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The contents of this report constitute one phase of a two-part research

program sponsored by the Air Force Wright Aeronautical Laboratories, Aero

Propulsion Laboratory, USAF, Contract No., F33615-82-K-2218.

The program,

administered through The Ohio State University Research Foundation, was

monitored by Dr. Kervyn Mach and by Mr. Charles MacArthur of AFWAL.

The

s program i3 part of an overall effort to achieve two objectives in enhancing

the cooling technology }n the hot sections of gas turbine engines.
e ! sy sluny

"> The first objecti¢?1

concerns the phenomenon of flow transition in

boundary layers on turbine airfoils--from the onset of turbulence to the

transition completion.

Transition studies, though fundamental to fluid

mechanics, are unique in gas turbine cascades because of the compounding

factors that act not in individual isolation, but as a collective group and

that constitute by-pass mechanisms not amenable to linear analyses from a

mathematical point of view.

The second objective is to evolve an engineering methodoleg) to account

for éké/surface roughness effects on heat transfer and turbulent boundary

Because these two research phases are distinet from each other,
advisable to document their results in separate reports., Hence, this
presentation focuses on the results of transition study. As part of their
continuing interest in propulsion technology, NASA Lewis Research Center
partially supplied funding for this phase of the research effort. Their

financial assistance (s hereby acknowledged.

=
layer analyses, which have heretofore been studied in fragments, —7 /' 42)
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NOMENCLATURE
3
(Infrequently used symbols are defined in the text.)
:
Symbol Definition .
Ce Local coefficient of skin friction, rw/V,oUO2
Cp Pressure coefficient, (p-p-)/Y,;Uo2
F Viscously nondimensionalized instability frequency, ev/Uo2
Gg Gortler parameter, (U 8/v) /y_e/r
Ge__t Gortler parameter at transition onset
Gy Gortler parameter based on §_, (U8 /v /yem
H Boundary layer velocity profile shape factor, &%/0
M, Freestream MACH number
Nu Nusselt number
p Local surface static pressure
P Reference freestream static pressure
Pr Prandtl number
- o] Local heat transfer rate
r Radius of streamwise flow surface curvature
Rens Nonsteady Reynolds number, (UOAUO/mv)
Rex Length Reynolds number, (on/v)
Rea* Displacement thickness Reynolds number, (an*/v)
Re0 Momentum thickness Reynolds number, (er/v)
Ree_t Momentum thickness Reynolds number at transition onset
x1i
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NOMENCLATURE
(Continued)

Definition
Momentum thickness Reynolds number at transition completion
Local static temperature

2 + w'z)/UO

Freestream turbulence level, 1/3(u'2 + v!
Adiabatic wall temperature (recovery temperature)
Wall temperature

Reference freestream static temperature

Local streamwise component of boundary layer edge
Streamwise component of disturbance veloecity
Streamwise velocity at boundary layer edge
Reference freestream velocity

wall-normal component of disturbance velocity

Tranverse component of disturbance velocity

Streamwise, wall-normal, and traverse Cartesian coordinates

Greek Symbols

Nondimensional wavenumber, 2"5r/AG/TS

. . x
Nondimensional wavenumber, 2n§ /AG/TS

Nondimensional wavenumber, 2"O/AG/TS
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Greek Symbols

(Continued)

Circular frequency of Tollmien-Schlichting disturbances
Hartree pressure gradient parameter for Falkner-Skan flows
Intermittency factor for transitioning flow

Boundary layer thickness

Boundary layer similarity variable, /_7§7ﬁ;—

Boundary layer Displacement thickness

Boundary layer Momentum thickness

Acceleration parameter, v(dUo/dx)/Uo2
Pohlhausen parameter, (62/v) (dUo/dx)

Modified Pohlhausen parameter, (ez/v) (dUo/dx)
Wavelength of Gartler disturbances

Wavelength of Tollmien~Schlicting disturbances
Absolute viscosity

Kinematic viscosity

Density

Freestream turbulence level (percent), Tfs x 100

Wall shear stress

Circular - equency of freestream oscillation, 2uf
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I. INTRODUCTION: THE NATURE OF TRANSITION .IN A BOUNDARY LAYER FLOW
V4 . . .
pd .

s
/. - /

Reshotko t*}‘/has suggested that'transition!may be viewed as the response
of a very complex three-dimensional nonlinear oscillator (the laminar boundary
layer) to a random and often statistically nonuniform forcing function (the
disturbances). Morkovin({z] has proposed a unified view of the processes
leading to tra;;}tion, shown in Figure 1, which will aid in analyzing this

. b
deseription. f)ﬁQs AL ’

In Figure 1, the box labeled "A.C. INPUT = DISTURBANCES" indicates that
the activation of the instability-transition mechanism requires a disturbance
(see [3] and Gaster's paper in [4]) that is always present, at least infini-
tesimally. Furthermore, the response of the boundary layer is very strongly
dependent on the magnitude and spectral distribution, and even somewhat on the
orientation of the unsteady disturbances.

The arrows from the input box to "LINEAR AMPLIFICATION" denote the
"receptivity" of the boundary layer. Receptivity, a term applied by Morkovin,
refers to the means by which disturbances couple with, and are assimilated by,
the boundary layer. Morkovin's analog for the receptivity mechanism is a
variable band-pass filter~preamplifier,.

In small disturbance flows over smooth walls, the available disturbance

environment tends to excite a selected frequency of boundary layer

*Numbers in brackets refer to references in the Bibliography.
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AC. INPUT = DISTURBANCES
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Figure 1. Laminar boundary layer as a linear and nonlinear operator. [181]
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instability. The instability is amplified above a certain critical Reynolds
number in a distinctive filter-amplifier action that allows its growth to
rapidly outpace all others. This aspect is incorporated in the box labeled
"LINEAR AMPLIFICATION." For nominally two-dimensional boundary layers, two
normal modes of instability have been predicted and later i{dentified

. experimentally. These are the downstream traveling Tollmien-Schlichting (T-S)
waves and the body-force induced steady streamwise vortices. The former mode
was modeled theoretically in an original analysis by Tollmien and later in a
refined analysis by Schlichting (see Schlichting [5]). 1Its presence in a
Blasius boundary layer in a benign environment was first confirmed by the

experiments of Schubauer and Skramstad [6]. The latter modes include the

centrifugal Gsrtler 7] instability for flows over streamwise concavely curved
surfaces and buoyancy instabilities (see Schlichting [5]) in boundary layers
with unstable density stratification. The characteristics of these

instabilities will be discussed more fully in subsequent sections.

The box in Figure 1 labeled "OPERATION MODIFIERS = MEAN BOUNDARY LAYER

PROPERTIES" refers to those properties of the flow that act to rearrange the

vorticity in the boundary layer. Their influence on the instability is either E;;j
steady or may be considered so. As a consequence of their action, the ;:{::

." S
receptivity character of the boundary layer is changed and the ascendancy and jifﬁ
amplification rates of an instability are determined. Another operator, which ;1:2

does not fit directly in this box, is mean flow unsteadiness. This topic will

. be addressed in a separate section, U
if Subsequent to linear amplification of small disturbances, the boundary }fff

— 14 4
Ff: layer begins nonlinear, three~dimensional development., A "secondary .:x}

instability" then appears, which promotes a reduction in disturbance scale to
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a range more commensurate with turbulence. Transition starts with the

appearance of downstream traveling turbulent "bursts"™ or "spots" which grow

i

v'l;’;
B
K
T
) 3
[ !
(R
p‘,‘!
; .

In this presentation, transition "onset" will be used in reference to the :Sj&
first appearance of these bursts, or to the first appearance of the irregular, &i::
fine-scale random velocity fluctuations characteristic of turbulence. . iAq:
Transition "completion" will refer to the coalescence of the turbulence to S%;%
form a fully turbulent boundary layer for all time. In the region between E?{é
these two locations, the term "intermittency” [8] is used to describe the Effi
statistical average of the time that the boundary layer is locally ;::i
turbulent. Intermittency is usually denoted by the symbol Y, and its value iﬁgi
ranges from 0 for laminar flow to 1 for fully turbulent flow. As indicated by Eifj

and coalesce as the flow continues, forming a fully turbulent boundary layer,.

Morkovin (3], though, a consistent means of measuring the onset and end of

transition, or the intermittency, has not yet been defined. Partially, this

is because of the often random nature of the appearance of the turbulent [“;1
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bursts and the variety of techniques used to detect transition. Additionally,

N

transition is sometimes more continuous than intermittent, particularly for

.
[0

P4

low Reynolds number or "bypass" transitions. (The term "bypass" will be

defined later in this section.)
Returning to Figure 1, the box labeled "PRINCIPLE OF DOMINANT AND

MULTIPLE RESPONSIBILITY FOR ULTIMATE TRANSITION" can be noted. In some cases,

the influence on transition of an operation modifier working in concert with

the disturbance environment may be singly dominant. Identification of such
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occurrences may aid in determining a criterion for evaluating transition onset
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or in deciding how to move the transition region, depending upon the
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objective, However, in general the location of transition will depend
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strongly on the nonlinear combination of influences from several operation
modifiers and the unsteady disturbance input. Morkovin's pertinent
observation on this matter is that " . ., . there are always some freestream
disturbances (turbulence, temperature spottiness, random or regular sound),
some roughness, some three-dimensionality of the flow, some unevenness of
leading edge, some waviness of the skin, some vibrations, some heat transfer,
some pressure gradients, and so forth (all very hard to measure). . . . " The
singular nature of combined influences, especially those which are irregular
or three-dimensional, plus the lack of ability to properly characterize the
disturbance environment and the lack of unde “standing of the selectively
sensitive receptivity mechanism lends a very nondeterministic quality to the
ultimate transition process, 1In fact, it is these qualities of the forcing
function and the boundary layer oscillator that have foiled or clouded many
experimental attempts at evaluating parametrically the various influences on
the instability-transition process [2, 3, 9].

Although many incidents of transition are preceded by the development of
instabilities identified by linear theory, it is clearly evident that this is
not always the case [2, 3]. Such occurrences are labeled "bypasses" by
Morkovin and are tentatively denoted by arrows directly from the disturbance
box to the secondary instability or turbulent spot in Figure 1. In bypass
transitions, any semblance of the linear instability modes is apparently
preempted by a more direct and rapid nonlinear response of the boundary
layer, Identifiable causes of bypasses include large distributed 3-D
roughness [2, 9], localized flow separations {9], and possibly high-level
freestream disturbances of the proper scale [2]. Another somewhat special

case is the Charters' [10] transverse contamination mechanism., This phenomena
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plate at a free side-edge, or by side-wall boundary layer interference at a
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side~edge juncture [9].

The preceding sketch serves primarily to introduce the complexities of

700,
e
'

!i
aé boundary layer transition and to establish a vocabulary for some of the more _€§§§
~ p
!l general features of the process, (For more comprehensive insight into the fhﬁ

: nature and mechanisms of transition, the excellent reviews of Morkovin [2, 3, Eiz.
11], Reshotko [1], Tani (12, 13], and Loehrke, et al., [9] should be gi;iz
Y

consulted.)
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II. LINEAR STABILITY THEORY

The complexity of the boundary layer oscillator traditionally has

Tty T Y T AR Yy W . Y. % e e e W 4 b s

rendered it intractable to all but the most simplified theoretical analyses.
As a result, the theoretical studies of boundary layer behavior have been

! limited substantially to linearized infinitesimal perturbation theories,
These theories establish marginal stability conditions for, and growth/decay
rates of, infinitesimal amplitude periodic boundary layer disturbances, In
the process, receptivity considerations are avoided because the disturbances

are initialized within the boundary layer.

F AR RFY . I

: Physically, infinitesimal disturbances are those whose amplitude is so

l ' small as to not change the characteristics of the laminar flow being

- studied., Functionally, the limits may be set as A2Re << 1, where A is the
perturbation velocity to local freestream velocity ratio and Re is a thickness
I Reynolds number. If, however, the disturbance amplitude is sufficient to
modify the time-independent or time-averaged flow quantities for the laminar

i boundary layer, the disturbances are referred to as being finite [1].

E . Reshotko [1], Mack [14], and White [15] have delineated the approach and
clarified the necessary concepts for applying infinitesimal perturbation

stability theory in the case of traveling wave (T-S type) disturbances,

E (Also, see Gaster in [4].) Typical methods for the case of the centrifugally
N -

. induced Gortler vortex disturbances can be found in the papers of Ragab and

.

)

i Nayfeh [16]) and Floryan and Saric [17). Therefore, for the purposes of this
- 7
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survey it is more appropriate to brief some of the salient simplifications and
assumptions made in applying the linear theories.

Solutions for the linearized perturbation equations are usually assumed
to be of the simplest normal modes form (single frequency sinusoids) and are
applied to one or more of the independent variables, For the T-S type
disturbances in two-dimensional subsonic flows, the greatest instability is
streamwise (see Mack's review in Chapter XVII of Schlichting [5]) thus
requiring only a two-dimensional wave for evaluating the marginal stability
conditions. Modeling of the three-dimensional streamwise vortex insta-
bilities, on the other hand, demands concurrently acting perturbations in each
of the orthogonal coordinate directions.

Other prevalent simplifications in the linear theories usually entail
neglecting some of the streamwise derivatives of mean flow quantities. Under
some conditions (primarily at large Reynolds numbers), it has sometimes been
assumed that all longitudinal derivatives of mean flow quantities as well as
the wall normal mean velocity component could be neglected. Thus, the base
boundary layer flow is treated as being locally parallel (without growth) or
"quasi-parallel." The propriety of this treatment will not be discussed here,
but it is enlightening to refer to the nonparallel stability results of Saric
and Nayfeh [18, 19] for the T-S instabilities, and Ragab and Nayfeh [16] and
Floryan and Saric [17] for the Gortler instabilities as well as the
investigations of Gaster [20, 4] and Hall [21]. From these papers, it is
evident that nonparallel affects are important for analytically establishing
the marginal stability conditions. Nevertheless, the results, with the sole
exception of Saric and Nayfeh's [18, 19] for the Blasius boundary layer, are

apparently quantitatively unconfirmed.




Provided that the assumptions utilized in the linear theory are

appropriate, the resulting marginal (neutral; stability solutions represent

the demarcations between damped and amplified "infinitesimal"™ disturbances in
a particular flow. For T-S modes in a subsonic two~dimensional flow, the

results are usually plotted as dimensionless wavenumber

c e———.
.

= 2n8%/) or a. = 2w9/\

TS Q TS
the displacement or momentum thickness Reynolds number, yielding a "thumb"

a5 or dimensionless frequency F = 8, = Ug versus
shaped locus. Similarly, marginal stability curves for the Gortler modes are

l plotted as dimensionless wavenumber versus a thickness Gortler parameter, as
will be seen later., Points on these curves denote the "eritical™ Reynolds or
Gortler numbers for a particular frequency or wavelength of disturbance., The

: smallest Reynolds or GSrtler number from these curves, regardless of distur-
bance wavelength, is referred to as being "minimum critical."

Linear stability results will be addressed in this review, partially

l because they provide some information on the initial processes preceding some

- cases or boundary layer transition. Particularly, from them knowledge can be

5 garnered about the effectiveness of some operation modifiers, such as pressure

I gradients and heat transfer, in promoting or delaying instability. Also, they

indicate which disturbance frequencies are most effective in destabilizing the

boundary layer. Finally, the importance of the nondimensional parameters

" - obtained from linear theory analyses cannot be ignored, since they have often
provided the means for correlating transition'data. However, the relevance of
any results from linear stability theory in considerations of the occurrence
of transition is, at best, indistinet and is, in many cases, nil. On this

- subject Reshotko [1] comments, " , . ., the relationship between transition

Reynolds number and some representative Reynolds number from infinitesimal-




disturbance stability theory is weak quantitatively and only moderately strong

RV ASAS ) G R R

qualitatively." His statement was, nevertheless, focused on cases of post- St
critical transition driven by relatively small amplitude freestream

disturbances. No such relationship can realistically be expected to apply to :

s r BB

precritical or bypass transition, in which there is no apparent operation of a

e e
L Ay

linear amplification mechanism. Mack [14] and Morkovin [3] both acknowledge

that transitioning or even turbulent boundary layers have been observed in } oy
situations that were supposedly stable laminar flows according to linear

. theory.
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III. NONLINEAR STABILITY INVESTIGATIONS

Investigations of the nonlinear stability of boundary layers are very
much in their infancy due to the formidable problems, either mathematical or
numerical, associated with analyzing such a complex three-dimensional oscil-
lating system. Many of the analyses have been motivated by the approaches of
Stuart [22, 23] and Watson [24] for parallel flow stability, Essentially,
they extend the results of linear parallel stability theory into the weakly
nonlinear regime by nonlinear small perturbation methods. As discussed by
Stuart [25] for T-S type instabilities and Hall [21] for Gortler type
instabilities, though, they are not appropriate for application to boundary
layer flows, whose growth i{s characterized as being both nonparallel and
diffusive. At any rate, analytical methods are, as yet, inadequate for
extending analyses into the regions of highly nonlinear instability
development.

Numerical investigations, on the other hand, have their own set of
difficulties beginning with the demand for increasingly higher (and three-
dimensional) resolqtion as the nonlinearities in the boundary layer response
increase, Additionally, there is the possibility of introducing or
suppressing instability through the method itself, coupled with the
uncertainty in downstream boundary conditions [26].

In nonlinear stability investigations, as with the linear stability

analysis, receptivity is usually not considered (e.g., see (4, 26, 27, 28,
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29]). Reshotko [1] and Morkovin [3] review various aspects of the receptivity

v
ST

mechanisms studied through 1976. Rogler [30] presents a more current
modelization of some facets of the receptivity phenomena.
The following review of the influence of disturbances and "operation

modifiers" on instability and transition will not be mechanistic but primarily

parametric, Although this will not lead to the understanding of the nonlinear . 1?45
A,
interactions among the various influences, it will provide some insight into 3"2
the nature and order or their effects, which may be useful in determining ) 5._J
B
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IV, FLAT PLATE BOUNDARY LAYER TRANSITION AND THE TOLLMIEN-SCHLICHTING
INSTABILITY '

If all sources of disturbance (i.e., turbulence, acoustic waves, and
vibrations) are very small and the flow surface is smooth, the unstable
Blasius boundary layer evolves continuously from the amplification of the 2-D
T-S inatability modes to the appearance of localized turbulent "spots." The
sequence of events has been elucidated by the experiments of researchers,
including Schubauer and Skramstad [6], Schubauer and Klebanoff [31], Klebanoff
and Tidstrom (32], Klebanoff, Tidstrom and Sargent [33], Kovasznay, Komoda and
Vasudeva [34], Hama, Long and Hegarty [35], and Hama and Nutant {36]. Tani
{12, 13] has reviewed and interpreted these and other investigations.

Although there is yet some uncertainty in the developments immediately

preceding the emergence of turbulent spots, the processes may be outlined as

follows:

(1) Past the marginal stability location, downstream traveling (ideally
two~dimensional T~S waves (the primary instability) begin to amplify
exponentially deep within the boundary layer. Their velocity is
roughly one-third that of the freestream and the wavélength is
several times the boundary layer thickness (see Gaster in [4] for a
discussion of the spatial and temporal nature of the waves), This

stage is the object of investigations by linearized stability

—
)

theory.
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(2) Gradually, nonlinear finite amplitude development takes over,
leading to a spanwise varying rate of growth. This pronounced
three-dimensionélity is attributable to the production of streamwise
vortices (the secondary instability) along the swept-back front of
the T-S waves, resulting in redistribution of the wave momentum.

(3) The upward fluid motion caused by two adjacent contrarotating
vortices produces a "high shear" layer nearer the ocuter edge of the
boundary layer. Subsequently, the high shear layer sheds smaller
scale, intense, discrete vortex loops in cascade, which break apart
and individually tangle to produce high frequency fluctuations at
scales more commensurate to that of turbulence (see [36]). From
this melee, growing localized turbulence emerges and moves
downstream at approximately two-thirds of the freestream velocity.
Tentatively, these events are interpreted as indicating that the
large scale T-S wave instability must combine with the secondary
(velocity profile inflection producing) vortex instability as a
prerequisite to the disturbance scale reduction and three-
dimensionalization required for turbulence [9]. The importance of
velocity profile inflections in the reduction of the T-S instability
scale will become clearer in the subsection on pressure gradient
influence,

The features of turbulent spot formation and growth following breakdown
have been the subject of investigations by Emmons [37], Schubauer and
Klebanoff [31], Dhawan and Narasimha [8], Elder [38], McCormick [39], and more
recently by Wygnanski, Sokolov and Friedman [40]. Dhawan and Narasimha's [8]

analysis of Blasius boundary layer intermittency data produced the result that
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the inception of turbulent spots i{s random in time and very nearly along a
discontinuous spanwise line in the flow. Nevertheless, the insensitivity of
the intermittency development to the exact streamwise ascent spot distribution
makes this result less pertinent [40]). With the exception of a short period
in the initial growth, the spanwise and streamwise development of each spot is
uniform and independent of the existence of other spots [38]. The speeds of
the leading and trailing edges are around 0.5 and 0.88 of the freestream,
respectively [31], and the spanwise spread subtends an angle of about 20° in
the flow [40]. All of the spots apparently have similar streamwise
axisymmetric arrowhead shapes with downstream pointing vertices [31, 38,
40]. In addition, they are followed by regions of "becalmed" laminar flow in
which another spot is not generated [31].

A schematic plane view of the foregoing events, from T~S instavbility to
coalescence of the turbulent spots is given in Figure 2. To be noted is the
solid angle of turbulence, corresponding to Charters' [10] transverse

contamination bypass, which is swept out along the sides of the plate.

4,1 Freestream Disturbance Effects

Freestream disturbances represent part of the input to the boundary layer
oscillator, as can be noted from Morkovin's diagram. Included in this
category are vorticity (eddying velocity fluctuations, which are referred to
as freestream turbulence), "sound" (pressure fluctuations which are trans-
formed into velocity fluctuations in the fluid), and entropy variations. Much
of the freestream disturbance energy in subsonic flows is exhivited as either
turbulence or acoustic phenomena, the latter of which can be both traveling

and standing pressure waves, Generally, lncreasing levels of freestream
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: Figure 2. Idealized sketch of instability and transition processes on a flat
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disturbances move transition to smaller Reynolds numbers, with the effect at
very low disturbance intensities being drastic. However, freestream
disturbances in most cases of practical interest are nonhomogeneous and
anisotropic, and the spectral distribution of disturbance energy can influence
transition onset through the filter-amplifier nature of the boundary layer.

In nonbypass transitions, particularly those which are preceded by substantial
instability amplification through a linear mechanism, the occurrence of
transition depends strongly on the frequencies, and even possibly on the
orientations of disturbance spectra in relation to the amplifiable boundary
layer oscillation frequencies.

Tani [12] has stated that freestream turbulence appears to control the
rate at which the remainder of the boundary layer spectrum feeds on the most
amplified component, That is, it hastens breakdown of the unstable laminar
layer. Discrete frequencies, on the other hand, which closely match the
amplifiable normal modes seem in some sense to drive their amplification, or
at least to influence their initial amplitude (see [14]). Regardless of the
interaction mechanisms (receptivity), though, freestream disturbance
frequencies which are close to the frequencies of the amplifiable normal modes
can be considerably more efficient at promoting transition than those which
are mismatched.

The effects of nonuniform disturbance spectrums were illustrated lucidly
by the transition experiments of Spangler and Wells [U41]. Figure 3 shows the
dramatic differences they obtained for transition Reynolds numbers in Blasius
flow when various acoustic and vortical (grid generated) disturbances were
introduced. At this point, it is helpful to examine the marginal stability

curve for the Blasius flow shown in Figure 4, Note that there is a range of
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O Grid generated freestream turbulence
Principal Acoustic Freq. (Hz)

27
43

76
82

q4Qp<C0

Re"_'XIO'6
Ol
o/
é
/
:

-

~
Schubauer and Skramstad [6]

0 i 3 s 4
(0] 0.1 0.2 0.3 0.4

ﬁ: x 100

Figure 3. Transition Reynolds number as a function of freestream disturbance
intensity. (41]
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Figure 4, Marginal stability locus for the Blasius flow. [18)
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dimensionless amplifiable T-S frequencies for each Reynolds number greater
than minimum critical. Those frequencies with the greatest (spatial) rates of
amplification will be in the middle of and down into the thumb., Spangler and
Wells chose their acoustic disturbance frequencies such that they fell
approximately within these amplifiable bandwidths predicted by linear theory.

Also shown in Figure 3 is Schubauer and Skramstad's [6] wind tunnel
transition results for various levels of grid generated disturbances, It is
of importance to note the difference in length Reynolds number of transition
onset at the lowest disturbance levels for the Spangler and vells (5.25 x 106)
and the Schubauer and Skramstad (2.8 x 106) experiments. Spangler and Wells
were able to achieve this higher Reynolds number by carefully controlling
acoustic disturbances in their wind tunnel, while Schubauer and Skramstad's
limiting Reynolds number was apparently the result of fan nolse contributions.

Another important lesson is illustrated in locus AB (top line in Figure
3) for which high sound levels (in the range of 90 to 135 db) were ineffective
in reducing the Reynolds number of transition., Concerning this phenomena,
Loehrke, Morkovin and Fejer [9] commented, "However, this occurrence i3 almost
surely associated with the mismatch between the acoustic spectrum and the
spectrum of amplifiable Tollmien-Schlichting instability waves." Observations
such as this about the amplifiable dimensionless frequencies (sv/Uz) and

wavelengths (on /Vcr' where the disturbance phase velocity c. = ev/Zon) of

TS
stability theory and the occurrence of transition in a spectrally nonuniform
disturbance environment lead Reshotko [1] to conclude that the relationship
(or lack of {t) could very possibly account for the so-called "unit-Reynolds-

number effect."
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As the freestream disturbance levels increase from infinitesimal in the

S ee B o ——

spectrums relevant to stability and transition, the region of linear
development of the boundary layer instability decreases., For turbulence
levels greater than about 0.1 percent of freestream, the velocity fluctuations

begin to mask the T-S wave development through interaction with the boundary

Y DWW £ Y R .A = e

layer [42]. Gradually, then, the problem must become one of the nonlinear

ﬁ; stability of the (randomly) disturbed flow. Nevertheless, Bennett [43] was ;;{"
Z: able to detect, using a boundary layer hot wire and a spectral analyzer, fihﬁ
! selected amplification of approximately those frequencies predicted by linear 51:;
< theory in a Blasius flow at a freestream turbulence level of 0.42 percent, ;Eé;i

When considering very high level disturbances, the experiments of ﬁ;f?

-

Schubauer and Klebanoff [31] and Elder [38] become of interest. Following the
approach of Mitchner [434), they utilized intense local boundary layer

disturbances produced by an electrical spark 1n studying the growth of

KA

! turbulent spots. Schubauer and Klebanoff were able to generate a local
j turbulent spot in a nominally Blasius wind tunnel boundary layer at Reynolds

numbers substantially below critical. Although the growth of the spot was

KRl

retarded until the Reynolds number reached approximately minimum critical, it

L
+ T

. was not damped, Elder performed a similar experiment in a low disturbance

wind tunnel Blasius layer (see Morkovin [2, 3]). In his experimental length
E . Reynolds number range of 2 x 10u to 1 x 106, he was able to generate a growing
. turbulent spot whenever the local streamwise disturbance intensity, u'/Uo,

exceeded a value of roughly 0.18. Note that the lower Reynolds number,

Y B R

corresponding to a momentum thickness Reynolds number of 94, is well below
; minimum critical for the Blasius boundary layer (154 according to the weakly
S nonparallel results of Saric and Nayfeh [19]). These results substantiate the
3
. 21
g

W e et e e e T AT e et Lt et e el C e
R R R et e e T T e T T s T
. e, e e . RS K S B . - &S . . > e et e e T e e e e e e e et e e Tt
R SR . ot e e T e, T TR T AN S R T T A P e e & ' s
R WA A 2 PRI, WA P W WO WG R A W D T WA W I, T P L IPRCTIR WAL T DI W7 Wy W T WA I DTS DA LI, A TR L, A, S,




o R T R T A Y o L O T T T LTy DARL I A AR I A TP Y

conclusion that turbulence formation and growth do not necessarily have a

linear amplification mechanism as a prerequisite. 1In particular, if the

intensity and scales of the three-dimensional forcing disturbances are close 52
enough to their ultimate turbulent target, turbulence can be generated through E&S f
a very rapid nonlinear instability mechanism [Zlf L{ i
To insure a balanced perspective, it should be pointed out.that some . ;~ 3
authors have implicitly opined that true growing turbulence cannot exist in Eé:;.
Blasius flow below the minimum critical Reynolds number of linear stability EE;;;

! theory. The basis for this opinion rests in the experimental results of
Schubauer and Klebanoff [31] and Klebanoff, Schubauer, and Tidstrom [45] who

observed retardation of spot growth at Reynolds numbers less than minimum

| critical. As Morkovin [3] notes of the redirection of thought subsequent to

the Schubauer-Klebanoff experiments, " , . . the belief grew that the rapid

damping shown by linear theory below 0-S (Orr-Sommerfeld) critical conditions :Za
was associated in some way with the quenching of nonlinear turbulent phenomena .
as well,"” However, he calls attention to the fact that the formation of ARG
turbulence has been observed at significantly precritical Reynolds numbers in
accelerated boundary layer flows.
As to the question of the existence of true turbulence, one should be

cognizant of the artificlality of the spark disturbances and should also
recognize equally well that such disturbaqces, unlike free-stream turbulence,

are local and instantaneous. Perhaps Coles' [46] observation that "the main

difficulty in the case of boundary-layer flow is that the inherent increase in - -?{;.
Reynolds number with distance may act to convert a temporary abnormal response c
to a strong disturbance into a permanent one" {s the most appropriate .gi‘%
So :.'3}
viewpoint for these cases, A
. ‘\‘~:‘-.
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It may be said, though, that there is no distinct minimum Reynolds number
for the occurrence of transition, since such limits depend greatly on the
character and intensity of the disturbances, as well as the presence of opera-
tion modifiers, particularly the bypass inducing distributed roughness, and
the stability character altering crossflows. In the latter case, the spanwise
pressure gradients can lead to skewed T-S wave fronts and, thus, steady vortex
formations oriented essentially in the streamwise direction [2, 47). The
result is that transition can occur at much smaller Reynolds numbers than that
observed if only T-S waves are present. Such three dimensionality is unavoid-
able near the corners of finite width flow surfaces [3]. Conversely, there is
no distinct maximum Reynolds number for the occurrence of transition, either,

depending on one's success in eliminating all possible sources of flow irregu-

NPTV

larity and disturbances.

'
3
>
.
>
B
-

In transition experiments, freestream turbulence correlations are usually
based on the R.M,S. disturbance velocity of the combined Fourier spectra

normalized to the local freestream velocity.

(u‘2 + v'2 + w'2)/3
Teg = U ()
o}

If the disturbances are considered to be isotropiec, only the normalized R.M.S.
streamwise component may be given. From the results of the Spangler-Wells'
[41] experiments it is evident that such a description is adequate only if the
disturbances are homogeneous in the spectrums of relevance to stability and
transition. Loehrke, Morkovin, and Fejer [9] comment, "Clearly more than the
single parameter u'/U, is required to characterize adequately the disturbance
input such as the separate amplitudes, spectra, and orientations of the

turbulence and sound fields. Such a description of the initial disturbances
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has not been attempted even under research laboratory conditions and is hardly
practicable under field conditions." Figure 3 clearly demonstrates that in
addition to freestream turbulence defined by equation (1), there is at least
one more parameter of equal dominance in affecting transition: a parameter
involving the principal acoustical frequency of the disturbances, Its exact
formulation is undetermined as of to-date but can be expected to be of a
Strouhal-type combination,

If the disturbance field is "homogenous and isotropic," transition trends
are fairly reproducible, provided other irregularities are controlled (e.g.,
see [48]). 1In general, experiments in two-dimensional boundary layers
indicate rapidly decreasing effectiveness of turbulence in moving transition
as the levels are increased. Also, increased levels of freestream turbulence
reduce relatively the effects of operation modifiers such as wall normal
temperature gradients and streamwise pressure gradients. Furthermore, at
higher turbulence levels (and thus smaller Reynolds numbers) the transition
regime becomes shorter and more continuous (less intermittent) due to the
increase of the number of turbulent sources.

As a final comment on the freestream turbulence effect on transition it
must be brought out that the kind of freestream turbulence in a real gas
turbine environment is uniquely different from those, say, in the boundary
layers on aircraft surfaces. Flow through gas turbine cascades is
characterized by turbulence emanating from combustors; and superimposed on
this base-line turbulence is the wake-cutting fluctuation of the freestream
velocity. The wake-cutting fluctuation is sometimes viewed as a cyeclic
variation of the basic flow but not as a turbulence contribution. 1Its effect

on transition, however, has yet to be established or refuted.
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4.2 Pressure Gradient Influence A

Longitudinal pressure gradients are one of the more prevalent "operation
modifiers" in unstable and transitioning boundary layer flows. Fundamentally,
they affect the T-S stability and transition response of the boundary layer
through changes in the velocity profile and the boundary layer growth rate,
and through stretching or contraction of stream tubes. The effects of
velocity profiles were first augured through inviscid stability theory, which
indicated instability for velocity profiles with an inflection point, White
[15] reviews the important historical results from inviscid stability
theory. Linear (viscous) stability theory provided the additional important
result that, because of viscosity effects, all boundary layer flows become
unstable at finite Reynolds numbers [50]. Linear stability theory indicates

that accelerated (negative or favorable pressure gradient) boundary layer

flows, which exhibit more velocity profile fullness than zero-pressure
gradient flows, are stabilized to disturbances., Conversely, the velocity
profiles in decelerated (positive or adverse pressure gradient) flows have an

inflection point, which renders them less stable, For these flows, the

inflection occurs at the wall for very small decelerations, moving outward for ;f,f}
increasing deceleration (see Schlichting [5]). In addition to velocity
profile effects, the pressure gradients influence the rate of growth of small i;i;?
amplitude T-S disturbances with the rate for adverse and favorable pressure ;fZ25

gradients being greater than and less than, respectively, that for a zero

pressure gradient flow.
The qualitative validity of the linear stability theory predictions was

demonstrated in the experiments of Schubauer and Skramstad [6]. Saric and
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Nayfenh's [18] linear (weakly) nonparallel marginal stability results for some

of the Falkner-Skan flow family are shown in Figure 5, along with the parallel :;i"ﬁ
flow results. Note the increase in bandwidth for amplified frequencies, g;qﬁ
especially the shift to higher frequencies, as the pressure gradient changes ;5;3%

RN
from favorable to zero and becomes progressively more adverse., Note also that é&iﬁ
the most adverse gradient (8pg = -0.1988), corresponding to incipient flow . %ifﬁ

separation, does not seem to show a minimum critical Reynolds number, For
this case, though, Saric and Nayfeh anticipated significant error since the
boundary layer growth at such low Reynolds numbers is rapid (highly non- ;-zfﬁ

parallel). Within these marginal stability curves, the frequencies and

Reynolds numbers at which the greatest growth rates occur will fall down into
and along the center of the "thumb" (see [1, 5, 9]).

As observed by Tani [12] pressure gradients are considerably less
influential on the Reynolds number for transition onset than on the minimum
critical Reynolds number, For a very small disturbance environment, this
difference may be explained partially by the fact that the cumulative growth

of unstable frequencies at any Reynolds number is less affected by pressure

gradients than the minimum critical Reynolds number., However, as the
freestream turbulence level increases, pressure gradient influence becomes

even less pronounced. This is largely borne out by the more recent heat

transfer test results on turbine blades with varying degrees of freestream

—
turbulence., No quantitative values will be given here since such values are S
substantially dependent on the parameter used as a measure of pressure ﬁjﬁ;
gradient, "”“J

If freestream disturbances are small, flow surfaces are smooth, and the

pressure gradients are moderate, the sequence of instability developments in
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::' boundary layers with a pressure gradient are similar to those for the zero

d
[
&
L)
P

pressure gradient boundary layers [12]). However, in cases for which the

,Q pressure gradients are not moderate, especially in decelerating flows, the
;éz processes can be radically different. Nearly separating flows exhibit very Eéz‘
~ abrupt transition without the vortex breakdown and turbulent spots observed in Gﬁ&
T moderate gradients. Separating flows usually become turbulent upon ) 5h€
reattachment, without the occurrence of turbulent spots [12]. At the other -
";f extreme, it is possible to accelerate the flow so rapidly that it retains its i;ié
Q; laminar structure. Alternately, a turbulent boundary layer can be accelerated Eﬁiﬁ
i; rapidly enough so that it gradually becomes laminar-like. This phenomenon {s .
ii known as "laminarization," "relaminarization," or "reverse transition."
;: Nevertheless, there are practical limitations on the stabilization afforded by
?S acceleration, since the effects of residual roughness or surface
ﬁf irregularities become more important as the boundary layer is thinned [3].
This i3 due to the parametric combination (ksUT/V)' in which the surface
roughness protrusion kg appears; increasing frictional velocity caused by
:3 boundary layer thinning has the same effect as increased roughness. In
- addition, the profile stability and stream tube stretching are offset by the Ef:?
:i localized profile inflections, and the larger wall normal velocity and greater ff&%
EE' random three-dimensional distribution of vorticity resulting from roughness. a‘-
= Also, regardless of the acceleration, ;ny flow is unstable for sufficiently i E:T'
i large Reynolds numbers, :
:i Many theoretical and experimental investigations of boundary layer
;3 relaminarization phenomena have been directed toward determining suitable
N parameters or criteria for correlating its occurrence. Probably the clearest
if experimental indications of relaminarization onset are a sudden increase in
3 o
28 o
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the shape factor, H (é §%/0), and a decrease in skin friction [3]). (The
converse of this statement would hold for transition onset, at least over flat
and moderately streamwise curved surfaces.) However, this provides no
empirical or analytical criteria for predicting relaminarization onset.

Two of the parameters suggested as being useful in correlating
rclaminarization are the "velocity gradient factor" or "acceleration

parameter",

v dUo
K = —5 -— (2)
U 2 dx
o}

and the momentum thickness Reynolds number, Ree(é er/v). Narasimha and
Sreenivasan [51] thoughfully and critically evaluate the merits of these and
other parameters proposed for use in correlating relaminarization. 1In
particular, x has been suggested for use not only in correlating
relaminarization, but also for transition [52]. As an aid in judging the
applicability of ¢ to relaminarization, it is helpful to understand the origin
of this parameter., This parameter x was obtained from analyses of asymptoeic
sink-flow boundary layers that are characterized in the limit as having a con-
stant momentum thickness Reynolds number and a self-preserving mean velocity
profile shape in both laminar and turbulent boundary layers. 1In these flows,
for which x is constant, the momentum thickness decreases and the local
velocity increases at the same rate. Physically, the flow is asymptotically
produced in a convergent, plane wall channel [53]. Critical values for
extinction of turbulence were obtained by comparing the results of such
analyses with experiment., Although a critical value may be useful on an ad

hoc basis in comparable flow situations, the presence of roughness or
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streamwise vortices constitutes a possible threat to such a criteria. (Simi-
lar comments would apply also to the use of an Ree criteria in accelerating
turbulent flows.) For general nonsimilar flows in which x would be used as a
local stand-alone criteria, its value is questionable., Patel and Head [54]
note that there can be a substantial lag between the application of a sup-
posedly "critical"™ value and the onset of relaminarization. Zysina-Milozhen,
Medvedeva and Rohst [55] observed such a lag in flow relaminarization on a
model turbine blade in cascade. They suggested that a critical value of the
product of the local thickness Reynolds number and x might be more suitable.
Other investigators [52] have suggested designing turbine blades such that «
is always larger than some "critical" value.

So far the discussion has implicitly centered on flows that are similar

or on special cases. However, for nonsimilar boundary layers in general, the

transition onset and completion as well as the spatial intermittency
distribution depend on the unique pressure gradient history of the boundary

layer. As yet under these circumstances, no single pressure gradient

parameter has been proven to be adequate as a local criteria in correlating
transition. Therefore, the choice of a parameter for correlating the effects N
of pressure gradient on transition or relaminarization is both experiential

and dependent on the pressure gradient magnitude and variation. In many 'ikj:

empirical correlations for transition onset, the Pohlhausen parameter ) ——
2 qu S
8 0 D
Aé vV X (3) o
P
e
or its momentum thickness variant e
.:__.
N
Eﬂu
NN
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is used as the local measure of pressure gradient. The preferred form is the

! (g iy
latter because, once the freestream velocity distribution is known, the local :ﬁ;§5
r:':’.l"-‘:
momentum thickness of most laminar boundary layers can be determined bm?t

accurately by a simple relationship. Additionally, the use of momentum

B

thickness circumvents the problems associated with use of the ill-defined
boundary layer thickness. Another interesting aspect of the modified
Pohlhausen parameter is that a critical value in the range of -0.082 to -0.09
serves as a rough estimate for the occurrence of laminar separation (see White

{15], p. 318 and Dunham [56]). Finally, as indicated by Liepmann [57], the

momentum thickness is more closely related to the wall shear stress, and thus
to the slope of the velocity profile at the wall, which is important in

characterizing the degree of instability to T-S type disturbances.

As will be seen later from the transition experiments of Abu-Channam and f’-J
Shaw [48], the modified Pohlhausen parameter is inadequate for use as a local
parameter in general transition correlations. Also from this data, it may be ';}:a
deduced that the length of the transition region in similar flows (or more
generally those with moderate pressure gradients which do not rapidly vary) is
a fairly strong function of the Reynolds number for transition onset.

Usually, adverse pressure gradients lead to smaller transition Reynolds

numbers and shorter transition regions, and vice versa ([12].

4,3 Heat Transfer Influence

The addition of heat transfer makes the Prandtl number and wall-to-
freestream temperature ratio important parameters in describing the T-S

stability and transition response of the boundary layer. For subsonic flows,
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a boundary layer transverse temperature gradient operates basically through
the viscosity gradient induced by the thermal boundary layer. In addition, if
body forces are present, the density stratification in the boundary layer can
strongly influence stability and transition.

The viscosity variation induced by the thermal boundary layer is
reflected in the boundary layer velocity profiles, yielding either more full
(more stable) or inflected (less stable) profiles. With gases, the absolute

viscosity increases with increase in temperature, while liquids have the

opposite tendency. Therefore, heat transfer to the wall is stabilizing in gas
flows and destabilizing in liquid flows. Since this survey is directed toward

gas turbine applications, water boundary layers will not be considered.

Suitable references on stability and transition of water boundary layers with

heat transfer would include Aroesty et. al. [58], Wazzan and Gazley [59],

Straziar and Reshotko [60], Barker and Jennings (61], Wazzan et. al. [62], and

Wazzan, Okamura, Smith [63,64].
If body forces and density stratification are such as to produce a

buoyancy force directed away from the flow surface, the stability

Lt
characteristics of the laminar flows may be radically altered. Such "unstably t:fl

stratified" flows exhibit a three-dimensional instability in the form of
streamwise vortex rows, These vortex formations are analogous to the Gartler
vortices observed in boundary layer flows over concavely curved surfaces i L,,J

[65]. On the other hand, stable stratification suppresses turbulence

production. In either case, the stratification stability of the flow is

expressed in the Richardson number, which is defined as follows: inﬁ
_‘;_:'_‘_':

w0,y , (u 2 o

Ri = - (g 2/p) 7 (= (5)

dy 4v" a1 H"*

'."'.:\'
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This parameter represents the buoyancy to inertia force ratio, with Ri > 0
corresponding to stabilization, Ri = 0 indicating a homogeneous fluid, and Ri
< 0 corresponding to destabilization. Schlichting (5] gives a more complete
review of the limited literature on the stability of stratified flows.

Lees and Lin [66] developed, and Lees [50] used, an asymptotic parallel
flow approach for evaluating the effects of heat transfer (isothermal wall)
and Mach number on the linearized T-S stability of the compressible laminar
boundary layer. Since their method was asymptotic (i{i.e., introduction of
small viscosity - very large Reynolds numbers - to an inviscid compressible
fluid), the results are valid only when the wavenumber - thickness Reynolds
number product is very large [67]. However, based on the analyses and
comments of Mack [68], it is expected that the results of the asymptotic
theory will be satisfactory for qualitative information on the influence of
compressibility and heat transfer on subsonic boundary layer stability.

In the Lees-Lin analysis, the Prandtl number was constant and the
viscosity variation was incorporated via a power law. The resultant marginal
stability curves for various wall~to-freestream temperature ratios are given
in Figure 6. 1In this plot, the solid loci are for calculations at a
freestream Mach number of 0.7, while the dashed locus is for the Blasius

flow. As a comparison, the minimum critical momentum thickness Reynolds

number from the latter curve is 150, while Jordinson's [69] accurate
numberical calculations for the quasiparallel Blasius flow yielded the value
200. To be noted in this plot, however, is the indication of significant

stability changes with change in temperature ratios, even for the midsection
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of the "thumb," within which the greatest rate of amplification occurs., The
minimum critical momentum thickness Reynolds numbers corresponding to these
curves are 5150, 1440, 523, and 63 at temperature ratios of 0.70, 0.80, 0.90,
and 1.25, respectively. As a reference, the temperature ratio for an

adiabatic wall at Mach 0.7 is 1.10.

Liepmann and Fila [70] verified experimentally the expected trends for
transition onset in a zero pressure gradient boundary layer influenced by heat
transfer from the wall., Their experimental set-up consisted of a smooth plate
with a sharp leading edge, the plate being mounted vertically in the wind
tunnel to nullify boundary layer transverse buoyancy effects. Figure 7 shows
the results they obtained with a freestream velocity and temperature of 8.19
m/sec and 20°C, respectively. The other two components of R.M.S. freestream
disturbance intensity at the lowest disturbance level (u'/U, = 0.0005) were
v'/Uy = w'/Uy = 0.0008, while the higher disturbance intensity was presumably
uniform, Hot wire anemometry was used to identify transition, and its onset
was defined by the first appearance of turbulence bursts on an oscilloscope
screen. The authors attributed the low value of length transition Reynolds
number (= § x 105) for the adiabatic flow to the influence of secondary flows
resulting from plate edge effects. Although there was a possibility of
buoyancy influence (cross-flow) in the heated air layer close to the plate for
the nonadiabatic results, the authors concluded, based on velocity profile
checks, that it was negligible., Furthermore, transition trends similar to
these were noted in Ref. [71].

In published literature, there is little quantitative information
pertaining to transition in gas boundary layer flows with heat transfer to the

wall., However, the qualitative results that exist, such as Kercher, Sheer,
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Figure 7. Effect of plate temperature on transition. [70)
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and So [72], indicate that the effect is not negligible at relatively low
freestream disturbance levels, Furthermore, the stabilization and increased

transition Reynolds numbers somewhat parallel that observed in water boundary

N layers with heat transfer from the wall, provided that the wall-to-freestream
i temperature ratios are not large. Therefore, the influence of such conditions
. ’ is expected to be significant, at least for low freestream disturbance levels

and smooth flow surfaces. As with pressure gradients, though, the influence
of heat transfer on the transition Reynolds number is substantially less than

! that calculated for the minimum ecritical Reynolds number, even at very low

disturbance levels [73].

- .

4,4 Compressibility Influence

In compressible flows, the temperature rise due to frictional heating in
the boundary layer plays a role in determining stability and transition
characteristics, An effect on the T-S stability might be anticipated from
examination of Figure 8, taken from Kobayashi{ and Kohama [74], which displays

the variations through the boundary layer in viscosity, density, and tempera-

g B IRC IR IS U RNRT SR

ture at three values of Mach number. These profiles were computed by applying
Sutherland's viscosity formula to an ideal gas which was assumed to have a
constant specific heat and Prandtl number, To be noted in these curves is the

- fact that the viscosity variation leads one to suspect that increasing Mach

numbers might result in inflected velocity profiles, The analytical result of

Lees [50] verify this, although the effect in the subsonic flow regime is not iﬁ.ﬁj

great,

Lees [50] calculated the marginal stability curves for subsonic, zero

pressure gradient, insulated boundary layers under the assumptions noted
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Figure 8. Distributions of temperature, density, and viscosity in
compressible boundary layers on an insulated wall. [74]
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previously. His results are shown in Figure 9., From these curves, the shift
of amplification to lower frequencies as the Mach number increases can be

seen, Concurrent with this effect is a decrease in minimum critical Reynolds

CLUEEW TS e

numbers, with successive values, based on momentum thickness, being 150, 136,

126, 115, 104, and 92 as the Mach number increases from 0 to 1,3. However, as

indicated by Mack [5], the rate of amplification of the most amplified

v -
T

Y

RO CARRERN MRS

frequency actually decreases with increasing Mach number in the subsonic flow

L 4

regime.

The information in published literature on the effect of subsonic Mach
number alone on transition is inconclusive, Evidently, other factors such as
freestream disturbance level, heat transfer, and pressure gradients usually
take precedence when there is not a significant amount of linear amplification

(ef. [73] and [75]. Also, see [12, 42, 76]).
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- V. TRANSITION ON STREAMWISE CURVED SURFACES AND THE GORTLER INSTABILITY

The behavior of the T-S type instability is not substantially affected by
either convex or concave streamwise curvature, if the boundary layer thickness
to local curvature ratio is small enough for the boundary layer approximation
to be valid [77, 78]. Although, according to Schlichting [5], convex
curvature tends to slightly stabilize and concave curvature to slightly
destabilize the T-S modes, Also, it is known that convex curvature reduces
and concave curvature increases the skin friction and heat transfer in
turbulent boundary layers [77, 79, 80, 81, 82]. However, the centrifugal
forces in the laminar boundary layer over a concave wall do induce a steady
three-dimensional instability different from the T-S type. This instability
appears as steady streamwise rows of contrarotating vortices which, provided
the concavity is sufficient, can come into existence and amplify at Reynolds
number much lower than that for the T-S disturbances. Figure 10 illustrates
the configuration of these vortices, which result from the interaction of the
centrifugal acceleration with the varying fluid momentum across the boundary

- laver, A general criterion for the existence of similar instabilities was
deduced by Rayleigh (see Schlichting [5]) for inviscid flows. He determined

that such flows become unstable when the tangential velocity decreases with

distance outward along a flow turning radial more strongly than the reciprocal
of the radius. Hence, similar vortex instabilities are observed, for example,
in Couette flow between concentric cylinders, the inner one of which is
rotating (83].
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Gartler vortex instability in the boundary layer flow over a

(7]

concave wall.

Figure 10.
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Gortler (7] was the first to demonstrate analyticall& that the boundary
layer flow over a streamwise concavely curved wall can be unstable to these
vortical disturbances. Later, the physical existence of these vortices was
verified, circumstantially in the experiments of investigators such as Tanli
[(84], and visually by other investigators, most notably Wortmann [(85], and
Bippes and Gortler (86], both in water tunnels. From Tani's [84]
investigations, it is known that the vortices can be produced in both laminar
and turbulent boundary layers, although the laminar boundary layer seems to be
considerably more unstable to them. Analogous instabilities and vortex
formations can also be present in thermally (unstably) stratified boundary
layers [8Y4, 65]. 1In these cases, the buoyant force corresponds to the
centrifugal force resulting from streamline curvature,

One reason for the importance of the Gortler phenomena, as Liepmann [57,
871 has shown, is that its occurrence can drastically lower the Reynolds
number of transition onset as compared to boundary layer flows over flat or
streamwise convex surfaces. Another, as McCormack, Welker, and Kelleher [88]
have documented, is that the presence of the vortices in the laminar boundary
layer can significantly increase the average heat transfer, and therefore, by
Reynolds analogy, the skin friction.

Wortmann [85], Bippes and Gortler [86]), and Tani and Aihara [78], and
others, have examined experimentally the process by which transition occurs
under the influence of Gortler vortices., From their investigations in
constant freestream velocity, low disturbance level flows over constant radius
concave plates, the following tentative description of the instability

development (s obtained:
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(2)

(3)

(4)

Vortices (the primary instability) of wavelength Ag amplify

spatially with streamwise distance past the marginal stability
location, In .nis small disturbance phase the amplification is
described by linearized theory,

Amplification of the primary instability decreases as nonlinear
finite amplitude development begins, The vortex cross-section
distorts in reaction to the presence of adjacent vortices, altnough
the spanwise periodicity is maintained. Concurrent with this stage,
a gradual spanwise increase in wavelength sometimes seems to occur
Ref. (85].

A tendency to finite amplitude is observed, Three-dimensional
(obliquely oriented) unsteady "waves,” which somewhat resemble
three-dimensional T-S waves are generated in the thickest part of
the boundary layer (the section of lowest streamwise velocity and
least full velocity profile) between pairs of vortices. The
obliqueness of the waves results from the spanwise variation of
streamwise velocity. These waves are referred to as the secondary
instability Ref. [86]. In connection with the secondary insta-
bility, the vortices exhibit a "corkscrew" motion, or unsteady
spanwise movement also described as "meandering," "pulsating," or
"oscillating" vortices., The motion is intensified as the waves
become stronger, producing a collision and rebound action between
adjacent vortices,

Transition begins when the oscillating vortex streets "tear-up" on a
strongly curved surface or when they intermingle on a more weakly

curved surface Ref, [86]. The first signs of turbulence (wave

by




c ece mcecwey WL ow owe .
R AU A DR I A B S 4 4 - e e A

PRI AR A e AR A R e B Ah Al gl i aiomen —a s U
Ly
L)

LTSNS
l

breakdown) appear in the thickest part of the boundary layer between
pairs of vortices. Breakdown is denoted by irregular high frequency
fluctuations interspersed in the "wave." These fluctuations appear
more frequently as breakdown proceeds Ref. [78], resulting in a
rapid increase in mean boundary layer thickness,

The current interpretation of these events is that Gartler vortices are
not directly responsible for tranaition, since the vortex amplification is
moderate, even at transition onset, in most practical cases Ref. [78, 84,

89]. Rather, Tani and Aihara [78] have concluded, and others (e.g., Ref. [16,
90]) seem to concur that the effect is indirect, operating through the three-
dimensional redistribution of streamwise momentum and the induced spanwise

variation in boundary layer thickness, at least if the Gsrtler instability is

sufficiently strong. The apanwise thickness variation, in turn, results in

velocity profiles with spanwise varying stability characteristics, locally

driving the amplification of three-dimensional unstable waves. This nonlinear
coupling of the primary vortex and secondary wave instabilities thus appears
to be a prerequisite for transition up to fairly high freestream disturbance

levels Ref. {78, 85, 86). Furthermore, Nayfeh [90] developed an analytical

v »
v

model for the vortex-wave interaction. His model indicates a strong tendency

P_'." .
for the vortices to promote amplification of three-dimensional unsteady waves Eﬁ;ﬂ
whose spanwise wavelength is twice the vortex wavelength., Additionally, it ;:::
indicates that the presence of the vortices increases the range of amplifiable S
wave frequencies as well as significantly increasing the amplification rate at

3 any frequency and spanwise wavenumber. Based on these results Nayfeh sug- é;}ﬁ
- et
{i gested that this resonance instability mechanism may dominate the transition }"1f
?S process, In this context, it is interesting to recall that the local
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streamline curvature resulting from the T-S wave front in a two-dimensional

flat plate boundary layer leads to longitudinal and oblique vortex formations.

Due to the lack of experimental investigations of transition induced by
the Gartler instability, linear stability analyses must serve as the primary
qualitative guides for anticipating the importance and relative effects of
various mean boundary layer modifiers. Nevertheless it must be re-emphasized -
that the relationship between any results of small disturbance theory and
transition is, at best, weak. Moreover, if forcing disturbance levels in the
freestream are high, unmodeled mean cross-flows are present, or wall
irregularities such as roughness are prominent, the relationship may be non-
existent. With this in mind, a few selected linear stability results will be

referenced in the next subsection.

5.1 Linear Analyses of Gortler Instability

In the original linearized incompressible flow analysis, Gortler [7] made
the assumptions that the boundary layer was parallel, pressure gradients were
negligible, the small (@/r << 1) wall curvature was constant, the streamline
curvature at any distance normal to the wall was constant and equal to the
wall curvature, and that the vortices were restricted to the boundary layer.

(In later analyses, it was shown that the vortices need not be confined to the

boundary layer for the longer amplifiable wavelength [16])., His analysis

revealed the characteristic parameter for the three-dimensional concave wall LT

[

instability
G_ = Re_ /B/T \ e
o " e 70 &) SN
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now known as the Gértler number, Also, it produced the result that the
instability was relatively insensitive to the shape of the velocity profiles,
so long as their momentum thicknesses were equal. (Contrast this to the
sensitivity of the T-S instability to velocity profile shape.)

Smith [89] performed a more complex linearized analysis of the Blasius
flow, which included some of the effects of nonparallelism of the base flow
and variation of wall curvature. Also, he was the first to correctly model
the vortex perturbation growth as spatial rather than temporal. His analysis
verified the predominance of the Gortler number as a stability parameter,
although other nondimensional parameters also appeared in his more general

equations,

Smith's actual results will not be presented since his use of a body-

..‘- % -.
oriented coordinate system resulted in approximate treatment of the streamline 545;-
N
A
curvature variation away from the body, Also, his approximate solution Ffﬂﬁ
‘\..'v.;

technique (Galerkin's method) resulted in inaccurate solutions. The problems
with his solutions and the propriety of his model are discussed in Hall [21],
Floryan and Saric [17], and Ragab and Nayfeh [16].

More recently, Tobak [91] extended GSrtler's parallel flow analysis with
the objective of determining what effect a finite length of wall curvature
would have on the GSrtler instability. He assumed that the region of wall
curvature was preceded and followed by a flat flow surface. The results
indicated that for a given Reynolds number a smaller radius of concavity is
needed to induce instability if the length of the curved region is finite,
Also, for curvatures whouse extent was of the order of the boundary layer
thickness the analysis indicated that only the net flow turning angle is

important in producing the instability, rather than the particular shape of
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Herbert [92] did a comprehensive survey and evaluation, and computed R
L

A

v % e Y.

accurate numerical solutions for the models of Gar'tler, Smith, Tobak, and :.'
a

o

others, He also showed that smaller streamwise extent of curvature, as well ——

~

E. . as decay of streamline curvature away from the wall, considerably stabilized ,:;:;,.

F the flow, especially to the longer wavelength vortex perturbationsf X E:;-;\

F Ragab and Nayfeh [16] investigated the effects of more general streamwise k:“.':'

». curvature and nonsimilar pressure gradients on the Gortler instability in non- :{-\

; parallel incompressible boundary layer flows, As special cases, they :;'f:
. ::

considered the effects of displacement thickness and decay of streamline

curvature away from the wall on the marginal Gortler stability of the Blasius

flow, The results for the Blasius flow, with and without displacement thick-

ness effects are shown in Figure 11, 1In this figure and the subsequent ones

from their paper, the abcissa is the GSrtler wavenumber nondimensionalized by N
- S

the boundary layer reference length Gr - -/vx/Uu and the Gortler number in the :.-::f.
ordinate is based on the same similarity variable. Curve 1 is the marginal ‘-.‘:':
stability curve for parallel flow (Gortler model), Curve 2 is the marginal ;~.-'_.;'.
-"-.\-

curve for their nonparallel flow, and the dashed curves are for nonparallel ':-.':I
B

flow computations including displacement thickness effect.., Notice that the E-:':-}

displacement effect is greater at the smaller Reynolds number because of the

larger rate of growth in boundary layer thickness, Also note that the dis-

[ Tt
DI L AU

placement thickness effects are most prominent for long disturbance wave-

lengths, becoming smaller as the disturbance recedes into the boundary layer,
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Figure 11. Marginal Gartler vortex instability on Blasius flow - &1splacement
thickness effects., [16]
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Figure 12 demonstrates the stabilization, especially evident at the

RN
.“ ’.'
:‘-' D

longer wavelengths, afforded by exponential streamline curvature decay away

-2y
% ‘o

\.:,
a

from the wall. The dashed lines are the parallel flow marginal stability

curves while the solid lines are for the nonparallel flow. Herbert [92]

CATAS Y L CCTAT PP

explained that this stabilizing effect is due to the reduction in local
centrifugal force associated with the decreasing curvature, Thus, since the
longer wavelength disturbances extend further outside the boundary layer, the
reason for their increased stability is evident.
' Figure 13 shows the influence of pressure gradient on marginal stability
for some of the Falkner-Skan family of flows. The authors attribute the
stabllity behavior to the increase or decrease in the wall normal velocity
g component of the boundary layer flow, corresponding to the degree by which the
pressure gradient is adverse or favorable. However, the authors state that
these results are an approximation since they "patched" the self-similar
l velocity profiles to their nonsimilar boundary layer for local values of the
Falkner-Skan pressure gradient parameter. Therefore, the "history" of the
boundary layer pressure gradient effects and the gradient at the local
l position are neglected,

From the analysis of their nonsimilar boundary layer, the authors
determined that the linear amplification and damping rates of the Gortler
E disturbances are strongly dependent'on both the local value of pressure
gradient and the pressure gradient history. Thus, the results implied the
uniqueness of linear amplification rate calculations for Gortler disturbances -

over generally curved walls,

B Ao DU TR

Floryan and Saric [17] also analyzed the nonparallel stability of Blasius

flow to the c&rtler disturbances, They considered the case of a circular arc
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shaped wall of small curvature and utilized an orthogonal coordinate system
based on the inviscid flow streamlines and potential lines shown in Figure
14, For this analysis, "small curvature" indicates that

§

r
T S0 (1/Re6P) (7)

which the authors state would make the assumptions of Blasius profile and

CRa iR Tl SR

momentum thickness approximately correct in a zero pressure gradient flow,

V‘-
Y
i
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The curves they obtained for marginal stability and constant

dimensionless spatial amplification rate, g (= BsrRedr), where B is the

PP i A ol S
NN . %

amplification per unit of distance along the streamwise coordinate are shown

in Figure 15, In this plot the Gortler number is based on the boundary layer
reference length, §p, and so is the nondimensional wavenumber, Since these
results are for constant freestream velocity flow over a constant radius
surface, the log-log plot of the amplification loei would result in curves of
constant wavelength to fall on a straight line of slope 3/2. Although the
authors determined a maximum amplification curve for their model, its slope in
the flattened region is somewhat greater than 3/2, as can be seen by comparing
it with the solid line of constant wavelength. It is worth noting that the
relative flatness of the amplification rate loci about this maximum
amplification curve would seem to indicate a range of amplifiable

wavelengths, (Consider that amplification occurs at fairly small Reynolds
numbers for which the displacement thickness effects are not negligible.) A
discussion of how these curves compare with the available stability-

amplification data is presented in the paper itself.
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The marginal stability curve Floryan and Saric obtained is identical to :'

that calculated by Ragab and Nayfeh [16] for Blasius flow without displacement
effects. In the small wavenumber limit, it is asymptotic to a Gsrtler number,
based on §,., of approximately 0.4638 (see Figure 11), which is about 0,251 for
the momentum thickness Gortler number. Also, an upper bound for amplifiable
wavelengths can be described by a value of 44,29 for the wavelength parameter,
A= (UQAG/D) /TE7F . Nevertheless, Floryan and Saric emphatically point out
that the stability curves, and therefore the minimum critical Gartler number,
are dependent on both the configuration of the wall and the curvature of the
streamlines away from the wall. In fact, since local centrifugal force drives
the instability the role of wall curvature is of secondary importance compared
to the role of flow field curvature away from the wall. Hence, stability-
amplification curves such as those in Figure 15 are not universal.

The foregoing GSrtler stability results are valid for constant property

viscous flows without heat transfer, To complete the review of the linearized
Gortler stability analyses, some results which include the effects of
compressibility and wall-to-freestream temperature gradients will be examined,

Kobayashi and Kohama [74] analyzed the stability of compressible constant
freestream velocity flows over slightly concave (0@/r << 1) constant radius
walls, with and without heat transfer. In the analysis, the temperature
dependence of viscosity was included via Sutherland's formula. The Prandtl
number and the specific heat were assumed constant. For the limiting case of
M + 0 and an adiabatic wall, their model was the same as that Gsrtler.

Figure 16 shows the marginal stability curves (solid lines) obtained from
the calculations for flow over an insulated wall with Mach numbers ranging

from O to 4, Also shown are the results of some stability calculations by
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Figure 16. Effect of Mach number on Gartler stability in flow over an
insulated wall., [74]
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Aihara [93] and Himmerlin [94]. Qualitatively, the results agree with those

of Hammerlin [94], who assumed a power law dependence of viscosity on

4

temperature. For both analyses, the effect of increasing Mach number is

.
L4

A e

.".'.'

stabilizing (albeit slightly in the subsonic regime) with increasing ﬁ?{i

stabilization occurring for dimensionless wavenumbers, ae(=2ne/x), less than EEES

. about 0.2. The primary differences between these results can be ascribed to . :fg?

;i' Hammerlin's assumption of exponentially decreasing streamline curvature away EEE;

é?: from the wall, §:§:

) FEWLY

- Based on an investigation of the density and viscosity variations in the 57;4

~7 boundary layer, Kobayashi and Kohama attributed the increased stabilization at - Y
the higher Mach numbers (adiabatic wall) to the fact that the stabilizing

increase in viscosity near the wall overwhelms the destabilizing influence of
the unstable density gradient. As a comparison, Aihara [93] assumed that the
viscosity was constant and obtained a decrease in stability at the smaller
wavenumbers,

In Figure 17 the influence of various wall-to-freestream temperature
ratios (isothermal wall) is seen to be small in the subsonie, low supersonic
range. However._the present results do indicate some destabilization for heat
transfer to the wall in subsonic flows, with the larger and smaller
wavelengths being influenced the most., Conversely, heat transfer from the

wall is stabilizing, although either variation decreases with inzreasing Mach .

number, The results are presented in another perspective in Figure 18, which

is plotted for three selected dimensionless wavenumbers. _;
2

Kahawita and Meroney [95] utilized a linearized, nonparallel, small Py

RS

ot
(N4

concave curvature (0/r << 1) flow model to determine the influence of very

’
TR )

v e
s
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slight heat transfer from the wall on the Gortler type instability in a zero
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Figure 17. Effect of Mach number and heat transfer on Gortler stability in

=== Tw/ Tn=0.5, Tn = 1I000K
— Tw/To=12,T=273K

UNSTABLE

flow over an isothermal wall. ({74]
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Figure 18. Variations of Gec with temperature ratio TW/T°° under isothermal

conditions. [74]
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pressure gradient flow. Except for an additional term in one of the distur-
bance momentum equations and an extra equation obtained from the energy
equation, their mathematical model was equivalent to that of Smith [89].

- Since their objective was to obtain a Boussinesq approximation to buoyancy

- effects, the fluid properties were assumed to be constant and the gravity

l vector was assumed to be locally normal to the wall,

Figure 19 shows the results of their investigation for a Prandtl number

(Pr) of 0.72. The Grashof number (Gr) in this plot has been calculated using

ot y’%é as the length dimension., Therefore,

- . 3
or - 8Y8 2AT (8)
v

where

g = gravitational acceleration

Y

bulk expansion coefficient

AT = T, - T,
- As can be seen, the results indicate atabilization for ag less than about 0.3
= (long wavelengths) and destabilization for higher values of ag. Kahawi ta and
Meroney interpreted these results as meaning that the inertial and buoyancy

mechanisms are favoring disturbances of different wavelengths at the lower

wavenumbers, shifting to similar wavelengths above ag of 0.3. Recall, though,
!3 that the fluid properties were assumed to be constant so the applicability of

the results is restricted to cases for which temperature differences are

small, but not small enough that the buoyancy term from the Boussinesq

X i
. approximation may be neglected., Alternately, it may be applied to fluids that :}:::
: RV
™. exhibit only a minor dependence of viscosity and thermal diffusivity on - -

2

3 Oy

temperature,
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Pertaining to the validity of these curves, Floryan and Saric [17]

suggested that their shape may be incorrect because of an approximate

W ¢ o TSI Y ¥

treatment of the mean flow and because of the approach used in numerical

integration. However, the relative variation among the curves probably does

provide qualitatively useful information.

B <" 1, 8, 8, N,

In other results from [95] on Gortler instability, it was shown that if
the normal (to the wall) component of velocity is toward the wall (e.g., as in
. a suction flow), the base flow is stabilizing; and if it is away from the

wall, destabilizing., This concurs with previously reviewed stability results

(161].

5.2 Nonlinear Analysis of Gortler Instability

é Aihara [96] used an integral method of analysis employed by Stuart [23]
i to extend the investigations of Gortler instability into the nonlinear
:2 region, The basic equations in his model were obtained by applying the same
assumpt ions used by GSrtler. From_the model, he obtained mathematical
i evidence of a finite vortex strength with the associated waveform distortion

and a possible analytical explanation for the unsteady lateral movement

. & s
o Nt

observed in the amplified vortex region. Also, he demonstrated that at

b
'.'

marginal stability for ©/r << 1, the Gortler parameter is a physical rate

parameter describing the product of the average of two ratios, as follows:

Kinetic energy dissipation X vorticity energy dissipation
Kinetic¢ energy production vorticity energy production

Furthermore, Aihara showed mathematically that, subject to the assumptions

noted above, the curvature of the flow field has no direct influence on the
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vortex wavenumber. In connection with this, he cited the results of his own
experimental (Blasius flow) investigations in which the vortex wavenumber was
seemingly indifferent to wall curvature. Instead, it was apparently set by
upstream irregularaities in the flow stream of the experimental apparatus., He
observed that the flatness of the marginal stability curve in the critical
domain would seem to support this indication of low wavenumber selectivity for

the instability. It is interesting to note that the experimental results of

McCormack, Welker, and Kelleher [88] also manifest the insensitivity of the
wavelength to either freestream velocity or wall radius.

Hall [21] analyzed the nonlinear development of Gortler vortices in
nonparallel boundary layers. He demonstrated that there exists a critical
value for rate of change of curvature in Blasius flow above which a finite
amplitude solution can develop, and below which the disturbance will
ultimately decay. However, he did not consider the oblique wave disturbances
that appear and often lead to turbulence before the amplitude becomes finite,
or the disturbance decays. If the results are valid, though, they provide

analytical evidence that Gortler vortices are only indirectly responsible for

transition.

5.3 Experimental Results on Transition Over Streamwise Curved Flow Surfaces

Before investigations of transition on streamwise curved flow surfaces {-

are reviewed, some important experimental observations about the general .

nature and predictability of the vortex disturbances will be emphasized,
Tani's [84] experiments in an essentially Blasius flow over a constant r.}{;
radius concave surface revealed that the vortex wavenumber is independent of

streamwise location and almost independent of freestream velocity. McCormack,
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Welker, and Kelleher [88] obtained similar results, Tani and Afhara [78]
surmised that the observed Gortler wavelength is "inherent" to a particular
experimental flow arrangement, as long as it is predicted to be amplifiable by
stability theory. To substantiate this conjecture, they artificially
generated weak vortices in the boundary layer having a wavelength twice that
of the "inherent" vortices. These artificial vortices were amplified without
change in wavelength, Thus, at least for flow without a streamwise pressure
gradient, the results implied the weak selectivity of the Gortler mechanism to
wavelength., Referring again to the stability results of [16, 17], the
relative flatness of the stapility-amplification curves for Blasius flow would
also seem to substantiate this viewpoint, Practically speaking, however, Tani
and Aihara's [78) results also indicate that any streamwise vorticity which
interacts with the boundary layer could influence the resultant GSrtler
wavelength,

As to the predictability of nonstimulated wavelengths, Tani [84] and
Aihara [96] have concluded that stability theory cannot explicitly predict the
wavenumber of the vortices which occur in the flow over a streamwise concavely
curved surface. However, notice that the theory does indicate lower limits
for the amplifiable wavelengths in self-similar boundary layers. Furthermore,

it can be used to indicate a range for the wavelengths most susceptible to

: amplification,

i Liepmann [57, 87] utilized a low speed wind tunnel to investigate
: transition on both concave and convex constant radius surfaces in the
i 3

effective curvatire range of |o/r| s 10 °. For the higher effective concave
curvatures [87], his test plate was smooth glass with a sharp leading edge and

a 2.5 foot radius. His results are plotted in Figure 20 as Gortler number
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versus effective curvature for three freestream "turbulence" levels (no

_,,
.
’

‘
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B
e

spectrum specified). Although there is considerable scatter in these data

-
)
A

points, they do serve to support his conclusion that Gortler instability-

.
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L4
a
5
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)
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dominated transition on constant-radius concave surfaces without a streamwise

o ol

pressure gradient could be correlated with a constant value of the Gartler

'

parameter, Additionally, Figure 20 illustrates that the effect of freestream
disturbance on the Gartler instability dominated transition is of similar
order to its effect on the T-S instability dominated transition. Liepmann
Judged that the average value of the transition Gortler number was 9.0 at the
lowest freestream disturbance level and 6.0 at the highest. As to the scatter
in the data points, Liepmann commented that detection of transition and

boundary layer thickness measurements on the small (2.5 feet) radius plate

were inherently difficult, particularly when transition occurred near the
leading edge. In these experiments, transition was detected by moving a hot
wire anemometer downstream in the boundary layer until high frequency
turbulent bursts were first seen in an oscilloscope display.

For transition in Blasius flow over streamwise convex surfaces, Liepmann
determined that the transition location was unaffected by curvature in the
range of his experiments (see Figure 21). That is, within experimental

scatter, the momentum thickness Reynolds numbers at transition were the same

for both flat and convex plates in similar disturbance environments. In

connection with these results, Liepmann found in stability experiments [57]
that the unstable frequencies and amplification characteristics of the T-S
waves on convex plates matched those obtained by Schubauer and Skramstad (6] !

in Blasius flow over a flat plate, within experimental accuracy. In contrast,

his results.for concave plates exhibited a systematic decrease in transition
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Reynolds number for increasing effective curvature, as shown in Figure 21,

Points clustered at the smaller effective convex and concave radii were taken
from a plate with a constant radius of 20 feet [57]. Liepmann notes that all
the laminar boundary layer velocity profiles corresponding to these data
points were fairly close to Blasius.

Although there has been at least one investigation designed to elucidate
the mechanism of transition in the regime between the T-S instability
dominated and Gortler instability dominated modes (i.e., [97]), the
interaction is not yet clear. Nevertheless, as shown in Figure 22 from
Liepmann [87], the changeover appears to be continuous as the effective
concave curvature increases. The points in this plot are for nominally
Blasius flow at Liepmann's lowest freestream disturbance level. The
horizontal line Reg_ y = 940 represents the flat plate transition value for his
wind tunnel disturbance enviromment, while Ge-t = 9.0 is the value for
transition on the 2.5 foot radius concave plate in the effective curvature

Yo <1000 x 1070,

range of 4.5 x 10 From these results Liepmann
concluded that there is a transfer of energy from one instability mode to the
other in an intermediate effective curvature range. Dryden [42] in a later
review of these results suggested that transition is definitely Gartler
instability dominated for o/r < 5 x IO-M in constant freestream velocity flows
over a surface of fixed radius.

Figure 23 and 24 are Liepmann's results for the effects of small
streamwise pressure gradients on transition over his convex 20-foot radius and
concave 2.5-foot radius flow surfaces, respectively. All of the data points
were taken at his lowest 1 -eestream disturbance level, A comparison of these

two plots led him to believe that the effect of either adverse or favorable
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pressure gradients on Gortler vortex induced transition is, at most, small

when the correlating parameter is the momentum thickness Gortler number,

Although there appears to be a downward trend in the data for the adverse L %}
RO
pressure gradient on the concave plate (Figure 24), Liepmann concluded that it S}?}{
,\:_s:,.:
was not systematic, since the values fell within the (considerable) range of Q:’ﬁ

scatter for the zero pressure gradient case. In the flow over the convex
surface, though, the change of Re@-t with pressure gradient was systematic:
increasing with a favorable and decreasing with an adverse pressure gradient
(Figure 23). Furthermore, he observed that the largest rate of change of
Ree_t with pressure gradient occurred for small deviations from the zero
pressure gradient, at least if the gradient was adverse. The finite length of
the plate prohibited him from determining if the decreasing rate trend also
neld for favorable pressure gradients,

Concerning these results, Liepmann pointed out that the Blasius solution
is a singular solution in the sense that azu/ay2 = 0 at y = 0 (the wall).
Therefore, knowing the sensitivity of the T-S instability to velocity profile
shape, one might suspect that smalil deviations from the Blasius profile would
result in significant changes in transition behavior. Conversely, Gortler's
parallel flow result indicating insensitivity of the vortical instability to
velocity profile shape seemed to support his opinion concerning the influence
of pressure gradients on the vortex induced transition, Nevertheless,

Liepmann was aware that transition depended on the level and spectrum of

freestream disturbances, and the integrated effect of instability .develop-
ment. Thus, he cautioned that these results are not universally applicable f' "5
based on disturbance level, but suggested that the trends observed for

pressure gradient influence wculd be quite general, Interestingly enough,
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there have apparently been no experiments comparable to those of Spangler and
Wells [41] that examine the effect of disturbance spectrum on transition
induced by Gortler vortices., As will be seen later, though, Abu-Ghannam and
Shaw [48] obtained results very comparable to Figure 23 for pressure gradient
influence on flat plate transition at low freestream disturbance levels,
However, Liepmann's conclusion about the insensitivity of Gortler vortex
induced transition to streamwise pressure gradient influence has not yet been
verified.

Tani and Aihara [78] were less conclusive than Liepmann about the
coreliability of the data with a constant Gortler number, even for the case of
supposed predominance of the Gortler instability (e/r > 5 x 10-&). They did
suggest, however, that transition in zero pressure gradient boundary layer
flows over constant curvature concave walls could be correlated as a function
of the Gortler parameter, the value of which increased with increasing
effective curvatures,

Smith [89] disagreed with Liepmann's conjecture that a correlation of
Gortler instability-dominated transition over a constant radius surface is
virtually independent of streamwise pressure gradient when the correlating
Gortler parameter is based on momentum thickness. He maintained that the
vortices must achieve a certain strength relative to a characteristic velocity
before transition can occur, and stated that the Gortler (rate) parameter
provided such a measure of vortex strength only under conditions of constant
curvature and constant freestream velocity for a boundary layer beginning at
the edge of a curved plate. Pippes and Gortler's [86] measurements of vortex
growth under essentially these conditions do lend credence to this

statement. They indicate that the vortex growth is a linear function of the
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momentum thickness GSrtler number for a region of development after the :?:j
disturbances become measurable, but before the onset of the meandering :?j%;
motion. Nevertheless, Liepmann's conclusions are not totally implausible for
constant radius surfaces when one recalls that momentum thickness growth is 7“?5?
retarded in accelerating flows and advanced in decelerating flows relative to b»é;‘

its growth in a Blasius layer. Also, the radial force driving the vortex
development would vary with freestream velocity. Therefore, it may well be
that moderate pressure gradient effects on the Gortler instability induced
transition over a constant radius surface could be fairly well accounted for
by a Gartler number criteria.

However, Smith was influenced by consideration of more general and
practical applications in nonsimilar boundary layers over varyingly curved
walls, In such cases, a local criterion probably would be untenable, because
it cannot adequately account for the cumulative influence of boundary layer

history on the instability development. 1In addition, one has to deal with the

nonidealistic aspects of flows over strongly curved surfaces., These may
include violations of the boundary layer assumptions or flow divergence and
other three—dimensionality_leading to net cross-flows,

From the analytical and experimental investigations reviewed in this
section, some qualitative inferences may be made about the effects of some of
the mean boundary layer modifiers on the GSrtler instability, and thus,
possibly, the relative significance of their effects on transition. The
stability results of Ragab and Nayfeh [16] indicate that pressure gradients
have a substantial influence on the longer amplifiable wavelengths. From
these results and the experimental data of Liepmann, it would seem that

pressure gradients should influence Gortler dominated transition, but the
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effect 1s not nearly so great as for transition on flat or convexly curved
surfaces. Fur thermore, as with transition on nonconcavely curved surfaces,
increasing levels of freestream disturbance may reduce even further the
effects of moderate pressure gradients on transition.

As to the effects of heat transfer, the stability results of Kobayashi
and Kohama [7#] indicate no substantial changes if the Reynolds numbers are
fairly large and buoyancy effects are negligible. However, if the boundary
layer 1s unstably stratified, the results of Kahawita and Meroney [95]
indicate destabilization. Both of these results have been qualitatively
confirmed in other analyses (see Rosenhead [98], Chapter IX). Finally,
Kobayashi and Kohama's [74] results might also lead one to speculate that

compressibility effects are small in subsonic flows,
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VI. INSTABILITY AND TRANSITION IN PERIODICALLY UNSTEADY NONREVERSING BOUNDARY
LAYERS

- Prominent investigations of stability and transition in oscillating
boundary layer flows include those of Obremski and Fejer [99], Miller and
Fejer (100], and the review of Loehrke, Morkovin, and Fejer [9]. Other
experimental results on stability and transition in unsteady boundary layer
flows are available in Kobashi, Kayakawa, and Nakagawa [101], Walker [102],
Cousteix, Houdeville, and Desopper [103], and Pfeil, Herbst, and Schroder
[104].

The review of Loehrke, Morkovin, and Fejer [9], which is current to 1975,
dealt with nominally two-dimensional incompressible flows with freestream

velocities described by

u(t) = U0(1 + NA sin wt) . (9)
Here, U, is the average velocity of the freestream, Na (= AUO/Uo] is the
amplitude of the unsteady component, and w is the circular frequency of
oscillation., From their investigations, the authors found no evidence of new
types of instabilities in nonreversing oscillating boundary layers, even with
mean pressure gradients imposed. Instead, instability waves of the T-8 type
were found to precede transition onset, so long as the freestream disturbances
were small and flow separation or other bypasses did not occur, For dominant

instability waves with a frequency (B) greater than approximately 10 times the
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base flow oscillation frequency (w), the instabilities were viewed in a quasi- :{2:
S
steady approximation, That is, as the instability waves propagated downstream :2:ti
in the boundary layer (at roughly 0.3 Uo for the "Blasius mean" flow), they ;i.i
were assumed to be amplified and dampened in response to the local instantane- ??EE
ously "frozen" instability characteristies of the boundary layer, producing ii:?
transition onset during the most unstable portion of the first freestream ) g;?;:
oscillation cycle. To further clarify this concept, it is helpful to refer to Ei?:
Sl
the Saric-Nayfeh linear stability results for the Falkner-Skan profiles . Eﬁ;:
RSN

(Figure 5) and visualize an infinite progression of marginal stability curves
ranging between those for a moderately negative and a moderately positive

pressure gradient, Each of these would, successively, correspond to an

infinitesimal time increment and a particular velocity profile in a half-cycle
of flow oscillation, with the mean for the flows on which the paper was
primarily focused, being that for Blasius flow. (Saric and Nayfeh [18]
verified that the average of their "Blasius mean" boundary layer was still a

solution of the steady Navier-Stokes equations.) Assuming that the frequency

o
of the dom.nant instability wave is preserved, the instantaneous (spatial) E_;i
rate of amplification or damping would depend on the relation of that 3§:§
frequency and the displacemént thickness Reynolds number (both spatially and ;:
temporally dependent) to the curve instantaneously in effect. ;
Fcr instability to freestream frequency ratios less than 10 but somewhat g:’{‘
greater than unity, i.e., 1 < (8/w) < 10, no persistent béhavior patterns - j_':.
emerged. However, less instability was anticipated, since the T-S waves have gu

less time to react to the rapidly changing amplification characteristics of

the boundary layer. For frequency ratios approaching unity, the instability we

waves appeared to "lock onto" the freestream oscillation frequency, making the N
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frequency ratio unity. Nevertheless, it was not anticipated that this occur-
rence would produce transition earlier than the quasisteady first cycle mode.

According to Loehrke, Morkovin, and Fejer [9], the effects of freestream
unsteadiness in the quasisteady regime would most easily fit into the "OPERA-
TION MODIFIERS" box of Morkovin's diagram (Figure 1). With oscillation
amplitudes, N,, less than about 0.01, though, the appropriate box would be
"DISTURBANCES" since the randomness and three-dimensionality of the oscilla-
tion increases in response to the relatively larger disturbances and flow
irregularity. An intermediate amplitude range would result in a "multiple
responsibility" transition,

At least in the quasisteady regime, the effect of increasing amplitude
modulation is destabilizing because of the tendency to greater periodic
velocity profile inflections. In particular, such flows are susceptible to
periodic local separations leading to "bypasses." More generally, the widely
varying stability characteristics increase their sensitivity to disturbances
and flow nonuniformities, At any rate, in the transition regime, the rate of
growth of the turbulent patches and the quiescent laminar region following the
wake of the turbulent patches are comparable, over a wide range of the
governing parameters, to that observed for steady flows [9]. The Obremski-
Fejer [99] measurements produced average speeds for the turbulent "patch"
leading and trailing edges of approximately 0.88 Uys» respectively, in a
Blasius mean quasisteady boundary layer. Recall that the corresponding speeds
for the Schubauer-Klebanoff [31] turbulent "wedge" in a Blasius boundary layer
were approximately 0.88 U, and 0.50 U,. However, the turbulent patches are
described in Loehrke, Morkovin, and Fejer [9] as "slightly sinuous two-

dimensional ribbons" extending transversely across the flow surface, when the
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oscillating pressure gradient amplitude is large and uniform enough to assure
essentially two-dimensional unsteadiness. As further evidence of the
similarity of transition in steady and unsteady flows, Loehrke, Morkovin, and
Fejer [9] note that the lateral propagation of turbulence in unsteady flows
from the transverse-contamination bypass of Charters [10] appears to be like
that observed for steady flows, with the exception of possible periodic
emphasis caused by local separation.

The Obremski-Fejer [99] wind tunnel transition results for "quasi-
steady" flat plate boundary layers are shown in Figure 25, along with locus C-
C' from the Miller-Fejer [100] experiments. Parameter ranges for the former
results are 0.014 < Ny < 0.29, 4.5 < £ < 62 Hz (28 < w < 390 rad/s) and 50 <
Uy < 115 ft/s (15 < Uo < 35 m/s). The wind tunnel freestream disturbances are
described as having an amplitude of "approximately 0.2 percent" (based on the
streamwise component of disturbance velocity with the spectrum unspecified)
which probably included acoustic contributions, Note the radical differences
between loci A-A' (0.014 < Ny < 0.092, 12.6 < £ < 62 Hz) and B-B' (0.039 < NA
< 0.27, 4.5 < £ < 14,7 Hz), which are both for zero mean pressure gradients.
The visual distinction in transition occurrences for the data of locus B-B'
was that turbulent ribbons appeared close to the location of the velocify
minimum in essentially every cycle (i.e., periodically) with the turbulent
formations being exceptionally regular and uniform for nonsteady Reynolds
numbers, Rens = [UOAU/mv], greater than 40,000. In contrast, the appearance
of turbulent patches for locus A-A' was usually delayed and more irregular
("aperiodié"). For the latter case, the length Reynolds number of transition
onset was approximately constant at 1.6 x 106, being somewhat less than the
steady flow transition Reynolds number expected for their disturbance

environment.
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pressure gradient in periodically unsteady boundary layer flows.

(991

81

P T s A e a T A e A

NS SEIEIPNE AL I AL IR PL PR AP,




BRSSPI A ACIA R M A SRR i SO I IR SR SR S S p ) N VAR N A A A NI IR SR N A Yk S I 5L e b M s Tk " 8 0 S =)

Obremski and Fejer [100] attributed this discontinuous variation to the

differences in nonsteady Reynolds number ranges for the data, Later, however,

s el SRS A AN A S _aatl ¢ o b 4

Obremski and Morkovin [105] suggested and Loehrke, Morkovin, and Fejer [9]

=

el

substantiated that the more fundamental underlying reason for the shift to

locus B-B' was a "wider opening of the 'pulsating gate' to instability"

i o2

corresponding to a larger B/w ratio in the quasisteady regime (g8/w > 10).

Thus, according to [105], those instabilities that exceeded the "turbulent

T L e

threshold" in the decelerating (more unstable) portion of the first cycle were

expected to correlate along the periodic transition locus, B-B'. Whereas, 5

locus A-A' corresponded to those instabilities which did not exceed the break- Z

down threshold during the first cycle and were dampened by the acceleration ;

portion of the cycle, as well as the red=-shift in amplification bandwidth with E

increasing Reynolds number (note the variation of amplified frequencies with

Reynolds number in the Saric-Nayfeh stability curves). As reported by i
L

Loehrke, Morkovin, and Fejer [9] demonstrated that the Re,, shift point
between the two curves was not unique, since it also depended on the distur-
bance environment, They were able to produce "first-cycle" transition at a
nonsteady Reynolds number of 7500 by artificially stimulating the initial
boundary layer instabilities.

From Figure 25, it is also obvious that imposed mean pressure gradients

-

have qualitatively the expected effects on "quasisteady" transition. For both
D-D' (0.21 S Ny § 0.29, f in the range of 12 Hz) and E-E' (0.04 S Ny $ 0.21,

4.5 s £ S 37 Hz) the observed transitions were periodic [99]. Loehrke,

Y S OB

Morkovin, and Fejer [9] have indicated that such results are expected from
theoretical considerations, since " . ., . functionally, the amplification

rates remain dependent primarily on the mean flow parameters, at least for

L. .
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small and moderate oscillatory amplitudes." Therefore, it is reasonable to o’
[R
s
anticipate that the effect of heat transfer on "quasisteady" transition would ”'\A

be qualitatively similar to its effects on steady transition.

A B

G
v

Apparently, the further skewed locus C-C' resulted from the two separate

- g
rﬁ?-
.;'." 2

"bypass" mechanisms of periodic leading edge separation and periodic static

pressure tap venting in response to the oscillating pressure gradients [9,

-,

99]. Otherwise, the flow conditions from which this zero mean pressure

PR RN
M

»
1,

R
vty
1

gradient data of Miller and Fejer [100] was obtained were nearly identical to
those in the Obremski-Fejer experiments.
Concerning parameters for correlating transition onset in unsteady

boundary layers, it is already evident that a partial list would include the

steady flow parameters, such as Reynolds number and some measure of pressure
gradient to describe the mean flow conditions. 1In addition, the unsteady flow
parameters of amplitude, Ny, and nonsteady Reynolds number, Rens, would be
required, as well as an appropriate description of the disturbance environ-
ment. Loehrke, Morkovin, and Fejer [9] note that Re,, appears explicitly in
the equations for a quasi-steady normal modes amplification analysis based on
linearized theory, but that other independent parameters also appear. They
suggest that Re,, provides a qualitative parameter link for the effects of N,
and the length of the unstable half-cycle U,/2f. Nevertheless, even for a
zero mean pressure gradient, it incorporated aspects of three separate effects
as shown in Figure 26. In this parametric plot, Xw [= Xm/Uo describes the
unsteady boundary layer (Stokes) thickness to mean boundary layer (Blasius)
thickness ih the functional form

s = const//Xm/Uo (10)

Stokes/dslasuis
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Based upon their information, the authors [9] anticipated that the critical
range for this parameter would be approximately (1-2) < X, < (25-30). The
lower limit represented boundary layers whose stability characteristics are
either essentially uninfluenced by unsteadiness (w small), or flow lengths so
short that stability could be expected. The upper limit was chosen based on
the assumption of a smooth flow surface and the discovery [106] that the
quasisteady boundary layer stability characteristics are insensitive to
velocity profile changes which occur suitably close to the wall. These expec~

tations for the variation in stability limits are reflected in the curving of

the dashed line marked "C" in the upper part of Figure 26. The dashed curve
L-R denotes the expectation of increasing destabilization in the quasisteady
regime for larger unsteady component amplitudes, In connection with this, the
authors [9] emphasize that AU, is strongly dependent on the amount of pressure
wave (acoustic) resonance which may develop in a closed flow structure, making
the speed of sound, a, and any number of resonance lengths, L, important. At
higher frequencies, for which the wavelength of the pressure wave is equal to
or less than the flow surface length, L, standing waves may have a strong in-
fluence. These aspects are denoted in lower Figure 26. Also, in lower Figure
26, the curve M-L indicates "mechanical limitations," which result in gener-
ally decreasing unsteadiness amplitude for increasing frequency. Finally, the

possible occurrence of periodic flow reversal at the wall for the combination

.
()
'
" D-'
e

of large f and AU, is depicted schematically by the curve marked F-R and the

l .
.

[
P
A

arrows extending from it, The influence of flow reversal on either transition

RS
-
.L '
-

or separation of the mean flow is essentially unexplored, although it is

expected that roughness and surface nonuniformity would cause earlier
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g transition as this condition is approached [9]. However, experimental

'; investigations of the possible bypasses resulting from roughness or high-level
T freestream disturbances (turbulence) are lacking.

;3 Therefore, the limits on instability caused by unsteadiness as defined in
;E Loehrke, Morkovin, and Fejer [9] are expected to be bounded by an imaginary

curved surface passing through the NA—Rex plane along "L-~R" and cutting the Xm

- Rex plane along "C." Note, though, that these tentative schematic limits

are only applicable to zero mean pressure gradient unsteady flows without

bypasses or cross-flows. The question of what influence combined unsteadiness
and streamwise vorticity have on instability and transition is still open.
Miller and Fejer [100] were able to correlate the transition length for
their Blasius mean oscillating flows in terms of the viscously
nondimensionalized flow oscillation frequency. The functional form of the

relation was

ReT - Ret

Re

o (wwui) (1)
t

in which Ret and ReT are the flow length Reynolds numbers for transition onset
and transition completion, respectively. As mentioned earlier, though,
transitions in their experiments were bypass-dominated. A preliminary check

of the data of Obremski and Fejer [99] produced no similar correspondence. .

Apparently, no data yet exists in open literature for intermittency
distribution in nonbypass quasisteady transition. Although, judging by the
increasing beriodicity and uniformity of the turbulent ribbons for increasing
AUo and B/w, one could speculate that the distribution becomes more linear.

Whereas, by comparison, the "irregular" appearance of turbulent spots in

L]

i



steady flows seems to be correlated well in a Gaussian integral intermittency

distribution.

Pfeil, Herbst, and Schroder {104] documented thelr more recent
investigations of unsteady flow transition in a nominally zero pressure
gradient boundary layer. As opposed to the previously discussed experiments,
the boundary layer on their flat plate was disturbed by cross-flow wakes from
the cylinders inserted around the circumference of a rotating cage. For these
investigations, the circumferential cage speed (12.6 m/s) and wind tunnel
speed (20 m/s) were maintained constant while wake passage frequency was
varied by changing the number of cylinders in the cage.

Pfeil, Herbst, and Schroder [104] found that the cylinder wakes periodi-
cally forced transition onset at the passage frequency. The initiation of
this forced transition occurred significantly upstream of the location of
random turbulent bursts in undisturbed flow, but downstream of the marginal
stability location., At the lowest passage frequencies, the combination of the
large time spacing between the forced turbulent regions and the subsequent
becalmed laminar flow following these regions resulted in a transition length
extending further downstream than that for the undisturbed flow. The
appearaﬁce and growth of random turbulence bursts was also noted interspersed
between the perliodic forced turbulence., Although the onset location remained
constant, the transition length decreased with increasing wake passage
frequency until the closeness of the periodic turbulence regions precluded the
formation of random turbulent bursts. Further frequency increases resulted in
wake mergéncé until the transition length tended to zero.

Experiments in a mildly favorable pressure gradient produced even more

dramatic results, apparently forcing transition in a laminar boundary layer
87
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Cé which was linearly stable to T-S disturbances., However, in all cases, the

:{ authors were unsure of the role of either the stochastic or the periodic wake

velocity fluctuations in producing transition. Also, the nature of the

s
;::j experiments elicits questions about the possibility of periodic flow
:'.::j separation on the sharp leading edge of their plate,

TeTaTe
. -:-,“"
AN

Oy
LN ¢ [}

B

-®a"
-'. .. ‘-- .‘
r -, PRI
S Wt
t - W= W
- BILUAEN
. RS
- ' _'-.."-
v
-
’h
v
",
. .
[
[
%

(RN |
.’ l’ ». l' l‘ l‘ l" -

. §

88

e e 0T
(AR R

ISR T
S

N
",
o
'.
..
»
.- - . . - -
* et - . R A ot I Y RN TS AN T e e TR LT N NN L o A" et et
At '.'.' WA '-‘\.(‘- e \: QR ‘-"‘. ‘:-\‘ .“_:" ;-. PV ‘-."" c . >, "-". ~* ...‘-.\"\‘:'.-'\1’.4 SRS AR .‘_-." LI '_\\ . ‘..\.. '..\: S




L R D P PR D S 5 A SR N Sl W A e S0 gt S saies mis aban cput “an S

W

RN

3

Tty

S TR,

P L T P a R S T AL I A L S PS BPC I it R I S PN
e PO LR S T T

DI R SOF B a il i a0 -t g iy Pp-- ghen-

VII. PREDICTING TRANSITION

From Morkovin's reviews [2, 3] and his consolidated schematic of the
transition processes, a checklist may be established of the physical phenomena
that transition prediction methods must deal with in order to be generally
applicable. This list is as follows:

(1) Disturbance environment -~ character and spectrum

(2) Receptivity

(3) Linear amplification processes

(4) Three-dimensional, nonlinear growth and secondary instability

development

{(5) Localized breakdowns into turbulence

(6) Growth and coalescence of turbulent regions to form fully turbulent

flow
Beside these items, a physically sound method must be able to handle bypasses,
resulting from the rapid forced nonlinear response of the boundary layer to
high intensity disturbances, large distributed roughness, and flow
separations,

To date, the only facet of the instability-transition process that has
been extensively and effectively modeled is linear amplification., As for the
other items on the list, there are formidable experimental and theoretical
difficulties in ascertaining, quantifying, and modeling these features of the

flow, even In the simplest cases. 1In order not to ignore the achievements of
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some of the turbulence models, it can be said that they may eventually be able
to provide some useful results in bypass transitions (e.g., see [107]).
However, this, of necessity, must be accomplished through simplified, semi-
empirical models for the effects of the boundary layer disturbers, Otherwise,
our ability to quantify transition rests on empirical data from judicliously
planned and executed experiments that model the salient features of the

flow. Even then, a consistently thorough approach inspiring confidence in the
results dictates that any anticipated contingencies to which the outcome may
be sensit{ve (surface roughness and cross-flows) must be introduced as
"spoiling" features to those carefully planned experiments [9]. Nevertheless,
because of the singular nature of transition, most of this data will be
pertinent only for a specific application or for testing the abilities of
empirically embellished theoretical methods as they are developed.

7.1 Linear Theory Approaches

Methods of transition "prediction" employing damping/amplification rate
information from linear stability theories obtained their most substantial
the

start in the works of Smith (89, 108] and Van Ingen [109]. Primarily,

concept originated from Liepmann [87], who proposed that transition occurs
when the Reynolds stress in the boundary layer becomes of the same order of
magnitude as the laminar viscous stress. He suggested, as a practical
approach, that this location could be approximated adequately by computing
instability amplification until the oscillation is sufficiently strong to
alter the mean flow., Therefore, it may be deduced that any usefulness of such

methods is conditional to the leading contributions of linear instability

damping and amplification mechanisms which sometimes precede the nonlinear
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stages and breakdown in occurrences of transition. Strietly speaking, though,

even if the assumptions used in linearizing the perturbation equations are

appropriate, they account rationally only for item 3 on the checklist in the

preceding section.

The benefits of linear theory methods stem from the fact that they are

RN IR RE A KRy e

based on linearized approximations of exact solutions to the Navier-Stokes
equations. Thus, they provide a unified means for incorporating the influence
i of some boundary layer modifiers, such as steady [110] and {by further assump-
tions) quasisteady [9, 106] pressure gradients and wall normal temperature
gradients on the T-S instability development. The linearity of the methods

makes easier ﬁheir extension to compressible boundary layers with oblique

(three—dimensiénal) T-S waves (see Mack's review in Chapter 15 of Schlichting
A (51). Mack [14] expounds on the various approaches for T-S type disturbances
in steady, incompressible "quas;paral;el" boundary layér flows including the
differences between, the suitability of, and the dirficultiesvéith, spatial
and temporal amplification assumptions. Also, he outlines his own thoughtful
approach for including the effects of the freestream disturbance spectra and
- orientations.

;: Since Gortler vortices are, in the initial development stage in a low

- disturbance environment, a linear instability mechanism, analogous approaches
have been applied [89], which can include steady pressure gradients [16] and
temperature gradients, It may be said that this is probably the only viable

method now available for estimating the strength of the vortices and therefore

o the nearness to transition in nonsimilar boundary layers over 3surfaces of
" varying curvature, Nevertheless, it cannot be used to predict, in advance the
- vortex wavelength, which in tdrn determines the influence of varying
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streamline curvature and boundary layer modifiers, such as pressure
gradients. This shortcoming can be circumvented somewhat by assuming the

worst case and computing the strength of the most amplified wavelength as

v gu

'l'l"'l

suggested by Smith [89].

r','

For the aforementioned reasons and lack of a better approach, the linear

o
I3

theory based methods have been applied, primarily for low freestream distur-
bance environments, in calculating the assumed linear growth of boundary layer
disturbances to some amplitude presumed to be indicative of incipient break-
down. However, beside the obvious fact that linear theories cannot account
for nonlinear developments, such methods have other intrinsic weaknesses. One
is that they are dependent on the suitability of the assumptions made in the
linear theory from which the damping-amplification rate intormation is
obtained. For boundary layers with pressure gradients, especially nonsimilar
flows, this information from any of the linear theories apparently is quanti-
tatively unverified [9]. Secondly, the quasiparallel theories, in particusar,
are expected to be 1in error near the marginal stability location, since the
spatial boundary layer gro@th rate is greater than the spatial instability
growth rate, violating the assumption of locally parallel flow [9]. Although
the quasiparallel approximation seems to be acceptable for T-S type distur-
bances in negative and zero pressure gradient flows [1], the more rapid
boundary layer growth in decelerating flows leads to increasing error as the
pressure gradient becomes more positive. This may, in part, explain the error
in the Smith-Van Ingen "el" method as applied to the T-S instability in flows
with adverse pressure gradients {111)]. Furthermore, Donaldson [112] has
indicated that the results from linear T-S stability theory may be inaccurate

for poundary layers with large favorable pressure gradients, He suggested
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that the stream tube stretching tends to increase the relative magnitude of
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the boundary layer disturbance components normal to the streamwise direction,

offsetting the stabilization afforded by a more full velocity profile. A

r 'l
s
t"l"."
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third shortcoming of linear theory approaches is that, as mentioned earlier, S
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e

LAY
3
[N

"y
Ul

they do not within themselves, account for the disturbance environment effects

A

on the boundary layer response. As Reshotko [1] points out, linear stability
theory is a problem dealing in homogeneous equations and boundary conditions,
whereas with the addition of receptivity considerations, either or both are

nonhomogeneous. Thus, the inclusion of freestream disturbance effects has E:ffj
necessitated empiricisms which, with the exception of a few approaches such as

Mack's [14], are usually applied as though all freestream disturbances were

alike in the spectral and orientational distribution of their energy.
Finally, if the total disturbance enviromment, including wall vibrations, has
sufficient energy to cause three-~dimensional, nonlinear distortion and pos-
sible driving of the initial boundary layer instability, the region of action
cf amplification mechanisms identified by linear theory will be shortened
severely. At very high disturbance levels, it may even be eliminated (a
bypass}, thereby nullifying the reasons for any applicability of the

methods. Also, the linear theory predictions are threatened whenever wall
roughness, flow irregularities, or cross-flows cause deviation from the

presumed two-dimensional laminar velocity profiles, particularly with the T-S

type instability.

7.2 Turbulence Models y s

Reynolds [113] reviews the hydrodynamic aspects of partial differential

equation turbulence models and some of their limitation in application to
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v turbulent flows, He classifies them in order of increasing complexity and o
M ek
N A
N generality, as follows: L&;
b
(1) Zero-equation models - Models using the partial differential 0T

& l' l'
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o'
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v ow

‘

equat ions describing only the mean velocity field,

,

v
o

P

]‘.r e

O

Af-v
.

(2) One-equation models - Models including additional partial

<

- differential equations for the turbulence velocity scale. %?i
b
- (3) Two-equation models - Models with the equations of (2) plus -
additional partial differential equations for descriping the %i,
turbulence length scale. ?ﬂf
(4) Stress-equation models - Models incorporating partial differential ;ii
equations for all nonzero components of the turbulent stress tensor. S%;
(5) Large-eddy simulations - Models of the three-dimensional, time- ?7‘
dependent, large-eddy structure that include a low-level model for .
the small-scale turbulence, éé;
The turbulence models most commonly used for engineering applications (1, %72
2 and very recently 3 and 4) require a variety of empiricisms if one intends E;i
to apply them only to fully turbulent boundary layer flows. When theyAare Eta
extended for "general® computations of all three flow regimes, the degree of t;;
empiricism increases greatly, In the transition regime, the results are an
attempt to describe an averaged flow condition for the purposes of providing
an acceptable evaluation of heat transfer and skin friction variation. No * ;f-
attempt is made at describing the physics of the intermittency development. -
The transition regime is simply and smoothly bridged over an "appropriate" . Eig
ranges of Reynolds numbers. For the zero-equation models (e,g., Forest [114]), K;T
simpiicity usually dictates the use of overall empirical data for transition ~;

onset, completion, and intermittency distribution. Multiequation models LR
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(ng;, the mixed partial differential-integral equation approach of McDonald
b, and Fish [115]) usually provide for gradual activation of turbulence

production terms through the inclusion of simple smaller scale models for the

R A

effects of freestream turbulence and surface roughness. To preclude

2l

misconceptions, it must be understood that these multiequation models do not

describe the physics of receptivity phenomena in producing laminar boundary

layer instability, nor do they model the subsequent unsteady instability

developments., Wilcox [116], however, has a notable approach that synthesizes

linear stability theory and a two-equation model,.

- As could be suspected, turbulence model transition predictions are

) substantially limited by the generality of their empirical data base. Their
function, primarily, is one of mimicking the data, with the understandable

- result that transition evaluations are somewhat ad hoc.

Daniels and Browne [117] compare some presently available examples of the
first three types of models, all of which have been adapted for general
boundary layer computations. Their experimental data was obtained from a
model turbine cascade in a compressible flow, transient operation wind
tunnel, It was representative of actual gas turbine conditions in Mach
. number, Reynolds number, and wall-to-freestream temperature ratio, but not in
. freestream turbulence level (or its make-up), which was U percent or less.

. None of the model's transition predictions agreed impressively with the data
for the higher chord Reynolds numbers, particularly for the concavely curved
pressure surface. Presumably, this was attr{butable to the presence of

Gortler vortices and the lack of flow deceleration past about 10 percent of

B 200 e v

chord on the pressure surface.
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7.3 Empirical Correlations

Since correct modeling of the physics of the instability-transition
process is presently and may perhaps always be an unattainable goal, estimates
for the transition location are often derived either from ad hoc data or
"generic" empirical correlations. The focus of most of the correlations has
been on major transition influencers, such as freestream turbulence and
pressure gradients, and their effects in flat plate transitions, Parametric
correlations also have been devised for the effects of distributed roughness
(see Tani [12] and Morkovin [3])) and attempted for the effects of heat
transfer. However, the former are not explicitly considered in this report
because of its limited scope in the available literature, and any of the
latter are not prominent. With the exception of curve fits [114, 118] based
primarily on Liepmann's [57, 87] data, quantitative information on transition
preceded by Gortler vortices is also sparse, Similarly, the most significant
data on transition in unsteady flows is that reviewed by Loehrke, Morkovin,
and Fejer (9], although there undoubtedly is ongoing research on both of these
latter topies.

Quantitatively, the indications of the correlations for pressure gradient
and freestream turbulence effects on flat plate transitions vary, especially
at high and low turbulence levels and for large favorable pressure
gradients. Much of the disagreement at low turbulence levels (below about 0.5
percent) can be ascribed to the differences in spectral distribution of
disturbance energy in the various experimental environments. Also, some of
the differences are attributable to the variety of techniques used to detect
transition. Among these are hotwire transverses, Pitot tube surveys near the

wdall, surface thin film measurements (heat transfer), and visual information
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from Schlieren photographs. Harris [119] and Hall and Gibbings [111] note
that the sensitivity of these methods vary, and each detects a different
aspect of the flow process. Consequently, each can provide a different
indication of the location of transition onset or completion, even in the same
boundary layer. Probably, though, most of the overall differences are due to
the very nature of the transition process itself, and its sensitivity to many
influences. Hall and Gibbings [111] observed, "These experimental diffi-
culties result in an undesirably large degree of scatter in the results, even
when collected on a single apparatus. This makes prediction an uncertain
matter under accurately specified flow conditions, and the use of results from
one system for prediction on another reduces accuracy even further,"

Besides the difficulties in modeling transitional flows and obtaining
suitable transition data, there is the problem of selecting or determining
measurable and calculatable parameters that are sufficiently strong, general,
and unambiguous reflections of the various effects to be correlated.
Nonsimilar, nonadiabatic boundary layers are especially a problem, since
transition is nonlinearly dependent on the unique cumulative effect (history)
of the boundary layer modifiers, receptivity and amplification mechanisms, and
the stochastic disturbances. The result is that local boundary layer
parameters are usually inadequate, except for use in ad hoc correlations.

Of the empirical correlations in published literature, the most tenable
in accounting for freestream turbulence and pressure gradient effects on
transition onset seem to be those of Van Driest and Blumer [120], Seyb (see
{121, 122, 123]), and Abu-Ghannam and Shaw [48]. Brown and Martin [118, 121,
122, 124] and Brown and Burton {123] favor the use of the Seyb correlation for

transition onset estimation on their model cascade turbine blade suction
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surfaces, although they acknowledge [125] that it is unconfirmed for large
favorable pressure gradients and high freestream turbulence levels, Blair
[126] obtained good agreement with the correlation of Van Driest and Blumer
{120] and the data of Abu-Channam and Shaw [48] in his experimental Blasius
and laminar sink-flow boundary layers. The other well-known correlations of
Hall and Gibbings [111] and Dunham [56] have not worked well when applied to
favorable pressure gradient flows [122, 126]. Both of these incorrectly
predicted rapid increases in the transition onset momentum thickness Reynolds
number for increased strength of favorable pressure gradients (based on the
momentum thickness Pohlhausen parameter).

Since the work of Emmons {37] in which the random appearance of turbulent
"spots" was noted and their growth analyzed, various attempts have been made
at defining a transition region intermittency distribution function to account
for the apparent statistical similarity of turbulent spot formation and growth
in many transitions (e.g., [8, 31, 48, 127]). Dhawan and Narasimha [8] found
that a normally distributed turbulence source-rate function with standard
deviation approaching zero and maximum at the location of transition onset,
combined with the a posteriori spot growth theory of Emmons, described their
zero pressure gradient intermittency data. Preliminary comparisons with data
obtained from nonzero pressure gradient boundary layers indicated that this
distribution would match the data, except near transition onset.

Intermittency data obtained by Owen [128] in zero pressure gradient boundary
layers, and Sharma, et al., {129] and Debruge [130] in adverse pressure
gradients (the Debruge data was taken from the suction surface of a model
turbine blade in cascade) agreed well with the Dhawan-Narasimha intermittency

distribution. Chen and Thyson [127] utilized a more general approach
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applicable to flow over axisymmetric bodies at a zero angle of attack, and
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also suggested that their approach might be useful in three-dimensional

2,

flows. Their more general expression reduced to the form of that of Dhawan

’

AN

and Narasimha for the flat plate case. Lessmann [131] proposed a more

LA

AR AR I

fundamental approach, which utilized the boundary layer equations of motion,

a

Empirical correlations for the transition length as a function of the
start of transition have been proposed by Dhawan and Narasimha [8] for flows

over flat plates, by Debruge [130] for flows over the suction surface of a

model turbine blade in cascade, and by Chen and Thyson [127]. The latter
;2 correlation included the effects of Mach number for adiabatic flows, although

in the subsonic regime the correction fell approximately within the

experimental scatter. All of these are essentially of the same form and the

scatter of experimental data around them is substantial, even for zero

pressure gradient data (see [122, 123]).

7.4 Abu-Ghannum and Shaw's Correlation

The correlations acknowledged in the preceding paragraphs are those that
figure prominently in published literature. They were mentioned primarily to
provide a vehicle for outlining supporting or vitiating information. However,
the only correlations which will be given in this report are those of

Abu-Ghannam and Shaw [48]. These represent both the latest and, in the

opinion of the authors of this report, most comprehensive attempts to account

for the effects of freestream turbulence and pressure gradients on transition

and to correlate the statistically averaged variation of integral flow i":f
s

properties during transition. 1In application, they will probably be as useful f:ii
e

as any of the other empirical correlations which are for low-speed adiabatic e
po)

Ny N

two-dimensional boundary layers over smooth surfaces.
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The experimental data on which the correlations of Abu-Ghannam and Shaw
(48] are based was obtained from a low-speed, ambient temperature wind
tunnel. Turbulence, which ranged from about 0.5 to 5 percent at the test
surface leading edge, was generated by various grids placed far enough
upstream to insure that the disturbances were homogeneous and isotropic at the
entrance to the test section. The relative influence of turbulence length
scale on the experimental data was determined to be negligible. Following the

suggestion of Dunham [56], the turbulence levels used in the correlations were

the average of the values at the leading edge and the point under considera-
tion. (Here, it is worth reemphasizing that transition is dependent on the
cumulative effect of disturbances. Not only do viscous dissipation and accel-
eration or deceleration change its relative level, but they also tend to make
it anisotropic [5].) Pressure gradient distributions were "typical™ of those
on gas turbine blades without flow separation, and were adjusted by changing
the contour of the tunnel wall opposite the test plate. The actual test plate
was flat aluminum with a smooth surface and a rounded leading edge. (Note
here that the introduction of a definite leading edge stagnation region can
render the boundary layer less stable than one beginning on a sharp edge
[37)). Hot wire anemometry, supplemented by a boundary layer Pitot probe, was
used in detecting transition onset and completion. Measurements were made by
placing the transducer close to the surface and increa: ag the tunnel wind
speed until the appropriate part of the transition region coincided with it or
moving the .transducer.

Transition onset in the zero pressure gradient boundary layer at various

turbulence levels was found to be represented well by the relation

Ree-t = 163 + exp (6.91 - 1) (12)
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as shown in Figure 27. In equation (12), t is the freestream turbulence level
in precent. The asymptotic high turbulence value of Ree = 163 was chosen to
agree with the Blasius flow minimum critical Reynolds number calculated by
Tollmien and Schlichting., Recall, however, that this value has been revised
to be 200 by Jordinson for parallel stability and 154 by Saric and Nayfeh for
nonparallel stability. Therefore, it has no particular significance except
that it seems to fit the data. The transition end in the zero pressure

gradient case was fairly well represented by

Reg_p = 2.667 Re (13)

e -t

As can be seen in Figure 27, there is more scatter in the data for transition
completion than for transition onset.
A modification of the correlation for Ree_t to include the effects of

pressure gradients produced

.Ree-t = 163 + exp {F (1 - 1/6.91)} (14)

6.91 + 12.75 A + 63.34 xez (. <0)

2

e

F(Ae) = (15)

6.91 + 2.48 ‘e - 12.27 xe (x. > 0)

<]
These functions are plotted in Figure 28, along with the experimental data of
Abu-Ghannam and Shaw and other investigators. At low turbulence levels, the
curves accord qualitatively with Liepmann's [87)] observation that the greatest
changes in Ree_t occur for small changes in x@ about zero, There is a notice-

able lack of data points at high turbulence levels and large adverse pressure
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gradients because of the rapid occurrence and completion of transition. Also,
for low turbulence levels and large favorable pressure gradients the data
points were few and scattered because the flow tended to remain laminar over
the full length of the plate. Ree_t = 163 was ascribed as the lower limit for
transition onset, regardless of pressure gradient. Keep in mind, though, that
favorable pressure gradients inhibit boundary layer growth (in very strong
favorable pressure gradients the momentum thickness Reynolds number can actu-
ally decrease [132]), while adverse pressure gradients promote it. Thus, the
flow must travel further in a favorable pressure gradient than in an adverse
pressure gradient to achieve the same momentum thickness Reynolds number.

The pressure coefficient distributions for the flows from which this data
was taken are shown as the first favorable and first adverse gradients in
Figure 29. Pressure gradient histories were relatively unimportant because an
extreme value of Ag corresponded to Reg_.

Correlation of the transition length was accomplished through a
modification of Dhawan and Narasimha's [8] relation for zero pressure gradient

boundary layers. The results, which are shown in Figure 30, were

0.8
R, = 16.8 (Re _,) (16)
R, = Re . -~ Re . ()
X. U X, U
T "ot t =t
Rex—T ol , Rex-t - (18)

and applied to both zero and nonzero pressure gradients.
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The momentum thickness Reynolds number for the end of transition was

fitted functionally as

Re = 540 + 183.5 (R x 1070

o-T S 1500 = 1Y) (19)

which can be solved as a quadratic in O if x¢, Xp, Uge, Ugp, and (dU,/dx)q
are known. In the relation, the constant, 1.5, reflects the fact that the
authors found no influence of pressure gradient on transition extent at high
(~ 5 percent) turbulence levels, Therefore, for RL less than 1.5 x 105 the
pressure gradient term is ignored. The quality of fit for this relationship
is shown in Figure 31,

Another approach was required for correlating transition onset influenced
by the second adverse (decreasing adverse) and second favorable (decreasing
favorable) pressure gradient distributions shown in Figure 29. For these
distributions, the use of a local or average value of xe did not yield
acceptable correlation. However, utilization of an extreme value of Ag
feither greatest positive or greatest negative) in the relation for transition
onset resulted in good agreement with the data. Flow histories for these
pressure gradients were found to affect the length of the transition only
indirectly, through their influence on the start of transition.

Transition Properties. Flow parameter distributions in the transition

regime were correlated as function of the normalized dimensionless parameter

n, defined by

Re - Re
X X

N R T Re (20)

In terms of this parameter, the expressions for momentum thickness and shape

factor were
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Figure 31. Influence of pressure gradient on transition completion momentum
thickness Reynolds number. [48]
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H' = l-—H— = sin (£ . q) (22)
H, - H 2

Plots of these are shown in Figures 32 and 33, respectively. Abu-Ghannum and
Shaw [48] attributed the larger data scatter about the shape factor function
to their inability to determine displacement thickness, 6%, as accurately as
the momentum thickness, 0.

Intermittency data for the various turbulence levels and pressure

gradients was correlated by
Y =1 - exp (-5 nd) (23)

This function and the data are shown in Figure 34, along with the intermit-
tency curves of Dhawan and Narasimha {8] and Schubauer and Klebanoff [31].
Abu-Ghannam and Shaw [48] suggested that the differences among the curves were
partially because of the different sampling times used. Their sampling
intervals were up to 5 seconds long, whereas the other investigators sampling
intervals were around one-sixth of a second.

Employing a modification of another of Dhawan and Narasimha's [8] rela-
tionships, Abu-Channam and Shaw [48] expressed the normalized skin friction

variation during transition as

Cl m et = 1 - exp (-5.645 n°) (24)
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Normalized Momentum Thickness Parameter, 8°

T i

@  Zero pressure gradient

¥  Adverse pressure gradient
& Favorable pressure gradient
X Schubauer and Klebanoff (31)

+ Dhawan and Narasimha (8)

— () = n 1.38

Figure 32.

0-2 - 0-4

v v -
Pe e

| 4

Normalized Dimensionless Distance, 7

Distribution of the normalized momentum thickness parameter in the

transition regime. [48]
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Figure 33. Distribution of the normalized shape factor parameter in the T
transition regime. [48] ;;
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In conclusion, these correlations apply to two-dimensional incompressible
flows over smooth adiabatic surfaces. There is reason to believe, though,
that they would not be quantitatively valid at the lower (<0.5 percent)
turbulence levels. 1In this range, acoustic and vibration disturbances tend to
be relatively larger contributors. Depending on whether or not they fall in
the Tollmien-Schlichting susceptibility spectrum, they may cause a
substantially different variation in Ree_t. Also, the authors' selection of
asymptotic limits for momentum thickness Reynolds numbers of transition onset
and end must be regarded with caution, especially since turbulence levels were
5 percent or less in their experiments. Notice in Figure 31 at the shorter
transition lengths that the data did deviate to momentum thickness Reynolds
number substantially lower than given by their correlation for transition
end. Finally, the use of an extreme value of \g may not be acceptable for

other pressure gradient distributions, particularly if the gradients are

larger, or do not exhibit a similar variation.

7.5 Abu-Ghannam and Shaw's Method and Its Operational Features

The method outlined by Abu-Ghannam and Shaw [48] incorporates only two
influencing factors in transition initiation--freestream turbulence and
pressure gradient. For flows over flat surfaces, i.e. without curvature, the
authors demonstrated, by a number of examples, satisfactory agreemeut between
predicted properties of transition and experimental ones. This {s due, of
course, to the data base used in formulating their methodology and is
therefore not unexpected.

In their presentation, the surface friction coefficients preceding

transition initiation and following its completion are given respectively by
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the integral-method applied separately to these two flow regimes of complete
laminar and turbulent flows. In the transition zone, the friction coeffi-
cients are taken to be composed of two parts: a turbulent contribution whose
magnitude is due to turbulent flow only were it to prevail by itself, modified
by A, the intermittency factor; and a laminar part that is the pure laminar
friction coefficient modified by (1 -~ A). Such a combination results in the

following:

Cp= (1 -7) Coog * Yooty (25)

where subscripts ")" and "tb" refer to laminar and turbulent respectively.

In order to ascertain how the method works when used in conjunction with
a finite-difference numerical integration procedure, calculations were
performed first for flat-plate flows without pressure gradients but with
freestream turbulence levels of 0.2 and 4 percent., Starting from a uniform
velocity profile at the leading edge, local momentum Reynolds numbers along
the surface locations were calculated until it reached a critical value
determined by equation (14) for transition initiation. The transition region
parameters were then calculated, which included transition length from
equation (16) and the transition completion position from equation (17).

Downstream from the transition initiation point, turbulent viscosity is

acrtivated by the intermittency factor calculated from equation (23); a total

A

a'a'a’'a"als’s

viscosity comprising the laminar and turbulent contributions follows the Ll

mixture rule: Dk

’
n
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Prandtl's mixing length theory was used in obtaining turbulent viscosity Utb

via the formulation

Wy, = p2° du/dy (27)

where § is the mixing length, while other symbols are those conventionally
understood.

Two forms for the mixing length were used in the computations reported
herein; one is the commonly used Van Driest modification and the other is an

exponential model developed in this research program. They are:
2t - K]y* [t - exp (-y‘/26)] (28)

and

b - (K,/K,) [exp (K, u') - exp (-K,u")] (29)

In the preceding expresasions, conventionally used plus coordinates are

understood and the dimensionless mixing length )‘ i{s given by
+
L = luT/v (30)

Constants K, and K, have values of 0.41 (Von Karman) and 9.025 respectively.

Results of Computation. Using the Van Driest form for mixing length, the

resulting Ce variations with Rex are shown in Figure 35 and Ree vs Re,
variations in Figure 36. While Ce in the transition zone does bridge the gap
between the calculated laminar and turbulent curves, there are significant
differences between the positions of Cf-minimum and Cf~max1mum according to

the finite-difference calculations on the one hand and those positions of
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transition start and end predicted by the method on the other. This is to say .:,}}
[ AN
LR N
that while Ce-minimum and -maximum do coincide with the predicted transition AN
A
initiation and completion when integral correlations for the two leading and -
YN
I
trailing regions connected by an intermittency-mcdified transition region are ;fqiv
NN
L e
used; the same cannot be expected when numerical integration of the boundary 'i:-
layer equations is employed to obtain the Ce-viaration on the surface. From a . Lﬁ_'

computational viewpoint, merely activating the intermittency factor of

turbulence Y > 0 does not result in an immediate upturn of Ce: nor does
setting Y = 1 produce an automatic maximum for Cf. Indeed, from a physical o
ground, such an observation is a plausible one, and lends further credence to
the various criteria used in defining transition initiation and termination by
various researchers. Thus, on a same configuration under identical flow
conditions, it is entirely possible to have different transition points
observed experimentally, depending on the method and the criterion used in
delineating transition.

The discrepancy described previously appears progreasively larger as the
turbulence level increases and the calculated results are characterized by a
marked overshoot of the Cp-values near transition termination. Momentum
Reynolds number variations shown in Figure 36 indicate a smooth cross-over
from a laminar to turbulent relation without overshoot, because the momentum
thickness is an integral of the local friction coefficient.

Corresponding to Figures 35 and 36 based on van Driest's model, Figures
37 and 38 show results when the exponential model for turbulent mixing length,
equation (27), is used instead. These two sets of results based on two

different mixing length formulations are nearly identical and hardly

distinguishable from one another.

118 I

. _~-..-I‘- - \. Q-. --‘ -._ -'_ ., I‘- -“ -.‘ - ~.“<. ‘-A ‘.’_."‘ \. ‘s. -
IR S S S A R TGOS LI P S S LR SN A




i

R S Sl

. 2 Vg

&'

a® VW,

POLINL A i SR gy

Cad

Caregt-

CEAE SN o

R

o

l'"d'_

-

f

aqe1d qe1y ‘i1aepouw Tejiusuodxe
‘8UOTIRINOTROD 80UBJUIJJTIP-23TUT] AQ SUOTIBTJBA JUBTOTJJB300 UOTZOTJd *Lf aundig

80&
0l Ol Ol
_ | I N L _ IR T _ | L
%o =3 A
%z —1, y
% v 7
uoyD|RII0]
yibua) uoisuoy |

%0
119

— Ol

*20000!

Uolio@J40) uangany




I B il §

=i " A e Ui N i T

SNTRASN

S et

MaY

it BAm-d ek te B W)

Nk

ARARS el N

A A Zhed PnS Ea i Se et

A A S T

s
‘v ta

o3e1d qe1J ‘Topow TeTjusuOdX2
‘SUOTIRINOTED 80UBJRJJTP-93TUTJ AQ SUOTIERTJEBA SE3UNDTYI WNJUSUOKW

“gf @un814

. MRS « o 2 @ % & _ o _semmm.

120

G
ol

AT,

"
0
o .

B

P




R RS A N S0 YA e N Pl SRR AT it s R lta 5 SLACE LS Sl

Transition Prediction on Turbine Airfoil, Flow around turbine vanes and

airfoils is compounded by a round nose region and curvature, which are known
to hasten instability of laminar flow and are therefore promoters for transi-
tion onset. Even though the transition prediction method by Abu-Ghannam and
Shaw [48] is admittedly unsuited to turbine airfoil applications, it is of
interest to establish how inadequate is the flat-plate prediction schemz when
applied to a turbine airfoil for which there are experimental data avail-
able. Evaluated in this light, it is possible to judge the presence of the
nose region and curvature in rendering ineffective the prediction scheie and,
in fact, all other schemes as well,

Selected for this purpose was the Blade A of Han, Cox, and Chait [148],
which has, on its suction side of the surface, a velocity distribution and
measured heat transfer variation shown in Figure 39. 1In the first 60 percent
of the surface, the velocity is accelerating and in the remaining portion,
mildly decelerating. Barring curvature and nose region effects, the flow
velocity distribution would be stabilizing in the frontal portion and only
mildly destabilizing in the rear. Examination of the heat transfer distribu-
tion indicates a very pronounced jump at the 60 percent chord position and
strongly suggests transition onset and completion over a short surface length.

On the calculation side, Faulkner-Skan's flow was used to start the
stagnation point laminar boundary layer and numerical integration of the
boundary layer equations allowed downstream marching in evaluating all
relevant parameters. To detect transition onset, three criteria were used:
Re@_t = 200, Re@-t = 380, and the third is the critical momentum Reynolds
number according to the Abu-Ghannam and Shaw's [48) method, The first

eriterion has been suggested as an average value for all flows regardless of
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other flow conditions and is, obviously, meant to be substituted by a more
rational criterion; the second criterion of a transition momentum Reynolds
number of 380 was found to be more representative of this particular flow
environment since the resulting friction coefficient shows a jump at x/Ls =
0.60 approximately, where the heat transfer coefficient exhibits a steep

rise, The use of Abu-Ghannam and Shaw's criterion, however, did not indicate
any transition probability; in the first portion of the surface, transition
was not found because of local flow acceleration; and in the rear portion of
the surface, flow deceleration caused the still laminar boundary layer to
separate at the x/Lg = 0.8 position before transition onset was induced. The
calculated variations of the friction coefficient for Ree = 200 and 380 are
graphically shown in Figure 40, By following the distribution for Ree_t =
380, the general contour of Cf follows that of the experimental Stanton number
curve quite closely. Thus, it appears that the presence of a nose region and
curvature has a significant impact on the transition prediction. More on this

point is discussed in Section XI.
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VIII. HEAT TRANSFER IN THE TRANSITION REGIME -

W LA

Two of the earliest investigations of heat transfer in the transition :f?f

RS

regime are those of Reynolds, Kays, and Kline [133] and Dhawan and Narasimha f{*i
“3

I
.
L
a

(8]. Both applied a heat transfer correlation with the intermittency factor Y

of the form

q, = q1(1 -Y) + ar ¥ (31)

and an analogous expression for local skin friction in describing these
statistically averaged properties of the transitioning boundary layer,
However, the former paper also dealt with application of the expressions to
abruptly induced transition. This would suggest possible usefulness in bypass
transitions, such as induced by surface roughness and/or high intensity
freestream disturbances, which do not necessarily exhibit any intrinsic
intermittency.

Use of these expressions presupposes either the ability to calculate the

growth and spread of turbulence in the transition regime or a predefined

intermittency distribution function. Both require an assumption as to the
"virtual origin" or the turbulent boundary layer, plus methods for computing

suitably general turbulent boundary layers, particularly at low Reynolds num-

bers. Pertaining to the location of the virtual length, Dhawan and Narasimha

L -"-r

('*5‘.

(8] proposed that it would be most appropriately taken as the location of :&3

transition onset. Primarily this suggestion was based on information obtained Ty
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from extrapolation of zero pressure gradient turbulent boundary layer growth
into the transition regime. Further evidence supporting this proposal was
their observation that transition onset, although random in time, occurred
very nearly on a discontinuous line in the flow. The experimental data of
Coles [134] and Charnay, Comte-Bellot, and Mathieu [135] for turbulent
boundary layers concurs with the virtual origin selection of Dhawan and
Narasimha (8] at least for zero pressure gradient sub- and supersonic boundary
layers.

If a predefined intermittency distribution function is used, the greater
problem is one of lack of generality. Although a representative distribution,
such as that of Abu-Ghannam and Shaw [48] in the previous section, may have
utility in many two-dimensional boundary layers, this is not the case in
general. (A similar comment would apply to the use of their skin friction
distribution function along with some form of Reynolds analogy.) Any rapid
variation in strength of the more influential boundary layer modifiers (e.g.,
pressure gradient) during transition would be likely t§ influence the distri-
bution. As an example, delay, arrest, or reversal of the transition process,
as might result when rapid acceleration occurs midway through transition,
would not be anticipated or accounted for in such a distribution,
Furthermore, Blair [126] has observed in transition experiments that the
establishment of fully turbulent wall heat transfer rates falls progressively
further downstream of the establishment of fully turbulent mean velocity
profiles as the degree of acceleration in boundary layers increases.

Other complications are introduced by the fact that, so far, published
literature about the influence of Gortler vortices or unsteadiness on inter-

mittency development i3 either scarce or nonexistent., Those which do exist
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for unsteady flows [9, 104] seem to indicate that turbulence initiation is
less random (more periodic) in time, leading to a more nearly linear spatial

intermittency distribution.
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IX., THE GAS TURBINE ENVIRONMENT

In this section, the salient features of the flow within the axial gas
turbine cascade will be briefed. Also, typical blade geometry and surface
conditions will be outlined. A more complete summary of the flow character-
istics within the turbine engine is available in the compendium of Graham

(1361,

9.1 Basic Cascade Flow Conditions

As noted by Graham [136], the average total turbine inlet temperatures
and pressures are about 2000°F (1094°C) and 20 to 25 atmospheres, respec-
tively, for most modern commercial transport aircraft. In new generations of
commeréial aircraft and present engines for military applications, the inlet
temperatures and pressures are about 2500°F (1371°C) and 25 to 30 atmos-
pheres. Future designs will call for temperatures near 2800°F (1538°C) and
pressures up to 40 atmospheres.

Typically, surface temperatures on a modern high-pressure stage rotor
blade are at or below 1610°F (877°C) [114] for the alloy blades, although
higher temperatures are permissible for those with ceramic thermal barrier
coatings. Flow turning angles are around 75 to 100° or so, over blades with
chord lengths in the range of 2 to 4 inches. Entrance flow speeds are about
Mach 0.3, accelerating to Mach 0.8 [114], even through there are usually
regions of acceleration and deceleration on both the concave (pressure) and
convex (suction) surfaces of the blades,
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As is well known; though, the flow fields in turbomachinery are not two-

.,

dimensional. Rather, they are three-dimensional, spatially nonuniform, and

highly unsteady with complex viscous secondary flow patterns, particularly at

the hub and tip sections of the blades or vanes, However, if the flow only at

midspan is considered, the secondary flow effects are less prominent. Figure

41 depicts just such a section. There, the boundary layer begins its develop- -
nent from a stagnation line created by flow impingement on the rounded leading

edge. This developing boundary layer is probably laminar near the stagnation

zone because of the rapid flow acceleration but it becomes transitional along
both the concave and convex surfaces of the blade as its growth continues.

' The location of the transition region is nonlinearly dependent on the combined
“! cumulative influences of all the boundary layer modifiers and disturbers

o addressed in previous sections, plus others, which are chiefly surface rough-

ness, secondary flows, stagnation line induced flow phenomena, and possibly
shock wave-boundary layer interaction. The flow may remain transitional,
become turbulent, or relaminarize and retransition, depending on the relative

strengths of these influences.

9.2 Flow Disturbances

The flow through the turbine cascade is both macroscopically unsteady and
highly turbulized [137]. Flow disturbance levels caused by the upstream
compressor and combustor are probably well over 10 percent with the combustor ;V.ij
turbulization being the much greater contributor. Graham [136] cited some
measurement results that indicated that velocity fluctuations at a combustor i;;l%

exit could exceed 50 percent. However, this level would be reduced through

stream tube stretching and viscous dissipation as the flow accelerates through R

the blade row.
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Schematic of a section of a turbine blade row and associated
convective phenomena. [136]
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i; The disturbances encountered as the flow progresses through the turbine Eﬁtiu
" P
. section cannot be considered as turbulence in the classical sense. Rather, <
g they are a complicated combination of potential flow unsteadiness caused by 5;:
= e
W upstream and downstream blade-vane interactions, secondary flow formations, @Jﬁ"
] '. l‘

and wake disturbances, in addition to the smaller scale high intensity : ruF
E turbulization from the combustion process [137, 138]. Forest [114] has ) 551*
- : A tet

suggested that any immediate upstream blade-vane interactions alone could E}i?,
.t ‘- '.p '_-
- e
. produce pulsating velocity fluctuations of around 20 percent at frequencies of f\ﬂ\f
h the order of 10“ Hz. (blade pass frequency). t{:3:
- . s.‘,-.'t'.
- One means of describing the flow disturbances has been proposed by Evans 5{&:
- NG
e [139] in the following definitions. N
£ | .
O g Ny

2 G
X (Vﬁ) Lﬂ{::
- T . —— Overall Disturbance Level A
2 UD U A
. AR
n (v)?
TU 3 — Freestream Turbulence Level
u

I . (aee) - 712
~ U — Unsteadiness Level ST
" u s
j. where the parameters are related by :;
F F
" 2 L2 ,=z2 -
- T =T " +T N
9 UD U u :
; Figure U2 depicts the velocity fluctuations to which these definitions relate.

. The disturbance levels represented by these definitions will vary

continuously as the flow moves through the cascade. Also, the combination of

.l W, T

i ot R §
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potential flow unsteadiness and enclosed flow environment is likely to produce

. traveling wave resonance and standing waves.

9.3 Leading Edge Flow Stagnation

Stagnation line incidence on turbomachinery blading changes, oscillating

‘L,

primarily with passage by blades or vanes in the row immediately upstream
{138]. Both the unsteady incidence and the stagnation line boundary layer
initialization affect the subsequent boundary layer development. To be
stressed here, though, is the fact that stagnation incidence leads to flow
phenomena not encountered in boundary layers beginning on a sharp leading
edge.

Generally, leading edge bluntness is destabilizing to the boundary

layer., One reason for this is that the flow field around a stagnation line is

T
DRR I

not two-dimensional, but has an organized vortical structure. The vortices,

which apparently result from a non-Gortler type, inviscid instability, are

:§ observed in parallel, uniformly spaced rows wrapped around the upstream side
of the stagnation body [40]. As a consequence of their presence, the local

.' rates of heat and mass transfer, as well as the local shearing stresses at the

wall, vary periodically along the stagnation zone, with the average values

being significantly greater than that for Hiemenz flow. The vortex spacing

I

depends on Re'y2 and the freestream turbulence level, decreasing with increased
, turbulence. The net effect is reduced spacing and increased heat transfer (Nu
- ~ Re%) with increases in Reynolds number and turbulence (140, t41]. Also,
:
- Gorla [142] acknowledges that, in the case of unsteady flows, the frequency of
} the unsteadiness significantly influences skin friction and heat transfer,.
-
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Sadeh, Brauer, and Garrison [143] did a visual study of these vortices in
stagnation line cross-flow around a cylinder., From their observations, the
vortices appeared to stretch, reduce in scale, and increase in rotational
velocity as they approached the cylinder. Additionally, the vortices turned
such that their axes aligned closely with the flow streamlines around the
cylinder. Finally, when the vortices were close enough to interact with the
laminar boundary layer on the cylinder, a noticeable scale increase occurred,

Stagnation zones also greatly augument the local turbulence intensity
(1447, This increased intensity must also be boundary layer destabilizing
when compared to the development of boundary layers originating on a sharp

edge.

9.4 Secondary Flows

Many aspects of the turbine geometry promote viscous secondary flows, and
three-dimensionalize the main flow field through a blade or vane passage.
Besides stagnation line phenomena,’some predominant influences are the
centripetal and coriolis components of acceleration in flow over rotor blades,
the interactions of hub and outer casing boundary layers with passage flow and
blade boundary layers, flow around the tips of rotor blades, pressure
differentials between adjacent blade surfaces in a row, blade twist, taper and
' | curvature, and the lack of parallel flow resulting from having a finite number
of blades in a row.

Hansen and Herzig [145] summarized, in a series of NACA reports, various

techniques used to visualize the more readily identifiable secondary flow

patterns. These reports also indicate a strong tendency for secondary flow

vortex formations to collect at the hub in vane passages and at the blade tips
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in rotor passages. Additionally, multistaging leads to accumulation of these
flows in the downstream passages. From the evidence in the reports, it is
surmised that secondary flows, especially in combination with flow
unsteadiness, can result in leading edge separation of the boundary layers at

the blade endwalls (horseshoe vortex).

9.5 Flow Surface Roughness

The influence of surface roughness on the flow regime over actual turbine
blades is particularly nondeterministic, since the amount, size, and
distribution of roughness varies with operation time and enviromment. Even in
the practical absence of foreign matter, roughness is produced by high
temperature flow erosion of the blade surface and by combustion product
deposition [147].

In general, no reasonable assessment of the transition location can be
effected without considering roughness. Particularly, the combined effects of
acceleration and thermal boundary layer thinning in the presence of otherwise
small roughness may be synergistic in promoting transition [148]. This would
have stronger implications for the ceramic coated blades because of the
greater as-produced roughness [149] and susceptibility to flow erosion,
although the problem may be mitigated somewhat by the proposed use of a

vitreous overcoat/binder on the ceramic.

9.6 Film Cooling
In meeting blade cooling requirements, present generations of aircraft
gas turbines utilize leading edge blowing of compressor bled air (film

cooling) on at least the first turbine stage vanes and blades. This added
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surface normal velocity component acts to trip the boundary layer or to cause
iocal separations. O0ften, then, the question about the flow regime centers on
the strength of the relaminarization promoting flow acceleration and thermal
gradients relative to other influences which favor a continued turbulent
boundary layer. A summary of NASA studies on film cooling is given in [149],
As a final comment, a major drive in reducing the uncertainty in the hot
gas side heat transfer coefficient distribution is warranted, at least based
on Stepka's analysis [150]). His results indicated that the uncertainty in
local hot gas side heat transfer constitutes a greater barrier to predicting
blade temperature distributions (and thus blade life) than does coolant side

heat transfer uncertainty.
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X. TURBINE CASCADE MODEL TRANSITION INVESTIGATIONS

The inclement enviromment and small flow surface dimensions inside a gas
turbine inhibit proper instrumentation for passage flow and boundary layer
studies. As a result, few details are known about the actual flow, not to
mention simulation under laboratory conditions [122]. In attempts to bridge
this knowledge gap, many investigators have resorted to upscaled blade models
for flow visualization and heat transfer evaluation. Simulations using these
large scale models are representative of their turbine counterparts in chord
Reynolds number, but neglect compressibility. More significantly, the
cascades are often static, with nominally two~dimensional, steady flow and
reversed heat flux, and the disturbance levels are usually low. The
objectives in such flow model studies have been to prpmote understanding of
some of the basic phenomena occurring in flow over a gas turbine blade. Too
often, however, the results of such investigations are implicitly assumed to
be sufficiently representative of the gas turbine enviromment for transition
studies, and for testing the abilities of transition "prediction"” methods to
be used in design. Although dynamic similarity is required, prerequisite for
transition studies related to turbine blading are much more stringent than
those for stagnation, blade wake, and even secondary flow visualization. This
becomes especially evident when one recalls the nonlinear nature of the
boundary layer oscillator, the irregular and statistically nonuniform nature

of the disturbances, plus the multitude of concurrently acting boundary layer
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modifiers that are alsc irregular, and, consequently; the ultimately non-
deterministic character of transition.

From the essentially parametric examination of transition influencers in
previous sections, it Is evident that such simulations must include Reynolds
numbers, wall-to-freestream temperature ratios, freestream disturbances and
unsteadiness, and wall roughness. These factors constitute minimum considera-
tions in transition and heat transfer investigations over idealized "2~D"
static cascades., Secondarily, Mach number (compressibility) effects would
need to be included. Tertiary considerations might involve nonideal gas and
nonNewtonian fluid effects resulting from the high fluid temperatures and
pressures, These secondary and tertiary factors, though, will undoubtedly
pale to a host of three-dimensional and secondary flow influences, the latter
of which are engendered primarily at the hub and tip sections, Other factors
would include upstream wake vorticity, resonance of traveling waves, standing
waves, and vibrations with the turbine structure. Additionally, for turbine
rotor blades, the centrifugal and coriolis flow accelerations are important
[(151].

More recently, secondary flows in turbomachinery have been the topic of
an AGARD conference [152] and papers by Binder and Romey [153], Sharma and
Graziani [154], and Walker and Markland [155, 156]. The investigations were
directed toward identifying and calculating secondary flows [152, 153, 154]
and their effects on boundary layer development and heat transfer [155, 156],
without explicitly considering transition. These and other investigations, in
particular [137], have verified that secondary flows can influence boundary
layer development, even over the blade midsection. The character of this

influence changes with, among other things, aspect (span-to-chord) ratio,
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Some turbomachinery flow unsteadiness considerations are addressed in an
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AGARD conference report ([157], and in papers by Dring, et al., [138] and

T T
P
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Joslyn, Dring, and Sharma {137]. These analytical and experimental

«

.
.
P.
»

investigations seek to characterize the unsteadiness resulting from rotor
blade-vane interactions and to evalute its aerodynamic¢ and laminar or
turbulent boundary layer heat transfer effects. All of the investigations,
and particularly Joslyn, Dring, and Sharma [137] and Dring, et. al., [138]
indicate a strong dependence of potential flow unsteadiness on stator-rotor
spacing. Especially of interest, though, are the experiments of Dring,

et al., [138] in a large scale one and one-half stage rotating cascade rig
with low speed flow., On their stator blade suction surfaces, the authors

observed laminar, transitional, and turbulent flows, with the demarcation

between the flow regimes oscillating periodically with rotor blade passage
downstream, Transition was preceded by Tollmien-Schlichting waves. The
(downstream) rotor suction surface boundary layer varied periodically between §3t,
laminar and turbulent flow with passage into and out of the stator wakes. In E:;_
these investigations, though, the blade surfaces were smooth and, apparently, :
freestream "turbulence" was relatively low. No flow separations were

N observed, however.

Static cascade rigs with representative flow Mach numbers and wall-to-

freestream temperature ratios have also become more prevalent., Investigations

utilizing such rigs are typical. [See 72, 125, 158-167]. o
Without belaboring the point, it suffices to say that none of the present

transition "prediction" methods work well even for the static¢ cascades. This
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conclusion is supported by the findings of Daniels and Browne [117], Brown and
Martin [121, 122, 124], Consigny and Richards [165], and Litchfield and Norton
{166]. Generally, transition region predictions on the pressure surface are
poorest because of the combined Gortler instability, changing blade curvature
and continued flow acceleration which results in extended transition

regions. Although suction surface predictions are often not satisfactory, the
occurrence of a distinet static pressure minimum followed by flow deceleration
can precipitate transition and render the predictions more acceptable.
Nevertheless, most of the boundary layer transition studies are conducted with
freestream turbulence levels substantially below those encountered in an
operating turbine. Probably the most representative static cascade results
with regard to turbulence levels are those of Lander [158], Bayley and
Milligan [161], Bayley and Priddy [168], and Krishnamoorthy [169].

Regardless of the effects of the various flow phenomena on transition
itself, it is evident from these and other investigatiocns (e.g., (55, 72, 88,
118, 121-124, 169, 170, 171]) that Gortler vortices, surface roughness,
secondary flows, unsteadiness (both frequency and intensity), and turbulence
all play an important role in determining laminar boundary layer heat
transfer. Also, the turbulent boundary layer heat transfer may be influenced,
particularly by surface curvature [77], roughness [136], and acceleration
[136]. Further consideration of these effects, especially on the laminar
bour.dary layer, would most likely help mitigate the consequences of the

seemingly inevitable misprediction of the transition region location.

142

......

ORI . . LRI Ayt Lt et et St oL ~ TG
PRI WA ARPRCIA WL W PSSP WA U AL AR R L PP L DL SR Ak, Syl

U

. I-‘
N




)
)

~ W

.

P
e S
et

Yo

»

0
PR MY
P
PR

.

“a v WL R =Y LN - e £ Ty ¥y Mg ey A g g E L e Y gt e s s e mi gy - R

.
2 Y,
.

pEY

3

f“ﬂ—.‘

W
HAD

XI. CONCLUDING REMARKS

Transition prediction for gas turbine blade and vane boundary layers is
exceedingly difficult because the cccurrence of transition depends on the
cumulative effect of many nonlinearly interacting influences as well as the
nonuniform disturbances, The unavoidable result is that an already singular
process assumes highly nondeterministic characteristics, in effect, making the

term "prediction" a particularly strong misnomer. Compounding this problem is

the lack of understanding of the phenomena and the fact that much of the
transition data is parametric and is substantially limited to two-dimensional
flows, Therefore, for the near future, estimates for the location of the
transition region will remain both highly uncertain and experiential. The
experimental data from which the information for these estimates is obtained
will probably be ad hoc, and will be based on modeling of influences that
appear parametrically to be dominant, combined with the introduction to the
model environment of any anticipated contingent conditions,

Nevertheless, defining a usable criterion for evaluating transition is
still a problem, and indeed a pressing one, since the combination of a highly
driven nonlinear boundary layer response and augumentation or suppression of

this effect by boundary layer modifiers can evoke questions as to when "true"

turbulence may be considered to exist., For example, defining transition as

the region for which turbulence prcduction exceeds dissipation does not

RN

provide an unambiguous criterion in a transitioning, relaminarizing, or :;ﬂ
oy
RO
143 S
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retransitioning boundary layer that might be viewed also as highly excited
laminar or strongly repressed turbulent flow. At least from a heat transfer
perspective, the latter two can, in some instances, be quite similar,
However, it would seem that the repercussions of this problem and the
inevitable ﬁisprediction of the transition region location could be mitigated
somewhat by considering the manifestations of disturbers and modifiers in the
heat transfer through both the laminar and turbulent boundary layers., In
particular, the augumentation or suppression of laminar or turbulent boundary
layer heat transfer by freestream disturbances, unsteadiness, Gortler
vortices, secondary flows, surface roughness, flow acceleration or

deceleration, surface curvature, and combinations of these would also need to

be adequately accounted for,
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