
A-A162 716 GPSG (GENERALIZED PHRASE STRUCTURE GRAMMAR) RECOGNITION i/i
IS NP HARD(U) MASSACHUSETTS INST OF TECH CAMBRIDGE

I ARTIFICIAL INTELLIGENCE LAO E S RISTAD MAR 85 Al-N-fiT?

UNCLASSIFIED N0814-88-C-8585 F/G 5/7 U

I EEEEEEEEEEEEE
'EE



II

"4 1: Q 2

11.

IllW 2 0

IIA.

.,logo u,

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

r

ili m , - - - ,, . . . .. .

.'!l 4*."* , - .., ,- . , * ... . * -. * ...,, *



~~UNCLASS IFI ED

SE.IJ v U t _Y ASSIFICATION OF TN|S PAGE 41l01hen Date Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
OT R2. GOVT ACCSSION NO . RECIPIENT'S CATALOG NUMSER

837 1

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

A.I. Memo 837

GPSG- Recognition is NP Hard

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 0. CONTRACT OR GRANT NUMSER(s)

N0014-80-C-0505

Eric Sven Ristad

S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Artificial Inteligence Laboratory AREA & WORK UNIT NUMUERS

545 Technology Square

Cambridge, MA 02139

,I. CONTROLING OFFICE NAME AND ADDRESS I". REPORT DATE

Advanced Research Projects Agency March, 1985

1400 Wilson Blvd. IS. MUMOER OF PAGES

Arlington, VA 22209 9
14. MONITORING AGENCY NAME 0 AODRESS(II dtllermI from Coteniffl m Officej IS. SECURITY CLASS. (of thee rot)

Office of Naval Research
Information Systems Unclassified

(C Arlington, VA 22217 Is. OECLASSIICATN/ DOWN GRADING

CD _ _____

U IS. OISTRIUTION STATEMENT (of this Repir)

< Distribution is unlimited.

17. DISTRIUTION STATEMENT (o° f I. abstrc moor" i Dies&l 20. It DI fIea.- b f e Repast) t-

40E 26 W5
r+

Is. SUPPLEMENTARY NOTES

None

I9. KEY WORDS (CAwIe. on aoer** aide of neoo°oW am idamt/* by block" mbm)

R GPSG Linguistics

: Parsing Natural Language Parsing

C.P) Complexity
Natural Language

PP,-J 20. AUSTRACT (CnltnuD , re e ld*e It "eseeDy anO@6Wd •1fp of60k D. membo. )

eL~-. Proponents of Generalized Phrase Structure Grammar(GPSG) often cite its weak

context-free generative power as proof of the computatoinal tractabilty of

- GPSG-Recognition. It is well known that context-free languages can be parsed

in 0( ) time by a wide range of algorithms. Hence, it might be thought that

GPSG's weak context-free generative power should guarantee that it too is

efficiently parsible. This widely-assumed GPSG "efficient parsibilty" result

is false: A reduction from 3-Satsisfiabilty proves that GPSG-Recognition is in

DD ,r 1473 EDITION OF I NOV 6S IS O@SOL9TE UNCLASS I FIED
/N0:02t-014-16601 1 [SECURITY CLASSIFICATION OF THIS PAGE (Wthen Diel

%.-'



the class NP-hard, and likely to be intractable. Crucially, GPSG-Recogition is a
function of an input string and a grammar, and the GPSG metarule grammar can result
in an arbitrarily large finite set of derived context-free rules. It is further
demonstrated that a central object in GPSG theory, the metarule inherently results
in an intractable recognition problem, even when severely constrained. The implica-
tions for linguistics and natural language parsing are discussed
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1 Complexity of GPSG-Recognition

Gaz ar( 1981) proposes restricting the cla of generative grammars for natural

laguag-s to a subset of those with weak context-free generative power. Since
context-free langnages rai be parsel in 0(n') time, Gazdar argues this would
provide -the l)ginnfings of an explanation for the obvious, but largely ignored,

"fnwt that ]imtnais process the utterances they hear very rapidly."' In this paper,

I prove Gazdar's appeal to general mathematical results on context-free parsing
fu1ils: Generalized Phrase Structure Granmatr (GPSG) does not have the desired
"efficient parsibility" result unless other constraints are added to the theory.
As things currently stand, GPSG, Lexical Functional Grammar (LFG), and
Trandormational Granmmar (TG) all have a general "intractable parsibility'
result.

A Generalized Phrase Structure Grammar (GPSG) consists, at core, of a
finite set of context-free base rules plus a fini set of metarules.- Metarules are
functions from base rules to sets of base rules.2 For example, the metarule

(vP -+ V VP =* [VP -. V ADVP VP)
JI fin]1
J+ auxi

stipulates that for every context-free rule expanding a finite VP as a finite
auxiliary and a nonfinite VP, there will be an identical rule expanding the VP
as before, except with an adverb between the auxiliary and nonfinite VP.

Unconstrained metarule application may generate infinite sets of rules and
describe arbitrary languages.3 To preserve both the context-free weak genera-
tive power of a GPSG grammar and the supposedly attendant computational
benefits, some formal constraints on metarules have been proposed in the GPSG
literature. One proposal is to constrain variables in the metarule pattern to be
"abbreviatory variables," i.e. variables that can only stand for strings in a finite
and extrinsically determined range.' While this constraint can affect the ez-
tensional language of the grammar in linguistically unmotivated and arbitrary
ways, I adopt the constraint in my proof for the purposes of examining its conk-
putational implications. Following most of the work in GPSG, I allow metasrula
to apply recursively to their own outputs, subject to the restriction that the set
of rules derived from metarule application is finite. This constraint preserve
the context-free generative power of the formalism.

Using only a ninimal GPSG grammar, I prove that the recognition Problem

for GPSG - is a string an element of the language generated by the gram-
mar? -- is NP-hard. A problem T(z) is NP-hard if it is at least as hard

2Gazdar(1081) pil1.
28ee Sag et.aL.(1964)

'Fr a discumion of this and some proposals for restrictlng metarhum, we Sheber et.ai.(INMS)
4 See Shicber et.al.(1983) for a discussiou of Gasdar's 1M propasl.
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computationally as any problem in NP: If we had a subroutine that solved T in
polynomial time, then we could write a program to solve any problem in NP in
polynomial time on a deterministic Turing machine. Since it is widely believed
(though not proved) that the hardest problems in NP (NP-complete problems)
cannot be solved in polynomial time, NP-hardness is considered equivalent to
computational intractability.

To ptve that GPSG-Recognition is NP-hard, I reduce 3-Satisfiability (3.
SAT), an NP-complete problem, to GPSG-Recognition. A reduction works by
converting instances of 3-SAT into instances of GPSG-Recogntion in polynomial
time. If we had a polynomial time subroutine for solving GPSG-Recognition,
then we could also solve 3-SAT in polynomial time, simply by converting into the
GPSG-Recognition problem. Since we know 3-Satisfiability is the hardest prob-
lem in NP (NP-complete), then the reduction shows that GPSG-Recognition is
at least as hard as all problems in NP (NP-hard).

The 3-Satisfiability problem is: Given a boolean formula in conjunctive nor-
mal form (CNF) where each clause contains exactly three variables, is there
some assignment of truths to the formula's variables that will make the formula
true? An xamnple of a satisfiable 3-CNF boolean formula with five clauses
(where + indicates disjunction) is:

(a +b+c)(3+d +g)(s+r+y)(b+c+d)(I+ +1)

1.1 GPSG-Recognltlon Is NP-hard

Theorem 1: GPSG-Recgnition is NP-hard.

Proof: On input 3-CNF formula F of length m using n variables, reduce 3-SAT
to GPSG-Recognition in polynomial time.

W be the string resulting from removing all parenthesis and
disjunct symbols from F
be the n variables in some canonical order, where q de-
notes the Oth variable

zi denote the Oh symbol in the string 2

S be the distinguished start symbol
X,Y,Z,p be special symbols denoting members of {0,1)"
A,B,O,1,#,I be special symbols

We construct a GPSG grammar G s.t. the special symbol # is an elemnt
of L(G) iff is satisfiable. G contains

1. n + Ibae rulms:

- 2



the ith rule: [A wv I10"J where 0 < i:5 n

2. the ten nwtarules

[A4 I XYbZ] [A -w I XbYVZI
where a,b E {0, 1)

' [A- wo I] =i [B-4 w' I z]

where if wi = ir then w! ={ if zJ =

i [D-. w' I r] IS --+ #W"]
where if w! = qj then w" = z$

[s -" #001P] =. IS -4 #PJ
Is,#O1lpJ [S - #p]IS -+#olopl = [s -. #p]1

ii [S -" #loop] = IS -4 #el
Is --- #011p) I= S "*#P]

~Is - #10~1] I S -#Pl
[S #O0P] Is- #Pl
(S #11p] [S -- #PJ

The first metarule, in conjunction with the a + 1 bans rules, generates all
possible truth assignments for the n variables. The second metarule instantiates
negated wriables, and the third metarule instantiates unnegated variables. The
last Aeven metarules determine whether the assignment that was guessed stisfies
the formula F. All variables in the ten ruetarules are either constants (e.g. w)
or "abbreviatory variables" (e.g. p) which stand for a string in (0,1) of length
less than m. If these variables were removed, 0(m) new rules would replace
each existing rule which makes use of an "abbreviatory variable."

The rule set rerulting from metande application is guaranteed finite because
no metarule derives rules longer than its input rule. The reduction can be
performed in polynomial time (exactly O(m2 ) time) because there are n base
rules of length O(n), n < m, and only a constant number of metarules. Q.E.D.

I Example reduction:

F = (a+b+c)(a+b+?)(a+!+c)(a+g+z)(a+b+c}(if+b+l}(il+g+c

w = abcab - -abea&bicib-ibc
q = abe

The grammar we construct for F contains

'I3



1. n + I base rules

[A -* w 0ooo [A -4 w 100] [A -. w 11o] [A - 111]

2. metarule I generates the remainig possible truth assignments, deriving
4 additional rules

[A - w 101O] [A - w 1001) [A -+ w 1101] [A -, w 1011]

3. metarule 2 instantiates negated variables, deriving 8 additional rules

"B - abcablalcalllbclblllc 1000]

[B -4 abcablalcallObcObl0lc 100]
[B - abcablaOcaOlObcOblOOc 1110]
[B -* abcabOaOcaOOObcObOOOc I 1111
[B abcabla0caOllbclbllOc I 010]

IB - abcabOalcal0lbclbOllc I 001]
[B - abcabOa lca 00lbcb001c 101]

[B -- abcabOaOcaOOlbclb0l0c I 011]

4. metarule 3 instantiates unnegated variables, deriving 8 additional rules

[S -- #000001010011100101110]
[S -4 #100101110111000001010

[s- #1101l1o0101010011000]

[S -- #111110101100011010001]

[S - #010011000001110111100]
[S #0010000110101011001111

d.~[ 8- #101100111110001000011]

iS - #011010001000111110101]

5. metaruls 4 through 10 check if the awigmnent guessed satisfies the for-
mula F, generating 28 additional rules

4
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iS -* #10111o111000010101 IS - #1111001010100110001

Is #1101111()0011010001] is - #011000001110111100

[S -. #000llO101011001111 [S -. #100111110001000011]

[S -, #010001000111110101]

is - #1101110000010101 IS -. #1001010100110001

[s - #101100011010001] IS - #0000011101111001
IS -. #1111100010000111 [S -* #001000111110101

[S #111000001010] [S - #101010011000]

1 IS -- #1000110100011 [S -. #1100010000111
IS -- #000111110101]

IS - #000001010] IS - #010011000]
I5- #011010001] [8 - #001000011]
IS - #011000] [S - #0100011

IS -. #0000111

iS - #000] Is -. #0011

IS -. #1

Note # E L(G) because the rule [S - #1 was derived, so the formula is satisi-
able (with the assignment abc = 111, as the reader can verify).

1.2 Generative Power and Computational Complexity

At first glance, a proof that GPSG-Recognition is NP-hard appears to contradict

the context-free generative power result noted above. After all, there exist a

wide range of algorithms capable of recognizing context-free languages in time
0(,3).

The connection between weak generative power and efficient parsibility is

not as direct as was evidently asumed. The crux of the matter is that a GPSO
grammar M can result in a context-free rule set MI of any size whataoeve,

subject only to the restriction that it be finite. M' can be of size 0(2") whene

JMJ= k, or even significantly larger. Context-free parsers like the Earley algo-
rithm actually run in time O(1G12 .n3) where IGI is the context-free grammar

size and n the input length, so the hypothetical GPSG graumar M win be rec-

ognized in time 0(4 nS). The exponential term will clearly dominate the Earley

algorithm complexity in the reduction above because IMI is a function of the

length m of the input foriula F. Even if the GPSG grammar is held constant,

the exponential increase in derived grammar size will result in an astronomical

165



constant factor, which in turn will dominate the real-world performance of the
Earley algorithm for all expected inputs (i.e. those of a million words or less).

1.3 Restricting Metarule Application

Since the central problcn is that a netarlde is capable of deriving any finitely
large set of rules, including exponentially large ones, we must further constrain
metarule application if we wish to solve the GPS(-Recognition problem in poly-
noniial time (i.e. obtain an efficient parsibility result).

Let us imagine severely restricting the derivational power of metarules as
follows:&

1. a metarule may only operate once in the derivation of a given rule (i.e.
not recursively on its own output).

2. a metarile is a function from one context-free rule to another context-free
rule (and not from a rule to a set of rules).

3. all metarule variables either are constants (e.g. w) or stand for a single
symbol and can only have two possible values (e.g. z can only stand
for the Rymbols 0,1). Note that this is more restrictive than Gaadar's
abbreviatory variables constraint.

4. no unrecoverable deletion occurs in the derivation of a given context-free
rule.

5. no two metarules or basic rules are identical either in pattern or function.

Even in such a severely restricted system, GPSG-Recognition will be NP-
hard. An 0(m3 ) time reduction is included in appendix A. Since each metarule
application can double the size of the grammar G, and there are now OW(m)
metarules, the resulting grammar will still be size 0(1 G 1 .2'2), or still ex-
ponentially larger than G, and the Earley algorithm recognition time will be
0((lCI.2m' )m) =: 0(4m'm9).

A list of restrictions necessary to remove GPSG-Recognition from the clas
NP-hard is:e

5A& far as I know, these three restrictions together go beyond anything discussed in the
openly available GPSG literature.

6 1n order to guarantee that these four restrictions are sufficient, GPSG must be completely

and exactly fornally specified, in a manner which ensures that proliferation of categories
will not make the recognition problem intractable. Another aspect of current GPSG for-
mulations which make them NP-hard - and probably intractable -- is the Innediate
Dominance/Linear Precedence (ID/LP) formalism. See Barton(1984) for a proof.

* Note that the linguistically untenable restriction of prohibiting mnetarule variables of any
kind is probably sulficient, when coupled with ID/LP restrictions, to guarante polynomial
time recognition. Snch a restriction would mean that a mnetarile, which may only 'match"
one basic rule, can only derive exactly one rule. The sze of the derived context.free rule

16



1. strictly bloinded "chaining" only a constant numnber of metarules, fixed
in advance for all (PSG grnunimars, ran operate in the derivation of a given
context-free nile.

2. each metarule may derive a rule set only polynomially bigger than its
input rule set.

3. a metarule may only use "abbreviatory variables."

4. metarules are unable to apply to other metarules.

The simplest effective restriction, and one that is not much different from the
list of restrictions above, is to remove metarules from GPSG altogether. Since

metarules can only derive polynomially large rule sets and limited chaining
will make metarule interaction very unpredictable, the nguist would be better
off writing out the context-free rule set in advance, and ignoring metarula
altogether.

On the other hand, eliminating metarales poses its own problems. Typieal
GPSG systems result in very large sets of derived rules - literally triliom
of rules - and writing out these context-free rule sets in advauce would not
be feasible.7 Furthermore, a context-free grammar lacking metarules fail to
capture linguistically significant relations between rules. This significant (and
apparently unresolvable) metarule-inclusion issue plagues us only if we maintain
the "context-free weak generative power" framework. The obvious next step is
to abandon that framework.

1.4 Conclusion

The moral of my proof is that as far as we know, it is not possible to appeal
to general mathematical results to rescue "efficient parsibility" results. Specific
constraints on the particular representations postulated by linguistic theary awe
needed to explain efficient parsibility. This does not imply that GPSG theory is
without merit: on the contrary, I have merely shown that its particular efficient
parsibilty thesis cannot be maintained. Generalized Phrase Structure Grammar,
Lexical Functional Grammar, and Transformational Grammar are all probably
intractable in an abstract mathematical sense, and each theory must search
elsewhere for an explanation of efficient parsibility, if one is to be given at all."

set would be the size of the basic rule set plus the number of metules. We reatleti
is linguistically unmotivated because it fails to capture linguiatically important mmraa-
tiona. For example, any metaule applying to singular and plural stences would have to
be replicated at least twice: once to handle the Angular case, and oee to handle the plural
casn.

'See Shieber(19$) p.137

'See Berwkk and Weinberg(1984) for a discussion o LPG complzity.
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The first order of business is to discover an explanatory computational theory
of natural language, which identifies the goal of the computation, explains why it
is appropriate, and describes the logic of the strategy by which it can be carried
out. Once we develop the computational theory and more clearly understand the
language faculty, then we can devise algorithms and even postulate neurological
mechanisms which implement the algorithms. No magical mathematical result" is likely to rescue us from this hard work.

-' Metagramniatical devices should, I believe, be avoided in principle for both

linguistic and computational reasons. Such devices try to describe some reg-
ularity or generality not expressible in the core grammar. A more powerful
approach would discover a representation or principle that explains the given
phenomenon, rather than merely describing it. Instead of resorting to stipu-
latory language descriptions, linguists should search for grammatical principles
and representations that combine in an explanatory theory.
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A Reduction from 3-SAT to GPSG-Recogry:tion

The reduction makes usc of wetarule scheujata solely to incream clarity Of e.-
position.
Theorem 2: CPSC-Recognition is NP-hard, even when everely constrained.

Proof: On input 3-CNF formula F of length m using n variables, reduce 3-SAT
to GPSG-Recognition in polynomial time.

Let
w be the string resulting from removing all parenthesis and

disjunct symbols from F
q be the n variables in some canonical order, where qi do-

notes the i" variable
denote the string in {y)* of length i

zi denote the i th symbol in the string x
S be the distinguished start symbol
X, Y, Z, p be special symbols denoting members of {0, 1)
A, B, 0, 1,#,I be special symbols

As above, we construct a GPSG grammar G s.t. the special symbol # is an
element of L(G) iff F is satisfiable. G contains

I. n + I base rules:

the i gh rule: [A -w I ViO- ] where 0!5 i 5 n

2. the metarules

(a) (n + 1)2 metarules, to generate all possible truth assignments, de-
scribed by the schema

[A --4 I0 tizjzib: = [A w~ I w xa~

where a, b,x E (0,1), 0_ i,j < , and k n -= - j - 2.

(b) two metarules, to instantiate negated and unnegated variables

[A'- w I ] ==* [B'-w'lx]

where if i qthen w' f= w - 0 ifzjffl
[B w. "/I) IS -. #w,")

where if w** q* t ffi x



(c) In inetarules, to check that the guessed assigmnt satisfies F, de-
scribed by the 7 schemata

[S - #0O1z3A] [S -. #z1]

[S - # 0 1
O

Xk] = [S -. 
]

[S - #100ook] =S [s - #X3k]

IS -. # 0 11: Sk] S [s -. #5k]

Is - #u s'  = [s -* #zs,]
IS -. #1I ] I [S -. # k]

where 0:< k < - 1

The result of applying the two "instantiating" metarules or any metande
described by the last metarule schemata is to change the basic rule's righthand
side so that the metarule will not apply to it again.

I now prove that all possible truth assignments can be generated by the first
metarule schema above, subject to the restriction that a metarule may only
operate once in the derivation of a given rule. This is equivalent to proving that
we can generate all binary numbers from 0 to 2" - I inclusive, using only the
n +1I binary numbers

VOR-i where 0<: i :5 s

and (n + 1)2 metarules described by the schema

[zbazib=k] == [Z'big 4 Xk]

where a,b,z E {0,1), 0 < i,j _! n, and k = n - i - - 2. These metarules
perform the action of exchanging any two given bit positions in a binary number

.... of length n.

X - be a binary number with k 1's in its binary representation,
05 z < 2"1

- kiiO* - k be the kh binary number

The algorithm found in figure 1, expressed in a generic programming lan-
guae, derives z from p using the metarules. No metarule can be applied twice
because i and j are different everytime a metarule is applied (in line 6). In any
given derivation, clearly at most [I I metarules are applied (see line 1), and
exactly rm"sm, a - k) metaInles are applied in any given derivation. Q.E.D.

10



Figure 1: Algorithm to derive z from y using metarum.

procedure - deric(x, pj
1: for i = I to fit
2: if zi then do
3: for j = n to 0 step -1
4: if z, 96 # then goto 6
5: nextj
6: apply metarule [x-saz- -S 4 bzf - S  [i-1 i--tas - i] to,

switching bit positions i and j in the number j
7: nextts

Example derivation:
" Lit

z 0010011110 be a binary number with 5 1' in its binary represestation.

= 1111100000 be the 5h binary number

y metarule used net

1111100000 lzzzzzzb z b zzzzxzzazl 0111100010
0111100010 [zaz2zzzbzz] = fbzzzzzazz] 0011100110
0011100110 fzzzazzbzzz] = [zzzbxzazzzJ 0010101110
0010101110 (zzzzabzzzz]Jl [zxZZSazZZU] 0010011110

,V



FILMED

mm DTIC

A'.C
'N' : . . , "-" . ,. •,- , , . " ,': . ,' - .-

>.2. 
9 

'. :,. . . /. " , . . *.- o ,

pJ


