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Abstract: This paper addresses the problem of synthesizing planar grasps that

have force closure. A grasp on an object is a force closure grasp if and only if we

can exert, through the set of contacts, arbitrary force and moment on this object.

Equivalently, any motion of the object is resisted by a contact force, that is the

object cannot break contact with the finger tips without some non-zero external
work.

The force closure constraint is addressed from three different points of view:
mathematics, physics, and computational geometry. The last formulation results in
fast and simple polynomial time algorithms for directly constructing force closure
grasps. We can also find grasps where each finger has an independent region of
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1. Introduction 1

1 Introduction

1.1 Planar Force-Closure Grasps

Robot end effectors have evolved from simple parallel grippers to multi-purpose
hands to provide greater flexibility and dexterity in manipulation and assembly
operations. Robot hands come in many shapes, but they all have in common the
ability of being programmed and servoed from a computer. To take full advantage
of the dexterity offered by multi-purpose hands, we need to be able to not only
analyze a grasp but synthesize it. In other words, we would like to plan grasps that
have such features as force closure, feasibility, reachability, compliance, equilibrium,
stability, etc...

This paper addresses the problem of synthesizing planar grasps that have force
closure. A grasp on an object B is a force closure grasp if and only if we can exert
arbitrary force and moment on object B by pressing the finger tips against this
object. Equivalently, any arbitrary motion of object B will be resisted by a contact
force from the fingers, which means that B cannot break contact with the finger
tips without some non zero external work. That is, the total freedom of B is zero.

Inputs to the synthesis process will be the shape of the grasped object and the
available set of contacts. Contacts between the object and the hand and fingers can
be point contacts, edge contacts with/without friction, or soft contacts. Output
will be how many required contacts, what type of contact, and where to contact on
the object. The set of contacts found describes a force closure grasp of the object.

Force closure is only one necessary condition for grasp synthesis. A number of
other conditions may be required. For example, we must fit a specific hand and
fingers on the set of contacts found, and check for the geometric feasibility of the
grasp. Next, we must plan motions of the hand and fingers and check for reachabil-
ity. These niotions can be position-controlled motions, or compliant motions with
the fingers modcled as springs or dampers. Once the object is grasped, it can be
lifted or kept in equilibrium by exerting necessary contact forces on the object. By
definition, a force closure grasp guarantees that any force and moment can be de-
composed into a positive combination of contact forces. So, with a suitable control
loop, not only can equilibriumn be maintained, but the object can also be manip-
ulated between the fingers. In general, the set of force closure grasps is infinite.
We may want to search for locally stable grasps, or the most stable grasp, which
correspond to minima of the potential function of the hand and fingers.

In this paper, we restrict ourselves to the core problem of planning force closure
grasps in terms of contacts between the grasped object and the hand. We feel that
force closure is the most basic constraint in grasping an object, because it captures
the basic scenario of many bodies contacting and constraining one another. Force
closure is also the simplest constraint and is suitable for planning. The current

Ty




2 The Synthesis of Foree-Closure Grasps ln the Plane

synthesis deals only with plinar objects. All forees exerted through the contacts
will lic in the plane of the object, and all moments will have axes perpendicular to
this plane. The coutacts and grasps are said to be planar to ditferentiate them from

the more general contacts and grasps on 31 objects.

1.2 Contributions

The main contributions of this paper are:

e A thorough understanding of the force closure constraint in the domain of

planar grasps. Foree closure is addressed from three diflerent points of view:

o A mathematics point of view which casts the force closure problem as one of
solving a system of lincar inequations. The spaces of wrenches and twists correspond
to the dual spaces of rows and columns of this system of linear inequations.

o A physics point of view which exploits features of planar mechanics and
decomposes the force closure problem in the plane into two independent subprob-
lems: one of force-direction closure or no free translation, and one of torque closure
or no free rotation.

o A computational gcometry point of view which results in a direct con-
struction of force closure grasps.

e Fast and simple algorithms for directly constructing force closure grasps. —
We find not only single grasps but the complete sct of all force closure grasps on a
set of edges. Within this complete set, we also find the maximal set of grasps where
each finger can be positioned arbitrarily in a range of contact. Finding a grasp or a
set of grasps on a set of edges costs constant time. Enumerating all sets of grasps
on the object is polynomial in the number of edges of the object.

e A representational framework for describing contacts and grasps. — A planar
grasp is described as the combination of individual planar contacts, which in turn
are modeled as the combination of a few primitive contacts. Grasps and contacts are
mathcematically described from two dual view points: a constraint view point which
captures the forces and moments exerted on the object, and a freedom view point
which describes the motions of the object which are free or which break contact.
We also develop an explicit representation for describing a set of grasps on a set of
edges.

e A partial explanation to why people tend to grasp objects at sharp edges and
vertices, and to why the contacting surfaces of our fingers had hetter be soft than
hard like the flinger nails. And an answer to the question: “How should robot hands
grasp this object?”.

i i S i
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a. Grasps with friction on two edges.

DTN G

b. Frictionless grasps on three edges.

2T &

¢. Frictionless grasps on four edges.

Gl

Figure 1: Examples of grasps found by the synthesis.
T The direction of contact of the fingers is shown by small V's. The independent
regions of contact are highlighted with bold segments.

...........
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4 The Synthesis of Force-Closure Grasps In the Plane

1.3 Examples

Figure 1 shows samples of grasps found by the algorithms. The direction of contact
of the fingers are shown by small V’s. The independent regions of contact are
highlighted with bold segments. No matter where the fingers are positioned in these
regions, the grasp always has force closure. This flexibility is of great importance in
manipulation since we always have positioning errors and many other uncertainties.

A grasp with two point contacts requires friction between the fingers and the
grasped object. Without friction, we need at least four contacts if these are point
contacts. We’'ll see that edge contacts and soft finger contacts can be viewed as
a combination of many point contacts. This is why the algorithms only need to
output grasps in terms of point contacts with/without friction.

1.4 Other Work

There has been extensive work on designing and controlling dextrous hands (Asada
1979, Salisbury 1982, Jacobsen et al. 1984). Robot hands come in many varieties:
human-like hands like the Utah/MIT hand (Jacobsen et al. 1984), the Okada hand
(Okada 1982), hands with symmetric fingers like the Asada hand (Asada 1979), the
Salisbury hand (Salisbury 1982). The fingers of these hands have either position
control (Okada 1982), velocity control (Salisbury 1984), or force control (Jacobsen
et al. 1984) at the innermost loop, and other control modes at outer loops such as
stiffness control (Salisbury 1980, Salisbury and Craig 1981).

Degrees of freedom (Hunt 1978), total freedom and force closure of mechanisms
(Ohwovoriole 1980) have been fully investigated. Ohwovoriole analyzed the geome-
try of the different repelling screw systems, and use the results to analyze systems
of contacting bodies such as an object grasped by a set of fingers, or a pin being
inserted into a hole (Ohwovoriole 1980, 1984). Screws, twists, and wrenches (Bot-
tema and Roth 1979), spatial vectors (Featherstone 1984) are not new, but strong
interest within robotics has surfaced only recently.

There are many papers on analyzing grasps ranging from classification based on
how people and animal grasp objects (Lyons 1985), computing the necessary forces
and moments for cquilibrium (Abel et. al 1985, Holzmann and McCarthy 1985),
achicving stable grasps (Hanafusa and Asada 1977, Baker et. al 1985, Nguyen
1985), to modeling and analyzing the grasping operations (Mason 1982, Cutkosky
1984, Kcerr 1984, Fearring 1984, Jameson 1985). There are works on analyzing
force closure grasps (Ohwovoriole 1980, 1984), and on solving systems of linear -
incquations (Hunt and Tucker editors 1956, Strang 1976). Unfortunately, there has L
not been any work on directly constructing or synthesizing force closure grasps.
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2 Background Theory of Twists and Wrenches

The instantaneous motion of an object is described by a twist. A twist is a spatial
vector which captures both the angular and linear displacement of the object. We
use wrenches to describe the system of forces and moments exerted on the object.
Twists and wrenches are represented in Plicker coordinates.

We review Plicker line coordinates, virtual work and total freedom. Then we
look at the dual systems of twists and wrenches in the plane. For more extensive
materials on these topics, the reader is referred to (Featherstone 1984).

2.1 Pliicker Line Coordinates

A general spatial vector is the sum of a line vector and a free vector. A line vector
has a magnitude and a line of action, where as a free vector has magnitude and
direction only. In rigid body dynamics, line vectors represent quantities like force,
angular velocity which have a definite line of action. The line of action is respectively
the line of force and the axis of rotation. Free vectors describe quantities like torque
and linear velocity which do not change under translation.

A free vector is represented by a spatial vector with zero upper half. For example,
- a linear velocity v is represented in Plicker coordinates by the following twist:
()
0
v
A line vector u is represented by a spatial vector s with six Pliicker coordinates.
The first three coordinates represent the magnitude and direction of the vector u
at the origin of the reference frame. The later three represent the moment of the

vector u about the origin of the reference frame. Concretely, a line vector u is
represented as:

u
s =
r xu

Uz
u
v (1)
U,
T U, — T:Uy
T:U, — TU,
TeUy — TyU,

b £

where r is a vector from the origin of the reference frame to any point on the line
of action of u.

For example, a rotation with angular velocity w is represented by the following
twist velocity in Pliicker coordinates:

R O R Ry S TN e T
RAFRF T IS J-.'L..~) ".L"'_'-J ‘




6 The Synthesis of IForce-Closure Grasps In the Plane

where r is a vector from the origin of the reference frame to any point on the axis
of rotation. We recognize the upper and lower halves of the twist velocity as the
angular and linear velocities of the origin of the reference frame due to rotation w.

Like angular velocity, a force f is a line vector which is represented in Plucker
coordinates by the following wrench:

oL

rxf

Force f can be decomposed into a sum of an equivalent force going through the
origin of the rcference frame and a pure torque which is the moment of the force f
about the origin. Equivalently, wrench w can be written as the sum of a line vector
and a free vector:

é?j “= o] [ ]

E We note that force f has a different wrench when its line of action is translated to
i the origin. By representing the contact forces and the instantaneous motion of the
2 grasped object in Plicker coordinates, we make explicit the line-based geometry of
- the domain.

2.2 Virtual Work and Total Freedom

Twists and wrenches are related by a spatial scalar product which describes the
virtual work done by the wrench against the twist. The virtual work is defined as
follows:

Definition 2.1 The virtual work of a wrench w = [f | m] against an infinitesimal

twist t = |da |dx] is the sum of the virtual work due separately to the linear and

angular components:

- w't = f.dx + m - da (4)

We can define the virtual work as a scalar multiplication of the wrench w with
the spatial transpose of the twist t, denoted t°:

wt = w - t*

<[] 3]

The spatial transpose of twist t = [da|dx] is the twist t* = |[dx|da] with the upper
and lower halves permuted.

The concept of total frecedom (Ohwovoriole 1980) emerges from the sign of the
virtual work. We’d like to know not only the degrees of freedom of the object under
a system of wrenches and twists, but also whether the object breaks contact or
pushes against the other bodies contacting it.

PR i e -
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Figure 2: Total freedom of a box lying on a frictionless plane.

Definition 2.2 A twist t and a wrench w are reciprocal (o each other if und only
if their virtual work is zero. The pair (t, w) is repelling, (resp. contrary), if and
only if their virtual work is strictly positive, (resp. negative).

An object constraining by a set of wrenches W has n degrees of freedom if and
only if the set of twists reciprocal to W can be represented as lincar combinations of
n linearly independent twists.

Similarly, the object has n total freedoms if and only if the set of twists rectprocal
and repelling to W can be generated from non-negative combinations of n non-zero
twists. These n twists form a minimal generating basis.

A reciprocal twist corresponds to a degree of freedom in the system. For exam-
ple, let’s look at the box in Figure 2. The box lies on a frictionless horizontal plane.
It has a reciprocal rotational twist about any vertical axis. In other words, it can
freely rotate about any vertical axis, and therefore has one degree of freedom. The
box can also translate in the plane, and so has two other degrees of freedom.

The above three degrees of freedom do not completely describe the set of motions
possible to the object. For example, the box can be raised from the planc and
break contact. This half-free motion is different from the usual concept of degree of
freedom in that it is unisense. The upward motion is a twist repelling to the contact
force exerted by the plane onto the box. The downward motion is a twist. contrary
to this contact force. Note that the plane will oppose the downward motion with




8 The Synthesis of Force-Closure Grasps In the Plane

an upward reaction force, resulting in a negative virtual work. Finally, the box can
rotate about two horizontal axes, provided that the box does not enter the plane.
These two rotations define two other total freedoms. The box has three degrees of
freedom, but its total freedom is really six.

2.3 Convexes and Operations on Convexes

In grasping, the goal is to have force closure or to fully constrain the motion of the
grasped object with a set of finger contacts. Through each finger contact we can
exert a range of forces and moments, which can be represented by a wrench convexe.
Just as many contacts are combined to form a grasp, many wrench convexes are
‘added’ until their sum spans the whole space, or until we have force closure. Each
finger contact can also be described by a twist convexe. The twist convexes are
intersected until we get the null space, or until the grasped object has zero total
freedom. Let’s first define convexes and three operations on convexes: convexe
addition, intersection, and dual.

Definition 2.3 Let C be a non-empty set of vectors. We define by conveze C<
the set of all non-negative combinations of vectors in C, formally:

c< = {s|s=;a.~si,a.~20,s.-€C} (5)

The vectors s; in C are called generating vectors of the conveze C<.

A conveze 1s pull when it contains only the null vector. A conveze s total when
it 1s the entire space.

An example of a convexe is the friction cone in the plane, Figure 3. The range
of forces inside the friction cone can be represented as the set of all positive combi-
nations of the two extreme rays of the friction cone. So a friction cone at point P
with normal n and friction angle ¢ can be represented by a two-wrench convexe:

rot (—n,¢) rot (—n,—¢)

W< = {[P x rot(—n"f’)} ’ [p % mt(-n’—‘b)]}

where rot(x,0) is the direction vector x rotated by 8.

Definition 2.4 Let C<, ('S be two converes. The conveze addition of C< and
CsS, denoted C~ U C5°, s the least conveze that contains both C~ and C, <. For-
mally:
CRUCY = {s |8 = as + fs,,
a>002>0, s,e(‘f, s-;ECf}

(6)

SPull el Sdh Jedh 2l Sdi -5
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A
: P
2¢
W
w1 . 2.

Figure 3: A [riction conc is represented by a two-wrench convexe.

: Convexe addition ' is also known as the Minkowski's sum (Najleld et al. 1980).

‘_. An example of convexe addition is the combination of wrench convexes from more
than one contact. For example, cach point contact with friction gives a two-wrench
convexe. A grasp with two point contacts with friction has a wrench convexe which
is the Minkowski sum of the two convexes, describing the friction cone at each point
contact. From the above cquation, the resulting convexe can be gencerated by the
four wrenches, each is a force along an edge of the two friction cones. We note that
representing the convexe sum is trivial, except that the set of generating wrenches
can be redundant.

RS

B
[

PO MO

Convexes are closed under convexe addition and intersection. The intersection
of two convexes is defined as follows:

Definition 2.5 Let CS, C5 be two convezes. The intersection of C;~ and C;°,
denoted CS N Cy°, is the largest conveze inside both CS and Cs. Formally:

. ()fﬂ(f = {wlwecf,we(/‘f} (7)

Twist and wrench convexes are duals of cach other. The dual operation on twist

or wrench convexes is delined as follows:

Definition 2.6 Let C< be a twist or wrench conveze. The dual of C<, denoted
- (', 15 the conveze of veclors that are either reciprocal or repelling to all the vectors

Convexe addition is not set ynion, We borrow the union sign |J to empliasize the duality of the
convexe addition and the set intersection of two convexes, denoted (). ‘

.
LN N
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10 The Synthesis of Force-Closure Grasps In the Plane

in C<. Formally: s
C< ={s] [C]s > 0} (8)

where [C] is the matriz whose rows are generating vectors of the conveze C<.

One use of the dual operation is to calculate the twist convexe T< describing
the total freedom of the system from the wrench convexe W <. Solving for the twist
convexe is equivalent to solving the following system of linear inequations:

W)t > o

where t* is the spatial transpose of the unknown twist, and each row of matrix [W]
is a wrench of W. The product of t* and the ith row of [W| gives the virtual work of
twist t against wrench w; of W. This virtual work must be cither zero or positive,
and similarly for all other rows.

The duality between twists and wrenches allows us to compute in the wrench-
space and deduce equivalent result in the twist-space, and vice versa. See Figure 5.
The following Lemma summarizes important facts about the dual operation, the
convexe addition and intersection of twist and wrench convexes. For a proof see
(Hunt 1956).

Lemma 2.1 Let W<, T< be respectively a wrench and a twist conveze. Let C<
be either a wrench or twist conveze.

1. c< = ¢<

2. W< = < T< = w<

3. C<N Cc< = null space C<U C< = total space

4. CF = CF ifandonlyif C< = CS (9)

5. CSNCS = CfUCT
6. CFUCS = CENCr

2.4 Dual Systems

We have seen that twists and wrenches form dual systems. In planar mechanics, a
twist can be represented by a 3-dimensional spatial vector as follows:

do;
t = dz (10)
dy

du, is the infinitesimal rotation about the z-axis, and [dz.dy] is the infinitesimal
translation of the origin in the zy-plane. Similarly, a planar wrench can be repre-

.........

LA B AR e o-n o g 8w g

WOwY W T T w




3. Hepresenting Contacts and Grasps 11

sented by:

W= 5y (11)

where |f,, f,| are the two force components in the zy-plane, and m. is the moment
component about the z-axis.

In this 3-dimensional space, we can identify two pairs of subspaces which form
interesting dual systems:

e The space of zy-translations, and its dual which is the space of all force
dircctions in the zy-plane.

e The space of pure moments or torques about the z-axis, and its dual which is
the space of clockwise and counter-clockwise rotations about the z-axis.

It is well known that any planar motion can be decomposed uniquely into a transla-
tion and a rotation about the origin. So, the space clockwise and counter-clockwise
rotations, and the space of zy-translations are two independent subspaces of the
space of planar twists. Similarly, the space of torques and the space of force direc-
tions are two independent subspaces of the space of planar wrenches. Force closure
for these two pairs is very simple, and is discussed in sections 4 and 5. For the mo-
ment, we turn away from force closure to discuss the issue of representing contact
and grasp.

3 Representing Contacts and Grasps

3.1 Primitive Planar Contacts

We want to represent the range of forces and moments that can be exerted on rigid
objects through a planar contact. Figure 4 depicts the different types of contact
one can find in a planar grasp. The first column describes the physical contact with
the finger on top and the grasped object below it. The second and third columns
describe respectively the wrench convexe, representing forces that can be applied to
the object, and the twist convexe, representing the total freedom of the object. Each
convexe is represented by a minimal set of gencerating vectors. The twist convexe is
computed by taking the dual of the wrench convexe.

Any planar contact can be decomposed into a combination of the following
primitive contacts:

e [I'rictionless point contact — We can apply only a single pure force, normal
to surface, through a frictionless point contact. The wrench convexe has a single
wrench. The twist convexe has three twists: a rotation about the point of contact,
a translation along the edpe of the object, and an unisense downward translation
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which breaks contact with the finger. This downward translation is a repelling twist
where as the first two twists are reciprocal ones. Figure 4.a.

e Point contact with friction — The friction cone at the point of contact shows
the range of pure force that can be applied through the point contact. The wrench
convexe has two wrenches which are along the two extreme rays of the friction
cone. Any force pointing inside this friction cone can be written uniquely as a
positive combination of the these two wrenches. The twist convexe has two unisense
translations, each reciprocal to one wrench and repelling to the other. It also has a
free rotation about the point of contact as above. Figure 4.b.

e Frictionless edge contact — 1t is well known that for rigid objects, any force
distribution along the segment of contact is equivalent to a unique force at some
point inside the segment. So a frictionless edge contact gives us the ability of
exerting a range of forces perpendicular to the edge and going through the segment
of contact. This range of forces is mathematically the positive combination of two
forces at the two ends of the segment of contact. So the wrench convexe has two
wrenches.

Solving for the dual of the wrench convexe, we get a clockwise rotation about
the left end point, a counter-clockwise rotation about the right end point, each
breaks contact with the other end point. Since there is no friction between the two
edges, the object can freely slide horizontally in both directions. Note these three
twists form the minimum representative set for the twist convexe. The downward
translation is not present because it can be synthesized as the sum of the two
rotations about the two end points. Figure 4.c.

e Edge contact with friction — Instead of a single force perpendicular to the
segment of contact, we can now apply any force pointing inside any friction cone
inside the segment. The wrench convexe becomes the convexe addition of two
convexes each representing a friction cone at one end of the segment of contact.

With friction between the two edges, the object can no longer slide horizontally
without constraint. However, it can still rotate about one end of the segment of
contact and break contact with the other end. Figure 4.d.

e Soft finger contact — From a force closure point of view, a soft finger contacting
an cdge is the same as an edge contact with friction. The pressure distribution
is irrelevant to our domain which is concerned with whether the object can be
constrained with these contacts, rather than how much force should the fingers
apply to the object.

A soft finger becomes useful when it comes to contacting on the inside or outside
of a corner. Figure 4.e shows a soft finger contacting on the outside of a corner. The
wrench convexe is the convexe addition of two convexes, each describes the edge
contact with friction on one side of the corner. The minimum number of generating

B wrenches is six.
k- The object cannot rotate about the two ends of the soft contact. But it can still
break contact by sliding downward. This downward sliding is no louger repelling if
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14 The Synthesis of Force-Closure Grasps In the Plane

the corner angle is small enough, or if the friction cone is large cnough. We’'ll see
in subsection 6.3 that friction plays a crucial role in reducing the required number
of point contacts of a planar grasp from four to two.

People tend to grasp at the edges and corners if there is no reachable pair of
parallel faces. Why? One among many plausible answers is the availability of a
larger wrench convexe, which means not a more stable grasp but a greater ability
to constrain the object by applying necessary forces through the soft contacts. A
soft contact can be approximated as a point contact with a much larger friction
cone. So a grasp with two soft contacts is better than a grasp with two point
contacts with friction.

Gravity is not a contact, but it does play a role in constraining the total freedom
of the object. For example, the box of Figure 2 is immobile on the table because
the force of gravity is holding it down to the table. We can view the box as being
grasped, or more exactly constrained, by two contacts: a plane contact between
the bottom of the box and the table, and an imaginary point contact at the center
of gravity of the box. Gravity is a blessing in this case, because without gravity
the box can freely float upwards! We can easily include the effect of gravity by
imagining it as a frictionless point contact at the center of gravity of the object. A
grasp with gravity may need one fewer contacts than one without gravity.

3.2 Dual Representations For Grasps

Twist and wrench convexes are two dual representations for contacts. Convexes are
closed under convexe addition and intersection. We can add wrench convexes from
all the contacts or intersect the corresponding twist convexes to find the resulting
wrench or twist convexe of the grasp. We have here two dual view points and two
equivalent ways to represent grasps:

e A constraint view point. — Wrench convexe describes the set of forces and
moments which constrain the object. A total wrench convexe means we can
arbitrarily apply any force and moment on the object, and so we can grasp it,
instantaneously rotate or translate it in any way we want.

e A freedom view point. — Twist convexe describes the total freedom of the
object. A total twist convexe means the object can freely move relative to the
fingers; a null twist convexe means the object cannot break contact without
external work against contact forces exerted by the fingers.

Which representation, twist or wrench convexes, is better? For planning grasps,
wrench convexes are definitely more efficient 2 since generating wrenches can be

2We note briefly here that the twist convexe representation is more officient for describing the total

freedom at the end effectors of linked manipulators. Ifinitesimal motions and velocities of the
end effector due to cach joint are “added’, and the end effector can have arbitrary motion if the
twist convexes of all the joiuts *add up” to a total convexe,
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Figure 5: Duality between twist and wrench spaces

deduced readily from the type of contact, and we can just take the union of all
the generating wrenches to describe the grasp. If we choose twist convexes as the
representation, for each contact, we have to compute the dual of the wrench convexe
to find its corresponding twist convexe, and then compute the intersection of these
twist convexes, see Figure 5.

To represent the set of force closure grasps on a set of edges, we have another
representation called a grasp set. lHow a grasp set is defined and calculated is
presented in Section 6. Before looking at grasp sets and how they are constructed,
let’s step back, and ask again: “What is a force closure grasp?”

We certainly know what force closure means by now. It means the ability to
exert arbitrary force and moment on the grasped object, or that the object is totally
constrained. We have also seen one way of casting the force closure problem, that
of solving &« system of linear inequations:

Wit > o

where W is the set of generating wrenches collected from all the contacts of the
grasp. We can design a gencrate-and-test algorithm which enumerates all the pos-
sible grasps, and test cach grasp by solving the above system of linear inequations.
There are two main objections to this scheme: first, the sct of possible grasps is infi-
nite; second, the grasp synthesis uses an analytical formulation which blurs critical
features of the domain such as the diflerence between a force and a pure torque.

The key is to make the force closure constraint explicit, and this is what we
explore next. For a quick reading of the paper, the reader may browse through the
gcometrical view of force-diréetion and torque closure first, Sections 4.3 and 5.3. Ile
can return for more analytical proof later. Algorithms for synthesizing force closure
grasps arce presented in Sections 6 and 7. Due to the explicit formulation of the
force closure constraint, the algorithms are not only fast but also very simple.
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4 Ability To Resist Arbitrary Translation

4.1 Force-Direction Closure with Planar Forces

When can a grasp resist arbitrary planar translation of the object? Informally, the
contact forces of the grasp must have directions that span the space of all directions
in the plane. An example of spanning the space of all directions in the plane is
three directed rays going from the center of gravity of a triangle out to the three
vertices of that triangle.

Formally, the ability of a grasp G to resist arbitrary translation of object B can
be formulated in three equivalent ways shown in the following theorem:

Theorem 4.1 Let a grasp configuration G be described by the set of wrenches W.
Each wrench tn W 15 a contact force which acts on the object B. The three following
clauses are equivalent:

1. Any non-null translational twist t = [0 | v, v,] of the object B 1s contrary to
at least one wrench of W.

2. There is no non-null translational twist either reciprocal or repelling to all
wrenches in W.

8. The positive combination of wrenches in W can generate force vn any arbstrary
direction. The grasp G 1s said to have force-direction closure.

Proof: The second clause is the double negation of the first clause, so they are
equivalent. They express two equivalent views: one is the existence of contact forces
which resist arbitrary translation, the other is the non existence of free translation,
or translation that breaks contact with the fingers.

The second and third clauses are dual of each other. Let’s denote by W,i,'
the convexe of force directions which can be generated by W. Similarly, we denote
va.v., the convexe of translational velocities of object B in the plane. We have seen
in Section 2.4 that the convexes WS s, and T,f‘w are dual of each other. So Tviw

null implies that W,f',' is total, and vice versa. @

4.2 An Analytical View of Force-Direction Closure

The necessary and sufficient condition for a set of wrenches W to generate force
with arbitrary direction is:

Theorem 4.2 A set of wrenches W can generate force in any direction if and only if
there exists a three-tuple of wrenches {w,, W3, ws} whose respective force directions
f1,f3,fs satisfy:

o Two of the three directions fy,fa3,fs are independent.

Eed B
¥
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o There exist a, 3, v all greater than zero, such that:
afl -+ ﬁfz + ’7f3 = 0
That 13, a strictly positive combination of the three directions is zero.

Proof: We use the second clause of Theorem 4.1 to find the necessary and
sufficient condition for which there is no translational twist reciprocal or repelling
to W. No reciprocal or repelling translational twist means the system of linear
inequations described by:

W] t* > 0 (12)

has no non-zero solution t® = [v,, v, | 0. t® is the spatial transpose of the twist t.
L v S

Since a translational twist is a free vector with zero angular velocity, we get
a reduced system of homogeneous linear inequations in only two unknowns v,,v,.
For such system to have no solution, we must need at least three inequations, or W
must have at least three wrenches (Hunt 1956, Strang 1976).

It is obvious that if no solution exists for some three-tuple of inequations of
system (12), then no solution exists for system (12), and vice versa. Without loss of
generality, let’s assume that W contains exactly one such three-tuple {wy,wa,ws}.
After dropping out the moment and angular velocity terms, system (12) reduces to:

flz fly v 0
f?z f2y ( vz ) Z 0 (13)
faz fay v 0

There is no homogeneous solution if and only if the 3x2 matrix [W] is of rank
2, or if and only if two of the three force directions are non-parallel.

Assuming that there is no homogeneous solution, the rank of [W]is r = 2. Any
particular solution must be a 1-face ("r-1”-face, Hunt 1956) with a zero product
with one row of [W] and strictly positive products with the remaining rows of
[W]. In other words, the necessary and sufficient condition for the existence of a
particular solution is that the solution has a zero product with one row of {W], and
two non-zero products having the same sign with the two remaining rows of [W]. 3

Conversely, there is no particular solution if and only if all 1-face vectors per-
pendicular to one row of [W/| have products of different signs with the remaining
rows of [W]. Concretely, let's solve for the nonexistence of repelling translational
velocity v reciprocal to the force direction fy:

flz .fly v 0
m | (2) = | & (14)
frz f3y y —"N

3n the case the two non-zero products are both negative. we can always negate the solution to
make the non-zero products positive,
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Bi1,7: are both of the same sign and non-zero.

‘ From the first equation of system (14), we solve for v,,v, in terms of f\,, fi,,
and replace them in the second and third equations to get an equation in terms of
the three force directions f;,f3,fs. After simplifications, we get:

(fa xf3)f1 + fifa+nufs = 0 (15)

By rotating the subscripts and coefficients, we get two other equations for the
- non-existence of repelling translational velocity which is respectively reciprocal to
- the force direction f3, and fy.

aof; + (fs X fl) fi+ '72f3 =0 (16)

asfy + Bafa + (fl X fz)fs =0 (17)

In the above equations, (15) (16) (17), the coefficients a,,8; must have the same
sign within each equation.

Without loss of generality, let’s assume that the force directions f, f3, fs are or-
dered counter-clockwise, so that all the pairwise cross produrts are strictly greater
than zero. Since we have assumed that two of the three force directions are indepen-
dent, the third force direction can be uniquely expressed as a linear combination of
the first two. This implies that the three equations (15), (16), and (17) all express
one unique linear combination, describing the constraint that the positive combi-
nation of the three force directions is null. We conclude that: assuming two force
directions are non parallel, there is no repelling translational velocity if and only if
there exist a, 3, all greater than zero, such that:

ofy + ffa +4fs = O (18)

4.3 A Geometrical View of Force-Direction Closure

Theorem 4.2 can be captured in a more suggestive and compact way as follows:

Corol'.~y 4.1 A set of wrenches W can generate forces in any arbitrary direction
) if and only if there exists a three-tuple of force-direction vectors fy,f3,fs whose end
- points draw a nonzero triangle that includes thesr common origin point.

Proof: A bit of geometry will convince the reader that the above corollary is
equivalent to Theorem 4.2. Alternatively, we can start from system (14) and solve
for the product 8,4, which is the product of two cross-products:

Bin = (fl X f?) (f, x fl)
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Figure 6: A geometrical view of force-direction closure.

Similarly, the other two products asv. and a38; are:
ayy2 = (fi x f3)(f3 x f3)
Q3 ﬁg = (f; bt fl) (fg x fs)

Without loss of generality, we assume that the force directions are ordered
counter-clockwise. Since the coeflicients o, 3, all have the same sign and are non-
zera, their pair-wise products and the cross-products must be strictly greater than
zero. Recognizing the cross-product between two unit force directions as the sine
of the angle between these two force directions, we can conclude that the three
angles in between the three force directions must be strictly greater than 0 and less
than 7. This is nothing more than the picture of three vectors pointing outward
from a common origin with their ending arrows drawing a triangle which includes
this origin, sce Figure 6. @

5 Ability To Resist Arbitrary Rotation

5.1 Torque Closure with Planar Forces

We now investigate the necessary and suflicient condition for a grasp to resist clock-
wise and counter-clockwise rotations of the object. First, let’s look at three equiv-
alent views of the same problem:
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Theorem 5.1 lLet a grasp configuration (G be described by the set of wrenches W.
Each wrench in W 1s a contact force which acts on the object B. The three following

clauses are equivalent:

1. Any non null rotational twist t = w, w,r,, ~w,r, of the object B is contrary
= to al least one wrench of W.

2. There 1s no non null rotational twist either reciprocal or repelling to all

wrenches in W.

8. The posttive combination of the wrenches in W can generate clockwise and
counter-clockivise torques. We say thzt grasp G has torque closure.

Proof: The second clause is the double negation of the first clause, so they
are equivalent. They both express our intuitive notion that saying "there is no
free rotation nor a rotation that breaks contact” is equivalent 10 saying that "any
rotation will be resisted by a contact force”, exerted by some finger of the hand.

The second and third clauses are dual of each other. Let’s denote by W,f. the
convexe of torques which can be generated by W. Similarly, we denote by T‘f the
convexe of rotations in the plane. From Section 2.4, we know that the two convexes
Wm<‘ and Tf are dual of each other. So Tf_ null implies W,S total, and vice versa.

5.2 An Analytical View of Torque Closure

Torque closure can be achieved by creating enough friction on some axis of rotation
of the object. The friction between the rotating object and its supporting axis
will create a torque which resists any clockwise or counter-clockwise rotation of the
object. Unfortunately, in most grasp configurations, we have only point contacts,
and through a point contact, a finger can exert only a pure force on the object and
not torque. The interesting problem is how to achieve torque closure with only
pure forces. The following theorem states the analytical necessary and sufficient
condition for a set of contact forces to generate clockwise and counter-clockwise

torques.

Theorem 5.2 A set of planar forces W can generate clockwise and counter-
clockwise torques if and only if there exists a four-tuple of forces {wi,wa,ws, Wy}
such that:

e Three of the four forces have lines of action that do not intersect at a common
point or at infinity.
o Letfy,...,fy be the force directions of wy,...,Wq. Let py3 (resp. psg) be the

point where the lines of action of wy and wy (resp. ws, and w4 ) intersect.
There exist a, 3,7,6 all greater than zero, such that:

Pse — P13 = 1 (afi + ff3)
= 3 (fs + 6f4)
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5. Ability To Resist Arbitrary Rotation 21

Proof: [The proof is quite long and has the same flavor as the proof of theo-
rem 4.2. On first reading, the reader is advised to skip this proof and return to it
later.]

We use the second clause of Theorem 5.1 to find the necessary and sufficient
condition for which there is no rotational twist reciprocal or repelling to W. This
means that the system of linear inequations described by:

Wi t* > 0 (19)

has neither homogeneous nor particular solution. t® = |w,ry, —w.r; | w;]' is the
spatial transpose of the twist t.

We get a system of homogeneous linear inequations in three unknowns. For such
a system to have no solution, we need at least four inequations, or four wrenches.
If no solution exists for some four-tuple of inequations from system (19), then no
solution exists for system (19), and vice versa. So, without loss of generality, we
assume that W is exactly one such four-tuple of wrenches.

There is no homogeneous solution if and only if the 4x3 matrix (W] is of rank
3, or if and only if there is a 3x3 block from [W] that has non zero determinant.
Assume that the first three rows form such block. The determinant is:

fiz fly ry x fi
det (Wi, wa,ws) = | fa; fo, ra x f3 (20)
f3: .f3y rsg X fa

By expanding the determinant along the third column, we get:

det (Wl,WQ,Wa) = (rl X fl) (fz x f3)
+ (l‘g X fg) (fa X fl) (21)
-+ (l‘3 X fs) (f; x fz)
From the above equation, if the three lines of force are parallel with each other, then
the three cross products of the force directions are zero, and so is the determinant.
Let’s assume that they are not all three parallel, and that the lines of action of
w1, W3 intersect at p13. We can choose pya as the origin of our reference frame.
With this choice of origin, the moment components of the wrenches wj, w3 become
zero, and so the first two terms in right hand side of equation (21) drop out. The
determinant reduces to:

det (WI,W),Wa) = ((r; - plz) X fa) (fl X fz) (22)

The determinant can be zero if and only if the first cross-product in equation (22)
is zero, or if and only if the line of force of wy also goes through py3. We conclude
that there is no free rotation if and only if both the followings do not hold:

e The three lines of force intersect at a conumon point. In this case, the object
B can freely rotate about the z-axis going through this commeon point.
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22 The Synthesis of Force-Closure Grasps In the Plane

o The three lines of force are all parallel. This case corresponds to a free trans-
lation perpendicular to the direction of the three forces. We can think of this
translation as a rotation with rotation point at infinity.

Assuming that the 4x3 matrix [W] is of rank 3, there is no particular solution
to system (19) if and only if any 2-face vector orthogonal to two rows of (W] has
products of different signs with the remaining rows of [W]. Let’s solve for the
non-existence of rotational twist, reciprocal to the first two wrenches wy, wjz, and
repelling to the two last wrenches wg,wy:

flz fly l‘1)(1.1 W 0
Jor fo, Ta x f3 =y 0

—W.Tz = 23
fsz fay ra x fs :r Yo (23)

Jaz f4y re % f4 —bo

~0, 8y are both of the same sign and non zero.

Without loss of generality, let’s factor out w,. Let Py, (resp. P34) be the point
where the lines of force of wy, w3 (resp. ws,wy) intersect. From the first two
equations, we solve for the point of rotation r:

r = o [(ra X fa)fy — (11 x 1) ] (24)

= Pi1a

The above equation makes sense: the point of free rotation is the point where
the two lines of force intersect. Similarly, from the third and fourth equations of
system (23), we solve for the instantaneous center of rotation r:

r = fi%fz [(r4 x f4) fa - (r.-, X fs) f4]

+ f;‘fﬁ (Yofs + bof4) (25)

Pss + fs—f'?; (Yofs + bofa)

Eliminating r from the two equations (24) (25), we find a constraint equation
with the following form:

P13 —Psa = (nfs+6f) (26)

where v;,6; have both the same sign and non zero.

By rotating the numbers 1,...,4 and the coefficients a,...,6, we get the equa-
tion expressing the nonexistence of repelling rotational twist t® which is reciprocal
to the wrenches ws, wy:

Ps4 — P12 = (afy +Bify) (27)
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We also get four other equations for the other two pairings [(wy, ws), (W3, W)
and [(wy,wq), (W3, W3)]:

P1s —Pas = (fafa+ 621fy) (28)
Pis —P1s = (oofi + 72fs) (29)
P14 —P3s = (P3fa+ ~afs) (30)
Pas — P14 = (asfy +6;5f4) (31)

We use the fact that the points Py, P;3, P;; are on the same line of action of
wrench wy, etc ... to prove that the above six equations (26)—(31) are satisfied if
and only if all the coeflicients a,,...,6, are of the same sign. We are able to prove
a stronger result which states that if one pair of equations like (26, 27) holds, with
coefficients a;, ..., 6, all of the same sign, then the other two pairs (28, 29) and (30,
31) hold, and vice versa. See Corollary 5.1.

With Corollary 5.1, we conclude that there is no rotational twist repelling to W
if and only if any of the 3 pairs of equations (26, 27), (28, 29), (30, 31) hold. Namely,
if and only if there exists a pairing such as (w1, ws), (ws, wq)] with a, 8,7,6 all
greater than zero, such that:

= x({afy + Af;)
F(vfs + 6fd)

Ps4 — P12 (32)

Il

Particular cases arise when the pairing [(w1,wj3),(Ws,W4)] has wy parallel
to wg, or wg parallel to wgq. We can avoid handling these particular cases by
considering another pairing like [(w1,ws), (W32, wWy)], or [(wy,Wq), (w3, wWs)|. If we
assume that the four forces in W span the space of all force directions, then we
never get three forces that are parallel with each other. So there is always at least
two pairings that work to prove the nonexistence of rotational twists repelling to
W if the grasp has torque closure. B

To complete the discussion of this section, we state and prove Corollary 5.1
which allows us to consider only one pairing instead of all three possible pairings:

Corollary 5.1 Let four lines with directions fy,f3,fs,fg intersect patrwise at siz
poinis P]g, v ,P34.

Psa—P13 = (ayfy+Bifa)
= —(mfs + 6 fq)

P3¢ —P1s = (aafy +7ofs) (33)
= —(Bafa + 6264)

Pas — P14 = (oa3fi+63f4)
= —(fsf3 + vafs)

.....................................................
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The above 6 equations all have Greek coeflicients with the same sign within each
cquation (nol necessarily across all sir equations) of and only of o, 4,7, 6, all have

the same sign for cilther v 1, or 2, or 9.

Proof: Let’s assume that we have the first two equations:

Ps4 P13 (o, fy ¢ ) 13)

(nfs i 6, 104) ()

with ap > 0, A4 > 0, and 1,6, > 0. We'll prove that the four cocflicients ay, 8,7, 6,
are all greater than zero, that is, we have the scenario iltustrated in Figure 7. We

compute the intersection points pgs and pig:

N |
P3s P13 ! ;; i 2
. f
Pssa | :-; A f: fs
35
] bt (35)
Pia = Pia b g
o f
= Psa }')l'._i'i fq
where p’ = pss — p1a. Next, we compute the expression for p3s — pra:
fq - fe - T
Pas - P14 = M i‘i_.—i‘: fi + 4 f; ‘."'f; fa
f, - I f, - L (36)
- 1°°2 - 0 S
= o fq Ty fs B f: . f} fa

Expressing pas — p14 in terms of linear combination of {f3,fs} is difficult. In-
stead of proving that there exist B3, 43 non zero and of the same sign such that:

Pas —P1a = G3f3 + vifs

we prove the equivalent: the vector pas — p14 has opposite sign cross-products with
the vectors f3,fs, 1.e:

[(Pas - P1a) x fa3][(Pas —p14) x f3] < O
From equations (36), we get:

(fl x _f))g (fa X f4)2

[((Pas — P14) x f2][(Pas - P14) X f3] = By~ (fe x 1) (37)

We deduce that the necessary and sufficient condition for the two last equations
of (33) to hold is that 3; be of the same sign with v,. We extrapolate this partial
proof and argue that:
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-

\.. Figure 7: A geometrical view of torque closure.

e [>] The fact that the six equations of (33) hold implies that o, ..., §; all have
the same sign for v = 1, or 2, or 3. We have proved this implication for ¢ = 1
using Lquation (37). Similar proofs exist for i = 2 and 3.

e [<z] From Equation (37), if ay,...,6, all have the same sign then:

Pis —~P1s = PBify + vfs

with (373 > 0. Equations similar to (37) allow us to deduce that all the six
equations in (33) must hold.

5.3 A Geometrical View of Torque Closure

It is useful to formulate Theorem 5.2 in more geometrical terimms. The following
corollary captures both constraints of Theorem 5.2 (Figure 7):

Corollary 5.2 A set of planar forces W can generate clockwise and counter-
clockwise torques if and only if there exisls a four-tuple of forces {wy,wa, w3, wyg}
such that the seqgment Py Py, points out of and into the 2 cones C5, Csy, formed
by the two pairs (Wy,w3), and (Wg,wy).
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20 The Synthesis of Force-Closure Grasps In the Plane

Proof:

e The fact that the 1 forces form two non-uull cones €1, 0 Cl, guarantees that
no three forces are pavallel. Next, the fact that the segment 2%y is nou zero
guarantees that the four forces do not intersect at a common point. This is
the hirst constraint of Theorem 5.2.

e Let’s look at:

Ps4a P13 afy + Af;

(vfs + 6f4)
where all the Greek coellicients are strictly positive. Note that ofy | /f3 is the
cone of rays bounded by the force directions fy, fa, that is C'[, . Similarly, Ca
is described by Afs | 8. The segment 5 P points ‘out of” O3 (resp. ‘into’

-';ﬁ) if and only if psg Ppig it is a positive (resp. negative) combination of

the force directions (fy,f3) (resp. (fs,f4)). This is the second coustraint of
Theorem 5.2.

From Figure 7, the reader can check for torque closure in the plane by drawing
a parallclogram inside the overlapping region of the two cones Cé, C:,f. From
this parallelogram, he can generate clockwise and counter-clockwise torques from
non-negative combination of the four pure forces.

6 Finding Force Closure Grasps

We have seen from Section 2.4 that the space of planar twists and wrenches are dual
of each other. The following theorem formally states the force closure constraint in
the plane:

Theorem 6.1 Let G be a planar grasp described by the set of wrenches W. Let’s
denote by W< the wrench conveze spanned by W, and by T< the twist convere
reciprocal or repelling to W. The following clauses are equivalent:

1. G is a force closure grasp.

2. W can generate force with arbitrary dircction, and moment. Formally:

W< = ooff., fy|m]

8. There 1s netther translational nor rotational twist that is free, or that breaks
contact with G. Formally: -

T< = 0w, | vz, v,

. .
N
WL o
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We know from Section 2.4 that the convex addition of the convexe of adl force
and the convexe of all torques 0o jm.| is the convexe of all planar

directions oo f,, [,
lorces oo |f., [, Tm . So, from the above theorem, the necessary and suilicient
cotdition for lorce closure is contained in both Theorems 4.2 and 5.2, If we assume
that through any contact we can only exert force and not torque, then Theorem 5.2
subsumes Theorenr 4.2, Thus Corollary 5.2 adso describes the geometrical necessary

and suflicient condition for force closure with planar forces only.

6.1 Frictionless Grasps on FFour Edges

Without friction, a linger can exert only a pure foree, going through the point
of contact and perpendicular 1o the edge (Figure 8). In this case, to have force
closure, we need at least four point contacts. Let’s start by giving the algorithm for

constructing a force closure grasp with four contacts on four edges of an object 3.

Algorithm 6.1 A force closure grasp belween four edges e,...,e; can be con-
structed as follows: :

1. Pair up two edqes e, es againsl e3,e4 such that the two sectors Cya, Caq are
non null. By sector Ci2, we denole the smallest sector belween the normals
ny, - ng. Stmilarly for sector Cay.

2. Check that the two sectors Cia, C34 counter-overlap, t.e:
Ca) —Cae # 0 (38)

8. Find the parallelogran Il; by intersecting the two infinite bands perpendicu-
lar to and conlatning the edges e; and e;. Parallelogram I,y s the locus of
points Py where the lines of force of wi, w3 intersect. Similarly, we find the
parallelogram 113, which represents the locus of points Pyy where lines of force
of ws,wy tnlersecl.

4. Pick two points Py, P34 respectively from the parallelograms [l,5, 113, such
that the direction of the line joining Py, and Py4 1s in the counter-overlapping

sector C = Cia N ~Cus.

5. From point Py, backproject along the normal ny, (resp. n3), to find the grasp
point Py, (resp. I»), on edge ey, (resp. e2). Similarly, we find the grasp points
P3, and Py by backprojecling P34 respectively along the normals ng, ng.

6. The four grasp points P, Py, Py, PPy found as above form a force closure grasp
G(Py, P2, 15, Py) between the four edges.

Note that for each point 5, we can find & convex region of points P34 by inter-
secting the parallclogram Iy, with the two-sided cone C* (P, C) having vertex
Py, and sector C. The two-sided cone is the combination of two liclds of view from
point. Py with sectors ¢ and - . The field of view is defined as follows:
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Figure 8: Finding frictionless grasps on four edges.
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Definition 6.1 The field of view of « figure A with seetor C 1s the manimal cone
" (I, C) such that any ray from verter | with direction in sector C will cut the
Jigure A, Vhe field of mew s open-ended and one-sided.

We can cut the parallelogram 1y, with the field of view of 1» and sectors 1 C.
- We get a convex region Riy which represents the set of points %4 which gives a
force closure grasp with at least a point in 4. For example, the field of view of

’ 1> and sector € includes the parallelogram g, and so R:L 4. Using sector
- C will result in a smaller convex region Ry, and Ray Ry U Ry,

- Similarly, we find the convex region R > which represents the set of points Do
which gives a force closure grasp with at least a poiut in Iy, This time the
respective sectors of view is | . From the construction, any point Py in Rya will
have at least one corresponding point P4y with which we have a force closure grasp.

(t s clear that:

Corollary 6.1 There crists no force closure grasp between four edges ey, ..., eq of
and only if either of the following holds:

1. The two non null sectors Ci2, and C54 do not countler-overlap, t.e.:
C Cof) Cu 0

2. The two fields of view of the parallelograms 11}, and 134, with respective sec-

~.. tors +C and 1C, are completely offset one from the other, t.e.:
R R]g = 0
X or Ryy = 0

- The first constraint is called the force-direction constraint, expressing the con-
dition for force-direction closure. The second constraint describes the condition for
i torque closure. We call the second constraint the field-of-view constraint, because
" of the way the regions Rs, R34 are constructed. The force-direction constraint is
more constraining than the field-of-view constraint when the object has perpendic-
ular edges like rectangular blobs, and is less constraining otherwise. For example,
a grasp on a rectangle needs all four different normals for force-direction closure,
where as a grasp on a triangle needs only three normals.

The following theorem gives a geometrical representation of the set of force

closure grasps, that is, the grasp-set from 4 cdges.

Theorem 6.2 The set of all possible grasps on four edges e,...,eq, denoted
G (ey,...,eq4), ts completely described by the lwo parallelograms 115, I3, and the

counter-overlapping sector C = Ci2 1 ~Cy4, defined as above.

. Glen,...,ed) = (M, Mgy, Cia [) ~Csa) (39)
- We can restrict the parallelograms I1y,, I154, by applying the field-of-view constraint,

;:: -::}-.'_-. and describe the grasp set with the two conver regions Ry2, R34, constructed as above:

2 Glen..e)) = (Riz, Ryay Cra [ ~Caa) (40)




30 The Synthesis of Foree Closure Grasps In the Plane

Proofl: It is ohbvious from the construction, and from Corolliary 5.2 that the sct
of grasps characterized as above is complete for the pairing of edyges ¢, ca against
ey, eq. The reader may wonder whether the different pairings in step 1 of the above
construction gives dillerent sets of grasps. The answer is no.

Different pairings certainly give different descriptions for the grasp-set, because
we get different parallelograms and counter-overlapping sectors.  However, they
all deseribe the siune grasp-set. This is supported by Corollary 5.1, which says
informally that the three pairings are cquivadent to cach other. So, the above

description is complete. @

Complexity 6.1 Let B be the objecl grasped with four frictionless poinl conlacls:

o [Minding the grasp-sel or a force closure grasp belween four edges cosls conslant
time
o There are Oledges(B)|' A-tuples of edges of object B. So, Enumerating all the

Jorce closure grasp-scts of object B costs Oledges(B)}*.

6.2 Frictionless Grasps on Three Edges

We have seen from Corollary 4.1 that to have force-direction closure we must have
at least three non-parallel forces. So we nced at least four contacts on three non-
paralle] edges, if there is no friction between the fingers and the grasped object.
With two of the four contacts on the same edge, there are possibly three grasp-sets
between three edges ey, e2,e5. (Figure 9).

[ (6’1,62, 61,33)

G (e1,e2,€2,€3)

[ (Cx,es, 82,83)
The problem formulated as above reduces to the problem of finding grasp-sets be-
tween four edges.

From Section 3.1, we can replace the two frictionless point contacts on the
common edge with a frictionless edge contact. This is a good illustration of how
we can grasp a same object with fewer fingers by using edge contacts instead of
point contacts. We’'ll sece how friction and soft contacts help even more in the next
subsection.

Figure 10 shows a stable grasp with three spring contacts on threce edges. The
fingers act as springs pressing exactly at the places where the inscribed circle of
the three edges is tangent to the three edges (Baker et al. 1985). This grasp
configuration corresponds to a local minimum of the potential function of the three
springs, so the grasp is stable. However, the object can still instantancously rotate
about the center of the inscribed circle with no opposing torque from the grasp.
Note that we cannot generate a torque about this center of rotation, from the
contact forces at the springs. The grasp is not force closure although it is stable for
arbitrary small motions of the grasped object.
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Figurc 9: Frictionless grasps on three edges.
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32 The Syuthesis of Force-Closure Grasps In the Plane

Figure 10: A stable grasp with three spring contacts.

6.3 Grasps on Two Edges Require Friction

Force closure grasps with only two point contacts instead of four require friction
between the finger and the object. We have scen from subsection 3.1 that the
existence of friction means the ability to resist against any force pointing into the
friction cone. In other words, a single pushing force pointing into the friction cone
can resist a range of forces described by the friction cone at the point of con‘act

(Figure 4.b).

Mathematically, this friction cone can be viewed as the positive combination of
the two extreme rays of the cone. So, a point contact with friction can be seen as
equivalent to two contact forces. Two point contacts with friction is equivalent to
four contact forces and so can result in a force closure grasp. The following theorem
states the necessary and suflicient condition for force closure from two point contacts
with friction:

Theorem 6.3 Two point contacts with friction at P and Q is a force closure grasp if
and only tf the segment PQ points out of and into the two friction cones respectively

at P and Q.

Proof: This is a well known fact of planar mechanics. Let’s however prove the
above theorem using a reduction from a grasp with 2 point contacts with friction
to a grasp with 4 point contacts without friction.

The reader will recognize that a friction cone at P, (resp. Q), is equivalent to
two forces wy, wj, (resp. wa, wy), along the edge of friction conc and going through
P, (resp. Q). We then recognize that point P, (resp. Q), is nothing more than the
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€ = C(-n1,¢) [ C(n3,¢)

I'igure 11: Finding grasps with friction on two cdges.
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wint M, (resp. %), So the above theorem is the reformulation of Corollary 5.2.
] 12 I | A
[ ]
Now, let's find the set of possible grasps [rom two edges o and oo, Sinee the
, I grasg Y f 2
oint of contact I’ (resp. Q). must lie on edge e, {resp. es). the parallelogram
] ) | [4 I Iy I 2 o
o, (resp. 1) reduces to the edge e, (vesp. er). We can restrict the edge ¢,
resp. e2), to the segment ¢, (resp. L), by intersecting it with the field of view
} 2)s 8 | I a), DY B
of ea, (resp. ¢;) with sector 1C (resp. 1 C). For the example in Figure 11, we
2 I 8 ]
have ef  ¢p and e),  ¢2. The construction of the grasp-set from two edges e, ea is
similar to the construction given in Algorithm G.1.

Theoremn 6.4 The scl of all possible grasps with friction ¢ on lwo edges e, eq,
denoted G(ey,e2), 1s completely deseribed by the two edges e, ex, and the counter-

overlapping seclor:

¢ C( ni,d) [ C(n3,¢)

of the two friclion cones resp. from edge e; and ¢a.
g (61,62) - <€|, €2, C) (4I)

We can restrict the edges e),es, by applying the field-of-view constraint, and
describe the grasp-set by the two segments €'\, €'s, as follows:

Glenea) = (¢4, €, C) (42)

How does soft finger contact compare with point contact with friction? Due
to the larger area of contact, we sce that a soft finger contact gives us a larger
riange of forces and moments showed by a range of friction cones instead of a single
friction cone (Iigure 4.¢). A more interesting comparison is to compare the range
of force directions. A soft finger contact at a vertex has a much larger range of force
directions. The soft finger contact can be approximated as a point contact with a
much wider friction conc. From Theorem 6.3, we have seen that the larger are the
friction cones at the points of contacts, the greater is the likclihood that they ‘see’
each other, that is the grasp is force closure. So a soft finger gives us even more
flexibility than a point contact with [riction. This partially explains why pecople
grasp objects at edges and corners, and also why the contacting surface of human
fingers had better be soft rather than hard as nails.

7 Tinding Independent Regions of Contact

7.1 Optimality Criterion

The previous section shows how to compute the sct of all possible force closure
grasps on a sct of edges. In this set, we can look for an optimal grasp. The optimal
grasp can be the grasp that requires the least amount of work from the fingers to
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counteract the effect of pravity, or the elfect of the moment of inerti, or some a
priort assumed disturbance, ete...

In task planning, an alternative definition of optimality is 1o best deal with
ancertainty and errors. We are interested i finding grasps that require as little
accuracy as possible. One aspect of that goal is to have grasps such that the fingers
can be positioned independently from each other not at discrete points, but within

Lirge regions of the edges. Formadly:
38 s s \

Definition 7.1 Let & he a grasp sel on n edges. Finger F, contacts al poind I, in
reqion v, of edge ¢, 1 I,...,n. G 1s a grasp set with noandependent reqions of
contact vy, ... 7, tf and only if:

VI ooy AP s Gy D) ds a foree closure grasp

yoee .

-~

G(ris...orn) s a grasp-set with oplimal independent regions of contact for the set

of edges {ey oo e} of and only if:

min (il el irad) s mazimal,

min (lirii, ... irn 1 l)) 45 maximal,. ..

k)
o I
1

min (7|l lirell) (s marimal.

where r, C e,. The contact seqments are ordered by decreasing lenglh.

The next subsection uses Theorem 6.3 to cast the problem of finding the optimal
grasp sets on two edges into a problem of fitting a two-sided cone cutting these two
cdges into two segments of largest minimum length. Similarly, using Corollary 5.2,
the problem of finding the optimal grasp set on three or four edges becomes a
problem of fitting a two-sided cone between 2 paraliclograms.

7.2 Optimal Grasps With Friction

We give the algorithm for fitting a two-sided cone €' (I, C) such that C* (I, C)
cuts the edges ¢; and e; into two segnents e} and ¢, with largest minimum length:

Algorithm 7.1 The optimal set of yrasps on two edges ey and ¢y can be constructed
as follows:

1. Find the two-sided cone C* (1), C) that cuts all of edge ¢, and very little or
none of edge es. We get a triangle N\, formed by edge e; and vertex I;. This
triangle represents the sct of vertices I, where the two-sided cone X (1, C)
monotonically cuts larger scqment ¢ and smaller segment €5 as we move from
edge ey to ey, Similarly, we find the two-sided cone C> (I, C) such that this
later cuts cractly the edge ea and very little or none of edge ¢,. We get a

«
."’
o

e triangle N\a formed by cdge ey and vertez I.

2. Find the trade-off region for verler I by intersecling the triangle /Ny with Na.

el
MM
ea e
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Figure 12: Finding the optimal set of grasps on two edges.

8. We cut the trade-off region with the bisector of the two edges e, and 5. The

optimal vertez 1s al one of the two endpoints of the inlersecling segment, or
anywhere on this segmenl, depending on the direction of the cone formed by
the two edges. If no wnlersection exists, then the optimal vertez 1s the point of
the trade-off region which 1s nearest to the bisector.

Proof: Figure 12 illustrates the different steps of the algorithm. Depending on
the way the upper cone cuts edge e,, we can partition the plane into 5 regions:

1.

The cone cuts in the interior of edge e;. This region is triangle /A; with one
of its sides being e;,. The length of the segment cut by the cone varies lincarly
with the distance of the vertex I; to cdge €,. In other words, the loci of I,
whose cone cuts e; with constant length form segments parallel to e;.

Only the left ray of the cone cuts edge e;. The loci of points /, whose cone
cuts e; with constant length form a set of line parallel to the left ray of the
cone and are continunation on the right of the loci found in region 1.

Only the right ray of the cone cuts edge e;. The loci are now the continuation
on the left of the loci found in region 1.

The cone includes the whole edge e; in its ficld of view. This region corre-
sponds to the ability of putting a finger anywhere on the whole edge e.
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The one-sided cone does not cot edge ¢,

The above algorithm handies the general case where the two triangles A\ and
Aa intersect. The trade-olf region is the intersection Ay AL Cutting this trade-
ofl region with the bisector gives us the locus of vertex | whose two-sided cone cuts
cquad segments on e and es. The optimal vertex of the cone can be either anywhere
on this locus or at the two end points of this locus, depending respectively on
whether e is parallel to ey or not. The case where the two triangles do not intersect

can be handled as casily. g

Complexity 7.1 Let B be the object grasped wilh two pornd contacls with friction:

o ["inding the optimal set of grasps with independent regions of contact on two

edges costs conslant lime.

o Enumeraling the optimal sel of grasps for all pairs of edges costs Oiedges(B)|*.
So, finding the oplimal pair of edges and ils corresponding set of grasps costs
Oledges(3)[*. The pair of contact regions found has the largest minimum

length.

7.3 Optimal Grasps Without Friction

Theorem 7.1 §G(r|,r2,73,74) is a grasp-set with independent regions of contact
Ty,...,T4 On edges ey,...,eq tf and only tf there exists a lwo-sided cone

ole (1, Cia N '—C:u)

which splits the two parallelograms I1/,, I1,), apart. I1),, (resp. I1},) is the restricted
purallelogram generated by the regions ry, ra, (resp. r3, r4), of edges ey, ey, (resp.

€3, €4)

Figure 13 illustrates the scenario described by the above theorem. The reader
can casily prove the above theorem from Corollary 5.2 and the definition of a grasp
with independent regions of contact (Definition 7.1). With the above theorem,
the problem of finding the optimal grasp-set with independent regions of contact is
cquivalent to the problem of fitting a two-sided cone C* (1, €), such that C* (I, )
cuts the parallelograms IT;, and {l34 into two isosceles /], and 115, with largest
minimum side.

Notice that as we translate one of the edges of the cone (' (I, C), the parallel-
ograms I/, and I1.], vary nonotonically in opposite directions. This monotonicity
allows us to design a constant time algorithm for finding the the best tradeoll posi-
tion of I, or the optimal grasp-set. The algorithm is shmilar to Algorithm 7.1, and
the details are skipped. It is more interesting to look at a high level description of
the conce-fitting problem.
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CX(1, ¢)
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Figure 13: Finding the optimal set of grasps on four edges.
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Figure 14: Scarch for the optimum vertex of the two-sided cone.
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10 The Syuthesis of Force-Closure Grasps In the Plane

We partition the plane into regions depending on how the two-sided cone cuts
the parallelogram /1, or how the contact segments overlap the two edges ¢ and ea.
In cach of these regions, the loci of vertex I whose cone restricts the parallelogram
s into smaller parallelograms of constant area form parallel lines shown by dashed
lines in Figure 1. We find similar regions and loci for parallelograam . The
problem then reduces to an intersection of these two sets of loci, and a search
for the best intersection point, or optimum vertex [. Finally, from this optimum
vertex I, we deduce the two restricted parallelograms 11, 115, that are largest and
independent from each other. We back-project parallelogram {1, (resp. [13,), to
lind the regions of contact ry, ra, (resp. 73, r4), on cdges ey, ea, (resp. ey, e4).

The algorithm sketched above lumps edge ¢; with edge es, as one pair, and edge
e5 with edge ¢4 as the other pair. One may wonder il a different pairing will give
a dilferent grasp-set. We have implemented the algorithm sketched as above and
confirmed that the three hest grasp sets found for [(eg,ea)|(es, e4)l, (e, e5)l(e2,e4)

h

[(e1,¢4)|(e2,e5)| give exactly the same set of contact segments on the four edges.
The fact that the algorithm does not depend on the 2-2 paring between the edges is
expected from Corollary 5.1, This fact reconfirms our carlier claim that the grasp-
set specified by the parallelograms I, Hsgq, and the counter-overlapping sector
Ci2 N - C34 completely describes the set of grasps on the four edges e, e, e3,€4.
This description is independent from the 2-2 pairing between the four edges.

Complexity 7.2 Let B be the object grasped with four frictionless point contacts:

o Finding the optimal set of grasps with independent regions of contact on four
edges cosls constant lime.

o [inding the optimal 4-tuple of edges and its corresponding grasp-sel costs
Oledges(B)|*. The four regions of contact found have the largest minimum
length.

8 Conclusion

8.1 Performance

The synthesis of planar grasps with force closure has been fully implemented in Zeta
Lisp, compiled and run on a Symbolics Lisp Machine. For the examples in Figure 1,
the optimal set of grasps with independent regions of contact on two edges can be
computed in 1/20 seconds. For four point contacts on three or four edges, this set
of grasps can be computed in 1/4 seconds.

The minimum length of the independent regions of contact is a good measure
of the tolerance of a grasp against inaccuracy in finger positioning. Finding the
4-tuple of grasping edges that has the largest minimum region of contact requires
cnumerating the maximal grasp-sets for all 4-tuples of edges. For a typical blob
with 6 edges, this enumeration can take 10 seconds.
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Grasps with maximum grasp resistance.
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Grasps with minimum grasp resistance.
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Figure 15: Grasps ranked by their resistance against unknown disturbance.
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We can rank the grasp-sets besed on some other eriteria such as grasp resistance.
Grasp resistance is delined as the work of the fingers in resisting, anknown distur-
banee of the grasped object. 10 can be the sum of all individual work of cach linger
in the hand, or the maximum work of all fingers. We choose to take the niaximum
work of all individual fingers to penalize grasps that have one flinger pressing very
hard on the object while all the others just lightly touch the object. T other words,
we want to minimize the waximal contact foree applied on the object.

Since any motion of the object can be uniguely decomposed into a translation
and a rotation about the origin, the grasp resistance against an arbitrary finite
disturbance of the object can be split into the sum of a4 grasp resistance against
arbitrary translation and and a grasp resistance against arbitrary rotation about
the origin. The two partial grasp resistances must correspond to the same lnger
or the same contact, and we must compute the sum for cacl contact, and pick the
maximum sum.

For simplicity, the current implementation computes the two grasp resistances
independently from each other.  Iu other words, for cach contact, we compute
the grasp resistance against rotation, then pick the maximum. We do the same
for grasp resistance against translation, and sum these two. The resulting sum is
only an approximation to the real grasp resistance. ' We rank the grasp-sels in
decreasing order of this approximate grasp resistance. Figure 15 shows the grasp-
sets with best, medium, and worst grasp resistance. The disturbance of the object
is an arbitrary translation ol 1 centimeter and a rotation of 15 degrees.

8.2 Extensions

The current grasp synthesis can be extended in many directions:

e Applying other constraints such as the work space of the hand, or the shape
of the hand and fingers. We want to make sure the grasp is feasible, or the fingers
can wrap around and make contact with the object at the desired points. This
problem can be formulated as a collision avoidance problem (Lozano-Perez 1983) by
computing the CO of the grasped object in the configuration space of the fingers.
We check to sce if there exists a configuration of the hand and fingers that is
outside of this CO-obstacle. Although general and mathematically complete, this
scheme can be computationally very expensive because of the high dimension of the
configuration space.

The current synthesis u<es a very simple hand model with fingers like chop
sticks perpendicular to the grasping plane. The finger tips can be anywhere inside
a circular workspace.

e Adding other optimality criteria such as stability, resistance against the effect
of gravity, or the effect of moment of inertia, ete... Just as we find restricted grasp-
sets with independent regions of contact, we can scarch for the most stable grasp,

$Grasp resistanee ix computed only for the representidive grasp at the siid points of the segments
of contact.




S T T e R N O R Ty eV ¥ % ™%

K
3
4
Y
y
A

8. Conclusion 13

assuing cach finger is modeled as aspring (Hanalusa and Asada 1977, Baker et al.
1985, Nguyen 1985). (Nguyen 1985) shows that we can synthesize a set of virtual
springs such that a foree closure grasp is stable. Fach hngeris a virtual spring, and
the contact is point contact without friction.

e The current synthesis can be casily extended to handle redundant contacts,
or other types of contacts such as edge contacts and solt finger contacts. A more
valuable extension is to synthesize force closnre grasps of 31) objects. futeresting
primitive configurations are grasps with two soft finger contacts, grasps with three
point contacts with friction, or grasps with seven frictionless point contacts, etc...
We are implementing the synthesis of 31 grasps. Results will be reported in (Nguyen

1986).
¢
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