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I. IITRODUCTION

Requirements for controlled structures in space for

astronomy, communication networks, near-earth scientific studies,

and space solar power alternatives have recently generated much

interest in the active control of flexible structures [1]. Such

applications typically call for very large lattice structures (up -

to several kilometers in extent) which would support arrays of

antennae, solar cells, etc. A lattice is usually constructed by

assembling many simple truss-like substructures into a large

periodic structure.

The scope of the present study is limited to the active ,-2

(?control of the propagation of vibrational disturbances in a

single truss-like substructure, many of which might comprise a

lattice structure. heduction of the problem to this scale

greatly simplifies the vibrational dynamics, as the effects of . ,.

oounaary reflections are omitted. The problem is further

simplifiec by idealizing the substructures as thin elastic rods

wnicn are subjected only to longitudinal stress wave

disturbances.

This study investigates the concept of utilizing a

feecaforeward controller to sense and subsequently cancel incoming

longitudinal stress wave disturbances by superposing the negative "

of each individual cisturbance. The objective cf such a .

controller is to isolate a portion of the substructure from

vibration aue to incoming disturbanc, s. 1inile the report is

primariiy aevoted to deriving and analyzing the response

characteristics of a substructure with such a feedforeward

. *** -. .,q . -" .°2.
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contro,!ler implemented, a discussion is provided in Appendix A on,.:

the response of a counterpart feedback controller. It is hoped
-* P...+

that once developed, the ability to control the propagation of

disturbances in single substructural elements may have an *.,..

application tO thle problem of lattice-wide vibration control.
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II. i"OR LULTIGi, CF HOE E:CLEL F-. SUBSTPUCTURE

The gcverninE equation for the propagation of longitudinal

waves in thin rods is known [2]. Fig. I shows a straight, thin

roc., where the coordinate x refers to the location of a rcd cross

section, and the longitudinal displacement of that cross section

is biven by u(x,t). The rod is subjected to a stress field

a(x,t), which may vary with position x and time t; tensile

stress is assumes to be positive. The material is assumed tc

behave elastically, obeying the simple Hooke's law

S= E (1)

where L is Young's modulus and C is the axial strain defined by

X =(2)

In the absence of body forces, the equation of motion for

the rod is given by the familiar wave equation [2]

x E 2 (3) %

wnere p is the material mass density. -_--

The configuration cf lattice substructures is assumed to be

that of thin elastic rods. It is important to note the

assumptions mace in deriving eqn. (3) for the thin rod model of a L

lattice substructure, which are as follows:

(1) The substructure is assumed to be homcgereous, sc tnat E

7(- .
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and 0 do not vary with x.

(2) The substructure shape is prismatic, so that the cross

sectional area A does not change with x.

(3) Uniaxial stress is assumed, and although uniaxial strain

is not assumed, the inertial effects associated with

lateral strain (Poisson effect) are neglected.

(4) Stresses in the substructure are assumed to be subject to

no attenuation. This assumption is not unrealistic,

since the vibration of many long, flexible, lightweight

structures in space is very lightly damped [1].

A useful solution to eqn. (3), credited to D'Alembert

k1747), is [2,

* u~~t) f (L..t) + f, 2 + t)(4

where f and f are arbitrary functions which represent
1 2

disturbances propagating at a velocity c ; f is associated with0 1-

the components of the total disturbance which are travelling in

the positive x direction, and f represents the components
2

travelling in the negative x direction. The velocity of

longituainal wave propagation, c , is determined by the material
0

properties of the elastic solid, and is given by [2]

c = (5) -

Stress wave propagation can be shown to follow the same rule

of propagation. Taking the partial derivative of eqn. (3) with

8.,
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respect to position gives

ax2 t ) = ( at2u~xt) (6)

ax ax;2 x E

which may be rewritten as

pa 2 (au (xt) ) 92  au(X,t) )(7)
ax2  axE ax

Next, eqn. (2) is used to write

3 2  (x,t) D 2E(x,t) (8)= ~~(8) ,. ,.
Sx2  E at 2

which, from Hooke's Law and the homogeneity criterion, becomes

2 ,(x,t) a 2 (x,t) (9)= ~~~(9) "-..:.

x 2  E t 2

The L'Alembert solution form thus pertains for stress wave

propagation as well, so that it is possible to write

a(x,t 0 g 9~-t 2C (10) ..

p..0- t + g2 t (i0)o~ t) g (c o  co 0l': '

where g and g are arbitrary functions that will be specifically

determined oy the initial conditions or forcing function in a

given problem.

Eqn. (10) describes stress waves which propagate without """-

Cistortion or attenuation through the substructure. Thus, input

waves of arbitrary "shape" propagating in the positive x

direction past point x in the rod of Fig. 1 will later pass

point x unchanged from their original configuration.
2

This nondispersive characteristic may be expressed as

9°% . .

C~.....
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a (xt) = +(x1 9 t-T 1 2 ) (11)

where C; (x 2 ,t) denotes the magnitude of a stress wave at cross

section x 2 at time t, as the wave propagates through the

substructure. The superscript +"" indicates that propagation is.

in the positive x direction, and T is the time constant
12

associated with the "transportation lag" f3J of propagation along

a length 9 of tne substructure between sections xa1and x 2

x -x
2 1 _ 12 (12)

12 C C
0 0

Nondispersive, unattenuated propagation is illustrated in

Fig. 2, which shows a schematic of a stress wave propagating

through the substructure of Fig. 1. In Fig. 2a a rightwardly-

propagatinC stress wave of arbitrary shape is shown with its

wavefront located at cross section xat time to. Then, after a

time duration Of T nas elapsed, the wave has propagated to the

12 I12

right so that its 1wavefront is located at cross section x as
2

shown in Fig. 2b; the shape of the wave is unchanged. After an. .

elapsed time of T, which is given by
1 3

x -x
3 3 1 __3 (13)

13(13)

1 3 C 0C 0 
, ,o 0" - .

the wavefront has reached cross section x 3tas shown in Fig. 2c,

with the wave shape undistorted and the amplitude unchanged.

The aelay function related by eqn. (11) may be given a block

diagram representation, as in Fig. 3, where the nodes x and x
1 2

10-.

.~~~ .:.:::
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refer to the corresponding substructure cross sections, and

double-lined faces on the delay block are used to distinguish it

from typical con-tant-multiplier blocks. Block diagram

representations will be useful later in visualizing the overall

structure of the control system under study.

Tne operation representea by the delay block shown in Fig. 3

is simple; its output signal or function is merely the input

signal or iunction delayed by the time constant with which the

- particular block is labelled. Thus in Fig. 3 the output stress

function a (x ,t) is merely the delay of the input stress function
2

a ,t) • Since the time delay for wave propagation between x

and x is given by eqn. (12) as T , then eqn. (11) describes

the operation of the delay block in Fig. 3. Note also that

eqns. (12) and (13) may be generalized in the following form:

T= = -m (14)
mn 0 0

where T is the time delay for longitudinal wave propagation in

eitner direction between two cross sections x. and xn .

Bezore Addressing the control problem, two other aspects of

wave propagation in the lattice substructure will be discussed

and represented by block diagram elements, which will

subsequently be used to illustrate the different configurations

and the underlying assumptions of a few different controller

aesigns.

First, waves may propagate through the substructure in

eitner the positive or negative x-directions, as shown in eqn.

•. '.'.11
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(10). Thus, in Fig.4, a +(x ,t) is shown passing through the delay

block in the positive x direction (from x to x ), and a-(x ,t) is
1 2 2

* shown passing through the same delay block in the negative x

direction (from x to x
2 1

The second aspect is the principle of superposition in .:-K-

* linear systems. When two waves travelling in a lattice

substructure pass the same location, their magnitudes at that

cross section are additive. This superposition principle is

* accountec for by summing the values of time functions for

leftwardly and rightwardly propagating stress functions at a

cross section in order to obtain the net time function for stress

at that cross section. Fig. 4 shows the standard block diagram

notation 1or such a summation operation. Just as the net or

actual value of stress at a physical cross section is the sum of

* the instantaneous values of propagating stress waves at that "

cross section, likewise the stress value at a given cross section

in the block diagram is the sum of both the leftwardly and

rightwardly propagating stress functions for the cross secticn at

that point in time.

To illustrate the superposition principle, successive stress

pulse diagrams are shown in Fig. 5, for the special case where

is equal to T (that is, the distance Z between sections
12 23 12

x and x is equal to the distance Z between sections x and
1 2 23 2

x
C 3

In Fig. 5, two waves are shown approaching cross section x ...
2

from opposite airections. The speed of propagation for all

longituainal stress waves in the substructure is given by eqn. ,. .*

12

* - . . . . . . .. . . . 5. - S - * . . . . . . . . . . .. % S *



(5). Fig. 5 shows both waves propagating at equal speed until
they are fully superposed at time t equal to t + T . During

0 12

superposition the waves partially cancel; their separate

magnituaes are represented by outlines, and their sum or net

magnituae is shaded. After superposition the waves continue to

propagate in their respective directions undistorted, as Fig. 5

shows. Fig. 6 shows a block diagram model for this length of the

substructure from section x to x

1 3

~. I °°

. , o,,...*
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III. FORhULATION OF FEEDFOREARD CONTROL MODEL

A. Idealized Controller Components

The principle of waveform superposition underlies the scheme

to be analyzed ior vibration control in this study--namely, %-''

* cancellation of propagating stress waves by generating and

superposing the negative of waveform disturbances contained in

tne structure. The analysis will consider disturbance (input)

* waves which are propagating through a lattice substructure in the

positive x direction, as well as the operations of a controller

designed to protect the region of the substructure to the right

of section x (refer to Fig. 1).
C 2

The operations of the ideal feedforeward controller to be

studied may be described as follows. First, a sensor at section

x is used to measure the amplitude of the stress wave

disturbance as it passes the section. The signal generated by

the sensor is delayed, and provides input to the actuator at

cross section x , where the negative of the incoming stress wave -"

is actuated after an appropriate time delay. As indicated in
%"* %**:

eqn. (12), the length of the time delay will be determined by

the distance Z2 along the substructure between the sensor and

the actuator.

It is important to clearly state the assumptions which are

involved in tne simplified modelling of the sensor, delayer, and

actuator elements in this idealized controller design. They are

as follows:

14
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(1) Sensor-- The sensor is assumed to be a transducer of

negligible size and mass which is fixed to the substructure

at section x and which generates a signal s(t) (with units1

of volts) proportional to the longitudinal stress at the

section, a(x ,t). "i

s(t) G ,t) (15)

here (/G) is the constant of proportionality (or "gain")

associatec with tne sensor, and has units of (volt/psi).

The actual operating principle (piezoelectric,

electromechanical, strain-resistive, etc.) is not considered

in the present analysis.

(2) Delayer-- The signal s(t) is fed to a signal delay element,

whose output s'(t) is given by

• s'(t) = s(t-r' ) ; for c > T' (16) ,.,
12 - 12

where T I is the time delay introduced by the delayer. In
12

the case of ideal operation, T ' will equal T , which is
•12 12

the actual transportation lag of stress waves ;ropagatr...

froci. section x to section x
1 2

( (3) ~ctuator-- The actuator is located at a particular secticn-

in the rod, x . It is approximated by a disk whose thickness
2

is negligible and whose impedance is matched to that of the

rod, so that stress waves propagate past cross section x2

unaffected by the presence of the actuator.

It is assumed that the controller can apply a time varying

axial force F(t) to the disk, and that the value of F(t) is

15...

,5(

r m- - ,r " .r " , . . .: 4- .- - -' . - . t - . . .- .- .- .- .- - ,- .,,-. . -. -;..- -. "- "-'.' ", ,,, , ,,- .- .-- ,,.,.,- .'. " - .



proportional to the signal s'(t) received from the delayer.

F(t) = G s'(t) (17)
2

Here, G2 is the actuator gain, and has units of (lb/volt).

Once again, the present analysis does not consider

whether the force is actually generated piezoelectrically,

electromagnetically, etc. What is important is that the .

controller is assumed to generate time-varying uniform stress

distributions across the faces of the substructure.

b. Description of Actuator Operation

Fig. 7a shows the idealized actuator-substructure assembly

intact, where the rod has cross sectional area A. In Fig. 7b

segments of the lattice substructure have been isolated as free

boay diagrams, to show the applied forces and resultant stresses.

In Figs. 7a and 7b, the positive x direction is indicated and

tensile stresses are defined positively as shown.

It is necessary to derive expressions for the applied stress
0

* functions G (t) and a (t) in the substructural element. Examining

Fig. 7b, a balance of forces can be written for the massless

actuator component.

Z F 0 = F(t) + A-a (t) - A*a (t) (18)
X 2 1

( Therefore, F(t) = A[ I(t) -a 2 (t)] (19)

Geometric compatibility requires that displacements and .-.-

velocities at the actuator interface be equal. Thus,

16
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a

. .5
u ( ) u(t) (20)

2S

au = au (21)(r)

1. 2

at at (.2 .

Lext, the cross sectional velocities can be expressed in terms of

the stresses on the corresponding faces [2].

3u (t) c -: -4"0 Y = a (t) (22)

t E 1".

au (t) c2 0 _"%

= - a (t) (23)
at E 2

Combining eqns. (20) through (23) yields the requirement on

the stresses as

*C -C P _
-- C() -- a (t) (24)
E E 2

Therefore, .. ' '

a (t) =-a (t) (25)
1 2

This result, together with the force balance relation, (eqn.

019)), gives the expressions for the resultant stress functions

at tne actuator in terms of the forcing function as -

F(t)
a (t) f (26)I 2A [. "':

-F t -

a (t) = -F(t) (27)
2 2A

Finally, it is necessary to write expressions for the "
*r. .- * .%

propagation characteristics of the stress waves which the

17
4L
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actuator, as described above, serves to generate at the

actuator-substructure faces. Conceptual division of the

substructure as shown in Fig. 7 indicates the approach: the

problem may be divided into two cases of longitudinal end-

actuation of semi-infinite thin rods, with a stress discontinuity

at cross section x .:

From the end-actuation analogy, the stress waves generated

on the substructure face to the right of the actuator, a (t),

must propagate into this "semi-infinite half" of the

substructure; that is, they must propagate in the positive x

direction. Thus, the equation for the propagation of controller-

induced stress waves in the portion of the rod to the right of k"'-"

the actuator can be written by selecting the appropriate term

from tne D'Alemberz solution to the wave equation.

-* +(x -l - )

a 2A-X 0 F ; for x > x ,t > 0 (28)
..2A '

The superscript "+" aenotes the propagation of these stress*L

waves in the positive x direction. Note that the argument of the

function F in eqn. (28) is in units of time, not position; the ..-.

function continues to represent a wave travelling in the x

directicn at a speed c
0

Likewise, actuated stress waves which are generated on the

substructure face to the left of the actuator must travel to the

left, again based on the division of the problem into two cases

of end-actuation of semi-infinite substructures. Thus, the

equation for tnese leftwaroly-propagating stress waves also takes

tne form of the appropriate term from the D'Alembert solution as

16
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C-...-

f (x,t) sgF ; for x(<x , t >0 (29)2A C /2 - :>

0Together, eqns. (28) and (29) summarize the results for ---

propagating stress waves which are generated by the actuator, and i:.

th~ey exp~ress the waves in terms of the value of the actuator "'"''

0forcing function, F(t). Using eqns. (15) to (17), eqns. (28) and I

(29) for the controller-inducea stress waves may be expressed as

functions of the stress detected by the sensor at section x

a +(X, t. 2 C XX2 (30)..
C I

a~ ) = • * ,- ( -- -~t. .) ;(30) :?.'.:
2AG 0

1 L

f for x > x , > T'
2 - 12

a(xt) 2 2 (31)

for x < x t > t'

iig. 8 presents a schematic of the actuator output response to

the arbitrary actuator input signal s'(t) shown. Fig. 9 shows a

modified blocx diagram, composed of the elements discussed in

Section II, which models the general response or the controlled

substructure to a stress wave disturbance originating at x0  with

the controller formulated as above. In Fig. 9, solid arrows

continue to represent the "flow" or travel of stress wave

functions, while dashed lines have been used to represent

(electrical) signal flow in the controller. 
..

19
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IV. RESPONSE OF THE CONdTROLLED SUBSTRUCTURE

It is now possible to analyze the response of the controlled

lattice 6ubatructure to an arbitrary input disturbance at x

Two important features characterize the response of the system

as it is presently formulated.

The first may oe likened to the "stress intensification"

pnenomenon which is characteristic of stress wave reflection frc,

fixed boundary (such as a rigid wall). As part of a wave

reflects back from a fixed boundary, it may be superimposed with

the still-incoming portion of the wave, so that higher amplitude -

transient waveforms result. TLhe same effect is the result of

the superposition of incoming waves approaching the actuator at

x from x and the already-actuated, leftwardly-propagating
1 0

stress waves, which are duplicates ox previously incoming waves.

.
The series of pulse diagrams for u(x, t) in Fig. 10

illustrate this phenomenon. In Fig 10, stress pulses with dashed

outlines represent stress waves generated by the controller

actuator. Pulses with solid outlines are those of incoming .

stress wave disturbances. Consistent with all stress pulses

presented in this study, the shaded portion of a pulse represents -.

the net, or physically realized magnitude of the stress waves in

the substructure.

Thus, in Figs. 10c through 1Of, the incoming stress wave

(solid outline) is completely cancelled by the rightwardly

propagating controller-generated stress wave (dashed outline, for :.

x > x 2 , so that both are left unshaded, indicating that their

net magnitude is zero. They superpose and cancel, so that the

20
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portion of. the lattice substructure to the right of the

controller is isolated from any stress disturbance by the

incoming wave. ,ote that in Fig. 10 T is assumed to be equal

to T
12

In Fig. 10c the phenomenon of stress intensification is

shown. The leftwardly-propagating stress wave generated by the

controller is Lnomentarily superposed on a portion of the

incoming wave disturbance which is travelling to the right past

section x2 ; the result of" this superposition is transient stress .

values which are of higher magnitude than either cf the two

waves' peak values alone.

There is a second problematic feature of the controller. .

Note that in Fig. 1Oe, the leftwardly-propagating stress wave

(which is generated by the actuator as it also produces the

negative of the incoming wave), is passing the sensor located at

cross section x . As the controller is presently formulated,

both incoming (rightwardly-propagating) stress waves and

outgoing (leftwardly-propagating) stress waves are sensed by the

controller as "substructure aisturbances". That is, the sensor

currently generates a signal (delayed for input to the actuator)

based on tne instantaneous magnitude of any stress wave passing

tne cross section x , regardless of the wave's source.1

For example, the stress waves shown in Fig. lOg are being

generated by the actuator as a result of the outgoing stress wave I

whicn is shown passing the sensor earlier in Fig. 1Oe. Note that

the leztward-propagating wave generated in Fig. lOg will in turn

pass the sensor. Thus, a single, non-repeated incoming stress

21

7 -

.i .-,

"- "- "-.- ..- "."-~ *. ft "- '* - . f., - - '-*.-f-t -, * . . . - . "-' "." .' ft-".'. -' ".' .' ' ' '- . - ." ft ' .".' . f t ..ft . '.f



pulse, though cancelled perfectly by the controller, will

nonetheless initiate a process of endless controller "echoing",

as lef'twaraly-propagating controller-generated stress waves are

repeatealy sensed, producing new actuations.

These two problematic features of the controller, namely

stress intensification (Fig. 10c) and "echoing", (Figs. 9g and

9n) can be compounded to the degree that the system becomes

unstable in response to disturbances.

Fig. 11 shows how such instability can arise in response to

a simple step stress disturbance. Dashed lines again represent

the outlines of controller-generated stress waves. The dashed

outline cf these actuated waves is shown slightly below the solid

outline of the incoming stress wave for clarity only; such a

representation is intended to indicate equal magnitude

nonetneless. As in Fig. 10, Fig. 11 assumes that T ' = T 1

Fig 11b snows that 'stress intensification", or additive

superposition, has begun to occur by t equal to t + T12/2, so that

a wave of twice the amplitude of the incoming wave results. As

the outgoing actuated wave propagates further to the left, so

does the adaitive effect of its superposition with the incoming -

wave. By Fig. 11c, when t equals t + (3/2)T , the higher
0 12

amplizuae wave has passed the sensor at cross section x .

Accordingly, as snown in Fig. 11f, the actuator begins to

generate a stress wave of twice the incoming wave's amplitude at

a time which is 3T 2 after the incoming wavefront initially passed

the sensor.

Figs. 11f and I1g show that as the generated waves continue

to superpose with the incoming wave, then cancellation is no

22
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longer achieved to the right of x , because the controller
2

generates waves which are twice the necessary amplitude.

Finally, Fig. 11g further shows that higher amplitude waves will -

continue to pass the sensor, leading to generated waves of still

greater amplitude. The system is unstable in response to a step

input.

Fig. 12 illustrates the case for a step sinusoidal input.

Again, the leftwaraly-propagating waves which are generated by

the controller (as it operates to cancel the incoming waves)

superpose with the incoming stress waves. Stresses of double the

peak amplituce of the incoming wave are subsequently measured by

the sensor at x (see Fig. 12e), and the controller is required

to generate waves of increasingly higher amplitude (dashed

outlines in Figs. 12g and 12h). Thus the system is potentially

unstable in response to a step sinusoidal input.
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V. COLThOLLER STAbLIZATION %

A preliminary approach for actively controlling the

propagation of longitudinal vibrations in an idealized lattice

substructure has been discussed in Sections II through IV. As

developed in Section IV, the controlled substructure system is

unstable in response to input disturbances. The instability

arises because the sensor responds to both incoming and

controller-generated leftwardly-propagating stress waves

indiscriminately. It is desirable to modify the controller to

prevent tnis instability.

One solution is to redefine the operational characteristics

of the sensor. It is reasonable to assume a sensor which is

sensitive only to waves propagating in the desired direction--in

this case, the positive x direction. Employing such a sensor,

the controller would not be reactivated by the leftwardly-

propagating stress waves which the actuator generates, and thus

the system would not exhibit the instability characteristics

discussed in Section IV. -

A second, more general solution to the problem of

instability woula be to add a loop to the ccntroller which

effectively deaucts the delay of the actuator output from the L.

sensor's output. Implementation of this solution is illustrated

by a block diagram representation in Fig. 13. As shown in Fig.

13, the signal which provides input to the actuator is also fed

back to be subtracted from the sensor output, through a delayer

labeled T2' Since the objective of this additional loop is
12 .

0 to ceauct from s(t) that portion of the signal which corresponds

24
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to the leftwaraly-propagating (actuator-generated) portion of

((x ,t), then it is necessary that T '' be exactly equal to T
12 12

in order to totally cancel the actuator-generated portion of

C(X ,t). A nonzero difference between T '' and T is thus an
1 12 12,-

additional possible source of controller error; the effects of

such a nonzero difference will not be analyzed here, but the

study of" such effects constitutes an appropriate topic for

further research.

For the remaining analysis, the successful application of

this latter more general stabilized method to the controller will

be assumed. Thus, in the remaining analysis, it is assumed that

T '' equals T , so that the deduction of the delayed value of
12 12

s'(t) irom the sensor output occurs at precisely the same instant

that the sensor is measuring the leftwardly-propagating

disturbance which was generated in response to s'(t) and which

nas travelled back tnrough the substructure from x to x . The
2 1

response of the controlled lattice substructure to a step input

disturbance, following this controller modification, is shcwn in

Fig. 14. In Fig. 14, the effect of stress intensification has

propagated back past the sensor at section x by time t equal to

t + 2T . However, as Fig. 14 shows, for time t equals 37 and
0 12 12

beyond, tne actuator never doubles the value of the controller-

generatea wave, because a value associated with the leftwardly-

propagating disturbance is effectively subtracted from the sensor

output, as schematized in Fig. 13. Fig. 14 may be compared with

Fig. 11, discussed in Section IV, which illustrates the response

of tne unmodified controller-substructure assembly to an

icentical step input aisturoance.
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VI. IIPUT/OUTPUT CHARACTERISTICS OF STABLIZED FEEDFOREWARD- .* ?

CONTROLLED SUbSTRUCTURE

A. Transfer Function Magnitude

It is useful to characterize a linear system by its transfer

function, or (steady state) frequency response, H(w), which is

* given by I.
y (2. )

H(w) = (32)x (w) ' -.

wnere W denotes radian frequency, X(M) is a steady harmonic

input to tne system and Y(w) is the system output. The transfer

function ior the feeaforeward-controlled substructure which has

been treated in the previous sections is derived in Appendix E,

and founa to be given by

H W - iWT 12 K - i0JT '.." '(33)"*Hf(w) -i e 2  
- e t 1 2  (33)..

f

where T and T' are the time delays for wave propagation
12 12

through the substructure and the controller, respectively; the

controller net feedforeward amplification, given by G 2/2AGI in

Section III, has been replaced by K for simplicity; and i v= -

It can be seen from eqn. (33) that the transfer function is

a complex function. Defining

' -T (34)
12 12

where E denotes the difference between the time delay of waves

propagating in the substructure T and the delay of the
12

controller T ' , then Appendix B shows that the square of the
12

transfer function magnitude is given by
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2

JHf(w)[ - 1 - 2Kcos(wE) + K2 (35)

In terms of the controlled substructure system under study,

the magnitude of the transfer function given in eqn. (35)

represents the complex magnitude of the ratio of the system

output to the system input where both are expressed as complex

functions in the frequency domain. In the time domain, the

system input and output are assumed to be stress functions

a (x ,t) and o(x ,t), respectively, both are representable by

harmonic components, x and x denote the locations of cross1 3 •"-"

sections on the substructure as shown in Fig. 9, and the

superscript "+" indicates that only stress waves propagating in

the positive x direction past section x are actually input into 5

the system.

As long as the time aomain input and output of the

controlled substructure are sinusoidal stress functions with

frequency W , a transfer function magnitude lHf(w)l of less

than unity represents system attenuation of an input stress

function. A transfer function magnitude equal to zero represents

complete attenuation or cancellation of the input stress function.

A transfer function magnitude IHf ( w ) I greater than unity .. -

indicates controller operation which effectively amplifies

incoming sinusoidal stress functions of frequency w , so that the

3amplitude of the stress wave output to cross section x in :.;.,,,

Fig. 9 is greater than that of the input stress wave.
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b. Operational Ranges of Controller Error

Two types of controller error are considered in this study: -... -

(1) nonzero values for the difference between controller and

substructure delays, F , which is given by eqn. (34); and .

(2) values of the net feedforeward controller gain K not equal to 4,

the substructure gain of unity.

There are also two possible operational goals for the

*feedforeward controller, within the broad domain of "active

vibration control". The first possible goal is "ideal"

contro±ler per-formance--achieving complete superpositional

c cancellation of the incoming stress wave disturbance, thus -

completely isolating cross section x from any (rightwardly-
3

propagating) vibrational disturbances (see Fig. 9). The second,

more modest goal of controller implementation would be

achievement of disturbance attenuation, if not full cancellation.

In this case the objective might be an output stress wave whose V.-.

amplitude is some fraction of the input disturbance amplitude,

thus requiring a transfer function magnitude less than unity.

The present subsection identifies the allowable ranges of .

controller error for achievement of each of these two controller

objectives.

(1) Achieving complete disturbance cancellation

"Ideal" operation of the controller calls for complete

cancellation of incoming stress wave disturbances which are input

to the controlled substructure system. It is possible to derive

28'*-,
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the requirements on the controller delay error, e , given by eqn.

(34), and the requirements on the net feedforward controller

* gain K.

Eqn. (35) gives the expression for the square of the

system transfer function magnitude. Achievement of full input

* disturbance cancellation requires a system output of zero, and ,

thus a transfer function magnitude of zero. With this

requirement on H ,(w)I, eqn. (35) becomes

*f
K2 - 2Kcos(wE) + 1 = 0 (36)

Eqn. (36) is a quadratic equation, so that its solution is given

b y

2cos(WS) _E 2cos(W) 2 - (37))-4
K =(37)'.-. ,.

2

* I
which may be simplified and rewritten as

K cos(wE) - cos2(E)- (38)

* . * 2%

Eqn. (38) is the requirement for full controller

cancellation of incoming disturbances. If K, the controller

feedforward gain, is to take on only real values, then the

difference under the radical in eqn. (38) must be nonnegative.

This requirement states that

cos 2 (WE) > 1 (39).

ana tnus ideal contrcller operation requires that

29



wC 7n (40)*
where n is any integer, n = ....2,-1,C,1,2....

Using the relation , '

2 =- (41) p
W* ...

where 1 is the period (in seconds) of a sinusoidal waveform with

radian irequency W , the requirement on the contrcller delay

error (eqn. (40)) can be rewritten

e= (nT) (42)
2

Eqn. (42) indicates that for complete cancellation of a

sinusoidal input disturbance, the duration of the controller

delay error C must be equal to some integer multiple of half the

input waveform period T.

Next, combining eqns. (40) and (38) yields

I 1 for n even
K = (43)

-I for n odd

which is the second requirement on the controller parameters

which must be fulfilled if the controller is to operate ideally.

Thus, in summary, for the controller to operate such that

complete cancellation of input disturbances is achieved, both

eqns. (42) and (43) must be satisfied simultaneously by the

controller parameters.

30
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(2) Achieving disturbance attenuation

* In the case where the goal of controller implementation is

achieving attenuation of stress wave disturbances which are input

to the system, it is necessary that for an input sinusoidal

• stress function of radian frequency w, the magnitude lHf(w)I of

the system transfer function must be less than unity. Solving

eqn. (35) for this requirement yields

1 > 1 - 2Kcos(wE) + K2 (44) S

Eqn. (44) may be simplified to obtain

K< 2cos(we) ; for K>O

(45)

K> 2cos(wc) ; for K<O

* L..:

Eqn. (45) is plotted in Fig. 15, where all value pairs for K

and we which satisfy the inequality lie in the shaded portion of

tne plane, but do not include the points where the line K=2cos(c)

crosses the (we)axis.

Examination of Fig. 15 and eqn. (45) indicates that while

there are no upper or lower bounds for acceptable values of the

parameter (we), the magnitude of the controller feedforward gain

K must never reach or exceed a value of 2 if attenuation is to

be achieved. Also, the parameter (we) must not equal any

odd integer multiple of rT/2, and the parameters K and (we) cannot ..

be set independently, il attenuation is to be achieved.
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C. ?nysical basis for Frequency Dependence of Transfer Function

Ma gn itud e

Eqn. (35), the expression for the magnitude of the

controlled substucture system - ansfer function, is plotted in ..

Fig. B-3 as the transfer function magnitude squared, IHf()I 2

versus the parameter WE . Eqn. (35) and Fig. B-3 show that the

magnitude of the transfer function depends on the frequency w of

the incoming disturbance. That is, for a constant feedforward

gain K and a constant difference E between substructure and

controller delays, the magnitude of the system transfer function

will be different for different input signal frequencies.

Thereiore, since actual inputs to the controlled-substructure .

system may be waveforms composed of several harmonics at

different frequencies, the magnitude of certain such harmonics

* will be enhanced in the system response while that of harmonics .

at other frequencies will be diminished. In fact, as Fig. B-3.

illustrates, the magnitude of the transfer function is periodic

• in WE . That is, as we is increased (or decreased) by 2r ,

the magnitude of the transfer function repeats itself.

To understand physically the dependence of the system

transfer function magnitude on the input waveform's harmonic

frequencies, it is useful to introduce the concept of a waveform

period. Flaking use of eqn. (41), where T is the period (in

seconds) of a waveform wnose radian frequency is w, note that p

WE =2T(-) (46)
. -
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Substituting eqn. (46) into eqn. (35) then gives ",-

LHf(2Tr/T)I = 1 - 2Kcos 27T + K2 (47)

Eqn. (47) is plotted in Fig. 16 to illustrate that the magnitude '. J'2."

of the transfer function is periodic in (E/T). It is instructive

to consider that the ratio (c/T) is a measure of C as a

percentage of the waveform period. For a waveform with constant

perioa T, Fig. 16 shows that as the difference in the controller -

and substructure time delays c is increased from 0 to 50 percent

of T, the magnitude of the transfer function is increased from

its minimum to its maximum value.
-.: -.

As developed in Section VI-B, only when the magnitude of the ft

net controller 6ain equals unity is it possible for the

controlled system to completely attenuate incoming signals.

Figs. 16 and B-3 present the frequency dependency of the transfer L-.

function magnitude for the general case where K is unspecified.

The remaining analysis will assume K equal to unity, (zero gain

error), and will quantify the effects of controller delay error

given this assumption.

Fig. 17 is a plot of the square of the system transfer

function magnitude versus the parameter (E/T), with K set equal to

unity. Of particular interest is the dashed horizontal line

in Fig. 17 representing a transfer function magnitude of unity.

Above tnis line the controlled system amplifies an input

disturbance; below it the input is attenuated.

Eqn. (45) may be solved for K equal to unity to determine

the ranges of the parameter ( E /T) over which the system

33
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attenuates an input. Eqn. (45) becomes

cos(we) > 1/2 (48)

which can be rewritten, using eqn.(41), as ..

Cos 2T > 1/2 (49)

Eqn. (49) is solved for (E/T) in the following ranges:

.&
E

(n- 1/6) < - < (n+1/6) (50)
T

where n is any integer. ',

Eqn. (50) thus specifies ti- ranges of the parameter (E/T)

for which the feedforward controlled substructure system

successfully attenuates an incoming stress wave disturbance for K

equal to unity.

When the feedforward gain is held constant at unity, then for

(E/T) in the ranges (n-1/6 to n+I/6) where n is any integer, the

system attenuates a steady sinusoidal input signal. Likewise,

for (siT) in the ranges (n+1/6 to n+5/6) the system amplifies a "-*"':.)-.:,-

steady sinusoidal input signal.

1E;athmatically, this result is found by solving eqn. (4e)

when K and IHf(2 l/T)Iare both equal to unity. Physically, it

arises because for (E/T) in the ranges (n-1/6 to n+1/6) the -

sinusoidal output of the controller and substructure tend to

subtract in phase, while for (E/T) in the ranges (n+1/6 to n+5/6)

the controller and substructure output tend to add in phase.

Fig. 18 presents graphically the relationship discussed ....
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above for E as a varying percentage of a constant period T, and

K equal to unity. Fig. 18 shows the stress at location x 2 as a

function of time for a sinusoidal input of unit amplitude. In

Fig. 18a E 0 , so that the substructure output stress '

function at cross section x (solid line) and the controller -

output stress function at cross section x (dashed line) subtract
2

completely (that is, they are exactly 180 degrees out of phase);

and the magnitude of their sum is equal to zero everywhere. This

is the case of ideal controller operation (feedforward gain K I

equal to unity and the controller delay exactly equal to the

substructure delay), in which complete superpositional

cancellation is achieved. .

In Fig. 18b (E/T) equals 1/6, and the system output waveform

(the sum of the controller and substructure outputs) is indicated

by the shading. Fig. 18b shows that the peak amplitude of the

system output is equal to the peak amplitude of the substructure

output (and thus that of the input signal, since the substructure

gain is equal to unity), which indicates that the magnitude cf '.

the transfer function is unity for K equal to unity and for (E/T)

equal to 1/6.

In Fig. 18c, (E/T) equals 1/2. Substructure and controller

output add in phase in Fig. 16c, yielding an output waveform

whose peak amplitude is twice that of the substructure output, -

and thus is also twice that of the input waveform. In this

case then, the magnitude of the transfer function is equal to 2,

which is identical to the result shown for K equal to unity and

(E/T) equal to 1/2 in Fig. 17 and eqn. (47).
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I

Finally, Fig. 18d shows the system response when (E/T) equals

unity. The results are indistinguishable from those in Fig. 18a,

illustrating the periodicity of IHf (21T/T)l with respect to (c/T).

Lhen the controller output waveform leads or lags the

substructure output waveform by e equal to any integer multiple

of the period (in this case the integer is unity) then the two

output wavetorms are superposed exactly 180 degrees out of phase,

and thus they completely cancel.

In actual operation of the controlled substructure system,

it is more likely that the delay error E, given by eqn. (34),

will be fixed and the system will be subject to an input composed

of numerous harmonics which are distributed over a range of

frequencies. The magnitude of the transfer function fcr each

harmonic will vary according to the particular harmonic's

frequency in a manner dictated by eqn. (47) and identical to that

discussed above and presented in Fig. 18. The parameter 1/T

varies linearly with the radial frequency w , as eqn. (41)

indicates, so that for higher frequencies the period T is

shortenec and a constant c becomes a larger percentage of T,

increasing the ratio (s/T). The consequent frequency

aependence of the transfer function magnitude is presented

grapnically in Fig. 19, for which E is constant, K is held equal

to unity, ana the input waveform's frequency (and thus its

period) are varied.

1,hen a waveform's period is equal to 6e , then (s/T) equals

1/6, and IHf(2 7/T)l is equal to unity (for K equal to unity).

This case is shown in Fig. 19a, where the substructure and

controller cutputs are represented by solid and dashed lines,
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respectively, and their sum (the system output) is shaded.

In Fig. 19b, the frequency has increased to 3 times its

value in Fig. 19a, reducing the period to twice the length of £, .

so that the controller and substructure outputs are exactly in

phase. In this case the controller and substructure outputs

additively superpose to produce a system output whose magnitude

is twice the magnitude of the input (that is, twice the

magnitude cf the unity-gain substructure's output). This

transfer function magnitude of Hf(2 1T/T)I equal to 2 is exactly S

the magnitude specified in Fig. 17 for (c/T) equal to 1/2 and K

equal to unity.

Finally, in Fig. 19c, the frequency is 6 times its value in

Fig. 19a, so tnat T now equals E exactly, and the controller and

substructure outputs are exactly half a period out of phase so 1.

that they cancel entirely. This case illustrates complete input

attenuation, (IH (2 7 /T) I equals 0), which is what eqn. (47) and

Fig. 17 give when K equals unity and (E/T) takes on an integer

value. k,

Together, Figs. 18 and 19 provide several system output

examples which illustrate the physical basis for the frequency

dependence of the controlled substructure transfer function

magnitude. This dependency is derived in Appendix B, and is

presented in eqns. (35) and (47), and in Figs. B-3 and 16.
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VII. CONCLUSIONS AND RECONDIMENDATIOhS

To avoid instability, a feedforward controller used to

actively control wave propagation in lattice substructures should

be designed to effectively sense and cancel only incoming

disturbances. This may be achieved by utilizing a

unidirectional sensor; a more generally applicable solution is to -.

add a correction feedback loop in the controller.

Two possibilities for controller error include: (i) a net

feedforward controller gain that does not match that of the

substructure; and (2) a controller delay time which differs from

the time required for wave propagation through the substructure.

If full cancellation of incoming sinusoidal disturbances is

to be achieved for the portion of the substructure beyond the

controller, the controller feedforeward gain amplitude must match

that of the substructure exactly. If attenuation is tc be

achieved, the controller gain amplitue must be less than twice

that of the substructure.

For a nonzero discrepancy between the controller delay and

the delay for wave propagation in the structure, the ratio of the

system (sinusoidal) output amplitude to the input sinusoidal

amplituce is aependent on the input waveform's radian frequency.

To fully cancel sinsuoidal disturbances in the substructure

beyond the controller, assuming matched controller and

substructure gains, the duration of the controller-substructure

delay aiscrepancy must be equal to an integer multiple of nalf

the input waveform period. To attenuate incoming disturbances, '.

assuming matched controller and substructure gains, the delay
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discrepancy must not differ from an integer multiple of the

input waveform period by more than one sixth of the period

duration. This range approaches zero as the magnitude of K S

approacnes 2, and becomes larger as the magnitude of K approaches

zero.

Further work should be done to determine analytically the

dependence on frequency and on controller error of the ratio of

output to input wave energies. The effects of delay error in the

stabilizing feedback loop should be analyzed.

The analytical results contained here should also be

verifiea experimentally.
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Fig. 7 (a) Idealized actuator-substructure assembly and (b) its free
body diagram.
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APPENDIX A

ANALYSES OF FEEDBACK CONTROL OF WAVE PROPAGATION IN STRUCTURES

The feedback control of wave propagation in lattice

structures is considered in this appendix. Limitations of such a

control scheme are illustrated and discussed.

The geometry of a one-dimensional lattice substructure, . .

which is modelled as a thin rod, is shown in Fig. A-i. As shown,

the coordinate x refers to the undisturbed location of a cross

section of the substructure. Two sections of the substructure,

separated by distance Z , are labelled as x and x * A
12 1 2

section to the right of x is labelled as x . The section x 3

represents the location in the substructure to be protected from

incoming stress disturbances by the feedback system.

In the feedback control scheme, a disturbance is assumed to

originate from the left of x and propagate through the

substructure. A sensor measures the stress (or displacement or

velocity) at cross section x, and the feedback system provides a

force in the longitudinal direction at cross section x through
2

an actuator. The force provided by the actuator generates a.

rightwardly-propagating stress wave at x whose instantaneous
.. L i

amplitude at x is the exact negative of the stress sensed at x .
1 2

The force provided by the actuator also generates a corresponding

leftwardly-propagating stress wave at x which is the negative of

the rightwardly-propagating stress wave. (In this study,

leftwardly-propagating waves are not reflected at the left

boundary of the substructure.) The total response of the

substructure is the superposition of the incoming stress wave

... .. ... .. . . . .... .. ... .. .. • --, °



disturbance and the stress waves generated by the actuator.

Figs. A-2 and A-3 show the responses of the substructure

under feedback control to an input single pulse disturbance and

to an input step disturbance, respectively. The sensor S is

located at x and the actuator A is located at x " The feedback

system is indicated by a block diagram containing -1 as the only _

entry. The transit time for wave propagation from x to x is
1 2

T • Figs. A-2 and A-3 show the stress distributions a (x,t)
12

* along the length of the substructure at equal time intervals for

increasing time. The time interval shown corresponds to half the

transit time T . A rightwardly-propagating stress wave
12

( disturbance originates to the left of x " The stress

distribution along the substructure is observed at time t
D

after the disturbance has passed location x but before it has

* reached location x " Then, the stress distributions along the .t

substructure at t , t ,..., t , t are shown.
1 2 6 7

In Figs. A-2 and A-3, the solid outlines represent the

• incoming stress disturbance and the dashed outlines represent the

stress waves generated by the actuator. Also, the shaded

portions represent the net, or physically realized magnitude of

the stress waves in the substructure due to superposition of the

incoming disturbance and the actuator-generated stress waves.

Figs. A-2a through A-2h show the responses of the -

substructure to a single pulse disturbance. The duration of the

disturbance is assumed to be less than the transit time T Fig.

A-2b shows the incoming disturbance just before it arrives at the

sensor S. Fi6. A-2c shows the incoming disturbance as it is just

( . . 4
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passing S and the actuator is active in producing both a

rightwardly-propagating wave and a leftwardly-propagating wave.

Fig. A-2d shows the incoming disturbance after it has passed S

and the actuator is not active. However, a negative pulse -

propagating to the right has been generated by the actuator.

Fig. A-2e shows the actuator generating stress waves due to the

negative actuator-generated rightwardly-propagating wave. This

process continues indefinitely and an infinite sequence of

identical pulses, with alternating sign and separated by T , is-

sent to the right of location x . Thus, if a point to the right2

of x (that is, point x ) is to be protected from stress
2 3

disturbances by the feedback system, the feedback system actually

worsens the situation by generating more pulses towards the point

of interest.

Figs. A-3a through A-3h show the responses of the

substructure to a step disturbance. Fig. A-3a shows the incoming

disturbance just before it arrives at the sensor S. Fig. A-3b

shows the leading edge of the incoming disturbance has just

passed S and the actuator is active in producing both a

rightwardly-propagating wave and a leftwardly-propagating wave.

Tne actuator-generated rightwardly-propagating wave cancels the

portion of the incoming disturbance that overlaps with it. Fig. -

A-3a shows the leading edge of the actuator-generated

rightwardly-propagating wave has passed the sensor S and has

cancelled the incoming aisturbance at S. Because there is no

longer any stress at S, the actuator is not active. Thus, the

incoming disturbance arriving at the actuator A passes unaltered
as shown in Figs. A-3d and A-3e. Fig. A-3f shows the leading

- - -- •'*-*



edge of the unaltered incoming disturbance has just passed the

sensor S and the actuator is active again. This process '. -

continues indefinitely and an infinite sequence of identical ...

pulses, each with duration equal to the transit time T and each
12

also separated by T , is sent to the right of location x 212 2

Thus, if a point to the right of x (that is, point x ) is to be P.
2 3

protected from stress disturbances by the feedback system, the

feedback system does not remove all of the step stress

disturbance, but does prevent segments of the input step from .

reaching the point of interest. The penalty is that segments of

leftwardly-propagating waves to the left of x have double the

amplitude of the incoming disturbance. .

To summarize, the feedback control of wave propagation in

lattice substructures as described here has significant

limitations. For short input pulse aisturbances as shown in Fig.

A-2, an infinite sequence of pulses of alternating sign is

generated to the right of location x . For long input pulse
2

disturbances as shown in Fig. A-3, only a portion of the

disturbance is prevented from reaching a location to the right of

x (that is, point x )o However, as shown in Figs. A-2 and A-3,
2 3

this control system does not appear to cause system instability

because the stress amplitudes are always limited. Nevertheless,

feedback control may still be useful as a part of a total control

scheme for the control of wave propagation in lattice structures.
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APPENDIX B

IMPULSE RESPONSE AND TRANSFER FUNCTION FOR

• WAVE PROPAGATION FEEDFORWARD CONTROL

The impulse response and the transfer function for the

* feedforward control of wave propagation in structures are-.

considered in this Appendix.

In general, a linear system can be characterized by its

* impulse response h(t) or its transfer function H(w) as shown in * q

Fig. b-1 [4]. (The transfer function is also called the frequency

response.) For an input x(t), where t denotes time, the output

( y(t) can be obtained via h(t) as [4]

y(t) = x(T) h(t-T) dT (B.1)

where T is a variable of integration. For an input X(w), where

w denotes radian frequency, the output Y(w) can be obtained via

h(w) as [41 "

Y~w M H Mw X w) (B.2)

Furthermore, the impulse response and the transfer function are

related as [4]

H (w) = h(t) e dt (B.3)-J .- -::

where i denotes /T.--

Fig. B-2 shows a schematic of the feedforward control of

tc-:::::
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wave propagation in structures. The substructure is

characterized by a time delay of T . The feedforward

controller is characterized by a time delay of T and an
12

amplification factor K. (Waves may be generated at the actuator

and propagate back along the structure toward the sensor.

However, it is assumed in this Appendix that these particular

waves are ignored by the sensor. Also, it is noted that

dispersion and attenuation are not considered in the model shown

in Fig. B-2.) The output of the feedforward control system is

formed by subtracting the output of the feedforward controller

from the output of the substructure as indicated in Fig. B-2.

Considering an input impulse 5(t) into the feedforward

control system shown in Fig. B-2, the impulse response hf(t) of

the feedforward control system can be written as

h = 6 (t-T ) - K6(t-T" ) (B.4) *-"-.
12 12

where 6 is the Dirac delta function [4].

Eqn. (B.4) shows that the output of the feedforward control

system is formed by subtracting the output of the feedforward

controller, which is the input impulse time-delayed by T ' and
12

scaled by K, from the output of the substructure only, which is

the input impulse time-delayed by I and scaled by unity.
12

Then, the transfer function H(M) of the feedforward control

system shown in Fig. B-2 can be obtained from hf(t) via

eqn. (B.3) as

Hf(w) = hf(t) ei t dt (B.5)

f(fo

00....
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Substituting eqn. (B.4) into eqn. (B.5) gives -

., . q ~'

H f ( = i ot T ) 1 ( B)-K 6 ( t - T e - i t

From the properties of Dirac delta function, eqn. (B.6) can be p.- ,_

integrated to give [4]

Hf(W) = e WT1 2  iwt 2 (B.7)

Eqn. (B.7) gives the transfer function hf( w ) of the

feedforward control system shown in Fig. B-2. As shown in -

eqn. (.7), the transfer funtion is a complex function. The

magnitude of the transfer function will be discussed.

The square of the magnitude of Hf(w) can be obtained from

[4]
2

IHf( )l= Hf (w) Hf(-W) (B.8)

where IH denotes the square of the magnitude of H (M) and

Hf(-w) denotes the complex conjugate of Hf(W).

The complex conjugate of Hf(w) can be obtained from eqn.

(B.7) as

iFLT iwT 'Hf(-W) = e 12- Ke 12 (B.9) f

Substituting eqns. (B.7) and (B.9) into eqn. (B.8) gives 4

r
2 f(W)I WT KeTiWTIZ

-Hf() - 1 Kei- t12) (eW 12  - 1 (B.l10)

UL
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Eqn. (B.10) can be expanded as .. .-

(W) 12 -iWT + iWrt -iW + iw

=e 12 12 -Ke- 12 12

iWT~~z +"WT 2iW,' 4" T,'

Ke- 1 2 1+iWt2 + K2e-i 22+iOT12 (B.11)

Eqn. (B.11) can be simplified as

IHf) 12 = 1-KeiW (T 2-T 2) Ke-iW(Tza z + (B.12)

The second and third terms on the right-hand side of eqn. (B.12)

are complex conjugates of each other. When added, the imaginary . -.

parts of these two terms cancel. Thus, eqn. (B.12) becomes

i- "~-

IHf(W)1 =-2cos [W(t ' 2 )J + K2  (B.13)

Defining

0T' -T =6 (B.14)
12 12" -""

where denotes the difference in time delays between the

feedforward controller and the substructure, eqn. (B-.13) can be

rewritten as

IH f )l = -2Kcos(wE) + K (B.15)

Eqn. (B.15) gives the square of the magnitude of the

transfer function for feedforward control of wave propagation in

7C;
.- %. ,
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the simple structures under consideration. Eqn. (B.15) is

plotted in Fig. B-3 versus the parameter (WE).

To summarize, the eqn. (B.15) and Fig. B-3 account for the

general case where the time delay in the feedforward controller .

exceeds the time delays in the substructure by E and also where

the feedforward amplification is K, as shown in Fig. B-2.

Fig. B-3 shows that the magnitude of the transfer function is

periodic in wE. Thus, when WE is increased (or decreased) by

2, , the transfer function magnitude repeats itself. Also, for

a given w , a positive E and a negative E of the same magnitude

produce the same transfer function magnitude. Furthermore, Fig.

B-3 shows that for any value of E the magnitude of the transfer

function has the least possible value when K equals unity.

Finally, because the transfer function magnitude as shown in Fig.

b-3 is frequency dependent, the feedforward control system

response due to certain frequencies (for constant E ) is enhanced

while that from other frequencies is diminished. ....

• . .*
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£qn. (B.10) can be expanded as

*H (W) 2 e-iWT 12+iWT 12-KeiW 12 + iWT 1
I f

-iwt 1' +iw iWT2 'TI2
Ke 12 12 + K 2 e 12 i (B.11)

Eqn. (B.11) can be simplified as

IHf(w)I2 = 1-Ke 12(T1 -T 1 2 ) - Ke- ia(t 1 -Tz 2 ) + K2  (B.12)

The second and third terms on the right-hand side of eqn. (B.12) rC•
are complex conjugates of each other. When added, the imaginary

parts of these two terms cancel. Thus, eqn. (B.12) becomes

Def ining . .

T T + 1=2(B.14)

12- -12

where denotes the difference in time delays between the :-.:

feedforward controller and the substructure, eqn. (B.13) can be

rewritten as "-,

I Hf(W)l = 1-2Kcos(w) K K2 (B.15)

Eqn. ( B.145 ) gives the square of the magnitude of the i '

%5

ef i"nin

*::::}

T ' - =° B.14
12. . . . . . . .. . .12t e' "" "
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the simple structures under consideration. Eqn. (B.15) is "

plotted in Fig. B-3 versus the parameter (WE). ..

To summarize, the eqn. (B.15) and Fig. B-3 account for the

general case where the time delay in the feedforward controller -

exceeds the time delays in the substructure by e and also where

the feedforward amplification is K, as shown in Fig. B-2.

Fig. B-3 shows that the magnitude of the transfer function is

periodic in WE. Thus, when WE is increased (or decreased) by

27 , the transfer function magnitude repeats itself. Also, for

a given w , a positive E and a negative E of the same magnitude

produce the same transfer function magnitude. Furthermore, Fig.

B-3 shows that for any value of C the magnitude of the transfer

function has the least possible value when K equals unity.

Finally, because the transfer function magnitude as shown in Fig.

b-3 is frequency dependent, the feedforward control system

response due to certain frequencies (for constant C ) is enhanced

while that from other frequencies is diminished.
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(a) X(t) h(t) Y(t)

(b) X(W) H(W) Y (W)

Fig. B-i Linear system represented by its (a) impulse response h(t)
and (b) transfer function H(w).

b .r

7; -i



--r- F-A-N 7-W-J'%x7W r -a-"W *w..

? %Oo

Feedforwar.-. Cotole

* ~9ij
2:-~-

Feedforward Controllsem

Fig. I B- Sceai of -edo r coto of wav propagatio

in stutrs

* I I 7



4-4
0

-4

0

0S

04. 0 m

4-4WICc
44

C-40

-4.

44
10 0.

C4-

74-



LM

DTIC
- - S;j ig 4 .i.. - - i-.: .-


