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Abstract NPCE

Let r,..., be Weibull populations with a common known shape parameter, and
with unknown scale parameters. The goal is to find the population with the largest scale
parameter. From each population, Type II-censored observations are available at two
stages, where censoring at stage 1 (2) occurs at the q-th (r-th) failure. Two-stage Lio-
cedures with screening at the first stage are considered which are optimum permiltation
invariant in terms of the risk with respect to a large class of loss functions. For the proce-
dure with a fixed subset size at stage 1, the least favorable parameter configuration under
the indifference zone approach is of the slippage type, which makes it feasible to control
the infimum of the probability of a correct selection. Some extensions of the results are
discussed at the end. .-
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1. Introduction.
Suppose we wish to find the most reliable of k types of components Irl,... ,irk, say.

Let the failure times follow a Weibull model with density w.r.t. the Lebesgue measure,
confined to the positive real line,

(1) f(X10O) = ac9z"-1 exp(-O9z*), X > 0,

where a > 0 is fixed known, and 0. / > 0 is the unknown scale parameter associated

with rri, i = 1,..., k. Thus our goal becomes to find that one iri which is associated with
the smallest 9,, i = 1,. , k. We may assume that it is unique, to keep the presentation
of our material simple. This is not a serious restriction, since in case of ties, we may be
content with the selection of any of the most reliable components, and our results hold in
this case analogously.

We shall consider 2-stage selection procedures, with screening at the first stage, as
discussed in Miescke (1984), which are based on Type II-censored failure times observed at
both stages. In the following, all failure times considered are assumed to be independent.
To describe the sampling process from the k populations 7r,... ,7rk, it is sufficient to do
so for one particular population iri, say.

At stage 1, ni > 0 components of type iri are tested simultaneously until the q-th
failure occurs. If this type of component is not screened out at stage 1, mri 0 components
are added, or -mi _! 0 components are withdrawn, and then the ni - q + mi components
are further tested simultaneously until the r-th failure at this stage occurs. Hereby we
assume, by obvious reasons, that q > 1, r > 1, ni _! q, and ni + mi > q + r. It should .-". '
be pointed out that both q and r do not depend on i. We shall see later that this is very *e., ".
crucial to gain permutation invariance in our decision problem, which in turn provides the
basis far finding optimum permutation invariant decision procedures.

The next step is a reduction by sufficiency. Because of the assumed independence
of all failure times, this can be done as well for one particular population, 7ir, say. Let
Ui,i, U, ,..., Ui,q denote the ordered failure times to failure q of 7 at stage 1. Likewise,
let V,, Vi,2,... s Vi,, denote the ordered failure times to failure r of 7ri at stage 2, m-asured
from Ui,q onwards. Let

.-.7.7-_

U, = j + (n - q)U.-
j=1*

r

(2) ViF ViCf. + (n m + i - q - r)V, and
j=1

T =U + V.

Then the distributional properties of Ui, Vi, and Ti can be summarized as follows.

.*"*,.- .*
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Lemma 1. For every population 7ri, the following holds..
(a) Ui(V) is sufficient for 0 at stage 1 (2), and Ti

is sufficient for O at both stages combined.
(b) Ui and Vi are independent.
(c) 20iUi(2OiVi,2OiTi) is chi-squared

distributed with 2q(2r, 2q + 2r) degrees of freedom

Proof: Most of these facts are well known. Thus we outline the proof only briefly. The
statement concerning Ui in (a) follows from looking at the likelihood function at stage 1,
as it is done in Tsokos and Rao (1979). The statement concerning Ui in (c) is proved
in Gnedenko et al. (1969), sec. 3.3, for the case of a = 1, and it can be extended to
the case of any other value of a immediately. Finally, by considering, instead of the
original failure times, the a-th powers of the same, which are exponentially distributed
with scale parameter 0-1, the proof can be completed by using the lack of memory of the .
exponential law or, more precisely, the strong Markov property inherent in the sampling
process described in terms of these exponential random variables, as it is discussed in Feller
(1971), section 1.6.

Returning to the joint consideration of our k populations, all facts stated so far can be -
carried over in a natural way, since (Ui,Vi,Ti), i =1,...,k, are independent random vec-
tors. For notational convenience, let in the following U = (U,,..., Uk), V = (V,,..., Vk),
and T = (T 1 ,...,Tk). Next we introduce a class of 2-stage selection procedures for the
given decision problem.

Definition. A 2-stage selection procedure acts as follows. After all observations at stage 1
have been made, a non-empty subset s C {1,...,k} is selected. All population 7ri with
I V s are discarded. If s = {j}, say, the final decision "7ri is the most reliable type" is
made. If s contains more than one element, stage 2 is entered. The sampling process
is continued for all ri with i E a as described before, and then for some j E s the final
decision "1rj is the most reliable type" is made.

Let L(_, (s, i)) be a real-valued loss which occurs at 8 = (01, , 8,k), if s is selected
at stage 1, and the final decision is in favor of iri, i E s C (1,...,k}. We assume that it
is integrable such that the associated risk function exists. Moreover, let it be permutation
invariant as defined in Gupta and Miescke (1984), and let it favor the selection of more
reliable components in the following way:

(3) L(O, (s,i)) L(_,(.,i)) if

(a) i,j E s = 0j, or
(b) 9\{i}= \{j}, 9<0, , or
(c) i=j, s\{() i\{V), o,< < '

It can be seen that under such a loss function, the decision problem is invariant under
the group of permutations. This justifies restricting our further considerations to 2-stage
selection procedures which are permutation invariant. A rigorous definition of this class
can be found in Gupta and Miescke (1984). The optimum rules within this class are, as
we shall see later, of the following form.

2
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Definition: Let R: (0, oo)k - {1,2,... ,k} be a symmetric, Borel-measurable function.
Let us consider R(U) as a decision rule to determine the size of the subset to be selected
at stage 1. Then P(R) is the 2-stage selection procedure which selects at stage 1 in terms
of the R(U)-largest Ui's, and makes the final decision at stage 2 in terms of the largest

observed Ti.
Optimality of P(R) among all procedures which employ the same subset-size rule " .

'
.

R will be shown in Section 2. Further properties of P(R) will also be discussed there.

Of special interest is the case of a constant R, R = t, say. This will be considered
in Section 3 under the 0-1 loss function, which is zero if and only if the most reliable
type of component is finally selected. The risk, or probability of an incorrect selection,
respectively, of P (t) will be shown to have a natural least favorable parameter configuration
in the indifference zone approach of Bechhofer (1954), which makes it feasible to control
the infimum of the probability of a correct selection, denoted by Po(CSIP(t)), on a certain -
subset of the parameter space. Finally, in Section 4, extensions of our results to p-stage
selection procedures will be described, and some open questions for further research will
be presented.

2. Optimality of the Procedures P(R).

The first of our results establishes optimality of procedure P(R) within the class of
all permutation invariant 2-stage selection procedures which employ the same subset size
rule R.

Theorem 1. Let R be a subset-size rule, and let L be a loss function, with properties as
described in Section 1. Then for every permutation invariant 2-stage selection procedure

P which employs R at stage 1, we have

(4) R P(R)) <_ ), _E (0, oo)c

where R(O, P) denotes the risk, i.e. expected loss, of P at 0.
Proof: U and V, respectively, can be considered as two random vectors which are gener- - -

ated through

q q+r
(5) Ui Cij V , i = 1,...,k, _

3=1- j=q+l

where the C1,j's are generic random variables which are mutually independent. For i E
{1,..., k} and " E {1,... ,q + r}, 20,Cj follows a chi-squared distribution with 2 degrees

of freedom, i.e. C,j has the following density on the positive real line:

(6) g(X8,) = Ileiexp(8xs), x > 0, 9, = -0,.

It can be seen now that almost all assumptions which are made in Gupta and Miescke
(1984) are fulfilled, where the underlying exponential family of densities is of the form

(7) h(xl0) = c(8)exp(Oz)d(z), z , 0 E fl C_

3

%-.-..



-- - ,-.-..-

If d were log-concave, i.e. if the exponential family were strongly unimodal, our proof
would be completed by applying Corollary 2 of Gupta and Miescke (1984). However, the
function d in (6) is the indicator function of the positive real line, which is obviously not
log-concave.

A careful examination of the proof of the key Lemma 2 in Gupta and Miescke (1984)
fortunately shows that if the family (7) has the positive real line as a common support,
then all results in that paper remain valid if every n-fold convolution of d is log-concave
on the positive real line. And since the n-fold convolution of the indicator function of the
positive real line at x > 0 is equal to Xz- I/(n - 1)!, which is indeed log-concave for n > 1,
the proof of this theorem is completed.

The next result establishes uniqueness of the optimum procedure P(R), and some
consequences. Let DI(R) denote the class of all permutation invariant 2-stage selection
procedures which employ R at stage 1, and let Di = {PIP E D1(R), R subset-size rule}. --
For a moment, let us also consider the larger classes D(R) and P, say, where the procedures,
including their subset-size rules at stage 1, are not necessarily permutation invariant, i.e.
symmetric for brevity.

Theorem 2. Let L be any loss function with properties as described in Section 1. Then - -

the following holds.
(a) For every symmetric subset-size rule R, P(R) is the unique optimum procedure in

PI(R) in the sense (4). Moreover, P(R) is admissible in D(R).
(b) If there exists a minimax procedure in D1, which employs R0 , say, at stage 1, then

P(Ro) is minimax in D1, and both procedures are minimax in P.
(c) The class {P(R)IR subset-size rule) is essentially complete in P.

Proof. Let L be a loss function which has the assumed properties. Let R be a symmetric
subset-size rule, and let 0 E (0, oo) k, where not all of the ei's are equal, be fixed. Then
it can be shown, as in Gupta and Miescke (1984), that P(R) is the unique Bayes rule
in P(R) with respect to the symmetric prior which gives probability mass 1/k! to each
of the k! permutations of 0 = (O,... ,Ok). Since the Bayes risk is equal to R (!,P(R)),
the first parts of (a) and (b), as well as (c), follow from Theorem 1. The second part of
(a) holds since a unique Bayes rule is always admissible. The second part of (b) follows
from Blackwell and Girshick (1954), sec. 8.6 and the fact that the group of permutations
is finite. This completes the proof of the theorem.

The last result in this section confirms the intuitive conjecture that sampling of more
information improves the optimum procedure. Let P (R; n, M, q, r) be the procedure P (R),
which employes R at stage 1, where q 1, r > 1, n = (n 1,...,nk), ni -: q, m .
(m 1 ,... ,imk), mi + nj _ q + r, i = 1,...,k, may now be variable. Then we can state the
following. 7 _

Theorem 3. Let L be any loss function, which does not depend on n and m, with
properties as described in Section 1. Then for every symmetric subset-size rule R, the risk
of P(R) at 0 does not depend on n and m. Let it be denoted by p(0; R,q,r), say. At every
E E (0 , oo)k, where not all of the Oi's are equal, it has the following properties.

(8) p(!; R, q, r) > p(0;R,q+ 1,r), if ni > q, ni +mi > q+r, i- k,

4
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(9) p(0;R,q,r)>p(0;R,q,r+ 1), ifn+m,>q+r,i=1,...,k,
(10) p(!;R,q,r) > p(!;R,q-+ 1, r- 1), if ni > q, i=,...,k. .

Proof. Let L and R be given as stated in the theorem. P(R) utilizes all of the relevant
information contained in the observations through U and T at stage 1 and stage 2, re-
spectively. In view of Lemma 1, it is seen that the joint distribution of U and T does not
depend on n and m. Hence the risk function of P (R) has the same property.

Because of the similarity of arguments, we give only a proof for (10). First it is
important to note that P(R) remains to be the unique Bayes procedure with respect to
any symmetric prior within the class D(R), if all procedures were included in D(R) which
make use of the available observations of all of the 7ir's at stage 2, but which still restrict
final selections to those iri's which have been selected at stage 1.

If now P (R; n, M, q + 1, r- 1) is considered to be based on all available failure times
up to the (q + l)-th and the (r - 1)-th failures at stage 1 and stage 2, respectively, then
P (R; n, M, q, r) can be considered to be based on the same observations. The latter would
just ignore the k (q + 1)-th failure times at the subset selection at stage 1. The former
is the unique Bayes procedure with respect to the symmetric prior on all permutations of
any fixed 0 E (0, oo)k, as long as not all of the Oi's are equal. For every prior of this type,
risk and Bayes risk coincide for each of the two procedures, and thus (10) is seen to be
true. This completes the proof of the theorem.

Remark. If L would depend on n and m, it would naturally be non-decreasing in ni
and im, i = 1,... ,k. In this case, of course, one would take n = nk = q and -
M = = = r as the best allocation of components to be tested. In a more
complicated approach, L could also be non-decreasing in the time until a final decision is
made. This would lead to an opposite requirement of sufficiently large ni's and mi's. We
shall not discuss further such more difficult problems.

The final topic to be considered here is the choice of a suitable subset-size rule R
for the decision at stage 1. This is a very challenging problem, indeed. Clearly, there
does not exist any R 0 , say, such that P(Ro) is optimum in terms of the risk, uniformly in

E E (0, oo)k, within the class Dr. On the other hand, in a Bayes-approach, the optimum
choice of R would depend heavily on L and on the chosen prior. Therefore, it seems to
be justified to consider in more detail the natural rule P(t), say, where R = t is constant,
t E {2,... ,k - 1}. This will be done in the next section.

3. Properties of the Procedure P(t).
For a fixed t E {2,...,k - 1}, let P(t) be the following 2-stage selection procedure.

At stage 1, the t iri's are selected which are associated with the t largest U1 's. Then, at
stage 2, the final decision is made in favor of that one 7ri which is associated with the
largest of the t Ti's from the iri's which have been selected at stage 1.

A natural way of implementing the procedure P (t) is to employ the so-called "indiffer-
ence zone approach", which is due to Bechhofer (1954). It allows to control the probability
of a correct selection, i.e. of finding the best iri, over a range of parameter configurations,
where the best 7r, is sufficiently better than the other k - I 7ri's. Thus let us adopt in the
following the 0-1 loss function, which is 0 (1) if the best 7r, is (is not) finally selected. One

5 -.....



minus the risk, i.e. the expected loss, is then the probability of a correct selection, which
will be denoted by Pe(CSIP(t)), ! E (0, oo) k , in the sequel.

Let A > 1 be fixed. For e E (0, o)k, let $[,1 _' Ok] denote the ordered values of . _
01,..,Ok. Then let

(11) fl(A) = {01E (0,o)k, A 10 [ i] = 2, k}.

The next result states that the probability of a correct selection with procedure P(t) can
be controlled on f[(A). More precisely, if a value P* E (i/k, 1) is predetermined, then

values for q and r can be found such that the infimum probability of a correct selection
with procedure P(t) is at least P* if 0 is restricted to fl(A). It will also be shown that the
parameter configuration, at which the infimum occurs, i.e. the least favorable configuration
(LFC), is of the "slippage"-type.

Theorem 4. For every t E {2,..., k - 1}, and A > 1,

(12) Inf{Po(CSIP(t)) e fl(A)} = P_(CSIP(t)),

where e = (1, A, A,..., A) with k coordinates.

Proof. The probability of a correct selection for the procedure P(t) at 0 E fl(A) with,
say, 01 0[1], has the form

(13) Pe(CSIP(t)) = Pe{Ut < Ui, t , i E s; Ui + V. < U1 + V, jE },
iC{2,...,k}Ii1=t- 1" -''- - "

• .

where here in the sequel, s = i U{1}, if both s and , appear simultaneously in an expression.
Let Bi = OiVi, i = 1,... k, be auxiliary random variables to be used in the following.

It is easy to see that a lower bound to (13) is attained if for j = 2,..., k, Vj is replaced
by B 3 /AO9 in the events appearing in (13). Since the distribution of the random vector
W = (B 1/0 1 - B 2 /A9 1, B1 /1 - B3 /AOI,..., B/0 1 - Bk/AOl) is seen to be permutation
symmetric, this lower bound can be represented by an integral over {I = (ai,..., at-) I
a, < a2 < ... at-,}, where the integrand is a product of the joint density of the first t - 1
coordinates of W at a and the following function of a.

ZPB{Ue<U, £is, iEs;
2<iA <i2<... <it_ <k

(14) Uij < U, + aa(j), 9 1, ... it- 1),. °

where in the second summation, a runs over all (t - 1)! permutations of (1,2,...,t - 1).
To show now that (14) is nondecreasing in 02,... ,Ok, it suffices to prove it for 9&. To do
so, we first replace in (14) all probabilities by the corresponding conditional probabilities,
given U, = yI,... ,Uk- 1 = yk-1, where we may assume without loss of generality that
Y2 <Y3 < ... <yk-l holds. Let b =yl +a, j= 1,...,t-1. Then we get

1_, 9(Uk, Uht < Uk-t+ 1, U; Uk-t+, < b,,,(,),..,.": ..

(15) Uk- < br(t-)IUlI= ,... ,Uk- Yk-l1}

6
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+Z:e{Uk.t+1 <UkUI; Uk ba,(),Uk-t+ 2 ! ),--

Ukc-i ba(t.1 )IUl y, ... ,9Uk-I =yk-1}.

In case of Yk-t+i < y9, this reduces to

P{Uk, Uk-t+l __ b, (1), Uk-t+ 2 K b,(2), ..-

(16) U -1<b, = ,(t-.)IUl y , = k , ,...i"

whereas in case of y Yk-t+l, it reduces to

{U,Uk€-t < Uj; Uj._t+ =)..

(17) Uk-1 < bct.l)IUl = y,... ,Uk_ = Yk-l}..

Since now both, (16) and (17), are seen to be nondecreasing in Ok, the proof of the theorem
is completed by noting that Pro(CSIP(t)), r > 0, does not depend on r.

It should be noted that Theorem 4 holds also for t = 1 and for t = k. But P (1) and
P(k) are actually 1-stage selection procedures. Procedures of this type have been studied
extensively in the past, and an overview of the literature in this respect can be found in
Gupta and Panchapakesan (1979).

A very natural and interesting question is now to find sufficient conditions under which
a 2-stage procedure of the type P(t) performs better than a 1-stage procedure. This could
be done, for example, on the basis of a common total number of failures. To be nmore
specific, let us assume that there exists an integer d > 2, say, such that k = dt. Thus, if
P(t) is based on q failures at stage 1 and on r = dq failures at stage 2, respectively, then
the total number of failures becomes k(q)+ t(dq) = k(2q), and P(t) can be compared with
the optimum 1-stage procedure, P1, say, which is based on 2q failures from 7rl,. .. , rk . ._

If the k - t largest O,'s tend to large values compared to the t smallest 0i's, then it is
not difficult to see that the P(CS) of P(t) will be larger than the P(CS) of P1. However,
at other parameter configurations, P may be the better procedure. It appears thus to be
more promising to compare the infima of probabilities of correct selection on fl(A), which
are both attained at 0 = (1, A,. A). The answer to the stated question would then of
course depend on A. No results in this respect are known.

4. Some Extensions.
A natural extension of the topics of the previous sections is to consider p-stage selection

procedures for p _> 2, which are based on qi failures at stage i, i = ,... ,p, where the
selected subsets at consecutive stages are nested. For permutation invariant subset size -

rules R > R2 ... > Rp_ 1 , let P(R,... ,Rp_j) denote the procedure which selects
at stage 1 in terms of the Ri-largest sufficient statistics for stages 1 through i combined,
i 1,...,p, where RP = 1. As in Gupta and Miescke (1984), if the loss function is
generalized accordingly, it can be shown that all final decision rules, including those which "-
are made whenever an Ri turns out to be 1, as well as the subset selection at stage p - 1,

7
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are optimum in an analogous way to (4). And it can be shown that P(Ri, .. ,Rp_,) is
the unique Bayes procedure with respect to every i.i.d. prior among all procedures which
employ R 1,..., Rp- 1, if the loss at stage i depends only on the parameters of the actually
selected populations at this stage. In this case, the procedure turns out to be admissible

in D(R 1,...,R,_j), the natural generalization of D(R).

The situation becomes more favorable if R1 = tj,...,RP- 1 = tp- 1 are fixed, where
of course tl t 2  -" > tp- 1 holds. The procedure P(tl,... ,tp- 1 ) can be shown to
be the unique Bayes procedure, with respect to every symmetric prior, within the class

DP(t,. . ,tp_ 1). Thus it is also, uniformly in 0, optimum p-stage procedure in an analogous
way to (4) within the class DI(t,. .. , tp- 1 ). The proof of these facts is essentially the same
as in Gupta and Miescke (1984), where one has only to take care of the slight technical
modification concerning the function d in (7), which has been discussed at the end of the
proof of Theorem 1. One problem, however, remains open: The least favorable parameter
configuration in [2(A) under a 0-1 loss, or more specifically, for the probability of finally
selecting the best population, is not known for p > 2.

Finally, some comments about a, the shape parameter of the underlying Weibull
family, have to be made. We could have allowed from the very beginning that 7r,..., rk."

have known shape parameters , , which are not necessarily identical. If Ui, Vi, and
T, were defined as in (2), but now with ai instead of a, i = 1,... ,k, then all subsequent
results would still be true because of the facts stated in Lemma 1. However, we did not
follow this idea since the statistical relevance of selecting the population with the smallest

9i would become rather questionable.

A more interesting problem would be the following. Suppose that 7r,,..., 7rk have a
common shape parameter a, which is unknown. Great difficulties arise in this situation,
mainly because a reduction by sufficiency, as it was done before quite successfully in (2),

is no longer possible here. The maximum likelihood approach, as it was utilized in the two

papers of Kingston and Patel (1980), would lead in D(t) to a procedure which is almost
identical with P(t). The only difference is that at stage 1, a is replaced by the maximum
likelihood estimator &1, and at stage 2, a in U, and Vi, i = 1,...,k, is replaced by the
overall maximum likelihood estimator &2, which is based on all observed failure times. It
is not known how good this procedure actually is.

If a bound a. < a (or a* > a) were known, this would not be of any help. Since if we
used P (t) with a. in (2) as a substitute for the unknown a, the resulting procedure would
perform at the actual a worse than if a. were t'.e right shape parameter. This is a direct
consequence of Theorem 1. Therefore, a bound of a is of no use if we wish to control the

probability of a correct selection from below.

The most promising problem, however, appears to be the search for conditions under
which a 2-stage procedure P(t) is preferable to a 1-stage procedure P which employs the

same total number of failures. It has been formulated at the end of Section 3.

........... ............... ................................
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