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AN ALGEBRAIC SYNDROME DECODING TECHNIQUE FOR CERTAIN CONVOLUTIONAL CODESo-"-

I. S. Reed

I. INTRODUCTION

In the first quarterly report [1], further progress was reported on

syndrome decoding by extending the concept of error-trellis decoding to

certain non-systematic convolutional codes (CCs). Syndrome decoding makes

use of the fact that all CCs are capable of correcting only a finite number,

say t, of errors in some small multiple of the constraint length. Also,

".* using the syndrome either explicitly or implicitly, an error trellis is .""

" .shown to exist for all systematic and certain non-systematic CCs and is in-

dependent of the original transmitted code. In fact, the states of an error

trellis depend only on the channel errors. If there are no channel errors,

*" the error trellis is in and remains in the zero state of the trellis.

In [1], it was shown for systematic and certain non-systematic CCs,

including the non-systematic dual-k codes for which an error trellis can

be defined, that the finite error-correcting capability of these CCs makes

possible a reduction of sometimes a substantial number of states and tran-

sitions in the error trellis, compared with a coding trellis. This reduc-

.. tion in the number of states and paths makes error-trellis decoding poten- .-

-* tially somewhat simpler than Viterbi or sequential decoding which utilizes

" a full coding trellis or tree. In [1], this reduction of complexity was

demonstrated in an example wherein error-trellis decoding was applied to

." / ' ..--
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the special case of a one error-correcting per blocklength, one-half rate,

' dual-k CC. ",
, 6 A 

r  . ,

2 In this final report, some of the same machinery developed earlier•

for syndrome decoding is shown to provide a basis for what is called alge-

braic syndrome decoding of convolutional codes. Actually, algebraic syn-

drome decoders were developed quite early in a heuristic manner for certain

simple convolutional codes. In particular, syndrome decoders in the form L-

of feed-back decoders were developed for the one error-correcting Wyner-Ash

convolutional code,[e.g., Ref. 2 and other limited error-correcting CCsj.

',However, the generalization to algebraically constructed syndrome decoders

other than feed-back and majority-logic decoders seems to have been largely

ignored. In order to demonstrate the general nature of algebraic syndrome

decoding, some definitions and tgrminoogy are now in order. ...-,',,-,.x.t- -

Suppose t4e informaiion or message sequence, the input to the CC, is

represented by

x(D) xl(D), ... , x(D)] , (la)

where

0.0

xi(D ) = xji D (lb)

j =0

for 1 < j < k are elements in F[D], the ring of polynomials in the unit ce-

lay operator D over F = GF(q), a Galois field, with q a power of a prime

integer. Vector x(D) is a generating function in D of the input message
sequencex= x where x = X ... , X is a vector

belonging to Vk(F), the k-dimensional vector space over F. x(D) is sometimes

. .. . . . . . . . . .
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;. called a D-transform of the message or information sequence x. The k com-

ponent vector x in x is called the information frame at stage or frame

time j.

Likewise, let the output sequence be
'I..,

=D [y,(D)o ... 9Yn (D)] (2)

where yi(D) E F[D]. Vectory(D) is the D-transform of output coded se-

qw belongs to vn(F).

The n-vector yj is called the j-th codeword frame of code sequence y.

The information and code sequences of an (n, k) convolutional code

are linearly related by a k x n, rank k, generator matrix G(D) of poly-

nomial elements in F[D], as follows:

I(D) x ( D )  G(D) .(3) ,-.-

kThe maximum degree m of the polynomial elements of G(D) in D is called the

memory, and the constraint length L is defined as L = m + 1. Hence, matrix

G(D) in Eq. (3) can be expressed as the finite D-transform or polynomial in

D of form

m

G(D) = G. D, (4)
j =0

where G. are k x m matrices of elements in F[D].

Now, multiply Eq. (la) by Eq. (4) on the right side of Eq. (3) and

equate coefficients of Di on both sides of Eq. (3). This yields the

identity

min (j, m) -G-' (5)
. ."Yj = !j- i  Gi ,(5)

.,,--.
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.... which is the convolution of sequence {xO , 1 , ... of information framessequenceJx 0 ."1, O

with the sequence {GO , G1, ... , Gml of matrix operators in Eq. (4). The

memory m of the convolution, Eq. (5), is the maximum number of past input

frames, xj, needed to compute Eq. (5) recursively. j
By Eq. (5), the j-th output n-vector of codeword frame yj is dependent,

at most, on the m + 1 = L present and past input k-vectors of information

frames. Hence, it is natural, as suggested by Blahut [2, Sec. 12.1], to

define

k= (m + l)k = Lk

to be the wordlength of a convolutional code. Then, the wordlength k1 is

extended by the encoding process, Eq. (5), to what is called the block-

length, nl, of the CC. The blocklength of a CC is

n= (m + l)n = Ln = k1 R ,

where R = k/n is the rate of the code. By Eq. (5), the blocklength nl =

(m + l)n is the length of a subsequence of y, which, during encoding, can

be influenced by a single information frame.

Minimum distance between codeword segments of z codeword frames is de-

fined, usually, for only those pairs of codeword segments which differ in

the first or initial frame:

Definition 1 (see [2, Sec. 12.3]). The e-th minimum distance, d, of

a CC is the smallest Hamming distance between any two initial codeword seg-

ments of z frames which differ or disagree in the initial frame. If z -

L = m + 1, dm+l is defined to be d, i.e., d = dm+ I. d is called the mini-

mum distance of the code.

Since a CC is linear, one of the two codewords in Def. I can be chosen
"p:.':

. -7:-2":-
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to be the all-zero word. In this case, d can be interpreted to be the

Hamming weight of the smallest-weight codeword segment of i frames, which

is non-zero in the first frame. Thus, d can be computed directly from a

labeled coding trellis of the CC.

Suppose now, for some CC, that, at most, t errors occur during trans- *

mission in the first i codeword frames, and that

2t+l1d

is satisfied by the code. Then those errors which occur in the first frame

can be corrected. If i = m + 1 = L, then t satisfies

2t+l <d .
2 t " .-

In this case, the CC can correct errors in the first codeword frame If, at " -"

most, t errors have occurred in the first blocklength. Such a CC is called

3 a t-error-per-blocklength-correcting CC or, more simply, a t-error-correct-

ing CC.

Another distance between codewords of a CC which is commonly used is

the free distance, dfree fm

dfree .-- -

Since, clearly,

d d d **dre
d m+2 . _ ree

I '4

designing a CC with minimum distance d guarantees that the code has a free

distance of d or greater. Note that at least L = m + 1 codeword frames

are required to compute dfree"

Associated with the free distance d is the free length n The
dfe sfree re eghnfreeTh

IL

. .".. . . . . ...
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free length of a CC is the length of the non-zero segment of a smallest,

non-zero, weight codeword. Hence, d = dfree if m + 1 = nco, and d < dfree

if m + 1 < n For a number of useful CCs, n = m +1, so, for many
nfree' free m+

CCs, d = dfree, the minimum distance actually equals the free distance.

To avoid catastrophic error propagation, assume G(D) in Eq. (4) to

be a basic encoder [3]. The Smith normal form of a basic encoder [3] is

G(D) =A(D) F1k 0] B(D),

where A(D) and B(D) are, respectively, k x k and n x n invertible matrices

over F[D] and Ik is a k x k identity matrix.

Let matrix B(D] in the above Smith normal form be partitioned as

)T ' T
B(D) BI(D B2(D)T

where B,(D, consists of the first k rows of B(D) and "T" denotes matrix

transpose. Similarly, let

B (D)'= [T.(D), F2(D)

where B(D) consists of the first k columns of B(D) "I. Since B(D) • B(D) " -

I the following identities evidently hold:

-S-°

BI( (D )  D) k B1(D) N2 (D) 0

(6)

B2(D)" B1(D)= 0 , B2(D) . (D) = In-k

A parity-check matrix H(D) is an (n - k) x n matrix of rank (n - k),

satisfying

G(D) HT(D) =0 (7)

.' .. ."-

.... ..... ..... ..... ..... ..... ....
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From Eqs. (6) and (7) it is seen next that

H(D) = (8)

has the properties of a parity-check matrix H(D) associated with G(D).

By Eq. (3), the CC generated by G(D) is the set

C = jy(D)= [yl(D), Y(D] y(D)= x(D) G(D) (9)

It is now shown also that

C =ly(D) = [Y(D), ..., Yn Iy(D) HD = 0 , (10)

where H(D) is given in Eq. (8). To see this, denote the right side of Eq.

(10) by CH' Clearly, an element of set C, as given in Eq. (9), belongs to

CH, and hence C_ CH.

Next, suppose yI(D) is an element of set CH, i.e., by Eqs. (8) and (10),

Y1(D) HT(D)= Yl(D) lf2(D) = 0 . I:

But, by definition, F2 (D) consists of the last (n - k) columns of B(D)-,

so that

R2(D) =B(D) [ ] 11
In-k]

where "0" denotes a block of k rows of zeros and In-k is the (n-k) row

identity matrix. Thus, yl(D) satisfies the equation

Theomoa(D) B(D) [

The most general solution of this equation for Yl(D)B'I(D)is

-. -7o~
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_'(D)I° [Tl°) ...

() B(D k l-(D), 0, 0] [D) ]

where Tj(D) for 1 < j _ k can be chosen to be any arbitrary element of FED].

Solving forYl(D) yields, finally, by Eq. (5),

yl(D) (D) lIIk' 0] B(D) =T(D) A-'(D) G(D)

which belongs to set C, as given in Eq. (9). Thus, CH _ C and Eq.- (10) is

proved.

The fact that the CC given by set C in Eq. (9) can be characterized by

Eq. (10) is used in the following section to find the coset of solutions to

the syndrome equation. This coset is used then as a basis for algebraic

syndrome decoding.

"j We II. ME-HOD OF ALGEBRAIC SYNDROME DECODING

In this section, the syndrome equation is defined and the general solu-

tion of the syndrome equation is shown to be a coset of the convolutional

code. From the syndrome, a system of linear equations is obtained for

the j-th message vector vj and a possible error vector ej in terms of the

m previously computed message vectors v J 1 % ..., y j_m , and zj, the j-th

received vector. The problem of algebraic syndrome decoding is to solve

this set of equations recursively for each j under the constraint that t

errors occur per blocklength. This method of decoding is quite different

from syndrome feed-back decoding.

Let y(D) in Eq. (3) be transmitted and z(D) be received. Then,

z(D) = y(D) + e(D) (12)

where e(D) is the D-transform of the error sequence. By Eqs. (12) and (7),..- _ .,.' .:.'. . .L:. *~.



the syndrome of the received sequence is

s(D) = z(D) * D = D e(D) H (D) (

• Ib, , -
'

t(D) - HT(D). ';. ,

The problem of syndrome decoding is, given s(D) = z(D) HT(D), to

solve the syndrome equation

s(D) = z(D) HT(D) = e(D) HT(D) , (14a)

or its equivalent,

(_(D) - z(D)) H(D) 0, (14b)

for all solutions e(O).

By Eqs. (10) and (9), the term e(D) - z(D in Eq. (14b) must be some

code sequence v(D) G(D). Hence, the most general solution of the syndrome

equation, Eq. (14a), is

e(D) = z(D) + v(D) G(D) , (15)

where v(D) is the D-transform of an arbitrary message-like sequence v =

o ... , v, ... ] of k-vectors ve Vk(F).

Equation (15) shows that the most general solution of the syndrome

equation, Eq. (14a), for e(D) is the error coset

C- -{_(D) ; z(D) + v(D) G(D) v(D) [vl(1), ... , vk(D)]} (16)

of code C, defined by either Eq. (9) or Eq. (10). A minimization of the

Hamming weights over all elements of coset Cz yields the standard minimum-

error estimate x(D) for message x(D). Efficient methods for achieving this

" minimization include the Viterbi algorithm and all sequential decoding

io°
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methods for convolutional codes.

Another syndrome decoding method, different from the above and from

feed-back decoding, to find x(D) is to utilize decoding methods for CCs

which are similar to the basic algebraic techniques of block codes. Thus,

if the CC is capable of correcting t-errors per blocklength, then, under

the assumption that t errors actually occur, it is desired to solve Eq.

(15) algebraically for v(D) in a manner which yields for estimate x(D)

the original message sequence x(D). To accomplish this, first find the

so-called state-vector equations for the solution of the syndrome equation,

Eq. (15).

By Eq. (5), an equating of coefficients on both sides of Eq. (15)

yields

m:X ej = Iz + vaj_ i  G i , (17a).'_j. .

i =0

where, initially,

y.:l =Y.~2  =..=v = 0 (17b)1- =v 2 "" --m -"-

as the state-vector equations associated with all elements of the error

coset Eq. (16). The goal of algebraic syndrome decoding of a convolutional -

code is to fill in the details of the following algorithm:

Frame 0: Given Eq. (17b) and the constraint that no more than

t errors occurred in oq el' . m, solve Eq. (17a)

for Yo.

Frame 1: Given Eq. (17b), solution v0 and the constraint that

no more than t errors occurred in eI, ... em,

1 t2



solve Eq. (17a) for v I .

- . .
f

Frame m: Given Eq. (17b), solutions v0, v, .. , v_ 1 and the

constraint that no more than t errors occurred in-em ,

em1 , .. e2m, solve Eq. (17a) for vn . Use solutions

vo, ,  ,' vim to construct estimate x0 of original

message.

* .i-..

Frame j: Given Eq. (17b), solutions vm' -..-1' ""j-l and

the constraint that no more the t errors occurred in e

j+1' . j+m, solve Eq. (17a) for Vj. Use solutions

j-m j m+l . v to construct estimate x of
v., v. I .j+l of

original message.

Since each symbol xj is obtained algebraically under the assumption

that no more than

t [d 21

errors actually occur, the estimated symbols xj must equal the original

transmitted symbols xj for j = 0, 1, .... This type of decoding algo-

rithm will be demonstrated by example in the next section, using a system-

atic dual-k code.

C~ t.. - *. ...... .....
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III. ALGEBRAIC SYNDROME DECODING OF SYSTEMATIC DUAL-k CONVOLUTIONAL CODES

Systematic dual-k convolutional codes are defined to be (n, 1) CCs

of rate I/n, of memory m = 1, and with symbols in the finite or Galois

field G(2k). See Odenwalder's paper [4] for a description and definition

of the original non-systematic dual-k convolutional code.

The generating matrix G(D) of the systematic dual-k CC in the form

of Eq. (4) is

G(D) =G + G D , (18a)

where

Go = [1, 1, ... , 1] and

Gl =[0, g2' g3, ""gn]' (18b)y(18b
G~~~i [0192..3 ... ,

where gj E GF(2k) and g =I= 0 for (j = 2, ... , n). That G(D) is systematic

is seen from its form, i.e.,

G(D) =11 1 + g2 D, 1 + gn D (19)

From Eq. (18) or (19) and the different definitions of distance given

in Section I, it is readily seen that the minimum distance d equals the

free distance and that

d = dfree = 2 n - 1

Hence, if no more than t symbols occur in the first two codeword frames,

one has

2 t + I < d =2 n-l or
(20) --

t <n- ,

.- K
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so that the maximum number of errors that can be corrected per blocklength

is t = n - 1. In other words, the systematic dual-k CCs of rate 1/n are

t = n - 1 symbol-errors-per-blocklength, correcting, convolutional codes.

Example of Algebraic Syndrome Decoding. Let generating matrix for

example be

G(D) =[1, 1 + D] (21)

over GF(2k) This has form of generating matrix in Eq. (7) so that n = 2

and G(D) is generating matrix of a (2, 1) systematic dual-k convolutional

code of memory m = 1. By Eq. (20), this code is one symbol-error correcting-

per-blocklength, where blocklength is m + 1 2.

A substitution of Eq. (21) into Eq. (15) yields
0,0 O O0 " '.'%

DOco00

[e e ] = 2 [e,. v + vi[,] Do
EQ [ iQF i + a[zlil zi] Dii=0 i=0 i=0 i -

Next, equating of coefficients obtains

eli = i + Zli and e2i =v i + vi-1 +z 2i (22)

for (i = 0, 1, ... ), where initially v_1 = 0.

The solution of the two equations in Eq. (22) for vi1 and vi is

v i. =z li +z2 i. eli + e2i ()
+- e

vi = Ziel. (II)

It is desired now to obtain a recursive estimate xi of the transmitted

*; message from (I) and (II) on the assumption that no more than one error

"*: occurs per blocklength of 2. To accomplish this, the following two lemmas

are needed: ..

a.... - - . *. . . . . .. . . . . - . . ... . . . . . . . .
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Lemma 1. Given Eqs. (I) and (II), if no errors in the i-th frame,

i.e., e = [e i . e2i] = 0 then

iv
.vi_ = Zli. + Zzi (III,

i-- zli •2i

v1  Z 1  . IV

Proof: A substitution of i e2i 2 (0, 0] into (1) and (II) yields

(III) and (IV) directly. Hence, lemma is true.

Lemma 2. Given (I) and (II), then

i-i li z2i iff [eli, e2i] = [0, 0]

where "iff" denotes "if and only if."

Proof: If [eli, e2i] = 0, 0], then by (I), vi_, = Zl + z2 i. Conversely

if vi1 = Zli + Z2i, then, by (I),

eli + e2i. ,.-.,

But, since 0 < t < 1, (e1 i 0) and (e2i= 0) can not both be true. Thus,

e. must be zero and lemma is true.

By Lemma 1, if no error occurs at frame i, then vi_1 can be uniquely

determined so that the best estimate of the original message at frame i-1

isxi 1 = vi_. Also, by Lemma 2, one can determine whether or not an

error has occurred at frame i by testing whether or not the previously

estimated message vi1 = xi1 equals zli + z2 i.

In order to solve (I) and (II) frame-by-frame on the assumption that

no more than one error occurs every two frames, define two auxiliary

. variables:

) Let A denote the delayed and correct message symbol; and

.- . . . . . ..-.-.- *-.*.- ** - . . .- - -
"•.- .. .. * * .. °
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ii) Let e denote a binary variable such that 1i.
( -- 0) iff (previous frame had no error),

e.

0 ) iff (ei-I 0O).

iii) Next, define the binary variable X at frame i in the following

manner:

(x - 1) iff (zA + z2  i =A 1 )

Finally, let x +y" denote operation, "variable x is replaced

by y."

In terms of variables A, c, and x, defined above, xii is found frame-

by-frame at frame i, utilizing Lemmas 1 and 2, as follows:

CA
Frame, i -1: e 0 and v_ 0. Hence, initially, £ -0 andFram i -l: e. 1  

---.

A 0.

Frame, i = 0: Since e = 0, e 1  0 so that, by (IV), A V 0, 1 m

the initial condition for vi. By Lemma 2,

(a) If zlO + 2 0 A, i.e., if x = 1, then no

error occurred at frame 0 and £ - 0, i.e., £ is set

to zero. But also, by Lemma 1, vo = zso

that A v0 =z .

(b) Or, if z10 + z20  O = A, i.e., if x = 1, then

at least one error occurred at frame 0 and £ - 1.

However, since only one error is allowed for one

blocklength of 2 frames, one concludes that no error

can occur at the next frame, i.e., at i = 1 or frame 1,

p
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so that, by Lemmna 1, the data [z1  z] from frame 1

is used to compute v 0  z= + z 21 ;0 the estimated

message for frame 0, and v I = Z 1 X1 the estimated

message for frame 1.

Frame, i =1: A. If £ = 0 (10 = ) hn bNeia2

(a)2f1 = A, i.e., if x=1, then no error

occurred at frame 1 and £+0. Thus, by Lefmma 1, v0

z11  Z 2 1 =x0 an 1  n zl=l adAv z

(b) Oi +z21 #A, i.e., if =0, then no

error occurred at frame 1, and c +-1. Since only one
error is allowed per blocklength, must have at next 2

frame, i.e., at 1 2, by Lemmna 1, V1  Z,2 + -2

an V2 = Z12 =x 2.

B. On the other hand, if £ 1 (±~o0), then since only

one error is allowed per blocklength, must have e 0,

and £ -0. Also, by Lenmma 1, must have

v 0 =Z 1 1 + Z21 =0 and v1  zi, so that A.v, z11

Frame i j: A. If c 0 O(e±1  0) then, since only one error

(a) If z 1j + Z2j A, i.e., if x =1, then no error

occurred at frame j and £ -0. Thus, by Lemmna 1,

v~.. x. z1 + 1 ~=~ andy. = z1 =. and

.j 1j.
(b) Or, if z. + z .A, i.e., if ~.=0, then at least
one error occurred at frame j, and e ~ 1. Since only
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one error is allowed per blocklength, must have at

next frame, i.e., at i = j, by Lema 1, vj =

z1  + =x andy v Zxl, j+l 2, j+l j j+l 1, j+l . = xj.
B. On the other hand, if - 1 e_ 1 *O).0 then, since ,.

only one error is allowed per blocklength, must have

±j = 0, and e +0. Also, by Lemma 1, must have

v j-1 Zlj + z2j = j-1 and vj = Zlj so that E.

! ~A v j=Zlj ..

vo, = z• .. "

In Fig. 1, the above decoding algorithm is presented in flow chart form, -

along with the delayed output equation,
xl v Ci-i .i7 i(3

i = v ) ( zli + z2 i) + i 3i A1 . (23)

Since it is assumed that only one error occurred per blocklength, the esti-

* mated or corrected message sequence, x. 1 in Eq. (23), actually equals the

original message sequence, xi 1 , delayed by one frame. The symbol "v" denotes

- logical "or" and the bar over the variable e denotes negation, i.e.,

= - e. As an output, Eq. (23) is read as follows:

If [(i = 1) or i = 1 x ==1 ;i - (zl i + z2 i), or

if [(xi =O) and (r i: 0)], =A.

It is not difficult to demonstrate by simple cases that the algorithm

in Fig. 1 for the above example will compute the original message sequence

x- as long as no more than one error occurs per blocklength. Work is con-

tinuing on the development of a similar algebraic syndrome decoding algorithm

, .- ... ..-- . .°** *,
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I ~for both the systematic and non-systematic (n, 1) dual-k convolutional code. '~~

* Recently an example of such an algorithm for correcting two symbol errors

* per blocklength, the n - 2 case, was completed. This result plus others

on the more general cases will be reported on elsewhere.

IL
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