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CHAPTER I. INTRODUCTION

Laminated composite plate and shell panels are becoming increasing-

ly used in aerospace and other technical applications. The accurate

knowledge of critical buckling loads, mode shapes and postbuckling

behavior is essential for reliable and lightweight structural design.

The buckling of isotropic, homogeneous plate and shell panels is

in itself a vast, complicated and somewhat disordered subject. Theoreti-

cal solutions to problems began nearly a century ago with the classical

paper of Bryan [1], and have continued at a rapid rate since that time,

yielding at least 2000 publications dealing with plate bickling in the

technical literature. The best available textbooks dealing with the

subject of plate buckling are those by Timoshenko and Gere [2] and by

Volmir [3,4]. Other useful textbooks dealing generally with the con-

cepts of buckling include ones by Ziegler [5], Simitses [6] and Brush

and Almroth (7]. Handbooks summarizing substantial parts of the plate

buckling literature and, particularly, numerical results for critical

buckling loads, include Part I of the series by Gerard and Becker [8],

the specialized monograph by Bulson [9], and the voluminous work of the

Column Research Council of Japan (10]. In addition, a review paper by

Johns [11] sunmnarized references dealing with shear buckling, and one by

the prcsent writer [12] discussed more recent research.

A major factor responsible for the large amount of literature in

plate buckling is the great variety of shapes, edge conditions and

loading conditions which are considered. Thus, for example, one

encounters references dealing with rectangular, circular, elliptical and

parallelogram (skew) plates. The plates may have holes (cutouts) of

various shapes. Simple edge conditions such as clamped, simply sup-

ported or free arise, as well as the more complicated ones of elastic
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and discontinuous constraint. Point supports, either internal or along

the edges, as well as line supports may be considered. Inplane loadings

may be uniaxial, biaxial, uniform shear, or other, more complicated cases.

The plates may have stiffeners, either along their edges or internally.

Complicating effects such as an elastic foundation, variable thickness,

shear deformation, and inplane heterogeneity may also be treated.

Laminated composite plates are made up of plies (layers), each ply

being composed of straight, parallel fibers (e.g., glass, boron, graphite)

embedded in and bonded together by a matrix material (e.g., epoxy resin).

Each ply may be considered as a homogeneous, orthotropic material having

a value of Young's modulus (E) considerably greater in the longitudinal

direction than in the transverse directions. Adjacent plies will have

longitudinal axes usually not parallel. Cross-ply laminated plates

arise in the special case when the longitudinal axes of adjacent plies

are perpendicular, whereas angle-ply laminates occur when aijacent layers

are alternately oriented at angles of + e and - e with respect to the

edges of the plate.

Equations governing the buckling of laminated composite plates are

available in several textbooks 113-18], as well as in technical papers

(e.g., [19]). A short derivation of these equations, partly for pur-

poses of defining the notation -tsed in this work, is given in the Ap-

pendix. From there it is seen that the complexity of the governing

equations varies greatly, depending upon the stacking sequence of the

plies.

For symmetrical laminates (i.e., when the plies and their orienta-

tions are identical on either side of the midplane of the plate) the

governing equations are the same as those for a homogeneous, anisotropic

plate. Such configurations are also called "balanced laminates" in the

2



literature, although this phrase is also used to indicate a stacking

sequence which eliminates the bending-twisting coupling, as well as the

bending-stretching coupling. At a typical point on the plate one may

always determine a set of coordinate axes aligned with the principal

directions for the material (i.e., directions of maximum and minimum

stiffness, which are orthogonal to each other. With respect to these

axes the material is orthotropic. However, if the buckling problem is

stated and solved in terms of another set of more conveniently oriented

axes (e.g., the edge directions for a rectangular plate), the differen-

tial equation of equilibrium for a buckling mode becomes more com-

plicated, with bending-twisting coupling appearing by means of additional

terng (see termq containing D arid D in Equation A.23 in the Appendix).16 26
In this case the plate will be called "anisotropic" in the present work,

in accordance with long tradition. When the principal axes of material

orthotropy are aligned with the orthogonal axes of the problem, the plate

will accordingly be called "orthotropic", and Equation A.24 governs. In

the literature of laminated composite plate buckling one occasionally sees

the term "specially orthotropic" applied to an orthotropic plate, and even

"generally orthotropic" applied to an anisotropic plate. This terminology

will not be used in the present work.

For an unsymmetrically laminated plate, coupling exists between

bending and stretching of the midplane. This phenomenon was demonstrated

in the theoretical paper by Reissner and Stavsky 120] in 1961. The

coupling between bending and stretching is similar to that encountered

in isotropic shell deformation problems, the order of the system of

governing differential equations is similarly increased from four (for

an anisotropic plate) to eight, the number of boundary conditions that

must be specified is increased from two to four for each edge, and the

buckling problems are correspondingly more difficult to solve.

3



Orthotropic plate buckling analysis apparently was first applied a

half-century ago to deal with stiffened isotropic plates (e.g. [21-23]),

and subsequently became extensively used to study plywood plates (cf.

[24-26]). However, the publication rate of research results increased

rapidly beginning two decades ago as fibrous composite panels were being

to be analyzed for aircraft applications. Several literature surveys on

the buckling of composite plates have been written [27-31), and related

design manuals have been written (cf., 132]).

Plate buckling may be discussed in terms of a plot of inplane

loading force (P) versus the transverse displacement (w) measured at a

representative point on the plate. Classical buckling theory yields the

bifurcation behavior depicted by branches I, II and III of the curves

depicted in Figure 1.1. That is, with increasing P, the curve follows

the ordinate (I) upwards, showing no displacement with increased load

until a critical force (Pcr) is reached. At this bifurcation point the

curve theoretically may continue up the ordinate (II), or may follow a

buckling path, which is horizontal (III) for the linear idealization,

but of increasing slope (IV) for a nonlinear (large displacement)

analysis. The latter curve (IV) is also called a 'postbuckling curve",

for it depicts the behavior of the plate after the buckling load (Pcr)
is reached. This behavior is very important for, typically, plates are

able to carry loads far in excess of Pcr before they collapse. Finally,
it must be noted that no plate is initially perfectly flat, and that if

initial deviation from flatness exists (usually called a "geometric

imperfection" or "imperfection", although other types of imperfections

may also exist), the P-w curve of Figure 1.1 will follow a path similar

to V. As the imperfection magnitude is decreased, curve V becomes

increasingly kinked in the vicinity of Pcr" For this type of analysis,

no clear buckling phenomenon may be defined.

4
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The standard procedure for determining theoretical values of buck-

ling loads is to solve a mathewatical eigenvalue problem; that is, a

problem governed by differential equations and boundary condi!

of which are homogeneous (i.e., the independent variables do

plicitly appear in the equations). In a relatively few cases

be done exactly. In most cases approximate procedures such as the Ritz,

Galerkin series (superposition), finite element or finite difference

methods are used. The latter procedures, if properly used, will

approach the exact solutions as closely as desired as the sufficient

terms (or degrees of freedom) are retained in the solution, although the

roots of very large determinants may be required.

Critical loads obtained by the procedures described above may be

regarded as the proper values of inplane forces requ'.red to keep a plate

in a position of neutral equilibrium in buckled mode shapes having

infinitesimal amplitudes. The linear eigenvalue problem will typically

yield more than a single buckling load for a given plate and loading.

The lowest (i.e., critical) one is usually the only one sought, although

higher ones may be of interest if they approach the lower ones as para-

meters are changed. Other ways of theoretically determining buckling

loads are: (1) from the free vibration problem (finding values of natural

frequencies which approach zero as inplane loadings are increased), and

(2) from static or dynamic transverse loading solutions in the presence

of inplane forces (transverse displacements approaching infinity, no

matter how small the transverse loads).

Before the buckling eigenvalue problem is solved it is uaually

necessary to determine the initial state of inplane stress throughout the

interior of the plate. For most buckling situations which are analyzed,

this is a trivial step (e.g., uniform or 1.nearly varying stress distri-

butions). For others, it may require solving an anisotropic plane

elasticity problem by approximato methods.

6
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Chapters 2 through 7 of the present work are devoted to the

linear, bifurcation buckling of laminated composite plates of

rectangular shape, beginning with the most simple analysis of

symmetrically laminated plates (Chapters 2 through 4) - problems

characterized by classical, orthotropic plate theory. The case when

all four edges are simply suppocted (SSSS) has received considerable

attention and is therefore singled out for Chapter 2. The large amount

of interest in this case is, no doubt, mostly due to the fact that

exact, closed form solutions exist for uniform uniaxial and biaxial

loading. Chapter 3 treats the other 5 sets of edge conditions existing

when two opposite edges are simply supported; that is, SCSC, SCSS, SCSF,

SSSF and SFSF, where C, S and F denote clamped, simply supported and

free edges, respectively, and the edges are labeled in clockwise

sequence around the boundary, beginning with the left edge. Thus, an

SCSF plate is depicted in Figure 1.2. For such cases, as well as those

when one or both of the other two edges are elast!-ally supported, exact

solutions for thý ouckling loads and mode shapes still exist for uniform

uniaxial and biaxial loading; however, the eigenvalues (nondimensional

buckling loads) are not given by explicit formulas, and must be

evaluated as the roots of second or fourth order determinants.

The problems of Chapter 4 have no exact solutions. These comprise

the remaining 15 cases of rectangular, orthotropic plates having
"simple" boundary conditions (i.e., C, S or F), including the important

CCCC case, as well as all other conceivable support conditions for

orthotropic plates, such as elastic constraints, discontinuous boundary

conditions and point supports. Chapter 5 generalizes the problem to the

equivalent anisotropic plate representation. Although this class of

problems is more general (requiring at least one additional parameter)

than the orthotropic cases of the preceding three chapters, relatively

little has been done with these configurations. This is, no doubt,

partly because virtually no exact solutions exist, and solutions are

relatively long and tedious, obtained by Approxiamte methodA.

7
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Unsymmetrically laminated plates are studied in Chapter 6. Some

important progress has been made on these relatively complicated buck-

ling problems, involving coupling between bending and midplane stretch-

ing during a buckling deformation. Chapter 7 takes up all other com-

plicating effects encountered in linear, bifurcation buckling theory.

Among the factors considered are: shear deformation, sandwich panels

(e.g., fibrous composite face sheets with honeycomb cores), variable

thickness, nonlinear stress-strain equations, inelastic material behavior

(plastic or creep buckling), local instabilities (e.g., individual plies)

and hygrothermal effects.

Chapter 8 deals with the po3tbuckling behavior of laminated com-

posite plates, as well as the effects of initial imperfections, and a

large number of referen-es are found to relate to these problems. While

the writer was tempted to separate these considerations into two, sep-

arate chapters, both deal with nonlinear analyses of a similar nature,

the only essential difference being whether or not the imperfection

amplitude is zero. Chapter 9 is a perfunctory attempt to deal with

laminated plates having discrete stiffeners attached. Readers desiring

additional detailed information will have to eeek out those references of

interest among th6 numerous ones listed.

Relatively little was found for the buckling of curved, composite

panels. These are typically of cylindrical curvature, and may be

analyzed by shell theory. What has been found is summarized in Chapter

10.

This summary is limited to composite plate and shell panels of

rectangular planform. Although one can find a few references dealing

with circular, elliptic and parallelogram (skew) plates having rectangu-

lar orthotropy, they are deemed of not sufficient interest to justify the



major broadening of the scope of this monograph which would be required.

For similar reasons, problems having curvilinear orthotropy have been

omitted, notably circular plates having polar orthotropy. It is pos-

sible that future design optimization will include the layout of fibers

in curvilinear patterns with varying spacing (i.e., inplane heterogeneity)

[33], and that curvilinear orthotropic plates of this type will require

inclusion in some future summary.

Finally, although primary attention is given to theoretical results,

particularly those available in nondimensional form, in this monograph,

experimental results are also presented. The primary problems with all

experimental results arez the care which went into the fabrication of the

specimens, the successful accomplishment of the desired test (e.g., Were

the clamped edyes actually clamped ? Were the loads uniformly applied ?)

and the definitive specification of all parameters affecting the problem.

The writer has attempted to include considerable experimental results

which appeared to be properl, obtained and presented.

10



CHAPTER II. RECTANGULAR ORTHOTROPIC PLATES - ALL EDGES SIMPLY SUPPORTED

Consider first composite plates whose bifurcation buckling is

governed by the differential equation (see Appendix)

a•w 34W aw
DII - + 2(D + 2D) + D1.2 66 2X 22 a

(2.1)
h 0x w + 2, ---- y + ay2

This is the classical equation for the buckling of a plate having

rectangular orthotropy. It is applicable to parallel-fiber composite

plates in the following cases:

(1) A single layer.

(2) A cross-ply plate having multiple layers which are

symmetrically arranged with respect to the widplane of

the plate (i.e., a symmetrical laminate; see Appendix).

In the present chapter (as well as in Chapters III and IV) it is assumed

that the axes of material orthotropy are parallel to the edges of the

rectangular plate. In the composite plat.s literature this orientation

is sometimes called *specially orthotropicO.

The potential energy of an orthotropic plate undergoing buckling

is given by

B L (2.2)

where VB is the internal strain energy due to bending stored within the

plate, given by

11
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-E + 32D + D(2w2IB 2 JL 11~" =aD 12  x T =3y 2 7
A (2.3)<' • 2w 2

+ 4D 66 t axay dA

and VL is the potential energy of the inplane forces, given by

2ifL L + r _L 2
WL h dA (2.4)

A

and the integrals in both expressions are taken over the area of tae

"plate (see Appendix). VL is the negative of the work done by the in-

plane forces during buckling.

For a rectangular plate of dimensions axb, having its edges x a O,a

and y - O,b simply supported, the boundary conditions for the problem

are (see Appendix):

Along x - O'a : a - - 0 (2.5a)

Along y - 0,b W - My- 0 (2.5b)

where Mx and My are the bending moments applied to the edges, which for

an orthotropic plate are given by (see Appendix):
( 2w __

M ( a2w + D a2w

( D 12 + D2  
2 (.6

y - \12 3aY

Because w - 0 along an edge implies that all derivatives of w taken

tangent to the edge are also zero, Equations 2.5 reduce to:

32w
Along x 0,a W = - 0

(2.7)

32w
Along - ,b w - 0

12



2.1. UNIFORM UNIAXIAL LOADING

Consider first the case of a simply supported plate subjected to

uniaxial loading which yields constant inplane stressesj i. e.,

ex o constant, cy o Txy a 0. This occurs when two opposite edges are

subjected to uniform and equal compressive stresses (see Figure 2.1).

The boundary conditions given by Equations 2.7 aze exactly satis-

fied by assuming the buckling mode shapes

w - c sin 2-- sin n""y (m, n - 1, 2...) (2.8)
mn Mn a b

where cnn is an arbitrary (but small) amplitude coefficient. Substi-

tuting Equation 2.8 into 2.1 (or setting VB u-VL, using Equations 2.3

and 2.4) yields the critical buckling stress resultant:

~2D m~22 n 4 /a 21
N -.h 2(D 1 + 2D 1\ + m2 2  ,,U (2.9)N x ah 12 -6 •2 b1 +a 22 1;6

This value is clearly a minimum when the buckled mode shape has only one

half-sine wave in the y-direction (i.e., n 1 1). Therefore, the

critical value of stress resultant is

21 D 2y(0) 2 + 2(D 1 + 2DGEf~ D 2 ( )(2) (2.10)

Bquation 2.10 may be put into different forms using various non-

dimensional buckling load parameters. One parameter is consistent with

the one most frequently used in isotropic plate buckling analysis (cf.

(2]). Let

N b 2  a hb 2
- x x

K - - - X (2.11)

22 D22
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Figure 2.1. 8885 plate with uniform, uniaxial stress.
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Then Equation 2.10 becomes

D k b\ 2m2 + 2D, +a(.1

- D2 2  D2 (

Another nondimensional parameter is more consistent with the Euler

buckling load of one-dimensional beam theory:

* N - a 2  o ha 2
K - - - (2.13)

x D2 2  D2.9'

Then Equation 2.10 becomes

K D21 D66  b2 4-1(2.14)

- 22  Vý'22 U2 2  \b +

Other buckling parameters may be defined using, for example, D insteadI'

of D22 in Equations 2.11 and 2.13.

A plot of Equation 2.12 is seen in Figure 2.2 for (D 2+2D66 )/D22 - 1

and for three values of D 1/D 22(10, 1 and 0.1). The value D 11/D 2 2 - 1
corresponds to the isotropic case, whereas 10 and 0.1 correspond to repre-

sentative orthotropic plates which are stiffer in the loaded and unloaded

directions, respectively. From the curves it is observed that the

fundamental buckled mode shape may have any number of half waves in the

loaded direction, depending upon the aspect ratio (a/b) and the stiffness

ratio (D 1/D 22) of a particular plate. Thus, for example, for a/b - 2,

the mode shape will have m - 1, 2 and 4 half-waves for D I/D22 - 10, 1 and

0.1, respectively.

More understanding of the curves generated by Equation 2.12 can be

had by rewriting it as

Kx C 2
A+ 2C 2 + 2  

(2.15)
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where r D D1 2 +2D 6 6

SE mb D C, C2  D (2.16)m 'D22 D22

One obseLves from Equation 2.15 that the shapes of the curves of Figure

2.2 are affected by CI, whereas C2 is only a constant which shifts the

curves vertically but does not change their shapes. Minimizing Equation

2.15 by setting its derivative with respect to r equal to zero, one finds

that the minimum of each curve occurs at

4 __

a . (2.17)

and that the corresponding minimum values are given by

K
x

min-'i - 2 + (2.18)

Thus, for example, for C1 - 0.1 and C2 - 1, minimum values of

Kx/ir2 - 2.632 occur at a/b - 0.562, 1.125, 1.687, ... , as shown by the

bottom curve of Figure 2.2. One physical interpretation of Equation 2.17

is that, for a given value of the stiffness ratio (C1 ), there exists a

unique plate aspect ratio (a/b) for which the plate buckles with a minimum

uniaxial stress into a mode shape which is the product of single half-sine

waves in each direction. Tht same minimum stress then exists for aspect

ratios which are integer multiples (m) of the aforementioned a/b, having

corresponding m half-sine waves in the x-direction. The resulting node

lines x - constant which exist for m > 1 duplicate the boundary conditions

at the edge of a simply supported platel hence, each area of positive and

negative displacement in the mode shape deforms as if it were a single

plato having the aforementioned a/b ratio.

The intersections of buckling parameter curves as seen in Figure 2.2

identify aspect ratios for which a plate can buckle equally easy in either

17
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of two mode shapes with the same uniaxial compressive stress. Indeed,

the resulting buckled mode shape may then have any linear superposition

of the two simple mode shapes, with no symmetry (or antisymmetry) of the

mode being required in the x-direction. The curve intersection points may

be determined by equating the right-hand-side of Equation 2.12 with

another right-hand-side obtained by replacing m by m + 1. Solving the

resulting equation for a/b yields

( a) M(m + 1Y)\ C (2.19)

with a critical buckling parameter value of

K ?E M+ ! ti) ý+C 22-- - l M-• + + 2C2 (2.20)

Thus, for example, for C, a 0.1 and C. a 1, intersections of the bottom

curves shown in Figure 2.2 are found at a/b a 0.795, 1.377, 1.948,

with corresponding values of Kx/n 2 - 2.790, 2.685, 2.659, ... , which

approach the minimum value of Kx/ff2 - 2.632 as m and m + 1 increase.

The useful formulas presented above may also be found in the

classic work of Lekhnitskil [171(see pp. 445-452). There, numerical

results for C 2 1.307, and C I 12.1 or 1/12.1 s 0.0826, corresponding2 1

to a 3-layer birch plywood plate bonded by bakelite glue, loaded on

either two sides, were presented. Because of their similarity to Figure

2.2, they will not be repeated here.

In Equation 2.15 it was seen that the buckling load parameter Kx

was expressed as a function of the aspect ratio r and the two stiffness

ratios C1 and C2 . While these ratios are physically meaningful, it is

interesting to note that, mathematically, it is possible to choose

another form of load parameter which is a function of only two pare-

18



meters, instead of the aforementioned three. Multiplying through

Equation 2.10 by b 2/W 2 DD J)D2 2 yields

a hb 2

SB + +
1 + 1 + B 

(2.21a)
r2;7 1 B 2

1 D7l221

/MbD)2/ I

where B1 a - 57- (2.21b)
22

2(D 12+2D 66)
B2 F 1 ;2 6 (2.21c)

A number of investigators obtained experimental results for

uniaxial buckling loads of SSSS orthotropic plates [34-391. Mandell

[34,35 ) in 1968 made a set of tests on graphite, glass and boron fiber

reinforced, laminated composite plates. This work has been widely used

by others for comparison with theoretical results. A description of the

plates tested is given in Table 2.1. Plate identification numbers given

are those used in [34,35]. "Thornell plates were made of graphite-epoxy.

The ply layup 5(0,90) indicates that the stacking sequence is 00, 90°, 0°,

900, 00 with respect to the load direction (i.e., the x-axis), and 20(90)

indicates, for example, 20 plies all oriented at 90* with respect to the

load. Bending stiffnesses for the plates are presented in Table 2.2.

They were calculated from the constituent properties by various theo-

retical methods of micromechanics, which are explained in [34,35]. The

load was applied statically by means of individually acting, spring

loaded pistons to insure that it was evenly distributed. The widely

used Southwell [40] method was used to determine critical loads.

Table 2.3 lists the experimental buckling loads for the plates

described in Table 2.1. The critical buckling load for all plates was

observed in the (1,1) mode, except for plates 207 and 405, which buckled

19



Table 2.1. Description of orthotropic plates tested
by Mandell

Plate Mtil % Fiber Layup of Dimensions
no. by volume plies (in)

201 Thornel-25 40.0 (0,90,90,0) 1Ox 10x 0.055

202 " " " 9(0,90) lOx lOx0.121
204 Thornel-40 60.0 5(0,90) i0xl0x0.043
205 " it 5(90,0) "
206 " " " (0,90,90,0) lOx lOxO.034
207 " " " (90,0,0,90) "
404 Boron 57.2 20(0) i1 x 11 x 0.096
405 " " 20(90)

Table 2.2. Bending stiffnesses (lb.ii for
Mandell's orthotropic pl.ates

Plate D D D D
no. 11 12 22 66

201 127 4.45 30.2 6.88
202 1065 47.5 611 73.4
204 129 1.90 38.8 4.42
205 38.8 1.90 129 4.42
206 70.1 0.94 12.9 2.18
207 12.9 0.94 70.1 2.18
404 2562 67.3 328 81.2
405 328 67.3 2562 81.2

20



Table 2.3. Buckling loads (-N, lb/in)
for Mandell's SSSSXorthotropic
plates

Plate Experimental Theoretical
no.

201 21.7 19.1
202 189 204
204 15.5 18.7
205 16.3 18.7
206 6.69 8.72
207 5.65 7.44
404 271 292

"285*
"299**

405 251 223
"210*

'$ I 226**

* obtained by Galerkin method
** obtained by Ritz method

21
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first in the (1,2) mode. Also listed are theoretical values obtained by

utilizing Equation 2.9 and by two approximate methods using the stiff-

ness data given in Table 2.2. and the Galerkin and Ritz methods, as

applied by Chamis [41] and Ashton 142], respectively. The Galerkin and

Ritz methods should both give critical loads equal to or greater than

the values obtained from Equation 2.9, depending upon the trial

functions chosen to represent the buckled mode displacement.

It is interestirig to note that the theoretical values for the

uniaxial buckling loads for cross-ply, symmetrically laminated, square

plates are the same regardless of whether the load is applied to one set

of parallel edges or to the other set, and irrespective of the ply

thickness or stacking sequence, provided that the plate buckles in the

mode having m - n - 1. This statement even includes the special case

when all plies have parallel fiber directions. This fact is seen by

observing Equation 2.21 in Section 2.2, where clearly the same result is

obtained whether Cx a 0 or oy - 0, and is demonstrated in Table 2.3 by

plates 204 and 205. The latter plates are identical 5(0,90) plates

loaded in the two different directions. However, the experimental loads

for the two loading cases are seen to be approximately 5 per cent

different.

Buckling of uniaxially loaded SSSS orthotropic plates is discussed

by many other writers 143-56], typically as part of a more complete in-

vestigation involving other loadings or boundary conditions.

2.2. UNIFORM BIAXIAL LOADING

In this case the problem of Section 2.1 is generalized to include

both components of normal stress - that is, both constant, but not

necessarily equal - but no inplane shear stress. A representative

22
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loading is shown in Figure 2.3, where on- of the normal strefsses; (ox) is

compressive, and the other (ay) is tensiLe. For buckling to occur, at

least one of the stresses must be compre3sive.

Taking once again the assumed displacement function given by

Equation 2.8 and substituting it into Equation 2.1, retaining both Ox

and Cyr one obtains the following generalization of Equation 2.9:

h ) 2+ (a)2 "a 2a" 11 .

h(-!+ ah( = - D2 D1 ()+ 2KD1 2 + 2D m
x .a y

(fl\14
1 (2.22)

+. D2 (11)4

Solving Equation 2.22 for the critical stress resultant in terms of the

biaxial stress ratio cy/ax, there results:

2 4

a h a 12 66 ' ) 2 2 b m/
x (~/i)2(fn2 (2.23)

-. I +

Unlike the previous case of uniaxial stress (Section 2.1), the critical

buckling load need not necessarily occur for n = i (or m = 1), so both

integers must be retained in general form. In terms of the parameter

defined by Equation 2.11 the nondimensional buckling stress becomes

D D
+ (a1 /a n

where a negative value of ay/Ux is used to denote a tensile strevs

2
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acting in the y-direction, simultaneously with the compressive stress in

the x-direction.

In addition to the case of uniaxial compression (ay/Ox - 0)

already discussed, at least two other important special cases exist.

The first of these is hydrostatic compression, where the biaxial normal

stresses in x, y and all directions are equal (ay/ax = 1). A plot of

Kx/W 2 versus a/b for this case is shown in Figure 2.4 for the same

ratios of elastic moduli used previously in Figure 2.2. As expected, a

plate subjected to hydrostatic compressive stress buckles under less

stress than one carrying only uniaxial stress. Unlike the case of

uniaxial loading, the smallest value of Kx/r 2 always occurs for m - n - 1,

and Kx/n 2 decreases monotonically with increasing a/b. Comparing Figure

2.4 with Figure 2.2, one can see that for an isotropic plate, the

minimum value of Kx/ff2 is 1, compared with 4 for the case of the uni-

axially loaded plate.

Another special case of uniform biaxial stress loading is worthy

of special attention. Here ay/ax - -1; that is, the normal stress in

the y- direction is tensile, and equals the normal compressive stress in

the x-direction in magnitude. In this case all planes making a 45

degree angle with both the x and y axes are in pure shear. A plot of

Kx/w 2 versus a/b for this case is shown in Figure 2.5 for the same

ratios of elastic moduli used previously in Figures 2.2 and 2.4. As

expected, the presence of uniform tensile stress serves to stiffen a

plate. Comparing Figure 2.5 with Figure 2.2, it is seen that for an

isotropic plate, the minimum value of Kx/r 2 is 8, compared with 4 for

the case of the uniaxially loaded plate. Furthermore, while the minimum

buckling load occurs with n - 1 for both loading cases, comparing Figure

2.5 with 2.2, it is observed that tension-compression buckling mode

shapes tend to have more half-waves in the x-direction than the uniaxial

buckling modes.
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From Equation 2.22 it is seen that for ax negative and a

positive, the smallest value of Kx always occurs when n - 1.

Lekhnitskii [17] showed that in this case, for any given value of oy,

the lowest value of buckling load is given by

K a b2x •2•221(2.25)
min-4 x 2 VC + + C(

where ay, as before, is a positive number when the plate is in tension,

and that this minimum occurs where
a m

b
b 1b2 (2.26)

He showed further that the intersections of buckling parameter curves

occur at

(2.27)

The validity of Equations 2.25, 2.26 and 2.27 is verified by Figure 2.5

for the case when ay/ax . -1.

In Equation 2.24 it is seen that the buckling load parameter Kx is

a function of the biaxial stress ratio (Oy/Ox), three stiffness ratios

(D1 1/D 22 , D1 2 /D2 2, D6 6/D 22 ), the plate aspect ratio (a/b), and the half-

wave numbers m and n. Thus a careful numerical study of Equation 2.24

would require plotting large numbers of curves for, say, Kx versus a/b

(or mb/a), for various values of the aforementioned ratios.

Wittrick [57] showed that for small values of Oy/Oxi apecifically,

for

- < (2.28)
ax Kx
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Equation 2.24 may be written as

k (+ 2.29)

where m is the number of half sine waves in the x-direction, as before,

and k and X are defined as:

[ cx~hb 2  6)]

+ 2(D + 2D66

o D Dw2 D h 1/2 (2.30)

[D D(l

SD22  a ohb 2 \A
- - I -(i+ D22) (2.31)

where, as Wittrick [57] proved, the minimum value of Kx occurs for n - 1

when inequality (2.28) in satisfied. Equation 2.29 is seen to have the

same form as the well-known formula for the uniaxial buckling of an

isotropic plate (cf., Timoshenko and Gere [2], page 352), except that in

the latter case, k and X are simply Kx/n 2  and a/b, respectively, and

the critical buckling loads are determined from a single curve. Thus,

Equations 2.29-2.31 permit the representation of all 8888 orthotropic

plate biaxial buckling loads as a single curve, rather than requiring

many families of curves. This single curve is the middle curve of

Figure 2.2 (i.e., isotropic), with Kx/7r 2 and a/b replaced by k and X of

Equations 2.29-2.31, respectively. Results corresponding to Equations

2.29-2.31 were subsequently derived by Brunelle and Oyibo [58,59] for

this problem in the special case when uy - 0 (i.e., uniaxial loading).
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Several additional references may be found which deal with the

buckling of biaxially loaded 88S8 orthotropic plates [32,44,45,46,60].

2.3. UNIPORM SHEAR WADING

A rectangular plate having dimensions axb, subjected to uniform

shear stresses throughout, is depicted In Figure 2.6. The buckling of

orthotropic plates due to shear loading received considerable attention

by Bergmann A Reissner (211, Bchmieden [22,61] and Seydel [62-65] a half

century ago. Brief histories of these early contributions may be found

in the works of Lekhr.itskii [171 and Stavsky and Hoff [661.

The case of the infinite orthotropic plate (i.e., a/b - ) loaded

in pure shear has an exact solution for its critical buckling stresses

and mode shapes. This was determined by Bergmann & Reissner [21]

following the same procedure used previously by Southwell and Skan [67]

for isotropic plates. This solution is applicable for long plates (say

a/b >4), regardless of the edge conditions at x - 0,a.

Taking Equation 2.1 with ox a ay * 0, an exact solution may be

found in the form

v(x,y) - f(y)e b (2.32)

where i af-1, b is the plate width and K is a wave-length constant to

be determined. Substituting Equation 2.32 into Equation 2.1 yields the

ordinary differential equation

D f - 2(D +2D) (-nf + iy ( f + D f - 0 (2.33)
22 12 66 ) bi b
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where the primes denote differentiation with respect to x. The solution

of Equation 2.33 takes the form

f(y) - A1 e + A2 e + A3 e + A e (2.34)

where a " 4 are the roots of a fourth degree polynomial equation

arising from Equation 2.33. Substituting Equations 2.32 and 2.34 into

the four simply-supported boundary conditions which exist at y a O,b

Equations 2.7, one obtains a fourth order characteristic determinant

containing both K and TXy. For each value of K there exists at least

one value of T.y. The critical value of TXy is the lowest one which can

be found. It can be shown that the solution range is determined by the

parameter C2, where C and C2 are as given by Equations 2.16. For

1 CI/C2 :.-, the critical values of Txy and K are determined from

Tx hb2 - (2.35a)
D 1y k

22

K - k2 bVCI (2.35b)

where k 1 and k 2 are given in Table 2.4. For 0 SV ciC 2  1, the values

are determined from

S(2.36a)

K k4b 2 (2.36

where k3 and k4 are given in Table 2.5.

For an isotropic material (C 1 a C*2 1), the results obtained from

Equations 2.35 and 2.36 agree with those of Southwell and Skan (67],

viz.

32



Table 2.4. Coefficients k and k2 for the huckling pArmeters
of a SS-SS infinite strip loaded in shear.

l k kC 2 12

1 52.68 2.49
2 43.2 2.28
3 39.8 2.16
5 37.0 2.13

10 35. 2.08
20 34. -
30 - 2.05
40 33.0 -

32.50

Table 2.5. Coefficients k3 and k4 for the buckling parameters
of a SS-SS Infinite strip loaded in shear.

4E-C I . - -- .
C k 3  k 4

0 46.84 -
0.05 - 1.92

0.2 47.2 1.94
0.5 48.8 2.07
1 52.68 2.49
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K 52.68, Ki 2.49b (2.37)5l
The buckled mode shape for the isotropic case is shown in Figure 2.7.

It is observed that the half-wave length of the mode in the x-direction

is K/2 - 1.24b, which slightly exceeds the plate width. For comparison,

the infinite strip subjected to uniform uniaxial stress in the x-

direction buckles when-oxhb2 /D22 472 - 39.48 with a half-wave length
of b (see Section 2.1).

For an orthotropic plate having C a 10, C 2 1 (e.g., a single

layer with fibers parallel to the infinite length), Equations 2.35 and

Table 2.4 combine to yield

K - 39.6 x 1.78 - 70.4
s (2.38)

K - 2.16b x 1.78 - 3.85b

whereas if C1 a 0.1, C2 = 1 (e.g., fibers perpendicular to the infinite

length), Equations 2.36 and Table 2.5 yield

K - 47.8 x 1 = 47.8
8 (2.39)

K- 1.95b x 1 1 l.95b

Thus, infinite strips having fibers parallel to the two simply supported

edges buckle with larger critical shear stress and longer wave length

than strips having the fibers perpendicular to the edges.

The case of the SSSS plate of finite dimensions subjected to

uniform shear stress has no exact solution for the buckling problem,

although one may obf in solutions to any degree of accuracy needed by

various approximate methods.

Perhaps the most commonly used method of solving the problem is to

assume a displacement function (w) to represent the buckling mode, pre-
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ferably one which satisfies all the boundary conditions, and equate the

work done by the external forces during buckling (-VL), Equation 2.4, to

the bending strain energy, Equation 2.3. This allows one to solve

directly for the critical value of ixy, which will be an upper bound to

the exact value.

More accurate upper bound results may be obtained by choosing dis-

placement functions with additional degrees of freedom, represented by

arbitrary amplitude coefficients, and minimizing the total potential

energy of the system with respect to the coefficients. For example, one

function w which satisfies the SSSS boundary conditions exactly, is

M N

w . sin m-rx sinry (2.40)mn a b

m-l n-l

which is seen to be a generalization of the simpie function representing

the buckling of a uniformly or biaxially loaded plate, Equation 2.8.

Substituting Equation 3.23 into Equations 2.3 and 2.4, the minimizing

equations for the total potential, Equation 2.2, take the form

DV 0 (m - 1,2,...,M; n - 1,2,...N) (2.41)
BC mn

This procedure yields a set of H x N homogeneous, linear, simultaneous

equations in the unknown cmn. The solution is the standard eigenvalue

problem obtained by setting determinant of the coefficient matrix equal

to zero. The resulting M x N eigenvalues are upper bound approximations

to the possible buckling loads, and the smallest one is the critical

one. The corresponding buckled mode shapes are found by returning to

the homogeneous set of equations and solving for the amplitude ra.io:
cmn/C11 in the standard manner.
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An extensive set of results was obtained by Housner and Stein [68,

69], using another approximate method. f.inite difference approach

was followed; however, trigonometric rathe than the con-entional poly-

nomial central finite differences were used, which take advantage of the

sinusoidal form of the buckle pattern to achieve converged solutions

with fewer degrees of freedom, hence reducing computer time. As in the

case of uniaxial loading, it is possible to express a shear buckling

parameter completely in terms of two independent, nondimensional para-

meters involving the aspect ratio and the orthotropic bending stiff-

nesses (see Equation 2.21). The parameters utilized in 168,69] were 0

ani B, defined by

JD1 D 22  b Dl1e ..-D2D ,B (2.42a)
D 1 +2D 66 a 22

Values of the nondimensionalshear buckling parameter ks are listed in

Table 2.6, where k. is defined by

r hb 2

k (2,42b)S Tr2VrFD223

should be noted that 0 1 implies an isotropic plate.

A more detailed set of results for the same problem was presented

by Fogg (32], taken from (70]. These are seen in the curves of Figure

2.8. There the same parameters are plotted (ks versus B and e), except

that the scalp for 0 is given in terms of k - 1/0. Changes in mode shape

for the critical load with changing B are indicated by the cusps which

appear on the curves. There would be additional cusps (an infinite

number) for small values of B, but they become difficult to identify.

Each curve of Figure 2.8 arises from two curves of the theoretical
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Table 2.6. Shear buckling parameters ka for SSSS
orthotropic plater (see Equations 2.40
for definitions).

6 B 8s B k

0.2 1.0 26.28 1.25 1.0 8.43
0.8 21.43 0.8 7.08 "I.
0.6 17.33 0.6 6.38
0.5 15.36 0.4 5.75
0.4 13.77 0.2 5.09
0.2 11.55 0.1 5.05
0 10.87 0 4.96

0.4 1.0 15.78 1.667 1.G 7.54
0.8 12.98 0.8 6.37
0.6 10.86 0.6 5.85
0.5 9.93 0.4 5.26
0.4 9.29 0.2 4.72
0.2 8.21 0.1 4.68

__ _ _ _ _ _ _ _ _ _ _0 4.600 7.72 0 46

0.6 1.0 12.21 2.5 1.0 6.65
0.8 10.11 0.8 5.66
0.6 8.67 0.6 5.32
0.5 8.09 0.4 4.77
0.4 7.73 0.2 4.32
0.2 6.71 0.1 4.33
0 6.53 0 4.17

0.8 1.0 10.40 5.0 1.0 5.74
0.8 8.66 O.8 4.94
0.6 7.57 0.6 4.78
0.5 7.10 0.4 4.27
0.4 6.80 0.2 3.90
0.2 6.02 0.1 3.86
0 5.79 0 3.75

1.0 1.0 9.31 * 1.0 4.83
0.8 7.60 0.8 4.22
0.6 6.91 0.6 4.25
0.4 6.22 0.4 3.76
0.2 5.49 0.2 3.47
0 5.33 0 3.30
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Figure 2.8. Shear buckling parameters for SSSS orthotropic plates
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solution. These two curves cross and re-cross each other infinitely

many times as one begins with B - 1 (where the two curves would have

the same value) and moves towards B a 0. Each curve of Figure 2.8 is

therefore the envelope (i.e., lowest values) of two curves

Buckling of orthotropic plates due to shear loading has received

attention from a number of others in the technical literature, [45,46,

58,59,71-76].

2.4. COMBINED COMPRESSION AND SHEAR LOADING

Chamis [43,441 used the Galerkin method with displacements assumed

in the form of Equation 2.40 to analyze the buckling of SSSS orthotropic

plates subjected to combinations of compression and shear loading. The
plates were assumed to be made up of plies having the material proper-

ties given in Table 2.7, resulting in the bending stiffnesses listed in

Table 2.8. Fibe:s were Aither parallel to the x (0 - 0) or y (0 - 900)

directions. Data for aluminum plates of the same thickness are given

for comparison. Numerical results were obtained by setting M = N a 5 in

Equation 2.32, yielding determinants of order 25 from which the approxi-

mate buckling eigenvalues were found.

Table 2.9 presents critical values of buckling loads for the

plates described by Tables 2.7 and 2.8. Three sizes of rectangular

plates were used, being 10.0 inches in one dimension, and either 5.0,

10.0 or 20.0 inches in the other dimensions. Various combinations of

compressive and shear loadings are listed for each plate. Difficulties

with the computer program logic required having a small value of the

compressive stress resultant Nx present when a pure shear (Nxy) loading

was desired. It is observed in Table 2.9 that the composite plates have

buckling loads which are comparable to those of the aluminum plates;

V.'
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Table 2.7. Material properties for plates analyzed
by Chamls

Modulus, lb/in2xlO 6
Material Ell E2 2  G1 2  v12

Fiber-matrix 32.9 1.8 0.88 0.24
Aluminum 10.0 10.0 3.83 0.30

Table 2.8. Bending stiffnesses (lb.in) for Chamis'ortho-
tropic plates

Fiber
angle D D D D D D
e(deg) 11 12 16 22 26 66

0 2438 32.3 0 134.8 0 64.8
90 134.8 32.3 0 2438 0 64.8

Alum. 1 810.1 243.1 0 810.1 0 283.5
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Table 2.9. Buckling loads Ncr(lb/in) for Chamis' SSSS orthotropic
plates

Plate Loading condition 1 Buckling load, Ncr
dimensions

(in) ___=0 6 =9 ° Al m

cr cr ccr

5. Oxl0.0 -1 0 0 998 145 500
" 0 -1 0 581 581 1279

"-1 -1 0 465 116 400
"-1 0 1 948 114 479
"0 -1 1 619 395 998
"I- -1 1 446 113 389
"-0.001 0 1 2185 700 2104

i0.OxlO.0 -1 0 0 286 145 320
" 0 -1 0 145 286 320
" -1 -1 0 116 116 160
" -1 0 1 246 136 277
" 0 -1 1 136 246 277
" -i -1 1 111 136 153

"-0.001 0 1 531 531 752
" -1 -0.75 0 145 122 183

"-1 -0.50 0 191 129 213
"-1 -0.25 0 229 137 256

"-1 0.25 0 381 155 426
"-1 0.50 0 572 166 571
"-1 1.00 0 1330 194 666
"-1 -0.50 0.25 190 129 212

" -1 0.50 0.25 549 165 562
"t -1 -0.50 0.50 187 127 209
" -1 0.50 0.50 496 163 539

20.OxlO.0 -I 0 0 145 145 320
"0 -1 0 36 249 125
"-1 -1 0 29 116 100

"-1 0 1 99 155 250
" 0 -1 1 35 237 120

" -1 -1 1 28 ill 97
" -0.001 0 1 175 491 528
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furthermore, the densities of the composite material and aluminum were

0.06 and 0.09 lb/in , respectively (431.

Sandorff (771 discussed a procedure for modelling stiffened iso-

tropic plates subjected to combined compression and shear by equivalent

orthotropic plate theory, and applied it to the case when all edges are

simply supported.

2.5. OTHER LOADINGS

For the buckling of isotropic plates one finds considerable

results for loading cases where x, Pay and Txy are not everywhere

constant (cf. [2,8,9,10]). This is particularly true for plate models

of web' of beams or girdei; carLyIng bending moment and transverse

6hear. Buckling solutions also exist for isotropic plates subjected to

In-plane point loads or partial edge loads. However, relatively little

h .3 been done for orthotropic plates carrying these more complicated

loadings.

One important case of linearly varying inplane stresses may be

considered as a superposition of constant inplane stresses and linearly

varying stresses which arise from an inplane bending moment. Let the

inplane bending stress variation be expressed as (see Figure 2.9)t

a - -a (1-a a ) (2.43)
x 0 b

when a - 0, the stress is uniformly compressive (-ao). When a - 1, the

compressive stress varies from a maximum at one edge to zero at the

other. When a - 2, the tensile stress (+Co) at y - b is the same in

magnitude as the compressive stress (-oo) at y - 0, which is the case of

pure inplane bending. For a > 2, the resultant inplane force is tensile

even though one part of the plate is in compression.
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Lekhnitskii [171 solved the problem in two ways. rirst, he

assumed the simple, one-term sinusoidal function given by Equation 2.8

with n - 1, and equated the negative of the work done by the inplane

forces, Equation 2.4, to the strain energy in the plate, Equation 2.3

and arrived at the following approximate expression for the compressive

stress Cog

hb (l-0.) 1-a 0 I 2D, 5a -C + 2C + r 2  
(2.44)

rf2 2

where C1, C2 and r are defined as in Equations 2.16. It is seen that

for o - 0, Equation 2.44 reduces to the exact form for uniaxial com-

pression Equation 2.15. Equation 2.44 should only be used for small cl.

A moce accurate approximation was also obtained by Lekhnitskii

[17], taking two terms in the y-direction; i.e.,

W (A a b i A2 + in 21yb n .X (2.45)

The critical buckling stress was found by minimizing the total potential

energy of the system with respect to the ooefficients A, and A2 . This

yields the more accurate (but still approximate) result

a bb 2 ~2 1(--)a )
)o [9 2 2

• ". (2.46)

.1 2a. +~ +~ )4 -}2 (al-a.a I • /a, 2

where
C

-a + 2C2 + r 2

(2.47)

C 2
"a2 • + 8C 2 + 16r 22. r
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U'
•: ~~~~~~~~~...... ....... . ... _...... ... ...............-............................-..-.. .. .-
l. -......... .;.._"......... "..... . ..... .............



with C , C and r defined by Equations 2.16, and where the quantity
1 2

16c1/9gT 2 has been squared in both places (unlike in 117]) to make

Equation 2.46 consistent with further results given below.

For the case of pure inplane bending (Q a 2), Lekhnitskii 1171

gave the critical stress in the two corners to be

97r 4D,
o0 - 3 Va Ia2 (2.48)

He also determined the minima of the various curves which would be

obtained by plotting go versus a/b for various m (see Section 2.1 for a

similar study with uniform stress), and they occur at

a - 0.707mjC1  (2.49)

with corresponding minimum vralues of buckling parameters being

in a hb2  11.1 (1.25.1+ (2.50)

Tr 2D2i 2

Thus, for example, for C1 - 0.1 and C2 - 1, minimum values of

Oohb 2/Tr 2D1 1 - 15.49 occur at a/b - 0.398, 0.795, 1.193, .... These

minima are 5.89 times as large as the corresponding values for uniform

stress (see Section 2.1) and occur more frequently as a/b increases.

Lekhnitskii [17] also found the curve intersection points (where a plate

may buckle with equal likelihood into m or m + 1 waves in the x-direction)

to occur for c a 2 at

() 2  - m(m+1)V (2.51)

(compare with Equation 2.19).
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The same linearly varying stress situation was analyzed by

Brunnelle and Oyibo [58,591 -. the case of pure inplane bending (a - 2).

The buckling parameter ko is shown plotted versus a/b in Figure 2.10,

where

d hb
2

km 0
0 W2;ýD2 (2.52)

In using this parameter, it was shown [58,59] that all results could be

determined by a single parameter D*, defined by

D12+266

D* - (2.53)

V D1D 22

which, it may be noted, is the reciprocal of the parameter 0 defined by

Equation 2.41a. Thus, D* - 1 corresponds to an isotropic plate. The

minimum values of ko which are shown in Figure 2.10 are listed in Table

2.10.

The same curves shown in Figure 2.10 are also availahle in the

report by Zahn and Romstad [78] who were investigating the buckling of

plywood plates. There one may also find similar curves for a - 0, 0.5,

1.0 and 1.5, as well. A method for analyzing the buckling of ortho-

tropic plates subjected to complicated edge loads was developed by

Thierauf [79].

Extensive theoretical and experimental results for the buckling of

SSSS plywood plates were published by Dekker, Kuipers et al [37] for the

case of linearly varying edge stresses.

Buckling of an infinitely long orthotropic plate due to thermal

stresses variable across its width was studied by Knoepke [801. The

case of the plate loaded by point loads was examined by Nowacki [81].
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Figure 2.10. Buckling parameter for linearly varying edge load.

Table 2.10. Minimum values of
koshown in Fig, 2.10

0 12.87
0.2 15 15
0.4 17.39
0.6 19.59
0.8 21.76
1.0 23.90
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CHAPTER III. RECTANGULAR ORTHOTROPIC PLATES - TWO OPPOSITE EDGES
SIMPLY SUPPORTED

For a rectangular plate having two opi-asite edges simply cup-

ported, with the remaining two edges either clamped, simply supported or

free, there exist six possible independent configurations:

1. SCSC

2. SCSS

3. SCSF

4. SSSS

5. SSSF

6. SFSF

Configuration 4 was the subject of Chapter II for, as it was seen in

Sections 2.1 and 2.2, there exist simple, explicit solutions for the
buckling parameters in the case of uniform inplane normal stresses. For
the remaining five configurations listed above, there also exist exact

solutions for the buckling loads in the case of uniform inplane normal

stresses. The solutions are not simple, nor are they in explicit form.
Rather, as will be seen, they are the eigenvalues of characteristic

p determinants w ahi'i are of fourth or second order. Nevertheless, although

somewhat complicated, these problems and their solutions deserve special

attention in this separate chapter because accurate results can be found
with relative ease compared with the remaining problems, which are taken

up in Chapter IV.

3.1. EXACT SOLUTION OF THE EQUILIBRIUM EQUATION

An exact and general solution of Equation 2.1 is possible if Nx

and Ny are cottdantts and if Ny a 0. Using the notatlr'n of Equations

2.16, Equation 2.1 is first rewritten as
4 ~ 4 ch 2 crh p2

•w +w +4 ý x v2 + ÷ -a ....
+ = + 2 - +.. (3.1)-T 2 -ax2ay2 Oy 4 D 22 Dx D22 aY -^
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If one assumes a solution to Equation 3.1 in the form

w(x,y) - Y (y) sin (m = 1,2...) (3.2)a

where fm(Y) is a function of y, then simply supported boundary con-

ditions along the edges x - 0 and a, as given by Equations 2.5a, are

exactly satisfied. Substituting Equation 3.2 into 3.1 yields

IV_ 1 hb2  21b) I
- 2 +2C m21Ym b2 (YD 2 a

xi~ - 22 )+cm%-

b4 a) + 1 a) M

22

- II - IV

where Ym d 2 Ym/dy2 and Ym -- d4Ym/dY . Using the nondimensional

parameters Kx and r as defined previously in Equations 2.11 and 2.16,
substituting the nondimensional variable q u y/b, and replacing ým(y) by

Ym(n), Equation 3.3 becomes

v IV_ A Y II _ B Y - 0 (3.4a)

A E 2C w2r2( K )3.4b2 ax x

B r rI[K. C w rl (3.4c)

Equation 3.4a is a fourth order differential equation with

constant coefficients A and B. Its solution can take various forms,

depending upon the algebraic signs and relative magnitudes of A and B.

For example, Equation 3.4c shows that B remains positive provided

Kx >C i 2f 2 . The value of Kx depends upon the boundary conditions

existing along the remaining two edges (n 0,1), yet to be prescribed.
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Results for qSSS plates already shown in Figures 2.2, 2.4 and 2.5

for 0.1 _C <10 and 0 _a/b _5 indicate that, at least for this set of

boundary conditions, A and B are typically positive for every possible

combination of C1 , C2 , a/b, m, n and Ny/Nx. It is known that for other

boundary conditions A nid/or B may be negative, and therefore all

possible solution forms to Equation 3.4a should be considered.

The solution of Equation 3.4a may be written as

s rl -s 1 s 2 Y -s 2 1Y(n) a e51 + a e 1  + a e + a e2 (3.5)

m 1 2 3 4

whare s 1 and s 2 are the roots of the auxiliary equation

- As 2 
- B = 0 (3.6)

given by

2 = (A+ V+4B), s 2 '(A- ( ) (3.7)
~ 22 2 Y

Howe' -, Equation 3.5 is not a practical solution form for two reasons:

(1) it does not straightforwardly recognize the presence of symmetric

and antisymwetric buckling modes which will exist for symmetric boundary

conditions and loadings, and (2) the roots a and/or s may be real,
1 2

imaginary or complex. It is therefore better to rewrite Equation 3.5

using trigonometric and/or hyperbolic functions, considering the
possible types of roots. The solution forms for the roots a will be

taken up below. Corresponding forms for the roots a may be easily
2

written and added to the sa forms to obtain the complete solutions, each

having four indqpendent constants of integration, a ... a_,.

Case 1. 9 2 is a positive, real numberI

Y (9) - a sin s n * a 2.cs a n (3.8)
* 1 1 2 (
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Case II. s 2 is a negative, real number

Y (n) - a sinh s- n + a cosh s Ii (3.9)In 1 1 2 \

where 2 --s 2  (3.10)a 1 1

22In addition, s and s may be complex (4B is negative, and greater
1 2

than A2 in magnitude). In this case the solution of Equation 3.3 is

more complicated, involving the products of trigonometric and hyperbolic

functions. These cases are the ones having significant practical value.
2The case a, a 0 arises only in very special circumstances. It yields

repeated roots and a solution form Ym(n) a I+ n which can be

approached as closely as desired in numerical computations with ' e

forms en by Equations 3.8 or 3.9. Similarly, the case when s (but2

not 9I) is a pure imaginary number requires A - 0, which can also arise

only for certain special combinations of parameters, and may be

approached as closely as desired by taking small values of A with the

"olution forms given above.

As already mentioned, no proofs are known to exist which enable

one to determine a priori the correct solution form for a particular

problem. For example, it is well known for isotropic plates (i.e.,

C1 - C2  1 1) that the complete solution form
2m

Y (n) "a sin s n + a cos S n + a sinh sln + a cosh s (3.11)
Mi 2 1 3 4 2

2 2 - _6 2 is applicable to a wide range of problems. However, to be
2 2

certain that this solution is correct for a paLticular set of para-

meters, one must verify that sa 2 and ,2 are both positive after the

elgenvalues (nondimensional buckling parameters) for the problem are

found.

U
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3.2. SCSC

A plate having two opposite edges simply supported (S) and the

remaining two clamped (C) is shown in Figure 3.1. The important case of

uniform biaxial loading (a., qy constant, rxy - 0) is depicted in

Figure 3.1, although more general stress distributions are possible.

For boundary conditions and inplane stress distributions which possess

two-fold symnetry, as in the present case, it is convenient to use the

xy-coordinate system shown, whereupon the boundary conditions become:

Along x O,a W W M - 0 (3.12a)
x

Along y -+b/2  W . 2 y 0 (3.12b)
'aU

All buckling modes will be either symmetric or antisymmetric with

respect to the symmetry axes of the plate. Thus, the solution form

shown previously in Equation 3.11 may be separated, and the displacement

functions may be written as:

Symmetric modes: V 2Y n _x (3.13a)
W(,) a cos -+ a cosh sn-

2 b b a

Antisymmetric modes: w(X,-) a sin - + a s (313b)
b 3 a

Substituting Equations 3.13 into Equations 3.12b yields, for nontrivial

solutions:

Synmetric modes: co - cosh T

-a - 0 (3.14a)-8sin -sn
1 2 2 2

Antisymmetric modes: sin --

s insin 0si 22 (3.14b)
-0

SSCos 2
S 2 a Coal.-

2 2 2
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Figure 3.1. SCSC plate with uniform, biaxial stresses.
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Expanding the determinants given by Equations 3.14 yields the character-

istic equations:

Symmetric modes: s tan - + s 2tanh - 0-- ( 13.15a)

;2ss
Antisymmetric modes: 8 tanh- s tan- 0 (3.15b)2. 2 2

The roots of these equations are the eigenvalues (nondimensional buck-

ling stresses) Kx obtained by using Equations 3.4 and 3.7 (with s 2 s -s 2).2 2

One procedure frequently followed in the literature does not take

advantage of the symmetries of the buckling modes (cf., [14,171). If,

for example, one uses a general solution for the displacement which is a

superposition of Equations 3.13a and 3.13b, and applies clamped boundary

conditions at y - 0 and y - b, one obtains a fourth order characteristic

determinant, instead of the two second order determinants given by

Equations 3.14. Expanding this determinant yields the characteristic

equation

aih 2s2 (cos s cosh s -) (3.16a)
sin s 1sinh as2 1 2

- 2
2 81

Equation 3.16a may be factored into Equations 3.15a and 3.15b. It may

also be written as:

(cos a -cosh s )2+ (sin - sinh ; )(sin +- sinh a ) 2 0 (3.16b)
1 2 22 1 22

Wittrick 157] showed if the ratio qy/ 0 x is sufficiently small, as

given by the inequality (2.28), Equation 3.3 is analogous to that of an

isotropic plate loaded in the same manner, and the results for SCSC

isotropic plates may therefore be applied to orthotropic plates. He

thus reasoned that if the parameter k is plotted vprsus X , as defined

in Equations 2.30 and 2.31, respectively, all results can be exhibited
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by a single curve. This is shown as curve (b) of Figure 3.2, which

corresponds to the ends x - O,a being clamped and the sides y - O,b

being simply supported, with ax a constant And cy a -xy - 0. For the

case with the ends x - 0,a being simply supported and loaded, and the

sides y - 0,b being clamped (i.e., as shown in Figure 3.1), but not

loaded, Wittrick [57] presented curve (c) of Figure 3.2. However, for

this case k is defined not by Equation 2.30, but by

W h2 a x hbU 2(D 2+2D66) 3.7
ID2 I IDI22

with C - 2.4, and X is defined by Equation 2.31 with ay set equal to

zero.

Brunelle and Oyibo [58,59] solved the problem of the uniaxially

loaded (Wx - constant, Oy - TXY a 0) SCSC orthotropic plate, and ex-

pressed the buckling parameter

a hb2
k 0 x ( . 8

o w24DIJD22 (.8

in terms of a reduced aspect ratio parameter and a single orthotropic

stiffness parameter D*, as defined in Equation 2.53. This relationship

is plotted in Figure 3.3.

Lekhnitskii [17] used the energy method to obtain an approximate,

explicit formula for the critical buckling stress of a SCSC plate loaded

by uniaxial stress along the two simply supported edges (Ox constant,

a y = T -- 0). Assuming a buckling mode shape

w - - cos 2n-T ) sin mJx (m,n 1,2...)(39)
a

results in the clamped boundary conditions at y * ± b/2, as well as the
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Figure 3.2. Single parameter buckling curves for uniaxial and biaxial
loading, as determined by Wittrick
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simply supported ones at x- 0,a, being satisfied exactly. Setting the

work done by the external forces during the buckling displacements,

(-VL), Equation 2.4, equal to the bending strain energy within the

plate, Equation 2.3, yields

axh ' 2  C1 + -n2. + 11 n4r (3.20)
x D2 P:2 3 '2 3

where C1, C2 and r are given by Equations 2.16. Rewriting Equation

3.20 in terms of the nondimensional buckling parameter given in Equation

2.11, and recognizing that the critical buckling stress occurs for n - 1,

one obtains

Kx C1K 1  +8 16r2 (3.21)

This form is similar to the exact solution presented earlier in Equation

2.15 for the SSSS plate. Differentiating Equation 3.21 with respect to

r, and setting it equal to zero, one finds that the minimum value of Kx

occurs at

b 6 T C(3.22)b 16

and that the corresponding minimum values are given by

m8n - - + C (3.23)

S •2 -r',1 2

Comparing Equations 3.22 and 3.23 with Equations 2.17 and 2.18 one

observes that for the SCSC plate, not only are the minimum values of Kx

greater, as expected, but that compared with the SSSS plate, they occur

more frequently as a/b is increased. Further, the values of a/b at the

transition points where the buckling load is the same for mode shapes

having either m or m + 1 half-waves in the x-direction are given by
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" M(M+l) (3.24)

which may be compared with Equation 2.19. The same result was obtained

by Brukva [82] by means of the Galerkin method.

For a long isotropic plate (a/b-- •, C, W C2 1 ) the approximate,¶

value of Kx/r 2 is found from Equation 3.21 to be 7.29, an error of ap-

proximately 4 per cent when compared to the exact value of 7 obtained

from Equations 3.15 or 3.16 [17].

The case when the loaded edge3 (x = O,a) are clamped and the

unloaded loaded ones (y - O,b) are simply supported (ox - constant,

Gy a -xy w 0) was also treated by Brukva [82]. He used the Galerkin

method along with the displacement function

W_ M1 sin _(3.25)

to determine the approximate buckling parameter for m - 1 (one half-

wave) to be

K
- 4C (!-+ 2C, + 0.T7 (3.26)

a b)

whereas, for m = 2,3,...

K - (M_1) 4+(M+1) 4 (-yl+ 2C + 2 (a 2  (3.27)
T = (m-l) 2 +(m+l) 2  a If + 2 (m_1) 2+(M+l) 2

The transit;on from one to two half-waves in the critical mode shape

occurs wher a/b - 1.67 C, . In general, the transition from m to m + 1

half-waves (for m + 1) occurs when

C (m4 +66M2 +l) + (a/b) 4  CI[(M+l)4+ 6(M+l)2+lI + (a/b) 4

,. (3.28)
rn2+ j (M+1)2+ 1
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Thus, the transition from 2 to 3 half-waves occurs when a/b - 2.72 .

A large number of other researchers also analyzed the buckling of

SCSC orthotropics loaded uniaxially along either the simply supported or

clamped edges [32,37,46,55,57,58,59,72,83-93].

Buckling load parameters for SCSC plates loaded in shear (Txy

constant, ax W ay - 0) are shown in Figure 3.4 [83]. Here the load

parameter ks (see Equation 2.42b) is plotted versus the stiffness and

aspect ratio parameters, 1/0 and B, respectively (see Equation 2.42a)

for the case when the edges x - 0,a are clamped and y a 0,b are simply

supported. The results shown are valid for a/b > 1 (short edges clamped,

long edges simply supported).

Garashchuk, Zamula and Prikazchikov [94] used finite differences

to analyze the buckling of a SCSC plate load by a combination of inplane

bending (see Equation 2.43) and uniform shear (Txy - constant). Numeri-

cal results were given for a particular plate having a/b - 0.334 and

D /D 0 154.

3.3 SCSS

An SCSS plate is depicted in Figure 3.5. The boundary conditions

are given by:

Along x - O,a w - M - 0 (3.29a)

AloynOwa -0 (3.29b)

Along y - b : W " M . 0 (3.29c)3Y

Equations 3.29a are exactly satisfied by Equation 3.2. Substituting

Equation 3.11 into Equations 3.29b and 3.29c results in a fourth order
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Figure 3.5. SCSS plate.
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characteristic determinant which, when expanded, yields the character-

istic equation [88]

s2  s= sl tanh s2 (3.30)

where s1 and i2 are parameters which are functions of D I/D22,

(D 2+2D 66/D 2 2 , a/mb, ay/ox and the buckling parameter Kx, and are

defined by Equations 3.4 and 3.7, with s 2 -s 2 . It is also seen to
2 2

be the same as Equation 3.15b for the antisymmetric buckling modes of an

SCSC plate, for the antisymmetry conditions along the axis y = b/2 of an

SCSC plate are identical to the simply supported boundary conditions for

the SCSS plate. Finally, it may be observed that Equation 3.30 is the

same form which arises for the free vibrations of an SCSS plate [951.

Brunelle and Oyibo [58,59] solved the problem of the uniaxially

loaded (ox - constant, Cy - Txy - 0) SCSS crthotropic plate, and ex-

pressed the buckling parameter kO (see Equation 3.18) in terms of a

reduced aspect ratio parameter and a single orthotropic stiffness para-

meter and a single orthotropic stiffness parameter D* (see Equation 2.53).

This relationship is plotted in Figure 3.6.

SCSS orthotropic plates having the loaded edges both simply sup-

ported (ax a constant, 'y - Ixy - 0) were analyzed by Brukva [82]. The

Galerkin method was used along with the displacement function

N
mlx2n-i 2n+l

w a sin mx An - cos - nly) (3.31)

n-l,2

which satisfies simply supported conditions at x - O,a and clamped con-

ditions at y - O,b exactly. A first approximation obtained by taking

only one term of the summation (i.e., N - 1) yielded for the buckling

parameter Kx (see (Equation 2.11):
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KX iC (3.32)
- + 2.5 C + 2.56 r 2

ITT 7 2

It waR determined that the minimum values of Kx occur at

a 0.788rV"7 •--(3.33)

with corresponding values of Kx:

j K (3.34)
min = 3.2C,+ 2.5 C2

Transition points for buckling modes having m or m + 1 half-waves occur

at
a O.788V i) 4

The results described above may be compared with similar (but exact) ex-

pressions describing the buckling cu:ves for an SSSS plate (see Section

2.1). An improved, second approximation was also obtainad [82] by

setting N v 2 ii, Equation 3.31. The Galerkin method then yields an

eigenvalue determinant of second order.

The case when ooe of the loaded sides is clamped (x - 0) and the

opposite one (x - a) is simply supported) (ax - con'itgfnt, ay a xy * 0,

was also treated by Brukva f82). The Galerklr. method, was used along

with the displacemort function

( 2m-1 2m+1 _ 33):
w-.. ,.s2 .- co rx sin b3.35

which deter:jined th'3 aFl/oximate buckling parameter to bu (ccrrecting a

misprint):

06
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x, 0.25 4m++2(C22*)4  b 2 82
02 (2m_1)2 +(2rn+l) 2  a C14+2C (2m-l)Z+ (2re+l)2

The ranges of aepect ratio having one or two half-waves in the critical

mode shape were found to be:

b 41-
1 5 ' < 2.50Vc , for m - 2

b.54

Shuleshko [96] also developed an approximate formula .or deter-

mining the buckling loads of uniaxially loaded SCSS orthotropic plates.

This problem was also studied by Soni and Amba Rao [90J and by Massey

[97].

3.4. SCSF

As SCSF plate is depicted in Figure 3.7. The boundary conditiors

arit given by:

Along x O,a xw -0 (3.37a)
aw

Alow-n 0  (3.37b)

Along Y y a V My (3.37c)

"Equatic.ns 3.29a are exactly satisfied by" 1quation 3.2. Substituting

Bquation 3.11 into Aqv-tions 3.37b and 3.37c yielda the characteristic

detev- nant I8s]

1' �jsinh ,zlfl2 A 1 B)(3.38)

COas t-cos
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Figure 3.7. SCSF plate.
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2 M )2 1
where A --2  +2D v (3.39a)s2 a/D2+2D66

12 66

1 =a s 2+ b r2D1 I (3.39b)I a ) 312 +D66 -

Vy is Poisson's ratio of the contraction of the orthotropic plate in the

y-direction due to ax, and a and s2 are as used previously (see

Sections 3.1 and 3.3).

Brunelle and Oyibo [58,59] solved the problem of the uniaxially

loaded (ax - constant, Cy a Txy - 0) SCSF orthotropic plate, and e.-

pressed the buckling parameter ko (see Equation 3.18) in terms of a

reduced aspect ratio parameter and two orthotropic stiffness parameters,

D* and c , where D* is defined by Equation 2.53 and E by

E D 12 (3.40)
D12+266

Plots of ko are shown in Figures 3.8 and 3.9 for e - 0.2 and 0.3,

respectively.

This problem was also considered by Sotii and Amba Rao f90] as part

of a free vibration analysis of uniaxially loaded SCOF plates in the

special case wnen the frequency becomes zero.

3.5. 05SF

An 8SSF plate is depicted in Figure 3.10. The boundary conditions

along the edges x - 0,a are satisfied exactly by Equation 3.2. The

remaining conditions ares
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Along y - 0 : w =M = 0 (3.41a)Y

Along y - b : M - V = 0 (3.41b)
y y

Substituting Equation 3.11 into Equations 3.41a and 3.41b yields the

characteristic equation (881

2 A 25 2 A 1a ! B sI•tn 2 (3.42)

(see Section 3.4 for notation).

Brunelle and Oyibo [58,591 solved the problem of the uniaxially

loaded (ax - constant, gy a Txy - 0) SSSF orthotropic plate, and ex-

pressed the buckling parameter ko (see Equation 3.18) in terms of a

reduced aspect ratio parameter and two orthotropic stiffness parameters,

D* and € (see Equations 2.53 and 3.40, respectively). Plots of ko are

shown in Figures 3.11 and 3.12 for e 0.2 and 0.3, respectively.

Holston [98] derived a special solution to Equation 3.1 for the

case ax constant, ay - 0 which is valid in the particular case when

axhb2 2 D13 (3.43)
X Dax" (E = - -

22 22

It has a form containing constant and linear terms in y, as well as

hyperbolic functions. He also used the energy method to develop an ap-

proximate formula for the buckling loads, and pointed out an error in

two other relevant references (99,100].

This problem has also received some minor attention elsewhere

[32,90].
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3.6. SFSF

p'.

An SFSF plate is depicted in Figure 3.13. The boundary conditions

along the edges x * O,a are satisfied exactly by Equation 3.2. The re-

maining conditions are:

Along y- O,b my V - 0 (3.44)
y y"

Substituting Equation 3.11 into Equations 3.44 yields a characteristic

equation which may be factored into the following two equations, for

symmetric and antisymnetric modes (with respect to y - b/2), respec-

tively [881:

"SlA2 sin a cosh s s B2 sinh s cos s
11 2 1 2 1 (3.45a)

"sA2 cos s sinh s2 B cosh -s sin s
12 1 2 1 (3.45b)

(see Section 3.4 for notation). Equations 3.45 may also be derived by

separating beforehand Equation 3.11 into its symmetric and antisymmetric

components, as was done for SCSC plates in Section 3.2. Particular care

must be taken in using Equations 3.45, for they are only valid for quite

restricted ranges of ay/ax (see Section 3.1).

In Table 3.1 are listed the experimental buckling loads obtained

by Mandell 134,353 for SFSF orthotropic plates having the simply sup-

ported edges subjected to uniaxial loading. The plates are those

described previously in Section 2.2 (Tables 2.1-2.3). Theoretical

results in all cases were calculated on the assumption that the plate

bends as a simply supported beam/ that is the buckling mode displacement

was taken to be
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Table 3.1. Buckling loads (-N lb/in)
for Mandell's SFSFXorthotropic
plates

7Ploe Experimental Theoretical

201 11.3 12.5
202 84.9 105
204 10.8 12.7
205 2.74 3.83
206 5.26 6.92
207 0.848 1.29
404 199 215

"216**
405 23.3 23.7

"23.6**

obtained by I.r..-• -Pthn4
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w = c x (3.46)m a

In this case the plate is assumed to have no transverse curvature or

twist in the buckled mode, and the differential equation of equilibrium

(2.1) reduces to

a•w 32w
7-V =DX 3 (3.47)

Substituting Equation 3.46 into 3.47 yields the critical load as

T ZD 11(3.48)
N • h- - 2

x X a2

which always occurs for in = 1. Results obtained using the Ritz method

developed by Ashton [42] are also given for two plates in Table 3.1.

Viawanathan, Soong and Miller [93] tested a computer program

designed for more general buckling analysis on plates 404 and 405 listed

in Table 1. The program uses the exact solution procedure described at

the beginning of this section, leading to Equations 3.45. Theoretical

values of -Nx of 206.5 and 22.6 were found, compared to the experimental

values of 199 and 23.3, respectively, given in Table 3.1.

Baharlou [101] used the Ritz method with 25 algebraic polynomial

terms to solve the problem of the uniaxially loaded SFSF plate having

the following parameters: a/b - 1, D /D - 10, (D +2D )/D u 1.
11 22 12 66 22

This yielded -Nxa 2 /D - 0.9846i 2 , which is a close upper bound to the

exact solution and which may be compared with the value of r2 which is

given in Equation 3.48 by beam theory.

Wk
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3.7. Elastic Edge Constraints

Consider a plate with uniaxial loading (ac - constant, ay a tXY -

0) having three sides simply supported, with the fourth side (y - b)

elast'cally constrained against rotation (SSSE). Along y - b, the

conditions to be satisfied are:

w 0, my k (3.49)

where kr is the rotational spring stiffness per unit length of edge.

Following the same procedure described in the preceding sections,

Shuleshko [88] showed that the following characteristic equation

results:

4k b
(S2 + s 12) sin s sinh a2 = r (s Cos I slnh s2 - s 2sin a cosh s (3.50)

22

For the case of a uniaxially loaded plate having two sides

(x - 0,a) simply supported, one (y - 0) free and the fourth (y - b)

elastically restrained against rotation (SPSE), Shuleshko 188] deri~evJ

the characteristic equation:1

(2+ a2) sa i s 1cosh , - A sinh s (3.51)
1~~ ~ 2 A nB 28i ,

4k rD2 b zA s o 2-A, sinh s in sB
+ II+-s cosh -9Cos 8 + 28a asih

D 2 [ABA) 1 2 2 1 1 2- 2A 1 B1

(after changing the sign of the 2sisa term and adding a bracket to make

the equation consistent with Equation 3.38).

The SCSE plate yields the characteristic equation [88):
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s 2 2=2 .

•2 SICOS Ss sh s2 - s 2sin slcosh s
s2) (3.52)

4k b s1 -8

C - cosh s)2 + sin s - sinh s2 sint -' 2 sinh a
D s-2 c2) Ss , 1 S2)]

The SESE plate subjected to uniaxial loading (ax = constant,

a- Txy = 0) was studied by Libove (72]. The exact solution procedure

described above was used to obtain the following formula for the

buckling loads:

-a hb2  _________

T2 1DI2+2D66) a ) D 12+2D 1 2 + f( 3.53)
66

where f is a function of the spring stiffness parameter krb/D2  and the
1

parameter ta/mb)- 2 2/(D 12 +2D6 6 ), and is plotted in Figure 3.14. Several

others have also examined this problem (102-105].

Sakata 1106] used the reduction method to analyze the buckling of

continuous orthotropic rectangular plates having the edges x - 0,a

simply supported, y - 0,b elastically supported with intermediate

supports located at lines y - constant. Along the supports the

condition w - 0 ib prescribed. The problem is solved using exact

solution functions given by Equations 3.2 and 3.11, with continuity of

displacement, slope and moment enforced across the supports. Numerical

buckling results for uniaxial and biaxial loading conditions were calcu-

lated for the case of SSSS edge conditions, with a/b a 0.5, (D +2D )/D
12 66 22

a 0.25 and intermediate supports located at y - 0.3b and 0.7b (see

Figure 3.15). These are displayed in Table 3.2, where the variation of

Kx/• 2 (Equation 2.11) with ayhb 2 /IT2 D2 2 and D1 I/D 22 are seen. This

problem was also dealt with by Nowacki J107].
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Figu:e 3.14. The function f1 to be used in Equation 3.53 for the
uniaxial buckling of SESE orthotropic pjA.tes.
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Figure 3.15. Continuous SSSS plate with intermediate supports at
y =0.3b and 0.7b; a/b a 0.5.

Table 3.2. Critical buckling parameters Kx/hf 2 for
an SSSS plate with intermediate supports
(see Fig. 3,15).

1) C hb2/ff2D
11 Y 22
Z. 22 0 5

A • _ . ri.]

1 0 15.425 24.904 34.203

2:0 19.425 28.904 38.203
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CHAPTER IV. ORTHOTROPIC PLATES - OTHER EDGE CONDITIONS

In the preceding two chapters, orthotropic plates having two

opposite edges simply supported were considered, which were seen to

include six possible combinations of classical boundary conditions,

along with some additional cases where the remaining two edges were

elastically supported. It was also seen that exact solutions for

buckling problems were possible when the loading consisted of uniform

normal stresses. The remainiing classical problems may be represented by

15 distinct arrangements of edge conditions [108]. Following the

identification system set forth in Chapter I, these may be listed as:

CCCC, CCCS, CCCF, CCSS, CCSF, CCFF, CSCF, CSSF, CSFF, CFCF, CFSF, CFFF,

SSFF, SrFF and FFFF. As will be seen below, the CCCC plate has received

a great deal of attention, whereas relatively little has been done with

the other cases. For none of these problems are exact theoretical

solutions possible, even in the case of uniform normal buckling stresses,
and approximate methods must be used.

Dickinson [109] generalized a method which was developed by

Warburton [110] to determine the free vibration frequencies of isotropic
rectangular plates having all 21 possible combinations of boundary con-

ditions to orthotropic plates subjected to uniform inplane stresses.

The meLhod is a development of one first suggested by Rayleigh [1111,

whereby a reasonable mode shape is assumed and substituted into the

proper energy functionals to determine the eigenvalue for the problem.

In the case of buckling the total potential function is defined by

Equations 2.2-2.4, and setting V - 0 determines the buckling load. The

mode shapes are assumed to be the products of the eigenfunctions of

vibrating beamsl for example, for a CSCF plate, the products of CC and

FF beam functions would be used. In addition to satisfying the boundary

83



conditions for the plate (although not exactly in the case of a free

edge), the eigenfunctions are orthogonal over the plate dimensions, which

reduces the numerical complexity of the calculations. The method has

been demonstrated to be quite accurate for plate vibrations [112], but

should be less accurate for plate buckling, for beam buckling MAde

shapes are somewhat different than beam vibration mode shapes (except

when both ends are simply supported). Following the procedure described

above, Dickinson [109] arrived at the following general formula for the

determination of plate buckling loads:

I~G xLý Ga b~}y k/\ 2b) D

2(D 12+2D 66) D (4.1)
+ 12x66+ ±4 D6-6(JxJ - HHy)

D22 22

where Kx is defined by Equation 2.11, Gx, Hx and Jx are functions

determined from Table 4.1 according to the conditions at x - 0 and x - a,

and Gy1 Hy and Jy are obtained by replacing x and y and m by n in Table

4.1. The integers m (and n) used in Table 4.1 are not the half-wave

numbers used in previous chapters, but rather the number of nodal lines,

including clamped or supported edges, perpendicular to x (or y). If

m-l in Table 4.1 is replaced by a (and n-i by n) then, in the case of

SSSS boundary conditions, Equation 4.1 agrees exactly with Equation 2.24

for the buckling dule to biaxial loading.

Figure 4.1 (taken from [8]) is a useful set of curves governing

the buckling of isotropLc plates which are uniaxially loaded, and have

the loaded edges either clamped or simply supported. The other two

edges are either CC, CS, CF, SS and SF (i.e., all combinations except

FF). Variation of the buckling parameter KX/7 2 (see Equation 2.11) with

a/b is seen, along with the number of longitudinal half-waves in the
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Table 4.1. Coefficients in Equations 4.1 for buckling loads of plates
with arbitrary boundary conditions.

Boundur
.onditdam. m H,

ECBS -.-.............- 2,3,4, ... n-I (,n-i), (,,-i),SSb ....... ....... ,-•---
C A ---------------- 2 1 .508 L 248 L 248

1 ---- 1 n- 1)'[1- (in- (_1 •21b... . .. . .. . , 4, 5, . 2 2 2 -_

-F a----------------- 0 0 0 0
1 0 0 12/0'
2 L 506 L 248 6.017

LFb------ .. - )[ 21).] (m6Y7~m~t
.................. ,4, 5 .... RS2 (in- _)'[1,(_C )] ( 2- )' 1÷( 8.2 2)

cc&------------------ 23,SP. ................ • ,, . . . • ( -)[ , . _)[
F a .----------------- 3,.. 1 0 0,

•, ............. M,_! .. . . • . _'• ..

a .597 -0.0870 0.471-c2 ................. L 494 L 347 & 284

-*,z-_ 0.,
_, ............. 3,4,5, . ., i-n' ( _• . ,. 2• •

85 2
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Figure 4.1. Buckling parameters for uniaxiallY loaded isotropic
plates.
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mode shape for each case. While the curva-s are only for a particular
case of an orthotropic plate (D1 /D 1, (D +2D )/D a 1), they are

as 22 12 66 22

useful in predicting trends in critical loads and mode shapes as

boundary conditions are varied. The data shown previously in Figure 3.2

is consistent with Figure 4.1.

4.1. CCCC

Brunelle and Oyibo [58,59] solved the problem of the uniaxially

loaded (ox - constant, ay - Txy 0) CCCC orthotropic plate, and ex-

pressed the buckling parameter ko (see Equation 3.18) in terms of a

reduced aspect ratio parameter and a single orthotropic stiffness

parameter D* (see Equation 2.53). This relationship is plotted in

Figure 4.2.

Wittrick 157] showed that the uniaxial buckling load for CCCC

orthotropic plates can be determined from the single curve arising from

isotropic plate analysis. This is shown as curve (d) in Figure 3.2.

For this graph, k is defined by Equation 3.17, with C - 2.46, and X is

defined by Equation 2.31 with ay set equal to zero.

The uniaxially loaded CCCC plate was also analyzed by Brukva [82].

The Galerkin method was used along with the displacement function

M CBr-i M+l - 27ry) (4.2)a -a a-- x) (1 Cosb

to determine approximate formulas for the buckling parameter Kx (see

Equation 2.11). For one half-wave (m - 1) the value was found to be

K b 2  8
4 4() cl+ -C, + 4Q.. (4. 3)

whereas for m - 2,3,...
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Figure 4.2. Uniaxia]. buckling parameters for CCCC orthatropic
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Kx (m-)4 + ( b\l) 4 8 10.66 2

" (m-1)2+ (rM+1) 2 32 (m-) 2+(m+1) 2  b

The ranges of aspect ratio having one, two or throe half-waves in the

critical mode shape were found to be:

a 4f
b< I.ii , for m-1

i.i1. < A < 1.78 , for m - 2

1.78 T< • < 2.481 , for m - 3

Baharlou JIOJ used the Ri-z method with 25 algebraic polynomial

terms to analyze CCCC orthotropic plates having the following para-

meters: a/b - 1, C1 - 10, C2 a 1 (see Equations 2.16). He obtained

buckling parameters for uniaxial compression, biaxial hydrostatic

(ax M Cy) compression and uniform shear. These are seen in Table 4.2,

where Kx and Ks are as given by Equations 2.11 and 2.35a, respectively.

The values given are all close upper bounds to the exact solutions.

A number of other researchers have also investigated the buckling

of uniaxially loaded, CCCC orthotropic plates [32,83,85,87,91,112-114].

Housner and Stein 168,69] used a finite difference energy method

(see description in Section 2.3) to analyze the buckling of CCCC plates

subjected to uniform shear stress. Numerical results for buckling para-

meters ks are given in Table 4.3 for wide ranges of the aspect ratio and

stiffness parameters B and e, respectively, which are defined in

Equations 2.40. These data are also plotted in Figure 4.3, and may be

compared with results for SSSS plates given earlier in Table 2.6 and
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Table 4.2. Buckling parameters for CCCC
orthotropic square plates;
C-10O, C2"I.

Uniaxial Hydrostatic Shear
loading loading loading

K K

Tr2 IT2 1T2

46.25 16.75 47.03
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Table 4.3. Shear buckling parameters k. for CCCC
orthotropic plates (see Equations 2.40

for defiaitions).

p B ks 8 B k

0.2 3.0 32.56 1.25 1.0 13.87

0.8 26.31 0.8 11.68
0.6 22.21 0.6 10.46
0.4 18.91 0.4 9.39
0.2 17.34 0.2 8.80
0.1 17.31 0.1 8.98
0 17.13 0 8.45

0.4 i.0 21.63 1.667 1.0 12.91

0.8 17.92 0.8 10.90
0.6 15.43 0.6 9.80
0.4 13.62 0.4 8.86
0.2 12.64 0.2 8.34
0.1 12.89 0.1 8.58
0 12.51 0 7.93.

0.6 1.0 17.86 2.5 i.0 11.93
0.8 14.89 0.8 10.11
0.6 13.06 0.6 9.07
0.4 11.60 0.4 8.31
0.2 10.64 0.2 7.84
0.1 10.95 0.1 8.12
0 10.69 0 7.32

0.8 1.0 15.94 5.0 1.0 10.94
0.8 13.34 0.8 9.31
0.6 11.84 0.6 8.33
0.4 10.55 0.4 7.74
0.2 9.99 0.2 7.33
C.1 10.16 0.1 7.66
0 9.63 0 6.72

1,0 1.0 14.81 c 1.0 9.92
0.8 12.44 0.8 8.48

0.6 11.08 0.6 7.57
u.4 9.89 0.4 6.97

0.2 9.2/ 0.2 6.79
0.1 9.11 0.1 7.17

0 8.99 0 6.11
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Figure 4.3. Shear buckling parameters for CCCC orthotropic plates.
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Figure 2.8. It is seen that the critical mode shape changes occur more

clearly for CCCC than for SSSS plates.

Another set of useful results for the CCCC plate loaded in shear

was obtained by Smith [75]. This is shown in Figure 4.4. Here the

load parameter k. (see Equation 2.42b) is plotted versus the stiffness

and aspect ratio parameters, 1/0 and B, respectively (see Equations

2.42a). The case of shear loading was also studied by a few others [32,

72,115,116].

4.2. CCCS

CCCS orthotropic plates having the edges x w O,a subjected to a

uniaxial loading (vx - constant, oy a Txy - 0) were analyzed by Brukva

[82]. The Galerkin method was used along with the displacement function

w ( cosr-1- - x Cos - (4.5)a a2b2)

An approximate value for the buckling parameter Kx (see Equation 2.11)

was determined for m a 1 (one half-wave) to be

K X 4C-+ 2.5C + 1.92(1) (4.6)
t7 " 2

whereas for m - 2,3,...

K =(m_1)4+(m+1)4 'bt' 2  5.1 'a'2
-2 (m_]) 2+(r-l) 2  C + 2.5C + (4.7.)
T 2 a 1 2 (M-l) 2+(M+l) 2

The ranges of aspect ratio having one or two half-waves in the critical

mode shape were found to be:

93



(00S U)
Ad

V' 'I . O " c

944



4(--

b< 1.31VC , for m- 1

1.31. < A < 2.15TI, , for m = 2

The same problem was also analyzed by Shuleshko [96] using the
"reduction method" to obtain an approximate solution.

The case when the edge x - a is simply supported, and the other

edges are clamped (a CCSC plate) was also treated by Brukva [82]. In

this case the displacement function

w2(cos nlx - Cos 2(a 1 - cos )b (4.8)

was used. An approximate value of Kx was found to be:

*K x(2m-1) 4+(2-M+1) 4 (b,%2 .7 42.66a20.25 2+(2M + 2.67C + (4.9)

* (2m1) L+(2ml) 2 ka) 1 2 (2m-l) 2+(2m+1)2kb

The ranges of aspect ratio having one or two half-waves in the critical

mode shape were found to be:

-< 1.01 ,C for u-n

44
. 1.01"C/ < < 1.64 , for m n 2

4.3. CCSS

CCSS orthotropic plates having the edges x - O,a subjected to uni-

axial loading (ax - constant, Cy 0 TX y 0) were analyzed by Brukva (82].
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The Galerkin method was used along with the displacement function

w (os2m-oC 2m+l.) (Lo - CosB (4.10)

-2a•-x - 2a 2b 2b

An approximate value for the buckling parameter Kx (see Equation 2.11)

was determined to be:

K ~(2m-1)4%(2m+1) 4 (b 2 2C()
--. 0.25 (2+ C + 2.5C + .5 (4.11)

T2(2m)
2+(2m+l) 1 2 (2m-1) 2 +(2m+1)2 b

The ranges of aspect ratio having one, two or three half-waves in the

critical mode shape were found to be:

a < 1.21C , for m - 1

1.21TCJ < A < 1.97 ýC , for m - 2

4 4
1.97 < A < 2.76 Ic , for m - 3

4.4. Other Edge Conditions

The case of the CVCP plate subjected to uniaxial compression along

the clamped edges was examined by Viswanathan, Soong and Miller [92]. A

set of experiments was conducted on 24 specimens made of combinations of

titanium, adhesive and boron composite material. Theoretical values

were obtained by taking results for the SPSY plate and multiplying by

four (as in isotropic beam theory). Difficulty in experimentally

achieving perfect clamping conditions also resulted in the use of a

"modified length" between the clamped edges in an effort to achieve

better correlation between experiment and theory.
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Simitses and Girt [117] analyzed SSSS plates having rotational con-

straints along all four edges for uniaxial loading conditions ( a

constant, Oy xy a 0). Let the rotational spring stiffness per unit

length along the edges x - 0,a be Oi, whereas along y - 0,b it is a2

(corresponding to kr in Equation 3.49). The modified Galerkin method

(i.e., using additional line integrals the edges to account for the

moment conditions not being exactly satisfied) was used, with transverse

displacements assumed in the form

(xy) - a sin M-x sin -y
m a b

(4.12)

+ bI Cos -Ij- - Cos --(i-)] (1 Cos 1a)

i-a

The modes separated into symmetric and antisymmetric classes with

respect to the x-direction, and numerical results were obtained [117]

with third order determinants (i.e., two terms retained in the summation

shown in Equation 4.12). Numerical results for the nondimensional

buckling parameter Kx(D /D22 )/71 2 (see Equation 2.11) are presented in

Table 4.4 for plates having Gxy/Ex - 0.4, vxy u 0.7, for various values

of Ex/Ey(O DII/D 2 2), a/b, $la/D1l and 02a/D 11 . The plate stiffness

ratio 2(D 2+2D 66)/D11 is related to the elastic constants by

12 66 (4.3a

D12+2D66  + 2 GYy (4.13a)D YX E E x
xx x~x

(4.13b)E v "E v
xyx TY xy

The numerical data given is aimed at application to folding cartons made

of paperboard. The displacement functions used above were criticized by

9
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Table 4.4. Buckling parameter Kx(Dll/D 2 2 )1T2 for uniaxially loaded
SSSS orthotropic plates having rotational edge constraints.
(Gx /E -0.4, v -0.7). Numbers in parentheses are numbers
of L.ifx-waves i~xthe x direction.

(a) 1 a/D1 1 = 0

D 02 a/D 1 1D11  a "

D2 2  b 0 1 10 100 1000

0.5 5.816(1) 6.017(1) 7.629(1) 10.364(3) 15.466(3)
1.0 3.004(1) 3.383(1) 5.286(1) 6.776(3) 7.259(3)

4.0 1.5 2.761(1) 3.302(1) 4.739(2) 6.107(l) 6.207(1)

2.0 3.004(1) 3.195(2) 4.203(2) .5.254(2) 5.428(2)

0.5 5.889(1) 6.089(1) 7.703(1) 10.558(3) 15.640(3)
1.0 3.139(1) 3.520(1) 5.487(1) 7.247(3) 7.664(3)

3.0 1.5 3.000(1) 3.550(l) 4.857(2) 6.444(2) 6.808(2)

2.0 3.139(2) 3.331(2) 4.397(2) 5.626(2) 5.836(2)

0.5 6.033(1) 6.233(1) 7.850(l) 10.946(3) 15.990(3)
1.0 3.408(1) 3.791(1) 5.875(1) 8.097(1) 8.460(1)

2.0 1.5 3.477(1) 4.039(1) 5.088(2) 6.893(2) 7.333(2)

2.0 3.408(1) 3.602(2) 4.763(2) 6.347(2) 6.630(2)

0.5 6.466(1) 6.666(1) 8.290(1) 12.113(3) 17.036(3)

1.0 4.216(1) 4.605(1) 6.961(1) 10.139(l) 10.698(1)
1.0 1.5 4.556(2) 4,704(2) 5.755(2) 8.189(2) 8.886(2)

2.0 4.216(2) 4.413(2) 5.663(3) 7.619(3) 8,375(3)
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Table 4.4. (Continued)

(b) {1 a/D4 1 - 1

a/D
D b 0 1 10 100 1000

22

0.5 7.299(1) 7.466(1) 8.812(1) 11.219(3) 15.622(3)

4.0 1.0 3.383(1) 3.716(1) 5.399(1) 6.810(3) 7.259(3)
1.5 2.935(1) 3.439(1) 4.822(2) 6.107(1) 6.207(1)

2.0 3.102(2) 3.282(2) 4.235(2) 5.255(2) 5.428(2)

0.5 7.372(1) 7.539(1) 8.888(1) 11.412(3) 15.796(3)
1.0 3.520(1) 3.856(1) 5.607(1) 7.277(3) 7.664(3)

3.0 1.5 3.175(1) 3.692(1) 4.943(2) 6.448(2) 6.808(2)

2.0 3.237(2) 3.419(2) 4.433(2) 5.627(2) 5.836(2)

0.5 7.518(1) 7.686(1) 9.039(1) 11.797(3) 16.144(3)

1.0 3.791(1) 4.134(1) 6.010(1) 8.101(1) 10.698(1)
2.0 1.5 3.653(1) 4.189(1) 5.180(2) 6.898(2) 7.333(2)

2.0 3.237(1) 3.692(2) 4.806(2) 6.348(2) 6.630(2)

0.5 7.956(1) 8.124(1) 9.493(1) 12.951(3) 17.184(3)

1.0 4.605(1) 4.961(1) 7.132(1) 10.145(1) 10.698(1)
1.0 1.5 4.731(2) 4.871(2) 5.862(2) 8.197(2) 8.886(2)

2.0 4.316(2) 4.507(2) 5.731(3) 7.627(3) 8.375(3)
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Table 4.4. (Conetinued)

(c) $ a/D 11  10

DII a _2 ./1

D2 2  b 0 10 100 1000

0.5 13.580(l) 13.622(i) 13.969(l) 14.994(3) 16.554(3)

1.0 5.286(1) 5.399(l) 6.058(l) 6.999(3) 7.264(3)4.0
1.5 4.057(1) 4.331(1) 5.346(2) 6.110(1) 6.207(1)
2.0 3.766(2) 3.873(2) 4.472(2) 5.263(2) 5.428(2)

0.5 13.681(1) 13.722(1) 14.072(1) 15.172(3) 16.722(3)

1.0 5.487(1) 5.607(,1) 6.318(1) 7.417(l) 7.668(3)
3.0 1.5 4.353(1) 4.657(1) 5.496(2) 6.484(2) 6.808(2)

2.0 3.923(2) 4.037(2) 4.700(2) 5.637(2) 5.836(2)

0.5 13.880(1) 13.923(1) 14.278(1) 15.527(3) 17.057(3)
1.0 5.875(1) 6.010(1) 6.823(1) 8.132(1) 8.460(1)

2.0 1.5 4.913(1) 5.265(l) 5.788(2) 6.941(2) 7.334(2)

2.0 4.227(2) 4.352(2) 5.128(2) 6.361(2) 6.630(2)

0.5 14.476(1) 14.520(1) 14.892(1) 16.590(3) 18.060(3)

1.0 6.961(1) 7.132(1) 8.228(1) 10.194(1) 10.698(1)
1.0 1.5 5.920(2) 6.003(2) 6.609(2) 8.264(2) 8.887(2)

2.0 5.095(2) 5.243(2) 6.241(3) 7.691(3) 8.376(3)
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Table 4.4. (Continued)

(d) 81a/D1 1  100

D8 aID
D 02 aD11

D22 b 0 1 10 100 1000

0.5 17.913(1) 17.913(l) 17.921(1) 17.986(1) 18.105(3)

1.0 7.028(1) 7.031(1) 7.054(1) 7.176(1) 7.292(3)
4.0 1.5 5.845(1) 5.857(1) 5.938(1) 6.132(1) 6.207(l)

2.0 5.077(2) 5.084(2) 5.134(2) 5.317(2) 5.429(2)

0.5 18.056(1) 18.057(1) 18.065(1) 18.130(1) 18.261(3)

3.0 1.0 7.388(1) 7.391(1) 7.417(1) 7.552(l) 7.691(1)

1.5 6.456(1) 6.470(1) 6.528(2) 6.656(2) 6.812(2)

2.0 5.412(2) 5.420(2) 5.481(2) 5.702(2) 5.837(2)

0.5 18.343(l) 18.344(1) 18.352(1) 18.419(1) 18.572(3)

1.0 8.097(1) 8.101(l) 8.132(1) 8.295(1) 8.464(1)
2.0 1.5 6.964(2) 6.967(2) 6.994(2) 7.149(2) 7.339(2)

2.0 6.055(2) 6.066(2) 6.149(2) 6.450(2) 6.632(2)

0.5 19.203(1) 19.204(1) 19.212(1) 19.284(1) 19.505(3)

1.0 10.139(1) 10.145(1) 10.194(1) 10.446(1) 10.703(1)
1.5 8.300(2) 8.305(2) 8.348(2) 8.593(2) 8.895(2)

2.0 7.698(3) 7.704(3) 7.752(3) 8.030(3) 8.385(3)
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Table 4.4. (Continued)

(e) a a/D11  1000

82 aIDi 1
D11  a

D2 b 110 100 1000

0.5 18.519(1) 18.519(l) I 18.519(1) 18.S20(1) 18.527(1)

1.0 7.298(1) 7.298(1) 7.298(1) 7.301(1) 7.313(1)
4.0 1.5 6.181(1) 6.181(1) 6.182(1) 6.190(1) 6.210(1)

2.0 5.408(2) 5.408(2) 5.409(2) 5.415(2) 5.435(2)

0.5 18.670(1) 18.670(1) 18.670(1) 18.671(1) 18.678(1)
1.0 7,688(1) 7.688(1) 7.688(1) 7.691(1) 7.705(1)

3.0 1.5 6.814(1) 6.814(2) 6.815(2) 6.817(2) 6.831(2)

2.0 5.812(2) 5.812(2) 5.813(2) 5.820(2) 5.844(2)

0.5 18.972(1) 18.972(1) 18.972(1) 18.972(1) 18.979(1)

2.0 1.0 8.460(1) 8.460(1) 8.460(1) 8.464(1) 8.481(1)
1.5 7.342(2) 7.342(2) 7.342(2) 7.345(2) 7.362(2)
2.0 6.598(2) 6.598(2) 6.599(2) 6.609(2) 6.641(2)

0.5 19.875(1) 19.875(1) 19.875(1) 19.876(1) 19.884(1)

1.0 10.698(1) 10.698(1) 10.698(1) 10.704(1) 10.729(1)
1.C 1.5 8.899(2) 8.899(2) 8.900(2) 8.904(2) 8.932(2)

2.0 8.386(3) 8.386(3) 8.387(3) 8.393(3) 8.428(3)
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Crouzet-Pascal [118] who said they are only valid when all edges are

either simply supported or clamped. The authors did not agree [1191 but

indicated that the accuracy of the results is questionable only when

and 2 differ from each other by two orders of magnitude or more.

103

.............................



CHAPTER V. ANISOTROPIC PLATES

Consider next composite plates whose bifurcation buckling is governed

by the differential equation (see Appendix);

W W •2w 4D1  ~ 4D 1 6  +y 2(D 1 2+2D 6 6)=3y+ D D 3Y

= h(° ý + 2ry----- + ay (5.1)

that is, terms containing D and D2 6 , which involve the bending-twisting
16 26

coupling, are added to Equation 2.1. This is the classical equation for

the buckling of an anisotropic plate. It represents the equilibrium,

small amplitude, buckled mode shape of a symmetrically laminated plate

which otherwise has no special orientation of the fiber directions of

the various plies with respect to each other.

Equation 5.1 also describes an orthotropic plate for which the

principal axes (i.e., orthotropy axes) do not align with the xy-coordinate

system, which is usually taken in the directions of the edges of a rec-

tangular plate. Thus, although the material is orthotropic, the plate

behaves as an anlsotropic one, and will be discussed in this chapter.

As discussed by Jones [16] (see pp. 165-166), another important

case of symmetrically laminated plates gov-.rned by .-. uation 5.1 is the

regular angle-ply laminate having an odd number of plies alternating in

the sequence +0, -e, +0, -0,..., +0. Here the bending-twisting

stiffness coefficients D16 and D26 are largest for the smallest number

of plies (N-3), and become smaller relative to the other coefficients

(D 1, D22, D2, D 66) as N is increased. Thus, for an angle-ply plate

having a large (odd) number of alternating plies, D and D may be
16 26
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quite small. However, as Jones points out, even small D 16 and D2 6 may

cause significantly different results from those cases in which D16 and

D are exactly 7ero.26

In Chapters 2 and 3 it was seen that orthotropic plates having two

opposite sides simply supported, subjected to uniform inplane normal

stresses (rx, ay), had exact solutions for the buckling loads. The

addition of the terms containing D1 6 and D 2 6 makes the exact solution of

problems for plates of finite dimensions impossible (an exceedingly

complex exact 3olution by Wittrick [120] for infinite strips will be

seen later). As it will be seen, results exist for only 4 of the 21

sets of simple boundary conditions (SSSSSCSC,SFSFCCCC).

5.1. SSSS

Consid-r first the SSSS plate loaded either uniaxially or

biaxially (Figures 2.1 and 2.3).

Housner and Stein [65] used a finite difference energy method to

make parametric studies for angle-ply, graphite-epoxy plates having

alternating (+0) plies subjected to uniaxial loading. Individual ply

properties were given by:

E, 145 GN/m 2 (21xlO6 psi)

2/EI 0.1138

G /EI - 0.03095
121

V12. - 0.31

where E and E are the elastic moduli parallel to and transverse lo Lhe

fibers, respectively; G 1 2 is the shear modulus; and v12 is Poisson's

ratio relating contraction normal to the fiber direction to extension

parallel to the fiber direction. With these ply properties, the aspect

ratio and ctiffnesc parameters aB/b and 0, respecLively, fur the entire
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plate related to the plate axes, as defined by Equation 2.40 are as

given in Table 5.1. Numerical results were obtained with the assumption

that D and D are negligible. Variation of the uniaxial compressive
16 26

buckling parameter Nx with fiber orientation (+e) and a/b is seen in

Figure 5.1 for SSSS (as well as CCCC) plates, where Nx is defined by

N b
SX x (5.2)

x E1,hT

Also appearing on the right hand ordinate of the plot is a circle indi-

cating the corresponding value of Nx for an equal weight, isotropic

aluminum plate. It is seen that a range of fiber orientations exists

for which the buckling strength of the graphite-epoxy panels exceeds

that of the comparable aluminum panel with the same aspect ratio and

boundary conditions. A similar plot is shown in Figure 5.2 for SSSS

(and CCCC) plates subjected to shear loading, where the nondimensional

shear buckling parameter Nxy is defined by

N b2
N xy (5.3)
xy E1h

3

In this case Figure 5.2 shows that the buckling strength of the square

graphite-epoxy plate with CCCC edges exceeds that of an aluminum one for

all fiber orientations.

Optimum fiber orientations for alternating angle-ply plates with

SSSS edge conditions are shown in Figures 5.3 and 5.4 for uniaxial and

shear buckling loads, respectively. The compressive buckling cL:ve

(Figure 5.3) is seen to have an optimum fiber orientation of 00 for

small a/b, increasing rapidly for a/b a 0.56, and lying in the vicinity

of 450 for large a/b. In the case of shear buckling (Figure 5.4) the

symmetry of the problem requires that the optimum fiber orientation

angle 0 for a plate of aspect ratio a/b be the complement of the one for

aspect ratio b/a. Thus, Figure 5.4 is plotted onl 1 for a/b . 1.
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Table 5.1. Parameters for graphite-epoxy, angle-ply plates
analyzed by Housner and Stein (Gand B
defined by Equations 2.40.

Fiber angles a
-±e(deg) b

0 3.50 1.722
30 0.511 1.389
45 0.415 1.000

60 0.511 0.720
90 3.50 0.581
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a/b

4 1S - -1

1.1 -. - - .- -% N '
1.25 -" __• N

3 - N _a/b

1// 0
2 2

x 5 gqual weight
".,-- ,•aluminum plates

O Simply supported
o Clamped

AU edges Integer

2 -- - Clamped
Simply supported

0 10 20 30 40 50 60 70 80 90
* a

Figure 5.1. Compressive buckling parameters Nx for graphite-epoxy,
angle-ply plates.
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N 3

2 Equal weight
2 aluminilul Plates-

5 0 Simply suppu ried
21 C: Clamped

22

5 5

5- Simply supported

0 10 20 30 40 50 60 70 80 90

Figure 5.2. Shear buckling parameters Ax for graphite-epoxy,
angle-ply plates,
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Housner and Stein [65] also computed and plotted interaction curves

for the buckling of alternating angle-ply plates subjected to simultaneous

axial compression and shear. Curves for various fiber orientation angles

(±O) for SSSS boundary conditions are depicted in Figure 5.5.

Fogg (32] presented an extensive set of numerical results for the

compression (uniaxial) and shear buckling of SSSS plates fabricated from

T300/5208 graphite-epoxy tape. Results were obtained using a finite

element plate analysis program [121]. Calculations were made for two

families of laminates: (4 5/ 0/- 4 5/ 0N)s and (4 5/ 90 /- 4 5 , 0 N)S, where s

indicates that the plate is symmetric, having twice the number of plies

shown in parentheses, and N indicates the number of 00 plies immediately

adjacent to the midplane on each side. Each ply was 0.005 in thick.

For example, the (4 5/ 0/- 4 5 / 0 )S laminate consists of eight plies,

arranged 450, 00, -450, 00, 00, -450, 00, 450, and a total thickness of

0.04 in and a bending stiffness in the x-direction of D11 - 53.795 lb-in.

A similar laminate having twice as many plies would have D -

53.795x(2) 3 - 430.36 lb-in. Laminate orientations, thicknesses and

bending stiffnesses of the various anisotropic plates studied are

summarized in Table 5.2.

Numerical results for the buckling stress resultants (N) in lb/in

for the plates described by Table 5.2 are presented in Table 5.3, along

with the complete plate dimensions. The width (b) was taken to be 20

times the thickness ( h) in each case. Lengths (a) were set to result

in one, two or three half-wave buckles in the mode shape. To evaluate

the effect of the D and D terms on the buckling loads, the buckling
16 26

loads of orthotropic plates (D - D2 6 e 0) of infinite length were also
16 2

computed. These plates are thus designated either OA" or "0* in the

second column of results, and the ratio of the anisotropic to the

orthotropic buckling loads (NA/NO) is also given.

Least squares curve fitting techniques were used to obtain the

following empirical formulas for NA/NO for the case of uniaxial loading
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Table 5.2. Anisotropic laminates analyzed by Fogg

LAMINATE h 01 012 016 =026 '022 055 221 !i.

ORIENTATION IN LB-N LB-IN LB4N L84N LB4N \011/

(45/0145)1 .03 21.203 7.717 6.373 11.305 8.563 .8545

(451/48/OllS .035 U.633 14.801 5.311 20.860 18.135 .348'

145t0/-4510) .035 34.978 11.840 8.498 17.478 12.167 .8408

(4540/45/0)s .04 53.795 17.171 10.622 25.516 19.151 .3299

(4510/45t0z1s .05 111.23 31.584 14.871 47.804 35.446 .8088

(51401.45i03)1 .06 202.84 51.208 19.120 78.411 57.874 .7885

I4510/451051s .08 525.37 107.10 27.618 169.55 122.87 .7535

(W1901.45) .03 11.,8 7.712 6.373 22.368 8.553 1.1865

(4.r90/-45/0)s .035 17.622 11.830 8.488 38.838 13.167 1.21024

(4510/-45/90)s (CU .04 5-2379 17.170 10.622 27.096 19.151 .843,1

(45i90i-4Si01 10. .04 26-U73 17.156 10.622 55.543 19.151 1.1881

(45i301-4510 2s .05 58.818 31.555 14.871 106.08 35.448 1.1589

(45/80/-451038) .06 116.43 51.159 19.120 174.82 57.874 1.1070

(45180-46101)t .08 345.•6 107.00 27.618 37016 122.87 1.0171

Maiuil Is T30015201 Taoa
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only [32]:

N A fD 16) 9

NO 5.)585 for A=j (5.4a)

,'!D 6 2. 135

= for A=2 (5.4b)

D 16 2.117
- 1 9 . 7 6 6 ;i for X=3 (5.4c)

where D• (D1 1 D32 ) 1/L+ (D2+2D6 6 ) (5.5)

When the data of Table 5.3 are compared against these curves, most of

the values fall within one percent of the curves, with the maximum error

being four percent.

Studying Equations 5.4 and 5.5, and Tables 5.2 and 5.3, effects of

the bending-twiating coupling coefficient D16 (and D2 6 ) in changing the

buckling loads from those of orthotropic analysis may be seen typically

as follows:

1. The buckling loads are always decreased.

2. In the case of uniaxial compression longer plates (larger X)
always have larger decreases.

3. Shear buckling loads are more greatly decreased than those due

to uniaxial compression.

Mandell [34,35] conducted an experimental investigation of uni-

axial buckling loads for graphite-epoxy and boron-epoxy, angle-ply

plates. A description of the plates tested is given in Table 5.4.

Plate identification numbers given are those used in [34,35]. A ply

layup 4(±60) would indicate a stacking sequence with respect to the load

direction (600, -600, -600, 600), 5(+45) would describe the sequence

(450, -450, 450, -450, 450) and 20(30) means that 20 plies are all with
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Table 5.4. Description of anisotropic plates tested by

Mandell

Plate Material % Fiber Layup of Dimensions
no. by volume plies (in)

203a Thornel-25 40,0 9(t45) lOx lOx 0.116
203b o If "

208 Thornel-40 60.0 (0,45,45,45,0) 10 x 10 x 0.038
401 Boron 48.2 20(-60) 11 x ii x O.ilo
402 " " 20(±30) 14 x 1! x 0.110
"403a " 57.0 20(±45) 11 x l1j x 0.110
403b " "
406 " 51.7 20(30) llx llx 0.106
407 " 20(60) "
408a " 58.6 20(45) 11 x 1' x 0.095
408b ... 20(-45)

Table 5.5. Bending stiffnesses (lh.i) for Mandell's anisotropic
plates

Plate I D D D D D D
1 ,I 12 16 22 26 66

203 455 326 -100 455 -100 349
208 10.7 6,77 -5.75 94.2 -5.75 8.50
401 480 655 44.6 1943 145 666
402 1943 655 145 480 44.6 666
403 970 782 97.3 970 97.3 799
406 1870 631 923 481 298 644
407 481 631 298 1870 923 644
408 839 671 551 839 551 686

1
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I

Table 5. 6. Stretching stiffnesses (103 lb/in) for Mandell's
anisotropic plates

4

Plate A A A I A A A
11 12 16 22 26 66

I203 405.4 290.1. -30.02 405.4 -30.02 310.4
208 532.*3 136.8 -132.8 178.3 -132.8 151.2
401 476 649 0 1926 0 661
402 1296 649 0 476 0 661
403 1141 921 0 1141 0 940
406 1996 t673 986 513, 299 688

1

407 513 673 299 1996 986 688
408j 1115 893 732 1115 732 912
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Table 5.7. Uniaxial buckling loads
(-Nx, lb/in) for Mandell's

SSSS anisotropic plates

Plateno. Experimental Theoretical

203 313 292
(283)

208 13.8 12.7
401 661 636

600*
666**

402 642 648
616*
665**

4 03a 582 642
682*
664**

403b 602 642
682*
664**

406 399 5,5
425*
449**

407 433 589
381*
417**

4 08a 356 566
406*
412**

408b 372 566
406*
412**

* obtained by the Galerkin method
** obtained by the Ritz method
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fibers oriented at 300 with respect to the loading axis. Bending

stiffnesses for the plates are given in Table 5.5. The anisotropic

character of the plates in bending is clearly seen (D and D are not
16 26

zero). The stretching stiffnesses are listed in Table 5.6. Although

the plates are symmetrically laminated, and therefore the stretching

stiffnesses do not couple with the buckling problem, the latter table is

presented to show that some of the plates are orthotropic in stretching

(A16 and A26 are zero), even though they are anisotropic in bending.

More information on these tests is found in Section 2.1.

Table 5.7 lists the experimental buckling loads for the plates

described in Table 5.4. Also given are theoretical values obtained by

three methods, using the bending stiffness data found in Table 5.5. The

first method ignores the D16 and D26 terms, and uses Equation 2.9 for an

orthotropic plate. The second and third methods utilize Galerkin and

Ritz formulations, as applied by Chamis [411 and Ashton [42], re-

spectively. Plates 20:, 403 and 408 are each listed twice. The two

cases (denoted "a" and "b") identify uniaxial loadings in two perpen-

dicular directions. For these plates, different experimental results

were found, although the theoretical results are identical for each

loading direction. It is interesting to note, contrary to the results

of Fogg (32] presented earlier in Table 5.3, addition of D16 and D2 6

terms to the analysis does not necessarily decrease the theoretical

buckling loads shown in Table 5.7.

Chamis (43,44] used the Galerkin method to analyze the buckling of

858 anisotropic plates subjected to combinations of compression and

shear loading. Two sets of problems were treated. The first set

consisted of plates having the fibers all parallel, making an angle 0

with respect to the x-axis. The second set were angle-ply plates,

having alternating plies at +0 fiber angles. Specifically, the plates

were comprised of 20 plies, the top 10 being ±0, and the bottom 10 being

;e, to preserve symmetry. Bending stiffnesees for the first set are
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displayed in Table 5.8, computed using the ply material properties

listed in Table 2.7. Critical buckling loads for various loading

conditions and sizes of plates for the first set of problems are given

in Table 5.9. Stiffnesses and buckling loads for the second set are set

forth in Table 5.10 and 5.11. Corresponding results for the same plates

having 0 - 0 and 900 were given previously in Table 2.9. Comparing

Tables 5.8 and 5.10, one observes that the only significant differences

between the bending stiffnesses of the two sets of plates is in the

bending-twisting coupling terms D16 and D . Additional discussion of
16 26

the solution procedure may be found in Section 2.4.

Considerable interest has existed in the optimization of fiber

orientation to obtain the largest value of critical load. Some work in

this direction has already been seen in Figures 5.3 and 5.4. An

extensive study for SSSS plates subjected to uniaxial compression (ox

- constant, a y - txy - 0) was undertaken by Crouzet-Pascal [12d] using a

finite element method. Three types of laminates were considered, having

"severe, medium or mild" orthotropy with respect to the principal

material axes of the plate, which in turn are oriented at an angle 0

with respect to the sides of the plate. The three types are described

by the laminate material properties listed in Table 5.12, where L and T

are principal material axes. For 0 - 00, then EL - Ex, ET - Ey, etc.

The plate having severe orthotropy consisted of 50 graphite-epoxy plies,

all having parallel fibers. Medium orthotropy corresponds to 20 glass-

epoxy plies, with parallel fibers, Mild orthotropy stemmed from the

reorientation of the layers of the severe orthotropy case, with 14, 14,

14 and 8 layers oriented at 00, +450, -450 and 900, respec-'vely

relative to the principal material axis.

Optimum material axis orientation versus plate aspect ratio for

the laminate having medium orthotropy is shown in Figure 5.6. Results

obtained [122] are compared with those of Chao, Koh and Suri [123] for
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Table 5.8. Bending stiffnesses (lb.in) for Chamis' parallel-
fiber anisotropic plates

Fiber
angle D 1 D12 D16 D22 D26 D66
e(deg)

15 2143 172.9 531.4 148.5 44.4 205.3
30 1440 454.0 742.1 228.0 255.1 486.5
45 724.1 594.6 575.8 724.1 575.8 627.0
60 228.0 454.2 255.1 1440 742.1 486.5
75 148.5 172.9 44.4 2143 531.4 205.3
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Table 5.9. Buckling loads Ncr(lb/in) for Chamis' SSSS parallel fiber
anisotropic plates

Plate Loading condition Buckling load, Nr
dimensions N N N -'

(in) x _ 'y e=15' e=3o* e=450 e=600 6=75 6
N N N
cr cr cr

5.OxlO.0 -1 0 0 949 813 620 403 219
"0 -1 0 847 1306 1506 1407 876

"-1 -1 0 623 648 495 322 175
""- 0 1 838 661 456 315 193

"0 -1 1 645 718 635 518 446 I
"-1 -1 1 494 510 374 249 159

" -0.001 0 1 1458* 1238* 980* 808* 667*

10.OxlO.O -1 0 0 328 417 425 344 213
"0 -1 0 213 344 425 417 328

"-i -1 0 164 208 218 208 164
"-1 0 1 233 223 205 197 164
"0 -1 1 165 197 205 223 233

"-1 -1 1 136 146 145 146 136

"-0.001 0 1 418* 382* 391* 385* 412* ,

"-1 -0.75 0 187 236 225 237 178
"-1 --0.50 0 218 276 262 277 188
"-1. -0.25 0 262 331 312 322 200 I

"-1 0.25 0 436 552 488 353 221
"-1 0.50 0 654 827 554 386 239

" -1 1.00 0 1223 970 696 465 280

"-1 -0.50 0.25 209 232 229 240 179

" -1 0.50 0.25 563 570 438 342 225
"-1 -0.50 0.50 196 207 200 213 169
"-1 0.50 0.50 469 431 348 294 209

20.OxlO.0 -1 0 0 219 351 377 327 212

"0 -1 0 55 101 155 203 237
"-1 -1 0 44 81 124 162 156
"-1 0 1 112 135 159 180 175

"0 -1 1 48 79 114 165 209

"-1 -1 1 40 66 94 128 123
"-0.001 0 1 167* 204* 246* 306* 360*

4 0.0xi0.0 -1 0 0 216 336 417 392 268
" 0 -1 0 22 45 91 157 210

"-1 -1 0 21 42 86 147 163
"-1 0 1 90 126 183 238 239

"0 -1 1 22 42 85 149 210

"-1 -1 1 21 40 80 139 139

"-0.001 0 1 127* 168* 253* 371* 505*

* values lacking convergence
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Table 5.10. Bending stiffnesses (lb.in) for Chamis' angle-
ply plates

Fiber
angle DII D12 D16  D22 D2 6  D6 6

±8(deg)

15 2141 172.7 79.6 148.5 6.7 205.1
30 1439 453.6 111.2 288.6 38.2 486.0
45 723.4 594.0 86.3 723.4 86.3 626.4
60 288.6 453.6 38.2 i 1439 111.2 486.0
75 148.4 172.7 6.7 2141 79.6 205.1
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Table 5.11. Buckling loads N cr(lb/in) for Chamis' SSSS angle-ply plates

Plate Loading condition Buckling load, N

dimensions N N N
(in) __a_ xy e-+15* 6=-±30' 6=-+45° e=_+60° 8=t75"

Nr cr crI

5.OxlO.0 -1 0 0 963 854 665 429 226
" 0 -1 0 901 1622 2016 1716 904

"-1 -1 0 669 683 532 343 181
"-1 0 1 905 798 621 401 213

"0 -1 1 786 1271 1402 1054 577
"-1 -1 1 601 650 506 327 173
"-0.001 0 1 2290 2823 2571 1772 995

10.Ox10.0 -1 0 0 340 450 505 428 226
" 0 -1 0 226 428 505 450 340
" -1 -1 0 170 225 252 225 170
" -1 0 1 283 370 414 363 20]
" 0 -1 1 201 363 414 370 283
" -1 -. 1 159 210 235 210 159
" -0.001 0 1 671 914 1038 914 671

"-1 -0.75 0 195 258 289 258 190
" -1 -0.50 0 227 301 338 301 201

"-1 -0.25 0 273 361 405 361 213

"-1 0.25 0 454 602 675 458 241
"-1 0.50 0 681 902 761 491 259
"-1 1.00 0 1284 1140 888 573 302
"-1 -0.50 0.25 225 299 334 298 199
"-1 0.50 0.25 647 849 741 482 255
"-1 -0.50 0.50 221 292 328 292 106
"-1 0.50 0.50 579 755 702 464 249

20.OxlO.O -1 0 0 226 429 504 405 225
" 0 -1 0 56 107 166 213 241
" " -1 -1 0 45 86 133 171 167
" -1 0 1 144 263 351 318 196
" 0 -1 1 53 100 155 200 226
" -1 -1 1 43 82 127 163 150

"-0.001 0 1 249 443 643 706 591
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two values of a/b. For a/b a 1, both analyses gave the same result.

For a/b - 2.5 they differed by approximately two percent. The variation
of critical stress with material axis orientation (0) is depicted in

Figure 5.7 for the two cases of a/b - 1 and 2.5 described above. There

a indicates the number of half-waves of the buckling mode in the load
direction. Transverse to the load the mode shape has one half-wave.

The node lines of the mode shapes have been found to rotate with the

material axes, and remain approximately normal to the stiffer material
axis over the whole range of orientation [42). The results of similar
studies 1122] for the plates having mild and severe orthotropy are seen

in Figures 5.8 through 5.10.

A number of other optimization studies have been made for SSSS
anisotropic plates 128,34,68,101,124-135). Optimization under biaxial
loading conditions was treated by Bert and Chen [125] and by Lukoshevichyus

(131]. Biaxial loading combined with shear was dealt with by Schmit and

Parshi [133].

The case of the infinitely long anisotropic plate simply supported

along its two edges (y = 0,b) and subjected to combined longitudinal

(ox), transverse (ay), shear (Txy) and inplane bending (see Equation

2.43) was analyzed by Wittrick 11203. Critical values of the parameter

KL are given in Table 5.13 as the parameters .J2 and Ks are varied, for

the case of no bending stress. The parameters are defined as follows:

-a hb2

2 - 2R K + R2[(I+R 2 2-R (5.6a)
ZD22 3R23 s 15 2-

T hb2
Ks -- Q•D 2 2 + 2f-2 (R 2 3+R• 3 -R1 3)

3 (.6b)
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Table 5.12. Principal axis material properties of plates
analyzed by Crouzet-Pascal

Type of EXlO-6  Zx10-6 GLTx10-6 VLT
plate (psi) (psi) (psi)

Severe orthotropy 18.5 1.6 0.65 0.25
Medium orthotropy 7.8 2.6 1.25 0.25
Mild orthotropy 7.64 5.87 3.00 0.409
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02 Q (!1 (5.6c)

where

D! 
.-1 2 -3/2 R2 3  ( - 1/2

E2 22)

L /D262 A2a h

2 22 2TrzD 22

with A being the longitudinal half-wavelength and o x and 0 y taken

positive in tension, as elsewhere in the present work. The infinite

strip having its principal material axis oriented at 450 with respect to

the simply supported sides, subjected to uniaxial compression or shear,

was also treated by Thielemann [136,137].

In addition to those references listed previously in this section,

many others are available which consider the buckling of 8SSS ani-

sotropic plates [14,26,45,101,138-149], most of them dealing with

uniaxial loading conditions only. Sarkisyan and Movsisyan [144]

demonstrated how the perturbation method may be used, whe:e, the zeroeth

ordeE perturbation ia the orthotropic plate. Therefore, for small D1 6

and D26, the first order perturbation will be an accurate representation
of an anisotropic plate. Whitney [147,148] demonstrated the rapid

convergence of the series method for anisotropic problems. Ashton and

Waddoups [138] showed that the buckling load of a 1450 angle-ply plate

may either decreaso or increase when loaded in shear, depending upon

whether Txy is positive or negative, respectively.

5.2. SCSC

Ashton and Love [112] conducted a set of experimental tests on
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Table 5.13. Critical values of KL for buckling of a simply supported,
infinite strip subjected to qx, oy and Oxy

SKS2 0 5 10 15 20 25 30 35

E22 - 0.2 7.200 6.305 5.417 4.537 3.665 2.798 1.939 1.086
0.3 5.633 4.771 3.919 3.077 2.243 1.418 0.601 -0.208
0.4 4.900 4.069 3.249 2.440 1.641 0.852 0.072 -0.700
0.5 4.500 3.697 2.906 2.128 1.360 0.602 -0.145 -0.884
0.6 4.267 3.490 2.726 1.975 1.236 0.507 -0.212 -0.922
0.7 4.129 3.376 2.638 1.912 1.198 0.495 -0.198 -0.882
0.8 4.050 3.321 2.605 1.903 1.212 0.533 -0.137 -0.797
0.9 4.011 3.303 2.610 1.929 1.260 0.601 -0.047 -0.685
1.0 4.000 3.312 2.639 1.978 1.329 0.691 0.062 -0.557
1.2 4.033 3.383 2.746 2.122 1.508 0.906 0.312 -0.272
1.4 4.114 3.497 2.893 2.300 1.719 1.147 0.584 0.030
1.6 4.225 3.638 3.062 2.498 1.945 1.400 0.865 0.337
1.8 4.356 3.795 3.246 2.708 2.179 1.659 i.14& 0.643
2.0 4.500 3.964 3.439 2.924 2.418 1.920 1.430 0.947
2.2 4.655 4.141 3.638 3.144 2.659 2.181 1.710 1.247
2.4 4.817 4.324 3.841 3.366 2.899 2.440 1.987 1.541
2.6 4.985 4.511 4.046 3.589 3.140 2.697 2.261 1.831
2.8 5.157 4.701 4.253 3.813 3.379 2.952 2.531 2.116
3.0 5.333 4.893 4.461 4.036 3.618 3.205 2.798 2.397
3.4 5.694 5.284 4.880 4.482 4.090 3.704 3.322 2.945

3.8 6.063 5.678 5.299 4.925 4.557 4.193 3.834 3.478
4.2 6.438 6.076 5.718 5.366 5.018 4.674 4.334 3.998
4.6 6.817 6.475 6.137 5.804 5.474 5.148 4.826 4.507
5.0 7.200 6.876 6.555 6.239 5.925 5.616 5.309 5.005
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SCSC plates loaded uniaxially, where the clamped edges were loaded and

the simply supported edges were unloaded (gy a constant, ax - -xy 0).

A total of 20 boron-epoxy laminates were evaluated. Layers of epoxy-

bonded boron fibers (Narmco 5505 prepreged type) were combined in direc-

tions located with reference to a 00 axis of plate symmetry as indicated

in Table 5.14. Material properties of typical plies were: E, - 3lxlO6psi,

E2 2.7xl06psi, G 0.75xlO6pei, V - 0.28. Nineteen of the twenty
2 12 12

plates were symmetrically laminated (Plate 2 was unsymmetric). Plates U
1, 3, 4 and 20 had principal material axes aligned with the plate edges

(i.e., orthotropic), the others behaved as anisotropic plates. Plate 11

had 12 plies, plates 15 and 16 had 16 plies, and the others all had 20

plies. Thicknesses varied no more than two percent throughout the

plates. Plate dimensions were lOxlO inches within the loading frame,

except for plate 11, which measured lOx5 inches. Plate edges had layers

of Teflon tape attached to reduce undesirable, secondary inplane forces

due to friction, which was found to be very important -- without it, the

induced stress resultant Ny was as much as 50 percent of the applied

stress resultant, causing buckling loads to be reduced by one-fourth to

one-third. The presence of induced secondary stresses was observed by

strain gages.

Critical buckling loads were determined by the Southwell

method [40]. These are listed in Table 5.15 [112]. Two tests were

conducted for each plate. The first test had the zero degree material

reference axis aligned with the load. Then each plate (except number

11) was rotated 900 and the tests were repeated. Results from both sets

of tests are seen in Table 5.15. Further details about the testing

procedure and observations may be obtained from [1121.

Sandorff [150] and Baharlou [101] studied a set of SCSC plates

with uniaxial load applied to the clamped edges (ay - constant,
ax 1 'xy - 0). The plates were made of graphite-epoxy, with individual
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Table 5.15. Experimental uniaxial buckling loads (ib) for
SCSC plates corresponding to Table 5.14.

1 Load orientation
Plate

no. 00 900

1 11,300 9,600
2 5,400 5,610
3 9,500 9,000
4 7,400 7,200
5 12,400 4,350
6 5,600 6,100
7 4,650 5,600
8 8,600 8,400
9 9,900 9,600

10 8,950 5,200
11 3,650 -

12 14,700 7,550
13 12,700 7,600
14 12,650 7,750
15 6,100 5,100
16 5,400 4,800
17 14,200 5,400
18 13,200 5,900
19 7,700 4,760
20 13,700 4,200
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Table 5.16. Unixial buckling stress resultants -NY (lb/in) for
SCSC anisotropic plates (y - constant, x = T xy = 0).

Dimensions Experimental Theoretical results
a x b results Sandorff Baharlou
(in) [150] [150] [lO13

4530
3.003x9.625 4290 5185 5070

5910
2.503x9.625 5740 7249 7004

8140 1 6

2.003x9.625 8360 10,760 10,460

145

•'_ . ."-, - - • "• " "' ",,• " . -•-• -'-- •-•-- t. •° ?•-• •' -•-"• ' ",• •• • ' " '



22

6.4

plies having the following properties: E• - 19.0xlO5psi, E2  l 15x10 psi,

G - 0.8OxlO6psi, v - 0.30. The laminate orientation was (0/45/0/0/-
12

45/0) 2S. The plates all had the same length in the loaded direction

(b = 9.625 in) and the same thickness (h = 0.1232 in). Three plate

widths were considered (a - 3.003, 2.503, 2.003 in). Buckling stress

resultants (lb/in) for the three plates are given in Table 5.16. It is

seen that as the width of the plate (a) is decreased from 3.003 in to

2.003 in, the difference between the two sets of theoretical results and

the experimental data becomes quite significant.

Several other publications dealing with the buckling of SCSC

anisotropic plates have appeared [26,151-153].

5.3. SFSF

In Table 5.17 are listed the experimental buckling loads obtained

by Mandell [34,35] for SFSP anisotropic plates having the simply sup-

ported edges subjected to uniaxial loading. The plates are those

described previously in Section 5.1 (Tables 5.4-5.6). Theoretical

results in all cases were calculated on the assumption that the plate

bends as a simply supported beam having no transverse curvature or twist

(see description of analysis in Section 3.6). Theoretical results

obtained by the Ritz method developed by Ashton 142] are also given for

several of the plates in Table 5.17.

5.4. CCCC

Ashton [42] investigated the effect of varying 0 upon the uniaxial

(cx constant, uy = Txy a 0) buckling loads of parallel fiber composite

plates, as the angle (0) between the principal material axes and the

plate edges is varied. The Ritz method was used, with assumed displace-

ments taken as the product of vibrating beam functions. The material
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Table 5.17, Uniaxial buckling ioads
(-N , lb/in) for Mand-ll's

x
SFSF aatsotropic plates

Plate

Exper imental The2oreticalno.

203a 33.8 44.9

203b 34.7 44.9

208 8.27 9.30

401 30.3 37.8
3,.3

402 137 161
150*1:

141-3a 53 70. 6
60 .8**

403b 45 170.6

160.8**
406 89 150

407 30.1 35.1
30.0**

4 0 8 a 41.6 79.6

408b3'.?51.8"**408b 34.2 70.6
5!.8*

** obtained by the Ritz method

14"/L 'U ,:. . .- - - - .- - :;: .: . .• • •



properties taken in the direction of principal axes were: EL/ET = 10,

GLT/ET = 0.25, vLT = 0.3. Numerical results for the nondimensional

buckling parameter -(7xhb 2/D• are shown in Table 5.18 for a/b = 1 and 2,

and for a variation of e between zero and ninety degrees. Results are

also given for an "orthotropic solution" for a/b - 1, wherein the Di 6

and D bending stiffnessea are omitted. The results for the square25

plate are also plotted in Figure 5.11. It is seen that neglect of the

D and D terms yields results which are considerably too high for e16 26
in the vicinity of 450. The orthotropic analysis also corresponds to an

angle-ply plate having an infinite number of plies alternating at +Q,
and practical laminates will yield results which fall between the two

curves of Figure 5.11. The node lines (lines of zero displacement) for

the critical mode shapes are shown in Figure 5.12. For orthotropic

plates, these lines are parallel to (or nearly parallel to) the edges,

but for anisotropic plates they are not.

Experimental results for the buckling of uniaxially loaded CCCC

plates were obtained by Ashton and Love [112]. These are given in Table

5.19. For information concerning the plates tested, see Table 5.14 and

Section 5.1.

Uniaxial and shear buckling parameters Nx and Nxy for aogle-piy,

graphite-apoxy plates having CCCC edges, as obtained by Housner and

Stein [65] were presented in Figures 5.1 and 5.2, respectively. Optimum

fiber orientations for such plates and loadings may be seen in Figures

5.13 and 5.14, which may be compared with similar curves for S555 plates

which appeared as Figures 5.3 and 5.4. Interaction curves for buckling

due to simultaneous axial com lion and shear are seen in Figure 5.15.

Nx and Nxy are defined by Equations 5.1 and 5.2, respectively.

The buckling of CCCC anisotropic plates subjected to uniaxial

compressive loads was also studied by Ashton and Waddoups [ 138J, using
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Table 5.18. Critical buckling loads (-Oxhb 2 /Dq4 ) for parallel-fiber
CCCC anisotropic plates.

Principal material axis orientation, e (degrees)A

b 0 15 26.6 30 45 60 75 90

1 45.20 39.47 - 29.94 25.35 23.69 21.39 19.65
45.20* 44.72* - 43.51* 42.26* 35.37* 24.16* 19.65*

2 25.53 25.19 22.00 - 20.08 18.50 17.75 17.35

* Values from orthotropic analysis (setting D1 6 = D2 6 0).

149
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Table 5.19. Experimental uniaxial buckling loads (ib) for
CCCC plates corresponding to Table 5.14. ¾

Load orientation
Plate

no. 00 900

1 15,500 15,200
2 6,150 6,560
3 13,900 12,200
4 10,300 10,200
5 12,000 4,900
6 6,840 7,150
7 5,800 6,100
8 10,700 10,100
9 12,100 11,700

10 9,800 8,200
11 4,550 -
12 17,600 10,600
13 13,600 9,500
14 13,900 9,800
15 6,950 6,250
16 6,850 6,600
17 15,400 6,700
18 15,.00 7,350
19 8,700 6,500
20 14,900 5,880
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Figure 5.11. Comparison of anisotropic and Orthotropic solutions foruniaxial buckling of a parallel-fiber CCCC plate.
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Figure 5.12. Node lines for the buckled anisotropic CCCC plates

corresponding to Table 5.18.
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the Ritz method with beam functions, and by Green and Hearmon [26] and

Whitney [154,155], using a series (or superposition) method with

trigonometric functions. Fraser and Miller [156,157] analyzed these

problems for uniaxial compression and shear loading by means of the Ritz

method with trigonometric functions and Lagrange multipliers.

The case of the infinitely long anisotropic plate clamped along

its two edges (y = 0,b) and subjected to combined longitudinal (ax),

transverse (ay). shear (Txy) and inplane bending (see Equation 2.43) was

analyzed by Wittrick [120]. Critical values of the parameter KL are

given in Table 5.20 as the parameters S12 and Ks2 are varied, for the case

of no bending stress. The parameters are defined in Equations 5.6. The

infinite strip having its principal material axis oriented at 450 with

respect to the clamped sides, subjected to uniaxial compression or

shear, was also treated by Thielemann [136,137].

5.5. ELASTIC EDGE CONSTRAINTS

Symmetrically laminated angle-ply plates having all their edges

elastically restrained against rotation were analyzed by Housner and
A

Stein [65]. Uniaxial compression and shear buckling parameters Nx and

Ny, as defined by Equations 5.1 and 5.2 are plotted in Figures 5.16

through 5.2i, respectively. The rotational spring constant kr used in
the abscissas relates the rotational moment to the change in slope at

each edge by

S=k
n r Tn (5.7)

where n is the direction of the normal to the edge. The springs are

uniformly distributed along all four edges. The other edge condition is

w = 0. Thus, kr 0 and correspond to SSSS and CCCC plates, respec-

tively.
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Table 5.20. Critical values of KL for buckling of a clamped, infinite
strip with KB=O.

Ks2 0 I0 20 30 40 50 60 70 80 90

0.2 28.381 27.103 25.832 24.567 23.309 22.058 20.812 19.573 18.340 17.113
0.3 19.914 18.666 17.427 16.198 14.978 13.766 12.563 11.367 10.180 9.000
0.4 15.728 14.509 13.302 12.106 10.920 9.745 8.579 7.423 6.276 5.138
0.5 13.256 12.065 10.887 9.721 8.568 7.426 6.295 5.175 4.064 2.964
0.6 11.641 10.476 9.325 8.189 7.065 5.954 4.855 3.768 2.691 1.624
0.7 10.514 9.375 8.251 7.141 6.046 4.964 3.894 2.837 1.790 0.754
0.8 9.694 8.579 7.479 6.396 5.327 4.272 3.230 2.200 1.181 0.174
0.9 9.078 7.985 6.910 5.851 4.801 3.777 2.760 1.756 0.764 -0.217
1.0 8.604 7.534 6.482 5.445 4.425 3.419 2.426 1.446 0.478 -0.479
1.2 7.943 6.915 5.904 4.911 3.934 2.971 2.022 1.086 (1.162 -0.751
1.4 7.527 6.537 5.565 4.611 3.673 2.749 1.839 0.942 0.057 -0.817
1.6 7.263 6.309 5.374 4.455 3.552 2.664 1.789 0.927 0.077 -0.763
1.8 7.102 6.181 5.279 4.393 3.523 2.667 1.824 0.994 0.175 -0.634
2.0 7.012 6.123 5.251 4.396 3.556 2.729 1.916 1.114 0.324 -0.456
2.2 6.975 6.114 5.271 4.444 3.632 2.833 2.046 1.271 0.507 -0.24"
2.4 6.976 6.143 5.326 4.526 3.739 2.965 2.204 1.453 0.713 -0.017

2.6 7.007 6.200 5.409 4.632 3.870 3.120 2.381 1.654 0.936 0.228
2.8 7.062 6.279 5.511 4.758 4.018 3.290 2.573 1.867 1.170 0.482
3.0 7.136 6.376 5.630 4.899 4.180 3.472 2.776 2.089 1.412 0.743
3.4 7.328 6.609 5.904 5.212 4.531 3.862 3.202 2.552 1.910 1.276
3.8 7.562 6.881 6.212 5.556 4.910 4.273 3.647 3.028 2.418 1.815
4.2 7.827 7.180 6.544 5.919 5.304 4.698 4.101 3.511 2.929 2.354
4.6 8.115 7.498 6.892 6.296 5.709 5.130 4.560 3,996 3.440 2.889
5.0 8.420 7.831 7.252 6.682 6.121 5.567 5.021 4.481 3.947 3.420
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CHAPTER VI. UNGYMMETRIC LAMINATES

In general, laminated composite plates will be fabricated with ply

arrangements which are not necessarily symnmetrical with respect to the

midplane of the plate. This situation may arise either in a general

stacking sequence, or in certain special ones. An example of the latter

configuration is the cross-ply plate having an even number of equal thick-

ness plies, which is an antisymmetrical laminate. Examples of symmetrical,

antisynmietrical and more generally unsymmetrical cross-ply layups are

shown in Figure 6.1 [158]. The adjective "regular" denotes equal thick-

ness plies.

The equations governing the bifurcation buckling of an unsymmetrical

laminate are derived in the Appendix, and may be expressed in terms of

the displacemen' in matrix operator form as

L11 L1 2  L13 0

21 22 23 (6.1)
L 3 L (L -F
3 32 33

where the Lij are differential operators representing the plate stiffness,

defined in the Appendix by Equations A.21; F is a differential operator

representing the inplane stress resultants (Nx, Ny# Nxy), defined by

Equation A.22; u and v are inplane displacements of the midplane during

buckling in the x and y directions; and w is the transverse displacement.

It is important to note tnat u and v are not the inplane displacements

which occur with 4.ncreasing inplane stress resultants, but rather the

additional displacements which arise when the buckling load is reached

and the plate is deformed in a buckled mode shape of infinitesimal ampli-

tude. These additional inplane displacements characterize the bending-

stretching coupling which exists in the deformation of an unsymmetrical

Lamir.ate. In Equation 6.1 the bending-atretching coupling is induced by
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the operators L (=L ) and L3(-L2), which vanish only when the Bij
13 31 23 32

bending-stretching stiffness coefficients (see Equation A.8) are all

zero. Then the plate buckling problem reduces to (L -F)w = 0, which is
33

Equation 5.1 previously given for the anisotropic plate.

Equations 6.1 are an eighth order set of differential tions

which closely resemble the form of shell buckling equatio --h are

also of eighth order. (Indeed, the coupling between bending and stretch-

ing is what links together the two sets of fourth order equations which

would otherwise exist for a shell.) Since the equations are of eighth

order, four boundary conditions must be specified along each edge to

define the problem physically, and to generate a proper mathematical

eigenvalue problem.

The first satisfactory theory incorporating bending-stretching

effects into the deformations of laminated plates was developed by Reissner

and Stavsky 120,159]. This was done for the special case of an antisym-

mecrical, angle-ply plate, for which B B B B 0, which
11 12 22 66

leaves B and B terms to cause the coupling. Governing equations for
16 26

the buckling equilibrium position were expressed in terms of w and an

Airy stress function (f). Transverse equilibriun and inplane compati-

bility conditions were then used to generate an eighth order set of

equations equivalent to those of Equations A.32 and A.33.

Existence of the bending-stretching coupling in unsymmetrical

laminates was questioned (c.f., [159,160]) at the time of the

development of the new theory more than two decades ago. But, since

then, the effects have been demonstrated and quantified, both

theoretically and experimentally. The primary effect is to decrease the

stiffntess of a platel therefore, in the case of buckling, critical loads

-. d are reduced. As it will be subsequently seen, the effect is strongest

When. on~ly~' --mall.~ num!cr of pl.e1 is .ied, 611d deCLeaues as the number

increases.
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An approximate theory was suggested by Chamis 143] and Ashton [162]

for simplifying problems involving unsymmetrical laminates. It replaces

the eighth order set of Equations 6.1 by that of anisotropic plate theory,

Equation 5.1, where the bending stiffness coefficients Dij are replaced

by the "reduced bending stiffness" coefficients Df as given by the last

of Equations A.31. The boundary conditions are also reduced in number
from four to two, and the resulting solutions are independent of the

degree of inplane constraint. Comparisons of results obtained using the

"reduced stiffness" versus ones using the complete stiffness matrix show

"*' varying degrees of agreement [14,34,162-164] indicating that the approxi-
mate theory is not accurate for all problems.

6.1. SSSS

For an unsymmetrically laminated plate, the meaning of a "simply

supported" edge is not clear. Assuming that, as in classical plate theory,

the edge must have zero transverse displacement and bending moment, there

remain yet four possible combinations of "simple" (i.e., not elastically
restrained) boundary conditions, depending upon the inplane constraints,

viz.

Sl : w = Mn = un = ut - 0

S2 w = Mn = Nn = ut 0 (6.2)

S3 w = Mn = un - Nnt - 0

S4 w = Mn = Nn = Nnt = 0

where n and t are used to designate directions normal and tangent to a

boundary, respectively. The bending moment (Mn), normal stress (Nn) and

shear stress (Nnt) resultants at edges x = constant or y , constant are

related to the displacement components by Equations A.38.

Two closed form, exact solutions are available for unsymunetLiCally

laminated plates subjected to uniform, biaxial stresses (ax constant.
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G y constant, Txy - 0) [165,1661. One is for cross-ply plates having

S2 boundary conditions along all edges; the other is for angle-ply plates

having S3 edges.

For unsymmetrical cross-ply laminates, A1 6 - A2 6 a B16 - B26

D = D = 0 (antisymmetrical lamination simplifies the problem further,
16 26

with A l=A2 2 , DII=D2 2 , B1 1 -B 2 2 , and B.=B 6 6=0). For plates of this

type having S2 conditions at x = 0,a and y = 0,b the exact solution takes

the form

= A cos MXsina b

SB 
sin MITX n-y

a b (6.3)

w = C sin MIX sin nTY

a b

with mn = 1,2,... The similarity of unsymmetrically laminated plate

equations and shell equations remarked upon earlier in this chapter is

again seen in Equations 6.3, for these are the displacement functions

yielding exact solutions for either (a) shallow shells of arbitrary (but

uniform) curvature and rectangular planform, with shear diaphragm support

conditions along all four edges (cf. [1671), or (b) closed circular cylln-

drical shells having shear diaphragm supports on the ends (cf. [1681,

p. 43). Substituting Equations 6.3 into Equation 6.1 yields

I.-

C 1  CC2  B , (6.4)
C C3 3+(NxU2 +N y)ji c.

where
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CI1 =A A 1a
2 + A6 B2

= 82 ÷ 662

C A + A 2
22 22 66

C = Dl a4 + 2(D +2D )C12ý2 + D,,6'
33 12 66

C1 2 = C2 1  (A 1 2 +A6 6 ) CL (6.r)

C = B 3 + (B +2B
13 31 11 12 66

C23 = C32 (B I+2B 66) 2ý + B2..3

C, = - , = -
a b

For a nontrivial solution, the determinant of the coefficient matrix of

Equation 6.4 must be set equal to zero, yielding the solution for buckling

stresses (Nx and Ny are positive in tension):

2C 1 2C 1 3 C 2 3 -C 1 1 C Z-C 2 2 C1

-N c - N 62 = C + (6.6)

It is seen that for a symmetrical laminate (Bij - 0), the right-hand-

side of Equation 6.6 reduces to C 3 3, and the equation is the same as

Equation 2.22 for the biaxially loaded, orthotropic plate having SSSS

edge conditions. For parametric studies, it may be desirable to recast

Equation 6.6 in terms of nondimensional parameters, as was Aone in changing

Equation 2.22 to 2.24. Once the eigenvalues (nondimensional buckling

parameters) are found from Equation 6.6, the eigenfunctions (buckled

mode shapes) are found in the usual manner for an #.igenvalue problem)

that is, an Pigenvalue is subt :ituted back into Equation 6.4, and the
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eigenvector (A/C, B/C) which determines the eigenfunction is obtained by

solving any two of the three linear equations represented by Equation

6.4.

Jones [158] obtained numerical results for antisymmetrical and

unsymmetrical cross-ply laminates having S2 edge conditions, subjected

to uniaxial loads. Figure 6.2 shows the variation of Nxb 2 /u 2 D with
22

a/b for representative graphite/epoxy plates (E /E2 = 40, G 2/E2 = 0.5,

= 0.25) having 2, 4, 6 and an infinite number of layers. The results

for an -ntisymmetrical laminate become the same as those for an orthotro-

pic plate as the number of layers goes to infinity (for Bil, the only

remaining bending-stretching stiffness coefficient, then goes to zero).

Figure 6.2 shows that for a/b - 1, neglect (f the Bij for a two-layer

plate will result in an orthotropic solution for the buckling load which

is about three times the correct value. As the number of layers increases,

the antisymmetrical solution rapidly approaches the orthotropic solution,

indicating a rapid decrease in Bil. For four and six layers, the ortho-

tropic solution for a/b a 1 is in error by 19 and 8 percents, respectively

11581. It is interesting to note in Figure 6.2 that the values of a/b

where the minimum buckling loads occur, are unchanged as the number of

layers changes. The same may be said for the locations of the cusps,

where the buckled mode shape changes from m to m + 1 half-waves. The

values of Nxb 2 /n 2 D22 for a/b - 1 are 0.7481, 1.7783, 1.9691 and 2.1218

for 2, 4, 6 and . layers, respectively. Identically the same values

occur for a/b = 2 and 3.

Figure 6.3 [158] shows the variation In uniaxial buckling load

with E I/E, for plates having G1 2 /E 2 - 0.5, ")12 ý 0.25 and a/b 1 1. The

loading parameter is plotted in the normalized form Nx/No, where No is

t!.e critical load for the orthotropic plate. These results may be used

to demonstrate, for example, that the orthotropic solution for a two-

lay-r, antisymmetrically laminated square plate is approximately 75 percent

too hign. However, for six layers it is only 5 percent too high I1581.
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Results were also obtained by Jones 11581 for an unsymmetrically

laminated cross-ply plate having S2 edge conditions for the case of a

laminate having the fibers in the second layer from the bottom oriented

900 and the fibers in all other layers oriented at 00 to the direction

of loading (x-axis). Thus, for a constant thickness laminate, the 900

layer becomes thinner and moves to the bottom of th_ laminate as the

number of layers increases (see Figure 6.4). The buckling parameter

-Nxb 2/E 2h 3 versus number of layers is plotted in Figures 6.5 and 6.6 for

graphite/epoxy and boron/epoxy plates, respectively. In both cases,

a/b - 2. In both figures, one comparison is made with the buckling load

for a parallel-fiber laminate having 00 fiber orientation, and another

is with an orthotropic solution (setting all Bij - 0). The discon-

tinuity observed for the latter curve in Figure 6.6 is due to a mode

shape change. In the case of three layers, the laminate is symmetrical,

and the exact solution coincides with the orthotropic solution. It is

particularly important to note that in both Figures 9 and 10, but

especially in the former case where 2 /E = 40, the exact solution

approaches the orthotropic solution with increasing number of layers

much more slowly than was seen previously for the antisymmetrical

laminates (Figures 6.1 and 6.2). Significant differences are seen to

exist even with 40 layers.

For antisymmetrical angle-ply laminates, A]6 0 A26 0 D16 0 D26

BI1 = B22 - B12 - 0 (cf. [16], pp. 169-170). For plates of this type

having S3 boundary conditions (see Equations 6.2) at x - 0,a and y - 0,b

and biaxial loading the exact solution takes the form 1165,166]

U A s51 27X,
a

":QoS -- sin --- (6.7)
a

snC S -- 51
a b
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Substituting Equations 6.7 into 6.1 again yields a set of algebraic equa-

tions which may be written in the matrix form of Equation 6.4, where now

C11 = -(A 1 012 +A66 82)

C22 m-(A 228 2 +A 66a2)

C33 = DIa4 + 2(D 2+2D 66)282 + D 2284 (6.8)

C12 = 21 -(AI2+A66)ae

C13 = 31 3B16 2ý + B26B3

C ~C B a 3 +3B CL6223 B2 16 26

= mTr nWra--- , 8=----
a b

The critical buckling stress resultants are given by Equ&tion 6.6, where

now the Cij are defined by Equations 6.8. It was also shown [165,166,169]

that the buckling stress may be written as

-axh 172 (D m4 + 2(D2+2D6)m 2 n2 R2 ý D nI.R4
X ,. 11 12 66 22 I

a2 [m2 +n2 )2J
a X (6.9)

- -•[J m(B rm2 +3B n2 R2 ) + J n2 R2 (38 1n2+B2 n2 R2 )]}
J6 16 26 5 16 26

where
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J = (A m2 +A 66n 2 R2 ) (B 6m2 +3B 6n 2 R2)

(A +A ) (3B m2 +B n 2 R2 )n 2 R2

12 66 16 26

= (A m2 +A2n 2 R 2 ) (3B m2 +B n 2 R2 )

J5 (A66 m A22 n16 26R

- (A 2+A 66) (B 16m 2 +3B 26n 2 R2)m
2

12 66 16 26

J 6 = ( 1 m2 +A6 n2 R2 ) (A 6m2 +A 2n 2 R2 )

-6 (A2
12+A 66 n2R

with R = a/b.

Jones, Morgan and Whitney [170] obtained numerical results for

antisyiuetrical angle-ply laminates using the above exact solution. The

buckling parameter -Nxb 2/E 2h 2 is plotted versus lamination angle (e) for

uniaxial and hydrostatic (Nx = - constant, Nxy - 0) compression in

Figures 6.7 and 6.8, respectively, for the case of a square plate, with

EI/E 2 = 40, G12/E 2 - 0.5 and V12 - 0.25 (corresponding to graphite/epoxy
material with E, = 30xl06psi, E2 = 0.75xlO6 psi, G12 w 0.375x10 6 psi, v * 0.25).

Corresponding data are also given in Tables 6.1 and 6.2. Comparisons

are made for plates having 2, 4, 6 and infinite layers, the last case

corresponding to an orthotropic plate (Bij all zero). It is seen for

both types of loadings that the optimum lamination angle is 0 a 450, and

the error in using orthotropic analysis for the antisymuetrically laminated

plate is very large for 0 450, being 211 percent for both types of

loading. Chen and Bert [1691 and Hiayashi (126,127] also determined the

optimum angle for maximum uniaxial buckling load to be 0 - 450 for a

series of antisymmetrically laminated angle-ply plates with S3 boundary

conditions.

Consider next the arn..... ymt Atrically laminated angle-ply plate having

S4 edge conditions (see Equation 6.2) all around. This problem was solved
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Table 6.1. Uniaxial buckling loads for square antisymmetrically
laminated graphite/epoxy plates (corresponding to Fig. 6.7).

-Nxb 2/E 2h3

e :Number of Layers

2 4 6 -(Orthotropic)

0 35.831 35.831 35.831 35.831
15 21.734 38.253 41.313 43.760
30 20.441 49.824 55.265 59.619
45 21.709 56.088 62.455 67.548
60 19.392(m=2) 45.434(m-2) 50.257(m-2) 54 .115(m= 2)
75 12.915(m-2) 22.0 75(m=2) 23.772(m-2) 25.129(m=2)
90 13.132(m=3) 13..32(m=3) 13.132(m-3) 13.132(m-3)

Table 6.2. Biaxial buckling loads for square antisymmetrically laminated

graphite/epoxy plates (corresponding to Fig. 6.8).

-Nxb 2/E 2 h3

e Number of Layers

2 4 6 00 =(Orthotroplc)

0 10.871 10.871 10.871 10.871
15 10.332 17.660 19.017 20.103
30 10.220 24.912 27. '13 29.809
45 10.854 28.044 31..27 33.774
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for the case of uniaxial loading [165,171] using the series method (cf.

[26]) with trigonometric displacement functions. Numerical results were

obtained for square plates having 2, 4 and - layers having lamination

angles of +450. These are shown in Figure 6.9, where the nondimensional

loading parameter Nx/NO is plotted versus El, E2 , where No is the criti-

cal load for the orthotropic plate. The remaining material parameters

are G 2/E2 - 0.5 and v 12 0.25. Figure 6.9 closely resembles Figure

6.3 (for uniaxially loaded, antisymmetric, cross-ply laminates with S2

edge conditions), showing a large difference between the correct, antisym-

metric solution and the orthotropic solution (obtained by omitting all

Bij). Figures 6.3 and 6.9 are applicable to a variety of laminated com-

posites, such as glass-epoxy, boron-epoxy, graphite-epoxy and plywood.

Mandell and Kicher [34,35,1721 conducted an experimental investiga-

tion of uniaxial buckling loads for graphite-epoxy (Thornel), boron-

epoxy and fiberglass-epoxy, unsymmetrically laminated plates. A descrip-
tion of the plates tested is given in Table 6.3. Plate identification

numbers given are those used in [34,35,1721. A ply layup 4(0,90) describes

the stacking sequence 00, 00, 00, 00, G, 900, 900, 900, 900, where "G"

signifies a glue layer. To avoid initial warping from cooling during

the fabrication process, such plates were made of two symmetrically lami-

nated sub-plates which were bonded together with a room-temperature curing

adhesive. Stretching, bending and coupling stiffnesses for the plates

are given in Tables 6.4-6.6. From the description of the edge constraints

[34,35,172] it appears that s4 boundary conditions (see Equation 6.2)
were closely approximated on all edges. More information on these tests

is found in Section 2.1.

Table 6.7 lists the experimental buckling loads for the plates

described in Table 6.3. Also given are theoretical values obtained by

four methods, using the stiffness data found in Tables 6.4 and 6.5. The

first method ignores the D16 and D2 6 terms, as well as all Bij, and uses
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Table 6.3. Description of unsymmetrically laminated plates
tested by Mandell

Plate I Fiber Layup of DimensionsIMatera TLno. Maby volume plies (in)

T oTrnel-40- 50.0 (0,0,90,90) lox

209b " (90,90,0,0)
4 09a Boron 49.1 10(45) ,10(-45) llxllxO.109
409b " , I1(-45) 1lO(45) "i.
501 Fiberglass 44.0 1 (90,+45,-45,90) l0xlOxO.i03
502 (0,-45,+45,0)

503 "(4,90,-90,-45) l0xlOxO.108
504 " (-45,0,0,45)
505i (90,25,-25,90) lOxlOxO.103
506 " (0,-25,25,0)
507 " " (25,90,-90,-25) 1OxlOxO.085
508 " (-65,0,0,65) "

509a " 4(0),4(90) l0xlOxO.090
509b 4(90),4(0)

Table 6.4. Bending stiffnesses (lb,in) for Mandell's
unsymmetrically laminated plates

Plate D D D D D D1 D 12 16 22 26 6 6
no.

209 631 1911 0 631 0 34.5
409 1011 842 0 1011 0 854
501 139 47.8 0 440 0 59.5
502 440 47.8 0 139 0 59.5
503 229 120 0 272 0 133
504 272 120 0 229 0 133 I
505 156 43.9 0 431 0 55.6
506 431 43.9 0 156 0 55.6
507 208 49.5 0 113 0 56.9
508 113 49.5 0 208 0 56.9
509 242 30.4 0 242 0 40.1
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Table 6.5. Stretching stiffnesses (103 lb/in) for Mandell's

unsymmetrically laminated plates

Plate A A A A A A
n. 11 12 16 22 26 66

no0.

209 863.3 27.46 0 863.3 0 48.15
409 1021 850 0 1021 0 862
501 195.8 88.23 0 385.2 0 101.1
502 385.2 88.23 0 195.8 0 101.1
503 198.0 88.98 0 387.4 0 101.8
504 387.4 88.98 0 198.0 0 101.8
505 275.0 69.87 0 342.7 0 82.78
506 342.7 69.87 0 275.0 0 82.78
507 246.3 62.22 0 307.8 0 74.06
508 330.0 42.05 0 330.0 0 55.09
509 330.0 42.05 0 330.0 0 55.09

Table 6.6. Coupling stiffnesses (103 lb) for Mandell's
unsymmetrically laminated plates

Plate B B B B B B
no. 11 12 16 22 26 66

209 -18.33 0 0 18.33 0 0
409 0 0 19.9 0 19.9 0
501 0 0 0.6215 0 0.6215 0
502 0 0 -0.6215 0 -0.6215 0
503 0 0 1.953 0 1.953 0
504 0 0 -1.953 0 -1.953 0
505 0 0 0.7632 0 0.1889 0
506 0 0 -0.1889 0 -0.7632 0
507 0 0 1.721 0 0.4259 0
508 0 0 -0.4259 0 -1.721 0
509 -4.546 0 0 4.546 0 0
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Table 6.7. Uniaxial buckling loads
(-Nx, lb/in) for Mandell's
SSSS unsymmetrically laminated
plates

f 1
Plate Experimental Theoretical
no.

209a 72.1 142
71.5*
74.2**

(77.0)
209b 73.7 142

71.5*
74.2**

(77.0)
409a 3,',7 745

376*
357**

(391)
409b 394 745

376*
357**

(391)
501 120 90.2

100*
502 102 90.2

100*
503 113 126

ii1*

102**
504 108 126

111*

102**
505 101 88.4

99.O*

506 88 88.4
99.0*

507 57.3 64
53*

52.9*
508 68.8 64

53*
52.9*

509a 63.7 69.553*
55.4**

509b 72.7 69.5
53*
55.4**

* obtained by Galerkin method

** obtained by Ritz method, using reduced
bending stiffness matrix
) obtained by geometrically nonlinear

finite element method
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EquaLion 2.9 for an orthotropic plate. The second method is the Galerkin

formulation, as applied by Chamis [41] to anisotropic plates, not account-

ing for the Bij terms. The third method is the Ritz procedure developed

by Ashton [42], which accounts for the D16 and D26 terms, and deals with

bending-stretching coupling by means of the reduced stiffness method.

The last method is a finite element technique developed by Monforton [173].

Plates 209, 409 and 509 are each listed twice. The two cases (denoted

"a' arid "b") identify uniaxial loadings in two perpendicular directions.

For these plates, different experimental results were found, although

the theoretical results are identical for each loading direction.

Additional experimental results for uniaxial buckling loads of

SSSS, unsyrmetrically laminated plates were obtained by Chailleux, Hans

and Verchery [171-176). Tests were conducted on nearly-square, angle-

ply plates made of boron fibers in an aluminum matrix. Buckling loads

were obtained by two methods: (1) static tests using the Southwell 140]

plot, and (2) vibration tests, to determine the load at which the fre-

quency approaches zero. Three sets of static test results were employed

(labelled Pw, Pk1 and Pk2 in Table 6.8), where measurements of the trans-

verse displacement (w) and the curvatures in the loaded (K 1 ) and unloaded

(K ) directions were made. PD identifies the dynamically measured load2

in Table 6.8. Plates were loaded by a framework which gave a uniform

density of in-plane forces along two opposite edges. It appears that S4

edge conditions (see Equation 6.2) were closely approximated along all

four edges. Test specimens were alternating angle-ply layups, having

two or four plies, as described in Table 6.8, with the exception of one

cross-ply caue. In all cases the volume ratio of fibers was approximately

55 percent.

Unsymmetrical zross-ply plates subjected to shear loading (ax

U a 0, 1.xy - constant) were also analyzed by Whitney [177]. Displace-

ments weie assumed in the form of double summations of the terms on the
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Table 6.8. Buckling loads (kg) for uniaxially loaded, SSSS
plates with boron fibers in an aluminum matrix.

Ply No.of Thickness a xb Critical loads (kg)

layup plies (uM) (mm) P w P KI P K2 PD

0-90 0 2 1.54 218x222 623 580 578 651
t15 0 4 0.96 182x179 430 417 507 812
± 30 0 4 0.99 183x181 368 369 371 384
± 45 0 2 1.35 181x174 718 648 6810 786
± 60 0 4 0.99 184xl79 383 - 389 391
± 7 50 4 0.96 183X179 1 652 735 652 724
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right-hand-sides of Equations (6.3), with m,n - 1,2,... Thus, S2 boundary

conditions are satisfied exactly. The first two of Equations (6.1) are

satisfied exactly by substituting u, v, w into them to express Amn and

Bmn in terms of Cmn. The last of Equations (6.1) is satisfied as closely

as desired by using the Galerkin method. This procedure was followed

[1171 to get numerical values of buckling loads for the case when a/b - 1,

V12 - 0.25 and G1 2/E 22 - 0.5. These results are seen in Figure 6.10,

where the ratio Txy/(Uxy)o is plotted versus E /E for laminates having
11 22

2, 4 and - layers. There (Txy)o is the critical buckling stress for an

orthotropic plate, obtained either by setting Bij-0, or by taking an

infinite number of plies in the laminate. Results obtained by using the

reduced bending stiffness method (see discussion preceding Section 6.1)

were found to agree with those from the Galerkin method within three

significant figures.

A procedure similar to the one described above was followed by

Hui [178) to determine additional data for the shear buckling loads of

S2 crocs-ply plates. It was shown that, similar to isotropic plates,

the buckling modes separate into to symmetric and unsymmetric classes,

with the critical (i.e., lowest) buckling load changing from one class

to the other as a/b is varied. Curves of the nondimensional buckling

parameter Txyb2 /Eh 2 versus a/b are displayed in Figures 6.11, 6.12 and

6.13 for graphite-epoxy (E I/E 2 40, G 12/E2 0.33,v a 0.22) and glass-

epoxy (E /E - 3, G /E - 0.5,v - 0.25) cross-ply plates having 2, 41 2 12 2 12
or plies.

Hirano 1179,1801 followed the Galerkin procedure that Whitney 1177]

used (see above) to make optimization studies for unsymmetrical, angle-

ply laminates subjected to shear [179] and combined compression and shear

[1801. Several other references are also available which treat the buck-

ling of BSSS unsymmetrical laminates [101,145,181-1871.
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0.4
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0 I0 20 30 40 50

E1,/E22

Figure 6.10. Shear buckling loads for antisuymetric, cross-ply.
laminates having SSS (82) edge supports (a/b - 1,
G 1 2/E 2 2 * 0.5, V1 2 " 0.25).
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110 GRAPHITE-EPOXY

Ej/E 2 =40, G12 /E 2 -0.5l '12=0"25
100-

SYMMETRIC MODE
90 ...... ANTI-SYMM. MODE

80 ".

70"
• . "_'.. . - . . . . . .

See a D

7;2 60

Eh2  " ..

50 N=4

40

30-'1

20N

I0 0 1 '-. .1 . .. ' . . . 1 ..d A . '
0. 0 1.5 2.0 2.5 30 3.5

a/b

Figure 6.11. Shear buckling parameters for antisymwetric, cross-ply,
SSSS (82), graphite-epoxy plates.
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30'

BORON -EPOXY
EI/E2=IO, G12/E2=I/3, -•2022 .

.- SYMMETRIC MODE

25- -... ANTI-SYMM. MODE

20T b20 .:

""h -N""4::" :E h? z----

N=4

15-

N=2

1.0 1-5 2.0 2.5 3-0 3-5
0/b

Figure 6.12. Shear buckling parameters for antisyummetric, cross-ply,
888$ (W), boron-epoxy plates.
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16 GLASS- EPOXY

El/E 2 =3, G12 /E2 =0"5

151 =0-25
012 02

14 SYMMETRIC MODE

- -ANTI-SYMM. MODE
13

1l2

Eh 2

I I

10.
% ° .. Q .

9-

7

1I0 1.5 2"0 2.5 3.0 35
a/b

Figure 6.13. Shear buckling parameters for anytisymmetric, cross-

ply, SSSS (S2), glass-epoxy plates.
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6.2. SFSF

In Table 6.9 are listed the experimental buckling loads obtained

by Mandell and Kicher (34,35,172] for SFSP unsymmetrically laminated

plates having the simply supported edges subjected to uniaxial loading.

The plates are those described previously in Section 6.1 (Tables 6.3-

6.6). Theoretical results in all cases were calculated on the assumption

that the plate bends as a simply supported beam having no transverse

curvature or twist (see description of analysis in Section 3.6). Addi-

tional theoretical results obtained by the Ritz method using the reduced

bending stiffness matrix, as developed by Ashton [42], are also given

for most of the plates in Table 6.9.

Chailleux, Hans and Verchery 1174-176] also obtained experimental,

uniaxial buckling loads of SFSF plates (loaded edges with S4 conditions).
Tests were conducted on nearly-square, angle-ply plates made of boron

fibers in an aluminum matrix, as described previously in Section 6.1.

Numerical results are given in Table 6.10, which may be compared with

results given previously in Table 6.8 for SSSS plates (and where additional

plate data is available).

Theoretical and experimental results for the buckling of uniaxially

loaded SFSF laminates composed of boron-epoxy and titanium layers were

found by Viswanathan, Soong and Miller f92].

6.3. CCCC

In the case of clamped edges, the transverse displacement and normal

slopes are everywhere zero. However, permitting various degrees of con-

straint in the inplane directions gives rise to four sets of boundary

conditions, in a manner similar to that used for simply supported edges

(see Section 6.1), viz
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Table 6,9, Unlaxial buckling loads
(-Nx, lb/in) for Mandell's
SFSF unsymmetrically laminated
plates

Plate Experimental Theoretical
no,

209a 20.7 62.3
23.7**

209b 19.7 62.3
23.7**

409a 38.5 70.6
42,7**

409b 36,1 70.6
42,7**

501 13.7 15.4
502 36.6 43.4
503 18.3 22.5

18.9**
504 23.0 26.8

23.2**
505 12.5 15.4
506 39.1 42.6
507 12.8 20.5

16.6**
508 9.51 11.2

10.9**
509a 15.4 23.9

17.6**
509b 15,3 23,9

L - 17,6**

** obtained by the Ritz method, using
reduced bending stiffness matrix

Table 6.10. Buckling loads (kg) for uniaxially loaded, SFSF plates
with boron fibers in an aluminum matrix (see Table 6.8
for other data).

Ply Critical loads (kg)

layup P P P

0-90 175 175 185

± 150 86.2 85.1 119
± 30' - 80.4 -
S45' 153 148.5 153
±600 54.3 54.3 57.4+75° .,-
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cl: W U = 0
an n

C2: w =wN u= 0 (6.10)

aw

C3: w n = N 0Dnt
an _n nt

aw
C4: w -LN N = 0

an n nt

Whitney [163,164] extended the series method used previously to

analyze SSSS(S4) plates [165,171] (see Section 6.1) to clamped edge condi-

tions. In this manner data was obtained for the buckling of biaxially

loaded (Ox = ay - constant, Txy - 0), ±450 angle-ply, square plates with

Cl edge conditions. Figure 6.14 shows the variation of -Gxha 2/E 2 2 h2

with El 1 /E 2 2 for plates haing 2, 4 and layers. The other material

properties used apparently were G12/E22 - 0.5 and v 12 0.25. Additional

data are given in Tables 6.11 and 6.12 for cross-ply and +450 angle-ply

plates, respectively, having two layers with E, /E = 40, G -/E 0 0.5
11 22 112 22

and v12 ' 0.25, for Cl, C2 and C3 types of edge constraints, and five

aspect ratios. Results from using orthotropic plate analysis with reduced

bending stiffnesses (see discussion preceding Section 6.1) are also pre-

sented. It appears that the results of Tables 6.11 and 6.12 violate a

fundamental principle of mechanics; viz, that the addition ot constraints

should only increase (or leave unchanged) the buckling load of a system.

Some numerical results for uniaxially loaded, CCCC plates were

obtained by Chia and Prabhakara [15,181) as part of a postbuckling analy-

sis of unsymmetrical laminates. The Galerkin method was used, with dis-

placements taken as the products of beam functions. Results are shown

in Table 6.13 for a set of cross-ply and angle-ply (+450) plates, each

composed of four graphite-epoxy plies (E l/E - 40, G 2/E2 a 0.5, V12 - 0.25).

These data were attained by using 9 terms of the double infinite series

of displacement functions. Zhang and Mathews [188] subsequently showed

that the results from the Galerkin method are very sensitive to the number

of significant figures kept in the computation of the beam functions.

Results given by them in Table 6.13 were achieved carrying 15 significant
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Figure 6.14. Buckling parameters for biaxially-loaded CCCC (CI),

unsymetrically laminated, square, angle-ply plates.
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Table 6.11. Buckling parameters -Oxa 2 /E h2 for biaxl-'
loaded CCCC cross-ply plates having twr

a Edge conditions

b Cl C2 Reduced bending
stiffness

1 23.450 22.697 23.068
2 11.360 11.352 11.352
3 6.313 6.315 6.315
4 4.967 4.968 4.968
5 4.977 4.977 4.977

Table 6.12. Buckling parameters -%a 2 /E^ 2 b2 for biaxially-loaded
CCCC± 45 angle-ply plates ýaving two layers.

a Edge conditions

b Reduced bending"" C I C2
t stiffness

1 26.002 26.592 24.765
2 24.655 27.767 21.889
3 25.147 27.873 23.686
4 23.168 25.790 22.867
5 22.664 22.960 22.658
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Table 6.13. Critical uniaxial buckling parameters --.. b2 /Ea2 h 2

for CCCC graphite-epoxy plates having four layers.

Source of resultsLaminate _a
description b [15,181] (188]

1.0 112.65 (1) 109.90
cross-ply 1.5 87.74 (2) -

2.0 76.83 (3) -

+45° 1.0 113.67 (1) 106.871.5 95.73 (2) -
angle-ply 2.0 89.86 (3) -

*values in parentheses are the number of half-waves of
the mode shape in the load (x) direction 1
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figures in the beam function parameters, whereas Chia and Prabhakara [3.51,181]

had used six significant figures.
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CHAPTER VII. COMPLICATING EFFECTS

In this chapter, mcre complicated bifuLcation buckling problems

for laminated composite plates will be taken up. The complicating

effects will be seen to include: internal holes, shear deformation,

sandwich plates having laminated composite layers combined wita other

materials, localized buckling, nonlinear stress-strain relationships and

hygrothermal effects. Stiffeners will be discussed in Chapter IX.

7. 1. INTERNAL HOLES

Marshall [189) took up the problem of the buckling of a uniaxially

loaded, rectangular plate of dimensions axb containing a central, circular

hole of radius r (see Figure 7.1). All edges along the rectangular boun-

dary were simply supported, whereas the circular boundary was free. Test

plates were made of unidirectior.al glass cloth embedded in a polyester

resin matrix, yielding orthotropic plates having the following propertie.:

Ex - 3.1 GN/m 2 , Ey - 10.4 GN/m 2 , Gxy - 2.14 GN/r?, Vxy - 0.30. Theoreti-

cai results were obtained by assuming the tollowing internal stresses:

a
-= z 2 (cos26 + (2-3z 2 )cos4e]

°x 2

= -2 {2 + Z 2 13cos26 - (2-3z 2 )cos4eJ} (7.1)
y 2

a
T Z2 [-sin26 + (2-3z 2 )sin49]
2

where z a ro/r. The buckling problem was solved by means of the Ritz

method, with the buckled mode shape assumed in the form:

W =Cosx Cos + Be- C 2 2 (7.2)
a b a b + (.

The first term of Equation 7.2 describes the overall mode shape, whereas

the second term accounts for localized displacements in the vicinity -i
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F'igure 7.1. Uniaxially loaded plate with a central, circular hole.
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Figure 7.2 Critical uniaxial buckling stresis ratio for 888li ortho-
tropic plates with holes.
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the hole [189]. B and C are constants determined by the minivnizing process.

Numerical data were obtained for square plates (250 - x 250 ma x 1.9 mm)

having ro/a 0, 0.1,...,O.7. These are shown in Figure 7.2. There the

continuous curve represents the result of the theoretical analysis and

the data points show the results of experiments conducted on three test

specimens. The ordinate 0o/1o is the catio the critical buckling stress

to that of the plate not having a hole.

The buckling of laminated composite square plates having central,

circular holes was also studied by Martin [190,191].

7.2. SHEAR DEFORKATION

Classical plate theory is based upon the Kirchhoff hypotheaist

"Normals to the midplane of the undeformed plate remain straight and

normal to the midplane during deformation." This assumption therefore

ignores the transverse shear deformation. Consideration of shear deforma-

tion results in added flexibility, which becomes significant as the plate

thickness increases relative to its length and width.

A quantitative theory which accurately provides the necessary correc-

tLon to provide for shear deformation has been available for thick beams

for at least 60 years. Generalization of isotropic plate theory to inolude

shear deformation was carried out by Raiesner [192,193] 40 years ago.

More recently, Ziegler [1941 showed that the effects of the inplans deforma-

tion inmediately prior to buckling are of the same order of magnitude

as, and in some cases even more than, the transverse shear deformation.

In thick plate theory one may express the total slopes of the deformed

midsurface at a typical point as

204

---- ; • .'• -•.": -. •.• - _. - _ _• : : -" - . .. . . - - .. . . --. '- '., , .- - - ',. . "_.- .



aw
T--x x + fx

aw (7.3)

7"_ *y + ly

where *x and 4y are the rotations In the x and y directions (i.e., rota-

tions about the y and x axes), respectively, due to bending and ý, and

fy are the slope changes due to shear. Shear deformation theory requires

a solution in terms of three independent variables, each of which is a

function of the two independent variables (x,y). The dependent variables

are typically taken to be w and either *, and *y or *x and fy, with the

remaining two variables determined by 3quations 7.3. The resulting set

of governing differential equations is of sixth order, which requires

specification of three boundary conditions per edge. This is in contrast

with classical plate theory and with bean theory (with or without shear

deformation) which only require fourth order equations and two boundary

conditions per edge. Further generalization to unsymmetrical laminates,

with the ensuing additional coupling between bending and stretching,

would result in a tenth order set of equations, as one finds for thick,

isotropic shells.

A major contribution to the analysis of laminated composite, thick

plates is the book by Ambartsumyan, which was translated from the Russian

in 1970 (13]. Recently, Bert [195] made an excellent analysis of various

thick plate theories as applied to laminated composite materials.

One set of differential equations governing the equilibrium of an

orthotropic plate in its small displacement, buckled configuration may

be adapted from pages 39 and 198 of the book by Ambartsumyan (13]. They

may be written as
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3W a3w D 2 + a2%11 =3 +(D12+ 66  xaY2 1~ 3  1 (7.4a)

1 =0
+ !-L(D'+D 6 6  + 2 Ox

23

a~3

1 3w + +D3w h 2 w i )22

(7.4b)

+ _i( 1D2 +Dss_ 66 B Y • 12 Y
313 2

h•• +N • + 2N _ + N 0

where the Dij are as used in previous chapters, and where 0 13 and G 23

are the shear moduli relating the transverse stresses and strains. It

is seen that classical, orthotropic plate theory, governed by Equation

2.1, results when the shear stiffnesses G13 and G23 are set equal to

infinity, and Equations 7.4a and 7.4b are substituted into Equation 7.4c.

An exact solution to Equations 7.4 may be obtained in the case

when Nxy - 0 and the plate is simply supported along all four edges.

The corresponding boundary conditions are:

Along x = O,a : w - Mx - 4y - 0

(7.5)

Along y - O,b : w - My a *x " 0

It is remarked that since, for example, w - 0 along x - 0 implies

that Dw/ay - 0 along x - 0, as well, then y- 0 along x - 0 implies

that ýy - 0, as well. Thus, along all edges, not only are the total

tangential slopes zero, but both the shear and bending parts of total

i
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tangential slopes are each zero for the boundary conditions of Equations
7.5. Equations 7.5 are exactly satisfied by assuming the functions

Ox A cos nmx sin n1ya b

Oy = B sin- mx cos nrya b (7.6)

w = C sin mx sin nfya b

with m, n - 1, 2,... Substituting Equations 7.6 into Equations 7.4, one
obtains (generalized from p. 200, [13])

a h(M)+ a h (n) 2  
7 2 [D I)4 + 2 CW12 +2D 2 2

+ D +K (7.7)

where K, = .1-2 h-2 (G3 1 2 + G1_ n2b n
10 DII M2+o D

10 a2  G 1 bh/L -a7 6 6 bj2

x D66  -+ D22 - (D12+D6 6 a) (7.8a)

[D aD() + 2 (D1 2 +2D 6 6) (n) 2 (a) 2 +D n

207



2h2[ (n M1 21 m2 n29
K ay+1 n2 ) G (2 0 1- a13 66 )+ 23 66 a7 + 2

1 Thr4 0 m2 m2 Dhn2
+ G 1 G 00 D + D  n2) (D66 a-7 22 b-

13 2311a 66b

(7.8b)

-(D 1 2+D 6) 2(a 2(n 21

It is observed that in the case of no shear deformation, G13 and G23 are

infinite, K, - K2 - 0, and Equation 7.7 is the same as Equation 2.22 for

a classical orthotropic plate.

Ambartsumyan [13] made parametric studies for the uniaxial buckling

loads (ax - constant, oay - Txy - 0) resulting from Equation 7.7 for vari-

ations of the following material modulus ratios:

Ek Ek El E2

k -2 = G G (7.2
2 12 13 23 (79)

For uniaxial loading, critical loads occur always with n a 1. Nondimen-

sional buckling parameters -oxb 2/v 2D are listed in Table 7.1 for various

combinations of k1 , k 2 , k3 and a/b, with h/b taken as 0.1. The column

with k - 0 corresponds to classical theory (neglecting shear deformation).3

Also listed in Table 7.1 are the minimum values of -Oxb 2 /2 D 1, and the

corresponding a/b where they occur. It is seen that the buckling para-

meters all decrease with increasing k 3 .

Whitney [196] extended Ambartsumyan's [131 work to accommodate

laminated plates having layers with fibers not all parallel to the plate

edges. The exact solution used in Equation 7.6 was found to be valid

for SSSS angle-ply plates having large numbers of layers. Numerical

208

i ' ~ ' ~ I a iU i; I I



Table 7.1. Buckling parameters -axb 2 /n 2D for uniaxially loaded,
SSSS orthotropic plates with 'Shear deformation (h/b - 0.1).

(a) k - k2 n 5.0, v12 -0.3

a k3
b 0 2.0 5.0 10.0

0.35 9.093 7.682 6.241 4.763
0.65 3.357 3.144 2.873 2.516
0.95 2.194 2.105 1.984 1.816
1.25 1.858 1.799 1.716 1.596
1.65 1.817 1.769 1.700 1.598
1.95 1.929 1.881 1.814 1.712
2.25 2.116 2.066 1.995 1.889
2.55 2.360 2.306 2.230 2.115

1.5954* 1.4820* 1.4629* 1.4336*
1 1.8000 1.7488 1.6770 1.5694

* values of a/b where minimum buckling load occurs.

(b) ki - k2 2 2.0, v12- 0.3

ka 3
0 2.0 5.0 10.0

0.25 18.241 13.263 9.440 6.392
0.45 7.250 6.335 5.335 4.234
0.75 4.269 3.978 3.610 3.130
0.95 3.769 3.569 3.305 2.944
1.25 3.631 3.481 3.277 2.986
1.45 3.737 3.599 3.411 3.137
1.75 4.068 3.936 3.754 3.485
2.15 4.738 4.601 4.411 4.126

1.1892* 1.1588* 1.1151* 1.0475*
3.6241 3.4657 3.2469 2.9264

* values of a/b where minimum buckling load occurs.
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(c) k, = 0.5, k2 = 1.0, v21 - 0.3

a k3
b 0 2.0 5.0 10.0

0.25 20.545 14.915 10.570 7.115
0.35 12.828 10.576 8.371 6.212
0.55 8.331 7.519 6.561 5.412
0.75 7.323 6.826 6.196 5.372
1.05 7.532 7.167 6.683 6.008
1.25 8.185 7.844 7.384 6.728
1.45 9.101 8.763 8.301 7.634
1.55 9.641 9.300 8.832 8.151

0.8409* 0.8036* 0.7489* 0.6605*
n 7.2484 6.8026 6.1964 5.3267

* value of a/b where minimum buckling load occurs.

(d) k1  0.2, k2 = 1.0, v2 1 mf 0.3

a k3
b 0 2.0 5.0 10.0

0.25 20.840 15.547 11.291 7.784
0.35 13.304 11.239 9.135 6.987
0.55 9.346 8.601 7,b91 6.552
0.65 9.007 8.435 7.708 6.751
0.85 9.525 9.087 8.507 7.696
0.95 10.149 9.734 9.177 8.385
1.15 11.897 11.489 10.931 10.119
1.25 12.981 12.565 11.991 11.150

0.6688* 0.6386* O.5937* 0.5177*9.0001 8.4329 7.6577 6.5377

* values of a/b where minimum buckling load occurs.
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results were found for the uniaxial buckling of a square plate with +450

angle-ply stacking sequence and with E /E2 * 40, G 1 /E 2 - 0.6, G2 3/E 2 2 a 0.5,

V1 2 - 0.25. Variation of the buckling load parameter -oxa 2/E 2h2 with

the thickness ratio, a/h, is shown in Figure 7.3. It is seen that the

buckling load for a/h - 20 is considerably less with shear deformation
theory (SDT) than with classical plate theory (CPT). Furthermore, the

shear deformation effect is much more significant for the laminated com-

posite plate than it would be for an isotropic plate.

Vinson and Smith [1971 derived an expression for the strain energy

of an orthotropic plate, considering the effects of shear deformation,

which can be put into the following form:

VS ' + 2D1 ~x + D2(±)
A

6 ) 6 x ( x

+ -- h [G 2 + G2] dA
12 13 X 23 y ) d

(7.10)

From Equations 7.3 it is seen that when shear deformation is excluded

(Cx - *y = 0), Equation 7.10 reduces to the bending strain energy of an

orthotropic plate, given by Equation 2.3. (In the limit, for example,

as G13 increases, Ox vanishes, with the product G1 3Ox remaining finite

and proportional to the shear stress, and G13 therefore vanishing.)

Thus, Equation 7.10 together with the potential energy due to inplane

forces, Equation 2.4, is useful for analyzing the buckling of

orthotropic plates with arbitrary edge conditions by Rayleigh-Ritz

methods when shear deformation is included.
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Figure 7.3. Buckling of a uniaxially loaded, SSSS, ±450 angle-ply,

square plate having an infinite number of layers, with

and without shear deformation.
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In using Rayleigh-Ritz methods with Equation 7.10 the typical proce-

dure would be to specify three sets of functions, either w, Ox, *y or w,

ýx, *y, with Equations 7.3 providing the required relationships among

them. Vinson and Smith [1971 derived additional, approximate relationships

among these functions from considerations of beam behavior with shear

deformation present. These are:

aw h2ElI 6N
(+

x x 0 GI 5c h

aw h 2 E2  + N (7.11)
= ++ 5G23 h

Substituting Equations 7.3 and 7.11 into Equation 7.10 results in a lengthy,

but manageable, expression for VS in terms of the single dependent vari-

able w(x,y). The detailed form of this functional is given in [197].

Using the approximate strain energy functional described above,

along with the displacement function given by Equation (2.8), numerical

results were calculated for SSSS orthotropic plates made of unidirectional

boron fibers (56% in volume) embedded in an epoxy matrix [197]. The

corresponding orthotropic elastic moduli are:

E = 32.5x10 6psi , F - 1.84xlO6 psi

G 1 G 0.642x10 psi , G23 a 0.361xl0 psi12 13 2

112 " 0.256, v2 1 - 0.0146.

It was found that the differences between buckling loads according to

classical and shear deformation theories were small for thickness ratios

h/a - 0.02 and 0.01, but became significant for thicker plates. Critical

loads occurred for n - 1. Numerical results for the buckling parameter

CFXTr 2/G are presented in Table 7.2 and Figure 7.4 for h/a - 0.1, and in

13
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Table 7.2. Uniaxial buckling parameters -ox 2/Gl for SSSS orthotropicplates with and without shear deformaE ion (h/a = 0.1).

Classical Shear
theory deformation a

theory b

4.15 2.76 0.33 1
4.22 2.80 0.5 1

4.78 3.32 1 1
5.45 3.92 1.28 1
6.28 4.95 1.-50 1
9.60 9.20 2 1

4.64 1 2

4.70 1.28 2

4.73 1.50 2

5.08 2.00 2

5.35 2.25 2

5.53 2.40 2

5.37 1.28 3

5.38 1.50 3

5.40 2 3

5,44 2.4 3

5.45 3 3

- 5.46 4 3
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FiguLe 7.4. Unjaxi3l buckling parameters for SSSS orthotropic
plates with and without shear deformation (h/a - 0.1).

215



Table 7.3. Uniaxial buckling parameters -a x2/G13 for SSSS orthotropic
plates with ano without shear deformation (h/a = 0.04).

Classical Shear
theory deformation b m

theory

.658 .615 0.33 1

.669 .625 0.5 1

.756 .712 1 1

1.518 1.482 2 1

4.268 4.231 3 1

2.678 2.051 1 2

3.022 2.343 2 2

3.958 3.244 3 2

6.034 5.124 4 2

6.649 6.200 4.2 2

6.795 4.144 3 3

7.978 4.654 4 3

8.311 6.160 4.2 3

8.494 6.669 4.3 3

8.648 7.640 4.4 3
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Table 7.3 and Figure 7.5 for h/a - 0.04. Additional results are also

available for h/a - 0.02 and 0.01 [197].

Exact solutions of the three-dimensional elasticity equations for

the buckling of cross-ply laminates having four edges simply supported

are also possible. These ware obtained by Srinivas, Jogs Rao and Rao

[198,199] and by Moor [200]. It was determined that shear deformation

theory gave accurate results for thickness/width ratios of at least 0.3.

An example of the type of results found may be observed in Figure 7.6

where the uniaxial buckling load parameter -Oxb2/Z2h
2 is plotted versus

a/b for plates having even numbers of layers (NL), thereby yielding unsym-

metrical laminates, and h/a w 0.1. Material properties used for each

layer were: 21/E2 * 30, G1 2 /E 2 u 0.6, G1 3/E 2 a 0.5, and v 1 2 ' 0.25.

The curves of Figure 7.6 show very close agreement between the shear

deformation theory (SDT) and elasticity solution values. However, the

classical plate theory (CPT) differs considerably especially for NL - 4

or greater. On the other hand, for eyhoetrically laminated plates the

error in classical plate theory was fouid to decrease as NL increases.

Turvey [2011 incorporated the reduced stiffness method (see Chapter

VI) into shear deformation plate theory for unsymmetrical laminates,

thereby arriving at a sixth order set of governing differential equations.

Comparison with Noor's [200] three dimensional results for SBS8 plates

showed close agreement of uniaxial buckling loads for square plates having

h/b - 0.1. At least two other references also deal with the buckling of

SS5 plates, including shear deformation effects 1202,203].

Vinson and Smith 1197] followed the approximate procedure described

earlier in this section to solve uniaxial buckling problems (Qx w constant,

UY a Txy - 0) for BCBC orthotropic plates having shear deformation. A

buckling mode shape wat assumed in the form
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Figure 7.6. Comparison of exact elasticity, classical plate theory
(CPT) and shear deformation theory (SDT) solutions for
uniaxially loaded, 5588 cross-ply laminates.
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w(x,y) = C sin m -x 2nivymn • i - os~l(7.12)
inn a b

Numerical results were presented for boron-epoxy plates as described

earlier in this section, and are given in Table 7.4 and Figure 7.7 for

h/a = 0.1, in Table 7.5 and Figure 7.8 for h/a - 0.04, and in Tables 7.6

and 7.7 for h/a = 0.02 and 0.01, respectively. It is seen that shear
deformation effects are more significant for the SCSC plate than for the

SSSS plate (see previously), being quite significant even for the rela-

tively thin plate having h/a - 0.02.

Sandorff [150,2041 conducted tests on a series of ten, 16-ply,

graphite-epoxy laminates having SCSC edges. The specimens had

dimensions: h - 0.081 in, b - 9.625 in, with the length (a) varying

from 1.75 to 3.00 in. Thus, the short, clamped edges were loaded, and

the long edges were simply supported. Experimental buckling loads were

found which were considerably less (approx. 25 per cent) than those

predicted by shear deformation theory.

Results for the uniaxially loaded SCSS orthotropic plate were also

obtained by Vinson and Smith (197] using the approximate method

described earlier in this section. A buckling mode shape was assumed in

the form

w(x,y) = c sin mnx (2y4 - 3by 3 + b 3 y)
m a (7.13)

9'imerical results were presented for boron-epoxy plates as described

earlier in this section, and are given in Table 7.8 and Figure 7.9 for

h/a - 0.1, in Table 7.9 and Figure 7.10 for h/a - 0.04, and in Table

7.10 for h/a - 0.C2. Classical and shear deformation plate theories

agreed quite closely for h/a - 0.01 [197].
¶

SSSF orthotropic plates with uniaxial loading were also analyzed

by Vinson and Smith [1971 using the approximate method described earlier

in this section. A buckling mode shape was assumed in the form
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Table 7.4. Uniaxial buckling parameters -c xr 2 /G for SCSC orthotropic
x 131plates with and without shear deformation (h/a = 0.1).

Classical Shear
theory deformation m

theory b

4.15 2.84 0.33 1

4.32 2.95 0.5 1

5.90 4.30 .1 1

8.41 6.60 1.28 1

11.77 11.00 1.50 1

16.47 5.40 0,33 2

5.43 0.5 2

5.45 1 2

5.58 1.28 2

5.65 1.50 2

5.84 1.75 2

37.6.3 5.75 1 3

5.77 1.28 3

5.79 1.50 3

5.80 1.75 3

5.83 2 3
6.55 2.75 3
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Figure 7.7. Uniaxial buckling parameters for SCSC orthotropic
plates with and without shear deformation (h/a - 0.1).
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Table 7.5. Uniaxial buckling parameters -for SCSC orthotropic
plates with and without shear deformalion (h/a - 0.04).

Classical Shear
theory deformation a

_theory 
b

.6688 .6233 0.33 1

.6919 .6490 0.5 1

.9497 .8878 1 1
4.2236 3.7641 2 1

17.6561 14.2650 3 1

2.7681 2.1091 1 .2

3.7988 2.9783 2 2
5.1604 4.1026 2.5 2

7.5105 6.0227 3 2

8.1292 8.1340 3.1 2

16.8944 15.6564 4 2

6.0205 3.4805 1 3

6.6364 3.9571 2 3

7.3565 4.5944 2.5 3

8.5428 6.0289 3 3

8.8511 6.6599 3.1 3
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Figure 7.8. Uniaxial buckling parameters for SCSC orthotropic
plates with and without shear deformation (h/a - 0.04).
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Table 7.6. Uniaxial buckling parameters -ax r2 /G1 for SCSC orthotropic
plates with and without shear deformalion (h/a 0.02).

Classical Shear
theory deformation mtheory

.167 .163 0,33 1

.238 .234 1 1

1.058 .978 2 1
4.426 4.110 3 1

13.342 11.755 4 1

.692 .645 1 2

.950 .901 2 2
1.881 1.734 3 2

4.234 3.681 4 2

8.9.46 7.648 5 2

1.658 1.423 2 3

2.134 • 1.847 3 3

3.264 2.828 4 3
5.506 4.646 5 3

9.446 8.952 6 3
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Table 7.7. Uniaxial buckling parameters -oa r2 /G for SCSC orthotropic
x 13plates with and without shear deformation (h/a 0.01).

ClassLcal Shear
theory deformation m

theory

.04330 .04320 0.5 1

.05936 .05916 1 1

.2640 .2628 2 1

1.1034 1.0854 3 1

.1730 .1708 1 2

.2374 .2362 2 2

.4694 .4637 3 2

1.0558 1.0296 4 2

2.2584 2.1854 5 2

.5342 .5154 3 3

.8117 .7871 4 3

1.3815 1.3131 5 3

2.3750 2.2176 6 3

3.9811 3.6416 7 3
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Table 7.8. Uniaxial buckling parameters -o xr 2 /G for SCSS orthotropic

plates with and without shear deformation h/a 0.1).

Classical Shear
theory deformation b m

theory

4.0736 2.8089 0.33 1

4.1733 2.8879 0.5 1

5.0930 3.7133 1.00 1

5.9305 4.8019 1.2 1

6.2702 5.3300 1.26 1

4.9992 1.00 2

5.0994 1.2 2

5.1902 1.26 2

5.2845 1.30 2

5.8102 1.50 2

5.7150 1.00 3

5.7180 1.30 3

5.7200 1.50 3

5.9200 2.00 3
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Table 7.9. Uniaxial buckling parameters -.a r2 /G1 3 for SCSS orthotropic
plates with and without shear deformation (h/a 0.04).

Classical Shea_
theory deformat ion b m

theoryb

.6622 .6177 0.33 1

.6863 .6255 0.5 1

.8165 .7437 1 1

2.4410 2.4226 2 1

8.8285 8.6127 3 1

3.2660 2.6505 2 2

5.1655 4.8650 3 2

5.4792 5.2780 3.1 2

6.1333 6.0120 3.3 2

6.7370 6.7012 3.4 2

7.3472 5.3040 3 3

7.5121 5.6500 3.1 3

7.8838 6.4445 3.3 3

8.6020 6.6982 3.4 3
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Table 7.10. Uniaxial buckling parameters -ox7r 2 /G 1 3 for SCSC orthotropic

plates with and without shear deformation (h/a - 0.02).

Classical Shear
theory deformation a

theory b

.1628 .1624 0.33 1

.1668 .1660 0.5 1

.2036 .2030 1 1

.6080 .6078 2 1

2.1980 2.1970 3 1

.8144 .7819 2 2

1.2860 1.2659 3 2

2.4256 2.4056 4 2

4.7086 4.6875 5 2

1.8288 1.6239 3 3

2.4084 2.2305 4 3

3.5136 3.4669 5 3

5.4186 5.2174 63
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Table 7.11. Uniaxial buckling parameters -vxw2/G for SSSF orthotropic
plates with and without shear deformaihon (h/a - 0.1).

Classical Shear
t heory deformation a

theory b

.173 .171 0.33 2

.260 .256 1 2

1.045 1.028 3 2

1.631 1.380 0.33 20

1.720 1.451 1 20

2.500 2.132 3 20

4.871 3.940 0.33 60

4.958 4.040 1 60

5.750 5.100 3 60
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Table 7.12. Uniaxial buckling parameters --a w2 /GI 3 for SSSF orthotropic
plates with and without shear deformation (h/a - 0.04).

Classical Shear a
theory deformation b m

theory

.00694 .00695 0.33 2

.01042 .0105 1 2

.0417 .0418 3 2

.0654 .0652 0.33 20

.0689 .0687 1 20

.100 .0996 3 20

.1954 .1917 0.33 60

.1989 .1950 1 60

.230 .225 3 60
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Figure 7.11. Uniaxial buckling parameters for SSSF orthotropic
plates with and without shear deformation (h/a -0.1).
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w(x,y) = Cm s in a• (7.14)
i a

Critical loads were found to occur always with m - 1. Buckling parameters
were calculated for unidirectional composites and were found to depend

upon only one material modulus ratio: E1/G1 3. Numerical results for
xIT2 /G3 are listed in Tables 7.11 and 7.12 for h/a - 0.1 and 0.04, respec-

"tively for a/b - 0.33, 1, 3 and EI/G -2, 20, 60. Data for h/a - 0.1
1 /G13

are also plotted in Figure 7.11. No significant differences between

classical and shear deformation theories were found for h/a - 0.02 or

0.01.

Some data for the buckling of CCCC plates including the effects of

shear deformation were obtained by Davenport and Bert (205-2071 as part

of a shell analysis, but no direCt comparisuaoi with classical plate theory

were made. Results for SFSF plates including shear deformation effects

are also available [32,208,209]. Other buckling studies for laminated

composite plates with shear deformation include (210-2121.

7.3. SANDWICH PLATES WITH SOFT CORES

The use of sandwich plates consisting of orthotropic or anisotropic

face sheets separated by core material has become widespread, for such

plates are capable of providing lightweight construction. For decades

plywood has been used for the face sheets. More recently the fiber com-

posites have been used, especially for aerospace applications. Core

materials may be considered as either homogeneous (e.g., foam) or hetero-

geneous (e.g., hexagonal or honeycomb cells, or corrugated).

Early experimental work to determine buckling loads was conducted
by Boller f2131 on sandwich plates having glass-cloth laminate face sheets

and either end-grain balsa or cellular cellulose acetate cores. Various

edge conditions were considered. Experimental results were compared
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with theoretical values given by formulas derived by March and Smith

[214]. Modifications were made in the formulas to account for shear

deformation in the cores. These and more recent references 1215-218]

are indicative of the considerable amount of work on buckling of laminated

composite sandwich plates which has taken place at the U.S. Forest Products

Laboratory.

Pearce and Webber 1219-221] made a theoretical and experimental

study of uniaxially loaded, SSSS sandwich plates composed of fiber-rein-

forced, face sheets and honeycomb cores. A set of differential equations

was derived, and numerical results were obtained for a square plate having

face sheets composed of +450 angle-ply laminates and a honeycomb core of

aluminum. It was shown in a specific example that a sandwich plate having

carbon fiber-reinforced face sheets would only need to weigh approximately

one-half as much as one using aluminum face sheets to fail at the same

buckling load.

Vinson and Shore [222] analyzed the buckling of sandwich plates

made of a web-core construction (see Figure 7.12) using orthotropic materi-

als. Three types of instability were considered:

1. Overall plate buckling

2. Local face buckling in the region from A to B (Figure 7.12)

3. Web element buckling.

Optimization studies were conducted with faces and cores made of different

materials. It was shown that optimum design occurs when the weight of

the core material is half that of the facing material, and that boron-

epoxy and graphite-epoxy materials provide lower weight designs than do

other materials.

Housner and Stein [68] proposed a simple correction in orthotropic

or anisotropic plate buckling loads to accommodate sandwich plates. This

requires only multiplying the critical stress by [1-(t/h) 3 ], where t is
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the thickness of the core and h is the total thickness of the plate.

This correction factor is based upon the following assumptions:

1. The plate is symmetrically laminated.

2. Bending-twisting coupling is negligible (i.e., each layer has

the same fiber orientation angle (e), except for sign).

3. The core carries no load and undergoes no shear deformation

(or its shear modulus is negligibly small).

It was pointed out that for the second assumption to be valid, "it may

be necessary that t/h to be nearly unity, and that the amount of material

in either cover oriented in the +0 and -0 directions be equal.w

Hyer and Hagaman [223] conducted buckling tests on sandwich plates

having face sheets composed of layers of woven fabric, and cores made of

Hexcel glass-reinforced polymide honeycomb. The plates were loaded uni-

axially, with the loaded edges clamped and the other edges either simply

supported or free.

Zubchaninov [2241] analyzed the stability of three-layer plates

having a central layer of metal sandwiched between glass-reinforced plastic

outer layers. An example is presented for a rectangular plate in pure

shear.

A number of other references are also available dealing with the

buckling of sandwich plates made of laminated composites 1225-232].

7.4. LOCAL INSTABILITY

The effects of delamination and delamination growth upon the buckling

of composite plates were examined by several researchers 1233-235]. Delami-

nation is the result of either imperfection in the manufacturing process,

or is due to developments during the life of the laminate, such as impact

by foreign objects. Delaminations may cause a reduction in the overall
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stiffness of the plate, thereby reducing its buckling loads. Further,

delaminations may grow, depending upon the loading and the toughness of

the material. Clark [ also considered the buckling of laminates

having discontinuous bonding.

Harris, Crisman and Nordby 1225-227] studied the local instability

of sandwich plates having facings made of fibrous composite plies. Four

types of instability were discussed 1226]. These included:

1. Overall plate buckling.

2. Shear crimping

3. Dimpling, or intercellular buckling

4. Face-wrinkling.

These types of buckling are illustrated in Figure 7.13. Face-wrinkling

may occur with either an inward or outward displacement of the face sheet

relative to the core. Outward buckling involves either a tensile failure

of the bond between the core and the facing, or a tensile failure within

the core. Inward buckling may be accompanied by compression failure in

the core. Face-wrinkling is typically analyzed either by treating the

face sheets as beams on elastic foundations, or by a quasi-elasticity

approach. Experimental results were obtained for sandwich plates of two

types: (1) fiberglass face sheets with aluminum, honeycomb cores and

(2) plywood face sheets with foam cores. It was pointed out that experi-

mental results are typically lower than theoretically predicted values,

and that thIs may be due to initial waviness (i.e., deviation from flatness)

nf the face sheets [226]. The local instability fail-,' of sandwich

plates having composite face sheets was also treated by Fogg (see pp.

5-0 to 5-13 in [32 ]), Pearce and Webber [219-221], and Vinson and Shore

"[222](see Section 7.3).

Biot [237] studied the localized edge buckling of a laminated com-

posite plate. The theory developed to deal with this problem included

couple stresses and stress-gradient dependence of the strain. This theory

was subsequently extended to iuoe general laminated plate analysis [238].

239



,.FACING

FACING
CORE

t tttt tt
A.- GENERAL BUCKLING B.- SHEAR CRIMPING

HONEYCOMB ' f lr'ION

CORE FROM
CORE

CORE
- CRUSHING

t t - t tt t t t t t

C.- 0IMPLJNG 0.ID WRINKLING OF FACINGS
OF FACINGS

Figure 7.13. Types of buckling failure for soft-core sandwich
plates.

24u

ow ..... .. . . .* , . . -



7.5. INELASTIC MATERIALS

This section will consider laminate comroites made of materials

which are not linearly elastic.

The buckling of cross-ply plates with nonlinear stress-strain varia-

tion was analyzed by Morgan and Jones [239]. The nonlinear behavior was

characterized by assuming

E. A [1 - B C (7.15)

for each of the material moduli, where A, B, and C are constants to be

determined experimentally for each material. U is the strain energy

density, given by the integrand of Equation A.41, and Uo is a constant

used to nondimensionalize U. Typical stress-strain curves for fiber-

reinforced composite materials are shown in Figure 7.14. The equations

of equilibrium tor the buckled configuration (Equations 6.1) in the most

general case of an unsymmetrical laminate) are satisfied incrementally

by an iterative numerical procedure as the plate undergoes buckling defor-

mation.

Numerical results were obtained for SSSS, cross-ply laminated plates

composed of boron-epoxy, graphite-epoxy and boron-aluminum materials

[2391. The constants A, B, C associated with each composite material to

be used in Equation 7.15 are listed in Table 7.13. The values of inplane

Poisson's ratio (v12) used were 0.225, 0.38 and 0.275, respectively.

Values of o* listed for a few of the material moduli in Table 7.13 are

limiting values of stress beyond which equation 7.15 is no longer valid.

At such a point on the atress-strain curve a linear extension is added

having a slopv given by the value of E* in Table 7.1.3.

Figure 7.15 shows the nondimensional buckling stress resultant Nx

as a furction of Plate thickness for SOSS plates coni6itInq uf a dingle
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Table 7.13. Constants used in Equation 7.15.

A B C o* E*
Material Modulus (GN/m 2 ) (KN/m 2 ) (GN/M 2 )

Boron- E 208 0 1 - -

E 19.8 0 1 - -
epoxy 2 5.52 0.0628 0.462 64.1 0.331

Graphite- E10 159 0 1 - -
Ephie 2 8.76 0 1 - -

eGo12 6.72 0.00144 1.13 88.3 0.779

Boron- El 210 0.00008 1.042 1380 165
alBornu E 186 0.05814 0.723 155 25.0
aluminu G 02 0.154 -399 -0.676 - -
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ply, with the loading along the direction of the fibers [2391. Nx is

divided by the value of Nx which would exist for a linearly elastic ma-

terial (obtained by setting B n 0 in Equation 7.15 for all moduli). This

ratio is seen to decrease from 0.95 to 0.87 for a boron-epoxy laminate

as h increases from 1 cm to 3 cm. For graphite-epoxy, the corresponding

ratios are 0.98 and 0.79. The buckling loads increase as h increases

for both the linear and nonlinear elastic materials. Similar plots are

shown in Figure 7.16 for a unidirectional boron-aluminum laminate. The

total nonlinearity effect is observed to be stronger for this material

than for those in Figure 7.15, the ratio of buckling stress for the non-

linear material to that of the linear material being only 0.35 for h - 1 cm.

In addition, the effects of nonlinearities of each modulus taken separately

is depicted. The shear nonlinearity is most significant for thicknesses

less than 1 cm; however, the nonlinearity in E2 is most important for

h > 1 cm. For three layer (00/900/00), cross-ply laminates similar be-

havior was found, with essentially no dependence upon aspect ratio (a/b)

[2391.

For unsymmetrically laminated, cross-ply plates made of boron-

epoxy, the effect of nonlinearity in modulus was found to be small. How-

ever, for boron-aluminum laminates very significant effects were uncovered,

azý may be seen in Figure 7.17 [239J. The linearly elastic buckling loads

with 2, 4 and an infinite number of layers are very close to each other

and are shown on a single curve in Figure 7.17 because EI /E2 is small,

causing small bending-stretching coupling. However, E1 /E 2 increases
with load for the nonlinear case, causing the corresponding curves in

Figure 7.17 to be much lower. Finally, the variation in -Nxb 2 /E 2 h3 with

number of layers in a boron-epoxy, unsymmetrically laminated, cross-ply

plate is shown in Figure 7.18, considering coupled (exact) and uncoupled

(orthotropic), and linear modulus and nonlinear modulus solutions.

Hahn [240] in an earlier paper analyzed the buckling cf +450 angle-

ply plates having nonlinear stress-strain relationships. The elastic
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moduli were assumed to vary quadratically. In one example for a symmetri-

cally laminated, SSSS plate a small decrease in buckling load due to the

nonlinearity was found. Another paper which deals with the buckling of

a borcn-epoxy plate having nonlinear stresu-strain equations is that by

Durocher and Palazatto [241,242].

Teters [243] used flow theory to describe the plastic properties

of orthotropic plates undergoing buckling. Shear deformation effects

were also included, which were found to be important if E /G13 is large.

For E1/G 1 3 = 60 and a/b = 20, inclusions of shear deformation decreased

the critical stress by 45 percent.

7.6. HYGROTHERKAL EFFECTS

Two effects of the external environment may cause significant in-

ternal strains, thereby affecting buckling loads -. hygroscopic (i.e.,

moisture absorption) and thermal. Both moisture absorption and tempera-

ture increase serve to expand a plate causing internal compressive stresses

due to edge restraints or differential expansion. These effects in the

laminated composite plate buckling problem apparently were first jointly

taken up by Whitney and Ashton [244 ].

An interesting situation was found to develop in plates using graphite

fibers, for these fibers have negative values of thermal expansion coeffi-

cient in the axial direction. It was found that certain orientations of

angle-ply layups for graphite-epoxy plates having certain inplane boundary

constraints can be buckled by lowering the temperature rather than raising

it [244]. This may be seen in Figure 7.19 which is for a plate of aspect

ratio (a/b) of 3 clamped at two opposite edges and free at the other two

edges. The nondimensional buckling temperature change am(.ýT)(b/h) 2 is

plotted versus angle-ply orientation angle (0), where qm is the thermal

expansion coefficient of the matrix material, and .1T is the temperature

2.,, 9
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increase. The plate is composed of 4 layers symmetrically stacked (+0,

-0, -0, +0), and is subjected to a uniform temperature rise. For fiber

orientations 00 < 0 <17.50, the laminate has a negative coefficient of

thermal expansion relative to the x-axis, and a temperature decrease is

required to cause buckling. For 0 = 17.50, the effective coefficient of

thermal expansion in the x-direction disappears, and the plate cannot

buckle by either increasing or decreasing the temperature. For 17.50 < 0 < 900

buckling may be caused only by raising the temperature. It was shown

that plates constrained along all four edges could only buckle with tempera-

ture increase [244].

Hygrothermal effects were also studied by Flaggs and Vinson [245-

247]. A general set of governing differential equations and energy func-

tionals was derived for symmetrically or unsymmetrically laminated plates

with shear and transverse normal deformation effects also included. The

Ritz method was used to solve for buckling loads of plates having S3

simply supported (see Equations 6.2) or C3 clamped (see Equations 6.10)

edge conditions. Displacements in the form of Equations 6.7 were chosen

for the SSSS plates, whereas the w displacement component was changed

for CCCC plates. A parametric study was made for symmetrically and unsym-
.p

metrically laminated, graphite-epoxy, angle-ply plates showing the simul-

taneous effects of temperature change and moisture absorption upon uniaxial

buckling stress resultants. Numerical results for the SSSS and CCCC

plates are shown in Figures 7.20 and 7.21, respectively. In both cases

a symmetric [0, 45, -45, 9014S ply orientation was used, a a b - 12 in,

and h -- 0.176 in. The uniaxial buckling stress resultant -Nx is shown

plotted versus temperature and moisture absorption (M). Considerable

additional numerical results may be found in [2461.
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CHAPTER VIII. POSTBUCKLING AND IMPERFECTIONS

As discussed in Chapter I (Figure 1.1), a linear, bifurcation buck-

ling analysis establishes the critical value of loading for a particular

plate. However, plates are typically capable of carrying considerable

additional load before the collapse (or crippling, or ultimate) load is

reached. In some cases this is even several times as much as the critical

load, although this capability has been found to be less pronounced for

laminated composite plates than for metal plates. Theoretical analysis

of postbuckling behavior of plates is nonlinear, even though the transverse

displacements conf.idered may be only "moderately large" (i.e., on the

order of a few times the plate thickness). The initial nonlinearity is

due to additional inplane strains (and stresses) caused by the transverse

displacements. Additional geometrical or material nonlinearities may

arise during larger transverse displacements after buckling, but these

are typically not considered in theoretical postbuckling analyses.

Imperfections considered are typically geometrical in nature. In

the case of a plate, they are usually measure- of deviation from flatness.

Thus, for example, a SSSS plate may have an initial bow which may be

represented by a half-sine-wave in each direction, where wo is the imper-

fection amplitude. The application of compressive loads in the flat

reference plane defined by the four plate edges causes a change in the

displacement, no matter how small the load. Thus, a curve of the type V

in Figure 1.1 may be followed with increasing load, with no "buckling

load" readily apparent. As wo decreases, curve V approaches curves I

and IV and becomes kinked in the vicinity of the bifurcation buckling

load. Also, as depicted in the figure, as the transverse displacement

amplitudes become very large, the imperfection and postbuckling solutions

become the same. Two other types of situations wheie this type of behavior

occur are: (1) eccentricity due to loads not applied in the elastic mid-

plane, and (2) transverse loads acting simultaneously with inplane loads.
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These problems all are equilibrium problems, in contrast with classical

bifurcation buckling problems, which are eigenvalue problems.

The behavior of plates with geometrical imperfections may be studied

with either linear or nonlinear analysis, depending upon the relative

magnitude of the transverse displacement which will be permitted. For

example, small displacement analysis of plates with imperfection in flatness

may be carried out by linear, shallow shell theory.

An excellent book by Chia 1 151 is available which provides a complete

theory for dealing with the large displacement behavior of laminated

composite plates, including orthotropic, anisotropic and unsymmetrical

laminates. Numerous example problems are also solved therein for plates

undergoing transverse loading, postbuckling, imperfection behavior and

free vibrations.

8.1. EQUATIONS FOR POSTBUCKLING ANALYSIS

After buckling, a plate may undergo transverse displacement which

is relatively large in comparison with the thickness. In this case the

midplane strains given by Equations A.4 are generalized to include addi-

tional terms which account for stretching due to w:

I U2

0 V 2.
cy ýy> a y

3v 9u
xy 3)x *3y 3x 3y'

The added terms, which contain w, are seen to be nonlinear. The curvature

"changes remain related to w by Equations A.5. In using Equations 8.1
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one realizes that they represent a first order correction to the classical

linear theory, and that the added terms are those deemed the most signifi-

cant corrections. For very large displacements, additional nonlinear

terms would be required in both Equations 8.1 and A.5.

Substituting Equations 8.1, A.4, A.5 and A.8 into Equations A.12,

and deleting the pressure components Px, Py and q acting along the plate

surface the following set of equations of equilibrium ensue [15], expressed

in terms of displacements:

11 12 L13 11 I.21
231 3f W aw L22w 0

L21 L22 L 231 w [L1"w] ILw (8.2)

LL3 1  L3 2  L3 3 ! w L13W L23I w

where the 0 subscripts have been dropped from the displacements, but the

displacements are understo-] to refer to the plate midplane, where the

linear differential operators are defined by Equations A.21, and

2u 1u 2w2  21 1 2w .

[ + •y • ]L7 , L [ w -2(B12- ]8 w6[

+ 22w 32w 1w 2

÷ 2(8 1 2 -B6 6 )[ 2 -w- 22  - (0-7 2

(8.3)

with L_. = A11 ;• + 2A 16 22)v + A1 2 2

L = 2 x2 .+
I8 12 -u + 2,%26 2x-- 2( A2.
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a_2 a2  a2  (8.4)
L9 AI a + 2A - + A(69 1()a=x~ 66 axay 2 y

It is observed that the left-hand-side of Equations 8.2 consists of linear

terms as in the classical bifurcation buckling problem, and that the

right-hand-side contains only nonlinear terms which arise from the inplane

stresses.

Equations 8.2 form an eighth order set of differential equations

which govern the postbuckling equilibrium shape of a generally laminated

(e.g.. unsymmetrical) composite plate, with transverse shear deformation

neglected. Certain simplifications are possible for symmetrical laminates.

In one case, when the plate may be treated as anisotropic (e.g., angle-

ply), all Bij - 0, which results in L1 3 = L 3 1 = L2 3 m L3 2 = 0, and some

simplification in Equation 8.3. Further, for a plate which may be con-

sidered orthotropic (e.g., cross-ply) then, in addition, A = A =16 26
D16 - D26 - 0. Detailed simplified forms are given by Chia [15]. It is
important to note, however, that even for symmetric laminates Equations

8.2 remain coupled by means of the nonlinear terms and that a system of

eighth order, nonlinear, differential equations must be dealt with.

The nonlinear, postbuckling solution differs from the classical,

linear buckling solution in a fundamental way in that the former results

from an equilibrium problem, whereas the latter is for an eigenvalue

problem. In both cases the governing differential equations are homogene-

ous. However, in the latter the boundary conditions are also homogeneous,

whereas in the former they are not. Moreover, for the postbuckling problem
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either the inplane stresses or the inplane displacements are prescribed

along the edges, and analysis of the postbuckling problem typically entails

solving for w(x,y) in terms of these edge values.

Formulation of the postbuckling problem for symmetrical and unsym-

metrical laminated plates in terms of w and an Airy stress function is

also available in detail in [15]. In the case of a homogeneous, isotropic

plate the equations reduce to the well known ones originally derived by

von Karman [248]:

V0 [ ( a2w ) 2 2w~
=E axay axa

DV4W h h•2W aO 32W a20 _ 2 a2w 32
L =ax ;y2  =; =a~x aXe)' @XBY (8.5)

where 0 is the Airy stress function and 4h is the biharmonic differential

operator.

8.2. POSTBUCKLING RESULTS

Prabhakara and Chia [15,249] analyzed the postbuckling behavior of

orthotropic plates which represented parallel-fiber configurations made

of glass, boron or graphite fibers embedded in epoxy resin. Numerical

values of the moduli ratio and v for the plates are listed in Table

8.1, as well as for an isotropic comparison plate. The critical values

of uniaxial buckling stress are also given. The Galerkin method was

used to obtain numerical results for SSSS plates subjected to uniform,

biaxial stress. The transverse displacement (w) was taken in the form

of a double Fourier sine series, and the stress function as the double

sum of the products of beam functions. The variation of ax/acr with

wc/h for square plates made of the four materials is shown in Figure

61b. where Ocr is the critical uniaxial buckling stress, we is the plate
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Table 8.1. Orthotropic SSSS plates analyzed by Prabhakara
and Chia.

E1 G2 b2
Material 1 12 -

E2 E1 121ZEIh

Isotropic - - 0.316 0.3704
Glass-epoxy 3 0.1667 0.25 0.1943
Boron-epoxy 10 0.0333 0.22 0.1069
Graphite-epoxy 40 0.0150 0.25 0.0916

Table 8.2. Orthotropic SSSS plates analyzed by Chandra and
Bav-isu Raju.

Plate El* E E* * V
f x y xy yx xy

A 2 1.887 1.577 0.6123 0.3 0.251
5 3.761 1.648 1.061 0.3 0.211

C 10 7.068 3.578 1.409 0.3 0.152
! 20 14.13 4.282 1.714 0.3 0.0909

50 36.39 4.788 1.959 0.3 0.0394
j 100 60.66 5.071 2.062 0.3 0.0218

G 2 1.57? 1.887 0.6123 0.251 0.3
11 5 1.648 3.761 1.061 0.211. 0.3

1 10 3.578 7.068 1.409 0.152 0.3
J 20 4.282 14.13 1.714 0.0909 0.3
K 50 4.788 36.39 1.959 0.0394 0.3

1NO 5.071 69.66 2.062 0.0218 0.3
____ ____ __ ____



deflection at its center, and where GL, BO and GR identify the glass,

boron, and graphite fiber plates, respectively. It may be observed that,

for a given percent increase in axial compressive stress beyond the buck-

lUng stress, the laminated composite plates all require greater deflection

than the isotropic ones with the graphite-epoxy exhibiting the greatest

increase in wc/h. Similar curves are also available for a/b - 1.5 and 2

i2491, and their slopes were found to increase with increasing a/b.

Chandra and Bavasa Raju [250] carried out a postbuckling analysis

of SSSS orthotropic plates by means of expanding each of the displacement

components (u,v,w) in terms of a power series of a peLturbation parameter.

Substituting them into the equations of equilibrium for the postbuckled

state yields an infinite set of linear differential equations, the first

three equations of which correspond to classica.L, bifurcation buckling

theory, which may be called the zeroeth approximation to the nonlinear

analysis. First and second order approximations were obtained and added

to the zeroeth one to represent the postbuckling solution. The solution

procedure was applied to a number of example problems for uniaxially

loaded, parallel-fiber plates having the elastic moduli listed in Table

8.2. Longitudinal fiber moduli (Ef) are also given. T1.us, plates A-F

have their fibers parallel to uhe load, whereas plates G-L have their

fibers transverse to the load. Load - end shortening curves for the

plates of Table 8.2 are depicted in Figures 8.2-8.5 for X = mb/a - 1,

1.33, 2 and -, where m is the number of half-waves in the x-direction.

In these figures P/Po is plctted versus L/'Ao, where P is the load, Po is

the buckling load, A, is the end-shortening displacement, and %o is the

value of ;A at buckling. A curve for an isotropic plate is also shown

for comparison. For a/b = 1 (Figure 8.2), P/Po for plates A-D and the

isotropic plate are all the same.

The "effective didtho" of the plates of Table 8.2 were also calcu-

lated [2501 for the case of mb/a - 1. The ratio be/b is plotted versus
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P/Po in Figure 8.6, where be is the effective width. This is a concept

suggested by von Karman, Sechler and Donnell [251] to describe the portions

of the plate width which carry the loading during postbuckling, assuming

that the ends are shortened by uniform displacements (rather than uniform

stresses). Figure 8.6 shows that when P/Po - 3, the effective width- of

plates having large D I/D2 ratios (e.g., plate F) have be/b < 0.5, wh.ereas

those with small D i/D22 (e.g., plate L) have be/b nearly unity.

j The postbuckling hehavior of CCCC orthotropic plates subjected to

uniaxial loads was also studied by Chia and Prabhakara [15,113]. The

nonlinear problem was solved by the Galerkin method, with both w and

expressed as infinite series of the products of beam vibration eigenfunc-

tions. Results were obtained for plates of various parallel-fiber composite

and isotropic materials, ap described previously in Table 8.1, except

that G ?/E" was taken as 0.2 and 0.0125 for glass-epoxy and graphite-

epoxy plates, respectively. Nondimensignal uniaxial stresses -oxb 2 /E h2
2.

versus Wc/h for various aspect ratio (A = a/b) plates may be seen in

Figure 8.7. The critical buckling loads, which correspond to wc/h = 1

in Figure 8.7 are listed in Table 8.3.

Postbuckling studies _i anisotropic SSSS and CCCC plates were con-

ducted by Prabhakara and Chia 115,252]. Numerical results were obtained

for two cases of square, graphite-epoxy plates: (1) +450 angle-ply plates

loaded in hydrostatic compression (vx1 u" -- constant, ixy - 0) and (2)

parallel-fiber plates having various fiber axis orientations (0) with

respect to a uniaxial loading direction. Material modulus ratios are

those listed in Table 8.1, except G, /E - 0.0125. Postbuckling results

aro, depicted In Figures 8.8 and 8.9, respectively. In the first case,

results are oeen for n - 1,3,5 and infinite numbers of layers. In these

figures, wc/h is plotted versus -uxb'/E.h". For the CCCC plate with

n - 5 in Figure 8.8, -¶xb /Eh - 57.5; whereas for the SSSS plate with

v . 150 in Figure 8.9, it in 31.7.
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Noor, Mathers and Anderson [253] discussed how taking into account

the symmetry of the problem (geometrical configuration and deflection

pattern) may reduce computational time significantly in postbuckling

analysis of laminated composite plates. Both symmetric and unsymmetric

laminates were considered. Shear deformation effects were also included

in the study. NumeKical results for the postbuckling behavior of biaxially

loaded gi iphite-epoxy plates were presented, including both load-transverse
displacement and load-shortening curves.

Turvey and Wittrick [254,2551 examined the postbuckling of SSSS,

unsymmetrically laminated, carbon-epoxy, square plates made up of two,

a:.-iE-ply layers. Load-shortening curves were plotted for three plates

ha&.ing 0 - +300, +450, +600. These are shown in Figure 8.10. where uo

is the inplane, end - shortening displacement in the direction of the

loading. For each plate, two points of bifurcational buckling and two

postbuckling branches are seen. The lower one in each case is for the

complete, unsymmetrical analysis, retaining Bij coupling stiffness terms.

The upper one corresponds to an orthotropic analysis obtaining by setttng

all Bij - 0. It is observed that, although the buckling stresses are

greatly affected by the bending-stretching coupling, the postbuckling

stiffnesses are unaffected by it. Load-displacement curves were also

determined for symmetrically laminated, CCCC, anisotropic plates loaded

in shear, comparing the effects of neglecting or including the bending-

twisting stiffnesses (D16 ,D 2 6) in the postbuckling analyses 1254,255].

Postbuckl!ng analysis of unsymmetrically laminated, SSSS plates

was carried out by Chia and Prabhakara [15,1811. Results were determined
for glass-epoxy, boron-epoxy and graphite-epoxy plates having moduli

ratios as given in Table 8.1, except G 2/El - 0.0125 was used for graphite-
epoxy. Load-deflection curves for 4-layer, +450 angle-ply, square plates

are depicted in Figure 8.11. The loading is uniaxial, except for the
graphite-epoxy plate (GR) which is also subjected to hydrostatic compression
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(a Cy constant, Txy = 0). Bending moments at the centers of the

plates in their postbuckled configurations are shown in Figure 8.12.

Postbuckling analysis of SSSS angle-ply plates was also carried out by

Harris [182].

Prabhakara [2561 and Chia 115] also considered unsymmetrically

laminated, SSSS, cross-ply plates having 2, 4, 6 and an infinite number

of layers of graphite-epoxy material. Critical uniaxial buckling loads

were presented which agreed with those determined by Jones [158] . However,

the load-deflection curves presented, resulting from both linear and

nonlinear analysis, showed "bending of the plate even in the pre-buckling

range, owing to the existence of coupling" [256]. This is contrary to

the above-mentioned bifurcation buckling results. These curves are shown

in Figure 8.13 for square plates having the graphite-epoxy modulus proper-

ties listed in Table 8.1, except G I/E1 = 0.0125. The buckling stress

parameters listed for the plates of Figure 8.13 were given as [15]:

-Cxb 2 /E h' - 12.6282, 30.0301, 33.2527, 35.8307 for n = 2, 4, 6, - layers,

respectively.

Postbuckling load-deflection curves were also obtained by Chia and

Prabhakara [15,181] for CCCC, unsymmetrical, cross-ply plates with graphite-

epoxy layers having the same material properties described above for

Figure 8.13. These curves are presented in Figure 8.14. Similar curves

for uniaxially loaded glass-epoxy, boron-epoxy and graphite-epoxy plates

and hydrostatically loaded (Ox = Uy) graphite-epoxy plates having four

layers are seen in Figure 8.15. Glass-epoxy and boron-epoxy material

properties are listed in Table 8.1.

Comparison of load-deflection curves for 4-layer, +450 angle-ply,

graphite-epoxy plates having a/b - 1.5 subjected to uniaxial compression

(ax = constant, Qy ' xy = 0) may be made between CCCC and SSSS edge

coriitions in Figure 8.16 U15,181]. In this case, the buckling mode

275

- ° . . . .



Linear •. n -6
Nonlinear'

n 4
2

-- , 2 n

0 tO 20 30 40 50

E2 t?

Figure 8.13. Displacement-load curves for SSSS, unsymmetrically
laminated, cross-ply plates (a/b 1 ).
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3hape has two half-waves in the x-direction, and the displacement is

therefore calculated at x = a/4, y - b/2.

Prabhakara and Kennedy [186] made a study of the postbuckling behavior

of unsymmetrically laminated, angle-ply plates loaded in shear (ax =

Gy = 0, TXy - constant). Results were obtained for glass-epoxy, boron-

epoxy and graphite-epoxy laminates having layer moduli given by Table

8.1, except that G /El = 0.0125 for graphite-epoxy. Deflection-load
121

curves for various plates are shown in Figures 8.17-8.20, where wc is

the deflection at the center of the plate. In Figure 8.17 +450 angle-

ply, SSSS, square plates having two layers are considered. The effect

of number of layers (n) for graphite-epoxy plates are seen in Figure

8.18. Results from both linear and nonlinear analyses are shown. Figure

8.19 shows the influence of orientation angle, e , on the curves for two-

and four-layer, graphite-epoxy, SSSS square plates. The effect of aspect

ratio (X = a/b) for +450, four-layer, graphite-epoxy, SSSS and CCCC plates

is described by Figure 8.20.

Hui [178] considered the initial postbuckling behavior of antisymmetri-

cally laminated, SSSS, cross-ply plates subjected to uniform inplane

shear stress. He showed that the initial mode of buckling for non-square

plates is asymmetric.

An extensive experiment.'l program to study the buckling, postbuckling

and crippling (i.e., ultimate failure) of graphite-epoxy and boron-aluminum

laminated composite plates has been conducted by Spier, Klouman and Wang

[257-263]. The plates typically were uniaxially loaded, with the loaded

edges clamped, and the other two either simply supported or with one

edge simply supported and the other free (i.e., CSCS or CSCF with Ox

constant, uy - Txy - 0). These plates were also used to represent a

section of a stiffening element. An example of a load - end shortening

plot made for two CSCF, graphite-epoxy specimens of nearly identical
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dimensions with a/b - 4.5 is shown in Figure 8.21 [260]. The sudden

drop in loading for one of the specimens was due to a jump from a two

half-wave displacement pattern to one having three half-waves. For both

graphite-epoxy and boron-aluminum composites, experimental crippling

loads were found to be considerably less than theoretically predicted

values [258,263].

A postbuckling analysis of BBSF orthotropic plates subjected to

uniaxial loading was made by Banks and Rhodes (264]. The elastically

constrained unloaded edge had rotational restraint. This type of piate

may represent the flange of a composite channel section.

An experimental ntudy of the postbuckling behavior of CCCC laminated

plates loaded in shear was carried out by Kaminski and Ashton [265,266].

Nine boron-epoxy plates having cross-ply end angle-ply orientations were

tested. A subsequent theoretical correlation with these results was

made by Shariffi [87]. Experimental results for this type of problem

were also obtained by Kobayashi, Sumihara and Kihara [2671 and compared

with theory.

Postbuckling studies of laminatod composite plates with holes have

also been carried out. Ter-Emmanuil'yan (268] examined a SYSF, orthotropic,

square plate having a central square hole. Starnes and Rouse (269) made

an experimental investigation of BCSC, graphite-epoxy plates (oy w constant,

Ox 0 Txy - 0) with circular holes. Knauss, Starnes and Henneke [2701

also considered circular holes.

A considerable amount of additional research on the postbuckling

behavior of laminated composite plates may be found in the literature

[38,173,191,271-299].
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8.3. IMPERFECTION ANALYSIS

Bhattacharya [3001 made a study of symmetrically laminated, cross-

ply plates having initial imperfections subjected to uniaxial loading

(0y = constant, ax xy - 0). The plate edges were taken to be simply

supported with elastic rotational constraint (cf., Equation 3.49). The

governing equations were taken in the forms using the transverse displace-

ment (wl and the Airy stress function (f), and may be written as

A* -4+ (2A* +A* I + A*22 ax 12 66 3 y 11 ay

(3 2 w )2 _ 2w 32w + 2  3 2 w 32ý a2 w a2ý ;2w (8.
-~ =ax2 3y1 + ~ 2x - ax1 =By 3y1 ax1

a w3 w

D* 3- 4 " D + wD* ) + D 34W
1l1 12 r.663 y 22y

32)2 -32 32 _ a 32 a
34 •7(w +) + =,(w + w) - 2 -xy 3-Zy(w + w)

where 9 is the initial transverse displacement due to the imperfection,

w is the additional transverse displacement due to the applied load, and

the Atj and Dtj are coefficients arising from a partial inversion of the

stiffness relationships (see Equation A.30). Equations (8.6) are seen

to he similar to Equations A.32 and A.33, with the following

modifications:

1. A16 A*26 - Bij a 0, to specialize to the orthotropic form for

a symmetrically laminated, cross-ply plate.
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2. Nonlinear bending-stretching terms of the type found in Equations

8.5 are added to the right-hand-sides.

3. Additional linear terms appear on the right-hand-sides to account

for the effects of the initial imperfection.

An approximate solution to Equations 8.6 was assumed [300] in the form

of double series of the products of beam vibration eigenfurctions for

both 0 and w, and W was also assumed in this form. The Galerkin method

was used to provide numerical results.

Results were obtained for square plates composed of five layers,

having equal rotational constraints along all four edges [300]. Figures

8.22 and 8.23 show plots of the nondimensional uniaxial loading parameter
2/4A2h versus wc/h, where wc is the displacement at the center, for

carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic

(GFRP) plates, respectively. Ratios EL/ET a 7.6 and 2.0 were used for

CFRP and GFRP plates, respectively, and GLT/ET - 0.4, '"LT - 0.3 were

used for both plates. Two sets of curves are shown in each figure, corres-

ponding to zero and small (wc/h a 0.1) imperfections. For each set,

curves are drawn corresponding to various rotational stiffness parameters

K (- akr/2A2 2h 2), and kr is the rotational stiffness defined by Equation

3.49. For K - 0, the plate is SSSSI for K - =, it is CCCC.

The effects of load eccentricity were considered by Sallam and

Simitses [301]. Uniform, uniaxial, inplane stresses -ax were applied

with an eccentricity (e, measured positive in the positive z-direction)

to unsymmetrically laminated, SSSS, +450 angle ply, graphite-epoxy plates.

The same material properties used by Chia and Prabhakara [15,181] in

their postbuckling studies (see Section 8.3) were assumed (Ell - 30xlO6psi,

E22 0 0.75xl06psi, (12 - 0.375x10 psi, v 12 - 0.25). Load-deflection

curves were plotted for two- and four-layer plates having a/b - 1 or 2,

288

o,



coS
A4

add

-1

.44 -1

0u L4s
4) OEU

.> ..a " '~.1.4

55 iS :3

.4 40 kis 0

* i4
is' I seco

* U)

hd . 4 0 J,01

T -T 1~

00 .4 0)
'.g4 4'0 .

N 5 '-

289\



a

" 0

'0 0to-

0, c

\\

\ \
\ \#

0 w

00

44 c

0 1f I s,.

-C =1 *1 , 11. 11 i.0L -q

0

:- 5

290

S.... .. r '" " "•| II I "" "r '"IS II Ii II I



and values of e/h varying from 0 to 0.1. These are shown in Figures

8.24 through 8.27, where wc is the transverse deflection of the center

of the plate. In Figure 8.26 the results of Chia and Prabhakara [15,181]

are also shown for e = 0.

Inasmuch as it is impossible to fabricate plates which are perfectly

flat, test specimens will always have some initial imperfection. Southvell

[40] derived a very useful formula for estimating both the critical load

and the amplitude of the imperfection from experimentally determined

data. It is extendable to laminated composite plates. Let wo be the

displacement of the plate at any point in the unloaded condition (usually

measured at the plate center or at a point of maximum anticipated displace-

ment) - that is, the imperfection amplitude. Let L be the additional

deflection at the same point resulting from the inplane load, P. It can

be shown that A/P can be linearly related to A by the equation

A o
- t • A t -- (8.7)

cr

Thus if the experimental data is plotted on a graph having 6/P as ordinate

and 6 as abscissa, and a best-fit straight line is drawn through the

data, then the reciprocal of the slope of the line is Pcr, and the inter-

cept with the abscissa is -wo.

1Mandell [34] obtained load-displacement data for each of the numerous

composite plates he tested (see Tables 2.1, 5.4, 6.3) for both SSSS and

SFSF edge conditions and made Southwell plots (A/P versus 6) for each

case. A representative one for plate 201 - a graphite-epoxy, cross-ply

laminate (see Table 2.1) - is shown in Figure 8.28. Also shown in the

same figure are theoretical and experimental curves of P versus A. The

theoretical curve was obtained by the nonlinear finite element method

developed by Monforton [173], assuming no geometrical imperfection.
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Figure 8.24. Load-displacement curves for eccentrically loaded, two-
layer, SSSS, angle-ply plates (a/b- 1).

292

AZ



40

30

e/=

-00-(TX• 0-04
E22hz 20 i0-06_2 b0-08

0-10

10

0 •I .. , . I, •
0 0.5 1.0 1.5 2.0 25 3.0

Wc
h

Figure 8.25. Load-displacement curves for eccentrically loaded, two-
layer, SSSS, angle-ply plates (a/b - 1).
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Banks 13021 conducted postbuckling experiments on unidirectional

fiber, SSSS, orthotropic plates made of glass reinforced plastic. Large

deflection resilts and postbuckling stress distributions were obtained

for plates subjected to uniaxial loading consisting of constant in-plane

displacement. Experimental results were compared with theoretical curves

for initial imperfection amplitudes wo/h - 0 and 0.5. Banks, Harvey and

Rhodes [3031 made a study of alternative methods of expressing the inplane

boundary conditions during the moderately large deflections of uniaxially

loaded composite plates having geometric imperfections. Girn and Simitses

(304] analyzed the behavior of an SSSS anisotropic plate under the simul-

taneou3 action of inplane and transverse loads. Aalami and Chapman [3051

treated similar problems for orthotropic plates.

The effect of sign in the imperfection (i.e., positive or negative

initial curiature) upon the initial postbuckling behavior was examined

by Hui f306j. It was shown that, in certain circumstances, the initial

postbuckling behavior will be unstable (i.e., negative slope in the load-

displacement curve) rather than the customary stable form.

Meffert, Derek and Menges [307] considered the creep deformation

of SSSS laminated composite plates with initial imperfections subjected

to uniaxial compression. The creep effect was accounted for by assuming

an exponential decay of the elastic moduli with time.
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CHAPTER IX. STIFFENED PLATES

Stiffened plates typically consist of plates having attached stif-

feners lying parallel to one of the edges. They are usually designed to

provide additional stiffness in the direction of primary, uniaxial loading.

Stiffeners may be of a variety of shapes, for example, I, Z, T, J, hat,

box, angle, blade or sandwich blade. Examples of four of these shapes

are seen in Figure 9.1 [3081. The stiffeners may be integrally fabricated

with a plate, or may be attached. A plate may also be stiffened by pre-

forming it into corrugations.

The buckling modes of a stiffened plate (or panel) may be quite

complex, even under relatively simple loading conditions such as

uniaxial, uni~urm compression. The presence of bending/twisting and/or

bending/stretching coupling due to laminate layup serves to complicate

the modes further. The buckling modes may be generally classified as

oveLall or local, depending upon the wave lengths of the patterns.

Williams and Stein [309] divided the classification of buckling modes of

open-section stiffened panels into local, twisting and column buckling

modes. Examples f - a repeating section of a J-stiffened plate are

shown in Figure 9.2. These modes involve either relatively independent

or strongly coupled displacements of the plate sections (skins) and

stiffening elements (webs). The "column" mode corresponds to one

dimensional buckling of each repeating section essentially independent

of the adjacent sections.

To deal with local buckling modes it is at least necessary to

subdivide the stiffened structure into a series of rectangular plates

joined to the stiffeners by proper continuity conditions. This allows

local buckling between the stiffeners. Further refinement consists of

subdividing the stiffeners as well into plate elements, which accounts

for the possibility of very localized buckling within stiffener

segments. Presum!)1y, this latter rcfincmcint alto more accurately

represents the stiffeners of the entire plate structure.
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Figure 9.2. Characteristic buckling modes of J-stiffened plates.
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However, to deal with thC Lb.ined buckling investigation described

above, complex computer programs (codes) are necessary. Listed below

are four relatively widely used codes capable of buckling analysis of

laminated composite plates with stiffeners, along with literature sourcen.

These sources may consist of publications describing the theoretical

background, user's manuals or applications to specific problems.

1. BUCLASP (Buckling of Laminated Stiffened Plates) - References

92, 93, 309-315.

2. NASTRAN (NASA Structural Analysis) - References 311, 318

3. STAGS - Refc=.?nces 308, 309, 319, 320

4. VIPASA (Vibration and Instability of Plate Assemblies, including

Shear and Anisotropy) - References 308, 309, 321-326.

These buckling analysis codes sometimes are used as parts of larger optimi-

zation procedures leading to efficient designs. Compared with metallic

stiffened plates, the number of design parameters which may be varied is

significantly greater.

The information given below is intended to give some samples of

the large amount of information which is available for the buckling of

laminated composite plates having a large variety of possible stiffeners.

The reader is referred to the individual publications for details such

an plate and stiffener detailed dimensions, laminate layups, etc.

Williams et al. [308] made a comparison of bifurcation buckling

loads obtained with various computer codes for a blade-stiffened BSSS

composite plate. The configuration analyzed consisted of a 7.6 cm square

plate with six stiffeners. Combined shear and longitudinal compression

(in the direction of the stiffeners) loading was applied. Interaction

curves for critical combinations of shear and longitudinal stress resultants

are shown in Figure 9.3. The two distinct data points were obtained by
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Figure 9.3. Comparison of theoretical buckling loadx from various
analyses for a blade-stiffened plate subjected to
combined longitudinal compression and shear loading.
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an accurate, two-dimensional analysis using the STAGS code for the square

plate. The VIPASA code was also utilized. This code is one-dimensional

(i.e., two opposite edges are simply supported, exact solutions similar

in form to those described in Section 3.1 are used, and boundary conditions

may he specified only on the two edges parallel to the sLiffeners) and

is therefore more economical than STAGS. The solid (lower) curve shows

the interaction curve obtained with VIPASA with the plate having its

side edges simply supported. The dashed, lower curve was also obtained

with VIPASA, where the stiffeners were "smeared" out to represent an

orthotropic plate. The same orthotropic plate was then analyzed with

the two edges perpendicular to the stiffeners being simply suppported,

yielding the upper dashed curve. The large difference between these

curves shows the importance of correctly representing the boundary condi-

tions on the edges normal to the stiffening. Finally, an wadjusted"

VIPASA curve is depicted in Figure 9.3, which results from applying a

correction factor obtained from comparing the lower two curves to the

upper dashed one.

An interesting set of curves showing the relative structural effi-

ciency of various types of stiffened plates to withstand uniaxial buckling

loads may be seen in Figure 9.4 [308]. The mass index (W/AL), which is

the mass per unit area of stiffened plate divided by the plate length,

is plotted versus the load index (Nx/L). The PASCO 1327] code was used

to optimize the various designs. It is seen from Figure 9.4 that the

blade- and I-stiffened plates give nearly the same results and are least

efficient of the graphite-epoxy constructions. Honeycomb sandwich-blade-

stiffened plates are seen to be approximately 20 percent lighter. The

lightest design employed graphite-epoxy, hat-stiffened plates. These

latter plates weighed 60 percent less than aluminum hat-stiffened plates,

which are also included in Figure 9.4. A similar plot for blade-stiffened,

graphite-epoxy plates designed for specific ratios of combined in-plane

loads is shown in Figure 9.5. These were 76 cm square plates. The optimum
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number of stiffeners varied with loading from 16 to lightly-loaded plates

(Nx/L 0.07 to 0.10 MPa) to 8 for heavily-loaded plates (Nx/L 5 5 to 7
14P&).

Wittrick and Williams .120,3261 developed a procedure for obtaining

exact solutions for the buckling of anisotropic, stiffened plates which

became known as the VIPASA computer code. This analysis permits the use

of anisotropic (but symmetrically laminated) plates and arbitrary (but

constant) components of combined (0 x& aye Txy) inplano stress. Plates

and stiffeners are made up of component plate segments, each joined together

by appropriate continuity conditions.

Recently, Wittrick and Horsington [325] set forth an accurate procedure

for analyzing the buckling of stiffened composite plates which circumvents

two of the limitations of the VIPASA codes

1. When the component plates of the structure carry shear as well

as compression, only the local buckling modes may be found.

2. Typical stiffened-plate assemblies require using 1300 to 2000

rectangular plate elements, leading to characteristic determinants

of order 8000 to 21,000.

The procedure is based upon the Ritz method and assumes displacements

for SSSS plates in the form of Equation 2.40. The resulting computer

code was called CASIOPEIA (Compression And Shear Instability of Orthotropic

Panels), and was found to yield accurate results for six stiffened panels

previously analyzed by NASA using an extremely expensive finite element

method.

Viawanathan, Soong and Millec [92,93] developed the method for

analyzing stiffened composite plates which resulted in the BUCLASP code

1310]. Correlations with buckling tests were made for hat- and angle-

stiffened, composite plates, as well as isotropic honeycomb, sandwich

plates reinforced internally with boron composite strips.
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Structural efficiency studies were mAde by Williams and Miku]as

[3171 on graphite-epoxy plates having hat-stiffened and open corrugation

configurations. From the theoretical results, selected configurations

were fabricated and tested to study local and overall buckling character-
istics. Experimental results were obtained for 23 plates critical in

local buckling and six critical in overall buckling and were compared
with theoretical data obtained using the BUCLASP-2 code. Theoretical
studies indicated potential weight savings of up to 500 for similar con-

figurations made of aluminum. Another similar set of theoretical efficiency

studies with J- and blade-stiffened, graphite-epoxy plates was made by

Williams and Stein 1309]. STAGS, BUCLASP-2 and VIPASA codes were used

in the analysis.

Agarwal and Davis [3Z8] used a structural synthesis technique to

determine optimum hat-stiffened, graphite-epoxy compression panel designs.

3uckling loads and modo shapes were calculated with the BUCLASP-2 code.

Optimization results showed a 50-percent weight savings over optimized

aluminum panels.

Bushnell [329] demonstrated the PANDA code by comparisons with the

results of Williams and Stein [3091 for a blade-stiffened composite plate.

Theoretical analysis and experimental testing of a boron-aluminum

laminate with closely spaced stiffeners was reported by Spier [3301. It

was necessary to analyze the laminate material in its inelastic range.

This design was found to yield weight savings of 34 and 42 percents over

equivalent aluminum-alloy and titanium alloy designs, respectively.

Stein and Housner [69] analyzed the shear buckling of an SSSS ortho-

tropic plate having a single central stiffener which is interrupted by a

break.
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Mass optimization studies for uniaxially loaded, stiffened, composite
plates were made by Stein and Williams 13111. In particular, sandwich-

blade stiffeners were employed, in which the webs of the blade stiffeners

are composed of high strength composite material bonded to a low-density

core such as aluminum honeycomb. This has the effect of increasing the

critical twisting and local buckling strains without appreciably increasing
the total structural mass. An analysis method was developed which was .

compared with BUCIASP 2 and NASTRAN codes on sample problems.

A procedure for designing uniaxially stiffened plates made of com-

posite material and subjected to combined inplane buckling loads was

described by Stroud, Agranoff and Anderson [324]. The procedure is based

upon the VIPASA code. Complex, local buckling modes as well as overall

buckling were considered.

Stroud and Agranoff 13311 developed a procedure for analyzing hat-

stiffened and corrugated composite plates subjected to uniaxial (in the

direction of the stiffeners) compression and shear loadings. Numerous

curves were plotted showing the structural efficiency of such plates as

stiffener and plate thicknesses are varied.

The effect of one-dimensional (bow-type) imperfection on the inplane

load carrying capacity of graphite-epoxy, blade-stiffened plates was

studied by Stroud, Anderson and Hlennessy [332]. The VIPASA code was

modified to permit the imperfection analysis. The effects of bow-type

Imperfections are also discussod in 1308].

Turvey and Wittrick [3331 made comparisons of the buckling stresses

of CFRP composite plates having open (blade), closed (box) and Z-type

stiffeners with those of corresponding aluminum plates. Comparisons for

troughed (corrugated) plates were also made.
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Chiu (334] considered the buckling of uniaxially loaded CFCF laminated

composite plates having attached stiffeners composed of both metal and

composite portions. Theoretical and experimental results were compared.

Because the buckling loads predicted theoretically were much higher than

test results, a simplified method to accommodate plastic behavior of the

metal beyond the yield point was developed.

Experimental and theoretical studies of the shear buckling of a

graphite-epoxy plate having J-stiffeners in its interior and along its

edges were made by Davis [335]. Theoretical calculations were made with

the VIPASA code.

Gunnink, Vogelsang and Schijve (336,337] studied the buckling of

orthotropic plates made of ARALL (Aramide Reinforced Aluminum Laminates)

having Z-stiffeners.

Hui and Hansen [338] took up the buckling of square, antisymmetric,

angle-ply plates with stiffeners attached to unloaded edges, while the

loaded edges are simply supported.

Buckling and postbuckling static tests of shear-loaded graphite-

epoxy plates were conducted by Ostrom [3391. Integral J-stiffeners were

located internally, parallel to the plate edges. The postbuckling behavior

of multibay composite shear webs was explored by Agarwal [272]. Hat and

I stiffeners were added to graphite-epoxy plates to form the webs. Both

theoretical and experimental results were obtained. Composite shear

webs were found to have significant postbuckling strength. Several other

postbuckling studies for stiffened composite plates have been reported

[191,260,340-3461.

Symmetrically laminated SSSF plates having integral blade and Y-

stiffeners were considered by Lackman and Ault [99]. Weight optimization

studies were condue-fct1 for ,un1axia] loadine.
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Kicher and Martin (see [191], pp. 206-209, and [190]) investigated

the buckling and postbuckling of SSSS symmetrically laminated plates

with circular holes, with or without stiffeners around the hole periphery.

Both theoretical and experimental data were obtained.

The vast majority of references in this chapter dealing with stiffened,

orthotropic or anisotropic plates are aimed at aerospace structures.

One also finds buckling analysis of such configurations found for bridge

decks [347] and ships [348].

Other references taking up the buckling of composite plates with

stiffeners are 134,349-367].
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CHAPTER X. BUCKLING OF CYLINDRICAL SHELL PANELS

This chapter is devoted to the bifurcation buckling of laminated

composite panels having curvature. Such configurations are properly

called "shells" (although one sees the term "curved plate" sometimes

used in the non-academic literature). Indeed, a plate may be considered

to be a special case of a shell having zero curvature.

General shells are described by three components of curvature along

every point giving rise to a wide variety of shell configurations (e.g.,

circular cylindrical, noncircular cylindrical, conical, spherical, ellip-

soidal, hyperbolic paraboloidal). The present work will limit itself to

circular cylindrical shells which is, by far, the case most frequently

studied in the literature (more has been written for these shedls than

all other types together), and which is particularly important for lami-

nated composites.

Moreover, the present work will bc limited to shell panels - that

is, open rather than closed cylindrical shells. Such a panel is depicted

in Figure 10.1. The shell has radius R, axial length a, projected width

b, rise c and thickness h. A shell, like a plate, is mathematically a

two dimensional configuration, its behavior being characterized completely

by its middle surface. Thus, two coordinates attached to the middle

surface described its deflected (e.g., buckled) shape. For the circular

cylindrical shell these are the axial (or longitudinal) coordinate (x)

and the circumferential coordinate (a), as shown in Figure 10.1. For

the latter, the arc length y - RO is sometimes substituted.

Isotropic shells are governed by tcinth order sets of differential

equations which describe the configuration displaced in an equilibrium

state. Laminated composite shells also yield eighth order sets of equations,

although they are algebraically somewhat more complicated due to the
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Figure 10.1. Circular cylindrical shell panel.
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relatively large number of stiffness coefficients involved (for an iso-

tropic shell there are only two). Thus, four boundary conditions must

be specified along each edge to completely define a problem.

One set of boundary conditions deserves special mention. This is

the shear diaphragm (also called "simply supported" or "freely supported"

in the literature). For the unsymmetrically laminated plate they were

called s2 conditions (see Equation 6.2). For such conditions on all

four edges and uniform axial and/or circumferential loading, an exact

solution for buckling of orthotropic (i.e., cross-ply or unidirectional

plies parallel to the edges) is available. This is given by Equations

6.3, where now u and v are tangential displacements in the x and y (or

0) directions, respectively, and w is the transverse (or normal) displace-

ment component. Interestingly enough, exact solutions are also theoreti-

cally possible when only two opposite edges (either straight or curved

ones) have shear diaphragm conditions (cf., pp. 83-85, [1681), but the

algebraic complexity is so overwhelming as to make a properly convergent

approximate solution more desirable. Furthermore, the case when the two

straight edges have shear diaphragm supports (and included angle o =-r/n

radians, with n an integer) is identical to that of a closed circular

cylindrical shell buckling into a mode shape having two or more circumfer-

ential half-waves.

No attempt will be made in this work to present a derivation of

shell buckling equations for laminated composites. The procedure is

quite intricate and can lead to various final forms of equations depending

upon assumptions which must be made at various stages of the process.

For a careful exposition of the steps and assumptions involved in deriving

shell vibration equations, the reader is referred to Chapter I of Reference

[168]. Buckling equations (or shell vibration equations with initial stresses

present) are even more complicated, for they require consideration of

infinitesimal displacements from a previous, loaded equilibrium state.
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10.1. CYLINDRICAL SHELL BUCKLING BQUATIONS

The equations governing the equilibrium, buckling or vibrat on of

a homogeneous, isotropic, thin plate are uniformly agreed upon by essen-

tially all academicians. For laminated, composite plates essential agree-

ment is also found, even in the case of unsymmetrical laminates where

bending-stretching coupling exists. However, the situation is different

for shells. Equations for the bifurcation buckling of a circular cylin-

drical shell may be written in matrix form as

[L] {u} = {0} (10.1)

where !u) is the vector consisting of the three displacement components,

and [L] is a matrix differential operator containing two parts; i.e.

[L"] [LS] - [Li] (10.2)

[L] represents the stiffness of the shell, whereas (Lij Lesults from

the initial stresses (prior to buckling). 1LO] can take many forms,

depending upon assumptions made in deriving thin shell theories, even

for an isotropic shell (cf. [1681, pp. 32-34), and the results for buckling

loads may differ significantly depending upon the theory used. DiGiovanni

and Dugundji [368] (see also [168], pp. 188-189) developed [L1] matrices

for anisotropic, circular cylindrical shells for several of the most

widely used theories. It is also found that the initial stress matrices

fLi] will differ, depending upon the assumptions made in deriving the

various theories (cf. [168], pp. 232-234).

Viswanathan, Tamekuni and Baker [369,370] developed a theory for

the buckling of laminated composite, cylindrical shells. In examining

their equations of equilibrium for the buckled state, it is found that

the stiffness matrix may be expressed as the sum of two parts, i.e.,
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[LS] * [LS Ij + [LO ] (10.3)

where [L8 1] is a matrix operator having elements defined in the Appendix

by Equations A.21, and the elements of[Ls 2 ]are

S2 0L lO
11

2 4D §32 / 4D2 6  a2 2 32
L','2  / (--6 R (X6B26 +R )/ 30~y (2 22+ ay

32 2  a2  a
L 2B 4B - +2 2 233 2B12 + 4B26 xy+ 222 + +

"s2 s2 a322
L2 L 21 2,B" B12 + 2Ba -3y B26 =5 (10.4)

Ls2 L s2 3,-A a a
13 31 12 TX 26 y-

s2 = L 2 6 + A 22 63
2 3  32 = 2 6 + ) x + + ax,

23 32

(D 1 2  4 x, y 26 3x22•

It is observed that Equation 10.3 yields the differential operator [L 1 ]J

for unsymnetrically laminated composite plates as the curvature (l/R)

approaches zero. Elements of the initial stream matrix operator were

found to be [370]1

Li -N 

'2

1 32 N pLi -N =3 + 4- t

22 xX Rx

21 92 32 32Li 1 + 2Nx + N

33 X =ax 2 xy axay Ny 5y'
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Li i N a2 +M

12 21 xy\37 3y/
N

Li L i xy 3
13 S1 R 3y

± N N (10.5)

Li Li xy- +
33 32 R Tx R ay

with Nx and fly positive in tension. In Equations 10.5 it is observed
that Li and Li become zero as 1/R approaches zero, which yields Equation

13 23
5.1 in the case of a symmetrically laminated flat plate; however, for

the unsymmetric laminate, other elements of Equations 10.5 do not vanish

and the result is not consistent with Equation A.20.

10.2. NUMERICAL RESULTS

Soldatos and Tzivnidis [3711 derived a Donnell-type cylindrical

shell theory for the analysis of cross-ply laminates. An exact solution

was presented for the buckling of a shell panel supported by shear dia-

phragms on all four edges and subjected to unifo.r axial and/or circum-

ferential stresses. Numerical results are shown in Figure 10.2 for the

case of an unsymmetric laminate having one 900 layer with circumferentially

directed fibers located second from the bottom (see Figure 6.4) which

had been studied by Jones 11581 for a flat plate (see Section 6.1). The

circumferential stress buckling parameter -Nyb2/E 2 h 2 (where b is the

circumferential curved width of the panel) is plotted versus the included

angle ( 0o - b/R), which is a measure of the shell shallowness, for a/b -

1, a/h - 20, and for a graphite-epoxy material having E2 /E! * 40, G12 /E 2

0.5 and v12 - 0.25. Figure 10.2 shows that all the unsymmetrically lami-

nated panels have more circumferential buckling resistance than the one

having all 00 layers (i.e., all fibers directod axially). However, the

3 layer configuration, which is a symmetric laminate, is seen to buckle

at larger loads than all the unsymmetric laminates.
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Figure 10.2. Circumferential buckling parameters for shear-diaphragm
supported, cross-ply shell panels.
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Viswanathan, Tamekuni and Baker [369,370] conducted extensive para-
metric studies of the influences of curvature and inplane boundary condi-

tions on the buckling of symmetrically laminated, boron/epoxy shell panels

of infinite length. The panels contained eight layers (0/900/÷450/-45Os,

each layer being 0.014 cm thick, yielding a total thickness of 0.112 cm.

Composite material properties used were: E 20.7xl10 N/02 (30.Oxl06psi),
E22 0 1.86x10' 0 N/m2 (2.7xlO6psi), G, - 0.48x10 N/rn (0.7xl0 psi) and
V12 a0.21. All panels were 25.4 cm (10 in) in projected planform width,

b (see Figure 10.3). Six possible combinations of inplane boundary condi-
tions along the straight edges were investigated (Figure 10.3). The

out-of-plane boundary conditions were clamped (w a Dw/ax - 0). The curva-
ture parameter 62/Rh was varied between 1 and 1000, where b is the cir-

cumferential acc length.

Critical values of the axial stress resultant Nx are shown in Figure
10.4 13701. Numbers designating the curves correspond to the inplane

boundary condition code listed in Figure 10.3. Variation of circumferential

buckling stress resultant NY with X/6, where A is tho axial half-wave

length of the buckle pattern is depicted in Figture 10.5 for b2/Rh - 300.

Abrupt changes in the curves occur where the buckling mode shape changes

drastically. Results from using a Donnell-type shell theory deviate

significantly from the more accurate analysis for large X/b. Figure
10.6 shows a more abrupt change in the vicinity of A/& - 100 for a shell
panel having boundary condition type 4 and 6 /Rh a 1. Variation of NY
with b2 /Rh for various edge conditions is seen in Figure 10.7. Changes

in shear stress resultant Nxy with A/b are depicted in Figure 10.8 for
-2b2/Rh 0 700 with boundary condition type 3. Curves for all six types of

boundary conditions listed in Figure 10.3 are shown in Figure 10.9, where

critical Nxy is plotted versus b2 /Rh. Curves similar to Figures 10.4,
10.7 and 10.9 are seen for combined stresses, -Nx - Nxy (Figure 10.10),

-Ny - Nxy (Figure 10.11), Nx - NY (Figure 10.12) and Nx - Ny - -Nxy (Figure

10.13). Tabulated values of the critical buckling loads and the associated
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values of A/b are also given in 13701 corresponding to Figures 10.4-

10.13.

In addition to the results described above, data are also plotted

in 13701 for other laminated composite shell panels of boron-epoxy, boron-

aluminum, high modulus graphite-epoxy and borsic-aluminum materials.

The analysis methods leading to BUCLASP-3, a computer code capable of

determining buckling loads for heated, stiffened, laminated composite

shell panels was described by Viswanathan and Tamekuni [314]. Biaxially

loaded, stiffened composite shell panels also received particular attention

[315,316,372].

Becker, Palazotto and Khot [373-375] conducted a theoretical and

experimental investigation of the buckling of a set of 8-ply laminated,

graphite-epoxy, cylindrical shell panels subjected to axial compressive

loading. The curved edges were clamped and the straight edges had five

types of boundary conditions, varying between completely clamped and

completely free. Three types of symmetric ply layups were used, as des-

cribed in Table 10.1. Material properties were determined experimentally

to be; E a 20.5xl0 6psi, E * 1.3x106psi, G, a 0.75xlO6psi, V " 0.335.
1 2 -2 12

Numerical results for bifurcation buckling were obtained by the STAGS-C

computer code, which utilizes two-dimensional finite-difference approxima-

tions of the total potential energy of the system for a/b = 1.5, 1 and

0.75, with a/R = 1 and R/h - 300. Values for -Nxa 2/EIh3 are listed in
Table 10.1. Two types of clamped (Cl and C4) and simply supported (Sl

and S4) boundary conditions were employed on the straight edges, as defined

by Equations (6.2) and (6.10). As expected, the buckling loads in Table

10.1 for the Cl and S1 straight edge support conditions are larger than

those for the C4 and S4 conditions, respectively. One configuration

(12x16, (+45)2,) shows contrary data, which was attributed to be the

result of an incorrect bifurcation analysis 13741. Experimental results

fcr six of the configurations are presented in Chapter 11. From the
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Table 10.1. Axial buckling load parameters -Nxa 2 /E h3

for a series of 8-ply shell panels.

Size, Straight Ply layup
a x b edge (±45) (90,±45,0) (90,0)
(in) B.C. 2S s 2s

Cl 68.8 58.2 50.3
C4 44.1 46.0 36.7

12x8 Sl 66.0 57.5 49.2
S4 40.8 45.7 32.0

free 12.0 14.5 10.7

Cl 54.5 52.6 40.3
C4 43.0 45.6 34.4

12x12 S1 52.3 52.1 39.6
S4 42.9 45.4 33.3

free 12.8 15.1 11.4

Cl 40.7 49.5 36.0
C4 42.6 45.2 33.5

12x16 Sl 38.9 49.3 35.8
S4 42.5 45.2 33.1

free 12.8 15.2 11.5
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entire study it was concluded that 1374] the boundary conditions had the

greatest influence on the buckling load, followed by the aspect ratio

and, finally, the ply orientation.

Davenport and Bert [205-2071 investigated the buckling of sandwich

shell panels subjected to combined shear and axial compressive loads.

Both facing and core materials were assumed to be orthotropic. CCCC and

,3SS edge conditions were treated. The problems were solved by the Galerkin

method using assumed displacements which were the sums of products of

trigonometric functions.

Wilkens [3761 provided extensive experimental results for the buckling

of graphite-epoxy laminated composite shell panels having clamped (loaded)

circular edges and either clamped or simply supported straight edges.

Experimental buckling loads were determined by the Moire grid shadow and

Southwell methods. Theoretical values were also calculated using the

Ritz method 1377 1. Tests were conducted on 72 panels having R - 12 in,

a - 12 in, b - R0o - 8 in and 100 f- R/h ý 400. Although thickness devia-

tions were measured, which in some panels were considerable, no attempt

was made to measure imperfections due to deviation from cylindrical curvature.

Experimentally determined buckling loads were typically found to be consider-

ably less ( "20-50 percent) than the theoretical values.

-- '

Extensive data was also given by Pogg [321 for the buckling of

"graphite-epoxy shear panels loaded in axial compression or shear. Sandwich

panels were also investigated.

Zhang and Matthews 1188,3781 derived a set of governing equations

for buckling of arbitrarily laminated cylindrical shells expressed in

terms of the transverse displacement (w) and an Airy stress function

(0). Problems for ahell panels having all edges clamped and subjected

4-=•. to axial and/or shrpar loads were solved by means of the Galerkin method,

-.,

"!. .-. .-... - -. -. . . ..-. _ • _ 4V4•.., i, -- • r.,y .- • r ,• •.



using products of beam vibration eigenfunctions to represent both w and

-. The importance of using double precision in the calculation of the

beam functions was demonstrated. Extensive numerical results were obtained

for panels having a/b - 1, a/R - 0.5 and R/h = 200, where b R0O is the

circumferential arc length. The materials typically used in the parameter

study was boron-epoxy, with EI/E 2  1 10, G1 2 /E 2 - 0.3 and v12 a 0.3.

Numerical results for the axial buckling load of angle-ply panels

having 20 plies are shown in Figure 10.14. Two types of layups are con-

I sidered: (1) alternate plies (±O) and (2) unidirectional plies (+6).

Variation of -Nxb 2 /E 2 h3 with the layup angle 0 (measured from the x-

axis) is shown for both the shell panel and a flat plate (R v ®). For

the alternating angle-ply layup the shell shows maximum buckling loads

at two values of 0, approximately 200 and 700. The change in buckling

load with decreasing curvature for various numbers of plies is depicted

in Figure 10.15. The effect of fiber orientation upon shear buckling

loads is seen in Figure 10.16 for shell panels having unidirectional

layups (+0). Curves for both positive and negatively directed shear

loads are shown for three curvatures. Change in sign for the shear load

may also be interpreted as change from +0 to -0 in fiber orientation for

a given shear load. It is observed in Figure 10.15 that this change of

sign causes considerable change in shear buckling loads. It was further

found 1188] that this effect was less pronounced for symmetric (+0) angle-

ply layups, uand iL de4Leabed at Lhe number of plies was increased. For

antisymmetrical layups the direction of shear loading was found to have

essentially no influence on the critical load.

Figures 10.17-10.19 are interaction curves showing critical combina-

tions of axial and shear loads which cause buckling [3-30]. In each

case Nx is plotted versus Nxy, where Nx is the ratio of the critical

compressive axial load with shear to that without shear and Nxy is the

ratio of the critical shear load with compression to that without compression.
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Figure 10.14. Axial buckling loads of CCCC, angle-ply shell panels
(a/b - 1, a/R- 0.5, R/h - 2000).
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Curves for both positive and negative shear are drawn. In Figure 10.17

the curvature is varied for a shell panel with unidirectional fibers

(0 = +450). Figure 10.18 examines the effects of various types of layups

(R/h z 2000). Figure 10.19 shows curves for three types of materials -

graphite-epoxy and glass-epoxy, in addition to the previous boron-epoxy

- for 0 - +450 unidirectional layups (!/h = 2000). Elastic constants

for the materials are listed in Table 10.2.

Figures 10.20-10.23 show the results of a study made to compare

the effects of clamped versus shear diaphragm (simply supported) edge

conditions f1881. Figure 10.20 is for the unidirectional layup (compare

with Figure 10.14) with varying fiber orientation. In Figure 10.21 the

number of layers (n) in symmetric and antisymmetric angle-ply layups

(. 450) is varied. The effects of varying the aspect ratio (a/b) in the

case of positive shear loading are seen in Figure 10.22. Finally, Figure

10.23 shows interaction curves for shell panels having two opposite edges

clamped and the other two simply supported, loaded in combined axial

compression and shear. These panels have +450 symmetric angle-ply layups

with four layers, and the data may be compared with that for the CCCC

case shown previously in Figure 10.18.

Baharlou [1011 considered the buckling of a two-layer, cross-ply,

SSSS shell panel subjected to axial compression and showed that, even

for relatively deep panels (b/R = 0.5) the critical load is virtually

unaffected by the stacking sequence (i.e., whether the ply with circumfer-

ential fibers is outer or inner).

Knitsson [3791 tested an integrally stiffened, graphite-epoxy shell

panel with the ends clamped and the sides supported. Good correlation

was found between the theoretical and experimental buckling load.

Durlofsky and Mayers i210,211] developed a theory for the buckling

of generally laminated, cylindrical shell panels including the effects

330C
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Figure 10.17. Compression-shear interaction curves for CCCC, unidirec-
tionally laminated (Q - 450), shell panels with various
curvatures (a/bE 1).
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Figure 10.18. Compression-shear interaction curves for CCCC shell
panels with various layups (a/b 1, a/R = 0.5,
R/h = 2000).
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Table 10.2. Elastic constants used by Zhang and Matthews.

Moduli (GN/m2)

Material E E E (GVl
E 1 2 12

Boron-epoxy 206.9 20.7 5.2 0.3
Graphite-epoxy 206.9 5.2 2.6 2.6
Glass-epoxy 53.8 17.9 8.9 8.9

so , all edges clamped
S~straight edges s-s

S~curved edges clomped '

60

40

20 curved edges s-s
straight edges clamped

a% ll edges s-s

0 300 60' 90

0

Figure 10.20. Comparison of uni;!xial buckling loads for clamped and
simply supported edge conditions (a/b - 1, a/R - 0.5,
R/h - 2000).
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Figure 10.21. Comparison of uniaxial buckling loads with varying
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Figure 10,22. ,comparison of positive chear buckling loads with aspect
ratio for various shial panels (a/R r 0.5, R/h • 2000).
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of shear deformation. Application was made to an SSSS panel carrying

axial compression. It was shown that the shear deformation effects may

be significant.

Buckling as a special case of a free vibration analysis (when the

frequency becomes zero) was the approach used by Fortier [380] and by

Sinha and Rath 1381]. The former used the Ritz method with assumed

solutions in the form of products of beam vibration eigenfunctions to

analyze symmetrically laminated, cross ply and +450 angle ply shell

panels having four types of edge conditions, subjected to axial

compression. The latter treated SSSS, arbitrarily laminated, cross-ply

parnels for which an exact solution is possible.
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CHAPTER XI. POSTBUCKLING AND IMPERFECTIONS IN SHELL PANELS

Relatively few references are available which treat the postbuckling

behavior of cylindrical shell panels, or which consider the effects of

geometric imperfections (i.e., deviations from the perfect cylindrical

surface) upon the load-deflection characteristics. Postbuckling studies

for shell panels are particularly important because, unlike plates, their
load-carrying capacities may decrease after the bifurcation buckling

ON

loads are reached. Furthermore, the presence of small imperfections may

cause large displacements to occur at loads well below the buckling loads.

11.1. POSTBUCKLING STUDIES

Zhang and Matthews [378,382] developed a set of coupled equilibrium

and compatibility equations governing the postbuckling benavior of arbi-

trarily laminated, cylindrical shell panels. These nonlinear equations

were solved by the Galerkin procedure for the case of SSSS panels subjected

to axial compression. Normal displacements were assumea as the sum of

the products of sine functions and the squares of sine functions, whereas

the Airy stress function was taken as a sum of products of vibrating

beam eigenfunctions. Applying the Galerkin method led to an infinite

set of algebraic cubic equations. A truncated set of these nonlinear

equations was solved by an iterative scheme.

Parameter studies were made for boron-epoxy panels (E /E. 10,

G /E 0.3, v 0.3) having either unidirectional plies with fibers
12 2 12

oriented at 450 with the longitudinal axis, or angle-ply (+450) layups

"(382). The panels were subjected to axial compression. a/b was set at

unity (b = R 0O is the circumferential width), and the circumferential

width to thickness ratio (b/h) was set at 100. Figure 11.1 depicts

the postbuckling behavior of a shell panel having a curvature parameter

b2 /Rh = 25 compared with that of a corresponding flat plate for panels

--44
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Pigure 11.1. Poatbuckling load-deflection curves for 8858 boron-
epoxy panels with unidiractional fibers at e * 450.
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Figure 11.2. Postbuckling load-deflection curves for BSSS boron-
epoxy shell panels with various ply layups.
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Figure 11.3. Postbuckling load-defection curves for SSSS shell
panels of various materials with a symmetric four-
layer, angle-ply layup.
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having unidirectional fibers. The nondimensional load -Nxb 2 /E 2h3 is
shown plotted versus the ratio of the center deflection to the thickness

(wc/h). As for isotropic panels, the presence of curvature is seen to

increase the bifurcation buckling load, as shown on the ordinate axis.

However, unlike the plate, which has a monotonically increasing load-

deflection curve in the postbuckling region, the shell panel exhibits an

initial drop in load before increasing. In a physical situation, a jump

across may occur before the bifurcation load is reached. The cusps occur-

ring in the curves of Figure 11.1 correspond to abrupt changes in the

postbuckled mode shapes as one follows an equilibrium path of minimum

loading.

Figure 11.2 shows the influence of ply layup on the postbuckling

behavior of the shell panel. Two of the curves are for antisynmetrical,

angle-ply laminates having two and four layers [3821. One is for a sym-

metrical, angle-ply laminate with four layers. The two-layer, antisymmetri-

cal layup is seen to yield not only the lowest buckling load, but also

the lowest postbuckling equilibrium curve. Figure 11.3 describes post-

buckling curves for symmetrically laminated, four ply shell panels made

of three sets of materials - carbon-epoxy, boron-epoxy and glass-epoxy.

Elastic constants used are given in Table 10.2. Additional results are

given in [382] for the variations in membrane force and bending nmoent

at selected points on a boron-epoxy shell panel.

Tests were reported by Becker, Palazotto and Khot [373-3751 for a

set of shell panels which were clamped along their curved edges and had

either S4 or free straight edge boundary conditions. Results for axial

compressive buckling loads were obtained for six configurations as

indicated in Table 11.1 (experimental values listed are the average of

the results found using two specimens for each configuration). The

shell panels are described further in Section 10.2. Table 11.1 shows

that the theoretical, bifurcation buckling loads obtained were from 23
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Table 11.1. Comparison of theoretical and experimental values of
-Nxa 2 /E h 3 for a series of 8-ply shell panels.

1

Panel Ply layup
descrip- Type of result (±45) (90,±45,O) ( 9 0 ,0)2S

t ion2SSS

12x12 Bifurcation analysis 42.9 45.4 33.3

S4 Nonlinear collapse 325 32.5 29.5
straight analysis3252. 9j

edges

Experimental 28.5 25.0 24.5

12x16 Bifurcation analysis 12.8 15.2 11.5

free
straight Experimental 9.8 11.3 8.3

edges
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Figure 11.4. Experimentally determined end-shortening curves for two
of the shell configurations of Table 11.1.
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Figure 11.5. Comparison of theoretical and experimental end-shorten-
ing curves for the 12x12(90,0) 2 s panels of Table 11.1.
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to 34 percent greater than the experimental loads, except for the (90,

±45, 0)s 12 x 12 panel, which was 45 percent larger. It was thought

that the latter large disagreement was primarily due to improper fixture

alignment during the test. Typical experimental end shortening curves

are depicted in Figure 11.4. The curves show abrupt drops, which

correspond to abrupt changes in mode shapes. Nonlinear collapse

analyses were also made for the 12xl2 panels by means of the STAGS-C

computer code.

The nonlinear collapse analysis was accomplished by introducing a

small imperfection in the form of a transverse point load at the center

of a panel. The magnitude of this load was chosen so as to produce a

transverse displacement (w) of approximately five percent of the panel

thickness when the axial compression is zero. Theoretical and experimental

load-shortening curves for the 12 x 12 ( 9 0 , 0 )2s panels with S4 straight

edges may be compared in Figure 11.5.

Agarwal [383] ipocted the results of a theoretical and experimental

study of the postbuckling behavior of hat-stiffened, composite shell

panels loaded in axial compression. It was found that tiue panels exhibited

considerable postbuckling strength, reaching ultimate loads of approximately

five times their bifurcation buckling loads. Furthermore, it was shown

that 92 percent of the trýtal buckling load was carried in or near the

stiffeners, and thus the postbuckling strength may be determined by calcu-

latinq the crippling strength of the stiffeners alone. The postbuckli*ng

behavior of stiffened, composite panels loaded in axial compression was

also taken up by Hinkle, Sorensen and Gairett [3841.

Monforton and Schmit [173,292] presented a finite element method

capable of dealing with the geometric nonlinearity existing in the postb.ck-

ling analysis of shell panels. Shell panels having composite face sheets

and sandwich cores were also considered.
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11.2. ZIPERUVTIONS

Bauld, Khot and Sathyamoorthy [385-387] developed a computer code

to determine biftircation buckling loads and the nonlinear load-deflection

characteristics of cylindrical shell panels having initial imperfections,

general loading conditions and arbitrary boundary conditions. The method

used finite differences together with the total potential energy of the

system. It was demonstrated [385,386] on axially loaded, boron-epoxy

panels having a - 6 in, b - 4 in and R - 25 in. The edges had variations

of simply supported conditions, with S4 along the straight edges and the

(loaded) curve edges having Sl at one end and S2 at the other (see Equation

6.2). All panels had four plies and a total thickness of 0.024 in. Material

properties for the plies were: E1 * 40xlO6psi, E2 = 4.5xl0 6psi, GI2 =
l.5x10 6p, V a 0.25.12

Figure 11.6 (386] shows the effect of laminate layup on the load-

deflection curves for four different layups. The total axial load (lb)

is plotted versus the average transverse deflection (w, in). The upperrmost

curve (labelled 1) is the nonlinear analysis renult for a symmetrically

laminated panel having (-4. +45, +45, -45) fiher orientations. The

linear, bifurcatiun alialJrsis yielded a critA'31 load cf 510 lb. It is

of interest that transverse deflections should a&iie for this case from

the nonlinear analysis. Membrane stretching-shear coupling does not

exist for this case. Curves 2 and 3 are for antisymmetric laminates,

(+45, -45, +45, -45) and (+45, +45, -45, -45), respectively. For these

configurations the membrane stretching-shear coupling and the bending-

twisting coupling are both zero (Al. = A2 6 = D1 6 = D2 6 = 0), but the

bending-stretching coupling is not zero (Bij # 0). Comparing the lami-

nates for curves 2 and 3, the latter has twice as much bending-stretching

coupling, therefore it is the less stiff configuration. The bottom curve

in Figure 11.6 is for an unsymmetrical laminate (0, 30, 45, 60). All

three types of coupling are present, and the stiffness is further reduced.
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Figures 11.7 and 11.8 [386] demonstrate the effects of initial

geometric imperfections on the load-deflection curves for the symmetric

(-45, +45, +45, -45) and unsymmetric (0, 30, 45, 60) laminates, respectively,

which were described in the preceding paLagraph. The imperfection shape

is a half-sine wave in each direction, with an amplitude wo. it is inter-

esting to note that, for a given axial load, increased magnitude of imper-

fection causes increased deflection for the symmetric laminate; however,

for the unsymmetric laminate, a maximum appears to occur for Iwol = -.*

(i.e., twice the shell thickness). For large imperfection magnitude in

the latter case (!wol =-0.20), an essentially linear load-deflecLton

curve is observed in Figure 11.8.

The effect of a centrally located, rectangular cutout on the load-

deflection curve of the unsymmetrically (0, 30, 45, 60) laminated shell

panel is secri in Figure 11.9 1386]. A limit load (maximum value of curve)

was found to be 185 lb, compared with 190 lb for the panel without the

small cutout.

Hui 13881 used Koiter's [389] approach to study the initial postbuck-

ling behavior of cross-ply, symmetrically laminated SSSS shell panels

subjected to axial compression. Geometric imperfections were included
in the analysis. Assuming an imperfection shape having the same form aE

the buckling mode shape (Equation 6.3), it was shown that the load-trans-

verse displacement relationship may be expressed as

a* - + (1-a) U (11.1)

where • = wc/h and t wo/h are the nondimensional amplitudes of the

transverse displacement and the imperfection, respectively, Ox is the

ratio of the applied axial stress to the critical, bifurcation buckling

stress, and a* is a parameter depending upon the geometric and material

properties of the shell panel. Figure 11.10 is a plot of Equation 11.1

U
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for a* = 0.670, which corresponds to an isotropic, homogeneous shell

panel having v - 0.3, a/b w 1 and 1 - 1, where b R o0 (see Figure

10.1) is the circumferential arc length, and i is a shallowness para-

meter defined by

4.4

. • ~h (11.2)

*, The asymmetric equilibrium paths shown in Figure 11.10 are all stable
:41

for positive 7 (i.e., deviation from the perfect circular cylindrical

surface by outward bulging). However, for negative Z (inward bulging),

the equilibrium paths become unstable as ý increases, and the panel is

imperfection sensitive. For a flat plate, a* is zero, Equation 11.1

yields a horizontal straight line for 1. w 0, and the equilibrium paths

are symmetric about • 0.

Figure 11.11 [3881 presents values of the a* parameter as a function

of tP, for shell panels with a/b = 1 having an infinite number of layers

and composed of five materialss isotropic, glass-epoxy, boron-epoxy,

graphite-epoxy I and graphite-epoxy II. The elastic modulus ratios for

the materials are listed in Table 11.2. It is seen in Figure 11.11 that

laminated composite shells having large EI/E 2 (e.g., graphite-epoxy II)

are less iw~perfection sensitive (i.e., smaller a*). Figure 11.12 gives

values of a' for graphite-epoxy I panels having a/b - 0.7, 1.0, 1.4 and

numbers of layers (N) = 3, 5, -. It is seen that for the shorter panels

(a/b - 0.7) imperfection sensitivity increases with increasing N, whereas

for longer panels (a/b w 1.4), it decreases with increasing N.

Bauld and Khot 1390,391. made a study of the buckling behavior of

laminated composite, cylindrical shell panels having initial imperfections.

The curved edges were loaded in compression and the straight edges were
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Table 11.2. Elastic modulus ratios used by Hui.

El ,

Material E2
E 12

Isotropic 1.0 0.385 0.30
Glass-epoxy 3.0 0.500 0.25
Boron-epoxy 10.0 0.33i 0.22
Graphite-epoxy 1 15.8 0.577 0.34
Graphite-epoxy II 40.0 0.500 0.25
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either simply supported or free. Both theoretical and experimental results

were obtained. Theoretical data were calculated using the finite difference,

energy computer code previously developed 385-387

The initial study [390) was for a set of four panels consisting of

eight layers of graphite-epoxy, symmetrically laminated in a (0/90)2s

layup. Dimensions were: a - 16 in, b - 8 in, R = 12 in, h = 0.038 in

(see Figure 10.1). Composite material properties were: E, = 20.5xlO6 psi,

E - 1.3xl06psi, G12 = O.75xl0 6psi and v12 = 0.335. The imperfection
(deviation from a perfect, circular cylindrical surface) for each test

specimen was measured mechanically by means of a special fixture. For

the two test specimens used with free straight edges, imperfection data

was fit to the imperfection function

S= w ( + Cos 2×)(

where x is measured from the center of the panel. Figure 11.13 shows

load - end shortening curves determined from tests on the two specimens,

as well as three analytical curves obtained using wo = 0, 0.005, 0.010

(in) as imperfection amplitudes in Equation 11.3. Corresponding theoreti-

cal curves are seen in Figure 11.14 for the load plotted versus the least

squares average of the transverse displacement (w) computed over the

shell surface. Figure 11.15 shows the load-shortening curves for two

CSCS test specimens. Theoretical limit loads of 2522 and 4311 lb were

determined, depending upon whether the circumferential displacement at

the straight edges was not or was constrained, respectively. Curves

showing the load plotteo versus average transverse displacement for the

two types of straight edge conditions may be seen in Figures 11.16 and

11.17. The importance of the circumferential displacement along the

straight edges is evident from these plots.

Subsequent investigation of ten additional test specimens was made

1391]. All ten had the dimensions: a - 16 in, b 12 in, R a 12 in, h -
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0.038 in (thus, only the width was different from the preceding specimen3

described earlier). Shell panels were fabricated with eight plies having

the same boron-epoxy material described above. Five panels having simply

supported straight edges had a (0/+45/-45/90)s layup and five others

with free straight edges had a (0/90)2S layup. Initial imperfection

data was measured for one CSCS panel and one CFCF panel and is shown in

Figure 11.18. This data was used as the basis for subsequent theoretical

calculaticns. The effects of axial load up:n end shortening and average

transverse displacement for the CSCS panels are shown in Figures 11.19

and 11.20, respectively. Two theoretical curves are shown in each figure,

corresponding to straight edges with or without restraint of the circum-

ferential displacements. Theoretical and experimental end-shortening

curves for the CFCF panel are ceen in Figure 11.21. Two thleoretical

curves for the average transverse displacement are given in Figure 11.22.

The solid one results from using the measured imperfection data. The

dashed curve arose from a previous study (392] which showed it to be the
limiting case when the imperfection magnitude is decreased. Figures

11.23 and 11.24 compare the transverse displacements of lines taken along

* the shell generators (i.e., axial lines) located at the straight edges

and the centerline, respectively, for the CFCF shell panel having the

"measured imperfection subjected to various axial loads. It is seen that

the free edges deflect considerably more than the centerline.

370



S57 13-51 irt.

- --

16 ; n.

CSCS Panel
0.000 0.000 0.000 0.000 0.00or 0.000 0.000 0.000 0.000
0.000 0.001 0.o0o -0.003 -0.007 -0.009 -0.009 -0.006 0.00o
0.000 0.000 -0.001 -0.003 -0.004 -0.007 -0.006 -0.007 0.000
0.000 -0.002 -0.001 0.ON0 -0.004 -0.006 -0.006 -0.007 0.0oo
0.000 0.001 -0.001 0.000 -0.004 -0.O07 -0.004 -0.004 0.000
0.O0O 0.000 -0.003 -0.002 -0.003 -0.007 -0.004 -0.005 0.000
0.000 0.002 0.004 0.005 0.002 0.000 -0.002 -0.004 0.000
0.000 0.006 0.0o3 2- 7 =I01 0.0 10 0. W7 0.004 0. 030 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CFCF Panel
0.000 -0.006 -0.009 -0.009 -0.011 -0.012 -0.013 -0.013 0.000
0.000 -0.0 -o~oos -0.001 -0.008 -0.010 -0.00 -0.5008o-o7oo
0.000 0.002 0.00 -0.002 -0.005 -0.006 -0.006 -0.067 0.000
0.000 -0.001 -0.001 -0.003 -0.006 -0.008 -0.007 -0.007 0.000
0.000 -0.001 -0.001 -0.005 -0.007 -0.009 -0.009 -0.006 0.000
0.000 -0.003 -0.002 -0.006 -0.007 -0.007 -0.008 -0.008 0.000
0.000 0.000 0.000 -0.003 -0.004 -0.007 -0.006 -0.0r3 0.000
0.000 0.007 0.009 0.007 0.002 -0.002 -0.003 -0.006 0.000
0.000 0.010 0.014 0.012 0.008 0.002 -0.004 -0.009 0.000

Pigure 11.18. Measured initial transverse imperfections (in) for CSCS
and CFCF shell panels.
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APPENDIX. PLATE BUCKLING EQUATIONS

The theory required to analyze the buckling of laminated composite

plates is considerably more complicated than that of classical, homo-

geneous, isotropic plate theory. This is particularly true for unsym-

metrically laminated plates because of the coupling which exists between

bending and stretching.

The purpose of this Appendix is to provide in one convenient place

the basic equations needed to analyze plate bifurcation buckling, in-

cluding a summary of the steps required in their derivation. At the same

time, the notation and conventions used throughout this monograph are

established.

To keep the presentation reasonably short, not all the details are

presented. In particular, the steps required to integrate the stress

and moment resultant equations over the plate thickness, Equations A.6

and A.7, to obtain the stiffness relationships, Equation A.8, are

explained, but not carried out in detail. These steps may be found in

several well known texts [A.l-A.4].

A.l. PLATE STIFFNESS EQUATIONS

Classical plate theory is governed by the Kirchhoff hypothesis:

Normals to the midplane remain straight and normal as the plane deforms

into a surface. Let the x and y axes of a rectangular coordinate system

lie in the midplane, and the z axis in the direction of the plate thick-

ness. Then the kinematical behavior of the plate described by the

Kirchhoff hypothesis may be expressed by the following relationships:
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u •u - z-
0 ax

(A.1)awV VO -zy0 Dw

where u, v, w are displacement components of a typical point in the

plate, and uo, vo are inplane displacements at a point of the midplane.

Furthermore, uO, vO and w are functions only of x and y.

Using the strain-displacement equations of classical plane

elasticity theory,

Du C av 3V + USax y ay' Yxy Tx ax (A.2)

where ex , cy are the inplane normal strains, and Yxy is the inplane,

engineering (i.e., not tensorial) shear strain, Equation A.1 may be re-

written as

-x x x

X X

3."y y y (A.3)
YX Yt y xy° ZlK

Il

Swhere Cx ,y and Y. are the midplane strains, and rx, Ky and .xy are
• • the curvature changes of the midplane during deformation. These quanti-

ties are also functions of x and y only, and are given by

au a)v av au

V.•2 --32w , •- 2 Dw(A5
Y•x ax2 ' Y ay2 ' y a~
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The inplane stress resultants Nx, Nye Nxy (forces per unit length)

and moment resultants Mx, My, Mxy (moments per unit length) are obtained

by carrying out the force and moment integrals through the thickness;

that is,
h/2

N f adz

-h/2

h/2

N aydz (A.6)
Ny.

-h/2

h/2

Nxy f Txydz
-h/2

h/2MfMx a / x dz

-h/2

h/2

M f Q zdz (A.7)

-h/2

h/2

My Txyzdz

-h/2

where ax and Ocy are the inplane normal stresses and Txy is the inplane

shear stress. The positive senses of the stress and moment resultants

(including the transverse shear stress resultants, Qx and Qy) are shown

in Figures A.1 and A.2. For laminated plates, the integrations required

by Equations A.6 and A.7 must be carried out piecewise (i.e. stepwise)

from layer to layer. Furthermore, for typical lamina consisting of
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Figure A.l. Positive stress resultants.
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parallel fibers imbedded in a matrix material, with the fibers lying at

an angle 0 with respect to the x-axis of the plate, the orthotropic

stress-strain relationships for the lamina must be transformed ten-

sorially to be consistent with the plate axes. The details of these

somewhat complicated calculations may be found elsewhere (cf. [A.I, A.2,

A.3]) and will not be elaborated upon here. Carrying out these calcu-

lations, one is able to relate the stress and moment resultants to the

midplane strains and curvature changes as follows:

Nx rA11 A12 A16'B 11 B12 B16 Cx
N A A A 'B B B

y 12 22 2 6 r 12 22 26 Y 0
Nxy 16 26 66 "16 26 66 xy
- - --- (A.8)
M B B B D1I D D - X

x11 12 B16 1  1 12 16

1y 2 22 26' 12 22 26 yM B- D D DK,

Mxy B1 6 B2 6 B6 6  1D6 D2 6 D6 6  XY

where Aij, Bij and Dij are stiffness coefficients arising from integrals

of the following forms:

h/2

Aij f Cli dz
-h/2

h/2

Bij f Cij zdz (A.9)

-h/2

h/2

Dii f Cfijz 2dz

-h/2

with Cij being constants which change from layer to layer during the
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integrations. It is observed that, not only is the 6 x 6 stiffness

matrix of Equation A.8 symmetric, but the 3 x 3 submatrices Aij, Bij and

Cij are also symmetric.

It is important to understand the implications of the stiffness

coefficients in Equation A.8. The Bij coefficients cause coupling bet-

ween bending and stretching at the plate during transverse displacements.

As can be seen from the second of Equations A.9, these coefficients

vanish if the Cij are even functions of z. This occurs when the laminate

is symmetric (in thickness, fiber orientation and material properties)

with respect to the plate midplane.

Another type of coupling is seen by the existence of the A16, A2 6,

B16, B2 6, D1 6 , D2 6 coefficients. These coefficients indicate extension-

shear and/or bending-twisting coupling during the plate deformation.

This coupling vanishes for cross-ply lay-ups (i.e., fiber orientations

of adjacent lamina all lie along parallel or perpendicular axes).

Further discussions of coupling may be found in several excellent refer-

ences [A.l-A.5].

A.2. GOVERNING DIFFERENTIAL EQUATIONS

Consider a plate which, due to pressure components (Px, Py, q in

the x, y, z directions, respectively) and inplane stress resultants (Nx,

Ny, Nxy), has undergone bending. Sumning forces in the x, y and z di-

rections on a infinitesimal plate element yields the following equations

of equilibrium, respectively:

BN x +- + Pw aL X - o ax0

-a+ -y - Q -Y + P M 0 (A.10)

aQ x + nY + N -;2w + 2N -i2w + N 2Lw + q0

aX 3y x BX2 xy axay Y 3y2
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Summing moments about axes parallel to the y and x coordlnates yields,

respectively,
0 x + M :

aM am (A.11)
Q +
y ax ay

The transverse shear forces Qx and Qy, as well as the slopes aw/3x and

aw/ay, are typically small in the first two of Equations A.10. Taking

advantage of this, and substituting Equations A.11, Equations A.10

become
3N 3N+ 14.2X + Px 0

axy a

aNxy + _3_.Y + Py M0

ax ay (A.12)
a2M 32M 32M 32w
-_ + 2- + + + N - + 2N1 -

ax2 axay y2 x2  3 xay

+ N -- + q- 0

Let us now consider each of the functions represented in Equations

A.12, except for w and the body forces, to be composed of two parts - an

initial part which exists before the onset of buckling, and an additional

part which is due to buckling. Let these two parts be denoted by the

superscripts "i" and "b". That is,

j b
N - N + N , etc.

x x x
(A.13)i b

H - M + M , etc.
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It is assumed that the plate remains flat before buckling; i.e.,

b
w - (A.14)

and further that no additional body forces are added during buckling;

% i.e.,

Px M Px Py W PY q o q (A.15)

At the onset of buckling, but before it takes place, Equations A.12 re-

duce to

BN

ax 3Y x

X + _Y + Py 0

x + 3 (A.16)

2M 321.1 a M2
__._. + 2 -_. + __z + q 0

ax 2 Bx)y ay2

:;ubst.tuting Equations A.13, A.14 and A.15 into Equations A.12 and sub-

tracting Equations A.16 results in

b b
3N 0

o Nb

+ - 0
Bay (A.17)

b 32M Mb i2 3 2 N i a•+ xY Y4.I + N2 N xy •- + N =0

ax2 axay 3y2  x ,X aa Y ay2

wherein the three terms

N b _- + 2N b 2 + Nb 2w (A.18)

Ax2  xy axay Y ay 2
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U,

are considered small relative to the I -ee terms of the third of
)

Equations A.17, and have been droppe. .'. Because, in general, Nx
Nxb and N y are functions of w, the three tems in expression (A.18)

are each nonlinear, and it is therefore i.iperative that they be dropped

in order for the buckling problem to be reasonably tractable.

Before proceeding further with the buckling equations, it is worth-

while to study further the meaning of Equations A.16 for the prebuckled

statp. Since w = 0, then A M Kx L 0. Substituting the pre-

buckled forms of equations A.4 and A.8 into Equations A.16 yields

[A [ - + A - +A 1 --3 1

3uv

L 11 ax 12 aY T16 T (A. 19a)

-L L u + A -- + A u26TY 6 6  y/J Px

+ A iL + A -- + A IV9126 ay 6\axy 6J

I .I±

2- B L + B __ + B v3x2  1 3x 12 ay 16( +y
a2 i / a i

+ 2 B -IB + B + B + +q (.
3x~y Lis ax 26 ay 6x ay/

rB U +B v- + +u' 0

By2  12 3x 22 Y 26" /

where, for simplicity, the subscript "o" has been dropped from the dis-

placements. For a symmetrically laminated plate, all the Bij are zero.

Then Equation A.19c yields 4 = 0. For given values of the initial,

tangential, body force components px and py and given values of u and v
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and/or their derivatives (i.e., inplane stresses) on the plate boundaries,

one could solve Equations A.19a and A.19b for the displacement field

and i and, if desired, the corresponding initial stress field.

For an unsXnmtrically laminated plate, the Bjj are not all zero,

and the 3olutions for L and V can be substituted into Equation A.19c±

to determine what transverse pressure distribution q , together with

boundary moments and transverse forces, must be applied in order that

the plate remain flat. In the case that the initial, inplane stresses

(and strains) are constant or linearly varying with respect to x and y,

all terms except q1 vanish in Equation A.19c, with the result that no

initial, transverse pressure is needed for the plate to remain flat.

Equationo A.8 and A.11 show that constant initial strains give rise to

constant edge moments, and that linearly varying initial strains require

linearly varying moments and constant transverse shear forces for equi-

librium at the edges.

One convenient manner to represent the equilibrium equations

governing the buckled configuration is in terms of the three components

of inplane displacement. Substituting Equations A.4, A.5 and A.9 into

Equations A.17 yields the equations in matrix form as

L L Lu
11 12 13 ( 0

L L L v 0 (A.20)
21 22 23

L L (L -F) w 0
31 32 33

where the Lij are differential operators representing the plate

stiffness,
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-•2 32 32
L IA -t 2A -- +L A --
11 11 3x2  16 axay 66 3y2

32 a2 32

L • A --L + -- A

22 22 ay2  2 6 Wxay 66 ax2

L D - + 4D + 2(D + 2D )
33 11 aY4  16 Zx3ay 12 66 3x 2 3y 2

+ 4D at + D '
26 9x3y 3  22 ay4 (A.21)

•22 
22

LA -+ (A + -2 + A
12 21 16 3x 2  12 6 6  a 26 3y 2

L a- 3 a3 03 0

L L -B 3B (B + 2B) B -

13 31 11 3x 3  16 ax2 ay 12 66 axay 2  26 3y3

a3 33 33 33

L L -B -3- (B + 2B 3B B
23 32 16 3x3  12 66 ax2ay 26 3xay 2  22 3y3

and F is a differential operator representing the inplane loading,

32 •2 32

F + 2Ny +- N2-
x ax2  xy 3x3y Y 3y 2  

(A.22)

For simplicity, the superscripts "b" and "i" which were used in Equa-

tions A.17 have been dropped. In what follows, and in the main body of

the monograph, it will be regarded that u, v, w represent the (infini-

tesimally) small displacements of the plate during buckling, and that

Nx, Nxy, Ny represent the inplane forces which exist just before

buckling occurs. Equations A.20 are an eighth order set of partial

differential equations, similar in form to shell equilibrium equations

'cf. (A.6],pp. 32-34). Indeed, the coupling between bendirg and

stretching is responsible for raising the order from four to eight in

the present problem, just as the coupling of inextensional and membrane

theories raises the order from four to eight in the shell problem.

For symmetrically laminated plates Bij a 0 and the L and L
13 23

operators in Equations A.21 are seen to vanish, and the inplane part of
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the problem is uncoupled from the transverse part in Equation A.20. The

inplane part yields u - v - 0 in the buckled configuration, whereas the

transverse displacements are governed by

D -w- + 4D W + 2(D + 2D ) aW + 4D a4W + D --w

11 3X4  16 ax3ay 12 66 x2y2 26 axay3 22 ay4

-N-2w + 2N -w + N 32w (A.23)
x X2 xy 3x3y Y 3y2

Equation A.23 is the same form as the buckling equation for a homogeneous,

anisotropic plate. The only difference is in how the stiffness coeffi-

cients Dij are calculated.

For symmetrically laminated cross-ply plates there is no coupling

between bending and twist, and D12' D 6= 0. Equation A.23 then special-

izes to

D -tw + 2(D + 2D ) + D a4w
11 ax4  12 66 ax 2 Wy2  22 3y4

a2w a2W a2w (A.24)
N 32w + 2N -3 + N

X aX2  xy BOY Y ay2

This is the same form as the buckling equation for a homogeneous, orthc_ -

tropic plate.

If, for example, a cross-ply plate of rectangular shape were

fabricated so that its edges were not parallel to the axes of material

orthotropy, then a coor6inate transformation to provide the proper

rotation of axes from the xy material coordinates of Equation A.24 to a
, ,

set of x y coordinates parallel to the plate edges would result in a

form similar tc Equation A.23. This new form wuld have six stiffness
I I I I I

coefficients DII, D] 6 , D12, D6 6 , D2 6 , D2 2 , but they w.'uld be linear com-

binations of the four material coefficients D1 1 , D1 2 , D6 6 , D2 2 * It is

common in the literature to speak of a specially orthotropic plate when
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the orthotropic material axes and the rectangular plate edges are

parallel. However, this terminology will not be used in the present

work, for the word northotropic' should be used to describe a property of

the material, independent of the shape of the plate (e.g., rectangular)

or the orientation of a mathematically convenient coordinate system.

It must be remembered that the stress resultants Nx, Nxy and Ny

are positive in accordance with the directions shown in Figure A.l.

Particularly, compressive Nx or NY are negative quantities. Although,

for the sake of brevity, the stress resultants have been used in the

preceding derivation, for the sake of direct engineering application,

the stresses are used for the most part elsewhere in this monograph.

For some types of buckling problems where bending-stretching

coupling exists it may be desirable to use the inplane stress resultants
b b bgenerated during buckling (i.e., NX , Nb , Nxy ) instead of the inplane

displacements (u, v) which occur. It is then usually convenient to re-

present the inplane stress resultants by an Airy stress function (0),

with the functions defined by the equations

N b a 2ý

X 2x •y2

N b - 32$ (A.25)

Nb 2
xy 3•xy

If Equations A.25 are substituted into the first two of Equations A.17,

it is seen that the latter are identically satisfied. However, since the

problem is no longer expressed in terms of inplane displacements, it

becomes necessary for the inplane stresses to satisfy the inplane equation

of compatibility
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a2 r0  + 2C 0 o 2 y O0j2 x + - • 0

ay2 3X2 ax~y (A. 2 6)

0 0 0
where the strains (ex , Cy , Yxy ) are those additional ones arising

during buckling, but the superscript "b" is dropped for simplicity.

To utilize Equation A.26, Equation A.8 must be at least partially

inverted. Rewriting Equation A.8 in the symbolic form

[A [B] DJ[: 
(A.27)

0
where N, M, c. and K are 3 x 1 subvectors and A, B and D are the 3 x 3

submatrices delineated in Equation A.8. Multiplying through the first

-if the two submatrix equation: of Equations A.27 Dy A-, and solving for e

yields

° 0. A-1N -0A- BY (A.28)

Substituting Equation A.28 into the second of Equations A.27 results in

M - BA-1N - (D-BA' 1 B)K (A.29)

and Equations A.28 and A.29 may be written in matrix form (A.4] as

L0i [A* Bi]
where DJ {(A.30)

where B*T is the transpose of the Be submatrix, and where

A A-, B -A B D- D-BA B (A. 31)

While A* and D* are symmetric submatrices, B is, in general, not sym-

m.tric. Substituting Equations A.5, A.25 and A.30 into Equation A.26

yields
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* * 4 * * at  + A -

A -- 2A + (2A + A ) 2A - + A22 3X4 26 ;x3;y 12 66 ;x 2 ay 2  16 axay 3  11 ;y4

* w * *) •w * * a•w

- B -- + (B - 2B (B + - 2B )

21 aX4  61 26 ax3ay 11 22 66 ax2 3y2  (A.32)

* * � 4 w *a 4 w
+ (B - 2B ) -B -- 0

62 16 ;Xay 3  12 ;y4

for the compatibility equation in the buckled state. Similarly, sub-

stituting Equations A.5, A.25 and A.30 into Equations A.17 yields

B -* + (2B -B ) 6 + (B + B -2B ) 34

21 3x4  26 61 3x3ay 11 22 66 ;x 2 ay 2

* ' ~~* 4 w * •

* (2B -B ) 0+B +D -+4D
16 62 axay 3  12 ay4  11 a•X 16 ax3ay

* * a w * at w * •w-

+ 2(D + D ) + 4D + D * (A.33)
12 66 ax 2 aY2  26 axay 3  22 ay4

S3w + 2N + N 3"X ax 2  XY y Y ay2

for the equilibrium equation in the buckled state. As in Equations

A.22, A.23 and A.24, the superscript "i" has been dropped from Nx, Ny

and Nxy in Equation A.33, but it must be remembered that these inplane

Stress resultants exist just before buckling occurs, whereas 0 is re-

lated by Equations A.25 to the additional stress resultants generated by

the buckled mode shape. Equations A.32 and A.33 form a set of differ-

ential equations of eighth order.

For symmetrically laminated plates Bij - 0, and Equations A.32 and

A.33 uncouple. Equation A.32 becomes the anisotropic, stress function

form of the compatibility equation for plane elasticity, and Equation

A.33 reduces to Equation A.23.
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A.3. BOUNDARY CONDITIONS

The classical, bifurcation buckling problem for a laminated

composite plate requires satisfying the governing differential equations

(Section A.2.) and the boundary (or edge) conditions. Both sets of

equations are homogeneous, leading to an eigenvalue problem for the

eigenvalues (buckling loads) and eigenfunctions (mode shapes). Con-

sistent with the eighth order sets of differential equations which must

be satisfied, four boundary conditions must be applied to each edge of

the plate. The classical conditions are

b
un 0 or Nn 0 (A. 34a)

b
u = 0 or N b= 0 (A.34b)t ~nt

bb __n_

w = 0 or Vb = Q + nt 0 (A.34c)
n n at

aw 0 or Mb 0 (A. 34d)
an n

In the above equations the subscripts n and t denote the coordinates

normal and tangential to the boundary. The function Qn + aMnt/at is the

wellknown Relvin-Kirchhoff "edge reaction" which must be nullified at a

free edge. In addition, at a free rectangular corner (the intersection

of two free edges), the point condition Mnt = 0 must be satisfied. The

superscript "b" is added here to the generalized forces to avoid

confusing them with the inplane forces (e.g., N , Ni, N existing

just before buckling.

Equations A.34 may be used to represent any form of "simple" edge

condition (e.g., clamped, simply supported, free). More general

boundary conditions which are applicable to edges having elastic con-
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straints take the forms

b
N ± k u 0
n In

N n t k2 t-0

b + 'Mnt (A.35)
+ -± k~w 0

b awm :t k 1---0
n 4 an- O

Here the constants k 1, k, k and k denote the spring stiffnesses ofI 2 3 14

the constraints. Considerable care must be taken to use the proper sign

(plus or minus) for the generalized restoring forces supplied by the

elastic constraints, depending upon the edge under consideration (cf.

(A.7], p. 114).

In some problems inplane forces are applied to free edges of

plates. This situation zequirerb 6euial consideration. Figure A.3

shows a plate with free edges loaded by compressive stress resultants (P).

In the buckled mode shape the edges have rotated through angles ± P.

From considerations of internal forces acting an infinitesimal distance

inside each edge, it may be seen that

N - P cos(±'')

Q + -- • P sin(±_+) (A.36)
ay

With the standard assumptions of classical, linear plate theory, the

deflected slopes are small, and cos(±t) - 1 and sin(±f)lz ±w/ax.

Therefore, Equations A.36 become

N = -P

Qx + am = w (A.37)
x y ax
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Figure A.3. Inplane stress resultants (P) applied to f;ee edges.
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which are the proper conditions to use in solving the problem. Similar

conditions exist at free edges y = constant.

In applying the boundary conditions it is useful to have explicit

expressions for the various functions used in Equations A.34. For the

displacement formulation of the problem they are obtained from Equations

A.4, A.5, A.8, A.11 and A.34c.

N =A 2+A +v A + 32Nx 1 ax 12 aY I C T

B 2w --2 B a2w (A.38a)

-B a2w- B - - 2B N
11 ax2 12 16 3x3y

NL + -+A Lv+ A 3)

Y = x+12 22 aY 260ax
(A.38b)

B 2-w - B 2-w - 2B a2w
12 aX2  22 ay 2  26 DXDY

NY A u + v A Lv + _~ Ay
. a av rax au\Nxy A -+Ax

16 26 Y 66' au)?
32 w 2 (A.38)

-B --- - B - - 2B D2
16 9x 2  26 ay2  66 BXZy

M u + v +B dv +u•-B •+B ~+ +. u
X a1 x 12 3Y 166aX a

D 2w -D w a2w (A.38d)- -- D --- 2D
-D 3X2  12 ay 2  16 BxOy

M =B -u+B -+B ++B
Y 12 22 26 L ax 3y'

a2 2  w w 2 w (A. 38e)

-D D - - 2D a2w
1z aX2 22 ay 2  26 axay
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M - B 2-+ B -v+ B ax aKy 16~ ax 26" 3 Y 6 6('x + /

2ýw - 2 w - 2w (A.38f)
-D -- D -- -2D --

16 ax2  26 ay2 66 3xaY

Qx " 32U- + 2B a2u + B a2u + B L2 v

11 ax2 16 axay 66 ay2  16 ax2

+ (B + B v 2 v 3w2 6 -y + B D - (A.38g)
12 66 y 26 ay2  11 x 3

- 3D -- - (D + 2D ) - D Iw

16 3X2ay 12 66 ýxay2 26 ;y3

Qy -B -2u + (B + B ) -2+ -+B •u-+
16 ax2  12 66 3X3Y 26 ay2  66 3x2

a2v 32v a3w __3w_

+ 2B -L + B -- D -- (D + 2D ) (A.38h)
26 axxy 22 3y2  16 ay3  12 66 ax2ay

a3w 3
- 3D -- D -

26 aXay 2  22 ay3

a2 2 u a2u 2

V -B L-+ 3B 2- + 2B 2- + B -2

x 11 ax2  16 xy 66 Wy2  16 ax2

+ a+2 2v a2 3w
+(B +-2B + 2B --- D -- (A.38i)

12 66 ax3Y 26 Wy2  11 ax 3

-4 3w 33w _3w

- 4D -- - (D + 4D ) -2D a3,
16 ax2ay 12 66 axay 2  2 6 y 3

32 U I2u a2u ;2v
V 2B -- +(B +2B ) ''-B -+ 2B _

y 16 3x3  12 66 xa + B +6 2B6 x26 ay2  66 ax2

a2v a2v a3w _____

+ 3B -3 + B L - 2D (D + 4D aw (A.38j)26 3xaY 22 ay2  16 ax3  12 66 ax2 ;y

a3w 3
-4D -D -D

26 axay 2  22 ay3
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For the stress function (and transverse displacement) formulation of the

problem, the inplane stress resultants are given by Equations A.25; the

other useful quantities are obtained from Equations A.5, A.1l, A.25,

A.30 and A.34c.

M - ( -* a2 B *-+B -3

x 21 ax2  61 axay 11 By2

* a2 W * a2  32(A.w39a)+ D -+2D -+ D
11 ax 2  16 aXaY 12 ay2 /

M * - 2 -- B * 20+ B *-2
Y \22 ax2  62 axay 12 ay 2

+ D * a 2 w •* a2w *
2 w+ DA* 

9b)

12 ax 2  26 axay 22 ay2)

H -BB * ;20 -_B - +B2 * -20

- 26 ax 2  66 axay 16 ay 2  
(A.39c)

a W a2w * a 2w
16 ax 2  66 dxay 26 9y2

* 3 ** a30 * *
Q JB 2- (B * B - +(B -B)

L21 ax3  2.6 61 ax2ay 11 66 axay2

"+ B a3  * • + 3D * 3 W(A.39d)

16 ay 3  11 ax 3  16 ax2ay

• * a3w * a3wl"+ (D *+ 2D *) a-- + D * 3

12 66 axay 2  26 ay3 J

- F* B• * 34* * a3

QY -[B -- + (B - B + (B - B )26 3 22 66 3ay 16 62 axay2

* a33 * a3W * a3w"+ B - + D - + (D + 2D ) (A.39e)
12 ay 3  16 ax 3  12 66 ax2ay

" 3D '3w + D a 3w

26 axay2 22 ay3L
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I.I

*~3 [;30*
[B2 *~ -B) +B -7B
x3 2 6 61 1x21y + I 66 ýxay2

, •3 * a•3 w • 3w'

+ 2B +b -- + 4D (A.39f)1 6 By3  11 DX3 16 3x2ay (3

, 3 W 3w
+ (D12 + 4D ) + 2D 2

1? 66 8xay2  26 ay 3 J

[ 83 * * 3w
V - B -+(B .2B + +(2B -B)L 26 33 22 66 ;x2ay 16 62 3x3y2

B* + 2D 3W+ (D + 4D ) 3w (3
12 ;y 3  16 3x3 12 66 ax2ay (A.39g)

+ 4D + D -
26 axay2 22 ay3

For non-rectangular plates other forms of un, ut, N1n, Nnt, Mn,

nt, Qn and Vn are needed. These may be obtained by using the vector and

tensorial transformation formulas generally available in the standard

texts dealing with the theory of elasticity and plate theory (cf., (A.8,

A.9]), together with Equations A.38 or A.39.

For :-igetric laminates the bending-stretching coupling disap-

pears, and Bij a 0 in Equations h.38 and A.39. For cross-ply plates

having fibers parallel to the x and y axes, D 12- D 16= 0 in Equations

A.38 and A.39.

A.4. ENERGY FUNCTIONALS

The total potential energy of a plate (V) while in equilibrium in

a displaced buckling mode is given by

S- VS + + VBS + V1  (A.40)
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where Vs, VB and VBS are the strain energies due to stretching, bending

and bending-stretching coupling, respectively, and VL is the potential

due to the applied inplane forces.

Formulation of the buckling problem in terms of the potential

energy is useful for at least the following two reasons:

(I) Variational principles may be applied to derive the

differential equations of equilibrium and a mathematically

consistent set of boundary conditions

(2) The buckling problem may be directly solved by energy methods,

such as the widely used Ritz method.

The strain energy in a deformed plate is

V =(a + 0 e + T y )d(Vol) (A. 41.)
x x y y xy xy

Vol

where the stresses and strains are those used previously in Section A.1,

and the integration is carried out over the volume of the plate. Sub-

stituting into Equation A.41 the stress-strain relationships for each

lamina, carrying out the tensorial transformations required to express

the stresses and strains in terms of a single plate coordinate system
I. (x, y), applying the kinematic conditions of Equations A.3, A.4 and A.5,
6.2

and integrating over the thickness layer by layer yields [A.4]:

V. f [A \ /+2A 12Av+ A2 (,)
S 2 [A 12 ax ay 22

+ 2A - + + 2A -- + 2(A.42a)

a ax 26 a y zy

"+ A ('u + dxdy66\Y 6

63
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I

VBS 2 A 1 1  ax 2  12 \iY ax2  
Xa 2

22 axa2  6~ ax aX(A 4b

_ 2WýU a 2u w2 iV L2w W u 9 2 ,j

4. B + 2B (_ + 2 1--2 y
JO 22 3Y 3y2 16 3y 2  ax x2 ax axyyax ax(A. 42b)

+2B (a 2 v a2w + 2 1_-V 32w
26 aY 3y2W + x 3y2 ay x y/

"a u + v a2w
+4B L -+ - Y dxdyg~ 66 (3x ay Y xa

1 fja 1 a2w /L 2204
B 2 1 2 12 ax 2  y 2  22 y2

+24D w 2w a2w 32 w (A.42C)

16 9x2 X3ay 26 ay2 axay

+ 4D - 2w )2 ] dxdy

where the Aij, Bij and Dij are the plate stiffness coefficients used

previously in Equation 8 and the integrals are taken over the area of the

plate.

For a symmetric laminate, Bij a 0 and consequently the strain

energy due to bending-stretching coupling (VBS) vanishes. Then Equation

A.42c represents the entire strain energy caused by bending (i.e.,

changes in curvature), and is of the same form as found for homogeneous,

anisotropic plates [A.1]. For a cross-ply laminate, with fibers parallel

to the x arn] y coordinates, D 16 D 26- 0.

The potential energy due to the initial inplane loads is

VL Nxx + N cy + Nxy xy dxdy (A.43)

A
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"where x' , C; and Yxy! are the midplane strains caused by a transverse
displacement field (w). These are given by (A.9]

Lawx-

'y " "?W7 (A. 44)

Substituting Equations A.44 into A.43 results in

NY 1ayi/+ 2N w- -- dxdy (A.45)
2 [)y N x 3y
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