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Preface

This thesis represents the largest single undertaking I
have ever attempted. The purpose of this thesis was to
develop a superresolution method for resolving two incocherent

point sources of light. This thesis was sponsored by the Air

Force Armament Test Laboratory (AFATL) at Eglin AFB, FL.
I owe a debt of gratitude to the many people who would

listen to my problems and help me stay on course. Specific

thanks go to Capt Glenn Prescott from the Electrical
Engineering Department and to Professor Jones from the Math
department. These pecople were instrumental in their help in
the overall thesis effort.

An even deeper appreciation goes to my thesis advisor,

Major J.P. Mills whom I have learned to respect and admire
for his technical and military expertise. Major Mills helped
keep everything in perspective to allow me to keep working

with a good attitude.

It goes without saying that every married person that

goes to AFIT puts their spouse through a great deal of
heartache and pain. My wife has endured two complete AFIT
tours of 18 months each and deserves to be congratulataed for T

being an "AFIT Widow" twice and still staying married to me.
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Abstract

This thesis discusses the problem of incoherent imaging
in a diffraction limited optical system. The purpose of the
thesis was to prove that resolving two incoherent point
sources of light is possible and achievable under certain
circumstances. The effects of noise are considered when
trying to superresolve the two incoherent objects.

The analysis assumes a finite object of known maximum
extent with an estimation of the noise in the system. The
noise is assumed to be Gaussian, white, and additive for all
spatial frequencies. The superresolution process uses the
standard least squares process to achieve minimum error with
a smoothing or regularization procedure. The singular values
of the transfer matrix are modified to attenuate the very
small singular values to avoid noise amplification in the
high order terms. The effect of the noise is overcome by the
use of a smoothing parameter, @, as shown in the results.
The superresolution process works extremely well when the
extent of the object is known a priori to have a certain
bound or maximum. Components of the restored or processed
object outside the known bounds are attenuated. The results
indicate that band-pass pupils can superresolve with only

limited knowledge of the object when the smoothing parameter

is used.
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I - SUPERRESOLUTION USING INCOHERENT LIGHT

AND THE LEAST SQUARES METHOD

I. Introduction

The purpose of this thesis is to demonstrate that
superresolution of two incoherent point sources is possible }f¥;3
under certain conditions. Superresolution or resolving
objects beyond classical limits is a current problem in
optics. It is generally thought that diffraction effects RN
represent the fundamental limits to optical system A‘gg,
performance. Typlically, objects placed closer than the .
classical Rayleigh limit (5:309) cannot be distinguished as
distinct objects but image as a composite form. The physical
dimensions of lens systems traditionally determine the
ultimate resolving power of the system.

In many scientific disciplines (2:496) such as
g spectroscopy and astronomy, superresolution could enhance

research considerably. 1In general, for a finite object in a

5 diffraction limited imaging system, the inverse of the linear N
; imaging process can be used to yield the object. 1In one _
3 specific example, an object of finite extent with known 3
!_ maximum dimensions can be superresolved to 20% of the ;f;,

traditional Rayleigh criterion for two incoherent point ;iﬁi
N sources in a noise free system (3). However, in all cases :ﬁﬁiﬁ
i the imaging process is noisy to some degree and usually E:f“
;

o R .
- A st e - L. -
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produces a set of ill-conditioned linear equations, thus
making the inversion of the imaging process suspect (4:216).
Initially, the background and nature of incoherent imaging
will be presented using a linear systems approach. Following
the discussion of incoherent imaging, a specific plan for
modeling a particular superresolution scheme will be
presented as a research effort in order to determine if
superresolution is practical and achievable under normal

laboratory conditions.

Theory

Classically speaking, the normal limit to resolution for

diffraction limited images 1s the Rayleigh criterion.
Incoherent point sources image as a sinc squared function,
sinc(x) = (sin wx)/(xx), in a one dimensional system (1:62).

Figure 1 illustrates the 1-D image for an object consisting

Figure 1. Impulse Response
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of an incoherent point source. The image in this case is
known as the impulse response of the imaging system. The
dashed line represents the object and the solid line
represents the diffraction limited image. Also, for
incoherent light, the effect is additive in the irradiance
distribution (amplitude squared) for two or more point
sources.

For two adjacent, incoherent point sources, separated by
the Rayleigh criteria, the irradiance distribution will be as
shown in Figure 2. The solid line represents the total
irradiance distribution while the dashed lines represent the
individual irradiance distributions. Rayleigh defined the
limit of resolution for circular apertures as the location of
the first principle minimum of one irradiance distribution
and the first principle maximum of the other irradiance
distribution at the same point in the image plane. The same
limit can be applied to rectangular apertures. In Figure 2,
the irradiance has been normalized for clarity.

In 1964 J.L. Harris (3) used the concept of analytical

continuation and a prior (known in advance) information about

the object to extend resolution beyond the Rayleigh limit
(5:309). Harris proved that continueing or extrapolating the
function beyond the known bounds was possible using the fact
that analytic functions are unique beyond the cutoff
frequency of the filter used. He proved that sampling the 'ﬁfz*
irradiance distribution from a finite object of known extent

could be used along with the properties of analytic functions
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(1:133) to resolve two point sources separated by 20% of the
classical Rayleigh resolution limit. This method of Harris
used spectral extrapolation to reconstruct the object. Since

the two point sources were
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Figure 2. Minimum Rayleigh Resolution

closer than the Rayleigh criteria, this reconstruction scheme

was also a superresolution process. This theory did not hold .
up under severe scrutiny as Harris neglected noise and did
not know at the time that his set of simultaneous equations 1;

was extremely ill-conditioned (3:1481).
After analytical continuation was used to extrapolate

the spectral components of a finite object with a priori

knowledge of 1ts maximum dimensions, it was realized that
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noise must be taken into account (6,7) to achieve any iif

measurable degree of superresolution. One of the earliest
methods used to superresolve objects was the iteration method Rt
proposed by Gerchberg (7). Gerchberg utilized a specific
iteration method derived from the general method of Youla ;QS
(8). The method of Youla uses orthogonal projections in a
well-posed Hilbert space and a priori knowledge of the
extent of the object to remove any spectral component higher ,ff
than the cut-off frequency. Gerchberg theorized that any
component measured at a higher frequency than the cut-off
frequency had to be a noise component, and was therefore ;&“
subtracted out. This method was iterated until the measured :;i
output past the cut-off frequency was below some threshold
level. Gerchberg also reasoned that noise could not be
analytically continued since it was not band limited. Qﬁi

Gerchberg did not realize at the time that his matrix
methods were unstable as Byrne, et al, pointed out in their G
1983 article (6). Broadband noise served to cause spurious
oscillations in the data making the restoration scheme
suspect. After a good noise estimation was used, Byrne, et
al, were able to use a Gerchberg type algorithm to obtain a
reasonable superresolved object.

To further the work of superresclution, Mammone and

Eichman (2) used optimum linear programming techniques to -ji

smooth the data thus providing a stable, well-~conditioned o
matrix solution to the image restoration problem. Their -
initial assumption was similiar to that of Harris (3) in that HE:

5
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the image irradiance could be sampled and the object
reconstructed from a set of linear equations. The matrix
solution can be represented as

- -
i = Ao (1.1)

> -
where 1 and o are n dimensional vectors representing the
image irradiance and object irradiance respectively. K is an

n by n transformation matrix obtained from the discretized R

solution of the object vector 3 from
1(x1) = |h(xi;x0)|* * o(xo0) (1.2)

The complete description of incoherent imaging is contained

in the next chapter. Mammone and Eichman chose to make the
transformation matrix, A, stable by filtering methods. By
filtering, high frequency noise is eliminated as well as
making the inversion of the matrix A possible, thus yielding
a solution for o.

While all of the above methods use spectral
extrapolation and symmetric low pass spectral filters,
Cathey, et al, (9) have proposed a superresolution concept
utilizing the same bandwidth as the extrapolation method, but
using bandpass, or multi-aperture systems and interpolation

instead of extrapolation to achieve superresolution. It is

postulated that for each imaging situation, there exists a SR

potential "best" aperture window to superresolve the object.
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i Using similiar reconstruction techniques in the frequency
domain, the object was consistently better resolved using

band pass techniques instead of low pass filtering.

Research Proposal

In this thesis effort, incoherent light will be used

along with a multiple aperture system to develop a
mathematical model for superresolving an object. By using ;;Li
incoherent light, the transfer function of the pupil, or

aperture, is not as straight forward as the coherent case,

but the matrix method of inverting the transformation matrix Q{J:
seems viable. To effectively evaluate the optimum pupil

function, that pupil function yielding the minimum error will
be judged as the best pupil function for a given fill ratio, ;;55
where the fill ratio is the number of apertures divided by
the total number of available windows (9:247). The premise

to be proved is that for a given fill ratio, band pass

filtering instead of low pass filtering provides better

resolution using the proposed algorithm.

-




II. Theory of Incoherent Imaging

The purpose of this chapter is to summarize the theory ;03\4
of incoherent imaging. This summary utilizes a linear Eﬁga
systems approach similiar to chapter six of reference one. ggS%
By using a systems approach, the properties of an optical B

- system can be given in terms of input, transfer function or i

é, impulse response, and output, irrespective of the number and -
il type of internal optical elements. For optical systems, AR
El these properties can be summarized in terms of its exit or iiéQ
! entrance pupil, effective focal length, and its output with ii;i
ﬁé an input consisting of a point source on the optic axis. 1In ;p;g
[: this particular case, images are located as predicted by :

geometric optics and the system is considered to be

diffraction limited (1:103). - -
"Black Box" X SR
X0 ) xi O
by _‘L_
-T - —
Object Entrance Exit Image e
Plane Pupil Pupil Plane DA
do ai -
FIGURE 3. Generalized 1-D Image Model e




Referring to figure 3, the imaging system can be
represented as a "black box" consisting of an entrance pupil
and an exit pupil. The properties of the entire system can
be completely described by specifying the properties of the
entrance pupil or exit pupil. It is assumed that the entire
optical system can be adequately described by geometric
optics and that all diffraction effects can be associated
with the entrance or exit pupil. The entrance and exit
pupils are geometric projections of one another which enables
an equivalent analysis using either one (1:102-103).

Since geometric optics adequately describe the behavior
of light between the entrance and exit pupils, diffraction
dominates the behavior of light from the object to the
entrance pupil and from the exit pupil to the geometric image
plane. Since diffraction effects can be associated with
either the entrance or exit pupil, all diffraction effects
will be associated with the exit pupil in the context of this
paper. This approach is acceptable since the exit and
entrance pupll are geometric images of each other (1:102).

Using the notation found in Goodman's text (1) the image

amplitude distribution can be expressed as
00
U, (x1i) =./;(x1;xo)U°(xo)dxo (2.1)
-0

where U; (xi) is the image amplitude, h(xi) is the impulse

response or transfer function, and U, (x0) is the object

-




amplitude distribution. The image plane is xi, the object
plane xo, and the exit pupil plane is x. If the lens law for
imaging is satisfied, then h(xi) 1is the Fraunhofer
diffraction pattern of the exit pupil centered at xi = -Mxo ,
where M is the magnification of the system. Notice that the
system is inverted as represented by the negative sign

(1:95). The impulse response can be written as

o0
h(xi;xo) = E/;(x)exp((-ZRj/Adi)(xi—Mxo)x)dx (2.2)
— Q0

with the understanding that the pupil function, P(x), is
either zero or one depending on whether it blocks or passes
light in that particular interval, dx. In equation (2.2),
h(xl;x0) can be described as the Fourier Transform (FT) of
the pupil function evaluated at the spatial frequencies fx =
xi/adil. Also, K is a complex constant that will be discussed
later. By appropiate change of variables, the impulse

response can be rewritten as
]
h'(xi;x0) = 5/;(kdix')exp(—ZNj(xi—xo'))dx' (2.3)
-a0

where x' = x/\di and xo'= Mxo. By defining Ug(xi) as the
geometric image, the real image can be described as the
convolution of the geometric image with h'(xi), the modified
impulse response. Equation (2.4) is the convolution integral
representing the final image as the convolution of the

geometric image with the modified impulse response, h'(xi).

10
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o0
ST Ui(xi) = E/h'(xi—xo')ug(xo')dxo' (2.4)
-0

Since the final expression will be normalized with respect to

magnitude, all constant multipliers, real or complex can be
ignored (1:1085).
Up to this point, amplitude has been the subject of our

derivations, but irradiance (watts/area) is the measured

quantity. The irradiance is the infinite time average of the

amplitude squared as shown in equation (2.85).

Ii = <&i(xi)Uf(xii> (2.5)

The brackets denote the infinite time average and Uy (xi) S
designates the complex conjugate of U{xi). For real sources

and incoherent light,

.l
Ig(x0) = (Ug(xo0)>? (2.6) :
where g designates geometrically predicted quantities. The
final irradiance image is :iﬁi
X
0 )
Ii(xi) = E/]h(xi-xo'ﬂlg(xo')dxo' (2.7)
-00 "
where the k represents a constant multiplier. It can be Lﬁ
easily seen that the final irradiance image is again a el

convolution of a transfer function and a predicted geometric
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quantity. The irradiance transfer function is the modulus of

the impulse response, h'(xi), squared. This implies that

there is no phase information for incoherent imaging.(1:109) e
AN

For ease and convenience, let .Ing

’ '.‘- y

Gg(fx) = FT(Ig(x0' (2.8)
FT(Ig(x0')), evaluated at fx=0
where Gg(fx) represents the normalized Fourier transform of
the geometrically predicted irradiance image of the object.

Likewise

Gi (fx) = FT(I; (xi (2.9)
FT(Ii (xi)), evaluated at £x=0
where G (fx) is the normalized Fourier transform of the
diffraction limited image. The irradiance transfer function,

H(fx), is (1:114)

H(fx) = FT(/h' (x1)]*) (2.10)
FT(|h'(x1i)|2 ), evaluated at fx=0

where again normalization has taken place. Thus, in the

frequency domain,

Gi (fx) = H(fx)Gg (fx) (2.11)

This last equation can be derived using the convolution

theorem (13:314).

The optical transfer function, H, of the incoherent

12
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irradiance imaging system is

H = |FT(h')|? (2.12)

where

h' FT(P) (2.13)

It can be shown that for f(x) a real function of x that

FT(£(x) ** £(x)) = |FT(£(x))[? (2.14)

By using the autocorrelation theorem (13:200). Therefore

[FT(h')|? = P=**p (2.15)

which leads to the final expression for the optical transfer

function, H:

H = P**P (2.16)

where ** denotes autocorrelation. Also, all subscripts, etc,
have been dropped for clarity. Now, equation (2.11) can be

expressed as

Gi = (P*P)Gg (2.17)

13
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which i.. the final spectral domain representation of the
imaging relationship between the object and the optical
system. Figure 4 illustrates the normalized transfer

function for a rectangular pupil function. As can be seen,

the OTF, H, has a definite cutoff frequency, fc, which is a
function of the system parameters. The modulus of H, |H|, is
known as the modulation transfer function, MTF (1:114).

For optical systems it would seem that a simple Fourier
inverse of the frequency domain representation of the image
would easily yield the original object. Equation (2.18)

represents the inverse Fourier transform needed to recover

-fc fc

Figure 4. OTF of P = Rect(x)

14




the object from the spectral parameters

FT-'[6:] = FT"[((S.;)]= I(xo) (2.18)

The problem with resolution is in the use of limited
apertures and noise, since limited apertures attenuate the
high spatial frequency terms essential for high resolution
and the noise terms are greatly magnified in the inverse
process, as will be explained later. Larger pupils would
alleviate much of the problem but there is a physical limit
to the size of usable optical systems, especially for space
applications.
In the next chapter, a particular matrix method for
increasing resolution with limited spatial bandwidth will be
| 4. examined. It will be shown that increased resolution can be
achieved under certain conditions. By knowing a priori that
the object is finite with a known maximum extent, and by

using a smoothing parameter, the increase in resolution can

be quite substantial.

15

LR e - e e L e e amae L Y e e e - . A .
° SR R N A ~

. - - ~ L S T T Tt S S SR B SR ‘~
P - S S B L N U Y . - * CREA T "Qn’- LN - . wgte te 2 te NN
A PRI I SU P Ey  ty Y, Uiy YA PAPIT Iy DI SN Y Y WAL DNy D T Dy U Ty N PCITT IV IN P T PN T TETS IS FY I PR T O RN




III. Superresolution Scheme

-

Introduction

The purpose of this chapter is to develop a mathematical
model for incoherent imaging with limited bandwidth optical
systems. The limited bandwidth is realized by symmetric
multiple apertures as well as the traditional low pass (in
spatial frequency) model. It has been speculated that for a
limited bandwidth system, better resolution could be obtained
using a bandpass aperture insead of the low pass system
traditionally used (9). Multiple aperture systems consisting
of relatively small, precise optical elements could simulate
larger optical systems which are costly and extremely hard to
manufacture. The optical systems will be described in terms el

i ??( of its optical transfer function, H, and its exit pupil, P. f.f-
| The mathematical model uses discrete values with vector and £
matrix analysis. For the purpose of this thesis, the t“ﬁf
truncation errors and sampling errors will not be discussed. - -
The data is assumed to be adequately sampled and the
truncation errors are considered to be negligible compared to
the noise. This chapter describes the discrete solution to =

equation (2.18) using linear methods.

Math Model
To effectively model the imaging system, a priori Y

knowledge of the object is of prime importance in

reconstrucing the object from image data. The object is

. known to be finite within the first M units of the N bit

16
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object vector, x,. The finite object can be represented by
' - Dxs where D is the diagonal matrix (all elements zero not on Cala

the diagonal)

- D = diag(1,1,...,1,0,0,...,0) (3.1) .
i The matrix D is known as the spatial truncation matrix. The s

spatial truncation matrix has been zero-filled to an N x N
matrix to match the order of subsequent matrices.
The N bit discrete Fourier transform (DFT) of the s

truncated object is

DFT(Xs) = FDX (3.2)
i 9 g
- and F is the matrix representing the Fourier transformation, %
i DFT, whose components are -

: E(m,n) = exp(-j2mmn/N) (3.3)

. for m,n = 0,N-1 )
l Thus, F is a complex, N x N matrix. g
, In any optical optical system the pupil is finite and

;i passes only a limited number of spatial frequency terms. In :
Ei an incoherent imaging system, the transfer function is the ;
: autocorrelation of the pupil function, as derived in chapter f

two. Since only a finite number of spatial frequency terms .
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»
; will pass through the optical system, the filtering effect,
ﬁ o or transfer function, can be represented by the diagonal

n matrix B, whose diagonal components contain the appropiate

attenuation factors. The matrix B is equal to

B = diag(pc,fl,fz,_..,fc,0,0,...O,fc,...f,,fl) (3.4)

i where DC is the DC coefficient, the f;'s are the various

: spatial frequency coefficients, and f¢ is the cutoff

: frequency (highest spatial frequency passed by the system).

L The symmetry of the B matrix is the same as the symmetry of

| the forthcoming DFT's. For appropiate multiplication of

; vectors and matrices, either the B matrix is changed to the
symmetry of the DFT (which it is) or the DFT is rearranged to
the symmetry of th B matrix. Thus, the spatial frequency

representation of the image is BFDX,. The diagonal elements

of B are obtained from the specific values obtained from

calculating 3*'5. In this thesis, all pupils will be

centered and symmetric about the optic axis. It is a
property of discrete sequences that an N-bit sequence ..".
convolved with an M-bit sequence generates a sequence of

length M+N-1 (15:12). Thus, for a pupil of length L, the

transfer function response will be of length 2L-1. As an
example, let ; =(1111)" (P is a column vector, so '
denotes transpose of the row vector). The convolution of 5
with itself will yield the diagonal elements of the matrix é,

since convolution with itself is autocorrelation.

18
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S (1] r4"
2 3
3 2
> > > =
P**P = |4 rearranged P**P = |1 (3.5)
3 0 SO
2 1 }f :
1 2 i'_:
_O.J L i
‘; where E**? has been rearranged to the same symmetry as the
&p DFT in equation (3.2). In the example, the transfer function }35
consists of seven elements which correspond to the DC term E
plus three positive and three negative spatial frequency :
o

terms. Therefore, the four bit pupil passes the first three
spatial frequency terms plus the zero frequency or DC term.

So far, the image is represented as BFDX,. The last step

remaining is to convert the spectral representation of the
image back to a conventional spatial representation. The if-'

normal, noise free, space domain image can be written as

x; = FT~' BFDX, (3.7) e

-

which physically can be expressed as

- -»>
X; = AXo + n (3.8)
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where A = FT ' 'BFD and n is the Gaussian, white, and additive
noise vector. The components of FT-' {inverse Fourier

transform matrix) are

;;“(m,n) = exp(2jwrmn/N) (3.9)
for m,n = 0,N-1
FT~' is also an N x N complex matrix.

Solving tor-;° in equation (3.8) is the mathematical
problem of the superresolution process, and thus is the heart
of this thesis effort. Equation (3.8) represents the
linear transformation of the irradiance from the object plane
to the image plane. Also, the problem is compounded by the
fact that the 1mage,';; , 1s affected by noise,';i in the
imaging system. For this paper, the noise is considered to
be Gaussian, white, and additive for all frequencies
considered. The solution of';o from equation (3.8) is not a
trivial matter as the matrix A is severely 1ll-conditioned
which can lead to serious problems in the solution of ;;. A

discussion of ill-conditioned matrices follows.

Properties of Ill-conditioned Matrices

The matrix X can be severely il-conditioned.
Ill-conditioned matrices have the potential to cause very
large errors when used to solve linear equations because of
the propogation of errors. The length, or size, of a matrix,

can be expressed as its norm or magnitude, and is expressed

as

20




g I|All, = Two norm of A (3.10)

where the two norm of ; is the most restrictive norm (11:26).

The two norm of a matrix is defined as the largest singular
value (the singular values are represented as s;, for i = 1,k
where k is the rank of the matrix) of that matrix. The
singular values of a matrix are the square roots of the S
corresponding eigenvalues of the matrix. The condition
number of a matrix, c(x), is a measure of the stability of
the matrix. The condition number of the matrix.x is defined =

as
c(r) = [lall, x ||AT], (3.11)
where the magnitude of &' is equal to the inverse of the

smallest singular value of A (12:166),

As an exanmple, let A be the 32 x 32 matrix obtained from

(see Appendix B):
° P = (1111100000011111)"' and i
A B = Diag(1,...1), for M = 32

—

where ' denotes transpose since P is a column vector. From
‘ the data table, the largest singular value of ; is 320 and
; the smallest singular value is 1.46 E-4. Since the magnitude

or two norm of A is equal to 1/(1.46 E-4), the condition :Eig
;: number is roughly 2E+10. Why is the condition number

important? The importance of the condition number is

21
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The condition number is a measure of stability in that
it gives an upper bound on the possible magnitude of error in

the solution of the matrix equation Ay = b, for A the image
—-— -—
matrix, y the object, and b the noisy object. Let e(y)
represent the potential error possible from the solution of
—_ o > —-—
y=A'b, and let e(b) represent the error present in b, the
——t

Gaussian noise. The relative error in the solution for y

will have the upper bound expressed by
e(y) <= ¢(A) x e(b) (3.12)

For the example cited above, the condition number was
approximately 2E+7, so the relative error limits can be

expressed as
e(y) <= 2E+7 x e(b) (3.13)

where e(b) is usually expressed as the noise variance. It is
important to realize that the limit to the error is an upper
bound on the error and that not every component of the
solution vector will be in error by this amount, but each
component could be in error by this amount. The use of
condition numbers to test matrices for stability is a figure
of merit type relationship. For good linear systems, the
condition number should be small. By using the two norm, the
most restrictive error potential was achieved. Other,

simpler norms could have been used, but generally lead to

22
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higher condition numbers. Another way of looking at
condition numbers is to say that a matrix with a large
condition number is an almost singular matrix, meaning that
the matrix inversion is quite suspect. From linear algebra,
a unique solution to a matrix transformation is only possible
when the inverse to the matrix exists. Therefore, solving a
linear system of equations with an almost singular matrix
means that the matrix is not very stable and can cause large

errors in the solution.

Least Squares Solution

The problem of imaging can be restated as

e

T -
AXo Xi (3.14)
where = implies that a least squares solution is being
sought. The notation uses x;; as the ith component of the

—t
vector X; . The least squares solution minimizes the

difference expressed by
T -t
| A%e - xiHZ = error (3.15)
where the subscript 2 represents the 2 norm of the vector,

also known as the Euclidean distance, as shown in equation

(3.16).

-

%1, =V (x))2+ (%)% + ... (xp)? (3.16)
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To implement the least squares solution, the matrix ; iii
must be decomposed into a product of a diagonal matrix and E;g
two orthogonal matrices. The components of the diagonal i;;ﬁ
matrix will be the singular values of ;. The matrix A , Wwhere QEEE
1 =‘;¥L' EEE, can be rewritten as a product of three matrices ;:T
(12:237) f:i-

A = USV' (3.17) R

where E is an N X N orthogonal matrix, and V' is an L X L
orthogonal matrix. S isan NX L orthogonal matrix whose
diagonal elements are the singular values of A and are in fﬁ;b

decreasing order. S looks like

S = Diag(s, ,8;,8;,...,50,0.0....0) (3.18) o

where s| > s, > s3>...>sm. There are only M singular values
since D reduces the rank of & to M. |

The least squares method of solving linear equations
serves to minimize the two norm of the difference vector as
expressed in equation (3.16). Substitute for A in (3.15) to
obtain

|lusV'Xe - X;1|, = error (3.19)

where A=USV'. Since U is orthogonal, UG' = I, where I is the el
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identity matrix. By multiplying each term by 6', the

expression becomes
- -
|l svix, - U'xﬂ|2 = error (3.20)

where the error is the same, since multiplying a vector by an

orthogonal matrix does not magnify the norm of the

vector(12:282). By substitution, equation (3.20) becomes

sy —'34l2 = error (3.21)
- = - -
where y=V'x, and 3'=Ux;. Therefore, x., solves the least

squares problem (3.15) if and only if ?%G;;solves

| —
lisy - b'f|2 = minimum error (3.22)

. !

Since S? is a diagonal matrix composed of the singular values
of A times Y:. the difference vector of (3.15) can be

expressed as

Sy - B ey = 132 1 )2 12 -
'Sy - b 2— (S]Y|- b] Y+ o ASmYm - bm ) +bm+l .
1 R
+...b;’]z (3.23)
K
The minimum error solution satisfies :3:&3
el
LA SN
~"_'s‘ ~

s, (y;) - b; O or y; = bi/s; (3.24)
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for all values of i. By back substitution,

- L

: Ym = bl /8, = U (m,J) x;; (1/s)) (3.25)
and since y=V'x,

Xo = Vy (3.26)

- since V and V' are orthogonal matrices. By substituting for

-
'; in equation (3.26), the mth component of x, is

Lo Lo
(Xo)m = 2,V(m, k)Y U (m, J)(x,) (1/s,) (3.27)
K=1 B

which can be rearranged to yield

| S - —
(Rodm = 2,2 U'(m, J)(x,) (1/8,)V(m,K) (3.28)
K=1 3=

By using vector notation, equation (3.27) and (3.28) can

be rewritten as

Ro = lezlu/s,)(‘;?i.@ﬁl (3.29)
- -

; where u’ and v’ are the left and right singular vectors

8 obtained from the jth column of the matrices U and V

?: respectively. The solution vector, Qo, denotes a least

;} squared solution, and ¢ is the dot product operator. This

solution is also referred to as the inverse filtering
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solution, since the least squares solution serves to reverse
the matrix operation and return the original (object) vector

in our specific application (14:205).

Modifications to Least Squares Method

Since there are very small singular values in the matrix
A, the presence of noise will greatly reduce the
effectiveness of the least squares solution in the high order
terms. By using the method of Rushforth, et al, (14), 1/s¢ is

replaced with an appropiate smoothing or regularization

function to attenuate the high order terms and pass the lower
order terms unchanged. The smoothing function serves to Y
avoid overamplification of the higher order noise terms. For
this thesis, 1/s¢ 1is replaced with f(sy ), where i
9, ﬂ'i;

£(sy) = S (3.30)

Choosing an appropiate « prevents overamplification of the

high order noise terms. a was chosen in most cases to be

10E-10 as this provided adequate attenuation with respect to
the smaller singular values. Various other smoothing e
functions and concepts could be considered. The basic

concept is to reject those higher order terms knowing as much

about the object as possible beforehand. To get high ARG
resolution, some high order terms must be present in the
solution. Therefore, if the object is known beforehand to be

less than 10 units long, the spatial truncation matrix, D, DR

27
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solution. Therefore, if the object is known beforehand to be
less than 10 units long, the spatial truncation matrix, D,
will be finite for only 9 elements. By truncating at nine
elements, the matrix A will be of rank less than or equal to
nine, so there will be only nine singular values, thus the
lower singular values will already be rejected (12:336).

The following chapter will describe the computer program
and computational algorithms used to implement the least

squares solution.




IV. Computer Model

Introduction

The purpose of this chapter is to describe the
analytical implementation of the least squares
superresoslution scheme as described in the previous
chapters. The computer system used was a VAX 11/785
utilizing the VMS 4.1 operating system. The subroutines used
for convolution, Gaussian random number generation, and
singular value decomposition of matrices were from the
International Mathematical and Statistical Subroutine Library
(IMSL) (10). The matrix multiplication routines were written
by the author. The program was written using standard
Fortran 77 (18).

Figure 5. is a flowchart depicting the superresolution
process as described in the previous chapter. Refer to this
figure throughout the chapter for reference. A complete

listing of the program, SRES, is contained in the appendix.

Computer Model

The following variables are defined for convenience.

pupil length (integer)
dimension of square matrix A (integer)
finite, known extent of object
smoothing coefficient (real exponential)
= puplil vector
SEED = double precision constant
= jth singular value (real)
convolution operator
matrix named Q
vector named r
= ith component of r

snzzv
N oHn

womo
[

n -:Lon
wonn
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=1 inverse of matrix A

A' = transpose of matrix A

SNR = power signal to noise ratio
PSEQ = power in discrete seguence
ol = noise variance

* = dot product operator

13|

The first variable to define is N, dimension of the transfer
matrix,‘x. The criterion for N was that it be large enough
to model an imaging system but small enough to operate
efficiently with the computer. Also, N was chosen to be a
power of two, since this makes the system easier to work
with, with respect to the IMSL subroutines. N was chosen to
be 32 for all configurations. By choosing a value for N, the
values for M and L are somewhat restricted. The length of
the pupil, L, must be less than or equal to N/2, since the

_— - L
matrix B is composed of elements of P*P and convolution of

T two vectors lenghens the resulting vector. Also, the object
dimension, M, cannot be larger than N because of the matrix E
vector multiplication scheme. X
The computer program is interactive and prompts the
operator to input values for L, M, SNR, DSEED, and a«a. The
operator is then prompted to enter values for the pupil
vector and object vector. The program uses the pupil vector
to generate the‘giﬁ vector which in turn provides the
elements of the diagonal matrix, B. The IMSL subroutine
VCONVO performs the necessary convolution. The values for M
and N are sufficient to create the matrices ; (Fourier
transform matrix), EF (inverse Fourier transform matrix), and
With

D (spatial truncation matrix of M diagonal elements).

30
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the matrix B available, the matrix product (FF)(B)(F)(D)

[
> |

(T in program SRES) can be calculated. After the matrix A is

2l

calculated, the product ;;o can be calculated to yield the

P I e
L

'.'

I

noise free image. With the noise free image available, the

Y

noisy image can be calculated.

The operator has already input the value for the signal
to noise ratio (SNR) which can be used with the noise free
image to create a noisy image. The noise is assumed to be
Gaussian, white, and additive for all spatial frequencies.

The definition of SNR lis

SNR = PSEQ (4.1)

ol

which means that

ol =__ PSEQ (4.2)
SNR

where the noise variance is represented as 0. and PSEQ is the

power in the image sequence. The power in the vector ; is

. defined as
»
M
, PSEQ = (1/M) )] (x,)° (4.3)
. k=1
°

-

where the vector 1s of length M. The noise variance, o2 , is
the power in the nolise vector ;; and is defined as shown in

equation (4.3). The noise variance assumes a zero mean. The f“‘

C TG TS S S
- . ::.':I ‘Y .

variance is also equal to the square of the standard

v - v,
»
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deviation of the noise distribution. With SNR being provided
by the operator, the variance can be calculated from equation
{4.2). Using the IMSL subroutine GGNML and the value of the
variance, the Gaussian noise vector is generated. The nolise
is amplitude at this point, so each term is squared for power
and added termwise to the original noiseless image to create
the noisy image. At this point, the least squares process
can be implemented. After the matrix X (E-in computer
program) has been created, the IMSL subroutine LSVDF is used
to create the three matrices, G,E[Vv, which are to be used in
the superresolution process. After the singular values have
been generated, the substitution for 1/s, is implemented
using the smoothing parameter, a, to negate the effects of
the very small singular values of X.

As can be easily seen, the computer program performs the
exact operations described in chapter III. In the next
chapter, the results for various pupil configurations and
parameter values will be examined. It will be shown that the
least squares method with a priori knowledge can resolve two
incoherent point sources not ordinarily resolved in a

conventional low pass imaging system.
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BN SRES Computer Program
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V. Results and Conclusions

Introduction

This chapter presents the results and conclusions

obtained using the computer program SRES to simulate

superresolution using the least squares method outlined in DT
the previous chapters. 1In review, 1/2 P is one-half of the ;iis
symmetric pupil function of length L, where L <= 16. M is
the assumed or known maximum length of the object, where M <= e
32 since N=32 is the square dimension of the transfer matrix
A (T in SRES). SNR is the signal to noise ratio and is

the smoothing or regularization constant used to attenuate

the effect of the very small singular values. The error used

throughout this chapter is the Euclidean distance or two norm
of the difference vector between the object and noisy image T
where the image is the superresolved image. The effects of

the different parameters will be investigated and discussed.

After the results are presented, a conclusion section will
close out the formal portion of this thesis. Also, pupil
function performance for various pupils is contained in

appendix B.

Results

Band-Pass vs Low-Pass Pupil. Both pupils considered T

contained six apertures corresponding to the six elements of
the pupil vector. The low pass half-pupil was (00000111)',

and the high pass half-pupil was (11100000)'. Both pupils
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modulation transfer functions (MTF) for each of these pupils
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is shown in Fig. 6. As can be seen, the band-pass pupil

passes higher frequency components than the low-pass pupil. é;gi
The band-pass pupil passes the higher spatial frequency terms ::fﬁ
needed to resolve the two incoherent point sources located Téf?
closer than the normal resolution distance. Figure 7 2%
illustrates the effect of using the high-pass pupil instead f’ j

of the low-pass pupil for superresolution. By using the

band-pass pupil, the superresolution scheme served to
separate the two incoherent point sources, with only two _;J
small (40%) side lobes present. By using a threshold

detection criteria, the high pass pupil can superresolve the

object consisting of the two incoherent point sources using  L;n
the least squares method and a smoothing function, while the

low pass pupil cannot superresolve the object.

Effect of A Priori Knowledge. Figure 8 illustrates .jxq

the importance of a priori knowledge using the
superresolution algorithm. By using the low-pass pupil
shown, the normal image does not resolve the two incoherent

point sources (object) of Figure 7-a). The superresolution

scheme is able to resolve the object only at M=8, where M is
the a priori knowledge that the object was less than or equal

to 8. The effects are quite interesting for M=16, as the

algorithm tries to restore the object, but there is RN
insufficient information to do so. Figure 11 presents a plot
of M vs Error for the five various pupil functions at a

35
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insufficient information to do so. Figure 11 presents a plot ﬁ;&

Q;— of M vs Error for the five various pupil functions at a e
constant SNR =100. As can be seen, the known information s

<

concerning the object does reduce the error in many cases. :&ﬂ

-l

It is interesting to notice that in some cases, the error is :;“

almost constant for the values of M up to the bend in the

curve. The error for P3, P4, and P5 are all fairly constant
up to M=24. The smaller pupils exhibit similiar responses E“i
for smaller values of M. It is important to define the
object domain as close as possible in order to achieve

reliable and accurate results. el
Effect of a. Figure 9 illustrates the effect of the
smoothing parameter, . As can be seen, holding all

parameters but constant, the higher values for

fo

(10E-5,10E-10) serve to resolve the object quite well with a
rather limited pupil. As aaproaches zero, the effect of the
noise due to the ill-conditioned nature of the system is
obvious. As can be seen, the processed images using very
small values for a are quite haphazard and look nothing like
the original object, even with the high SNR=100. Due to the
nature of the imaging problem, the superresolution alogorithm
must use a good estimate for the smoothing parameter, a , in

order to achieve accurate results. o

Effect of Noise. Figure 10 serves to illustrate the
effects of noise on the superresolution technique using the

least squares method with a smoothing parameter. The -—
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superresolved images all appear to be the same, illustrating

the noise resistant nature of the superresolution algorithm.
Figure 12 also shows the noise resistance of the least
squares method. For SNR equal to 100, 50, and 5; the error
vs pupil size is almost equal for each pupil. Only at the
high SNR of 2 does the noise dominate. This algorithm has

proved to be quite good in the presence of moderate noise.

Error Analysis. Figures 10 and 11 jillustrate the sources

of error present using the least squares method for
superresolution. The error is expressed as the distance
between the object and superresolved image, using the
Euclidean distance, or two norm.

In Figure 10, the error is plotted on the vertical axis
and the pupils are plotted on the horizontal axis. In this
graph, all pupils are the high pass versions with P1
consisting of 6 elements, P2 consisting of 8 elements and so
forth with the last pupil, P5 consisting of 14 elements.
Each curve is at a constant SNR. The error is seen to
decrease as the pupil elements are increased. This is
logical, since the more pupil elements available, the more
spatial frequencies passed by the system, resulting in more
information available for the algorithm.

In Figure 11, the effect of a priori information is
analyzed. The known extent of the object, M, is plotted
versus error for constant pupils. At the extreme, with the

object known to be within 32 bits, the larger pupils have the
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c) Processed Image, M=32 d) Superresolved Image . A
a = 10E-10, SNR=100 M=32, a z10E-10, SNR=100
1/2P=00000111 1/2P=11100000

Figure 7. Superresolution Example #1 SO
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d) Superresolved Image
M=8, & = 10E-10, SNR=100
1/2P = 00011111

Figure 8.

Superresolution Example #2
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a) Processsed Image M=32 b) Processed Image, M=32 -
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c) Processed Image, M=32
a= 10E-10, SNR=5.0
1/2 P =[11100000]
ff Figure 10. Superresolution Example #4
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Figure 11.

-------

AR S L AP, S, S

Error vs Known Length of Object

43

..............

.

..............




e r_,A X A st

L AN e g

Ly

e A A A A A A el A A bl A i D WTSACINCINCIA h DA RN A A I A R VXV XX

v e L
AN

l.. Jl
e

ey

-—a
-

1.8}

Pl
P2
P3
P4
PS5

* .
-
“h. KN
LN .
T .:~ -.. ..-.-.o-.................‘
- - .. bl LT TP, s
D '...---.....--'l‘..
1 ] S | < Ll 1 ] 1 e 1 1] T

1110000000000111

1111000000001111 | g
1111100000011111 o
1111110000111111 R
1111111001111111 | -
10E-10 '

1

Pl

A-SNF = 2.0

C=SNR = 5B.9

B - SKNR

D=SNR

5.8

100.8

.....

cnimiatala

Figure 12.

44

:." o
Laioa,

Error vs Size of Pupil




......

Al e Sl o ol

least error, which is logical. As the known extent of the
object increases, or as M decreases, the error decreases,
with the larger pupils approaching the constant level quite
rapidly. For the 10, 12, and 14 bit pupils, the error is
constant up to M=24, while the 6 and 8 bit pupils decrease at
different rate that appears almost linear. The effect of M
is obvious, but as can be seen from some of the pupils, the
increase in information concerning the maximum extent does
not yield appreciable results concerning error reduction. As
an example, for P3 consisting of 10 bits, the error for M=24
is about the same as for M=8. For P3, the information gained
by knowing that M=8 instead of at least 24 is slight. The
error is seen to be almost linear over some range, and almost

flat up to a threshold level.

Conclusions

Based on the performance of the computer simulation,
superresolution is achievable in limited bandwidth optical
systems. The performance of the superresolution process is
affected by:

A priori information available concerning the object

Type of pupil

And noise in the system.

By using a smoothing parameter, o, the overamplification of
the high order noise terms is avoided. With finite precision
arithmetic and noise, the very small singular values of the

transfer matrix must be attenuated in order to preserve the

identity of the original object. The problem with
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attenuating the high order singular values is that these
singular values correspond to the high order spatial
frequency terms needed for rescolution. Obviously some high
order terms are necessary for resolution, but amplification
of the noise breaks down the superresolution process when
high order singular values are present. For this
one~dimensional case, the pupil was assumed to be symmetric
and quite limited with a maximum length of 16. For a more
rigorous approach, the pupil length could be increased, but
the resulting increase in computer complexity would be quite
costly. The results obtained graphically and in Appendix B
illustrate the importance of the different parameters and
verify the premise that high pass or band pass pupils will
image better with this particular superresolution algorithm
than low pass pupils of the same bandwidth. By knowing as
much as possible about the noise and object, superresolution

is achievable and possible using the least squares method.
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- Appendix A: Computer program listing for computer program RO
SRES. NI
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'Ry

W PSS

AL DA CAP A AT S aC A b e M e e ke A A e Ao A b i i i b o o
)

WO NIRRT OO

s bt
[PV N

R S
[ ZRE N« SV W

[AS T O
nNooWw

\

123
142
145
117
178
éce

oy

FRCGRaAM tkeS

4 IS TrE PLPIL VECTCR CR LENCTH LA, LE&={LS SINCE
4 IS CCNVILVELD WITK ITSELF

FUFIL MLST S5E <= 1¢, SINCe vax=3¢ TCTaL

IWnK IS A& WIKK VECTCKR CF LENGTr Me]

FCRMAT(EIGC.J)

FOCRMAT(CIZ)

FCRMAT(' ALPrA =2'4,21C.1)

FCRMAT(FEL)

FCRMAT(CY INPLY & CF FLPIL BITS IN 4, THE PUPIL')
FGRMAT (' PSEC= ',Fl0.4)

FCRMAT(® INPLT MBX SIZ: CF CSJECT SPACS, <Cy= TC NY)
FCRMAT (' ENTER PLFIL ZLEMENT',13)

FCRMAT(Y aLPrA =%, LSC EXFCASANTIAL FCRM?')
FCRMAT(Y Nyl gV =0 ,T23,1Xx,13,1x,13)
FIRMAT(IZ4F5.2)

FCRMAT(F14.4)

FORMAT (' L EBIT FLPIL VECTCR, INFLT L")

FORMAT (' SNR =%,1X,FG.1)

FCRMAT(* INPLT SIGNAL TCJ NOISE RATIC')

FORMAT(' INPLT CSEEC')

FCRMAT(CY ')

FCRMAT(FE.a)

FCRMAT (! CSEEC =2',F12.3)

FCRMAT (' ENTER CEJECT',12)
FCRMATCXE|1X051C.EQFé-2|F602’1X’S(IXOFEQ4))
FCRMAT(' PRCCZSSELC INAGE ERARLK = *,F1(.%)
FSRMAT('SYV P F%P CBJ NCR INM NCISE NCI IM NEW IM')
FCRMAT(* ')

FCRMAT(' NCISY IMAGE ERRCR =',F1C,.5S

CIMENSICN 2CS12)EC2SE)sInKCIC)F(25€),0C25€925€2
CIMENSTICN XI(25624X0C254)9XX(256)9S3(2562,YY(256)
CIMENSICN PP(25E€9256)9yRR(Z2)4R(3239aC(22)yXCCC256)
CCL3LE FREZCISICN CSEEC,CCSEEC

CCMPLEX SLM

CCMPLEX F(25€4256)9FF(25€6425€)4FL(25€425€)
CCMPLEX FFO(256+258)9H(2564256€)

COMPLEX FH(25€425¢)

CIMENSIOM T(32+432)9LT(C22,232)98(32) WK (£43,5V(32)
WRITE (€420

WRITE (€415)

REAC (593U

IC=L

N IS THE RANK OF TrE TRANSFER MATRIX

hN=222

INFLT MAX DIVMENSICN CF CO_ECT, WM

WRITE(EWE)D

READ(542)¥

LA=L

INPUT SNGR

RRIITE (6,13)
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[l n]

AN

oy Oy n

READ (S5915)5NR

INPUT CSEED

CSEEC IS INPLT VARIABLE FCR IMSL RCLTINE GGANML
CSEET IMITIATES SSARCH FCR GEALSSIAN NCISE TERNMS
WRITZ(E,19)

READ (5,22)CSEEC
CCSeEl=CCEEC
INFUT ALFEA
WRITE (£€412)
REAT (S5y92)ALFHA
FI=3.1415527
Le=LA
INFUTY PLFIL ELEMENTS ACID
£C 32 I=1,L
RRITE (8,5)1
READ (5,3)A(C1)
CCNTINUE
CC 36 1=(I0/2)+1,LA-1C/2
2(I)=C.C
CONTINLE
SAVE FLFIL AS CC FCR LATER,y LETY 2=z8 FCR CCANVC,
CC «& I=1,L
CeCId=ACID
ECI)=ACID
CONTINLE
CREATE F2P USING IMSL RCGLTINE VCCAVEC
CALL VCOANVOD (ByBaLASLE,IWK)
CLC 53 I=z1,4N
FCI)=C.C
CCATINUE
QEARRANGE P%P TC MATCF SYMMETRY CF CFT
CC 5C I=1,L -
FCI)=A(CLE+1-1D
CONTINLE
J=1
LS 55 I=sN-L+24N
FCId=0(J)
NENE DY
CENTINLE
F(LA+1)=C.0
NCw MAKE FUPIL METRIX PP (B IN THESIS)
FLTRIX FBAS PUFIL ELEMENTS ON THE CIACCANAL
CC 65 I=1,4N
[C &5 J=1,N
FP(Iyud=C.0
IFCIaEGQ)PF(IWd)=P(4D
CCNTIANLE
ANCw MAKE TRUNCATICN METRIX C
M IS TrE KNCwh MEX CF THE CEJECT
CC 7C I=1,M
CC 7C J=1,¥
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10

18

155

laNal: -]
(¢ -]

W OOy
W

59

100

......

(CIyd0= 1.0
IFCILNELL) 0CI44)=0.0
CONTIANLE
IF (F.EC.N) GCTC 155
LS 7S I=hel,N\
CC TS J=(Me1d4N
CCIye)=0.0
CONTINLE
RRITE(CE,<C)

NCh MAKE FT MATRIX ANC FT INVERSE MATRIX

F IS FY 2ND FF 1If INVERSE FT

CC BE I=CyN-1
CC 88 K=Cy4N-1
FCI+1,3K+1)=CEXPCCNPLX(CLLy-22FI=TI2K/N))
FEC(I+1,K+1)=CEXFCCMPLYC0sCo2%4F12I%K/N))

CONTINLUE

NCwy WE FAVE CUR FOUR MATRICES, LETS MNULTIPLY

FIRST MULTIFLE F ANC T MATRICES

C3 SC 1I=1,N

LC SC J=1,4N
SUM=(0.,0,C.0)
CC 85 K=1,N
SUM=SUVMeF(T4KXRCCK,J)
CCNTINLE
FC(Isd)=SUM
CONTINUE

F TIMES [ STCREC AS MATRIX FCy NCW MULLTIFLY oY
MATRIX E WHICKH IS THE PLFPIL MATRIX FF
L3 95 I=1,N
[C 95 J=1,N
SLNM=2(C.04,C.0)
LC 9& K=1l,4N
SLMsSUMSFF(IgKIXFLC(Kyd)
CCNTINLE
PFCCIsJd)=SUM
CONTINLE
eFC STCREC AS PFL (NCTATICN LSED IN TRESIS IS BFL)
NCw MLLTIPLY EY INVERSE FCURIER MATRIX
LC 1C0 1=1,4N .
{C 100 J=z1,4N
SLM=(C.05Ce0)
LC 9¢ K=1,N
SUM=SUM+FF(IZK)RFFC(KyJ)
CCNTINUE
FHC(IsJI)=2(SUM)
CCNTINLE
PR IS TRENSFER M2TRIX
FSEQG IS THE BVG FCWER IN THE SEQLENCE
ENTER C2.ECY IRRACIANCE TcRNMS
CO 124 I=z1,4M
»(I)=0.C




124

[aNal

125

aNaNaNalal

202

202

................. PR S
......................... . %
- ~ -

e . . . N ]
WA SR AT R L T VR T T AR R T ST L TR PR VR VR V. P PR, W VAP R WA VR W e

CONTINUE
C3JECT IS TWC PCINT SCLRCES 4/- 1 FRCM OF AXIS
XC(Ms2-13=1.C
X0(M/s2+413=1.¢C
FSEC=0.C
ACw C0 THE NCRMAL IMAGE, IMACEsST2CBJECT
T IS Tré ABSCLUTE VALLE CF MATRIX KM
CC 120 I=1,N
CC 130 J1l M
TCIJ)=CLEBSCPFCI 4 J))

CONTINLE
€0 120 I=1,N
xx(1>=0.C

CC 117 J=1.0
XXC(122T(1,J)%0C0Ca)+ xXx(12

COGNTINUE

XICI)=Xxx(1)

CCNTINLE

NCRMALIZE IMAGE

CC 1C1 I=1,N

IF (XICIJWNE.C.CDSSC1I=XICI)

IFCSSC1)eNELCLOXCCTD 102

CCANTINLE

DC 1C3 I=1,N
IFCXICI)GTLSSC1))SS(C1)=x1ICI)

CONTINLE

$SC¢1) IS MAX ABSCLUTE VALLE CF IMAGE

» NOw CIVICE TG NCRMALIZE

0C 125 I=14N

XICI2-XICId/SS(C1)

FPSEL=FSEC+XI(I)

CONTINLE

PSEQ=PSEC/N

NCwh CETEFMINE NOISE VECTCR

SEE IVMSL GGNML FCR CETAILS

NCISE IS AMPLITULCE SC SQULARE IT FOUR FCWER

ShvE ORICINAL NOISELESS IMAGE AS XICID

NCISY IMAGE IS XCC(ID

CALL GGNPLCOSEECIN4R)

LG 24 I=1,N
RRCID=(SCRT(FSEQ/SNRII*R(I)D
RRCI)=RR(ID*RR(I)
*CCCIX=XICI)+RR(])

CONTINLE

NCRMALTZE FINAL NCISY IMAGE XCOCID

=€ 202 I=21,N
JF(XCCCI2eGToSS12SS1=xCCCID

CCNTINUE

€0 2C2 I=1,N
»COCI)=XxCC(I)/SS]

CCATINLE
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134

13¢

138

13

162
1€3

164

1617
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UT IS AN N X N ICENTITY MBTRIX CON INFLY
SEE IMSL LSVCF FCR INFC
CC 132 I=1,N
LG 122 J=1,N
LTCIyd) = 06
TFCILECed) UTCIgid=1.C
CONTINUE
NCw CREATE TFE TFREE MATRICES FRCM T, T=LSV?
SEE I¥MSL LSVOF FCR CETAILS
CALL LSVCFCToNsNoMyUToNgNySohKyIER)D
CN CUTFLY 4SCK) ARE SINGLLAR VALLES
REPLACE SCK) WITH F(SCK)) L
ThIS STEF REFPLACES SCK) WITH FLS(X)] NI

ANC FERFCRMS THE COCY PRCCLCT e

wIThr THE LEFT SINGULAR VECTCR FRCFM CCLS CF L1 “ oL

SAVE SINCULAR VALUES AS Sv T

CO 136 Kzl,M
SV(K)=S(K)
(C 134 1=1,4N S
XXCK)=XCOCI)HUTCK, 1D+ XX(K)D

CONTINLE

SS(KIZ(S(KI%SCKIZSCRIIZCCSCRIZSCKRIFS(KIHEC(K)I+ALFHA)
SS(KI=SSCKI%XX(K)D

CONTINLE S

MULTIPLY COT FRCCLCT X RIGKT SINGULAR VECTCRS FRCV T RN

YYCI) IS RECCNSTRLCTEC IMAGE o d

DC 137 I=14M o
XXCI)=0.C e
CC 138 Jzl,M 5
XXCIIEXXCID+TCL,d)8SSCJ) S

CCNTINUE A

YYCId=XX(I)

CCATINUE

MCRMALIZE RECCNSTRUCTED IMAGE

LC 162 I=21,4M

IFCYYCI)eNELCe0)S(2)=ABSCYY(I)) RN

IF (SC1).GT.Ce0) GCTC 163 Ve

CCATINUE ——et

CC 1&4 I=z14M S

IFCABSCYYCID)L GToSC1D)SCL)=aBSCYY(I))

COMTINLE

SC1) IS MAX ABS VALUE OF REC TMAGE A

CO 167 I=1,¥ I
YYCI)=YY(I)/SCL) —

CONTINLE &
WRITE (S5€5177) N
WRITE (5€4176) :
WRITE(9E420) -
CC 129 I=1,N

IFCI.GT.FIYYCI)=Ca0 —
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135

14¢

(@ 210
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IF(TICGT.LIQCCI)=C.0
IF(I.GTa*)SV(I)=(.0
IF (1.CToLA+LB)A(CI)=C,O

WRITECSE4142)T4SVCIDoCTCI)pACTI)pXCCISyXICID,RRCIZ,X0CCID,YY(I)

CONTINLE

§SC1)=0.¢C

xx(1)=z0.¢C

CC 14¢ Iz1,4N

XXC1I=XXCL)+CYYCI)=-XCCI) )%

SSC1)=8SC1) + (XxCCCId=-XC(CI))#%2

CSNTINUE

$SSC1) IS THE EUCLIDEAN CISTANCE BETWEEMN MNCISY
CSSERVELC IMACGE XCCCIXANC NOISE FREE CBJECT, XC(I>
Xx(1) IS THE EUCLICEAN CISTANCE EETWCEN THE
RESTCREC IMACGE YYCIDAND TrE CRIGINAL CBRJUECT xC(CI1)
SSC1)=SCRT(SSC1))

XXCYI)=SCRT(XXC1)D

PRITE (Gé4920)

WRITE(SE,2C)

WRITE (S$€5205)S8(C1)

WRITE (S€,145)XX(1)

WRITE (S€317)SNR

WRITE (S€s6)RLPHE

WRITE(SE,25)CLSEEC

STCP

ENC
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: Appendix B: Data from Computer Program SRES

s Notes:
1. All objects are two incoherent point sources two
bits apart
2. Processed image error (PIE) is the Euclidean
distance (two norm of the difference) between the
superresolved image and noise free object.
1/2 Pupil SNR M ALPHA PIE
00001111 100 32 10Q0e-10 1.24 T
00001111 " " 24 " 1.41 S
00001111 " " 16 " ® 2.51 )
00001111 " v g v = 0.30 DG
11111000 100 32" 0.52 L
11111000 50 ' v @ 0.52 e
11111000 5 ww o onon 0.75 TR
11111000 2 wwonoow 0.82 .. .’
= 11111100 100 32+ *© 0.39
R 11111100 50 tuw onon 0.35
- 11111100 5 wu owoo» 0.42
> 11111100 2 e onooon 0.79
@,
o - 11111110 100 32+ v 0.37
- 11111110 50 "o o® 0.37
o 11111110 5 neowo» 0.45
QZ 11111110 2 wueowoon 0.53
11111110 100 24 " " 0.03
11111110 100 ie " " 0.02 -
11111110 100 g " 0.01 -
DA
n 11100000 100 32 © 3.28 '}ﬁfﬁ
- 11100000 100 32 10E-10 0.92 RN
11100000 50 e nm 0.92 .w_qﬁ
11100000 5 ww woou 1.01 o
- 11100000 2 "voomom 1,04 s
11100000 100 2¢ " " 0.68
11100000 0.68

11100000 0.75
11100000 0.98




ata a4 et

R R A
IR RN

K

R

1/2 Pupil

11100000

11100000
11100000
11100000

11100000
11100000
11100000
11100000

00000111
00000111
00000111
00000111

11110000
11110000
11110000
11111000

11110000
11110000
11110000
11110000

11110000
11110000
27110000
11110000

11110000
11110000
11110000
11110000

11111100
11111100
11111100
11111000
11111000
11111000
11100000

SNR M ALPHA

100
50
5

2

100
50
5

2

100
100
100
100

100
50

100
50

100
50

100
50

100
100
100
100
100
100
100

16 10E-10
nn " "
nn " n
nn 11 11
8 " "
8 " [
" " "
" 11} 1t
32 " "
2¢ " "
1 6 n "
8 n "
3 2 L] L]
un L1] n
wae 1t "
1w " n
2 4 " n
"wis " "
" 11] 1]
nas 1" n
1 6 " "
nu n n
LN " "
" “ [[]
8 " 11
" (1} "
" 1 n
wae 1" 11
2 4 n "
1 6 n "
8 L1] (L}
2 4 u "
1 6 (1} "
8 [1] "
32 0

PIE

1.51
2.62
2.77
2.56

0.05
0.08
1.18
1.51

1.27
1.23
2.53
1.14

0.67
0.67
0.92
1.85

0.39
0.42
0.69
2.58

0.08
0.24
0.96
1.58

0.03
0.05
0.83
0.51

0.04
0.01
0.01
0.05
0.02
0.02
3.28
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Appendix C: Typical Data from SRES computer Program S
e
e )
SV = Singular Value RN
P*P= Autocorrelation of Pupil Vector AN
New Image is processed image g}jf
Error is Euclidean distance between the image and object {5}5;
Sl
" SV PP CRJSCT NCRMOL NCISY NE W
IMAGE IVAGE  INMACE
1 (.320E+403 1.00 (Q.CC C.0072 0.1172 0.10¢8
2 (.25€c+402 2.00 C.oOC 0.02C0 0eC404 c.02C2 ISR
3 (.256E+02 .00 C.0C C.0120 c.Cs00 -0.0185 S
| 4 C.152E+402 4,00 C.0C C.0150 0.C€90 0.Cé58 LI
S (C.192E+402 5.00 C.0C 0.0Ce€S 0.C272 -(C.1081 Coe
€ C(.16CE+02 4.00 C.oOC C.0¢€C9 0.1C91 0.1246
7 C.16C2+402 2,00 C.CC C.0181 0.C164 -0,0512
§ (.2288+402 2.00 C.OC C.06¢4 0.C515 C.1569 o
. S (.126€E+02 1.00 C.CO C.0cC2 C.C220 -0.1022 -
) 10 C.128E+02 (.00 C.0C C.0244 0 C4EE  0.0617 b 8
~ 11 C.128E+C: (.00 C.CC C.C218 C.C288 -0.21¢87 Sl
12 (J126E+403 2.00 C.CC C.4Cal C.2802 0.144¢
13 (.128c+02 4,00 C.0OC 0.2111 Ca2C4E C.017¢
: 14 C.96CE+02 ¢€.00 C.OC C.5483 C.58E82 0.25€1 sl
i ® 15 C.360E+02 E.00 1.¢CC l.0CCC 0.50E¢ 0.8321 C
@f— 16 (.66C5+02 1C.00 C.0C C.3359 €C.3C59 =-0.0621 3¢i32
. 17 (C.96Cc+0Z2 €.00 1.0C l.0CCC 1.€000 1.CCCO o
: 18 C.e4CE+0Z £.00 C.0C Co.5482 0.5C85 0.1799
; 15 (C.64CE+C2 4,00 C.0C 0.2111 0.21C0 0.0013
_ C C.64CE*C2 2.00 C.0C CoeCel 0.4340 0.1425 .:",'_‘.:,‘
] 21 (C.64Cc+G2 0.CC C.OC 0.G218 C.C251 ~-0.1658 DT e
22 C.E4CE+0Z 0.00 O0.0C C.0244 C.C324 0.0104 R
22 C.64CE+02 1.00 C.0C 6.0zC2 0.£198 =-0.057§ DRk
26 (.32C0c+C2 2.00 C.OC 0.C4e€é 0.C4é€5 0.1122 SN
€S (€.32C€+402 3.00 CcC.oOC C.C181 0.CSé8 CoCl4? SRS
. 26 C(.32CE+0¢ 4,00 C.0C C.06CS 0.0G€S 0.0522 AR
> 27 0.32CE+C2 £.00 C.CC C.CCeES 0.Cc42 -0.05CC -
28 C.728E-C4 .00 C.OC £.0150 0.C4C2 =-0.0021 -
29 C.72CE-Cs 2,00 0.0C 0.012C C.0132¢ -0.C517
30 C.225E-0G4 <2.00 O.CC 0.02C0 0.C184 -0.0259
21 (C,2C%E-C4 1.00 C.CC 0.C0C172 0,1473 0.1451
32 C.146E-C4 C.00 C.CC C.0265 C.C250 =~0.C1f¢
) )
. NOISY IMAGE ERRCF = 1.1C164
- FRCCESSEC IMAGE ERARCFR = C.62C45S
INR = t.0

ALFHD = ColE-CS oo
> CSEEC = 3412.C00 '
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