	AD-A1	52 742	STU PRO KIN	DY OF PAGATI OSTON	CRACK	FRONT RGE IN	DISTR HIGH. HANICA	IBUTI (U) I	DN DUR RHODE	ING CR ISLAND	ACK UNIV	GHONE	1/ M	'1
	UNCLAS	SIFIE	31	OCT 84	ĀFOSI	R-TR-8	5-1073	AFOSI	2-83-0	322	F/G	20/11	NL	
			Ø.,		1-8									
ĺ									`					
					١				5 N.					

ţ

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

So. NAME O ORGAN	FFUNDING	IR FORCE	Bb. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT IDE	NTTFICATION N						
OFFICE (OF SCIENT	IFIC RESEARCH	AFOSR/NA	AOFSR-83-0322								
Sc. ADDRES	SS (City, State	and ZIP Code)	·	10. SOURCE OF FUR	DING NOS.							
BOLLING	AFB DC 2	0332-6448		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT					
				61102F	2302	B 2	1					
11. TITLE (Include Securit	y Classification) "STU	DY OF CRACKFRONT									
DISTRIB	UTION DUR	ING CRACK PROPA	CATION" STAGE IN_	HIGH PERFORMA	NCE ALLOYS"	(UNCLASSI						
12. PERSON	AL AUTHOR	(S)										
GHONEM.	HAMOUDA											
134. TYPE (DF REPORT	136. TIME (COVERED	14. DATE OF REPOI	ЧТ (Yr., Mo., Dey) 21	15. PAGE C	OUNT					
ANNUAL.		FROM	<u>.356103 TO 1456184</u>	O4_UCTODE	<u> </u>	42						
16. SUPPLE	MENTARY N	DTATION										
17.	COSATI	CODES	18. SUBJECT TERMS (C	ontinue on reverse if n	cessary and identi	fy by block numbe						
FIELD	GROUP	SUB. GR.	CRACK PROPAGAT	TON	S	TOCHASTIC M	IODEL					
			CRACK GROWTH									
			ROBABILISTIC	CRACK GROWTH								
A stoch propaga In this crack 1 constan conside growth and ass dity of and A1 in lite to the theoret	astic mod tion proc model th ength and t probabi ring the curve, th ociated s the mode 7075-T6 s rature. physical ical resu	el describing t ess has been bu e distributions the crack leng lity crack grow crack growth cu e present model scatter without el is establishe at specific load Emphasis is pla aspects of the alts and corresp	the crack evolution the crack evolution the crack evolution the crack evolution the necessity of the necessity of the necessity of the necessity of the necessity of the necessity of the necessi	on and scatte of the disco copagation lif number of cyc significance ing any contin for the ident performing s crack growth c with those exp development of chanism and the ntal data.	r associate ntinuous Ma e necessary les are der of this mod uum model a ification o catter expe urves gener erimentally f the model e degree of	d with the o rkovian pro- to reach ived in ter el is that, s being the of the crack riments. T ated to Al obtained a , on its ac agreement	erack ocess. a specified cms of by e mean c evolution The vali- 2024-T3 and reported iherence between					
20. DISTRI	BUTION/AVA	LABILITY OF ABSTRA	АСТ	21. ABSTRACT SEC	URITY CLASSIFI	CATION						
UNCLASSI	FIED/UNLIMI	TED 🖾 SAME AS RPT		UNCLASSIFI	ED							
228. NAME	OF RESPONS	BLE INDIVIDUAL		225. TELEPHONE	MBOL							
Dr Anth	ony K Am	08		202/767-493	8 56 , 87	AFOSR/NA						

Annual Technical Report Contract No: AFOSE-83-0322 STUDY OF CRACK FRONT DISTRIBUTION DURING CRACK PROPAGATION STAGE IN HIGH PERFORMANCE ALLOYS

by

Hamouda Ghonem Associate Professor of Mechanical Engineering University of Rhode Island Kingston, RI 02881

Submitted to

Air Force Office of Scientific Research Bolling Air Force Base, D.C. 20332

> AIR FORCE OFFICE OF SCIENTIFIC EXELECT (AFFO) NOTICE OF TROPOSITION (AFFO) This to the formation Sound (AFFO) Subscience (AFFO) Destribution State MATTHEW J. Rest of Chief, Technical Information Sivision

Table of Contents

da sector

(

Same and a stranger of the second

8

18:00

		Page
1.	Summary	1
2.	Objectives	1
	2.1 Theoretical	1
	2.2 Experimental	2
3.	Status of the Research	2
	(Period 09/15/83-09/15/84)	
4.	Technical Publications	4
Per	sonnel Associated with the Research Efforts	4
Арр	endix I	6

Accesio	n For		
NTIS	CRA&I	V	
DTIC	TAB	E.	
Unanne	ounced	[]	
Justilic	ation	•••••• •· ··	
0.			
Ву		••••••	
Distrib	11:0:1/		
A	vailability Co	des	•
Dict	Avail and/	or	
Dist	Special		
1A-1			
L	1		2~
			8418
		(COPY
		<u> </u>	SPECTED
		•	

1. Summary

A stochastic model describing the crack evolution and scatter associated with the crack propagation process has been built on the basis of the discontinuous Markovian process. In this model the distributions of both the propagation life necessary to reach a specified crack length and the crack length at a specific number of cycles are derived in terms of constant probability crack growth curves. The significance of this model is that, by considering the crack growth curve obtained using any continuum model as being the mean growth curve, the present model is sufficient for the identification of the crack evolution and associated scatter without the necessity of performing scatter experiments. The validity of the model is established by comparing crack growth curves generated to Al 2024-T3 and Al 7075-T6 at specific loading conditions with those experimentally obtained and reported in literature. Emphasis is placed, during the development of the model, on its adherence to the physical aspects of the crack growth mechanism and the degree of agreement between theoretical results and corresponding experimental data,

The second second second

2. Objectives

2.1 Theoretical

The major objective of this two years research program was to establish a quantitative model to describe the crack front evolution based on the fact that the crack growth is a stochastic discrete process where characteristics are influenced by the random nature of real polycrystalline solids. In the proposed model, which is based on the Markovian pure birth process, a transition intensity λ , was considered an important element in establishing the crack front distribution.

-1-

Here λ was assumed to depict the combined effects of the microstructure and loading parameters and was assumed to include a coupling factor to account for the strong nearest-neighbor-interaction related to the spatial distribution of conditional fracture states of points along the crack tip front. Obtaining an explicit expression for λ was thus an objective in the study.

2.2 Experimental

An experimental test program using a closed-loop servohydraulic testing system and a scanning electron microscope was proposed to study the fracture surface morphology. This would be assisted by a modified mapping technique capable of counting striations as well as measuring striations, spacings and excursions. This combined test procedure was proposed to provide an experimental description of the crack front and to generate the statistical data required for verifying the theoretical elements of the proposed theory. The experimental program was proposed to be carried out concurrently with the analytical development of the proposed theory and to be completed during the two year term of the research program.

3. Status of the Research (Period 09/15/83-09/15/84)

A model predicting evolution and scatter of the crack tip was established on the basis of the Markov process. While the model and efforts made to verify its concept are described in detail in Appendix I, the outline of the model and its results are as follows:

 The model is based on the premises that scatter data of the crack growth process could be grouped to identify a family of crack lengths versus number-of-cycles curves, each of

-2-

which is a constant probability transition curve. The governing equation for such a cruve was developed as:

COUNTY MARKEN AN STATES AN NEW

$$ln P_{r}(i) = -B(e^{Ki} - e^{Ki}) \qquad i \ge I_{0}$$

where $P_r(i)$ is the probability of the crack being at position r along the fracture surface after i cycles elapse; B and K are crack length dependent variables and I_0 is the minimum number of cycles required for the crack to advance from one position on the fracture surface to the next.

- 2. Using published data on the scatter of 68 replicate tests carried out on Al 2024-T3, the results were arranged to produce a family of crack lengths versus number-of-cycles curves. Each of these curves was constructed by joining growth lines of identical transition probability, P_r . In the present analysis eight curves were selected; their transition probabilities are: 0.95, 0.85, 0.72, 0.64, 0.50, 0.40, 0.20, and 0.10. The median, i.e. $P_r(i) = 0.5$ curve, which can be generated by the Paris-Erdagan Equation, was selected to provide information which would be used to derive the parameters B, K and I_o.
- 3. Using the constant probability equation, a set of theoretical curves corresponding to that obtained experimentally in step 2 was generated. Agreement between these two sets of curves was found to be in the range of 5%.

In addition to these major results, the concept of "incubation time" has been theoretically derived in this study. This concept, which identifies an absolute minimum time for the crack tip to advance from

-3-

-4-

one position to the following position, could be understood in terms of the crack tip threshold properties and could evolve as a critical element in the understanding of the crack growth mechanism.

4. Technical Publications

Three papers have been submitted to one journal and two conferences, they are:

 Probabilistic Description of Fatigue Crack Growth in Polycrystalline Solids. Accepted for publication in Int. J. of Engineering Fracture Mechanics.

Authors: H. Ghonem and S. Dore

2. Crack Evolution and Scatter During Crack Propagation Stage in Polycrystalline Solids:

Submitted to:

- Structure, Structural Dynamics and Materials Conference, Orlando, FL, April 1985.
- Reliability, Stress Analysis and Failure Prevention Conference, Cincinnati, Ohio, Sept. 1985
- Critical Analysis of Probability Models for the Crack Growth Process. To be submitted to Int. J. of Engineering Fracture Mechanics.

Authors: H. Ghonem and S. Dore.

Personnel Associated with the Research Efforts

Dr.	Η.	Ghonem	Principal Investigator
Mr.	s.	Dore	Graduate Student
Mr.	s.	Grover	Graduate Student
Mr.	Н.	Bui	Undergraduate Student

- Thesis expected to be finished April 1985

Probabilistic Description of Fatigue Crack Growth in Polycrystalline Solids New York

ではないで、うちんないないです。

- Recipient: S. Dore

Degree: Masters of Mechanical Engineering

<u>Appendix I</u>

0

5

1910 A

Probabilistic Description of Fatigue Crack Growth in Polycrystalline Solids

这些这些这些**在**他的时候,他们的我们就是

INTRODUCTION

Laboratory tests conducted on different polycrystalline materials exhibited considerable variation in the crack growth characteristics data. This variation, or scatter, is considered a major factor in the gap that exists between theoretical predictions of existing continuum crack propagation models and experimental observations.

Several studies, employing theory of probability concepts, have been developed to predict and characterize the variation in crack propagation data. These studies generally follow two approaches. The first approach is based on the introduction of random variables encompassing the scatter sources to replace the deterministic parameters in continuum crack propagation rules such as the Paris-Erdogan Equation (1) which is widely studied and used. The result of this operation is viewed as a sample crack growth equation by which mean crack position and associated variance can be calculated. Examples of models belonging to this approach are those of Hoeppner and Krupp (2), Gurney (3), Ostergaard and Hillberry (4) and others (5-7).

27.7.7.7.7.

R.

The second approach is based on the assumption that the crack propagation process could be formulated in terms of a particular discontinuous Markovian process. This leads to the description of the crack length in the form of its probability distribution whose evolution in time characterizes the non-deterministic nature of the crack propagation process. Examples of these models are found in the work of Ghonem and Provan (8) and Bogdanoff and Kozin (9).

This paper is an attempt to extend the concepts presented in Ref. (8) to produce a theoretical method which will estimate the

crack growth scatter at any stress level. This is achieved by developing the sample functions of the crack growth process in terms of a constantprobability crack growth criterion. Mathematical elements of this criterion are detailed in the first part of this paper while the second part deals with the use of the model in a numerical example to estimate crack growth scatter in Aluminum 2024-T3. Emphasis is placed on the adherence of the model to the physical aspects of the crack growth process and the degree of agreement between the theoretical results of the model and corresponding experimental data.

MATHEMATICAL ELEMENTS OF THE MODEL

The stochastic model of the fatigue crack propagation as briefly described in (8) is developed in terms of a general pure birth, discontinuous Markovian stochastic process. The model is based on the assumption that the crack front can be approximated, as shown in Figure 1, by a large number of elements α , $\alpha = 1, \ldots, M$, each of which, in terms of the theory of probability, identifies a statistical trial or experiment. The fracture state of the α^{th} trial at cycle i is given by the crack length or the random variable α_{a_i} whose evolution with time shall then be established. α_{a_i} will hereafter be referred to as a_i .

Due to the built-in limitations of all experimental techniques the observed value of a_i can only be specified within the range of:

$$x < a_{z} < x + \Delta x \tag{1}$$

where Δx is the experimental error and x is the crack position cal-

culated as (see Figure 2):

$$x = r \Delta x$$
; $r_{s} < r < r_{s}$ (2)

Here r identifies the observable zone or state along the fracture surface; r_0 is the initial propagation state, r_f is the state just prior to catastrophic failure of the specimen and r_1 , r_2 ,... r_{f-1} are the intermediate zones.

Given that the crack is in state r, then after i cycles have elapsed from the instant of reaching r, one of two events would occur; a_i would remain in state r (event ${}^{r}E_i$) or a_i would not be in state r (event ${}^{s}E_i$). The following observations can now be made: 1- Due to the fact that the propagation process is an irreversible one, the crack, if it does not stay in r, must exist in a state greater than r.

2- Since it is not possible for the crack to propagate from one state to any other state without penetrating the immediate neighboring state, each crack could then be identified by the number of cycles required to advance from a given state to the following one.

Based on these observations the two events ${}^{r}E_{i}$ and ${}^{s}E_{i}$ can be seen as the element of a measurable sample space Ω , see Ref. (9), and the following definition of the probability measure of a_{i} becomes possible. At any fatigue cycle i the probability that a_{i} is in state r, i.e. the probability of ${}^{r}E_{i}$, is defined as:

 $P \{a_i \in {}^{r}E_i \} = P \{x < a_i < x + \Delta x \}$

i.e.
$$P({}^{r}E_{i}) = P_{r}(i)$$
 (3)

Therefore the probability of a_i not falling within r is

$$P({}^{s}E_{i}) = P_{s}(i) = 1 - P_{r}(i)$$
 (4)

Here $P_s(i)$ continuously increases as the number of cycles increase.

Furthermore, it is known that the existence of the crack front at a particular position inside the material depends on its present mechanical and microstructure details and is not directly influenced by the details of any of its other previous positions. More specifically, the probability of a_i propagating from state r to r+l in the cycle interval (i,i+ Δ i) depends on the event ${}^{r}E_i$ and is independent of any event ${}^{q}E_j, \ldots, {}^{P}E_o$ occurring prior to i; 0 < j < i. This can be expressed as:

$$P \{{}^{t}E_{\Delta i}/{}^{r}E_{i}, ..., {}^{q}E_{j}, ..., {}^{P}E_{o}\} = P \{{}^{t}E_{\Delta i}/{}^{r}E_{i}\}$$
(5)

where t = r+l and '/' denotes a conditional probability measure. These characteristics together with the evolution of a_i within the twoevent space Ω , describe a discontinuous Markovian process. The function $P_{rt}(i)$ could then be considered the transition probability linking the probability measures of two consecutive states r and t; t = r+l, along the fracture surface.

It is now possible to describe the propagation process of the crack front in terms of the following criteria:

1- The probability of a_i propagating to a state different than r in Δi cycles is given by

$$P_{s}(\Delta i) = P\{r^{+1}E_{\Delta i} / r^{E_{i}}\} + O(\Delta i)$$
$$= \lambda_{r} \Delta i + O(\Delta i)$$
(6)

where λ_r is a positive parameter describing the crack transition rate from state r to t in Δi cycles and is thus considered a material- and time-dependent variable, see Bharucha-Reid (11).
2- The corresponding probability that a_i will be in state r

during the cycle interval ∆i is:

$$P_{r}(\Delta i) = P\{{}^{r}E_{\Delta i} / {}^{r}E_{i}\} + 0 (\Delta i)$$

= (1 - $\lambda_{r} \Delta i$) + 0 (Δi) (7)

3- The probability that a_i is in a state different from r+l is:

$$P_{rt}(\Delta i) = P\{{}^{t}E_{\Delta i} / {}^{r}E_{i}\}$$

= 0 (\Delta i) ; t > r+1 (8)

Since

$$P\{r_{i+\Delta i}\} = P\{r_{\Delta i} / r_{E_i}\} \cdot P\{r_{E_i}\}$$
 (9)

Therefore substituting Equations 6, 7 and 8 in Equation 9, the probability of the event ${}^{\rm P}{\rm E}_{\Delta i}$ can be obtained as:

$$P_{r}(i+\Delta i) = (1 - \lambda_{r} \Delta i) P_{r}(i) + 0 (\Delta i)$$
(10)

By transposing and taking the limit $\triangle i \rightarrow 0$, Equation (10) becomes:

$$\frac{dP_{r}(i)}{di} = -\lambda_{r} P_{r}(i)$$
(11)

The solution of this equation is:

$$\ln P_{r}(i) = -\int \lambda_{r} di + C_{1}$$
(12)

where C_1 is a constant.

An important element in solving this equation is the parameter λ_r which is seen here as a measure of the crack growth rate. This measure is assumed to have the following properties:

- 1- In the presence of continuous cyclic loading the longer the cycle duration during which the crack is in a specific state, the higher the probability that the propagation threshold of the crack tip is satisfied and the higher the probability that the crack will advance. This indicates that in a general case, λ_r increases monotonically with an increase in the number of cycles i
- 2- λ_r being a material-dependent variable should then possess a nonzero positive value at cycle i = 0

Based on these observations λ_{r} is chosen to have the following form:

$$\lambda_r = C_2 e^{\mathbf{K}\mathbf{i}}$$
(13)

where C_2 and K are crack-position dependent and time dependent parameters. Substituting (13) in (12) one obtains

$$\ln P_{r}(i) = -B e^{Ki} + C_{l}$$
(14)

where

$$B = \frac{C_2}{K}$$

Upper and lower limits of $P_r(i)$ in the above equation are

 $1 \ge P_r(i) \ge 0$

The form of Equation (14) suggests that i has a lower boundary which satisfies the upper limit of $P^{r}(i)$. This means that Equation (14) will be valid only for $i \ge I_{0}$ where I_{0} is the lower boundary of i or simply the minimum number of cycles required for the crack to advance from state r. In this approach, concepts such as those of the weakest-link theory by Weibull (12) and others (13,14) have not been taken into consideration. Hence, the upper limit condition for $P_{r}(i)$ can be expressed as:

 $P_{r}(i) = 1$; $i < I_{o}$

By invoking this upper limit condition on Equation (14) the constant C_1 is obtained as

$$C_1 = B e^{KI_0}$$
(15)

Equation (14) could then be written in the form:

$$P_{r}(i) = e^{B(e^{Ki} - e^{i})} ; i \ge I_{o}$$

$$P_{r}(i) = 1 ; i < I_{o}$$
(16)

This result, illustrated in Figure 3, describes a set of curves which can be obtained by varying $P_r(i)$. Each of these curves is a constant probability curve identifying the discrete crack position and the corresponding number of cycles. Since the variables B, K and $I_{\rm c}$ are functions of the crack length, they are related to the crack length through certain constants. These constants can be determined by using one known constant probability crack growth curve and Equation (16) consequently becomes fully defined. The significance of this concept is that if the crack growth curve obtained by using a continuum model is considered as being the mean growth curve, i.e., the $P_r(i) = 0.5$ curve, a view that is consistent with the application of the majority of the continuum models, the parameters B, K and I_{o} can then be calculated and Equation (16) becomes sufficient to identify the crack length and associated scatter in number of cycles at any stress level without the need to perform scatter experiments. In the next part of the paper this model will be employed in a numerical example to estimate the crack growth curves of Aluminum 2024-T3 and results will be compared to available experimental data.

APPLICATION

The first step to be dealt with here is the determination of the unknown variables B, K and I_0 in Equation (16). To achieve this the authors utilized experimental crack growth scatter data obtained by Virkler, Hillberry and Goel (15) and Yang, Donath and Salivar (16).

The first set of data (15) is obtained from 68 identically prepared Aluminum 2024-T3 tension specimens with a central slot perpendicular to the loading axis. The data consists of the number of cycles necessary to reach the same specified crack length for each specimen; 164 crack lengths are recorded ranging from 9 mm to 49.8 mm for a half crack length. The 68 sample crack growth curves are shown in Figure 4. These curves were utilized to obtain constant probability crack growth curves as follows: The total crack length was divided into 204 states; each with a width of 0.2 mm. The number of cycles spent in each state was calculated and arranged in ascending order; the largest number was assigned a probability of:

 $P_r(i) = 1 - (x/68)$; x = 68

and so on, up to a probability of:

 $P_r(i) = 1 - (x/68)$; x = 1

for the shortest number of cycles. Points with equal probability were connected and a set of ten constant probability curves was generated as shown in Figure 5. Data points representing the number of cycles corresponding to similar discrete crack positions along three different constant probability growth curves, $P_r(i) = 0.5$, 0.50 and 0.95, where used as input for Equation (16) to determine the variables B, K and I_0 . The values obtained are listed in Table (1). These values are plotted versus the crack length position i.e. state r in Figure 6(a, b and c); and by using regression analysis the following relation-ships were constructed.

$$B = 0.018 r^{0.28}$$

$$K = 2.498 \times 10^{-7} r^{1.95}$$
 (17)

$$I_{0} = 0.94 \times 10^{7} [(r-1)^{-1.01} - r^{-1.01}]$$

To confirm these relationships, another set of crack growth scatter data of IN 100, a superalloy used in certain gas turbine engines, was used (16). The data consisted of the distribution of crack size as function of load cycles for 2 different load conditions as shown in Figs. 7(a,b). Analysis similar to that done on the work of Virkler and co-workers was carried out, yielding two sets of values for B, K and I_0 . They are shown in Table (2). These values are again plotted vs the crack length position as shown in Figs. 8(a,b,c) and 9(a,b,c) and the following relationships were obtained.

Test Condition I

$$B = 0.055 r^{0.76}$$

$$K = 1.362 \times 10^{-6} r^{2.34}$$
 (18

$$I_0 = 2.743 \times 10^5 [(r-1)^{-0.71} - r^{-0.71}]$$

<u>Test Condition II</u> B = 0.059 r^{0.73} K = 6.68x10⁻⁷ r^{2.015} I₀ = 1.843x10⁶[(r-1)^{-1.45} - r^{-1.45}]

By observing Equations (17), (18), (19) general forms of B, K and I_0 in terms of crack length a, could be written as

 $B = C_{1} a^{n_{1}}$ $K = C_{2} a^{n_{2}}$ $I_{0} = C_{3} [(a - x)^{n_{3}} - a^{n_{3}}]$ (20)

An attempt can now be made using Equation (16) in conjunction with Equation (20) to generate constant probability curves for the test conditions of Virkler et al (15). These curves could then be compared to those experimentally obtained in Figure 5. The first step is to obtain the mean crack growth curve utilizing, as mentioned before, a continuum crack growth equation. In this application the Paris-Erdogan Equation in the following form is used to generate such a curve:

$$\Delta i = \frac{1}{C(\Delta \sigma \sqrt{\pi})^n} \frac{1}{m-1} [a_0^{1-m} - a_f^{1-m}]; m = \frac{n}{2}$$
(21)

for Al 2024-T3 the index n is equal to 4 while the parameter C attains values ranging from 3.5×10^{-10} to 3.79×10^{-10} . Equation (21) was then

used to obtain the crack growth curve as shown in Figure 10 (C = 3.79 x 10^{-10} , $a_0 = 9$ mm and $\Delta \sigma$ = Ksi). This curve is viewed here as equivalent to the experimental mean curve, i.e. the $P_r(i) = 0.5$ curve.

The number of cycles corresponding to six discrete crack positions along the Paris-Erdogan curve was then used as input for Equations (16) and (20) where $P_r(i) = 0.5$. These six equations were solved by an iterative technique employing Newton-Raphson's method. Converging values for the six constants were found as followes:

> $C_1 = 0.0563$ $C_2 = 2.04 \times 10^{-7}$ $C_3 = 1.022 \times 10^{-7}$ $n_1 = 0.298$ $n_2 = 1.917$ $n_3 = -1.0$

Making use of these constants, Equations (16) and (20) were again utilized to generate a set of theoretical constant-probability crack growth curves as shown in Figure 11. These curves were compared to those experimentally obtained in Figure 5 and results of this comparison in the form of percentage of error of number of cycles corresponding to similar crack lengths are listed in Table 3 and summarized in Figure 12. On the basis of these results the following observations can be made:

1- The present model succeeds in describing the evolution of the crack growth by estimating the number of cycles required for the crack to advance from one discrete position along the fracture surface to the following one. The evolution process was carried out for constant-probability crack growth curves. From these curves the scatter in the crack length at a specific fatigue

as well as the scatter in the number of cycles required to advance the crack to a specific length, can be estimated. The results of the model, when applied to Al 2024-T3 that have been subjected to fatigue cycles with a constant stress amplitude, are in agreement with those experimentally obtained. Average error in the theoretical curves is estimated to be 5% which is within the scatter limit of any experimental curve. The accuracy of the model, however, seems to depend on the degree of agreement between the crack growth curve obtained using a continuum theory and the experimental mean curve. To examine this effect in the present application, the value of the parameter C in the Paris-Erdogan Equation was changed from 3.79×10^{-10} to 3.51×10^{-10} so that the deviation of the theoretical mean curve from the experimental one is increased as shown in Figure 10. As a result the average error in the prediction of the model, as illustrated in Figure 12, is increased from 5% to 13%.

2- The degree of scatter in the number of cycles corresponding to a specified state is observed to decrease as the crack length increases. At higher crack lengths all the cracks require about the same number of cycles to advance from one discrete position to the following one. This may then lead to the conclusion that the degree of scatter in the number of cycles to failure depends on the large scatter observed in the early stages of crack propagation. This is illustrated in Figure 14. The effect of scatter associated with "short" cracks on the variation in the number of cycles required for the crack to reach a critical length is currently under investigation by the authors.
3- The notion that there is a minimum number of cycles required for the

crack to advance from one position on the fracture surface to the next

immediate one has been theoretically derived in this model through the parameter I_0 in Equation (16). This concept of "incubation time" could be interpreted in relation to the time required for the crack tip propagation threshold (such as a specified mobile dislocation density, a thermodynamic activation level or any other criterion) to be satisfied. This concept warrants further study.

CONCLUDING REMARK

A model is presented here describing the crack propagation process as a discontinuous Markovian process. Based on this, the concept of constant-probability crack growth curves has been quantitatively derived. With the assumption that the crack growth curve given by any continuum crack growth model coincides with the experimental mean growth curve the proposed model has demonstrated that it could sufficiently describe the evolution of the crack length and associated scatter at any stress level.

AcknowLedgement ~ The authors wish to acknowledge support of this research program by the Air Force Office of Scientific Research through Contract No. AFOSR-84-0235TEF

REFERENCES

- Paris, P. and Erdogan, F., "A Critical Analysis of Crack Propagation Law," Journal of Basic Engineering, Trans. ASME, Series D. Vol. 85, December 1963.
- 2. Hoeppner, D.W. and Krupp, W.E., "Prediction of Component Life by Application of Fatigue Crack Growth Knowledge," Engineering

Fracture Mechanics, Vol. 6, 1974.

- 3. Gurney, T.R., "Fatigue of Welded Structures," Cambridge University Press, 1979.
- 4. Ostergaard, D.F. and Hillberry, B.M., "Characterization of the Variability in Fatigue Crack Propagation Data," Probabilistic Fracture Mechanics and Fatigue Methods: Application for Structural Design and Maintenance, ASTM STP798, J.M. Bloom and J.C. Ekvall, Eds., ASTM, 1983, pp. 97-115.
- Johnston, G.O., "Statistical Scatter in Fracture Toughness and Fatigue Growth Rate Data," Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance, ASTM STP798, J.M. Bloom and J.C. Ekvall, Eds., ASTM 1983, pp. 42-66.
- McCartney, L.N. and Cooper, P.M., "A New Method of Analyzing Fatigue Crack Propagation Data," Engineering Fracture Mechanics, Vol. 9, No. 2, 1977.
- 7. Forman, R.G., Kearney, V.E. and Engle, R.M., "Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures," Journal of Basic Engineering, Series D, Vol. 89, 1967.
- Ghonem, H. and Provan, J.M., "Micromechanics Theory of Fatigue Crack Initiation and Propagation," Engineering Fracture Mechanics, Vol. 13, No. 4, 1980.
- 9. Kozin, F. and Bogdanoff, J.L., "A Critical Analysis of Some Probabilistic Models of Fatigue Crack Growth," Engineering Fracture Mechanics, Vol. 14, 1981.
- 10. Ghonem, H., "Stochastic Fatigue Crack Initiation and Propagation

in Polycrystalline Solids," Ph.D. Thesis, McGill University, 1978.

- Bharucha-Reid, A.T., "Elements of the Theory of Markov Processes and its Applications," McGraw-Hill, New York, 1960.
- Weibull, W., "A Statistical Theory of the Strength of Materials," Ing. Vetenskaps Hkad. Handl., No. 151, 1939.
- Oh, K.P., "A Weakest-Link Model for the Prediction of Fatigue Crack Growth Rate," ASME Journal of Engineering Materials and Technology, Vol. 100, April 1978.
- 14. Tsurui, A. and Igarashi, A., "A Probabilistic Approach to Fatigue Crack Growth Rate," ASME Journal of Engineering Materials and Technology, Vol. 102, July 1980.
- 15. Virkler, D.A., Hillberry, B.M. and Goel, P.K., "The Statistical Nature of Fatigue Crack Propagation," ASME Journal of Engineering Materials and Technology, Vol. 101, April 1979.
- 16. Yang, J.N., Donath, R.C. and Salivar, G.C., "Statistical Fatigue Crack Propagation of IN 100 at Elevated Temperatures," ASME Int. Conf. on Advances in Life Prediction Methods, Albany, N.Y., April 18-20, 1983.

لتنمدنام

Crack Length Position r	I _o (cycles)	B (x 10 ⁻²)	к (х 10 ⁻³)
55	3166	5.5	0.617
65	2269	5.8	0.856
75	1706	6.0	1.133
85	1330	6.2	1.446
95	1066	6.4	1.796
105	873	6.6	2.183
115	729	6.8	2.604
125	618	6.9	3.063
135	530	7.1	3.555
145	460	7.2	4.086
155	403	7.3	4.647
165	356	7.5	5.249
175	317	7.6	5.885
185	283	7.7	6.549
195	255	7.8	7.249
205	231	8.0	7.984
215	210	8.1	8.751
225	192	8.2	9.547
235	176	8.3	11.040
245	162	8.4	11.127

Service Service

Section 2

Participant in

witting Bank

Table 1: Values of B, K and I₀ for Different Crack Length Position r ($\Delta x = 0.2$ mm)

TEST CONDITION I

her Winger

Crack Length Position	I _o (cycles)	B (x 10 ⁻¹)	K (x 10 ⁻⁴)
6	10280	1.915	0.946
7	8036	2.715	1.117
8	7203	2.836	1.719
9	5460	3.014	2.144
10	4169	3.143	3.206
11	3387	3.263	3.777
12	2806	3.518	4.407
13	2326	3.981	5.150

TEST CONDITION II

Crack Length	I	B	K _4
	(cycles)	(x 10 ')	(x 10 ⁻)
6	39940	2.189	0.268
7	28870	2.423	0.334
8	24050	2.688	0.4273
9	14410	2.998	0.4675
10	9275	3.228	0.692
11	7618	3.308	1.014
12	6402	3.637	1.017
13	5704	3.834	1.136

Table 2: Values of B, K and I_0 for Different Crack Length Positions ($\Delta x = 0.1$ in)

Experimental Constant-Probability Crack Growth Curves Error Between the Theoretical and Percentage Table 3:

0. 352

463 514 732 732 732 732 732 X ERROR 0 ~ ~ @ 0 0 0 0 0 --00 -icininicini di 001 Ś ญ์ เม่ ND. CYCLES (THEOR.) 7475.0 14633.0 21493.0 21493.0 246993.0 24399.0 51911.0 51911.0 57319.0 57319.0 57319.0 677555.0 677555.0 677555.0 87980.0 87980.0 171885.0 171885.0 171885.0 171885.0 22240333.0 2214723.0 22240333.0 2214723.0 2214723.0 2257392.0 2257392.0 2257392.0 2257392.0 2257392.0 2257392.0 2257392.0 00 265893. (269530. (275836. (275850. (275850. (275850. (NO. CYCLES 0000000000 000 0 0 00 0.0 7584. 0 14513. 0 20946. 0 27321. 0 33093. 0 33093. 0 33093. 0 53349. 0 5447. 0 544 110375. 135245. 135181. 171665. 185304. 185304. 185304. 2217928. 2217928. 2217928. 224015. 224015. 224016. 2240733. 2245708. 263334. 265885. 256352. 267913. 260165. STATE 1 ERROR ND. CYCLES 246034. (249047. (251797. (254314. NO. CYCLES (EXPTL.) 19944.0 31221.0 31221.0 41237.0 41237.0 55394.0 55394.0 55394.0 55394.0 55394.0 55394.0 55310.0 69760.0 1131994.0 1131994.0 1131994.0 1131994.0 1131994.0 2019326.0 2019327.0 201937.0 201957.0 2010 00 o o Q ŝ O 243921. (246261. 1 248183. (201932. 216804. 222998. 228413 233200. 237419. 7160. 240980. 0. 300 **STATE** ď, ERROR ND. CYCLES 6256. 0 17986. 0 23491. 0 23491. 0 23491. 0 23491. 0 234925. 0 47795. 0 662483. 0 68265. 0 68265. 0 68265. 0 71920. 0 1143715. 0 1125712. 0 1125712. 0 1125712. 0 1125713. 0 1125713. 0 1125713. 0 210625. 0 210625. 0 210655. 0 210655. 0 210655. 0 210655. 0 210655. 0 210655. 0 200555. 0 200555. 0 200555. 0 200555. 0 2005555. 0 2005555. 0 2005555. (THEOR.) 0 0 000 228052. 230571. 222250. 225290. 232891. **6579.0** 12820.0 12820.0 29117.0 29117.0 38160.0 4744.0 51371.0 51371.0 58831.0 58831.0 58831.0 652333.0 58831.0 651371.0 65102.0 116986.0 116986.0 1179030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 1175030.0 ND. CYCLES (EXPTL.) 216421. 220380. 223699. 226445. 228605. 230391. 0.647 STATE i.

Continued .. m Table

	-																									_									
	x Error		6.446	7.187	9.087	8. 299	8. 349	9.909	11.401	12.311	13. 161	13.477	13.969	14.005	14.479	14.681	15.037	14.573	12.411	11.482	10.363	9. 733	9. 051	8. 261	7. 618	6.962	ė. 23 6	5. 581	5.014	4.668	4. 503	4.428	4.452	4.606	4.823
	ND. CYCLES (THEOR.)		9050.0	17717.0	26025. 0	33995. 0	41648.0	49002.0	56075. 0	62882.0	69438.0	75756.0	B1849. 0	87729.0	93407.0	98893.0	104197.0	148919.0	182477.0	208577.0	229452.0	246528.0	260753.0	272785.0	283094.0	292022.0	299829.0	306713.0	312830.0	318300. 0	323218. 0	327666.0	331706.0	335393. 0	338770.0
E01 .	ND. CYCLES (EXPTL.)		8502 0	16529.0	23857.0	31390. 0	38368. 0	44584.0	50336. 0	55989. 0	61362.0	66739.0	71817.0	76952.0	81593.0	86233. 0	90577.0	129977.0	162330.0	187094.0	207907.0	224661. 0	239112.0	251969.0	263055. 0	273014.0	282229. 0	290501.0	297894.0	304104.0	309289. 5	313773. 5	317566. 5	320624. 3	323183.8
	BTATE		46	47	48	49	8	51	25	50	40	52	96	57	96	65	09	20	8	8	100	110	120	130	140	150	160	170	180	190	õ	210	220	230	240
	x Error		1.410	2. 9 82	· 5. 728	5. 773	6. 322	7.826	9.403	10. 264	11.099	11. 783	12. 380	12.899	13. 358	13. 7 30	13. 957	14.136	12. 477	11: 686	10. 755	10.188	9. 437	B. 613	7.912	7. 232	. 6. 475	5. 825 .	5. 261	4. 932	4. 732	4. 636	4. 669	4.810	5. 037
	ND. CYCLES (THEOR.)		8556. 0	16750.0	24604. 0	32138.0	39372. 0	46323.0	5300B. 0	59441, 0	65637.0	71608.0	77366.0	82922. 0	88287. 0	93471.0	98482.0	140727.0	172411.0	197049.0	216750.0	232861.0	246280.0	257627.0	267346.0	275763.0	283123.0	289610.0	295374.0	300527.0	305160.0	309352.0	313158.0	316631.0	319813.0
102	NO. CYCLES (EXPTL.)		8437. 0	16265. 0	23271.0	30384. 0	37031.0	42961.0	48452. 0	53908. 0	59080.0	64060.0	68843. 0	73448.0	77883.0	82187.0.	86420.0	123298.0	153285. 0	176432.0	195702.0	211331_0	225042.0	237197.0	247745.0	257164.0	265905. 0	273669.0	280612.0	286401.0	291373. 5	295646. 5	299187. 5	302099. 3	304475.8
	STATE		46	. 47	48	49	ŝ	51	52	53	4 5	- 22	36	57	28	59	9	04	8	06	<u>1</u> 0	110	120	130	140	150	160	170	180	190	200	210	220	230	240
•	KOR .		0. 609	2.033	4.111	4.046	5.375	6. 68 3	7. 933	8. 753	9. 618	10.308	10.872	11.404	11. 703	12. 020	12.314	12.926	11.793	11.171	10.425	9.766	B. 976	8. 122	7.367	6. 633	5. 924	5.311.	4, 770	4.431	4.198	4.087	4.103	4.258	4. 500
	ND. CYCLES (THEOR.)		7998.0	15657.0	22997. 0	30038.0	36798.0	43294.0	49540.0	55551.0	61339.0	66917.0	72296. 0	77487.0	82499. 0	87341.0	92021. 0	131469.0	161043.0	184032.0	202410.0	217437.0	229949.0	240528.0	249586.0	257430.0	264289.0	- 270335.0	275704.0	280505.0	284821.0	288724.0	292269.0	295505.0	298467.0
530	NO. CYCLES . (EXPTL.)	,	8047.0	15345.0	22089. 0	28870. 0	34921.0	40582.0	45899.0	51080.0	55957. 0	60664.0	65207. 0	69555.0	73856.0	77969.0	81932.0	116421.0	144055.0	165539.0	183301.0	198092 0	211008.0	222459.0	232461.0	241368.0	249507.0	256701.0	263152.0	268602. 5	273347.0	277386.0	280749. 5	283435. 5	285613. 3
	STATE		46	47	4 8	49	0 E	51	52	55	45	56	36	57	99	59	09	20	80	8	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240

Same and a state the second

Reality without a straight built

Table 3: Continued

ł

5

Figure 2: Schematic of the Proposed Fatigue Crack Propagation Model

6

X

ĘĮ.

ĥ.

ADDRESS PROVIDENCE

B

Figure 6(a)

Figure 6(b)

Figure 7: Experimental Constant-Probability Crack Growth Curves for a) Test Condition I and b) Test Condition II (Ref.(16))

Figure 8(c)

Figure 8: Relationship Between B, K and I_O and Crack Length Position for Test Condition I for Ref (16)

Figure 9(b)

Figure 9: Relationship Between B, K and I_O and Crack Length Position for Test Condition II in Ref (16)

1,77576762

are the second

والمشالك

Section 1

A Real

