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(1 l. INTRODUCTION
;ﬁg
{ ]
v " pressure vessels and naval structures are obtained by specific assemblage of
Ay
s. i -
2 plate and shell panels. The knowledge of the behavior of these structural
,\;
Qg . components is essential if optimum design and integrity of the overall
. structure for a given set of parameters are sought. [1], [2]
L - T,
o 2 -
%; This report deals with the nonlinear analysis of arbitrary thin shell
F)
o
b structures subjected to static loads. The nonlinear analysis includes pre and
4
Q; post=buckling behavior for any degree of nonlinearity due to large
?? displacements and large rotations, but small strains.
"
= Despite the important research and development efforts made since the
beginning of the finite element method era, the analysis of shell structures
is still an open active research subject. The following questions are still
2 actively investigated:
L,
jg - how to approximate the veal three dimensional problem?
T
:5 - what type of finite element discretization is most appropriate?
0 - how to solve accurately and efficiently the nonlinear equations in
sﬂ' various situations of pre and post-buckling?
> L]
;' - how practical and general is the computer code that aimed to solve the
28 problem and what are its computer resource needs?
‘ff The object of our report is to present a formulation which includes some
N
o recent developments on nonlinear continuum mechanics, plate and shell finite
“ﬁ T elements, automatic solution and strategies for nonlinear equations and to
5
,3 present the possibilities of a computer code that is adapted for mini and
- micro-computers to solve moderately small size shell problems,
$
N
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The nonlinear formulations considered are a Total and an Updated Lagrangian

formulations [3], [4], [5] combined with flat simple triangular elements

D SIS,
B ¥ oY 2 ¥ a0 aVa”

«
.

having only 3 nodes and the 6 engineering degrees of freedom at the nodes.

[ad’]

The shell finite element is obtained from the superposition of the CST and the

Py X X X X
S Sl o
& - ¢ 8

DKT plate bending element known to be very efficient, reliable and effective .

for all thin plate bending analysis. (6], (7], [8], (9], (10], [11]. The

nonlinear equations are solved using various methods and strategies based on

AT AL

e R

the full or modified Newton—Raphson method to deal with the automatic

L

determination of the pre and post-buckling load displacement curves. Three

5 as

o
Aty

s
"..I'_.

basic strategies are considered: the load incrementation, the displacement

control method [12], [13], and the arc-length control method [14], [15], [16],

{171, [18]. The FORTRAN 77 routines dealing with the shell element and the

i

23 nonlinear solution procedures are compatible with the documented computer code

;& MEF presented in detai! in [19]. The numerical examples presented in this
report have been obtained using a VAX 11/750, a VAX 11/780 and an

-%; APOLLO/DN300.

3

The Lagrangian Formulations (TLF and ULF) considered in this report are

"'..’
5

discussed in chapter 1., The DKT18 triangular shell element is described in

?4 chapter 2. The solution strategy to deal with the automatic determination of
};ﬂ the load deflection curves is presented in chapter 3. The numerical results
;5{ are discussed in chapter 4. They deal with nonlinear behavior, buckling,

2% post~buckling and large rotations of elastic shells subjected to one variable
f:: load parameter.
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THE LAGRANGIAN FORMULATIONS FOR NONLINEAR SHELL ANALYSIS

Different configurationes of a shell in space.

We consider a shell structure with a fixed orthogonal coordinate system

XYZ

The

(Fig. 1):

°r refers to the undeformed (initial) configuration

1T refers to a deformed (intermediate) configuration in equilibrium
under a given set of loads 1f

T refers to a deformed (final) configuration in equilibrium under a

->
given set of loads f

purpose of the study is to describe as precisely as possible all

deformed shell configurations like T and T for given sets of loading,

prescribed displacements, boundary conditions .... The description

includes deformational aspects (displacements for °T, rotations, strains)

and mechanical aspects (true stresses at the material points).

Two Lagrangian formulations are considered in this report:

The Total Lagrangian Formulation (TLF). In this case all quantities
(displacements, strains and stresses) in the computational process
are related to the undeformed initial configuration. The
intermediate configurations IT can then be interpreted as final
configurations for different sets of loads or prescribed
displacements. To obtain the exact T solution for thin shells under
Kirchhoff's assumption, the nonlinear Green-Lagrange strain -

displacement expressions must be complete (no terms neglected).

These complete expressions are very complicated and imply second
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derivatives of all the components of the displacement vector u.

Therefore, this approach has not been retained for practical
nonlinear analysis unless further assumptions (like the moderate

rotation hypothesis) are made.

The Updated Lagrangian Formulation (ULF). 1In this case an
intermediate configuration 17 s used as a reference configuration
to obtain the (final) configuration T for a given set of parameters
(L0ads, «e.). The IT configuration is supposed to be known ( !T is
in fact a previous T configuration). That is, 1T can be fully
described both from the point of view of geometry and of mechanics
(internal stress field). There is theoretically no difference
between TLF and ULF (they both want to solve the same equilibrium
problem) that is to find TI. But practically we can take advantage
of the fact that IT is known and that we want to obtain a
configuration T "not too far” from I'. In ULF, T is a neighboring
configuration of lI'. Hence, we can consider approximate nonlinear
strain displacement relations instead of the complicated exact omes
to describe T from II'. This approach has been considered by many
authors for the nonlinear analysis of thin shells [20], [9], [2],

[21].
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2.2 The principle of virtual work

-

Pl e

We consider the equilibrium of a thin shell structure in configuration T

"

>
subjected to body forces f only. The internal stresses are described by
{ o0 } which is a vector of three components only, under the assumption of

plane stress (and neglecting the influence of transverse shear
deformation). The conditions of equilibrium in *I leads to the following

expression of the principle of virtual work:

‘l’=f<6e>{o}dv-f<6u>{?}dv=0
v v

for any { § u } such that:
{8ul=1{01}on S;;
v is the volume in T,

Sy 1s the surface with prescribed displacement,

{ §u } is an arbitrary virtual displacement vector which is

kinematically admissible,

{ §e } is a virtual strain displacement vector compatrible wirh { §u ;.

We note that the components of { §u } are defined with respect to the
tangent and normal reference axes of the shell.

The 3D virtual displacement field is of the form:

{Sul={8u, }+z {56}

z is the coordinate along the thickness h such that:

(3)

{ 6§ uy } are virtual displacements along two tangent directions x, y on

the deformed middle surface S and along the normal of S (Fig. 2). The

S

e =
A

b

-
o

. 3
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first two components of { & © } are the virtual rotations around axes

tangents in S. The third component of { § © } is zero:

§ ud 8 w,x
{ §uy } =-{6 v}» s {868 }=~<8w,y
§w Lo

Expression (2) is compatible with the so called Kirchhoff hypothesis
("normal remains mormal”). Eqs.1 to 3 after integration through the

thickness give:
Y= [(K8u> {N}+<8k> (MDA
S v

- [ (K Sup> {Fp }+< 88> {m Nds=0 (4
S

where:
{ N} is the three components vector of membrane (direct) forces
{M} is the three components vector of bending moments

{ § ey } 1is the three components vector of virtual membrane
strains

{ §x } is the three components vector of virtual curvatures

{

m ! are distributed forces along the tangent directioms x, y

Hh

and along the normal z

- fx
{fp )= fy (5)
fz
{m} is a two component vector of distributed hending moments acting

on the shell surface. (In general these components are zero.)

We note that expression 4 is very general and valid for any curved shell

surface where x and y are not necessary orthogonal curvilinear

- T . <.
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b) bending moments

- rigure 3. Shell stress resultants
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X coordinates., In the case of arbitrary curvilinear coordinates all
g
Fh expressions must be expressed in L2nsorial notation (with covariant and
3

.ﬂ contravariant quantities).

Ci

3

¥ {8 } and { § k } are expressions in terms of { § } and of the
. *m ‘o

" curvatures of the middle surface ({ § x } is an expression of the second
iry!
B\

ﬂ¥: derivative of 6 w).

3

e The positive components of { N } and { M } are given for an orthogonal
.;_ coordinate system on Figure 3.

N

-,
<}g The stress resultants are related with the stresses by:

h
4 h h

5 2 2

{n}=] {oldz; {M}=] {olzde (6)
- “h “h

e 2 2

Vv The Euler-Lagrange expressions associated with the variational principle

e
-

(Eq. 4) are the exact shell equilibrium equations and the mechanical

boundary conditions in terms of the stress resultants. These equations

are complicated, with coupling between { N } and { M } if the shell is

o

\)
?a described with arbitrary curvilinear coordinates.
)
'ﬂf If the shell is flat (or considered so) the three equilibrium equations
N
tzz are the classical ones:
g
-
oo Nyg,x * Ngy,y + fx =0
> T, =
E‘. Ngy,x + Ny,y + fy = 0 (7)
Mx,xx + ZMxy,xy + My,yy +£f,=0
\.'
,:.
Y
oy 9

¥

R e e F L
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Other expressions of the principle of virtual work (Eq. 1 or 7) can be

Iy defined using other reference configuration than I: the TLF involves °T

and ULF involves !T.

! .
/

10

(e

PSR B Sp SN

e SR

e el

-0 At e N 0

-

raY o S




S a-f e a-a i~ 00 A B RAR puei I gl pad gl gl s g g e g Sl A~ a8 il ard g o gllaadt Al P, A

4-ap A,

3

o el es 2
I AL P

2.3 The Total Lagrangian Formulation

-

2.3.1 General expressions

o

If we consider the arbitrary displacement field in Eq. 1 as the variation

S LY Ll

>
. of the displacement field oY between °T and I:

A Il Jepyg N

{6u}=8{oul={38,u}

then Eq. 1 becomes:

‘ Y= [<8e>{o}dv-[<&ud>{Ff }dv=0
g Y vV{Gou}={0}onsu (8)
¢ where the components of { § ou } can be defined with respect to the

deformed (unknown) coordinates x, y, z of T or with respect to the

[; coordinates °x, °y, °z in °T.
- Eq. 8 can be modified as:
Q] Y= [ <8e> {oS}dow=[ < 8ud> {f }dov =0 9)
n °v °v
'i where { oS } are the components of 2nd pisla - Kirchhoff (P.K.) stresses
y (tensor [ o8 ]) and { S € } are the variation of the Green-Lagrange
o strains (tensor [ o ]). [3]
1-:'
- We have the following relations:
L. {of } =oJ {F} (10)
& -1 -T
l:; [ 6S ] =oJ [ oU 1 [ 0] [ oul (11)
)
i
0 [ Sae ) = [ 86U 1T [ oU ] (12)
A
p J 1s the Jacobian of the deformation, i.e.:
5:, ¢
N,
& dv
.‘: J°=m=det[°l"]=det[°U] (13)
5 where [ oF ] is the deformation gradient at a point of the shell.
> 11
‘s

Tatsas
NN

i
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[ oF ] can be decomposed as:
[oF]'[oR][oU] (14)

where [ oR ] corresponds to a pure rotation between a set of coordinates

in °T and the deformed coordinates in T (attached at the same material

point). [ oU ] is the symmetic stretch matrix for the material point.

X% The Green-Lagrange (G-L) strains are:
g
=
2 200l =l FITIF1-11]1=101T[U]=-[1] (15)
h since [ oR ] is orthogonal.
027
,ﬁ% The components of [ o€ ] are quadratic expressions in terms of the
'-.“"-_}
o component displacement of U with respect to the coordinates x, y, z
: ° ° ° °
b s
o of °T. They are invariant with respect to rigid body motion.
4
N
o Eqs. 11, 13 and 15 show that under the assumption of small strains we
;?3 have:
b [ o8] =[ 0] (16)
& oJ =1 or deV = dv (17)
‘_:\‘.'
2
E“ Eq. 16 means that with the approximation of small strain the ond p_g
;;‘ stresses which are work conjugate to the Green~Lagrange strains,
{
R~
’2} corresponds to the “"true” Cauchy stresses in the deformed shell. The 20d
(L
L
Y P-K stress is therefore a material or co-rotational stress.
an
N This important result is valid for arbitrarily large rotations of the
3 28
fﬁ shell and will be used for both the TLF and ULF formulation.
A
ﬁf Eqs. 8, 9 and 16 show also that: .
U
l.‘
3...;' { e} = { &e } (18) .
3 12
.':"
‘p




Y ‘i,

]
A +*>
) Equation 9 is an expression of terms of the displacements ,u and of the

bt coordinates °x, °y and °z of °T.
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2.3.2. Finite element discretization

’?6‘
B s

- g
A
v

We consider a shell structure in its initial position °I. This shell

-

will be discretized by finite elements (an example using flat faceted

£ N
-

o

BRS

A

triangular and quadrilateral shell elements is presented on Figure 4).

Eq. 9 gives with Eqs. 16 and 17:

P

‘"'z(f<6°e>{°}dve"‘,;_[ < Sud> {f}dve=0 (19)
e ve

o KA 1‘

~a

where dVé = doV€ represents the elementary volume on a given element e.

gl
T
« .’_..

If the nodal variables on an element are { cu, } , than we can write:

T
L’

~
[Pt
-

{oe}’lonl{oun} (20)
28

é‘ { 6o } = { oBS ] { Souy 1} (21)
where [ oB ] and [ ,B§ ] both depend upon { cu, }

f Eqs. 19 to 21 give:

¥=-3< Soup> {org } =0 (22)
e

a.: with

{ olpn b= o ofext } - {ofint } (23)

{ ofjne Y =J [ oBSIT { 0 }dve (24)
ve

J < 8u> {f }dv =< Souy > { ofaxr } (25)
v

ft) After assemblage of all the elements:

14
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y.-<6°Un>{°R}-0

(26)
) for all { &U, } = {0 }on §;
e
s leading to:
Y
A
. { ok } = {oFext}" {oFint }= {0} (27) "
b
nty
%‘; { oU, } is the vector of global nodal variables (displacements between
;{Q °r and T).

{ oR (oUy) } is the so called residual global vector.

b
d

2
s
$ -y
oy W QLS
~

oFext ( oUp) 1} is the vector of the global external forces that may be

path-deformation dependant.

Y"".
w2,

<
ko

{ oFint ( oUp) } is the vector of global internal forces.

e
SO

A solution vector ( oU, } is such that { ,R ( ,U,) } = {0 } which

represents a system of nonlinear algebraic equations. These equations

{{{ will be solved using algorithms and strategies based on the

..' \-1‘

. Newton-Raphson method. We need, therefore, to define a Jacobian or
(-

d

=37

tangent stiffness matrix [ ,KT ] which results from the assemblage of

element [ o kp ] matrices.

W
‘# \ A symmetic [ okt ] matrix is defined by considering:

§¥ =] (K&bed> {80} +< 8e> {0}=-<&ud> {&})dve

- (28)
o) ve
S
!ftl The first term can in general be expressed as:
o
LY
bt I} = < Soup > ([ k2] + [ okn2 1) { &uy ) 290
"
L A The second term is
\' “,
oy |
Ip = < Supy > [ kg ) { Sou, } (30) 1
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The third term is:

I3 = < Sty > ([ oky ] { Goup }

So that we have:

6‘1"<50\1ﬂ>[okt] {Goun}

with

[ okg ] = [ ok2 1 + [ okpt ] + [ kg = [ oky
[ ok2 ] depends only on { ou, } if the material is nonlinear.
[ oko ] is the so called geometric stiffness matrix of the form

lokal =) [ B$ITIN])[BSG]dsS
Se

where [ B ¢ ] is constant in { ou, } and [ N ] is a 2 by 2 matrix of

membrane forces.

y Y v -, ~ o= o~
e W W AN oMy e W N

(31)

(32)

(33)

(34)

[ oky ] exists if the loading is path dependant (the case of hydrostatic

pressure).

In section 3 the above matrix quantities are discussed for a triangular

flat faceted shell element within the approximation of small

strains and moderate rotatioms.
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2.4 The Updated Lagrangian Formulation

2.4.1 General expressions

We assume now that an intermediate configuration 11 is obtained (we then

know all the quantities regarding geometry as well as internal stresses).
' 1
(The internal stresses in lT { ~ } are in equilibrium with the body

forces { i? 1)
We consider again Eq. 1 expressing the equilibrium in T with:
{Gu}EG{lu}={61u} (35)

where { 1u } are the displacement components from lr to I. Hence we
have:
p= [ &ed>{oldv-[<8ud> {f }dv=0

v v

(36)
v { Sju }= {0 }on S,

Eq. 8 is expressed in terms of 20d p—g stresses with reference to !T and

variation of Green-Lagrange strain between lrand T:

y=[<86e>{ Stdlv- < &ud> { T ldlv=0 (37)
ly 1 ly 1

with

{1 £ =0 (F} (38)

{(1St=1 3wl lpo) (vl T (39)

{ ¢ Y= [ &0 1T [ qu ] (40)
d v

lJ-dTv’detllF]=det[1U] (41)

18
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e

) [1F1=[R][,U] (42)
& 2 (€1 =1 FIT [ F1=111=0,017[ 0] -[1] (43)
A3

i‘

¢ With the approximation of small strains (section 3.1) Eq. 36 can be

;J N replaced by:

D y=[<8§e> {atdv = [<8ud> {f }dv=0

.ﬂ v v

WY (44)
é' V { §u }={0 }on §,

B

? with

3, (o= (la)s {y0)

(]

'

/] _ _ _ (45)
: {(EY=(1F 1+ (|}

{

; where { o0 } are the incremental stresses between !T and T and { {F } the
7

’ incremental forces between !T and T.

X

f In Eq. 44 { §;¢ } are dependent upon the variations of the displacements
': between !T and T and not upon the displacements { &u 1.

In general IT is a curved surface and the exact expressions of [ ;€] are

e

not simpler than [ o€ ]. In fact they are theorically identical when the
lower left index o is replaced by index 1.

19
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2.4.2 Finite Element discretization

{ The shell in configuration !T is discretized by finite elements. The
1 finite element matrices are of the same general nature as for the TLF.

*:* We just have to substitute index o with index 1.

X In defining the tangent stiffness matrix [ (ks ] by considering 8¢ Swe

%00 simply have to take account of the fact that:

{ 60}
f{f‘ and { & }

{610]’

{ T }

R\Q In the ULF the "solution” means to find the displacements and the

b additional stresses between lr and T that are such that:

{ 1R} = { 1fext } - { 1f4nr } = {0} (46)

/ 20
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P 3. DESCRIPTION OF A FLAT TRIANGULAR SHELL ELEMENT
\ 3.1 The DKT18 shell element for linear elastic shells,
:j:j
Etj The nonlinear analysis presented in this report is based on the
L discretization of shells by flat triangular shell elements having three
;{ nodes and the six engineering d.o.f. per node (Fig. 5):
A
ﬂ'i < up > =X Uy Vi w RX, RY; RZ,
. Uy Va Wy RX; RYy RZp (47)
.:-i U3 V3 W3 RX3 RY3 RZ3>
"y Uj, Vi, Wy 1 = 1,3 are the translational d.o.f with respect to the
3
K global coordinates axes X, Y, Z.
. RX;, RYy, RZy 1 = 1,3 are the rotational d.o.f. around the global axis
i X, Y, Z.
A8
'I:‘.
:;; The DKT18 element results from the superposition of the low order
Ll ™
K membrane constant strain triangular element CST with 6 d.o.f. and of the
:}g efficient bending triangular element DKT having 9 d.o.f. (Fig. 6).
‘:‘:
5
j}; The linear stiffness matrix of a DKT18 shell element can be expressed
o with respect to the local d.o.f.:
N %
o Cug > =<up vy W 8 8y 6y |
:.)' |
.t uy vy wy B eyz 0,9 (48)
N .
B uz vy w3 63 683 63>
[\
&4
. as [22]); [11]:
[)
k7T,
" [ kgl =[kpl + [ ky ] + [ kg | (49)
3
X
ah 21
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local d.o.f. at node:

u, v, w, 0x, 8y, 06z
global d.o.f. at a node:
U, V, W, RX, RY, RZ

RY

Figure 5. DKT18 Shell element
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[ ky ] is the stiffness matrix of the CST element. It is a simple matrix

with constant terms. No numerical integration is necessary since the

displacement u and v are linear.

[ kp ] is the stiffness matrix of the 9 d.o.f. DKT plate bending element.
This element is well documented in [6]), [7], [8]) and is Jbtained from the

the technique of discrete Kirchhoff constraints. This simple plate
bending element satisfies all convergence criteria (like :the patch-tests)
and has been found very effective and reliable for thin plate bending
analysis. It has shown good behavior with respect to element
distortions. The stiffness matrix of the DKT element is obtained exactly
(in linear analysis) with 3 numerical integration points in the elements

(19].

[ EOZ ] is a fictitious stiffness matrix with non-zero components related

to 671, 679, 8z3 only. This matrix is necessary in order to avoid the
singularity of the stiffness matrix in the case of copianar elements.
The coefficients of this matrix should be small enough so that they do
not modify the correct solution (with membrane and bending energy only)
and big enough to avoid numerical errors. Two approaches are considered.
The first is described in [ 23, Eq. 13.18 ] with a = 10~% for our
computations on double precision VAX computers. The second method is to
consider only diagonal coefficients with values a times the minimum of
the diagonal rotational coefficients of the bending stiffness matrix.

(10]

In the case of symmetrical material properties with respect to the middle

surface of the shell the stiffness matrices [ ky 1, [ k¢ ], [ kg ] are

not coupled so that a large number of coefficients of [ kg ] are zeros.

23
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The local coordinate x, y, z of an element are shown on Fig. 5. x axes

coincides with side 1-2 (origi. in 1) z is normal to the plane 123 (with
+ +>

direction resulting from the cross products of 12 x 13). y 1is such that

X, ¥, 2z are orthogonal and right-handed. The relation between the local

coordinates and the global ones are [22], [23];

{x}=[x] {X} (50)
with
<x>=<x,v9, 2>
(51)
<X>=<X, Y, 2>

[ A] is a 3 by 3 matrix of the direction cosines of x, y, z with respect

to X, Y, Z.

The element local d.o.f. { u, } are related to the global ones { v, } by:

{uy }=0T1 {u, } (52)

with
[ 2] 0

(T] = (53)

| o [ A]

Therefore, the stiffness matrix of a shell element in the global

coordinate system 1is:

(kg 1 =TTIT kg1 ([T (54)

If { f£q ] is a force vector resulting from the discretization of

24




distributed loads on the elements (components fy, ?& or £,) then the
corresponding force vector in the global coordinate system is:

{e£}y=0TI1T (£} (55)

After the process of assemblage, modification due to boundary conditions
and solution of the linear system we can obtain the strains and the

stresses at any point in the element:

{egt=10By] {umY+z[B ] {uf} (56)

where

<yl >=<u vy uy vy uz vy
Cgh>=<up 8 8 wy 68y &y w3 83 63> (57)

[ Bp ] is constant and [ By ] (the linear strain operator of the DKT

plate element) is linear in x, vy.

In the absence of coupling between membrane and bending effects we have:

{(N}=10Dg] [ By] {ul}
(58)
{MY=1[D,] [B] {ud}
and therefore:
{o}=10Dy] [ Byl (uM}+z (D) (B ] {ul) (59)

[ Dy ] and [ Dy ] are 3 by 3 membrane and bending material matrices. In

the ususal case of plane stress isotropic material:

25




?ﬁ: 1 v o -]

P = : 2
o [Dpl=T-2|v 1 O .[Dbl-l;_z_lbm] (60)
ogiz where E and v are Young's modulus and Poisson's ratio.

ig% Eq. 58 shows that in general the membrane forces are constant and the
S\E bending moments vary linearly.

RN

We have computed the stress resultants, the principal stresses and the

;uk Von Mises equivalent stress on the outer faces of the shell at the

;%§ maximum of 7 points per element (centroid, integration points, corner
;* nodes). The corner node values are discontinuous but can provide useful
iiﬁ: information with respect to node location and with respect to precision
W

::ﬁ in the results.

A

e The simple DKT18 shell elements has been used extensively for linear
;gz analysis of shells and is implemented in several computer codes working
Hf: on mini and micro-computers. The main disadvantage of the element are
‘}F the CST elemert as‘membrane element and sometimes the non-energy

 §£: assoclated 67 d.o.f.'s.
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3.2 The element matrices for TLF nonlinear analysis

Our TLF combined with the use of the flat triangular DKT18 shell element

-
R
A ' is based on the following definition of the G-L strain:
3
L {oed={eg b+ { gy} (61)
"1.1
1;- with
U,y +z eyvx
e
" {eg}={v,y -z B,y (62)
L
- U,y + V,y -z B,x - Sy
H
o
o
ol 1 2
B ’2' wax
- 1 2
':':' (gt Y =(z Wy (63)
'
2
N Wix %oy
b
gb where the lower left index o has been omitted everywhere for
N simplification, i.e.,u, v, w, 6 and ey are displacements and rotations
i with respect to axes x, y, z of the undeformed shell element.
3 { €g } is the vector of linear strains which leads to the linear
AQ stiffness matrices [ ky ] and [ k; ] presented in section 3.1.
.
“-:
' { ey } involves only derivative of w with respect to x and y. This
:: nonlinear part of G-L strain is associated with the so-called Von Karman
~: plate theory, that is this expression, will be valid only for large
[\
N displacements and moderate rotations. Therefore, the TLF discussed here

-

Mol WA Bl -

is valid with the above assumption and a flat triangular discretization

of the shell in its initial configuration.

Eq. 61 gives:

¥ { 6e} =B8] { Suy } (64)
) 27
b




where < Sy, > = § <y, >
with < y, > given in Eq. 48,
[ Bg ]l =1[Bg ]+ [ Byyl (65)

[ by ] 1s the linear operator which leads to [ ky ] and [ k; ]

w,x < wa >
[ Bag ! = w,y < Ny > (66)

w w
w,y < N’x >+ wpy < N’y >

with

w=< WD {u ) (67)

< N¥ > has nine non zero components which are associated with a cubic

Hermite interpolation function for w. This 9 term interpolation function

is chosen so that it is invariant with respect to local coordinate x, y.

This incomplete cubic interpolation is given in [23, Eq. 10.29].

The internal forces Eq. 24 for the element in the global coordinate

system is then defined as :

{ ofine Y= [T 1T [ [ B§]T { o }dve (68)
ve

with [ oT ] = [ T ] given in Eq. 53 and [ B§ ] given in 65 and 66. For

the case of elastic behavior:

(o) =[DI([ Byl +50ByD) {u) (69)

{ ofext } Eq. 25 depends on the loading. 1If the loads are not path

dependant { fou. } is constant, 1f not { foxy } 18 a function of

{ uy }. The interpolation functions for the evaluation of the equivalent

forces (Eq. 25) are considered linear for u, v, w.

28
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The following expression can be considered in the case of uniform normal
pressure of intensity p with respect to the defoimed middle surface:
GWP = fe( - W,x Su - W,y v + &w ) dxdy
s
(70)
= = P
<oy > (B, } =< bup> {£R 1}
with
= T
{off, }=(TIT (£ (71)
The tangent stiffness [ ok. ] as defined in Eq. 33 is such that:
[okt]’[T]T[olﬁt][T] (72)
where
[o&t]=[&g’]+[ol§ng]+[o&°] (73)
[ kg ] is given in Eq. 49.
For elastic material:
{8 }=[(D] { é¢} (74)
Therefore:
lokng 1=/ [ BgIT [ D) [Bygl+ [ ByglT{D][By]
ve (75)
+ (Bt IT [ D] [ Byy | dve
Moreover:
[ okng 1 =J [ Bu 1T [ N1 [ By dxdy (76)
g€
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R
:2. where
1
i Ny Nx;]
: [ N] = 77)
Ny |
.‘d’
o
&)
'y W
!\; < N,x >
[ B ] = (78)

K W
‘ -
.- < N’y >

’\‘_
'j-: with < N¥ > the 9 term cubic function Eq. 67.

FY) The [ kj ] matrix is not necessary for our moderate rotation TLF.

u"

?Q Matrices [ oknpg ] and [ okg } are evaluated with no neglecting terms in
AN the tangent stiffness matrix using 3 numerical integration points.

)

& The TLF as presented above will give the nonlinear solution of arbitrary
(-7

< shell structures within the approximations considered. That 1s, the

J

‘ converging solution with mesh refinement will always be restricted to the
,QE moderate rotation assumptions.

N

S

&

1
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3.3 The element matrices for ULF nonlinear analysis

C SRREREE)

In our Updated Lagrangian Formulation using the DKT18 shell elements the
intermediate configurations 11 are not the exact configurations of the

shell. These approximate configurations will result from:

AR

y - the discretization of the shell using flat triangular elements

)
,%; - the assumption of moderate rotations between two configurations (like
L between IT and T).

U

f: Hence the configuration T is obtained from lp by making the same

n
. assumptions and the same type of computations as between °T and T in the
.r.

o TLF procedure.
L

(T
-7 So we assume that the current coordinates in !T are known. They result
s
M from:

» 1 1
1 {ex}={ox}+ {ou} (79)
-
J-‘

ﬁ (The curvatures in IT are neglected as they are in °I). We also assume
~0
. that the Cauchy “"true” stresses { io } are obtained (and stored at the

_; integration points of the triangular elements). These stresses are in
ig equilibrium with the surface forces i?; , 2?} and if;.
-
it The necessary information to obtain T are the residual vectors and the
;( tangent matrices of each element. These quantities are obtained in a
5

%4 similar manner as in TLF.

"

' The internal forces { jfj,¢ } are defined as:

L

-

«*
P T T

- { fine } = [T / [ 381 {ol}av (80)

ve
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v
b
i
1: :!‘ [ 1T ] 1s the matrix of direction cosines between the local axes 1x, Iy,
T,
"
e lz in !r and the global axes X, Y, Z.
t;"
:' [ 1B6 ] is similar to Eqs. 65 and 66 where w is the displacement in the
)
: 1z direction between !T and T.
- .
A { 0 } is defined as:

.

o 1
= {o}={10}+ {0} (81)
i.

and

l‘-ﬂ,

T

3 {10} = (D1 (I By] +5[1Byg] {uy } (82)
o
-4

- { yju, } are the nodal d.o.f. in the global coordinate system and refer to

,

::—, displacements and rotations between 1T and T.
The external forces { jfext } include the forces from °T to T.
.

.:-‘f The tangent stiffness matrix 1is kept complete and is given by:
[ake 1= 09T 1T [ g 1 [T ) (83)

l.

'ji"\-: where [ k¢ ] is similar to [ oky J.

£

- We again note that the geometric stiffness matrix [ )k, ] contains the
s influence of the stresses from °T to T, and that [ jkhg ] is nonlinear

3 in terms of |w (from lT to T).

e
- We note that the follower forces are easily taken into account in the ULF
. since the coordinates (and therefore the element orientations) are
k) -

'. updated after each new known configuration.

)

0y '

- The performance of the ULF in computing with precision the nonlinear ‘

=

:j response of shells with large rotations will not only depend on the l
! ;
,‘l :"'( 32
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) number of elements but also on the number of steps (or configurations lp

between T and the unknown configuration I, because of the assumption of

. &

moderate rotation between two configurations.

g
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4,

ON THE AUTOMATIC SOLUTION FOR PRE AND POST BUCKLING
Solving the nonlinear equations.

The solution in both TLF and ULF must satisfy a set of simultaneous

nonlinear algebraic equations as given by Eq. 27 or 46 of the form:
{R(U,A) } = A {Foxr (V) } = {Fype } = {0} (84)

where the number of equations n is equal to the total active d.o.f. of the
discretized problem, ({ U } stands for these active d.o.f). A is a load
parameter (we consider only one variable loading). { Fi ¢ } is always a

function of { U } and { Foxtr } is so only if the loading is path

dependent.

In the nonlinear analysis of shell structures, the "load-displacement”
curves can exhibit all kinds of forms depending on the problem (geometry,

loading, boundary conditions, material properties). [1], [2]...

In this report we consider only elastic behavior of shells with large
displacements and large rotations, pre and post-buckling with multiple
limit points, snap-through and snap-back behavior. The problem of
determining Euler bifurcation loads by solving linear eigenvalue problems
is not considered although the basic ingredients (stiffness matrices,
geometric stiffness matrices, and eigenvalue equation solvers are
available). Bifurcation loads can, however, be obtained after the

introduction of a perturbing parameter that discloses the bifurcation

mode.

The complete determination of the load displacement curves can be

performed using different strategies all based on a number of iterative

34




methods. The problem is to obtain:

-~ the n components of { U } for a given A or

- the n components of { U } and A with one constraint equation.

The over-all behavior of the load-displacement curves can be

characterized by the so-called current stiffness parameter [24) Sp.
One simple definition in the case of constant loading is:

gp = AAP < AUy > { F
PoiMg <P > (F

i (85)
{ AUy } is the linear solution for Alg. {AIJP } and Axf)are the
increments of displacements and of load at step p. Sp is a useful
parameter in an automatic determination of the complete load displacement
curves.

Three strategies have been implemented and used to solve various
nonlinear shell problems. The first is the load control strategy
(prescribed 1), the second is the one-displacement control strategy (one
prescribed component of { U }), the third is the arc-length strategy

involving all d.o.f..

The three strategiles are using the Newton-Raphson method to obtain the
incremental solutions and are as automatic as possible within their own

limitations.

35




4,2 The Newton-Raphson method with prescribed forces.
The algorithm is the following [ ], (Fig. 7a):

stepp : AP, { UP } known solution
step p+l: AP*l =7 (ul ¥= (UP}
iterations: 1 = 1 to NITER

{RL } =X { Fayp (U1) } = { Fyqe (U1) 1}
(k) (= (&) (86

{fuitl y = (vl y+ (W)
TEST convergence

step p + 2 ...

where [ K% ] is the global tangent stiffness matrix which is computed at

each iteration in the full Newton-Raphson (N-R) method or computed only

at the beginning of the iteration process in the modified N-R method.

The test of convergence is:

TEST < EPSILON (87)
with TEST defined as:
TESTL = Lﬁ’—”- (88)
(ot |
or
TEsT? = 14U L (89)
[| vi=wr ||
where || U || =(CU> {U })1/2 is the Euclidean norm of the total

displacement vector. We have usually considered EPSILON = 10~3 if TESTI

1s used and 10~2 {f TEST2 is used. The TESTZ is motivated so that all
36
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A, Ay

steps (particularly in the ULF) will have the same convergence

requirements.

X is fixed by the user or determined automatically. If no convergence
has occurred (i.e., 1> NITER and TEST > EPSILON) than the given X or A\ is

cut by two automatically until convergence is reached. )p = WP+l -

can also be modified depending on the convergence rate and according to:

T = Thpey pop (90)
p

where Zip_l is the Increment of loading at the previous solution step.

Id is a number of required iterations and Ip.; is the number of

iterations at step p~l. a is a number defined by the user. We have

considered a = 1 and 0.5 with Id = 4 in the full N-R and 6 in the

modified N-R.

The above strategy has been found effective to obtain the load deflection
curves automatically up to the first limit point, giving the buckling

load, (and therefore the complete nonlinear response if there is no

limit point).
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R 4.3 The N-R method with a prescribed displacement component.
f.; This algorithm has been found very efficient to obtain the post-buckling

response when a particular component of the displacement vector still

" increases after the limit load. [12], [13], [25]

»

;i: The algorithm is the following (Fig. 7b):

e

% stepp ¢ AP, {UP } known solution

step prl = Al =P 5 (Ul }= (UP}

- iterations: 1 = 1 to NITER

ey

2%

e i = i i _ i

m, { Rl } AL { Fext { Fint }
A i i i

4, =

E: (K1 ({ag} (W H=C{REY (F 1 D (o1
5

> (uitl y = ful y+ (g b+ ax { Wp )

A+l = 51 4 A

L where AX is such that
e (AUR)Q + AX (AUp)q = AUq

, - TEST convergence

_;\: step p + 2 aes
=

,ﬂ where AUq is a prescribed displacement increment, (AUR)q and (Ap)a are
g the q':h component of vectors { Alg } and { Mg }. It is aiso possible to
)l?
'$: use the modified N-R method.
2%
‘ l For the same problem and convergence test the above algorithm leads in
i: general to a faster rate of convergence compared to the prescribed

5

loading. This is due to the modification of | K; ] after the first

iteration. However, two load vectors are considered at each iteration.

As in the previous algoriEhm,AUq can be automatically adjusted if
39
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convergence doesn't occur within the limitation given by the user. This
algorithm is very efficient in many snap-through situations and works

until a iimit point in displacement (snap-back) occurs .

The above algorithm is a particular case of the arc-length algorithm as

discussed below.
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4.4 The N-R and arc-length control method.

The so-called arc-length or modified arc-length method has received a
great attention in the last five years [14], ([15], (161, (17], (18],

[26].

The algorithm is similar to the previous one (displacement control). It
is only different in the evaluation of AX at the first and subsequent

iterations. (Fig. 7¢):

stepp : AP, {UP } known solution
step p¥l : Al = aP ; {ul y= (P}
- iterations: 1 = 1 to NITER

i - i i _ i
(R Ao Fext { Fint }

(&g 1 ({ AR} {wpH=(rt} (F}

ext (92)
(it y= (ol 3+ (g Y+ AN {Wp )
A*l = 4

where AX is such that

< ultl - gp > {yitl - wp ) = (45))2 (93)
and
<vl -pp> (it P 3> 0 1
(94 a,b)
<P -uPl> (2 -0 }>0 =1
L'TEST convergence
step p + 2 ...
Eq. 93 is a quadratic equation in A)X that can be written as:
a a2 + b AL+ ¢ = 0 (95)

with
41
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a =< AUp > { AU }

b=2<A0p> {V}
c =< V> {V}- (452

V> =< aUg > +< Ul -up>

If no real root of Eq. 94 exists, the arc-length 7§b must be reduced. The

choice of the real root is such that Eq. 94a or b is satisfied.

One should mention here that other definitions of the arc-length (Eq. 93)
can be made, but the above relation has been found effective to solve our

examples.

As in the two other strategies, it is possible to adjust automatically

the value of'Zgb between two steps:

- no convergence Zgﬁ = 0.5 Zgb—l

Id a
- if convergence AS; = AS,_) |F— (96)

Ip—l

with Id, Ip-1, aas discussed in section 4.2,

If the arc-length strategy is used,we first start the problem using one
of the two previous methods (load or displacement method). Then we
computelzgz using Eq. 93 to obtain the solution at step 2 using the

arc—-length algorithm.
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NUMERICAL RESULTS

Comments on the computational procedure

A FORTRAN program has been written partly for this research. The basic
routines of the finite element method are those documented in [19]. We
have made extensive modifications in the nonlinear block to implement our
methods and strategies. We have also written the routines dealing with

the triangular shell element.

The examples discussed below are solved using a VAX 11/780 or an

APOLLO/DN300.

Only simple problems have been solved and presented in this report. They
involve a limited number of d.o.f. (about 200). These examples are
chosen in order to show the various possibilities of the present
formulation to deal with pre and post-buckling and large rotations of

arbitrary shells.
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2‘ 8 5.2 Nonlinear response of a 3D truss structure.
'y
N
.l This example taken from [27] is chosen to show the possibility of the
T
SN implemented numerical methods to deal with the automatic computation of
-

&

) e very nonlinear problems. The 3D structure shown in Fig. 8 1s made of 24
K- truss elements having 2 nodes and three d.o.f. per node (the 3 displacement
%

:tﬁ{ components u, v, w). The structure is fixea at the base and subjected to
) «.'

{’fl a point load at the center 1 (in the u direction on Fig. 8). There are
93" 2% 2 21 active doOofo

o

é?? A large number of runs have been performed with various parameters such
h Q.) A

Al

M3 as:

P

'fl}'{- - TLF or ULF options

re -

'bﬁ- - arc-length with or without adjusting AS,

. - full N-R or modified N-R

<.t 4

u - load value at the first step

‘ol

A s

-~ - influence of the TEST of convergence in the numerical process
sy
; ;: Some load-displacement curves are given on Figs. 9 and 10, where u is
‘-::'-

‘::: the displacement under the load P and v is the displacement in direction
-.':1-

s y at node 2. Figure 9 is obtained with the full N-R and the automatic
§:§ arc-length method with no modification of arc-length (Eq. 88 is used with
‘.;\‘..

Su§ € = 1073). The first nonlinear solution is obtained with a prescribed

N
- value of P = 10% P/EA equal to 2. Then the arc-length 7§b is computed
T he 3
‘é f using Eq. 93, i.e. A4Sy = <ul > {ul 3. ALl symbols in Figure 9 coincide )
) T
: i with equilibrium solutions obtained automatically. There are 8 limit
EhGS

points for the range of load and displacements considered and these
:'it curves correspond to the primary solution (with full symmetry). Of
‘S
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course there are other solutions which are associated with bifurcations.

Figure 10 presents the solution in the case of automatic modification of
the 2rc-length using Eq. 96 where a = 0.5 and Id = 4, All points on
Figure 10 correspond to solutions. This figure shows the robustness of
the automatic computation algorithm when full N-R and arc-length methods
are combined. Our results coincide with those presented in a recent

paper [27].
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5.3 Snap through the snap back of the cylindrical shell (CTEX4)

The problem presented in Figure 11 has been widely used in the literature

to compare the performance of various nonlinear formulations, finite
element models and nonlinear solution strategies. [18], [20}, [28],

[16].

A simple mesh of DKT18 elements was considered (48 elements, 210 dof
before elimination of the imposed variables). The straight edges are

hinged and the curved edges are free.

In this problem we have studied the influence of the formulation (TLF
verse ULF), the influence of the arc-length strategy on the solution.
The solutions have been obtained using the full N-R or the modified N-R

method.

The influence of the formulation can be seen on Figures 12 and 13 where
curves relate the load versus the normal under the load or at the free

edge. (The results have been obtained with full N-R, with constant

arc-length steps). The first solution was obtained for a prescribed load

P = lkN. Figures 12b and 13b are in good agreement with the "reference

solution” as given by several authors. The TLF gives a higher value for

the buckling load and doesn't reproduce the snap-back behavior for the

central displacement for the small mesh considered. However it is

expected that the correct answer will be obtained with the refinement of

the mesh since this problem doesn't involve very large rotations.
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The curves on Figure 14 are obtained using the modified N-R method, the

ULF and a variable arc-~length increment (with a= 0.5 and Id = 4). The
results are the correct ones and are obtained very efficiently in terms

of computer time.
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b' 5.4 Spherical cap
Y
;% The problem presented on Figure 15 has also been considered by several
\3 researchers since 1969 [29], [20], ([30], [31], [32]. The four edges are
>3
4
ﬁ . hinged and a load 1s applied at the center., A uniform mesh of 5 by 5
& elements (50 elements, 216 d.o.f. before the elimination of the
prescribed d.o.f.) has been considered.
§7 The central deflection versus the load is given on Figure 16 for both TLF
» and ULF and using the imposed displacement and the full N-R methods (Eq.
_..'Q _
;‘: 91). The value AUq is constant and equal to 0.2 h. The ULF gives good
3. results, in agreement with the results given by other authors. The TLF
A leads to a slightly higher buckling load and doesn't represent the
4§: unstable branch properly. A finer mesh would result in better results
>
jé using the TLF here since the displacements are only two times the
g thickness. The same type of results have been obtained using the
I
‘; arc-length algorithm with or without variable 7@5.
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5.5 Cylindrical shell with clamped curved edges (CTEX1)

The membrane stiffening behavior of a cylindrical panel subjected to a
central load with straight free edges and clamped curved edges, as
described in Figure 17, has been studied with a 4 by 6 mesh for a quarter

of the shell.

The central displacement versus the load is presented in Figure 18. The
numerical results presented are obtained using load incrementation
(constant increments AA = 1 lb) and full N-R, for both TLF and ULF. %ith
the TLF, the results are quite far from those of [33] using sophisticated
cubic Lagrangian isoparametric elements (a mesh of 4 x 6 elements leading
to 1200 d.o.f. was considered in [33]). The results using TLF elements
cannot be improved by reducing the load increments since convergence has
occurred and there is no influence of the load steps on the converging
results. These results can, however, be improved by using finer meshes.
The results with TLF are not good because we have fairly large

displacements (up to 10 times the thickness).

For the same number of load steps, the ULF formulation gives better
results than the TLF. This is due to the effect of large displacements
and moderately large rotations. Improved results can be obtained with
the ULF if the load steps are reduced. The correct results would be
obtained if both the number of elements and the number of steps are

increased.
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X 5.6 Far post-buckling of a cylindrical shell with hinged curved edges

. (CTEX2)

The shell structure presented in Figure 17 is again considered but with
y ‘ hinged conditions on the curved edges (these edges are not restrained in

the axial direction).

> .

In this case the behavior is different from the clamped case since the

Pl S 4

displacements are much larger for the same load and snap through occurs

for a load of 2.3 lbs.

Y The same type of analysis as in the clamped case has been performed for
0 < W/h < 14 using now the prescribed displacement algorithm for various

Alq = Awp and again the full N-R method. The results are presented in

E Figure 19 for the TLF and the ULF (7 and 14 steps). The inability of the
TLF to find a limit load is clearly shown in the figure. Again better
results would need much more elements. The ULF leads to good results

- with a limit load 20% higher than the reference value taken from [33]

with 28 steps. A more accurate value would need more d.o.f.'s.

The response of the shell for very large displacements and rotations has
also been studied for the same mesh. Figure 20 shows P versus the
central displacement up to 150 times the thickness (and 1/4 of the
’ Length) using 70 steps, the ULF, full N-R and the displacement control
algorithm. The slight oscillations observed on Figure 20 are due to the
fact that in the regions considered the overall tangent matrices are very

i1l-conditioned. The influence of the type of representation of [ k8§, ]

in these regions is important. If the displacement increments are

reduced, these oscillations disappear and the behavior is slightly
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different as shown in Figure 2] where 140 steps are considered. One can
observe on this figure the low post-buckling minimum and a second
snap-through for W/j = 90 which corresponds to a local deformation of the
cross-section near the boundary. The results presented in Figure 21 are
in good agreement with those reported in [33], the most important
difference being in the evaluation of the first buckling load as shown on

Figure 20.

The above results have also been obtained using the automatic variable
arc-length algorithm combined with the full N-R method. This example has
clearly shown the capability of the formulation to deal with large

rotations.
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b 6. CONCLUSIONS

s\
y \%\
B
oo The numerical results presented in this report have shown the ability of
‘w; the DKT18 elements combined with the ULF to give accurate and efficient
¥ -"“t .
f;%. answers to very different types of nonlinear shell problems including
vl

‘;f snap—througi:, snap-back situations and large rotations post-buckling. s
i The three automatic strategies have been tested and it is found that the
ﬂg full N-R method combined with the arc-length method are very reliable and
3

M) *.'
"y powerful to deal with all kinds of nonlinear situations. The overall
iy package can solve moderately large problems on mini and micro-computers.,
.
NN This package has several capabilities since it has retained different

AT
ﬁg& aspects such as TLF, ULF, full or modified N-R, automatic constant or
.:Ft variable load or displacement or arc-length increments,... The modules
hfkf dealing with the nonlinear procedures and the DKT18 shell elements can
e
!;' be adapted to other finite element codes having a similar structure than
N MEF [19]. Also,the procedures are independent of the DKT18 shell

E:l element; therefore, the library of elements can be enriched in the
;f3 future. Elasto-plastic behavior can also be included if small strains

3

x are assumed.
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