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I. Introduction.

o
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Let {Xn; n > 1} be an i.i.d. sequence of random variables (r.v.'s) defined on

f"
et

14

e

.
2

some probability space (Q,A,P) with a c.d.f. F such that either F(x) < 1, all

L
2
7
‘s Tty

.'
¢
o]

-

x, or the right end x_ = sup {x ¢ R; F(x) < 1} is not an atom of F. Then the T

associated record times {Un; n > 0} and inter-record times {An; n > 0} given by Eﬁ:i;d
. .
871, An+1=1nf {k; XUn+k > XUn} where Un =k£0 B n> 0, (1.1)

are a.s. well-defined (see Shorrock (10)). A large number of exact and

asymptotic results for these sequences has been given in the literature, e.g.

(N

AR
f

by Rényi (8) who stated that the record times form a homogeneous Markov chain

with transition probabilities

e
......

L gakl SRPRD

P(U,,=klU =5) = EUJHT , 1<j<k, n>0, (1.2)

independent of F, in case that F is continuous (which we shall assume in what

follows). He also proved the LIN, CLT and LIL for record times, i.e.

1

= log Un +1 a.s. (n =+ =) (1.3)
1 L
= (log u,-n) ~ N(O,1) (n » =) (1.4)
n
logU - n
pm SR =+ as, (1.5)

For the inter-record time sequence it was shown by Shorrock (10) that given the

record value sequence {XU ; n > 0}, the inter-record times are conditionally
n

independent and geometrically distributed, i.e.

. v _ T k-1 .
”An+l_ l\l,\Un) = {1 F(Xun)} F (,‘(Un) a.s., k>1,n>0, (1.6)

............................
...........
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which is intuitively clear by (1.1) since the record times Un are stopping times

» for the original sequence {Xn; n > 1}. From this observation he derived
X 1 1 c ) 1.7
% — d a.s, v ;. .
N n log An a n 1.7
~ .
) 1 L .

= (log An-n) -~ N(0,1) (n » ) (1.8)
.. /m
- - log & - n
lim P __ = 0 - 41 a.s. (1.9)
. inf - -
" v2n log log n

which are the LLN, CLT and LIL for inter-record times (see also Neuts (5) and

A n
i: Strawderman and Holmes (12)). The fact that although we have Un = Z Ak’ n>20,
: k=1 -

the same nommalizing constants appear in these limit laws for both sequences
makes it clear that e.g. the normal approximation (1.4) and (1.8) cannot be very
powerful for small values of n. This was already pointed out by Neuts (5) who
suggested that n should be at least as large as 1000 in order to obtain satis-
factory results. This will also be discussed in this paper when asymptotic !
cevaluations for log Un - log A, are investigated,

Shorrock (10) also pointed out that the scquence {log Un; n > 0} should bhe close

to a Poisson point process in some sensc (sce also Resnick (9)), explaining for

. the Timit relations (1.3) to (1.5). A constructive approach to this question was

made by Williams (15) and Westcott (14) who showed that if {Yn; n > 1} is an

i.i.d. sequence of exponentially distributed r.v.'s with unit mean, then the

g sequence {U;; n > 0} defined recursively by .
U =1, U R s UK "o, (1.10) v

where |.[ denotes the nearest integer not less than the real number specified,

is a Markov chain with the same distribution as {Un; n > 0}, and

o .

-
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n
log U* = J Y, +0(1) a.s. (n ) (1.11)
noG k

L

For a refinement of this, see (7). In (6) it was also shown that

ST,

2
m

E(log U ) = n+1-C + 0(2"™), Var(log U ) = n+l-F— + 0(n°2™

' 5 (1.12)

E(log A ) = n-C+0(n2™), Var(log &) = n+ =+ 0m’2™), n =,

L S

..

where C = .577216 denotes Euler's constant and Var means variance. An intuitive
_ explanation for the last two relations is due to the strong approximation
I approach by Deheuvels (1,2) who proved, starting with relation (1.6), that on
the same probability space (Q,A,P) (possibly after enlarging) there exists a

Poisson point process {Tn; n > 1} with unit ratc and an i.i.d. sequence

Wy

Y :n > 1} of unit mean exponential r.v.’'s, independent from the Poisson

process, such that
: log b, = log Yn + Tn + 0(1) a.s. (n + «) (1.13)

Here, -log Y, is doubly exponentially distributed with mean C and variance

5
n- _ i . )
5 - In fact, Tn = -log(1 F(xUn—l))’ n > 1, as can be seen from Deheuvel's

ll construction. The rate of convergence in (1.13) was precised in (7) where it

was shown that

= ’ ! - oo

log An = log \n + Tn + o(oxp(-n+nH(EJ)) a.s, (n } (1.14)
g where tH(%) belongs to the upper class of & Wiener process, i.e. H(t) is a
ji positive function defined in some positive neighbourhood of the origin such
y . that H(t) *+ and t'l/ZH(t) +, and the integral
> o
- “3/2, .., 2 .
- I = [ t H{t) exp (-17(t)/2t) dt (1.15)
- 0+
“.u
.
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converges. It was also shown that this rate result cannot be extended to lower
class functions (i.e. H as above with I being divergent), not even if o(.) is
replaced by 0(.).

Deheuvels (1) also gave a strong approximation result for record times, based on

the one derived for the inter-record times, i.c., with the notation of (1.13),
n-1 T

k
u -7 Y, e
s k=-= 'K --1/2 ‘
;2? n =+ 3 / a.s., (1.16)

v2n log log n

where now the index range for the sequences involved is extended to Z, and also

a corresponding CLT. It was also proved that this strong approximation result

is best possible if the construction based on (1.6) is used.

[t is the aim of the present paper tb develop a corresponding strong approximation
(on the same probability space) based on William's approach (1.10), even valid

for exchangeable sequences {Xn, n > 1}, which simplifies (1.16) and at the same

time allows for a joint strong approximation of record and inter-record times.
Besides the limit laws mentioned above, also Galambos' and Seneta's (3) results s

for the i.i.d. case are easily reobtained, and somec others, including exact

estimations for the rate of convergence as in (1.14).

In fact, it is easy to see that if {Xn; n > 1} is an exchangeable sequence and RO
iy
the probability of ties is zero (i.e. P(X1 = X,)=0), then again record and {f{{{
inter-record times can be defined as in (1.1), likewise for the recond values g?=?¢
F ,

{X” ;N> 0}. Namelv, by de Finetti's theorem, we mav assume that there exists NEREN
n -

a real r.v. A on (9,A,P) such that conditionallv on A = » ¢ R, {Xn; n>1}is .
an i.i.d. sequence with c.d.f. Fy, say. Now sincc ties occur with probability

zero only we must have P{Xl = XZIA =) =0 PA-u.s. which in turn implies

%

that F\ is continuous for PA-almost all ), i.e., given A = ), {Un; n> 0} is a
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Markov chain with transition probabilities given by (1.2), independent of A,

for PA

- almost all A. Hence under exchangeability, if ties occur with probability
zero only, {Un; n 2_0} and {An; n > 0} are a.s. well defined, the record times
forming 4 homogeneous Markov chain with transition probabilities given by (1.2)
as in the 1.1.d. case.

Note that the condition of zero probabilities for ties can in general not

be replaced by a continuity assumption on the marginal distribution (as in the
i.i.d. case) as cun be seen by the exchangeable sequence {Xn; n > 1} where

Xn E Xl for all n > 2. Of course, in thec case of independence, thesc two
conditions coincide.

As has become obvious from the preccding remarks, all relevant information on
record and inter-record times is contained in the Markov chain with transition
probabilities given by (1.2). It will therefore be nccessary to deal with

strong approximation techniques for Markov chains as developed in the following

section.

1T, Strong approximation for Markov chains

THEOREM 1. Let {Sn; n > 0} be a real-valued homogencous Markov chain on the
probability space (Q2,A,P) with SO = constant a.s. and regular transition
probabilities (which here always exist). Let furthcer denote F( .|. ) the
corresponding conditional c.d.f.. Then there exists an i.i.d. sequence

an; n > 1} of uniformly U[0,1]-distributed r.v.'s on the same probability

space (eventually after enlarging) such that
S = F_lﬂ‘ S ) a.s. for all n >0 (2.1
“n+1 n+l1'"n e ¢ : -

where F'I(vl.) = inffz|F(z].) > v}, 0 < v < 1 denotes the pseudo-inverse of

.1y,




3
PROOF. Let {Wn; n > 1} be an i.i.d. sequence of U[0,1]-distributed 1.v.'s on ;f%t{
_— - Po g
LNCAC
(2,A,P) independent of {Sn; n > 0} (which eventually exists after enlarging the O \,‘
L iy
probability space). let further denote forele
e
z'.'.:{::f
F (z].) = lim F(z-hl.), ze R. (2.2) s e
- h+0 s o
Define ‘.
Vi = (-8, ) F(Sn+1|5n) AL F_(Sn+1|5n), n>0. (2.3)
Then an; n > 1} is an i.i.d. sequence of U[0,1]-distributed r.v.'s on (Q,A,P) g:‘;'.

since by construction, for all n > 0,

(Vv
P

n
S ) = e
LA

1o Ve

(.18 UTF_(Sy,1 180 F(Sy 1801 aws. (2.4)
)

1’

{where in the degenerate case, U[z,z] is to be interpreted as the Dirac

measure concentrated in = ¢ R), hence by integration,

(Vi,eooV )
po ! ml . s uf0,1] for all n > 0. (2.5)
k=0 ‘
\ow
S . : :
Spep = F V180 AEE F_(S 4180 < V1 < RS, IS ) (2.6)

for all n > 0 which by (2.3) holds a.s. This completes the proof.

\ straightforward generalization to non-homogeneous or higher-dimensional
Mirkov chains is obvious from the preceding proof but will be omitted here.

In the case of record times, we have, bv (1.2),

Fkl)) =1-¢, L1<ick, (2.7
hence by (2.3),
n Un
Vv = (1 - W ) -+ W T, n >0, (2.8)
n+1 n+l Un+] n+l Un+1 -1 -




forma an i.i.d. U[0,1]-distributed sequence (here we have used the fact that
with V also 1-V is U{0,1]-distributed). Further, letting Yn = -log Vn’ n>1,
we obtain an 1.i.d. sequence of unit mean exponential r.v.'s. Theorem 1 thus

translates into the following result.

COROLLARY 1. Without loss of generality, there exists an i.i.d. sequence

{Yn; n > 1} on the same probability space where {Un; n > 0} is defined which

is exponentially distributed such that

v - v
Y .

| - n+1 . . ~ 70 i-“ KRS
Un+1 ]Un e [ a.s. foralln>0 (2.9) S
Y U S
n+1l . n+l e e
1 - He =W ‘ - a.s. foralln>0 (2.10) SRR
ael M Oy * M o
‘ - g = - (Y ’ ' 5 i 2
_ where Y, lop \n+1 and \n+l’ “n+1 as in (2.8) b
wn+1 ] :3F
v U - Y = .S. ? 2. N
log Uy log Un Yo+ log {1 + U;:;_T—I-J a.s. forall n> 0 (Z2.11) -
I 3
— l] +] \. +1 V>..
kgﬂ_ = Jc ™ a.s. foralln> o, (2.12)
— n -
I providing an i.i.d. sequence with c.d.f. given by F(.|1) with F(.|.) as in (2.7). E.F:u
Retation (2.12) gives a simple proof for the main result in Galambos and Efjfi
Senett (3). It should be pointed out here that for all n >0, Yn+1 and E{fﬂ
' V 4y @re independent from (Ug,...,U ) as can be scen from the recursive —
structure in (2.9).
Relation (2.11) will he the key for a joint strong approximation for the
.

locarithms of record and inter-record times. This will bhe worked out in more

Jetail in the following section.

______________



=7 -

R A

IT1. .Joint strong approximation for record and inter-record times

THEOREM 2. Without loss of generality, there exists on the same probability

space where {Un; n > 0} 1is defined a unit-rate Poisson point process {Tn;

n > 1} and a non-negative r.v. I possessing all positive moments with mean

I(Z) = 1-C such that

- and {(Tn—n)//ﬁ: n > 1} are asymptotically independent; (3.1)
Top lln =7 + Tn + o(exp(—n+nH(%))) a.s. forn » «,
log An = Z+Tn+ log(1l - exp(Tn_l—Tn))+0(exp(-n+nH(%J)) a.s. for n»», (3.2)

where again tH(%) belongs to the upper class of a Wiener process. The rate
result cannot be improved to lower class functions, not even if o(.) is

replaced by 0(.) in (3.2).

PROOF.  Summing the equalities in (2.11) we obtain

no n Wk+1 N
low U_,, -kZO Vi = kzo log |1 + G - T a.s. n> 0. (3.3)
Now let
n ) } oo Wk ) )
]Il :kzl Yi\ for n 2‘_ 1, “ = ]\Zl 10}1 1 + lTk__TJ (3 4)

“
7

| o,
log(l + Ky <o <7 K (3.5)
0 k — k=0 "k

It r-~

k
with I/Uk < oxp(-1k) a.s. from which it follows that Z and the normalized
Poisson process {1Th-n)/vﬁ} n > 1} are asymptotically independent. Ailso,
relation (3.5) shows that the rate of convergence in (3.2) is exactly determined

by the tail series

LRSI A R S A NS b B B A T M A e L 2 ug ¢
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Z exp(-Tk) a.s, (3.6)

~ !
Z “k+1 )
k=n Dk ~ k=n

from which the o(.)-result follows as in (7), Theorem 2. On the other hand,

I
+1 . )
{T‘n = exp(log W, - log U ) = exp(0(log n) - T)) a.s. (n+«) (3.7)

which shows that the rate result cannot be improved to lower class functions
(cf. the proof of Theorem 4 in Deheuvels (2)). For the proof of the second

statement in (3.2) note that by (2.10), we have

: U Y W + o(1)
4%:l-= —%ﬁl -1=ce n+l 1+ —D:%T——-u—— a.s. (n » «), (3.8)
n n n
hence
Vnel -cn
log " el -log u = Yn+1 + log(l-e } +o(e ) a.s. (n> ) (3.9

with T < ¢ < 2 arbitrarv (but fixed).
The fact that E(Z2) = 1-C {ollows from (1.12) and (3.5) by the Dominated

Convergence Theorem. This proves Theorem 2 completely.

[t 15 interesting to note that in (3.2), the sequence {—log(l—exp(Tn_l—Tn));
n -t is i.i.d, following an exponential distribution with unit mean, which

is of order 0(log n} a.s. for n » =,

fheorem 2 gives a unified proof of all the limit relations (1.3) to (1.5) and
(1.7 to (1.9), even for the exchangeable case. It can also be used to give
complete characterizations for the upper and lower class of the record and
inter-record times as in Deheuvels (2), which in the light of (3.2) are the
same as those for a unit rate Poisson process. Some other consequences are

listed below,

"
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- COROLLARY 2.

{log u, - log A D > 1} is asymptotically i.i.d. with unit-mean exponential

distribution; (3.10)
? Nog An-log Un-l; n > 1} is asymptotically i.i.d., the asymptotic distribu-
~ tion being the same as that of W =Y + log (l—e-Y) where Y (and hence also
- ~log(]~0-Y)) follows as unit-mean exponential distribution, giving E(W) = 0
and Var (W) = = (in fact, also W = U - V where U and V are independent
kS
doubly exponentially distributed r.v.'s, implying that W follows a logistic
distribution with P(¥ < x) = (1+¢™ )71, x ¢ R); (3.11)
: p(Un ™ n“E An i.0.) =0, P(Un > nl'EAn i.0.) = 1 for every 0O<e<l; (3.12)
d 1
o P(An > sUn_l) = P(log Un-log An<log(1+1/s)) Y Tvs for n »
3 and every s » 0 (Galambos and Senetu (31); (3.13)
there is no sequence {Kn; n > 1} of real constants such that Un/l\'n or
g} An/Kn follows some non-degenerite limit law for n - o (Shorrock (11),
: Tata (13)); (3.14)
- (Un/Un+1; n > 0} is asymptotically i.i.d. with U[0,1] distribution
.% (Shorrock (11), Tata (13)); (3.15)

U 1
- fog —815: k > 1} is - up to an a.s. error of magnitude o(exp(-n+nH(%J) -
n

uniformly close to a unit rate Poisson point process. (3.16)

Of course, manv more of such limit relations can immediately be derived from

Theorenm 2.

Finally, relations (3.10) and (3.11) show that with respect to the norml

q‘ n. .s- .1. .'- SR ... -.c. -..
o s . . .
TR AR
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approximation of record and inter-record times given in (1.4) and (1.8), we

X have

log ”n -n log An -n

/n /n

* O(n.l/Z logn) a.s. (n -+« (3.17)

.... ‘-. L .-

which cannot be improved upon. This explains why for small or moderate values

- ot n this approximation cannot give satisfactory results.

Concluding remarks. Obviously, the Poisson processes used in Deheuvel's

representation (1.13) and in our approach (3.2) are not the same, hence Theorem
2 does not give joint results for record times and record values as in (1.16).
However, a possible connection between these two representations can be seen

as tollows.

21 Let {En; n > 1} be the i.i.d. sequence of unit-mean exponential r.v.'s forming
the increments of the Poisson point process used in (3.2). Starting with

- {1.13), we obtain

- log A -loga =T STt {log Yoep - log Yn}

n+1 n+1
(3.18)

L 'En

= -log (1-¢ ) + {En+l + log (l-e

‘11+1)]

since Tn+1_Tn and {1og Y- 1og Yn} ?Ee independent and by (3.11),
n+1), following a logistic distribution,

log Yn+1 - log Yn =E . log(l - e

But the right hand side of (3.18) is just (asymptotically) the increment of

the logarithmic inter-record time sequence derived from the representation (3.2).
In the light of relation (3.18) it seems impossible to establish a direct

~ strong) relationship between the different Poisson processes involved, unless

constructions as in (1.16) are considered.

0 o Y
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