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ABSTRACT 6

Minute amounts of ampiphillic molecules at an air-water inter-

• . .

face can have striking effects on both the damping and generation ofW

capillary waves. The theory of these effects within linearized

hydrodynamics is reviewed. The conventional wisdom is that oil calms

troubled waters by increasing the rate of capillary wave damping.

Although surface-active films can increase the damping rate by

factors of two to four, a potentially more important effect is the

suppression of capillary wave generation by the wind. In particular, A

generation by the components of fluctuating Reynold's stresses in the

atmosphere parallel to the surface can be reduced by an order of

magnitude or more. The theory predicts a more modest suppression of ..

• - ..

the effect of Reynold's stresses normal to the surface.
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1.0 INTRODUCTION - ,

The calming effect of oily materials on water waves has fasci- -

nated scientists and seafarers since antiquity. In a famous experi-.- o-

ment, Benjamin Franklin observed that a teaspoon of oil spread

rapidly to cover approximately half an acre on a pond, producing an

area "smooth as a looking glass. '  Assuming that the teaspoon con-

tained about 5 cm3 of oil, we can calculate that Franklin's film was

about 20 Angstroms (2 x 10-  cm) thick. Recently, sun-glint photo-

graphs of the western Mediterranean Ocean taken from the Space A- . -

Shuttle have revealed a complicated pattern of ,jiescent regions,

which reflect the sun specularly, as well as regions of diffuse

reflection, presumably due to a profusion of capillary waves. 2  The ,

regions of specular reflection have been attributed to sea slicks,

possibly of natural origin. (Diatoms, for example, contain droplets

of oil to assist in flotation and/or as an emergency food supply.
3 ) "

As representative surface-active materials, we may consider

saturated fatty acids (lipids) with the chemical formula

CH - (CH - COOH, where n is usually between 10 and 20. The polar

head group is, for all practical purposes, infinitely soluble in

water; the hydrocarbon tail, however, is hydrophobic, because it

disrupts the delicate network of hydrogen bonds which characterize

short range order in liquid H2 0. The competing hydrophillic and

I 2



hydrophobic tendencies tend to pin such "ampiphillic" molecules

normal to an air-water interface, with the tails directed towards the
0

atmosphere. Since ampiphiles typically measure 20 A along their long

axis, Franklin's film was one molecular layer thick.

How can such a thin layer cause a pronounced change in the wave

properties? The well-known reduction in surface tension due to the

surfactant produces only a minor change in the velocity of the

waves. Hydrodynamic theories of how surface-active films affect

capillary-gravity wave damping have been worked out by Reynolds,
4

Levich, 5 and Dorrestein,6 who find effects which are most pronounced

in the capillary wave part of the spectrum. The basic idea is that

the finite compressibility of a lipid monolayer modifies the boundary

conditions at an air-watE, interface. This change in boundary condi-

tions will affect the flow below the surface down to a viscous

penetration depth 6,7

6= /2,/ , (1.1)

where v is the kinematic viscosity of water and w is the angular

frequency of the wave. Since 6 is of order 10-2 - 10- 3 cm for capil-

lary waves with wavelengths of order .1 to 1 cm, surfactant molecules S

influence the flow down to a depth which vastly exceeds their size. -

1-2
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When surfactants are present, the vorticity in the viscous penetra-

tion depth increases, increasing the damping by factors as large as 2

to 4 relative to a clean surface.

Although remarkable, it seems unlikely that this enhanced damp-

ing could, by itself, account for interfaces which are "as smooth as

a looking glass" when covered with an oily film. On a clean surface,

a 0.5 cm capillary wave, for example, decays in a time which is more

than twenty times its basic period. Capillary waves, once generated,

will persist for several wave periods even when the damping is

enhanced by surface-active films. The damping can never become very

large, because the dissipation is confined to the viscous penetration

depth, which depends only weakly on the surfactant concentration.

The kinetic energy of the flow is distributed over a much larger

volume, whose depth is comparable to the wavelength. The decay rate

is increased by a most a factor three even in the extreme case of

films which are incompressible or have infinite viscosities.

Sea slicks can also inhibit the generation of capillary waves by

3 8the wind. For clean surfaces, Lamb discusses a Kelvin-Helmholtz-

like instability leading to wave growth above a critical wind speed

of 6.5 m/sec.9 Lamb points out, however, that waves are apparently

generated by other means at considerably lower velocities. A number

of alternative theoretical approaches are available.1 0  Using one

1-3



such approach, Miles finds a minimum wind speed of about 1 rn/sec for

a clean surface, and estimates that an incompressible film increases

this threshold by an order of magnitude.1 1

In this report, we study a different mechanism for wave genera-

tion, namely turbulent fluctuations of the wind about its mean

velocity. If a wave with a particular wavevector and frequency is

already present, it will be acted upon Most strongly by those compo-

nents of the fluctuating atmospheric Reynold's stress with matching

wavevectors and frequencies. This particular generation mechanism

has been explored for clean surfaces by Lamb
9 and by Phillips.12

By calculating the response of capillary waves to fluctuating

Reynold's stresses within linearized hydrodynamics, we show that

surfactants produce a pronounced reduction in the response to

stresses parallel to the surface. If only tangential stresses are

present, a modest amount Of surfactant can reduce the root mean

squa7re amplitude of capillary waves by a factor of 10 or more rela-

v~e -oa clean surface; Vrie root mean square amplitude tends to zero

i- -e i it-7f an incompressible film. There is also a reduction in

toerep :oeto fluctuating normal stresses, although here the effect

is only a factor o f 2 or 3. The different responses to parallel and

nc-rm-3_ iteocsurees i4itli a suggestion by Dorrestein. 6 Little is

-:~nato~t tte -elative strengths of fluctuating tangential and

1 -4
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7,9

normal stresses near the ocean surface. If these stresses are equal,

the root mean square wave amplitudes will be reduced by a factor of .- '. .

about 6. If tangential stresses dominate, however, the suppression

of capillary waves by surfactants could be much more effective,

especially for films with low compressibilitles.

In Section 2.0, we review some elementary properties of lipid

films which will be needed later in the report. The hydrodynamic

theory of damping of capillary-gravity waves by surfactants is

reviewed in Section 3.0. This theory allows the damping to be pre- A

dicted directly from laboratory measurements of pressure-area ....

isotherms; in some cases, knowledge of film viscosities may also be

necessary. Finally, in Section 4.0, we calculate the effect of lipid L

monolayers on the response to fluctuating atmospheric Reynold's " - -.

stresses at the sea surface.

1-5
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2.0 PROPERITIES OF SURFACE-ACTIVE FILMS

Figure 1 shows a typical experimental setup for studying

surface-active films in the laboratory.1 3 Lipid moelcules are con-

fined to a region of area A by a float. The air-water surface .

tension aH 74 dyne/cm is reduced by the presence of the lipid
2

monolayer. As a result, the film exerts a pressure n on the float as

it tries to spread and cover the clean water surface. Upon measuring

the pressure necessary to confine the film to different areas at

constant temperature T, one obtains a pressure-area isotherm like .

that shown in Figure 2. It is easily shown that the pressure iT gives

the reduction in the surface tension due to the presence of the

film,13

0 = HO - (2.1)
2

where a is the surface tension with the film present. To a first

approximation, pressure-area isotherms at temperature T are often

described by a two-dimensional ideal gas equation of state, S

= Nk T/A (2.2)
B

2-1
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Figure 1. Experimental setup for measuring surfactant properties.
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Figure 2. Typical pressure-area isotherm
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where N is the total number of lipid molecules in the film. In real

films, the pressure rises more steeply with decreasing area than "

predicted by Equation (2.2), due to hard core repulsions between

lipids. -

At high lipid densities, there can be anomalies in pressure-area

isotherms due to phase transitions in the film. Many different 9

phases are possible, including solids, liquids, gases, tilted

liquids, expanded liquids, tilted solids, etc.1 4  In principle, there

could be enhanced damping of surface waves if the periodic pressure

variations in a wave were to drive a film back and forth across one

of these transitions. It seems improbable, however, that naturally

occuring slicks would appear exactly at a density corresponding to

one of these phase transitions. The densities in sea slicks, more-

over, are probably those of a dilute liquid or moderately dense gas,
2  . -'-".

for which most of these transitions are absent.

Besides reducing the surface tension, surface-active monolayers

also cause the air-water interface to behave like an elastic

membrane. When the surface distorts, there are now elastic restoring -

forces in the plane of the film. The elasticity arises because the -

surface tension depends on the concentration r = N/A of surfactant.

Consider, for example, the behavior of the teaspoon of oil discussed

in the Introduction. The film initially spreads rapidly with a

2-3
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velocity of about 10 cm/sec. 13  It eventually stops spreading, how-

ever, at monolayer thicknesses, because further dilution of the film

would increase the surface tension.

To calculate the force which stops the spreading, consider the

free energy of a film of area A,

F =oA a A (2.3)
HO2

where A is the area which is free of film. Let us compute the change

in free energy associated with a small change in the film area,
* ... " -.' -.

A A + 6A, A - A- 6A. The surfactant concentration changes

according to

I'N/A

- .. . .- ,

N r[1- iA (2.4)
A+6A A-.

Because the surface tension depends on r, there will be a correspond-

ing change in o(r),

oCI') o~r[1 6A]SA6A

do 6A. ,i "
o(r) - do A (2.5)

dP A

.".. 

..-.4-

.. ....... ......... ,.... .-- 2....... ...-..... .... ............ :,............ ,,
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Adding up the changes in Equation (2.3), we see that the change in

free energy is * -"-.""""'*

6F = [a - rH0 I" dr] 6A . (2.6)

Stability of the film requires that this change vanish, which means

that the "spreading pressure" i t H a must be balanced by the
2

term arising from density dependence of the surface tension,

rda
TS dr (2.7)

The quantity

B - - - >  0 , (2.8)

acts like an elastic bulk modulus of the film, and will play an

important role in the hydrodynamic theory discussed in the next two

sections. Note that for a thick film, a is Independent of r, so that

this bulk modulus vanishes. For a film which has spread to monolayer

thicknesses with no external constraints, Equation (2.7) shows that B

equals the spreading pressure. Films can also be compressed, by

artificial barriers like that shown in Figure 1, or by internal waves

at sea. 15  In this case, we have, using Equation (2.1)

2-5
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d Or H 0 1T

B -r dr .>- -. ,-

A d " (2.9)dA

Equation (2.9) shows that B is the inverse two-dimensional compressi-

bility and can be determined by differentiating pressure-area

isotherms. For an ideal gas (which would spread to infinite dilution

unless it were confined), we have

B kBT/a , (2.10)

where a = A/N is the area per molecule.

2-6
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3.0 DAMPING OF CAPILLARY-GRAVITY WAVES BY SURFACTANTS 5

Assume the mean air-water interface is normal to the z-axis, and

consider the propagation of a deep water surface wave in the x-direc- -
tion (See Figure 3). Following the methods of' References 4-6, we

write x- and z-components of the velocity as

v 0 1(3.1a)
x x z

v + (3.1b)

where 0 and i~are functions of x, z, and time t. The

function describes inviscid, incompressible potential flow and

satisfies Laplace's equation,

V 0 0(3.2) p

The linearized incompressible Navier-Stokes equations,

3 v = L p + V v
t 0

Sv 0.= (3.3)

3-1
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will be satisfied, provided ipsatisfies

a V (3.4..

V.

where v is the kinematic shear viscosity and p0 is the density.

Restricting our attention to deep water waves, we write *and ipas- ---

periodic functions of x and t which are exponentially damped in the

negative z direction.

.ikx .+ kzo- iut

(x,z,t) =Ae ik z it(3.5a)

will satisfyiEqutin34 provided tha Zaife is -relat-d-to k'by

ikx. + 9"-..z "- i".t

4tz k iCe (3.)

where A an Cnd arem eans tmle ampliu eswiyc wl and d ter medy b

boundrycndiourantheonodisued sutrfwaes wwtaet be an = 0. ---

Teransatz function for audtmaticllye satisfies aLaplace'e equation;'

negawill satisfyeqtion (3.-)prvied.ha.9 i reatd o b

9. =.k - -w/. (3.6)

written

3--3
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k z. ,....: ..: .:

v - (ikAekZ _ BeZ) LkX it (3.7a)

+ (kAe ikBeZ) eikX it (3.7b) "

We require that * satisfy the inviscid Navier-Stokes equations,
which means that the pressure is given by,

ikx + kz - iwt.".. -
p = -PogZ + iwp Ae k (3.8)

where g is the gravitational constant, and we take the pressure at

the undeformed interface to be zero. Boundary conditions will ulti-

mately be specified at the displaced interface z - r(x,t). Since

a v z in the limit of small velocities and displacements, we have

using Equation (3.7b) that

kA+ikB lkx -iwtC(x,t) -i. e (3.9)

Because 0 obeys Laplace's equation, its contribution to the

viscous damping in the Navier-Stokes equations vanishes. Dissipation

comes from the rotational part of the flow, which is controlled

by 4:

1-.4
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2x v (V IP) y . (3.10)

We shall be primarily interested in waves with wavelengths A = 2/k

which are much larger than, say, 10 3 cm. For such waves, which are- .

only weakly damped, it is an excellent approximation to neglect the

k2 term in Equation (3.6) and write

=. W i (3.11).
/2 L

The decay of the function 4 in the z-direction is controlled by the A

real part of Z, which is just the reciprocal of the viscous penetra- -

tion depth 6 defined in the introduction. Equation (3.11) is a good

approximation for Z whenever the wavelength is much greater than the ,

viscous penetration depth,

A >> 6 . (3.12)

Dissipation occurs only within the viscous penetration depth; its

strength is given by the complex amplitude C in Equation (3.5), which

i in turn determined by the boundary conditions. The flow is

guaranteed to be potential flow at depths much greater

than 6, regardless of the boundary corditions (see Figure 3).

3-5
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At the interface there are boundary conditions on both the •

normal and tangential forces. The normal boundary condition is

obtained by equating the zz-component of the fluid stress tensor,

evaluated at z = C(x,t), to the usual capillary restoring force,
7

;2C
(-p + 2n a Vz)Iz = - (3.13)

In the linearized theory, surfactants only affect the normal boundary

condition by changing the surface tension a according to

Equation (2.1). The tangential boundary condition follows from

requiring that the xz-component of the fluid stress tensor, evaluated

at z = C(x,t), match the forces arising from the flow of the surfac-

tant within the surface. In analogy with three-dimensional

compressible fluids, we define a two-dimensional viscous stress - -

tensor

( 2 ) . . -i .(2)-= 6 + 2(a V. + V. - 6. akVk)
ai J i j 1T n 3 j Vi i j .i i ° " k

ii. ' 13 31 13

+ 2 6ij k vk (3.14)

where i and j denote directions in the (x,y)-plane, and n2 and C

are two-Aimensional shear arid bulk viscosities. We assume the lipid

molecules are constrained to move at velocities given by the bulk

3-6
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expressions (3.7) evaluated at the interface. Since v is zero, the S

force due to the surfactant at the interface is directed along the

x-axis and equals

F D (2)

5 x xx

--a + a 2 v(3-15) 0
x 2 x x

where we have defined a composite two-dimensional viscosity p2 '

= C2+2 (3.16)

Upon recognizing that 7 is, up to an additive constant, just the ,

negative of the surface tension (see Equation (2.1)), we see that the

tangential boundary condition becomes

lo
I2 vv a v) I 2 (317)

x x z z 2 X x(3. 17

To proceed further, we need to know the space and time S

dependence of o induced by the wave motion. Assuming that a changes

by virtue of changes in the surf itant concentration r, we have

-7 ..--. - .-(3,)
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so we need to know r(x,t). Assuming that r undergoes both diffusion .

and convection at the interface, we have5 .........

at r + v(r) = V2 r (3.19)

The two-dimensional diffusion constant D will be controlled by diffu-

sion of the lipid polar head groups at the interface through water.

It certainly cannot be much greater than, say, 10- 5 cm2 /sec, a typi-

cal diffusion constant in a bulk liquid. Under these conditions, the
A

convective part of Equation (3.19) dominates over diffusion. We

neglect the finite solubility of lipid molecules in water which,

according to Levich,5 decreases the ability of surfactants to damp

surface waves. Neglecting D, and writing r in terms of the

deviation r'(x,t) from its equilibrium value r "0

r(x,t) = 0 + r'(x,t) , (3.20)

we have, to lowest order in the small quantities vx and r',

a r " = r v , (3.21)

• - ° -= -
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or, integrating with respect to time and differentiating with respect

to x,

-r= -i° 2v (3.22)
ax W x x

Combining Equation (3.22) with Equations (3.18) and (3.17), we

see that the tangential boundary condition becomes

vz + 3v ) = (lB + 2 v (3.23)
z z x x Z W 2 x A

where we have introduced the surfactant bulk modulus B defined by

Equation (2.8). Note that the bulk modulus can be regarded as

contributing to a frequency-dependent two-dimensional viscosity. The

angular frequency of a .5 cm capillary wave is about 300 Hz. For a

02
moderately dense film, with 40 A per molecule, the ideal gas formula

(2.10) gives B = 10 dyne/cm. Under these conditions, th contribu- - -

tion of the bulk modulus to the effective viscosity is

0
- 3 x lo 12 dyne-sec/cm . (3.24)

w

Since typical intrinsic film viscosities are less than or equal to

1' dyne-sec/cm, we shall neglect the intrinsic viscosity in most

of what follows. %

3-V
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Setting V 2 to zero, and using Equations (3.7a), (3.7b), (3.8),

and (3.9) in the boundary conditions (3.13) and (3.23), we rind two

homogeneous equations for the complex amplitudes A and C, namely

2 + 2 - i 2  2
(-W ) 1w A +(iw + 2vktw) C =0 ,(3.25a)

(2vk 2 +iBk 3 /) A (w2 +2i)k 
2  Bk29Z = 0 (3.25b)

0) C
p0

where

w(k) gk a k3 /P0  (3.26)

Simultaneous solutions are only possible if the determinant of

coefficients vanishes,

2 2 2, 2/W -w 2i\vuk ,iW + 2vktw

A(k,w) det21
2 3 2 2 Bki 2

2vwk + 2Bk /Pc W+ 21vwk --

0 PO

-0, (3.27) '

which defines implicitely the dispersion relation w w uk) of

capillary-gravity waves. If there is no surfactant present, B =0,

3-10
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and Equation (3.27) leads in the limit X >> 6 to the standard

result,
5

w(k) w (k) - 2ivk2 . (3.28)

Suppose, on the other hand B = =, so that the film is Incom- .

pressible. This is the limiting case discussed by Lamb.9 From

Equation (3.25b), we have that

ikA - ZB - 0 (3.29)

which, in view of Equation (3.7a), means that the tangential

component of velocity vanishes, vx = 0. As shown, for example, in

the book by Levich,5 the solution of (3.27) in the capillary wave

part of the spectrum (X < 1.7 cm) is then

ak 2  1/4
w(k) - ( - ) k , (3.30)

P0  12 Po

where we have neglected a small shift in a real part of the

frequency. The ratio of the imaginary part of (3.30) to the damping

2
2vk for a clean surface is

3-11
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Im I ( )cik p 1 12  "'''-'.'-

Imw W 1 0o3 p "
2k 2  V2 vk2

3 (3.31)

where the wavelength in the last line is measured in centimeters.

Although an equation like (3.31) is cited in most texts as the reason

oil calms troubled waters, the enhanced damping is really not very

impressive, especially for wavelengths much less than a centimeter.

To examine this question further, we have solved Equation (3.27)

numerically for a range of different values of B. To simplify the

discussion, we model the surfactant by an ideal gas, and imagine that .3,

it is gradually compressed by increasing the pressure 7 which

confines it. Comparing Equations (2.1) and (2.2), we see that B =

in this approximation. The pressure also enters the surface tension

through Equation (2.1). Experiments which measure capillary wave

damping 16-18 typically use a transducer at a fixed frequency, and

measure an inverse attention length kd by fitting the envelope of the _

wave train to an exponential decay, - exp(.-kdx). Numerical solu-

tions of Equation (3.27) at a fixed real wavevector k lead to a com-

plex frequency of the form "

W W (k) - iY(k) (3.32)
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where wo (k) is given approximately by (3.28) and Y(k) represents the . -

0

damping. To make contact with the experiments, we need to

analytically continue to real frequencies and complex wavevectors. A--1

Let ko be the real wavevector such that w (ko) equals the real fre-0 0

quency w in question. Replacing k by k0 + ikd in Equation (3.32),

and expanding in the small quantity kd, we find that

k= Y(k )/[ (dwo/dk) k = k (3.33)d 0-\0..-L k
0

The group velocity rather than the phase velocity enters because a

spatially narrow transducer at fixed frequency generates a band of

wavelengths in the vicinity of k 0 .

Figure 4 shows a plot of kd vs. pressure for a 0.52 cm capillary

wave. Also shown is the damping for an incompressible film. The

damping increases with increasing surfactant concentration, and

remarkably, goes through a maximum before approaching the result for

an incompressible film at high pressure. This nonmontonic behavior

has been observed in many laboratory experiments16-17 , including

those on naturally occuring sea surface films.18 It was first

6pointed out theoretically by Dorrestein. Note that the damping can

actually exceed the result for an incompressible film. As noted by .

3 - 3
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Davies and Vose17  this must be due to an appreciable tendency of the .

horizontal velocity near the surface to reverse relative to the horn-

zontal velocity in the bulk. The effect of a finite intrinsic "-""

surface viscosity is to reduce the maximum, ultimately leading to a

monotonic variation in the limit of large viscosities. 6 Although the

enhanced damping at intermediate pressures is larger than that

predicted by Equation (3.30), it is still not a particularly dramatic .

effect.

3'15
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4.0 EFFECT OF TURBULENT FLUCTUATIONS IN THE ATMOSPHERE

The linearized hydrodynamic theory described in Section 3 is \,. *.,

easily generalized to allow a coupling to fluctuating components of i

the Reynolds stress in the wind. Upon adding the zz and xz

components of the atmospheric stress tensor p'. at the interface to

the boundary conditions (3.13) and (3.23), we have

(-p + 2n zv)lz= -a 2= pz(X,t), (4.1)

n(zVx z ]I L + P)2 V x  px(x,t), (4.2)

where Pzz' (x,t) and Pxz' (x,t) are fluctuating random variables.

Effects due to the mean wind velocity, embodied in the average values

of Pzz' and Pxz'' can amplify or diminish preexisting capillary

waves, depending on the circumstances.19

Here, we study generation of capillary waves due to fluctuations

in Pzz' and Pxz' about their mean values. Assuming a wind speed of

Im/sec at a height of 1 meter above the ocean, we estimate that tur-

bulent fluctuations in the bulk stress tensor should be present down

to a Kolmogorov scale of about .03 cm., which includes the capillary

wave part of the spectrum. Because little is known about such fluc-

tuations close to an air-water interface, we shall simply assume that

4-1p i::.i:ll ..

.......................................................



the fluctuating components of the wind stress are unaffected by the

presence or absence of surfactant, and compare the mean square wave

amplitudes generated at a various wave vectors and frequencies. .-

Consider the response to one particular Fourier component of the

fluctuating wind stress tensor at the interface,

(xt) 0 ikx-iwt, p xt)=~eikx-iwt (4~3

where, in contrast to Section 3.0, both k and w are real. The

analysis of Section 3.0 (again setting the 2d viscosity p~1 to zero)

now leads to a matrix equation for the amplitudes A and C, namely

2 2 - iu 2  2
W W ?Owk i + 2vwki 0()(-w

( 2 3 0 20 2 2 )( )- 0z)

2vwk +iBk /P 0 + 21vwk -Bk U/P 0C -iwp . (4.J4)

The amplitudes which follow from (4.4) are

A = -iw[(iw 02 + 2vwkt)p zz0 + (2vwk 2 -Bk
3l/P0 )p xz0 /A(k,w) (4.5a)

C -iwE(w 2+ 21vwk 2 Bk 2 Up 0)p Z0+(2+W02)p ]z0 /A~k,w) (4.5b)-
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where A(k,w) is the determinant defined in Equation (3.27). We can

now obtain the space and time dependence of the interface height via

Equation (3.9).

0 0.

Suppose hat p~~ and p~~ are chosen from an ensemble of ran-
0 0 Z

dornly chosen amplituues, and assume for simplicity that p and x

-et-itistic~illy indepedent. It then follows from Equations (4J.5)

that

0 2 0 2 (4
3L 'kw( zz +ST'w( xz(46

~e~~an ensemble average and

:- - .2i 2\)k w -iBk
3 / UP /IA(k,w)12 (4.7a)

0 AL

~,,-ire responi3e functions describing how the inter-

*~. . -g idn~'i.e., normal to the surface) and trans-

;Ly. Fitgure 5 shows the real part of the

w, v tv- :.3,persion relation (3.26). It is

4-3



100 Hzi

Fiur . ailar-raiy ae isesinreain. Th mgnrwato h rqec

• F

I 11

/,A
100 Z --I I

Figure 5. Capillary-gravity wave dispersion relation. The imaginary part of the frequency •- '

at fixed real wavevector is represented by the size of vertical dashed lines.

S



instructive to imagine fixing the wavevector and varying frequency

along the vertical line shown in the figure. The response functions

S and ST should become large when the frequency passes through

(k). The width of this resonance is proportional to the damping

discussed in Section 3.0. The height of the resonance is a measure

of how easy it is to generate waves at the resonance frequency.

Figures 6a and b contrast the response with and without a

surface film in the gravity wave part of the spectrum. The wave-

ength is one meter, we have assumed that the surface film has a A

compressibility of 10 dyne/cm. On a clean surface, there is an

extremely narrow resonance at w= 7.85216 Hz. The surfactant shifts

the resonant frequency and leads to a small increase in the damping,

as measured by the half-width at half-maximum. The heights of the

resonances are depressed only slightly by the surface film. Figure 6

shows that there will be persistent long wavelength "oily swells" in .

sea slicks, notwithstanding the presence of a surface film. This

result is to be expected, since the right-hand side of

Equation (3.23) becomes negligable compared to the left-hand side at 4

sufficiently long wavelengths.

The results for capillary waves with wavelength 0.52 cm are

shown in Figures 7a and 7b. Here, the effect of a surface film is

much more remarkable. Particularly striking is the reduction in the ......

. ..- . -.

-0

-S!
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Figure 7b. Transverse response functions in the capillary Wave part of the spectrum.
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heights of the response functions. The longitudinal response is down

by a factor of 20 and the transverse response is barely visible (down

by a factor of 60). A significant increase in the damping is also -.

apparent, as well as a small shift in the resonant frequency

(Wo = 369.06 Hz for a clean surface). Figure 7 shows that oil calms

troubled waters not only because of this increased damping, but also •S
because it is very difficult to generate large amplitude capillary

waves.

The reduced amplitude for capillary waves is most pronounced in

the transverse response function. In contrast to the damping, which

approaches a finite limit for an incompressible film, the amplitudes

generated by transverse fluctuations actually vanish as B tends to

infinity. To see this in more detail, we start with the time-

dependent boundary conditions (3.13) and (3.23), including the effect

of a transverse wind stress pxz(X,t),

2n V + Pog P 0, (4.8a)

at B a 2(

n(a v + a - - v = (x,t), (4.8b)n(x z zx wo  x x . .

0

where we have set 2 = 0 and used Equation (3.8) for the pressure. "

All quantities in Equations (4.8) are to be evaluated with z = r. -

4-8
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The effect of viscosity in these boundary conditions can be neglected

in the large B limit. Upon setting n0, using (3.1) and differen-

tiating each equation with respect to time, we find Equations

for and namely

p g(a 0 - a 3p 2  a a 2 (a a i)=0 (4.9a)
0 z x 0tx z x

B a 2 (a~ a ) _ (4.9b)

We now assume that 4and ~pcan be written

A(t) efk 0 z-i k (4.10~a)

C(t) e ikx + z iw 0(k) (4.10b).. .

where k is real, w 0(k) is given by Equation (3.26), and A(t) and C(t)

are slowly varying functions of time. The wave represented by

Equation (4.10) will be acted upon most strongly by that Fourier

component of pa whose wavevector and frequency match k and w 0 '(k).

19As discussed, for example, by Longuet-Higgins , the wave will be

most strongly amplified when the phase of p makes this variable

stress a maximum at the wave crests and a minimum at the troughs.

. . .... . . . . . . . . ... . . .

-. . p.... -. ** °.. . . .
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varies as in Equation (4.3). When Equations (4.10a) and (4.lOb) are

substituted in (4.9), the result is two ordinary differential equa-

tions for A(t) and C(t), namely

A t) iA(t)/2w + WoC(t) = 0 (4.11a)
0 2

ik3 A(t) + 2 C(t) = -iwopxz °  (4.11b)

We now confine our attention to the capillary wave part of the spec-

trum. Neglecting the second order time derivative in (4.11a), and

using (4.11b) to eliminate C(t), we find a simple differential equa-

tion for A(t) (ignoring a contribution to the imaginary part of A),

namely,

21/4 3 )3-"/4'::: '

dA 1 (o21/4 7/4 1 03 4 / od-t - (' ) k A + 1 (LL) . (4.12)
2V7 'o 22" o Bk2  xz

If P = 0, the wave dies out, and A(t) decays with the damp-

ing rate of an incompressible surfactant, given by the imaginary part

of Equation (3.30). For a nonzero tangential stress, A(t) approaches

surf 0/B 3
As r  = 0 pxz°/gk (4.13)

for long times, a limit which tends to zero for large B.

4-10
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Equation (4.12) should be contrasted with the result for a clean

surface, which 

.

19

dA 2 0

This equation has the long time limit

Aclean 0 2(J.5dAm - 2 z/4vk Po (4.1)

Ac lea n  surfkpo 4.5

The ratio Aclean/Asurf can be made arbitrarily large as B becomes

large, i.e., for sufficiently incompressible films.

4.-1
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