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ABSTRACT

This note extends the Proschan (1965) result on peakedness comparison for
a convex combination of i.i.d. random variables from a PF2 density. Now the
underlying random variables are jointly distributed from a Schur-concave

density. The result permits a more refined discription of convergence in the

Law of Large Numbers.

L




.-'-
.

'_-i\i T O N N R T T T T T T ’.‘.-.‘.-:-i’.i'.u.’ﬁ'.l'!?'_-‘_‘.’_‘r.?’.“".(.v‘.rxlrr?

AN Aok

1. Introduction

Proschan (1965) shows that:

: 1.1 Theorem. Let f be PFZ’ f(t) = £(~-t) for all ¢, Xl,..., xn independently

L e

n n A

m At

distributed with density £, p>p~, p» P‘ not identical, Z pi=].=2 p{. Then AR
1 1 :.-,:-: e

R

v
'}
L]

,v ,

g p{Xi is strictly more peaked than g pixi.

(Definitions of majorization (EEE’), PI-'2 density, and peakedness are
presented in Section 2.) Roughly speaking, Theorem 1.1 states that a weighted
P average of i.i.d. random variables converges more rapidly in the case in which
weights are close together as compared with the case in which the weights are
diverse.

In the present note, we extend the basic univariate result to the multi-

variate situation in which the underlying random variables have a joint Schur-

concave density. Theorem 2.3 presents the precise statement of the multivariate

extension.

2. Peakedness comparisons

The theory of majorization is exploited in this section to obtain more

general versions of the result of Proschan (1965). We begin with some definitions

Definition 2.1. Let a za and blz ...zbn be decreasing rearrangements of

2...
1

the components of the vectors g and p. We say that the vector b is majorized by

@, written grznh if
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k k
and } a.2 ] b, for k=1,..., n-1.

Definition 2.2. A real valued function f defined on R" is said to be a Schur-

m
concave function if f(a) < f(b) whenever a2b.

A function f defined on R" is said to be sign invariant if f(xl,..., xn) =
f(lxll seens Ixnl ). 1In the following Lemma, we give a peakedness comparison for

random variables with a sign invariant and Schur-concave density.

Theorem 2.3. Suppose the random vector X = (Xl, cees Xn) has a Schur-concave

density f. If f is sign-invariant and satisfies

-]

fuf(u, Uy Xgyenns xn) du < » for all x

v o X .
3’ > “n

Then for all t =0,

¥(a,..., a)=P(] a,X;st)

is a Schur-concave function of a-= (al,..., an), a; 20 for all i. Equivalently,

m
) bixi is more peaked than } a X, whenever azb.

Proof.

Without loss of generality, we may assume that ): a, = 1. We first consider

the case n=2.

1 - - - t-a
Let 05357 and a=1-a. Let h(a) =P(aX1+aX25t) =_e{ G (—5—3) gl(u) du

X2| )(1 =u
where 8, is the marginal density of X1 and GX IX. =u is the conditional distribution
271

function of X2 given that X1 =u.
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Differentiation under the integral sign is permissible here, so that

A NORY| B, 1x, =ul T g (W) (- ) du

=_°f° £(u, t‘:_:‘“) (t -u) du.

= [* £, 55t w

+ ft f(u, t'aau)(t-u) du.

Now let v=t-u in the first integral and v=u-t in the second integral. We obtain

a2 hr(a)=fy v IE(t-v, t+E V) - £(tev, t-2 V)] av

(-]

= fov Cf(v-t, %v+t) - f(v+t, = v-1t)] dv,

i@

since f is sign invariant. But this is nonpositive because

a m a
(v+t, Ev-t) 2 (v-t, §v+t)

and f is Schur-concave. Thus h(a) is increasing in a, 0535%.

The result for n=3 now follows since

P(} aixist)

. X )]

30" n

n
= E [P(a1X1+a2X2$t - g aixilx

and the conditional density f(xl, x2|x3,..., xn) is also Schur-concave and sign
invariant. [J

Remark 2.4. To justify differentiation under the integral sign, we note that

0

[ 1£(u, laiﬂ)(t-u)l du

]

S-J: (t-ul f('l%'t', '“5"") du <=,

which follows from (2.1).
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This condition is clearly not a necessary condition, but it can be easily B
varified for most Schur-concave multivariate distributions. For example, the
multivariate Cauchy density: Co

4 NS
£(x)5000s X)) = L+ 1)/2 (n+1)/2)(1+ ¥ xi)-(rn 1)/2 i'?.-;;_:
i=1 _

has this property.
The following result is an immediate application of Theorem 2.3.

Corollary 2.5. Let X Xn be random variables with joint Schur-concave

120
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density f. Let f be sign invariant and satisfy

-j;uf(u, U, Xpseens xn) du < = for all Xgseves Xpo
k
Then % ) X; 1s increasing in peakedness as k increases from 1 to n. RN
i=1 o
PR
Proof. BN
Let a,=(1, 0,... 0), a.= (5, L 0,...0,... and a_=(&,..., &) where
~1 44 ’ .. » ~2 2) 2’ ? t4 ~n n) s n
m m m
each vector contains n components. Then 2,28,2...23,. The result follows from

Theorem 2.3. (0

Suppose X = (Xl, pees Xn) and Y = (Yl, cens Yn) are independently distributed

with respective densities f and g where both f and g are Schur-concave and sign

invariant, Theorem 2.3 implies that z bi(xi +Yi) is more peaked than 2 ai()(i +Yi)

m
whenever azp. This is true because the convolution of Schur-concave functions

is Schur-concave. However, if Y Yn are i.i.d. Cauchy, then the joint

17000
density given by

n
g(xlyu.-, Xn) = (-3—) Iri‘ (1 +32X_2)-1’ a>0,
™= i
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is not Schur-concave. Theorem 2.7 below, we give conditions on f for which
(2.2) holds. First we prove the following Lemma.

Lemma 2.6. Let X = (Xl,...., Xn) and Y = (Yl""’ Yn) be independently distri-
buted with respective densities f1 and f2. Suppose fi(tl,..., tn) is symmetric
with respect to zero and nonincreasing in each argument for t, >0, k=1,..., n,

and for i=1,2.

n n
Let 7 b.X. be more peaked than § a.X. and
R ;i
n n
§ biYi be more peaked than § aiYi where a; 20 and bi 20 for
‘ i=1,..., n. Then
n n
}1: b, (X; +Y;) is more peaked than is }1' a (X, +Y,).
' Proof.
. This result follows immediately from the Lemma of Birnbaum (1948) by noting
n n n n
' that the random variables § a.X., } a.vy , J b.X., and § b.Y. have symmetric and
I ;AT g % i [ i

unimodal densities. [

The following theorem identifies a different class of densities for which -:'-:-.':--

the conclusion of Theorem 2.3 holds. .
Theorem 2.7. Suppose that the random vector X = (Xl,..., Xn) has a Schur-concave ]

sign-invariant density f. Let f be nonincreasing in each argument over the posi-

tive values and satisfy (2.1). Let Yl""’ Yn be i.i.d. Cauchy with joint density tﬁ:fg«:
m
g as given in (2.3). Let X and Y = (Yl"" y Yn) be independent, and gzp_i where
n n
a;20, b; 20 for all iand 1= ai=f b, . Then
1 1
n n
g b, (X; +Y,) is more peaked than is § a; (X, +Y,).
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Proof. IRKMARY,
—_— + g '6.,"
BN M 4
n n e
We use the fact that a;Y., N b,Y; have the same distribution as does Y. R
1 1
n n
From Theorem 2.3, } bixi is more peaked than is ) a;X,. The result now follows
1 1
from Lemma 2.6. [
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