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Abstract

"~/ BUILD is a tool for kecping modular systems in a consistent statc by managing the construction tasks (e.g.

comy.lation, linking ctc.) associated with such systems. It employs a uscr supplied system model and a
procedural description of a task to be performed in order to perform the task. This differs from existing tools
which do not explicitly separate knowledge about systems from knowledge about how systems are
manipulated.

BUILD provides a static framework for modeling systems and handling construction requests that makes use of
programming environment specific definitions. By altering the set of definitions, BUILD can be extcnded to
work with new programming environments and to perform new tasks. ’7(7 v W, : A.?A
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1. Introduction

Many programming languages cncourage the development of modular systems by allowing the

& independent compilation of modules (ADA [Ada 83], C[Kernighan and Ritchic 78). C1.U [Liskov 81),
j Common-Lisp [Stecle 84). Mcsa [Mitchell 79]).  This featurc can be exploited to minimize the amount of
z compilation that nceds to be done when some part of a system is changed. However, as systcms become
[ larger it becomes difficult to know exactly which modules need to be recompiled when one changes. It is
* important that the correct modules be recompiled and relinked -- a bug caused by ignoring a module that
i should be rebuilt can be very difficult to find. This problem is called the consistent construction problem.
Yy This report describes BUILD, a tool that reconstructs system modules in order to ensure that they are kept
. in a consistent state. BUILD docs not modify source modules and will not rid systems of problems that require
‘g source code revision. However, BUILD can handic the many instances where some portion of a system needs
'b to be recompiled. relinked, or somehow reprocessed in order to eliminate inconsistency.

There are many tools that manipulate systems by reconstructing inconsistent parts. Chapter 2 presents
) MAKE [Feldman 79] and DEISYSTEM [Weinreb and Moon 81}, two representative tools, and discusses some of
:: their weaknesses. The fundamental problem with MAKE, DEFSYSTEM, and all similar construction directive
_- based tools is that they operate on systems by using uscr suppliced lists of construction dircctives. These lists
s arc difficult to understand. BUILD provides the same functionality as cxisting tools but does so without

? requiring users to list construction steps.

BUILD derives the construction steps nceded to produce a module from user supplied system models.
These models specity how modules reference cach other instcad of how they are constructed. BUILD uses the
reference information to determine how modules depend on cach other and how a change to one module will
cffect another. For instance, if a system model specifics that module , refers to macros defined in module,, then
BUILD can infer that a change to module, implics that module, should be recompiled. Chapter 3 discusses
system models and chapters 4, and 5 explain how BUILD uses systcm models to perform construction.

‘The major strength of BUILD's reference based modeling system over a construction directive based system
is that it provides a higher level language for describing system structure. Becausc it climinates low level
construction detail and allows explicit declaration of high level system relationships, a reference based model
is casier to understand and provides more information than its construction directive based counterpart.

BUILD scparates knowledge about systems from knowledge about how systems are manipulated. The term
task is uscd to refer to a construction process such as compilation or linking that BUILD may be called upon to
perform. BUILD uses fask descriptions to specify how to perform construction tasks and how the various kinds
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N of references that appear in system models may effect the construction required to perform the task. Using

:f the example from the previous paragraph, BUILD’s task description for compilation allows it to realize that

Y while a change to module, implies that module, should be recompiled, a change to module, does not imply

: that module, should be recompiled.
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N TINYCOMP

: TINYCOMP is an example of a modular system, it will be used throughout this report o present different
: aspects of system construction tools (this example was adapted from one used by Feldman [Feldman 79)).
‘ a3 TINYCOMP has two major modules. a parser and a code generator,  ‘The parser is built by YACC, a parser
oy generating ool [Johnson 78al. The code generator is implemented in C|Kernighan and Ritchic 78). ‘The
1‘ parser and code generator use a common sct of definitions for shared data structures. These definitions are
: o combined with the source programs during compilation. The compiled programs arc linked with a library
ooy that is also subject to change. Figure 1-1 depicts TINYCOMP's inter-module reference pattern and figure
g 1-2 depicts TINYCOMP's construction process.
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- figure 1-1: TINYCOMP Inter-Module Referer:ze Graph
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R Reference Based System Models

AN Compare figure 1-3 which contains the MAKE directives for TINYCOMP, and figure 1-4 which contains the
BUILD system model for 1iNxycoMP. While the MAKL directives encode TINYCOMP's construction graph,
BULI D's system model encodes TINYCOMP's reference graph.

A reference model can be used in place of a construction directive list because all of the information about
construction present in such a list can be derived from a reference model. Consider the third MAK Y directive
for TINYCOMP:

CODEGEN.O: CODEGEN.C DEFINITIONS.C

CC -C CODEGEN.C # -C COMPILES
This expresses that CODEGEN. 0 is produced by compiling CODEGEN. C. and that if cithcr CODEGEN.C or
DEFINITIONS.C changes. then CODEGEN. C necds to be recompiled. This construction dependency cxists
because CODEGEN . C is combined with DEFINITIONS . C when it is compiled to produce CODEGEN . O.
In contrast, the reference based model specifics that CODE~GENERATOR includes DEFS:

(: INCLUDES CODE-GENERATOR DEFS)
BUILD's description for compilation contains the knowledge that the : INCLUDES reference implics a
compilation construction dependency between including and included files.

PARSER.C: PARSER.GRAMMAR

YACC PARSER.GRAMMAR #YACC MAKES Y.TAB.C
MV Y.TAB.C PARSER.C #RENAME Y.TAB.C
PARSER.O: PARSER.C DEFINITIONS.C
CC -C PARSER.C # -C COMPILES
b CODEGEN.O: CODEGEN.C DEFINITIONS.C
L CC -C CODEGEN.C # -C COMPILES
O TINYCOMP: CODEGEN.O PARSER.O LIBRARY.O
s CC CODEGEN.O PARSER.O LIBRARY.0 -O TINYCOMP # -0 LINKS
*» Figure 1-3: MakeFile For TINYCOMP
. ]
vihh
r (DEFMODEL TINYCOMP
AR (:MODULE DEFS :C-SOURCE "DEFINITIONS")
e (:MODULE PARSER :YACC-GRAMMAR "PARSER")
b ( :MODULE CODE-GENERATOR :C-SOURCE "CODEGEN")
= (:MODULE LIBRARY :C-OBJECT "LIBRARY")
e (:INCLUDES PARSER DEFS)
i (:INCLUDES CODE-GENERATOR DEFS)
- (:CALLS PARSER LIBRARY)
L (:CALLS PARSER CODE-GENERATOR)
X (:CALLS CODE-GENERATOR LIBRARY))
?': Figure 1-4: BUILD Model For TINYCOMP
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‘Task Descriptions

Lpon receipt of a request to perform a task. BUILD derives a task graph which models the construction
steps and dependencies necessary o perform the task, (Chapter 4 presents BUID task models and chapter
S eaplains how task models are derived from system maodels.) Once the task model has been derived, LD
analyzes it n order to determine which components have changed and what steps are needed in order to
satisfy the task request.

8L D provides a static framework for modeling systems and handling construction requests that makes
use of programming environment specific definitions.  New tasks can be added to BUNID'S repertoire by
altermg the set of definitions.

For example, figure 1-5 contains the forms needed to define a task calted : LIST-SOURCE-CODE which
produces formatted listings of the source modules of a Lisp system. (This example will be explained in detail
in chapter 5.) “T'he first form allows BUH D o represent the processing needed to list a single Lisp source file.
The second form tells BUHLD what to do when a : LIST-SOURCE-CODE request is reccived. ‘The last two
forms tell BLn D about the implications of the references :CALLS and :MACRO-CALLS upon the
:LIST-SOURCE-CODE task.

Since task definitions are separate from system modcls. new tasks can be performed on existing models
without additional effort. For instance. once : LIST-SOURCE-CODE has been defined. L1 D will be able to
handle requests o format the source code for existing systems without changing any system models.
Construction directive based tools cannot be extended in a similar manner.

(DEF INE-PROCESS-TYPE :LIST-LISP-SOURCE
((SOURCE :LISP-SOURCE :SINGLE))
((LISTING :PRESS :SINGLE SOURCE))
OUTPUT-STREAM
(FORMAT NUTPUT-STREAM “~%LIST ~A"
(PATHNAME -MINUS-VERSION SOURCE))
(FORMAT OUTPUT-STREAM "~%LISTING ~A" SOURCE)
(LIST-LISP-FILE SOURCE LISTING))

(DEFINE-REQUEST-HANDLER (:LIST-SOURCE-CODE :LISP-SOURCE :PRE)
( SOURCE -NODE )
(ACCESS* SOURCE-NODE ((SOURCE :LIST-LISP-SOURCE) LISTING)))

(DCFINE-REFERENCE-HANDLER ((:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))
(1GNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))
(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

Figure 1-5: Definition For : LIST-SOURCE-CODE
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2. System Construction Tools

This chapter focuses on two tols that were designed to aid in the management of the consistent
construction problem. Before they are presented some terminology that will be used throughout this report is
introduced.

Different programming environments arc geared to operate upon different kinds of objects. For instance,
some environments are designed to operate on files, and others on functions. The term grain will be used to
refer to the objects manipulated in a programming environment -- regardless of their nature.

The terminology introduced in this paragraph will be used to refer to the kinds of grains that are
manipulated during the construction process. Sowurce grains arc the components that are produced by people
and not programs (c.g.. programming language source code). Source grains arc manipulated by programs to
produce derived grains (c.g., object code). Grains that are the final products of the construction process are
called goal grains (c.g., exccutable images of programs). While goal grains arc usually derived grains, they can
also he source grains. Derived grains that are not goal grains are called intermediate grains (c.g., object code
that requircs linking in order to form cxccutable images).

2.1 MAKE

MAKE [Feldman 79), available as part of UNIX! is a simple tool for managing systems that has received
widespread use.  MAKE is driven by scts of construction directives that form "recipes™ for constructing
systems. Thesc directives are stored in a text file called a Makckile and have the form:

TARGET-GRAIN : INGREDIENT-GRAIN-1 INGREDIENT-GRAIN-2 ...
COMMAND-1
COMMAND-2

Each entry declares that TARGET-GRAIN depends on cach of the grains to the right of the colon. The
command scquence below the construction dependency declaration line is executed in order to construct
TARGET-GRAIN. There are no constraints placed on the commands which can appear in the command
sequence. Furthermore, there are no ordering rules for MakeFile entries.

MAKE has a simple macro substitution facility. A macro is defined in the following manner:

MACRO-NAME=MACRO-EXPANSION

Any instance of MACRO-NAME cnclosed within parentheses and preceded by a dollar sign (ie.,
$(MACRO-NAME)) is replaced by the text MACRO-EXPANSION when the MakeFile that includes the macro
definition is processed. The definition for a macro must precede all of its uses.

A Small Example -- TINYCOMP

Figure 2-1 dcpicts the construction process for TINYCOMP and figure 2-2 contains a corresponding
MakeFile. Given the MakceFile, MAKE will perform the appropriate construction when TINYCOMP
components change. For instance, a change to PARSER. GRAMMAR will cause a new parser to be derived,
compiled. and linked. A change to CODEGEN.C will causc CODEGEN.C to be compiled and linked. A
change to DEFINITIONS. C will causc PARSER.C and CODEGEN. C to be compiled and linked. Finally, a
changc to LIBRARY . O will cause linking but no compiling.

LUNIX is a trademark of Bell T aboratorics
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:E‘ Figure 2-1: Construction Graph For TINYCOMP
b
'n PARSER.C: PARSER.GRAMMAR
* YACC PARSER.GRAMMAR #YACC MAKES Y.TAB.C
\ MV Y.TAB.C PARSER.C #RENAME Y.TAB.C
._‘.
:f PARSER.O: PARSER.C DEFINITIONS.C
- CC -C PARSER.C # -C COMPILES
! CODEGEN.O: CODEGEN.C DEFINITIONS.C
CC -C CODEGEN.C # -C COMPILES
- TINYCOMP: CODEGEN.O PARSER.O LIBRARY.O
b~ CC CODEGEN.O PARSER.O LIBRARY.O -0 TINYCOMP # -0 LINKS
b
) Figure 2-2: MakeFile For TINYCOMP
)
o The MakeFile entries arc interpreted in the following manner:
2 PARSER.C: PARSER.GRAMMAR ...
,s PARSER. C depends on PARSER . GRAMMAR. [t is created by running YACC on PARSER . GRAMMAR.
- PARSER.O: PARSER.C DEFINITIONS.C ...
- PARSER. O dcpends on PARSER.C and DEFINITIONS.C. Itis created by recompiling PARSER. C.
-5
-
: CODEGEN.O: CODEGEN.C DEFINITIONS.C ...
. CODEGEN . O depends on CODEGEN . C and DEFINITIONS . C. ltis crcated by recompiling CODEGEN. C.
? TINYCOMP: CODEGEN.O PARSER.Q LIBRARY.O ...

TINYCOMP depends on CODEGEN. O, PARSER. O, and LIBRARY . Q. 1t is created by relinking the system,
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The Construction Process
MAKE is invoked with the following UNIX command linc template (brackets indicate optional ficlds):

MAKE [-f MAKEFILE] [OPTION ... ] [TARGET-GRAIN]

MAKEFILE Specifics the name of the file containing the construction dircctives, if no - option is used
then MAK 1 uses the file named MAKEF ILE in the working directory.

OPTION Specifics options like print but do not execute the command sequences or update the
modified date of the targets without executing any conmand sequences.

TARGET-GRAIN Spccifics the name of the target grain to be processed, if TARGET-GRAIN is not specified
then MAKE will process the first target grain named in the MakeFile,

MAKI begins by constructing a dependency graph from the selected MakeFile. Each node in the graph
corresponds to a grain mentioned in the MakeFile. The children of a node represent the grains that the grain
represented by the node depends on. A request 1o make a target grain is processed by doing a depth-first
walk of the graph starting with the node that corresponds to the target. At cach node visited, any grains that
arce missing or whose children have changed arc updated.

MAKIE compares the creation dates of a target grain and its ingredicent grains as an approximate mcans of
noting when changes occur. For instance if TARGET-1 depends on INGREDIENT -1 then MAKE will assume
that INGREDIENT-1 has changed if and only if its creation date is after the creation date of TARGET-1.,
Since UNIX allows file creation dates to be modificd by users, it is possible to fool MAKE by changing file
attributes. However, since most people do not change file attributes, the MAKE mechanism is reasonable.

Without information about how an ingredient has changed, MAKE cannot determine whether a change is
significant or not. Therefore, MAKE pessimistically assumes that every change to an ingredient grain will
effect the target grain, and it will always reconstruct a target when one of its ingredients has changed. Figure
2-3 contains the MAKE construction algorithm written in Lisp.

(DEFUN MAKE (NODE)
(DOLIST (CHILD (GET-CHILDREN NODE))
(MAKE CHILD))
(IF (OR (NON-EXISTENT-P NODE) (CHILDREN-CHANGED-P NODE))
(UPDATE NODE)))

(DEFUN CHILDREN-CHANGED-P (NODE)
(< (CREATION-DATE NODE)
(APPLY #'MAX
(MAPCAR #'GET-CREATION-DATE (GET-CHILDREN NODE)))))

Figure 2-3: MAKE Construction Algorithm
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An Extended Example -- LINT

The tint system [Johnson 78b] is presented as an cxtended exampie of using MAKIE. LINT examines C
source programs and detects bugs that most C compilers cannot. It is also sensitive to constructs that are legal
bul may not be portable.

LINT consists of a4 UNIX shell script driver. a set of LINT Library files, and two C programs. Before
programs arc processed by the first C program (i.c.. the first pass of LINT), they are processed by the C
pre-processor. which handles macro expansion and some compiler directives,

After being processed by the C pre-processor, programs arc sent (o the first pass of LINT. ‘This pass does
lexical analysis on the input text, constructs and maintains symbol tables, and builds trees for expressions. An
intermediate file that consists of lines of ASCH text is produced. Fach line contains an cxternal identifier
name. an encoding of the context in which it was seen (usc, definition, declaration, ctc.). a type specificr, and a
source file name and line number. ‘I'he information about variables local to a function or file is collected by
accessing the symbol tible, and examining the expression trees.  Comments about local problems are
produced as detected. ‘The information about external names is collected in the intermediate file.

1IN libraries arc collections of definitions of external names that are appended to the intermediate file
generated by the first pass of LINT. They are used to provide LINT with a set of definitions for commonly used
external names without processing the source that contains the definitions.  The most commonly used
librarics contain the definitions for the functions that arce supptied by the UNIX C run time environment.
Users can create their own libraries of commonly used names in order to alleviate repeated processing.

After all the source files and library descriptions have been collected. the intermediate file is sorted to
bring all information collected about a given external name together. ‘The second pass of LINT then reads the
lines from the intermediate file and comparcs all of the definitions. declarations. and uses for consistency.

IFigure 2-4 contains the MakeFile for 1INT. The primary point of this example is that MakeFiles, even for
medium sized systems like LINT. are difficult to understand. 'The BUILD description mechanism introduced in
chapter 3 provides a much simpler way to describe systems.

The first part of the LINT MakcFile contains macro definitions. These definitions are used to specify
directorics (c.g.. M), compilation flags (c.g.. CFLAGS), and to group files (c.g.. LINTLIBS). The target ALL is
used to name the major subsystems of the LINT. The next cluster of specifications manages the first pass of
LINT. There is an entry for cach library filc provided with LINT. Each of these specifics that a LINT library file
is dependent upon a library source file and the first pass of LINT. Librarics depend on the first pass of LINT
because they arc constructed by it. The targets that specify management for the second pass of LINT are
LPASS2 and LPASS2.0.

The LINTALL, INSTALL, SHRINK, and CLEAN targets are not grains at all, rather, thcy are used to
initiate installation and removal of LINT. A request to make any of these will always result in the associated
command scquence being exccuted because the corresponding files do not exist in the UNIX environment.
The use of non-cxisting grains to force command sequences to be executed is a popular and uscfu) feature of
MAKE. The functionality provided by these target grains is an example of how construction tools can be used
for more than just system construction.
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M=/USR/SRC/LIB/MIP
CFLAGS=-0 -DFLEXNAMES
LINTLIBS=LLIB-PORT.LN LLIB-LC.LN LL1B-LM.LN LLIB-LMP.LN LLIB-~LCURSES.LN

AlL: LPASS1 LPASS2 $(LINTLIBS)

LPASS1: CGRAM.O XDEFS.0 SCAN.O COMM1.0 PFIN.O TREES.O OPTIM.O LINT.O HASH.O
CC CGRAM.O XDLFS.0O SCAN.O COMM1.0 PFTN.Q TREES.O OPTIM.O LINT.O HASH.O0 -0 LPASS1

TRIES.0: $(M)/MANIIEST MACDEFS S(M)/MFILE1 $(M)/TREES.C
CC -C $(CFLAGS) -I1S(M) -1. $(M)/TREES.C
OPTIM.O: $(M)/MANITEST MACDIFS $(M)/MFILE1 $(M)/OPTIM.C
CC -C S(CFIAGS) -1S(M) -1. $(M)/OPTIM.C
PFTN.O: S$(M)/MANIFLST MACDEFS S(M)/MFILE1 S(M)/PFTN.C
CC -C $(CHLAGS) -1$(M) -1. S(M)/PFTN.C
LINT.O: $(M)/MANIFEST MACDLFS $(M)/MFILE1 LMANIFEST
CC -C S(CFLAGS) -1S(M) -1. LINT.C
SCAN.O: $(M)/MANIFEST MACDEFS S(M)/MFILE1 $(M)/SCAN.C
CC -C S$(CILAGS) ~1$(M) -1. S(M)/SCAN.C
XDEFS.0: $(M)/MANIFLST $(M)/MFILE1 MACDEFS $(M)/XDEFS.C
CC -C S(CHLAGS) -IS(M) -1. S(M)/XDEFS.C
COMM1.0: $(M)/MANIFEST $(M)/MFILE1 $(M)/COMMON MACDEFS S(M)/COMM1.C
CC -C S(CFLAGS) -1. -1S(M) $(M)/COMM1.C
CGRAM.O: S(M)/MANIFEST $(M)/MLILE1 MACDEFS CGRAM.C
CC -C S(CFLAGS) -IS(M) -I. CGRAM.C

CGRAM.C: $(M)/CGRAM.Y
YACC $(M)/CGRAM.Y
MV Y.TAB.C CGRAM.C

LLIB-PORT.LN: LLIB-PORT LPASS1

-(/LIB/CPP -C -DLINT LLIB-PORT | ./LPASS1 -PUV > LLIB-PORT.LN )
LLIB-LM.LN: LLIB-LM LPASS1

-(7LIB/CPP -C -OLINT LLIB- LM { ./LPASS1 -PUV > LLIB-IM.LN )
LLIB-LMP.LN: LLIB-LMP LPASS1 -

-(/LIB/CPP -C -DLINT LLIB-LMP | ./LPASS1 -PUV > LLIB-LMP.LN )
LLIB-LC.LN: LLIB-LC LPASS1

-(/7L1B/CPP -C -OLINT LLIB-LC | ./LPASS1 -V > LLIB-LC.LN )
LLIB-LCURSES.LN: LLIB-~LCURSES LPASS1

-{(/LIB/CPP -C -DLINT LLIB-LCURSES | ./LPASS1 -V > LLIB-LCURSES.LN )

LPASS2: LPASS2.0 HASH.O
CC LPASS2.0 HASH.0 -0 LPASS2

LPASS2.0: S$(M)/MANIFEST LMANIFEST
CC S(CFLAGS) -C -IS(M) -I. LPASS2.C

LINTALL:
LINT -HPV -1. -IS(M) $(M)/CGRAM.C $(M)/XDEFS.C $(M)/SCAN.C \
$(M)/PFTN.C S(M)/TREES.C $(M)/0PTIM.C LINY.C
INSTALL: ALL SHELL
INSTALL -S LPASS1 /USR/LIB/LINT/LINT1
INSTALL -S LPASS2 /USR/LIB/LINT/LINT2
FOR 1 IN LLIB-*; DO INSTALL -C -M 644 $SI /USR/LIB/LINT; DONE
INSTALL -C SHELL /USR/BIN/LINT
SHRINK:
RM -F *.0

CLEAN: SHRINK
RM -F LPASS1 LPASS2 CGRAM.C S(LINTLIBS)

Figure 2-4: MakcFile For LINT
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Deficiencies

Phrased in terms of construction. ‘The fundamental problem with MAKE is that it forces users to
manipulate hsts of construction directives. People do not normally think about systems in terms of the steps
used to construct them, and therefore these lists are difficult to understand. MAKE should present a more
natural user intertace and then work from the user supplicd information towards the construction information
that it requires.

MAKI- does not include an adequate means for saving and reusing common construction patterns.  The
introduction of such a facility would shorten Makcliles since common patterns would be replaced with single
identifiers. The definition of the identifier would document and highlight the intended construction pattern.
The functionality described in this paragraph is usually provided by a macro mechanism, however the MAKE
macro facility is too simple -- it does not ¢ven allow for parameterized macros.,

No underlying task descriptions. Systems that keep knowledge about construction separate from
knowledge about systems can be extended by adding to the construction knowledge without altering existing
system models.  Piunan [Pitman 84] discusses the importance of scparating knowledge about systems from
knowledge about construction tasks. MAK) docs not use task descriptions at all and cannot be extended
without changing existing MakeFiles.

Intermediate grains are referenced. Maintainers can only change systems by manipulating source grains or
requesting that goal grains be constructed. Maintainers do not manipulate intermediate grains and it would
be nice if these grains did not need to appear in MakceFiles.

All source grains need not be referenced. MAKE allows system descriptions to omit source ¢ ins that are
also goal grains since there is no command sequence that uscs or effects them. For example, there is nothing
that forces UNIX Shell Scripts to be included in MakeFiles. The absence of references to Shell Scripts would
be a serious omission if someone were using a MakceFile to determine which grains needed to be copied when
transporting a system.
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2.2 DEFSYSTEM

DEFSYSTEM [Weinreb and Moon 81] is a construction directive based tool that is used to install and
maintain Lisp Machine softwarc. ‘The DEISYSTIM analog to MAKE'S Makek-ile is called a system description
DEFSYSTEM system descriptions contain a mixture of system modeling information and construction
directives. DEFSYSTEM requires that command sequences (called transformations) be formally defined before
they arc used; this is different from the MAKE approach of allowing unlimited usc of UNIX command
scquences.

System descriptions arc made by DEFSYSTEM macro. Calls to DEFSYSTEM have the form:

(DEFSYSTEM SYSTEM-NAME
( KEYWORD ARGS ...)
(KEYWORD ARGS ...)
ver)

The options sclected by the keywords fall into two general categorics:  propertics of the system and
transformations.
There arc three main DEISYSTEM property keywords:

:NAME Spccifics a "pretty” version of SYSTEM-NAME for usc in printing.

:PATHNAME-DEFAULT
Specifics a local default within the definition of the system for strings to be parsed into
pathnames.

:MODULE Assigns a name to a group of files within the system.

A transformation is an opcration, such as compiling or loading, that takes onc or more files and performs
some opcration on them. There are two types of DEFSYSTIM transformations: simple and complex. A simple
transformation is a single operation on a module, such as compiling it or loading it. A complex
transformation combines several transformations; for example, compiling and then loading the results of the
compilation.

The general format of a sirnple transformation is:

(NAME INPUT PRE-CONDITIONS)

NAME The name of the transformation to be performed on the files specified by INPUT.
Examples of transformation names arc : FASLOAD and :COMPILE-LOAD-INIT (these
transformations are described below).

INPUT A module or nested transformation.

PRE-CONDITIONS
Optional. Specifics transformations that must occur before the current transformation
itself can take place. ‘The format is cither a list (NAME MODULE-NAMES ... ), oralist of
such lists. Each of thesc lists declarcs that the transformation NAME must be performed on
the named modules before the current transformation can take place. (The Lisp Machine
documentation calls pre-conditions dependencies.)
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1he following simple transformations arc pre-defined:

: FASLOAD l.oads the indicated file when a newer version of the file exists than was read into the
current environment.

:COMPILE Compiles the indicated file when the source file has been been updated since the compiled
code file was written.

Unlike simple transformations, complex transformations do not have any standard form. ‘I'hc pre-defined
complex transformations are:

:COMPILE-LOAD
Compiles and then loads the input files. It has the form:
(:COMPILE-LQAD INPUT COMPILE-CONDITIONS LOAD-CONDITIONS)

and is exactly the same as
(:FASLOAD (:COMPILE INPUT COMPILE-CONDITIONS) LOAD-CONDITIONS)

:COMPILE-LOAD-INIT
Compiles and loads the input files. This transformation is sensitive to changes made to an additional
dependency list. It has the form:
{(:COMPILE-LOAD-INIT INPUT ADDITIONAL-DEPENDENCIES
COMPILE-PRE-CONDITIONS LOAD-PRE-CONDITIONS)

INPUT will be compiled and loaded whenever its source file or any of the modules listed in
ADDITIONAL-DEPENDENCIES are updated. Note, thc ADDITIONAL-DEPENDENCIES ficld of this
transformation specifics the same kind of construction dependency as MakeFile entries do.

It is important to distinguish between transformation declarations and transformation references.
Transformations are declared by keyword lists in calls to DEFSYSTEM. Transformations are referenced in
pre-condition lists. The transformations referenced in a pre-condition list must be declared somewhere in the
system description.

DEFSYSTEM contains a facility for defining new transformations. New simple transformations are defined
using the DEF INE-SIMPLE~TRANSFORMAT ION macro. Calls have the form:

(DEFINE-SIMPLE-TRANSFORMATION NAME FUNCTION DEFAULT-CONDITION
INPUT-FILE-TYPES OUTPUT-FILE-TYPES)

NAME The name of the transformation being defined.
FUNCTION A function to be called when the transformation is performed.

DEFAULT-CONDITION
The function that is called in order to determine if the transformation should be
performed.

INPUT-FILE-TYPES
Specifics the types of the input files to the transformation. Lisp Machine file type
specifications are filcname extensions (e.g., "lisp” or "bin").

OUTPUT-FILE-TYPES
Specifics the types of the output files produced by the transformation.

For example, to define a simple transformation called : LISP-YACC that calls LISP-YACC to derive parsers
written in Lisp from BNF grammars, the following definition could be made. (IF a utility like YACC were
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desired on the Lisp Machine it would probably be implemented with a macro and not a scparatc parser
generating tool.)

(DEFINE-SIMPLE-TRANSFORMATION :LISP-YACC #'LISP-YACC
#' FILE-NEWER-THAN-FILE-P (:GRAMMAR) (:LISP))

LISP-YACC will be invoked whenever the input file (i.c., the grammar) is newer than the output file (i.c., the
parscr). In other words, the transformation will be performed whenever the source file is updated. Notice
that this transformation relics on grain creation dates in exactly the same way that MAK L docs.

Complex transformations arc defined as l.isp macros. Here is the definition of the : COMPILE-LOAD
transformation that was described carlicr:

(DEFMACRO ( :COMPILE-LOAD DEFSYSTEM-MACRO)
(INPUT &OPTIONAL COMPILE-PRE-CONDITIONS LOAD-PRE-CONDITIONS)
*(:FASLOAD (:COMPILE ,INPUT ,COMPILE-PRE-CONDITIONS)
,LOAD-PRE-CONDITIONS))

A Small Example -- TINYCOMP
Figure 2-5 contains the DEISYSTEM description for a Lisp implementation of TINYCOMP.

(DEFSYSTEM TINYCOMP

:MODULE DEFS "DEFINITIONS")
:MODULE PARSER "PARSER")

:MODULE CODE-GENERATOR "CODEGEN")
:MODULE LIBRARY "LIBRARY")

:FASLOAD DEFS)

:FASLOAD LIBRARY)

:COMPILE-LOAD-INIT CODE-GENERATOR (DEFS) (:FASLOAD DEFS))
:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFS) (:FASLOAD DEFS)))

P e L Y )

Figure 2-5: DEFSYSTEM Description For TINYCOMP

The TINYCOMP description contains a sct of module definitions followed by a series of transformations.
The transformations in the description have the foliowing interpretation:

(:FASLOAD DEFS)
Specifics that DEF S should be loaded whenever it is updated. There are no pre-conditions to be satisfied
before the loading can take place.

( : FASLOAD LIBRARY)
Spccifies that LIBRARY should be loaded whenever it is updated. Therc are no pre-conditions to be
satisficd before the loading can take place,

(:COMPILE-LOAD-INIT CODE-GENERATOR (DEFS) (:FASLOAD DEFS))
Spccifies that CODE -GENERATOR should be be compiled and loaded whenever it or DEF S changes. Before
the compilation can take place, DEFS must be loaded.

(:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFS) (:FASLOAD DEFS))
Specifics that a parser derived from PARSER is to be compiled and loaded. A new parser is produced
whenever PARSER changes. ‘The compiler and loadcer are invoked whenever DEFS or the derived parser
changes. :LISP-YACC will not be invoked if only DEFS changes. Prior to compilation, DEFS must be
loaded.

................
......
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.,;1'1 The Construction Process
1 Systems previously modeled with DEFSYSTEM are constructed by calling MAKE-SYSTEM. Calls have the
X form:
';? (MAKE-SYSTEM SYSTEM-NAME &REST OPTIONS)
9%,
g SYSTEM-NAME Spccifics a system previously modeled with DEFSYSTEM.
!'|
s OPTIONS Spccifics options likc print the transformations that would be done but don’t do them and so
. forth.
L]
W™ The construction dependency graph specified by the transformations and pre-conditions in the
‘o DEFSYSTEM description of SYSTEM-NAME is analyzed in order to determine what construction needs to be
3 done. Each transformation is applied by first applying any transformations referenced as pre-conditions, and
™ then updating the input modulc if it, or any modules listed in additional dependency lists, have been changed.
. Notice that the transformation applications arc ordered by the pre-condition lists.
2, l.ike MAKE, DEISYSTEM uses simple functions based on file creation dates in order to determine when a
S module should be reconstructed.  However, unlike MAKE, DEFSYSTEM allows the optional specification of
i predicates that control when construction is done. The new predicates can replace the simple ones that are
o supplicd with DEFSYSTIM,
’ DEISYSTEM includes a patching facility. [t aHows small changes to be made to a system without invoking
the DEFSYSTEM transformation/dependency mechanism.  Each set of changes is stored in a patch file that
typically contains new function definitions or redefinitions of old functions. Each patch is assigned a number.
k N ! If a system contains patches, then the patches are loaded, in order, after the unpatched version of the system is
b loaded.
-
i An Extended Example -- LINT
.‘: ‘The DEFSYSTEM description for a Lisp implementation of LINT is presented in figure 2-6. Although the
b DEFSYSTEM description is casicr to understand than the corresponding MakcFile (figure 2-4), it is still difficult
{ '-:‘ to understand.

The ;:BUILD-LINT-LIBRARY transformation is assumed to have been defined and has the form:
: (:BUILD-LINT-LIBRARY INPUT PRE-CONDITIONS)

w
»

It constructs LINT library files from LINT library sources. The transformation allows the optional specification
of pre-conditions, and is applicd if cither INPUT, or the first pass of LINT is updated.

The first keyword form in the LINT DEFSYSTEM description specifies a system-wide default directory. The
next block of keyword forms declare the various modules which comprise LINT. The final block of forms
‘M declare the transformations used to construct LINT, Notice that as transformations arc nested and pre-
" conditions are added, the transformation declarations become increasingly difficult to understand.

e 0 e cadks

Deficiencies

Phrased in terms of construction. Likc MAKE, DEFSYSTTM is a construction dircctive based tool. This is
the primary rcason that DFESYSTEM descriptions, although casicr to understand than MakeFiles, are still
awkward,

One recason that DEISYSTIM descriptions are casicr to understand than MakeFiles is because DEISYSTT™M
is not purely construction dircctive bascd. DEFSYSTEM's : MODULE dceclarations allow for the logical grouping
of grains into higher level modules. ‘This grouping abstracts away from low level construction information,
and provides a more natural way for users to describe systems than MAKE doces.

DEFSYSTEM supports the sharing of common construction patterns through the dcclaration of




r -w- T
[IRIERP S g g
> Il

-
A
»

e
s K

]
Ry Aytg=ty Ay
PR

[T %
.jnv

(DEFSYSTEM LINT

: PATHNAME -DEFAULT "/USR/SRC/LIB/MIP")

:MODULE DEFINITIONS-1 ("MACDEFS" "MANIFEST" "MFILE1" "LMANIFEST"))

:MODULE DEFINITIONS-2 ("MANIFEST" "LMANIFEST"))

:MODULE PARSER "CGRAM")

:MODULE PASS1 ("XDEFS" "SCAN" "COMM1" "PFTN" "TREES" "OPTIM"
"LINT" "HASH"))

:MODULE PASS2 ("LPASS2" "HASH"))

:MODULE DRIVER "SHELL")

:MODULE LIBRARIES ("LLIB-PORT" "LLIB-LC" "LLIB-LM" "LLIB-LMP"

"LLIB-LCURSES"))

P e~ o~ p—

o~~~

:FASLOAD DEFINITIONS-1)
:FASLOAD DEFINITIONS-2)
:COMPILE-LOAD DRIVER)
:COMPILE-LOAD-INIT PASS1 (DEFINITIONS-1) (:FASLOAD DEFINITIONS-1))
:COMPILE-LOAD-INIT PASS2 (DEFINITIONS-2) (:FASLOAD DEFINITIONS-2))
:COMPILE-LOAD-INIT (:LISP-YACC PARSER) (DEFINITIONS-1)
(: FASLOAD DEFINITIONS-1))
(:BUILD-LINT-LIBRARY LIBRARIES (:FASLOAD DRIVER PARSER PASS1)))

Figure 2-6: DEFSYSTEM Description For LINT

transformations. This makes DEFSYSTEM system descriptions casicr to produce and understand than
MakcFiles. However, since it is possible to avoid the declaration of a complex transformation by using nested
transformations, DEFFSYSTEM still allows for common patterns to be repeated instcad of shared.

No underlying task descriptions. Although DEFSYSTEM has embedded knowledge about Lisp compilation
and loading it does not include a mcchanism -for describing construction tasks and thercfore cannot be
extended without great difficulty.

Intermediate grains are referenced. DEFSYSTEM does not differentiate between source, intermediate, and
goal grains. In gencral, intermediate grains are hidden by complex transformations. For example, there are
no references to intermediate grains in figures 2-5 and 2-6. While DEFSYSTEM docs not force intermediate
grains to be included, it does not prohibit them either.

All source grains need not be referenced. In a Lisp environment, nothing can be used before it is loaded.
This means that any grain that participates in a Lisp system will be involved in some construction, and
therefore, it is not as natural to omit a source grain from a DEFSYSTEM description as it is to omit one from a
MakcFile. This difference between MAKE and DEFSYSTEM comes from differences between the UNIX and
Lisp environments, and not from important differences between the two tools.

2.3 Other Tools

DeRemer and Kron introduced the terms programming-in-the-large and programming-in-the-small
[PeRemer and Kron 76] to distinguish between the writing of modules and the structuring of modules into
systems. Consistent construction is just one programming-in-the-large issuc, others include source code
management, module interconnection specification. and version control. A brief summary of these other
issucs and projects that focus upon them is presented here for completencss.  ‘T'he consistent construction
components of these projects do not differ from MAKE or DEISYSTI'M in any significant way.

When scveral people are working on a system simultancously, it is important to regulate access to the
source code modules in order to ensure that somcone does not atiempt to modify a module while someone
clsc is modifying that samc module. A common schemce is to implement a librarian that regulates access to
system components via a check-in/check-out mechanism. In short, only one person is allowed to check-out a
module for update at anv tin. . Anyone can rcad a module at anv time. Source code management systems
aiv desenhed mhe foilowing papes fRociked o0 o, ol e S0 Locdos and L radh 29200 ewis 83}
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Y All of the problems mentioned above are compounded if the programming environment is distributed

o over a network. Schmidt addresses these issucs [Schmidt §2).

| It is often the case that there arce families of systems being managed. For example there may be several
public releases of a system, internal relcases, experimental versions and so on. It is also common for there to
R be several versions of a system intended 0 run on different hardware configurations.  Each member of a
O family of software systems usually shares many components with other members of the family. Maintainers
o of such familics need to worry about which versions of which modules arc used in cach member of the family.
" Tichy and Cooprider attacked the problems associated with the representation and management of software
v familics [Cooprider 79, Tichy 80, Tichy 84].
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3. The BUILD Reference Level

This chapter introduces BUILD's reference based system modcling scheme.  BUILD system models are very
casy to interpret because they contain nothing more than declarations of how grains are grouped to form
modules and how these modules refer to cach other.  Although they do not present any construction
dependencics explicitly, they can be used to derive all of the construction information found in construction
based models (see Chapter 5). Construction models cannot be used to derive the reference information found
in reference models. Reference modcls are far less confusing than the construction based modcls because
they are written in a language that replaces low level grain construction information with higher level inter-
modulc reference patterns.

3.1 Modules

It is often the casc that groups of grains are conccived as onc logical entity but arc split up (c.g. into files)
for other rcasons. Modeling schemes that represent systems only at the level of the individual grain do not
have the ability to express this kind of grouping. Thc module construct uscd by BUILD (and DEFSYSTEM)
‘allows these groupings to be made explicitly in system descriptions.

BUIL.D module declarations have the form:

( :MODULE MODULE-NAME GRAIN-TYPE &REST GRAINS)

MODULE-NAME The name of amodule. The name must be unique within the system model.

GRAIN-TYPE  The name of a grain type recognized by BUILD. Each grain is assumed to be an instance of
this type.

GRAINS The names of the grains that comprisc the module.

The following form declares that MAIN is a Lisp source module composed of the single grain MAIN . LISP,
( :MODULE MAIN :LISP-SOURCE "MAIN.LISP")
and the form: '
( :MODULE DEFS :C-SOURCE "DEFINITIONS-1.C" "DEFINITIONS-2.C")
declares that DEFS is a C source module with two grains namcd DEFINITIONS-1.C and
DEFINITIONS-2.C.

BUILD can use grain type information without considering module references to determine a great deal
about the construction of grains. For instance, BUILD knows how to invoke the correct compiler on C or Lisp
source files or how to construct LINT library files from library sources by utilizing grain type information
alone.

3.2 References

BUILD infers construction dependencies from reference assertions by taking advantage of the fact that
construction dependencices are caused by references between modules.  [f two modules do not refer to cach
other, then it is impossible for there to be a construction dependency that involves them. When the assertion
is made that module, refers to module , BUILD pessimistically assumes that each grain in module, refers to cach
grain in module

References with the same name may be handled differently depending upon the grain types of the
modules involved in the reference. For instance, the calls refirence between two Lisp source modules is
handled differently than the calls reference between two C source modulcs.
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B D reference declarations provide for the specification of references between modules. No meaning is
attached o the ordering of reference declarations. Reference declarations have the form:

(REFERENCE LEFT-ELEMENT RIGHT-ELEMENT)

REFERENCE The name of a reference recognized by BUILD.

LEFT-ELEMENT A module name or list of module names.  All module names used in a reference
declaration must have been declared in a module declaration.

RIGHT-ELEMENT
A module name or list of module names.  All module names used in a reference

declaration must have been declared in a module declaration.

The use of module name lists as cither of the clements of a reference declaration is syntactic sugar that is
cquivalent to the set of reference declarations composed by cnumerating REFERENCE -NAME with cach pair
in the cross product of the right and Icft clement lists. For example:

(:CALLS (A B) (D E))
is equivalent to:

(:CALLS A D)

(:CALLS A E)

(:CALLS B D)

(:CALLS B E)

Here are some reference triples and the construction dependencies that they imply:

(:CALLS LISP-SOURCE-1 LISP-SOURCE-2)
Asserts that LISP-SOURCE-1 contains functions that call LISP-SOURCE-2 and implies that
LISP-SOURCE -2 will nced to be loaded in order for LISP-SOURCE -1 to cxecute.

( :MACRO-CALLS LISP-SOURCE-1 LISP-SOURCE-2)
Asserts that LISP-SOURCE -1 uses macros defined in LISP-SOURCE -2 and therefore LISP-SOURCE -2
must be loaded in order for LISP-SOURCE~1 to compile properly. This reference implies that if
LISP~-SOURCE -2 changes, then LISP-SOURCE -1 will need to be re-compiled.

(:CALLS C-SOURCE-1 C-SOURCE-2)
Implics that the object grains compiled from C~SOURCE-2 (as well as the objcct grains from any module
that C-SOURCE -2 calls) need to be linked into any executable image that is to include the object grains
from C~SOURCE-1.

(: INCLUDES C-SOURCE-1 C-SOURCE-2)
Asserts that C-SOURCE -1 contains the contents of C-SOURCE-2. This reference implics that whenever
the included module, C-SOURCE -2, changes, the including module, C~SOURCE -1, needs to be rebuilt.

BUH D uses triples (called reference signatures) of the form
CREFERENCE-NAME LEFT-GRAIN-TYPE-NAME RIGHT-GRAIN-TYPE-NAME>

to identify references. BUILD uses grain type information to distinguish between references that have the
samc name but apply to different grain types. A given implementation of BUILD will define the reference
signatures that are commonly used in the environment that BUN D is working with. Chapter 5 describes how
new reference signatures may be added to BUILD.
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) 3.3 Models
W The general form of a BULLD system description is:
. (DEFMODEL MODEL-NAME &REST DECLARATIONS)
i There are four kinds of declarations that may be included in a DEFMODEL form: module, reference,
b default pathname, and default module. Module and reference declarations were described carlier in this
K chapter. The default pathname declaration allows for the declaration of a pathname to be used as a template
& for completing filenames, [t has the form:
3 (:DEFAULT-PATHNAME PATHNAME)
,:: The default module declaration is used to declare a module as the default module for BUIND to operate on
o when construction requests for the system are made. [t has the form:
? ( :DEFAULT-MODULE MODULE-NAME)
“ Figure 3-1 contains thc DEFMODEL form for TINYCOMP. 'The first four declarations arc module
& declarations that specify the grains and grain types of the system modules. ‘T'he last three declarations specify
i the references between the modules in the system. Figure 3-2 contains the DEFMODEL form for LINT. ‘The
b moadel is longer than the TINYCOMP model but no more complicated.
* (DEFMODEL TINYCOMP
n ( :MODULE DEFS :C-SOURCE "DEFINITIONS")
\ ( :MODULE PARSER :YACC-GRAMMAR "PARSER") '
1 ( :MODULE CODE-GENERATOR :C-SOURCE "CODEGEN")
4 ( :MODULE LIBRARY :C-OBJECT "LIBRARY")
]
! (: INCLUDES (PARSER CODE-GENERATOR) DEFS)
(:CALLS PARSER (LIBRARY CODE-GENERATOR))
! (:CALLS CODE-GENERATOR LIBRARY))
: Figure 3-1: BUILD Model For TINYCOMP
v (DEFMODEL LINT N

( :DEFAULT-PATHNAME "/USR/SRC/LIB/MIP")
. ( :MODULE DEFINITIONS-1 :C-SOURCE
N "MACDEFS" "MANIFEST" "MFILE1" "LMANIFEST")

4 (:MODULE DEFINITIONS-2 :C-SOURCE "MANIFEST" "LMANIFEST")
oy ( :MODULE PARSER :GRAMMAR "CGRAM")
N ( :MODULE PASS-1 :C-SOURCE "LINT")
( :MODULE PASS-2 :C-SOURCE "LPASS2")
( :MODULE SUPPORT-1 :C-SOURCE
jf "XDEFS" "SCAN" "COMM1" "PFTN" "TREES" "OPTIM" "HASH")
i ( :MODULE SUPPORT-2 :C-SOURCE "HASH")
W (:MODULE DRIVER :SHELL-SCRIPT "SHELL")
W) ( :MODULE LIBRARIES :LINT-LIBRARY-SOURCE
1%

"LLIB-PORT" "LLIB-LC" "LLIB-LM" "LLIB-LMP" "LLIB-LCURSES")

(: INCLUDES PASS-1 DEFINITIONS-1) ‘
3 (: INCLUDES PASS-2 DEFINITIONS-2) !
A (:CALLS DRIVER (PASS-1 PASS-2 LIBRARIES)) )
; (:CALLS PASS-1 (PARSER SUPPORT-1))

(:CALLS PASS-2 SUPPORT-2))

Figure 3-2: BUI D Description For LINT ,
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§Z 4. The BUILD Task Level
N ‘This chapter describes the task level representation of systems used by BUHD. A task level model is
MK derived from the reference tevel model for cach request that BUILD receives. The derived model is then used
¥ to handle the request. (The phrase sk level is used in place of the more specific phrase construction level
:»-3* because BUILD is used for more than just construction,)
' BUILD task level modcels are acyclic directed graphs with two kinds of nodes: g-nodes which represent
i grains, and p-nodes which represent the processes used to construct grains.  L.eaf nodes represent source
- grains, and root nodes represcnt goal grains. ‘T'he link between grains and the processes that use them is
‘:-.:.; mudcled by linking the g-nodes representing grains to the p-nodes representing the processes that use them.
‘_-:-:: tigure 4-1 contains a portion of the task graph used o represent the compilation of PARSER.LISP, a
-':;;-. grain from a Lisp implementation of TINYCOMP. This cxample assumcs that PARSER. LISP is a source grain
A and ignores the fact that in TINYCOMP, PARSER. LISP is an intermediate module produced by LISP-YACC.
The cllipses represent g-nodes and the rectangles represent p-nodes.  ‘There are two source nodes,
e PARSER.LISP and DEFS.LISP, and a singlc goal node, PARSER. IMAGE.
ﬁ.: Although the use of an acvclic directed graph to represent task processing is not unique (MAKI: and
i DEFSYSTEM use similar representations) the derivation of task graphs from reference models is novel,
ot
2
L oA G e e
f - COMPILE LOAD
Y
1
L
P PARSER . LISP COMPILE LOAD
,{.\:
A
1o
cony
“¢w 3 .
- Figure 4-1: Simple Task Graph
[ X i'c
L 4.1 Grain types
"-:I Grain type objects arc used to represent the classes of grains used by the environment that BUILD is
.n)_.}; working with. They are used to represent all of the kinds of grains that are manipulated by the underlying
. environment, whether they are files or not. For instance, the grain type : LISP-IMAGE is used to represent
R the objects that result from loading files into the Lisp environment.
s
L Defining Grain Types
“t Grain types arc defined with DEF INE-GRAIN-TYPE and dcfinitions have the form:
v (DEFINE-GRAIN-TYPE NAME ZOPTIONAL FILENAME-EXTENSION)
X
N NAME ‘T'he name of the grain type being defined. |
- ‘
%"{ FILENAME-EXTENSION
= The default filcname coxtension for grains of this type. If this ficld is null then BUILD |
vy, assumes that grains of this type are not filcs. ‘
e ]
258 |
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Figure 4-2 contains the grain type definitions used to model Lisp systems. ‘Ihe :LISP-SOURCE and
:LISP-BINARY grain types correspond Lo files and hence their definitions include default filename
extensions (the Lisp Machine uses keyword symbols to represent filename extensions). The : LISP-IMAGE
grain type is not associated with files and therefore has no default filename extension.

(DEFINE-GRAIN-TYPE :LISP-SOURCE :LISP)
(DEFINE-GRAIN-TYPE :LISP-BINARY :BIN)
(DEFINE-GRAIN-TYPE :LISP-IMAGE)

Figure 4-2: Grain Type Definitions for Lisp

4.2 G-nodes
G-nodes represent grains in task graphs, they contain the following information:
NAME The name of the grain represented by this g-node.
TYPE The grain type object that the grain represented by this g-node is an instance of.
MODULE Optional. ‘The module that includes the grain represented by this g-node.
CREATOR Optional. ‘The p-node that represents the process that created this g-node. This ficld will

be null if the g-nodc represents a source grain.
USERS A list of p-nodes that depend on this g-node to fill an input role.

INGREDIENTS A list that represents the source grains used to produce this g-node. Each element of the
list is a pair containing the name and crcation-date of an ingredicnt grain.

CREATE-DATE A time stamp that represents the time and date when the grain that is represented by this
g-node was created.

4.3 Process Types

Process type objects contain the information pertaining to classes of process instances (represented by
p-nodes). For examplc, the Lisp Machine implementation of BUILD includes process type objects for Lisp
compilation and L.isp binary file loading.

The grains that are used and produced by processes are partitioned according to the roles that they play in
them. Grains that processes use are said to play input roles. Grains that arc produced by processes are said to
play output roles.

Process type objects contain role descriptions for each of their input and output roles. Role descriptions
contain the following information:

NAME The name of the role. It must be unique within the process type being defined.

GRAIN-TYPE  'T'he grain type name that grains filling this rolc must have.

ARITY Either : SINGLE or :MULTIPLE. A role with arity : SINGLE can have no more than one
grain filling it. A role with arity :MULTIPLE can have an arbitrary number of grains
filling it.

NAME -SOURCE  Optional. "The name of a role used to help derive names for grains that wilt fill this role.

--------
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Defining Process Types
Process types are defined with DEFINE-PROCESS-TYPE and calls have the form:

(DEFINE-PROCESS-TYPE NAME INPUT-SPEC OUTPUT-SPEC STREAM-VAR
DESCRIBE-FORM &REST CONSTRUCT-FORMS)

NAME ‘The name of the process type.
INPUT-SPEC A list of input role descriptions (discussed above).
OUTPUT-SPEC A list of output role descriptions.

STREAM-VAR A variablc name that will be bound to the output strcam when DESCRIBE-FCRM and
CONSTRUCT-FORMS arc cvaluated.

DESCRIBE-FORM
A form to be evaluated in order to describe the processing represented by an instance of
this process type. When the form is evaluated. cach role-name will be bound to the names
of the grains playing the role. Also, the symbol named by STREAM-VAR will be bound to
the output stream,

CONSTRUCT-FORMS
The forms to be cvaluated in order to accomplish the processing represented by an instance
of the process type.  When these forms are cvaluated cach of the role-names and the
symbol named by STREAM~VAR will be bound as mentioncd above.

Figure 4-3 contains the process type definitions for Lisp compilation and Lisp binary loading. The
definition for : LISP-COMPILE spccifics that there are two input roles, SOURCE and DEFINITIONS, and a
A single output role, BINARY. SOURCE has singular arity and must be filled by a : LISP-SOURCE grain.
o DEFINITIONS has multiple arity and can only be filled by :LISP-IMAGE grains. BINARY has singular
~ arity and must be filled by a : LISP-BINARY grain. The describe form produces descriptions like:

"COMPILE PARSER.LISP"

The construct forms produce the grain playing the BINARY role by compiling the grain playing the SOURCE
role. The construct forms also cause a notification of the compilation to be scnt to the output stream. The
notification looks like:

"COMPILING PARSER.LISP.5"

Processes often depend on grains not explicitly mentioned in their invocations. For example, in languages
that rcly on objects to be specified or loaded before objects that refer to them can be compiled, the
compilation process type must include a role that is used to capturc that dependency. The role
DEFINITIONS is used in :LISP-COMPILE in order to express the need for some things to be defined
before a Lisp grain can be compiled. ‘The link between the g-node for DEFS. IMAGE and the p-node
representing the compilation of PARSER., LISP in the task model from figure 4-1 is an example of such a
dependency being modceled.  Another situation in which it is necessary to model a dependency not made
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,::j:j: explicitly in command linc invocation is for C compilation. The :C-COMPILE process type has the role
':;-::: INCLUDE to represent the dependency between a file and the files that it includes via the C #INCLUDE
o mcchanism.
Ty
23
SRS "‘:;':;q_.:"_ﬂt;_jr:'.-_:.- (3 : ............................

! G NG

A Fu W



K ¥ - g v - ! ol " k4 3 - - Y o B B Aait W"T"‘T"‘»-"-'"-""
93
i L]
LK
g
'\_‘}‘:
;S (DEFINE-PROCESS-TYPE :LISP-COMPILE
el ( (SOURCE :LISP-SOURCE :SINGLE) +SOURCE INPUT ROLE
. (DEFINITIONS :LISP-IMAGE :MULTIPLE)) :DEFINITIONS INPUT ROLE
(- ((BINARY :LISP-BINARY :SINGLE SOURCE)) :BINARY OUTPUT ROLE
b OUTPUT-STREAM : STREAM-VAR
. (FORMAT OUTPUT-STREAM "~7COMPILE ~A" ;DESCRIBE-FORM
'?: (PATHNAME -MINUS-VERSION SOURCE))
[\ (FORMAT OUTPUT-STREAM "~/COMPILING ~A" SOURCE) ;CONSTRUCT-FORMS
. (COMPILER:COMPILE-FILE SOURCE BINARY))
i; (DEFINE-PROCESS~-TYPE :LISP-LOAD-BIN
o { (BINARY :LISP-BINARY :SINGLE) ;BINARY INPUT ROLE
i: (DEFINITIONS :LISP-IMAGE :MULTIPLE)) ;DEFINITIONS INPUT ROLE
W ((IMAGE :LISP-IMAGE :SINGLE BINARY)) : IMAGE OUTPUT ROLE
OUTPUT-STREAM : STREAM-VAR
(FORMAT OUTPUT-STREAM "~%LOAD ~A" +DESCRIBE-FORM
y (PATHNAME -MINUS-VERSION BINARY))
.tj (FORMAT OUTPUT-STREAM "~%LOADING ~A" BINARY) :CONSTRUCT-FORMS
) (SI:LOAD-BINARY-FILE BINARY NIL T))
K-
e Figure 4-3: Process Vype Definitions For isp
5 4.4 P-Nodes
J Each p-node represents a process to be invoked on the grains attached to its input ports to produce the
~a grains attached to its output ports. Each role in a process type is represented as a port in p-nodes of that type.
' The grain type of cach g-node attached to a port must be the same as the grain type associated with the role.
A description of the processing represented by a p-node and the g-nodcs attached to its ports can be produced
:-'j by applying DESCRIBE-FORM from the p-nodc's process type object to the p-node. The processing
‘ ;l‘_- represented by the p-node can be done by applying CONSTRUCT-FORMS from the p-node’s process type
S object to the p-node.
o Figure 4-4 contains an expanded view of the p-node used to represent the compilation of PARSER., LISP
in TINYCOMP.
R
‘1{
\-..:
: DEFINITION

!

:LISP-COMPILE BINARY PARSER.BIN

AT

PARSER.LISP SOURCE

Y

-’l'.ll'l
s

g

\-'- “w ~

o Figure 4-4: Expanded P-Nodc
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4.5 Task Graph Constraints

"T'ask graphs are constrained in the folowing ways:

p 1. Task graphs arc acyclic. A cycle in a graph would imply that some grain was needed in order to
! construct itself.

2. The parent of a g-node, if there is onc, must be a p-node.
3. A g-node can have no more than one parent.

4. A g-node without a parcent represents a source grain.

%l Y

i 5. 'The children of a g-node, if there are any, must be p-nodes. These nodes represent processes that
o depend upon the grain represented by the g-node.

6. A g-node without children represents a goal grain.

S oo

j 7. The children of a p-node must be g-nodes. ‘These g-nodes represent grains derived by the process
; represented by the p-node. Each p-node must have at icast one child.

E In other words, task graphs are acyclic graphs which begin with g-nodcs that represent source grains and end
b with g-nodcs that represent goal grains. ‘The g-nodes are scparated by p-nodes that represent the processes
that derive later g-nodes from carlicr ones.

y Figures 1-2, 2-1, and 4-1 arc cxamples of well formed task graphs.

4.6 The Construction Algorithm

Figure 4-5 contains the algorithm used by BUILD to perform the construction modeled by a task graph.
This algorithm is similar to the one used by MAKE and DEFSYSTEM (figure 2-3), the primary difference
between the two algorithms is in how they make use of creation dates to determine when construction is
‘ necessary. The MAKE algorithm uscs file creation date ordering between input and output grains in order to
infer that an input has changed (and thercfore construction is triggered). In practice this method works,
however, it relies on scveral assumptions that are not necessarily true.

MAKE and DEFSYSTEM assume that files with the same name but different extensions are related. For
instance, they assumc that MAIN.O was crcatcd by compiling MAIN.C. While this is a reasonable
assumption, it docs not have to be true. Nothing prevents users from renaming files and therefore, there is no
guarantec that MAIN . O actually came from MAIN.C.

If an output grain contains a file creation date that is newer than all of the input grains used to produce it,
. then MAKE and DEFSYSTEM assume that the output grain does not need to be rebuilt. However, there is no

guarantec that file creation dates have not been tampered with.
b BUI D does not use file creation date ordering to infer that an object has changed. BUILD compares a
grain’s ingredient list with the ingredient list that would result if the processing modeled by the task graph
were done. If the ingredicent lists match, then the construction is not done.

‘The prototype implementation of BUILD keeps a separate data file that contains grain creation dates and
ingredicents. Such a file would not be nceded if the underlying environment recorded the ingredients used to
producce an object. ‘The Mesa environment [Mitchell 79, Schmidt 82] keeps this information and cxploits it in
order to determine when processing needs to be done.
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(DEFUN CONSTRUCT-G-NODE (G-NODE)
(COND ((SOURCE-NODE-P G-NODE) T)
((OR (NON-EXISTENT G-NODE) (INGREDIENTS-CHANGED G-NODE))

P et 2t o of

* el

Y (MAPCAR #'CONSTRUCT-G-NODE (INPUTS (PARENT G-NODE)))
{1 (DO-CONSTRUCTION (PARENT G-NODE)))))

? (DEFUN INGREDIENTS-CHANGED (G-NODE)

E (NOT (EQUAL (INGREDIENTS G-NODE)

(DERIVE-INGREDIENTS G-NODE))))

T (DEFUN SOURCE-NODE-P (G-NODE)
a :: RETURNS T IF AND ONLY IF G-NODE
:; REPRESENTS A SOURCE GRAIN

(DEFUN NON-EXISTENT (G-NODE)
o RETURNS T IF THE GRAIN REPRESENTED BY G-NODE
Dy :: DOES NOT EXIST
20 )
o (DEFUN PARENT (G-NODE)
_ ;; RETURN THE PARENT P-NODE OF G-NODE
-
.\\
o (DEFUN INPUTS (P-NODE)
o3 :; RETURN THE INPUT G-NODES OF P-NODE
¥/ )
o5 (DEFUN DO-CONSTRUCTION (P-NODE)
%& ;: PERFORM CONSTRUCTION REPRESENTED BY P-NODE
I )

(DEFUN INGREDIENTS (G-NODE)
;s RETURN THE INGREDIENT LIST USED TO CONSTRUCT
i3 THE EXISTING VERSION OF G-NODE

)

(DEFUN DERIVE-INGREDIENTS (G-NODE)
;s RETURN THE INGREDIENT LIST THAT WOULD RESULT IF
;; A NEW VERSION OF G-NODE WERE CONSTRUCTED

)
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Figure 4-5: BUILD Construction Algorithm
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s 5. Construction Requests and 'I'ask Graph Derivation
5
After a system has been modeled with DEFMODEL, UL D can he called upon to handle construction
o~ requests for it. Each request has the form:
o
:.-'~; (BUILD-REQUEST MODEL REQUEST &OPTIONAL MODULE (MODE :NORMAL))
g’
‘ MODEL ‘The name of a model previously defined with DEFMODEL.
REQUEST ‘T'he name of a request recognized by BUILD (e.g : COMPILE, : LOAD).
MODULE The name of a module to operate upon. If this ficld is not specified then the default

module for the system (as defined with the : DEFAULT-MODULE declaration form) is used.

MODE Specifics one of several construction modes. Construction modes arc discusscd below.
The prototype implementation of BUILD has three construction modecs that behave as follows:
: NORMAL Describe all of the construction to be done, and then ask the user if 8UtLD should perform
the construction just described.

:DESCRIBE Describe all of the construction 10 be done but do not perform it.

:NO-CONFIRM Pcrform the required construction without describing it first.

Sample BUILD requests are:

(BUILD-REQUEST TINY-COMP :LOAD)
(BUILD-REQUEST LINT :LOAD DRIVER)
(BUILD-REQUEST LINT :LOAD DRIVER :DESCRIBE)

Once a request has been received, a three step process is executed for each grain in the module stated in
the request. This process creates a task model for the request which is then processed in the manner outlined
in chapter 4. The three steps are:

1. Model the construction that can be deduced from the request without considering any references.
This phase is called pre-reference request processing.

2. Model the construction that is implied by the references that involve the module associated with
the request. This phase is called reference processing.

3. Model the construction that can be deduced from the request and the graph built from the earlier
steps. This phase is called post-reference request processing.

After the post-reference processing has been completed the task graph is complete and can be used to direct

the construction nceded to handle the request.
Before the construction process can be explained in detail it is necessary to present the functions used to

view and manipulate task graphs.
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Consider the following task graph:

"
:
h 5.1 Viewing and Manipulating Task Graphs -- ACCESS
3

N

B

I @ SOURCE BINARY DEFS.BIN BINARY IMAGE DEFS. IMAGE
-

. :L1SP-COMPILE :LISP-LOAD-BIN

N
‘:’_ Starting at a p-node. the path to any of the g-nodes connected to onc of its ports can be specified by
:‘} mentioning the name of the port desired. In the task graph abovc, starting at the : LISP-COMPILE p-node,
bt the step BINARY Icads to DEFS . BIN.

, A step from a g-node to a p-node can be described by specifying the process type of the connected p-node
-Q} and the role played by the g-node in the p-node.  In the sample task graph above, the stecp (BINARY
“:.( :LISP-COMPILE) starting it DEFS.BIN lcads to the : LISP-COMPILE p-node.
u“'aj Paths arc formed by listing steps:

o
Xl *The path ((SOURCE :LISP-COMPILE) BINARY) starting at DEFS.LISP Ilcads to
s DEFS.BIN.
f‘.‘»}. *The path ((SOURCE :LISP-COMPILE) BINARY (BINARY :LISP-LOAD-BIN)) starting
- at DEFS. LISP lcads to the : LISP-LOAD-BIN p-node.
* The path
A ( (SOURCE :LISP-COMPILE) BINARY (BINARY :LISP-LOAD) IMAGE)
e starting at DEFS . LISP Icads to DEFS . IMAGE.
Sy}
: }3\_ * The path
L, ((IMAGE :LISP-LOAD) BINARY (BINARY :LISP-COMPILE) SOURCE)

. starting at DEFS ., IMAGE leads to DEFS.LISP.

:‘h The ACCESS family of functions are designed to provide a straightforward mechanism for both viewing
C{f. and manipulating task graphs. These functions are used hecavily during the task graph derivation process.

:~: There are three functions, ACCESS, ACCESS+, and ACCESS®, each of which is SETFable. The ACCESS

o functions have the form:

(FUNCTION NODE PATH)

)

;i:; FUNCTION ACCESS, ACCESS+, or ACCESS®.

i

" NODE Fither a p-node or a g-node. This node is used as the root of the path to be traced by

ACCESS-FUNCTION.

"i:'f PATH A list of steps to be traced from NODE.
‘TN
»
';:ﬁ The functions behave in the following manner:
: - ACCESS Traces PATH from NODE and returns the last node encountered. An crror is signalled if
‘ any step in PATH cannot be traced. An error is signalled if there could be more than one
ij. node that satisfics the path traced.
1)
e
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ACCESS+ Traces PATH from NODE and returns a list of nodes that satisfy the path. An crror is
signalled if any step in PATH cannot be traced.

ACCESS* I'races PATH from NODE and returns the single node that satistics the path.  An crror is
signalled if there could be more than one node that satisfics PATH. New nodes are created
if steps in PATH do not exist.

Any ACCESS call that returns a single node may be used to specify the root of another call to ACCESS, in
other words. the following two calls are cquivalent:

._- (ACCESS NODE (STEP1 STEP2 STEP3))
_T.: (ACCESS (ACCESS (ACCESS NODE STEP1) STEP2) STEP3)
":: Fach of the ACCESS functions can be SETFed. Calls have the form:

J._l

(SETF (ACCESS ROOT-NODE PATH) END-NODE)
Ensurcs that future calls to ACCESS with ROOT-NODE and PATH

_v'-i (i.c.. (ACCESS ROOT-NODE PATH)) wili return END-NODE.
2 (SETF (ACCESS+ ROOT-NODE PATH) NODE-LIST)
) Ensures that future calls to ACCESS+ with ROOT-NODE and PATH
- (i.c.. (ACCESS+ ROOT-NODE PATH)) will rcturn NODE-LIST. ‘
5 |
0] (SETF (ACCESS* ROOT-NODE PATH) END-NODE)
S" Ensurcs that futurc calls to ACCESS* with ROOT-NODE and PATH
| f, (i.c., (ACCESS* ROOT-NODE PATH)) will return END-NODE.
The ACCESS fu-ctions differ in how they handle steps that cannot be traced, and what they do when a

= path description fans out. 1f ACCESS or ACCESS+ encounter a missing link, an crror is signalled. ACCESS®
; %: and the SETF functions will create the link and continue tracing the path.
w A fanout condition occurs when an attempt it made to trace from a :MULTIPLE arity port of a p-node, or
& when more than one p-node satisfies the role-name/process-type-name constraint tracing from a g-node.
. ‘h

ACCESS, ACCESS* and their associated SETF functions signal errors if fanout is encountcred. ACCESS+
will continue tracing down all paths and returns the list of nodes that satisfied the path description. When

B SETFed, ACCESS+ will signal an crror if fanout is encountered before the last step in the path description.

") In Lisp Machine Lisp [Weinreb and Moon 81) and Common Lisp [Stecle 34, the special form PUSH can
. be used for functions that are SETFable. PUSH can be uscd to add a g-node to a port. For example:

.:- (PUSH SOME-G-NODE (ACCESS+ P-NODE SOME-PATH))

= is equivalent to:

o (SETF (ACCESS+ P-NODE SOME-PATH)

! (CONS SOME-G-NODE (ACCESS+ P-NODE SOME-PATH)))
: The SETF forms and ACCESS*® can make additive changes to the graph. When a function needs to create
:'_: a g-node and link it to a p-node port. a name needs to be synthesized for the new g-node. The name of cach
" g-node resembles a tilename in that it has two parts, a primary name and an extension. In order to synthesize

a g-node name. the function copics the primary part from the grain attached to the port specified as the
: NAME -SOURCE port for the port being linked to (sec the paragraph about role descriptions in chapter 4). An

j;:« crror is signalled if a function needs to derive a g-node name to link to a port that has no NAME-SOURCE port
8 associated with it. 'The extension of a g-node name is derived from its grain type object. If the grain type
": represents files, then the extension is the default-filename-cxtension, otherwise, it is the name of the grain
] type itscif.
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b 5.2 Request Handlers

“(' Request handlers specily the task graph derivation steps that can be taken whenever the request assoctated

s with the handler has been made. without considering any reference declarations. Requests are identified with

‘ request signatures (much like reference signatures).  Fach request signature contains two ficlds, a request

- name and a grain type name. For example the signature:

- <:COMPILE :LISP-SOURCE>

s

L identitics the handler designed to build part of the task graph needed to accomplish the compilation of a Lisp
source grain. ‘T'he signature:

0 <:YACC :YACC-GRAMMAR>

e identifics the handler that will build part of the task graph needed to invoke YACC on a grammar,

‘\n Not all possible signatures will have handlers defined for them. For example the request signature:

B <:COMPILE :LISP-BINARY>

- identifics a nonsensical request.

< Pre-reference request handlers are used to construct the parts of a task graph which will be nceded

(. regardless of the ramifications of references.  1-or example, in order to model the compilation of some

h‘ :LISP-SOURCE grain, G.LISP. the following links can be made without considering any references: the

g-node representing G. LISP should be linked to the SOURCE port of a :LISP-COMPILE p-nodc, and then
the BINARY port of this p-node should be linked to a g-node representing the binary version of G, LISP (i.c.,
¢ G.BIN).

- @ SOURCE BINARY

:LISP-COMPILE

M Post-reference request handlers are used for modcling processing that can only be deduced after the
- implications of the references are added to the task graph. At this time it has not been necessary to use a post
gﬂ' reference handler, however, they are included because there may be situations where their use is appropriate.
.\
h ,lﬁ
b ’1"3
R Defining Request Handlers
- Request handlers are defined with DEFINE-REQUEST-HANDLER. Calls have the form:
- (DEFINE-REQUEST-HANDLER (REQUEST GRAIN-TYPE-NAME PRE-OR-POST)
o (ARGS)
( &BODY BODY)
;Z;{‘ REQUEST ‘The name of the request being handled.
]

GRAIN-TYPE-NAME
‘I'he type of the grain that the handler is for.

PRE-OR-POST :PRE indicatcs that this is a pre-reference handler. :POST indicates that this is a post
reference handler.
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ARGS The names of the variables passed o the handler. "There must be at least one clement in
this list. ‘The first ARG will be bound to the g-node associated with the request when BODY
is cvaluated.

BODY The forms that constitute the handler. They are evaluated with the arguments passed to

the handler bound (o the variables named in ARGS.

All requests made by users have a single argument, the name of the module thit the request is intended for,
Handlers may also make requests, and these requests can contain more than one argument. ‘The handlers for
the :LOAD+ and :INCLUDE+ tasks presented in Appendix 1 are examples of handlers using additional
arguments.

Figure 5-1 contains the request handler definitions for Lisp compilation and loading. ‘The first handler is
invoked when a : COMPILE request is made on a : L ISP-SOURCE module. It uses ACCESS* 1o cnsurc that
the task graph being derived models the fact that the :LISP-SOURCE grains in the module need to be
compiled.

The second handler is invoked when a : LOAD request is made on a : LISP-SOURCE module. The first
thing that the handler does is to initiate a : COMPILE request on cach of the grains in the :LISP-SOURCE
module, and then it models the fact that the :BINARY grains produced by compilation need to be loaded.

Handlers ensure that task graph paths cxist. After a handler has been invoked on a grain once, additional
invocations will have no effect. ‘Therefore, task definers need only be concerned that the proper handlers are
invoked at least once and do not need to worry about additional invocations.

(DEFINE-REQUEST-HANDLER (:COMPILE :LISP-SOURCE :PRE) (SOURCE-NODE)
(ACCESS* SOURCE-NODE ((SOURCE :LISP-COMPILE) BINARY)))

(DEF INE-REQUEST-HANDLER (:LOAD :LISP-SQURCE :PRE) (SOURCE-NODE)
(PROCESS-REQUEST :COMPILE SOURCE-NODE)
(ACCESS* SOURCE-NODE ((SOURCE :LISP-COMPILE) BINARY
(BINARY :LISP-LOAD-BIN) IMAGE)))

Figure 5-1: Request Handler Definitions for Lisp

5.3 Reference Handlers

Reference handlers realize the implications references upon construction graphs. The construction
implications of a reference depend upon the kind of reference, the request, and which part of the reference
(right or left) the module participating in the request belongs to. Each handler is identified by a reference
handler signature that includes five ficlds: the three fields from the reference signature, the request name, and
a participation marker (cither : RIGHT or : LEFT). Sample signatures are:

<<:CALLS :LISP-SOURCE :LISP-SOURCE> <:LOAD :LEFT>>
<¢<:CALLS :C-SOURCE :C-SOURCE> <:COMPILE :RIGHT>>
<<:MACRO-CALLS :LISP-SOURCE :LISP-SOURCE> <:COMPILE :LEFT>>

Not all references are relevant o every request made. For instance, the reference
(:CALLS LISP-SOURCE-1 LISP-SOURCE-2)

has no implications when a request is made to compile LISP-SOURCE-1. Howcver, if the request is to load
LISP-SOURCE-1 for exccution, then the reference implics that LISP-SOURCE -2 needs to be loaded. ltis
also important to recognize that the direction of the reference matters. FFor example, the reference above has
implications when LISP-SOURCE -1 is loaded, but. it has none when LISP-SOURCE -2 is loadced.
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Defining Reference Handlers
Reference handlers are defined with DEFINE-REFERENCE -HANDLER. Calls have the form:

(DEFINE-REFERENCE-HANDLER ((REFERENCE LEFT-TYPE RIGHT-TYPE)
(REQUEST DIRECTION))
(ARGS)
&BODY BODY)

REFERENCE The name of the reference being handled.
LEFT-TYPE The grain type of the Ieft (first) module in the reference.

RIGHT-TYPE  'I'he grain type of the right (sccond) module in the reference.

REQUEST ‘I'he name of the request being handled.

DIRECTION Either : LEFT or : RIGHT. 'T'his ficld identifics the module that the request being handled
refers to.

ARGS The names of the variables passed to the handler, these will be bound when BODY is

cvaiuated. There must be at least two clements in this list. The first ARG will be bound to
the left grain of the reference. The sccond ARG will be bound to the right grain of the
reference.

Booy The forms that constitute the handler. They are evaluated with the arguments passed to
the handler bound to the variables named in ARGS.

Figure 5-2 contains reference handler definitions for Lisp compilation and loading. The first handler
modecls the fact that the grain represented by CALLED-NODE needs to be loaded. and that the resulting
:LISP-IMAGE grain plays the rolc DEFINITIONS in the compilation of the grain represented by
CALLING-NODE. The sccond handler ensures that the grain represented by :CALLED~NODE is loaded.
Note. while these handlers are sufficient to handle the common module interactions for Lisp systems, they are
not sufficient to handle all of the ways that Lisp modules may interact. Morc handlers would need to be
defined in order to properly handle all of the ways that Lisp modules can interact. The prototype
implementation of BUILD does not include these additional handlers at this time.

BLILD guarantees that reference handlers are invoked after pre-reference request processing and therefore
handler writers may safely assume that the cffects of pre-reference request handlers will already be present in
the graph. For cxample, the :MACRO-CALLS handler discussed above assumes that the compilation of
CALL ING-NODE has alrcady been modeled.

5.4 A Task Description Definition Example

This section presents an example of a task description definition.  The task defined is called
:LIST-SOURCE-CODE and it will produce formatted source code listings for a : LISP-SOURCE medule and
any :LISP-SOURCE modules that it references. All of the defining forms for : LIST-SOURCE-CODE arc in
figurc 5-3.

First. the :LIST-LISP-SOURCE process type is defined. Instances of this type have a single input role
called SOURCE and a single output role called LISTING. 'The function LIST-LISP-FILE is called to
produce the grain filling the output role from the grain filling the input role. The request handler for the task
is very simple, it modcels the fact that the source grain o be listed will play the role SOURCE in a
:LIST-LISP-SOURCE p-node and that a g-node should be attached to the LISTING role of that same
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p-node. The two reference handlers specify that grains which are called by a grain being lisied should
themselves be listed.

:LIST-SOURCE-CODE shows the virtue of keeping system models separate from information about
tasks: once its defining forms are evaluated, formatted listings may be obtained for any previously modeled
Lisp system without altering any system models.

(DEFINE-REFERENCE-HANDLER (( :MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
(:COMPILE :LEFT))
(CALLING-NODE CALLED-NODE)
(PROCESS-REQUEST :LOAD CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCE :LISP-COMPILE) BINARY
(BINARY :LISP-LOAD-BIN) IMAGE))
(ACCESS+ CALLING-NODE ((SOURCE :LISP-COMPILE) DEFINITIONS))))

(DEF INE-REFERENCE-HANDLER (( :CALLS :LISP-SOURCE :LISP-SOURCE)
(:LOAD :LEFT))
(IGNORE CALLED-NODE )
(PROCESS-REQUEST :LOAD CALLED-NODE))

Figure §-2: Reference Handler Definitions for Lisp

(DEF INE-PROCESS-TYPE :LIST-LISP-SOURCE
((SOURCE :LISP-SOURCE :SINGLE))
((LISTING :PRESS :SINGLE SOURCE))
OUTPUT-STREAM . )
(FORMAT OUTPUT-STREAM "~%LIST ~A"
(PATHNAME -MINUS-VERSION SOURCE))
(FORMAT OUTPUT-STREAM "~%LISTING ~A" SOURCE)
(LIST-LISP-FILE SOURCE LISTING))

(DEFINE-REQUEST-HANDLER (:LIST-SOURCE-CODE :LISP-SOURCE :PRE)
{ SOURCE-NODE )
(ACCESS* SOURCE-NODE ((SOURCE :LIST-LISP-SOURCE) LISTING)))

(DEFINE-REFERENCE-HANDLER (( :MACRO-CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))
(IGNORE CALLED-NODE)
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :LISP-SOURCE :LISP-SOURCE)
(:LIST-SOURCE-CODE :LEFT))
(IGNORE CALLED-NODE )
(PROCESS-REQUEST :LIST-SOURCE-CODE CALLED-NODE))

Figure 5-3: Definition For : LIST-SOURCE-CODE
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6. Reprise

‘This chapter highlights several aspects of BUILD that have been presented in this report. The first section |
summarizes how BUN D overcomes the difficulties associated with existing tools (sce chapter 2). ‘The second |
scction discusses BUIED'S construction framework and how it provides a base for describing new tasks within a
static framework that conceals many low level details from the task definer. “I'he final section proposcs ways
that BU11.D could be extended to provide capabilitics not found in cxisting tools.

6.1 BUILD Compared With Existing Tools

Phrased in terms of inter-module references. ‘The BUILD system modceling mechanism allows users to
describe systems in terms that arc natural for them. BUILD system models are casicr to understand and they
provide more information than the construction directive lists used by existing tools.

User definable task descriptions. BUILD'S task description mechanism is responsible for the fact that BUILD
is not constrained to somce embedded sct of tasks. By scparating system modcls and task descriptions, BUILD's
knowledge about construction can be modificd without requiring that system models be changed. However,
if a new task is scnsitive to a class of references previously ignored, then cxisting models will have to be
updated.

Intermediate griains are not referenced. ‘The only grains that arc referred to in a system are the source
grains that comprisc modules. While intermediate grains arc uscd in BUILD's task graphs, these grains never
appcar in system models.

ANl source grains must be referenced. All of the source grains that participate in a system cither reference
other grains in the system or are referenced by other grains in the system. Thercfore, since BUILD models
encode system referencing patterns, all of the source grains in a system must appear in any well formed BUILD
model of that system.

6.2 BUILD’s Construction Framework

BUILD provides procedures which guide the construction process. These procedures include hooks for the
components of uscr supplicd task descriptions. The sct of fixed procedures take carc of low level construction
details that arc common to all tasks and allow task dcﬁnmons to contain just the details that are relevant to the
particular task being defined.

The task graph rcpresentation and analysis algorithm provide a uniform way to describe and perform
system maintcnance tasks. New process types and grain types can casily be integrated into task graphs.

The ACCESS family of functions provide a general way for viewing and manipulating task graphs that
isolates handler definitions from the low level mechanics of instantiating nodes, matching grain types between
g-nodes and p-node ports. and actually linking nodes together.

The task graph derivation algorithm cnsures that pre-reference request handlers are invoked before
reference handlers and that reference handlers are invoked before post-reference request handlers.  This
algorithm is also responsible for translating module references into a scries of handler invocations, one for
cach grain involved in a reference.  Finally, the task graph derivation algorithm cnsurcs that circular

-
v
PRSP

0l

references (i.c., ( :CALLS A B) (:CALLS B A))do not cause infinitc loops during reference handling.
oo BUI D's construction framework allows task definers to concentrate on the significant details of the task
LA being defined (c.g.. what process and grain types arc used. what references are relevant and how should they
. I be handled ctc.) and isolates them from low level details (c.g., task graph analysis, node instantiation ctc.).
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6.3 Extensions to BUILD

BLLL D provides a more graccful way of modeling systems than cxisting tools, yet it does not provide
greater capabilities. 'This scction proposes extensions to BUILD that would allow it to provide a set of facilitics
that other tools do not. The extensions are automatic derivation of system specifications from source code,
support for patching and similar maintenance styles, and the incorporation of the nature of module change
into the reconstruction algorithms.

Automatic Derivation of System Descriptions

‘The BL 1 b modeling mechanism provides a natural way to describe systems but it does not ensure that the
descriptions arc complete or correct. Designers are still required to generate systerm models by hand. A tool
that could derive system models from source code would relieve designers of the chore of building system
description files.

For simple languages. an analyzer could build a great deal of the model and locate arcas that might
present difticulties.  For cxample, in most C systems all of the dependencies are caused by use of the
#INCLUDE compiler dircctive and calls to externally defined symbols -- the reference assertions from these
references could be synthesized automatically.

While there may be programming environments in which it is possible to mechanize the derivation of
system modcls there are certainly languages for which such derivation would become arbitrarily complex.
For example, Pitnan develops an argument against automatic derivation of Lisp system modecls based on the
complications caused by macros [Pitman 84).

Patching

There are many instances where a system maintainer may want to introduce changes into a system without
making sure that the resulting system is consistent; for example, debugging experiments where small changes
are introduced to examine some small part of the system. These changes may not be intended to become part
of a released system, it may even be known that they will cause compilation of some other module to fail.
Another instance where the ability to patch a system is important is when a quick fix is being attempted and it
is important that the cffects be seen quickly. This kind of change represents a tentative gucss on the part of
the maintainer. The introduction of such changes into systems must bc supported by system management
tools if such tools arc going to help and not hinder maintainers.

The DEFSYSTEM patch facility provides some support for producing inconsistent systems. Unfortunately,
the DEFSYSTEM patching facility makes no use of the dependency information that the rest of the tool uses.
No analysis of the cffect of a patch is available. Nothing guarantces that a patch will evei: be loaded correctly
according to the dependency information that is available. For example. if a patch file includes a modified
macro definition and two calls to it, the calls will not refer to the new version of the macro unless they are
placed after the definition in the patch file by the user.

System management tools should make use of system models in order to support patching. Patching
mcchanisms should also supply information about the cffect that a patch may have on the rest of the system.
In BUILD. the analysis could be done by propagating the cffects of a change through a task graph and then
identifying thosc modulcs that were affected by the change but ignored by the patch.

More Precise Change Analysis

All of the tools mentioned in this paper (including BUILD) are sensitive to the fact that some change has
occurred w a module in a system. However, no attention is paid to the nature of the change. By exploring the
naturc of a change it is possiblc to limit the amount of processing done when updating systems.

If source code is changed in a way that cannot alter its compilation, there is no reason for the source
maodule to be recompiled.  For example, compilation should not be done when source code has only been
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reformatted or had commentary added to it. If a function is added to a4 module, but no cxisting modules are
AN updated to contain calls to the new function, nothing should be done to the existing modules. Lint librarics
arc dependent upon the first pass of .int, however, most changes to the first pass of Lint will not affect the
librarics.

Change analysis can also provide important debugging information. For example, if a module interface is
changed. but not all of the modules that contain references to that module are changed, there is a possibility
that an crror of omission has been made.

Unlike MAKE and BULLD, DEISYSTEM can be cxtended to include more complicated predicates for
dcciding when changes arc significant.  “There is nothing preventing a DEFSYSTEM system definition from

“ using parsers and source code comparison programs in order to decide when transformations should take
m’ place. However, no enhanced predicates arc supplied with DEFSYSTIEM and none of the DEFSYSTEM
F; descriptions encountered while preparing this paper included definitions of such specialized predicates.

’h Specialized predicates can only be uscful if they require less processing to determine that a transformation

Ly can be avoided than applying the transformation in the first place. For instance, there is no point in using a

predicate to determine that compilation of a module can be avoided if that predicate requires more processing

than the compiler. BUILD can step around this issuc by assuming that it is a single tool embedded in an

integrated environment in which the tools that are used to modify modules can supply information to BUILD

about the nature of changes.

BUIL D could be cxtended to provide an interface for communicating information about changes to
modules. The information passed to BUILD would include the name of the grain modificed, the kind of

maodification made, and the name of the new (i.c.. updated) grain. A new class of handlers called change

S handlers would be introduced to aid in the determination of significant changes by the construction algorithm.

“ For cxample, the change assertion:

:'_.- ( : ADDED-STRUCT DEFS)

{ would inform BUII D that DEFS has becn changed by adding a new structure and therefore modules that rely
on DEFS do not have to be re-compiled. The compitation of unaltered modules can be avoided since there is

T no way for them to refer to the new structure. The assertions:

0y ( :ADDED-COMMENT DEFS)

; (:RE-FORMATTED DEFS)

imply that no changes that can alter the compilation of DEFS have been made and thercfore no re-
! compilation needs to be done.

The change handlers would contain listings of how types of changes alter the way in which grains play
" their roles. For instance, onc handler would note that re-formatting a piece of source code does not change
the way that it plays the role SOURCE in instances of : LISP-COMPILE.
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1. BUILD Definitions For C

"The definitions used by Bult b to model a 1.isp environment have been given in the body of this report as
cxamples. ‘This appendix contains the definitions used by BUIID o maodel a C programming cnvironment.
There arc more kinds of commonly used grain types in UNIX cnvironments than in Lisp cnvironments,
hence there are more definitions needed to model all of the ways that UNIX grains can refer to cach other.
Commentary has been added to highlight the definitions.

Grain Type Definitions

(DEFINE-GRAIN-TYPE :YACC-GRAMMAR :Y)
(DEFINE-GRAIN-TYPE :C-SOURCE :C)
(DLFINE-GRAIN-TYPE :C-0BJECT :0)
(DEFINE-GRAIN-TYPE :C-EXECUTE :EXE)
(DEFINE-GRAIN-TYPE :SHELL-SCRIPT :SCRIPT)

Process Type Definitions
It is assumed that the functions C-COMPILE, C-LOAD, and YACC arc available.

(DEFINE-PROCESS-TYPE C-COMPILE
((SOURCE :C-SOURCE :SINGLE) (INCLUDES :C-SOURCE :MULTIPLE))
((OBJECT :C-OBJECT :SINGLE SOURCE))
STREAM
(FORMAT STREAM "~%COMPILE ~A" (PATHNAME-MINUS-VERSION SOURCE))
(FORMAT STREAM "~XCOMPILING ~A" SOURCE)
(C-COMPILE SOURCE OBJECT))

(DEFINE-PROCESS-TYPE C-LOAD
((PRIMARY :C-0BJECT :SINGLE) (SECONDARY :C-OBJECT :MULTIPLE))
((IMAGE :C-EXECUTE :SINGLE PRIMARY))
STREAM :
(FORMAT STREAM "~XLINK: ~A ~{~% ~A~}"
(PATHNAME -MINUS-VERSION PRIMARY)
(MAPCAR #' PATHNAME-MINUS-VERSION SECONDARY))
(FORMAT STREAM "~%LINKING: ~A ~{~% ~A~}" PRIMARY SECONDARY)
(C-LOAD PRIMARY SECONDARY IMAGE))

(DEFINE-PROCESS-TYPE YACC

((GRAMMAR :YACC-GRAMMAR :SINGLE))

((PARSER :C-SOURCE :SINGLE GRAMMAR))

STREAM

(FORMAT STREAM "~XYACC ~A" (PATHNAME-MINUS-VERSION GRAMMAR))
(FORMAT STREAM "~XYACCING ~A" GRAMMAR)
(YACC GRAMMAR PARSER))




Request and Reference Handlers

‘Ihe request handler for C compilation models the fact that the source grain needs to be compiled. ‘The
only reference that can have an ¢ffect on C compilation is : INCLUDES. If GRAIN-1 includes GRAIN-2,
then GRAIN-1 indircctly includes any grains that GRAIN-2 includes. ‘The task : INCLUDE + (described later)
is responsible for gathering all of the grains included indirectly by a grain and attaching the corresponding
g-nodes o the INCLUDES port of the : C-COMPILE p-nade for the grain being compiled.

;;; :COMPILE :C-SOURCE

(DEF INE-REQUEST-HANDLER (:COMPILE :C-SOURCE :PRE) (SOURCE-NODE)
(ACCESS* SOURCE-NODt ((SOURCE C-COMPILE) OBJECT)))

(DEFINE-REFERENCE -HANDLER ((:INCLUDES :C-SOURCE :C-SOURCE) (:COMPILE :LEFT))
( INCLUDING-NODE INCLUDED-NODE )
(LET ((COMPILE-PROCESS (ACCESS INCLUDING-NODE ((SOURCE C-COMPILE)))))
(PUSH INCLUDED-NODE (ACCESS+ COMPILE-PROCESS (INCLUDES)))
(PROCESS-REQUEST : INCLUDL+ INCLUDED-NODE COMPILE-PROCESS)))

If a :C-SOURCE grain calls another grain, then BUIL D pessimistically assumes that it indirectly calls any
grain called by the sccond grain. ‘The task : LOAD+ gathers all of the grains called indirectly by a grain in
order to ensure that the proper sct of grains is linked together. ‘The lack of a task like : LOAD+ in Lisp is due
to the fact that in Lisp environments, grains arc loaded incrementally instcad of being cxplicitly linked
togcether.

. :LOAD :C-SOURCE

Y
bee

(DEFINE-REQUEST-HANDLER (:LOAD :C-SOURCE :PRE) (SOURCE-NODE)
(PROCESS-REQUEST :COMPILE SOURCE-NODE)
(ACCESS® SOURCE-NODE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD) IMAGE)))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-SOURCE) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE)
(LET ((LINKING-PROCESS

(ACCESS CALLING-NODE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD)))))

(PROCESS~-REQUEST :COMPILE CALLED-NODE)

(PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))
(ACCESS+ LINKING-PROCESS (SECONDARY)))

(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-OBJECT) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE)
(LET ((LINKING-PROCESS
(ACCESS CALLING-NODE ((SOURCE C-COMPILE) OBJECT (PRIMARY C-LOAD)))))
(PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))

Sometimes compiled objects arc used as source grains (c.g. supplicd librarics). These definitions cncode
the knowledge needed to handle the loading of : C-OBJECT grains.

b :LOAD :C-0BJECT
(DEF INE-REQUEST-HANDLER (:LOAD :C-OBJECT :PRE) (OBJECT-NODE)
(ACCESS® OBJECT-NODE ((PRIMARY C-LOAD) IMAGE)))
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(DEFINE-REFERENCE-HANDLER ((:CALIS :C-OBJECT :C-SOURCE) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE )
(LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((PRIMARY C-LOAD)))))
(PROCLSS-REQUEST :COMPILE CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCt C-COMPILE) OBJECT))
(ACCLSS+ L INKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :10AD+ CALLED-NODE LINKING-PROCESS)))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-OBJECT :C-OBJECT) (:LOAD :LEFT))
(CALLING-NODE CALLED-NODE )
(LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((PRIMARY C-LOAD)))))
(PUSH CALLED-NODt (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))

Here arc the handlers for : INCLUDE+ and : LOAD+. ‘There are no request handlers associated with these
requests as all of the significant construction information that they imply ariscs from reicrences. ‘These
handlers illustrate the use of more than two values being passed to reference handlers. ‘The additional
parameter for : INCLUDE+ is the :C-COMPILE p-node which modcls the compilation to be done. The
additional parameter for : LOAD+ is the p-node which models the linking to be donc.

HHH :INCLUDE+ :C-SOURCE C-COMPILE

(DEFINE-REFERENCE-HANDLER ((:INCLUDES :C-SOURCE :C-SOURCE) (:INCLUDE+ :LEFT))
(IGNORE INCLUDED-NODE INCLUDING-PROCESS)
(PUSH INCLUDED-NODE (ACCESS+ INCLUDING-PROCESS (INCLUDES)))
(PROCESS-REQUEST :INCLUDE+ INCLUDED-NODE INCLUDING-PROCESS))

;;; :LOAD+ :C-SOURCE C-LOAD

o0

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-SOURCE) (:LOAD+ :LEFT))
(IGNORE CALLED-NODE LINKING-PROCESS)
(PROCESS-REQUEST :COMPILE CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))
(ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST .LOAD+ CALLED-NODE LINKING-PROCESS))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-SOURCE :C-OBJECT) (:LOAD+ :LEFT))
(IGNORE CALLED-NODE LINKING-PROCESS)
(PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS))

;;; :LOAD+ :C-0BJECT C-LOAD

e e
RN

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-OBJECT :C-SOURCE) (:LOAD+ :LEFT))
(IGNORE CALLED-NODE LINKING-PROCESS)
(PROCESS-REQUEST :COMPILE CALLED-NODE)
(PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))
(ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS))

(DEFINE-REFERENCE-HANDLER ((:CALLS :C-OBJECT :C-OBJECT) (:LOAD+ :LEFT))
(IGNORE CALLED-NODE LINKING-PROCESS)
(PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))
(PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS))
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N Here arc the definitions used to model YACC's interaction with C systems. The handlers capture the fact
that YACC grammars may includce and call other grains.
o i1 :YACC :YACC-GRAMMAR
n HE
B
) (DEFINE-REQUEST-HANDLER (:YACC :YACC-GRAMMAR :PRE) (GRAMMAR-NODE)
. (ACCESS® GRAMMAR-NODE ((GRAMMAR YACC) PARSER)))
L .
pis :COMPILE : YACC-GRAMMAR
x.‘
1o (DEFINE-REQUEST-HANDLER (:COMPILE :YACC-GRAMMAR :PRE) (GRAMMAR-NODE )
o (PROCESS-REQUEST :YACC GRAMMAR-NODE )
v (ACCESS® GRAMMAR-NODE ((GRAMMAR YACC) PARSER (SOURCE C-COMPILE) OBJECT)))
L
(DEFINE-REFERENCE-HANDLER ((:INCLUDES :YACC-GRAMMAR :C-SOURCE) (:COMPILE :LEFT))
- (INCLUDING-NODE INCLUDED-NODE )
y. - (LET ((COMPiLE-PROCESS
o {ACCESS INCLUDING-NODE ((GRAMMAR YACC) PARSER (SOURCE C-COMPILE)}))))
s (PUSH INCLUDED-NODE (ACCLSS+ COMPILE-PROCESS (INCLUDES)))
L (PROCESS-REQUEST :INCLUDE+ INCLUDED-NODE COMPILE-PROCESS)))
. {
- ih :LOAD : YACC-GRAMMAR

(DEFINE-REQUEST-HANDLER (:LOAD :YACC-GRAMMAR :PRE) (GRAMMAR-NODE)
(PROCESS-REQUEST :COMPILE GRAMMAR-NODE )

L (ACCESS® GRAMMAR-NODE ((GRAMMAR YACC) PARSER

- (SOURCE C-COMPILE) OBJECT

(PRIMARY C-LOAD) IMAGE)))

k-
- (DEFINE-REFERENCE-HANDLER ((:CALLS :YACC-GRAMMAR :C-SOURCE) (:LOAD :LEFT))
- (CALLING-NODE CALLED-NODE)
‘=§ (LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((GRAMMAR YACC) PARSER
1y (SOURCE C-COMPILE) OBJECT
o (PRIMARY C-LOAD)))))

) (PROCESS-REQUEST :COMPILE CALLED-NODE)

- (PUSH (ACCESS CALLED-NODE ((SOURCE C-COMPILE) OBJECT))

T (ACCESS+ LINKING-PROCESS (SECONDARY)))
N}: (PROCESS-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))

+.
tﬁ. (DEFINE-REFERENCE-HANDLER ((:CALLS :YACC-GRAMMAR :C-0BJECT) (:LOAD :LEFT))
V. *(CALLING-NODE CALLED-NODE)

(LET ((LINKING-PROCESS (ACCESS CALLING-NODE ((GRAMMAR YACC) PARSER
(SOURCE C-COMPILE) OBJECT

e (PRIMARY C-LOAD)))))
L (PUSH CALLED-NODE (ACCESS+ LINKING-PROCESS (SECONDARY)))

N (PROCESS~-REQUEST :LOAD+ CALLED-NODE LINKING-PROCESS)))
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Here are the definitions used to handle : SHELL-SCRIPT grains. A request to compile or load a shell
script is interpreted to mean that all of the modules called by the script should be compiled or loaded.

R :COMPILE :SHELL-SCRIPT

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-SOURCE) (:COMPILE :LEFT))
( IGNORE CALLED-NODE)
(PROCESS-REQUEST :COMPILE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-OBJECT) (:COMPILE :LEFT))
( IGNORE CALLED-NODE)
(PROCESS-REQUEST :COMPILE CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :YACC-GRAMMAR) (:COMPILE :LEFT))
( IGNORE CALLED-NODE)
(PROCESS-REQUEST :COMPILE CALLED-NODE))

i :LOAD :SHELL-SCRIPT

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-SOURCE) (:LOAD :LEFT))
(IGNORE CALLED-NODE )
(PROCESS-REQUEST :LOAD CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :C-OBJECT) (:LOAD :LEFT))
(IGNORE CALLED-NODE )
(PROCESS-REQUEST :LOAD CALLED-NODE))

(DEFINE-REFERENCE-HANDLER ((:CALLS :SHELL-SCRIPT :YACC-GRAMMAR) (:LOAD :LEFT))
( IGNORE CALLED-NODE )
(PROCESS-REQUEST :LOAL CALLED-NODE))
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