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Abstract: This paper addresses the problem of synthesizing planar grasps that
have force closure. A grasp on an object is a force closure grasp if and only if we
can exert, through the set of contacts, arbitrary force and moment on this object.
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The force closure constraint is addressed from three different points of view:
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*. Intuion

1. Introduction

" :'::1 Introduction

1.1 Planar Force-Closure Grasps

Robot end effectors have evolved from siiiiple parallel grippers to multi-purpose
hands to provide greater flexibility and dexterity in manipulation and assembly
operations. Robot hands come in many shapes, but they all have in common the
ability of being programmed and servoed from a computer. To take full advantage
of the dexterity offered by multi-purpose hands, we need to be able to not only

analyze a grasp but synthesize it. In other words, we would like to plan grasps that
have such features as force closure, feasibility, reachability, compliance, equilibrium,
stability, etc...

This paper addresses the problem of synthesizing planar grasps that have force
closure. A grasp on an object B is a force closure grasp if and only if we can exert

arbitrary force and moient on object B by pressing the finger tips against this
object. Equivalently, any arbitrary motion of object B will be resisted by a contact

force from the fingers, which means that B cannot break contact with the finger
tips without some non zero external work. That is, the total freedom of B is zero.

Inputs to the synthesis process will be the shape of the grasped object and the
available set of contacts. Contacts between the object and the hand and fingers can
be point contacts, edge contacts with/without friction, or soft contacts. Output
will be how many required contacts, what type of contact, and where to contact on
the object. The set of contacts found describes a force closure grasp of the object.

Force closure is only one necessary condition for grasp synthesis. A number of
other conditions may be required. For example, we must fit a specific hand and
fingers on the set of contacts found, and check for the geometric feasibility of the
grasp. Next, we must plan motions of the hand and fingers and check for reachabil-
ity. These motions can be position-controlled motions, or compliant motions with
the fingers modeled as springs or dampers. Once the object is grasped, it can be
lifted or kept in equilibrium by exerting necessary contact forces on the object. By
definition, a force closure grasp guarantees that any force and nionuent can be de-
composed into a positive combination of contact forces. So, with a suitable control
loop, not only can equilibrium be maintained, but the object can also be manip-
ulated between the fingers. In general, the set of force closure grasps is infinite.

..- We may want to search for locally stable grasps, or the most stable grasp, which
correspond to minima of the potential function of the hand and fingers.

In this paper, we restrict ourselves to the core problem of planning force closure
grasps in terms of contacts between the grasped object and the hand. We feel that
force closure is the most basic constraint in grasping an object, because it captures
the basic scenario of many bodies contactiing and constraining one another. Force
closure is also the simplest constraint, and is suitable for planning. The current

-.
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syinthlesis dleals onily Witlli piniirt objlects. All forces e'xerie thrmlil~igli t lie cmiil 5

Wvill lif' III thle ~I&OIC Of lIlie oh j ed, ;111id aII mioiliitit will hlae .1xvS j)(iJpeilIiciilar to)

t Iis lIdLIi(. Tlihe (Dil.. I s ;I IItIl g r;asps ar~e sadIto IeIt pI l II Ir Ito lihlie I ItI itI It III fro II I
tOle mlore ge hera I coillIacts anld grasps (11 31i) objects.

1.2 Contributions

ie iraili cointributionis of t his 'pper are:

'I A thoroughi Iiiicrst aiid iig of t(lie force closmi r conist raint ini t ic domiaini of

plair grasps. Force closui i- is add~ressedl fromi threie (illeCrelt p~oiit s (if' view:

oA miathemratitcs poinut of view which casts thle force clIosu re problemcii as one of

solving a systemi of liiiar ineqmi t ions. The spaces of wrviiclres anid twists correspond

t~o thle (Inial spaces of rows arid colun ius of t. Iiis ,yst-viii of linear iineq nations.

o A phlysics poin t or iew which exploits features of planiar imeclianics anid
dIecomiposes the force closure p~roblemi in the planie into two indIepend~enit subprob-

lins: one of force-d irect ion closure or iio free translation, and one of torque closure
or no frce rotation.

o A conmputationral geomietry point of view which results in a direct con-
struction of force closure grasps.

-ast and simiple algorithnis for directly constructing force closure grasps.
We find riot only single grasps but the complete set of all force closure grasps on a
set of edges. Within this complete set, we also find the mraximual set of grasps where
each finger can be positioned arbitrarily iii a range of contact. Finding a grasp or a
set of grasps on a set of edges costs constant time. Enumerating all sets of grasps
on the object is polynomial in the number of edges of the object.

*A representational framrework for describing contacts and grasps. - A planar

grasp is dlescrib~ed as tire combinration of individual planar contacts, which in turn
are muodleledl as the combination of a few primiitive contacts. Grasps and contacts are
maathemiatically dlescrib~ed from two dula view p~oints: a constraint view p~oint wich
Cap~tures the forces and mioments exertedl on ( lie object, andl a freedom view p)oinlt
which describ~es the irrot ions of the object which are free or which break contact.

We also develop ain explicit representation for describing a set of grasps on a1 set of
edges.

p A artial explairation t0 wiry people tend to graspr ob~jects at sharp edlges and
vertices, and to why tire contactiiig suirfaces of ouir fingers had bettecr be soft, than
hard I iku thIie Ii aer niails. Antd air answer to the quinestioun: "Ho0w 5 ho add robot hands
grasp tis object?".
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a. Grasps with friction on two edges.

Jv

b. Frictionless grasps on three edges.
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c. Frictionless grasps on four edges. Avail
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Figure 1: Examples of grasps found by the synthesis.

The direction of contact of the ingers is shown by small V's. The independent

regions of contact are highlighted with bold segments.
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4 The Synthesis of horce-C('siure (iasps In the Plane

1.3 Examples

Figure 1 shows samples of grasps found by the algorithins. The direction of contact

of the fingers are shown by small V's. The independent regions of contact are

highlighted with bold segments. No imatter where the fingers are positioned in these

regions, the grasp always has force closure. This flexibility is of great importance in

manipulation since we always have positioning errors and many other uncertainties.

A grasp with two point contacts requires friction between the fingers and the
grasped object. Without friction, we need at least, four contacts if these are point
contacts. We'll see that edge contacts and soft finger contacts can be viewed as
a combination of many point contacts. This is why the algorithms only need to
output grasps in terms of point contacts with/without friction.

1.4 Other Work

There has been extensive work on designing and controlling dextrous hands (Asada
1979, Salisbury 1982, Jacobsen et al. 1984). Robot hands come in many varieties:
human-like hands like the Utah/MIT hand (Jacobsen et al. 1984), the Okada hand
(Okada 1982), hands with symmetric fingers like the Asada hand (Asada 1979), the

Salisbury hand (Salisbury 1982). The fingers of these hands have either position
control (Okada 1982), velocity control (Salisbury 1984), or force control (Jacobsen
et al. 1984) at the innermost loop, and other control modes at outer loops such as
stiffness control (Salisbury 1980, Salisbury and Craig 1981).

Degrees of freedom (Hunt 1978), total freedom and force closure of mechanisms
(Ohwovoriole 1980) have been fully investigated. Ohwovoriole analyzed the geome-
try of the different repelling screw systems, and use the results to analyze systems
of contacting bodies such as an object grasped by a set of fingers, or a pin being
inserted into a hole (Ohwovoriole 1980, 1984). Screws, twists, and wrenches (Bot-
tema and Roth 1979), spatial vectors (Featherstone 1984) are not new, but strong

. interest within robotics has surfaced only recently.

* There are many papers on analyzing grasps ranging from classification based on
how people and animal grasp objects (Lyons 1985), computing the necessary forces
and momnents for equilibrium (Abel et. al 1985, Ilolzniann and McCarthy 1985),
achieving stable grasps (Ilanafusa and Asada 1977, Baker et. al 1985, Nguyen

1985), to modeling and analyzing the grasping operations (Mason 1982, Cutkosky
1984, Kerr 1984, Fearring 1984, Jameson 1985). There are works on analyzing
force closure grasps (Ohwovoriole 1980, 1984), and on solving systems of linear

ile(1 iltIons (llunit and Tucker editors 1956, Strang 1976). t'nfo't unately, there has

not. been any work on directly constructing or synthesizing force closure grasps.

.: ..



2. I ackgrowizd Theory of Twists and Wrenches 5

2 Background Theory of Twists and Wrenches

The instantaneous motion of an object is described by a twist. A twist is a spatial
vector which captures both the angular and linear displacement of the object. We

use wrenches to describe the system of forces and moments exerted on the object.

Twists and wrenches are represented in Pliicker coordinates.

We review Plicker line coordinates, virtual work and total freedom. Then we
look at the dual systems of twists and wrenches in the plane. For more extensive

materials on these topics, the reader is referred to (Featherstone 1984).

2.1 PRicker Line Coordinates

A general spatial vector is the sum of a line vector and a free vector. A line vector

has a magnitude and a line of action, where as a free vector has magnitude and
direction only. In rigid body dynamics, line vectors represent quantities like force,

angular velocity which have a definite line of action. The line of action is respectively
the line of force and the axis of rotation. Free vectors describe quantities like torque

and linear velocity which do not change under translation.

A free vector is represented by a spatial vector with zero upper half. For example,
a linear velocity v is represented in Plucker coordinates by the following twist:

t 0

A line vector u is represented by a spatial vector s with six Pliicker coordinates.
The first three coordinates represent the magnitude and direction of the vector u

at the origin of the reference frame. The later three represent the moment of the
vector u about the origin of the reference frame. Concretely, a line vector u is

represented as:

uy(1)

ru 2 - ru9
rz, - Tu,

r.u. - ry U,

where r is a vector from the origin of the reference frame to any point on the line

of action of u.

For example, a rotation with angular velocity w is represented by the following
twist velocity in Pliicker coordinates:

t [r ](2)
:"---~~~~~~~ r ".""' :% : - -. "- ",,'•- -- " .. . . . . .. •-
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where r is a vector from the origin of the reference frante to any point on the axis
of rotation. We recognize the upper and lower halves of the twist velocity as the
angular and linear velocities of the origin of the reference frame due to rotation w.

Like angular velocity, a force f is a line vector which is represented in Plucker
coordinates by the following wrench:

w [ Jr (3)

Force f can be decomposed into a sum of an equivalent force going through the
origin of the reference frame and a pure torque which is the moment of the force f
about the origin. Equivalently, wrench w can be written as the sum of a line vector
and a free vector: w of] +[ 0r]O
We note that force f has a different wrench when its line of action is translated to
the origin. By representing the contact forces and the instantaneous motion of the
grasped object in Plicker coordinates, we make explicit the line-based geometry of
the domain.

2.2 Virtual Work and Total Freedom (
Twists and wrenches are related by a spatial scalar product which describes the
virtual work done by the wrench against the twist. The virtual work is defined as
follows:

Definition 2.1 The virtual work of a wrench w = If I m] against an infinitesimal
twist t = [dca I dx] is the sum of the virtual work due separately to the linear and
angular components:

w-t = f dx + m da (4)

We can define the virtual work as a scalar multiplication of the wrench w with
the spatial transpose of the twist t, denoted t:

w't = w t

fr dx]

The spatial transpose of twist t [daldx] is the twist t' = (dxlda ] with the upper
and lower halves permuted.

The concept of total freedom (Ohwovoriole 1980) emerges from the sign of the
virtual work. We'd like to know not only the degrees of freedom of the object under

. a system of wrenches and twists, but also whether the object breaks contact or
pushes against the other bodies contacting it.

. . . . .. . . . . . . . . . . . . . . . . . . . *... ... .-< . .. ? ... 3 ..... . -.:.. ;-. ? 3 :.-.-.. ,'--.: .-. .'.... .. .
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~t1

t 4 t 3

ts

4 _Figure 2: Total freedom of a box lying on a frictionless plane.

Definition 2.2 A twist t and a wrench w are reciprocal to each other if and only
if their virtual work is zero. The pair (t, w) is repelling, (rcsp. contrary), if and
only if their virtual work is strictly positive, (resp. negative).

An object constraining by a set of wrenches VV has n degrees of freedom if and
only if the set of twists reciprocal to W can be represented as linear combinations of
n linearly independent twists.

Similarly, the object has n total freedoms if and only if the set of twists reciprocal
and repelling to W can be generated from non-negative combinations of n non-zero
twists. These n twists form a minimal generating basis.

A reciprocal twist corresponds to a degree of freedom in the system. For exam-
pie, let's look at the box in Figure 2. The box lies on a frictionless horizontal plane.
It has a reciprocal rotational twist about any v'ertical axis. In other words, it can
freely rotate about any vertical axis, and therefore has one degree of freedom. The
box can also translate in the plane, and so has two other degrees of freedom.

The above three degrees of freedom (1o not completely describe the set of motions
possible to the object. For example, the box can be raised from the plane and
break contact. This half-free motion is different froin the usual concept of degree of

7, .-. freedoti in that. it is unizsnsc. The upward motion is a twist. repelling to the contact
" "'[ '"force exerted by the plante onto the box. The downward motion is a twist contrary

to this coIt lact force. Note that the plane will oppose the downward motion with

-......... ....-....... .... • .... ...................- ,- . ..



8 The Synthesis of Force-Closure Grasps In the Plane

an1 upward reaction force, resulting in a negative virtual work. Finally, the box can
rotate about, two horizontal axes, provided that the box does not enter the plane.
These two rotations define two other total freedonis. The box has three degrees of

freedom, but its total freedom is really six.

2.3 Convexes and Operations on Convexes
In grasping, the goal is to have force closure or to fully constrain the motion of the

grasped object with a set of finger contacts. Through each finger contact we can
exert a range of forces and moments, which can be represented by a wrench convexe.
Just as many contacts are comlined to form a grasp, many wrench convexes axe
'added' until their sum spans the whole space, or until we have force closure. Each
finger contact can also be described by a twist convexe. The twist convexes are
intersected until we get the null space, or until the grasped object has zero total
freedom. Let's first define convexes and three operations on convexes: convexe

* addition, intersection, and dual.

Definition 2.3 Let C be a non-empty set of vectors. We define by convexe C <

the set of all non-negative combinations of vectors in C, formally:

C < = s Is = -csi, a>0, s EC} (5)

The vectors si in C are called generating vectors of the convexe C<.

A convexe is null when it contains only the null vector. A convexe is total when
it is the entire space.

An example of a convexe is the friction cone in the plane, Figure 3. The range
of forces inside the friction cone can be represented as the set of all positive combi-
nations of the two extreme rays of the friction cone. So a friction cone at point P
with normal n and friction angle 0 can be represented by a two-wrench convexe:

W< - rot(-n,c) rot(-n,-4)p x rot (-n, 0k)] ' [p rot (-n,-b]

where rot(x,O) is the direction vector x rotated by 0.

Definition 2.4 Let C < , (< be two convexes. The convexe addition of C < and
. C:<, denoted C < U C< , is the least convexe that contain.; both C < and C < . For-

mally:

C,< UC< -- { s = as, + , 8"
"Ca > 0, /1 >} 0, sICC S.,

.................................... . .. . . .! ..



2.1 Mickg-roud Th'Ieory of 'Twist., and % Vrem lies (

Wi W2.W11

Figure 3: A friction cone is represented by at two-wrench convexc.

( oIIveXe addition Iis also knowni as the Minkowski's sim (Najfeld et al. 1980).
11JOAil examiple of convexe ;uldiuion- is the combdination of wrench convexes from more

tihan one contact. For examl~t)e, each point, contact with friction gives a two-wrench
conivexe. A grasp with two p)oint, contacts with friction has a wrench coflvexe which
is the Minkowski sum of the two) coIICxCs, describinig the friction cone at cachi point
contact. From the above vequation, the resulting convexe can be generatedl ly the
four wrenches, each is a force along an edge of tie two friction cones. We note that
repr-esenting the convexe sun' is trivial, except that thle set of generating wrenches
c an be redundant.

Convexcs are closed under convexe addition and intersection. The intersection
of two convexes is defined as follows:

Defniton .5 et j<,(7~be two convexes. The intersecti'on of (< and C ~

de noted c1  n q<, is the largest convexe inside both C' n ~. omly

C<fc { wc ,w C <} (7)

Twist and wrench convexes are duals of eachi other. Th'le dunal operation on twist
or wrench convexes is defined as follows:

Definition 2.6 Let C< be a tivist or wrench (convexe. The dual of C<, denoted
-0<, i' the cornvexe of vertors that are eithecr reciprocal or repeling to all the vectors

'C4)1VEXI' ;k4 14111 144 i.- niii .141 111611 ii Wt' I Po th le imi H H sigtn lJ to) vii ipI iw ?v tilt,4' duality of tile

ciiiIo i litex add 11 Li aid t he 540 iitters4 (Iii of4) Iwo) cm Ivexr'S. 41411t414 n.'
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in C<. Formally: ,..
C< Is I CjS' > o} (8)

where [C] is the matrix whose rows are generating vectors of the convexe C<.

One use of the dual operation is to calculate the twist convexe T< describing
the total freedom of the system from the wrench convexe W <. Solving for the twist
convexe is equivalent to solving the following system of linear inequations:

[W] e > 0

where t' is the spatial transpose of the unknown twist, and each row of matrix IW]
is a wrench of W. The product of t' and the ith row of [WI gives the virtual work of
twist t against wrench wi of W. This virtual work must be either zero or positive,
and similarly for all other rows.

The duality between twists and wrenches allows us to compute in the wrench-
space and deduce equivalent result in the twist-space, and vice versa. See Figure 5.
The following Lemma summarizes important facts about the dual operation, the
convexe addition and intersection of twist and wrench convexes. For a proof see
(Hunt 1956).

Lemma 2.1 Let W<, T< be respectively a wrench and a twist convexe. Let C<"
be either a wrench or twist convexe.

1. <  =C<

2. W< = T< T<= W<

3. C< n C< = null space C< U C< total space

4. C< = C< if and only if C <  C <  (9)

5. c,<nc< c u c,<

6. C,<u < = < c<nc<
1 '2

2.4 Dual Systems

We have seen that twists and wrenches form dual systems. In planar mechanics, a
twist can be represented by a 3-dimensional spatial vector as follows:

[da: 1
t- dx (10)

[ dy

*" du: is the infinitesimal rotation about the z-axis, and dx, dt i., the infinitesinial
translation of the origin in the xy-plane. Similarly, a planar wrench can be repre-

• -'" . , : . , ' ' i , . . " " . . . ." ' .... ... i-". . .I ; " . . i -. 1 "



3. Represen ting Contacts and Grasps 11

. . sented by:

w = (11)

where if,, f.J are the two force components in the xy-plane, and m. is the moment
component about the z-axis.

In this 3-diiensional space, we can identify two pairs of subspaces which form
interesting dual systems:

0 The space of xy-translations, and its dual which is the space of all force
directions in the zy-plane.

e The space of pure moments or torques about the z-axis. and its dual which is
the space of clockwise and counter-clockwise rotations about the z-axis.

It is well known that any planar motion can be decomposed uniquely into a transla-
tion and a rotation about the origin. So, the space clockwise and counter-clockwise
rotations, and the space of xy-translations are two independent subspaces of the
space of planar twists. Similarly, the space of torques and the space of force direc-
tions are two independent subspaces of the space of planar wrenches. Force closure
for these two pairs is very simple, and is discussed in sections 4 and 5. For the mo-
ment, we turn away from force closure to discuss the issue of representing contact
and grasp.

3 Representing Contacts and Grasps

3.1 Primitive Planar Contacts

We want to represent the range of forces and moments that can be exerted on rigid
objects through a planar contact. Figure 4 depicts the different types of contact
one can find in a planar grasp. The first column describes the physical contact with
the finger on top and the grasped object below it. The second and third columns
describe respectively the wrench convexe, representing forces that can be applied to
the object, and the twist convexe, representing the total freedom of the object. Each
convexe is represented by a minimal set of generating vectors. The twist convexe is
computed by taking the dual of the wrench convexe.

Any planar contact can be decomposed into a combination of the following
primitive contacts:

* Frictionless point contact -- We can apply only a single pure force, normal
to surface, through a frictionlcss point contact. The wrench convexe has a single
wrench. TIhe lwi.-t c(ivcxe has three twists: a rotation abou t the point of contact,
a I ranslatliou along the edge of the obiect, and an ui uetilsc downward Iranslation
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which breaks contact with the finger. This downward translation is a repelling twist
where as the first two twists are reciprocal ones. Figure 4.a.

* Point contact with friction - The friction cone at the point of contact shows
the range of pure force that can be applied through the point contact. The wrench
convexe has two wrenches which are along the two extreme rays of the friction
cone. Any force pointing inside this friction cone can be written uniquely as a
positive combination of the these two wrenches. The twist convexe has two unisense
translations, each reciprocal to one wrench and repelling to the other. It also has a

free rotation about the point of contact, as above. Figure 4.b.

* Frictionless edge contact - It is well known that for rigid objects, any force
distribution along the segment of contact is equivalent to a unique force at some
point inside the segment. So a frictionless edge contact gives us the ability of
exerting a range of forces perpendicular to the edge and going through the segment
of contact. This range of forces is mathematically the positive combination of two
forces at the two ends of the segment of contact. So the wrench convexe has two
wrenches.

Solving for the dual of the wrench convexe, we get a clockwise rotation about
the left end point, a counter-clockwise rotation about the right end point, each
breaks contact with the other end point. Since there is no friction between the two
edges, the object can freely slide horizontally in both directions. Note these three
twists form the minimum representative set for the twist convexe. The downward
translation is not present because it can be synthesized as the sum of the two
rotations about the two end points. Figure 4.c.

* Edge contact with friction - Instead of a single force perpendicular to the
segment of contact, we can now apply any force pointing inside any friction cone
inside the segment. The wrench convexe becomes the convexe addition of two
convexes each representing a friction cone at one end of the segment of contact.

With friction between the two edges, the object can no longer slide horizontally
without constraint. However, it can still rotate about one end of the segment of
contact and break contact with the other end. Figure 4.d.

e Soft finger contact - From a force closure point of view, a soft finger contacting
an edge is the same as an edge contact with friction. The pressure distribution
is irrelevant to our domain which is concerned with whether the object can be
constrained with these contacts, rather than how much force should the fingers
apply to the object.

A soft finger becomes useful when it comes to contacting on the inside or outside
of a corner. Figure 4.e shows a soft finger contacting on the outside of a corner. The
wrench convexe is the convexe addition of two convexes, each describes the edge
contact with friction on one ide of the corner. The minimuni number of generating
wrenches is six.

The object cannot rotate about the two ends of the soft contact. But it can still
break contact by sliding downward. This downward sliding is no longer repelling if

.7..... ......... "............ ....-...... .........~~~~~~~~~~~~~~~~~~. . .. ... . .. . . . . . . . . . . . . . . ..", '- .-. .. ..". . .--*"- .''"" ". '.". ... "-' -'..'''- -N"'.-" •"" .". ".'",-,'V,.- "



14 The Syufhesis of Force-Closure Grasps In the Plane

the corner angle is small enough, or if the friction cone is large enough. We'll see
in subsection 6.3 that friction plays a crucial role in reducing the required number
of point contacts of a planar grasp from four to two.

People tend to grasp at the edges and corners if there is no reachable pair of
parallel faces. Why? One anong many plausible answers is the availability of a
larger wrench convexe, which means not a more stable grasp but a greater ability
to constrain the object by applying necessary forces through the soft contacts. A
soft contact can be approximated as a point contact with a much larger friction
cone. So a grasp with two soft contacts is better than a grasp with two point
contacts with friction.

Gravity is not a contact, but it does play a role in constraining the total freedom
of the object. For example, the box of Figure 2 is immobile on the table becamse
the force of gravity is holding it down to the table. We can view the box as being
grasped, or more exactly constrained, by two contacts: a plane contact between
the bottom of the box and the table, and an imaginary point contact at the center
of gravity of the box. Gravity is a blessing in this case, because without gravity
the box can freely float upwards! We can easily include the effect of gravity by
imagining it as a frictionless point contact at the center of gravity of the object. A
grasp with gravity may need one fewer contacts than one without gravity.

3.2 Dual Representations For Grasps

Twist and wrench convexes axe two dual representations for contacts. Convexes are
closed under convexe addition and intersection. We can add wrench convexes from
all the contacts or intersect the corresponding twist convexes to find the resulting
wrench or twist convexe of the grasp. We have here two dual view points and two
equivalent ways to represent grasps:

" A constraint view point. - Wrench convexe describes the set of forces and
moments which constrain the object. A total wrench convexe means we can
arbitrarily apply any force and moment on the object, and so we can grasp it,
instantaneously rotate or translate it in any way we want.

" A freedom view point. - Twist convexe describes the total freedom of the
object. A total twist convexe means the object can freely move relative to the
fingers; a null twist convexe means the object cannot break contact without
external work against contact forces exerted by the fingers.

Which representation, twist or wrench convexes, is better? For planning grasps,
wrench convexes are definitely more efficient 2 since generating wrenches can be

2We note briefly here that the twist convexe representation is more efficient for describinig the total

freedoi it the end diflectors of linked imuipilators. Iifinitesimal miotiois mid velWities of the.
4-l etFeetor diw to eaith joint arE "added. f lI lhe end f' e tor c l hav arlbitrary motion if the
twi4t cro1vx(:' of 4dl thw joilts 'ddII up t o lotal onvxve.
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Figure 5: Duality between twist, and wrench spaces

deduced readily from the type of contact, and we can just take the union of all
the generating wrenches to describe the grasp. If we choose twist convexes as the
representation, for each contact, we have to compute the dual of the wrench convexe

to find its corresponding twist convexe, and then compute the intersection of these

twist convexes, see Figure 5.

To represent the set of force closure grasps on a set, of edges, we have another

representation called a grasp set. How a grasp set is defined and calculated is
presented in Section 6. Before looking at grasp sets and how they are constructed,
let's step back, and ask again: "What is a force closure grasp?"

We certainly know what force closure means by now. It means the ability to
exert arbitrary force and moment on the grasped object, or that the object is totally
constrained. We have also seen one way of casting the force closure problem, that
of solving a system of linear inequations:

[w] e > 0

where W is the set of generating wrenches collected from all the contacts of the
grasp. We can design a generate-and-test algorithm which enumerates all the pos-
sible grasps, and test each grasp by solving the above system of linear inequations.
There are two main objections to this scheme: first, the set of possible grasps is infi-
nite; second, the grasp synthesis uses an analytical formulation which blurs critical
features of the domain such as the difference between a force and a pure torque.

The key is to make Ihe force closure constraint explicit, and this is what we
explore next. For a quick reading of the paper, the reader may browse through the

-geometrical view of force-direct ion and torque closure first, Sections 4.3 and 5.3. lie
can return for more analyt ical proof later. Algorithls for synthesizing force closure
grasps are presented in Sections 6 and 7. I)ue to the explicil forimulation of the

force closure constraint, Ihe algorithms are not only fast but also very simple.

'': " "''a "'t , * - .- - ..' -" ' '' '' " '" """'" '" '" " " "" " '". " "-... .md , i j .. ... . . .. " " '' " "" " ".. . .. . ..""" """ ''" " " ' ' ' ' :
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16 The Synthesis of Force-Closure Grasps In the Plane

4 Ability To Resist Arbitrary Translation

4.1 Force-Direction Closure with Planar Forces

When can a grasp resist arbitrary planar translation of the object? Informally, the
contact forces of the grasp must have directions that span the space of all directions
in the plane. An example of spanning the space of all directions in the plane is
three directed rays going from the center of gravity of a triangle out to the three
vertices of that triangle.

Formally, the ability of a grasp G to resist arbitrary translation of object B can
be formulated in three equivalent ways shown in the following theorem:

Theorem 4.1 Let a grasp configuration C be described by the set of wrenches W.
Each wrench in W is a contact force which acts on the object B. The three following
clauses are equivalent:

1. Any non-null translational twist t = (0 I v,, vy] of the object B is contrary to
at least one wrench of W.

2. There is no non-null translational twist either reciprocal or repelling to all
wrenches in W.

S. The positive combination of wrenches in W can generate force in any arbitrary
direction. The grasp G is said to have force-direction closure.

Proof: The second clause is the double negation of the first clause, so they are
equivalent. They express two equivalent views: one is the existence of contact forces
which resist arbitrary translation, the other is the non existence of free translation,
or translation that breaks contact with the fingers.

The second and third clauses are dual of each other. Let's denote by Wf,
the convexe of force directions which can be generated by W. Similarly, we denote
T< the convexe of translational velocities of object B in the plane. We have seen
in Section 2.4 that the convexes Wf, and T< are dual of each other. So T<

null implies that W , is total, and vice versa. M

4.2 An Analytical View of Force-Direction Closure

The necessary and sufficient condition for a set of wrenches W to generate force
with arbitrary direction is:

Theorem 4.2 A set of wrenches W can generate force in any direction if and only if
there eXists a three-tuple of wrenches {wi,w 2 ,w } whose respective force directions
fl, f2, f satisfy:

9 Two of the three directions fl, f2 , fs are independent.

.............................................................................-- :.-,:,,.- --,?.-.- .-. :;-:-". --'.'..-'. <.'',



4. Ability To Resist Arbitrary Translation 17

" There ezist a, #, -y all greater than zero, such that:

afl +f2 --Yfs = 0

That is, a strictly positive combination of the three directions is zero.

Proof: We use the second clause of Theorem 4.1 to find the necessary and
sufficient condition for which there is no translational twist reciprocal or repelling
to W. No reciprocal or repelling translational twist means the system of linear
inequations described by:

[W] t' > 0 (12)

has no non-zero solution t= {v,, v, 0. to is the spatial transpose of the twist t.

Since a translational twist is a free vector with zero angular velocity, we get
a reduced system of homogeneous linear inequations in only two unknowns v,,v,.
For such system to have no solution, we must need at least three inequations, or W
must have at least three wrenches (Hunt 1956, Strang 1976).

It is obvious that if no solution exists for some three-tuple of inequations of
system (12), then no solution exists for system (12), and vice versa. Without loss of
generality, let's assume that W contains exactly one such three-tuple {wl, w2, ws}.
After dropping out the moment and angular velocity terms, system (12) reduces to:

f2. f2y 0 O (13)

There is no homogeneous solution if and only if the 3x2 matrix 1W] is of rank
2, or if and only if two of the three force directions are non-parallel.

Assuming that there is no homogeneous solution, the rank of [W] is r = 2. Any
particular solution must be a 1-face ("r-l"-face, Hunt 1956) with a zero product
with one row of [W] and strictly positive products with the remaining rows of
[W]. In other words, the necessary and sufficient condition for the existence of a
particular solution is that the solution has a zero product with one row of [W], and
two non-zero products having the same sign with the two remaining rows of [W]. 3

Conversely, there is no particular solution if and only if all 1-face vectors per-
pendicular to one row of [W] have products of different signs with the remaining
rows of )W]. Concretely, let's solve for the nonexistence of repelling translational
velocity v reciprocal to the force direction fl:

""fl flu 0~

(f2z f2y ) ('; (14)

f3z fV 0

"'n the ca.f- the two iaoui-zero products are both iiegitive. wC cal adway. negate th A0htioi to

mai|ke t1h lion-zero product po.itive.

.... . . . . . . ...... .... .............
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iare both of the same sign and non-zero.

From the first equation of system (14), we solve for v,,v., in terms of f., fly,
and replace them in the second and third equations to get an equation in terms of
the three force directions f1 ,f 2,f 3 . After simiplifications, we get:

(f 2 x f3) fl +1f 2 + IIfs = 0 (15)

By rotating the subscripts and coefficients, we get two other equations for the

non-existence of repelling translational velocity which is respectively reciprocal to

the force direction f2 , and f3 .

a2fl + (f3 x fl) f2 + 12f% = 0 (16)

a 3fl+04 2 +(fl xf2)fs = 0 (17)

In the above equations, (15) (16) (17), the coefficients ai,, must have the same
sign within each equation.

Without loss of generality, let's assume that the force directions f1 , f2 , f3 are or-
dered counter-clockwise, so that all the pairwise cross produ.s are strictly greater
than zero. Since we have assumed that two of the three force directions are indepen-

dent, the third force direction can be uniquely expressed as a linear combination of
the first two. This implies that the three equations (15), (16), and (17) all express
one unique linear combination, describing the constraint that the positive combi-

nation of the three force directions is null. We conclude that: assuming two force
directions are non parallel, there is no repelling translational velocity if and only if
there exist a,#, -y all greater than zero, such that:

a + Ofi + fs = 0 (18)

4.3 A Geometrical View of Force-Direction Closure

Theorem 4.2 can be captured in a more suggestive and compact way as follows:

Corol'a-y 4.1 A set of wrenches W can generate forces in any arbitrary direction

if and only if there exists a three-tuple of force-direction vectors fl, f2 , fs whose end
points draw a nonzero triangle that includes their common origin point.

Proof: A bit of geometry will convince the reader that the above corollary is

equivalent to Theorem 4.2. Alternatively, we can start from system (14) and solve
for the product flt-y which is the product of two cross-products:

, "71 =(fl x f2 )(f3 x fl)

- . . . . . .. . . . . .

. . . . . . . . . . . . . . . .
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Figure 6: A geometrical view of force-direction closure.

Similarly, the other two products a,)-y and a30 3 are:

02 ^Y2 (fI x f2 ) (f2 X f3)

03 03 z (fSXfl)(f 2 >f 3 )

Without loss of generality, we assume that the force directions are ordered
counter-clockwise. Since the coefficients a,, /, all have the same sign and are non-
zero, their pair-wise products and the cross-products must be strictly greater than
zero. Recognizing the cross-product between two unit force directions as tht sine
of the angle between these two force directions, we can conclude that the three
angles in between the three force directions miust be strictly greater than 0 and less
than 7r. This is nothing more than the picture of three vectors pointing outward
from a common origin with their ending arrows drawing a triangle which includes
this origin, see Figure 6. N

5 Ability To Resist Arbitrary Rotation

5.1 Torque Closure with Planar Forces

We now investigate the necessary and suflicient condition for a grasp to resist clock-
wise and counter-clockwise rotations of the object. First, let's look at three equiv-
alent views of the same problem:
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Theorem 5.1 Let a grasp configuration G be described by the set of wrenches W.
Each wrench in W is a contact force which acts on the object 1. The three following
clauses are equivalent:

1. Any non null rotational twist t w wur, --wzrx' of the ob)ect B is contrary
to at least one wrench of W.

2. There is no non null rotational twist either reciprocal or repelling to all
wrenches in W.

39. The positive combination of the wrenches in W can generate clockwise and
counter-clockwise torques. We say that grasp G has torque closure.

Proof: The second clause is the dauble negation of the first clause, so they
are equivalent. They both express our intuitive notion that saying "there is no
free rotation nor a rotation that breaks contact" is equivalent to saying that "any
rotation Will be resisted by a contact force", exerted by some finger of the hand.

The second and third clauses are dual of each other. Let's denote by W,< the
convexe of torques which can be generated by W. Similarly, we denote by T< the
convexe of rotations in the plane. From Section 2.4, we know that the two convexes
IW<  and T < are dual of each other. So T < null implies W < total, and vice versa.

5.2 An Analytical View of Torque Closure

Torque closure can be achieved by creating enough friction on some axis of rotation
of the object. The friction between the rotating object and its supporting axis
will create a torque which resists any clockwise or counter-clockwise rotation of the
object. Unfortunately, in most grasp configurations, we have only point contacts,
and through a point contact, a finger can exert only a pure force on the object and
not torque. The interesting problem is how to achieve torque closure with only
pure forces. The following theorem states the analytical necessary and sufficient
condition for a set of contact forces to generate clockwise and counter-clockwise
torques.

Theorem 5.2 A set of planar forces W can generate clockwise and counter-
clockwise torques if and only if there exists a four-tuple of forces {wI,w 2 ,w3,w 4}
such that:

* Three of the four forces have lines of action that do not intersect at a common
point or at infinity.

* Let fl,...,f 4 be the force directions of wI, , w 4. Let P12 (resp. p34) be the
point where the lines of action of w, and w2 (resp. ws, and w 4 ) intersect.
There exist a,/ 3 ,'7, 6 all greater than zero, such that:

P34 - P12 : (ofj + /3f2 )

,--.,(f. -+ 6-

...... . ........ .... .. .. .. ...
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Proof: [The proof is quite long and has the sane flavor as the proof of theo-

rem 4.2. On first reading, the reader is advised to skip this proof and return to it
later.]

We use the second clause of Theorem 5.1 to find the necessary and sufficient
condition for which there is no rotational twist reciprocal or repelling to W. This
means that the system of linear inequations described by:

[w to _ 0 (19)

has neither homogeneous nor particular solution. tB Iwry, --w r w-]1 is the
spatial transpose of the twist t.

We get a system of homogeneous linear inequations in three unknowns. For such
a system to have no solution, we need at least four inequations, or four wrenches.

If no solution exists for some four-tuple of inequations from system (19), then no
solution exists for system (19), and vice versa. So, without loss of generality, we

assume that W is exactly one such four-tuple of wrenches.

There is no homogeneous solution if and only if the 4x3 matrix [W] is of rank
3, or if and only if there is a 3x3 block from [WI that has non zero determinant.
Assume that the first three rows form such block. The determinant is:

fl f1 r, x f,
det(w1,w 2 ,w3) = f2. f2, r2 x f 2  (20)

f3. fay r3 X fC

By expanding the determinant along the third column, we get:

det(wi,w 2 ,ws) = (ri x fl)(f 2 x f3)

+ (r2 X f 2) (f3 x fl) (21)

+ (r3 x f3) (fl X f2 )

From the above equation, if the three lines of force are parallel with each other, then
the three cross products of the force directions are zero, and so is the determinant.

Let's assume that they are not all three parallel, and that the lines of action of
Wl,W2 intersect at p12. We can choose P12 as the origin of our reference frame.

With this choice of origin, the moment components of the wrenches wl, W become
zero, and so the first two terns in right hand side of equation (21) drop out. The
determinant reduces to:

det (wI,w 2 ,w 3 ) = ((r3 - P12) x f3) (fl x f 2 ) (22)

The determinant can be zero if and only if the first cross-product in equation (22)

is zero, or if and only if the line of force of w 3 also goes through P12. We conclude
that there is no free rotation if and only if both the followings do not hold:

. The three lines of force intersect at a common point. In this case, the object
B can freely rotate about the z-axis going through this common point.

.. . . . . .
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9 The three lines of force are all parallel. This case corresponds to a free trans-
lation perpendicular to the direction of the three forces. We can think of this
translation as a rotation with rotation point at infinity.

Assuming that the 4x3 matrix [W] is of rank 3, there is no particular solution
to system (19) if and only if any 2-face vector orthogonal to two rows of [W] has
products of different signs with the remaining rows of [W]. Let's solve for the
non-existence of rotational twist, reciprocal to the first two wrenches w 1 ,w 2 , and
repelling to the two last wrenches ws,w4:( i x~ r~f, 0

f2. f2y r 2 X f2 r 0

f3. f,3, r3 X -wzrX 70 (23)

4. f4, r 4 x f -b0

1'o, bo are both of the same sign and non zero.

Without loss of generality, let's factor out w,,. Let P12, (resp. P3 4) be the point
where the lines of force of Wi,w 2 (resp. ws,w 4 ) intersect. From the first two

equations, we solve for the point of rotation r:

r [(r2 x f2 )f, - (r, x fl)f] (24)

-P12

The above equation makes sense: the point of free rotation is the point where
the two lines of force intersect. Similarly, from the third and fourth equations of
system (23), we solve for the instantaneous center of rotation r:

r j-j-[(r4 x f 4 ) f3 - (r3 X fs) C4 1

+ f ('y(f + 60f4 ) (25)

= P34 + (70% + 6of4)

Eliminating r from the two equations (24) (25), we find a constraint equation

with the following form:

P12 - P34 = (7 fs + 6 4) (26)

where -y1,61 have both the same sign and non zero.

By rotating the numbers 1,... ,4 and the coefficients a, ,6, we get the equa-

tion expressing the nonexistence of repelling rotational twist t' which is reciprocal
to the wrenches w 3 ,w4:

P34-P12 (al + 1 f 2 ) (27)

............
.. . . . . . . . .
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We also get four other equations for the other two pairings (wI, w3), (w2, w 4 ))
and [(wi,w 4 ) , (w2,w 3 )j:

P13 P24 (#2 f2 + 62f4) (28)

P24 - P13 (a2 fG + -12 f3 ) (29)

P14 - P23 (03 f2 + 73 f3 ) (30)

P23 -P14 =(a3 hj + b3 4~) (31)

We use the fact that the points P12, PD, P14 are on the same line of action of
wrench wl, etc ... to prove that the above six equations (26)--(31) are satisfied if
and only if all the coefficients a,,... ,6, are of the same sign. We are able to prove
a stronger result which states that if one pair of equations like (26, 27) holds, with
coefficients a,,..., 61 all of the same sign, then the other two pairs (28, 29) and (30,
31) hold, and vice versa. See Corollary 5.1.

With Corollary 5.1, we conclude that there is no rotational twist repelling to W
if and only if any of the 3 pairs of equations (26, 27), (28, 29), (30, 31) hold. Namely,
if and only if there exists a pairing such as [(w1, w 2 ), (ws, w 4 )] with a, B, , all
greater than zero, such that:

P34 - P12 ±(aef + f6) (32)

T p(-/fs + 6 4 )

Particular cases arise when the pairing [(wz,w 2 ),(w 3 ,w 4 )] has w, parallel
to w 2 , or W3 parallel to w 4 . We can avoid handling these particular cases by
considering another pairing like [(wL, ws), (w2 , w 4 )], or [(wI, w 4 ), (w 2 , ws)]. If we
assume that the four forces in W span the space of all force directions, then we
never get three forces that are parallel with each other. So there is always at least
two pairings that work to prove the nonexistence of rotational twists repelling to
W if the grasp has torque closure. M

To complete the discussion of this section, we state and prove Corollary 5.1
which allows us to consider only one pairing instead of all three possible pairings:

Corollary 5.1 Let four lines with directions f11 fj2 fj3 f4 intersect pairwise at six
points P12, . P34

P34-PL2 = (aIfl + 1 f 2 )

= - I f3 + 6f4)

P24 -P13 = (a2 fl + 2f3)

- (2 f2  + 62 f4 ) 
(33)

P23 P14 (a 3 fl -+ 63 f4)

A flf 2 +-13 fs)

: :--..':': -.-............ ,"-... '-..'....-.-'...--.-,-"......-...".".-.-....".....,. •.' ... ,."- .. "- ,...--. ,. .,
....... ...... ,., ... ... :.........................................................-....".,...-........-.."..--.'.-...,......- ... '-.'..'... '.,
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'I'Ii ab v (IV ;' I-q u ith ons .11 hum, /I ri c r k cfInflIc tin t wll, Iti i Migmi t, w 1it ,.n citch.
cijithi. n. (not n ,csarily ,ro,. till *.'i quations) if and oinly if e, , t,, y,, , all have
tIhC .unt s inf for clthcr i I, or 2, or S.

Proof: ILeCts assume that we have the irxt t wo equa tions:

P34 P12 (V Ifl ! /1, 1()

with 1 a * 0, fl, 0 - , and -",'t .-" 0. We'll prove t hat the four (co,.lic ients at, 0, ,

are all greater than zero, that, is, we have t(e scliario ilhst ra ed iii Figure 7. We

compule the intersection PoiiIs P23 ad P14:

P23 P12 P' f3
f2 fs3

P4 P, 2 f
2  (35)

PL4 P12 P f4 f4 fI

P 4 - f . f4

where p' P34 - P12 Next, we comlpute the expression for P23 - P 1 4 :
r .ff34  + 61 r4

P23 - P14 -7 - ff 6 2r3-(36)
rl - 2 f

(36)
CVIft- fl C3 31.F1rf

f2 .f 3  f4 ff

Expressing P23 - P14 in terms of linear combination of {f 2 ,f}3 ) is difficult. In-
stead of proving that there exist 133, 73 non zero and of the same sign such that:

P23 - P14 = #3 f2 + 7 3 f3

we prove the equivalent: the vector p23 - P14 has opposite sign cross-products with
the vectors f2, f3 , i.e:

[(P23 - P14) x f 2] [(P23 - P14) X fj] < 0

From equations (36), we get:

P14) X 2] [(P2 -- P14) X C3] (f X f2(C × f4)2 (37)

[(P23f - ×(" x f( )

We deduce that the necessary and sufficient condition for the two last equations
of (33) to hold is that 31 be of the same sign with "yj. We extrapolate this partial
proof and argue that:

, ,-. ..
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S -- P23

W"

Ws4

* •- Fo quto (7,i a1 ., alhaetesesgthn

* 5.3FiurA7:AGeometrical of orqu qe closure.

. • [ *-crollary ate btht ctrsxaions of eore 5.2 (igplres 7): o,,.,g alh

'" uchthat sthe sgnt for. i~ =, oints ot Wf ad intove theics ,liato formed=
• . 4 ~b the n t Eoati ( 7w).iia ros xs o and (w,. 4)

-C<

-. •[=]Fo E uto (37) if 9 .. , al hav th sam sig then:*,~**..*

P~s-PI4 : B34+"/f

Fiur 5.3 A geometrical view of torque closure.

"-->I s efct th~at theoe ix eqa in o re 3)eom letr sa thatrms . h fllowing
t" sool a m trsg foh ,onsrint or 3.WTheor e p. Froe 7)i:m liainfo

p'- :Corollaryg5Equa to (3)pSla ar proofs exs for geneate 2 lcs and 3.ntr

• . clocwietorue f1 >0 Eand ion si mihe re to(37 a llwus-t e o dedce thwllt h s ix4

r.try hapt re s bomth constrapints ot of an in t .2 (Figur e s <):'4 ore

byl the two pairs (wl,w), and (w,w4).
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Proof.

* Tl'l faccI thl~at. (tv I 01 es fior il (Wo nott-1111 n ll en (C-., . ( 2 gii ; i l t s thIiat.

no flirce foJrces are parallel. Next, (ie - 1.(. that (tle segi ileif P 'jP: / is11011 zero

gmaranteves Iita the fouir forces doI itot iitersect at, a commoniil poit. Thlis is

tlie first, constraint of Thieoremi 5.2.

*Let's look at:

P34 P12 (f1 f

(-Yf 6 6f 4)

wlier ll I t(e G. reck ((Jeiic i bs are stric t ly ljos ilive. Note that off 1 I/123 is t lie
comi- of rays boundedlC~ by tlie force (lirectiols fl, f 2, that is C ;- Si nilarly, C '

314

is dlescrib~ed b~y -yr' hi'4 . Thle se'gilelit. I',2PI.1 poinuts 'olut of' ( 2 (resp. 'into'
C3'j4 ) if and On ly if P34 P1 it, is it PositiVc (resp. negative) collibination of

Lte force directions (f~ jt2) (rcsp. (f3, c)). This is the second constraint of

Tlheorem 5.2.

Fromt Figure 7, the readler can check for torque closure in the plane by drawing
a parallelogram inside the overlapping region of the two cones C" , C . From
this parallelogram, hie can generate clockwise and counter-clockwise torques fromn

non-negative comb~ination of the four pure forces.

6 Finding Force Closure Grasps

We have seen from Section 2.4 that the space of planar twists and wrenches are dual

of each other. The following theoremt formnally states the force closure constraint in
the plane:

Theorem 6.1 Let G be a planar grasp described by the set of wrenches W. Let's

denote by W< the wrench conveze spanned by W, and by T< the twist convexe

reciprocal or repelling to W. The following clauses are equivalent:

1. G is a force closure grasp.

2. W can generate force with arbitrary dirction, and moment. Formally:

- 0 If.h, fyI m.I

3. There is neither translational nor rotational twist that is free, or that breaks
contact wit F. ormally:

....................................-..- .. .. .. . .. .. X3Vl
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We kuiw fronii S.c iii, 2..1 I hat tihe (oi Vx adlitioll of tII' col VXe (if all force
directions xf, f at,,i li cojivexe of all Ii ,Xrim. is the co,,vcx, of adl lauiar
forctes CX fr I', . So), ff0311 divi ab~ove tfli orei i, tilie niceessa ry anid sti liic iii.
''iinlilhlt for force closmtrc is coltaineii hi both T'heoremns 1.2 and 5.2. If we assunie
,ha (Ii troigh ally colt taa(' We (-;it tt ly eXe I0 fort, atld noft t.orqte, Oiwe 'it Hi rteeit 5.2

suhstinies Theoremt 4.2. This (orollary 5.2 also descril)es Ote geol, ret rica'al necessary
and suficient comhition for forcec lostire witIh planar forces Only.

6.1 Frictionless Grasps on Four Edges

Withotil frictiolt, a linger cani exert only a;I pure force, goiig through tire point,

of CoIIntact anid Vrlendrcilar it) lie edge (l'iguire 8). 1I this case, to have force
closure, We ,1eed at least four point coa aIs. Let's start by givinrg the algoriithn for

constritcling a force closure gras) Witi fornr conttacts on foirr edges of ;ti object I.

Algorithm 6.1 A force closure grasp between four edges e1 ,... ,e,1 can be con-
structed as follows:

I. Pair up two edges el,e,, againsi c3,fe. such that the two sectors C12 , C3 4 arc
non null. ly sector C12, we denote the smallest sector between the normals
ni, n2 . Similarly for sector C.34

2. Check that the two sectors C12, C34 counter-overlap, i.e:

C 2 fl -C34  # 0 (38)

S. Find the parallelogram H12 by intersecting the two infinite bands perpendicu-
lar to and containing the edges el and e,. Parallelogram 1112 is the locus of
points P12 where the lines of force of w,w 2 intersect. Similarly, we find the
parallelogram 1134 which represents the locus of points P3 4 where lines of force
of w3, W4 intersect.

4. Pick two points P12 , P34 respectively from the parallclograris [112, H134, such
that the direction of the line joining P], and P 4 is in the counter-overlapping

sector C = c f 2 -C 3 4.

5. From point P12, backproject along the normal ril, (resp. n 2 ), to find the grasp
point P1', (resp. P2), on edge e l , (resp. e2). Similarly, we find the grasp points
P3, and P4 by backprojecting P34 respectively along the normals n3, ni4 .

6. The four grasp points PI, P,, P3, P4 found as above form a force closure grasp
G(PI, P, I, ' ) het w.en the four edges.

Note that for each point P2, we can find a convex region of points P34 by inter-
secting the parallelogram l11,4 with the two-sided cone CX (Pt2 , C) having vertex
P', and sector C. The two-sided cone is the comibination of two fields of view from
po int I'. witli sectors C and C. The field of view is defined as follows:
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C3'

C12

C 1 2 P1 fl-C3411

Figurc~~~~~~~ 8: Iidn frcinesga p nfurcg

.. . . .. . . . . . . ..

.S...q *. .
. * ,

A.. . . . .. . . . . . . . . . . . .
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.)eliniition 6.1 The field of vie, of n Jiiyurc A with sc,'or C is the ninimal cone
( (1, C) such tha any ray fro, vrtc' I with dretin in setor C 'ill cut the
Jiuur, A. ',"he iheld of vitw i; opeLn-cnucd and one-siAed.

We caii ciiI lhe )arallelogram HA I witlh Ile lield of view of /I. and sectors i C.

We get a covex region R:Il. which represents the set of 1)oillt.s 114 whicli gives a

force closure grsp with at least a point inl Il For exanlile, the field of view of

1/12 and sector C inchdes the parall'h1gr 1/::4, a, d 1 S II :i. Using sector

C will resul inl a sinialhler convex region ', and R:.1 R J '34

Siniiilarly, we lind IOhe ('oiVeX region R.i_ which relpreseit s the set, of )oints PijI

which gives a force closure grasp wili at, leasL a point in ll.I. This tilne ile

respective sectors of view is IC. Fro I he conlstr.rliconll, any poilit. 1,12 ill R12 will

lave it leiast one ciorreslpoi(iig poilit 1 l'i witlh which we have a force clo(sure grasp.

(I is clear Ihatl:

Corollary 6.1 There exists no force closure grasp betUeen four edges el,. . ,e if

and only if either of the following holds.

1. The two non null sectors Ci:., and C34 do not counter-overlap, i.e.:

C Ci l- C 3 4  * 0

2. The two fields of view of the parallelograms 1112 and 1134, with respective sec-
J* tors ±C and -IC, are completely offset one from the other, i.e.:

S12. 0

or £34 0

The first constraint is called the force-direction constraint, expressing the con-
dition for force-direction closure. The second constraint describes the condition for

torque closure. We call the second constraint the field-of-view constraint, because
of the way the regions £12, R34 are constructed. The force-direction constraint is

imore constraining than the field-of-view constraint when the object has perpendic-
ular edges like rectangular blobs, and is less constraining otherwise. For example,
a grasp on a rectangle needs all four dillerent normals for force-direction closure,
where as a grasp on a triangle needs only three normals.

The following theorem gives a geometrical representation of the set of force

closure grasps, that is, the grasp-set froi 4 edges.

Theorem 6.2 The set of all possible grasps on four edges el,...,e 4 , denoted
(el,... ,e 4), is completely described by the two parallelograms 1H12, I14, and the

counter-overlapping sector C = C 2 n -C 3 4, defined as above.

:." 9(el,..., ) (1112, 1134, C,2 n -C.34) (39)

We can restrict the parallelograms 1712, 1134, by applying the field-of-view constraint,

and describe the grasp set with the two convex regions R 12, £ 34, constructed as above:

: (e ,,. .e4,) (I 12 3 , 2 l -C 4 (40)

J,;-
": ;"-..- .t -.- " . -. . . ... . . . . . . . . . . . . . . . . . . . . . . . .."-"" . . . . ..:. ..".". .". . . ..". .".'.".; "'-" , "." ":-:
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K> Plro: It, is oI)Violis from I lt, coinst ruct ion, aind ('roit ( oiollarv 5.2 1 hat t ie st(

of' grasps characterized as abovet is coilet e 10(otne pairing11 (& edges ez , C. agaiuisl

cJ, t,.j. The readIer mia~ woiider whelther tlie d11ierit pairings *it step I (il thne above

Cotistuc iouk gives diffherenit, setIs of gras ps. Thie an swer is nio.

I i i*ren t. pairngs certiii ily give dile-reiit desc riptoins for t he graspj-set., because
We get di (Fieut. parallelograuiis iil coil iter-overlappinig sec tor's. I liwever, (tiey
all dlescri be (lie same grasl-set . 'I'Ii is is siiplmtoned Iby (Corollary 5.1I, wliich says
ii forital ly thI~at tlie diree pairngs are-( eqivaleiit. to each othler. So, (lie above
dlescri ptionis IScompllete. m

Complexity 6.1 Let B? be the object yrasped wvith four frictiortless poilt conttsl.

* Finding the. ijrasp-set or a force closure qrasp betwe~en four cdqles costs constant

I i'me

* 'There (ire Oledycs (/1)1 14-uples of edges of object 11. S~o, lEnurneratiny all the

force closure gras7)-sets of object 13 costs Oledges(13)l".

6.2 Frictionless Grasps on Three Edges

WNe have sccn fromu Corollary 4.1 that to have force- direction closure we must have
at least three non-parallel forces. So we nled at least four contacts on three non-
parallel edlges, if there is no friction betwcen Cte fingers and the grasped object.
With two of Lte four contacts on the same edge, there are possibly three grasp-sets
between three edges Ce,e,e 3. (F'igure 9).

9 (e612e2, el,e3)
9 (e Ite2 , e2, e3)
9 (e 17ell,e 2 , e 3 )

The problem formulated ais above reduces to the problem of finding grasp-sets be-
tween four edges.

From Section 3.1, we can replace the two frictionless point contacts on the
common edge with a frictionless edge contact. This is a good illustration of how
we can grasp a same object with fewer fingers by using edge contacts instead of
point contacts. We'll see how friction and soft contacts help even more in the next
subsection.

Figure 10 shows a stable grasp with three spring contacts on three edges. The
fingers act as springs pressing exactly at the places where the inscribed circle of
tine three edges is tangent to the three edges ([laker et al. 1985). This grasp
configuration corresponds to a local mnrimum of the p~otential function of the three
springs, so the grasp is stalle However, the object can still instantaneously rotate

* about the center of the inscribed circle with no opposing torque From the grasp.
Note that we cannot generate a torque about this center of rotation, fromt the.
contact forces at the springs. The grasp is not force closure although it, is stable for
arbitrary smtall mtotions of the grasped object.
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F~iguire 9: Frictionless grasps on three edges.
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,

F3

Figure 10: A stable grasp with three spring contacts.

6.3 Grasps on Two Edges Require Friction

Force closure grasps with only two point contacts instead of four require friction
between the finger and the object. We have seen fromn subsection 3.1 that the
existence of friction means the ability to resist against any force pointing into the
friction cone. In other words, a single pushing force pointing into the friction cone
can resist a range of forces described by the friction cone at the point of con'act
(Figure 4.b).

Mathematically, this friction cone can be viewed as the positive combination of
the two extreme rays of the cone. So, a point contact with friction can be seen as
equivalent to two contact forces. Two point contacts with friction is equivalent to
four contact forces and so can result in a force closure grasp. The following theorem
states the necessary and sufficient condition for force closure from two point contacts
with friction:

Theorem 6.3 Two point contacts with friction at P and Q is a force closure grasp if
and only if the segment PQ points out of and into the two friction cones respectively
at P and Q.

Proof: This is a well known fact of planar mechanics. Let's however prove the

above theorem using a reduction from a grasp with 2 point contacts with friction
to a grasp with 4 point contacts without friction.

The reader will recognize that a friction cone at P, (resp. Q), is equivalent to
two forces wi, W2 , (resp. w, w 4), along the edge of friction cone and going through
P, (resp. Q). We then recognize that point !P, (resp. Q), is nothing more than the

•. . .
. . . . . . . .
. . . . . . . . . . . . . . . . . . .
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3.1 Thv Svi .Iic. I" rc '-( 'lJ1r* (;ra.sp., li Ihe I'lane

olJiit 'r2, (resp. SO). "(? Ile ,1I4vc IhlV (,vi is I Ih( 'li Orinl ilani(1 of ('r'liar 5.2.
]U

Now, ltI's lil Ilic I Or1 possile girisps from two edges jl, ati t.. Sine I I te
p•i t,1I or cont.ct I', ( Qe'l. ,). iiiiisi lil oi l edge el , (resp. c'2). IIe i;Iiallchirani i
1i.2,, (resp. //:;.) re tolies Io the edge c,, ( reSp. C..). We cain rest rict Ii edg,, cl,

(resp. c,:), to the segilent ,, , (resp. ('!,), by intersecting it witi Ilie field of view
Of e,, (rsp. cl) with sector I C (resp. FC). or the exaniple in Figure II, we
have e', el and c' C,2 . The construction of Ithe grasp-set. fromi two edges en, e2 is
similar to the constructioni given in Algorithmii 6.1.

Theorem 6.4 The set of all possiblc gra.sps with friction , o'n two cdqc's vile
dCnolt'd (c,e.)), is ,omplcly described by the two e:dges c1 , (.2, on d the counicr-

overlapping sector:

C c ( 11, ) A c(n2 ,)

of the two friction cones resp. from edqe el and e.

.9(ei,e2 ) - (el, e,, C) (1)

We can restrict the edges el,e., by applying the field-of-view constraint, and
describe the grasp-set by the two segments e'1 , e'., as follows:

J (e1,e.) = (e'l, e'2, C) (42)

Iow does soft finger contact compare with point contact with friction? D~ue
to the larger area of contact, we see that a soft finger contact. gives us a larger
range of forces and moments showed by a range of friction cones instead of a single
friction cone (Figure 4.e). A niore interesting comparison is to compare the range
of force directions. A soft finger contact at a vertex has a much larger range of force
directions. The soft finger contact can be approximated as a point contact with a
much wider friction cone. From Theorem 6.3, we have seen that the larger are the

friction cones at the points of contacts, the greater is the likelihood that they 'see'
each other, that is the grasp is force closure. So a soft finger gives us even more

flexibility than a point contact with friction. This partially explains why people
graisp objects at edges and corners, and also why the contacting surface of human
fingers had better be soft, rather than hard as nails.

7 Finding Independent Regions of Contact

7.1 Optimality Criterion

The previous section shows how to compute the set of all possible force closure
grasps on a set of edges. In this set, we can look for an optimal grasp. The optimal
grasp can be the grasp that, requires the least amount of work from the fingers to

.-
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:_ l~~~~'iol a ilell(( (11."; 11l icehtl((', vix :...

lit lask lplailiig, ai ;lterniativv( d liil oll of oliipi litm 15t y t l ) Ie t deal w ith

iiiielm iiiity .1n1(1 (errors. \We are ilit(,es't d I iii illiilg giasps that re(Iluir, a., lilthe

";Ic'cii-cy as possible. (01 t)iespect o" tll goitl iS 1o ha'e I gsps such hl;t lie li erlS

C;IlI Ii' iosit ioieltle II(Iclit 1k Fromi vachitli ther 11(11 at (iscrte poltils, hut. withiiii
lrge(' regiis of I lie edgs. Flormally:

l)efi ition 7. 1 Lt C b, a .irei t scon nt .dge-;. linjcr ', ro'tmit.' (it ,,ipo t ), 

r lip on r, (If dIl C,, ?i I,... . i's a jra I) set 7with 1 i n dcp: l dclit rcq(iorl . of

,',nhirl r, . ,, if ,1111 onlyl if:

V I', - .... I',, r,,. ' (',,. I',,) i. a force cIo, su'r, (.r(,./,

LI(rl,... ,r,,) ?s (I ]rtsptl wilh ,ti/ ml irh,,ndccerdnt reyion. of co,tact for the set

of c(lyes ce I c , if (In1(d o n l if:

mll, (ir, ,,..., 1), ir,,I) Si ax iT l,

mIiii (1jru r i s maximaltf....
Z lllin ( tlr, 1i, 1.r., +r ,11) I+ M sasi e~.

where r, C e,. The ccontatct seqrnents are ordered by decrcasing length.

lniTe nxt sili)secl ion uses fTheoreui 6.3 to cast, the prolem of finding the optimal

grasp sets on two edges inlto a pro)lei of fitting a two-sided cone cuitting these two

edges into two segimnes or largest. mininnun length. Similarly, using Corollary 5.2,
the 1prol~htmn of finding the opttimal grasp set on three or four edges becomies a

I)rolemu of fitting a two-sided cone bet,ween 2 parallelograms.

7.2 Optimal Grasps With Friction

We give tie algorithm for fitting a two-sided cone C' (f, C) such that C' (1, C)

cuts the edges el and c2 into two segnitients el, and C, with largcst minum length:

Algorithm 7.1 The optimal Set of yrazps on two edges el anid e., car be constructed

as follows:

1. Find the two-sided cone (CT ([I, C) that cuts all of edge el and very little or

none of edge e,. We yet a trianqle A, formcd by edge el and vcrtez I,. This

triangle represent.i the ,set of vertices 1, where the two-sided cone ,x (i, C)
monotontirally cuts largr sipii,,n c" and smaller segment e',s a we move front

edge el to e,. .imilarly, we find the two-sided cone C' (1.,, C) such that this

later cats exactly the edge e.2 and very little or none of edge et. We get a

trianvqle A, formed by edge e., and vertex 12.

2. ln the. trade-off ref/Ion for vertex I by interseting lte triangle A, with A,.
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2 IV

Figure 12: Finding the optimal set of grasps on two edges.

3. We cut the trade-off region with the bisector of the two edges el, and e2. The
optimal vertex is at one of the two endpoints of the intersecting segment, or
anywhere on this segment, depending on the direction of the cone formed by
the two edges. If no intersection exist.s, then the optimal vertex is the point of
the trade-off region which is nearest to the bisector.

Proof: Figure 12 illustrates the different steps of the algorithm. Depending on
the way the tipper cone cuts edge ej, we can partition the plane into 5 regions:

1. The cone cuts in the interior of edge el. This region is triangle A, with one
of its sides being ej. The length of the segment cut by the cone varies linearly
with the distance of the vertex I to edge el. In other words, the loci of I,
whose cone cuts el with constant length form segments parallel to el.

2. Only the left ray of the cone cuts edge el. The loci of points I whose cone
cuts el with constant length form a set of line parallel to the left ray of the
cone and are continuation on the right of the loci found in region 1.

3. Only the right ray of the cone cuts edge el. The loci are now the continuation
on the left of the loci found in region 1.

4. The cone includes the whole edge el in its field of view. This region corre-
sponds to the ability of putting a finger anywhere on the whole edge el.

.. . .... .... ..
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k %- 5. The ,mle-sided cor do h s ot cii c,,dge el.

SlThe a bove algorithi haic iihs heIc genhra1 casv where tIh Iw. t riti gles , ald
A 2 iitersect. iit- t.racie-olr rcgion is I tc, ilterse'ctilII A A Al'. ('ntl tiig Ihis trade-
oif region with ic hiscrtor gives uts Ihe Ioci' oF vertex I wlhose t wc-sidcd coi ctits
equal segucnt.its on l ait f'.. ThC ) op0t licd vcrl ex of I I, cur, cali be I tier allywhere

oil this locus or at t he two ((d points of thi Is ocus, dcepeniug resp'ctively on
whether el Is parallel to c., or not. 'hle case where, the two trialegs 1o not intersect

can he handled as easily. *

Complexity 7.1 Let IH be Meu object yra.,cd wilh two point conilaics with friction:

a l"indiny the optimal set of yrts;ps with ildependc li rcylons of on tact olU two

edye. cossts constant lime.

* Enumerating the optimld set of yrasps for all pairs of edge.s co.sts Oiedg cs( I)1.
So, finding the optimal pair of edges and its corresponding set of yrasps costs
-- dgeS(jj)j 2 . The pair of contact region.s found has the largest minimum

length.

7.3 Optimal Grasps Without Friction

Theorem 7.1 9(ri,r,r 3,r.j) is a grasp-set with independent regions of contact
ri,... ,r 4 on edges ei,... ,C4 if and only if there exists a two-sided cone

ex (1, C12 fl --C34)

which splits the two parallelograms 17,2, 113'4 apart. !1 .,, (resp. 13I4) is the restricted

parallelogram generated by the regions r l , r2 , (resp. r3, r4), of edges e l , e2 , (resp.
e3, e4).

Figure 13 illustrates the scenario describe'd by the above theoreu. The reader
can easily prove the above theorei froci Corollary 5.2 and the definition of a grasp
with independent regions of contact (Definition 7.1). With the above theorem,
the probleic of ficliing the optimal grasp-set with independent regions of contact is
equivalent to the problem of fitting a two-sided cone CX (I, C). suuch that Cx (I, C)
cuts the parailelogranis 1 and 1134 into two isosceles 11 '2 and 1l3' with largest
ninirnimm side.

Notice that as we translate one or the edges of the cone Cx (I, C), the parallel-
'/ ograics If, and 1". vary nionotonically in opposite directions. This inonotonicity
Aallows us to design a conslant. tline algorithin for finding the the best tradeoff posi-

. 'tion of 1, or the optiimial grasp-siet. 'hce algorithii is sciiiilar to Algorit.hm 7.1, and
*.I " '' '  I he details are skipped. It is niore inl(resting to look at, a high lvel description of

the coic- fil tig i)rolen.

€'%
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W~,t. patillo t h p14)11 Int 11'regi'111)iolj(4 dep~eninig (Wit flow thle two4-sid1ed(I )Iie- (tils

It( lie prallelogril //12, or flo4w Ihle cont11act segiieiits o)verlaIhe.14 two edges c1 ;Iiid C..

III each of, these. regi4115, thle l(4Cj of veil ex / whose (-oile restrict1s thle paiallelograii

11I.2 into sniialler parallefoigraiiis ok-onitO~ area forii parallel linies sbl1 1)3 flaishedl

hueis in Figure I.I. VWe 1111(1 Sliiir regionis and( loci f*or paailklogratii Th.i Ile

jofblviii t heil r('4lices to4 all1 iliteisect ionl of' these two Sets of' loci, a'~ asarch

for the blest intersect iott )oiit, ofi op)1illilli veite 1' . Finially, fronti I his (4jt iiiii

vertex I, we oledl ice (t( itwo restric ted Jparal le fograiiis //;2, II.':lii tat are largest and~
in depenid ent fronti each ot lheri. We hack- prolect. jparal le Iogratit 1~ (resp. /V,~.), to

fill(]dtli e regions of* conitact ri, r,, (resp. r:, , r ) , (oil edlges e , 2, (resp). C:I ,.)

'Ill(- adg(4nit full sketcied ab)ove Iliiil)5s ed(ge(' wit Ii ed(ge C.. ais' (411V par anid edoge

C:; Witlli edge (,4 ais (t(i other pair. One mnay wonider if a dill'Ceeit pairiuig will give
a liflfeeit. grasp)-set . We have iIileit.('( h Ile algoriI~liili skutclied as abo0ve' and

Coiifiriiieo that the thrnee best5 grasp4 sets f'otiiid for [e (',eiI,(i e)Ic e)j

I (e ,t'e,) I(c2,e 3) I give exactly tilie saIlije set of coidltact. seginents oil the Four edges.
The Fact, that. tie algorit i d (oes no(t depend~ oii the 2-2 paring b~etweenl I Ie( edges is

expecte ' r(4i C'orollary 5. 1 . Thiis fa,-ct, reconiirims otir earlier c laiin thiat thie grasp-

set speciflied hy the Jparah le log'ai its 111-2, 1134, Maid the ti rter-overlappi ng sector

c, 2 fl - C:i,t coipl('Lely dlescrib~es the set of grasps onl the Four edhges e , e, e3, e4.
This description is independent front the 2-2 p~airnrg between the four edges.

Complexity 7.2 Let B be the object grasped with four frictionless point contacts:

9 Finding the optimal set of grasps with independent regions of contact on four

edges costs constant lime.

e Finding the optimal 4-tuple of edges and its corresponding grasp-set costs

Ojedges(B) 14 . The four regions of contact found have the largest minimum

length.

8 Conclusion

8.1 Performance

The synthesis of planar grasps with force closuire has been frilly imiplementedl in Zeta
Lisp, compiled mtid run oil a Syiloics Lisp Machine. For the examples in Figure 1,
the optinial set of grasps with Iindl~ependlent regions of contact, onl two edges can be

comlputedl in 1/20 seconds. For four point coritact,i onl three or fouir edges, this set
- ~~of grasps can lbe coiphutedh iii 1/4l secornds.

The'IiiInIinInI length of thle inidelendet regions of contact is a good mneasure

of the tolerance of a grasp hgainst inaccuracy ini linger positioning. Finding the

4-tuiple of grasping edlges tliat las the largest miiitin region of contact requires -

eIIIIIIIerat ing the iuiaxiiiial grasp-sets for all 4 Itulhes of edges. For it typ~ical blob

with 6i edges, thiis enumneration raii take 1(1 seconds.



Grasps with maximum grasp resistance.

Grasps with minimum grasp resistance.

F'igtirc 15: Craisps ranked by their resistance against unknown ditsturb~ance.



12 'Ihe .' Yle1lilvsk. of' Votce-l( 'losi r ( III tlt- PI 'Ili

Wec it rank Hte gra, Ii-scit 15 v l ()si oilne olieu crit era Slitch ais gia I) utIIII ~kIC(.
(.uasp ritaIic s tleljiiecl as d ie work of filie finigers III resistIM, ii iknowii dIist iir
baiic' of, (te graspe-d object. 1i c-an1 be thev slil of all iiiuividtial work of cdcii finger

ill Ible anld, or (Ilie inaxi nilin i work of' .11I lingers. %Ve chIoo)se to take II( lie max huh iii

work of' all iiicivitliial lingers to J)t.ldliz(' grasps thlat hlave onlingell-r pres.,izg very
hard oil 111e object. Willl1 t(i ot lit-us just lightY lv tuch Ilie object. III ot lie words,
we Wanit to iliil ize filie macxiimal rout act force auppliedl oil Iie bjc

Siunce aliy iliotioji of t lie object calI lbe iiiiiqiilely dlecomp losedt liii o I t ldislliou
* aid a rotation abolt thle origimi, I lie grasp resist aice kcgr.,tS an ;irl'inrN 111it1

dhisturbanice of' the object (.;I lbe Split linto filie slimm of ;I gras ls'tIi(t.iJii)

arbitrary tramslat ion anid anid ;I grasp reitaic a~iiirbitl11. aam o ti'lbouit
Hte origin. Tile two pari al _,rasp resist aices iiiist correspoiid to) 1lie >amv iieinger

* ~~or thle saiie coiitact . amid we imiist comlipute filie suili f'or each cot iaci .11 mi ick filie

l'ur siimplicity, thle cuirrenit iuiileuiieiit at iol comlpuites (h lIwo grasp resist aiices
andepeiidemitly from ear Ii ot her. lit othIier words, for eachi (0111act . we comiae .

the grasp resistanice agaiiist. rotation, ( lient pick ft( imiaxiiim i. We do d ie samne
for grasp resist ance against t ranislation , aid sliiithes two. 'The( resit iig sit iii is
only an apfproxiiiiaticlit to thle real grasp resistanice. ' We raiik thle grasp-sets in
dlecreasing order of t Iiis approximat e grasp resistanice. F~igu re 1.5 sho-ws tie grasp-
set's with bi1est,., medium, andc worst. grasp resistance. 'lhie (list urbaice of the object
is an arbitrary translation of I centimeter and~ a rotationi of 15 degrees.

8.2 Extensions

The current grasp synthesis can be extendled in miany directions:
* Applying other constraints suich as the work space of the hand, or the shape

of the hand and fingers. We want to make sure the grasp is feasible, or the fingers
call wrap around and miake contact. with the object at the desired points. This

prob~lemi can he formulated as a collision avoidance prolent (Lozano-Perez 198:3) by
computing the CO of the grasped object in the configuration space of the fingers.
We check to see if there exists a configuration of the hand and fingers that is
out side of this CO-obstacle. Although general and mnathenuatically complete, this
scheme can be coipttationally very expensive because of the high dimension of the
configuration space.

The current synthiesis ti-es a very simple hand model with fingers like chop
sticks perp~endhicular to the grasping plane. The finger tips can be anywhere inside
at circular workspace.

* Adding ot her optimahty criteria such ats stability, resistance against the effect,
of1 gravity, or thle effect, of imomient of inertia, etc... Ju mst as we lind( restricted grasp-
sets withI independent re,,ions of contact, we can search for fihe niost, stable grasp,

4 (Grasp r,-Mi!4tl~mu- is coliiitid omily fCir thet r'jrv:vt-m t iv- gras*Ii ati tht 1itii poinlts of tiji segiiiitst
of, (Hiltlaut

% . . . . . . . . . . . . . . - - - . - . -



8. C'oncluasioni

assniitilg eaci linger is moenled as at sp)rinig(Iluais m!Ault 7,Bkreti
1985, Nguiveui 1985). (N guy~en 1985) shiows t hat we ca;n sv iiiliesize ;I Set of, vi rtulI
springs suchi dia. a 1*0rce closure graisp is s ale. IEacli l1igur Is a virl iiail sprinig, andu
tite conutact Is pojint coiitact wit liojit frictioni.

eTile ciirreiit, syililiesis (-;ii be easily ext einded to baiidle rediiidauit cont acts,
-or oilier types oif (:011acts suchl aLs eVlg COtitIII acis al(sol finlger contacts. A muore

val uuabie exteso i'111 s to 53' u ills r orre c husi- grasps of 31) oh jt-clIs. hat e restinig

priiiit ive configu rations are grasps Witlli twoi soft finiger rout acts, grasp~s Witlli tli re(
point. contacts Witlli friction, orI grasps withi seven I'rict ouiless point conltarts. Otr...

We are iuu1pleiitintg (I ie syuitliesis oW :l grasp)s. liesuhts will be reported ini (Ngiuyeu

Acknowledgments

I ai ii greatly3 ijidebIt.edl to loiii is Lozauio-NI~rez for hiis :onistant .Cilconrageniuiet and
I'm Ii iii uy helpful (Iisc iissioiis. As always, lic carefi ly reads a draft. of tis paper anid
and niakes many conmiient s which su hstau' ial ly improve thle clarity of te paper.

I also woulId like to thiank Keiunetli Salisbuiry, Sut(idar Narasimbllan, Alain
Lanmisse, Bruce D~onald . James Mildrcw for sharing my enthulsiasm over fiew re-
sults aulnl idleas, and1 for reading dlrafts of this paper.

I wou~ld like to thank the Systemi Development Foundation for giving i a
fellowship). Last but not, least, my gratitude goes to miy parents and1 to umy fianc6e
fthir upr and love throughout this research.

W .2



44 Thie Synthesis oif Iorce-( losiure Gratsps In the Planwe

Bibliography

Abel, J.I'., Ilolzmnn, WN., MicCarthy, J.MV. "Oii Grasping Planar Objects
W~ithi Two Articualated Fiingers" I 'roc. If, 'I-,~ lnt. Conference on Riobotics and

* Antoination, St. Louis, March 1985.
Asada, H. "Studies on P'rehednsionl and l laaadling lby Rob~ot Hands with Elastic
Fingers" Ph.D. thesis, Kyoto University, April 1979.
Baker, B.S., Fortune, S..)., Grosse, E.H. "St able Prehension with a Multi-
l-illgered l Ian(I: LxtCJendl Abstract" Proc. I nt. Conference on Rlobotics and
Aii~to mttiori, St. Lom is, Marcha 1985.
Botteia, 0. & Roth, B. "Theoretical Kinematics" North Holland, Amisterdami,
1979.
Brady, M. et al. "Hlobot Motion: Planning and Control" MIT Press, Cambridge,
1982.
Brady, M. & Paul, R. editors "Robotics Rlesearch" MIT Press, Camabridge, Vol.
1, 1983, and Vol. 2, 1984.
Cutkosky, M.R. "Mechanical Properties for the Grasp of a Robotic Hand" CMU-
RI-TR-84-24, Carnegie Mellon Robotics Institute, 1984.
Fearing, R.S. "Simiplified Grasping and Manipulation with Dextrous Robot
hands*' MIT Al Memo 809, MIT Artificial Intelligence Lab, Nov. 1984.
Featherstone, R. "Spatial Notation: A Tool For Robot Dynamics" D.A.1 Research
Paper 213, University of Edinburgh, 1984.
Hanafusa, H., & Asada, H. "Stable Prehension By a Robot Hland With Elastic
Fingers" Proc. of 7th Intern. Synip. on Industrial Robots, 1977. (Reprinted in
"Robot Motion", Brady et al.).
Hogan, N. "Impedance Control of Industrial Robots" Robotics and Computer
Integrated Manufacturing, Vol. 1, No. 1, 1984.
Holzmann, W., McCarthy, J.M. "Computing the Friction Forces Associated
With a Three Fingered Grasp" IEEE Conference on Robotics & Automation, St.
Louis, 1985.
Hunt, K.H. & Tucker, A.W. editors "Linear Inequalities and Related Systems"
Annals of Math. Studies, Vol 38, pp. 96-114, Princeton, 1956.
Hunt, K.H. "Kinematic Geometry Of Mechanisms" Clarendon Press, Oxford,
1978.
Jacobsen, S.C., Wood, J.E., Knutti, D.F., Biggers, K.B. "The Utah/MIT
Dextrous Hand: Work in Progress" Int. Journal of Robotics Research, Vol. 3, No.
4, 1984.
Jameson, J.W. "Analytic Techniques for Automated Grasps" Ph.D. thesis, Dept.
of Mechanical Engineering, Stanford University, June 1985.
Kerr, J.R. "An Analysis of Multi-Fingered Hands" Ph.D. thesis, Dept. of Me-
chanical Engineering, Stanford University, Dec. 1984.
Lozano-Perez, T. "Spatial Planning: A Configuration Space Approach" IEEE
Trans. on Computers, Feb. 1983.



i~~~~~~ . . .I..:-- ' ',

=p.

'!ibliography 45

Lyons, D.M. "A Sinple Set of Grasps For a )extros Hand" University of Mas-

sachusetts, 1985.
Mason, M.T. "Conipliance and Force C ontrol for (onilpiutr Controlled Manipu-
lators" AI-T11-515, MIT Artilicial Intelligence Laboratory, April 1979. (Reprinted

*' in "lobot Motion" Brady, M. et al.)
Mason, M.T. "Manipulator Grasping and Pushing Operations" AI-TIl1-690, MIT
Artificial Intelligence Laboratory, June 1982.
Najfcld, I., Vitale, R.A., Davis, P. "Minkowski Iteration of Sets" Linear Alge-
bra and Its Applications, Elsevier North Holland, 1980.
Nguyen, V. "The Synthesis of Stable Grasps in the Plane" MIT Al Menio 862,
MIT Artificial Intelligence Laboratory, October 1985.
Nguyen, V. "Planning CGrasps for )extrous llands" Forthcoinig S.M. Thesis,
l)ept. of Electrical Engineering and Colmter Science, Massacusetts Institute of
Technology, 1986.
Ohwovoriole, M.S. "An Extension of Screw Theory and Its Application to the
Automation of Industrial Assemblies" Ph.D. Thesis, Dept. of Mechanical Engineer-
ing, Stanford University, April 1980.
Ohwovoriole, E.N. "On The Total Freedom of Planar Bodies With Direct Con-
tact" ASME Transactions, 1984.
Okada, T. "Computer Control of Multi-jointed Finger System for Precise Object
Hlandling" IEEE Transactions on Systems, Man and Cybernetics, May 1982.
Paul, Rt., Shimano, B. "Compliance and Control" Proc. Joint Automatic Control
Conference, Purdue University, July 1976.
Roth, B. "Screws, Motors, and Wrenches That Cannot Be Bought in a Hardware
Store" in Robotics Research, vol. 1, MIT Press, Cambridge, 1983.
Salisbury, J.K. "Kinematic and Force Analysis of Articulated Hands" Ph.D. the-
sis, Dept. of Computer Science, Stanford University, July 1982.
Salisbury, J.K. "Active stiffness control of a nianipulator in Cartesian Coordi-
nates" Proc. IEEE Conference on Decision and Control, Albuquerque, Dec. 1980.
Salisbury, J.K. "Design and Control of an Articulated Hand" Proc. 1st Int.
Symposium on Design and Synthesis, Tokyo, July 1984.
Salisbury, J.K. & Craig, J.J. "Articulated Hands: Force Control and Kinematic
Issues' Proceedings of Joint Automatic Control Conference, Virginia, June 1981.
(reprinted in Robotics Research, vol. 1, 1983).
Salmon, G. "A treatise on conic sections" 6th edition Chelsea, New York.
Salmon, G. "A Treatise on the Analytic Geometry of Three Dimensions" 7th
edition, Chelsea, New York.
Strang, G. "Linear Algebra and Its Application" Academic Press, 1976.



&A

FILMED

.

DTIC
-k °- 1. . . . . .. . . . . . . . . . . . . . . . . . . . . .

A 
A AA AA AA


