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® dition. The Gaussian closure solution gives a quasi-stationary response in
the form of fluctuations between two limits. However, the non-Gaussian
closure solution results in a strict stationary response. The influence of
random time fluctuations in the system damping and stiffness coefficients
is also examined. It is found that the damping variation has very small
effect on the response characteristics, while the stiffness variation shows
a pronounced effect on the response mean squares for both solutions.

!
»
L
h

Accesion For

NTIS CRA& \}_‘i

DTIC TAB 0
U :annouced ] '
J. sttication =
BY . .. e e
Dt ip. tio- |

Availebuity Codes
T Avé.i ardjor
Lit SpCial

| SRIRTLISEGTRIAY || FOF NI I‘ET“’"‘:‘ Ty

1~ (PPN |- W NN

1

AN}

PES

LIPRIY > UL L

Ar-

.. . . . B I S T P S
R N U PP, T U, Sy ST T, S oy Sy L g WPy e g W T, L, T, W O S




RS A Sl A i Sl Rtal Ml ogl Sall i A o n b s At ma g ~

®

First Annual Report
. on

STOCHASTIC NON-LINEAR FLUTTER
OF AEROELASTIC STRUCTURES
®
October 21, 1985
o
® Prepared for
Air Force Office of Scientific Research
Grant No. AFOSR-85-0008
o
Prepared by
® Raouf A. Ibrahim
Department of Mechanical Engineering

Texas Tech University
'Y Lubbock, Texas 79409
o -

b

o 4



1.

ABSTRACT

~” The linear and non-linear random modal interactions of a two degree—of-

freedom aeroelastic structure are examined by using the Fokker-Planck

i R L e T

equation approach. A general differential equation describing the evolu-

tion of the response moments is derived for any moment order. For the case

of linear modal interaction this differential equation is found to consti-

tute a closed set of moment equations. The stationary response is deter-

mined for various system parameters. It is found that the linear
interaction results in a suppression of one mode when the uncoupled fre-
quencies of the structure are close to each other. For the case of non-
linear modal (known as autoparametric) interaction the differential
equation of the response moments forms an infinite coupled set of equations

which are closed via two closure schemes. These are the Gaussian and

e
st T

non-Gaussian closure schemes/i The Gaussian closure scheme requires 14
coupled differential equations in the first and second order moments, while
the non-Gaussian closure leads to 69 differential equations in the first
four orders of response moments. The two sets are solved by numerical
integration. Both solutions exhibit an energy exchange between the two
modes in the neighborhood of the internal resonance condition. The
Gausnisan closure solution gives a quasi-stationary response in the foram of
fluctuations between two limits. However, the non-Gaussian closure solu-
tion results in a strict stationary response. The influence of random time
fluctuations in the system damping and stiffness coefficients is also exa-
mined. It is found that the damping variation has very small effect on the

response characteristics, while the stiffness variation shows a pronounced

effect on the response mean squares for both solutions. 3
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NOMENCLATURE

coefficients of the Markov vector equations (III.7)
coefficients of equations (III.7)

coefficients of the Markov vector equations (III.7)
Brownian motion

coefficients of equations (III.7)

generalized damping coefficient (i =1, 2)

spectral density of the support motion acceleration
spectral density of the random damping fluctuation Ci
spectral density of the random stiffness fluctuation K,
coefficients of moments matrix (equation II.17)
expectation o

Young's modulus, or coefficients of equations (II.10)

coefficients of moment equations (II.17)

coefficients of moments matrix (equation II.17)

elements of a column matrix equation (IV.2)

coefficients of equations (II.10)

elements of the parametric excitation matrix equation (IV.2)
area moment of inertia of beam's cross section (i =1, 2)
generalized stiffness coefficient (1 =1, 2)

beam lengths (i = 1, 2)

elements of the matrix of parametric excitation

coefficient of the non-homogeneous part of the excitation

tip masses (i = 1, 2)
generalized mass (i =1, 2; J =1, 2)

joint moments of response coordinates of order i+j+k#
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joint (transition) probability density function of the response

coordinates
generalized coordinates

axial shortening of the beams (i = 1, 2)

root-mean-square of the horizontal beam where the vertical

beam is locked

modal matrix

frequency ratio

time (seconds)

white noise

state space coordinates

non-dimensional normal coordinates

normal coordinates (i = 1, 2)

Dirac delta function

non-linear coupling parameter

damping factor of normal coordinates

joint cumulant of order i

mass parameter defined by equation (II.2)
random variation in the damping coefficient C;
random variation in the stiffness coefficient Ki
random support acceleration

spectral density

non~-dimensional time = t

“1
elements of eigenvectors
non-linear terms in equatiomns (I.1)

normal mode frequencies

local beam frequencies
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2. RESEARCH OBJECTIVES

2.1 BACKGROUND

T AR W W W e ———

The dynamic behavior of aeroelastic structures is of main concern to
aeronautical engineers who are involved in the design and reliability of

aerospace structures. These structures are usually subjected to aerodyna-

mic forces which interact with inertia and elastic forces. The interaction
of these forces may give rise to a number of aeroelastic phenomena. For
example, the classical flutter (known also as self-excited oscillation) can
occur due to a linear interaction of these three forces. Classical flutter
may also involve the coupling of two or more degrees of freedom. However,

the linear mathematical modeling fails to predict a number of observed

®

dynamic characteristics such as amplitude jump, limit cycles, parametric

instability, internal resorance, and saturation pheaomenon. These comnlex

dynamic characteristics owe their origin to the inherent non-linearity of
the structure.

The amplitude jump, limit cycles, and parametric instability are common
features of non-linear single- and multi-degree-of-freedom systems.

Parametric instability takes place when the external excitation appears as

a coefficient in the homogeneous part of the differential equation of
motion. Lii occurs when the excitation frequency is twice (or =wltiple) of
the system natural frequency. Internal resonance and saturation phenomenon
may occur only in non-linear dynamic systems with more than one degree-of-
freedom. Internal resonance implies the existence of a linear relationship
between the structure natural frequencies and results in a non-linear
interaction of the normal modes in a form of energy exchange. Under exter-

nal excitation, the mode which is directly excited exhibits in the

K
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[ J
beginning, the same features of a single degree-of-freedom system response 5
"o 3
| and all other modes remain dormant. As the excitation amplitude reaches a
) certain critical level, the other modes become unstable and the originally .4
| excited mode reaches an upper bound. In this case this mode is said to be ‘1
° . . , 4
saturated and the energy "spills over” into other modes. The non-linear ]
-
modal interaction is referred in the literature as autoparametric interac- 3
tion since one mode acts as a parametric excitation to another mode. The -
@ . . . . .
non-linearities in any structural component may arise from two main sources:
K
1. Geometric non-linearities due to large deformations such as large
® curvature, end shortening, and inertias due to the presence of con-
centrated or distributed masses.
2. Material properties which exhibit non-linear or multi-valued
[ . . . . .
stress-strain relationships. The values of the material properties
may also experience a certain degree of uncertainty due to material
heterogeneity or random temperature fluctuations. Thus the stiff-
L J . L .
ness and damping coefficients become random variables or random
processes.
® It is clear that the aerocelastician must include the inherent structural
non-linearities in his predictive modeis in order to understand the origin
of any unusual structure behavior under various types of aerodynamic
A
® loading. Under deterministic unsteady aerodynamic forces these phenomena 4
-
A
can be predicted by one of the standard techniques of non-linear differen- RS
N
tial equations. However, aerospace structures are usually subjected to .
N
oY
® turbulent air flow, and the analyst is encountered with aerodynami. loads -1
-
-
° 24
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which are random in nature. These loads vary in a highly irregular fashion
and can be described in terms of statistical quantities such as means, mean
square, autocorrelation functions, and spectral density functions. The
dynamic analysis of non-linear aeroelastic structures under random loading
is not a simple task, and it requires an advanced background of probabi-

listic theory and stochastic differential equations.

2.2 MAIN OBJECTIVES

In an effort to understand the dynamic behavior of non-linear
aeroelastic structures under random excitations a research program con-
sisting of analytical and experimental investigations is currently sup-
ported by a grant from the Air Force Office of Scientific Research (AFOSR).
Two and three degree-of-freedom systems possessing internal resonance
are considered. The experimental investigation will demonstrate the
existence of non-linear phenomena and will provide guidelines for the vali-
dity of the theoretical analysis. Based on the original proposal (February

1983) and its amendment (July 1984) three main phases were outlined. These

are:

Phase 1: Investigation of the effects of structural non-linearities
in th~ neigzhhorhood of internal resorance conditions when

the structure is subjected to random aerodynamic loading.

Phase 1II: Investigation of the effects of damping and stiffness
uncertainties in the absence of internal resonance con-

ditions.
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Phase III: Investigation of the combined effects of damping and stiff-
ness uncertainties in the presence of internal resonance

conditions.

The experimental investigation will be carried out on two models emu-
lating the analytical models. The models will be excited by a medium size
electrodynamic shaker of 1200 1b maximum thrust through a GenRand random
noise generator. The excitation will be Gaussian filtered wide band pro-
cess whose band covers a frequency range greater than the normal mode fre-
quencies considered in the analytical models. The excitation frequency
band will be adjusted such that higher modes will not be excited.

The excitation and response processes will be measured and recorded
simultaneously on a magnetic tape recorder. The mean squares and probabi-

lity density of the response will be estimated for various values of inter-

nal resonance detuning. These results will be very valuable in
demonstrating how the normal modes are interacting under random excitation.
In addition, the measured probability density will be inspected for its non-

normality when the excitation is Gaussian.

2.3 SUMMARY OF MAIN RESULTS -]

The linear and non--linear randow modal interactions of a two degrece-of-
freedom aeroelastic structure are examined by using the Fokker -Planck
equation approach. A general differential equation describing the evolution
of the response moments is derived for any moment order. For the case of
linear modal interaction this differential equation is found to constitute
a closed set of moment equations. The stationary response is determined

for various system parameters. It is found that the linear interaction




results in a suppression of one mode when the uncoupled frequencies of the
structure are close to each other. For the case of non-linear modal (known
as autoparametric) interaction the differential equation of the response
moments forms an infinite coupled set of equations which are closed via two
closure schemes. These are the Gaussian and non-Gaussian closure schemes.
The Gaussian closure scheme requires 14 coupled differential equations in
the first and second order moments, while the non-Gaussian closure leads to
69 differential equations in the first four orders of response moments.

The two sets are solved by numerical integration. Both solutions exhibit
an energy exchange between the two modes in the neighborhood of the inter-
nal resonance condition. The Gaussian closure solution gives a quasi-
stationary response in the form of fluctuations between two limits.
However, the non-Gaussian closure solution results in a strict stationary
response. The influence of random time fluctuations in the system damping
and stiffness coefficients is also examined. It is found that the damping
variation has very small effect on the response characteristics, while the

stiffness variation shows a pronounced effect on the response mean squares

for both solutions.
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STATUS OF THE RESEARCH
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| CHAPTER I
)
® BASIC MODEL AND EQUATIONS OF MOTION
I.1 Two-Degree-of-Freedom System
Figure 1.1 shows a schematic diagram of a two-degree-of-freedom
® aeroelastic structural model which represents an aircraft wing with exter-
nal store. The model consists of two coupled beams of stiffnesses, k; and
k2’ and two tip masses, oy and m, . When the horizontal beam is subjected
® to a random motion £ (t), the two beams will move as shown in Fig. I.1l
with tip deflections 94 and Q9 respectively. By applying Lagrange's
*
equation, and including the effects of the axial shortening motions, 4
*
e and q, in the kinetic energy expression, the equations of motion are given
in terms of the generalized coordinates q and qy:
PY r“‘u T2l \ % ‘b 0\ w Kie 0 \a
+ +
My M| | %2 0 Coa| | 12 0 Koo | (92
[/
"m0 * 9 Y10
= - £(t) - (1) ]
L L 0 -4
21 22| | %2
¢ 2) ! L) -ji
|
)
{
wl(ql’qZ’ql ’qZ’.él v.‘.lz) .'
e _ =
wz(ql’Qqu]_ sQ29a1’.{12) (I'l)
®
7
®
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Fig. I.l1 Schematic diagram of two coupled beams with end masses m

and mz.
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where m1 1

12

12

ii

11

A Sadl waclt Sadil N B S AF S AN B ™ & JNNA R A A S Suld My

2
=m1 +m2 [1 + 2.25 (q) ]
)
= my, —1.52—1—m2, m22=m2
)
= 2.25 m, (—2-) Lip = +m,
L
1
m. m
2 2
=9 =1.5 = L. =1.2 =
21 7, 22 z,
= BEiIi i=1,2
g3
i
_ 1.44 ¢ 2 . .2
m =% (q] 4, + q,4])
%
1
+m {0452’2(-2_*_2 .-)+1-2( . +.2)
2 2 5 lqy W Tl T 9
3 2
1
+ 3 (4,4, + d.q, + 0.1 ")+1687522 2
£y 99 T 419 49 : ;qu a4,
1
0.45 (ve 2 . .. . 0.9 .2 2 .
- 92 |\q1q2 ha 2q1qu2) + 2‘12 (z‘zqz + q2 q'z)
41 L
02
2 .2 2 .. 1.44 .2 2 ..
+5.0625 (q,4] + ] q)) + E—Z(qlq1 + 4] 4}
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+ 1.6875 — (quql +aya) * o )
% 1*2 i
! y
V.o4b o L2 L 2. 0.45 .2
+ == (9,85 + 453,) + 5= 47y} i
L9 1

Non-linearities up to cubic order are retained in ¢, and by It is seen
that the equations of motion contain linear dynamic coupling since *

m,.#* 0, 1+ j. In addition, the support motion acceleration £ (t) enters

ij

the equations of motion as a non—-homogeneous forced excitation iloa(t) and

as a parametric excitation as given by the terms Ri;%(t)qi' The functions
121 and 12 include all nonlinear inertia terms. These can be subdivided
into two groups. The first group represents non-linear inertia of the same
mode such as q%al in the first equation. The second group represents auto-
parametric coupling (or non-linear interaction) such as qlﬁz in the first

equation. Here the acceleration ﬁz (which is an implicit function of time)

acts as a parametric excitation to 9 motion.
In deriving equations (I.l1) it was assumed that both damping coef-
ficients Cii and beam stiffness Kii are constant coefficients. In Chapter

4 these coefficients will be subject to random fluctuations.

"
3
1
d
!
Y
|

In Chapter 2, the linear modal interaction under random excitation will
be examined by dropping ] and bog. In Chapter 3, the non-linear modal

interaction will be investigated when the structure is tuned to the inter-

o AN A B s b

nal resonance condition wy = Z»l (where wy and wy are two eigenvalues of

the structure). Chapter 4 will treat the influence of random fluctuations

CIMERLs LT e

of the system parameters.
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CHAPTER II

LINEAR ANALYSIS

II.1 Introduction

The normal mode interaction of the two-degree-of-freedom system shown
in Fig. I.1 will be examined within the framework of the linear theory of
random vibration. In other words, the system response represented by
equations (I.1) will be analyzed after setting the non-linear functions
¥, and ¢, to zero. The normal mode frequencies and mode shapes will be
obtained first, and then the equations of motion will be transformed into

normal coordinates. These in turn will be written in the Ito type

stochastic differential equations [1,2].

The differential equations of the response statistical moments will be

derived by using the Fokker-Planck equation [l]. The Fokker-Planck

PP

equation is a partial differential equation which describes the evolution of
the system response probability density with respect to time and response
coordinates. In view of the linearity of the system equations of motionm,

the moment equations will form a closed set which can be solved numerically

I TX

by one »f the standard techuiques. The mean square of the respcnse moment
will be examined for a wide range of system parameters. The influence of

random parametric coefficients will also be examined.

I1.2 Normal Mode Analysis

By dropping the non-linear function by and by from the equations (I.1),

the system becomes linear with random coefficients:
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3
_‘
N
; - . - - .
e Dy myy | |9 ¢hp 0 9 k;p 0 9
+ +
By My [ 9 0 Cypll % 0 ko qz)
| ® (11.1)
u *10 11tz |4
'. = - £(t) - £(t)
¢ 0 a1 tm 1,
a _ il
|
Eo The following notations are introduced:
? 2 Ky
" w,, = — = local beam frequency
. ii  m,,
¢ ii
m
p=1- Elg ;gl = mass parameter (11.2)
11 22

where i = 1, 2
The normal mode frequencies w, and wq of the system can be obtained by con-
sidering only the homogeneous conservative part of equations (I1.1). 1In
terms of the mass parameter i1 and the local frequencies wyy and wy, the

r1atural frequencies are obtained by the expres<ion

2 1 (2, 2 2 . 2.2, 2 2412
Wi = gp luyy *uyy ® (] +03p)7 - delwy,) ' (11-3)

Figure II.1 shows the dependence of “’2/“’1 on wyy/wqy for various values

of the mass parameter yu.
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|
Equations (II.1) can be transformed into normal coordinates Yy via the
® coordinate transformation
94 y
- | r ! (I1.4)
P 92 _ 1 (72
1 1
where [R] = is the modal matrix,
® ¢1 2
1 1 represent the eigenvectors corresponding
and s
° to wy and Wo, respectively.
o1 ©2
b1 and ¢, are given by the expressions:
L
m
wz - mz w? ’ ?1;1_
1
¢y = - m - or m, 2o (11-3)
w2 . 12 m2 _22 2
1 m 22 m 4 91
o
m
2 2 wz . —2}—
Y11 T 92 %22
¢2 = _ or
® Y L2 T2 2
2 m 27 m 2
Figure II.2 demonstrates the normal mode shapes for mass parameter
u = 006[0, and Uzz = u)ll.
L
L]
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The following non-dimensional parameters are introduced
y y
T =uw,t s Y, = —l s Y, = —3
1 1 o 2 o
1 4
o (I1.6)
8! Wy
where q? is the root mean square response of the system when it is reduced

into a single degree-of-freedom represented by the horizontal beam with end
2

mass (m1 + mz). Thus, E[q?]l is the mean square response of the single-
degree-of-freedom system.

o
1

4% + 2 ; 2 0.
4, + 219114 + w9y w(te) (11.7)

The random excitation acceleration g(t) has been replaced by the zero

mean Gaussian white noise process W(t) whose autocorrelation function is

defined by the relation

R[At] = E[W(t)W(t +At)] = 2D §(At) (11.8)

where 2D is the spectral density of the random process W(t) and § ( ) is the
Dirac delta function.
Tie mean-square response of system (Il.7) is given by the well-known

solution [3]:

D
E[Q?J = ;**“jj‘
‘11 %n
o 2
Thus, we may select q; to be the root mean square of E[q?]: i.e.,
o D
9 = 3 (11.9)
21191
1E[ ] denotes expectation
: SRR O T
L O FR T U P L S A PR WO U W W WV AL, AT, W

''''' .
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The equations of motion in terms of the non-dimensional normal coor-
dinates Yi are
. ' o
Y+ 2,Y, 4 Y, = (B +e(ByY 4 E3Y2)]W(r)
" (11.10)

!
Y, + 2rg, Y, + r2Y = [G

) ,Yy > +e(G,Y, + C3Y2)]W(T)

1
These are two non-hcmogeneous stochastic differential equations which are
coupled through the parametric terms Ylw(r) and YZW(T). The prime denotes
differentiation with respect to the non—-dimensional time t. The coef-

ficients Ei’Gi are defined in Appendix A.

I1. 3 Response Moment Equations

The Fokker-Plank equation or the Ito stochastic calculus can be used to

generate the differential equations of the response moment as outlined by

Ibrahim [4]. .

Introducing the state variable transformation

1 1
Y X
2\ . )2 (I1.11)
h X3 .
v
2 X4,
equations (IT1.10) can be written in the state Markov form
Xy =Xy
X, = ¥
2 e (11.12)
X3 = - X - 2;1)(3 + (El + e Xy + EE3X2) W)
! 2
X4 = - r XZ - ZcerA + (G1 +eGyXy + eG3X2) W(t)

v
b

P = N

.
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¢
. The non-stationary Fokker-Planck equation of the evolution of the pro-
b,
l]. bability density of the response vector X is
K-
3
b
. 3p - _ 9 _ 2
: 5T (2'(,1') a—')q {X3PQ§:T )} 5—)(7 {XAP(NX,T )}
T
s -
! 3 2
- QT {[— r X2 Zczrxh] P(X,T )}
® 4
r»' .+D§3—{[E2+2€EEX + 2%E E,X, + ¢ 2EX2
L 2 1 17271 17372 271 :
: 3X ]
3 3 =
e 1
d g
2 2.2.2 N
T: + 2 °B,E,X X, + € EgX5] p(X,T)) (11.13) R
. R
32 -
3
- ®
+ 20 AT, {[E[6, +€(E[6, + E,6)X, +&(E;Gy + E40X, ]‘
ﬁ
2 2 2 2 2
+ e G X] + e7(E,Gy + EG )X X, +e E3G3X2]p(§,‘r )} 3
+Da———2 {[Gz+2ccx + 26, G.X, + €G22 #
17 5N 173%2 T & Mty "
3%, :
2A . 2.2,2
+ 2 76,0,X,%, + e c3x2]p(5,r )}
The following notation for the response joint moment
i Jioik
% s = I XX p(X,T)dX X, dX, X,
oL (11.14)
- i j k
E[ X[ X5X5X, ]

will be adopted.
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Premultiplying both sides of equation (II.13) by Xi’Xé—lXIBS(z and
intcgrating both sides over the whole space =<{X< gives the following

general moment differential equation:
Pk T oo getl,e T 5o ke

- k(m,

i+1,5,k-124 ¥ &%

11, 5,k,8°

2
LCETm k-1

rm,

2 1,j,k,2)

2

) 2
*RCeDD (Epmy gy o0 FEEEM L Gy

2,2
+ 2€E1E3mi,j+1,k—2,2 + € E2m1+2,j,k-2,12,

2E E.m + e 2E2n, )

* TR Egm i k-2 0 305, 42 k-2 2

+ 2AD[E Gymy g g gy + (ByGy + BpGdmyy Lo

2
F BBy + Bg6my it k-1,0-1 T8 E%0mi kel am1

+82EGm

2
* et (ByGy ¥ EgGodmy 541 k-1 01 3305, 542, k-1 ,4-1
j

2
+
€ E3G3mi,j+2,k-1,l-1]

+ 2eG.G

r a2
FRO-DD G L 192™51, 5, k2 -2

2.2
+ 2sGlc3mi’j+1’k’2_2 + ¢ G2m1+2,j,k,2-2

+ 2¢26.G.m + e 262m, ]

273™41, 541, k,2 -2 3™, 542, %,0 -2

(11.15)
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An inspection of equation (II.15) shows that the moment equations of any

order are consistent, that is, the moment equations of order n are not
coupled with moments of order greater than n and they can be solved analy-
tically.

The first and second order response moments are of main concern in ran-
dom response analysis. The first and second order moment equations are

generated from (I1.15) and the following stationary solution is obtained:

1000 = 0100 = 0010 ~ Mpoo1 ~ ©
010 = ®o101 = ©
m = rzm
0002 0200 (1I1.16)
Mo110 - "™1001
1 - r2

Mool © 2@, * w0, 1100

0000 P0200° ™1100 2T given by the solution of these three equations:

-
d  dy 44 000 d,
. e o3 0200 0 T 4 4 (11.17)
£ fp 100 ) f,

where di’ e fi are defined in Appendix B.

The solution of equations (II.17) for @000 and 15200 is shown Iin
Fig. 11.3 as a function of the frequency ratio wzz/m11 for various values
of the mass parameter pn. The response mean square (in terms of the genera-
lized coordinates) 1is obtained through the inverse modal transformation and

is plotted in Fig. II.4. Figures II.3 and I1.4 reveal that the mean square
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response exhibits a strong interaction in the neighborhood of the frequency
ratio w22/w11 = 1. The degree of interaction depends on the mass parameter
p which measures the degree of linear dynamic coupling. The interaction of
the two modes exhibits the linear vibration absorber characteristics known
in the deterministic vibration. It is also seen that as the mass parameter
p diminishes, the absorbing effect increases. For modest values of p < 1,
the first mode Y1 is suppressed and the second mode Y2 reaches its peak
value. Furthermore, the response of the main horizontal beam is that of a
single-degree—-of-freedom system outside the frequency ratio mzzﬁnll =1t
0(e), and the range of this frequency ratio is influenced by the mass ratio
parameter p as shown in Fig. IT.4.

In order to examine the influence of parametric random excitation on
the system response, the stationary solution was obtained by setting
lij’ i = 1,2 to zero from the moment equations. Figures I1.5 and II.6
show the mean square response in terms of the normal coordinates and
generalized coordinates, respectively. It is seen that the parametric
excitation has very negligible effect on the overall response level.
However, it is the system stochastic stability which is governed by the

parametric excitation [4].
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CHAPTER III

Y TRW VYV Y VOV . INeERr S P !

NON-LINEAR ANALYSIS

I1I1.1 Introduction

The linear analysis of the coupled aeroelastic structure examined in
Chapter 2 may be sufficient to describe the dynamic behavior of the system
as long as its motion is very close to the static equilibrium position.

However, the structure may experience new types of modal interactions when

®
i ke

the non-linear effects become significant. Of particular importance is the

i

non-linear coupling of the system normal modes. It is well known in the
deterministic theory of non-linear oscillations [5] that this type of non-

; linearity may give rise to the dynamic instability known as "internal

L
STt 'lﬂt‘—

. resonance.” Methods for studying non-linear effects in random vibration .
problems involve a number of difficulties in determining the response dyna- i?
.

mic characteristics {4]. These difficulties include the solution of the g

system Fokker-Planck equation and the problem of infinite coupled moment Z;
equations of the response coordinates.
Over the past few decades a number of closure schemes have been deve-
< loped [6]. 1In the present analysis two closure schemes will be proposed to
close the mc.nen: dynamic equations of the response coordinates. The first
scheme is based on the assumption that the response process is Gaussian
distributed under Gaussian excitation. However, the application of this
method to non-linear systems is not mathematically justified since the
response is non-Gaussian. Therefore, it is assumed that the excitation is
of small intensity and the response will not depart significantly from nor-

mality. The response process can then be described adequately in terms of

- ”
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the first and second order cumulants (semi-invariants), and all higher
order cumulants vanish. Cumulants are statistical functions which can be
related to the moments. For example, first and second order cumulants are
equivalent to the mean and variance of the response, respectively.

The second method is more accurate and includes the effects of the non-
normality of the response. Unlike Gaussian-closure methods, cumulants of
order higher than two will not vanish and will give a measure of the
deviation of the response from normality. To the first order approximation
third and fourth order cumulants will be significant to account for the
response non-normality while the fifth order cumulant will contribute less
and can be neglected. Consequently, one can express the fifth order joint
moments in terms of lower order moments. Hitherto, the present approach
has not been applied to multi-degree-of-freedom non-linear systems.

It is expected that new features of the response characteristics may be
obtained due to the system's inherent non-linearity. The influence of the
internal resonance condition will be examined for various values of the

system parameters.

II1.2 Theoretical Analysis

The non-linear equations of motion of the system (2.5), shown in Fig.

I.1, are
2’2 2 9’2 i f.. \} T T 4
m + m2(1 + z.zs(r) ) 1.5m, — q, ky 0 q,
1 1
+ .
22 . :
1.5m2 T m, q, 0 k2 q, Q
1
- 3
i 2 1 ]
m, + m 2.25m 2 1.5m 1 W P
b 2,2 o) ) L :
. .. 1 -
= - £(¢) - £(t) . -m, i
1

0 1.5m2 i 1.2m2 f; q, ¢2 :
(I11.1) 1
g
4
7
A
I
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where
g )
2 .2 1.2, - 2y L 0.3 e
by = 0.9 5 qpay ¥ 045 5§ + (4,9, + d) + 2= g,
3 ) 2
1 1
3
+ q(qlqz + qlqz)
0.3 1.2 .2 . 1.2 -
¥y T, Y% 4t 1Yy
3.1,
iti _
kl - T 1 - 1,2
i

Equations (III.1) can be written in terms of normal coordinates Yi via the

transformation
{a} = (r] {y} (111.2)
where modal matrix [R] was defined in section II.2.
Premultiplying equation (III.1l) by [R]—1 [m]—l, where [m] is the mass
matrix and using transformation (III.2), the equations of motion take the
form
— —1 . — - . — —d
1 0 Y1 2;1 0 Y1 1 0 Y1
+ +
. ' 2
0 1 ( Y2 0 2c2r Y, 0 r Y2
— 4 N - - — .J 3
(I11.3) ]
4
3 4 a3 | ! r
e -
§ =£"(1) + g (1) +e ]
[ —
\ by B b || T ba
3 — —
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where prime denotes differentiation with respect to the time parameter
T =Wt and r = mz/wl. A linear viscous damping has been introduced to ﬁ
account for energy dissipation of the system. The following non-
dimensional parameters have been used:
0 |
!
€ = — (II1.4)
!

{Yl’Yz} = {Y1,Y2}/Q§

o . . .
q1 is the response mean square of the system, which was defined in sectlon

I1.2, and the non-linear functions a& and 62 are

- _ " " “ " ] 2 1 t 1] 2
wl = aAY1Y1 + aSYlYZ + a6Y2Yl + a7Y2Y2 + ang + angY2 + alOYZ
(II1.5)
- " " " " 1 2 t L} 1 2
wz = b4Y1Y1 + bSYlYZ + bGYZYl + b7Y2Y2 + ng1 + ngle + blOYZ

where the coefficients a; and bi are given in Appendix C. Two types of

non-linearity are embodied in @1, aé. The first forms the non-linear terms

1
of the same mode such as YlYl or Y12 in the first equations of mode 1, and

the second constitutes autoparametric terms such as YZY1 (non-linear
Y2

coupling). Autoparametric terms give rise to r = o 0.5, (here w
1

9 < Wy
where the ord:r of modes is teoversed).

The acceleration £"(1) is assumed to be a Gaussian wide band random 9

process with zero mean and a smooth spectral density 2D up to some fre-

quency which is higher than any characteristic frequency of the system.
In order to represent the response coordinates as a Markov process the
acceleration Yi associated with the non-linear terms must be removed by

successive elimination. Having eliminated Y; from the non-linear terms in

[ P W P W oY

equations (II1.3) the following coordinate transformation is introduced:

. o P ~ R . . e R
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®

X1
@

X

- 2 (111.6)

o K

X,

| g ,
X, = X,
L
X, = X,
e ' e _ _ 2 2 22
Xy = = X, - 2% - a,X] + [a6 +r as) X, X, = ra,X;
_ _ _ 2
2C134X1X3 2;2raSX1X4 a6)(2‘(3 2{,2ra7X2X4 + e18)(3
r + agX.X, +a X2 - (A + AKX + AKX +AXE + AKX + A XA uE)
9°3%% 10”4 1 21 372 471 57172 62
Y2, - 2 _ 2 o2 L2
X, = = X, = 2,rX, - bX] (b6 +r bs) X X, = b Xy - Z b, X X,
»

_ 2 2
ZCZrb5X1x4 2;1b6X2X3 2;2rb7X2X4 + b8X3 + b9X3X4 + b10X4

2 .
(B, + ByX, + ByX, + B, X| + BoX.X, + B6X2) W(t)

o (Ir:.7)

where the coefficients Ay and Bi are given in Appendix D.

In the equations (IIT.3) the random acceleration £ "(t) has been

relationship

\."1 "' l"*w" AT _--_._.".'if O _'."';‘.'_-.

L replaced by the white noise process W(t), where the Wong-Zakai [7] correc-
e
tion term is zero. The autocorrelation function of W(r) is defined by the E 1
L R{AT] = E[W(T)W(t +AT)] = 2D § (A1) (111.8) lgj
where 2D is the spectral density, and §( ) is the Dirac delta function. R
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[
A general differential equation for all possible moments can be
® generated by using the Ito stochastic calculus or the Fokker-Planck
equation [4]. Following the same procedure described in Section II.3 the
general differential equation of the response joint moment is
]
_ o .
g TR0 S S £ B RS B S U S R 20
+ k[ - Witl,5,k-1,0 T 1™ 5 k,e T 240542, 5,k-1 8
2 2
® (rPag +ag) mip) gt kc1e T T 2% 42 k-1 0
T Am L 5k, T ZaTA™e k-1 041 © 2130, 41,k 8
T ZLpTagmy o k-1,041 T 28™, 5 k1, T 20™ K 041
o
+ a, . m ]+2[—r2m -z, rm
1071, j,k=1,2+2 i,3+1,k,2-1 2505 5,k,8
- bm - (rzb + b )m
47442, 4,k,8-1 5 6/ 41, 41 ,k,0 -1
®
2
Tbymy s42,k,0-1 T PP gk -1
- - -
2otbsmiyy 5k,e T Z1PeMy, 441, k1,8 -1 T Z2TP705 4y ke
¢ + bgm + bom + b, Am ]
8™, j,k+2,0-1 9™i, j,k+1,2 1071, 3,k,0+1
2
+ - I
k (ko) [DAYmy o pp P PR S
® AN 2
+ DA T =" 1.‘ FR2N ¢ N .
A A g ez T T A Al
2
+ 2 +
(A AG + ApADM Ly g g g Y AT F 28 A )M o)
o + ke[ 2DA B m + 20(A,B, + AB.)m
1°1%4, §,k-1,2-1 1°2 2°1 ™41, §,k-1,2 -1
+20(AyBy + AgBy)my Ly g o (1T1.9)
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+ 2D( A B, + A,B) + A,B,)

Bi42, 3,k-1,2-1
+ 20(ABg + AgBy + ApBy + AgBolmy ) i) g 4oy

* 20(AgBy + ABe + AB My oo 4y

2
FAQ-D[DBm, g o T BBm L s
+ 2DB.B,.m + (28,8, + B2)m
18375 §+1,k,2-2 18, F B jke-2
2

+ 20(ByBg + ByBy)my ) g g2 F (B3 2B Bm 0]
(I11.9)
cont'd.

It is seen that a moment equation of order n = i+jt+kH contains moments of

order n and nt+l, thus forming an "infinite hierarchy set.” 1In order to

close the moment equations the following two closure schemes will be used.

I11.3 Gaussian Closure Solution

From equation (IIT.9) it is possible to generate four equations for the

first order moments and ten equations for the second order moments. These
equations are, however, coupled through third order moment terms.

Given the assumption that the system non-linearities are too small to
the extent that the response can be regarded as "nearly” Gaussian, then the
fourtecn equations can be closed by using the Gaussian cumulant-negloct
scheme [4]. Under this assumption the cubic semi-invariants vanish and the

third order moment terms can be expressed in terms of lower order moments,

i.e.,

x3[xixjx

3
o= E[xixjxk] ) E[Xi]E[Xij] + ZE[Xi]E[Xj]E[X

hail

.o .
Ak Aime ds bt

=0 (1I1.10) )
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where the number over the summation sign refers to the number of terms
generated by the indicated expression without allowing permutation of
indices.

The resulting closed 14 coupled non-linear differential equations are
integrated numerically by using DMSL DVERK routine (Runge-Kutta-Verner
fifth and sixth order numerical integration method).

Figure IIT.l1 shows the time history of the system mean square response

in normal coordinates for internal resonance ratio r = 0.5, damping ratios

Cl = CZ = 0.02, mass ratio mz/ml = 0.2, beam length ratio £2/5L1 = 0.6 and

non-linear coupling parameter ¢ = 0.02. After a sufficient period of time
3
!Q T = 1000 the response fluctuates between two limits, indicating that the
system does not achieve a stationary response.

The effect of damping ratios o1 and T,y On the response mean squares in -

—TT

-
normal and generalized coordinates is shown in Fig. III.2. It is seen that H
L
1
1

as the damping ratios decrease, the region of autoparametric interaction

becomes wider and the peak of the mean square response of the two modes b
increases. Also, the quasi-stationarity of the Gaussian closure solutions ii

"
are manifested over a wider range of r = wz/wl. 4

Figure III.3 shows the effect of the non-linear coupling parameter ¢.

For very small values of ¢, the effect of non-linenriiies in the equations
of motion (IILL.l) is greatly reduced. The mean squire responses do not
exhibit any non-linear modal interaction and almost follow the linear solu-
tions. However, it can be seen that the system responds very differently
for even minor increases in e. As € increases, the interaction region
becomes wider and the autoparametric interaction takes place in a form of

energy exchange between the two modes.




31

The effect of mass ratio is plotted in Fig. III.4. As the mass ratio
is increased, the region of autoparametric interaction between the displa-
cement mean square responses in normal coordinates shrinks to a narrow
range of internal tuning ratio.

Figure III.5 illustrates the effect of length ratio between the two
beams on the mean squares of the system response. As the length ratio is
increased, the region of autoparametric interaction shrinks to a narrow

range of internal tuning ratio.
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Fig. III.1 Time history of Gaussian response with initial conditions =
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I111.4 Non-Gaussian Closure Solution

® In the theory of random processes [8] it is known that any linear

operator on a Gaussian process results in another Gaussian process.
However, if the system is non-linear or involves random coefficients, then

® the response will not be Gaussian and the corresponding third and higher

. 4".L"
'.'“L'_A._)/'

¢
ek

order semi-invariants will not vanish. These higher order semi-invariants

(cumulants) give a measure to the non-normality of the response distribu-

Py tion. If the response process is assumed to be slightly deviated from "
| %

Gaussian, the contribution of the higher order cumulants diminishes as the ."1

order increases. Under this assumption, a better approximation can be :'.:i
° obtained by letting the fifth and higher order cumulants be zero, i.e.,

5
xs[xixjxkxlxm] = E[xixjxkxzxm} - 1 E(x,] E{xjxkxzxm]
o 10 10
+2) E[Xi]E[Xj]E[XkXRXm] -6 E[Xi]E[Xj]E[Xk]E[XiXm]
(IT11.11)
15 10

o +2 7] E[x,] E[xjxk] el x ] -1 E[xixj] E[ X %, %]

+ 24E[xi]z[xj]a[xk] E[x ]E[x ] =0

doment differential equations of order up to four will be generated
from equation (ILI.9). Sixty-nine of these equations ure coupled & ough

the fifth order moment terms. These 69 equations are closed by using the

P gL DRI I A 20 e B
o0 oo E AR IR 7
o aatalaas fa ‘a 2

relation expressed in (IIT.l1).

P
Zus demt s

e
e

These equations are integrated numerically by using TMSL DVERK routine
(double precision). The time history response of the mean square displace-

ments in normal coordinates are shown in Fig. 11.6 for internal resonance
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ratio r = 0.5, damping ratios L1 =%y = 0.02, mass ratio mz/m1 = 0.2 and
® length ratio 2,2/9,1 = 0.6. During the transient period the mean square of

the first normal mode displacement fluctuates and grows until it reaches a

peak value at T = 60 and then drops to a lower level at t = 110. During
b this transient period, the mean square of the second normal mode displace-
ment fluctuates and drops until it reaches its wminimum value at T = 60,

then grows not significantly to a peak value at t = 110. This kind of
o interaction shows an energy exchange between the two modes during a tran-
sient period, after which each mode achieves a complete stationary

response.

The stationarity of the solution is confirmed by solving numerically
the non-linear algebraic equations resulting from the set of original dif-
ferential equations. The numerical solution is achieved by using the DMSL

routine ZSCNT (Secant method for simultaneous non-linear equations). The

algebraic numerical solution is identical to the stationary solution

obtained by numerical integration. However, for Gaussian closure, the ‘f)

algebraic solution does not converge for all possible initial guessing
values.

Figure III.7 shows the effect of dampiag ratios on the autoparametric
interaction r-gion. It is seen that as the danmping ratios decrease tle

region of autoparametric integration between the two modes broadens and the

difference between the peak mean square responses of the two modes

-~
Ll
a

1

FD increases, but less than in the Gaussian closure solution. Unlike the
Gaussian closure solution, the stationarity of the non-Gaussian closure

solution is manifested over a wider range of r = wzﬁul.
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The effect of the non-linear coupling parameter € is shown in Fig. III.S8.
The small value of €, which exhibits no non-linear effect in the Gaussian
closure solution, shows modal interaction in the non-Gaussian closure solu-
tion. Also, as the non-linear coupling parameter € increases, the region
of modal interaction widens and the difference between the two peak values
increases.

The effect of the mass ratio on the mean square responses of the system
is shown in Fig. IIT.9. As the mass ratio increases, the mean square of
the second mode displacement increases, accompanied by a suppression in the
mean square of the first mode. Graphs are shown for both normal and
generalized coordinates.

Figure 111.10 demonstrates the effect of length ratio on the mean
squares of the system response. As the length ratio increases, the mean
square of the second mode displacem.nt decreases. This decrease is accom-
panied by a noticeable increase in the mean square of the first mode
displacement.

The effect of initial conditions on the system mean square response is
then examined to see if the system possesses more than one limit cycle.
When the initial condition of E[YleYiYé] (= mllll) is set equal to 0.00001
and all otner moments have zero initial conditions, the Gaussian closure
solution gives the same quasi-stationary response as those solutions
obtained with a different set of initial conditions (compare Figs. III.1
and I1I.11). 1In the case of the non-Gaussian closure solutions, it is also
found that the initial conditions have no effect on the final steady state

response, as shown in Figs. III.6 and III.12.
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The C.P.U. time for I.B.M. 3033 system required to generate the
Gaussian solution up to 1 = 1500 is 24 seconds while for the non-Gaussian
closure solution, it is 487 seconds for the same response period.
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iy III1.5 Conclusions

The random response of an aeroelastic structure with autoparametric

coupling has been investigated in the neighborhood of the internal reso-

PRI | Y S

nance condition r = mz/wl = 0.5. The response has been determined via two
closure schemes: Gaussian and non-Gaussian. In the time domain, the tran-

sient response in both schemes exhibits the well-known characteristics of

autoparametric interaction in a form of energy exchange between the dis-

VYT Y Y X YEE S S S T T R e

placement mean squares of the two modes. Furthermore, the level of these

mean squares may exceed the mean squares during the steady state period.

The Gaussian closure solution yields a quasi-stationary response while the

Y Y VX

® non—-Gaussian closure solution gives a stationary response. a
.1
. The stationarity of the non-Gaussian closure solution may be confirmed

from the analytical solution of Schmidt [9] who employed the stochastic

averaging method to a non-linear two-degree-of-freedom system. However,
Schmidt could not derive a closed form expression for the normalized
constant of integration of the response probability density. The present
investigation gives the dynamicist some guidelines for using the Gaussian
or non-Gaussian closures in more complicated systems where none of the ana-

lytical approaches is applicable.
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CHAPTER IV

® NON-LINEAR RANDOM RESPONSE IN THE
PRESENCE OF PARAMETER UNCERTAINTY

IV.1 1Introduction

® The dynamic behavior of an aeroelastic non-linear two-degree-of-freedom
system has been examined in Chapter III. The random excitation appeared in
the equations of motion as a non-homogeneous term and as a parametric coef-

PY ficient. It was assumed that both damping and stiffness properties of the
structure were time independent (constants). As the structure oscillates
these properties may experience a certain degree of fluctuation as a result

kO of the inherent temperature variation. Measurements taken in laboratory

experiments often show that dynamic properties such as damping and stiff-

ness of vibratory systems are non-repeatable parameters; every experiment
'. gives different values for damping and stiffness of the same system, and

the differences are random.

e

The dynamic response of structures with randomly varying parameters is

° of great practical interest to the analyst or designer using lumped para-
meter models, because the random variation of some system parameters may
cause the system respone to exceed design specifications. These random

PS uncertainties can be classified into two main categrnries [101: gotatistica?

-
:
;

and non-statistical. To cite just one example, statistical uncertainties

can be due to the stiffness or damping fluctuations caused by random

® variation in material properties or variation caused by manufacturing and E

=

assembly techniques. Non-statistical uncertainties can be due to the A

approximation involved in the mathematical modeling of complex structural ~

systems. |
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o Rt

e

It is very important to distinguish between two different problems

IR R R il

;. encountered in mechanical vibrations and aerocelastic flutter. These are

the random response of dynamic systems to random parametric excitations

PROROW | Y SRR

which appear as coefficients in the equations of motion, and the random

response to random external excitations when the system parameters are not
precisely defined and represented in a probabilistic sense. 1In the former
case the system equations of motion are stochastic differential equations

with time random coefficients. 1In the latter case the equations of motion

are differential equations with random constant coefficients [11] or with
coefficients that vary randomly with the spatial coordinates (random
fields). Systems with parameter uncertainties are referred to in the ?

literature as "disordered systems.” The methods of treating dynamic
systems under parametric random excitations are different from those used

in solving differential equations with random constant coefficients or ran-

N T

dom fields.

In problems involving random constant coefficients the engineer is con-

cerned with three main problems: random eigenvalues, random response, and
optimum design. With reference to linear disordered systems these three

problems will be reviewed in the next two sections.

IV.2 Rancum Eigenvalues
The eigenvalue of simple single degree-of-freedom systems is given by
the square root of the stiffness to mass ratio. This value is assumed

constant for identical systems. However, the actual eigenvalue of each

1
-
N
f
R
d
N
‘.=

system deviates from the original calculated one because in reality the

physical properties of the elcments can neither be measured exactly nor

Y I RFED oF SN | § QPR

e . .o . _ o N
A e . - . oo . AN - O e Te e T, L R T
USRI Y D B - - ST et e IR S T .- L oA R,

LR A O P L R
N I e U DR

. T R . L B T S W
Y A . e e e L S R I - et ST N ~ P S PE PAL WRUATAPAT \ U, QY W
RN S SERWAL PN UL SPAPIE WAL TP WAL SPE ) W TR0, WU, N 10 WA & a PR ST U WAL WP W B Laie o a2 g




Lo et s o o b b aev aem et aiv e o tna Setaub et Snb et e ety

2l oV S

51

manufactured exactly. Thus, the eigenvalues are random variables whose

statistical properties are determined by the random coefficients of the

inertia and stiffness terms of the equations of motion. 1In this case one

may be interested in determining the probability that one or more eigen-

:
F.
i
i
E
4

values lie in a given range or less than a certain value. Alternatively,
one may need to know the probability that the smallest eigenvalue is spe-
cified in a given range [l12]. Boyce and Goodwin [13] classified parameter
uncertainties into two classes. These are:

(i) uncertainties in the geometry and the material properties, and

(ii) uncertainties in the support mechanism of the system.

These uncertainties appear in the equations of motion or in the boundary
conditions, respectively. Under these types of uncertainties the eigen-
value has been determined for a limited class of dynamic systems. Boyce
[12] addressed a number of techniques to determine the statistics of the
eigenvalues of systems described by partial differential equations and
boundary conditions involving uncertainty in their parameters. Two mathe-
matical approaches known as "honest” and "dishonest"” have been adopted in
the literature [14]. In the honest approach the eigenvalues are first
expressed in terms of the system parameters. The statistical charac-
teristics of this solution ar: then determined in terms of the statistical
characteristics of the random parameters. However, this approach involves
difficulties since it is not possible to express the eigenvalue exactly
except for very few simple cases. Four honest methods are outlined by
Boyce [12]. These are the variational principles, perturbation methods,
the kernel trace estimates, and asymptotic estimates. 1In the dishonest

approach the statistical moments of the eigenvalues are directly




. T "y v w Wy VAW
et aas mart e os ou gt ane ant £at mus ek Aos et Sen il Selt B 0 Seds Al et T Tl el e N A Jaintiagh M Aaialibidir-a SN e SN R L A SN AR Sl R

determined by performing averaging analysis to the system partial differen-
P tial equations and its associated boundary conditions.
In a series of papers, Purkert and Scheidt [15-17] established a number
of theorems pertaining to functionals of weakly correlated processes.
® These processes are encountered in the eigenvalue problems, boundary value
problems and initial value problems. Purkert and Scheidt treated the
stochastic eigenvalue problem for ordinary differential equations with
® deterministic boundary conditions. The coefficients of the differential
operator were assumed to be independent weakly correlated processes of
| small correlation length. As the correlation length vanishes the eigen-
o values and eigenvectors were found to possess Gaussian distributions. 1In
their recent monograph, Scheidt and Purkert [l18] treated the moments of the
eigenvalues and mode shapes of random matrices and random ordinary dif-
@ ferential operators. The calculations of these moments were based on per-
turbation expansions, and so require the random terms to be appropriately
small.
P. Soong and Bogdanoff [19] examined the statistical properties of the
natural frequencies of a linear n-degree-of-freedom system whose properties
arz2 known in a stochastic sense. They used a method based on the transfer
® matrix, develuped originally by Kerner [20], together with a perturbation
type expansion. For a linear 10 degrees-of-freedom system with random
parameters having normal distribution with small standard deviation it was
o found that the top few natural frequencies have values which are very sen-
sitive to the parameter variations, whereas the lowest few are insensitive

to these variations. They derived explicit expressions for the natural
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frequencies in terms of the parameter variations. These expressions can be

used in estimating the changes in frequencies produced by deterministic

- .“ [ )

parameter changes. Bliven and Soong [21] determined the statistics of the

5 natural frequencies of a simply supported elastic beam with random imper-

'. fections in the beam stiffness. The beam was modeled as a lumped-parameter
model and the same technique of Soong and Bogdanoff was employed. Bliven
and Soong found that when the stiffness fluctuation has zero correlation
distance the natural frequency standard deviation vanishes. The standard

deviation reaches the value of 0.5 when stiffness variation is perfectly

correlated. 1In addition, the standard deviation of the beam natural fre-
quency was found to be insensitive to the number of segments in the lumped
parameter model.

Collins and Thomson [22] treated the problem of eigenvalue and eigen-
vector statistics of a simple chain of equal springs and masses with
uncorrelated random masses or with random uncorrelated stiffnesses. They
showed that the standard deviation of the frequency is governed linearly
with the standard deviations of the masses and stiffnesses. This result
was obtained earlier by Soong and Bogdanoff [19]. However, these linear

relationships disappear when a correlation exists between the masses and

stiffnesses.

Vaicaicis [23] employed a two-variable perturbation expansion procedure

to determine the eigenvalues and normal modes of beams with random and/or i
non-uniform characteristics which do not deviate considerably from the j
beam mean properties. He used a Monte Carlo simulation to determine the »i
statistical averages of beam eigenvalues and mode shapes. It was found that j
the eigenvalues and mode shapes deviate significantly from those of a i
ha
;
1
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uniform beam. The difference was mainly attributed to the fact that gradual

change in the beam stiffness was permitted. 1In this case the beam is

"soft"” at one end and "hard” at the other end.

‘)

~d

IV.3 Random Response oy

® £ -
In an attempt to examine certain aspects of the dynamic behavior of

statistically defined systems, Bogdanoff and Creanea [24] treated linear

P single degree-of-freedom systems with independent discrete distributions in
the mass, damping, and stiffness coefficients. Small dispersion in the
system parameters resulted in considerable dispersion in the svstem fre-

PY quency response. Their analysis was based on a partial differential

equation for the response joint density function. This equation is known
as the Liouville equation [11] and is identical to the Fokker-Planck

PY equation with zero diffusion coefficient. The impulse response of a single ;:l
degree—of~freedom system with random parameters was determined by Chen and

Soroka [25) by using a perturbation approach. They found that both the

P mean and standard deviation of the response were non-stationary and the
standard deviation was 90 degrees out of phase from the mean. They
concluded that for systems with a very high natural frequency, the uncer-

® tainty in the natural frequency has a very negligible effect on the
response statistics. However, the effect is significant if the natural
frequency is low. As the damping factor decreases, the dispersion from the

® mean becomes substantial. 1In another study, Chen and Soroka [26] con-
sidered the response of multi-degree-of-freedom systems. Their study indi-
cated that the response statistics of disordered systems are higher than

® those of purely deterministic systems.
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The instantaneous transient response statistics of an undamped linear
multi-degree-of-freedom system, subjected to arbitrary but deterministic
forcing functions, with stiffness uncertainty was investigated by
Prasthofer and Beadle [10]. For the case of an impulsive excitation to a
single degree-of-freedom system, they found that the growth of the response
uncertainty is exponential. As the standard deviation of the stiffness
increases the response mean square increases rapidly with time. For a
multi-degree-of-freedom system the response decay rai.e decreases as the
correlation coefficient between the stiffness elements increases.

The influence of damping uncertainty on the frequency response of a
linear multi-degree-of-freedom system was examined by Caravani and Thomson
[27}. They determined the mean and standard deviation of the response by
using a linearization technique and a Monte Carlo simulation. They pointed
out that an accurate estimate of the damping coefficients for lightly
damped systems, in the neighborhood of a natural frequency, is very impor-

tant in determining the mean and standard deviation of the system response.

IV.4 Design Optimization

During the design stage of structural systems the fluctuations of their
dynamic characteristics such as response or eigenvalues should be defined.
The main pwub.:u is how to restrict the fluctuations of the systewm para-
meters. For example, in systems in which the values of displacement are
significant, or in structures for which the safety factors for fatigue
strength are determined in terms of probability functions, the problem is
to set up an optimum standard of manufacturing their components. Here the

permissible fluctuation in the characteristics becomes a restrictive

WS o . -

) LSCIAC) I Ve el SRR . Lo BN
RGN > R A e A R Sl . .
YRS, i .\V‘:-.‘.‘n{ﬁ- WA RN e L LN Pl EP SN WP PRI




Lt Aa e e g

e s aiar shase A g g g T e N e s T e B T e E e W R G a0 T A

56

condition. Under these circumstances, the designer is encountered with a
problem of optimization to specify the maximum permissible fluctuations of
parameters.

Tanaka and Onishi [28] developed a method of regulating the deviations
of random parameters and derived a restrictive conditional formula from the
permissible fluctuation of displacements or natural frequencies. The
method is based on the linear deviation analysis with partial differential
analysis together with sequential linear programming (SLP) for a number of
restrictive conditions. Tanaka, et al. [29] treated the optimization
problem of the allowable variance of random parameters by using a pertur-
bation method and Monte Carlo simulation. They computed the deviation of
the steady state response of structural systems with random parameters with
the purpose of regulating the deviation of the random parameters when the
deviation of the response is specified. Rao [30] applied the multi-
objective optimization techniques to the design of simple structures
involving uncertain parameters and stochastic processes. The necessity of
optimizing the structural systems involving dynamic restrictioans, random
parameters, stochastic processes, and multiple objectives has been outlined
by Rao [31].

In this chapter, the effects of randomly time-varving dampine an:
stiffness (represented by stochastic processes) on the system rospinse will
be investigated by using the Fokker-Planck equation approach. Gaussian and
non-Gaussian closure schemes will be used to obtain the mean square
response of the system in the normal and generalized coordinates. The pre-
sent analysis will not provide any information about the stochastic stabi-
lity of the éystem. The investigation of stochastic stability of

aeroelastic structures will be examined in another report.
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IV.5 Theoretical Analysis

Considering again the aeroelastic system shown in Fig. I.l, and
allowing random variations in the damping and stiffness coefficients,

equations (III.3) become

v+ 2,1+ ECI(T)]YI + {1+ Ekl(T)]Yl = -€ (1)a,

" " "

1
_ 2
¢ [a,v) + a3Y2] +a, YY) +ay Y, + a6Y2Y1 + a7Y2Y + ag¥,

1 1 + '2
T 39 Y, + a7,

(1v.1)
" t 2 _ "
Y, + 2,r[l + ECZ(T)]YZ + (1 + gkz(T)]Yz = - g ()b
- € [bZYl + b3Y2] + b, Y, Y + b5Y1Y2 + b6Y2Y1 + b7Y2Y
¢'2 "2
+ by, < + b9Y YZ + b)Y,

where &c (1) and 5k (1) are assumed independent Gaussian random processes
i i
in damping and stiffness in the ith mode, respectively, (i =1, 2).

Equations (IV.1l) can be approximated through successive elimination of

Yi from non-linear terms and will be transformed into the Stratonovich type

equation {1}

'
X; = £,0651) +EJ G, (X (r) (Iv.2)

through the coordinate transformation

Yy X1
Y X
2 \- 2 (1V.3)
Y X3
1
Yy X4
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equations (IV.1) can be written in the foru

X, =X

1 3
t
X, = X,
Y. L w2 2 22
Xy ==X - 2,X - aX -(a +r ag)X X, - r aX; 124%1%,

_ _ 2 2
22;21:515)(1X4 2z;1a6x2X3 2c2ra7X2X4 + a8)(3 + agx3x4 + alOX4

xlgkl(r) = 2, [Xy + a,X Xy + acX,XalE (1)

1
- r?[a XX, + a e, (1) - 2or{acX,X, + a XX, ]6 (1)
57172 7 T7720%k, 2717500 T 7N e,
(A F AKX, R ALK FAXS AKX +AXE()
1 271 7 3% T BT T STt T B2
Y2y 2 2 o202
X, = - X, - %,rX, - bX] (b6 + b )X X, - x b, X
2
2,5, X Xy = Z,rbX X, - 2 b X Xy = 2Z,rb X X, + bgX]
2
+ byX X, + b X, 2;1(b4x1x3 + b6x2x3)gcl(1)
_ 2 2
ro[X, + boX X, + b7X2]£k2(T)
- 2,r[X, + boX X, + b7X2X4]£C°(T)

4

- . , 2 210 0.
[By * ByXy * Byky + BX] + BgX; Xy + Boxple (1)

Alternatively, equations (IV.4) can be written in the Ito form [1]

_ 3G
7’%% ij X

—

i3
k j

X, = [fi(g,T) +

—_—

58

(1IvV.4)

Jde + 7 6,035,148, (1) (1V.5)
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where the random processes Ei(T) have been replaced by white noise processes

Wi(r). In (IV.5) the formal derivative of the Brownian motion

dB, (T)
W, (T) = is used. dB.(t) are independent Brownian motion processes
dT i

with properties

]
o

E[ dB, ()]
(IV.6)

2 2
E[dBi(T)] 2Didr = oidt

Introducing the Ito correction term represented by the double summation

expression in equation (IV.5), equatons (IV.4) become

Xm = X3dr
dXz = XAdT
L _ _ 2 2 22
dX, = | X - % Xy - a,X] (a6 +r as)xlx2 rfa X 12,%, %,
- 2,raX,X, - 2r.a,X,X, - 2r.,ra,X,X, + ag X2 + a,X,X, + a X2
2795717 1967273 2°9772%% 3 97374 1074
+4p_c2r’la X X, + a XX, + ab XX, + (a.b; + a,b )X X X
c, 27 13577 274 5°571 5°7 775 71727

' 2
+ 7b7X2K4]} T - X dB (1) - r[agX X, + a;X,X,]dB, (1)

1 2
- zCl[X3 + aA\(lx + a6X2X3] 1(1’)
- "’r)z,_[as l‘(, 4 ‘3.7\ Y/JdB 2(1‘
(A + %) + A%y + A4X] + AKX, + AT dB(T) (1v.7)
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= [ 2y _ 2 _
ax, = {-r X, = 2%,rX, - b,X] (b6 +r

2 _ er XZ

bs) X, X, 7%,

= 2y b XXy = 2,1 XX, - 2 ) beXoXam Z,rhyX,X,

b, X.X, + b, X X

2 2
[ 47173 6723

+ b8X3 + b9X3X4 + blOX4 + 400121

+ a,b X2X +(a,b, + b,a

4Pg * Puag) X XXy + a b X2X,]

273 667273

2,2
+ 4D gort[X, + 2b.X X, + 2b XX, + bsX(X, + 2bobiX XX

4 5 274 4 577717274

Xa]}dr - 251[b4X1X3 + b6X2X3]dBC1(T)

- 2 2
r[X, + b Xy + b7X2]dBk2(T)

- 2,r[X, + boX X, + b7X2Xa]dBc2(T)

2 2
[B, + B,X; + ByX, + B,X| + B.X X, + B.X;]dB(r) (1v.7)

cont'd.

The general differential equation of the response joint moments is
obtained by using the Fokker-Planck equation approach as outlined in Chapter

ITI1. This procedure results in the moment equation:

\J

mi,j,k,l = lmi-l,j,k-ﬂ,l + Jmi,j"’l,k,l"’l
{ ™ - 8,1
PR m et AR T UM e T A e
[36 tr as)mi+1,j+1,k—l,£ LAl +2,k-1 2
+

2¢134(C1Dc1' Umiyy, g, +e2aras(eard, -

) My 5 k-1 04

+ 25136(51°c1‘ Umi srpke * ‘2‘37(‘2‘Dc2‘ 2@y 541 k1,041

agmy iktt,e T 39™y ka4l T alomi,j,k—l,2+2}
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2
+ - h - N . -
Horm et t;2‘“2‘“):;2 T L V1. NS

2 2
(x%g +b)miy) g kg1 ~ F b7®;, j+2,k,8 -1

+ Clba(C1Dc1’ 2)migy gkt e-1 t 2Czrb5(52”Dc2' 1)mi+1,j,k,l

*e1Pe(eyDe = 2my ) ey gor + X arby(e,D -

Ym, |,
1 1 i, j+l,k,2

+ b

Pe™y, i k+2,0-1 ¥ P9y ka1 gt blomi,j,k,2+1}

2
kO {Day My sy AN

) 2
*OIA A k2.0 T [Dkl D(28) A A5 Imn 5 oy

2
+ ZD(A1A5+A2A3)mi+1,j+l’k_2’2 + d:A3+2A1A6)mi’j+2,k_2’l

2
+ aocl 3 mi,j,k,l} (1Iv.8)

+ kl{ZDAlBlmi’j,k+1’g_1 + 2D(A132+A231)mi+1,j,k~1,2—1

o

+ ZD(AIB3+A3Bl)mi,j+1,k—1,l—l

o

+ 20( Ay B, HAB B WLy 4 e 2

+ 2D[A185+ASB1+A2B3+A332)mi+1’j+1’k_l’z_l -

+ 2D( A4Bo+A B +A B ] m

186 £, 342 k=101
2
+L@-D{20Bymy gy 2B B
2
Y08 Bamy ey -zt 2B BB,

+ ZD[BlBS+BlB3)mi+1’j+l,k‘2_2

2
+ [p, 2 + D(B3+23186)]
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Again, this equation reveals that the response moment equations constitute

&. an infinite hierarchy set. This infinite hierarchy may be closed via
r Gaussian or non-Gaussian schemes.

For the Gaussian closure scheme, fourteen equations of first order and

second order moments will be generated from equation (IV.8). These

equations are coupled with third order moments, and if the third order 1

=

cumulant is set to zero, the fourteen equations can be closed. The response

A
of the system can then be determined by integrating the fourteen moment A
equations using the TSL DVERK routine.

For the non-Gaussian solution, which is more accurate, 69 moment

equations for the first four orders are generated. These equations are
found to be coupled through fifth order moment terms which can be closed by
setting the corresponding cumulant to zero. The closed 69 moment equations

are integrated numerically by again using the TMSL DVERK routine.
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IV.6 Response of the System with Damping Uncertainty

The time history response according to the Gaussian closure is plotted
in Fig. IV.1 for internal tuning resonance r = wzﬂnl = 0.5, damping ratios
;1 =T, = 0.02, mass ratio m2/m1 = 0.2, beam length ratio 22/21 = 0.6, and
spectral density of randomly varying damping Dcl = DC2 = 0.1 D where 2D =
0.08 is the spectral density of the base motion. It is seen that after a
long period of the time parameter 1 = 1000 the Gaussian time responses
fluctuate between two limits, indicating that the system does not achieve a
steady state.

For the initial conditions indicated on each figure, the first mode
grows very fast with rapid fluctuations while the second mode shoots over
its initial value with a general decay which reaches values below the ini-
tial value. The two modes exchange energy over the transient period t =
150. During the steady state period each mode fluctuates between two enve-
lopes. The period of oscillation of the first mode envelope is twice that
of the second mode. Another important feature is that the level of the
me: 1 squares during the transient period is higher than the steady-state
level.

The time history response according to the non-Gaussian solution is
shown in Fig. IV.2. This figure chows fluctritions during the iLransient
response period r = 160. Coutrary to the Gaussian solutions, the system
response achieves a stationary state.

The effects of random variation in damping ratios &y and Gy On the
Gaussian and non-Gaussian autoparametric region in normal and generalized

coordinates are shown in Figs. IV.3 and IV.4 as functions of the internal
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tuning ratio r = wzlwl.

In Gaussian closure, as damping

is varying rao-
domly, the autoparametric interaction region becomes more narrow and the

peak values of the two mean square responses stay almost the same.
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IV.7 System Response with Stiffness Uncertainty

PY The system mean square responses are determined in this section when
the stiffnesses of the system are varied randomly with spectral densities

D =D

K K = 0.1 D, (Dc = DC = 0) where 2D = 0.08 is the spectral den-

1 2 1 2
® sity of the base motion. Figure IV.5 shows the time history responses
according to the Gaussian closure scheme for internal resonance r = 0.5,
damping ratios Ly =%y = 0.02, mass ratio m.z/m1 = 0.2, beam length ratio

® 22/21 = 0.6, and non-linear coupling parameter € = 0.02. The traunsient

response exhibits the same features outlined in section IV.6 and the steady

state response fluctuates between two quasi-stationary envelopes.

® Figure IV.6 shows the time history responses according to the

non-Gaussian closure scheme for the same system parameters as above.
Again, the transient response fluctuates with energy exchange between two
® modes until the system achieves a stationary level. j
Mean square responses obtained by Gaussian and non-Gaussian solutions

are higher in the transient region and in the steady state than the

o corresponding values when the system possesses damping uncertainty only.

Figures IV.7 and IV.8 demonstrate the system displacement mean squares as

functions of the internal tuning parameter r, according to Gaussian and

® non-Cauese an solutions, respectively. It is seen that the inclusion of
stifiress uncertainty has a remarkable effect on the mean square responses.
The mean squares of the response displacements are relatively higher than

@ those without stiffness uncertainty. 1In addition, although the region of

autoparametric interaction is wider, the absorber effect is less pronounced.
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IV.8 System Response with Damping and Stiffness Uncertainties

T

P In this section the combined effect of the system damping and stiffness
uncertainties on the system random response will be examined. Typical
spectral densities for the uncertainties of these parameters are adopted,

P namely Dc1 = Dc2 = Dkl = Dk2 = 0.1 D, where 2D = 0.08 is the spectral

density of the base random motion.

The time history responses according to the Gaussian closure solution

“ for internal tuning ratio r = 0.5 are shown in Fig. IV.9. Corresponding

plots according to the non-Gaussian solution are shown in Fig. IV.10. The

inclusion of the uncertainties of the system parameters bring the system 4
® response into a wider fluctuating limit cycle for the Gaussian closure ?
solution or into a wider stationary limit cycle for the non-Gaussian clo-
sure solution. Furthermore, the transient response period with parameter
® uncertainties is relatively longer than the transient response period with 4
constant system parameters. The mean squares of the response displacements

during the steady state regime are plotted in Figs. IV.1ll and IV.12 by

® dotted curves; the solid curves show the response of the system with
constant parameters. The higher level of the response mean squares is due

mainly to stiffness uncertainty rather than damping as inferred from the

® previous two sections.
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IV.9 Conclusions

° The influence of uncertainties in system parameters such as damping and

.

stiffness on the autoparametric response of an aeroelastic structure has

"y

been examined numerically. The damping influence upon the response charac-

® teristics is found to be very small while the stiffness uncertainty has a

remarkable effect on both the level of the mean square response and the -
region of autoparametric interaction. The transient responses in the time

Py domain are relatively higher than the steady state responses. This feature

is very important in determining the actual stresses under random vibra- -

tion. With stiffness uncertainty, the system response uncertainty becomes 4

® higher than when the system possesses constant stiffness.
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) CHAPTER V

CONCLUSIONS

The linear and non-linear random modal interactions of a two degree-of-
freedom aeroelastic structure has been examined. The structure was sub-
jected to a random wide band support motion. The equations of motion w.re
derived by Lagrangian formulation and transf-rmed into normal coordinates
to eliminate the linear dynamic coupling. The random excitation appeared
as parametric and non-homogeneous terms in the equations of motion.

The linear modal interaction was analyzed via the Fokker-Planck
equation approach. The statistical moments of the system response were
solved for various system parameters. The general trend of the linear

solution showed that there is a suppression of one mode due to the presence

of feedback forces from the other mode. Such interaction took place when
the frequencies of the uncoupled beams are close to each other. Further
analysis has shown that the parametric terms have a very small effect on
the level of the response mean squares. However, these parametric excita-
tions affect the stochastic stability of the system equilibrium con-

figuration.

When the structure is tuned to the appropriate conditions of internal

e resonance, the non-linear coupling of normal modes becomes significant in ii

pling K

predicting new response characteristics. The non-linear analysis is not a -j

simple task and involves the problem of infinite hierarchy of differential -

P 4
equations of response moments. Two schemes have been used to close the

response moment equations. The first, known as Gaussian closure, is based N

on the assumption that the response does not depart significantly from -

4

o Gaussian distribution, while the second takes into consideration the B
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non-normality of the response and is known as the non-Gaussian closure

method. The first scheme led to fourteen differential equations in the

WYY - v v

first and secoud order moments, while the second required sixty-nine dif-
ferential equations in the first four orders of response moments. The two
® sets of differential equations were solved by numerical integration. Both

solutions exhibited an energy exchange between the two modes in the neigh-

w
borhood of the internal resonance condition r = o = 0.5. The Gaussian

1
® closure solution gave a quasi-stationary response in the form of fluc-

tuations between two limits. However, the non-Gaussian solution resulted
in a strict stationary response. The accuracy of the non-Gaussian solution
¢ required almost twenty times more computer time than the Gaussian solution.
In Chapter IV the damping and stiffness coefficients of the svstem were
subjected to time random variations. It was found that the damping
® variation had very little influence on the response characteristics, while the
stiffness variation showed a pronounced effect on the response mean squares

for both solutions.

)Y The results of this investigation represent part of an ongoing research

project supported by the Air Force Office of Scientific Research.
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APPENDIX C: COEFFICIENTS OF NON-
LINEAR FUNCTIONS
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APPENDIX D: COEFFICIENTS OF NON-LINEAR
MARKOV VECTOR EQUATIONS
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