
AO-A164 S13 THE DESIGN AND INPLENENTATION OF A RELATIONRL. TO1/
NETIEORK QUERY TRANSLATOR.. (U) AIR FORCE INST OF TECH
:RIGHT-PATTERSN AFI OH SCHOOL OF ENSI.. K H NAHONEY

IUNCLASSIFIED DC 95 AFIT/GCS/E 0/95D-7 F/G 9/2 ML

I Ihhhhhhhh

* ~ ~ ~ ~~~ -IL L2 -- --.- -- -- 5 ~ -

1.6.

11111 , 1.0-t I) 328~n 15-
3361

* ________________.±A ~

OF .

H ESG AD!PLMN0TCNC
RELA T OAL O NEWOR QUEY TRNSLTOR OR

LL

ELECTE

DEARIT NIMLMENTEATN FOFCA

RELATOAIR TONIORVQERIY TASAO O

DIRSTOCIBUNTIDDTABAE MANAGEENTOSYOTE

Capain 2 1SA04

- A

", : '-AFIT/GCS/ENG/85D-7 i ...

~.5'...."

THE DESIGN AND IMPLEMENTATION OF A
RELATIONAL TO NETWORK QUERY TRANSLATOR FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

TH ESI S

.L

Kevin H. Mahoney --

Captain, USAF

AFIT/GCS/ENG/85D-7 EB E3CW6

Approved for public release; distribution unlimited

.k

. S*ES* SS **

AFIT/GCS/ENG/85D-7

THE DESIGN AND IMPLEMENTATION OF A

RELATIONAL TO NETWORK QUERY TRANSLATOR FOR A

DISTRIBUTED DATABASE MANAGEMENT SYSTEM-

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree

of Master of Science in Computer Systems -

Kevin H. Mahoney

Captain, USAF

December 1985

Approved for public release; distribution unlimited

i ", Preface

The purpose of this study was twofold. The first purpose was to -.

analyze and define the requirements for a universal, or global, query

language for use in a heterogeneous distributed database management r.4

system, and to propose query translation algorithms based on the use

of the relational model as the global data model. The second task was

to design and partially implement translator software for translating

relational queries into data manipulation language of the TOTAL

network data base management system.

I would like to acknowledge the support and encouragement that I -

received from my thesis advisor, Dr. Thomas Hartrum and from my

reader, Dr. Henry Potoczny. I would also like to thank Dr. Gary

Lamont for the use of the Information Sciences Laboratory VAX-il, and

Capt Dave Gaitros for his much-needed help in learning the intricacies

of the TOTAL DBMS and AFIT Data Base.

Finally, I would like to thank my wife, Mickie, and the rest of

my family, for their constant understanding, support, and

encouragement, without which I could not have finished this work.

Accession For Kevin H. Mahoney

- NTIS OT A&I

E- TA?;.c E r -

.. : By(..4 .""..
Unnuno-'Il>.d F-

'. U *t c. .. ' t I C/. ..

." Ava I I t Zi it v , .-- 3 +.-

" - "DJ~t J-.:: .,." -..P

]i] (i ;Dist-

.- € ° ,

Table of Contents

% Page

Preface....................

List of Figures vii .'

List of Tables x

Abstract. x

I. Introduction 1

Background. 1
Problem Statement 2
Scope of Effort 3
Assumptions 3
Summary of Current Knowledge 4
Approach. 4
Sequence of Presentation. 5

ii. Heterogeneous DDBMS Approach Selection.....

1%Approaches Toward Heterogeneous DDBMSs.6
Database Terminal 7
Database Window.......
Database Prism...... 7
Windowed Database Prism 8

Choice of Heterogeneous DDBMS....
lInker and Boeckinan Theses 9
Jones Thesis. 9
Roth Thesis. 10

II. Data Partitioning and Redundancy. 12

Partitioning of Relations. 12
Vertical Partitioning. 13
Horizontal Partitioning. 13

Overlapping Partitions 13
Vertical Disjoint and Overlapping 14
Horizontal Disjoint and Overlapping. 14

Overlapping Attribute Inconsistencies. 14
Redundancy of Data 15

Full Redundancy 16
Partial Redundancy 16 -..

Partitioning/Redundancy Classes. 17

IV. Global Query Management in the DDBMS. 26

Global Query Manager Functions 26

SIN.?- - . ~*Ii

Global Data Model. 26
Query Decomposition. 27
Execution Plan Generation. 27
Query Translation. 28 -

Results Integration. 28
Query Management in the AFIT DDBMS 28
Global Data Model. 29 *

Query Decomposition. 31SExecution Plan Generation. 31
Query Translation. 32
Results Integration. 33

V. Global Schema and Query Language. 35

Jones' Global Relational Model 35
Normal Forms 35
Keys 36
Duplication oInrmato............3
Distributed Information. 36
Network Constraints. 36
Hierarchical Constraints 36

Formalization of Jones' Constraints. 37
Schema Equivalence 37
Operation Equivalence. 38

-.. Relational Schema Constraints. 38
Hierarchical Constraints 39
Network Constraints 40L.

The Global Relational Query Language %Z

VI. Relational to Hierarchical (IMS) DML Translation . . . 42

Projection. 42
Selection 43

First Case. 43
Second Case. 414
Third Case 414

Join. 45

WCategory 1 Join 46 --

Category 2 Join 48

VII. Relational to Network (CODASYL) DML Translation . . . 50

Query Efficiency 51
Access Path Generation and Selection 51

Starting Record Selection. 52
Access Path Characteristics. 52

Intersection-Free Processing Orders. 53
Path Queries 54
Tree Queries 54

x-It Processing Selection Algorithm. 55
Ordered Record List 56

iv

DML Generation Algorithm 57
Query Restrictions for Simplification. 61
Minor Optimizations. 61

Example Translation. 62
Creation of Ordered List. 64
Code Generation Process. 65
Generated Code 66

VIII. Relational to TOTAL DML Translation 68

Comparison of TOTAL and CODASYL. 68
Schema Terminology 68
Data Structure. 69 -

Data Structure Implementaion...........69
Access Methods 70
TOTAL Data Management Language (DML)........70

TOTAL DML Generation Process 71
Dataset Structure Creation71
Ordering of the Structures 72
Code Generation Algorithms. 74

Driver Program 75
Subprocedures for DATBAS Calls 75
TOTGEN DML Generation Algorithm. 75

IX. A Partial Implementation of the TOTAL Translator . . . 791 Translation Software Host Machine and Language . 79
Translator Limitations and Assumptions 80

Query Input. 80
Multiple Databases 80
Dataset Processing Order81
Queries Allowed. 81
Boolean Qualifiers 81

Maximum Datasets in a Query. 82
Translator Input and Output.83

AFITDBSC.DAT File. 83
QUERY.DAT File 84
QRESULT.DAT File 86

Processing Sequence. 86
The AFIT Data Base (AFITDB). 88 .-

Test Subschema of the AFITDB 89
Description of Subschema Datasets. 89

Test Query Translations. 91
Analysis of Query Translation and Execution 95. . .. 9

p. Analysis 97
Conclusions. 99

X. Results and Conclusions 100 *~

Overview of the Thesis 100
6 ~Accomplishments .0......101

Recommendations fo Further Research. 103

Final Conclusions and Observations. 104

v!I

Appendix A: Glossary of Terms. 106

Appendix B: TOTAL Data Management Language 108

Appendix C: Roth Relational System RETRIEVE Procedures ... 121

Appendix D: Structure Charts for TRANS.C Program 123

Appendix E: Data Dictionary for Structure Charts 132

Appendix F: Configuration Management for TRANS.C 164

IAppendix G: TRANS.C Program Listings 166

Appendix H: Test Query Input and Results 204i

Appendix I: Summary Paper for the Design and
Implementation of a Relational to Network
Query Translator for a Distributed
Database Management System 217

Bibliography. 238

Vita. 240

v

List of Figures

Figure Page

1. Class 1 Partition 17

2. Class 2 Partition 18

3. Class 3 Partition 19

4. Class 14 Partition 19

5. Class 5 Partition 20

6. Class 6 Partition 20

7. Class 7 Partition 21

8. Class 8 Partition (Horizontal Overlap Only) 22

9. Class 8 Partition (Horizontal and Vertical) 22

*10. Class 9 Partition 23

I 11. Class 10 Partition (Vertical Overlap Only). 2 4

-12. Class 10 Partition (Vertical and Horizontal). 214

13. DDBMS Query Management Functions and Levels 29

U 14. Projection Translation Algorithm .1 ... 43

15. Selection Translation Algorithm (First Case). 414

16. Selection Translation Algorithm (Second Case). 45

17. Join Translation Algorithm 1 46

*18. Join Translation Algorithm 2. 47

19. Join Translation Algorithm 3. 48

20. Order Selection Algorithm 55

21. CODASYL DML Generation Algorithm. 58

22. Relational Schema for Medical Database. 62

23. CODASYL Medical Database. 63

vii

24 . E.xample Generated DML 66

25. Dataset Structure 72

26. Code Generation Driver. 714

27. TOTAL DML Generation Algorithm.76

28. TOTAL Schema for Test Database................88

*29. Relational Schema for Test Database 91

30. Code Generation and Compilation Times 96

31. Translated Code Execution Times 96

32. Total Processing Time for Query Execution 97

. %-

list of' Tables

Table Page

1.Types of DDBMS Systems 6

2. Data Model Correspondence 37___
4

j.CODASYL and TOTAL Schema Terminology. 69

4.Comparison of CODASYL and TOTAL DML71

5. Query Processing Time (in seconds). 97-

k44

r:.
P:

ix

Abstract

A translation program was implemented for the transli-zion of

generic relational queries into the Data Management Language (DML) of

the TOTAL data base mangement system. The objectives of this thesis

were to propose and detail a method of supporting a global relational

query language for a heterogeneous distributed database management

system (DDBMS), design query translators for the translation of global

relational queries into local hierarchical and network DML, and

partially implement translator software for the conversion of

relational queries into TOTAL DML.

The initial portion of the thesis presents an overall analysis of

data partitioning, query decomposition and global query management in

the DDBMS. Specific proposals are advocated concerning the specific

approach to be taken toward a global query manager and the design of

the global schema over current databases.

The second portion formalizes the assumptions and constraints

present in the global relational model, and presents generic

algorithms for the translation of relational queries into hierarchical

and network DML.

The last portion details the implementation and testing of the

relational to TOTAL translator. The approach used was to "compile"

the relational query into a generated Pascal program containing the

TOTAL DML commands. Only the actual code generation portion of the

software was implemented. Query parsing, query optimization, and

* results integration were not addressed. A set of sample queries

translated by the program were presented and evaluated.

xI:

....... *i*..

I. Introduction

Background

Nearly all of the database management systems (DBMSs) in use -..

today are one of three general models -- network, hierarchical, and

relational. The hierarchical Information Management System (IMS) was 4

the first major DBMS, introduced by IBM in the 1960s. Efforts to

standardize DBMSs led to the CODASYL standard, a network DBMS known as

the DBTG model (after the CODASYL Data Base Task Group). This stan- 4

dard was introduced in the late 1960s and facilitated the standardized

development of many new DBMSs using the network model. However, at

about the same time, E. F. Codd proposed a DBMS based on the L.

mathematical principle of the relation. The relational DBMS was born,

and continues to be the object of most data base research and new

product development to this day.

At the same time that these developments were taking place, the

use of data communications, or computer networking, was growing

throughout industry as a whole. The need for common information

distributed across several locations (for example, account information

at a bank with several branches) led to the development and use of the

distributed data base management system, or DDBMS. Most of these

systems were tailor-made for the user. However, several large

companies and the government (especially the government) had already

made major investments in DBMSs, which often times were based upon the

different models (relational, network, hierarchical). A way to tie

these different DBMSs together, using a network, was needed. This

* . . I,

"-,', :.,'X' ; _=.''/.•,' Z .'_;' + ' Z L'£ D L: "-L,.'_.'.." .". .* ." "." "'," " " ' -""-"".""--._-"J.",--'.1.' -.''_<?,' :.-S" ," ' J

'.* .'-'

-'"problem was originally identified by Adiba (1) as the "communication

and cooperation of heterogeneous databases".

The initial problem to overcome was that the DBMSs usually ran on

different computers. However, with the implementation of computer

networks, it became possible to tie all of these DBMSs together.

Today, even with networking, the practical distributed use of the

available DBMSs is still very limited. Users must still know which

specific system has the information that they seek, and they must also

be able to use that particular DBMS's query language in order to

access the information.

The current situation at the Air Force Institute of Technology 1I.i
(AFIT) is a good example of this "heterogeneous distributed data base

problem". AFIT has several DBMSs that it would like to tie together

using a local network. The AFIT DBMSs include: TOTAL, a network L

DBMS, running on a VAX 11/780 computer using VMS, several different

relational DBMSs, including INGRES on two VAXs running UNIX and the

one running VMS, ORACLE on a Harris minicomputer, and dBase II on

several CP/M-based microcomputers. Each of these systems stores or

has the potential to store information needed by the faculty, staff,

and students of AFIT.

Problem Statement

Several efforts have been made or are currently underway to tie

these heterogeneous data bases together. However, one major area yet

to be addressed is the lack of a "universal" or "global" query

language that could be used to retrieve information from any of the

2
...

several different DBMSs. A single query language would make it much

easier for a user to get needed information, without having to know

which DBMS holds the information and what the query language is for

that particular DBMS. The purpose of this thesis is twofold; to

propose a method of implementing this capability for the AFIT

distributed data base, and to implement a portion of the system that

will translate "global" relational queries into the data manipulation

language (DML) for the TOTAL DBMS.

Scope of the Effort

The research and specification will be for a read-only system,

one capable of executing typical relational queries (project, select,

and join). The initial need for the majority of current AFIT users is

to gain access to the distributed information, not to update it.

The partial implementation will be to develop the translator to

the TOTAL DBMS DML, since the AFIT Master Data Base (which is imple-

mented using TOTAL) is the most widely used of any of the various AFIT

data bases.

Assumptions

The relational model and query language will be used as the

universal model and language. The reason for this choice is outlined

in Jones' thesis (6). For the partial implementation of the TOTAL

translator, the Roth Relational Database query language will be the

universal language used. There are two reasons for this choice:

First, Roth is already being used as the DBMS query language on the

3

LSINET. Second, translators have already been developed to convert

Roth queries to dBase II and INGRES language queries.

The query translation will be one-way from the global relational

language to the local DBMS query language. It is assumed that all

queries will originate in the Roth language and then will be

translated into the local DBMS query languages. Local DBMS queries

will not be translated into the global language and then back into

another local language.

Summary of Current Knowledge

Several research efforts are being made in this area, but there

is a lack of recent publications. The majority of documented research

appears to be for the period 1976 through 1980. The major studies

conducted were at the University of California, Los Angeles (UCLA),

the Computer Corporation of America, Grenoble University in France,

" - and the Japanese Information Processing Development Center (JIPDEC).

Several other research projects also have been done on various aspects

of heterogeneous DDBMSs, and this thesis draws heavily upon this

previous research. Most of the available literature concerns the

architecture and data mappings (schema conversions) of such a system. 22
Research into the mapping of queries does not seem to be as common.

Approach

This effort was divided into three basic stages; background

research, high-level design of the query translator algorithms, and

the implementation of the relational-TOTAL translation software.

After the system requirements were defined and analyzed, the issues of

-. ., ..)
,.'• - : - .,,.:-.

query decomposition and mapping between the various query languages

were addressed. This was done by tracing the flow of query

transactions through the distributed data base network. The final

objective was to partially implement query translation software that

takes the information provided by the relational query, and generates

an equivalent program encompassing the required TOTAL DML statements. ' .,

Sequence of Presentation

This thesis is organized into ten chapters. Chapter Two covers

the current knowledge on heterogeneous DDBMSs in depth and proposes an

approach for the AFIT DDBMS. Chapter Three examines duplication and .""

fragmentation of information throughout the DDBMS. Chapter Four

addresses the global query manager and the decomposition of queries.

Chapter Five defines the relational query language and restrictions

that are placed on the DBMS schema. Chapter Six describes the

mappings to IMS DML, and Chapter Seven describes the mappings to

CODASYL DML. Chapter Eight describes the mappings to TOTAL. Chapter

Nine describes the partial implementation and testing of the

relational to TOTAL translator. Chapter Ten contains the final

conclusions and recommendations.

* .

.< ,.5

• % oH

-. -,,,.,-

-..

II. Heterogeneous DDBMS Approach Selection

introduction

Before proceeding with the problem analysis, the various types of

heterogeneous DDBMSs that have already been proposed and/or developed

should first be surveyed. The six types of DDBMS defined by Katz (10)

will be used to describe the heterogeneous DDBMS alternatives, one of

which will be chosen as the approach to follow. That decision is then

reinforced by the following discussion of the major points of four

preceding AFIT theses whose work in relational and distributed data

bases formed much of the initial direction and foundation of this

thesis.

* Approaches Toward Heterogeneous DDBMSs

:n 1981 Katz defined six different approaches towards imple- '

menting a heterogeneous DDBMS, based upon ongoing research in the
"-" ~*...;

field. These approaches, and their respective major attributes, are

shown below in Table 1.

+--

integrated
separate disjoint overlapped

-- - - .------------------------ +-----------------------

single Database Database Database
global Terminal Prism Prism
model

I- - - -.----------------------- 9-----------------------
multiple Database Windowed Windowed
global Window 1 Database Database
models Prism Prism

--

Table 1 - Types of DDBMS Systems (10:36) ii!" "

6-2[,...Ii
"" 6 r..' '

* ~ * I .3

"

Database Terminal. The Database Terminal system would be one

that uses a global data model and query language, but in which the

various database schemas are not integrated. This gives a common

access method to different databases. One example of this type of ., .\.

system is proposed by Date (6:449-468).

Database Window. The Database Window is similar to the Terminal

system in that the separate database schemas remain unintegrated, but

differs in that several models can be used as the global model. For

example, relational DML could be used to access a network database or

network DML could be used to access a relational database, both on the

same terminal. Zaniolo (20:189) discusses some of the issues

involved, but no prototype system has yet been proposed.

Database Prism. The Database Prism differs from the above

approaches in that the local database schemas are integrated into a

global schema organized under a single global model. The user issues

the query against this global schema in the DML of the global model.

The system then maps the query into a set of queries against the local

databases. The actual location of the underlying data is transparent

to the user. Katz chose the term "prism" because the system splits a

query into different parts much the same way that a prism splits a

beam of light into several colors.

The Database Prism can be further divided into two classes. The

local schemas can either be disjoint or they may overlap. If they are

disjoint, the system is much simpler to implement. If they overlap,

then there is the problem of dealing with possibly subtle differences

% . ,

. .7

- - * -*-°.. --.

-*$" between the same data stored at different databases. The MULTIBASE .. "

and POLYPHEME systems are proposed overlapping Database Prisms.

Windowed Database Prism. The Windowed Database Prism is where

the features of both the Window and Prism systems are combined. The

local database schemas are integrated into a single global schema, but

this global schema may be accessed through several different data

models and DMLs. This system is also divided into two classes, for

disjoint or overlapping schemas, with the same inherent difficulties

as the Prism for overlapping data. The major research into this type

of heterogeneous DDBMS is taking place at U.C.L.A. (5).

Choice of Heterogeneous DDBMS

Given the aforementioned different approaches to implementing a

heterogeneous DDBMS, which one is the most appropriate one to use?

There are three major criteria for the heterogeneous DDBMS proposed

for AFIT:

I. Be able to access data that spans local databases without
the user having to know the actual location.

2. Be able to deal with overlapping local schemas.

3. Be reconfigurable to a point that eliminates critical

nodes in the DDBMS network.

These requirements most closely match the Database Prism approach,

which is the method proposed by this thesis. Not surprisingly, this

is also the method that previous AFIT theses dealing with distributed

databases (summarized below) have been heading towards.

8"-.

KL% .;* ..* * ...* * * ..

Tmker and Boeckman Theses

The AFIT theses by Capt Eric Imker (1982) and Capt John Boeckman

(1984) involved the initial design and implementation of a DDBMS for

the AFIT Digital Engineering Laboratory (DEL). This work is presently

being continued by Capt James wedertz. The main features of the

system initially proposed by Imker and expanded upon by Boeckman (3)

are as follows:

Iq
1. The DDBMS is a reconfigurable system. Nodes can be added

to or deleted from the system and the central site can be
relocated from one site to another.

2. The central site maintains the Central Network Data
Dictionary (CNDD) which maintains information on all data

stored throughout the DDBMS.

3. Each site maintains a Local Network Data Dictionary
(LNDD) that maintains information on data stored at that

site.

4. Each site maintains an Extended Network Data Dictionary
(ECNDD) that maintains information on some of the data r .

stored at other sites in the system. The ECNDD is
permitted to grow only to a given size, usually smaller
than the size of the CNDD.

5. Status information tables are maintained on every site in
order to determine if the site is active or not.

6. Each site is capable of handling queries and updates.

Jones' Thesis

The thesis by 2Lt Anthony Jones (1984) involved the analysis and %

specification of the universal data model and Data Definition Language

(DDL) for a heterogeneous DDBMS. Jones' thesis provides the founda-

tion of this thesis by his choice of a relational model as the global

41t DDBMS model. NOTE: The use of Jones' term ffuniversal" for the data

-%%%

9for..
; 9

model and language corresponds to the term "global" in this thesis.

This change was done to avoid possible confusion with the Universal

Relation model described by Ullman (18:317-346). The major features

of the system proposed by Jones (9) are as follows:

1. The Relational Model was chosen as the global data model
for the DDBMS.

2. The DDL was specified for data translation to and from
the CODASYL model (network), the IMS model

(hierarchical), and the System R model (relational).

3. A Universal Data Base Administration Center (UDBAC) was
proposed to handle the formation of new databases,
deletions and updates of data, security issues, and other
DDBMS policies. This UDBAC maintains a very powerful
role in the running of the system.

4. There would be a seperate UDBAC computer with relational
power that would be used to assemble intermediate results
before routing the final product to the requesting node.

5. Only First Normal Form will be required for the global
model, although Third Normal Form will be used as often
as possible.

6. Duplicate keys (IMS and CODASYL) will not be allowed.

7. Partial replication of data must be supported, but full

replication or no replication are the preferred choices.

8. Only the "manual insertion class" will be allowed for
data that is stored in an underlying CODASYL database. -

Roth's Thesis

The thesis by 2Lt Mark A. Roth (1979) partially implemented a

relational database system on a microcomputer. His thesis was used as

supporting research for this thesis in regards to the query language. ..

The Roth DML (a relational algebra) was used as the global DML in

Boeckman's partial implementation of the DDBMS. The query parsing

10 , "i

,.." .-" "° -', .".,'.' .% ..- .,. > ., ".. .• ..- .-.... ... ' ..-.. -.tj~ ., q"• - r

methods that Roth used (a forest of binary trees with pointers to

attribute lists) were used as the basis for a simple global query

parser for the DDBMS that was implemented by Wedertz.

Summary

A quick review of the approaches defined by Katz and the

preceding AFIT thesis work indicated that the heterogeneous DDBMS to

be implemented will be of the "Database Prism" type. The next three

chapters of this thesis are a more detailed discussion of the

requirements that the DDBMS must meet in order to achieve an

effective implementation of a read-only global query language.

1..

!-I -'

.° . -

.-1.?

1""1"

.....................................-m.

IIi. DATA PARTITICNING AND REDUNDANCY

Introduction

This chapter discusses the partitioning of global relations into

"fragments" across the various data bases of the DDBMS. This is a

very real concern that will most probably be present in any DDBMS that

is created from existing local databases, but is also an important

consideration in DDBMSs (both homogeneous and hetero- geneous) that -_

are designed from the ground up. This chapter is not a discussion of

the "best" way to partition the data -- that task is not a function of

the system, and is best left to the data base administrator for the

finalized DDBMS.

What is discussed in this chapter is the range of data parti-

tioning and redundancy that the DDBMS should be capable of handling.

The importance of such a capability becomes apparent when the DDBMS

must be able to decompose a global query into the appropriate (and

most efficient) local DBMS queries. That aspect of the partitioning

problem will be covered in the next chapter.

Partitioning of Relations

As discussed in the previous chapter, the global relation that

the DDBMS user sees can actually be made up of several local

relations, also known as fragments. According to Ullman (18:411),

relations can be partitioned (fragmented) in two ways, vertically

and horizontally.

12

-- '. °-"--

"' '-'[-''-:-''-""-:-'"-'','"-.'. -%'"'"- ',..'.'' : '. " " '<" " -" ' -" '" " ." " "' - "'" -" -" ."". • ', .-". ".'" "--" . -.. "."" -2"
". -, • '3-3. " • , : -, - .-'W k,, .' . . -'%-'-'''' ._. ',' ._ '' . E . "-' ' '.,. - 2 -_," _

-. -flrr rr-r~-r~ x - w-o- ,

Vertical Partitioning. Vertical partitioning is when the set of

attributes for each of the partitions is a subset of the global

relation's attributes. It is so named because if one views a relation

as a table, then the partitions would represent vertical columns of I
the table. The method of composing the partitions into a single

relation is by using the natural join, which implies that each

fragment must contain an attribute that is shared by at least one

other fragment.

Global Relation: R X R2 ... R
2 n

Horizontal Partitioning. Horizontal partitioning is so named

because the table (relation) is being partitioned by rows, or tuples,

thus creating horizontal layers of tuples. These fragments each

contain the same attributes. The partitions are composed into a

single global relation by using the union operator.

Global Relation = R U R

Overlapping Partitions

in both of the above classes, the partitions of the database

cannot be assumed to be disjoint. That is, data in the local

relations could possibly overlap each other. For the following

examples, assume there is a single global relation consisting of

attributes "a", "b", "c", "d", "e", and "f", with attribute "a" being

the key for the relation.

p. 13

.7p

-' - . -. -U'A

* '. o."

Vertical Disjoint and Overlapping Partitions. If the relation

is vertically partitioned into disjoint partitions (relations) R1 , R2 ,

and R3, then the intersection of each relation's set of attributes

(not the tuples), denoted by RiA, would show:

R A n R A n R A = [al
(a being thelkey needed o effect the join)

However, if the partitions were not disjoint, and attributes "b"

and "d" overlap between them, then the intersection of the sets of

attributes would show:

RIA fl R2 A f B3 A (a,b,dI

Horizontal Disjoint and Overlapping Partitions. If the relation

in this example was horizontally partitioned into disjoint relations

R, R2 , and R', the intersection of the relations' tuples (not the

attributes) would show:

RB n B2f B3 R n1 (the empty set)

if the partitions overlap, then the intersection of the

relations' tuples would show:

R n R2 R [- {one or more tuples}
(tuples exist nmore than one partition)

Overlapping Attribute Inconsistencies

Overlap of attributes in vertical partitioning could cause

additional difficulties. According to Katz (10:37), when the schemas

of local databases overlap, a way must be found to identify possibly

- 14 ""

7 .2 ' .''
S.- - -.-.-. -., . . - .° , . - . . . , . .: .. ,.,

•. " _.-.4

-- I

subtle differences between data stored about like objects within

different databases. This incompatibility can take two forms; like 4

data with different local attribute names, and/or actual data

discrepancies such as the difference between "red" and "scarlet".

The first condition, different attribute names, must be addressed

through the data dictionary for the DDBMS (not within the scope of

this thesis). The data dictionary would take the global attribute

name as input, and return each of the associated local attribute names 4

to the system for further processing.

To handle the second condition, Katz (10:38) proposed the

creation of a separate database known as an "integration schema",

where values of attributes that are used in comparisons can be

examined to determine if there are other valid data values, such as

"scarlet" being the same color as "red". This method could also be

used to make data conversions, such as meters to feet, degrees Celsius

to degrees Fahrenheit, and so forth.

Redundancy of Data

The previous sections discussed the partitioning of data within

the DDBMS. The other problem that must be addressed is how to handle

the redundancy of data. When integrating several existing DBMSs into

a global DDBMS, there may be a large amount of duplication, or redun-

dancy, present in the global system. For example, a person could have

a file in a personnel database, a separate file in a student database, .

and another file in a payroll database. Most of the information used

J,

15

". - -. ., . ., -... - .-. . -... .. .-.,.,,.,. .,-. .. - .. ,- . , .. , . .. e . ,- , . •" '2, ". " " ."

in each database (name, address, age, etc.) is redundant. This type

of data redundancy falls into three categories: S

1. No Redundancy - The data is unique within the DDBMS.

2. Full Redundancy - Each relation is fully duplicated at L:C&
least at one other location, and possibly across several
locations.

3. Partial Redundancy - Part of a relation's attributes
and/or tuples are duplicated elsewhere, but a
complete duplicate set of the data does not exist.

Full Redundancy. In the case of full redundancy, the redundant

information can exist as exact duplicate relations, with the same

domains and cardinality. Or the duplicate data could be a subset of I .

another, larger, relation. Redundant data could exist across several

partitions, which could also be duplicated. A relation could be both

fully and partially redundant at the same time, if there exists at

least two full copies, plus at least one partial copy, of the ..

relation. The possible combinations are nearly endless.

Partial Redundancy. In partial redundancy, there are even more

possible combinations. The most prevalent form of partial redundancy

occurs when vertical or horizontal partitions of a global relation I

overlap, creating duplicate attributes or tuples, respectively, within

the relation. For effective processing, the DDBMS should be capable

of addressing all these types of redundancy, since they will most

likely be present in some form, especially when the DDBMS incorporates

existing local DBMSs.

16. % ~

r.-. C,,*u -,,'rr r r . "-

Partitioning/Redundancy Classes

Now that the basics have been outlined, what different types of

partitioning and redundancy should the DDBMS be capable of handling?

The next few pages define ten partitioning/redundancy classes that the

system should be designed to handle. The attributes of the relations

are listed as "a", "b", "c", "d", ... "z", with "a" considered to be

the key attribute (possibly a composite key) of the global relation.

Separate local relations are denoted as "LRel" with a numbering

subscript. Each class is accompanied by a figure showing a graphical

representation of the partitioning. Note that in vertical

partitioning, the duplication of the key attribute(s) is not

considered redundant, since it is needed to effect a join of the

partitions.

Class I - No Partitioning and No Redundancy. In this class, the -

given relation is unique. The data is stored as one relation at one

site. in Figure 1, the global relation is the same as the local

relation.

Global Relation Local Relation
abc d e abc d e

Figure 1 -Class 1 Partition

17 '

Class 2 No Partitioning and Complete Redundancy. In this

class, the global relation is composed of one local relation that is

stored entirely at a single site as a complete relation. However,

there is at least one complete duplicate copy of the information in

the DDBMS.. The duplicate relation(s) may be stored as a single

relation at one site, may be a subset of a larger relation, or it may

be partitioned. In Figure 2, the global relation can be found in its

entirety at three different sites, the third of which (LRel3) is a

subset of a larger local relation.

Global Relation LRel VLRel2V...VLRelN

Global Relation LRell LRel2 LRel3
a b c a b c a b c a b" c d

Figure 2 -Class 2 Partitions

Class 3 - Vertical Partitioning (No Redundancy). In this class,

the data is not duplicated anywhere, but neither does the entire

relation exist fully in one location. The global relation is composed

of vertical fragments, and there must be a foreign key (or the global

key) present in each of the fragments in order for the natural join to

occur. For example, in Figure 3, the global relation is vertically

partitioned into two local relations. The "(b)" in LRel2 signifies

* - that the foreign key for the join is attribute "b", which is present

%NI
18%

•.. -_

•~11 *U III1mEEWEIUUUUBIUUJLEWE .- -i

.. %

Global Relation LRell LRel2
a b c d e f a b a d e f (b)

.
D"

..

Figure 3 - Class 3 Partition

in both LRell and LRel2. Attribute "b" is not considered redundant,

as it is needed to effect the join.

Global Relation= LRel1 N LRel2 N ... N LRelN

Class 4 - Vertical Partitioning (Partial Redundancy). In this

ss, attributes of the global relation overlap each other within the

--, local relations. The duplicate attributes are eliminated in a natural

join, but knowledge of which attributes exist in each local relation

could prove useful if only part of the global relation's attributes

are to be projected in a query (possibly eliminating the need for a

join). In Figure 4, attributes "c" and "d" overlap, in addition to

the global key attribute "a".

Global Relation = LRel 1 LRel 2 N ... N LRel N N.

Global Relation LRell LRel2 ;..
a b c d e f a b c d e f (a)

Figure 4 Class 4 Partition

19 .IZ

I.-

Class 5 -Horizontal Partitioning (No Redundancy). In this

class, each of the local relations possesses all of the necessary

attributes of the global relation, but no single one of them contains

all of the tuples of the global relation. Figure 5 shows the

horizontal partitioning of the global relation.

Global Relation LReI1 U LRel 2 U ... LRel N

a b c d a b c d
Tuple# Tuple#

Global 2 LRell 2
Relation 3 3

5 LRel2 5
6 6

Figure 5 - Class 5 Partition

Class 6 - Horizontal Partitioning (Partial Redundancy). Here

each of the local relations possesses all of the necessary attributes,

and some of the tuples exist in more than one local relation. In

Figure 6, tuples 4, 5, and 6 overlap.

Global Relation LRelI U LRel 2 ... U LRelN

a b c d a b c d
Tuple# Tuple#

11 . -

Global 2 LRell 2
Relation 3 34 4

5 5

6 6
7 LRel2 7
88

Figure 6 - Class 6 Partition

20

[- -%" %

- Class 7 - Vertical/Horizontal Partitioning (No Redundancy). This

class is a combination of classes 3 and 5. The global relation is

composed of two or more vertical partitions, one or more of which are

further divided into horizontal partitions. For proper recomposition

of the relation, the union of the horizontal partitions must be accom-

plished before the join of the vertical partitions. In Figure 7, the

global relation is partitioned into three local relations, LRelI/LRel2

and LRel3 forming the vertical partitions, with LRell and LRel2

partitioned horizontally.

Global Relation (LRel I U LRel 2) LRel 3

LRel3
a b c d e f a b c d e f (a)

Tuple# Tuple#

Global 2 LRell 2
Relation3 3

144
55

7 7
8

Figure 7 - Class 7 Partition

Class 8 -Vertical/Horizontal Partition (Partial Redundancy).

This class is a combination of classes 4 and 6. The global relation

is composed of two or more vertical partitions, one or more of which

are further divided into horizontal partitions. What is different in

this class is that the horizontal partitions are partially redundant,

and the vertical partitions could also be partially redundant.

However, processing for both is the same as for the previous class.

21

• -...
".;.''- '-<., - :. '.".,;-r',.',:' ' "'-:''.-'.J., -".,''.',,: f "-'.",-'-?- ;;," -:.', '. ' '- -. -"-.2:'2 . .g ', 4'. .. ,. :,'-:.-".., :, .- ", -

in Figure 8, tuples 3, 4, 5, and 6 horizontally overlap. 7n Figure 9,

attribute "c" also overlaps vertically.

Global Relation (LRel ULRel)N LRel1 2 3

LRe13
a bocd e a bc d e (a)

Tuple# Tuple#

Global 2 LRel1 2
Relation 3 3

14 4$

5 5
6 LRel2 6
7 7
8 8

Figure 8 -Class 8 Partition
(Horizontal Overlap Only)

LRel39.

a bocd e a b c d e (a)
Tuple# Tuple#

Global 2 el 2
SRelation 3

14

77
8 8

Figure 9 - Class 8 Partition
(Horizontal and Vertical Overlap)" -

Class 9 Horizontal/Vertical Partitioning (No Redundancy).

This class is a combination of classes 5 and 3. The global relation

is composed of two or more horizontal partitions, one or more of which'-

are further divided into vertical partitions. For proper

22

Zr

8 8p

recomposition of the relation, the join of the vertical partitions

must be accomplished before the union of the horizontal partitions.

In Figure 10, the global relation is partitioned into three local

relations, LRel1/LRel2 and LRel3 forming the horizontal partitions,

with LRel1 and LRel2 partitioned vertically.

Global Relation (LRel 1 LRel) U LRel 3

LRell LReI2

a b.c d e a b c d e (a)
Tuple# Tuple#

Global 2 2

Relation 3 3
4 4-
55"

6 6
7 LRel3 7
8 8
9 910 10 "

Figure 10 -Class 9 Partition

Class 10 - Horizontal/Vertical Partition (Partial Redundancy).

This class is a combination of classes 6 and 4. The global relation *.-,

is composed of two or more horizontal partitions, one or more of which '.,

are further divided into vertical partitions. What is different in

this class is that the horizontal partitions are partially redundant,

and the vertical partitions could also be partially redundant.

However, processing for both is the same as for the previous class.

In Figure 11, attributes "c" and "d" vertically overlap. In Figure

12, tuples 4, 5, and 6 overlap horizontally as well. .'.-

Global Relation (LRel1 N LRel2) U LRel3

23

LRell LRel2

a b c d e a b c d e (a)
Tuple# Tuple#

22
Global 3 3
Relation 4 4

5 5
66
7 7
8 LReI3 8

9 9

Figure 11 - Class 10 Partition
(Vertical Overlap Only)

LRell LRel2
a b c d e a b c d e (a)

Tuple# Tuple I

2 2
Global 3 3Relation 4 4 .

5 5 . -
6 6

7 7
8 LRel3 8 ..-

9 9

Figure 12 - Class 10 Partition

(Vertical and Horizontal Overlap)

Summary

In this chapter, the different types of data partitioning and

redundancy that are possible in a distributed database built from

existing DBMSs were examined. These issues are important for the

decomposition and optimization of queries (and updates) across the

DDBMS, which is the subject of the next chapter. Ten different

classes of partitioning were defined, and the global relations of the

24 -. '

Fi

°° = ° ° ° ° ' ° ° " " • " ° " ° ' ' • ° " ° ° - " ' ' 'K ; "' "

system that fall under these classes will need to be identified by the

DDBMS data dictionary at the time of the query. Information returned

by the data dictionary will be used for the decomposition of queries

and recomposition of query results in the DDBMS.

4

25 .-.

:V. Global Query Management in the DDBMS

Introduction

In the previous two chapters, the different types of distributed

databases and the type of data partitioning that they must handle were

outlined. In this chapter, the global query manager part of the DDBMS

architecture is examined. The majority of the DDBMS architecture has

been previously defined by Boeckman (3) and Jones (9), and the major

points of each were outlined in Chapter 2. What is presented here is

a closer look at just the query handling aspects of the system.

First, the general aspects of a global query manager are addressed,

and then specific correlations to the AFIT DDBMS are discussed.

Global Query Manager Functions

According to Gligor and Luckenbaugh (7:34), there are five main

functions of the DDBMS global query manager: (1) global data model

analysis, (2) query decomposition, (3) execution plan generation, (4)

query translation, and (5) results integration. These five functions

are common to all DDBMSs, both heterogeneous and homogeneous, but the

query translation and results integration pose special problems in the

heterogeneous case. The next few sections give a brief overview of'

each of these functions.

r Global Data Model. The global data model is the critical element

of the DDBMS global query manager. Through the global schema, it

provides the foundation for both the global view and the global query r \

.~ language presented to the system user. Key to the global data model %

26

I : . ._, ,,.o,. -'- . - ,3 ' . .'. '. .'-' ' ' 2 ' ''' '."''': .,. : "''-"''- ']' -'-'-"-"- , ". "'' - ..

.7- -7 W.

_s the presence of a data directory, usually also distributed, which

keeps track of the local schemas and information that compose the

global DDBMS. The data directory also usually contains the informa-

tion needed for query decomposition (such as the partitioning classes '

noted in Chapter 3) and for query translation into other query

languages, which is the subject of the remainder of this thesis.

Query Decomposition. The query decomposer part of the global

query manager takes the data partitioning information provided by the

data directory and uses it to generate the set of local subqueries

that retrieve the requested information. In principle, the decompo-

sition strategy does not differ in heterogeneous systems from that of

homogeneous ones (7:35).

Ilk Execution Plan Generation. The execution plan generator decides

which subqueries will be sent out to the local DBMSs, which queries

must precede others, and how the intermediate local subquery results

will correspond to each other. This function is essentially the same_.-

for both homogeneous and heterogeneous databases, but in heterogeneous

systems, the underlying local data base model may be one of the

criteria used in the decision-making process. (For example, given a

global relational model, if redundant data is present on both a

relational and network system, the subquery would be sent to only the

relational system.) For excellent in-depth discussions of this aspect

of the global query manager, the papers by Hevner and Yao (8) and

Bernstein, et al, (2) should be consulted. '-.

27

27

Query Translation. it is assumed that the DDBMS user submits the

query in the global DDBMS language, in this case, relational. If, as

in this case, the underlying system is heterogeneous, query transla-

tion will be needed in at least two areas. After execution plan

generation and decomposition of the global query, each of the sub-

queries will need to be translated into the local DBMS query language.

After execution of the subquery, the results must be presented in, or

translated into, a format suitable for the global result integrator.

Results integration. The result integrator, or recomposer, takes

the intermediate results generated by the subqueries and combines them

into a global schema that is presented to the user. Once again, this

process is dependent upon information that is provided by the system

data directory.

Query Management in the AFIT DDBMS

The preceding sections defined the five functions that the global

query manager must perform in a DDBMS. The following sections first

outline those functions as they have been defined by previous AFIT

thesis work, and then propose (if needed) specific recommendations for

implementing these functions within the AFIT DDBMS. If the recommen-

dation of this thesis differs from preceding works, it will be noted.

Figure 13 illustrates the various functions (and the levels at which

they are viewed) of the global query manager as proposed for the AFIT

DDBMS.

28

• -, .-.o V

USER VIEW

GLOBAL QUERY REQUESTS GLOBAL RELATIONAL DML
GLOBAL RELATIONAL SCHEMA

GLOBAL SYSTEM VIEW AND QUERY MANAGEMENT

GLOBAL QUERY DECOMPOSITION
CNDD AND ECNDD

EXECUTION PLAN GENERATION
LOCAL RELATIONAL SCHEMA

jN

LOCAL SYSTEM VIEW
AND

.....

QUERY
MANAGEMENT

RELATIONAL TO
LOCAL DBMS

QUERY TRANSLATION
SCHEMA TRANSLATION

CANONICAL FORMULATION
OF RESULTS

RECOMPOSITION OF RESULTS

GLOBAL RESULT

Figure 13 - DDBMS Query Management Functions and Levels

Global Data Model

The global data model for the DDBMS was defined as the relational [5

data model by Jones (9). The initial query language to be used by the

system is the Roth Relational Query Language (15). However, the data

directory portion of the system was defined by Boeckman in his thesis

29

-. S~ i

W-.'""" . ,"""' ""'" """'" . -. -'""."-" , ', - '. -"." """" , ,'''.-.-"" """" , ."""'. . ." 4" "." '"" " "." "." ". "".'.,.-".

~~~~~ ~~~~- -- - - - - "- - - -' . .- ,"' _. - " , - . _ ,. . , . , .; ..--- 

- - - * 

.k, .',-, %-'\,._ .''.._,. ' ' _.,' ._ .' .' .



(3). The data directory for the AFIT system does not exist in one

single location (as proposed by several other works), but exists in

three separate levels. There is a Central Network Data Directory

(CNDD) for the system, but each node in the DDBMS also contains a copy

of a portion of the CNDD, known as the Extended Central Network Data

Directory (ECNDD), as well as the Local Network Data Directory (LNDD)

which contains the bulk of the information about the local DDBMS. In

this case, the CNDD and ECNDD contain the information needed for query

decomposition and the LNDD contains the information needed for query

translation into other query languages. Each node in the DDBMS

network contains an ECNDD and LNDD, but only one node will contain the

CNDD. However, the host node for the CNDD is not fixed, since another

feature of the DDBMS proposed by Boeckman is that it is to be

reconfigurable.

This thesis follows the current system approach that specific

information for the translation of the queries into the local DBMS

query language should be reserved for the LNDDs. The global view

should be that the global relational schema is composed of local

relational schemas. However, some knowledge of the underlying local

DBMS (network, hierarchical, or relational) at the ECNDD and CNDD

would be beneficial for efficient decomposition of queries in cases

where data is redundant. If the same information is present at both a

network and relational database, it would be more efficient to

decompose the query in a manner such that the subquery goes to the

, relational DBMS with the information.

3

"-' 30

..?..?:...;?;4.2.;.'.;.:..........?..i.;-..................................................-".-..'-.........-..............-.-............ .V...'.'"-... '.. -.--.. --.-.'-'.. -:,v-



Query Decomposition

The query decomposer portion of the AFIT DDBMS is a three step

process (3:30-36). The query first consults the LNDD to see if it is

a completely local query. If not, then the ECNDD is consulted. If

all of the needed information is available from the ECNDD, then the

query is decomposed at that point. If the necessary information is

still not available, then a request is sent to the CNDD. The CNDD

returns the location and other useful information (such as the type of

underlying data model) to the requesting node. The query is then

decomposed at the node where it orginated. The main point to note

here is that query decomposition must be able to be done at each of

the nodes in the DDBMS. This will minimize message traffic in the

system, but will require a copy of the query decomposer at each of the

nodes of the network.

Since the global model of the AFIT DDBMS is relational, it is

recommended that the decomposition of the queries also follow the

relational format. The global relational query will be decomposed

into a set of relational subqueries against the local databases, which

are viewed by the system as relational schemas. However, as noted

above, knowledge of the underlying DBMS may be beneficial for the

decomposition of queries involving redundant information.

Execution Plan Generation

No specific execution plan generator has been proposed by the

previous works. A concurrent thesis effort by Capt James Wedertz (20)

involved continuing Boeckman's work on the data directories for the

31



* system, which, as noted above, are key to the generation of efficient

execution plans. Therefore, the only specific recommendations are:

(1) that the data partitioning classes defined in the previous chapter

be made part of the CNDD and ECNDD, and (2) that the type of under-

lying database model (relational, network, hierarchical) be made part

of the information stored at all three directories. These two

recommendations will provide information that can aid in the subquery

decision process.

Query Translation

This is the specific area of query management addressed by this

thesis. Both Boeckman and Jones defined the global query language to

be relat.'z,nal, Boeckman using the Roth language, and Jones proposing

a language similar to QUEST. Query translation was assumed to be

early in the query transaction process, resulting in early "command

binding" (13:87).

The approach taken by this thesis is that translation from the

global relational query language to the local DBMS language will be

done using the mapping approach, generating a procedural query that

will produce the same result as the relational query. Jones proposed 2
the use of a composite language, one that uses both relational and

procedural commands, but since the user's view of the global schema is

a relational one, the commands that they use should also be purely

relational. Secondly, the translation process should take place late

in the query transaction process, resulting in late command binding.

This will entail a unique copy of translation software to be located

32

a F" 'J - w. _. .s -' -"-- ;' .-' :r - "s-w- -- - ,. . " ,--'Lv-.."- . --r -m-•- - -
\4*

I F . ' C. .-



-21,7~~- 
"-° ° -4 -

-- at each DBMS site, but will insulate the global query management

process from changes in the local databases. This is because the

query decomposer generates subqueries against local relational

schemas, regardless of the underlying local database. The relational

subquery is then translated into the appropriate language at the DBMS

site.

Results Integration

Jones did not discuss how local query results would be translated

into a relational format, but did propose that the DDBMS use one node

(with a local relational DBMS) for recomposition of the subquery

results. However, in light of the reconfigurable system developed by

Boeckman, this does not seem to be either feasible or the best

*& approach. The recommendation and approach taken by this thesis is to

require the query translators to produce results in a canonical format

(7:42). Each separate translator will return the results to the

requesting node in the form of a relation. The advantage of this is

that for "In" local DBMSs, only 2n translators are needed, and the

addition of more systems to the DDBMS would not affect the current

local DBMSs. In this case, each of the nodes will have query

translation and results integration software.

Summary

In this chapter, the overall picture of query management in the

DDBMS was examined. The five query management functions of a DDBMS

(global data model, query decomposition, query translation, execution

plan generation, and result integration) were defined, and previous

33 ..--

-,-,.,.. ......... ...,,. .. . . .. .. . . . . . -. ,. ,. . . , . . .. . . . . . ._, . . . . . . . . . . .t'; .



* AFIT thesis work in distributed database systems was examined.

Specific proposals and their advantages for query management in the

DDBMS were then given. The remainder of this thesis will now deal

with the third aspect of query management, the translation of local

queries from the global relational language into the local DBMS

language.

3L4

% V . . - t



V. Global Schema and Query Operations

Introduction

This chapter examines the global schema and language that are to

be used for the AFIT DDBMS and their relationships to the underlying

local schemas. The first part of the chapter presents conclusions

about the global relational schema and the underlying hierarchical and

network schemas that were reached by Jones. These constraints were

imposed on the schemas in order to effect proper conversion of schemas

and translation of queries. The next part of the chapter presents a

more formal definition of some of these constraints. The final portion

of the chapter addresses the global query language to be used by the

system.

Jones' Global Relational Model

The relational model and language were chosen by Jones as the

preferred data model for a distributed data base. In his analysis,

Jones stated that the global relational model would have to satisfy

certain constraints or would have to be extended in order to

successfully represent underlying network or hierarchical schemas.

These findings are outlined in the following sections.

Normal Forms. Jones contended that only first normal form can be

guaranteed in the DDBMS (9:99). This is caused for two reasons, (1) F
CODASYL has different retention classes for information and (2) hier-

archical systems do not allow segments (relations) to exist unless

they are associated in a hierarchy to another segment.

35
6:L%

............................................................... x.

,.-



Keys. Jones states that the primary keys for the underlying

segments and records will be known to the LNDD as an aid to query

processing. Duplicate keys will not be allowed.

Duplication of Information. Jones stated that the schema mapping

routines result in global relations that do not eliminate all of the

data redundancy present in the underlying schema, especially in the

hierarchical case (9:101). However, there is a benefit gained in that

some ambiguity in queries is removed.

Distributed Information. Allowing only none or fully redundant

data is recommended, but he admits that provisions must be made for .

handling partially redundant data. This is in order to keep from

having to modify the local databases that compose the global system.

Network Contstraints. Duplicate keys are not allowed (as noted

above). Network retention classes are handled by augmenting the

relational schema to make the class known to the user. This allows '

user policing of the retention, but requires some user knowledge of

the underlying DBMS. The insertion class problem is solved by not

allowing the Automatic retention class.

Hierarchical Constraints. Duplicate keys are not allowed (as

noted above), and the key of each segment will be made known to the

LNDD.

36



Formalization of Jones' Constraints -

The following sections formalize the key constraints on the

global and underlying schemas and their associated sets of operations

that were originally presented by Jones. Before formally defining

these constraints, definitions of schema and operation equivalence are

presented.

Schema Equivalence. A database is schema-equivalent to another

database if there exists a mapping that maps the schema S of the
2

second database to the schema S of the first database such that all . -

constraints in S2, that are essential in the context of the firstI

database, can be preserved in S (19:89). One exception to

"essential" would be that set ordering in a network database has no

v- similar property in the relational database. Schema conversion is

defined by inductive rules (9:99-134) that are applied to the

structures. The resulting schema correspondences are depicted in

Table 2.

---------------------------------------------

Elements of Global Corresponding Corresponding
Relational Model CODASYL Elements 1 IMS Elements

-----------------------------------.

Domain Occurrence of Occurrence of

-----------------------------

Attribute Item Name Field Name

--------------------------------

Relation Record-Type Segment-Type

--------------------------------------------
Foreign Key Set-Type Hierarchical

Link-Record-Typel Path

------------------------------------------- 4.-

Table 2 - Data Model Correspondence

3I
37 ... ..V'-. .. ... I



Operation Equivalence. If databases are schema-equivalent, and

each operation on the first database can be mapped into a set of

operations on the second database without loss of consistency, then

the databases can be said to be operation-equivalent. That is the

task of the remainder of this thesis. In other words, given a set of

schema-equivalent databases, provide the ability to map the relational

operations project, select, and join to the equivalent hierarchical

and network operations.

Relational Schema Constraints. A more formal definition of

Jones' requirement that all underlying entity (segment, record) keys

must be known to the global relation is known as the foreign-key

constraint (21:186). This constraint states that if a candidate key

X of relation R is also an attribute combination of relation R2 , then2I

every x-value that appears in R must also appear in R This
1 2'

constraint is described more formally by the notation below (19:90),

which is also used in the following hierarchical operation mapping

chapter.

FC.. VALUE FK(Ri) in R. dependent on VALUE K(Ri)

The term FK(R i) means that the key of Ri is a foreign key in R..
1 3j.

The term K(Ri ) refers to the key of R.. This constraint FC . means
i.,

F that VALUES FK(R i) in Rj VALUES K(Ri). There are other consequences

of this constraint that deal with the insertion and deletion of

tuples. However, these consequences do not affect query operations,

and so are not discussed here.

38

or.



"t is important to note that the foreign-key constraint does not

allow for null values in FK(R.). However, this is consistent with

Jones' requirement that there be no null keys within the underlying

local schema (9:92).

Hierarchical Constraints. No new constraints are placed upon the

hierarchical schema, but a more formal definition of Jones' require-

ment of making the hierarchical keys known to the global relation is

:cresented.

First, all fields in the hierarchical schema must be named

uniquely. Second, each segment type must contain a hierarchical key

(this is consistent with IMS). Third, the overlying local and global

relations generated from a hierarchical segment must contain the

hierarchical keys cf all the ancestor segments for that segment.

-hese hierarchical keys propagated into the relation can be thought of

as foreign keys of the relation. This restriction can be shown more

formally as follows (19:90):

Let 'S' be a hierarchical schena with 'k' segment types and 'i'

hierarchical links. The schema mapping is:

1. For each root segment type H. define a relation R. such
that -

a. R. contains one attribute for each field of H.: . .
b. the key of Ri is equal to the hierarchical key of

2. For each dependent segment type H., for which a relation
R has been generated for its parint segment type His and

tAe hierarchical link in which it is a child, recursively
define a relation R such that

39



a. R. contains one attribute for each field of H., and
tde attributes of the key of R.;

b. the key of R. is equal to the Aierarchical key of H.
plus the key of R.;

c. the constraint FCij is introduced.

Network Constraints. The foreign-key constraint FC.. and its

implicit consequences also apply to the the network transformations.

However, unlike the hierarchical transforms, values for the foreign-

keys do not necessarily need to be specified in the network case.

Therefore, a new constraint NFC, ., which allows for null values in the

foreign-key, may apply. However, this constraint i.s only considered

when inserting new values. Since this thesis deals only with queries

and not updates, this constraint is not discussed.

The Global Relational Query Language

-eain ]ec~zon ':umber 5 in Jones' thesis (9:12 specified that

the global language would be a relationally based query language, but

would not necessarily be any presently designed langugage. Boeckman

used the Roth query language, one based upon relational algebra, as

the ianguag for his partial implementation of the DDBMS and for query

translators to QUEL and dBase II. The follow-on work being concur-

rently done by Wedertz also uses Roth as the glcbal language. As

such, example translations in the following chapters are based upon -

Roth queries, and a description of the RETRIEVE portion of the Roth

language is included in Appendix C. However, the approach taken by

this thesis will be one consistent with Jones. No specific query

language is required by the query translation algorithms presented in

the remainder of this thesis.

40o

HI o.,°



p .4' ,

The reason for not requiring a particular language is twofold.

First, basing the query translator on the generic operations project,

select, and join allows the potential use of any relational algebra or

calculus based query language. Second, there is a growing movement .-i-i
within the government to make SQL the standard query language. Not

tying the translation software to a specific language will make the

adaption to SQL, or any other language, much easier. As such, the

translation software will be developed to handle the type of input

;cu'. nori '-.. be xe: ea to be returned from an LNDD 'n the

ES, namely the local darabase name and schema information.

Summary

In this chapter, Jones' constraints on the global relational

schema and the underlying hierarchical and network schemas were first

. nd :nen formally defined. Finally, the Slobal query

language issue was addressed. The next chapter will examine the

translation of relational commands into hierarchical data manipulation

.' l~~.anruage $: ML)."""'

ML .o.

~41 24.



'dl:. Translation to Hierarchical DML

:rntroducti4on

This chapter details the algorithms that are used to map the

relational operations into the corresponding hierarchical DBMS data

manipulation language. These algorithms were originally proposed by

Vassiliou and Lochovsky (19). The target system language is based on

IMS, with GET-NEXT and GET-NEXT-WITHIN-PARENT as the basic commands,

with recursive ability assumed for the programming language and

:'-. _,IL was chosen because M is the most crevalent

hierarchical DBMS in use. The relational operations to be mapped

(project, select, join) are the ones associated with queries only.

Projection

* e pr-*: .ct..n of .atributes of a logical relation based on an

underly-ng segment type requires a recursive algorithm, shown in

Figure 14, coupled with a sequential search of the database. This is

a Jrect result of generating the relation by the propagation of

hi...rarchlcal keys, which means that the relation is composed of

attributes drawn from more than one segment type. When these logical

relations are constructed, the different segment types are necessarily

placed in the same hierarchical path in the order HI,H ...,kH with
1 2'

HI being the highest level segment in the path. Since the segments

are stored as levels within a tree, the retrieval path for all

referenced segments is the same as a preorder traversal of the

database, starting at HI and ending with Hk, the lowest level

referenced in the hierarchy.

42

. . .."



. -:~~~~~ ~ ~~~ -. -- ' --_:_ -. .'-' - - - -- -- -. .' -. - . .- - .- -- - -. - - ....- - - - - - - - - - - - - - - - - T - - - - ---- .- ,"n r -; - i

1while (segment exists) loop
get-next H segment

if (no more segments) then i
exit loop

output the referenced field values
call RCU(l,k)

endwhile

recursive procedure BCU(i,k)

if (i<=k) then

get-next-within-parent H. segment•
if (o mre cilden)then
exit loop
output the referenced field values

call RCU(i,k)
end loop

end HCU
---------------------------------------------

Figure 14 -Projection Translation Algorithm

7 .n selection, tuples of a relation are retrieved according to a

1
. ]

cualification condition which is composed of a Boolean (AND/OR) of

Simple conditions, it is assumed that the qualifica tion can te split

into separate terms (t where each term applies to only one segment

type (H .). There are three seperate cases of selections.

First Case. The first case of a selection is when the Boolean

operator between terms is only AND. The terms are a series of simple

conditions on respective segment types. It is possible that there is

no qualification for a particular segment in the series, which in that

case that term would be given the value TRUE. Such an algorithm is

shown in Figure 35.

43"- " ]

loop**p~ .'~ *~~ ."3:;--; * '!



[V '. "~~~~~ ~~~ -'' ".' -"." 
-  

--1 - -. "-" -. -" . -' I "- -- - -- -- -'- 
-  

"- . .- .-. -. -i -, -"---.--- - .- -. - - - - ..,-.-"- - - .- .---"-

+ -+•

while (qualifying segment exists) loop
get-next H segment where t
if (no qualifying segment) then

exit loop

else
call RCQ(i,k) -

endwhile

recursive procedure RCQ(i,k)
i i +I

if (i<=k) then
loop

get-next-within-parent H. where t.
if (no more qualifying children) ihen I

exit loop '

if (i=k) then
output the referenced field values

call RCQ(i,k)
endloop

end RCQ
--------------------------------------------

Figure 15 - Selection Translation Algorithm (First Case)

S econd Case. This occurs nen the Boolean operator between terms

is only OR. It is necessary to check the term for each H. until a1

TRUE condition is found. When it is found, all following t. can be

disregarded. ,nce again, it is possible that there is no

qualification for a particular segment in the series, but in this case

the term is assigned FALSE. This algorithm is shown in Figure 16.

Third Case. The final case of selection occurs when the Booleans

between terms are a mix of ANDs and ORs. In this situation the query ..

must be converted into a normal form (conjunctive/ disjunctive). Once

converted, each series of terms is processed independently using the

first two algorithms. The results of these evaluations are then

merged to give the final result. This type of selection query is not

44 -

-' "" " ---- -,- - - -.... , .. f- t • . - -- * ,' 2* .ft....-.-. .-. _ _ ..- " ,ft6 *ft'* " • "



+ -+

while (segment exists) loop
" get-next H segment

if (no more segments) then

exit loop
else if (t.) then

call RCU(1,k)
else

call RETRIEVE-CHILDREN( 1 ,k)
endwhile

recursive procedure RETRIEVE-CHILDREN(i,k)
I i + I1 .

if (i<=k) then
loop

get-next-within-parent H. segment , .
if (no more children) th~n

exit loop

if (t ) then
call RCU(1,k)

else
call RETRIEVE-CHILDREN(1,k)

endloop
end RETRIEVE-CHILDREN

---------------------------------------------

Figure 16 - Selection Translation Algorithm (Second Case)

often asked, which is fortunate, for generating a result would entail

several passes over the database.

J0 , -Join -:'!

The algorithms that follow are for translating a natural join of

two relations. There are a large number of different cases for joins,

so the given algorithms are somewhat simplified to minimize these JA'

differences. Two restrictions are: (1) that the Booleans between

terms are restricted to ANDs (since an OR would require a sequential

search), and (2) that the result relation contains domains from both

of the joined relations.

45
-. ....-.-. "



while (segment exists) loop

get-next H, segment
if (no more segments) then

exit loop
loop

get-next-within-parent H k segment
where (F .:VALUE(F .)) AND ...

if"(no ...AND (Fk -VALUE(F.))• chldrek" im

if (no more children then
I exit loop

output referenced values
endloop

endwhile
------------------------------------------------------------------------------

Figure 17 - Join Translation Algorithm 1

Joins fall into two basic categories: (1) where both of the

segments to be joined are located in the same branch of the Database

Description (DBD) tree, and (2) where they are located in different

branches. There are also variations within each category, the most

impor:zant of which will be addressed.

Category 1 Joins. In this category, both segments (call them H.

and Hk ) appear in the same branch. In the path H ,...Hi, ...,H, with

H, being level 0, 0 < level(H.) < level(Hk). Translating this to the

logical relations gives: K(R. )(C K(R ). This category can be further
1 kc

subdivided into several cases. Algorithms are presented for only the

extreme cases, but a discussion of others is included.

The extreme cases have to do with what is called a key-Join-term.

This is the join of the key of the first relation with its equivalent

part in the second. This may or may not be included in the query. If .

it is included, the task is made easier, since the hierarchical data-

base is organized for this particular access. If it is not included,

46I':, """
................ '.. -.



while (segment exists) loop '

I get-next H. segment
if (no more segments) then

exit loop
reset currency-pointer to start
loop

get-next Hk segment
where (F :VALUE(F.)) AND ...

...AND (Fk=VALUE(F.))km im -.
if (no qualifying segment) then

exit loop
output referenced values

endloop
reset currency-pointer to last H. segment .

endwhile 1

-------------------------------------------------------------------------------

Figure 18 - Join Translation Algorithm 2

then each level of the hierarchy must be sequentially searched for

possible matching to each segment from the previous level. This is

extremely inefficient, so a logical restriction to be placed on joins

would be to require the key-join-term to be included in the query.

When the key-join-term is included, then all descendants of a

segment will qualify according to that term. This is due to the

uniqueness of the hierarchical keys. This means that all of the

segments with the key-join-term can be retrieved sequentially and then

be joined with all of their descendants according to any additional

non-key-join terms. In the algorithm shown in Figure 17, m signifies

the number of additional non-key-join terms.

In the second algorithm, shown in Figure 18, the key-join-term is .

not included as part of the query. Without this term, each Hi segment

must be sequentially retrieved in order to be joined with all of the

Hk segments, a very expensive process.

47J.

. ...'



w
°

. .,- ,- I

These algorithms are for the extreme ends of the spectrum of

Category 1 joins. One in-between case is that of a join of segments

with the same hierarchical root key. This means that only segments *-.

within the same record are joined. Another case is when the segments

appear in different DBDs. However, the second algorithm can handle

this particular case. In fact, the two presented algorithms should

meet most join situations with only slight modifications.

Category 2 Joins. In this category, the segments H. and Hk appeark

in different branches of the same DBD. Lat paths H I ... Hc, ...,Hi,

and HI,...Hc, ...,Hk, be the two branches. The hierarchical keys of

HI through H are common attributes for both of the logical relations
C

R. and R , since the split into different branches of the DBD does not

.% .I

°_o

--------------------------------

while (segment exists) loop
.- get-next H segment

c
if (no more segments) then

-- exit loop
loop

get-next-within-parent H. segment
. if (no more children) thnen

exit loop
loop

get-next-within-parent H, segment a
where (F :VALUE(F. )I AND ...

..,. A (F, :VAdE(F. )

if (no more chilAen qualiiy) thenexit loop
output referenced values

endloop
a reset currency-pointer to last H. segment
"" end]loop

endwhile
.----------------------------------------------------------------------

Figure 19 - Join Translation Algorithm 3

-'48'-* ..



1..

begin until H These common attributes are called common-join-terms

when they are used as qualifications in a query, and are used to

differentiate the cases of Category 2 joins.

The first case is when a common-join-term does not appear in the

query. In this case, the join must be handled the same as the case of

the same branch without key-join-terms. This means that Algorithm 2

will be used.

The second case is when the common-join-term is included. In

this case, the join need only be applied to the descendants of the H

segment, since the other terms are already common. H can be easily
c

determined by working back up the branches from H. and H until a
1k

common ancestor is found. Algorithm 3, shown in Figure 19, is to be

used in this case. It is a generalization of several different

possibilities, all dependent on the number of common-join-terms that

are present as qualifications.

Summary p-

This chapter presented a set of generic algorithms for the

translation of the select, project, and join relational algebra

statements into 1MS procedures. These algorithms are neither cor-lete

nor optimal, but give a good start to dealing with the hierarchical

translation problem. The next chapter deals in greater depth with the

associated problem of query translation to the network model data -

manipulation language. F'.

49



I.

VII. Relational to Network (CODASYL) DML Translation

Introduction

This chapter deals with the translation of a relational query

into network DML. The network database model chosen for the

translation is the network proposal of the CODASYL Data Base Task

Group (DBTG). The DML syntax used in these translations is consistent

with that described by Date (6:425-446).

The process of translating a query into CODASYL DML is a more

complicated proposition than it was for the hierarchical (IMS) model.

The main difference occurs in the choice of access paths that are

available for a given query, and how the proper selection of these

paths influences the DML code that is generated as a result. In IMS,

VIV the processing sequence consists essentially of selecting the starting

se.nent that forms the root of the hierarchy and then traversing the Mf.y -'f

tree. This amourts to a one-way traversal downward in the hierarchy. r."
:n the CODASYL model, however, processing can go either up or down

from the starting record, and many different paths can be selected.

Since this ability is so important, this chapter first deals

extensively with the process of selecting the best types of access.

The remainder of the chapter is then devoted to the query translation

algorithm and a sample translation of a query into the equivalent DML

statements, using a sample database that was first presented in Jones'

thesis. \*f

50i..

50 [""

• , .f. t

--U _. '.:"..'.'.'-'.:_'_':_'_' . .. - .. - -; : > - < -4 - <4 , , ,4 ., _:'_ .. ?., .

. . . . .... . . ... . . . .. ..ft ftft ft~ f~fft ft~ % i I na uia.' i i ll



Query Efficiency

The tactics used for optimizing a relational query are signifi-

cantly different if the interface is to the procedural DML of another

data model. The usual relational process is to perform selections and

projections first and then do joins over the reduced relations.

However, this processing strategy fails in the CODASYL model because

(11:428):

1. 7t is not possible to create t-mporary schema objects,
such as those created as a result of a selection or
projection.

2. Some joins are more efficient because they are prestored
as CODASYL sets, and so should be processed first, rather
than doing the selection or projection first.

. The strategy for translating relational queries into the CODASYL

eQuivalent :ML then becomes the minimization of navigation required

in the database.

Access Path Generation and Selection

Most of the current papers on the subject divide the task of

translating a relational query into network DML into three separate

tasks: generation of all access paths, selection of best access path,

and "compilation" of the query into the appropriate DML. in most of

these cases, the relational query language is relational calculus

based, such as QUEL (11,16), or graphical, such as QBE (12), where

select, project, join operators are not specified, leaving the choice

of specific access paths to the DBMS. In the case of this thesis, the

query language used by the DDBMS (Roth) is one based on relational

51• !



TUT~l IL Ic
a

L

algebra, which means that these operations are specified in the query.

However, the sequence of relational operations given in the relational

algebra query may not be efficient, so all access paths must be

examined for relational algebra languages as well. -..-

Starting Record Selection. The first task in selecting the most

efficient access path is to analyze the characteristics of all the

records that are accessed by the query with the objective of making

the translated DML as efficient as possible. Of critical importance

is in this regard is the choice of the starting record type. There

are three major reasons for this importance (12:91):

1. The starting record type is the one that creates the
outer loop of the DML code that must be generated for the
translated query.

2. The objective of the translation is to minimize the total
number of records of this type that have to be retrieved.

3. Having the starting record type closest to the root of
the query path helps to minimize the number of nested

loops that have to be generated for the query.

What factors determine the choice of starting record and the

sequence of following records? In the case of selections and

projections, the query specifies the record type to be accessed, but

in the case of a join, there is a choice of starting record types.

The determining factor in this case is the access path characteristic

of the record.

Access Path Characteristics. The following characteristics were

enumerated by Katz (11:430) in his paper. Only the first three

52

'I.I



characteristics are important to this thesis, because they deal with

the logical navigation through the database, directly influencing the

sequence of DML code generated to process the query. The remaining

characteristics deal with the actual physical placement of data in C-

secondary storage, which only becomes important when dealing with

certain optimization techniques that are not within the scope of this

thesis.

1. A path nas an exhaustive scan characteristic if a
retrieval of a record requires every record in 'hat
record type to be accessed. This is the most expensive
access.

2. A path has an evaluated characteristic if it can navigate LV.
from the owner to the associated record via an owner
pointer.

3. A set has indexed access if it can navigate from one
record to another via a CODASYL set. One example would -
be all employees belonging to a certain department. L

4. A set has close proximity if the entire set can be

accessed as a minimal cost unit. This deals with the
physical location of data in the system. ...

. A oath is clustered if all of the records are closely
placed, reducing the number of physical accesses that

must be made for retrieval of all records.

6. A path is well placed if both the parent and child
records are physically closely placed. This would
normally occur with the CODASYL option of "storage via
set".

Intersection-Free Processing Orders

The final product of the selection process is an intersection-

free access order for the query. This means that a record type is

accessed from only one other previously visited record type. For

example, say a query requires access to three record types: Employee,

53., ..'"



IR -.. -lm

• .Department, and Project. Links exist from Employee to both of the

other record types. One example of an intersection-free query would

use Department as the starting record type. if an Employee record was

accessed through Department, then that record could not be accessed **

through the Project record. These intersection-free queries fall under

two general classes, path queries and tree queries.

Path Queries. A path query is one where all clauses are: (1)

two-variable (at most) that are based on an equality comparison (an -

equijoin), (2) supported by the underlying schema (CODASYL sets exist

6 between the joined records), and (3) the query is acyclic, with no

node connected to more than two other nodes. There are 2 different

orderings of a path query with N nodes. It is extremely fortunate

that most queries involve few nodes, or otherwise the selection of an

order would be a monumental t;ask in iself. For an effective

algorithm that generates all possible orderings of a path query, the

reader is referred to (11:440).

Tree Oueries. The other class, the tree query, shares the first

two characteristics of the path query, but differs in that the acyclic

graph is connected, which means that a node in a query with N nodes

can be connected to up to N-I nodes. The problem of generating all

the possible orderings for this type of query falls under the class of

NP-complete problems, which means there currently exists no efficient

algorithm. Selection of a query ordering would most likely depend on

a heuristic approach, one that is not within the scope of this thesis.

7%%

514

.o

"-' " " " """ "" " ' " "'",'"'"- '."-"' "'" "','" "'' "' '"""'.,.' ''' "', " ' " " ",.' ''"-f' "',''" " ,r-,. ,('.-. .-



,.'% ~~~~~~ ~~ ~~ - -4 -'-. -
-
-"-'- " - - - - - - -° - --- - -. -. - -- - - -- - - -. - - . - - - -- - -- - - -w -. -.- : -- - - .- - . ---- --- .- .--.-.- ,

• --.+

Unselected-List query record types 1,2,...,N
1 Ordered-List null

LOOP UNTIL (Unselected-List is empty)

IF (query tree has record type with CALC key) AND
(query provides values for CALC key attributes)

THEN
IF (query gives value for unique record) THEN

Pick that record as starting type .
ELSE [the query has several candidate records} 1

Pick the record closest to the root .
ENDIF

ELSE {no CALC key is available}
IF (tree has a record type that is a member of

a system-owned set)
THEN

IF (search/sort key is available) ,
Pick that record type

ELSE [no key is available)

Sequential search required
ENDIF

ELSE {not a system-owned set, either}
Add a link to the system-owned set closest -

to the tree's root

ENDIF

ADD selected record type to Ordered-List

REMOVE selected record type from Unselected-List I

ENCDLOOP .•.

----------------------------------------------

Figure 20 - Order Selection Algorithm

Processing SelectJion Algorithm

The algorithm of Figure 20 selects the most efficient access

order for a path query. It is derived from the separate works of Katz

(11) and Kuck (12). It does not generate all possible access

sequences, but iteratively checks all record types for the type of

55

PI



- . - • -.. .

access possible for that record type and then selects the most

efficient access. Braces ({}) signify comments.

Ordered Record List. The selection algorithm produces an ordered

list of records to be accessed, with the corresponding attributes and

access characteristics. This is not unlike the Iterative Query

Language, or IQL, that was proposed by Katz (11: 4 3 4). Katz's IQL

consists of nested FOR EACH statements, each of which is associated

with a given record type. For example, the following Roth query gives

the department location for the department in which John Doe works.

SELECT ALL FROM employee WHERE (name 'John Doe')
GIVING templ

JOIN templ, department WHERE (works-in z dept#)
GIVING temp2

PROJECT temp2 OVER dept-location

GIVING temP3

-he -quivalen: :,L statements would be:

FOR EACH employee record WHERE emp.name 'John Doe' DO
FOR EACH department record WHERE emp.works-in

dept.dept# DO
PRINT dept.location

The most efficient processing, in this case, would be if a CALC

key exists for the "employee" record type and a CODASYL set associated

with "works-in" links the "employee" and "department" record types.

The worst case would be if both record types have to be searched

exhaustively to find the particular record that is sought. There are

also many different possible combinations in between. Whatever the 7%. -

access characteristic, it will be noted along with its associated

- record type. This modified "IQL" would take the following form:

. -. °

-- 56

-%



II

FOR EACH record-type-name
WITH access-type (USING key-attribute)

WHERE condition DO

The WITH statement gives the access type (CALC, sequential

search, etc.). For an access type of CALC or indexed, the USING

statement gives the key attribute(s), since it might not be the same

attribute that was part of the selection condition. In any case, this

enumeration of the required records is what is used to generate the

appropriate DML statements that will be used to process the query.

DML Generation Algorithm

Once the most efficient network access sequence has been

determined, the task is to generate the necessary DML code for that

particular access sequence. Generation of code was chosen over the

use of set routines because of the flexibility that it offers in - |

handling different combinations of selects, projects, and joins.

The DML generation algorithm shown in Figure 21 is based upon one

proposed by Katz (11:443). This recursive descent algorithm takes the

ordered list of record types and qualifiers and generates the DML

statements that create the equivalent CODASYL operations for a given
. . -

relational query. This algorithm handles the SELECT, PROJECT, and

JOIN operators all the same way, since the ordered list is what

determines which code is generated. The algorithm takes the first

record and builds the outermost loop of the DML program first, and

then works recursively towards the innermost loop, which processes the

last record in the ordered list. LABEL(index) is a procedure that ' :"

57



IT~~~ 7 77979

creates labels by appending the index number to the beginning letter

"L", such as LI, L2, and so forth. 4

+------------------------------------------------------------------------------

procedure MAIN(ordered list)
Number FOR EACH records in ordered list as 1,2,...,N ____

DMLGEN( 1) -
end MAIN

procedure DMLGEN(i)
IF (i > N) THEN return {no more record types left}

IF (one-variable equality clause) THEN '

:F (access by identifier) -HEN
<key> := key name of identifier data item
create DML string

"MOVE <value> to <R..identifier data item>
IN <R.> 2.

FIND ANY <k.> USING <key>
IF NOTFOUND THEN GO TO LABEL(3*(i-1))
GET R.>
IF NOT (boolean conditionals) THEN %

DMLON( GO TO LABEL(3*(i-1))"-

create DML string
"LABEL(3*(i-.)): "1

ELSE IF (access by indexed path) THEN
<key> := keyname of indexed path

create DML string
" MOVE <value> to <R..value data item>

F:N D ANY <R.> USIN6 <key>
LABEL(3*(i-1)+2t: IF NOTFOUND THEN

GO TO LABEL(3*(i-l)+l)
GET <R.>
IF NOT'(conditionals) THEN

GO TO LABEL(3*(i-I)+i)"
DMLGEN( i+ 1)
create DML string

"LABEL(3*(i-1)+1): FIND DUPLICATE WITHIN

<R.> USING <key>
GO T6 LABEL(3*(i-I)+2)

LABEL(3"(i-1)): "

ELSE {exhaustive search needed,
FOR (each search clause J = 1 to N) DO

Figure 21 - DML Generation Algorithm

58



create DML string
"MOVE <value> to <R..data item.>

end FOR loop
create DXL string

FIND FIRST (R.>
USING <R..6ata item list>

LABEL(3*(i-l)+2): IF NOTFOUND THEN
GO TO LABEL(3*(i-1))

GET <R.>
IF NOT (conditionals) THEN

DMLEN~+1) GO TO LABEL(3*(i-1)+1)P

create DML string
"1LABEL(3*(i-1)+1): FIND NEXT <R.i>

USING (R. .data ite m list> 4
GO TO LA EL(3*(i-1)+2)

ELSE [systemn-supported two-variable clauses)
<S> :=CODASYL set name for relationship mapping

IF (mapping is functional) THEN
create DML string

FIND OWNER WITHIN <S>
IF NOTFOUND THEN GO TO LABEL(3(i-7))
GET <R.> ~
7.F 'CT~conditiornals) THEN

GO TO LABELK( 4 1~

DMLGEN(i+l)
create DXL string

1LABEL(3*(i1)):"

ELSE {mapping is from member to owner)

IF (search key is available) THEN
FOR (each search clause j 1 to N) DO

create DXL string
"1 MOVE <value> to (R. .data item.>"

end FOR loop1
create DML string

FIND <R.> WITHIN <CS> CURRENT
USIhIG <R..data item list>

LABEL(3*(i-1)+2): IFNOTFOUND THEN
GO TO LABEL(i)

GET <R > _
i

IF NOT (conditional~s) THEN
GO TO LABEL(3*(i-1),1)"

DMLGEN( i...)

Figure 21 Continued -DML Generation Algorithm

59



* - - . . .-- .-.-

P .

create DML string
"LABEL(3*(i-1)+1): FIND DUPLICATE WITHIN 1

<S> USING <R. data item list>
GO TO LABEL1+2)

LABEL( 3*(i- )) :

ELSE {USING clause will not work} "
create DML string

FIND FIRST <R.> WITHIN <S>
LABEL(3*(i-l)+2): IF N6TFOUND THEN

GO TO LABEL(3*(i-1))
GET <R.>
IF NOT (conditionals) THEN

GO TO LABEL(3*(i-I)+1)"
DMLGEN( i+ 1)
create DML string

"LABEL(3*(i-1)+1): FIND NEXf <R.>
WITHIN <S"

GO TO LABEL(3*(i-1)+2)

LABEL(3*(i-1)):

end procedure DMLGEN

-------------------------------------------------------------

Figure 21 Continued - DML Generation Algorithm

th
For the i h nested record type in the list, the algorithm checks

to see if any conditional clause can be supported by a set access. If

this fails, then it tries to find a one-variable equality clause on

which to base the access. There are three cases of these. The cases

and the algorithm's action for each are:

1. The key attribute of the relation appears in a one-
variable clause. In this case, code is generated to
access the CODASYL record by its key data item.

2. Indexed attributes appear in a one-variable equality
clause. In this case, an indexed minimum cost access
path is used to find the record. . .

3. Value attributes appear in equality clauses. Here a FIND
USING statement is used to access the record. This
statement automatically does the equality test on the
value data item.

60

-DN



As a consequence of the intersection-free query, each record type

is accessed from at most one previously visited record type. If the

link is functional, then the FIND OWNER statement is used. If this

fails, and one-variable equality clauses are present, the FIND CURRENT

-- FIND DUPLICATE statements are used in order to take advantage of

the USING option. Finally, if that also failed, the FIND FIRST/NEXT

WITHIN SET statements are generated.

Query Restrictions for Algorithm Simplification. There are three

restrictions placed on queries in order to simplify the algorithm.

The first restriction is that all boolean conditions are assumed to be

in conjunctive normal form. The second is that all conjunctions

involve, at the most, two variables. The final restriction is that OR

clauses can only specify alternate values of the same attribute.

Minor Optimizations. The given algorithm is by no means opti-

mized, but there are a few basic improvements (11:446) that can be

made that will increase the efficiency of the generated >ML code.

:hese improvements include:

1. If the conditional clauses are all true (null), then the
IF (conditionals) statement does not need to be
generated.

2. If a projection requests only certain data items, and not
the whole record, then only the requested data items need
be retrieved by the GET statement. If no items are
requested (for example, passing through the record as a
consequence of navigation) then the GET statement does

not need to be generated at all.

3. If the functional access path is total (a mandatory/ N_

automatic CODASYL set), then the NOTFOUND test can be

61



eliminated. This is because the record exists only if i.t
has an associated link record on that access path.

4. If all members of a record type are to be accessed
without restricting equality clauses, then the USING
option in the FIND FIRST/NEXT statements can be
eliminated.

+---------------------------------------------------------------------------------

~HOSPITAL ~ WARD HC ~ LAB

DOCTOR ~ STAFFz WC~ HC =PATIENT

I DIAGNOS. REG#- TEST LAB# REG#=Ik .

1OCCUPANCY STAFF DOCTORS

I WC =REG# HC DOC#

DOCTR-PTIET ~ DOCTORS ATTENDING

REG# =DOC# PATIENTS ATTENDED .

I HSPTTAL-LAB
I--- ---- -**HOSPITALS-SERVICED

=HC =LAB# = *LABS-USED

+---------------------------------------------------------------------------------L

Figure 22 -Relational Schema for Medical Database (9:122)

Example Translation i
In this section, an example translation is presented. The

database used for this example is one that was orginally presented in

Tsichritzis and Lochovsky's Data Models, but was extracted from Jones'

62

%..................... .. .. ....



thesis (9:117-122). In Jones' thesis, the relational schema shown in

Figure 22 was mapped from the CODASYL database shown in Figure 23.

This example takes a Roth language query against the relational schema

and translates it into the appropriate DML statements for the CODASYL

database.

The sample query is: "Find the names of all patients who have ,

Smith as their doctor." This query would appear in Roth form as

follows:

-------------------------------------------------------------------------
HOSPITAL°

HOSPITAL WARDS LABS USED
STAFF DOCTORS

iARD DOCTOR HOSPITAL LAB]

WARD STAFF DOCTORS ATTENDING HOSPITALS
SERVICED

STAF DOCTOR-PATIENT LAB

OCCUPANCY PATIENTS-ATTENDED TESTS

ASSIGNED - -:

TESTS
PATIENT [ ORDERED TEST ]" '

rPATIENT DIAGNOSIS

_-. DIAGNOSIS ,,

Figure 23- CODASYL Medical Data Base (9:117)

63

b*-.':'."

'.. ...L .. .... .: -$ ; . ../ .. ./ ...:. '%""< "v[ . . "/-','"" "" "" '- ' " " " """: ,'-".,. ;'', ." "'' "" ... ",Y " ;%



SELECT ALL FROM Doctor WHERE (Doc.Name = 'Smith')

GIVING Templ
JOIN Templ, Doctor-Patient WHERE (Templ.# = Doc-Pat.#).

GIVING Temp2
JOIN Temp2, Patient WHERE (Temp2.Reg# Pat.Reg#)

GIVING Temp3
PROJECT Temp3 OVER (Pat.Name)

GIVING Temp4

The DML statements required to accomplish the query in the

CODASYL database are:

MOVE 'Smith' TO Name IN Doctor
FIND ANY Doctor USING Name :N Doctor
I-F NOTFCUND GO TO ZND
F:JD FRST Doctor-Patient WITHIN Doctors-Attending
DO WHILE (NOTFOUND = False)

FIND OWNER WITHIN Patients Attended

GET PatientName IN Patient
FIND NEXT Doctor-Patient WITHIN Doctors-Attending

END WHILE
END:

Given the sample Roth query as input, the statements generated by

the DMLGEN algorithm should be equivalent to the above DML query. The

following sections briefly run through the translation process for

this example, with the final generated DML statements listed in Figure

24.

Creation of Ordered List. For purposes of this example, the

access characteristics of the record types in question are as follows:

The Doctor record type has a CALC key, which is the Doc.Name data

item, and the association between Doctors and Patients is not total.

That is, a Doctor-Attending CODASYL set can be empty, meaning that a -. .

doctor may not currently have a patient. However, the

64"



Patients-Attended CODASYL set will not be empty unless there are no

patient records within the database.

A request to the local data directory (LNDD) returns the record

type names and associated access characteristics that are needed to

translate the query. The product of the Order Selection Algorithm is

the following ordered list.

FOR EACH Doctor
WITH access-by-identifier USING Name data-item
WHERE KeyValue 'Smith' DO

FCR EACH Doctor-Attending
WITH no-equality-clause
WHERE Owner = Doctor AND Member Doctor-Patient DO

FOR EACH Patients-Attended
WITH functional-access
WHERE Owner = Doctor-Patient AND Member Patient

* PRINT Patient.Name

Code Generation Process. The list of FCR EACH record types is

then passed to the DML generation algorithm. The FOR EACH members of

the list are numbered 1, 2, and 3 (recursion goes down three levels).

Processing of the first level, DMLGEN(7), proceeds as follows:

1. The test for a one-variable clause is satisfied (Name 'Smith').
2. The test for "access-by- identifier" is met. -
3. The appropriate section of code is generated.
4. DMLGEN(2) is called.
5. Upon return from DMLGEN(2), generate ending code.

The second level proceeds as follows:

1. The test for a one-variable clause fails.

2. The test for functional mapping fails. .-
3. The test for available search-key fails, meaning code without a \ 4

USING clause must be generated.
4. The appropriate section of code is generated.

5. DMLGEN( 3) is called.
... 6. Upon return from DMLGEN(3), generate ending code.

65 ,I'

.. ...... ... ..... ... ... .. ._- -. _ .. . - .% % .' .



The third level proceeds as follows:

1. The test for a one-variable clause fails.
2. The test for functional mapping is met.
3. The appropriate section of code is generated.
4. DMLGEN(4) is called, but since 4>3 , this stops the recursive

process. The algorithm then backs out of the levels of recursion

one at a time.
5. Generate ending code.

Generated Code. Figure 24 shows the code produced by DMLGEN for

this sample query. Unnecessary statements are eliminated in accord-

ance with the optimizations mentioned above. Angled brackets (<>)

denote values that are either inserted into variables or are generated

by the algorithm (such as label indexes). Inspection of the generated

code reveals that it is equivalent to the CODASYL query listed earlier

".n this chapter.

------------------------------------------------------------------------------

MCVE <'Smith'> to <Doctor.Name> iN <Doctor> "
FIND ANY <Doctor> USING <Doctor.Name>

IF NOTFOUND THEN GO TO <LO>

FIND FIRST <Doctor-Patient>
WITHIN <Doctor-Attending>

<L5>: IF NOTFOUND THEN GO TO <L,3>

FIND OWNER WITHIN <Patients-Attended>
IF NOTFOUND THEN GO TO <L4>

GET <Patient.Name> IN <Patient>
<L6>:
<L4>: FIND NEXT <Doctor-Patient>

WITHIN <Doctor-Attending>

GO TO <L5>
<L3>:

1 <LO>: '-r
o END r

*-------------------------------------------------------------------------------

Figure 24 - Example Generated DML

66 '.

N~~*5
."":"2 '. .'',.'..'''f '.f 'f: ¢: . f,'J .',-. v *.'. .'' .. '',,,, "- . ..'**j,' - .- 'J"/ .',*f.* -"*4

' " "



' ummary

This chapter detailed the process of translating a query from

relational to CODASYL DML. The selection of an efficient query

processing order and the generation of translated CODASYL DML were

examined. Algorithms were presented for the production of an .4

efficient ordered listing of records, and for the generation of a

CODASYL query program. A sample query translation was also presented.

Over the next two chapters, the design and partial implementation of

similar algorithms for TOTAL, a ncn-CODASYL network database system,

will be examined.

%I
67

,-?.it-



VIII. Relational to TOTAL DML Translation

Introduction

In the previous chapter, algorithms were presented for

translating a relational query into the equivalent CODASYL DML. In

this chapter, the design of similar translation algorithms is examined

for a another specific network DBMS, TOTAL, marketed by Cincom

Systems, Inc. The chapter begins by briefly comparing the two

systems, followed by an overview of the TOTAL DML. The chapter ends

w.-. _4escriptions of ;he translaticn process and algorithms.

Comparison of TOTAL and CODASYL

TOTAL is a network database management system, but it differs

from the CODASYL proposal in several ways. Cardenas (4:218) describes

t h iesign 2onceot of TOTAL as be ng 30 to 80 percent like CODASYL,

but with a DML syntax similar to IMS. The next few sections describe --

some of the differences between this very popular DBMS and the CODASYL c..--

model. Only a brief discussion of TOTAL DML commands is included

here, with a more detailed description available in Appendix B.

Schema Terminology. First of all, the terminology of a TOTAL -"

database schema is different from the CODASYL proposal. The differ-

ences between the two are shown in Table 3. Note that these terms may

not be exactly equivalent. Usually the terms refer to the same type

of entity (i.e., Item and Field being equivalent), but for others

(i.e., CODASYL Set to Linkage Path) the physical implementations are

different.

68

L. '



. . .... o•

CODASYL Term TOTAL Term
---------------------------------------

I Data Item Data Field
I -------------------------

Data Element

---------------------------------------

Record Type i Data Set
I----------.. --------------.

Records i Data Records

-------------------------

Owner Records Master Data Sets

---------------------------------------

Member Records I Variable-Entry Data Sets
I -------------------------

CODASYL Sets i Linkage Paths/Chains
---------------------------------------

Table 3. CODASYL and TOTAL Schema Terminology

Data Structure. Both CODASYL and TOTAL are network model DBMSs,

but there are significant differences. In the CODASYL model, a record

can be owner or member in any number of sets. In TOTAL, Master data-

sets are the owner records and ariable-Entry Jatasets can only be

member records. In CODASYL, set members may vary in length, can be

members of multiple sets, and are independent of the entry point

access method. in :CTAL, Variable-Entry datasets must be of fixed

length, only belong to that one set type, and can only be accessed by

a chain beginning at the first or last entry points from an owner

Master dataset. L.

Data Structure Implementation. In CODASYL, Prior and Owner

pointers are optional. These pointers, plus a Next pointer, are

mandatory in TOTAL. All pointer implementations in CODASYL use

physical pointers, while Owner pointers in TOTAL are symbolic.

69

....................................................
..............................................................°



Access Methods. All records and sets in CODASYL can be accessed

in three ways: Physically Serial, Random, and Direct. in TOTAL, only

the Master datasets can use Random access (they can also be accessed

serially), while Variable-Entry datasets must be accessed serially in

a chain, either forward or backward, through a Master dataset linkage

path. The only exception to this is if the actual physical location

indicator for that particular data record is known.

TOTAL Data Management Language (DML). The TOTAL DML is an exten-

sion to existing programming languages, consisting of a series of CALL

statements to a TCTAL interface program known as DATBAS. There are

three different types of DATBAS calls, each with its own parameter

list.

'2" The first, using four parameters, is for signing onto
TCTAL and for opening and closing the database schema:

CALL DATBAS (FUNCTION, STATUS, SCHEMA, 'END.')

(2) The second, using seven parameters, is for accessing

Master datasets:

CALL DATBAS (FUNCT:ON, STA T S, DATA-SET, CONTROL-KEY,
ELEMENT-LIST, USER-AREA, 'END.')

(3) The third, using nine parameters, is for accessing
Variable-Entry datasets:

CALL DATBAS (FUNCTION, STATUS, DATA-SET, REFERENCE,
LINKAGE-PATH,CONTROL-KEY, ELEMENT-LIST,
USER-AREA, 'END.')

The various options for the FUNCTION parameter that are used in

this implementation of the query translator are listed in Table 4,

70

......... ....... ...... .... ... . .. ... . .... ... [:.



-- - -

CODASYL TOTAL DML FUNCTION BY DATA SET TYPE I
RETRIEVAL ----------------------------------------
STATEMENT MASTER VARIABLE BOTH

-------------------------- -------------

READY SINON
-------------------------- --------------

FINISH I SINOF
-------------- --------------
FIND/GET READM READV

RDNXT "
----------------------------

Table 4. Comparison of CODASYL AND TOTAL DML

Snder their appropriate data set type. 7he corresponding

CODASYL statements are also listed for comparison. For a complete

description of all available read-only functions and other parameters

in the DATBAS call statements, see. Appendix B.

' ~ -r.,,L D.L !eneration Process

-he following sections present a set of algorithms for the

translation of a relational query into a program containing the

requisite calls to TCTAL. The translation process breaks down into

three steps: creation of the structures used by the DML generator,

ordering of the structures into the optimal processing sequence, and

the generation of the source code with embedded TOTAL DML.

Dataset Structure Creation

The DML generation algorithms use as input a list of data

structures similar to the IQL-like list presented in Chapter VII.

These structures contain the information necessary for the generation

of proper DML code. This query information, obtained from the local

data directory in the DDBMS, is as follows:

71

7 i':'*



V,-' V . -

Query operation
Name of database--to get list of all datasets required
Name and type (master or variable) of datasets
Dataset Key
All required field names for each dataset -

Size of all fields
Linkpath and reference names from the master dataset

to variable dataset _

Qualifier operators and operands (literal or fieldname)

This information is first placed into an array or list of

structures that are used by the generation program. The structures

are constructed as shown in Figure 25.

-rdering of the Structures

The algorithms for ordering the list are essentially unchanged

from Chapter VII (and so are not presented again), with the difference

----------------------------------------------------------------------------------

:ataset Name
Dataset Type (M for master, V for variable)

Dataset Key Field Name
Access Indicator (1 and 2 - READM, 3 - RDNXT, R - READV)
Linkpath (variable data sets only - NULL otherwise)
Reference (variable data sets only - NULL otherwise)
Number of Fields Requested (i:= 1 to N)

Field.
ame

Size
Output Indicator (Y if field is to be printed) '

Number of Boolean Qualifiers (i 1 or 2)
Comparison.

Field Name

Operator
Comparison Argument Type (literal or field)
Qualifier Field (if field argument)
Qualifier Literal (if literal argument)
Compound Boolean Indicator (AND or OR)

-----------------------------------------------------------------------------------

Figure 25. Dataset Structure

72

".'.z-z '.- .-,.- ..'.,',.'. ..,..f 7.., .,.. ...... ..,• , .... .. . ., ., .,. . . . ..,:. - " " . ,"• ..: " ." '%- .', --*_'z..t._' .a,
. ...,L>'.- . t,-' -'. "'.-.': ..D _' _ '.l" _ ,Dm m_ D ] *a



being that there are fewer access options available in TOTAL. Master

data sets are accessed in only two ways; directly (for an equality

comparison on a dataset key) and sequentially (all other cases).

-. Variable data sets must be accessed sequentially through the chain

beginning with the first or last data set in the chain. (Variable 4

data sets may also be accessed if the physical location pointer is

known, but user knowledge of a pointer value would be extremely

unlikely.) For simplification, variable data set access always begins

ih the first eta e nthe chain, because the average search will

-e the same for both forward and backward searches through the chain.

Given the limited number of access options in TOTAL, ordering the

structures into the optimal access sequence is a much simpler than in

CODASYL. The most efficient retrieval is for a Master dataset with an

equality comparison on the dataset key. All other retrievals of

Master datasets must be done sequentially. Since the retrieval of

Variable datasets must be done via an access pointer from a Master

dataset, the efficiency of Variable dataset retrieval is dependent

upon the owring M4aster dataset. This access restriction of TOTAL

guarantees that the critical starting dataset (see Chapter VII,

Choosing the Starting Record) will be a Master dataset. If, in the --A

remaining datasets, a dataset key is to be provided for a Master

dataset by a Variable dataset field, then that Variable dataset will .

immediately precede the Master in the processing order. Otherwise,

the deciding factor in ordering will be the presence (or lack) of

comparisons on Master datas.et keys.

73



-.. ~~ ~~~~~ --.-. . -. --= -. - - - - -. - - - - --- -.- . .-. - . .. - -------. -.° . _. -." -_ - - - - - - - --, - - . w~ ..-|I

procedure MAIN(ordered list of dataset structures)
Number datasets in ordered list as 1,2,...,N

Open GeneratedProgram File

Create DML Code
Label Declarations (Nx3 labels plus errorlabel)
Type Definitions 4
Declare 'N' structures for datasets retrieved

Variable Declarations
' Declare procedures for DATBAS calls (total of N+1)

One for SONOROFF
One for each READV (variable dataset)

* One for each READM (master dataset)
One for each RDNXT (master dataset)

DATASETS := <concatenation of all database datasets>

Open Output file
I "Generate SinOnOff Call

TOTGEN( 1)

, Create DML Code
ERRLABEL: SinOnOff Call

Close Output file

Close GeneratedFrogram File
Compile and Execute GeneratedProgram File
Display Result File
Remove GeneratedProgram and Result Files

end MAIN

---------------------------------------------------------------------------------

F-gure 26. Code Generation Driver

Code Generation Algorithms

After the order selection is complete, the structures are input

to the DML code generation routines. The figures on these pages

present the code-generation algorithms in pseudocode. The main

code-generating procedure, TOTGEN, is derived from the CODASYL

algorithm in Chapter VII.

74



Driver Program. The main translation program, or driver, is

shown in Figure 26. This may be a single program with embedded system

calls or it may be a mix of system routines, such as command files,

and the program with its subprocedures. A subprocedure for each

generation step, such as declaration of labels and types, is assumed.

Subprocedures for DATBAS Calls. One of the more restrictive

aspects of TOTAL (from a relational viewpoint) is that the parameters

for each DATBAS call to TOTAL are fixed. This means that for each

dataset that is to be accessed by a translated query, there must be a

corresponding declared DATBAS call with the unique parameter declara-

tions. The only way to implement this and still allow any flexibility

in the queries is to declare each DATBAS call within its own sub-

procedure, thus "hiding" that particular DATBAS call from all of the

others. There are four different types of procedures that must be

generated, depending on the data set. The procedures generated would

be READV, READM, and RDNXT. If a particular query involved two master

datasets read by dataset key and one variable dataset, then two

different READM procedures and one READV would be declared and

generated.

TOTGEN DML Generation Algorithm. Once the variables and sub-

procedures have all been declared, the main body of the translated
query program must be generated. This is handled by the TOTGEN

procedure, shown in Figure 27, which calls itself

. .'.

-': .-".;." .

-T5

Ilk-. R

-.-O.de, . . .-. . . ,,* •.• - .. . •... o .• . . . . '. . .. ., , ,



*~W K. - %7~r

procedure TOT'-"(i)
IF (i > N) THEN DO

Output all structure contents to output file
return Ito previous level) . ,

endif

IF (Master Dataset) THEN
IF (one-variable equality clause) AND4

(Clause is a Dataset Control Key) THEN

create rML string
"READM (<SearchKey.>,<UserArea.>)

i 1 1

IF NotFound THEN GO TO LABEL(3*(i-1))
IF (STATUS <> ****') THEN

Go TO EFHLABEL
<Ztructure.> :=<UserArea.>"

IF (Structure. .value(j) ==qualifier)
THEN tsuccessful) !

IF (not successful) THEN GO TO LABEL(3*(i-1))"

TOTGEN(i+1)

create DML string

"LA BE L ( 3(i1)

ELSE {sequential search -not dataset key)

create DML string
"Qualifier. := BEGN'

"I 1RDNXT. (<Qualifier. ,(UserArea.>)
L1ABEL(3*(i-1)+2): IF QUALIFIER =='lend of chlin' THEN

GO TO LABEL(*(i-l))
IF (STATUS 0)?**9 THEN

GO TO EBBLABEL
(Structure.> :=<UserArea.>"1

IF (Structure. value(j) ==qualifier)

THEN successful)
IF (not successful) THEN GO TO LABEL(3*(i-1)+1)"

TOTGEN( i+e1) 'r

create DML string
I "LABELC3*(i-1)e1): RDNXT.(<Qualifieri,<UserArea >)

GO TO LABEL(3*(i-)e2)

Figure 27. TOTAL DML Generation Algorithm

76



LABEL( 3*i1))

ELSE [Variable datasets -read chain in sequence}

create DML string
"1<SearchKey.> :=(Dataset(i-1) .KeyValue>
READV . (Refe3rence. <SearchKey.) ,

(Userirea.>) .

LABEL(3*(i-l)+2): IF Reference. =='END.' THEN
GO TO LABE (3*(i-M)

IF (STATUS <> f****I) THEN
GO TO ERRLABEL

<Structure. ( : UserArea.i>"1

IF (Ctructure..valie(j) ==qualifier)
THEN Csuccessful)

IF (not successful) THEN GO TO LABEL(-:*(i-1)+1)"1

I TOTGEN( i+ i)

create DML string
I "LABEL(3*(i-1)+1): READV.(Reference.

* 1 1
<Searchkey >, <UserArea.>)

GO TO0 '-ABEL(*(i))
ILABEL(*(i-1)) "

end procedure TOTGEN
---------------------------------------------------------------------------------

Figure 27 Continued. TOTAL BML Generation Algorithm

recursively in order to build the proper processing order into the

program. This is essentially the same as the DMLGEN algorithm

presented in Chapter VII. In the figure, the subscript "ill signifies

ththe declaration of variables for the i level of recursion, being the

same as the number of the data set that is being retrieved. The

angled brackets (0>) signify values (variables) that are generated for

* that particular call. of TOTGEN.

77

............................



- - - -- .".-- . .

[-4

Summary

In this chapter, the design of a translator program for TOTAL, a

non-CODASYL network data base management system, was discussed. The

significant differences between TOTAL and the CODASYL proposal were .-.

pointed out, and algorithms (modified from the previous chapter) for

the generation of TOTAL DML were presented. In the next chapter, the

partial implementation and testing of a relational to TOTAL DML

translator program is presented.

78 :

% ..



1X. A Partial Implementation of tne TOTAL Translator

Introduction

This chapter describes the partial implementation of the rela-

tional to TOTAL DML translation algorithms of the previous chapter,

and the testing of sample queries using the AFIT Data Base (AFITDB).

The chapter is organized into three main parts. The first part

details the implementation of the translation software. The second

discusses the AFITDB, and details the portion of the database used to

create a set of sample queries. The last part of the chapter presents

the sample queries used to test the translator program and analyzes

the test results.

Translation Software Host Machine and Language

:mplementation of the translation software was done on the VAX-11

that also hosted the AFIT TOTAL DBMS. The translator algorithms

presented in the previous chapter were implemented using the C

programming language. The DML generator portion of the program

generates a Pascal language program with embedded TOTAL DML statements

which, after being compiled and linked to TOTAL, actually execute the

query. The choices of the VAX and C/Pascal as the host machine and

languages were based on the following criteria and constraints:

1. The DDBMS network link to the VAX had not been successfully
implemented, making distributed access impossible.

2. The LSI-11 microcomputers that compose the DDBMS nodes were
restricted in their memory capacity. It was doubtful that
the LSI's could accommodate network protocol software, LNDD
and ECNDD software, and the translator software all at
once.

79

• - ...



. . C was the most efficient language available on the VAX (the
others being Pascal and Fortran) for the handling of
character strings, which is the major task of the DML
program generation portion of the translation process.

4. The method of interfacing Pascal to the TOTAL DATBAS
program (written in FORTRAN) was already known.
Development of an interface to C would be a possibly

lengthy proposition.

Translator Limitations and Assumptions

The translation software was implemented using several limiting

design decisions and assumptions. The major assumptions and limita-

tions are pointed out in the following subsections, along with the

criteria on which these decisions were based.

Query Input. The information used by the translation program is

assumed to be the information passed to the local DBMS by the LNDD at

.he host node in the network. The actual parsing of the query would

already be done at this point, and only the information returned from

the LNDD would be relevant to the translator. This decision was based

on the fact that the LNDD and ECNDD, which are critical to parsing,

are located on the DDBMS nodes (LSI-11 microcomputers), not the local

DBMS host machines. As such, query parsing would most likely be done

on the LSI-I1s, not the VAX. The query information is assumed to be '

sent as a file (known as QUERY.DAT) to the VAX, which would then be

read by the translator.

Multiple Databases. One early decision was that the query

translator program must be capable of handling multiple databases

L resident on the TOTAL DBMS. Multiple databases are a common DBMS

80



. occurence. It is more unreasonable to expect a DBMS to contain only

one database. The method of handling this was to assume that the 4

first information present in the query file would be the six-character

database name. The translator program then uses this information to

open an input file containing the database schema. This schema

information is required by TOTAL when signing on to the database (see

Appendix B). For example, the schema for the AFITDB was located in

file AFITDBSC.DAT (SC standing for schema).

Dataset Processing Order. The most significant omission from the

algorithms presented in the previous chapter was the one for the

ordering of datasets into the most efficient processing sequence. It

was assumed, for the moment, that queries would be input in the most

efficient processing sequence. The immediate concern was to implement

and test software that actually could translate queries. The

efficiency of the queries can be addressed later, withcut affecting

the previously implemented code generation software. r

Queries Allowed. All queries to TOTAL are assumed to be path,

not tree, queries. This is a corollary to the previous decision not

to implement the query processing order algorithm. When that

algorithm is implemented, the possibility of allowing tree queries

(and the associated implementation of more complicated ordering

algorithms) can be addressed.

Boolean Qualifiers. The implementation of multiple boolean

qualifiers on the datasets in a query became an issue almost as

81

o'O '% "



i.1

involved as the translation itself. In order to simplify the process

of generating qualifier code, the number of qualifiers on a particular

dataset was limited to two. For Read Unique Master (READM) datasets,

one extra qualifier was allowed in addition to the equality comparison

on the database key (see the previous chapter). For all other

retrievals, two qualifiers were allowed, with the AND or OR logical

connectives, as shown below:

<qualifying condition 1> AND/OR <qualifying condition 2>

This allows range specifications (i.e., retrieve all workers older

than 20 AND less than 35) and multiple selection criteria (i.e., all

parts supplied by Jones OR supplied by Smith) on individual datasets

retrieved by READV or RDNXT calls to TOTAL. Although selection

critaria on a single dataset is limited to two qualifiers, a query

involving more than one dataset still can have several qualifying

conditions. A join involving three datasets could possibly have six

qualifiers, two for each dataset.

Another capability was to allow the selection of data records

based on a subset of the dataset key. For example, in the AFITDB, one

course's dataset key is EENG650. A query involving the selection of

all electrical engineering courses would use only the 'EENG' portion

of the key. In this case, the RDNXT statement would be used, rather

than the READM.

Maximum Datasets in a Query. The list of structures presented in
the previous chapter was implemented as a fixed-length array, thus

82

0.~- -2....



.j -7

placing an arbitrary limit on the number of datasets that could be

involved in the query. The limit chosen was seven datasets, or the

"Hrair Limit". The Hrair limit is the maximum number of entities that

the human mind can easily comprehend, and is generally considered to

be seven items, plus or minus two. Other limits placed on the

structures are a maximum of 40 fields in a dataset, two qualifier

comparisons (explained above), and only one linkpath and reference

allowed per variable dataset. The latter could (and should) be

expanded when the processing order algorithm is implemented, since

multiple access paths would then be possible.

Translator Input and Output

All software development was done in a single directory on the

VAX. in this directory, there are two input files to the translation

program, A.TDBSC.DAT and QUERY.DAT. There are four cutput files,

TCODE.PAS (the generated program), TCODE.OBJ and TCODE.EXE (compiled

and linked versions of TCODE), and QRESULT.DAT, the query result file R

created by running TCODE. The following sections examine the two

input files and the output result file.

AFITDBSC.DAT File. This file contains the schema information for

the AFIT database. As more TOTAL databases are tested, additional

<database name>SC.DAT files will have to be created. The information

present in the file is as follows:

Size of Schema Declaration
Number of Following Lines in Schema Declaration
N Schema Declaration Lines

83

7os.

- . . .. . S



The first two items of information are used simply to ease the

implementation of the translator software. The schema size is used

early in the translator to define the buffer size for the schema used

in the SINON/SINOF to TOTAL. The number of lines counter is to allow

the proper formatting of the schema declaration in the generated

SONOROFF routine. The declaration lines contain the required

information (program name, database name, access mode and field names)

as noted in Appendix B. For purposes of illustration, the first

scnema i.ne of the AF:T:B is as follows:

'GENTCODEAFITDBRDONLYNLFACTSHREXXXXDEPTSHDEXXXX,

QUERY.DAT File. This file contains the query information that is

a returned by the LNDD in the DDBMS. The format of the information here

Is similar to the format being used by Wedertz in his thesis (20).

The exact format of QUERY.DAT is:

Database Name (AFITDB)
Number of Datasets (N) in Query

stI Dataset Information

~I
thN Dataset Information

There are two different formats for the dataset information,

depending on the dataset type. These are shown on the next page.

84

'. %



80-f164 613 THE DESIGN AND IMPLEMENTATION OF R RELATIONAL To 2/3
NETWORK QUERY TRANSLRTOR.. (U) AIR FORCE INST OF TECH
HEIGHT-PATTERSON RFD OH SCHOOL OF ENS!.. K H HRHONEY

UNCLASSIFIED DEC 85 AFIT/GCS/ENS/S50-7 F/S 9/'2



1..0 . . . . . - -

Lm1.
L- 1 -

"INA' 40W I11 ' 28IF) ) N*' 4A



*- - .- '*<-'...~~- -

* .*

MASTER DATASETS VARIABLE DATASETS -.

Dataset Name (4 character) Dataset Name J
Type :ndicator (M) Type indicator (V)
Control (Key) Field Name Control Field Name
NYber of Fields Requested Linkpath Name (8 character)
i Field Reference (4 character)

Field Name (8 character) N ber of Fields Requested
Field Size (in characters) i Field
Output Indicator (Y or N) Field Name

Neber of Qualifiers (0,1,2) Field Size
i Qualifier Output Indicator

Field Name (being compared) Nuber of Qualifiers -

Comparison Operator i Qualifier
Argument Type (F or L) Field Name
Conjunction Comparison Operator

Argument Type
Conjunction

Explanation of some of the values may be necessary. The output

indicator determines if the retieved field is to be output to the

result file. The fields actually requested by the user's query are

denoted by a 'Y' for output, and the other fields needed (as deter- -

mined by the LNDD) are marked with a N, so they are not seen in the

output result file.

The qualifier field name is the field in the dataset that is

being compared against. The Argument Type is 'L' for a user-supplied

comparison literal, and 'F' denotes a comparison against a field from

another dataset (as in a natural join). The comparison operator must

be one congruent to those used by Pascal. The operators that must be

used are: VV

- Equal To '<>' - Not Equal To

I<' - Less Than '<=' - Less Than Or Equal To
'>' - Greater Than '>=I - Greater Than Or Equal To

85

~ ........



ww...-I--UIEEI"EI II. - -

The conjunction/disjunction field will be 'XXX' if the number of

qualifying comparisons is 0 or 1. If it is 2, then the first

qualifier will have a 'AND' or 'OR' in the field, and the second

qualifier will have a 'XXX' (since there is no third field).

QRESULT.DAT File. The query result file is written by the

generated program (TCODE) when it is executed. The results are

written in a simple format that separates each "tuple". The requested

output from each of the datasets involved in the query is output on a

separate line, with another line separating each distinct data

aggregate (tuple) in the result. For example, if a query requests a

student name from one dataset, a course title from another, and the

grade from a third, a resulting tuple mLght be:

Smith, John A.
Advanced Database Systems
A-

This query result file would then be transmitted back to the

requesting DDBMS node for further processing, possibly to be joined or

unioned with the results from a partitioned query to another database.

Processing Sequence

The processing sequence of the translator program, TRANS.C,

basically consists of a series of passes down the array of dataset

structures. First, the input from QUERY.DAT is read in, building the

array of datset structures for use by the remainder of the program.

The access characteristics of each dataset are then analyzed, with an

86• ...-
"" '-'I



access type classification of 1, 2 (both READM access), 3 (RDNXT), or

4 (READV) being assigned to each dataset. 1.,

The code generation process now begins. After opening statements

"5 have been generated, the second pass down the dataset array checks the

size of each dataset field and computes literal sizes in order to

create the list of sizes for buffer-type declarations in the Pascal

program. Another pass down the array creates record-types for query

output. A fourth pass through the datasets and all fields generates

the variable declarations for the program. The fifth pass down the

dataset array generates one subprocedure (for the unique DATBAS call)

for each dataset in the query. It is at this point (in the SONOROFF

procedure) that the database schema file (i.e., AFITDBSC.DAT) is read.

The sixth pass is made by the recursive module that generates the body

of the ?oscal program, with other, partial, searches of the array ,-

occurring as needed when computing the fields required in comparison

qualifiers. The seventh complete pass is made when the recursion

stops and output statements are generated.

At this point, the final code statements are generated and the

output file, TCODE.PAS is closed. What remains now is to compile and

link the program to TOTAL, and then execute it. Running the TCODE

executable code is what actually creates the result file.

For a detailed description of the program, the reader is referred to

Appendices E, F, and G, which contain, respectively, the Data

Dictionary, Structure Charts, and source code listings.

87S-.. -

87 -. .•...•. .. . ,.. .... .. ,S ._,___ . i.,. 1%



- - - - "D -.

t~

The AF:T Data Base (AFITDB)

The TOTAL database chosen for program testing was the AFIT Data

Base (AFITDB), which was designed to handle the scheduling of classes,

maintain student, faculty, and thesis information, and to track order

information on textbooks. The AFITDB is composed of 37 separate

datasets (15 Master files and 22 Variable files) and is resident on

the AFIT Information Sciences Laboratory's VAX 11/780 minicomputer.

The main difficulty encountered with the AFITDB was the fact that

t-e Jatabase is still basically in a state of infancy. Most of the 37

datasets presently have very little, if any, information in them, and

several of the usable datasets do not have linkpaths connecting them

to other datasets. The usable portion of the database that was

utilized for query translation testing is outlined below.

----------------------------------------

I !"S

MQTR R MCRS .. '-

STDT .-

--------------------------------------------------------------

Figure 28. TOTAL Schema for Test Database
(Subschema of the AFITDB)

88



Test Subschema of the AFITDB. The portion of the AFITDB that was

used in this query consisted of four Master datasets and two Variable

datasets, for a total of six datasets in the subschema. A diagram of

the subschema showing the TOTAL relationships of the datasets is shown .

in Figure 28.

There were other Master datasets containing information that were

not included in the test subschema. This was because the Variable

dataset linkpaths for the Masters were not implemented, thus leaving

them isolated. A simple select, project, or non-supported join could

be run on these Master datasets, but those queries could also be

tested on the selected datasets. As such, the isolated datasets were

removed from consideration.

" Description of Subschema Datasets. The six datasets selected for

the test subschema are listed below, with their respective fields that

actually contained information. The four-letter code names shown are

the actual TOTAL names for the datasets and fields. Several of the

catasetz actually possess more fields than are shown here, but in

these cases, invalid or no information was present in the omitted

fields. A specific case involved the the STDT (Student) Master

dataset. The STDT dataset actually has 32 separate fields, encom-

passing a wide range of information such as home address, spouse

names, and military date of rank. However, only the Student Name,

Rank, and Control fields contained any information. As such, only

6:

these fields are shown below.

°.6

-. ...[.9



STDT - Student Master Dataset
CTRL - dataset control field (student SSAN)
NAME - student name
RANK - military/civilian rank
LKSE - linkpath to the SECL variable dataset
LKCQ - linkpath to the VCQR variable dataset

SECT - Student Section Master Dataset
CTRL - dataset control field (section number)
NRSN - number of students in the section
LKSE - linkpath to the SECL variable dataset

MCRS - Courses Master Dataset
CTRL - dataset control field (course number)
CRHR - credit hours
LCHR - lecture hours
LBHR - lab hours
SZLM - class size limit

TITL - course title
LKCQ - linkpath to the VCQR variable dataset

MQTR - Quarters Master Dataset
CTRL - dataset control field (quarter/year)
STDT - start date
SPDT - stop date
LKCQ - linkpath to the VCQR variable dataset

VCQR - Variable Course-Quarter Dataset
CODE - mode control (required for retrieval/update)
NMBR - course number
IDEN - quarter-year

SSSN - SSAN of student enrolled in class

SECL - Section Leader Variable Dataset
SECT - section number
STDT - SSAN of student in section -

The conversion of the TOTAL datasets for this subschema is not

very difficult. The schema conversion algorithms proposed by Jones

(9:117) do not apply exactly to the TOTAL data model (due to the

absence of retention and membership classes in TOTAL) but do provide a

workable solution. The two Variable datasets become "member of" type .

relations that are composed completely of foreign keys from the Master

datasets (relations). The resulting relational schema is shown in

90

• • '
,' .*..,.* -, . .-.. ". -.. .. ", *' *.._,_ ,,. __. . . .. ... .. . .. , -. • ,_*_ - , J *,,. *..-'.,, *L *a* * ,i-,*'...



ff i 

Figure 29. This is the schema that is used for the test queries

presented in the next section.

Test Query Translations

Once the translation software was implemented on the VAX, a set

of sample queries was run to test the operation and efficiency of the i.* PX

both the C translator/generation program and the generated Pascal

program. Several queries resulted in the discovery of errors in the

IL
generation program, mostly due to unexpected query

STUDENT RELATION
+---------------------------------------------

Student SSAN I Name 1 Rank "

+---------------------------------------------

SECTION RELATION
------.--------------------------

Section Number 1 Number of Students
--------+-----------------------

COURSE RELATICN
-----------------------------------

I Course Number , Title 1 Class Size 1 Credit Hours
----------------------------------------------

QUARTER RELATION
+--------------------------------+-

Quarter-Year I Start Date ' Stop Date -
----------------------------------

ENROLLED-IN RELATION

-----------------------------------------

1 Course Number : Quarter-Year 1 Student SSAN
+---------------------------------------.

MEMBER-OF-SECTION RELATION

----------------------------

1 Section Number 1 Student SSAN I

---------------------------

Figure 29. Relational Schema for Test Database

91,

.......... ..... .. .... ... .. ........ .. .... .. ...... .. . ... . .. -..-.



combinations, but these were easily corrected. Other problems that , %

were uncovered dealt with the problem of generating correct Pascal

code, given that that language is very unforgiving in terms of type

declarations. This is the reason that the first part of the trans-

lator program does nothing but generate buffer type declarations to

use throughout the remainder of the Pascal program. . -

The final set of queries shown here were selected because they

represent a wide, but normal, range of queries that could be expected

in the system. There are seven sample queries, involving from one .o

five of the six datasets in the schema. The query is first presented

in the Roth relational query format (even though the Roth query was

not actually used in translation), and then the TOTAL processing

sequence that is assumed by the QUERY.DAT file is presented. The

actual QUEF.A .,CCDE.PAS, and ?EZULT.:AT files for each test are

included in Appendix H. :-- .

First Query. This query requests the courses that student A,

"Pahoney" took in the Winter 1985 quarter, and is enrolled in for

the Fall 1985 quarter. The Roth Query is:

SELECT ALL FROM Student WHERE (Name 'Mahoney')
GIVING Templ

JOIN Templ, Enrolled-In WHERE (Templ.SSAN = Enrolled-In.SSAN)

GIVING Temp2
SELECT ALL FROM Temp2 WHERE (Temp2.Quarter-Year 'FA85') OR

(Temp2.Quarter-Year = 'WI85') GIVING Temp3

JOIN Temp3, Course WHERE (Temp3.Number = Course.Number)
GIVING Temp4

PROJECT Temp4 OVER (Student.SSAN, Student.Name, Course.Number,
Course.Title) GIVING Temp5

The processing sequence assumed by QUERY.DAT is:

92

• "-.-.'- -- .. - - . - ".-'.-.--- . . . " -. .''. .



STDT - RDNXT using Name 'Mahoney' as qualifier
VCQR - READV using linkpath LKCQ from STDT

MCRS - READM using course number from VCQR as key

Second Query. This query asks for the name and rank of all AFIT

students with last names that begin with D, E, or F. The Roth query

is:

SELECT ALL FROM Student WHERE CStudent.Name > 'C') AND
(Student.Name < 'G') GIVING Tempi

PROJECT Tempi OVER (Student.Rank, Student.Name)
GIVING Temp2

7he processing sequence assumed by Q*-UERY.DATL is:

STDT -RDNXT with qualifiers (Name > 'C') AND (Name < 'G')r

Third Query. This query requests the name and rank for the

student with 10620840211 as his/her SSAN. The Roth query is:

ZELECT ALL FRCM Student WHERE (Student.SSAN 10620840211)
GIVING Tempi

PROJECT Tempi OVER (Student.Rank, Student.Name)
GIVING Temp2

T-he processing sequence assumed by QUERY.DAT is:

ZTDT -REALM with dataset key qualifier 10620840O21'

Fourth Query. The request here is for all the courses that the

Electrical Engineering Departmnent offers. The Roth query is:

SELECT ALL FROM Course WHERE (Course.Number ='EENG')
GIVING Tempi

PROJECT Tempi OVER (Course.Number, Course.Title)
GIVING Temp2

The processing sequence assumed by QUERY.DAT is:

% ,.

MCRS -RDNXT because qualifier is a subset of the database key

93



Fifth Query. This query requests the names of all the students

that are in section GCS-85D. The Roth query is:

SELECT ALL FROM Member-of-Section WHERE ..-

(SecionNumer IGS-8D')GIVING Tempi
JOIN Tempi, Student WHERE (Templ.SSAN Student.SSAN)I GIVING Temp2
PROJECT Temp2 OVER (Student.Name)

GIVING TemP3

The processing sequence assumed by QUERY.DAT is:

SECT - READM where key is 'GCS-85D' (This actually came out asp DNXT, because the literal i4S only seven
characters and the field is eight, so a subset of
the key was assumed by the program)

SECL - READy using linkpath LKSE from SECT
STDT - READM using SSAN from SECL as key

Sixth Query. This query retrieves all the GCS-85D students that

are enrolled in the Fall 1985 offering of MATH555, plus the quarter-

year. -he Roth query i4s: -

SELECT ALL FROM Enrolled-In WHERE (Course Number 'MATH555')
AND (Quarter-Year =?FA85Y) GIVING Tempi

JOIN Tenpi, Student WHERE (Student.SSAN =Templ.SSAN)
GTVI14G Temp2

SELECT ALL FROM Member-of-Section WHERE (Number z GCS-85D)
G7V:Nc- TemP3

JOIN Temp2, Temp3 WHERE (Student.SSAN = Member-of-
Section.SSAN) GIVING Temp4

PROJECT Temp24 OVER (Student.Name, Enrolled-in Quarter-Year)
GIVING T-3mp5

The processing sequence assumed by QUERY.DAT is:

SECT - READM using 'GCS-85D' as key (Actually became RDNXT
for the same reason as outlined above)

SECL - READV using linkpath LKSE from SECT
STDT - READM using SSAN from SECL as key
VCQR -READV using linkpath LKCQ from STDT with additional

qualifiers NMBR IMATH555' and IDEN 'FA85'

914



Seventh Query. The last query requests the names of all GCS-85D

students with last names beginning with 'A' through 'J' that are

taking a MATH deparment course in Fall 1985, with the titles for the

courses that they are enrolled in. This is the query that uses the

maximum (five) number of datasets of all the test queries. The Roth

query is:

SELECT ALL FROM Enrolled-In WHERE (Course Number 'MATH') AND
(Quarter-Year ='FA85') GIVING Templ

JCIN Templ, Student WHERE (Student.SSAN Templ.SSAN) AND
tudent.."ame < 'L') GIVING Temp2

SELECT ALL FRCM Member-of-Section WHERE (Number = 'GCS-85D)
GIVING Temp-

JOIN Terp2 Tezap3 WHERE (Student.SSAN Member-of-

Section.SSAN) GIVING Temp4
JOIN Temp4, Course WHERE (Temp4.Course Number Course.Number)

GIVING Temp5
PROJECT Temp5 OVER (Student.Name, Enrolled-In Quarter-Year,

Course.Title) GIVING Temp6

.he processing sequence assumed by QUERY.DAT is:

SECT - READM using 'GCS-85D' as key (Actually became RDNXT
for the same reason as outlined above)

SECL - READV using linkpath LKSE from SECT
STDT - READM using SSAN from SECL as key with additional L

qualifier NAME < 'L'
VCUE - READV using linkpath LKCQ from STDT with additional

qualifiers NMBR = 'MATH' and IDEN 'FA85'
MCRS - READM using NMR from VCQR as key

Analysis of Query Translation and Execution

All of the above queries were run over a two day period when

usage of the VAX was at a low level. Stopwatch timing was done on

each of the steps of query translation and execution: translation of

the query file, compilation of the generated code, linking the code to

the TOTAL DBMS, and executing the query. The reasoning was to see

95

-. * *



25 - 7

Q 30;

U,

z 15-
U" 10 ........

10

1 2 3 4 5 6 7
QUERY NUMBER

n TRANS RUNTIME TCODE COMPILE
- TCODE LINK

Figure 30. Code Generation ana Compilatlon Times -:.. "

approximately how long it would take to actually process a query in a

heterogeneous DDBMS.

A graphical illustration of the results is included to aid in

... : zin- the query execution. The graph of the first three query

translation steps is shown i'n Figure 30 the execution tine of the

fourth step of each query is llustrated in Figure 31, and the total

90

z 70

60 60
50

- 40

30"-
20 ....

STITS TST6 TS

QUERY NUMBER
n TCODE RUNTZME

... Figure 31. Translated Code Execution Times

96



05

z5 5
LhJ
CI)

4 4

1 2 QUERY NUJMBER 6 7

m TRANS RUNTIM 0 TCODE COMPILE
CM TCODE LINK E0 TCODE RUNTIME -

Figu re 32. Total Processirng Time For ' uery Execution

processi ng time i;s shown by the graph of Figure 32. The actual times

for each processing step are given in Table 5.

Analysis. T"he time it takes for the query translation process

obviously Jiffers by a wide mar!:in from query to query. :he average

total -execution time from start to finish is 43.3 seconas, but the

QUERY TRANS TCODE TCODE TCCDE TCTAL QUERY
NUMBER RUNTIME CCMPIL7Z 'I:NK RUNTIME PROCESSING TIME

------------------------------------------------------------------
11 2.12 112.52 16.1 276 48.42

I--------------------------------------------------------I

2 .51 5.13 6.51 127.68 T.
------------------------------- ---- -------

1.6 5.14 7.09 11.12 1 14.81
-- ----------------------------------- ------

4 1.32 7.09 6.61 113.67 :29.19
-------------------------------- ------------..

5 1.8 15.01 18.09 117.9 32.8
-------------------------- ------------------

6 12.23 113.21 16.48 1 79.53 1101.45
4----------------------+-----------4--------------4---------------------

7 12.59 12.89 1 7.23 1 8.44 ;41.15
4.--------------------------------------------------------------------------------4

Table 5. Query Processing Time (in seconds)

97

% ~ *-. . . . . . . . . . . ... .*. . . . . . . . . . . . . . .*.*.



sample standard deviation is 25.5 seconds. There is no way that one

can draw any conclusions about the efficiency of such a query trans-

lator in a heterogeneous DDBMS from such a small sample, but there are

some points that can be discerned from just seven queries. First of

all, the length of the first three steps will be fairly equal, even

for the most involved queries. The generation and linking steps are

almost identical from query to query. The main variation in time is

for the second step (compilation) where the average is 10.14 seconds,

with a standard deviation of 3.38. Most queries will average around

20 seconds to finish the creation of the executable code. What does

vary widely is the time it takes to actually execute the code.

Most of the execution times did not reveal any surprises. Query

- 3, where a single record was retrieved by use of the dataset key, was

extremely fast, running in just over a second. The speed of this

fastest query was expected. However, the slowest query, Number 6, was

not anticipated. It ran for over 79 seconds, nearly three times as

long as the next longest query. Complexity of the query would be the

obvious answer, but this query did not involve the highest number of

datasets. That was Query 7, which used five datasets, and which ran

only 1.8.44 seconds. Why this discrepancy? It appears that the

difference is in where the qualifications appear in the processing

order of the query. In Query 6, the qualifications appeared in the

last few datasets of the query. In Query 7, the addition of a

qualification on the second dataset (STDT) sharply reduced the

required amount of sequential searching.

98

................... ****-***~*.**%***... .... ... - ' -



Conclusions. Few conclusions can be drawn from such a small

sample of queries, but one significant one can be. It is apparent

that the criteria for the ordering of datasets in a query (which was V

omitted from this partial implementation) should be expanded to .. .

include an analysis of where the qualifications lie in the processing

order. Knowing the relative size of the datasets would also be

useful. The combination of these two factors would help to reduce the

execution time of the translated program, which is obviously the key

to the length of time it takes to process a query. This is a trade-

off, since a complex process-ordering algorithm will add time to the

initial translation, but the time saved in the execution of the query k

will probably exceed any additional cost from the algorithm.

Summary

:n this chapter, the partial implementation of a query translator

for the TOTAL DBMS was presented. The choice of the implementation

machine and language was explained, and the translation algorithm,

Sinput, output, and assumptions and limitations of this particular

implementation were discussed. The test data base was then presented,

and seven sample queries were defined in the Roth relational format. k_%:

These sample queries were translated and executed and the results of a

stopwatch timing of the process were presented. The chapter then

finished with an analysis of the timing results and drew one major

design conclusion about query processing. The next chapter concludes

this thesis, and offers some direction for future research in the area

.,'W of heterogeneous distributed databases.

99

" , b--

Li



X. Results and Conclusions

Introduction

In the nine preceding chapters of this thesis, the many

issues and considerations of implementing a global query

language for a heterogeneous distributed database system were

presented. Several methods of dealing with the problems and

tasks of such a language were presented, but there were probably

far more questions raised than answered. This final chapter

will first try to tie the f _ngs and accomplishments of this

thesis together. it will then advocate certain areas that are

considered worthy of further research, and will finish with a

last few observations and conclusions.

-erv-iw cf the -hesis

This thesis could be considered as being divided into three

distinct sections. The first section, Chapters 2, 3, and 4,

addressed the problem of global query management. A specific L

model, the Database Prism, was advocated as the best approach. .

This was followed by an extensive discussion of the types of

data partitioning that would likely be present in a distributed I.--

database built over existing local databases. This partitioning

issue is particularly relevant, considering the task of decom-

posing global relational queries into local database queries.

The idea was advocated that not only the global data model

should be considered as being relational, but that the local

logical databases should be viewed by the global system as being

100



relational. This would aid in the decomposition of queries,

allowing them all to be based on the relational model.

The second part of the thesis, Chapters 5, 6, and 7, dealt

with the task of translating these relational queries against

the local logical model into the data manipulation language of
. '

the underlying database system. Constraints on the relational,

hierarchical, and network model that were originally proposed by

Jones (9) were expanded and formalized. Algorithms for the

translaZion of relational queries into hierarchical and network

DML were presented, and a sample translation was shown.

The final part of the thesis, Chapters 8 and 9, dealt with

the specific implementation of such a query translation program.

A translation algorithm for translating relational queries into

the 2'!L of the :OTAL database management system was designed,

and a partial implementat:on of the design was written and

tested. Results of the translator were analyzed, and some

additional conclusions were reached.

Accomplishments

This thesis contained only a cursory view of the global

query management problem, but it did present a detailed analysis

of the very real problem of data partitioning and redundancy.

This problem will almost always need to be addressed when

creating a global distributed database over existing local

databases. Ten different classes of partitioning were

presented, and the ability to deal with these classes will

101

-. .)[V



most likely need to be incorporated in any future development of

a global query manager for the DDBMS. , ,

The data partitioning problem Is significant, but the real

accomplishments of this thesis were in the more localized

problem of query translation. Specific algorithms were ,

researched and advocated for the translation of relational

queries into 1MS and CODASYL DML. The CODASYL algorithm was

then modified to enable the translation of relational queries

. ..-

.. ,- , "- .. L translation software was partially

implemented on a VAX-I', using C as the programming language.

This translator is presently isolated from the remainder of the

DDBMS, which is Iccated on set of LSI-11 microcomputers.

........... ;.-: rr r ,mn r.az been Jes:..ned to deal w t

Local Data Directory Information, and as such, it should be "

fairly easy to interface with the DDBMS once the communications

lifnK te... the .AX .nd !e L-ns has beer implemented.

The accomplisnments of this thesis can be summarized into

six main areas as follows:

1. A model (Database Prism) for dealing with the
global query management problem was advocated and
discussed.

2. Ten specific classes of partitioned and redundant
information were defined, and processing sequences
for proper data recomposition were outlined.

3. The schema constraints orginally proposed by Jones ...--
were further defined and formalized.

102 -

p%%'
* t . * .. . . - .

-a Ko°". .



4. Algorithms for the translation of local relational
queries into hierarchical and network DML were
presented. .

5. A new algorithm for the translation of relational
queries into TOTAL DML was developed and presented.

6. A partial implementation of the TOTAL translator
was developed and tested on a VAX-11 minicomputer.

Recommendations For Further Research

Although there is a great deal of information contained in

this thesis, it still has barely scratched the surface of the

heterogeneous distributed data base problem. This problem Is

one that will require the research and efforts of the academic -

community, as most indications are that the commercial computer

industry is ignoring the problem in favor f designing new,

homogeneous, distributed systems. Specific areas of continued J
research and fcllcw-on e-fforts to this thesis should Include:

1. Develop the global query manager. This thesis has
implemented the portion of the DDBMS that deals
only with the translation of local relational
queries. Capt Wedertz's thesis dealt only with the
Data Directories. There is a pressing need to
develop the system for the decomposition of global

" queries, routing of the resulting local queries,
" and the recomposition of the distributed results.

This obviously will require a major effort, most
likely requiring several different theses.

2. Develop the use of SQL as the global query language
instead of the present Roth language. SQL is -
rapidly gaining support within the Dept. of Defense
to become the single approved query language for
DOD database systems. Since the query translator
is designed for Data Directory information, effort
for conversion to SQL should be minimal.

3. Finish the implementation of the TOTAL translation
software. Specifically, implement the portion of

103



i.the software that orders the dataset structures

into the optimal processing sequence. The ability

to deal with multiple boolean conditions is also an
area that should be expanded.

4. Investigate the possibility of developing
translators for other DBMSs. TOTAL is the only
non-relational system at AFIT, but research into an
IMS-type hierarchical language and the CODASYL
model are the next logical steps in query
translation.

5. Develop a relational front end to the query
translator on the VAX. This would allow the input
of relational queries from terminals on the VAX
itself, rather than input from the LSI-11s. This
would require development of a local query parser
and data directory.

Final Conclusions and Observations

Query translation in a heterogeneous distributed database

system is a very real problem for business, for government, and

car- cu larly for the Department of Defense. There is a pressing

need to deal with the requirement of accessing several different

databases, and designing global schemas over the present

infcrmation is one approach to dealing with this need. However,

the work on this thesis has indicated that this solution is not

without its limitations. For example, the average time for

translating and executing a query on the system was over 40

seconds, approximately half being the translation overhead and

half being the actual query execution time. Admittedly, the

software implemented is by no means optimal. However, this

observation must be balanced by the realization that the tasks

of parsing of the initial query, accessing the data directories,

transmitting the local queries and results, and recomposing the

104
..... , ?..._ .



local results into a global format are not part of those 40

seconds. Still, half of the time was spent in data retrieval by

TOTAL, which is going to occur no matter if the query starts out

in TOTAL DML or not.

However, even if the tran'Kation of queries is not

currently a particularly responsive solution, it is the best

approach that is presently available, short of the actual

conversion of the underlying local databases into a homogeneous

system. it appears to be the only way that the "ad hoc"

qualities of relational query languages can be preserved. The

last few months of effort that were put into this thesis have

shown that the translatica, of global queries into a different

underlying DBMS query language is indeed possible. However,

this effort has just scratched the surface. Future AF:T

research into distributed databases, both heterogeneous and

homogeneous, will hopefully continue to expand the body of

knowledge concerning database systems. The task for the

immediate future then becomes to take the present idea of a

DDBMS a step further and produce a truly responsive system that

can handle the ever-growing supply of information that is needed

by all phases of modern society.

%

105



- ~ .-.- C. -rq

Appendix A: Glossary of Terms

Access Path - The sequence of physical connections present from

one set of records to another in network databases. They
are used to provide the means of traversing through the
database.

AFIT - Air Force Institute of Technology

AFITDB - The AFIT Data Base, a database containing information
on the students, faculty, courses, and facilities at AFIT.

CNDD - Centralized Network Data Directory, that contains the

locations of all data items in the DDBMS. 4

CODASYL - Conference on Data Systems Languages, which produced a
"standarc" for network data bases.

DBMS - Data Base Management System, a software module executing
at host computers that organizes and retrieves data.

DDBMS - Distributed Data Base Management System, software
modules executing with network protocol modules to combine
databases together over network lines into a larger, single
database.

2BTC - :ata Base Task Group, a CODASYL working group that
developed the "standard" network database proposal known as
the DBTG database.

Decomposition - The process of taking a global query and

splitting it into the respective local queries.

DML - Data Manipulation/Management Language, language used by a
DBMS to retrieve, delete, and update information in the
database.

ECNDD - Extended Centralized Network Data Directory, a directory

at every site in the DDBMS that contains a list of
locations of data items that are updated from locations

received from the CNDD.

Foreign Key - An attribute in a tuple for which it is not a
r primary key for that relation or record, but is for some

other record or relation.

Generation - The process of creating a DML program, based upon
certain inputs, that will duplicate the operation of the

DML of a DBMS that uses another data model.

106

% ... '.

--p " ."j-_ . - ,- .o ..,,, .4 :-, .---. "- . . : ... .... -P -'_ -'-. *- : '_ - , . ' .



- lobal Schema - The relational representation of the integration
of all of the Local Logical Schemas present in the DDBMS.

Heterogeneous DDBMS - A DDBMS composed of a collection of
databases that use different data models.

Homogeneous DDBMS - A DDBMS composed of a collection of
databases that use the same data model.

IMS - Information Managment System, a hierarchical database
system developed by IBM.

Integration - The process of combining several local query
results into a single result to be presented to the user.

LNDD - Local Network Data Directory, a directory at every DDBMS ""'."
site that lists data items that are located on the host's
database.

Local Logical Schema - The relational representation of the
database present at the host system.

Partitioning - The division of common global data across several

local databases.

.. uery - A question posed to the database system concerning the

contents of that database.

Schema - A representation of the contents of a database.
Another name for the intension of a database.

Subschema - A partial view of a database's contents.

TCTAL - A DDBMS marketed by Cincom Systems, :nc., based upon the
network data model.

Translation - The process of converting the DML of one data
model into that of another.

VAX-11/780 - A minicomputer manufactured by Digital Equipment --

Corporation.

107

.r.--

'4 '" "; .r ,,'..'..f ".. " .. " . ,- ," .''-" -" ." : -' .- , . .'



Appenaix B: TOTAL Data Management Language

(14:4.1 4.54)

Functional Description

The Data Management Language (DML) is a means of accessing and

manipulating a defined data base. The language operates by invoking

TOTAL through the CALL facility of the host programming language.

When such a CALL is encountered, control is passed to TOTAL, which

analyzes a parameter list to determine the function (i.e., "command")

to be performed and the data to be acted upon. Communication between

the application program and TOTAL is effected through work areas

referenced in the parameter list. When control returns to the

application program from TOTAL, a status code is also returned to

indicate the result of the operation. If the operation completed

oucces fully, a 2ode of "****" is returned. :f the operation was

unsuccessful, the data base is restored to its condition before the .

operation if necessary, and an appropriate status code is returned to

indicate the cause of failure.

Command Parameters

As mentioned above, the parameter list in the CALL statement is

the method of communication between TOTAL and the user's program. The

parameters themselves are the names of areas defined elsewhere in the

user's program. As might be expected of any called sub-program, TOTAL

demands that the parameter list be in a certain order; the order shown

must be strictly followed. Of the fifteen different parameters, some

are used in every CALL to TOTAL, some depend on the particular type of

108

' % -. " -.. '. - '. " " " ° " -" .° ," '" ." . . .% '• ' ' -' ' ''," ' ',= '' = . ' . . ," ' - . -" '" " Z , ' = '. ,. °•., . "- . . ",,"V " "",- =



data set being accessed (i.e., master vs variable), and a few are used

only in certain specialized functions. The following nine parameters

fall into the first two categories, i.e., they are used in all but a

few special functions:

OPERATION, STATUS, DATA-SET, REFERENCE,
LINKAGE-PATH, CONTROL-KEY, DATA-LIST,

DATA-AREA, END.

In usage they are best thought of as being grouped into three

'standard' parameter list formats.

MASTER VARIABLE
PARAMETER SERIAL DATA-SET DATA-SET i

FUNCTIONS FUNCTIONS FUNCTIONS

-------------------------------------------

OPERATION X X X.
STATUS X X X
DATA-SET X X X

CONTROL-KEY X X .- "

DATA-LIST X X X
DATA-AREA X X X

END. I X X X

:n the descripticns and definitions which follow, certain

notation conventions are used to express the format of a statement or

a parameter. These are explained by the following rules.

1. Lower case letters are to be replaced by a symbol of the user's

choosing.

2. Upper case letters are to be inserted as they appear.

3. Square brackets ([1) enclose a choice of options of which none,
one, or several may be chosen.

4. Braces ({}) enclose a choice of options of which one and only one

must be chosen. _

109

.. " .*°



The nine 'standard' parameters are described in detail below,

before the discussion of the individual commands. There they will be

shown where they occur, but described only to the extent that they

vary from the discussion below. The only exception is the parameter

OPERATION which will be shown as the operation code of the function to

be performed.

NOTE: ALL PARAMETERS MUST BEGIN ON WORD BOUNDARIES

3.2 2PERATICN:

This parameter is the name of ("points to") a five character
field defined by the user into which he must place the operation
code of the function to be performed, e.g., READM - read a master
data set randomly.

B.2 STATUS:

This carameter is the name of '"ooints to" a four Tharacter
field defined by the user into which TCTAL places a code
indicating the result of the operation, e.g., "****": the
function has successfully completed; "FNTF": File Not Found and
the function has not been performed. THIS FIELD SHOULD BE
EXAMINED AFTER EVEPY COMMAND. A complete list of status codes
-and their meanings may be found in the Diagnostics Section. ,

B. DATA-SET:

This parameter is the name of ("points to") a four character
field defined by the user into which the user must place the name -
of the data set to be operated upon as defined in a data base
generation.

B.4 REFERENCE:

This parameter is the name of ("points to") a four character -
field defined by the user which is used to maintain the Internal
Reference Point of the current variable record or a position in
either a master of variable using the RDNXT function. This field
is used by both TOTAL and the user to communicate information

about processing along a relationship within a variable data set .0.

-d , or along a specific role by inserting appropriate values into the
reference field and expecting certain values to be present under

110
., -.



E.q

certain conditions. This may be best described by listing the
acceptable contents of the reference field, qualified by the role
of the participant.

B.4.1 LKxx

This is the last four characters of a linkage path name
(mmmmLKxx) as defined in the Data Base Descriptor Module. ..

The user places this value into the reference field to
indicate that TOTAL is to retrieve a chain (depending on
the operation code) and that processing is expected to
continue along the specified linkage path. TOTAL places
this value into the reference field to indicate that the
first record of a chain has been deleted (this will be
explained further below). .

rrrr

This is the Internal Reference Point of the record
currently being processed. The user places such a value
into the reference field to directly retrieve a specific
record whose Reference Point was previously known. The
user also may place into the reference field a value which
he previously saved upon interrupting continuous
processing along a chain or reset a serial retrieval to
some point in a data set. TOTAL places into the reference ,,-

field the -nternal Reference Pcint of the record Just
read, added, or written, or the "Back Pointer" from a
deleted record (unless the deleted record was the first of
a chain).

B.a._3 END.

This value is placed into the reference field by TOTAL
when the user, while continuously processing along a chain
of records, attempts to go beyond the end of the chain if
reading forward or beyond the beginning if reading
reverse. If this value is placed into the reference field ,
by the user prior to execution of a TOTAL command, TOTAL
will return a status code of "IRLC" or "VRP".

B.4.4 BEGN

This value placed into the reference field by the user and
used in conjunction with the 'RDNXT' function will cause F

the 'RDNXT' to start serially reading a specific data set
at the absolute beginning of that file. Upon reaching the ,. .

"'. end of a file, 'END.' is placed in the reference by TOTAL. "-h

The following table summarizes the effects of placing one of _,

these values into the reference field prior to execution of a

"- . .. 111



TOTAL command. (This table is not intended to comprehensively
describe the tabulated functions; a detailed explanation may be
found in the list of commands.)

PROCESSING BASED ON THE CONTENT OF

REFERENCE FIELD BEFORE EXECUTION %.

CONTENT

-------------------------------------------------------------------------
FUNCTION LKxx i rrrr i END."'

------------------ -----------

READD 1 The operation is not! The record addressed! IVRP
performed, and a by reference is
'status code of :VRP retrieved.
is returned.

-----------------------------------------------

READR The record at the 1 The record logically' IVRP

end of the chain is: before the one
retrieved. 1 addressed by refer- I

. ence is retrieved.
--------------------------------

READV The first record in The record logically! IVRP

the chain is after the one
retrieved. addressed by refer-

ence is retrieved. "

The following table shows the content of reference after
execution of a TOTAL command.

CCTE:NT OF REFERENCE F:ELD AFTER EXECUTION-

FUNCTION CONTENT
------------------------------------------------

READD internal Reference Point of the record just read.!
-----------------------------------------------

READR Internal Reference Point of the record just read
READV or 'END.' if the Read attempted to go off the end:

(or beginning) of the chain.

112

%
I. -°



B.5 L:NKAGE-PATH:

This parameter is the name of ("points to") an eight character
field defined by the user into which he must place the eight
character name of the linkage path (mmmmLKxx) as defined in the

*, Data Base Descriptor Module. This is the vehicle through which
the user dynamically names a specific relationship between a
chain of variable records and a master record by the record
control key. The terms "primary linkage path" and "controlling
linkage path" refer to the linkage path named by the linkage-path
parameter. The term "secondary linkage-path" refers to any othr
linkage path defined for this record in the Data Base Descriptor.

B.6 CONTROL-KEY:

This parameter is the name of ("points to") a field defined by
the user into which he places the record control key. TCTAL will
"randomize" on this data, whether to locate a master record or to
link from a master record to a variable record. if, during
further processing of this command, it is found that the Control
Key does not agree with the corresponding field _n the user's
data area, a status code of UCTL will be returned. To avoid
this, it is recommended that the user name the control key field
in the data area rather than define a separate field. The length
of the Control Key is taken to be that defined in the Data Base
Descriptor Module.

2.7 Z-ATA-LJST:

This parameter is the name of ("points to") a list of data names.
The list is a character string defined by the user which is
composed of data names declared in the data base generation.
T-his list must conform to the following format:

elemlelem2elem(n) ..... END.

The data names in the list may include:

- data elements
- data items
- control keys
- record codes

The list may not include:

- the ROOT field (master records only)

- linkpaths (variable records only)

The data names in the list may appear in any order and the
data elements they name will be processed in the order
listed. Thus the data list is ordered in the same manner as

113

;.v.



r * . - - ' . -:.- . "- -.- - . f- -" -p - . .. , =" .-. U- '.'Z - --. -' " ."- -. .- . .. -' - -- - -j- . -• % r .- - .-r".' --:r

the user's data area, not necessarily as the record on the
data set.

Only the data elements named in the data list will be processed,
i.e., transferred to or from the user's Data Area. it is
suggested that the order of element names coincide with the
generated order from DBGEN.

B.8 DATA-AREA:

This parameter is the name of ("points to") an area of memory
defined by the user which is used as an input/output area for the
data elements named in the Data List. The structure and
characteristics of this area must conform exactly to the data - -

elements as named in the Data List and in the same order.

:his parameter is the name of ("points to") a four character
field defined by the user which must contain the value "END." or
"RLSE". This parameter serves as a delimiter to the parameter

list.

Description of DML Commands

The following pages list in alphabetic order all of the Data

"anagement Language commands used by the translation program with a

detailed description of each.

D.12 The Read Next Function

This function operates as a generalized serial retrieval methoa.

The retrieval may be directed to a specific point in the dataset,

namely, to the beginning or to a specific record location. Each

record retrieved is placed in the Data Area and retrieval may continue

by simply re-executing the command until the end of the dataset is

reached. Only data records are returned; blank and control records

are bypassed.

Required Parameters

RDNXT, STATUS, DATASET, QUALIFIER, DATA-LIST, DATA-AREA, END. ''.

1 1,4



RDNXT: Mnemonic for Read Next

The user must place this mnemonic into the Operation Field.

QUALIFIER: Relative Record Number Field

This parameter is the name of a field defined by the user
whichis used to maintain the current position in the dataset
being processed. The content is always binary and four bytes in
size. The field may contain:

BEGN: If the user places this into the Qualifier Field, then RDNXT
retrieves the record physically first in the dataset and places
it into the Data Area according to the Data List. The Internal
Reference Point then replaces 'BEGN' and subsequent executions
wil then continue serially from that point.

rrrr: (Relative Record Number) The :nternal Reference Point.

At the end-of-file, 'END.' is placed in the Qualifier Field and can ' .
optionally be placed in the Status Field by applying the appropriate
patch.

D.14 The Read Master Function

This function operates by randomizing on the contents of the

Control Key Field to find the specific record and place it into the -. *

Data Area according to the Data List.

Required Parameters

READM, STATUS, DATASET, CONTROL-KEY, DATA-LIST, DATA-AREA, END.

READM: Read Master Function Mnemonic

The user must place this mnemonic into the Operation Field.

STATUS: Status Code

Significant codes that may be returned are:

BCTL: Contol Key is null. 04
MRNF: Master Record not found.

-. " . °

115

?,.



D.16 The Read Variable Function

This function operates by logically following forward pointers

along a specified linkage path. To read an entir hain, processing

;-,.-

is initiated by placing LKxx into the Reference Field and issuing the

READV command. TOTAL uses the Control Key to access a master record

from which the pointer to the logical beginning of the chain is

obtained. This first record of the chain is then returned to the

user. Thereafter, processing continues by reissuing the READV

2ozrrrand: since -he Reference Field contains an in~ernal Reference

Point, the forward chain is followel and records retrieved until the

last record in the chain is reached. When this happens, TOTAL returns

'END.' in the Reference Field to indicate processing in complete.

* Required Parameters

READV, STATUS, DATASET, REFERENCE, L:NKAGE-PATH, CCNTRCL-KEY,
DATA-LIST, DATA-AREA, END.

READV: Read Variable Function Mnemonic

The user must insert this mnemonic into the Operation Field.

STATUS: Status Code

Significant codes which may be returned are:

BCTL: Null Control Field
MLNF: Linkage Path is invalid for that file
IVRC: The record code in the path has not been defined
MRNF: The related Master record cannot be found
ICHN: The linkage path chain is invalid

REFERENCE: Internal Reference Point

If the Reference Field contains LKxx, the first logical record
in the chain is retrieved. If the Reference Field contains an
Internal Reference Point, TOTAL uses it to point to the record
from which to obtain the forward pointer to the next record. VAL

When sucessfully completed, the Field contains the Internal --

116

-%Zo



'r rr v~r - rr V -v.°.- .

Reference Point of the record just read, or 'END.' when thelogical end of the chain has been reached.

D.18 The Sign-Off Function.

This function operates by physically closing any data sets which

remain open and closing the log file.

Required Parameters

SINOF, STATUS, SCHEMA, END.

Z,,cF: Sign-Off Function Mnemonic

The user must place this mnemonic into the Operation Field.

STATUS: Status Code

Significant status codes which may be returned are:

LCAD: :he file has exceeded its load limit.
FULL: The file is full and therefore cannot be added to.

Programming Considerations -

1. All subsequent commands except a Sign-On will return a status code
of "NOSO".

2. The SINOF is identical to the SINON except the function changes.

-. This should be the last statement, logically, in the user program
prior to termination.

4. For an explanation of 'SCHEMA' refer to the 'SINON' function.

D.19 The Sign-On Function

This function must be the first CALL to the TOTAL system

presented by the user program. This function operates in different

117

.4,,.e

"22. . * . ~ *% * * ~ . . . . . .. . ~ * * . . .



4 . . . . .. . . . . . . . . . . . . .-...

ways according to the mode of TOTAL being used (Singletask or

Multitask). in a Singletask environment this function will initialize

certain areas in TOTAL and the DBMOD which are linked to the user

program, whereas in a Multitask environment this function will inform

TOTAL that the application program will be perfomring communication

as well as opening any files specified that have not previously been

opened by another program.

This function allows the user to state the logging options ..-

desired, what datasets this program is to process, the mode of access

for each dataset -nd the overall access provided to the task.

Required Parameters

SINON, STATUS, SCHEMA, END.

7-.,C.:: Si*n-On Function Mnemonic

The user must place this mnemonic into the Operation Field.

STATUS: Status Code

Significant status codes which may be returned are:

EXSO: This sign-on was preceded by another sign-on without an
interim SINOF.

DUPO: This file has already been opened. Fatal Condition. -
FAIL: A communication error has occurred.
DBNF: The database stated has not been loaded by TOTAL.
LOCK: The file has not been recovered or is in use by another

TOTAL program and cannot be used for update processing.
FULL: The file is full and therefore cannot be added to. "
LOAD: The file has exceeded its load limit.
IBVF: The schema parameter is not terinated by "END." or, one or

more of the subparameters within the schema is not the
correct length. (e.g. one of the REALM entries is not 12
bytes in length.).

118
,-'I."

~ ~ r.i~m~m. (.~V~dm " .'.-,



* * . - .

SCHEMA: Explicit Options and Files Needed for this Program Run

This parameter "points to" a field defined by the user in the

following format and containing all below stated values:

1. Program Name - eight (8) character program name of
this program

2. Data Base
Descriptor Name - six (6) character DBMOD name

3. Access Mode - six (6) character field containing the
general intention of this program

PDCLY
T AT E

R E C O V R" il ..i

RECOVR: Entire set of functions available
including WRITD if Singletask TOTAL is

being used, or full variable serial
read capability -- see RDNXT.

RDONLY: Only read functions will be permitted.

UPDATE: Entire set of DML functions available
except WRITD.

4. Logging Options - two (2) character field identifying
logging options

NL: do not log

LG: log before images only
BI: log before images only
FL: log functions only
BF: log functions and before images

5. Realm - a group of twelve (12) character
entries for each dataset in the data
base required for this program and

terminated by 'END.' literal.

1. File name - four (4) character field

containing a name of a dataset in the DBMOD

2. File mode - four (4) character field
containing the mode of file sharing needed.

One entry for each data set required.

119

.... .. .. . , .. ...., .. ...,. . . .... .. . .. .. .. . . .. ... . .. . . . . .. ,. -.. _. . .. . . . , , .,.-..-'.

.o - , ,. . ' ,,. -., . ... , . ... . . . ..-. ,- ....- . .. . ... • • .. . ,. . , ,. , : .. ......-,, _



SHRE: This file may be shared among
concurrent programs (Read Only).

PRIV: This file is exclusively assigned
to this program which may have
access to it during any program run.
(UPDATE)

3. File Status - four (4) character field used

for unique file status at OPEN time.

Programming Considerations

1. A Sign-On must be the first TOTAL command executed.

2. A second Sign-On may be issaed after a Sign-Off, e.g., to change
logging options, access mode, etc.

3. f any of the status fields used in the REALM entry are not
"****", then the general status will contain the proper error
indicator. Checking of each REALM status is not required.

4. If any logging option other than 'NL' is used, then the desired
DBMOD must have the appropriate log definitions as determined
within the DBDL.

:. Logg'ng is applied on a Data Base Descriptor rather than a

task-by-task basis, and is only provided with TOTAL-Mult:task.

.. . °*

120

z!... ... o

***** *..*o



Appendix C: Roth Relational System RETRIEVE Procedures

(15:122-124) "

This information is included for purposes of increasing clarity

of the example translations in the body of the thesis. No provisions

currently exist for the actual translation of a Roth query into TOTAL - -

DML, as no parsers or LNDD software are available.

Type "R" at the system level to enter RETRIEVE and the following

prompt line is displayed:

Retrieve ops: G(et), S(ave), E(dit), X(ecute), D(isplay), Q(uit)

A concept central to the operation of RETRIEVE is the command

file. A command file contains one or more relational queries. The

'cmmand file can be created, modified, stored on disk, retrieved from .

disk, and executed. The commands which can reside in a command file

are described below.

join of two relations:

JOIN relationl, relation2 WHERE attrl op attr2 GIVING relation3

where attrl is in relationl and attr2 is in relation2, op is :,

< >. The JOIN operation is a subset of the cartesian product where

the condition of membership is specified in the WHERE clause. All

restrictions under PRODUCT apply.

F. Project a relation over a subset of its attributes:

121

%w



PROJECT relationl OVER atrrl,attr2,...,attrN GIVING relation2

where attributes not specified in the OVER clause will be

eliminated and any duplicate tuples will be eliminated. Relationl

must have been attached and the READ password (if any) specified if

the user does not own the relation, and relation2 must be unique.

G. Select a subset of tuples from a relation:

SELECT ALL FRCM relation] WHERE condition '3]:P G relaticnZ

where concition is a boolean predicate on the attributes of

relationl of the form al AND/OR a2 AND/OR a3 ..., where each aN is of

the form attribute op value, where op is =, <, or >. The expression

p may be fully parenthesized to indicate the proper precedence of the

operators, but ifnot, then AND has precedence over OR. Or cr more

blanks or commas must be between each part ofthe command except that

the left parenthesis may be flush against an item to its right, and

the right parenthesis may be flush against an item to its left.

Relationl must have been attached and the READ password (if any)

specified if the user does not own the relation, and relation2 must be j
unique.

1...-
122 :'''''

.. ........-..-.-..... ....- *'..*.*-..

- ~p~tfbflt~ti~.E hi*



Appendix D:

Structure Charts for

m TRANS.C Translation Program

123



...........- -- . . - - . - .

Structure Chart Index

Chart Module Number and Name

Cl 1.0 main
1.1 buildstruct

4
C2 1 .2 set access order

1.2.1 det-access-type

C3 1.3 generate-code

C4 1.3.1 deci buftypes4
19.1.1 insert node

.2 Print Ibuffs

C5 13. de ci-procedures
1.3.2.1 ready

IL1.3.2.2 readm
1.3.2.3 rdnxt
1 .3.2.4 sonoroff

C6 1.3.3 totgen

gnqua-ifier
1.3.3.1 .1 g em compari.son

C6 1.3.3.2 outputall

1244



I---

= cc

14C~ la a.. --

125



UA

CC

1262

oe-T



. . . . . . .. . . . . .-C

Cc -4

kLz

rv

.1c CL

127I



ITT

ztz

128



L.- - .177 .

* k o

FFU

v 't 

Li

~Ll

UAU

- 1

C(

uj us

w~
CL '

129



U

2*

PIK

Cc~PC* VC
130A



dk..

2j 4c1

U'

-~14

'13

V. V 6.



Appendix E:

Data Dictionary for

I TRANS.C Structure Charts

I..

132



Data Dictionary Entry for Process

NAME: main

TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.0
DESCRIPTION: Main driver program for the translator
INPUT DATA: Database schema size
INPUT FLAGS: fopen (file open flag)
OUPUT DATA: None
OUTPUT FLAGS: None
GLOBAL DATA USED: Database schema file
GLOBAL DATA CHANGED: None
FILES READ: SCHEMA.DAT (database schema file)
FILES WP:TTEN: None
.ARDWARE ?EAD: 'one

P .WAEE WP:TTEN: None
AL:ASES: None
CALLING PROCESSES: None
PROCESSES CALLED: buildstruct b.

set access order
generate_code

. VERSION: 1.0
DATE: 10 November 7985

AUTHOR: Capt Kevin H. Mahoney

133 ..

V .,." ,



Data Dictionary Entry for Process

NAME: buildstruct
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.1
DESCRIPTION: Reads in data directory information and builds an array

of structures for use by the remainder of the program.
INPUT DATA: Query file
INPUT FLAGS: fopen (file open flag)
OUPUT DATA: None
OUTPUT FLAGS: None
GLOBAL DATA USED: dset - array of dataset structures

maxdset - number of datasets in query
GLOBAL DATA CHANGED: dset

maxdset
FILES READ: QUERY.DAT
FILES WRITTEN: None
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: main
PROCESSES CALLED: None

DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney. ..

I *.°,L

134

% 314

• ° %-L

.. ..-.- .....-. -... : ,.. . ..-.......-..-. - .:-. ..-. .. ... . -_. -f. , .. -.. .



Data Dictionary Entry for Process

NAME: set access order
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.2
DESCRIPTION: Orders the array of dataset structures into the most

efficient processing sequence.
INPUT DATA: None
INPUT FLAGS: None
OUPUT DATA: None
OUTPUT FLAGS: None
GLOBAL DATA USED: dset array
GLOBAL DATA CHANGED: dset array
FILES READ: None
FILES WRITN1: None
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: main

PROCESSES CALLED: det accesstype

VERSION: 1.0
DATE: 10 November 1985

UAUTHCR: Capt Kevin H. Mahoney

-- o

r.-r
* ..

.. .:..-

135 h

S j~. .. .-

a. - a"-.. -..



Data Dictionary Entry for Process

NAME: det access type
TYPE: PROCESS. -
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.2.1
DESCRIPTION: Determines the access type characteristics for each

dataset in the array and assigns each of them a code specifying
the particular access type. The types are (1) READM-file, (2)
READM-literal, (3) RDNXT, and (4) READV.

INPUT DATA: dset array

INPUT FLAGS: None
OUPUT DATA: dset array

OUTPUT FLAGS: None
GLOBAL DATA USED: dset array
GLOBAL DATA CHANGED: dset array
F:LES READ: None
FILES WRITTEN: None
HARDWARE READ: None
HARDWARE WRITTEN: None

ALIASES: None
CALLING PROCESSES: set access order
PROCESSES CALLED: None

......... : 1 .0:- - ,

DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

1 3..

-. (*

• ,.-..:2 .. . * . * * -.. ...-.



Data Dictionary Entry for Process

NAME: generatecode -

TYPE: PROCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis) :1
NUMBER : 1. 3 •'

DESCRIPTION: Driver for code generation portion of translator. It
generates the beginning and ending sections of the translated
program and calls subprocedures to do the rest.

INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: fopen (output file open flag)
GLOBAL DATA USED: dset array

maxdset
=LJ. L DATA C:HA. CED: *one
FILESZ READ: None

iFFLES EN: TCODE.PAS (the generated translated program)
HARDWARE READ: None
HARDWAPE WRITTEN: None
ALIASES: None
CALLING PROCESSES: main
PROCESSES CALLED: decl buftypes

decl procedures
totgen

1 .0
DATE: 10 November 1985
.;"THO?: Capt Kevin H. Mahoney

137



Data Dictionary Entry for Process

NAME: decl buftypes
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.1
DESCRIPTION: Generates buffer type declarations. Builds a linked

list to eliminate duplicate buffer sizes before writing them.
INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: dset

maxdset
G..BL DATA CHANGED: None

E A': .one
FILES WRITTEN: TCODE.PAS
- :DiWARE READ: "one

HARDWAFE WRITTEN: None
ALIASES: None
CALLING PROCESSES: generate code
PROCESSES CALLED: print buffs

insert node

1%.

A0 November ,985
AUTHOR: Capt Kevin H. Mahoney

138

..

........................................... ' ..-...



v -. y N.- . . . _ :7...71.- . . . -r,.ow-. e .r -,-.

Data Dictionary Entry for Process

NAME: insert node
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.1 .1
DESCRIPTION: Inserts new buffer sizes into the linked list, I

eliminating duplicate size values.
INPUT DATA: buffer size (integer)
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None - . -

GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
F:LES READ: None

WI TTEN: None
HARDWARE READ: None
HARDWARE WRITTEN: "Ione
ALIASES: None
CALLING PROCESSES: declbuftypes
PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985
.UT-:i Capt Kevin H. Mahoney

139

*' . . v . . * * . .- '. , - . -- - . . . . - °.



Data Dictionary Entry for Process

NAME: print buffs
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.1.2
DESCRIPTION: Outputs the buffer declarations by following the linked

list of buffer sizes.
INPUT DATA: linked list of integers
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
F:LES READ: None
FlLIS WRITTEU: TCCDE.PAS
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: declbuftypes 6-
PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney"L

!::::-

'.',, N. - "

140

7- e -f

. . . .. . . . . . . . . . . . . . . .



Data Dictionary Entry for Process

NAME: deal procedures
TYPE: PROCESS
PROJECT: Relational to TOTAL DXL Translation Program (Thesis)

NUMBER: 1.3.2

DESCRIPTION: Generates the subprocedure declarations within the

generated program for the different calls to TOTAL.

INPUT DATA: dset array
schema length

INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: None
GLOBAL DATA USED: dset

raxdset

C LCBAL DATA CHANGED: None
7-LE READ: None
F:L ;S WH:TTEN: 'CODE.PAS
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: generate-code

PROCESSES CALLED: ready
readm
rdnxt

VERSION: 1.0
DATE: 10 November 1985

AUTHOR: Capt Kevin H. Mahoney

le

141

k..



- Data Dictionary Entry for Process

NAME: readv
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.2.1
DESCRIPTION: Generates code for READ VARIABLE subprocedures.
INPUT DATA: dataset number, name, element list, buffer area size,

linkpath name
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
FILES READ: None
7F:LES WRITTEN: :CODE.PAS
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: declprocedures
PROCESSES CALLED: None

'JERSION: 1.0
DATE: 10 November 1985
AUTHC : Capt Kevin H. :.ahoney

222 *.' ,

142 e,

... %



Data Dictionary Entry for Process

NAME: readm .
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.2.2
DESCRIPTION: Generates code for READ MASTER subprocedures.

INPUT DATA: dataset number, name, element list, buffer area size,
key attribute size

INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
FILES READ: None

F:LEC WRITTEN: TCODE.PAS
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None

CALLING PROCESSES: decl_procedures
PROCESSES CALLED: None

VERSION: 1.0
VA DATE: 10 November 1985

AU7HGC: Capt Kevin H. Mahoney

..%.. °

1.4
°.J - .. ,

. . . . . . . . . . . . . . . . . . . .'- .



Data Dictionary Entry for Process

NAME: rdnxt
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.2.3
DESCRIPTION: Generates code for READ NEXT MASTER subprocedures.
INPUT DATA: dataset number, name, element list, buffer area size
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
FILES READ: None
FILES WRITTEN: TCODE.PAS
'iARDWARE RED:none

al 'ARL'NARE WRTTEN: None
ALIASES: None
CALL:-NG PROCESSES: decj._procedures
PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

144



Data Dictionary Entry for Process

NAME: sonoroff
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.2.4J
DESCRIPTION: Generates code for the SINON/SINOF subprocedure.
INPUT DATA: schema size, number of subschemas, schema file4
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
FILES READ: "database-name"SC.DAT (schema file)
FILES WRITTEN: TCODE.PAS

WAD~ARE READ: ~'one
A4ARD WAHE WRITTEN: NJone
ALIASES: None
CL.LLING PROCESSES: decl procedures
PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

14I5



* Data Dictionary Entry for Process

NAME: totgen
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.3
DESCRIPTION: Recursive module that generates the main body ofS translated code that determines the processing order of the

query. -

INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pasc!al code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: dset

na xd set
-ILCDAL DATA CHANGED: None

ivzs.EA D: None
* LSWRITTEN: TCODE.PAS

HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: generate code

totgen
PROCESSES CALLED: totgen

gen-qualifier
outputall

*VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

146

% % -



Data Dictionary Entry for Process

NAME: gen qualifier
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.3.1
DESCRIPTION: Generates the proper comparison code for single

qualifiers or compound qualifiers seperated by a single AND or OR
boolean conjunction/disjunction.

INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: dset array
GLOBAL DATA CHANGED: None
7=73' READ: None
FILES WRITTEN: TCODE.PAS
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: totgen

PROCESSES CALLED: gen comparison

VERSION: 1.0
DE: 10 November 1985
A'THC R: Capt Kevin H. Mahoney

-. ,-:. .- -

1 1I-

147

A',%"%



Data Dictionary Entry for Process

NAME: gen comparison
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.3.1.1
DESCRIPTION: Determines if comparison is on another dataset field or

on a given literal and generates the appropriate code.
INPUT DATA: comparison number, dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: dset array
GLOBAL DATA CHANGED: None
FILES READ: None
F--L- WRITTEN: :C'DE.PAS
HARDW;ARE READ: 'None 
HARDWARE 'WRITTEN: None
ALIASES: None
CALLING PROCESSES: genqualifier k
PROCESSES CALLED: None

VERSION: 1.0

DATE: 10 November 19857 C: Capt Kevin H. Mahoney

S .-. -.

r

148

-*....-.--..



*~~~~~I It R-.-.-

Data Dictionary Entry for Process

NAME: outputall
TYPE: PROCESS

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

NUMBER: 1.3.3.2
DESCRIPTION: Generates the code that will output the query results

when the translated program is executed.
INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: dset

ma xdset
GLOBAL DATA CHANGED: None

* rL22 REA!:: 'lone
FILE~S WRITTEN: TCCDE.PA-
dARDWARE READ: None
:ARDWARE WRITTEN: None

* ALIASES: None
CALLING PROCESSES: totgen
PROCESSES CALLED: NIone

L~~. VERSION: 1.0vmer18

ATCF: Capt Kevin 14i. Mahoney

1419



Data Dictionary Entry for Parameter

NAME: dbname
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Name of the database being queried
DATA TYPE: six (6) character string
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
STORAGE TYPE: process I/O
PART OF:
COMPOSITION:
ALIASES: None
-. E FFCM: buiIdstruct

PASSED TO: main

VERSION: 1.0
P DATE: 10 November 1985
- AUTHOR: Capt Kevin H. Mahoney

I.

150



*T.-R low -7. 7N 74 -2w - n

Data Dictionary Entry for Parameter

NAME: schemasize
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Size of the database schema in characters
DATA TYPE: Integer
MIN VALUE: 22
MAX VALUE: None
RANGE:
VALUES: 22 plus multiples of 12 (12, 24, 36, etc.)
STORAGE TYPE: file
PART OF:
COMPOSITION:
.4L:ASES: schema size

?A2ZD F3M: main
PAZZED :0: generate code

VERSION: 1.0 
-

DATE: 10 November 1985
AUTHOR: Capt Kevin Hl. Mahoney

151



V-o t-

Data Dictionary Entry for Alias

NAME: schema size

TYPE: ALIAS
DD TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)

SYNONYM: schemasize

PASSED FROM: generate code

PASSED TO: deel buftypes
decl_procedures

COMMENTS: None

Data Dictionary Entry for Alias

NAME: schemasize

TYPE: ALIAS.
DD TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)

SYNONYM: schemasize
PASSED FROM: decl procedures

SPASSED TO: sonoroffira - C, .E 'TS Q lone".-

e- -r-.

,°,



Data Dictionary Entry for Parameter

NAME: i
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Dataset number in the structure array (array subscript)
DATA TYPE: integer

MIN VALUE: 0
MAX VALUE: 7
RANGE:
VALUES:
STORAGE TYPE: Process I/O
PART OF:

COMPOSITION:
ALIASES: i
?AZZED F'RCM: generate code
PASSED TC: toteen

VERSION: 1.0
IL DATE: 10 November 1985

AUTHOR: Capt Kevin H. Mahoney

153



.,

Data Dictionary Entry for Alias

I 
NAME: i
TYPE: ALIAS
DD TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
SYNONYM: i
PASSED FROM: totgen 4
PASSED TO: genqualifier
COMMENTS: None

I
Data Dictionary Entry for Alias

"AME: i
TYPE: ALIAS
DD TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
SYNONYM: i
PASSED FROM: genqualifier
PASSED TO: gencomparison
CCMMENTS: None

154.

Li

N,1 5Le



Data Dictionary Entry for Parameter

NAME: head
*TYPE: PARAMETER

PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Pointer to the head of the linked list used to eliminate

duplicate buffer sizes.
DATA TYPE: Pointer
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
STORAGE TYPE: Process I/O
PART OF:
COMPOSITION:
.L A~ : head
PASSED FRCM: declbuftypes
PASSED TO: insert node

print buffs

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

.. . . . -

t. *



Data Dictionary Entry for Parameter

NAME: size
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Size (in characters) of the particular field or literal

that requires a buffer type declaration.

DATA TYPE: integer -
MIN VALUE: 1
MAX VALUE: None
RANGE: Positive integers
VALUES:
STORAGE TYPE: Process I/O

PART OF: I
COMPOSITION:
AL: ASES: -

7A S,D FROM: decl-buftypes
PASSED TO: insert-node

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

1 56

i "[(- .-..



Data Dictionary Entry for Parameter

NAME: j
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Dataset number of the dataset being processed (dset

array subscript).
DATA TYPE: integer
MIN VALUE: 0
MAX VALUE: 7

RANGE:
VALUES:
STORAGE TYPE: Process I/O

PART OF:
COMPOSITION:
AL:ASES: -

PASSED FROM: decl procedures

PASSED TO: ready
readm
rdnxt

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

t

%

157

,. .°4"

.1 - J * ?* . . ./.. . .'' ' '' ' ''' ' " " ' ' " - -" • ' ".'- • - -' ' -' ' " ' ' " " ''/ °' ' . " '"



Data Dictionary Entry for Parameter

NAME: name
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Name of the dataset being processed.
DATA TYPE: Four (4I) character string
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:
STORAGE TYPE: global
PART OF: dset structure array
COMPOSITION:
ALI ASES:
PASSED FRC4: deci procedures
PASSED TO0: ready

read m
rdlnx t

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

158

NAME : na m "- "



Data Dictionar Etr for Parameter

NAME: elementlist
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: This is a character string which is the concatenation of

all the field names for the dataset being processed.
DATA TYPE: Character string terminated by "END."
MIN VALUE:
MAX VALUE:
RANGE:
VALUES: String must be multiple of eight (eight characters per field

name), plus the four characters for the "END."
STORAGE TYPE: Process I/O
PART OF: Individual field names are part of dset array.
C 0MP 0.-I rON : Field names and "1END.'1
ALI-ASES:
PlASSED FROM: decl procedures
PASSED TO: ready

readm
rdnxt

VERSION: 1.0
*DATE: 10 November 1985

AUTHOR: Capt Kevin H. Mahoney

~J

%

159i



-.b

Data Dictionary Entry for Parameter

NAME: areasize

TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: Size required for the user area buffer where TOTAL

places the retrieved data during a query. It is the sum of the
sizes of all fields retrieved by a single call to TOTAL.

DATA TYPE: integer
MIN VALUE:
MAX VALUE:
RANGE: Positive integers
VALUES:
STORAGE TYPE: Process I/O

PART OF:
C2POSITT-CN:
ALIASES:
PASSED FROM: dec!_procedures
PASSED TO: ready

readm
rdnxt

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

160

° .5



Data Dictionary Entry for Parameter

NAME: keysize
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)

DESCRIPTION: Size of the iataset key that is needed for a READM or a
READV call to TOTAL.

DATA TYPE: integer
MIN VALUE: 1
MAX VALUE:
RANGE: Positive integers
VALUES:
STORAGE TYPE: global

PART OF: dset array structure

PASSED FROM: deciprocedures
PASSED :0: ready

readm

. VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

1....
.% ..

• - %"

. S2-.

:- I161



Data Dictionary Entry for Parameter

NAME: lkpath
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: The linkpath identifier for the particular dataset that

requires a READV call to TOTAL.
DATA TYPE: Eight (8) character string
MIN VALUE:

MAX VALUE:
RANGE:
VALUES: The first four characters are the field name, the last four

are "LKXX".
STORAGE TYPE: global
PA, T OF: dset array structure
CC'-iPCSITI0N :

ALIASES:
PASSED FRCM: decl crocedures
PASSED TO: readv

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

ZI

.I .'l-

162.

\h;.,.

>' ..~



* * Data Dictionary Entry for Parameter

NAME: cnum
TYPE: PARAMETER
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
DESCRIPTION: The number of the qualifier being examined (1 or 2).
DATA TYPE: integer%

pMIN VALUE: 1
*MAX VALUE: 2

RANGE:
VALUES:
STORAGE TYPE: global
PART OF: dset array structure (number of comparisions subscript)I COMPOSITION:
ALIASES:

7AZZED FROM: .-en qualiffer
PASSED TO: gen comparison

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

163



•°.. '

Appendix F: Configuration Management

for the TRANS.C Program

Required Files

There are three files in directory DUA3:[AFITDB.MAHONEY] on the

Information Sciences Laboratory VAX-71/780 that are required for the

translation process. These files are:

1. TRANS.C - source code of the translation program.

2. AF'TDBSC.DAT - the input schema information file for the AFIT *"
database. Additional databases will require their own schema
files. Filenames are required to be the six (6) character
database name (as defined in TOTAL) concatenated with "SC.DAT".

3. QUERY.DAT - the query input file. The format of the file is as .1
shown on Page 87 of this thesis. Currently the user must create
the file, but it will eventually be generated by the LNDD in

response to a local query or subquery.

Instructions for Translating a Query

There are three steps n executing a translated query, execution

of the translator, compilation and linking of the source code, and

txecution of the generated program. Specific details are as follows:

Translator Execution. After the required QUERY.DAT file has been

created, enter "RUN TRANS" and the source code for the TOTAL query

will be created in the file named TCODE.PAS.

Compilation. Enter "PASCAL TCODE" and the generated source code

will be compiled.

164.

Z1"6-4



Linking to TOTAL. The next task is to link the query to the

TOTAL DBMS. For linking of a query against the AFIT database, enter

the following statement:

LINK TCODE,DUAO :[AFITDB.TOTAL]NATDATBAS,NATBUF

This link statement is broken down as follows:

1. TCODE - the object code of the generated query program.

2. DUAO: - the prefix denoting the mass storage unit (disk) of the
VAX that the TCTAL DBMS is resident on. -f TTAL Is relocated on
the system, this statement will be different.

3. [AFITDB.TOTAL] - directory and filename for the AFIT database.
This will be different for other databases under TOTAL.

4. NATDATBAS,NATBUF - qualifier for the DATBAS FORTRAN interface
program to TOTAL. This is unchanged for different databases.

zxecution of Query. For actual execution of the query, enter

"RUN TCODE" and the TOTAL database will be queried and the QRESULT.DAT

file will be created. This query result file may then be displayed,

printed or transferred back to the requesting node.

Changes to TRANS.C

If any changes are made to the source code of TRANS.C, the

program must be recompiled and relinked. The steps are:

1. Enter "DEFINE LNK$LIBRARY SYS$LIBRARY:CRTLIB.OLB" to set the

system C library as the link library for the program.

2. Enter "CC TRANS" to compile the source code.

3. Enter "LINK TRANS". The program is now ready for execution.

165

• .- . '--1. J
.'.. - .-. .- -.. .•.-.. .....,. . ... .. . .... ... .,'. .,.* .... ....4. .. . '..... ' "' ' "2 "% ." C- j .' '- - ".%J "-=%



Appendix G: 2

TRANS.C Program Listings

AV-

166



/*** *************************** **

" * DATE: 10/18/85 *
• VERSION: 1.1 *
• TITLE: Relational to TOTAL Query Translator *

• FILENAME: trans.c *
• COORDINATOR: Capt Kevin H. Mahoney *
• PROJECT: Thesis *
• OPERATING SYSTEM: VMS VERSION 4.2 *
• LANGUAGE: VAX-11 C *
• USE: Compile and link with standard library *
• CONTENTS: main - driver *
• buildstruct - input query information *

set access order - order query processing *
• generate code - code generation driver *
• decl buftypes - type declarations *
• insert node - eliminates duplicate sizes *

print Tuffs - generates buffer types *
* declproceaures - procedures declaration driver *
• ready - read variable generator *
• readm - read master generator *
* rdnxt - read next master generator * "
• sonoroff - sign on/off TOTAL *

• totgen - code body generator *
• gen qualifier - checks for con/disjunction *
• gencomparison - generates comparison code *
.- outputall - generates output code

7 F :CTON1: The modules in this file take the query information*
• (that the local network data directory (LNDD) sent *
• in response to a global relational query) and *
• create a Pascal program with embedded calls to the .
• TOTAL DBMS that produces results equivalent to *
• those requested by the original relational query. *
• The first three routines read in the query infor- *
• mation from the QUERY.DAT file, get the database *
• name from the query file, fill the dataset struc- *
* ture array with information on each of the datasets*
• in the query, and get the database schema from the *
• <database>SC.DAT file. The rest of the routines *
• utilize the array of dataset structues to create *
• the Pascal program under filename TCOD.PAS. After *
• TCODE.PAS has been created, it must be compiled and*
• linked to TOTAL. The command for linking to the *

AFIT database on TOTAL is: *

• LINK TCODE,DUAO:[AFITDB.TOTAL]NATDATBAS,NATBUF * . ,

• It can then be executed, which places the results *
• of the query into file QRESULT.DAT. *

" *****************************l*******§**************************/ .

-1 6



* DATE: 10/18/85 *

* VERSION: 1.1 *

* NAME: External Variable and Typedef Declarations

* AUTHOR: Capt Kevin H. Mahoney

* USE: These variables and types are external to the programs * ","
* in this file. The dset structures and the dset array *
* size are heavily used throughout the modules, wiith *

* only the buildstruct module modifying the structures *
(initially filling them from the query input file), so *

* extern was considered to be the best alternative. *
* Likewise, the external typedef of the linked list nodes *
* was chosen because their use was across three separate *
* modules. The local database schema file and the *

generated Pascal code file, tcode.pas, were also used .
by several modules, so the pointers to these files were *

* also declared as extern. "

#include stdio

struct dataset I
char name[5]; /* dataset name */
crhar mor',[21; / master/variable dataset indicator */
char dskey[9]; /* data set key */
int access type; /* readm,readv,rdnxt access indicator */
char lkpthT9]; /* linkpath used - variable datasets / .-.

char lkref[5]; /* linkpath reference */
int numflds; /* number of fields requested */
struct fld {

char name[9]; ,': field name */
int size; /* size of field */
char outind[2]; /* indicates (Y or N) output requested */
I field[40]; /* forty fields max for each dataset */

int compnum; /* number of comparisons on dataset */ -
struct cmp {

char cfld[9]; /* comparison field name */
char opr31; /* comparison operators <,=,<,>,<=,>= */
char comptype[2J; /* F for dataset field, L for literal */
char argfld[9]; /* name of field used as qualifier */
char arglit[60]; /* literal used as qualifier */
char isandor[4]; /* AND, OR or XXX */
J comp[2]; /* two qualifiers allowed per dataset *1

} dset[7); /* seven dataset max in a query */

FILE *f1,*f3,*fopen(; /* tcode.pas and 'dbmname'sc.dat files *.
int maxdset; /* number of datasets in the query *-

168

U



* struct type-list 1/* linked list for buffer sizes *
* .- mt data;

struct, type-list *next;

typedef struct type list NODE;
typedef NODE *LINK;

IrI

%

169 .* .



/*

• DATE: 10/14/85 *

* VERSION: 1.1 *

* NAME: main *

• MODULE NUMBER: 1.0 *

• DESCRIPTION: main driver program for the translator *
• PASSED VARIABLES: N/A *

• RETURNS: N/A *

• GLOBAL VARIABLES USED: None *
• GLOBAL VARIABLES CHANGED: None *
• FILES READ: schema.dat *
• FILES WRITTEN: None *
• HARDWARE INPUT: N/A *
• HARDWARE OUTPUT: N/A * -
• MODULES CALLED: buildstruct - input query, place in structures *
• set access order - optimize access order *

* generate_code - generate Pascal program *

CALLI,,G MODULES: None -

• AUTHOR: Capt Kevin H. Mahoney * 4

* HISTORY: 1.0 (10/10/85) Original Version *
• 1.1 (1/141/85) Changed parameter passed to generate_ *

code from numsubschemas to schemasize and *
,•-* parameter passed to buildstruct to db name. *

main()

int schemasize;
extern FILE *f3,*fopen;
char db name[13]; /* database schema file */

/* get the database name and build the dataset structures */
buildstruct(db name);
/* order the structures */ -.- ,

set access ordero;

/* open the proper database schema file *I
strcat(db_name,"SC .DAT");
if ((f3 = fopen(db name,"r")) == NULL) {

printf("Can't open the schema file.\n");
exit(1);

fscanf(f3, "%d ",&schemasize);
generate code(schemasize);
fclose(f3);
I* end of main *I

170

.5 °



.Tr.

/**

S DATE: 10/114/85
* VERSION: 1.1
* NAME: buildstruct
* MODULE NUMBER: 1.1
* DESCRIPTION: This module reads in the data directory*

* information that has been placed in the QUERY.DAT* __

* file by the DDBMS and inserts the information into*
* the 'dset' array of structures for further
* processing by the access ordering and code
* generating procedures.

S PASSED VARIABLES: dbname - name of the TOTAL database accessed*
* RETURNS: dbname
* GLOBAL VARIABLES USED: dset - array of dataset structures

* maxdset - number of datasets in query *

* "LGBAL VARIABLES CHANGED: dset, maxdset
* FILES READ: query.dat
* FILES WRITTEN: None*
* HARDWARE INPUT: N/A*
* HARDWARE OUTPUT: N/A
* MODULES CALLED: None
S CALLING MODULES: main

* AUTHOR: Capt Kevin H. Mahoney
* HISTORY: 1 .0 (10/7/85) Original Version* .-

1.1 (01/185) Moved fopen() to main, added check for *
argument type (fi-eld or literal) i.n comparison *

*1.2 (10/114/85) Made dbname a parameter to the module * .
* instead of extern.*

buildstruct(dbname)

char dbnameC);

FILE *f2,*fopeno;
int i,j,temp;z
extern struct dataset dset[];
extern mnt maxdset;

if ((f2 =fopen("lquery.dat"l,"r")) NULL){

printf("Can't open the query file.\n");
exit( 1);

*/* get the databse name and number of datasets in query *

__fs canf (f2, "%s ", dbname);

171



for (i=O; i~maxdset; i++)

fscant(f2,"%s",(dsetl.name)); /* dataset information 0

fscanf(f2, "%s",(dsetl.morv));
fscanf( f2, "ks", (dset[i] .dskey));
if (!strcmp((dset.[i).morv),"V"))

fscanf(f2,"1%s",(dset[i].lkpth)); /* variable dataset info 0

fscanf~f2,'1%s",(dset[iJ.lkref));
} 4

fscanf( f2, "%dI, &temp); _

dset~i).numflds =temp;
"or (j=O; j<(dset~iJ.numflds); j++)

fscanf(f2,"%s",(dset~ij.fieldU)l.name)); /* element info *
fscanf'(f2,"%d",&tpmp);.
dset~il.fieJld~jJ.size =temp;
fscanf( f2, 1"os", (dset~i) fi eldtj.iouti.nd));

fscanf(f2,"%,0d"I,&temp);
dset~i].compnum = temp;
for (j=O; j((dset[i).compnum); j++) h

fscanf~f2,"%s",(dset~i].comp~jJ.cfld)); /0 qualifiers 0

fscanfC~f2: "%s",(dset~i).comp~j) .op));
fscanf(f2,"1%s",(dset~i2.comp~j1.comptype));
if (!strcmp((dsetri].comp~j].cornptype),"F"))

fscanf(f'2,"1's",(dset[W-.comprjJ.arg,-fld));
else

fscanf(f2,"1%s",(dsetl.compfjJ.arglit));

fscanf( f2, "%0s", (dset[i) .cornp~j J.isandor));

1/* end for - all datasets in the query have been read in *

fclose( f2);
]/* end buildstruct ~

1r z.

172



/* 1 .2"

* DATE: 10/18/85 *

* VERSION: 1.1 *
' * NAME: set access order *

' * MODULE NUMBER: 1.2 *

* DESCRIPTION: This module takes the array of datset structures *
• and places them in the most efficient access *
• order for the code generation procedure. 4

PASSED VARIABLES: None *

• RETURNS: None *
• GLOBAL VARIABLES USED: dataset array (dset)
• GLOBAL VARIABLES CHANGED: dataset array (dset) *
• FILES READ: None *
• FILES WRITTEN: None

HARDWARE INPUT: N/A •
• IHARDWARE OUTPUT: i/A *
* MODULES CALLED: det access type ,
* CALL:NG MODULES: main
• * - -'

• AUTHOR: Capt Kevin H. Mahoney

" * HISTORY: 1.0 (10/10/85) Program Stub * "..."
• 1.1 (10/18/85) Added call to detaccess type * :

set accessorder('

/* program stub except for call to det access type *.
det accesstypeo;
return;

7.. (

173. .=

4i 
°

°



• DATE: 10/18/85 *
• VERSION: 1.0 *
• NAME: det access type *
• MODULE NUMBER: 1.2.1 *

DESCRIPTION: This module take the array of datasset structures *
and determines what the access type for each will be.*

* It then assigns the dset.access type field the proper*
• indicator value. The values and their meanings are: *
• 1 - READM (Read Unique Master) with a previously *
• retrieved dataset field as the key qualifier. *

2 - READM with a given input literal (from the user) *
• as the qualifier on the dataset key. *
• 3 - RDNXT (Read Sequential Master) for both previous *
• fields and literals as qualifying arguments. *
• 4 - READV (read Variable) for variable datasets. *

* PASSED VARIABLES: None ,
• RETURNS: None *

-GLOBAL VARIABLES USED: dataset array (dset)
GLOBAL VARIABLES CHANGED: dataset array (dset) *

• FILES READ: None *

• FILES WRITTEN: None *
* HARDWARE INPUT: N/A ,
* HARDWARE OUTPUT: N/A *

-* MODULES CALLED: None *

• CALL:NG MODULES: set access order ,

• AUTHOR: Capt Kevin H. Mahoney *
• HISTORY: 1.0 (10/18/85) Original Version *

det access type()

extern struct dataset dset[];
extern 4nt maxdset; -
int i, literalsize;

for (i~o; i<maxdset; i++)

if (!strcmp((dset[i].morv),"M")) J
/* master dataset */ tu
if (!strcmp(dset[i].dskey),(dset[i].comp[O].cfld)))

/* comparison is on a dataset key field *.

if (!stremp((dseti].comp[O].op), "-"))
/* equality comparison */

1o74o

. : -.~ ~~ >"-% . . -



Data Dictionary Entry for Process

NAME: generate code

TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3
DESCRIPTION: Driver for code generation portion of translator. It

generates the beginning and ending sections of the translated
program and calls subprocedures to do the rest.

INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: fopen (output file open flag)
GLOBAL DATA USED: dset array

maxdset
jLCBAL DATA CHA::GED: '!one
F:LE: READ: None
FILES W .ITTEN: TCODE.PAS (the generated translated program)

HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: main
PROCESSES CALLED: decl buftypes

decl procedures
totgen

VERSION: 1.0
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

137



Data Dictionary Entry for Process

NAME: decl buftypes
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis) .: .,

NUMBER: 1.3.1
DESCRIPTION: Generates buffer type declarations. Builds a linked

list to eliminate duplicate buffer sizes before writing them.
INPUT DATA: dset array
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)

OUTPUT FLAGS: None
GLOBAL DATA USED: dset

maxdset
GLOBAL DATA CHANGED: None
F:LES READ: None
FILES WRITTEN: TCODE.PAS
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: generate code

PROCESSES CALLED: printbuffs
insert node

VEHs I1 1.0
-ATE: 10 November 1985

AUTHOR: Capt Kevin H. Mahoney

OF.

138

- .-. ~ .~ .~*** ~ "* t
"

****



-* -. Data Dictionary Entry for Process

NAME: insert node
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.1.1

*DESCRIPTION: Inserts new buffer sizes into the linked list,
eliminating duplicate size values.

INPUT DATA: buffer size (integer)
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
FILES READ: None
F -L E - WRFITT EN: None
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: decl buftypes
PROCESSES CALLED: None

VERSION: 1.0
DATE: 10 November 1985
A U:THi 0F Capt Kevin H. Mahoney

139



V I * -- w -i .

Data Dictionary Entry for Process

NAME: print buffs
TYPE: PROCESS
PROJECT: Relational to TOTAL DML Translation Program (Thesis)
NUMBER: 1.3.1.2
DESCRIPTION: Outputs the buffer declarations by following the linked

list of buffer sizes.
INPUT DATA: linked list of integers
INPUT FLAGS: None
OUPUT DATA: Pascal code statements (text)
OUTPUT FLAGS: None
GLOBAL DATA USED: None
GLOBAL DATA CHANGED: None
FILES READ: None

LS WRITTEN: .. DE.PAS.
HARDWARE READ: None
HARDWARE WRITTEN: None
ALIASES: None
CALLING PROCESSES: decl buftypes

PROCESSES CALLED: None

VERSION: 1.0 L -A
DATE: 10 November 1985
AUTHOR: Capt Kevin H. Mahoney

LL

[i i1

.ji'

• V%.
t •- ,

' 140 """"

"4i "



if (!strcmp((dsetci].compl:oj.comptype),"F"))
/* comparison is on a previous field *
dset[ij.access-type =1;

else
/* comparison is on a literal *

literalsize =strlen(dset[i).comp[O].arglit);

if (literalsize ==(dset[i].field[O].size))
/* sizes match exactly *
dset~i.).access type 2;

else
/* size doesn't match, RDNXT needed *

dsetLil.access-type =3;

else
*was not a n equality comparison *

dset~ij.access type =3;

else
/* was not on a dataset key field *
dset~ij.access type 3;

else
/* is a variable dataaset, not a master ~
dset[tIj.access type = I;

/* end det access type *

175



*, -

* DATE: 10/ 1 4 /85  *

* VERSION: 1.4 *
* NAME: generate code *
* MODULE NUMBER: 1.3 *
* DESCRIPTICN: This is the main module for the generation of the *
* Pascal code that will actually execute the query. *
* It generates the beginning and ending statements * P.
* of the program, and calls subprocedures to do the *
* remaining code generation. *
* PASSED VARIABLES: schema size - size of the schema file *
* RETURNS: None *

* GLOBAL VARIABLES USED: dataset structure array (dset) *
* maxdset - number of datasets in query *
* GLOBAL VARIABLES CHANGED: None
* FILES READ: None *

FLES WRITTEN: tcode.pas
* HARDWARE INPUT: N/A *
* HARDWARE OUTPUT: N/A *
* MODULES CALLED: decl buftypes - generate buffertype declaration* L.
* declprocedures - generate 2ubprocedure decls. *

* totgen - generate the main body of Pascal code *
* CALLING MODULES: main *
* * ' -

* AUTHOR: Capt Kevin H. Mahoney *

::IT:eRY: 1.3 0/5/85) Original Version was nain() * .
1.1 (10/10/85) Renamed as generate code when new main *

* was written, moved procedure declarations to a *
* separate module, added call to decl buftypes. *
* 1.2 (10/11/85) Added test and generation for literals *

* shorter than the test field, creating TEMPnn *
* 1.3 (10/13/85) Added code for generation of indexes *
* for decomposition of user areas in the query *

* 1. 4 (10/14/85) Made schema-size the parameter *
* replacing numschm, number of subschemas in file*

generatecode(schena size)

int schema size;

extern struct dataset dset[];
extern FILE *fl, *fopen();
extern int maxdset;

int i,j,k, areasize, literalsize, index max;

/*open the generated code file */
if ((fl fopen("tcode.pas","w")) NULL) {

1767-- 7. c



RD-R±64 013 THE DESIGN AND INPLENENTATION OF N RELATIONAL TO31
NETWORK QUERY TRANSLATOR.. CU) AIR FORCE INST OF TECH
URIGHT-PATTERSON RFD OH SCHOOL OF ENGI.. K N NAHONEY

UNCLASSIFIED DEC 85 AFIT/OCS/ENO/SSD-? F/O 9/2 M

IIlfll.......lflf
IIllfllfflfflffllfllf

EEEEEEEEEEEEEI



.4

L

t i-

jj-w

-25 12

[25 1 14 6

MICROCOPY RESOLUTION TEST CHART
"' NA' tIP 11F -N on s- -QfS_ , A

6=

4..

-.',. ." ..'.-.. >'..". -.-... ,..-,.--.',:-.-. -.- -."- .. 'Z.'i- ,'-.'-'.".- -" -'-"-" " .-- '-' . - . -.- .- ' '.",.','.-", -. -.- -,- , .-- --.--.

" . . . . " "" " " ' " " - , ' " " " " " -w , " ' " -, . - _ , ' _ . ' _ .-

_ ; . .. . . . . , .- .'._.',. , ,,.,,..,'- '_,'_ ,".... -,,,.- .. ., .,, ,,.. , ._'_,".," . _r.-,' - ".-".-'.,,'- .," _ "' .2 '- .-' .','.'
'.

... . .,NZ'.'"Z. .-,f.,'s"_ 4-



printf("Can't open the generated file.\n");
exit( 1);

/* print the opening statements of the Pascal program '
fprintf(fl ,"PROGRAM GENTCODE(INPUT,QRESULT) ;\n); ~

/* declare labels *
fprintf( fi,"LABEL")
for Q=:O; J<(maxdset'3); j++)

fprintf(f1,"%d",J);
fprintf( f , "ERRL;\n\n");

I' declare type definitions of buffers *
decl-buftypes(schema size);

/* declare structure types ~
for (j=O; J<maxdset; 4++)

fprirntf(fl,"\nSTRUC%d =RECORD;\n",j);
for (k=O; k((dset[j2.numflds); k++)

fprintf~fl," A%d BUFF%d;\n",k,(dset[j].fieldtk).size));
fprintf(f , "END;\n");

/ I end for *

/* declare variables *
fprintf( fi, "\nVAR\n"1);7
forintf(,f1," STATUS :BUFF24;\n"l);
fprint"(1f,"1 FCTN BUFF5;\n");
fprintf(fl," INDEX INTEGER;\n");
fprintf(fl," NOTFOUND BOOLEAN;\n");
fprintf (f 1,"1 QRESULT TEXTI;\n");
index max =0;

for (J=O; j~maxdset; J++)

fprintf~fl," S,1d :STRUC1,Vd;\n,j,j);

/* this code keeps track of the maximum number of indices *
I' that will be needed to decompose the TOTAL user area *
/* into the dataset structer fields for output, etc ... '
if (index max < (kdset~jJ.numflds))

index-max =(dsetJI.numflds);

1, generate user area sizes and key (if needed) sizes ~

areasize =0;

I' see if a requested field is a dataset key *
if (!stremp((dset[J).dskey),(dsetjJI.field~kJ-name)))

fprint'(t'," KEY%d :BUFF%d;\n",

a, 177



areasize areasize + (stj~il~]sz)

fprintf(fl," UAREA%d :BUFF%d;\n",j,areasize);

/* declare TEMP holders in case comp literal is shorter ~
for (k=O; k<(dset[jj.compnum); k++)

if (!strcmpC(dset~j].comp~k].comptype),"L")) /* literal

literalsize strlen(dset~j).cornp~kJ.arglit); .'.-

fprintf(fl," TEt4P%d%d BUFF%d;\ri",J,k,literalsize);

if C!strcmp(Cdset~j].morv),"V"))
fprintf(fl," REF%d :BUFFi4;\n",j);

else
fprintf(fl,t' QUAL1,d 3UFF4;\n",j);

I' end for *

1* declare counter indexes for decomposing the user area ~
for (j=O; j<index max; j++)

fprintf(fl," YND%d : INTEGER;\n,j);

/* declare all subprocedures for TOTAL calls 0

decl-procedures(schema-size);

fprintf( f~, BEGIN\n");
fpriJntf( fi ," BEWRITEC QRESULTL);\n1");
fpriJntf (f 1, 1 FCTN := SINON';\n");
fprintf( fl," SONOROFF(FCTN) ;\n");
1printf(fl,t' IF STATUS <> r****' THEN GOTO ERRL;\n");

tot,3en(O); /* create the main body of the Pascal Program 0

/* print the finishing statements of the Pascal program *

fprintf(fl,"ERHL: FCTN := SINCF';\n");
fprintf( fi," SONOROFF(FCTLN) ;\n");
fprintf( fl," CLOSE( QRESULT) ;\n");
f'printf( fi ,"END.\n"1);
fclose(fl);

/* end generate-code '

M.

178



.. , • 75 . U - ... - , h r -..-

* DATE: 10/13/85 *

-"* VERSION: 1.2 -
""* NAME: decl buftypes *
" * MODULE NUMBER: 1.3.1 . .-

* DESCRIPTION: Build a linked list of buffer sizes in order to *
* eliminate duplicates. The BUFF type declarations *
* are then output to tcode.pas * ,
* PASSED VARIABLES: schemalength - size of the schema file *
* RETURNS: N/A *
* GLOBAL VARIABLES USED: dset array of structures, maxdset *

* GLOBAL VARIABLES CHANGED: None *

* FILES READ: None *

* FILES WRITTEN: tcode.pas *
* HARDWARE INPUT: N/A *
* HARDWARE CUTPUT: N/A *

* MODULES CALLED: print buffs - print buffer type declarations *

* insertnode - insert a new size into the list *
* CALLING MODULES: generate-code *

" * AUTHOR: Capt Kevin H. Mahoney *

* HISTORY: 1.0 (10/7/85) Original Version
* 1.1 (10/10/85) Changed name of module from build buf *
" * 1.2 (i0/13/85) Added code for computing the user area * *''x

.* size and changed parameter to schemalength *

decl buftypes(schemalength)

int schemalength;

extern struct dataset dset[];
extern FILE *fl;
extern int nmaxdset;
LINK head, htemp;
int i,j,temp,areasize;

/* initialize the buffer size list with known values */
head = (LINK) malloc(sizeof(NODE));
head->data = 1;
head->next = (LINK) malloc(sizeof(NODE));
head->next->data = 2;
head->next->next = (LINK) malloc(sizeof(NODE));
head->next->next->data = 3;
head->next->next->next = (LINK) malloc(sizeof(NODE));
htemp = head->next->next->next; a'.*m.L-q htemp->data - 4;
htemp->next = (LINK) malloc(sizeof(NODE));

179 %. %...

X i, tl de



7r

htemp->next->data 5;
*.htemp->next->next (LINK) malloc(sizeof(NODE));

htemp->next->next->data =8;
htemp->next->next->next = NULL;

% / insert schema size ~
-' insert-node(head,schemalength);

/* rocssthe datasets and insert values '
for (=O; ~maxdet;i++)

areasize =0;
/* figure the element list size and insert it ~
temp =C(dset~i].numflds)*8)+I;
insert node(head,temp);

for (,4=0; j<(dsetti).numflds); j++)

temp (dset[4I2.field~j2.size);
areasize =areasize + temp; /* figuring the user area ~

/* size for the call to TOTAL *
insert-node(head,temp);
I

/* insert user area size '
insert node (head,areasize);

(0- for (j=O; j<(dset~il.compnum); j++)

J!strcrnp((dsetE2l.comp[jl.comptypei,"L"))

temp =strlen(dset(i).comprjj.arglit);
insert node(head,temp);

L, liti finished, so now print declarations *
fprintf( fi, "1TYPE\n1);

IL print-but'fs(head);

/* and of decl buftypes/ .

180

-U..



/* 1.3 .1 .10/

* DATE: 10/7/85
* VERSION: 1.0 --

* NAME: insert node
0 MODULE NUMBER: 1.3.1.1
* DESCRIPTION: inserts new values into the buffer size list,

* eliminating duplicate size values
* PASSED VARIABLES: head, size
0 RETURNS: None
* GLOBAL VARIABLES USED: None
* GLOBAL VARIABLES CHANGED: None
* FILES READ: None
* FILES WRITTEN: None .I

* HARDWARE INPUT: N/A0
0 HARDWARE OUTPUT: N/A0

MOULES CALLED: NIone0
* CALLING MODULES: deci buftypes0

* AUTHOR: Capt Kevin H. Mahoney0
0 HISTORY: 1.0 (10/7/85) Original Version*

insert node(head,size)

'_:'1K head;
Int size;

LINK pointer, temp;
int flag;

/* there is no null list case -1,2,q,!4,5, and 8 are in list 0

if (size)(head->data)) /0 eliminates zero or negative sizes *

flag =1;
pointer =head;
while ((flag!=O) && (pointer->next!=NULL))

if ((pointer-)riext->data) > size)

flag =0;
ir ~temp =pointer->next;

pointer->next =(LINK) malloo(sizeof(NODE));
pointer->next->data =size;
pointer->next->next =temp;

else if ((pointer->next->data) size)
flag =0;

else

181



pointer pointer->next;

if (flag==l) /* new end of list case *

pointer->next =(LINK) malloc(siJzeof(NODE));

pointer->next->next =NULL;

/* end of insert node *

182



* DATE: 10/7/85
* VERSION: 1.0

* MODULE NUMBER: 1.3.1.2
* DESCRIPTION: This module uses the linked list of buffer sizes

* to print out the buffer type declarations in the
* generated Pascal file by calling itself recursively

* PASSED VARIABLES: head
* RETURNS: None
* GLOBAL VARIABLES USED: None
* GLOBAL VARIABLES CHANGED: None
* FILES READ: None

FILES WRITTEN: tcode.pas
* HARDWARE INPUT: N/A

* HARDWARE OUTPUT: N/A
A MODULES CALLED: None
S CALLING MODULES: decl buftypes

* AUTHOR: Capt Kevin H. Mahoney*
* HISTORY: 1.0 (10/7/85) Original Version

print-buffs~head)

'L:U'K h.,ead;

extern FILE *fl;
if (head!=NULL)

fpri4ntf(fl." BUFF',d PACKED ARRAY"l,head->data);
fprintf(f1,"[(1..%d] OF CHAR;\nt',head->data);
print buffs(head->next);

!.}/* end of print-buffs *

183



-. . . , * * -

.- - /ff**•,•t,••••,••,,••t**ft**••*••*•*•**,•*I*•****••tffftttttttffffffftffffff******• I.ft"o.

* DATE: 10/18/85 *o
* VERSION: 1.2 ,
* NAME: declprocedures *
• MODULE NUMBER: 1.3.2 •

• DESCRIPTION: This module generates subprocedure declarations •
• within the Pascal program for the different calls *

• PASSED VARIABLES: schmlen - size of schema file * "

• RETURNS: None *
• GLOBAL VARIABLES USED: dataset structure array (dset)

GLOBAL•VARIABLES maxdset - number of datasets in query *
* GLOBAL VARIABLES CHANGED: None *
• FILES READ: None "
* FILES WRITTEN: tcode.pas *
* HARDWARE INPUT: N/A *

* HARDWARE OUTPUT: N/A *
* MODULES CALTED: ready - 'read variable dataset' subprocedure *
* readm - 'read master direct' subprocedure *

* rdnxt - 'read next master' subprocedure *
• sonoroff - 'sign on or off TOTAL' subprocedure *

• CALLING MODULES: generate code

•t AUTHOR: Capt Kevin H. Mahoney
•t HISTORY: 1.0 (10/10/85) Original Version created from code

originally in generate code *"
1.1 (10/14/85) Made schmlen the passed parameter *

* 1.2 (10/1'8/85) Changed the strcmp checks for the *
* dataset access characteristics to a simple ..

comparison on dset[i].access type field. * .-

decl procedures(schmlen)

int schmlen;

int j,k,keysize,areasize;
extern struct dataset dset[];
extern int maxdset;
extern FILE •fl;
char elementlist[300];

for (j:O; j<maxdset; j++)
{
areasize = 0;
strcpy(elementlist,"\O"); /* blank out the element list */

/* build the list of required fields and their total length */
-.- for (k=O; k<(dset[J].numflds); k++)

184i &-

4,. 
-° "=. "=7



strcat(elementlist,(dset~jJ.field(kJ.name));

Iareasize =areasize + (dset~j).field~k).size);4

/* check for dataset type ~
if (dset~j3.access type == ) /* this is a variable dataset

/* set the keysize to the previous dataset control field e.I-
/* size because this is the master record that the
/* variable dataset chain is accessed from *
keysize =(dset[j-1l.field[O).size);
readv(j, (dset"[j I.name) ,elementlist,

(dset~jl.lkpth),keysize,areasize);

ele/*muta master dataset ~ sequentially *

rdnxt (,dset[2JI.name),elerentlist,areasi-ze);
else

I

/* read unique master, type 1 or 2/
keysize =(dset~j].field(OJ.size);
readm(,j, (dset~j) .name) ,elementlist,keysize,areasize);

.en'erate ;b-e si:gn on,/off procedure *

sonoroff(schnlen);

/* and of deol-procedures ~

I

185



.h"- I*I-L '- -,T I- .I..1" """'""

* 3 .2 1

* DATE: 10/11/85
VERSION: 1.1

* NAME: readv *

* MODULE NUMBER: 1.3.2.1 *
* DESCRIPTION: This module creates the Pascal code for each
* declaration of a READ VARIABLE subprocedure within*

* the generated program. *
* PASSED VARIABLES: j - the dataset number *
* name - the dataset name *

* elementlist - requested dataset field names *

* areasize - buffer size to retrieve field *

* h iakeysize - size of the control key field *
* lkpth - linkpath name to variable*-

* RETURNS: None *

* GLOBAL VAR:ABLES USED: None *

* GLOBAL VARIABLES CHANGED: None *

* :LES READ: None
* FILES WRITTEN: tcode.pas *
* HARDWARE INPUT: N/A *

* HARDWARE OUTPUT: N/A *

MODULES CALLED: None *

* CALLING MODULES: decl procedures

* AUTHOR: Capt Kevin H. Mahoney *

* CTCRY: 1 .0 10/7/85 ) Criginal Version *
* 1.1 (10/11/85, inserted code for handling element *

* lists longer than 40 characters.

******************************************************************** /

readv(iname,elernentlist,1kpth,keysize,areasize)

"nt J,keysize,areasize;
char name[];

char elementlist[];

char lkpth[];

int listsize,loops,leftover,i,k;
extern FILE *fl;

strcat(elementlist, "END.");

listsize = strlen(elementlist); .
loops = listsize/40;
leftover = listsize%40-;
fprintf(fl,"\nPROCEDURE READVd(VAR REF:BUFF4 ; CTRLKEY:BUFF%d; "

J,keysize);
fprintf(fl, "VAR AREA:BUFF%d);\n",areasize);

fprintf(fl," VAR\n");

186



fprintf ( f1," FUNC. BUFF5;\n");
fprintf (f 1," DSET :BUFFI4;\n");
fprintf(fl," ENDP :BUFFJ4;\n");
fprintf(fl," ELIST :BUFF%d;\n"I,listsize);
fprintf (f I," LKPTH :BUFF8;\n');
tprintf(fl,"1\n PROCEDURE DATBAS(%cSTDESCR FUNCT:BUFF5; '%)
fprintf(f 1 ,"STATUS:BUFF4;\n DSET:BUFF4; REF:BUFF4;")

* fprintt( fi, "LKPTH:BUFF8;\n CTRLKEY:BUFF%d; "1,keysize);
fprintf(fl,"ELIST:BUFF%d; AREA:BUFF%d;\n",listsize,areasize);
fprintf(fl," ENDP:BUFFI); FORTRAN;\n");
fprinttC ri," BEGIN\n");
fprintf~fl," FUNCT 'READV';\n");
fprintf(fl," STATUS I' \nl
fprintf (f 1, 1 ENDP ED;\I;
fprintf(fl," DSET '%s';\n",name);

/* print out all of the fields that make up the element list ~
f prirt f (f I," ELST '

for (i:=O; i<loops; i++)

if (i>O)
fprintf (f 1,"\n +.

for Ck=O; k<40; k+e-.)
fprintf(fl ,n%c",elementlist~k+(i*40fl);

fprintf(fl,"'");

i f (loops>O)
fpr'intf(f'iInfl

fo r 4 =0 ; -'-leftover; i+
fprintf(fl ,u%c',elementlist~i+(loops*40)));

fprintf(fl,"' ;\nI);

fprintif(fl," LKPTH I 0sI;\nII,lkDth); ~7
fpriJntf(f1,"I FOR INDEX :=1 TO %d DOWn",areasize);
fpr-'ntlf(1'," AREACINDEXI ';\i

fpriJntfk fi ," DATBA'-(FltJNGT,STAMUS,DSET,,iEF,LKPTH,CTIRLKEY,");
fprintf( f , "ELIST,AREA,EN4DP) ;\n'");
fprintf(fl," END;\n\n"I);

S/* end ready *

187



/* 1 .3 .2° "

4 ....- I*I- 1. . 2"I

-. ********************************* *

* DATE: 10/11/85 *
* VERSION: 1.1 *

* NAME: readm *
* MODULE NUMBER: 1.3.2.2 *

4,. * DESCRIPTION: This module creates the Pascal code for each
il* declaration of a READ MASTER subprocedure within *

* the generated program.
• PASSED VARIABLES: j - the dataset number *
* name - the dataset name *

'-* elementlist - requested dataset field names *
* areasize - buffer size to retrieve field *

* keysize -size of the control key field
* RETURNS: None *

GLOBAL VAIRTABLES USED: None

]Lh'CBAL VAR:ABLES CHANGED: None *
F-LZS REaD: None *

• FLES WR:TTEN: tcode.pas *

* HARDWARE INPUT: N/A
• HARDWARE OUTPUT: N/A *

• MODULES CALLED: None
• CALLING MODULES: declprocedures *

• AUTHOR: Capt Kevin H. Mahoney *

* HISTORY: 1.0 (10/7/85) Original Version *

.1 (1'!/85) -nserted code for handling element *
• li~1.sts longer than 40 characters. ,--"

S* • -*-

readm(j,name,elementlist,keysize,areasize)

-nt j,keysize,areasize;
c ar nae[; ""
2 har elementlist[;.

int listsize,loops, leftover, i,k;
extern FILE *fl;

strcat(elementlist, "END.");

listsize = strlen(elementlist);
loops = listsize/40;
leftover listsize%40 ;
fprintf( fl,"\nPROCEDURE READM%d(CTRLKEY:BUFF%d; ",j,keysize); "'-"
fprintf(fl ,"VAR AREA:BUFF%d) ;\n",areasize);
fprintf(fl," VAR\n");
fprintf(fl," FUNCT : BUFF5;\n");
fprintf(fl," DSET : BUFFJ4;\n");

fprintf(fl " ENDP : BUFF4;\n");

188

- - - - - - - - - - . --. - -- --



* r r r rr.- r .- r r7-Jr-~--~---r U U .- ~- -w-7w-7--71

-:fprintf f 1" ELIST BUFF%d;\nI",listsize);
fprintf~fl,"\n PROCEDURE DATBAS(%cSTDESCR FUNCT:BUFF5; "11%);
fprintf(fl1 "STATUS:BUFF4;\n DSET:BUFF4a; REF:BUFF4; 11);
fprintf(fl ,"CTRLKEY:BUFF%d; ELIST:BUFF%d;\n",keysize,listsize);
fprintf(fl.," AREA:BUFF%d; ENDP:BUFF4); FORTRAN;\n",areasize);
fprilntf( fi," BEGINrI");
fprintf(fl ," FUNCT 'READM' ;\nlf); -

fprintf~fl," STATUS ;\")
fprintf (f 1,1"1 ENDP 'END.';\nII);
fprintf~fl," DSET '%s';\n",name);

/* print out all of the fields that make up the element list *
fprintf (f 1," ELIST 'U)

for (i=O; i<loops; i++..)

if Ui>0)
fprintf (f 1,"1\n + III');

for (k=O; k(40; k++)
fprintf(fl,"c",eleentlist~k+(i*4 4O)fl;

fpri4ntf(f,1"U'l);

if (loops>O)
fprintf(fl,"\n + 1111);

for (i=O; i<leftover; i++.)
fprinitf(fl,"%cU',elementlist~i+(loops*4O)J);

* fprintf(f1,"';\n"I);

fprintf(fl,U' FOR :N~DEX := :I TOld DO\nl",areasize); ..J
fprintf(fl,"l AREA[:NDEXI ';\il

fprintf(fl1," DATBAS(FUNICT,STATUS,DSET,CTLRLKEY,");
fprintf(fl ,"ELIST,AREA,ENDP) ;\n");
fprintf~fl ," END;\n\n"I);

/* end readm ~

189

% %~%. ,- *'. %



/* 111.3.2 .31 /

* DATE: 10/11/85
* VERSION: 1.1
* NAME: rdnxt
* MODULE NUMBER: 1.3.2.3
' DESCRIPTION: This module creates the Pascal code for each

* declaration of a sequential READ MASTER
* subprocedure within the generated program.

* PASSED VARIABLES: ,j - the dataset number
* name - the dataset name
* elementlist - requested dataset field names*
* areasize - buffer size to retrieve field

* RETURNS: None
* GLOBAL VARIABLES USED: None
* GLOBAL VARIABLES CHANGED: None

=-FLZ READ: None*

* F-LES WRITTEN: tcode.pas
* HARDWARE :NPUT: N,'A*
* HARDWARE OUTPUT: N/A
* MODULES CALLED: None
' CALLING MODULES: decl_procedures

* AUTHOR: Capt Kevin H. Mahoney
* HISTORY: 1.0 (10/7/85) Original Version

* 1.1 (10/11/85) Inserted code for handling element
* li1-sts longer than 40 characters.*

rdnxt(j,name,elementli'st,areasize)

int j,areasize;
c ihar name[)
char elementlistE I;

:rt listsize,loops,leftover, i,k;

extern FILE *f'1;

listsize =strlen(eleinentlist);
loops =listsize/40;
leftover = listsize%JO;
fprintf~fl ,"\nPROCEDURE RDNXT%d( VAR QUAL:BUFF4; ,)
fprintf(fl D"VAR AREA:BUFF%d) ;\n",areasize);
fprintf( fi," VAR\n");
flprintf(fl," FUNCT : BUFF5;\n");
fprintf (f 1, " DED : BUFF4;\n");
fprintf (fl1," EDE : BUFFII;\n");

190



fprintf (fl,1 ELIST BUFF%d;\n',listsize);
fprintf( fi ,"\n PROCEDURE DATBAS( %cSTDESCR FUNCT:BUFF5; t,%)

Iprintf(f1, "STATUS:BUFF4;\n DSET:BUFF4; REF:BUFF4;")

fprintf(fl ,"CTRLKEY:BUFF%d; ELIST:BUFF%d;\n",keysize,listsize);
fprintf(fl," AREA:BUFF%d; ENDP:BUFF4); FORTRAN;\n'Dareasize);

fprintf~fl," FUNOT I RDNXT';\n");
fprint f ( f 1, STATUS 1;\n");
fprintf~fl," END? ____;\")

fprintf(fl," DSET '%s';\n"l,name); -

/* print out all of the fields that make up the element list *
fprintf (f 1," ELIST
for (a.=O; i<loops; i++)

if (1>0)
fprintf( f I 1\n + 1)

for (k=C; k<40; k++)
fprintf(fl,'%cI,elemenlist~k+(i*40)J);

fprintf(f Vigil')

if (loops>O)
fprintf(fl,"\n +9)

for (i=0; i~leftover; i-a-,)

fprintf(fl ,"' ;\n"l);

f-.r~rntf~'t I " 1'CE NDEx : 1 70 Id DG\n"l,areasize);
fprintf(fl," AFiEAf :NDEXI ';\nil);
fprintf(fl ," DATBAS(FUNCTI,STATUS,DSET,QUAL,");
fprintf( fi , ELIST,AREA,ENDP) ;\nlf);
fprintf( fi," EN'D;\n\n");

/* end rdnxt 4/

191



* DATE: 10/141/85
* VERSION: 1.2
* NAME: sonoroff*
* MODULE NUMBER: 1.3.2.4
* DESCRIPTION: This module creates the Pascal code for each

ft declaration atf the SINON or SINOF to TOTAL
subprocedure within the generated program. f

* PASSED VARIABLES: schemasize - the number of characters in the'
ft schema definition file. f

* RETURNS: None f

ft GLOBAL VARIABLES USED: None f

S GLOBAL VARIABLES CHANGED: None f

' FILES READ: "databasenameffsc.dat f

ft FILES WRITTEN: tcode.pas
HiARDWARE ::'11PUT: N/A f

* HARDWARE OUTPUT: N/A*
XCMDULES CALLED: None f

S CALLING MODULES: decl-procedures

AUTHOR: Capt Kevin H. Mahoney

ft HISTORY: 1.0 (10/5/85) Original Version
ft1.1 ( 10/10/85) Changed parameter from schema size to *

ftnun-nubs, added 'hold' string, added Toop for *
splitting schema into subschena strings

* 1.2 '110/14/85) Chan~ged parameter back to schemasize f

* and added a fscanf to get the number of sub-
ft schemas that are in the database schema file.

sonoroff( schemasize)

jint schemasize;

mnt i,num subs;
extern FILE *fl;
char holdES5ll;
extern FILE ftf3;

fscanf(f3, "%d",&num subs);
fprintf(fl1,"\nPROCEDURE SONOROFF(FUNCT:BUFF5) ;\n");
fprintf(f1," VAR\n");
fprintf(f1," ENDP : BUFFLI;\n");
fprintf(f 1," SCHEMA : BUFF%d;\n",schemasize);
fprintf(fl,"\n PROCEDURE DATBAS(%cSTDESCR FUNCT:BUFF5; ,%)

fprintf~fl ,"STATUS:BUFFII;\n
fprintf~fl ,fSCHEMA:BUFF%d; ENDP:BUFF4); FORTRAN;\n",schemasize);

* . fprintf(fl," BEGIN\n");

192

7: AL



fprintf (fl,1 STATUS ' \
fprintf fl,1 ENDP : EDI\#)
for (i=O; i~num subs; i++)

/* get next subschema string *
fscanf( f3, "%s",hold);
if (i==O) I' first string *

fprintf(fl," SCHEMA t%stIW,hold);
else

fprintf(fl,"\n + '%s'",hold);

fprintf(fl,";\n"); I' end of subschema string assignment *
fprintf(fl," DATBAS(FUNCT,STATUS,SCHEMA,ENDP) ;\n");

fprintf(fl," END;\n\n");

/0 end sonoroff 6

%%



| l . . " ."

/ * 1.3 .3*

• DATE: 10/18/85 4
• VERSION: 1.4 *

• NAME: totgen •
• MODULE NUMBER: 1.3.3 •--"
• DESCRIPTION: Recursive subprocedure that generates the main •
• body of Pascal code that determines the order of •
• calls to the TOTAL database. 4
• PASSED VARIABLES: i - the level of recursion •
• RETURNS: N/A •

• GLOBAL VARIABLES USED: dset structure array •
* GLOBAL VARIABLES CHANGED: None

• FILES READ: None *
• FILES WRITTEN: tcode.pas •
• HARDWARE INPUT: N/A .

S ARDWAFE IOU.PTJT: N/A
* IODULES CALLED: totgen - calls itself recursively for each dset*

• gen qualifier - generates proper qualifier code*
S~for up to two comparisons with AhD or OR *

* outputall - generates "output information" code*
• when innermost loop has been executed. •

• CALLING MODULES: generate-code, totgen *

• AUTHOR: Capt Kevin H. Mahoney • V,,
* HISTORY: 1.0 (10/5/85) Original Version *

1.1 (10/10/85) Created the gen comparison module from * .,n.A
" * duplicated code in totgen *

• 1.2 (10/14/85) Output format changes .
* 1.3 (10/17/85) Added code for determining whether the •
• dataset key argument is a literal or if it is •

a previously retrieved dataset field value. • 54
Also moved comparison qualifier code to the new* C6

• routine gen qualifier and to gencomparison. *
* 1.4 (10/18/85) Corrected errors in the conditionals *
• that determine access type of the dataset. •
• in the process, changed strcmp comparisons •
• into comparisons on dset[il.access type field. •

• ********************************* *:-:.

totgen(i)

int i;

extern struct dataset dset[];

extern FILE *fl;
extern int maxdset;
int J,k,n,offset,found;

194
i %

*. ,.



LV

if (i >= maxdset)

outputall(); /* print out all of the fields *
return;

if (dset~il.access type < 4) /* master dataset *

if ((dset[iJ.access type :~1)11(dset~i).access type ~:2))
I
/* comparison against a dataset key *

if (dset~ij.access-type ==1) /* the argument is a field *

found = 0; I' initialize flag *
for (k~o; k<i; k++)

/* search all previously retrieved datasets ~

for (n=O; n((dset[kl.nurnflds); n++)

/* check all fields of each previous dataset ~
if (!strcmp((dset~k).field~n).name),

(dset~i) .comp[0J .argfld)));

1* previous field matching argument found
fprintf(fl," KEY%d : S%d.A%d;\n",i,k,n,);
found =1;
break; /* exit In' loop since found *

211

if (found==1)
break; /* exit 'k' loop since found *

else /* comparison argument is a literal *
fprintf ( f 1 KEY"'d := ',s';\n"I,

i,(dset[i].comp[Q].arglit));

P /* this code is common to both type 1 and 2 access1

fprintf f 1," READMd (KEY'Fd, UAREA);\n", i, i,i);
fprintf(fl," IF STATUS = MRNF' THEN GOTO %d;\n",(3i));
fprintf(fl," IF STATUS <> 't**" THEN GOTO ERRL;\n");
fprintf~fl," WITH S%d DO BEGIN\n",i);

or offset = 0;
for (J=O; J<(dset~i].numflds); J+e+)

fprintf(f 1," FOR IND%d := 1 TO %d DOWn",
J,(dset~i).fieldjJI.size));

fprintf~f1," A%d[IND%d] := UAREA%d(IND%d + %dJ;\n",
J,JpipjDoffset);

offset :offset + (dset~i].fieldJI.size);

* 195



fpri4ntf(f 1 1 END;\n\n 1)

1' generate qualifier code *
if (dset~ill.compnum > 0)

gen qualifier(i);

1generate the inner loop for the next dataset '
totgen(i+1);

fprintf~fl,"%d: ;\n",C3*i)); /* loop ending label *

I/* end unique master dataset key retrieval *

else /*sequential search of master dataset is needed/

fprintf(fl," QUAL11d := BEGN';\n",i);
fprintf(fl," ~D N X T'Od(Q UA L 'd , UA RE A 'd ;n , i, ii)
fprintf (f 1, 1%d: IF QUAL'Pd = "END. I THEN GOTO ,1d;\n11,

jfprintf(fl," IF STATUS <> '****'THEN GOTO ERRL;\n);-
fprintf(fl,"\n WITH S%d DO BEGIN\n",i);
offset =0;
for Qj=O; J<(dset~iJ.nuuiflds); j*+)

* *fprintf(fl," FOR IND%d :=1 TO %dDO\n",

fpr irt '( f 1 A.-:D~d2 : UAREA'1d[:ND%d + dl;\nft,

-offset =offset + Cdset~ilfield.j).size);

fprintf(fl," END;\n\n");

/* generate qualifier code ~
i f (dset~i3.compnum > 0)

gen qualifiLer(i);

totgen(i+1);

fprintf (f 1,"1%d: RDNIXT'od(QUAL%d,UAREA/ld);\nY,(3,*i+l),i,i,i);
fprintf(fl," GOTO ',1d;\nH1,(3*i+2));
fprintf(f 1,"%d: ;\n",(3*i));

S/* end master dataset l'4s
PrS

else /* variable dataset *

fprintf(fl,W REF%d := '%s';\n",i,(dset~i).lkref));
fprintf(fl,M  READV%d(REF%d,S%d.AO,UAREA%d);\n",i,i,(i-l),i);-

~E~4Sbfprintf(fl,"%d: IF REAF%d ='END' THEN GOTO %d;\n",

(3*1+2),,(3*1))

196



fprintf(fl," IF STATUS <> '~~'THEN GOTO ER1RL;\n");
t'printf(fl,"\n WIIH S%d DO BEGIN\n"i);
offset =0;

for (j0; j<(dset[i.nunfJds); j++)

fprintf(fl," FOR IND~d :=1 TO %dDO\n",
j,(%dsettiJ.field(j3.size));

fprintf(fl," A%d[IND%dJ : UAREA%d(IND%d +d;\"
j,j~i,j,offset);

offset =offset + (dset~ij.field[jJ.size);

fprintf(fl," END;\n\n");

1* generate qualifier code ~
if (dset[i.compnum > 0)

gen-qualifier(i);

totgen(iJ+1f

fprintf(f'J, %d: READV%d(REF%d,S%d.AO,UAREA%d) ;\n"l,

fprintf(fl," GOTO %d;\n",(3*i+2));
fprintf(fl,"%d: ;\n",C3*i));

I/* end variable dataset ~
j / * end totgen

197 g



• DATE: 10/17/85 *
• VERSION: 1.0 * j
• NAME: gen qualifier *

• MODULE NUMBER: 1.3.3.1 *
* DESCRIPTION: This module checks to see if the qualifying *

• comparison on the dataset is a single or compound
• boolean. Only one conjunction/disjunction is *
• allowed for the dataset. It then calls *
• gencomparison to generate the proper code for *
• the type of comparison that is made on the field. *

• PASSED VARIABLES: i - current datset comparison is for *
• RETURNS: None *
* GLOBAL VARIABLES USED: dset structure array *

• GLCBAL VARIABLES CHANGED: None ,
• 7:LES 2EAD: None ,

_F:LES WRITTEN: tcode.pas -
* liARDINARE INPUT: N/A *

* HARDWARE OUTPUT: N/A *

• MODULES CALLED: gen comparison *
• CALLING MODULES: totgen *

•t AUTHOR: Capt Kevin H. Mahoney

. * HISTORY: 1.0 (10/17/85) Original Version - created from code *-
L,•* f originally in totgen and gen comparison plus *
B code to check for ANDs and ORs.

gen qualifier(i)

int ±;.-- -

char conjunct[4];

int j,n,litlength;
extern FILE *fl;
extern struct dataset dset[];

for (n=O; n<(dset~i].compnum; n++)

/* check for literals, because temp holders must come first */

if (!strcmp((dset[i].comp[n].comptype),"L"))

litlength = strlen(dset[il.comp[nJ.arglit);

for (J=O; J<(dset[i].numflds; J++)

/* see which field the literal matches up to */
if (!strcmp((dset(i].field[J].name),

(dset[i].comp[n].cfld)))

198

. .. .. ... ... : .- .. . -, , -, . .. . . ... .;, . .. ; ., . . .. .. . . . , . . . . . . :2



-S /* found, so generate literal assignment code 0

fprintf(fl," FOR INDEX :=1 TO %d DO\n",lit length);

fprintf(fl," TEMP%d11d[INDEX) S%d.A%dFIINDEXJ;\n"1,

/* end 'j' loop!

/* now check to see if' there is an AND or OR *
/* and generate the appropriate code 0

st!'cpy(conjunct,(dsetli).comp(O).isandor));
if' ((!strcmp(conjunct,"AND")) :(!strcmp(conjunct,"OR")))

/* two qualifying comparisons on the field ~

igen compar-,on(i4,1; ,;* g.etierate the first 2ompar-ison 0

fprintf(fi,") -'s \n",coniunct);
f pr 4n tf (fl1,"()

Lgen'comparison~i,1); /0generate the second comparison /

fprint'(t',") THEN\n");

else /* single'comparison 0

-er. ccrrpar4ison(i-,C);

fpri'ntf(fl," NOTFOUND FALSE\n");
fprintf(fl," ELSE NOTFOUND :=TRUE;\n");

if ((dsetE2l.access type e= 2))
7* PEADM with extra qualifiL--er *

fprirntf(fl," 7F '.'CECUIID THEN GOTO d\ t (3i)-S
else

1* sequential or variable read 0

fprintf(fl," :F NOTFOUND THEN GOTO %d;\n",(,3*i+l));

I~ end gen qualifier ~

199-



77.:~~ -A V. 7.7

/* .333.1 .1*!

S DATE: 10/17/85
* VERSION: 1.1*
* NAME: gen comparison
* MODULE NUMBER: 1.3.3.1.1
* DESCRIPTION: This module generates the proper code for the

* type of comparison that is made on the qualifying
* field, whether it is against another field from a*
* previously retrieved dataset, or against a given
* literal, possibly shorter than the field checked.

* PASSED VARIABLES: i - current dataset comparison is for
*cnum - current comparison number (1st or 2nd)*

* RETURNS: None
* GLOBAL VARIABLES USED: dset structure array
* GLOBAL VARIABLES CHANGED: None

f-* :L-S READ: ',or~e
* FILES WR:T:EN: tccde .pas
* HARDWARIE 7.NP11T: N/A
* HARDWARE OUTPUT: N/A
* MODULES CALLED: None
* CALLING MODULES: gen qualifier

* AUTHOR: Capt Kevin H. Mahoney
* HISTORY: 1.0 (10/11/85) Original Version -created from code

in totgen plus additional tests for comparison
*type.*

* 1.1 (10/17/85) Removed some select'-on ccde to g7en
* qualifier and moved more comparison checking *

* in from totgen. All temporary literal assign-
* ment code was removed to gen-qualifier.

-em comparison 4 cnum)

int i,cnum;

Int j,k,n,found;

for Q=:O; j<(dset(iJ.numflds); j++)

pr/* first see which field the comparison is on *
if (!strcmp((dset~i).field~j].name),(dsetl.comp~enuml.cfld)))

/* field found, generate comparison code *
if (Istrcmp((dset~iJ-comp~cnumJ.comptype),"F")) '

/* comparison is against a previously retrieved field *
6--found 0;

200



for (k=O; k~i; k+.+)

/* search all previously retrieved datasets *
for (n=0; n<(dset~k].numflds); n.4-4)

/* check all fields of each previous dataset *

if (!strcmp((dsetrklj.field[nJ.name),
(dset(i).comp[cnum2.argfld)))

1' previous field that matches has been found *

fprintf~fl,"S%d.A%d %s S%d.A%d",i,j,
(dset(i) .comp[cnum) .op) ,k,n);

found =1;
break; /* found, so exit In' loop *

if found==1)1
br'~ak; ,~founzi, so exit Ik' loop *

else /* comparison is on a given literal *

fprintf(f1, "TEMP%d%d %s '%s ",i,cnum,
(dset[ill.comp(cnum).op),(dset~i).comp[cnuml.arglit));

/* end gen comparison *

201



* DATE: 10/9/85
* VERSION;: 1.0
* NAME: outputall
* MODULE NUMBER: 1.3.3.2
* DESCRIPTION: This module is triggered when the recursion level

* of TOTGEN goes beyond the number of datasets to
* be retrieved. It then generates the Pascal code*
* that will print out the retrieved values to the
* query result file.

* PASSED VARIABLES: None
* RETURNS: None
* GLOBAL VARIABLES USED: dset structure array
* GLOBAL VARIABLES CHANGED: None
* FILES READ: 'lone*

7 -LES .~a tcode.pas*

.ARD WARE :NPUT: 'U/A
* H"ARDWARE CUTPUT: ';/A
* MODULES CALLED: None
* CALLING MODULES: totgen

* AUTHOR: Capt Kevin H. Mahoney
* HISTORY: 1.0 (10/9/85) Original Version

cu~putall(,

extern FILE *fl;
extern int maxdset;
it 4 j,linelength;

for ij0;amaxdset; i++) /* che ck all da~asets *

linelength =0;
fprintf( fi " WRITELN( QPESULT'1);
for (j=O; j((dsettil.nurnflds) ; 4k--) /* check all fields *

if (!stremp((dset~i).field~j.outind),Y"))

/* field is requested for output *
if (Cinelength + (dset~i).field[,j).size)) < 80)

linelength zlinelength + (dset~i].field[j).size) + 5;
fprintf~fl,wS%d.A%d,\n",i,j);
fprintf(fl," '";/* output spacer *

else

202



fprintT' f " f ;1\n 1);
fprintf(f 1l, WRITELN (QHESULT"l);
fprintf(f1 ,"S%d.A%d,\n",i,j);
fprintf(fl," ';/* output spacer *
linelength =linelength + (dset[i].field[j.size) +5;

fprintf(fl,");\n");

fprintf( Cl," WRITELN( QRESULT) ;\n\n");
/*I end outputall.'

203



Appendix H:

Test Query Input and Results

20 4



Test Query Number One

Roth Query

SELECT ALL FROM Student WHERE (Name ='Mahoney') .

GIVING Tempi
JOIN Tempi, Enrolled-In WHERE (Templ.SSAN =Enrolled-In.SSAN)

GIVING Temp2
SELECT ALL FROM Temp2 WHERE (Temp2.Quarter-Year ='FABS') OR

(Temp2.Quarter-Year ='WI85') GIVING TemP3
JOIN TemP3, Course WHERE (Temp3.Number = Course.Number)

GIVING Temp4
PROJECT Temp4 OVER (Student.SSAN, Student.Name, Course.Number,

Course.Title) GIVING TempS

:nput File Result File

AFITDB 0620814021 MAHONEY, KEVIN H.
3 EENG793 FA814
STDT ADVANCED SOFTWARE ENG
M WAIV
STDTCTRL
2 062084021 MAHONEY, KEVIN H.

COMPUTER SYSTEMS ARCHITECT
Y T WAIV
STDTNAME
28 0620814021 MAHONEY, KEVIN H.
Y EENG589 FA84

-1 OPER SYS & FILE STRUCTURES
S7 DINAME S WAIV

L 0620814021 MAHONEY, KEVIN H.
MAHONEY EEIG8 FA84

xxx MINICOMPUTER/MICROPROC LAB
V CQ R B WAIV

VCQRCODE 0620814021 MAHONEY, KEVIN H.
STDTLKCQ EENG698 W185
LKCQ THESIS SEMINAR
14 WAIV

-' VCQRCODE
2 0620814021 MAHONEY, KEVIN H.
N EENG6146 W185
VCQRNMBR COMPUTER DATA BASE SYS
8 WAIV V
Y
VCQRIDEN 0620814021 MAHONEY, KEVIN H.

205



Test Query Number One (continued)

Tnput File Result File

4EENG685 W185
Y ADVANCED ALGORITHM DESIGN
VCQRGRAD WAIV
2
Y 062084021 MAHONEY, KEVIN H. -

'ICQRIDEN MATH666 W185
PERSPECTIVES IN PROG LANGU

L U WAIV
FA8 4-
OR
VCQRIDEN (8 TUPLES IN ALL)

L
W:85
lxx
MCBS
M
MCRSCTRL
2
MCRSCTRL

8_

50
Y

MCPS CTIR
F

xxx

206

i* 
.

N



Test Query Number Two

Roth Query

SELECT ALL FROM Student WHERE (Student.Name > 'C') AND
(Student.Name < 'G') GIVING Tempi

PROJECT Tempi OVER CStudent.Rank, Student.Name)
GIVING Temp2

Input File Result File

AFITDB 2LT Dxxxxxxx, ZEKI

S T DT "1A., :xxx, YASEIR ALY

STDTCTRL CPT Fxxxxx, ?AUL G.

2
STDTRANK 1LT Dxxx, JUAN E.
3
Y CPT Fxxxxxxxxx, PHILIP B.
STDTNAME
28 1LT Dxxxxx, WILLIAM M.
Y F

1L-1 Exxxx, STEVEN P.
-T:NAME

>2LT Exxxxxxx, ROBERT A
L

2LT Dxxxxx, PAUL J.
AND

<CPT Dxxxxxx, PETER W.

G ILT Fxxxxxx, ROY A.

2LT Fxxxxx, LARRY E.

1ST Dxxxxxx, FRANK W.L1

CPT Exxxxxx, CARLOS R.

1LT Fxxxxxx, MARK L.

(37 TUPLES IN ALL)

(Last names were deleted for privacy purposes)

207

% N



Test Query Number Three

A. Roth Query

SELECT ALL FROM Student WHERE (Student.SSAN '0620814021') ,*

GIVING Tempi 7
PROJECT Templ OVER (Student.Rank, Student.Name)

GIVING Temp2 4

Input File Result File

AFITDB LT MAHONEY, KEVIN H..

STDTC. RL

STDTCT RL

N
STDTRANK

3

y

STDTCTRL

0 6208402 1
;xxx

4~

% 4 .-



Test Query Number Four

Roth Query

SELECT ALL FROM Course WHERE (Course.Number 'EENG')
GIVING Templ

PROJECT Tempi OVER CCourse.Number, Course.Title)
GIVING Temp2

Input File Result File

AFITDB EENG755 THEORY OF COMPUTATION
1 WAIV

MC BS
M EENG646 COMPUTER DATA BASE SYS
MCRSCTB WAI
2
MCRSCTRL EENG608 POWER ELECTRONICS L
8 WAIV
Y
MCRSTITL EENG673 APPLICATIONS OF COMM TECH
5O WAIV

(pEEN0629 E-LE7CTROCNIC WARFARE I
MC SC'RL WA7V

L EENG672 OPTICAL COMM & SIGNAL PROC
EENG C WAIV
xxx

7-ENG589M OPERATING SYSTEMS

EENG5L~S SOFTWARE SYS ACQUISITION
WA IV

EENG451 SMALL COMPUTER SYS
WA IV

EENG669 TECH APPLICATION SEN
WA IV

EENG600 SEMINAR IN LOW OBSERVABLES
S WAIV

(171 TUPLES IN ALL)

209



Test Query Number Five

Roth Query

SELECT ALL FROM Member-of-Section WHERE
(Section Number ='GCS-85D') GIVING Tempi

JOIN Temp!, Student WHERE (Templ.SSAN Student.SSAN)
GIVING Temp2

PROJECT Temp2 OVER (Student.Name)
GIVING Temp3

Input File Result File

AF:7Dr.B Cxxxxxxx, APAP.EC:DO F.

SECT Mxxxxx, RICHARD A.

SECTCTRL Hxxxxx, JENNIFER J.

SECTCTRL MAHONEY, KEVIN H.
8
N Txxxxxxx, BRIN A.

~' SECTCT L Fxxxx,RICHARD E

L Mxxxxx, RICHARD G.
GCS-85D
xxx Hxxxx, ALAN J.
SEC
v Cxxxxx, JOHN
SECLSECT
SECTLKSE Fxxxxxxxx, DAVID W.
LKSE
2 Wxxxxx, STEPHEN L.

k SECLSECT
SHxxxxxxxx, CHARLES W. JR.

SECLSTDT Fxxxxx, JANICE H.
9
N Mxxxxxxx, BRUCE R.
0
STDT Sxxxxx, JAMES E.
M
STDTCTRL Wxxxxxx, JAMES A.
2
STCTCTRL Mxxxxxx, STEVEN C. ~

_ 9

N Fxxxxxxx, DANIEL J.

210 **



Test Query Number Five (continued)

input File Result File

STDTNAME
28 Qxxxxxx, TANVEER S.
Y

1 Gxxxxxx, DAVID A. t
STDTCTRL

Wxxxx, STEPHEN A.
F
SECLSTDT Wxxxx, GREGORY B.

xxx Wxxx, DONALD R. JR.

Bxxxxx, ROBERT B.

Wxxx, DONALD J.

Mxxxxxx, RONALD A.

Wxxxxxx, ALEXANDER B.

(40 TUPLES IN ALL)

(Last names were deleted for privacy purposes)

211

..



Test Query Number Six

Roth Query

SELECT ALL FROM Enrolled-In WHERE (Course Number 'MATH555')
AND (Quarter-Year = 'FA85') GIVING Templ

JOIN Tempi, Student WHERE (Student.SSAN = Ternpl.SSAN)
GIVING Temp2

SELECT ALL FROM Member-of-Section WHERE (Number 'GCS-85D)
GIVING Temp3

JOIN Temp2, TemP3 WHERE (Student.SSAN Member-of-
Section.SSAN) GIVING Temp4

PROJECT Temp4 OVER (Student.Name, Enrolled-In Quarter-Year)
GIVING Temp5

Input 7i . Result File

AFITDB Hxxxxx, JENNIFER J.
4 FA8 5

SECT
M Mxxxxxx, KEVIN H.
SECTCTRL FA85

VIP 8
Txxxxxxx, BRIN A.
FA8 5

SECT CT RL
Fxxxx, RICHARD E.

L FA8 5
GCS-85D
xxx Mxxxxx, RICHARD G.
SECL FA85

SECLSECT Cxxxxx, JOHN
SECTLKSE FA85
LKSE 

j

2 Mxxxxxxx, BRUCE R.
SECLSECT FA85
8
N Sxxxxx, JAMES E.
SECLSTDT FA85
9F
N Wxxxxxx, JAMES A.

STDTFA5

M Fxxxxxxx, DANIEL J.
STDTCTRL FA85
2
STDTCTRL Wxxxx, GREGORY B.

212



Test Query Number Six (continued)

Input File FResult File

2 FA8 5
STDTCT RL
9 Wxxx, DONALD J. 4e

N FA8 5
STDTNAME
28 Mxxxxxx, RONALD A.
Y F A8 5

STDTCTRL Sxxxx, RONALD L.

I FA8 5
F
7ECLSTDT Bxxxx, MORGAN
xxx FA8 5

V Hxxxxxxxx, STEVEN A.
VCQRCODE FA85
STDTLKCQ
LKCQ Mxxxxxx, THOMAS C.

3 FA8 5
VCQRCODE
2 Dxxxxxx, FRANK W.

F A8 5
V C'QF NMB F

3 (18 TUJPLES IN ALL)
N

VCQRIDEN (Last names were deleted for privacy purposes)

Y

VCQBNMB R

L
MATHS555
AND
VCQRIDEN

L
FA8 5

213

.



Test Query Number Seven

Roth Query

SELECT ALL FROM Enrolled-In WHERE (Course Number ='MATH') AND ..

(Quarter-Year = FA85') GIVING Tempi
JOIN Tempi, Student WHERE (Student.SSAN =Templ.SSAN) AND

(Student.Name < IL') GIVING Temp2
SELECT ALL FROM Member-of-Section WHERE (Number = GCS-85D)

GIVING TemP3
JOIN Temp2, Temp3 WHERE (Student.SSAN = Member-of-

Section.SSAN) GIVING Temp4~~
JOIN Temp4, Course WHERE (Temp'I.Course Number =Course.Number)

GIVING Temp5
RJETTemp5 OVER (Student.Name, Enrolled-In Quarter-Year,
Course.ritle) GIVING 'emp6

Input File Result File

AFITDB Oxxxxxxx, APARECIDO F.
5 FA8 5
SECT MATH METHODS OF COMPUTER S
M S WAIV

7CTCTRL Hxxxxx, JENNIFER J. t %

N F A8 5
1 INTRO TO ADA

SECTCTRL WAIV

L MAHONEY, KEVIN H. r
GCS-85D FA85
XXX INTO TO ADA
SECL WAIV
V

0SECLSECT Txxxxxxx, BRIN A.
SECTLKSE FA85
LKSE INTERACOMMIVE COMPUTER GRA
2 A WA1V
SECL SECT
8 Fxxxx, RICHARD E.
N FA8 5
SECLSTDT INTRO TO ADA
9 WAI V .

N
0 Mxxxxx, RICHARD G.
STDT FA85

lk M INTO TO ADA
STDTCTRL WAIV



4

Test Query Number Seven (continued)

Input File Result File

2
STDTCTRL Cxxxxx, JOHN
2 FA85
STDTCTRL INTO TO ADA

9 WAIV
N
STDTNAME Fxxxxxxxx, DAVID W.
28 FA85
y APPLIED LINEAR ALGEBRA
2 WAIV
STDTCTRL .

= Fxxxxx, JANICE H."

F FA85
SECLSTDT MATH METHODS OF COMPUTER S
AND S WAIV ----
STDTNAME
< Fxxxxx, JANICE H.
L FA8 5
N INTERACOMMIVE COMPUTER GRA
XXX A WAIV
VCQR
7 Mxxxxxxx, BRUCE R.

,7CQRCODE FA85
STDTLKCQ INTRO TO ADA
LKCQ WA IV
3
VCQRCODE Sxxxxx, JAMES E.
2 FA85
N MATH METHODS OF COMPUTER S
VCQRNMBR S WAIV

N Sxxxxx, JAMES E.
VCQRIDEN FA85
4 INTRO TO ADA -
Y WAIV
2
VCQRNMBR Wxxxxxx, JAMES A.

FA8 5
L INTRO TO ADA
MATH WAIV
AND
VCQRIDEN Wxxxxxx, JAMES A.

FA85
L MATH METHODS OF COMPUTER S
FA85 S WAIV

h-'

215-'-.:'. XXX -*-.



Test Query Number Seven (continued)

input File Result File

MCRS Fxxxxxxx, DANIEL J.

M FA8 5
MCRSCTRL MATH METHODS OF COMPUTER S

2 S WAIV
MCRSCTRL
8 Fxxxxxxx, DANIEL J.

N F A8 5
MCRSTITL INTRO TO ADA

50 WA IV
Y

1Wxxxx, GREGORY B.
MCPSCTRL FA85

I-NTRO TO ADA

F WA IV
V CQ RNMB P
XXX Bxxxxx, ROBERT B.

FA8 5
MATH METHODS OF COMPUTER S

S WAIV

Wxxx, DONALD J. -

F A 8
INTRO TO ADA
WA IV

Mxxxxxx, RONALD A.
FA8 5L

INTRO TO ADA
WA IV

Lxx, JOHN M.
F A8 5

MATH METHODS OF COMPUTER S
S WAIV

(31 TUPLES IN ALL)

(Last names were deleted for privacy purposes)

216



Appendix I: Summary Paper for

The Design and Implementation of a Relational

to Network Query Translator for a

Distributed Database Manangement System

ABSTRACT: The problem of translating global relational
queries in a heterogeneous distributed database management
system (DDBMS) to the Data Manipulation Language (DML) of the
component database systems is examined. A specific approach
toward a global query manager and the design of the global
schema is proposed, and a query translation algorithm for the
conversion of relational queries into the TOTAL network DBMS
DML is presented. A set of sample queries translated by the
program is presented and evaluated.

Introduction

Nearly all of the database management systems (DBMSs) in use

today are one of three general models -- network, hierarchical, and

relational. The advent of computer networks and the need for common

information distributed across several locations has led to the

development and use of the distributed data base management system

(DDBMS). Most DDBMSs have been tailor-made for the user. However, 2
several large companies and the government already have major

investments in DBMSs that are often based upon the three different

models. A way to tie these different DBMSs together under a common "A

schema is needed. This problem was originally identified by Adiba (1)

as the "communication and cooperation of heterogeneous databases".

The current situation at the Air Force Institute of Technology

(AFIT) is a good example of this "heterogeneous distributed data base

problem". AFIT has several DBMSs that it would like to tie together

217



C. P

using a local network. These DBMSs include TOTAL, a network DBMS,

and several relational DBMSs, including INGRES, ORACLE, and dBase IT•

Overview

The heterogeneous DDBMS area that was addressed by this effort

was the development of translators for a "global" query language that

could be used to retrieve information from any of the several

different DBMSs. A single query language makes it much easier for a

DDBMS user to retrieve information without having to know which DBMS

holos the information and what the query language is for that

particular DBMS. This particular system need be read-only, since the

requirement for the majority of AFIT users is to gain access to the

information, not to update it. Th& relational data model and

relational algebra query language were used as the global data model

and language.

This effort was divided into three stages: background research,

the proposal of generic query translator algorithms, and the

implementation of relational to TOTAL DBMS query translation software.

After the system requirements were defined, the issues of data and

query partitioning and the mapping between the various query languages

were addressed. The final objective was to partially implement query

translation software that takes the information provided by the

relational query, and generates a program encompassing the equivalent
7-"

TOTAL DML statements.

218

°.o

p'." %'.C



Previous DDBMS Development at AFIT

Previous AFIT thesis efforts by Imker (1982) and Boeckman (1984)

involved the initial design and implementation of a DDBMS for a AFIT.

Another effort by Jones (1984) specified that the relational model

would be the global data model for '.he DDBMS. The main features of

the resulting system are:

1. The DDBMS is a reconfigurable system. Nodes can be added to
or deleted from the system and the central site can be
relocated from one site to another. One node functions as the
2entral site, which maintains the Central Network Data
Dictionary (CNDD). The CNDD maintains information on all data
stored throughout the DDBMS.

2. Each site maintains a Local Network Data Dictionary (LNDD)
that maintains information on data stored at that site, and an
Extended Network Data Dictionary (ECNDD) that maintains
information on some of the data stored at other sites in the
system. The ECNDD is permitted to grow only to a given size,
usually smaller than the size of the CNDD. Each site is
capable of handling queries and updates (i.e., translation
software is at each node).

3. In the global schema, only First Normal Form will be required,
although Third Normal Form will be used as often as possible.
Duplicate keys (IMS and CODASYL) will not be allowed in
underlying schema, and the partial replication of data must be
supported, but full replication or no replication are the
preferred choices.

Selection of DDBMS Approach

There were three major criteria for the heterogeneous DDBMS

proposed for AFIT. The system should be: (1) able to access data that

spans local databases without the user having to know the actual

location, (2) able to deal with overlapping local schemas, and (3)

reconfigurable to a point that eliminates critical nodes in the DDBMS

network.

219
,, °., " '



These requirements were matched against the six different

approaches towards implementing a heterogeneous DDBMS that were

defined by Katz in 1981 (10). Of the six approaches, the one that

most closely matched the AFIT requirements was the Overlapping

Database Prism. In this approach, the local database schemas are

integrated into a global schema organized under a single global model.

The user issues the query against this global schema in the DML of the

global model, and the system then maps the query into a set of

subqueries against the local databases. The actual location of the

underlying data is transparent to the user.

Data Partitioning

One major problem is the range of data partitioning and

redundancy that the DDBMS should be capable of handling. The

importance of such a capability becomes apparent when the DDBMS must

be able to decompose a global query into the appropriate (and most

efficient) local DBMS queries.

In data partitioning, the global relation that the DDBMS user . -.

sees can actually be made up of several local relations, also known as

fragments. According to Ullman (18:411), relations can be partitioned

(fragmented) in two ways, vertically and horizontally. In both cases,

the partitions of the database cannot be assumed to be disjoint. That

is, data in the local relations could possibly overlap each other.

The other problem is redundant data. When integrating several

existing DBMSs into a global DDBMS, there may be a large amount of

redundant information present in the global system. For example,

220



information on a person could be in a personnel database file, a

separate file in a student database, and another file in a payroll

database. Most of the information in each database (name, address,

age, etc.) is redundant. This falls into three categories: no

redundancy, full redundancy, and partial redundancy.

Partitioning/Redundancy Classes

Ten different classes of partitioning and redundancy classes were

defined. The classes that the system should handle are:

1. No Partitioning and No Redundancy. The given relation is
unique. The data is stored as one relation at one site.

2. No Partitioning and Complete Redundancy. The global relation
is composed of one local relation that is stored entirely at a
single site as a complete relation. However, there is at
least one complete duplicate copy of the information in the

I- DDBMS.

Vertical Partitioning (No Redundancy). The data is not
duplicated anywhere, but neither does the entire relation
exist fully in one location. Each partition has all of the
relation's tuples, but none contains all of the relation's
attributes.

4. Vertical Partitioning (Partial Redundancy). Same as above,
but the attributes of the global relation overlap each other
within the local relations. Knowledge of which attributes

exist in each local relation could prove useful in a

projection (possibly eliminating the need for a join).

5. Horizontal Partitioning (No Redundancy). Each of the local
relations possesses all of the necessary attributes of the
global relation, but no single one of them contains all of the
tuples of the global relation.

6. Horizontal Partitioning (Partial Redundancy). Each of the
local relations possesses all of the necessary attributes, and
some of the tuples exist in more than one local relation.

7. Vertical/Horizontal Partitioning (No Redundancy). The global
relation is composed of two or more vertical partitions, one
or more of which are further divided into horizontal

221

NV ~ V

-, *.A C ~ - i.' ~ =.~-~ ~ ,.r ,.



partitions. For proper recomposition of the relation, the
union of the horizontal partitions must be accomplished before
the join of the vertical partitions. .

8. Vertical/Horizontal Partition (Partial Redundancy). Same as
above, except that the horizontal partitions are partially
redundant, and the vertical partitions could also be partially
redundant. _

4
9. Horizontal/Vertical Partitipning (No Redundancy). The global

relation is composed of two or more horizontal partitions, one
or more of which are further divided into vertical partitions.
For proper recomposition of the relation, the join of the
vertical partitions must be accomplished before the union of
the horizontal partitions.

10. Horizontal/Vertical Partition (Partial Redundancy). Same as
above, except that the horizontal partitions are partially
redundant, and the vertical partitions could also be partially

redundant.

Glo.bal query_ Manager Functions

There are five main functions (7:34) of the DDBMS global query

manager: (1) global data model analysis, (2) query decomposition, (3)

execution plan generation, (4) query translation, and (5) results

integration. These five functions are common to all DDBMSs, both

heterogeneous and homogeneous, but the query translation and results L .

integration pose special problems in the heterogeneous case.

Global Data Model. The global data model for the DDBMS was

defined as the relational data model by Jones (9). The requirements

of the global schema are further outlined in the next section.

Query Decomposition. Since the global model of the AFIT DDBMS is

relational, the decomposition of the queries also follows the

S ."relational format. The global relational query will be decomposed

222 V

ZOO " ,



:,t .- .-.7 

N .

into a set of relational subqueries against the local databases, which

are viewed logically by the system as relational schemas.

Query Translation. The approach taken by this thesis is that

translation from the global relational query language to the local

DBMS language will be done using the mapping approach, generating a

procedural query that will produce the same result as the relational

query. Since the user's view of the global schema is a relational

one, the commands that they use should also be purely relational.

Results Integration. The recommendation and approach taken is to

require the query translators to produce results in a canonical format

(7:42). Each separate translator will return the results to the

requesting node in the form of a relation. The advantage of this is

that for "n" local DBMSs, only 2n translators are needed, and the

addition of more systems to the DDBMS would not affect the current

local DBMSs. ..-..- ,..

The Global Relational Schema

As previously noted, the relational model is used as the global

relational model. The global model must be both schema and operation

equivalent to the underlying models for proper translation of data and

queries. A database is achem-equivalent to another database if there

exists a mapping that maps the schema S2 of the second database to the

schema S of the first database such that all constraints in S2 , that "'V.

are essential in the context of the first database, can be preserved

in S I (19:89). The resulting schema correspondences are depicted in

223

.7,



Figure I-1. If databases are schema-equivalent, and each operation on

the first database can be mapped into a set of operations on the

second database without loss of consistency, then the databases can be

said to be operation-equivalent.

------------------------------------------------------------

Elements of Global Corresponding Corresponding
1 Relational Model CODASYL Elements IMS Elements i

I- - - - -+-----------------------------+-----------------------------I

Domain Occurrence of Occurrence of

Attribute item Name Field Name

--------------- 4---------+-----------------------------I

Relation Record-Type Segment-Type -
--------------------- ------------------------------ I
Foreign Key Set-Type Hierarchical

Link-Record-Type: Path
.4------------------------------------------------------------------------------

Figure I-I. Data Model Correspondence

Local Schema Constraints

The the underlying system schemas must conform to certain

constraints in order that the integrity of the global schema can be

maintained. In network databases, the schema must conform to the

foreign-key constraint defined by Zaniolo (21:186). In hierarchical

databases, the restrictions are: (1) all fields in the schema must be

named uniquely, (2) each segment type must contain a hierarchical key,

and (3) the overlying local and global relations generated from a

hierarchical segment must contain the hierarchical keys of all the

ancestor segments for that segment. These hierarchical keys

propagated into the relation can be thought of as foreign keys of the

relation. These restrictions were proposed by Vassilou and Lochovsky

(19:90).

224
".r '



"K7• A.1 K7

"'*.'" The Global Relational Query Language

Jones specified that the global language would be a relational ,. ".]

query language, but would not necessarily be any presently designed

language. As such, no specific query language is required by the

query translation algorithms presented in the remainder of this

thesis. By basing the query translator on the generic operations

project, select, and join, it allows the potential use of any

relational algebra or calculus based query language.

Query Translation to Hierarchical DML

The algorithms used were those proposed by Vassiliou and

Lochovsky (19). The target system language is based on IMS, with

GET-NEXT and GET-NEXT-WITHIN-PARENT as the basic commands, with

recursive ability assumed for the programming language and system.

These algorithms are neither complete nor optimal, but give a good

start to dealing with the hierarchical translation problem. ,

Query Translation to CODASYL (Network) DML

The algorithms proposed are ones derived from the separate works

of Katz (11) and Kuck (12). The processing selection algorithm

produces an ordered list of records to be accessed, with the

corresponding attributes and access characteristics. This is similar

to the Iterative Query Language (IQL) proposed by Katz.

r
Once the most efficient network access sequence has been

determined, the DML code for that particular access sequence must be

generated. Generation of code was chosen over the use of set routines

because of the flexibility that it offers in handling different

225



% combinations of' selects, projects, and joins. The DML generation

algorithm used is based on the one proposed by Katz.

.* .- '..

Query.Translation to TOTAL (Network.) DML

The main thrust of' the thesis effort was toward developing a

program to translate relational queries into the DML of TOTAL (a DBMS

marketed by Cincom Systems, Inc.). TOTAL is a network database

management system, but differs from the CODASYL proposal in several

ways. Cardenas (4:218) describes the design concept of TOTAL as being

60 to 80 percent like CODASYL, but with a DML syntax similar to IMS.

TOTAL Data Management Language (DML)

The TOTAL DML is an extension to existing programming languages,

consisting of a series of CALL statements to a TOTAL interface program

known as DATBAS. There are three different types of DATBAS calls, I.
each with its own parameter list. The first, using four parameters, is

for signing onto TOTAL and for opening and closing the database "

schema. The second, using seven parameters, is for accessing Master

datasets, and the third, using nine parameters, is for accessing

Variable-Entry datasets. "'

TOTAL DML Generation Process -

The translation process breaks down into three steps: creation.V

of the structures used by the DML generator, ordering of the

structures into the optimal processing sequence, and the generation of

the source code with embedded TOTAL DML. :''%

226



- Dataset Structure Creation. The DML generation algorithms use as

input a list of data structures similar to Katz's IQL. These

structures contain the information necessary for the generation of

proper DML code. This query information, obtained from the local data

directory in the DDBMS, is as follows:

Query operation
Name of database--to get list of all datasets required
Name and type (master or variable) of datasets
Dataset Key
All required field names for each dataset

Size of all fields
Linkpath and reference names from the master dataset

to variable dataset
Qualifier operators and operands (literal or fieldname)

TOTAL Access Ordering. Master data sets are accessed in only two

ways; directly (for an equality comparison on a dataset key) and

sequentially (all other cases). Variable data sets must be accessed

sequentially through the chain beginning with the first or last data

set in the chain. As such, the first dataset retrieved in query must

be a Master dataset. Past this requirement, the problem of access

ordering was not addressed in this effort. The most efficient access

sequence is assumed to be present in the input. -'

Code Generation Algorithms

After the order selection is complete, the structures are input

to the DML code generating routine. The main code-generating

procedure, shown in Figure 1-2, is derived from the CODASYL algorithm

proposed by Katz (11).

227



procedure TOTGEN( i)
:F "i > N) THEN DO

Dutput all structure contents to output file
return [to previous level).

endif

IF (Master Dataset) THEN
IF (one-variable equality clause) AND

(Clause is a Dataset Control Key) THEN .-

create DML string
"HREADM.i ((SearchKey .>, (UserArea.>)

IF NotFound THEN GO TO LABEL(3*(i-1))
IF (STATUS <> '****') THEN

C0 TO EBBLABEL
(Structure.> :~<UserArea.>)"

IF (Structure. .value(j) qualifier) r
THEN successful)

IF (not successful) THEN GO TO LABEL(3*(i-1))1"

TOTGEN(i&1)

I~Ib'.create DML string

ELSE [sequential search -not dataset keyl

create DML string
"Qualifier. :=BEGN'

9DNXT.<QUalifier. ,<'-ser.Are-a.,,'
ZABEL 4_ -i'1+2): F UALIFIER == end of ch~lin' THE-N

00 TO LABEL( *(i-iL
F (STATUS <> ' ')THEN

0O TO ERRLABEL
<Structure.>): <UserArea.>

:F :''tructure. .value(4) ==qualifierl
THEN Csuccessful)

IF (not successful) THEN GO TO LABEL( 3*(i-1)+W)'.

I TOTGEN( j.1)

create DML string
"LABEL(3*(i-1).1): RDNXT (<Qualifier.,(UserArea.>)

x 16tFigure 1-2. TOTAL DML Generation Algorithm

228%



LAEL TO3AEL(*i1-1).

ELSE (Variable Jatasets - read chain in sequence}

create DML string
"(SearchKey.> :=(Dataset(i-1).KeyValue>
READV~ C Refe'rence. ,<SearchKey 1 >,

<Userkrea.>)

LABEL(3*(.-1),2): IF Reference. z='END.' THEN
GO TO LABE (C3*(i-1)I

IF (STATUS <> I****') THEN
GO TO ERRLAHEL

Structure,> <iserArea.>"1

-F Structure. .value~j) ==qualifier)
THEN t.successfui)

IF (not successful) THEN GO TO LABEL(3*(i-1)+)' 4
TOTGEN( 1+1)

create DML string
I LABEL(3*(i-1)+1): BEADV.(Reference., ( )

LAIELC3*(iBF))

end procedure :OTGEN
------------------------------------------------------------------------

Fig ure :-'Continued. -7OTAL DML 'eneration Ailzorithm

.-ubprocedures "or DATBAS Calls. One of the more restrictive

aSpects of OT7AL (from a relational viewpoint) is that the DATBASA

parameters are fixed. This means that for each dataset that is to be

accessed by a translated query, there must be a corresponding declared

DATBAS call with the unique parameter declarations. The only way to

implement this and still allow any flexibility in the queries is to

declare each DATBAS call within its own subprocedure, thus "hiding"

that particular DATBAS call from all of the others. This means that a

229



separate subprocedure would need to be declared for each call to

TOTAL.

TOTGEN DML Generation Algorithm. Once the variable and

subprocedure declarations have been generated, the main body of the

translated query program must be generated. This is handled by the

TOTGEN procedure, shown in Figure 1-2, which calls itself recursively

in order to build the proper processing order into the program. In

the figure, the subscript "i" signifies the declaration of variables
th

for the level of recursion, being the same as the number of the

data set that is being retrieved. The angled brackets (<>) signify

values (variables) that are generated for that particular call of

TOTGEN.

.ns :-on c'tware Host Machine and Lanzuaze

implementation of the translation software was done on the VAX-I-

that also hosted the AFIT TOTAL DBMS. The translator algorithms were'*

inclemented using the C programming language. The DML generator

:ot:on of the program generates a Pascal language program with

embedded TOTAL DML statements which, after being compiled and linked e-_

to .CTAL, actually execute the query.

Translator Limitations and Assumptions

The translation software was implemented using several limiting

design decisions and assumptions.

1. The input is assumed to be the information passed to the local
DBMS by the local data directory at the host node in the
network.

230

:N Z.



2. -he query translator program is capable of handling multiple

databases resident on the TOTAL DBMS.

3. Queries are assumed to be input in the most efficient
processing sequence. The immediate concern was to implement
and test software that actually could translate queries.

4. The number of boolean qualifiers on each particular dataset
was limited to two, with only the AND or OR logical
connectives.

Translator Input, and Output

There are two input files to the translation program, the query 4

fe and the database schema file. There are three output files, the

generated source code, the object code (compiled and linked versions),

and the query result file created by running the translated program.

The following sections examine the two input files and the output

result file.

Database Schema File. -he tnformation in the file iz: the "

size of the Schema Declaration (in characters), (2) the number of

lines in the Schema Declaration, and (3) the schema information. The

first two items of information are used to ease code generation, the

schema size Jefining the buffer size for calls to TCTAL, and the line

count allowing the proper formatting of the schema declaration. The

actual schema information consisto of the CTAL options ued and the

dataset names of the database schema. The file that contains the .%

-m schema information for the AFIT database is AFITDBSC.DAT (the database

name concatenated with SC.DAT). As more TOTAL databases are tested,

additional schema files will have to be created.

231



-. uery File. This file -ontains the query information that is

returned by the LNDD in the DDBMS. The format of QUERY.DAT is:

Database Name (e.g. "AFITDB")
Number of Datasets (N) in Query
Is  Dataset Information

N h Dataset Information

The information for each dataset is essentially the same,

containing the dataset name, field names and sizes, key field name and

booLean qualifier information. There are differences in the formats

between Master and Variable datasets, however. Variable datasets

require additional linkpath and reference information that provides

the specific association between the Variable dataset and its Master

datasets.

Query Result File. The query result file is created when the

query (generated program) is executed. The results are written in a

simole format that separates each "tuple". The requested output from

each of the datasets involved in the query is placed on a separate

line, with another line separating each distinct data aggregate

'tuple) in the result. For example, if a query requests a student

name from one dataset, a course title from another, and the grade from

a third, a resulting tuple might be:

Smith, John A.
Advanced Database Systems
A-

232



• W .W . -...'..

:his query result file would then be transmitted back to the

requesting DDBMS node for further processing, possibly to be joined or

unioned with the results from a partitioned query to another database.

Processing Sequence .5.

The processing sequence of the translator program, TRANS.C,

basically consists of a series of passes down the array of dataset

structures. First, the input from the query file is read in, building

the array of datset structures for use by the remainder of the

Program. Each dataset is examined, and an access type classification

of 1, 2 (both READM access), 3 (RDNXT), or 4 (READV) is assigned to

each. .*

The code generation process now begins. After opening statements

have been generated, the second pass down the dataset array checks the

-z:e of each Jataset field and computes :iteral sizes in order to
* -

create the list of sizes for buffer-type declarations in the Pascal

program. Another pass down the array creates record-types for query a.

output. A fourth pass through the datasets and all fields generates

the variable declarations for the program. The fifth pass down the

dataset array generates one subprocedure (for the unique DATBAS call) __

for each dataset in the query. It is at this point that the database

schema file is read. The sixth pass is made by the recursive module

that generates the body of the Pascal program, with other, partial,

searches of the array occurring as needed when computing the fields

required in comparison qualifiers. The seventh complete pass is made

when the recursion stops and output statements are generated.

233

F-5. .:.o_ __ _ _ _ __ _ _ __ _ _ _



At this point, the final code statements are generated and the

generated source code file is closed. What remains now is to compile

and link the program to TOTAL, execute the object code, and return the

result file to the user.

Test Query Translations

Once the translation software was implemented on the VAX, a set

of sample queries was run to test the operation and efficiency of the

both the C translator/generation program and the generated Pascal

program. The TOTAL database chosen for program testing was a subset

of the AFIT Data Base (AFITDB), which is designed to handle the

scheduling of classes, maintain student, faculty, and thesis

information, and to track order information on textbooks. The portion

of the AFTTDB that was used consisted of four Master datasets and two

7arable Jatasets, for a total of six datasets -n the subschema. The

datasets used were:

STDT - Student Master Dataset
SECT - Student Section Master Dataset
MCIS - Courses Master Dataset
MQTR - Quarters Master Dataset
VCQR - Variable Course-Quarter Dataset

SECL - Section Leader Variable Dataset

The specific test queries were chosen to represent a wide, but normal,

range of queries that could be expected in the system. There were

seven sample queries, involving from one to five of the six datasets

in the schema. These seven queries were:
.J.

1. The courses that student "Mahoney" took in the Winter 1985

quarter, and is enrolled in for the Fall 1985 quarter.

234



*W W .- 7 -L k. W -IV

2. The name and rank of all AFIT students with last names that begin
.-. * with D, E, or F.

3. The name and rank for the student with student number "XXXXXX".

4. All course offerings of the Electrical Engineering Department.

5. The names of all the students in student section GCS-85D.

6. All the GCS-85D students that are enrolled in the Fall 1985
offering of course number MA555.

7. The names of all GCS-85D students with last names beginning with
'A' through 'J' that are taking a MATH deparment course in Fall
1985, with the associated course title.

Analysis of Query Translation and Execution

Stopwatch timing was done on all seven queries for each of the

steps of query translation and execution: translation of the query

file, compilation of the generated code, linking the code to the TOTAL

DBMS, and executing the query. A graphical illustration of the query

reSu.I t shown in Figure :-3.

90 .

0 75
o60. . . . ..

Go-

2 3 4 5 6 7
QUERY BUMBER

- TRANS RUNTIME M TCODE COMPILE
E TCODE LINK E TCODE RUNTIME

Figure 1-3. Total Processing Time For Query Execution

235

-, ...- ,- .]> :.'" . .:, >.. -- ,, ', . .> c . • .,.. ".' _ ,- I I ".*< . -= .....-



,est Analysis

Most of the execution times did not reveal any surprises. Query

3, where a single record was retrieved by use of a key, was extremely

fast, running in just over a second. The speed of this fastest query

was expected. However, the slowest query, Number 6, was not P- .

anticipated. It ran for over 79 seconds, nearly three times as long

as the next longest query. Complexity of the query might be the

obvious answer, but this query did not involve the highest number of

datasets (That was Query 7, which used five datasets, and which ran

only 18.44 seconds). It appears that the difference lies in where the

qualifications appear in the processing order of the query. In Query

6, the qualifications appeared in the last few datasets retrieved. *In

Query 7, the qualification on the second dataset retrieved sharply

recuced the amount of seauential searching required. The time it- -.

taKes for the query translation process obviously differs by a wide

margin from query to query. One cannot draw conclusions about the

efficiency of such a query translator from a small sample, but some

points can be drawn from these seven queries.

First of all, the length of the first three translation steps is

fairly equal, even for the most involved queries. What varies widely

is the time it takes to actually execute the query, but this is the

case for all DBMS queries, not just translated ones.

It is apparent that the criteria for ordering the processing of

datasets in a query (which was omitted from this partial

implementation) should be expanded to include an analysis of where the

qualifications lie in the processing order. Some knowledge about the

236 f:::1.1



relative size of the datasets would also be useful. The combination

of these two factors would help to reduce the execution time of the

translated program.

Conclusions

Query translation in a heterogeneous distributed database system

is a very real problem. The work of this thesis has indicated that

this solution is not without its limitations. However, even if the

translation of queries is not currently a particularly responsive

solution, it is still the best approach short of converting the

underlying local databases into a homogeneous system. It appears to

be the only way that the "ad hoe" qualities of relational query

languages can be preserved in a non-relational system. This thesis

has shown that the translation of global queries into a different

uncerlying DBMS query language is indeed possible. However, this

effort has just scratched the surface. Future research into

distributed databases, both heterogeneous and homogeneous, will

hopefully continue to expand the body of knowledge :oncerning database

systems.

%

237 '~



* . . A

Bibliography

1. Adiba, Michel and Portal, Dominique. "A Cooperation System for
Heterogeneous Data Base Management Systems," information Systems,

3 (3): 209-215 (1978).

2. Bernstein, Philip A. et al. "Query Processing in a System for
Distributed Databases (SDD-1)," ACM Transactions on Database

Systems, 6 (4): 602-625 (December 1981).

3. Boeckman, John G. Design and Implementation of the Digital
Engineering Laboratory Distributed Database Management System, MS
Thesis, GCS/ENG/84D-5. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, December .2~~984. 'T T

• . Cardenas, Alfonso F. Data Base Management Systems. Boston:
Allyn and Bacon, Inc., 1979.

5. Cardenas, Alfonso F. and Pirahesh, Mir H. "Data Base
Communication in a Heterogeneous Data Base Management System
Network," Information Systems, 5 (1): 55-79 (1980).

- 6. Date, C. J. An Introduction to Database Systems, (Third

Edition). Reading, Mass.: Addison-Wesley Publishing Company,K'nc., 92

7. Gligor, Virgil D. and LuckenDaugh, Gary L. "Interconnecting
Heterogeneous Database Management Systems," IEEE Computer, 17
(1): 33-43 (January 1984).

3. Hevner, Alan R. and Yao, S. Bing. "Query Processing inDistributed Database Systems," -:EE-E .'ransactions -on Software ]"[.

1ngineern,- 1Q : - May "-7r."

9. Jones, Anthony J. Analys.z ard Specification of a Universal Data
Model for Distributed -,ata Baze Systems, MS Thesis,
GC/ENG/84D-11. School of Engineering, Air Force institute of
Tezhnology (AU), Wright-?P ttrnon AFB, OH, December 1984.

10. Katz, Randy H. "Software Architectures for Heterogeneous
Database Management," Proceedings IEEE COMPSAC 81. 33-42. IEEE

oPress, New York, 1981.

11. Katz, R. H. "Compilation of Relational Queries into CODASYL
DML," Improving Database Usability and Responsiveness, edited by

Peter Scheuermann, New York: Academic Press, 1982.

12. Kuck, Sharon M. A Design Methodology for a Universal Relation
Scheme ImplementaTion Via CODASYL, PhD Thesis. The Graduate
College, University of Illinois at Urbana-Champaign, 1982.

238

.. %



. .. . . . . .. . . . . . . . . . . . . . . .

1?. Larson, James A. "Bridging the Gap Between Network and
Relational Database Management Systems," IEEE Computer, 16 (9):

82-92 (September 1983).

14. P10-0002-01. TOTAL Users Manual for the VAX-11 Minicomputer,
Release 2.0. Cincom Systems, Inc., Cincinnati OH, 1979.

15. Roth, Mark A. The Design and Implementation of a Pedagogical
Relational Database SyAtgm, MS Thesis, GCS/EE/79-14. School of

Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1979.

16. Takizawa, M. and Hamanaka, E. "Query Translation in Distributed
Databases," Information Processing 80, edited by S. H. Lavington.
Amsterdam: North-Holland Publishing Company, 1980.

7. Tsichr-:zis, D. C. and Lochovsky, F. H. Data Base Management
System... New York: Academic Press, inc., 1977.

18. Ullman, Jeffrey D. Principles of Database Systems, (Second t
Edition). Rockville, Md: Computer Science Press, 1982.

19. Vassiliou, Yannis and Lochovsky, F. H. "DBMS Transaction
Translation," Pro9eedings IEEE COMPSAC 80. 89-96. IEEE Press,
New York, 1980.

70. Wedertz, James A. The Design and mplementation of a Centrallzea
Data Directory for a Distributed at abase Management System, MS
Thesis, GCS/ENG/85D-24. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, December
1985.

21. Zaniolo, Carlo. "Design of Relational Views Over Network
Schema," Proceedings A.C.M. SGMOD Conf. 79. 179-190. (1979).

239

%.
"4A4



-/- -.- - - - - - --

, VITA

Captain Kevin H. Mahoney was born on 26 July 1955 in Stillwater,

Oklahoma. He graduated from high school in Stillwater in 1973 and

attended Oklahoma State University until May, 1977, at which time he

enlisted in the USAF. Following Basic Military Training School at

Lackland AFB, Texas, he attended the Computer Operations School at

Sheppard AFB, Texas until September, 1977, when he was assigned to the

Air Force Manpower and Personnel Center (AFMPC), Randolph AFB, Texas.

While assigned to AFMPC, he was selected for the Airman Education and

Commissioning Program (AECP), returning to Oklahoma State University

in August, 1979. He received the degree of Bachelor of Science in

Computing and Information Systems from Oklahoma State in May, 1981.

in May, 1981 he entered Officer Training School (OTS) at the Lackland

T.rining Annex, Texas, where he received his USAF commission in

August, 1981. He was immediately assigned to Headquarters, Air Force

Communications Command, Scott AFB, Illinois, where he remained until

entering the School of Engineering, Air Force Institute of Technology,

in May, 1984.

Permanent address 624 Ute Avenue

Stillwater, Oklahoma 74075

.

"

240



UNCLASSIFIED S IJ,
SECURITY CLASSIFICATION OF THIS PAGE fld A.

:~ r REPORT DOCUMENTATION PAGE
- 8. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGSN

* UNCLASSIFIED
2s. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONIAVAI LABILITY OF REPORT

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE Apoe o ulcrlae
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/85D-7

6& NAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AI/N

6 c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433

Be. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicables

ac. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
E LEME NT NO. NO. NO. NO.

11. TITLE (include Secujrity Classification)

SeeBox_19 ________________

j 2. PERSONAL AUTHOR(S)
Kevin H. Mahoney, B.S., Capt., USAF

13s. T YPE OF REPORT 13.TIME COVERED 14. DATE OF REPORT (Yr. Mlo.. Day7 1. PAGE CDUNT

*MS Thesis FROM _____TO ____ 1985 December 251

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1B. SUBJECT TERMS (Continue on reverse if necessary and identify by block, numberp

FELD GROUP SUB. GR. Heterogeneous Distributed Database,
09 02 Query Languages, Query Translation,

Network Database Management System
19. ABSTRACT IContianue on reverse if necessary and identify by block, numbers l

Title: THE DESIGN AND IMPLEMENTATION OF A k

RELATIONAL TO NETWORK QUERY TRANSLATOR
FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM

-9W0 a- M N7) i
Thesis Chairman: Dr Thomas C. Hartrum Wi e.,~ 4mdD9hU

AV fm. bwu-- ise Teftudiii" UMn
SIMP6~ses Anl ON 41WI N~

1DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIE/UNLIMITE IM SAME AS RIPT. 0 OTIC USERS [3 UNCLASSIFIED

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

S I Dr. Thomas C. Hartrum 513-255-3576 AFIT/ENG
DD FORM 1473, 83 APR EDITION OF I JAN 731IS OBSOLETE. UNLASSIFIED

SECURITY CLASSIFICATION Or- THIS PAGE F

.. ... .... ... .... ... .... ... ..



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

19.

A translation program was implemented for the
translation of generic relational queries into the Data
Management Language (DML) of the TOTAL data base mangement
system. The objectives of this thesis were to propose and
detail a method of supporting a global relational query
language for a heterogeneous distributed database
management system (DDBMS), design generic query translators
for the translation of global relational queries into local
hierarchical and network DML, and partially implement
translation software for the conversion of relational --
queries into TOTAL DML.

The initial portion of the thesis presents an overall
analysis of data partitioning, query decomposition and
global query management in the DDBMS. Specific proposals
are advocated doncerning the specific approach to be taken
toward a global query manager and the design of the global
schema over currint databases.

The second portion formalizes the assumptions and
constraints present in the global relational model, and
presents generic algorithms for the translation of
relational queries into hierarchical and network DML.

The last portion details the implementation and
testing of the relational to TOTAL translator. The
approach used was to take information returned from the
local data directory of the distributed database in
response to a relational query, and- compile -that L

information into a generated Pascal program containing the
TOTAL DML commands. Only the actual code generation
portion of the softwre was implemented. Query parsing,
query optimization, a* results integration were not
addressed. A set of simple queries translated by the
program were presented ahd evaluated.

UNCLASSIFIED*



FILM ED

.,2..v g-


