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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteratic..
A a A a A, a P p P p R, r

b5 5 B & B, b Cc C ¢ S, s

3 B B v, v T T m T, t

rr r s G, g Y y Yy vy U, u

- A a a D, d D ¢ ® ¢ F, f

E e E o Ye, ye; E, e¥* X x X «x Kh, kh

moM X x Zh, zh d u q Ts, ts

33 3 Z, z Yy Yy Ch, ch
Mom H u I, 1 W ow U w Sh, sh

Vo A 4 Y, vy Wow o Shech, shch
H oW K «x K, k b b "

A N1 a L, 1 H s N wu Y, vy

T M M, m B b b !

H o H x N, n 3 3 9 E, e

S o 0O o , O W W 0 » Yu, yu

an T n P, p A A A a Ya, ya

*7e initlally, after vowels, and after v, b; €& elsewhere.

“hen written as € 1n Russian, transliterate as yé& or &.

RUSSIAN AND ZNGLISH TRIGONOMETRIC FUNCTIONS

Russian English Russian English Russian English
sin sin sh sinh arc sh sinh:%

cos cos ch cosh arc ch cosh_l

tg tan th tanh arc th tan'n_l

ctg cot cth coth arc cth coth_l

sec sec sch sech arc sch sech_l

cosec ¢cse ¢sch ¢sch arc csch c¢sch

Russian English

rot curl
lg log

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this
translation were extracted from the best quality copy available.
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ON CONSERVATIVE DIFFERENCE SCHEMAS is Special

lq__

A. A. SAMARSKIY

N,
1. The broadening of the scope of difference methods and
the associated increase of demands on them stimulate interest in

formulating general principles of obtaining difference schemas of

B}
o
2

l‘l ’

a definite quality for problems of mathematical physics. The

e
!

- possibility of assigning to the same différential equation an
infinite set of difference schemas defined on the same template
- and having the same order of approximation makes the problem of
choosing the desired schema a very complaex one. It is required
of any numerical method that iE sgpply an approximate solution of
‘;E the problem with preset accura;y?éy) O in a finite number of
operations. Moreover, it is required that the schema be
universal (suitable for a rather broad class of problems),

homogeneous, stable, and economical (morq precisely, that the

- numerical algorithm used to solve the difference eguations be
/

7 : o/ : .
economical). e ) g ro0 . Z s
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All these requirements vie with each other.

Homogeneity of the schema (1] means that the difference
operator is defined by the same formula at all grid nodes for any
coefficients and right side of the equation of a given functional

class, and also for an arbitrary grid.

Below we examine only homrogeneous schemas.

2. Approximation error is used as one of the a priori
characteristics of a schema. The greatest possible order of
approximation of a solution is determined under the assumption of
adeguate smoothness of the solution. A local (at a point)
approximation is not generally a very good characteristic of a

schema. The negative norm (or *“integral norm") (of the form

H e .
;H’” A-1l = JA-1ly, ¥ ), A = A+ positive definite in case of the
difference equation Ay = Y >, is a natural norm for estimating the

error of approximation.

In the case of linear stable schemas, the error of the
schema depends continuously on the error or approximation, so
that the error of approximation determines the error of the
schema. fror nonlinear equations (e.g., for gas dynamics
equations) such estimates are not available (so far there is no
proof of stability oanny of the difference schemas for gas

dynamics);: so here the criterion of approximation plays more or
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" leas a formal role and may give an improper impressaion as to the

accuracy of a schema owing to strong discontinuities.

Note that comparison of schemas in terms of order of
accuracy is meaningful only for sufficiently small steps h and
T': in this connection the higher extent of step is multiplied by
the maximum of the derivative of a solution of higher order. But
in practice very coarse grids are used where asymptotic estimates
may not work. It can happen that a schema of first-order
accuracy in an actual grid is more accurate than a schema of

second-order accuracy.

Thus, the criterion for choosing schemas should be stated
as: the schema should give sufficient accuracy on actual grids

for the class of problems under consideration.
From this point of view one should take into account
qualitative considerations as well as mathematical ones (if there

are any).

3. Conservativeness of the difference schema is one such

requirement.
What is conservativeness?

For definiteness, we will deal with problems of mechanics of

. a continuous medium.
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In setting about solving such problems in some region by the
method of finite differences, one introduces a grid in the region
G and replaces the differential equations by difference egquations
for the grid functions. As a result one gets a mathematical
description of a discrete model of the medium. Obviously, the
discrete model should reflect the main features of the continuous
medium. The properties of a continuous medium are determined by
thé integral laws of conservation (of momentum, mass, energy,

etc.) for any subregion G’ in G.

The differential equations are corollaries of the integral
laws of observation. It is natural to require that the
difference schemas express the laws of conservation on the grid.
The laws of conservation for the entire grid fegion should be
algebraic corollaries of the difference equations. Schemas

possessing these properties are called conservative.

15-20 years ago the question of whether the achema should be
conservative (“"divergent™) might have been a matter of
discussion, but at present there is general agreement that it

ahould be.

Along with conservative difference schemas one also uses

conservative differential-difference schemas.

The general method of integral ratios for obtaining

conservative differential-difference schemas was suggested by
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A.A. Dorodnitsyn (2] and applied for solving multivariate gas
dynamics problems. Later this method was further developed by

his students (31].

To get conservative difference schemas one can use the

integro-interpolational method or the method of balance [1].

A difference operator on the space of grid functions should
preserve the basic properties of the differential operator
defined on the space of functions of continuous argument. Such
properties in the linear case are self-conjugacy and (sign-)
definiteness of the operator. Below, with the example of
Laplace-operator schemas in an arbitrary regions, we prove a
relationship between self-conjugacy and conservativeness. A

nonconservative operator is also nonself-conjugate.

The disadvantages of nonconservative schemas are not
removable. Condensation of the grid, which one ought to be able
to count on in order to increase accuracy, may, in the case of a
nonconservative schema, even increase the error of the schema.
Example in (1] confirms this for the problem (ku’)’ = 0,

O ¢ x < 1, u(0) = 1, udCl) = 0.

The nonconservative schema

[b.‘(yrbl—yi)—a.‘(y._y;-l)l,h2=01 t=l. :’-, PR A\-—I,
yo=1, y, =0, h=1J.
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where aj; = ki -0, 25 (kj+1 - kj-1?, bji = ki + 0,25 (kji+1 - Ki+1),

diverges in case of piecewise constant coefficient k(x) kr for
x <‘§ and k(x> = Kyr for x >?§ », and this divergence 15 quite
peculiar: the solution yX (xj) of the difference problem has, as

h->0, a limit U(x) not equal to the exact solution u(x) of the

differential problem.

The limit function U(x) is a solution of the problem with
the additional condition: at the point x ='§ of discontinuity of
k(x) there 1s put a source of power q, depending on7§. KT, KII.,
equal to zero only for ki = kil and becoming infinity for
certain ki, RII:"% . Thus, verification of the accuracy by
condensing the grid may, in this case, lead to the improper

conc.usion that the nonconservative schema converges.

Note that any difference schema generates fictitious sources
(drains). 1Indeed, letaA-y +® = 0 be a difference schema, u the
exact solution of the differential equation Lu + f = O, The
discrepancy4¢.u + b= %’ is the error of approximation; it may be

viewed as the density of the fictitious sources.

If the schema is conservative, then/ (x) is an oscillating

function, so that always we have

1%
(% D= ¢(z)h—=0 fips k0.

TEwp
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Iindeed, for (ku’)’ = -f(x), 0 < x < 1, the balance equation

haas the form

The corresponding conservative schema (a(x)yx)y = -sﬂ(x).

x = ih, possesses the analogous property on the grid:

v,—uw,+ (3 1)=0, € =ay, ,=aq LY

3 v, s A .

For ¢ = Ay - y we get

(7. ) =(aus)y —(au,), + (3, 1)=05),

1f the schema has second order of approximation.

4. The conservativeness of “he homogeneous difference

schema for the eguation

div(kgradu)=—f(z), z=(1, ..., z,)

18 necessary and sufficiant for convergence in the class of
discontinuous coefficients. For the one-dimensional case this
assertion ia proved in {11. In the multivariate case, for an
arbitrary region the convergence of the conservative schema with
rate 0¢v n) was proved in (4)J. The conservative schema wil. Le

given below.
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Conaider the Dirichlet problem for the Poisson equation in

the region G + [Ton the plane =x = (x1, %2):
=Lt P t@), €6, wir=ulz), ®
oz UE .

For this equation the balance equation is satisfied:

S%‘;ds-}-Xf(r)d.z:O.
r

G

Let SOp =wn + ¥h be the grid in G + /7 described in [S1. It is
uniform (with steps h] and x31 and h2 in x2) at strictly interior

nodes x £ <O and nonuniform at boundary nodes x £ w0 =,

r

First let us consider the well-known five-point schema [5,

AY =Yz, + Y2, = —F(2) ()

at regular nodes,

Ay=Aly+ \y=yss, + yss,= —f (2) (5

at nonreguiar nodes, wnhere

(10 — 0 .
Ay =yae=p (L=l — L) B =05k 4+ k), (4
! 1+ hy Ay "l 1 1 H

and h» is the distance of the nonreguiar node x £« #s from the
boundary node x¢(*lJdgy . If x(‘1|)€7/h i3 a boundary node

and x¢*11) is an interior node, then

(+1,)

] 1 — — (‘ll)
Aly:_h,_(” y__9—v >.

hy h;
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we will show that this schema 138 not conservative. ntrodcu-

cing the notation

=y Yhik, + Sy () (D) Myl
w vh= I y(@) vk :+ = V@ 1 &>
z€w
we get
(A9, 1= X (ehtyal) + 3
rEw*
A= ‘g_ (o7 (By — ho) + Aoyt (By — A)],
where yn, = Yy, 1f x(*i%X) 1s & boundary noce, Y ng = -VZx %4
x{(-1lx) js a boundary node, =X = 1, 2.

Comparing (2) and (3), we see that
P N Y

1.8., the schema (1) is not conservative.

We find similarliy that 44_ is nonself-~conjugate, i.e.,

(-\y' U). 3’6 (yv Av).'

whare y and v are arbitrary functions defined on «J, + J and

* 4

vanishing on the boundary of i{

One can find a nonconvex region and a grid such that —_ |

18 not vositive definite.




Using the integro-interpolatiocnal method (11,

the five-point conservative schema ([4]:

Ry=—f(z), z€oy Yh=2)

one can get

¢y

At regular nodes..JQ. has the usual form (2), while at

nonregular nodes it is given by:
Ay=Ky+ Ay,

where

Aly= Ny I hy hy
e 1 ym,; N y(—h)
MY =7\ hy

if x(*1 > and x¢*1,) are boundary nodes.

that

O L e« X h~3 .
Kl = h—: ‘\l' .&2 = To- J&._.,

. >
where JA-' and 4&.2 have the form (4).

(7)

1 ( y(."h} nedl ) - y— v(-h) )=_L(y2| - y’l) =Yns.

)=y315'!'

It is not

hard to see

On the set /L of grid functions y(xj, x2) defined on the

grid ‘Qk + KL and equal to zero on the boundary of I; »

introduce the scalar product

(v, V)= 2 y(z)v(z)hsh,.
Cwp

The above-defined operator ./L. is self-conjugate on 4L

Ay, vy=(y, &) for any y, V€S,

10
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while _jL i1a poaitive definite on an arbitrary grid in the case

of an arbitrary cegion.
~
At nonregular nodes, —A- has zero order of approximation:
Au—Lu=0() for z€o™
However, the schema (6) has second-order accuracy

by —uale=0(|hP), | ==ht+h.

For the equation

div(kgr'adu)=-—l(z), z€G, ulr=u(a), k() 2¢,>0

the corresponding conservative schema has, at regular nodes, the

form

‘ty = (aly:l)zl + (a'_‘y’:)f-_ = —f(:)'

at nonregular nodes the form

Ay =(aWs)s, + (ay2)s, = —1 (2),

where

1/ . (+la) _ - yl=la)
(a,y,'),.-_—_-_h_(a.‘u.w e y_a‘ y hy )’

K -
if x¢*¥ D ey, , X =1, 2, The coefficients a, are chosen

according to ({S].

11
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S. Now let us turn to the problem of conservative schamas

for equations of magnetic hydrodynamics (7, 8].

N
N
E We first consider gas dynamics equations which, in Lagrange
variables in the plane, have the form:
-
; =" Tk ot = oz
M ov e i
. F=—Pgm, P=PE e <y
ﬁ‘ where t is time, r is Euler’s coordinate, x is the Lagrange mass
i coordinate, 42 is specific volume, p is pressure, £ is intrinsic
. energy, v is velocity.
- The nondivergent equation (1131) can be written in entropy
- form
. ‘ot _ o
o =P °ry

- and, by using equations (10), can also be transformed into the

divergent form

Fe+ )=t )

expreassing the law of conservation of total energy. The thraee

systems of equations (10>, (11>, X =1, 2, 3, are equivalent.

It is ordinarily assumed (see (39, Ch.III]l) that to obtain a

conservative schema it is sufficient to approximate the three

12
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basic laws of conservation (balance)--of mass, momentum and total
energy. However, in this case the balance equations may be
violated for the individual forms of energy--intrinsic, kinetic.
The amount of disbalance in the case of strongly varying

solutions may become comparable with the total energy.

We will call a difference schema completely conservative 1%
both the laws of conservation of mass, momentum and total energy
as well as the individual balance of energy, kinetic and
intrinsic, are valid. To obtain such schemas, in addition to
requiring conservativeness, a formal condition is imposed: the
difference schema should possess the same property as the systen
of differential eguations (10>, (1ly ?, namely the *“divergent"
difference equation for energy (the analog of (113)) should be
transformable both to the nondivergent form (to the anaiog of

(111> as well as to the entropy form (113).

A five-point family of schemas is examined on the six-point

tempiate (xj = ih, E} = 37 ), (xji, tig Vs (Xiz) 3ts),

(Xisy, & +). By requiring the indicated conditions to hold,

Jd

we get a one-parameter family of completely conservative schemas

ro=—p,  F,=u08, g =p08), 4= —p S, (IJ,‘)
A ’ .
where we have used the notation £(™) = ol § + (l-A)f, £ = £3,
[ M A ’
£f = £i*1, £, = (£-£)/ T, ©X an arbitrary number. Here
v = vixy, £, p = pixi-1/2, LD M= ? (xi-1/2, R
€= E(xi-1/2, T\ ).

Y

13
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The nondivergent energy equation £+ = -p(a<)%§0»5) is

transformed to the divergent form

3

(++4) =—p™ (=), p—ti=pu—h.

1f one uses the motion equation Vg = -px¢°%) and the formula for

difference differentiation of the product (£f(-1)V)y = fvyx + VIx,

Indeed, we have

= —p VLS = —(p (—1) 0O, P =

=—(p" (=1 *¥), — v 0% = —(p'" (—1) vy, — 0.5 (v*),.

. Whence (13).
The schema (12) has approximation OC7T ~ h2) for any <X ..
-] Taking X = 0,5, we get a unigue schema 0(T2 + h2) (it 1i1s also
f derived by somewhat different arguments in [(101).,
{ 7. Now we turn to a system of equations of magnetic
f hydrodynamics. Let H = Hyx(x) and E = EY(X) be the nonzero
} components of magnetic and electric fields.
In Lagrange variables the syatem has the form
- i____d_P. la _—— r e a A
"_. 9t T +l ) F— J?}EH, W—L, —‘“—=;'
g 9 g.__E _ 1 a4 i A .
s ot (H-.‘—?. E= rerer e TR Q= E

14
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where F is the Lorentz force, Q is the Joule heat, & is the

electric conductivity.

The energy equation can be replaced by the egquation in

entropy form

ge 9
w=—P+0
and by the divergent equation for total energy
3 vt Hm\ _ ar *\ _EH
w (T =+ o) - =)

The force F can be also written in the divergent form

Thus, we obtain six equivalent syétems of equations.

We will require that the analogous equivalence also hold
for the difference schemas. Examining the eight-parameter family
of schemas on the above-indicated six-point template, we get the
two-parameter family of schemas O(7 + h2) and the lone schema

0(T2 + h2) (for <= (3 = 0,5

H_H 210,3) —— :10,5)
v‘=_P.t§=)_(a: ):’ .,‘___bko.s‘ ne=uv>%,

(Hr) = EZ, B, = i=: 7 E,

¢, = —p' ") 4 3 [(7,7,E) 08 EF = (s(1)n(+1) E(H1)OP ERL L

1S5
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where
=03+ H=D) H=D=Fz=ht)
The energy equation can be transformed to the divergent
form
T . H2e o FBEN g5 o HOVEDT
@TT@TWPMD*3?>=—KA-P1?QL‘+—7?—L.

It should be noted that conservative schemas
approximating the total energy equation may poorly approximate
the equations for the intrinsic energy and for magnetic field.
This is no less dangerous than violation of the law of
conservation of total energy, and it may lead to an erroneous
computation of temperature, particularly to such a nonphysical
effect as the diminution of the temperature of some mass of gas
in the process of compression or in the presence of Joule
heating. The disbalances arising here cannot be eliminated by

spatially condensing the grid.

In the case of implicit schemas, to solve difference
equations one uses iterative methods, which may generally violate
the conservativeness of the schema. Hence the iterations must be
carried through for the preacribed accuracy which characterizes
the amount of disbalance. In this case, to simplify the
calcuiations it is advisable to use the energy egquation in

nondivergent form,

1l

—
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For nonlinear difference schemas there is an amply
developad theory which allows general methods to be formulated

for obtaining set-quality difference schenmas.

Let us point out two rather general methods:

1) The method of regularization of difference schemas
based on using the class of stable schemas and the possible of
varying, without affecting stability, one of the operators of the
schema so as to satisfy the collateral constraints of efficiency

and approximation;

2) The method of summary approximation based on using a
new notion of a schema and a new notion of approximation for
schemas--summary approximstion (such schemas are called

adaptive),

Both methods are used successfully, particularly for
obtaining economical difference schemas in the case of
multivariate problems of mathematical physics. A presentation of
these methods is given in [11], Note that in all cases,

conservativeness of the schema is an ever-presant requirement.

17
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