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o FLUCTUATIONS NEAR HOMOGENEOUS STATES OF CHEMICAL REACTIONS WITE DIFFUSION

PETER KOTELENEZ*, Universitdt Bremen

Abstract

Conditions are given under which a space-time jump Markov process des-
cribing the stochastic model of nonlinear chemical reactions with dif-
fusion converges to the homogeneous state solution of the corresponding
reaction-diffusion equation . The deviation is measured by a central
- limit theorem. This limit is a distribution valued Ornstein-Uhlenbeck
; process and can be represented as the mild solution of a certain stocha-

stic partial differential equation.

.- REACTION-DIFFUSION EQUATION; STOCHASTIC MODEL OF NONLINEAR CHEMICAL
REACTIONS WITH DIFFUSION; THERMODYNAMIC LIMIT; CENTRAL LIMIT THEOREM;
- ’ HIGH DENSITY LIMIT; STOCHASTIC PARTIAL DIFFERENTIAL EQUATION

* This reasearch was done during the author's stay at the University of
North Carolina at Chapel Hill in April 1985 and was supported by the
Air Force Office of Scientific Research under AFOSR Grant No. T
F 49620 82 C 0009.
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1. Introduction

Mathematical models of chemical reactions have been described by Gardiner
McNeil, Walls and Matheson [ 12], Haken [15], Nicolis and Prigogine [31],
van Kampen [20], and Arnold [ 1]. For the deterministic theory of reac-
tion-diffusion equations we refer to Smoller {33] and the references

therein.

In [ 3] Arnold and Theodosopulu have constructed a space-time jump Markov
process xv,N by dividing a finite interval I (one-dimensional reactor)
into N cells, counting the number of particles in each cell and dividing
this number by a proportionality factor v (the cell size of an unscaled
model). This density changes in each cell due to reaction and diffusion
(which couples neighbouring cells). The rates by which this density
changes are derived from an underlying partial differential equation
(PDE). Under a high density assumption (gi - 0) Arnold and Theodoso-
pulu (loc.cit.) derived the law of large numbers (LNN) in Lz2(I), i.e.

X, y ~¥in L2(I), where X is the solution of the PDE. In Kotelenez [22],
’

[25] the corresponding central limit theorem (CLT) was proved under the
assumption that the reaction is linear. In this linear case the density
could be taken low, because the LLN was proved in distribution spaces
(cf. also Kotelenez [26]). On the other hand, nonlinear operations like
multiplication are not defined on distributions (cf. Schwartz {321).
Therefore it seems to be convenient - if not necessary - to prove for
nonlinear chemical reactions with diffusion the LLN in a function space
by making a high density assumption (as in Arnold als Theodosopulu [ 3 1)
and then derive the CLT in a distribution space. This,however, causes
certain numerical difficulties (cf. our Remark 3.1) which do not show
up if we assume that the deterministic limit X is spatially homogeneous
(cf. (2.1) and (2.5)). This assumption allows us to derive the LLN
(Theorem 3.1) in a function norm and the CLT (Theorem 3.3) in a distri-
bution norm. The limit Y and the CLT is a generalized Ornstein-Uhlen-

beck process (if Yo is Gaussian) and can be represented as the mild
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solution of a certain stochastic partial differential equation (SPDE).
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it

We describe the coptimal (smoothest) state spaces for Y. Our main tool

LN LN B
e
A

is the calculus of stochastic evolution equations as developed in Kote-
lenez ([21], [22], [24] -[27]) both for a fixed Hilbert state

-
- N

‘I'-l.,
»

.

space and a nuclear Gel'fand triple (cf. (2.3)) as state space.

o« o
.

Apart from various Gaussian approximations to systems of (branching)

Brownian motions (s. our references in Remark 2.2 - and also Kotelenez

[27]) we would like to mention the diffusion approximations to spatially
‘ distributed neurons given in Walsh [36] and Kallianpur and Wolpert [19],
II where the limit is also a generalized Ornstein-Uhlenbeck process, which
b

can be interpreted as the solution of a linear SPDE (as in our case).

Let us briefly describe the contents. In Section 2 we introduce both the
it deterministic and the stochastic models on an n-dimensional unit cube.

:2' In the first part on the deterministic model we introduce the nuclear

» Gel'fand triple (2.3) and prove that the linear operators from our models
can be "nicely" defined on the Hilbert distribution spaces in (2.3). In
the second part on the stochastic model we derive some bounds on xv,N
and its martingale part. In Section 3 we prove the LLN in sup-norm .
(Theorem 3.1) with a certain speed of convergence. Then we describe the

limiting Gaussian martingale part for the normalized martingale parts

of xv + prove in several steps the CLT and describe the limit (Theorem

3.3).

N

2. The Models

Following Arnold and Theodosopulu [ 3] and Arnold [1 ] we first intro-
duce the (local) deterministic model, then construct the corresponding .

(local) stochastic model, and finally compare the two models.

2.1 The (local) deterministic model

set s:= {q = (q;s...,q) € Rr" : 0Sq S1,i=1, ..., n}. Let
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m :
R(x) = b(x) - d(x) = iéo cixl be a polynomial in x € IR, where <, 20,

n < 0 and b(x) and d(x) are polynomials of degree < m with nonnegative
coefficients. A denotes the Lapacian and D > O a diffusion coefficient.
Then the concentration of one reactant with reflection at the boundary

is given by the scolution of the following PDE:

i %; X(t,q) = DAX(t,q) + R(X(t,q))

.

(2.1) ¢ -g—- X(t,q) =0, g. € {0,1} i=1,...,n
q; i

>
Xo(q) 20

Let ]Ho := L2(S) be the Hilbert space of square integrable real valued
functions on S equipped with the scalar product <@,y>,:= sﬁp(q)w(qldq.
o,V € Iio. In what follows we shall denote by DA the closure of DA
w.r.t. the reflecting boundary conditions  (2.1). DA is self-adjoint

nonpositive on ]Ho and has a discrete spectrum. Let £ = (11....,£n) be

a multiindex, where R'i € N U {0}, and set

" V3 cos 2.m(e) L. 21

1
8y = 1
L. { =
{ k 1 2 =0

n .
Then, the ¢2 1= iI_'_Il $ are a complete orthonormal system (CONS) of

24

n
eigenvectors of DA with eigenvalues 'D“‘z := _D(iél Zi 17.2) . Consequently,

the semigroup T(t) generated by DA on :IH° can be represented by

-Du,t

(2.2) T(L)e = % e ¢2<(,D,¢£g .

As in Kotelenez ([26], [27]) we introduce the nuclear Gel'fand triple

determined by DA

v
[o]

= 1) c +
(2.3) ¢CI—IaCI-lo HOC]H_Q o', Q
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In (2.3) we have Ea := Dom( (I - DA) 2), G 2 O where I is the identity

operator and "Dom" denotes "domain". ]Ha is a real separable Hilbert

O RN

ORI AR sl SN RN

! space if equipped with the scalar product <°,-a := <(I-DA)Q/2-, (I-DA)G‘/Z% X
(for the definition of the a-th power of a positive self-adjoint opera- ‘:::::
o
tor - cf. Yosida [38]). H(’), the strong dual of H_, is identified with s
o

i Ilo, =N lia is a locally convex vector space whose topology is given .
a0 ) - T
by the set of norms {lwla 1= (<co,ma )2 , ® € ®}, and @' is the strong .

had

dual of @. I-I_a are those @' € ® which can be extended to continuous
( functionals on Ha , &2 0. E-a is a real separable Hilbert space

with scalar product <, Za + where for @,

Yy € ]Ho < o, Za =< (I-DA)-Q/zclJ, (I-DA)-Q/zwg . Moreover, setting
N }‘SL =1 + Dui , we obtain that
h
" -a/2
o8
oy = Az %

is a CONS for Hc.' Q € IR. Hence

H = {0 €0 : I (¢,6,)° 2 <w},
a 3 L '3
i where (+,°) denotes the dual pairing. Thus, if we set
o 2 4a
= : <
Lo {(al) € R % ay A, © }

we see that (2.1) can be identified with a subset of ]Rm, where Iia is

isomorphic to 1 a € R. Clearly, the imbeddings in (2.3) are con-

2,a’
tinuous and dense.

r Lemma 2.1

For any &, Y€ R s.t. Q> Y + % the imbedding

- H — N
a Y

A Rl S

is Hilbert~Schmidt.
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Proof
a (2 a-y, 2 .
% i¢£ lY = % e R
(-] (-
oo f e e ™Y e L ax < e iff
1 1 n
1 1
© x
[ ovii f (14x, oo 4 x )22 .. dx_ < e iff
1 1 n
1 1
20> n + 2Y.
. a/2 .
Since (I-DA) and T(t) commute,T(t) can be extended (resp. restricted)

to a strongly continuous semigroup ’ra(t) on Ba' a€ R, s.t. for all
a€ R

= <
(2.4) |Ta(t)lL(Ha) IT(e) | < 1.

L(Ho)

L(Ha) denotes the usual operator norm on IBa, and the inequality in

(2.4) holds because DA is dissipative (cf. Davies [ 9]). Let us denote

by DA‘1 the generator of Ta(t) (which is the extension (resp. restriction)

of DA). As in Kotelenez [26], Lemma 2.2, we obtain:

Lemma 2.2

For all @ € R, Dom (DAQ) = Hc.+2 and Ta(t) is analytic.

For the rest of the paper we shall assume that the system (2.1) starts
in a spatially homogeneous state Xy = Po > 0. This implies that the ‘solu-
. tion X(t,r) of (2.1) is spatially homogeneous, i.e. X(t,r) & p(t) satis-

. fies the ordinary differential equation

d
(2.5) ac p(t) = R(p(t)), P(O) = = >0

(c£. arnold [11]). (2.5) has a unique positive bounded solution which

PTBRR
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is strictly positive for all t 2 O (cf. Coddington and Levinson [ 5]).

2.2 The (local) stochastic model

We cover S with grid of N n-dimensional cubes (cells) of size h" which

are parallel to the axes. The cell corresponding to the grid point r:| is
defined by

[rJ) 1= {r € s: rzﬁri<rg+h,i=1, ..y} , j=1, ..., N.

Let v be a parameter (which is explained in Remark 2.1) and denote by

EN the (countable) state space of elements k = (krj) ([rd)es)’ where
N
krj € S Y {0} . set
. . 3
H oy {o € H_ : @ constant on each [x3) }.
Then
c
:EN :HO,N
and
TLN := I-Io - mo,N defined by
ﬂnw(r) = @ (r) := h " I ® := " [ ®(g)aq if r € [£?)
N ' 3
[r3) [rd) -

is a projection from E onto H .
o o,N

Now we define a Markov chain on ]EN through the Q-matrix of its transi-

tion intensities:

' Vb(krj) m=k + e.j =:m+O
: Vd(krj) m=k - erj =:m_o
: =2 . .
vDh krj m=Kk + erjthi_erj .mt:L i=1,..,n
o) = .
(2.6) B(k,m) for 0 € rd & hy <1
n
-iéo B(k,mti) m=k

0 otherwise.
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: Here ej = (I[rj)) , where I[rj) (@) =1 if g € {r?), = 0 otherwise ,
i and hi = (0,..,9,h,0,..,0) where all but the i-th coordinate are zero.
X Hence, we obtain the distributions P(t,k) determined by Q = (B(k,m) )
s k,mEZEN
- as the unique solution of Kolmogorov's backward equation (which

is called in the application-oriented literature the "multivariate
Master equation) (cf. Arnold [1]). The corresponding (canonical) cadlag

Markov process will be denoted by

(generated by Q)

" v,N
(2.7) ¢
X (0) = X € E a given initial distribution.
V'N V,N,O N
i In what follows we shall assume that the stochastic basis for XV N
1 4
Q, F’Fv N ¢P) is complete with right continuous filtration.

Remark 2.1

We can view xv as the rescaled density Markov process of Arnold (1]

N
~ and Arnold and Theododopulu [ 3] on a cube of volume VN = V with cells

o of size v, where the number of particles is proportionel to v.

Remark 2.2

£ b(r) = br + co, d(r) = dr, for some constants b,d > O then xv N is a
r

branching diffusion with immigration (co) on the grid. This case was

» investigated in Kotelenez (25], ([26], and the limit theorems therein
corresponded to limit theorems for branching Brownian motions obtained
by Holley and Stroock [16], Gorostiza [14] and, in the absence of branch-

| ing (b = d = c_ =0) to Martin-L5f [30] and 1t3 [18] (cf. also Walsh

» {37]). For a diffusion approximation to branching Brownian motions - cf.

Dawson [11],

. . - . . - PO RO - . ~ - -
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In what follows we shall not explicitly write the parameter v, i.e., we
shall write X instead of X etc.
N v,N

€ .
Extend cpN IHO N by reflection to

14

s, = (r € R" : -h < r, < 1+h, i = 1,...,0}

and set

-1
® := h [cpN(rthi) -wN(r)]

i "N

n
N R AL

Remark 2.3

In view of our boundary condition we easily see that DAN is selfadjoint

and dissipative both as an operator on Ho and Ho (where on HO AN is

s N

defined by ANortN) . If we set

; PriN
2.,N L6 |
L.,N'©
we see that
- no- -1
lpw =38 % v <7

1

is a CONS of eigenvectors of DAN for JHO with eigenvalues

N

Duw := 2nDN2 lr'll {1 - cos £ hm}
LN i=1 i’

The waiting time parameter for XN is given by

-2 n ‘
oyk) = v E lRl(er) +h " Z, 2Dk.j

rJ€s
with [RI(x) = b(x) + d(x), x € R. Hence, if
o .= -1
uN(k,m) : (ON(k)) B(k,m)

CHSeRC R & By




denotes the 3ump distribution function (B(k,m) from (2.6)), then the in-

finitesimal generator for xN is given by

(2.8) (AD) (k) =op (k) [ [fm - £(k)] O (k,dm),
E
N

where £: E = R is bounded and measurable (Gihman and Skorohod [13]).

Let

Me W :=sup ¢ _(x)l
N r€S N

be the sup-norm on :Ho N If there is a finite constant K(v,N} s.t.
’

(2.9) Hl x (o) I < K(v,N) a.s.
v,N

1’

then by a lemma of Kurtz [28] (cf. Arnold and Theodosopulu [3] ana
Kotelenez [25])

[3]
ct
[}

t
X (t) - X (0) - £ oN(xN(s)ﬁé (2 = X (s))8 (X (s),az)ds

N
(2.10)

t
X (t) = X (0) - £ [DA X () + R(X (s))]as

is an :Ho -valued square integrable cadlag martingale.

N
We shall assume (2.9) throughout the paper.

Hence, XN satisfies formally the stochastic evolution egqaution

‘.\
5
—~
S

]

[DANXN(t) + R(XN(t))]dt + dz, ()

]
>

XN(O) N,o

and the difference XN(t) - X(t), where X is the solution of (2.1)/(2.5),

satisfies
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-::
-". t
= G(E) = X(B) = X (0) - X(0) + g (DAG+ R' (X(s)) (X (s) - X(s))ds
’ (2.12) 4 + ft(X (s) - X(s))2 ;( (s) ,X(s))as
) . { o N Xyts) .
R L +z ey
-.:,
‘.
'v-
R'(x) is the derivative of R(x), ;(y,x) is a polynomial in y and x of .
degree < m-2, and R'(X(s)) and (X (s) - x(s))2 are interpreted as multi- '

plication operators.

Note that both DAN + R'(X(s)) and DA + R'(X(s)) are quasi-generators of

evolution operators UN(t,s) and U(t,s) onH and Ho, respectively.

o,N
(For the definition of evolution operators V(t,s), i.e., strongly con-

tinuous two-parameter semigroups - cf. Curtain and Pritchard [ 7] and

Tanabe [34], where V(t,s) is called fundamental solution - any strongly
continuous one-parameter semigroup is, of course, also an evolution

operator.) Consequently, by variation of constants, (2.12) yields

- t
X (€)= X(t) = U (£,0)(X (0) - X(0)) + £ U (t,s)az(s)

(2.13) ’

t ~
+ £ Uy (tr8) (X (8) - x(s)) 2 R(X (s),X(s))ds.

In order t give a meaning to the stochastic convolution integral in (2.13)

we recall from Kotelenez [21], [24]:

Definition 2.1

Let H be a separable Hilbert-space with Hilbert space norm |- [H and

V(t,s) an evolution operator onH, 0 £ g £ t < o, V(t,s) is of contrac-

tion-type or, equivalently, V(t,s) € G(I,BE) if for all t > O there is

a finite constant B{-_ 20 s.t.

Ba(t-s) R
< e t :-

(2.14) IV(t'S)IL(B) -
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for all 0 < s St < t.

Tk

Remark 2.4

A5
e
Let M be an HE-valued locally square integrable cadlag martingale and :-:::-‘::,"
Vit,s) € G“'BE) on H. Then, from Kotelenez [21], we have ba‘::i

(1) If M is cadlag, then | V(+,s)dM(s) has a cadlag version; if
o

M is continuous, then £ V(e,s)dM(s) has a continuous version.

A partial result from Kotelenez [24) is the following:

(ii) If Vv(t,s) has a quasi-generator A{(t) and Dom(A(t)) is independ-
ent of t then for all £ > O there is a finite constant c = c(;:,B)
depending only on the scalar product < -, >H'E and B s.t. for

allt £t
4B.t
s 2
(2.15) E sup |J V(s,u)dM(u)I; Sce ° ElMe) |y .
os<sst o

For more general properties and inequalities for stochastic convolution

integrals cf. Kotelenez [24], [27].

Since X(t) is constant in the space variable (cf. (2.5)) we obtain

t
.‘UN(t,s) =T (t-s) exp(f R'(X(u))du)
! N S
i
(2.16) < . e
U_(t,s) =T (t-s) exp(/ R'(X(u))duw), € R, B
-t a s Sl

where the last equation means that U(t,s) is extendible (resp. restrict-

able) to the Ho.' Let us denote by (Ba’ < o, c>x. ) ]Ho,N equipped

NI

with the Hilbert norm < «,« c>x. , @ € R. Set

v

P Al
A .

e
A
PP R

PyNSLANE &
o e

Dl s
.

S
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R
B := sup R'(X(t)) e
ost<» RN

and note that B < @ Dby our assumption on R(x) (cf. (2.5)).

n
‘.

“ il
P B

.
e
=

.y
o8

A}
.
“
E 0 DA L P

Lemma 2.3

v

For all a € R | X
Ua(tls) € G(LB) on Ba

UN(t,s) € G(1,B) on lﬂz,N .

Proof
(i) The statement for Ua(t,s) follows from (2.4) and (2.16).

(ii) Let x € H . Then
o,N

lugtt,sixl2 = T <opesing > N |
= Z<xOyts)e) >c2> A
< E 2B(t=s) X, T, (t-8) 8y o >§ A‘;’ h..
by (2.16)
< eza(t-S)lxlfa ,

since TN(t) is a contraction and ¢2 N is an eigenvector of TN(t).
14

The previous considerations show that the limit behaviour of xN(t) - X(t)
essentially depends on the limit behaviour of ZN(t), UN(t,s) and the
last term in (2.13).

S e
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e
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F 4

. '-..\
- We shall first give an estimate on the variance of ZN(t) . To this end we ’.:‘_:::"_
-, define an operator on E_ by Piared:

>, n o

~ = s U

: (2.1 Fu@ =D I V' ) + 7 &7, + IRI(@) ik

“ )

X AN

. where ¢ € H_ and IRl () act as multiplication operators. As in the RO
linear case of Kotelenez [25] we obtain

.:: Lemma 2.4

i For arbitrary ¢ € I!o

_ (2.18) E<z (0,05 = L [PE<F (x (80,0 > ds.

. N o wN NN NN "o

- We need estimates on XN(t,r) which satisfies by variation of constants

: 2.19 { ¢ a S t ‘ (s))ds S

i - = - - . NG

:_ (2.19) Xg(e) = Tu(eIxg(0) + [7 1 (ts)dzyls) + [ Ty (e-s)R(X\(s) :?

- Y

= o ¢ 1 NS
Set P := max {R(x) : x ]R+ . E ’

'_::i The definition of R(x) implies p < eo, :

% Lemma 2.5
Fer any t > O

- (2.20) sup MlE X (s) I <tp + WEXK/©O I ,

. oSsst

i 2.21 I o< s+ I mo+ Ao )| Dok
(2.21) | xN(t) Il <to+ | XN(O) + /N ! TN(t-s)dZN(s o -
Proof ~,
-_ ! d

| (1) From Kotelenez {22], lemma A.7 and Davies [ 9], Th. 7.16 we ::::'_.‘::'.

'_:; obtain that TN(t) is positivity-preserving on Iio N’ i.e., -:‘:::::j

. ’ .:‘.‘ O

- leaves the cone of nonnegative functions invariant, which implies e

(2.20). E:-E—-;.




(11) We easily check that for any @y € :Ho
’

(2.22) i @y i < /" lo.l

whence we obtain (2.21) from (2.19).

3. Limit Theorems

Theorem 3.1 (LLN)

Assume (2.9) in addition to

2vy+ 14%

= NP —_—
(1) v = N°, where P > T - 2y

and Y € [ % , = ) arbitrary and fixed ;

(xT)  EI (vN)Y<xN(0) - X0 Il -0, as N » e .

Then for all t > o, 6>0

P{ sup Il (v V(X (€) = X(t) Il > 8 =0; as N»w.

ost<t

(1) (2.18), (2.20) and our assumptions imply the existence of a finite

Proof
constant K s.t. for any £t 2 O
2
(3.1) E lz_(0)1? < R&ED
N o v o

where by (2.15) and Lemma 2.3 there is for any € 2 0 a finite

constant K(B,t) s.t. for vy € { % , =

- Y172 t t -
N(t) == (vN)'N max {I£ Uy (tr8)dzZ (s)] ,lg Ty (t s)dzN(s)lo}

et .
. N

et g e o
A

>
r
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) 2y
E swp ni(n) = k@b B N(co+N2/n)
ost<t

~ D(2Y-1) + 2/n + 1 + 2y ol

-+ 0, as N = o by the definition of P.

(ii) (2.16) implies that UN(t.s) is positivity preserving since TN(t)

is positivity-preserving. Abbreviating
(t) := eBt vy Y Il X (0) - x(0) Il + n(t)
L S N My
t"; and
- Bt -
- byle) = e i ﬁ(xN(t), x(e) 0« il X (e) = X(¢) M, t=st

the Gronwall-Bellmann lemma and (2.13) imply

Y t t
(v VI X (8) = x(e) Il < T (e) +£ CN(s)\DN(S)exp(g Wy () du) ds,

t < t.
:}_-‘.“ k
-~ )
Since by step (i) sup_ LUN(t) is stochastically bounded as N = @ and :t.*‘
ostst - i
n-:-\
sup (t) tends to zero in mean square the proof is finished. T
ost<t
s]
Set
1/2
My ¢ (vN) Zq

and define for ¢ € HI the continuous analogue to (2.17):

(3.22 @ :=-2f 203 + IRI@

where again ¢ and |R] (®) act as multiplication operators. Denote for

L€ (0,1) by

c*(lo,=); B)
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:.{ the space of HOlder continuous XH-valued functions with HSlder exponent W,

o where H is some Hilbert space.
Lemma 3.1

There is a unique (in distribution) @'-valued Gaussian martingale M on

~ o~

some probability space (ﬁ,F,Ft,F) with characteristic functional -

~ t
(3.3)  EexpMe),0) = exp(- 3 [ < F(X(s))0,0 > ds),
(o]

¢ € @&, where E is the mathematical expectation w.r.t. ; Moreover, for
1
)

anya>2+ 1 and any p € (0,5

2

M€ c*(lo,), E_) a.s.

The proof of the existence and uniqueness is given in It& [17](cf. also

Ustunel [35]), and the HSlder continuity follows from Kotelenez [23].

Since X(t) is spatially homogeneous and strictly positive we easily .
check that F(X(t)) as a positive self-adjoint operator on Ho is just

equal to - 2X(t)DA + IR|(X(t)), which has the same eigenfunctions ¢, as

DA. Thus, the square root of F(X(t)) can be considered as an element

rl/
a

n
2

H_a valued Wiener process W(t) on ]H_a which is the cylindrical Brownian

2(X(t)) from L( Ba. I-Ia_l) for all a € R. Ifa> then there is an

motion on Ho (c£. 18 [17]). We may without loss of generality assume
that W(t) is alsoc defined on (ﬁ,?‘,Ft,i;) from Lemma 3.1. Repeating now

the proof of Lemma 2.4 in Kotelenez [25] we obtain

Lemma 3.2

1/2

—o#1 (X(s)dwW(s) (equal in distribution)

3.0 u 2 " F
[o]

H , n 1
on ¢~ ([0,); B-a—l) for all a > > all u € (o, 2).
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Let us denote by D([0,®); H) the complete metric space of H-valued cadlag
functions, where B is a separable Hilbert space (i.e. the Skorohod space

- cf. Billingsley [ 4] and Kurtz [29]) and by "=" weak convergence.

Lemma 3.3

Under the assumptions of Theorem 3.1 for all a > % +1

MN = M on D([O,=); H_a);

where M is the Gaussian martingale given in Lemma 3.1.

Proof

(1) The weak convergence of MN(t) to M(t) for fixed t follows as in

the linear case (cf. Kotelenez [25], [26]).

(1i) We shall estimate the "modules of continuity". Set for some

(large) K > O

a= i > . >
Ty inf{t 2 0 : |l xN(t) i = x}

and E'N(t) 1= My (EAT)

where "A" denotes "min". Then, abbreviating F = c(XN(s),sSt)

N N, t~
we obtain for t £ t, s >0

“E {IM (t+s) - MN(t)lfaA 1 Fool
~ ~ 2
* . -~
(*) S E {IM (t+s) ~ M ()IZ | F. .2

+E{1 .

fr,, < s | Pt
Take the CONS {ei‘} for H,. By (2.18) (cf. Kurtz [28] and Kote-
lenez [22}, [25] for the step from the unconditional to the con-
ditional expectation) the first term in the r.h.s. of (*) can be

estimated from above by




- TR TN e A

T & K s e A ... s

24TV

A A

~

PR

S e B N W N R L R L Y T Y S T T T T T

p t+s
i a a
§ E{ { < 0gs Fy(X (AT )6y > du IFN,t}

xKy
= ! tes o, n a2

<

(=2 § E{{ <7, IRI(X (uAT )3 +,Z,D<8.¢)) ,XN(uATN)gdulFN,t}

N

by Lemma A.2 in Kotelenez [22]

~

£ Ks

for some K < @ since by Lemma 2.1 Ha_lh—' }Io is Hilbert-Schmidt

and |ll xN(tA-rN) M €K+ 1< .

Setting

YN’E(S) 1= Ks + l{TN < E+s}

we obtain from Theorem 3.1

lim lim E YN {;(5) = 0.
S0 N-oo !

(iii) (i) and (ii) imply by Theorem 2.7 of Kurtz [29] the weak conver-

gence of M_ to M.
N o

Theorem 3.2

Under the assumptions of Theorem 3.1 for all a > % + 1

gUN(',s)dMN(s) - cf)U_a(-,s)dM(s) on D([0,®); H_).

Proof

(1) Let dp denote the Prohorov metric on D([0,%); H_a) (cf. Billingsley
[4]). Let rtk be the projection of H_, onto L(%: B.i < k for all

i=1,..,n) (the linear. hull spanned by those ¢2 whose multiindices

LT TN ARG .
- - A - A e Tt . \ . - = -
AWVYLAIARIR ALY VSR AR A AR WY




- 19 -

L= (21,...,2n) satisfy P.i <k for alli=1,...,n). The corresponding

projection from H_ . onto L(g

H 2, < k foz all = 1 PRPRPEFS o} lf
q !,N . 1 [ I)

k < h = will be denoted by p,t: If k 2 h-1 then we set pg I-lo N =%
’

o,N’

Set ni’ =1 - Ttk and piN =1~ p:, where I denotes the identity opera-

tor on the corresponding spaces.

(ii) Abbreviating the convolution integrals £ UN(-.s)dMN(s) by IUNdMN etc.

we obtain

dp(fu am ., fuam)
N
< dp(juNdMN, J’UNpdeN)

*)
+ dy(Jugpeam, junde)

+ dp(fon am, [uam).

(iii) By Lemma 2.3 and (2.15) for any t 2 O

t
E sup_ |If UN(t,s)piNdMNlEa

ostst ©
4Bt _, AN a2
<
Sce E:lpk MN(t)l_a
sce®tr Ecub, ¢ on >? A;“
R.,Zk N (o}
1
<ce®trien A;““

2.2k
i

as in the proof of Lemma 3.3 for some finite constant K.Since

-a+1
z A'Jl

2

< o by Lemma 2.1 the r.h.s. of the last inequality can be

made arbitrarily small by choosing k large. Hence for given € > O

there is a kl(e) s.t. for all k 2 kl(e) and all N




-

R o LTS
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N €
dp(juNdMN, IUNpdeN) <3
(cf.'Kotelenez [24], [25]).

The third term in (*) can be estimated in the same way. The second term

in (*) tends to zero for fixed k. Indeed, by partial integration
t N_ N N N t N
gUN(t,s)pde (s) = pM (£) + 6[ U, (tes) [DA, + R'(X(s)) IpM (s)ds and

t
Itu(:,smkdms) = mM(t) + [ U(t,s) (DA + R'(X(s))T M(s)ds. Hence, the
(o] (o]

Trotter-Kato theorem (Davies [ 9], Theorem 3.17, Kotelenez [24], Remark
4.1, and Kotelenez [22], Lemmas A.l, A.3) and the definition of pg and

LW imply the conditions of Theorem 5.5 in Billingsley [4], ¢h.1.

(iv) Since weak convergence on D([0,); I{*I) and convergence w.r.t. the

Prohorov metric dp are equivalent (cf. Kurtz [29] and Billingsley (41,

Appendix III, Th. 5) the proof is finished. ‘ f}i:?
o RS

Fix
n
>=4+ 1, o
a > 1

~ ~ o~

Let Y_be an H__,-valued square integrable random variable on (Q,F,Ft,P)

1
independent of W(t) for all t 2 O and Y, a square integrable §a1+1-valued

random variable on (Q,F,Ft,P) such Y, D Y. Further, let C denote an

1/2

arbitrary IU F—G#l

dWw - continuity set of D([0,®); B_) (cf. Billingsley .

[4]) and E an arbitrary element from o(Y_). We make the following

asymptotic independence assumption:

/ L 1/2 _ . .

. YN,o := (VN) (XN,o Xo) - Yo in probability oniﬁ_a*l
(3.5) } - 172

kP{(IUNdMN €EC)NE = P {IUF_G+1dw € C}¥(E)
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(cf. Billingsley [ 4], Ch.I, Th. 2.1 - The second condition in (3.5) is,
e.g., satisfied if MN is independent of O(X_o) for all (large) N.

Let & denote the Fréchet derivative, B([0O,t] x H__) the real valued mea-
. - 2
oo surable functions g with domain [0,t] x l-I_a s.t. %% , &g,6%g, and

I DAquég exist, are continuous in x and t, and uniformly bounded in norm
on [0,T] x l{*l . Ql/2 is the square root of the covariance operator of

‘ W(t) onH . and F/?¥ (x(t)) is the dual operator of F/2 (X(t))

: -a+1 -a+1 15 the cual operator —-a+1

i (after identifying the duals of ]H_a and I-I_a+1 with Il_a and H_a+1, re-

spectively. Finally, "Tr" denotes "trace".

Now we can state our final result under the assumptions of the LLN. S

Theorem 3.3 (CLT)

' ] Assume (2.9) and (3.5) for fixed a > 1_21_ + 1 in addition to e
PO
2y+142 SRR

(1) v = Np where p > and v € [ %, -;-) arbitrary and fixed ;

1-2Y

(II) E l(vN)Y(XN(O) - X(O))li <+ 0, as N > o ,

o /2,
: Then for YN = (vN) (XN X)
' (1) yy =Yon p([0,); B )
where :»\}:;
_ t 1/2 il
(3.6) Y(t) = U_ (t,00Y_ + {) U_ (trs) Pl (X(s))dM(s) o
' '
is the mild solution of the stochastic partial differential equation EASAG
_ . 1/2 . L
o) | avee) = (pa_, + R (x(eN)]¥(v)at + F_ 1, (X(E)aW (L)
r Y(0) = ¥
(o]
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~,
.,

’

(1)
Mot B ) aws. for allpu<+,alle>o0
!‘ r ’ _a - - 2 ’

(3.8) Y € <

v, v LR
ey T T N
- ‘.‘.“- DRI A

Kok AAMS
AL

rA i «S. £ > .
c(lo,el; B_, ,) a.s. for all £ >0

~

and Y(t), t > O, does not define a O-additive measure on :n_a for Y £ gy

i.e., the second relation in (3.8) is the maximal regularity of Y on the

:

Hilbert scale (2.3).

(iii) Y is a Markov process, and its weak generator is given by

[ - ,a_ 1 ] ] )
At)g(t,@') = 5T 9(t.@') + <[DA_cx + R'(X(t)))6g(t,0"),0 >
(3.9)
1/2

/2 21/
F -+

1 1 2% 2 ,
+ = Tr{Q _a+1(x(t))5 g(t,®")F

1/2
5 I(X(t))Q 1,

where g € B{([O,t] *H_).
Proof

(i) The norm of the normalized last term in (2.13) can be estimated

as follows:

t 2 1/2 ~ '
L] Uy (t,8) (X (S) = X(5))" (V) R(X(s) X(s)) 1 _

@]

/

t -
< f eB(t S)|H (vN)1

2 ~
*xy(s)-x(s)) %+ 1 Rexg(s* x(s) llds =0,

(o]

as N = » uniformly on compact intervals in probability by Theorem 3.1

and the stochastic boundedness of HIE(XN(S),X(S)IH (cf. the proof of

v v-v' LRI e 2 4

Theorem 3.1). Therefore, the weak convergence of YN to Y follows from

Theorem 3.2 and our assumptions as in Kotelenez (25, [26].

T




(ii) The HBlder continuity follows from DaPrato, lannelli and Tubaro
[ 8] and Kotelenez [23].

The spatial regularity follows from the estimate

t 1/2 < 1 [ oy pd/2
lg Ug(EwWF_ (1 (Xpaw@)] < li’ T_o(t-wF_ L, (W |_
t -
+ [ S u)Ifuqa(u—v)Fiéil(X(v))dW(v)I
s s -a+l

1/2

. . ces)F
and the spatial regularity of [ T_a( s) o+

o
lenez [27] (gereralizing a result of Dawson [10] - cf. also Kotelenez

1(X(s))dW(s),_as proved in Kote-

[25]1). That the spatial regularity in (3.8) is maximal follows from the

1/2

a1 (X(s))dW(s) - cf. for details Kotelenez

Gaussianity of ft U_a(t,s)F
o]
[25].

(iii) The Markov property follows from Arnold, Curtain and Kotelenez
[ 2], (3.9) follows from Curtain [ 6].

Remark 3.1

I. The final result can be expressed by

1

(3.10) xN = X + Y + 0 (=) ,
YW /W

where xN is the local stochastic, i.e., mezoscopic description, assuming

XN(O) being near to homogeneity , X is the deterministic homogeneous
state solution of (2.1), and Y is the mild solution of (3.7) which is
a generalized Gauss-Markov process if Y is Gaussian, and 0(—%: ) is
o '/W‘
the error term.
II. Let us now assume that we do not start in (2.1) with a constant but

with some other positive bounded and possibly smooth function X5(q).

du




L v
e v
e
.
-

1
Vo

ta®d
8,

|
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Then the difference xN(t) - X(t) satisfies
(3.11) xN(t) - X(t) = FN(t) + GN(t),

. . _ ¢t
where FN(t) is the r.h.s. in (2.13) and GN(t) = £ UN(t,s)(DAN-DA)X(s)ds.

Of course, (3.11) will also tend to zerc under the assumptions of Theo-

rem 3.1. However, in view of (2.18) we must normalize (3.11) by multi-

1/2 (modulus a constant) in order to obtain a

plying both sides by (vN)
Gaussian correction term. On the other hand, the convergence of
(vN)l/ch(t) to zero with v = N° and p > 1 does not hold(in general) in
function norms and for p < 2 Arnold and Theodosopulu [ 3] have shown

in the one-dimensional case that the variance of ZN(t) (the martingale

part of XN(t) tends to « in L_-norm. This problem and related gquestions

2
will be inves igated in a forthcoming paper.

—
4t

)
B .
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