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1. Suumnary

'-Astochastic model describing the crack evolution and scatter

associated with the crack propagation process has been built on the basis

of the discontinuous Markovian process. In this model the distributions

of both the propagation life necessary to reach a specified crack length

and the crack length at a specific number of cycles are derived in terms

of constant probability crack growth curves. The significance of this

model is that, by considering the crack growth curve obtained using any
continuum model as being the mean growth curve, the present model is

sufficient for the identification of the crack evolution and associated

scatter without the necessity of performing scatter experiments. The

validity of the model is established by comparing crack growth curves

generated to Al 2024-173 and Al 7075-T6 at specific loading conditions

with those experimentally obtained and reported in literature. Emnphasis

is placed, during the development of the model, on its adherence to the

physical aspects of the crack growth mechanism and the degree of agree-

ment between theoretical results and corresponding experimental data.

SC 2. Objectives

2.1 Theoretical

The major objective of this two years research program was to

'5...establish a quantitative model to describe the crack front evolution

based on the fact that the crack growth is a stochastic discrete process

where characteristics are influenced by the random nature of real

polycrystalline solids. In the proposed model, which is based on the

Markovian pure birth process, a transition intensity x, was considered

an important element in establishing the crack front distribution.
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Here X was assumed to depict the combined effects of the microstructure

and loading parameters and was assumed to include a coupling factor to

account for the strong nearest-neighbor-interaction related to the

spatial distribution of conditional fracture states of points along the

crack tip front. Obtaining an explicit expression for X was thus an

objective in the study.

2.2 Experimental

An experimental test program using a closed-loop servohydraulic

testing system and a scanning electron microscope was proposed to study v
the fracture surface morphology. This would be assisted by a modified

mapping technique capable of counting striations as well as measuring

striations, spacings and excursions. This combined test procedure was

proposed to provide an experimental description of the crack front and

to generate the statistical data required for verifying the theoretical

elements of the proposed theory. The experimental program was proposed

to be carried out concurrently with the analytical development of the .

proposed theory and to be completed during the two year term of the

research program.

3. Status of the Research (Period 09/15/83-09/15/84)

A model predicting evolution and scatter of the crack tip was

established on the basis of the Markov process. While the model and

efforts made to verify its concept are described In detail in Appendix

I, the outline of the model and Its results are as follows:

1. The model is based on the premises that scatter data of the

crack growth process could be grouped to identify a family

of crack lengths versus number-of-cycles curves, each of

S - em 45.•
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which is a constant probability transition curve. The governingI

equation for such a cruve was developed as:

where P r(1) is the probability of the crack being at position r

along the fracture surface after i cycles elapse; B and K are

crack length dependent variables and 10 is the minimum numberI

of cycles required for the crack to advance from one position

on the fracture surface to the next.

2. Using published data on the scatter of 68 replicate tests

carried out on Al 2024-T3, the results were arranged to produce

a family of crack lengths versus number-of-cycles curves. Each

of these curves was constructed by joining growth lines of

identical transition probability, P r In the present analysis

eight curves were selected; their transition probabilities are:

0.95, 0.85, 0.72, 0.64, 0.50, 0.40, 0.20, and 0.10. The median,

i.e. P r(i) = 0.5 curve, which can be generated by the Paris-

Erdagan Equation, was selected to provide information which

would be used to derive the parameters B, K and I.

3. Using the constant probability equation, a set of theoretical

curves corresponding to that obtained experimentally in step 2

was generated. Agreement between these two sets of curves

was found to be in the range of 5%.

In addition to these major results, the concept of "incubation time"

has been theoretically derived in this study. This concept, which

identifies an absolute minimum time for the crack tip to advance from
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one position to the following position, could be understood in terms of

~the crack tip threshold properties and could evolve as a critical element

in the understanding of the crack growth mechanism.

4. Technical Publications

Three papers have been submitted to one journal and two conferences,

they are: N
1. Probabilistic Description of Fatigue Crack Growth in Poly-

crystalline Solids. Accepted for publication in Int. J. of

Engineering Fracture Mechanics.

Authors: H. Ghonem and S. Dore

2. Crack Evolution and Scatter During Crack Propagation Stage

in Polycrystalline Solids:

Submitted to:

- Structure, Structural Dynamics and Materials Conference,

Orlando, FL, April 1985.

- Reliability, Stress Analysis and Failure Prevention

Conference, Cincinnati, Ohio, Sept. 1985

3. Critical Analysis of Probability Models for the Crack Growth

Process. To be submitted to Int. J. of Engineering Fracture

r7 Mechanics.

Authors: H. Ghonem and S. Dore.

Personnel Associated with the Research Efforts

Dr. H. Ghonem Principal Investigator

'9 Mr. S. Dore Graduate Student

Mr. S. Grover Graduate Student

Mr. H. Bui Undergraduate Student

-°



-5-

- Thesis expected to be finished April 1985

Probabilistic Description of Fatigue Crack Growth in Polycrystalline

Solids

Recipient: S. Dore

Degree: Masters of Mechanical Engineering
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INTRODUCTION

Laboratory tests conducted on different polycrystalline materials

exhibited considerable variation in the crack growth characteristics

data. This variation, or scatter, is considered a major factor in the

gap that exists between theoretical predictions of existing continuum

crack propagation models and experimental observations.

Several studies, employing theory of probability concepts, have

been developed to predict and characterize the variation in crack

propagation data. These studies generally follow two approaches. The

first approach is based on the introduction of random variables en-

compassing the scatter sources to replace the deterministic parameters

in continuum crack propagation rules such as the Paris-Erdogan Equa-

tion (1) which is widely studied and used. The result of this opera-

tion is viewed as a sample crack growth equation by which mean crack

position and associated variance can be calculated. Examples of models

belonging to this approach are those of Hoeppner and Krupp (2),

Gurney (3), Ostergaard and Hillberry (4) and others (5-7).

The second approach is based on the assumption that the crack

propagation process could be formulated in terms of a particular dis-

continuous Markovian process. This leads to the description of the

crack length in the form of its probability distribution whose evolu-

jtion in time characterizes the non-deterministic nature of the crack

propagation process. Examples of these models are found in the work

of Ghonem and Provan (8) and Bogdanoff and Kozin (9).jThis paper is an attempt to extend the concepts presented in
Ref. (8) to produce a theoretical method which will estimate the



crack growth scatter at any stress level. This is achieved by developing

the sample functions of the crack growth process in terms of a constant-

probability crack growth criterion. Mathematical elements of this

criterion are detailed in the first part of this paper while the second

part deals with the use of the model in a numerical example to estimate

crack growth scatter in Aluminum 2024-T3. Emphasis is placed on the

adherence of the model to the physical aspects of the crack growth

process and the degree of agreement between the theoretical results

of the model and corresponding experimental data.

MATHEMATICAL ELEMENTS OF THE MODEL

The stochastic model of the fatigue crack propagation as briefly

described in (8) is developed in terms of a general pure birth, dis-

continuous Markovian stochastic process. The model is based on the

assumption that the crack front can be approximated, as shown in

Figure 1, by a large number of elements a, t = i,...,M, each of which,

in terms of the theory of probability, identifies a statistical trial

or experiment. The fracture state of the th trial at cycle i is

given by the crack length or the random variable (a. whose evolution--- _

with time shall then be established. a will hereafter be referred

to as a..

Due to the built-in limitations of all experimental techniques

the observed value of ai can only be specified within the range of:

x < ai< x + Ax (1)

where Ax is the experimental error and x is the crack position cal-



culated as (see Figure 2):

x r Ax ; r < r<rf (2)
0f

Here r identifies the observable zone or state along the fracture

surface; r0 is the initial propagation state, rf is the state just

prior to catastrophic failure of the specimen and rl, r2 ,...rf 1 are

the intermediate zones.

Given that the crack is in state r, then after i cycles have

elapsed from the instant of reaching r, one of two events would occur;

a. would remain in state r (event rE or a. would not be in state r V

(event SEi). The following observations can now be made:

I- Due to the fact that the propagation process is an irreversible

one, the crack, if it does not stay in r, must exist in a state

greater than r.

2- Since it is not possible for the crack to propagate from one state

to any other state without penetrating the immediate neighboring state,

each crack could then be identified by the number of cycles required

to advance from a given state to the following one.
Based on these observations the two events rE and SEi can be seen

as the element of a measurable sample space s, see Ref. (9), and the

following definition of the probability measure of ai becomes possible.

At any fatigue cycle i the probability that a is in state r, i.e.

the probability of rEi , is defined as:

P {a i  rE P {x < a < x + Ax }
P. { . .



i.e. p(rE) = Pr(i) (3)

Therefore the probability of ai not falling within r is

P(SEi ) = Ps(i) = 1 - Pr(i) (4)

Here P s(i) continuously increases as the number of cycles increase.

Furthermore, it is known that the existence of the crack front

at a particular position inside the material depends on its present

mechanical and microstructure details and is not directly influenced

by the details of any of its other previous positions. More specifi-

cally, the probability of ai propagating from state r to r+l in the

cycle interval (i,i+Ai) depends on the event rE. and is independent
1

of any event q E, PEo occurring prior to i; O<j<i. This can be

expressed as:

P {tE lrEi , ,..., PEo } = P {tEi/rEil (5)

where t = r+l and / denotes a conditional probability measure. These

characteristics together with the evolution of ai within the two-

event space S, describe a discontinuous Markovian process. The func-

tion Prt(i) could then be considered the transition probability link-

ing the probability measures of two consecutive states r and t;

t = r+l, along the fracture surface.

It is now possible to describe the propagation process of the

crack front in terms of the following criteria:



1- The probability of ai propagating to a state different than r

in Ai cycles is given by

Ps(Ai) = p{r+lE r E + 0(M)sAi / ri L (i

= X r Ai + 0(Ai) (6)

where Xr is a positive parameter describing the crack transi-

tion rate from state r to t in Ai cycles and is thus considered

a material- and time-dependent variable, see Bharucha-Reid (11).

2- The corresponding probability that ai will be in state r

during the cycle interval Ai is:

ri - P{r / EiI + 0 (Ai)

= (I - xr Ai) + 0 (Ai) (7)

3- The probability that ai is in a state different from r+l is:

Prt(Ai) = PtE / rEd

= 0 (Ai) ;t > r+l (8)

Since

p{rE = p{r / rE p{rE (9)
l+Ai "Ai iL I

Therefore substituting Equations 6, 7 and 8 in Equation 9, the proba-

bility of the event rE can be obtained as:
EAi

A.A



P r(i+Ai) = (1 - xr Ai) P r(i) + 0 (Ai) (10)

By transposing and taking the limit Ai+O, Equation (10) becomes:

dPr(i )

di X r Pr(i )  (11)

The solution of this equation is:

In P = f r di + C1  (12)

where C1 is a constant.

An important element in solving this equation is the parameter Xr

which is seen here as a measure of the crack growth rate. This measure

is assumed to have the following properties:

1- In the presence of continuous cyclic loading the longer the cycle

duration during which the crack is in a specific state, the higher

the probability that the propagation threshold of the crack tip is

satisfied and the higher the probability that the crack will ad-

vance. This indicates that in a general case, Xr increases

monotonically with an increase in the number of cycles i

2- Xr being a material-dependent variable should then possess a non-
'Sr

zero positive value at cycle i = 0

Based on these observations Ar is chosen to have the following form:

Ar = c2 eKi (13)

r 2



where C2 and K are crack-positiondependent and time dependent parameters.

Substituting (13) in (12) one obtains

n P = - B eKi + C1  (14)
rJ

where

B-C K

Upper and lower limits of Pr(i) in the above equation are

I > Pr(i) > 0

The form of Equation (14) suggests that i has a lower boundary which

satisfies the upper limit of pr(i). This means that Equation (14) will

be valid only for i > 10 where 1 is the lower boundary of i or simply

the minimum number of cycles required for the crack to advance from

state r. In this approach, concepts such as those of the weakest-link

theory by Weibull (12) and others (13,14) have not been taken into

consideration. Hence, the upper limit condition for Pr (i) can be

expressed as:

Pr(i)=1 i < 10

By invoking this upper limit condition on Equation (14) the constant

C1 is obtained as

I



~KIo'.

C1 =8 e (5)]

Equation (14) could then be written in the form: "-

KI Ki

Pr(i) eB(e -e ) 1 0

(16)

P (1) = 1 ; < I
r 10I

This result, illustrated in Figure 3, describes a set of curves which

can be obtained by varying P (i). Each of these curves is a constant
r

probability curve identifying the discrete crack position and the

corresponding number of cycles. Since the variables B, K and Io are

functions of the crack length, they are related to the crack length

through certain constants. These constants can be determined by

using one known constant probability crack growth curve and Equation

(16) consequently becomes fully defined. The significance of this

concept is that if the crack growth curve obtained by using a con-

tinuum model is considered as being the mean growth curve, i.e., the

Pr(i) = 0.5 curve, a view that is consistent with the application

of the majority of the continuum models, the parameters B, K and 10

can then be calculated and Equation (16) becomes sufficient to iden-

tify the crack length and associated scatter in number of cycles at

any stress level without the need to perform scatter experiments.

In the next part of the paper this model will be employed in a

numerical example to estimate the crack growth curves of Aluminum

2024-T3 and results will be compared to available experimental

data.
V.:.;
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APPLICATION

The first step to be dealt with here is the determination of the

unknown variables B, K and 1 0 in Equation (16). To achieve this the

authors utilized experimental crack growth scatter data obtained by

Virkier, Hiliberry and Goel (15) and Yang, Donath and Salivar (16).

The first set of data (15) is obtained from 68 identically pre-

pared Aluminum 2024-T3 tension specimens with a central slot perpen-

dicular to the loading axis. The data consists of the number of

cycles necessary to reach the same specified crack length for each

specimen; 164 crack lengths are recorded ranging from 9 nun to 49.8 mmn

for a half crack length. The 68 sample crack growth curves are shown

in Figure 4. These curves were utilized to obtain constant probability

crack growth curves as follows: The total crack length was divided

into 204 states; each with a width of 0.2 mmn. The number of cycles

spent in each state was calculated and arranged in ascending order;

- the largest number was assigned a probability of:

P r(M = I - (x/68) ; x = 68

and so on, up to a probability of:

P r(i) = I - (x/68) ; x = I

for the shortest number of cycles. Points with equal probability

were connected and a set of ten constant probability curves was

generated as shown in Figure 5. Data points representing the number



of cycles corresponding to similar discrete crack positions along three

different constant probability growth curves, P r(i) = 0.5, 0.50 and

0.95, where used as input for Equation (16) to determine the variables

B, K and 10. The values obtained are listed in Table (1). These values

are plotted versus the crack length position i.e. state r in Figure

6(a, band c); and by using regression analysis the following relation-

ships were constructed.

B = 0.018 r0 .28

K = 2.498x10"7 r1"95  (17)

Io = 0.94x10 7 [(r-l) 1 .01  r- I 0 1

To confirm these relationships, another set of crack growth scatter

data of IN 100, a superalloy used in certain gas turbine engines, was

used (16). The data consisted of the distribution of crack size as *:

function of load cycles for 2 different load conditions as shown in

Figs. 7(a,b). Analysis similar to that done on the work of Virkler

and co-workers was carried out, yielding two sets of values for B,

K and 10. They are shown in Table (2). These values are again plotted
'iI

vs the crack length position as shown in Figs. 8(a,b,c) and 9(a,b,c)

and the following relationships were obtained.

Test Condition I

B = 0.055 r076

K = 1.362x10"6 r 2 . 34  (18)

10= 2.743x105 [(r-l)-0.71 r-0.71

10 Er .l) - r,



Test Condition II

B = 0.059 r0.
73

K = 6.68x10 7 r2 015

Io = 1.843xlO 6[(r-)- 45  r-

By observing Equations (17), (18), (19) general forms of B, K and 1 0

in terms of crack length a, could be written as

ni
B C a

n2
K C2 a (20)

n3  n3 ]-'

Io = C3 [(a- x) - a]

An attempt can now be made using Equation (16) in conjunction

with Equation (20) to generate constant probability curves for the

test conditions of Virkler et al (15). These curves could then be

compared to those experimentally obtained in Figure 5. The first step

is to obtain the mean crack growth curve utilizing, as mentioned before,

a continuum crack growth equation. In this application the Paris-

Erdogan Equation in the following form is used to generate such a

curve:

Ai 1 m1 I-m 1-m n (21)
C(Ao /)n ["-;m

for Al 2024-T3 the index n is equal to 4 while the parameter C attains

values ranging from 3.5x10 10 to 3.79xl10 O . Equation (21) was then

-P 7
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used to obtain the crack growth curve as shown in Figure 10 (C = 3.79 x

10 10-l a° = 9 mm and Aa = Ksi). This curve is viewed here as equivalent

to the experimental mean curve, i.e. the P r(i) = 0.5 curve.

The number of cycles corresponding to six discrete crack positions

along the Paris-Erdogan curve was then used as input for Equations (16)

and (20) where P (i) = 0.5. These six equations were solved by an
v r

iterative technique employing Newton-Raphson's method. Converging

* values for the six constants were found as followes:

C1 = 0.0563 C2 = 2.04x10
-7  C3 = 1.022x10

-7

n I = 0.298 n2 = 1.917 n3 = -1.0

Making use of these constants, Equations (16) and (20) were again

utilized to generate a set of theoretical constant-probability crack

growth curves as shown in Figure 11. These curves were compared to
,V those experimentally obtained in Figure 5 and results of this compari-

son in the form of percentage of error of number of cycles corresponding

to similar crack lengths are listed in Table 3 and summarized in

Figure 12. On the basis of these results the following observations

can be made:

I- The present model succeeds in describing the evolution of the

V: crack growth by estimating the number of cycles required for the

crack to advance from one discrete position along the fracture

surface to the following one. The evolution process was carried

out for constant-probability crack growth curves. From these

curves the scatter in the crack length at a specific fatigue

wI



as well as the scatter in the number of cycles required to advance the

crack to a specific length, can be estimated. The results of the

model, when applied to Al 2024-T3 that have been subjected to fatigue

cycles with a constant stress amplitude, are in agreement with those

experimentally obtained. Average error in the theoretical curves is

estimated to be 5% which is within the scatter limit of any experimental

curve. The accuracy of the model, howeverseems to depend on the degree

- of agreement between the crack growth curve obtained using a continuum

theory and the experimental mean curve. To examine this effect in the

present application, the value of the parameter C in the Paris-Erdogan

Equation was changed from 3.79 x 10- 10 to 3.51 x 10- 10 so that the

* *. deviation of the theoretical mean curve from the experimental one is

increased as shown in Figure 10. As a result the average error in the

prediction of the model, as illustrated in Figure 12, is increased

from 5% to 13%.

2- The degree of scatter in the number of cycles corresponding to a

specified state is observed to decrease as the crack length increases.

At higher crack lengths all the cracks require about the same number

of cycles to advance from one discrete position to the following one.

This may then lead to the conclusion that the degree of scatter in the

number of cycles to failure depends on the large scatter observed in

the early stages of crack propagation. This is illustrated in Figure

14. The effect of scatter associated with ushorti cracks on the

variation in the number of cycles required for the crack to reach a

critical length is currently under investigation by the authors.

3- The notion that there is a minimum number of cycles required for the

crack to advance from one position on the fracture surface to the next

Pb I.



immediate one has been theoretically derived in this model through

the parameter 10 in Equation (16). This concept of "incubation time"

could be interpreted in relation to the time required for the crack

tip propagation threshold (such as a specified mobile dislocation

density, a thermodynamic activation level or any other criterion)

to be satisfied. This concept warrants further study.

CONCLUDING REMARK

A model is presented here describing the crack propagation process

as a discontinuous Markovian process. Based on this, the concept of

constant-probability crack growth curves has been quantitatively

derived. With the assumption that the crack growth curve given by any

continuum crack growth model coincides with the experimental mean

growth curve the proposed model has demonstrated that it could suf-

ficiently describe the evolution of the crack length and associated

scatter at any stress level.
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Crack Length 1 0 B 2K
Position r (cycles) (x 10- ) (x 10-3

55 3166 5.5 0.617

65 2269 5.8 0.856

75 1706 6.0 1.133

85 1330 6.2 1.446

95 1066 6.4 1.796

*105 873 6.6 2.183

115 729 6.8 2.604

125 618 .6.9 3.063

135 530 7.1 3.555 C

145 460 7.2 4.086

155 403 7.3 4.647

165 356 7.5 5.249

175 317 7.6 5.885

185 283 7.7 6.549

195 255 7.8 7.249

205 231 8.0 7.984 '

215 210 8.1 8.751

225 192 8.2 9.547

235 176 8.3 11.040

245 162 8.4 11.127

Table 1: Values of B, K and I0 for Different
Crack Length Position r (Ax =0.2 mu)
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TEST CONDITION I

Crack Length 1 0 B K
1osiion

Posiion(cycles) (x 10 )(x 10)

6 10280 1.915 0.946

v7 8036 2.715 1.117

8 7203 2.836 1.719

.49 5460 3.014 2.144

10 4169 3.143 3.206

11 3387 3.263 3.777

12 2806 3.518 4.407

13 2326 3.981 5.150

TEST CONDITION II

Crack Length 1 0 B K
Position (cycles) (x 101)l (x 10-4

6 39940 2.189 0.268

7 28870 2.423 0.334

8 24050 2.688 0.4273

9 14410 2.998 0.4675

10 9275 3.228 0.692

11 7618 3.308 1.014

12 6402 3.637 1.017

13 5704 3.834 1.136

Table 2: Values of B, K and 10 for Different
Crack Length Positions (Ax =0.1 in)
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Figure 2: Schematic of the Proposed Fatigue
Crack Propagation Model
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Figure 6: Relationship Between B, K
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Based on Experimental Data
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