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I. INTRODUCTION

® Requirements for <controlled structures in space for
astrononmy, communication netwcrks, near-earth scientific studies,
and space solar power aiternatives have recently generated much
interest in the active control of flexible structures [1]. Such
applications typically call for very large lattice structures (up
to several kilometers in extent) which would support arrays of
antennae, solar cells, etc. A lattice is usually constructed by
assembling many simple truss-like substructures into &a 1larcge
periodic structure.

The scope of the present study is limited to the active
control of the ©propagation of vibrational disturbances in a

single truss-like substructure, many of which might comprise a

lattice structure. keduction of the problem to +this sceale

sreatly simplifies the vibrational dynamics, as the effects of

ocoungary reflections are omitted. The problem is further

simplifiea by idealizing the substructures as thin elastic rods

which are subjected only tc longitudinal stress wave

disturbances.

This study investigates the <concept of utilizing a

feeaforeward controller to sense and subsequently cancel incoming

longituainal stress wave disturbances by superposing the negative

of each individual <cisturbance. The objective <¢f such a

controller is to isclate a portion of the substructure Ifrom

vibration aqaue to incoming disturbanc.s. While the report is

praimarily aevoted to deriving and analyzing the respor.ce

characteristics of a substructure with such a feedforeward




controller implemented, a discussion is provided in Appendix A on

the response of a counterpart feedback controller. It is noped

L J
that once developed, the ability to control the propagation of
disturbances in single substructural elements may have an
application to the problem of lattice-wide vibration control.
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I1. ECRLULATICK CF ROL KCLEL FCk SUBSTRUCTURE

The gecverning equation for the propagation of 1longitudinal alads

waves in thin rods is known [2]. Fig. 1 shows a straight, thin

roc, wnere the coordinate x refers to the location of a recd cross

section, &nd the longitudinal displacement of that crcss section

is siven Lty u(x,t). The rod is subjected to a stress field
o0(x,t), which may vary with positior x and time t;

tensile

stress is assumec to be positive. The material is assumed tc¢

tehave elastically, obeying tre simple Kooke's law

0 =Ee (1)

where L i1s Young's modulus and € 1is the axial strain

defined by
-
€= ox (2)
In the absence of body forces, the equaticn of motion for
the roc¢ is given by the familiar wave equation [2]
3 2 u 0 3 2[1 Y ,‘\‘_T. N
—_— — — :'-‘::\\_{'
%2 E 3t2 3) R
ST
‘--.\..'v~.
N
where p is the material mass density. £

The configuration c¢f lattice substructures is assumed to te

that of thin elastic rods. It is imrortant to ncte the

assumptions maae ir deriving eqn. (3) for the thin rod model of &

lattice substructure, which are as follcws:

1) The substructure is assumed to bte hemcgerecus, sc¢ tnat E
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and P do not vary with x.

(2) The substructure shape is prismatic, so that the cross

sectional area A does not change with x.

(3) Uniaxial stress is assumed, and although uniaxial strain
is not assumed, the inertial effects associated with

lateral strain (Poisson effect) are neglected.

(4) Stresses in the substructure are assumed to be subject to
no attenuation. This assumption is not  wunrealistic,
since the vibration of many long, {flexible, lightweight

structures in space is very lightly damped [1].

A wuseful =solution to eqn. (3), credited <to D'Alembert

(1747), is [2]

S (X X
u(x,t) -f1<co c) +f2<co+t> ()

where f1 and r2 are arbitrary functions which represent
disturbances propagating at a velocity co; f1 is associated with
the components of the total disturbance which are travelling in
the positive x directiorn, and f2 represents the components
travelling in the negative x direction. The velocity of
longituainal wave propagation, co, is determined by the material

properties of the elastic solid, and is given by [2]
c = o E (5)
p

Stress wave propagation can be shown to follow the same rule

of propagation. Taking the partial derivative of eqn. (3) with

P SR N P O L P T ST A L B S S SN R T -'-'_."-‘~4"h'_-'-.‘.n \ 'u...'.. K
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respect to position gives

i<32u(x,t)>= 3 (9_ Bzu(x,t)) 6)
[ x ax? ox E el

which may be rewritten as

) f_(aux,c)) . f_(g au(x,c>> (7
3 3x 32 \E  ax

Next, eqn. (2) is used to write

. afe(x,t) _ o d%e(x,t) ) '
ox2 E at2 .
which, from Hooke's Law and the homogeneity criterion, becomes
{
3ox,t) _ p 30(x,t) (9)
ax? E oc?
The UDL'Alembert solution form thus pertains for stress wave
¢ propagation as well, so that it is possible to write '.-_-:t"?'
x x X
o(x,t) = g (q-t) + BZ(E‘O-+t) (10) ;::,
o b
where 81 and gz are arbitrary functions that will be specifically : :
determined ©by the initial conditions or forcing function in a
< given problen.
Eqn. (10) describes stress waves which propagate without
distortion or attenuation through the substructure. Thus, ingut
« waves of arbitrary ‘'"shape" propagating in the positive x
direction rpast point xl in the rod of Fig. 1 will later pass lg
point x2 unchanged from their original configuration. ;f{}i'
( This nondispersive characteristic may be expressed as RS
9
(
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+ +
0 (x,,t) = 0 (x;, t=T,) (11)
L .
‘ where 0 (x,,t) denotes the magnitude of a stress wave at cross
l section x2 at time t, as the wave propagates through the
° substructure. The superscript "+" indicates that propagation is
in <the positive x direction, and T12 is the time constant
associated with the "transportation lag" [3] of propagation along
a length 212 of tne substructure between sections X, and X,
L
X - X
- = 2.1 - 12 (12)
12 c c
2 0
C

Y Nondispersive, unattenuated propagation is illustrated in
t Fig. 2, which shows a schematic of a stress wave propagating
through the substructure of Fig. 1. In Fig. 2a a rightwardly-

propagating stress wave of arbitrary shape is shown with its

wavefront located at cross section X, at time to. Then, after a

time duration of 112 has elapsed, the wave has propagated to the

right so that its wavefront is located at cross section x2 as

shown in Fig. 2b; the shape of the wave is unchanged. After an

elapsed time of T13’ which is given by

X -X 213
T = = - = —=Z (13)

13 c c
0 0

the wavefront has reached cross section x3 as shown in Fig. =2c,

with the wave shape undistorted and the amplitude unchanged.

The aelay function related by eqn. (11) may be given a block

( diagram representation, as in Fig. 3, where the nodes x, and x_

10
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reter to the correspording substructure cross sections, and
double-lined faces on the delay block are used to distinguish it
from typical con-tant-multiplier blocks. Block diagram
representations will be useful later in visualizing the overall

structure of the control system under study.

The operation reprresenteac by the delay block shown in Fig. 3

is simple; its cutput signal or function is merely the input

signal or itunction delayed by the time constant with which the

particular block is labelled. Thus in Fig. 3 the output stress :;

r'unction c+0<,t)is merely the delay of the input stress function
2

o+(x,:) . Since the time delay for wave propagation between x
1 1

and x is given by eqn. (12) as T , then eqn. (11) describes ; }
2 12 D

the operation of the delay block in Fig. 3. Note also that

eqns. (12) and (13) may be generalized in the following form:

[x_~-x_| L [

n @m mn ~s .

T = —_—— = — (lt‘) el

mn c c ST

"] 9 :_\:_\‘:

SO

where Ton is the time delay for longitudinal wave propagation in {j;J

eitner direction between two cross sections Xp and x,.

Berore addressing the control problem, two other aspects of fiﬁg

wave propagation in the lattice substructure will be discussed —
and represented by ©block diagram elements, which will

subsequently be used to illustrate the different configurations
and the underlying assumptions of a few different controller
designs.

First, waves may propagate through the substructure in

either the positive or negative x-directions, as shown in eqn.

11

.
S .. Y s .-
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(10). Thus, in Fig.4, 0+(xft) is shown passing through the delay
block in the positive x direction (from X to xz), and 0-(xft) is
shown passing through the same delay block in the negative «x
direction (from x, to xl).

The second aspect is the principle of superposition in
linear systems. When two waves travelling in a lattice
substructure pass the same location, their magnitudes at that
cross section are additive. This superposition rrinciple is
accountec for by summing the values of time functions tor
leftwardly and rightwardly propagating stress functions at a
cross section in order to obtain the net time function for stress
at that cross section. Fig. 4 shows the standard block diagram
notation 1tor such a summation operation. Just as the net or
actual value of stress at a physical cross section is the sum of
the instantaneous values of propagating stress waves at that
cross section, likewise the stress value at a given cross section
in the block aiagram is the sum of both the leftwardly and
rightwardly propagating stress functions for the cross secticn at
that point in time.

To illustrate the superposition principle, successive stress
pulse diagrams are shown in Fig. 5, for trhe special case where
T is equal to 123 (that is, the distance le between sections

12

b and x 1is equal to the distance 1 between sections x and
1 2 23 2

X )
3
In Fig. 5, two waves are shown approaching cross section x2
from opposite airections. The speed of propagation for all

longituainal stress waves in the substructure is given by eqr.

12

ot




i (5). Fig. 5 shows both waves propagating at equal speed until

they are fully superposed at time t equal to to + le . During
superposition the waves partially cancel; their. separate
¢ magnituces are represented by outlines, and their sum or net
magnituade is shaded. After superposition the waves continue to
° propagate in their respective directions undistorted, as Fig. 5

shows. Fig. 6 shows a block diagram model for this length of the

substructure from section x to x .
1 3
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III. FORMULATION OF FEEDFOREWARD CONTROL MODEL

A. Idealized Controller Components

The principle of waveform superposition underlies the scheme
to be analyzed 1ior vibration control in this study--namely,
cancellation of propagating stress waves ty generating and
superposing the negative of waveform disturbances contained in
the structure. The analysis will consider disturbance (input)
waves which are propagating through a lattice substructure in the
positive x direction, as well as the operations of a controller
designed to protect the region of the substructure to the right
of section X, (refer to Fig. 1).

The operations of the ideal feedforeward controller to be
studied may be described as follows. First, a sensor at section
x, is used to measure the amplitude of +the stress wave
disturbance as it passes the section. The signal generated by
the sensor 1is delayed, and provides input to the actuator at
cross section xz, where the negative of the incoming stress wave
is actuated after an appropriate time delay. As 1indicated in
eqn. (12), the 1length of the time delay will be determined by
the distance 212 along the substructure between the sensor and
the actuator.

It 1is important to clearly state the assumptions which are
involved in tne simplified modelling of the sensor, delayer, and
actuator elements in this idealized controller design. They are

as follows:
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(1) Sensor-- The sensor is assumed to be a transducer of

(2)

(3)

negligible size and mass which is fixed to the substructure

at section x , and which generates a signal s(t) (with units
1

of volts) proportional +to the longitudinal stress at the

section, o(x ,t).
1

s(t) = é%-o(xl,t) (15)
1

here (1/G1) is the constant ¢of proportiocnality (or ‘"gain")
associated with tne sensor, and has units of (volt/psi).
The actual operating principle (piezoelectric,
electromechanical, strain-resistive, etc.) is not considered

in the present analysis.

Lelayer-- The signal s(t) is fed to a signal delay element,

whose output s'(t) is given by

s'(t) =s(t-1"') ; for € > 1' (16)
12 - 12
where <t ' is the time delay introduced by the delayer. In
12
the case of ideal operation, T ' will equal 112, which is
12

the actual transportation lag of stress waves [ropagating

fron section x to section x .
1 2

sctuator-- The actuator is located at a particular secticn
in the rod, xz. It is approximated by a disk whose thickness
is negligible and whose impedance is matched to that of tre
rod, 8o0 that stress waves propagate past cross section x2
unaffected by the presence of the actuator.

It is assumed that the controller can apply a time varying

axial force F(t) to the disk, and that the value of F(t) is

15
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proportional to the signal s'(t) received from the delayer.

F(t) = Gz' s'(t) a7

Here, G, is the actuator gain, and heas units of (lb/volt).
Once again, the present analysis does not consider

whether the force is actually generated piezoelectrically,

electromagnetically, etc. What is important is that the

controller is assumed to generate time-varying uniform stress

distritutions across the faces of the substructure.

b. Description of Actuator Operation

Fig. 7a shows the idealized actuator-substructure assembly
intact, where the rod has cross sectional area A. In Fig. 7b
segments of the lattice substructure have been isolated as free
boay diagrams, to show the applied forces and resultant stresses.
In Frigs. 7a and 7b, the positive x direction is indicated and
tensile stresses are defined positively as shown.

It is necessary to derive expressions for the applied stress
functions Ul(t) and(g(t) in the substructural element. Examining
Fig. 7b, a balance of forces can be written for the massless

actuator component.

LF 0 = F(t) + A°0 (t) ~ A*0 (t) (18)
X 2 1

Therefore, F(t) A[Gl(t)-oz(t)] (19)

Geometric compatibility requires that displacements and

velocities at the actuator interface be equal. Thus,

16
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u (¢) =u (t) (20)
1 2

du (t) ou (t)
1 - 2 (21)
at at

hext, the cross sectional velocities can be expressed in terms of

the stresses on the corresponding faces [2].

Ju (t) c

- 25 (v (22)
Jt E !

Ju (t) c
at E 2

Combining eqns. (20) through (23) yields the requirement on

the stresses as

[ -C
<5 ()= — 0 (t) (24)
E 1 E 2
Therefore,
Ol(t) = _Oz(t) (25)

This result, together with tre force balance relation, (eqn.
{19)), gives the expressions for the resultant stress functions

at the actuator in terms of the forcing function as

- F(t)
01('1) = —Z_A_ (26)
o (¢) = L8 (27)
2 2A

Finally, it is necessary to write expressions for the

propagation characteristics of <the stress waves which the

17
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actuator, as cescribed above, serves to generate at the
actuator-substructure faces. Conceptual division of the
substructure as shown in Fig. 7 indicates the approach: the
problem may be divided into two cases of longitudinal end-
actuation of semi-infinite thin rods, with a stress discontinuity
at cross section X, -

From the end-~actuation analogy, the stress waves generated
on the substructure face to the right ¢f the actuator, Oz(t),
must propagate into this "semi-infinite half" of the
substructure; that is, they must propagate in the rositive x
direction. Thus, the equation fcr the propagation of controller-
induced stress waves in the portion of the rod to the right of
the actuator can be written by selecting the appropriate term

from tne D'Alembert solution to the wave equation.

X-X
°+(x,t) - 1. F ( < z . t) s for x> x2 s, t >0 (28)

The superscript "+" denotes the propagation of these stress
waves in the positive x direction. Note that the argument of the
function F in eqn. (28) is in units of time, not position; the
function <continues to represent a wave travelling in the x
directicn at a srpeed c° .

Likewise, actuated stress waves which are generated on <the
substructure face to the left of the actuator must travel to the
left, again based on the division of the problem into two cases
of end-actuation of semi-infinite substructures. Thus, the
equation for these leftwaraly-propagating stress waves also takes

the form of the appropriate term from the D'Alembert solution as

18
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1
o (x,t) = —--F( 2+c) ; for x<x ,t>0 (29)
2A c 2 -

Together, eqns. (28} and (29) summarize the results for
propagating stress waves which are generated by the actuator, and
they express the waves in terms of the value of the actuator
forecing function, F(t). Using eqns. (15) to (17), eqns. (28) and
(29) for the controller-inducea stress waves may be expressed as

functions of the stress detected by the sensor at section X, .

+ ¢, [ XX,
o (x,t) = —— s ¢ x,( ~-t+T' ; (30)
2AG 1 c 12
1 L 0
for x>x , t>7T1'
2 - 12
Gz x-X
0 (x,t) = — «0o}lx, Z4e-1" H (31)
2AG 1 c 12
1 0
for x<x, t>T1'
2 - 12
rig. 8 presents a schematic of the actuator output response to

the arbitrary actuator input signal s'(t) shown. Fig. © shows a
moditied block diagram, composed of the elements discussed in
Section II, which models the gzeneral response of the controlled
substructure to a stress wave disturbance originating at X s with
the c¢ontroller formulated as above. In Fig. 9, solid arrows
continue to represent <the "flow" or travel of stress wave
functions, while dashed 1lines have been used to represent

(electrical) signal flow in the controller.

19
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IV. RESPCNSE OF THE CONTROLLED SUESTRUCTURE

CY It is now possible to analyze the response of the controlled
lattice substructure to an arbitrary input disturbance at xo .
Two important features characterize the response of the system
P as it is presently formulated.

The first mnay be likened to the '"stress intensification"
| phenomenon which is characteristic of stress wave reflection frc:
: fixed boundary (such as a rigid wall). As part of a wave
reflects back from a fixed boundary, it may be superimposed with
the still-incoming portion of the wave, so that higher amplitude

transient waveforms result. The same effect is the result of

the superpgosition of incoming waves approaching the actuator at

X from x and the already-actuated, 1leftwardly-propagating
1 0

LA
v e e)
<t 5

0
rv o~
o e

LR
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stress waves, which are duplicates of previously incoming waves.

4
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The series of pulse diagrams for o{(x, t) in Fig. 10
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illustrate this phenomenon. In Fig 10, stress pulses with dashed

&
0

%,
L
X

IR o
e 2
U

A
o]

o

outlines represent stress waves generated ty the controller

-

actuator. Pulses with solid cutlines are those o¢of incoming

stress wave disturbances. Consistent with all stress pulses 'i
presented in this study, the shaded portion of a pulse represents
the net, or physically realized magnitude of the stress waves in
the substructure.

Thus, in Figs. 10c through 10f, the incoming stress wave
(solid outline) is completely cancelled by the rightwardly
propagating controller-generated stress wave (dashed outline, for

x > x, ), so that both are left unshaded, indicating that their

net magnitude is zero. They superpose and cancel, so that the

20
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portion oI the lattice =substructure to the right of the
controller is 1isolated from any stress disturbance Lty the
incoming wave. kote that in Fig. 10 7 ' is assumed to be equal

14

to le.
In Fig. 10c the phenomenon of stress intensification is
® shown. The leftwardly-propagating stress wave generated by the
controller is nrnomentarily superposed on a portion of the
incoming wave disturbance which is travelling to the right peast
® section x2 ; the result of this superposition is transient stress
values which are of higher magnitude than either c¢f the two
waves' peak values alone.
C There 1s a second problematic feature of <the controller.
Note that in Fig. 10e, the leftwardly-propagating stress wave
(which is generated by the actuator as it also produces the
@ negative of the incoming wave), is passing the sensor located at
cross section X, o As the controller is presently formulated,
both incoming (rightwardly-propagating) stress waves and
® outgoing (leftwardly~-propagating) stress waves are sensed by the
controller as "substructure disturbances". That is, the sensor
currently generates a signal (delayed for input to the actuator)
based on tne instantaneous magnitude of any stress wave passing
tne cross secticn xl , regardless of the wave's source.

For example, the stress waves shown in Fig. 10g are being
generated by the actuator as a result of the outgoing stress wave
whicn is shown passing the sensor earlier in Fig. 10e. Note that
the leitward-propagating wave generated in Fig. 10g will in turn

pass the sensor. Thus, a single, non-repeated incoming strecss




rulse, though cancelled perfectly by the controller, will
noretheless 1nitiate a process of endless controller "“echoing",
as lettwaraly-propagating controller-generated stress waves are
repeatedly sensed, producing new actuations.

These two problematic features of the controller, namely
stress intensification (Fig. 10c) and "echoing", (Figs. 9g and
9n) can be compounded to the degree that the system becomes
unstable in response to disturbances.

Fig. 11 shows how such instability can arise in response to
a simple step stress disturbance. Dashed lines again represent
the outlines of controller-generated stress waves. The dashed
outline cf these actuated waves is shown slightly below the solid
outline of the incoming stress wave for clarity only; such a
representation is intended to indicate equal magnitude
noretneless. As in Fig. 10, Fig. 11 assumes that Tx; = 112.

Fig 11b shows that "stress intensification", or additive
superposition, has begun to occur by t equal to t + Ez/z, so that
a wave of twice the amplitude of the incoming wave results. As
the outgoing actuated wave propagates further to the 1left, so
does the adaitive effect of its superposition with the incoming
wave. By Fig. 11d¢, when t equals ta+ (3/2)?12 » the higher
amplituce wave has passed the sensor at cross section x1 .
Accordingly, as snown in Fig. 11f, the actuator begins to
Zenerate a stress wave of twice the incoming wave's amplitude at
a time which is 3leefter the incoming wavefront initially passed
the sensor.

Figs. 11f and 11g show that as the generated waves continue

to superpose with the incoming wave, then cancellation is no
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longer achieved to the right of x2 sy because the controller
generates waves which are twice the necessary amplitude.
Finally, Fig. 11g further shows that higher amplitude waves will
continue to pass the sensor, leading to generated waves of still
greater amplitude. The system is unstable in response to a step
input.

Fig. 12 illustrates the case for a step sinusoidal input.
Again, the leftwaraly-propagating waves which are generated &by
the controller (as it operates to cancel the incoming waves)
superpose with the incoming stress waves. Stresses of double the
reak amplituae of the incoming wave are subsequently measured by
the sensor at x1 (see Fig. 12e), and the controller is required
to generate waves of increasingly higher amplitude (dashed
outlines in Figs. 12g and 12h). Thus the system is potentially

unstable in response to a step sinusoidal input.
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V. COLTKOLLEK STABLIZATION

A preliminary approach for actively controlling the
rropagation of longitudinal vibrations in an idealized 1lattice
substructure has been discussed in Sections II through 1IV. As
developed in Section IV, the controlled substructure system is

unstable in response to input disturbances. The 1instability

aricses because the sensor responds to both incoming and
controller-generated leftwardly-propagating stress waves
indiscriminately. It is desirable to modify the controller to

prevent tnis instability.

Une solution is to redefine the operational characteristics
of the sensor. It is reasconable to assume a sensor which |is
sensitive only to waves propagating in the desired direction-~in
this case, the positive x direction. Employing such a sensor,
the controller would not be reactivated by the leftwardly-
propagating stress waves which the actuator generates, and thus
the system would not exhibit the instability characteristics
discussed in Section 1IV.

A second, more general solution to the problem of
instability would be o add a loop to the ccntroller which
effectively deaucts the delay of the actuator output from the
sensor's output. Implementation of this solution is illustrated
by a block diagram representation in Fig. 13. As shewn in Fig.
13, the signal which provides input to the actuator is also fed
back to be subtracted from the sensor output, through a delayer
labeled t ''. Since the objective of this additional loop is

12

to aeauct from s(t) that portion of the signal which corresponds
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to the leftwaraly-propagating (actuator-generated) portion of

U(x1 +t), then it is necessary that le be exactly equal to le

in order to totally cancel the actuator-generated portion of

O(x1 yt). A nonzero difference between le

and le is thus an
additional possible source of controller error; the effects of
such a nonzero difference will not be analyzed here, but the
study oI such effects constitutes an appropriate topic fcr
further research.

For the remaining analysis, the successful application of
’ this latter more general stabilized method to the controller will
E be assumed. Thus, in the remaining analysis, it is assumed that
{ sz" equals le, so that the deduction of the delayed value of
!( s'(t) i1rom the sensor output occurs at precisely the same instant
E

that the sensor is nmeasuring the leftwardly-propagatirg

disturbance which was generated in response to s'(t) and which

] nas travelled back thnrough the substructure from x to x « The
2 1

response of the controlled lattice substructure to a step input
disturbance, following this controller modification, is shcwn in
o Fig. 14. 1In Fig. 14, the effect of stress intensification has
propagated back past the sensor at section x by time t equal to

1
t0 + 2112. However, as Fig. 14 shows, for time t equals Sleand
< beyond, the actuator never doubles the value of the controller-
generatea wave, because a value associated with the leftwardly-

propagating disturbance is effectively subtracted from the senscr

( output, as schematized in Fig. 13. Fig. 14 may be compared with
Fig. 11, discussed in Section IV, which illustrates the response

of tne unmodified controller-substructure assembly to an

( identical step input aisturpvance.
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VI. INPUT/OUTPUT CHARACTERISTICS OF STAELIZED FEELDFOREWARD=-
CONTRCLLED SUBSTRUCTURE

A. Transfer Function Magnitude

It is useful to characterize a linear system ty its transfer
function, or (steady state) frequency response, H(w), which is

given by

H(w) = (32)

wnere w denotes radian frequency, X(w) is a steady harmonic
input to tne system and Y(w) is the system output. The transfer
function for the feecforeward-ccntrolled substructure which heas
been treated in the previous sections is derived in Appendix E,

and founa to be given by

-1iwT,,

-1 T
Hf(w) = e 1T

- Ke 2 (33)

*

where le and '%2 are the time delays for wave propagation
through the substructure and the controller, respectively; <the
controller net feedforeward amplification, given ¢ty 62/2A01 in
Section I1I, has been replaced by K for simplicity; and i = TN

It can be seen from eqn. (33) that the transfer function is

a complex function., Defining
e=7T"'-1 (34)

where ¢ denotes the difference between the time delay of waves
propagating in the substructure le and the delay of the
controller 11; y then Appendix B shows that the square of the

transfer function magnitude is given by
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2
[H )| =1 - 2Kcos(ue) + K? (35)

In terms of the controlled substructure system under study,
the magnitude of the transfer function gziven in eqn. (35)
represents the complex magnitude of the ratio of the system
output to the system input where both are expressed as complex
functions in the frequency domain. In the time domain, the
system input and output are assumed to be stress functions
0+(x1 ,t) and O(x3 st), respectively, both are representable by
harmonic comgponents, x, and x, denote the locations of <cross
sections on the substructure as shown in TFig. G, and the
superscript "+" indicates that only stress waves propagating in
the positive x direction past section x, 6 are actually input into
the systenm.

As long as the time domain input and output of the
controlled substructure are sinusoidal stress functions with
frequency w , a transfer function magnitude IHf(w)l of less
than unity represents system attenuation of an input stress
function. A transfer function magnitude equal to zero represents
complete attenuation or cancellation of the input stress function
A transfer 1function magnitude |Hf( w )| greater than unity
indicates controller operation which effectively amplifies
incoming sinusoidal stress functions of frequency w , so that the
amplitude of the stress wave output to cross section x in

3
Fig. 9 is greater than that of the input stress wave.
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b. Operational Ranges of Controller Error

Two types of controller error are considered in this study:
(1) nonzero values for the difference between controller and
substructure delays, ¢ , which is given by eqn. (34); and
(2) values of the net feedforeward controller gain K not equal to
the substructure gain of unity.

There are also two possible operational goals for the

feedforeward controller, within the broad domain of "active
vibration control”. The first possible goal is "iceal”
controiler performance--~achieving complete superpositional

cancellation of the incoming stress wave disturbance, thus
completely isolating cross section x3 from any (rightwardly-
propagating) vibrational disturbances (see Fig. 9). The second,
more modest goal of controller implementation would be
achievement of disturbance attenuation, if not full cancellation.
In <this case the objective might be an output stress wave whose
amplitude is some fraction of the input disturbance amplitude,
thus requiring a transfer function magnitude less than wunity.
The present subsection identifies the allowable ranges of
controller error for achievement of each of these two controller

objectives.

(1) Achieving complete disturbance cancellation

"Ideal" operation of the controller <calls for complete
cancellation of incoming stress wave disturbances which are input

to the controlled substructure system. It is possible to derive
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the requirements on the controller delay error, € , given by eqn.
(34), and the requirements on the net feedforward conrntroller
gain K.

Egn. (35) gives the expression for the square of the
system transfer function magnitude. Achievement of full input
disturbance cancellation requires a system output of zero, and
thus a transfer function magnitude o¢f =zero. With tkis

requirement on le(w)l , eqn. (35) becomes
K® - 2Kcos(we) +1 =0 (36)

Eqn. (36) is a quadratic equation, so that its solution is given

2
2cos(WE) # ‘l [— 2cos(wt—:)] -4

2

by

K =

which may be simplified and rewritten as

K = cos(we) * V cos?(we) - 1

Eqn. (38) is the requirement for full controller
cancellation of incoming disturbances. If K, the controller
feedforward gain, is to take on only real values, then the
difference under the radical in eqn. (38) must be nonnegative.

This requirement states that

cos? (we) >1

anc thus ideal contrcller operation requires that
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WE = Tn (40)
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where n is any integer, n = ...-2,-1,0,1,2....
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Using the relation

%ﬁﬂ.
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radian 1requency W, the requirement on the contrcller cdelay AT

error (eqn. (40)) can be rewritten

e = % (nT) (42)

Eqrn. (42) indicates that for complete cancellation of a
sinusoidal input disturbance, the duration of the controller
delay error € must be equal to some integer nultiple of half the
input waveform period T.

Next, combining eqns. (40) and (38) yields

(43)

1 for n even
K=

-1 for n odd

( which 1is the second requirement on the controller parameters
which must te fulfilled if the controller is to operate ideally.

Thus, in summary, for the controller to operate such that

( complete cancellation of input disturbances is achieved, both

eqns. (42) and (43) must be satisfied simultaneocusly by the

controller parameters.
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(2) Achieving disturbance attenuation ;“:";
o In the case where the goal of controller implementation is E:_f-f
achieving attenuation of stress wave disturbances which are input é§§§§
to the system, it is necessary that for an input sinusocidal ;g%ié
W'
® stress function of radian frequency u, the magnitude |Hf(w)| of ’_r:
the system transfer function must be less than unity. Solving Ei;af
eqn. (35) for this requirement yields ﬁf;ki
¢ 1> 1 - 2Kcos(we) + K> (44) o)
Eqn. (44) may be simplified to obtain
¢ K < 2cos(we) ; for K>0
(45)
K > 2cos(we) ;3 for K<O
L
Eqn. (45) is plotted in Fig. 15, where all value pairs for K
and we which satisfy the inequality lie in the shaded portion of
° the plane, but do not include the points where the line K=2coswe)
crosses the (we)axise.
Examination of Fig. 15 and eqn. (45) indicates that while
there are no upper or lower bounds for acceptable values of the
‘ parameter (we), the magnitude of the controller feedforward gain
K must never reach or exceed a value of 2 if attenuation is to
te achieved. Also, the parameter (we) must not equal any
L8

odd integer multiple of 7w/2, and the parameters K and (we€) cannot

be set independently, if attenuaticn is to be achieved.
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C. Physical Fasis for Frequency Dependence of Transfer Function

Magnitude

Eqn. (35), the expression for the magnitude of the
controlled substucture system . ansfer function, is plotted in
Fig. E-3 as the transfer function magnitude squared, |I~1f(w)|2 ,
versus the parameter WE o Eqn. (35) and Fig. B-3 show that the
magnitude of the transfer function depends on the frequency w of
the incoming disturbance. That is, for a constant feedforward
£gain K and a constant difference ¢ between substructure and

: controller delays, the magnitude of the system transfer function

] will be different 10or different input signal frequencies.

Therelore, since actual inputs to the controlled-substructure

system may be waveforms composed of several harmonics at

different frequencies, the magnitude of certain such harmonics

e will be enhanced in the system response while that of harmonics

at other frequencies will be diminished. In fect, as Fig. B=2

illustrates, the magnitude of the transfer function is periodic

o in WE o That is, as Wwe is increased (or decreased) by 27 ,
the magnitude of the transfer function repeats itself.

To understand physically the dependence of the systen

4 transfer Ifunction magnitude on the input waveform's harmonic

frequencies, it is useful to introcduce the concept of a wavefornm

period. llaking use of eqn. (41), where T is the period (in

( seconds) of a waveform whose radian frequency is w, note that

(46)




Substituting eqn. (46) into eqn. (35) then gives

Iﬂf(zﬂ/T)l2 = 1 - 2Kcos [m(%)] + K2 (47)

Eqn. {47) is plotted in Fig. 16 to illustrate that the magnitude
of the transfer function is periodic in (&/T). It is instructive
to consider that the ratio (¢/T) is a measure of € as a
percentage of the waveform period. For a waveform with constant
rerioa T, Fig. 16 shows that as the difference in the controller
and substructure time delays € is increased from 0 to 50 percent
of T, the magnitude of the transfer function is increased frorn
1ts minimum to its maximum value.

As developed in Section VI-B, only when the magnitude of the
net controller gain equals unity is it possible for the
controlled system to completely attenuate incoming signals.
Figs. 16 and E-3 present the frequency dependency of the transfer
function magnitude for the general case where K is unspecified.
The remaining analysis will assume X equal to unity, (zero gain
error), and will quantify the effects of controller delay error
given this assumption.

Fig. 17 1is a plot of the square of the system transfer
function magnitude versus the parameter (€/T), with K set equal to
unity. Of particular interest is the dashed horizontal 1line
in Fig. 17 representing a transfer function magnitude of unity.
Above this line the <c¢ontrolled system amplifies an input
disturbance; below it the input is attenuated.

Egn. (45) may be solved for K equal to unity to determine

the ranges of <the parameter (e /T) over which the system

'I ° \.\I . -.'v.l
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attenuates an input. Eqn. (45) becomes

:4-_‘: N
LN
.}’ ~::\$:
cos(we) > 1/2 (48) IO N
’ [P T A
T
which can be rewritten, using eqn.(41), as ﬁf‘}:
[l‘ ."l-
\..::'. N
® cos [Zn(%)] > 1/2 (49)
Eqn. (4S) is solved for (€/T) in the following ranges:
e
€
(n-1/6) < — < (n+1/6) (50)
T
‘ where n is any integer.
C
. Eqn. (50) thus specifies ti 2 ranges of the parameter (€/T)
: for which the feedforward controlled substructure system
’ successfully attenuates an incoming stress wave disturbance for K
C
equal to unity.
Wwhen the feedforward gain is held constant at unity, <then for
(€/T) in the ranges (n-1/6 to n+1/6) where n is any integer, the
L 4
System attenuates a steady sinusoidal input signal. Likewise,
for (€/T) in the ranges (n+1/6 to n+5/6) the system amplifies a
steady sinusoidal input signal.
C
liathmatically, this result is found by solving eqn. (48)
when K and IHf(Zﬂ/T)lare toth equal to wunity. Physically, it
arises because for (€&/T) in the ranges (n-1/6 to n+1/6) the
( sinusoidal output of the controller and substructure tend to
subtract in phase, while for (¢/T) in the ranges (n+1/6 to n+5/6)
the controller and substructure output tend to add in phase.
¢ Fig. 18 presents graphically the relationship discussed
34
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above for € as a varying percentage of a constant period T, and
K equal to unity. Fig. 18 shows the stress at location x, as a
function of time for & sinusocidal input of unit amplitude. In
Fig. 18a € = 0 , so that the substructure output stress
function at c¢ross section x2 (solid line) and the controller
® output stress function at cross section x, (dashed line) suttract
completely (that is, they are exactly 180 degrees out of phase);
and the magnitude of their sum is equal to zeroc everywhere. This
e is the case ot ideal controller operation (feedforward gain X
equal to unity and the controller delay exactly equal to thre
substructure delay), in which complete superpositional
C cancellation is achieved.
In Fig. 18b (€/T) equals 1/6, and the system output waveform
(the sum of the controller and substructure outputs) is irndicated
) by the shading. Fig. 18b shows that the peak amplitude of the
system output is equal to the peak amplitude of the substructure
output (and thus that of the input signal, since the substructure
@ gain is equal to unity), wnich indicates that the magnitude cf
the transfer function is unity for K equal to unity and for (e/7T)
equal to 1/6.

In Fig. 18c¢, (e/T) equals 1/2. Substructure and controller
output add in phase in Fig. 16&6c, yielding an output waveform
whose peak amplitude is twice that of the substructure output,
and thus is also twice that of the input waveform. In this
case then, the magnitude of the transfer function is equal to 2,
which is identical to the result shown for K equal to unity and

(e/T) equal to 1/2 in Fig. 17 and eqn. (47).
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Finally, Fig. 18d shows the system response when (&/T) equals
unity. The results are indistinguishable from those in Fig. 18e,
) illustrating the periodicity of |Hf(2n/T)| with respect to (e/T).
l.hen the controller output waveform leads or lags the
substructure output waveform by e equal to any integer multiple
) of the period (in this case the integer is unity) then the two
cutput wavetrorms are superposed exactly 180 degrees out of phase,
and thus they completely cancel.
In actual operation c¢f the controlled substructure systen,
it is more likely that the delay error €, given by eqn. (34),
will be rixed and the system will be subject to an input cormrosed
of numerous narmonics which are distributed over a range of
frequencies. The magnitude of the transfer function fcr each
harmonic will vary according +to the particular harmonic's
frequency in a manner dictated by eqn. (47) and identical to that
discussed above and presented in Fig. 18. The parameter 1/T
varies linearly with the radial frequency w, as eqn. (41)
indicates, so that for higher frequencies the period T |is
shortenea and a constant ¢ becomes a larger percentage of T,
increasing the ratio (c/T). The consequent frequency
dependence of the transfer function magnitude is rresented
grapnically in Fig. 19, for which € is constant, K is held equal
to unity, ana the input waveform's frequency {(and thus its
period) are varied.
When a waveform's period is equal to 6¢ , then (</T) equals
1/6, and [Hf(z n/T)| is equal to unity (for K equal to unity).
This «case 1is shown in Fig. 19a, where the substructure and

controller cutputs are represented by solid and dashed 1lines,
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respectively, and their sum (the system output) is shaded.
In Fig. 19b, the frequency has increased to 3 times 1its
value in Fig. 19a, reducing the period to twice the length of ¢,
so that the controller and substructure outputs are exactly in
phase. In this case the controller and substructure outputs
) additively superpose to produce a system output whose magnitude
is twice the magnitude of the input (that is, twice the
magnitude c¢f the unity-gain substructure's output). This

b transfer function magnitude of IHf(Z T/T) equal tc 2 is exactly
the magnitude specified in Fig. 17 for (€/T) equal to 1/2 erd K
equal to unity.

Finally, in Fig. 1Sc, the frequency is € times its value in
Fig. 19a, so that T now equals ¢ exactly, and the controller and
substructure ocutputs are exactly half a period out of phase so

D that they cancel entirely. This case illustrates complete input
attenuation, (IHf(ZTT/T)| equals 0), which is what eqn. (47) and
Fige 17 give when K equals unity and (€/T) takes on an integer
® value.,

Together, Figs. 18 and 19 provide several system output
examples which illustrate the physical basis for the frequency
dependence of the controlled substructure transfer function
nagnitude. This dependency is derived in Appendix B, and is

presented in eqns. (35) and (47), and in Figs. E-3 and 16.
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VII. CONCLUSIONS AND RECORMENDATIOMNS

To avoid instability, a feedforward controller used to
actively control wave propagation in lattice substructures should
be designed to effectively sense and cancel only incoming
disturbances. This nay be achieved by utilizing a
unidirectional sensor; a more generally applicable solution is to
ada a correction feedback loop in the controller.

iwo possibilities for controller error include: (1) a net
feedforward controller gain that does not match that of the
substructure; and (2) a controller delay time which differs from
the time required for wave propagation through the substructure.

If full cancellation of incoming sinusoidal disturbances |is
to be achieved for the portion of the substructure beyond the
controller, the controller feedforeward gain amplitude must match
that of the substructure exactly. If attenuation 1is tc¢ be
achieved, the <controller gain amplituce must be less than twice
that of the substructure.

For a nonzero discrepancy between the controller delay and
the delay for wave propagation in the structure, tre ratio cf the
system (sinusoidal) output amplitude to the input sinusoidal
amplituae is cependent on the input waveform's radian frequency.

To fully cancel sinsuoidal disturtances in the substructure

beyond the controller, assuming matched contrcller and
( substructure gains, the duration of the controller-substructure
delay discrepancy must be equal to an integer multiple of half

the input waveform period. To attenuate incoming disturbances,

t assuning matched controller and substructure gains, the delay
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discrerancy must not differ from an integer nmultiple of the
input waveform reriod by more than one sixth of the period
duration. This range aprroaches zero as the nagnitude of K
approacnes 2, and becomes larger as the magnitude of K approaches
zero.,

Further work should be done to determine analytically the
dependence on frequency and on controller error of the ratio of
output to input wave energies. The effects of delay error ir the
stabilizing feedtack loor should be analyzed.

The analytical results contained here should also be

verifiead experimentally.
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APPENDIX A

ANALYSES OF FEEDBACK CONTROL OF WAVE PROPAGATION IN STRUCTURES

The feedback control of wave propagation in lattice
structures is considered in this appendix. Limitations of such a
control scheme are illustrated and discussed.

The geometry of a one-dimensional lattice substructure,
which is modelled as a thin rod, is shown in Fig. A-1. As shown,

the coordinate x refers to the undisturbed location of a cross

section of the substructure. Two sections of the substructure,
separated by distance ¢ , are labelled as x1 and X, - A
12
section to the right of x is labelled as x . The section x,
2 3

represents the location in the substructure to be protected from
incoming stress disturbances by the feedback system.

In the feedback control scheme, a disturbance is assumed to
originate from the left of x1 and propagate through the
substructure. A sensor measures the stress (or displacement or
velocity) at cross section xz, and the feedback system provides a
force in the longitudinal direction at cross section x2 through
an actuator. The force provided by the actuator generates a.
rightwardly-propagating stress wave at x1 whose instantaneous
amplitude at xl is the exact negative of the stress sensed at xz.
The force provided by the actuator also generates a corresponding
leftwardly-propagating stress wave at x1 which is the negative of
the rightwardly-propagating stress wave. (In this study,
leftwardly-propagating waves are not reflected at the left
boundary of the substructure.) The total response of the

substructure is the superposition of the incoming stress wave

€C
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disturbance and the stress waves generated by the actuator.

Figs. A-2 and A-3 show the responses of the substructure
under feedback control to an input single pulse disturbance and
to an input step disturbance, respectively. The sensor S |is
located at x and the actuator A is located at x . The feedback
® system 1is indicated by a block diagram containing -1 as the only

entry. The transit time for wave propagation from x, to x is

2

T Figs. A-2 and A-~3 show the stress distributions 0 (x,t)
12

® along the length of the substructure at equal time intervals for
increasing time. The time interval shown corresponds to half the

transit time 112. A rightwardly-propagating stress wave

L disturbance originates to the left of x1 . The stress

cdistribution along the substructure is observed at time to ’
after the disturbance has passed location x, but before it has
() reached location x2 . Then, the stress distributions along the
substructure at tl, tz,..., ts, t7 are shown.
In Figs. A~2 and A-3, the solid outlines represent <the
o incoming stress disturbance and the dashed outlines represent the
stress waves generated by the actuator. Also, the shaded
portions represent the net, or physically realized magnitude of
C the stress waves in the substructure due to superposition of the
incoming disturbance and the actuator-generated stress waves.
Figs. A-2a through A-2h show the responses of the
" substructure to a single pulse disturbance. The duration of the
disturbance is assumed to be less than the transit time Tu. Fig.

A=2b shows the incoming disturbance just before it arrives at the

sensor S. Figz. A=2c shows the incoming disturbance as it is just

-t a -
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passing S and the actuator is active in producing both a
rightwardly-propagating wave and a leftwardly-propagating wave.
Fig. A-2d shows the incoming disturbance after it has passed S
and the actuator is not active. However, a negative pulse
propagating to the right has been generated by the actuator.
Fige A-2e shows the actuator generating stress waves due to the
negative actuator-generated rightwardly-propagating wave. This
process continues indefinitely and an infinite sequence of
identical pulses, with alternating sign and separated by 112 y is
sent to the right of location xz. Thus, if a point to the right
of x, (that is, point x3) is to be protected from stress
disturbances by the feedback system, the feedback system actually
worsens the situation by generating more pulses towards the point
of interest.

Figs. A=3a through A-3h show the responses of the
substructure to a step disturbance. Fig. A-3a shows the incoming
disturbance just before it arrives at the sensor S. Fig. A=3b
shows the 1leading edge of the incoming disturbance has just
passed S and the actuator is active in producing both a
rightwardly-propagating wave and a leftwardly-propagating wave.,
Tne actuator-generated rightwardly-propagating wave cancels the
portion of the incoming disturbance that overlaps with it. Fig.
A=3a shows the leading edge of the actuator-generated
rightwardly-propagating wave has passed the sensor S and has
cancelled the incoming aisturbance at S. Because there is no
longer any stress at S, the actuator is not active. Thus, the

incoming disturbance arriving at the actuator A passes unaltered

as shown in Figs. A<3d and A-3e, Fig. A-3f shows the leading

M AR A A e Ty L T T Y ¥ X R C Ry v v wowswr v




eage of the unaltered incoming disturbance has just passed the
sensor S and the actuator is active again. This process
continues indefinitely and an infinite sequence of identical
pulses, each with duration equal to the transit time le and each
also separated by 112, is sent to the right of location x2 .
b Thus, if a point to the right of x2 (that is, point xa) is to be
protected Ifrom stress disturbances by the feedback system, the
feedback system does not remove all of the step stress
[ J disturbance, but does prevent segments of the input step from
reaching the point of interest. The penalty is that segments of
leftwardly-propagating waves to the left of x1 have double the

q amplitude of the incoming disturbance.
To summarize, the feedback control of wave propagation in
lattice substructures as described here has significant
® limitations. For short input pulse aisturbances as shown in Fig.
A-2, an infinite sequence of pulses of alternating sign is
generated to the right of location X, . For long input pulse
o disturbances as shown in Fig. A-3, only a portion of the
disturbance is prevented from reaching a location to the right of

X (that is, point xa). However, as shown in Figs. A-2 and A-3,

( this control system does not appear to cause system instability
because the stress amplitudes are always limited. Nevertheless,

feedback control may still be useful as a part of a total control

scheme for the control of wave propagation in lattice structures. L
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Fig. A-1 Geometry of structure considered.
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APPENDIX B
IMPULSE RESPONSE AND TRANSFER FUNCTION FOR

WAVE PROPAGATION FEEDFORWARD CONTROL

The impulse response and the transfer function for the
feedforward control of wave propagation in structures are
considered in this Appendix.

In general, a linear system can be characterized by its
impulse response h(t) or its transfer function H(w) as shown 1in
Fig. B=1 [4]. (The transfer function is also called the frequency
response.,) For an input x(t), where t denotes time, the ocutput

y(t) can be obtained via h(t) as [4]

y(t) = f x(T) h(t-T1) dT (B.1)

- o

where T is a variable of integration. For an input X(w), where
w denotes radian frequency, the output Y(w) can be obtained via

H(w) as [4]

Y(w) = Hw) X(w) (B.2)

Furthermore, the impulse response and the transfer function are

related as [4]

H(w)

"
8
=3
~~
re
e
o,
[
e
(a3
A
(a3

(B.3)

where i denotes v-=1 ,

Fig. B«~2 s8hows a schematic of the feedforward control of

»
.
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e
wave propagation in structures. The substructure is :53;
° characterized by a time delay of le . The feedforward E::.EL
controller is characterized by a time delay of 'H; and an %jf:
amplification factor K. (Waves may be generated at the actuator :E;éi
and rpropagate back along the structure toward +the sensor. ié:i
¢ However, it is assumed in this Appendix that these particular !:ff
waves are ignored by the sensor. Also, it 1is noted that
dispersion and attenuation are not considered in the model shown SO
i in Fig. B=2.) The output of the feedforward control system is 2355
formed by subtracting the output of the feedforward controller
from the output of the substructure as indicated in Fig. B=2.
( Considering an input impulse §&(t) into the feedforward
r control system shown in Fig. B-2, the impulse response hf(t) of
p the feedforward control system can be written as
L
he(t) = (5(t—‘t12) - KcS(c-Tl’2) (B.4)
o where O is the Dirac delta function [4].
Eqn. (B.4) shows that the output of the feedforward control
system is formed by subtracting the output of the feedforward
« controller, which 1is the input impulse time-delayed by TI; and iﬁT_
scaled by K, from the output of the substructure only, which is -
the input impulse time-delayed by le and scaled by unity. -
( Then, the transfer function Hf(w) of the feedforward control )
system shown in Fig. B-2 <can be obtained from hf(t) via
eqn. (B.3) as
o
¢ H () = f h,(t) e 10 g¢ (B.5)
S
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Substituting eqn. (B.4) into eqn. (B.5) gives

o0

- _ - e -iwt

Hf(w) f [6(t le) Ké (t le)] e dt (B.6)
- 00

From the properties of Dirac delta function, eqn. (B.6) can be

integrated to give [4]

. ]
-iwT -iwt,,

Hf(w) = 12 - Re (B.7)

Eqn. (B.7) gives the transfer function Hf(U)) of the
feedforward control system shown in Fig. B-=2. As shown in
eqn. (B.7), the transfer funtion is a complex function. The
magnitude of the transfer function will be discussed.

The square of the magnitude of Hf(w) can be obtained from
[4]

2
IHf(w)I = H (WH,(-w) (B.8)

2
where IHf(w)l denotes the square of the magnitude of Hf(w) and
Hf(-w) denotes the complex conjugate of Hf(w).

The complex conjugate of Hf(w) can be obtained from egn.

(B.7) as

iwT iwrlz (B.9)

Hf(—w) = e 12 - Ke

Substituting eqns. (B.7) and (B.S) into eqn. (B.8) gives

2 - - ' \
IHf(w)I = (e T, ke 1912 ) ( el¥Tiz - gel¥T12 ) (B.10)
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Eqn. (B.10) can be expanded as

_ '
le(w)IZ = e iw112+im112 - Ke iw112+iw112
i ' : - ' '
- Ke 1wT12-+1w112 + Kle in12-+1w112 (B.11)
Eqn. (B.11) can be simplified as
'_ - L
@] " = 1-ke(T127Tha) | ge™10(T)27Ty,) 4 2 (B.12)

The second and third terms on the right-hand side of eqn. (E.12)
are complex conjugates of each other. When added, the imaginary

parts of these two terms cancel. Thus, egqn. (B.12) becomes

iﬁf(m)lz =1 -2Kcos [w(rlé le)] + K? (B.13)

Defining

T ' -1 =€ (B.14)
12 12

where € denotes the difference in time delays between the
feedforward controller and the substructure, eqn. (B.13) can be

rewritten as

|Hf(w)|2 =1 -2Kcos (we) + K? (B.15)

Eqn. (B.15) gives the square of the magnitude of the

transfer function for feedforward control of wave propagation in




(B.15) is

the simple structures under consideration. Eqn.
plotted in Fig. B=3 versus the parameter (we).

® To summarize, the eqn. (B.15) and Fig. B-3 account for the
general case where the time delay in the feedforward controller
exceeds the time delays in the substructure by € and also where

PY the teedforward amplification is K, as shown in Fig. B=2.

Fig. bB=3 shows that the magnitude of the transfer function is

periodic in e . Thus, when ¢ is increased (or decreased) by
® 27 , the transfer function magnitude repeats itself. Also, for
a given w, a positive € and a negative € of the same magnitude
produce the same transfier function magnitude. Furthermore, Fig.
C E-3 shows that for any value of € the magnitude of the transfer

function has the least possible value when K equals unity.

Finally, because the transfer function magnitude as shown in Fig.

B-3 is frequency dependent, the feedforward control systen
response due to certain frequencies (for constant € ) is enhanced

wnile that from other frequencies is diminished.
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kqn. (B.10) can be expanded as

. . T
IHf(‘ﬂ)lz - e-1w‘r12+iw112 _ Ke—lw‘r12+iw1’12
’ ' - . '
_ Ke-iw112-+iw112 + Kle 1wT12-+in12 (8.11)
Eqn. (B.11) can be simplified as
'_ — '_
@7 = 1-ke™(T127T12) - ge™(Ti2™T1)) 4 g2 (B.12)

The second and third terms on the right-hand side of eqn. (B.12)
are complex conjugates of each other. Vhen added, the imaginary

parts of these two terms cancel. Thus, eqn. (B.12) becomes

|Hf(w)|2 =1-2Kcos [w(Tlé-le)] + K? (B.13)

Pefining

T'-1T =¢ (B.14)

where € denotes the difference in time delays between the
feedforward controller and the substructure, eqn. (B.13) can be

rewritten as

|nf(m)|2 =1 -2Kcos(we) + K? (B.15)

Eqn. (B.15) gives +the square of the magnitude of the

trensfer function for feedforward control of wave propagation in
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the simple structures under consideration. Eqn. (B.15) 1is
plotted in Fig. B-3 versus the parameter (we).

To summarize, the eqn. (B.15) and Fig. B=3 account for the
general case where the time delay in the feedforward controller
exceeds the time delays in the substructure by € and also where
the feedforward amplification is K, as shown in Fig. B=2.
Fig. B=3 shows that the magnitude of the transfer function is
rperiodic in we . Thus, when we is increased (or decreased) by
2m o, the transfer function magnitude repeats itself. Also, for
a given w, a positive £ and a negative £ of the same magnitude
produce the same transfer function magnitude. Furthermore, Fig.
B=3 shows that for any value of € the magnitude of the transfer
function has the 1least possible value when K equals unity.
Finally, because the transfer function magnitude as shown in Fig.
b=3 is frequency dependent, the feedforward control system
response due to certain frequencies (for constant € ) is enhanced

wnile that from other frequencies is diminished.
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