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I. INTRODUCTION ;:%:%
Pt

In the first quarterly report [1], further progress was reported on rad
syndrome decoding by extending the concept of error-trellis decoding to &f{:
certain non-systematic convolutional codes (CCs). Syndrome decoding makes E€i§.
use of the fact that all CCs are capable of correcting only a finite number, ;f;;
say t, of errors in some small multiple of the constraint length. Also, T
s:_'. s:.:q

using the syndrome either explicitly or implicitly, an error trellis is t{ﬁﬁj
A S

shown to exist for all systematic and certain non-systematic CCs and is in- -};%;
dependent of the original transmitted code. In fact, the states of an error -
trellis depend only on the channel errors. If there are no channel errors, }éiﬁ

the error trellis is in and remains in the zero state of the trellis. iy“a

In [1], it was shown for systematic and certain non-systematic CCs,

including the non-systematic dual-k codes for which an error trellis can ;i_g
be defined, that the finite error-correcting capability of these CCs makes ;?;2
possible a reduction of sometimes a substantial number of states and tran- &?T:
sitions in the error trellis, compared with a coding trellis. This reduc- éiﬁ'
tion in the number of states and paths makes error-trellis decoding poten- /j’
tially somewhat simpler than Viterbi or sequential decoding which utilizes ; f %E:f
a full coding trellis or tree. In [1], this recuction of complexity was : E;;;
demonstrated in an example wherein error-trellis decoding was applied to : ;;i
- =

/ "\j R
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ﬁhe special case of a one error-correcting per blocklength, one-half rate,
{

dual-k CC. bipar T

"59 In this final report, some of the same machinery developé;;:;rlier
for syndrome decoding is shown to provide a basis for what is called alge-
braic syndrome decoding of convolutional codes. Actually, algebraic syn-
drome decoders were developed quite early in a heuristic manner for certain
simple convolutional codes. In particular, syndrome decoders in the form
: of feed-back decoders were developed for the one error-correcting Wyner-Ash
convolutional code, [e.g., Ref. 2 and other limited error-correcting CCs].
*! " > However, the generalization to algebraically constructed syndrome decoders
: other than feed-back and majority-logic decoders seems to have been largely

ignored. In order to demonstrate the general nature of algebraic syndrome

I L1emi ( Goadnr, . Voodppry.  fan, 1_7}“'\' 5,’;_ ) NS <

e decoding, some definitions ang__termir?]ogy are now in order. Ay-or e
' Suppose t informafion or message sequence, the input to the CC, is

represented by

y x(0) = [x(0)s +os x(0)] (1a) b
¥ where Eiiizﬁ
',:_' ;:-::}}}.
& . —

xi(D) = Z X5 pJ (1b) L

j=0 Ve

for 1 < j < k are elements in F[D], the ring of polynomials in the unit ce-
lay operator D over F = GF(q), a Galois field, with q a power of a prime

integer. Vector x(D) is a generating function in D of the input message

sequence x = [50, e X5 ...], where_zj = [xj1, cees xjk] is a vector

belonging to V (F), the k-dimensional vector space over F. x(D) is sometimes T
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called a D-transform of the message or information sequence x. The k com-

ponent vector_gj in x is called the information frame at stage or frame
time j.

Likewise, let the output sequence be
y(D) = [y](D), cees yn(D)] . (2)

where yi(D) € F[D]. Vector y(D) is the D-transform of output coded se-
quence y = LXO’ ceer Yj ...], where y; = [yj], cees yjk] belongs to V_(F).
The n-vector‘xj is called the j-th codeword frame of code sequence y.

The information and code sequences of an (n, k) convolutional code
are linearly related by a k x n, rank k, generator matrix G(D) of poly-

nomial elements in F[D], as follows:
y(D) = x(D) G(D) . (3)

The maximum degree m of the polynomial elements of G(D) in D is called the

memory, and the constraint length L is defined as L = m + 1. Hence, matrix

G(D) in Eq. (3) can be expressed as the finite D-transform or polynomial in

D of form

m
6(D) = Z 6 pd | (4)
s

where Gj are k x m matrices of elements in F[D].
Now, multiply Eq. (1a) by Eq. (4) on the right side of Eq. (3) and
equate coefficients of 0 on both sides of Eq. (3). This yields the

identity

¥ = . X: : Gi (5)
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which is the convolution of sequence Llo’-ll’ ...} of information frames

with the sequence {GO. G1, cees Gm]'of matrix operators in Eq. (4). The
memory m of the convolution, Eq. (5), is the maximum number of past input
frames, l‘j’ needed to compute Eq. (5) recursively.

By Eq. (5), the j-th output n-vector of codeword frame.xj is dependent,
at most, on the m + 1 = L present and past input k-vectors of information
frames. Hence, it is natural, as suggested by Blahut [2, Sec. 12.\], to

define

k] = (m+ 1)k = Lk

to be the wordlength of a convolutional code. Then, the wordlength k] is
extended by the encoding process, Eq. (5), to what is called the block-
length, nys of the CC. The blocklength of a CC is

ny = (m+ 1)n=1Ln-= k] R,

where R = k/n is the rate of the code. By Eq. (5), the blocklength ny =
(m + 1)n is the length of a subsequence of y, which, during encoding, can
be influenced by a single information frame.

Minimum distance between codeword segments of 2 codeword frames is de-
fined, usually, for only those pairs of codeword segments which differ in

the first or initial frame:

Definition 1 (see [2, Sec. 12.3]). The g-th minimum distance, d,, of
a CC is the smallest Hamming distance between any two initial codeword seg-
ments of ¢ frames which differ or disagree in the initial frame. If g =

d is called the mini-

L=m+1,d . is defined to be d, i.e., d=d ;.

mum distance of the code.

Since a CC is linear, one of the two codewords in Def. 1 can be chosen
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to be the all-zero word. In this case, dz can be interpreted to be the

Hamming weight of the smallest-weight codeword segment of g frames, which

is non-zero in the first frame. Thus, dz can be computed directly from a
labeled coding trellis of the CC.
Suppose now, for some CC, that, at most, t errors occur during trans-

mission in the first ¢ codeword frames, and that

2t+'|_<_d2

is satisfied by the code. Then those errors which occur in the first frame

can be corrected. If ¢ =m+ 1 =L, then t satisfies

2t+1<d.

In this case, the CC can correct errors in the first codeword frame if, at
most, t errors have occurred in the first blocklength. Such a CC is called
a t-error-per-blocklength-correcting CC or, more simply, a t-error-correct-
ing CC.

Another distance between codewords of a CC which is commonly used is

the free distance, dfree:
_  max
deree = 2 dy -
Since, clearly, R
= dney < dneg < oor < e i

designing a CC with minimum distance d guarantees that the code has a free

RN

distance of d or greater. Note that at least L = m + 1 codeword frames 2

Ky
I { ".‘l'l'
o

are required to compute dfree'

Associated with the free distance dfree is the free length "free‘ The

o
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free length of a CC is the length of the non-zero segment of a smallest,

non-zero, weight codeword. Hence, d = d ifm+ 1 =n,,, and d < dfree

free
ifm+1 < Pree" For a number of useful CCs, Neree =M +1, 50, fqr many

CCs,d=4d e? the minimum distance actually equals the free distance.

fre
To avoid catastrophic error propagation, assume G(D) in Eq. (4) to

be a basic encoder [3]. The Smith normal form of a basic encoder [3] is

G(D) = A(D) [Ik, 0] B(D) ,

where A(D) and B(D) are, respectively, k x k and n x n invertible matrices
over F[D] and I is a k x k identity matrix.

Let matrix B[D] in the above Smith normal form be partitioned as

8(0) = [8,(0)", BZ(D)T]T ;

where 81(0) consists of the first k rows of B(D) and "T" denotes matrix

transpose. Similarly, let

8(0)" = [B:(0). By(o0)]

where By (D) consists of the first k columns of B(D)™'. Since B(D) - B(D)™' =

In’ the following identities evidently hold:

"
o

B)(0) + By(D) =1, . 8y(D) - By(D)
(6)
1

[}
o

B,(D) * By(D) » By(D) + By(D) = I, -

A parity-check matrix H(D) is an (n - k) x n matrix of rank (n - k),

satisfying

..................
..................
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From Eqs. (6) and (7) it is seen next that NN

i - Bl PR

has the properties of a parity-check matrix H(D) associated with G(D). QQE:.

By Eq. (3), the CC generated by G(D) is the set

C= [x(o) = [y,(o), yn(D)] I y(D) = x(D) G(D)] : (9)

It is now shown also that

c =[y_(D) = [v1(0)s - ¥, (0)] |1(D) H'(D) = 0 ] (10)

where H(D) is given in Eq. (8). To see this, denote the right side of Eq.

(10) by C Clearly, an element of set C, as given in Eq. (9), belongs to

He
Cy» and hence C < C,. i

\o Next, suppose ay_1(D) is an element of set CH’ j.e., by Egs. (8) and (10),

1) #(0) = 1(0) B(0) = 0 .

But, by definition, §é(D) consists of the last (n - k) columns of B(D)'1,

so that

0
B,(0) = 8(0)" . (1)
ba-k

where "0" denotes a block of k rows of zeros and I, is the (n - k) row :Ej
identity matrix. Thus, y](D) satisfies the equation ;ﬂ;ﬂ;i
0
-1
£,(0) 87'(0) 1 =0 .
n-k

o The most general solution of this equation for y,(D) B'](D) is

.............................................
.........................................
..............................................................................
..............................................

A
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i 1(0) 87(0) = [7y(0)s -ees 7 (D), 0s -.eu 0] = [z(D), 0]

: where rj(D) for 1 < j < k can be chosen to be any arbitrary element of F[D].

Solving for‘x](D) yields, finally, by Eq. (5),
! ¥1(D) = (D) [Ik, o] B(D) = (D) A“(o) 6(D) ,

A which belongs to set C, as given in Eq. (9). Thus, CHff C and Eq.- (10) is
i proved.
The fact that the CC given by set C in Eq. (9) can be characterized by
Eq. (10) is used in the following section to find the coset of solutions to
! the syndrome equation. This coset is used then as a basis for algebraic

syndrome decoding,

i \'. II. METHOD OF ALGEBRAIC SYNDROME DECODING

' In this section, the syndrome equation is defined and the general solu-
tion of the syndrome equation is shown to be a coset of the convolutional

i code. From the syndrome, a system of linear equations is obtained for

. and a possible error vector e. in terms of the

J J
m previously computed message vectors_xj_], vee s and_gj, the j-th

the j-th message vector v
» Viom
) received vector. The problem of algebraic syndrome decoding is to solve
this set of equations recursively for each j under the constraint that t
errors occur per blocklength. This method of decoding is quite different
; from syndrome feed-back decoding.

Let y(D) in Eq. (3) be transmitted and z(D) be received. Then,
z(D) = y(D) + e(D) , (12)

where e(D) is the D-transform of the error sequence. By Egs. (12) and (7),

..................
..........................................
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RS
the syndrome of the received sequence is s :ﬁ:iﬁ
SR
T T, :
s(D) = z(D) - H'{D) = |y(D) + e(D)| - H'(D SR
(0) [ ] (0) (13) RO
_ T
= (D) - H'(D) . :
The problem of syndrome decoding is, given s(D) = z(D) - HT(D), to
solve the syndrome equation
s(0) = z(D) H'(D) = (o) W'(D) , (14a)
or its equivalent,
(e - 2(0)) WT(0) = 0, (14b)

for a1l solutions e(D).

By Eqs. (10) and (9), the term (g(D) - gﬁD)) in Eq. (14b) must be some
code sequence v(D) G(D). Hence, the most general solution of the syndrome
equation, Eq. (14a), is

e(D) = z(D) + v(D) G(D) , (15)

where v(D) is the D-transform of an arbitrary message-like sequence Vv =

J
Equation (15) shows that the most general solution of the syndrome

[10, s Vs ...] of k-vectors v, e V,(F).

equation, Eq. (14a), for e(D) is the error coset

¢, ={e(®) = 2(0) + v(D) 6(0) | w(d) = [,(0), ..., vk(o)]] (16)

of code C, defined by either Eq. (9) or Eq. (10). A minimization of the
Hamming weights over all elements of coset Cz yields the standard minimum-
error estimate x(D) for message x(D). Efficient methods for achieving this

minimization include the Viterbi algorithm and all sequential decoding

. .

.............................................
--------------------

.....
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methods for convolutional codes. Eﬁu;-
RN
Another syndrome decoding method, different from the above and from ;giL(
feed-back decoding, to find ;(D) is to utilize decoding methods for CCs iéﬁi:
which are similar to the basic algebraic techniques of block codes. Thus, fﬂgii
(3%
if the CC is capable of correcting t-errors per blocklength, then, under R4
the assumption that t errors actually occur, it is desired to solve Eq. -
(15) algebraically for v(D) in a manner which yields for estimate ;(D) _
the original message sequence x(D). To accomplish this, first find the i;‘ii
so-called state-vector equations for the solution of the syndrome equation, f%ﬁii
Eq. (15). o
By Eq. (5), an equating of coefficients on both sides of Eq. (15) i,;J
yields RO
m
g Tzt D vy 6y (17a)
i=0
where, initially,
= = ,.. = =0 EAERE
l—] Yo l—m (176) S
as the state-vector equations associated with all elements of the error :gi?t
coset Eq. (16). The goal of algebraic syndrome decoding of a convolutional 'i ii
code is to fill in the details of the following algorithm: e
Frame 0: Given Eq. (17b) and the constraint that no more than Ei&
t errors occurred in ey, s ...s €ns solve Eq. (17a) ;ET?£
for ¥g-
Frame 1: Given Eq. (17b), solution Yq and the constraint that f?ii
no more than t errors occurred in €15 €55 ovs B ‘

......................................
............

.........................
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solve Eq. (17a) for v,.

. . ]
. [ *
L) . .

Frame m: Given Eq. (17b), solutions vy, ¥y, ..., ¥, 4 and the
constraint that no more than t errors occurred in-e,
Sl
Voo» ¥y eees My to construct estimate X, of original

. &5 solve Eq. (17a) for v,. Use solutions

message.

Frame j: Given £q. (17b), solutions Vi n. Vs puqs «oes ¥y 4 and

the constraint that no more the t errors occurred in e

j!
g 85417 00 Ejape solve Eq. (17a) for v,. Use solutions
%. !d-m’-xj-m+1’ ""-Xj+1 to construct estimate x, of

original message.

. is obtained algebraically under the assumption

Since each symbol ;J

that no more than

. - min
5 e

errors actually occur, the estimated symbols X

j must equal the original
transmitted symbols X; for j =0, 1, ... . This type of decoding algo-
rithm will be demonstrated by example in the next section, using a system-

atic dual-k code.

.........................

- -
-

L
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IIT. ALGEBRAIC SYNDROME DECODING OF SYSTEMATIC DUAL-k CONVOLUTIONAL CODES

Systematic dual-k convolutional codes are defined to be (n, 1) CCs

of rate 1/n, of memory m = 1, and with symbols in the finite or Galois
field G(Zk). See Odenwalder's paper [4] for a description and definition
of the original non-systematic dual-k convolutional code.

The generating matrix G(D) of the systematic dual-k CC in the form
of Eq. (4) is '

G(D) =Gy + G, D, (18a)

where

Gy = (v, 1, ..., 1] and

(18b)
G] =[0’92’93""'9n]'

where 9; € GF(Zk) and g, % 0 for (j =2, ..., n). That G(D) is systematic

is seen from its form, i.e.,
6(0) =[1, 14,0, ...,1+g,0]. (19)
From Eq. (18) or (19) and the different definitions of distance given

in Section I, it is readily seen that the minimum distance d equals the

free distance and that

d=dfree=2n-1o

Hence, if no more than t symbols occur in the first two codeword frames,

one has

2t+1<d=2n-1 or
(20)

tin-1’

--------------------------------------------------
.........................................
R
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so that the maximum number of errors that can be corrected per blocklength
ist =n - 1. In other words, the systematic dual-k CCs of rate 1/n are
t = n - 1 symbol-errors-per-blocklength, correcting, convolutional codes.

Example of Algebraic Syndrome Decoding. Let generating matrix for

example be

G(D) = [1, 1 + D] (21)

over GF(Zk). This has form of generating matrix in Eq. (7) so that n = 2
and G(D) is generating matrix of a (2, 1) systematic dual-k convolutional
code of memory m = 1. By Eq. (20), this code is one symbol-error correcting-
per-blocklength, where blocklength is m + | = 2,

A substitution of Eq. (21) into Eq. (15) yields

g [eﬂ’ eiZ]D1 = ZO: [Vi’ vy * V,-_1] D' + 1;0 [ZH’ 221.] D' .

Next, equating of coefficients obtains

©i T Vit 2y and ey vyt vt 2 (22) ;
for (i =0, 1, ...), where initially vy =0. R
The solution of the two equations in Eq. (22) for Vil and v; is =
Viag T2yt 2 eyt ey (1) —
It is desired now to obtain a recursive estimate ;i-l of the transmitted —
message from (I) and (II) on the assumption that no more than one error :
occurs per blocklength of 2. To accomplish this, the following two lemmas .
are needed: -}331

S
...... = .
...............................................................................
-------------- e e e e T e e T e e e e e e T e e e e e e e e e e e e Tl e e e e T e e

@St et e e et T e e e T e T L T T T N e e LT T T e e T AT SR e I SR S PRI W TP SR D SR W R I B Y R
Sedl = YR AL PN DIRE VAT AL AL AL R P P R A A ST L ARV WL VR AP LR P L G fiE P C P At afatath




SR AL L AR ot o T r— g - -
E'. Y A N N N TITrTmrm>. r.r.rmw
~ Te

-14 -
P Lemma 1. Given Eqs. (I) and (II), if no errors in the i-th frame,
i.e.,gi =[e.“., ez,i] = 0, then
Via T H t 2y (111)
vi =2y, (1v)

Proof: A substitution of [en, eZi] = [0, 0] into (I) and (II) yields ZI:::iE;
(III) and (IV) directly. Hence, lemma is true.

Lemma 2. Given (I) and (II), then L‘"

"-.';;-
where "iff" denotes "if and only if." ke

Proof: If [e]i’ eZi] = [0, 0], then by (I), V‘i-] = Z]i + ZZ'i' Conversely :...

- if v . = 24. + 2,., then, by (I), T
\e i-1 1i 2i *E! -
e +e =0 !:‘:-\.‘:\

1i 2i ) e

ot

A

But, since 0 <t <1, (eh.=3= 0) and (e21' * 0) can not both be true. Thus, e

£; must be zero and lemma is true. ' L—

By Lemma 1, if no error occurs at frame i, then v, , can be uniquely \

determined so that the best estimate of the original message at frame i-1
_ is ;(1._] = Vi Also, by Lemma 2, one can determine whether or not an ——-—
: error has occurred at frame i by testing whether or not the previously
estimated message Vicl T %0 equals 215t 24
]

In order to solve (I) and (II) frame-by-frame on the assumption that N
no more than one error occurs every two frames, define two auxiliary -_:::_ZE';:I
variables: "‘

SO i) Let A denote the delayed and correct message symbol; and . -“"‘




1At
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ii) Let ¢ denote a binary variable such that

(¢ = 0) iff (previous frame had no error),

A
E;
b
E
F::L

(e=0) iff (g5 =0).

iii) Next, define the binary variable X at frame i in the following

manner:

(x = 1) iff (z]i + 2y = Ai) .

Finally, let "x « y" denote operation, "variable x is replaced
by y.ll

In terms of variables A, €, and A, defined above, X.

j-1 is found frame-

by-frame at frame i, utilizing Lemmas 1 and 2, as follows:

o

Frame, i = -1: e ) 0 and v 1 0. Hence, initially, ¢ « 0 and
A «0.
Frame, i = 0: Since ¢ = 0, .= 0 so that, by (IV), A = R o,
ff the initial condition for v;. By Lemma 2,
;. (a) If 219t Iy © 0 =A, i.e., if =1, then no
b‘ error occurred at frame 0 and ¢ « 0, i.e., € is set
to zero. But also, by Lemma 1, Vo =270 = Xp» SO
. that A « Vo T 210 .
D (b) Or, if 210 * 2204:0 = A, i.e., if » =1, then
R at least one error occurred at frame 0 and ¢ « 1.
Y
'g However, since only one error is allowed for one
5: ' blocklength of 2 frames, one concludes that no error

can occur at the next frame, i.e., at i = 1 or frame 1,

.......................
---------------------------
.........................
..........................................
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so that, by Lemma 1, the data [z]], 221] from frame 1

is used to compute Vo T I3 * 251 = Xy the estimated

message for frame 0, and Vi §1, the estimated

mn

-I
-

'
.

1: -~
s

T AA)
(_.

message for frame 1.

N ]

Frame, i =1: A, Ife= o(g0 = 0), then, by Lemma 2,

»
>
(il 3

(a) If 251 * 291 = A, i.e., if A =1, then no error

o
’ l"-'

| PAPLL,

LI %

- RARR
LA RO
AL S
B R

occurred at frame 1 and ¢ « 0. Thus, by Lemma 1, Vo =
1yt 25 ¢ ;0 and L A ;], and A « Vi = Iq-

(b) Or, if Z11 + 251 =A, i.e., if 2 = 0, then no

error occurred at frame 1, and ¢ « 1. Since only one iﬁ

error is allowed per blocklength, must have at next ;iii
b

frame, i.e,, at i = 2, by Lemma 1, V1 =2Zyp + 2y = e

-

X and Vo = 2Zyp = Xo.
B. On the other hand, if ¢ = 1 (e, % 0), then since only
one error is allowed per blocklength, must have e, =0,

and € « 0. Also, by Lemma 1, must have

Vo S 217t %y = Xg and vy = 2y so that A « vy = 244 ;}xx
Frame i = j: A. Ife=0 (gj_] = 0), then, since only one error :fff
(a) If 25 * 255 = Ay i.e.,.if » = 1, then no error ;
occurred at frame j and € « 0. Thus, by Lemma 1, <
v =2, 4+ 2Zy. =X and = 2,, = x, and L
S B M A B I B T
A + vj = Z1jo N N ] ::;::E:E
i 1 1 - l: '\:_‘-
(b) Or, if z,, + 2y; ¥ A, 1.e., if 2 =0, then at least e
SR one error occurred at frame j, and € « 1. Since only -
‘.t: ‘: .
o ;f_.
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one error is allowed per blocklength, must have at

next frame, i.e., at i = j, by Lemma 1, Vj =

z]’ §+1 + 22, 41 = xj and Vj+] = 21’ j+1'= xj.
B. On the other hand, if € = ](-Ej-'l :t:O), then, since
only one error is allowed per blocklength, must have

& - 0, and € « 0. Also, by Lemma 1, must have

Vj_]

A« vj = z]j.

=2, + 2, = X, .=z .
215 * 25 = %50 and Vj =215 80 that

In Fig. 1, the above decoding algorithm is presented in flow chart form, -

along with the delayed output equation,

i = (0 Ve ) (25 * 2p5) t e N Ay (23)
Since it is assumed that only one error occurred per blocklength, the esti-
mated or corrected message sequence, ;i-l in Eq. (23), actually equals the
original message sequence, X1 delayed by one frame. The symbol "v" denotes
logical "orﬁ and the bar over the variable e denotes negation, i.e.,

e =1+~ c¢. As an output, Eq. (23) is read as follows:
If [( M

if [(xi

1)oor (e = 1)]s X = (24 ¢ 25) 0 or

0) and (e = o)], §1-1 = A .

It is not difficult to demonstrate by simple cases that the algorithm
in Fig. 1 for the above example will compute the original message sequence
X;_q as long as no more than one error occurs per blocklength. Work is con-

tinuing on the development of a similar algebraic syndrome decoding algorithm

...........
..........
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Definitions:

Fia. 1 -- Flow chart of decoding algorithm with delayed message output ;i-l e

Delayed Message Output ;i=1:

Kper = (Vo) (2 * 2p5) T A ‘

m|

elayed corrected message symbol
0) iff (previous frame was error free)
1) iff (211 * 2y = Ai)

e O " . Y ] S——— -
.
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for both the systematic and non-systematic (n, 1) dual-k convolutional code.

AR Y - RPLPAPRFRVEFEF ol NS

2 Recently an example of such an algorithm for correcting two symbol errors é§§f

i per blocklength, the n = 2 case, was completed. This result plus others ol

on the more general cases will be reported on elsewhere.
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