b { ;j&i
- literalsize = strlen(dset(j].complkl.arglit); 5¢:§
. fprintf(f1," TEMP%d%d : BUFF%d;\n", j,k,literalsize); g§Q}:
) } :\-.
if (!stremp((dset(jl.morv),"V")) ==
fprintf(f1," REF%d : BUFF4;\n",j); L
else o
: fprintf(f1," QUAL%d : BUFF4;\n",j);
. } /* end for */
1 /* declare counter indexes for decomposing the user area ¥/
for (j=0; j<index_max; j++)
fprintf(f1," IND%d : INTEGER;\n, j);
/% declare all subprocedures for TOTAL calls %/
- . decl procedures(schema size);
Ko =
o forintf(fi," BEGIN\n"); el
- fprintf(f£1," REWRITE( QRESULT) ;\n"); R
- fprintf(f1," FCTN := "SINON';\n");
{; fprintf(f1," SONOROFF(FCTN) ;\n"); g{}ﬂ
~_ {printf(f1," IF STATUS <> '##x##¢ THEN GOTO ERRL;\n"); Ay
totzen(0); /* create the main body of the Pascal Program %/ ygﬁﬂ
'.-:‘:-,'
. /* print the finishing statements of the Pascal program #*/ @Q:;
o fprintf(f1,"ERRL: FCTN := 'SINOF';\n"); sju;u
fprintf(f1," SONORQFF(FCTN) ;\n"); Seliga
2 fprintf(f1," CLOSE( QRESULT) ;\n"};
. fprint£(£1,"END.\n");
s fclose(f1);
‘. } /% end generate_code */ IFL*




T .

7,007,

/HI11.3.1%/
/**i*l!**i*li**lli*i*’*!*lili!lI*il**li*llIlil*****il**lli*li!****iil

A % M W W o o Kk ok ok ok K ak Mk W ak W M Wk Kk ok

HRRRRARFRRERERERERL R R LRRRERRERRRRERER RN RN RRRRAR RN RRNRERREEERE*

DATE: 10/13/85
YERSION: 1.2

NAME: decl buftypes
MODULE NUMBER: 1.3.1

DESCRIPTION: Build a linked list of buffer sizes in order to
eliminate duplicates. The BUFF type declarations

are then output to tcode.pas

PASSED VARIABLES: schemalength - size of the schema file

RETURNS: N/A

GLOBAL VARIABLES USED: dset array of structures, maxdset

GLOBAL VARIABLES CHANGED: None
FILES READ: None

FILES WRITTEN: tcode.pas
HARDWARE INPUT: N/A

HARDWARE CUTPUT: N/A

MODULES CALLED: print buffs - print buffer type declarations
insert_node - insert a new size into the list

CALLING MODULES: generate_code

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/7/85) Original Version

1.1 (10/10/85) Changed name of module from buifd_buf
1.2 {i10/13/85) Added code for computing the user area
size and changed parameter to schemalength

decl buftypes(schemalength)

int schemalength;

{

extern struct dataset dset(];
extern FILE *f1;

extern int maxdset;

LINK head, htemp;

int i, j,temp,areasize;

/% initialize the buffer size list with known values */
head = (LINK) malloc(sizeof(NODE));

head->data = 1;

head->next = (LINK) malloc{(sizeof(NODE));
head->next->data = 2;

head->next->next = (LINK) malloc(sizeof(NODE));
head->next->next->data = 3;

head-~>next->next->next = (LINK) malloc(sizeof(NODE));
htemp = head=->next->next->next;

htemp=->data = 4;

htemp->next = (LINK) malloc(sizeof(NODE));

179

> '. Ve -.;_: y _-;_:.}'.}}-. }-.}:...-: ;_\‘ ‘; Y .')'.‘ ™ \;,.'n)' ‘_.‘, '.\),‘-;.:-”\{7 ¥ \\:(.";

S e o o M At e ok ok Ok ok ok as R e Kk A 3k i ok ok kR &

DR

A
4
s

a

s
&
Al
"2,
AT

o

BRI

~“--..
-




St A DA R A R S AR M AN At N e Dt il R sl h gl bl L af sat DA L RS tl ool
L.

.

yRRRR RS htemp->next->data = 5;

ISR htemp->next->next = (LINK) malloc(sizeof(NODE));
> htemp->next->next->data = 8;

) htemp->next->next->next = NULL;

S
; /* insert schema size */

N insert node(head,schemalength);
3
> /% process the datasets and insert values #/
for (iz0; i<maxdset; i++)
{
areasize = 0;
/% figure the element list size and insert it */
temp = ((dset[il.numflds)®*8)+4;
insert_node(head, temp);
for {(3=0; j<(dset{i].numflds); j++)
{
temp = (dset(il.field[j].size);

. areasize = areasize + tenp; /* figuring the user area %/
2 /* size for the call to TOTAL %/
. insert node(head,temp);

- }
= /% insert user area size %/
- insert_node(head,areasize);
éi:“ for (j=0; j<(dsetlil).compnum); j++)
{
il (!streop((dset{il.comp[jl.comptype),"L"))
{
; temp = strlen(dset(i].comp(jl.arglit);
.. insert_node(head,temp);
}

. }
/* list is finished, so now print declarations #/
- fprintf(f1, "TYPE\n");

' print_buffs(head);

} /* end of decl buftypes */

)

180

SR
4
"I

\. a
2

A}
h |
fn

L
D
!'.l

[~

X
¢
>

X
.\
1

L, ".‘
ll

I‘l.

a )
o
P4
h]
"
l.. .4
Y
e
K’
k'«
P
Ry %
£y

-
e ST R R TR TR T LS
o -\ ' o - J. ¢ A A “i‘.. e . R _. Noep




-
L'

".( '_;-'.:-‘.'(’_J‘_'-f.;w:';-" oy '~.'§', . 4 ' SOy

/RI11.3.1.1%/
/R R RN RN R R RN RN R R R RN R R RN RN RN RN NN SERRNR NN
*

*
*
#*
#
»
%
%
#*
 J
#*
#
#*
*
*
*
*
*
#*
*
*

ARAFARARAFRFR AR RRRNERRRNRAR AR R AR AR RAR AR AR R R B RRB R RRRERRRRRRERE/

DATE: 10/7/85

VERSION: 1.0

NAME: insert_node

MODULE NUMBER: 1.3.1.1

DESCRIPTION: inserts new values into the buffer size list,
eliminating duplicate size values

PASSED VARIABLES: head, size

RETURNS: None

GLOBAL VARIABLES USED: None

GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: N/A

HARDWARE OUTPUT: N/A

MODULES CALLED: lone

CALLING MODULES: decl_buftypes

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/7/85) Original Version

Wk ok ok ok ok ok M kA e e Kk ok W ok ok M K

insert_node(head,size)

LIYMK head;
int size;

{
LINK pointer, temp;
int flag;

/* there is no null list case - 1,2,3,4,5, and 8 are in list */
if (size>(head->data)) /* eliminates zero or negative sizes ¥/
{
flag = 1;
pointer = head;
while ((flag!=0) && (pointer->next!=NULL))
{
if ((pointer->next->data) > size)
{
flag = 0;
temp = pointer->next;
pointer<>next = (LINK) malloc(sizeof(NODE));
pointer->next->data = size;
pointer->next->next = temp;
}
else if ((pointer->next->data) == size)
flag = 0;
else

181

Lo

R S St IR R ok f .:-‘.-:',:;?'q‘;-'.‘-’.;-"~' AN . e

i

4,
Ve

v oty

Al

(i
v .
v

i .
. r,' -ty "r"

.
0
v
»
o

E

‘T

o’
LS
SAr
s

S S T T e T T
: "y * L. ()




D A A O S I A R N A 0 e hte g0 e v i on dw J o ra e 2w 0 i e e A A A i iR o e L e
.“ t. »" )
MY AL
» RS '.:

L B¢

.

P.
.

e pointer = pointer->next;
LR }
if (flag==1) /% new end of list case %/
{
pointer->next = (LINK) malloc(sizeof(NODE));
pointer->next->data = size;
pointer->next->next = NULL;
}
}

} /* end of insert_node */

182

RN B R -.-'<_-" REASA '_«."- e '.."_n"..' AN
I IINISTIEIISD SIS I SN TRt PR S 2 S S O AN

-
3




.

Rl T - v Ol 3 A IR A M B e el S A R A S A A Y

X

-

.

A

'\

Al

RN /2111.3.1.2%/ :

N if: /ii****ll***l*l****i******5*!**‘I**{ll*l!li*l**!**ili***l**llli**ll*I g
#* o

s

DATE: 10/7/85 R

VERSION: 1.0 NER
NAME: print_buffs -{{;:
MODULE NUMBER: 1.3.1.2 -1ib
DESCRIPTION: This module uses the linked list of buffer sizes RAACY

*
*
*
E ]
#
to print out the buffer type declarations in the *

generated Pascal file by calling itself recursively *#

PASSED VARIABLES: head #
RETURNS: None *
GLOBAL VARIABLES USED: None *
GLOBAL VARIABLES CHANGED: None *
*

»*

*

*

*

*

#*

*

]

#*

/

R

FILES READ: None

FILES WRITTEN: tcode.pas
HARDWARE INPUT: N/A

HARDWARE CQUTPUT: N/A

MCLCULES CALLED: None

CALLING MODULES: decl buftypes

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/7/85) Original Version

a2
W k% ok ok Kk A M W ak ok Wt W e W W ak kW K

ARRRBARRRERAARR AR RS RRARRRRARERRRBRBRRRARRRFRRR AR AR ARAR AR RRRABRERERS

i Q" print buffs(head)

LINK head;

{: {

oy extern FILE #*f1;

. if (head!=NULL)

- {

S— fprintf(f1," BUFF%d = PACKED ARRAY",head=->dataj};

. fprintf(£1,"[1..%d] OF CHAR;\n",head->data);

:f print_buffs(head->next);

e }

!7 } /* end of print buffs */ et
- - L“.-”.-.
5‘:: L
s A
I-;l, e,
3

a0 Ve,
e e
i ol
. B
" M&f
% " AL
. /[®

N, L Y
8 * Q?\ s
ﬁJ ¢%$

s
¢
'l'
Ay
* e
7

183

............

.




R T TW LWL WG T - W, s T T g ————— ~--
AT IC A A A RN S Sl S At A il A A A Y A S R i ire G i RaRP i Jare et gl S Bt S e ne R i aring e e e Al

. /R111.3.2%/
L .‘:' /!*****!*********i*********'lI***i*ii**‘!***i**i**l**i****l**li********
A3
*

DATE: 10/18/85

VERSION: 1.2

NAME: decl procedures

MODULE NUMBER: 1.3.2

DESCRIPTION: This module generates subprocedure declarations

within the Pascal program for the different calls

PASSED VARIABLES: schmlen - size of schema file

RETURNS: None

GLOBAL VARIABLES USED: dataset structure array (dset)

maxdset - number of datasets in query

GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: tcode.pas

HARDWARE INPUT: N/A

HARDWARE CUTPUT: N/A

MCDULES CALLED: readv - 'read variable dataset' subprocedure
readm - 'read master direct' subprocedure
rdnxt - 'read next master' subprocedure
sonoroff - 'sign on or off TOTAL' subprocedure

CALLING MODULES: generate_code

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/10/85) Original Version created from code
originally in generate_code
1.1 (10/14/85) Made schmlen the passed parameter
1.2 {10/18/8%) Changed the strcmp checks for the
dataset access characteristics to a simple
comparison on dset[i]‘access_pype field.

WM ok K Kk ik o M Mk ok Kk K ok kK e K ok W a e ko e kM Kk

2222222222222 2222 XXX 2222222222 2222222222222 XX 22222222 X2 ]

SNOM MOk K K ok o W ok ok Ok K ck ok e M M ok R OB Mk Wl B ok Ak k Xk & XK

decl procedures(schmlen)

int schmlen;

{

int j,k,keysize,areasize;
extern struct dataset dset{];
extern int maxdset;

extern FILE *f1;

char elementlist(3001];

.

o %

. v
Y

for (j=0; j<maxdset; j++)
{

TN
et
areasize = 0; ~- 3
strcpy(elementlist,™\O0"); /* blank out the element list #/ NN
N
S5

/% build the list of required flelds and their total length %/

coe for (k=0; k<(dset(j].numflds); kes)
184
- o -4‘._'.’;;":: ;.;-‘. ‘-'._-'..:._‘;._4-::_ ."._-P.‘ AT T A .. .‘,x ’_- 1-’ .‘._-\..- AT L T A




-y v "y " Le e g g i s s — Mg d ot aen ol oon o —— — T
i T A e Pt S S i S i Sl v Sl Mg i At et A gL eI A S I S e e B el b ep aA B S bed gt v BN A S ar gl AR SN i U S|

TT.NJw

IR {
. SRR strcat(elementlist,(dset{jl.field(k]l.name));
i areasize = areasize + (dset[jl.fieldlkl.size);
}
- /% check for dataset type */
. if (dset[j].access_type == 4) /* this is a variable dataset */
. {
' /% set the keysize to the previous dataset control field #/
/®* size because this is the master record that the ®/
g /% variable dataset chain is accessed from ®/

keysize = (dset[j-1).field[0].size);
readv(j,(dset{jl.name),elementlist,
(dset[jl.1lkpth),keysize,areasize);

}
! else /* master dataset #*/
{
b (dse:[j].access_type == 2)
/* must read master dataset sequentially */
rédnxt(},{dset[;].nane),elementlist,areasize);
else
L {
: /* read unique master, type 1 or 2 ¥%/
keysize = (dset{jl.field(0]).size);
readm( j, (dset[jl.name),elementlist,keysize,areasize);
- }

: 1
' % zenerate the 3ign on/off procedure #/
sonoroff(schmlen);

} /* end of decl procedures */

-

e
YW

1..;‘1'.' "y
O

NS AW

e
8y o

vl

e

X ™
. -

e ek [T
- . - v a % . - R e S A O "2 L TR M W T DR T DR Ji Y
. DI SN ST et e . N

R S R O O L -t

-3 -3 o i o Y 2 ey | Idn B o B o e b




T W W W W W T W W WV W W TV LV PV TR YV UV W v~y gy

e /RIIT02.2.1%/
A JEERERRE RN NN RN NN NN RN NN RN RRRRRRRANE
*

DATE: 10/11/85
VERSION: 1.1
NAME: readv
MODULE NUMBER: 1.3.2.1
DESCRIPTION: This module creates the Pascal code for each
declaration of a READ VARIABLE subprocedure within#
the generated program.
PASSED VARIABLES: j - the dataset number
name - the dataset name
elementlist - requested dataset field names
areasize ~ buffer size to retrieve field
keysize - size of the control key field
lkpth - linkpath name to variable

B SO SRR l'}

.

e pr R . 7
BN P

o K K K Xk

*
#
*
*
*
#
*
RETURNS: None *
GLOBAL VARIABLEZS USED: None i
GLOBAL VARIABLES CHANGED: None *
FILES READ: None *
FILES WRITTEN: tcode.pas *
HARDWARE INPUT: N/A *
HARDWARE OUTPUT: N/A *
MODULES CALLED: None *
CALLING MODULES: decl procedures *
*
*
*
*
*
*
/

"My -

AUTHOR: Capt Kevin H. Mahoney
SIZTCRY: 1.0 (10/7/85) Crigiral Version
1.1 (10/11/35; Inserted code for handling element
lists longer than 4Q characters.

ok R ko ke Mt W ok K kK ok ok ak ek ak M I ok o k ak k& ok

. L2 2222222222222 222 R a2 R a2 22222 222222 R XS 22 X2 2]

readv(ji,nane,elementlist,lkpth,keysize,areasize)

int j,keycize,areasize;
char namel];

.‘.‘10'.

- char elementlist[];

D char lkpthl];

- { N
- int listsize,loops,leftover,i,k; Ve
- extern FILE #f1; e
4 strcat{elementlist,"END.");

v listsize = strlen(elementlist);

N loops = listsize/u0;

e leftover = listsize%40;

:: fprintf(£1,"\nPROCEDURE READV%#d(VAR REF:BUFF4; CTRLKEY:BUFF%d; ",

. Jykeysize);

! Pda fprintf(f1,"VAR AREA:BUFF%d);\n",areasize);

N forintf(£1," VAR\n");




AR AL ol Sk Sud S T Aol Ak S A S S PR g A U A (A et A i 2 e aiahen A A S A A i B e At DB IE A B B e RS B dra e e e s 2 n 4 0 g h s ot e i 0

oy fprintf(f1," FUNCT : BUFF5;\n"); R
-~ fprintf(f1," DSET : BUFFU4;\n"); i
fprintf(f1," ENDP : BUFFU;\n"); e
fprintf(f1," ELIST : BUFF%d;\n",listsize); ._:;;

fprintf(f1," LKPTH : BUFF8;\n");
fprintf{f1,"\n PROCEDURE DATBAS(%cSTDESCR FUNCT:BUFF5; ",'%');

fprintf(f1,"STATUS:BUFFY4;\n DSET:BUFFY4; REF:BUFF4; ");
fprintf(f1,"LKPTH:BUFF8;\n CTRLKEY:BUFF%d; ",keysize);
fprintf(f1,"ELIST:BUFF%d; AREA:BUFF%d;\n",listsize,areasize);

fprintf(f1," ENDP:BUFF4); FORTRAN;\n"); e
fprintf(f1," BEGIN\n"); Lot
fprintf(f1," FUNCT := 'READV';\n"); L
fprintf(f1," STATUS := ! ';\n"); DR

fprintf(f1," ENDP := 'END.';\n"); S
fprintf(f1," DSET := '%$s';\n",name); e

/% print out all of the fields that make up the element list */

forincf(f£1," ELIST = '");
for (i=0; i<loops; i++)
{ s
if (1>0) B
fprintf(f1,"\n + 1) f:sa

for (k=0; k<40; K++)
fprintf(£1,"%c",elementlistk+(i*40)1);
fprintf(f1,m"'");

-_.:‘ } ‘J»:.':.
R - if {loops>0) v~*w]
f'p:“intf‘ f‘l,"\n - vn:; .

for (iz0; i<leftover; i++)
fprintf(f1,"%c",elementlist[i+(loops*U0)]);
fprintf{f1,"';\n");

fprintf(f1," LKPTH :=z '%s';\n",1lkpth);

fprintfifi," FOR INDEX := 1 TO %d DO\n",areasize);
forintf{(f1," AREACZINDEX] := ' ';\n");

fprintf{f," DATBAS(FUNCT,STATUS,DSET, REF,LKPTH,CTRLKEY,");
fprintf{(f1,"ELIST,AREA,ENDP) ;\n");

fprintf(f1," END;\n\n");

} /% end readv */




P wr

S - P

8°a"4% "2

e T e A

——— " . P B e e e o

)
v e

0

v
s

e T
et
- e
'
v, .
LA
.

/*111.3.2.2%/
/********************************************************************
¥

DATE: 10/11/85
VERSION: 1.1
NAME: readm
MODULE NUMBER: 1.3.2.2
DESCRIPTION: This module creates the Pascal code for each
declaration of a READ MASTER subprocedure within
the generated program.
PASSED VARIABLES: j -~ the dataset number
name - the dataset name
elementlist - requested dataset field names
areasize - buffer size to retrieve field
keysize - size of the control key field

o« .
N 0
0

Ao T

o F

i

%
*

*

*

*

*

*

*

3

*

*

*

*

RETURNS: None *
GLCBAL VARTABLES USED: None *
SLCBAL VARIABLES CHANGED: lone *
FILZS READ: Ncone *
FZLZS WRITTEN: tcode.pas *
HARDWARE INPUT: N/A *
HARDWARE OUTPUT: N/A *
MODULES CALLED: None *
CALLING MODULES: decl procedures *
%

*

*

*

*

*

/

oy e e

Ll e

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/7/85) Original Version
1.1 (10/11/85) Inserted ccde for handling =lement
lists longer than 40 characters.

WA K o M M ok K Kk ik ik X e i ok ok ak Wt ok Kk Kk K K

I
o
[ R

e T
e

P
g

E2 2222222222 R X222 222222 2222222 222222222 2222222222222 222 )

2

s

I}
.
o
a'e

‘e

readm( j,name,elementlist,keysize,areasize)

.
; [

int j,xeysize,areasize; £
char narell; P
char elementlist(]; OO

A
{ .

int listsize,loops,leftover,i,k;
2Xxtern FILE *f1;

strcat(elementlist,"END.");

listsize = strlen(elementlist);

loops = listsize/i0;

leftover = listsize%40;

fprintf(f1, "\nPROCEDURE READM%d(CTRLKEY:BUFF%d; ", j,keysize);

’l< "'.-'IIJ..‘ 'l"' I

28
L]

fprintf(f1,"VAR AREA:BUFF%d);\n",areasize); o
fprintf(£1," VAR\n"); :i*
fprintf(£1,"  FUNCT : BUFF5;\n"); o

fprintf(f1," DSET
fprintf(f1," ENDP

BUFFY4;\n");
BUFF4;\n");

s se oo
ki

« » 0N
e % N

DA
v R

L
L L

188

i

...... AR
'a - . -




IS AL B R T S R R T e e e ee— AR AT NAC AT AEA S A i ek Al A bl A A Gl il Sl ag e b sl mate satd sl -4 s Wi tbhe She 2An Jbe e oo |

S fprintf(f1,"  ELIST : BUFF%d;\n",listsize); e

L fprintf(£1,"\n PROCEDURE DATBAS(%cSTDESCR FUNCT:BUFFS5; ", '%'); Lo

. fprintf(f1,"STATUS:BUFF4 ;\n DSET:BUFF4; REF:BUFF4; "); Ly
forintf(£1,"CTRLKEY:BUFF%d; ELIST:BUFF%d;\n",keysize,listsize); N

- fprintf(f1," AREA:BUFF%d; ENDP:BUFFH4); FORTRAN;\n",areasize);

- fprintf(£1," BEGIN\n");

g fprintf(f1," FUNCT := 'READM';\n");

. fprintf(f1," STATUS := ! ":\n");

fprintf(f1," ENDP := 'END.';\n");
fprintf(f1," DSET := '%s';\n",name);

. /* print out all of the fields that make up the element list %/
: fprintf(f1,"  ELIST := '");
- for (i=0; i<loops; i++)
= {
if (i>0) ot
fprintf(f1,"\n + "My, ;;5;§
for (k=0; k<40; K++)
fprintf{(f1,"%c",elementlist{k+(i%¥40)]); SO
fprintf{fi1,n'"); e
} S
if (loops>0) b
. fprintf(£1,™\n + '"); e
- for (i=0; i<leftover; i++)
fprintf(f1,"%c",elementlist(i+(loops*40)1]);
- fprintf(f1,"';\n");
oA
ferintf(f1," FOR IUDEX := 1 70 %d DO\n",areasize);
ferintf(f1," AREA[IZNDEX] := ' *';\n");
fprintf(f1," DATBAS(FUNCT,STATUS,DSET,CTRLKEY,");
fprintf(£f1,"ELIST,AREA,ENDP);\n");
fprintf(£1," END;\n\n");
} /% end readm */
. {
- i
: :. 1‘:.::
“ AN

|
ey
L]
|
')
'y h
o ot
.~ p,

. 2
e Aam A&

7,

e

- 0
-

-’ p“ O
. N
> . N




AR M A i Sl M AN AN S i e A A e AL S Aafe til Al At Bl s Jhd Jhd S a-A vk S0 ot e A A oA S S AR s dma dere s e R SERE I S AN IS

o /%111.3.2.3%/ o
~;:~__‘ /****‘l’************************'l'*******I****************************** LI
* oo

e

DATE: 10/11/85
VERSION: 1.1
NAME: rdnxt
MODULE NUMBER: 1.3.2.3
DESCRIPTION: This module creates the Pascal code for each
declaration of a sequential READ MASTER
subprocedure within the generated program.
PASSED VARIABLES: j - the dataset number
name - the dataset name
elementlist - requested dataset field names
areasize - buffer size to retrieve field

RETURNS: None

GLOBAL VARIABLES USED: None
GLOBAL VARIABLES CHANGED: None
FILZS READ: lione

FZLES WRITTEN: tcode.pas
HARDWARE INPUT: N/A

HARDWARE OQUTPUT: N/A

MODULES CALLED: None

CALLING MODULES: decl_procedures

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/7/85) Original Version
1.1 (10/11/85) Inserted code for handling element
lists longer than 40 charzacters.

A % o o M M K K ok ok ok K e o kit W M K K W kK K Kk
o ok A Wk M Ak Al ok kK ok ok ok a ak W kB ak K Kk ok ok kK Xk

HRERREERR RN RERRRRRRERRRERRRREREARRRRRRERERRRRRRRRERRERRRR TSR REER

rdnxt(j,name,elementlist,areasize)

R I IRE - »
ST At
. .
WAt et
v P ) -
‘ [T TS
* et .

. . . "\.‘ -~
int j,areasize; Yy
char namel]; ;:;:
char elementlist[]; N
_‘,\‘ ~

{ -
int listsize,lcops,leftover,i,k; Eﬁff
extern FILE *f1; AN
_ ﬁ}sQ
strcat(elementlist,"END."); téqp

"
v/

listsize = strlen(elementlist);
loops = listsize/u0;
leftover = listsizefl0;

-
e,
o

by,

oy

o)

fprintf£(f1,"\nPROCEDURE RDNXT%d(VAR QUAL:BUFF4; ",j); AT
fprintf(f1,"VAR AREA:BUFF%d);\n",areasize); W,
fprintf(f1," VAR\n"); ;ﬁ}ﬁ
fprintf(f1," FUNCT : BUFFS5;\n");
3 fprintf(fi," DSET : BUFF4;\n");
K fprintf(f1," ENDP : BUFF4;\n"); NG
“3a
.\'.“
o
190 WY

-

AT R T P I Y v T e L N N et T . A L R T L I P B N S
AL A AP A A S SRR A S RN, IR I S . UMY T MEY SURACSINNT TE R
IACTG D, L S WA W Y G I AR T L — AN PSS




N s R - - -
. s TR DRt S S N Al S N T A il Al Akl t ek Al it tad gl At Anfed Sl Mad Sek Auil edt Sl etk e Bnd et Sl St ach 2 TR TR T e T T ST AT T .

fprintf(f1," ELIST : BUFF%d;\n",listsize);

fprintf(£1,"\n PROCEDURE DATBAS(%cSTDESCR FUNCT:BUFFS; ",'%'});
fprintf(£1,"STATUS:BUFF4;\n DSET:BUFFU4; REF:BUFF4; ");
fprintf(f1,"CTRLKEY:BUFF%d; ELIST:BUFF%d;\n",keysize,listsize);
fprintf(fi," AREA:BUFF%d; ENDP:BUFFY4); FORTRAN;\n",areasize);
fprintf(f1," BEGIN\n");

fprintf(f1," FUNCT := 'RDNXT';\n");

fprintf(f1," STATUS := ' t;\n");

fprintf(f1," ENDP := 'END.';\n");

fprintf(f1," DSET := '$s';\n",name);

/% print out all of the fields that make up the element list %/
fprintf(f1," ELIST := '");
for (iz0; i<loops; i++)
{
if (i>0)
ferintf(f1,"\n + M)
for (k=0; K<40; k++)
fprintf(f1,"%c",elementliist{k+(1%40)1);
fprintf(f£1,"'");
}
if (loops>0)
fprintf(£1,"\n + "),
for (i=0; i<leftover; i++)
fprintf(f1,"%c",elementlist[i+(loops*40)]);
fprintf(£f1,"';\n");

-

forintel(e,n SCR INDEX := 1 70 9d DO\n",areasize); -
forintf(f£1,n AREA[INDEX] := ' ';\n"); RN
fprintf(f1," DATBAS(FUNCT,STATUS,DSET,QUAL, ") ; e
fprintf(f1,"ELIST,AREA,ENDP);\n"); DN
fprintf(£1," END;\n\n"); NG
R W S

} /* end rdnxt */




A Gl Sl DA Ak Aan Al Seg Aol e el su g o

/R111.3.2.4%/ o

':::: /****************!*******!***!***i***!!I!*ll!*!*lll***!ill***l**!*l*l :.:.'
*  DATE: 10/14/85 * -
* VERSION: 1.2 * N
* NAME: sonoroff * R
* MODULE NUMBER: 1.3.2.4 * ;xjx
* DESCRIPTION: This module creates the Pascal code for each * N
* declaration of the SINON or SINOF to TOTAL * ol
* subprocedure within the generated program. * b
* PASSED VARIABLES: schemasize - the number of characters in the # R
* schema definition file. * s
* RETURNS: None * :__f-‘
* GLOBAL VARIABLES USED: None * L
* GLOBAL VARIABLES CHANGED: None * e
* FILES READ: "databasename"sc.dat * tx
* FILES WRITTEN: tcode.pas *
# GARDWARE ZNPUT: /A *
* HARDWARE OUTPUT: N/A * R
*  MCDULES CALLED: None * v
* CALLING MODULES: decl_procedures * i—*—
#* * .
# AUTHOR: Capt Kevin H. Mahoney » "\\
*#  HISTORY: 1.0 (10/5/85) Original Version L v
* 1.1 (10/10/85) Changed parameter from schema size to # e
* num nubs, added 'hold' string, added loop for * Z";':::
\5 * splitting schema into subschema strings * p
* 1.2 {10/74/85) Changed parameter back to schemasize ¥ Na
* and azdded a fscanf to get the number of sub- * -::-{j
* schemas that are in the datatase schema file. * ::::j
* * N
**************l***********!i*i**i********ll**!!l*l**!**!*********!ii/ ;:::::
sonoroff(schemasize) E:
. int schemasize; b
{ e
int i,num subs;
extern FILE *f1; ,t"‘
char hold[50]; [
extern FILE %*f3; t:_':-f:
fscanf(f3,"%d",&num _subs); P:‘,_
fprintf(£1,"\nPROCEDURE SONOROFF(FUNCT:BUFF5);\n"); [:
t fprintf(f1,"™ VAR\n"); NG,
. fprintf(f1," ENDP : BUFF4;\n"); Y
> fprintf(f1," SCHEMA : BUFF%d;\n",schemasize); :-::’:-7‘
fprintf(£1,"\n PROCEDURE DATBAS(%cSTDESCR FUNCT:BUFFS; ",'%'); NN
fprintf(f1,"STATUS:BUFFY4;\n "); g
o3 fprintf(f1,"SCHEMA:BUFF%d; ENDP:BUFFY4); FORTRAN;\n",schemasize); t:
s fprintf(f1," BEGIN\n"); }-{':
¢

Ce
Ce

192

\".\.:
;é
Y




- e aw At g ts agre

S fprintf(£1," STATUS := ' ';\n");
= Yo fprintf(£1," ENDP := 'END.';\n");
. for (i=0; i<num_subs; is+)

{

- /% get next subschema string */

. fscanf(f3,"%s",hold);
. if (i==0) /% first string */
a fprintf(f1,"  SCHEMA := '$s'",hold);
- else
fprintf(f1,"\n + '$3'",hold);
}
fprintf(f1,";\n"); /* end of subschema string assignment #*/
fprintf(f1," DATBAS(FUNCT,STATUS,SCHEMA,ENDP);\n");
fprintf(f1," END;\n\n");
} /% end sonoroff %/
P
P8

2T e a e
. '-"'-".'-

!..

A

193

T 3 S IR A St S A I N A IR B IR SO0 D Gy S R Lo L]

Col JF B BN
o, " Y

P
»

'v".’ )
5 3 B3

PR of
oy
L

(4

L= PRI
O
.

.
-

[/

.I,.l‘l
Y YA

o

AN
ooy o “e *w "o

v
g

SN

SO
SN
L) .5
-

=
2, 7
LR .‘

2

¢
- S

.

0
g
a

- . _® ® v - - - -

PRSI A
*A"

VOO

e

,.rﬁr-.
ey
' d

%



/%111.3.3%/
JRERBREEEREREERERR R RRRR R R RN E RN R R RN RN AR RN R AR RN R RN R RRRRNAR

DATE: 10/18/85
VERSION: 1.4
NAME: totgen
MODULE NUMBER: 1.3.3
DESCRIPTION: Recursive subprocedure that generates the main
body of Pascal code that determines the order of
calls to the TOTAL database.
PASSED VARIABLES: i - the level of recursion
RETURNS: N/A
GLOBAL VARIABLES USED: dset structure array
GLOBAL VARIABLES CHANGED: None
FILES READ: None
FILES WRITTEN: tcode.pas
HARDWARE INPUT: N/A
HARDWARE QUTPUT: N/A
MODULES CALLED: totgen - calls itself recursively fecr each dset®
gen qualifier - generates proper qualifier code*
for up to two comparisons with AAND or OR *
outputalil - generates "output information" code#®
when innermost loop has been executed.
CALLING MODULES: generate_code, totgen

kK A W e e ko W Wk ke %k Kk XK &k

AUTHOR: Capt Kevin H. Mahoney
HISTCRY: 1.0 (10/5/R5) Original Version
1.1 (10/10/85) Created the gen_comparison module from
duplicated code in totgen
(10/14/85) Output format changes
(10/17/85) Added code for determining whether the
dataset key argument is a literal or if it is
a previously retrieved dataset field value.
Also moved comparison qualifier code to the new#
routine gen qualifier and to gen _comparison. ¥
1.4 (10/18/85) Corrected errors in the conditionals *
that determine access type of the dataset. *
In the process, changed strcmp comparisons *
*
*
/

1.2
1.3

A M K K ko ok M ok K K ok we A A M W ok ok ok ok A ak M ok M Ak W ok W N Kk Kk K &
M o ok W ok Nk kW W

into comparisons on dset{i).access_type field.

ERRREEERRRRRERERAAR LR RRRURREER LA BRERARRRERRRRRERRXRRARREFRERERRRRRER

totgen(i)
int i;

{

extern struct dataset dsetl[];
extern FILE #*f1;

extern int maxdset;

int j,k,n,offset,found;

194

s
aty ‘;.‘1

&)

L
foh

g

0
.
o

m’f'f
e
Vo

. ’
B H
.4
i

| ’c.'. .,-".. y

Lol

o

)
ety 'y

g
e
PP A

IR

S L

S
2 pd

i)
[
Ay A

’
P ¥

S
0

g 7-7 , ':'
As".-..ﬁ.\‘-.

)
aghe,
. .

o

A

!

o




e g T O T T v oy Y W T W W W e Ty Y,

if (i >= maxdset)
{

outputall(); /* print out all of the fields #*/

return;
}
if (dset[il.access_type < 4) /* master dataset */
{
if ((dset[i].access_type == 1)}}(dset[i).access_type == 2))
{

/% comparison against a dataset key */

if (dset[i].access_type == 1) /#* the argument is a field */
{
found = 0; /% initialize flag #*/
for (k=zo; k<i; k++)
{

/* search all previously retrieved datasets ¥%/

for (n=0; n<(dsetlk].numflds); n++)
b {
5 /* check all fields of each previous dataset #/
if (!strcmp((dset[k].field[n].name),

(dset[il.comp(0]l.argfld)));

e 2

{
- /% previous field matching argument found #/ R
- . fprintf(£1," KEY%d := S%d.A%d;\n",i,k,n,); R
\s found = 1; a2
' break; /% exit 'n' loop since found ¥/ 8371'
- ) ]
3 ) ]
- if (found==1) :\\:\:\::'
2 break; /* exit 'k' loop since found %/ :{f::
} Al .
- }
) else /* comparison argument is a literal ¥/
i- fprintf(f1," KEY%d := '9s';:\n",

- i,(dsetlil.compl0].arglit));

/* this code is common to both type 1 and 2 access %/

- fprintf(f1," READM%d (KEY%d ,UAREA%d ) ;\n",1i,1,1i);

» fprintf(f1," IF STATUS = 'MRNF' THEN GOTO %d;\n",(3%i));
- fprintf(f1," IF STATUS <> t####%+ THEN GOTO ERRL;\n");

.. fprintf(f1," WITH S%d DO BEGIN\n",i);

offset = 0;
for (j=0; j<(dset(il.numflds); j++)

\': {

N fprintf(f£1," FOR IND%d := 1 TO %4 DO\n",

- Jr(dsetlil.fieldl jl.size));

Q) fprintf(f1," ASd(INDSd] := UAREASd[IND%d + %d];\n",
P J»dsi,j,offset);

. o offset = offset + (dset[i].field[jl.size);




. A wov,w T
AR NS Ohak S e Sl Al A B Sie bl g e -ee Ban it v —— ""T"""'"*""‘—w*v‘ﬁ-f-"‘vv"v-‘ ey Ter vy

N

s TeTATLEE B

}
-7s fprintf(f1," END;\n\n");

/% generate qualifier code #*/
if (dset{i].compnum > 0)
gen _qualifier(i);

/% generate the inner loop for the next dataset #*/
totgen(i+1);
fprintf(£1,"%d: ;\n",(3%i)); /* loop ending label #/

KD T R

} /% end unique master dataset key retrieval #/

else /* sequential search of master dataset is needed #/

! :

fprintf(f1," QUAL%d := 'BEGN';\n",i);
forintf(f1,n RDNXT2d(QUALY d UAREA%d ) ;\n",i,1,i);
fprintf(f1,"%d: IF QUAL%d = 'END.' THEN GOTO 3d;\n",
'; (3*i+2),ip(3*i));
i fprintf(f1," IF STATUS <> '##%%'THEN GOTO ERRL;\n);
- fprintf(£1,"\n WITH S%d DO BEGIN\n",i);
offset = 0;
for (j=0; j<(dset[il.numflds); j++)
{
SRR fprintf(f1," FOR IND%d := 1 TO %dDO\n",
. \» j,(dset[il.field[j].size));
~ fprintf(£1," A9a[IND9d] := UAREA%d[ZIND%d + %d1;\n",
- Jrdsi,5,0ffset);
tf offset = offset + (dset[il.fieldljl.size);
._" }
" fprintf(f1," END;\n\n");

/* generate qualifier code */
if (dsetl[il.compnum > Q)
gen _qualifier(i);

Il g T R

totgen(i+1);

fprintf(£1,"%d: RDNXT%d(QUAL%d,UAREA%d) ;\n",(3*1i+1),1i,1i,1);
- fprintf(f1," GOTO %d;\n",(3*i+2));
. fprintf(£f1,"%d: ;\n",(3%*i));
. }
. } /* end master dataset %/
r
. else /* variable dataset */ KA
:, xe
* .":f%‘
A { .':s“'x
= fprintf(f1,"  REF%d := '%s';\n",i,(dset[i].lkref)); S
) fprintf(f1,"  READVSd(REF%d,S%d.A0,UAREA%d);\n", 1,1, (i-1),1i);
1 -~ fprintf(f1,"%d: IF REAFSd = 'END' THEN GOTO %d;\n", -t
R (3#4+2),1,(3%1)); ST
. AT
- ?f\*
N &:¢§$
< 196 N
] &
:‘l o '.-\ '.-.; ::\ :&:;_-' '\- -\ - e -* g o }-)\ N e e e _\.‘_\ o) \J"’."'.-";\')-“-\_\" ':'."_‘:-":-“:-'-'.\:.'-‘.‘-:.'-'-‘-‘:'-‘ . \ R ,‘5’ N -“.'.,: ‘-. -\':_‘. . .-



A BN S A B 0t e B e A e e e e e e e o o A A s kg

fprintf(f1," IF STATUS <> '####%' THEN GOTO ERRL;\n");
fprintf(£1,"\n WITH S%d DO BEGIN\n",i);
offset = 0;

for (j=0; j<(dsetlil.numflds); j++)

{

fprintf(f1," FOR IND%d := 1 TO %4DO\n",
js(dsetlil.field[jl.size));

fprintf(f1," A9d{IND%d] := UAREAZd[IND%d + %d];:\n",

Jsdsi,j,offset);

offset = offset + (dsetlil.field[jl.size);
} : 5
fprintf(f1," END;\n\n"); AR
]
/% generate qualifier code */ ot
if (dset[il.compnum > 0) ;nlwﬂ
gen_qualifier(i); Lo o
totgen(i+1); <
fprintf(f1,"4d: READV%d ( REF%d, S%d .A0, UAREA%d ) ;\n", Sy

(3%i41),i,i,(i=1),1);
fprintf(f1," GOTO %d;\n",(3%i+2));
fprintf(f1,"%d: ;\n",(3%i));

L e } /% end variable dataset */
l \, } /% end totgen */

4

.

]

:

|~

i ‘.fv:

W

\

\

b

3

i 197
et T e T e e e . S
O IO PR I SR AR 2 R O O, R L




av ws 8 & .

AN Sl Al Al At ol A ,'-‘-“,\'A"' DA Sl A A el el Al aad s Al ik el el i <o Ju b oot

- /E111.3.3.1%/
/**********!**l*****l*****************i*i*i*****&**i*i************i**
*

* DATE: 10/17/85

* VERSICN: 1.0

* NAME: gen qualifier

* MODULE NUMBER: 1.3.3.1

* DESCRIPTION: This module checks to see if the qualifying
* comparison on the dataset is a single or compound
* boolean. Only one conjunction/disjunction is
* allowed for the dataset. It then calls
* gen_comparison to generate the proper code for
» the type of comparison that is made on the field.
* PASSED VARIABLES: i - current datset comparison is for
* RETURNS: None

* GLOBAL VARIABLES USED: dset structure array
* GLCBAL VARIABLES CHANGED: None

* FZLEZS READ: ‘lone

* FZLES WRITTEN: tcode.pas

* HARCWARE INPUT: N/A

» HARDWARE OUTPUT: N/A

* MODULES CALLED: gen comparison

* CALLING MODULES: totgen

*

»*

*

*

*

*

*

AUTHOR: Capt Kevin H. Mahoney

HISTORY: 1.0 (10/17/85) Original Version - created from code
originally in totgen and gen_comparison plus
code to check for ANDs and CRs.

(;3

% o e W Mk ok ok ok ak ok Ak ok A A ok M ak A 3k ak kW ok Kk ok W

HRRRRERERRENERRRRENRRRERRRRERRERRERBRRERRRRRRRRERRRRRRRRRRRRRRREE RN

gen qualifier(i)

int i;

{

char conjunct[4];

int j,n,lit_length;

extern FILE *f£1;

extern struct dataset dset[];

for (n=0; n<(dset(i].compnum; n++)
{
/* check for literals, because temp holders must come first #/
if (tstremp((dset[i).comp[n].comptype),"L"))
{
lit_length = strlen(dset(i].comp(n].arglit);
for (j=0; j<(dsetlil.numflds; j++)
{
/* see which field the literal matches up to #/
o if (istremp((dset{il.field(j].name),
h (dset(il].comp(nl.cfld)))

198

et -~

e P R




.
.
L
)
.

»
L )

EEEAL PP

SIAA . MR

e

ORI

i U

(0""

—

- . e e o m et et e e o e
e A N N T R N R TR e T e T e e

{

/* found, so generate literal assignment code ¥/

fprintf(f1," FOR INDEX := 1 TO %d DO\n",lit length);
fprintf(f1," TEMP4d %d [ INDEX] := S%d.A%d[INDEX];\n"

i,n,i,3);
}
}
}
} /% end 'j' loop %/

/* now check to see if there is an AND or OR #/
/® and generate the appropriate code */

strepy(conjunct,(dset[il.comp(G].isandor));
if ((!stremp(conjunct,"AND")) i (!strcmp(conjunct, "OR")))
{
/* two gualifying comparisons on the field */
forintfr o, IF "y
gen_comparison(i,3); /¥ zepnerate the first comparison #*/
fprintf(f1,") %s \n",conjunct);
fprintf(f1," {(m;
gen_comparison(i,1); /* generate the second comparison #*/
fprintf(£1,") THEN\n");

}
else /%* single ‘comparison #/

{

fprintf(f1," iF ");

-en comparison{i,0);

SrrintfifT,m THINAR";

}
forintf(f1," NOTFOUND := FALSE\n");
fprintf(f1," ELSE NOTFOUND := TRUE;\n");

’

if {(dset{il.access_type <= 2))
/% FEADM with extra qualifier */

fprintf(f1," IF NOTFCUND THEN GCTO %d;\n",(3%*i));
21se

/* sequential or variable read */

fprintf(f1," ZF NOTFOUND THEN GOTO %d;\n",(3%*i+1));

/% end gen qualifier */

199

-

?




A e A A an A S niara acadenat aate e Aoant o vy ’ g W.., y
. . . R A . Pt} & 4 Al A Al e T W R N R R Ty T E T i adigbe . oy

b

: Lo

) '..."-' \\
L. /*::1‘3.30101*/ -
N “.'_. /**i***************************************************************** ) .

, ' » L

DATE: 10/17/85

VERSICON: 1.1

NAME: gen_comparison

MODULE NUMBER: 1.3.3.1.1

DESCRIPTION: This module generates the proper code for the
type of comparison that is made on the qualifying
field, whether it is against another field from a
previously retrieved dataset, or against a given
literal, possibly shorter than the field checked.

PASSED VARIABLES: i - current dataset comparison is for

cnum - current comparison number {(1st or 2nd)

*
*

*

*

*

*

*

*

*

*

*

*

RETURNS: None *
GLOBAL VARIABLES USED: dset structure array ¥
GLCBAL VARIABLES CHAMNGED: None *
FILZS READ: lore #
FILZS WRITTEN: tccde.pas *
HARDWARE INPUT: N/A *
HARDWARE QUTPUT: N/A *
MODULES CALLED: None *
CALLING MODULES: gen qualifier *
*

*

E ]

*

*

%

#*

*

*

%

/

0 T RN

AUTHOR: Capt Kevin H. Mahoney

HISTORY: 1.0 (10/11/85) Original Version - created from code
in totgen plus additional tests for comparison
type.

1.1 {10/17/85) Removed some selection ccde to gen_
qualifier and moved more comparison checking
in from totgen. All temporary literal assign-
ment code was removed to gen qualifier,

Ko ok K A Wk ok ok s ae ok kK ok ok ok K ok ak akk kol alk ok e ok K % K ok

- BURBELRRRERRX LR RRERER SR EAXRXRRLEXERSELE R A XRRNXERERREERREEXXRXEAEES
sen_comparison(i,cnum)

int i,cnum;

4 {
s int j,k,n,found;
g
- for (j=0; j<(dset{il.numflds); j++)
" {
y /* first see which field the comparison is on #/
g if (tstremp((dset(i].field(j]l.name),(dset[il.complcnuml.cfld)))
E /% field found, generate comparison code */

if (!stremp((dset(il.complcnum].comptype),"F"))
y {
f - /* comparison is against a previously retrieved field #*/
= (3
found = 0; SUAD
" L
- foe +
. 200 _”.
. t
- T
.-' o L ) I‘:\\‘-_‘
.'."-"',(\-'.’-"-'-'-"x'.-.';~."."'.'.';"‘;'.' :1’.:.',:.'.;.',: _:.f _t.'-. IR -"'.i:_\:.‘.. \:“.-:‘L\";"(': e \:.' :. N ::' - s ._.‘-_ ;.' . i TREAS \'.'-';'.




W N W = W ==

for (k=0; k<i; k++)

{

/% search all previously retrieved datasets ¥/

for (n=0; n<(dsetlk].numflds); n++)
{
/* check all fields of each previous datsaset ¥/
if (!strcmp((dset{k].field(nl.name),

(dset[i].comp(cnum].argfld)))

{
/* previous field that matches has been found ¥/ 4
fprintf(f1,"S¥4d.A%d %s S%d.A%d", i, ], -
(dset[il.comp[cnum]}.op),k,n); {ﬂ
found = 1; oo
break; /% found, so exit 'n' loop */ jﬁf
} i
} 4
if (found==1) -_j‘
breszk; /% founu, so exit 'k' loop */ Aq
o

1
else /* comparison is on a given literal */
fprintf(f1,"TEMP4d%d %s '%s'",i,cnum,
(dset[il.comp{cnum].op),(dset{il.complcnum].arglit));

}
} /* end gen comparison #/

201




IR A NP e PR AN Al A B4 B it fat ate e it ava i it i L AR M g o s S i el shal Sl P TR, YT Eal Sl e Bl ST T 0 T 1

/RP1103.3.2%/
JERERRERA R AR R RN RN RN RN AR AR RN RN RN RN RN R RN R AN RN RRH
*

*
* DATE: 10/9/85 *
* VERSICN: 1.0 *
* NAME: outputall *
* MODULE NUMBER: 1.3.3.2 *
* DESCRIPTION: This module is triggered when the recursion level *
* of TOTGEN goes beyond the number of datasets to *
* be retrieved. It then generates the Pascal code *
* that will print out the retrieved values to the *
* query result file. *
* PASSED VARIABLES: None *
* RETURNS: None * .
* GLOBAL VARIABLES USED: dset structure array ¥ e
* *
* *
* *
* *
% *
* *
* *
* »
* *
» *
* *
* /

GLOBAL VARIABLES CHANGED: None
FILES READ: lNone

TILZE WRITTEN: tcode.pas
HARCWARE INPUT: li/A

HARCWARE CUTPUT: N/A

MODULES CALLED: None

CALLING MODULES: totgen

AUTHOR: Capt Kevin H. Mahoney
HISTORY: 1.0 (10/9/85) Original Version

6963 I IE I MK I I IE I I K I 6 I I I I I I I IR I 6 I I I I NN N NN -
cutputail(; "
{
extern FILE *f1;
extern int maxdset;
int i,i,linelength;
for (i=0; i<maxdset; i++) /¥* check all datasets */
{
linelength = 0;
fprintf(f1," WRITELN(QRESULT");
for (j=0; j<(dsetlil.numflds); j++) /* check all fields */
{
if (!strcemp((dset(il.field[jl.outind),"Y"))
{
/* field is requested for output %/
if ((linelength + (dset[i].field[jl.size)) < 80)
- {
i linelength = linelength + (dsetl[i).field[jl.size) + 5;
. fprintf(£1,"S%d.A%d,\n",i,j);
: fprintf(f1," ' 'tn), /% output spacer #/
}

P Y else

{




AR AR U S S A N M 3 N T T e N o S o e Y~y =Yy

e e
e

e fprintf(£1,");\n"); N
v fprintf(f1i," WRITELN (QRESULT"); e
fprintf(f1,"S%d.A%d,\n",1i,j); D
fprintf(f1," ' tn); /% output spacer */
linelength = linelength + (dset[i].field[jl.size} + 5;
}
}
}
fprintf(£1,");\n");
}
fprintf(£1," WRITELN( QRESULT) ;\n\n"); P
} /* end outputall */ T

" P
\
4
.
NEASER
'/l"‘ "
s s PUTEI

e

i/ ‘l ‘-
.

LA

L4 "

%
X

a

rads

. »
¢
N

LAY
AN

e
E
R
L
s W
S A
. Y
s o

»
v
.




Appendix H:

Test Query Input and Results

204

"" f..c' ‘
Oy 2 Ja)




Test Query Number One

Roth Query

SELECT ALL FROM Student WHERE (Name = 'Mahoney!')
GIVING Templ

JOIN Temp1, Enrolled-In WHERE (Temp1.SSAN = Enrolled-In.SSAN)
GIVING Temp2

SELECT ALL FROM Temp2 WHERE (Temp2.Quarter-Year = 'FA85') OR
(Temp2.Quarter~Year = 'WI85') GIVING Temp3

JOIN Temp3, Course WHERE (Temp3.Number = Course.Number)
GIVING Templ

PROJECT Temp#4 OVER (Student.SSAN, Student.Name, Course.Number,
Course.Title) GIVING Temp5

_nput File

Result File

AFITDB 062084021 MAHONEY, KEVIN H.

3 EENG793 FA8Y4

STDT ADVANCED SOFTWARE ENG

M WAIV

STDTCTRL

2 062084021 MAHONEY, KEVIN H.

STOTCTRL ZENG588 FAa84

3 COMPUTER SYSTEMS ARCHITECT

Y T WAIV

STDTNAME

28 062084021 MAHONEY, KEVIN H.

Y EENG589 FA84

0 OPER SYS & FILE STRUCTURES

STDTNAME S WALV

L 062084021 MAHONEY, KEVIN H.

MAHONEY EENG587 FA84

XXX MINICOMPUTER/MICROPROC LAB

VCQR B WAIV

v

VCQRCODE 062084021 MAHONEY, KEVIN H.

STDTLKCQ EENG698 WI85

LKCQ THESIS SEMINAR

4 WAIV

VCQRCODE

2 062084021 MAHONEY, KEVIN H.

N EENG646 WIi85

VCQRNMBR COMPUTER DATA BASE SYS

8 WAIV

Y

VCQRIDEN 062084021 MAHONEY, KEVIN H.
205

-—a

o -
PR N
,.'; . *
"' '. s e
l" . .

g
1 4
v

s v

'll
"

/f

-
)

)
(4

14
p
XN

vy T
7,
&

Stk &
.:4 E%

% '.: ‘e

TV . "
e,
%y Ce ' e
»
e

.
Y
s



- [ v o—————— - -
DA AT oS S AN S et o A M et T T Y T W W v T W LW VW v T vy aa b o b al ol St

: S
» "'.:‘.

.‘- l.,.
v e
¢ e,
P Test Query Number One (continued) s
J . ... b

.. . . NS
" Input File Result File RN
- IO

A

. Y EENG685 Wi85 iﬁﬂ'
- Y ADVANCED ALGORITHM DESIGN whe!
VCQRGRAD WALV hva)
2 Pl
Y 062084021 MAHONEY, KEVIN H. N
VCQRIDEN MATH666 w185 O
= PERSPECTIVES IN PROG LANGU o
L U WALV RN
FAB4 ot
OR s

YCGRIDEN (8 TUPLES IN ALL) oL

L
‘ UISS L.
“XX P
MCRS k.
M It

MCRSCTRL :
> :
P MCRSCTRL -
. ( A 8 yas

1

N
: MCRSTITL .
- 50 i

Y S

“ 1 e

R T‘ - gt
ﬁc SCTRL [:

VCQRIMBR
XXX

- L
- heo
- t.

LIS
S t‘ s

.«
LS P

" m
o v
- (RS
- ) "'-_'
.. A
., N
. “Te
’ ."- -
1 rq'.‘w

—

TO
e

'-. -
[
Ball NN
- <
. R
:' 206 !:\" »
o.. AN »
o
= Ry
., {. L)
.l‘ .-..l
- et at R Tt atavaw . P R G - Lt
S R R L LY LRI S, O C ty afetltne,

s . , A .




n I P O oy

:: '.7 Test Query Number Two T
e ».‘
. Roth Query
28 2054 Juery
~: SELECT ALL FROM Student WHERE (Student.Name > *'C') AND
2 (Student.Name < 'G') GIVING Temp?
¥ PROJECT Temp1 OVER (Student.Rank, Student.Name)
GIVING Temp2
Input File Result File
AFITDB 2LT Dxxxxxxx, ZEKI
.~: 1
- STDT HAg Txxxxxx, YASER ALY
M S
:’j STDTCTRL CPT Fxxxxx, PAUL G. e
S 2 E"fi:
. STDTRANK 1LT Dxxx, JUAN E. (S
n'- 3 t. ot
- Y CPT Fxxxxxxxxx, PHILIP B.
R STDTNAME e
S 28 1LT Dxxxxx, WILLIAM M.
o Y P
2 107 Exxxx, STEVEN P. b
STDTNAME DU
. > 2LT Exxxxxxx, ROBERT A {»"}{.
c 2LT Dxxxxx, PAUL J. NN
AND el
< CPT Dxxxxxx, PETER W. | S—
L A
- G LT Fxxxxxx, ROY A. NS
v LXX 2
2LT Fxxxxx, LARRY E. NS
(el ]
- 1ST Dxxxxxx, FRANK W. h
-_?; CPT Exxxxxx, CARLOS R. oy
~ A_“x.:‘
= - tli;:‘
2 ) N
)' n\‘-\
- 1LT Fxxxxxx, MARK L. s
. Fate
» SV
" (37 TUPLES IN ALL) 34
" “" (Last names were deleted for privacy purposes)
= L::::::‘
L 207 B




AL R s SR ARl G s Al A =

f‘
:; Test Query Number Three
o Roth Query
:: SELECT ALL FROM Student WHERE (Student.SSAN = '062084021')
N GIVING Temp1
~ PROJECT Temp1 OVER (Student.Rank, Student.Name)
GIVING Temp2
Input File Result File
) AFITDB LT MAHONEY, KEVIN H.
- 1
. STDT
. M
- STODTCTRL
< 2

. STDTCTRL
. 9
N

- STDTRANK
- 3
- (' -, Y

. CTDTHAME
-2

v

2 :
- STDTCTRL

L
062084021
004

o 208

e
!
S T B o S A I G L0 S R T R SR I SO O e R




Bt A Xt M AR A Bl A A Sl St il A 0 e SO S A DAL e e S e et e e Sre St Sl Sete el SISt S —v e e ' - e Y Tw T Ty e

Test Query Number Four

Roth Query

SELECT ALL FROM Course WHERE (Course.Number = 'EENG')
GIVING Temp1

PROJECT Temp! OVER (Course.Number, Course.Title)
GIVING Temp2

Input File Result File
AFITDB EENGT55 THEORY OF COMPUTATION
1 WAIV
MCRS
M EENG6U6 COMPUTER DATA BASE SYS
MCRSCTRL WALV
2
MCRSCTRL EENG608 POWER ELECTRONICS
8 WAIV
Y
MCRSTITL EENG673 APPLICATIONS OF COMM TECH
50 WALV L
Y RO,
1 ZENG629 ELECTRONIC WARFARE I ko
MCRECTRL WALV RSN
= : '.":.}
L EENG672 OPTICAL COMM & SIGNAL PROC RSS
EENG C WAIV el
XXX AL
ZENG589M OPERATING SYSTEMS -
SENG545 SOFTWARE SYS ACQUISITION
WALV
EENG451 SMALL COMPUTER SYS
WALV
EENG669 TECH APPLICATION SEM
WAIV
- RN
2
EENG600 SEMINAR IN LOW OBSERVABLES .%iﬁﬁ
S WAIV RO
SOV
L

(171 TUPLES IN ALL)

'y

209

P LU R I R e A T A A AL M ST PR R I L R R AT LI I e L L L -.._.‘.‘".
o, .;.,i-,;-.:;.’L'.A-._'-,:’-._’-.;-.“-. - ‘-.1-.;’-., S R AR A AT MR I X A AT a7 o, N s




N i e I s N S -2 A e e SV P it S At S N A Mat Al kit J g A e A e A e e ARSI S A A e e e e a e aon are g o e 2 Y

Test Query Number Five

Roth Query

SELECT ALL FROM Member-of-Section WHERE
(Section Number = 'GCS-85D') GIVING Templ

JOIN Templ, Student WHERE (Temp1.SSAN = Student.SSAN)
GIVING Temp?2

PROJECT Temp2 OVER ( Student.Name)
GIVING Temp3

“E—

' Input File Result File

AFITDB Oxxxxxxx, APARECIDO F.
N SECT Mxxxxx, RICHARD A.
’ M
' SECTCTRL Hxxxxx, JENNIFER J.
B SECTCTRL MAHONEY, KEVIN H.
: 8
- -~ N Txxxxxxx, BRIN A.
O
. SECTCTAL Fxxxx, RICHARD E.

L Mxxxxx, RICHARD G.

GCS-85D

XXX Bxxxx, ALAN J.
I SECL
. i Cxxxxx, JOHN
: SECLSECT
§ SECTLKSE Fxxxxxxxx, DAVID W.
) LKSE
N 2 Wxxxxx, STEPHEN L.
y SECLSECT
- 8 Hxxxxxxxx, CHARLES W. JR.

N

SECLSTDT Fxxxxx, JANICE H.

9
-; N Mxxxxxxx, BRUCE R. S
4 0 "
- STDT Sxxxxx, JAMES E. O,
; M RN
- STDTCTRL Wxxxxxx, JAMES A. harS ALY
- 2 .\_nt_ S
- STCTCTRL Mxxxxxx, STEVEN C. AR
) - 9 A
7 5 .
’ Hﬁf . N Fxxxxxxx, DANIEL J. S:“:{
. S
; 210 NS
:' \q‘?"':'
]
: s

RS

S el e e e e e en e s e e ne o mm em e mL el my aeammie e AL e A= m A A o m v ey e e . SR AN
S G N R T e N N T D A O O O S o R O o o T e e A, R R



2 et

Input File

STDTNAME
28

Y

1
STDTCTRL

F
SECLSTDT
XXX

SRS SR S
S Ut L LS R

Test Query Number Five (continued)

e

Result File

Qxxxxxx, TANVEER S.
Gxxxxxx, DAVID A.
Wxxxx, STEPHEN A.
Wxxxx, GREGORY B.
Wxxx, DONALD R. JR.
Bxxxxx, ROBERT B.
Wxxx, DONALD J.

Mxxxxxx, RONALD A.

Wxxxxxx, ALEXANDER B.

(40 TUPLES IN ALL)

211

AR :-'\ PSSR LT fj.‘.\ . A";“:" Ve )"
40" . 3 o N

(Last names were deleted for privacy purposes)

N \.'.-_» .?-\.,: L ":\"}.“‘-“:-.‘




MaNAket il el el St bed ol Sk A ff fed A Ll S e of

T Test Query Number Six

Roth Query

SELECT ALL FROM Enrolled-In WHERE (Course Number = 'MATHS555')
AND (Quarter-Year = 'FA85') GIVING Temp!

JOIN Temp1l, Student WHERE (Student.SSAN = Temp1.SSAN)
GIVING Tempe

SELECT ALL FROM Member-of-Section WHERE (Number = 'GCS-85D)
GIVING Temp3

JOIN Temp2, Temp3 WHERE (Student.SSAN = Member-of-

Section.SSAN) GIVING Templ

PROJECT Templd OVER (Student.Name, Enrolled-In Quarter-Year)

GIVING Temp5

Znput Tile Result File
AFITDB Hxxxxx, JENNIFER J.
4 FA85
SECT
M Mxxxxxx, KEVIN H.
e SECTCTRL FA85
I \. 2
K| Txxxxxxx, BRIN 4i.
' ! FA85
, SECTCTRL
. = Fxxxx, RICHARD E.
: L FA85
GCS=-85D
XXX Mxxxxx, RICHARD G.
SECL FAES
iy
SECLSECT Cxxxxx, JOHN
SECTLKSE FA85
LKSE
2 Mxxxxxxx, BRUCE R.
SECLSECT FA85
8
N Sxxxxx, JAMES E.
SECLSTDT FA85
: 9
: N Wxxxxxx, JAMES A.
. 0 FA85
' STDT
M Fxxxxxxx, DANIEL J.
i STDTCTRL FA85
2
R A STDTCTRL Wxxxx, GREGORY B.
212

e el Cat P Pt T

'“ﬁf\ﬁup AV

PRt YAt A A A at R e oA - A S s St St i Bt Set b B ek Mgt gt St Jhge B St g

D A T S Tl




2 '.:".
k
b .,
ii Test Query Number Six (continued)
Input File Result File T

2 FA85

STDTCTRL

9 Wxxx, DONALD J.

N FA85

STDTNAME

28 Mxxxxxx, RONALD A.
Y FA85

1

. STDTCTRL Sxxxx, RONALD L. e
| FA85 "

T H.CY S Y S -

™o

SECLSTDT Bxxxx, MORGAN
KLX FABS

YCQR S
v Hxxxxxxxx, STEVEN A. 00
VCQRCODE FA85 .
STDTLKCQ ' 5
LKCQ Mxxxxxx, THOMAS C. RS
3 FA85 T
- VCQRCODE L]
- k' . 2 Dxxxxxx, FRANK W. PRPR
I - N Fa85

TCIFNMBR

i 3 (18 TUPLES IN ALL)
._' N
: VCQRIDEN (Last names were deleted for privacy purposes)
> y

Y

2

VCQRNMBR

L
MATH555
AND
VCQRIDEN

L
FA85
XXX

S aad LTI

’ - 4[..' l" ". "- "‘ .‘. h -'

.

e

B
51

213

T e T T A P e T T T G T e T S T Y AT N e T e e e e T e e T - .
S I L O R N S L SR D RN QUL S DI S AR L Xy TN G e s TR 8.




-

T N N T T N Y O TR .. T”m g P . "

DR A A ARG A C AR S A Al A Al Sl S e A B Jads et e b pad mag o) |

b

)
P
1]
‘e a2 ' e SR

Test Query Number Seven

Roth Query

..4.. ,
S .
Ve : ’ "' K
‘ol o bi.

SELECT ALL FROM Enrolled-In WHERE (Course Number = 'MATH') AND
(Quarter-Year = 'FA85') GIVING Temp!

JOIN Temp1, Student WHERE (Student.SSAN = Temp1.SSAN) AND
(Student.Name < 'L') GIVING Temp2

SELECT ALL FROM Member-of-Section WHERE (Number = 'GCS-85D)
GIVING Temp3

JOIN Temp2, Temp3 WHERE (Student.SSAN = Member-of-

Section.SSAN) GIVING Temph

JOIN Templd, Course WHERE (Templd.Course Number = Course.Number)
GIVING Temp5

“RCJECT Temp5 OVER (Student.Name, Enrolled-In Quarter-Year,
Course.Title) GIVING Tempb

Input File Result File
AFITDB Oxxxxxxx, APARECIDO F.
5 FA85
SECT MATH METHODS OF COMPUTER S
M S WALV
SECTCTRL
3 Hxxxxx, JENNIFER J.
N FA85
] INTRO TO ADA
SECTCTRL WAIV
L MAHONEY, KEVIN H.
GCS-85D FA85
XXX INTO TO ADA
SECL WAIV
v
SECLSECT Txxxxxxx, BRIN A.
SECTLKSE FA85
LKSE INTERACOMMIVE COMPUTER GRA
2 A WALV
SECLSECT
8 Fxxxx, RICHARD E.
N FA85
SECLSTDT INTRO TO ADA
9 WAIV
N
0 Mxxxxx, RICHARD G.
STDT FA85
M INTO TO ADA
STDTCTRL WAIV

214




— SR e A E S AR AT A% A e ncaean B s an el v M At Ll e e e e e S

Test Query Number Seven (continued)

Input File Result File

2

STDTCTRL Cxxxxx, JOHN

2 FA85

STDTCTRL INTO TO ADA

9 WAIV

N

STDTNAME Fxxxxxxxx, DAVID W.

28 FA85

Y APPLIED LINEAR ALGEBRA

2 WAIV

STDTCTRL

= Fxxxxx, JANICE H.

F FA85

SECLSTDT MATH METHODS OF COMPUTER S

AND S WAIV

STDTNAME

< Fxxxxx, JANICE H.

L FA8S

N INTERACOMMIVE COMPUTER GRA
. XXX A WAIV
N\, VCQR

7 : Mxxuzxxxx, BRUCE R.

JCJRCIDE FA8S

STDTLKCQ INTRC TO ADA

LKCQ WAIV

3

VCQRCODE Sxxxxx, JAMES E.

2 FA85

N MATH METHODS OF COMPUTER 3

YCQRNMBR S WAIV

8

N Sxxxxx, JAMES E.

VCQRIDEN FA85

4 INTRO TO ADA

Y WALV

2

VCQRNMBR Wxxxxxx, JAMES A.

= FA85

L INTRO TO ADA

MATH WAIV

AND

VCQRIDEN Wxxxxxx, JAMES A.

= FA85

L MATH METHODS OF COMPUTER S
PR FA85 S WALV
S XXX

215

et .t L I S
I G R N P ANCSTS L SN T . *
At ‘\_‘.‘:j"i.! iy IR, L LAy et




ATl Sl It das ad A Sat R A Al Al Sni St e anslingl S AR Sl i St A A A Nl it s Anib el Sl And Sl Sud Sl Sl Aad Auliel il A Al et Rl A Al b

b

Test Query Number Seven (continued)

Input File Result File
MCRS Fxxxxxxx, DANIEL J.
M FA85
MCRSCTRL MATH METHODS OF COMPUTER S
2 S WAIV e
MCRSCTRL Tl
8 Fxxxxxxx, DANIEL J. s
N FA85 :.\ -
MCRSTITL INTRO TO ADA g
50 WAIV -
Y -
! Wxxxx, GREGORY B.
MCRSCTRL FA85 R
= INTRO TO ADA o
F WALV L
VCQRNMBR =
XXX Bxxxxx, ROBERT B. .
FA85
MATH METHODS OF COMPUTER S s
S WAIV .
Wxxx, DONALD J. e
FA8¢c .
INTRO TO ADA
WAIV
Mxxxxxx, RONALD A.
FA85
INTRO TO ADA R
WAIV e
- 2
Lxx, JOHN M. .
FA85 -
MATH METHODS OF COMPUTER S b
S WAIV b
F‘-
(31 TUPLES IN ALL) o
, s
(Last names were deleted for privacy purposes) g\:‘
“~
o
216

W e e
T L T T T

L T e e e e T e e e e T e e T
.. P S A TP S e B . P .
. R R AR T AR .y LR RO s
2. PO, P 2! WP TR Y/ G PRI PR Y ‘M»\AA;. PR R o




ARG GERESAL L LA LARE RaAS Bl S SALAT AL g As g RS LA A AR g b A A Sl A S A d St & Sk Ad di s MR el e A e g e TR A RAn AR At SR

:
-,
o

e Appendix I: Summary Paper for

The Design and Implementation of a Relational
to Network Query Translator for a -

Distributed Database Manangement System

ABSTRACT: The problem of translating global relational
queries in a heterogeneous distributed database management
system (DDBMS) to the Data Manipulation Language (DML) of the
component database systems is examined. A specific approach
toward a global query manager and the design of the global ol
schema is proposed, and a query translation algorithm for the
conversion of relational queries into the TOTAL network DBMS
DML is presented. A set of sample queries translated by the
program is presented and evaluated.

v, e, v
'

Introduction
Nearly all of the database management systems (DBMSs) in use

- today are one of three general models -- network, hierarchical, and
S
[
relational. The advent of computer networks and the need for common

information distributed across several locations has led to the
development and use of the distributed data base management system
(DDBMS). Most DDBMSs have been tailor-made for the user. However,
several large companies and the government already have ma jor
investments in DBMSs that are often based upon the three different
models. A way to tie these different DBMSs together under a common

schema is needed. This problem was originally identified by Adiba (1)

as the "communication and cooperation of heterogeneous databases".

e SAREATNT S SN SN i SN
s -: o CA L [NCBRNEN . -: . e

The current situation at the Air Force Institute of Technology r
N
(AFIT) is a good example of this "heterogeneous distributed data base 5;:::
S
problem". AFIT has several DBMSs that it would like to tie together N2

o
¥

217

o
....... e s Lo I R Lt R P SR ICIE X S P S e

- - - il e
et e e, C e e T T T L T, Jem. AR R IR A RN S S L A T A R YO WA AN
PN TN I I SO S S e e N o Rt VA S L SR S LSRN s .x;'~.l-_._‘,-.]_\}\“.&\\‘-.-‘.\‘;_\'LQ\\ ‘\SL\"‘AH




using a local network. These DBMSs include TOTAL, a network DBMS,

and several relational DBMSs, including INGRES, ORACLE, and dBase II.

Overview

The heterogeneous DDBMS area that was addressed by this effort
was the development of translators for a "global" query language that
could be used to retrieve information from any of the several
different DBMSs. A single query language makes it much easier for a
DDBMS user to retrieve information without having to know which DBMS
holds the information and what the guery language is for that
particular DBMS. This particular system need be read-only, since the
requirement for the majority of AFIT users is to gain access to the
information, not to update it. Thé relational data model and
relational algebra query language were used as the global data model
and language.

This effort was divided into three stages: background research,
the proposal of generic query translator algorithms, and the
implementation of relational to TOTAL DBMS query translation software.
After the system requirements were defined, the issues of data and
query partitioning and the mapping between the various query languages
were addressed. The final objective was to partially implement query
translation software that takes the information provided by the
relational query, and generates a program encompassing the equivalent

TOTAL DML statements.

~~~~~~

P kS R AL Sk Rall 2l Bl Al Soiofnd Sak Sk Aad Sl fod ‘A LIk Ul abl oA o e Suh S0 Jhe gi-Jaac ai o ha |

’ v

. v
o
PP
P
et

St /,." F

;

HA

W
;, « PR

N " v . f'-'l,:
Pt

s
o

AN
- ]

’ vg-
(3]
¢
e

- "..’ #‘ ""

. .l .
LAY



MABLARCMECH M RS Rate A A A lad Sn i Al A Bt e £ o A=A SR 4t A i b UL o g A D g (/M i - S e et i G A e e e i G opu e o ———r—

Previous DDBMS Development at AFIT

Previous AFIT thesis efforts by Imker (1982) and Boeckman (1984)
involved the initial design and implementation of a DDBMS for a AFIT.

Another effort by Jones (1984) specified that the relational model

would be the global data model for the DDBMS. The main features of e

f: the resulting system are:

1. The DDBMS is a reconfigurable system. Nodes can be added to REURA
or deleted from the system and the central site can be E,_,
- relocated from one site to another. One node functions as the e
1 central site, which maintains the Central Network Data
Dictionary (CNDD). The CNDD maintains information on all data
stored throughout the DDBMS.

R

A
~
o
2. Each site maintains a Local Network Data Dictionary (LNDD) ;,,u
that maintains information on data stored at that site, and an
Extended Network Data Dictionary (ECNDD) that maintains
information on some of the data stored at other sites in the :
. system. The ECNDD is permitted to grow only to a given size, St
Q.‘ usually smaller than the size of the CNDD. Each site is $-s
capable of handling queries and updates (i.e., translation ¢
software is at each node).

3. In the global schema, only First Normal Form will be required,
although Third Normal Form will be used as often as possible.
Duplicate keys (IMS and CODASYL) will not be allowed in
underlying schema, and the partial replication of data must be

N supported, but full replication or no replication are the ';ﬁi
- preferred choices. I3y
N ke

PO

Selection of DDBMS Approach

:‘ii

There were three major criteria for the heterogeneous DDBMS

et ta,
SO

proposed for AFIT. The system should be: (1) able to access data that

»

A g

v,
v
U

¥

spans local databases without the user having to know the actual

- N
. location, (2) able to deal with overlapping local schemas, and (3) t:;s
. g A
.. (e
. reconfigurable to a point that eliminates critical nodes in the DDBMS }ﬂﬂ\

A
1
R Y network. E%




Ealiialiai S T R TR N TN W TN T R TN TR TN TN, ?_.,J'~!_)'.s'-_*a-_'v-_r,‘r_1r_‘r_ R y—y— YA S -y Gt a S

These requirements were matched against the six different
approaches towards implementing a heterogeneous DDBMS that were
defined by Katz in 1981 (10). Of the six approaches, the one that

most closely matched the AFIT requirements was the QOverlapping

Database Prism. In this approach, the local database schemas are

integrated into a global schema organized under a single global model. ;E:?
The user issues the query against this global schema in the DML of the : 
global model, and the system then maps the query into a set of :i,
subqueries against the local databases. The actual location of the }i;;
underlying data is transparent to the user. Ef};

-

Data Partitioning SN

One major problem is the range of data partitioning and
redundancy that the DDBMS should be capable of handling. The
importance of such a capability becomes apparent when the DDBMS must
be able to decompose a global query into the appropriate (and most

efficient) local DBMS queries.

In data partitioning, the global relation that the DDBMS user

L

ey
'oul

g sees can actually be made up of several local relations, also known as 1u:
- d

fragments. According to Ullman (18:411), relations can be partitioned t :
.3 (fragmented) in two ways, vertically and horizontally. In both cases, o

the partitions of the database cannot be assumed to be disjoint. That

is, data in the local relations could possibly overlap each other.

B
syl
e

3 The other problem is redundant data. When integrating several

.

[N Y

S
PR
.

AN

existing DBMSs into a global DDBMS, there may be a large amount of

LARRCREAEN
PR

4
-

(™ redundant information present in the global system. For example,

- v

87

RO
’
R

'T:. _l.;A";

-
Ay 0y 0
e

220

[’/




BTN f R A O N 2 R T S il A A A At otk Al Pt .'1_'. . L S Ealh M e i A S 0 B S Al B ie e ate Tie st ol tad Ak sl ad

.

Ay

. -‘. a

,l .
.

- L information cn a person could be in a personnel database file, a

separate file in a student database, and another file in a payroll

.
.

s

L4
e
S

X database. Most of the information in each database (name, address, {.:J

.

el

age, etc.) is redundant. This falls into three categories: no

redundancy, full redundancy, and partial redundancy.

Partitioning/Redundancy Classes

Ten different classes of partitioning and redundancy classes were Ll

defined. The classes that the system should handle are:

- 1. No Partitioning and No Redundancy. The giver relation is :;ff
- unique. The data is stored as one relation at one site.

2. No Partitioning and Complete Redundancy. The global relation
is composed of one local relation that is stored entirely at a
single site as a complete relation. However, there is at
least one complete duplicate copy of the information in the
\ - DDBMS.

. VYertical Partitioning (No Redundancy). The data is not

. duplicated anywhere, but neither does the entire relation
.. exist fully in one location. Each partition has all of the
relation's tuples, but none contains 21l of the relation's
attributes.

s

4. Vertical Partitioning (Partial Redundancy). Same as above,
but the attributes of the global relation overlap each other
- within the local relations. Knowledge of which attributes
. exist in each local relation could prove useful in a
projection (possibly eliminating the need for a join).

5. Horizontal Partitioning (No Redundancy). Each of the local
. relations possesses all of the necessary attributes of the
= global relation, but no single one of them contains all of the
- tuples of the global relation.

6. Horizontal Partitioning (Partial Redundancy). Each of the
local relations possesses all of the necessary attributes, and
some of the tuples exist in more than one local relation.

7. Vertical/Horizontal Partitioning (No Redundancy). The global
" relation is composed of two or more vertical partitions, one
a0 or more of which are further divided into horizontal

(N
-
AP A I
e
’
n"'

’

221

o
*9 P
‘l

TTE

- . e - T m e D e I I T - BT T PR I e I A\ o % U ST IL T L VL Ata
:-::J-J;€’\”a¢=ﬂni\;\1u“\1xﬂn'\":“Q’~J:{‘¢{" o Pu v o B T A A R A O A O




SRS R AR R I L e CRATACH SA ML Sen e el S A A 5 DACHAGNL A A SR SINe et i Aas ot M A et oo an st st Al ol St st T

- ',%I partitions. For proper recomposition of the relation, the
-~ union of the horizontal partitions must be accomplished before
) the join of the vertical partitions.

8. Vertical/Horizontal Partition (Partial Redundancy). Same as
above, except that the horizontal partitions are partially
redundant, and the vertical partitions could also be partially
redundant.

9. Horizontal/Vertical Partitioning (No Redundancy). The global
relation is composed of two or more horizontal partitions, one
or more of which are further divided into vertical partitions.
For proper recomposition c¢f the relation, the join of the R
vertical partitions must be accomplished before the union of PRI
the horizontal partitions. SR

10. Horizontal/Vertical Partition (Partial Redundancy). Same as
above, except that the horizontal partitions are partially
. redundant, and the vertical partitions could also be partially
- redundant.

Global Query Manager Functions

SN There are five main functions (7:34) of the DDBMS global query

manager: (1) global data model analysis, (2) query decomposition, (3) F‘:_!
- execution plan generation, (4) query translation, and (5) results

.. integration. These five functions are common to all DDBMSs, both

heterogeneous and homogeneous, but the query translation and results ;“T‘!

integration pose special problems in the heterogeneous case.

Global Data Model. The global data model for the DDBMS was .

defined as the relational data model by Jones (9). The requirements P

of the global schema are further outlined in the next section.

Query Decomposition. Since the global model of the AFIT DDBMS is

fi relational, the decomposition of the queries also follows the

relational format. The global relational query will be decomposed

222




I‘I'q. 1 B

-
DR ]
L S N

y Py
fa

N

At

“l _‘I ,ll " .'.' _" 4

i ' -":'.‘_‘\)' 2 [ '-".l S

.
I T T

>
>
%
oo

-
-

ST T Y ALY
. '.'”.r P

MOl Aall Al Al Ak Aot St '(."\"“
. - TN

into a set of relational subqueries against the local databases, which

are viewed logically by the system as relational schemas.

Query Translation. The approach taken by this thesis is that

translation from the global relational query language to the local

DBMS language will be done using the mapping approach, generating a
procedural query that will produce the same result as the relational
query.

Since the user's view of the global schema is a relational

one, the commands that they use should also be purely relational.

Results Integration. The recommendation and approach taken is to

require the query translators to produce results in a canonical format
(7:42). Each separate translator will return the results to the
requesting node in the form of a relation. The advantage of this is
that for "n" local DBMSs, only 2n translators are needed, and the
addition of more systems to the DDBMS would not affect the current

local DBMSs.

The Global Relational Schema

As previously noted, the relational model is used as the global

relational model. The global model must be both schema and operation

equivalent to the underlying models for proper translation of data and

queries. A database is schema-equivalent to another database if there

exists a mapping that maps the schema S, of the second database to the

2

sSchema S1 of the first database such that all constraints in 82, that

are essential in the context of the first database, can be preserved

in S1 (19:89). The resulting schema correspondences are depicted in

223

. -' TR SO S RSN

oy




AR et M A et Sl od S Raibd ab Al ~ate aisibie S Sty e babin g tatibve Bhe ‘2 6 i al ad Nl Sel b

A s Figure I-1. If databases are schema-equivalent, and each operation on
! the first database can be mapped into a set of operations on the
second database without loss of consistency, then the databases can be

said to be operation-equivalent.

bom—— - e e eec———e———- ————— ————— ————
{ Elements of Global Corresponding Corresponding | R
i\ Relational Model CODASYL Elements IMS Elements | e
[ | .

] 1

\ rmen———-——- -——————- ~———— > = = > ————— ———— -

H H
g {
----------- e mm e et e ————————— - ————— - ———————————-—— y
I H Domain ; Occurrence of | Occurrence of | -
R —————- ———————eaa Lt PP L 4 mmm e ~—mmmea—aa : L
. i\ Attribute i Item Name ! Field Name | .
: . S —— bommmmee ~mmmemmeee ; S
N i Relation i Record-Type v Segment-Type i RN
; [EETETE R P b e —— e —c————— tm————— —————— ———— SR
- i Foreign Key i Set-Type | Hierarchical : ol L
! ] i Link-Record-Type! Path i

f Figure I-1. Data Model Correspondence

Local Schema Constraints

The the underlying system schemas must conform to certain

constraints in order that the integrity of the gzlobal schema can be

RN e e,

maintained. In network databases, the schema must conform to the

foreign-key constraint defined by Zaniolo (21:186). In hierarchical

E, databases, the restrictions are: (1) all fields in the schema must be

)

. named uniquely, (2) each segment type must contain a hierarchical key,

j? and (3) the overlying local and global relations generated from a

; hierarchical segment must contain the hierarchical keys of all the

B

g ancestor segments for that segment. These hierarchical keys

RS

:f propagated into the relation can be thought of as foreign keys of the

&g relation. These restrictions were proposed by Vassilou and Lochovsky

o

n:': o ( 19:90)-

o

Q: y

. 22

5

n NS
: R

Yoy e e e % % D T R T AT TP SRR L R Vel S AT TRPULIE N T SISO AR WL IR AT RN T Nt L RN RN P I NI R ] AL G T RTINS »
B T B R R T T S e e S T TN T TN S LR T N0 N
A .

A T
. 'y



J'"'.‘_ PSRRI S TR TN TN VWY Al NI B AN A N B hec Cadaradeel ~!"'_v'.'\“*"~ St b i tah Sl il St Gal g A f Al S I oo A AAC LA G RN 20 4 o At ot o oG JAA il & oAl o

xh..

The Global Relational Query Language

Jones specifiied that the global language would be a relational

.
s

MO
oAg Sl

P

query language, but would not necessarily be any presently designed N

language. As such, no specific query language is required by the
l query translation algorithms presented in the remainder of this
thesis. By basing the query translator on the generic operations
project, select, and join, it allows the potential use of any

l relational algebra or calculus based query language.

Query Translation to Hierarchical DML

E The algorithms used were those proposed by Vassiliou and

Et Lochovsky (19). The target system language is based on IMS, with
i GET-NEXT and GET-NEXT-WITHIN-PARENT as the basic commands, with

i (t: recursive ability assumed for the programming language and system.

These algorithms are neither complete nor optimal, but give a good

start to dealing with the hierarchical translation problem.

Query Translation tc CODASYL (Network) DML

k The algorithms proposed are ones derived from the separate works E%i;&
- [SIOALY
: of Katz (11) and Kuck (12). The processing selection algorithm Eé;ﬁ:
y produces an ordered list of records to be accessed, with the i_;“~
[S AN
E corresponding attributes and access characteristics. This is similar Ei:;:
AR N
E to the Iterative Query Language (IQL) proposed by Katz. tfki;
E Once the most efficient network access sequence has been ?;;
‘ e
E determined, the DML code for that particular access sequence must be §£§:?
; generated. Generation of code was chosen over the use of set routines 7’;ii
% ﬁ?; because of the flexibility that it offers in handling different
225
!

. R PR S N S R R e R Tt L Ll L I T UL T S I LY S S S TPy 34 WAL SR AR A SN
) S ST I A D R0 SRS NN O A S S R C S G0 A C S O AT N




~};f combinations of selects, projects, and joins. The DML generation

algorithm used is based on the one proposed by Katz.

Query Translation to TOTAL (Network) DML

The main thrust of the thesis effort was toward developing a
program to translate relational queries into the DML of TOTAL (a DBMS
marketed by Cincom Systems, Inc.). TOTAL is a network database
management system, but differs from the CODASYL proposal in several
ways. Cardenas (4:218) describes the design concept of TOTAL as being

60 to 80 percent like CODASYL, but with a DML syntax similar to IMS.

TOTAL Data Management Language (DML)

The TOTAL DML is an extension to existing programming languages,

consisting of a series of CALL statements to a TOTAL interface program

«nown as DATBAS. There are three different types of DATBAS calls,
each with its own parameter list. The first, using four parameters, is
for signing onto TOTAL and for opening and closing the database
schema. The second, using seven parameters, is for accessing Master
datasets, and the third, using nine parameters, is for accessing

Variable-Entry datasets.

TOTAL DML Generation Process

The translation process breaks down into three steps: creation
of the structures used by the DML generator, ordering of the
structures into the optimal processing sequence, and the generation of

the source code with embedded TOTAL DML.

226

DR IO S T S S Y O LRI NN --..- TR A ST By -..,. op ot et R T R T NPTRT AT R h A =R T IAR
e S A T e L A s S A o e S T S L A L S P S N e A



« =

L EERAN A Y 0 T, . T

P e

o« 4PFE,T 7. T,

L et

\.

R

"\l. .

- - ¥ S S ] ‘c e PRI ™ ‘_o -‘.h'l‘.-'. R "h'l'l'. .
e R A A e A SR A S A -y

DA At Ml ini stk ALl A A RS Il ub i Ealir it i it i A A Y 4

Dataset Structure Creation. The DML generation algorithms use as :fﬁxﬁ
input a list of data structures similar to Katz's IQL. These

structures contain the information necessary for the generation of

proper DML code. This query information, obtained from the local data

directory in the DDBMS, is as follows:

-' J,:
Query operation S
Name of database--to get list of all datasets required sl
Name and type (master or variable) of datasets PTG
Dataset Key
All required field names for each dataset
Size of all fields
Linkpath and reference names from the master dataset

to variable dataset

Qualifier operators and operands (literal or fieldname) SN

TOTAL Access Ordering. Master data sets are accessed in only two

ways; directly (for an equality comparison on a dataset key) and
sequentially (all other cases). Variable data sets must be accessed
sequentially through the chain beginning with the first or last data
set in the chain. As such, the first dataset retrieved in query must
be a Master dataset. Past this requirement, the problem of access
ordering was not addressed in this effort. The most efficient access

sequence 1s assumed to be present in the input.

Code Generation Algorithms

After the order selection is complete, the structures are input
to the DML code generating routine. The main code-generating
procedure, shown in Figure I-2, is derived from the CODASYL algorithm

proposed by Katz (11).

227

'-\:-‘ Y !,"\'-' ALY ‘-“)ﬂv':n'\-‘ AN \'\ \J\\..--'\-' 'q‘\-\ RO



i it 9 3 - " R T AR A A i e/l e e Y S d e o T Py

procedure TOTGEN(1i)
IF (i > N) THEN DO
Qutput all structure contents to output file
return {to previous level}
endif

IF (Master Dataset) THEN
IF (one-variable equality clause) AND
(Clause is a Dataset Control Key) THEN

create DML string
"READMi(<SearchKeyi>,<UserAreai>)

IF NotFound THEN GO TO LABEL(3#%(i-1))
IF (STATUS (> t¥*%¥%t1) THEN

70 TO ZRRLABEL
<Structurei> t= <UserAreai>"

IF (Structure, .value(j) == qualifier)
THEN tsuccessful)
IF (not successful) THEN GO TO LABEL(3%(i-1))"

TOTGEN(i+1)

create DML string
"LABEL(Z*( =710 ™

ELSE {sequential search - not dataset key}!

create DML string
"Qualifier, := 'BEGN'
DNXT, ' <Glialifier ,<Userdrea >
LABEL! *¥%i:i_13v42): IF ZUALIFIER z="'end of chdin' THEN
GG TO LABEL(Z¥(i-i:}
IF (STATUS (> t#%xxr) THEN
GO TC EZRRLABEL
<Structurei> iz <UserAreai>"

IF {ltructure .value(j) == qualirfier’
THEN (successful)
IF (not successful) THEN CO TO LABEL(3*(i=1)+1)"
TOTGEN(i+1)

create DML string
"LABEL(3%(i=1)+1): RDNXTi(<Qualifieri,<UserAreai>)

! e Figure I-2. TOTAL DML Generation Algorithm

228

FlamsTe & 5 ¥




i M G S0 il v el ol DAL sodh e i M A i aud e oMb ahd el o ey N L and Y vy g s Ty
ary ’ i -7 . Rl LA O AN AT AV A" A A Ac s A e A" LA B A e A oo T AAS Sy el A A

SRR 30 TO LABEL(3*(i-1)42) |
. LABEL(3*(i=-1)): " i
y i
g SLSE {Variable datasets - read chain in sequence}
- create DML string
"<SearchKey,> := <Dataset(i-1).KeyValue>
v READVi(Reference.,<SearchKeyi>,

<User reai>)

I
1
|
]
[}
{
g
i LABEL(3%#(i-1)+2): IF Reference, == 'END.' THEN
: GO TO LABEL(3#(i-1))
i IF (STATUS <> t####r) THEN
- ' GO TO ERRLABEL
‘ i <Structure, > :z <UserAreai>"
i IF _3tructure,.value(j) == gualifier)
| THEN {successful)
1
)
]
i
1
!

IF (not successful) THEN GO TO LABEL(3%(i-1)+1)"
. TOTGEN(i+1)
N create DML string
- o "LABEL(3*(i-1)+1): READVi(Reference.,
] » <Searchkey;>, <UserArea >) _
- 30 TO LABEL. J¥(i-142) ;
ji LABEL(Z*¥(i=1)): " =
* -
= end procedure TOTGEN ;
o e 28 e - + -
o ‘-‘-
Figure -2 CZontinued. TOTAL DML deneration Algorithm {-
.. ‘n
. Subprocedures for DATBAS Calls. Cne of the more restrictive ; '
. .
31spects of TOTAL (from a relational viewpoint) is that the DATBAS e
ji parameters are fixed. This means that for each Jdataset that is to be fﬁ .
- O
- accessed by a translated query, there must be a corresponding declared ??;ﬁ%
i: DATBAS call with the unique parameter declarations. The only way to e
- (el
LR
- implement this and still allow any flexibility in the queries is to pit;}
f'. NS
» F \
- declare each DATBAS call within its own subprocedure, thus "hiding" ”
R N
. ’ that particular DATBAS call from all of the others. This means that a :.Jeﬂ
X t.-".’:‘_.
a A0S

- 229

’
.

.
’
s

o
w?f?%
. ey
RN

D L P S,

s
v_r

'

Py

Sete e
-

I T TR e SRS I e e i N e e e - PN
% L AL et et T P T VL L T U A RN oL S

_ noenn
e R O T R T P AR LG

A P N S N




separate subprocedure would need to be declared for each call to

TOTAL.

TOTGEN DML Generation Algorithm. Once the variable and

subprocedure declarations have been generated, the main body of the
translated query program must be generated. This is handled by the
TOTGEN procedure, shown in Figure I-2, which calls itself recursively
in order to build the proper processing order into the program. In
the figure, the subscript "i" signifies the declaration of variables
Jor the i”h level of recursion, being the same as the number of the

data set that is being retrieved. The angled brackets (<>) signify

values (variables) that are generated for that particular call of

TOTGEN.

“rars’lzation Zoftware Host Mzchine and Languasge

Implementation of the translation software was done on the VAX-11
that 3lso hosted the AFIT TOTAL DBMS. The translator algorithms were
implemented using the C osrogramming language. The DML generator
cortion of the program generates 3 Pascal language program With
2mbedded TOTAL DML statements which, after being compiled and linked

<o TCTAL, sctually execute the guery.

Translator Limitations and Assumptions

The translation software was implemented using several limiting

design decisions and assumptions.

1. The input is assumed to be the information passed to the local
DBMS by the local data directory at the nost node in the
network.

. "
~

AR
o "1 T T
Bl

'
R

..
R
"ﬂ',_l R

y
1)
,‘,l

R E




Dkt I B R A A ISR Al A i R e SRS e b - At B St el A g G ien Y LARASC S 1 Al aeh Mt gn s ona Sest ) oA JAd Saacas & MR- R be e Soumry )

Deg
-t

-

NS Z. The query translator program is czapable of handling multiple
& databases resident on the TOTAL DBMS.

:' 2. Queries are assumed to be input in the most efficient
} processing sequence. The immediate concern was to implement
~ and test software that actually could translate queries.

4, The number of boolean qualifiers on each particular dataset
was limited to two, with only the AND or OR logical _ A
connectives. e

Translator Input and Qutput

There are two input files to the translation program, the query - |
file and the database schema file. There are three output files, the
generated source code, the object code (compiled and linked versions),

and the query resuit file created by running the translated program.

T The following sections examine the two input files and the output
LT result file.
Zz \,

Jztatase ZScnema File. The information in the file is: {°) the

size of the Schema Declaration (in characters), (2) the number of

lines in the Schema Declaration, and (2) the schema information. The

. Tirst two items of information are used to =2ase code Zeneration, the : :
': : ;‘.h“_:'
. Schema size defining the buffer size for calls to TCTAL, zand the line Lo
- gl

count allowing the proper formatting of the schema declaration. The
e actual schema information consists of the T2TAL cptions used and the
- dataset names of the database schema. The file that contains the

schema information for the AFIT database is AFITDBSC.DAT (the database

2 name concatenated with SC.DAT). As more TOTAL databases are tested,

s,

'.-

. additional schema files will have to be created.

.S

N 231 N

.
-
L)

FIARIY, A

NN S RTRY . v L Bt
‘\'Q‘ LSRN .Y Ly * s \-_‘ ..‘\. X

LI SR R AW Tl T g -~ % W) Cd N " RN o '
RTPAATE A AT S SRR RTERY _-'.-. '."\' oo 's ~ et ":.' Ry

'’




i (T}f Juery File. This file contains the juery information that is
“ returned by the LNDD in the DDBMS. The format of QUERY.DAT is:

% Database Name (e.g. "AFITDB")

N Nygber of Datasets (N) in Query

~ 1 Dataset Information

'}3 require additional linkpath and reference information that provides
- the specific association between the Variable dataset and its Master
E \, datasets.

e line, with another line separating each distinct data aggregate

- Query Result File. The query result file is created when the

T T T A T T T N T ey Y ¥y T TV "y~ =~y —w -

Nth Dataset Information

The information for each dataset is essentially the same,
containing the dataset name, field names and sizes, key field name and
boolean qualifier information. There are differences in the formats

between Master and Variable datasets, however. Variable datasets

query f{generated program) is executed. The results are written in a
simple format that separates each "tuple". The requested output from

~ 2zch of the datasets involved in the query is placed on a separate

- “tuple) in the result. For example, if a query requests 3 student

/

name from one dataset, a course title from another, and the grade from

- a third, a resulting tuple might be:
- Smith, John A.

2 Advanced Database Systems

) A=

2

232

S I e R I I T O I  a TSRS A A T AT MY WP Lttt Y o B AR NS
D s % AT e Ry AR SRR L SRR QAT G QY

-
WAy, ,""\J‘ D

T

slalas
NND
N
a2 e,

o8 e,
L4

'l
D
P

4

)
4

D

’'a

X
/o

e



T W TS Tt N NI TS v -
SreT . S N T R N e W W W W W W v T e I ey —ry— vy -

T
This query result file would then be transmitted back to the %ﬁ?
requesting DDBMS node for further processing, possibly to be joined or e

unioned with the results from a partitioned query to another database. J{@

Processing Sequence

The processing séquence of the translator program, TRANS.C, RAA
basically consists of a series of passes down the array of dataset
structures. First, the input from the query file is read in, building ;;;;
the array of datset structures for use by the remainder of the

progrzm. Each dataset is examined, and an access type classification

of 1, 2 (both READM access), 3 (RDNXT), or 4 (READV) is assigned to —

each. Elij
RN

The code generation process now begins. After opening statements i;ﬁi

have been generated, the second pass down the dataset array checks the ;Si;

Zize or zach jataset field and computes literal sices In order to E:{j

e

create the list of sizes for buffer-type declarations in the Pascal &:&S
N

program. Another pass down the array creates record-types for query }%ET

output. A fourth pass through the datasets and 21l fields generates Ejﬁ;

the variable declarations for the program. The fifth pass down the E_':
dataset array generates one subprocedure (for the unigue DATBAS call) Ei—

for each dataset in the query. It is at this point that the database '
b
schema file is read. The sixth pass is made by the recursive module AN

that generates the body of the Pascal program, with other, partial,

searches of the array occurring as needed when computing the fields
required in comparison qualifiers. The seventh complete pass is made

when the recursion stops and output statements are generated.

233

o

R

I
A

Y

- A SR R N (Y -"j - -ifx'. N A A AL A A AR R R L AT T e S S R P S LT T ¢ 3N 2
E..r. LI AP I R NEIERE SEINT IS 35 2 B RAI RO TR 7S S SO AR O ERTAL R RN 'f}m""&i;{{ Im& i




d

Can A i asien on g
LA o

\
LAY
Ry

<

Pl

SRR
tatLt

“ .

at.

Preooar e

NS

v‘l.c’

2

o AT, ,'.. o0’ '..'... RSTH! *.’w..'\. \. ROTASCARRARS RN R \}..' ST .,--_w; YOS ‘:'-'-;'713'--..

.

i i Al it St il e s AN S i A ST NS Ban e St e e e e B A

At this point, the final code statements are generated and the
generated source code file is closed. What remains now is to compile

and link the program to TOTAL, execute the object code, and return the

result file to the user.

Test Query Translations

Once the translation software was implemented on the VAX, a set
of sample queries was run to test the operation and efficiency of the
both the C translator/generation program and the generated Pascal
program. The TOTAL database chosen for program testing was a subset
of the AFIT Data Base (AFITDB), which is designed to handle the
scheduling of classes, maintain student, faculty, and thesis
information, and to track order information on textbooks. The portion
2f the AFITDB that was used consisted of four Master datasets and two
Jarisble datasets, for a total of six datasets in the subschema. The
datasets used were:

3TDT - Student Master Dataset

SECT - Student Section Master Dataset

MCHS - Courses Master Dataset

MQTR - Quarters Master Dataset

VCQR - Variable Course-Quarter Dataset

SECL - Section Leader Variable Dataset
The specific test queries were chosen to represent a wide, but normal,
range of queries that could be expected in the system. There were
seven sample queries, involving from one to five of the six datasets
in the schema. These seven queries were:

1. The courses that student "Mahoney" took in the Winter 1985
quarter, and is enrolled in for the Fall 1985 quarter.

234

..
L XA &,

8 f"t"." "l

oy

L )

S
Y
-~
~

PN 2
-y

l'l'
ey
« &

#

N
>
I:Q'




USRS A S A AR S A RS EACAR A IS A A A AT AU Sl S A AT Al A A S AR A AN A Ak At 0 Al B A And A d At n WSl

" e
b By
b Sas
<« .o
s kﬁ?ﬁ
N 2. The name and rank of all AFIT students with last names that begin S
ORI with D, E, or F. N
' .- n:v;‘.
v !. !h
- 3. The name and rank for the student with student number "XXXXXX".
. . R
" : . . _"‘:"-
- 4. All course offerings of the Electrical Engineering Department. ;n{?
- N
N 5. The names of all the students in student section GCS-85D. e
o .

6. All the GCS-85D students that are enrolled in the Fall 1985
offering of course number MA555.

7. The names of all GCS-85D students with last names beginning with
T 'A' through 'J' that are taking a MATH deparment course in Fall g
; 1985, with the associated course title. e

inalysis of Quervy Translation and Zxecuticn

Stopwatch timing was done on all seven queries for each of the

- steps of query translation and execution: translation of the query §\_4
- file, compilation of the generated code, linking the code to the TOTAL ﬁﬁi;
o A DBMS, and executing the query. A graphical illustration of the query

\s

.- e oy - T
~iminzg resulis

™

is shown in Figure I-2, o

INNMMMND
. )
L’ P R U

-

105
- =
: 5 |
(V)
- w 60oF - . S e .
=z
= as
. % 30 . Pa q
. - - é‘i X
:j 15"..¢/ . N s - 2
° ' 2 stnv N MBEF? © !
U -
Bl TRANS RUNTIME % TCODE COMPILE -
- 3 TcoDE LINK 53 TCODE RUNTIME a3
: Sh
%
. &" q
b < Figure I-3. Total Processing Time For Query Execution SN
o
M .\*SJ

. 235

PP At S,

"

Ll

LT N o PR N I D0 AT ST T T G Ot (0 o PR ORI b3 S iy f L




AL AN o/ o A i e
ShESe e

Test inalysis

Most of the execution times did not reveal any surprises. Query
3, where a single record was retrieved by use of a key, was extremely
fast, running in just over a second. The speed of this fastest query
was expected. However, the slowest query, Number 6, was not
anticipated. It ran for over 79 seconds, nearly three times as long
as the next longest query. Complexity of the query might be the
obvious answer, but this query did not involve the highest number of
datasets (That was Query 7, which used five datasets, and which ran
only 18.44 seconds). It appears that the difference lies in where the
qualifications appear in the processing order of the query. In Query
6, the qualifications appeared in the last few datasets retrieved. .In
Query 7, the qualification on the second dataset retrieved sharply
recguced the amount of sequential searching required. The time it
takes for the query translation process obviously differs by a wide
margin from query to query. One cannot draw conclusions about the
2fficiency of such a query translator from a small sample, but some
points can be drawn from these seven queries.

First of all, the length of the first three translation steps is
fairly equal, even for the most involved queries., What varies widely
is the time it takes to actually execute the query, but this is the
case for all DBMS queries, not just translated ones.

It is apparent that the criteria for ordering the processing of
datasets in a query (which was omitted from this partial

implementation) should be expanded to include an analysis of where the

&
e qualifications lie in the processing order. Some knowledge about the
236
TGRS LSRN RS AL QOO TR B By Tyl 5 X 18 X AL £ 1 IR CU K SRR CONAL I RP™ T PE2X

.

v -
o

v
.

*

-
ey
2

Vi phat s s
s
.
'y
P

)

r

"
F
. l-,'.
AR



.

fre—— AR A A At At A S S bt B Al M el S Sl AP S

%}i' relative size of the datasets would also be useful. The combination
of these two factors would help to reduce the execution time of the

translated program.

Conclusions

Query translation in a heterogeneous distributed database system

is a very real problem. The work of this thesis has indicated that
this solution is not without its limitations. However, even if the
translation of queries is not currently a particularly responsive

solution, it is still the best approach short of converting the E'?:Z
underlying local databases into a homogeneous system. It appears to %x::~
be the only way that the "ad hoc" qualities of relational query

languages can be preserved in a non-relational system. This thesis

i];‘ has shown that the translation of global queries into a different
uncerlying CBMS query language is indeed possible. However, this }523§
effort has just scratched the surface. Future research into iigbg
distributed databases, both heterogeneous and homogeneous, will ii;;

hcpefully continue to expand the body of knowledge 2oncerning database

systems.

237

N B e B e e S S B i G R e T e N e TV NN



E

R P . Ya T aTe e @€ ¥
.'T'\[.":‘ ave e e 8

. 2
B AR
!‘l .o

DAL N

Bt W

TR

» @ '.".
A

S T
s

1.

12.

T D S s S S g M B g e e S

Bibliography

Adiba, Michel and Portal, Dominique. "A Cooperation System for
Heterogeneous Data Base Management Systems," Information Systems,
3 (3): 209-215 (1978).

Bernstein, Philip A. et al. "Query Processing in a System for
Distributed Databases (SDD-1)," ACM Transactions on Database
Systems, 6 (4): 602-625 (December 1981).

Boeckman, John G. Design and Implementation of the Digital
Engineering Laboratory Distributed Database Management System, MS
Thesis, GCS/ENG/84D-5. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, December
1984,

Carderas, Alfonso F. Data Base Management Systems. Boston:
Allyn and Bacon, Inc., 1979.

Cardenas, Alfonso F. and Pirahesh, Mir H. "Data Base
Communication in a Heterogeneous Data Base Management System
Network," Information Systems, 5 (1): 55-79 (1980).

Date, C. J. An Introduction to Database Systems, (Third
Zdition). Reading, Mass.: Addison-Wesley Publishing Company,
Inc., 1082,

Gligor, Virgil D. and Luckenbaugh, Gary L. "Interconnecting
Heterogeneous Database Management Systems," IEEE Computer, 17
{(1): 23-43 (January 1984).

Hevner, iAlan R. and Yao, 3. Bing. "Query Processing in
g

Distributed Database Zystems," IEEZE Transactions on Software
“ngineering, 5 (:): 177187 Mgy "379),
g, 2 12 37"

Jones, Anthony J. Analys:s and ZJpecification of a Universal Data
Model for Distributed ™ita Bage Cystems, MS Thesis,
GCZ/ENG/84D~11. 3chool of Zngineering, Air Force Institute of
Technology (AU), Wright-Pzattarson AFB, OH, December 1984,

Katz, Randy H. "Software Architectures for Heterogeneous
Database Management," Proceedings IEEE COMPSAC 81. 33-42. IEEE
Press, New York, 1981.

Katz, R. H. "Compilation of Relational Queries into CODASYL
DML, " Improving Database Usability and Responsiveness, edited by
Peter Scheuermann, New York: Academic Press, 1982.

Kuck, Sharon M. A Design Methodology for a Universal Relation
Scheme Implementation Via CODASYL, PhD Thesis. The Graduate
College, University of Illinois at Urbana-Champaign, 1982.

238

RS MR T e Lo 2 2 AN 200 Tt - ian 20/

YO
. »

et e

.

.

A

-



D TANPUNE RN LN

i R e LISIPARLIFLIRAE

DL Lt B R e R e et o T Tl g S S0 N

9

vy

v e TR

12

4.

15.

16.

8.

19.

)
]

2.

Release 2.0. Cincom Systems, Inc., Cincinnati OH, 1979.

Larson, James A. "Bridging the Gap Between Network and
Relational Database Management Systems," IEEE Computer, 16 (9):
82-92 (September 1983).

P10-0002-01. TOTAL Users Manual for the VAX-11 Minicomputer,

Relatlonal Database ;1§tem, MS The31s, GCS/EE/79 T8. School of

Englneerzng, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1979.

Takizawa, M. and Hamanaka, E. "Query Translation in Distributed
Databases," Information Processing §Q, edited by S. H. Lavington.
Amsterdam: North-Holland Publishing Company, 1980.

Tsichr_.zis, D. C. and Lochovsky, F. H. Data Base Management
Systems. New York: Academic Press, Inc., 1977.

Ullman, Jeffrey D. Principles of Datatase Systems, (Second
Edition). Rockville, Md: Computer Science Press, 1982.

Vassiliou, Yannis and Lochovsky, F. H. "DBMS Transaction
Translation, " Proceedings IEEE CCOMPSAC 80. 89-96. IEEE Press,
New York, 1980.

Wdedertz, James A. The Design and Implementation of a Centralizea
Jdatz Directory for a JlotF‘OutEd Database Wanggoment System, MS
Thesis, GCS/ENG/85D-24. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, December
1985.

Zaniolo, Carlc. "Design of Relational Views Jver Network
Schema," Proceedings A.C.M. SIGMOD Conf. 72. 179-i90. (1979).

239

\\
LRI A LD WAL A A o R Pt Y T . PP pR— YY)
gy~ - LY 3 Y A 2
ol L o . 0 -* " Bl \ - l,, !. ‘?.‘.\\\ .b‘ 7. .' D L] :' ,., j,, LG



LA ST o

i

e VITA

-
LY

Captain Kevin H. Mahoney was born on 26 July 1955 in Stillwater,
Oklahoma. He graduated from high schocl in Stillwater in 1973 and
attended Oklahoma State University until May, 1977, at which time he
enlisted in the USAF. Following Basic Military Training School at
Lackland AFB, Texas, he attended the Computer Operations School at

' Sheppard AFB, Texas until September, 1977, when he was assigned to the

Air Force Manpower and Personnel Center (AFMPC), Randolph AFB, Texas.
While assigned to AFMPC, he was selected for the Airman Education and

Commissioning Program (AECP), returning to Cklahoma State University

T e

in August, 1979. He received the degree of Bachelor of Science in

Computing and Information Systems from Oklahoma State in May, 1981.

l (];' In May, 1981 he entered Officer Training 3chool (Q0TS) at the Lackland
Trzining Ainnex, Texas, where he received nis USAF commission in
August, 1981. He was immediately assigned to Headquarters, Air Force

l Communications Command, Scott AFB, Illinois, where he remained until

entering the School of Engineering, 3dir Force Institute of Technology,

in May, 1984.

Permanent address : 624 Ute Avenue

Stillwater, Oklahoma 74075

Tt T UL AL L TN T YT e

" e UnEs 6 2 T T




[t SOl S A A A /Al I At Rl A= Il e el et A el Sl S Sl Sat Si-ieg A Aoa 4 N N N W B R W o O N W WS Yy e

o

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

T KW

REPORT DOCUMENTATION PAGE
e REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
28, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

.
7
.

'
als’a

Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE D Y : -Le
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Y

AFIT/GCS/ENG/85D-7

6s. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL |7a. NAME OF MONITORING ORGANIZATION
(If applicable)
School of Engineering AFIT/ENG
. 6¢c. ADORESS (City, State and ZIP Code) ) 7b. ADDRESS (City, State and ZIP Code) .
l T
I Air Force Institute of Technology - ‘a
' Wright-Patterson AFB, Ohio 45433 R
. - 'A‘
B8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER T
) ORGANIZATION (1f applicable;
- 8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. s
! PROGRAM PROJECT TASK WORK UNIT ; i
ELEMENT NO. NO. NO. NO. ARSI

- 11. TITLE (Include Security Classification)
See Box 19
' g ~'2. PERSONAL AUTHOR(S)

Kevin H. Mahoney, B.S., Capt., USAF
|13._ TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

i
At

A ), R
)

MS Thesis FRAOM To 1985 December 251
16. SUPPLEMENTARY NOTATION

l‘7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR. Heterogeneous Distributed Database,
09 02 Query Languages, Query Translation,
1 Network Database Management System

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

d Title: THE DESIGN AND IMPLEMENTATION OF A
' RELATIONAL TO NETWORK QUERY TRANSLATOR
FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM

: Tgpeonid o pppts i W AFEH
: E: /6 oAV 4
~. Thesis Chairman: Dr Thomas C. Hartrum 8. WOLAVER

Wright-Panerson AFB OH 45433

- o

- 540 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

uncLassiFiEo/uNLIMITED XR same as apr. O oTic users [ UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL
D (Include Area Code)
T,

513-255-3576 AFIT/ENG

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED T
SECURITY CLASSIFICATION OF THIS PAGE t{-}_z_

Thomas C. Hartrum

TSN IR LRI Y B T Y T e sy S T S e T )

- e e - e e M TRty em oty amn e, . - -
T * o, - ERI A L AN N S ALY -y o

- e A
YOS (TR AN «



. e . .

EEEEs y 4 3oV

~ IR

LRI e T

COLCL TR T T T e

’Zl"'"ﬁ-.‘b T2 7.

L RCUIC s i oy

UNCLASSIFIED .

SECURITY CLASSIFICATION OF THIS PAGE

19.

A translation program was implemented for the
translation of generic relational queries into the Data
Management Language (DML) of the TOTAL data base mangement
system. The objectives of this thesis were to propose and
detail a method of supporting a global relational query
language for a heterogeneous distributed database
management system (DDBMS), design generic query translators
for the translation of global relational queries into local
hierarchical and network DML, and partially implement
translation software for the conversion of relational
queries into TOTAL DML.

The initial portion of the thesis presents an overall
analysis of data partitioning, query decomposition and
global query management in the DDBMS. Specific proposals
are advocated concerning the specific approach to be taken
toward a global query manager and the design of the global
schema over current databases.

The second portion formalizes the assumptions and
constraints present in the global relational model, and
presents generic algorithms for the translation of
relational queries into hierarchical and network DML.

The last portion details the implementation and
testing of the relational to TOTAL translator. The
approach used was to take information returned from the
local data directory of the distributed database in
response to a relational query, an3<*tompif3*«that
information into a generated Pascal program containing the
TOTAL DML commands.v Only the actual code generation
portion of the soft&are was implemented. Query parsing,
query optimization, ahd results integration were not
addressed. A set of sample queries translated by the
program were presented and evaluated.

» N
N
\
\\
N\

UNCLASSIFIED

SELUAITY. AL ASEIEIn AT
;

e ¥ . C e T N . -~ LA N R P S o
AR YRS LRERLRTAY BN ] "'-V-“ ‘-.',’.!\._ RS AEHES CES Y \'-5 e

L g




e T N & g LT " e . » v - . ~
> a0 N .. o - PRSI - e N
- e - I NN B

AR

v IR O e e

gy ~r e ¥ 5 A e AT N LNy
rovay g D e (S v-d}-y Ot ?o.‘»wf.'.‘r'*_‘:'?‘:'.v ACPT) )‘ ;r",’- . _‘ - {\’ - . - " s * » '
SN Tl ,».‘»;M;,A,_‘:';-‘;"ﬁﬁi:?'r" IR '."‘n-:.r“'f.'r;f:'(':a* O TRESEACI T2 AT .:.::.')_,,f_‘.-‘.'!:f o, RGN




