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_Ihvﬁﬁt(;ation of Rolling-up and Interaction of Leading-edge
**u@d Trailing-edge Vortex Sheets on a Slender Delta Wing
Yin Xieyuan; Xia Nan and Deng Guohua
(University of Science and Technology of China)

Abstract ]

| The objective of this paper is to establish a simple two-
dimensional theoretical model in an attempt to use a computer to
nunericallf simulate the experimental results of Hummel regarding
the rolling-up and interaction of the leading-edge and trailing-
edgé vortex sheets on a delta wing. It was found experimentally
that‘ihen'the-legding vortex is present the trailing-edge vortex
sheet will roll up another vortex downstream from the trailing-
edge. Furthermore, the circulation of the leading-edge vortex is
opposite in direction to that of the trailing-edge vortex. The
numerical results are in good agreement with the experimental

-

plctures.

I. Introduction

One of the problems of major concern for researchers in
aerodynamics and aircraft designers is the non-linear aerodynamic‘
characteristics caused by the separation of body and wing
vortices of the aircraft at large angles of attack. Effective
utilization of the additional 1lift generated by body and wing
vortices can improve the aerodynamic properties of the aircraft
and increase the maneuverability.: To study the mechanism of

formation of body and wing vortices and the complicated
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-H$1utst.ction between various vortex systems as well as between
E?“~ | . vortices and the aircraft in detail is the key to the accurate
) | estimation of various non-linear force and torque terms on the
aircraft. Therefore, the study of vortex motion has important
practical values.

The study of the leading-edge vortex of a slender delta wing
began in the forties and fifties. There are significant advances
in recent years. In addition to measuring force and pressure,
feeent experimental studies focused‘on the application of display
technique to the flow field as well as on the detection of fine
details of the spatial flow field. Based on the '"contours'" of
total pressure, static pressure and dynamic pressure measured, as
well as on the spatial distribution of the flow diréction, we can
have a more direct and profound understanding of the vortex flow
: field.

. In the early stage, the theoretical study of leading-edge
vortex was based on the conic flow assumption which simplified a
three-dimensional flow problem to a two-dimensional problem on a
transverse plane, including the work done by C.E. Brown and W.H.
Micha91[1], K.W. Mangler and J.H.B. Snith[ZJ. and the later

improvement made by J.H:B. Smith[3]. The Smith model divides the

o W oW T

vortex layer into two points. The outer part uses a broken line
section to replace the vortex layer. The inner part uses a
concentrated vortex to represent the core and a ''vortex transport

line" to connect inner and outer regions. The model could be

used to obtain the shape of the vortex layer, and the strength

and intensity of the core. However, the accuracy is not
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desirable. After computers are extensively used, a vortex

lattice mathod with leading-edge sepiration vortex, introduced by
C.M.BeSouepkoBckBHL®) and 0.A. Kandil, D.T. Mook and A.H.
lhyfchtﬁ], is a representative method. The leading-edge vortex
layer is replaced by several discrete vortex threads. Through
iterations, the position of free vortex threads are determined.
The boundary conditions on the wing surface are also
simultaneously satisfied. In order to accurately calculate the
load distribution on the wing, P.E. Rubbert et a1t7? introduced
the "free vortex layer' method by using higher order surface
elements. It can be used to calculate the shape of non-conical
flow- fields and vortex layers, as well as the load distribution
on the entire wing.

All the experimental and theoretical studies discussed above
are focused on the rolling-up of the leading-edge vortex layer,
the force and torque characteristics, and the calculation of load
distribution. It seems that there is little work done on the
development of leading-edge vortex at downstream from the
trailing-edge and the interaction between leading-edge and

trailing-edge vortices. We are very much

Manuscript recelved on April 27, 1983.

intrigued by the work done by D. Hummel[sl. Hummel performed a
series of fine manuscripts. In particular, he did an
experimental study of the interaction between leading-edge and

trailing-edge vortices. From his measured total pressure, static

pressure and spatial flow direction distribution, we can see that
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two spiral vortices are gradually formed downstream from the
trailing-edge. One is the'leading-edge vortex and the other is
the vortex rolled-up by the trailing vortex layer. The
circulations of these two vortices are opposite in direction. A

schematic diagram of the flow pattern is shown in Figure 1.

Figure 1. Schematic Diagram for the Formation of Downstream
. Vortices of a Slender Delta Wing

Inspired by Hummel's experiment results, we attempted to
establish a simple theoretical model to simulate Hummel's results
numerically on a computer. This study will benefit the
understanding of the structure of a down wash flow field.

I1. Theoretical Analysis

In order to study the interaction between leading-edge and
trailing-edge vortices, we must first obtain the shape, position
and strength of the rolling-up of the leading-edge at the
trailing-edge. In addition, we must also have the intensity

distribution of the trailing-edge vortex, i.e., the vortex
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intensity, or spanwise circulation, distribution on the wing.

N
Figures 2 and 3 show the pressure distribution on the wing L
surface and the vortex line shape measured by Hummel. From the ifka
figures, one can see that the surface pressure distribution and T iﬁﬁt,

the vortex line are essentially different from those obtained
based on the linearized slender wing theory of Jones due to the

presence of the leading-edge vortex. However, as compared to

Slith'slsl theory, the shape of the pressure distribution, the

ﬁosition of the suction peak and the shape of the vortex are

qualitatively similar. However, there are some differences
quantitatively. In other words, as a preliminary theoretical
investigation, a two-dimensional model can reflect the major

characteristics of the flow field. But, we did not choose

Smith's vortex layer model. Instead, a simpler two-dimensional

unsteady flow analogy was used. Our theoretical model was built

based on a discrete vortex method, which does not require

iterations to solve a set of non-linear equatioms.
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Figure 2. Pressure distri- Figure 3. Adhered vortex
bution on Delta wing A=l vector (right) and adhered
a=20.5 vortex line (left)
l--experimental

x ol
oL v e W
. .
B¢ Zauitnnzsm
Figure 4: Coordinate systems definition

) .
T I iy T I e e R I I UL N S R . .
IO IO S AP NN “x‘t"_e"‘.:}.s.f.r ST P A i A I S N I Sl S St e SR




It is an initial value problem of a series of normal differential 1456
equations. It is not limited to the 'conic flow'" assumption |
which will facilitate the extension to more complicated airfoils.
It also facilitates the further consideration of ''secondary
vortex' separation problems.

Based on the two-dimensional unsteady flow analogy, the
three-dimensional flow of a delta wing with an attack angle can
be considered as an unsteady flow around a two-dimensional plate ;whq
in the x plane. The width of the piate at any time corresponds ST
to the wing span in the x position. When the flow passes the
edge of the plate, the boundary layer is separated. A free shear
layer is .formed due to the velocity difference between the upper
and lower surface. Based on existing studies, it is known that,
as long as it does not involve the mechanism of separation (which
is a viscosity effect), the free shear layer after separation can
be assumed as an inviscid vortex layer. As a next step, the
vortex layer is replaced by several discrete point vortices.
Therefore, the flow around the plate satisfies LaPlace equation

Po O _, v
8y or

i From this point on, the plate can be transformed into a circle by

A ARG
R N )

using a complex function method. Hence, the mathematics of the ‘if;;

problem becomes a flow around a cylinder with a finite number of :l"i

r
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point vortices outside the circle. 1In this case, the complex

potential expression of the flow is:
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where the first term is the complex potential of a uniform
incident flow around a cylinder and the second term is the
complex potential generated by the finite number of point
vortices and their image vortices outside the circle. The
boundary conditions are automatically satisfied on the circle.
The conformal mapping is: A
X=21 Fal
2(C+-c) (3a)
) _ {=X+/X=7 (3b)

It should be noted that in this transformation there is a

magnifying factor dX/dt|_=% at infinity. Therefore, Ul = 1/2V~sina.

The diameter of the circle is the width of the plate.
In addition to surface boundary conditions, the Kutta
condition must also be satisfied.

. (4)
- ——.‘— - |
Akl P W(X) —JD-%[‘_*‘Q )

Because df/dX-= at the edge of the wing, therefore, we must have
dW(z)/dt =0. Hence, we-get

. (5)
T ‘¢ ;i 1 .
Z_Lzs{d-ﬁ+ G-R}-?W"l“'

L1

The point vortex moves downstream at the local velocity.

Therefore, we must also find the velocity of every point vortex.
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If the velocity of the kth vortex is expressed as:
oy — iwy = LX) & [T poex — ey (6)
N |m+‘x[hu(x x.)]m. k=1,2, -, N,

where the second term on the right indicates that the inducing ™ /457

velocity of the kth vortex itself should be subtracted from the

calculation of the velocity at the kth vortex because it is a

velocity singular point. After using equations (2) and (3) to

calculate, equation (6) becomes

"""'(G‘+G’+G‘)‘5§i‘x,+c‘ (7

. S —
2= t’.(l——‘-’-' 1-—

Intensity and Position of Newly Generated Leading-edge

Vortex

In the unsteady flow analogy, the leading-edge vortex is
approximated by many discrete vortices. Newly generated vortices
continue to be separaté& from the edge of the wing into the flow
field with time. Therefore, the number of vortices continues to
increase in the flow field. The intensity of a newly generated
vortex has a great effect on the shape and position of fhe
rolling-up of the leading-edge vortex and the surface pressure

distribution. Many authors have investigated this problem. The
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variation of the vortex flow in the shear layer near a leading-
edge separation point with time is:
V) (8)

or/ot= &(Vy, n~ up

where Vu and vdown represent the velocities at the upper and

P
lower surface of the shear layer near a separation point.
According to Sacksta] method, let Vs=15(vup and vdown)’ i.e., the

average velocity of the shear layer which is also the veloéity at

which the shear layer is dragged out the edge of the wing. %=V down

'vup is the vortex intensity on a uhit length. Based on these,
equation (8) can be re-written as:
AT =At . (Vs'rx) = (VsAt) . V=88 . v, (9)
As is the length of the shear length dragged out in At time. The
expression for Vs is found to be .
N, (10)
o]~ B i - )

Because of symmetry, LA is equal to zero in practice. There is
only a y-direction velocity which shows that the shear layer is
dragged out tangentially from the leading-edge. In our
computation, vy was found with equation (10) in order to
determine the vortex layer length As. Then, the simplified point
vortex is centered in this section of vortex layer so that the
intensity of the newly generated vortex could be determined by
using the Kutta condition.

Surface Pressure Distribution and Attached Vortex Line

From the definition of the pressure coefficient cp=P-P./

¥oU_, we get
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where 9 =Vs 9 W, ¢=R.P.[W]. The calculation of ¢, must take two .

aspects into account. One is that the semi-wing span s(x) is a /4

! -j W

functionof x. The variation caused by s(x) is e, =ds(x)/dx.R.P.3 e
T
W(X)/ss. The other is ¢ _ caused by the variation of the point g
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vortices with x. The derivation of the entire formula is
tedious. It is omitted here. On the wing surface, ¢,=0. The
attached vortex line on the wing surface can be determined based
on the following

v=n x (V ) (12)

- . up'vdown

v is the attached vortex vector on the wing surface. Let v, and Ty

be the components of y in the x and y directions, respectively.

T=reitryd. Then, 7x=-(9yup-vydown). Ty=®xup~*xdown’ where ¢, ..»

, and ¢ are the velocity components on the S

*xdown’ ®yup ydown
upper and lower wing surface.

-

After the attached vortex line on the wing surface is found,

it is very easy to obtain the intensity of the trailing-edge tail

vortex. Due to the fact that 1x=-er/ay, the intensity of the

the Runge-Kutta method to calculate gradually from the apex of

v

1th tail vortex as a result of trailing-edge'discretization is o
% =[Y Ry
B (”i)trailing-edge’/yiﬂ(7x)trailing—edgedy (13 e
(- III. Brief Description of Results of Computation A
) : . :.._::._~
;3 Mathematically, this computation is to solve a variable <
' number of first order normal differential equations. We can use s

i 1"
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Figure 6. Surface Pressure Distribution and Attacned Vortex
Distribution (Trailing-edge of the Wing)
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resulting in two additional equations. When calculating the /1459

" trailing-edge, the intensity of the trailing-edge vortex is found

and combined into the original equation to be moved downstream.

In order to compare with the experiment, we calculated a
delta wing whose aspect ratio A=1.0 and attack angle a=20.5°.
Figure 5 shows the gradual rolling-up of the leading-edge vortex
over the upper wing surface. Figure 6 shows the pressure .
distribution and attached vortex intensity distribution at the
ﬁrailing-edge. The pressure distriﬁution is very close to that
calculated by Smith. However, it is different from the
experimental result (see Figure 2). From the experimental result
one -can see that the flow in the front part of the delta wing
approaches the conical flow assumption. However, tﬁe rear part,
especially near the trailing-edge, is no longer a conical flow.
The suction peak decreases with increasing x. But, this tendency
cannot be calculated using a two-dimensional model. This is
because the two-dimensional model does not meet the trailing-edge
Kutta condition. Although the load distribution on the wing
surface can be more accurately calculated based on a three-
dimensional flow model using a higher order surface element 'free
vortex layer' method cutrently under development, yet it takes
too much computing time. As a qualitative analysis, we chose the
two-dimensional model.

From the distribution of attached vortex intensity along the

span y, one can see that Ty is negative over most of the wing

span. It is positive near the edge of the wing. In addition,
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under the lcaging-edge vortex, v, has a negative maximum.
According to the calculated result reported in reference [9], a
vortex will be rolled-up at the extremum |1x|. When v  is
negative, the vortex rolled-up is clockwise.

Figure 7 shows the rolling-up of leading-edge and trailing-
edge vortices and their interaction. For comparison, Hummel's
experimental results are again shown in Figure 8. From the

figures, the two situations are quite similar. In Figure 7(a),

;3 the trailing-edge vortex layer alreédy begins to fluctuate. It

gf . bulges slightly at the extremum |1x|and develops downstream. On

" one hand, it continues to bulge and enlarge and gradually rolls

;} up into a clockwise vortex. On the other hand, because of the

§ side wash velocity effect induced by the leading-edée vortex, the

) trailing-edge vortex layer extends in the direction of the wing

;: edge. The vortex rolled up by the trailing-edge moves outward.

z; It is initially on the right lower side of the leading-edge

‘v vortex and then gradually rises. From the figure one can also

,é see that the trailing-edge vortex begins to roll up at

1% approximately 1/4 of a wing span (x/cr-1.10) from the trailing-

T; edge. At 1/2 wing span (x/cr-1.20), it has already -
% developed well. - €§
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Figure 7. Rolling-up of Leading-edge and Trailing-edge Vortex
Layers Downstream from Trailing-edge of the Wing

In order to study the effect of the leading-edge vortex on
the trailing-edge'vortex; we also did two interesting numerical
experiments. Figure 9 shows the effect of the leading-edge
vortex layer. We artificially neglected the vortex layer and /460
consolidated the leading-edge as a point vortex. The
consolidation is based on the conservation of vortex moment and
circulation. 1In the figure, the symbol A represents the
consolidated leading-edge vortex. We found in the figure that
the trailing-edge vortex could also roll-up a vortex. However,
the shape and position are quite different from those shown in
Figures 7 and 8. Thus, the effect of the leading-edge vortex

layer cannot be neglected.
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Figure 8. Hummel's Experimental Results[3]
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Figure 10. Rolling-up of Trailing-edge Vortex When.Neglecting
Leading-edge Vortex

Figure 10 shows the rolling-up of the trailing-edge vortex /461
when the entire leading-edge is neglected. Just as expected, a
clockwise vortex is rolled-up at the extremum |y _|. A
counterclockwise vortex is rolled-up at the wing tip. Because
the Ty value is very small at the wing tip, only a small vortex
is rolled-up. In addition, the number of point vortices is not
sufficient to see clearly. Because of the absence of the
leading-edge vortex side wash velocity effect, the trailing-edge
vortex layer extends slowly. The clockwise vortex is on the

inside of the wing tip vortex.
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IV. Conclusions
In this work, a two-dimensional discrete vortex model was
established based on the two-dimensional unsteady aralogy.
Numerical simulatioh of Hummel's experimental results was

realized on a computer. The rolling-up of the leading-edge and

RO

trailing-edge vortices and the results of their interaction thus
obtained are very similar to Hummel's experimental results. It

proves that it is basically feasible to study the mechanism using

o

a two-dimensional model. Major physical pictures of the flow

- ar¥ Y EFY

field can be obtained.

1. In addition to the vortex rolled up by the leading-edge
vortex doﬁnstream, the trailing-edge vortex will roll up another

vortex. The circulations of these two vortices are opposite.

« S LT

2. Under the influence of the side wash velocity induced by

s the leading-edge vortex, the trailing-edge vortex layer extends

i toward the edge of the wing. Initially, a vortex is rolled up on
3 the lower right side of the leading-edge vortex. Then, as the

3 circulation gradually increases, it rises comparatively. The

presence of the leading-edge vortex accelerates the rolling-up
process of the trailing-edge vortex and also pulls it outward.

3. The wash flow field is complicated where there are
leading-edge and trailing-edge vortices present. There is a need
to understand it better. This study has helped the understanding
of the physical picture of the wash flow field. However, because

of the characterisic deficiencies of the two-dimensional model,
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pressure distribution on the wing surface. A more complex three-
d1n§nstonal vortex layer model must be used to more accurately
calculate the pressure distribution on the wing surface. This
work is just a preliminary investigation.

After this paper was sent for review, we discovered two

101 used a vortex lattice

similar studies done abroad. Kandil
method to calculate a three-dimensional flow field. But, the
structure of the rolled-up vortex lgyer is not clear. The work

done by Hoeijmakers[1’2]

et al.is similar to ours. They also
used a two-dimensional vortex layer model to obtain similar
results. However, the methodology is not quite the same. On the
wing surface and in the vortex layer, thgy used dipole
distribution, vortex layer shape and wing surface dipole strength
distribution and solved them by iteration. We established a
series of point vortex equations through conformal mapping to
convert it to a problem of solving for initial values.
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INVESTIGATION OF ROLLING-UP AND INTERACTION OF
LEADING-EDGE AND TRAILING-EDGE VORTEX
SHEETS ON A SLENDER DELTA WING

Yin Xieyuan, Xia Nan, Deng Guohuma
_(Umdyaf.fdtmalhdudcgofaﬁu) .

Abstract

Hummel’s experiment on the rolling-up and imteraction of the leading-edge and
trailing-edge vortex sheets at slender deita wing is modeled numerically by a simple two-
dimensional theory, The numerical results show that the trailing.edge vortex sheet will
roll-up at the downstream of the wing, in the presence of the leading-edge vortex, and
the direction of the circulation of the leading-edge vortex is oppsite to the trialing-
edge vortex. The numerical resuits are in good agreement with the experiment. This
work is important to further understand of the downstream flow-field of a wing.
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Calculation of Circular Jet with Particles Impacting /463
Upon a Plate

Liu Dayou
(Institute of Mechanics, Academia Sinica)

Abstract -

Under the inviscid and incompressible flow condition, the.
flow field of a uniform circular jet with particles impacting
upon an infinite plate is calculated. In addition, two drag
coefficient formulas, i.e., 24/Re and 24/Re (1+Re2/3
to calculate the trajectories of spherical particles in the

), are used

flow field. Assuming particles are uniformly distributed in the jet
outlet, the impact coefficient P(S{,R*) curve (known as the
collection probability in the study of samplers) has been
obtained. The rationale of each assumption is discussed. The
effect of viscosity is discussed. The P(St,Q*) curve is
corrected for the effect of viscosity. Results indicate that
impact points are mainly concentrated in the X<2 region on the
plate. Although it is assumed to be very large in the
calculation; however, the results are still applicable to the
situation H=1.5. Experimentally, it has been proven that
samplers designed based on the P(St,Q*) curve calculated in this
work can realize anticipated specifications.

As ecological science develops, there is a need to study the
effect of particles of various diameters in the atmosphere on
human health. Therefore, .in addition to the need to know the
total mass density and number density of particles in the
atmosphere, it is also required to know the particle diameter
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; distribution. To this end, many nations are developing various . g&g

. atmospheric particle collectors capable of sorting by diameter. ;?%

é One of the most common types is the impact sampler which is based 2?

¥ on fluid dynamics prhuﬁples[1]. The basis for studying the ' T E&E
‘ collection probability of an impact sampler is to determine the tfi

E particle trajectory of a jet impacting upon a plate. ;;

E Based on the inviscid and incompressible fluid assumption, ;aé

" the flow field of a uniform jet impacting upon an infinite plate ::x

1§ and the spherical particle trajectory in the flow field are .

}i calculated. The impact coefficients P of various diameters (also

;- know as collection probabilities in the study of samplers) were ;:;

E determined. The rationale for each assumption made in the Z;&

i calculation was discussed. Moreover, some corrections were made ;iﬁ-

: based on the actual flow to finally obtain the P(St,n*) curve for :;:

g the design of samplers. &fS

:

:' I. Basic Assumptions and Dimensional Analysis :;;

fi If a gas flow is injected out of the round hole CC toward .

i‘ the plate AA (as shown in Figure 1), the streamline (CB,PQ) bends

;. as it is passing through the plate. Both magnitude and direction —_

3 of velocity change. At a distance from the axis, such as the ji

'; flow along the plate near B and Q, the velocity is close to the E;;

? exit velocity V- The particles in the flow move along with the r;;

é gas in the hole. When the streamline bends, the velocity of the ;ﬁg

'5 particle lags behind that of the gas due to inertia. Therefore, ;ﬁ:

: the trajectory of the particle, such as PQ', deviates from the :ﬁj

22
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streamline. The inertia varies with particle diameter and ] jﬁﬁ*
density. Therefore, the extent of deviation is also different. N
. T4 4
Some particles impact the plate and some flow through the hole in ?ﬁgﬁ&
o
, L ey
the next stage. . hﬁbi
Assumption (1): The flow is incompressible and inviscid. ‘";
e
Moreover, the effect of gravity is neglected. '}ﬂi
s - ST
¥ Assumption (2): The particle velocity has already caught up -
, with the flow velocity before reaching the jet outlet. It is in
»"’i ’ . .
k equilibrium. Particles are uniformly distributed in the flow.
b At the jet outlet, the flow velocity is uniform.
. Assumption (3): The effect of diffusion is neglected.
o Manuscript received on February 4, 1983.
‘ /464
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: gure .
¥ Assumption (4): The particle content is very small and the -ﬁ;ﬁ}
. e
. presence of particles does not affect the flow field. AN
’ -.~.I. I‘
¥
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! Parameters affecting the motion of particles are: ﬁ”?-
- D - aperture diameter, v~ jet velocity, ‘ 34
By A
1! p - gas density, u -~aerodynamic viscosity coefficient, a3

p.- density of particle material, d - particle diameter,

©

E?V*r.
] I.‘lxll'l‘
N IS

& 28~ collector plate diameter, h - impact distance, ] ?ﬁé
,g g - gravitational acceleration, a - speed of sound, i
: A - mean free path of gas molecule, Do
i X 50 initial value of radial coordinate of the particle é?fﬁ
X .
- xp(i.e., at the outlet of the jet),

' t -~ time.
2 Let A represent a function of the velocity components of the

EI particle hp and vp or the coordinates of the particle xp and Yp

l“' i

: Its general form is

:E: A - fo(Da Vas Ps B Ppr 45 255 hs By 85 45 50> ’) i :.
0 s
o When studying the trajectory of a particle, then ;}ﬁ
o - —---"'I
::.: Xy ™ f(D> vas Pstbs Pps €5 255 Ay 8 €3 by Zpay 7') ":_
i; i
= The parameters in the above formula are rendered non-dimensional
=7 i
32 by using D, v_ and p. By taking assumptions (1) and (2) into R
t‘ account, we get: i , , D
:;‘. X, - F (9, ® 39 ss Hs Kli x”’ Y’) A ._-:.
‘ﬁ where(:)= pDv_/u (Reynolds number) Kn=1/d (Kenuzhen Constant) ;E?
K e=R.22.L, H = 24/D, )
» 18 o D N
:::, § = 2/D, Xy = 22,4/ D, ::::":::
. X, = 21,/D, Y, = 2y,/D. s
b 24 'da

At T tet et R A e
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In the limiting case that both H and S are very large, the above . &%ﬁﬂ
. RO

formula is simplified as: i
N
4 s
x' - G (S” @3, Kﬂ, X”’ Y') .::t.:‘t’%
. . ;.'-_‘_\

v,
r

- &
e

The impact point of the particle on the collector plate is

rr‘u.r"ir'
._F_» .
PRSI
.».;'.5"."11

Xp=G (S.,Rc 2, ke, X o)

YR
o'efels
s % ‘e
¥ l- l.
Il'l .
sVt

- <

Ko = 0 (50 @2, Ka)

Because of Assumption (2), the impact coefficient P=(Xp.)zr. It /465
represents the ratio of the number of particles at a certain

diameter collected on the collector plate to the total number of

such particles. In sampler studies, it is called the relative

collecting probability[7]. Computation shows that the solution

obtained with a very large H is still appropriate at H=1.5. 1In o
the following, functions G and Q are determined -numerically based i:;J
on fluid dynamic equations. a;g:
11. Basic Equations and Boundary Conditions of the Flow Field ; e
In an axi-symmetrié coordinate system, the velocity gﬁﬁ}
potential ¢ of an inviscid and incompressible flow satisfies the zﬁij
SR
" following equations:’ o
- O 09 108 _, R
5 ot o * )
i “E Ty R
v e
!“n: -‘.;-‘.:‘
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R

where x is the radial coordinate and y is the axial ;oordinate.
The subscript g indicates gas. CD and AB are equi-potential
surfacss. DO and OA are zero flow lines. CB is the free
boundary of the jet (see Figure 2). The boundary conditions are:

¢ = constant (i.e., ug-O, vg=-v_,) on CD

¢ = constant (i.e., ug=v,, vg=0) on AB

¢ = constant (i.e., n,. Ve=0), t.Ve=v_ on BC

"S o (i.e.’ n; - VQ=0) On Do and OA.

.

A
D

.j; L. ¥

Rt
i % 'l
PLANLR |

“

L ]
..'
Az

o

]
é where ¢ is the flow function, n, is the unit vector in the normal
Z
¢ direction and 1, is the unit vector in the tangential direction.
N
N
4
& ) )
B
g

b4

D [
i
Py
N
3
,’ : :
! 0 4 t 4 ._:
§ Figure 2 -
¢ :
1 D/2 is used as the characteristic length and v_ is the NN
y characteristic velocity to render the above equations non- ,,,J
j dimensional: 5o . 5o L1080 fﬁfﬁ
4 ax Tavi Txaxr 0 LT
3 ax? oy x ox 2.1) IR
. 0e/8Y = -1 along CD (2.2) L
3 : : L
3 20/3X = 1 along AB (2.3) R
d
k< n .ve =0, t.ve =1 along BC (2.4) Seue
Py n .ve =0 along DO, OA (2.5) W
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The velocity components are:

-2 -2 | (2.6)

where n and t are the unit vectors in the normal and tangential
direction on the XY plane.

This is a LaPlace equation with unknown boundary BC. By
using the characterisitcs of the harmonic function, the Greén
function is introduced to convert the above differential equation
to an integral equation, Under specific conditions, it can be
integrated. This is the so-called point source function method
in fluid dynamics.

- The unknown boundary'ia can be assumed to be a known curve.
The velocity pot@ntial ¢, (t) of various points on EE'and the
potential velocity of points on DC and AB are calculated.
Furthermore, the velocity potential of points on OA is also
calculated. Based on the integral expression of velocity

potential, the velocity potential &, (t) of points on BC can be

calculated. The shape BC can be repeatedly adjusted until e, (t)=e,

(t)[2].

In our calculation, we chose Y(C)=Y(D)=3. In this case, at
X(A)=x(B)=4, the flow vélocity is already very uniform.
Moreover, the non-dimensional velocity =1. The result of this

calculation is shown in Figure 3.
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Figure 3. Streamlines of Spherical Particle Jet Impacting Upon
a Plate

-

1. Jjet boundary
2. streamline

III. Equation of Motion of the Particle, Initial Conditions and
and Integration of Equations
1. Equation of Motion and Initial Conditions

The equation of motion of a particle in a known flow field

is:
P ‘.' = 2 -1_ .
L A L Nl Al 3.1
dr,
L (3.2)
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vwhere : nd
wgp = 'g-wp (3 . 3 ) f::.\ ;\
= G '-:-\,'.,\ ]
Yep |wgp | (3.4) - :.::%:
vg and w, are the velocity vector of the primary flow and the ; S
velocity vector of the particle, respectively. f; ﬂ
: e
M Ty is the particle position vector. e
i ] . AN
o t is the time. ) iﬁ%ﬁ

For a small particle, the drag coefficient C, can be

expressed as

<o S N,

24
Co=—f(Re)l®
® Re (3.5)

ﬁ wherg Re= d.p.wgp/u which is the Reynolds number of the particle/467 n-.
§ based on using the particle diameter d as the characteristic Z%f:
4 e
) length and relative velocity Wgp a8 the characteristic velocity. e
i w=14+ 2.46)/d (3.6) Ty
:i f'.'-‘
;ﬁ where w is a correction factor for the dilute gas effect and i is e
s ' FENE)

the mean free path of the gas molecule. Obviously, when a<<d, ;:;;
f; w=1, ) v
3 2/3 :
ﬁ In this calculation, we chose f(Re)=1 and f(Re)=1+1/6Re .
2
S Therefore, 24

Cp - —

X wRe (3.7a) -
X ) .

and .
: Co= 241 + Re™)
] wRe (3.7b) o

Equations (3.1) and (3.2) are made non-dimensional by using z”:
D/2 and v_ as the characteristic quantities. " $§j§
iW,  f(Re) AR
'7'7““’2'3._(W"W') ‘ (3.8)
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iR, ”
e “a (3.9)
T = 2v_t/D (3.10)
where
S, = w(® (Stokes number) (3.11)
f,"va R P &
=75 =53 7 D (3.12)
Q’n
k== (3.13)
W, = w,le (3.14)
W, = wi/ve (3.15)
Woy=W.—W, (3.16)
Ry =2r/D (3.17)
The relation between R and Re is:
Re = R d/D |W,,| (3.18)

T, is the relaxation time used to judge the lagging of the
particle velqcity variation behind the flow velocity variation.
C)and S, can be considered as non-dimensional relaxation times.
From equation (3.8) we can see that when S, 1is very small, i.e.,
when the relaxation time is very short, the velocity of the
particle and that of the flow are in equilibrium. Otherwise, it
is not in equilibrium.

When cartesian coordinates X and Y are used on the azimuthal

plane, the equations become

U,  f(Re) ,
—,%--(z—g‘,—(v.-v.) (3.19)
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v, K(Re) ER . ]
T e (3.20)
ix, ““?§§
5 =U (3.21) /1468 ) t,,\ti
. . - 3] ié
) a4y Z‘
@&, v (3.22) S
| a b
when T=0, U =0, V =-1, X =X, Y =Y(C)=H (3.23)
W W
Up, Vp and Ug’ V8 are the X, Y components of p and g’ ‘ .
respectively. Xp and Yp are the components of Rp. , kel
On the meridian plane, if the potential function ¢ and flow SRR
function ¥ are expressed in an or;hogonal coordinate system, then iﬁ;;;
the equations become b
| 4 de TRRA
‘ - -K—;f'l(w, — W) = Wy gF RIS RS
W ds _ f(Re) "\‘;-‘-
9 o 68 W e
T = Frar T s (3.25) a—
Tl
o, : Lok
o7 = Wrlbe (3.26) RN
s -'r&
LY L
" Se s
_‘?'..-W,-/ﬁv (3.27)
When T=0, Wpt=1, an-O, opso(C)EA, 'p='p° (3.28)
where th’ an, Qp and (-Yp) are the components of wp and Rp in

the direction of t and n, respectively. =t is the unit vector in

the tangential direction of the streamline pointing in the

direction of increasing ¢. n is the unit vector in the .
streamline direction pointing in the direction of decreasing ¥.

a is the angle of rotation from the x-axis counterclockwise to «t-

direction. The problem is that «<O0.
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2. Integration of Equation of Motion of Particles

(1) Method of Integration

For a very small particle (e.g., St<0.05), because its
trajectory of motion almost coincides with the streamline, it {is
possible to employ a perturbation method. When (ZSt)’ is very
small (in general f(Re)=1) and d'Up/dTais not very large, we get
the following from equation (3.19)

28, au, A
0,1-17,-7(3:3'[0,'ai;-+-v,-37;] (3.29)

A similar expression can be obtained for Vp.

- If AT (step length)=0.15, when 0.01<St<0.075, equations
(3.19) - (3.22) can be integrated using the Treanor.method[3].
In our computation, it was proven that the results obtained with
Treanor's method are in total agreement with those obtained with
the perturbation method at St=0.01 and aT=0.15.

When §,>0.075, the R-K method can be used.-:

For very small particlés, a larger step can be used in the
perturbationmethod. In this case, it is more appropriate to use
the #-Y coordinate because an is very small and WPT does not.
vary significantly. -

Thus, a series of particle trajectories can be calculated
corresponding to any given St and R d/D. Taking the requirements

of sampler design into account, we used a* to replace R d/D:

a* = (R d/D)/st (A)
LA I L R LIPS N -._' _' '._'._‘-_' -" ................. '-‘-:._‘._"-_' ._'-_'-.'..'~_’.'..‘-'.' T et et PR .« RN N
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(2) Selection of Step Length

In addition to considering requirements of satisfying the /469
stability of the difference scheme and the accuracy of the
computation, we should try to shorten the computing time to the
extent possible in order to make it practical. 1In this
calculation, we chose AT=0.15. The average time to calculate a
trajectory is 60 seconds (on a Model FILEX-512 general purpose
computer). Table 1 shows the Y value at x=4 on each trajectory
when St=0 (in this case, trajectories are streamlines). These
values were compared to those corresponding to Y=1/8x;. D and

were found in good agreement. This demonstrated that the

required accuracy is satisfied in the calculation.

Table 1
® 1
Xpe 005 | 0.15 | 0.25 | 0.35 | 0.¢5 | 0.55 | 0.65 | 0.75 | o.85
l'.x}. ,o.ooonzslo.oozmo.oonm.o.olssz o.ozssoin.nmxi 0.0528 | 0.0703 | 0.0903
L yxy IJ.ocosos lo.ooz:z ‘o.ooma 0.01488 o.ozmlo.omq 0.0518 | 0.0650 | 0.089¢

1. calculated Y value

1) When x=4, Ug=1. From conservation of flow we get Y=1/8XB,.
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(3) Several Measures to Cut Down Computing Time

It took more than 10 minutes to calculate each trajectory

: using the initial program. The following measures were taken to
reduce it to less than 1 minute.

(a) Frequently used elliptical integra1§ are calculated by

series expansion to drastically save time and obtain good

accuracy.
(b) Computation of Flow Velocity and its Partial

Derivatives

For Y >0.03, the flow velocity is calculated based on its

integral expression. For Y£0.03, the flow velocity at any point

TS F ST I K S AL YR

is calculated by series expansion. Not only time is saved but
also accuracy is improved. Our computation showed that the
series expansion method can be extended to Y<0.3.

As for the calculation of various coefficients in the series
expansion equation, i.e., Ug, auglax, 6‘08/6X‘, o’Ug/oX’ at

various points on -the x-axis, the first two are-calculated by

O af S TEERSTYIYIY YTV NS T VLY,

using the integral expressions and the latter two are calculated

first by using a sample value fitting method with discrete values

of U8 and auglax and then by differentiation.
We must point out here that even though a particle hea

: already reached Y=0.03, we still cannot get the approximate value

ﬁ at Y=0 by extrapolation. When Y¢ 0.03, the particle trajectory

bends significantly. Furthermore, for particles in the range of

, St=0.1~0.2 (which i{s the range of our concern), Vp is very small

when Y=0.03. Therefore, extrapolation is not reliable.
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(c) The computation started from Y=1.5 due to the f.:=t ttat

the flow field is very uniform at Y=2 to Y=3, the plate has no

effect on the jet, and the particle trajectory is straight.

IV. Analysis of Calculated Results
Figure 3 shows the streamliines. Figure 4 shows the
calculated particle trajectories for St=0.12. If there is an
arrow on a trajectory near the boundary OA, then this trajectory
does not intersect with OA within X<3.5. Figure 5 shows the>

effect of a* on the particle trajectory. Our computation shows

that

o / LLL 141) ’//1_1/
A7
/
nan®
[V I/ 1/]
LN Riin
B | :
R l
S,=0.12
a°=)
|
i
: v/’/ L
4
o D

Figure 4. Particle Trajectories

1. Jjet boundary
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(1) Within the range of X<3.5, almost all the particles

with St<0'11 cannot reach the boundary OA unless X is very

po
small. Almost all particles with St>0.17 can reach the 0OA
boundary. Whether particles in the range of 0.11<SEO.17 can

reach the boundary OA at X<3.5 depends on the values of Xp° and @

*

(2) Impact points are basically within X<2.0. At X>2.0,
impact points are obviously frequent. This effect can be
explained from equation (3.24) and (3.25).

The impact points of particles with large St are within
X=2.0. Let us now discuss particles with St<0.2. In most areas

of the flow field, |da/0Y¥|<<|da/3®|. For smaller particles, W__<<

pn
Wpt. Thus

da 8¢ W,. 8a W, 8o

—-——W -_t . — =W, /R

T8 "0 g 08 gy o0 /R (4.1)

where Ry is the radius of curvature of the streamline. By

substituting equation (4.1) into (3.25), we get

dwg-- f(R‘)
4T Wil Re = 25, Wre (4.2)

By omitting the second term on the right of equation (3.24), we

get

a2 4.3)

The first term on the right side of equation (4.2) represents the
inertia centrifugal force which is the driv{ng force to increase
an. The second term on the right represents the aerodyhamic
drag which is the damping force to decrease an. When the

centrifugal force can be neglected, an decays exponentially.
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The decay constant is St(f(Re)z1). The smaller the particle size
is, the faster the decay becomes. For a microscopic gas group, S,

=0. Thus, an=0. For a particle (St>0)’ Wp

increases from zero and then gradually decays to zero. vp is

always decreasing. When !p=0, the particle reaches the collector

n first gradually

plate.’ f;.ifﬁ
_ /471 R

. . .g.. L.Ls.‘
b 4 13
4 n
0 - D T
Figure 5. Particle Trajectories fﬂ
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1"‘ | When 'r-'ra, an»zsthnlk, (4.4) _ ;?.r’?'.:
From (4.2) we get v
2 R
&3 . oL R
:flm \_,.'-‘A
; Substituting it into equation (3.27), we get o, <
- B JR% SR
") L
) g, —(¥,),=— 2 — g [ — f(RE) o R
3 r= @)= = B @ {1 - e [ KR (7 1]} (4.6) S
;.q -. '-:‘-}::
L The subscript a represents the value at T=T_,. When (!p)a, (an)a :‘*
. and S, are given, we can find the value of (T-‘I‘a) corresponding . Eljtlj
» WG
"'; to !pso (see Table 2). When equation (4.4) is satisfied, usually .
~
Wpt-‘-'-'Usz Therefore, the second row in Table 2 corresponds to (ch —
» -Xpa)IZSt. It is obvious from Table 2 that the impact points of
}.. a certain particle size are spaced less densely away from the *
< center on the collector plate. This point was also R
L7 experimentally verified. S
i R
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-
;3 The above discussion indicates that the results of an
infinitely large plate (i.e., S is very large) c¢an be applied to -
a finite plate as long as the edge effect on the X<2.0 region can 1;}
% be neglected. 2
o (3) Corresponding to a specific S, and a*, there is a —
3 certain xp, (which is deénoted as (xp°)cr) which corresponds to xpe j;i
=3.5. -
- - 2 ;
¢ From P (Xp.)cr (4.7) =
. RS
. we can find the impact coefficient p(St,n*)_corresponding to that ';ﬁt
v particular S_ and a*, X
t Aty
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V. Effect of Viscosity

When an impact type collector is used to collect particles
larger than 1u in diameter, the Ma number is usually less than
0.2 and Dg/ve is less than 0.3. The flow field is a low Reynolds
number laminar flow in which the effect of diffusion can be
neglected. The accumulation of a few particles in the atmosphere
will only affect the flow in the boundary layer. It has little
effect on the inviscid flow field. Therefore, with the exception
of neglecting the effect of viscosify, other assumptions made in
performing the calculation are reasonable.

1. Analysis of Viscosity Effect

-The effect of viscosity is primarily exhibited in three
areas[A]: 4 .
(1) Due to viscosity, the jet outlet velocity is non-
uniform.

(2) There is momentum exchange across the free boundary BC.
Momentum is transferred from the inside to the outside of BC.

(3) There is a boundary layer at the wall OA of the plate
which makes Ug near OA smaller than the value in an inviscid
flow. Due to the presence of the solid wall, the drag on the
particle is also affected.

With regard to the effect of the first point, the following

correction is made. Let us assume that the distribution of

velocity at the outlet of the jet is:

T ~0-3)
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;—. 1.264 (l D) s
(vo)pax 18 the velocity at the center of the jet outlet. V_ is
the mean velocity at the jet outlet. Hence

3 1/6
St/St=1.264[1-(xp.)cr] |

where St is defined as Tv./D and §t is defined as 'v'v-max/D'

If we assume that the particle trajectory passing through a point
at the outlet only depends on the local St value and is not
related to the fact whether the jet is uniform or not, then the

impact coefficient P is

P= S“"’ 7 Ve * 2xXdX|x¥u

(]
-1 ‘;? (1 = Xl = L 11 = (X1,

.

With regard to the effect of item (2), because the flow
velocity distribution near the boundary (jet mixing area) is
affected by the momentum exchange across the free boundary, the
particle trajectory is also altered. The half-width b of the
mixing area at H=1.5D was estimated by using the semi-inifinite
free jet formula[4] (choosing velocity ratio =0.95 as the jet
boundary). It was found that b/D/2 is in the range of 0.22-0.093
which shows that the jet boundary only affects the P>0.65-0.75
portion of the P(3.,0%) curve.

With regard to the effect of item (3), due to the presence
of the boundary layer near the wall, the transverse velocity near
the wall is lower than that of an inviscid flow, which affects

the flow of particles near the wall. For a collector operating
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at a flow rate of 2 liter/min, ;he Reynolds number Re ranges

from 626 (first stage) to 2606 (sixth stage). It is estimated
that the ratio of the boundary layer thickness 6, to the radius
of the jet D/2 ranges from 0.176 (first stage) to 0.080 (sixth’
stage). It is very small compared to H=3. In this thin layer,
the streamline is already very straight. After a particle enters
this thin layer, its normal direction velocity decays very'
rapidly. ,p will not drop significantly any further. Therefore,
the effect of the boundary layer is mainly causing the tangential
velocity of the particle to drop which consequently leads to an
increase of time of particle motion. It has little effect on the
shape of the particle trajectory1).

2. Corrected Results

The viscosity corrected impact coefficient P(§t,n*) curve is
shown as the solid curve in Figure 6. When a* varies from 0 to
250, §t,,'(the value of S, corresponding to P=50%) varies from
0.122 to 0.137. Corresponding to our calculating conditions,
Marple and Wileke[S] got St,.=0.1165-0.112) when n*=0. R,
(6]

Wiedemann choseV § =0.3433) and got St,°=0.11765. In some

g3 o
foreign sampler designs, St,,=0.144 was chosen. These are in
agreement with our computation.

The calculated P(§t,n*) curve was used to design a multi-
stage impact sampler. After evaluation, it was found that the
performance of the sampler agreed well with theoretical -

calculation. Design specifications are met[7]4).
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1) More profound investigation not only requires the
consideration of the inhomogeneity of velocity in the boundary

layer but also must include, in addition to the drag in the

direction of motion, the transversal force exerted on the
particle by the flow.

2) In reference [5], Stk,./Z corresponds to St,. in this work.
3) In reference (6], S, corresponds to St,. in this work.

4) In reference (71, ®,, correspondé to St,, in this work.

.-

VI. Conclusions
When there are fewer particles in the jet, they do not

affect the flow field significantly. Therefore, the computation

of the particle trajectory and the flow field can be separately
discussed. Under the inviscid and incompressible conditions, the /474

flow field is calculated by solving an unsteady boundary Laplace :ﬁﬁ"

equation. A "point source function" method is used to convert é%??
the differential eﬁuation to integrals. The sh;pe of the unknown kﬁi?-
boundary is repeatedly adjusted to reach the correct position. Ei:
The particle trajectory is calculated by solving a series of R;%:
regular differential equations. Based on the magnitude of St' ;?_j
either the perturbation—method, Treanor method or R-K method can §§j
be used. Our computation shows that the impact points of the iﬁéﬁ
particles on the plate are primarily concentrated in the range X< 2\?5

2. The calculation made for very large H is still valid'at

H=1.,5. After taking the effect of viscosity which causes non- ) }fﬁg-
uniformity of the velocity at the jet outlet into account, a R
‘: )‘: :-.
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velocity distribution v./V°=1.264(1-2x/D)1/613 used to correct
the results. A P(§t, 0*) curve is obtained. A sampler was
designed according to that curve and its performance met the
design specifications[7].

This work was completed under the guidance and assistance of
Professor Wu Chenkang. Professor Ban Yinggui also provided
guidance and assistance. Comrade Li Jiachun provided'many '

valuable opinions on the manuscript. The author wishes to thank

them for their efforts.
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CALCULATION OF THE CIRCULAR JET WITH PARTICLES
IMPACTING UPON A PLATE

Liu Dayou
(Institute of Mechanics, Acedemia Simica)

Abstract

The calculation of the flow field of a uniform circular jet with particles mpuctmg
upon an infinite plate perpendicularly is presented. The fluid is assumed to be inviseid
and incompressible. The trajectories of small spherical particles carried in the jet are
also calculated by choosing either i—:— or 1—:1:— (14 Re*?) as drag coefficient.

Assuming that the particles are uniformly distributed initially in the jet. we obtain
the curves of impact efficiency (known as collection probability in the study of sam-
plers). The basis upon which the assumptions are made in the caleulation is discussed.
Viscous effects are analyzed, and then some corrections of the curves P(S, Q°) consi-
dering these effects are made. The results of calculation show that the :mpact points
of the particles on the plate mainly concentrate in the zome of x<2 The results of
calculations based on very large H is valid for H»1.5. An appraisal for the sampler
designed by using P(S,, Q°) curves shows that expected performance has beeu realized.
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A Non-local Elastic Plastic Continuum Model and the Distress /487

Distribution Near a Cracked Tip
Yu Jilin (University of Science and Technology of China)

and Zheng Zhemin (Institute of Mechanics, Academia Sinica)

Abstract

A non-local elastic plastic continuum model is presented.
In this model, the relation between stress and elastic strain is
non-linear and plastic strain is reigted to the history of total
strain. With regard to the deformation theory, it is assumed
that the plastic strain tensor is proportional to the total
strain deviation tensor. The proportionality factor is a scalar
function of the total effective strain. This model was used to
analyze the stress field at the tip of a power-law hardening
material with a tensile crack. Based on the results of .RR
asymptotic solution of the tensile cracked tip obtained in
classical fluid dynamics, expressions for the distribution of
tensile stress in front of the crack and the maximum tensile
stress were derived through one-dimensional simplification. They
showed that the J integral criterion might be obtained from the
maximum tensile stress criterion. Existing experimental data were
used to calculate the maximum stress near the tip of several
steel materials as the crack begins to propagate. It was
discovered that its order of magnitude is close to that of the
cohesive strength of the lattice. The results obtained are
useful for the understanding of the physical mechanism of the

fracture process of the material.
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I. Introduction

In the recent two decades, based on classical elastic
mechanics and elastic plastic mechanics, fracture mechanics has
been developed Qt a rapid pace. It serves as a new theoretical
basis for the saféty design of engineering components, estimation
of useful life and evaluation of the performance of engineering
materials. It is very successful in engineering applications.

Classical fracture mechanics was developed based on the
equilibrium criterion which was proﬁosed by Griffith and extended
by Orowan. The concept of J integral is also based on energy
analysis. This type of energy criterion avoids the physical
mechanism.of the fracture process, i.e., the stress and strain
conditions near the cracked tip. In reality, according to
classical continuum mechanics, there is a stress singularity at
the tip. The widely used concept of stress strength factor and
the HRR analysis of power-law hardening materials recognize this
singularity. However, if this singularity exists, the cracked
body cannot sustain any load. This contradiction is one of the
major deficiencies of classical fracture mechanics.

Many attempts were made to eliminate such stress
singularity, including the linear yield band model of Dugda1[1],
radius of curvature correction made by Neuber[ZJ, dislocation
model of Bilby et 81[3] and super dislocation model of Atkinson

et 31[4]

. These models mostly involve local correction on the
basis of classical theory. They are useful for certain practical

problems. However, the physical basis is ambiguous.
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Some people[5’6] believe that there is always a radius of

curvature at the tip crack. The ideal sharp crack does not exist.
Microscopically (on the order of um), it may be the case.

Howevér, the fracture process is essentially the destruction of’
the atomic bond. On a finer scale, plasticity does not flow
uniformly. There are dislocation cells when the strain level is

(71 which proves that in most metals, with

high. There is a theory
the exception of face-centered metals and alkali metals, the
sharp crack on the atomic scale will not become dull. Iron is in
the middle. Therefore, despite the possible plastic deformation

near the tip, the crack

Hinu;cripé received on January 16, 1984,

may still remain sharp when the accuracy is on the atomic scale./486
In reality, a material is composed of discrete atoms. It

has a complex internal structure. Physical quantities

corresponding to the continuum field, such as displacement,

strain, stress, etc., can only be established on the basis of g;ﬁﬁ
local averages. When the characteristic scale of the physical o
phenomenon under consideration is comparable to that of the '“‘u;
internal structure of the material, classical continuum mechanics

will encounter difficulties. A more rational physical structure

theory must take the internal structure of the material into
account. To this end, since the 60's, various continuum theories
which take the micro-structure of the material in consideration
were developed. In treating problems relating to cracked tip and

its stress singularity, the non-local theory developed by Eringen



et a1[8’9] has been successfully applied.

The non-~local theory considers that the interaction between
atoms is a long range force. Therefore, the stress on a point is
not only related to the strain and strain history at that point,
but also related to the strain and strain history at other points
in the object. In other words, the stress at a point is a
general function of the strain field of the entire object and its
history.

Eringen and his colleagues used the non-local theory to

. study the stress field at the tip of a brittle single crystal
material. Their results showed that the stress singularity at
the eracked tip did not exist. The maximum stress appeared at a
small distance in front of the cracked tip. 1In addition, the
theoretical cohesive stress determined is in agreement with those
obtained by using atomic theory and by experimental pfediction[lol- This
means that the cracked body also meets the maximum stress

fracture criterion. Based on the non-local elastic theory, it is

not necessary to introduce the surface energy which has no clear ﬁ;&f
physical significance in classical theory to directly derive the ﬁE}E
Griffth criterion from the maximum stress criterion. Therefore, the A ;;;:i
physical significance of the finding is very high. }1f1
In this work, the non-local theory is used to study the ol
cracking problem in elastic plastic materials. When plastic
deformation is invlolved, the state of stress is related to the
strain history. Let us consider a metallic lattice (single
crystalline or polycrystalline). Under an external load; if
there is only elastic deformation, the spacing between
neighboring atoms in the material deviates only very slightly
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relative to its equilibrium value. Once the external load is
removed, these atoms can still return to their original states.
However, plastic flow is related to the motion and increase of
dislocations in the crystalline material. 1In other words, the °
plastic deformation of material signifies permanent changes of
the atomic arrangement, i.e., relative positions of atoms, in the
material. As a plastic flow develops, there is a new equilibrium
in every instance. Due to the presence of the external load,
there is a small deviation of the afomic spacing away from the
new equilibrium state. Based on this physical picture, stress is
corresponding to the deviation of atomic spacing away from the
equilibrium state at that instance, i.e., the elastic portion of
strain. Considefing the fact that the interaction between atoms
is a long range force, stress and elastic strain should be
described by a non-local relationship. However, plastic strain
corresponds to the permanent change of equilibrium atomic
arrangement. It should be related to the total strain history.
Based on the small deformation theory and plastic deformation
theory, the structure and basic equations for this type of power-
law hardening non-local elastic plastic material were established
in this work. Furthermore, it was used to study the stress field
near the tip with a tensile crack. The HRR singularity solution
of a tensile crack near the tip obtained by classical fracture
mechanics was used to derive the expression for the maximum
stress near the tip in small scale yield under one-dimensional
simplifiﬁation. It has been proven that the critical J integral

criterion in classical fracture mechanics can be obtained from
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1

the maximum stress criterion on the non-local elastic plastic

theory. Existing experimental datawere used to calculate the
critical maximum stress values near the cracked tips of several
steel materials. It was discovered that it is of the same order
of magnitude as the internal cohesive stress of the lattice.
Finally, the physical meanings of this theory and its results are

discussed.

II. Basic Eqﬁations
In this work, the plastic structure is described in the
strain space because, as described in the previous section, that
plastic deformation is related to the total strain, rather than
stress. ' '
According to the small strain theory, strain ¢ is related to
displacement u linearly, i.e.

=12 (u ) (D 1487

*1j 1,37 Y5,
where the subscript following the comma represents the partial
derivative with respect to the corresponding coordinate.

The strain is divided into two parts, i.e. elastic strain
and plastic strain:
= P

€44 = 1 + €ij (2)

where the superscripts e and p represent elastic and plastic,

€ and stress t

respectively. Let us assume that elastic strain ¢
satisfy a non-local linear relation (8]

£y CO= I (x"=x ey (x')6 1 +2u" ([x" x| e (x)1dV(x")  (3)
where oij is Kronecher's &, and A»' and p' are non-local modulus.

All repeating subscripts indicate the summation with respect to




all indices. Let us assume that thg effect of factors such as
the internal characteristic scale change of the materials and
microscopic inhomogeneity due to plastic deformation on non-local
modulus can be neglected. Then, A' and u' is only a function of
position |x'-x|.

When there is no volumetric force, the stress equilibrium
equation is

4.3 =0 Y]
In order to discuss the plastic structure, we introduced

strain deviation e and elastic strain deviation e®

.1, (5)
i = &) — —:1; sudii» €l =6 T sida

- -

as well as effective strain ¢ and effective elastic strain ©°

p ' z .., (6)
o= /-‘3; eijiis &= 3 eiels

Corresponding to the classical plastic deformation (full) theory,
in the strain space we assume that: .

1. The volumetric strain is elastic, i.e., e£k=0. Plastic
strain is only related to the deviation of total strain.

2. The effective eiasticstrain is a well-defined function
of the effective total strain.

3. The plastic strain tensor is proportional to the total

strain deviation tensor. The proportionality constant is the

scalar function of the total strain, i.e.

8l = @(&)e;i

(7)
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% A nominal local stress o is introduced. It is related to e
. elastic strain and the classical generalized Hooke law:
e e
% where A and p are Lame constants. The effective nominal local -
. stress is defined as
%
3
' P TR KA ( ?)
where
>
A 1
’, =i =g owudii (10)
. is the deviation of o.
3
“ -'Let us consider a uniform deformed body. Obviously, in this
i case the nominal local stress o is equal to the non-local stress
(true stress) t. Therefore, the o-¢ curve is the same as the
f stress-strain curve in the event of a simple tensile stress for 53&?
ol
; an incompressible material. For a power-law hardening material, %;&{
\.-J';-E'J
we have . . g
2 o (&/e_,) when zge /488 D
-.! _ y y y s
" o = 11
» oy(E/ey)nwhen e
§ where n is the strain hardening index. Oy and €y are the yield —
s stress and strain in simple tensile situations. Notice that when
;I sij=2“e§j the above formula can be converted into a relation
i between T and #©. ' ~—
v /e when ©ge '
¢ O y y (12) o
s y ) (%/€ )" when T>¢ o
— y y HCREN,)
e =
A e
a3
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Based on assumption (2) above, this relation is still valid for a
non-uniform deformation (in this case tij# °ij)‘ From equations

(7) and (12) we can solve that

0 when &<e
’= y (13)

1-(E/ey)“'1 when E>ey

Thus, equations (1)-(7) and (13) form the basic equations in
the non-local elastic-plastic deformation theory of power-law
hardening materials which are incompressible and are deformed
slightli. It is only applicable to simple loading and near
simple loading situations.

III.- Str;ss Field Near the Tip of a Tensile Crack Under Plane
Strain

Let us assume that there is a crack, 2a in length, on an
infinite plate. The surface is free. At infinity, there is a
uniform tensile stress t« perpendicular to the crack plane (see
Figure 1). Near tﬁe cracked tip, plastic strai; is much larger
than elastic strain. Therefore, the incompressibility assumption
is approximately valid. If we are limited to the study of the
initial propagation of a crack, deformation theory is also
applicable to power-law hardening materials. When the dimension
of the plastic region is smal}er than the thickness of the plate,
it can be approximately considered as in a plane strain state.

Because of symmetry, we are only required to study the upper

plane.
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4y
) 1
E s~ (wii + 215)s Lii=0, ;=) + s,

s tij == L (2| — 2| defu(x' 0+ 24'(| &' — x ) De2{x))dAAx) (14) -
o o

G O

:

;;

o The problem is reduced to solving the equations in two-dimensions
3 under the following boundary condit‘ions:

: t11=tq2=0, too=t_, when (x?+xi) -e

o t12=t22=0, when x,=0, |x, |< a (15)

' - 8wy /8x, =0, u,=0, when x,=0, |x,|>a

Iﬁlf The last condition is obtained from symmetry.

- .
o | O I
N A
% S
F N oan
Figure 1. The Tensile Crack Problem "
L ':-\:-\:.
_: Eringen[8] proved that the non-local modulus can be /489 RN
- -::‘.::\.:
e expressed as e
‘o la(lx — 2]), '—p(\s""t\) DA Y
a ¥ = talls g (16) e
N A
) N
2 55 o
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g where a«(|x'-x|) is a non-negative function of x' which has the

following properties:

- 1. With increasing |x'-x|, a(|x'-x|) approaches zero very
:§ ' rapidly.
. 2. In the extremum case in classical elastic theory,
e 3
NG a(|x'-x|) becomes a Dirac & function.
A% .
3?' 3. fvu(lx'-x|)dV(x')=1. :
By comparing to the ideal lattice model, we get
¥ L x(,-l!‘_—_!l) | — x| <
of|x —x|) = s (17
¢ ° |= — x| >b
o where b is the lattice parameter and K=3/1b, (two-dimensional) or
e )
iﬁ K=1/b (one-dimensional).
3 . . i
.S Based on equation (16), the equilibrium equation (4) can be
- rewritten as ,
5 , [, aC1# = 2)mi(x)av(=) =0
y v (18)
v, .
A It can be proven that if the effect of surface tension can be
3 neglected the necessary and sufficient condition for the above
§ equation to be satisfied is:
t“ :
X %45, =0 (19)
&% This shows that the control equation for the nominal non-local
% stress is the same as that in classical theory. Thus, if the
effect of surface tension is neglected, for a given displacement
éi and boundary condition, the displacement field and strain field
-\l .
;: obtained using the model described in this paper are identical to
3 those obtained based on the classical elastic plastic theory.
‘; However, the stress field must be calculated using equation (14).
)
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The above conclusions is generally not valid for problems
with given stress boundary conditions or mixed boundary
conditions. If classical strain field is used to calculate the
non-local stress field, stress boundary conditions can only be
approximately satisfied. Despite so, because the microscopic
scale reflecting the non-local effect is very small (atomic
spacing), actual errors only occur at places where classical
theoretical stress has breakdowns or irregularities (of course,

those are the areas of concern). The calculations performed by

[9]

Eringen on a non-local elastic crack showed that this error

decreased with increasing 2a/b. When 2a/b=40 (equivalent to a
crack length around 0.1um), the maximum stress error is about
10%. The actual crack is much lafger. The error will be less.
For power-law hardening materials, based on classical theory
of elastic plastic deformation, the stress and strain at the tip

-n/1+n -1/ 14n

have r and r

singularities, respectively. According
to reference [12],- in small range yield cases, the major terms of

stress and strain fields near the tip can be expressed as:

on = [U= et Ie52 s (0

lero;
] — ')marl 1o
om = [T o) |
o o [ et 11220,2.4(0) (20)
IS | l.rod J }
O ™ -gl_y_’";%‘_“."_: rh"'”(O) 3
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B where v is the elastic Poissonlt of the material and I, o is a constant T
“ related to the hardening index n (see Figure 2). 8rr(°)"“’°re _ igu;
(6)are angular distribution functions corresponding to Oppr+++€rg ) [‘af
which are also related to n. The angular distribution functions ' SE?;

of three stress values at different n are shown in Figure 3. Eﬁ%'

L 2 - " Fe 1
L 062 04 06 03 10
]

Figure 2. In vs. n
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Figure 3.. Stress vs. 6 at Various Hardening Indices (from &Eﬁf
reference [12]) _ . SN
NS
If equation (21) can also be considered as an acceptable : pobal
‘ k J »
approximate solution of the strain field in non-local elastic 3ﬂ%¥
: plastic theory, based on equation (20) we can find the 5&%*
PO
i approximate solution of the non-local stress field from the Ania
¢ following equation: : 53;?
: =, 612 = 2 )o(x)de(x) B
y: (22) ey
i This is a very difficult task which will not be investigated rek

-t

further in this paper. _One can see that tij is bound and stress

singularity no longer exists at the tip.

SRR R A AL

IV. One-dimensional Approximate Analysis of Non-local Tensile

Stress in Front of Crack

In order to obtain a clear qualitative physical picture of fi?i

the non-local stress field at the tip, in this section we will

LI R s SR
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Rey
attempt to simplify the equation to one-dimension, i.e., to use D!
. o
the following " .
- -1‘ - l‘. _:! ’ ‘ ’ o 4
@ =[ L (- e (23) RS
S
to calculate the tensile stress in front of the crack (for aan
convenience, subscripts are omitted). This is equivalent to : Eaff
K ".\.:,,:.
; . assuming that the stress along x,-direction remains unchanged at ) t;ﬁf
least in the atomic scale and non-local action is only active - {j’
along the crack. ' ‘ e
From equations (20) and (23) it is easy to find E;;f
.0 when Ogx<a-b -

i T A xs) (’__!. + 1){%:'%

2+= )\ b when a-~bgx<a

l ] =g L] 22— 8 b ] |
e R e

N
ll(lz";i)'[(":i-i-l)ﬁ—z(’:‘){%:'+(-‘-:—‘-—l){%=]¢. /491 -’
when xj3a+b

where

o =- [S‘_‘I'-b_’;’L"_":]T:‘-c,a“(o).

Figures 4 and 5 show the tensile stress distribution with

different internal structure scales.

60 o

T e WERETE P S LT T T T AL A, S R A R AT 2 " T T Y O o o™ RN N T i s TNEE o o T A K

.........
.........................................................
.............

- . -
................

-~
e

.
e




gl BN LS el BT ]

AR Bl A

e s

LA A Y

M Bins™ el

TeTaTa"e s WS AN S 5 8 8

h“ ke B £

LA A A s A A B s e e ks e R > gt

L | I3

10 12 14

Figure 4. Tensile Stress Distribution in Front of Crack when
a/b=50. Dotted line represents the classical
solution when n=0.2, t,/oy=0.5.

o/b=200

‘ =3
o3 220,05 ’=/0,0.5
’} 2t .-0.20 '-/C,-b.’

=020 to/o,=0.1

[ L

| 1.4
1.0 1z /o

Figure 5. Tensile Stress Distribution in Front of Crack when
a/b=200.
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It is obvious that as long as b is not zero, the stress in
front of the crack is always finite. The maximum stress occurs

at rsb/21+“-1. It is

tos ™= A, [S'l_-::%']rhc! (25) Co
where
(1 + n)’Ge(0) ~ 091

A, = -
(1 -+ l)l.m (2**=1) ﬂ: a4+ 0.31
2

is a constant related to the hardening index, as shown in Figure

6. Based on this, the stress conceﬁtration factor is
Y. — e L)
P —:! A.[(l f):b] (”’) (26)

It is not-only related to the relative scale of crack to internal
structure, but also to the hardening index as well as to the
relative magnitude of external load to yield stress. This is an

apparent result due to non-linearity of plasticity.

ke

1 1 A
¢ 02 04 05 03 10

Figure 6. Coefficient An vs. Hardening Index n.
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Since the stress near the tip is finite, naturally we can

establish a physical criterion for cracking: there is a critical

e g
K

: stress t_, which is a constant for a material, when thax=te?
¢

Eg crack will begin to propagate.

. Equation (25) can also be written as

§ ,

- . 27
F— A'g, 1+9 JTB.)m (- )

« - &.LA.-‘.“ M “. '\i

where E is the Young's modulus. Because n, An’ b, ., and E are

. y .
material cbnstants, therefore, the criterion in classical /1492
elastic-plastic fracture mechanics can be directly obtained based
on this fracture criterion. Thus, the contradiction in classical

fracture mechanics as pointed out in the introduction can be

.S i S

bypassed. The mécroscopic model of fracture mechanics is

unified with the microscopic physical mechanism.

It is worthwhile to note the physical significance of

R R ey Yo e e

critical stress tc' -The quasi-embrittlement fracture and ductile

fracture of alloys- are far more complicated than the fracture of

Aat

a single crystal. On one hand, because of the presence of

1R

intergranular boundary, alloying elements and various

- metallographic structures, the microscopic structure is non-

Q
Ly

uniform. On the other hand, as plastic deformation progresses,

o et Ly
asiatale%

the microscopic structure also continues to change. Despite so,

*
. TP
s ‘-vt'
[ S P v

we can ‘still anticipate that the critical stress t. corresponds -7,,!

to the case that the cohesive strength between atoms at the

EXXARAR . '

.2

leading edge of the crack has the same order of magnitude as the i:;?

cohesive strength of the lattice of the base metal (which is —_——

)
Pl
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around 0.1E for most metals) after undergoing a severe plastic
deformation. Table 1 shows the tc/E values for several steel
materials calculated from available experimental data. The
results are in good agreement with the above analysis. From the
data one can see that although materials of similar composition
may have large variations in yield strength cy, yet their t.
values are relatively stable when the fracture mode is identical.
The numerical value is slightly less than the cohesive strength
of a perfect lattice. This reductién is not surprising if we
consider factors such as local stress concentration due to a
large number of lattice defects and dislocations near the tip
prior to failure. Obviously, the microscopic structure of the
material is different due to various heat treatment conditions.
Therefore, the effect of the above factors is also different.
Thus, the value of t. varies slightly. In Table 1, the data on
two Fe-20% Co-15% Cr-57%Mo alloys reflect this variation. The
dataare arranged in descending order based on effective time. As
it increases, the residue Austinite content decreases and the
precipitate phase increases. Thus, the atomic binding force
decreases and the local stress concentration effect is

strengthened. t. will decrease slightly.
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Table 1. Ratio of Critical Stress Calculated Based on
Experimental Data to Young's Modulus for Several

Materials

n.ﬁ 4 g
i} / n » (MN)m") . (Inll‘@) %/E nExE .
{ 636 0.17 0.086 0.093
Gerts 451 0.21 0.046 0.104 [13}
" . a1 0.21 . 0.030 0.091
;: 34 CeNido 1225 0.10 0.032 0.060 C6
1 T )
Y 1450 0.085 0.038 0.059 !
R 980 0.12 0.119 0.073 [6]
SiMaCrM
° 1156 0.11 0.117 0.073
1156 0.10 0.119 0.064 tl
- . A C 1390 0.066 0.0413 0.046
Fe-2096Co-1596Ce- 1550 0058 .24 0.045
5 2::; 1750 ©0.051 0.0263 0.045 [15]
. ) 2110 0.034 0.0057 0.042
2200 0.021 0.0518 0.040
Fe-2006Con15Cr- 1590 0.076 0.5436 0.058
| e 1510 0.070 0.0215 0.u58 5
&, (EmM.B M40 0.050 0.0051 0.050 (33
2360 0.033 0.0018 0.045

1. type of steel

2. source of data

3. high purity

4., high purity, de-oxygenated

V. Discussion and Conclusions
1. In spite of the fact that the structure is only given
based on plastic deformation in this paper, this basic concept is
also applicable to other types of plastic structure relations.
Regardless which structural assumption is adopted, we must use /493

strain space to describe the problem. In this space, the
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classical stress vs. elastic strain relation can be used to
transform stressbinto elastic strain. This type of treatment
also ensures that the present model is consistent with the
classical model when the internal scale in the non-local modulus
approaches zero.

2. Different from the non-local plastic theory recently

[16], this model (does not take the non-

introduced by Eringen
local characteristic of the plastic structure into account. This
is because the physical characteristic scale relating to plastic
deformation is far larger than the characteristic scale
considered in non-local elasticity (atomic scale). Relative to
atomic scale, plastic deformation is highly non-uniform. From
another angle one can say that the plastic deformation of a point
is somewhat random in nature. Hence, when the accuracy is on the
atomic scale we should understand that the continuity of plastic
strain is described as the statistical average of all probable
deformations in the neighborhood of the point under
investigation. The physical connection between plastic strain
and stress, however, is expressed as the internal stress caused
by the growth of dislocations. Statistically, it is equal to
zero. Therefore, macroscopically plastic strain is not directly
related to stress. However, microscopically, this internal
stress causes the average cohesive strength to drop.
Mathematically, the model introduced in this work decouples the
non-local (elastic) and non-linear (plastic) parts of the basic

equations. Consequently, it is more convenient to use in
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pracfical problems.

e 3. Strictly speaking, in the fracture region near the tip,
geometrical non-linearity caused by a large strain cannot be
neglected. J integral is only applicable outside this region.
Thus, if the entire region is treated based on the small strain
linear theory, it will read to some error. Despite so, the non-
local elastic plastic theory recommended in this work can unify
the macroscopic model of fracture mechanics with the microscopic-

physical mechanism. Furthermore, the critical fracture stress

thus obtained is on the same order of magnitude as the cohesive
stress of the lattice. This will benefit the understanding of
the physical mechanism of the material fracture process.

4. In metal physics, the effect of microstructure factors
such as two-phase particle volume integral, particle size and
impurity spacing on the fracture resistance is discussed in
detail. In the present model, these factors affect the fracture
resistance of materials through oy and n, i.e.,-the change of
plastic deformation in front of the crack.

5. The fracture of a metal involves three different scales:

macroscopic, fine detail and microscopic. In this work, an
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attempt was made to connect microscopic and macroscopic |¢%¥f
viewpoints. From the fine details, many physical factors are yet ?ﬁi;
to be considered. It is necessary to understand the dependence i%;;
of internal cohesive stress upon fine factors such as alloy ﬁi%;
composition, metallograph and microscopic structure as well as ;Egﬁ
upon macroscopic parameters such as hardening index and i;::
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destructive strain which describe the extent of plastic
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deformation. A great deal of detailed theoretical and experimental

work is required. ?Ef;
éﬁi&
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A MODEL OF NONLOCAL ELASTIC-PLASTIC CONTINUUM
APPLIED TO THE STRESS DISTRIBUTION
. NEAR A CRACK TIP

) Yu Jilin
(University of Science and Technology of China)

Zﬁeng Zhemin
(Institute of Mechanics, Academia Simica)

Abstract

A model of nonloeal elastic-plastic continuum is proposed. The stress and the elastic
strain are related by a nonlocal linear relation, and the plastic strain is dependent on
the history of total strain. For plastic deformation theory, it is assumed that the plas-
tie strain tensor is proportional to the total strain deviation tensor and the ratio is a
scaler function of the effective total strain.

This model is used to analyse the stress field at the tip of a crack in a power-law
bardening material under plane strain condition. Based on the results of HRR asymp-
totic solation in classical fracture mechanics, tlre distribution of tensile stress on the li-
pe directly ahead of s crack tip and the expression for maximum tensile stress are ca-
lculated under one-dimensional simplification. It is shown that the J, criterion may be
obtained from the maximum tensile stress criterion of ths nonlocal theory. Available ex-
perimental data for steels ave used to calculate the maximum tensile stress of fracture
‘initistion at the crack tip, which ig found to be close to the theoretical cohesiva strength.
The results obtained are useful for understanding the fracture process and mechanism
of materials.
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Study of Plane Stress with Elastic Plastic Mixed Mode Fracture

o Xu Jilin, Xue.Yinian and Han Jinhu Sﬂﬁl

%: . (Institute of Mechanics, Academia Sinica) %3?
% !
3 Abstract ?72

’é In this work, the deformation field around the crack of a ;i;
TS thin aluminum plate with center cracks of various angles of i:;;
N inclination under tensile load was measured using the direct laser . %ﬁ;_
'é speckle method and Moire's method. In addition, the relation E&;

:ﬂ . between loading and crack propagation in the steady-state crack &;jﬁ

. growth process was measured. Moreover, finite element analysis AR

é% based on large elastic-plastic deformation equation was carried

ni ‘ out to obtain the stress-strain distribution around the crack.

L Calculated results are found in good agreement with experimental T

;i data. Furthermore, the results were discussed. §§E§
X | 3
: I. Introduction ) ' .:3?,

}f In a thin wall structure of a malleable material with a :~.-
E crack, before the crack began to propagate, the crack tip has

; already formed a large plastic region. After the crack is

~¥ initiated, there is a séeady-state growth process. If the linear

;& elastic fracture theory is still applied, the load capability of

: the structure will be under-estimated. Therefore, there is a

3 need to establish an elastic~plastic fracture theory to conduct -

;S this investigation. In recent years, progress has been made in jSin
e the study of elastic-plastic mode I fracture theory. New methods
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and parameters are constantly being introduced. In references

(1,2], many authors used different fracture criteria to study the

R VIR T

initiation, steady-state propagation and ductility instability

R RIS

b

over a wide range of yield conditions. 1In addition, experimental ~

e

data and finite element numerical analysis were combined to
calculate the stress-strain field near the crack tip.
Furthermore, various fracture parameters were analyzed. Among
them, Shih et al conducted a great deal of experimental work and
numerical analysis under plane strain for large range yield.
After sorting various fracture parameters, it was recommended
that J‘c and °‘c be used to express the initiation of a crack,
and the tear modulus TJ and T, be used to express the growth of
the crack. Kanninen believed that J and CTOA are the most
effective parameters to estimate the initiation, steady-state
growth and ductility instability of a malleable material. 1In the
[3]

study of the plane stress fracture problem, Feddersen used
aluminum alloy plates with center cracks to conduct a large
number of experiments. A useful analytical method for

engineering design was provided. However, the steady-state crack

propagation process was only quantitatively described. We
measured the relation between steady-state crack growth and load

increment by using thin aluminum alloy plates with center cracks

under tensile load[AJ. Moreover, based on the elgstic plastic
fracture model of plane stress--the shrink neck band mode1[5],

the elastic-plastic deformation finite element method was used to

calculate the steady-state growth of Mode 1 crack[6]. The

Y

calculated results and experimental data are in good
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agreement. There is little published work on the study on mixed E;i'

) 1l

mode fracture for large range yield. Ueda et a1[7] studied the ‘

. . RV UL
i initiation of Mode I and Mode II cracks under large range yield éa‘ﬁ
conditions. They conducted some low temperature embrittlement 1_%;

50

tests with soft steel cross specimens with inclined cracks under

the tensile stress in two axes. In the meantime, they conducted
elastic-plastic finite element calculation for plane stress.

They used the COD concept for Mode I fracture to analyze the

P

e
-
»
-
L
-
<

initiation of a mixed mode crack. _ ’ i&:i
In this work, thin aluminum alloy plates with center cracks E;?
at various angles of inclination under tensile load were used in i :
the experimental study in plane stress 4-3:.}-,3
conditions. Both Ithe laser speckle method and Moire's ‘:T?.;‘,:Z:'

used. In addition, the finite element method with elastic-plastic
deformation was used to perform numerical analysis. The results 5£$:

were compared to experimental data and discussed.

-

II. Experimental
This experiment involves 20 specimens. They are thin plates

with center cracks made of LY12-CZ and LY12-CS aluminum alloys.

Manuscript received on October 15, 1983. The paper was
presented at the 1983 Beijing International Fracture Mechanics

00 MERRSRYY X E 8 R b A AR TN

i Academic Meeting. ) iﬁ:ﬁ
Q) The characteristic data of the materials are shown in Table 1. /496 Nt
R

These numbers were obtained in the tensile test of the raw Ca

materials. In the table, « and n are parameters in the

PLS | L AN

expression ¢= o/E +a[(o/oygn-1] in which an index curve is used
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to approximate the curve of the material. The geometric Eé&fg
dimensions of the specimen are shown in Figure 1. The angle of S
inclination between the crack line and the load 8=90°, 60°, 45°, ES}%&
and 30°. The initial crack length is‘ZaD. It ranges from 4.65mm - . - 5§§§§'
to 42.7mm. Their projections in the direction perpendicular to Nty

’ the load range from 4.65mm to 23.8mm.
Table 1
2«1 . |
Tw_w [GENER AR, AT, P | - | -
LYz 7100 32.5 .5 0.184 0.0 | s "E:C'-’.
Lviz-cs 7100 5.3 5.2 0.143 0.0075 . F
4 RRN

e

iy

material X
elastic modulus ' i
yield strength
limiting strength
elongation
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Figure 1

The center crack in the sample is cut by a 0.12mm diameter
molybdenum and made into a fatigue crack. Fatigue cracks were
not prepared on six specimens in order to study the effect of
prepared fatigue crack on crack propagation.

Because the specimen is very thin, there is not much
difference between surface and internal crack growth. In the
experiment, an 80X microscope was used to read the crack growth

increment Aa. The minimum scale on the microscope is 0.01mm.

74

- Y .
LA IN

.
1)

Ry




WA v VYt N e A Are Al B Ayt G L i A W W b g - I e e Mo 4 i Wy - . 2 e e i i Sk A Sad M N
P

e

R

The initiation and steady-state growth can be clearly observed . Eéé?

| through the microscope. The relation between load o-and crack ;';g
é growth (a-a,) is thus determined. §;3§
f In order to measure the strain distribution around the crack = - .kxﬁ
during the entire loading process, a laser speckle method is used '

. ) to directly measure the deformation on one surface when the load

é . is relatively low. On the other surface, Moire's method is used
to determine the deformation when the load is relatively high[8] _ i
The surface on which the direct laser speckle method is used is
polished by a wheel to improve the reflectivity of the surface in
order to obtain high quality double exposure film for the a
analysis of the entire field. The analytical fringe pattern of S0
the entire field is photographed fhrough a 2mm diaméter filter
hole. The hole is opened up high to reach a sensitivity
corresonding to a grating line density of 467 lines per
millimeter. Hence, it is possible to measure the deformation

field when the load is relatively low. When the load is

relatively high, a simple Moire's method can be used to measure

on the other surface even when deformation is large. The grating

line density chosen is 40 lines per milliliter and the specimen

,
'

)
' ot
J

)
i‘
il

-

b

A
)

tet

grating is an orthogonal grating. The analyzing grating is a AN

L

L -1 S

unidirectional grating of the same density. Based on the
experimental data shown in Figure 8, the results of the speckle

method and those of Moire's method are in good agreement.
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In order to investigate whether the elastic-plastic Mode I ;i.ﬁ
[51 (6] 3

fracture model of plane stress and crack growth criterion
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can be extended to mixed mode fractures, we are concerned about

the strain distribution on the ductile belt of the inclined

W]

%5 center crack specimens (extension from the two apices of the

!;E crack along the direction perpendicular to the tensile direction is

. called the ductile belt). Moire's method was used to measure the H;i

;é strain.ex in the x-direction and strain €y in the y-direction. ‘ :

if Results show that e, 1s much smaller than €y -

% | S
:2 III. Finite Element Analysis /497 ﬁ?;t
% In this work, the Euler finite element formula with plane ﬁiiﬁ
fu stress deformation was used to calculate and analyze aluminum ;;;;
lé alloy plates with center cracks under load at angles of S
i; inclination B=605, 45° and 30° to determine the stréss Oxr %yrTxy

% in the loading process, the stress 0,194 and Tro around the crack

fé top, the strain €y ey, €, 7xy and the distribution of the

iﬁ plastic region. In addition, the open displacement of the crack

& surface and the strain €y on the ductile belt were calculated and

Wy compared to the experimental result (see Figures 8 and 9).

;z With regard to the steady-state crack growth on thin

{; aluminum alloy plate specimens with center cracks at 8=90°, we

E; had calculated the relation between crack growth and load

52 increment, as well as the instability load, using the finite element

: method with plastic deformation equation based on the shrink neck

-g band model of plane stress elastic-plastic fracturel?), - The

Eﬁ criterion of crack propagation was that the relative elongation

é of the shrink neck region at the crack tip reached the same level

T§ as the elongation coefficient of the material [6] The results are

f:‘
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in good agreement with the experimental data.
The speed equilibrium equation in the form of pseudo-work
equation is

S'[n‘,&Dg,— - % 0;i8(2DuDy; — 'lu"l-i)] av 1)
- S f,-‘ﬂ,"l‘ -+ g' 5,-01.-4“7
where 1§j is the Jaumann speed of Kirchhoff stress tensor Tije

and Dij represent the true stress tensor and deformation speed

tensor, respectively. fi and bi are the instantaneous unit

*
surface force and unit volume force. i and Dij are related by

the constitutive matrix of elastic deformation increment [Cl.

o {*} = [CH{D} (2
From equation (1), we get the Euler finite element speed

equilibrium equation

Oij

b R

(K16} = | (vrrisay + | Ivrrigree (3)
a
B N T T S T SO O
L.
R RR
o -z
Figure 2 R 2 : RS
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{¢} is the nodal point speed array. The rigidity matrix is
(K] = L{[B]"[C][ B) + [NyJ20ui[ Ny )i — 20 By Yol By; 1}av (4)

In the plaﬁe stress case, let us assume that ¢ 0. The

x~%xx"%yz~
instantaneous element thickness t=t,e®x .

When an increment tangent rigidity method is used to solve
the problem, the load increment coefficient is determined by
using the "Shantian' method to allow each element to enter a
yield state in order to reduce the error introduced due to the
discontinuity of the tangential modﬁlus of the curve of the
material at the elastic-plastic turning point. Moreover, it
corrects for an unbalanced load.

- The unit mesh for an inclined, center-cracked specimen is
shown in Figure 2. The center-cracked unit lattice.whose ratio
of unit dimension at the crack tip to the crack length is

1/40-1/100, 8=90

is shown in reference [6].

IV. Results and Discussion

1. Fracture Surface Topography

From the fracture surfaces of all failed specimens one can
see that there is a very small triangular flat cross-section in
the neighborhood of the tip. It is rapidly turned into a 45°
shear fracture with respect to the surface. It belongs to a
plane stress fracture.

2. Fracture Stress

Table 2 shows the non-aimensional experimental data

including the uniform tensile stress og and average stress
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%4 (net) °0 the ductile belt at initiation and the uniform tensile
stress o and average stress S<(net) °0 the ductile belt during
unstable growth. These results show that the average stress on
the ductile belt prior to the unstable growth of the crack has-
exceeded the yield of the material. Therefore, they most failed

under the condition of large range yield.
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0 1 2
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Figure 3a

(1) specimen 28
(2) specimen 24
(3) specimen 19
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Figure 3b
(1) specimen 7
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Table 2
5 2

. P w g [ [ o [ O
wnd | 8 | icam | 2% [Tt ¥l || -g;‘-’! %
1 90° 0.45 | 1179 | 11.79 | o0.891 | 0.914 | 0.972 | 1.025 | 1.129 | 1.063
2 12.36 | 12.36 | 0.885 | 0.855 | 0.945 | 0.963 [ 1.092 | 1.105
3 12.62 { 12.62 | 0.883 | 0.809 | 0.945 { 0.917 | 1.095 | 1.168
» 11.05 | 11.05 { 0.898 | 0.963 | 0.982 | 1.077 1.020
[ 0.89 4.65 | 4.65 ( 0.957 { 1.071 { 1.095 | 1.117 | 1.175 | 1.022
3 s.81 | s.81 | 0.946 | 1.031 | 1.086 | 1.092 | 1.175 | 1.083
7 11.55 | 11.55 | 0.893 { 0.899 | 1.003 { 1.009 | 1.166 1 1.116
] 18.30 | 18.30 { 0.830 | 0.720 | 0.889 | o.868 | 1.132 | 1.235
9 23.78 | 23.78 | 0.780 | 0.720 | 0.831 ( 0.926 [ 1.111 | 1.15¢
1o 10.10 | 10.10 | 0.906 | 0.939 | 0.954 | 1.034 1.016
u» 1.50 | 13.46 | 13.46 { 0.878 | 0.942 | 0.991 { 1.07¢ | 1.182 { 1.052
12 14.47 | 14.47 | 0.868 | 0.935 | 0.985 | 1.077 | 1.191 | 1.053
130 21.68 | 21.68 | 0.803 | 0.735 | 0.825 | 0.914 | 1.062 [ 1.122
14» 10.05 | 10.05 | 0.909 | 0.985 | 0.997 | 1.083 1.012
- 1s - 60° 0.91 | 23.41 { 20.27 | 0.812 | 0.705 | 0.886 [ 0.%68 [ 1.092 { 1.257
16 : 23.69 | 20.52 | 0.810 | 0.775 | 0.877 | 0.960 | 1.083 | 1.132
17» 23.67 | 20.50 | 0.810 | 0.568 | 0.889 | 1.071 | 1.098 | 1.02¢
189 - 20.16 | 17.46 | 0.838 | 0.871 f 0.917 | 1.037 | 1.092 | 1.053
190 = 1.50 | 22.10 | 19.14 | 0.823 { 0.825 | 0.908- | 1.000 | 1.102 | 1.101
200 21.60 | 18.58 | 0.825 | 0.797 | 0.920 | 0.963 | 1.111 | 1.154
21 0.1 1 11.28 | 9.77 | 0.909 | 0.917 | 1.003 | 1.006 | 1.105 | 1.094
2 10.61 | 18.55 | 6.907 | .517 | 0.997 | 0.988 | 1.074 | 1.067
23 5 30.13 | 21.30 | c.803 | 0.751 | 0.871 | 0.939 | 1.086 | 1.160
24 : 30,21 | 21.36 | 0.802 | 0.751 | 0.871 | 0.939 | 1.086 | 1.160
25 - 30.79 | 21.77 | 0.798 | 0.763 | 0.865 [ 0.957 | 1.083 | 1.134
26 30° 41.70 | 20.55 | 0.807 | 0.742 | 0.840 | 0.920 | 1.040 | 1.132
27 42,12 | 21.06 | 0.805 | 0.751 | 0.859 | 0.935 | 1.065 | 1.144
28 42,66 | 21.33 | 0.802 | 0.751 | 0.840 | 0.939 | 1.046 | 1.119
290 40.20 | 20.10 | 0.814 | 0.850 | 0.892 | 1.083 | 1.098 | 1.014

1) specimen without a pre-fabricated fatigue crack
2) LY12-CS aluminum alloy.

aluminum alloy.
3) specimen no.

4) °i(net)/°ys
3) cc(net)/oys

e s o - .. e e s PR
"' \"""-1",*7 %% :‘FI"‘.* T SRS Ny 7T YO

Others are made of LY12-CZ
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During initiation and unstable growth, the uniform tensile

AR
2" s

stress oy and o, increase with increasing W/b (ratio of ductile

c
L belt width to plate width). For different angle of inclination

8 as long as the ductile belt width to plate width ratio W/b is

close, i.e., when the projection of the crack along the direction ‘é
ﬁ‘r'

ﬁ% perpendicular to the load 2a, (=2asinB) is close, the fracture

3 stress ad_ is almost identical. Furthermore, in plane stress

1 conditions, the average tensile stress during unstable growth O
is basically independent of the plate thickness.

. 3. Pre-fabricated Fatigue Crack "
. From the experimental data obtained with six specimens o
g without pre-fabricated fatigue cracks shown in Table 2 one can

fé see that their crack initiation load o5 is very close to their
instability load og. There is a lack of an obvious steady-state
crack growth stage. The instability load of specimens with pre-
fabricated fatigue cracks, however, is apparently higher than the
initiation load. Furthermore, there is an apparent steady-state

crack growth process as shown in Figure 3.

4, Crack Propagation Process
? Figure 3a shows the results of the steady-state crack .:}
f%g propagation process of three specimens (No. 19, 24 and 28) at ©
v;f =60°, 45° and 30°, including the relation between uniform tensile
; stress o with crack growth increment Aa. Figure 3b shows the o- /500 T
Aa relations measured experimentally as well as calculated using
the finite element method based on Mode I fracture (specimen 7)

= 00[6]

. at 8=9 . The calculated o is in good agreement with the -“21
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expérimental data. The error is less than 5%.
5. Direction of Crack Propagation
) For center-cracked thin plate specimens with different
X angles of inclination B under tensile load, the crack propagates
essentially in the same manner as that of a Mode I crack. It

;? grows steadily along a direction perpendicular to the tensile

% direction until reaching an unstable state. Figure 4 shows the
photographs of three failed specimens at 8=60°, 45° and 30°. The
N angle between the direction of crack propagation and the

g _ direction perpendicular to the load line (x-axis) is less than

10°.
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Figure 5. Specimens 19, 24 and 28
i (Values of o/o are 0.728, 0.711 and 0.712,
respectively)

Figure 5 shows the tensile stress distribution, Tg» around
the crack tip near the initiation load as calculated by the
finite elgment method. In the element where the angle Bg with
the y axis is close to 90°, 9 reaches its maximum value. This
coincides with exéerimental observation of crack propagation
perpendicular to the load direction.

In addition, based on the displacement field calculated, the
relative displacement of the point approximately 0.4mm away from
the crack top is named the crack top opening vector 05Dr (the
numerical value of 05Dr is fﬁi:_zgiwhere u_ and u_ are rilative
displacements in x and y direction). The direction of CODr
obtained from finite element calculation is near the load line
direction. For specimens with 8=60°, 45° and 30°, the angle

between CODr and the load line is approximately 4°-10°. This
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fact indicates that the estimated direction of crack propagation
is essentially consistent with the experimental results.
6. Plastic Region
/501
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Figure 6. Specimens 19, 24 and 28
(o/c,__ values are 0.728, 0.711 and 0.712,
respftively)
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Figure 7. Specimens 19, 24 and 28

Figure 6 shows the plastic region distribution as calculated
by the finite element method. Before the crack-begins to
propagate, the plastic region is already not quite small. The
plastic regions in specimens with various angles of inclination B
are similar in shape. The plastic region width on the ductile
belt, xp, is given in Figure 7. The calculated values obtained
from finite element method agree well with the experimental data.

7. Strain Field
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The y~direction strain, e_, on the ductile belt is shown in /502

Figures 8 and 9. Results obtazned by the laser speckle method and
Moire's method agreed very well. 1In the figures, the
experimental values are generally lower than the calculated
results, primarily because the strain measured is an average
between fringes and usually the spacing is larger than the
dimension of the mesh used in a finite element method. .

Both experimental and theoretigal results show that the x-
direction Strain, €y> is much smaller than the strain in the
tensile line y-direction, ey, for specimens with various angles
of inclination. The computation also shows that shear strain on

the ductile belt, ¥ is ‘also much smaller than e . Therefore,ey

xy?
is the primary straiz on the ductile belt.

In summary, under plane stress conditions, for center
cracked specimens, the fracture stress is primarily determined by
the ductile belt width to plate width ratio, W/b. This means
that the fracture htress.is determined by the projection of the
crack in a direction perpendicular to the load line, EZ:.
Furthermore,‘it is basically independent of the plate thickness.
In center cracked specimens of various angles of inclination 8
under uniform tensile load, the crack basically propagates
perpendicular to the load line. The angle 6 between the
direction of cracking and the perpendicular direction, is less
than 10°. After the crack is initiated, within a small range

where the crack growth increment is less than the plate

thickness, 0 rapidly approaches 0°. 1In addition, €y the strain
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)
in the y-direction, is the primary strain on the ductile belt, n:
: These facts indicate that it is possible to adopt the Mode 1 r'f
{5 elastic-plastic fracture mode1[5] and the criterion of crack E;E;
? propagation in which the relative elongation reaches the S é&ii
. elongation of the materia1[6] to solve the plane stress mixed ;;ﬁ'
Eg mode fracture problems. ) 2&%
S
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AN EIASTIC-PLASTIC MIXED MODE FRACTURE
: INVESTIGATION FOR PLANE STRESS

Xu Jilin, Xue Yinian, Han Jinhu
(Institute of Mechanics, Acedermis Sinica)

Abstract

In this paper the stable crack growth processes in aluminium alloy sheet speimens
with flat or inclined central crack, subjected to uniform tensile load have been inves-
tigated. The relation between the tensile load and the amount of crack extension was
obtained. The deformation field was measured by using laser speckle mehtod and
Moire’ method. Finite element analysis based on large elastic-plastic deformation equa-
tion has also been carried out. The criterion proposed to predict erack growth under
mode I condition is that™ the tensile strain at the crack tip reaches the maximum
elongation of material. The calculated resulte are in good agreement with the experi-

ment data.
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An Analytical Solution of Dynamic Response for Ideal Rigid /504

Plastic Timoshenko Beam
Jin Quanlin
(Research Institute of Mechanical and Electrical Technology,

Ministry of Machine Building Industry)

"2

Abstract

L

In this paper, an analytical solution for a fixed-ended

LAl

n Timoshenko beam under uniform dynamic load is given by using

different discontinuity conditions for various states of motion

at the rigid plastic interface. This solution is applicable to

LW

1-3.

any non-réversing load which varies with time. At the end, the

P
aAx

e effect of the rotational inertia on the dynamic response of the

beam is discussed.

e £,

I. Introduction
In recent years quite a few people have studied the
influence of shear effect and rotational inertia on the plastic

dynamic response of the beam[5'8]. Jones[2'4]

[Persslts

summarized these
results. However, their studies are limited to dealing with the

initial velocity probled-which is equivalent to the immediate

Tacasa kA BT
LI AL

unloading after instantaneous loading. It is very important to ST

use the discontinuity condition accurately. To this end,

LM

reference [1] was the first paper to discuss it theoretidally.
It was pointed out that different discontinuity conditions should

. be used for different directionsof motion on the discontinuity

N 90
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? plane. In this paper, a fixed-ended Timoshenko beam under a ff
y uniform load is used as an example to solve the problem states of fh
W =
s motion at a rigid plastic interface. Furthermore, the e
e -
§ transformation condition from one state to another is given. | T QS
& N
- Therefore, the solution given in this work is applicable to any .
0 _ 5
¥ non-reversing time-varying load. ey
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? Figure 1 . Figure 2 o
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‘j II. Basic Equations o
~£ Let us consider a fixed-ended (neglecting axial force), 1;
= equi-sectional ideal plastic beam which is 1 in length and is p
;3 under a uniform dynamic load q(t) (see Figure 1). Its mass per rT
" -

unit length is m, and the rotational inertia is r. The bending

moment and shear force on the cross-section of the beam are M and

AP, | o
LIS SO 4 il AP I Y

Q, respectively. (The positive directions are shown in Figure f;

‘ﬁ 2). The defelction of the beam is y. The angle of inclination i;

i caused by the bending deformation of the beam is ¢. x is used to -

3 represent the abscissa of the beam cross-section. The equation ??

Fal

3 3
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of motion of the beam is

Q0 = my = M’ = Q — mrl. )
where the dots on top of the letters and the quotation mark on
the upper right corners of the letters are the partial
derivatives of time t and x. The total angle inclination of the
beam is y{=¢+1, where y is the rotation angle caused by shear
deformation. Furthermore, it is specified that the rotation of ¢

and vy in the positive direction

Manuscript received on December 7, 1982.

makes y'>0. /505

.Let us introduce the following non-dimensional quantities:

Mo M/My O =0/0n n=gi*/2Ms §= 0d/Ms> a= (-:-) .

. . , ] )
y mi Vs 'I—"’!L,-"” I-Lk’ f - ml s !-—z—s C-e‘a 7 =

]
= TM, T'M, '™, ™, 1 ] T

where M, and Q, are the limiting bending moment of pure bending
yield of the beam cross-section and the limiting shear force of
pure shear yield, respectively. A is the x-coordinate at the
rigid plastic interface. K=¢' is the cu.vature of bending of the
beam. T is a unit time. In the following, for convenience, the
bars on top of ﬁ, 6, E,-;, ;, k and ;-are omitted. They are
expressed as non-dimensional quantities. Equation (1) is re-
written as:

Q' =9 =2 M =pQ—od ¢3)
Let us choose a square yield plane as shown in Figure 3. In the
plastic region, equation (2) is solved by using the yield

condition and the relevant orthogonal flow method. When stress
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points are located on the side AB or CD of the yield plane,
y- c,c:)d'.-’—.;. +‘q.(:)chﬁ+2n. ‘ (3)

When the stress points aée located on the side AC or BD on the
yield plane,

y=2y (4)
In the rigid region, we have

y=C, (t)x+C, (t) (5)
In order to determine C,, C,, C; and C, in these equations, it is
necessary to know the boundary condition of the beam and the

(1 at the rigid plastic

following discontinuity condition
interface:
- When. the motion of the rigid plastic interface leads to the
expansion of the plastic region, ~
[yl=L91=0 and [Ql=[M]=0 (6)
When the motion of the rigid plastic interface leads to the
contraction of the plastic region,
(yl=[41=0 and [Ql=[M1=0 . (7
[z)=2"-2z" which is the discontinuity value of a physical quantity
z at the rigid plastic interface. zt and z~ are the values of
the physical quantity on the plastic and rigid region,
respectively (same below). Under the assumption of square yield,
the orthogonal flow method and equations (16) and (32) in
reference [1] are used., When the rigid plastic interface is
stationary, if the stress points on the plastic side are located

on AB or CD of the yield plane, then we have
[yl=0 and [Ql=[M]=0 (8)
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If the stress points on the plastic side are located on AC or BD
of the yield plane, then we have |
[$)=0 and [Ql=[M]=0 9

e 5 T
Lyt
ket

b *
i
[
b
p
[N
ORRY
o -
a
t‘--
iy

e
3
T

v e
¥
v ]

N
i~
[~
-

P4
A

=11G 0 LX)

’l
LA

)

R

a
]
~
-]

Py

‘.' Y

"‘. ". (]

AR

0
M
»
l.l
AL

2 Figu;e 3

}g III. 'Dynamic Analysis

5% Assuming that the yield plane is square, the results of :
B rigid plaétic limit analysis (taking shear effect into account) o

of a fixed-ended beam under uniform load give the initial
mechanistic phase diagram as shown in Figure 4(c). When ugB and

O<ug8, the beam is stationary. When 0g<B<8 and u|t=0=u(0)>B, the

)
é beam slides with respect to the support. The solution is easy to T;z
§~ find and it is independent of a. When 8>8 and u(0)>8, there is a i
o plastic region in the middle of the beam. The stress points are _ g;é
M) located on side AB(non-corner) of the yield plane. The region éﬁﬁ
% between this region and the end of the beam is the rigid region. Eﬁg
’z When the beam end is a plastic hinge, and stress points are on 3;5'

side CD, if stress points are at the corners C and D, then the

Y,
L
r

3 9%




4 ‘,_,.‘,r‘{

besn it the end not only.rotates but also slides. Otherwise, the
beam only rotatés.-In the following, we will discuss the
situation u(0)>8 and 8>8. Because of symmetry, only the left

half of the beam is discussed.
1506
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Figure 4. Initial Mechanistic Phase Diagram of the Beam Under
Three Different Considerations

(a) considering bending alone
- (b) considering shear effect
(¢c) Timoshenko beam

-

Let us assume that y| _q=y|,.0=0- The boundary conditions

are: M'st"1’ Q|x=&80. Furthermore, when 9a=y|x=0>0, Qa=Q|x=0
=1, From equations (2), (3), (5) and boundary conditions, we get

the following solution: _

In the rigid region (Ogx<E): IR
y=9+ by =9+ br R,
#Q = 80, — (2m — )z + 2.

| R

M= =1+ (p—ab)r = 2 (= 902 + 2 62 (10 RN

In the plastic region (ggxgk): ;;ii
]-Cd-’;\—‘;—.l;Lz-'l-Zp, pg-é,/?-b’—;_l_ﬁ. M=l an

a s R




ﬁﬂirc¢¢‘wriproionts the non-dimensional value of the angle of
- rotation-in the rigid region.
(1) When ?‘-0 and £<0, by substituting equations (10) and
(11) into the discontinuity condition (6) to simultaneously solve -

the problem:
Ve 2 —-1/2
e 2 2p, JL-D-JLip£:7fL-.

P0. = (s + Lp)a i=Ui2 _ £=-127.2

. I Y § =1/2 .
e={G-3eailnm)., ]
| fom = )y b= — 5/Cty). j
) . where
Bepa f=1/2 -1/2
o ta 12l ﬁd.ITL.
q-l[(.-.-lr)ei‘T‘L’-—cf-'ﬁ-f-—L" 2ad=li1]5, w
‘ .3 3 p J-.- ﬁ > ’
N From &altao>0, Qas1 and €<0, we get
Py (13)
;;g o) = plg>8, pp, 4>0 N
£ where /507 Na,
m = 2088 — 38 + 6a)/[EI(§l + 6a)]s ' s .. 4
afi= V2 w3/ e (o — /(88 — 65 — 126) (14) e
Ve 3
u Obviously, €, <t. When u(0)<8, y=0. When u>u,, Q=1 and y>0. }?3*
B When u=0, £=0. =
f T, R
Ff (2) When ?a-O and £>0, by substituting equations (10) and S
N SR

(11) into the discontinuity condition (7), we get the solution: RO

QR | AN\ AL
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- f!_, . -"—’ ‘- ‘.,ﬂ’ 2D - gr 2t + '(5) - fﬂ'(f)! Ewm [ch_i:_l-l.z. . D/B + \/;-y"(g)]/ao
. : i

}'

. -2 . . b
c-g.c«-l;io. &.-%#‘Lf;L"h(E) -
1 ) tl&—ﬁ;diﬂi.z.].ll u-
0. = [(l +3 ?) sh " _ 7o 3 i
- u(f-' d| 5—;—%!—2- - -;— Ech%.—?—) E, :‘_::’
. e
P=- [Zr - -} §b — s:. («(5) — u"(f))ﬂf] / r , ,4.:_:
(-3 (et vre)] an g
f=- [S: pdr — pr + -;— w(§) ]/Kg: plg)' (x+ m)] .::':_
§= [ a (e = 2r02) + Ean(G re® -G+w [[mir) \ ‘
— ke +n - ({] n{f)']} /[(meYa+m] ,S
where i1=t-t,, and t, is the initial time of the initial state. £§£;

Jo

-g-[Log §=1/2 5 Spf=12 — & 4
¢h B <h B — . SR
net-[1p AL vel-| T e —een L Ve ([ e, i
5 - . RS
16 =3 b= e[on Il - Vv 0222 s 6 [t e = erera. :
Notice that 9|t=0=0. By mathematical deduction we can prove
that: at any t, we have v30, v'30, v'"¢0 and v'x=%=o. Hence, n,>
0, £(g)20. By using i’a’E:LE‘.’a'&fo’ Val r=t=n>0, based on Va0 ang £>0, . ‘t
can obtain: /508 o
] . (16) TR
w0)>8 ae) =L ez a0 >, —
where
m=t=2[Leb+ [} @ - er@nea], m- @1 =1 4) s
ri3 3 ’ » 21 ®)- o
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t, o When n(@)‘f’, ya0. When #(t)=y, , the beam reaches its maximum

? R deflection. When $(t)my, , €=0. If Qg=1, we get E=f, =€, , which ' -
is s contradiction to t>(_). Therefore, Qal «>0<1- Furthermore, y_ .,7
=0 and € ¢, . ' \
(3) When yj =0 and §=0, we will first prove that [$]=0 when £ -
=0 and’ then discuss the solution in this situation. ' Ex"".‘%-.
. , . PRy
Let us assume that £=0 when t, <t<t, and {40 when t<t, or t<t, - t"-}
- Note that A=2u-y, and €|, =E . When t, <t<t,, equations (10) E
and (11) are substituted into the discontinuity equation (8) to ‘?}&::
solve C and é,: Then we get: ;;:

- —la\abh=L2 e
L2 ”{’9‘ z[¢.+(. 2 “)"' Je / "]/ ot
- : (1 _ 1, .h—1]2 RS
ey-pesbsmn))
vhere
Bo=gai—U2 _ /oabh—12 AR

Rt ve R

. Y
If t,>t, and y =0, we get §=0 when t, <t<t, . From equations e
(12) and (15) we get u|§:8t_}g.a| ﬁ:}ogua u=0, i.e., "'"Itst, =“/t=tz . :\».
Sanbtained from equation (8), however, is only a function of u ::'_f:::'.:
and § . Hence, BQ,=8Q, tat_:'BQalt:-t, . In the two cases that t,> },:'.;_

t, y‘>0 and ty =t, , this equation is obviously valid.

By using the reverse method we can prove that if jra>0 we
have £€=0. Hence, when t<t,; or t>t,, )"asO. Its solution can be ) :::Z-“-

expressed by equation (12) or (15). When £-0, we have

0. - 2n [: +(a— z £)s 5—‘2%/3]. | | ‘
C epas -
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‘Botice that | g?ﬁ@

E — M) =2 (0. — bt + 8= Lo =, =
| - 1_1,,8-112

c'—'o[f(z T %/a)}-%, ]

Therefore: ‘f

' AR

. 2 --}a)ahT- Y2, (185 - R

'ﬂl-f94==-:éganz-zsppb_z . : o

By substituting equation (18) into (17) we get [$]=0. Thus, wve 1509

proved that discontinuity condition (6) could be used when §=0.
Hence, when y =0 and €=0, the solution of the problem is the same
as equatidon (12). Furthermore, the necessary condition to

maintain the initial state: u(0)>8, ugu, and u=0.

(4) When §,>0, Q=1. As described above, €=0. By using

3 discontinuity condition (6) we get ﬁ%g?

y . T

5 . 1 RN
§=§, c-ﬁzﬂn 5,-3&*{1.:;_&, ’o-z(ﬂ‘-ﬁl) (19) 5';,{‘(.
. * .l ': Jl b

n -

where B, =, sh §, -%xMa-vVa ch g, -%/va . Note that t=t-t, and t, is

B

the starting time of the initial state. From ?a|r=0>0’ ya|1=o=o T;f-
and 9a|1>0>0’ we get:

) .
Alea>m B =L [ pte> . (203

When fi=p, , y,=0, y,€0. It was pointed out earlier that when ya=0

E we have £3§, . Afterwards, it enters the state of y =0 and £30. Eﬂﬁ%
' The above discussion is applicable to problems with ifi&
;';'5?:11

uniformly distributed initial velocity as long as we make u(0Q)-e

' t .
i ¥leg,0 =0 and f02udt=y|t=o.
3
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IV. Results and Discussion . 5?1W
Table 1. External Total Impulse Load (10 Ib s) y {?&f
T8N
Sy
5-:{-
_ 1 AREAR WD PN
I ’ y < | . R
aRnt L,li rA._. h. h_, hL,lh_A_, 5 namm RSy
5 MAMN (w/im) | 0.3x10° [ 0.0x10° [ 0.1310° [ 0.5%10° | 0.1310° f 013000 [ o R
T QAN () |0.2%10-]0.2x10- | 0.210 [ 0.2x10~ [ 0.2 10 [ 0.2 10|  0.2732Cin/e) NS
.4 2 SRBXRE (o) | 140112 | 1.99078 | 2.04200 | 142103 | 2.99034 | 2.700m | 1.61766 o
" :“:,-
) 1. 1load curve
2. maximum load (Ib/in) e
3. duration during which load is applied (s) e
4, maximum deflection in the middle (in) O
5. 4initial velocity problem
6. initial velocity is: 0.2732(in/s). e
o
- 1 ; . ) AR
- WP 7 e=0.2732% 107 in/s
10 e
2. "'1""' T
3 3 &
. S
. - e K» -l
B ey ey S ¥
legs
. Figure 5. Middle Beam Deflection vs. Duration of Loading When

Total Impulse and Loading Mode Are Identical U
1. 1initial velocity problem 9/t=0=0.2732 X 10'ain/s t'::':::'

T T

1 0 0 :.'.: ~ .‘;_"
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Figure 6. Maximum Deflection Middle and End of Beam vs. a Eﬁ:?

1. maximum limit of deflection in the middle of
Timoshenko beam when a-0

.- maximum deflection at the middle of the beam
according to classical solution

2
| 3
4

. maximum middle deflection of Timoshenko beam. RN
' . maximum end point displacement of Timoshenko £
. beam (beam parameters are same as those in A
f Figure 12) S

i 1. From the results tabulated in Table 1 we can see that
the maximum deflection at the middle of the beam is different SASN
]

when the total external impulse load is the same but the loading

f mode is different. Figure 5 shows the middle beam deflection vs.
loading time curve when the total external impulse and the /510
loading mode are identical. We can see that when the loading

time approaches zero, the maximum deflection at the middle point

. of the beam approaches the corresponding value of the initial

velocity problem. . ' KoY

effect on the mechanism of the motion of the beam. Figure &

: :

k 2. Rotational inertia and shear effect have an obvious atess
l

E shows the initfial mechanistic phase diagrams of the fixed-ended

| 101 Y




beam under the different considerations to explain this effect.

In Figure kgc), the curve u(0)=f(a,B) separating the rotational

mechanism from the rotational and sliding mechanism is given in

the following equation (they are obtained by changing u, to u(0)
in equation (14)).

o(0) = 2(85} — 38 + 68)/[EU(& + 6a)]
wE =2 w3 /a5 (05 — 4)/ (88 ~ 68 — 120)
Ve

3. Effect of Rotational Inertia on Maximum Deflection

In reference [6], Jones showed Figure 7 to explain the
effect of rotational inertia on the maximum deflection of the
beam_in initial velocity problems. In this paper, after
conslderihg the load, the results are shown in Figures & and 7.
From Figure 6 we can see that under a specific load, without
changing other beam parameters, the larger the value of a« is, the
smaller the mid point deflection is. When o increases to a
specific value, shear slide begins at the end point of the beam.
When o approaches ;ero, the maximum deflection ;f the middle of
the beam approaches a limiting value. However, this value is
higher than the maximum deflection given by the classical

solution in which only the effect of bending is considered. This

situation can be explained as follows:

102
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Figure 7.

| .

1 2 “ P 80 100 «(10-%)

N aw0,3329 x 104

~ a=0.8329 x 10-?
a=0.4165x 10~

e=0.8329x 10~ _
0.1 ®=0.8329 X 10~
. % 1 - 1 3 A H 2 g 1 1
. 40 [7) 80 100 «(10°%)
- a=0.8329x 10~*
3 e=~0.8329x 107
- 2 o=0.4165%10-?
- a=0.8329 x 10~*
frof X =0 (BAW) 2
= R =0.8329x 10
4 } 1 L i L Iy . 1
’ 2 “ ™ » 100 o(10°%)

Rigid Plastic Interface Plane Positions ¢ and Mid
Beam Velocity vs. Time with Different Rotational
Inertia

. Beam parameters: M,=0.191 x 10‘Ibin; Q, =0.880 x

10*Ib, m=0.366 x 107* Ibs? /in, 1=5in, 8=0.231 x 10?,
(when «=0.8329 x 10'3, it is equivalent to a square
cross-section beam with uniform mass distribution,
0,=30.5 x 10°Ib/in?, t,=q, |3 , 9=0.732 x 10',Ibs’/in’
h=0.5 in and_b=1in, where o;, t,, and p are the unit
tensile yield stress, shear yield stress and density
of the beam material, and h and b are the height

and width of the beam cross-section).

1. classical solution
2. classical solution




i

~

el

From Figures 7(b) and (c) we can see that when a is very ;&;

: DAL

small, &, the time to reach maximum deflection te and the mid .

point velocity y|x=¥ when t<t_ given by this solution and those IE

given by the classical solution are very close. Here, tg ' Co- ii

ol

represents E=% in the classical solution. However, when t>t,, res

the values of ?|x=k given by the two solutions are quite 'Tf

different. j;

This solution gives /511 l:

VO a i

"-} - (7 + I)L 2udsy, (1 221,)y 4 a—0, :

Let a-0, we get _—

T : Py = L 2mde. (¢3>1,),

The classical solution gives y/x=%=f:2udt-24(t-ts), L

and (tgts). Here, t is the duration over which the external load o

is applied. It is obvious that the former is a uniform motion -

and the latter is a uniform deceleration motion. These two il

- ~ -

equations are integrated to obtain the maximum deflections of the o
two solutions at the middle of the beam. In this example, they

differ by 36.3%.

This work was completed under the guidance of Professor Wang Tf

Ren. Our teacher Huang Zhuping also assisted. The authors wish ff

to express their gratitude. =
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AN ANALYTICAL SOLUTION OF DYNAMIC RESPONSE
FOR THE RIGID PERFECTLY PLASTIC TIMOSHENKO BEAM

Jin Qhanlin
(RMIM#MMMWTMQM of Machine-Building Industry)

Abstract

Previous studies on Timoshenko beam was only dealt with for impulsive velocity
but not for ineresing load. An analytical solution of dynamic response for the fixed-
ended Timoshenko beam subjected to uniformly distributed dynamic load is given he-
rein by use of the discontinuity conditions for moving rigid-plastic interface. The solu-
tion is valid for arbitrarily time-varying but non-reversing load. Finally the influen
of rotatory inertis on the dynamic plastic response of beams is discussed. '
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General Variational Theorem for Structural Plastic Buckling /312 §§§S

8 Analysis Using Deformation Theory %?fl
”% Li Guochen _ %ﬁﬁ
i (Institute of Mechanics, Academia Sinica) Etﬁ.
o . e
b Abstract S
é‘ This paper gives a class of general variational theorém to ;:fg

analyze structural plastic buckling.using deformation theory, ﬂi‘;
_§ which expl#ins the essential significance of potential energy. ;.ﬁ;
,E . In the form of general variation, we proved that there is no ;i&g
? unloading during plastic buckling. Finally, it was applied to ;;;;
% examples ‘in the analysis of reinforced plate and shell. S
AN |
{2 Introduction
;ﬁ As we know, in the structural analysis of plastic buckling,
;: it is more appropriate to use the increment theory of Prandtl-
> Reuss to describe ‘the stress-strain relation. The results are rone
if even more close to the experimental data. ' 5
5 Regardléss of whetherit is elastic buckling or plastic Eii;
A buckling, the analysis must be carried out in two parts. One is ;TTJ
‘E to find the basic solution prior to buckling. Second is to see : ;Xé;
:: whether there is another path at any point on the basic route. :;;E
ﬁ When conducting the buckling analysis, H1110 " used a fféf
é "comparative elastic solid" model, i.e., there is no unloading at iigg

the instance of buckling. Hutchinsont 2] analyzed the second Eigé
- order generalized function consisting of displacement variables f::
\g based on the uniqueness of Hill's solution[1] to further verify ;;EE
: 106 R
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this problem. Bushne11(3]

used a difference method to calculate
many structural buckling problems and he claimed that the no
unloading phenomenon is a condition for “"consistent loading".
The history of this condition was also introduced in reference"

£3].
The computation of plastic buckling is far more complicated

than that of elastic buckling. In order to simplify the problem
to the extent possible,the variational principle is a powerful tool.

[4] under elastic

Referring to the generalized variational theorem
conditions developed by Reissner, this paper gives a general
variational theorem in the analysis of structural buckling using
deformation theory. The physical significance of the generalized
function and its second order variation involved is explained.
The basis of "consistent loading' used in this general
variational theofem was further proved. Finally, the superiority

of this general variational theorem was demonstrated in

simplifying the basic equations of plate and shell structures.

I. A Class of General Variational Theorem

Let us assume that the generalized potential energy is

1)
D= § Lousn — V(@) 1de — ] T nidor
» . s 4

where °ij is the stress tensor, eij is the strain tensor which is

related to displacement according to the following known relation

8y = % (-i-i + 'IJ) + ";‘ LI

I
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Here, the comma in front of a subscript represents the
differentiation with respect to that subscript. Ti is the known

externally applied stress on the surface Sq-

Hanuscript received on September 2, 1983.
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'_ 2’('.),_'. l+’¢£+ s’ $odo, 8 "
6E 3E .
Here :
O ™ 304 o= /(32> sS4 == 04— -;-tm'u
¢-—(E -—1) .
When -0 <o,

$=0
E, v, Es and g, are the elastic modulus, Poisson coefficient,
cutting mo&ulus in unit tensile and yield stress, respectively.

The first variation of 1T is

F )1 -’S. [fm”a + (m - %)"a] dy — L_ T 2usder | (2)

where
3s;; =~ -;" (3uii + Bwi) + —;‘ (Bmpmay + wruduan)

Using divergence theorein we can derive that
- - S' {oui + (01am:0) s i}8mide
+ L{‘n - [é‘((l + »)o, — voudi;) + % $ii ]} 80,dv (3)
+ S {Loii + (o5m,.0)1m; — T Youdsz ‘
T

+ \. {04 + (onmia)}niduids, = 0
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wvhere nj is the normal component of the reference coordinate

prior to deformation on the boundary. It is not difficult to see

that the Euler equations in (3) corresponds to the well known

equilibrium equation, constitutive relation in deformation theory -

and boundary condition.
Equation (1) is similar to, but different from, those of

..[6] in an elastic system. If we continue to proceed

Reissner
with a second order variation and notice that uy and “ij are

independent variables, a=u1-a=aij-oL Based on these, we get

Fl=Q= s.["_""a +oul'sy + (m = h:;:u ““)w]" (4)

where .
8's;; = dupdora.

In the following, a new variation 8* (refer to reference
(8)) is made with respect to °°1j and 8u; in the second order
generalized function Q to obtain relevant equations and boundary
conditions during buckling. Noticing the '"consistent loading'
condition, the stress, displacement and plastic modulus remain
unchanged in the variation 8* process. The ''consistent loading"
condition and its verification in general variation will be
discussed in the following.

By using the divergence theorem, we can derive the following

from equation (4):

.
-~ 2 YU
LY I B
. ' E o
% N WY

)
i

‘.

e
D’. - “
£

N 3
»° .
:’,gi: Yy ﬁl
i

£

1 B

...
|
AL LR

DN

VN AR

I . 4
v D
A .
PR RN
» Y A
P
LN el
N PRy e

¢ .-.:.-
XA

[

2 5
2

- v

N



AR

P

- o
Yl et

A g v

e ot )

A A
‘ v

N BRI S - Mt At g P SN A

/1514

9 = =2 (dess+ o)y i + (o), 18"Gudde

+2 L {“n - [% (Q + »)30, — voudy)

i | + %m + % 8y ]} 2*(80,)ds

+ 2 100y + Sorma + cuduiaIt* (Budds = 0 () -

where

-3 o .3__1) -3 by
e 20,(8, B'“’ 2 o,

Et is the tangential modulus during unit tensile stress. The
Euler equations in (5) correspond to the known equilibrium
equation during buckling, incremental constitutive equation of
deformation theory and boundary condition during buckling.
Substituting the relation between °‘1j’ a'cij and éu, into

equation (4) we can also get

Q == !v. {””’i + (”""")’ i+ (’M"I-Q)n i}dn;dv -

+ [, {oon = [L €t + 900y = ws0ut) )

+ -’-'t o+ % 85y ]} 30.idy

+ I {20,; + 20,310 + opdn1a}ni80ds
. -

Comparing equation (6) to (5) we can see that Q and 8*Q are
similar in formfvnThis is the same in the elastic case.
Therefore, when 8*Q=0, Q=0 and vice versa.

Thus, we proved that the first order variation of the

generalized function IT in equation (1) can be used to derive

various basic equations in the basic path to solve the problem -ﬁf?i
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prior to buckling. By carrying out a new variation &* with
respect to its second order variation can result in relevant

equations during buckling.

II. Physical Significance of Generalized Functions TT and Q
Now, let us decompose the first term in the integral in

equation (1)

Tyt~ s.“tm:’ d(ousa) = L'q’ tudoy + L‘v"""i N

where the function to be integrated €43 can be expressed in the
form of stress and aij can be expressed in the form of strain.

The ‘second term of equation (1) is

- {2 o dow (8)

When ‘1j'°v/°°1j is valid, we get the following by substituting
equation (7) into it

)
wuva =7 = [ ondt 9

The right term represents the strain energy per unit volume.
Thus, T in equation (1) is naturally equivalent to the definition
of potential energy. For this reason, at the beginning of this
paper we called it the generalized potential energy.

In order to determine stability, the classical definition /515

(6] is that the body is in a

proposed by Dirichlet and Kelvin
state if the total amplitude of the added displacement caused by
the deflection at any instance is arbitrarily small when the

deflection itself is arbitrarily small. On the contrary, if an

11




YA R

R B, T

S e S

arbitrarily small deflection would lead to a finite amplitude
change, then it is unstable. Obviously, the necessary and
sufficient condition is that the amount of internal energy stored
or consumed when an infinitesimal displacement is added to the’
equilibrium position must be larger than the work done by an

(71 [81

external force. In the 1930's, Trefftz and Kappus also
applied this principle to derive the elastic buckling equation
and stability determination criterion in the form of energy. In
conjunction to the topic of this paper, for an arbitrarily small
deflection (°°1j' bui), if am>0, it is stable, if ar< 0, it is
unstable.

- 'From Taylor series expansion we know that

O+A0= s [(c;, + 30.) (-;,- + ac;-. + ‘z!i""")

- ( V+ % o, + 2—1!- &:::;“ 80‘5,'3011' . ')] dv

- 5 Ti(ui + 2u.)dsy
e

Here, the external stress Ti does not vary with deflection.
Therefore, it is a case of '"fixed load". By expanding the above

equation, we get
O+ AQ= {s. (isy — V1do — L Tmhr}
+ .[a,-;as" + (c,, - %’;—) M;;] do — S‘T T duidsy

{f (10)
+ {:2-1? "[ 30,88, + 0,8, + (n,,- - O:,;Va aau) ac,-,] v

&l

+”.-n+an+%rmn
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Because 47 is already equal to zero, therefore, whether it is
stable depends on 8*r(=Q). If Q>0, it is stable. If Q<0, it is
unstable. Q=0 is the stability limit. Above the stability limit
or on buckling points, the criterion for stability is determined
by higher order of variations of =, such as &8*n.... This says
that Q=0 may be stable or may be unstable. Therefore, Q>0 is
only the sufficient criterion, but not the necessary critefion,
for stability. After realizing the significance of Q=0 and
knowing Q=0 corresponds to 6*Q=0, the reason why the buckling
equation can be derived from 6*Q=0 is clear.

In addition, the following explanation is given to describe
the relation between the condition Q=0 and the loss of uniqueness
of the solution. If the uniqueness of the solution on the
loading path is lost, then there must be other possible

increments A°ij and Au, which satisfy:

a0,y 4 (Aoumi)s § + (Giadeia)s i =0 an
as; = _li [(1 + »)A0; ~ vAoud;] + %:ﬁ + % Asy . (12)
AT; = (A0; + Adumia + Tpdeia)n; = 0 °on St
or bt ons,  (13)

If we choose -
AT - 30iis Am; = 3y,

We can see that the Euler equations in (11)-(13) are similar to
those in (5). This means that the uniqueness of the solution is
lost during buckling and vice versa. Therefore, the buckling

point must be related to the loss of uniqueness of the solution.

However, stability is not related to uniqueness, because buckling
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is not equal to unstable.

In simplicity, buckling and loss of uniqueness of the- - /516
solution correspond to Q=0 or 6*Q=0. Whether it is stable
depends on Q>0 or Q<0. At Q=0, it depends on the sign of higher
order variation terms in equation (10).

III. Investigation of "Consistent Loading" Condition

Rutchlnson';aargunent can be extended to generalized
variation in the following steps. |

Under a "fixed load", the amplitude variation of the force
(or displacement) load is proportional to a parameter. Its
distribution is independent of this parameter. It was explained
earlier that the'necessary and sufficient condition for stability

is Q>0. Now, let us re-write equation (4) into

o= L {u'lf(hm + updue,;) + 0udsi 880

- [% ((1 + »)de,; — vooudy) (14)

+a (—’-'1 "+ % u,,)]u,,—} w o
where

1 plastic loading

o

0 plastic loading followed by elastic unloading

elastic loading

Let us take a solid body for comparison, i.e., an elastic
comparative solid body. 1Its second order generalized function is
defined as |

Qc-right hand terms in (14), but a = {1 plastic loading

{; elastic loading
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It is obvious that there is no elastic unloading zone in this
case. To this end, an infinitesimal deflection (°°ij’ 6 “i) is
added to a known based state (°ij’ “i)° The difference between Q
and Qc is

Q=0q -1 (15)

c
where

tem L{ oy + o1 00,4, (16)

The subscript ¢ represents the possible presence of an elastic
unloading zone. By substituting the expressions for ¢ and &8¢

into.(16) we get
e Bl 22
because
E-2l. 2o E-1) >0

therefore,IC;O, Q)Qc.
This is to say that-Q=Qc if a certain deflection is added to

’J,‘,"l;i ] lV.
€ .

the entire body area V so that the plastic region remains plastic
and elastic region remains elastic. Otherwise, Q>QC if the
additional deflection leads to the presence of an elastic
unloading zone in Vc. Therefore, it is only necessary to find
the corresponding characteristic function (°°1j’ Oui) in Q, in
order to determine the minimum critical loading parameters
because it is not possible to have even smaller critical loading
parameters and other characteristic function distribution to make

Q=0 while keeping Qc>0.’ Thus, we proved that the '"consistent

loading'" condition is still valid in the form of generalized




DAY T AN AR AR SLRNAY AL o T ASTESR L. - _ ewe T

Sl TR A YISV EENA

P e "o a "o TlEN TS 2.

N

"( ‘

;
]
[}
y
v
v
y
3
»
¥

'v‘ . ._‘ J"

ot

¥

ATRT

oo

DO

> ‘q“,

variation. WS

IV. Application in Analysis of Plate Shell Structure /1517 gﬁf

In a thin wall plate shell, let us assume that the ‘ Coe ?3:&

“u Y-

distributions of strain, stress, plane displacement and plastic p—
parameter along the x3-direction are approximately: ‘ fg:
(8005 Ouss B80ss 280,yy %oy &)
- [.:.l’ Nd/‘) "(. > JNJ/‘, UL.), *‘”] '_ X

+ + [Kats 12M 0], 8K, 126M ol B, 105 260/ k1, (17) S

where a, =1 or 2 and h is the wall thickness. By substituting Ei}ﬁi

the above into equation (1) and using the strain-stress relation S

in a plate shell[gl, we can get the following by integrating

aloﬂg X4 and applying the divergence theorem:

o = { {(Nuuleu
+ [M.‘..‘ + NJ.‘ 4 N.‘(. <+ '“)),.‘]’.

+ [ 2 (cnaNa+ L et )| ova

+ [K.. - lb-z, (—2— CB.N,e + c‘.'i,.u,.)] M s

(18)

+L (- dLr+ | _[--laL.=0

where w(i) is the initial deflection and bcs is the curvature

tensor 3
C‘.’ﬁ,. - (l + ‘l) [-21- (6.,8.. + 8..8.,) - 1 :_ > a..d,.]
1 -1 A
+ w(ﬂ) [.5. (6.,8“ <+ 8.‘6..,) 3 8.‘3,‘] ( 19) "

C(l“vl - 0 [‘:_ (8,,0“ + Ju’lv) - -;—3.,8,‘]
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Similar to the algorithm used in the first section, we apply

a new variation 8* tor for a second time. Then, we have

peemy—atg B
- —2 [ {[8N.218% (3

4 [BM poep + BN b s + SN0 + W), o
+ N 3w, ,,]0%(8w)}ds

+2 [ {[ s — E‘; ( DN, + L D3 uM )] 8*(3N.,)

+ [s5a = 22(2 DYt + DBuam )| MDY s
+ sve "

where

- -

Dﬂ.--(l-t--)[%(a.,a.ﬂ..o.,)— 2 tats |

+ ™ [-ZL (30300 + BusBor) — %h’u] + 450

D = 49 [ L (2t + 2t) = Lot ] + 4830 21
.'_\:_-\
S
oS,
_ . /518 —
9
Gutps = < (% - E%) Lotlrs = ¢ + -:- $okrazy

1
o L2 3

From the above it is obvious that the third and fourth Euler

equations in (18) and (20) correspond to the constitutive

equations before and after buckling. From (19) and (21) we can
see that the rigidity matrix correlating generalized strain to
generalized stress is symmetric. However, when another method
was used to derive it in reference [10]) the favorable condition

of matrix symmetry was not realized.
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In the above, the plate shell belongs to the case of

symmetric upper and lower cross-section relative to a neutral

plane. For a non-symmetric cross-section with reinforcing ribs,
an appropriatley chosen generalized force can be used to
simnlify the equations.

Let us assume that there is a rib along the x-direction
(neglecting twisting resistant rigidity). Its cross-sectional
width is b(z), i.e., it can vary along the z-direction. The
stress and strain distribution on the cross-section are

=) (%)

s, = s + (K,)s

(22)

where Ax 'and-Ix are the cross-sectional area and the moment of
inertia relative to the neutral plane of the ribbed cross-

section, respectively.

After substituting them into (1) and through certain

operations we get

or \ I, A, N
+j ¢OH — Fl(l.,.w“”) M

{ E 3 (N"”Tf)

24w M N N

——— I_L I

557 ( I. +’7f]}"(7,‘ é (23)
+j K.~ |1 24'_“”) M L)

{ E (l s\

©

+
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where H is the height of the rib bar itself. Again, we have

A, = Lb‘:, - Lbslt, 1= Lh’h, G= Lh’h

<.
/t“

LT
AL
."" " »
X

‘,,;,

: Let us assume that the spacing between the origin of the z

-

4".
)
>~

coordinate and the neutral plane of the rib bar is e (usually the

’

o

8 - original can be chosen at the center plane of the plate shell),

. hence Jomdyes I Iy + 4:8

From equation (23), in order to simplify the equation to the

extent possible, especially in the equilibrium equation, we can

Pl P il

define a new generalized force as:

Sh YTl
+
[

N-N.'I-J-'—‘-‘, M -1!&.;.]_1!&
I, I. 4,

Thus, we can solve

.
.:f? J
b IN =M M-Z-N
; R PO G PR
h @-4) '0’¢)
; Substituting back into (22), we get /519 ﬁnﬂ;
3 R
B --—!— —I—- — — .__'.:‘-:
O 1_4.‘:[(&1\! eu)+(u eN)z] (24) i
I Based on the above we know that although the relation e
] - between stress and generalized force is complicated by choosing N Siﬁi
and M as the generalized forces (such as (24) in comparison to Efeé
,3 (22)), yet the equilibrium equation can be simplified. N
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V. Conclusions
The variational theorem introduced to analyze the structural
plastic buckling based on deformation theory not only can be
applied to mixed boundary problems but also provides a way to

simplify the equations to be solved.
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A GENERAL VARIATIONAL THEOREM FOR THE
- STRUCTURAL PLASTIC BUCKLING ANALYSIS
USING THE DEFORMATION THEORY

Li Guochen .
(Instistuse of Mechanics, Academia Simica)

Abetract

Following the form given by Reissoer in 1950 for elastic analysis, s genersl variationsl
functiooal in plasticity is prescribed as Min eq. (1). By serting its first variation 3I1 due w0
the variation of (oy;, #;) to zero, the Euler equauons derived in (3) are proved o be the
equilibeium equations, a deformation type of stress-srain relstions and boundary conditions for the
peebuckling fundamentsl peth solution. As Kappus had done in 1939, a new variation 8* can
be imposed on (80;;,8w;). Let Q = 811, then from 5*Q of eq. (5), the basic incremental
equations are derived for the evaluation of critical losding and its corresponding buckling pant-
en. Comparing(5) and (6) it can be seen that wheoever 5°Q equals zero the same is Q
or vice verss. .

Form eqs. (7)—(9) it is shown that eq. (1) is essentislly equivaleat w the potential
energy. According to the definition of Dirichlet and Kelvin, sability depends on whether Al
is positive or pegative. Using the Taylor series expansion eq. (10) brings our that (a) if Q

> 0, sable (b) i Q <0, unstable (c) when Q = 0, buckling occurs, it is the limit of
stability, the stability st this point_relies on the sign of the higher variation term, e. g. &Il - -,
On the other hand, when the uniqueness of the solution fails, then the possible incremental parts
(Ag;; and Aw;) should satisfy egs. (11)—(13), which are similar to the Euler equations in
(s).

A comparison wlid which has no unloading condition within the plastic region at the
moment of buckling is introduced to solve the buckling problem. Application of the above
theorem in the plate sod shell problems is exemplified. ’
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