

Wright-Patterson Air Force Base, Ohio

SUPERRESOLUTION USING INCOHERENT LIGET and the least squares method

THESIS

Robert F. Stierwalt Captain, USAF
AFIT/GEO/ENP/85D-5
Approved for public release; distribution unlimited

SUPERRESOLUTION USING INCOHERENT LIGHT and the least squares method

THESIS

```
Presented to the Faculty of the School of Engineering
    of the Air Force Institute of Technology
    Air University
    In partial Fulfillment of the
        Requirements for the Degree of
        Master of Science in Electrical Engineering
```

Accesion For	
NTIS CRA\&I \#	
UTIC	TAB \square
Uianmouriced \square	
Justification	
By	
Diat ibution/	
Availability Codes	
Dist	Avail at.d/or Special
$A-1$	

December 1985

Preface

This thesis represents the largest single undertaking I have ever attempted. The purpose of this thesis was to develop a superresolution method for resolving two incoherent point sources of light. This thesis was sponsored by the Air Force Armament Test Laboratory (AFATL) at Eglin AFB, FL.

I owe a debt of gratitude to the many people who would listen to my problems and help me stay on course. Specific thanks go to Capt Glenn Prescott from the Electrical Engineering Department and to Professor Jones from the Math department. These people were instrumental in their heip in the overall thesis effort.

An even deeper appreciation goes to my thesis advisor, Major J.P. Mills whom I have learned to respect and admire for his technicai and military expertise. Major Mills helped keep everything in perspective to allow me to keep working with a good attitude.

It goes withou: saying that every married person that goes to AFIT puts their spouse through a great deal of heartache and pain. My wife has endured two complete AFIT tours of 18 months each and deserves to be congratulared for being an "AFIT widow" twice and still staying married to me.

Robert F. Stierwalt

Table of Contents

page
Preface. $1 i$
List of Figures iv
Abstract V
I. Introduction 1
Theory 2
Research Proposal 7
II. Theory of Incoherent Imaging 8
III. Superresolution Scheme 16
Math Model. 16
Properties of Ill-conditioned Matrices 20
Least Squares Solution. 23
Modifications to Least Squares Method. 27
IV. Computer Model. 29
Introduction. 29
Computer Model. 29
V. Results and Conclusions 34
Results 34
Band-Pass vs Low Pass Pupil 34
Effect of A Priori Knowledge 34
Effect of a 37
Effect of Noise 37
Error Analysis. 38
Conclusions 46
Appendix A: Computer Program Listing for Superresolution Program SRES 47
Appendix B: Data from Computer Program SRES. 55
Appendix C: Typical Data from SRES Computer Program 57
Bibliography 58
Vita 60

List of Figures

Figure Page

1. Impulse Response. 2
2. Minimum Rayleigh Resolution 4
3. Generalized Image Model 8
4. $O T F$ of $P=\operatorname{Rect}(x / a)$. 14
5. Superresolution Flow Chart. 33
6. Examples of Modulation Transfer Functions 36
7. Superresolution Example \#1. 40
8. Superresolution Example \#2. 41
9. Superresolution Example \#3. 42
10. Superresolution Example *4. 43
11. Error vs Known Length of Object 44
12. Error vs Size of Pupil. 45

AFIT/GEO/ENP/85D-5

Abstract

This thesis discusses the problem of incoherent imaging in a diffraction limited optical system. The purpose of the thesis was to prove that resolving two incoherent point sources of light is possible and achievable under certain circumstances. The effects of noise are considered when trying to superresolve the two incoherent objects.

The analysis assumes a finite object of known maximum extent with an estimation of the noise in the system. The noise is assumed to be Gaussian, white, and additive for all spatial frequencies. The superresolution process uses the standard least squares process to achieve minimum error with a smoothing or regularization procedure. The singular values of the transfer matrix are modified to attenuate the very small singular values to avoid noise amplification in the high order terms. The effect of the noise is overcome by the use of a smoothing parameter, α, as shown in the results. The superresolution process works extremely well when the extent of the object is known a priori to have a certain bound or maximum. Components of the restored or processed object outside the known bounds are attenuated. The results indicate that band-pass pupils can superresolve with only limited knowledge of the object when the smoothing parameter is used.

SUPERRESOLUTION USING INCOHERENT LIGHT

AND THE LEAST SQUARES METHOD

I. Introduction

The purpose of this thesis is to demonstrate that superresolution of two incoherent point sources is possible under certain conditions. Superresolution or resolving objects beyond classical limits is a current problem in optics. It is generally thought that diffraction effects represent the fundamental limits to optical system performance. Typically, objects placed closer than the classical Rayleigh limit (5:309) cannot be distinguished as distinct objects but image as a composite form. The physical dimensions of lens systems traditionally determine the ultimate resolving power of the system.

In many scientific disciplines (2:496) such as spectroscopy and astronomy, superresolution could enhance research considerably. In general. for a finite object in a diffraction limited imaging system, the inverse of the linear imaging process can be used to yield the object. In one specific example, an object of finite extent with known maximum dimensions can be superresolved to 20% of the traditional Rayleigh criterion for two incoherent point sources in a noise free system (3). However, in all cases the lmaging process is noisy to some degree and usually
produces a set of 111-conditioned linear equations, thus making the inversion of the imaging process suspect (4:216). Initially, the background and nature of incoherent imaging will be presented using a linear systems approach. Following the discussion of incoherent imaging, a specific plan for modeling a particular superresolution scheme will be presented as a research effort in order to determine if superresolution is practical and achievable under normal laboratory conditions.

Theory

Classically speaking, the normal limit to resolution for diffraction limited images is the Rayleigh criterion.

Incoherent point sources image as a sinc squared function, $\operatorname{sinc}(x)=(\sin \pi x) /(\pi x)$, in a one dimensional system (1:62). Figure 1 illustrates the $1-D$ image for an object consisting

Figure 1. Impulse Response
of an incoherent point source. The image in this case is known as the impulse response of the imaging system. The dashed line represents the object and the solid line represents the diffraction limited image. Also, for incoherent light, the effect is additive in the irradiance distribution (amplitude squared) for two or more point sources.

For two adjacent, incoherent point sources, separated by the Rayleigh criteria, the irradiance distribution will be as shown in Figure 2. The solid line represents the total irradiance distribution while the dashed lines represent the individual irradiance distributions. Rayleigh defined the limit of resolution for circular apertures as the location of the first principle minimum of one irradiance distribution and the first principle maximum of the other irradiance distribution at the same point in the image plane. The same limit can be applied to rectangular apertures. In Figure 2, the irradiance has been normalized for clarity.

In 1964 J.L. Harris (3) used the concept of analytical continuation and a prior (known in advance) information about the object to extend resolution beyond the Rayleigh limit (5:309). Harris proved that continueing or extrapolating the function beyond the known bounds was possible using the fact that analytic functions are unique beyond the cutoff frequency of the filter used. He proved that sampling the irradiance distribution from a finite object of known extent could be used along with the properties of analytic functions
(1:133) to resolve two point sources separated by 20% of the classical Rayleigh resolution limit. This method of Harris used spectral extrapolation to reconstruct the object. Since the two point sources were

Figure 2. Minimum Rayleigh Resolution
closer than the Rayleigh criteria, this reconstruction scheme was also a superresolution process. This theory did not hold up under severe scrutiny as Harris neglected noise and did not know at the time that his set of simultaneous equations was extremely 111-conditioned (3:1481).

After analytical continuation was used to extrapolate the spectral components of a finite object with a priori knowledge of its maximum dimensions, it was realized that
noise must be taken into account (6,7) to achieve any measurable degree of superresolution. One of the earliest methods used to superresolve objects was the iteration method proposed by Gerchberg (7). Gerchberg utilized a specific iteration method derived from the general method of Youla (8). The method of Youla uses orthogonal projections in a well-posed Hilbert space and a priori knowledge of the extent of the object to remove any spectral component higher than the cut-off frequency. Gerchberg theorized that any component measured at a higher frequency than the cut-off frequency had to be a noise component, and was therefore subtracted out. This method was iterated until the measured output past the cut-off frequency was below some threshold level. Gerchberg also reasoned that noise could not be analytically continued since it was not band limited.

Gerchberg did not realize at the time that his matrix methods were unstable as Byrne, et al, pointed out in their 1983 article (6). Broadband noise served to cause spurious oscillations in the data making the restoration scheme suspect. After a good noise estimation was used, Byrne, et al, were able to use a Gerchberg type algorithm to obtain a reasonable superresolved object.

To further the work of superresolution, Mammone and Eichman (2) used optimum linear programming techniques to smooth the data thus providing a stable, well-conditioned matrix solution to the image restoration problem. Their initial assumption was similiar to that of Harris (3) in that
the image irradiance could be sampled and the object reconstructed from a set of linear equations. The matrix solution can be represented as

$$
\begin{equation*}
\vec{i}=\vec{A} \vec{O} \tag{1.1}
\end{equation*}
$$

where \vec{i} and \vec{o} are n dimensional vectors representing the image irradiance and object irradiance reapectively. \bar{A} is an n by n transformation matrix obtained from the discretized solution of the object vector $\overrightarrow{0}$ from

$$
\begin{equation*}
i(x 1)=|h(x i ; x 0)|^{2} * o(x 0) \tag{1.2}
\end{equation*}
$$

The complete description of incoherent imaging is contained In the next chapter. Mammone and Eichman chose to make the transformation matrix, \bar{A}, stable by filtering methods. By filtering, high frequency noise is eliminated as well as making the inversion of the matrix \bar{A} possible, thus yielding a solution for $\overrightarrow{0}$.

While all of the above methods use spectral extrapolation and symmetric low pass spectral filters, Cathey, et al, (9) have proposed a superresolution concept utilizing the same bandwidth as the extrapolation method, but using bandpass, or multi-aperture systems and interpolation instead of extrapolation to achieve superresolution. It is postulated that for each imaging situation, there exists a potential "best" aperture window to superresolve the object.

Using similiar reconstruction techniques in the frequency domain, the object was consistently better resolved using band pass techniques instead of low pass filtering.

Research Proposal

In this thesis effort, incoherent light will be used along with a multiple aperture system to develop a mathematical model for superresolving an object. By using incoherent light, the transfer function of the pupil, or aperture, is not as straight forward as the coherent case, but the matrix method of inverting the transformation matrix seems viable. To effectively evaluate the optimum pupil function, that pupil function yielding the minimum error will be judged as the best pupil function for a given fill ratio, where the fill ratio is the number of apertures divided by the total number of available windows (9:247). The premise to be proved is that for a given fill ratio, band pass filtering instead of low pass filtering provides better resolution using the proposed algorithm.

II. Theory of Incoherent Imaging

The purpose of this chapter is to summarize the theory of incoherent imaging. This summary utilizes a linear systems approach similiar to chapter six of reference one. By using a systems approach, the properties of an optical system can be given in terms of input, transfer function or impulse response, and output, irrespective of the number and type of internal optical elements. For optical systems, these properties can be summarized in terms of its exit or entrance pupil, effective focal length, and its output with an input consisting of a point source on the optic axis. In this particular case, images are located as predicted by geometric optics and the system is considered to be diffraction limited (1:103).

FIGURE 3. Generalized 1-D Image Model

Referring to figure 3 , the imaging system can be represented as a "black box" consisting of an entrance pupil and an exit pupil. The properties of the entire system can be completely described by specifying the properties of the entrance pupil or exit pupil. It is assumed that the entire optical system can be adequately described by geometric optics and that all diffraction effects can be associated with the entrance or exit pupil. The entrance and exit pupils are geometric projections of one another which enables an equivalent analysis using either one (1:102-103).

Since geometric optics adequately describe the behavior of light between the entrance and exit pupils, diffraction dominates the behavior of light from the object to the entrance pupil and from the exit pupil to the geometric image plane. Since diffraction effects can be associated with either the entrance or exit pupil, all diffraction effecte will be associated with the exit pupil in the context of this paper. This approach is acceptable since the exit and entrance pupil are geometric images of each other (1:102).

Using the notation found in Goodman's text (1) the image amplitude distribution can be expressed as

$$
\begin{equation*}
U_{i}(x i)=\int_{-\infty}^{\infty} h(x i ; x o) U_{0}(x o) d x o \tag{2.1}
\end{equation*}
$$

where $U_{i}(x i)$ is the image amplitude, $h(x i)$ is the impulse response or transfer function, and $U_{0}(x o)$ is the object
amplitude distribution. The image plane is $\times 1$, the object plane xo, and the exit pupil plane is x. If the lens law for imaging is satisfied, then $h(x i)$ is the Praunhofer
diffraction pattern of the exit pupil centered at xi = - Mxo where M is the magnification of the system. Notice that the system is inverted as represented by the negative sign (1:95). The impulse response can be written as

$$
h(x i ; x 0)=k \int_{-\infty}^{\infty} p(x) \exp ((-2 \pi j / \lambda d i)(x i-M x 0) x) d x
$$

with the understanding that the pupil function, $P(x)$, is either zero or one depending on whether it blocks or passes light in that particular interval, dx. In equation (2.2), $h(x i ; x 0)$ can be described as the Fourier Transform (FT) of the pupil function evaluated at the spatial frequencies $f x=$ xi/ddi. Also, K is a complex constant that will be discussed later. By appropiate change of variables, the impulse response can be rewritten as

$$
\begin{equation*}
h^{\prime}(x i ; x 0)=k \int_{-\infty}^{\infty} p\left(\lambda d i x^{\prime}\right) \exp \left(-2 \pi j\left(x i-x 0^{\prime}\right)\right) d x^{\prime} \tag{2.3}
\end{equation*}
$$

where $x^{\prime}=x / \lambda d i$ and $x o^{\prime}=$ Mxo. By defining $U_{g}(x i)$ as the geometric image, the real image can be described as the convolution of the geometric image with $h^{\prime}(x i)$, the modified impulse response. Equation (2.4) is the convolution integral representing the final image as the convolution of the geometric image with the modified impulse response, $h^{\prime}(x i)$.

$$
\begin{equation*}
U_{i}(x i)=k \int_{-\infty}^{\infty} h^{\prime}\left(x i-x o^{\prime}\right) U_{g}\left(x o^{\prime}\right) d x o^{\prime} \tag{2.4}
\end{equation*}
$$

Since the final expression will be normalized with respect to magnitude, all constant multipliers, real or complex can be ignored (1:105).

Up to this point, amplitude has been the subject of our derivations, but irradiance (watts/area) is the measured quantity. The irradiance is the infinite time average of the amplitude squared as shown in equation (2.5).

$$
\begin{equation*}
I_{i}=\left\langle U_{i}(x i) U_{i}^{*}(x i)\right\rangle \tag{2.5}
\end{equation*}
$$

The brackets denote the infinite time average and $U_{i}^{*}(x i)$ designates the complex conjugate of $U_{i}(x i)$. For real sources and incoherent 1 ight,

$$
\begin{equation*}
I_{g}(x o)=\left\langle U_{g}(x o)\right\rangle^{2} \tag{2.6}
\end{equation*}
$$

where g designates geometrically predicted quantities. The final irradiance image is

$$
\begin{equation*}
I_{i}(x i)=k \int_{-\infty}^{\infty}\left|h\left(x i-x o^{\prime}\right)\right|^{2} I_{g}\left(x o^{\prime}\right) d x o^{\prime} \tag{2.7}
\end{equation*}
$$

where the k represents a constant multiplier. It can be easily seen that the final irradiance image is again a convolution of a transfer function and a predicted geometric
quantity. The irradiance transfer function is the modulus of the impulse response, $h^{\prime}(x i)$, squared. This implies that there is no phase information for incoherent imaging. (1:109)

For ease and convenience, let

$$
\begin{equation*}
G_{g}(f x)=\frac{F T\left(I_{g}\left(x 0^{\prime}\right)\right)}{E T\left(I_{g}\left(x 0^{\prime}\right)\right)} \text {, evaluated at } f x=0 \tag{2.8}
\end{equation*}
$$

where $G_{g}(f x)$ represents the normalized Fourier transform of the geometrically predicted irradiance image of the object. Likewise

$$
\begin{equation*}
G_{i}(f x)=\frac{F T\left(I_{i}(x i)\right)}{F T\left(I_{i}(x i)\right)} \text {, evaluated at } f x=0 \tag{2.9}
\end{equation*}
$$

where $G(f x)$ is the normalized Fourier transform of the diffraction limited image. The irradiance transfer function, $H(f x)$, is (1:114)

$$
\begin{equation*}
H(f x)=\frac{F T\left(\left|h^{\prime}(x i)\right|^{2}\right)}{E T\left(\left|h^{\prime}(x i)\right|^{2}\right)} \text {, evaluated at } f x=0 \tag{2.10}
\end{equation*}
$$

where again normalization has taken place. Thus, in the frequency domain.

$$
\begin{equation*}
G_{i}(f x)=H(f x) G_{g}(f x) \tag{2.11}
\end{equation*}
$$

This last equation can be derived using the convolution theorem (13:314).

The optical transfer function, H, of the incoherent

irradiance imaging system is

$$
\begin{equation*}
H=\left|F T\left(h^{\prime}\right)\right|^{2} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
h^{\prime}=F T(P) \tag{2.13}
\end{equation*}
$$

It can be shown that for $f(x)$ a real function of x that

$$
\begin{equation*}
\operatorname{FT}(f(x) * * f(x))=|F T(f(x))|^{2} \tag{2.14}
\end{equation*}
$$

By using the autocorrelation theorem (13:200). Therefore

$$
\begin{equation*}
\left|F T\left(h^{\prime}\right)\right|^{2}=P * * P \tag{2.15}
\end{equation*}
$$

which leads to the final expression for the optical transfer function, $H:$

$$
\begin{equation*}
H=P * * P \tag{2.16}
\end{equation*}
$$

where ** denotes autocorrelation. Also, all subscripts, etc, have been dropped for clarity. Now, equation (2.11) can be expressed as

$$
\begin{equation*}
\mathbf{G}_{i}=(\mathbf{P} * \mathbf{P}) \mathbf{G}_{\mathbf{g}} \tag{2.17}
\end{equation*}
$$

which $i \ldots$ the final spectral domain representation of the imaging relationship between the object and the optical system. Figure 4 illustrates the normalized transfer function for a rectangular pupil function. As can be seen, the OTF, H, has a definite cutoff frequency, fc, which is a function of the system parameters. The modulus of $H,|H|$ is known as the modulation transfer function, MTF (1:114).

For optical systems it would seem that a simple Fourier inverse of the frequency domain representation of the image would easily yield the original object. Equation (2.18) represents the inverse Fourier transform needed to recover

Figure 4. OTF of $P=\operatorname{Rect}(x)$
the object from the spectral parameters

$$
\begin{equation*}
E T^{-1}\left[G_{i}\right]=F T^{-1}\left[\frac{\left(G_{0}\right)}{(H)}\right]=I(x 0) \tag{2.18}
\end{equation*}
$$

The problem with resolution is in the use of limited apertures and noise, since limited apertures attenuate the high spatial frequency terms essential for high resolution and the noise terms are greatly magnified in the inverse process, as will be explained later. Larger pupils would alleviate much of the problem but there is a physical limit to the size of usable optical systems, especially for space applications.

In the next chapter, a particular matrix method for increasing resolution with limited spatial bandwidth will be examined. It will be shown that increased resolution can be achieved under certain conditions. By knowing a priori that the object is finite with a known maximum extent, and by using a smoothing parameter, the increase in resolution can be quite substantial.
III. Superresolution Scheme

Introduction

The purpose of this chapter is to develop a mathematical model for incoherent imaging with limited bandwidth optical systems. The limited bandwidth is realized by symmetric multiple apertures as well as the traditional low pass (in spatial frequency) model. It has been speculated that for a limited bandwidth system, better resolution could be obtained using a bandpass aperture insead of the low pass system traditionally used (9). Multiple aperture systems consisting of relatively small, precise optical elements could simulate larger optical systems which are costly and extremely hard to manufacture. The optical systems will be described in terms of its optical transfer function, H, and its exit pupil, P. The mathematical model uses discrete values with vector and matrix analysis. For the purpose of this thesis, the truncation errors and sampling errors will not be discussed. The data is assumed to be adequately sampled and the truncation errors are considered to be negligible compared to the noise. This chapter describes the discrete solution to equation (2.18) using linear methods.

Math Model

To effectively model the imaging system, a priori knowledge of the object is of prime importance in reconstrucing the object from image data. The object is known to be finite within the first M units of the N bit
object vector, x_{0}. The finite object can be represented by $\vec{D} \overrightarrow{X o}$ where \bar{D} is the diagonal matrix (all elements zero not on the diagonal)

$$
\begin{equation*}
\bar{D}=\operatorname{diag}\left(\frac{1,1, \ldots, 1,0,0, \ldots, 0)}{M} \frac{N-M}{N}\right. \tag{3.1}
\end{equation*}
$$

The matrix \vec{D} is known as the spatial truncation matrix. The spatial truncation matrix has been zero-filled to an $N \times N$ matrix to match the order of subsequent matrices.

The N bit discrete Fourier transform (DFT) of the truncated object is

$$
\begin{equation*}
\operatorname{DFT}\left(\overrightarrow{X_{0}}\right)=\bar{F} \bar{D} \vec{X} \tag{3.2}
\end{equation*}
$$

and \bar{F} is the matrix representing the Fourier transformation, DFT, whose components are

$$
\begin{align*}
& \bar{F}(m, n)=\exp (-j 2 \pi m n / N) \tag{3.3}\\
& \text { for } m, n=0, N-1
\end{align*}
$$

Thus, \bar{F} is a complex, $N \times N$ matrix.
In any optical optical system the pupil is finite and passes only a limited number of spatial frequency terms. In an incoherent imaging system, the transfer function is the autocorrelation of the pupil function, as derived in chapter two. Since only a finite number of spatial frequency terms
will pass through the optical system, the filtering effect, or transfer function, can be represented by the diagonal matrix B, whose diagonal components contain the appropiate attenuation factors. The matrix B is equal to

$$
\begin{equation*}
B=\operatorname{diag}\left(D C, f_{\mid}, f_{2}, \ldots, f_{c}, 0,0, \ldots 0, f_{c}, \ldots f_{2}, f_{\mid}\right) \tag{3.4}
\end{equation*}
$$

where $D C$ is the $D C$ coefficient, the f_{i} 's are the various spatial frequency coefficients, and f_{c} is the cutoff frequency (highest spatial frequency passed by the system). The symmetry of the \bar{B} matrix is the same as the symmetry of the forthcoming DFT's. For appropiate multiplication of vectors and matrices, either the \bar{B} matrix is changed to the symmetry of the DFT (which it is) or the DFT is rearranged to the symmetry of th \bar{B} matrix. Thus, the spatial frequency representation of the image is $\bar{B} \bar{F} \bar{D} \vec{x}_{0}$. The diagonal elements of \bar{B} are obtained from the specific values obtained from calculating $\overrightarrow{\mathrm{P}} * * \overrightarrow{\mathrm{P}}$. In this thesis, all pupils will be centered and symmetric about the optic axis. It is a property of discrete sequences that an N-bit sequence convolved with an M-bit sequence generates a sequence of length $M+N-1$ (15:12). Thus, for a pupil of length L, the transfer function response will be of length $2 L-1$. As an example, let $\vec{P}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{\prime}(P$ is a column vector, so denotes transpose of the row vector). The convolution of $\overrightarrow{\mathbf{P}}$ with itself will yield the diagonal elements of the matrix \bar{B}, since convolution with itself is autocorrelation.

$$
\vec{p} * * \vec{p}=\left[\begin{array}{c}
1 \tag{3.5}\\
2 \\
3 \\
4 \\
3 \\
2 \\
1 \\
0
\end{array}\right] \quad \text { rearranged } \vec{p} * * \vec{p}=\left[\begin{array}{l}
4 \\
3 \\
2 \\
1 \\
0 \\
1 \\
2 \\
3
\end{array}\right]
$$

where $\vec{P} * * \vec{P}$ has been rearranged to the same symmetry as the DFT in equation (3.2). In the example, the transfer function consists of seven elements which correspond to the DC term plus three positive and three negative spatial frequency terms. Therefore, the four bit pupil passes the first three spatial frequency terms plus the zero frequency or $D C$ term.

So far, the image is represented as $\bar{B} \bar{F} \bar{D} \dot{x}_{0}$. The last step remaining is to convert the spectral representation of the image back to a conventional spatial representation. The normal, noise free, space domain image can be written as

$$
\begin{equation*}
\vec{x}_{i}=F T^{-1} \bar{B} \bar{F} \bar{D} \vec{x}_{0} \tag{3.7}
\end{equation*}
$$

which physically can be expressed as

$$
\begin{equation*}
\vec{x}_{i}=\overrightarrow{A x}_{0}+\vec{n} \tag{3.8}
\end{equation*}
$$

where $\overline{\mathrm{A}}=\overline{\mathrm{FT}}^{-1} \mathrm{BFD}$ and $\overrightarrow{\mathrm{n}}$ is the Gaussian, white, and additive noise vector. The components of $\overline{\mathrm{FT}}^{-1}$ (Inverse Fourier transform matrix) are

$$
\begin{equation*}
\overline{E T}^{-1}(m, n)=\exp ^{\operatorname{exr} m, n}(2 j \pi m n / N) \tag{3.9}
\end{equation*}
$$

$\overline{F T}^{-1}$ is also an $N \times N$ complex matrix.
Solving for $\vec{x}_{\text {o }}$ in equation (3.8) is the mathematical problem of the superresolution process, and thus is the heart of this thesis effort. Equation (3.8) represents the linear transformation of the irradiance from the object plane to the image plane. Also, the problem is compounded by the fact that the image, \vec{x}_{i}, is affected by noise, \vec{n}, in the imaging system. For this paper, the noise is considered to be Gaussian, white, and additive for all frequencies considered. The solution of \vec{x}_{0} from equation (3.8) is not a trivial matter as the matrix A is severely ill-conditioned which can lead to serious problems in the solution of \vec{x}_{0}. A discussion of ill-conditioned matrices follows.

Properties of Ill-conditioned Matrices

The matrix \bar{A} can be severely il-conditioned. Ill-conditioned matrices have the potential to cause very large errors when used to solve linear equations because of the propogation of errors. The length, or size, of a matrix, can be expressed as its norm or magnitude, and is expressed as

$$
\begin{equation*}
\|A\|_{2}=\text { Two norm of } \bar{A} \tag{3.10}
\end{equation*}
$$

where the two norm of \bar{A} is the most restrictive norm (11:26). The two norm of a matrix is defined as the largest singular value (the singular values are represented as s_{i}, for $i=1, k$ where k is the rank of the matrix) of that matrix. The singular values of a matrix are the square roots of the corresponding eigenvalues of the matrix. The condition number of a matrix, $c(\bar{A})$, is a measure of the stability of the matrix. The condition number of the matrix \bar{A} is defined as

$$
\begin{equation*}
c(\bar{A})=\|\bar{A}\|_{2} \quad \times \quad\left\|\overline{A^{-1}}\right\|_{2} \tag{3.11}
\end{equation*}
$$

where the magnitude of $\overline{A^{-1}}$ is equal to the inverse of the smallest singular value of $\bar{A}(12: 166)$.

As an example, let \bar{A} be the 32×32 matrix obtained from (see Appendix B):
$\vec{P}=(1111100000011111)^{\prime}$ and
$\bar{D}=\operatorname{Diag}(1, \ldots 1)$, for $M=32$
where' denotes transpose since \vec{P} is a column vector. From the data table, the largest singular value of \bar{A} is 320 and the smallest singular value is $1.46 \mathrm{E}-4$. Since the magnitude or two norm of \bar{A} is equal to $1 /(1.46 E-4)$, the condition number is roughiy $2 E+10$. Why is the condition number important? The importance of the condition number is

The condition number is a measure of stability in that it gives an upper bound on the possible magnitude of error in the solution of the matrix equation $\overrightarrow{A Y}=\vec{b}$, for \bar{A} the image matrix, \vec{Y} the object, and \vec{b} the noisy object. Let $e(y)$ represent the potential error possible from the solution of $\vec{y}=\vec{A}^{-1} \vec{b}$, and let $e(b)$ represent the error present in \vec{b}, the Gaussian noise. The relative error in the solution for \vec{y} will have the upper bound expressed by

$$
\begin{equation*}
e(y)<=c(\bar{A}) \times e(b) \tag{3.12}
\end{equation*}
$$

For the example cited above, the condition number was approximately $2 E+7$, so the relative error limits can be expressed as

$$
\begin{equation*}
e(y)<=2 E+7 \times e(b) \tag{3.13}
\end{equation*}
$$

where $e(b)$ is usually expressed as the noise variance. It is important to realize that the limit to the error is an upper bound on the error and that not every component of the solution vector will be in error by this amount, but each component could be in error by this amount. The use of condition numbers to test matrices for stability is a figure of merit type relationship. For good linear systems, the condition number should be small. By using the two norm, the most restrictive error potential was achieved. other, simpler norms could have been used, but generally lead to
higher condition numbers. Another way of looking at condition numbers is to say that a matrix with a large condition number is an almost singular matrix, meaning that the matrix inversion is quite suspect. From linear algebra, a unique solution to a matrix transformation is only possible when the inverse to the matrix exists. Therefore, solving a linear system of equations with an almost singular matrix means that the matrix is not very stable and can cause large errors in the solution.

Least Squares Solution

The problem of imaging can be restated as

$$
\begin{equation*}
\vec{A} \vec{x}_{0} \cong \vec{x}_{i} \tag{3.14}
\end{equation*}
$$

where \cong implies that a least squares solution is being sought. The notation uses $x_{i i}$ as the i th component of the vector \vec{x}_{i}. The least squares solution minimizes the difference expressed by

$$
\begin{equation*}
\mid \overrightarrow{\mathrm{A}}_{0}-\overrightarrow{\mathrm{x}}_{\mathrm{i}} \|_{2}=\text { error } \tag{3.15}
\end{equation*}
$$

where the subscript 2 represents the 2 norm of the vector, also known as the Euclidean distance, as shown in equation (3.16).

$$
\begin{equation*}
\mid \overrightarrow{\vec{x}} \|_{2}=\sqrt{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\ldots\left(x_{n}\right)^{2}} \tag{3.16}
\end{equation*}
$$

To implement the least squares solution, the matrix \bar{A} must be decomposed into a product of a diagonal matrix and two orthogonal matrices. The components of the diagonal matrix will be the singular values of \bar{A}. The matrix \bar{A}, where $\bar{A}=\overline{F T}^{-1} \overline{B F D}$, can be rewritten as a product of three matrices (12:237)

$$
\begin{equation*}
\bar{A}=\overline{U S} \bar{U}, \tag{3.17}
\end{equation*}
$$

where \bar{U} is an $N X N$ orthogonal matrix, and \bar{V} ' is an $L X L$ orthogonal matrix. \bar{S} is an $N X L$ orthogonal matrix whose diagonal elements are the singular values of A and are in decreasing order. \bar{S} looks like

$$
\begin{equation*}
\bar{s}=\operatorname{Diag}\left(s_{1}, s_{2}, s_{3}, \ldots, s_{m}, 0.0 \ldots 0\right) \tag{3.18}
\end{equation*}
$$

where $s_{\mid}>s_{2}>s_{3}>\ldots>s_{m}$. There are only M singular values since \bar{D} reduces the rank of \bar{A} to M.

The least squares method of solving linear equations serves to minimize the two norm of the difference vector as expressed in equation (3.16). Substitute for \vec{A} in (3.15) to obtain

$$
\begin{equation*}
\left\|\overrightarrow{U S} \bar{V} \cdot \stackrel{\rightharpoonup}{x}_{0}-\vec{x}_{i}\right\|_{2}=\text { error } \tag{3.19}
\end{equation*}
$$

where $\bar{A}=\bar{U} \overline{S V}^{\prime}$, Since \bar{U} is orthogonal, $\bar{U} \bar{U} '=\bar{I}$, where \bar{I} is the
identity matrix. By multiplying each term by \bar{U} ', the expression becomes

$$
\begin{equation*}
\left\|\bar{s} \bar{v} \cdot \vec{x}_{0}-\bar{u} \cdot \vec{x}_{i}\right\|_{2}=\text { error } \tag{3.20}
\end{equation*}
$$

where the error is the same, since multiplying a vector by an orthogonal matrix does not magnify the norm of the vector(12:282). By substitution, equation (3.20) becomes

$$
\begin{equation*}
\|\vec{s} \vec{y}-\vec{b}\|_{2}=\text { error } \tag{3.21}
\end{equation*}
$$

where $\bar{y}=\bar{V} \cdot \vec{x}_{0}$ and $\vec{b}{ }^{\prime}=\bar{U} \vec{x}_{i}$. Therefore, \vec{x}_{0} solves the least squares problem (3.15) if and only if $\vec{y}=\vec{V} \vec{x}_{0}$ solves

$$
\begin{equation*}
\|\vec{s} \vec{y}-\vec{b}\|_{2}=\text { minimum error } \tag{3.22}
\end{equation*}
$$

Since $\overline{\mathrm{S}} \overrightarrow{\mathrm{Y}}$ is a diagonal matrix composed of the singular values of \bar{A} times Y_{i}, the difference vector of (3.15) can be expressed as

$$
\begin{align*}
& \quad \vec{s} \vec{y}-\vec{b} \cdot \|_{2}=\left[\left(s_{1} y_{1}-b_{1}\right)^{2}+\ldots\left(s_{m} y_{m}-b_{m}^{\prime}\right)^{2}+b_{m+1}^{\prime 2}\right. \\
& \left.+\ldots b_{n}^{\prime 2}\right]^{\prime} \tag{3.23}
\end{align*}
$$

The minimum error solution satisfies

$$
\begin{equation*}
s_{i}\left(y_{i}\right)-b_{i}=0 \text { or } y_{i}=b_{i} / s_{i} \tag{3.24}
\end{equation*}
$$

for all values of 1 . By back substitution,

$$
\begin{equation*}
Y_{m}=b_{m}^{\prime} / s_{m}=\sum_{j=1}^{\llcorner } \bar{U}^{\prime}(m, j) x_{i J}\left(1 / s_{j}\right) \tag{3.25}
\end{equation*}
$$

and since $\overrightarrow{\mathrm{y}}=\overline{\mathrm{V}} \cdot \mathrm{x}_{\mathrm{x}}$

$$
\begin{equation*}
\vec{x}_{0}=\vec{V} \vec{y} \tag{3.26}
\end{equation*}
$$

since \bar{V} and \bar{V} ' are orthogonal matrices. By substituting for \vec{Y} in equation (3.26), the mth component of \vec{x}_{0} is

$$
\begin{equation*}
\left(x_{0}\right)_{m}=\sum_{k=1}^{L} \bar{v}(m, k) \sum_{j=1}^{L} \bar{U} \cdot(m, j)\left(x_{i j}\right)(1 / s, j) \tag{3.27}
\end{equation*}
$$

which can be rearranged to yield

$$
\begin{equation*}
\left(x_{0}\right)_{m}=\sum_{k=1}^{L} \sum_{j=1}^{L} \bar{U} \cdot(m, j)\left(x_{i}\right) \quad\left(1 / s_{j}\right) \bar{v}(m, k) \tag{3.28}
\end{equation*}
$$

By using vector notation, equation (3.27) and (3.28) can be rewritten as"

$$
\begin{equation*}
\hat{x}_{0}=\sum_{j=1}^{L}\left(1 / s_{j}\right)\left(\vec{x}_{i} \cdot \vec{u}^{\prime}\right) \vec{v}^{j} \tag{3.29}
\end{equation*}
$$

where \vec{u}^{\jmath} and \vec{v}^{\jmath} are the left and right singular vectors obtained from the jth column of the matrices \bar{U} and \bar{v} respectively. The solution vector, \hat{X}_{0}, denotes a least squared solution, and - is the dot product operator. This solution is also referred to as the inverse filtering
solution, since the least squares solution serves to reverse the matrix operation and return the original (object) vector in our specific application (14:205).

Modifications to Least Squares Method

Since there are very small singular values in the matrix \bar{A}, the presence of noise will greatly reduce the effectiveness of the least squares solution in the high order terms. By using the method of Rushforth, et al, (14), $1 / s_{k}$ is replaced with an appropiate smoothing or regularization function to attenuate the high order terms and pass the lower order terms unchanged. The smoothing function serves to avoid overamplification of the higher order noise terms. For this thesis, $1 / s_{K}$ is replaced with $f\left(s_{K}\right)$, where

$$
\begin{equation*}
f\left(s_{K}\right)=\frac{s_{K}^{3}}{s_{K}^{4}+\alpha} \tag{3.30}
\end{equation*}
$$

Choosing an appropiate α prevents overamplification of the high order noise terms. a was chosen in most cases to be 10E-10 as this provided adequate attenuation with respect to the smaller singular values. Various other smoothing functions and concepts could be considered. The basic concept is to reject those higher order terms knowing as much about the object as possible beforehand. To get high resolution, some high order terms must be present in the solution. Therefore, if the object is known beforehand to be less than 10 units long, the spatial truncation matrix, $\overline{\mathrm{D}}$.
solution. Therefore, if the object is known beforehand to be less than 10 units long, the spatial truncation matrix, \bar{D}, will be finite for only 9 elements. By truncating at nine elements, the matrix \bar{A} will be of rank less than or equal to nine, so there will be only nine singular values, thus the lower singular values will already be rejected (12:336).

The following chapter will describe the computer program and computational algorithms used to implement the least squares solution.

IV. Computer Model

Introduction

The purpose of this chapter is to describe the analytical implementation of the least squares superresoslution scheme as described in the previous chapters. The computer system used was a VAX $11 / 785$ utilizing the VMS 4.1 operating system. The subroutines used for convolution, Gaussian random number generation, and singular value decomposition of matrices were from the International Mathematical and Statistical Subroutine Library (IMSL) (10). The matrix multiplication routines were written by the author. The program was written using standard Fortran 77 (18).

Figure 5. is a flowchart depicting the superresolution process as described in the previous chapter. Refer to this figure throughout the chapter for reference. A complete listing of the program, SRES, is contained in the appendix.

Computer Model

The following variables are defined for convenience.

```
L = pupil length (integer)
N = dimension of square matrix A (integer)
M = finite, known extent of object
\alpha = smoothing coefficient (real exponential)
P = pupil vector
DSEED = double precision constant
sj = jth singular value (real)
* = convolution operator
Q = matrix named Q
r = vector named r
ri}=1\mathrm{ th component of r
```

$$
\begin{aligned}
& \bar{A}^{-1}=\text { inverse of matrix } \bar{A} \\
& \bar{A}^{\prime}=\text { transpose of matrix } \bar{A} \\
& \text { SNR }=\text { power signal to noise ratio } \\
& P S E Q=\text { power in discrete sequence } \\
& \sigma_{n}^{2}=\text { noise variance } \\
& \cdot=\text { dot product operator }
\end{aligned}
$$

The first variable to define is N, dimension of the transfer matrix, \bar{A}. The criterion for N was that it be large enough to model an imaging system but small enough to operate efficiently with the computer. Also, N was chosen to be a power of two, since this makes the system easier to work with, with respect to the IMSL subroutines. N was chosen to be 32 for all configurations. By choosing a value for N, the values for M and L are somewhat restricted. The length of the pupil, L, must be less than or equal to $N / 2$, since the matrix \bar{B} is composed of elements of $\vec{P} * \vec{P}$ and convolution of two vectors lenghens the resulting vector. Also, the object dimension, M, cannot be larger than N because of the matrix vector multiplication scheme.

The computer program is interactive and prompts the operator to input values for $L, M, S N R, ~ D S E E D$, and α. The operator is then prompted to enter values for the pupil vector and object vector. The program uses the pupil vector to generate the $\overrightarrow{\mathrm{P}} * \overrightarrow{\mathrm{P}}$ vector which in turn provides the elements of the diagonal matrix. \bar{B}. The IMSL subroutine VCONVO performs the necessary convolution. The values for M and N are sufficient to create the matrices \bar{F} (Fourier transform matrix), $\overline{F F}$ (inverse Fourier transform matrix), and \bar{D} (spatial truncation matrix of M diagonal elements). With
the matrix \bar{B} available, the matrix product $(\overline{F F})(\bar{B})(\bar{F})(\bar{D})=\bar{A}$ (\bar{T} in program SRES) can be calculated. After the matrix \bar{A} is calculated, the product $\vec{A} \vec{x}_{0}$ can be calculated to yield the noise free image. With the noise free image avallable, the noisy image can be calculated.

The operator has already input the value for the signal to noise ratio (SNR) which can be used with the noise free image to create a noisy image. The noise is assumed to be Gaussian, white, and additive for all spatial frequencies. The definition of SNR is

$$
\begin{equation*}
\text { SNR }=\frac{\text { PSEQ }}{\sigma_{n}^{2}} \tag{4.1}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\sigma_{n}^{2}=\frac{\text { PSEQ }}{\text { SNR }} \tag{4.2}
\end{equation*}
$$

where the noise variance is represented as σ_{n}^{2} and PSEQ is the power in the image sequence. The power in the vector \vec{x} is defined as

$$
\begin{equation*}
\text { PSEQ }=(1 / M) \sum_{k=1}^{M}\left(x_{k}\right)^{2} \tag{4.3}
\end{equation*}
$$

where the vector is of length M. The noise variance, σ_{n}^{2}, is the power in the noise vector \vec{x}_{n} and is defined as shown in equation (4.3). The noise variance assumes a zero mean. The variance is also equal to the square of the standard
deviation of the noise distribution. With SNR being provided by the operator, the variance can be calculated from equation (4.2). Using the IMSL subroutine GGNML and the value of the variance, the Gaussian noise vector is generated. The noise is amplitude at this point, so each term is squared for power and added termwise to the original noiseless image to create the noisy image. At this point, the least squares process can be implemented. After the matrix $\bar{A}(\bar{T}$ in computer program) has been created, the IMSL subroutine LSVDF is used to create the three matrices, $\bar{U}, \bar{S}, \bar{v}$ ', which are to be used in the superresolution process. After the singular values have been generated, the substitution for $1 / s_{k}$ is implemented using the smoothing parameter, α, to negate the effects of the very small singular values of \bar{A}.

As can be easily seen, the computer program performs the exact operations described in chapter III. In the next chapter, the results for various pupil configurations and parameter values will be examined. It will be shown that the least squares method with a priori knowledge can resolve two incoherent point sources not ordinarily resolved in a conventional low pass imaging system.

SRES Computer Program

Figure 5. Superresolution Flow Chart

V. Results and Conclusions

Introduction

This chapter presents the results and conclusions obtained using the computer program SRES to simulate superresolution using the least squares method outlined in the previous chapters. In review, $1 / 2 \mathrm{P}$ is one-half of the symmetric pupil function of length L, where $L<=16$. M is the assumed or known maximum length of the object, where $M<=$ 32 since $N=32$ is the square dimension of the transfer matrix $A(T$ in SRES). SNR is the signal to noise ratio and is the smoothing or regularization constant used to attenuate the effect of the very small singular values. The error used throughout this chapter is the Euclidean distance or two norm of the difference vector between the object and noisy image where the image is the superresolved image. The effects of the different parameters will be investigated and discussed. After the results are presented, a conclusion section will close out the formal portion of this thesis. Also, pupil function performance for various pupils is contained in appendix B.

Results

Band-Pass vs Low-Pass Pupil. Both pupils considered contained six apertures corresponding to the six elements of the pupil vector. The low pass half-pupil was (00000111)', and the high pass half-pupil was (11100000)'. Both pupils
column vectors as denoted by the transpose symbol. The modulation transfer functions (MTF) for each of these pupils is shown in Fig. 6. As can be seen, the band-pass pupil passes higher frequency components than the low-pass pupil. The band-pass pupil passes the higher spatial frequency terms needed to resolve the two incoherent point sources located closer than the normal resolution distance. Figure 7 illustrates the effect of using the $h i g h$-pass pupil instead of the low-pass pupil for superresolution. By using the band-pass pupil, the superresolution scheme served to separate the two incoherent point sources, with only two small (40\%) side lobes present. By using a threshold detection criteria, the high pass pupil can superresolve the object consisting of the two incoherent point sources using the least squares method and a smoothing function, while the low pass pupil cannot superresolve the object.

Effect of A Priori Knowledge. Figure 8 illustrates the importance of a priori knowledge using the superresolution algorithm. By using the low-pass pupil shown, the normal image does not resolve the two incoherent point sources (object) of Figure 7-a). The superresolution scheme is able to resolve the object only at $M=8$, where M is the a priori knowledge that the object was less than or equal to 8. The effects are quite interesting for $M=16$, as the algorithm tries to restore the object, but there is insufficient information to do so. Elgure 11 presents a plot of M vs Error for the five various pupil functions at a

Figure 6. Examples of Modulation Transfer Functions
insufficient information to do so. Figure 11 presents a plot of M vs Error for the five various pupil functions at a constant $S N R=100$. As can be seen, the known information concerning the object does reduce the error in many cases. It is interesting to notice that in some cases, the error is almost constant for the values of M up to the bend in the curve. The error for P3, P4, and P5 are all fairly constant up to $M=24$. The smaller pupils exhibit similiar responses for smaller values of M. It is important to define the object domain as close as possible in order to achieve reliable and accurate results.

Effect of α. Figure 9 illustrates the effect of the smoothing parameter, α. As can be seen, holding all parameters but constant, the higher values for $(10 E-5,10 E-10)$ serve to resolve the object quite well with a rather limited pupil. As aproaches zero, the effect of the noise due to the ill-conditioned nature of the system is obvious. As can be seen, the processed images using very small values for a are quite haphazard and look nothing like the original object, even with the high $S N R=100$. Due to the nature of the imaging problem, the superresolution alogorithm must use a good estimate for the smoothing parameter, a, in order to achieve accurate results.

Effect of Noise. Figure 10 serves to illustrate the effects of noise on the superresolution technique using the least squares method with a smoothing parameter. The
superresolved images all appear to be the same, illustrating the noise resistant nature of the superresolution algorithm. Figure 12 also shows the noise resistance of the least squares method. For SNR equal to 100,50 , and 5 ; the error vs pupil size is almost equal for each pupil. Only at the high SNR of 2 does the noise dominate. This algorithm has proved to be quite good in the presence of moderate noise.

Error Analysis. Figures 10 and 11 illustrate the sources of error present using the least squares method for superresolution. The error is expressed as the distance between the object and superresolved image, using the Euclidean distance, or two norm.

In Figure 10, the error is plotted on the vertical axis and the pupils are plotted on the horizontal axis. In this graph, all pupils are the high pass versions with $P 1$ consisting of 6 elements, P2 consisting of 8 elements and so forth with the last pupil, p5 consisting of 14 elements. Each curve is at a constant SNR. The error is seen to decrease as the pupil elements are increased. This is logical, since the more pupil elements available, the more spatial frequencies passed by the system, resulting in more information available for the algorithm.

In Figure 11, the effect of a priori information is analyzed. The known extent of the object, M, is plotted versus error for constant pupils. At the extreme, with the object known to be within 32 bits, the larger pupils have the

Figure 7. Superresolution Example \#1

Figure 8. Superresolution Example \#2

8

c) Processed Image, $M=32$
$\alpha=10 \mathrm{E}-10$, $\mathrm{SNR}=5.0$
$1 / 2 \mathrm{P}=[11100000]$

Figure 10. Superresolution Example \#4

Figure 11. Error ve Known Length of Object

Figure 12. Error vs Size of Pupil
least error, which is logical. As the known extent of the object increases, or as M decreases, the error decreases, with the larger pupils approaching the constant level quite rapidly. For the 10,12 , and 14 bit pupils, the error is constant up to $M=24$, while the 6 and 8 bit pupils decrease at different rate that appears almost linear. The effect of M is obvious, but as can be seen from some of the pupils, the increase in information concerning the maximum extent does not yield appreciable results concerning error reduction. As an example, for $P 3$ consisting of 10 bits, the error for $M=24$ is about the same as for $M=8$. For $P 3$, the information gained by knowing that $M=8$ instead of at least 24 is slight. The error is seen to be almost linear over some range, and almost flat up to a threshold level.

Conclusions

Based on the performance of the computer simulation, superresolution is achievable in limited bandwidth optical systems. The performance of the superresolution process is affected by:

A priori information available concerning the object Type of pupil And noise in the system.

By using a smoothing parameter, α, the overamplification of the high order noise terms is avoided. With finite precision arithmetic and noise, the very small singular values of the transfer matrix must be attenuated in order to preserve the identity of the original object. The problem with
attenuating the high order singular values is that these singular values correspond to the high order spatial frequency terms needed for resolution. Obviously some high order terms are necessary for resolution, but amplification of the noise breaks down the superresolution process when high order singular values are present. For this one-dimensional case, the pupil was assumed to be symmetric and quite limited with a maximum length of 16 . For a more rigorous approach, the pupil length could be increased, but the resulting increase in computer complexity would be quite costly. The results obtained graphically and in Appendix B illustrate the importance of the different parameters and verify the premise that high pass or band pass pupils will image better with this particular superresolution algorithm than low pass pupils of the same bandwidth. By knowing as much as possible about the noise and object, superresolution is achievable and possible using the least squares method.

Appendix A: Computer program listing for computer program SRES.

```
    FRCGRAN SEES
    A IS THE FLPIL VECTCE CR LENGTH LA, LE=LE SIACE
    2 IS CCNVELVEC hITH ITSELF
    FLFIL NLST SE<= 1S, SINCE NaX=3こ TCIJL
    IhK IS A WJKK vECTCR LF LENGTR M+1
    FCRNAT(EIC.J)
    FCRMAT(IE)
    FCRMAT(' ALPRA=',E1C.1)
    FCRMAT(FE.G)
    FCRMAT('INPLT: CFFLPIL EITSIA A, TFEPUPIL')
    FGFMRT('PSEG= 'F10.4)
    FCRMAT(' INPLT NAX SIZE (F CEJECT SPACE, (,= TC N')
    FERMAT(' ENTER PLFIL ELENENT',I3)
    FERMAT(' ALFHA=E,LSE EXFCNENTIAL F(GN')
    FCRMAT(' N,L,N=',IZ,1X,IE,1X,I3)
    FJRMAT(IJ,FS.2)
    FCRMAT(F14.4)
    FORMAT ('L EIT FLFIL VECTCR, INFLT L')
    FGRMAT (' SNG = ', 1X,FS.1)
    FCRMAT(' INPLT SIGNAL TE NOISE RATIE')
    FORMAT(' INPLT こSEEC')
    FCRMAT(' ')
    FCKMDT(FE.4)
    FLFMAT(: CSEEC=',F12.3)
    FCRMAT(' EVTER CEJECT',IZ)
    FCKMAT(IE,1X,ELC.E,FE.2,FE.2,1X,S(1X,FE.4))
    FCRMAT(' PRCCESSEC INAGE ERGCF= ',FIC.S)
    FGRMAT('SV P F%P こEJ NCR IN AGISE NGI IM NEW IMI)
    FCRMAT(' ')
    FCRMAT(' NC:SY INAGEERR(F=',FIC.5)
    CIMENSICN A(SIZ),E(こSE),IHK(1C),F(< (5t),こ(25t,25t)
    CIHENSIEN XI(25\epsilon),X0(256),XX(256),Sj(256),YY(256)
```



```
    ECL3LE FGECISEEN [SEEC,EESEEC
    CONPLEXSLM
    CこNPLEX F(25t,25\epsilon),FF(25t,25\epsilon),F[(25t,25\epsilon)
    CCMFLEX FFO(256,ごS5),H(25E,こちも)
    COMPLEX FH(25E,25E)
    CIMENSIOA T(32,32),LT(32,32),S(32),WK(E4),SV(32)
    WRITE (E,20)
    ん2ITE (E,15)
    &EAC(S,:)L
    IC=L
    A is the rank of tre fransfef matfix
    A=32
    INFLT MAX OINENSICN CF EQ.ECT,N
    h&ITE(E,E)
    READ(5,2)M
    LA=L
    C INPUT SNG
    hPITE (E.15)
```

 REAO (5,15)SNE
 INPUT CSEED
 [SEEC IS INPLT VARIAELE FCR IMSL KCLIIAE GGNML
 ESEEL INITIATES SEARCF FCF GLLSSIAN NCISE TEEMS
 nใITE(E,1G)
 fEAE (5,<2)CSEEC
 CCSEEC=LSEEC
 INFLT ALFHA
 hरiTE (E,12)
 READ (5,2)ALFFA
 FI=3.1415527
 LQ=LA
 Infui plfil elenents a(I)
 CC 3I I=1,L
 HRITE (S,S)I
 FEAC (5,E)A(I)
 CCNTINUE
 CC 34 I=(IO/2)+1,LA-IC/2
 C(I)=C.C
 continle
 SAVEFLFIL AS GG FCR LATER, LET E=A FCR CCNVC.
 CC 4& I=1,L
 6E(I)=A(I)
 E(I)=A(I)
 continle
 GREATE F%D USING IMSL RGLTINE VCGAVE
 CALL VCCAVO (A,B,LA,LE,IHK)
 CC 52 I=1,N
 F(I)=C.C
 CCNTINUE
 REAREAAGE Pap TC NATCF SYHNETFY CF EFT
 CC 5C I=1.L
 F(I)=A(LA+I-I)
 continle
 J=1
 [J 5S I=N-L+2,N
 F(I)=\Delta(J)
 = J+1
 cEntINlE
 =(LA+1)=C.0
 NCW MAKE FLPIL NETRIX PP (B IN THESIS)
 NATRIX rAS PUFIL ELENENTS ON THE CIACCMAL
 CC 65 I=1,N
 [C GS J=1,N
 FP(I,j)=C.O
 IF(I.EG..)PF(I,J)=P(J)
 ccatinle
 nGh maxe trlacatiEn Natrix c
 N is tre kncma nex cf the ceject
 [C 7C I=1,M
 [C 7C J=1,N
    ```
```

 C(I,J)=1.0
 IF(I.NE.~)O(I,J)=0.0
 continle
 IF (N.EG.N) GETC 155
 CG 75 I= + 1, N
 [C 75 J=(N+1),N
 C(I,~)=0.0
 CONTINLE
 155 hRITE(E,ZC)
C NCh MAKE FT MATRIX ANC FT INYEGSĖ MATRIX
C FIS FT AND FF IS INVERSE FT
CC \&E I=C,N-1
CC \&\& K=C,N-1
F(I+1,K+1)=CEXF(CNPLX(C.C,-2*FI*I\#K/N))
FF(I+1,K+1)=CEXF(CMFLX(O.C,2\not=FI\#I*K/N))
CONTINLE
NCW, ine rave cur four NatRICES, lETS NULTIPLY
FIRST MLLTIFLE F ANC [MATRICES
CO GC I=I,N
[C gC J=1,N
SLM=(0.0,C.0)
CC 8S K=1,N
SLM=SLN+F(I,K)\not=[(K,J)
CCNTINLE
FC(I,J)=SしM
CCNTINUE
F TINES : STCREC AS NATRIX FC, NCh MLLTIFLY gY
NATRIX E hHICH IS THE PLFIL NATRIX FF
CJ 9S I=1,N
[C 95 J=1,N
SLM=(0.0.0.0)
[C 9a K=1,N
SLN=SUN+FF(I,K)*FC(K,J)
CEnTIAle
FFC(I,J)=SUM
CONTIALE
EFC STCREC AS PFE (NCTATICN LSED IN THESIS IS BFE)
NCh NlLTIPLY Ey INVEfse fCuzIER Matrix
CC 1CO 1=1,N
[C 100 J=1,N
SLM=(C.O,O.O)
LC g\& K=1,N
SlM=SlM+FF(I,K)\not=FF[(K,J)
CCNTINLE
HH(I,J)=(SUN)
100
C
CCNTINLE
HM IS TRANSFER NATRIX
fseg is the avg fcwer in tre seglence
ENTEK CE.ECT IRRACIANCE TERNS
CO 124 I=1,M
xC(I)}=0.

```
```

AOH SO TFE NCRMAL IMACE, IMAGE=TFCBJECT
C T IS tre aesclute valle cf matrix fm
CC 1 20 I=1,N
CC 1 \O J=1,M
T(I,J)=C\&ES(r+(I,J))
ccatinle
CO 120I=1,N
x(1)=0.C
[C 117 J=1,N
xx(1)=T(I,J) \& xC(J) + x x(1)
CGNTINUE
XI(I)=XX(1)
CCNTINLE
ACRMALILE IMAGE
CC ICI I=1,N
IF(XI(I).NE.C.C)SS(1)=XI(I)
IF(SS(1).NE.C.O)CCTO 102
CCNTINLE
DC 103 I=1,N
IF(XI(I).GT.SS(1))SS(I)=XI(I)
CONTINLE
SS(1) IS max absclute valle cf image
- NOM CivICE TO ACRMALIZE
OC 125 I=1,N
XI(I)-XI(I)/SS(1)
FSEG=FSEG+XI(I)
CENTINLE
PSEG=PSEG/N
ACh CETEFMINE NOISE VECTER
SEE INSL GGNML FCR CETAILS
ACISE IS AMPLITUCE SC SQLARE IT FCR FCWER
SAVE ORIEINAL NOISELESS IMAGE AS XI(I)
NCISY IMAGE IS XEC(I)
CALL GGNAL(OSEEC,A,R)
CE 24 I=1,N
RR(I)=(SGRT(FSEG/SAR))\#R(I)
FR(I)=RR(I)\not=FR(I)
xCC(I)=XI(I)+KR(I)
CONTINLE
ACRMALIZE FINAL ACISY IMAGE XCO(I)
CC 2C2 I=1,N
IF(XCC(I).GT.SS1)S51=XCC(I)
cGNTINUE
CO 2C3 I=1,N
xCO(I)=x(C(I)/SS1
CCATINLE

```
```

 LT IS AN N X A IEENTITY MATRIX ON INFLY
 SEE IMSL LSVCF FER INFC
 CC 122 I=1,N
 CC 132 J=1,N
 LT(I,J) = 0.C
 IF(I.EG.J) UP(I,j)=1.C
    ```
```

continue
NCh CREATE THE TRREE MATEICES FRCM T, T=LSV'
SEE INSL LSVOF FCR OETAILS
CALL LSVEF(T, $A, A, N, U T, N, N, S, W K, I \in R)$
CA CUTFLI , S(K) ARE SINGLLAR VALLES
REPLACE S(K) WITH F(S $(K))$
THIS STEF REFLACES S(K) hITH F[S(K)]
ANC FEGFCRMS THE CCT PRCELCT
WITH THE LEFT SINGULAR VECTEF FECM CELS CF LT
save sinellar values as sy
CO $13 \in K=1, M$
$\leq V(K)=S(K)$
$y X(K)=0 . C$
[C $134 \mathrm{I}=1, N$
$x x(K)=x C C(I) \neq U T(K, I)+x X(K)$
CGATInLE $S S(K)=(S(K) * S(K) * S(K)) /((S(K) \neq S(K) \neq S(K) * S(K))+A L F H A)$ $S S(K)=S S(K) \neq x \times(K)$
CONTINLE
MULTIPLY COT FRCELCT X RIEKT SINGLLAF VECTCRS FRCN T
YY(I) IS RECCNSTRLCTEC IPAGE
OC 1 I $7=1, M$
$x \times(I)=0 . C$
[C $138 \quad J=1, M$
$X X(I)=X X(I)+T(I, J) \neq S S(J)$
centinue
YY(I) $=X X(I)$
CCATIMUE
NCRMALIZE RECCNSTEUCTED IMAGE
CC $1 \in 2 I=1, M$
IF(YY(I).NE.C.O)S(1)=ABS(YY(I))
IF (S(1).GT.C.O) CCTC 1EZ
CONTINLE
CC $164 I=1$; M
IF(AES(YY(I)).GT.S(1))S(I)=AES(YY(I))
CCNTINLE
s(1) is max aes value of rec inage
CO $1 \in 7$ I $=1, N$ $Y Y(I)=Y Y(I) / S(1)$
CONTINLE
WRITE (SE,177)
WRITE (GE,I7E)
WRITE(9E.20)
CC $129 \quad 1=1, N$
$I F(I . G T . M) Y Y(I)=C . O$

```
135
14E
C
C
C
```

```
```

 IF(I.GT.L)EG(I)=C.O
    ```
```

 IF(I.GT.L)EG(I)=C.O
 IF(I.GT.H)SV(I)=C.O
 IF(I.GT.H)SV(I)=C.O
 IF (I.CT.bA+LE)A(I)=C.0
 IF (I.CT.bA+LE)A(I)=C.0
 hRITE(SE,I42)I,SV(I),GG(I),A(I),XC(I),XI(I),RF(I),XOC(I),YY(I)
 hRITE(SE,I42)I,SV(I),GG(I),A(I),XC(I),XI(I),RF(I),XOC(I),YY(I)
    ```
CONTINUE
```

CONTINUE
ss(1)=0.c
ss(1)=0.c
x ((1) =0.c
x ((1) =0.c
CC 14t I=1,N
CC 14t I=1,N
XX(1) = XX(1) +(YY(1)-XC(I))** 2
XX(1) = XX(1) +(YY(1)-XC(I))** 2
SS(1)=SS(1) * (XCC(I)-XC(I))**2
SS(1)=SS(1) * (XCC(I)-XC(I))**2
CENTINUE
CENTINUE
SS(1) IS THE EUCLIDEAN CISTANCE EETWEEN NCISY
SS(1) IS THE EUCLIDEAN CISTANCE EETWEEN NCISY
CESERVEC IMACE xCCCI)ANC ROISE FREE CRJECT, xCCI;
CESERVEC IMACE xCCCI)ANC ROISE FREE CRJECT, xCCI;
xa(1) IS thé euclicean cistance eetween the
xa(1) IS thé euclicean cistance eetween the
RESTCREC INACE YY(I)ANE THE CFIEINAL EEJECT XC(I)
RESTCREC INACE YY(I)ANE THE CFIEINAL EEJECT XC(I)
SS(1)=SGFT(SS(1))
SS(1)=SGFT(SS(1))
XX(1)=SGFT(XX(1))
XX(1)=SGFT(XX(1))
H२ITE (SÉ,20)
H२ITE (SÉ,20)
HRITE(SE,2C)
HRITE(SE,2C)
hRITE (SE,20S)SS(1)
hRITE (SE,20S)SS(1)
HRITE (SE,14S)XX(1)
HRITE (SE,14S)XX(1)
HRITE (SE,17)SNN
HRITE (SE,17)SNN
HRITE (SE:4)ALPHE
HRITE (SE:4)ALPHE
WRITE(SE,Z5)CESEEC
WRITE(SE,Z5)CESEEC
STOP
STOP
EAE

```
EAE
```


Appendix B: Data from Computer Program SRES

Notes:

1. All objects are two incoherent point sources two bits apart
2. Processed image error (PIE) is the Euclidean distance (two norm of the difference) between the superresolved image and noise free object.

1/2 Pupil SNR M ALPHA PIE

$\left.\begin{array}{ccccc}00001111 & 100 & 32 & 10 e-10 & 1.24 \\ 00001111 & " & " & 24 & " \\ \text { " } & 1.41 \\ 00001111 & " & " & 16 & " \\ 0 & " & 2.51 \\ 00001111 & " & " & 8 & "\end{array}\right)$
00001111 " " 8 " 0.30

11111000	100	32	" 1	0.52
11111000	50	" "	" 1	0.52
11111000	5	" "	" "	0.75
11111000	2	" "	" 1	0.82
11111100	100	32	" ${ }^{\prime \prime}$	0.39
11111100	50	" ${ }^{\prime}$	" "	0.35
11111100	5	" 1	" 1	0.42
11111100	2	""	11	0.79
11111110	100	32	11	0.37
11111110	50	" ${ }^{\prime \prime}$	"	0.37
11111110	5	"'	" ${ }^{\prime \prime}$	0.45
11111110	2	"'"	$1{ }^{\prime}$	0.53
11111110	100	24	11	0.03
11111110	100	16	" "	0.02
11111110	100	8	" ${ }^{\prime}$	0.01
11100000	100	32	0	3.28
11100000	100	32	10E-10	0.92
11100000	50	" ${ }^{\prime \prime}$	" "	0.92
11100000	5	"'	" "	1.01
11100000	2	" "	" "	1.04

11100000	100	24	$"$	$"$	0.68
11100000	50	$" n$	$"$	$"$	0.68
11100000	5	$" "$	$"$	$"$	0.75
11100000	2	$" "$	$"$	$"$	0.98

1/2 Pupil	SNR	M	ALPHA	PIE
11100000	100	16	10E-10	1.51
11100000	50	" "	" ${ }^{1}$	2.62
11100000	5	"	" "	2.77
11100000	2	""	" "	2.56
11100000	100	8	" "	0.05
11100000	50	8	" "	0.08
11100000	5	"	" "	1.18
11100000	2	1	" 1	1.51
00000111	100	32	10	1.27
00000111	100	24	"	1.23
00000111	100	16	" "	2.53
00000111	100	8	" 1	1.14
11110000	100	32	" 1	0.67
11110000	50	" "	" 1	0.67
11110000	5	" "	" "	0.92
11111000	2	" "	" 1	1.85
11110000	100	24	" "	0.39
11110000	50	" 1	" "	0.42
11110000	5	""	" "	0.69
11110000	2	""	" 1	2.58
11110000	100	16	" "	0.08
11110000	50	"'	"	0.24
$\therefore 110000$	5	"'	"	0.96
11110000	2	" ${ }^{\prime \prime}$	" "	1.58
11110000	100	8	" "	0.03
11110000	50	" "	" "	0.05
11110000	5	" "	" "	0.83
11110000	2	" "	" "	0.51
11111100	100	24	" "	0.04
11111100	100	16	" "	0.01
11111100	100	8	" "	0.01
11111000	100	24	"	0.05
11111000	100	16	" "	0.02
11111000	100	8	" "	0.02
11100000	100	32	0	3.28

SV = Singular Value
$P * P=$ Autocorrelation of Pupil Vector
New Image is processed image
Error is Euclidean distance between the image and object

*	SV	$P \times P$	[EJECT	ACRMAL IMACE	$\begin{aligned} & \text { ACISY } \\ & \text { INAGE } \end{aligned}$	AEh IHAGE
1	C. $320 \mathrm{E}+03$	1.00	C.OC	C. 0072	0.1172	0.1058
2	C. $256 \mathrm{E}+\mathrm{O}^{2}$	2.00	C.OC	0.0200	0.1404	0.0202
3	C. $256 \mathrm{E}+0 \mathrm{E}$	3.00	C.OC	0.0120	0.C500	-0.0185
4	C.1S2E+02	4.00	C.OC	C.0150	$0 . C \in 90$	$0 . C 458$
5	C. $192 \mathrm{E}+\mathrm{O}^{2}$	5.00	C.OC	O.OCES	$0 . C 272$	-0.1081
ϵ	$C .1 \in C E+03$	4.00	C.OC	C.OEC 9	0.1091	0.1248
7	C. $1 \in C E+03$	2.00	C.CC	C.0181	0.1164	-0.0512
8	C. $128 \mathrm{E}+03$	2.00	C.OC	C.04E4	0.C515	0.1589
5	$C .12 E E+C ?$	1.00	C.CO	C.OこC2	O.C 320	-0.1033
10	C. $128 \mathrm{E}+03$	C. 00	C.CC	C. 0244	$0 . C 4 E \in$	0.0417
11	C. $128 E+0$ E	C. 00	C.CC	C.0318	C.C288	-0.2187
12	C. $128 \mathrm{E}+\mathrm{O} \mathrm{E}$	2.00	C.CC	C.4041	0.3802	0.1445
13	C. $128 \mathrm{E}+03$	4.00	C.CC	0.2111	C. 2045	0.0175
14	C.SECE 02	E. 00	C.OC	C.5483	C. 5882	0.2561
15	C. $760 \mathrm{E}+02$	8. 00	1.00	1.OCCC	0.5086	0.8331
16	C. SEC $5+02$	10.00	C.OC	C. 3259	C.ECSS	-0.0431
17	C. $96 \mathrm{CE}+\mathrm{CL}$	$\varepsilon .00$	1.0C	1.OCCC	1.CCOO	1.CCCO
1 18	0. $64 C E+02$	E.00	C.OC	C.54E3	$0.5 C 85$	0.1799
15	C. $64 C E+C 2$	4.00	C.OC	0.2111	0.2100	0.0013
< 0	C. $64 C E+02$	2.00	C.OC	C.4C41	0.4240	0.1425
21	C. $64 C E+02$	0.00	C.OC	0.0318	0.6251	-0.1658
22	C. $64 C E+02$	0.00	0.0 C	C. 0244	C. $C=34$	0.0104
22	C. $64 C E+02$	1.00	C.OC	0.0262	0.6198	-0.cs7s
24	C. $32 \mathrm{Ce}+\mathrm{C} 2$	2.00	C.OC	0.0464	$0 . C 4$ S	0.1122
25	C. $32 C E+02$	3.00	C.OC	C.0181	C.CSE8	C.C147
26	C. $32 C E+02$	4.00	C. OC	C.OEC 9	0.CSES	0.0s3?
27	$0.320 E+C 2$	$\leq .00$	C.CC	C.cces	$0 . C 242$	-0.056C
28	C.72EE-04	4.00	C.OC	C.0150	0.C4C3	-0.0C31
29	C.72CE-C4	3.00	0.0 C	0.012 C	0.0132	-0.0517
20	C. $225 E-04$	2.00	0.00	0.0260	0.6184	-0.0259
21	C. 2 CEE-C4	1.00	C.OC	0.0072	0.1473	0.1451
ミ2	C. 14EE-C4	C. 00	C.CC	C.O259	C.C?90	-0.018E

```
NOISY IMAGE ERRCR = 1.1C164
GRCCESSEC IMAGE ERRCF = C.E2C45
SNR = S.O
ALFHA = C.BE-CS
CSEEC= 3412.COO
```

1. Goodman, Joseph W. Introduction to Eourier Optics. New York: McGraw-Hill Book Company, 1968.
2. Mammone, R. and G. Eichmann. "Superresolving Image Restoration Using Linear Programming," Applied Optics, 21: 496-501 (1 February 1982).
3. Harris, J.L. "Diffraction and Resolving Power," Journal of the Optical Society of America, 54: 931-936 (July 1964).
4. Frieden, B.R. "Image Enhancement and Restoration," Topics in Applied Physics, edited by T.S. Huang. New York: Springer-Verlag, 1975.
5. Hecht, Eugene and Alfred Zajac. Optics. Menlo Park, California: Addison-Wesley Publishing Company, 1979.
6. Byrne, Charles L. and others. "Image Restoration and Resolution Enhancement," Journal of the Optical Society of America, 73: 1481-1487 (November 1983).
7. Gerchberg, R.W. "Super-resolution Through Error Energy Reduction," Optica Acta, 21: 709-720 (September 1974).
8. Youla, Dante C. "Generalized Image Restoration by the Method of Alternating Orthogonal Projections," IEEE Transactions on Circuits and Systems, CAS-25: 694-702 (September 1978).
9. Cathey, W.T. and others. "Image Gathering and Processing for Enhanced Resolution," Journal of the Optical Society of America, 1: 241-250 (March 1984).
10. International Mathematical Subroutine Library
11. Golub, Gene H. and Charles F. Van Loan. Matrix Computations. Baltimore, MD.: Johns Hopkins University Press, 1983.
12. Noble, Ben and James W. Daniel. Applied Linear Algebra (2nd Ed). Englewood Cliffs, NJ: Prentice HaIl Inc., 1977.
13. Gaskill, Jack D. Linear Systems, Fourier Transforms, and Optics. New York: John Wiley and Sons, $197 \overline{8}$.
14. Rushforth, C.K. and others. "Least-squares Reconstruction of Objects with Missing High-frequency Components." Journal of the Optical Society of America, 72: 204-211 (February 1982).
15. Oppenheim Alan V. and Ronald W. Schafer. Digital Signal Processing. Englewood Cliffs, NJ: Prentice Hall Inc., 1975.
16. Jones, John. Lecture Materials distributed in MA 521, Linear Algebra. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, July 1984.
17. Peebles, Peyton Z. Communications System Principles. Reading, MA: Addison-Wesley Publishing Co., 1982.
18. Etter, D.M. Structured Fortran 77 for Engineers and Scientists. Menlo Park, CA: Benjamin/Cumming Publishing Co., 1983.

Captain Robert F. Stierwalt was born on 18 December 1956 in Gadsden, Alabama. He graduated from Cass High School in Bartow County, Georgia, in 1975. He was awarded an academic scholarship to Shorter College, Rome, Georgia. He graduated from Shorter with honors with a degree in Mathematics and Chemistry. He was selected to attend Officer Training School (OTS) in June 1979. While he was at OTS, he was selected to attend the new undergraduate engineering conversion program (UECP) in residence at ARIT. He received his BSEE in March 1981. His assignment after graduating from AFIT was with the Western Space and Missile Center, 6595th Missile Test Group, Vandenberg AFB, California. He worked in the MX, later Peacekeeper, Division where he worked as a test engineer on the filght test portion of the Peacekeeper acquisition and test program. He left Vandenberg AFB in March 1984 to attend $S O S$ enroute to the AFIT master's degree program in electrical engineering.

Permanent address: Route 3, Box 199
Gadsden, Alabama 35901

