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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteratic;.

Aa A a A, a Pp p p R, r

B5 5 s B, b C C C c , s

E3 E Be V v T T T Tm
ra G, g Y y yy U, u

aI D, d 0F, f

E e E a Ye, ye; E, e* X X X X Kh, kh

X1H Zh, zh L4LLA L if4 Ts, ts

3 3 3 , Z, z H 4 Vf~ Ch, ch

IuI, i W W LU wi Sh, sh

R 1 Y, y L4 V( Shch, shch
K) K, k

I 17 A L, 1~ h/ W Y, y

M M M~r M 0b

HH H N, n 3 a 39 0 E, e

0 0 O,o 0 j 0 OI Yu, yu

nf 17 n Pp l 2 R a Ya, ya

*ye initially, after vowels, and after -b, b;. e elsewhere.

When written as 9 in Russian, transliterate as ye or e.

RUSSIAN AND 7-41GLISH TRIGONOMETRIC FUNCTIONS

Russian English Russian English Russian English

sin sin sh sinh arc sh sinh{
Cos Cos ch cosh arc ch cosh-
tg tan th tanh arc th tan n-
ctg cot cth coth arc cth coth
sec sec sch sech arc sch sech-
cosec csc csch csch arc csch csch 1

Russian English

rot curl
ig log

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this
translation were extracted from the best quality copy available.
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ON CONSERVATIVE DIFFERENCE SCHEMAS Special

A. A. SAMARSKIY

1. The broadening of the scope of difference methods and

the associated increase of demands on them stimulate interest in

formulating general principles of obtaining difference schemas of

a definite quality for problems of mathematical physics. The

possibility of assigning to the same differential equation an

infinite set of difference schemas defined on the same template

and having the same order of approximation makes the problem of

choosing the desired schema a very complex one. It is required

of any numerical method that it supply an approximate solution of

the problem with preset accuracy > 0 in a finite number of

operations. Moreover, it is required that the schema be

universal (suitable for a rather broad class of problems),

homogeneous, stable, and economical (more precisely, that the

numerical algorithm used to solve the difference equations be

economical). .I C /
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All these requirements vie with each other.

Homogeneity of the schema U] means that the difference

operator is defined by the same formula at all grid nodes for any

coefficients and right side of the equation of a given functional

class, and also for an arbitrary grid.

Below we examine only homogeneous schemas.

2. Approximation error is used as one of the a priori

characteristics of a schema. The greatest possible order of

approximation of a solution is determined under the assumption of

adeauate smoothness of the solution. A local (at a point)

approximation is not generally a very good characteristic of a

schema. The negative norm (or "integral norm") (of the form

-11 A-1 = ,A , ' ), A = A* positive definite in case of the

difference equation Ay = + ), is a natural norm for estimating the

error of approximation.

In the case of linear stable schemas, the error of the

schema depends continuously on the error or approximation, so

that the error of approximation determines the error of the

schema. For nonlinear equations (e.g., for gas dynamics

equations) such estimates are not available (so far there is no

proof of stability of any of the difference schemes for gas

dynamics); so here the criterion of approximation plays more or
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less a formal role and may give an improper impression as to the

accuracy of a schema owing to strong discontinuities.

Note that comparison of schemas in terms of order of

accuracy is meaningful only for sufficiently small steps h and

I': in this connection the higher extent of step is multiplied by

the maximum of the derivative of a solution of higher order. But

in practice very coarse grids are used where asymptotic estimates

may not work. It can happen that a schema of first-order

accuracy in an actual grid is more accurate than a schema of

second-order accuracy.

Thus, the criterion for choosing schemas should be stated

as: the schema should give sufficient accuracy on actual grids

for the class of problems under consideration.

From this point of view one should take into account

qualitative considerations as well as mathematical ones (if there

are any).

3. Conservativeness of the difference schema is one such

requirement.

What is conservativeness?

For definiteness, we will. deal with problems of mechanics of

a continuous medium.

3



In setting about solving such problems in some region by the

method of finite differences, one introduces a grid in the region

G and replaces the differential equations by difference equations

for the grid functions. As a result one gets a mathematical

description of a discrete model of the medium. Obviously, the

discrete model should reflect the main features of the continuous

medium. The properties of a continuous medium are determined by

the integral laws of conservation (of momentum, mass, energy,

etc.) for any subregion G' in G.

The differential equations are corollaries of the integral

laws of observation. It is natural to require that the

difference schemas express the laws of conservation on the grid.

The laws of conservation for the entire grid legion should be

* algebraic corollaries of the difference equations. Schemas

possessing these properties are called conservative.

15-20 years ago the question of whether the schema should be

- conservative ("divergent") might have been a matter of

discussion, but at present there is general agreement that it

* should be.

Along with conservative difference schemas one also uses

conservative differential-difference schemas.

The general method of integral ratios for obtaining

conservative differential-difference schemas was suggested by

.- 4



A.A. Dorodnitsyn [22 and applied for solving multivariate gas

dynamics problems. Later this method was further developed by

his students (32.

To get conservative difference schemas one can use the

integro-interpolational method or the method of balance 113.

A difference operator on the space of grid functions should

preserve the basic properties of the differential operator

defined on the space of functions of continuous argument. Such

properties in the linear case are self-conjugacy and (sign-)

definiteness of the operator. Below, with the example of

Laplace-operator schemas in an arbitrary regions, we prove a

relationship between self-conjugacy and conservativeness. A

nonconservative operator is also nonself-conjugate.

The disadvantages of nonconservative schemas are not

removable. Condensation of the grid, which one ought to be able

to count on in order to increase accuracy, may, in the case of a

nonconservative schema, even increase the error of the schema.

Example in 11] confirms this for the problem (ku')' = 0,

0 < x < 1, u(O) 1, u(1) = 0.

The nonconservative schema

[b ( -y, ) - a, (y, - _,)jI,h2 0, 1 = 1. 2 ......- 1,

y0 -', y =O, h I N.

5



' where a i = ki -0, 25 (ki l ki-1), b i  k i  0 0 25 (k. 1  -ki,)

diverges in case of piecewise constant coefficient k(x) = k' for

x < and k(x) = KII for x > . and this divergence is quite

peculiar: the solution yk (xi) of the difference problem has, as

h-O, a limit 1(x) not equal to the exact solution u(x) of the

differential problem.

The limit function u(x) is a solution of the problem with

the additional condition: at the point x of discontinuity of

k(x) there is put a source of power q depending on , kT. kII,

equal to zero only for kI = kII and becoming infinity for

certain kI, \II, • Thus, verification of the accuracy by

condensing the grid may, in this case, lead to the improper

conclusion that the nonconservative schema converges.

Note that any difference schema generates fictitious sources

(drains). Indeed, let-Ay = 0 be a difference schema, u the

- exact solution of the differential equation Lu + f = 0. The

discrepancyiL u * ( = Y' is the error of approximation; it may be

viewed as the density of the fictitiouz sources.

If the schema is conservative, thentJk(x) is an oscil..atinc

function, so that always we have

"-: 9, 1 = zh- 0 h- .

6.......... -. . . .. . . . . . .
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indeed, for (ku')' = -f(x), 0 < x < 1, the balance equation

has the form

ku' + i(z)dz O.
10 0

Thq corresponding conservative schema (a(x)yx)x = - (x)

x = ih, possesses the analogous property on the grid:

w - w+ (Z, 1)=0, w,=aj, .j=a. Y- •

For -u we get

(g. 1) = (auj). -(au,), + (z, 1)= 0 (,),

,if the schema has second order of approximation.

4. The conservativeness of the homogeneous difference

schema for the equation

di% (k gradu)--/(z), za(), .... z,)

is necessary and sufficient for convergence in the class of

discontinuous coefficients. For the one-dimensional case this

assertion is proved in C11. in the multivariate case. fIor an

arbitrary region the convergence of the conservative schema with

rate 0(vfh) was proved in 43. The conservative schema will be

given below.

7



Consider the Dirichiet problem for the Poisson equation in

the region G on the plane x = (x! , x2):

-1,= -- +_ - = -. t (z) z EG. u 4= (z).

For this equation the balance equation is satisfied:

-u ds+ I/(z)dz=O.
r o

Let Wh =-.)h + Yh be the grid in G + / described in 153. It is

uniform (with steps hi and xI and h2 in x2) at strictly interior

nodes x E L. and nonuniform at boundary nodes x 6 t '.

First let us consider the well-known five-point schema C5,

61

Ayv = v.. + w.. = -fix) (A )

at regular nodes,

Ay = , + A = Yi, + u, = - (z)

at nonregular nodes, where

A . Y = /(+11) V Y O A1=O,5(h 1+h), q-)

and h* is the distance of the nonregular node x &. - from the

boundary node x(+ ti h If x(- 1 l )SY h is a boundary node

and x( 1li ) is an interior node, then

A 'y=4~U~ -Y9V~l)

6
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We will show that this schema is not conservative. :ntrodu-

cing the notation

(V, y. '. y(z) ,(.)hh. + :Ej ,( V(X) h',.

we get

(Ay, 1). (y.,h:y.,h,) + A.,

-1 = [. 1 ItZq (A,. - .1) + A t ) - ,

where y,.< = if x ( Lo< ) is a boundary node. -

x ( - I- ) is a boundary node, o< 1, 2.

Comparing (2) and (3), we see that

(y. h. + y..h) + (?, 1)0 -A, A # 0,

i.e., the schema (1) is not conservative.

We find similarly that -/A- is nonself-conjugate, i.e.,

• (Ay, v). =! (y, ,Av).,

where y and v are arbitrary functions defined on t , +) and

vanishing on the boundary of 24

One can find a nonconvex region and a grid such that--j

is not nositive definite.

. . . .. . .
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Using the integro-interpolational method (12, one can get

the five-point conservative schema (4):

Ay'- - T), -TE -w Y Il, = (z)"

At regular nodes, _/L has the usual form (2), while at

nonregular nodes it is given by:

, where

X y( ' -- - __ "- .

*= . h . h - = Y )

-" if x(+ 1, 0 and x( 1 1z) are boundary nodes. It is not hard to see

.* that

.- A' A*,, =A .: A-%:

- where iL and have the form (4).

On the set-/f of grid functions y(x I , x2) defined on the

grid '.'. ( ' and equal to zero on the boundary of

introduce the scalar product

%- (y , v) = _ y (z) v (z) h i _..

The above-defined operator _/L is self-conjugate on _ L

(Ay, v)=(y, Av) for any Y, VE9,

10
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while 2 is positive definite on an arbitrary grid in the case

of an arbitrary ragion.

At nonregular nodes, has zero order of approximation:

IuLu=(1) for IEw.

However, the schema (6) has second-order accuracy

.. y --u ,,= O(jhl"), I =h + h.

For the equation

div (k grad u) -- -(z), x E G, u Ir -- (), k (z)) c, > 0

the corresponding conservative schema has, at regular nodes, the

form

AY (a y,,)2 , + (a~y,:)2. -(

at nonregular nodes the form

y = (aly2,) , + (a.,y.), --

where

• .(ay .)a=L a .) - a .'  - 2
h.

if x( +I') + * = 1. 2. The coefficients a, are chosen

according to [53.

-1



5. Now let us turn to the problem of conservative schemas

for equations of magnetic hydrodynamics (7, 83.

We first consider gas dynamics equations which, in Lagrange

variables in the plane, have the form:

4V a dt 01
"

tivt

(t Ox

where t is time, r is Euler's coordinate, x is the Lagrange mass

coordinate, ' is specific volume, p is pressure, is intrinsic

energy, v is velocity.

The nondivergent equation (111) can be written in entropy

form

and, by using equations (10), can also be transformed into the

divergent form

• 113)

"* " expressing the law of conservation of total energy. The three

systems of equations (10), (1 ),1cK = 1, 2, 3, are equivalent.

It is ordinarily assumed (see (9, Ch.III) that to obtain a

conservative schema it is sufficient to approximate the three

12



LII~~~~ ~ -il E--IIII~ 1. -7

basic laws of conservation (balance)--of mass, momentum and total

energy. However, in this case the balance equations may be

violated for the individual forms of energy--intrinsic, kinetic.

*, The amount of disbalance in the case of strongly varying

solutions may become comparable with the total energy.

We will call a difference schema completely conservative if

both the laws of conservation of mass, momentum and total energy

as well as the individual balance of energy, kinetic and

intrinsic, are valid. To obtain such schemas, in addition to

requiring conservativeness, a formal condition is imposed: the

difference schema should possess the same property as the system

of differential equations (10), (1i ), namely the "divergent"

difference equation for energy (the analog of (113)) should be

transformable both to the nondivergent form (to the analog of

(111)) as well as to the entropy form (112).

A five-point family of schemas is examined on the six-point
template (x i = ih, t. = ), (xi, t ), (xit; )

(xit) t,.,). By requiring the indicated conditions to hold,

we get a one-parameter family of completely conservative schemas

where we have used the notation f(' ) = * (1-o)f, £ =

AA
f jJl, ft = (i-f)/ , c- an arbitrary number. Here

v =v(xil. t ), P P(xi-1/2, t- ),zI=~ (xi-1/2, tV),

E (xi-1/2, t .

13
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The nondivergent energy equation Et -p 3Vr0 ,5  s

transformed to the divergent form

if one uses the motion equation Vt = -pR(o) and the formula for

difference differentiation of the product (f(-1)V)x = fvx Vfff.

Indeed, we have

,, = -- s = __(p8 (-1) L0' 5 + PVU =
[" =~~~..--(pt t-1) v 0,,,).,_vv " - -(p,' (-1) v,,o.)8 -0.5 (L..

Whence (13).

The schema (12) has approximation 0(Tr h2 ) for any o..

Taking c< = 0,5, we get a unique schema 0(T2 + h
2 ) (it Is also

derived by somewhat different arguments in (10]).

7. Now we turn to a system of equations of magnetic

hydrodynamics. Let H = Hx(x) and E = E (x) be the nonzero

components of magnetic and electric fields.

In Lagrange variables the system has the form

S-F, F= -rEH, -L=,
0 t Ot 4)1 X

"." --(H' = .E E= I ,, .
... , ,5-- .,=:" = ' 7t- = - 0 " .-Q, Q = :T E:,

14

. . . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . . . . . . . . .



where F is the Lorentz force, Q is the Joule heat, G is the

electric conductivity.

The energy equation can be replaced by the equation in

entropy form
-& =--P 1h +

and by the divergent equation for total energy

-('~ ~ w + - }= 'P - .j

The force F can be also written in the divergent form

! ~F =-,EH=--= •

Thus, we obtain six equivalent systems of equations.

We will require that the analogous equivalence also hold

for the difference schemas. Examining the eight-parameter family

of schemas on the above-indicated six-point template, we get the

two-parameter family of schemas 0(TC+ h 2 ) and the lone schema

O(T 2  h 2 ) (for- ,= = 0,5):

'.21 v, = -- tn; - .- ) r, = u °,5 , ;,, = . ' ,

" (I! ), = EX', H.. = . ,

15
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where

f*.osI+I(--1)), f(=- )--f(x- h, t).

The energy equation can be transformed to the divergent

form

(S + I (V2 L,2 (- 1)) _-[(p. '( R). __4-_L'* + = j,

It should be noted that conservative schemas

approximating the total energy equation may poorly approximate

the equations for the intrinsic energy and for magnetic field.

This is no less dangerous than violation of the law of

conservation of total energy, and it may lead to an erroneous

computation of temperature, particularly to such a nonphysical

effect as the diminution of the temperature of some mass of gas

in the process of compression or in the presence of Joule

heating. The disbalances arising here cannot be eliminated by
'"

spatially condensing the grid.

In the case of implicit schemas, to solve difference

equations one uses iterative methods, which may generally violate

the conservativeness of the schema. Hence the iterations must be

carried through for the prescribed accuracy which characterizes

the amount of disbalance. In this case, to simplify the

calculations it is advisable to use the energy equation in

nondivergent form.

16
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For nonlinear difference schemas there is an amply

developed theory which allows general methods to be formulated

for obtaining set-quality difference schemas.

Let us point out two rather general methods:

1) The method of regularization of difference schemas

based on using the class of stable schemas and the possible of

varying, without affecting stability, one of the operators of the

schema so as to satisfy the collateral constraints of efficiency

and approximation;

2) The method of summary approximation based on using a

new notion of a schema and a new notion of approximation for

• .schemas--summary approximition (such schemas are called

adaptive).

Both methods are used successfully, particularly for

obtaining economical difference schemas in the case of

multivariate problems of mathematical physics. A presentation of

these methods is given in Ell]. Note that in all cases,

conservativeness of the schema is an ever-present requirement.

,4
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