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/ This paper deals with the problem of selecting good binomial populations

compared with a standard or a control through the empirical Bayes approach.

Two cases have been studied: one with the prior distribution completely

. unknown and the other with the prior distribution symmetrical about

p but otherwise unknown. In each case, empirical Bayes rules

are derived and their rates of convergence are shown to be of order

O(exp(-cn)) for some c>O, where n is the number of accumulated post

experiences at hand. 
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Empirical Bayes Rules for Selecting

Good Binomial PopulationsI

by ~

Shanti S. Gupta and TaChen Liang
Purdue University University of Michigan

1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate

when one is confronted repeatedly and independently with the same decision

problem. In such instances, it is reasonable to formulate the component

problem in the sequence as a Bayes decision problem with respect to an unknown

prior distribution on the parameter space and then use the accumulated

observations to improve the decision rule at each stage. This approach is

due to Robbins (1956, 1964, 1983). Many such empirical Bayes rules -ave been

shown to be asymptotically optimal in the sense that the risk for the nth

* decision problem converges to the optimal Bayes risk which would have been

obtained if the prior distribution was known and the Bayes rule with respect

to this prior distribution was used.

Empirical Bayes rules have been derived for multiple decision problems

by Deely (1965) for selecting a subset containing the best population. "

Van Ryzin (1970), Huang (1975), Van Ryzin and Susarld (1977) and Singh (1977)

also studied other multiple decision problems by using the empirical Bayes

dppl'oach. Recently, Gupta and Hsiao (1983) and Gupta and Leu (1983) studied

empirical Bayes rules for selecting good populations with respect to a

'Research supported by the Office of Naval Research Contract N00014-84-C-0167
at Purdue University. Reproduction in whole or in part is permitted for any
purpose of the United States Government.
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standard or a control with the underlying populations being uniformly

distributed.

In this paper, we are concerned with the problem of selecting good

binomial populations with respect to a control through the empirical Bayes -.-

approach. Two cases have been studied: one with the prior distribution

completely unknown and the other with the prior distribution symmetrical

about p 1 but otherwise unknown. In each case, empirical Bayes rules

are derived and their rates of convergence are shown to be of order

O(exp(-cin)) for some ci > 0, i = 1,2. For the case of the symmetrical
1 *1

prior distribution two smoothing methods are studied in order to improve

the performance of the sequence of empirical Bayes rules.

.orinulatiun of the Empirical Bayes Approach

Let 0'" 7  kl,..., denote k + 1 populations and let X be a random

observation from ii" Assume that Xi " B(Ni•pi), where Pi E (0,l) and Ni is

fixed and known. Let w0 be the control population. For each i = 1,...,k,

population 71 is said to be good if pi > pO and bad if pi < pO, where

the control parameter pO is either known or unknown. Our goal is to derive

some empirical Bayes rules to select all the good populations and exclude

all the bad populations.

When the control parameter pO is known, the empirical Bayes framework

can be formulated as follows:

(1) Let c = P e(O,l) for i = 1,2,...,k}. For each

".Q, define A(R) = {ifp i > po}, B(p) = {ilp i < po}. That is, A(k)(B( ))

is the set of indices of good (bad) populations.

(2) Let A = {afa c{l,2,...,k}} be the action space. When action a is

taken, it means that population ri is selected as a good population if

ia, and excluded as a bad population if i4a.

r. "'.""'" "" "."...".."..."'' "-" " " .""""""'""".
°
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* (3) The loss function L(k,a) is defined as follows:

(2.1) L(k,a) = (pO)
.iJ ()-a("- + iEa-A( ) L .)

where the first summation is the loss due to not selecting some good -...

populations and the second summation is the loss due to selecting some

bad populations.

k
(4) Let dG(p) = i dGi(p i) be the prior distribution over the parameter

space Q, where Gi(.) are unknown for all i = 1,2,...,k.

(5) For each i, let (Xi , j = 1,2,..., be pairs of random variables

associated with population ri where Xij is observable but Pij is not
observable. P.j has distribution G. Conditional on P.. Pi, Xi"

is binomially distributed with parameters Ni and pi,. For the case where

the prior distributions Gi's are completely unknown, some additional

observations Yij = (Yijl'''"Yi'j ) froi, each population ii 1,

are assumed to be at hand, where YijmIPii, m = l,...,n i, are i.i.d.,

independent of XijPij and follow B(l,pij) distribution. Thus, in this case,

the jth stage observations are Z = kj kj For the

second case where Gi 's are assumed to be symmetric about P no no

additional data are needed for the construction of our empirical Bayps rule.

LetX = l , k ) be the present observation. Conditional on
k

P- Pl...pk),  has joint probability function f( ;,) i r

N. N.-x
h, - fixp) 1) pX(lp) 1 for each i 1,. ..,k.

Finally, since we are interested in Bayes rule, we can restrict our

ittention to the nonrandomized rules.

. --7
° °° ° ° . . °° ° ,, °. . . °. . .. . . . . . o °.. ., ,. * . ' - . ° -, ° , ° - ° , - ° - o .
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(7) Let D = idld x * A, being measurable} be the set of nonrandomized .. .

k
rules, where x = n {O,l,...,N I. For each deD, let r(G,d) denote the

associated Bayes risk. Then, r(G) = inf r(G,d) is the minimum Bares risk.
de D

When the control parameter pO is unknown, for the related framework,

the indices in the associated notations should begin at 0 instead of at 1.

In the sequel, (0) will be used to show this additional fact.

We now consider empirical Bayes decision rule dn(X ,  l""''n
) whose

form depends on x and Z., j = l,...,n. Let r(G,dn) be the Bayes risk

associated with decision rule dn( , I'""n " That is,

r(G'dn -Ix E f L(g'dn' " 'n) f( Jk) dG(R) i)!!i

L..
where the expectation E is taken with respect to (Ql'"'"n)" For simplicity,

dn(X, Z..n ) will be denoted by dn( ).

Definition 2.1. A sequence of decision rules {dn(X)}0= is said to be

asymptotically optimal (a.o.) relative to the prior distribution G if

r(G,dn) r(G) as n

For constructing a sequence of a.o. rules, we first need to find the

minimum Bayes risk and the associated Bayes rule, say dG. From (2.1), the

Bayes risk associated with decision rule d is

(2.2) r(G,d) = x () n f.x) + C,xEx id( () i O jRl xj -:-;

where

.. . .. ............... .°. . • •.--.. .
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Pofi(xi) - Wi(x i) if pO is known;

(2.3)

Wo(xo)f i(xi) - Wi(x i)fO (xO ) if PO is unknown;

fW.(x) ff(j)d ~)

1 f pf(xjp)dG (P);

and

k
f X .,: if( I&G(

;K1=1 (poll)~ (

Hence, the Bayes rule dG can be obtained as follows:

(2.4) d G(,x,) A Ii G (10 <01.

Now, for each i =(0), 1,...,k, and for each n =1,2,..., let

W~~~~~~~~Wo in(" n xi( llY)..(

W~~~(x~II) Win (x;(.,. ,..(.y. be an estimator of W (x) and

in (x. f.i (x.; (X. illy . ) ,.. .,(x. in')) be an estimator of f (x1)

Define

(2.5) ( WOn (x 0)fin (x i W in (x~ i~f(x 0) if po is unknown;

in

Pfiin (x W i n (xi) if p0 is known;

and

6)d (x) = iil- Wx 01.n .n-.



-. . - -. - .'.".-

6

p ,If Wim(x) ). Wi(x) and fin(X) RP f(x) for all x = 0,l,...,N. where

" means convergence in probability, then Ain() R tiG(X) for all .

Therefore, from Corollary 2 of Robbins (1964), it follows that r(G,dn) - r(G)

as n -). So, the sequence of decision rules (dn()} defined in (2.6) is

asymptotically optimal for our selection problem. Hence, in the following, ,_

we have only to find sequences of estimators {Wi (x)} and {fn (x)} possessing
in in

the above mentioned convergence property.

3. Case when the Prior Distribution is Completely Unknown

Robbins (1964) and Samuel (1963), respectively, pointed out that there

was no way of approximating Wi(x) just by using the observations (Xil, .,X. -..).

In order to remedy this deficiency, we take, at each stage, some more observa-

tions (Yijl"'"Yijni) in our model where n. can be any positive integer.ijl'* 'ijn~ i

For simplicity, let n. 1 for all i = (0),l,... ,k.

Estimation of Wi(x) and fi(x)

A usual estimator of fi(x) can be given as follows:

I n T

(3.1) fin n j I I (Xi ) for x : 0,1,...,N i. _

Then f. (x) is an unbiased estimator of f.(x), and by the strong law ofin
large thumbers, f in(x) - fi(x) with probability 1 for each x =,1,....Ni .

Hence, fin(X) P fi(x) for all x 0,1,...,N i.

For the estimation of Wi(x), we consider the following. Define

(3.2) V. (x) Y I (Xi )

Under the assumption (5) of Section 2, it is easy to see that E[Vi (x)]

Wi(x). We then define

(3.3) WinX) = (x).

.- - -- - -. - n - a. .b-..- . .- ... ,.. . . . - . ..... .



Since V ij(x), i : 1,2,..., are i.i.d. and bounded, it is easy to show that

Wi (x)-Wi(x) with probability one for all x = 0,1,... ,N. Now, let A (X)
in n%
and dn(Ix) be defined as in (2.5) and (2.6), respectively. From the discussion ..

of Section 2 and the construction of the sequence of decision rules

{dn In- through (2.5), (2.6), (3.1) and (3.3), we get the following result.

Theorem 3.1. For our decision problem, the sequence of decision rules

nIn=l is asymptotically optimal relative to the prior distribution G.

Rate of Convergence of Empirical Bayes Rules {dn I

Let Ad n nl be a sequence of empirical Bayes rules relative to the

prior distribution G. Since the Bayes rule dG achieves the minimum Bayes

risk r(G) relative to G, r(G,d) -r(G) > 0 for all n = 1,2..... Thus, the
n

nonnegative difference r(G,dn) - r(G) is used as a measure of the optimality

of the sequence of empirical Bayes rules {dn n= '

Definition 3.1. The sequence of empirical Bayes rules {d In is said to
n n1l

be asymptotically optimal at least of order an relative to G if

r(G,dn) - r(G) < 0(x ) as n where lim an = 0.n- n n-K "

For each i = ],...,k, define Si - {x(XEXiG(X) < 01, Ti = { VXJAiG() > 01. 7

Let 1= mi (-AiG())) c2 =min (AWiG()) and F = min(.1, 2). Since
xCS. xcT.

l<i<k l<i<k
, is a finite space, therefore E > 0. Now, by the fact that 0 < f.(x.) < 1 and

:AiG(X) < 1, with straightforward calculations, one can obtain

0 r(G,dn) - r(G)

(3.4) k
i1 I Pui (x) > x01 + P{in (x) < 0}

in in

fro: ;.- ), it suffices to consider the behavior of

0, when S and that of Puin(X) 0; when x-T, as n .. for

.2,. . .

. . ... .. .. .. .. .. ... .......



8 .

Note that for each E S.,

<P{A. A

in (~ iG(~ 1

Then, by (2.3), (2.5) and the fact that 0 ~ ) i~*~f )Wf

and p0 E (0,1), one can obtain the following inequalities:

(3.5) P{A W~ > 01 < Pfi (x)- f.(. ~} {.(. ~x)<~

when p0 is known; and

(3.6) OX > 0) < P{Wn (x)- WONx) > L} + Pf. (x) f f(x) Ll

+ P{W~ (x)- W.(x.) < - l + P{ -( f (x

when p0 is unknown.I0
(3.5) and (3.6) show that it suffices to consider the behavior of

inf~x~ - fix) > n P{IWin(xi) -Wi(xi)j 61 for some o >0.

n

From (3.2) and (3.3), W.i (x)-W.(x) A ij A..x/n where A. .(x)=

Y. I (X )- )W(x. It is easy to see that A W(x). 1,. ..,n, are

i.l.d. with mean 0 and finite variance, say a.(x), since JA. (x)j < 1.

Therefore, for m -~2,

E[Am (x)] E[IA (x)Im] E[IA. .(WI 1

Let B n(x) n, .(x). Thus, by Bernstein's inequality (see Ibragiinov

and L innik (1c)71), page 169), for any 0,

6'2
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' k x) WIn

(.3.7)
n ~

Pj 7A. W() 2B~ (x min(-' n' 6>() ~~ x)(x) n x
j=l 1 1

2 expt- n mi n( 2,- (W) ,(x)).

n
Similarly, from (3.1),f in (x f fi(x) 7 C.i (x)/n where C. .(x)

(X. .) - f .(x). Also, C. .(x), ,j 1,... ,n, are i.i.d. with mean 0 and

C 1(x)I 1 and hence with finite variance, say ui(x). Applying Bernstein's

inequality again, we obtain

1exp- r , x \X ,,X

we rake = if p0 is unknown or take if = -' is known. Then,02 ~
from (3.5) through (3.8), for each xF-S.

P.~ (x) > 0) - (exp{,- -min(, 2Ctl (x.), a.(xi)}

New, (; ii 1x (

Followinq an argument analogous to the above, we also get the conclusion

given below:

For each xT i l,= .k

(32 -)
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Now, let c1  1ib wher bnmrm (62 (X x)
~min~b1,b2) 1 m'i<k 10<x<N j1 ]

mm! [min (6281 (x) here m =1 if pois known and
m<i<k 0<x<N.

m =0 if p0 is unknown. It is clear that c, > 0 since B .(x) >0,

* cai(x) > 0 and x is finite. Thus, we have the following theorem:

*Theorem 3.2. Let A dn10= be the sequence of asymptotically optimal rules

le,,cribed in Theorem 3.1. Then, r(G,dn )-r(G) 0 (expi-c nl) for some c 0.

* An Alternative Empirical Bayes Rule

With the same framework as above, define

(3.11) T. =X..Y
13 13 13j

N. N.-x
Then Tijpij B(N.+l, p..). With f.(xjp) ( (1)px( 1 .. ) 1 wiigfo

Then, fromP1 (.)folwnRbis(1951), writingfrom

f (x) =~ ff(x~pdG(p N +.x,.
0 1 11 i

Hence, let

(3.12) W? (x) =N+
1nj~ jil Ifx+ 1}(Tmj),

and define

p f (x )-W. (x. if p0 is known,

(3.13) ~in ()=On 1 i

I x) in (x On (x if p0 is unknown;

and



J0

(314 d w, {:. W 0)

Note that W. (x is also an unbiased consistent estimator of W.(x).in 1 ..

Therefore, following an argument analogous to that of (3.7), we can conclude

that r(G,d 0)-r(G) < 0(exp(-c n)) for some c2 > 0.

6r

4. r.ds when G.(.) are Syr-mmetrical about p 12I. ,

In this section, we suppose that there is sufficient information to

tell us that G.(.) are symmetrical about p =1/2 for all i =(0,].,k

Further, we also assume that N. are even integers for all i =(0), 1,. ..,k.

Estimation of Wix) adfi(x)

Under the above assumptions, f.(x) =f.(N. x) for all x =0,1,... ,N.

Therefore, it is reasonable to use

(4.1) 1(X ) for x2n 'f1 x,N.-X1 ii 2

~i x) fi(nX I I lI (X i) for x= -

Sj-l

to estimate f .(X).

For W.i(x), x = 0,l,...9N. we will construct a sequence of consistent

estimators N! W .nx1 in terms of fi () y= 0.l,...,N1, by using the

observations (X.. j = 1,... ,n) only. The following lemma is very helpfulii,
for the above purpose.

Lemma_4.1.. Suppose that the prior distribution G.(.) is symmetric about

p 1/2. Then



1a N.- 1 W( 1) for each x 0 ,1,...,Ni-1. __

(b)Wi~) WiNix) f rpx) = f.(N.-x) f-or each x 0 ,1,...,N.

11 11N

(c) Furthermore, if N1 is an even integer, then, W1 (i).1 ()

Proof: Direct computation.

Theorem 4.1. Suppose that G() is symmietric about p =1/2 and N1 is1i

3n even integer. Then, for each x = 0,1,...,N., W.(x) can be represented
is a linear function of f.y), y= ,..Nl

* Proof: It follows from Lemma 4.1 that for each x =0,1,...,N -1 and
N.

N. z) Ni+-2z f

1 2 i 2!2N 1+2z (2z l

(4.2)

Then, by (4.2), Lemma 4.1 (b), (c) and by induction, the result follows.

By Theorem 4.1, for each x =0,1,...,i

N.
*(4.3) Wi(x) a (N1,x,y) f.(y),

Y=O 1

*where the coefficients O(N.,x,y) depend on Ni. x and y. Also, the

values of a(N.,x,y) can be obtained from Lemma 4.1 (c) and the iterative

relation (4.2).
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We then define

N.

(4.4) W n(x) ' e(Ni,x,y) in(Y)
y=O

where f. (Y) is defined in (4.1).in

Now, define

on0in 1 in i on 0
(4)~ () W~n(X 0 )fin(X.)u - W.i n (x.)f n (xO) if P0 is unknown, ::'''::"

(4.5) A~n ..,.

Pofin(Xi) - Wln(xi) if pO is known,

and

n in

From (4.1), it is clear that f. (X) - fi(x) with probability 1 asin

n for each x= O,l,...,N i  Therefore, from (4.3) and (4.4),

Win (x) - Wi(x) with probability 1 as n - for each x= 0,I,...,N i. Thus

we have the following theorem: - -.-.

Theorem 4.2. Suppose that the prior distributions Gi(.) are syrmmetrical

about p 1/2 and Ni are even integers for all i = (0),l,...,k. Then, the

* -. sequence of decision rules {d I i is asymptotically optimal relative to

the prior distribution G.

Rate of Convergence of Empirical Bayes Rules {d

We now consider the rate of convergence of the empirical Bayes rules

Id n. Following the same discussion as given in (3.4) through (3.6), and
n

. . . .
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using the fact that fin(x) - (x) with probability 1, it suffices to consider
the behavior of PW (x) - Wi(X) > 6) and p{Wi(X ) - Wi(x) < -6}as n + w . 4
for some 6 > 0, for each x = Ol,...,N., i = (0), l,...,k.

From (4.3) and (4.4), for each x = O,l,...,Ni,

p(in - (x) • > } P =o (N ,x,y) [f l fi(Y)] > 6

N=0 i{(ixy fny)fy]> l

.-.
5

where 6 6 If S(Nix,y) = 0 for some 0 < y < N, then

*.- P{ (Nisx,Y)[f n(Y) - f1(y)) > 6Ii = 0. So, we assume a(Ni,x,y) 0 0. When

6(Nisx,y) > 0, then

P {S (N i x -y )[f I (y ) f (y )] > zl}  
= P {f (y ) "f i(y )  > / (N i x ,Y ) ."

When a(Ni,x,y) < 0, then

P s(Ni 'x 'Y)[f (Y) " fi(Y)] > 1 P{f (y) -fi(y) < 61/B(Nix,y) }

In either case, the problem can be reduced to considering the convergence

rate of P(If - fi(y)l > 621 as n - for some 62 > 0. Similarly,

for the convergence rate of p{Wl - W(x) < -6} where x= 0,1,.. ,Ni  and
6 > 0, we get a similar result. Therefore, by applying Bernstein's

.*.,

* ~.. . .... ................ ... 1m
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inequality and following an argument similar to that of (3.7), we conclude %-.-.

the following theorem:

Theorem 4.3. Let [d n }=i be the sequence of decision rules defined in (4.6).
Then, Idn}1 is asymptotically optimal at least of order exp{-c3n relative

to the prior distribution G for some c3 >0. 0

5. Smoothed Empirical Bayes Rules

In this section, we again assume that G.(.) are symmetrical about

p = 1/2 and N. are even integers for all i = (0), l,...,k. In Section 4,

the marginal frequency functions fi(x), x=0,1 ,Ni  i = (0), 1,...,k, are
estimated in terms of the empirical frequency functions f! (x), regardless

in '

of the properties associated with the marginal function fi(x). In this

section, by considering some properties related to fi(x) and Wi(x), two

methods for obtaining smooth estimators of fi(x) and Wi(x) are studied.
i- -

We first state the following lemma (without proof), which can be

verified by direct computations.

* enta- 5.1. Suppose that G.(-) is symmetrical about p = 1/2 and N. is an

even integer. Then,

N. -1 N. -1
(a) fi(X)( 1) < f.(y)(y1) for 0 < y < x < Ni/2.

N. -1 N. -1
(b) W( )) < Wi(Y)(y1) for 0 < y < x < Ni/2 and Ni/2 < x < y < N..

(c) Wi(y) - Wi(Ni-y) for 0 < y < Ni/2. ..-

Procedure 1. Smoothing Based on f

For each 0 < y < Ni/2, let

- ***.- % -.. .
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N. x N. -1
*(5.1) f(y) = () max nin {1 fl (a)(ai /(x-z+l)l,L

' 3y<x<Ni/2 0<z<x a=z

and let f.(N.y f.y) Then, letin *i- 'in~y

N.
(5.2) Win (y) s (N i'ylz)fin(z) for y =01..,~

z =0

Define

(.)= Pof in(x i)Win(xi) if p0 is known,

W O (x 0 )f in (xi)-W. (xi )fOn(xo) if p0 is unknown.

Finally, define the selection rule d as follows:n

*(5.4) d (x) MiAin~ < 0l.

Asymptotic Optimality of ~

N. -1
Note that f. i(y)( 1) y 0 ,1,...,N.i are the isotonic estimators of

N. -1 1 )N. -l
f.(y)( 1) A on fin x 1  x = ,1,...,N,, with equal weights. Since

f (x) is a strongly consistent estimator of f.(x) for all x = ,l,...,N., then,in 1

by Theorem 2.2 of Barlow eta] (1972), Lermma 4.1(b), (4.3) and the definition of

W.i (y), it is not hard to see that fin (y) and W.i (y) are strongly consistent

*estimators of f.y) and Wiyrespectively.

Next, we consider the rate of convergence of the difference r(G,d n)-r(G).

*For each 0 < y < N. and 6 > 0, by Theorem 2.1 of Barlow. et al (1972), we can

obtain the following inequality.
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p. .. (5.5)
p., N.
e1 N. N. -1

Then, with a discussion similar to that given in Section 4, we can

conclude that r(G,d )-r(G) O~xlce)for some c>0

It is easy to see that the new estimators f in (y), 0 y Ni. always

*satisfy the constraint of Lemma 5.1(a). However, one would also like to

* see whether the estimators W. (y), 0 < y < N. satisfy the correspondingin
* constraint or not. The following lemma is useful for this purpose.

Lemma 5.2. Let U(x), h(x) be nonnegative functions defined on {0,l,. ..,

where N is an even positive integer, which satisfy

(a) U(x) = x+l U(N-x-1) for all x = 0,1,...,N-1.
N-x

(b) U(x) + U(N-x) = h(x) = h(N-x) for all x 0 ,1,...,N and

(C) 1(x) U(N-x) for all x =0,1,...,N/2.

* Then

* (d) (xfl)h(x+l) (N-x)h(x) for all x =01..N2l

We w.iLe that (a), (b) and (d) of Lemima 5.2 do not imply (c). and

* the estimators W . (y), 0 < y < N. do not always satisfy the requlrea

* constraint. Lemma 5.2 suggests resmoothing based on W. (y).in

Procedur-e 2. Resmoothing Based on W-

First, let Q. (N. W. (N. and for each N./2 < y < N.-1, let
in i in i1 - 1

(5,6) Qn (Y) W (y)(NX - + W. (N.-y-1( N.j 12
inin y in i y-

V%.-*
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Step 1. For each N./2 < y < Ni. letp *~I1

z

*(5.7) Qt (y) = max min Q (a)/(z-x+l)}.in N /2<x Y x<z<N. a=x i

Step 2. Let Wt (N.) Q,! (N. and for each N./2 < y < N.-1, letin *i in 1

N. N.i
WI!n (Y in (y)(~1  and W~(Ni-y-l) Qlny) 1 ).

Then, let

(5.8) ft (y) Wt (y) + Wt (Ni-y) for y 0 ,l,...,Ni and definein in i

p f* (x )-Wt (x) if p is known,
Gin i in i 0

(5.9) A, (x)

I ~~On 0 in , in i on 0 fp sukon

* Finally, define the selection rule d* as follows:n ... i.1

(5.10) d*(x) = iIAt (x) _01. 
.

*Remark. By Step 1 and Step 2 of Procedure 2, the estimators Wt~ (y), 0 < y <NV,in - 1

always satisfy the constraint of Lemma 5.1(b) and (c). Then, by Lemma 5.2,

Fthe estimators f*' (y), 0 < y Ni.also satisfy the corresponding constraint.
in1

Asymptotic OptimalityofA

p.By Theorem 2.2 of Barlow et al. (1972) and the fact that W~. (y), 0. y<Ni. are
in

strongly consistent estimators of Wi(y). 0 < y < N. we conclude that Wt (y),
1 1in

0 <y < N., are strongly consistent estimators of W.(y), 0 < y < N.. Then, by p

Lemma 4.1(b) and (5.8), ft() 0 < y < N1, are also consistent estimators of

fl(y). 0 - y N. Therefore, the sequence of empirical Bayes selection rule"

d* is asymptotically optimal.n
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lky iheoreut 2.1 of Barlow, et al. (1972) and (5.8), we obtain, for 0, -"

P fIf n(Y) - f (Y)I

P{IW~n(Y)-Wi(Y)I > 6/2} + P{IW (Ni-y)-Wi(Ni-y)l > 6/21
inin 1

N.i N. 22
+ P{ I jWtn(x)( 1-Wi(x)(x 1 > (y 16 2/4 }

x=O x ' y

(5.11) Nii)-2N/4N""j"

+ P{ .~ W (X)( x~ 1  (x)(x  I 2 (N.- f2 T

x=O inI _-

Ni N N N

2 P{ IWi(x)(x l)lw(x)(x > (yi 2 /4 -

x 0

N. N. Ni 1 + 1
2 P{I li (X)-WW i) > (x Xy 6 (Ni " i ;-/ 1.

x=O'-""

Then by (4.3), (5.2) and (5.5), with a discussion similar to that given

in Theorem 4.3, we conclude that r(G,dn)-r(G)< O(exp{-cn} ) for some c > 0.
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