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In his research under AFOSR-Ht<{0i72 M. Slemrod has beem!

invglved 1n two main avenues of research. This first has been

N
in nonlinear control problems for distributed parameter

oy “l/

systeméj Fre—sacond. has-been -+ nonlinear continuum mechanics
and related partial differential equations. —T / o - 3

1. Nonlinear control problems

In joint work with John Ball and Jerald Marsden [1]1 I
discussed the problem of bilinear control for a distributed
parameter system. We formulated the problem as follows. Find
pi{t) a real valued scalar control which will drive the system

du _
rai Au + p(t) Bu

from u(0)=ug to u(T)=u,. This a problem in controllability. We

found that while in an infinite dimensional Hilbert space one
cannot in general firnd sach p(t) one can find p(t) 1f u, is
restricted to a dense subspace of H. As an example illustrating

our theory we showed that the vibrating beam equation

Wit * Wuxxx * P(Blwyy =0
W = wWyy = 0 at x = 0,1
W(x,0) = £(.), wWe(x,0) = g(n)
{w,wt) can be steered to a dense set of the Hilbert space
H®(0,1) 0 HY (0,1) x L? (0,1) in finite time.
I continued this werk on my cwn in [2]1 where I weakened some
aof the assumpt:ions originally made in [11].
In his Ph.D thesis (completed June, 198%) E.L. Rogers
studied feedback control af other bilinear systems. In this
work our infinite dimensicnal partial differential esquations was

coupled to an ardinary differential equation making the svstem

g LB e ot e e IR N s M g T O L e S O A T D Lt N T L O DA Ao



hybrid. He showed the stabilizabilty of such systems. This ‘

waork will appear as a joint publication in the QBuarterly of

Applied Mathematics [31].

In another paper [4]1 I considered boundary feedback i
stabilization for the quasi-linear wave equation. In this
problem (which models one dimensional elastic motion) one tries
to find a feedback which yields the rest state of

Wit = 0y )y

w(O,t) = O
wy (L t) = £(t)

asymptotically stable. Here f(t) is a real valued control. The

interest here of course is the fact that the system is highly

nonlinear and special methods must be used.

In callaboration with J.R. McLaughlin of R.P.I. I wrote a
paper on scanning controls for distributed systems. In
particular we considered the problem of finding a controls which

stabilize the wave equation

N

Ay _ %y [_.

SF =3t +Ry +3 | ex 71(t)]y(x,t) ,
1=1

Yy O at x = 0,1 .
Here 7j (t) are N real valued controls. We gave some interesting
conditions relating ¢ and R which guarantee such stabilizing
contrals. This work will appear in [5].

Finally after considering saome work of J. Hubbard of
M. I.T. I decided to consider the problem of feedback

stabilization of

du _
at = fu + Bf
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in an infinite dimensional Hilbert space under the restriction
tif(t)t1i1 £ 1. I found the theory of nonlinear semigroups of
contractions applied nicely and one could find the desired
cantraol. I applied the theory to Hubbard’'s beam problem giving
a correct analysis of a problem which he analyzed incorrectly.

This work will appear in [61].

2. Nonlinear Continuum Dynamics

In this work I have basically considered the dynamics of the
equations of gas dynamic under the assumption that the
constitive equation for stress is given by the van der Waals

equation of state

_ RT b
plw,T) = o wZ . a,b>0 constants .
Here T is the absolu*e temperature, w = specific volume =
(density)~ ! and the stress = -p(w,T). This wark also can be

applied to elastic solid when one takes w=strain. For example
the isothermal inviscid balance of linear maomentum yields the
partial differential equations

ve + plw,T)y,, = 0O

WE — Vy =0 2.1)
where we keep T fixed for the simple isothermal case. Since the
abave choice of p has both p°<{0 and p >0 for T sufficiently
small these partial dif%erantial equations yield a mixed
hyperbaolic-elliptic inttial value problem.
I have attempted to understand this initial value problem in

several papers. My main contribution so far has been to put
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farward a new admissibility criterion which hopefully picks out

the physically relevant solutions for the above system. This is
important since weak solutions of gquasi-linear equations are
well known not to possess unique solutions. The main ideas is
that the "gaood" solutions of (2.1) should be limits of a more
hexact" system which contains both viscous and capillarity
terms. This work has appeared in L71, [B1, [?], and R. Hagan’'s
Fh.D. thesis which appeared as [101.

In related work I have used the above ideas to show the
Lax—Friedrichs finite difference scheme to be a reasonable
method to solve (2.1) numerically [(111,0121. @alsa I have shown
haw chaas may occur in (2.1) under the assumption of T is
spatially or temporally periadic (with J.E. Marsden [131).

With M.E. Gurtin and J. Carr [(141,0151 I considered a

related equilibrium problem for solving the minimization praoblem

.]'Lcw"(xw +w[w‘(x>]dx !
0 )

8!
N

- wix)d = M
J,

w,,=0 at x=0,L. Here W is the primitive of —-p and the ¢ term
denotes the inclusion of the above mentioned capillarity term.
We gave information on the nature of solutions aof (2.2) and in
fact an elegant rigorous estimate of the total mechanical energy
as an asymptotic expansion in €.

Finally with V. Roytburd, 1 am considering the existence of
solutions to the initial value problem for (Z2.1). We are trying
ta apply Murat-Tartar ' s method ot compensated compactness. We

have put the results abtained so far in papers [16], [171. We
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are still working on the problem.
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