
AD-A162 744 BUILD: A TOOL FOR MAINTAINING CONSISTEN4CY IN MODULAR i/i
SVSTEMSCU) MASSACHUSETTS INST OF TECH CAMBRIDGE
ARTIFICIAL INTELLIGENCE LAB R E ROBBINS NOV B5

UNLSSIFIED AI-TR-74 NBB8i4-BB-C-B5B5 F/G 9/2 N
I UNCLf

l
..........

EEEEEEEEEEEEEEsomiomomIIIIIIIIIIIIII

IIIIIIII

L3.

~~IIIIL25 1.61 IlU

U11

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

4t

Ii ., -- J

T% echnical Report 874

BUILD:D
N Tool for Maintaining

Consistency inN Modular Systems

Richard Elliot Robbins

MIT Artificial Intelligence Laboratory

DTIC
CS E 'Fz. 7" i*S

7This doc el a 'ani Sale its
i)

orpbliC I," unlimnited t

U 85 12 30 093
A *,~ . , X

UNCLASSIF'IED
SF *ASS - A -,ONA '.Nh..PAG Does Enr.,ed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I qE-,q NUBERGOVT ACCESSION NO R I ECIPIENT'S CATALOG NUMBER

AI-TP-874 7/5______________

4 TITLE (&nd S.,befrle) S. TYPE Of REPORT & PERIOD COVERED

BUILD: A Tool For Maintaining Consistency In Technical Report

Modular Systems 6. PERFORMING ORG. REPORT NUMBER

7, Au TWORlsJ S. CONTRACT OR GRANT NUMBER(@)

ARPA N00014-80-C-0505
Richard Elliot Robbins NSF MCS-8117633

9 PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
JIArtificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

* 545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projeicts Agency November 1985
1400 Wilson Blvd. 13. NUMBER OFPAGES

Arlington, VA 22209 55
4 MONITORING AGENCY NAME A ADORISS(9I differerif from Controling Oftlia) IS. SECURITY CLASS. (00 tho. report)

Office of Naval Research UNCLASSIFIED
Information Systems________________
Arlington, VA 22217 ISO. DCLSSIF!ICATION/ DOWNGRADING

'I IC. DISTRIBUTION STATEMENT (of ets Report)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (li He abstract ontoeed~ B. lock"*. fiI ffwwre frm Repert)

WS SUPPLEMENTARY NOTES

None

IS. K EY WORDS (Centinua a"ei ,eve0eeade It "641684"Y and #~iteI BY block ubev)

consistent construction
system maintenance
system mocdeling
mocdule interconnection lainciuacre

20. AUIISTRPACT (Continua an FeveaceO old* if "0e6eeei nmd IfetIfI *7 &#ek tonne.)

BUILD is a tool for keeping mrodular systems in a consistent state by managing
the construction tasks (e.g. compilation, linking etc.) associated with such
system. It employs a user supplied system model and a procedural description
of a task to be performed in order to perform the task. This differs from

* existing tools which do not explicitly separate knowledge about systems from
knowledge about how systems are manipulated.

(over)

DD I O,""7 1473 EDITION OP 1'NOV611 IS OSSOLETE UNCLASS IF IED
S/m :02-14-601 1SECURITY CLASSIFICATION OF TNIS PAGE (When Dae. BntFlIkO

Block 20 cont.

BUILD provides a static framework for modeling systems and handling construction
requests that makes use of programing environment specific definitions. By
altering the set of definitions, BUILD can be extended to work with new
prograning environments and to perform new tasks.

.

.1- -

i ,'%',

1.9o

;, .',' !2'. J ' = J. . ' ' -' , ' ' . ' ' ' " ,'-""''' ." . " • . ' . , - . - . .-- . . r I'" 4T *

(A

MASSAC! IUSETTS INSTITUTE OF TECl INOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I.T.R. No. 874 November 1985

BUILD:

A Tool For Maintaining Consistency In Modular Systems

by

Richard Elliot Robbins/
*/

Abstract

* > BUILD is a tool for keeping modular systems in a consistent state by managing the construction tasks (e.g.
comiilation, linking etc.) associated with such systems. It employs a user supplied system model and a
procedural description of a task to bc performed in order to perform the task. This differs from existing tools
which do not explicitly separate knowledge about systems from knowledge about how systems are
manipulated.

BUILD provides a static framework for modeling systems and handling construction requests that makes use of

programming environment specific definitions. By altering the set of definitions, BUILD can be extended to
work with new programming environments and to perform new tasks. . , : ..- ,_- .

"7), :, .,~~ -/. ,;. . . 0(F .

C~ tt(c), sisch set pIno ogy, 1985

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory's artificial intelligence research has been provided in part by the
Advanced Research Projects Agency of the Department of lefense under Office of Naval Research contract
N00014-80-C-0505, in part by National Science Foundation grant MCS-8117633, in part by the International
Business Machines Corporation, and in part by Honeywell Information Systems. Incorporated.

The views and conclusions contilined in this document are those of the author, and should not be interpreted
as representing the policies, either expressed or implied, of the Department of I)cfensc, of the National
Science Foundation, of the International Business Machines Corporation, or of Honeywell Information
Systems, Incorporated.

This report is a revised version of a thesis submitted to the Department of Electrical Engineering and
Computer Science on June 3, 1985 in parti1 fifillment of the requirements for the degree of Master of
Science.

4z

-' 4 W', . .~

Dedicated To

'Ibc memory of my grandmothers, Ruth and Fsther.

V.

*I

Acknowledgments

I would like to acknowledge the role that my thesis advisor, Dick Waters, played in the work that this
report is based on; the importance of his guidance and encouragement cannot be ovcr-cstimatcd. I would
also like to thank Bob Zieve, Jacques Bouvard and Honeywell Information Systems for Supporting this
research. Finally. I would like to thank I)onna Gorshel, I)ave Wheeler. Pete Sterpe. Suzanne Witty. Marc
Zissman. Dave Kravitz, Sam I.cvitin. and all of the peoplc who wcrc even remotely connected with the
Honeywell)ay Care Center fbr providing the friendship and moral support that allowed me to see this
project to its completion.

'4

% I V.,

0 -.

Table of Contents

I. Introduction I
2. System Construction Tools 5

2.1 MAKE 5
2.2 DEFSYSTEM 11
2.3 Other Tools 15

3. The BUILD Reference Level 17
3.1 Modules 17
3.2 References 17
3.3 Models 19

4. The BUILD Task Level 21
4.1 Grain types 21
4.2 G-nodes 22
4.3 Process Types 22
4.4 P-Nodes 24
4.5 Task Graph Constraints 25
4.6 The Construction Algorithm 25

5. Construction Requests and Task Graph Derivation 27
5.1 Viewing and Manipulating Task Graphs -- ACCESS 28
5.2 Request Handlers 30
5.3 Reference Handlers 31
5.4 A Task Description Definition Example 32

6. Reprise 35
6.1 BUILD Compared With Existing Tools 35
6.2 BUILD's Construction Framework 35
6.3 Extensions to BUILD 36

References 39
1. BUILD Definitions For C 41

5."

List of Figures

Figure 1-1: INYCOMP Inter-Module Reference Graph 2
Figure 1-2: Construction Graph For 'INYCOMP 2
Figure 1-3: MakeFilc ForTINYCOMP 3
Figure 1-4: nUllI) Model For TINYCOMP 3
Figure 1-5: I)efinition For :LIST-SOURCE-CODE 6
Figure 2-1: Construction Graph For TINYCOMP 6
Figure 2-2: MakeFile For TINYCOMP 6
Figure 2-3: MAKI. Construction Algorithm 7:Figure 2-4: MakeFile For LINT 9

Figure 2-5: IwISYSFEM l)escription For TINYCOMP 13
Figure 2-6: DFFSYSTIrM Description For LINT 15
Figure 3-1: IU.i) Model For TINYCOMP 19
Figure 3-2: B1UnI Description For LINT 19
Figure 4-1: Simple Task Graph 21
Figure 4-2: Grain Typc Dcfinitions for Lisp 22
Figure 4-3: Process Typc Definitions For Lisp 24
Figure 4-4: Expanded P-Node 24
Figure 4-5: BuItD Construction Algorithm 26
Figure 5-1: Request Handler Definitions for Lisp 31
Figure 5-2: Reference Handler Definitions for Lisp 33
Figure 5-3: Definition For LIST-SOURCE-CODE 33

o .I|

4.%-

0, 4'

- - -1 -",t t . -- ' I -.. '~L 1Z. -I V - - .-x. - . . .; . -. "-

1. Introduction

Many programming languages encourage the development of modular systems by allowing the
independent compilation of modules (ADA lAda 831, C [Kernighan and Ritchic 781. CIU [l[iskov 81].
Common-l.isp [Steelc 841. Mesa [Mitchcll 791). This feature can be exploited to minimize the amount of
compilation that needs to be done when some part of a system is changed. However, as systems become
larger it becomes difficult to know exactly which modules need to be recompiled when one changes. It is
important that the correct modules be recompiled and rclinked -- a bug caused by ignoring a module that
should be rebuilt can be very difficult to find. This problem is called the consistent construction problem.

This report describcs BUILD, a tool that reconstructs system modules in order to ensure that they are kept
in a consistent state. BUILD does not modify source modules and will not rid systems of problems that require
source code revision. However. BUIILD can handle the many instances where some portion of a system needs
to be recompiled, relinked, or somehow reprocessed in order to eliminate inconsistency.

Thcre are many tools that manipulate systems by reconstructing inconsistent parts. Chapter 2 presents
MAKEI[Feldman 791 and DEI'SYSTIEM [Weinreb and Moon 81], two representative tools, and discusses some of
their weaknesses. The fundamental problem with MAKE, DE-I.'SYS'IIEM. and all similar construction directive
based tools is that they operate on systems by using user supplied lists of construction directives. These lists
are difficult to understand. BUILD provides the same functionality as existing tools but does so without
requiring users to list construction steps.

BUILD derives the construction steps needed to produce a module from user supplied system models.
These models specify how modules reference each other instead of how they are constructed. BUILD uses the
reference information to determine how modules depend on each other and how a change to one module will
effect another. For instance, if a system model specifies that module, refers to macros defined in module , then
BUILD can infer that a change to module2 implies that module, should be recompiled. Chapter 3 discusses
system models and chapters 4, and 5 explain how BUILD uses System models to perform construction.

hle major strength of BUILD's reference based modeling system over a construction directive based system

is that it provides a higher level language for describing system structure. Because it eliminates low level
construction detail and allows explicit declaration of high level system relationships, a reference based model
is easier to understand and provides more information than its construction directive based counterpart.

BUILD separates knowledge about systems from knowledge about how systems are manipulated. The term
task is used to refer to a construction process such as compilation or linking that BUILD may be called upon to
perform. BUILD uses task descriptions to specify how to perform construction tasks and how the various kinds
of references that appear in system models may effect the construction required to perform the task. Using
the example from the previous paragraph, BUILD's task description for compilation allows it to realize that
while a change to module2 implies that module, should be recompiled, a change to module, does not imply
that module2 should be recompiled.

,imovis an example of it mnodular system, it will be Used throughout this report to present different
aspects of systcim construction tools (this examiple was adapted from oneC used hy Fecldman [Feldmnan 791).
IIN)(ON11, has two major modules. it parser and it code generator. The parser is built by YACC, a parser
generating tool [Johnson 7Ha1. T'he code generator is implemented in C(crnighan and Ritchie 78]. Thlc
parser and code generator use at common set of'definitions for shared data structurcs. TIhese definitions are
combined with the source programs during compilation. Hie compiled programs are linked with at library
that is also subject to change. Figure 1-1 depict% INCOMI's inter-module reference pattcrn and figure
1-2 depicts INYcOMP's Construction process.

9L S - - -1i[IIE111

PASR-.LDENCUE

Figure 1-1: TINYCOMP Inter-Module: Reference Graph

PARSER.GRAMNAR YACC PARSER.C ONPILE PARSER.0

Figure 1-2. Construction Graph For IINYCOMP

2

-- -- WW - 7 F

Reference Based System Models
Compare figure 1-3 which contlninS the MAKI: dirciv~es for I 'NY(OMiP. and figure 1-4 which contains the

iii I) system model flor 'I INY- o)MI. While the MAKI: directives encode IINYwOM's construction graph.
iiuh 1)'s system m~odel encodes II N Co~i 1's reference graph.

A rcfircnce model can hc used in place of at construction directive list bccauseC all of the information about
construction present in suIch at list can hc derivecd from at reference model. Consider the third MIAK[: directive
forriINYComi:

CODEGEN.O: CODEGEN.C DEFINITIONS.C
CC -C CODEGEN.C # -C COMPILES

'this expresses that CODEGEN .0 is produced by compiling CODEGEN .C. and that if either CODEGEN.C or
DEF INIT IONS. C changes. then CODEGEN .C needs to he recomnpiled. 'Hiis construiction dependency exists
becauIse CODEGEN . C is combined with DE FI NI TIONS. C when it is compiled to produce CODEGEN. 0.

I n conltrast, the re 1krence based model speci fies that C ODE -G E NERA TO0R includes D E FS:
(:INCLUDES CODE-GENERATOR DEFS)

1W]! I)Ws description for compilation contains the knowledge that the :INCLUDES reference implies a
compilation construction dependency between including and included files.

-~ PARSER.C: PARSER.GRAMMAR
YACC PARSER.GRAMMAR NYACC MAKES Y.TAB.C
MV Y.TAB.C PARSER.C #RENAME Y.TAB.C

PARSER.O: PARSER.C DEFINITIONS.C
CC -C PARSER.C # -C COMPILES

CODEGEN.O: CODEGEN.C DEFINITIONS.C
CC -C CODEGEN.C # -C COMPILES

TINYCOMP: CODEGEN.O PARSER.O LIBRARY.O
CC CODEGEN.O PARSER.O LIBRARY.O -0 TINYCOMP # -0 LINKS

Figure 1-3: MakeFile For TNYCOMP

(DEFMODEL TINYCOMP
(:MODULE DEFS :C-SOURCE "DEFINITIONS")
(:MODULE PARSER :YACC-GRAMMAR "PARSER")
(:MODULE CODE-GENERATOR :C-SOURCE "CODEGEN")
(:MODULE LIBRARY :C-OBJECT "LIBRARY")

(:INCLUDES PARSER DEFS)
(:INCLUDES CODE-GENERATOR DEFS)
(:CALLS PARSER LIBRARY)
(:CALLS PARSER CODE-GENERATOR)
(:CALLS CODE-GENERATOR LIBRARY))

Figure 1-4: niin Model F-or TINYCOMP

N!A

3

. I.. I,.II xr t:2 J r w . :r r r r , , ' r , . w .- wy . wyw - .- - . S V , . . - .. .w .t rrr' - .r " " " -- " "- .

Task Descriptions
U pon receipt of a request 10 perform i task. HtilI) derives a task graph w hich models the construction

steps and dependencies necesoarv to perform the task. (Chapter 4 presents ItL I I task models and chapter
5 explains hoAw ta,,k models are deri~ed from system models.) Once the task model has. been deried, Illil.I)

,1,\/cs it in order to determine Ahich components have changed and what steps are needed in order to
slilf thc task request.

" II i) pVO\ides a stttic franmework for modeling systems and handling construction requests that makes

Use of proluramming enmironmnent specific definitions. New t,|sks can he added to I11, 1),S repertoire by
ltering the set of definitions.

F[tor example, figure 1-5 contains the forms needed to define a task called :L IST-SOURCE-CODE which
produccs formattcd listings of the source modules of a I .isp system. (This cxamnple will he explained in detail
in chapter 5.) The first fonn allows BLII 1) to represent the processing needed to list a single lisp source file.

forms tell 11LI 1) about the implications of the references :CALLS and :MACRO-CALLS upon the
:LIST-SOURCE-CODE task.

Since task definitions are separate from system models, new tasks can be performed on existing models

w athout additional effort. For instance. once :LIST-SOURCE-CODE has been defined, IILIi n will be able to
handle requests to format the source code for existing systems without changing any system models.
Construction directive based tools cannot be extended in a similar manner.

(DEFINE-PROCESS-TYPE :LIST-LISP-SOURCE
((SOURCE :LISP-SOURCE :SINGLE))
((LISTING :PRESS :SINGLE SOURCE))
OUTPUT-STREAM
(FORMAT OUTPUT-STREAM "-%LIST -A"

(PATHNAME-MINUS-VERSION SOURCE))
(FORMAT OUTPUT-STREAM "-%LISTING -A" SOURCE)

(LIST-LISP-FILE SOURCE LISTING))

(DEFINE-REQUEST-HANDLER (:LIST-SOURCE-CODE :LISP-SOURCE :PRE)
(SOURCE-NODE)

(ACCESS- SOURCE-NODE ((SOURCE :LIST-LISP-SOURCE) LISTING)))

(DEFINE-REFERENCE-HANDLER ((:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))

(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))

(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

Figure 1-5: lefinition For :LIST-SOURCE-CODE

%5'>

4
. . N

2. System Construction Tools

This chapter focuses on two tools that were designed to aid in the management of the consistent
construction problem. Bcfore thcy are presented some terminology that will bc used throughout this report is
in troduced.

)ifferent programming cnvironmncnts are geared to operate upon different kinds of objects. For instance,
some environments are designcd to operate on files, and others on functions. 'Thc term grain will be used to
refer to the objects manipulatcd in a programming environment -- regardless of their nature.

'hc terminology introduced in this paragraph will be used to refer to the kinds of grains that are
manipulated during the construction process. Source grains are the components that are produced by people
and not programs (e.g., programming language source code). Source grains are manipulated by programs to
produce derived grains (e.g., object code). Grains that are the final products of the construction process are
called goal grains (e.g., executable images of programs). While goal grains are usually derived grains, they can
also be source grains. I)erived grains that are not goal grains are called iternediate grains (e.g., object code
that requires linking in order to form executable images).

2.1 MAKE
MAKE [Feldman 791, available as part of UNIX' , is a simple tool for managing systems that has received

widespread use. MAKE is driven by sets of construction directives that form "recipes" for constructing
systems. 'Ihese directives are stored in a text file called a MakeFile and have the form:

TARGET-GRAIN : INGREDIENT-GRAIN-1 INGREDIENT-GRAIN-2 ...
COMMAND-1
COMMAND-2

Each entry declares that TARGET-GRAIN depends on each of the grains to the right of the colon. The
command sequence below the construction dependency declaration line is executed in order to construct
TARGET-GRAIN. There are no constraints placed on the commands which can appear in the command
sequence. Furthermore, there are no ordering rules for MakeFile entries.

MAKE has a simple macro substitution facility. A macro is defined in the following manner:

MACRO-NAME=MACRO-EXPANSION

Any instance of MACRO-NAME enclosed within parentheses and preceded by a dollar sign (i.e.,
$(MACRO-NAME)) is replaced by the text MACRO-EXPANSION when the MakeFile that includes the macro
definition is processed. The definition for a macro must precede all of its uses.

A Small Example -- TINYCOMP
Figure 2-1 dcpicts the construction process for T]NYcOMP and figure 2-2 contains a corresponding

MakeFilc. Given the MakeFile, MAKI: will perform the appropriate construction when TINYCOMP
components change. For instance, a change to PARSE R. GRAMMAR will cause a new parser to be derived,
compiled. and linked. A change to CODEGEN .C will cause CODEGEN .C to be compiled and linked. A
change to DEFINITIONS.C will cause PARSER.C and CODEGEN.C to be compiled and linked. Finally. a
change to LIBRARY. 0 will cause linking but no compiling.

-UNIX is a Irademnark of Hell I aboratoricsw
! L ..'CL~V !." ' ',P' ',. ',"V .,'.;. ... ,", .'J ,-.' .-. -v , ,- -.•- -.-- , - . " .. .,-. , , --- 5

V Figure 2-1: Construction Graph For flNYCOMP

- PARSER.C: PARSER.GRAMMAR
YACC PARSER.GRAMMAR #YACC MAKES Y.TAB.C
MV Y.TAB.C PARSER.C #RENAME Y.TAB.C

PARSER.O: PARSER.C DEFINITIONS.C
CC -C PARSER.C # -C COMPILES

CODEGEN.O: CODEGEN.C DEFINITIONS.C
CC -C CODEGEN.C # -C COMPILES

TiNYCOMP: CODEGEN.O PARSER.O LIBRARY.O
CC CODEGEN.O PARSER.O LIBRARY.O -O TINYCOMP # -0 LINKS

Figure 2-2: MakeFile For TINYC0MP

Thc MakeFile entries arc interpreted in the following manner:

PARSER.C: PARSER.GRAMMAR..
PARSE R. C depends on PARSE R. GRAMMAR. It is created by running N'Acc on PARSE R. GRAMMAR.

* PARSER,.0: PARSER.C DEFINITIONS.C..
PARSER.O0depends on PARSER. C and DE FINIT IONS. C. It is creatd by recompiling PARSE R. C.

CODEGEN.O: CODEGEN.C DEFINITIONS.C..
CODEGEN.Odcpcndson CODEGEN.C and DEFINITIONS.C. ItiscrcaitedbyrecompilingCODEGEN.C.

TINYCOMP: CODEGEN.O PARSER.O LIBRARY.O .
T I NYCOMP depends on CODEGEN .0. PARSER. .0,and L IBRARY. 0. It is crcatcd by rclinking the system.

6

L U- 8K

The Construction Process
MAKF is invoked with the following UNIX command line template (brackets indicate optional fields):

MAKE [-f MAKEFILE] [OPTION ...] [TARGET-GRAIN]

MAKEFILE Specifics the name ofthe file containing the construction directives. if no -f option is used
then MAKE uses the file named MAKE F ILE in the working directory.

OPTION Specifies options like print but do not execute the command sequences or update the
modified dale of the targets without executing any, command sequences.

TARGET-GRAIN Specifies the name of the target grain to be processed, if TARGET-GRAIN is not specified
then MAKE will process the first target grain named in the MakeFile.

MAKE begins by constructing a dependency graph from the selected MakeFile. Each node in the graph
corresponds to a grain mentioned in the MakeFile. The children ofa node represent the grains that the grain
represented by the node depends on. A request to make a target grain is processed by doing a depth-first
walk of the graph starting with tie node that corresponds to the target. At each node visited, any grains that
arc missing or whose children have changed are updated.

MAKE compares the creation dates of a target grain and its ingredient grains as an approximate means of
noting when changes occur. For instance if TARGET- I depends on INGREDI ENT- I then MAKE will assume
that INGREDIENT-1 has changed if and only if its creation date is after the creation date of TARGET-1.
Since UNIX allows file creation dates to be modified by users, it is possible to fool MAKE by changing file
attributes. tlowever, since most people do not change file attributes, the MAKE mechanism is reasonable.

Without information about how an ingredient has changed, MAKE cannot determine whether a change is
significant or not. Therefore, MAKE pessimistically assumes that every change to an ingredient grain will
effect the target grain, and it will always reconstruct a target when one of its ingredients has changed. Figure

,* 2-3 contains the MAKE construction algorithm written in Lisp.

(DEFUN MAKE (NODE)
(DOLIST (CHILD (GET-CHILDREN NODE))

(MAKE CHILD))
(IF (OR (NON-EXISTENT-P NODE) (CHILDREN-CHANGED-P NODE))

(UPDATE NODE)))

(DEFUN CHILDREN-CHANGED-P (NODE)
(< (CREATION-DATE NODE)

(APPLY #'MAX
(MAPCAR #'GET-CREATION-DATE (GET-CHILDREN NODE)))))

Figure 2-3: MAKE Construction Algorithm

II
7

Al NJ. %-

An Extended Example -- LINT
[I he I I, I system [Johnson /8bl is presented as an cxtcndcd example of using MAKI. I NI examines C

source programs and detects bugs that most C compilers cannot. It is also sensitive to constructs that are legal
but may not be portable.

I IN I consists of a UNIX shell script driver, a set of I.INT Library files, and two C programs. Before
programs arc processed by the first C program (i.e.. the first pass of lINi), they are processed by the C
pre-processor. which ha|ndles macro expansion and some compiler directives.

After being processed by the C pre-processor, programs are sent to the first pass of [,IN1. 'This pass does
Icxical analysis on the input text, constructs and maintains symbol tables, and builds trees for expressions. An

' intericdiate file that consists of lines of ASCII text is produced. Fach line contains an external identifier
name. an encoding of the context in which it was seen (use, definition, declaration, etc.). a type specifier, and a
source file name and line number. 'The information about variables local to a function or file is collected by

.. accessing the symbol table, and examining the expression trees. Comments about local problems are
produced as detected. The infbrmation about external names is collected in the intermediate file.

I IN I libraries are collections of definitions of external names that are appended to the intermediate file
generated by the first pass of[INI. T[hey are used to provide IINT with a set of definitions for commonly used
external names without processing the source that contains the definitions. The most commonly used
libraries contain the definitions for the functions that are supplied by the UNIX C run time environment.
Users can create their own libraries of commonly used names in order to alleviate repeated processing.

After all the source files and library descriptions have been collected, the intermediate file is sorted to
.-' bring all information collected about a given external name together. '[he second pass of I.INT then reads the

- lines from the intermediate file and compares all of the definitions. declarations, and uses for consistency.
-igure 2-4 contains the MakeFilc for I IN.. h'le primary point of this example is that MakeFiles, even for

medium sized systems like LINT. are difficult to understand. The BUII.i) description mechanism introduced in
chapter 3 provides a much simpler way to describe systems.

The first part of the t INr Mak eFile contains macro definitions. These definitions are used to specify
* directories (e.g., M), compilation flags (e.g., CFLAGS), and to group files (e.g., LINTLIBS). The target ALL is

used to name the major subsystems of the INT. The next cluster of specifications manages the first pass of
LINT. There is an entry for each library file provided with LINT. Each of these specifies that a LINT library file
is dependent upon a library source file and the first pass of LINT. Libraries depend on the first pass of LINT
because they are constructed by it. The targets that specify management for the second pass of UNT are

.LPASS2 and LPASS2. 0.

The LINTALL, INSTALL, SHRINK, and CLEAN targets are not grains at all, rather, they are used to
initiate installation and removal of LINT. A request to make any of these will always result in the associated
command sequence being executed because the corresponding files do not exist in the UNIX environment.
The use of non-existing grains to force command sequences to be executed is a popular and useful feature of
MAKE. 'Thc functionality provided by these target grains is an example of how construction tools can be used
for more than just system construction.

[I,, .-

- 8

---- 4 2 Xi

M=/USlt/SRC/L I /MIP
CFLAGS=-O -DFLIXNAMES
LINHkIBS=LLIB-PORI.LN LLI13-LC.LN LLIB-LM.LN LLIIR-LMP.LN LLIB-LCURSES.LN

AIL: LPASSI LPASS2 $(LINTLIBS)

LPASSI: CGRAM.O XD[FS.O SCAN.O COMMI.O PFIN.O TF1EES.O OPTJM.O LIN1.O HASH.O
CC CGRAM.O XDIFS.O SCAN.O COMM1.O PFTN.O TR[ES.O OPTIM.O LINI.O HASH.O -0 IPASSI

TI(S.O: S(M)/MANIIESI MACD[IS S(M)/MFILEI S(M)/TREES.C
CC -C S(CliAGS) -13(M) -1. S(M)/TREES.C

OPTIM.O: S(M)/MANIF[.ST MACD(FS S(M)/MFILEI S(M)/OPTIM.C
CC -C S(CFIAGS) -IS(M) -1. 3(M)/OPTIM.C

PFIN.O: S(M)/MANIV[ST MACDEFS S(M)/MFILEl S(M)/PFTN.C
CC -C S(CtIAGS) -I3(M) -1. S(M)/PFTN.C

LJNT.O: 3(M)/MANIFEST MACDEIS 3(M)/MFILEl LMANIFEST
CC -C S(CfLAGS) -13(M) -I. LINT.C

SCAN.O: S(M)/MANIFEST MACOFFS S(M)/MFILE1 S(M)/SCAN.C
CC -C S(CfLAGS) -13(M) -1. S(M)/SCAN.C

XDEfS.O: S(M)/MANIFLS1 S(M)/MFILE1 MACDEFS S(M)/XDEFS.C
CC -C S(CULAGS) -13(M) -I. S(M)/XDEFS.C

COMM1.O: 3(M)/MANIFES] S(M)/MF[El 3(M)/COMMON MACOEFS S(M)/COMMI.C
CC -C $(CFLAGS) -1. -13(M) S(M)/COMMI.C

CGRAM.O: S(M)/MANIFEST S(M)/MFItl~ MACDEFS CGRAM.C
CC -C S(CFLAGS) -13(M) -1. CGRAM.C

CGRAM.C: S(M)/CGRAM.Y
YACC S(M)/CGRAM.Y
MV Y.TAB.C CGRAN.C

LLIB-PORT.LN: ILIB-PORT LPASS1
-(/LID/CPP -C -DLINT ILIB-PORT I ./LPASSl -PUV) LLIB-PORT.LN)

LLIB-LM.LN: ILIB-IM IPASSI
-(ILIB/CPP -C -OLIt4T LLlB-Lt4 1 LPASSI -PIN > LLIB-LM.LM

A LLIB-LMP.LN: LLIB-LMP IPASSI
-(/LIB/CPP -C -DLINT 1118-IMP ./LPASS1 -PUV > LLIB-LMP.LN)

LLIB-LC.LM: LLlB-LC LPASSI
-(/LIB/CPP -C -OLINT 1118-IC I./LPASSl -V > LLIB-LC.LN)

LLIB-LCURSES.LN: LLIB-LCURSES IPASSI
-(/L18/CPP -C -DLINT LLIB-LCURSES I ./LPASSI -V > LLIB-LCURSES.LN)

LPASS2: LPASS2.O HASH.O
4 CC LPASS2.O HASH.O -o LPASS2

LPASS2.O: S(M)/MANIFEST IMANIFEST
CC S(CFLAGS) -C -IS(M) -1. LPASS2.C

LINTALL:
LINT -HPV -1. -13(M) S(M)/CGRAM.C S(M)/XDEFS.C S(M)/SCAN.C\

S(M)/PFTN.C S(M)/TREES.C S(M)/OPTIM.C LINT.C
INSTALL: ALL SHELL

INSTALL -S IPASSI /1USR/LIB/LINT/LINT1
INSTALL -S LPASS2 /USR/LIB/LINT/LINT2

*FOR I IN LLIB-0; DO INSTALL -C -M 644 SSI /USR/LIB/LINT; DONE
INSTALL -C SHELL /USR/BIN/LIMT

SHRINK:
RN -F 0.0

CLEAN: SHRINK
RN -F LPASSI LPASS2 CGRAM.C S(LINTLIBS)

Figure 2-4: MakcFile For UNT

9

% . ~.* -

Deficiencies
Phrased in terms of construction. The fundamental problem with MAKI is that it forces users to

manipulate lists of construction directives. People do not normally think about systems in terms Of the steps
used to construct them. and thcreforc these lists are diff'ictnlt to understand. MAKI: should prescnt a more
natural user interf~ace and then work from the User supplied inlornation towards the construction information
that it requires.

* i~I- does not include an adequate mcans for saving and reusing common construction patterns. The
introduction of such a facility wotld shorten Makeliles since common patterns would be replaced with single
identifiers. The definition of the identifier would doCUment and highlight the intended construction pattern.
The functionality described in this paragraph is usually provided by a macro mechanism, however the MAKE

macro CI|cility is too simple -- it does not c~en allo ftr parameterizcd macros.
No underlying task descriptions. Systems that keep knowledge about construction separate from

know ledge about systems can be extended b adding to the construction knowledge without altering existing
system models. Pitman [Pitman 841 discusses the importance of separating knowledge about systems from
knowledge about construction tasks. MAKi does not use task dc.Ariptions at all and cannot be extended
without changing existing MakeFiles.

"nterincdiale grains are referenced. Maintainers can only change systems by manipulating source grains or
requesting that goal grains he constructed. Maintainers do not manipulate intcrnediatc grains and it would
be nice if these grains did not need to appear in MakeFiles.

All source grains need not be referenced. MAKE allows system descriptions to omit Source p- ins that are
also goal grains since there is no command sequence that uses or effects them. For example. there is nothing
that firces UNIX Shell Scripts to be included in MakeFiles. The absence of references to Shell Scripts would
be a serious omission if someone were using a MakeFile to determine which grains needed to be copied when
transporting a system.

10

% %

2.2 DEFSYSTEM
)II:SYS'II:M [Weinreb and Moon 811 is a construction directive based tool that is used to install and

maintain I.isp Machine software. I'lie I)j.SYSIT:M analog to MAKCF'S Make~ile is called a system description
I)I.SYSli:M system descriptions contain a mixture of system modeling information and construction
directives. I).:ISYSTIM requires that command sequences (called transfonnations) hc fbrmally defined before
they are used, this is difl'crent from the MAKr approach of allowing unlimited use of UNIX command
sequences.

System descriptions are made by DEFSYSTEM macro. Calls to DEFSYSTEM have the form:

(DEFSYSTEM SYSTEM-NAME
(KEYWORD ARGS ...)

(KEYWORD ARGS ...)

The options selected by the keywords fall into two general categories: properties of the system and
transformations.

'here are three main DI.SYSTFM property keywords:

:NAME Specifics a "pretty" version of SYSTEM-NAME for use in printing.

:PATHNAME-DEFAULT

Specifies a local default within the definition of the system for strings to be parsed into
pathnames.

:MODULE Assigns a name to a group of files within the system.

A transformation is an operation, such as compiling or loading, that takes one or more files and performs
some operation on them. There are two types of DrI-SYST]-M transformations: simple and complex. A simple
transformation is a single operation on a module, such as compiling it or loading it. A complex
transformation combines several transformations; for example, compiling and then loading the results of the
compilation.

The general format of a simple transformation is:

(NAME INPUT PRE-CONDITIONS)

NAME The name of the transformation to be performed on the files specified by INPUT.
Examples of transformation names are :FASLOAD and :COMPILE-LOAD-INIT (these
transformations are described below).

INPUT A module or nested transformation.

PRE-CONDITIONS
Optional. Specifics transformations that must occur before the current transformation
itself can take place. The format is either a list (NAME MODULE-NAMES ...), or a list of
such lists. Iach of these lists declares that the transformation NAME must be performed on
the named modules before the current transformation can take place. ('T'he Lisp Machine
documentation calls pre-conditions dependencies.)

% i

2M _ '; .

'I he following simple transformations are pre-defincd:

FASLOAD loads the indicated file when a newer version of the file exists than was read into the
current environment.

:COMPILE Compiles the indicated file when the source file has been been updated since the compiled
code file was written.

Unlike simple transformations, complex transformations do not have any standard form. 'lhe pre-defined
complex transformations are:

:COMPILE-LOAD
Compiles and then loads the input files. It has the form:

(:COMPILE-LOAD INPUT COMPILE-CONDITIONS LOAD-CONDITIONS)
and is exactly the same as

(:FASLOAD (:COMPILE INPUT COMPILE-CONDITIONS) LOAD-CONDITIONS)

:COMPILE-LOAD-INIT
Compiles and loads the input files. This transformation is sensitive to changes made to an additional
dependency list. It has the form:

(:COMPILE-LOAD-INIT INPUT ADDITIONAL-DEPENDENCIES
COMPILE-PRE-CONDITIONS LOAD-PRE-CONDITIONS)

INPUT will be compiled and loaded whenever its source file or any of the modules listed in
ADDITIONAL-DEPENDENCIES are updated. Note, the ADDITIONAL-DEPENDENCIES field of this
transformation specifics the same kind of construction dependency as MakeFile entries do.

It is important to distinguish between transformation declarations and transformation references.
Transformations are declared by keyword lists in calls to DEFSYSTEM. Transformations are referenced in
pre-condition lists. The transformations referenced in a pre-condition list must be declared somewhere in the
system description.

Di-r.FSYSTFM contains a facility for defining new transformations. New simple transformations are defined
using the DE F INE-SIMPLE-TRANSFORMATION macro. Calls have the form:

(DEFINE-SIMPLE-TRANSFORMATION NAME FUNCTION DEFAULT-CONDITION
INPUT-FILE-TYPES OUTPUT-FILE-TYPES)

NAME The name of the transformation being defined.

FUNCTION A function to be called when the transformation is performed.

DEFAUL T-CONDITION
The function that is called in order to determine if the transformation should be
performed.

INPUT-FILE-TYPES
Specifies the types of the input files to the transformation. Lisp Machine file type
specifications are filename extensions (e.g., "lisp" or "bin").

OUTPUT-FILE-TYPES
Specifies the types of the output files produced by the transformation.

For example. to define a simple transformation called : LISP-YACC that calls LISP-YACC to derive parsers
written in i.isp from IINF grammars, the following definition could he made. (If a utility like YACC were

12

,,,, ,'p, ., " " .--- ,, . ,-,,.. . .- .,. . .-.-.. , .-.- ,.- .-. , .-.- . ,- -' - - - . .. , .-... -..-.- . -, , ..{.. *, -.-. ..*.'., .'., .'4 ,. 4 ,.* * . ' .. -. .. ' .. : .. -, -:-, . .- .. • .- ':. " " .- .,.'.. 4. .'

7-7W

dcsired on thc Lisp Machine it Would probably be implemented with a macro and not a separate parser
generating tool.)

(DEFINE-SIMPLE-TRANSFORMATION :LISP-YACC #'LISP-YACC
#'FILE-NEWER-THAN-FILE-P (:GRAMMAR) (:LISP))

L ISP- YACC will be invokcd whenever thc input file (i.e., thc grammar) is newcr than the output file (i.e., the
parser). In other words, tic transformation will be performed whcncvcr the source file is updated. Notice
that this transformation relies on grain creation dates in exactly dic samc way that MAUI: does.

Complcx transformations arc defined as Lisp macros. Hcrc is the definition of the :COMPILE-LOAD
transformation that was described earlier:

(DEFMACRO (:COMPILE-LOAD DEFSYSTEM-MACRO)
(INPUT &OPTIONAL COMPILE-PRE-CONDITIONS LOAD-PRE-CONDITIONS)

(:FASLOAD (:COMPILE ,INPUT .COMPILE-PRE-CONDITIONS)
.LOAD-PRE-CONDITIONS))

A Small Example -- TINYCOMP
Figure 2-5 contains the ivI'sys'riM description for a Lisp implementation of INYCOMP.

(DEFSYSTEM TINYCO4P
(:MODULE DEFS "DEFINITIONS")
(:MODULE PARSER "PARSER")
(:MODULE CODE-GENERATOR "CODEGEN")
(:MODULE LIBRARY "LIBRARY")

(:FASLOAD DEFS)
(:FASLOAD LIBRARY)
(:COMPILE-LOAD-INIT CODE-GENERATOR (DEFS) (:FASLOAD DEFS))
(:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFS) (:FASLOAO OEFS)))

Figure 2-5: DEFSYSTEm escription For TINYCOMP

The TINYCOMP description contains a set of module definitions followed by a series of transformations.
The transformations in the description have the following interpretation:

(:FASLOAD DEFS)
Specifies that DE F S should be loaded whenever it is updated. There are no pre-conditions to be satisfied
before the loading can take place.

(:FASLOAD LIBRARY)
Specifies that LIBRARY should be loaded whenever it is updated. There are no pre-conditions to be
satisfied before the loading can take place.

(:COMPILE-LOAD-INIT CODE-GENERATOR (DEFS) (:FASLOAD DEFS))
Specifics that CODE -GENERATOR should be be compiled and loaded whenever it or DEFS changes. Before
the compilation can take place, DE FS must be loaded.

(:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFS) (:FASLOAD DEFS))
Specifies that a parser derived from PARSE R is to be compiled and loaded. A new parser is produced
whenever PARSE R changes. '['he compiler and loader are invoked whenever DEFS or the derived parser
changes. L ISP-YACC will not be invoked if only DE FS changes. Prior to compilation, DE FS must be
loa(L~d.

13

The Construction Process
Systems previously modeled with DE FSYSTEM are constructed by calling MAKE-SYSTEM. Calls havc the

form:

(MAKE-SYSTEM SYSTEM-NAME &REST OPTIONS)

SYSTEM-NAME Specifies a system previously modeled with DEFSYSTEM.

OPTIONS Specities options like print the transjnnatlions thal would be done bul don l do them and so
forth.

Thc construction dependency graph specified by the transformations and pre-conditions in the
I).ISYSI'IM description of SYSTEM-NAME is analyzed in order to determine what construction needs to be
done. Faich transformation is applied by first applying any transformations referenced as pre-conditions, and
then updating the input module if it. or any modules listed in additional dependency lists, have been changed.
Notice that the transformation applications are ordered by the pre-condition lists.

Like MAK|. I)FISYSTIM uses simple finctions based on tile creation dates in order to determine when a
module should be reconstructed. I lowever, unlike MAKI, I)II SYST'IM allows the optional specification of
predicates that control when construction is done. 'The new predicates can replace the simple ones that are
supplied with :Iw.SYS'IE:M.

I)jI::SYSij:M includes a patching facility. It allows small changes to be made to a system without invoking
the DEI):SYS iiM transformation/depcndency mechanism. lach set of changes is stored in a patch file that
typically contains new function definitions or redefinitions of old functions. Fach patch is assigned a number.
If a system contains patches, then the patches are loaded, in order, after the unpatched version of the system is
loaded.

An Extended Example -- LINT
'[he DEI.SYS'E.'M description for a Lisp implementation of LINT is presented in figure 2-6. Although the

DFf:SYS'EM description is easier to understand than the corresponding MakeFile (figure 2-4), it is still difficult
to understand.

The :BUI LD-L INT - L IBRARY transformation is assumed to have been defined and has the form:

(:BUILD-LINT-LIBRARY INPUT PRE-CONDITIONS)

It constructs LINT library files from LINT library sources. The transformation allows the optional specification
of pre-conditions, and is applied if either INPUT, or the first pass of LINT is updated.

The first keyword form in the LINT DEFSYSTEM description specifies a system-wide default directory. The
next block of keyword forms declare the various modules which comprise LINT. The final block of forms
declare the transformations used to construct LINT. Notice that as transformations are nested and pre-
conditions are added, the transformation declarations become increasingly difficult to understand.

Deficiencies
Phrased in terms of construction. Like MAKF., r)iFSYS'I'IM is a construction directive based tool. This is

the primary reason that DI:I:SYSI!:M descriptions, although easier to understand than MakeFiles, are still
awkward.

One reason that Dm.H'SYSTM descriptions are easier to understand than MakeFiles is because t)vi.'sYSrT'M
is not purely construction directive based. DFISYS'1'TM's :MODULE declarations allow for the logical grouping
of grains into higher level modules. 'Ihis grouping abstracLs away from low level construction information,
and provides a more natural way for users to describe systems than MAKI: does.

I)vISYSTiM supports the sharing of common construction patterns through the declaration of

14

d' 4'J P. '

(DEFSYSTEM LINT
(:PATHNAME-DEFAULT "/USR/SRC/LIB/MIP")
(:MODULE DEFINITIONS-1 ("MACDEFS" "MANIFEST" "MFILE1" "LMANIFEST"))
(:MODULE DEFINITIONS-2 ("MANIFEST" "LMANIFEST"))
(:MODULE PARSER "CGRAM")
(:MODULE PASSI ("XDEFS" "SCAN" "COMMI" "PFTN" "TREES" "OPTIM"

-,- "LINT" "HASH"))
(:MODULE PASS2 ("LPASS2" "HASH"))
(:MODULE DRIVER "SHELL")
(:MODULE LIBRARIES ("LLIB-PORT" "LLIB-LC" "LLIB-LM" "LLIB-LMP"

"LLIB-LCURSES"))

(:FASLOAD DEFINITIONS-i)
(:FASLOAD DEFINITIONS-2)
(:COMPILE-LOAD DRIVER)
(:COMPILE-LOAD-INIT PASSi (DEFINITIONS-i) (:FASLOAD DEFINITIONS-i))
(:COMPILE-LOAD-INIT PASS2 (DEFINITIONS-2) (:FASLOAD DEFINITIONS-2))
(:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFINITIONS-i)

'. ;' (:FASLOAD DEFINITIONS-i))
(:BUILD-LINT-LIBRARY LIBRARIES (:FASLOAD DRIVER PARSER PASSI)))

Figure 2-6: DI-ISYSTIEM Description For IINT

transformations. 'his makes mI'-SYSTEM system descriptions easier to produce and understand than
- ,MakcFiles. However, since it is possible to avoid the declaration of a complex transformation by using nested

transformations, DI-'SYS'IEM still allows for common patterns to be repeated instead of shared.
No underlying task descriptions. Although DtSYSrEM has embedded knowledge about Lisp compilation

and loading it does not include a mechanism .for describing construction tasks and therefore cannot be
extended without great difficulty.

Intermediate grains are referenced. DEFSYSTEM does not differentiate between source, intermediate, and
goal grains. In general. intermediate grains are hidden by complex transformations. For example, there are
no references to intermediate grains in figures 2-5 and 2-6. While DEFSYSTEM does not force intermediate
grains to be included, it does not prohibit them either.

All source grains need not be referenced. In a Lisp environment, nothing can be used before it is loaded.
This means that any grain that participates in a Lisp system will be involved in some construction, and
therefore, it is not as natural to omit a source grain from a DEI SYSTEM description as it is to omit one from a

, MakeFile. This difference between MAKE and DEFSYSTEM comes from differences between the UNIX and

Lisp environments, and not from important differences between the two tools.

2.3 Other Tools
l)cRemer and Kron introduced the terms programming- in-the-large and programming-in-the-small

[l)eRemer and Kron 761 to distinguish between the writing of modules and the structuring of modules into
systems. Consistent construction is just one programming-in-the-large issue, others include source code
management, module interconnection specification. and version control. A brief summary of these other
issues and projects that ftus upon them is presented here for completeness. The consistent construction
components of these projects do not differ from MAKI: or DIxYSIFM in any significant way.

When several people are working on a system simultaneously, it is important to regulate access to the
- source code modules in order to ensure that someone does not attempt to modify a module while someone

else is modifying that same module. A common scheme is to implement a librarian that regulates access to
system components via a check-in/check-out mechanism. In short, only onC person is allowed to check-out a

. m(odule ror update at an tin-, Anyone can read a modulc at any time. Sou rce code management systcms
.% ., ,ic d,',,:ll!, I ill C 1'011(t' I ,- [, ,{, 1 "(1 t, i l . l , .+ I W .,,11 + t..: .', t i t ,,.i , .;116 1 - ik h .1I A ' 831.

15

'- - 5 , , , •. ,

All of the problems mentioned above are compounded if the programming environment is distributed
* over a network. Schmidt addresses these issues ISchmidt 82].

It is often the case that there are families of systems being managed. For example there may be several
S., public releases of a system, internal releases, experimental versions and so on. It is also common for there to

be several versions of a system intended to run on different hardware configurations. Fach member of a
family of software systems usually shares many components with other members of the family. Maintainers
of such families need to worry about which versions of which modules are used in each member of the family.
Tichy and Cooprider attacked the problems associated with the representation and management of software
families [Cooprider 79, Tichy 80, 'Tichy 841.

" '41

. .-.

'4..

I -,-: :- . " .', -: " -- '---- -':,.-" -:' .' " "'.:':" :- '- ' "-.'4- '-*' -,:- :-:'::-. ':-:':-:':- ..: -'-' -" ' .: :: :::':':% .--",
I " ,:, ./ , :, , , , ., .-. ,. ,. .. ,.-. . r , ; , . .- .-..,,, .-... . ,. .., ,. - -. -.,. -, -,.., , .=- '.-..

3. The BUILD Reference Level

'[his chapter introduces Bull 1)'s reference based system modeling scheme. BUiii) system models are very
easy to interpret because they contain nothing more than declarations of how grains arc grouped to form
modules and how these modules refer to each other. Although they do not present any construction
dependencies explicitly, they can be used to derive all of the construction information found in construction
based models (see Chapter 5). Construction models cannot be used to derive the reference information found
in reference models. Reference models are far less confusing than the construction based models because
they are written in a language that replaces low level grain construction information with higher level inter-
module reference patterns.

3.1 Modules
It is often the case that groups of grains are conceived as one logical entity but are split up (e.g. into files)

for other reasons. Modeling schemes that represcnt systems only at the level of the individual grain do not
have the ability to express this kind of grouping. The module construct used by BUIL) (and DEIPSYSTEM)

, allows these groupings to be made explicitly in system descriptions.
BUlll) module declarations have the form:

(:MODULE MODULE-NAME GRAIN-TYPE &REST GRAINS)

MODULE-NAME The name of a module. The name must be unique within the system model.

GRAIN-TYPE The name of a grain type recognized by BUILD. Each grain is assumed to be an instance of
this type.

GRAINS The names of the grains that comprisc the module.

.The following form declares that MA I N is a Lisp source module composed of the single grain MA I N. L I SP,
(:MODULE MAIN :LISP-SOURCE "MAIN.LISP")

and the form:
(:MODULE DEFS :C-SOURCE "DEFINITIONS-I.C" "DEFINITIONS-2.C")

declares that DEFS is a C source module with two grains named DEFINITIONS-I.C and
DEFINITIONS-2.C.

BUILD can use grain type information without considering module references to determine a great deal
about the construction of grains. For instance, BUILD knows how to invoke the correct compiler on C or Lisp
source files or how to construct INT library files from library sources by utilizing grain type information
alone.

3.2 References
.uIi) infers construction dependencies from reference assertions by taking advantage of the fact that

construction dependencies are caused by references between modules. If two modules do not refer to each
other, then it is impossible for there to be a construction dependency that involves them. When the assertion
is made that nodule refers to module2, BUillD) pessimistically assumes that each grain in moduleI refers to each
grain in module .

References with the same name may be handled differently depending upon the grain types of the
modules involved in the reference. For instance, the calls refr rence between two Lisp source modules is
handled differently than the calls reference between two C source modules.

17

II rel'ernce dccliralions pro% ide fo(r the specification of' ref'crelccs hetween modules. No meaning is
allahcd to the ordering of rckrencc declarations. Reference declarations have the florm:

(REFERENCE LEFT-ELEMENT RIGHT-ELEMENT)

REFERENCE The name of a reference rccogni/.cd by BUIl v).

LEFT-ELEMENT A module name or list of module names. All module names used in a reference
declaration must have been declared in a module declaration.

RIGHT-ELEMENT
A module name or list of module names. All module names used in a reference
declaration must have been declared in a module declaration.

'The use of module name lists as either of the elements of a reference declaration is syntactic sugar that is
equivalent to the set of reference declarations composed by enumerating REFERENCE-NAME with each pair
in the cross product of the right and left element lists. For example:

(:CALLS (A B) (D E))
is equivalent to:

(:CALLS A D)
(:CALLS A E)
(:CALLS B D)
(:CALLS B E)

Here are some reference triples and the construction dependencies that they imply:

(:CALLS LISP-SOURCE-i LISP-SOURCE-2)
Asserts that LISP-SOURCE-1 contains functions that call LISP-SOURCE-2 and implies that
LISP-SOURCE-2 will need to be loaded in order for LISP-SOURCE-i to execute.

(:MACRO-CALLS LISP-SOURCE-i LISP-SOURCE-2)
Asserts that LISP-SOURCE-1 uses macros defined in LISP-SOURCE-2 and therefore LISP-SOURCE-2
must be loaded in order for LISP-SOURCE-i to compile properly. This reference implies that if
LISP-SOURCE-2 changes, then LISP-SOURCE-1 will need to be re-compiled.

S": 1 (:CALLS C-SOURCE-1 C-SOURCE-2)
Implies that the object grains compiled from C-SOURCE-2 (as well as the object grains from any module
that C-SOURCE-2 calls) need to be linked into any executable image that is to include the object grains
from C-SOURCE-1.

(:INCLUDES C-SOURCE-i C-SOURCE-2)

Asserts that C-SOURCE-i contains the contents of C-SOURCE-2. T-his reference implies that whenever
,4. the included module. C-SOURCE-2, changes, the including module, C-SOURCE-1, needs to be rebuilt.

BUll I) uses triples (called reference signatures) of the form
<REFERENCE-NAME LEFT-GRAIN-TYPE-NAME RIGHT-GRAIN-TYPE-NAME>

to identify references. liUll I) uses grain type inftonnation to distinguish between references that have the
same name but apply to different grain types. A given implementation of liil) will define the reference
signatures that arc commonly used in the environment that |Ul l t) is working with. Chapter 5 describes how
new reference signatures may be added to BUIlI).

alp
C';".I.

-.-- C -.

rKrr~'r'r, * T- -W-,4,N9.>,z1sr -77 -7

3.3 Models
Ihei general flonn ofai ntull i system description is:

(DEFMODEL MODEL-NAME &REST DECLARATIONS)

'lierc are four kinds of declarations that may be included in at DEFMODEL fiorm: modulc, reference,
del' ult pathiine. and default Module. Module and rcfercncc declarations wcrc described earlier in this
chapter. 'Ihei defautlt pathniamc declaration allows for thc declaration of at pathnamne to be used as a template
fhr completing lilenanics. It has the form:

(:DEFAULT-PATHNAME PATHNAME)

*]The defiult module declaration is used to declare a module as the default module for ii ii to operate on
N when construction requests for the system are made. It has the form:

(:DE FAULT-MODULE MODULE-NAME)

*Figure 3-1 contains the DE FMODE L form for TINYCOMP. '[hei first four declarations arc module
declarations that specify the grains and grain types of the system modules. 'Thei last three declarations specify
the references between the miodules in the system. Figure 3-2 contains the DEFMODEL form for LINT. Theli
model is longer than the TIN YCOMI' model but no more complicated.

(DEFMODEL TINYCOMP
(:MODULE DEFS :C-SOURCE "DEFINITIONS")
(:MODULE PARSER :YACC-GRAMMAR "PARSER")
(:MODULE CODE-GENERATOR :C-SOURCE "CODEGEN")
(:MODULE LIBRARY :C-OBJECT "LIBRARY")

(:INCLUDES (PARSER CODE-GENERATOR) DEFS)
(:CALLS PARSER (LIBRARY CODE-GENERATOR))

* (:CALLS CODE-GENERATOR LIBRARY))

Figure 3-1: BUILD Model For TINYCOMP

(DEFMODEL LINT
(:DEFAULT-PATHNAME "/USR/SRC/LIB/MIP")
(:MODULE DEFINITIONS-i :C-SOURCE
"MACDEFS" "MANIFEST" "MFILEI" "LMANIFEST")

(:MODULE DEFINITIONS-? :C-SOURCE "MANIFEST" "LMANIFEST")
(:MODULE PARSER :GRAMMAR "CGRAM")
(:MODULE PASS-i :C-SOURCE "LINT")
(:MODULE PASS-2 :C-SOURCE "IPASS?")
(:MODULE SUPPORT-i :C-SOURCE
"XDEFS" "SCAN" "COMMI" "PFTN" "TREES" "OPTIM" "HASH")

(:MODULE SUPPORT-? :C-SOURCE "HASH")
(:MODULE DRIVER :SHELL-SCRIPT "SHELL")
(:MODULE LIBRARIES :LINT-LIBRARY-SOURCE
"LLIB-PORT" "LLIB-LC" "LLIB-LM" "LLIB-LMP" "LLIB-LCURSES")

(:INCLUDES PASS-i DEFINITIONS-i)
(:INCLUDES PASS-? DEFINITIONS-?)
(:CALLS DRIVER (PASS-I PASS-? LIBRARIES))
(:CALLS PASS-i (PARSER SUPPORT-i))
(:CALLS PASS-? SUPPORT-?))

Figure 3-2: 11Un.1 Description For iNT

19

~ ~

i -.,

2- 4'."

._20

> 9 .L.. ,M i2.. /- i, 2 , j_, Z,-,I . . - .

~~ 4. 71he BUILDI) Tk Level

tIhis chapter describes dhe task level representation of systemns used by [It![11). A task level model is
derived fr'om the rcti~rencc tc~cl model lor each request that iwiitI receives, tHie dcri~cd model is then uscd

* to hiandle the request. ('I'hic phrase iask level is used in place of the more specific phrase coniruItUin level
because litt T1 1 is used Ibr more than just construction.)

itinI task level models are acyclic directed graphs with two kinds of' nodes: g-nodes which represent
grains. and p-nodcs which represent tie processes used to construct grains. L eaf' nodes represent source

* grains, and root nodes represent goal grains. 'The link between grains and the processes that use them is
modeled by linking the g-nodes representing grains to the p-nodes representing the processes that use them.

Figure 4-1 contains a portion oft the task graph used to represent die compilation of PARSER. LISP, a
grain from a tLisp implementation olFIINY'coM. 'This example assumes that PARSE R. L ISP is a source grain
and ignores the fact that in' IlNYCON1I. PARSER. LISP is an intermediate module produced by LISP-YACC.
'ie ellipses represent P-nodes and the rectangles represent p-nodes. 't'hcere are two source nodes,
PARSER. LISP and DEFS. LISP, and asingle goal node. PARSER. IMAGE.

Although the use of an acyclic directed graph to represent task processing is not unique (MAKI: and
.~~'1)1:IS-Ys~I EM use similar representations) the derivation of task graphs from reference models is novel.

DEFS.LISP COMPILE11 OEFS.B IN _LOAD . MG

PARSER.LISP COPL PARS1111IN O1D 11 1PARS=ERIMAG

Figure 4-1: Simple Task Graph

4.1 Grain types
Grain type objects arc used to represent the classes of' grains used by the environment that BUILD is

working with. They are used to represent all of thc kinds of grains that are man ipulatcd by the underlying
environment, whether they are files or not. For instance, the grain type :LISP-IMAGE is used to represent
the objects that result from loading fliles into the Lisp environment.

Defining Grain Types
Grain types arcedefined with DE F INE -GRA IN-TYPE and definitions have the form:

(DEFINE-GRAIN-TYPE NAME &OPTIONAL FILENAME-EXTENSION)

NAME 'The name of the grain type being defined.

FILENAME-EX TENSION
'The defaiult filename extension for grains of this type. If this field is null then Buim~
assumes that grains of this type arc not files.

Iigure 4-2 contains the grain type definitions used to model ILisp systems. lie :LISP-SOURCE and

:LISP-BINARY grain types correspond to files and hence their dciinitions include defiult filename
extensions ((he I.isp Machine Luss keyword symbols to represent Iilenarnc extensions). The :LISP-IMAGE
grain type is not associated with tiles and therefore has no default filename extension.

(DEFINE-GRAIN-TYPE :LISP-SOURCE :LISP)
(DEFINE-GRAIN-TYPE :LISP-BINARY :BIN)
(DEFINE-GRAIN-TYPE :LISP-IMAGE)

Figure 4-2: Grain Type I)cfinitions for L.isp

4.2 G-nodes

G-nodes represent grains in taLsk graphs, they contain the following information:

NAME Ihe name of the grain represented by this g-nodc.

TYPE Ihe grain type object that the grain represnted by this g-nodc is an instance of.

MODULE Optional. Thc module that includes the grain represented by this g-node.

CREATOR Optional. "hc p-node that represents the process that created this g-node. This field will
be null if the g-node represents a source grain.

USERS A list of p-nodes that depend on this g-node to fill an input role.

INGREDIENTS A list that represents the source grains used to produce this g-node. Each element of the
list is a pair containing the name and creation-date of an ingredient grain.

CREATE-DATE A time stamp that represents the time and date whcn the grain that is represented by this
g-node was created.

4.3 Process Types
Process type objects contain the information pertaining to classes of process instances (represented by

p-nodes). For example, the Lisp Machine implementation of BUILD includes process type objects for Lisp
compilation and lisp binary file loading.

The grains that are used and produced by processes are partitioned according to the roles that they play in
them. Grains that processes use are said to play input roles. Grains that are produced by processes are said to
play output roles.

Process type objects contain role descriptions for each of their input and output roles. Role descriptions
contain the following information:

NAME 'he name of the role. It must be unique within the process type being defined.

GRAIN- TYPE The grain type name that grains filling this role must have.

ARITY ,ither :SINGLE or :M ULTIPLE. A role with arity :SINGLE can have no more than one
grain filling it. A role with arity :MULTIPLE can have an arbitrary number of grains
filling it.

NAME-SOURCE Optional. The name of a role used to help derive names for grains that will fill this role.

22

:? ,- , -. ~ -** K - ,. . -.. , . , .. -, .. / . - , * , , .. - ,,, , ,, ,, . -. ,,.. . .,,- .. , - ,

Defining Process Types
Process types are detined with DE F I NE-PROCESS-TYPE and calls have the form:

(DEFINE-PROCESS-TYPE NAME INPUT-SPEC OUTPUT-SPEC STREAM-VAR
DESCRIBE-FORM &REST CONSTRUCT-FORMS)

NAME 'TIc name of the process type.

, INPUT-SPEC A list of input role dcscriptions (discussed above).

OUTPUT-SPEC A list of output role decriptions.

STREAM-VAR A variable name that will be bound to the output stream when DESCRIBE-FORM and
CONS TRUC T-FORMS are evaluated.

DESCRIBE-FORM

A form to be evaluated in order to describe the processing represented by an instance of
this process type. When the form is ealuated, each role-name will be bound to the names
oftthe grains playing the role. Also, the symbol named by STREAM-VAR will be bound to
the output stream.

CONS TRUCT -FORMS
The forms to be evaluated in order to accomplish the processing represented by an instance:
of the process type. When these forms are evaluated each of the role-names and the

- - . symbol named by STREAM-VAR will be bound as mentioned above.

Figure 4-3 contains the process type definitions for Lisp compilation and Lisp binary loading. The
definition for :LISP-COMPILE specifies that there are two input roles, SOURCE and DEFINITIONS, and a

-: single output role, BINARY. SOURCE has singular arity and must be filled by a :LISP-SOURCE grain.
DEFINITIONS has multiple arity and can only be filled by :LISP-IMAGE grains. BINARY has singular
arity and must be filled by a : LISP-BINARY grain. The describe form produces descriptions like:

"COMPILE PARSER.LISP"

The construct forms produce the grain playing the BINARY role by compiling the grain playing the SOURCE
role. Thc construct forms also cause a notification of the compilation to be sent to the output stream. The
notification looks like:

"COMPILING PARSER.LISP.6"

* Processes often depend on grains not explicitly mentioned in their invocations. For example, in languages
* \. that rely on objects to be specified or loaded before objects that refer to them can be compiled, the
- compilation process type must include a role that is used to capture that dependency. The role

DEFINITIONS is used in :LISP-COMPILE in order to express the need for some things to be defined
before a Lisp grain can he compiled. 'l'he link between the g-node for DEFS. IMAGE and the p-node
representing the compilation of PARSER. LISP in the task model from figure 4-1 is an example of such a

-- dependency being modeled. Another situation in which it is necessary to model a dependency not made
explicitly in command line invocation is for C compilation. 'Ihe :C-COMPILE process type has the role
INCLUDE to represent the dependency between a file and the files that it includes via the C #INCLUDE
mechanism.

,,,. -"
-Z -:-

7

(DEFINE-PROCESS-TYPE :LISP-COMPILE
((SOURCE :LISP-SOURCE :SINGLE) ;SOURCE INPUT ROLE
(DEFINITIONS :LISP-IMAGE :MULTIPLE)) :DEFINITIONS INPUT ROLE

((BINARY :LISP-BINARY :SINGLE SOURCE)) ;BINARY OUTPUT ROLE
OUTPUT-STREAM ;STREAM-VAR
(FORMAT OUTPUT-STREAM "-%COMPILE -A" ;DESCRIBE-FORM

(PATHNAME-MINUS-VERSION SOURCE))
(FORMAT OUTPUT-STREAM "-COMPILING -A" SOURCE) ;CONSTRUCT-FORMS
(COMPILER:COMPILE-FILE SOURCE BINARY))

(DEFINE-PROCESS-TYPE :LISP-LOAD-BIN
((BINARY :LISP-BINARY :SINGLE) ;BINARY INPUT ROLE
(DEFINITIONS :LISP-IMAGE :MULTIPLE)) ;DEFINITIONS INPUT ROLE

((IMAGE :LISP-IMAGE :SINGLE BINARY)) :IMAGE OUTPUT ROLE
OUTPUT-STREAM ;STREAM-VAR
(FORMAT OUTPUT-STREAM "-%LOAD -A" ;DESCRIBE-FORM

(PATHNAME-MINUS-VERSION BINARY))
(FORMAT OUTPUT-STREAM "-%LOADING -A" BINARY) ;CONSTRUCT-FORMS

(SI:LOAD-BINARY-FILE BINARY NIL T))

Figure 4-3: Process Typc I)cfinitions For Lisp

4.4 P-Nodes
Fach p-nodc represents a process ,o be invoked on the grains attached to its input ports to produce the

grains attached to its output ports. Fach role in a process type is represented as a port in p-nodes of that type.
'[he grain type of each g-node attached to a port must be the same as the grain type associated with the role.
A description of the processing represented by a p-node and the g-nodes attached to its ports can be produced
by applying DESCRIBE-FORM from the p-node's process type object to the p-node. The processing
represented by the p-node can be done by applying CONSTRUCT-FORMS from the p-node's process type
object to the p-node.

Figure 4-4 contains an expanded view of the p-node used to represent the compilation of PARSE R. LISP
in TINYCOMP.

DEFS.MAGEDEFINITION

:LISP-CO$4PILE BINARY PRE.I

PAS~LIP SOURCE

Figure 4-4: Expanded P-Node

24

4.5 Task Graph Constraints
Task graphs arc constrained in the following ways:

1. 'ask graphs are acyclic. A cycle in a graph would imply that some grain was needed in order to
construct itself.

2. The parent of a g-nodc, if there is one. must be a p-nodc.

3. A g-node can have no more than one parent.

4. A g-node without a parent represents a source grain.

5. 'he children of a g-node, if there arc any, must be p-nodes. These nodes represent processes that
depend upon tie grain represented by the g-node.

6. A g-nodc without children represents a goal grain.

7. The children of a p-node must be g-nodcs. 'l'hese g-nodcs represent grains derived by the process
represented by the p-node. Fitch p-node must have at least one child.

In other words, task graphs are acyclic graphs which begin with g-nodes that represent source grains and end
with g-nodes that represent goal grains. "[he g-nodes are separated by p-nodes that represent the processes
that derive later g-nodes from earlier ones.

Figures 1-2, 2-1, and 4-1 are examples of well formed task graphs.

4.6 The Construction Algorithm
Figure 4-5 contains the algorithm used by BUILD to perform the construction modeled by a task graph.

This algorithm is similar to the one used by MAKI, and DEFSYSTEM (figure 2-3), the primary difference
between the two algorithms is in how they make use of creation dates to determine when construction is
necessary. The MAKI- algorithm uses file creation date ordering between input and output grains in order to
infer that an input has changed (and therefore construction is triggered). In practice this method works,
however, it relies on several assumptions that are not necessarily true.

MAKE and DE-SYSTEM assume that files with the same name but different extensions are related. For
instance, they assume that MAIN.0 was created by compiling MAIN.C. While this is a reasonable
assumption, it does not have to be true. Nothing prevents users from renaming files and therefore, there is no
guarantee that MAIN. 0 actually came from MAIN. C.

If an output grain contains a file creation date that is newer than all of the input grains used to produce it,
then MAKE and DITrSYST'M assume that the output grain does not need to be rebuilt. However, there is no
guarantee that file creation dates have not been tampered with.

Ull i) does not use file creation date ordering to infer that an object has changed. BUILD compares a
grain's ingredient list with the ingredient list that would result if the processing modeled by the task graph
were done. It' the ingredient lists match, then the construction is not done.

The prototype implementation of illIi) keeps a separate data file that contains grain creation dates and
ingredients. Such a file would not he needed if the underlying environment recorded the ingredients used to
produce an object. The Mesa environment [Mitchell 79, Schmidt 821 keeps this information and exploits it in %
order to determine when processing needs to be done. %

25

, iP c 'S d [r" P . dt ". ' . . '.- % ' ''. " ' , ,,J' % r - " . * - ""%' - -

(DEFUN CONSTRUCT-G-NODE (G-NODE)
(COND ((SOURCE-NODE-P G-NODE) T)

((OR (NON-EXISTENT G-NODE) (INGREDIENTS-CHANGED G-NODE))
(MAPCAR #'CONSTRUCT-G-NODE (INPUTS (PARENT G-NODE)))
(DO-CONSTRUCTION (PARENT G-NODE)))))

(DEFUN INGREDIENTS-CHANGED (G-NODE)
(NOT (EQUAL (INGREDIENTS G-NODE)

(DERIVE-INGREDIENTS G-NODE))))

(DEFUN SOURCE-NODE-P (G-NODE)
RETURNS T IF AND ONLY IF G-NODE
REPRESENTS A SOURCE GRAIN

<)

(DEFUN NON-EXISTENT (G-NODE)
RETURNS T IF THE GRAIN REPRESENTED BY G-NODE

;; DOES NOT EXIST

(DEFUN PARENT (G-NODE)
;; RETURN THE PARENT P-NODE OF G-NODE

(DEFUN INPUTS (P-NODE)
;; RETURN THE INPUT G-NODES OF P-NODE
)

(DEFUN DO-CONSTRUCTION (P-NODE)
;; PERFORM CONSTRUCTION REPRESENTED BY P-NODE

(DEFUN INGREDIENTS (G-NODE)
RETURN THE INGREDIENT LIST USED TO CONSTRUCT

;; THE EXISTING VERSION OF G-NODE

(DEFUN DERIVE-INGREDIENTS (G-NODE)
RETURN THE INGREDIENT LIST THAT WOULD RESULT IF

;; A NEW VERSION OF G-NODE WERE CONSTRUCTED

Figure +5: BUILD Construction Algorithm

2

• 5. Construction Requests and Task Graph Derivation

After a system has been modeled with DEFMODEL, hUll) can be called upon to handle construction
requests for it. clh request has the form:

(BUILD-REQUEST MODEL REQUEST &OPTIONAL MODULE (MODE :NORMAL))

MODEL Ihe name of a model previously defincd with DEFMODEL.

REQUEST Ibe name of a request recognized by RUll.I) (e.g : COMPILE, : LOAD).

MODULE "lbe name of a module to operate upon. If this field is not specified then the default
module for the system (as defined with the : DEFAULT-MODULE declaration form) is used.

MODE Specifics one of several construction modes. Construction modes are discussed below.

'Ihe prototype implementation of iUlli) has three construction modes that behave as follows:

:NORMAL l)cscribe all of the construction to be done, and then ask the user if BUnl) should perform
the construction just described.

:DESCRIBE I)escribe all of the construction to be done but do not perform it.

:NO- CON F I RM Perform the required construction without describing it first.

Sample BUILD requests are:

(BUILD-REQUEST TINY-COMP. :LOAD)
(BUILD-REQUEST LINT :LOAD DRIVER)
(BUILD-REQUEST LINT :LOAD DRIVER :DESCRIBE)

Once a request has been received, a three step process is executed for each grain in the module stated in
the request. This process creates a task model for the request which is then processed in the manner oudined
in chapter 4. The three steps are:

1. Model the construction that can be deduced from the request without considering any references.
This phase is called pre-reference request processing.

2. Model the construction that is implied by the references that involve the module associated with
the request. This phase is called reference processing.

3. Model the construction that can be deduced from the request and the graph built from the earlier
steps. This phase is called post-reference request processing.

After the post-reference processing has been completed the task graph is complete and can be used to direct
the construction needed to handle the request.

cfdorc the construction process can he explained in detail it is necessary to present the functions used to
view and manipulate task graphs.

K

27

.. % .. .
L r J. w

.. .*.-.
-...

,...\.,. .,.\

-'7s~

5.1 Viewing and Nianipulating Task (;raphs -- ACCESS
* Consider the following task graph:

DI.IPSOURC[BINARY DLF.BI BINARYIMG

Starting at a p-node. the path to any of the g-nodes connected to onc of its ports can bc specified by
-A mentioning the name of the port desired. In thc task graph above. starting at thc : LISP-CO4PILE p-node.

the .~icpB INA RY leads to DEFS.B IN.
A step from a g-nodc to a p-node can bc descrihed by specifying the process type of the conncctcd p-node

and die role played by the g-nodc in thc p-nodc. In thc sampic task graph above, the step (BINARY
:LISP-COMPI LE) Starting atDE FS. BIlads to the : LISP-COMPILE p-node.

I'aiIhs are finnicd by listing steps:

*FIhe path ((SOURCE :LISP-COMPILE) BINARY) starting at DEFS.LISP leads to
DEFS. BIN.

*'I'hepIth ((SOURCE :LISP-COMPILE) BINARY (BINARY :LISP-LOAD-BIN)) starting
at DEFS. LISP leads to the : LISP-LOAD-BIN p-node.

* Te path
((SOURCE :LISP-COMPILE) BINARY (BINARY :LISP-LOAD) IMAGE)
starting atDE FS. L ISP leads to DEFS. IMAGE.

The path
((IMAGE :LISP-LOAD) BINARY (BINARY :LISP-COMPILE) SOURCE)
starting at DE FS. IMAGE leads to DE FS. L ISP.

The ACCESS family of functions are designed to provide a straightforward mechanism for both viewing
and manipulating task graphs. TIhese functions are used heavily during the task graph derivation process.
1'here arc three functions, ACCESS, ACCESS+, and ACCESS*, each of which is SETFable. The ACCESS
functions have the form:

* (FUNCTION NODE PATH)

FUNCTION ACCESS. ACCESS+,orACCESSO.

NODE Fither a p-node or a g-node. This node is used as the root of the path to be traced by
ACCESS -FUNCTION.

PATH A list of steps to be traced from NODE.

Thle functions behave in the following manner:

ACCESS 'races PATH from NODE and returns the last node encountered. An error is signalled if
any step in PATH cannot be traced. An error is signalled if there could he more than one
node thai satisfies (he path traced.

28

ACCESS+ Traces PATH from NODE and returns a list of nodes that satisfy the path. An error is
signalled if any step in PATH cannot be traced.

ACCESS* Traces PATH from NODE and returns the single node that satisfies the path. An error is
signalled if there could be more than one node that satisfies PATH. New nodes are created
if steps in PATH do not exist.

Any ACCESS call that returns a single node may he used to specify the root of another call to ACCESS, in
other words. the following two calls are equivalent:

(ACCESS NODE (STEPI STEP2 STEP3))
(ACCESS (ACCESS (ACCESS NODE STEPI) STEP2) STEP3)

Fach of the ACCESS functions can be SETFed. Calls have the form:

(SETF (ACCESS ROOT-NODE PATH) END-NODE)
Ensures that future calls to ACCESS with ROOT-NODE and PATH
(i.e.. (ACCESS ROOT-NODE PATH)) will return END-NODE.

(SETF (ACCESS+ ROOT-NODE PATH) NODE-LIST)
* / Ensures that future calls to ACCESS+ with ROOT-NODE and PATH

(i.e., (ACCESS+ ROOT-NODE PATH)) will return NODE-LIST.

(SETF (ACCESS- ROOT-NODE PATH) END-NODE)
IEnsures that future calls to ACCESS* with ROOT-NODE and PATH
(i.e., (ACCESS* ROOT-NODE PATH)) will return END-NODE.

The ACCESS fu-.ctions differ in how they handle steps that cannot be traced, and what they do when a
path description fans out. If ACCESS or ACCESS+ encounter a missing link, an error is signalled. ACCESS*
and the SETF functions will create the link and continue tracing the path.

A fanout condition occurs when an attempt it made to trace from a :MULTIPLE arity port of a p-node, or
when more than one p-node satisfies the role-name/process-type-name constraint tracing from a g-node.
ACCESS, ACCESS* and their associated SETF functions signal errors if fanout is encountered. ACCESS+
will continue tracing down all paths and returns the list of nodes that satisfied the path description. When
SETFed, ACCESS+ will signal an error if fanout is encountered before the last step in the path description.

In lisp Machine lisp [Weinreb and Moon 811 and Common Lisp [Steele 841, the special form PUSH can
be used for functions that are SET Fable. PUSH can be used to add ag-node to a port. For example:

(PUSH SOME-G-NODE (ACCESS+ P-NODE SOME-PATH))
is equivalent to:

(SETF (ACCESS+ P-NODE SOME-PATH)
(CONS SOME-G-NODE (ACCESS+ P-NODE SOME-PATH)))

The SETF forms and ACCESS* can make addidve changes to the graph. When a function needs to create
a g-node and link it to a p-node port. a name needs to be synthesized for the new g-node. The name of each
g-nodc resembles a filename in that it has two parts. a primary name and an extension. In order to synthesize
a g-node name. the function copies the primary part from the grain attached to the port specified as the
NAME-SOURCE port for the port being linked to (see the paragraph about role descriptions in chapter 4). An
error is signalled if a function needs to derive a g-node name to link to a port that has no NAME-SOURCE port
associated with it. Ihe extension of a g-node name is derived from its grain type object. If the grain type
represcnts files, then the extension is the default-filename-extension, otherwise, it is the name of the grain
type itself.

29

----". . , , , " . " " . .- " . - - .

pL J :, - : :
:

: .. : ' .1 , = - -. . : W .'W .Th - .- .I .- , , J - : . : :T : , - : -W . .'' z - , 7-,

5.2 Request I landlers
Rcquet handlers specify the task graph deri'.ation steps thai cal he tiken whenever the request associated

v ith the handler has been madC. without considering any rcference declarations. Requests are identified with
request signatures (much like retcrence signatures). FIch request signature contains two fields, a request
name and a grail type namie. For example die signaure:

<:COMPILE :LISP-SOURCE>

identifies the handler designed to build part of the task graph needed to accomplish the compilation of a ILisp
source grain. Tihe signature:

<:YACC :YACC-GRAMMAR>

identities the handler that will build part of the task graph needed to invoke YA('" on a grammar.
Not all possible signatures will have handlers defined for them. For example the request signature:

<:COMPILE :LISP-BINARY>

identifies a nonsensical request.
tPre-reference request handlers are used to construct the parts of a task graph which will be needed

regardless of the ramifications of references. For example. in order to model the compilation of some
:LISP-SOURCE grain. G. LISP. the following links can be made without considering any references: the
g-node representing G. LISP should be linked to the SOURCE port of a : LISP-COMPILE p-node, and then
the B I NARY port of this p-node should be linked to a g-node representing the binary version of G. L I SP (i.e.,

.7 G. B IN).

SOURCE B IARY

~: LISP-COMPILE"

Post-reference request handlers are used for modeling processing that can only be deduced after the
implications of the references are added to the task graph. At this time it has not been necessary to use a post
reference handler, however, they are included because there may be situations where their use is appropriate.

Defining Request Handlers
Request handlers are defined with DEFINE-REQUEST-HANDLER. Calls have the form:

(DEFINE-REQUEST-HANDLER (REQUEST GRAIN-TYPE-NAME PRE-OR-POST)
(ARGS)

&BODY BODY)

REQUEST The name of the request being handled.

GRAIN-TYPE-NAME
The type of the grain that the handler is for.

PRE-OR-POST :PRE indicates that this is a pre-reference handler. POST indicates that this is a post
reference handler.

00
i~ '''4-. "d"*'.- "" ' " ""* ' ¢'_w P " " ".' " " " ", • • "" " " """ w" "%

ARGS Ihc names of the variables passed to the handler. I'lhere must be at least one element in
this list. The first ARG will be bound to the g-node associated with the request when BODY
is evaluated.

BODY 'The forms that constitute the handler. lhcy are evaluated with the arguments passed to
the handler bound to the variables named in ARGS.

All requests made by users have a single argument. the name of the module that the request is intended for.
I landlers may also make requests, and these requests can contain moro than one argument. The handlers for
the :LOAD+ and :INCLUDE+ tasks presented in Appendix I are ,xarnples of handlers using additional
arguments.

Figure 5-1 contains the request handler definitions for l.isp compilation and loading. The first handler is
invoked when a : COMPILE request is made on a : 1 ISP-SOURCE module. It uses ACCESS* to ensure that
the task graph being derived models the fact that the :LISP-SOURCE grains in the module need to be
compiled.

The second handler is invoked when a LOAD request is made on a, :LISP-SOURCE module. 'The first
thing that the handler does is to initiate a COMPILE request on each of' the grains in the :L ISP-SOURCE
module, and then it models the fact that the :B I NARY grains produced by compilation need to he loaded.

Handlers ensure that task graph paths exist. After i, handler has been in.oked on a grain once, additional
invocations will have no effect. Ilhcrefore, task definers need only be concerned that the proper handlers are
invoked at least once and do not need to worry about additional invocations.

(DEFINE-REQUEST-HANDLER (:COMPILE :LISP-SOURCE :PRE) (SOURCE-NODE)
(ACCESS* SOURCE-NODE ((SOURCE :LISP-COMPILE) BINARY)))

(DEFINE-REQUEST-HANDLER (:LOAD :LISP-SOURCE :PRE) (SOURCE-NODE)
(PROCESS-REQUEST :COMPILE SOURCE-NODE)
(ACCESS- SOURCE-NODE ((SOURCE :LISP-COMPILE) BINARY

(BINARY :LISP-LOAD-BIN) IMAGE)))

Figure 5-1: Request Handler Definitions for Lisp

5.3 Reference Handlers
Reference handlers realize the implications references upon construction graphs. The construction

implications of a reference depend upon the kind of reference, the request, and which part of the reference
(right or left) the module participating in the request belongs to. Each handler is identified by a reference
handler signature that includes five fields: the three fields from the reference signature, the request name, and
a participation marker (either : R IGHT or : L E F T). Sample signatures are:

<<:CALLS :LISP-SOURCE :LISP-SOURCE> <:LOAD :LEFT>>
<<:CALLS :C-SOURCE :C-SOURCE> <:COMPILE :RIGHT>>
<<:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE> <:COMPILE :LEFT>>

Not all references are relevant to every request made. For instance, the reference

(:CALLS LISP-SOURCE-i LISP-SOURCE-2)

has no implications when a request is made to compile L I SP-SOURC E- 1. However, if the request is to load
LISP-SOURCE-I for execution, then the reference implies that L ISP-SOURCE-2 needs to be loaded. It is
also important to recognize that the direction of the reference matters. For example, the reference above has
implications when LISP-SOURCE-I is loaded, hut. it has none when LISP-SOURCE-2 is loaded.]

31

-,-....-..'.

I)cfining Reference I landlers
Relirence handlers are defined with DE F I NE -RE F ERENCE-HANDLER. Calls haxe the form:

(DEFINE-REFERENCE-IIANDLER ((REFERENCE LEFT-TYPE RIGHT-TYPE)
(REQUEST DIRECTION))

(ARGS)
&BODY BODY)

REFERENCE 'l1lc name of the reference being handled.

LEFT-TYPE 'Ile grain type of the left (first) module in the reference.

RIGHT- TYPE 'The grain type of the right (second) module in the reference.

REQUEST The name of the request being handled.

DIRECTION I-ither : LEFT or : RIGHT. '[his field identifies the module that the request being handled
refers to.

ARGS The names of the variables passed to the handler, these will be bound when BODY is
evaiuated. [here must be at least two elemenLs in this list. '[he first ARG will be bound to
the left grain of the reference. '[he second ARG will be bound to the right grain of the

* reference.

BODY The forms that constitute the handler. They are evaluated with the arguments passed to
the handler bound to the variables named in ARGS.

Figure 5-2 contains reference handler definitions for Lisp compilation and loading. The first handler
models the fact that the grain represented by CALLED-NODE needs to be loaded, and that the resulting
:LISP-IMAGE grain plays the role DEFINITIONS in the compilation of the grain represented by
CALLING-NODE. The second handler ensures that the grain represented by :CALLED-NODE is loaded.
Note. while these handlers are sufficient to handle the common module interactions for Lisp systems, they are
not sufficient to handle all of the ways that Lisp modules may interact. More handlers would need to be
defined in order to properly handle all of the ways that Lisp modules can interact. '[he prototype
implementation of Buil.l) does not include these additional handlers at this time.

Bt.I i guarantees that reference handlers are invoked after pre-reference request processing and therefore
handler writers may safely assume that the effects of pre-reference request handlers will already be present in
the graph. For example, the :MACRO-CALLS handler discussed above assumes that the compilation of
CALLING-NODE has already been modeled.

5.4 A Task Description Definition Example
This sectio:i presents an example of a task description definition. The task defined is called

LIST -SOURCE -CODE and it will produce firmatted sourcecode listings fora :LISP-SOURCE moduleand
any :LISP-SOURCE modules that it references. All of the defining forms for :LIST-SOURCE-CODE are in
figure 5-3.

First. the :L I ST-L I SP-SOURCE process t~pe is defined. Instances of this type have a single input role
called SOURCE and a single output role called LISTING. '[he function LIST-LISP-FILE is called to
produce the grain filling the output role from the grain filling the input role. '[he request handler for the task
is wery simple, it modcls the fact that the source grain to be listed will play the role SOURCE in a
:LIST-LISP-SOURCE p-node tad that a g-node should be attached to the LISTING role of that same

"I3

Ill 32

- 1," " -" -'.. "" • .-" " -" ." -" :-' ." -' " -' - - " " " - ". -.'" ." " . . -'-. - " ." " "- , " " , "''." ''", '. ",'
"':"."" "-", ."-. '"""""" "-'" -"" " " " "- ,",' ' - ' " ''''.".\ ".. ""' "'""""""',.¢ q. '''

p-nodc. 'i'le two recrencc handlrs specify that grains which are called by i grain being listcd should
themselves Ic listed.

:LIST-SOURCE-CODE shows the virtuc of kceping system models separate from inilormation about
tasks: once its defining forms are evaluated, linattcd listings may be obtained fItr any previously modeled
I.isp systcm without altering any systcm models.

(DEFINE-REFERENCE-HANDLER ((:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
(:COMPILE :LEFT))

(CALLING-NODE CALLED-NODE)
(PROCESS-REQUEST :LOAD CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCE :LISP-COMPILE) BINARY

(BINARY :LISP-LOAD-BIN) IMAGE))
(ACCESS+ CALLING-NODE ((SOURCE :LISP-COMPILE) DEFINITIONS))))

(DEFINE-REFERENCE-HANDLER ((:CALLS :LISP-SOURCE :LISP-SOURCE)
(:LOAD :LEFT))

(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LOAD CALLED-NODE))

Figure 5-2: Reference Handlcr Definitions for lisp

(DEFINE-PROCESS-TYPE :LIST-LISP-SOURCE
((SOURCE :LISP-SOURCE :SINGLE))
((LISTING :PRESS :SINGLE SOURCE))
OUTPUT-STREAM
(FORMAT OUTPUT-STREAM "-%LIST -A"

(PATHNAME-MINUS-VERSION SOURCE))
(FORMAT OUTPUT-STREAM "-%LISTING -A" SOURCE)
(LIST-LISP-FILE SOURCE LISTING))

(DEFINE-REQUEST-HANDLER (:LIST-SOURCE-CODE :LISP-SOURCE :PRE)
(SOURCE-NODE)

(ACCESS- SOURCE-NODE ((SOURCE :LIST-LISP-SOURCE) LISTING)))

(DEFINE-REFERENCE-HANDLER ((:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))

(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))

(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

Figure 5-3: Definition For: LIST-SOURCE-CODE

33
• - -"' * " ;"; " ' ? "< " .;- ".-'""' .. ') ' € " '"-' 4 . . -" " " '""-' " '

~c ~ i - ~ w-p w-s r.~ ml. r. ui~~ w-s .ir rzr. r rna vi w~' r~. ~-s a ..9r0u -- - ' rr7rrrvrj ~rrr-rru~q

Q

V

'I',

-4
'.4
.1

-w

.4.,

.7~

7.-

N

2 -

It'

4

-I-
4.'

qi.
44
'C'
ml.-

- U

A....

4-.
1S

w
.4

(9

.4

34

g

.4.- Lv ~. S.-. *% V%..~;Q.%'.-~.$-.Q%%~'X~-2x'%
'. V ... ' c___ '>4.

6. Reprise

'lbis chapter highlights several aspects of IIUII) that have been presented in this report. The first section
summarizes how Biiti 1) overcomes thc difficultics associated with existing tools (sec chapter 2). l'hc second
section discusses HUll ID's construction framework and how it provides a base flor describing new tasks within a
static Framcwork that conceals many low level details from the task definer. The final section proposes ways
that itulI) could be extended to provide capabilities not found in existing tools.

6.1 BUILD Compared With Existing Tools
Phrased in terms of inter-module references. The IUl.I) system modeling mechanism allows users to

describe systems in terms that are natural for them. BUIl) system models are easier to understand and they
provide more information than the construction directive lists used by existing tools.

User definable task descriptions. BUID's task description mechanism is responsible for the fact that BUILD
is not constrained to some embedded set of tasks. By separating system models and task descriptions, BUIID's
knowledge about construction can be modified without requiring that system models be changed. I lowever,
if a new task is sensitive to a class of references previously ignored, then existing models will have to be
updated.

Intermediate grains are not referenced. The only grains that are referred to in a system are the source
grains that comprise modules. While intermediate grains are used in BUII.D's task graphs, these grains never
appear in system models.

All source grains must be referenced. All of the source grains that participate in a system either reference
other grains in the system or are referenced by other grains in the system. Therefore, since BUILD models
encode system referencing patterns, all of the source grains in a system must appear in any well formed BUILD
model of that system.

"" 6.2 BUILD's Construction Framework
BUILD provides procedures which guide the construction process. These procedures include hooks for the

components of user supplied task descriptions. The set of fixed procedures take care of low level construction
details that are common to all tasks and allow task definitions to contain just the details that are relevant to the
particular task being defined.

The task graph representation and analysis algorithm provide a uniform way to describe and perform
system maintenance tasks. New process types and grain types can easily be integrated into task graphs.

The ACCESS family of functions provide a general way for viewing and manipulating task graphs that
isolates handler definitions from the low level mechanics of instantiating nodes, matching grain types between
g-nodes and p-node ports. and actually linking nodes together.

The task graph derivation algorithm ensures that pre-reference request handlers are invoked before
reference handlers and that reference handlers are invoked before post-reference request handlers. This
algorithm is also responsible for translating module references into a series of handler invocations, one for

, each grain involved in a refrcnce. Finally, the task graph derivation algorithm ensures that circular
* references (i.e., (:CALLS A B) (:CALLS B A)) do not cause infinite loops during reference handling.

11:II [Ws construction framework allows task definers to concentrate on the significant details of the task
being defined (e.g.. what process and grain types are used. what references are relevant and how should they
be handled etc.) and isolates them from low level details (e.g., task graph analysis, node instantiation etc.).

35

,' .-A. .4., ,: -., .- - .,- ..., ' ,- ~ '' ," ,--- - ".,' .~ .".. *. . ." : .:.
S% %.

6.3 Extensions to BUILD
BLAI 1) pro ides a more graceful way of modeling systems than existing tools, yet it does not provide

greater capahilities. 'his section proposes extensions to 1i.1) that would allow it to provide a set of facilities
that other tools do not. The extensions are automatic derivation of system specifications from source code.
support for patching and similar maintenance styles, and the incorporation of the nature of module change
into the reconstruction algorithms.

Automatic Derivation of System Descriptions
The iL III) modeling mechanism provides a natural way to describe systems but it does not ensure that the

- "a) descriptions are complete or correct.)csigners are still required to generate system models by hand. A tool
- that could derive system models from source code would relieve designers of the chore of building system

description files.
[or simple languages, an analyzer could build a great deal of the model and locate areas that might

present difficulties. For example, in most C systems all of the dependencies arc caused by use of the
#INCLUDE compiler directive and calls to externally defined symbols -- the reference assertions from these
references could he synthesized automatically.

While there may be programming environments in which it is possible to mechanize the derivation of
system models there are certainly languages for which such derivation would become arbitrarily complex.
For example, Pitnan develops an argument against automatic derivation of I.isp system models based on the
complications caused by macros jPitman 841.

Patching
There arc many instances where a system maintainer may want to introduce changes into a system without

making sure that the resulting system is consistent: for example, debugging experiments where small changes
are introduced to examine some small part of thd system. 'These changes may not be intended to become part
of a released system, it may even be known that they will cause compilation of some other module to fail.
Another instance where the ability to patch a system is important is when a quick fix is being attempted and it
is important that the effects be seen quickly. This kind of change represents a tentative guess on the part of
the maintainer. The introduction of such changes into systems must be supported by system management
tools if such tools are going to help and not hinder maintainers.

The DI'SYSTIEM patch facility provides some support for producing inconsistent systems. Unfortunately,
the DEFSYSTEM patching facility makes no use of the dependency information that the rest of the tool uses.
No analysis of the effect of a patch is available. Nothing guarantees that a patch will even be loaded correctly
according to the dependency information that is available. For example. if a patch file includes a modified
macro definition and two calls to it, the calls will not refer to the new version of the macro unless they are
placed after the definition in the patch file by the user.

System management tools should make use of system models in order to support patching. Patching
mechanisms should also supply information about the effect that a patch may have on the rest of the system.
In Uitut. the analysis could be done by propagating the effects of a change through a task graph and then
identifying those modules that were affected by the change but ignored by the patch.

More Precise Change Analysis
All of the tools mentioned in this paper (including BUlI)) are sensitive to the fact that come change has

occurred to a module in a system. However, no attention is paid to the nature of the change. fly exploring the
nature of a change it is possible to limit the amount of processing done when updating systems.

If source code is changed in a way that cannot alter its compilation, there is no reason for he source
module to be rccompilcd. For example, compilation should not be done when source code has only been

36

' " " " 'o,-." . o - .: "-" - o' .'2"." ' .° ,1'.. 2" ." ' - '"- ,," "• " 2, •" ", ."" ,""""€g "0 "-- 2 ? """' " " °L,

I-. I- P WI' MN- - ' W '4- I. R- ~ LqWUWVW VWT W -;- , 9 " -11

reformatted or had commentary added to it. If a lunction is added to a module, hut no existing modules arc
updated to contain calls to the new function, nothing should be done to the existing modules. I.int libraries
are dependent upon the first pass of Lint. however, most changes to the first pass of I.int will not affect the
libraries.

Change analysis can also provide important debugging information. For example, if a module interface is
changed, but not all of the modules that contain references to that module are changed, there is a possibility
that an error of omission has been made.

Unlike MAKI: and iUIll), IWI:SYSTE'M can be extended to include more complicated predicates for
deciding when changes are significant. There is nothing preventing it l)I'-SYSirl.M system definition from
using parsers and source code comparison programs in order to decide when transformations should take
place. However. no enhanced predicates are supplied with I)I;I.*YSTI*1M and none of the iEI.'SYSTFM
descriptions encountered while preparing this paper included definitions of such specialized predicates.

Specialized predicates can only be useful if they require less processing to determine that a transformation
can be avoided than applying the transformation in the first place. For instance, there is no point in using a
predicate to determine that compilation of a module can be avoided if that predicate requires more processing
than the compiler. BUll n) can step around this issue by assuming that it is a single tool embedded in an
integrated environment in which the tools that arc used to modify modules can supply infbrmation to BUILD
about the nature of changes.

Bull) could be extended to provide an interface for communicating information about changes to
modules. ''he information passed to BUll) would include the name of the grain modified, the kind of
modification made, and the name of the new (i.e.. updated) grain. A new class of handlers called change
handlers would be introduced to aid in the determination of significani changes by the construction algorithm.

For example, the change assertion:
(:ADDED-STRUCT DEFS)

would inform BUll D that DE FS has been changed by adding a new structure and therefore modules that rely
on DE F S do not have to be re-compiled. The compilation of unaltered modules can be avoided since there is
no way for them to refer to the new structure. The assertions:

(:ADDED-COMMENT DEFS)
(:RE-FORMATTED DEFS)

-.: imply that no changes that can alter the compilation of DEFS have been made and therefore no re-
compilation needs to be done.

ihe change handlers would contain listings of how types of changes alter the way in which grains play
their roles. For instance, one handler would note that re-formatting a piece of source code does not change
the way that it plays the role SOURCE in instances of LISP-COMPILE.

37

.3

* 'V

2%

:4<
* -U

<C

(V

Lx\

A
I'

4~

-"-U

"-4

2

V.
$. .4
5~'%'V.
'4.

'4
A
S.

so.'.'

I
V
*4

18

r4t.irr4r&r rdw r ~ ~i A zcA hi ~ L (~

References

[Ada 83]
Reference Manual Ior tie Ada Programming language.
United Suetcs I)cpartment of)cfensc, 1983.
Ansi/Mil-Std 1815 A

* jCooprider 791
Cooprider.
The Representation of Iatilies of Software Systems.
Phi) thesis, Carnegie-Mellon University, April, 1979.

*[Cristofor, et. al. 801
Cristofor Wendt, and Wonsiewicz.
Source Control + Tools = Stable Systems.
In Proceedings of the Iourth ('omputer Software and Applications Conference, pages pp. 527-532.

2" IEFE, October, 1980.

% jl)cRcmcr and Kron 761
lkRcmeer and Kron.
Programming-in-the-I .arge Versus Programming-in-thc-Small.
IEE Transactions on Software Engineering SE-2(2):80-86, June, 1976.

[Feidman 791
Feldman.
Make - A Program for Maintaining Computer Programs.
Software - Practice and Experience 9(3):pp. 255-265, March, 1979.

i[Horsley and Lynch 79]
Horsley and Lynch.
Pilot: A Software Engineering Case Study.
In Proceedings of the 4th International Conference on Software Engineering, pages 94-99. IEEE,

September, 1979.

[Johnson 78a]
Johnson.
YACC - Yet Another Compiler Compiler.
Technical Report, Bell Laboratories, 1978.

[Johnson 78bi
Johnson.
Lint, a C Program Checker.
Technical Report, Bell Laboratories, July, 1978.

[Kemighan and Ritchie 78]
Kernighan and Ritchie.
The C" PrograiniIg language.
Bell I.aboratories, 1978.

19

II ",' Y2'IP": .%," ,'','-..-.':..''."",":."-." " "" -" ',''.:'.-'':..'..' \''...'.'," " ;'. " " '.' -) / ."/','". .". ".".-:". ..4

K-w

jI.cwis 831
Icwis.
Experience With A System For Controlling Software Versions In A)istributed Environment.
In Proce'edings of the Sniposium on Application and A. essmetti o.'Auiomnated To)ls fbr Software

Development, pages 210-219. IF, E, November, 1983.

[I.iskov 811
ILiskov et. al.
(1. U Reference Manual.
1981.
Volume 114 of the Springer Vcrlag ILecture Notes in Computer Science

[Mitchell 79]
Mitchell, Maybury, Sweet.

lesa Language AlanuaL
Fifth edition, XEROX PARC, 1979.

[Pitman 841
Pitman.
The I)escriplion Of large S)stems.

Technical Report Al Memo 801, MIl Artificial Intelligence Laboratory, 1984.

IRochkind 751
Rochkind.
The Source Code Control System.
IEEE Transactions on Softw're Engineering l(4):pp 364-370, December, 1975.

[Schmidt 821
'- SchmidL

Controlling Large Software Development In a Distributed Environment.
PhD thesis, University of California Berkeley, December, 1982.
This thesis is available as XEROX PARC Technical Report CSL-82-7.

[Steele 841
Guy Steele Jr.
Common LISP: The Language.
Digital Press, 1984.

[Tichy 80]
Tichy.
Software Development Control Based on System Structure Description.
Phi) thesis, Carnegie-Mellon University, January, 1980.

[Tichy 84]
Tichy.
RCS - A System for Version Control.
Technical Report CSI)-TR-474. Purdue University, March, 1984.

[Weinreb and Moon 81]
Weinreb and Moon.
Lisp Machine Manual.
Fourth edition, Massachusetts Institute of'Technology. 1981.

40

%.' " ' --, """ " ' ." - " 4'k'-4'-o ,'A. ' %-.... ,,, ,,. .. , ..., ,. , , , ,, .S,

1. BUILD Definitions For C

The dcfinitiOnIS used by B~Ll 1) to model a Lisp environment have been given in the body of this report as
examples. IThis appendix contains die definitions used by Hui1 i) to model a C programming environment.
There arc more kinds of commonly used grain types in UNIX environments than in Lisp environments.
hence there arc more definitions needed to model all of the ways that UNIX grains can refer to each other.
Commentary has been added to highlight the definitions.

Grain Type Definitions

(DEFINE-GRAIN-TYPE :YACC-GRAMMAR :Y)
(DEFINE-GRAIN-TYPE :C-SOURCE :C)
(DEFINE-GRAIN-TYPE :C-OBJECT :0)
(DEFINE-GRAIN-TYPE :C-EXECUTE :EXE)
(DEFINE-GRAIN-TYPE :SHELL-SCRIPT :SCRIPT)

Process Type D~efinitions
It is assumned that the functions C-COMPILE, C- LOAD, and YACC are available.

(DEFINE-PROCESS-TYPE C-COMPILE
((SOURCE :C-SOURCE :SINGLE) (INCLUDES :C-SOURCE :MULTIPLE))

* . ((OBJECT :C-OBJECT :SINGLE SOURCE))
STREAM
(FORMAT STREAM --%COMPILE -A- (PATHNAME-MINUS-VERSION SOURCE))

(FORMAT STREAM -%COMPILING -A- SOURCE)
(C-COMPILE SOURCE OBJECT))

(DEFINE-PROCESS-TYPE C-LOAD
((PRIMARY :C-OBJECT :SINGLE) (SECONDARY :C-OBJECT :MULTIPLE))
((IMAGE :C-EXECUTE :SINGLE PRIMARY))
STREAM
(FORMAT STREAM -%LINK: -A -(-% -A-)"

(PATHNAME-MINUS-VERSION PRIMARY)
(MAPCAR #'PATHMAME-MINUS-VERSION SECONDARY))

(FORMAT STREAM '-%LINKING: -A -(-% -A-)" PRIMARY SECONDARY)
(C-LOAD PRIMARY SECONDARY IMAGE))

(DEFINE-PROCESS-TYPE YACC
((GRAMMAR :YACC-GRAMMAR :SINGLE))
((PARSER :C-SOURCE :SINGLE GRAMMAR))
STREAM
(FORMAT STREAM -- YACC -A" (PATHNAME-MINUS-VERSION GRAMMAR))

(FORMAT STREAM -YACCING -A" GRAMMAR)
(YACC GRAMMAR PARSER))

41

Request and Reference I landlers
'I lhe request handler for C compilation models the fact that the source grain needs to he compiled. The

only reference that can have an effect on C compilation is :INCLUDES. If GRAIN-I includes GRAIN-2,
then GRAI N- I indirectly includes any grains that GRAI N-2 includes. The task : INCLUDE+ (described later)
is responsihle for gathering all of the grains included indirectly by a grain and attaching the corresponding
g-nodes to the INCLUDES port of the : C-COIPILE p-node for the grain being compiled.

:COMPILE :C-SOURCE

(DEFINE-REQUEST-HANDLER (:COMPILE :C-SOURCE :PRE) (SOURCE-NODE)
(ACCESS' SOURCE-NODL ((SOURCE C-COMPILE) OBJECT)))

(DEFINE-REFERENCE-HANDLER ((:INCLUDES :C-SOURCE :C-SOURCE) (:COMPILE :LEFT))
(INCLUDING-NODE INClUDED-NODE)

(LET ((COMPIIL-PROCESS (ACCESS INCLUDING-NODE ((SOURCE C-COMPILE)))))
(PUSH INCLUDED-NODE (ACCISS+ COMPILE-PROCESS (INCLUDES)))
(PROCESS-REQUEST :INCLUDE+ INCLUDED-MODE COMPILE-PROCESS)))

If a :C-SOURCE grain calls another grain, then unl 1) pessimistically assumes that it indirectly calls any
grain called by the second grain. 'The task : LOAD+ gathers all of the grains called indirectly by a grain in

order to ensure that the proper set of grains is linked together. The lack of a task like : LOAD+ in Lisp is due
to the f.ct that in I.isp environments, grains are loaded incrementally instead of being explicitly linked
together.

24; :LOAD :C-SOURCE

(DEFINE-REQUEST-HANDLER (:LOAD :C-SOURCE :PRE) (SOURCE-NODE)
(PROCESS-REQUEST :COMPILE SOURCE-NODE)
(ACCESS* SOURCE-NODE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD) IMAGE)))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-SOURCE) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE)

(LET ((LINKING-PROCESS
(ACCESS CALLING-NODE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD)))))

55 (PROCESS-REQUEST :COMPILE CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))

(ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))"S

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-OBJECT) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE)

(LET ((LINKING-PROCESS
(ACCESS CALLING-NODE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD)))))

(PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))

Sometimes compiled objects are used as source grains (e.g. supplied libraries). These definitions encode
the knowledge needed to handle the loading of :C-OBJECT grains.

; :LOAD :C-OBJECT

(DEFINE-REQUEST-HANDLER (:LOAD :C-OBJECT :PRE) (OBJECT-NODE)
(ACCESS* OBJECT-NODE ((PRIMARY C-LOAD) IMAGE)))

42

" ' ., . ,. .%,.'.,,,,,t' I "P" - "u" "x"Y.' ' . K '" '-"' '% ." , " ''"""::' '" ';"""11"" "","'Id,

(DEFINE-RELERENCE-HANDLER ((:CALIS :C-OBJECT :C-SOURCE) (:LOAD :LEF1))
(CALLING-NODE CALLED-NODE)

(LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((PRIMARY C-LOAD)))))
(PROCLSS-REQUESI :COMPIE CALLED-NODE)
(PUSH (ACCESS CAlEID-NODE ((SOURCE C-COMPILE) OBJECT))

(ACCISS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUESI :LOAD+ CALLED-NODE LINKING-PROCESS)))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-OBJECT :C-OBJECT) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE)

(LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((PRIMARY C-LOAD)))))
(PUSH CALLED-NODL (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUESI :LOAD+ CALLED-NODE LINKING-PROCESS)))

Here are the handlers for : INCLUDE+ and : LOAD+. Thcre are no request handlers associated with thcse
requests as all of the significant construction information that they imply arises from rcherenccs. These
handlers illustrate the use of more than two values being passed to reference handlers. 'llhe additional
parameter for :INCLUDE+ is the :C-COMPILE p-node which models die compilation to be done. The
additional parameter for : LOAD+ is the p-node which models the linking to be done.

:INCLUDE+ :C-SOURCE C-COMPILE

(DEFINE-REFERENCE-HANDLER ((:INCLUDES :C-SOURCE :C-SOURCE) (:INCLUDE+ :LEFT))
(IGNORE INCLUDED-NODE INCLUDING-PROCESS)

(PUSH INCLUDED-NODE (ACCESS+ INCLUDING-PROCESS (INCLUDES)))
(PROCESS-REQUEST :INCLUDE+ INCLUDED-NODE INCLUDING-PROCESS))

:LOAD+ :C-SOURCE C-LOAD

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-SOURCE) (:LOAD+ :LEFT))
(IGNORE CALLED-NODE LINKING-PROCESS)

(PROCESS-REQUEST :COMPILE CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))

(ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST .LOAD+ CALLED-NODE LINKING-PROCESS))

* (DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-OBJECT) (:LOAD+ :LEFT))
(IGNORE CALLED-NODE LINKING-PROCESS)

(PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS))

:LOAD+ :C-OBJECT C-LOAD

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-OBJECT :C-SOURCE) (:LOAD+ :LEFT))
4. (IGNORE CALLED-NODE LINKING-PROCESS)
.~(PROCESS-REQUEST :COMPILE CALLED-NODE)

(PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))
(ACCESS+ LINKING-PROCESS (SECONDARY)))

(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-OBJECT :C-OBJECT) (:LOAD+ :LEFT))
(IGNORE CALLED-NODE LINKING-PROCESS)

(PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS))

43

lcre arc the definitions used to model YA('CS interaction with C sysIcum. Ihe handler capturc the fact
that YA(' grammars may includc and call other grains.

:YACC :YACC-GRAMMAR

(DEFINE-REQUEST-HANDLER (:YACC :YACC-GRAMMAR :PRE) (GRAMMAR-NODE)
(ACCESS* GRAMMAR-NODE ((GRAMMAR YACC) PARSER)))

:COMPILE :YACC-GRAMMAR

(DEFINE-REQUEST-HANDLER (:COMPILE :YACC-GRAMMAR :PRE) (GRAMMAR-NODE)
(PROCISS-REQULSI :YACC GRAMMAR-NODE)
(ACCESS* GRAMMAR-NODE ((GRAMMAR YACC) PARSER (SOURCE C-COMPILE) OBJECT)))

(DEFINE-REFERENCE-HANDLER ((:INCLUDES :YACC-GRAMMAR :C-SOURCE) (:COMPILE :LEFT))
(INCLUDING-NODE INCLUDED-NODE)

(LET ((COMPILE-PROCESS
(ACCESS INCLUDING-NODE ((GRAMMAR YACC) PARSER (SOURCE C-COMPILE)))))

(PUSH INCLUDED-NODE (ACCESS+ COMPILE-PROCESS (INCLUDES)))

(PROCESS-REQULSI :INC.LUDL+ INCLUDED-NODE COMPILE-PROCESS)))

:LOAD :YACC-GRAMMAR

(DEFINE-REQUEST-HANDLER (:LOAD :YACC-GRAMMAR :PRE) (GRAMMAR-NODE)
(PROCESS-REQUEST :COMPILE GRAMMAR-MODE)
(ACCESS- GRAMMAR-NODE ((GRAMMAR YACC) PARSER

(SOURCE C-COMPILE) OBJECT
(PRIMARY C-LOAD) IMAGE)))

(DEFINE-REFERENCE-HANDLER ((:CALLS :YACC-GRAMMAR :C-SOURCE) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE)

(LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((GRAMMAR YACC) PARSER
(SOURCE C-COMPILE) OBJECT
(PRIMARY C-LOAD)))))

(PROCESS-REQUEST :COMPILE CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))

(ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))

% (DEFINE-REFERENCE-HANDLER ((:CALLS :YACC-GRAMMAR :C-OBJECT) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE)

(LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((GRAMMAR YACC) PARSER
(SOURCE C-COMPILE) OBJECT

-. -(PRIMARY C-LOAD)))))

(PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))

44

Hcre arc the definitions used to handle :SHELL-SCRIPT grains. A request to compile or load a shell
script is interpreted to mean that all of the modules called by the script should be compiled or loaded.

:COMPILE :SHELL-SCRIPT

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-SOURCE) (:COMPILE :LEFT))
(IGNORE CALLED-NODE)

(PROCESS-REQULST :COMPILE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-OBJECT) (:COMPILE :LEFT))
(IGNORE CALLED-NODE)

(PROCESS-REQUEST :COMPILE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :YACC-GRAMMAR) (:COMPILE :LEFT))
(IGNORE CALLED-NODE)

(PROCESS-REQUEST :COMPILE CALLED-NODE))

:LOAD :SHELL-SCRIPT

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-SOURCE) (:LOAD :LEFT))
(IGNORE CALLED-NODE)

(PROCESS-REQUEST :LOAD CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-OBJECT) (:LOAD :LEFT))
(IGNORE CALLED-NODE)

(PROCESS-REQUEST :LOAD CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :YACC-GRAMMAR) (:LOAD :LEFT))
(IGNORE CALLED-NODE)

(PROCESS-REQUEST :LOAD CALLED-NODE))

45

- 44

II

FILMED

UU

N Dr a

