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equations in the first four orders of response moments. The two sets are
solved by numerical integration. Both solutions exhibit an energy exchange
between the two modes in the neighborhood of the internal resonance con-
dition. The Gaussian closure solution gives a quasi-stationary response in
the form of fluctuations between two limits. However, the non-Gaussian
closure solution results in a strict stationary response. The influence of
random time fluctuations in the system damping and stiffness coefficients
is also examined. It is found that the damping variation has very small
effect on the response characteristics, while the stiffness variation shows
a pronounced effect on the response mean squares for both solutions.
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1. ABSTRACT

~The linear and non-linear random modal interactions of a two degree-of-

freedom aeroelastic structure are examined by using the Fokker-Planck

equation approach. A general differential equation describing the evolu-

tion of the response moments is derived for any moment order. For the case

of linear modal interaction this differential equation is found to consti-

tute a closed set of moment equations. The stationary response is deter-

mined for various system parameters. It is found that the linear

interaction results in a suppression of one mode when the uncoupled fre-

quencies of the structure are close to each other. For the case of non-

linear modal (known as autoparametric) interaction the differential

equation of the response moments forms an infinite coupled set of equations

which are closed via two closure schemes. These are the Gaussian and

non-Gaussian closure schemes, The Gaussian closure scheme requires 14

coupled differential equations in the first and second order moments, while

the non-Gaussian closure leads to 69 differential equations in the first

four orders of response moments. The two sets-are solved by numerical

integration. Both solutions exhibit an energy exchange between the two

modes in the neighborhood of the internal resonance condition. The

Gau;.i,n closure solution gives a quasi-stationary response in the formi of

fluctuations between two limits. However, the non-Gaussian closure solu-

tion results in a strict stationary response. The influence of random time

fluctuations in the system damping and stiffness coefficients is also exa-

mined. It is found that the damping variation has very small effect on the

* response characteristics, while the stiffness variation shows a pronounced

effect on the response mean squares for both solutions.
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NOMENCLATURE

A. coefficients of the Harkov vector equations (111.7)

a1  coefficients of equations (111.7)

B coefficients of the Markov vector equations (111.7)

Bi(r) Brownian motion

b. coefficients of equations (111.7)

Cii generalized damping coefficient (1 = 1, 2)

2D spectral density of the support motion acceleration

2 Dci spectral density of the random damping fluctuation C

2 Dki spectral density of the random stiffness fluctuation Ki

d. coefficients of moments matrix (equation 11.17)

E[ ] expectation

E i  Young's modulus, or coefficients of equations (II.10)

e. coefficients of moment equations (11.17)

fi coefficients of moments matrix (equation 11.17)

fi(X,T) elements of a column matrix equation (IV.2)

Gi coefficients of equations (II1.0)

Gij(X,T) elements of the parametric excitation matrix equation (IV.2)

Ii  area moment of inertia of beam's cross section (1 = 1, 2)

Kii generalized sLiffness coefficient (i = I,2)

beam lengths (i = 1, 2)

Zij elements of the matrix of parametric excitation

X 10 coefficient of the non-homogeneous part of the excitation

m i  tip masses (i = 1, 2)

mj generalized mass (i = 1, 2; J = 1, 2)

mjj0 joint moments of response coordinates of order i+j+k-K

i.i



So

p(Xt) joint (transition) probability density function of the response

coordinates

qj generalized coordinates

qi axial shortening of the beams (i 1, 2)

ql 0root-mean-square of the horizontal beam where the vertical

beam is locked

[R] modal matrix

r frequency ratio

t time (seconds)

W(T) white noise

X. state space coordinates

Yi non-dimensional normal coordinates

Yi normal coordinates (i = 1, 2)

6( ) Dirac delta function

Enon-linear coupling parameter

;i damping factor of normal coordinates

* [ ] joint cumulant of order i

*mass parameter defined by equation (11.2)

Eci random variation in the damping coefficient C i

ki random variation in the stiffness coefficient K.

W(t) random support acceleration

2
a i  spectral density

non-dimensional time = w 1 t

elements of eigenvectors

* 1 (q1 ,4 1,qi) non-linear terms in equations (1.1)

* Wi normal mode frequencies

i local beam frequencies

lii

*
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2. RESEARCH OBJECTIVES

2.1 BACKGROUND

The dynamic behavior of aeroelastic structures is of main concern to

aeronautical engineers who are involved in the design and reliability of

aerospace structures. These structures are usually subjected to aerodyna-

mic forces which interact with inertia and elastic forces. The interaction

of these forces may give rise to a number of aeroelastic phenomena. For

example, the classical flutter (known also as self-excited oscillation) can

occur due to a linear interaction of these three forces. Classical flutter

may also involve the coupling of two or more degrees of freedom. However,

the linear mathematical modeling fails to predict a number of observed

dynamic characteristics such as amplitude jump, limit cycles, parametric

instability, internal resonance, and saturation pheaomenon. These complex

dynamic characteristics owe their origin to the inherent non-linearity of

the structure.

The amplitude jump, limit cycles, and parametric instability are common

features of non-linear single- and multi-degree-of-freedom systems.

Parametric instability takes place when the external excitation appears as

a coefficient in the homogeneous part of the differential equation of

motion. ii: occurs when the excitation frequency is twice (or nultiple) of

the system natural frequency. Internal resonance and saturation phenomenon

may occur only in non-linear dynamic systems with more than one degree-of-

freedom. Internal resonance implies the existence of a linear relationship

between the structure natural frequencies and results in a non-linear

interaction of the normal modes in a form of energy exchange. Under exter-

nal excitation, the mode which is directly excited exhibits in the

V1,
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beginning, the same features of a single degree-of-freedom system response

and all other modes remain dormant. As the excitation amplitude reaches a

certain critical level, the other modes become unstable and the originally

excited mode reaches an upper bound. In this case this mode is said to be

saturated and the energy "spills over" into other modes. The non-linear

modal interaction is referred in the literature as autoparametric interac-

tion since one mode acts as a parametric excitation to another mode. The

non-linearities in any structural component may arise from two main sources:

i. Geometric non-linearities due to large deformations such as large

* curvature, end shortening, and inertias due to the presence of con-

centrated or distributed masses.

2. Material properties which exhibit non-linear or multi-valued

stress-strain relationships. The values of the material properties

may also experience a certain degree of uncertainty due to material

heterogeneity or random temperature fluctuations. Thus the stiff-

ness and damping coefficients become random variables or random

processes.

It is clear that the aeroelastician must include the inherent structural-

non-linearities in his predictive modes in order to understand the origin

of any unusual structure behavior under various types of aerodynamic

loading. Under deterministic unsteady aerodynamic forces these phenomena

can be predicted by one of the standard techniques of non-linear differen-

tial equations. However, aerospace structures are usually subjected to

turbulent air flow, and the analyst is encountered with aerodynamic loads

*
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which are random in nature. These loads vary in a highly irregular fashion

and can be described in terms of statistical quantities such as means, mean

square, autocorrelation functions, and spectral density functions. The

dynamic analysis of non-linear aeroelastic structures under random loading

is not a simple task, and it requires an advanced background of probabi-

listic theory and stochastic differential equations.

2.2 MAIN OBJECTIVES

In an effort to understand the dynamic behavior of non-linear

aeroelastic structures under random excitations a research program con-

sisting of analytical and experimental investigations is currently sup-

ported by a grant from the Air Force Office of Scientific Research (AFOSR).

Two and three degree-of-freedom systems possessing internal resonance

are considered. The experimental investigation will demonstrate the

existence of non-linear phenomena and will provide guidelines for the vali-

dity of the theoretical analysis. Based on the original proposal (February

1983) and its amendment (July 1984) three main phases were outlined. These

0
are:

Phase 1: Investigation of the effects of structural non-linearities

in tb-. neighborhood of internal resonance conditions when

the structure is subjected to random aerodynamic loading.

Phase II: Investigation of the effects of damping and stiffness

uncertainties in the absence of internal resonance con-

ditions.

9 . : . . , .+ , .,- .. ..
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Phase III: Investigation of the combined effects of damping and stiff-

* ness uncertainties in the presence of internal resonance

conditions.

The experimental investigation will be carried out on two models emu-

lating the analytical models. The models will be excited by a medium size

electrodynamic shaker of 1200 lb maximum thrust through a GenRand random

noise generator. The excitation will be Gaussian filtered wide band pro-

cess whose band covers a frequency range greater than the normal mode fre-

quencies considered in the analytical models. The excitation frequency

band will be adjusted such that higher modes will not be excited.

The excitation and response processes will be measured and recorded

simultaneously on a magnetic tape recorder. The mean squares and probabi-

lity density of the response will be estimated for various values of inter-

nal resonance detuning. These results will be very valuable in

demonstrating how the normal modes are interacting under random excitation.

In addition, the measured probability density will be inspected for its non-

normality when the excitation is Gaussian.

2.3 SUMMARY OF MAIN RESULTS

* The linear and non-linear random modal interactions & a two degroe-of-

freedom aeroelastic structure are examined by using the Fokker-Planck

equation approach. A general differential equation describing the evolution

* of the response moments is derived for any moment order. For the case of

linear modal interaction this differential equation is found to constitute

a closed set of moment equations. The stationary response is determined

for various system parameters. It is found that the linear interaction

. .~ .. I
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results in a suppression of one mode when the uncoupled frequencies of the

structure are close to each other. For the case of non-linear modal (known

as autoparametric) interaction the differential equation of the response

moments forms an infinite coupled set of equations which are closed via two

closure schemes. These are the Gaussian and non-Gaussian closure schemes.

* The Gaussian closure scheme requires 14 coupled differential equations in

the first and second order moments, while the non-Gaussian closure leads to

69 differential equations in the first four orders of response moments.

* The two sets are solved by numerical integration. Both solutions exhibit

an energy exchange between the two modes in the neighborhood of the inter-

nal resonance condition. The Gaussian closure solution gives a quasi-

stationary response in the form of fluctuations between two limits.

However, the non-Gaussian closure solution results in a strict stationary

response. The influence of random time fluctuations in the system damping

and stiffness coefficients is also examined. It is found that the damping

variation has very small effect on the response characteristics, while the

stiffness variation shows a pronounced effect on the response mean squares

for both solutions.
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CHAPTER I

BASIC MODEL AND EQUATIONS OF MOTION

I.1 Two-Degree-of-Freedom System

Figure I.1 shows a schematic diagram of a two-degree-of-freedom

aeroelastic structural model which represents an aircraft wing with exter-

nal store. The model consists of two coupled beams of stiffnesses, kI and

k2, and two tip masses, ml and m2 . When the horizontal beam is subjected

S to a random motion C(t), the two beams will move as shown in Fig. 1.1

with tip deflections ql and q2 , respectively. By applying Lagrange's

equation, and including the effects of the axial shortening motions, ql,

* and q2 in the kinetic energy expression, the equations of motion are given

in terms of the generalized coordinates q, and q

[ :: M22 q 240 +2 : 220 K2 2
Xi 11 X12 ql 1

•21 22 /q2 0

l(ql,q 2,qlq 2,q1 q

2(ql'q2'ql'q2,ql'q2 (.)

7
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0q

22=

02

m2 Z22

(t).

00

kil Z 1i

q
Lh 2

q t q 2

'q 1

Fig. 1.1 Schenatic diagram of two couplei beams with end masses m
and m2 .

2 '"... 

.,.



9

Z 2 2
where inl1  = mI1  + 2  [I + 2.25 2 i 2

£2

m1 2 =in2 1 = 1.5 m2 m22 m2

Xi 2' 2

11 2.25 o2 (41 £I 0 = 
nm +1 2

m 2  m2z- 1.5 z 1.2 2-

12 21 2£2

K i 3 i i =1,2

3E1.44 .2

= 1 -4 + (q2 1 + q42)

2 .2 2 . 2 .2
+ mn2 (0.45 £2 2q + 2ql'ql) +£22( q 2

"4 2 + q 2

3 £2 2..
+ i + q  + 0.1 ql 2 ) + 1.6875 q q 2

045 '

£2
+ 5.062 .2~j q2 -"+-q

* LLi

• 
..



10

0.3 .. 1.2 .2 + 1.2
2 2  - qlql- q1 q 2

2 .+ 2.. + 0.9 .. 2

+ 1.6875 2 (2q.q2 + q 2.. + 0.9 q q2
9. 1 1" 1 2

+ 1.44 (q+2 q2.. 0.45 42 q2• 2 - m2 2 q~2 ) + -2 qlq21

42

Non-linearities up to cubic order are retained in and 2' It is seen

O that the equations of motion contain linear dynamic coupling since

mij # 0, 1 * j. In addition, the support motion acceleration W(t) enters

the equations of motion as a non-homogeneous forced excitation £ 10 (t) and

o as a parametric excitation as given by the terms kif(t)qi. The functions

l and 2 include all nonlinear inertia terms. These can be subdivided

*" into two groups. The first group represents non-linear inertia of the same

* mode such as qlql in the first equation. The second group represents auto-

parametric coupling (or non-linear interaction) such as q1 'q2 in the first

equation. Here the acceleration "q2 (which is an implicit function of time)

* acts as a parametric excitation to q, motion.

In deriving equations (I.1) it was assumed that both damping coef-

ficients Cii and beam stiffness K are constant coefficients. In Chapter

* 4 these coefficients will bc ,3ubiect to random fluctuations.

In Chapter 2, the linear modal Interaction under random excitation will

be examined by dropping 1 and 42. In Chapter 3, the non-linear modal

*interaction will be investigated when the structure is tuned to the inter-

nal resonance condition w2= 2l (where w I and w2 are two eigenvalues of

the structure). Chapter 4 will treat the influence of random fluctuations

• of the system parameters.

" . ' . '-S ." " . ,. " - : ' ' . " "" '. , _ '. . . , i, ' .. " -J , ". . ',, z., . ,, , . ,. ,,, ,, - - - ,, ,, ,, , . '



CHAPTER II

LINEAR ANALYSIS

11.1 Introduction

The normal mode interaction of the two-degree-of-freedom system shown

* in Fig. I.1 will be examined within the framework of the linear theory of

random vibration. In other words, the system response represented by

equations (I.1) will be analyzed after setting the non-linear functions

and 2to zero. The normal mode frequencies and mode shapes will be

0 obtained first, and then the equations of motion will be transformed into

normal coordinates. These in turn will be written in the Ito type

stochastic differential equations [1,21.

* The differential equations of the response statistical moments will be

derived by using the Fokker-Planck equation [1]. The Fokker-Planck

equation is a partial differential equation which describes the evolution of

* the system response probability density with respect to time and response

* coordinates. In view of the linearity of the system equations of motion,

* the moment equations will form a closed set which can be solved numerically

* by one f the si:andard techniques. The mean square of the response moment

will be examined For a wide range of system parameters. The influence of

random parametric coefficients will also be examined.

11.2 Normal Mode Analysis

By dropping the non-linear function ,and 2from the equations (1.1),

the system becomes linear with random coefficients:



12

0-

4-1

-4 -4

-,40
C14 -a

4-a

0 m co
M-

-,1~~u 0 )0-
r4 Ej P

wr5-
0 2 c

crx'\. \,4

5 \II

P~ 4- P .

4-4 0

-4 t

Ut.~~~~~~Q *. It* Ii I I , II Id

07 -4 4J r-

4.41

IL

Ln.

3



13

: in1 1  m2 1  ql C1 1  0 ql k 0 q

+ ' +

m12 22 q2  0 C22  q 22

0 (11.1)

k1o 1i £12 qI

9 = - (t) -- (t)

0 £21 £22 2

The following notations are introduced:

2 k..
W.. - - local beam frequencyiX m..ii .ii

m i - mass parameter (11.2)

where i = 1, 2

The normal mode frequencies w1 and w 2 of the system can be obtained by con-

sidering only the homogeneous conservative part of equations (II.1). In

terms of the mass parameter ij and the local frequencies w1 1 and w 2 2 the

iatural frequencies are obtained b:y the expres,4ion

12 1~ 1 lI 2 W2 T ((W2 + w2 ) 2 _ 4 1w 2  2l/21 (11.3)

Figure II.1 shows the dependence of w 2/w on w2 2/wlI for various values

of the mass parameter p.

•J
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Equations (II.1) can be transformed into normal coordinates yi via the

coordinate transformation

q, YI

= R (11.4)

1 1

where [R] = is the modal matrix,

Srepresent the eigenvectors corresponding
and,

to "i1 and w2, respectively.

i and 2 are given by the expressions:

2 i 2 12 2 Wi . -.WJl - m2.-

11 1 i 2 2

- or (11.5)
2 1 2 22 2

ml 22 m 11 1+

2 m2
2 2 2 *

* Wl - 22 m2
11 - 22 or 2

2 2 12 2 m22 22
W 2 W~~ w22 mll ,. 2

Figure 11.2 demonstrates the normal mode shapes for mass parameter

i = 0.64, and w2 2 = wi"

40

I'. ... .

.+ .+ ... + •+ • . . . .. ... l+ + . . ••. ,. . . -
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The following non-dimensional parameters are introduced

yl Y2T Wt YI =  Y2 0

(11.6)

0

i 1i -'

where q1 is the root mean square response of the system when it is reduced

into a single degree-of-freedom represented by the horizontal beam with end
2

mass (mI + m 2). Thus, E[qO]1 is the mean square response of the single-

degree-of-freedom system.

+2 0 W - W(t) (11.7)

The random excitation acceleration (t) has been replaced by the zero

mean Gaussian white noise process W(t) whose autocorrelation function is

defined by the relation

R[At] = E[W(t)W(t + At)] 2D 6(A t) (11.8)

where 2D is the spectral density of the random process W(t) and 6( ) is the

Dirac delta function.

The mean-square response of system (11.7) is given by the well-known

solution [3]:

2
E[qj D1 2C - 3 T-

0 2
Thus, we may select ql to be the root mean square of E[qO]; i.e.,

q D3 (11.9)

E[ denotes expectation

.1

i. i
• { "-. .- - --- "",, . . .".".. .L .
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The equations of motion in terms of the non-dimensional normal coor-

dinates Y. are

Y + 2 IY + Y = (E2 Y 
+ E3 Y2 )1W()2 ( I.0)

Y2 +  2rGY + rY G + c (GY + GY )]W(T)
2 2 22 2 1~ 2 2 3 2

These are two non-hcmogeneous stochastic differential equations which are

coupled through the parametric terms YIW(T) and Y2 W(r). The prime denotes

differentiation with respect to the non-dimensional time T. The coef-

ficients EiG are defined in Appendix A.

II. 3 Response Moment Equations

* The Fokker-Plank equation or the Ito stochastic calculus can be used to

generate the differential equations of the response moment as outlined by

Ibrahim [4].

* Introducing the state variable transformation

Yl"22

x2  =

equations (11.10) can be written in the state Markov form

XI = X3

x
2  = 4

(1 . 2

X3 - X1 - 2 X3 + (E1 + FE2XI + CE 3X 2 ) W(T)

X= - r2X- 2r2 rX4 + (G1 + cG 2 X 1 + FG 3 X2 ) W()

" -
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The non-stationary Fokker-Planck equation of the evolution of the pro-

* bability density of the response vector X is

(X,-u) = I {X3 P(X,-)- - X4P(X,t)}

-x 2
-~ - X-- -X

-X 3  
2X 3 ]p(X,)}"

X-4 {[- r 2 X2 - 2C 2 rX4 ]P(X,T)I

2 2221

+ a2 2 + 2E1E2X + 2E1EX + 2 E2X2
-- {E 1  21 2 1  2 2
3

2EEI2 2 2 2] P(.

+ 2 EEXX + E E3X2] (11.13)
2 3 1 2 3 X2

* + 2 X4 {2[EIG + C(EIG2 + E2 GI)X I + (EIG3  E3 GI)X 2

M 3 ax2(1 E 22111

" 2E2G2X 12 + F2(EG+ E3G2)XIX 2 + 2 E3G3X 2] P(X,T )I
2 2 1 (G 3  E3G2)X1 2  3 32'-

a 2 2 222

+ D a I + 2GIG 2X + 2G 1G3 x2 + c G2XI

~~2,23X 2 2 21
4 2 c G + £ GBX 2 p(X,T )}

The following notation for the response joint moment

* ijk_
m j ffff xxx . p(X,T)dX dX dX dX4

ij9 f l'f3f 1 2 3 4

j k, X~X] (11.14) ,""I= E[ x'x2X3

will be adopted.

. -. .. |
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Premultiplying both sides of equation (11.13) by X Y and

6' intograting both sides over the whole space -c-X<- gives the following

general moment differential equation:

ijkX iIl,j,k+l,. + Jmi~.lk~t+l

- m+ljk-lZX + I41i,j,k,L

- £(r m. i,+lkXl- + 2 %2rm.. jkZ)

+ k(k-l)D (E 2m + 2cE E m
Ili,j,k-2,Z I 2 i+1,j,k-2,Z

1 3 i,j+l,k-2,Z +6' 2 2  jk-

+ 2c 2EE m+C 2 i2,jk-,

2 3 i+l,j+l,k-2,Z, 3 ij2k2t

+ 2kZDEGm jklXl + (E1 G2 + E2G~iljk1Y-

13 G-EG+EC)m E+ G c
+6E 3E3l1ij+lk.l.l + 2 2 i+2,j,k-l,Z-l

(2 G3 +E3 G2 )mi+l,j+l,k-l,Z-l +CE3 G3 mi, j+2, k-1,XZ-1

+ 62 E1
3 3 i,j+2,k-l,Z-I1

22G~

+ 1e 3 mi,j+1,k,Z-2 +EG2 mi+2,j,k,Z-2

+ 2E 2 G Gm +E2 G22 3 i+l,j+l,k,i-2 +63ml~+2k..2J
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An inspection of equation (11.15) shows that the moment equations of any

order are consistent, that is, the moment equations of order n are not

coupled with moments of order greater than n and they can be solved analy-

tically.

The first and second order response moments are of main concern in ran-

dom response analysis. The first and second order moment equations are

generated from (11.15) and the following stationary solution is obtained:

* ml00 = m lO0 0 M010 = 0001 0

MllO= l0 10 1 = 0

M 0 0 0 2 = r
2 

0 2 0 0  (11.16)

M~ -

10O01= 2 (Ci + r 2) in1 1 0 0

m 20 0 0 , m0 2 0 0 , mll 0 are given by the solution of these three equations:

• d1  d2  d3  m2000 d4

e1  e2  e3  m0200 e4  (11.17)

f 1f f 2  f 3  MlO0 f4

where di, ei, fi are defined in Appendix B.

* The solution of equations (11.17) for m2 0 0 0 and m0200 is shown in

Fig. 11.3 as a function of the frequency ratio w22/wii for various values

of the mass parameter p. The response mean square (in terms of the genera-

* lized coordinates) is obtained through the inverse modal transformation and

is plotted in Fig. 11.4. Figures 11.3 and 11.4 reveal that the mean square

*i

--. 4-.- 4 i
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response exhibits a strong interaction in the neighborhood of the frequency

ratio 022/wii = 1. The degree of interaction depends on the mass parameter

p which measures the degree of linear dynamic coupling. The interaction of

the two modes exhibits the linear vibration absorber characteristics known

in the deterministic vibration. It is also seen that as the mass parameter

p diminishes, the absorbing effect increases. For modest values of V < 1,

the first mode Y is suppressed and the second mode Y2 reaches its peak

value. Furthermore, the response of the main horizontal beam is that of a

single-degree-of-freedom system outside the frequency ratio 22/wll= 1 I

O(e), and the range of this frequency ratio is influenced by the mass ratio

parameter p as shown in Fig. 11.4.

In order to examine the influence of parametric random excitation on

the system response, the stationary solution was obtained by setting

Sij i = 1,2 to zero from the moment equations. Figures 11.5 and 11.6

show the mean square response in terms of the normal coordinates and

generalized coordinates, respectively. It is seen that the parametric

excitation has very negligible effect on the overall response level.

However, it is the system stochastic stability which is governed by the

parametric excitation [4].

%,

p- . S . . . 2. .. -. ... J. t.C .. ,:L . .... . .-. .-- . ,
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CHAPTER III

NON-LINEAR ANALYSIS

111.1 Introduction

0 The linear analysis of the coupled aeroelastic structure examined in

* Chapter 2 may be sufficient to describe the dynamic behavior of the system

as long as its motion is very close to the static equilibrium position.

However, the structure may experience new types of modal interactions when

the non-linear effects become significant. Of particular importance is the

non-linear coupling of the system normal modes. It is well known in the

0 deterministic theory of non-linear oscillations [5] that this type of non-

linearity may give rise to the dynamic instability known as "internal

resonance." Methods for studying non-linear effects in random vibration

0 problems involve a number of difficulties in determining the response dyna-

mic characteristics [4]. These difficulties include the solution of the

system Fokker-Planck equation and the problem of infinite coupled moment

equations of the response coordinates.

* Over the past few decades a number of closure schemes have been deve-

loped [6]. In the present analysis two closure schemes will be proposed to

0close the 'nc.ion dyniamfic equatitons of the re-3pons,.e coordinates. The first

scheme is based on the assumption that the response process is Gaussian

distributed under Gaussian excitation. However, the application of this

method to non-linear systems Is not mathematically justified since the7

response is non-Gaussian. Therefore, it is assumed that the excitation is

of small intensity and the response will not depart significantly from nor-

mality. The response process can then be described adequately in terms of

23
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*, the first and second order cumulants (semi-invariants), and all higher

order cumulants vanish. Cumulants are statistical functions which can be

related to the moments. For example, first and second order cumulants are

equivalent to the mean and variance of the response, respectively.

The second method is more accurate and includes the effects of the non-

0 normality of the response. Unlike Gaussian-closure methods, cumulants of

order higher than two will not vanish and will give a measure of the

deviation of the response from normality. To the first order approximation

third and fourth order cumulants will be significant to account for the

response non-normality while the fifth order cumulant will contribute less

and can be neglected. Consequently, one can express the fifth order joint

moments in terms of lower order moments. Hitherto, the present approach

has not been applied to multi-degree-of-freedom non-linear systems.

It is expected that new features of the response characteristics may be

obtained due to the system's inherent non-linearity. The influence of the

internal resonance condition will be examined for various values of the

system parameters.0
111.2 Theoretical Analysis

The non-linear equations of motion of the system (2.5), shown in Fig.

I.1, are 2

mI + m 2(l + 2.25(i) 1.5m 2 X ql k 0 q1

+

1.5m 92  m q2  0 k 2 q2

2.2
2I5 1.5 5m

m 2 2m
ml + m2  2"25m2 2 '5m2  1 q 1

=2;-t)- ( ) m2 A

0 1
2l.5m I .2m 2 q2  4m 2  1

(111.1) -

... .- -. .'-' ". . ... .. .. .- .- ' ." . . .. -.. . •. . ." -.--. . -''. . . . .'- . " " " " -
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where

09 2 "2 . 1.2 2) 0.3 "
.= q- qlql + 0.45 -q q + ( q mq2 + + qlq 2

121 2 2 1

+ k 'qlIq 2 + ql142 )+ q
1

0.3 1.2 .2 1.2
2= i-= qlql - I- ql + Z- q2 q,

3Ei i
k. i = 1,2

1

Equations (III.1) can be written in terms of normal coordinates yi via the

transformation

iq} = [RI lyl (111.2)

where modal matrix [R] was defined in section 11.2.

* Premultiplying equation (III.1) by [R]I [m]- , where [m] is the mass

matrix and using transformation (111.2), the equations of motion take the

form

1 0 Y1 0 Y 1 0 Y?

0 1 Y2 r 0 r2 Y222 2 02 22

(111.3)

a a2  a3  Y 1 1

-- *(T + + E':

b b b3 b b 2

03!

V
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where prime denotes differentiation with respect to the time parameter

£ T = W1t and r = w2/wi. h linear viscous damping has been introduced to

account for energy dissipation of the system. The following non-

dimensional parameters have been used:

q (111.4)
[-4

JYJ{Y1  {yl1 y2}Iqol

qis the response mean square of the system, which was defined in sect ton

11.2, and the non-linear functions *1and 'P2 are

'2P 1 =a 4 Y IY I+ a5Y IY 2+ a6Y 2Y I+ a7Y 2Y 2+ a8Y I+ a9Y 1Y 2+ a 1

(111.5)

- b Y Y + b YY 1.+b YY. + b YY .+ bY 2+ bY fY I+ b Y 1
* 2 4 11 5 12 6 21 7 22 8 1 9 12 10 2

where the coefficients a, and b1 are given in Appendix C. Two types of

non-linearity are embodied in p1, p2. The first forms the non-linear terms

*of the same mode such as Y Y1 or Y 2in the first equations of mode 1., and

I I

the second constitutes autoparametric terms such as Y 2Y, (non-linear

copig) = 0.5 (hee.w <

. Autoparametric terms give rise to r 2 0

*where the ord.2r of mnodes [s3 -'ersed).

The acceleration 'Qr) is assumed to be a Gaussian wide band random

process with zero mean and a smooth spectral density 2D up to some fre-

quency which is higher than any characteristic frequency of the system.

In order to represent the response coordinates as a M4arkov process the

acceleration Y associated with the non-linear terms must be removed by

*successive elimination. Having eliminated Yifrom the non-inear terms in

equations (111.3) the following coordinate transformation is introduced:

ar

" i = a4YIY 1 + a5YIY + -a62Y + aTY2Y.* +.8 I +aYY lY
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Y2 X2 (I 6

(111.6)

1 3 2-

Equations (111.3) can be written in the Markov vector form:

XI = X
1 3

X X
X2 =X 4

X3  - X- X- 2 + (a + r2 a X - r a7X 2

3 1 1  a3 4 1 6 5) 1X2  r7 72

- 2C1a4 XIX 3 - 2 2 ra 5 XIX 4 - 2CIa 6X 2X3 - 242ra7X 2X4 + a8X3

(aAX3 + X - A A +AX + AX + A5XIX + A6XW()

934 10 4 t1 t21 3 2 4 1 5 12 62

X' r2 X- 24 rX4 - b X 2 - (b + r2 b xx - r 2 b X 2 b

2C 2rb X X4 - 24 b X X3 - rb X X4 + b X~ + b X X4 + b
2 5 4 6 3 7 24 83 93 4 10 4

-rB + B X + B X + B X+ B XX + B X2 W(T)'1 2 1 3 2 4 1 5 12 6 2

where the coefficients Ai and B. are given in Appendix 71.

In the equations (111.3) the random acceleration "(T) has been

replaced by the white noise process W(Tr), where the Wong-Zakai [7] correc-

tion term is zero. The autocorrelation function Of W(T) is defined by the

relation ~.hip

R[At[AT E[W(T )W(T + AT) 2D (AT) 118

where 2D is the spectral density, and S( )Is the Dirac delta function.

V.1

.4. ~~*~**** .. .. . . . . .
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A general differential equation for all possible moments can be

generated by using the lt2, stochastic calculus or the Fokker-Planck

equation [4]. Following the same procedure described in Section 11.3 the

general differential equation of the response joint moment is

0 m imI.+l kl j

+ k[- m i+ l ,jk , , - % l i, j,k, X -a 4 m i+ 2 ,j k l Z

0 (~~r 2a 5+a 6) -iljl~ , r 2a7m i, j+2,k-,.

2r- 1a 4 m +ljkZ - 2 
2ra 5 m i+ljklI,+l - 2 ll1a 6 m + ,k,

%2 7i,j+,k-l,Z+I + 8 mi, j,k+1,9 9 agi, j,k,P +1

0

-~~ ~ ~ r 27 j 2, , - -2 ,Ib4mi -lj k l Z 1

rbm+2 kb - %rb +

+rb k2 bm1 D m D

I i,j,k-2,. 1 2 i+l,j,k-2,.

0+ 20A A 11 A + A )M
1 3 i,j+,k-2,. 1 !

+ 2D(A A5 + A A )m~+ ~k2 + D(A~ + 2AlA6 Ji+k~

0 + kZ[2DAB mIk I 2D(A B2 +AB

+ 2D(A 1 B3 + A3BI~mij+Ik-lZl (111.9)

0

M0Z
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+ 2D(AIB 4 + A4B + A2B

* + 2D(AIB 5 + A5B I + A2 B3 + A3B21i+l,j+l,k I k I

+ 2D(A 3B3 + AB + A6B
33 1 6 A6Bl)mi~j+2k.l.l11

+ (z-l)[DBm2  - + 2DB B m
+ 2mi,,k,-2 1 2 i+l,j,k, ,-2

2
+ 2 BI B3 mi,j+ l ,k ,2.-2 + D(2 B I B i + , ~ ,

S2D(BB 5 + BB 3) mi+l,j+l,k,Z-2 + B + 2BiB 6)mi,j+Z,k, 2]

(111.9)
cont ' d.

It is seen that a moment equation of order n = i+j+k+ contains moments of

order n and n+l, thus forming an "infinite hierarchy set." In order to

close the moment equations the following two closure schemes will be used.

* 111.3 Gaussian Closure Solution

From equation (111.9) it is possible to generate four equations for the

first order moments and ten equations for the second order moments. These

equations are, however, coupled through third order moment terms.

Given the assumption that the system non-linearities are too small to

the extent that the response can be regarded as "nearly" Gaussian, then the

* fourtecn equations can be closed by using the Gaussian cumulant-negloct

scheme [4]. Under this assumption the cubic semi-invariants vanish and the

third order moment terms can be expressed in terms of lower order moments,

* i.e.,

3
X 3 [XiXjXk] = E[XiXjXk] - j E[X]E[XjXk] + 2E[Xi]E[Xj]E[Xk ] = 0 (111.10)

07

0

O.
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where the number over the summation sign refers to the number of terms

generated by the indicated expression without allowing permutation of

indices.

The resulting closed 14 coupled non-linear differential equations are

integrated numerically by using D4SL DVERK routine (Runge-Kutta-Verner

fifth and sixth order numerical integration method).

Figure 111.1 shows the time history of the system mean square response

in normal coordinates for internal resonance ratio r = 0.5, damping ratios

i = C2 = 0.02, mass ratio m2 /mI = 0.2, beam length ratio £2/k1 = 0.6 and

non-linear coupling parameter 6 = 0.02. After a sufficient period of time

T = 1000 the response fluctuates between two limits, indicating that the0

system does not achieve a stationary response.

The effect of damping ratios l and 2 on the response mean squares in

normal and generalized coordinates is shown in Fig. 111.2. It is seen that

as the damping ratios decrease, the region of autoparametric interaction

becomes wider and the peak of the mean square response of the two modes

increases. Also, the quasi-stationarity of the Gaussian closure solutions

are manifested over a wider range of r = w 2/wi.

Figure 111.3 shows the effect of the non-linear coupling parameter c.

For very small values of s, the effect of non-lin~r.,' in the eiq ations

of motion (11.1) is greatly reduced. The mean squLre responses do not

exhibit any non-linear modal interaction and almost follow the linear solu-

tions. However, it can be seen that the system responds very differently

for even minor increases in E. As c increases, the interaction region

becomes wider and the autoparametric interaction takes place in a form of

* energy exchange between the two modes.

1

- .~ V - .*.. *

., :, .. ,: ,., ' . i.' .''v i . . . • , .- '. .. ".., -. .' ' .-.' .. - , - A .---' -,, *- .
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The effect of mass ratio is plotted in Fig. 111.4. As the mass ratio

_ is increased, the region of autoparametric interaction between the displa-

cement mean square responses in normal coordinates shrinks to a narrow

range of internal tuning ratio.

Figure 111.5 illustrates the effect of length ratio between the two

beams on the mean squares of the system response. As the length ratio is

increased, the region of autoparametric interaction shrinks to a narrow

range of internal tuning ratio.

Oi

.o

:o.1:., .-..- -, -. '. '...-*.*-., -.. - - ,,* ,: .. ,,,, ..., ..: -:,:. , ,, , . .. -,-, .. , ,-
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III.4 Non-Gaussian Closure Solution

In the theory of random processes [8] it is known that any linear

operator on a Gaussian process results in another Gaussian process.

However, if the system is non-linear or involves random coefficients, then

the response will not be Gaussian and the corresponding third and higher

order semi-invariants will not vanish. These higher order semi-invariants

(cumulants) give a measure to the non-normality of the response distribu-

tion. If the response process is assumed to be slightly deviated from

Gaussian, the contribution of the higher order cumulants diminishes as the

order increases. Under this assumption, a better approximation can be

obtained by letting the fifth and higher order cumulants be zero, i.e.,

5
Xs[XiXXkXX = E[Xi.Xk X mX - I E[XiIE[JXkX Xm

* 10 10
+ 2 ) E[Xi]g[Xj]E[XkXZXm] - 6 ) E[Xi]E[IXjmXk]E[kX] (III.Ii)

15 10
+ 2 1 E[ X] E [ XjXk] E[ X X mi] - i XXj] E[X ]

+ 24E[Xi]E[Xj]E[Xk]E[XJ]E[Xm] = 0 I
Moment differential equations of order up to four will be generated

.:-oif tquatioa (111.9). Sixty-nine of these equations _re couI,, d, _ udh

the fifth order moment terms. These 69 equations are closed by using the

relation expressed in (111.11).

These equations are integrated numerically by using IMSL DVERK routine

(double precision). The time history response of the mean square displace-

ments in normal coordinate, are shown in Fig. 11.6 for internal resonance

•
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ratio r = 0.5, damping ratios = = 0.02, mass ratio m2/mI = 0.2 and

length ratio £2/A1 = 0.6. During the transient period the mean square of

the first normal mode displacement fluctuates and grows until it reaches a

peak value at T = 60 and then drops to a lower level at T = 110. During

this transient period, the mean square of the second normal mode displace-

ment fluctuates and drops until it reaches its minimum value at T = 60,

then grows not significantly to a peak value at T = 110. This kind of

interaction shows an energy exchange between the two modes during a tran-

sient period, after which each mode achieves a complete stationary

response.

The stationarity of the solution is confirmed by solving numerically

the non-linear algebraic equations resulting from the set of original dif-

ferential equations. The numerical solution is achieved by using the T1SL

routine ZSCNT (Secant method for simultaneous non-linear equations). The

algebraic numerical solution is identical to the stationary solution

obtained by numerical integration. However, for Gaussian closure, the

algebraic solution does not converge for all possible initial guessing

values.

Figure 111.7 shows the effect of damping ratios on the autoparametric

• interaction r-gO.no It is seen that as the damoing ratios decre2ase tLe

region of autoparametric integration between the two modes broadens and the

difference between the peak mean square responses of the two modes

increases, but less than in the Gaussian closure solution. Unlike the

Gaussian closure solution, the stationarity of the non-Gaussian closure

solution is manifested over a wider range of r =2/Wi.



The effect of the non-linear coupling parameter E is shown in Fig. 111.8.

"IiThe small value of c, which exhibits no non-linear effect in the Gaussian

closure solution, shows modal interaction in the non-Gaussian closure solu-

tion. Also, as the non-linear coupling parameter c increases, the region

of modal interaction widens and the difference between the two peak values

increases.

The effect of the mass ratio on the mean square responses of the system

is shown in Fig. 111.9. As the mass ratio increases, the mean square of

the second mode displacement increases, accompanied by a suppression in the

mean square of the first mode. Graphs are shown for both normal and

generalized coordinates.

Figure 111.10 demonstrates the effect of length ratio on the mean

squares of the system response. As the length ratio increases, the mean

square of the second mode displacem~at decreases. This decrease is accom-

panied by a noticeable increase in the mean square of the first mode

displacement.

The effect of initial conditions on the system mean square response is

then examined to see if the system possesses more than one limit cycle.

When the initial condition of E[YIY 2 Y1 Y2 ] (= in111 1 ) is set equal to 0.00001

and all otner moments have zero initial conditions, the Gaussian closure

solution gives the same quasi-stationary response as those solutions

obtained with a different set of initial conditions (compare Figs. 111.1

and 111.11). In the case of the non-Gaussian closure solutions, it is also

found that the initial conditions have no effect on the final steady state

response, as shown in Figs. 111.6 and 111.12.
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The C.P.U. time for I.B.M. 3033 system required to generate the

Gaussian solution up to t = 1500 is 24 seconds while for the non-Gaussian

closure solution, it is 487 seconds for the same response period.
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111.5 Conclusions

The random response of an aeroelastic structure with autoparametric

coupling has been investigated in the neighborhood of the internal reso-

nance condition r = w2/wi = 0.5. The response has been determined via two

closure schemes: Gaussian and non-Gaussian. In the time domain, the tran-

sient response in both schemes exhibits the well-known characteristics of

autoparametric interaction in a form of energy exchange between the dis-

placement mean squares of the two modes. Furthermore, the level of these

mean squares may exceed the mean squares during the steady state period.

The Gaussian closure solution yields a quasi-stationary response while the

non-Gaussian closure solution gives a stationary response.

The stationarity of the non-Gaussian closure solution may be confirmed

from the analytical solution of Schmidt [9] who employed the stochastic

averaging method to a non-linear two-degree-of-freedom system. However,

Schmidt could not derive a closed form expression for the normalized

constant of integration of the response probability density. The present

investigation gives the dynamicist some guidelines for using the Gaussian

or non-Gaussian closures in more complicated systems where none of the ana-

lytical approaches is applicable.
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CHAPTER IV

NON-LINEAR RANDOM RESPONSE IN THE
PRESENCE OF PARAMETER UNCERTAINTY

IV. Introduction

The dynamic behavior of an aeroelastic non-linear two-degree-of-freedom

system has been examined in Chapter III. The random excitation appeared in

the equations of motion as a non-homogeneous term and as a parametric coef-

ficient. It was assumed that both damping and stiffness properties of the

structure were time independent (constants). As the structure oscillates

these properties may experience a certain degree of fluctuation as a result

of the inherent temperature variation. Measurements taken in laboratory

experiments often show that dynamic properties such as damping and stiff-

ness of vibratory systems are non-repeatable parameters; every experiment

gives different values for damping and stiffness of the same system, and

the differences are random.

The dynamic response of structures with randomly varying parameters is

of great practical interest to the analyst or designer using lumped para-

meter models, because the random variation of some system parameters may

cause the system respone to exceed design specifications. These random

uncertainties can be classified into two main categ-ries f101: Ftrtistica!

and non-statistical. To cite just one example, statistical uncertainties

can be due to the stiffness or damping fluctuations caused by random

variation in material properties or variation caused by manufacturing and

assembly techniques. Non-statistical uncertainties can be due to the

approximation involved in the mathematical modeling of complex structural

systems.

49



50

It is very important to distinguish between two different problems

encountered in mechanical vibrations and aeroelastic flutter. These are

the random response of dynamic systems to random parametric excitations

which appear as coefficients in the equations of motion, and the random

response to random external excitations when the system parameters are not

precisely defined and represented in a probabilistic sense. In the former

case the system equations of motion are stochastic differential equations

with time random coefficients. In the latter case the equations of motion

are differential equations with random constant coefficients [11] or with

coefficients that vary randomly with the spatial coordinates (random

* fields). Systems with parameter uncertainties are referred to in the

literature as "disordered systems." The methods of treating dynamic

systems under parametric random excitations are different from those used

* in solving differential equations with random constant coefficients or ran-

dom fields.

In problems involving random constant coefficients the engineer is con-

cerned with three main problems: random eigenvalues, random response, and

optimum design. With reference to linear disordered systems these three

problems will be reviewed in the next two sections.

IV.2 Rancjm Eienvalues

The eigenvalue of simple single degree-of-freedom systems is given by

the square root of the stiffness to mass ratio. This value is assumed

constant for identical systems. However, the actual eigenvalue of each

system deviates from the original calculated one because in reality the

physical properties of the elements can neither be measured exactly nor

*
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manufactured exactly. Thus, the eigenvalues are random variables whose

statistical properties are determined by the random coefficients of the

inertia and stiffness terms of the equations of motion. In this case one

may be interested in determining the probability that one or more eigen-

values lie in a given range or less than a certain value. Alternatively,

one may need to know the probability that the smallest eigenvalue is spe-

cified in a given range [12]. Boyce and Goodwin [13] classified parameter

uncertainties into two classes. These are:

(i) uncertainties in the geometry and the material properties, and

(ii) uncertainties in the support mechanism of the system.

These uncertainties appear in the equations of motion or in the boundary

conditions, respectively. Under these types of uncertainties the eigen-

value has been determined for a limited class of dynamic systems. Boyce

• [12] addressed a number of techniques to determine the statistics of the

eigenvalues of systems described by partial differential equations and

boundary conditions involving uncertainty in their parameters. Two mathe-

matical approaches known as "honest" and "dishonest" have been adopted in

the literature [14]. In the honest approach the eigenvalues are first

expressed in terms of the system parameters. The statistical charac-

*teristics of this solution ar' then determined in terms of the statistical

characteristics of the random parameters. However, this approach involves

difficulties since it is not possible to express the eigenvalue exactly

* except for very few simple cases. Four honest methods are outlined by

Boyce [12]. These are the variational principles, perturbation methods,

the kernel trace estimates, and asymptotic estimates. In the dishonest

approach the statistical moments of the eigenvalues are directly
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determined by performing averaging analysis to the system partial differen-

tial equations and its associated boundary conditions.

In a series of papers, Purkert and Scheidt [15-17] established a number

of theorems pertaining to functionals of weakly correlated processes.

These processes are encountered in the eigenvalue problems, boundary value

problems and initial value problems. Purkert and Scheidt treated the

stochastic eigenvalue problem for ordinary differential equations with

deterministic boundary conditions. The coefficients of the differential

operator were assumed to be independent weakly correlated processes of

small correlation length. As the correlation length vanishes the eigen-

values and eigenvectors were found to possess Gaussian distributions. In

their recent monograph, Scheidt and Purkert [18] treated the moments of the

eigenvalues and mode shapes of random matrices and random ordinary dif-

ferential operators. The calculations of these moments were based on per-

turbation expansions, and so require the random terms to be appropriately

small.

Soong and Bogdanoff [19] examined the statistical properties of the

natural frequencies of a linear n-degree-of-freedom system whose properties

are known in a stochastic sense. They used a method based on the transfer

* matrix, develcped originally by Kerner [20], together with a perturbation

type expansion. For a linear 10 degrees-of-freedom system with random

parameters having normal distribution with small standard deviation it was

found that the top few natural frequencies have values which are very sen-

sitive to the parameter variations, whereas the lowest few are insensitive

to these variations. They derived explicit expressions for the natural

LI
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frequencies in terms of the parameter variations. These expressions can be

used in estimating the changes in frequencies produced by deterministic

parameter changes. Bliven and Soong [211 determined the statistics of the

natural frequencies of a simply supported elastic beam with random imper-

"O fections in the beam stiffness. The beam was modeled as a lumped-parameter

model and the same technique of Soong and Bogdanoff was employed. Bliven

and Soong found that when the stiffness fluctuation has zero correlation

distance the natural frequency standard deviation vanishes. The standard

deviation reaches the value of 0.5 when stiffness variation is perfectly

correlated. In addition, the standard deviation of the beam natural fre-

o quency was found to be insensitive to the number of segments in the lumped

parameter model.

Collins and Thomson [221 treated the problem of eigenvalue and eigen-

vector statistics of a simple chain of equal springs and masses with

uncorrelated random masses or with random uncorrelated stiffnesses. They

showed that the standard deviation of the frequency is governed linearly

with the standard deviations of the masses and stiffnesses. This result

was obtained earlier by Soong and Bogdanoff [191. However, these linear

relationships disappear when a correlation exists between the masses and

stiffnesses.

VaicaiLi [23j employed a two-variable perturbation expansion procedure

to determine the eigenvalues and normal modes of beams with random and/or

non-uniform characteristics which do not deviate considerably from theS

beam mean properties. He used a 4onte Carlo simulation to determine the

statistical averages of beam eigenvalues and mode shapes. It was found that

the elgenvalues and mode shapes deviate significantly from those of a

IpY
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uniform beam. The difference was mainly attributed to the fact that gradual

O change in the beam stiffness was permitted. In this case the beam is

"soft" at one end and "hard" at the other end.

IV.3 Random Response

In an attempt to examine certain aspects of the dynamic behavior of

statistically defined systems, Bogdanoff and Cbeanea [241 treated linear

• single degree-of-freedom systems with independent discrete distributions in

the mass, damping, and stiffness coefficients. Small dispersion in the

system parameters resulted in considerable dispersion in the system fre-

O quency response. Their analysis was based on a partial differential

equation for the response joint density function. This equation is known

as the Liouville equation [11] and is identical to the Fokker-Planck

* equation with zero diffusion coefficient. The impulse response of a single

degree-of-freedom system with random parameters was determined by Chen and

Soroka [25] by using a perturbation approach. They found that both the

* mean and standard deviation of the response were non-stationary and the

standard deviation was 90 degrees out of phase from the mean. They

concluded that for systems with a very high natural frequency, the uncer-

* tainty in the natural frequency has a very negligible effect on the

response statistics. However, the effect is significant if the natural

frequency is low. As the damping factor decreases, the dispersion from the

* mean becomes substantial. In another study, Chen and Soroka [26] con-

sidered the response of multi-degree-of-freedom systems. Their study indi-

cated that the response statisticq of disordered systems are higher than

• those of purely deterministic systems.

-T
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r
The instantaneous transient response statistics of an undamped linear

multi-degree-of-freedom system, subjected to arbitrary but deterministic

forcing functions, with stiffness uncertainty was investigated by

Prasthofer and Beadle [101. For the case of an impulsive excitation to a

single degree-of-freedom system, they found that the growth of the response

uncertainty is exponential. As the standard deviation of the stiffness

increases the response mean square increases rapidly with time. For a

multi-degree-of-freedom system the response decay ra~e decreases as the

correlation coefficient between the stiffness elements increases.

The influence of damping uncertainty on the frequency response of a

linear multi-degree-of-freedom system was examined by Caravani and Thomson

[271. They determined the mean and standard deviation of the response by

using a linearization technique and a Monte Carlo simulation. They pointed

out that an accurate estimate of the damping coefficients for lightly

damped systems, in the neighborhood of a natural frequency, is very impor-

tant in determining the mean and standard deviation of the system response.

IV.4 Design Optimization

During the design stage of structural systems the fluctuations of their

dynamic characteristic3 such as response or eigenvalues should be defined.

The main p.uh, 2r -.s ho, to restrict the fluctuations of the sysLe1n para-

meters. For example, in systems in which the values of displacement are

significant, or in structures for which the safety factors for fatigue

strength are determined in terms of probability functions, the problem is

to set up an optimum standard of manufacturing their components. Here the

permissible fluctuation in the characteristics becomes a restrictive

S]
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condition. Under these circumstances, the designer is encountered with a

* problem of optimization to specify the maximum permissible fluctuations of

parameters.

Tanaka and Onishi [28] developed a method of regulating the deviations

of random parameters and derived a restrictive conditional formula from the

* permissible fluctuation of displacements or natural frequencies. The

method is based on the linear deviation analysis with partial differential

* analysis together with sequential linear programming (SLP) for a number of

restrictive conditions. Tanaka, et al. [29] treated the optimization

problem of the allowable variance of random parameters by using a pertur-

o bation method and Monte Carlo simulation. They computed the deviation of

* the steady state response of structural systems with random parameters with

* the purpose of regulating the deviation of the random parameters when the

deviation of the response is specified. Rao [30] applied the multi-

* objective optimization techniques to the design of simple structures

* involving uncertain parameters and stochastic processes. The necessity of

* optimizing the structural systems involving dynamic restrictions, random

* parameters, stochastic processes, and multiple objectives has been outlined

by Rao (31].

I n this chapter, the effects of randomly time-varvin-z dampil- aii,

* stiffness (represented by stochastic processes) on the system r.ospullse will

be investigated by using the Fokker-Planck equation approach. Gaussian andI

* non-Gaussian closure schemes will be used to obtain the mean square

*response of the system in the normal and generalized coordinates. The pre-

sent analysis will not provide any Information about the stochastic stabi-I

* lity of the system. The investigation of stochastic stability of

aeroelastic structures will be examined in another report.

0
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IV.5 Theoretical Analysis

Considering again the aeroelastic system shown in Fig. I.1, and

allowing random variations in the damping and stiffness coefficients,

equations (111.3) become

Y + 2 I[ + ()] + + k(T)]Y1 
= - (T)a

'2
[a2Y 1 + a3Y2] + a4YY I + a5YIY2 + a6Y2YI + a7Y2Y2+ a8Y I

+ II '2
a9Y Y2 + 10 2  (IV.)

Y. ~~2[ +cr + t]Y
Y 2 

+ 2C2rI +  + k2(i)]Y2 = - )b

2  2

0 .........
[bg + b3Y + b4YIY + b5Y Y + b6Y2Y + b7Y2Y

2 1 3 2 4 11 5 12 6 21 72 2

'b 2  '''2
+8y1 + b9Y1Y2 1 y2

0 where c. (T) and Ck (T) are assumed independent Gaussian random ?rocesses
1 1

in damping and stiffness in the ith mode, respectively, (i = 1, 2).

Equations (IV.l) can be approximated through successive elimination of

Y. from non-linear terms and will be transformed into the Stratonovich type1

equation [1]

X. = f (X,t) + G( (IV .2)0 1. i J i

through the coordinate transformation

yl x1

: 2 x2>-- (IV.3)

Y 1 X3

0

2 X4

........ ...-..-...-.
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equations (IV.I) can be written in the for'"

X, x 3x

1 3

X2 =X 4

r 22a5 2 2 _ aXX o

X 3 =-X I - 2 1 X3 - a4XI - (a6 + ra 5 )XIX 9  r a7 X2  2 1 4I

C 2ra5XiX4 - 2C623 - 2C2ra7X2X4 + a8 X2 + a9X3 X + al 4,

* - Xl~kI(r) - 2i X 3 + a4 X1X 3 + a6X 2x3 ]
c (C )

r2 [aDXIX 2 + ayX 21C (t) - 2C2r[aDXiX4 + a7X2X4]c (I)
5 7 2 k 22 514 7  2

-[A + A2X1 + A3X2 + A4X2 + A5X X2 + A6X ] (,)

2 2 2 2 2 2X 4  r X 2  2 2rX4  b4X1 - (b 6 + r b5)XIX 2 - r b7X 2  (IV.4)

24b4XIX 3 - 2z2rb5XIX 4 - 24Ib 6X2 X3 - 2 2 rb 7X2 X4  83

+ b X X( + b X 2- 2I4bX + bXX ~ (r
9 3b 4 10 4 4XIX3 6X2X3)Ecl(T)

- r2[X2 + bX X + b7X21k2()

- 2 2 r[X 4 + b5 XIX 4 + bTX 2X4] c(T)

-[B + B + B3X2 + B4X + B XIX + B6X'IF (>

1 2 1 2 4 1 5 1 2 6 2

Alternatively, equations (IV.4) can be written in the Ito form [1]

dx. = [f.(X,T) + k, Gill j )dB.(T)
Skj k (IV.5)

*1..- -
. . ° °*t**7* , . ! .,., A t ..
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where the random processes i(-r) have been replaced by white noise processes

*Wi(T). In (IV.5) the formal derivative of the Brownian motion

dBi(-)
W.('r) is used. dB (T) are independent Brownian motion processes

with properties

E[dBi(T)] = 0

(IV .6)

E[dB ( r) = 2D.dr =a .dT
S1 1

* Introducing the Ito correction term represented by the double summation

expression in equation (IV.5), equatons (IV.4) become

dX1 = X3 d-r

dX2 = X4 dT-
dX3 = - X1 - 2 iX3 - a4X - (a6 + r

2a5 XiX2 - r2  2
a7X2  2.1a4XIX 3

2C2ra5XlX - 2*a6X2X - 2C 2 a7 X2X 4 + a8X2 + a9 X3 X4 + aX 4

2 2 2

+ 4D Cr [a5 XX 4 + a7XX +abXX + (a b + a bXXX
c 2 51 2 4 5 5 14 5 7 7 51X24

+ ab7X2 X4I dT - XldBkl(t) - r2 a5XlX 2 +a 7 X2 X4 ]dBk2(T)

7 2 4jd (T r 12+a2

2 I[X3 + a4 XIX 3 + a6X2 X3 ]dBc (T)

* - Xr a7 X2 X4 dB2( "

- [A1 + A2 X + + AX +AX 2 + A5XX + A6X2 ]dB( )(1 21 3 2 4 1 5 1 2  6 2 JT (IV.7)

* 2
0"
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dX4 = {- r 2 X - rX - X - (b + r2b X rX 2  
X2

42 , 2 r 4  4 1 ~6 r 5 )X 2  b 7X2

- 2 1 b4 XIX3 - 2 2 rb 5X1 X4 - 2 1b6 x2X 3 - 2 2 rb 7 X2X4

+bX2 +bXX+bX + 4D C2 [ b XX + bX Xb8X3 +b 9 X3 X4 + 1 0 4  13 63 22I6 ~b4XX X IX3+6 6 X2 3  .
2 '2

+ a 4 bXX + (a b + + ab6XX
44 1 3 46 6XXX3 +662 322 22.

4D c 2 r 2[x + 2bsXIX + 2b7X X +bXx+ 2b b7XIX2X
c22 4 5 14 7 24 5 l'4 5 7 1'2 4

" b72 X4 }dT - 24[bXX b 62d3B (T)

- r 2 [X 2 + b5XIX + b X2JdBk2(t)
2. 5 1 2 2 k2

- 2 2 r[X4 + b5X4 + b 7 X2 X4 ]dBc2(t)
2

-[B + B2X + B X + B 4  + B X x2 + B 6 X]dB() (IV.7)
32 cont 'd.

The general differential equation of the response joint moments is

obtained by using the Fokker-Planck equation approach as outlined in Chapter

III. This procedure results in the moment equation:

m. = imi I mM, i j~k~x i . -l j,k+l ,t + jMi, j-I,k,Z+l -

kJ k - mi~ ~ -, +  I z  -2 m,1 -in. -0,2"
i~ ~ -, z "I C j,k,£ " , . .. ,

(a 6 + r2a5) mi+lj+l,k-I r2 a 7 Mj+ 2 ,k-I,

+ 2la 4 (rIDcI - 1)mi+lkj, k, + C2ra5k 2 r D c
2 - 2) mi+l j,k-l,+1

+ 2 la6(CDcl- I) mj+I,k, + 4 2 ra 7(k 2 rD c - 2)mi,j+l,k-l,k+l -
1 2

+ ami,j,k+lt, + a9 mi,j,k,t+l + alOi,j,klZ+ 2}
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2(
-r m +rrrcrD b 2mt

2irn.+lI + '2 -2 c2 2)mj i Y +,j,k,9-

(r2b 5 + b rl 2lz b mj+k.-lm

5~~ ~ ~ 6i+1,jl~,P-I 7kj2,,.-

+ lb 6(C 1Dc 2)m,j+lk+lYl + k 2 17 2 ~ )mfj+lk,

8 i,j,k4-2,t-l b9 mi, j~k+1, X lb0mi, j, k,k+11

k(k-1){DA 2 m k.-2,X + 2DA IA 2mil ~-,

+ 0 1 A3 i j+1k-2,t + [Dk 1- 12Al4 2) 1 mi+ 2,j,, 2 ,,

+ 5D AAA 2A3 )mi~+l, j-I-,k-2,Y, + A 3+2A IA 6 mi, j+2,k-2,.

+ kZl2DAlBlm ijk+lJZ-1 + DAB+B

+ 2D A15+AB 1+ 2B3 A3 1 2i~ 2+ 1mlj,k-I,Z-1

+ 2D( A3B3+A3B + 1) i j+ k- Z

+ (~2DB +A B +A B +

+ 2DB B tn + D(2RB+B 2 ) .1 13 i,j+l,k,Y-2 142 i+2, j,k,Z -2

" 2D(B B B+B Bmljkz

" {Dk r 2 +D( B2+2B B~fm *k2+4D 2r2
Sk2 3 .. 6.......k- + 3 1 c 2 2 rlk.



62

Again, this equation reveals that the response moment equations constitute

an infinite hierarchy set. This infinite hierarchy may be closed via

Gaussian or non-Gaussian schemes.

For the Gaussian closure scheme, fourteen equations of first order and

second order moments will be generated from equation (IV.8). These

equations are coupled with third order moments, and if the third order

cumulant is set to zero, the fourteen equations can be closed. The response

of the system can then be determined by integrating the fourteen moment

equations using the LMSL DVERK routine.

For the non-Gaussian solution, which is more accurate, 69 moment

equations for the first four orders are generated. These equations are

found to be coupled through fifth order moment terms which can be closed by

setting the corresponding cumulant to zero. The closed 69 moment equations

are integrated numerically by again using the LMSL DVERK routine.

* -
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IV.6 Response of the System with Damping Uncertainty

The time history response according to the Gaussian closure is plotted

in Fig. IV.I for internal tuning resonance r = w2/Wi = 0.5, damping ratios

CI = C2 = 0.02, mass ratio m2 /mI = 0.2, beam length ratio t2/ti = 0.6, and

spectral density of randomly varying damping Dc = Dc2 = 0.1 D where 2D =

0.08 is the spectral density of the base motion. It is seen that after a

long period of the time parameter T = 1000 the Gaussian time responses

fluctuate between two limits, indicating that the system does not achieve a

steady state.

For the initial conditions indicated on each figure, the first mode

grows very fast with rapid fluctuations while the second mode shoots over

its initial value with a general decay which reaches values below the ini-

tial value. The two modes exchange energy over the transient period T =

150. During the steady state period each mode fluctuates between two enve-

lopes. The period of oscillation of the first mode envelope is twice that

of the second mode. Another important feature is that the level of the

me;a squares during the transient period is higher than the steady-state

level.

The time history response according to the non-Gaussian solution is

shown in Fig. IV.2. This figure ,shows Eluct;: 4tions during the I.ansient

response period r = 160. Cottrary to the Gaas,;ai solutions, the system

response achieves a stationary state.

The effects of random variation in daniping ratios and 2 on the

Gaussian and non-Gaussian autoparametriz region In normal and generalized

coordinates are shown in Figs. IV.3 and IV.4 as functions of the internal

." " "'" "- " ' . .. " -"" - "' i . .. .- . .' - - l
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tuning ratio r = w2/w1 . In Gaussian closure, as damping is varying ran-

* domly, the autoparametric interaction region becomes more narrow and the

peak values of the two mean square responses stay almost the same.

0

0-

0.
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IV.7 System Response with Stiffness Uncertainty

The system mean square responses are determined in this section when

the stiffnesses of the system are varied randomly with spectral densities

Dk = Dk = 0.1 D, (D = D = 0) where 2D = 0.08 is the spectral den-
k1 k2 1 2

• sity of the base motion. Figure IV.5 shows the time history responses

according to the Gaussian closure scheme for internal resonance r = 0.5,

damping ratios I= 2= 0.02, mass ratio m2 /mI = 0.2, beam length ratio

X 2/A1 = 0.6, and non-linear coupling parameter E = 0.02. The transient

response exhibits the same features outlined in section IV.6 and the steady

state response fluctuates between two quasi-stationary envelopes.

0 Figure IV.6 shows the time history responses according to the

non-Gaussian closure scheme for the same system parameters as above.

Again, the transient response fluctuates with energy exchange between two

• modes until the system achieves a stationary level.

Mean square responses obtained by Gaussian and non-Gaussian solutions

are higher in the transient region and in the steady state than the

* corresponding values when the system possesses damping uncertainty only.

Figures IV.7 and IV.8 demonstrate the system displacement mean squares as

functions of the internal tuning parameter r, according to Gaussian and

• non--CGuwo an solutions, respectively. It is seen that the inclusion of

stif'Lness uncertainty has a remarkable effect on the mean square responses.

The mean squares of the response displacements are relatively higher than

* those without stiffness uncertainty. In addition, although the region of

autoparametric interaction is wider, the absorber effect is less pronounced.

7~1
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IV.8 System Response with Damping and Stiffness Uncertainties

In this section the combined effect of the system damping and stiffness

uncertainties on the system random response will be examined. Typical

spectral densities for the uncertainties of these parameters are adopted,

naey k k 0.1 D, where 2D = 0.08 is the spectralC 1 2
density of the base random motion.

The time history responses according to the Gaussian closure solution

for internal tuning ratio r =0.5 are shown in Fig. IV.9. Corresponding

plots according to the non-Gaussian solution are shown in Fig. lV.l0. The

inclusion of the incertainties of the system parameters bring the system

* response into a wider fluctuating limit cycle for the Gaussian closure

solution or into a wider stationary limit cycle for the non-Gaussian clo-

sure solution. Furthermore, the transient response period with parameter

* uncertainties is relatively longer than the transient response period with

constant system parameters. The mean squares of the response displacements

during the steady state regime are plotted in Figs. IV.ll and TV.12 by

* dotted curves; the solid curves show the response of the system with

constant parameters. The higher level of the response mean squares is due

mainly to stiffness uncertainty rather than damping as inferred from the

* previous two sections;.
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IV.9 Conclusions

The influence of uncertainties in system parameters such as damping and

stiffness on the autoparametric response of an aeroelastic structure has

been examined numerically. The damping influence upon the response charac-

teristics is found to be very small while the stiffness uncertainty has a

remarkable effect on both the level of the mean square response and the

region of autoparametric interaction. The transient responses in the time

domain are relatively higher than the steady state responses. This feature

is very important in determining the actual stresses under random vibra-

tion. With stiffness uncertainty, the system response uncertainty becomes

higher than when the system possesses constant stiffness.

S



CHAPTER V

CONCLUSIONS

The linear and non-linear random modal interactions of a two degree-of-

freedom aeroelastic structure has been examined. The structure was sub-

* jected to a random wide band support motion. The equations of motion wce

derived by Lagrangian formulation and transf-rmed into normal coordinates;

to eliminate the linear dynamic coupling. The random excitation appeared

as parametric and non-homogeneous terms in the equations of motion.

The linear modal interaction was analyzed via the Fokker-Planck

equation approach. The statistical moments of the system response were

* solved for various system parameters. The general trend of the linear

solution showed that there is a suppression of one mode due to the presence

of feedback forces from the other mode. Such interaction took place when

* the frequencies of the uncoupled beams are close to each other. Further

analysis has shown that the parametric terms have a very small effect on

the level of the response mean squares. However, these parametric excita-

tions affect the stochastic stability of the system equilibrium con-

figuration.

When the struicture is tuned to the appropriate conditions of internal

resonance:, thc non-linear coupling of normal modes becomes significant in

predicting new response characteristics. The non-linear analysis is not a

simple task and involves the problem of infinite hierarchy of differential

equations of response moments. Two schemes have been used to close the

response moment equations. The first, known as Gaussian closure, is based

on the assumption that the response does not depart significantly from

* Gaussian distribution, while the second takes into consideration the

80
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non-normality of the response and is known as the non-Gaussian closure

method. The first scheme led to fourteen differential equations in the

first and second order moments, while the second required sixty-nine dif-

ferential equations in the first Four orders of response moments. The two

* sets of differential equations were solved by numerical integration. Both

solutions exhibited an energy exchange between the two modes in the neigh-
2

borhood of the internal resonance condition r - - 0.5. The Gaussian

* closure solution gave a quasi-stationary response in the form of fluc-

tuations between two limits. However, the non-Gaussian solution resulted

in a strict stationary response. The accuracy of the non-Gaussian solution

* required almost twenty times more computer time than the Gaussian solution.

In Chapter IV the damping and stiffness coefficients of the system were

subjected to time random variations. It was found that the damping

* variation had very little influence on the response characteristics, while the

stiffness variation showed a pronounced effect on the response mean squares

for both solutions.

o The results of this investigation represent part of an ongoing research

project supported by the Air Force Office of Scientific Research.
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APPENDIX A: COEFFICIENTS OF LINEAR PARAMETRIC
EQUATIONS OF MOTION

• I+m2
*E ~22

1+m22(a+2p1 b+ p)

m2 2 (1 .5b+3 1+1 .84 2/b)* E2  2

1+m 22 (a+2cIb+p1 )

m2 2 (1.5b+l .5(pl+ 2)+l.p 1 2/b)
E3 : -2

3 1+22 (a+2 lb+ )

1 2m2

=1 -

* l+m2 2(a+2 2b+ 2)

0m2 2( 1.5b+1.5( 2) /b)
2 l+m22a+2 2b+ 2

0

*2

m 22 ( I. 5b+3 2 +I .8 2 /b)

G3:
l+m 22( a+2 2 b+ 2)
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APPENDIX B: COEFFICIENTS OF LINEAR
* PARAMETRIC SOLUTIIONS

2 2(.5b+1.5( l+t2)+1 .3tl 2 /b) T
*1 LH 2a+ + 2

m F 2 (1.5b+3 2+.8 /b) .
2 =DsL* 2 - 2

*L1+m 22(a+2 p2b+ 2)
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*d 4  D 10 1--n 22  2iI
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APPENDIX C: COEFFICIENS OF NON-
LINEAR FUNCTIONS

- (1 + m2 /mI )
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APPENDIX D: COEFFICIENTS OF NON-LINEAR
MARKOV VECIOR EQUATIONS
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