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weikeful descriptions of the image and then the scene-The first clues
eWbutthe physical properties of tho scene are provided by the changes of

intensity in the image. The importance of intensity changes and edges in

piltly visual processions has led to extensive research on their detection,
desrIptIon and use, both in computer and biological vision systems. This
-article reviews sown of the theory that underlies the detection of edges, and
the methods used to carry out this analysis.
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1. IN=ODUCTION.

hr both biological systems and machines, vision beins with a large and unwieldy array
of mmirements of the amount of light reflected from surfaces in the environment. The
goSl of vision is to recover physical properties of objects in the scene, such as the location

of object boundaries and the structure, color and texture of object surfaces, from the two-
dimennama image that is projected onto the eye or camera. This goal is not achieved

in a single step; vision proceeds in stages, with each stage producing increasingly more
usel descriptions of the image and then the scene. The first clues about the physical

prpeties of the scene are provided by the changes of innsity in the image. For example,

in Figure 1, the boundaries of the sculpture, the markings and bright highlights on its

srae, and the shadows that the trees cast on the snow all give rise to spatial changes

in light intensity. The geometrical structure, sharpness and contrast of these intensity ..

changes convey information about the physical edges in the scene. The importance of

intensity changes and edges in early visual processing has led to extensive research on

their detection, description and use, both in computer and biological vision systems.

Figure 1. A natural image, exhibiting intensity changes due to wany physical factors.

The process of edge detection can be divided into two stages: first, intensity changes
in the image are letected and described; second, physical properties of ges in the
scene me inferred from this image description. Section 2 concentrates on the first stage,

about which more is known at this tinie. Section 3 briefly describes some areas of vision

research thait address the second stage. This article in1tily reviews some of the theory

. that uderies the detection of (eges, and the methods used to carry out this analysis.
.-. ~Thn-re is also somne reference to .studies of early prore-,sig in iologicil vis ion systems.-'.
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This article does not present a complete review of the edge detection literature; rather

it introduces the reader to some of the basic issues that are considered central to the

problem of edge detection.

2. THE DETECTION OF INTENSITY CHANGES

The most comnonly used methods for detecting intensity changes incorporate three
essential operations. First, the image intensities are either smoothed or approximated
locally by a smooth analytic function. Second, the smoothed intensities are differentiated"

using either a first or second derivative operation. Third, simple features in the result of
this differentiation stage, such as peaks (positive and negative extrema) or zero -crossings
(transitions between positive and negative values), are detctted and described. This 1.
section first describes briefly the role of these operations in the detection of intensity
changes and then presents in more detail, some of the methods used to carry out these
operations.

The smoothing operation serves two purposes. First, it reduces the effect of noise
on the detection of intensity changes. Second, it sets the resolution or scale at which
intensity changes are detected. The sampling and transduction of light by the eye or
camera introduces spurious changes of light intensity that do not correspond to significant
physical changes in the scene. Smoothing of the intensities can remove these minor
fluctuations due to noise. Figure 2a shows a one-dimensional intensity profile that is
shown smoothed by a small amount in Figure 2b. Small variations of intensity, due
in part to noise in the digitizing camera, do not appear in the smoothed intensities.
Approximation of the intensity function by a smooth analytic function can serve the
same purpose as a smoothing operation.

Significant changes in the image can also occur at multiple resolutions. Consider,
for example, a leopard's coat. At a fine resolution, rapid fluctuations of intensity might
delineate the individual hairs of the coat, while at a coarser resolution, the intensity
changes might delineate only the leopard's spots. Changes at different resolutions can
often be detected by smoothing the image intensities by different amounts. Figure 2c il-
lustrates a more extensive smoothing of the intensity profile of Figure 2a, which preserves 
only the gross changes of intensity.

The differentiation operation accentuates intensity changes and transforms the im-

age into a representation from which properties of these changes can be extracted more

easily. A significant intensity change gives rise to a peak in the first derivative or a zero-

crossing in the second derivative of the smoothed intensities, as illustrated in Figures 2d

and 2e, respectively. These peaks or zero crossings can be detected straightforwardly

and properties such as the position, sharpness and height of the peaks capture the loca-

tion, sharpnes and contr;st of the intensity changes in the image. The detection and

description of these features in the smoothed wd differeutiated image provides a com-

pact representation that captures me'aningful information in the image. Marr (1) called

this representation the Primal Sketch of the image. Later processes, such as binocular

stereo, motion measurement mid texture analysis, whose goal is to recover the physical .

properties of the scene, may then operate directly on this description of image features.

%'..%
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2.1 THE ONZ-DIMENSIONAL DETECTION OF INTENSITY
CHANGUS

The theory that underlies the detection of intensity changes in two-dimensional images
is based heavily on the analysis of one -dimensional signals. This section discusses three ,.

topics that have been addressed in this analysis: (1) the design of optimal operators for
performing smoothing and diffcrentiation, (2) the information content of the descrip-
tion of signal features such as zero- crossings, and (3) the relationship between features
that are detected at multiple resolutions. Studies of these issues have used a variety of
theoretical approaches that appear to yield similar conclusions.

Some of the early methods for detecting intensity changes incorporated only limited
smoothing of the intensities aid performed the differentiation 1y taking first or second
differences between neighboring image elements (examples of this early work can be found
in (2 8)). In one dimension, this is equivalent to performing a convolution of the intensity
profile with operators of the type shown on the left in Figures 3b and 3c. Additional

smoothing can be performed by increasing the spatial extent of these operators.

The operators in Figures 3b and 3c contain step-like changes. Other studies have
employed Gaussian smoothing of the image intensities (for example, 9-13). Combined
with the first and second derivative operations, Gaussian smoothing yields convolution
operators of the type shown in Figures 3d and 3e. Several arguments have been put forth
in support of the use of Gaussian smoothing. Marr and Hildreth (11, 12) argued that the
smoothing function should have both limited support in space and limited bandwidth in
frequency. In general terms, a limited support in space is important because the physical

edges to be detected are spatially localized. A limited bandwidth in frequency provides a
means of restricting the range of scales over which intensity changes are detected, which is
sometimes important in applications of edge detection. The Gaussian function minimizes
the product of bandwidths in space and frequency. The use of smoothing functions that
do not have limited bandwidths in space and frequency can sometimes lead to poorer
performance, reflected in a greater sensitivity to noise, the false detection of edges that

do not exist, or a poor ability to localize the position of edges (see, for example, 11, 14).

Shanmugam, Dickey and Green (15) derived an optimal frequency domain filter
for detecting intensity changes, using the criteria that the filter: (1) yields maximum
energy in the vicinity of an edge in the image, (2) has limited frequency bandwidth,
(3) yields a small output when the input is constant or slowly varying, and (4) is an

*even function in space. For the special case of detecting step changes of intensity, the

optimal frequency domain filter corresponds to a spatial operator that is approximately

the second derivative of a Gaussian (for a given landwidth) shown in Figure 3e.

In a later study, Canny (14) used the following criteria to derive an optimal operator:

(1) good detection ability, that is, there should be low probabilities of failing to detect
real edges and falsely detecting edges that do not exist, (2) good localization ability, that

is, the position of the detected edge should be as close as possible to the true position

of the edge, and (3) uniqueness of detection, that is, a given edge should be detected .
only once. The first two criteria are related by an uncertainty principle; & (etection "
ability increases, localization ability decreases, and vice versa. The analysis also assumed

I -"o°
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that extrema in the output of the operator indicate the presence of an edge. For the .--,

particular cam. in which an "edge" is defined as a step change of intensity, the operator

that optimally satisfies these criteria is a linear combination of four exponentials, which

can be approximated closely by the first derivative of a Gaussian shown in Figure 3d.

Poggio, Voorhees and Yuille (16) and Torre and Poggio (17) derived anl optimal

smoothing operator, using the tools of regularization theory from mathematical physics.

They began with the observation that numerical differentiation of the image is a math-

ematically ill-posed problem (18), because its solution does not depend continuously on

the input intensities (this is e(luivalent to saying that the solution is not robust against

noise.). The smoothing operation serves to regularize the image, making the differentia-

tion operation mathematically well -posed. In the case where the image intensities are

assumed to contain noise, the following method was tised to regularize the image. First, ,: ,

let I(z) denote the continuous intensity function, which is sampled at a set of discrete

locations Zk, I <_ k < n, a,.d let S(z) denote the smoothed intensity function to be

computed. It was assumed that S(z) should both fit the sample l intensities as closely

as possible and be as smooth as possible. Using the tools of regularization theory. this --

was formulated as the computation of the function S(z) that minimizes the following

expression:

"-(I(XA;) - S(z))
2 

+ A JiS"(x)ji2dz.
k=1 1

The first term measures how well S(z) fits the sampled intensities and the second term
measures the smoothness of S(z). The constant A controls the trade-off between these

two measures. Poggio, Voorhees and Yuille showed that the solution to t.his nininizatio n

problem is equivalent to the convolution of the image intensities with a cubic spline

that is very similar to the Gaussian. Torre and Poggio (17) further expanded upon

the theoretical properties of a broad range of smoothing filters, from the perspective of -"-

regularizing the image intensities for differentiation.
Another approach to the smoothing stage is to find an analytic function that beat

models or approximates the local intensity pattern. Ani early representative of this ap-

proach was the Hueckel operator (5, 7). Surface-fitting methods used a variety of basis

functions to perform the approximation, including plantar functions (19) and quadratic

functions (20). More recently, Haralick (21, 22) used the discrete Chebychev polynomi-

als to approximate the image intensities. In these methods, a differentiation operation is

then performed analytically on the polynonial approximation of the intensity function.

The method of approximation us(d by Hlaralick (21, 22) is roughly equivalent to smooth-

ing tile image by convolution with spatial operators such as those derived by Canny (14)

-ad Poggio, Voorhes and Yuille (16). A rigorous comparison between the performance

of surface-fitting versus direct smoothing methods has not yet been made.

A second issue that bears on the choice of operator for the smoothing and differen-

tiation stages is the information content of the subsequent description of image features.

That is, to what extent does a represeutation of only the significant changes of intensity

capture all of the important information in anm image? This question led to a number

of theoretical studies of the recon.struction of a signal from feat 1ires such as its zero-

* crossings. Although the goal of vision is not to rcconstruct the vistual image, these results
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are important because they suggest that an image can be transformed into a compact
represeCtation of its features with little loss of information. ZAn early study by LA)gan (23) that interested many vision researchers addressed the
information content of the zero-crossings of a signal. Logan proved that if a signal has
(1) a frequency bandwidth of less than one octave and (2) no zeros in common with its
Hilbert transform, then the signal can be entirely reconstructed from the positions of its
zero-crossings, up to a multiplicative constant. The second condition is almost always
satisfied for physical signals. This result has also been extended to two dimensions (1).
This analysis is interesting, because it shows that the zero crossings of a signal are very
rich in information. Its direct relevance to vision is limited, however, because the initial
smoothing and differentiation of an image is typically performed by operators that are
not one-octave bandpass in frequency.

Other studies have addressed the information content of features of signals that are
more relevant to visual processing. For example, Yuille and Poggio (24) proved some
interesting results regarding the zero--crossings (or more generally, the level- crossings*)
of an image that is convolved with the second derivative of a Ghussian, over a continuous
range of scales. Before stating the results, we introduce the scale-space representation of
zero-crossings used by Witkin (25), illustrated in Figure 4. First, let the one-dimensional
Gaussian function be defined as follows, where or is the standard deviation of the Gaus-
Sian:

G(-) = -e--

The second derivative of the Gaussian function is then given by the following expression:
G"(x) = d2 G(Z) I

&I2  a3 ar2 -

Suppose that a one-dimensional signal I(x) is convolved with G"(x) for a continuous
range of standard deviations a and the positions of the zero-crossings are marked for
each size or scale. Figure 4 shows an intensity profile (Figure 4a) that is convolved
with a G"(x) function with large e (Figure 4b). The positions of the zero-crossings are
marked with heavy dots. In the scale--space representation of Figure 4c, the vertical
dimension represents the value of a and the horizontal dimension represents position in
the signal. For each value of o, the positions of the zero-crossings of I(x) * G"(x) are
plotted as points along a horizontal line in this diagram. For example, points along the
dashed line at t = al indicate the positions of the zero-crossings of the signal in Figure
4b. The scale- space representation of zero crossings illustrates the behavior of these

' features across scales. For small a, the zero crossings capture all of the changes in the
original intensity function. At coarser scales (larger a), the positions of the zero- crossings
capture only the gross changes of intensity.

The scale- space representation is visually suggestive of a fingerprint. In fact, in
much the same way that a fingerprint uniquely identifies a person, the scale-space rep-
resentation may uniquely identify a, image. Yuille and Poggio (24) proved that for
almost all one dimensional signals, the scalh space map of the zero- crossings of the sig-
nal convolved with G"(.) over a contimum of scales determines the signal uniquely, up

*The level cro.msitgs of t signal art the points tt which a voe , is crossed by the signal, where

V Iiny be nion zero.

4 .,
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to a multiplicative constant and an additional harmonic function. The proof provides

a method for reconstructing a signal I(x) from knowledge of how the zero-crossings
of 1(z) * G"(z) change across scales. The use of Gaussian smoothing is critical to the .1

completeness of the subsequent feature representation, but the basic theorem applies to
zero-crossings and level crossings of the result of applying my linear differential oper- - .

ator to the Gaussian-filtered signal. Yuiile and Poggio also derived a two-dimensional . . -:

extension to this result.

Careful observation of the contours in the scale-space representation of Figure 4c -

reveads that the contours either begin at the smallest scale and continue as a single,
isolated contour through larger scales as shown in Figure 4d(1), or they form closed,

inverted howl-like shapes as shown in Figure 4d(2). Additional zero-crossings are never

created as scale increases; that is, there are no contours in the scale-space representation
of the type shown in Figures 4d(3) nid 4d(4). This observation has been supported

by a number of theoretical studies (26-28), which have also shown that the Gaussian
function is the only smoothing function that yields this behavior of subsequent features

across scale. This observation applies to zero- crossings and level-crossings of the result of
applying any linear differential operator to the Gaussian--smoothed signal. This behavior
of features across scale has been exploited successfully in the qualitative analysis of one-
dimensional signals (25).

To summarize, the analysis of one--dimensional signals has been important for de-.-.

veloping a solid theoretical foundation on which to base methods for detecting intensity
changes in an image. Several theoretical studies attempted to derive an optimal operator
for detecting intensity changes, using a variety of criteria for evaluating the performance

of the operator. All of these operators essentially perform a smoothing and differentiation

of the image intensities. Furthermore, the one-dimensional analyses all point to opera-
tors whose spatial shape is roughly the first or second derivative of a Gaussian function.

Mathematical studies also addressed the information content of representations of image
features and the behavior of these features across multiple scales. These latter studies
also stressed the importance of Gaussian smoothing.* Interestingly, the initial filters in

the human visual system also appear to perform a spatial convolution of the image with
a function that is closely approximated by the second derivative of a Gaussian (29). It is
also well known that the human visual system initially analyzes the retinal image through

a number of spatial filters that differ in the amount of smoothing that is performed in .

space and in time (29). "

2.2 THE TWO-DIMENSIONAL DETECTION OF INTENSITY

CHANGES .- ' v
The problems that were addressed in the one dimensional analysis of intensity signals

also arise for the detection of intensity changes in two -dimensional images, although

their solution is more complex. The design of optimal operators for performing the

*It should be oted agnin that some edge detection methods that perform uia nlytic approx-

nimatioa of the intensity function nuy he equivalent to those performing a direct smoothing

operatio with a (a tsiatl function.

W -3
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smoothing and differentiation stages, for example, is complicated by a larger selection
of possible derivative operations that can be performed in two dimensions. Many of the
mathematical results regarding the information content of image features and behavior
of features across scale have been extended to two dimensions, but the algorithms for -'
extracting and describing these features in the image are also more complex than their . '.
one-dimensional counterparts. This section reviews some of the techniques used to detect
and describe intensity changes in two-dimensional images.

Early work on edge detection primarily used directional first and second derivative
operators for performing the two-dimensional differentiation (2-10, 10, 20, 30-32). A
change of intensity that is extended along some orientation in the image gives rise to a
peak in the first derivative of intensity taken in the direction perpendicular to the orien-

tation of the intensity dmge, or a zero- -crossing in the second directional derivative. The
simplest directional operators are formed by extending one-dimensional cross-sections
such as those shown in Figure 3 along some two dimensional direction in the image. Di-
rectional operators have differed in the shape of their cross-sections, both perpendicular
to and along their primary orientations. Macleod (9) and Mart and Poggio (10), for
example, used directional derivatives that embodied Gaussian smoothing. "W0

In principle, the computation of the derivatives in two directions, such as the hori-
zontal and vertical directions, is sufficient to detect intensity changes at all orientations
in the image. Several algorithms, however, use directional operators at a large number of
discrete orientations (for example, see (4, 7, 8, 14, 32)). A given intensity change is de-
tected by a number of directional operators in this case and the output of the directional
operator that yields the largest response is typically used to describe the local intensity
change. Two examples of algorithms of this type are those of Nevatia and Babu (32) and

Canny (14). An example of the results of Canny's algorithm is shown in Figure 5. The
contours of Figure 5b represent only the positions of the significant intensity changes in
Figure Sa.

Other related differential operators that are used in two dimensions are the first and
second derivatives in the direction of the gradient of intensity (14, 17, 22). The intensity '.
gradient, defined as follows:

.=I, al.

is a vector that indicates the direction and magnitude of steepest increase in the two-

dimensional intensity function. Let n denote the unit vector in the direction of the . -

gradient. The differential operators n and - are non-directional operators, in the . -

sense that their value does not chmge when the image is rotated. They are also nonlinear
operators, and unlike the linear differential operators, cannot be combined with the
smoothing function in a single filtering step. Methods such as those of Nevatia and
Babu (32) and Canny (14) essentially use the dircmtional derivative along the gradient
for extracting features.

A second non directional operator that is used for detecting intensity changes is the .-

Laplacian operator, V 2 (1, 5, 11-13, 15, 33):

-. +f 2.
--3--I
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Figure 5. Canny's Edge Dete~ction Algorithm. (a) A natural ituage. (b) The position~s of the

intensity chages de~tected by Canny's algoritliai. (Cuteml, of J. F. Canny.)
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Combined with a tonal Gaussian smoothing function,-

C(r) = eLT

the L-placian yields the function V2 G given by the following expression:

r denotes the distance from the center of the operator and o is the standard deviation of
the two-dimensional Gausian. The V2 G function is shaped something like a mexican hat
in two dimensions. Figure 6 shows an example of the convolution of an image (Figure 6a)
with a V2G operator (Figure 6b). The Laplacian is a non-directional second derivative
operatic.; the elements in the output of the Laplacian that correspond to the location
of intensity changes in the image are therefore the zero-crossings. The zero-crossing
contours derived from Figure 6b are shown in Figure 6c. In this case, the zero-crossing
contours were located by detecting the transitions between positive and negative values
in the filtered image, by scanning in the horizontal and vertical directions.* A single
convolution of the image with the non-directional V'G operator allows the detection of
intensity changes at all orientations, for a given scale. The two-dimensional orientation
of a local portion of the zero-crossing contour can be computed from the gradient of the
filtered image (12).

It is not yet clear whether directional or non-directional operators are most appro-
priate for detecting intensity changes. Both have advantages and disadvantages. The
use of the Laplacian is simpler and requires less computation than the use of either r

directional derivatives or derivatives in the direction of the gradient. The directional op-
eraters, however, yield somewhat better localization of the position of intensity changes
(14, 22), particularly in areas where the orientation of an edge is changing rapidly in the
image (34, 35). Features such as the zero-crossing contours, when derived with non-
directional operators, generally form smooth, closed contours, while features obtained
with directional operators generally do not have such special geometric properties (17).
Marr and Hildreth (11) showed that if the intensity function along the orientation of

an intensity change varies at most linearly, then the zero-crossings of the Laplacian ex-
actly coincide with the zero-crossings of a directional operator taken in the direction . -

perpendicular to the orientation of the intensity change. Torre and Poggio (17) charac-
terized more formally, the relationship between the zeros of the Laplacian and those of
the second derivative in the direction of the gradient, in terms of the geometry of the
two-dimensional intensity surface. With regard to the use of directional versus non-
directional derivative operators, it is interesting to note that physiological studies reveal
that the retina analyzes the visual image through a circularly--syninictric filter whose
spatial shape is given by the difference of two Gaussian functions (see, for example, 36,
37), which is closely approximated by the V2 G function.

Mathematical results regarding the information content and behavior across scales
of image features have some bearing on the choice of differential operators. For exam-
pie, Ynille and Poggio (28) showed that in two dimensions, the combiination of Gaussian.'

*The design of robust methods for detecting zero -crossings remains an open area of research
in edge detection.
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smoothing with any linear differential operator yields zero-crossings or level crossings

that behave well with inereming scale, in that no features are created as the size of the
Gausiau is increased. I ne case of the second derivative along the gradient, Yuille
and Poggio proved that theme is no mnoothing function that avoids the creation of zero,
crossings with increasing sle. The completemess of the scale-space representation of

ro -crossings or level-cresings in two dimensions also requires the use of linear differ-
ential operators (24).

The analysis of intensity changes across multiple scales is a difficult problem that has
not yet found a satisfactory solution. There is a clear need to detect intensity changes at
multiple resolutions (2). Important physical changes in the scene take place at different
scales. Spatial filters that allow the description of fine detail in the intensity function
generally miss coarser structures in the image, while those that allow the extraction of
coarser features generally smooth out important detail. At all resolutions, some of the
detected features may not correspond to real physical changes in the scene. For example,
at the finest resolutions, some of the detected intensity changes may be a consequence of
noise in the sensing process. At coarser resolutions, spurious image features might arise as
a consequence of smoothing together nearby intensity changes. The problems of sort:ag
out the relevant changes at each resolution and combining them into a representation
that can be used effectively by later processes are difficult and unsolved problems. We
mention here some of the research that has attempted to address these problems.

Mart and Hildreth (11) explored the combination of zero-crossing descriptions that .

arise from convolving an image with V2G operators of different size. An example of
these descriptions is illustrated in Figure 7. The zero-crossings from the smaller V2G
operator primarily detect the bumpy texture on the surface of the leaf, whereas the zero-
crossing contours from the larger operator also outline some of the highlights on the leaf
surface that are due to changing illumination (the arrows point to one example). Mart
and Hildreth suggested the use of spatial coincidence of zero-crossings across scale as a
means of indicating the presence of a real edge in the scene. Strong edges such as object
boundaries often give rise to sharp intensity changes in the image that are detected across
a range of scales and in roughly the same location in the image. In the one-dimensional
scale-space representation*, these edges give rise to roughly vertical lines. The existence
of contours in the scale-space representation that are roughly vertical and extend across
a range of scales could be used to infer the presence of a significant physical change at
the corresponding location in the scene.

Witkin (25) developed a method for constructing qualitative descriptions of one-
dimensional signals that uses the scale-space representation. The method embodied two
basic assumptions: (1) the identity assumption, that zero- crossings detected at different
scales, which lie on a common contour in the scale -space description, arise from a single
physical event; and (2) the localization assumption, that the true location of a physical
event that gives rise to a contour in the scale-space description is the contour's position

as a tends to zero. Coarser scales were used to identify important events in the signal and
finer scales used to localize their position. Events that persisted over large changes in scale '".

"The scale -space representation can be extended to two dimensions, in which the positions of . " *. -

the zero-crossings on the z - V plane are represented across multiple operator sizes.

".'.'.'.'.." ..- .° ..-..... ---- .- "..,".- .. ...... .-- -'-'--...•..... .,. ....... . . " ,"-,
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also had special significance. Witkin's method, called scale -apace littering, begins with
the scde space descriplbn and collapses it into a discrete tr e structure that represents
the qualitative behavior of the signal. Some of the heuristics embodied in this analysis
may be useful for analysing two dimensional images.

Canny (14) used a diferent approach to combining descriptions of intensity changes
across multiple scales. Features were first detected at a set of discrete scales. The finest
scale description was then used to predict the results of the next larger scale, assuming
that the filter used to deive the larger scalc description performs additional smoothing of
the image. In a particular area of the image, if there was a substantial difference between
the actual description at the larger scale mid that predicted by the smaller scale, then it
was assumed that there is an important change taking place at the larger scale that is not
detected at the finer scale. In this case, features detected at the larger scale were then
added to the final feature representation. Empirically, Canny found that most features
were detected at the finest scale md relatively few were added from coarser scales.

Poggio, Voorhees and Yuille (16) have also begun to explore the issue of detect-
ing intensity changes across scales, using the methods of regularization theory. Recall
that their approach was to find a smoothed intensity function S(x), given the sampled

intensities I(zXk), which minimizes the following expression:

"(I(x) - S(k))2 +A IS"(x)1I'dx.
,6 .-. ..

The parameter A controls the scale at which intensity changes are detected. That is, if A
is small, S(x) closely approximates I(z,), and as A increases, S(z) becomes increasingly
more smooth. Regularization theory may suggest methods for choosing the optimal A
for a given set of data, which may be useful for analyzing changes across multiple scales
(16). ..-,.

To summarize, there has been considerable progress on the detection and description
of intensity changes in two-dimensional images, but there still exists many open ques-
tions. A large body of theoretical and empirical work has addressed the question of what
operators are most appropriate for performing the smoothing and differentiation stages.
Emerging from this work is a better understanding of the advantages and disadvantages
of various operators and the relationship between alternative approaches. It is unlikely
that a single method will be most appropriate for all tasks. The choice of operators
depends in part on the application, the nature of the later processes that use the descrip-

tion of image features, and the available computational resources. Some interesting work
has begun to address the problem of detecting and integrating intensity changes across ...: - -.

multiple scales, but a satisfactory solution to this problem still eludes vision researchers.
A problem that was not discussed here is the computation of properties such as contrast
and sharpness of the intensity changes. There has been some work on this problem, but
it has not yet received a rigorous analytic treatment.

3. RECOVERING PROPERTIES OF THE PHYSICAL WORLD

In the introduction, it was noted that the goal of vision is to recover the physical proper.
ties of objects in the scene, mch as the location of object boundaries wimd the structure,
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color and texture of object mufaces, from the two -dimenuional image that is projected
auto the eye or camera. The detection of intensity changes in the image represents oJlX
a frst, meager step toward achieving this goal. This section briefly mentions some of the
aeas of vision that address the recovery of physical properties of edges in the scene. -'

The property of edges that is perhaps most important and most studied j their
three--dinsional structure. The structure of edges is conveyed through many sources.
For example, the relative locations of corresponding edges in left and right stereo views
conveys information about the location'of the edges in three--dimnsion". sp .ce, ZA1
relat movement between edges in the image can be used to assess their relative position
in space. Three-dimensimal structure can also be inferred from the shape of the two-
dimensional projection of edge contours, the way in which edges intersect in the image,
and variations in surface texture. These latter cues are essential in the interpretation of
structure from a single, static photograph. Many algorithms that analyze these sources

are feature-based, in that the initial inferences regarding three-dimensional structure
are made at the locations of features such as significant intensity changes in the image.
Discussion of some of these processes for recovering three-dimensional structure can be
found, for example, in (1, 5, 7, 10, 13, 27, 30, 31, 38-40).

Another important property of edges is the type of physical change from which they
arise. For example, edges might be the consequence of object boundaries, changes in
surface orientation, shadows, highlights or light sources, surface markings, changes in
surface reflectance or material composition, and so on. Ultimately, it is necessary to
determine the physical source of each edge in the scene. While some interesting work has
been done in these areas, there remain many open problems (examples can be found in
(1, 5, 7, 13, 30, 31, 38-41)). The recovery of these physical properties of edges is likely
to be a main focus of future research on edge detection. .

Acknowledgements: The author wishes to thank Tomaso Poggio for valuable com-
ments on a draft of this article.,...'"7 .
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