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FOREWORD .%

The contents of this report constitute one phase of a two-part research

program sponsored by the Air Force Wright Aeronautical Laboratories, Aero ,

Propulsion Laboratory, USAF, Contract No. F33615-82-K-2218. The program, "
b*'. -.. ".

administered through The Ohio State University Research Foundation, was

monitored by Dr. Kervyn Mach and by Mr. Charles MacArthur of AFWAL. The " "

,program is part of an overall effort to achieve two objectives in enhancing

the cooling technology n the hot sections of gas turbine engines.

The first objective concerns the phenomenon of flow transition in

boundary layers on turbine airfoils--from the onset of turbulence to the

transition completion. Transition studies, though fundamental to fluid

mechanics, are unique in gas turbine cascades because of the compounding -

factors that act not in individual isolation, but as a collective group and L-:-: [ L

that constitute by-pass mechanisms not amenable to linear analyses from a

mathematical point of view.

The second objective is to evolve an engineering methodlog' to account --..-

for 6 surface roughness effects on heat transfer and turbulent boundary

layer analyses, which have heretofore been studied in fragments. -/

Because these two research phases are distinct from each other, it is
S - C. -..

advisable to document their results in separate reports. Hence, this

presentation focuses on the results of transition study. As part of their

continuing interest in propulsion technology, NASA Lewis Research Center " "

partially supplied funding for this phase of the research effort. Their

financial assistance is hereby acknowledged. ..-.
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NOMENCLATURE

(Infrequently used symbols are defined in the text.)

Symbol Definition

Cf Local coefficient of skin friction, Tw /VoUo2 0 2

Cp Pressure coefficient, (p-po)/CU-2

F Viscously nondimensionalized instability frequency, $v/U 0

Ge Gortler parameter, (U 9/v) V e/r
0

Get Gortler parameter at transition onset

G-r Gortler parameter based on 6r' (Uo6r/V /r'

H Boundary layer velocity profile shape factor, 6/9

M Freestream MACH number

Nu Nusselt number *'..

p Local surface static pressure

P Reference freestream static pressure

Pr Prandtl number

Local heat transfer rate

r Radius of streamwise flow surface curvature

Re Nonsteady Reynolds number, (U AU /WV)
fl 00

Re Length Reynolds number, (U X/V)
x o

Re6  Displacement thickness Reynolds number, (U 6/)

Ree Momentum thickness Reynolds number, (U oelV)
0 0

Reet Momentum thickness Reynolds number at transition onset

Xi



NOMENCLATURE
(Continued) _*

Symbol Definition

Re Momentum thickness Reynolds number at transition completion
0- T

T Local static temperature

2 2 2
T Freestream turbulence level, 1/3(u' + vI + We )/U

T Adiabatic wall temperature (recovery temperature)
r

T w Wall temperature

T Reference freestream static temperature

u Local streamwise component of boundary layer edge

ut Streamwise component of disturbance velocity

U Streamwise velocity at boundary layer edge
0

U Reference freestream velocity

VI Wall-normal component of disturbance velocity

wl Tranverse component of disturbance velocity

xpy~z Streamwise, wall-normal, and traverse Cartesian coordinates

Greek Symbols

Nondimensional wavenurnber, 2iSr 1 /

aNondimensional wavenunber, 216*/XGT

aNondirnensional wavenumber, 21r0/AS
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Greek Symbols

(Continued)

8 Circular frequency of Tollmien-Schlichting disturbances

8FS Hartree pressure gradient parameter for Falkner-Skan flows

Y Intermittency factor for transitioning flow

4 Boundary layer thickness

45 Boundary layer similarity variable, T vx/U ° .
r 0

6* Boundary layer Displacement thickness

9 Boundary layer Momentum thickness

Acceleration parameter, v(dU /dx)/Uo2
0 0

Pohlhausen parameter, (2 /v) (dUo/dx)

2
Modified Pohlhausen parameter, (0 /v) (dUo/dx)

G Wavelength of Gortler disturbances

Wavelength of Tollmien-Schlicting disturbances
TS

Absolute viscosity

v Kinematic viscosity

p Density

T Freestream turbulence level (percent), Tf x 100

Tw Wall shear stress

W Circular a quency of freestream oscillation, 2nf -. "
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NOMENCLATURE
(Continued)

Subscripts

c Critical

*Freestream

Laminar

mc Minimum critical

o Edge of boundary layer

t Transition onset

tr Transition region -- '-

tb Turbulent region

T Transition end

w Wall
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I. INTRODUCTION: THE NATURE OF TRANSITION.IN A BOUNDARY LAYER FLOW

/'21

Reshotko [-41 Jhas suggested that transition- may be viewed as the response

of a very complex three-dimensional nonlinear oscillator (the laminar boundary

layer) to a random and often statistically nonuniform forcing function (the

disturbances). Morkovin {2] has proposed a unified view of the processes

leading to transtion, shown in Figure 1, which will aid in analyzing this

description. >:

In Figure 1, the box labeled "A.C. INPUT = DISTURBANCES" indicates that

the activation of the instability-transition mechanism requires a disturbance

(see [3] and Gaster's paper in [4]) that is always present, at least infini-

tesimally. Furthermore, the response of the boundary layer is very strongly

dependent on the magnitude and spectral distribution, and even somewhat on the

orientation of the unsteady disturbances.

The arrows from the input box to "LINEAR AMPLIFICATION" denote the

"receptivity" of the boundary layer. Receptivity, a term applied by Morkovin,

refers to the means by which disturbances couple with, and are assimilated by,

the boundary layer. Morkovin's analog for the receptivity mechanism is a

variable band-pass filter-preamplifier.

In small disturbance flows over smooth walls, the available disturbance

environment tends to excite a selected frequency of boundary layer

*Numbers in brackets refer to references in the Bibliography.

• ... -.[. .
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instability. The instability is amplified above a certain critical Reynolds

number in a distinctive filter-amplifier action that allows its growth to

rapidly outpace all others. This aspect is incorporated in the box labeled

"LINEAR AMPLIFICATION." For nominally two-dimensional boundary layers, two

normal modes of instability have been predicted and later identified

experimentally. These are the downstream traveling Tollmien-Schlichting (T-S)

waves and the body-force induced steady streamwise vortices. The former mode

was modeled theoretically in an original analysis by Tollmien and later in a

refined analysis by Schlichting (see Schlichting [5]). Its presence in a

Blasius boundary layer in a benign environment was first confirmed by the

experiments of Schubauer and Skramstad [6]. The latter modes include the

centrifugal Gortler [7] instability for flows over streamwise concavely curved

surfaces and buoyancy instabilities (see Schllchting [5)) in boundary layers

with unstable density stratification. The characteristics of these

instabilities will be discussed more fully in subsequent sections.

The box in Figure 1 labeled "OPERATION MODIFIERS = MEAN BOUNDARY LAYER

PROPERTIES" refers to those properties of the flow that act to rearrange the

vorticity in the boundary layer. Their influence on the instability is either

steady or may be considered so. As a consequence of their action, the

receptivity character of the boundary layer is changed and the ascendancy and

amplification rates of an instability are determined. Another operator, which

does not fit directly in this box, is mean flow unsteadiness. This topic will

be addressed in a separate section.

Subsequent to linear amplification of small disturbances, the boundary

layer begins nonlinear, three-dimensional development. A "secondary

instability" then appears, which promotes a reduction in disturbance scale to

3 -N

: 7 7 %.'
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a range more commensurate with turbulence. Transition starts with the

appearance of downstream traveling turbulent "bursts" or "spots" which grow

and coalesce as the flow continues, forming a fully turbulent boundary layer.

-. In this presentation, transition "onset" will be used in reference to the -

first appearance of these bursts, or to the first appearance of the irregular,

fine-scale random velocity fluctuations characteristic of turbulence.

Transition "completion" will refer to the coalescence of the turbulence to

form a fully turbulent boundary layer for all time. In the region between

these two locations, the term "intermittency" r8] is used to describe the EI!!
statistical average of the time that the boundary layer is locally

turbulent. Intermittency is usually denoted by the symbol Y, and its value

ranges from 0 for laminar flow to I for fully turbulent flow. As indicated by

Morkovin 131, though, a consistent means of measuring the onset and end of

transition, or the intermittency, has not yet been defined. Partially, this

is because of the often random nature of the appearance of the turbulent

bursts and the variety of techniques used to detect transition. Additionally,

transition is sometimes more continuous than intermittent, particularly for

low Reynolds number or "bypass" transitions. (The term "bypass" will be

defined later in this section.)

Returning to Figure 1, the box labeled "PRINCIPLE OF DOMINANT AND

MULTIPLE RESPONSIBILITY FOR ULTIMATE TRANSITION" can be noted. In some cases,

the Influence on transition of an operation modifier working in concert with

the disturbance environment may be singly dominant. Identification of such

occurrences may aid in determining a criterion for evaluating transition onset :*:':

or in deciding how to move the transition region, depending upon the

objective. However, in general the location of transition will depend

4.'.
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strongly on the nonlinear combination of influences from several operation

modifiers and the unsteady disturbance input. Morkovin's pertinent

observation on this matter is that " . . . there are always some freestream

disturbances (turbulence, temperature spottiness, random or regular sound),

some roughness, some three-dimensionality of the flow, some unevenness of

leading edge, some waviness of the skin, some vibrations, some heat transfer,

some pressure gradients, and so forth (all very hard to measure) . " The

singular nature of combined influences, especially those which are irregular

or three-dimensional, plus the lack of ability to properly characterize the

disturbance environment and the lack of undc 'standing of the selectively

sensitive receptivity mechanism lends a very nondeterministic quality to the

ultimate transition process. In fact, it is these qualities of the forcing

function and the boundary layer oscillator that have foiled or clouded many

experimental attempts at evaluating parametrically the various influences on

the instability-transition process [2, 3, 9].

Although many incidents of transition are preceded by the development of

instabilities identified by linear theory, it is clearly evident that this is

not always the case [2, 3]. Such occurrences are labeled "bypasses" by

Morkovin and are tentatively denoted by arrows directly from the disturbance

box to the secondary instability or turbulent spot in Figure 1. In bypass

transitions, any semblance of the linear instability modes is apparently

preempted by a more direct and rapid nonlinear response of the boundary

layer. Identifiable causes of bypasses include large distributed 3-D

roughness [2, 9], localized flow separations [91, and possibly high-level

freestream disturbances of the proper scale [2]. Another somewhat special

case is the Charters' [10] transverse contamination mechanism. This phenomena

5-:;,.
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P- -.-#6. . ._

is engendered either by cross-flow between the upper and lower surfaces of a

plate at a free side-edge, or by side-wall boundary layer interference at a

side-edge juncture [9].

The preceding sketch serves primarily to introduce the complexities of

boundary layer transition and to establish a vocabulary for some of the more

general features of the process. (For more comprehensive insight into the

nature and mechanisms of transition, the excellent reviews of Morkovin [2, 3,

11], Reshotko [1], Tani [12, 13], and Loehrke, et al., [9] should be

consulted.)

I'" ;
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II. LINEAR STABILITY THEORY

The complexity of the boundary layer oscillator traditionally has

- rendered it intractable to all but the most simplified theoretical analyses.

As a result, the theoretical studies of boundary layer behavior have been

limited substantially to linearized infinitesimal perturbation theories.

* These theories establish marginal stability conditions for, and growth/decay

rates of, infinitesimal amplitude periodic boundary layer disturbances. In

the process, receptivity considerations are avoided because the disturbances

are initialized within the boundary layer.

Physically, infinitesimal disturbances are those whose amplitude is so

small as to not change the characteristics of the laminar flow being

2
studied. Functionally, the limits may be set as A Re << 1, where A is the

perturbation velocity to local freestream velocity ratio and Re is a thickness

Reynolds number. If, however, the disturbance amplitude is sufficient to

modify the time-independent or time-averaged flow quantities for the laminar

boundary layer, the disturbances are referred to as being finite l]'.

E - Reshotko [1], Mack [14], and White [15] have delineated the approach and

clarified the necessary concepts for applying infinitesimal perturbation

stability theory in the case of traveling wave (T-S type) disturbances.

(Also, see Gaster in [4].) Typical methods for the case of the centrifugally

induced Gortler vortex disturbances can be found in the papers of Ragab and

Nayfeh [16] and Floryan and Saric [17J. Therefore, for the purposes of this

kr
7-'.'



survey it is more appropriate to brief some of the salient simplifications and

assumptions made in applying the linear theories.

Solutions for the linearized perturbation equations are usually assumed

to be of the simplest normal modes form (single frequency sinusoids) and are

applied to one or more of the independent variables. For the T-S type

disturbances in two-dimensional subsonic flows, the greatest instability is

streamwise (see Mack's review in Chapter XVII of Schlichting [5]) thus

requiring only a two-dimensional wave for evaluating the marginal stability

conditions. Modeling of the three-dimensional streamwise vortex insta-

bilities, on the other hand, demands concurrently acting perturbations in each

of the orthogonal coordinate directions.

Other prevalent simplifications in the linear theories usually entail

neglecting some of the streamwise derivatives of mean flow quantities. Under

some conditions (primarily at large Reynolds numbers), it has sometimes been

assumed that all longitudinal derivatives of mean flow quantities as well as

the wall normal mean velocity component could be neglected. Thus, the base

boundary layer flow is treated as being locally parallel (without growth) or

"quasi-parallel." The propriety of this treatment will not be discussed here,

but it is enlightening to refer to the nonparallel stability results of Saric

and Nayfeh [18, 19] for the T-S instabilities, and Ragab and Nayfeh [16] and

Floryan and Saric [17] for the Gortler instabilities as well as the

investigations of Gaster [20, 4] and Hall [21]. From these papers, it is

evident that nonparallel affects are important for analytically establishing

the marginal stability conditions. Nevertheless, the results, with the sole

exception of Saric and Nayfeh's [18, 19] for the Blasius boundary layer, are

apparently quantitatively unconfirmed.
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Provided that the assumptions utilized in the linear theory are -. -

appropriate, the resulting marginal (neutral) stability solutions represent

the demarcations between damped and amplified "infinitesimal" disturbances in

a particular flow. For T-S modes in a subsonic two-dimensional flow, the

results are usually plotted as dimensionless wavenumber

2
,= 2 l6/T or ct, - 2,rG/T or dimensionless frequency F B = U versus
6*TS TS 0 0'6 .f q

the displacement or momentum thickness Reynolds number, yielding a "thumb" ''-

shaped locus. Similarly, marginal stability curves for the Gortler modes are

plotted as dimensionless wavenumber versus a thickness Gortler parameter, as

will be seen later. Points on these curves denote the "critical" Reynolds or

Gortler numbers for a particular frequency or wavelength of disturbance. The

smallest Reynolds or Gortler number from these curves, regardless of distur-

bance wavelength, is referred to as being "minimum critical."

Linear stability results will be addressed in this review, partially

because they provide some information on the initial processes preceding some

cases or boundary layer transition. Particularly, from them knowledge can be

garnered about the effectiveness of some operation modifiers, such as pressure

gradients and heat transfer, in promoting or delaying instability. Also, they

indicate which disturbance frequencies are most effective in destabilizing the

boundary layer. Finally, the importance of the nondimensional parameters

obtained from linear theory analyses cannot be ignored, since they have often

provided the means for correlating transition data. However, the relevance of

any results from linear stability theory in considerations of the occurrence

of transition is, at best, indistinct and is, in many cases, nil. On this

subject Reshotko Ci] comments, " . . . the relationship between transition

Reynolds number and some representative Reynolds number from infinitesimal- . .

9
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disturbance stability theory is weak quantitatively and only moderately strong >.

qualitatively." His statement was, nevertheless, focused on cases of post-

critical transition driven by relatively small amplitude freestream

disturbances. No such relationship can realistically be expected to apply to

precritical or bypass transition, in which there is no apparent operation of a .

linear amplification mechanism. Mack [14] and Morkovin [3] both acknowledge

that transitioning or even turbulent boundary layers have been observed in-

situations that were supposedly stable laminar flows according to linear

theory.

.c .. 9..
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III. NONLINEAR STABILITY INVESTIGATIONS

Investigations of the nonlinear stability of boundary layers are very

much in their infancy due to the formidable problems, either mathematical or

numerical, associated with analyzing such a complex three-dimensional oscil-

lating system. Many of the analyses have been motivated by the approaches of V

Stuart [22, 23] and Watson [24] for parallel flow stability. Essentially,

they extend the results of linear parallel stability theory into the weakly

nonlinear regime by nonlinear small perturbation methods. As discussed by

Stuart [25] for T-S type instabilities and Hall [21] for Gortler type

instabilities, though, they are not appropriate for application to boundary

layer flows, whose growth is characterized as being both nonparallel and

diffusive. At any rate, analytical methods are, as yet, inadequate for

extending analyses into the regions of highly nonlinear instability

development.

Numerical investigations, on the other hand, have their own set of

difficulties beginning with the demand for increasingly higher (and three-

I dimensional) resolution as the nonlinearities in the boundary layer response

increase. Additionally, there is the possibility of introducing or

suppressing instability through the method itself, coupled with the

uncertainty in downstream boundary conditions [262.

In nonlinear stability investigations, as with the linear stability

analysis, receptivity is usually not considered (e.g., see [4, 26, 27, 28,

11o.. -



29]). Reshotko [13 and Morkovin [3] review various aspects of the receptivity "IN
mechanisms studied through 1976. Rogler [30) presents a more current

modelization of some facets of the receptivity phenomena.

The following review of the influence of disturbances and "operation

modifiers" on instability and transition will not be mechanistic but primarily .N

parametric. Although this will not lead to the understanding of the nonlinear a, ,

interactions among the various influences, it will provide some insight into

the nature and order or their effects, which may be useful in determining

dominance.
.2..
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IV. FLAT PLATE BOUNDARY LAYER TRANSITION AND THE TOLLMIEN-SCHLICHTING
INSTABILITY

If all sources of disturbance (i.e., turbulence, acoustic waves, and

vibrations) are very small and the flow surface is smooth, the unstable i.
Blasius boundary layer evolves continuously from the amplification of the 2-D

T-S instability modes to the appearance of localized turbulent "spots." The

sequence of events has been elucidated by the experiments of researchers,

including Schubauer and Skramstad [6], Schubauer and Klebanoff [31], Klebanoff L

and Tidstrom [32], Klebanoff, Tidstrom and Sargent [33], Kovasznay, Komoda and

Vasudeva [3 4], Hama, Long and Hegarty [35], and Hama and Nutant [36]. Tani

[12, 13] has reviewed and interpreted these and other investigations.

Although there is yet some uncertainty in the developments immediately

preceding the emergence of turbulent spots, the processes may be outlined as

follows:

(1) Past the marginal stability location, downstream traveling (ideally

two-dimensional T-S waves (the primary instability) begin to amplify

exponentially deep within the boundary layer. Their velocity is

roughly one-third that of the freestream and the wavelength is

several times the boundary layer thickness (see Gaster in [4] for a

discussion of the spatial and temporal nature of the waves). This

stage is the object of investigations by linearized stability

theory.

1 13
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(2) Gradually, nonlinear finite amplitude development takes over, ,-

leading to a spanwise varying rate of growth. This pronounced

three-dimensionality is attributable to the production of streamwise

vortices (the secondary instability) along the swept-back front of

the T-S waves, resulting in redistribution of the wave momentum.

(3) The upward fluid motion caused by two adjacent contrarotating

vortices produces a "high shear" layer nearer the outer edge of the

boundary layer. Subsequently, the high shear layer sheds smaller

scale, intense, discrete vortex loops in cascade, which break apart

and individually tangle to produce high frequency fluctuations at

scales more commensurate to that of turbulence (see [36]). From

this melee, growing localized turbulence emerges and moves

downstream at approximately two-thirds of the freestream velocity.

Tentatively, these events are interpreted as indicating that the

large scale T-S wave instability must combine with the secondary

(velocity profile inflection producing) vortex instability as a

prerequisite to the disturbance scale reduction and three-

dimensionalization required for turbulence [9]. The importance of

velocity profile inflections in the reduction of the T-S instability

scale will become clearer in the subsection on pressure gradient

influence.

The features of turbulent spot formation and growth following breakdown

have been the subject of investigations by Emmons [37], Schubauer and

Klebanoff [31], Dhawan and Narasimha [8], Elder [38], McCormick [39], and more

recently by Wygnanski, Sokolov and Friedman [40]. Dhawan and Narasimha's [8]

analysis of Blasius boundary layer Intermittency data produced the result that

14
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the inception of turbulent spots is random In time and very nearly along a

discontinuous spanwise line in the flow. Nevertheless, the Insensitivity of

the intermittency development to the exact streamwise ascent spot distribution '_

makes this result less pertinent [40]. With the exception of a short period

in the initial growth, the spanwise and streamwise development of each spot is

uniform and independent of the existence of other spots [38]. The speeds of

the leading and trailing edges are around 0.5 and 0.88 of the freestream,

respectively [31], and the spanwise spread subtends an angle of about 200 in

the flow [40]. All of the spots apparently have similar streamwise

axisymmetric arrowhead shapes with downstream pointing vertices [31, 38,

40]. In addition, they are followed by regions of "becalmed" laminar flow in

which another spot is not generated [31].

A schematic plane view of the foregoing events, from T-S instability to

coalescence of the turbulent spots is given in Figure 2. To be noted is the

solid angle of turbulence, corresponding to Charters' [10] transverse

contamination bypass, which is swept out along the sides of the plate.

4.1 Freestream Disturbance Effects (2.
Freestream disturbances represent part of the input to the boundary layer

oscillator, as can be noted from Morkovin's diagram. Included in this

category are vorticity (eddying velocity fluctuations, which are referred to ..

as freestream turbulence), "sound" (pressure fluctuations which are trans-

formed into velocity fluctuations in the fluid), and entropy variations. Much

of the freestream disturbance energy in subsonic flows is exhibited as either -'

turbulence or acoustic phenomena, the latter of which can be both traveling

and standing pressure waves. Generally, increasing levels of freestream

15
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Figure 2. Idealized sketch of instability and transition processes on a flat
plate. [151
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disturbances move transition to smaller Reynolds numbers, with the effect at
., -,

very low disturbance intensities being drastic. However, freestream "'

disturbances in most cases of practical interest are nonhomogeneous and

anisotropic, and the spectral distribution of disturbance energy can influence

transition onset through the filter-amplifier nature of the boundary layer.

In nonbypass transitions, particularly those which are preceded by substantial

instability amplification through a linear mechanism, the occurrence of

transition depends strongly on the frequencies, and even possibly on the

orientations of disturbance spectra in relation to the amplifiable boundary

layer oscillation frequencies.

Tani [12J has stated that freestream turbulence appears to control the

rate at which the remainder of the boundary layer spectrum feeds on the most

amplified component. That is, it hastens breakdown of the unstable laminar

layer. Discrete frequencies, on the other hand, which closely match the

amplifiable normal modes seem In some sense to drive their amplification, or

at least to influence their initial amplitude (see [14]). Regardless of the

interaction mechanisms (receptivity), though, freestream disturbance

frequencies which are close to the frequencies of the amplifiable normal modes

can be considerably more efficient at promoting transition than those which

are mismatched.

The effects of nonuniform disturbance spectrums were illustrated lucidly

by the transition experiments of Spangler and Wells [41]. Figure 3 shows the

dramatic differences they obtained for transition Reynolds numbers in Blasius

flow when various acoustic and vortical (grid generated) disturbances were

introduced. At this point, it is helpful to examine the marginal stability

curve for the Blasius flow shown in Figure 4. Note that there is a range of

17
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Figure 4. Marginal stability locus for the Blasius flow. [18]
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dimensionless amplifiable T-S frequencies for each Reynolds number greater

than minimum critical. Those frequencies with the greatest (spatial) rates of

amplification will be in the middle of and down into the thumb. Spangler and

Wells chose their acoustic disturbance frequencies such that they fell

approximately within these amplifiable bandwidths predicted by linear theory.

P> Also shown in Figure 3 is Schubauer and Skramstad's [61 wind tunnel

transition results for various levels of grid generated disturbances. It is

of importance to note the difference In length Reynolds number of transition

66
onset at the lowest disturbance levels tar the Spangler and Wells (5.25 x 106)

and the Schubauer and Skramstad (2.8 x 106) experiments. Spangler and Wells

were able to achieve this higher Reynolds number by carefully controlling

acoustic disturbances in their wind tunnel, while Schubauer and Skramstad's

limiting Reynolds number was apparently the result of fan noise contributions.

Another important lesson is illustrated in locus AB (top line in Figure

3) for which high sound levels (in the range of 90 to 135 db) were Ineffective

in reducing the Reynolds number of transition. Concerning this phenomena,

Loehrke, Morkovin and Fejer [9] commented, "However, this occurrence is almost

surely associated with the mismatch between the acoustic spectrum and the

spectrum of amplifiable Tollmien-Schlichting instability waves." Observations

such as this about the amplifiable dimensionless frequencies (Ba/Un) and
S. -

wavelengths (UoXTS/Vcr , where the disturbance phase velocity cr - Bv/2rUo) of

stability theory and the occurrence of transition in a spectrally nonuniform--

disturbance environment lead Reshotko Ell to conclude that the relationship

(or lack of it) could very possibly account for the so-called "unit-Reynolds-

number effect."

20
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As the freestream disturbance levels increase from infinitesimal in the

spectrums relevant to stability and transition, the region of linear

development of the boundary layer instability decreases. For turbulence

levels greater than about 0.1 percent of freestream, the velocity fluctuations

begin to mask the T-S wave development through interaction with the boundary

layer [42). Gradually, then, the problem must become one of the nonlinear

stability of the (randomly) disturbed flow. Nevertheless, Bennett [43] was

able to detect, using a boundary layer hot wire and a spectral analyzer,

selected amplification of approximately those frequencies predicted by linear

theory in a Blasius flow at a freestream turbulence level of 0.42 percent.

When considering very high level disturbances, the experiments of

Schubauer and Klebanoff [31) and Elder [38] become of interest. Following the

approach of Mitchner [44), they utilized intense local boundary layer

disturbances produced by an electrical spark in studying the growth of

turbulent spots. Schubauer and Klebanoff were able to generate a local

turbulent spot in a nominally Blasius wind tunnel boundary layer at Reynolds

numbers substantially below critical. Although the growth of the spot was

retarded until the Reynolds number reached approximately minimum critical, it

was not damped. Elder performed a similar experiment in a low disturbance

wind tunnel Blasius layer (see Morkovin [2, 3)). In his experimental length
4- 6

Reynolds number range of 2 x 10 to 1 x 106, he was able to generate a growing

turbulent spot whenever the local streamwise disturbance intensity, u'/UO,

exceeded a value of roughly 0.18. Note that the lower Reynolds number,

corresponding to a momentum thickness Reynolds number of 94, is well below

minimum critical for the Blasius boundary layer (154 according to the weakly

nonparallel results of Saric and Nayfeh [19]). These results substantiate the
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conclusion that turbulence formation and growth do not necessarily have a

linear amplification mechanism as a prerequisite. In particular, if the

intensity and scales of the three-dimensional forcing disturbances are close

enough to their ultimate turbulent target, turbulence can be generated through

a very rapid nonlinear instability mechanism [2].

To insure a balanced perspective, it should be pointed out that some

authors have implicitly opined that true growing turbulence cannot exist in

Blasius flow below the minimum critical Reynolds number of linear stability

theory. The basis for this opinion rests in the experimental results of

Schubauer and Klebanoff [31] and Klebanoff, Schubauer, and Tidatrom [45] who

observed retardation of spot growth at Reynolds numbers less than minimum

critical. As Morkovin [3] notes of the redirection of thought subsequent to

the Schubauer-Klebanoff experiments, " . . . the belief grew that the rapid

damping shown by linear theory below O-S (Orr-Sommerfeld) critical conditions

was associated in some way with the quenching of nonlinear turbulent phenomena

as well." However, he calls attention to the fact that the formation of

turbulence has been observed at significantly precritical Reynolds numbers in

accelerated boundary layer flows.

As to the question of the existence of true turbulence, one should be

cognizant of the artificiality of the spark disturbances and should also

recognize equally well that such disturbances, unlike free-stream turbulence,

are local and instantaneous. Perhaps Coles' [46] observation that "the main

difficulty in the case of boundary-layer flow is that the inherent increase in

Reynolds number with distance may act to convert a temporary abnormal response

to a strong disturbance into a permanent one" is the most appropriate

viewpoint for these cases. ,
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It may be said, though, that there is no distinct minimum Reynolds number,..

for the occurrence of transition, since such limits depend greatly on the

character and intensity of the disturbances, as well as the presence of opera-

tion modifiers, particularly the bypass inducing distributed roughness, and

the stability character altering crossflows. In the latter case, the spanwise

pressure gradients can lead to skewed T-S wave fronts and, thus, steady vortex

formations oriented essentially in the streamwise direction [2, 47]. The

result is that transition can occur at much smaller Reynolds numbers than that

observed if only T-S waves are present. Such three dimensionality is unavoid-

able near the corners of finite width flow surfaces [3]. Conversely, there is

no distinct maximum Reynolds number for the occurrence of transition, either,

depending on one's success in eliminating all possible sources of flow irregu-

larity and disturbances.

In transition experiments, freestream turbulence correlations are usually

based on the R.M.S. disturbance velocity of the combined Fourier spectra . -

normalized to the local freestream velocity.

(uT2 + v2 + w' 2)/3
fs U

0

If the disturbances are considered to be isotropic, only the normalized R.M.S.

streamwise component may be given. From the results of the Spangler-Wells'

[41] experiments it is evident that such a description is adequate only if the

disturbances are homogeneous in the spectrums of relevance to stability and

transition. Loehrke, Morkovin, and Fejer [9] comment, "Clearly more than the

single parameter u'/U o is required to characterize adequately the disturbance

input such as the separate amplitudes, spectra, and orientations of the

turbulence and sound fields. Such a description of the Initial disturbances
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has not been attempted even under research laboratory conditions and is hardly

practicable under field conditions." Figure 3 clearly demonstrates that in

p addition to freestream turbulence defined by equation (1), there is at least

one more parameter of equal dominance in affecting transition: a parameter

involving the principal acoustical frequency of the disturbances. Its exact

formulation is undetermined as of to-date but can be expected to be of a

Strouhal-type combination.

If the disturbance field is "homogenous and isotropic," transition trends

are fairly reproducible, provided other irregularities are controlled (e.g.,

see [48]). In general, experiments in two-dimensional boundary layers

indicate rapidly decreasing effectiveness of turbulence in moving transition

Cas the levels are increased. Also, increased levels of freestream turbulence

reduce relatively the effects of operation modifiers such as wall normal

temperature gradients and streamwise pressure gradients. Furthermore, at

higher turbulence levels (and thus smaller Reynolds numbers) the transition

regime becomes shorter and more continuous (less intermittent) due to the

increase of the number of turbulent sources.

As a final comment on the freestream turbulence effect on transition it

must be brought out that the kind of freestream turbulence in a real gas

turbine environment is uniquely different from those, say, In the boundary

layers on aircraft surfaces. Flow through gas turbine cascades is

characterized by turbulence emanating from combustors; and superimposed on

this base-line turbulence is the wake-cutting fluctuation of the freestream

velocity. The wake-cutting fluctuation is sometimes viewed as a cyclic

variation of the basic flow but not as a turbulence contribution. Its effect

on transition, however, has yet to be established or refuted. .
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4.2 Pressure Gradient Influence

Longitudinal pressure gradients are one of the more prevalent "operation IL

modifiers" in unstable and transitioning boundary layer flows. Fundamentally,

they affect the T-S stability and transition response of the boundary layer

through changes in the velocity profile and the boundary layer growth rate,

and through stretching or contraction of stream tubes. The effects of -

velocity profiles were first augured through inviscid stability theory, which

indicated instability for velocity profiles with an inflection point. White

[15] reviews the important historical results from Inviscid stability

theory. Linear (viscous) stability theory provided the additional important

result that, because of viscosity effects, all boundary layer flows become

unstable at finite Reynolds numbers [50]. Linear stability theory indicates

that accelerated (negative or favorable pressure gradient) boundary layer

flows, which exhibit more velocity profile fullness than zero-pressure

gradient flows, are stabilized to disturbances. Conversely, the velocity

profiles in decelerated (positive or adverse pressure gradient) flows have an

inflection point, which renders them less stable. For these flows, the

inflection occurs at the wall for very small decelerations, moving outward for

increasing deceleration (see Schlichting [5]). In addition to velocity

profile effects, the pressure gradients influence the rate of growth of small

amplitude T-S disturbances with the rate for adverse and favorable pressure

gradients being greater than and less than, respectively, that for a zero

pressure gradient flow.

The qualitative validity of the linear stability theory predictions was

demonstrated in the experiments of Schubauer and Skramstad [6]. Saric and
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Nayfeh's [18] linear (weakly) nonparallel marginal stability results for some

of the Falkner-Skan flow family are shown in Figure 5, along with the parallel 7

flow results. Note the increase in bandwidth for amplified frequencies, LI
.
4.

especially the shift to higher frequencies, as the pressure gradient changes

from favorable to zero and becomes progressively more adverse. Note also that

the most adverse gradient (BFS - -0.1988), corresponding to incipient flow

separation, does not seem to show a minimum critical Reynolds number. For

this case, though, Saric and Nayfeh anticipated significant error since the

boundary layer growth at such low Reynolds numbers is rapid (highly non-

parallel). Within these marginal stability curves, the frequencies and

Reynolds numbers at which the greatest growth rates occur will fall down into

and along the center of the "thumb" (see [1, 5, 9]). b:-

As observed by Tani [12] pressure gradients are considerably less

influential on the Reynolds number for transition onset than on the minimum

critical Reynolds number. For a very small disturbance environment, this

difference may be explained partially by the fact that the cumulative growth

of unstable frequencies at any Reynolds number is less affected by pressure

gradients than the minimum critical Reynolds number. However, as the

freestream turbulence level increases, pressure gradient influence becomes

even less pronounced. This is largely borne out by the more recent heat

transfer test results on turbine blades with varying degrees of freestream

turbulence. No quantitative values will be given here since such values are

substantially dependent on the parameter used as a measure of pressure

gradient.

If freestream disturbances are small, flow surfaces are smooth, and the

pressure gradients are moderate, the sequence of instability developments in

26

. . ... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .



[.o. 

.'

- - - PARALLENONPARALLEL 
- -PARALLEL 

.,'.

- NONPARALLEL

IC-

,, Oo -

30 n-o. 
'3'

1200 16W 1400 10
Re Re

--- PARALLEL --- PARALLEL

.NONPARALE NONPARALLEL

% 

%.

68

100 200 300 400 'WOO 40 0 03 0 B40 120 160 200 240 2W0
Re ."Res.

Figure 5. Marginal stability diagrams for some Falkner-Skan flows. [18]
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boundary layers with a pressure gradient are similar to those for the zero

pressure gradient boundary layers [12J. However, in cases for which the

pressure gradients are not moderate, especially in decelerating flows, the

processes can be radically different. Nearly separating flows exhibit very

abrupt transition without the vortex breakdown and turbulent spots observed in

moderate gradients. Separating flows usually become turbulent upon

reattachment, without the occurrence of turbulent spots [12]. At the other

extreme, it is possible to accelerate the flow so rapidly that it retains its

laminar structure. Alternately, a turbulent boundary layer can be accelerated y
rapidly enough so that it gradually becomes laminar-like. This phenomenon is L

known as "laminarization," "relaminarization," or "reverse transition." .

Nevertheless, there are practical limitations on the stabilization afforded by

acceleration, since the effects of residual roughness or surface

irregularities become more important as the boundary layer is thinned 13].

This is due to the parametric combination (ksU /v), in which the surface

roughness protrusion ks appears; increasing frictional velocity caused by

boundary layer thinning has the same effect as increased roughness. In

addition, the profile stability and stream tube stretching are offset by the

localized profile inflections, and the larger wall normal velocity and greater

random three-dimensional distribution of vorticity resulting from roughness.

Also, regardless of the acceleration, any flow is unstable fcr sufficiently

large Reynolds numbers.

Many theoretical and experimental investigations of boundary layer

relaminarization phenomena have been directed toward determining suitable

parameters or criteria for correlating its occurrence. Probably the clearest

experimental indications of relaminarization onset are a sudden increase in
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the shape factor, H (A 6*/e), and a decrease in skin friction [3]. (The

converse of this statement would hold for transition onset, at least over flat

and moderately streamwise curved surfaces.) However, this provides no

empirical or analytical criteria for predicting relaminarization onset.

Two of the parameters suggested as being useful in correlating

rolaminarization are the "velocity gradient factor" or "acceleration

parameter",

dU
' = 2 dx(2

U
0

and the momentum thickness Reynolds number, Re (A Uoe/v). Narasimha and

Sreenivasan [51] thoughfully and critically evaluate the merits of these and

other parameters proposed for use in correlating relaminarization. In

particular, K has been suggested for use not only in correlating

relaminarization, but also for transition C52]. As an aid in judging the

applicability of K to relaminarization, it is helpful to understand the origin

of this parameter. This parameter K was obtained from analyses of asymptotic

sink-flow boundary layers that are characterized in the limit as having a con-

stant momentum thickness Reynolds number and a self-preserving mean velocity

profile shape in both laminar and turbulent boundary layers. In these flows,

for which K is constant, the momentum thickness decreases and the local

velocity increases at the same rate. Physically, the flow is asymptotically

produced in a convergent, plane wall channel [53]. Critical values for

extinction of turbulence were obtained by comparing the results of such

analyses with experiment. Although a critical value may be useful on an ad

hoc basis in comparable flow situations, the presence of roughness or
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streamwise vortices constitutes a possible threat to such a criteria. (Simi-

lar comments would apply also to the use of an Reg criteria in accelerating

turbulent flows.) For general nonsimilar flows in which K would be used as a

local stand-alone criteria, its value is questionable. Patel and Head [541.

note that there can be a substantial lag between the application of a sup-

posedly "critical" value and the onset of relaminarization. Zysina-Milozhen,

Medvedeva and Rohst [55] observed such a lag in flow relaminarization on a

model turbine blade in cascade. They suggested that a critical value of the

product of the local thickness Reynolds number and K might be more suitable.

Other investigators [52] have suggested designing turbine blades such that K

is always larger than some "critical" value.

So far the discussion has implicitly centered on flows that are similar

or on special cases. However, for nonsimilar boundary layers in general, the

transition onset and completion as well as the spatial intermittency

distribution depend on the unique pressure gradient history of the boundary

layer. As yet under these circumstances, no single pressure gradient

parameter has been proven to be adequate as a local criteria in correlating

transition. Therefore, the choice of a parameter for correlating the effects

of pressure gradient on transition or relaminarization is both experiential

and dependent on the pressure gradient magnitude and variation. In many

empirical correlations for transition onset, the Pohlhausen parameter

62 dU0
A6 .. L (3)~5 V X

or its momentum thickness variant
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is used as the local measure of pressure gradient. The preferred form is the

latter because, once the freestream velocity distribution is known, the local

momentum thickness of most laminar boundary layers can be determined

accurately by a simple relationship. Additionally, the use of momentum

thickness circumvents the problems associated with use of the ill-defined

boundary layer thickness. Another interesting aspect of the modified

Pohlhausen parameter is that a critical value in the range of -0.082 to -0.09

serves as a rough estimate for the occurrence of laminar separation (see White

[15], p. 318 and Dunham [56]). Finally, as indicated by Liepmann [57], the

momentum thickness is more closely related to the wall shear stress, and thus

to the slope of the velocity profile at the wall, which is important in

characterizing the degree of instability to T-S type disturbances.

As will be seen later from the transition experiments of Abu-Ghannam and

Shaw [48], the modified Pohlhausen parameter is inadequate for use as a local

parameter in general transition correlations. Also from this data, it may be

deduced that the length of the transition region in similar flows (or more

generally those with moderate pressure gradients which do not rapidly vary) is

a fairly strong function of the Reynolds number for transition onset.

Usually, adverse pressure gradients lead to smaller transition 'eynolds

numbers and shorter transition regions, and vice versa [12].

4.3 Heat Transfer Influence

The addition of heat transfer makes the Prandtl number and wall-to-

freestream temperature ratio important parameters in describing the T-S

stability and transition response of the boundary layer. For subsonic flows,
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a boundary layer transverse temperature gradient operates basically through N?

the viscosity gradient induced by the thermal boundary layer. In addition, if

body forces are present, the density stratification in the boundary layer can

strongly influence stability and transition.

The viscosity variation induced by the thermal boundary layer is

reflected in the boundary layer velocity profiles, yielding either more full

(more stable) or inflected (less stable) profiles. With gases, the absolute

viscosity increases with increase in temperature, while liquids have the

opposite tendency. Therefore, heat transfer to the wall is stabilizing in gas

flows and destabilizing in liquid flows. Since this survey is directed toward

gas turbine applications, water boundary layers will not be considered. AP

Suitable references on stability and transition of water boundary layers with

heat transfer would include Aroesty et. al. [58J, Wazzan and Gazley [59],

Straziar and Reshotko [60, Barker and Jennings [61], Wazzan et. al. [62], and .

Wazzan, Okamura, Smith [63,64].

If body forces and density stratification are such as to produce a .

buoyancy force directed away from the flow surface, the stability

characteristics of the laminar flows may be radically altered. Such "unstably

stratified" flows exhibit a three-dimensional instability in the form of

streamwise vortex rows. These vortex formations are analogous to the Gortler

vortices observed in boundary layer flows over concavely curved surfaces

C65]. On the other hand, stable stratification suppresses turbulence

production. In either case, the stratification stability of the flow is

expressed in the Richardson number, which is defined as follows:

Ri = - ( ~ /- -

dy dy wall
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This parameter represents the buoyancy to inertia force ratio, with Ri > 0

corresponding to stabilization, Ri - 0 indicating a homogeneous fluid, and Ri

< 0 corresponding to destabilization. Schlichting [5] gives a more complete

review of the limited literature on the stability of stratified flows.

Lees and Lin [66] developed, and Lees [50] used, an asymptotic parallel

flow approach for evaluating the effects of heat transfer (isothermal wall)

and Mach number on the linearized T-S stability of the compressible laminar

boundary layer. Since their method was asymptotic (i.e., introduction of

small viscosity - very large Reynolds numbers - to an Inviscid compressible

fluid), the results are valid only when the wavenumber - thickness Reynolds

number product is very large [67]. However, based on the analyses and

comments of Mack [68], it is expected that the results of the asymptotic

theory will be satisfactory for qualitative information on the influence of

compressibility and heat transfer on subsonic boundary layer stability.

In the Lees-Lin analysis, the Prandtl number was constant and the

viscosity variation was incorporated via a power law. The resultant marginal

stability curves for various wall-to-freestream temperature ratios are given

in Figure 6. In this plot, the solid loci are for calculations at a

freestream Mach number of 0.7, while the dashed locus is for the Blasius

flow. As a comparison, the minimum critical momentum thickness Reynolds

number from the latter curve is 150, while Jordinson's [69] accurate %

numberical calculations for the quasiparallel Blasius flow yielded the value

200. To be noted in this plot, however, is the indication of significant

stability changes with change in temperature ratios, even for the midsection
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of the "thumb," within which the greatest rate of amplification occurs. The

minimum critical momentum thickness Reynolds numbers corresponding to thesei]
curves are 5150, 1440, 523, and 63 at temperature ratios of 0.70, 0.80, 0.90,

and 1.25, respectively. As a reference, the temperature ratio for an

adiabatic wall at Mach 0.7 is 1.10.

Liepmann and Fila [70] verified experimentally the expected trends for

transition onset in a zero pressure gradient boundary layer influenced by heat

transfer from the wall. Their experimental set-up consisted of a smooth plate

with a sharp leading edge, the plate being mounted vertically in the wind

tunnel to nullify boundary layer transverse buoyancy effects. Figure 7 shows

the results they obtained with a freestream velocity and temperature of 8.19

m/sec and 200C, respectively. The other two components of R.M.S. freestream

disturbance intensity at the lowest disturbance level (u'/UO - 0.0005) were

v/U o  w'/U o  0.0008, while the higher disturbance intensity was presumably

uniform. Hot wire anemometry was used to identify transition, and its onset

was defined by the first appearance of turbulence bursts on an oscilloscope

screen. The authors attributed the low value of length transition Reynolds

number (_ 5 x 105) for the adiabatic flow to the influence of secondary flows

resulting from plate edge effects. Although there was a possibility of

buoyancy influence (cross-flow) in the heated air layer close to the plate for ...-

the nonadiabatic results, the authors concluded, based on velocity profile

checks, that it was negligible. Furthermore, transition trends similar to

these were noted in Ref. [71J.

In published literature, there is little quantitative information

pertaining to transition in gas boundary layer flows with heat transfer to the

wall. However, the qualitative results that exist, such as Kercher, Sheer,
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Figure 7. Effect of plate temperature on transition. [70)
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and So [72], indicate that the effect is not negligible at relatively low

freestream disturbance levels. Furthermore, the stabilization and increased ', .-

transition Reynolds numbers somewhat parallel that observed in water boundary

layers with heat transfer from the wall, provided that the wall-to-freestream

temperature ratios are not large. Therefore, the influence of such conditions

is expected to be significant, at least for low freestream disturbance levels

and smooth flow surfaces. As with pressure gradients, though, the influence

of heat transfer on the transition Reynolds number is substantially less than ji
that calculated for the minimum critical Reynolds number, even at very low

disturbance levels [73].

4.4 Compressibility Influence

In compressible flows, the temperature rise due to frictional heating in

the boundary layer plays a role in determining stability and transition

characteristics. An effect on the T-S stability might be anticipated from

examination of Figure 8, taken from Kobayashi and Kohama [74], which displays

the variations through the boundary layer in viscosity, density, and tempera-

ture at three values of Mach number. These profiles were computed by applying

Sutherland's viscosity formula to an ideal gas which was assumed to have a

constant specific heat and Prandtl number. To be noted in these curves is the

fact that the viscosity variation leads one to suspect that increasing Mach

numbers might result in inflected velocity profiles. The analytical result of

Lees [50] verify this, although the effect in the subsonic flow regime is not

great.

Lees [50] calculated the marginal stability curves for subsonic, zero

pressure gradient, insulated boundary layers under the assumptions noted
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compressible boundary layers on an insulated wall. [74]
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previously. His results are shown in Figure 9. From these curves, the shift

of amplification to lower frequencies as the Mach number increases can be

seen. Concurrent with this effect is a decrease in minimum critical Reynolds

numbers, with successive values, based on momentum thickness, being 150, 136,

126, 115, 104, and 92 as the Mach number increases from 0 to 1.3. However, as

indicated by Mack [5], the rate of amplification of the most amplified

frequency actually decreases with increasing Mach number in the subsonic flow

regime.

The information in published literature on the effect of subsonic Mach

number alone on transition is inconclusive. Evidently, other factors such as

freestream disturbance level, heat transfer, and pressure gradients usually

take precedence when there is not a significant amount of linear amplification

(cf. [73] and C75J. Also, see C12, 42, 76J).

iff-
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V. TRANSITION ON STREAMWISE CURVED SURFACES AND THE GORTLER INSTABILITY

The behavior of the T-S type instability is not substantially affected by

either convex or concave streamwise curvature, if the boundary layer thickness

to local curvature ratio is small enough for the boundary layer approximation

to be valid [77, 78]. Although, according to Schlichting [5], convex

curvature tends to slightly stabilize and concave curvature to slightly

destabilize the T-S modes. Also, it is known that convex curvature reduces

and concave curvature increases the skin friction and heat transfer in

turbulent boundary layers [77, 79, 80, 81, 82]. However, the centrifugal

forces in the laminar boundary layer over a concave wall do induce a steady

three-dimensional instability different from the T-S type. This instability

"" appears as steady streamwise rows of contrarotating vortices which, provided
'..- .,"

the concavity is sufficient, can come into existence and amplify at Reynolds

number much lower than that for the T-S disturbances. Figure 10 illustrates

the configuration of these vortices, which result from the interaction of the

centrifugal acceleration with the varying fluid momentum across the boundary

layer, A general criterion for the existence of similar instabilities was

deduced by Rayleigh (see Schlichting [5]) for inviscid flows. He determined

that such flows become unstable when the tangential velocity decreases with

distance outward along a flow turning radial more strongly than the reciprocal

of the radius. Hence, similar vortex instabilities are observed, for example, ..

in Couette flow between concentric cylinders, the inner one of which is

rotating [83].
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Gortler [7] was the first to demonstrate analytically that the boundary

layer flow over a streamwise concavely curved wall can be unstable to these

vortical disturbances. Later, the physical existence of these vortices was

verified, circumstantially in the experiments of investigators such as Tani .

[84], and visually by other investigators, most notably Wortmann C85], and

Bippes and Gortler [86), both in water tunnels. From Tani's [84J

investigations, it is known that the vortices can be produced In both laminar

and turbulent boundary layers, although the laminar boundary layer seems to be

considerably more unstable to them. Analogous instabilities and vortex

formations can also be present in thermally (unstably) stratified boundary

layers [84, 65]. In these cases, the buoyant force corresponds to the

centrifugal force resulting from streamline curvature.

One reason for the importance of the Gortler phenomena, as Liepmann [57,

87] has shown, is that its occurrence can drastically lower the Reynolds

number of transition onset as compared to boundary layer flows over flat or

streamwise convex surfaces. Another, as McCormack, Welker, and Kelleher [88]

have documented, is that the presence of the vortices in the laminar boundary

layer can significantly increase the average heat transfer, and therefore, by

Reynolds analogy, the skin friction.

Wortmann [85], Bippes and Gortler [86], and Tani and Aihara [78], and

others, have examined experimentally the process by which transition occurs

under the Influence of Gortler vortices. From their investigations in

constant freestream velocity, low disturbance level flows over constant radius

concave plates, the following tentative description of the instability

development is obtained:

.3. .-...-...



(1) Vortices (the primary instability) of wavelength XG amplify h-o

spatially with streamwise distance past the marginal stability

location. In nis small disturbance phase the amplification is

described by linearized theory.

(2) Amplification of the primary instability decreases as nonlinear

finite amplitude development begins. The vortex cross-section

distorts in reaction to the presence of adjacent vortices, although

the spanwise periodicity is maintained. Concurrent with this stage,

a gradual spanwise increase in wavelength sometimes seems to occur

Ref. [85].

(3) A tendency to finite amplitude is observed. Three-dimensional

(obliquely oriented) unsteady "waves," which somewhat resemble

three-dimensional T-S waves are generated in the thickest part of

the boundary layer (the section of lowest streamwise velocity and

least full velocity profile) between pairs of vortices. The

obliqueness of the waves results from the spanwise variation of

streamwise velocity. These waves are referred to as the secondary

instability Ref. [86]. In connection with the secondary insta-

bility, the vortices exhibit a "corksurew" motion, or unsteady

spanwise movement also described as "meandering," "pulsating," or

"oscillating" vortices. The motion is intensified as the waves

become stronger, producing a collision and rebound action between

adjacent vortices.

(4) Transition begins when the oscillating vortex streets "tear-up" on a

strongly curved surface or when they intermingle on a more weakly

curved surface Ref. [86]. The first signs of turbulence (wave

4L4
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breakdown) appear in the thickest part of the boundary layer between

pairs of vortices. Breakdown is denoted by irregular high frequency

fluctuations interspersed in the "wave." These fluctuations appear

more frequently as breakdown proceeds Ref. [78], resulting in a

rapid increase in mean boundary layer thickness.

The current interpretation of these events Is that Gortler vortices are

not directly responsible for transition, since the vortex amplification is

moderate, even at transition onset, in most practical cases Ref. [78, 84,

89]. Rather, Tani and Aihara £78] have concluded, and others (e.g., Ref. [16,

90]) seem to concur that the effect is indirect, operating through the three-

dimensional redistribution of streamwise momentum and the induced spanwise

variation in boundary layer thickness, at least if the Gortler instability is

sufficiently strong. The spanwise thickness variation, in turn, results in

velocity profiles with spanwise varying stability characteristics, locally

driving the amplification of three-dimensional unstable waves. This nonlinear

coupling of the primary vortex and secondary wave instabilities thus appears

to be a prerequisite for transition up to fairly high freestream disturbance

levels Ref. [78, 85, 86]. Furthermore, Nayfeh [90] developed an analytical

model for the vortex-wave interaction. His model indicates a strong tendency

for the vortices to promote amplification of three-dimensional unsteady waves

whose spanwise wavelength is twice the vortex wavelength. Additionally, it

indicates that the presence of the vortices increases the range of amplifiable

wave frequencies as well as significantly increasing the amplification rate at

any frequency and spanwise wavenumber. Based on these results Nayfeh sug- t

gested that this resonance instability mechanism may dominate the transition

process. In this context, it is interesting to recall that the local
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streamline curvature resulting from the T-S wave front in a two-dimensional

flat plate boundary layer leads to longitudinal and oblique vortex formations.

Due to the lack of experimental investigations of transition induced by

the Gortler instability, linear stability analyses must serve as the primary

qualitative guides for anticipating the importance and relative effects of

various mean boundary layer modifiers. Nevertheless it must be re-emphasized

that the relationship between any results of small disturbance theory and

transition is, at best, weak. Moreover, if forcing disturbance levels in the

freestream are high, unmodeled mean cross-flows are present, or wall

irregularities such as roughness are prominent, the relationship may be non-

existent. With this in mind, a few selected linear stability results will be

referenced in the next subsection.

5.1 Linear Analyses of Gortler Instability

In the original linearized incompressible flow analysis, Gortler [7] made

the assumptions that the boundary layer was parallel, pressure gradients were

negligible, the small (0/r << 1) wall curvature was constant, the streamline

curvature at any distance normal to the wall was constant and equal to the

wall curvature, and that the vortices were restricted to the boundary layer.

(In later analyses, it was shown that the vortices need not be confined to the

boundary layer for the longer amplifiable wavelength [16]). His analysis

revealed the characteristic parameter for the three-dimensional concave wall

instability

Go Re0 /e/r 6) L
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now known as the CGrtler number. Also, it produced the result that the

instability was relatively insensitive to the shape of the velocity profiles,

so long as their momentum thicknesses were equal. (Contrast this to the

sensitivity of the T-S instability to velocity profile shape.)

Smith [89] performed a more complex linearized analysis of the Blasius

flow, which included some of the effects of nonparallelism of the base flow

and variation of wall curvature. Also, he was the first to correctly model

the vortex perturbation growth as spatial rather than temporal. His analysis

verified the predominance of the Gortler number as a stability parameter,

although other nondimensional parameters also appeared in his more general

equations.

Smith's actual results will not be presented since his use of a body-

oriented coordinate system resulted in approximate treatment of the streamline

curvature variation away from the body. Also, his approximate solution

technique (Galerkin's method) resulted in inaccurate solutions. The problems

with his solutions and the propriety of his model are discussed in Hall [21],

Floryan and Saric [17], and Ragab and Nayfeh [16].

More recently, Tobak [91] extended Crtler's parallel flow analysis with

the objective of determining what effect a finite length of wall curvature

would have on the Grtler instability. He assumed that the region of wall

curvature was preceded and followed by a flat flow surface. The results

indicated that for a given Reynolds number a smaller radius of concavity is

needed to induce instability if the length of the curved region is finite.

Also, for curvatures whose extent was of the order of the boundary layer

thickness the analysis indicated that only the net flow turning angle is

important in producing the instability, rather than the particular shape of
'.% .
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the concave surface. However, for curved regions longer than a few boundary

layer thicknesses, the effect was small, except for some stabilization of the

largest amplifiable wavelengths.

Herbert C92] did a comprehensive survey and evaluation, and computed

accurate numerical solutions for the models of Gortler, Smith, Tobak, and

others. He also showed that smaller streamwise extent of curvature, as well

as decay of streamline curvature away from the wall, considerably stabilized

the flow, especially to the longer wavelength vortex perturbations. ,

Ragab and Nayfeh [16J investigated the effects of more general streamwise

curvature and nonsimilar pressure gradients on the Gortler instability in non- .

parallel incompressible boundary layer flows. As special cases, they

considered the effects of displacement thickness and decay of streamline

curvature away from the wall on the marginal Grtler stability of the Blasius

flow. The results for the Blasius flow, with and without displacement thick-

ness effects are shown in Figure 11 . In this figure and the subsequent ones

from their paper, the abcissa is the Grtler wavenumber nondimensionalized by

the boundary layer reference length 6 - vxl and the GOrtler number in ther

ordinate is based on the same similarity variable. Curve 1 is the marginal

stability curve for parallel flow (Gortler model), Curve 2 is the marginal - "

curve for their nonparallel flow, and the dashed curves are for nonparallel ..- *

flow computations including displacement thickness effeats. Notice that the

displacement effect is greater at the smaller Reynolds number because of the

larger rate of growth in boundary layer thickness. Also note that the dis-

placement thickness effects are most prominent for long disturbance wave-

lengths, becoming smaller as the disturbance recedes into the boundary layer.
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Figure 12 demonstrates the stabilization, especially evident at the

longer wavelengths, afforded by exponential streamline curvature decay away

from the wall. The dashed lines are the parallel flow marginal stability

curves while the solid lines are for the nonparallel flow. Herbert [92]

explained that this stabilizing effect is due to the reduction in local

centrifugal force associated with the decreasing curvature. Thus, since the .

longer wavelength disturbances extend further outside the boundary layer, the

reason for their increased stability is evident.

Figure 13 shows the influence of pressure gradient on marginal stability

for some of the Falkner-Skan family of flows. The authors attribute the

stability behavior to the increase or decrease in the wall normal velocity

component of the boundary layer flow, corresponding to the degree by which the

pressure gradient is adverse or favorable. However, the authors state that

these results are an approximation since they "patched" the self-similar

velocity profiles to their nonsimilar boundary layer for local values of the

Falkner-Skan pressure gradient parameter. Therefore, the "history" of the

boundary layer pressure gradient effects and the gradient at the local

position are neglected.

From the analysis of their nonsimilar boundary layer, the authors

determined that the linear amplification and damping rates of the Gortler

disturbances are strongly dependent on both the local value of pressure

gradient and the pressure gradient history. Thus, the results implied the

uniqueness of linear amplification rate calculations for Gortler disturbances

over generally curved walls.

Floryan and Saric [17) also analyzed the nonparallel stability of Blasius

flow to the Gortler disturbances. They considered the case of a circular arc ..-.
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shaped wall of small curvature and utilized an orthogonal coordinate system

based on the inviscid flow streamlines and potential lines shown in Figure

14. For this analysis, "small curvature" indicates that

r r 0 (/6r) 

which the authors state would make the assumptions of Blasius profile and

momentum thickness approximately correct in a zero pressure gradient flow.

The curves they obtained for marginal stability and constant

dimensionless spatial amplification rate, $a(= B6rRe6r), where B is the

amplification per unit of distance along the streamwise coordinate are shown

in Figure 15. In this plot the Gortler number is based on the boundary layer

reference length, 6r' and so is the nondimensional wavenumber. Since these

results are for constant freestream velocity flow over a constant radius

surface, the log-log plot of the amplification loci would result in curves of

constant wavelength to fall on a straight line of slope 3/2. Although the

authors determined a maximum amplification curve for their model, its slope in

the flattened region is somewhat greater than 3/2, as can be seen by comparing

it with the solid line of constant wavelength. It is worth noting that the

relative flatness of the amplification rate loci about this maximum

amplification curve would seem to indicate a range of amplifiable

wavelengths. (Consider that amplification occurs at fairly small Reynolds

numbers for which the displacement thickness effects are not negligible.) A

discussion of how these curves compare with the available stability- _

amplification data is presented in the paper itself.
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The marginal stability curve Floryan and Saric obtained is identical to

that calculated by Ragab and Nayfeh [16] for Blasius flow without displacement

effects. In the small wavenumber limit, it is asymptotic to a Gortler number,

based on 6 r, of approximately 0.4638 (see Figure 11), which is about 0.251 for

the momentum thickness Gortler number. Also, an upper bound for amplifiable

wavelengths can be described by a value of 44.29 for the wavelength parameter,

A - (U AG/D) A T. Nevertheless, Floryan and Saric emphatically point outG G

that the stability curves, and therefore the minimum critical Gortler number,

are dependent on both the configuration of the wall and the curvature of the 7

streamlines away from the wall. In fact, since local centrifugal force drives

the instability the role of wall curvature is of secondary importance compared

to the role of flow field curvature away from the wall. Hence, stability-.-

amplification curves such as those in Figure 15 are not universal.

The foregoing Gortler stability results are valid for constant property

viscous flows without heat transfer. To complete the review of the linearized P

Gortler stability analyses, some results which include the effects of

compressibility and wall-to-freestream temperature gradients will be examined.

Kobayashi and Kohama [74] analyzed the stability of compressible constant

freestream velocity flows over slightly concave (0/r << 1) constant radius

walls, with and without heat transfer. In the analysis, the temperature

d.ependence of viscosity was included via Sutherland's formula. The Prandtl

number and the specific heat were assumed constant. For the limiting case of

M 0 and an adiabatic wall, their model was the same as that Gortler.

Figure 16 shows the marginal stability curves (solid lines) obtained from 'A

the calculations for flow over an insulated wall with Mach numbers ranging

from 0 to 4. Also shown are the results of some stability calculations by
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Aihara [93] and Hammerlin [94]. Qualitatively, the results agree with those

of H mmerlin [94], who assumed a power law dependence of viscosity on

temperature. For both analyses, the effect of increasing Mach number is

stabilizing (albeit slightly in the subsonic regime) with increasing

stabilization occurring for dimensionless wavenumbers, ce(=2,e/A), less than

about 0.2. The primary differences between these results can be ascribed to

HcImmerlin's assumption of exponentially decreasing streamline curvature away

from the wall.

Based on an investigation of the density and viscosity variations in the

boundary layer, Kobayashi and Kohama attributed the increased stabilization at

the higher Mach numbers (adiabatic wall) to the fact that the stabilizing

increase In viscosity near the wall overwhelms the destabilizing influence of

the unstable density gradient. As a comparison, Aihara [93] assumed tha the

viscosity was constant and obtained a decrease in stability at the smaller

wavenumbers.

In Figure 17 the influence of various wall-to-freestream temperature

ratios (isothermal wall) Is seen to be small in the subsonic, low supersonic

range. However, the present results do indicate some destabilization for heat

transfer to the wall in subsonic flows, with the larger and smaller

wavelengths being influenced the most. Conversely, heat transfer from the

wall is stabilizing, although either variation decreases with increasing Mach

number. The results are presented in another perspective in Figure 18, which

is plotted for three selected dimensionless wavenumbers.

Kahawita and Meroney [95] utilized a linearized, nonparallel, small

concave curvature (0/r << 1) flow model to determine the influence of very

slight heat transfer from the wall on the Gortler type instability in a zero
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Figure 17. Effect of Mach number and heat transfer on Gortler stability in

flow over an isothermal wall. [74]
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pressure gradient flow. Except for an additional term in one of the distur-

bance momentum equations and an extra equation obtained from the energy

equation, their mathematical model was equivalent to that of Smith [89].
,.- .

Since their objective was to obtain a Boussinesq approximation to buoyancy

effects, the fluid properties were assumed to be constant and the gravity

vector was assumed to be locally normal to the wall.

Figure 19 shows the results of their investigation for a Prandtl number

(Pr) of 0.72. The Grashof number (Gr) in this plot has been calculated using

/- as the length dimension. Therefore,

gY6 ATOr - ,2 (8)
V

where

g = gravitational acceleration

Y = bulk expansion coefficient

AT = Tw - T. ""

As can be seen, the results indicate stabilization for 0. less than about 0.3

(long wavelengths) and destabilization for higher values of a0. Kahawita and

Meroney interpreted these results as meaning that the inertial and buoyancy

mechanisms are favoring disturbances of different wavelengths at the lower

wavenumbers, shifting to similar wavelengths above a. of 0.3. Recall, though,

that the fluid properties were assumed to be constant so the applicability of

the results is restricted to cases for which temperature differences are

small, but not small enough that the buoyancy term from the Boussinesq

approximation may be neglected. Alternately, it may be applied to fluids that

exhibit only a minor dependence of viscosity and thermal diffusivity on

temperature. 
e.7
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Pertaining to the validity of these curves, Floryan and Saric [17]

suggested that their shape may be incorrect because of an approximateI
treatment of the mean flow and because of the approach used in numerical

integration. However, the relative variation among the curves probably does

provide qualitatively useful information.

In other results from [95] on Gortler instability, it was shown that if

the normal (to the wall) component of velocity is toward the wall (e.g., as in

a suction flow), the base flow is stabilizing; and if it is away from the V.N

wall, destabilizing. This concurs with previously reviewed stability results

[16].

5.2 Nonlinear Analysis of Gortler Instability

Aihara [96] used an integral method of analysis employed by Stuart [23]

to extend the investigations of Gortler instability into the nonlinear

region. The basic equations in his model were obtained by applying the same

assumptions used by Gortler. From the model, he obtained mathematical

evidence of a finite vortex strength with the associated waveform distortion

and a possible analytical explanation for the unsteady lateral movement

observed in the amplified vortex region. Also, he demonstrated that at

marginal stability for O/r << 1, the Gortler parameter is a physical rate

parameter describing the product of the average of two ratios, as follows:

Kinetic energy dissipation vorticity energy dissipation
Kinetic energy production vorticity energy production -.

Furthermore, Aihara showed mathematically that, subject to the assumptions

noted above, the curvature of the flow field has no direct influence on the ,,'.:
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vortex wavenumber. In connection with this, he cited the results of his own

experimental (Blasius flow) investigations in which the vortex wavenumber was

seemingly indifferent to wall curvature. Instead, it was apparently set by k.

upstream irregularaities in the flow stream of the experimental apparatus. He

observed that the flatness of the marginal stability curve in the critical

domain would seem to support this indication of low wavenumber selectivity for

the instability. It is interesting to note that the experimental results of

McCormack, Welker, and Kelleher C88] also manifest the insensitivity of the

wavelength to either freestream velocity or wall radius.

Hall [21] analyzed the nonlinear development of Gortler vortices in

nonparallel boundary layers. He demonstrated that there exists a critical

value for rate of change of curvature in Blasius flow above which a finite

amplitude solution can develop, and below which the disturbance will

ultimately decay. However, he did not consider the oblique wave disturbances

that appear and often lead to turbulence before the amplitude becomes finite,

or the disturbance decays. If the results are valid, though, they provide

analytical evidence that Gortler vortices are only indirectly responsible for .-..-.

transition.

5.3 Experimental Results on Transition Over Streamwise Curved Flow Surfaces

Before investigations of transition on streamwise curved flow surfaces

are reviewed, some important experimental observations about the general -

nature and predictability of the vortex disturbances will be emphasized.

r Tani's [84] experiments in an essentially Blasius flow over a constant

radius concave surface revealed that the vortex wavenumber is independent of

streamwise location and almost independent of freestream velocity. McCormack,
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Welker, and Kelleher [88] obtained similar results. Tani and Aihara [78]

surmised that the observed Gortler wavelength is "inherent" to a particular

experimental flow arrangement, as long as it is predicted to be amplifiable by

stability theory. To substantiate this conjecture, they artificially

generated weak vortices in the boundary layer having a wavelength twice that

of the "inherent" vortices. These artificial vortices were amplified without

change in wavelength. Thus, at least for flow without a streamwise pressure

gradient, the results implied the weak selectivity of the Gortler mechanism to
L_

wavelength. Referring again to the stability results of [16, 17], the

relative flatness of the stability-amplification curves for Blasius flow would

also seem to substantiate this viewpoint. Practically speaking, however, Tani

and Aihara's [78] results also Indicate that any streamwise vorticity which

interacts with the boundary layer could influence the resultant Gortler

wavelength.

As to the predictability of nonstimulated wavelengths, Tani [84] and

Aihara [96] have concluded that stability theory cannot explicitly predict the

wavenumber of the vortices which occur in the flow over a streamwise concavely

curved surface. However, notice that the theory does indicate lower limits

for the amplifiable wavelengths in self-similar boundary layers. Furthermore,

it can be used to indicate a range for the wavelengths most susceptible to -

amplification.

Liepmann [57, 87] utilized a low speed wind tunnel to investigate

transition on both concave and convex constant radius surfaces in the '.-

effective curvatuire range of 10/rl 10 - 3 . For the higher effective concave L.

curvatures [87], his test plate was smooth glass with a sharp leading edge and

a 2.5 foot radius. His results are plotted in Figure 20 as Gortler number
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versus effective curvature for three freestream "turbulence" levels (no

spectrum specified). Although there is considerable scatter in these data

points, they do serve to support his conclusion that Gortler instability-

dominated transition on constant-radius concave surfaces without a streamwise

pressure gradient could be correlated with a constant value of the Gortler

parameter. Additionally, Figure 20 illustrates that the effect of freestream

disturbance on the Gortler instability dominated transition is of similar

order to Its effect on the T-S instability dominated transition. Liepmann

judged that the average value of the transition Gortler number was 9.0 at the "

lowest freestream disturbance level and 6.0 at the highest. As to the scatter

in the data points, Liepmann commented that detection of transition and

boundary layer thickness measurements on the small (2.5 feet) radius plate

were inherently difficult, particularly when transition occurred near the

leading edge. In these experiments, transition was detected by moving a hot

wire anemometer downstream in the boundary layer until high frequency

turbulent bursts were first seen in an oscilloscope display.

For transition in Blasius flow over streamwise convex surfaces, Liepmann

determined that the transition location was unaffected by curvature in the

range of his experiments (see Figure 21). That is, within experimental

scatter, the momentum thickness Reynolds numbers at transition were the same

for both flat and convex plates in similar disturbance environments. In

connection with these results, Liepmann found in stability experiments [57]

that the unstable frequencies and amplification characteristics of the T-S

waves on convex plates matched those obtained by Schubauer and Skramstad C6]

in Blasius flow over a flat plate, within experimental accuracy. In contrast,

his results for concave plates exhibited a systematic decrease in transition
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Reynolds number for increasing effective curvature, as shown in Figure 21.

Points clustered at the smaller effective convex and concave radii were taken

from a plate with a constant radius of 20 feet [57]. Liepmann notes that all

the laminar boundary layer velocity profiles corresponding to these data

points were fairly close to Blasius.

Although there has been at least one investigation designed to elucidate 'i

the mechanism of transition in the regime between the T-S instability

dominated and Gortler instability dominated modes (i.e., [97J), the

interaction is not yet clear. Nevertheless, as shown in Figure 22 from

Liepmann C87], the changeover appears to be continuous as the effective

concave curvature increases. The points in this plot are for nominally

Blasius flow at Liepmann's lowest freestream disturbance level. The

horizontal line ReE..t , 940 represents the flat plate transition value for his

wind tunnel disturbance environment, while G0.t - 9.0 is the value for

transition on the 2.5 foot radius concave plate in the effective curvature

-4 -4
range of 4.5 x 10 < O/r < 10.0 x 10 . From these results Liepmann

concluded that there is a transfer of energy from one instability mode to the

other in an intermediate effective curvature range. Dryden [42] in a later

review of these results suggested that transition is definitely Gortler

-4
instability dominated for E/r < 5 x 10 in constant freestream velocity flows

over a surface of fixed radius.

Figure 23 and 24 are Liepmann's results for the effects of small

streamwise pressure gradients on transition over his convex 20-foot radius and

concave 2.5-foot radius flow surfaces, respectively. All of the data points

were taken at his lowest i eestream disturbance level. A comparison of these

two plots led him to believe that the effect of either adverse or favorable
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pressure gradients on Gortler vortex induced transition is, at most, small

when the correlating parameter is the momentum thickness Gortler number.

Although there appears to be a downward trend in the data for the adverse

pressure gradient on the concave plate (Figure 24), Liepmann concluded that it

was not systematic, since the values fell within the (considerable) range of

scatter for the zero pressure gradient case. In the flow over the convex

surface, though, the change of Re.t with pressure gradient was systematic:

increasing with a favorable and decreasing with an adverse pressure gradient

(Figure 23). Furthermore, he observed that the largest rate of change of .

Reo.t with pressure gradient occurred for small deviations from the zero

pressure gradient, at least if the gradient was adverse. The finite length of

the plate prohibited him from determining if the decreasing rate trend also

held for favorable pressure gradients.

Concerning these results, Liepmann pointed out that the Blasius solution

is a singular solution in the sense that a 2 u/y 2 = 0 at y = 0 (the wall).

Therefore, knowing the sensitivity of the T-S instability to velocity profile

shape, one might suspect that small deviations from the Blasius profile would

result in significant changes in transition behavior. Conversely, Gortler's

parallel flow result indicating insensitivity of the vortical instability to

velocity profile shape seemed to support his opinion concerning the influence

of pressure gradients on the vortex induced transition. Nevertheless,

Liepmann was aware that transition depended on the level and spectrum of

freestream disturbances, and the integrated effect of instability develop-

ment. Thus, he cautioned that these results are not universally applicable

based on disturbance level, but suggested tha the trends observed for

pressure gradient influence would be quite general. Interestingly enough,
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there have apparently been no experiments comparable to those of Spangler and

Wells [41] that examine the effect of disturbance spectrum on transition

. induced by Gortler vortices. As will be seen later, though, Abu-Ghannam and

Shaw [48] obtained results very comparable to Figure 23 for pressure gradient

*- influence on flat plate transition at low freestream disturbance levels.

However, Liepmann's conclusion about the insensitivity of Gortler vortex

induced transition to streamwise pressure gradient influence has not yet been

verified.

Tani and Aihara [78] were less conclusive than Liepmann about the ,

coreliability of the data with a constant Gortler number, even for the case of

-4)supposed predominance of the Gortler instability (Olr > 5 x 10- . They did

suggest, however, that transition in zero pressure gradient boundary layer

flows over constant curvature concave walls could be correlated as a function

-*' of the Gortler parameter, the value of which increased with increasing

effective curvatures.

Smith [89] disagreed with Liepmann's conjecture that a correlation of

Gortler instability-dominated transition over a constant radius surface is

virtually independent of streamwise pressure gradient when the correlating

Gortler parameter is based on momentum thickness. He maintained that the

vortices must achieve a certain strength relative to a characteristic velocity

before transition can occur, and stated that the Gortler (rate) parameter

provided such a measure of vortex strength only under conditions of constant

curvature and constant freestream velocity for a boundary layer beginning at

the edge of a curved plate. Pippes and Gortler's [86] measurements of vortex

growth under essentially these conditions do lend credence to this

statement. They indicate that the vortex growth is a linear function of the

7l4
7 *1' [
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momentum thickness Gortier number for a region of development after the

disturbances become measurable, but before the onset of the meandering

motion. Nevertheless, Liepmann's conclusions are not totally implausible for

constant radius surfaces when one recalls that momentum thickness growth is

retarded in accelerating flows and advanced in decelerating flows relative to

its growth in a Blasius layer. Also, the radial force driving the vortex

development would vary with freestream velocity. Therefore, it may well be

that moderate pressure gradient effects on the Gortler instability induced

transition over a constant radius surface could be fairly well accounted for

by a Gortler number criteria.

However, Smith was influenced by consideration of more general and

practical applications in nonsimilar boundary layers over varyingly curved

*. walls. In such cases, a local criterion probably would be untenable, because

it cannot adequately account for the cumulative influence of boundary layer

history on the instability development. In addition, one has to deal with the

nonidealistic aspects of flows over strongly curved surfaces. These may

include violations of the boundary layer assumptions or flow divergence and

other three-dimensionality leading to net cross-flows.

From the analytical and experimental investigations reviewed in this

section, some qualitative inferences may be made about the effects of some of

the mean boundary layer modifiers on the Gortler instability, and thus,

possibly, the relative significance of their effects on transition. The

stability results of Ragab and Nayfeh [16] indicate that pressure gradients

have a substantial influence on the longer amplifiable wavelengths. From

these results and the experimeital data of Liepmann, it would seem that

pressure gradients should influence Gortler dominated transition, but the
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effect is not nearly so great as for transition on flat or convexly curved

surfaces. Furthermore, as with transition on nonconcavely curved surfaces,

increasing levels of freestream disturbance may reduce even further the

effects of moderate pressure gradients on transition.

As to the effects of heat transfer, the stability results of Kobayashi

and Kohama [743 indicate no substantial changes if the Reynolds numbers are

fairly large and buoyancy effects are negligible. However, if the boundary

layer is unstably stratified, the results of Kahawita and Meroney [95"

indicate destabilization. Both of these results have been qualitatively

confirmed in other analyses (see Rosenhead [98], Chapter IX). Finally, ..'

Kobayashi and Kohama's [74J results might also lead one to speculate that

compressibility effects are small in subsonic flows.
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VI. INSTABILITY AND TRANSITION IN PERIODICALLY UNSTEADY NONREVERSING BOUNDARY
LAYERS

Prominent investigations of stability and transition in oscillating

boundary layer flows include those of Obremski and Fejer [99J, Miller and

Fejer CI00], and the review of Loehrke, Morkovin, and Fejer [9]. Other

experimental results on stability and transition in unsteady boundary layer

flows are available in Kobashi, Kayakawa, and Nakagawa [101], Walker [102],

Cousteix, Houdeville, and Desopper C103], and Pfeil, Herbst, and Schroder

[104].

The review of Loehrke, Morkovin, and Fejer [9], which is current to 1975,

dealt with nominally two-dimensional incompressible flows with freestream

velocities described by

U(t) = U (1 + NA sin wt) (9)

Here, UO is the average velocity of the freestream, NA I- AUo/Uo] is the

amplitude of the unsteady component, and w is the circular frequency of

oscillation. From their investigations, the authors found no evidence of new

types of instabilities in nonreversing oscillating boundary layers, even with

mean pressure gradients imposed. Instead, instability waves of the T-S type

were found to precede transition onset, so long as the freestream disturbances

were small and flow separation or other bypasses did not occur. For dominant . ,

instability waves with a frequency (8) greater than approximately 10 times the
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base flow oscillation frequency (M), the instabilities were viewed in a quasi-

steady approximation. That is, as the instability waves propagated downstream

in the boundary layer (at roughly 0.3 UO for the "Blasius mean" flow), they

were assumed to be amplified and dampened in response to the local instantane-

ously "frozen" instability characteristics of the boundary layer, producing *' "

transition onset during the most unstable portion of the first freestream

oscillation cycle. To further clarify this concept, it is helpful to refer to

the Saric-Nayfeh linear stability results for the Falkner-Skan profiles

(Figure 5) and visualize an infinite progression of marginal stability curves

ranging between those for a moderately negative and a moderately positive -

pressure gradient. Each of these would, successively, correspond to an

infinitesimal time increment and a particular velocity profile in a half-cycle

of flow oscillation, with the mean for the flows on which the paper was

primarily focused, being that for Blasius flow. (Saric and Nayfeh [18]

verified that the average of their "Blasius mean" boundary layer was still a

" Bsolution of the steady Navier-Stokes equations.) Assuming that the frequency

of the dominant instability wave is preserved, the instantaneous (spatial) '-t"

rate of amplification or damping would depend on the relation of that

frequency and the displacement thickness Reynolds number (both spatially and

* temporally dependent) to the curve instantaneously in effect.

F(r instability to freestream frequency ratios less than 10 but somewhat

greater than unity, i.e. 1 < (B/w) < 10, no persistent behavior patterns

- emerged. However, less instability was anticipated, since the T-S waves have

less time to react to the rapidly changing amplification characteristics of

the boundary layer. For frequency ratios approaching unity, the instability

waves appeared to "lock onto" the freestream oscillation frequency, making the
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frequency ratio unity. Nevertheless, it was not anticipated that this occur-

rence would produce transition earlier than the quasisteady first cycle mode.

According to Loehrke, Morkovin, and Fejer [9], the effects of freestream

unsteadiness in the quasisteady regime would most easily fit into the "OPERA-

TION MODIFIERS" box of Morkovin's diagram (Figure 1). With oscillation

amplitudes, NA, less than about 0.01, though, the appropriate box would be

"DISTURBANCES" since the randomness and three-dimensionality of the oscilla-

tion increases in response to the relatively larger disturbances and flow

irregularity. An intermediate amplitude range would result in a "multiple

responsibility" trans it ion.

At least in the quasisteady regime, the effect of increasing amplitude

modulation is destabilizing because of the tendency to greater periodic

velocity profile inflections. In particular, such flows are susceptible to

periodic local separations leading to "bypasses." More generally, the widely

varying stability characteristics increase their sensitivity to disturbances

and flow nonuniformities. At any rate, in the transition regime, the rate of

growth of the turbulent patches and the quiescent laminar region following the

wake of the turbulent patches are comparable, over a wide range of the

governing parameters, to that observed for steady flows [9]. The Obremsk4 -

Fejer [99] measurements produced average speeds for the turbulent "patch"

leading and trailing edges of approximately 0.88 Uo, respectively, in a

Blasius mean quasisteady boundary layer. Recall that the corresponding speeds

for the Schubauer-Klebanoff [31) turbulent "wedge" in a Blasius boundary layer

were approximately 0.88 U0 and 0.50 U0 . However, the turbulent patches are

described in Loehrke, Morkovln, and Fejer [9] as "slightly sinuous two-

dimensional ribbons" extending transversely across the flow surface, when the
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oscillating pressure gradient amplitude is large and uniform enough to assure

essentially two-dimensional unsteadiness. As further evidence of the

similarity of transition in steady and unsteady flows, Loehrke, Morkovin, and

Fejer [9] note that the lateral propagation of turbulence in unsteady flows

from the transverse-contamination bypass of Charters [10] appears to be like

that observed for steady flows, with the exception of possible periodic

emphasis caused by local separation.

The Obremski-Fejer [99] wind tunnel transition results for "quasi-

steady" flat plate boundary layers are shown in Figure 25, along with locus C-

C' from the Miller-Fejer [100] experiments. Parameter ranges for the former

results are 0.014 < NA < 0.29, 4.5 < f < 62 Hz (28 < w < 390 rad/s) and 50 <

Uo < 115 ft/s (15 < Uo < 35 m/s). The wind tunnel freestream disturbances are

described as having an amplitude of "approximately 0.2 percent" (based on the

streamwise component of disturbance velocity with the spectrum unspecified)

which probably included acoustic contributions. Note the radical differences
between loci A-A' (0.014 < NA < 0.092, 12.6 < f < 62 Hz) and B-B' (0.039 N

< 0.27, 4.5 < f < 14.7 Hz), which are both for zero mean pressure gradients.

The visual distinction in transition occurrences for the data of locus B-B'

was that turbulent ribbons appeared close to the location of the velocity

minimum in essentially every cycle (i.e., periodically) with the turbulent

formations being exceptionally regular and uniform for nonsteady Reynolds

numbers, Re = [U AU/wv], greater than 40,000. In contrast, the appearance
ns-" o

of turbulent patches for locus A-A' was usually delayed and more irregular

("aperiodic"). For the latter case, the length Reynolds number of transition L2"
onset was approximately constant at 1.6 x 106, being somewhat less than the

steady flow transition Reynolds number expected for their disturbance

aynvironment.
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Obremski and Fejer [100] attributed this discontinuous variation to the

differences in nonsteady Reynolds number ranges for the data. Later, however,

Obremski and Morkovin [105] suggested and Loehrke, Morkovin, and Fejer [9]

substantiated that the more fundamental underlying reason for the shift to

locus B-B' was a "wider opening of the 'pulsating gate' to instability"

corresponding to a larger B/w ratio in the quasisteady regime (S/w > 10).

Thus, according to [105], those instabilities that exceeded the "turbulent

threshold" in the decelerating (more unstable) portion of the first cycle were

expected to correlate along the periodic transition locus, B-B'. Whereas,

locus A-A' corresponded to those instabilities which did not exceed the break-

down threshold during the first cycle and were dampened by the acceleration

portion of the cycle, as well as the red-shift in amplification bandwidth with

increasing Reynolds number (note the variation of amplified frequencies with

Reynolds number in the Saric-Nayfeh stability curves). As reported by
+ L

Loehrke, Morkovin, and Fejer [9] demonstrated that the Rens shift point

between the two curves was not unique, since it also depended on the distur-

bance environment. They were able to produce "first-cycle" transition at a

nonsteady Reynolds number of 7500 by artificially stimulating the initial

boundary layer instabilities.

From Figure 25, it is also obvious that imposed mean pressure gradients

have qualitatively the expected effects on "quasisteady" transition. For both

D-D' (0.21 < NA 0.29, f in the range of 12 Hz) and E-E' (0.04 & NA 0.21,

4.5 < f < 37 Hz) the observed transitions were periodic [99). Loehrke,

Morkovin, and Fejer [9] have indicated that such results are expected from

theoretical considerations, since " . . . functionally, the amplification

rates remain dependent primarily on the mean flow parameters, at least for
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small and moderate oscillatory amplitudes." Therefore, it is reasonable to

anticipate that the effect of heat transfer on "quasisteady" transition would

be qualitatively similar to its effects on steady transition.

Apparently, the further skewed locus C-C' resulted from the two separate

"bypass" mechanisms of periodic leading edge separation and periodic static

pressure tap venting in response to the oscillating pressure gradients [9,

99]. Otherwise, the flow conditions from which this zero mean pressure

gradient data of Miller and Fejer [100] was obtained were nearly identical to a'...

those in the Obremski-Fejer experiments.

Concerning parameters for correlating transition onset in unsteady

boundary layers, it is already evident that a partial list would include the

steady flow parameters, such as Reynolds number and some measure of pressure

gradient to describe the mean flow conditions. In addition, the unsteady flow

parameters of amplitude, NA, and nonsteady Reynolds number, Rens, would be

required, as well as an appropriate description of the disturbance environ-

ment. Loehrke, Morkovin, and Fejer [9] note that Rens appears explicitly in

the equations for a quasi-steady normal modes amplification analysis based on

linearized theory, but that other independent parameters also appear. They

suggest that Rens provides a qualitative parameter link for the effects of NA

and the length of the unstable half-cycle Uo/2f. Nevertheless, even for a

zero mean pressure gradient, it incorporated aspects of three separate effects

as shown in Figure 26. In this parametric plot, X [= Xw/U describes the
W 0

unsteady boundary layer (Stokes) thickness to mean boundary layer (Blasius)

thickness in the functional form

6 1 const/v'xw/U (10)Stokes Blasuis 0 ...a
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Based upon their information, the authors [9] anticipated that the critical

range for this parameter would be approximately (1-2) < X < (25-30). The

lower limit represented boundary layers whose stability characteristics are

either essentially uninfluenced by unsteadiness (w small), or flow lengths so

short that stability could be expected. The upper limit was chosen based on

the assumption of a smooth flow surface and the discovery C106] that the

quasisteady boundary layer stability characteristics are insensitive to

velocity profile changes which occur suitably close to the wall. These expec-

tations for the variation in stability limits are reflected in the curving of

the dashed line marked "C" in the upper part of Figure 26. The dashed curve

L-R denotes the expectation of increasing destabilization in the quasisteady

regime for larger unsteady component amplitudes. In connection with this, the

authors [9] emphasize that AUo is strongly dependent on the amount of pressure

wave (acoustic) resonance which may develop in a closed flow structure, making

the speed of sound, a, and any number of resonance lengths, L, important. At

higher frequencies, for which the wavelength of the pressure wave is equal to

or less than the flow surface length, L, standing waves may have a strong in-

fluence. These aspects are denoted in lower Figure 26. Also, in lower Figure

26, the curve M-L indicates "mechanical limitations," which result in gener-

ally decreasing unsteadiness amplitude for increasing frequency. Finally, the

possible occurrence of periodic flow reversal at the wall for the combination

of large f and AU is depicted schematically by the curve marked F-R and the

arrows extending from it. The influence of flow reversal on either transition

or separation of the mean flow is essentially unexplored, although it is

expected that roughness and surface nonuniformity would cause earlier
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transition as this condition is approached [9]. However, experimental

investigations of the possible bypasses resulting from roughness or high-level

freestream disturbances (turbulence) are lacking.

Therefore, the limits on instability caused by unsteadiness as defined in

Loehrke, Morkovin, and Fejer [9] are expected to be bounded by an imaginary

curved surface passing through the NA-Rex plane along "L-R" and cutting the X.

- Rex plane along "C." Note, though, that these tentative schematic limits

are only applicable to zero mean pressure gradient unsteady flows without

bypasses or cross-flows. The question of what influence combined unsteadiness

and streamwise vorticity have on instability and transition is still open.

Miller and Fejer [100] were able to correlate the transition length for

their Blasius mean oscillating flows in terms of the viscously

nondimensionalized flow oscillation frequency. The functional form of the

relation was

Re - ReTe t  f (,,V/U ) (11) ,'

t

in which Ret and ReT are the flow length Reynolds numbers for transition onset

and transition completion, respectively. As mentioned earlier, though,

transitions in their experiments were bypass-dominated. A preliminary check

of the data of Obremski and Fejer [99] produced no similar correspondence.

Apparently, no data yet exists in open literature for intermittency

distribution in nonbypass quasisteady transition. Although, judging by the

increasing periodicity and uniformity of the turbulent ribbons for increasing

AU, and $/w, one could speculate that the distribution becomes more linear.

Whereas, by comparison, the "irregular" appearance of turbulent spots in
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steady flows seems to be correlated well in a Gaussian integral intermittency

distribution.

Pfeil, Herbst, and Schroder [104] documented their more recent

investigations of unsteady flow transition in a nominally zero pressure

gradient boundary layer. As opposed to the previously discussed experiments,

the boundary layer on their flat plate was disturbed by cross-flow wakes from

the cylinders inserted around the circumference of a rotating cage. For these ":'

investigations, the circumferential cage speed (12.6 m/s) and wind tunnel

speed (20 m/s) were maintained constant while wake passage frequency was

varied by changing the number of cylinders in the cage.

Pfeil, Herbst, and Schroder [104] found that the cylinder wakes periodi-

cally forced transition onset at the passage frequency. The initiation of

this forced transition occurred significantly upstream of the location of

random turbulent bursts in undisturbed flow, but downstream of the marginal

stability location. At the lowest passage frequencies, the combination of the

large time spacing between the forced turbulent regions and the subsequent

becalmed laminar flow following these regions resulted in a transition length

extending further downstream than that for the undisturbed flow. The

appearance and growth of random turbulence bursts was also noted interspersed

between the periodic forced turbulence. Although the onset location remained

constant, the transition length decreased with increasing wake passage

frequency until the closeness of the periodic turbulence regions precluded the

formation of random turbulent bursts. Further frequency increases resulted in

wake mergince until the transition length tended to zero.

Experiments in a mildly favorable pressure gradient produced even more

dramatic results, apparently forcing transition in a laminar boundary layer
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which was linearly stable to T-S disturbances. However, in all cases, the .

authors were unsure of the role of either the stochastic or the periodic wake .

velocity fluctuations in producing transition. Also, the nature of the

experiments elicits questions about the possibility of periodic flow

separation on the sharp leading edge of their plate.
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VII. PREDICTING TRANSITION

From Morkovin's reviews [2, 3] and his consolidated schematic of the

transition processes, a checklist may be established of the physical phenomena

that transition prediction methods must deal with in order to be generally

applicable. This list is as follows: L

(1) Disturbance environment - character and spectrum

(2) Receptivity

(3) Linear amplification processes

(4) Three-dimensional, nonlinear growth and secondary instability

development

(5) Localized breakdowns into turbulence

(6) Growth and coalescence of turbulent regions to form fully turbulent

flow

Beside these items, a physically sound method must be able to handle bypasses,

resulting from the rapid forced nonlinear response of the boundary layer to

high intensity disturbances, large distributed roughness, and flow

separations.

To date, the only facet of the instability-transition process that has

been extensively and effectively modeled is linear amplification. As for the

other items on the list, there are formidable experimental and theoretical

d f'iculties in ascertaining, quantifying, and modeling these features of the

flow, even in the simplest cases. In order not to ignore the achievements of
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some of the turbulence models, it can be said that they may eventually be able

to provide some useful results in bypass transitions (e.g., see [107]).

However, this, of necessity, must be accomplished through simplified, semi-

empirical models for the effects of the boundary layer disturbers. Otherwise,

our ability to quantify transition rests on empirical data from judiciously

planned and executed experiments that model the salient features of the

flow. Even then, a consistently thorough approach inspiring confidence in the

results dictates that any anticipated contingencies to which the outcome may

be sensitive (surface roughness and cross-flows) must be introduced as

"spoiling" features to those carefully planned experiments C9]. Nevertheless,

because of the singular nature of transition, most of this data will be

pertinent only for a specific application or for testing the abilities of

empirically embellished theoretical methods as they are developed.

7.1 Linear Theory Approaches

Methods of transition "prediction" employing damping/amplification rate :.

information from linear stability theories obtained their most substantial

start in the works of Smith [89, 108] and Van Ingen [109). Primarily, the

concept originated from Liepmann [87], who proposed that transition occurs

when the Reynolds stress in the boundary layer becomes of the same order of

magnitude as the laminar viscous stress. He suggested, as a practical

approach, that this location could be approximated adequately by computing

instability amplification until the oscillation is sufficiently strong to

r alter the mean flow. Therefore, it may be deduced that any usefulness of such

methods is conditional to the leading contributions of linear instability

damping and amplification mechanisms which sometimes precede the nonlinear
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* stages and breakdown in occurrences of transition. Strictly speaking, though,I.- "

even if the assumptions used in linearizing the perturbation equations are IA 1

appropriate, they account rationally only for item 3 on the checklist in the

preceding section.

The benefits of linear theory methods stem from the fact that they are

based on linearized approximations of exact solutions to the Navier-Stokes

equations. Thus, they provide a unified means for incorporating the influence

of some boundary layer modifiers, such as steady [110] and (by further assump-

tions) quasisteady [9, 106] pressure gradients and wall normal temperature

gradients on the T-S instability development. The linearity of the methods

makes easier their extension to compressible boundary layers with oblique

(three-dimensional) T-S waves (see Mack's review in Chapter 15 of Schlichting

[5]). Mack 14] expounds on the various approaches for T-S type disturbances

in steady, incompressible "quasiparallel" boundary layer flows including the

differences between, the suitability of, and the difficulties with, spatial

and temporal amplification assumptions. Also, he outlines his own thoughtful

approach for including the effects of the freestream disturbance spectra and

orientations.

Since Gortler vortices are, in the initial development stage in a low
,..y

disturbance environment, a linear instability mechanism, analogous approaches

have been applied [89], which can include steady pressure gradients [16] and

temperature gradients. It may be said that this is probably the only viable

method now available for estimating the strength of the vortices and therefore

the nearness to transition in nonsimilar boundary layers over surfaces of

varying curvature. Nevertheless, it cannot be used to predict, in advance the

vortex wavelength, which in tarn determines the influence of varying

9 r.,2
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streamline curvature and boundary layer modifiers, such as pressure

gradients. This shortcoming can be circumvented somewhat by assuming the

worst case and computing the strength of the most amplified wavelength as

I". suggested by Smith [89J.

For the aforementioned reasons and lack of a better approach, the linear

theory based methods have been applied, primarily for low freestream distur-

bance environments, in calculating the assumed linear growth of boundary layer

disturbances to some amplitude presumed to be indicative of incipient break-p down. However, beside the obvious fact that linear theories cannot account

for nonlinear developments, such methods have other intrinsic weaknesses. One

is that they are dependent on the suitability of the assumptions made in the

linear theory from which the damping-amplification rate invormation is-L

-. obtained. For boundary layers with pressure gradients, especially nonsimilar

flows, this information from any of the linear theories apparently is quanti-

tatively unverified C9]. Secondly, the quasiparallel theories, in particuiar,

are expected to be in error near the marginal stability location, since the

.. spatial boundary layer growth rate is greater than the spatial instability

growth rate, violating the assumption of locally parallel flow [9]. Although

the quasiparallel approximation seems to be acceptable for T-S type distur-

- bances in negative and zero pressure gradient flows [I], the more rapid

-boundary layer growth in decelerating flows leads to increasing error as the

pressure gradient becomes more positive. This may, in part, explain the error

in the Smith-Van Ingen "e' ' method as applied to the T-S instability in flows

with adverse pressure gradients 1113. Furthermore, Donaldson C112] has

. indicated that the results from linear T-S stability theory may be inaccurate

for boundary layers with large favorable pressure gradients. He suggested

)2.......
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that the stream tube stretching tends to increase the relative magnitude of

, the boundary layer disturbance components normal to the streamwise direction,

* offsetting the stabilization afforded by a more full velocity profile. A

third shortcoming of linear theory approaches is that, as mentioned earlier,

* they do not within themselves, account for the disturbance environment effects

r" on the boundary layer response. As Reshotko [1 points out, linear stability

- theory is a problem dealing in homogeneous equations and boundary conditions,

whereas with the addition of receptivity considerations, either or both are

nonhomogeneous. Thus, the Inclusion of freestream disturbance effects has ..

necessitated empiricisms which, with the exception of a few approaches such as

Mack's [14], are usually applied as though all freestream disturbances were

- alike in the spectral and orientational distribution of their energy.

Finally, if the total disturbance environment, including wall vibrations, has

sufficient energy to cause three-dimensional, nonlinear distortion and pos-

sible driving of the initial boundary layer Instability, the region of action

of amplification mechanisms identified by linear theory will be shortened

.- severely. At very high disturbance levels, it may even be eliminated (a

*.< bypass), thereby nullifying the reasons for any applicability of the

?* methods. Also, the linear theory predictions are threatened whenever wall

" roughness, flow irregularities, or cross-flows cause deviation from the

presumed two-dimensional laminar velocity profiles, particularly with the T-S

. type instability.

7.2 Turbulence Models

Reynolds [113] reviews the hydrodynamic aspects of partial differential

equation turbulence models and some of their limitation in application to

93

- -b



T-7----;.- 7 7 -*- -7 .- 7W vi .. - --- .. -F~ 'i-'W i - j. - , _-J -to J.

< . . . . . . . . .. . . . . '

turbulent flows. He classifies them in order of increasing complexity and

generality, as follows:

(1) Zero-equation models - Models using the partial differential

equations describing only the mean velocity field.

(2) One-equation models - Models including additional partial

differential equations for the turbulence velocity scale.

(3) Two-equation models - Models with the equations of (2) plus

additional partial differential equations for describing the

turbulence length scale.

(4) Stress-equation models - Models incorporating partial differential

equations for all nonzero components of the turbulent stress tensor.

(5) Large-eddy simulations - Models of the three-dimensional, time-

dependent, large-eddy structure that include a low-level model for

the small-scale turbulence.

The turbulence models most commonly used for engineering applications (1,

2 and very recently 3 and 4) require a variety of empiricisms if one intends

to apply them only to fully turbulent boundary layer flows. When they are

extended for "general" computations of all three flow regimes, the degree of

empiricism increases greatly, In the transition regime, the results are an

attempt to describe an averaged flow condition for the purposes of providing

an acceptable evaluation of heat transfer and skin friction variation. No

attempt is made at describing the physics of the intermittency development.

The transition regime is simply and smoothly bridged over an "appropriate"

range of Reynolds numbers. For the zero-equation models (e.g., Forest [114]),

simplicity usually dictates the use of overall empirical data for transition

onset, completion, and intermittency distribution. Multiequation models
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(e.g., the mixed partial differential-integral equation approach of McDonald

* and Fish [115]) usually provide for gradual activation of turbulence

, production terms through the inclusion of simple smaller scale models for the

* .2. effects of freestream turbulence and surface roughness. To preclude .-

misconceptions, it must be understood that these multiequation models do not

". describe the physics of receptivity phenomena in producing laminar boundary

.. layer instability, nor do they model the subsequent unsteady instability

developments. Wilcox [116], however, has a notable approach that synthesizes

linear stability theory and a two-equation model.

As could be suspected, turbulence model transition predictions are

substantially limited by the generality of their empirical data base. Their

function, primarily, is one of mimicking the data, with the understandable

result that transition evaluations are somewhat ad hoc.

Daniels and Browne [117] compare some presently available examples of the

first three types of models, all of which have been adapted for general

boundary layer computations. Their experimental data was obtained from a

- model turbine cascade in a compressible flow, transient operation wind

tunnel. It was representative of actual gas turbine conditions in Mach

. number, Reynolds number, and wall-to-freestream temperature ratio, but not in

freestream turbulence level (or its make-up), which was 4 percent or less.

I None of the model's transition predictions agreed impressively with the data

for the higher chord Reynolds numbers, particularly for the concavely curved

pressure surface. Presumably, this was attributable to the presence of ' "".

Gortler vortices and the lack of flow deceleration past about 10 percent of

chord on the pressure surface.

-% - .',•
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7.3 Empirical Correlations

Since correct modeling of the physics of the instability-transition

process is presently and may perhaps always be an unattainable goal, estimates

for the transition location are often derived either from ad hoe data or

"generic" empirical correlations. The focus of most of the correlations has

been on major transition influencers, such as freestream turbulence and

pressure gradients, and their effects in flat plate transitions. Parametric

correlations also have been devised for the effects of distributed roughness

(see Tani [12] and Morkovin [3]) and attempted for the effects of heat

transfer. However, the former are not explicitly considered in this report

because of its limited scope in the available literature, and any of the

latter are not prominent. With the exception of curve fits [114, 118) based

primarily on Liepmann's [57, 87] data, quantitative information on transition

preceded by Gortler vortices is also sparse. Similarly, the most significant

data on transition in unsteady flows is that reviewed by Loehrke, Morkovin,

and Fejer [9], although there undoubtedly is ongoing research on both of these

latter topics.

Quantitatively, the indications of the correlations for pressure gradient

and freestream turbulence effects on flat plate transitions vary, especially

at high and low turbulence levels and for large favorable pressure

gradients. Much of the disagreement at low turbulence levels (below about 0.5

percent) can be ascribed to the differences in spectral distribution of

disturbance energy in the various experimental environments. Also, some of

the differences are attributable to the variety of techniques used to detect

transition. Among these are hotwire transverses, Pitot tube surveys near the

wall, surface thin film measurements (heat transfer), and visual information
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from Schlieren photographs. Harris [119] and Hall and Gibbings [111] note

that the sensitivity of these methods vary, and each detects a different

aspect of the flow process. Consequently, each can provide a different

indication of the location of transition onset or completion, even in the same

boundary layer. Probably, though, most of the overall differences are due to

the very nature of the transition process itself, and its sensitivity to many

influences. Hall and Gibbings £1113 observed, "These experimental diffi-

culties result in an undesirably large degree of scatter in the results, even

when collected on a single apparatus. This makes prediction an uncertain

matter under accurately specified flow conditions, and the use of results from .-

one system for prediction on another reduces accuracy even further."

Besides the difficulties in modeling transitional flows and obtaining

suitable transition data, there is the problem of selecting or determining

measurable and calculatable parameters that are sufficiently strong, general,

and unambiguous reflections of the various effects to be correlated.

Nonsimilar, nonadiabatic boundary layers are especially a problem, since

transition is nonlinearly dependent on the unique cumulative effect (history)

of the boundary layer modifiers, receptivity and amplification mechanisms, and

the stochastic disturbances. The result is that local boundary layer

parameters are usually inadequate, except for use in ad hoe correlations.

Of the empirical correlations in published literature, the most tenable

in accounting for freestream turbulence and pressure gradient effects on

transition onset seem to be those of Van Driest and Blumer [1203, Seyb (see

[121, 122, 1233), and Abu-Ghannam and Shaw [483. Brown and Martin [118, 121,

122, 124] and Brown and Burton £123] favor the use of the Seyb correlation for

transition onset estimation on their model cascade turbine blade suction
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surfaces, although they acknowledge [125] that it is unconfirmed for large

favorable pressure gradients and high freestream turbulence levels. Blair

[126] obtained good agreement with the correlation of Van Driest and Blumer

[120] and the data of Abu-Ghannam and Shaw C48] in his experimental Blasius

and laminar sink-flow boundary layers. The other well-known correlations of

Hall and Gibbings [111] and Dunham [56] have not worked well when applied to

favorable pressure gradient flows [122, 126]. Both of these incorrectly

predicted rapid increases in the transition onset momentum thickness Reynolds

number for increased strength of favorable pressure gradients (based on the

momentum thickness Pohlhausen parameter).

Since the work of Emmons [37] in which the random appearance of turbulent

"spots" was noted and their growth analyzed, various attempts have been made

at defining a transition region intermittency distribution function to account

for the apparent statistical similarity of turbulent spot formation and growth

in many transitions (e.g., [8, 31, 48, 127]). Dhawan and Narasimha [8] found

that a normally distributed turbulence source-rate function with standard

deviation approaching zero and maximum at the location of transition onset,

combined with the a posteriori spot growth theory of Emmons, described their

zero pressure gradient intermittency data. Preliminary comparisons with data

obtained from nonzero pressure gradient boundary layers Indicated that this

distribution would match the data, except near transition onset.

Intermittency data obtained by Owen [128] in zero pressure gradient boundary

layers, and Sharma, et al., [129] and Debruge [130] in adverse pressure

gradients (the Debruge data was taken from the suction surface of a model

turbine blade in cascade) agreed well with the Dhawan-Narasimha intermittency

distribution. Chen and Thyson [127] utilized -a more general approach

'..%.,~98
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applicable to flow over axisymmetric bodies at a zero angle of attack, and
".".

also suggested that their approach might be useful in three-dimensional

*flows. Their more general expression reduced to the form of that of Dhawan

and Narasimha for the flat plate case. Lessmann [1312 proposed a more

fundamental approach, which utilized the boundary layer equations of motion.

Empirical correlations for the transition length as a function of the

start of transition have been proposed by Dhawan and Narasimha [8] for flows

over flat plates, by Debruge [130] for flows over the suction surface of a

model turbine blade in cascade, and by Chen and Thyson [127]. The latter

correlation included the effects of Mach number for adiabatic flows, although

in the subsonic regime the correction fell approximately within the r

experimental scatter. All of these are essentially of the same form and the

scatter of experimental data around them is substantial, even for zero

pressure gradient data (see [122, 123]).

7.4 Abu-Ghannum and Shaw's Correlation

The correlations acknowledged in the preceding paragraphs are those that

figure prominently in published literature. They were mentioned primarily to

provide a vehicle for outlining supporting or vitiating information. However,

the only correlations which will be given in this report are those of

Abu-Ghannam and Shaw [48]. These represent both the latest and, in the

opinion of the authors of this report, most comprehensive attempts to account

for the effects of freestream turbulence and pressure gradients on transition

and to correlate the statistically averaged variation of integral flow

properties during transition. In application, they will probably be as useful
•.%-

as any of the other empirical correlations which are for low-speed adiabatic

two-dimensional boundary layers over smooth surfaces.

99



The experimental data on which the correlations of Abu-Ghannam and Shaw

[48] are based was obtained from a low-speed, ambient temperature wind

tunnel. Turbulence, which ranged from about 0.5 to 5 percent at the test

surface leading edge, was generated by various grids placed far enough

upstream to insure that the disturbances were homogeneous and isotropic at the

entrance to the test section. The relative influence of turbulence length ., .

scale on the experimental data was determined to be negligible. Following the

suggestion of Dunham [561, the turbulence levels used in the correlations were

the average of the values at the leading edge and the point under considera-

. .

tion. (Here, it is worth reemphasizing that transition is dependent on the

cumulative effect of disturbances. Not only do viscous dissipation and accel-

eration or deceleration change its relative level, but they also tend to make

it anisotropic [5].) Pressure gradient distributions were "typical" of those

on gas turbine blades without flow separation, and were adjusted by changing

the contour of the tunnel wall opposite the test plate. The actual test plate

was flat aluminum with a smooth surface and a rounded leading edge. (Note

here that the introduction of a definite leading edge stagnation region can

render the boundary layer less stable than one beginning on a sharp edge

[37]). Hot wire anemometry, supplemented by a boundary layer Pitot probe, was
* .. "

used in detecting transition onset and completion. Measurements were made by

placing the transducer close to the surface and increa. g the tunnel wind -

speed until the appropriate part of the transition region coincided with it or

moving the transducer.

Transition onset in the zero pressure gradient boundary layer at various

turbulence levels was found to be represented well by the relation " ".

Re 0 = 163 + exp (6.91 - t) (12)

Too
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as shown in Figure 27. In equation (12), T is the freestream turbulence level

in precent. The asymptotic high turbulence value of Re. = 163 was chosen to

agree with the Blasius flow minimum critical Reynolds number calculated by

Tollmien and Schlichting. Recall, however, that this value has been revised

to be 200 by Jordinson for parallel stability and 154 by Saric and Nayfeh for

nonparallel stability. Therefore, it has no particular significance except

- that it seems to fit the data. The transition end in the zero pressure

gradient case was fairly well represented by

ReT = 2.667 Re0 ~ (13)

As can be seen in Figure 27, there is more scatter in the data for transition

completion than for transition onset.

A modification of the correlation for Re.t to include the effects of

"- pressure gradients produced

Reet = 163 + exp {F (1 - T/6.91)) (14)

2
6.91 + 12.75 A + 63.34 A0  (A0 < 0 (15)F(X )  - (1 5 ) 1;'

E) 2
6.91 + 2.48 X 12.27 A (A > 0)

0 0

These functions are plotted in Figure 28, along with the experimental data of

Abu-Ghannam and Shaw and other investigators. At low turbulence levels, the

curves accord qualitatively with Liepmann's [87] observation that the greatest

changes in Reo.t occur for small changes in X. about zero. There is a notice-

able lack of data points at high turbulence levels and large adverse pressure

101 '.. ",
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gradients because of the rapid occurrence and completion of transition. Also,

for low turbulence levels and large favorable pressure gradients the data

points were few and scattered because the flow tended to remain laminar over

the full length of the plate. ReG-t = 163 was ascribed as the lower limit for

transition onset, regardless of pressure gradient. Keep in mind, though, that

favorable pressure gradients inhibit boundary layer growth (in very strong

favorable pressure gradients the momentum thickness Reynolds number can actu-

ally decrease [132]), while adverse pressure gradients promote it. Thus, the

flow must travel further in a favorable pressure gradient than in an adverse

pressure gradient to achieve the same momentum thickness Reynolds number.

The pressure coefficient distributions for the flows from which this data

was taken are shown as the first favorable and first adverse gradients in

Figure 29. Pressure gradient histories were relatively unimportant because an

extreme value of A. corresponded to Re.t.

Correlation of the transition length was accomplished through a

modification of Dhawan and Narasimha's [8] relation for zero pressure gradient .%,

boundary layers. The results, which are shown in Figure 30, were

R = 16.8 (Rex)0"8 (16)
L x-t

R =Re -Re (17)
L x-T X-t

X U X U_____ ' e - t -- 't''
Re T t Re (18)
x-T ' x-t V

and applied to both zero and nonzero pressure gradients.
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The momentum thickness Reynolds number for the end of transition was

fitted functionally as

5y
Re = 540 + 183.5 (R X 10 - 1.5)(1 - 1.4 X ) (19)

O-T Le

which can be solved as a quadratic in eT if xt, XT, U.t, UT, and (dU./dx)T

are known. In the relation, the constant, 1.5, reflects the fact that the

authors found no influence of pressure gradient on transition extent at high

(~ 5 percent) turbulence levels. Therefore, for RL less than 1.5 x 105 the

pressure gradient term is ignored. The quality of fit for this relationship

is shown in Figure 31.

Another approach was required for correlating transition onset influenced

by the second adverse (decreasing adverse) and second favorable (decreasing

favorable) pressure gradient distributions shown in Figure 29. For these

distributions, the use of a local or average value of did not yield

acceptable correlation. However, utilization of an extreme value of X

(either greatest positive or greatest negative) in the relation for transition

onset resulted in good agreement with the data. Flow histories for these

pressure gradients were found to affect the length of the transition only

indirectly, through their influence on the start of transition.

Transition Properties. Flow parameter distributions in the transition

regime were correlated as function of the normalized dimensionless parameter

n, defined by

Re - Re
n x t (20)

n Re - Re

In terms of this parameter, the expressions for momentum thickness and shape

factor were

1071
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H -H
H' H -H sin( (22)Ht - t " ) 2 )

Plots of these are shown in Figures 32 and 33, respectively. Abu-Ghannum and

Shaw [48] attributed the larger data scatter about the shape factor function

to their Inability to determine displacement thickness, 6*, as accurately as

the momentum thickness, e.

Intermittency data for the various turbulence levels and pressure

gradients was correlated by

Y = 1- exp (-5 n 3 ) (23)

, This function and the data are shown in Figure 34, along with the intermit-

tency curves of Dhawan and Narasimha [8] and Schubauer and Klebanoff [31].

Abu-Ghannam and Shaw [48] suggested that the differences among the curves were

, partially because of the different sampling times used. Their sampling

intervals were up to 5 seconds long, whereas the other investigators sampling

intervals were around one-sixth of a second.

Employing a modification of another of Dhawan and Narasimha's [8] rela-

tionships, Abu-Ghannam and Shaw [48] expressed the normalized skin friction

variation during transition as

C -c" c~f - ft'":
__CfT_-_ft 2C' -C -C =1 -exp (-5.64J5 n )(24~)

f cfT t
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Figure 32. Distribution of the normalized momentum thickness parameter in the
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In conclusion, these correlations apply to two-dimensional incompressible

flows over smooth adiabatic surfaces. There is reason to believe, though,

that they would not be quantitatively valid at the lower (<0.5 percent)

turbulence levels. In this range, acoustic and vibration disturbances tend to

be relatively larger contributors. Depending on whether or not they fall in

the Tollmien-Schlichting susceptibility spectrum, they may cause a *

substantially different variation in Re0  . Also, the authors' selection of
O-t'

asymptotic limits for momentum thickness Reynolds numbers of transition onset

and end must be regarded with caution, especially since turbulence levels were

5 percent or less in their experiments. Notice in Figure 31 at the shorter

transition lengths that the data did deviate to momentum thickness Reynolds

number substantially lower than given by their correlation for transition

end. Finally, the use of an extreme value of k may not be acceptable for

other pressure gradient distributions, particularly if the gradients are

larger, or do not exhibit a similar variation.

7.5 Abu-Ghannam and Shaw's Method and Its Operational Features

The method outlined by Abu-Ghannam and Shaw [48] incorporates only two

influencing factors in transition initiation--freestream turbulence and

pressure gradient. For flows over flat surfaces, i.e. without curvature, the

authors demonstrated, by a number of examples, satisfactory agreement between

predicted properties of transition and experimental ones. This is due, of

course, to the data base used in formulating their methodology and is

therefore not unexpected.

In their presentation, the surface friction coefficients preceding

transition initiation and following its completion are given respectively by
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the integral-method applied separately to these two flow regimes of complete

" laminar and turbulent flows. In the transition zone, the friction coeffi-

cients are taken to be composed of two parts: a turbulent contribution whose -.

magnitude is due to turbulent flow only were it to prevail by itself, modified

by A, the intermittency factor; and a laminar part that is the pure laminar

*' friction coefficient modified by (1 - A). Such a combination results in the

*" following:

C ( - Y) C + YCftb (25)

. where subscripts ")" and "tb" refer to laminar and turbulent respectively.

In order to ascertain how the method works when used in conjunction with

-a finite-difference numerical integration procedure, calculations were

performed first for flat-plate flows without pressure gradients but with

freestream turbulence levels of 0.2 and 4 percent. Starting from a uniform

velocity profile at the leading edge, local momentum Reynolds numbers along

"* the surface locations were calculated until it reached a critical value

determined by equation (14) for transition initiation. The transition region

parameters were then calculated, which included transition length from

equation (16) and the transition completion position from equation (17).

-. Downstream from the transition initiation point, turbulent viscosity is

activated by the intermittency factor calculated from equation (23); a total

* viscosity comprising the laminar and turbulent contributions follows the

mixture rule:

t + Y,1tb (26)

1-.'
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Prandtl's mixing length theory was used In obtaining turbulent viscosity Ptb

via the formulation

)tb p..2 du/dy (27)

where I is the mixing length, while other symbols are those conventionally

understood.

Two forms for the mixing length were used in the computations reported

* herein; one is the commonly used Van Driest modification and the other is an

exponential model developed in this research program. They are:

9. K y [1 - exp (-y /26)] (28)

and

9. = (K /K2 ) [exp (Ku) - exp (-KIU+)] (29)
1 2 ( 1  (Ku)

In the preceding expressions, conventionally used plus coordinates are

- understood and the dimensionless mixing length )+ is given by

9. = /V (30)

Constants K1 and K2 have values Df 0.41 (Von Karman) and 9.025 respectively.

Results of Computation. Using the Van Driest form for mixing length, the

resulting Cf variations with Rex are shown in Figure 35 and Re0 vs Rex

variations in Figure 36. While Cf in the transition zone does bridge the gap

between the calculated laminar and turbulent curves, there are significant

differences between the positions of Cf-minimum and Cf-maximum according to

the finite-difference calculations on the one hand and those positions of
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transition start and end predicted by the method on the other. This is to say

that while Cf-minimum and -maximum do coincide with the predicted transition

initiation and completion when Integral correlations for the two leading and

trailing regions connected by an intermittency-modified transition region are .

-used; the same cannot be expected when numerical integration of the boundary

layer equations is employed to obtain the Cf-viaration on the surface. From a

computational viewpoint, merely activating the intermittency factor of

turbulence Y > 0 does not result in an immediate upturn of Cf; nor does

setting Y - 1 produce an automatic maximum for Cf. Indeed, from a physical

ground, such an observation is a plausible one, and lends further credence to

the various criteria used in defining transition initiation and termination by

various researchers. Thus, on a same configuration under identical flow

conditions, it is entirely possible to have different transition points

observed experimentally, depending on the method and the criterion used in
delineating transition.

The discrepancy described previously appears progressively larger as the

turbulence level increases and the calculated results are characterized by a .

marked overshoot of the Cf-values near transition termination. Momentum

Reynolds number variations shown in Figure 36 indicate a smooth cross-over

from a laminar to turbulent relation without overshoot, because the momentum

thickness is an integral of the local friction coefficient.

Corresponding to Figures 35 and 36 based on van Driest's model, Figures

37 and 38 show results when the exponential model for turbulent mixing length,

equation (27), is used instead. These two sets of results based on two

different mixing length formulations are nearly identical and hardly

distinguishable from one another.
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Transition Prediction on Turbine Airfoil. Flow around turbine vanes and

airfoils is compounded by a round nose region and curvature, which are known

to hasten instability of laminar flow and are therefore promoters for transi-

tion onset. Even though the transition prediction method by Abu-Ghannam and

Shaw [48] is admittedly unsuited to turbine airfoil applications, it is of

interest to establish how inadequate is the flat-plate prediction scheme when

applied to a turbine airfoil for which there are experimental data avail-

able. Evaluated in this light, it is possible to judge the presencep of the

nose region and curvature in rendering ineffective the prediction schlae and,

in fact, all other schemes as well.

Selected for this purpose was the Blade A of Han, Cox, and Chait [148],

which has, on its suction side of the surface, a velocity distribution and

measured heat transfer variation shown in Figure 39. In the first 60 percent

of the surface, the velocity is accelerating and In the remaining portion,

mildly decelerating. Barring curvature and nose region effects, the flow

velocity distribution would be stabilizing in the frontal portion and only

mildly destabilizing in the rear. Examination of the heat transfer distribu-

tion indicates a very pronounced jump at the 60 percent chord position and r.: .
strongly suggests transition onset and completion over a short surface length.

On the calculation side, Faulkner-Skan's flow was used to start the

stagnation point laminar boundary layer and numerical integration of the

boundary layer equations allowed downstream marching in evaluating all

relevant parameters. To detect transition onset, three criteria were used:

Re0 _t = 200, Re0.t = 380, and the third is the critical momentum Reynolds

number according to the Abu-Ghannam and Shaw's [48] method. The first

criterion has been suggested as an average value for all flows regardless of
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other flow conditions and is, obviously, meant to be substituted by a more

rational criterion; the second criterion of a transition momentum Reynolds

number of 380 was found to be more representative of this particular flow

environment since the resulting friction coefficient shows a jump at x/Ls =

0.60 approximately, where the heat transfer coefficient exhibits a steep

rise. The use of Abu-Ghannam and Shaw's criterion, however, did not indicate k .
any transition probability; in the first portion of the surface, transition

was not found because of local flow acceleration; and in the rear portion of

the surface, flow deceleration caused the still laminar boundary layer to

separate at the x/Ls = 0.8 position before transition onset was induced. The

calculated variations of the friction coefficient for Re6 - 200 and 380 are

graphically shown in Figure 40. By following the distribution for Ree.t -

380, the general contour of Cf follows that of the experimental Stanton number

curve quite closely. Thus, it appears that the presence of a nose region and

curvature has a significant impact on the transition prediction. More on this

point is discussed in Section XI.
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VIII. HEAT TRANSFER IN THE TRANSITION REGIME

Two of the earliest investigations of heat transfer in the transition

regime are those of Reynolds, Kays, and Kline [133] and Dhawan and Narasimha

i8]. Both applied a heat transfer correlation with the intermittency factor Y

of the form

4t -- ( 1 -Y) + T (31)

and an analogous expression for local skin friction in describing these

statistically averaged properties of the transitioning boundary layer.

However, the former paper also dealt with application of the expressions to

abruptly induced transition. This would suggest possible usefulness in bypass

, transitions, such as induced by surface roughness and/or high intensity

-. freestream disturbances, which do not necessarily exhibit any intrinsic

intermittency. Ell,

Use of these expressions presupposes either the ability to calculate the

growth and spread of turbulence in the transition regime or a predefinedf r.
- intermittency distribution function. Both require an assumption as to the

"virtual origin" or the turbulent boundary layer, plus methods for computing

suitably general turbulent boundary layers, particularly at low Reynolds num-

bers. Pertaining to the location of the virtual length, Dhawan and Narasimha

..[ proposed that it would be most appropriately taken as the location of

" transition onset. Primarily this suggestion was based on information obtained

125
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from extrapolation of zero pressure gradient turbulent boundary layer growth

into the transition regime. Further evidence supporting this proposal was

their observation that transition onset, although random in time, occurred

very nearly on a discontinuous line in the flow. The experimental data of

Coles 1134] and Charnay, Comte-Bellot, and Mathieu [135] for turbulent

boundary layers concurs with the virtual origin selection of Dhawan and

Narasimha [8] at least for zero pressure gradient sub- and supersonic boundary

layers.

If a predefined intermittency distribution function is used, the greater

problem is one of lack of generality. Although a representative distribution,

such as that of Abu-Ghannam and Shaw [48] in the previous section, may have

utility in many two-dimensional boundary layers, this is not the case in

general. (A similar comment would apply to the use of their skin friction

distribution function along with some form of Reynolds analogy.) Any rapid

variation in strength of the more influential boundary layer modifiers (e.g.,

pressure gradient) during transition would be likely to influence the distri-

bution. As an example, delay, arrest, or reversal of the transition process, r2-
as might result when rapid acceleration occurs midway through transition,

would not be anticipated or accounted for in such a distribution.

Furthermore, Blair [126] has observed in transition experiments that the

establishment of fully turbulent wall heat transfer rates falls progressively

further downstream of the establishment of fully turbulent mean velocity

[ profiles as the degree of acceleration in boundary layers increases.

Other complications are introduced by the fact that, so far, published

literature about the influence of Gortler vortices or unsteadiness on inter-

.- mittency development is either scarce or nonexistent. Those which do exist
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for unsteady flows C9, 104] seem to indicate that turbulence initiation is

less random (more periodic) in time, leading to a more nearly linear spatial

intermittency distribution.
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IX. THE GAS TURBINE ENVIRONMENT

In this section, the salient features of the flow within the axial gas

turbine cascade will be briefed. Also, typical blade geometry and surface

conditions will be outlined. A more complete summary of the flow character- "-,-

istics within the turbine engine is available in the compendium of Graham

[136].

9.1 Basic Cascade Flow Conditions

As noted by Graham [136], the average total turbine inlet temperatures

and pressures are about 2000.F (10940C) and 20 to 25 atmospheres, respec-

tively, for most modern commercial transport aircraft. In new generations of

commercial aircraft and present engines for military applications, the inlet

temperatures and pressures are about 2500oF (13710C) and 25 to 30 atmos-

pheres. Future designs will call for temperatures near 2800OF (15380C) and

pressures up to 40 atmospheres.

Typically, surface temperatures on a modern high-pressure stage rotor

blade are at or below 1610oF (8770C) [1]] for the alloy blades, although

higher temperatures are permissible for those with ceramic thermal barrier

coatings. Flow turning angles are around 75 to 1000 or so, over blades with

chord lengths in the range of 2 to 4 inches. Entrance flow speeds are about

Mach 0.3, accelerating to Mach 0.8 [114], even through there are usually

regions of acceleration and deceleration on both the concave (pressure) and

convex (suction) surfaces of the blades.

1 29



As is well known, though, the flow fields in turbomachinery are not two-

dimensional. Rather, they are three-dimensional, spatially nonuniform, and

highly unsteady with complex viscous secondary flow patterns, particularly at

the hub and tip sections of the blades or vanes. However, if the flow only at €,.

midspan is considered, the secondary flow effects are less prominent. Figure

41 depicts just such a section. There, the boundary layer begins its develop-

ment from a stagnation line created by flow impingement on the rounded leading

edge. This developing boundary layer is probably laminar near the stagnation

zone because of the rapid flow acceleration but it becomes transitional along--

both the concave and convex surfaces of the blade as its growth continues.

The location of the transition region is nonlinearly dependent on the combined

cumulative influences of all the boundary layer modifiers and disturbers

addressed in previous sections, plus others, which are chiefly surface rough-

ness, secondary flows, stagnation line induced flow phenomena, and possibly

shock wave-boundary layer interaction. The flow may remain transitional,

become turbulent, or relaminarize and retransition, depending on the relative

strengths of these influences.

9.2 Flow Disturbances

The flow through the turbine cascade is both macroscopically unsteady and

highly turbulized [1371. Flow disturbance levels caused by the upstream

compressor and combustor are probably well over 10 percent with the combustor

turbulization being the much greater contributor. Graham [136] cited some

measurement results that indicated that velocity fluctuations at a combustor A

exit could exceed 50 percent. However, this level would be reduced through

stream tube stretching and viscous dissipation as the flow accelerates through

the blade row.
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The disturbances encountered as the flow progresses through the turbine .

section cannot be considered as turbulence in the classical sense. Rather,

they are a complicated combination of potential flow unsteadiness caused by

upstream and downstream blade-vane interactions, secondary flow formations,

and wake disturbances, in addition to the smaller scale high intensity

turbulization from the combustion process [137, 138]. Forest [114] has

suggested that any immediate upstream blade-vane interactions alone could -

produce pulsating velocity fluctuations of around 20 percent at frequencies of

the order of 104 Hz. (blade pass frequency).

One means of describing the flow disturbances has been proposed by Evans

[139] in the following definitions.

T Overall Disturbance LevelTUD U ,*- *.'

UU

(v) 2 Freestream Turbulence Level

U

T Unsteadiness Level

where the parameters are related by

2 2 -2
U -U +T
D U U

Figure 42 depicts the velocity fluctuations to which these definitions relate,

The disturbance levels represented by these definitions will vary

continuously as the flow moves through the cascade. Also, the combination of
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potential flow unsteadiness and enclosed flow environment is likely to produce

traveling wave resonance and standing waves.

9.3 Leading Edge Flow Stagnation

Stagnation line incidence on turbomachinery blading changes, oscillating I

primarily with passage by blades or vanes in the row immediately upstream *

[138]. Both the unsteady incidence and the stagnation line boundary layer

initialization affect the subsequent boundary layer development. To be

stressed here, though, is the fact that stagnation incidence leads to flow

phenomena not encountered in boundary layers beginning on a sharp leading

edge.

Generally, leading edge bluntness is destabilizing to the boundary

layer. One reason for this is that the flow field around a stagnation line is

not two-dimensional, but has an organized vortical structure. The vortices,

which apparently result from a non-Gortler type, inviscid instability, are

observed in parallel, uniformly spaced rows wrapped around the upstream side

of the stagnation body [40]. As a consequence of their presence, the local

rates of heat and mass transfer, as well as the local shearing stresses at the

wall, vary periodically along the stagnation zone, with the average values

being significantly greater than that for Hiemenz flow. The vortex spacing

depends on Re 2 and the freestream turbulence level, decreasing with increased

turbulence. The net effect is reduced spacing and increased heat transfer (Nu

- Rea) with increases in Reynolds number and turbulence [140, 141]. Also,

Gorla [142] acknowledges that, in the case of unsteady flows, the frequency of

the unsteadiness significantly influences skin friction and heat transfer.
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Sadeh, Brauer, and Garrison [143] did a visual study of these vortices in

stagnation line cross-flow around a cylinder. From their observations, the

vortices appeared to stretch, reduce in scale, and increase in rotational

velocity as they approached the cylinder. Additionally, the vortices turned

such that their axes aligned closely with the flow streamlines around the

cylinder. Finally, when the vortices were close enough to interact with the

laminar boundary layer on the cylinder, a noticeable scale increase occurred.

Stagnation zones also greatly augument the local turbulence intensity -i

[144]. This increased intensity must also be boundary layer destabilizing .

when compared to the development of boundary layers originating on a sharp

edge.

9.4 Secondary Flows

Many aspects of the turbine geometry promote viscous secondary flows, and

three-dimensionalize the main flow field through a blade or vane passage.

Besides stagnation line phenomena, some predominant influences are the

centripetal and coriolis components of acceleration in flow over rotor blades, .- ,

the interactions of hub and outer casing boundary layers with passage flow and

blade boundary layers, flow around the tips of rotor blades, pressure

differentials between adjacent blade surfaces in a row, blade twist, taper and

curvature, and the lack of parallel flow resulting from having a finite number

of blades in a row.

Hansen and Herzig [145] summarized, In a series of NACA reports, various

techniques used to visualize the more readily Identifiable secondary flow

patterns. These reports also indicate a strong tendency for secondary flow

vortex formations to collect at the hub in vane passages and at the blade tips
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in rotor passages. Additionally, multistaging leads to accumulation of these

flows in the downstream passages. From the evidence in the reports, it is

surmised that secondary flows, especially in combination with flow

unsteadiness, can result in leading edge separation of the boundary layers at

the blade endwalls (horseshoe vortex).

9.5 Flow Surface Roughness

The influence of surface roughness on the flow regime over actual turbine

blades is particularly nondeterministic, since the amount, size, and

distribution of roughness varies with operation time and environment. Even in

the practical absence of foreign matter, roughness is produced by high

temperature flow erosion of the blade surface and by combustion product

deposition [147].

In general, no reasonable assessment of the transition location can be

effected without considering roughness. Particularly, the combined effects of

acceleration and thermal boundary layer thinning in the presence of otherwise

small roughness may be synergistic in promoting transition [148]. This would

have stronger implications for the ceramic coated blades because of the

greater as-produced roughness [149] and susceptibility to flow erosion,

although the problem may be mitigated somewhat by the proposed use of a

vitreous overcoat/binder on the ceramic.

* 9.6 Film Cooling

In meeting blade cooling requirements, present generations of aircraft

gas turbines utilize leading edge blowing of compressor bled air (film

cooling) on at least the first turbine stage vanes and blades. This added
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surface normal velocity component acts to trip the boundary layer or to cause

local separations. Often, then, the question about the flow regime centers on

the strength of the relaminarization promoting flow acceleration and thermal

gradients relative to other influences which favor a continued turbulent

boundary layer. A summary of IASA studies on film cooling is given in [149].

As a final comment, a major drive in reducing the uncertainty in the hot

gas side heat transfer coefficient distribution is warranted, at least based

on Stepka's analysis [150]. His results indicated that the uncertainty in

local hot gas side heat transfer constitutes a greater barrier to predicting

blade temperature distributions (and thus blade life) than does coolant side

heat transfer uncertainty.
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X. TURBINE CASCADE MODEL TRANSITION INVESTIGATIONS .

The inclement environment and small flow surface dimensions inside a gas

turbine inhibit proper instrumentation for passage flow and boundary layer .

* studies. As a result, few details are known about the actual flow, not to

mention simulation under laboratory conditions C122]. In attempts to bridge

this knowledge gap, many investigators have resorted to upscaled blade models

for flow visualization and heat transfer evaluation. Simulations using these

large scale models are representative of their turbine counterparts in chord

Reynolds number, but neglect compressibility. More significantly, the

cascades are often static, with nominally two-dimensional, steady flow and

reversed heat flux, and the disturbance levels are usually low. The

objectives in such flow model studies have been to promote understanding of .

some of the basic phenomena occurring in flow over a gas turbine blade. Too

often, however, the results of such investigations are implicitly assumed to

be sufficiently representative of the gas turbine environment for transition

studies, and for testing the abilities of transition "prediction" methods to

be used in design. Although dynamic similarity is required, prerequisite for

transition studies related to turbine blading are much more stringent than

those for stagnation, blade wake, and even secondary flow visualization. This

becomes especially evident when one recalls the nonlinear nature of the

boundary layer oscillator, the irregular and statistically nonuniform nature

of the disturbances, plus the multitude of concurrently acting boundary layer
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. modifiers that are also irregular, and, consequently, the ultimately non-

deterministic character of transition.

From the essentially parametric examination of transition influencers in

previous sections, it is evident that such simulations must include Reynolds

numbers, wall-to-freestream temperature rto, frees tream disturbances and

unsteadiness, and wall roughness. These factors constitute minimum considera-i* :

tions in transition and heat transfer investigations over idealized "2-D"

static cascades. Secondarily, Mach number (compressibility) effects would

need to be included. Tertiary considerations might involve nonideal gas and

nonNewtonian fluid effects resulting from the high fluid temperatures and

" pressures. These secondary and tertiary factors, though, will undoubtedly

• 'pale to a host of three-dimensional and secondary flow influences, the latter

* of which are engendered primarily at the hub and tip sections. Other factors

would include upstream wake vorticity, resonance of traveling waves, standing

waves, and vibrations with the turbine structure. Additionally, for turbine

rotor blades, the centrifugal and coriolis flow accelerations are important

[151]. e.
t. .- "

More recently, secondary flows in turbomachinery have been the topic of

an AGARD conference [152] and papers by Binder and Romey [153), Sharma and .

Graziani [154], and Walker and Markland [155, 156]. The investigations were

directed toward identifying and calculating secondary flows [152, 153, 154]

and their effects on boundary layer development and heat transfer [155, 156],

without explicitly considering transition. These and other investigations, in

particular [137], have verified that secondary flows can influence boundary

layer development, even over the blade midsection. The character of this

* influence changes with, among other things, aspect (span-to-chord) ratio,
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hub-to-tip ratio, and blade loading, with the result being that transition is

also affected.

Some turbomachinery flow unsteadiness considerations are addressed in an

AGARD conference report C157], and in papers by Dring, et al., £138] and

Joslyn, Dring, and Sharma £137]. These analytical and experimental

investigations seek to characterize the unsteadiness resulting from rotor

blade-vane interactions and to evalute its aerodynamic and laminar or

turbulent boundary layer heat transfer effects. All of the investigations,

and particularly Joslyn, Dring, and Sharma [137] and Dring, et. al., £138]

indicate a strong dependence of potential flow unsteadiness on stator-rotor

spacing. Especially of interest, though, are the experiments of Dring,

et al., £138] in a large scale one and one-half stage rotating cascade rig

with low speed flow. On their stator blade suction surfaces, the authors

observed laminar, transitional, and turbulent flows, with the demarcation

between the flow regimes oscillating periodically with rotor blade passage

downstream. Transition was preceded by Tollmien-Schlichting waves. The

(downstream) rotor suction surface boundary layer varied periodically between

laminar and turbulent flow with passage into and out of the stator wakes. In

these investigations, though, the blade surfaces were smooth and, apparently,

freestream "turbulence" was relatively low. No flow separations were

observed, however.

Static cascade rigs with representative flow Mach numbers and wall-to-

freestream temperature ratios have also become more prevalent. Investigations

utilizing such rigs are typical. [See 72, 125, 158-167].

Without belaboring the point, it suffices to say that none of the present

transition "prediction" methods work well even for the static cascades. This
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conclusion is supported by the findings of Daniels and Browne [117], Brown and

Martin [121, 122, 124], Consigny and Richards [165], and Litchfield and Norton

[166]. Generally, transition region predictions on the pressure surface are

poorest because of the combined Gortler instability, changing blade curvature

and continued flow acceleration which results in extended transition

regions. Although suction surface predictions are often not satisfactory, the .

occurrence of a distinct static pressure minimum followed by flow deceleration

can precipitate transition and render the predictions more acceptable.

Nevertheless, most of the boundary layer transition studies are conducted with

freestream turbulence levels substantially below those encountered in an

operating turbine. Probably the most representative static cascade results

with regard to turbulence levels are those of Lander [158], Bayley and -.

Milligan [161], Bayley and Priddy [168], and Krishnamoorthy [169].

Regardless of the effects of the various flow phenomena on transition

itself, it is evident from these and other investigations (e.g., [55, 72, 88,

118, 121-124, 169, 170, 171]) that Gortler vortices, surface roughness,

secondary flows, unsteadiness (both frequency and intensity), and turbulence

all play an important role in determining laminar boundary layer heat

transfer. Also, the turbulent boundary layer heat transfer may be influenced,

particularly by surface curvature [77], roughness [136], and acceleration

[136]. Further consideration of these effects, especially on the laminar

boundary layer, would most likely help mitigate the consequences of the

seemingly inevitable misprediction of the transition region location.
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XI. CONCLUDING REMARKS

Transition prediction for gas turbine blade and vane boundary layers is

exceedingly difficult because the occurrence of transition depends on the

cumulative effect of many nonlinearly interacting influences as well as the

nonuniform disturbances. The unavoidable result is that an already singular

process assumes highly nondeterministic characteristics, in effect, making the

term "prediction" a particularly strong misnomer. Compounding this problem is

the lack of understanding of the phenomena and the fact that much of the

transition data is parametric and is substantially limited to two-dimensional'"

flows. Therefore, for the near future, estimates for the location of the

transition region will remain both highly uncertain and experiential. The

experimental data from which the information for these estimates is obtained

will probably be ad hoc, and will be based on modeling of influences that

appear parametrically to be dominant, combined with the introduction to the

model environment of any anticipated contingent conditions.

Nevertheless, defining a usable criterion for evaluating transition is

still a problem, and indeed a pressing one, since the combination of a highly

driven nonlinear boundary layer response and augumentation or suppression of

this effect by boundary layer modifiers can evoke questions as to when "true"

turbulence may be considered to exist. For example, defining transition as "4

the region for which turbulence production exceeds dissipation does not

provide an unambiguous criterion in a transitioning, relaminarizing, or
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retransitioning boundary layer that might be viewed also as highly excited

laminar or strongly repressed turbulent flow. At least from a heat transfer

perspective, the latter two can, in some instances, be quite similar.

However, it would seem that the repercussions of this problem and the

inevitable misprediction of the transition region location could be mitigated

somewhat by considering the manifestations of disturbers and modifiers in the -

heat transfer through both the laminar and turbulent boundary layers. In

particular, the augumentation or suppression of laminar or turbulent boundary

layer heat transfer by freestream disturbances, unsteadiness, Gortler

vortices, secondary flows, surface roughness, flow acceleration or

deceleration, surface curvature, and combinations of these would also need to

be adequately accounted for.
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