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'Iav tigation of Rolling-up and Interaction of Leading-edge

--and Trailing-edge Vortex Sheets on a Slender Delta Wing

Yin Xieyuan, Xa Nan and Deng Guohua

(University of Science and Technology of China)

Abstract 1'.

The objective of this paper is to establish a simple two-

dimensional theoretical model in an attempt to use a computer to

numerically simulate the experimental results of Hummel regarding

the rolling-up and interaction of the leading-edge and trailing-

edge vortex sheets on a delta wing. It was found experimentally

that'when the-leading vortex is present the trailing-edge vortex

sheet will roll up another vortex downstream from the trailing-

edge. Furthermore, the circulation of the leading-edge vortex is

opposite in direction to that of the trailing-edge vortex. The

numerical results are in good agreement with the experimental

pictures.

I. Introduction

One of the problems of major concern for researchers in

aerodynamics and aircraft designers is the non-linear aerodynamic

characteristics caused by the separation of body and wing

vortices of the aircraft at large angles of attack. Effective

utilization of the additional lift generated by body andwing

vortices can improve the aerodynamic properties of the aircraft

and increase the maneuverability.- To study the mechanism of

formation of body and wing vortices and the complicated
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1toeaction between various vortex systems as well as between

vowtiems and the aircraft in detail is the key to the accurate

estimation of various non-linear force and torque terms on the

aircraft. Therefore, the study of vortex motion has important*

practical values.

The study of the leading-edge vortex of a slender delta wing

began in the forties and fifties. There are significant advances

in recent years. In addition to measuring force and pressure,

recent experimental studies focused on the application of display

technique to the flow field as well as on the detection of fine

details of the spatial flow field. Based on the "contours" of

total pressure, static pressure and dynamic pressure measured, as

well as on the spatial distribution of the flow direction, we can

have a more direct and profound understanding of the vortex flow

field.

In the early stage, the theoretical study of leading-edge

vortex was based on the conic flow assumption which simplified a

three-dimensional flow problem to a two-dimensional problem on a

transverse plane, including the work done by C.E. Brown and W.H.

Michael 1], K.W. Mangler and J.H.B. Smith[2 ] , and the later

improvement made by J.H;B. Smith[3 ]. The Smith model divides the

vortex layer into two points. The outer part uses a broken line

section to replace the vortex layer. The inner part uses a

concentrated vortex to represent the core and a "vortex transport

line" to connect inner and outer regions. The model could be

used to obtain the shape of the vortex layer, and the strength

and intensity of the core. However, the accuracy is not

2



dftilvb. After computers are extensively used, a vortex

latti e mthod with leading-edge separation vortex, introduced by

C.] lo*epk*Bckl and O.A. Kandil, D.T. Hook and A.H.

mayfabh6" ts a representative method. The leading-edge vortex

layer is replaced by several discrete vortex threads. Through

iterations, the position of free vortex threads are determined.

The boundary conditions on the wing surface are also

simultaneously satisfied. In order to accurately calculate the

load distribution on the wing, P.E. Rubbert et al[71 introduced

the "free vortex layer" method by using higher order surface

elements. It can be used to calculate the shape of non-conical

flow-fields and vortex layers, as well as the load distribution

on the entire wing.

All the experimental and theoretical studies discussed above

are focused on the rolling-up of the leading-edge vortex layer,

the force-and torque characteristics, and the calculation of load

distribution. It seems that there is little work done on the

development of leading-edge vortex at downstream from the

trailing-edge and the interaction between leading-edge and

trailing-edge vortices. We are very much

Manuscript received on April 27, 1983.

intrigued by the work done by D. Hummel[8 ]. Hummel performed a

series of fine manuscripts. In particular, he did an

experimental study of the interaction between leading-edge and

trailing-edge vortices. From his measured total pressure, static

pressure and spatial flow direction distribution, we can see that

3
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to spiral vortices are gradually formed downstream from the

trailivg-edge. One is the leading-edge vortex and the other is

the vortex rolled-up by the trailing vortex layer. The

circulations of these two vortices are opposite in direction. A

schematic diagram of the flow pattern is shown in Figure 1.

Figure 1. Schematic Diagram for the Formation of Downstream
Vortices of a Slender Delta Wing

Inspired by Hummel's experiment results, we attempted to

establish a simple theoretical model to simulate Hummel's results

4 numerically on a computer. This study will benefit the

understanding of the structure of a down wash flow field.

II. Theoretical Analysis

In order to study the interaction between leading-edge and

trailing-edge vortices, we must first obtain the shape, position

and strength of the rolling-up of the leading-edge at the

trailing-edge. In addition, we must also have the intensity

distribution of the trailing-edge vortex, i.e., the vortex

4
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Intoity, or spanwise circulation, distribution on the wing.

Figures 2 and 3 show the pressure distribution on the wing

surface and the vortex line shape measured by Hummel. From the"

figures, one can see that the surface pressure distribution and

the vortex line are essentially different from those obtained

based on the linearized slender wing theory of Jones due to the

presence of the leading-edge vortex. However, as compared to

Swith'8[3] theory, the shape of the pressure distribution, the

position of the suction peak and the shape of the vortex are

qualitatively similar. However, there are some differences

quantitatively. In other words, as a preliminary theoretical

investigation, a two-dimensional model can reflect the major

characteristics of the flow field. But, we did not choose

Smith's vortex layer model. Instead, a simpler two-dimensional

unsteady flow analogy was used. Our theoretical model was built

based on a discrete vortex method, which does not require

iterations to solve a set of non-linear equations.
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Figure 2. Pressure distri- Figure 3. Adhered vortex
bution on Delta wing A-I vector (right) and adhered
a-20.5 vortex line (left)
1--experimental
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It is an initial value problem of a series of normal differential /456

equations. It is not limited to the "conic flow" assumption

which will facilitate the extension to more complicated airfoils.

It also facilitates the further consideration of "secondary

vortex" separation problems.

BUsed on the two-dimensional unsteady flow analogy, the

three-dimensional flow of a delta wing with an attack angle can

be considered as an unsteady flow around a two-dimensional plate

4 in the x plane. The width of the plate at any time corresponds

to the wing span in the x position. When the flow passes the

edge of the plate, the boundary layer is separated. A free shear

layer is -formed due to the velocity difference between the upper

*and lower surface. Based on existing studies, it is known that,

as long as it does not involve the mechanism of separation (which

is a viscosity ef fect) , the f ree shear layer af ter separation can

be assumed as an inviscid vortex layer. As a next step, the

vortex layer is replaced by several discrete point vortices.

Therefore, the flow around the plate satisfies LaPlace equation

+9 8 2  1

From this point on, the- plate can be transformed into a circle by

using a complex function method. Hence, the mathematics of the

problem becomes a flow around a cylinder with a finite number of

point vortices outside the circle. In this case, the complex
potential expression of the flow is:

7
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where the first term is the complex potential of a uniform

incident flow around a cylinder and the second term is the

complex potential generated by the finite number of point

vortices and their image vortices outside the circle. The

boundary conditions are automatically satisfied on the circle.. -

* The conformal mapping is:

+ (3a)

CX+VX-~(3b)

It should be noted that in this transformation there is a

magnifying factor dX/d~jt=k at infinity. Therefore, U' 1/2Vc-sina.

The diameter of the circle is the width of the plate.

In addition to surface boundary conditions, the Kutta

condition must also be satisfied.

Because dC/dX-- at the edge of the wing, therefore, we must have

* dW(;)/d; =0. Hence, we-get

* (5)

0 * 2WI + r1 1

-The point vortex moves downstream at the local velocity.

Therefore, we must also find the velocity of every point vortex.

U. 8%
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If the velocity of the kth vortex is expressed as:
_, 
(

__ + (6)-

where the second term on the right indicates that the inducing /457'

velocity of the kth vortex itself should be subtracted from the

calculation of the velocity at the kth vortex because it is a

velocity singular point. After using equations (2) and (3) to

calculate, equation (6) becomes

2 -- iw-(G,+G+G S I+ G. (7)

" 51

where G, - -- IVr sI-a.("

2_ 
+

1k2w Ct A

Intensity and Position of Newly Generated Leading-edge

Vortex

In the unsteady flow analogy, the leading-edge vortex is

approximated by many discrete vortices. Newly generated vortices

continue to be separated from the edge of the wing into the flow

field with time. Therefore, the number of vortices continues to

increase in the flow field. The intensity of a newly generated

vortex has a great effect on the shape and position of the

rolling-up of the leading-edge vortex and the surface pressure

distribution. Many authors have investigated this problem. The

9
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N
variation of the vortex flow in the shear layer near a leading-

edge separation point with time is:

8rls= down- up> 8.,,

where Vup and Vdown represent the velocities at the upper and

lower surface of the shear layer near a separation point. J

[4]According to Sacks method, let V =k(Vup and Vdown i.e., the
, doup

average velocity of the shear layer which is also the velocity at

which the shear layer is dragged out the edge of the wing. yx=Vdown

-V is the vortex intensity on a unit length. Based on these,up

equation (8) can be re-written as:

Ar -At . (Vsy x) = (VsAt) . Y-As . Y (9)-

As is the length of the shear length dragged out in At time. The

expression for V5 is found to be

Because of symmetry, wa is equal to zero in practice. There is

only a y-direction velocity which shows that the shear layer is

dragged out tangentially from the leading-edge. In our

computation, vs was found with equation (10) in order to

determine the vortex layer length As. Then, the simplified point -

vortex is centered in this section of vortex layer so that the

intensity of the newly generated vortex could be determined by

using the Kutta condition.

Surface Pressure Distribution and Attached Vortex Line

From the definition of the pressure coefficient cp=PP./

4pU., we get

10
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VmV

where iy-, 4P=W, 4 =R.P.[W]. The calculation of x must take two

y. . x

aspects into account. One is that the semi-wing span s(x) is a /

functionof x. The variation caused by s(x) is #x=ds(x)/dx.R.P.8

W(X)/os. The other is 9 caused by the variation of the point

vortices with x. The derivation of the entire formula is

tedious. It is omitted here. On the wing surface, x=0. The

attached vortex line on the wing surface can be determined based

on the following

. y-n x (Vp-Vdown) (12)

is the attached vortex vector on the wing surface; Let x and y

be the components of y in the x and y directions, respectively.

1Then, *x"( 9yup ydown ,y=xup-qxdown' where 9xup'

9xdown' 9yup' and 4ydown are the velocity components on the

upper and lower wing surface.

After the attached vortex line on the wing surface is found,

it is very easy to obtain the intensity of the trailing-edge tail

vortex. Due to the fact that yx=-ar/ay, the intensity of the

ith tail vortex as a result of trailing-edge discretization is
C&pi r -Yi+I(f talnedeY (13) -'-

h trailing-edge= yi x)trailg-edge

III. Brief Description of Results of Computation

Mathematically, this computation is to solve a variable

number of first order normal differential equations. We can use

the Runge-Kutta method to calculate gradually from the apex of

11 ':2i



the wing downstream. With each increasing step, a new vortex is
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Figure 5. Rolling-up of Leading-edge Vortex on Top of Wingx
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resulting in two additional equations. When calculating the /459

trailing-edge, the intensity of the trailing-edge vortex is found

and combined into the original equation to be moved downstream.

In order to compare with the experiment, we calculated a

delta wing whose aspect ratio A-1.0 and attack angle a=20.5*.

Figure 5 shows the gradual rolling-up of the leading-edge vortex

over the upper wing surface. Figure 6 shows the pressure

distribution and attached vortex intensity distribution at the

trailing-edge. The pressure distribution is very close to that

calculated by Smith. However, it is different from the

experimental result (see Figure 2). From the experimental result

one-can see that the flow in the front part of the delta wing

approaches the conical flow assumption. However, the rear part,

especially near the trailing-edge, is no longer a conical flow.

The suction peak decreases with increasing x. But, this tendency

cannot be-calculated using a two-dimensional model. This is

because the two-dimensional model does not meet the trailing-edge

Kutta condition. Although the load distribution on the wing

surface can be more accurately calculated based on a three-

dimensional flow model using a higher order surface element "free

vortex layer" method currently under development, yet it takes

too much computing time. As a qualitative analysis, we chose the

two-dimensional model.

From the distribution of attached vortex intensity along the

span yx one can see that yx is negative over most of the wing

span. It is positive near the edge of the wing. In addition, ..

13
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under the leading-edge vortex, yx has a negative maximum.

According to the calculated result reported in reference [91, a

vortex will be rolled-up at the extremum 1-xl When yx is

negative, the vortex rolled-up is clockwise.

Figure 7 shows the rolling-up of leading-edge and trailing-

edge vortices and their interaction. For comparison, Hummel's

experimental results are again shown in Figure 8. From the

figures, the two situations are quite similar. In Figure 7(a),

the trailing-edge vortex layer already begins to fluctuate. It

bulges slightly at the extremum IYxIand develops downstream. On

one hand, it continues to bulge and enlarge and gradually rolls

up into a. clockwise vortex. On the other hand, because of the

side wash velocity effect induced by the leading-edge vortex, the

trailing-edge vortex layer extends in the direction of the wing

edge. The vortex rolled up by the trailing-edge moves outward.

It is initially on the right lower side of the leading-edge

vortex and then gradually rises. From the figure one can also

see that the trailing-edge vortex begins to roll up at

approximately 1/4 of a wing span (x/crml.lO) from the trailing-

edge. At 1/2 wing span (x/cr l.20), it has already

developed well.

4...
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Figure 7. Rolling-up of Leading-edge and Trailing-edge Vortex
Layers Downstream from Trailing-edge of the Wing

In order to study the effect of the leading-edge vortex on

the trailing-edge .vortex, we also did two interesting numerical

experiments. Figure 9 shows the effect of the leading-edge .-

vortex layer. We artificially neglected the vortex layer and /460

consolidated the leading-edge as a point vortex. The

consolidation is based on the conservation of vortex moment and

circulation. In the figure, the symbol A represents the

consolidated leading-edge vortex. We found in the figure that

the trailing-edge vortex could also roll-up a vortex. However,

the shape and position are quite different from those shown in

Figures 7 and 8. Thus, the effect of the leading-edge vortex

layer cannot be neglected.

15
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Figure 9. Rolling-up of Trailing-edge Vortex When Leading-edge
Vortex is Consolidated into a Point Vortex
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0.2-

0. -0.4

Figure 10. Rolling-up of Trailing-edge Vortex When Neglecting
Leading-edge Vortex

Figure 10 shows the rolling-up of the trailing-edge vortex /461

when the entire leading-edge is neglected. Just as expected, a

clockwise vortex is rolled-up at the extremum xj. A

counterclockwise vortex is rolled-up at the wing tip. Because

the -(xvalue is very small at the wing tip, only a small vortex

is rolled-up. In addition, the number of point vortices is not

sufficient to see clearly. Because of the absence of the

leading-edge vortex side wash velocity effect, the trailing-edge

vortex layer extends slowly. The clockwise vortex is on the

inside of the wing tip vortex.

17 --..
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IV. Conclusions

In this work, a two-dimensional discrete vortex model was

established based on the two-dimensional unsteady analogy.

Numerical simulation of Hummel's experimental results was

realized on a computer. The rolling-up of the leading-edge and

trailing-edge vortices and the results of their interaction thus

obtained are very similar to Hummel's experimental results. ItI proves that it is basically feasible to study the mechanism using

a two-dimensional model. Major physical pictures of the flow

field can be obtained.

1. In addition to the vortex rolled up by the leading-edge

vortex dow~nstream, the trailing-edge vortex will roll up another

gvortex. The circulations of these two vortices are opposite.

2. Under the influence of the side wash velocity induced by

the leading-edge vortex, the trailing-edge vortex layer extends

S toward the edge of the wing. Initially, a vortex is rolled up on

the lower right sidie of the leading-edge vortex: Then, as the

circulation gradually increases, it rises comparatively. The

presence of the leading-edge vortex accelerates the rolling-up

process of the trailing-edge vortex and also pulls it outward.

3. The wash flow field is complicated where there are

leading-edge and trailing-edge vortices present. There is a need

to understand it better. This study has helped the understanding

of the physical picture of the wash flow field. However, because

of the characterisic deficiencies of the two-dimensional model,

there are discrepancies in the quantitative determination of the

18



pressure distribution on the wing surface. A more complex three-

dimensional vortex layer model must be used to more accurately

calculate the pressure distribution on the wing surface. This

work is just a preliminary investigation.

After this paper was sent for review, we discovered two

similar studies done abroad. Kandil-10 - used a vortex lattice . -

method to calculate a three-dimensional flow field. But, the

structure of the rolled-up vortex layer is not clear. The work

done by Hoeijmakers et al.is similar to ours. They also

used a two-dimensional vortex layer model to obtain similar

results. However, the methodology is not quite the same. On the

wing surfhce and in the vortex layer, they used dipole

distribution, vortex layer shape and wing surface dipole strength

distribution and solved them by iteration. We established a

series of point vortex equations through conformal mapping to

convert it to a problem of solving for initial values.
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INVESTIGATION OF ROLLING-UP AND INTERACTION OF
LEADING-EDGE AND TRAILING-EDGE VORTEX

SHEETS ON A SLENDER DELTA WING

Yin Xieyuan, Ma Nan, Deng Guohus
(UmwyV at Saem. mud Todwdbg at Oww)

Abstract

Hummel's experiment on the rolling-up and iieraction of the leading-edge and
trailing-dpe vortex sheets at slender delta wing i modeled numerically by a simple two-
dimensional theory. The numerical results show that the traiing-edge vortex sheet will
roll-up at the downstream of the wing, in the presenee of the leading-edge vortex, and
the direcon of the eireulation-of the leading-edge vortex is oppsite to the trialing-
edge vortex. The numerical results are in good agreement with the experiment, This
work is important to further understand ot the downstream flow-field of a wing.

20



Calculation of Circular Jet with Particles Impacting /463

Upon a Plate

Liu Dayou::

(Institute of Mechanics, Academia Sinica)

gK..

Abstract

Under the inviscid and incompressible flow condition, the.
flow field of a uniform circular jet with particles impacting

upon an infinite plate is calculated. In addition, two drag

coefficient formulas, i.e., 24/Re and 24/Re (l+Re21 ) are used
to calculate the trajectories of spherical particles in the

flow field. Assuming particles are uniformly distributed in the jet

outlet, the impact coefficient P(Sts*) curve (known as the

collecition probability in the study of samplers) has been

obtained. The rationale of each assumption is discussed. The
effect of viscosity is discussed. The P(Sti*J curve is

corrected for the effect of viscosity. Results indicate that
impact points are mainly concentrated in the X<2 region on the

plate. Although it is assumed to be very large in the

ocalculation, however, the results are still applicable to the

situation H=.S. Experimentally, it has been proven that

samplers designed based on the P(StQ*) curve calculated in this

work can realize anticipated specifications.

As ecological science develops, there is a need to study the

effect of particles of various diameters in the atmosphere on

human health. Therefore,-An addition to the need to know the

total mass density and number density of particles in the
atmosphere, it is also required to know the particle diameter

21
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distribution. To this end, many nations are developing various

atmospheric particle collectors capable of sorting by diameter.

One of the most common types is the impact sampler which is based

on f luid dynamics principles .The basis for studying the

collection probability of an impact sampler is to determine the

particle trajectory of a jet impacting upon a plate.

Based on the inviscid and incompressible fluid assumption,

the flow field of a uniform jet impacting upon an infinite plate

and the spherical particle trajectory in the flow field are

calculated. The impact coefficients P of various diameters (also

know as collection probabilities in the study of samplers) were

determined. The rationale for each assumption made in the

calculation was discussed. Moreover, some corrections were made

based on the actual flow to finally obtain the P(St ,G*) curve for

the design of samplers.

I. Basic, Assumptions and Dimensional Analysis

If a gas flow is injected out of the round hole CC toward

the plate AA (as shown in Figure 1), the streamline (CB,PQ) bends

as it is passing through the plate. Both magnitude and direction

of velocity change. Ata distance from the axis, such as the

* flow along the plate near B and Q, the velocity is close to the

exit velocity v.. The particles in the flow move along with the

gas in the hole. When the streamline bends, the velocity of the

particle lags behind that of the gas due to inertia. Therefore,

the trajectory of the particle, such as PQ', deviates from the
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streamline. The inertia varies with particle diameter and

density. Therefore, the extent of deviation is also different.

Some particles impact the plate and some flow through the hole in

the next stage.

Assumption (1): The flow is incompressible and inviscid.

Moreover, the effect of gravity is neglected.

Assumption (2): The particle velocity has already caught up

with the flow velocity before reaching the jet outlet. It is in

equilibrium. Particles are uniformly distributed in the flow.

At the jet outlet, the flow velocity is uniform.
Assumption (3): The effect of diffusion is neglected.

Manuscript received on February 4, 1983.
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C/C

Figure 1

Assumption (4): The particle content is very small and the

presence of particles does not affect the flow field.
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Parameters-affecting the motion of particles are:__

D - aperture diameter, v.- Jet velocity,

p - gas density, mi -aerodynamic viscosity coefficient,

P p- density of particle material, d - particle diameter,

2s- collector plate diameter, h - impact distance,

g - gravitational acceleration, a - speed of sound,

A - mean free path of gas molecule,

9 Xp@- initial value of radial coordinate of the particle

x (i.e., at the outlet of the jet),
p

4 t -time.

Let A represent a function of the velocity components of the

particle 'u and v~ or the coordinates of the particle xand y.

Its general form is

A - f0(D, v-7 pt o', ppo d, 2,,v Ai,,., S

When studying the trajectory of a particle, then

xv j(D, Uino pop p,, do 2s, A, so es It ir9., y,)

The parameters in the above formula are rendered non-dimensional

* by using D, v. and p. By taking assumptions (1) and (2) into

account, we get:
X, F~ (9 iq S9 H9 Ko, X.q Y,)

whre=pDv,/v (Reynolds number) Kn=x/d (Kenuzhen Constant)

dj ~ H - 2hD,

S - 2s!D, X,- 2x,,ID,

XFmm2z,/D, Y, -2y,/D.
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In the limiting case that both H and S are very large, the above

formula is simplified as:

.. -

The impact point of the particle on the collector plate is

Xp, G (,R D- K., X,, a)

When Xpc -- V Xpe -(XP-)cr Then

(x,). - 6 (s. . " ., Ka)

Because of Assumption (2), the impact coefficient P=(X )2 It /465 "cr,

represents the ratio of the number of particles at a certain

diameter collected on the collector plate to the total number of

such particles. In sampler studies, it is called the relative
probability 7 ]""

collecting • Computation shows that the solution

obtained with a very large H is still appropriate at H=1.5. In

the following, functions G and Q are determined-numerically based

on fluid dynamic equations.

II. Basic Equations and Boundary Conditions of the Flow Field

In an axi-symmetrid coordinate system, the velocity

potential 9 of an inviscid and incompressible flow satisfies the

following equations:' 7
+ + • - ... -...

- + IN
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where x is the radial coordinate and y is the axial coordinate.

The subscript g indicates gas. CD and AB are equi-potential

surfaces. DO and OA are zero flow lines. CB is the free ...-

boundary of the jet (see Figure 2). The boundary conditions are: ,6

= constant (i.e., us-O, ve=-v - ) on CD

- - constant (i.e., ue=v . , vg=O) on AB

- constant (i.e., n,. v,=0), .V=v. on BC

9= 0 (i.e., n v9=O) on DO and OA.

where y is the flow function, n1 is the unit vector in the normal

direction and rj is the unit vector in the tangential direction.

0 
1,

Figure 2

D/2 is used as the characteristic length and v is the

characteristic velocity to render the above equations non-

dimensional:

(2.1) -

ao/OY = -1 along CD (2.2)

* 8./aX =1along AB (2.3)

" n V# e0, c.V# =1 along BC (2.4)

n .v# =0 along DO, OA (2.5) ,

26
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The velocity components are:

y@ . (2.6)

where n and i are the unit vectors in the normal and tangential

direction on the XY plane.

This is a LaPlace equation with unknown boundary BC. By

using the characterisitcs of the harmonic function, the Green

function is introduced to convert the above differential equation ",4

to an integral equation. Under specific conditions, it can be

integrated. This is the so-called point source function method

in fluid dynamics.

- The unknown boundary BC can be assumed to be a known curve.

The velocity potential 0, (t) of various points on BC and the

potential velocity of points on DC and AB are calculated.

Furthermore, the velocity potential of points on OA is also

calculated. Based on the integral expression of velocity

potential, the velocity potential *.(t) of points on BC can be

calculated. The shape BC can be repeatedly adjusted until # (t)-

(t) 2 .

In our calculation, we chose Y(C)=Y(D)=3. In this case, at

X(A)-x(B)-4, the flow velocity is already very uniform. /466

Moreover, the non-dimensional velocity =-1. The result of this

calculation is shown in Figure 3.

27
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Figure 3. Streamlines of Spherical Particle Jet Impacting Upon
a Plate

1. jet boundary
2. streamline

III. Equation of Motion of the Particle, Initial Conditions and

and Integration of Equations

1. Equation of Motion and Initial Conditions

The equation of motion of a particle in a known flow field

is:

g i , , u-';.d I(liI .."." , ; -- :
OF Co -. 80:(3.1)

T -&::::

d r
ur S aP (3.2)
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where
V9p , w-p (3.3)

Wgp - WgpI -

wg and WP are the velocity vector of the primary flow and the

velocity vector of the particle, respectively. A

r is the particle position vector.

t is the time.

For a small particle, the drag coefficient CD can be

expressed as
(3.5) •

where Re- d.p.Wgp/v which is the Reynolds number of the particle/
4 67

based on using the particle diameter d as the characteristic

length and relative velocity Wgp as the characteristic velocity. -'i

w - 1 + 2.46x/d (3.6)

where w is a correction factor for the dilute gas effect and X is

the mean free path of the gas molecule. Obviously, when A<<d,

w-l.

In this calculation, we chose f(Re)=1 and f(Re)=1+16Re213 .

Therefore, -24

¢0iaRe (3.7a)
and _4(+Rm) (3 7b)

(*Re (3.7b) ---.

Equations (3.1) and (3.2) are made non-dimensional by using

D/2 and v as the characteristic quantities.

-- W- Ie (W, - W,) (3.8)
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d Rp
-7T- W(3 .9)

where T = 2vtiD (3.10)

S-t  w (Stokes number) (3.11)

D .- .I (3.12),'-

R,* p , j -

-- (3.13)

(3.14)

W, - w,/u. (3.15)

WaW 1W,(3.16)

Rt, -2 r,/D (3.17)

The relation between R and Re is:

Re = R d/D IWI1 (3.18)

iv is the relaxation time used to judge the lagging of the

particle velocity variation behind the flow velocity variation.

®and St can be considered as non-dimensional relaxation times.

From equation (3.8) we can see that when St is very small, i.e.,

when the relaxation time is very short, the velocity of the

particle and that of the flow are in equilibrium. Otherwise, it

is not in equilibrium.

Whencartesian coordinates X and Y are used on the azimuthal

plane, the equations become

,(U,- U) (3.19)
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dve , R.)

2- , 8( - (3.20)

dX,
a -(3.21) /468

,1', (3.22)

when T-0, Up-0, Vp--1, Xp=XpO, Yp-Y(C)EH (3.23)

Up, Vp and U., V. are the X, Y components of Wp and Wg,

respectively. X and Y are the components of Rp.

On the meridian plane, if the potential function * and flow

function V are expressed in an orthogonal coordinate system, then

the equations become
S(W P.) - Wt d (3.24)

at' - :"- 'i

LW. d f(O) W'.

7 T 2S, (3.25)

dT (3.26)

..-7T- , (3.27)

When T-O, W -1, W -0, OpM#(C)EA, Yp=Ip (3.28)I pn 'ppp

where Wp, W # and (-T ) are the components of W and R in
P',pn' p p p p

the direction of T and n, respectively. T is the unit vector in

the tangential direction of the streamline pointing in the

direction of increasing 0. n is the unit vector in the p.

streamline direction pointing in the direction of decreasing . .--./.

a is the angle of rotation from the x-axis counterclockwise to r-

direction. The problem is that e<0.
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2. Integration of Equation of Motion of Particles

(1) Method of Integration

For a very small particle (e.g., St<O.05), because its

trajectory of motion almost coincides with the streamline, it is .

possible to employ a perturbation method. When (2St) is very

small (in general f(Re)=1) and d U /dT is not very large, we get
p

the following from equation (3.19)

U,RsU, (.r) , V, (3.29)

A similar expression can be obtained for V p.

-If &T (step length)-0.15, when 0.01<S <0.075, equations

(3.19) - (3.22) can be integrated using the Treanor method[3 ].

In our computation, it was proven that the results obtained with

Treanor's method are in total agreement with those obtained with

the perturbation method at St=0.01 and AT=0.15.

When S >0.075-, the R-K method can be used.-

For very small particles, a larger step can be used in the

perturbationmethod. In this case, it is more appropriate to use

the 0-T coordinate because W is very small and W does not,pn PT

vary significantly. -

Thus, a series of particle trajectories can be calculated

corresponding to any given St and R d/D. Taking the requirements

of sampler design into account, we used a* to replace R d/D:

*= (R d/D)ISt (A) :"
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(2) Selection of Step Length

In addition to considering requirements of satisfying the /469

stability of the difference scheme and the accuracy of the

computation, we should try to shorten the computing time to the

extent possible in order to make it practical. In this

calculation, we chose AT=0.15. The average time to calculate a

trajectory is 60 seconds (on a Model FILEX-512 general purpose

computer). Table 1 shows the Y value at x=4 on each trajectory

when S =0 (in this case, trajectories are streamlines). These

values were compared to those corresponding to Y=1/8Xp, and

were found in good agreement. This demonstrated that the £

required Accuracy is satisfied in the calculation.

Table 1

X, 05.a 0.15 0.25 0.35 0.45 0.55 0.63 0.75 0.85

LX 0.0003125 0.002812 0.007812 0.01532 0.02530 0.037813 0.0528 0.070. 0.0903
tt .-.- [

Y@03 .00272 .007568 0.01488 0.0245 0.034972 0.0518 0.0690 0.0894

1. calculated Y value
..-. ..

1) When x=4, Ug-1. From conservation of flow we get Y=1/8X20 . .
p
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(3) Several Measures to Cut Down Computing Time

It took more than 10 minutes to calculate each trajectory

using the initial program. The following measures were taken to
.-.t"e*

reduce it to less than 1 minute.

(a) Frequently used elliptical integrals are calculated by

series expansion to drastically save time and obtain good

accuracy.

(b) Computation of Flow Velocity and its Partial

Derivatives

For Y >0.03, the flow velocity is calculated based on its

integral expression. For Y40.03, the flow velocity at any point

is oalculated by series expansion. Not only time is saved but

also accuracy is improved. Our computation showed that the

series expansion method can be extended to Y<0.3.

As for the calculation of various coefficients in the series

Og 8X Ug 82U lS'"."
expansion equation, i.e., U X, Iau /8K2 , aU lX3 at

g g g g
various points on-the x-axis, the first two are-calculated by

using the integral expressions and the latter two are calculated

first by using a sample value fitting method with discrete values

of U and 8U /X and then by differentiation.
g 9
We must point out here that even though a particle h-

already reached Y=0.03, we still cannot get the approximate value

at Y=0 by extrapolation. When Y< 0.03, the particle trajectory

bends significantly. Furthermore, for particles in the range of

St=0.-0.2 (which is the range of our concern), Vp is very small

when Y-0.03. Therefore, extrapolation is not reliable.
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(c) The computation started from Y=1.5 due to the f.::t ttat

the flow field is very uniform at Y=2 to Y=3, the plate has no

effect on the jet, and the particle trajectory is straight.

IV. Analysis of Calculated Results

Figure 3 shows the streamlines. Figure 4 shows the

calculated particle trajectories for St=0.1 2 . If there is an "t
arrow on a trajectory near the boundary OA, then this trajectory

does not intersect with OA within X<3.5. Figure 5 shows the)

effect of O* on the particle trajectory. Our computation shows

that

/470
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(1) Within the range of X<3.5, almost all the particles
with S t<0.11 cannot reach the boundary OA unless XpO is very

small. Almost all particles with S >0.17 can reach the OA

boundary. Whether particles in the range of 0.11<SE0.17 can

reach the boundary OA at X<3.5 depends on the values of X and 0

(2) Impact points are basically within X<2.0. At X>2.0,

impact points are obviously frequent. This effect can be

explained from equation (3.24) and (3.25).

The impact points of particles with large St are within

X=2.0. Let us now discuss particles with S <0.2. In most areas

of the flow field, Iae/aYI«Ioaa/aoI. For smaller particles, W <<pn
W Thus

da _ i . w. _ W,. -
LW u/RM (4.1)dT p. 0 p, 89' p. 804 I -

where Ris the radius of curvature of the streamline. By

substituting equation (4.1) into (3.25), we get

dW ,.~~ W. /. ( e

dT 2S, (4.2)

By omitting the second term on the right of equation (3.24), we

g e t dW . -- e ( W . _ W ")

dT 2s, (4.3)

The first term on the right side of equation (4.2) represents the

inertia centrifugal force which is the driving force to increase

W The second term on the right represents the aerodynamic
pn-
drag which is the damping force to decrease Wpn. When the

centrifugal force can be neglected, W decays exponentially.
pn
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The decay constant is S t(f(Re)=1). The smaller the particle size

is, the faster the decay becomes. For a microscopic gas group, St

=0. Thus, W =0. For a particle (St>), W first gradually
pn tpn

increases from zero and then gradually decays to zero. is

ppalways decreasing. When vp=O, the particle reaches the collector %~

plate.'
.-/471
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When T-To, Wp>>2S /R (4.4)-a' pn twa par
From (4.2) we get

Substituting it into equation (3.27), we get A

wt up [-, '(Re) (, -( .)] (4.6)

The subscript a represents the value at T=Ta . When (Tp)a' (W

pn a

and St are given, we can find the value of (T-Ta) corresponding

to T =0 (see Table 2). When equation (4.4) is satisfied, usually
p

W U =1. Therefore, the second row in Table 2 corresponds to (Xpc

-Xp)/2St. It is obvious from Table 2 that the impact points ofpa

a certain particle size are spaced less densely away from the

center on the collector plate. This point was also

experimentally verified.

Table 2

(F,)/2S#(W,.). 0.6 07 .3 .9 0.925 0.95 0.97 0.99

(T - T.)/2s., 0.91 1.20 1.61 2.3 2.39 3.00 3.50 4.60 .

o 4

.- 4
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Figure 6. The P(Stf n*) Curve

1.not corrected for viscosity
2. corrected for viscosity

The above discussion indicates that the results of an

* ~infinitely large plate (i.e., S is very large) can be applied to ~~

* a finite plate as long as the edge effect on the X<2.0 region can

* be neglected.

(3) Corresponding to a specific St and Q*, there is a-

certain X,(which is denoted as X ) )which corresponds t(p )cr) t pe

-3.5.

From p (X.) 2  (4.7)pcr

we can find the impact coefficient p(St,n*) corresponding to that

particular S t and0*

39



V. Effect of Viscosity

When an impact type collector is used to collect particles

larger than 1p in diameter, the Ma number is usually less than

0.2 and Dg/v, is less than 0.3. The flow field is a low Reynolds

number laminar flow in which the effect of diffusion can be

* neglected. The accumulation of a few particles in the atmosphere

will only affect the flow in the boundary layer. It has little

effect on the inviscid flow field. Therefore, with the exception

of neglecting the effect of viscosity, other assumptions made in

performing the calculation are reasonable.

1. Analysis of Viscosity Effect

-The effect of viscosity is primarily exhibited in three
(4)

-. 4 areas

(1) Due to viscosity, the Jet outlet velocity is non-

uniform.

(2) There is momentum exchange across the free boundary BC.

Momentum is transferred from the inside to the outside of BC.

(3) There is a boundary layer at the wall OA of the plate

which makes Ug near OA smaller than the value in an inviscid

flow. Due to the presence of the solid wall, the drag on the

particle is also affected.

With regard to the effect of the first point, the following

correction is made. Let us assume that the distribution of-

velocity at the outlet of the jet is:

Fro D)
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or /473

P -1.264 I-

(v is the velocity at the center of the jet outlet. is ,

the mean velocity at the jet outlet. Hence

St/Sti=1. 264[1-(Xp*)cr
] 1/6

where St is defined as Tv.lD and 9t is defined as v•Vamax/D.

If we assume that the particle trajectory passing through a point

at the outlet only depends on the local St value and is not

related to the fact whether the jet is uniform or not, then the

impact coefficient P is

- P - u2zXdXu.

13- 1 - - tL - (X)I- 2. [1 - X)]

With regard to the effect of item (2), because the flow

* velocity distribution near the boundary (jet mixing area) is

affected by the momentum exchange across the free boundary, the

particle trajectory is also altered. The half-width b of the

mixing area at H=1.5D was estimated by using the semi-inifinite

free jet formula [4 ] (choosing velocity ratio =0.95 as the jet

boundary). It was found& that b/Dl2 is in the range of 0.22-0.093

which shows that the jet boundary only affects the P>0.65-0.75

portion of the P(gt,o*) curve.

With regard to the effect of item (3), due to the presence

of the boundary layer near the wall, the transverse velocity near ....

the wall is lower than that of an inviscid flow, which affects ""=1

the flow of particles near the wall. For a collector operating

41
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at a flow rate of 2 liter/min, the Reynolds number Re ranges

from 626 (first stage) to 2606 (sixth stage). It is estimated

that the ratio of the boundary layer thickness 6. to the radius

of the jet D/2 ranges from 0.176 (first stage) to 0.080 (sixth'

stage). It is very small compared to H=3. In this thin layer,

the streamline is already very straight. After a particle enters

this thin layer, its normal direction velocity decays very

rapidly. V will not drop significantly any further. Therefore,

the effect of the boundary layer is mainly causing the tangential

velocity of the particle to drop which consequently leads to an

increase of time of particle motion. It has little effect on the

shape of the particle trajectory

2. Corrected Results

The viscosity corrected impact coefficient P(gt,a*) curve is

shown as the solid curve in Figure 6. When Q* varies from 0 to

250, St, (the value of St corresponding to P=50%) varies from

0.122 to 0.137. Corresponding to our calculating conditions,

Marple and Wileke [5 ] got St,,e=0.1165-0.112) when Q*=0. R. --

Wiedemann [6 ] choseV . =0.3433) and got St,.=011765. In some

foreign sampler designs, Sto=0.144 was chosen. These are in

agreement with our computation.

The calculated P(St,Q*) curve was used to design a multi-

stage impact sampler. After evaluation, it was found that the

performance of the sampler agreed well with theoretical

[7J4)calculation. Design specifications are met
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1) More profound investigation not only requires the

consideration of the inhoinogeneity of velocity ini the boundary

layer but also must include, in addition to the drag in the

direction of motion, the transversal force exerted on the

particle by the flow.

2) In reference [5J, Stk'/ 2 corresponds to St., in this work.
3) In rferenc (6], tks corsod oS. nti ok

4) In reference [6J, S3, corresponds to St.. in this work.

VI. Conclusions

When there are fewer particles in the jet, they do not

affect the flow field significantly. Therefore, the computation

of the particle trajectory and the flow field can be'separately

discussed. Under the inviscid and incompressible conditions, the /474

flow field is calculated by solving an unsteady boundary Laplace

equation. A "point source function" method is used to convert

the differential equation to integrals. The shape of the unknown

boundary is repeatedly adjusted to reach the correct position.

The particle trajectory is calculated by solving a series ofpregular differential equations. Based on the magnitude ofSt

either the perturbation method, Treanor method or R-K method can

be used. Our computation shows that the impact points of the

particles on the plate are primarily concentrated in the range X<

2. The calculation made for very large H is still valid at

H-1.5. After taking the effect of viscosity which causes non-

uniformity of the velocity at the jet outlet into account, a

43
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velocity distribution v./7=1.264(1-2x/D)1/ 6is used to correct

the results. A P(9t, 0*) curve is obtained. A sampler was

designed according to that curve and iti performance met the

design specifications

This work was completed under the guidance and assistance of
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CALCULATION OF THE CIRCULAR JET WITH PARTICLES
IMPACTING UPON A PLATE

Liu Dayou

(Iw~uka~ ot Mtmwis. Acakoind Sawsd)

AbstractS.xa oe jet.'':"S:'

The calculation of the flow field of a uniform circular jet wit & pa ts impac
upon an infinite plate perpendicularly in presented. The fluid is aBumed to be inviseid
and incompressible. The trajectories of small spherical particles carried in the jet are

also calculated by choosing either 24 or -4 (1+Bas") as drag coefficient.
R. Re8

Assuming that the particles are uniformly distributed initially in the jet. we obtain
the curves of impact efficiency (known as collection probability in the study of sam-
pler). The basis upon which the assumptions are made in the calculation is discussed.
Viscous effects are analyzed, and then some corrections of the curves P(S,, Qt) consi-
dering these effects are made. The results of calculation show that the =upact points
of the particles on the plate mainly concentrate in the zone of x<2. The results of
calculations based on very large H is valid for H>1.5. An appraisal for the sampler
dosigned by using P(8,, a.) ceurvs shows that expected performance has beeu reaLzed.
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A Non-local Elastic Plastic Continuum Model and the Distress /8

Distribution Near a Cracked Tip

Yu Jilin (University of Scipnce and Technology of China)

and Zheng Zhemin (Institute of Mechanics, Academia Sinica). *--

Abstract

A non-local elastic plastic continuum model is presented.

In this model, the relation between stress and elastic strain is

non-linear and plastic strain is related to the history of total

strain. With regard to the deformation theory, it is assumed

that the plastic strain tensor is proportional to the total

strai.n deviation tensor. The proportionality factor is a scalar

function of the total effective strain. This model was used to

analyze the stress field at the tip of a power-law hardening

material with a tensile crack. Based on the results of .RR

asymptotic solution of the tensile cracked tip obtained in

classical fluid dynamics, expressions for the distribution of

tensile stress in front of the crack and the maximum tensile

stress were derived through one-dimensional simplification. They

showed that the J integral criterion might be obtained from the

maximum tensile stress criterion. Existing experimental data were

used to calculate the maximum stress near the tip of several

steel materials as the crack begins to propagate. It was

discovered that its order of magnitude is close to that of the

cohesive strength of the lattice. The results obtained are

useful for the understanding of the physical mechanism of the.

fracture process of the material.
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I. Introduction

In the recent two decades, based on classical elastic

mechanics and elastic plastic mechanics, fracture mechanics has

been developed at a rapid pace. It serves as a new theoretical'

basis f or the safety design of engineering components, estimation

of useful life and evaluation of the performance of engineering

materials. It is very successful in engineering applications.

Classical fracture mechanics was developed based on the

equilibrium criterion which was proposed by Griffith and extended -

by Orowan. The concept of J integral is also based on energy

analysis. This type of energy criterion avoids the physical

mechanism.of the fracture process, i.e., the stress and strain

conditions near the cracked tip. In reality, according to

classical continuum mechanics, there is a stress singularity at

the tip. The widely used concept of stress strength factor and -

the HRR analysis of power-law hardening materials recognize this

singularity. However, if this singularity exists, the cracked

body cannot sustain any load. This contradiction is one of the

major deficiencies of classical fracture mechanics.

Many attempts were made to eliminate such stress

singularity, including the linear yield band model of Dugdal 1 ,

radius of curvature correction made by Neuber[2 1 ilcto

model of Bilby et al[3 and super dislocation model of Atkinson

et alt . These models mostly involve local correction on the

basis of classical theory. They are useful for certain practical

problems. However, the physical basis is ambiguous.
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Some people56] believe that there is always a radius of

curvature at the tip crack. The ideal sharp crack does not exist.

Microscopically (on the order of pm), it may be the case. . -

However, the fracture process is essentially the destruction of'

the atomic bond. On a finer scale, plasticity does not flow

uniformly. There are dislocation cells when the strain level is

high. There is a theory which proves that in most metals, with

the exception of face-centered metals and alkali metals, the

sharp crack on the atomic scale will not become dull. Iron is in

the middle. Therefore, despite the possible plastic deformation

near the tip, the crack

Manuscript received on January 16, 1984.

;4

may still remain sharp when the accuracy is on the atomic scale./486

In reality, a material is composed of discrete atoms. It

has a complex internal structure. Physical quantities

corresponding to the continuum field, such as displacement,

strain, stress, etc., can only be established on the basis of

local averages. When the characteristic scale of the physical

phenomenon under consideration is comparable to that of the

internal structure of the material, classical continuum mechanics

will encounter difficulties. A more rational physical structure

theory must take the internal structure of the material into

account. To this end, since the 60's, various continuum theories

which take the micro-structure of the material in consideration

were developed. In treating problems relating to cracked tip and

its stress singularity, the non-local theory developed by Eringen
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et al[8 ,9 1 has been successfully applied.

The non-local theory considers that the interaction between

atoms is a long range force. Therefore, the stress on a point is

not only related to the strain and strain history at that point,

but also related to the strain and strain history at other points

in the *object. In other words, the stress at a point is a

general function of the strain field of the entire object and its

history. 
.,

Eringen and his colleagues used the non-local theory to

study the stress field at the tip of a brittle single crystal

material. Their results showed that the stress singularity at

the cracked tip did not exist. The maximum stress appeared at a
small distance in front of the cracked tip. In addition, the

theoretical cohesive stress determined is in agreement with those
[10]obtained by using atomic theory and by' experimental prediction .This

* means that-the cracked body also meets the maximum stress

fracture criterion. Based on the non-local elastic theory, it is

* not necessary to introduce the surface energy which has no clear

physical significance in classical theory to directly derive the

Griffth criterion from the maximum stress criterion. Therefore, the

physical significance of the finding is very high.
In this work, the non-local theory is used to study the

*cracking problem in elastic plastic materials. When plastic
deformation is invlolved, the state of stress is related to the
strain history. Let us consider a metallic lattice (single
crystalline or polycrystalline). Under an external load, if
there is only elastic deformation, the spacing between
neighboring atoms In the material deviates only very slightly

I. 49



relative to its equilibrium value. Once the external load is

removed, these atoms can still return to their original states.

However, plastic flow is related to the motion and increase of

dislocations in the crystalline material. In other words, the

plastic deformation of material signifies permanent changes of

the atomic arrangement, i.e., relative positions of atoms, in the

material. As a plastic flow develops, there is a new equilibrium

in every instance. Due to the presence of the external load,

there is a small deviation of the atomic spacing away from the

new equilibrium state. Based on this physical picture, stress is

corresponding to the deviation of atomic spacing away from the

equilibrium state at that instance, i.e., the elastic portion of -

strain. Considering the fact that the interaction between atoms

is a long range force, stress and elastic strain should be

described by a non-local relationship. However, plastic strain

corresponds to the permanent change of equilibrium atomic

arrangement. It should be related to the total-'strain history.

Based on the small deformation theory and plastic deformation

* theory, the structure and basic equations for this type of power-

law hardening non-local elastic plastic material were established

* in this work. Furthermore, it was used to study the stress field

* near the tip with a tensile crack. The HRR singularity solution

of a tensile crack near the tip obtained by classical fracture

mechanics was used to derive the expression for the maximum

stress near the tip in small scale yield under one-dimensional

simplification. It has been proven that the critical J integral

criterion in classical fracture mechanics can be obtained from

50

.4 ~~ . 4 .. . .. . . .



the maximum stress criterion on the non-local elastic plastic

theory. Existing experimental datawere used to calculate the

critical maximum stress values near the cracked tips of several

steel materials. It was discovered that it is of the same order

of magnitude as the internal cohesive stress of the lattice.

Finally, the physical meanings of this theory and its results are

discussed.

II. Basic Equations

In this work, the plastic structure is described in the

strain space because, as described in the previous section, that

plastic deformation is related to the total strain, rather than

stress.

According to the small strain theory, strain £ is related to

displacement u linearly, i.e.

Lij = 1/2 (uii+ uj i) (1) /487

where the subscript following the comma represents the partial

derivative with respect to the corresponding coordinate.

The strain is divided into two parts, i.e. elastic strain

and plastic strain:
. ~e p (2)."

Li e+£ (2)ij i j
where the superscripts e and p represent elastic and plastic,

respectively. Let us assume that elastic strain ce and stress t

satisfy a non-local linear relation (8]e e"tl (x) - D e. c x - l (_k X') ) i +2p ¢Ix'-xl ),, ....,..') (3

where 8ij is Kronecher's 6, and V' and P' are non-local modulus.

All repeating subscripts indicate the summation with respect to
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all indices. Let us assume that the effect of factors such as

the internal characteristic scale change of the materials and

microscopic inhomogeneity due to plastic deformation on non-local

modulus can be neglected. Then, V' and M' is only a function of .i.

position Ix'-xI.

When there is no volumetric force, the stress equilibrium

equation is

tij,j =0 (4)

In order to discuss the plastic structure, we introduced

estrain deviation e and elastic strain deviation e

A 'i - Li -~S&~ 5 i, ~(5)
3 3

-e
as well as effective strain ' and effective elastic strain

(6) *- -

-3 3

Corresponding to the classical plastic deformation (full) theory,

in the strain space we assume that:

1. The volumetric strain is elastic, i.e., = Plastic

strain is only related to the deviation of total strain.

2. The effective elastic strain is a well-defined function

of the effective total strain.

3. The plastic strain tensor is proportional to the total

strain deviation tensor. The proportionality constant is the

scalar function of the total strain, i.e.

8', - q'W()e (7)"-
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A nominal local stress a .1s introduced. It is related to . -

elastic strain and the classical generalized Hooke law:
.e e()

aij mxekkaij + 2iJ(8)

where X and p are Lame constants. The effective nominal local

stress is defined as L

3 (9)

where

60a, O-i ahit (10)

is the deviation of a.

--Let us consider a uniform deformed body. Obviously, in this

case the nominal local stress a is equal to the non-local stress

(true stress) t. Therefore, the a-i curve is the same as the

stress-strain curve in the event of a simple tensile stress for

an incompressible material. For a power-law hardening material,

we have

a (E/ ) when 'Ey /488

a a (11) ),wh-.-.-

ay( /cy)nwhe y

where n is the strain hardening index, a and y are the yield
y Y

stress and strain in simple tensile situations. Notice that when

the above formula can be converted into a relation

between T and 1e.

Ve when i~ee y y (12)
e (C/ ) n ,'-

/ n when E>C
y y
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Based on assumption (2) above, this relation is still valid for a

non-uniform deformation (in this case tijo dij). From equations

(7) and (12) we can solve that

when (13)

1-Z/=)n1 when 7>e

Thus, equations (1)-(7) and (13) form the basic equations in

the non-local elastic-plastic deformation theory of power-law

hardening materials which are incompressible and are deformed

slightly. It is only applicable to simple loading and near

simple loading situations.

III. Stress Field Near the Tip of a Tensile Crack Under Plane

Strain

Let us assume that there is a crack, 2a in length, on an

infinite plate. The surface is free. At infinity, there is a

uniform tensile stress to perpendicular to the crack plane (see

Figure 1). Near the cracked tip, plastic strain is much larger

than elastic strain. Therefore, the incompressibility assumption

is approximately valid. If we are limited to the study of the

initial propagation of a crack, deformation theory is also

applicable to power-law hardening materials. When the dimension

of the plastic region is smaller than the thickness of the plate,

it can be approximately considered as in a plane strain state.

Because of symmetry, we are only required to study the upper

plane.
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- - (u,.i + u,,). tii. - ,s O si, + sf

, I x(z'- )zw,',+2 1 ( I a-al ).s,(')]d) (14)-

The problem is reduced to solving the equations in two-dimensions

under the following boundary conditions:

t11=t12=0, t 2 2=t 4 , when (xf+x) --

t12-t22=O, when x==O, Ix1 1< a (15)

8" lax. -0, u,=O, when x,=O, Ix l>a :
The last condition is obtained from symmetry.

Fiu. 1. TC

Figure 1. The Tensile Crack Problem !

[8]Eringen proved that the non-local modulus can be /489

expressed as

'- a(Ix'-xl), p-pm(ix'-x1 ) (16) 16

(16)

a- -. -. -.



where a(lx'-xl) is a non-negative function of x' which has the

following properties:

1. With increasing Ix'-xj, a(jx'-xI) approaches zero very

rapidly.

2. In the extremum case in classical elastic theory,

a(jx'-xj) becomes a Dirac 6 function.

3. Ifa(jx'-xj)dV(x')=1.--..

By comparing to the ideal lattice model, we get

____ leaP x,_v -# ~b
d - )-- -- (17)

Ja - xI > b

where b is the lattice parameter and K=3/1b. (two-dimensional) or

K-i/b (oni-dimensional).

Based on equation (16), the equilibrium equation (4) can be

rewritten as =(l - =).jwj(ae)dv(j') - 0

It can be proven that if the effect of surface tension can be

neglected the necessary and sufficient condition for the above

equation to be satisfied is:

=0 (19)

This shows that the control equation for the nominal non-local

stress is the same as that in classical theory. Thus, if the

effect of surface tension is neglected, for a given displacement

and boundary condition, the displacement field and strain field

obtained using the model described in this paper are identical to

those obtained based on the classical elastic plastic theory.

However, the stress field must be calculated using equation (14).
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The above conclusions is generally not valid for problems

with given stress boundary candttions or mixed boundary .

conditions. If classical strain field is used to calculate the

non-local stress field, stress boundary conditions can only be'

approximately satisfied. Despite so, because the microscopic

scale reflecting the non-local effect is very small (atomic

spacing), actual errors only occur at places where classical

theoretical stress has breakdowns or irregularities (of course, -= _

those are the areas of concern). The calculations performed by

4.ne[9-Eringen on a non-local elastic crack showed that this error

decreased with increasing 2a/b. When 2a/b=40 (equivalent to a

crack length around .lum), the maximum stress error is about

* 10%. The actual crack is much larger. The error will be less.

For power-law hardening materials, based on classical theory

of elastic plastic deformation, the stress and strain at the tip

have r- n / 1+n and r- 1/ 1+ n  singularities, respectively. According

to reference [12],-in small range yield cases, the major terms of

stress and strain fields near the tip can be expressed as:

l0

.,W o 0 ,. '
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-w')rn4)L IgU

( 21 ) 
...

where v is the elastic Poisson t of the material and In o is a constant

related to the hardening index n (see Figure 2). ....-.)..

(W)are angular distribution functions corresponding to arr' ... re

which are also related to n. The angular distribution functions

of three stress values at different n are shown in Figure 3.

* .*..:.

.2 M,, 6.6 1 .0 ,: - -

Figure 2. 1 vs. n

Nn

I -.. o

Ii
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2.0

S s-0.077 -0".333

",.dW r::::
1.0.

1.0 $, 0.5

/2LB,.
9 9'

(a) b)

Figure 3.. Stress vs. e at Various Hardening Indices (from
reference [12]) %%-

If equation (21) can also be considered as an acceptable

approximate solution of the strain field in non-local elastic

plastic theory, based on equation (20) we can find the

approximate solution of the non-local stress field from the

following equation:

(22)

This is a very difficult task which will not be investigated

further in this paper. -One can see that tij is bound and stress

singularity no longer exists at the tip.

IV. One-dimensional Approximate Analysis of Non-local Tensile

j Stress in Front of Crack

In order to obtain a clear qualitative physical picture of

the non-local stress field at the tip, in this section we will
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attempt to simplify the equation to one-dimension, i.e., to use

the following

- - (i -(23)

to calculate the tensile stress in front of the crack (for

convenience, subscripts are omitted). This is equivalent to

assuming that the stress along x2-direction remains unchanged at

least in the atomic scale and non-local action is only active

along the crack.

From equations (20) and (23) it is easy to find

0 when 04x<a-b

2 when a-b~x<a

[(z~~~ +. 1\+ 2sa

,e when ax<a+b c:.I:

2+ K b(~fu

where

Figures 4 and 5 show the tensile stress distribution with

different internal structure scales.
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A.A

4- I

1A 1.2 1.4

Figure 4. Tensile Stress Distribution in Front of Crack when
a/b=50. Dotted line represents the classical
solution when n=0.2, t /OY=0.5.

2" 0,0.20 
%

~O..~

1 .0 1.2 / 1.4

Figure 5. Tensile Stress Distribution in Front of Crack when
a/b =200.
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It is obvious that as long as b is not zero, the stress in

front of the crack is always finite. The maximum stress occurs

at r=b/2i+n-1. It is

A., (25) a

where

, 0- (1+ n,).(0). 0.91

IS- x-ir 2- )r + 0.31

a is a constant related to the hardening index, as shown in Figure
I.

6. Based on this, the stress concentration factor is

p--a amA. [(1 - :.(f.)-": (26)

It i not-only related to the relative scale of crack to internal

structure, but also to the hardening index as well as to the

relative magnitude of external load to yield stress. This is an

apparent result due to non-linearity of plasticity.

I3
2-

As

0 0.2 .OA 0 4 1- IB

Figure 6. Coefficient A vs. Hardening Index n.
n
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Since the stress near the tip is finite, naturally we can

establish a physical criterion for cracking: there is a critical

stress tc, which is a constant for a material, when tmax =tc,

crack will begin to propagate.

Equation (25) can also be written as

, - - -- a , ( 2 7 ) -' -"
Ks- 1 -".

where E is the Young's modulus. Because n, An , b, ay, and E are

material constants, therefore, the criterion in classical /492

elastic-plastic fracture mechanics can be directly obtained based

on this fracture criterion. Thus, the contradiction in classical

fracture mechanics as pointed out in the introduction can be

bypassed. The macroscopic model of fracture mechanics is

unified with the microscopic physical mechanism.

It is worthwhile to note the physical significance of

critical stress tc . The quasi-embrittlement fracture and ductile

fracture of alloys-are far more complicated than the fracture of

a single crystal. On one hand, because of the presence of

intergranular boundary, alloying elements and various

metallographic structures, the microscopic structure is non-

uniform. On the other hand, as plastic deformation progresses,

the microscopic structure also continues to change. Despite so,

we can still anticipate that the critical stress tc corresponds

to the case that the cohesive strength between atoms at the

leading edge of the crack has the same order of magnitude as the

cohesive strength of the lattice of the base metal (which is
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around .1E for most metals) after undergoing a severe plastic

deformation. Table 1 shows the tc /E values for several steel

materials calculated from available experimental data. The

results are in good agreement with the above analysis. From the

data one can see that although materials of similar composition

may have large variations in yield strength y, let their tc

values are relatively stable when the fracture mode is identical.

The numerical value is slightly less than the cohesive strength

of a perfect lattice. This reduction is not surprising if we

-.) consider factors such as local stress concentration due to a

* large number of lattice defects and dislocations near the tip

*[ prior to failure. Obviously, the microscopic structure of the

material is different due to various heat treatment conditions.

Therefore, the effect of the above factors is also different.

Thus, the value of tc varies slightly. In Table 1, the data on

two Fe-20% Co-15% Cr-5%Mo alloys reflect this variation. The

dataare arranged i-n descending order based on effective time. As

it increases, the residue Austinite content decreases and the

precipitate phase increases. Thus, the atomic binding force

decreases and the local stress concentration effect is

strengthened. t will decrease slightly.

°p.
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Table 1. Ratio of Critical Stress Calculated 
Based on

Experimental Data to Young's Modulus for 
Several

Materials

.1

636 0.17 0.086 0.093

GOC15 451 0.21 0.046 0.104 [1- "

411 0.21 0.030 0.091

314 CrNibso 1225 0.10 0.032 0.060 ."6 ]"i-"
1450 0.085 0.038 0.059 :6

980 0.12 0.119 0.073 [6
30S115CrMo 6 0.11 0.117 0.073

1156 0.10 0.119 0.064

1390 0.066 0.0413 0.046

Fe-2o, c*-1 59, .- 1580 0o.058 o.C2-7 0.045 .. .
NM 1750 0.051 0.0203 0.045 [15]

.-4. (ilia ) 2110 0.034 .0057 0.042
2;00 0.;1 .CA 0.040 _-_-."

" 1590 0.076 0. 1-1.56 0.058 "

Pe-20%Co-15%cr- 1810 0.00 0.0215 0.U58

5%Mo [15]-
,. ( At, ad ) 2140 0.00 0.001 0.050 "- - .

2360 0.033 0.0018 0.045

1. type of steel
2. source of data
3. high purity
4. high purity, de-oxygenated

V. Discussion and Conclusions

1. In spite of the fact that the structure 
is only given

based on plastic deformation in this paper, 
this basic concept is

also applicable to other types of plastic 
structure relations.

Regardless which structural assumption 
is adopted, we must use /493

strain space to describe the problem. In this space, the
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classical stress vs. elastic strain relation can be used to

transform stress into elastic strain. This type of treatment

also ensures that the present model is consistent with the

classical model when the internal scale in the non-local modulus

approaches zero.

2. Different from the non-local plastic theory recently

introduced by Eringen~1 ~ this model (does not take the no'n-

local characteristic of the plastic structure into account. This

is because the physical characteristic scale relating to plastic

* deformation is far larger than the characteristic scale

considered in non-local elasticity (atomic scale). Relative to

* atomic scale, plastic deformation is highly non-uniform. From

another angle one can say that the plastic deformation of a point

is somewhat random in nature. Hence, when the accuracy is on the

atomic scale we should understand that the continuity of plastic

4 strain is -described as the statistical average of all probable

deformations in the neighborhood of the point under

investigation. The physical connection between plastic strain

and stress, however, is expressed as the internal stress caused

by the growth of dislocations. Statistically, it is equal to

zero. Therefore, macroscopically plastic strain is not directly

related to stress. However, microscopically, this internal

* stress causes the average cohesive strength to drop.

* Mathematically, the model introduced in this work decouples the

non-local (elastic) and non-linear (plastic) parts of the basic

equations. Consequently, it is more convenient to use in
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practical problems.

3. Strictly speaking, in the fracture region near the tip,

geometrical non-linearity caused by a large strain cannot be

neglected. J integral is only applicable outside this region.'.

Thus, if the entire region is treated based on the small strain

linear-theory, it will read to some error. Despite so, the non-

local elastic plastic theory recommended in this work can unify

the macroscopic model of fracture mechanics with the microscopic

physical mechanism. Furthermore, the critical fracture stress

thus obtained is on the same order of magnitude as the cohesive

stress of the lattice. This will benefit the understanding of

the physical mechanism of the material fracture process.

4. In metal physics, the effect of microstructure factors -

such as two-phase particle volume integral, particle size and

impurity spacing on the fracture -resistance is discussed in

detail. In the present model, these factors affect the fracture

resistance of materials through a y and n, i.e.,-the change of

* plastic deformation in front of the crack.

5. The fracture of a metal involves three different scales:

macroscopic, fine detail and microscopic. In this work, an

* attempt was made to connect microscopic and macroscopic

viewpoints. From the fine details, many physical factors are yet

to be considered. It is necessary to understand the dependence

* of internal cohesive stress upon fine factors such as alloy

composition, metallograph and microscopic structure as well as

upon macroscopic parameters such as hardening index and
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destructive strain which describe the extent of plastic

deformation. A great deal of detailed theoretical and experimental

work is required. -
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A MODEL OF NONLOCAL ELASTIC-PLASTIC CONTINUUM
APPLIED TO THE STRESS DISTRIBUTION

NEAR A CRACK TIP

Yu Jilin
(Uiversiy ot Sience and Technoo~ of China)

Zheng Zhemin

(Inuitxte ot Mechmis, Acaden Sink)

Abstract '-.

A model of nonloeal elastic-plastic ontinuum is proposed. The stress and the elastic
S strain are related by a nonlocal linear relation, and the plastic strain is dependent on
* the history of total strain. For plastic deformation theory, it is assumed that the plas-

tie strain tensor is proportional to the total strain deviation tensor and the ratio is a
sealer tunction of the effective total strain.

This model is used to analyse the stress field at the tip of a crack in a power-law
. hardening material under plane strain condition. Dsed on the results of HRR asymp-

totie solution in clasl fractrme inechanics, tkre distribution of tensile stres on the li.
as directly ahead of a crack tip and the expression for maximum tensile stress are ca-

l'ulated under one-dimensional simplifiotion." It is shown that the J. criterion may be
obtained from the tensile criterion of the nonlocd theory. Available ex-
perisental data for steels are used to calculate the maximum tensile stres of fcture
initiation at the crack tip. which is found to be close to the theoretical cohesive strength.

- The results obtained we useful tor understanding the hare proem and mechanism
*o fmteials.
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- Study of Plane Stress with Elastic Plastic Mixed Mode Fracture

Xu Jilin, Xue*Yinian and Han Jinhu

(Institute of Mechanics, Academia Sinica)

Abstract

In this work, the deformation field around the crack of a

thin aluminum plate with center cracks of various angles of

inclination under tensile load was measured using the direct laser

speckle method and Moire's method. In addition, the relation

*between loading and crack propagation in the steady-state crack

growth process was measured. Moreover, finite element analysis

based on large elastic-plastic deformation equation was carried

out to obtain the stress-strain distribution around the crack.

Calculated results are found in good agreement with experimental

data. Furthermore, the results were discussed.

I. Introduction

In a thin wall structure of a malleable material with a

crack, before the crack began to propagate, the crack tip has

* already formed a large plastic region. After the crack is

* initiated, there is a steady-state growth process. If the linear 7
elastic fracture theory is still applied, the, load capability of

the structure will be under-estimated. Therefore, there is a

need to establish an elastic-plastic fracture theory to conduct

this investigation. In recent years, progress has been made in

-~ the study of elastic-plastic mode I fracture theory. New methods
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and parameters are constantly being introduced. In references

(1,23, many authors used different fracture criteria to study the

initiation, steady-state propagation and ductility instability

over a wide range of yield conditions. In addition, experimental

data and finite element numerical analysis were combined to

calculate the stress-strain field near the crack tip.

Furthermore, various fracture parameters were analyzed. Among

them, Shih et al conducted a great deal of experimental work and

numerical analysis under plane strain for large range yield.

4 After sorting various fracture parameters, it was recommended

that J.c and 6,,, be used to express the initiation of a crack,

and the tear modulus T~ and Tbe used to express the growth of

the crack. Kanninen believed that J and CTOA are the most

effective parameters to estimate the initiation, steady-state

growth and ductility instability of a malleable material. In the

[3]* study of the plane stress fracture problem, Feddersen used

aluminum alloy plates with center cracks to conduct a large.

number of experiments. A useful analytical method for

engineering design was provided. However, the steady-state crack

propagation process was only quantitatively described. We

measured the relation between steady-state crack growth and load

increment by using thin aluminum alloy plates with center cracks

under tensile load':~ Moreover, based on the elastic plastic

[5]fracture model of plane stress--the shrink neck band model

the elastic-plastic deformation finite element method was used to

calculate the steady-state growth of Mode I crack [6. The

calculated results and experimental data LJare in good
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agreement. There is little published work on the study on mixed

mode fracture for large range yield. Ueda et al [1studied the

initiation of Mode I and Mode II cracks under large range Yield ~

conditions. They conducted some low temperature embrittlement'

tests with soft steel cross specimens with inclined cracks under

the tensile stress in two axes. In the meantime, they conducted

elastic-plastic finite element calculation for plane stress.

They used the COD concept for Mode I fracture to analyze theIinitiation of a mixed mode crack.
In this work, thin aluminum alloy plates with center cracks *-

at various angles of inclination under tensile load were used inIthe -experimental study in plane stress

conditions. Both ]the laser speckle method and 1oire' s

used. In addition, the finite element method with elastic-plastic

deformation was used to perform numerical analysis. The results

were compared to experimental data and discussed.

II. Experimental

This experiment involves 20 specimens. They are thin plates

with center cracks made of LY12-CZ and LY12-CS aluminum alloys.

Manuscript received on October 15, 1983. The paper was
%: presented at the 1983 Beijing International Fracture Mechanics'I Academic Meeting.

S.The characteristic data of the materials are shown in Table 1. /496

These numbers were obtained in the tensile test of the raw

materials. In the table, a and n are parameters in the

expression en olE +.[(,/,Yin_ 1J in which an index curve is used
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to approximate the curve of the material. The geometric

dimensions of the specimen are shown in Figure 1. The angle of

inclination between the crack line and the load o=9 0O, 60, 45°,

and 30% The initial crack length is 2aD. It ranges from 4.65mm
. D':

to 42.7mm. Their projections in the direction perpendicular to

the load range from 4.65.. to 23.8mm.

Table 1

.t . J'lrks1lm-*," /) asm oksl-.') ' -

LT12- 7100 3.5 45.5 0.114 0.01 3

LYI2-4 7100 MY. 49.2 0.143 0.0075

1. material
2. elastic modulus
3. yield strength
4. limiting strength
5. elongation
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Figure 1

The center crack in the sample is cut by a 0.12mm diameter

molybdenum and made into a fatigue crack. Fatigue cracks were

not prepared on six specimens in order to study the effect of

prepared fatigue crack on crack propagation.

Because the specimen is very thin, there is not much

diffe'rence between surface and internal crack growth. In the

experiment, an 80X microscope was used to read the crack growth

increment a*. The minimum scale on the microscope is 0.01mm.
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The initiation and steady-state growth can be clearly observed "

through the microscope. The relation between load o-and crack

growth (a-a,) is thus determined.

In order to measure the strain distribution around the crack

during the entire loading process, a laser speckle method is used

to directly measure the deformation on one surface when the load

is relatively low. On the other surface, Moire's method is used

to determine the deformation when the load is relatively high [8 ].

The surface on which the direct laser speckle method is used is

polished by a wheel to improve the reflectivity of the surface in

order to obtain high quality double exposure film for the

analysis of the entire field. The analytical fringe pattern of

the entire field is photographed through a 2mm diameter filter

hole. The hole is opened up high to reach a sensitivity

corresonding to a grating line density of 467 lines per----.

millimeter. Hence, it is possible to measure the deformation

field when the load is relatively low. When the load is

relatively high, a simple Moire's method can be used to measure

on the other surface even when deformation is large. The grating

line density chosen is 40 lines per milliliter and the specimen

grating is an orthogonal grating. The analyzing grating is a

unidirectional grating of the same density. Based on the

experimental data shown in Figure 8, the results of the speckle

method and those of Moire's method are in good agreement;

In order to investigate whether the elastic-plastic Mode I

[5] [6]fracture model of plane stress and crack growth criterion
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can be extended to mixed mode fractures, we are concerned about

the strain distribution on the ductile belt of the inclined

center crack specimens (extension from the two apices of the

crack along the direction perpendicular. to the tensile direction is '1

called the ductile belt). Moire's method was used to measure the

strain x in the x-direction and strain e in the y-direction.x y
Results show that ex is much smaller than e

III. Finite Element Analysis /497

In this work, the Euler finite element formula with plane

stress deformation was used to calculate and analyze aluminum

alloy plates with center cracks under load at angles of

inclination 0=60 ° , 45° and 300 to determine the stress ox, Oy, xy

in the loading process, the stress or a.e and -re around the crack

top, the strain ex' Cy, ,z' 'xy and the distribution of the

plastic region. In addition, the open displacement of the crack

surface and the strain ey on the ductile belt were calculated and

compared to the experimental result (see Figures 8 and 9).

With regard to the steady-state crack growth on thin

aluminum alloy plate specimens with center cracks at 8=90 ° , we

had calculated the relation between crack growth and load

increment, as well as the instability load, using the finite element

method with plastic deformation equation based on the shrink neck

band model of plane stress elastic-plastic fracture [  • The

criterion of crack propagation was that the relative elongation

of the shrink neck region at the crack tip reached the same level

as the elongation coefficient of the material61 The results are
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in good agreement with the experimental data.

The speed equilibrium equation in the form of pseudo-work

equation is

trq&~1 (2DikDk, -krj dV
- " 2 . (1

and Dii represent the true stress tensor and deformation speed

tensor, respectively. and b1 are the instantaneous unit

surface force and unit volume force. and Di are related by

the constitutive matrix of elastic deformation increment [C].

{r} -VH~l(2)

From equation (1), we get the Euler finite element speed

equilibrium equation

[N+ '[NF{)ld+

Figure 2 * 2
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I (j'} is the nodal point speed array. The rigidity matrix is /498

[K] - B ]7[ C [ B + [N* 17,ifN ]j - 2[ B ~i]Tii[B~i]}dV (4)

In the plane stress case, let us assume that ax=ax=a =0. Thexxyz

instantaneous element thickness t=toe x

When an increment tangent rigidity method is used to solve

the problem, the load increment coefficient is determined by

K using the "Shantian" method to allow each element to enter a

yield state in order to reduce the error introduced due to the

discontinuity of the tangential modulus of the curve of the

material at the elastic-plastic turning point. Moreover, it

corrects for an unbalanced load.

The unit mesh for an inclined, center-cracked specimen is

shown in Figure 2. The center-cracked unit lattice whose ratio

of unit dimension at the crack tip to the crack length is

1/40-1/100, 8=90

is shown in reference [6].

IV. Results and Discussion

1. Fracture Surface Topography

From the fracture surfaces of all failed specimens one can

see that there is a very small triangular flat cross-section in

the neighborhood of the tip. It is rapidly turned into a 450

shear fracture with respect to the surface. It belongs to a

plane stress fracture.

2. Fracture Stress

Table 2 shows the non-dimensional experimental data

including the uniform tensile stress a and average stress
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ai(net) on the ductile belt at initiation and the uniform tensile

stress ac and average stress ac(net) on the ductile belt during L

unstable growth. These results show that the average stress on

the ductile belt prior to the unstable growth of the crack has-

exceeded the yield of the material. Therefore, they most failed

under the condition of large range yield.

., ~~(3) .;./..

~. -.-

2B2

M 3a
Figure 3a

(1) specimen 28
(2) specimen 24
(3) specimen 19

......................

311

*3b

Figure 3b

()specimen 7
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Table 2

- - . n - ...... ,.;..-.
P *(main) 2.. am 2 i Or f _

(m)b @,, Ole ape Ole U

1 90 0.45 11.79 11.79 0.891 0.914 0.92 1.025 1.129 1.063
2 12.36 12.36 0.885 0.855 0.945 0.963 1.092 1.105

3 12.62 12.62 0.883 0.809 0.945 0.917 1.095 1.168
4- 11.05 11.05 0.398 0.963 0.982 1.077 1.020

5 0.89 4.65 4.65 0.957 1.071 1.095 1.117 1.175 1.02
6 5.11 5.81 0.946 1.031 1.086 1.092 1.175 1.053

7 11.55 11.55 0.893 0.899 1.003 1.009 1.166 1.116
8 18.30 18.30 0.830 0.720 0.889 0.868 1.132 1.235
9 23.78 23.78 0.780 0.720 0.831 0.926 1.111 1.154
10)  10.10 10.10 0.906 0.939 0.954 1.034 1.016

11" 1.50 13.46 13.46 0.878 0.942 0.991 1.074 1.182 1.052
12" 14.47 14.47 0.868 0.935 0.985 1.077 1.191 1.053

13" 21.68 21.68 0.803 0.735 0.825 0.914 1.062 1.122
14" 10.05 10.05 0.909 0.985 0.997 1.083 1.012
15 60" 0.91 23.41 20.27 0.812 0.705 0.886 0.868 1.092 1.257
16 23.69 20.52 0.810 0.775 0.877 0.960 1.083 1.132

17s)  23.67 20.50 0.810 0.168 0.889 1.071 1.098 1.024
18)  20.16 17.46 0.838 0.871 0.917 1.037 1.092 1.053
19) 1.50 22.10 19.14 0.823 0.825 0.908- 1.000 1.102 1.101
20'1 21.80 18.58 0.825 0.797 0.920 0.963 1.111 1.154

21 0.91 11.28 9.77 0.909 0.917 1.003 1.006 1.105 1.094
22 11.61 10.05 G.907 0.917 0.997 0.988 1.074 1.087
23 45' 30.13 21.30 0.803 0.751 0.871 0.939 1.086 1.160
24 30.21 21.36 0.802 0.751 0.871 0.939 1.086 1.160
25 30.79 21.77 0.798 0.763 0.865 0.957 1.083 1.134

26 300 41.70 20.5 0.807 0.742 0.840 0.920 1.040 1.132
27 42.12 21.06 0.805 0.751 0.859 0.935 1.065 1.144

28 42.66 21.33 0.802 0.751 0.840 0.939 1.046 1.119
29) 40.20 20.10 0.814 0.880 0.892 1.083 1.098 1.014

- - - - .. - .-- .

1) specimen without a pre-fabricated fatigue crack
2) LY12-CS aluminum alloy. Others are made of LY12-CZ

aluminum alloy.
3) specimen no.

4) Oi(net)/ ys

5) Gc(net) ys
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During initiation and unstable growth, the uniform tensile

stress a and cc increase with increasing W/b (ratio of ductile

belt width to plate width). For different angle of inclination

B as long as the ductile belt width to plate width ratio W/b is

close, i.e., when the projection of the crack along the direction

perpendicular to the load 2a. (=2asino) is close, the fracture

stress a is almost identical. Furthermore, in plane stressc

conditions, the average tensile stress during unstable growth c

is basically independent of the plate thickness.

3. Pre-fabricated Fatigue Crack

From the experimental data obtained with six specimens

without pre-fabricated fatigue cracks shown in Table 2 one can

see that their crack initiation load a is very close to their

instability load or. There is a lack of an obvious steady-state

"i crack growth stage. The instability load of specimens with pre-

fabricated fatigue cracks, however, is apparently higher than the

initiation load. Furthermore, there is an apparent steady-state

; crack growth process as shown in Figure 3.

4. Crack Propagation Process

Figure 3a shows the results of the steady-state crack

propagation process of three specimens (No. 19, 24 and 28) at

* =60° , 450 and 300, including the relation between uniform tensile
1/500

* stress a with crack growth increment Aa. Figure 3b shows the a-

Aa relations measured experimentally as well as calculated using

the finite element method based on Mode I fracture (specimen 7)

at 0=900[6]. The calculated ac is in good agreement with the
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experimental data. The error is less than 5%.

5. Direction of Crack Propagation

For center-cracked thin plate ;pecimens with different

angles of inclination B under tensile load, the crack propagates

essentially in the same manner as that of a Mode I crack. It

grows steadily along a direction perpendicular to the tensile

direction until reaching an unstable state. Figure 4 shows the .

photographs of three failed specimens at 8=60 °, 45° and 30° . The

angle between the direction of crack propagation and the

direction perpendicular to the load line (x-axis) is less than

100.

N 4

4, ,::;.

. i

Figure 4

..'" '
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Figure 5. Specimens 19, 24 and 28
(Values of a/o are 0.728, 0.711 and 0.712, '.-

respectively) y

Figure 5 shows the tensile stress distribution, a., around

the crack tip near the initiation load as calculated by the

finite element method. In the element where the angle aE with

the y axis is close to 90° , ae reaches its maximum value. This

coincides with experimental observation of crack propagation

perpendicular to the load direction.

In addition, based on the displacement field calculated, the

relative displacement of the point approximately 0.4mm away from

the crack top is named the crack top opening vector C6 Dr (the

numerical value of C6D is 'u2+ u2 where u and u are relative
r y x y"

displacements in x and y direction). The direction of CODr

obtained from finite element calculation is near the load line

direction. For specimens with 0=60*, 450 and 300, the angle

between CODr and the load line is approximately 40-10 . This
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.

fact indicates that the estimated direction of crack propagation

is essentially consistent with the experimental results.

6. Plastic Region

4.

Figure-6 Spcmen 19 24 an 28

-- ' / ,;ii]:~

Fiue .Secmn 19, 4.ad 2

Coa values are 0.728, 0.711 and 0.712,j
resp tively)
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The y-direction strain, cy, on the ductile belt is shown in/502

Figures 8 and 9. Results obtained by the laser speckle method and L

Moire's method agreed very well. In the figures, the

experimental values are generally lower than the calculated

results, primarily because the strain measured is an average

between fringes and usually the spacing is larger than the

dimension of the mesh used in a finite element method.

Both experimental and theoretical results show that the x-

direction strain, ex, is much smaller than the strain in the

tensile line y-direction, ey, for specimens with various angles

of inclination. The computation also shows that shear strain on

the ductile belt, 'xy' is also much smaller than cy. Therefore, cy

is the primary strain on the ductile belt.

In summary, under plane stress conditions, for center

cracked specimens, the fracture stress is primarily determined by

the ductile belt width to plate width ratio, W/b. This means

that the fracture 'stress is determined by the piojection of the

crack in a direction perpendicular to the load line, 2a0.

Furthermore, it is basically independent of the plate thickness.

In center cracked specimens of various angles of inclination B

under uniform tensile load, the crack basically propagates

perpendicular to the load line. The angle e between the

direction of cracking and the perpendicular direction, is less

than 100. After the crack is initiated, within a small range

where the crack growth increment is less than the plate

thickness, 0 rapidly approaches 0*. In addition, ey, the strain
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in the y-direction, is the primary strain on the ductile belt.

These facts indicate that it is possible to adopt the Mode I

elastic-plastic fracture model "5 ° and the criterion of crack

propagation in which the relative elongation reaches the

elongation of the material[61 to solve the plane stress mixed

mode fracture problems.
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AN ElATiC.PLASTIC MIXED MODE FRACTUR,
- INVESTIGATION FOR PLANE STRESS

Xu Jilin, Xue Yinian, Ham Jinlin
(Insgiggat# MucAkwo Aodemi S~nw)

Abstract

rn this papea the stable crack growth Proceuses in aluminiu alloy sheet speimens
with flat or inclined central crack, subjected to uniform tensile load have been inves.

-~~ tigad The relation between the tensile load and the amount of crack extension was
0 obtained. The deformation field was measured by using laser speckle mehtod and

moire, method. linite element analysis based on large elastic-plastic deformation equa- .*

tion has also baen carried out. The criterion Proposed to Predict crack growth under
mode I condition is thit'" the tensile strain at the crack tip reaches the maximum
elongation of material The calculated requite are in good agreement with the experi-
ment data.

98



- ~ • -jj:-- " ""

..' "1
An Analytical Solution of Dynamic Response for Ideal Rigid /504

Plastic Timoshenko Beam

Jin Quanlin

(Research Institute of Mechanical and Electrical Technology,

Ministry of Machine Building Industry).--.

Abstract

In this paper, an analytical solution for a fixed-ended

Timoshenko beam under uniform dynamic load is given by using

different discontinuity conditions for various states of motion

at the rigid plastic interface. This solution is applicable to

any non-riversing load which varies with time. At the end, the

effect of the rotational inertia on the dynamic response of the

beam is discussed.

I. Introduction

In recent years quite a few people have studied the

influence of shear effect and rotational inertia on the plastic

dynamic response of the beam [5 -8 ]  Jones [ 24] summarized these

results. However, their studies are limited to dealing with the

initial velocity problem which is equivalent to the immediate

unloading after instantaneous loading. It is very important to

use the discontinuity condition accurately. To this end, -

reference [1] was the first paper to discuss it theoretically.

It was pointed out that different discontinuity conditions should

be used for different directions of motion on the discontinuity
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plane. In this paper, a fixed-ended Timoshenko beam under a

uniform load is used as an example to solve the problem states of

motion at a rigid plastic interface. Furthermore, the

transformation condition from one state to another is given.

Therefore, the solution given in this work is applicable to any

non-reversing time-varying load.

'I..

qQ0)

Figure 1 Figure 2

II. Basic Equations

Let us consider a fixed-ended (neglecting axial force),

equi-sectional ideal plastic beam which is I in length and is

under a uniform dynamic load q(t) (see Figure 1). Its mass per

unit length is m, and the rotational inertia is r. The bending

moment and shear force on the cross-section of the beam are M and

Q, respectively. (The positive directions are shown in Figure

2). The defelction of the beam is y. The angle of inclination

caused by the bending deformation of the beam is 4,. x is used to

represent the abscissa of the beam cross-section. The equation
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of motion of the beam is

M?- - Or Q --. ()

where the dots on top of the letters and the quotation mark on

the upper right corners of the letters are the partial

derivatives of time t and x. The total angle inclination of the

beam is y'=*+y, where y is the rotation angle caused by shear

deformation. Furthermore, it is specified that the rotation of *

and y in the positive direction

Manuscript received on December 7, 1982.

makes y' /505

-Let us introduce the following non-dimensional quantities:

- M.M, - Q/Q., -l'i2M., #-Q /M., a..-

_ m l ' ., M - __ m l - _v -4 ,--k -- '. 1-- L T'
7Tam# 72Mo TaM. a, I I T

where M. and Q0 are the limiting bending moment of pure bending

yield of the beam cross-section and the limiting shear force of

pure shear yield, respectively. A is the x-coordinate at the

rigid plastic interface. K=4' is the curvature of bending of the

beam. T is a unit time. In the following, for convenience, the

bars on top of M, Q, t,-x, 4, k and y are omitted. They are

expressed as non-dimensional quantities. Equation (1) is re-

written as:

"Q, '' -2pa, M' -9Q- '(2)

Let us choose a square yield plane as shown in Figure 3. In the

plastic region, equation (2) is solved by using the yield

condition and the relevant orthogonal flow method. When stress
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points are located on the side AB or CD of the yield plane,
- c,,> • - .(3)

When the stress points are located on the side AC or BD on the

yield plane,

j-2p (4)

In the"rigid region, we have
k-C, (t)X+C4 (t) (5) .:. :

In order to determine C1 , Ca, C, and C4 in these equations, it is

necessary to know the boundary condition of the beam and the

following discontinuity condition at the rigid plastic

interface:

-When. the motion of the rigid plastic interface leads to the

expansion of the plastic region,

[y]=[']=O and [Q]=[M=O (6)

When the motion of the rigid plastic interface leads to the

contraction of the plastic region,

[y]=[]=O and (Q]=[M]=O (7)

[zl=z -z which is the discontinuity value of a physical quantity

z at the rigid plastic interface. z+ and z- are the values of

the physical quantity on the plastic and rigid region,

respectively (same below). Under the assumption of square yield,

the orthogonal flow method and equations (16) and (32) in

reference El] are used. When the rigid plastic interface is

stationary, if the stress points on the plastic side are located

on AB or CD of the yield plane, then we have

[kJ-O and [Q]-[M]=O (8)

93• • .
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If the stress points on the plastic side are located on AC or BD

of the-yield plans, than we have

[EO-0 and [Q]-M]=O (9)

*o .i.

[7-7 
S.i 

4

C -iSp D
.3s.

Figure 3

III. Dynamic Analysis

Assuming that the yield plane is square, the results of

rigid plastic limit analysis (taking shear effect into account)

of a fixed-ended beam under uniform load give tfie initial

mechanistic phase diagram as shown in Figure 4(c). When U4B and

04V4 8 , the beam is stationary. When 04048 and pJt=o=p(O)>B, the

beam slides with respect to the support. The solution is easy to

find and it is independent of a. When B>8 and p(O)>8, there is a

plastic region in the middle of the beam. The stress points are

located on side AB(non-corner) of the yield plane. The region

between this region and the end of the beam is the rigid region.

When the beam end is a plastic hinge, and stress points are on

side CD, if stress points are at the corners C and D, then the
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be*aM t t* end not only rotates but also slides. Otherwise, the

beam only rotatn;--.In the following, we will discuss the

situation v(O)>8 and *>8. Because of symmetry, only the left

half of the beam is discussed. 
-1/506

224

(a) (bjma ) A****"~ll (e) TnMHsMo 0t -""

_ Figure 4. Initial Mechanistic Phase Diagram of the Beam Under
~~~~Three Different Considerations --..,

a ~~~(a) considering bending alone ''"'...
~~(b) considering shear effect ".

(c) Timoshenko beam :

~Let us assume that kjt.o=Yjt=o=O. The boundary conditions .!:i

~~~are: MIx=O=-1l Qjx= j=O. Furthermore, when ka=Ylx="O') QaQ=O-..'-

al. From equations (2), (3), (5) and boundary conditions, we get

the following solution:_-::..

) ~ ~~In the rigid region (04x40[:,:::":.

.. 0..P,

2~

+Q-4.z- I(2p - M.), + 1. ...1.0)

* ~ 12 6

; ; ' ..:.:Igr e lIti ehansi PhseDigrm fthBamUne

| ~95-'..

() oe o be

,.,, ,, , , e t us .,, - .assum that,,- - -:..,.. ,.. , ., The bondr co..ditions

.'' -, are _% : MIv.-.- ..- 1, QIs.'_ - O._.- '. Furthermore',-'" when,/. "- /:  -' a -"'"" '".".".'"'",.'.'".
"- rmeutos 2,() 5 n boundary... conditions, we" get.,"""'''"" E.e.



Atre #jwlpresents the non-dimensional value of the angle of

rotatt -tn the rigid region.

(1) 1 hen te'0 and t<O, by substituting equations (10) and

(11) into the discontinuity condition (6) to simultaneously solve

the problem:

+ 1[2- I . - /2 1

2-, ch.-.. (12)

ni 1 1-1/2
26 3

3 JI,"
| - - +i/(, i), IiCtu- - l#.' ""

where

1- -1/2 (-A)1

,1 ,1/2

From *alt-o>0 Qal1 and C<O, we get
( 13 ) -V

where /507 *

,,,.1h - " ,,(p,-4)l( ,-Cf,- -)V (14)

Obviously, ,. When tt(0)48, yuO. When p>p,, 1 and yA>0.

When 0-0, -O.

(2) When ta=0 and t>0, by substituting equations (10) and

(11) into the discontinuity condition (7), we get the solution:
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-1/2]J

,.4, ,- -1/2 ,_& 1-1/ Lip,

- (I( - 2

[1- WO - I

[h 112 9 (15)

where ,-t-t* , and to is the initial time of the initial state. ,

jo1~., - Z k + ,(1) - 1 '(1), 3 ~ - •( * D/B + V',"4I / . ...-

3~~ B.2.?

__2 4

v+r) +M Vu"(' )] +~ ~)

Notice that .It 20-0. By mathematical deduction we can prove

0, f(l )>O. By using aa'=u = a 0 , "7aIr==_-_>o,.based on "Var) and >0.

*1can obtain: /508..--"

2~ 1- 112

3O)7 D p 2~,dr r~o -~ )p (16)7DI +VOr

where

3 7[ +' -1 /(' 'pd

-, -i --. LJ.7+ (,(f) - .,"(I))"f]. • - P(,)(1 (-j)).

3 +

. ., .. .°° 0 , • ° - °° . By usin 'Va .~-~ >0, base on •7! an E . >C, .° . . . . . . ..



Oboe *(O)qr,1, twO. Mhen i(r)=ua, the beam reaches its maximum

*dflectio.iC. When j(l)=UI, t"0. If Qa-1, we get F=mF =mL, which

is a contradiction to t>O. Therefore, Qai 1 >0
<1. Furthermore, Ya

-0 and -C& o

(3) Wbhn *,nO and t-0, we will first prove that E41-0 when

=0 and'then discuss the solution in this situation.

Let us assume that t-0 when 4 4ttt and t40 when t<t, or t<t,

* Note that 1=2P-ta and jtt =-.. When t2<t<t, equations (10)

and (II) are substituted into the discontinuity equation (8) to

solve C and a Then we get:
a (#Iccp. - 2[1. + (a.- ,,

[r 3,a (17)

where
goshL - /2 1/2

If tg>tL and a-0 , we get &-0 when t1<t<t. From equations

(12) and (15) we Set Olt-t=O ip A A0, i.e..,11malt- /

oQaobtained from equation (8), however, is only a function of p-

and C.. Hence, Aea t-t-Qa . In the two cases that t.>

t, a>0 and tg.t, this equation is obviously valid.

By using the reverse method we can prove that if a>0 we

have t-0. Hence, when t<t 1 or t>t, ,a=O. Its solution can be

expressed by equation (12) or (15): When t-0, we have

op. 2p I +-1 s1-."
Iq. 

.. - oo

_Ih 1b- 1/2B
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noti.. that
IM] -() O + or -. Lae - ,

i/i. ' )I;.-' £

Therefore:

__ _ _ _ __ _ _ _ 2 18)
d= &a L - o 112 .-.j

-2 .

By substituting equation (18) into (17) we get [M-0. Thus, we /509

proved that discontinuity condition (6) could be used when -0..

Hence, when ta-O and t-0, the solution of the problem is the same

as equatibn (12). Furthermore, the necessary condition to

maintain the initial state: m(O)>8 , vav, and 4-0 .

(4) When ta>O, Qal. As described above, t=0. By using

discontinuity condition (6) we get

I---Cm. - F -- sh ,1 . - 2(p-- %) (19).--I*B, D, V/
where BL fC3.sh 9,-,/ -v'-ch 1 ,- hIT. Note that f=t-t, and t. is

the starting time of the initial state. From 'a>O, )af-0 0

and kal,>o>O, we get:

, 1. >. ( ot (20) .".

When =o , ka=0 , ta<0 . It was pointed out earlier that when a=O

we have 0,9. Afterwards, it enters the state of Ya=O and 0."'

The above discussion is applicable to problems with

uniformly distributed initial velocity as long as we make U(O)--

P 't>O -0 and ft2pdt=#lt=O.
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IV. Results and Discussion

Table 1. External Total Impulse Load (10 Ib s)

A# (b/k) O.JXlV O.lx1c O.Xl O O.1O OJX O.ll 6.ME:

M O3OM4 l ( .21xS'" o.21XO- o.Zx'-4 .2XI" O.2x1O" O.2xICi o .0.273 2(a/,)

m ** *J E (is) 1.44112 1.9 978 2.04230 1.42183 2.9534 2.7491 1.61766

1. load curve
2. maximum load (Ib/in)
3. duration during which load is applied (s)
4. maximum deflection in the middle (in)
5. initial velocity problem
6. initial velocity is: 0.2732(in/s).

Is

e-9- -

Figure 5. Middle Beam Deflection vs. Duration of Loading When

Total Impulse and Loading Mode Are Identical
4

1. initial velocity problem /,/t=0=0.2732 x 1O-4in/s

* 100



3. P

: =7 . ...... . ..-

" .'.-

9- *h 2 :4

Figure 6. Maximum Deflection Middle and End of Beam vs. a

1. maximum limit of deflection in the middle of - -

Timoshenko beam when *-O2.- maximum deflection at the middle of the beam

according to classical solution
3. maximum middle deflection of Timoshenko beam.
4. maximum end point displacement of Timoshenko

beam (beam parameters are same as those in
Figure 12)

1. From the results tabulated in Table 1 we can see that

the maximum deflection at the middle of the beam is different

when the total external impulse load is the same but the loading -

mode is different. Figure 5 shows the middle beam deflection vs.

loading time curve when the total external impulse and the /510

loading mode are identical. We can see that when the loading

time approaches zero, the maximum deflection at the middle point

of the beam approaches the corresponding value of the initial ..-..
-'p...'

velocity problem.
-. ..

2. Rotational inertia and shear effect have an obvious

effect on the mechanism of the motion of the beam. Figure 4

shows the initial mechanistic phase diagrams of the fixed-ended "
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beam under the different considerations to explain this effect. :-

In Figure 4(c), the curve P(O)-f(a,B) separating the rotational

mechanism from the rotational and sliding mechanism is given in

the following equation (they are obtained by changing p, to P(O)

in equation (14)).

, o1 - ~~2(p# ;' - 3 ,, + )l ' + " )A.. .: '
1/2 -12a).

3. Effect of Rotational Inertia on Maximum Deflection

In reference [6], Jones showed Figure 7 to explain the

effect of rotational inertia on the maximum deflection of the

beam in initial velocity problems. In this paper, efter

considering the load, the results are shown in Figures 6 and 7.

From Figure 6 we can see that under a specific load, without

changing other beam parameters, the larger the value of is, the

smaller the mid point deflection is. When a increases to a

specific value, shear slide begins at the end point of the beam.

When a approaches zero, the maximum deflection of the middle of

the beam approaches a limiting value. However, this value is

higher than the maximum deflection given by the classical

solution in which only the effect of bending is considered. This

situation can be explained as follows:

102
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J \ e-o.8329 10-,
0.3;2g 1-

O~l " a 0.8329 x 10"  "' "

W2 .. , ,0 I G O , o, o - ) :.
i esBO.I8329x w" e

/ / 'a-0.8329XO s 1 ,,
v-0.932IX 11-

Figure 7. Rigid Plastic Interface Plane Positions C and Mid
Beam Velocity vs. Time with Different Rotational
Inertia

Beam parameters: M.=0.191 x 10 Ibin; Qo=0.880 x

104 Ib, m=0.366 x 10'Ibs'/in, 1=5in,_f=0.231 x 102,

(when *=0. 8 3 29 x 10-3, it is equivalent to a square

cross-section beam with uniform mass distribution,

o.=30.5 x 10 Ib/in, io t , p=O. 7 3 2 x 10-Ibs2/in'

h-O.5 in andb=lin, where a-, T, and p are the unit

tensile yield stress, shear yield stress and density

of the beam material, and h and b are the height

and width of the beam cross-section).

1. classical solution
2. classical solution
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103 :::

V 4 ;> :;= :: -;:. :-:-:--:-..- -,---.,:-:z -z-::-;-:-...--,.:-:--4 .-.- -:



From Figures 7(b) and (c) we can see that when a is very

small, C, the time to reach maximum deflection tf and the mid

point velocity ylx=k when t<ts given by this solution and those

given by the classical solution are very close. Here, ts

represents C=h in the classical solution. However, when t>t2,

the values of yIx= given by the two solutions are quite

different.

This solution gives /511
4

e,~ ~ l =  1). 2#, (t , -'o,

Let a-0, we get

The classical solution gives / =f2dt-24(t-ts

and (t>ts). Here, T is the duration over which the external load

is applied. It is obvious that the former is a uniform motion

and the latter is a uniform deceleration motion. These two

* equations are integrated to obtain the maximum deflections of the

two solutions at the middle of the beam. In this example, they

differ by 36.3.

This work was completed under the guidance of Professor Wang

Ren. Our teacher Huang Zhuping also assisted. The authors wish

to express their gratitude.
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AN ANALYTICAL SOLUTION OF DYNAMIC RESPONSE

FOR THE RIGID PERFECTLY PLASTIC TIMOSHENKO BEAM

Jim Qhanlin
(Ietink Inukgue of Mdwied md Ee~vcd Tuchula Mhuis7 of MAdWim&&9ldiu luduist)

Abstract

Prewous studies on Timoshenko beam wa only deast with for impulsive veloity
but not kr inraming load. An analytical solution of dynamic response for the fLxed-
ended Thmsheuko beam subjected to uniformly dirbuted dynamic load is given he-

by um of the discontinuity conditions for moving rigid-plastic interface. The solu.
tion is valid for arbitrarily time-varying but non-reversing load. Finaly the influence
of rotaor inertia on the dynamic plastic nqwnie of beams is disc
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General Variational Theorem for Structural Plastic Buckling /512

Analysis Using Deformation Theory

Li Guochen

(Institute of Mechanics, Academia Sinica)

Abstract

This paper gives a class of general variational theorem to

analyze structural plastic buckling using deformation theory,

which explains the essential significance of potential energy.

In the form of general variation, we proved that there is no

unloading during plastic buckling. Finally, it was applied to

examples in the analysis of reinforced plate and shell.

Introduction

As we know, in the structural analysis of plastic buckling,

it is more appropriate to use the increment theory of Prandtl-

Reuss to describe the stress-strain relation. The results are

even more close to the experimental data.

Regardless of whetherit is elastic buckling or plastic

buckling, the analysis must be carried out in two parts. One is

to find the basic solution prior to buckling-. Second is to see

whether there is another path at any point on the basic route.

When conducting the buckling analysis, Hill [1 ] used a

"comparative elastic solid" model, i.e., there is no unloading at :

the instance of buckling. Hutchinson[2 ] analyzed the second .. *-,

order generalized function consisting of displacement variables

based on the uniqueness of Hill's solution[ 1] to further verify
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this problem. Bushnell used a difference method to calculate

many structural buckling problems and he claimed that the no

unloading phenomenon is a condition for "consistent loading".

The history of this condition was also introduced in reference ,

The computation of plastic buckling is far more complicated -. -.

than that of elastic buckling. In order to simplify the problem

to the extent possible,the variational principle is a powerful tool.

[4)Referring to the generalized variational theorem under elastic

conditions developed by Reissner, this paper gives a general

variational theorem in the analysis of structural buckling using

deformation theory. The physical significance of the generalized

function and its second order variation involved is explained.

The basis of "consistent loading" used in this general

variational theorem was further proved. Finally, the superiority

of this general variational theorem was demonstrated in

simplifying the basic equations of plate and shell structures.

I. A Class of General Variational Theorem
'o .5

Let us assume that the generalized potential energy is

875

where a is the stress tensor, e is the strain tensor which is

ii

related to displacement according to the following known relation

2 2
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Here, the comma in front of a subscript represents the

differentiation" with respect to that subscript. Ti is the known

externally applied stress on the surface sT.

Manuscript received on September 2, 1983.

/513

VmZV eta+ 1+P 2 coe
GE 3E 35Ev

Here

When-

E, v, E5 and or are the elastic modulus, Poisson coefficient,

8 r

*cutting modulus in unit tensie and yield stress, respectively.

The f irst variation of TT is

+ M 0 d. - (2)

where
- 80'-1 + "-- + 2

Using divergence theorem we can derive that

ID a - (u , g . -+ u /,, , . ,}D -d-

+ w,.e, -,,cB .) +.. .a

8-]} d. (3)

Ev s  n r ar-h lsi ouuPtsncefcet

[ I + 8i . + U,.i.)"'.

+ a. + filcra) +

I*T
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where n is the normal component of the reference coordinate

prior to deformation on the boundary. It is not difficult to see

that the Euler equations in (3) corresponds to the well known

equilibrium equation, constitutive relation in deformation theory

and boundary condition.

Equation (1) is similar to, but different from, those of

Reissner 8 in an elastic system. If we continue to proceed o.

with a second order variation and notice that ui and ai4 are

independent variables, 62ui=OaaijeO. Based on these, we get

• affo,, , - " (4)

where

In the following, a new variation 6* (refer to reference

(8]) is made with respect to 6oiJ and 6ui in the second order

generalized function Q to obtain relevant equations and boundary *.-'.-

conditions during buckling. Noticing the "consistent loading"

condition, the stress, displacement and plastic modulus remain

unchanged in the variation 6* process. The "consistent loading"

condition and its verification in general variation will be

discussed in the followlng.

By using the divergence theorem, we can derive the following

from equation (4):
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eQ -- 2 (ajim +- (bek'.4). i +-(IuO j~U~d

+ 2S~ +.D~I ~k 1

+ 2 j(Swi + Swo~w. +- rjt.a)du.(8*)d* (5)

where

2.'J, E/ 2 a

Et is the tangential modulus during unit tensile stress. The

Euler equations in (5) correspond to the known equilibrium

equation during buckling, incremental constitutive equation of

deformation theory and boundary condition during buckling.

Substituting the relation between 6aij, 6'cii n uit

equation (4) we can also get

p - 3Own~., + (5M,1-4. j4+ (eltu'. ', jgd

r M, + wOke - VW8I

4-).1"' B (0(6)
+ +~u4 .iiuj

Comparing equation (6) to (5) we can see that Q and 6*Q are

similar in form.. This is the same in the elastic case.

Therefore, when a*Q-O, Q-0 and vice versa.

Thus, we proved that the first order variation of the

generalized function rr in equation (1) can be used to derive

various basic equations in the basic path to solve the problem

110
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L

prior to buckling. By carrying out a new variation 6* with

respect to its second order variation can result in relevant

equations during buckling. .-Z

II. Physical Significance of Generalized Functions 1T and Q

Now, let us decompose the first term in the integral in

equation (1)

where the function to be integrated eij can be expressed in the

form of stress and aij can be expressed in the form of strain.

The second term of equation (1) is

V- s:" W (8)

When sij-aV/aaij is valid, we get the following by substituting

equation (7) into it

rasa s:eis (9)

The right term represents the strain energy per unit volume.

Thus,TT in equation (1) is naturally equivalent to the definition

of potential energy. For this reason, at the beginning of this

paper we called it the generalized potential energy.

In order to determine stability, the classical definition /515

(6]proposed by Dirichlet and Kelvin is that the body is in a

state if the total amplitude of the added displacement caused by

the deflection at any instance is arbitrarily small when the *

deflection itself is arbitrarily small. On the contrary, if an

111
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arbitrarily small deflection would lead to a finite amplitude

change, then it is unstable. Obviously, the necessary and

sufficient condition is that the amount of internal energy stored

or consumed when an infinitesimal displacement is added to the'

equilibrium position must be larger than the work done by an

external force. In the 1930's, Trefftz and Kappus[8 ] also

applied this principle to derive the elastic buckling equation

and stability determination criterion in the form of energy. In

conjunction to the topic of this paper, for an arbitrarily small

deflection (6o8t 6u), if Ar>O, it is stable, if An< 0, it is

unstable.

From Taylor series expansion we know that .

V+- An -- (u, + k,) +s- a.,s + 1 a'si-)
21

- ~ T 1 u, +oui-i•
- V + LV Si + t t ooffo -A 'it'

-- i(x; + Io)NS " .'-

Here, the external stress Ti does not vary with deflection.

Therefore, it is a case of "fixed load". By expanding the above

equation, we get

it + AVF r .''-. ,

+ 1 8.,,"6 + .i i,- + du - T. (10)

+j.3,+5, +,UU 91# 8V$ilIv+ ..... + o.+ ,_.g' +,.. (8:i'

112 .. ,..
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Because 6w is already equal to zero, therefore, 
whether it is .,.% ,:

stable depends on 62W(-Q). If Q>O, it is stable. If Q<O, it is

unstable. Q-O is the stability limit. Above the stability limit ,.

or on buckling points, the criterion for stability is determined 
" :..

by higher order of variations of , such as 6'w .... This says ..

that Q6O may be stable or may be unstable. Therefore, Q>O is

only the sufficient criterion, but not the necessary criterion,

for stability. After realizing the significance of Q=O and

knowing Q-0 corresponds to 8*Q=O, the reason why the buckling

equation can be derived from 8*Q=0 is clear.

In addition, the following explanation is given to describe

the-relat-ion between the condition Q-0 and the loss of uniqueness

of the solution. If the uniqueness of the solution on the

loading path is lost, then there must be other possible

increments aa and aui which satisfy:
bj m,

,,+ + , ,i (j4,) 0(11).-.-.

or on s (13)

If we choose-

A~ig 

-

h-,, 

°o-

(e can see that the Euler equations in (1l)-(13) are similar to

those in (5). This means that the uniqueness of the solution is

lost during buckling and vice versa. Therefore, the buckling

point must be related to the loss of uniqueness of the solution.

However, stability is not related to uniqueness, because buckling
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is not equal to unstable..

In simplicity, buckling and loss of uniqueness of the- /516

solution correspond to QwO or 6*Q-0. Whether it is stable

depends on Q>O or Q<O. At Q-0, it depends on the sign of higher

order variation terms in equation (10). k

III. Investigation of "Consistent Loading" Condition

Hutchinson's argument can be extended to generalized

variation in the following steps.

Under a "fixed load", the amplitude variation of the force

(or displacement) load is proportional to a parameter. Its

distribution is independent of this parameter. It was explained

earlier that the necessary and sufficient condition for stability

is Q>O. Now, let us re-write equation (4) into

- J ((' + ,)&,,,- .9. e,5 (14).

where

1 plastic loading

=m 0 elastic loading

0 plastic loading followed by elastic unloading

Let us take a solid body for comparison, i.e., an elastic

comparative solid body. Its second order generalized function is

defined as

Qc-right hand terms in (14), but . =(1 plastic loading "

L elastic loading
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It is obvious that there is no elastic unloading zone in this

case. To this end, an infinitesimal deflection (6Oiji 6 ui) is

added to a known based state (o, ui). The difference between Q

and Q is

Q Q c (15)

where

- i ~ + ~As,,)5e~(16)

The subscript c represents the possible presence of an elastic

unloading zone. By substituting the expressions for 4 and 6+'

into (16) we get

- I.. J9 [(L-V ,.,e' + I - )j.,as,] dV.

because

therefore.Ic>O, QAC"

This is to say that QiQ if a certain deflection is added to

the entire body area V so that the plastic region remains plastic

and elastic region remains elastic. Otherwise, Q>Qc if the

additional deflection leads to the presence of an elastic

unloading zone in Vc . Therefore, it is only necessary to find

the corresponding characteristic function (6ojj , 6ui) in Qc in

order to determine the minimum critical loading parameters

because it is not possible to have even smaller critical loading

parameters and other characteristic function distribution to make

Q-0 while keeping Qc>O. Thus, we proved that the "consistent

loading" condition is still valid in the form of generalized
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T", -oT .o"

variation.

IV. Application in Analysis of Plate Shell Structure /517

In a thin wall plate shell, let us assume that the

distributions of strain, stress, plane displacement and plastic

parameter along the x3-direction are approximately:

- (e.s. N.e/h., 1c4. DNd/,,/h,,, ,"'1

+ [K.., 12M./h', D,, & 12DM ,/h, w,., 2q'1'/ijz, (17)

where , B=1 or 2 and h is the wall thickness. By substituting

the above into equation (1) and using the strain-stress relation

[9]in a plate shell [ , we can get the following by integrating

along x3 and applying the divergence theorem:

+ ([,,.. + N.,#., + N.,(, + w')..,w

+ +

+ R (A .,. N , ] .
.. ~+ 1 [ . .1 + ... ,dL . - 0

where w(i) is the initial deflection and b., is the curvature

tensor

2 +~

r . 1.--' I'

+&W +±(.a.5,p) Ua
7  (19)

- ( ,5...i.8-, .36.1.]
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Similar to the algorithm used in the first section, we apply

a new variation 6* to w for a second time. Then, we have

-- p..

a(a'II) - 5Q0 y. i.*-9.

- -I 1 N.aIa]5(u?) --

+ [M,.O + N.A. + 8N.#(w + w"'),.

+ N.Aw, #]8*(8w)}ds

+ 2 [jll .1? - i~(D.5,. -i 1+ D'',,Ma )]O(N.)
-[SK., - -2, (A± D( &"N,, +~ D( ';rMl Ie(IMe#)ldi

L -h 6 IJ+(20)

where

+ )(a., + a.a,) f . ,,, 0-.

2DC - O w (O.w5o + +dav) - " j (21)

/518

. 3-8 ,' . --...4, E, ,

From the above it -is obvious that the third and fourth Euler

equations in (18) and (20) correspond to the constitutive

equations before and after buckling. From (19) and (21) we can

see that the rigidity matrix correlating generalized strain to

generalized stress is symmetric. However, when another method

was used to derive it in reference [10) the favorable condition

of matrix symmetry was not realized.
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In the above, the plate shell belongs to the case of

symmetric upper and lower cross-section relative to a neutral

plane. For a non-symmetric cross-section with reinforcing ribs,

an appropriatley chosen generalized force can be used to

simnlify the equations.

Let us assume that there is a rib along the x-direction

(neglecting twisting resistant rigidity). Its cross-sectional

width is b(z), i.e., it can vary along the z-direction. The

stress and strain distribution on the cross-section are

.,...l~a.+Q~.~z 1(22)
-_ ,0+ (K,)z

where A 'and I are the cross-sectional area and the moment of
x X

inertia relative to the neutral plane of the ribbed cross-

section, respectively.

After substituting them into (1) and through certain

operations we get

.( N. + j.) 0.

+_ E I+ , + j ) , (23)

+ (I +ZL{-)}() (, +,-)

3EH , (23)
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. _

where H is the height of the rib bar itself. Again, we have V

j .G -

Let us assume that the spacing between the origin of the z .-..

coordinate and the neutral plane of the rib bar is e (usually the

original can be chosen at the center plane of the plate shell),

hence JA .-.,+4.,

From equation (23), in order to simplify the equation to the

extent possible, especially in the equilibrium equation, we can

define a new generalized force as: .---

N N + JM", M..I-L+j .

Thus, we can solve .

- -" -N
Ms Is 1 ...-

Substituting back into (22), we get /519

. N-M,4-- r) + (M -e N )  (24)

Based on the above we know that although the relation

between stress and generalized force is complicated by choosing N

and M as the generalized forces (such as (24) in comparison to .

(22)), yet the equilibrium equation can be simplified.
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V.. Conclusions

The variational theorem introduced to analyze the structural

plastic buckling based on deformation theory not only can be

applied to mixed boundary problems but also provides a way to

simplify the equations to be solved.

References

[1] Hill, R., A general theory of uniqueness and stability in

elastic/plastic solids, J. Mech. Phys. Solids, 6(1958), 236.

[2] Hutchinson, J.W., Plastic buckling, Advances in Appl. Mech.

(ed. by Chia-Shun Yih), 14 (1974), 67.

[31 -Bushnell, D., Bifurcation buckling of shells of revolution

including large deflections, plasticity and creep, Int. J.

Solids Structures, 10 (1974), 1287.

[4] Reissner, E., On the Variational theorem in elasticity, J.

Math.- Phys., 29 (1950).

[5] Li Guoshen, Wang Zifiang and Han Jinhu, Elastic Buckling of

Cylindrical Plate and Cylindrical Shell by Considering the

Effect of Deformation before Buckling, ((Ribbed Cylindrical

Plate and Cylindrical Shell)), (Shell and plate section of _

Solid Mechanics Research Laboratory, Institute of Mechanics,

Academia Sinica), Chapter 4, Science Publishing Co. (1983).

[6] Hill, R., On uniqueness and stability in the theory of

finite elastic strain, J. Mech. Phys. Solids, 5 (1957), 229.

[7] Trefftz, E., Zur theorie der stabilitat des elastischen

gleichgewichts, Zeit. fur Angew. Math. u Mech. B13 (1933), L...

160.

120



[8] Kappus, R., Zur elastizitats theorie endlicher verschie-

bungen, Zeit. fur Angew. Math. u Mech. B19 (1939), 344.

[91 A.C. Woolmill, Flexible Plate and Flexible Shell (trans-

lated by Lu Wenda et al), Science Publishing Co. (1963).

(10] Li Guochen, Axial Creep Buckling of Cylindrical Shell,

Journal of Mechanics, 1(1981) 38.

A GENERAL VARIATIONAL THEOREM FOR THE

- STRUCTURAL PLASTIC BUCKLING ANALYSIS
USING THE DEFORMATION THEORY

SGuoc hen
1. (wimaul .1 ehdaies, Acudendf Sinksa)

Folowing d form given by Reiunw in 1950 for das analysis, a nersl variational
functosi in piasticity is prescribed s ia sq. (1). By aimng its firs varton 7 due to
d variation of (wi, a,) w zero, e Euler epatums derived in (3) are proved to be the
equilibrium equamtis, a deformation type of stress-strain relations and boundary condiiomns for the
prebeckling fundamental path solution. As Kappus had done in 1939, a new variation 6* can
be imposed m (on ogh ). Let Q- 82H1, thea from 8*Q of eq. (5), the basic incremental
equations are derived far the evaluation of critical loading and its correspo buckling patt-

em. Comparing(5) and (6) it can be see that whenever Ing equals zero the same is Q
or viN vmsl.

Farm eqs. (7)-(9) it is ibown that eq. (1) is essentially equivalent to the potential
energy. According to the definition of Dirichle and Kelvin, stbility depends on whether AD
is positive or negative. Using the Taylor series expansion eq. (10) brings out that (a) if _Q
> 0, sable (b) if Q < 0, unstable (c) when Q - 0, buckling occurs, it is the limit of

stability, the stability it this pointelies oan the sign of the higher variation term, e. g. 'V11. - • .

On the other hand, when the uniqueness of the solution fails, then the possible incremental parts
(Ac.i and A*s) should satisfy eqs. (11)-(13), which are similar to the Euler equations in
(5).

A comparion solid which has no unloading condition within de plastic region at the
naoment of bucing is introduced to solve the buckl'g problem. Application of the above
theorem in the plafe and shell problems is exemplified.
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