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FLUCTUATIONS NEAR HOMOGENEOUS STATES OF CHEMICAL REACTIONS WITH DIFFUSION

PETER KOTELENEZ*, Universitat Bremen

Abstract

Conditions are given under which a space-time jump Markov process des-

cribing the stochastic model of nonlinear chemical reactions with dif-

fusion converges to the homogeneous state solution of the corresponding

reaction-diffusion equation . The deviation is measured by a central

limit theorem. This limit is a distribution valued Ornstein-Uhlenbeck

process and can be represented as the mild solution of a certain stocha-

stic partial differential equation.
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1. Introduction

bm .• .'

Mathematical models of chemical reactions have been described by Gardiner

McNeil, Walls and Matheson [ 12], Haken (15], Nicolis and Prigogine [31], _ . . "

van Kampen [20], and Arnold [ 1]. For the deterministic theory of reac-

tion-diffusion equations we refer to Smoller [33] and the references

therein. k171

In [ 3 ] Arnold and Theodosopulu have constructed a space-time jump Markov

process X by dividing a finite interval I (one-dimensional reactor)

into N cells, counting the number of particles in each cell and dividing .

this number by a proportionality factor v (the cell size of an unscaled

model). This density changes in each cell due to reaction and diffusion

(which couples neighbouring cells). The rates by which this density

changes are derived from an underlying partial differential equation
N2

(PDE). Under a high density assumption 0- 0) Arnold and Theodoso-
pulu (loc.cit.) derived the law of large numbers (LNN) in L2 (I), i.e.

X - X in L2 (I), where X is the solution of the PDE. In Kotelenez [22],

v-N

[25] the corresponding central limit theorem (CLT) was proved under the

assumption that the reaction is linear. In this linear case the density

could be taken low, because the LLN was proved in distribution spaces

(cf. also Kotelenez [26]). On the other hand, nonlinear operations like

multiplication are not defined on distributions (cf. Schwartz [32]).

Therefore it seems to be convenient - if not necessary - to prove for

nonlinear chemical reactions with diffusion the LLN in a function space

by making a high density assumption (as in Arnold als Theodosopulu [ 3 ])

and then derive the CLT in a distribution space. This,however, causes

certain numerical difficulties (cf. our Remark 3.1) which do not show

up if we assume that the deterministic limit X is spatially homogeneous

(cf. (2.1) and (2.5)). This assumption allows us to derive the LLN .

(Theorem 3.1) in a function norm and the CLT (Theorem 3.3) in a distri-

bution norm. The limit Y and the CLT is a generalized Ornstein-Uhlen-

beck process (if Yo is Gaussian) and can be represented as the mild

. ........ '4
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solution of a certain stochastic partial differential equation (SPDE).

We describe the optimal (smoothest) state spaces for Y. Our main tool

is the calculus of stochastic evolution equations as developed in Kote-

lenez ([21], [22], [24] [271) both for a fixed Hilbert state

space and a nuclear Gel'fand triple (cf. (2.3)) as state space.

Apart from various Gaussian approximations to systems of (branching)

Brownian motions (s. our references in Remark 2.2 - and also Kotelenez

[27]) we would like to mention the diffusion approximations to spatially

distributed neurons given in Walsh [36] and Kallianpur and Wolpert [19],

where the limit is also a generalized Ornstein-Uhlenbeck process, which

can be interpreted as the solution of a linear SPDE (as in our case).

Let us briefly describe the contents. In Section 2 we introduce both the

deterministic and the stochastic models on an n-dimensional unit cube.

In the first part on the deterministic model we introduce the nuclear

Gel'fand triple (2.3) and prove that the linear operators from our models

can be "nicely" defined on the Hilbert distribution spaces in (2.3). In

the second part on the stochastic model we derive some bounds on Xv, N

and its martingale part. In Section 3 we prove the LLN in sup-norm

(Theorem 3.1) with a certain speed of convergence. Then we describe the

limiting Gaussian martingale part for the normalized martingale parts

of Xv,N, prove in several steps the CLT and describe the limit (Theorem

3.3).

2. The Models

Following Arnold and Theodosopulu [ 3 ] and Arnold [1 ] we first intro-

duce the (local) deterministic model, then construct the corresponding

(local) stochastic model, and finally compare the two models.

2.1 The (local) deterministic model

Set S:= t q = (ql,...,) E n  :. q S 1, i 1, n) . Let

......................... .... L.

.. . . . . . . .. . . . . . . . ., ,. ."
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m
R(x) = b(x) - d(x) =Y "  c.x be a polynomial in x E 3R, where c 2: 0,

1=0 1 0

c < 0 and b(x) and d(x) are polynomials of degree _ m with nonnegative,
coefficients. A denotes the Lapacian and D > 0 a diffusion coefficient.

Then the concentration of one reactant with reflection at the boundary

is given by the solution of the following PDE:

X(t,q) = DX(t,q) + R(X(t,q))

(2.1) i X(t,q) 0 0, q [0,i} i =

X (q) -: 0
0

Let IH 0 L2 (S) be the Hilbert space of square integrable real valued

functions on S equipped with the scalar product <(P,(I>o:= fcP(q)t(q)dq, L
pt E iH. In what follows we shall denote by DA the closure of DA

0
w.r.t. the reflecting boundary conditionscf (2.1). DA is self-adjoint

nonpositive on JH and has a discrete spectrum. Let £ = ( ..... tn) be

a multiindex, where X. N U (0), and set

1' cos £. T(.) 2 : > 1 '. -"1 1 ". -
A0

£i : 2 . = 0

n
Then, the : 1  are a complete orthonormal system (CONS) of

n 2 2
eigenvectors of DA with eigenvalues -D± 2, -DCiE 1 Z, iTL). Consequently,

the semigroup T(t) generated by DA on1H can be represented by
0

-Du~t(2.2) T(t)D = e e £ < , > ,

As in Kotelenez ([26), [27]) we introduce the nuclear Gel'fand triple

determined by DA

(2.3) 0 c 1H C 3H 0 11' c 3H C 0' , CL2:0.

LC
= ...,
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In (2.3) we have NE Dom((I -DA)~
1 ) aL2 0 where I is the identityOa

operator and "Dom" denotes "domain". IS is a real separable Hilbert
aa/2. ACa/2.space if equipped with the scalar product <-,-> := (I-DA) *(I-DA >

(for the definition of the O.-th power of a positive seif-adjoint opera-

tor - cf. Yosida (381). N', the strong dual of N ., is identified with
00

N o, =D nl Ni is a locally convex vector space whose topology is given

by the set of norms (k(Pl (p (P, E 0), and 0' is the strong

dual of 0D. NH are those V' E 0 which can be extended to continuous

functionals on N CL a2! 0. N3 is a real separable Hilbert space

with scalar product <, ,where for (Poroe, etig.

o -a

I + DUE ~we obtain that

-a/2

is aCONS for 3H aE 3R.Hence

2 C
NL [fp'E'Xc') X < ,

where (.)denotes the dual. pairing. Thus, if we set

I ((a) E JR Z a a < C
2,L z. 2. 2 2z

we see that (2.1) can be identified with a subset of 3R, where NH is
aL

isomorphic to 1 a L'C E 3R. Clearly, the imbeddings in (2.3) are con-

tinuous and dense.

r Lemma 2. 1

For any a, y E m s. t. aL> y + .2the imbedding
2

Nl 3H~
a Y

is Hilbert-Schraidt.

. . . . . ... . .
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Proof

01 2 10 1 a-Y 12 < c iff

f.. fJ'1+x 2 +-a dx .. dx <~ iff
1 1 1n n

f f(1+x .. + x dx2a.<+2Y
1~ 1 1 di*dn< jf

2a > n + 2Y.

Since (I-DA) and T(t) commute,T(t) can be extended (resp. restricted)

to a strongly continuous semigroup T (t) on 3Hr C. E 3R, s.t. for allaa
a E 3R

(2.4) IT (t) L(H IT(t)l<1
a L0

~LH 0  denotes the usual operator norm on 3H.  and the inequality in

(2.4) holds because DA is dissipative (cf. Davies [9]). Let us denoteL

by DA the generator of T (t) (which is the extension (resp. restriction)a a
of DA). As in Kotelenez [26], Lemma 2.2, we obtain:

Lemma 2.?

For all aL E JR, Dom (DA ) HI and T (t is analytic.
aL a.+2 a

For the rest of the paper we shall assume that the system (2.1) starts

in a spatially homogeneous state X.0 Po > 0. This implies that the-solu-

tion X(t,r) of (2.1) is spatially homogeneous, i.e. X~t,r) a p(t) satis-

fies the ordinary differential equation

(2.5) d t R (Q(t)) P (0) )> 0
dt0

(cf. Arnold [1 ). (2.5) has a unique positive bounded solution which
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is strictly positive for all t 2:0 Ccf. Coddingion and Levinson[5)

2.2 The (local) stochastic model

We cover S with grid of N n-dimensional cubes (cells) of size hn which

are parallel to the axes. The cell corresponding to the grid point r is

defined by

[ro) : r ES: r3 < r. < r3 + h, i =1, 'n} j =1, .. ,N.

Let v be a parameter (which is explained in Remark 2.1) and denote by

E the (countable) state space of elements k (kj)[)) where

kr E -11 U (0). Set

Ii oN [E JH 0 P constant on each[r) .

Then

lN lo,N

and

IN 3H * i defined by
o' o,N

iTL(P(r) := (P(r) :=hn' f (p h n ((q)dq if r E [rn

is a projection from F onto EH
0 o,N

Now we define a Markov chain on lE Nthrough the Q-matrix of its transi-

tion intensities:

vb(krj m = k + en=:

vd(k rj) mn = k - e] r :m 0o

vDh k~ j m = k +4 e Mhte

(2.6) 15(k,m) :for 0 :5 r h.

n
10 a(k,min±) mn = k

0 otherwise.
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Here er= where 1 rJ) r (q) = I if q E [rJ), = 0 otherwise

and h. = (0,..,O,h,O,..,O) where all but the i-th coordinate are zero.

Hence, we obtain the distributions P(t,k) determined by Q = (1(km)k,mE N)

as the unique solution of Kolmogorov's backward equation (which

is called in the application-oriented literature the "multivariate

Master equation) (cf. Arnold [ 1 ]). The corresponding (canonical) cadlag

Markov process will be denoted by

X, (generated by Q)

(2.7)
X (0) = X E iE a given initial distribution.
v,N v ,N,o N

In what follows we shall assume that the stochastic basis for Xv,N
(0, F,F t,P) is complete with right continuous filtration.

v,N,t

Remark 2.1

We can view X as the rescaled density Markov process of Arnold [ i]
v,Nand Arnold and Theododopulu [ 3 1 on a cube of volume vN = V with cells

of size v, where the number of particles is proportionel to v.

Remark 2.2

If b(r) = br + co, d(r) = dr, for some constants b,d > 0 then X is a
o v,N

branching diffusion with immigration (c ) on the grid. This case was
0

investigated in Kotelenez [25], [26], and the limit theorems therein

corresponded to limit theorems for branching Brownian motions obtained

by Holley and Stroock [16], Gorostiza [14] and, in the absence of branch-

ing (b = d = c = 0) to Martin-Ldf [30] and It8 (18] (cf. also Walsh
0

[37]). For a diffusion approximation to branching Brownian motions - cf.

Dawson [Ii].

p°

* . . . . . . . . .. . . . . . . . . . . . . . ., - . -. - . - . . - . . . . * . . . . :
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In what follows we shall not explicitly write the parameter v, i.e., we

shall write X instead of X etc.
N v,N

Extend (p NE 3Ho, by reflection to

S h r E £ -h 5 r. 1+h, i =1, .. .,n}

and set

;t Np [(pN (rh)-pC)
nN N 2. N-

Remark 2.3

In view of our boundary condition we easily see that DA is selfadjoint
N

and dissipative both as an operator onJ o, and E (where onH 0F A is

defined by A NortN) . If we set

Z2i,N
k. ,N

2. Z. ,N 0

we see that

U i.z < h 1
ZN ig1 z i N 2.

is a CONS of eigenvectors of DA N for FEo, with eigenvalues

N oN

The waiting time parameter for X is given by
N

-2 n
ONCk) =v Z IRI (k rj) + h J,1 2 Dk rj

Nrj£s

with iRI (x) =b(x) + d(x), x E 3R. Hence, if

NN

.............................................................................
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denotes the Jump distribution function (1(k,m) from (2.6)), then the in-

finitesimal generator for X N is given by

(2.8) (Af) (k) ON (k) .f [f(m) - f (k)] 0 N (kd)
3EN

where f: 3EN -. R is bounded and measurable (Gihman and Skorohod [13]).

Let

~ ~N ~ sup I~(r)I
rES

be the sup-norm on 3H . If there is a finite constant X(v,N) s.t.
o,N*

(2.9) I x (0) III K(v,N) a.s.
v,N -

then by a lemma of Kurtz [28] (cf. Arnold and Theodosopulu [3] and

Kotelenez [25])

t
1z (t) X (t) -X (0) - .fC( s) Z-X()) (X (a) ,dz)ds

N N N f N N ()fz X S

(2.10) t
=X N(t) - N (0) -f [D&NXN(s) + R (xN(s))]Ids

0

is an 3Ho, -valued square integrable cadlag martingale. J*

We shall assume (2.9) throughout the paper.

Hence, X satisfies formally the stochastic evolution eqaution
N

rdX (t) [ DAX (t) + R(X (t))]dt + dZ (t)
NNNN N

(2.11)
X(0) xo

and the difference X (t) -X(t), where X is the solution of (2.1)/(2.5),
N

satisfies
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X(t) = XN() - X(O) + f (D&+ R'(X(S))(XN(S) - X(s))ds

t2
(2.12). + (xN(s - X(s)) R(XN(s),X(s))ds

+ z N (t)
N

R' (x) is the derivative of R(x), R(y,x) is a polynomial in y and x of

degree 5 m-2, and R'(X(s)) and (XN(S) - X(s)) are interpreted as multi-

plication operators.

Note that both DAN + R'(X(s)) and DA + R'(X(s)) are quasi-generators of .--

evolution operators UN(t,S) and U(t,s) onE and]E , respectively.
N oN 0(For the definition of evolution operators V(t,s), i.e., strongly con-

tinuous two-parameter semigroups - cf. Curtain and Pritchard [ 7 1 and

Tanabe [34], where V(t,s) is called fundamental solution - any strongly ,

continuous one-parameter seigroup is, of course, also an evolution

operator.) Consequently, by variation of constants, (2.12) yields

-xN(t) - X(t) U (t,O)(X (0) - X(O)) + f U (t,s)dZN(S) N N N 0N N

(2.13) , t  2
+ UN(t,s)(X N(S) - X(s))2 R(sl,X(s))d.N

In order t give ameaning to the stochastic convolution integral in (2.13)

we recall from Kotelenez [21], [24]:

Definition 2. 1
Let3H be a separable Hilbert-space with Hilbert space norm IH and

H
V(t,s) an evolution operator on]H, 0 < s < t < -. V(t,s) is of contrac-

tion-type or, equivalently, V(t,s) E G(1, -) if for all t > 0 there is
t

afinite constant i3^ _> 0 s.t. ..-.

-. (t-s)
(2.14) IV(ts)I < e

L- )

- ~ -. :.-. - .
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for all 0 < s <t t. 

Remark 2.4

Let M be an P-valued locally square integrable cadlag martingale and

V(t,s) E G(1,3) on3. Then, from Kotelenez [21], we have
t

i) If M is cadlag, then f V(.,s)dM(s) has a cadlag version; if
0

M is continuous, then f V(.,s)dM(s) has a continuous version.

A partial result from Kotelenez [24] is the following:

(ii) If V(t,s) has a quasi-generator A(t) and Dom(A(t)) is independ-

ent of t then for all t > 0 there is a finite constant c = c(t,1)

depending only on the scalar product < ,. > 't and s.t. for

all t < t

413. t
24c e2 ,'-

(2.15) E sup s V(s,u)dM(u)I2  < c et EIM(t)I 2

o:5sst o

For more general properties and inequalities for stochastir convolution

integrals cf. Kotelenez [24], [27]. ;

Since X(t) is constant in the space variable (cf. (2.5)) we obtain

t .

oUN(t's) = TN(t-s) exp(f R'(X(u))du)

(2.16) .
U (t,s) = T (t-s) exp(ft R' (X(u) )du) , cL E R,

where the last equation means that U(t,s) is extendible (resp. restrict-

able) to the 3H . Let us denote by (P3N < 
* > ) o equippeda. C.,N CL o,N

with the Hilbert norm < ,> , CL 1R. Set
• • , .- . .
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13 SUp R'(X (t))

and note that <~ by our assumption on R(x) (cf. (2.5)).

Lea 2.3

For all a.E 3R

UC (t, s) E GC13) onE,

UN (t,s) E G(1,13) on

Proof

Ui) The statement for U (t,s) follows from (2.4) and (2.16).
OL

(ii) Let xE 3E Then
o,N

2 20
Iu (t,s)xI I < U (t,s)x, > X

N C.L N o0

< (XU (t,s)to >
£ N Z,N o £

by (2.16)

21 e2(t-s) x2
:5 e 1XI-CL

since TN(t) is a contraction and %Nis an eigenvector ofTt.

The previous considerations show that the limit behaviour of X()-XtXNt) Xt

essentially depends on the limit behaviour of Z (t), U (t,s) and the
N N

last term in (2.13).
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We shall first give an estimate on the variance of Z (t). To this end we

define an operator on F by N

n

(2.17) F (P) . D i VN CWN + V ' (W. + IRI (-p)
N -=1 -i 1 3 -

where (p E 3 and IRI (C) act as multiplication operators. As in the

linear case of Kotelenez (25] we obtain

Lemma 2.4

For arbitrary E iE 110

(2.18) E < Z (t) ,( > ft "E <F > ds.N o v N N -'N-'N 0

We need estimates on XN (t,r) which satisfies by variation of constants

(2.19) X N(t) T N (t)X(O) + sT N(t-s)dZN(s) + T (t-s)R(X (s))ds.(21) X t = TN (t-))NR(0) +))odN.N o N N

Set P max {R(x) x E 3R +.

The definition of R(x) implies p < .

Lemma 2.5 .'.

For any t > 0

(2.20) sup IIIE-XNs)III -< t. + III E XN(O)III
"- o&E~sSt .""

Nt

(2.21) ,,, x (t) ,, _ tp + ,,, X (0) 11 + IN ,s TN(t-s)dZ (s)lo
No o

Proof

(i) From Kotelenez (22], Lemma A.7 and Davies (9], Th. 7.16 we

obtain that T (t) is positivity-preserving on N , i.e.,N o,N
leaves the cone of nonnegative functions invariant, which implies .*- -**

(2.20).

-7 -- "&7

-: .- .
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(ii) we easily check that for any C

(2.22) I11kPN 111 !:- r' 'NIo

whence we obtain (2.21) from (2.19).

3. Limit Theorems

Theorem 3.1 (LLN)

Assume (2.9) in addition to

2

I) v =Np, where P > 2+- and y E 1rirr 1n ie
I1- 2y 4 arirr2adfxd

Y(II) E~i CvN) (X N(0) - X(0)) 111 -0, as N co

Then for all t > 0,86> 0

PfspIII (vN) y X t ~t I )- 0; as N -

Proof

(i) (2.18), (2.20) and our assumptions imply the existence of a finite

constant K s.t. for any t : 0

(3.1) E IZ (t)I 2 ~tl (c + N2/
N o v o

where by (2.15) and Lemma 2.3 there is for any t L> 0 a finite

constant K(a,t) s.t. for y E C )and

T() v)N max flf U (t,s)dZ (s)IO If TN(t-s)dZN(s)'o)N 0 N N o 0

r
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2 _(vN) 2N2/n) pE sup <Nt K(~t N(c +N

K=~ iN (2-1 + 2/n + 1 + 2Y

-~0, as N -~by the definition of P. tr '

%

(ii) (2.16) implies that U N(t,s) is positivity preserving since T,,(t)

is positivity-preserving. Abbreviating

~(t : e (v)~II XN (0) X X(0) I + rLN (t)

and

tN () e W N (t ~)xN(t t) t5

the Gronwall-Bellrnann lemma and (2.13) imply L
Y ,~ t ,~ 14fd)ds,(vN) II Ct I N(t) + ft CNs Ns~exf N

t _5. --

Since by step Ci) SUP '4.' t) is stochastically bounded as N -. ~and
N-St-

su CN(t) tends to zero in mean square the proof is finished.

StM : vN) 12ZN
NN

and define for (P E 3H the continuous analogue to (2. 17):

(3.2) F((P) :=-2D .c + IRI ((P)

where again (p and IRI ((P) act as multiplication operators. Denote for

tL E (0, 1) by 4

C (10, )3H
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the space of H61der continuous E-valued functions with H81der exponent Us

where 3 is some Hilbert space.

Lemma 3.1 • .

There is a unique (in distribution) 0'-valued Gaussian martingale M on

some probability space (a,,t ,P) with characteristic functional

t

(3.3) E exp(i(M(t),P)) = exp(- f < F(X(s))P,(p > dS),

(p E 0, where E is the mathematical expectation v..r.t. P. Moreover, for
n 1 and-any'E
2- 2

M E cu([O,),H ) a.s. %
-aX

The proof of the existence and uniqueness is given in ItO [17](cf. also

Ustunel [35]), and the H61der continuity follows from Kotelenez [23].

Since X(t) is spatially homogeneous and strictly positive we easily
check that F(X(t)) as a positive self-adjoint operator onl O is just -

0

equal to - 2X(t)DA + IRI(X(t)), which has the same eigenfunctions #£ as

DA. Thus, the square root of F(X(t)) can be considered as an element

1/2 nF Wt)) from L(I , ) for all CE JR. If a > E then there is an
a. . -- 2

I valued Wiener process W(t) on 3H which is the cylindrical Brownian
-CL -a

motion on H0 (cf. It8 [17]). We may without loss of generality assume

that W(t) is also defined on 1, ,P) from Lemma 3.1. Repeating now-

the proof of Lemma 2.4 in Kotelenez [25 we obtain

p-.

Lemma 3.2

VD 1/2(3.4) M oF (X(s)dW(s) (equal in distribution) ! .
-a.+ 1

0 %

on C ([O,C); ) for all a > , all U E (0, 1)
-0-

. . . . . . .. o . . , . . . . . ° • . •.oo ° • .o - o o . ° , ° . " o " . . • ° o - ° . • - - -
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Let us denote by D([0,-); 21) the complete metric space of B-valued cadlag

functions, where]E is a separable Eilbert space (i.e. the Sicorohod space

-cf. Billingsley [4] and Kurtz [29]) and by "no" weak convergence. _

Lemma 3.3 .-

Under the assumptions of Theorem 3.1 for all CL >- + 1

M M on D([O,o);]H
N -0.

where M is the Gaussian martingale given in Lemma 3.1.

Proof

i) The weak convergence of MN(t) to M(t) for fixed t follows as in

the linear case (cf. Kotelenez [25], [26]).

(ii) We shall estimate the "modules of continuity"1 . Set for some

(large) K > 0

T inf ft 0 I X (t) 2tI K)
N N

and MN(t) MN(tATN

where "A" denotes "min". Then, abbreviating FN~~ CF(XN(s) ,s:5t)

we obtain for t :5 t, s > 0

E 0 N (t+s) - t)2 A 11 F
MNt) - N,t

2
(* EfMN(t+s) -MN(t)I-. I F

N- N <-~s N,t

Take the CONS ,a for 3H By (2.18) (cf. Kurtz [28] and Kote-
k C1

lenez [22], (25) for the step from the unconditional to the con-

ditional expectation) the first term in the r.h.s. of *)can be

estimated from above by

V %

I-
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< t+snE[ f< F F(XN(UAN)4 > du IF~t

2( Z )2 IRI (X (UAT )) DQ X (UAt )>duIF
'. ~ EN N i'i XN No N,t}

by Lemma A.2 in Kotelenez [22]

:5 -Ks

for some K <c since by Lemma 2.1 3H I- 3o is Hilbert-Schmidt
CL- 1 o IL!

and III XN(tA N ) III <5K+ 1<".N N

Setting

y -s Ks + 1N,t ( s )  -[T < t+S} .N

we obtain from Theorem 3.1

lir lim E y N,C(s) 0.s-o N-t'~

(iii) i) and (ii) imply by Theorem 2.7 of Kurtz [29] the weak conver-

gence of MN to M.

Theorem 3.2

Under the assumptions of Theorem 3.1 for all CL > + 1
2

f UN( ,s)dMN(s) f U (,s)dM(s) on D([O,c); E ).
o 0

Proof

(i) Let dp denote the Prohorov metric on D([O,-); H_) (cf. Billingsley

4]). Let Ttk be the projection of _ff onto L(.: £i < k for all

i = 1,.., n) (the linear hull spanned by those whose multiindices

. --.......-

.-.
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9. (Lit ...9 It satisfy I.. < k for all i =1,...,n). The corresponding

projection from33N onto L('O 9.N1. < k for all i =1,...,In) if

-1 N -1 N 3k <h will be denoted byPk. If k 2h then we set pk Mo, =11,N

1. 1N N
Set TTk= - TE and = I - where I denotes the identity opera-

tor on the corresponding spaces.

(ii) Abbreviating the convolution, integrals f* -s)iM (s) by f Metc.

we obtain

dp(Ju dMN fUdM)

:5 d~ (IUdMNf~d~

" d pCIUNPkdMNI fUuE d14)

" dp (f UltdM, I M

(iii) By Lemma 2.3 and (2.15) for any t2! 0

t iN 2
E sup If U (t,s)p dM I

N k N o

2.2

< c e El+)
Pk.MN

413 22-

as in the proof of Lemma 3.3 for some finite constant K.Since

< -< by Leimma 2.1 the r.h.s. of the last inequality can be

made arbitrarily small by choosing k large. Hence for given C > 0

there is a k (C) s.t. for all k a (C) and all N

*-...--.. - - -- - - -.- - - - - - ..- . . . . . . .. . . .-. -. . . . .
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dp(Ju dMN fU p N dM e

(cf. Kotelenez [24], [251).

The third term in (*) can be estimated in the same way. The second term

in (*) tends to zero for fixed k. Indeed, by partial integration
tU~')NM~) NN t N

fN N N( Pk'M (t) + f UN (t,s)[DAN + R'(X(s))]PkMN(s)ds and _

ftu(t's)0dM(s) M(t) + f U(t,s) (DA + Rk(X(s))ckM(slds. Hence, the

F Trotter-Kato theorem (Davies [ 9], Theorem 3.17, Kotelenez [24], Remark
o N

4.1, and Kotelenez [22], Lemmas A.1, A.3) and the definition of p, and

TEk imply the conditions of Theorem 5.5 in Billingsley [ 4 ], Ch.I.

(iv) Since weak convergence on D([O,oo); _B) and convergence w.r.t. the

Prohorov metric dp are equivalent (cf. Kurtz [29] and Billingsley [ 4 ],

Appendix III, Th. 5) the proof is finished.

Fix
n+ 1.> = .'.-

CL 2

Let Y be an -valued square integrable random variable on ( , P)

independent of W(t) for all t > 0 and Y. a square integrable 1H -valued

random variable on (Q,F,F tP) such Y. - Y . Further, let C denote ant -o

arbitrary fU F 1/ 2  dW - continuity set of D([O,); _) (cf. Billingsley

[ 4]) and E an arbitrary element from CY(Y). We make the following

0

asymptotic independence assumption:

Y (vN) 1/2 (XN X) Y in probability on +

(3.5) !PUdMN E c) nl E) -P [ ftJF dw E )y[E
N N

... ... .•%. ... ... . %,•. . .•. . .. . . ..-.. ,. - .. .... .... . . .. -...
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(cf. Billingsley (4], Ch.I, Th. 2.1 -The second condition in (3.5) is,

e.g., satisfied if MN is independent of aY)for all (large) N.

Let 6 denote the Fr~chet derivative, BC[o,Q] xI) the real valued inea-
th &g

surable functions g with domai.n [O,t] x F< s *t. at, , &,2 g, and

DA~ -ag exist, are continuous in x and t, and uniformly bounded in norm

I 1/2
on [0,T] x3H is the square root of the covariance operator of-a

1/2* 1/2W~t) on3H anW Xt)) is the dual operator of F (~)
and F+ Wt))1

(after identifying the duals ofFH and3H with E and1IH re-
--a -Ct+lI -a -a

spectively. Finally, "Tr" denotes "trace".

Now we can state our final result under the assumnptions of the LLN.

Theorem 3.3 (CLT)

Assume (2.9) and (3.5) for fixed a > -+1 in addition to
2

Iyl 2
(I)1+ 1 1pweeP n arbitrary and fixed
(I) V1-2y 4'2

y 2
(II) E I(vN) (X N(0) -X(0)) - 0, as N-'

1/2
Then for Y (vN) (X -X)N N

Wi y N Y on D([0,co); I

where

(3.6) Y(t) =U -a(t,O)Y + U (ts) F,+ 1/ WXs))dW(s)

is the mild solution of the stochastic partial differential equation

dY~t) [D6 +R'(X(t))]Y(t)dt + F (~t)d2 t
(3.7)dY)= D 1(Xtdwt

Y(O Y
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(ii)

C CIO't]; !H a.s. for all 4 2 all t> 0

(3.8) Y E ~..-

CCIIO't]; 3F I+ a.s. for all t> 0.

and Y (t) ,t >0, does not define a a-additive measure on 3E. for Y5

i~e. th seondrelation in (3.8) is the maximal regularity of Y on the

Hilbrt sale(2.3).

(iii) Y is a Markov process, and its weak generator is given by

A(t)g(t,CP') Tt g(t,P') + <[A + R(~)]gtO)(-,( -
(3.9)

+ -Tr(Q 1/2 F 11 2 CX~t)) 2 g~t,')F 1/2 CX~t))Q 1/2 ,

where g E B3([i1t l)

Proof

Ui) The norm of the normalized last term in (2.13) can be estimated

as follows:

2 1/2"
U U N(t's)(X C S) -X(s)) (vN) R(X C s) ,X(s))I -

0

Sft e5 III CvN) C/4X N(s)-X~s) ) 2.I IIRCX C s ',X~s) HIds 0,
0

as N -~uniformly on compact intervals in probability by Theorem 3. 1

and the stochastic boundedness of III !CX N Cs) ,X(s) III (cf. the proof of

Theorem 3.1). Therefore, the weak convergence of Y to Y follows from
N

Theorem 3.2 and our assumptions as in Kotelenez (25], (263.
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(ii) The H61der continuity follows from DaPrato, Iannelli and Tubaro

[8) and Kotelenez [23).

The spatial regularity follows from the estimate

112 t 1/2
Ift U (t,u)F /  (X W))dw(u) : - If T (t-u)F (X(u))dW(u) l i5 - ~ -a+i aw1 -4a -0* -*1___s s

U B/2 /)-" 1/2

+ f e If T (u-v)F_ (X(v))dW(v)l du

a -a+1
s s4I i "" "

1/2
and the spatial regularity of f T (.-s)F (X(s))dW(s),as proved in Kote- -

0
lenez (27] (generalizing a result of Dawson [10O - cf. also Kotelenez

[251). That the spatial regularity in (3.8) is maximal follows from the

Gaussianiy o U(ts)F of12 - cf. for details Kotelenez
0 b.

[25]. y
"' (iii) The Markov property follows from Arnold, Curtain and Kotelenez

[ 2), (3.9) follows from Curtain [ 6).

Remark 3.1

I. The final result can be expressed by

(3.10) XN  X + Y + 0
/.." -*.

where XN is the local stochastic, i.e., mezoscopic description, assuming

X (0) being near to homogeneity , X is the deterministic homogeneous

state solution of (2.1), and Y is the mild solution of (3.7) which is

a generalized Gauss-Markov process if Y is Gaussian, and o(- ) is
0

the error term.

II. Let us now assume that we do not start in (2.1) with a constant but

with some other positive bounded and possibly smooth function Xo (q) .

...............................................
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Then the difference XN(t) - X(t) satisfies

(3.11) XN(t) - x(t) = FN (t) + GN(t),

where FN(t) is the r.h.s. in (2.13) and GN(t) = f UN(t's)(D-DA)X(s) ds.
0L

Of course, (3.11) will also tend to zero under the assumptions of Theo-

rem 3.1. However, in view of (2.18) we must normalize (3.11) by multi-
1/2

plying both sides by (vN) (modulus a constant) in order to obtain a

Gaussian correction term. On the other hand, the convergence of1/2G
(vN) G/2 to zero with v = NP and p > I does not hold(in general).in

function norms and for p < 2 Arnold and Theodosopulu [ 3] have shown
in the one-dimensional case that the variance of Z (t) (the martingale

N
part of X t) tends to - in L -norm. This problem and related questions

N 2
will be inves igated in a forthcoming paper.

7' -%

i ..,....

..

. . . . . . . . ... * __________ -_
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