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Abstract

This thesis discusses the problem of incoherent imaging

in a diffraction limited optical system. The purpose of the

thesis was to prove that resolving two incoherent point

S sources of light is possible and achievable under certain

circumstances. The effects of noise are considered when

trying to superresolve the two incoherent objects.

The analysis assumes a finite object of known maximum

extent with an estimation of the noise In the system. The

noise is assumed to be Gaussian, white, and additive for all

.. spatial frequencies. The superresolution process uses the

standard least squares process to achieve minimum error with

a smoothing or regularization procedure. The singular values

of the transfer matrix are modified to attenuate the very

small singular values to avoid noise amplification in the

high order terms. The effect of the noise Is overcome by the

use of a smoothing parameter, a , as shown in the results.

The superresolution process works extremely well when the

extent of the object is known a priori to have a certain

bound or maximum. Components of the restored or processed

object outside the known bounds are attenuated. The results

indicate that band-pass pupils can superresolve with only

limited knowledge of the object when the smoothing parameter

is used.

v"1
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SUPERRESOLUTION USING INCOHERENT LIGHT

AND THE LEAST SQUARES METHOD

I. Introduction

The purpose of this thesis is to demonstrate that

superresolution of two incoherent point sources is possible

under certain conditions. Superresolution or resolving

objects beyond classical limits is a current problem In

optics. It is generally thought that diffraction effects

represent the fundamental limits to optical system . |

performance. Typically, objects placed closer than the

classical Rayleigh limit (5:309) cannot be distinguished as

distinct objects but image as a composite form. The physical - -

dimensions of lens systems traditionally determine the

ultimate resolving power of the system.

In many scientific disciplines (2:496) such as

spectroscopy and astronomy, superresolution could enhance

research considerably. In general, for a finite object in a

diffraction limited imaging system, the inverse of the linear

imaging process can be used to yield the object. In one

specific example, an object of finite extent with known

maximum dimensions can be superresolved to 20% of the

traditional Rayleigh criterion for two incoherent point

sources in a noise free system (3). However, in all cases

-= .. the imaging process is noisy to some degree and usually .

°.1
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produces a set of ill-conditioned linear equations, thus

making the inversion of the imaging process suspect (4:216).

Initially, the background and nature of incoherent imaging

will be presented using a linear systems approach. Following

the discussion of incoherent imaging, a specific plan for

modeling a particular superresolution scheme will be

presented as a research effort in order to determine if

superresolution is practical and achievable under normal

laboratory conditions.

Theory

Classically speaking, the normal limit to resolution for

diffraction limited images is the Rayleigh criterion.

Incoherent point sources image as a sinc squared function,

sinc(x) = (sin rx)/(Ix), in a one dimensional system (1:62).

Figure 1 illustrates the 1-D image for an object consisting

o *-.-.....

-3 -2 0 2 3x

Figure 1. Impulse Response

2 0



of an incoherent point source. The image in this case is

known as the impulse response of the imaging system. The

dashed line represents the object and the solid line

represents the diffraction limited image. Also, for

incoherent light, the effect is additive in the irradiance

distribution (amplitude squared) for two or more point

sources.

For two adjacent, incoherent point sources, separated byhq
the Rayleigh criteria, the irradiance distribution will be as

shown in Figure 2. The solid line represents the total

irradiance distribution while the dashed lines represent the

individual irradiance distributions. Rayleigh defined the

limit of resolution for circular apertures as the location of

the first principle minimum of one irradiance distribution

and the first principle maximum of the other irradiance

distribution at the same point in the image plane. The same

limit can be applied to rectangular apertures. In Figure 2,

the irradiance has been normalized for clarity.

In 1964 J.L. Harris (3) used the concept of analytical

continuation and a prior (known in advance) information aboutS!

the object to extend resolution beyond the Rayleigh limit

(5:309). Harris proved that continueing or extrapolating the

function beyond the known bounds was possible using the fact

that analytic functions are unique beyond the cutoff

frequency of the filter used. He proved that sampling the

irradiance distribution from a finite object of known extent

could be used along with the properties of analytic functions

3
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(1:133) to resolve two point sources separated by 20% of the

classical Rayleigh resolution limit. This method of Harris

used spectral extrapolation to reconstruct the object. Since

the two point sources were

I p 5 i •

.- . "
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D ist a nc e X and did

Figure 2. Minimum Rayleigh Resolution -._i.

Acloser than the Rayleigh criteria, this reconstruction scheme

up under severe scrutiny as Harris neglected noise and did

,. not know at the time that his set of simultaneous equations

i . was extremely ill-conditioned (3:1481).""

,. ~After analytical continuation was used to extrapolate .-

'.. the spectral components of a finite object with a priori"

knowledge of its maximum dimensions, it was realized that

4 ,
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noise must be taken into account (6,7) to achieve any

S -measurable degree of superresolution. One of the earliest

methods used to superresolve objects was the iteration method

proposed by Gerchberg (7). Gerchberg utilized a specific

iteration method derived from the general method of Youla

(8). The method of Youla uses orthogonal projections in a

well-posed Hilbert space and a priori knowledge of the

extent of the object to remove any spectral component higher

than the cut-off frequency. Gerchberg theorized that any

component measured at a higher frequency than the cut-off

frequency had to be a noise component, and was therefore

subtracted out. This method was iterated until the measured

output past the cut-off frequency was below some threshold

level. Gerchberg also reasoned that noise could not be

analytically continued since it was not band limited.

Gerchberg did not realize at the time that his matrix

methods were unstable as Byrne, et al, pointed out in their

1983 article (6). Broadband noise served to cause spurious

oscillations in the data making the restoration scheme

suspect. After a good noise estimation was used, Byrne, et

al, were able to use a Gerchberg type algorithm to obtain a

reasonable superresolved object.

To further the work of superresolution, Mammone and

Eichman (2) used optimum linear programming techniques to

smooth the data thus providing a stable, well-conditioned

matrix solution to the image restoration problem. Their

S ... initial assumption was similiar to that of Harris (3) in that

5
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the Image irradiance could be sampled and the object

reconstructed from a set of linear equations. The matrix

solution can be represented as :..-. - .

I Ao (1.1)

where I and o are n dimensional vectors representing the

image irradiance and object irradiance respectively. A is an

n by n transformation matrix obtained from the discretized

solution of the object vector o from

i(xi) = lh(xi;xo)l' o(xo) (1.2)

The complete description of incoherent imaging is contained
I.

in the next chapter. Mammone and Eichman chose to make the -

transformation matrix, A, stable by filtering methods. By

filtering, high frequency noise is eliminated as well as

making the inversion of the matrix A possible, thus yielding

a solution for o.

While all of the above methods use spectral

extrapolation and symmetric low pass spectral filters,

Cathey, et al, (9) have proposed a superresolution concept

utilizing the same bandwidth as the extrapolation method, but

using bandpass, or multi-aperture systems and interpolation

instead of extrapolation to achieve superresolution. It is

postulated that for each imaging situation, there exists a

potential "best" aperture window to superresolve the object.

6
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Using similiar reconstruction techniques in the frequency

domain, the object was consistently better resolved using

band pass techniques instead of low pass filtering.

r.. .. ..

Research Proposal

In this thesis effort, incoherent light will be used

along with a multiple aperture system to develop a

mathematical model for superresolving an object. By using

incoherent light, the transfer function of the pupil, or

aperture, is not as straight forward as the coherent case,

but the matrix method of inverting the transformation matrix

seems viable. To effectively evaluate the optimum pupil

function, that pupil function yielding the minimum error will

be judged as the best pupil function for a given fill ratio,

where the fill ratio is the number of aperture. divided by

the total number of available windows (9:247). The premise

to be proved is that for a given fill ratio, band pass

filtering instead of low pass filtering provides better*.*

resolution using the proposed algorithm.

7
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II. Theory of Incoherent Imagin

The purpose of this chapter is to summarize the theory
of incoherent imaging. This summary utilizes a linear

systems approach similiar to chapter six of reference one.

By using a systems approach, the properties of an optical

system can be given in terms of input, transfer function or

impulse response, and output, irrespective of the number and

type of internal optical elements. For optical systems,

these properties can be summarized in terms of its exit or

entrance pupil, effective focal length, and its output with

an input consisting of a point source on the optic axis. In

this particular case, images are located as predicted by

geometric optics and the system is considered to be

de diffraction limited (1:103).

"Black Box" X
xo / xi

Object Entrance Exit Image
Plane Pupil Pupil Plane

do di

FIGURE 3. Generalized --D Image Model

8

.....................- - .. --. -...- -. .. -.--



ii .W .

Referring to figure 3, the imaging system can be

represented as a "black box" consisting of an entrance pupil

and an exit pupil. The properties of the entire system can

be completely described by specifying the properties of the

entrance pupil or exit pupil. It is assumed that the entire

optical system can be adequately described by geometric

optics and that all diffraction effects can be associated

with the entrance or exit pupil. The entrance and exit

pupils are geometric projections of one another which enables

an equivalent analysis using either one (1:102-103).

Since geometric optics adequately describe the behavior

of light between the entrance and exit pupils, diffraction

dominates the behavior of light from the object to the

0O entrance pupil and from the exit pupil to the geometric Image

plane. Since diffraction effects can be associated with

either the entrance or exit pupil, all diffraction effects

will be associated with the exit pupil in the context of this

paper. This approach is acceptable since the exit and

entrance pupil are geometric images of each other (1:102).

Using the notation found in Goodman's text (1) the image

amplitude distribution can be expressed as

U1 (xi) =fh(xi;xo)Uo(xo)dxo (2.1)
-00

where U9 (xi) is the image amplitude, h(xi) is the impulse

response or transfer function, and Ub(xo) is the object

9
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amplitude distribution. The Image plane is xi, the object

plane xo, and the exit pupil plane is x. If the lens law for

imaging is satisfied, then h(xi) is the Fraunhofer

diffraction pattern of the exit pupil centered at xi -Mxo

where M is the magnification of the system. Notice that the

system is inverted as represented by the negative sign

(1:95). The Impulse response can be written as

h(xi;xo) klP(x)exp((-2wj/Xdi)(xi-t4xo)x)dx (2.2)

-00

with the understanding that the pupil function, P(x), is

either zero or one depending on whether it blocks or passes

light in that particular interval, dx. In equation (2.2),

*O h(xi;xo) can be described as the Fourier Transform (FT) of

the pupil function evaluated at the spatial frequencies fx =

xi/Xdi. Also, K is a complex constant that will be discussed

later. By appropiate change of variables, the impulse

response can be rewritten as

h'(x;xo) = kfP(Xdix')exp(-2rj(xi-xo'))dx' (2.3)

where x' = x/Xdi and xo'= Mxo. By defining Ug(xi) as the

* geometric Image, the real Image can be described as the

convolution of the geometric image with h'(xi), the modified

impulse response. Equation (2.4) is the convolution integral

representing the final image as the convolution of the

geometric Image with the modified impulse response, h'(xi).

10
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"'Ui(xi) = kJh'(xi-xo')Ug(xo')dxo' (2.4)

Since the final expression will be normalized with respect 
to

magnitude, all constant multipliers, real or complex can be

ignored (1:105).

Up to this point, amplitude has been the subject of our

derivations, but irradiance (watts/area) is the measured

quantity. The irradiance is the infinite time average of the

amplitude squared as shown in equation (2.5).

= i (xi)U,)(xi (2.5)

The brackets denote the infinite time average and Ui*(xi)

designates the complex conjugate of Ui(xi). For real sources

and incoherent light,

Ig(xo) = (Ulxo)>2 (2.6)

where g designates geometrically predicted quantities. The

final irradiance image is

Ii(xi) = kfh(xi-xo')a(xo')dxo' (2.7)
j --c

where the k represents a constant multiplier. It can be

easily seen that the final irradiance image is again a

.. convolution of a transfer function and a predicted geometric

zp ,e.. . ~ - . . • . .. ... ... ... .... ....... ..... . ,,.'-. -. ,-. ..'.-......-.--...-.. .r .. , .... , ..- . -...... = .k .
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quantity. The irradiance transfer function is the modulus of

the impulse response, h'(xi), squared. This implies that

there is no phase information for incoherent imaging.(1:109)

For ease and convenience, let *"- ,

G9 (fx) = FT(Ig(xo')) (2.8)
FT(Ig(xo')), evaluated at fx=O

where Gg(fx) represents the normalized Fourier transform of

the geometrically predicted irradiance image of the object.

Likewise

Gi (fx) FT(Ii (xi)) (2.9)
FT(Ii (xi)), evaluated at fx=0

where G (fx) is the normalized Fourier transform of the

diffraction limited image. The irradiance transfer function,

H(fx), is (1:114)

H(fx) = FT(lh'(xi 2 ) (2.10)
FT( Ih' (X)1 2 ), evaluated at fx=O

where again normalization has taken place. Thus, in the

frequency domain,

Gi (fx) H(fx)Gg(fx) (2.11)

This last equation can be derived using the convolution

theorem (13:314).

The optical transfer function, H, of the incoherent

12

.*-t°.*....



irradiance imaging system is

H FTh'f (2.12)

where

h' FT(P) (2.13)

It can be shown that for f(x) a real function of x that

FT~~x)**f(x)) =IFT(f(x))12  (.4

By using the autocorrelation theorem (13:200). Therefore

I FT( 2 p. p (2.15)

which leads to the final expression for the optical transfer

function, H:

H =P**P (2.16)

where **denotes autocorrelation. Also, all subscripts, etc,

have been dropped for clarity. Now, equation (2.11) can be

expressed as

=i (P*P)Gg (2.17)

* 13
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which I.- the final spectral domain representation ot the

,.-.. imaging relationship between the object and the optical

system. Figure 4 illustrates the normalized transfer

function for a rectangular pupil function. As can be seen,

the OTF, H, has a definite cutoff frequency, fc, which is a

function of the system parameters. The modulus of H, IHIis

known as the modulation transfer function, MTF (1:114).

For optical systems it would seem that a simple Fourier

inverse of the frequency domain representation of the image

would easily yield the original object. Equation (2.18)

represents the inverse Fourier transform needed to recover

je H -

.- • .

-fC fc

Figure 4. OTF of P = Rect(x)

14
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the object from the spectral parameters

FT-I[Gi] = FT - =G Ilxo) (2.18)

The problem with resolution is in the use of limited

apertures and noise, since limited apertures attenuate the

high spatial frequency terms essential for high resolution

and the noise terms are greatly magnified in the inverse

process, as will be explained later. Larger pupils would

alleviate much of the problem but there is a physical limit

to the size of usable optical systems, especially for space

applications.

In the next chapter, a particular matrix method for

increasing resolution with limited spatial bandwidth will be

S examined. It will be shown that increased resolution can be

achieved under certain conditions. By knowing a priori that

the object is finite with a known maximum extent, and by

using a smoothing parameter, the increase in resolution can

be quite substantial.

15
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III. Superresolution Scheme

Introduction

The purpose of this chapter is to develop a mathematical

model for incoherent imaging with limited bandwidth optical

systems. The limited bandwidth is realized by symmetric

multiple apertures as well as the traditional low pass (in

spatial frequency) model. It has been speculated that for a

limited bandwidth system, better resolution could be obtained

using a bandpass aperture insead of the low pass system

traditionally used (9). Multiple aperture systems consisting

of relatively small, precise optical elements could simulate

larger optical systems which are costly and extremely hard to

manufacture. The optical systems will be described in terms

of its optical transfer function, H, and its exit pupil, P.

The mathematical model uses discrete values with vector and

matrix analysis. For the purpose of this thesis, the

truncation errors and sampling errors will not be discussed.

The data is assumed to be adequately sampled and the

truncation errors are considered to be negligible compared to

the noise. This chapter describes the discrete solution to

equation (2.18) using linear methods.

Math Model

To effectively model the imaging system, a priori

knowledge of the object is of prime importance in

reconstrucing the object from image data. The object is

known to be finite within the first M units of the N bit

16
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object vector, x.. The finite object can be represented by

DKo where D is the diagonal matrix (all elements zero not on

the diagonal)

=dag(,1 .... 1,,0 .... O) (3.1)

M N-M

The matrix D is known as the spatial truncation matrix. The

spatial truncation matrix has been zero-filled to an N x N

matrix to match the order of subsequent matrices.

The N bit discrete Fourier transform (DFT) of the

truncated object is

DFT(jo) = FD (3.2)

and F is the matrix representing the Fourier transformation,

DFT, whose components are

F(m,n) = exp(-j27rmn/N) (3.3)

for m,n = ON-1

Thus, F is a complex, N x N matrix.

In any optical optical system the pupil is finite and

passes only a limited number of spatial frequency terms. In

an incoherent imaging system, the transfer function is the

autocorrelation of the pupil function, as derived in chapter

two. Since only a finite number of spatial frequency terms

17
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will pass through the optical system, the filtering effect,

P or transfer function, can be represented by the diagonal

matrix B, whose diagonal components contain the appropiate

attenuation factors. The matrix B is equal to

B = diag(DC,fj ,f2 ,.....f¢ ,0,0 .... O'f¢ .... f ,fl ) (3.4)

where DC is the DC coefficient, the fi's are the various

spatial frequency coefficients, and fC is the cutoff

frequency (highest spatial frequency passed by the system).

The symmetry of the B matrix is the same as the symmetry of

the forthcoming DFT's. For appropiate multiplication of

vectors and matrices, either the B matrix is changed to the

symmetry of the DFT (which it is) or the DFT is rearranged to

the symmetry of th B matrix. Thus, the spatial frequency

representation of the image is BFDx0 . The diagonal elements

of B are obtained from the specific values obtained from

calculating P**P. In this thesis, all pupils will be

centered and symmetric about the optic axis. It is a

property of discrete sequences that an N-bit sequence

convolved with an M-bit sequence generates a sequence of

length M+N-l (15:12). Thus, for a pupil of length L, the

transfer function response will be of length 2L-1. As an

example, let P = (1 1 1 1)' (P is a column vector, so

denotes transpose of the row vector). The convolution of P

with itself will yield the diagonal elements of the matrix B,

since convolution with itself is autocorrelation.

18 6
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3 2

P*P 4 rearranged P**P =1 (3.5)

.- i

3 0

21

1 2

L0 J3J

.. - %-- '=

where P**P has been rearranged to the same symmetry as the

DFT in equation (3.2). In the example, the transfer function

consists of seven elements which correspond to the DC term

plus three positive and three negative spatial frequency

terms. Therefore, the four bit pupil passes the first three

spatial frequency terms plus the zero frequency or DC term.

So far, the image is represented as BiFDx. The last step

remaining is to convert the spectral representation of the

image back to a conventional spatial representation. The

normal, noise free, space domain image can be written as

0

xi FT-'BFDR- (3.7)

which physically can be expressed as

x Ax0 + n (3.8)

19 ... . . . .. . . . . . ..-



where A = FT"BFD and n is the Gaussian, white, and additive

noise vector. The components of FT- (inverse Fourier

transform matrix) are

FT-'(m,n) = exp(2jTmn/N) (3.9)
for m,n = O,N-1

FT' is also an N x N complex matrix.

Solving for x0 In equation (3.8) is the mathematical

problem of the superresolution process, and thus is the heart

of this thesis effort. Equation (3.8) represents the

linear transformation of the irradiance from the object plane

to the image plane. Also, the problem is compounded by the

fact that the image, xi , is affected by noise, n, in the

imaging system. For this paper, the noise is considered to

be Gaussian, white, and additive for all frequencies

considered. The solution of x, from equation (3.8) is not a

trivial matter as the matrix A is severely ill-conditioned

which can lead to serious problems in the solution of xo. A

discussion of ill-conditioned matrices follows.

Properties of Ill-conditioned Matrices --

The matrix A can be severely l-conditioned.

Ill-conditioned matrices have the potential to cause very

large errors when used to solve linear equations because of -. -

the propogation of errors. The length, or size, of a matrix,

can be expressed as its norm or magnitude, and is expressed

as

20 4
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* - A!l 2 = Two norm of A (3.10)

where the two norm of A is the most restrictive norm (11:26).

The two norm of a matrix is defined as the largest singular

value (the singular values are represented as si , for i 1,k

where k is the rank of the matrix) of that matrix. The

singular values of a matrix are the square roots of the

corresponding eigenvalues of the matrix. The condition

number of a matrix, c(A), is a measure of the stability of

the matrix. The condition number of the matrix A is defined

as

c(A) = JAIl 2  x IA-'11 2  (3.11)

where the magnitude of i-I is equal to the inverse of the

smallest singular value of A (12:166).

As an example, let A be the 32 x 32 matrix obtained from

(see Appendix B):

P = (1111100000011111)' and

D = Diag(1,...1), for M = 32

where ' denotes transpose since P is a column vector. From

the data table, the largest singular value of A is 320 and

the smallest singular value is 1.46 E-4. Since the magnitude

or two norm of A is equal to 1/(1.46 E-4), the condition

number is roughly 2E+10. Why is the condition number

important? The importance of the condition number is
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The condition number is a measure of stability in that

... it gives an upper bound on the possible magnitude of error in

the solution of the matrix equation Ay = b, for A the image

matrix, y the object, and b the noisy object. Let e(y)

represent the potential error possible from the solution of

y=Ab, and let e(b) represent the error present in b, the

Gaussian noise. The relative error in the solution for y

will have the upper bound expressed by

e(y) <= c(A) x e(b) (3.12)

For the example cited above, the condition number was

approximately 2E+7, so the relative error limits can be

expressed as

e(y) <= 2E+7 x e(b) (3.13)

where e(b) is usually expressed as the noise variance. It is

important to realize that the limit to the error is an upper

bound on the error and that not every component of the

solution vector will be in error by this amount, but each

component could be in error by this amount. The use of

condition numbers to test matrices for stability is a figure

of merit type relationship. For good linear systems, the

condition number should be small. By using the two norm, the

most restrictive error potential was achieved. Other,

" simpler norms could have been used, but generally lead to
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higher condition numbers. Another way of looking at

condition numbers is to say that a matrix with a large

condition number is an almost singular matrix, meaning that

the matrix inversion is quite suspect. From linear algebra,

a unique solution to a matrix transformation is only possible

when the inverse to the matrix exists. Therefore, solving a

linear system of equations with an almost singular matrix

means that the matrix is not very stable and can cause large . -

errors in the solution.

Least Squares Solution

The problem of imaging can be restated as

Ax. = xi (3.14)

where implies that a least squares solution is being

sought. The notation uses xii as the ith component of the

vector xi . The least squares solution minimizes the

difference expressed by

Axo- x 2 = error (3.15)

where the subscript 2 represents the 2 norm of the vector,

also known as the Euclidean distance, as shown in equation

(3.16).

* Ix!t =V(X1 )2 + (x 2 1+ ... (xnl (3.16)
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To implement the least squares solution, the matrix A

must be decomposed into a product of a diagonal matrix and

two orthogonal matrices. The components of the diagonal

matrix will be the singular values of A. The matrix A , where

A = FT- BFD, can be rewritten as a product of three matrices

(12:237)

A = USV' (3.17)

where U is an N X N orthogonal matrix, and V' is an L X L

orthogonal matrix. S is an N X L orthogonal matrix whose

diagonal elements are the singular values of A and are in

decreasing order. S looks like

S = Diag(s I , 2 ,s 3..... ,0m.O .... O) (3.18)

where s, > s., > sj>.. .>sm. There are only M singular values

since D reduces the rank of A to M.

The least squares method of solving linear equations

serves to minimize the two norm of the difference vector as

expressed in equation (3.16). Substitute for A in (3.15) to

obtain

IIUSV'xo -X = error (3.19)

.' .. "

where A=USV'. Since U is orthogonal, UU' = I, where I is the

24
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identity matrix. By multiplying each term by U', the

N % express ion becomes

ISV X0 - =il error (3.20)

where the error is the same, since multiplying a vector by an

orthogonal matrix does not magnify the norm of the

vector(12:282). By substitution, equation (3.20) becomes

IjSy -b'11 2  error (3.21)

where y=V'x0 and -'=i. Therefore, xo solves the least

squares problem (3.15) if and only if y=Vxsolves

to
ISy -b'~I minimum error (3.22)

Since Sy is a diagonal matrix composed of the singular values--

of A times y1 , the difference vector of (3.15) can be

expressed as

0Sy -b [2 (s, y, b,' 2  y. b~,' +2 b.1 1

bj2 (3.23)

The minimum error solution satisfies .- .

s,(y,) -b = 0 or y, bi/si (3.24)
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* for all values of i. By back substitution,

Ym =b,,, /S.. EU ~ (m, J) x j (l/sj) (3.25) .*

J=1

and since y=Vlx

X0 Vy (3.26)

since V and V1 are orthogonal matrices. By substituting for

y in equation (3.26), the mth component of xe is

(xO)m ='V(m'k)0r5'(m,J)(xii) (l/Sj) (3.27)
K:1 j

which can be rearranged to yield

L. L
(Xo)M = rU'(mj)(Xij) (l/sj)V(M,k) (3.28)

By using vector notation, equation (3.27) and (3.28) can

be rewritten as

S L
A .

XG = ,(i/sJ)(Xi . uJ)vj (3.29)
J =)

where u~ and v~ are the left and right singular vectors

obtained from the jth column of the matrices UandV

respectively. The solution vector, XL denotes a least

squared solution, and * is the dot product operator. This

solution Is also referred to as the inverse filtering

26
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solution, since the least squares solution serves to reverse

the matrix operation and return the original (object) vector

in our specific application (14:205).

Modifications to Least Squares Method

Since there are very small singular values in the matrix

A, the presence of noise will greatly reduce the

effectiveness of the least squares solution in the high order

terms. By using the method of Rushforth, et al, (14), 1
/SK is

replaced with an appropiate smoothing or regularization

function to attenuate the high order terms and pass the lower

order terms unchanged. The smoothing function serves to

avoid overamplification of the higher order noise terms. For

this thesis, I/sK is replaced with f(SK)' where

s)= s_3  (3.30)
s 4  +

Choosing an approplate a prevents overamplification of the

high order noise terms. a was chosen in most cases to be

lOE-10 as this provided adequate attenuation with respect to

the smaller singular values. Various other smoothing

functions and concepts could be considered. The basic

concept is to reject those higher order terms knowing as much

about the object as possible beforehand. To get high

resolution, some high order terms must be present in the

solution. Therefore, if the object is known beforehand to be

less than 10 units long, the spatial truncation matrix, D,

27
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solution. Therefore, If the object Is known beforehand to be

less than 10 units long, the spatial truncation matrix D,

will be finite for only 9 elements. By truncating at nine

elements, the matrix A will be of rank less than or equal to

nine, so there will be only nine singular values, thus the

lower singular values will already be rejected (12:336).

The following chapter will describe the computer program

and computational algorithms used to implement the least

squares solution.

28
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IV. Computer Model

Introduction
.-.4.

The purpose of this chapter is to describe the

analytical implementation of the least squares

superresoslution scheme as described in the previous

chapters. The computer system used was a VAX 11/785

utilizing the VMS 4.1 operating system. The subroutines used

for convolution, Gaussian random number generation, and

singular value decomposition of matrices were from the

International Mathematical and Statistical Subroutine Library

(IMSL) (10). The matrix multiplication routines were written

by the author. The program was written using standard

Fortran 77 (18).

Figure 5. is a flowchart depicting the superresolution

process as described in the previous chapter. Refer to this

figure throughout the chapter for reference. A complete

listing of the program, SRES, is contained in the appendix.

Computer Model

The following variables are defined for convenience.

L = pupil length (integer)
N = dimension of square matrix A (integer)
M = finite, known extent of object

= smoothing coefficient (real exponential)
P = pupil vector
DSEED = double precision constant
sj= Jth singular value (real)
* = convolution operator
,= matrix named Q
r = vector named r
r i = ith component of r

29
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A-'= inverse of matrix A
A' = transpose of matrix A
SNR = power signal to noise ratio
PSEQ = power in discrete sequence

= noise variance
= dot product operator

The first variable to define is N, dimension of the transfer

matrix, A. The criterion for N was that it be large enough

to model an imaging system but small enough to operate

efficiently with the computer. Also, N was chosen to be a

power of two, since this makes the system easier to work

with, with respect to the IMSL subroutines. N was chosen to

be 32 for all configurations. By choosing a value for N, the

values for M and L are somewhat restricted. The length of

the pupil, L, must be less than or equal to N/2, since the

matrix B is composed of elements of P*P and convolution of

two vectors lenghens the resulting vector. Also, the object

dimension, M, cannot be larger than N because of the matrix

vector multiplication scheme.

The computer program is interactive and prompts the

operator to input values for L, M, SNR, DSEED, and a The

operator is then prompted to enter values for the pupil

vector and object vector. The program uses the pupil vector

to generate the P*P vector which in turn provides the

elements of the diagonal matrix, B. The IMSL subroutine

VCONVO performs the necessary convolution. The values for M

and N are sufficient to create the matrices F (Fourier

transform matrix), FF (inverse Fourier transform matrix), and

D (spatial truncation matrix of M diagonal elements). With

3.3...
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the matrix B available, the matrix product (FF)(B)(F)(D) = A

(T in program SRES) can be calculated. After the matrix A is

calculated, the product Axo can be calculated to yield the

noise free image. With the noise free image available, the

noisy image can be calculated. ....-

The operator has already input the value for the signal

to noise ratio (SNR) which can be used with the noise free

image to create a noisy image. The noise is assumed to be

Gaussian, white, and additive for all spatial frequencies.

The definition of SNR is

SNR = PSEQ (4.1)
2'.n>[>';

which means that

n PSEQ (4.2)
SNRIJ

where the noise variance is represented as , and PSEQ is the

power in the image sequence. The power in the vector x is

defined as

M

PSEQ = (1/M) E (xk)2  (4.3)

where the vector is of length M. The noise variance, 2 , is

the power in the noise vector x" and is defined as shown in

equation (4.3). The noise variance assumes a zero mean. The

variance is also equal to the square of the standard

• 
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deviation of the noise distribution. With SNR being provided

by the operator, the variance can be calculated from equation

(4.2). Using the IMSL subroutine GGNML and the value of the

variance, the Gaussian noise vector is generated. The noise

is amplitude at this point, so each term is squared for power

and added termwise to the original noiseless image to create

the noisy image. At this point, the least squares process

can be implemented. After the matrix A (T in computer

program) has been created, the IMSL subroutine LSVDF is used

to create the three matrices, US,V,, which are to be used in

the superresolution process. After the singular values have

been generated, the substitution for 1 /sk is implemented

using the smoothing parameter, a, to negate the effects of

the very small singular values of A.

As can be easily seen, the computer program performs the

exact operations described in chapter III. In the next

chapter, the results for various pupil configurations and . .

parameter values will be examined. It will be shown that the

least squares method with a priori knowledge can resolve two

incoherent point sources not ordinarily resolved in a

conventional low pass imaging system.

032
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-~ SRES Computer Program

Create Create Create
Bmatrix] D7 matrix LMatrix

Create Transfer Matrix

Create noise terms Create Normal, Noise Free

Create U, S Vfor

Replc kwt (k

* Figure 5. Superresolution Flow Chart

33



V. Results and Conclusions

Introduction

This chapter presents the results and conclusions

obtained using the computer program SRES to simulate

superresolution using the least squares method outlined in

the previous chapters. In review, 1/2 P is one-half of the

symmetric pupil function of length L, where L <= 16. M is

the assumed or known maximum length of the object, where M <=

32 since N=32 is the square dimension of the transfer matrix

A (T in SRES). SNR is the signal to noise ratio and is

the smoothing or regularization constant used to attenuate

the effect of the very small singular values. The error used

throughout this chapter is the Euclidean distance or two norm

of the difference vector between the object and noisy image

where the image is the superresolved image. The effects of

the different parameters will be investigated and discussed.

After the results are presented, a conclusion section will

close out the formal portion of this thesis. Also, pupil

function performance for various pupils is contained in

appendix B.

Results

* Band-Pass vs Low-Pass Pupil. Both pupils considered

contained six apertures corresponding to the six elements of
the pupil vector. The low pass half-pupil was (00000111)',

and the high pass half-pupil was (11100000)'. Both pupils

34
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column vectors as denoted by the transpose symbol. The

* -modulation transfer functions (MTF) for each of these pupils

is shown in Fig. 6. As can be seen, the band-pass pupil

passes higher frequency components than the low-pass pupil.

The band-pass pupil passes the higher spatial frequency terms

needed to resolve the two incoherent point sources located

closer than the normal resolution distance. Figure 7

illustrates the effect of using the high-pass pupil instead

of the low-pass pupil for superresolution. By using the

band-pass pupil, the superresolution scheme served to

separate the two incoherent point sources, with only two

small (40%) side lobes present. By using a threshold

detection criteria, the high pass pupil can superresolve the

* object consisting of the two Incoherent point sources using

the least squares method and a smoothing function, while the

low pass pupil cannot superresolve the object.

Effect of A Priori KnowledQe. Figure 8 illustrates

the importance of a priori knowledge using the

superresolution algorithm. By using the low-pass pupil

shown, the normal image does not resolve the two incoherent

point sources (object) of Figure 7-a). The superresolution

scheme is able to resolve the object only at M=8, where M is

the a priori knowledge that the object was less than or equal

to 8. The effects are quite interesting for M=16, as the

algorithm tries to restore the object, but there is

. . insufficient information to do so. Figure 11 presents a plot

of M vs Error for the five various pupil functions at a
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0 (

*Figure 6. Examples of Modulation Transfer Functions

36



insufficient information to do so. Figure 11 presents a plot

of M vs Error for the five various pupil functions at a

constant SNR =100. As can be seen, the known information

concerning the object does reduce the error in many cases.

It is interesting to notice that in some cases, the error is

almost constant for the values of M up to the bend in the

curve. The error for P3, P4, and P5 are all fairly constant

up to M=24. The smaller pupils exhibit simillar responses

for smaller values of M. It is important to define the

object domain as close as possible in order to achieve

reliable and accurate results.
0.

Effect of a. Figure 9 illustrates the effect of the

smoothing parameterO. As can be seen, holding all

parameters but constant, the higher values for

(IOE-5,1OE-10) serve to resolve the object quite well with a

rather limited pupil. As oaproaches zero, the effect of the

noise due to the Ill-conditioned nature of the system is

obvious. As can be seen, the processed images using very

small values for a are quite haphazard and look nothing like

the original object, even with the high SNR=l00. Due to the

nature of the imaging problem, the superresolution alogorithm

must use a good estimate for the smoothing parameter, a , in

order to achieve accurate results.

Effect of Noise. Figure 10 serves to illustrate the

effects of noise on the superresolution technique using the

least squares method with a smoothing parameter. The
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superresolved images all appear to be the same, illustrating

the noise resistant nature of the superresolution algorithm.

Figure 12 also shows the noise resistance of the least

squares method. For SNR equal to 100, 50, and 5; the error

vs pupil size is almost equal for each pupil. Only at the

high SNR of 2 does the noise dominate. This algorithm has

proved to be quite good in the presence of moderate noise.

Error Analysis. Figures 10 and 11 illustrate the sources

of error present using the least squares method for

superresolution. The error is expressed as the distance

between the object and superresolved image, using the

Euclidean distance, or two norm.

In Figure 10, the error is plotted on the vertical axis

and the pupils are plotted on the horizontal axis. In this •

graph, all pupils are the high pass versions with P1

consisting of 6 elements, P2 consisting of 8 elements and so

forth with the last pupil, P5 consisting of 14 elements.

Each curve is at a constant SNR. The error is seen to

decrease as the pupil elements are increased. This is

logical, since the more pupil elements available, the more

spatial frequencies passed by the system, resulting in more

information available for the algorithm.

In Figure 11, the effect of a priori information is

analyzed. The known extent of the object, M, is plotted ',

versus error for constant pupils. At the extreme, with the

object known to be within 32 bits, the larger pupils have the

38
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a) Perfect Object b) Noisy Image, SNR=100
* 1/2 P =11100000

A1 I l ,A

*c) Processed Image, M=32 d) Superresolved Image
0=IOE-10, SNR=100 M=32, a=1OE-10, SNR=100

1/2P=00000111 1/2P=11100000

Figure 7. Superresolution Example #1
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c) PocealIsse bmgM1) Supecessed Image3
SR101,R10 M=S t-= O1, SNR=100

1/2 P=00011111 1/2 P - 00011111

Fiur 8. Suerslto Example
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II

a) Processed Image, M=32 b) Processed Image, M=32
*= 1OZ-10, SNR=100

10E-5, SNR=100 12P=1100
1/2 P 111110000

L

i~~~~~~~~~~ .1.............~~~ .~ . . . . . . .. .

c) Processed Image, M=32 d) Superresolved Image
*=1OE-15, SNR=100 M=32, a= 0. SNR=100

1/2P=11100000 1/2P =11100000

0Figure 9. Superresolution Example *3
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a) Processsed Image M4=32 b) Processed Image, M=32
10E-10, SNR=100 10E-10, SNR=50

1, 2P =[1100000] 1/2 P [1110iOOO0]

p~ V i

c) Processed Image, M=32
10bE-10, SR5.0

1/2 P =[11b00000]

FIgure 10. Superresolution Example *4
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P1~~ 110000001

P21= 11110000000001111/

P3 = 1111100000011111
P4 = 1111110000111111
P5 = 1111111001111111
a = IOE-10//

SNR =100oo

/.J

.41

A//

.. .. 0. . ... ... ..
... ..

8 16 24 3

F~~gure~ 11 ro/sKonLnt fOjc
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1.6 A P1 = 1110000000000111
P2 = 1111000000001111
P3 = 1111100000011111
P4 = 111111000011111

14P5 = 1111111001111111
=IOE-10

i ~ .4

.2

P2 P3 P4 P5

A-5NIR 2.0 B-SN = 5.0

C-SNR -SO.0 D-SNR =100.0

Figure 12. Error vs Size of Pupil
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least error, which is logical. As the known extent of the

object increases, or as M decreases, the error decreases,

with the larger pupils approaching the constant level quite

rapidly. For the 10, 12, and 14 bit pupils, the error is

constant up to M=24, while the 6 and 8 bit pupils decrease at L-,

different rate that appears almost linear. The effect of M

is obvious, but as can be seen from some of the pupils, the

increase in information concerning the maximum extent does

not yield appreciable results concerning error reduction. As

an example, for P3 consisting of 10 bits, the error for M=24

is about the same as for M=8. For P3, the information gained

by knowing that M=8 instead of at least 24 is slight. The

error is seen to be almost linear over some range, and almost

flat up to a threshold level.

Conclusions

Based on the performance of the computer simulation,

superresolution is achievable in limited bandwidth optical

systems. The performance of the superresolution process is

affected by:

A priori information available concerning the object
Type of pupil
And noise in the system.

By using a smoothing parameter, a, the overamplification of

the high order noise terms is avoided. With finite precision

arithmetic and noise, the very small singular values of the

transfer matrix must be attenuated in order to preserve the

identity of the original object. The problem with
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attenuating the high order singular values is that these

* .singular values correspond to the high order spatial

frequency terms needed for resolution. Obviously some high

order terms are necessary for resolution, but amplification

of the noise breaks down the superresolution process when

high order singular values are present. For this

one-dimensional case, the pupil was assumed to be symmetric

and quite limited with a maximum length of 16. For a more

rigorous approach, the pupil length could be increased, but

the resulting increase in computer complexity would be quite

costly. The results obtained graphically and in Appendix B

illustrate the importance of the different parameters and

verify the premise that high pass or band pass pupils will

image better with this particular superresolution algorithm

than low pass pupils of the same bandwidth. By knowing as

much as possible about the noise and object, superresolution

is achievable and possible using the least squares method.
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Appendix A: Computer program listing for computer program
* SRES.
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PRCG91M SqES
C A IS T -E PUPIL YECTCq CR LENC*Tr4 LA, LA:LE SINCE
C .1 IS CO% ZLVEC WITH ITSELF
c FLI-IL MLS T S E < 1% S INCE vAX=32 TOTAL
C I61K IS A WORK VECTC; CF LENGT- ?'*1
2 FCRMAT(E1C0. -J

3 CRMAT(I)-

- FCRMT(FE..)
EFORMATC' INPLT CF: FLPIL SITE IN A, T -E PUPIL')

7 FORMAT( I P SE C ,F 10.4)
e FCRMAT(l INPLT VA~X SIZE CF C5JECT SPflCE, <9Z TC NI')

5 FCPMAT(I ENTE; PLFIL ELEIWENT',13)
12 FCRMATC' ALPI-A =7, USE EXFCNEtNT1AL FCPM')
13 FCRmAT(l NoLoP =191911x,390913)
14 FOiRMiT(I3,F6.2)
is FCRMATCF14.4)
16 FORMAT (I L. EIT FLPIL VECTCR, INPUT L')
17 FCRMAT C'SNQ z' v1 X,9F 9. 1
18 FCRMATC' IN'PLT SIGNAL TZ NOISE RATICI)
1I FORMAIC' ItNPLT CSEEO')
20 FCRMAT(I I
22 FCR14aTCFE .4)
25 FCRMATC I CSEEC =',F12.3)
123 FCRMAT( I ENTER CEJECl$,12)
142 FCRMATCI- , 1XE1C.3,Fg6.2,F6.2,lX,5(lXFE.4))

L 14;1 F CRATC I PROCSSEC !P'AGE ERRC; F ,1C .)
177 FORMATIc'SV P P*P C6J NCR IV PNCISE NGI IM NEW IM')
17 E FCRMAT(')
2c S FCRMATC' NC:SY IPAG6 qR~CF =',F1lC. 5

Cf lENSIZN XIC256), XC(236),9 ~X ( 25 6 9 S256)9yY(256)
CIMENSI'S PP(2569256),Rk( 12 ) R( 3 2) 9ZCC32) ,XCC(25e
CCL.3LE F;ECIS~nh ESEECoCCSEEC
CCtPPLEX ELM
COM~PLEX F(256q256)vFF(25f 9256),FCC25t925f)
COMPLEX PFO(256#256) ,H(Z5! ,Z!0
COMPLEX H(256 ,2!6)

0 CIMENSIO TC32,32) ,LTU22),S(32) ,WKC64'0,SV(32)
WRITE (6,20)

;EAC C5,D:L

C N IS THE RANK OF 71-E TRANSFEr; ?AT;IX

* C INPUT PA OIW:NSICN CF O!.ECT, P
q I T E(6 oe E

LE A -- L,

eC INPUT SNA
WRITE (6013)
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READ (5915)SNR
C INPUT CSEED
C ESEEC IS INPLT VA;IAELE FCR It'SL ;CLllKE -GNM'L
c CSEEC INITIATES !EARCI- FCA GALSSIAN KCISE TEqPS

REA'u (5,22)CSEEC %

CCSEEC:C!EEC
C INFLT ALFI-A

R E A (5,2)AL;t-A
F 1 3 .14 1 !92 7
L 2 .

C INPUT PLFIL ELEIPENTS A(I)
CC 33 I19,

hRITE (69S)1
9EAC, C5,-:)A( I

33 CCNTINLE
CC 34 1:(IO/2)+1,LA-IC/2

CONTIN I ()C . C

C SAVE PLFIL AS CC FCR LATER, LET .-=A FCR CCNVC.
CC 4E IZ19L

48 CONTINLE
c CREATE P4P USING. I?'SL RCLTIKE VCCKVC

CALL VCChVO CAoeqLAtLEol K()
CC 53 Izl9N

52 CCNTINUE
C REAR;AKc*E P#P TC M A T CI- S YI ETR C9yrF C FT

CC 5C I=1,L
FCI)=ACLt~l-I)

5 C COKTI'NLE

C 55 Izh-L+2,N

1 A

5 5 CCKTINLE

C NC . PAKE PUPIL MtTRIX PP (8 It% 71ESI.S)
C 14TRIX I-AS P UF IL ELEP'ENTS ON 1I'E CIACCKAL

* CC 65 I:2,N
CC 65 J:1,9N

I F( I . EQ )F ( I
f 5 CCKTIKLE

C IKCW PAKE TRLKCATICN PATRIX C -

C P' IS TI-E KNCkK f/X CF THE DEJECT

CC 7C 11,M
ItC 7C i a1 9 1
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IF(IJ):. 10(IJ=.

70 CCKtTIKLE
IF (P.EC.K) GCTC 155

rCC 75 J=(M#1),N

75 CONTINLE
15 c RITE(692C)

C NC6 OOAKE FT PATqIX AKC FT IN ERSE PMA7;IX
C F IS FT AND FF IS INV~ERSE FT

CC BE I:Ct,-1
CC 88 K=C,9N-1
F(I,1,K,1):CEXF(CPvPLX(C.Co-2*FI*!*K/N))
FFCI,1,K41)=CEXF(CMFLXC0.C.24F1~l*K/h))

a8e CONTINUE
*C NCW, IWE I-AVE CUR FOUR WATRICESt LETS MtjLTIPLY

C, FIRST FLLTIFLE F ANC C MATRICES
*C~ 09C I z 9N

CCc J= IN

CC 85 K=29%
SLM=SLP+FCIK)*CCKoJ)

69 CCNTIKLE

FD(I*J)=SLM

C F TIPES C STCREC AS MATRIX FC, NCi% POLTZFLY eY
C PATRIX E 6HIC14 IS THE PLFIL PATRIX PF

31 C0 95 I:I,N
I C 9 5 J aI, N
SLM=(C.0tC.0)

CC 9i Kzl1,
SLMsSUM+FFCI9K)*FC(K9J)

PFCCI ,J)XSUM
55 CONTINLE

* C EFC STCRED AS PFC (KCTATICK L.SED IN THESIS IS OF[)
C NC6A PLLT1PLY EY INVEPSE FCUqIER PATRIX
52 C C 1iC0 I1,N1

I C 10 0 1Ja1,9N
SLM=(C.09C.0)

CC 9S K=1,N
* SLM=SLP+FFCIK)*FFCCMj)

99 CCNTINUE
t-H( 1, J )z( SUM)

100 CCNTINLE
C e-I' IS TR;NSFER PATRIX
C FSEQ IS TmE AVG FCWER IN 1I-E SE%"LECE
C ENTEP CZ.ECT IRPACIANCE IERMS

CO 124 I21,M
)C(1 I)OC



IT-- v IT IT- t r.I

124 CCNTINUE

C CBJECT IS TWE PCINT SCLRCES 4-1 FRCP~ OF AXIS

XCM/2,1):1.C

FSEQz0.C
C KCiv EC 7 E NCRMAL IM~AGE, IMAc-E=T*CBJECT
C T IS TIE ABSCLtJTE VALLE CF MATRIX IWH

CC 120 Iz1,N
CC 130 J:1,p.

130 CONTIKLE
C 0 12 0 1Iz1,N

X X 1 0)O C

EC 117 jtk

117 CONTINUE
XI(I)ZXXC1)

12 C CCNTINLi
C KCRIAALIZE IMAG*E

CC 1CI Izl19N
0 IF (XI(I).NE.C.C)SS(1)=XI(I)

IF (55(1) .%E *C *0)GCT0 102
101 CCNTINLE
102 OC IC3 IzlN

IFCXI( I).Gr.SSC1))SSC1 )=XI(I)
103 COINTINLE
C SS(l) IS 10AX ABSCIUTE VALLE CF IIPAGE
C , NOW C! IDE IC NCRMALIZE

CC 125 IzlvN
XI (I, XICI)/SS( 1)
PSE~:FSEC*XICI)

125 CCNTINUE
FSEQ=PSEC/N

C KC6 CETE;MINE NOISE VECTCR
C SEE IPSL GGNPL FCR CETAILS
C NOISE IS AMPLITUi£E SC SQUARE IT FOR FCkEP
C SAVE ORIGINAL NOISELESS IMAGE AS XI(I)
C KCISY IMAGE IS X[C(I)

CALL GGh0L(OSEEC ,N ,R)
CC 24 IzlN

PR(I)=(SCRT(FSEr./SNR))*RCI)
FR(I)=RR(I )*RRCI)

24 CONTIt.LE
C KORMALIZE FINAL KCISY IMAGE XCO(I)

:C 2C2 I:1,N
I F X C C ( 1 4GT.SS1)SS1=XCC(I)

202 CCNTINUE
CC 2C3 I1,lN

2 0 CCNTINUE
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C LT IS AN Ni X h ICENTITY MATRIX ON INFLT
C SEE IPMSL LSVCF FCR INFO

CC 132 Iz IN
EC 132 JzloN

LT(IJ) O .0

132 COKTINuE

C hC6 CREATE TtHE TOHREE P'ATRICES FRC14 To r=LSVI
C SEE IV0SL LSVOF FC DETAILS

CALL LSVCF(TNNt',UTNN, ,S,bKIER)

C Ch CUIFLI ,SC(9) ARE SINGLLAR VALLES
C REPLACE S(K) WITH- F(SCK))
C THIS STEF REPLACES S(K) hITM FES(K)J
C ANC FERFCRMS THE COT PRCCLCT
C WITt' TIHE LEFT SINGULAR VECTOR FRCP CCLS, CF LT
C SAVE SINGULAR VALUES AS SV

CC 136 K:1IM

CC 134 Iz1,N
XX(K)=XC%'CI)*UT(K,1)4XX(K) .

134 CONTINLE
SS(K)=CS(K)',S(K)*S(K))I(CS(K)*S(K )*S(K )*S(K))4ALFH.A)

55 (K )=SS(K )*XX (K)
13 CONTINUE

SC PULTIPLY COT FRCCLCT X RIGHT SINGLLA9 'VECTORS FRCP 7

C YY(I) IS RECCNSTRLCTEC IPAGE
CC 137 1=19M

XX(I)=O.C
CC 138 J:1,N
)xCI)ZXX(I)*T(Ioi)*SS(J)

138 CCNTINUE
YY(I)ZXX(I)

137 CCKTINUE
C NCRMALIZE RECCNSlqUCTEC, IF'AGE

CC 162 1219M
IFCYY(I)*NE.C.0)5(1)=ABS(YY(1))
IF (S(l).GT.C.0) C-CTC 16-1

162 CONTINLE
163 CC 164 Iz1gM

164 CCNTINUE
C $(I) IS P A X AeS 'VALUE OF AEC IFPACE

0 CO 167 I:1.IP

167 CONTINLE
%RITE (9itl77)
wQITE (9f,178)

C C 13 9 I1,19N
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IF CI.GT,.ALE)A(I )=C.0

13S CONTIIUE
5S 1 ):Q. C

C C 146 It 1, N
4

SSC1)=SS(1) * (XCC(I)-XC(I))f,0Z
146 CZNT IKUE
C SSM1 IS THE EUCLIDEAN CISTAKCE EETWEEN NcIsy
C CSSER'YEC IMAG*E XCC(I)AINC N~OISE FREE CeJECT, XC(I;
C XXCl) IS THE EUCLICEAN CISTANCE EETWEEK THE
c RESTCREC IMAGE VYCI)ANC 71-E C91GINAL levJECT XC(l)

URITECSes2C

SQ I T E (56, 14S)XXC1 )
P I TE C617 )S N
~R 17E (56,4)ALP -
,RITE(96 ,Z5)CCSEEC

210 STOP
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Appendix B: Data from Computer Program SRES

Notes:
1. All objects are two incoherent point sources two

bits apart
2. Processed image error (PIE) is the Euclidean

distance (two norm of the difference) between the

superresolved image and noise free object.

1/2 Pupil SNR M ALPHA PIE

00001111 100 32 10e-10 1.24
00001111 " " 24 " " 1.41
00001111 " " 16 " " 2.51
00001111 " " 8 " " 0.30

11111000 100 32 " " 0.52
11111000 50 "" " " 0.52
11111000 5 "" " " 0.75
11111000 2 "" Is " 0.82

11111100 100 32 " " 0.39
11111100 50 "" " " 0.35
11111100 5 fill it It 0.42
11111100 2 "" " " 0.79

11111110 100 32 " " 0.37
11111110 50 "" " " 0.37
11111110 5 "" " " 0.45
11111110 2 "" " " 0.53

11111110 100 24 " " 0.03
11111110 100 16 " " 0.02
11111110 100 8 " " 0.01

11100000 100 32 0 3.28
11100000 100 32 l0E-10 0.92
11100000 50 "i"  " " 0.92
11100000 5 "" " " I .01
11100000 2 " " " 1.04

11100000 100 24 " " 0.68
11100000 50 "" " " 0.68
11100000 5 "" " " 0.75
11100000 2 "" " " 0.98

V~5 5

............................................. .-

.. .. . . . . . . . . . . . . . . . . . . . . . . .
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1/2 Pupil SNR M ALPHA PIE

11100000 100 16 l10--0 1.51

11100000 50 " I 2.62

11100000 5 2.77.-.

11100000 2 "" '" 2.56 
L

11100000 100 8a 0.05
11100000 50 8 0.08

11100000 5 1.18

11100000 2 1 IO-O 1.51

00000111 100 32 ,' 1.27

00000111 100 24 1.23
00000111 100 16 " " 2.53
00000111 100 8 1" " 114

11110000 100 32 " " 0.6?

11110000 50 8 " " 0.67

11110000 5 "0 " " 0.92
11111000 2 1" " " 1.85

11110000 100 24 "0.39

11110000 50 3t " " 0.42
11110000 5 " " " 0.69
11110000 2 6 " " 2.58

11110000 100 16 " " 0.08

11110000 50 "" " " 0.24
1110000 5 "" " " 0.96

11110000 2 "" " " 1.58

11110000 100 " " 0.03

11110000 50 0 ""0"52

11110000 5 0.83
11110000 2 " " " 0.51

11111100 100 24 "" 0.04
11111100 100 16 " " 0.01

11111100 100 8 " " 0.01
111110000 24 " " 0.05

1111100 100 16 " " 0.02
11111000 100 8 " " 0.02
11100000 100 32 0 3.28
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Appendix C: Typical Data from SRES computer Program

-- -

SV =Singular Value
P*P= Autocorrelation of Pupil Vector
New Image is processed image
Error is Euclidean distance between the image and object

4 sv PtP CBJECT hCRIPAL KOISY NEI%
IPACE IYAGE IPA.GE

1 C.320E403 1.00 0.0C C.0072 0.1172 0.1058
2 C.256:E+02 2.00 C.OC 0.02C0 0.C404 0.02 :2
3 C.256E+0. 2.OC C.0C 0.0120 0.C500 -0.0185
4 C.12E+03 4.00 C.0C C.0150 0.C690 0.C458
5 C.192E+0 . 5.00 C .OC O.0C65 0.C272 -0.1081
6 C.16CE*03 4.00 C.0C C.0eC 9 0.1091 0.1246
7 C.16CE*03 3.00 C.CC C.0181 0.C164 -0.0512
8 C.128E .3 2.00 C.0C C.04t4 0.C 5 15 0 .I89
S C.128E+03 1.00 C.CO C.02C2 0.C330 -0.1033

10 C.128E*03 C.00 C.OC C.0244 0.C4e6 0.0417
11 C.12eE+C 0.0 0 C.CC C.0!18 c.c2e8 -0.21E7
12 C.128E+03 2.00 C.CC C.4041 0.3802 0.1445
13 C.12EE.0. 4.00 C.OC 0.2111 C.2C45 0.0175
14 C.96CE+02 6.00 C.OC 0.5483 0.58E2 0.2561
15 C.960E+02 8.00 1.00 .oOCCC 0.90e6 0.8331

- 16 C.S6CE+02 1C.O0 0C.0C C.3359 0.09, -0.0431
17 C.96CE 02 E.00 1.0C 1.00CCC 1.C00 1.CCCO "
18 0.64CE+02 6.00 0C.OC C.5483 0.5C8 0.1799
19 C.64CE.02 4.00 C.OC 0.2111 0.21C0 0.0013
20 0.64CE+02 2.00 C.OC C.4C41 0.4340 0.1429
21 C.640E.02 O.CO C.OC 0.0318 0.C251 -0.1658
22 C.640CE02 0.00 O.OC 0.0244 C.C.234 0.0104
23 C.64CE+02 1.00 C.OC 0.OiC2 0.C196 -0.0575
24 C.32CE+02 2.00 C.OC 0.0464 0.C465 0.1132
25 C.32CE*02 3.00 C.0C C.0181 0.C568 0C147
26 C.320E02 4.00C .0C C.0EC9 0. C65 0.0533
27 0.32CE+C2 !.00 C.cc C.CC65 o.C242 -0.05CC
28 C.728E-04 4.00 C.OC 0.0150 0.C4C -0.0031
29 C.72CE-0q 3.00 0.0C 0.012C 0.0132 -0.0517
30 C.22SE-04 2.00 0.0C 0.02C0 0.C18 4 -0.0259
"1 C.205E-04 1.00 C.0C 0.0072 0.1473 0.1451 '
32 C.146E-0,4 C.00 C.CC C.035S C.C350 -0.018-

KOISY IMAGE ERRCR = 1.10164
FRCCESSEC IMAGE ERCR C.62C.5

. R : 5.0 . :::

ALFH • C. -CS "..'-
CSEEC - 3412.C00
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