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GPSG-Recognition is NP-Hard
Eric Sven Ristad
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ABSTRACT,

Proponcsts of Generalized Phrase Structure Grammar (GPSG) often cite its
weak contgxt-free generative power as proof of the computational tractability of
ognition. It is well known that context-free languages can be parsed

in O(»®) time by a wide range of algorithms. Hence, it might be thought
that GPSG’s weak context-free generative power ::gglld guarantce that it too is

o cfficiently parsible. This widely-assumed GPSG “efficient parsibility™ result is
ﬁ false: A reduction from 3-Satisfiability proves that GPSG-Recognition is in the

class NP-hard, and likely to be intractable. Crucially, GPSG-Recognition is a
function of an input string and a grammar, and the GPSG metarule grammar
can result in an arbitrarily large finite set of derived context-free rules. It
is further demonstrated that a central object in GPSG theory, the metarule,
inherently results in an intractable recognition problem, even when severely
constrained. The implications for linguistics and natural language parsing are

GPSG-

discussed.
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1 Complexity of GPSG-Recognition

Gazdar(1981) proposes restricting the class of generative grammars for natural
languages to a subset of those with weak coutext-free generative power. Since
context-free Jangnages can be parsed in O(n?) time, Gazdar argues this would
provide “the beginnings of an explanation for the obvious, but largely ignored,
fact that hunans process the utterances they hear very rapidly.”! In this paper,
I prove Gazdar’s appeal to general mathematical results on context-free parsing
fails: Gencralized Phrase Stencture Grammar (GPSG) docs not have the desired
“cfficient parsibility” result unless other constraints are added to the theory.
As things currently stand, GPSG, Lexical Functional Grammar (LFG), and
Transformational Grammar (TG) all have a general “intractable parsibility”
result.

A Generalized Phrase Structure Grammar (GPSG) consists, at core, of a
finite set of context-free base rules plus a fini : set of metarules.. Metarules are
functions from base rules to sets of base rules.? For example, the metarule

[valqv VP| = |[VP—~V ADVP VP)
+ fin
[+ aux]

stipulates that for every context-free rule expanding a finite VP as a finite
euxiliary and a nonfinite VP, there will be an identical rule expanding the VP
as before, except with an adverb between the auxiliary and nonfinite VP.

Unconstrained mctarule application may generate infinite sets of rules and
describe arbitrary languages.? To prescrve both the context-frec weak genera-
tive power of a GPSG grammar and the supposedly attendant computational
bencfits, some formal constraints on metarules have been proposed in the GPSG
literature. One proposal is to constrain variables in the metarule pattern to be
“abbreviatory variables,” i.c. variahles that can only stand for strings in a finite
and extrinsically determined range.* While this constraint can affect the ex-
tensional language of the grammar in linguistically unmotivated and arbitrary
ways, 1 adopt the constraint in my proof for the purposes of examining its com-
putational implications. Following most of the work in GPSG, I allow metarules
to apply recursively to their own outputs, subject to the restriction that the set
of rules derived from metarule application is finite. This constraint preserves
the context-free generative power of the formalism.

Using only a minimal GPSG grammar, I prove that the recognition problem
for GPSG — is a string an element of the language generated by the gram-
mar? - is NP-hard. A problem T(z) is NP-hard if it is at least as hard

Y e O W T e

1Gasdar(1081) p.188.

18ee Sag et.al.(1984)

3For a discussion of this and some praposals for restricting metarules, see Shieber et.al.(1083)
48ee Shicber et.al.(1983) for a discussion of Gasdar's 1082 proposal.
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computationally as any problem in NP: If we had a subroutine that solved T in
polynomial time, then we could write a programn to solve any problem in NP in
polynomial time on a detenininistic Turing machine. Since it is widely belicved
(though not proved) that the hardest problems in NP (NP-complete problems)
cannot be solved in polynomial time, NP-hardness is considered equivalent to
computational intractability.

To prove that GPSG-Recognition is NP-hard, 1 reduce 3-Satisfiability (3-
SAT), an NP-complete problem, to GI'SG-Recognition. A reduction works by
converting instances of 3-SAT into instances of GPSG-Recogntion in polynomial
time. i we had a polynomial time subroutine for solving GPSG-Rccognition,
then we counld also solve 3-SAT in polynomial time, simply by converting into the
GPSG-Recognition problem. Since we know 3-Satisfiability is the hardest prob-
Jem in NP (NP-complete), then the reduction shows that GPSG-Recognition is
at least as hard as all problems in NP (NP-hard).

The 3-Satisfiability problem is: Given a boolcan formula in conjunctive nor-
mal form (CNF) where each clause contains exactly three variables, is there
some assignment of truths to the formula’s variables that will make the formula
true? An example of a satisfiable 3-CNF boolean formula with five clauses
(where + indicates disjunction) is:

(a+b+c)B+d+g)s+7+F)(0+c+d)(@+d+3)

(Gz

1.1 GPSG-Recognition is NP-hard

Theorem 1: GPSG-Recognition is NP-hard. .
Proof: On input 3-CNF formula F of length m using n variables, reduce 3-SAT

to GPSG-Recognition in polynomial time.
Lot 4
w be the string resulting from removing all parenthesis and
disjunct symbols from F
q be the n variables in some canonical order, where ¢; de-
notes the i** variable
. denote the i** symbol in the string =
S be the distinguished start symbol

XY, 2,p be special symbols denoting members of {0 1}*
A,B,0,1,#,| be special symbols

We construct a GPSG grammar G s.t. the special symbol # is an element
of L(G) ifl F is satisfiable. G contains

1. n + 1 base rules:




the i rule: {A - w | 170""'] where 0<i<n

2. the ten metarules

[A~w|XaYbZ] = [A—w]|XbYaZ]
where a,b € {0,1}

(A~ w]az => [B—ow'|z]
whereifw.-=i;thmw:-={ (l) g:j:(l'
[B~ w')1] => [S - #u")
where if w) = ¢; then w! = z;
(S ~ #001p] = [§—~#p]
[S ~ #010p] = [ #9)]
[§ — #100p] =[S #9]
[§ ~ #011p] = [S—#p)
(S - #101p] = [S—~#p]
($ — #110p] = (S #p)]
[§ ~ #111p] = [§—#p]

The first metarule, in conjunction with the n 4 1 base rules, generates all
possible truth assignments for the n variables. The second metarule instantiates
negated variables, and the third metarule instantiates unnegated variables. The
last seven mctarules determine whether the assignment that was gucssed satisfies
the formula F. All variables in the ten metarules are either constants (e.g. w)
or “abbreviatory variables” (e.g. p) which stand for a string in {0,1}° of length
less than m. If these variables were removed, O(m) new rules would replace
each existing rle which makes use of an “abbreviatory variable.”

The rule set resulting from metarule application is guarantced finite because
no mctarule derives rules longer than its input rules. The reduction can be
performed in polynomial time (exactly O(m?) time) because there are n base
rules of length O(n), n < m, and only a constant number of metarules. Q.E.D.

Example reduction:

las
F = (a+b+c)a+b+e)(a+b+c)a+b+e)a+b+c)(@+b+E)(@+E+c)
w = abeabéabcabeabeabeabe
g = abe

The grammar we construct for F contains

= e = £ T A U R A
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.4
oy 1. n + 1 base rules

WY [A—>w|000] [A—w|100] [A—w]|110] [A—w]|1l1]

'f':"i.' 2. metarule 1 generates the remaining possible truth assignments, deriving
" o) 4 additional rules

v

:é:.: [A-w|010] [A—w]|00]] [A—w|10l] [A— w]|O1])

3. metarule 2 instantiates negated variables, deriving 8 additional rules

2_3 [B — abeablalcalllbelbllle | 000]
0 [B — abcablalcal10bc0b101c | 100)
o [B — abcabla0ca010bc0b100c | 110]

[B — abcab0a0ca000bc0b000c | 111]

. t [B — abcablalca011bc15110¢ | 010]
15} [B — abcablalca101bc1b011c | 001)
3 [B — abcablalca1005c06001c | 101]
-
. [B — abcab0a0ca001bc 16010¢ | 011] P |
3 3 4. metarule 3 instantiates unnegated variables, deriving 8 additional rules el
3
a0 [S — #000001010011100101110]
A [§ — #100101110111000001010]
[§ — #110111100101010011000]
R [S — #111110101100011010001]
el [§ — #010011000001110111100]
:_:;;Z [§ — #001000011010101100111])
n [S — #101100111110001000011]
- [S — #011010001000111110101]
‘:5{ 5. metarules 4 through 10 check if the assignment guessed satisfies the for-
,,;, mula F, gencrating 28 additional rules
e
T. .‘:
<
S5
DS
o
A8
v o
R 4 o
U] N
L4
28




(S — #101110111000001010] (S — #111100101010011000]
[S — #110101100011010001) [S — #011000001110111100)
[S — #000011010101100111) [S — #100111110001000011]
[$ — #010001000111110101]

(S — #110111000001010] S — #100101010011000]
(S — #101100011010001]  [$ — #000001110111100]
(S — #111110001000011)  [S — #001000111110101]

(S — #111000001010] [S — #101010011000]
(S — #100011010001) (S — #110001000011]
[S — #000111110101]

(S — #000001010} [S — #010011000]

[§ — #011010001) [S — #001000011]

[§ — #011000} [S — #010001]

[S — #000011]

[S — #000] [S — #001)

[S — #]

Note # € L(G) becausc the rule [S — #] was derived, so the formula is satisfi-
able (with the assignment abc = 111, as the reader can verify).

*

1.2 Generative Power and Computational Complexity

At first glance, a proof that GPSG-Recognition is NP-hard appears to contradict
the context-free generative power result noted above. After all, there exist a
wide range of algorithms capable of recognizing context-free languages in time
O(n3).

The connection hetwcen weak generative power and efficient parsibility is
not as dircct as was cvidently assumed. The crux of the matter is that 8 GPSG

—
'l

‘: grammar M can result in a context-free rule set M’ of any size whatsoever,
Y subject only to the restriction that it he finite. M’ can be of sise O(2*) where
Y |M|= k, or even significantly larger. Context-frce parsers like the Earley algo-
" tithm actually run in time O(|G|? -n®) where |G| is the context-free grammar
D size and n the input length, so the hypothetical GPSG grammar M will be rec-
- ognized in time O(4*n®). The cxponential term will clearly dominate the Earley
-::,’ algorithm complexity in the reduction above because | M| is a function of the
! length m of the input formula F. Even if the GPSG grammar is held constant,
> the exponential increase in derived grammar size will result in an astronomical

Lttt L0 A 1 G L DD DRI e osed
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constant factor, which iu turn will dominate the real-world performance of the
Earley algorithm for all expected inputs (i.c. those of a million words or less).

|
A s

1.3 Restricting Metarule Application

=T

Since the central problem is that a metarule is capable of deriving any finitely
large set of rules, including exponentially large oncs, we must further constrain
metarule application if we wish to solve the GPSG-Recognition problem in poly-
nomial time (i.e. obtain an efficient parsibility result).

Let us imagine severely restricting the dcrivational power of metarules as
. follows:®

Ky

B s e
s .

‘ot

N 1. a metarule may only operate once in the derivation of a given rule (i.e.
> not recursively on its own output).

o 2. a metarule is a function from one context-free rule to another context-free
> rule (and not from a rule to a set of rules).

o 3. all metarule variables either are constants (e.g. w) or stand for a single
symbol and can only have two possible values (e.g. z can only stand

‘\, for the symbols 0,1). Note that this is more restrictive than Gaszdar’s
v abbreviatory variables constraint, -
;s 4. no unrecoverable deletion occurs in the derivation of a given context-free ,S'J
[ rule.
{7
s 5. no two metarules or basic rules are identical either in pattern or function.
4t Even in such a severely restricted system, GPSG-Recognition will be NP-
hard. An O(m?®) time reduction is included in appendix A. Since each metarule
O application can double the size of the grammar G, and there are now O(m?)
i : 3 . » . 2 3
e metarules, the resulting grammar will still be size O(| G |-2™), or still ex-
gt ponentially larger than G;, and the Earley algorithm recognition timne will be
k> 0((G12™' 1}m?) = O(4™ m?).
R0 A list of restrictions necessary to remove GP’SG-Recognition from the class
- NP-hard is:*
_«‘: 5As far as I know, these three restrictions together go beyond anything discussed in the
L openly available GPSG literature.
] x: %In order to guarantce that these four restrictions are sufficient, GPSG must be completely
;.' and exactly forinally specified, in s manner which ensures that proliferation of categories
: will not make the recognition problem intractable. Another aspect of current GPSG for-
— mulations which make them NP-hard — and probably intractable — is the Immediate
>, Dominance/Lincar Precedence (ID/LP) formalisin. See Barton(1084) for a proof.
3 :_ Note that the linguistically untenable restriction of prohibiting metarnle variables of any
14 kind is probably suificient, when coupled with ID/LP restrictions, to guarantee polynomial
" time recognition. Such a restriction would mean that a mctarnle, which may ouly “match®
: ; one basic rule, can only derive exactly one rule. The size of the derived context-free rule
[~ R
il -.;. 6 '-i‘- :
£

NN T T Y P ave® =

R Ta T 0y .
AR e“'t.‘a's‘a'«k ANV




Sl Bt Rt g ok Mo s g’ W S e e e g - T el M h B B* e Bt s i 6 e il ik ey v L AR S et it gt ikl g g/ I o4 L ACatE -l h-ntia=ut s - g0 3t o
L d IR < L~ i T L i g CMC gk o e oeren
< ! - at H 24 g3

1. strictly bounded “chaining”  only a constant number of metarules, fixed
in advance for all GPSQ grammars, can operate in the derivation of a given
context-free rule.

2. cach mnetarule may derive a rule set only polynomially bigger than its
input rule set.

3. a metarule may only use “abbreviatory variables.”
4. metarules are unable to apply to other metarules.

The simplest cflective restriction, and one that is not much different from the
list of restrictions above, is to remove metarules from GPSG altogether. Since
metarules can only derive polynomially large rule sets and limited chaining
will make metarule interaction very unpredictable, the inguist would be better
off writing out the context-frce rule set in advance, and ignoring metarules
altogether.

On the other hand, eliminating metarules poses its own problems. Tygical
GPSG systems result in very large sets of derived rules — literally trillions
of rules — and writing out these context-free rule sets in advance would not
be feasible.” Furthermore, a context-free grammar lacking metarules fails to
capture linguistically significant relations betwcen rules. This significant (and
apparently unresolvable) metarule-inclusion issue plagues us ouly if we maintain
the “context-free weak gencrative power” framework. The obvious next step is
to abandon that framework. |

1.4 Conclusion

The moral of my proof is that as far as we know, it is not possible to appeal J
to general mathematical results to rescue “cfficient parsibility” results. Specific !
constraints on the particular representations postulated by linguistic theory are
needed to explain efficient parsibility. This docs not imply that GPSG theory is
without merit: on the contrary, I have merely shown that its particular efficient
parsibilty thesis cannot be maintained. Generalized Phrase Structure Grammar,
Lexical Functional Grammar, and Transformational Grammar are all probably
intractable in an abstract mathematical sense, and each theory must search |
elsewhere for an explanation of cfficient parsibility, if one is to be given at all.®

set would be the size of the basic rule set plus the number of metarules. This restriction

is linguistically unmotivated because it fails to capture linguistically important generalise- J
tions. For example, any metarule applying to singular and plural sentences would have to
be replicated ut least twice: once to handle the singular case, and once to handle the plural ‘
case. .

7Sce Shieber(1983) p.187
#Sce Berwick and Weinberg(1984) for a discussion of LFG complexity.
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The first order of busincss is to discover an explanatory computational theory
of natural language, which identifics the goal of the computation, explains why it
is appropriate, and describes the logic of the strategy by which it can be carried
out. Once we develop the computational theory and more clearly understand the
language faculty, then we can devise algorithms and even postulate neurological
mechanisms which implement the algorithms. No magical mathematical result
is likely to rescue us from this hard work.

Metagraminatical devices should, I believe, be avoided in principle for both
linguistic and comnputational reasons. Such devices try to describe some reg-
ularity or gencrality not expressible in the core grammar. A more powerful
approach would discover a representation or principle that explains the given
phcnomenon, rather than merely describing it. Instead of resorting to stipu-
latory language descriptions, linguists should search for grammatical principles
and representations that combine in an explanatory theory.
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A Reduction from 3-SAT to GPSG-Recogr:tion
The reduction makes use of metarule achemata solely to increase clarity of ex-
poaition.
Theorem 3: GPSG-Recognition is NP-hard, even when severely constrained.
Proof: On input 3-CNF formula F of length m using n variables, reduce 3-SAT
to GPSG-Recognition in polynomial time.
Let
w be the string resulting from removing all parenthesis and
disjunct symbols from F
q be the n variables in some canonical order, where q; de-
notes the i** variable
v denote the string in {y}* of length ¢
i denote the §** symbol in the string =
S be the distinguished start symbol
N X,Y,2,p be special symbols denoting members of {0,1)*
m A,B,0,1,#,] be special symbols \

As above, we construct a GPSG grammar G s.t. the special symbol # is an
element of L(G) iff F is satisfiable. G contains

1. n + 1 base rules:
the i rule: [A = w | 1°0"‘] where0<i<n

2. the metarules

(a) (n + 1)? metarules, to generate all possible truth assignments, de-
scribed by the achema

[4 - w|z'azibzt] = [A— w|z'bzfazt]

where a,b,z € {0,1},0<i,j<n,andk=n—-i-5-2
(b) two metarules, to inatantiate negated and unnegated variables

[A-w|z] = [B—v'|3]

. e - 1 ifz,=0
wherenfw.--qjthmwg—{o fzj=1
[B-w|z] = [§— #uw")
where if w} = ¢; then w{ = z;
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(c) Tn metarules, to check that the gucssed assigment satisfies F, de-
scribed by the 7 schemata

[§ — #001z%] = [§ — #az%¥|
[S — #010z%] = [§ — #2%]
[S — #100z3%) = [§ — #z3*]
[S — #01123%) =» [§ — #z%¥)
[S — #1012%%] = [S — #2%¥
[S — #1102%] = [§ — #2z%]
[§ = #1112%%) = [§ — #z%¥

where 0 < k<n~1

The result of applying the two “instantiating” metarules or any metarule
described by the last metarule schemata is to change the basic rule's righthand
side so that the mctarule will not apply to it again.

I now prove that all possible truth assignments can be generated by the first
metarule schema above, snbject to the restriction that a metarule may only
operate once in the derivation of a given rule. This is equivalent to proving that
we can gencrate all binary numbers from 0 to 2" — 1 inclusive, using only the
n + 1 binary numbers

1on-i where 0<i<n
and (n + 1)? metarules described by the schema
[z'azibzt] => [z'bziazt]

where a,b,z € {0,1},0 < 4,7 < n,and k = n — ¢ — j — 2. These metarules
perform the action of exchanging any two given bit positions in a binary number
of length n.

Let
z - be a binary number with k 1's in its binary representation,

0<z< 2"
y=1%0""* be the &** binary number

The algorithm found in figure 1, expressed in a generic programming lan-
guage, derives r from y using the metarules. No metarule can be applied twice
because i and 5 are different everytime a metarule is applicd (in line 6). In any
given derivation, clearly at most [}] metarules are applicd (sce line 1), and
exactly mon(k. n - k) metarules arc applied in any given derivation. Q.E.D.

10
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7'. Figure 1: Algorithm to derive z from y using metarules.
2 procedure = derive(z,y)
1 for i = 1to [}]
2 if z; # y; then do
& 3 for y = n to 0 step —1
-3 4 if z; # y; then goto 6
S 5: next j§ .
» 6: apply metarule [z'~tazf~*~1bz"J] = [zi~1bzI~{~1az™ | to y,
~ - switching bit positions { and j in the number g
m T next s
> Example derivation:
.‘ Let
: z = 0010011110 be a binary number with 5 1's in its binary representation.
_ y = 1111100000 be the 5** binary number '
' 4. Y metarule next y
A 1111100000  [azzz2zrzbr] => [br2zzrzzzaz] 0111100010
L) 0111100010  ([razzzzzbzz] => |Zbrzzrzazz] 0011100110
0011100110  [zzzazzbzzz| => (z2Zbrzazzz] 0010101110
., 0010101110  (zzzzabzzzz| => [zZZzbazzzz] 0010011110
<
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