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LOW COST MAN4AGEMENT OF REPLICATED DATA

Thomas A. Joseph, Ph.D.
Cornell University 1986

When data are replicated in a distributed system, it is necessary to ensure

that different copies of the same data are kept consistent with respect to one

another. This could lead to a substantial performance degradation (latency) when

operations are performed on replicated data. Even if a copy of the required data is

available at the site where an operation is performed, it may be necessary to com-

municate with other sites where copies of the same data reside, in order-to ensure

that consistency is not violated. Performance suffers because message transmission

times are typically much higher than local computation times.

In this thesis, we first present an object-based model of a distributed system.

4.

We then use this model to show that data can be replicated in a manner that does

not incur the latency cost described above. Further, we prove that it is possible to

transmit the information required to maintain consistency by piggybacking it upon

synchronization messages that would be sent even if data were not replicated. The

replication method hence does not require any additional messages. We describe

actual implementations of this method azvd discuss their behavior in conjunction

with roll-back and roll-forward failure handling mechanisms. Finally, we compare

the performance of one such implementation with a more synchronous imp lementa-

tion and demonstrate that our method performs substantially better.
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CHAPTER 1

Introduction

1.1. Distributed Computer Systems

Early computer systems consisted of a powerful centralized computer accessed

by means of relatively unsophisticated terminals. As a result of advances in com-

puter hardware and the development of the personal computer or work-station, it is

now possible to place upon one's desk-top the processing power that used to be

available only in large mainframe computers. This has led to the growth of distri-

buted systems. A distributed system consists of a number of independent processing

sites, interconnected by means of a communications network.' Each site possesses

memory units to store data and processing units to access and manipulate data

stored at that site. The network enables sites to send messages to one another and

can be used to access data stored at a remote site.

A distributed system has a number of advantages over a centralized one. In a

distributed system, each user can be provided with the processing power of a

separate computer at relatively low cost. Users can share common services like a

Z_ file system, specialized databases, or high quality output devices, which may be

located at remote sites and accessed using the network. Thus, the cost of such ser-

vices is amortized over all the sites. A distributed system also has performance

'The results in this work are equally valid if the term -ate is replaced by pro-
cess at a site, provided that processes communicate by sending messages to one
another and share no memory.

.- .. ... .,'.W - " -. :-: - .. -. .' .; ." 2K -. -. . . . . . .". **. ** . . . . . . . . .' . . -. -
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advantages. In a centralized system, all operations are carried out at the same

site. Hence, the central site must be flexible enough to respond to different types of

requests and cannot be optimized for a single type of operation. In a distributed

system, on the other hand, sic~es can have different capabilities and system perfor-

mance can be improved by executing operations at sites best suited to do so.

Further, if the work-load is uneven, bottlenecks can form in a centralized system

during times of peak load, with the system remaining relatively idle at other times.

In a distributed system, the work-load can be spread out more evenly by assigning

jobs to lightly loaded sites. Another advantage of distributed systems is that they

are easy to expand: more sites can be added as required. A distributed system is

also potentially more robust than a centralized one because if a site fails, the other

sites can continue to function. In addition, operational sites can assume some of

the work that would have been performed at a failed site. For this to be possible,

information stored at the failed site must be available to an operational one. This

motivates the need for replicated data.

1.2. Replicated data

A distributed system permits copies of the same information to be stored at

more than one site. If a data item is accessed frequently from a set of sites, a copy

can be stored at each of these sites, and each site could access its local copy. Since

the time required for a message to be sent between sites is typically much higher

than that required for local processing, accessing a local copy of data in a distri-

buted system is much faster than accessing data stored at a remote site. Repli-

cated data can also be used to achieve fault- tolerance. If a site fails, data stored at

. * * . .
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that site may become unavailable to the rest of the system. However, if data are

replicated, the system can continue operating by accessing another copy of the data

instead.

Replicated data, however, is not without its costs. The obvious ones are the

costs of storing more than one copy of the same data and the processing costs

involved with updating several copies instead of one. These costs are unavoidable.

Other costs arise from the need to keep different copies of replicated data con-

sistent. When one copy is changed, the other copies must be updated to reflect this

change. Otherwise, actions taken by a site based on one copy of replicated data

may not in agreement with actions taken by a different site based on another copy.

A simple example will illustrate this problem.

Consider a replicated data object that represents airline seat reservations. If

one copy of the object is updated whenever a reservation is made, but the change is

not propagated to the other copies, travel agents using different copies may make

more reservations than there are seats available, or assign the same seat to

different passengers. This outcome could be embarrassing to the airline and incon-

venient for the passengers. In this example, the copies of the replicated data object

are ilc,)n. .tent.

The cost of keeping copies of replicated data consistent manifests itself in two

ways. First, the time taken to update replicated data is greater than that for non-

replicated data. We call this effect latency. Compare a non-replicated implementa-

tion of the airline seat reservation object with a replicated one. In the former case,

the time taken for an update by the site where the ubject is stored is simply the

- . - - - . . . . . . . ..°
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time required for local processing. On the other hand, if a user at a remote site

wishes to perform an update, he or she must wait for a message transmission to

take place between the sites. In the replicated case, an update made by any site

must be propagated to other sites. Moreover, an update u cannot be performed

until all the sites agree that it is safe to do so; that is, there are no ongoing updates

at remote sites that must be completed everywhere before u. Thus, depending on

the implementation, the time required to perform an update in the replicated case

could be as long as the time required to perform a remote update in the non-

Aj replicated case. As a result, the response time when updating replicated data will

be greater than that for updating non-replicated data, even when a copy is avail-

able locally. This latency could be avoided by decoupling remote updates from local

ones, but this must be done in a way that maintains consistency.

The problem of decoupling remote updates from local ones has been addressed

in the context of replicated databases, where only read and write operations are

possible on the data. Traiger et al. show that when two-phase locking is used,

remote writes can be deferred until commit time without affecting the consistency

of-data [45]. Eager and Sevcik describe a concurrency control method in which

transactions are executed locally, with write operations propagated to remote sites

later [17]. In [281, we show how to decouple remote updates in a database system

that uses any concurrency control algorithm following a read-one-copy, write-all-

copies rule. In this work, we generalize that result even further - beyond database

systems - to systems with arbitrary types of data and more complex operations

than reads and writes.
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The other cost that arises from the need to maintain consistency is an increase

in message traffic. This follows from the fact that information about updates must

be transmitted between sites where copies of replicated data are situated. In many

distributed systems, the critical cost factor is the number of messages sent, and not

their size. This is especially prevalent when each message is processed by a large

number of software layers before being physically transmitted or after being

received. In such systems, each message sent has a relatively high fixed cost and a

smaller variable cost that depends on its size. Therefore, in this thesis, we meas-

urd&the cost of communication by the number of messages transmitted, rather than

the total amount of information sent. This cost measure can be justified on the

basis of studies such as [11].

1.3. Overview of the thesis

The aim of this work is to develop a method for managing replicated data that

eliminates latency. Thus, our work can be viewed as a generalization of the results

in [17, 28, 45Lto systems with arbitrary types of data, with operations more power-

ful than reads and writes, and with other kinds of synchronization mechanisms

than two-phase locking. Further, we show that it is possible to transmit the infor-

mation required to maintain consistency using messages that would be sent

between sites even if data were not replicated. In other words, the replication

method requires no additional messages. The implication is that of the costs of

replication described above, the only costs that need be incurred are the unavoid-

able costs of additional storage and local processing.
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The thesis is organized as follows. In the next chapter, we present model for

distributed systems., The model was motivated by the use of logs to model database

systems, extended to abstract data types as in [46], and treats replicated data in a

manner similar to [25]. Chapter 3 focuses on one component of the model - the

scheduler. The concept of schedulers for database systems is generalized to cover

systems with arbitrary types of data and operations. The notions of conflicting

operations and classes of serializable schedules are accordingly generalized. In

Chapter 4, the implementation another component of the model - distributed

objects - is discussed. Chapter 5 uses a result fiom Chapter 4 to develop two

methods for managing replicated data that realize the goals described above. Since

one of the reasons for replicating data is to tolerate failures, failure handling

mechanisms are discussed in Chapter 7. We implemented one of the replication

methods described in Chapter 5 and measured its performance. The results of

these tests are presented in Chapter 7. The last chapter summarizes the work in

this thesis and indicates future directions.



CHAPTER 2

Model

2.1. Introduction

The major portion of this chapter is devoted to developing a model for distri-

buted systems. We are primarily interested in distributed systems consisting of a

cluster of computers or work-stations, connected .o one another by a high

bandwidth local-area network like an Ethernet [36]. We assume that the sites are

functionally equivalent; that is, they are capable of performing the same types of

operations, though some sites may be more efficient at some operations than others.

We further assume that the system is asynchronous - the relative speeds of compu-

tations at different sites and the times taken for message transmissions are

unpredictable. Asynchronicity also implies that there is no global clock or shared

memory with which different sites can coordinate their actions.

One aspect of a distributed system that we model is the synchronization

between events at different sites. Typically, several sites in a distributed system

cooperate to solve the same problem. This requires that events at different sites be

-- m coordinated and obey certain ordering constraints. The problem of synchronizing

concurrent events is not new; it has been studied extensively in the context of

operating systems [2, 16, 261. However, differences arise when the system is distri-

buted and asynchronous. Synchronization based on a common clock is not possible.

Using shared memory locations for synchronization is impractical because of the

7
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long delays associated with sending messages to access memory at a remote site.

Furthermore, methods based on message passing must be modified to take into

account the fact that messages between sites take much longer than messages

between processes at the same site. An important observation is that the absence

of a global clock means that any synchronization method in an asynchronous distri-

buted system must be based on messages sent between sites. We return to this in

Section 2.6.

2.2. Overview of the system model

Our model of a distributed system is motivated by the use of logs to model

database systems as in [5, 12, 18, 37, 38, 431. In these models, all data items are of

the same type - they have a single value that can be accessed using a read opera.-

tion or overwritten using a write operation. We extend the idea of logs to abstract

data types with arbitrary operations as in [461. The extension to replicated data is

done in a manner similar to [25]. We make use of terms like transaction and ser-

alizabiltv from database theory, but these terms are used here in a more general

context than is standard.

Our model consists of three components: distributed objects, transactions, and

the scheduler. Distributed objects model the data-storage and manipulation aspects

of a distributed system. A distributed object encapsulates some data and provides a

set of operations to access and alter these data. The act of causing an object to per-

form an operation on its data is called an in~ccaton of the object When an object

is invoked, it provides a result for the invocation. The result depends on the

'We use the terms object and dtstributed object interchangeably.
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operation, the value of the arguments for the invocation, and the current values of

the object's data. An invocation may also cause the values of the object's data to be

changed.

Each object is an instance of an object type. Objects of the same type each have

their own copies of data, but provide the same set of operations. Finally, associated

with each object 0 is a set of sites Accessibleo from which 0 is accesszble. 0 can be

invoked only from sites in Accesstbleo.

As an example, consider an object of type integer. Objects of this type encap-

sulate a single data item: an integer value. The operations they provide are read,

which can be used to obtain the current value of the integer, and write. Invoking

write(i) changes the value of the integer to i and returns ok() when the operation

is completed. Thus, if the integer object Temparaturelnithaca is invoked to per-

form write(-20), the value of TemperatureInlthaca would be changed to -20 and the

result would be oko. We denote this as [Temperaturelnlthaca.write(-20); oko]. If

this is followed by an invocation of the read operation on TemperaturehIlthaca, the

result would be ok(-20).

More complex objects are possible. An example is an object of type queue,

representing an ordered list of records. Objects of this type provide the operations

insert, first, and ListQueue. Invoking insert(r) inserts record r at the end of the

queue, obtaining the result oko when done. The invocation firsti) returns ok~r, if

the queue is not empty and r is the first record in the queue. If the queue is

empty, the result returned is emptyi). The result of ListQueuei) is a list of all the

records in the queue, in order.
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Another object type is indexed-file, with operations add, remove, lookup,

and ListFile. An object of this type represents a file of indexed records. Invoking

add(i, r) adds record r to the file with index i, and remove(i) removes the record

with index i. The invocation lookup(i) returns the record associated with index i,

if it exists in the file. If no such record exists, the result returned is not-found(.

ListFile0 returns a list of the records currently in the file, in the order they were

added to the file.

Objects in a distributed system are likely to be accessed by a number of users

concurrently. Yet, a user may wish to perform a series of operations on one or

more objects without their executions being interrupted by another user. An exam-

ple of where this might be necessary is given below.

Consider two objects Accountl and Account2 of type integer, each containing

the current balance in a bank account. Assume that they initially contain $1000

and $2000 respectively, and that user A wishes to transfer $100 from Account1 to

Account2, while user B wishes to transfer $50 from Account2 to Accountl. Let

their invocations be interleaved as shown in Figure 2.1. We see that although each

user individually performed a correct sequence of invocations, the way in which

their invocations were interleaved resulted in $2100 being placed in Account2 and

$1050 in Accountl. This is clearly an incorrect outcome (especially from the point

of view of the bank). The system has been made inconsistent.

The system would not be inconsistent if all the invocations of user A had pre-

ceded those of user B or L'tce versa. In general, a distributed system must contain

some synchronization mechanism using which a user can specify that a series of

nl7



User A User B

[Account L.read); ok($1000)]

[Account2.reado; ok($2000)]

[Account2.reado; ok($2000)]

[Accountl.reado; ok($1000)]

[Account 1.write($900); oko)]

[Account2.write( 1950); ok)]

[Account2.write$2100); ok(u]

[Account 1. write( 1050; ok)]

Figure 2.1. Bank account example

operations be executed without being interrupted by the execution of other opera-

" tions. A user does this by means of transactions.

* A transaction is simply a sequence of invocations that a user wishes to have

'. executed as a unit. When a transaction is executed in isolation on a svstem in a

consistent s~ate, it is assumed to leave the system in a consistent state. Thus, in

the preceding example, the sequence of invocations performed by user A is a tran-

saction, as is the sequence performed by user B. The system may interleave the

execution of invocations from different transactions, but does so only if the effect

would be the same as if this interleaving did not occur. As a result, the execution

of any number of transactions on a system in a consistent state leaves it in a con-

sistent state.

-----------------------------------------------... .. ,.-..-, . .-
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The part of a distributed system that orders invocations with respect to one

another is modeled by the scheduler. Invocations resulting from ongoing transac-

-. tions are presented to the scheduler, which may accept them immediately or may

chose to defer their execution. The scheduler decides on an order in which to per-

. form invocations it accepts, and instructs objects to execute them in this order.

Objects return the results of invocations directly to the user. The interaction

between the components of the model is shown in Figure 2.2.

2.3. Distributed Objects

We now discuss how the behavior of a distributed object may be specified. Let

DATAo be the data encapsulated by object 0 and OPo be the set of operations on

DATAo. Let op denote an element of OPo. An invocation of 0 at site s to per-

form op, with the appropriate number of arguments of the correct type, is

Invocations

.. :.SCHEDULER

Transactions

•)1st rihuted

Figure 2.2. Components of the model



13

represented as [O.opk); 3]. When an object executes an operation and returns a

result, it is said to perform an action. An action is denoted [O.opo; rest)], where

reso is the result returned. A serial computation is a sequence of actions taken by

an object, representing a series of invocations and their corresponding results. The

behavior of an object is defined by its ipectficatzon SP,, which is the set of all

correct serial computations.

Let us illustrate these definitions by an example. Consider an object x of the

type integer discussed earlier. [x.write(21); okW) is a possible action, denoting an

invocation to change the value of x to 21 and the result okt) returned by x.

[x.write21); oko] [x.write(15); okl Ix.reado; ok(15)] is a possible serial compu-

tation denoting three successive invocations and their corresponding results. Since

this serial computation reflects correct behavior for an objet of type integer, it

would belong to the specification SP,. On the other hand, the serial computation

[x.write(21); oko] [x.readO; ok(15)] probably would not belong to the specification,

as it is not correct for the value 15 to be the result of a read immediately after the

value 21 is written.

In this work, we are not concerned with the actual representation of object

specifications. This may be done using logical predicates as in [27, 32], by state

Mmachines as in [46], by algebraic specifications as in [22], or by any other means.

For the 2xamples we present, we rely on the reader's intuitive understanding of the

semantics of the operations discussed to decide whether a serial computation

belongs to a specification or not.

-| - - --.-
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A specification SP,) is said to be complete if for every allowable serial compu-

tation and for every operation op E OPo, there is another serial computation that

'*' extends the first one by an action [O.opo); res)], for any correct set of arguments

. .for op. In other words, after any sequence of invocations, a result is defined for the

next invocation, whatever the operation invoked may be. Formally, a specification

is said to be complete if the empty sequence (p E SPr) and if for all .x E SP) and all

op E OPO, there exists a v E SP o such that = x * fo.op,; resi ,, where * is the

concatenation operator for sequences. We assume that all specifications are corn-

plete. Since it is valid for an object to return the result errort), this is not a res-

triction.

A specification is prefix closed if for every x E SPo, every prefix of x also

belongs to SP o . This excludes serial computations that cannot be performed one

invocation at a time, with each step resulting in a correct computation. We assume

that all specifications are prefix closed.

A deterrnt z.stzc object is one that always returns the same result for each invo-

cation when given the same sequence of invocations starting from the initialstate.

Given a sequence of invocations, the specification of a deterministic object contains

"- . only one serial computation in which the invocations occur in that order. If the

specification contains more than one such serial computation, the object is said to

be nn-determint.stic. When a non-deterministic object is given a sequence of invoca-

tions, it may return results according to any one of the applicable serial computa-

tions. Our results hold for both deterministic and non-deterministic objects
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Although the behavior of an object is specified in terms of serial computations,

it is not necessary that actual invocations of the object occur serially. Even if invo-

cations at the same site are ordered sequentially, the fact that the system is asyn-

chronous means that invocations from different sites are unordered relative to one

another, unless the scheduler explicitly orders one before the other. Thus, invoca-

tions on an object are, in general, only partially ordered. Under these conditions,

we say that a distributed object behaves according to its specification if it returns

results according to some serial computation in which the order of invocations is

consistent with the partial order on actual invocations. The particular serial com-

putation chosen would depend on how the object is implemented.

Let Print Queue be an object of type queue, with the following invocations:

[PrintQueue.insert(WarAndPeace); s], [Pri ntQueue.insertfri,neoAndJluhet); t],

[Print Queue.ListQueue); s], and [PrintQueue.ListQueue); t]. Let the scheduler

order the invocations as in Figure 2.3. Each of the ListQueue invocations is

ordered after both the insert invocations, but the insert invocations are not

ordered relative to each other. Both the following serial computations would then

be consistent with the partial order on invocations:

(1) [PrintQueue.insert(WarAndPeace); oko]

[PrintQueue.inse rt(RomeoAndiuliet); oko]

[PrtntQueue.ListQueue); ok(WarAndPeace, RomeoAndJ ilet)]

[PrtntQueue. ListQueue); oki WarAtzdPeace, RomeoAnc.iJtzhet)]

F::
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[PrintQueue.insert( WarAndPeace), s I

[PrintQueue insert(RomeoAndduliet: tI

[PrintQueue.ListQueue( ; s] [PrintQueue. ListQueue( ) tj

Figure 2.3. A partial order on invocations

(2) [PrintQueue.insert(RomeoAndJulet); okol

[PrintQueue.insert(WarAndPeace); oko]

[Pr ntQueue.ListQueueO; ok(RomeoAndJuliet, WarAndPeace)]

[PrintQueue.ListQueue); ok(RomeoAndJuliet, WarAndPeace)]

Hence, either result for the ListQueue invocations would be correct. The

actual result would depend on how the object is implemented and on factors like

message delays, etc. On the other hand, if the scheduler orders the insert invoca-

tion at t after the insert at s (Figure 2.4), then only (2) would be consistent with

the partial order, and only one result would be possible.

The (partial) order in which invocations are performed on a distributed object

o is modeled by its hi.storv H,) = [1), -n], where I,) is a set of invocations and -

is a partial order on them. (We use the notation i -'o j to mean i(, j) E --,.) As

described above, 0 provides results for its invocations based on some sequential



17

[PrintQueue.insert(WarAndPeace); sl

[PrintQueue.insert(RomeoAndJuliet): tj

[PrintQueue.ListQueue ): si [PrintQueue.ListQueue( t]

Figure 2.4. Another partial order on invocations

computation in which the invocations occur in an order consistent with the partial

order "to- This is modeled by the development. The development D o of an object 0

is a total order on the invocations in I); that is, it is a sequence containing all the

invocations in 1( (and no others). We say that Do is consistent with HO if for all

pairs of invocations i, j such that i j, it is true that i occurs before j in D o .

The set of actions formed by pairing each invocation in D o with the corresponding

result returned by 0 is called the response of 0 and is denoted RO. Note that we

do not explicitly model the state of an object. This is not necessary, since the state

can be deduced from the values of H,), D,) and R,.

We now formalize what it means for an object to behave according to its 'pos-

sibly non-deterministic) specification, when the invocations may be only partially

ordered. First, its development D,) must be consistent with its history H). A

second condition, described below, states that the response R,) agrees with the
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specification SP0 . Let LegalCompso(Do ) be the set of serial computations in SP

in which the invocations occur in the same order as in Do . (If 0 is deterministic,

there is only one such computation and [LegalCompso(Do)j = 1.) For each compu-

tation c in LegalCompso(Do), let actions(c) be the set containing all the actions in

c; that is, the order on the invocations is overlooked. Let Lega1Respon.ses oD o ) be

the set {actions(c) I c E LegalCompso(Do)}. In other words, LegalResponseso(Do ) is

the set of responses allowed by the specification, if the development is D). lAgain,

if 0 is deterministic, jLegalResponseso(Do) = 1.) For 0 to behave according to its

* -specification, R o must belong to LegalResponseso(Do).

• .We now present a definition that will be used later. Let last(Ho ) be the set of

invocations in HO that are not ordered before any other invocation. In other words,

last(HO) is {i i E 1o and j: 1* j}. We also extend the definition of

LegalResponseso(DO) to cover the case of a single invocation i in Do . Let

* LegalResponseso(i, DO) stand for the set of actions in LegalResponseso(Do ) that

correspond to the invocation t. Formally, Le,.alResponsesou, Do) = {a a is the

*action corresponding to t in R for some R E LegalResponseso(Do) .

2.4. Transactions

A transaction T is modeled by a set IT of invocations and a partial order -T

on these invocations. The partial order reflects the data flow relationships between

invocations, and this order must be observed in any execution of the transactions.

We denote the set of all possible transactions by TRANS.

. . . . . . . . .. . . . . . . . . . * .'/ . .o .
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2.5. The scheduler

The function of the scheduler is to enforce an order between invocations from

different transactions in such a way that the transactions appear to have executed

independently from one another. We assume that the scheduler assigns each tran-

saction a unique identifier called a transaction-ID. The behavior of the scheduler is

modeled by a ;vstem h.storv H5 ,. - [E.y.s - where Esy. is a set of e'ents

and - is a partial order on these events. An event has the form

[Tid, O.op(", i] and represents the invocation [O.op, issued by a transaction

with identifier Tid. The order -Iss reflects the ordering decisions made by the

scheduler. For events resulting from the same transaction T, the order "*s-s

includes all the elements in " In addition, -*sys may contain elements relating

events from different transactions.

After the scheduler has ordered invocations, it passes them on to the relevant

objects for execution. The system history gives the ordering decisions made by the

scheduler, while an object history gives the order in which an object receives invo-

cations. It follows, then, that object histories can be deduced from the system his-

tory. The history of an object 0 consists of all invocations in H ,.y corresponding

to 0, ordered in the same way as in - In other words, H, is the pro,-e'rion of

Hsl-,s on 0.

Finally, observe that if a global real time clock were availabie in the system,

the events in the system history could be totally ordered according to it. It follows

that each event in E).,; can be assigned a unique label tinieie) that can be used

to place the events in this total order. This labeling may not be known to the
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scheduler or to any other component of the system; we merely use the fact that this

labeling must exist. Given an event e, the set before(e) is defined as the set

{e' I time(e') < time(e)}.

2.6. Order in an asynchronous system

We have said that the scheduler "orders" events. In this section, we discuss

what it means for the scheduler to order one event after another. Recall that in an

asynchronous system there is no global clock and any synchronization between

events at different sites must be based on messages sent between them. While two

events at the same site can be ordered relative to each other in the normal way,

the only way for a scheduler to ensure that an event e2 at a site t is ordered after

an event el at a site s is to cause a message to be sent from site s to site t (perhaps

indirectly via other sites) carrying the information that el has occurred and e 2 may

proceed. This problem is discussed in detail in [31]. We call the messages used by

the scheduler to order events relative to one another synchronization messages.

We now formalize this notion. Let ender(m) refer to the site from which a

synchronization message rn is sent and let receLcer(m) be its destination. A mes-

sage path exists from event e1 at site i to an event e2 at site t either if s t and e2

occurs after el at this site, or if there is a sequence of synchronization messages

n 1 , m2, rn. for which the following conditions hold.

1. .enderl mI = 1 and n 1 is sent from after ' occurs there.

2 erider in.) = receiuertr, _w . for 1 < 1 -z, and ni is sent after n. - is

received.

' - .. ;-. .' .. . "...;:L. ; . . . .- .: . " " . ~i
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3. receverm,) = t and e2 occurs after m.n is received at t.

It follows from the previous discussion that two events in an asynchronous sys-

tem can be ordered relative to each other only if there is a message path between

them. In particular, if el and e2 belong to Es.s and el "sys e2 , then there is a

message path from el to e,. We use this fact in Chapter 5.

17 m e A



CHAPTER 3

The scheduler

3.1. Introduction

The scheduler orders invocations in such a way that the effects of the resulting

execution are indistinguishable from one in which the transactions are executed

one after another in some serial order. A history resulting from ordering invoca-

tions in this way is said to be serzallzable, and is called an S-historv. A scheduler

that produces only S-histories is called an S-scheduler. Serializability in database

systems has been studied in [3, 4, 5, 12, 18, 37, 38, 431, among others. In [25, 46],

the notion of serializability is generalized to abstract data types.

An S-scheduler could operate by fixing an order on transactions and ordering

every invocation of a transaction after all invocations of transactions ordered before

it. The resulting histories would be serializable, but the disadvantage of such a

scheduler is clear. Only one transaction can be operational in the system at any

time - every transaction must wait until all the invocations of the previous one

have completed before it can proceed. This is often an unnecessary restriction.

Consider, for example, a transaction that invokes an integer object Temperatiireln-

Ithaca to perform write123) and a second transaction that preforms write482) on

another object TemperaturelnPaloAlto. There is no need for either transaction to

wait for the other to complete, since they operate on different objects and the

results of their invocations would be the same even if they are executed con-

22
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currently. Because the scheduler described above places an order between such

. .. invocations, it could cause unnecessary delays in processing transactions. It also

takes no advantage of the replicated processing power available in a distributed

system. In general, it is desirable for a scheduler to permit as many invocations as

possible to execute concurrently, while still maintaining serializability.

The level of concurrency permitted by a scheduler can be measured by study-

ing the class of histories it generates. This problem has been studied in the context

of databases, where the operations are read and write on single valued data items.

Kung and Papadimitriou measure the performance of a scheduler by its ixpolzt et,

which corresponds to the set of histories allowed by the scheduler [291. The larger

this set, the more concurrency the scheduler allows. The properties of different

sub-classes of serializable histories (e.g. DSR, VSR and CPSR) have been studied

in [23, 37, 38, 48]. In this chapter, we generalize these ideas to the case of arbi-

trary data types, with general uperations on the data. We define the notion of

-o-n, t,' 'ilro r, 'tioan in this setting, and introduce a class called C-histories,

which is a generalization of the classes DSR or CPSR in database theory.

3.2. When can invocations be left unordered?

Invocations have to be ordered relative to each other when their effects, as

perceived by a user, could depend on the order on which they are executed. When

a user cannot distinguish the relative order of a pair of invocations based on their

results or the results of future invocations, the invocations can be executed in

parallel. It is not incorrect for a scheduler to order such invocations, but this

lowers the level of concurrency in the system.

ira-,
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A simple case where it is unnecessary to order invocations is when they access

different objects. The result of one invocation is independent of the other and

hence of the order in which they are carried out. Moreover, the data of each object

are left in the same state regardless of the order in which the invocations are per-

formed. Consequently, the result of no future invocation on either object will

depend on their order. The order is hence indistinguishable to a user.

Sometimes it is not necessary to order operations even when they access the

same object. Consider two transactions, each performing a read operation on the

object LottoWinner of type integer. The result returned for each invocation is the

same, regardless of the order in which the reads occur. Moreover, LottoWinner

remains in the same state in either case, so the result of no subsequent invocation

on LottoWinner could depend on this order. This is an example where invocations

need not be ordered relative to each other because of the semantics of the opera-

tions in question (in this case, the semantics of read).

Consider an object x of type number, which provides an operation multiply.

Invoking multiplyvy' sets the value of x to the value obtained by multiplying the

current value of x by y. The result returned is the new value of x. Now, if one

transaction performs x.multiply(2) and another one performs x.multiply,3), the

results would, in general, differ depending on the order in which these invocations

are carried out. However, if the current value of x was 0, the order in which the
L

invocations took place would be indistinguishable to a user. If the scheduler knew

the value of x, it could leave the invocations unordered. Thus, knowledge of the

current state of an object can be used to avoid ordering operations.

. . . ..,
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Again, if two transactions were each performing a write on an object of type

integer, their invocations would normally have to be ordered relative to each

other, because the result of a subsequent read operation could depend on the order.

However, if it were known that the values being written were the same, the order

of invocations would be immaterial. In this case, the arguments for the invocation

determine whether they can be left unordered.

Finally, consider two invocations if the add operation on an object. of type

indexedfile, described earlier. If it is known that no transaction performs a List-

File operation, then the invocations need not be ordered, as this is the only opera-

tion whose result depends on the way in which add operations are ordered relative

to one another. Here, knowledge about the future behavior of transactions can be

used to avoid ordering invocations.

We see from these examples that knowledge of the semantics of operations,

the current state of objects, the arguments for a particular invocation, or the future

behavior of transactions can all be used by the schedul-r to increase concurrency

by not ordering certain operations relative to others. A scheduler that maintains

and uses all this information would, unfortanately, be extremely complex and

inefficient. A practical scheduler uses some, but not all, of this information and

hence may order more operations than strictly necessary for serializability. Exam-

ples of schedulers for database systems are given in [1, 12, 19, 29, 37, 42, 46].

Kung and Papadimitriou [291 model the level of knowledge available to a database

scheduler and present optimal schedulers for different levels of knowledge.
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Recall that the aim of this work is to develop an efficient method of managing

replicated data. In particular, we present an implementation in which the informa-

*tion transmitted to keep data consistent is included in synchronization messages

* that must be sent by the scheduler even if data are not replicated. To be com-

pletely general, we allow for the case where the scheduler may send as few mes-

sages as possible. We allow for the possibility that the scheduler may have a high

level of knowledge, which.it uses to limit the number of invocations it orders. In

Section 2.6, we observed that a scheduler in an asynchronous system can order

invocations only by sending messages between sites. Hence, if the scheduler orders

fewer operations, it will send fewer synchronization messages. We show that, even

under these conditions, the messages that the scheduler must send are sufficient for

the implementation of replicated data to operate correctly A practical scheduler,

operating with less knowledge, can only send more synchronization messages. As a

result, the implementation remains valid.

In terms of our model, we assume that the scheduler could have knowledge of

all object specifications land hence of the semantics of all operations), the current

* system history (which together with the object specifications yields information

about the current state of each object), the arguments for each invocation, and the

set TRAVS of all possible transactions (which amounts to information of possible

future behavior of transactions). On the other hand, the scheduler can have no

knowledge of the actual implementation of an object. The scheduler bases its deci-

sions on the fact that objects meet their specifications, but where a specification can

be satisfied in more than one way, the scheduler can make no assumptions about
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which way an object choses. In terms of the model, while the scheduler may have

knowledge of the history H,) of an object 0 (this is simply the projection of 1s-s on

0), all it knows about the development Do is that it is consistent with H,).

Further, it has no knowledge of the response Ro except that it belongs to

LegalReponseei.,D,., for some Do consistent with H,. However, if Ho and the

specification SP,) are such that only one value of Do or R O satisfy the conditions

above, the scheduler may make use of this knowledge.

We now characterize the invocations that a scheduler must order, given that it

has the kind of knowledge discussed above. Any practical scheduler, having less

knowledge, orders a superset of these invocations. First, we formalize the notion of

serializability.

3.3. Serializability

Let H be a system history and let H,) be the projection of Hsys on object

0. Let D, be any development consistent with HO (not necessarily the actual

development of 0) and let R be any response belonging to L

Let -;Ff? be a total order on the transaction-ID's in s . is called a ier,,ii-

zation order for , and represents the order in which a user perceives transac-

tions to have executed although their invocations may actually be interleaved in

Hl.; . H ys is serializable if the following condition holds.

Define D = Rr,'rD,, --- : as the development formed by placing the

6 invocations in D,-) in the order that would have resulted had the transactions actu-

ally executed in the order specified by -*ER That is, if i = {() opl , 1 ] in D,

corresponds to [Tidl, 0 opi), I] in Hsys and t., = [Oop2,, t] in D,) corresponds to

, .
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event [Tid2, 0 op2), t] in H s-.q, and if Tid 1 -SER Tzd 2 , then 11 occurs before t* in

Reorder(Do, -SER)" Hys~ is serializable if the response R o is legal based on the

development Reorder(DO, -SER)' That is, Hyss is serializable if the response

*. based on Do is indistinguishable from one based on a development that would have

' 'resulted had the transactions executed sequentially.

Formally, Hsys is serializable if 3 -SEn: [V objects 0 and V Do consistent

with the projection of H-.Iyj on 0: LegczlResponise.-RerderfD0 , R C_

Le galResponseso(Do)].

3.4. Sub-classes of serializable histories

In [37], it is shown that the problem of recognizing whether a given database

history is serializable is NP-complete. It is also shown that a scheduler that gen-

erates histories that span the complete set of S-histories must take time exponen-

tial in the number of invocations (unless P = NP). An efficient scheduler (one that

takes time polynomial in the number of invocations) generates only a subset of all

possible S-histories. This sacrifices some of the concurrency available in the sys-

tem because certain executions that are actually serializable are disallowed

Different sub-classes of S-histories and their corresponding schedulers have

been studied in the context of databases [23, 37]. Papadimitriou [37] shows that

the class DSR encompasses the classes of histories generated by most known

scheduling disciplines like two-phase locking, timestamping, etc. The class DSR is

based on the notion of contlhcn!ni intcaton.. Two invocations in a database system

conflict if they both access the same object and one of them performs a write opera-

tion. In a history belonging to the class DSR any two conflicting invocations must

I7
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be ordered relative to each other. We generalize this idea to distributed objects,

and call the corresponding class of histories C-histories. A scheduler that generates

C-histories is called a C-icheduler. We assume that the scheduler in our system is

a C-scheduler.

3.5. C-histories

An invocation is said to conflict with another if the order in which the invoca-

tions are executed could make a difference to their results or to the result of some

future invocation. The earlier discussion on serializability showed that whether an

invocation conflicts with another could depend on the semantics of the operations in

question, the current state of the objects, the arguments for the invocations and the

future behavior of transactions. We take this into account in the definition of

conflict given below. In a C-history, every invocation is ordered relative to any

invocation that it conflicts with. This does not preclude other orderings, but merely

stipulates a set of orderings that must be present in a C-history.

We now define conflict formally. Define the extt,witz of a system history to be

any history that could result from the completion of ongoing transactions and/or

the execution of any new transactions from TRANS. Let , = [Ttd,, O opt), .. ] be

an event in H,,, 5 and let -1 = [TidL, 0 op tJ be any other event in he/lrce,,)

that has a different transaction-ID, but invokes the same object. Let H be an

extension of betorqe )) that contains !, and in which o!, is not ordered relative to e1.

Let H',) be the projection of H'sy, on () Let D , be any development consistent

with H' of the form yilt,2, where il and are the invocations corresponding to el

and e, respectively, and y and 6 are sequences of invocations. Then e, conflicts
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with el if LegalResponseso (yli.t2 ) : LegalResponseso(yi2 i1. In other words, e,

conflicts with e1 if the result of t1 , 2, or any future invocation could differ depend-

ing on the order in which it and 12 are executed.

The notions of conflict and C-histories as defined above are quite general.

When applied to a system of single-valued objects with only read and write opera-

tions, they reduce to the corresponding definitions in database theory. The

definition of conflict takes into account the semantics of operations and the argu-

nents for each invocation by being defined in terms of LegalRe pon.sezo, which in

turn is defined in terms of SP,. SPO encodes the semantics of all the operations of

0 The definition also accounts for the current state of objects because only exten-

sions of beforefe) are considered. Knowledge of the future behavior of transactions

is included because extensions can be formed only by including transactions from

the set TR.-..VS. Since the only orderings that must necessarily be present in a C-

history are those between conflicting invocations, our definition of C-schedulers

includes schedulers that may use high levels of knowledge to avoid ordering invo-

cations. Hence, the restriction to C-schedulers is not a major one.

I;



CHAPTER 4

Schemas

4.1. Introduction

The specification of a distributed object describes its behavior from the point of

view of external effects. In this chapter, we consider the internal implementation

of a distributed object; that is, how invocations at different sites are coordinated to

provide the behavior required at the external interface of the object. There are

several ways in which an object can be implemented, while still meeting its exter-

nal specification. We first describe two possibilities: a centraliZed implementation

and a replicated implementation. We then discuss why they are inefficient and lay

the groundwork for a more efficient implementation.

4.2. Two possible implementations

The centralized implementation is similar to the method described in [44].

One of the sites where the object is accessible is chosen as the "master," while the

other sites are "slaves." All invocations are executed sequentially by the master.

Invocations scheduled at the slaves are passed on to the master for execution. The

results of such invocations are sent from the master back to the slaves, which give

the result to the user. Such a centralized implementation makes sense if the slaves

are sites with little or no processing capacity This is true, for example, with bank

teller machines connected to a central computer

31
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If, on the other hand, all sites have comparable processing capacity (and the

*. results in this work are primarily aimed at such systems), a replicated implementa-

tion is possible. Here, a copy of the object data and the definitions of the operations

are placed at each site where the object is accessible. When an invocation is

scheduled for execution, the site at which it is scheduled (i.e. the local nte) informs

the other sites where the object is accessible (the remote sites) of the execution. All

the sites execute the operation in question, each using its own copy of data.' The

local site returns the result to the user. This implementation requires sorae

mechanism to ensure that invocations are executed in the same order at all sites,

* hotherwise a copy of the data could become inconsistent with other copies. Because

of such inconsistencies, a site may return results that are not permitted by the

specification. This is described in the following example.

Consider an integer object x such that Accessible, = {s, tt. Assume that fol-

lowing totally ordered sequence of invocations occurs: [x.write(2), s] [x.write(3), s]

[x.read), ,I [x.read), t]. If x behaves according to its specification, the result for

both the read invocations should be ok(3), because the invocation write3) followed

"- -. the invocation write(2). Assume that the write operations on the copy of x at site .

occur in the order above, but the writes are erroneously performed in the opposite

order at site t, that is, write(3) occurs before write(2). When the invocation

[x.read(), t] is performed on the copy at t, the result will be ok(2), which is

incorrect.

'An optimization is possible in the case of operations that do not change the
state of an object, e.g. a read operation on an integer. These can be performed at
any one site without informing the others of it.

m7
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One way to avoid this problem in a replicated implementation is to acquire a

"lock" at all sites before any operation is executed. A lock acquired at a site is

released when the execution is completed at that site. A lock cannot be acquired a

site if it is already acquired there for another invocation; the later invocation is

delayed until the earlier one completes and the lock is released. This scheme

ensures that invocations are performed in the same order at every site. However,

deadlock may occur if an attempt is made to acquire locks for more than one invo-

cation simultaneously - one invocation may acquire the lock at some sites, while

6* .another invocation acquires it at the other sites. The scheme can be modified to

use a deadlock-free protocol to acquire locks, or to detect when deadlock occurs and

take corrective action.

The advantage of a replicated implementation is that even if one or more of

the sites at which an object is accessible fail, the operational sites can continue to

accept and process invocations because an up-to-date copy of the object's data is

available at the operational sites. This is not true of the centralized implementa-

tion, where if the master fails, the object cannot process invocations scheduled at

the slaves.

The disadvantage of both the centralized and the replicated implementations

given is that they are essentially synchronous. Both execute operations sequen-

tially, the centralized implementation doing so at the master, while in the repli-

cated implementation all ,ites operate in tandem. A synchronous implementation

has the following drawbacks. Every invocation requires communication between

sites. This increases the number of messages being sent in the system. This mes-

Jill , : : . . ,, .. . .. - . .... .
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sage transmission also introduces latency when operations are performed, because

a user invoking an object must wait for a message to be sent between sites before

receiving a result (Section 1.2).

Clearly, it is desirable to reduce the number of messages sent, to cut down

latency and to perform operations in parallel when possible. To do so, it is neces-

sary to decouple the execution of an operatiun at the local site from its execution at

remote sites. The local site can then execute an operation and return its result

without waiting for remote sites. This eliminates latency. In [17, 45], this issue is

discussed in the context of database systems. Decoupling remote execution also

means that while an operation is being executed at a local site, other operations

can be executing at the remote sites, thus taking advantage of the parallelism in

the system. Of course, this decoupling must be done in a way that does not result

in inconsistency as exhibited in our earlier example. In Chapter 5, we present two

implementations that achieve these aims. We now model the internal implementa-

tion of a distributed object by means of schemas and derive a result that will be

used as a basis of those implementations.

4.3. Schemas

Except in the most trivial objects (e.g. one whose operations always return the

same result), it is not possible to totally decouple events at one site from those at

others. To provide a correct response, a local site must have information about

invocations that have been scheduled at other sites. However, it is not always

necessary to have knowledge of ill such invocations. For example, consider an

object of type integer. A local site can provide a correct result for a read
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invocation if it has knowledge of all write invocations; it does not need information

about other read invocations. In general, a site in a non-synchronous implementa-

tion responds to an invocation based on partial information about the history of an

object.

We call the partial history upon which an implementation bases its response

to an invocation i the perspective for i. In both the centralized and the replicated

implementations described earlier, for example, the perspective for any invocation

is the entire history of the object. For an integer object implemented as described

above, the perspective for any read invocation is the part of the history containing

all the write invocations. In this work, we are not concerned with how a particular

implementation may be expressed or described. We observe only that given an

implementation, it is always possible to define the perspective for any invocation 1,

even if only by exhaustive enumeration. Thus we can model an implementation in

terms of perspectives. We formalize these ideas below.

An implementation of a distributed object is modeled by a -,hefma. A schema

is a function that when given an object history H) = [L), -,] and an invocation

t E last(H,) gives an t-htstory. An i-history is a history H;) = [I,), -s], where 1lo is

a subset of I that contains i. The partial order -' is formed by taking all the

elements in -) that are relations between invocations in I'). In other words.

,.- ~ ~ ( , ' j, J, k 1 l) and y, k E -. The i-history given by a schema defines

the perspective for an invocation i in the corresponding implementation.
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4.3.1. Correctness of a schema

We now discuss what it means for a schema S to be correct. For all histories

and for all invocations t, the result returned based on the i-history specified by S

should be the same as one that would be returned based on the entire history. For-

mally, let Ho be any history for object 0, and let i be any invocation in last(H0 ).

Let D o be any development consistent with H,). Let H') be the i-history defined by

schema S and let D,) be any development consistent with H'). S is a correct

schema if LegalResponseso(Db) ) C LegalResponseso Do).
I

4.3.2. Correctness with respect to a class of system histories

We have defined what it means for a schema to be correct with respect to all

possible histories Ho . However, if it is known that all system histories belong to a

particular class and that all object histories are projections of histories from this

class, then a schema need be correct only with respect to such histories. It is often

possible to optimize object implementations in such a way that they are efficient for

histories from a particular class, but may be inefficient or even incorrect when his-

tories are not from this class. In particular, we are interested in implementations

that are efficient with respect to projections of C-histories. It is straightforward to

extend the definition of correctness of a schema to give the definition of correctness

with respect to a particular class X of system histories. We merely replace "let H,

be any history for object 0" in the definition of correctness by "let H,) be any his-

tory that is a projection of a X-history on object 0."

V-,
!.
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4.3.3. C-schemas

Let HO = [I, ,] be a projection of a C-history on 0 and let = [O.opo, s]

belong to last(Ho). A C-schema is one in which the i-history Hb = [Ib, ]

r ". satisfies the following conditions.

1. tE1b.

- . 2. Ifj E1) and k "* ,then k E If) and k -)J.

In other words, the i-history specified by a C-schema contains all invocations

on 0 that the scheduler orders before t, and maybe other invocations. If the 1.

history contains invocations that are not ordered relative to z, then it also contains

all invocations ordered before these invocations. We show below that C-schemas

are correct with respect to C-histories. A C-schema will be used in Chapter 5 as

the basis of an efficient implementation of distributed objects.

4.3.4. Correctness of a C-schema with respect to C-histories

We now show that if an object responds to each invocation based on an

history specified by a C-schema, the results returned are consistent with a response

based on the entire object history, given that the system history is a C-history.

Let H0 be a projection of a C-history on 0 and let = [O.op, ;I belong to

last(H)). Let D,) be any development consistent with H,). Let HO be an t-history

resulting from a C-schema, and let Db be any development consistent with H;). To

prove that a C-schema is correct with respect to C-histories, we must show that

: LeulRepwse ) i, D') C Lega dR 1pn' , Do.
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The proof is as follows. We construct a sequence of developments D,) D' ,

" D', D D t such that Db) is a prefix of Dst. Each development D is con-

sistent with H o . For all k > 0, D* is obtained from Dk - by switching the order of

two invocations, but maintaining the property that LegalRespon;e OD() =

Lega1ResponsesotDk-1). Hence, LegalResponseso(D°) = Le)z!R,,snn.e D .

Since D o  = D o, LegalResponseso(Do ) = LegalResponse,D-:",, and hence

LegalResponsesoou, DO) = LegalReqponse.s,)ut, D""tl. Because D,-; is a prefix

of D"" and specifications are complete and prefix closed, it follows that

LegalResponseso(i, Do) = LegalResponseso~t, D?)).

The algorithm used to construct the sequence of developments is given below.

A proof that the algorithm terminates and a proof of its correctness follow. We use

aa 2 • .a, to represent D' and f t to represent D)' for the current value of

k (each a. or P. represents an invocation on 0). Note that n - in because all D;

are consistent with HO, and H o contains all the invocations in H).

4.3.4.1. The algorithm

1) Let k = andDk =D o .

(2 Let p be the largest integer 0 5 p -5m such that a, a, = fi f. In

other words, p is the length of the longest common prefix of L);) and D"

If p = n, D') is a prefix of D and the algorithm terminates.

3 If p t in, consider the invocation a.,.-

a z. -,must occur in D : because D" contains all the invocations in 1,), and I,)

includes all the invocations in 17) and hence in D'.
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Let 8, be the same invocation as a7- .

Note that I > p + 1, otherwise the longest common prefix could have been

extended to p + 1.

4) The next develonment Dk l is f fi!-2fi'-L:+l ' ; that is, D - 1 is

the same as Dk but with the positions of f,- and fi! interchanged. We show

below that LegalResponse.s,(D - -' = Lega!Responses)(D').

5) Set k to the value of k + 1 and go to step 2).

Fig-ure 4.1 shows one step of the algorithm with k 0 and p 3.

D o = D O = 1 0 2 33 ....... ........ 1 -11 ................. On

D I = 3102 1 3 ...... . ..... 13 - .n

D2

Sam' [nrocution

Dli.st = al C12 CL3 a4 .... . am

D'() = 1 C12 Q3 G4 a n

Figure 4.1. A step in the algorithm
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4.3.4.2. Proof of termination

Each iteration moves the position of P8' (corresponding to a,-, in D') one posi-

tion to the left in Dk to give Dk 1. Hence after I - (p + 1) iterations, this invoca-

tion will reach position p + 1 in Dk. The next iteration will increase p, the length

of the longest common prefix between D') and D', to at least p + 1 and repeat the

process. Thus the value of p continues to increase as the algorithm progresses.

Eventually its value will become equal to rn and the algorithm will terminate.

*: 4.3.4.3. Proof that all developments Dk are consistent with H O

This is proved by induction on k. The base case, k = 0, follows immediately

since D o = D o , which is consistent with H o .

For the inductive step, assume that Dk is consistent with H O . Since

* . I > p + 1 (see note in Step 3), the invocationfi_ does not occur infl" and

because a, ap = f i, 'lp, it is not one of the first p invocations in Do either.

The next invocation in D(), a,,,, is the same as f8 Step 3). Hence the invocation

. must occur after ap 1 (viz. f.,i in D0 or not occur in D) at all. We consider

these two possibilities separately below and show that in either case, f and W -

*;. are unordered relative to each other in Ho.

If the invocation fl!i occurs in Do, it occurs after ft. If _ and f8, were

ordered relative to each other in H, it follows from the definition of a schema that

they would be ordered the same way in f, However. [ occurs before # in D",

which is consistent with Ho, and after # in L),, which is consistent with H,, It

follows, then, that _ and : must be unordered in H,)



41

The other possibility is that f: does not occur in Db). The definition of C-

schema implies that if an invocation j E I), then all invocations k such that

k jo j also belong to I'. The invocation fl! occurs in Db. Hence, if f :- is not

present in D'b, it follows that ,8,- and , are unordered relative to each other in

Ho, otherwise Ho' could not be based on a C-schema.

By the inductive hypothesis, D is consistent with H,. The order of all invo-

cations in D' is the same as in D':, except for f8:_ and f.. But these invocations

are unordered in Ho. Hence, D;*-' is consistent with H ,

4.3.4.4. Proof that LegaIRespowzse, ;D t - = LeDa*Re'po.e 0 D

Dk+L and Dk differ in the order of ft!_- and #:, and as shown above these

invocations are unordered in HO. There are two possible cases:

< time(#!) or tirne'fi1 l > tzmefl,). The proof in both cases is similar

and will be developed in parallel, with the second case in square brackets.

Assume <rne"8 -_l) < time'i ,, resp. tzmef.1 < tzrme, ], that is

,8-I E bebr,.l [8. E hoI orpipijI1. Now H,) is an extension of h_'t;re'fly

[ ~re$; ]. Since Hr) is a projection of a C-history and ft.- and P. are unordered

in it, it follows that ft, does not conflict with - F - does not conflict with P.

D ' is a development consistent with H, of the form Y'f!-fi6. The absence of a

conflict means that Lega1Re[,n,,)' _ 8 = L, , , :

which gives the result.
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4.4. Summary

In this chapter, we introduced the concept of schemas and described what it

means for a schema to be correct. We defined C-schemas and proved that they are

correct with respect to C-histories. In the next chapter, we use a C-schema to

develop an efficient implementation of distributed objects.

I

d



CHAPTER 5

Implementation

5.1. Introduction

In this chapter, we use a C-schema to develop two implementations for distri-

buted objects - a ptggybacked implementation and a conctirrWt one. In both imple-

mentations, the result of an invocation is returned as soon as it is executed at the

local site, without requiring the user to wait for a communication with remote

sites. The latency described in Section 1.2 is thus eliminated. The information

sent between sites by the piggybacked implementation is added to messages

already being used by the scheduler for synchronization. This is an immediate

advantage in systems where the number of messages in the system is a dominant

factor in system performance, because the piggybacked implementation requires no

additional messages.' The concurrent implementation is a modification of the pig-

gybacked one in which information about invocations is exchanged between sites in

parallel with the execution of other operations. This implementation is intended

for use in systems where the number of messages sent is not a major constraint.

Its advantage is that it leads to a more even distribution of work than does the pig-

gybacked implementation.

'In practice it is not possible to piggyback arbitrary amounts of information on
existing messages without causing them to be fragmented into a number of smaller
packets for transmission. Thus there could be iome additional cost. We show later
how to keep the amount of information piggybacked small.

43
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5.2. The piggybacked implementation

In the piggybacked implementation of an object 0, a component is placed at

each of the sites in Accessibleo . Each component has a copy of DATA o and the

definitions of operations in OPo, and can independently perform operations on its

copy of data. When an invocation is scheduled at a site, the component at that site

performs the requested operation uring its copy of data, and returns the result

immediately. It then instructs each of the other components to perform the same

operation on their copies. Components are informed of invocations scheduled at

other components in such a way that the resulting implementation corresponds to a

C-schema. The correctness of a C-schema (Section 4.3.4) implies that the results

returned by the individual components are consistent with the specification of the

object as a whole.

When an invocation is scheduled at a site, it is assigned a timestamp. Times-

tamps have the property that of any two invocations scheduled at the same site,

the one scheduled earlier has a smaller timestamp. The timestamp of an invoca-

tion, with the site name appended, is called the inocation-ID. Note that times-

tamps and invocation-ID's can be generated locally at each site, and require no glo-

bal synchronization. A notification for a particular invocation is a record contain-

ing the invocation-ID, the name of the object, the arguments for the invocation, and

the name of a destination site. Notifications are sent from the component where an

invocation is scheduled to each of the other components. When a component

receives a notification, it executes the named operation on its copy of data.
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In the piggybacked implementation, copies of notifications created at a site

are ordered according to timestamp and are piggybacked on all subsequent syn-

chronization messages sent from s. When a synchronization message arrives at a

site t, the piggybacked notifications are first processed in order. Then the syn-
chronization message itself is acted upon. For each piggybacked notification, the

following occurs. If t is the destination site for the notification, the notification is

delivered to the component at t, which executes the ri med operation. Otherwise, a

copy of the notification is saved, and is piggybacked on all synchronization mes-

sages that are subsequently sent from t. Thus, copies of a notification may travel

from site to site and may reach its destination by many different paths. Below, we

show how the invocation-ID's are used to ignore all but the first copy that arrives

at a site, and to purge copies of notifications from the system once a copy has

reached its destination. The method used is similar to the algorithm in [47].

5.2.1. Transmission of notifications

The algorithm followed at a site s to distribute notifications is shown in Fig-

ure 5.1. Each site .s maintains a buffer Outttti-. of outgoing notifications.

Outgoing, contains notifications originating at as well as copies that arrive at

en route to other destinations. A copy of a notification remains in Out tong., and

continues to be piggybacked on all outgoing synchronization messages, until site i

learns that the destination has received a copy.

Observe that if a notification n I created at carries a smaller timestamp than

another notification 2, also created at , then a copy of nj must be received at any

other site t before the first copy of n12 is received there. This is because if n1 does

k . .•.+--..• .. . .. . .. . .
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Whenever a synchronization message m is being sent from site s to site t:

- Piggyback on m a copy of all notifications in Outgotng,, in order.

* Piggyback the values of LargestSeen, and TheirLargest,.

When a synchronization message is received from site t:

- For each site v, accept all piggybacked notifications originating from c
whose timestamps are greater than LargestSeenj], and set the value

of LargestSeen jv] to the largest such timestamp.

. Process, in order, all notifications with destination s, and append all
other notifications to Outgoing.,, preserving their order.

*Set the values of ThetrLargest,[t][u] to the piggybacked values of
LargestSeen jvl].

• Set the value of TheIrLargests[L][w] to the larger of TheirLargest[uL][w]
and the piggybacked value of ThetrLargesttju][w].

Delete from OutgoLng, all notifications from site w to site L, with time-
stamps smaller than or equal to ThetrLargestjv]l[w].

Figure 5.1. Piggybacked implementation, as followed by site i.

not arrive first at t by another path, then a copy of rz will be piggybacked on the

same path of synchronization messages as n.,, and will be ordered before n.,.

Hence, if each site s keeps track of the largest timestamp it has observed on a

notification originating from each other site t, it can ignore all notifications with

smaller timestamps, as it must have already received a copy.

At each site i, the array element LargetSeen[L'] records the largest times-

tamp that s has observed on a notification originating from c. Notifications with

smaller timestamps are ignored by i. The array element TheirLargest,[ul[w]

*o-.
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records at .i the value of LargestSeen,.[w] at the time of the last message that v

sent to s. Site s deletes from Outgoing. any notification originating at t, with des-

tination v that carries a smaller timestamp than TheirLargestjvl[w], because L

must have already received a copy. For the case Lw = s, this means that s deletes

copies of any notification created at s that it knows to have been received at the

destination c.

5.2.2. Correctness

We now show that the piggybacked implementation corresponds to a C-

schema. A component executes operations in the order in which it creates

notifications or first receives them from other components. We must show that

whenever an invocation I is executed at a component, the invocations executed at

that component form a development that is consistent with the t-history specified

by a C-schema. 2 In other words, we must show that if we have two invocations i1

. and i on the same object such that 11 - ys 1.2, then i is executed before £. at all

the components. In Section 2.6, we observed that if i -"sys i2, then there is a

message path from iI to i2; that is, there is a sequence of messages from ., where 1

is scheduled to t, where t., is scheduled. The first message in this sequence is sent

from s after it is performed there, and the last one arrives at t before ._, is per-

formed. Each intermediate message is sent from the destination of the previous

one in the sequence, and the sending occurs after the receipt of the previous mes-

sage. Because such a message path exists, a copy of the notification for i will be

"Recall that a development is simply a sequence representing the order in
which invocations are processed at a component.

r -°2.-
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piggybacked along this path and will arrive at t before t, occurs there. (For the

case s = t, it is convenient to think of the scheduler as ordering consecutive invo-

cations at the same site by sending a message from that site to itself, though this

need not actually be implemented.) Hence, il will be performed before i, at site t.

We have seen that a copy of the notification for 11 arrives at t before i. occurs

there. At the other sites, if the notification for 11 does not arrive earlier by another

path, a copy will be piggybacked on the same sequence of messages that the

notification for 12 is piggybacked upon, and will be ordered before the notification

for t,. Hence, every other component will also execute t1 before i.,

This shows that the order in which invocations are performed at each com-

ponent is consistent with a C-schema. The piggybacked implementation is hence

correct when a C-scheduler is used.

5.2.3. Optimizations

A number of optimizations are possible. An obvious drawback is that

notifications are piggybacked on synchronization messages that might never lead to

their intended destination. This could be avoided if the scheduler indicates which

object a particular synchronization message refers to. For example, if a lock-based

scheduling method is being used, the objects corresponding to a particular lock

acquisition or release message are known. Notifications could then be piggybacked

only on those synchronization messages that refer to the objects in question.

Another optimization, which is simple to implement, is to not piggyback on aL!! message to a site t those notifications in Outgoing, that have already been pig-

: ::: :: :::: :: : : ::: :::: :: :: :: .:; • . , . ., . ... . . .. . . . . .. ... .
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gybacked on an earlier message to t, even if their timestamps are larger than

TheirLargest,[ c][ w].

The sizes of the buffers Outgoing, as well as the number of notifications pig-

gybacked can also be controlled by periodically broadcasting LastSeenz, to other

sites. This enables them to promptly update their values of ThetrLargest and dis-

card copies of notifications that have already reached their destinations. If this is

carried out frequently enough, the only notifications that should be in the buffers

are those in transit; that is, those for which the destination has not received a copy.

Broadcasting the values of LastSeen, however, adds to the message traffic in the

system.

5.2.4. Discussion

Let us consider the features of the piggybacked implementation. First, a com-

ponent can return the results of an invocation when it is carried out locally,

without having to wait for the other components to be notified of it. This elim-

inates latency. Second, no additional messages are required for communication

between components: all the necessary information is piggybacked on messages

already used by the scheduler for synchronization. Third, the implementation is

independent of the algorithm used by the scheduler, provided that it falls into the

class of C-schedulers. Even if the scheduler uses information like the semantics of

operations, the current state of objects, or the arguments for a particular invoca-

tion, the messages it sends are sufficient for the implementation to be correct.

The piggybacked implementation shows that if data are to be accessed from

multiple sites in a distributed system, they can be replicated at these sites in a way



50

that requires no extra cost in terms of latency or number of messages. It must be

pointed out that a scheduler that permits access to an object from multiple sites

may have to use a large number of messages for synchronization. This, however, is

a cost resulting from permitting distributed access to data, and is independent of

whether data are replicated or not. The piggybacked implementation demonstrates

that the advantages of increased availability in the prese-,ce of failures and the

benefits of placing a copy of data at sites easily accessible by users need be bal-

anced only against the costs of storing multiple copies of data and of having to pro-

V' cess more than one copy. These costs are unavoidable if data are replicated.

5.3. The concurrent implementation

The piggybacked implementation has the following property. A synchroniza-

tion message arriving at a site to schedule an invocation t for execution may have

a large number of notifications piggybacked on it. One result is that syr.?hroniza-

" tion messages may become very large. Moreover, the execution of i will be delayed

until all the piggybacked notifications have been processed and all invocations

ahead of i have been performed. Note that this delay is different from the latency

described earlier, which was a wait for a message to be transmitted to a remote site

and for a reply to be received. The delay described here is a wait for local process-

ing to take place, which usually takes less time than that required for message

transmission. Nevertheless, this bursty pattern of execution, where a large

number of operations may have to be executed when a synchronization message

arrives and relatively little is done at other times, could lead to inefficient use of

computational resources. In systems where this is a performance issue, and where

V .2 . . . . . --..- ". ,.. - . , . - • . . .. . . ... --
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the number of messages in the system is not a major constraint, the concurrent

implementation gives better performance.

In this variation, an invocation descriptor is piggybacked on synchronization

messages. A descriptor for an invocation consists of the invocation-ID and a desti-

nation site. Notifications are transmitted directly to the destinations using an

atomic broadcast, which has the following properties.

1. The data broadcast are either received at all operational destinations, or at

none at all, even if site failures occur during the broadcast. Moreover, if an

atomic broadcast B 2 is initiated from a site after another atomic broadcast B 1

from the same site, and if the data broadcast by B 2 are received at its destina-

tions, then the data broadcast by B 1 are also received at its destinations.

2. If two atomic broadcasts made from the same site have destinations in com-

mon, the data are received at overlapping destinations in the order that the

broadcasts were initiated.

3. If the data from an atomic broadcast B, is received at a site before an atomic

broadcast B.) is initiated from that site, then the data from B, are received

b,-fore the data from B 2 at any overlapping destination.

A number of protocols have been proposed for implementing broadcasts with

these and similar properties [8, 14, 15, 41]. In [8], we describe a communication

sub-system that provides an atomic broadcast as a primitive operation, We denote

the initiation of the atomic broadcast for invocation i as .4tBca. Oi).

The concurrent implementation may be described in terms of two rules: a

broadcast ordering rule, which governs the order in which notifications are

-A2
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transmitted, and a block tng rule, which specifies when the execution of certain

operations must wait for others. As in the piggybacked implementation, the result

of an invocation is returned once it has been completed at the local site. The

atomic broadcast of its notifications may be initiated after an arbitrary amount of

time, but must follow the broadcast ordering rule: if an invocation 11 is scheduled

before another invocation i 2 at the same site, then AtBcasti l) occurs before

AtBcastu.,). This condition can be enforced locally. It is possible, as an optimiza-

tion, to package more than one notification into the same atomic broadcast, pro-

vided their order is observed at the destinations.

At a destination, operations are performed in the order that notifications are

received. Note that the concurrent implementation permits AtBcast(i) to be ini-

tiated any time after i is scheduled, provided the broadcast ordering rule is not

violated. Thus, notifications can be transmitted in such a way that they arrive at

their destinations spaced out over time, instead of bunched up behind synchroniza-

tion messages, as in the piggybacked implementation. This distributes the load

arising from executing operations, leading to fewer potential bottlenecks in the

utilization of system resources. The trade-off is the increased number of messages

in the system.

The blocking rule remains to be described. The piggybacking of invocation

descriptors on synchronization messages ensures that if il and t, are two invoca-

tions on the same object scheduled at sites .i and t respectively, and if i1 1.),

then a copy of the piggybacked descriptor for t, is received at t before t., is per-

formed there Section 5.2.2). However, because the transmission of notifications
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may be delayed arbitrarily, the notification for i1 may have not yet arrived at t,

and the corresponding operation not executed. The blocking rule is enforced if an

invocaLuon descriptor for, say, 11 has been received at a site but the corresponding

notification has not arrived. The rule states that in this situation, if any invocation

19 is scheduled at that site after the receipt of the descriptor for 11, then the execu-

tion of t, is blocked until the notification for i1 has been received and the

corresponding operation performed. Note that this kind of blocking occurs only if

the transmission of a notification is unduly delayed. If notifications are broadc. ,

promptly after invocations are scheduled, this situation should be infrequent.

5.3.1. Correctness

To show that the concurrent implementation corresponds to a C-schema, we

must show that if we have two invocations 1t and t, on the same object and if

z, "-sys i2, then il is performed before £.2 at all components.

Let t and 12 be scheduled at sites ; and t respectively There is a path of syn-

chronization messages from s to t such that a piggybacked descriptor for £t will

arrive at t before z2 is performed there. If the notification for il has not already

arrived at t, the blocking rule ensures that the execution of i.2 will be delayed until

the notification for 1 arrives and £1 is performed at t. Hence, it occurs before £i at

the component at t.

To show that i is performed before t.2 by the other components as well, we

consider two cases. If i = t, then the broadcast ordering constraint ensures that

AtBca.smt), is initiated before AtBcastmt.,). The properties of an atomic broadcast

ensure that the notification for £ arrives before that for £2 at all destinations, so 11
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occurs before i at all components. If i = t, we know from the argument above

that the notification for i l arrives at t before AtBcastm.) is initiated there. Again,

the properties of atomic broadcasts ensure that the notification for i reaches all

destinations before that for i2 . Hence, il is performed before t,, everywhere.

It follows that the concurrent implementation is consistent with a C-schema,

and is hence correct when a C-scheduler is used.

5.3.2. Discussion

The concurrent implementation, like the piggybacked implementation, elim-

inates latency. It spreads out the execution of remote operations over time, thus

leading to better utilization of system resources. The decision as to when to per-

foru, an atomic broadcast to distribute notifications is left unspecified. This opens

the possibility of a message scheduler being used to make this decision based on the

current load on the network, the state of the message transmission buffers, and

other factors. Such a message scheduler could have a significant influence on the

performance of the concurrent implementation.

The concurrent implementation of distributed objects makes a high level of

concurrency possible in replicated distributed systems. If implemented at a

sufficiently low level in the system, this concurrency may be obtained in a way that

is transparent to high level application programs. Thus, applications could perform

very efficiently without requiring complex programming to achieve this level of

performance. This idea is being explored in the ISIS 'system, currently being

developed at Cornell [6, 7, 9, 10].



CHAPTER 6

Failures

6.1. Introduction

One of the reasons for replicating data is to keep objects accessible when sites

fail. In this chapter, we discuss how the implementations of distributed objects

* -given in Chapter 4 may be integrated with a failure handling mechanism. We first

consider a roll-back mechanism, where a failure causes transactions to be undone

and re-executed using another copy of the data. We then discuss a roll-forward

mechanism, where transactions in progress at a failed site are completed by

another site that takes over from it.

The type of failures we consider are fazl-itop site failures [39]: a site fails by

halting all execution and sends no more messages; its failure is detectable by every

other site in the system. Any information about the current state of data stored at

a site is lost when it fails; when a site recovers, it copies up-to-date information

from operational sites. We do not consider failures where a site takes incorrect

actions while remaining operational or where a site sends out spurious messages.

This precludes network partitioning, where a set of sites remain operational, but

are unable to communicate with the other sites. The communication medium is

assumed to be error-free.

The abstraction of fail-stop sites can be implemented to a high degree of accu-

racy in software [401. A software layer, called the jaziure d#htector, monitors the

55



56

sites and the communication medium. It implements fail-stop sites by shutting

down any site suspected of malfunctioning, cutting off communication to and from

the site, and announcing to the rest of the system that the site has failed. In the

event of network partitioning, the failure detector may block activities until the

partition is resolved.

6.2. Roll-back recovery

Many transaction-based systems handle failures by undoing the effects of

ongoing transactions that have accessed failed sites. These transactions are re-

executed when the failed site recovers, or if the data are replicated, they are re-

executed using another copy of the data. In such systems, the changes made by a

transaction to the data of an object are not made permanent until the transaction

terminates, at which time it may commit or abort. A commit represents normal

termination, while an abort results in each object being restored to a state in which

it would have been had the transaction not executed. Thus, when a site fails, the

failure handler simply aborts all ongoing transactions that have accessed the failed

site. These transactions are later re-executed.

Hadzilacos has studied the scheduling problem in an environment where tran-

sactions may be aborted as a result of system failures, and discusses restrictions on

the class of serializable histories that are necessary or useful in this setting [231.

He observes that when failures can occur, the notion of serializability should be

defined in terms of ,'ommttod transactions; that is, it must account for the fact that

a system failure may occur at any time, leading to an abort of one or more of the

uncommitted transactions. The essential condition is that the system history must
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be commit serializable: the history formed by including only the committed transac-

tions should be serializable, and this must be true of any prefix of the system his-

tory as well. It is also shown that any history belonging to the class CPSR

(corresponding to C-histories in our model) is commit serializable.

Hadzilacos also discusses other properties desirable of a scheduler operating in

a system where transactions may be aborted. A system history is said to be recc -

erable if the abortion of any ongoing transaction does not invalidate the results of a

committed transaction. If a scheduler generates system histories that are not

recoverable, an abort could require that a committed transaction be undone, which

is undesirable and may even be impossible. Finally, he strengthens the notion of

recoverability to strictness. Strict histories have two advantages. First, they avoid

the problem of cascading aborts - the situation where the abort of one transaction

requires that other active transactions be aborted as well, because their actions

depended on some of the actions of the aborted transaction. While cascading aborts

does not compromise correctness, maintaining information about the dependencies

between transactions is a complex and inefficient task [20, 351. The other advan-

tage of strict histories is that a transaction can be aborted simply by restoring each

object to the state that it was in at the time the transaction started executing,

regardless of the actions of any concurrently executing transactions.

The results of Hadzilacos are a strong argument in favor of restricting the

scheduler to produce only strict histories, if transactions can be aborted. Hadzi-

lacos shows how to modify commonly used scheduling disciplines - two-phase lock-

ing, timestamp ordering, and serialization graph testing - so that they may be
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used in an environment where aborts may occur. The changes are minor, and

ensure that only strict histories are generated. Since the result we proved in

Chapter 4 holds for any C-scheduler, it remains valid when such changes are made.

We now outline how aborts can be included in the model of Chapter 2. Each

object is considered to have two special operations: begin and abort. Invoking

abort(Tid) restores the state of the object to the state that existed when beginTic)

was invoked. Hence, if the scheduler generates only strict histories, a transaction

may be aborted by invoking an abort operation for every object it accesses. To

allow for this, the set of all possible transactions TR.-LVS is extended as follows.

Each transaction T in TRANS is preceded by an invocation of begin for each

object that the transaction accesses. Further, for each transaction T in TRANS

and each invocation i in T, a new transaction is added to TRANS, which invokes

an abort operation after i for every object that T accesses, and has no subsequent

invocation. This reflects the fact that a transaction may be aborted at any time

during its execution because of a failure. To the scheduler, which we assume gen-

erates only strict histories, begin and abort invocations appear as invocations of

normal operations.

A roll-back recovery mechanism such as the one described above can be used

in conjunction with a piggybacked or a concurrent implementation of objects in

much the same way that it can be used with a synchronous implementation. It

may appear that the implementation could be incorrect in the presence of failures

because a piggybacked notification or descriptor could arrive at a site n rute to

another, and be lost at the intermediate site if the site fails. However, if an invoca-
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tion is scheduled after a failure, there must be some path of synchronization mes-

sages that leads to it from every invocation ordered before it, otherwise the execu-

tion could be incorrect. The required notification or descriptor will reach its desti-

nation along this path, even if copies along other paths are lost.

A minor modification may be required, depending on how transactions are

aborted. If abort operations are invoked independently from the normal schedul-

ing mechanism, then it is possible for a notification from an aborted transaction to

arrive at a component after the transaction has been aborted there. If the transac-

tion ID's are included in notifications, such notifications can be detected and

ignored. This problem does not arise if transaction aborts are integrated with the

normal scheduling mechanism.

6.3. Roll-forward recovery

Aborting and re-executing transactions is just one way of handling failures

An alternative, especially when data are replicated, is to provide a roll-forward

mechanism. By this we mean that transactions in progress at a site that fails are

'K continued and completed by another site. Recovery schemes along these lines are

presented in [10, 391. The failure of a site is thus masked from a user except

perhaps as an increase in response time when a failure occurs), unless all the .-ites

where a piece of data is replicated happen to fail. This, however, should occur rela-

tively rarely.

,7 When a roll-forward scheme is used in conjunction with a pig-ybacked or cn-

current implementation, a number of problems arise. These are mainly due to the

fact that the failure or recovery of a site can be detected at different time, and in

-- ." .. :: _ _-* .... " . ... .- ' .
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differing orders by other sites in the system. Despite this, sites must react con-

sistently to the failure and provide correct responses for ongoing transactions. We

illustrate the problems by means of a few examples.

Assume that one of the invocations of an ongoing transaction is scheduled at a

site that subsequently fails. At another site, a component of the invoked object

may observe any of the following outcomes.

1. The notification for the invocation arrives, and the failure is detected later.

2. The failure is first detected, and the notification arrives later.

3. The failure is detected, but the notification never arrives (because the site

failed before sending the notification).

If a component detects the failure and ,vishes to continue execution of the

transaction, it cannot tell whether a notification from the failed site will arrive or

not i e. it cannot distinguish between cases 2 and 3). Also, if some of the com-

ponents receive the notification before detecting the failure (case 1) and others

receive it after detecting the failure case 2), the actions they take must not lead to

inconsistencies in copies of the object's data.

Another kind of problem is exemplified in the following scenario. Assume that

it is agreed that the operational component with the lowest numbered ID takes

over, completes and responds to invocations interrupted by a site failure. Let an

invocation be scheduled at site . which subsequently fails. The lowest numbered

component, say at iite '. c,)mpletes the invocation. Assume that t also fails. If the

component that now has the lowest ID detects the failure of site t before that of site

i, it cannot know that ' took over from i and completed the invocation. Hence, it
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would incorrectly re-execute the invocation and attempt to provide a second

response.

The order in which recoveries, not just failures, are detected is also an issue.

Recall that if a site fails, it loses all information about the current state of data.

Hence, the Lsual action taken by a component when it recovers is to obtain an up-

to-date copy of data from an operational component. For the recovered component

to continue to behave correctly, it must receive notifications of all subsequent invo-

cations scheduled at other components of the same object. However, if the other

components detect the recovery at different times, they may neglect to send the

recovered component notifications it should receive.

The problems described above arise when sites observe failures and recoveries

at different times and in different orders. ' ilese situations are handled easily when

a synchronous implementation is used for objects, because components coordinate

their actions for every invocation. In a non-synchronous implementation, however,

components are permitted to get out of step with each other, and the timing and

order in which failures and recoveries are observed becomes an issue.

One solution is for the components of an object to run an agreement protocol

each time a component detects a failure or recovery. They can then agree on the

status of outstanding notifications and take a consistent set of actions to handle the

failure or recovery. Another solution is to integrv-te the failure detector with the

communication sub-system used by the scheduler. In [81, we describe such an

approach. Our communication sub-system provides a set of broadcast primitives

that order message delivery with respect to failure detection and recoveries. For
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example, it is not possible for data sent in the same broadcast to a set of sites to be
received at some of the destinations before a failure is detected there, while arriv-

ing at other destinations after the same failure is detected at those sites. More-

-,> over, each site observes failures and recoveries in a consistent order. The effect is

to serialize failure and recovery decisions relative to other events in the system.

With such a communication sub-system, problems such as those described earlier

do not arise when a piggybacked or concurrent implementation is used. An addi-

tional advantage of using this communication sub-system is that it makes recovery

protocols very simple to describe and program. These advantages have prompted

us to re-implement the ISIS communication sub-system along these lines.

6.4. Conclusion

- We have indicated how the piggybacked or concurrent implementations of dis-

tributed objects may be integrated with a roll-back or a roll-forward recovery

mechanism. With the former, little modification is required. The latter requires a

protocol that ensures that all sites have a consistent view of the timing and order

of failures and recoveries. The existence of such protocols justifies our claim that

the methods presented here are applicable in a wide range of fault-tolerant sys-

tems, and not just fault-intolerant ones that happen to be distributed.

II1,



CHAPTER 7

Performance

-7.1. Introduction

The piggybacked or the concurrent implementation of a distributed object

offers an advantage over a synchronous one because it does not incur a latency

cost. To obtain a quantitative measure of this advantage, we compared the perfor-

. - mance of a concurrent implementation with that of a synchronous one. Rather

than building a system of distributed objects from scratch, we modified an already

existing prototype of the ISIS system and carried out our measurements in this

:" context. The figures we present should not be taken as an absolute measure of the

performance obtainable from a concurrent implementation, because they include a

large overhead arising from the ISIS system itself. They are, instead, intended to

compare the performance of the concurrent and synchronous implementations,

other things being equal. We are pleased to report that the concurrent implemen-

tation performed significantly better. When stripped of the overhead of the ISIS

. -system, performance gains should be even higher.

7.2. The ISIS system

The ISIS system, under development at Cornell, aims to aid the construction

of fault-tolerant software. It automatically converts fault-intolerant specifications

of objects into fault-tolerant implementations. ISIS operates by transforming an

object specification into a resdlient object: an implementation of a distributed object

63
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Object specification 1 High-level fault- Presentation
language tolerant services layer

Capability Name- External Object Object
manager space interface types layer

Object create/delete, RPC. lock acquisition, Fault-tolerant
read/replicated write, commit/abort, kill layer

BCAST OBCAST GBCAST primitives

editig TakspUimities

Tasks Vprontak Transactional utlte
editing lock manager record alloc.

Failure detection, reliable site-to-site communication Low level
facIiTP/es

TCP /1P packet transport

Figure 7.1. ISIS system architecture

that continues to accept and respond to invocations despite site failures. In a resi-

lient object, data and programs are replicated at more than one site and actions at

these sites are coordinated in a way that enables operational sites to continue to

operate correctly even if one or more sites fail. The details of replication, the proto-

cols used to maintain the consistency of replicated data, and the failure handling

mechanisms are all hidden from a user of ISIS. A user specifies a resilient object
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in much the same way as he or she would program a fault-intolerant object. This

enables a relatively inexpert user to build a fault-tolerant application. Details of

the ISIS system can be found in [6, 7, 9, 10].

7.3. The ISIS prototype

A prototype of the ISIS system has been operational since January 1985. It

runs on top of 4.2 UNIX on a cluster of 5 SUN 2,'50 work-stations, interconnected

by a 10 Mbit's Ethernet. Figure 7.1 shows the hierarchical architecture of the ISIS

svstem. The lowest level uses a site-to-site windowed acknowledgement protocol to

provide sequenced, (almost) error-free message transmission. It detects site failures

using timeouts and runs a protocol to ensure that all sites observe site failures and

recoveries in a consistent order. On top of this layer are system utilities, which are

used to implement broadcast primitives with different ordering properties. Resi-

lient objects reside on top of this layer. Some of the system services like a name-

space and a capability manager are built as resilient objects.

In UNIX, processes and inter-process communication are relatively expensive.

Hence, a single system process is used at each site to handle functions common to

all resilient objects. Also, only one process is used at each site to implement all

objects of the same type, as in L341. This process is called a type manager and mul-

tiplexes its time among all the objects of that type. A new process is created only

when a new object type is installed at a site. Utilities to load and unload type

:nanagers are provided by the system process.

it- 7
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7.4. Performance measurements

To measure the performance of the concurrent implementation, the system

was configured so that objects could function either in a synchronous or in a con-

current mode. In the synchronous mode, a message is transmitted to all com-

, ponents of the object for each operation (or sub-operation), and the next operation is

executed only after an acknowledgement is received. This ensures a consistent

order of execution at each component. In the concurrent mode. the method of Sec-

tion 5.3 (the concurrent implementation) is used for all resilient objects. The

implementation in ISIS differs from the method as presented here in one respect.

Because of the way ISIS is constructed, each operation is broken up into read and

write sub-operations before being executed. This results in more than one

notification being sent for each invocation. The additional message overhead

makes the performance of the concurrent implementation appear poorer than it

should be. Table 7.1 presents some general performance measurements for the sys-

tem, to put the later figures for object implementations into perspective.

Table 7.1. General performance figures

Broadcast (delay till reception) 10 ms

RPC to object (local site) (delay till task begins) 30 ms

RPC to object 'remote site) (delay till receipt 40 ms
of acknowledgement)

'.
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In Table 7.2, we see the results of measurements made on four objects: a file

with read and write operations, a directory with bind and lookup operations, a

stack with push and pop operations, and an indexed file with add and lookup

operations. In each case, we measured the average time to execute 25 invocations

of the designated operation in both the modes. The read operation for the file

object and the lookup operations for the directory and indexed file objects are

read-only operations. They. are implemented in a way that does not require access-

ing a remote copy; hence, the concurrent implementation does not affect perfor-

* .marice. The first time one of the other operations is executed, ISIS requires that a

Table 7.2. Performance of the concurrent implementation

OBJECT TYPE OPERATION INVOCATIONS /SEC.

1 site 2 sites 6 sites
sync. conc. sync. conc. sync. conc.

file read 13.0 n.a. 11.0 n.a. 11.0 n.a.

write 4.2 12.5 1.3 11.0 0.8 9.0

directory bind 2.9 6.3 0.9 6.3 0.6 5.0

lookup 11.0 n.a. 10.0 n.a. 11.0 n.a.

stack push 2.7 9.2 1.1 9.3 0.5 9 6

pop 3.3 9.2 1.7 10.5 1.0 8.9

indexed-file add 1.6 3.8 0.5 5.0 0.3 2.3

lookup 9.5 n.a. 9.5 n.a. 9.5 n. a.



68

write lock be acquired at remote components. The time taken to acquire the lock is

averaged over the remaining 24 invocations, which occur within the same transac-

tion and do not have to wait.

7.5. Discussion

The figures show that the concurrent implementation results in a significant

improvement in performance when compared with a synchronous implementation.

Performance gains varied from 200% to 1000% in terms of the number of invoca-

tions executed per second. Our figures for the concurrent mode are better even in

the single site case because the concurrent implementation was used to maintain

message routing tables in the type managers. An important observation is that the

performance of the synchronous implementation degrades rapidly as the number of

sites is increased, while that of the concurrent implementation decreases only

slightly. This means that the perceived performance of a replicated object accessi-

ble from a number of sites can be made comparable to that of a single-site (non-

replicated) object. Although these results are not surprising in the light of the way

in which the concurrent implementation works, it is indeed encouraging to see that

the constraints of a real-life system do not invalidate our expectations.

One interesting observation that resulted from our tests was that as the rate

of performing operations was increased, the buffering of notifications became a

bottleneck. This is in keeping with our remark in Chapter 4 that message schedul-

ing could have an important influence on the performance of the concurrent imple-

mentation.
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These experiments by no means constitute an extensive test of the method.

Nevertheless, they suffice to show that considerable performance benefits can be

obtained from the concurrent implementation of replicated objects. The measure-

nments include the overhead of the ISIS system. Furthermore, because the ISIS

system is still only a prototype and is built on top of UNIX, it is not tuned for high

performance. The multi-process structure imposes a substantial scheduling and

inter-process communication overhead. Also, the performance of the remote pro-

cedure call connections is suboptimal, primarily because the SUN version of UNIX

does not support changes to the IPC buffer size. Even better results can be

expected in a system that is fine tuned for high performance.
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CHAPTER 8

Conclusion

8.1. What have we achieved?

The main result of this work has been to demonstrate that data may be repli-

cated in a distributed system without incurring the cost of latency We first

presented a general model for distributed systems and extended the database con-

cepts of conflicting operations and serializability. We then used this model to show

that in a replicated object, operations on remote copies of data may be decoupled

from local operations, so that the perceived performance is comparable to that of a

non-replicated object. In addition, we showed that the implementation can be done

in a way that requires no more messages than a single-site object accessed from

more than one site. Finally, we validated our claims by testing out the method on

an actual system.

Our work shows that if data are being accessed from multiple sites in a distri-

buted system, then it can be replicated at these sites, while attaining high levels of

concurrency. The implication is that in such a system, the only costs that must be

incurred in order to obtain high availability and fault-tolerance by replication are

the costs of storing more than one copy of data and local processing costs.

70
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8.2. Where do we go from here?

There are two general directions in which this work may be continued. The

first relates to the choice of serializability as our correctness criterion. The other

deals with the restriction to asynchronous systems.

8.2.1. Correctness constraints

It has been observed that in some situations, serializability is too restrictive a

criterion for correctness [21, 30]. We have adopted serializability as our correctness

constraint for the following reasons. To begin with, our notion of serializability is

more general than in database literature - it is really a requirement that there be

some form of atomicity in the system. Atomicity is a natural and simple constraint

to require in a distributed system. A closer look at our results, however, reveals

that our methods of replicating data depend only on the fact that conflicting opera-

tions are ordered relative to each other. They do not require that this ordering

*-,.occurs in a way that leads to serializability. This opens the possibility that the

methods can be used without change in a system where a weaker form of correct-

ness is being enforced. Characterizing this weaker form of correctness formally

and demonstrating situations where such a correctness constraint may be useful

remains an area for future work. The inverse problem - that of adapting the

metbnds given here to suit a system with a given tweaker) correctness constraint -

is another such area.
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8.2.2. What if the system is synchronous?

In an asynchronous system, the only way in which a site becomes aware of the

completion of an event at another site is by receiving a message from the latter

site. Our implementations make use of these messages to transfer information

needed to keep the copies of replicated data consistent. In a system where a syn-

chronized clock is available, the mere fact that a certain period of time has elapsed

could be used to infer that an event has taken place at a remote site. For example,

if all sites make backups of their respective file systems at 5 o'clock every day, and

if backup operations take no longer than half an hour, then at 5:30 every site

knows that every other site must have completed a backup for the day. Thus in a

synchronous system, information can be gathered without explicit message

transfer. In [33], Lamport discusses the relation between using synchronized clocks

and using messages to order events.

An assumption in the example above is that the behavior of every site is

"known" to every other site, otherwise they could not have concluded that the back-

ups were done. The concept of "knowledge" in a distributed system has been stu-

died in [13, 24]. It is shown that the information available to a site in a distributed

system is a consequence of "common knowledge" at the time the system is initial-

ized and of knowledge gained by the transfer of messages between sites. It would

be interesting to study whether the results presented here can be expressed on the

basis of "knowledge transfer" rather than message transfer, and thus made applica-

ble to synchronous systems.
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