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ABeSTRACT Only twenty cosponents, numerica Integration of other
deterministic approacheir rappdly becomev intractable.

'-he procedures for analog Monte Carlo simulation of Markov Monte Carlo sampling [6,71 provides a

Markov processes are examined. Two variance reduction means of circumventing the detailed numerical solution
techniques are then included in a nonanalog formu- of the coupled differential equations that can be very
relion to Increase the sampling efficiency for highl7 effective, provided only a few integral system par&-! reliable systems, and a method for Incorporating meters. such as reliability and availability, are toI uncertainty in failure and repair rate data is be estimated. Moreover, for highly reliable systemsoutlined. Models for three classes of component for which analog Monte Carlo sampling I s very

dependencies appearing In reliability and availability Inefficient, powerfuil variance reduction schemes (61
problems are Incorporated Into the Markov formula- my be incorporated into Harkov Monte Carlo to
tion. They are (1) shared repair crews between increase computational efficiency by orders of magni-
components, (2) load sharing between components. and tude. Finally, the large uncertainties that are
(3) standby mode. Results are given for a series of Inherent to most failure and repair rate data may be
model problems to demonstrate the efficiency of the taken into account systematically such that the
methods as well as the effects of the dependencies on variance of the result can be divided into that
system unreliability and unavailability, associated with data uncertainty and that due to the
,. NT Ofinite number of monte Carlo trials.
I INTRODUCTION\ In what follows we first set forth the basis forThe estimate of reliability and/or availability analog Monte Carlo simulation of Markov processes.
of systems with large numbers of components in highly Two variance reduction techniques, forced failure and
redundant configurations frequently is required In the failure biasing, are then Introduced to Increase
analysis of a variety of safety and protection sys- computational efficiency. The treatment of data
tams. The analysis most often proceeds by first uncertainty is examined, and the paper is concluded
constructing a fault tree 11,2] to determine the with numerical results for a series of example
possible combinations of primary component failures problems that differ by the types of component
that will result in system failure. Then the rells- dependencies that are taken into account.
bbility or availability of the system is estimated
quantitatively in terms of the failure and repair 2. ANALOG MONTE CARLO
rates of the components.

The quantitative evaluation may be carried out by Each of the 2N arkov states for an N component
standard deterministic methods, provided the prohabi- system is defined by a unique combinatlo, of function-
littes of component failure and repair are mutually al and failed components. The probability density
independent. However, the task becomes prodigious in function that a system in state k' at time t' vill
the presence of component dependencies such as appear make a state transition at time t is
with backup systems, repair crews shared between
components, or compoments with shared loading. In f(tlt',k') - exp--k.,(t - t')J
such situations the system may be modeled as a Markov
procesa 13-51, for then such dependencies can be where yk* ia the transition rate out of state k'.
properly represented, provided the failure and repair In the case where there are no component dependen-
rates are time-indlpendent. It then follows, however, cies, "k is the sum of the failure rates of the
that a system of 2 coupled first-order differential functional components and the repair rates of the
equations must be solved numenriclly If a system with failed components. In the event that there are
N components is to be modeled. Since this represents component dependencies. certain of the failure or
over a million differential equations for a system of repair rates will depend on the states of otier

'Perma:ieFC Address: Beijing Nuclear Engineering Institute
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components. To sample the time interval Then. according to the central limit theorem the 68Z
at - t - t' between state transitions we obtain the confidence Interval for the results ;s U!S/IV.

cumulative probability distribution corresponding to
(I), set it equal to a random number E, that is
uniformly distributed between zero and one, and invert VARIANCE REDUCTION
to obtain (81

I Even with the improved sampling that results from
At - -- In(l - C). the Lagrangian approach of the Markov simulation.

Yk' analog Monte Carlo analysis of highly reliable systems
Having determined the time of transitioi, we must is likely to be very expensive, since only very rarely

determine the new state of the system. The transition will a trial contribute a nonzero tally. Fortutiately,
probability q(klk') from state k' to state k is just powerful variance reduction techniques are easily
1 /yk, multiplied by the failure or repair rate of the adapted to the Markov Monte Carlo formalism. These
component that must change states in crder for the techniques. which are analogous to the highly refined
k' * k transition to take place. To sample the importance sampling methods employed in neutron trans-
transition, a uniformly distributed random number port calculations 18-10). greatly increase the compu-
C' is generated and the new state is found by tational efficiency for highly reliable systems,
determining the value of k that satisfies the without biasing the results.
inequality We employ two such techniques, which we refer to

as forced transitions and failure biasing. In these
k k+1 the sampling distributions are modified, first to
I q(k'lk') < C' 1 ) q(k'lk'). produce an artificially large number of component

k-o ke-o transitions, and second to increase the ratio of
failures to repairs. To each trial is attached a

The most general version of the Markov code weight, initialized to one, that is modified appro-
estimates either unreliability and unavailability from priately each time a biased sampling distribution is
H independent trials. Each trial consists of used. Then by defining weighted tallies, unbiased
alternate samplings of the times of the successive estimators may be shown to result.
transitions and the state of the system after the In forced transitions, we replace f(tlt',k') by
transitions. For unavailability calculations the
trial ends when the design life T is exceeded. For
unreliability calculations the trial ends at the first -(t-tt) t' I t

system failure or when T is exceeded. After each ?(tltl,kl) - -e-
transition, the system status is checked to determine
whether the system is in an operational or a failed 0 otherwise

state. Tallies are required only after transitions With this. the uniformly distributed random number
for which there is a change in system status between a E can be used to sample the interval to the next
failed and an operational state. transition:

For purposes of determining its status, the
system Is represented by an equivalent fault tree. At - - in 11 - 01-e-Tt)], 0 At T - t',
The status is then determined either by comparing the T
combination of failed components to the tree's minimal causing the next tranaition to be forced before the
cut sets, which have previously been determined, or by end of design life. To compensate for the modified
direct bottom-up logical evaluation of the tree Ill. sampling the trial weight wm It modified by

In analog Monte Carlo the unreliability tally io
binomial, consisting of a one for each trial resulting w * v.(l - eY(T-t')

in system failure before t - T, and zero otherwise.
For the unavailability, the tally is just the caction This technique is only applied when y(T-t') is small,
of the time T for which the system is in a failed and therefore there is only a small chance of an ana-
state. Thus if M trials are carried out, and m of log transition before the end of design life. When
them are found to result in system failure, the there are large transition rates, due for example to
binomial estimator for the unreliability Is the presence cf large repair rates In y, then analog

sampling is used. Conversely, when I(T-t') is very
Vr - l/N. small, a rare event approximation may be used to

simplify the modified probability density function to
and the corresponding sample variance is

s2(U I Ur(l- - U)(ttk) - (T-t') " t'4 t % T.

Therefore At can be sampled from a uniform

Likewise, if T /T is the fraction of the tim hT that distribution, and the weight is modified by
the system is ?n a failed state during the m trial,
the unavailability is estimated by w * 7(T - t')w

H In failure biasing the transitton probabilities
Uas " i a/T q(kiiL') are modified to increase the ratio of failures

m-1 to repairs. This is necessary for efficient computa-
tion, since normally the repair rates are an order of

with a sample variance cf magnitude or more larger than the failure rates. The

biased transition probabilities are taken as

S (U.) Ml (T Ua)
2  

qLkj" x, ktA"a l k1 T q(k-lk')
kE tA
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and lmpTOVemfntts of more than three orders of magnitude or

more are obtainable 16,7].

q(kjk') - (1a), kct 4. DATA DISTRIBUTIONS
I q(kIk') (-)
VCR The foregoing results are for point data on the

Herae A is used to Indicate the set of transitions out failure and repair rates. Data uncertainty can also
of state kV that result from component failures, and R be factored into the calculations in a rational way.

Indicates those that result from repairs. These Each failure or repair rate is represented by a probe-
biased probabilities are defined such that a fraction bility density function which Is sampled at the begin-

x of the transitiona are forced to be failures. ning of a batch of M histories. The calculation is
Typically, we take a to be at least one half, which ts then repeated for N batches and the unreliability is
much larger than normally would be the case with determined from
unbiased sampling. To maintain unbiased results the
trial weight ii modified by

w •w' q~k"jk') Ur •4ul

where gIn is the estimate for the nth batch.

for component failure and Likewise, for the unavailability

w'v1 .k.I q(k'lk') U
1Uxk"Nn' n Un,

n.i
for repair. th

In using these variance reduction techniques, the where Pan is tha unavailability estimate for the a

trial weight is appropriately modified at each biased batch. The corresponding sample variances are given

sampling untfl the firsehsyastem failure occurs. The by
weight w i v for the m history is then tabulated, 2 ) - 2 2
the variance 

t reduction techniques r •a turned off for S 2 (U U 2 U2

the remaindex of trial, and the trial is completed n-1
using analog Markov Monte Carlo. This combination of and
biased and analog sampling is found to be ideal, for 2 N
it results In a substantial fraction of the trials S (U 2 U

contributing nonzero tallies to the results. At the n-I

same time the tally procedure for the unavailability

Is simplified, and one does not encounter the problem An important point is that variance of either result
of very long trails, with insignificantly small may be cast In the form 1IS

weights resulting from many system failures.
'With the foregoing Importance sampling 2 . A 4 B,

procedures, the estimate for the unreliability is just
'4 provided that M, the number of trials per batch, isUr4 u -. 

large enough that the batch averages form a normal
r .n-I distribution. The first term is due to the finite

number of histories per batch, and the second is due
The sampling variance Is then to the date uncertainty. Thus the hatch sizes need be

made only large enough that the second term domi-
(r 1 2nates. For then the variance in the result is

S(U r) I. - U governed by the data uncertainty and not the finite

m-l rbatch size. In reliability and availability problems,
where the data uncertainties are often substantial,

The estlmste for the unavailability is quite moderate batch sizes often wet this criterion.

w� 5. RESULTS

U's . MI T In illustratInt the effects of component

wher dependencies on system unreliability and una-

th evalability a model problem is defined by the fault

wher I IT is just the fraction of the m trial for tree shown in Fig. 1. This problem has been studied
which tJe system is In a failed state. For the in the absence of component dependencies using both
unavailability, the sample variance is deterministic I1I1 and Markov Monte Carlo 16] methods.

The component failure and repair rates are given in

M- W Table I. Systvm failure is determined by bottom-up

- -(V-II - loiclJe evaluation of the tree Ill after each
M-21 T transition.

For purposes of dependency modeling the compo-

The positive effects of the variance reduction nents are divided Into four groups as indicated In

techniques on computational efficiency are most Table I. Using fixed'failure and repair rate data. we

pronounced for highly reliable systems. The im- examine each of the dependency types Individually. In

provement may be measured in terms of the standard 0ll cahes we calculate unreliability using a design

fig .e of merit for Monte Carlo calculations: life of T - 1,000 hours, and in the failure biasing a

I/S t, where ? is the time per history, is a standard value of x - 0.9 ia used. All quoted times are on a

measure of Monte Carlo computational efficiency. CYBER 205 without veciorization.
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In Table 2 are shown the effects of shared repair 3. Henley, E. J., and Kumamoto, H., Reliability
crews on the unavailability and unreliability. In the Engineering and Risk Assessment Prentice-Hall,
base case there are no dependencies since each of the Englewood Cliffs, NJ, 1981.
components has a repair crew. Note that the great
increases in unreliability and unavailability in the /. N. J. McCormick, N. I., Reliability and Risk
problem result In go4ng from two to one repair crew Analysis Academic Presn, New York, 1981.
per set, while practically no deterioration results
Zrom going from one to none. 5. Pspazoglou, I. A., and Gyftopoulos, E. P.,

In Table 3 results are shown for the case where Markovian reliability analysis under uncertainty
within each of the four component groups there is load with an application on the shutdown system of the
sharing, such that the failure of any one component Clinch River Breeder Reactor, Nucl. Sol. Engrg.
within the group increases the failure rate of the 73. 1980, pp. 1-18.
remaining components by AX.

In Table 4 results are given for standby 6. Lewis, E. E., and Boehm, P., "Monte Carlo
configurations. Component groups 1 and 2 are (213) Simulatiun of Merkov Unrellability Models,' Nucl.

systems with the third component held in standby, Eno. Design. 7_7, 1984, pp. 49-62.
while component groups 3 and 4 are (112) standby
systems. The effects of various levels of the standby 7. Lewis. E. E. and Olvey, L. A., "Markov Monte Carlo
failure rate, X , and of a switching failure Unavailability Analysis", Trans. Am. Nue.l Soc.
probability of 5i are shown. In all cases U , the 4, 1984, pp. 325-330.
repair rate for switching failures, is taken to be 0.5
hr 8. Hammeraley, J. M.. and Handscome, D. C., Monte

Finally. in realistic calculations the data Carlo Methods, Methuen, London, 1967.
uncertainty is likely to be large, contributing a
variance to the results that may be substantially 9. Goertzel, G., and Kalos, M. R.. "Monte Carlo

larger than that due to the fact that only a finite methods in transport problems." Progress In
number of Monte Carlo trials have been run. To Nuclear Energy, Vol. II, Series Iu, Eds.: Hughes,

demonstrate this effect the system without component G.D.J., Sanders, J. E., and Horwitz, J., Pergamon
dependencies is run with data uncertainties. For eazh Press, New York, 1958.
component the failure and repeir rates are represented
by lognormal distributions. For all components the 10. Gelbard, E. M., and Spanier, J., Monte Carlo
uncertainty factor in both failure and repair rates is Principles and Neutron Transport Problems,

set equal to three. The results are colopared in Table Addison-Wesley, Reading, Mass., 1969.
5. In the calculations without uncertainty 10,000
trials were used. With uncertainty, 1,000 batches of 11. Vesely, W. E., 'Time dependent methodology for
25 trials per data batch were employed. With this fault tree evaluation," Nucl. Engrg. Des. 13,
level of uncertainty it is seen that roughly three 1970, pp. 337-357.
quarters of tf.e uncertainty in the results is due to
data uncertainty, and not the limited number of Monte
Carlo trials. The results are altered very little if Table I. Data for example problem
increased numbers of batches are used.

Unless otherwise specified the foregoing -,

calculations each consist of 10,000 Monte Carlo i group I (10- hr-1) u(hrI)

trials. For the example problems studied here the I
presence of dependencies never incre3ses the running
time by as much as a factor of two. Without data 0.26 0.042
uncertainty running time is roughly ten thousandths of
a second per trial or a few seconds per run. With 1 0.26 0.042
data uncertainty, times of less than one hundredth of
a second per batch of 25 typically are required. The 3 1 0.26 0.042

code Is also capable of treating problems in which all
three dependency types are present, a... in which data 4 2 3.5 0.17
uncertainty is included.
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Table 2. The Influence of the Number of Repair Crews
on Unreliability and Unavailability

Number of repair crews N
________________ tnrallabillty Unavailability

Group 1 Group 2

0 0 .35I17-52 +4165 .352- A1-

1 0 .3527.10-2 ±4.13&S .2341-10-2 ~1410-

0 1 .3515-10-2 14.10-5 .21S6.10-2+4.10 -

1 1 .335-510-2+4.10-5 .2263.10-2±4tj.10-5

2 1 .3492-10-2 14.1O-S .2260.10-2±4t.10-5

1 2 .6323.10 4 25.10-6 .152 -10 -A 4.10 -

2 2 .4394-10 -41-0- .1436-10 -6±5-10 -

3 3 .4391..10 -J 5-10 -7 .1136-10 *6 5.10

Table 3. The Influence of Sharing Load or
Unreliebility and Uneveilebility

x- Unreliability Unavailability

0.2 .5279.10- 15.107 .1800.1064 ±7.109

M .6584-10 -4 6-10 - .2209.10 -6±7-10 -

0.8 .7929.100'± 7-10 - .2622-10 -6±a.109

1.0 .8778-10-A±47.-29910 -7 - 10 -

2.0 .1319.10 -31t.10 - .4280.10 -6 9.109
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TaThl A. Thr Influence of failures in standby and of switching failures
-n nvqtem tnreliebtlity and UnavallAbthity

p 0.00 0.00 0.05 0.05

I / O Unraltnbltity Unaveiltbility Unreliability Unavailability

-4, -7 7 - 2 -;-

0.0 .298R.In 1+3.11- .9250.10 7 -t3.10 "9 .3864"10 2.+2.10-4 .4(-16-10-- +2.10-7

0.2 .3245" 10-4-±4.1,')"7 .9762.10-7 ±2.10°9 .3664.10-2 ±2.104 .4640.10" 5+3.10"7

0.4 .3563"10"-4 -7 1084.10 -6 12-10"9 .3790 --12 0- .4213"-10"2 +310-7

0.4 ±24.()-10 .4614.10 +31
0.6 •*3157" ln--l O-4.1 .1193"10"5±3.10- .3908 * 10- -2.10"8 .4614."10" -4."10-7

-9-2 -- 5 -

0.8 .414Z .10-4 -.4 10-7 .1265 "10 "6-±3.10 .3848.10 "2 +2.10 .3927"10 5±+3.10-7

-4 -7 -6 -9 -25 -7-
1.0 ."429"10 ±510- .1393-10;t4.10"9 .3823"10"22.104 .4279"10 ±4-10

Table 5. Effect of Date Uncertainty on Unreliability and Unavailability

Uncertainty Uurcliability Unavailability

P10 0.4394oO .• 4 t O.5.10-6 .1436- 10 -6a O -.sIO-8

-4 -5 -6 -7
Tea 0.6708-10 :1 0.2-10 .334 2-10 4* 0.2-10

A

FIg. 1. Example Problem fault Tree
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