
R16 806 RN LGEBR IC PPRO C H TO TIME SC LE N LYSIS N D V
CONTROL(U) MASSACHUSETTS INST OF TECH CAMBRIDGE LAS FOR
INFORMATION AND D.. X LOU OCT 85 LIDS-TH-1505

IUNCLASSIFIED AFOSR-TR-85--±i29 DRR029-84--K-9095 F/O 12Ai UL



I212
-. - ''  IIIII: i

* 11114*' ' 0 11112
1-125l*

NATIONAL BUREAU OF STANDARDS
mCROGOPY RESOLUTION TEST CHART

"- " ' ' '- ',' " ' " ' . ' " 
, : ' ' '- '. '. ',' , 

" ' ' . , " " • -. 
s ., . .. . . . . * .



AFOS;TR 10

00OCTOBER 1985 LIDS-TH-1505

Research Supported By:

0 Air Force Office of
Scientific Research
Grant AFOSR-82-0258

Army Research Office
Grant DAAG 29-84-K-0005

AllA

AN ALGEBRAIC APPROACH TO A

TIME SCALE ANALYSIS ELECTE f
AND CONTROLDE3 5N

Xi-Cheng Lou 2.

L.Lj Laboratory for Information and Decision Systems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

C--Z

85 12 30 137



ling,-I =an f. -,PA*

SECURITY CLASSIFICATION OF THIS PAGE R

REPORT DOCUMENTATION PAGE

I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclasified ,,
2& SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

]/A Approved for Public Release: Distribution
2b. OECLASSIFICATION/DOWNGRADNG SCHEDULE Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

A~~ITO)SR -TR- .. 1.-".! 2 9
G& NAME Of PERFORMING ORGANIZATION b. OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION

fit appDible

" A St dAFOSR/NM

6C. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Cambridge, MA 02139 Bldg. 410
Bolling AFB, D.C. 20332-6448

ES& NAME OF FUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION eicabtai

AEAqR I NM AFOSR-82-0258
Ik. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Bolling AFB, D.C. 20332-6448 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

61102F 2304 Al
11. TITLE (Include Security Cimaiflcatioa)

An Algebraic Approach to Time Scale Analysis and Control
12. PERSONAL AUTHOR(S)

Xi-Cheng Lou
12& TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

hni ca FROM TO October 1985 223
14. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS lCondnue an ,wlra ii fne*nay @Rd identify by block number)
FIELD GROUP SUB. GR. MSST condition, MSSNS condition

19. ABSTRACT WConftiue on reaeru if neceesry end identify by block number)

An algebraic approach is developed for multiple time scale decomposition of a linear
system using the Smith structure of the system matrix viewed as the matrix of functions
of a small parameter c. This derivation makes clear that both the necessary and
sufficient multiple semi-stability condition (MSST) condition, which ensures well-

defined multiple time scale behavior and the time-scale-decomposed system structure which
approximates the original system are closely related to the so-called Schur complements

of a certain matrix. Furthermore, this decomposition has been extended to a larger
class of systems, satisfying the so-called multiple semi-simple nullstructure (MSSNS)

condition.
The algebraic approach is also applied to examine the questions of the feedback control

of the linear systems. Specifically we present results on time scale modifications

by state feedback.

20. DISTRI SUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEOIUNLIMITED SAME AS RPT. OTiC USERS Q Unclassified

22&- NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22t. OFFICE SYMBOL
(include A rea Code)

Dr. Marc Q. Jacobs (202)767-4940 AFOSR/NM

DO FORM 1473. 83 APR EDITION OF I JAN 73 IS OBSOLETE. Unclassified

SECURITY CLASSIFICATION OF 1rHIS PAGE

. ............................... ,..""""""-.""....-..,..,.,.......,......,......-........".,,....',.........



" October 1985 LIDS-TH-1505

AN ALGEBRAIC APPROACH TO
TIME SCALE ANALYSIS AND CONTROL

by

Xi-Cheng Lou

This report is based on the unaltered thesis of Xi-Cheng Lou submitted
' in partial fulfillment of the requirements for the degree of Doctor
"" of Philosophy at the Massachusetts Institute of Technology in May 1985.
-'. This research was conducted at the M.I.T. Laboratory for Information and ... ,.

Decision Systems with support provided in part by the Air Force Office
of Scientific Research under grant AFOSR-82-0258 and in part by the
Army Research Office under grant DAAG 29-84-K-0005. 44 .. •

.4'2*:

Laboratory for Information nad Decision Systems
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

.. . . .. . . . 4 4 . . . . . . . .. l . . . .; . ' . . . . - . . **.,'.

4 . . .4 4. . . . . . . . . . . ... ,

Cabide Massachusetts............-....



-.

AN ALGEBRAIC APPROACH TO

TIME SCALE ANALYSIS AND CONTROL

by

Ki-Cheng Lou

B.S., Qing-hua University, (P.R. China)

(1965)

S.M., Massachusetts Institute of Technology

(1982)

-.ccesion For

SUBMITTED IN PARTIAL FULFILLMENT CRA&I
OF THE REQUIREMENTS FOR THE E,

DEGREE OF

DOCTOR OF PHILOSOPHY

a t the ........... ...... "

MASSACHUSETTS INSTITUTE OF TECHNOLOGY '.y ,

May 1985 .t 1

Xi-Cheng Lou, 1985

Signature of the Author ...... .. .
Department of Electrical Engineering .

and Computer Science, May,30 ,1985 1

Certified by .. .... ................ .....,, o t

Alan S. Wilt sky
Thesis Supervisor

Certified by ........... .. . ......................
George C. Verghese
Thesis Co-Supervisor

Accepted by ................................

Arthur C. Smith
Chairman, Departmental Graduate Committee

-7-* '.--' :m- -.-7
S. . .. . . . . . . . . ..



* ." .,-.-
" ,

7-7L

AN AI.EBRAIC APPROACH TO

TIME SCALE ANALYSIS AND CONTRCL

by

Xi-Cheng Lou

Submitted to the Department of
Electrical Engineering and Canputer Science

on October 1, 1985,
in partial fullfillment of the requirement

for the Degree of Doctor of Philosophy

ABSTRACT

An algebraic approach is developed for multiple time scale ,-
decomposition of a linear system using the Smith structure of the system
matrix viewed as the matrix of functions of a snall parameter c. This
derivation makes clear that both the necessary and sufficient 1011..2
semi-stability (MSST) condition, which ensures well-defined multiple '

- time scale behavior and the time-scale-decumposed system structure which
approximates the original system are closely related to the so-called
Schur oomlem s of a certain matrix. Furthermore, this decomposition
has been extended to a larger class of systems, satisfying the so-called
mult.i~ie am~il julltrctr (MSSNS) condition. /.

The algebraic approach is also applied to examine the qestions of
the feedback control of the linear systems. Specifically ve present5
results on time scale modifications by state feedback. /  , .

rJ

IThe characterization of the relationship among the eigenvalues of
A(c), its invariant factors and the MSSNS and MSST conditions has been
thoroughly studied. It is shown that the MSSNS condition is not only
equivalent to the non-singularity of the Schur complements of certain
matrix but also equivalent to 1) the eigenvalues and the invariant
factors having the same orders and 2) a condition which exposes the
relationship among the order of the gcd of all ixi i minors, the
order of their sum and the invariant factors. The MSST condition is
equivalent to 1) the Schur complements being Hurwitz and 2) a condition

2
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which reveals the connection between the MSSNS and MSST conditions and
the eigenvalues of A(c).

Using the algebraic approach, a scaling procedure is developed to
transform a system having no uniform time scale approximation to one
which does. This procedure is applied to high-gain feedback problems.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering and Computer

Science

Thesis Supervisor: George C. Verghese
Title: Associate Professor of Electrical Engineering and

Ccxnputer Science
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CHAPrER 1 II~rJCI'ION

1.1 General Description

The class of systems considered in this thesis are linear, time-

invariant systems whose parameters are subject to a small perturbation.

Mathematically, this can be stated through the system equation

x(t) =A(e)x(t) + B(e)u(t)(1)

Here x and u are n- and m- dimensional state and control vectors

respectively; and A(e), B(c) are nxn and nxm matrices whose entries are

analytic at e0.

As pointed out by Coderch and et.al. (1], [7], under certain

conditions the undriven system

x(t) = A(e)x(t) (1.2)

will exhibit multiple time scale behavior. Namely, the state variable .

x(t) can be "approximated" by a new variable z(t) whose components

evolve at several time scales with time constants proportional to

10
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i,I/e,l/e2,..... In other words, the undriven system which may have

very large dimension can be broken down into several subsystems with

lower dimensions, each of which focuses on different time scale.

The phenomenon just described is commonly referred to as a

consequence of the s ingular o of the system matrix A(e).

Specifically, as noted by Coderch [71, the system (1.2) may have several

time scales only if A(e) losses rank as c goes to zero+. If the rank of

A(O) is equal to the rank of A(e), then A(e) is regularly perturbed and

has only one time scale. b2i
The value of singular perturbation analysis for the system (1.2)

rests on the fact that it achieves model order reduction by separating

the system's time scales, that is by considering slow and fast phenomena

separately. Consequently, problems of analysis and control for systems

with very large dimension may boil down to several problem of smaller

dimension. In addition, there are situations in which the original

system is not singularly perturbed but in which the control which is

applied causes the overal closed-loop system to possess several time

+ For most of the discussion in this thesis we will focus on the case

in which A(e) has full rank for e (O,e 0] but is singular at e=O. In

Section 2.8 we show how to extend our results to the case in which A(e)

itself is singular.

.. . -.



scales. For example, singularly perturbed system can result

from the optimal control of a system using a quadratic cost functional

having a small penalty on the control [2], [13]. The results in these

i''references reveal the existance of mrultiple time scales in such systems.

There have been numerous papers dedicated to this subject ( see

survey [10], [2-) among which Kokotovic etal. have thoroughly studied the

two time scale case. Then Coderch, etal. [1], [7] carried this idea to

the multiple time scale case and derived some basic results. In this

thesis we develop a new algebraic approach to multiple time scale

analysis which allows us to obtain a clearer and deeper understanding of

time scale decomposition for the general systems (1.1), (1.2). Not only

does this approach allow us to gain more insight into the nature of

systems with several time scales but it also provides a framewrk within

which it is possible for us to consider and solve several other

important problems. In this chapter we first briefly describe previous

work which forms the foundation on which our research is built. We then

give the outline of this thesis and summarize its contributions.

1.2 Background

The origin of the multiple time scale problem can be traced to the

so-called boundary-layer problem in ordinary differencial equation

theory where a small positive number e is incorporated to allow

12
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perturbations. Typically such a problem gives rise to a boundary layer, ____

which is a narrow interval of time close to the origin where the

solution of the differential equation changes rapidly. The thickness of

the boundary layer approuches zero as e-->O. Outside the boundary

layer, in the outer region, the solution varies slowly. Therefore the

system presents two time scales. A simple example will show this

phenomenon. Consider the perturbed differential equation

ex(t) + (l+c)i(t) + x(t) = 0, x(0)=0,x(l)=l

The exact solution of this problem is

x(t) =et-t/

e-t - e-l/e

Therefore this problem exhibits two time scales having time constants of

order 1 (slow) and order e (fast). In general, the boundary layer

method is based on the fact that if a solution of a differencial

equation is slowly varying except in isolated boundary layers, then it

may be easy to obtain a leading order approximation without directly

solving the equation.

Kokotovic and co-workers studied a special class of systems of

singular perturbed linear differential equations [4], [5]

13
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= AllX(t) + AI2X2 (t) (1.3), ~(1.3) ";
eCX2(t) = A21xl(t) + A22x2 (t)

If we change the argument t to

t =t/C

then we have

1ci it) = AIIxI(t) + AI2x2()

x2  = A21x (0 + A22x 2 M

Or

= cA12  x = A(e)x (1.4)

A 1  "22]

Thus, (1.3), or equivalently (1.4) is a special case of (1.2). If in

addition A22 and AII-A2 1A2 - 1 2 have all their eigenvalues strictly in

the left-half plane, then system (1.2) has two tiM scale..

behavior (see below) and the eigenval'ies of A(e) will fall in two groups

as e approaches zero, one of order 1 the other of order e.-

In the previous subsection we gave a verbal, intuitive definition

of what we mean by well-defined multiple time scale behavior, namely

that the system can be decomposed into several subsystems, one at each

time scale. The following is a precise statement of what we mean.

System (1.2) has . m tim scale behavior if there

14
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exist constant matrices A0 , A, .... , An- 1 , T and integers k0 Skl<..9tnkl

such that

lira sup I lexp{A(e)t}
C->0 t20

- Texpdiag[ek0A,eklAl,...en = 0o...

In this case we will frequently say that [A0,....,AnI;T] defines r
a time scale decomposition of (1.2).

It is clear from the definition, that if (1.2) has well-defined

time scale behavior then the state variable x(t) can be approximated

(after a linear transformation) by n components, each evolving at a

different tide scale. Furthermore, the approximation is uniformely

valid on entire half-line (Of) +

While Kokotovic considered the two time scale case, Coderch, et.

al. (1], (71 presented the first complete solution of the general case

(1.2). In this work they present necessary and sufficient conditions

for the system (1.2) to have well-defined time scale behavior. Their

proofs suggest a procedure for extracting and displaying the multiple

+ As point out by Coderch [7], exp{A(O)t} is a good approximation for

exp{A(e)t} on any finite interval [0,T]. Therefore the notion of

multiple time scale makes sense only when the concern is the whole

interval [0,N).

15
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time scale structure of (1.2). However this method is quite involved

and does not lend itself to easy interpretation or computation. For

example, the relationship between the complex results of [11, [71 and

intuitively simple results of [4], [5] is not at all apparent. Making

clear this relationship and obtaining a conceptually and computationally

simple solution in the general case are two of the objectives achieved

in this thesis.

1.3 Outline of This Thesis

The first portion of the research described in this thesis deals

with an algebraic approach to the time scale decomposition of (1.2).

Specifically, in Chapter 2 we consider the Smith form of A(e) over the

ring T of all functions of c which are analytic at e=O, and based on

this form we are able to obtain a more direct and simple description of

the multiple time scale decomposition. This derivation makes clear that

both the necessary and sufficient multiple semi-stability (MSST)

condition, which ensures well-defined multiple time scale behavior and

the time-scale-decomposed system structure which approximates the

original system are closely related to the so-called Schur complm.-t

of a certain matrix. In doing this we also are able to make clear the

connection between the general results of Coderch et. al. and those of

Kokotovic. Furthermore, having established this framework we are able

to use it to solve several additional problems. In particular we are

16
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able to extend our decomposition (with a modified notion of well-defined

time scale behavior) to a larger class of systems, satisfying the so-

caled mrultiple semisimple nulistructure (MSSNS odto, na h

end of Chapter 2, we use our results to examine the questions of the

feedback control of the system (1.1). Specifically we present results

on time scale modif ication by state feedback.

Chapter 3 deals with the characterization of the relationship among

the eigenvalues of A(e), its invariant factors and the MSSNS and MSST

conditions. It is shown in this chapter that the MSSNS condition is not

- - only equivalent to the non-singularity of the Schur complements of a

certain matrix but it is also equivalent to 1) the eigenvalues and the

* invariant factors having the same orders and 2) a condition which

exposes the relationship among the orders of the gcd of all ixi

"icia minors, the order of their sum, and the invariant factors.

These results provide us with a procedure for computing the orders of

* the eigenvalues and invariant factors and for checking the MSSNS

* condition. Also, in this chapter we show that the MSST condition is

* - equivalent not only to the Schur complements of a certain matrix being

Hurwitz (Chapter 2) but also to a condition on the orders of the real

and imaginary parts of the eigenvalues of A(e), which in turn reveals

the connection between the M4SSNS and MSST conditions.

In Chapter 4 we use our results on the relationship between the

orders of eigenvalues and invariant factors to explore the use of

amplitud scaling to transform a system matrix without MSSNS into one

17



that does have this property. The analysis involved in this

investigation is rather delicate as it involves careful examination of

the orders of principal minors and the identification of key elements of

the matrix that must be scaled. The end result of our efforts is a

procedure for determining such a scaling matrix for systems satisfying

certain conditions. We then apply our results to interpret and

generalize recent results on time scale analysis of high gain or nearly

singular optimal feedback systems.

Finally, in Chapter 5 we briefly sumnarize the main results of the

thesis and discuss several directions for further research.

1.4 Main Contributions of This Thesis

We feel the main contributions of this thesis are the following.

1. We present a simpler and clearer picture of the multiple time

scale decomposition of a general perturbed linear system based on an

algebraic approach which allows further development in several -"-

directions.

2. We make clear the connection between Kokotovic's explicit

approach for the two time scale decomposition case and Coderch's".-

18
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elaborate multiple time scale results.

3. We thoroughly study the MSSNS and MSST conditions relating them

to the algebraic structure of A(e). By exposing the important role that

the orders of the invariant factors and eigenvalues play, the

interpretation of those conditions is clarified.

4. We develop an algorithm to extend time scale decompositions to a

larger class of systems which satisfy MSSNS but not MSST.

5. We present results on time scale assignment through state

feedback control.

6. We make clear the relationship between the MSSNS condition and

the MSST condition. Specifically, A(e) satisfies the MSST condition if

and only if it satisfies the MSSNS condition and the orders of the real

parts of its eigenvalues are equal to or less than those of the

corresponding imaginary parts.

7. We reveal the role of the gcd's of the r minors (not All

minors as in the general case) in determining the invariant factors of a

system with MSSNS and develop an algorithm similar to that of the so-

called Newton polygon. We show that if the system has well-defined

time scale behavior (or more generally if A(e) just has MSSNS) then this

algorithm determines the orders of the various time scales and the

dimensions of the subsystem at each time scale.

8. We develop a procedure for amplitude scaling to transform a

19
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system which does not satisfy the MSSNS condition to a system which

does. If the original system satisfies some conditions studied in this

thesis, then after scaling the resulting system will have well-defined

multiple time scale behavior.

9. We apply the scaling procedure developed in this thesis to high-

gain feedback problems, leading to an interpretation and generalization

of results in the literature.

20
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CHAPTER 2

ALGEBRAIC ASPECTS OF TIME SCALE BEHAVIOR
k.

2.1 INTORN -C-I"ON

As we pointed out in Chapter 1, the system we shall consider in

this thesis is a perturbed, linear, time-invariant system

x = A(e)x(t) + B(e)u(t) (2.1)

and its undriven form

x(t) = A(e)x(t) (2.2)

where A() and B(e) are nxn and nxm matrices whose entries are functions

of a small parameter e analytic at e=0. Kokotovic and co-worker [6, 10]

have thoroughly studied a special case of (2.2) in the two time scale

case, which, as we discussed in Chapter 1 Eq. (1.4), corresponds to ,.

A(c) having the special form

21
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CA11 CA12

A W'

With A1 1-Al 2 A22 1 A 2 1 Aurw A22.

Coderch et. al. [7,1] studied the general case of (2.2) and derived

necessary and sufficient conditions for the system (2.2) to have a well-

behaved multiple time scale description. In Section 2.2 we give a mrore

detailed review of their work and point out the limitations of their

results which have motivate our work.

In particular, in this chapter we develop an algebraic approach for

determining the multiple time scale structure of (2.2). This method

involves the examination of the Smith form of AWe over a particular

local ring T. In Section 2.3 we give the def inition and basic feature

of this ring. In Section 2.4, we introduce the so-called CZlii LQzM

of the perturbed system (2.2) which is closely related to the Smith form

of A(e). we also show that after some invertible linear

transformations, the solution of this explicit form is a good

approximation (in an asymptotic sense) to that of system (2.2) if in

fact the original system has well-defined multiple time-scale behavior

a property we define in the sequel). Moreover, using the explicit form

we can define a straightforward procedure to check if a system has well-

defined time scale behavior. At the end of the section we provide an

overview of the major results along these lines that are developed in
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the following sections.

In Section 2.5, we give a first derivation of the multiple time -.

scale approximation. This derivation is in fact an extension of the

usual two time scale argument. Then in Section 2.6 a proof of the

asymptotic properties of this approximation is given based on making

explicit the connection with Coderch's results. It turns out that the

time-scale-seperated system which approximates the original system is

determined by a sequence of Schur c lnts of the system matrix in

explicit form. A major consequence of this is that the computational

procedure we derive is far more transparent than that proposed in [7].

The eqivalence between the results obtained in Section 2.5 and 2.6 is

established in Section 2.7. This development makes clear the

relationship between Kolotovic's two time scale result and Coderch's

multiple time scale result. Finally, in Section 2.8 we review our

results in order to place our contribution in its proper perspective.

Specifically our approach establishes a framework that not only exposes

the essential nature of time scale decompositions in a very clear

fashion, thereby improving our understanding of such decompositions, but

also provides a starting point for posing and solving a variety of

problems that are not so easily posed or solved using previously

developed approaches. Chapters 3 and 4 contain several important

results of this type, as does the end of Section 2.8 in which we solve P

several problems including one that had been proposed, but not solved,

by Coderch [7].
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2.2 PREVIOUS WORK

As pointed out in Section 2.1, not only is our work closely related

to Kokotovic's two time scale results and Coderch's miltiple time scale

approach, but it also establishes the clear and simple relationship

between these earlier results. Therefore at the start it is important

that we describe their work in some depth. In this section we give an

outline of their work and point out several issues.

2.2.1 Two Time Scale Results

The two time scale singular perturbation method developed by

Kokotovic, etal [6.10] is based on a linear time invariant system with

a small constant c on the left hand side of its state equation:

r1ll-A1= -AjA1 [ (2.3)

LCX2 -1 L +A2 2xJ LA21  A2j 
- .

There are two well-known results about this system for small c.

1. If A22 and All=All-A 12A22 1A21 are non-inglarA., then the

eigenvalues of (2.3) fall in two groups as e-->O. One group approaches

the eigenvalues of All. The other approaches that of cA22. The matrix
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All is comnenly referred to as the Schur c of A22 in the matrix

A [3]. We will have much more to say about Schur complements as we

develop our approach in following sections.

2. If A2 2 and All are Hurwitz, then the system has "well-defined

time-scale structure" as e-->O. The fast time scale is of order 1 and

the slow time scale of order i/e.

Mathematically, what "well-defined time-scale-structure" means can

be explained as follows.

Define

T = (2.4)

and

~ 1 (t) X()

Y2 Ml(t

Then under the condition that A22, All are Hurwitz, we have

.1 7(tj jY5 (t)1

+ 0 (C), O<t (2.5)
L 2 (t)J Ly f (t/0)

where the O(e) term is bounded uniformly in t on [0,0c) as e-->O and
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Y Y(t) and yf(t/c) are called the "slow" and "fast" states respectively

and satisfy

ysl(t) AllYsl(t), ys(0) = x, (0)

yf(t) = A22yf(t), Yf(O) = x2 (0)+A 22
1A21 xI(O) (2.6) .

If we define .-

Al A12
A (e) [~AleA]

in view of (2.4), (2.5) and (2.6), we have

lira sup IlTexp{A(e)t}T -I - exp{diag[All, i/eA22]tlJI=0
e->O tO

Furthermore, if we change the time scale to --t/e, we have

1,Ir)- -All qAlj 1i( t ) X (t "'':.

x2( A2 1  A2  x2 () Lx2 (t j
L~~ ~~~ -)J A2.-2~2 r

Then similarly

lim sup I ITexp{A(e)t}T -  exp{diag[eAll, A22 t } II=0 (2.7)
e->O -0"-

In general, as we defined in Chapter 1, if A(c) is analytic at e=O

26
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and Hurwitz for c>O and there exist constant matrices A1, A2, T such

that uniform convergence as in (2.7) holds, then we say that A(c) has

well-defined two 'ime scale behavior. Obviously Kokotovic's results

provide a two time scale decomposition of a linear system. Moreover, as

mentioned earlier, this approach has been proven to be useful in optimal

control [4], stochastic control 18], design of nonlinear regulators [51,

analysis of high gain systems 113], cheap control [2, 12, 13] and so on.

The limitations of this method consist of two points. First, the

assumed form of Eq. (2.3) essentially implies that the seperation of

fast and slow state variables has been done beforehand. This is,

however, not the general case, especially for complex systems, where the

system matrix could be a more general function of e, and state

seperation would not be immediately available. Secondly, only two time

scales are considered in this model. In the next subsection we

introduce the result of Coderch, etal [7, 1] which successfully solve

the general problem of multiple time scale behavior of a perturbed

linear system.-

2.2.2. Multiple Time Scale Behavior of Singularly Perturbed LTI Systems

The system considered in [7,1] is the singularly perturbed LTI

system (2.2) with a slight change in notation whose purpose will become

clear shortly.
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-t)- A0 (e)x(t) (2.8)

where the nxn matrix A0 (e) is an analytic function of e. For the

present discussion we assume that A0(c) is Hurwitz for E (0,eo) although

Cocerch allows slightly weaker assumptions. In Section 2.8 we will show

how our approach can be easily extended to this mre general case.

In order to present the results in [7,1], we need several

definitions. A matrix H is said to have s n ructu (SSNS)

if its zero eigenvalue has geometric multiplicity equal to its algebraic

multiplicity. In other words, every zero eigenvalue of H corresponds to

a distinct independent eigenvector. A matrix H is said to be sem.s-a.'-

if it has SSNS and all its non-zero eigenvalues have negative real

parts. Suppose A0 (e) has eigenvalues Al(c), ..... ,An(e) where Ai(e)->O,"

e->0, i=l,....,m~n. Then the t Projection for the zero-group of

eigenvalues of A0 (e), P0 (e) is the projection onto the subspace spanned

by eigenvenctors corresponding to A, (e, ...., Am(e) of A0 (e) 191.

Since A0 (e) is analytic at e=0, it has a series expansion of the

form

A0 (e) = CPF~p
p=O

It can be proven (7,1] that if F00 has SSNS, the matrix

Al (e) = (c)A0(c)/e

has a series expansion of the form
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If Flo also has SSNS we define A2(e) as *,:

A2(e) = Pl(e)A,(e)/e = Pl(e)P0 (c)A0 (c)/e 2

=ePF2o2p

where P1 (c) is the total projection for the zero-group of eigenvalues of I-
A1 (c). This process can be continued but it terminates at

Am(c) =Pm(e)Am-I(e)/c = Pm-(e) .... P0 (e) A0 (e)I..'

=PF'np

if the imatrix Fmo does not have SSNS or if

rankF0 0 +rankF1 0 +. . .+rankFmo=n•

A matrix A0 (e) is said to satisfy the muiUle nmi'imp'. ull

structure (MSSNS) condition if the sequence of matrices Ak(e) can be

contructed up to a stage k--m with all matrices FkO, k=O, ... ,m having

SSNS and rankFoo+....+rankFmo=n. If in addition, all FkO are

semistable, then we say that A0(e) satisfies m semistability

(MSST) condition.

The following results determines when an asymptotic approximation

to x(t), uniformly valid for tN0, can be constructed which clearly

displays the multiple time scale behavior of x(t). The main result is

the following.
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1. System (2.8) has well-defined time-scale behavior if and only if

A0 (e) satisf ies MSST condition.

2. If AO (e) satisf ies the MSST condition. Then

m
lim sup Ilexp{A(c)tl exp{ EFkOcktlII 0

e->0 t O k=O

Furthermo~re, it can be shown that using a linear transformation T, which

is independent of c ,we have that

r'kOT =diag{0F,,...,0,rAk.0,...,01, k=0,...,m

where each of the Akis Hurwitz. Therefore

1in sup I Iexp {k(e)t Q Tr4lP{ TFkOrlc'kt}T I =0
ew->O tk0 k=0

or

lixn sup exp{TA0(e)r1-} -diag{exp1jt,**9*,exp[Aejt1} =0
C->0 t 0.....

(2.10)

In other words, to f irst order approximation, the original system (2.8)

can be thought of as being conposed of (m+l) uncoupled subsystemis (af ter

certain e-indeperident transformations)
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dyk (t)/dt = Akyk(t) ,

each running at a different time scale. In this case we will say that

(T- h0L.L e W lime sc ale decomposition 2f (2.8). -*"-

From this result it can be seen that in order to obtain the

uncoupled approximation one must first compute Fk0, k-0 ... ,m, then

compute T. Although a procedure was proposed in [7], it really should

not be viewed as an algorithm, since the computational aspects of the

procedure have not been examined, and the procedure is quite involved.

For example, Fl0, F20, F30 can be obtained by

Flo -PoAoIPo

F20 =PlP 0(A02-A01A00 A01)POP1
# -F30 = 2PlPO (A03-0A 00AO A02-A02AO0 A01

+AOIAOO AOlAO0 A0A0210 A02

-A0200 A01A0o A01 A00 A01 ) o

kioAoo AoaAlo AklAol) PO~lP2

where Pi=limPi(c), i=0,1,2, and A# is the pseudo-inverse of

matrix A. The computation of F40 is much more complicated. The

complexity of these formulas makes it difficult to obtain a deep

understanding of multiple time scale behavior and the structure of A0(e)

or to examine a variety of problems such as the consideration of the

effect of control on time scale behavior.

Having these background results we are now in a position to
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introduce our main results. As we mentioned in Chapter 1 and earlier in

this chapter, an important element in our development is the Smith form

of A(c) over a local ring T of all functions of e analytic at e=O. In

next section we give the definition and the major properties of this

ring.

2.3 The Local Ring T

In this section we study the ring T of all functions of real

variable e which are analytic at e=O. In other words, we study the ring

of functions which have Taylor series expansions at e=0. We show that

this ring have a Smith form. It is this Smith form that plays an

important role in this thesis. We state many of the results ooncering T

and matrices over T without proof because they are imediate extensions

or examples of results which can be found in literature [3,111.

Consider a set T which consists of all functions of e which are . -l

analytic at e=O. It is easy to show that T is a ring. The units of T

are elemlnts of T which do not vavish at e=O,

U - { xl xeT, x(O)kO}

Therefore any unit of T has the form

u ao+al e -a2E2....

32
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with a 0 kO. Define the degree of x, a(x), to be the order of the first

nonzere term in its Taylor expansion. (For example, if x=a 2e2+a3e3+....

and a2 40, then the degree of x is two). Then T is a Euclidean domain

with degree function a(x). If for some x, a(x)=i, then x equals ci

times a unit. In other words, each x is equivalent (modulo units) to

one of the element of set {l,e,e 2 ,..... }. Let f and g be two elements

of T. Then it is easy to see that

1. f divides g iff a(f). a(g).

2. f and g are coprime iff at least one of them is not 1.
equal to zero at e=O.

Let M(T) denote the set of matrices whose elements belong to T. Then
the set of unimodular matrices is defined as

U(T) = {GIG(M(T), IG(O)I O}

Because T is a Euclidean domain, it is a principle ideal domain.

Therefore any matrix AM(T) can be transformed to its Smith form.

Namely for any matrix AEM(T) we have

A=PDQ

where P,QeU(T) and D has the form

D = diag {C,.... , O,.... o

where the integers ii are ordered so that 05iii 2" .... _<ir. The
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quantities e i I, .... are called the i factors of A(e). The

elementary row and column operations used in bringing A into its Smith

form have the form

1. Interchange of any two columns (or rows).

2. Addition to any column (row) of any other column (row)

multiplied by an element in T.

3. Scaling any column (row) by any element in U(T).

Let A, B E M(T) have the same number of rows. Then A and B are left

coprime

iff F=[A BI has the Smith form P[I 0]Q.

iff F has full row rank at e=O.

It can be shown that this ring is a local ring because its maximal

ideal, namely <c> is unique.

As pointed out in Chapter 1, system (2.2) can be approximated by

its explicit form. Further work on our algebraic approach is bassed on

this form. Therefore in next section we derive the explicit form of

(2.2) using the Smith form of A(e).
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2.4. THE EXPLICIT FORM FOR A SINGULARLY PE-JRBED AUIONOMOUS

LINEAR SYSTEM4

2.4.1. Introduction

In this section we show how a general system (2.2), with A(e) being .

a matrix over T, can be put into what we term its explicit form. As

mentioned before, it is the explicit form that makes it possible to

connect the Smith form of A(e) with the multiple time scale behavior of

the system. This provides considerable insight into the structure of

such system. Also, the explicit form permits us to develop an algorthm

for construting the tine scale decomposition of (2.2) that makes use of -

Schur complements and that makes clear the computations required to

determine the time-scale decomposition. This form also allows us to

pose and answer a variety of questions in subsequent chapters and

sections of this chapter. "

35

7..-.. . . V°



2.4.2. Explicit Form -

As mentioned in Section 2.3, an nxn matrix A(c) over T has its

Smith form

A(e) = P(e)D(e)Q(c)

where P(e) and Q(e) are unimodular, namely IP(O) 1 0, IQ(O) I 0 and

D(e) is

dI (e)
-0 r .

D(c) = .

dr(e).

. n-r

where j(e)=Cij, j=l,....,r, and O<ij~ik, jk.

consequently we can rewrite the system (2.2) as

x = P(e)D(e)Q(c)x (2.11)

Because P(e) is unimodular, P-l(e) exists in the neighbourhood of e=0.

Later on we shall see that we can use P(c) as a similarity

transformation on the state without affecting the time scales of the

system. In particular, multiplying by P-(c) on the left of both sides

of Eq. (2.11) we have
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PW D(e)Q(c)PWeP(e)-1x

Let

y=P(e) 1x

Then

y=D(e)Q(e)P(c)y

If we define

K(C) =QMeP(C)

we have

y=D(e)A(e)y

=diag{ 11, C12 ?--oo, C' 1 n-1 K.(e) (2.12)

Eq. (2.12) is called the g~~ii 16Q because D(e) explicitly reveals

the time scales of thes system. Recall that Q(c) and P(c) are

uniinodular, and therfore so is A(e).

In the next section we shall consider (2.12) and f ind, under a

particular set of conditions, the tinre scale-decomposed approximation of

y (after appropriate similarity transformations). Before we do that,

let us overview some of the major results to be devoloped in the

fol lowing sections.

2.4.3 An Overview

What we are interested in doing is investigating the time scale
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decomposition of (2.2), or equivalently of (2.12). Coderch's approach

(Section 2.2.2) provides a general method for doing this involving the W,

computation of the total projection for the zero group of eigenvalues of

A(e) and of each of the subsequent system matrices Al(e), A2 (e),

defined in this procedure. All of these computations involve using the

complete e-dependent projection matrices. On the other hand, as we will

discuss, if one has a system in a form analogous to that of Kokotovic's

treatment (Section 2.2.1), the computation of these projections is

straightforward and transparent, as is the check of the MSSNS and MSST

conditions. What our approach does is to transform the system so that

this straightforward construction can be applied. In this process, we

in fact throw away certain parts of the e-dependency of the system

matrices that are unimportant in obtaining a time scale decompositions

if in fact the original system has a time-scale decomposition. In a h-..

sense what this does is to minimize the number of c-dependent

computations that must be performed, thereby making far more clear what

the critical e-dependencies are in A(e), its total projection onto the

zero group, and those of its successors (Al (c), A2 (e), etc.).

To be more specific, let us assume, both here and in the next three 6;
sections that A(c) in (2.2) is Hurwitz for e>O. Now, if we obtain a

time-scale decomposition for y in (2.12), it is straightforward to

obtain a time-scale decomposition for x in (2.2) using an e ag n !

similarity transformation. Specifically,
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Suppose that (T; A0, ***FAm def ines a time-scale decomp~osition of

the explicit form dynamics (2.12). Then (TP-(0); A0 , 90991 Am) defines

a timre-scale decomposition of the original system (2.2).

It is straightforward to check that this lemrwu states is equivalent

to the following. Note that

x(t) =P(C)y(t)

Def ine

x1 (t M P (0) y(t) (2.13)

Then lini sup I Ix(t) -x 1 (t) II 0 (2.14)

e->0 t 0

That is, (2.13) is an asymtotically accurate approximation of the

solution of (2.2).

'Ih prcceed, note that

I1x(t) - x 1 (t)II I. IIP(C) -P(0) II I Iy(t)HI

So that (2.14) will be proved if we can show that

lini sup I Iy(t) I I =M <0
C >0 t 0

However, by hypothesis
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y(t) = T-diag{exp[ot], ... , exp[mt^]}Ty(O)

where each of the is Hurwitz+ Since

sup Ijexp[AieitIII =sup jexp[Ait]II <

tZ0 tZ0

the result is proved.

Note that one consequence of the lemma is that (2.2) has a time- -

scale decomposition if and only if (2.12) does. However, while this

lemma tells us a little bit about those e-dependencies that can be

thrown out, there is far more that can be said.

Specifically, recall that K(€) in (2.12) is unimodulac. -

Intuitively, what this means is that K(c) has no "structure at c=0". L-
For notational simplicity, let us denote A(0) as A, and consider the

system

z = D(e)Az (2.15a) ..-

Let us also write K In block form compatible with the diagonal block

sizes of D()

+ That the A1 are Hurwitz follows from the assumption that A(e)

is Hurwitz for e((0, 0 ],[.
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All A12 ..... Alm- .. ...A21 A22 ..... A2m

.e . -.

Am1  o ..... ARM

So that

zI  Anl A2 ..... Aim zI  -"

z2 , "21 A22 ..... eA z2 ..
Z . (2.15b)

S- .. ..... 
,....-.

is in a form very similar to the form (2.7) considered by Kokotovic. We

call this the reue exlii form.

As we saw in Section 2.2.1, the Schur complement play an important

role in defining the time-scale decomposition of the system considered

by Kokotovic. A similar statement is true here. Specifically, in the

next three sections we define a sequence of matrices A0 , .... Am and a

similarity transformation T obtained by successive Schur complementation

of A, and we provide two derivations, one based on the approach of

Kokotovic, and a second making explicit contact with the results of

Coderch, of the following (again under the assumption that A(c) is

Hurwitz for e>O):
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Thoe 2 ,1:

Consider the original system (2.2) and the explicit form system

(2.12). These systems have well1-behaved time-scale decompositions if

and only if the reduced explicit form system does. Furthermre,, these__

well-behaved time scale decompositions exist if Xj Ml if~ A0, Am*

mentioned above all exist and are Hurwitz. In this case (T; A0 , 0,.

Am) defines a time-scale decomposition for t=~b (2.12) and (2.15), and

(by lemma 2.1), (TP1'(0); A0 , .. im) defines one for the original

system (2.2).

Let us make several important comments about this result. .
Specifically, once we have determined P(O) and A=Q(0)P(0), AUL1. jb

reaning~ caclatigQn are e-ataQ Thus, w6 have identified the

critical c-dependent omnputations as the determination of P(O) .and Q(0)

in the Smith decomposition of A(e). Finally, note that one point of the

Theorem is that if (2.15) has a well-behaved time scale deco~mposition,

then

lirnsup I Iy t) z t)II1 0
C->0 t 0

However, as is illustrated in Section 2.7, this not be true if a

well-behaved time scale decomposition does n exist. In fact, while

AMc is Hurwitz for e>0 by assumption, and D(c)A(c) =P 1l(e)A(c)P(e) is

obviously Hurwitz as well, D(e)A need Mt be Hurwitz for 0>0. Thus, if

the original system has a well-behaved time scale decompositioni, we can
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throw away the e-dependent terms in R(c). However, if such a tinre-scale

decomposition does not exist, the e-dependent terms of A(e) represent

criical components of the damping in the original system (2.2). In

Section 2.8 we use this observation to define time scale decnositions

in a slightly weaker sense by pinpointing and keeping these e-dependent

terms in A(c) that = critical to system stability. This construction,,

posed as an open problem by Coderch, is but one examp~le of the problems

that our framework allows us to solve.
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2.5. DERIVATION FROM TWO TIME SCALE RESULTS.L

2.5.1. Introduction

As we stated in the last section (Section 2.4.3), finding the time

scale decomposition of (2.2) is equivalent to finding that of (2.12).

In this section we shall show that if the successive Schur complements

Aii are Hurwitz then (T; An, ... Am) defines a time scale

decomposion for both (2.12) and (2.15), and (TP-I(0); All, -', )

defines one for the original system (2.2). The proof is in fact an

extension of the well-known method used in the two time scale case.

Then in the next section we shall relate our approach to the multiple

time scale results obtained by Coderch etal, and this will allow us to

prove the full version of Theorem 2.1, that is, that the Aii being

Hurwitz is n as well as sufficiant for the system (2.2) to have

a well-defined time-scale decomposition.
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2.5.2. Derivtion From Two Time Scale Results

The basic idea behind this approach is to block-diagonalize

Al (c)=D(e)X(e). It uses well known two time-scale results repeatedly to

"peel off" each time scale. So first let us review some of those

results. Suppose the system we are considering has the following form

x =A(e)x

where

All A12]

A (e) =~e 2L21 22j ?:

It is proven [17] that if we define

T ()= (2.16)

cHM(e I-cH (M)L (e) ::..

where H and L satisfy I eL ]iL

A12 (e)-All (c) L-cL (A2 2 (c) +A2 1 (c) L) = 0 (2.17)

H(All (c)-LA2 1 (c))-e (A2 2 (C) +A2 1 ()L)H+A 2 1()=0 (2.18)

We have
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[All~e A12 (C) [l

T W) T-1 (C)= (2.19)

CA2 1 (e) eA2 2 (c) 0 G2 (C)L j ~

where

K G1 (e) =All(c)-eL (C)A21 (e)

G2(e) =A22 (c)+A 21(e)L(c) (2.20)

Solution to (2.17) and (2.18) exist as long as Al 1 (0) is invertible and

e is sufficiently small. Note that under these conditions T(e) is

uniodular and, as e->0, L(e)->-Aif 1l(O)Au2(0), H(e)->0.

Now, consider our system in explicit form (Eq. (2.12))

i2 i2
Z2 CA 21(c) ...... C A~m(e) z2(.1

zm eURA .(e) ........ U(C *

Ir
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Let us apply this procedure rn-i times in succession to A1 (e), where

at each stage we "peel off" one of the time scales of (2.21), starting -

-Jfrom the fastest. We begin by assuming that A1 1 (O) in (2.21) is

invertible and apply the procedure just described to AI(c), with

n e 2 2 (e)" identified as t he large lower right-hand block matrix in (3.7)

and with "A12 (e)" and "IeA2 1 (e)" defined in a corresponding manner. Thus

we construct

TIM) (2.22)

where, as c->O, H(e)->O, Gj(e)->A11 , and

l1(c) =IL 12(e) .... Llm(e))->Alf[ 12 .. Al

Also

A2 e) ............ A2 m (e)

wher C2 e =n [~ii (e:) .... e AM(c)]

Ai =C Ajj(e)-AiI~ij (C)->Aij-AilA].fAj =A1
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We now see that if A22 is invertible we can repeat this procedure on

G2 (e). Continuing, we finally obtain -.-

Tml(e) ....Ti(e)AI(e)T 1-() ...TM.l-l(e)

= diag{Gl(e), ei2G2 (c) ....,e1Gm(e)1

provided that All= GI(O), A22 = G2 (0),i...,,Aml,m-l Gml(O)

are all invertible. Define%

A(e) diag{Al, A222,c... "A")

We shall prove

Theore 2.,2:

If All,...,Amm are all Hurwitz then (T; All, ... , Am) defines a

time-scale decomposition for both (2.12) and (2.15) and (TP-(0);

Al l ,..., A) defines one for the original system (2.2).

To prove this theorem we need the following lemma.

," ".

Let E(e) be an nxn matrix with entries from T. If E(O) is Hurwitz,

then

lim sup Ilexp{E(e)t} - exp{E(O)t}II - 0
e->0 t O0
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It is well known (9I that

exp{E(c)t} -129 exp{st}R (s, E(e))ds

r-

where fis a positively-oriented contour enclosing all eigenvalues of

E M) and

R(s,E(e)) =(sI-E(e)V1l

Note that for c smll enough E(e) is Hurwitz and r can be chosen to lie

in the left-half plane and to enclose all eigenvalues of E(O) as well as

EMe. Therefore we have

IlIexp{E (c)t Q exp{E (0)t}I

1/27111I exp{st} IR(s,E(e)) -R(s,E(O))]dsl I

S /lep-atflII4R(s,E(e)) -R(s,E(O))Ilds

r

where a is a positive number. The uniform convergence of R(sE(e)) to

R(s,E(O)) on r I1 then proves the lemmna.

As a first step we note that by lemma and the assumption that

A11,l..Amm are Hurwitz

lini sup I Idiag~exp{Gl()t,...,exp{c"l()t]
C->O t,-O
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diag[exp{Allt}, ...,exp{eimAmt}] {c

S lim Z- sup IJexp{Gr(e)t}  exp{ArrtJI I  0
e->O r=l t_0.

Thus, since T(e) is unimodular, we have

lir sup l lexp{Al(c)t} - Tl(e)exp(A(e)t}T(e) JI = 0
e->O t O

From the proof we can see that this result holds not only for (2.12),

but also for (2.15). Thus we have proved the first part of Theorem 2.2.

To prove that (Tp-(0); All,***, AM) defines a time-scale decomposition

for the original system (2.2) we need just invoke LAema 2.1.

As a final comment we note that the recursive procedure for peeling

off successively slower time scales actually yields a sequence of -"

approximations over longer time intervals if exp{A(e)t} is replaced by " -

diag{exp[Alt] .... exp[Arrirt], I, .... ,I}, we obtain a uniform

approximation over an interval of the form [0, .l- i r+l ] (see 17] for a

similar comment).

The results in this section show that the Hurwitz condition is a

sufficient condition for the system (2.2), (2.12) and (2.15) to have

well-behaved time-scale and provide the actural time-scale

decomposition. As mentioned previously, in the next section we show,

based on Coderch's results, that this condition is also neccessary.
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2.6.2 The Schur Complexrgnt

Consider the matrix

[B11 B12 .... Bl1

B .. . .. .

L[Bra B2 ...Bkk j

where the Bii, i=l,...,n are square matrices. Define

B11 B1 2 ... B1  L
k ~

kBk .... Bkk]j

Then the Schur complement of Yk with respect to Bkk is

Bkk =Bk-[Bkl .... Bk k11 (yk..1) '[Bk'-..Bk.lk'I'

If we define

Sk= (Yk)lBik, i=,...,k-1 (2.26)

The Schur cop1ement can be written as

Bkk =Bkk-[Bkl .... Bk,k.1] 1 5 1'--**k,k1l' 1 '

k-l
- kk- Z' BkiSki (.7

A number of properties of Schur complements are described in
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Appendix 1, which we shall find useful in proof of our main results. -

In addition, there is one other relatively simple property of Schur

complements that we are in essence using in this section but whose

derivation is deferred until Section 2.7 where we derive other related

results. Specifically, in Section 2.5 we define the Aii as su.css.-

Schur complements. That is All is simply the upper left-hand block of

A. Then we perform a Schur complement of A compatible with the block

structure shown below

All A12 ...... Alm .

A2 1 A22  ...... A2m
* • A, 1 C12L 2

2C21 C22

AL2 A;2  ...... A.

So that

C2= C22 -c21An-l -l2

and A22 is then simply the upper left-hand block of C22. The procedure

then continues step by step. On the other hand, the Schur complement L
Akk defined as in (2. 27) if the B's are replaced by A's, is obtained in

D=e step. That these two ccmputations yield the same result is shown in

Section 2.7.2.

. . .
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2.6.3. Main results

The main result in this section is the proof of Theorem 2.1, based

on Coderch's results. The basic idea behind the proof is to construct

'p-

the succesive projection matrices and pseudo-inversces used in Coderch's I

approach. By using the explicit form for these c-putations we can then

directly relate the MSSNS and MSST conditions to the condition that all

of the Aii are Hurwitz. Since the p.oof is tedious we leave it in -

Appendix A2 at the end of this chapter. One byproduct of this

computation is the explicit identification of the similarity

transformation T needed in the time scale decomposition. Thus what we

actually obtain is the following:

Theo 2.L:

Consider system (2.2) and its explicit form (2.12) and reduced

explicit form (2.15). Let the system matrices of (2.15) beEAll A12 .. Al 1

An, An2 .... A

and define

Ale) lle2 0 ...?

A (c) '

0N
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where the Aii, i=l,....,n are the Schur complements of A as defined

before. Then we have

1. Systems (2.2), (2.12) and (2.15) have well-behaved time-

scale decompositions if and only if the Aii, i=l,...,n

are all Hurwitz.

2. If the Aii are all Hurwitz, then (T; All, ... , Ann )

defines a time-scale decomposition for both (2.12) and

(2.15), and (TP 1 (0); All, ... , Ann) defines one for

the original system (2.2), where

I S21 S31 .... Snl'-.-.

S32 ....n2
T=

0 0

0 ..... 0 I

and the Sij , i=2, ... , n, j=l, ... , n-i are defined in Eq.(2.26) if we

replace Bij with Aij. A direct consequence of this result is the

following. -.

The following onditions are equivalent:

1. A(e) and its explicit form satisfy the MSSNS (MSST)

condition.

2. Aii are of full rank (Hurwitz).
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2.7 Relationship Between The Two Derivations And The Uniqueness

Of The Time Scale Decomposition

2.7.1. Introduction

In this section we show first that the Aii in section 2.5 are

nothing more than the Schur complements in Section 2.6. We then turn

our attention to the question of the uniqueness of the time scale

decomposition. Specifically, we show that although the matrices P(e)

and Q(e) are not unique (because of the non-uniqueness of Smith form

decomposition) the Schur complements of A=Q(O)P(O) corresponding to

different choices of P(e) and Qe) are similar. Therefore different

Smith decompositions give the same time scale result up to a similarity

transformation at each time scale.

2.7.2. Recursive and nonrecursive computation of Schur

complements

To prove that Aii as defined according to Eq.(2.27) equals Aii in

Eq.(2.23) we need the following lemma.
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Consider an invertible matrix A

[All A12 A13 1
A j A21 A22 A23  (2.30)

LA31 A32 A33  

'

Define I

Fij-Aij-Ail A1j, i j,=2,3 (2.31)

Then the Schur oomplement of A33 is

A33=F33-F32F22 1F23  (2.32)

Proof: Consider the linear equation -- A.

A[x' y' z']' = [0 0 b']' (2.33)

It is easy to show that the solution is z=A 1 b. We can also

write the solution as

F A22 F23  - 2 0 0-

[F32 F33  J LJI
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Or

2 2 F2 3  (234)

[F3 2 F33Jz b

Solving (2.34) for z we have

z=[F33-F3222- 1F23 ]1 b (2.35)

Eq.(2.35) is true for all possible b. Also the solution for Eq.(2.33)

is unique. Therefore we have proved the li"m.a.

Note that F3 3 -F3 2F22 1 F2 3 is nothing more than the A33 defined in

Section 2.5.2. Hence we can conclude that A3 3 defined in Section 2.6 is

the same as that defined in (2.26). Repeatedly using Lemma 2.2 it is

easy to prove that this is true for all k=l,...,nl.

2.7.3. Similarity of Schur complements of different

decompositions

In this subsection we show that although for different PDQ

decomposition the matrices Q(O)P(O) are different, their Schur

complements are similar. We first show how the Schur complement of a

matrix is influenced by a left (right) multiplication by a lower

(upper)triangular matrix. Then we prove the similarity between Schur

complements of different decompositions.
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LCMa 2.: Consider a matrix

S---

where A is invertible. Consider the Schur omplement

D-D-CA B

and suppose that D is invertible. Let

S,.

where T1 and V1 are invertible. Let

51 =DI-CIAI-IBI

Thlen""

Let

S2 -[A B 
'

where T2 and V2 are invertible. Let

T2 -- t-C 2A2  B2  59
Then [:

62 = 2 ":::

59---



Consider the linear equation :

[ bl:=: (2.36)
The solution is

y 57D1 a (2.37)

By left multiplying by TI nbt ieso 23)w[i Vi

have

* [~ ] [; Kal(2.38)
The solution of (2.38) is

y D DfVa (2.39)

Combining (2.37) amd (2.39) we have

=7 Df1 Vla (2.40)

Because (2.40) holds for all a( ER we have

6-1 -1v

or

D,= V1D

NOWi note that (2.36) can be rewritten as
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B T2 U2] FT 
-1 

-T 
- V 

-1 

X1

DI B [§2 0:: V2 I 1
or

A B] T2  U2 1 T2 x-T 2 U2V2
1 Y 0

lo V2] V 2 y J Wy a

Let

xi T231 -TU 2 V2 -Ty

We have

Then h

Therefore

=2BV

Suppose A(e) has two dleoapositions:

A(c) = Pl(c)D(e)Ql(c) =P 2 (e)D(c)Q 2 (e)

D(e) = diag[I 0 , e11 , .. }=diag{dl, *. dn} (2.41)

where di = al, o~a1 a2 <.. S~ Then we have ::
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The Schur copeent of Q1 (O)P1 (O) and Q2 (O)P2 (O) are

similar.

Proof.

For simplicity, let us write D(e),, Pi(,-, and Qi(e) as D, Pi and Q

repectively for i=1,2. From (2.41) we have

D=P1 lP2 DQ2Qf1

M N

Theref ore

M 1JD=DN

Or

(M1l(e)) j=dj/dj (N(e) )i (2.42)

Suppo~se

d1 =d2 =9..=d5 0 =1, d =*1 .. =d5 1 e..

dsm1 +l= ... =d =e, m

Def ine

If i,j Rk, k=O,..., from (2.42) we have

or

(KPl (0)) ij (N (0) ij
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If if Rkl, Rk2, klhIk 2 then, because (M-1 (0)) ij and (N())ij are finite

for all i,j, we have

(N(O))ij=Nij=0, kl<k2
(M-i (0)) iJ=0' klAk2-""5.

(0)) -0

Then N(O) and W-1 (0) can be expressed as

nll 0:-::

0

N(0) 21 22 (2.43)

kr+l,1 ...... n+,m+j

nm+l,m+l

Hence
nll 

..

M (0) (2.44)
nm+l ,m+ - L ".

By definition of M and N we have

N IPIM= Q2P2

Therefore in view of the special forms of (2.43) and (2.44), the k-th
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principal sub-block of Q1(O)Pl(O) and 02 (O)P2 (O) denoted by 1 l~l'k andL

922kcan be related by

[lIQIPl~kI 1Q2P21k (2.45)

nkkJ nkkJ

Then applying Fact 1 to (2.45) we see that the k-th Schur comiplement of

~Q2~1k = is related to the kt Schur complement of I~l~1 1k by

Hk2 kkHklflkk.

Thus we have shown that for different decompositions PlDQl and P2 DQ2,

the Schur complements are related by

A2(C UA1 (e) U-1

where

U =diagfn 1 1.,....,nJ

and nii i=l ......m are the diagonal blocks of the matrix

N(O) = 2(0)01(0)1 = diag{n11i....,nm1

From this lemma we see that although the Q(O)P(0) is not unique,,

its successive Schur complements are similar. Furthermore, the tim--
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i

scale decomposition is determined by the Schur complements and a

similarity transformation matrix T. Therefore the similarity of the

Schur complements explains the essential uniqueness of the time-scale

decomposition.
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2.8 Summiary Plus An Extension

2.8.1 Introduction

In this chapter we have developed a new approach for determining if

a system of the form

x =A()x

has well-defined time scale behavior and for constructing the

corresponding multiple time scale approximation. As we discussed in

Section 2.1, a major motivation for this work was a desire to gain

additional insight into the algebraic structure of systems with several

time scales and to perhaps develop an approach that is conceptually (and

hopefully algorithmically) simpler so that further study of these

systems might be facilitated. We feel that the approach described in

this chapter accomplishes this, since (1) we have been able to provide a

clear bridge between the general work of Coderch, et al. 17] and the far

simpler and more transparent results developed byKokotovic, et. al. [17]

for systems in what we have termed "explicit form", and (2) the approach .

established in this chapter provides the foundation for posing and

answering numerous important questions about systems with several tine

scales. In this section we first briefly review the main results of
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this chapter to support the first of these points and we then present

two additional results which support the second point. The remaining

chapters of this thesis provide further indication of the usefulness of

this approach to time scale analysis.

Let us first review the major result of this chapter.

Specifically, we have analyzed the multiple time scale structure of a

system of the form

x =A(e)x (2.45)

* "where A(e) is assumed to be Hurwitz for c [ee 0 ]. Our approach consists

first of performing a Smith decomposition of A(Ce)

A(e) = P(C)D(I)Q(C) (2.46)

where IP(0)k 0, IQ(0)j1O and

D(e) = diag (ek°I o , ek i , .. ,,kn-ln 1 )

K-_ then consider a similarity transformation on (2.45) which leads us to

the 9 iit fom

y = D(e)K(e)y

where K(e)=Q(e)P(e) and the reduced glformit f=

.. z = D(e)Az (2.47)

where
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.A21 A22 ... n
. ... ....... .. AM

(here the block dimensions are compatible with those for D(c) in

(2.47)). We have shown that AMe satisfies the MSST condition if AD

j each of the successive Schur ocmplemnents Ai (see Section 2.6.2

(..

for definition) of K is Hurwitz. In this case we have then shown how to

construct a similarity transformation T so that

lim sup I exp{A(e)t} Texp{ (e)t}T 11  I= 0 (.8

e->0 t. 0

where

A(e) =.

That is, (All ....An;T) define a time-scale decomposition of the

original system

Let us make two comments about this result. The first is that it

is straightforward to extend this result to the case in which we assume

only that A(c) is semnistable for t0w, i.e. that

lim exp{A(e)tl

t->;

exists (so that AM has no eigenvalues in the right-half plane and the
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only eigenvalues on the jw axis are simple eigenvalues at 0). Under

this condition, the Smith decomposition of A(e) is as in (2.46), but

D(e) has the form

D(e) = diag(ekOI 0, ...... ekn-IlIn_,O) = diag[D(e),O]

In this case the explicit form of A(e) is

D(e)X(e) = ri:[:. ".

Now Al(e) is invertible since the upper block corresponds to the nonzero

eigenvalues of A(e). Furthermore, as direct consequence of the result

in this chapter, A(e) will have MSSNS only if AI(O) is invertible, i.e.

only if AI(e) is unimodular+. Therefore, let us assume this is the case

and define the unimodular matrix

I-A 1 A(e) (e).: A-ci"

Then

+ By the assumption that lim expA(c)t exists, then AI(0) is in fact

Hurwitz.
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1l AI2 AlnA21  A22 .... A2n

A=A(O) = A 1 k .. Ay

LAA 2 .... A

(here the block dimensions are compatible with those for D(c) in

(2.47)). We have shown that A(e) satisfies the MSST condition if ad .-

2a.yif each of the successive Schur complements Aii (see Section 2.6.2 "-..

for definition) of A is ."urwitz. In this case we have then shown how to

construct a similarity transformation T so that

lira sup II exp{A(e)t}- Texp{A(e)tJI I = 0 (2.48)
e->O tO

where

A(e) diag[ekUA11, ekl 2 ,..., •Ann)

That is, (Aill'... ,Ann;T) define a time-scale decomposition of the

original systen.i

Let us make two comments about this result. The first is that it

is straightforward to extend this result to the case in which we assume

only that A(c) is semistable for e>0, i.e. that

lim exp{A(e)tj
Ot-> 0

exists (so that A(e) has no eigenvalues in the right-half plane and the
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• Now apply the time scale ecoposition developed in this chapter to the

% explicit form matrix DI(e)AI(c). If this does not have well-behaved "

time scale structure, then neither does the original system. If it does .[-.

N. -. . °- . ..-

have well-behaved time scale structure, let ('11, .... ,inn;T) denote the.":'o,.

time scale decomposition of this systm Then let ,
S-:" -..

tesclsrcuete n he d n-ltn, o

A(e) =diag{ kA 1,.., 0

T= diag[T 0]

T =P(O)R(O)T 1

It is then straightforward to check that (A,, T) define the time scale

decomposition of A(e).

The second point we wish to make is that if A(e) does not satisfy

the MSST condition (i.e. if not all of the Aii are Hurwitz), then (1)

the reduced explicit form (2.15) need not be asymptotically equivalent

to the explicit form (2.12) or the original system (2.2); and (2) the

origenal system d= not have well-defined time scale behavior in that

sense that we have used so far -- i.e. it is not possible to satisfy

(2.10) for .in choice of constant matrices Aii (i.e. not restricting

attention to simply the definitions of these matrices as successive

Schur complements). Coderch [7] conjectured that it might be possible

70
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Let us show that this system does not have well-defined time scale

behavior in the sense we have been using so far. Substituting z=et we

have

xI (r) =xloe-t-etsint/e -i-
(2.52)

x2 (t) = x2 0 et-tcosi/e

Obviously x(t) does not have a limit as e->0 because of the rapid

oscillations. On the other hand, in order to have a well-defined time

scale approximation we require that there is some A0 so that

lim sup II exp{A(e)t} - Texp{A0t}T-1 I I = 0

e->0 tO

If this were true, then the following should also be true: -1

lir sup II exp{A(e)t/c}- Texp{Ak/e}T- I I = 0 (2.53)
e->O r20

It has been shown in (2.51) that the first term does not have a limit as

c goes to zero. So the only way to have (2.53) satisfied is if the left

hand side is identically 0, but using a constant A0 does not allow us to

do this. -

A further investigation shows that if we slightly change our

definition of well-defined time scale behavior, then we may be able to

extend our results to a larger class of systens. For example, if we use

AO(e) =
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to find an approximation in the sense of (2.10) even if A(C) violates

the MSST condition if one allows the Aito be e--dependent. In the next

two subsections we show how to construct such an approximation which

keeps only those c-dependent terms that are needed to achieve (2.10).

Finally, in Section 2.8.4 we discuss the problem of using feedback

* to modify the time scales of a perturbed system. Specif ical ly, up to

* this point we have considered the multiple time scale behavior of the

undriven system (2.2). In 2.8.4 we discuss the driven system

x =A(e)x + B(c)u (2.49)

with the state feedback

u =k(e)x (2.50)

* The natural question here is to ask what freedomn there is in assigning

- the time scale structure by application of the state feedback of (2.50).

* If we insert (2.50) into (2.49), we have

x [A (e) +B (r.)K (e)]x=F(e) x (2.51)

with

Fc A A(e) + B (e) K(e)

* As we have developed in this chapter, the time scales of a system like

* (2.51) are determined by the invariant factors of F(e). Thus assigning

* the time scales of (2.49) by state feedback (2.50) naturally leads to

the problem of inai fact-r jasignt, of F(e) by means of choosing
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constant invertible matrix T such that

lim sup II exp{A()t} - Texp{A(e)t}T - I II = C
e->O t>O

where

A(c) =diag[A0 (e),cAl(c),...,enAn1M]

Let us now study the relationship between MSSNS condition and the

eigenvalues of A(e) because a deeper understanding will help us capture

the essence of our approach. Recall, A(e) being Hurwitz for e0>e>O is

an implicit assumption throughout this Chapter (except at the end of the

preceding subsection). We claim that if A(e) satisfies the MSSNS

condition, Aii cannot have eigenvalues with positive real parts. The

reason is the following. As we shall see in Chapter 3, Theorem 3.2, the

eigenvalues of A(e) are clustered in n groups, with those in the k-th

group lying within O(ckj+l) of the eigenvalues of ckij-. Consequently,

if Ajj for some j has an eigenvalue with positive real part, then one of

the eigenvalue of A(c) must have a positive real part for e sufficiently

close to zero. This contridicts the assumption that A(c) is Hurwitz.

:hat can happen, however, is that for some Aii the real parts of some of

their eigenvalues are zero. If A(e) has MSSNS (so that the Aii are

invertible), we must then have that these eigenvalues are purely

imaginary (ie. not equal to zero). The implication of this for A(e) is

that its corresponding eigenvalues have negative real parts of orders

that are higher than those of their imaginary parts. By keeping only

the dominant terms, then, we in essence throw away these damping
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effects. If we can somehow keep the dominant terms of these real parts,

we should still have a good approximation as we have seen in Example

2.8.1.

In the next subsection we introduce an iterative approach that

guarantees the retention of the dominant e-dependent parts of each mode.

This approach is based on the following observations. Consider the two -

time scale case.

A(C) =[ ] (2.54)

where A is invertible. We have shown that there are a unimodular matrix

T(e) and two matrices GI (e), G2 (e) such that

[ Gl(C) 0
0 OG2 ()

L- 2(

To really cumpute GI(c) and G2 (c) is impractical . In the previous

sections we used A and D=D-CA-B to approximate GI(e), G2 (e). But, as

we just pointed out, if the MSST condition does not hold then this

approximation fails, and we have to retain some e-dependent terms. We

also know that GI(e) and G2 (C) can be obtained by an iterative procedure

if A(c) satisfies the MSSNS condition [17]. As we show in the next

subsection, if we somehow know the orders of the real parts of the

eigenvalues of A(c), then after a specific finite number of iterations

the results capture the dominant parts and we can stop. In the next
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subsection, we first describe the iterative procedure proposed in [17].

Then we prove some lemmas which are used to determine the stopping

rules. Finally we describe our approach, which includes a method for

determining an upper bound on the orders of the real parts of the

eigenvalues.

2.8.3 An Iterative Algorithm for Extended Time Scale V
Decomposition

As mentioned in the previous subsection, we have shown in Chapter

2, Section 2.5 that we can write A(c) in (2.54) in the form

A(e) = T(e) G-le) (2.55)0 eG2 ()•-<
[0 ~2(c)

There is an iterative approach to determine Gl(e) and G2 le) which

is presented in the foll ving Lemma. F

Let us first define matrices P1 and P2 associated with a matrix F

where p

F21 F22

(here F may be e-dependent but we suppress this dependency).
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Specifically

P 1 -

(2.56), 2 1 F I 1

, if Fl, is invertible. Then we have

~~~Lenm 2. 8. 1 .'

Let

=oO)C AMe= ~ e1 (2.57)
= ( c) D ( ) (0 ) B0 (0 )

where A(0) B0 (0), C0 (0) and D0 0 are generally functions of e and
Ao(0) is invertible at c-0. Define

Ei(J) (e)

= P2 () ..P2 (1)PI (i) ...Pl(1)EO() (e) (PI(1))-l..."
(P ( 1))-(P 2 (l))-i. (P2 (j))-l

Ai(J) iBi () 
ii.(j)i (j)

1j (2.58)

Th~en as i->. ->-

A ( ) -> GI, Di (J) -> G..'''{"-'

where G, and G are defined in Section 2.5.2 (see (2.19)) and P1(i) and
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P2 ( j ) are the matrices associated with Ei-l ( 0 )(e) and Ei(J-' (e),

respectively, as in (2.56). Again all terms in (2.58) including G1 and

G2 are functions of c.

Pro See [17].

Note: From (2.56)-(2.58) we have L

Ai(j+l) = Ai(J) + ei+j+lBi(J)ci (j ) ((J))- (2.59)

A.il(J) = A(J) + ei+j+l(Ai(j))-lBi (j)Ci(j) (2.60)

Di(J+l) Di(J) - ci+jCi(j)(Ai(j))-lBi(j)-Di+l (j )  (2.61)
2. 2 2. . 1 2.61

Thus, after the (i+j+l)-th iteration -

O(Ai(J+I) - Ai(d)) 2 i+j+l (2.62)

O(Ai+l ( j ) - Aid)) 2 i+j+l (2.63)

O(Di(J+l) - Di(J)) = O(Di+l ( j ) - Di(J)) > i+j (2.64)

Therefore we would expect that after a finite number of iterations

the Ai(J) and Di(J) would be "close enough" to G1 and G2 so that we can

use them to approximate G1 and G2 . The next two lenas give the

definition of "closeness" and provide conditions based on which we can

determine the number of iterations required. The first lemma states the

eigenvalue order relations for two matrices A1 (c) and A2 (e) under which

exp{Al(e)t} can be approximated by exp{A2 (c)t}. Let Aij , i=i,2,
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j=1,...,N be eigenvalues of Al(e) and A2 (c), repectively,, and let 0(x)

denote the order of x, then (suppressing the c-dependence of Aj

Len=2.8. If Al(e) and A2(c) satisfy

1. A1(0) =A 2(0) has SSNS.

2. O(Re(Alj)) = 0( 2 j)) = rj < 0(Re(Alj-,A2 j))r j1l,...,N.

3. 0(Im(A1lj)) = 0(Im(A\2 j)) = sj and if rj sj then

then

Iixn sup IIexp{A2 (c) t I exp{A2 (e) tlII 1 0
Ce->O t>0

Define R[A(e),] = QI-A(c)Y_1 as before. From Condition 1 we know

that the nuirber of the eigenvalues whose real parts have orders higher

than 0 is the same for both A,(eM arnd A2(eM. Denote this number by m

and suppose that the first m eigenvalues are these higher-order

eigenvalues. From the assumption that A(e) is Hurwitz for 0'Zc~e0, it is

also clear that the leading term (i.e. the lowest order term) of the

real part of each eigenvalue has a negative coefficient. Now, write

L7R[Ai(e),A] as

=m Fij(0) Ei(e)
Rl [Ai (+ A] i=1, 2 (2.65)
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where pi (A,e) = P- i,m+u) (-Ai,m+2) .. (A-'\i,N) and Fij(e) and Ei(e) are

functions of 'only and are analytic at e7=O. We know that

exp{A 1(e)t} - exp{A2(e)tl *}

+{R[Al(cj,)K - R[A2 (e),.]}eAtdx (2.66) T
C

where C is the contour enclosing every eigenvalues in the complex plane.

Using (2.65), (2.66) can be rewritten as

m Fl-(e) -F 2 j(c) 4 - E()}td

i-i -2j-A~ C' pl (Ahl ) P2 (A, e)

(2.67)

where Ci are contours enclosing eigenvalues Alj and X~j j=1,...,ni and

C' is a contour enclosing all Alj, ).2j, j-m+l,...,N. Since

Re(.\ (e))->Re(Aij(0))(Or i=1,2, j--m+l,,,,,N, C' can be chosen to lie

* entirely in the left half plane. Therefore, since

El (c) E2 (C)

- - -- > 0, e->0 (Condtion 1)
Ip1(A'e) P2 (X\Ic)I

1 (0\10 p2 (Are)

Ei(e) E()
(- -dX -> 0, ec->0 (2.68)

Now consider only one term in the first part of (2.67):
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4,~ 2 eAt d (2.69)

Let AI=W\er3. Then (2.69) can be written as

CI CjA~) crV, 2j exp{erjAtld.\crj

Iexp{>.'t}d%' (2.70)

where

=\~ \,j/crj, r=erjt, i=l,2, j=l,...,m.

Frain Conditions 2 and 3 and the Hurwitz assumption we have

O>Rex~i = 0(1),

5Re(,\'1-A 2j) =0(l), fln(A'lj-A\'2 j) =0(1) (2.71)

* Therefore it is obvious that C'. can be taken as a circle in the left

half plane whose diameter is of order 1. Since the order of the

imaginary part may be lower or higher than that of the real part, this

circle may move up or down vertically as e changes but it remains in the

left-hand plane and does not shrink to 0. Also

_____ 2j___ (X'-A 2 j') Flj-(A -\lj )F2j
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(Alj '-A2j')F2j-(A"'\2j ')_(F2j-Flj .
(2.72)

( '\- j )( '->-2j ' '

On contour Cj', XIj'--> K2j , 2 -- > Fj as e-->0 and the denominator

is bounded away from 0. Therefore the integrand of (2.70) goes to zero

uniformly on C'j as e-->0. Considering (2.68) we can conclude that

(2.67), and therefore (2.66), goes to zero uniformly in t as e->O.

This Lemma gives us a criterion to judge how "close" the

eigenvalues of two matrices should be in order for one to be a good "L%
approximation of the other. In the next Lemma we study how a

perturbation on a matrix can influence the eigenvalues. To develop a

complete picture of how perturbations affect the eigenvalues is beyond

the scope of this development. For our purpose of defining a stopping

point for our iterative computation of Gl(e) and G2 (e), we only need the

following result.

2.8.3 "":

Let A=B+emc where AB and C are NxN matrix functions of c. Let the

eigenvalues of A and B be denoted by Ai(A) andA i (B), i1,...,N. Then

min O(i(A)-Ai(B)) > m/p > n/N (2.73)i >

where p is some integer, i~p N.

Proof : See [9].
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Combining this Lemmna with (2.59)-(2.64) it is clear that after the

(i+j+l)-th iteration the eigenvalue difference between the (i+j)-th and

the (i+j+l)-th iterations must have an order higher than (i+j)/N.

Therefore, as the number of iterations becomes larger and larger, the

contribution of each additional iteration becomes less and less. Thus,

a stopping rule can be established if we in addition take Lemma 2.8.2

into account. This result can be summarized in the following Theorem.

Theore 2.8.1

Let

A A 0 )0 (e) BD0 (0) (e)] 0 £1i(F B- (0)()

A o()(e) -D LB(0) (e) 0  
0) (e) Do (0)(eJ

D D(e) A(c)

satisfy the MSSNS condit ion. Def ine Pl(M),P U),rAi U) (e) and D U) (C)

as in (2.56), (2.58)-(2.61). Suppo~se the maximum order of the real parts

of the eigenvalues of A(C) is mn. Then

lim sup I Iexp{A(e)tj- Tlexp{A1(c)t]lj 0

c ->0 tzO

(2.74)

where

A, (c) = q (2.75)
0 (P~q(p) Ce
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and p~q=mN+l, where N is the dimension of A(c), p .O,Q _O and Tis a

.7 constant matrix defined in the proof.

For simplicity we will write A.0O(0 ), B0 (0 )(o), C0OM(O), and

D(0) (0) as AB,C, and D, respectively. Frown Section 2.5 we see that

[G1 (e) 1T(e
A(e) =r- (e) (2.76)

L0
and G, (0) =A, G2 (0) =D-CA7 1B. It is also clear from Eq.(2.59)-(2.6l) that

Ai (j) (0) =A, Di(j) (0) =D-CA71B, i+jzl

Therefore

q G2 (0)

and these matrices have SSNS. Furthermore, from Lemma 2.8.1 we know

that

*on the other hand, one more iteration than p+q-mN+l will change the

*elgenvalues of A,(P) on the order of (mN+1)/N--n+l/N>m. Since the

* highest order of the real parts of eigenvalues is mn, we see that this

* implies that Condition 2 of Lemma 2.8.2 is satisfied. Furthermire,

Condition 3 is automatically satisfied if rj j since as we just
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argued, the order change introduced by one more iteration will be

higher than rj and therefore greater than sj. From Lemma 2.8.2, we

therefore have

lim sup II exp{A(q)t} - exp{Glt} II 0 (2.77)
;.' e->0 t >0 '-.

A similar equation holds for Dq(P) and G2

Now define the product of the iteratively applied P1 (i) and P2(j)

to be Tf-1(e) which is obviously unimodular and therefore contains no

information about the time scales. It is also easy to check that

TI(0)--T(0), where T(e) is defined in (2.76). Thus, we finally have

(2.74) with T1=T1 (0).

1. Since A(e) is Hurwitz for e0)>e>O, the real parts of its

eigenvalues cannot be zero and are in fact negative. Therefore m is

finite. in fact, let the order of the determinant of A(c) be d The

But I.\iI2=(ReA\,) 2+(Im,\i)2. Therefore it is easy to see that

OlA lZO(Re~i), i=l,.,.,N. In other words, Od is an upper bound on in.

2. The integers p and q in (2.75) are not unique but their sum -
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the number of total iterations must be sufficiently large. It is quite

possible that the iteration can stop much earlier. Nevertheless,

p+q=N d is a safe bound for stopping.

3. In Theorem 2.8.1 only the first step of the multiple time scale

decomposition has been shown. But the general procedure is only a

simple extension of this theorem. The detailed procedure is as follows.

(1) Determine the Smith form of A(e)=P(e)D(e)Q(c).

(2) Let D(e)Q(c)P(e)=D(c)X(c) where

[ All A12  ..... Ajn
( [) A21 "A22 ..... "2n

n-An enlAn *oen-lA"

(3) Compute the order of the determinant of A(e) and use it as an

upper bound on m.

(4) Similar to the procedure for deriving the multiple time scale

decomposition in Chapter 2, we treat All and the complement lower right

principal submatrix as A0(0) and D0 (0 ) in Theorem 2.8.1 and apply

p+q=N~d+l iterations to them.

(5) Treat the resulting Dq(P) as the original matrix A(c) and go

back to step (3).

(6) Repeat this procedure until all time scales have been revealed.
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4. The result in the previous sections of this Chapter can be

viewed as a special case of the theorem in this section. That is, if

A(c) satisfies the MSST condition, then for each time scale, only one

iteration is required. But if we do not know if the system satisfies

MSST, we have to do the followin . First we apply the procedure

described in the preceding section, which corresponds to performing

only one step of the iteration described in this section at each time L

scale. If for all time scales the resulting deagonal blocks (i.e. Aii

as we denoted before) are Hurwitz at e=0, then we are done. Otherwise,

if at some step i, the resulting Aii is not Hurwitz at c=O, we have to

go back to the very beginning and perform the full set of iterations at

each time scale.

2.8.4 Invariant Factor Assignment When A(e) And B(c) Are Left

Coprime

In this subsection we solve the problem of invariant factor

assignment by state feedback when A(e) and B(e) are left coprime over

the ring T. To prove the main results we need the following Lmoua.

Let A(e), B(c) and K(c) be nxn, nxl and lxn matrices over T and

A(c) " diag[al,...,an] = SA
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where al,....,an are invariant factors of A(e) and "n" denotes

equivalence via multiplication (on the right and left) by unimodular

transformations. Let

F(e) A(e) + B(c)K(e) (2.78)

Then for any K(e)E Tmxn there is a (e) E- mxn such that

F(c) SA + S(e)R(e)

where 9(e) is an upper triangular matrix and B(e) S (e). Furthermore

there exist unimodular matrices R and S such that

K RS

We know that there exist uniinodular matricez- P and Qsuch that

A PSAQ

Therefore

A +BK =PSAQ +BK P P(SA + P BKOQ

and

A + BK -SA + PB~ W(.9

Furthermore, by elementary column operations we can show that

P-BU=

where U is a unimodular matrix and I is an upper triangular matrix.
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"' Therefore (2.79) can be rewritten as

W =S A +

Let

We have

W SA +

and the lemma is proved.

What Lemma 2.8.4 tells us is that instead of considering the

invariant factor assignment of F(e) we may work on SA+B(C)K(e). Because

of the special form of SA and i(c), the original problem becomes much

easier. We shall see this in the proof of our main result Theorem

2.8.2.

Thrm 2.8.2

Let A(e)E Tnxn, B(c)E Tnxr, and let b denote the rank of B(O).

Assume Ae) and B(e) are left coprime. Then

1. F() defined in (2.78) can have no more than b non-unit

invariant factors for any choice of K(e).

2. There exists a K(c) such that F(e) has eJl cJb as

its invariant factors, for arbitrary non-negative integers

Jl'*....'b (with the convention ;hat e*=0).
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1. The left coprimeness of two matrices A(e) and B(C) over the

local ring T means that if there are matrices D(c) Tnxn, K(e) Tnxn and

B(c) 6 Tnx  such that

A(e) =D(e)K(c), B(e) =D(e)S(c) (2.80)

then D(e) is unimodular. That is D(0) is nonsingular. A simple

criterian for the left coprimeness of A(e) and B(c) is to check if [A(0)

B(O)] is of full row rank. For example,

A(1) = [1B(el =[

are coprime because

[A(0) B(0)J = '[ 0 0 1
has full rank. But

A(e) = [p B(e) = [ C e]0

are not because there exists a nonunimodular matrix
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,_..D(e) = [ :
and matrices

1 0 1 0]AM€ = (e)=".Z-1
0 1 € 1'j ..'

satisfying (2.80). Alternatively, we note that

[A(0) B(0)] = 1 0 1 o0.1[7--

is not full rank.

2. It is also easy to see that in order to ensure the full rank of

[A(O) B(O)], the rank of A(O) must be greater than n-b. Or in other

words, A(c) itself has at most b invariant factors other than 1.

Proof:

As in Lemma 2.8.4, let

A =PSAQ, B P 1BU

where 9 is an upper triangular matrix. Consider

W = SA + R

Suppose A has n-m unit invariant factors.
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SA = diag[l,..,l, eil,...., eim]

n-m m,
Then in view of left coprimeness of A and B, 9 must have the form of

The vew , ..us-hvehf

. . n-m -"

S(C) = x ........... x

x X *
0 "m

where x represents and arbitrary element in T.

First, let us assume that m=b. Then we can construct a unimodular

matrix V such that

B T = x..... .. .... x ".
x x

;i, x ..... x ..

Suppose gl,...gm are the desired closed-loop invariant factors. Let

0 G "I]

where G, = d Then
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WG.,

where G= diag[gl,...,gm] and W is some (r-m)xm matrix. After some

elementary operation, we can show that

SA + M ig[, lg m

By Len=l 2.8.4 we know that A+BK has invariant factors gl,...,Igm where

K = LIR

Now, assume m~b. Then. after some elementary column operations we

can always achieve

k, 0O...O0 1 0 ..... O 0
.00*0- 9*00 (n-n

2 00.0 1 0 0000000

9V ~x ....... x

Namely there will be b-rn rows (say, rows klo,...,k - among the first n-

in rows, each of which has one unit and r-1 zeros. Furthermore if the

* unit in k.i-th row is located in the sj-th column, then sj-Nsp, if j~.p.

That is, the units for different rows are located in different coluns.

If 910,... 19b are the desired invariant factors, we can construct a 2
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R in a similar manner to that used previously:

0

where
k, k2

0 0.....0.... 1
S0.... 0 ....-10 2

0 g6-1 ..6.... j

K1= 0 **? 0

and

G= diag[gb-m+lcil ,..,gb- "

similarly we have "

:):: ~ ~SA + - o G

where

x ...... -x"

x .... x x 1 x...x

LO .... . "g ?

ii~~i: ~G4 =diag [g-m+l, ... g]:

and K3 is some arbitriry matrix. After some colutm operations we have
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By Lemma 2.8.4 we know A+BK has invariant factors 9 r...,gb. This

proves the second part of Theorem 2.8.2.

Let N be the number of unit invariant factors of A. It is easy to

see, that

N =rank [A (0)+B (0) K(0)

Using Lmmi 2.8.4 this is equivalent to

N =rankISA(O)49K(O)]

And as pointed out before

S()+ Th(O)K(O) diag[l,.,,,.,,,,O]

+ x ..... x K(O)

0

where x represents either 1 or 0. Since the rank of B(O) is b .>m, there

must exist b-n independent column~ vectors in the first r-n columns in

11(0). Since left multiplication by K(0) is nothing more than column

operations and the rank of SAM0 is n-rn, adding 11(0)K(D) to SA(O) can

reduce the rank of SA(O) by at most b-n. In other words, the rank of -

SA(O)+9(O)X(O) is greater than n-n-(b-n)=n-b. Or

N n-b
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* which proves part 1 of the theorem.
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CHAPTER 3

EIGENVAWE AND INVARIANT FACTOR STRuCTURES

3.1 INTWRDUCTICN

So far we have shown that the MSSNS of a matrix A(e) implies that

the Schur complements Aii are non-singular + and MSST implies that All

are Hurwitz. In this chapter we shall introduce new but equivalent

criteria for the MSSNS and MSST conditions. These criteria are

important not only because they provide new insight into these

conditions and their relationship to the eigenvalues of A(c), but also

because they make it possible to introduce a new approach, developed in

Chapter 4, for defining time and amplitude scaling when the MSSNS

condition is not satisfied so that the traditional time-scale

+ As in most of our development in Chapter 2, we assume here that A(e)

is invertible and in fact Hurwitz for e e (O,e0 ]. The extension ofthe

results of this chapter to the case when this is not true caA be

accomplished in a straightforward manner, such as in Section 2.8.
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decoposition method cannot be applijed.

.%'..

First, in Section 3.2, we show several equivalent conditions for

MSSNS. In particular, it is proven in Theorem 3.1 that the MSSNS 1

* - condition is not only equivalent to A.i being non-singular as seen in

* last chapter, but also equivalent to 1) the eigenvalues and invariant

factors of A(e) having the same orders and to 2) a "no-cancellation"

condition, namely that for a certain set of values of i the order of the

gcd of all ixi principal minors must be the same as that of their sum,

together with the condition that this set of the gcd's uniquely

determines the invariant factors in a particular fashion. The

plausibility of the first result can be seen from the following

observation. Suppose A( ) not only has MSSNS but also has MSST. Then

it has been shown in last chapter that the time scales are determined by

its invariant factors. On the other hand, the eigenvalues of A(c)

determine its modes. Therefore we would expect that if the system has

well behaved time-scales, i.e. A(se) has MSST the eigenvalues and

invariant factors of A(s) should have the same orders. Since the MSST

condition differs from MSSNS condition only by adding an extra stability

conditions which we shall touch on in a moment) MSSNS should also

ensure this purely algebraic equality. It is shown in Theorem 3.1 that

the equality of the orders of the eigenvalues and invariant factors is

not only a necessary condition for A(s) to have MSSNS, as we just

argued, it is also a sufficient condition. To illustrate these ideas,

let us consider two examples. The first one does not have MSSNS but the
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second one does. ~,..%*
.. *4-.

In this example we consider a system that does not have MSSNS. As

we will see, its eigenvalues and invariant factors do not have the same

orders either. The system considered is L4

This system does not have well-defined time scale behavior which can be

seen directly fran the solution of this system.

x1(t) =xjOeECt-+ x2 0 tee

x2(t) x20eet

If we substitute t=et, we have

xl(rt/e) =xl 0et + x20t/ee*

x2(t/e) =x 2 0etr

It is clear that at the time scale t=et, the second term in the f irst

equation becomes unbounded as e goes to zero. As pointed out in [71,

this is an evidence that the system does not have well1-def ined time

scale behavior. It is easy to see that this system does not have MSSNS

~ ~ .... * -*

eiter Futhror, th egnAle 1 of xc aree.nde.onth

oterndclyf, the th tin of A th)issyt.
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A,(e) =

Therefore the orders of eigenvalues are 1 and 1 and the orders of the

invariant factors are 0 and 2. ""

Now consider the system matrix

A2(c) [: =:t:

We already know that this system has well-behaved time-scales. It can

be seen that the orders of the eigenvalues and the invariant factors are

the same, i.e. 0 and 1.

Based on the proof of this result we shall observe that under MSSNS

the eigenvalues of A(c) are clustered in n groups with those in the k-th

group close to the eigenvalues of cjkkk. This block diagonal dominant

phenomenon is expected in view of the appoximation of exp{A(e)t} by

Texp{A()t}T- I if the system satisfies MSST. It is also true when MSSNS

condition is satisfied. This observation is summarized in Theorem 3.2.
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a.

The second result in Theorem 3.1 first says A(c) satisfies MSSNS if

and only if the set of gcd's (greatest common divisors) of all ixi

rrncival minors, i=l,...,n uniquely determine the invariant factors and

in addition we have the no-cancellation condition mentioned earlier.

This is different from the general case where the orders of AU ixi

minors, instead of principal minors, determine the invariant factors.

An algorithm is also given to actually compute the invariant factors.

This gives us another potentially very useful criterion for checking the

MSSNS condition.

In Section 3.3, we present Theorem 3.3, which defines conditions

equivalent to MSST. They include two known conditions, i.e. 1) the Ali

being Hurwitz and 2) the system having well-behaved time-scales, and 3)

a new condition which reveals the connection between the MSSNS and MSST

conditions and the eigenvalues of A(c). Specifically, if A(e) satisfies

MSSNS and the orders of the real parts of its eigenvalues are equal to

or less than those of the corresponding imaginary parts then A(e) has

MSST and vice versa.+ This condition implies that in addition to MSSNS,

if the damping rates of the system modes are equal to or faster than the

oscillation rates, then well-behaved time-scales are ensured and vice

versa. For example, consider the following system,

+ Because of our assumption that A(e) is Hurwitz for eE(O,e 0 ],

we know that the real parts of the eigenvalues are negative.
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ilie liX (3.1) .

where A(e) is stable and satisfies MSSNS since I,.

Al1 -- A(0) =Fi1  11::-x

which obviously is invertible. Note, however that Ai = -e+l. Therefore

the damping rate here is of order I but the oscillation rate is of order

0. Thus the condition we have just stated is violated so that the

systemn does not have well-behaved time-scales. Indeed, solving (3.1) we

have

xl(t) =xl 0eesint

x2 (t) = x2 0 e-etcost

Substituting t-=et we have

xI (t) 1 e-sint/e

x2 (t) x2 0 e-tcost/c

Thus the time behavior of x(r) as e-->O shows oscillation but no

danping, while the process x(t) does not have a limit as e->O
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because of rapid oscillations. Note, from the fact that All is not

Hurwitz we can come to the same conclusion.

In Section 3.4, we present an algorithm for checking MSSNS based on

the results of Section 3.2. Finally, in Section 3.5 we summarize our

results and present an additional result dealing with MSSNS and the

detailed eigenstructure of A(e).

3.2 E)uivalent Statements of the MSSNS and MSST conditions

In this Section we prove several statements which are equivalent to

MSSNS condition. We have already shown in Chapter 2. that the MSSNS

condition is equivalent to Ai being non-singular. In this section we

shall prove two new equivalent conditions 1- ) the orders of the

eigenvalues of A(e) being equal to the orders of the corresponding

invariant factors and 2) the orders of the gcd's of the ixi principal

minors of A(c), i=l,...,n, uniquely determining the invariant factors

and certain of these orders being equal to the orders of the sums of the

corresponding principal minors. As mentioned in Section 3.1, the

intuition behind the first result is based on the following

observations. We have shown that the invariant factors of A(e)

determine the time-scale structure of the system if the system has well- . -

behaved time-scale structure. On the other hand, the eigenvalues

determine the modes of a system. Therefore if the system has well-
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behaved time-scale behavior, the invariant factors and eigenvalues

should have the same orders. In this section we prove this is true if

and only if the system has MSSNS.

The second result is closely related to the first one. We shall

see that the orders of the sums of the principal minors uniquely

determine the orders of the eigenvalues. Thus if these orders are equal

to the gcd's of the principal minors, in other words if there is no

complete cancellation of the lowest order terms in the summation, then

the latter will determine the orders of the eigenvalues too. Therefore

from the first result we see that if in addition the gcd's of the

principal minors also uniquely determine the orders of the invariant

factors then A(e) must have MSSNS because its eigenvalues and invariant

factors must have the same orders. We show the first result in section

3.2.1. Then in section 3.2.2 we prove the second result and state the

entire theorem. t

3.2.1 Orders of eigenvalues and invariant factors

To show the first result we need the following lemma.
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Let

[All -'121

U [A21 A22]

Then, if Au. is invertible

detA -detA 11detA22o

where

A22  A2=~~l 1

Proof: see

Consider a matrix A(e) over the ring T. Denote the orders ofthe

eigenvalues and invariant factors by bi-b 2 -e--..--bn and a

respectively and the corresponding eigenvalues are A o..On The

Smith form of AMe is

A (c) P P(c) D(e)Q (c)

Let

Al(e) =P
1 (c)A(e)P(e) =D(e)Q(e)P(e) =~)KC

10 AlAn- -lnc

Then, if ll is invrtible .

.......... :

Proo A() .... An(e)
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whee ''*~*"~lare n~xn0, nlxnlr....,n lxn.. identity matrices.

Let A.i=lj ,..,n denote the successive Schur complements of A(O) as

described in Section 2. Then we state the first result as the

following lerma.

A(e) has MSSNS if and only if The eigenvalues and invariant factors

have the same orders; i.e. bi ai, i=l,..,N.

Proof

Since A1 (e) is similar to A(e), they have the same eigenvalues.

Furthermore, because NOe is unimodular, it will not effect the

invariant factors. Therefore we shall consider A1(c) instead of A(e) in

our proof. We shall use the fact that A(c) having MSSNS is equivalent

to the Aui, i=l,...,n having full rank, a fact proven in last section.

we first prove the "only if" part.

Define

d(e,A\) =det(e&kjA1 (e)- I
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... llc) I. ........... **l (**)

=det Aji(C)..o... Aj j(C)- I.o....Ajn(c) (3.2)

en-kilA A (c) --~~e.. I

and

Deoed(,) ade d1(e,) by ... d ~) an d..rspecivel . Then thM ifeec

between them is that in dl the first j-l blocks of rows of the matrix

have been mutipilied by cki Ck-k **,,,,e j respectively.

Theref ore

dl evd

where

V nokj+nl(kj-kl)+...+njp. 1 (k-kj....)

Since e is a positive numb~er, dl and d will have the same zeros.

it is easy to see that dis a continuous function of c at
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following inequalities hold. Given any -nsitive number c~there is an

Csuch that

Nj./kj -iij)I il , ,nj if Oce

(3.4)

where
j-l

Mj = E ni. and ,\Mj+i is the (tMIj+i)-th eigenvalue of A1 (c).

Repeating this procedure for j=O,....n-l we can f inally prove that

for any 5>0, there is an en

en e nne,.. n1 1}

such that if O~e~c0 then

j=O,.,,#.,n-1

since A. (A -. )kO, for j=O,....,n-l, i=l,?....,,nj, these inequalities tell

u-, that there are no eigenvalues of order kj..... These are exactly the

orders of the invariant factors of AWe.

Now let us prove the "if" part.

Suppose that A~ is not of full rank but Aii, i=O...,j-l are.

Then fran (3.4) we see that there is at least one eigenvalue of A-j, say

10 Ajj-Oand the corresponding eigenvalue of A1(e), Ajo, has an order



higher than k. This implies that there are fewer eigenvalues with the Jl
order kithan there are invariant factors.

Now, let us show the second result in Theorem 3.1 which relates the

invariant factors with MSSNS conditimn
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3.2.2 The Invariant Factors and Principal Minors of A(c)

As mentioned in 3.2.1, in this subsection we investigate some

properties relating the MSSNS condition with the invariant factors and

principal minors of A(e). We prove in Leima 3.4, that if A(e) satisfies

the MSSNS condition then the invariant factors will be uniquely

determined by the orders of the gcd's of the principal minors and these

orders must be equal to the orders of the suns of the principal minors.

In Theorem 3.1 we show that the reverse statement is also true. Also a

corollary of Theorem 3.1 shows that if the gcd of the principal minors

are computed from the explicit form of A(c) then the following statement

is true: if the orders of the gcd of the principal minors uniquely

determine the invariant factors then A(e) has MSSNS. That is, in - -

explicit form the no-cancellation condition is automatically satisfied

if the invariant factors are uniquely determined by the orders of the

gcd's of the principal minors.

It is well known that the eigenvalues of a matrix are determined by

its principal minors of all sizes. Then it is obvious from the previous

subsection that under MSSNS the principal minors also determine the

invariant factors of A(c). For a general matrix A(c) (possibly not *. *- -

possessing MSSNS) the invariant factors can be determined from the gcd's

of AUl ixi minors, i=l,...,n. We shall prove that under MSSNS, the _ g'

of all ixi p±ncipal minors, i=l,....,n, determine the invariant

factors.
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To show this, we first prove Lemma 3.3. Then we show that the I..

"- orders of the gcd's of ixi principal minors and the orders of i-th

invariant factors satisfy the conditions uf Lemma 3.3. Based on this

fact we prove the result.

Now let us first state and prove Lemma 3.3.

Given a set of real numbers pi, i=l,...,n, there is a unique set of

real nubers si, i=l,...,n such that

F1 sl<- 42 ...-sn

F2 X si < pj j=l,...,n
i=l -

F3 2: Si = pj if sjlsj+ 1 or j=n.

This result is most easily seen pictorially. In Fig. 3.2.1, the

x's denote the pi's. First, we draw a line starting from origin and -

passing through at least one Pi and leaving all Pi's either on or above

this line. Obviously there is one and only one line
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XS X

p ...

p n n
n2

-:.:,p

Figure 3. 1,

which satisfies this requirement. Let plbe the l ast of the pjthat

lie on this line. If pn=pn the procedure is terminated. if not, then

starting from p we draw the second line which passes through at least

one of the remaining pi's (n .-i nl) and leaves the other pi's either on

or above it. Let rn2 denote the last point through which this second

line passes. The procedure is cntinuned until some line created passes

Pn- We claim that the slope of these segr nts are the sils. Namely,

sls2 .msnlpnl/nl, snl+l --- "n2= (Pn2-Pnl) /(n 2 -nlQ, etc. The points

Pl Ph2, etc. will be called t~urning points.

We first prove that this is one solution. First, the slope of each

succesive line segment is always larger than the previous one because

otherwise the previous one must leave some points below it. This proves "

condition Fl. Condition F2 follows from the fact that all pi's are

Seither on or above these segments. Conditon F3 holds because, for

example, the segments Pnl and PnlPn2-must have different slopes by
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definition of these segments.

To show the uniqueness, suppose we have another solution

i
s'i, i=l,...,n. Let X s'.=r. Obviously, rnlSPnI. Otherwise

j=l

F2 will be violated. Suppose rnl<pnI. Since Pl'*..,Pnl are either on.

or above opnI by definition, the line ornl must be a straight line too.-

If this were not the case, say, at some point nt the slope changed, then

Pnt would be on the line OPnt because of F3 and Pnt would be oelow opnl,"

contradicting the construction of this line (see Fig. 3.2.2). In a

similar fashion we can deduce that the curve O-rl-r 2-...- rm cannot

change slope at -y point. But we know that our curve O-Pml-Pn2... meet

at the end since rn=Pn by condition F3. This contradicts the hypotheses

that rnl<pnl. The same argument works if rni=Pni i=l,...,k-i but

rnk<Pnk, o'

r

jZ ntr1n

Fg .2 : Illustrating a contradiction:

* If rnl<pnl and if the postulated curve from 0 to rn, changes

slope, then necessarily Pnt<pnl, contradicting the

construction of this line
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Note: It should be pointed out that the algorithm proposed in this

section is actually a "Newton polygon" concept. This is to be expected

in the context of the present problem, c.f.[19]. However, we have not

encountered in the literature a statement as simple as that given in the -:

Leena or to be given in statement 4 of that of Theorem 3.1.

Now we turn to the relation between gcd's of principal minors and

invariant factors. We shall show in the following Lemma that their

orders satisfy Fl-F3 in Lemma 3.3.

Let us first define:

pi = the order of the gcd of all ixi v mi.nors.

ai = the order of the i-th invariant factor.

Mim, i=l,..., m=l, .... ,n mxm principal minors of A(e).

rm = Order(Z Mim).

Then we have

~- . . .-

If A(e) Tn x n has MSSNS, then Pi and a i satisfy Fl-F3 (with the a i

playing the role of the si). Furthermore rm=pm if amkam+ 1 (the "no-

cancellation" condition).

Proof: :.-

By definition,
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a1.a 2<. .. an  (3.6)

AlsoiI ai is the order of the gcd's of all jxj minors. Thereforei~l .. -*

pi and ai satisfy F1 and F2. To show F3, let us recall that A(e) having

MSSNS also means that the invariant factors of A(c) have the same orders

as the corresponding eigenvalues. In other words,

bi = ai , i=l,...,n (3.7)

where bi are -orders of the eigenvalues, Ai . ..

It is known that

det(XI-A(c)) = An- An-l(,r.X) +,\n-2( ZAi) j ) +....+

(3.8)

Where M-m, =1, .=l,....,n are principal minors of A(e).(n

Conpare the coefficients on both sides of (3.8) we see that

(3.9)
Mi" A - il .... Aim" ) :-

Now, suppose am , am+, . Under the MSSNS condition, in view of (3.6),

(3.7), we see that among all the terms on the right hand side of (3.9),
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?l~mhas the smallast degree,, say dmn, and any term in (3.9) other than

x..Ammust have an order greater than d. Therefore

rm Order( M m) =dM a=

-order of gcd of all nman minors p m (3.10)

Since the order of the gcd of Mi (i.e. p~n) must be greater than or

equal to dm (since pm is the gcd of a smaller set of minors), this

equality in turn means that pm, is equal tod~ That is

m
pm= ai, ifa. m+

n
This, together with the fact that £ai order(Mln) yields F3,

and (3.10) gives us the no-cancellation condition.

Before we state and prove Theorem 3.1, we still need the folloing

p leuna.

Len , The sets of numbers ri and bi satisfy Fl to F3, with the r

* playing the role of the pj and the bi the role of the Si. i

Proof: The conditions Fl and F2 are obtained simtply by cheking the

* two sides of (3.8). The derivation of F3 is similar to that of (3.10). .

Lem & Def ine qi i=1,...,n to be the orders of the gcd of &II ixi

minors. Then ri pi 1 ...-
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Not: qi=al+ .... +an by definition of the invariant factors.

The proof is also trivial. Since the qi are computed frcm a larger

set of minors, the second inequality is then proved. The first

inequal ity is due to the fact that the order of the sum of some terms is -

always greater than or equal to the order of the gcd of those terms.

Based on lemma 3.1 to 3.6 we can prove the following theorem. "

Theor 3.1

Suppose A(c)Tx. Then the following statements are equivalent.

1. A M) satisfies the MSSNS co~ndition.

2. The Aii, i=l,...,n are invertible.

3. The orders of the eigenvalues are equal to that of the

invariant factors, i. e. ai=bi.

4. (a) Pi and ai i=l,...,n satisfy Fl, F2 and F3.

(b) rm=Pm if amiam+l (the no-cancellation condition).

1 <=> 2: This has been proven in the last section.

2 <=> 3: This has been proven in Lemma 3.2.

3 => 4: This is Lema 3.4.

4 => 3: Define pic the lower bound of the convex hull of pi.

Refering to Figure 3.2.1, pie, i=l,...,n are the corresponding points

lying on the solid line in the f igure. We will on occasion refer to pic
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as the lower bli- of pi. Then from statement 4a we can conclude that

-i C~l..+ But this is in f act the def inition of qi. Theref ore we

have proved p c=q. Def ine nic the lower bound of the convex hull of

ri. Then Lemma 3.6 and statement 4b imply that ric=pic. Using Lemma

3.5 and statement 4a we then have that ai=bi, for i1,...,n.

Coolr If A(c) is in explicit form, then 4a implies 4b in Theorem

3.5, so that 4a by itself is equivalent to MSSNS.

Prof: Since A(c) satisfying the MSSNS condition implies that its

explicit form Alpe) satisfies the same condition and vice versa, we

shall consider Ape) in the proof. Let

All A1 2 ....... Aln no

..........

Then from 4a we know

Iaj =pj'. i--n0, no+n1 ,...,n 0 +--.+n._ 1, N
j =1

because anO=anO+l anO+n=anO+ni+ss nfc That is, the order of the gcd
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of all n0 xn0 principal minors is 0. The order of the gcd of all

(n0+nl)x(n0 +nI ) principal minors is nli I and so on. It is easy to see

that rn0=Pno=O since All is the only principal minor of order no whose

order is 0. Similarly, the submatrix containing All, A12, elilA 21,

ilA 22  is the only (n0+nl)x(n0 +n1 ) principal submatrix whose

determinant can be equal to nlkI . Thus rn0+n=Pn0+nl. Continune this

argument we can finally prove this corollary.

Here is an example to show that in general condition 4a alone is

no sufficient to ensure the MSSNS condition. Let

A~e) =K I ]-

Here

pi =0,2

a i = 0,2

So that pi and ai satisfy Fl-F3. But A(0) does not have SSNS as is

easily seen by checking that both its eigenvalues are 0 but A(0)=O.

This is due to the fact that 2b is violated: rl=2Npl=O while al~a2.

F From the proof of Theorem 3.1, especially (3.3), we see that if 9

A(c) satisfies MSSNS, then for any 3>0, there is an c0, such that if

0<e<o then
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M +1

IA)M. +i/ek - Ai(Ajj) I < 3 , ~ ,., "'
)j=0,... ,n-l .=

or

IXm. +i/Ck - ij = 0(e) -

or

M+i -i i(Ck Ajj) = o(ek 3 +l), il, n.
j=0,... ,n-1 ::

Therefore we have the following theorem.

Theore 3.2: "

If A(e) has MSSNS, the eigenvalues of A(e) are clustered in n

groups, with those in the k-th group lying within o(ckj+l) of the

eigenvalues of ekijj.

In Section 3.4, we use the results of this section to define an

algorithm to determine the invariant factors of A(e) from the gcd's of

its principal minors under the condition that A(e) satisfies the MSSNS

condition. Before doing that, let us first consider some equivalent

conditions for MSST.

3.3 Euivalent statements for MSST condition

Having seen the equivalent conditions for MSSNS, one would expect

to see the similar conditions for MSST. As we will see however, there

is one additional property of the eigenvalues that is required for MSST,
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and this allows us to gain a deeper understanding of the MSST condition.

There ..

The following statements are equivalent.

1. A(e) has MSST.

2. The Ai, i=l,...,n are Hurwitz.

3. The system c=A(e)x has well-behaved time-scale structure.

4. A(e) has MSSNS and O[Re(Ai)] < O[Im(Ai)] for i=l,...,n.

where the Ai are the eigenvalues of A(e) and the

O[Re(Ai)] and O[Im(\i)] are the orders of the real ,

and imaginary parts of the eigenvalues of A(c)

respectively.

Proof: 2-"

The first three statements were proven in the last chapter. Here

we only need to prove 2 <=> 4. First let us prove

4 ===> 2.

Since A(e) has MSSNS, from theorem 3.1 we know that the eigenvalues

of A(e) are clustered in n groups. Denote the eigenvalues of A(c) by . -

A, .... ,AlnF,-2l, .... ,\klt .... , AknK, .... , Ann , where, from
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* Theorem 3.2 and the MSSNS assumption

=j AipckjAj) + Q(ckj+l), i=1,...,nj

Since MSSNS implies that Ajj is invertible, we see that

lim(Aji/ek3) = XAjj) 0 (3.11)

Furthermore, since we have assumed the O[Re(Aki) I O[Im(Aki)J we can

immediately conclude that

=j lim(Re(A 1)k)= Re(Ai(A,.)) ~i0

Since AMe is Hurwitz for c(-(O,e 0 ) we have that cji<O, which in turn

implies that .j~ is Hurwitz.

2 =>4

We have already seen that 2 =>that A(c) has MSSNS. Since (3.11)

still holds and Re[Aj(A -)] < 0 by assumption, we immnediately have that

As commented in Section 3.1, the fourth statement in this theorem

states that if the system has MSSNS and if in addition the damping rate

is at least as fast as the oscillation rate (i.e. the orders of the

real parts of the eigenvalues are equal to or less than the orders of

the corresponding imaginary parts) then the system has well-behaved

125



.1 %

time-scales. The reverse is also true.

Thus, in this section we have proven a result which relates the

MSST condition with several other conditions. In the following section A

we use the results of Section 3.2 to define an algorithm to determine

the invariant factors of Ae) from the gcd's of its principal minors

under the condition that AMc satisfies the MSSNS condition.

6.-
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3.4 An Algorithm For Determing The Invariant Factors Of A(e)

Given certain real numbers pi, i=l,...,n, there is a simple

algorithm to determine ai which satisfy Fl-F3 in Lemma 3.3. The

algorithm proceeds as follows. The first objective is to find the slope

of the initial line segment and the first "turning point". We do this

by computing for each pi the slope ui=bi/i of the line from the origin

to the point pi. Then the initial slope is the smallest of the ui and

the first turning point corresponds to the largest value of i that has

this minimum value of ui . From this point we essentially repeat the

process by looking at the slopes of lines from this turning point to

each of the pi corresponding to subsequent values of i. A flow graph of
: a-

an alg rithm that accomplishes this is depicted in Figure 3.3. As

indicated in this flow graph, each subsequent slope and turning point

computation can be reduced to the original one by shifting the previous

turning point to the origin.
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Figure 3.4.1 Flow graph of an algorithmn
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The following are some examples showing how this algorithm works.

In this example, pi=3,2,2,3,4,6 are as shown in Fig. 3.4.

6 x-P .

3 - x [.
2- x Pi

123456

Fig. 3.4

The algorithm, illustrated in Figure 3.4.1, proceeds as follows

1. 1=6

2. qi= 3, 1, 2/3, 3/4, 4/5, 1 P

3. It is easy to check that m=t3, q= 2/ 3 .

4. al=a2=a3=2/3.

5. rn=6. Therefore continue.
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6. 1=6-3=3, pi=l,2,4.

7. Repeat 1-4. We have a4=a5=l.

8. This time, 1=1, pij2 =a6 Stop. .--

So we have a1 = 2/3, 2/3, 2/3,, 1, 1, 2.

The next two examples show how to actually canpute the invariant factors

from a matrix satisfying the MSSNS oondition.

c2 c c3

1 C L '~

The order of the god of Mil is obviously 0, because there are diagonal

elements of AMe that have order 0. Since one of the 2x2 principal

minor is 1, we also have that p2 =0. We then find that p3 is determined

by the upper left 3x3 minor which is e. Also det(A(e))=c 6 . So that

Pl=P2 =0, P3=11 P4=5.

If we also know that AMe satisfies MSSNS condition (this is true for

this example), then using our algorithm we have

a3=b 3 =l, a4 -b4=5.
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This algorithm in fact also provides a way to check the MSSNS condition.

We first observe that ri=pi. Then, since there is a 3x3 principal minor

whose order is 1 and there is no other 3x3 minor of lower order, we know

that the invariant factors are 0,0,1 and 5. The numbers determined by

pi according to the algorithm are 0,0,1 and 5 which are equal to the

orders of the invariant factors. Therefore statement 4 of Theorem 3.1 17
tells us that A(c) has MSSNS.

Exa~y-l 111.

S 7 c e-
A(e)=A c) 2 c3  0 c3  '':":

.C6 ell ell ell

It can be seen that

P1=l P2=0' P3=3, P4=
14.

As in the preceding example, we can check that this A(e) satisfies

MSSNS, and our algorithm then yields the invariant factors:

al=a2=0, a3=3, a4=11.

131



3.5 Conclusion

The new results in this Chapter are the following.

U 1. New equivalent conditions for MSSNS - 1) the orders of

the eigenvalues being equal to those of the invariant

factors. 2) A(e) satisfies the no-cancellation

condition and the Pi uniquely determine ai (Theorem -

3.1).

2. A new equivalent condition for MW'r - A(e) satisfies

MSSNS and in addition the orders of the real parts of

the eigenvalues are equal to or less than those of the

corresponding imaginary parts (Theorem 3.3).

3. If A(e) has MSSNS, then the eigenvalues of A(c) are

clustered in n groups (Theorem 3.2).

Based on these new results one can derive several conclusions.
- °

1. The new condition for MSSNS does not require us to compute the

successive Schur complements to determine if a system satisfies this

condition. Instead, if the orders of the eigenvalues and invariant

factors have been computed, then we can easily see if A(c) has MSSNS as

pointed out in Theorem 3.1, statement 3. This result is in fact the

basis for our approach to scaling developed in the next chapter. This . -

scaling involves the construction of a non-unimodular similarity
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transformation so that the orders of the invariant factors can be

changed to be eaual to the orders of the eigenvalues (which of course

are left unchanged). If in addition the real and imaginary parts of the

eigenvalues of A(e) satisfy the order condition as stated in Theorem

3.3, then after scaling the new system matrix will not only have MSSNS

but also MSST. So that, as stated in Section 2.5 and 2.6,the system

will have well-behaved time-scales and the results in those sections can

apply. If this condition is not satisfied, then using the results in

Chapter 2, Section 2.8, after scaling we can still have the extended

well-defined time scale behavior.

The second approach for checking the MSSNS condition is to use

statement 4 in Theorem 3.1. Namely, we first check if rm=pm when

amam+l,(the no-cancellation condition). If the answer is yes then we

conclude that the system does not have MSSNS. If, on the other hand,

they are equal, we proceed to check if the gcd's of the principal minors

and the invariant factors satisfy Fl-F3. The third method is to make

use of the corollary of Theorem 3.1. That is, we first obtain the
explicit form of A(e). Then compute the Pi from the explicit form and

check if they and ai satisfy Fl-F3.

2. The new condition for MSST is not only a new criterian for I'2ST,

it is also a bridge between MSSNS and MSST. In other words, if A(e) has

MSSNS then we should only check the orders of the real and imaginary

parts of its eigenvalues to make sure if it has MSST.
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3. Theorem 3.2 provides a way to check the approximate locations

of the eigenvalues if A(c) satisfies MSSNS. In principal, if A(e) does

not satisfy MSSNS, but we can find a scaling to bring it to MSSNS, then

this theorem can still apply to the transformed system. It holds

regardless of the stability of the system. It also suggests a

connection to frequency domain consideration. That is, even if A(c)

does not satisfies the stability condition of Theorem 3.3, as long as it

satisfies the MSSNS condition, we should expect, in view of its

clustered eigenvalues, well-defined multiple frequency-scales (cf.

[201,[211). In other words, the frequency response of the original system

should be able to be approximated by the frequency response of a

decoulpled frequency-scale separated system as the one suggested in

Chapter 2, Theorem 2.1.

This Chapter has dealt to a great extent with the relationship

between time scales, invariant factors, and eigenvalues. A natural

question to ask is the relationship between time scales and the complete

eigenstructure of A(e). In particular, let us point out one result on

the relationship between the Jordan form of A(e) and the MSSNS

condition. Let

A(e) = (C)A(C)-(C)

where A(e) is the Jordan form of A(e) and M(c) is normalized (i.e. the

eigenvectors are chosen to have the unit length). We then have the

following reault. Suppose that M(e) is unimodular. Then A(e) has MSSNS
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if and only if A(O) has SSNS (i.e. if it contains no diagonal blocks of .

dimension greater than 1 with O's on the diagonal). This follows from

the observations that (1) A(e) has MSSNS if and only if A(0) has SSNS

and (2) M() is unimodular. Let us give some examples and make several

comments about this result. Consider the matrix

A -(c) =[ ]

In this case M(c)=I and A(0)=0, from which we can deduce that A(e) has

MSSNS. On the other hand, consider

A(e) =[ 11
[0

In this case M(c)=I but A(O) does not have MSSNS.

It is important to point out that there are many cases in which

M(c) is not unimodular. In this case it is perfectly possible for A(e)

to have MSSNS even if A(0) does not have SSNS or for A(e) not to have

MSSNS even if A(0) d have SSNS. Let us illustrate this with two

examples.
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,X 3.5.1 Consider

i~)=[ i2 [ /(c2-e)][ o] il/(v.-.2)]"" .
A ( ) [ 0-

Me) A(Ce)

Here A(e) does not have MSSNS and M() is not unimodular, while A(0)

has SSNS.

U 3.5.2 The matrix

A(c) = (c.)--I
- - "

M( ) A(e)

satisfies MSSNS condition and has one time scale et. (This can be seen

by checking the orders of the eigenvalues and invariant factors. They

are 1 and 1 in this example). But obviously A(0) does not have SSNS and

Me) is not unimodular.

As seen from these examples, the MSSNS condition does not require

A(0) to have SSNS or M(e) to be unimodular. It is an open questionto

investigate the full relationship between MSSNS and the eigenstructure

of A(e).
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CHAPTER 4

SCALING

4.1.1 motivation

Having seen the decisive role that MSSNS and MSST play, we now

consider systems that do not have MSSNS. In this chapter we show that

under specified conditions a scaling transformation on the states

produces a system that has MSSNS, so that the formulation in previous

chapters can apply.

We have already seen in Chapter 3 that, when the system does not

have MSSNS, the orders of eigenvalues and invariant factors are not

equal, and conversely. The only way to make the system have MSSNS is

therefore to change the orders of its eigenvalues and/or those of its

invariant factors. we choose the latter, since this will not change the

system's dynamics and is more direct to implement. In fact, a

similarity transformation through a non-unimodular matrix has the

potential to meet this requirement, since it will not change the
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eigenvalues but can modify the invariant factors.

This can be clarified by a simple example that we have inspected

before, namely

:=[ 1

As mentioned in Chapter 3, Section 3.1, this system does not have MSSNS

since the orders {bi} of its eigenvalues are 1,1 but the orders {ai } of

its invariant factors are 0,2. This failure to satisfy the MSSNS

condition could also be deduced from Fig. 4.1. From this figure, we

see that the slopes of the lower bound of the {pi } are 1 and 1. Recall

that points on the lower bound of the {pi } were defined as pic in the L
last chapter. Recall also that we defined ri as the order of the sum of

all ixi principal minors, and ric as points on their lower bound. Since

in this example ric=pic, these slopes are also the {bi}. Also, the

invariant factor orders are 0 and 2, corresponding to the slopes of the

dotted line segments making up the plot of qi versus i, where we recall

that qi was defined as the gcd of all ixi minors.
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qi 
"

Figure 4.1 A simple example

Absence of MSSNS implies that the system does not have well-behaved time

scales. For this example, as we have seen in Section 3.1, xl(t) becomes

unbounded at the time scale et as e goes to zero.

However, if we apply the following linear transformation

S (C) 0 1..?

which is simply a (diagonal) scalng of state variables, we obtain the

system

y -Sx S s-ly

or y y e y0 - 0 -1 1;i
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For this new system, it can be seen that the orders of eigenvalues and

invariant factors are the same, so the system satisfies MSSNS. It is

furthermore evident that the system satisfies MSST as well, so results-

we obtained in previous chapters apply to it. Returning to Fig. 4.1.1,

we note that the orders {pi of the gcd's of the principal minors are

¢4-

unchanged by diagonal scaling, but the orders {qi } of the gcd's of all

minors have been raised by scaling, so that the two curves now coincide.

The solution of the scaled system is given by:

yl(t) = exl(t) = exl 0 &e + x2 0 ete-
"

Y2(t) = x2 (t) = x2 0e (4.1)

Substitute t for et to get

yll() - cxl 0e + x20 te -

Y2 (t) -x20 e -

Obviously this scaling has served to avoid the problem of the unscaled

system, in that the result remains bounded for time scales r and et as c

goes to 0.

The significance of scaling is two-fold. First, as we have seen in

*. Chapter 3, Theorem 3.2, if the system matrix satisfies the MSSNS

*_ condition, then its eigenvalues can be approximated by the eigenvalues

of its successive Schur omplements. Hence, if A(e) does not have MSSNS t2
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but we can find a scaling so that the resulting matrix does, then we can

still obtain a good approximation to its eigenvalues via reduced-order

computations, because scaling preserves eigenvalues. Second, since the

scaled system has MSSNS, the procedure described in the previous chapter L4_

will provide a time scale decomposed system to approximate it, provided

MSST is also satisfied. We conjecture that the solutions of this system

can provide a good approximation to those of the original system, in a

sense that will be discussed at the conclusion of this chapter.
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4.1.2 Summary of the Scaling Procedure "

This chapter concentrates on the development of a scaling procedure

that can be applied to a large class of systems. The procedure involves

the following steps. The first . is to transform A(c) to its

explicit form, Ae(c) = P-()A(e)P(e) = D(e)X(c). This step does not

change either the invariant factors or the eigenvalues of A(e).

The s n & involves identifying what we term a skeleton in the

explicit form. A skeleton consists of n entries of Ae(e), precisely one

from each row and column, with orders equal to the orders of the rows in

which they are located. By the order of the i-th row, we mean the order

oa Of the invariant factor of this row of the explicit form matrix

Ae(C). Each skeleton element therefore has minimal order for its row.

Since A() has full rank, it is easy to see that there is at least one

skeleton in Ae()."

Now identify the skeleton above with the nxn permutation matrix

that has l's at the locations of the skeleton elements and O's

elsewhere. It is really only this pattern of the skeleton's placement

within Ae() that we shall be using in what follows, so we shall usually

talk of the skeleton as if it " the permutation. Any permutation can

be uniquely expressed as a product of disjoint cycles (see subsection

4.2.1). It follows from this that, perhaps after some re-ordering of

the variables associated with our system (which corresponds to

similarity transformation by a symmetric permutation), the elements of

142

.. .

. .. S * ....................... ..



the skeleton can be brought to the positions occupied by the l's in a

k d o ani matrix M ) whose diagonal blocks

take the form:

0 1

or simn-y (11 for a scalar block. This re-ordering of variables is the

third z of our procedure. Let 1i denote the order of the skeleton

element in the i-th row, following the re-ordering of variables. The

set {ai} is the same, therefore, as the set {alja 2 .<aN } of invariant

factor orders.

For the moment, let us assume that there is only one block in the

BDCM, so as to simplify our introduction. Then, under some assumptions

on these integers Si and on the principal minors of Ae(e), the following

scaling can be shown to transform the matrix to one that satisfies

MSSNS:

* SI 52 SN-l
S() = diag{e , 2, ... , N-, 11, (4.2)

where

si =Si+l + bi - Sip SN = 0

and the bi are, as before, the orders of the eigenvalues. The fourth

(and final) r&W of our scaling procedure is thus the application of
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this diagonal scaling transformation to the system.

In summary, the procedure for finding a diagonal scaling that

induces MSSNS is

1. Transform A(c) to its explicit form Ae(c).

2. Identify a skeleton in Ae(C).

3. Apply a symmetric permutation T to Ae(e) so that the

skeleton of Al(c) - TAe(c)T- corresponds to a BDC.

4. Calculate S(c) = diag{eSl,...CsN} for Al(e) so that

A2M) = S~) l {( SM= Ll~l
has MSSNS.

A precise statement of sufficient conditions for this procedure to

succeed, as well as the details of Step 4 for a system with a multiple-

block skeleton, are given in Section 4.2, along with proofs of the main -

assertions.

Mt& , We shall suppose in the remainder of this chapter (unless

otherwise specified) that A(c) is alred in its explicit form, i.e.

that step 1 has already been carried out.

Not2 Rather than using the symbols {5 i ) for the reordered set

Jai) , we shall from now on in this chapter use {ai} as generic symbols L
for invariant factors, with ordering determined by the context.

N In the next section we shall state several conditions that

are together sufficient for our procedure to work. Before doing this,
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we first note an important necessary condition for our scaling procedure

to succeed. From the description of the procedure above, we see that

only symmetric permutations and diagonal scaling will be applied to the

explicit form Ae(e). Obviously these operations have no effect on

principal minors. However, from Theorem 3.1 we also know the condition

that pic =ric, i=l,...N, i.e. that the {pi} uniquely determine the {bil,

is a necessary condition for Ae(e) to have MSSNS. (This condition was &
called the "no cancellation" condition in the previous chapter.)

Therefore, if after scaling we have the MSSNS condition, so that the no

cancellation condition holds, it must hold for the original matrix. We

shall take this necessary no-cancellation condition as a standing

a thrbughout this chapter.

4.1.3 Outline of this chapter

Section 4.2 is devoted to filling out the outline above. In

Section 4.2.1 we briefly discuss some properties of permutations;

further details can be found in Appendix 4A. Then in Section 4.2.2 we

introduce the essential idea of our approach through a key example.

Section 4.2.3 deals with diagonal scaling for the simplest case where

there is only one cycle in the skeleton. Section 4.2.4 extends this

result to the more general case where the skeleton has several cycles.

Since our scaling procedure is derived under some assumptions, it
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is important to know that there are interesting problems where these

assumptions are indeed satisfied. We describe, in Section 4.3, the

application of our scaling procedure to high-gain feedback problems. In

particular, we show that our procedure leads to scalings used by Sannuti

in [141. (This paper, along with [15], motivated our study of scaling

in the first place.)

4..6

- .
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4.2 Diagonal Scaling

4.2.1 Introduction

In this section, we examine matrices A(e) with structural features -

that cause them to not have MSSNS. We show that it is possible (under 1
certain conditions) to choose a scaling of such a matrix that induces

MSSNS.

Without loss of generality, it is assumed that A(e) is in its

explicit form (see Note 1 of Section 4.1). As mentioned in that

section, we shall be considering transformations of the form S(C)T,

where S(e) is a diagonal scaling matrix, T is a permutation matrix, and

X() = S(e)TA()T-iS(e) - = (e)A(() (e) -  (4.3)

Note that A() and A(c) have the same eigenvalues but may have different

invariant factors if 3(e) is not unimodular. We shall show how S(e) can

be chosen so that the invariant factors and eigenvalues of A(e) have the

same orders, even when A(e) does not possess this property.

The development of our scaling procedure involves identifying and "

manipulating permutation matrices that reflect important structural

features of A(M). Before we begin this development, therefore, let us ""

first review some properties of permutation matrices, i.e. of matrices
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obtained by permuting the rows and/or columns of the identity matrix I.

A permutation matrix, say

0o 0 0 1 0 - d
[0 0 00 01
0 1 0 0 0 01

P= 1 0 0 0 0o
0 0 0 0 10
LO 0 1 0 0 0. J.-

can also be represented in terms of the cycles that comprise it. For

the example above, the decomposition of P into cycles is given by

e (1,4) (2,3,6) (5)

This notation serves to indicate that if P is applied to a vector

x=(xllx2,.,x6) , then the following cycling of elements occurs:

[xl-->x4, x4-->xll, I[x2-->x3, x3-->x6, x6-->x 2 ], [x5-->x5]. Hereep ( -

consists of three c which are uniquely defined.

The canon l mr is a permutation of the form

ec  (n,n-l, n-2, ... , 2, 1)

This corresponds to the permutation or circulant matrix

0 1 0 .... 01
0 0 1...... 01

ol 0 0 ...... 0J
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A b dig c c matrix (BDCM) is defined as

C -block diagonal {Cl, C2,..., Cm}

where C1, i=l,..., m are canonical circulant matrices.

It can be shown (see Appendix 4A) that any permutation matrix can

be brought to a BDCM by a symmetric similarity transformation T that is

itself a permutation matrix:

nVi'F P is BDC4 form.

We shall call this transformation T a symmetric u i . Each block

of corresponds to one cycle of p
p.

In the next subsection we introduce our approach to scaling through

an example that also serves to illustrate the role of circulant matrices

in our development.

4.2.2 A Key Example

The essential ideas underlying the scaling approach proposed in

this section are exposed by the following key example. To proceed, let

us first recall some definitions from the previous chapter:

ai = orders of invariant factors, i=l,...,N

149

- -- - - - - - - - . . . . .



bi =orders of elgenvalues, i=1, IN

qi a
q= Za

and, based on the no cancellation assumption, the points on the lower

bound of the {pij} are given by

i
pic = ri c  X b.

j=l

Now, suppose A(e) has the following special form:

cal --
0 e 0 0 .... 0
0 0 O 0 ...... 0

A M ..... (4.4)

0 0 0 0 0 .... 0 a - ;-
o n a-

Ln C 0 0 ...... 0

Note that A becomes the canonical circulant matrix if nonzero entries

are replaced by 1; we shall therefore say A has the structure of a

circulant matrix. It is easy to see that A is in explicit form, and

that the orders of its invariant factors are ai, i=l,...,n. (Recall

from Note 2 of the previous section that we are still using {ai} to

denote the orders of the invariant factors, but they may not be ordered

as in earlier chapters.) Since the ixi pricipal minors with i<n are all
zero (this implies ri=pi= , i=l,...,n-l) and rn=Pn=qn=al+...+an, we can
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draw the following picture:

II X1

12----Wn

Figure 4.2 A key example

It is easy to see from this picture that the orders of the eigenvalues

bi, which are determined by riC=piC, are equal to b=qn/n for all i.

This can also be obtained by checking the characteristic polynomial of

A, which is

n cv

where v=qn. This again shows that all of the bi are equal, namely

bi=b=qn/n for i=l,...,n. Thus A will not have MSSNS unless all of the

ai are the same.

Now let
51  S2 5n-l

S diag{e C , ..... 1

with

Si - Si+l = b - ai, i=l, ....,n-l,
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sn=0

Then after scaling

o o o ...... _

o o eb a ...... A .......... 0"'"
SAS-I  ':'

o o 0 0 ......

eb  0 0 o ...... 0

and the invariant factors of A have the same orders as its eigenvalues.

If A does not have the structure of a circulant matrix, but of a

more general permutation matrix, then we can apply a symmetric

permutation to bring it to block circulant structure. For example,

consider

0 0 eall
A =[a.2

& a3 0:::

As with the last example, A is in explicit form and the orders of the

invariant factors are al, a2 and a3 . The orders of the eigenvalues are

all equal to b=(al+a2+a3)/3. Choosing the symnetric permutation matrix

[T= 1 0
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we obtain

" a 2-

A, TAM' 1  0 =a

"-: ?.3".H

To bring A, to MSSNS, we can choose

S =diagies1-, es2,1

where sl=2b-al-a 2 , s2 =b-al. Applying S to A,, we obtain

0~~l~ es2 0 JA [ C2: s1]STAT-1 C 0 0 A[i2-H

•~ eeb o '':

In general, the entries of A that were zero in this example will

not be zero. Nevertheless, the essential idea can still be carried over-

to the more general situation, under some conditions. In the next

subsection we start with the special case where A has the form of

153



(4.4), except that the zero entries of (4.4) might no longer be zero

(though they are still, in sore sense, subsidiary). In other words, we

shall assume that there is a skeleton in A, as defined in Section 4.1,

whose elements correspond to the l's in a circulant matix with one -

cycle. We move to the more general case, where the skeleton elements

form a permutation matrix with several cycles, in the subsection after

the next one.
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K

4.2.3 Scaling for matrices with one-cycle skeleton
... ."

We shall now prove that the scaling procedure described in Section

4.1.2 works for the simplest case, where a skeleton of A(e) (in its

explicit form, as assumed in Note 1 of Section 4.2.1) has only one

cycle. We shall then move to the more general case where all skeletons

" in A(e) has multiple cycles. Recall that the skeleton of A(e) having 7

one cycle means that, after a symmetric permutation, the skeleton will

be in BDCM form with only one block, while multiple cycles implies that

the BDCM form will have multiple blocks.

Before stating the three assumptions which are retained throughout

this and the next subsections, we state some definitions that we need.

The dinsion of a principal sutiatrix P of matrix A is the nunber

of rows in P. The order of a principal submatrix is the order of its 1.
determinant, i.e. the order of the associated principal minor. A

" n of a principal submatrix of dimension n is defined as a set of

n elements containing precisely one entry from each row and each column

of P. The diagonal containing the entries aml,m2, am2,m3,*...,amn,m-

will be represented as the ordered set

S (ml, m2, .... , mn )

There are n! diagonals in P. If P is the matrix A itself (in explicit

form), then some diagonals will be the skeletons defined before. The
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order 2f da gonal is defined as the order of the product of all its

entries. There is one special diagonal of any leading principal

sutmatrix, namely

Sc = (1, 2, .... , n)

that will be called theuo. Arlncp.-

s is defined as a principal submatrix with contiguous rows. It

will be represented by two numbers, the idex of its last row i and the

index of its first column j, and denoted as M[i,j], with a subscript on

M to indicated dimension when needed. The o_ l rf two contiguous

principal sutmatrices is defined as the number of common rows. It is an

integer ranging from 0 (no overlap) to ml, the smaller of the dimensions

of the two submatrices. Finally, the closure of a principal submatrix M

is defined as the smallest dimension contiguous principal submatrix

containing M.

We can now state three assumptions under which our scaling

procedure is derived, and the two lenms required to derive the scaling.

Aui 1nAI. bi aj, for i,j=l,...,N-l.

If we draw the curves for pi and qi as in Fig. 4.2.2, this

assumption means that the slope of pic is larger than that of qi except

for the last segment. Note that this is not a nea condition for

A(c) to have a diagonal scaling. For example, consider Eq. (4.2.2). We
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have seen that the diagonal scaling defined in that section always work

no matter b (the order of the elgenvalues in this example) is smaller

than ai or not. But this is the condition under which our algorithm has

been shown to work.

ppj

N-IN

Fig. 4.3 pi and qi for Assumption 1

The order of any principal submatrix of A(e) is equal to the

smallest order of its diagonals.

This assuxnpotion serves to rule out certain cancellation when

summing procucts of elements in different diagonals, ensuring that the

order of any principal minor is not greater than the smallest order ofL

the diagonals that determine the principal minor. Again, this is n= .s,

neesr condition for a diagonal scaling to exest.

The third assumption is motivated by the following example.

Consider
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LL,.

0 1 0 0 0 0

0 0 0 0 1 0
000
C900 0 0 0

whs orer ar 3. In

9

There are two principal submatrices M, and M2 woeodr r .I

order to bring qi to pic, we ought to scale three of the l's,, e.g. al2,

a3and a3 4 0, to e and scale the remaining two l's, namely a4 5 , a56, to

e2. Since the diagonal scaling will not change the principal minors, we

shall end up with some entries of order less than 1, no matter how we

arrange the scaling. (After scaling the order of the gcd of all the lx].

minors should be equal to 1 since the order of b, is 1 in this example.)

The source of the problem here is the overlap of two principal -

submatrices whose orders are equal t c, where 3 is the first turning

point in the graph of Fig.4.4. To avoid this situation, we impose two

more assumptions.

-1 5'

N .- .. . - . ..-. .

.. .. .. . .. .. . .. .. . .. .. . .. ':



Suppose the order of an mxm contiguous principal submatrix M, is

pc. If there is an sxs contiguous principal sutmatrix M2 that overlaps

with M, and the overlap is t (an integer from 0 to min{m,s}), then the

order of M2 satisfies

0(M2) bm-t+l+m-t+2+. • •+bm-t+s+i:

Consider the previous example again. If A(e) satisfied this assumption,

i.e. if one of the Mi, i=1,2 had order 1+2+2=5 instead of 3, the

difficulty encountered in that example would have been eliminated. From

this assumption we also can see that any contiguous Mi whose order is

c
Pmi c must be the unique contiguous principal submatrix that has this

order.

Assumption 4.4: i'-"

For each i=i,2,.... the principal submatrix Mi of A(c) whose

determinant is pmic is a contiguous principal submatrix. Furthermore, Mi

Mi+I, i=l, ...., i.e. the rows of the Mi are contained in those of the

Mi+l -

The following theorem now states that the scaling procedure

described in Section 4.1.2 does indeed induce MSSNS under Assumptions

4.1-4.4. Since the steps 1-3 can be applied to any A(e), we shall

suppose that the A(c) discussed in Theorems 4.1 and 4.2 has already gone

through these steps. In other words, we suppose that some skeleton of
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A(c) already forms a BDCM of one cycle.

Def ine

i: turning points of q.

Mi principal sukiatrix whose determinant is equal to pmic.

:i slope of segesnent of q.c between mi- and i-1

Ii set of row indices of Mi-

We now have the following theorem.

Theo.rem -4,: Suppose A(e) satisfies Assumptions 4.1-4.4, and has a

skeleton that forms a BDCM of one cycle. Then the scaling matrix

S =diag{el1,...... sN} (4.5).

causes SAS1 to have MSSNS, where si'***9' SN are def ined by

-- a if i E I, i=1,...,N-L. hA

.1.~

and each entry ai of Ml, i>j, must belong to a contiguous principal

submntrix M(i,jI containing ajjl .. *aij which are the elements
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of the canonical diagonal of the original matrix A and have orders

aj'aj+I...#'ai-I respectively. We then have

O(aij) +aj + aj+l + + ai-i > (i-j+l)fl, i>j

-* The scaling defined in this theorem satisfies

S -s + = -,....•, si-l-si =fl-ai-i

Denote the order of the (i,j)-th entry after scaling as O(3ij ) .

Considering the fact that the diagonal scaling does not change the

principal minors, we have

O (aij) + (aj+sj-sj+1 ) +... .+(ai-l+Si-,-Si)

= O(iij)+(aj+fl-a j )+ .... +(ai+fl-ail _ (i-j+l) fl

or O(aij) fl, Dj (4.6)

The entry aij, i<j, in the upper right triangle of M1 has an order

equal to or higher than f, before scaling. After scaling, for i<j, and

considering fl ai, i=l,...,N-l, we have

O(aij) = O(aij)+si-s j = O(aij)+(si-si+l ) + .. +(Sj-l-Sj )
~~=0 (aij) +(J-i) fl-ai-" ""-aJ - I

> fl', i<j (4.7)

Also O(aii) = O(ii) f, (4.8)

Combining (4.6)-(4.8) we can conclude that, after scaling, every entry in .z -2

M, has an order equal to or higher than fl.
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Now consider the entries contained in M2but not in M, (see Fig.

4.5). Using the same argument as before and the Assumption 4.3, we

have for aij, i>j, i'11,,

0(aij)aj+.M (4.9

12 L

Figure 4.5

where t is the overlap of M, and M[i,jI. Since, after the scaling

defined in this theorem, there will be exactly (j-iI-l-t) canonical

diagonal elements of Mti,j] having order f 2 , and t-l having order fl,

f rom (4.9) we have

0 (3j) f1, ~j ,i E 1, 4.9

Arguments similar to those used in deriving (4.7) will prove

0(aij) fl, i<j, iEI,. Repeating this procedure for 3ij iE12 \Il, we can

prove
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I.'-

0 (aij) f 2  i E 12\I1  .

This procedure can easily be extended to M3, M4, ... and finally

we can show

O(aij) 2- fk' i(-Ik\Ik-I 1':

Since there is one set of ixi minors, i=l,...,N, whose orders are

exactly qi (the aii+l, ieIk\Ik.1), the theorem is proved. -

The following example illustrates our approach. .

-- mo 4. Consider

e3 c4 e9

e3 e3 c
A(E) = "'

c3 e c2 e7

e6  8 7

Before applying Theorem 4.1, we have to apply steps 1-3 to A(e). First

we identify the only skeleton, which comprises the circled elements in

the matrix above, and corresponds to the permutation (1,2,3,4). To

transform this permutation to canonical circulant form, we use the

symmetric permutation Bt=(1,3). Then
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eC3 C3 C 7 C<:.Ce e 3

-AI(C) - !I (c)T-I = .-.-

C6 C8 g15 C7 : L:

This matrix has ai=l,l,0,6, and bi=2,2,2,2. In other words, m1=4, fl=2.

Hence using Theorem 4.1, we have sl-s 2=fl-al=l, s 2 -s 3 =fl-a 2=1, s3-

s4=fl-a3=2, or Sl=4, S2=3, s 3=2, s 4 =0. This leads to

c2 c2 e5 ell

e2 e3 c2 C

2 e5 e4 e7 •:i

It is easy to check that A2 (e) has MSSNS, since its eigenvalues (which

are the same as those of A()) and invariant factors have the same

orders.

4.2.4 Scaling For Matrices With Iwo-Cycle Skeleton L

we have derived the scaling of Theorem 4.1 for the case where the

skeleton only has one cycle. Now we shall extend this result to a more

general case where the skeleton has two cycles. From the results in

Section 4.1, we know that after some symmetric permutation A(c) can

always be brought to the following form
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Ae) [ (4.10)
A21 A22.."

where the skeletons of All and A22 are BDCM with one cycle and

All is an mm matrix. We then have the following lemma.

If A(e) has the form of (4.10) and satisfies Assumptions

4.1 and 4.2, then

1. a 1 1=b=.... =aM=ib b (4.11).

2. aj-a i, j=m+l,...., N-I, i=l, ....,m. (4.12)

From the assumptions of this lema, we know that All is a BDCM with

one cysle and that its determinant is a principal minor of order

al+....+a m . But any mxm principal minor must be equal to or larger than

PMc=bl+b2+....+bm . Therefore

al+ .....+am b+ .....+bm (4.13)

On the other hand, from Assumption 4.1 we know that

ai~bji, j~, ... ,m-i(4.14) _

Combining (4.13) and (4.14) we have (4.11). Using Assumption 4.1 and

(4.11) we have (4.12).
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From now on we shall suppose that A(c) has the form of (4.10) and

satisfies (Assumptions 4.1 and 4.2, and therefore) (4.11) and (4.12).

The required scaling for this case will be stated in the following

theorem. In order to prove this theorem, we need to augment Assumption

4.3 by the following Assumption 4.3a. We also introduce two new

assumptions, Assumption 4.5 and 4.6.

Suppose the order of an mxm contiguous principal submatrix M1 is

PMc  If there is an sxs principal submatrix N1 whose closure M2 of .

dimension r overlaps M1, and if the overlap is t, then the order of N1

satisfies

O(NI) bm+r-t-s+bm+r-t-s+l +. ... +b...+r-t- = h

where the sum above that we have denoted by h is as marked on the

figure.

CC

ip'

i
IIt

Figure 4.6

C IS-- S.tr- I"-" I , I I 
-..

m-t m m+r-t
m+r-t-s
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A(c) has the form of (4.10) and the diagonals contained in An1 and

A22 determine the gic.

This assumption implies that there is at least one diagonal of

order mithat is contained in Al1 and A22 and has the order of qmcfor

each i.

Eh simplify our proof, we impose the following assumption.

The Mi contain am.,,l~l for i=2,3,..

B=jQ: We believe that without this assumption the proof still can be

extended but the notation will get very complicated.

Teor A.:

Let Mi, mi, Ij and fi be defined as before. suppose A(e) satisfies

Assumptions 4.1-4.6 and 4.3a. Then the scaling matrix is

S =diag{csl ...... SN (4.15)

x, i--m
SVi. l (4.16)-S ~ jf-iim and ic-I.

where

X= max {bi - (ak.-bk)+O(aij)} (4.17)
icil k=m+l
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and C2 C2 e2

Al(c) p()T- .. .
I. C

Here ai=ll,0,2, bi=l,ll,l. In the following, we shall repeatedly

aplly Theorem 4.2 to A,( ). Since the skeleton forms a BDCM with

three blocks, we start from the lower-right 3x3 principal submatrix,

which consists of two blocks. For this submatrix, m=l, bi=l, 1, 1,

ai=l, 0, 2, b=bl=l, Jl=[2, 3}, J2 ={l}.

i-il -

x =max {bi-.Z (ak-bk) - O(aij)} = 1, g=2, h=l.
if{2,3} k=2
j=1

Therefore a scaling for this 3x3 principal submatrix of Al(e) follows

from the calculation

il-i2=0, i 2 -i 3=-x=-l, i 3-i 4=b 3-a 3 =l. -".

or ii=i2=i4=0, i3=..

Applying this scaling to Al(e), we obtain

A2 (c) diagtl,l,e,l}A l (c)diag{l,1,e - ,l} 1

c c 2 e e2

e 2ce c2

. .,. . -

_ 4 3 e e 5c-9[
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* Now, apply Theorem 4.2 to A2 (e) again. Taking the (1,1) entry as All

and the complementary 3x3 principal submatrix as A 2 of Lemma 4.1 , we

see that A2 (c) satisf ies the requirements for Theorem 4.2. Therefore we

have rrrlf J1 ={2,3,4}, J2 =1110, and

x =max {bi - aj)10

in - - .

i°-.

So the scaling remains the same, i.e.

S =diag{ltl,e,ll

and

c 2ce c

C4 3 e e5

which has ai=bi1 ,1,1,1. Therefore A2(e) has MSSNS.

aN w, let us prove Theorem 4.2.

Proof:

According to Theorem 4.1, the scaling defined in (4.15)-(4.17) will

ensure that the orders of the entries in the i-th row of A'..(where
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Aij' denotes the submatrices after scaling) have order equal to or

larger than f, and the orders of a]-12 ....., am',m and am.' which,, in

this case, are equal to f 1 . The entries in i-th row of A2 2' have order

* ~equal to or larger than bi and the orders of alm+,.--,aN-.lN and

aml'are equal to bml*9, Now let us check the orders of the

entries in A2 1 ' and A1 2
t.

It is easy to see that after scaling the order of the (i,j)-th

entry in A2 1 ' is

0( =j O(aij) + .~(ak-bk) + x
k=n~l

=O(aij) + (ak-bk)

i-1
*+max {bi-O(aij)- Z (ak-bk)}I

iiJ 1  kqn+1

"2

b1 , ifJ 1

Also there exist integers g and h such that

0(5,gh) b bg

Now define di=(i)Oaj and consider the entries in A121. For

columns g+l......N the order increment di are

j-1
d - (ak-bk) -x, j=g+l......N

k=n+l
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j-1 g-1
Z (ba) bg9 + y (ak-bk) + O(agh)

j-1
= E (bk-ak)bg +0 ah
k=g g (~

j-1
= Z (bk-ak) + bg - ag +O(agh) -bg

k=g+l

But

O(agh) ag, bk akr for any k

WE Therefore

dii O

and

0(aij') = (aij) + dij 0O(aij) fl,i=,.,N

j=g+1,. . . .N

For the remaining part of A1 2 , i.e. columns m+1,...g-1, we can use

the following arguments.

In this area aii and ah must be contained in a diagonal of some

*principal minor containing only canonical diagonal elements of Al1 and

A22 apart from ai and agh. In other words, if i. h, the diagonal can be

* . expressed as (g,h,g+,...,i-,i,j,j+1,....,g-1), and contains h+g-i-j+2

elements. Since the principal minor is enclosed by M [g,h], its order

must be (according to Assumption 4.4) equal to or higher than

g
~bk

k=i+j -h-2
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Therefore, it is easy to check that O(aij')>f, after scaling. For the

case where i>h we can apply similar arguments.

The above scaling theorems have been obtained under rather strong

assumptions. It is therefore important to know that they are applicable

in certain situations of interest. In the next section we show how to

apply our results to the scaling problem in a high gain feedback system.

4.3 Scaling in High Gain Feedback systems

The problem discussed in this section is the time scale analysis

of feedback systems. In particular, we consider a high gain feedback

control problem, of the type studied by Young, Kokotovic and in more

detail by Sanutti. [14], [151, [13]. we shall see that the methodology

developed in the previous subsections serves to extend the scaling

results of these references to a more general case.

Tob simplify our discussion, let us restrict ourselves to the simple

situation proposed in [14], where an N-state, rn-input, rn-output system

with output feedback is considered:

AA = x + Bu

y =Cx (4.18)
A

u K K(c) y
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with A, B, C, K(e) being matrices of appropriate dimensions.

It is assumed that system (4.18) satisfies
CIB o i--,,...,q
C qB is nonsingular for some q>l.

Under this assumption, there is a linear transformation to transfer
, . . .

(4.18) to the following form [14].

0x A A01: 0 x0  0[1=0 0 . + u
.* I •.

[ A, Ao*:Aq2 ...... Aq %x .Bq

y = [0 I 0 .... 0Ix

u = K(y

or

.0 A0  A0: 0 X
Xi....................... Xl -

. =0 0

x Aq ++ A2 o..... Aqq xg

L qo-

Suppose that we have a high gain feedback problem where

K(e) = e-qI= pqI, p=-i.

Then
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p........

A e) 0 0
I "

Ago Agi ..... q

If we scale Ale) by eq (which corresponds to time scaling) and denote I

the resultant matrix as Al(c), then we see that AI(O) does not have

m ~~SSNS. Therefore a scaling is necessary in order to have a standard two- ['i

time-scale form.'-"-"

We can also see that Alle) is in the block explicit form with one I
cycle (i.e. the same form as that in the previous sections but now each

entry is a constant matrix multiplied by a power of c). Applying the

scaling in Theorem 4.1 but treating each block as one entry of matrix L
Al) in the theorem, we can see that a scaling

S = diagfpgI,pqI,p-lI,pq 2 I,...,I}

will bring A(e) to

A0  A01 0

A,(e) = SAe)S - = 0 0

p-q -q+1.P, IP A P2 ...... Aqq
+PNq
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A0  A0 1  0

0 0

qOc~~,eqAq2 ...... A.~ .q

= D(e)X(c)

As in Chapter 3, we check the Schur complements of A(O) to see if A,

satisfies the MSSNS condition or not. Note that there are two time _

scales in this example so we need to check A0 ( i.e. the All in Chapter

3) and the Schur conplement of A0 (i.e. the A22 in Chapter 3). Here we

only consider the case where AO is of full rank. Otherwise the scaling

will be too complex. Since Bq is full rank, we can see that the two

Schur complements are full rank. Therefore AI() has MSSNS.

Now consider a more general cases where K(p) is an analytic

function of p at p=0. This is a case that has not been considered

before in the literature.

Let us first consider the (n2+n3)x(n2+n3) subMatrix

o I0 .0

0

o I , '
Aq+K(p) Bq x ........ x

of A(c). Now suppose the Smith form of Aq+K(p)Bq is

Aq+K(p)Bq = P(p)D(p)Q(p) = Pdiag[li,P12 , .... }Q
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where P(p) and Q(p) are unimrvdular. Then by a linear transformation, we

get

A, diag{QI,I,P11} A diagIQ71 ,i,i,P} ,

0

r1 00

D(p) X.... x

To see the necessary scaling for A1 , let us consider an 8x example.

0 a e] , (P) =p 4  01]et 0] f40 D 0 P8J

Then

0 00 a 00 00]
0 0 bO0O 0 0 01
00 00 1 00 01

A, 0 0 0 0 0 1 0 01
00 00 0 00 el
0 00 0 00 f 01
p0 0 00 00 01
0 p8 0 0 0 0 0 0j

After some symmetric transformation we have

0aO0 0
0 01 0 0
0 00 f

Ali. p4  0 0 0
0 b 0 0

0 0 00 e
p 8 00 0
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* J..

This is a two-cycle case. Applying Theorem 4.2, we have the scaling for

So = diagfp9,p8,p71p
6,p6,p4 , p2,1} ,

Then

pI 0 0 0 1 0 0
= 00 0 f

1 0 0 0
0 b 0 0 I ._

0 0 1 000-0 pi 0 0 0 0 e. .J: '
1 0 0 0...

which has MSSNS. It is easy then to derive the scaling for the original

system (simply keep the (1,1) block unchanged) and find that the system

has three time scales. From this example we notice that, unlike in the

simple case considered just prior to it, the scaling is determined by L
the structure of Q(p) and P(p). Therefore, in general, if K(p) is a

function of p, one should first apply the Smith decomposition on K(p) to

find Q(p) and P(p) and then use the scaling approach in the previous

sections on A1 to obtain the necessary scaling.

From the results in this section we see that the algebraic approach

developed in this thesis not only gives a clearer picture of the scaling

proposed in (141, e.g. the justification of the scaling used, but also

provides a tool to treat the more general case where K(p) is an analytic
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function of p.

4.4 Conclusion

In this chapter we have discussed the situation where the MSSNS

condition is violated. We first observe that the lack of MSSNS is . -

equivalent to inequality of the orders of eigenvalues and orders of

invariant factors. This suggests the use of a non-unimodular similarity

transformation that keeps the eigenvalues the same while changing the

invariant factors. We focus attention on a special transformation,

namely ~a~jjg, i.e. a diagonal similarity transformation matrix with

the diagonal entries being powers of c.

In general, diagonal scaling may not be successful in inducing

MSSNS if applied to the system matrix A(c) directly. Our procedure

requires us to first transform A(e) to its Smith form A,(c). We then

identify a skeleton in Al(e), as defined in Section 4.1. The next step

is to apply a symmetric permutation to Al(e) so that its skeleton forms

a block diagonal circulant matrix. The diagonal scaling can then be

derived fairly easily from this form, under certain assumptions.
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Several points should be made here.

1. The scal ing is =~ unique. This is because, in the first place,

the skeleton is not unique. For example

Se e C C

C C £2C

e2 c6 c4

has two skeletons. one is a22 , a13, a41 , a3 4, which has the structure

(2) (3,1,4). Another is a12,, a2 3 , a3 4 , a41, with structure (3,2,1,4).

For the f irst one, we need -a symmetric permutation (2, 1). After the

symmietric permutation we have

Al(C) 1 L4
~6 2 c4  4

The scaling for Al(c) is S=diag~c,£,e,l} according to Theorem 4.2.

Therefore the overall transformnation is

77-
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On the other hand, for the second one the scaling is simply

S2 = diag{ee,e,l} = S

2. The approach stated in this chapter is of course not the only

possible one. For example, suppose

A~e) = [: ]i
* Let

p [ , P [ ] unimodular.

Then

is in explicit form and the scaling is S=diagfc,l}. The overall

transformation is

A C .

S K 0"

By inspection, however, we see that S2 = diag{cn, 1} is also a candidate
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scaling for the original system, because

• .S

A S2 ASi[ LU

where n>l and A1 has MSSNS.

3. In general, a diagonal scaling may not be sufficient because

diagonal scaling will not change the principal minors of A(e). As

pointed out earlier in Chapter 3, the no cancellation condition is a

necessary condition for A(e) to have MSSNS. Therefore, if this

condition is not satisfied, i.e. if there are cancellations among the

lowest order principal minors such that the order of the gcd of the

principal minors is not equal to the order of the sum of the principal

minors, then diagonal scaling will not work. The reason is that the

diagonal scaling proposed in this chapter does not change the principal

minors, so that after scaling A(c) still does not have MSSNS. Note that

this cannot be remedied even if we first transform A() into its

explicit form Ae(e), as we have done in this chapter, since the explicit

form does not ensure this condition.

4. We have mentioned at the begining of this chapter that scaling

firstly provided a way to find an approximation of the eigenvalues

without computing them. The second role of the scaling is to transform

a system that does not have MSSNS to a system that does. We can then

(if the scaled system satisfies MSST as well) find a time scale
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decomposed system-denote its system matrix by A(c)-to approximate the

scaled new system using the procedure described in Chapter 4.2.

Intuitively, if we apply a reverse scaling (i.e. S- ) to this tie-scale.

decomposed system we should obtain an approximation of the original

system Our conjecture is that the difference between exp{A(c) t} are-

S-lexp{A(e)t}S must have an order higher than the order of exp{A (c)t,

i.e. the norm I

I Iexp{A(e)t}-S'exp{A(e)t}S .-

must have an order higher than that of I lexpA(c)t}l 1. Matheatically,

it may be true that the norm

I I I-exp{-A(e) t}S,' exp{A(c)t}SI I

approaches zero as c goes to zero, but further study of this

possibility is left for further work.

5. Assumption 4.4 can actually be derived from a revised version

of Assumption 4.3, which constrains the orders of the overlapped

principal submatrices (possibly several in contrast to two in Assumption

4.3). Unfortunately, the revision of Assumption 4.3 is almost impossible

to check in a practical situation and the subsequent derivation of

Assumption 4.4 is also very complicated. This is why we have stated

Assumption 4.3 and 4.4 as two independent assumptions in this chapter.

Several examples are given in this chapter, including the
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application to the high gain feedback control problem. The scaling

approach proposed in this chapter provides a better understanding and

approach to treat a more general case of the type considered in Section

4.3.

L
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CHAPTER 5 CONCLUSIO

5.1 Contributions of This Thesis

The principal contribution of this thesis is the development of an

algebraic approach to multiple time scale decomposition of perturbed

linear systems. Based on this approach, we have been able not only to

obtain a more direct and simple description of the multiple time scale

decomposition of such systems but also to handle number of problems that

are difficult to solve using previously developed results.

In Chapter 2, using this approach we make clear the connection

between Kokotovic's explicit two time scale approach and Coderch's

multiple time scale results and in the process we provide a far more

straightforward procedure than that of Coderch that makes clear the role

of Smith decompositions and the Schur complements of a certain matrix.

Using this machinery we are then able to extend the multiple time scale

result to a larger class of systems that satisfy the MSSNS but not the

MSST condition and to solve a feedback time scale assignment problem for -- ,.

the system ;PA(c)x+B(e)u when A(e) and B() are coprime.

In Chapter 3, the further study of the algebraic structure of A(c)

proved useful in deriving equivalent conditions for MSSNS and MSST. In
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Chapter 2 we had shown that the MSSNS (MSST) condition is equivalent to

the successive Schur complements of a particular matrix being full rank

(Hurwitz). In Chapter 3 we proved that the MSSNS condition is also

equivalent to the eigenvalues and invariant factors of A(e) having the

same orders. This result not only simplifies the interpretation of the

MSSNS condition but also provides a new and perhaps the only practical

criterion to actually verify this condition. Related to this result is

the relationship between the MSSNS and MSST conditions. We showed that

A(e) satisfies the MSST condition if and only if it satisfies the MSSNS

condition and the orders of the real parts of its eigenvalues are equal

to or less than those of the corresponding imaginary parts. Therefore,

to check the MSST condition we may first check the relationship between

the orders of the real and imaginary parts of the eigenvalues of the

matrix. If they satisfy the condition we have just mentioned, then we

can proceed to check the MSSNS condition. The final and perhaps most

important contribution in Chapter 3 is the clarification of the

relationship among the principal minors of A(e), the orders of the

invariant factors, and the MSSNS condition. It is shown in this

chapter, that unlike the usual cases, if the system satisfies the MSSNS

condition, then the orders of the gcd's of the R/ i minors of each

size instead cf All minors of each size determine the invariant factors.

Based on this observation, 1) an algorithm, related to the Newton

polygon, was developed to determine the invariant factors from the gcd's

of the principal minors when the system has MSSNS; and 2) an equivalent

condition for MSSNS was obtained which emphasizes the role of the

186
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principal minors and a so-called "no cancellation" condition.

Theref ore, if a system has well1 def ined time scale behavior (or more

generally, A(e) satisfies the MSSNS condition) then we can use this

algorithm to determine the orders of the various time scales. Finally,,

if the system has MSSNS, we provide an approximation for the eigenvalues

of A(e) in terms of the eigenvalues of the successive Schur complements.

As we point out in Chapter 4, this is a rather general result because if

the system does not have MSSNS, we may be able to apply some scaling so

that the scaled system does.

The results in Chapter 3 are used in Chapter 4 to develop an

amplitude scaling procedure to transform a system matrix without MSSNS

but satisfying certain conditions, into one that does have the MSSNS

property. The scaling procedure requires first identifying a skeleton

of the matrix to be scaled, that is identifying a set of critical

elements to be scaled. Then, using a symetric permutation to transform

the matrix to a particular canonic form, we can determine the

appropriate scaling matrix. Finally, we use our result on amplitude

scaling to interpret and generalize recent results on time scale

analysis of high gain or nearly singular optimal feedback systems.

5.2 Suggestions For Further Research
*.*..;. - '.

1. The procedure developed in Section 2.8 for time scale

decomposition of a system with MSSNS but not MSST requires an iterative
187
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algoritm. A bound for stopping this iteration is given in Section 2.8

as the order of the determinant of A(e) multiplied by the dimension of

A(e). However it is possible-and is typically the case-that the

iteration can be stopped much earlier. Therefore, one interesting

question is to find a tighter stopping point. Related to this is the

question of possibly developing a more efficient procedure for time

scale decaposition than that given in Section 2.8. In particular, if

the system satisfies the MSSNS condition, then only one step of the

iteration is needed at each step. Thus if all of the successive Schur

complements in Chapter 2 are Hurwitz, we are finished. However, if at

stage one of these matrices is not Hurwitz, then we must go back to

the '' the g and do the full set of iterations at each stage. It would

be desirable, if possible, to obtain a procedure with a more recursive

flavor than this.

2. Feedback time scale assingment is discussed only for the simple

case where A(e) and B(e) are coprime. At least two extensions of our

result are of interest.

1) The consideration of the time scale assignment prCblem that we

' study for the general case where A(e) and B(e) are not coprime.

2) A generalized cheap control problem, namely the problem of

minimizing

J -5 x'Q(c)x + u'R(e)u

S' ""for the system
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x = A(e)x + B(e)u

It is possible that the Hamiltonian matrix for this problem contains

the neccessary information for the time scale decciposition. Also, it

would be desirable to make contact explicitly with the amplitude scaling

results of Chapter 4 and in particular with their uses in interpreting

and extending recent results on the time scale structure of more

standard cheap control and high-gain feedback problems, i.e. the case in

which only R(e) depends on e and in fact is of the form eR.

3. In Chapter 4 we derive a diagonal scaling procedure under

somewhat restrictive conditions. The reason for these conditions was

primarily due to the absence of simple methods for calculating the

invariant factors for an arbitrary matrix. That is we have had to

impose conditions so that the scaled system matrix has a special form

and the invariat factors can be readily determined. Further research

could be directed in at least three directions:

1) Finding simpler procedures for calculating the invariant

factors.

2) Relaxing the conditions that were imposed on the matrix A(e) in

order to verify the validity of the scaling approach proposed in this

thesis work.

3) Considering the possibility of the non-diagonal scaling. In

this thesis, only the diagonal scaling of a system in so-called explicit
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form is considered. More generally, a similarity transformation which

changes the invariant factors but not eigenvalues can be represented as

a non unimodular matrix. By means of the Smith form of this matrix, the

general form of the similarity transformation can be treated as a It

unimodular transformation plus a diagonal scaling. Therefore, an

interesting question is what role can be played by the unimodular

transformation before diagonal scaling.

4. In Chapter 2 we have given a definition of the well-defined time

scale behavior and an extended definition in order to include systems

that are Hurwitz for some e((O,e 0 ] but do not satisfy the MSST

condition. The Hurwitz condition (or, as pointed out in Section 2.8, a

slightly weeker conditin that allows A(e) to have some zero eigenvalues)

is a requirement throughout this thesis. However, intuitively it should

also be possible to define meaningful approximations for some unstable

systems as well. For example, the systems k-x+u and i-(l+c)x+u should

be thought of as being close. Although the difference between exp{t}

and exp{(l+e)t} grows without bound, the l " order terms in the two

systems' dynamics are the same so that, for example, any feedback u=-kx

which stabilizes the leading-order term of one system does the same for

the other. For this reason it would be desirable to extend further our

definition of well-defined tire scale behavior so that a much larger

class of systems can be considered. Also another possible extension of

this definition is proposed at the end of Chapter 4 to define the way in

which an amplitude-scaled system approximates the original system.
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5. It has been pointed out in Chapter 3 that the eigenvalues of

A() are clustered into several groups according to the eigenvalues of

the successive Schur complements. It is possible that a f scale y.-a-

decomposition, i.e. the decomposition of the transfer function of the

system, could be achieved based on the machienary provided in this

thesis.

6. As we have seen in Chapter 3, Section 3.5, if the Jordan form of

A(e) does not have nontrivial Jordan blocks having eigenvalues of order

higher that 0 and if the similarity transformation matrix M(c) is also

unimodular, then A(e) has MSSNS. However as the examples in that

section also have shown, the reverse is not true. In other words, the

matrix A(c) can have MSSNS but at the same time M(c) can be non-

unimodular and there can be a nontrivial Jordan block whose eigenvalue

is of order higher than zero. Further research is required to

investigate the relationship between the Jordan form of A(e) and the

MSSNS condition so that a neccessary and sufficient condition can be

derived.

7. It would be useful to develop numerical algorithms for the time

scale decomposition results in this thesis. The crucial problem in this

regard is the development of a numerically sound procedure for computing

the Smith decomposition of A(e). Although an algorithm based on

Verhgese's result [181 can be constructed, further investigation is

still required to find a well posed algorithm. Note that thanks to the

results in Chapter 3, it is possible to derive an algorithm for directly
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determining the invariant factors of A(c). An interesting question is

the development of a Smith decomposition algorithm that makes use of

* prior knowledge of the invariant factors.

192



Appendix 1

In order to obtain a recursive method for the computation of the

Ski as well as the macbinary required to prove Theorem 2.3, we introduce

some definitions and properties related to the Schur complement.

Consider a matrix A

A'

A .......... A

where the Aii, i=1 ,...,n are square matrices. Def ine matrices Ck,'1 and
kj,

B. as follows1,J

Ck,Q =Bk,Q =A. (Al.l)

1,) 1,J 1)

Ai, j-l-k+1j-lj-k+) Cj-l-k+l,j (A3

1,j L,~J

(Al.4)

YO=0
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The following property states the relationship between Ck'4 for

different 1.

P, . -,

= l , 1 -1, k,l-1

- C1,j-l-k+2 -4jl-k+2' j-l-k+2,j

Here we denote 1 by for convenience.j-1+1,j-l+1

Poof: By definition (AI.3), (AI.4)

3. j- i j Bi-1 ", )(i-1)- 0.
k, 1-1

- I- -

k 2k11--'

" i-lj A. 2 -. "+22

+(AMl *Aii-)(Y-1 1 j-ik2 ,1-2

I i-I- ,-

+(A Xy . j!--2 j-2-k+2
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Based on this fact we can prove the following property that relates

th SL,j with

Def ine .. I
1 -± ~ - .

S~,l = A1  ,'- (Al.6)

SWe have
Pr.'.,y 2,:,

k-i- +1

£C,k+i (= !,1)+2 ..

* In Particular when 1=0, we have

C:kA1 k- : kk-i-I

which is the same as (2.27) in Chapter 2.

Pro : We proof this property by induction. Supose for some j Sic-2

* we have

k- I -'%* -

A, l r-k~~l-Jl kk~ .-

k141 A,. -. k+1

i=I ~ ~ ..*,

- %. j. -.

j=1 'k-j3 ~k

using the matrix inversion lemmna, (A.7) can be rewritten as
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i*k-1 -

Ak-,k-i

0klk1

11-11 1 k-
k+-i ,k+J,

=Ak~kk2Jk~A A,(Y
Akak+ j--29k-11

4-1 qk+J.

* i~-1 l Ak-.l 1l.k.. k-.2 tk-2) 1,kil -A1

+Ak

~~-ik 2k+ ,,-i k1.

Considering WA11) anid (A1.2) we have
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A. :3 3+1 90
iik~l it+lJ

and

Ck...ik+1 -,+

* Therefore by (Al .3)

A~+ A1 k & 11~9

- '~~k~. ~i~k-k-1~-1k+1(Al.10)

-,1+1 21

Inserting (Al.l0) into (Al. 9) we have

-Ev+ k k-2 1

+101

which is the same as (Al.7) when i-1.

For i-k-2 we have from (A1.7)
~ ~ A -k-2

k~kJ. i 1 1,+1 -
-kok ~ ~ AA I+-1kA1 l~

' .)- +I

*This campletes the proof of (Al.7).
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Property 2 will be used to prove our main result, Theorem 2.3. For

the same reason we need the following-property.

cli-k+l i+12i-i 11 i-i 'I1-1 , (AI.121 "k-i ,k = qk-i ,k - 'k-i ,k-l (  -1)  .- i ,k".-

Suppose (Al.12) is true for i=1,...,m-1, we prove it is true for
i-M.

Let u sr-1 According to (Al.2) and (Al.5)

1 = (., 1  
- 1 erwl,1

4,3~) 4, 4111 C-11

Let usk onsie -- m .- Mk1 It- 'l

= " k -! m. ik-l~ I" Is2

S imilarly by 1A 1 .5) -" ''

,i,-1-1 9k

Using (A1.2) to find an expression for 4 ' 2  we obtain

I k
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,,1 I 1 1 ,1 k -I ,, ""

-1+1,2 19,2 1.. I )1I -1 ,I

-,- ,k-l- k

, +1,3 -1 11 -1 1,,
4,k-1- " 2 -

r -+4+, - , ,m J f1,1) 1 5 I1 11 )- i 1,".-

-- o-C, -imk- - ( InI- I 1.-l - k-l " - i 2)-i:..

= 'm, xmk I -I k-i , 1

Similarly we have for m a ir o-

M-1 --

l~~m-l+1 1, ,1 (A l ,I1+I , j-1 ..

-m~ =-..-...- =..- - .-. .i-~

M~~ -k j :.

rkr' ,I-+ I -1 ( "1 M-1 1 1 143,1}

Thus we have that (A I- f2 ) is true for i=,m..',.
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-or i=l+ 1 we have according to( A15 e

-2 11 9 1 1 91

Because

vie 'have
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APPENDIX 2

To prove Theorem 2.3 we first need two lemmas. The first lemma

provides an explicit form of the projection along the range space onto

* the null space of a specific matrix A. It also displays the three

equivalent conditions for a matrix to have semi-simple null structure.

This lemma is important because the results in [1] are based on the

eigenprojection of zero eigenvalues of the matrices Fi, 0 (see Section

2.2 for details).

Let A1 A2

A= (A2.1)

where A,* RIl x n , A2 t Rn . Suppose that [A1 A2 1 has full rank. Then

the three statenents

1. A, is nonsingular.

2. R(A) & N(A) = Rn " mI.

3. A has SSNS.

are equivalent. Furthermore, if A1 is nonsingular, the projection along

R(A) onto N(A) is given by p%- ,
P0= (A2.2)

[- 0 .--..
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It is easy to see that

R(A) = xl x--[z' 01', zERO}

If xiR(A), AO0, then

A, 
A2 ]z

Thus

x+N(A) => N(A)tlR(A) =

and

N(A) Q R(A) = R+' follows by counting dimiensions.

2=>l

If R(A),N(A)Rl+m but A1 is singular, then there is some z~k0 such

that A, z=0. Let x= z' 0]' Then

Ax =0= x(EN(A)

But because [A, A2 1 has full row rank, we can find a y such that

[A1 A2 ]y--z. Therefore

Ay W [ 0]' x

or 01 xER(A)C1N(A). This is a contradiction.

2=>3 See reference [1ii, [16].

Now consider the similarity transformation
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Alj
2 ]0

0

* ~~We have that II Al]

Al0 AjiA2 A
A7 A2] [ I] l

Clearly the projection onto N(QAQ 1 ) along R(QP- 1 ) is

Theref ore

P Q1[,

Q= A I A1A]

0a -A71A 21

-= [o i

This lemma shows that if a matrix A has the form of (A2.1), A
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having SSNS is equivalent to A1 being nonsingular. Furthermore, the

projection along RA) onto N(A) is given by (A2.2). In other words, the

eigenprojection of A for the zero eigenvalue can be oomputed directly

and easily.

Luma 2 coMutes matrices Fi,0, i=0,...,M.

Define

i,0 = P1Pi-I • "P0 (A2.3)

* where Pi is the projection along R(Fi, 0 ) onto N(Fi, 0 ) ...Tbe__-

.(24

" " " I I n-i+l .;
: :

: : ' -.- 2 *'

* 0 0

20

: : 1 0"'

* O •. 0 " .-"-

whr*hesl .r deie s0f~. lo..-'
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* . *.j. W W

* 0I

*i 0

i = 'I s 11 I c1,1 SI c'1,1
-,i2ii i2 i,i+1. i2 in

.. S, , C. 1 , (A2.51)" '
-i;-1-iji iji ,.j+1"''9i j- Iin i<

21 1 C! '1 ,'1 1 '0..000
0 .0 •0°,

* 0 0 0 0i

• Let the Taylor expansion of A(c)-be,.-,

... 1 1~- ...25

From the special form of A(c) we can observe that;:'

*O 00 0

0 0
LO ... 1 :. -;

* L

)" ~Similarly,',

x x ..x: x x

iFi, i-I Ai I i2 Ai

0 0

O 0 0

where x's represent some terms which may be non-zero.

•r"Now suppose that (A2.4) is valid for iko we would like to prove
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that if is valid for i-k+l. From the special form of (A2.4), namely the

first i-I columns are zero vectors, and the special form of Fk, shown

in Coderch's thesis (1] we can observe that

F k-1,0 " -2ek-3-... o'o, k-].eo -Hek-.

P Pk-2Pk-3 • . POFO,k-lPk-2Pk-3 .... PO

- Pk_2,0FO,klPk_2,0 (A2.6)

The other terms in Fk10..1 which are related to F0,k _., FO, _...3ee.-

vanish because of the special forms of Pk-2,0 and F0 ,i, i-k-2,k-3 ....

*.' Also Fk..l,0 can be rewritten as

Fk-, " Pk-2,OEO,k-lPk-2,0 (A2.6)

where

0 0 0
E , k--Ak2 3

a...S0 . 0

Then using Eq. (A2.2) of Property 2 we have

0.0.0 0F,'.

* 0

S0 -

* .1, . , 0 1 1"

00 0
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- * 1 1 '. 1-. .1 t, 1 k 1 , 1"
* .. 0 ,

which - ., • -S . , (A2.7) .A2.5-

.. 0 S S- -A-31

* 0

*~a 1 -..'kk 1 1 k 1 i

which poves 1A251.)

.*,.0

'." NeI t iseas roe that:tepoetoP-Iwihithpojc.on.-.,

*210
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I* " 0 0 k k l" ' S l
( ; . r  -  l.

*, 0_( 1 1) 1 ,

along ,(+I.......-.-(k-1,'I)'I the for

k-i t.

ztK 'i.,k+, '.)::.,.x

0 ~ 1 m~liC~l,,- (./.,
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2
Pkc-l Pk-J

Therefore Pk-1 is a projection. Also it is easy to checkc that

Pk...Fk..,0 0

Then if we can prove that

we are done. Suppose *-

We have

~ jX.$.j= 0(A2.9)

Then let

We have for i_ ,-l

y. X.+S~ilz(C It-) C, 1 '

==

0

Because of (A2.9),
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For i-k

n-k1 j  (A210)-

Left multiplying (Cl kk on both sides of (A2.9) and adding the

resulting equation to (A2.10) we have

-L
Yk M xk .', T'.-

It is strai.ghtforward then to see that

Yi aM x' n>ik+l

Therefore we have proved that if x N(Fk....lO) then Pk-.x-x. This proves

that the Pk-i geven in (A2.8) is the projection along R(Fk_1,O) onto

.'. -%
N (Fk-, O ) . -,

Then using (A2.4),(A2.8) and property 3, Eq.(A2.7)
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0

02 1

+ S0
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*he wehv
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- 2

0- 0

P4- 0 0 0 S

* 0 0 0

Copain (211)an (A.4 we -see that 3  (A2.4)i tu o )~l o

A 1+ ,k20*-

9* 0

S . 1"0

* 0 0. 
-,.

Comparing A2.111 and A2.41 we see that (A2.41 is true for ik+. For

i=2,.

1 A 1 2 *-.A%"
0-. ,

!-.+ % .

.* a,.. -
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,,j

exp{ 1; F-1. I
Io " 1 0[40 0

.01 (.12

which isof the form of (A2.4o. i'A adi

So far we have obtained the explicit expression for F

i-l,.,, Based on this result we are able to derive the time scale

an h di-th row i o Tt is we c ol m ofTmus1tew hv

1n-5llexp( k= Fog- (A2.12) ...

as the approximation to exp{AleIt}. In order to prove Theorem 2.3 we.

need only diagonalize 1A2.12).

From the special form of FiI,10 of (A2.5) and T- I as defined in

Theorem 2.3, we see that the j-th column of Fi.l.,0 (j~i) is nothing nore".-

*than the i-th column of T- I multiplied on the right by Ck j . Because :"'..

any row of T except the i-th row times i-th column of T- 1 must be zero

and the i-th r i of T times i-th column of T" is 1, we have
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w"4'4

G T 01,0 I, .. . . .

LO .

The only row of Gi which can be non-zero is the i-th row. It is

easy to see that
= L.i""T

and (G )i = 0, j<i.

Now consider (G)ij' j>i. It can be seen that
S+I -

~-.?..-.

1,1 1-11-.---

I ,I -I -I ,I

1I "-ij-

see +1 C i l+1-j

ij

Then
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Gi diag[O, ....,O,Aii1 ,....*,O1

Therefore we have

n-1
Texp{ E F -kt1l

k=O

n-1

k=O

n-1
= exp{ Giekt1

k=O

exp{diag[A11,...., An1t}

But we know that

n-1
Jim sup Ilexp{A(e)t} -exp FkOekt}I 0 (2.l

e->O t O &=0

* Combtining (A2.13) and (A2.14) we have

limn sup Ilexp{A(e)t} -lexp{diag[All,...,Erni]t}TII=0

C->0 t 0

which is Theorem 2.3.
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APPENDIX 3

In this appendix we describe some basic properties of permutation

matrix.

Lemma 1 If T is a permutation matrix and A is a matrix, then

1. TAT-1 is a symmetric permutation on A.

2. If TAQ is a symetric permutation on A then T=Q-I.

Proof: i

1. T can be expressed as product of finite number of 2 cycles. I

Suppose T=tl*t 2 #.... *tm. Then it is easy to see that Tl=tm*tm-

l*...*t2*tl and UkT - is a symmetric permutation on A.

2. Since T'-TIQ=I by definition of symmetric permutation, T-=Q-I.

Lemma 2: i

Any permutation matrix can be brought to BDC form by similarity

transformation

TAT - = diag{CiC 2,...,C n}

where T is a permutation matrix and TAT-I is a symmetric permutation on

A.

We already showed that a permutation can be represented by its
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cycles and this representation is unique.

The idea behind this proof is similar to that of bringing a matrix

into its Jordan form where a new basis which span invariant subspaces is

chosen. A linear transformation T serves as the basis transform. In

the new basis, the matrix will have block diagonal form.

TT-l = diag{Jl,.... ,Jn}

where Ji are Jordan blocks.

Similarly, here a simple reordering (a permutation) will do. For

example, suppose A has only one cycle.

A = (x3,xlx 2) (or 0A=(3,1,2) for simplicity)

Here 0 A is not a circulant permutation. But it is easy to see that if

we switch x3 and x2, then in the new coordinate system 0A will be a

circulant permutation. Namely, if

10 0 1 1 0 0 1 01
=10 1 1 0 0 10 0 01

[ 0 o~ 0 [ 0 1 10 J
then 0X=(2,1,3) is a circulant permutation.

-" In general if T is a permutation matrix which permutes xi and xj

and X=TAT-1 then it is easy to check that OX will be the same as 0A

except xi and xj have switched positions. We also know that by finite

219
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number, say m, of switches of two entries, we can "sort" an arbitrary n

entry array in the canonical form. Suppose product of permutation

matrices is still a permutation matrix, we proved the lemma if there is .

only one cycle.

If there are several cycles, one can first regroup the entries and

then use the same schema as for single cycle.
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