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7 $¢ uwheful descriptions of the image and then the scene.The first clues

liout the physical properties of the scene are provided by the changes of
fotensity in the image. The importance of intensity changes and edges in

‘foltly vigual processiong has led to extensive research on their detection,
dexription and use, both in computer and biological vision systems. This

article reviews some of the theory that underlies the detection of edges, and
the methods used to carry out this analysis.
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EDGE DETECTION
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ABDSTRACT. Por both bislogical systems and machines, vision begins with a large
and wnwisldy arvay of measurements of the amount of light reflected from surfaces in the
cavivenment. The geal of vision is to recover physical properties of objects in the scene,
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ouch as the losation of chjert boundaries and the structure, color and texture of object j-::j:;:;
ouslmas, frem the two-dismensional image that is projected onto the eye or camera. This o
‘ gosl is ast achioved in a single step; vision proceeds in stages, with each stage producing o
insvensingly mere weclul descriptions of the image and then the scene. The first clues '*""‘
ahout the phyuical properties of the scene are provided by the changes of intensity in i

the image. The importance of intensity changes and edges in carly visual processing
has Jod 4o extonsive ressarch on their detection, description and use, both in computer
and biclegical vision systems. This article revicws some of the theory that underlies the
detection of edges, and the methods used to carry out this analysis.
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. 1. INTRODUCTION.

For both biological systems and machines, vision begins with a large and unwicldy array
of measurements of the amount of light refleeted from surfaces in the environment. The
goal of vision is to recover physical propertics of objects in the scene, such as the location
of objoct boundaries and the structure, color and texture of object surfaces, from the two—
dimcusional image that is projected onto the cye or camera. This goal is not achieved
in a single step; vision proceeds in stages, with each stage producing increasingly more
useful descriptions of the image and then the scene. The first clucs about the physical
propertics of the scene are provided by the changes of intensity in the image. For cxample,
in Figure 1, the boundaries of the sculpture, the markings and bright highlights on its
surface, and the shadows that the trees cast on the suow all give rise to spatial changes
in light intensity. The geometrical structure, sharpness and contrast of these intensity
changes convey inforwation about the physical cdges in the sccne. The importance of
intensity changes and cdges in early visual processing has led to extensive research on
their detcction, description and use, both in computer and biological vision systems.

Figure 1. A natural image, exhibiting intensity changes due to many physical factors.

The process of edge detection can be divided into two stages: first, intensity changes

in the image arc detected and described; second, physical properties of cdges in the

i~ scene are inferred from this immage description. Sceetion 2 concentrates on the first stage,
about which more is known at this time. Section 3 briefly describes some arcas of vision
rescarch that address the sccond stage. This article mainly reviews somne of the theory

; N that underlies the detection of edges, and the methods used to carry out this analysis.

P P . . . . . . . .

o Se There is also some reference to studies of carly processing in biological vision systems.
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This article does not present a complete review of the edge detection literature; rather
it introduces the reader to some of the basic issucs that arce considered central to the

problem of edge detection. ':{z:
'.":-\.;%
ook

3. THE DETECTION OF INTENSITY CHANGES :5.'.’“‘

The most commonly used mcthods for detecting intensity changes incorporate three
essential operations. First, the image intcusities are cither smoothed or approximated
locally by a smooth analytic function. Second, the smoothed intensities are differentiated,
using cither a first or second derivative operation. Third, simple features in the result of
this differentiation stage, such as peaks (positive and negative extrema) or zero-crossings

; (transitions between positive and negative valucr), are detected and described.  This

section first describes briefly the role of these operations in the detection of intensity
1 changes and then presents in more detail, some of the methods used to carry out these
v} operations.

The smoothing operation serves two purposes. First, it reduces the cffect of noise
on the detection of intensity changes. Sccond, it sets the resolution or scale at which
intensity changes are detected. The sampling and transduction of light by the eye or
camera introduces spurious changes of light intcnsity that do not correspond to significant
physical changes in the sccne. Smoothing of the intensities can remove these minor
fluctuations duc to noise. Figure 2a shows a onc-dimensional intensity profile that is
shown smoothed by a small amount in Figure 2b. Small variations of intensity, due
in part to noise in the digitizing camera, do not appear in the smoothed intensities.

Wt e
RN N
A

Approximation of the intcnsity function by a smooth analytic function can serve the ,
same purpose as a smoothing operation. . "{-:::
Significant changes in the image can also occur at wmultiple resolutions. Consider, ;..i}"
for example, a lcopard’s coat. At a fine resolution, rapid fluctuations of intensity might «
dclineate the individual hairs of the coat, whilc at a coarser resolution, the intensity S
changes might dclineate only the leopard’s spots. Changes at different resolutions can :_;'
often be detected by smoothing the image intensities by different amounts. Figure 2c¢ il- -‘:f '-':'-‘_

lustrates a more extensive smoothing of the intensity profile of Figure 2a, which preserves
only the gross changes of intensity.

The differentiation operation accentuates intensity changes and transforms the im-
age into a representation from which propertics of these changes can be extracted more
casily. A significant intensity change gives rise to a peak in the first derivative or a zero-
crossing in the sccond derivative of the smoothed intensities, as illustrated in Figures 2d
and 2e¢, respectively. These peaks or zero crossings can be detected straightforwardly
and properties such as the position, sharpness and height of the peaks capture the loca-
tion, sharpness and contrast of the intensity changes in the image. The detection and
description of these features in the smoothed and differentiated image provides a com-
pact representation that captures meaningful information in the image. Marr (1) called
this representation the Primal Sketch of the image. Later processes, such as binocular
stereo, motion measurement and texture analysis, whose goal is to recover the physical
propertics of the scene, may then operate directly on this description of image features.

P T
. ¥

- ARESSANI




A Ve TNal

0 il ey

&

. -8 .8

ﬂ.'.)
O

&g T T e s ' W W BAaS JERER e 8 - 8-

agn, e ., -
(~ \('n(’q \Y

=- I ]",

Figure 2. Detecting Intensity Changes. (a) One dimensional intensity profile; the intensities
along a horizontal scan linc in an image are represented as a graph. (b) The result of sinoothing
the profile in (a). (c) The result of additional smoothing of (a). (d) and (¢) The first and sccond
derivatives, respectively, of the smoothed profile shown in (¢). The vertical dashed lines indicate
the penks in the first derivative and gero-crossings in the sccond derivative that correspond to
two significaut intcusity changes.

!"Q' e .-* S AT T T e e A L S S ... S . .
‘:_‘\‘\S 'i":;'.‘ii'ﬁ"k‘i'g:.‘- AR ,'.4_‘_.:_'; SRR S o < e e e e N, NN




IS TR VLA

T A A A A L A 4 s B_a_4_a

2.1 THE ONE-DIMENSIONAL DETECTION OF INTENSITY
CHANGES

The theory that underlics the detection of intensity changes in two-dimensional images
is bascd heavily on the analysis of onc -dimensional signals. This scction discusses three
topics that have been addressed in this analysis: (1) the design of optimal operators for
performing smoothing and differentiation, (2) the information content of the descrip-
tion of signal featurcs such as rero- crossings, and (3) the relationship between features
that are detected at multiple resolutions. Studies of these issucs have used a variety of
theoretical approaches that appear to yicld similar conclusions.

Some of the carly methods for detecting intensity changes incorporated only limited
smoothing of the intcusitics and performed the differentiation by taking first or sccond
differences between neighboring image elements (examples of this carly work can be found
in (2-8)). In onc dimension, this is equivalent to performing a convolution of the intensity
profile with opcrators of the type shown on the left in Figures 3b and 3c. Additional
smoothing can be performed by increasing the spatial extent of these operators.

The opcrators in Figures 3b and 3c contain step-like changes. Other studies have
cmployed Gaussian smoothing of the image intensities (for example, 9-13). Combined
with the first and sccond derivative operations, Gaussian smoothing yiclds convolution
opcrators of the type shown in Figures 3d and 3e. Several arguments have been put forth
in support of the usc of Gaussian smoothing. Marr and Hildreth (11, 12) argucd that the
smoothing function should have both limited support in space and limited bandwidth in
frequency. In general terms, a limited support in space is important because the physical
edges to be detected are spatially localized. A limited bandwidth in frequency provides a
means of restricting the range of scales over which intensity changes are detected, which is
somctimes important in applications of cdge detection. The Gaussian function minimizes
the product of bandwidths in space and frequency. The use of smoothing functions that
do not have limited bandwidths in space and frequency can sometimes lcad to poorer
performance, reflected in a greater sensitivity to noisc, the false detection of cdges that
do not exist, or a poor ability to localize the position of edges (see, for example, 11, 14).

Shanmugam, Dickcy and Green (15) derived an optimal frequency domain filter
for dctecting intensity changes, using the criteria that the filter: (1) yiclds maximum
cnergy in the vicinity of an cdge in the image, (2) has limiited frequency bandwidth,
(3) yiclds a small output when the input is constant or slowly varying, and (4) is an
even function in space. For the special case of detecting step changes of intensity, the
optimal frequency domain filter corresponds to a spatial operator that is approximately
the sccond dcrivative of a Gaussian (for a given bandwidth) shown in Figure 3e.

In alater study, Canny (14) uscd the following criteria to derive an optimal operator:
(1) good detection ability, that is, there should be low probabilities of failing to detect
rcal edges and falscly detecting edges that do not exist, (2) good localization ability, that
is, the position of the detected edge should be as close as possible to the true position
of the cdge, and (3) uniqueness of detection, that is, a given edge should be detected
only once. The first two criteria are related by an uncertainty principle; as detection
ability increascs, localization ability decreases, and vice versa. The analysis also assumed

----------

A A S )
A A A A

I Y A .. R U £t et e e e v
LA L T ‘o, t LI A A e R I IS T
ORI ) . .

) . * W g W e, . P M R R T )

b
-
O
..
‘-
..
..
.‘.‘

AN




position

[) filtered
intensity

:‘- filtered ,

-3 intensity

: ”a SR

= position
Figure 3. Smoothing and Differentiation. (a) A one-dimensional intensity profile. (b) A first

,’: diffcrence operator is shown in heavy lines on the left and the result of its convolution with the

:"- profile in (a) is shown on the right. (c) A second differcuce operator is shown in heavy lines

¢ on the left and jts convolution with (a) on the right. (d) The first derivative of a Gaussian

. (left) and its convolution with (a) (right). (¢) The second derivative of a Gaussian (left) and its

i convolution with (a) (right). (Note that in (b) through (c), the position of the filtered intensity

. e profile is shilted relative to the position of the original intensity profile shown in (a).)
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that extrema in the output of the operator indicate the presence of an edge. For the
particular case in which an “cdge” is defined as a step change of intensity, the operator
that optimally satisfics these criteria is a lincar combination of four exponentials, which
can be approximated closcly by the first derivative of a Gaussian shown in Figure 3d.

Poggio, Voorhees and Yuille (16) and Torre and Poggio (17) derived an optimal
smoothing opcrator, using the tools of regularization theory from mathematical physics.
They began with the obscrvation that numcrical differentiation of the image is a math-
cmatically sll-posed problem (18), because its solution docs not depend continuously on
the input intensities (this is equivalent to saying that the solution is not robust against
noisc). The smoothing opcration serves to regularize the image, making the differentia-
tion operation mathematically well-posed. In the case where the image intensitics are
assumed to contain noise, the following method was used to regularize the image. First,
let I(z) denote the continuous intensity function, which is sampled at a sct of discrete
locations zx, 1 € k < n, and let S(z) denote the smoothed intensity function to be
computed. It was assumed that $(z) should both fit the sampled intensities as closcly
as possible and be as smooth as possible. Using the tools of regularization theory. this
was formulated as the computation of the function S(z) that minimizes the following
expression:

> (a) - S(an))? + [ 1”@,
k=1

The first term mecasures how well S(z) fits the sampled irtensities and the second term
measures the smoothuess of S(z). The constant A controls the trade-off between these
two measures. Poggio, Voorhees and Yuille showed that the solution: to this nunimization
problem is cquivalent to the convolution of the image intensitics with a cubic spline
that is very similar to the Gaussian. Torre and Poggio (17) further expanded upon
the theorctical propertics of a broad range of smoothing filters, from the perspective of
regularizing the image intensities for differcntiation.

Another approach to the smoothing stage is to find an analytic function that best
modecls or approximates the local intensity pattern. An early representative of this ap-
proach was the Hueckel operator (5, 7). Surface-fitting methods used a varicty of basis
functions to perform the approximation, including planar functions (19) and quadratic
functions (20). More recently, Haralick (21, 22) used the discrete Chebychev polynomi-
als to approximate the image intensitics. In these methods, a differentiation operation is
then performed analytically on the polynomial approximation of the intensity function.
The mcthod of approximation used by Haralick (21, 22) is roughly equivalent to smooth-
ing the image by convolution with spatial opcrators such as those derived by Canny (14)
and Poggio, Voorhees and Yuille (16). A rigorous comparison between the performance
of surfacc-fitting versus direct smoothing methods has not yet been made.

A sccond issue that bears on the choice of operator for the smoothing and differen-
tiation stages is the information content of the subsequent description of image features.
That is, to what cxtent does a representation of only the significant changes of intensity
capture all of the important information in an image? This question led to a number
of theoretical studies of the reconstruction of a signal from features such as its zero-
crossings. Although the goal of vision is not to reconstruct the visual image, these results
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are important because they suggest that an image can be transformed into a compact
represcntation of its features with little loss of information.

An carly study by Logan (23) that intercsted many vision rescarchers addressed the
information content of the sero- crossings of a signal. Logan proved that if a signal has
(1) a frequency bandwidth of less than once octave and (2) no zeros in common with its
Hilbert transform, then the signal can be entirely reconstructed from the positions of its
scro-crossings, up to a multiplicative constant. The sccond condition is almost always
satisfied for physical signals. This result has also been cxtended to two dimensions (1).
This analysis is interesting, because it shows that the zero- crossings of a signal arc very
rich in information. Its direct relevance to vision is limited, however, because the initial
smoothing and differcntiation of an image is typically performed by opcrators that are
not onc-octave bandpass in frequency.

Other studies have addressed the information content of features of signals that are
more relevant to visual processing. For example, Yuille and Poggio (24) proved some
intcresting results regarding the zero-crossings (or more gencrally, the level- crossings*)
of an image that is convolved with the sccond derivative of a Ghussian, over a continuous
range of scales. Before stating the results, we introduce the scale-space representation of
zero—crossings used by Witkin (25), illustrated in Figure 4. First, let the onc-dimensional
Gaussian function be defined as follows, where o is the standard deviation of the Gaus-
sian:

3

G(z) = —-c ~ 3T,

The second derivative of the Gaussian functlon is then given by the following expression:
G"(Z) — de(z) 1 21 1) -,l'z,-.

dz3 ~ o%‘'e?
Suppose that a one-dimensional signal I(z) is convolved with G"(z) for a continuous
range of standard deviations o and the positions of the zero-crossings are marked for
each size or scale. Figurc 4 shows an intensity profile (Figure 4a) that is convolved
with a G"(z) function with large o (Figure 4b). The positions of the zero-crossings are
marked with hcavy dots. In the scale--space representation of Figure 4c, the vertical
dimension represents the valuc of ¢ and the horizontal dimension represents position in
the signal. For cach value of o, the positions of the zero-crossings of I(z) * G"(z) are
plotted as points along a horizontal line in this diagram. For example, points along the
dashed line at ¢ = g indicate the positions of the scro-crossings of the signal in Figure
4b. The scale space representation of zero crossings illustrates the behavior of these
features across scales. For small g, the zero crossings capture all of the changes in the
original intensity function. At coarser scales (larger o), the positions of the zero- crossings
capture only the gross changes of intensity.

The scale space representation is visually suggestive of a fingerprint. In fact, in
much the same way that a fingerprint uniquely identifics a person, the scale-space rep-
resentation may uniquely identify an image. Yuille and Poggio (24) proved that for
almost all one dimensional signals, the scale space map of the zero-crossings of the sig-
nal convolved with G" () over a continuum of scales deterinines the signal uniquely, up

*The level crossings of a signad are the points at which a value v is crossed by the signal, where
v may be non rero.
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Figurc 4. The Scale Space Representation. (a) An extended one dimensional intensity profile.
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(2) are cammonly found in the scale space representation, while those of the type labelled (3)

and (4) are never found.
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to a multiplicative constant and an additional harmonic function. The proof provides
a method for reconstructing a signal I(z) from knowledge of how the zero-crossings
of I(z) » G"(z) change across scales. The use of Gaussian smoothing is critical to the
completeness of the subsequent feature representation, but the basic theorem applies to
scro—crossings and level - crossings of the result of applying any lincar differential oper-
ator to the Gaussian-filtcred signal. Yuille and Poggio also derived a two-dimensional
extension to this result.

Careful observation of the contours in the scale-space representation of Figure 4c
reveals that the contours either begin at the smallest scale and continue as a single,
isolated contour through larger scales as shown in Figure 4d(1), or they form closed,
inverted bowl-like shapes as shown in Figure 4d(2). Additional zcro-crossings are never
created as scale increases; that is, there are no contours in the scale-space representation
of the type shown in Figures 4d(3) and 4d(4). This obscrvation has been supported
by a number of theorctical studies (26-28), which have also shown that the Gaussian
function is the only smoothing function that yiclds this behavior of subsequent features
across scale. This observation applics to zero- crossings and level-crossings of the result of
applying any lincar diffcrential operator to the Gaussian-smoothed signal. This behavior
of fcatures across scalc has been exploited successfully in the qualitative analysis of one—
dimensional signals (25).

To summarize, the analysis of onc-dimensional signals has been important for de-
veloping a solid theoretical foundation on which to base methods for detecting intensity
changes in an image. Scveral theoretical studics attempted to derive an optimal operator
for detecting intensity changes, using a varicty of criteria for evaluating the performance
of the operator. All of these operators essentially perform a smoothing and differentiation
of the image intensitics. Furthermore, the one-dimensional analyses all point to opera-
tors whosc spatial shape is roughly the first or sccond derivative of a Gaussian function.
Mathematical studics also addressed the information content of representations of image
featurcs and the behavior of these features across multiple scales. These latter studies
also stressed the importance of Gaussian smoothing.* Interestingly, the initial filters in
the human visual system also appear to perform a spatial convolution of the image with
a function that is closcly approximated by the second derivative of a Gaussian (29). It is
also well known that the human visual system initially analyzes the retinal image through
a number of spatial filters that differ in the amount of sioothing that is performed in
space and in time (29).

2.2 THE TWO-DIMENSIONAL DETECTION OF INTENSITY
CHANGES

The problems that were addressed in the one dimensional analysis of intensity signals
also arisc for the detection of intensity changes in two -dimensional images, although
their solution is more complex. The design of optimal operators for performing the

*1t should be noted again that some edge deteetion methods that perform an analytic approx-
imation of the intensity function may be cquivalent to those performing a direct smoothing
operation with a Gaussian function.
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R smoothing and differentiation stages, for cxamnple, is complicated by a larger selection -
of possible derivative operations that can be performed in two dimensions. Mauy of the
mathematical results regarding the information content of image features and behavior

of features across scale have been extended to two dimensions, but the algorithms for

extracting and describing these features in the image are also more complex than their

o one-dimensional counterparts. This scction reviews some of the techniques used to detect

and describe intensity changes in two- dimcensional images.

Early work on cdge detection primarily used directional first and sccond derivative

Q opcrators for performing the two-dimensional differentiation (2-10, 19, 20, 30-32). A
oy change of intensity that is extended along some orientation in the image gives rise to a
) e . . . . . . . .
Yl peak in the first derivative of intensity taken in the direction perpendicular to the orien-
tation of the intensity chaamge, or a zero-crossing in the second directional derivative. The
g simplest dircctional operators are formed by extending one-dimensional cross-sections
A such as those shown in Figurc 3 along some two- dimensional dircction in the image. Di-
A rectional operators have differed in the shape of their cross-sections, both perpendicular
.‘ to and along their primary oricntations. Macleod (9) and Marr and Poggio (10), for

example, used directional derivatives that embodied Gaussian smoothing.

In principle, the computation of the derivatives in two directions, such as the hori-
sontal and vertical directions, is sufficient to detect intensity changes at all oricntations
in the image. Several algorithms, however, usc directional operators at a large number of
discrete orientations (for example, see (4, 7, 8, 14, 32)). A given intensity change is de-

QORI

tected by a number of directional operators in this case and the output of the dircctional \\_, —

y operator that yields the largest response is typically used to describe the local intensity _-:f-,‘_'f;
~ change. Two examples of algorithms of this typc are thosc of Nevatia and Babu (32) and T
::: Canny (14). An example of the results of Canny’s algorithm is shown in Figure 5. The

N contours of Figure b represent only the positions of the significant intensity changes in

) Figure 5a.

R Other rclated differential operators that are used in two dimensions are the first and

R second derivatives in the direction of the gradient of intensity (14, 17, 22). The intensity e
b gradient, defined as follows: ) N
» 2, (91 OI Sl
&Y VeI = (5;, Ey—) e
,: is a vector that indicates the direction and magnitude of stecpest increase in the two- O
. dimensional intensity function. Let n denote the unit vector in the direction of the

f:" gradient. The diffcrential opcerators 3'% and % arc non-directional operators, in the

y sensc that their value docs not change when the image is rotated. They are also nonlinear

= opcrators, and unlike the lincar differential operators, cannot be combined with the )
A smoothing function in a single filtcring step.  Methods such as those of Nevatia and '_'—'
2 Babu (32) and Canny (14) esscntially use the directional derivative along the gradient o
: for extracting features. :::::::j-'
. A sccond non - directional operator that is used for detecting intensity changes is the ::-:‘_::’_‘

Laplacian operator, V3 (1, 5, 11-13, 15, 33): _J'_:

’, 2,_ 9% Y S
% Vif= 5‘;{ + a?-. - ‘f-'f.::;
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Figure 5. Canny’s Edge Detection Algorithm. (a) A natural iwage. (b) The positions of the

h intensity changes detected by Canny's algorithin, (Courtesy of J. F. Canny. )
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Combined with a two-dimensional Gaussian smoothing function,
Glr) = oze™ 5, -
the Loplacian yiclds the fanction V3G given by the following expression: Ny

v

=g~
I
.

A
v’c:-ﬂ-[l;-z]e'-:. \:'i::‘:
ol |o
r denotes the distance from the center of the operator and ¢ is the standard deviation of A
the two-dimensional Gaussian. The V2G function is shaped something like a incxican hat e,
in two dimensions. Figure 8 shows an cxample of the convolution of an image (Figure 6a) L
with a V3G opcrator (Figure 6b). The Laplacian is a non-dircctional second derivative e
operation; the elements im the output of the Laplacian that correspond to the location _‘_;_
of intensity changes in the image arc thercfore the zero-crossings. The zero-crossing t
contours derived from Figure 6b arc shown in Figure 6c. In this case, the zcro-crossing ."j'-"
contours were located by detecting the transitions between positive and negative values '_:Lf-}
in the filtered image, by scanning in the horizontal and vertical directions.* A single ‘
convolution of the image with the non-dircctional V2G operator allows the detection of T-;;. -

intensity changes at all orientations, for a given scale. The two-dimensional orientation Kot
of a local portion of the zero-crossing contour can be computed from the gradient of the e
filtered image (12).

It is not yet clear whether directional or non—directional opcrators are most appro-

priate for detecting intensity changes. Both have advantages and disadvantages. The ) ::j-.:'_i
use of the Laplacian is simpler and requircs less computation than the use of either o

directional derivatives or derivatives in the direction of the gradicnt. The directional op-
crators, however, yield somewhat better localization of the position of intcnsity changes
(14, 22), particularly in areas where the oricntation of an edge is changing rapidly in the e
image (34, 35). Features such as the zero-crossing contours, when derived with non- v
directional operators, generally form smooth, closed contours, while features obtained ;
with directional opcrators generally do not have such special geomcetric propertics (17).
Marr and Hildreth (11) showed that if the intensity function along the oricntation of
an intensity change varies at most linearly, then the zero-crossings of the Laplacian ex-
actly coincide with the gzero-crossings of a dircctional operator taken in the dircction
perpendicular to the orientation of the intensity change. Torre and Poggio (17) charac-
terized more formally, the relationship between the zeros of the Laplacian and those of ———
the sccond dcrivative in the direction of the gradient, in terms of the geometry of the T
two-dimensional intensity surface. With regard to the use of directional versus non- e
dircctional derivative operators, it is interesting to note that physiological studics reveal o
that the retina analyzes the visual image through a circularly-symmetric filter whose R
spatial shape is given by the difference of two Gaussian functions (see, for example, 36, \
37), which is closely approximated by the V2G function.

Mathematical results regarding the information content and behavior across scales
of image features have some bearing on the choice of differential operators. For exam-
ple, Yuille and Poggio (28) showed that in two dimensions, the combination of Gaussian

*The design of robust methods for detecting zero-crossings remains an open arca of research
in edge detection.
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L2 Figure 6. Detecting Intensity Changea with the ¥2G Operator. () A natural image. (b) The
»" resalt of couvolving the image with a V3G operator. The most positive values are shown in
white and most negative values in black. (¢) The zero crossings of the convolution output shown

A, in (b).
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smoothing with any lincar diffcrential operator yields zero-crossings or level crossings
that bohave well with inercasing scale, in that no features arc created as the size of the
Gaussian is increased. In the case of the sccond derivative along the gradicnt, Yuille
and Poggio proved that there is no smoothing function that avoids the creation of sero-
crossings with incrcasing scale. The completeness of the scale-space representation of
sero -crossings or level-crossings in two dimensions also requires the use of lincar differ-
cntial operators (24).
The analysis of intensity changes across multiple scales is a difficult problem that has
. not yct found a satisfactory solution. There is a clear need to detect intensity changes at
B multiple resolutions (2). Important physical changes in the scene take place at different
A scalcs. Spatial filters that allow the description of fine detail in the intensity function
generally miss coarser structures in the image, while those that allow the extraction of
N coarser features gencrally smooth out important detail. At all resolutions, some of the
:: detected features may not correspond to real physical changes in the scene. For example,
X at the finest resolutions, some of the detected intensity changes may be a consequence of
noise in the sensing process. At coarser resolutions, spurious image featurcs might arise as
a couscquence of smoothing togcther nearby intensity changes. The problems of sortiug
out the rclevant changes at cach resolution and combining them into a represcntation
2 that can be used effectively by later processes are difficult and unsolved problems. We
mention here some of the research that has attempted to address these problems.
Marr and Hildreth (11) explored the combination of zero-crossing descriptions that
arise from convolving an image with V3G opcrators of different size. An example of
these descriptions is illustrated in Figurc 7. The zero-crossings from the smaller V3G

ERA A
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TR

f- operator primarily detect the bumpy texture on the surface of the lcaf, whereas the zero-
',; crossing contours from the larger operator also outline some of the highlights on the leaf
-3 surface that are due to changing illumination (the arrows point to onc example). Marr
and Hildreth suggested the use of spatial coincidence of zero—crossings across scale as a y

N means of indicating the presence of a real edge in the scene. Strong edges such as object RS :
-"::‘. boundaries often give rise to sharp intensity changes in the image that are detected across N
N a range of scales and in roughly the same location in the image. In the one-dimensional
,: scalc-space representation*, these edges give rise to roughly vertical lines. The existence e

' of contours in the scale-space representation that are roughly vertical and extend across SN
a range of scales could be used to infer the presence of a significant physical change at
‘3 the corresponding location in the scene. 5
% Witkin (25) developed a method for constructing ualitative descriptions of one- N
R dimensional signals that uses the scale-space representation. The method embodied two el
* basic assumptions: (1) the identsty assumption, that zcro- crossings detected at different R
2™ scales, which lic on a common contour in the scale -space description, arise from a single
o physical event; and (2) the localization assumption, that the truc location of a physical
‘% cvent that gives rise to a contour in the scale-space description is the contour’s position
i as ¢ tends to zero. Coarser scales were used to identify important events in the signal and
) finer scales used to localize their position. Events that persisted over large changes in scale
yl *The scale -space representation can be extended to two dimensions, in which the positions of T
it the zoro-crossings on the z — y plane are represented across multiple operator siges. AR o
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Figure 7. Multiple Opcrator Sizes. (a) A natural iinage. (b) and (¢) The zcro-crossings
that result from convolving the image with V3G operators whosce central positive region has a
diameter of 6 and 12 imnge clements, respectively. The arrows in (a) and (c) indicate a highlight
in the image that is detected by the larger operator.
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also had special significance. Witkin’s method, called acale- space filtering, begins with
the acale space description and collapses it into a discrete tree structure that represents
the qualitative behavior of the signal. Some of the heuristics cinbodicd in this analysis
may be uscfu] for analyzing two - dimensional images.

Canny (14) uscd a different approach to combining descriptions of intensity changcs
across multiple scales. Featurcs were first detected at a sct of discrete scales. The finest
scalc description was then uscd to predict the results of the next larger scale, assuming
that the filter used to derive the larger scale description performs additional smoothing of
the image. In a particular arca of the image, if there was a substantial difference between
the actual description at the larger scale and that predicted by the smaller scale, then it
was assumcd that there is an important change taking place at the larger scale that is not
detected at the finer scale. In this case, features detected at the larger scale were then
added to the final feature representation. Empirically, Canny found that most features
were detected at the finest scale and relatively few were added from coarser scales.

Poggio, Voorhecs and Yuille (16) have also begun to explore the issue of detect-
ing intensity changes across scales, using the methods of regularization theory. Recall
that their approach was to find a smoothed intensity function S(z), given the sampled
intensitics I(z,), which minimizes the following expression:

s PR AN

-

E§ S U(en) - S(a)) + 2 [ 18"@) as. .
k=1

The parameter A controls the scale at which intensity changes are detected. That is, if A
is small, S(z) closely approximates I{zx), and as A increases, S$(z) becomes increasingly
more smooth. Regularization theory may suggest methods for choosing the optimal A L
for a given sct of data, which may be uscful for analyzing changes across multiple scales o
(18).

To summarize, there has been considerable progress on the detection and description
of intensity changes in two-dimensional images, but there still exists many open ques-
tions. A large body of theorctical and empirical work has addressed the question of what

IR

N .j‘ .'l. o)

1

AP SN
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';- operators are most appropriate for performing the smoothing and differentiation stages.

::. Emerging from this work is a better understanding of the advantages and disadvantages

7 of various opcrators and the rclationship between altcrnative approaches. It is unlikely N
that a single method will be most appropriate for all tasks. The choice of operators

" depends in part on the application, the nature of the later processes that use the descrip-

:: tion of image features, and the available computational resources. Some interesting work e

:,:{ has begun to address the problem of detecting and integrating intensity changes across R

"’ multiple scales, but a satisfactory solution to this problem still cludes vision researchers. Ty
A problem that was not discussed here is the computation of propertics such as contrast o !

e and sharpness of the intensity changes. There has been some work on this problem, but :

:l' it has not yet reccived a rigorous analytic trcatment. .
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3. RECOVERING PROPERTIES OF THE PHYSICAL WORLD

he O

In the introduction, it was noted that the goal of vision is to recover the physical proper-

hal)

e . . . .

he tics of objects in the scene, such as the location of object boundaries and the structure,
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@ color ‘and texture of object surfaces, from the two -dimensional image that is projected :: A
onto the eye or camcera. The detection of intensity changes in the image represents only, i
a first, mcager step toward achicving this goal. This scction bricly mentions some of the il
areas of vision that address the recovery of physical propertics of edges in the scege. ,::I.\
The property of cdges that is pcrhnps most important and most studied iy th'gq-l , E::‘,:’::':i

)
)

throe-dimensional structurc. The stmcturc of edges is conveyed through many sources.
For example, the relative locations of correspondmg edges in left and right stereo v:ews
conveyu information about the locatnon of the edges in three-dimeénsional space, | and
‘relative movement between odgcs il thie i 1ma.go can be used to assess their relative position
in space. Three-dimensional structure can also be inferred from the shape of the two-
dimensional projection of edge contours, the way in which cdges intersect in the image,
and variations in surface texture. Thesc latter cues are esscntial in the interpretation of
structure from a single, static photograph. Many algorithms that analyze these sources
, are feature-based, in that the initial inferences regarding three-dimensional structure
¥ are made at the locations of features such as significant intensity changes in the image.
Discussion of some of these processes for recovering three-dimensional structure can be
found, for example, in (1, 5, 7, 10, 13, 27, 30, 31, 38-40).

Another important property of edges is the type of physical change from which they
arise. For example, edges might be the consequence of object boundaries, changes in
surface orientation, shadows, highlights or light sources, surface markings, changes in

. surface reflectance or material composition, and so on. Ultimately, it is nccessary to
@ determine the physical source of each edge in the scene. While some interesting work has
been done in these areas, there remain many open problems (examples can be found in
(1, 5, 7, 13, 30, 31, 38-41)). The recovery of these physical properties of edges is likely

to be a main focus of future research on edge detection.
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