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* I. Introduction. .

Let [X n; n > 11 be an i.i.d. sequence of random variables (r.v.'s) defined on ..

some probability space (S?,A,P) with a c.d.f. F such that either F(x) < 1, all

x, or the right end x. sup Ix e R ; F(x) < 11 is not an atom of F. Then the

associated record times {U;n > 0} and inter-record times {An ; n > 0) given by

* n
A =l, A =if{;~ kXI where Un Ak n >0, (1.1) L0 n+lin {k nU+k>X n k 9

are a.s. well-defined (see Shorrock (10)). A large number of exact and

asymptotic results for these sequences has been given in the literature, e.g.

* by R6nyi (8) who stated that the record times fom a homogeneous Markov chain

* ~with transition probabilities_ 1
P (U+1=kIU =j) 3 r-- < < k, n > 0,(12

independent of F, in case that F is continuous (which we shall assume in what

* follows). fie also proved the LLN, CLT and LIL for record times, i.e.

~logtJ U I a.s. (n-~ ~ (1.3)

I L
-(log Un-n) N~b(0,1) (n co ) (1.4)

splog U nn
su nm in + I a.s.

in ,zn log log n L

For the inter-record time sequence it was shown by Shorrock (10) that given the

r-ecord value sequence { ;n > 0), the inter-record times are conditionally
n

independent and geometrically distributed, i.e.

11 (A~~i kIX~1 ) l-F(X, )I FKI(XU a. s. , k > 1, ii 0, (1.6)U n Un i



-J ..:. ' i. T-;:" Z

which is intuitively clear by (1.1) since the record times U are stopping times

" for the original sequence {Xn; n > 1. From this observation he derived

" log A n +1 a.s. in ") (1.7)

'U1 L
-- (log An-n) - N(O,1) (n * 

)  (1.8)

lim = + 1 a.s. (1.9)inf
inf .2n log log n"'

* which are the LLN, CLT and LIL for inter-record times (see also Neuts (5) and
n

Strawderman and Holmes (12)). The fact that although we have Un  n > 0,
k 1

the same normalizing constants appear in these limit laws for both sequences

* makes it clear that e.g. the norial approximation (1.4) and (1.8) cannot be very

powerful for small values of n. This was already pointed out by Neuts (5) who

suggested that n should be at least as large as 1000 in order to obtain satis-

factory' results. This will also be discussed in this paper when asymptotic

- evaluations for log U - log A are invst i'n ated.
n n

Shorrock (10) also pointed out that the sequence {log Un; n > 01 should be close

to a Poisson point process in some sense Isee also Resnick (9)), explaining for

the limit relations (1.3) to (1.5). .\ cOn'tructive approach to this question was

made by Williams (1S) and Westcott (14) who showed that if {Yn; n > 11 is an

i.i.d. sequence of exponentially distributed r.v. 's with unit mean, then the

" sequence {t*; n > 01 defined recursivelv by-
n -

-1* 1 Un* = 1 n * , _ , 10)
0 ' n+1l 1

where 1.[ denotes the nearest integer not lcss than the real number specified,

is a N arkov chain with the same distribution :is {TUn n > 01, and

..7. *..-
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n

log 1J* Y +(OM a.s. (n+)(.1
k 1

For a refinement of this, see (7). In (6) it was also shown thatL

2
EIog U) n+1-C + 0 ( 2 fl), Var(log U) n+]-- + O(n 2n)

F(log A -+ 2), Var(log A) n-+(2- n+ 2-+ ~ 2-n

where C .S77216 denotes Euler's constant and Var means variance. An intuitive

explanation for the last two relations is due to the strong approximation

S approach by Deheuvels (1,2) who proved, starting with relation (1.6), that on

the same probability space (2,A,P) (possibly after enlarging) there exists a

Poisson point process IT ; n > U} with unit rate and an i.i.d. sequence ::~
( Y n:n > 11 of unit mean exponential r.v.'s, independent from the PoissonI A
process, such that 

.d

log A_ = log Y + T + o(1) a.s. (n oo) (1.13)n n n

Here, -log Yn is doubly exponentially distributed with mean C and variance
9n

in fctT =-log(l-F(X ), n > 1, as can be seen from Deheuvel's

n n-l
construction. The rate of convergence in (1.13) was precised in (7) where it

was shown that

log A =log Y +T +oep-nh()) a.s. (n- c) (.4n n n n

171

where tH() belongs to the upper class of a Wiener process, i.e. H(t) is a

positive function defined in some positive neighbourhood of the origin such
-1/2F *that 11(t) f and t 11(t) +, and the integral

0+ Ht)ep(I(t)/2t) dt (.5



I. 4

converges. It was also shown that this rate result cannot be extended to lower

class functions (i.e. H as above with I being divergent), not even if o(.) is

replaced by 0(.).

Deheuvels (1) also gave a strong approximation result for record times, based on

the one derived for the inter-record times, i.e., with the notation of (1.13),
n-1 Tk

sup Un - k-- Yke + 
:

1=msp n k- + I- /? a s., (1.16) "("

r inf /2n log log n (1.16

where now the index range for the sequences involved is extended to 7, and also

a corresponding CLT. It was also proved that this strong approximation result

is best possible if the construction based on (1.6) is used.

It is the aim of the present paper to develop a corresponding strong approximation

(on the same probability space) based on William's approach (1.10), even valid

for exchangeable sequences {Xn, n > 11, which simplifies (1.1b) and at the same
nt

time allows for a joint strong approximation of record and inter-record times.

Besides the limit laws mentioned above, also Galambos' and Seneta's (3) results

for the i.i.d. case are easily reobtained, and some others, including exact

estimations for the rate of convergence as in (1.11).

In fact, it is easy to see that if {Xn; n > 1} is :in exchangeable sequence and

the probability of ties is zero (i.e. P(X1 = X,)=0), then again record and :.:

inter-record times can be defined as in (1.1), likewise for the recond values

{Xl ; n > 01. Namely, by de Finetti's theorem, we may assune that there exists

a real r.v. A on (P,A,P) such that conditionally on A E R , {Xn; n > 1) is

an i.i.d. sequence with c.d.f. F,, say. Now since ties occur with probability

zero only we must have P{X 1  X2IA = X) 0 P-a.s. wlhich in turn implies

that F is continuous for P-almost all X, i.e. given A ; X, 1J n > 01 is a

rn

.-.-..-- •. .



Marko, chain with transition probabilities given by (1.2), independent of X,

for PA _ almost all X. Hence under exchangeability, if ties occur with probability

zero only, {Un; n > 01 and {An; n > 01 are a.s. well defined, the record times

forming a homogeneous Markov chain with transition probabilities given by (1.2)

as in the i.i.d. case.

Note that the condition of zero probabilities for ties can in general not

he replaced by a continuity assumption on the marginal distribution (as in the

i.i.d, case) as can be seen by the exchangeable sequence {X ; n > 1} where
xn

Xn X1 for all n > 2. Of course, in the case of independence, these two

conditions coincide.

As has become obvious from the preceding remarks, all relevant information on

record and inter-record times is contained in the Markov chain with transition

probabilities given by (1.2). It will therefore be necessary' to deal with

strong approximation techniques for Markov chains as developed in the follouing

sect ion.

"o 11. Strong approximation for Markov chains -'.z:

SfllLORl'1 1. Let {S; n > 01 be a real-valued homogeneous Ntarkov chain on the

probability space (2,A,P) with S, = constant a.s. and ,'egulai transition

probabilities (which here always exist). Let further denote F( .1. ) the

corresponding conditional c.d.f.. Then there exists an i.i.d. sequence

n n > 11 of uniformly U[0,1]-distributed r.v.'s on the same probability

space (eventually after enlarging) such that

nl - n+l ISn a.s. for all ni 0 (2.1l

where F (vi.) = infr:IF(z .) > v, 0 < v < 1 denotes the pseudo-inverse of

.°. - -m

.. . '. ~ j . ~ .7-;---Q*I->>~ ~* . ~.*-~.**3.- .



PROO)F. Let {W; n > 11 be an i.i.d. sequence of U[0,11-distributed i~.son

(Q,,A,P) independent of {S n n > 0} (which eventually exists after enlarging the

prohabi 1itN' space). Let further denote

P_ (z) I urn F(z-hV.), z EIR . (2.2)

V (1-W )FS IS + W F_(S Is ) n > 0. (2.3)
n+l n+1 n+l n -ri+1 I n+l n_

Thien f V n n >_ 11 is anA i.i.d. sequence of U[0,11-distributed r.v.'s on (2,A,P)

since by construction, for all n > 0,

(,. n+l
P (.Isit ... Snl k0 U [F_((S S) F S+1k a.s. (2.4)

(where in the degeiieratc case, U[z,z] is to be interpreted as the Dirac

measure concentrated in z E U), hence by integration,

P. 0>''nl [0jj,11 for all n > 0. (2.5)
k=0

Now

S :1V I iff I-( is <V <FS s(26
nSl = n+l Sn F_ n+l n~ Vl - n ~ (2n

for aill n - 0 which by (2.3) holds a.s. This completes the proof.

\ -traiightforward generalization to non-homogeneous or higher-dimensional

\kirkov chains is obvious from the preceding proof but will be omitted here.

hthe case of record times, we have, by (1.2),

FAklJ) = 1 < <k (2.7)

hence bv (2. 3),kA
U U

nV n+1 nF + >~ 0, (2.8)n- nl jn+1 n+l l



formai an i.i.d. U[0,1I-distributed sequence (here we have used the fact that

with V also I-V is U[0,lJ-distributed). Further, letting Y~ n -log V n > 1

we obtain an i.i.d. sequence of unit mean exponential r.v.'s. Theorem 1 thus

translates into the following result.

CC'ROLLARY I. Without loss of generality, there exists an i.i.d. sequence

iY ; n >11 on the same probability space where {U; n >0} is defined which
n n

is exponentially distributed such that

n+
U n+l U n~ a.s. for all n > 0 (2.9)

i -le nW ____ a s. for all n > 0 (2.10)
n+I n n I + W

n+l 11+l

where Yn lot! V nland V n+l' W11+1 as in (2.8)

I og Un1-log U -Y =log + + a.s. for all n _0 (2.11)

L

-ITc- ~ a.s. for all n > 0, (2.12)

providing an i.i.d. sequence with c.d.f. given by F(.11) with F(.1.) as in (2.7).

* Relat ion (2.12) givces a simple proof for the main result in Galambos and

* Sencri (3). It should be pointed out here that for all n > 0, Yn~ and

V + are independent fo U ... I as can heseen frmterecursive

stnictllre in (2.9).

Rc'iation (2.11) will be the kev for a joint strong approximation for thle

I o'ir i thms of' record and inter- record times. This will be worked out in more

detai Iin the following section.



111. Joint strong approximation for record and inter-record times

11 IEORBE 2. Without loss of generality, there exists on the same probability

* space where (U; n > 0) is defined a unit-rate Poisson point process {Tp

*n 1) and a non-negativ~e r.v. 2possessing all positive moments with mean

1() I-C such that

and f(IT -n),/v'nh n > 11 are asymptotically independent; (3. 1)
n_

Ilog 11 2+ TI + o(exp(-n+nli(-))) a.s. for n '

n n n

log A " :+T + log,(l - exp(T 1 T ))+O(exp(-n+nl()) a.s. for n-, (3.2)
n n n 1

where aintHfk) helongs to the upper class of a Wiener process. Thie rate

result cannot be improved to lower class functions, not even if o(.) is

*replaced hr 0(.) in (3.2).

ITOF!. Suimming the equalities in (2.11) we obtain

lot, U1 ~ log 1+ kl a.s. n > 0. (3.3))
K- l 0 k+l

for n > I, Z = g lo + (3.4)

I r-oT reCLation) (2.8) we see that

k~-i ~ k+ISlool + - < < - (3.5)
k~0 U

witfh 1/1 < expl -Ti a .. from which it fol lows that 2and the noniialized

IPo i ssoni process (T -)vhn >I arnte asymptotically independent. Also,
n

r-elation (3.5) shows that the rate of convergence in (3.21 is exactly determined

1)w 0t, n~til ser-ies



9

< e~ xp(-T K a.s. (3.6)
k~n Uk k=n

from which the o(.)-result follows as in (7), Theorem 2. On the other hand,

=exp(log W0 1  log 11 exp(.O(log n) -T0) a.s. (n - ) (3.7)

which shows that the rate result cannot be improved to lower class functions

(cf. the proof )f Theorem 4 in Deheuvels (2)). For the proof of the scn

statemenit in (3.2) note that by (2.10), we have

+1 0 (1)
-i-e nl- +nla.s. (n -~~,(3.8)

11 n n

lo", A 1 -log U0  Y + log(l-e n) + o(e- )1 a.s. (n 4 ) (3.9)

ti th I < c < 2 arbitrary- (but fixed).

Tefact that E(Z) = 1-C follows from (1.12) and (3.5) by the Dominated

Conxveroence Theorem. This proves Theorem 2 completely.

ft t;interesting to note that in (3.2), the sequence {-log(l-exp( T1 )n- n
*is i .i.1. following an exponential distribution with unit mean, which

is iJ order 0(Ioo n) a.s. for n -

Uhcoiem 2 giv-es a unified proof of all the fimit relations (1.3) to (1.5) and

(I. to (Aeven for the exchanocable case. It can also be used to give

O0TlJ1(te charactc'rizat ions for the tipper and lower class of the record and

nt(c-recordI times as in Deheuvels (2), which in the light of (3.2) are the

nre as those for a unit rate Poisson process. Some other consequences are

I is red helow.
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* COROLLARY 2.

{log U -log A; n > 1} is asymptotically i.i.d. with unit-mean exponential
n n

distribution; (3.10)

{log A -log Uni n > 1) is asymptotically i.i.d., the asymptotic distribu- ~
-- n- M

tion being the same as that of W = Y + log (1-ec- ) where Y (and hence also

-lo(I-e )) follows as unit-mean exponential distribution, giving E(W) = 0

and Var (W) =r (in fact, also W = U - V where U and V are independent --

doubly exponentially distributed r.v.'s, implying that W follows a logistic

distribution with P(W < x) (1+e X),x ~ .;(3.11)

A P( 0 tU>1 A i.o.) =1 for every 0<E-<l; (3.12)n n n n

P(A '41LI P(log Uj -log A <log(l+l/s)) +~ S- for n -

n n-l n n

and evern s -'0 (Galambos and Seneta (3)); (3.13)

there is no sequence {K n n -V 1 of real constants such that U n/K n0o'

A /K follows some non-degenerate limit law for n -~(Shorrock (11),

Ta ta (13)); (3.14)

'U n/I' n > 1i smptoticaflyN i.i.d. with U[0,11 distribution

(Shorrock (11), Tata (13)); (3.15)

U1
!log nk* k > 1} is - up to an a.s. error of magnitude o(exp(-n+nH(-)

nn

Liniformly close to a unit rate Poisson point process. (3.16)

* Of course, many' more of such limit relations can immediately he derived from

Thecorem 2.

* F:r~ialv, relations (3.10) and (3.11) show that with respect to the normail



approximation of record and inter-record times given in (1.4) and (1.8), we

have

log 11n n log n 1/2
n O(n log n) a.s. (n o) (3.17)

In A- _

which cannot be improved upon. This explains why for small or mderate values ____

of n this approximation cannot give satisfactory results.

Concluding remarks. Obviously, the Poisson processes used in Deheuvel's

representation (1.13) and in our approach (3.2) are not the same, hence Theorem L .

2 does not give joint results for record times and record values as in (1.16).

Ilowever, a possible connection between these two representations can be seen

as follows.

Let {En; n > 1) be the i.i.d. sequence of unit-mean exponential r.v.'s forming

the increments of the Poisson point process used in (3.2). Starting with

(1.13), we obtain

log An+l log A n T n+ Tn + {log Y n log "n"

(3.18)-""

-E -E
-lou (1-e + (En+ 1 + log (-e )

since T -' and {log Yn+l-log Yn} are independent and by (3.11),L -E

log Yn+- log Yn = En+1 
+ log( - e , following a logistic distribution.

But the right hand side of (3.18) is just (asymptotically) the increment of

the logarithmic inter-record time sequence derived from the representation (3.2).

In the light of relation (3.18) it seems impossible to establish a direct

(strong) relationship between the different Poisson processes involved, unless

constructions as in (1.16) are considered.

* .P .A ..-.. -.c 9v ..



12

-. Acknowledgements. I would like to thank P. Deheuvels for some stimulating

discussions in this area of extremal statistics.



R-7 °oL%

References .'--

(1) Deheuvels, P.: Strong approximation in extreme value theory and applications.
Colloquia athemntica Societatis Janos Bolyai 36, Limit Theorems in Probability
and Statistics, Vezpr6m (Hungary), 1982. North Holland, Amsterdam, 369-403.

(2) IDeheu'els, P.: The complete characterization of the upper and lower class of
k the record and inter-record times of an i.i.d. sequence. Z. Iahrscheinlichkeitsth.

verw. Ceb. 62 (1983), 1-6.

(3) 6alwifbos, .J. and Seneta, 1. : Record times. Proc. Amer. Math. Soc. 50 (1975),
S83-387.

(4) Holmes, P.T. and Strawderman, W.E.: A note on the waiting times between record
observations. J. Appl. Prob. 6 (1969), 711-714.

" iS) Neut., M.: Waiting times between record observations. J. Appi. Prob. 4 (1967),
206- 208.

(0) Pfei fer, D.: A note on moments of certain record statistics. -. Wahrschein-
Iichkeitsth. verw. Geb. 66 (1984), 293-296. -

(7) Pfeifer, ).: On the rate of convergence for some strong approximtion theorems
in extremal statistics. Statistics F; Decisions (1985), to appear.

(8) R6nvi, A.: Th6orie des 616merints saillants d'une suite d'observations. Colloquium
on Combinatorial Methods in Probability Theory (1962), 104-117. Matematisk
Inst itut, Aarhus Universitet, Denmark.

(9) Resnick, S.I.: Extremal processes and record value times. .1. Appl. Prob.
1I0 (1973), R(O-868.

(I0) Shorrock, R.. A limit theorem for inter-record times. .1. Appl. Prob.
0 190-2), 219-223. Correction, 877.

(II) Shorrock, R.W. : On record values and record times. J. Appl. Prob. 9 (1972),
310-320.

(12) Straidermn, W.E. and Holmes, P.T.: On the law of the iterated logarithm for
interrecord times .J. Appli. Prob. (1970), 432-439.

13 Tat:i, I.N.: On ouitstanding values in a sequence of random variables. Z.
ihrischeinlichkeitsth. verw. Geb. 12 (1969), 9-20.

(14) twstcott, 'I.: A note on record times. .1. Appl. Prob. 14 (19-7), 63--9..

(15) 1%iIliams, P.: On Rrnii's 'record' problem and Engel's series. Bull. lond.
M,1ath. Soc. 5 (1,3) , 2) 5-_23 .

.. ~%~*..-....



V a

o',-

-. '

~FILMED++

.", ,% .

"-'. .s-."

-,° 
, '

.'.

,.-,- 

1.-.


