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compared with a standard or a control through the empirical Bayes approach.

Two cases have been studied: one with the prior distribution completely

unknown and the other with the prior distribution symmetrical about
p =)¥i but otherwise unknown. In each case, empirical Bayes rules
are derived and their rates of convergence are shown to be of order
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Good Binomial Popu]ations1

by

Shanti S. Gupta and TaChen Liang
Purdue University University of Michigan

1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate
when one is confronted repeatedly and independently with the same decision
problem. In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect to an unknown
prior distribution on the parameter space and then use the accumulated
observations to improve the decision rule at each stage. This approach is
due to Robbins (1956, 1964, 1383). Many such empirical Baves rules have been
shown to be asymptotically optimal in the sense that the risk for the nth

decision problem converges to the optimal Bayes risk which would have been

obtained if the prior distribution was known and the Bayes rule with respect

to this prior distribution was used.

Empirical Bayes rules have been derived for multiple decision problems

by Deely (1965) for selecting a subset containing the best population. A
Van Ryzin (1970), Huang (1975), Van Ryzin and Susaria (1977) and Singh (1977) S
also studied other multiple decision problems by using the empirical Bayes }i-i“

approach. Recently, Gupta and Hsiao (1983) and Gupta and Leu (1983) studied

-y
s"e’ e
'

empirical Bayes rules for selecting good popuiations with respect to a
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standard or a control with the underlying populations being uniformly
distributed.

In this paper, we are concerned with the problem of selecting good
binomial populations with respect to a control through the empirical Bayes
approach. Two cases have been studied: one with the prior distribution
completely unknown and the other with the prior distribution symmetrical
about p = %3 but otherwise unknown. In each case, empirical Bayes rules

are derived and their rates of convergence are shown to be of order
O(exp(-cin)) for some c; >0, 1=1,2 For the case of the symmetrical
prior distribution two smoothing methods are studied in order to improve

the performance of the sequence of empirical Bayes rules.

¢. 1ormulation of the Empirical Bayes Approach

Let mps Tye- -7 denote k + 1 populations and let X; be a random

observation from ;. Assume that Xy B(Ni’pi)’ where p. € (0,1) and N, is
fixed and known. Let T be the control population. For each i = 1,...,k,
population my is said to be good if P; 2 Pg and bad if P; < P> where

the control parameter Po is either known or unknown. Our goal is to derive

some empirical Bayes rules to select all the good populations and exclude

all the bad populations.

When the control parameter Po is known, the empirical Bayes framework
can be formulated as follows:

(1) Letgq = {plp = (P],...,pk), p; €(0,1) for i = 1,2,...,k}. For each
pes» define A(B) = {i[pi > Pols B(g) = {ilpi < pg}- That is, A(Q)(B(B))
is the set of indices of good (bad) populations.

(2) Let A ={ala c{1,2,...,k}} be the action space. When action a is

taken, it means that population ™y is selected as a good population if

ira, and excluded as a bad population if i¢a.
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(3) The loss function L(B,a) is defined as follows:

2.1 L(p,a) = (p;-pp) + (py-p;)
(2 2 ieg p)-a P17 ieagA(g) PP

where the first summation is the loss due to not selecting some good

populations and the second summation is the loss due to selecting some

bad populations.

(4) Let dG(R) = dGi(pi) be the prior distribution over the parameter

Py

k
I
j=

1
space q, where Gi(') are unknown for all i = 1,2,...,k.

(5) For each i, let (xij’Pij)’ j=1,2,..., be pairs of random variables
associated with population LI where Xij is observable but Pij is not
observable. Pij has distribution Gj. Conditional on Pij = pij’ Xijlpij
is binomialily distributed with parameters Ni and Pij: For the case where
the prior distributions Gi's are completely unknown, some additional
observations Xij = (Yijl""’Yijni) frou each population T i=1,2,...,k,
are assumed to be at hand, where Yijm

and follow B(l,pij) distribution. Thus, in this case,

). For the
1

‘Pij’ m = ]""’"i’ are i.i.d.,

independent of Xijlpij
the jth stage observations are %j = ((X]j,xlj),...,(xkj, 1kj)
second case where Gi‘s are assumed to be symmetric about P = 7> MO

additional data are needed for the construction of our empirical Bayes rule.

vooLet X = (X],...,X ) be the present observation. Conditional on

oy

p = (p],...,pk), has joint probability function f(éig) = Fi(xi,pil

i
i=1
i N.-x

Y p*(1-p) ! for each i = 1,...,k.

x Z < X

where fjfxgp) = (

Finally, since we are interested in Bayes rule, we can restrict our

attention to the nonrandomized rules.
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(7) Let D = {d|d : x » A, being measurable} be the set of nonrandomized

n=ax

rules, where y =

{0’]""’Ni}‘ For each deD, let r(G,d) denote the
i

1

associated Bayes risk. Then, r(G) = inf r(G,d) is the minimum Bayes risk.
deD

When the control parameter Py is unknown, for the related framework,
the indices in the associated notations should begin at 0 instead of at 1.
In the sequel, (0) will be used to show this additional fact.

We now consider empirical Bayes decision rule dn(é’ %l""’én) whose

form depends on X and %j’ J=1,...,n. Let r(G,dn) be the Bayes risk

assoctated with decision rule dn(§’ %1,... %

s n)' That is,

r(6,d)) = § E [ L(p.d,(%s Zy»--sk,)) FlylR) dG(p)

%FX Q

where the expectation E is taken with respect to (é],...,g ). For simplicity,

n
d (x, %1""’%n) will be denoted by dn(é)'

n'a

Definition 2.1. A sequence of decision rules {dn(é)}:=1 is said to be
asymptotically optimal (a.o.) relative to the prior distribution G if
r(G,dn) +r(G) as n » =,

For constructing a sequence of a.o. rules, we first need to find the
minimum Bayes risk and the associated Bayes rule, say dG' From (2.1), the

Bayes risk associated with decision rule d is

k
Akl

where




pOfi(Xi) - Nj(xi) if Py is known;
(2.3) AiG('é) =
wO(XO)fi(xi) - wi(xi)fo(xo) if Pg is unknown;
1
filx) = fo fi(x[p) d6,(p);
]
wi(x) = IO pfi(x{p)dGi(D);
and

Kk
€= Z .z fﬂ(pi-po)l(po,])(pi)f(élg)dG(R)'

éex 1=

Hence, the Bayes rule dG can be obtained as follows:

(2.4) dG(é) = {iinG(é) < 0}.

Now, for each i = (0), 1,...,k, and for each n = 1,2,..., let

W. (x.) = win(x.; (Xi],xi]),...,(x ,Y. )) be an estimator of Ni(xi) and

in' "1 i in’~nin
fin(xi) = fin(xi; (Xi],xi]),...,(xin,xin)) be an estimator of fi(xi)'
Define
(2.5) wOn(XO)fin(xi)_ win(xi)fOn(XO) if py is unknown;
Ain(zf) -
pOfin(xi) - win(xi) if py is known;
and
\2.6) dn(f) = 1|ain(x) < 0y
N T e e e T T e e T T T T N e A

st

. e




If Wi (x) 2 W (x) and £, (x) B £.(x) for all x = 0,1,...,N; where
" B % means convergence in probability, then Ain(é) B AiG(é) for all xex.
Therefore, from Corollary 2 of Robbins (1964), it follows that r(G,dn) -+ r(G)
as n » =. So, the sequence of decision rules {dn(é)} defined in (2.6) is
asymptotically optimal for our selection problem. Hence, in the following,

we have only to find sequences of estimators {win(x)} and {fin(x)} possessing

the above mentioned convergence property.

3. Case when the Prior Distribution is Completely Unknown

Robbins (1964) and Samuel (1963), respectively, pointed out that there

was no way of approximating wi(x) just by using the observations (Xi1""’xin)'

In order to remedy this deficiency, we take, at each stage, some more observa-

tions (Yij]""’Yijni

For simplicity, let ng = 1 for all i = (0),1,...,k.

) in our model where n, can be any positive integer.

Estimation of W.(x) and f.(x)

A usual estimator of fi(x) can be given as follows:

J1 9 ]
(3,]) f_in(X) = sz] I{X} (Xij) fOY‘ X = 0’]’0009N1--

Then fin(x) is an unbiased estimator of fi(x), and by the strong law of

large numbers, fin(x) > fi(x) with probability 1 for each x = 0’]""’Ni‘

% -
Hence, fin(x) 5 fi(x) for all x = 0,1,...,Ni.

For the estimation of wi(x), we consider the following. Define

(3.2) Vij(x) = Yij I{x}(xij)'

Under the assumption (5) of Section 2, it is easy to see that E[Vij(x)] =

W.(x). We then define

............................................................
......................
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Since Vij(x)’ i=1,2,..., are i.i.d. and bounded, it is easy to show that

win(x)+wi(x) with probability one for all x = O,i,...,Ni.

and dn(f) be defined as in (2.5) and (2.6), respectively. From the discussion

Now, let Ain(é)

of Section 2 and the construction of the sequence of decision rules
{dn}:=l through (2.5), (2.6), (3.1) and (3.3), we get the following result. £
Theorem 3.1. For our decision problem, the sequence of decision rules :

{dn}:=1 is asymptotically optimal relative to the prior distribution G.

Rate of Convergence of Empirical Bayes Rules {d } .

Let {dn}:=] be a sequence of empirical Bayes rules relative to the

prior distribution G. Since the Bayes rule dG achieves the minimum Bayes
risk r(G) relative to G, r(G,dn) ~r(G) > 0 for all n = 1,2,... . Thus, the
nonnegative difference r(G,dn) - r{G) is used as a measure of the optimality
of the sequence of empirical Bayes rules {dn}:=1‘

o

Definition 3.71. The sequence of empirical Bayes rules {dn}n

=1 1s said to

be asymptotically optimal at least of order an relative to G if

r(G,d ) - r(G) < O(a ) as n > = where li: a, = 0.

For each i = 1,...,k, define S; = {5€X'Ai6(é) < 0}, Ti = {§CXlAiG(é) > 0}.

Let ¢, = min ('AiG(é))’ €y = Min (AiG(%)) and ¢ = min(s],sz). Since 3
¥eS. xeT, .-
Y 1 AV | >
1<i<k 1<i<k
» is a finite space, therefore ¢ > 0. Now, by the fact that 0 < fj(xj) < 1 and T
1856(x) 1 < 1, with straightforward calculations, one can obtain T
0. r{G,d_) - r(G) PR
n i
(3.4) k ‘ "_'
=LY P () > 01+ T Pia. (x) < 0} o
i=] e)éeSi m )\(,éTi met =
Frow (3.4), it suffices to consider the behavior of IEARNE

A

b ip\X 0} when 5vsi and that of P{;in(5) < 0: when 5”Ti as n » = for

pacn 10 2,0, k.

........................................................................
..........




: oo
g Note that for each X € Si’ ;;i:l
. P(Ain(z\,) > 0} = P{Ain(x‘,) - A'iG()é) > - AT,G(RS)} . ‘i
% < PLag (X)) - aga(x) > el Y
. e
. Then, by (2.3), (2.5) and the fact that 0 5-”1(x1)’ fi(xi)’ win(xi)’ fin(xi) < e

and Py € (0,1), one can obtain the following inequalities: :
- (3.5) Plojnlx) > OF < PEFGLIX) - £106) > S0 PO () - Wy(x) < - §) T

when Py is known; and
€
(3.6) p{Ain(é) > 0} 5-P{w0n(x0) - wo(xo) > E} + P{fin(x'

+ P{Win(xi) - wi(xi) < -‘%} + P{fOn(xo) - fo(xo) < -

when po is unknown.

(3.5) and (3.6) show that it suffices to consider the behavior of

P{lfin(xi) - £.0) 1 > ) and POIW, (x,) - Wi(x;)] > &} for some o > 0. Fi;ﬁ;
n Vo
i From (3.2) and (3.3), W, (x)-W,(x) = J_Z] Ajj(x)/n where A, (x) = T
. .. )= i ‘s ,J=1,...,n, are e
YiJI{x}(XWJ) wi(x). It is easy to see that A\a(x) J :
i.i.d. with mean 0 and finite variance, say Bi(x), since lAij(x)l < 1. AR
i‘ Therefore, for m > 2, N
- ECAT. ()] < ECJA, . (x) ™ < ECIA, . (x)|%] = 8. (x) < 1 8. (x)m!. g
' iJ - ij - ij i - =7
» :
& Let Bn(x) = nhi(x). Thus, by Bernstein's inequality (see Ibragimov I;_}
fa and Linnik (1971), page 169), for any & - 0, ;; g
" -

‘‘‘‘‘‘‘‘‘
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p= 2 NSNY

n
<P Y AL(x)] > 2B
=Y

2 expi- § min(s2:71 (%), 4. (x))1.

n
Similarly, from (3.1), fin(x) - fi(x) = jzl Cij(x)/n where Cij(x) =
Iixf(ij) - fi(x). Also, Cij(x)’ j=1,...,n, are i.i.d. with mean 0 and
;Cij(x)l -1 and hence with finite variance, say ui(X). Applying Bernstein's

inequality again, we obtain

AT P S fx).
‘T‘n X fj-_X)‘

NS, we fake o = ﬁ if Po is unknown or

from (3.5) through (3.8), for each égsi,

Do Vo - !_ﬂ 1 :2
P.uin(é, > 0} - 0{exp{ q min{s
(3.9)
‘ n . ..2-1,
+ O(exp!- i min(s 2 ‘Xi)"

Foliowing an argument analogous to the above, we also get the conclusion

given below:

For each 5UT1, 1= T,...,k,

e
—
X
—
»
(=]
-
A

< O(expi- % min(z

(3.10)
n

(x) min({

v 2 exp

2

+ Ofexp- - 7 min(~2:7

1 +

,1 - 1
n*osi“(xh ﬁnkﬁf(x)ﬂ

n "rw'«2 -1/ . VAR
- 4I.n1.|\ ‘s \XJ s i\X)
take - = é‘?f Po is known. Then,
a2 Tx )y ag(x:))3)
i LA A
S W)
,i\x])) )'

SN, G )

1 1 L




m< i<k

Now, let ¢ = % min(b].bz) where b] = min [Omin (Gza;](x), ai(x))],

b2 = min min (GZBT](X), 8:(x))|, here
m<i<k 0§x§Ni ! !

<X<N.
<x<N,

m=1 if Po is known and

m=0 if Pg 1s unknown. It is clear that ¢y > 0 since Bi(x) > 0,

“i(x) > 0 and x is finite. Thus, we have the following theorem:

Theorem 3.2. let (dn}::] be the sequence of asymptotically optimal rules

described in Theorem 3.1. Then, r(G,d,)-r(G) < O(exp{-c,n})for some ¢, 0.

An Alternative Empirical Bayes Rule

With the same framework as above, define

(3.11) Tij = Xij + Yij'

Then, Tij‘pij " B(N1+1, p
(2.3),

i5)- With £i(x]p)

1
f.(x) = éfi(XIp)dGi(p)

Then, from (2.3), following Robbins (1956},

_ x#]
wi(x) = fi(X+]’ Ni+1).

Ni+1
Hence, Tlet
0 o x+] n
(3.12) Wp(x) = N+ jZ] Loxeny(Tig)s

and define

(3.13) 20 (x) =

0 0
Won{Xg) Fynlxg) Wi (x

and

N. N.-x
(. Mp*(1-p) ', writing from
X

fi(X’Ni)'

we see that

if Po is known,

1.)fOn(xO) if Po is unknown;




'_|"_; e

1
(3.14) a0 = (12 (x) < o1

Note that w?n(x) is also an unbiased consistent estimator of wi(x).
Therefore, following an argument analogous to that of (3.7), we can conclude

thatr(G,dg)-r(G) < O(exp(-czn)) for some c, > 0.

2

4. Case Wﬂ?ﬂ_gi(') are Syrmetrical about p = 1/2

In this section, we suppose that there is sufficient information to

tell us that Gi(°) are symmetrical about p = 1/2 for all i = (0), 1,...,k.

Further, we also assume that Ni are even integers for all i = (0), 1,...,k.

Estimation of W.(x) and f.(x)

Under the above assumptions, fi(x) = fi(Ni - x) for all x = 0,1,...,N1.

Therefore, it is reasonable to use

-

1 ] Y
(4.1) 2 ,_Z_] Laon.-xp%qy) for x# -,
J= 1
f] (x) = f] (N;-x) =

int*) = Tip(Ny ﬁ] i N
-4

5 _Z] Iy (Xij) for x =

J_
\

ty estimate fi(x).

For wi(x), X = 0,1,...,Ni we will construct a sequence of consistent
estimators {w}n(x)}, in terms of f}n(y), y=0,1,...,N;, by using the
observations (xij’ j=1,...,n) only. The following lemma is very helpful
for the above purpose.

Lemma 4.1.. Suppose that the prior distribution Gi(') is symmetric about
p  1/2. Then




_ 1,"'.".-;', [C‘.' ,‘".".‘
f

(a) wi(x) = N:tl wi(Ni-x-l) for each x =v0.1.---,Nf']-

(b) ”i(x) + wi(Ni'x) = fi(x) = fi(Ni'x) for each x = 0,1,...,N;.
N,

(c) Furthermore, if N; s an even integer, then, W, (1;>=

Proof: Direct computation.

Theorem 4.1. Suppose that Gi(') is symmetric about p = 1/2 and N; is
an even integer. Then, for each x = 0,1,...,Ni, wi(x) can be represented

as a linear function of fi(y), ¥ = 0,1,...,N,.

Proof: It follows from Lemma 4.1 that for each x = 0’]""’Ni'] and

- j
Z‘X-~2+1,

M\z " ?)T W fi\z o2t
(4.2)
N;+2-22 N )
“wF M\z -zt
Then, by (4.2), Lemma 4.1 (b), (c) and by induction, the result follows.

By Theorem 4.1, for each x = 0’]""’Ni’
N
(4.3) W.(x) = Zo 8(Nssx,y) f.(y),
y=

where the coefficients B(Ni,x,y) depend on N., x and y. Also, the

values of B(Ni,x,y) can be obtained from Lemma 4.1 (c) and the iterative

relation (4.2).
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We then define

N

i
(4.4) ) (x) = yzo BN, »xy) F1n(¥)

where f}n(y) js defined in (4.1).
Now, define
w‘ (x )f] (x;) - w‘ (x )f] (x.) if ps is unknown
On*"0" in'"i in*7 17 0n*"0 0 ’
(a.5)  ajp () =

1 1 , .
pofin(xi) - win(xi) if py is known,

and

‘-v Y YR,
!

[ 4 RN A )
s st e

e & - P ] L

(I oo et

A T R L A}

LR - x % xon DRI, 3

(4.6) dl(g) = Gila) (0 <01

From (4.1), it is clear that f}n(x) -+ fi(x) with probability 1 as
n >« for each x=0,1,...,N;.  Therefore, from (4.3) and (4.4),
N}n(x) - wi(x) with probability 1 as n + = for each x=0,1,...,N;.  Thus
we have the following theorem:
Theorem 4.2. Suppose that the prior distributions Gi(') are symmetrical
about p = 1/2 and Ni are even integers for all i = (0),1,...,k. Then, the
sequence of decision rules {dl}:=] is asymptotically optimal relative to
the prior distribution G.

Rate of Convergence of Empirical Bayes Rules {dll

We now consider the rate of convergence of the empirical Bayes rules

1d;}. Following the same discussion as given in (3.4) through (3.6), and




using the fact that f:n(x) - fi(x) with probability 1, it suffices to consider
the behavior of P{H,}n(x) - Hi(x) > 6} and P{N}n(x) - Ni(x) < -8}las n > w
for some § > 0, for each x = 0,1,...,Ni. i=(0), 1,...,k.

From (4.3) and (4.4), for each x = 0,1,...,Ni,

3

v

At
P2

N
1 A
POI() = Wy (x) > o) = p ;goﬁ(Ni,x.y) [Fi)-F1 (0] > 5 .

.
0
RN
e
‘.'-v
Ll AF R by

..j;{:},

< %0 P{B(N;.x.y) [f}n(y)-fi(y)] > &} P
y= a8

l'.
fo

o

where 6y = N;IT' If B(Ni,x,y) =0 for some 0 <y < N;j» then

P{B(Ni,x,y)[f}n(y) - fi(y)] > 8y} = 0. So, we assume B(Ni,x,y) # 0. When
B(Ni,x,y) > 0, then

PLEN X IIF(9)-F ()] > 61 = POEL (1) = £,(v) > & /8(N; oy,

When B(Ni,x.)’) < 0, then SRR

] 1 -
PEBING XY )fy (y) - £(0)] > 6} = PLEIR(Y) = Fi(y) < 6y/8(N;uxy)) %7;3

In either case, the problem can be reduced to considering the convergence \‘
rate of P{[fzn(y) - fi(y)l > 62} as n + = for some 8y > 0. Similarly, L,.
for the convergence rate of P{w}n(x) - Ni(x) < -8} where x=0,1,...,N. and Z:‘
t."Q\'

5 >0, we get a similar result. Therefore, by applying Bernstein's o

L 4
v

W '-.’:.':_j T
Y [




inequality and following an argument similar to that of (3.7), we conclude

the following theorem:

Theorem 4.3. Let {d;}:=] be the sequence of decision rules defined in (4.6).

Then, {dl}:=] is asymptotically optimal at least of order exp{-c3n} relative

to the prior distribution G for some cy > 0.

5. Smoothed Empirical Bayes Rules

In this section, we again assume that Gi(') are symmetrical about

p=1/2 and Ni are even integers for all i = (0), 1,...,k. In Section 4,

the marginal frequency functions fi(x), x==0,1,...,Ni, i={(0), 1,...,k, are

1
in

estimated in terms of the empirical frequency functions f. (x), regardless

of the properties associated with the marginal function fi(x). In this

section, by considering some properties related to fi(x) and wi(x), two

methods for obtaining smooth estimators of fi(x) and wi(x) are studied.

We first state the following lemma (without proof), which can be

verified by direct computations.

Lenma 5.1. Suppose that Gi(') is symmetrical about p = 1/2 and N, is an

even integer. Then,

N, N, -1
(@) £;000) < £ for 0<y <x < Ny/2. S
N, -1 Ny -1 F:i
(b) W.(x)(,") 5_wi(y)(y ) for 0 <y <x<N;/2and N/2 < x <y = Ny L

-1

A
x

(€) Wily) < Wy(Ny-y) for 0 <y < N./2. S

. 1
Procedure 1. Smoothing Based on fi (x)

For each 0 <y < N./2, Tet
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. ’ N-i X ] Ni ']
(5.1) fialy) = (y ) max min {} f, (a)(;") /(x-z+1)},

ij:Ni/Z O<z<x a=z
and Tet f, (N.-y) = f. (y). Then, Tet

N

. i .
(5.2) win(y) = 220 B(Ni,y,z)fin(z) for y = 0,1,...,N,.

Define

po%in(xi)-ﬁin(xi) if py is known,
(5.3) Ain(é) =

wOn(XO)fin(xi)'win(xi)fOn(xo) if Po is unknown.

Finally, define the selection rule an as follows:

a

(5.4) n(X) = {iliin(é) < 0}.

Asymptotic Optimality of {&nl

- N, -1
Note that fin(y)(y1) y ¥y = 0,1,....Ni are the isotonic estimators of

N, -1 N, -1
fi(y)(yl) , based on f}n(x)(x1) , x = 0,1,...,N., with equal weights. Since

1
}n(x) is a strongly consistent estimator of fi(x) for all x = 0,1,...,Ni, then,

by Theorem 2.2 of Barlow etal (1972), Lemma 4.1(b), (4.3) and the definition of

f

ﬁin(y), it is not hard to see that %in(y) and ﬁin(y) are strongly consistent
estimators of fi(y) and wi(y), respectively.

Next, we consider the rate of convergence of the difference r(G,dn)—r(G).
For each 0 <y < N, and & > 0, by Theorem 2.1 of Barlow. et al (1972), we can

obtain the following inequality.
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Then, with a discussion similar to that given in Section 4, we can '?f}

conclude that r(G,&n) - r(G) :_O(exp{-c4n}) for some Cy> 0.

It is easy to see that the new estimators %in(y), 0 <y <N, always :""_
satisfy the constraint of Lemma 5.1(a). However, one would also like to .fiyf‘

see whether the estimators ﬁin(y), 0<y 5-Ni’ satisfy the corresponding

constraint or not. The following lemma is useful for this purpose.

Lemma 5.2. Let U(x), h(x) be nonnegative functions defined on {0,1,...,N},

where N is an even positive integer, which satisfy

= Z_ﬂ -¥ - = - Y

(a) u(x) Nox U(N-x-1) for all x = 0,1,...,N-1. EEI%%

(b) U{(x) + U(N-x) = h(x) = h{N-x) for all x = 0,1,...,N and ::;32

Uiy

(¢) U(x)  U(N-x) for all x = 0,1,...,N/2. N0,
Then

(d)  (x+1)h{x+1) - (N-x)h(x) for all x = 0,1,...,N/2-1.

We note that (a), (b) and {d) of Lemma 5.2 do not imply (c), and
the estimators H_in(y), 0 <y 5-Ni’ do not always satisfy the required

constraint. Lemma 5.2 suggests resmoothing based on ﬁin(y).

Procedure 2. Resmoothing Based on wi (y)

First, let Qin(Ni) = ﬁin(Ni) and for each N1/2 <y=< Ni']’ let

N,

RO

N,

i -1

(5.6) Qpy) = LW !
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Step 1. For each N;/2 <y < N;, Tlet

=

Z
. (5.7) Q*{n(y) = max min { ) Q,in(a)/(z—xﬂ)}. - h:?,‘:
. N./2<x<y x<z<N: a=x R
A 1 1 "!i.l'o

Step 2. Let Wy (N.) = Q% (N.) and for each N;/2 <y < N;-1, let IE}.‘_._
' Win(y) = 03, (y)(,") and W (N-y-1) = q¢n(y)(Ni_y_])_ s

N Then, let ;
"._ (5.8) f*i‘n(y) = Wifn(y) + N’%‘n(Ni-y) for y = O,'I,...,Ni and define
pof?n(xi)'w:?n(xi) if Py is known,
(5.9) A?n%) =

W‘an(xo)f’i‘n(xi)—W’.'{n(xi)f"én(xo) if py is unknown.

Finally, define the selection rule d; as follows:

(5.10) d;(g&) = {ilA*{n(%) < 0}.
?‘-;if.'
\ .
Remark. By Step 1 and Step 2 of Procedure 2, the estimators w‘;n(y), 0<y=<N ';:_::.-_
'\:1":‘
always satisfy the constraint of Lemma 5.1(b) and (c). Then, by Lemma 5.2, N
) the estimators f’_'i'n(y), 0 <y = N;,also satisfy the corresponding constraint. ;T‘—

N Asymptotic Optimality of{_d;‘r

-~
!’— By Theorem 2.2 of Barlow et al. (1972) and the fact that Win(y), O<y<N;, are f
strongly consistent estimators of wi (y), 0<y=< Ni’ we conclude that w;.*n(y), N
‘ 0<y=< Ni’ are strongly consistent estimators of N].(y), 0<y=< Ni‘ Then, by

E Lemma 4.1(b) and (5.8), f’;n(y), 0<y=x< Ni’ are also consistent estimators of

~ fi(y), 0 -y N;. Therefore, the sequence of empirical Bayes selection rules R

d; is asymptotically optimal.




LTRSS .

Ly Thearem 2.1 of Barlow, et al. {1972) and (5.8), we obtain, for . 0,

. PrIfx (y) - Fi{y)l - &)
< PLiuE (y)-Wi(y)] > 6/2) + PIWE (Ns-y) =W (N;-y)| > 6/2)

N; N, N, N,
P 2;lqu(x)(x‘)'Lv:i(x)(x’)"|2 > (y‘)'262/4}
X=

[

(5.11)

N
i N, N N.

* -] '] 2 > ‘2‘.‘.)2
p{xzoiwin(x)(x1) W07 (Ni}y) 5574}

+

N,

Ny . N,
1 1)-]-W1(X)(x1)-112 N (y'l

2 P{xzo|win(x)(

)-2&2/4}

S

X

N N N ,
22§ PO 00 0] > (DD TN 2y
x=0

Then by (4.3), (5.2) and (5.5), with a discussion similar to that given

in Theorem 4.3, we conclude that r(G,d;)-r(G) 5_0(exp{-c5n}) for some cg > 0.
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