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ABSTRACT

Sequential decoding is a decoding aigorithm for tree codes originaily
developed for single-user channels (i.e., channels with one transmitter
and one receiver). Sequential decoding reiies on what {s called a metric
to direct its ssarch and find the path in the tree that corresponds to the
encoded message. The decoding camplexity in seguential decoding, that
is, the number of computations to decode a source digit, is a random
variable. A rate is said to be achievable by sequential decoding if it is
possible to select a code with that rate and a metric such that the
expected value of the decoding complexity is finite, In the single-user
case, the largest achievable rats is called the gcut-off rats of saguentiai
gecoding.

Multiple access channels are models of communication sysiems whers
there are a number of users all sharing the same transmission medium to
communicate their messages to a commen receiver, This thesis expioras
the possibility of using sequential decoding on multiple access channels,
Immediate generaiizations of the metrics, in particular of the Fano
metric, that have been used in the past for single-user sequential
decoding, do not work satisfactorily in the multi-user case. A new
metric is introduced which works quite satisfactorily not oniy for
multiple access channels but alsa for single-user ones. The achievable
rate regign of sequential decoding under this new metric is evaluated. It
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is shown by examples that sequential decoding has the potential of
achieving rates (throughputs) beyond those achievable by conventional
ways of using multiple access channels, such as time-division
multiplexing, frequency division muitiplexing, and Aloha-like schemes.

Outer bounds to the achievable rate region of sequential decoding are
considered. The cut-off rate of sequential decoding (in the single-user
case) is determined, thus settling a long-standing open question. Also,
the achievable rate region of sequential decoding is determined in the
case of muitiple access channels that have a property known as
pairwisa-reversibility. The achievable rate region of sequential decoding
for arbitrary multiple access channels remains undetermined.

~ An alternative spproach to sequential decoding, in which there is a

separate sequential decoder for each user in the system, is considered
and an inner bound to its achievable rate region is given. Non-joint
sequential decoding, 2s this approach is called, has the advantage of
being simple: each sequential decoder is responsibie for decoding the
message of 2 single usar, so it does not have to know the tree codes of
the other users. An example is given for which non-joint sequential
decoding, in addition to being simpler, also achieves rates that are
unachigvabie by ordinary sequential decoding.
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Chaptar 1

INTRODUCTION

Multipie access channels are models of communication systems in which
thers ars 3 number of uncoordinated users sharing a transmission
medium to transmit messages to a common destination. Some examples
of muitiple access channels are a satellite transponder shared by several
ground stations, a radic network in which users transmit over the same
frequency band to exchange messages, and a computer network where
several computers send messages over a common bus.

One common approach to multiple access communications is to employ
time-sharing (time-division multiplexing), in which at any given time
only one user is allowed to transmit 2 message. This idea of spiitting a
given channel! into non-interfering subchannels and giviag the use of each
subchannel exclusively to a single user alsa underlies frequency-divisian
multiplexing and other tachnigues that aim at elimination of multi-user
interference.

Another approach, which is much less common than time-sharing, is to
let all users transmit simultanegusly, thus allowing them to intsrfers
with each other. In this appraach, a sufficient amount of rscuncancy is
embedded into what is transmitted by eacn usar s3 that, with high
probability, the receiver can raconstruct the messages corractly. This is
the coding approach to multiple access cammunications. Theorstically,
coding affords a channel utilization (throughput) always as high as, and
often significantly higher than, what is possible by time-sharing. The
reason for being interested in coding for muitipie access channeis is
thus the desire to communicate at higher rates, or more rziiagiy at a
given rate.

While coding is potentially superior to time-sharing in terms of
throughput, it requires more complexity in the form of encoders and
decoders. In addition, there is the problem of finding an encoder-decoder
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pair acaiaving a given desirad rate. This thesis examines a particular
approach to coding for multi-access channeis, namely, tree coding and
sequential decoding, and establishes it as a3 practically applicable
mathod for achieving rates beyond those achievable by time-sharing.

1.1. The Multiple Access Channel Model

a The multiple access channel model used in this thesis has, as its central
¥ element, a channgl (in the information theoretic sense of the word),
which has one input for each user and a single output to the common
g destination (Figure 1.1.1).

" source 1 —sia{encoderl %1y — 24

2 :

R . . |channel-9-4Decoder

:‘i . *

2 source n [—Snjencoder n | —¥n— 2

Figure 1.1.1. Multi-user communication system mccel.

Our study is restricted to the class of channels which have the following
- properties.

1) The channel operates in discretes time; it can be used only once 3
) second, say.

o 2) The channel is discrete; that is, the channel input and output
: alphabets are finite sets.
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3} The channel is memoryless and stationary. Memorylessness 15 the
property that the statistics of the output at any given time depends only
on the inputs at that time, and possibly on the time itself. Stationarity
rules out the dependence of channel statistics on time.

A channel in this class with n users can be identified by its input
alphabets Xy,...,Xy, its output alphabet Y, and its transition probabilities
P=(P(n | &):meY, ZeXx---x)X}. P([2) is the probability of receiving
given that & is transmitted. If §=(&,...,&,), an alternative notation for
P(N | &) 18 P(N | &gseenrl)s PAT| E1senendyy) 1S thus the probability that m is
received given that user i transmits &;, i=1,..,n. A channel with these
parameters will be denoted by (P;Xy,...Xp;Y).

The encoders in this model are what we call (M,k) encoders, whers M and
k are arbitrary positive integers. An (M,k) encoder is a device which
sends k symbols to the channel for each digit it receives from the
source; M designates the size of the source alphabet.

In general, each user may have encoders with arbitrary parameters, say,
(H]-,k‘-) for user i, i=1,...,n. We shall, however, consider only those cases

where k; is the same for all i, and denote the parameter of such 2
collection of encoders by (Myye..,Mp,K).

A source for an (M,-) encoder is viewed as an infinite snif{-register
holding digits from a set with M elements. It is assumed that e2ch digit
in each source register is a random variable, uniformly distritutad, and
independent of all other source digits in the same or in other ragistsrs,
viewing the sources in this way eliminates the source coding prabiem,
and thus, enables us to focus on the problem of channel coding, which is
the problem of main interest here.

At this point, we view the decoder quite generaily as any device that
generates an estimate for each source digit.
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Notice that, as a rasult of the statisticai independencz at the sourca
lavel and the lack of cooperation among the users in the encoding of
their messages, the inputs to the channel by different users are
statistically independent. This is the essential differsnce between 2a
multi-user channel, say, (P;x,,....,xn;v) and its single-user counterpart

(P;XyXeeexXpsY).

The two main performance criteria for the analysis of this madel will be
the expected system delay and the probability of decsding error. System
delay for a source digit is defined as the time lag from the time that
digit is accepted by its encoder to the time the decoder delivers its
estimate about that digit. System delay is permitted to be a random
variable; but clearly, a system can not be used in practice unless the
expected system delay is uniformly bounded over all source digits.

Probability of decoding error for 2 source digit is the probability that
the decoder estimate for that digit is in error. We are intersstad in
finding ways of reducing the probability of decoding error to arbitrarily
low leveis for each source digit, while keeping the expected system
delay bounded.

In order to describe the model precisely, and aiso for futurs rafsrancs,
we now 1ist the notation that will be used throughcut this thesis.

Ngtatign, Concepts, and Conventians
Transmissions start at time 1, and take place at times 1,2,3,...

As a convention, in the following notation, subscripts refer to ussr
identity, arguments rafer to time.

Generically, e; stands for the encoder (the device) and the encoding
operation for user {; the parameter of e; is denoted by (M;,k); and the

number of users is denoted by n. e denotes the coilection of encoders
8y5...48p, 2nd also the joint encoding operation.

................................................
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Sy Putnpts Sapadar Tnpits

s,(m) is the mih input to ey, or equivalently, the mth output of source i.
8;(..m)=(8;(1),....,8;(m)) is the first m inputs to e;.
$;=8(1),8{(2),... 1s the input sequence to ;.

It is important to note that s; denotes the actual output of source i.

Throughout what follows, the letter s is reserved for denoting actual
source outputs. when there is need to mention 2 pgssibie but arbitrary
output sequence for source i, we write Uj Or uj Or ¥4, but never s;. Thus,

uj denotes an arbitrary sequence of letters from {1,001}, We denote the
mth 1etter of uj by uy{m), and the first m letters of u; by uy(..m).

Encoder Outputs, Channel Inputs

#;(m) is the m'? output biock of e, m=1,2,...

%;(m, ) is the ™ digit of x;(m), j=tmsk.

%j{eaM)2(R4( 1)yeneesy (M) is the first m output blocks of e;.
%3811, Dyeens®i(1,6),%5(2, 1), 18 the output sequence of e;.

X5 is the aciual output of encader ey; in other words, it is the ssgquencs
of channel symbois transmitted by user i. ¥; and s; are related through
the eguation x,(m}=e,(s,(..m)). As stated earlier, e; is regarded not only

as a device (the encoder) but alsc as the encoding operation itself. In
this second sense, @; is 3 caysal operator mapping source sequences into

channel input sequences.

Our model allows x;(m) to depend on all of s;(1),...,s;{m), no matter how
large m is. If x;(m) does not depend on s;(m-b-1) for any biby and Dg 13

the smallest integer with this property, then bq is said to be the memory
of ei.

4
. - N
TS
e e
d Pl
. ]
- »
4 . a8

AL R S A

.'1". “-1:.1. \-'._-' ‘-' .\' '( Ve Tt g
R HE S GHEL SRR S TR SRR LR AR LS TR

¢
-
o
B,

.
-

'y
o A
""l“,
*

oy
e

e
)

bl r".q’ ‘:‘l ;:- e p_ "
.“:‘lﬁr. {.:.T
ZOCH ML) E R

e
W
1" .

o 1’._"
e
WA

7
2

e« v g .
) YR S
LA AN _'o
R e e ' e
Xy i S Y
£ g R R} .' o

s
et e®a

) -“- ‘v- ‘0 '.
A
I 'E( N



AT

Ut

 ETM

s

ete b 4

o

RISART e |

Pa T

12

Encoders with zero memory ara cailed plock ancagers, and they wiil be
discussed in the next section. The discussion of block codes aims at
introducing certain theorems that are useful in understanding the coding
problem in muiti-access channels. Our focus in this thesis is on tree

- codes, which are generated by encoders that may have arbitrarily large

memories.
We often use the following notation for the actual channel {nputs:

8;$;7%; , 8;3i(m)=x;(m) , e;s;(.m)=x;(..m) .

We use the following notation in relation to what would be observed as
the output of e; if u; were the input to e;.

e;u;(m)=e;(u;{..m)), the mth gutput block of e; in response to u;.
8;u;(..m)=(;u;(1),...,8;u;(m)), the first m blacks in response to u;.
8;u;=8;u;(1),8;u;(2),.... , the output sequence in response to u;.

for int En r

S(M)=($(M)uensSy (M) 15 the mtM input to e.

s(..m)={s{1),...,s{m)) is the first m inputs to e.
=3{1},5{2),... is the input saguence to e.

%(m, §)=0%4 (M, ])yeuesnm, ) is the §I0 digit in the mtM output black of e.

X(M)=(2(M, 1),0eeesk(M,K)) 18 the mth output block of e.
x(..m)=(x(1),...,x(m)) is the first m output blocks of e.
=%( 1, 1)y00e%( 1,k},%(2,1),... is the output sequence of e.

The functional relationship between the joint source output s and the
jgint channel input x will be expressed by writing x(m)=e(s{..m)). Thus, e
is regarded both as a label for the collection of all encoders and as an
operator mapping sequences of letters from {1,..,M}x-+=x{1,...,M,} into

,
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saquencas of letters from X;x--xiX.. In this sacond sense, e is an
encoder with parameter (M---Mp,k), input alphabet {1,..,My}x--x{1,...,M;},
and output alphabet X x--xX,. '

we often use the following notation for joint channel inputs.
es=x , es(m)=x(m),  es(.m)=x(..m).

As in the case of individual source sequences, the letter s is reserved
for denoting the actual joint source outputs. Arbitrary joint source
sequences are denoted by u or U or v, etc. Thus, u denotes a sequence of
elements from {1,..,Mpx-eex{l,.,M)}; u(m) denotes the mth 1etter of u;

and u(..m) denotes the first m letters of u.

We usa the following notation in relation to what would be obsarved as
the output of e if u were the input to e.

eu(m)=e(u(..m)), the m*" output block of e in response to u.
su(..m)=(eu( 1),...,eu{m)), the first m blocks in response to u.
eu=eu(1),eu(2),.... , the sutput sequence in response to u.

hannal and Darader o

y{m,j) is the channel output in response to x(m,j).
y(mi=(y(m, 1),....,y{m,k}) is the mth channel output block.
yl..m)={y(1),...,4(m))} is the first m channel output blocks.
y=y( 1, 1yeee,u( 1,k3,4(2, 1),... is the channel output sequence.

Z;{m) ts the decader estimate for s;(m).
z(m)=(z,(m),...,2,(m)) is the decoder estimate for s(m).
An error in the decoding of s;(m) is the event that zj(m)=s;(m).

This completes the basic list of notation.
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'W3 new intraduca an aperation o simplify the notation.

For any collection of sets Ay,...,Ap, any integer t, and any collection of
ziz('gi,I""’zi,t)‘Ait' i=1,...,0, we define

yx&gxeeoxd = (&) 1o reemdy (1E) 2085 20000sdy 2lieeens(E, greeennly o)
It 222, .2, 28, 3omeee With &, j€A;, then we define

30T SRR XTC R S 20 X ¢ S S % W
Some of the precading ralations can now be restated as follows.
s(m)=s(m)x.eexg,(m) , s(..m)=s (..m)x-eexsp(im) , §=8 X e-xS, .
x(m)zxy(m)x..exx (M) , K(eam)=x, (M) xeeexkp(.m) R STTES P

@S=8SyXeeeX 'nsn,
es(m)=8,8(m)x.--x8,s,(m),
es(..m)=8,$;(..m)x-+=x8p8,(..m).

If y; is an arbitrary input sequence for e, 1=1,..,0, 2N UzUxee+ XUy, then
BU=8 Uy X=X Bl

eu(m)=e,u,(m)x-+-xepun(m),

eu(..m)=eu (..m)x---xeun(..m). -
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1.2. Capacity and Coding for Muitipie Access Channels

Interast in multiple access channels (and other types of muiti-user
channels) goes back to Shannon’s 1961 paper [1]. Since the publication of
that paper considerable theorstical work has been done about such
channels. This section presents two well-known resuits about muitiple
access channels which provide the motivation and the framework for the
work reported in this thesis. To keep the notation simple, the discussion
is l1imited to the two-user case.

- 1 in

A (M,,M;,k) block code for a two-user channel with input aiphabets X,
and X, is a mapping

£ a5 LM} = (Xx%X,)K

which has the property that, for each (i,jle{1,eq, M Ix{1,...,Ma},

(3, j)=1 ()% 12(j),
for some pair of functions f, and f, such that

£l eundy} = %K,

f2:{1yonesMa} — %K.
The operation x is as defined in §1.1.
The above definition forces a two-user block code f to be decomposable
into two component biock codes f, and f,. This reflects the reguirament
that in a two-user channel the channel inputs must be independently

ancoded,

The implementation of a block code f, with component codes f, and f;, on
a channel K=(P;X,X,;Y} results in the following functional relationships.

.......................

.........

...............................



Rdmr=ti{s{m), “a{mi=zizam), g(m)=r(s{mi.
Any function g, g:¥X {1yueesMy1x{1,.,M,}, Can be used as a decoder
for the above block code by simply letting 2{m)=g{y(m)).

An error is said to occur in the decoding of s{m) if s{m)=2(m). Under our
assumption that the source output letters are independent and uniformiy
distributed, the probability of s{m)z2(m) is independent of m; it equals

M, M,
Pelfig) = 2 (1/My) 2 (1/My) 3 P( | 11§00

i=1 j=1 mevKegim)=(i,))

Pe(f,g) is minimized if g has the property that, for each nevk, g(m)=(i,j)

only if P(M]1(i,j) 2P(n | f(h,m)) for all (hym)e{l,..,M3x{1,...,Mp). Such a
decoder is called a magimum-likslihood (ML) decoder. The way ties ara
broken in ML decoding does not affect the probability of decoding erraor;
80, we denote the probability of error for ML decoders by P(f

Capacity Region

The capacity region C(K) of a two-user channel K={P;X,X,;Y) is defined
as the closure of the following ragicn.

C(K)=convex-hull U C(Q,,Q,)
Ql!QZ

where the union is over all Q, and Q, such that Q, is 2 prabability
distribution (p.d.) on X, and Q, is a p.d. on X,; and C(Q;,Q;) 1S defineq 2s
the set of points (Ry,R;) such that

P(nlilazg)

0s R| < 2 Q](i]) z Qz(az)z P(Tllt'nzz)ln
816Xy 226Xy  meY > QRPN |24,2)
tth
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P(Tl i ::1-32)
0sRy < 2 Q,(&,) 2 Qz(zz)z P(nlit.tz)ln ’
816Xy 6%, MeY > QP |%22)
QeXy
P(n|£1,22)
Ry*+Ry< 2 Qs(&y) 2 Qz(ta)z P(‘l\lé‘.z.?.z)ln .
81Xy, 26Xy  MeY 2 Qq(t|)2 Q,(R)P(M I Cisl2)

C|€x‘ C2éX2

Theorem 1.2.1. (Ahisweds (2], Liao [3])
For any two-user channel K=(P;X;,X5;Y) and any pair of real numbers R,
and Ry, we have:

1) It (Ry,R,)€C(K), then, for any >0, there exists a (M,,My,k) block code f
such that P (f)<¢ and (1/k)InM;2R;, 11,2,

i) If (Ry,Rz) 1es outside C(K), then P,(f,g) is bounded away fram 2ers

for all f and g, so long as (M,My,k), the parameter of f, is such that
(1/k)InM;2Ry, 1=1,2. O

In words, Theorem 1.2.1 states that, for any channe! X, i) communication
with arbitrarily low probability of errdr is possible if the sourcs ratss
He in C(K), and {i) probability of error can not be mace arzitrariy smail
(1.8., reliable communication is not pessible) if the source ratss lis
outside C(K). The theorem dges not assert anything 2bcut pcints which
belong to C(K) but not te C(K).

Example 1.2.1.

To illustrate the capacity theorem and to explain certain approaches to
multi-access communications, we now discuss the two-user erasurz
channel (TEC) of Figure 1.2.1. We observe from the figure and by the
channel capacity theorem that sum rates, R,+Ry, of up to 1.5 Dits are
achievable (with arbitrarily small probability of error) by using block
codes.

--------
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Figure 1.2.1. Two-user erasure channel and its capacity region. S

Let us look at some simple block codes for this channel. It is easy to see
that the following code achieves the rate pair (0.5 bits, 0.5 bits) with
2ero probability of error.
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Message Codeword Message Codeword
1 00 ! 00
2 01 2 10

In this code, the first user sends no information in the first digit of a
codeword (it always transmits a 0); similarly, the second user is “quiet”
in the second digit of each codeword. For this reason, this code is said
to have no multi-user interference: user 1°s message can be estimated
independently of user 2’s message without any loss of optimality. Thus,
elimination of muiti-user interference simplifies decoding, but codes
without multi-user interfersnce are limited to sum rates of at most |
bit in the case of the TEC, which is significantly below the theoretically
possiblie 1.5 bits.

Coce! is typical of a class of straightforward approaches to muitiple
access communications, such as time division multiplexing, fregquency
division muitiplexing, and the like, which arz based on the idea of
splitting the channel into non-interfering subchannels and giving the use
of each subchannel exclusively to a single user. The main advantage of
these approaches is the ease of decoding, but as here, their operation is
often restricted to a small portion of the capacity ragion. Coding for
multiple access channels aims, at the very least, 2t finding practical
tachniques for achieving rates beyond what is achievalig Dy such simple
schemes,

One can easily improve upon Code 1; for exampie, Kasami and Lin (4] give
the foilowing code, which achieves a sum rate of 0.5+(1/2}10g;3%1.3
bits.

Code 2.
_User 1 User 2
Message Codeword Message Codeword
| 00 ] 0!
2 11 2 10
3 11
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In this cade, unlike the pravicus one, Seth ugers ransmit fnfarmation in
both digits of each codeword; as 2a result, each received digit is e
corrupted by multi-user interference. Hencs, if optimality is desired, the e
decoder must deal with the codes of both users simultaneously. So, an
increase in the rates comes at the cost of increased decoding
complexity. As a generai rule, allowing the users to interfere with each e
other requires untangling a more complicated set of possibilities at the .
decoder, hence, an increased decoding compiexity.

If we wish to communicate at still higher sum rates, and at the same
time keep the prabability of error below 2 given level, we find out that
codes with longer block lengths must be considersd. The channel capacity S
theorem does not tell us how large the block length has to be before we D
can be sure that there exists a block code with that block length which '
satisfies our rate and reliability requirements; the foliowing theorem
; pravides an answer to this question. A
Theorem 1.2.2. (Siepian and Wolf (S S
Fsr any two-user channel K, there exists a function Eg(R,,R;) which has

the following properties. 1) Ex(Ry,R,) Is positive if (Ry,Rz)eC(K) and z2ro =T

)
otherwise. 2) For any (R,,R,), there exists a block code f with parameter ;::E‘
(My,Mg,k) such that a) (1/k)InM;2R; for i=1,2 and b) P,(f)< exp-KE(Ry,R2). 2K

Far the purposes of our discussion, the ¢plicit form of £.iR,R,} is not BN

important. The important peint is that, for any given rate in C(K), this E:Z-_-__Z;i_;.
theorsm astablishes the possibility of making the prabability of decoding DA
errar at that rate approach zero exponentially by incr2asing the biock ———
length. This suggests a favorable trade-off between reliability and
system complexity, as long as the desired rate is in C{K). A more
complets discussion of this tssue lies outside the scope of this thesis.
For that the interested reader is referred to [8], which covers all the
material given up to here in greater detail and from a broader
perspective, and also gives an overview of saveral approaches to coding
for multiple access channels, which we will not discuss at all.
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1.3. Multi-Usar Tree Codes

A multi-user tree code is simply another name for the joint encoding
operation described in §1.1. The name derives from the fact that the
mapping generated by causal encoders with long memory is most easily
visualized as 2 tree. This section starts by considering a single-user
tree code to introduce the basic terminology and concepts; then 2
two-user tree code is considered; next the form of the concepts and the
notation for an arbitrary number of users is indicated; and, finally,
randem tree code ensembles are introduced.

ingle- T

As in the case of encoders, a single-user tree code with parameter (M,k)
has an input alphabet of size M and, for each source digit accepted, it
generates k channel digits. The rate of such a tree code is defined as
(1/%)1ni (nats) or, equivalently, as (1/k)1og,M (bits).

As an example, consider 3 (2,2) tree code for which the source and the
channei aiphatets ara both equal to {0,1} and the sncoding operation e is
defined as follows.
(u(1),u(1)) for m=1;
e(u(..m)) =
(u(m-=1)+u(m),u(m)) for m=2,3,...

Hers, + denot2s modulo 2 addition, and u denotes an arbditrary source
sequenca.

The first three levels of the code tree for e are shown in Figur2 1.3.1.
The trae reprasentation is based on establishing a one-tc-one mapping
from source sequences to paths in the tree. In the present example, the
mapping is indicated by the arrows at the left side of the diagram. In
order to generate the encoded sequence, the encoder uses the source
output as a sequence of instructions and follows the “upper” or the
"lower” branch going out from the current node depending on whether the
next source digit is, respectively, a0 or a 1.

...................................
.......................
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Co
00 000
00 H 001
10
0 ot 011
| 00
1 10 100
11
\L 11 — 101

Figurs 1.3.1. Example of a single-usar trse code.

For example, if the first thrae digits of the source output are 0,1,0, then
the first three blocks (branches) of the encaded sequence are 00,11,10,
Thus, each source sequence is mapped to a3 unique path. Hence, we refer
to source segquences as paths and to initial segments of source sequences
as nodes. For any path u, and any m=1,2,..., the prangh connecting node
u(..m=1i) (for m=1, taks ul..m=-1) as the origin) to noce u(..m) is labelied

by eul..m)).

In the trae regrasentation of 2 (M,<) tras ccde, each node at each level is
connected to M nodes 2t the next higner level; each branch is labeiled by
a block of k channe! input digits; M is rsfsrrad to 2s the degree of the

tree.

The path corrasponding to s, the actual source sequence, is called the
corract path. Nodes on the correct path are cailed the correct nodes. The
branch labels on the correct path are thus the channel symbols that get

transmitted over the channel.

._._0_1_.. 111
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Iwn-User Trae Codes

We illustrate the relationship between a pair of single-user tree codes,
8; and e, and the corresponding joint two-user tree code, @, by using
the example shown in Figure 1.3.2. We observe that the parameters of e,
and 8, are both equal to (2,2). In general, if (My,k) and (Myk) are the
parameters of e, and e,, then (M;,Mp,k) is the parameter of e. So, here,
the parameter of e is (2,2,2).

With reference to Figure 1.3.2, observe that, for each pair of naodes,
uy..m) in @, and u,{..m) in @,, uy(.m)xu,(..m}) is a node in a. Likewise,
for each pair of paths, u, in ey and u, in e,, uy;xu, is a pathine.

The path s=syxs,, where s, is the correct path in e, and s; is the
correct path in e,, is called the jgint corract path, or the correct path in
e.

ic Can nd Notation for Multi-Usar Tras Codes

Generically, e; denotes the tree code for user i, and e denates the joint
tree code. (Mj,k) denotes the parameter of e;; n denotes the number of
ysars; and (H,,...,Hn,k) denotes the parameter of e. The r3fe of e; is
defined as R;={1/k)InM;, and that of e as (Ry,...R,

If u; is a path in e; for each ié(!,...,n}, then uyx-+-xu, is a path in e. It is

called the product path or the joint path corresponding to Uj..,Up. U; is
said to be a component path of uyx-«-xup,.

The path in e corresponding to Si» the actual source output, is called the

correct path in e;; syx-+-xs, is called the correct path in e, or the jgint
correct path. Modes on syx---xs, are called gorrect noges.
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Code e,

(0,0)(0,1)

———————

(1,00(1,1)

Figure 1.3.2.

.............

cC

M Code e,
(1,b)(1,b)
(1,c)(1,0)
(1,8)(1,b)
(1.cX0,8)
(1,0)(0,b)

(1,b)(1.c)

(1,b)(1,0)

(1,c)1,¢)

I
!

(1,0)(0.8)

(1,0)0,c)

(1,b)(0,c)

(1,0)0.8)

(0,c)(1,¢)

(0,b)(0,8)

(0,0)(0,c)

(1,b)(0,b)

(1,c)0.8)

(0,8)(1,b)

(0,c)(0,8)

(0,b)(0,b)

Code e,x e,

Example of 8 two-user tree-cadel

T\ St et

~ .t e~ LA - . .
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(0,0)0,0)
(0,0)(0,1)
(0,0)(1,1)
(0,0)(1,0)

(0,1)(0,0)
(0,1X0,1)
(0,1X1,1)

(0,1X1,0)

(1,1)(0,0)
(1,100, 1)
(1,00,
(1,1)(1,0)

(1,0)(0,0)
(1,0)(0,1)
(1,0)(1,1)
(1,0)(1,0)
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I y(.m) is a node in &; for each te{l,...n}, then u,(..m)x---xu,(..m) is 2

node in e. It is called the joint node or the product node corresponding to
Ug(eem)yeeenstip(cm). uj(.m) is said to be a component node of uy(.m)x.sex

Un(em).

For any pair of nodes in @, u(.m)=u;(..m)x-+-xup(..m) and u(..m)=uy(..m)x--
-xp(..m), the type of u(.m) with respect to u(..m) is defined as the
VECEOr (T fyuensTpy) Where T, 1¢jsm, is the set of | such that THER) TN

(For example, in Figure 1.3.2, the type of node ({1,1),{1,0)) with respect
to ((1,1),(0,0)) is ($,{1).)

For any nade u(..m) and any path U in e, the type of u(..m) with respect to
U is defined as the type of u(..m) with raspect to u(..m).

For any path u in e, the mt (m21) incorrect subtree of u, denoted by
I(u), is defined as the set of nodes u(..j) in e such that a) jam, b)

u(..m)zu(..m), and ¢) if mz2, u(..m-1)=u(..m-1).

The number of types of nodes at level m equais (m+1)", This can be seen
by observing that, If (Ty,...,T_) is the type of a nade, TJ- must be a subset

of T, for all h>j, Thus, for each user, there ar2 m+! waus that that user
h ) "

first appears (one possibility is that it never appears) in the sequence of
sets T‘,..!,Tmo

Ensembies of Tree Codes

we end this section by introducing a certain type of tree code ensembies,
which will be used mainly for proving theorams.

For any parameter (M,k), any channel input alphabet X, and any p.d. Q on

X, the gingle-user tree code ensemble Ens{M;k;X;Q) is a set of tree codes
UMk, X) with a probability measure p on it. Q(Mk,X) is the set of all

bR G
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(M,k) tree codes with channel input aiphabet X. u is a measure defined on
the class of events that ares expressable as countable unions and
intersections (the g-algebra) of elementary events of the form

E(ul.)2)={ etk X): o(u(.1=gexk}

E(u(..1),2) is the set of tree codes in Q(Mk,X) for which £ is the label of
the branch immediately preceding node u(..i). u is the extension measure
corresponding to the following probability assignment: For any collection
of distinct nodes uy(..my)yeyipl..my) and any 2,...,2eXK,

PI’ { E(u 1 (..m 1 ).i 1 )'"“'E(ur("mr)'tr)} < Q(z 1 ) er Q(zr)‘

Thus, the statistical properties of a code chosen at random according to
u coincides with those of a (M,k) tree code each of whose branches gets
a label 2, ZexK, with probability Q(2), independently of what is assigned
to other branches.

For any n-user parameter (My,...,Mp.k), any collection of channel input
alphabets Xy,...,X,, and any coliection of QqyeeesQy WNEr2 Q; is 3 p.d. on
xiv the Wﬂﬂm Ens(“l!"-’nnik;x1!'--vxn;Q1v---9Qn) is
defined as the sat of all (My,...,Mp,k) tree codes for which X; is user i’s

channel input aithabet, with the following probability measurs g on this
set. p is best described by saying that it is the measurs that would
exist on the joint trese code e corresponding to a collection of randem,
mutually independent tree codes e,....8,, where 8, is selected according

to the probability measure associated with Ens(M;k;X;;Q;). In other

words, the statistical properties of a2 code chosen at random according
to u are identical to those of a joint tree code in the situation where
each branch of each user’s tree code is labelled independently of each
other branch, in such a way that Q, is the p.d. for branch labels in user

i’s tree code, i=1,...,n.
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1.4. Sequential Decoding for Multi-User Tree Codes

Sequential decoding is a decoding algorithm for tree codes invented by
Wozencraft (7], and later developed by Fane (8]. This section describes the
stack algorithm, a version of sequential decoding due to Zigangirov (9]
and Jelinek [10], and defines the concept of achievability for sequential
decoding. Familiarity with sequential decoding, to the extent that it is
given in any one of the references [11], [12], and [13], is assumed.

sequential Decoding and [ts Metric

Sequential decoding is 3 tree search algorithm for finding the correct
path in a code tree based on the information available from the recsived
sequence. The aigorithm relies on what is called a metric for directing
its search. The metric in sequential decoding is not a metric in the usual
mathematical sense of the word. Ordinarily, the metric is intended to be

a function that measures the statistical correlation between the received
sequence and the hypothesized transmitted sequence.

Formaily, a metric for a channel K=(P;Xy,...,Xp3Y) and a (My,...,M, k) tree
code e is any function of the form

00
r: U (Xj"“"‘xn)hk*\’m‘ —> [-00,+00),
h=1
The value of the metric at a node u(.m) for a received sequence y is
given by I'(eu(..m),y(..m)), where the notation is as given in §1.1.

It is important to note that I'(eu(..m),y(..m)) does not depend on y(m+1),
y(m+2),...., the portion of the received sequence beyond level m. This
restriction is an integral part of sequential decoding; and without it,
some rasults of this thesis would not hold.

Also notice that the metric is allowed to take on the value -oo. As will
be clear soon, this makes it possible to ruie out a node permanently from
further consideration when there is no doubt that it is incorrect.
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Example 1.4.1. Ihe Fang Metric N
The most well-known metric for sequential decoding is the Fano metric, A,
which was originally introduced by Fane for single-user channels (8]. In ;::\.,5:'
the case of an n-user channel K=(P;Xy,..,Xn;Y) and 3 (My,...,M,,k) tree code RPAN
e, the Fano metric takes the following form. §§£
m P(y|eu(n) vt

I(eu(..m),y(..m)) =3 (In - kR}, ot

h=1 wlyth) i

whers w is a p.d. on vK and R:(l/k)ZlnH,. »--
i=1 ;'.'_.::'.:if

In practice, one might pick e at random according to the probability
measurs associated with an ensemble ENS(MyyueMyikiX 1eeesX i Q1s000Qp) 3N .
roy

set :}::::::j
W)= Q&) 3 Qi) P(M | 24enedy) 3

ZiexX en‘xnk ,_

for each mevK. =
L

The Fano metric is branchwise additive; that is, s
N

P(eu(..m),y(..m))=T{eul..m-1),y(..m- 1))+ ¥(au(m),y(m)), e

P(y(m) | eu(m))

whersa 6(30(.’“).9(”\)):]0 - kR. :::::'.::::
wly(m)) :

Branchwiss additive metrics are simoler to implement and easier to
analyze; but these are not compelling reasons to restrict our discussion -;Eij'.;{;:
to this class of metrics, and we do not do so. x__
The Stack Algorithm w2
There are two well-known versions of sequential decoding, namely, the __’
D A RN I e N e N v bl D i e i D e e D T D e e
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Fano aigorithm and the stack algorithm. For practical purposes, the Fano
algorithm is praeferable since it requires almost no storage. However, in
this thesis, we shall consider only the stack algorithm, mainly because it
is much simpler to describe and analyze. Lat us point out that the results
of our analyses hold for the Fano aigorithm without any essential
changes.

In the stack algorithm, there is a list of nodes in which nodes are ordered
with respect to their metric values. This list is referred to as the stack.
The metric valugs of the nodes in the stack increase towards the top of
the gtack. Ties between the metric values in the ordering of nodes are
broken by some fixed but arbitrary rule. Each step of the stack algorithm
consists of delsting the node at the stack-top and inserting its
immediate descendants into the stack. At the start of the algorithm, the
origin is the only node in the stack, and it has a metric value of zero.

In practice, all tree codes ara truncated at seme finite level, and the
stack algorithm stops as soon as a node at the last level of the code tree
reaches the stack-top. The stack-top-node is then taken as the output of
the sequential decoder. If the rats is sufficiently small, retiability of the
decoder output can be improved by increasing the length of the finite tree
code. The remarkable point about sequential decoding is the possibility of
making the average decading complexity independent of the length of the
trae code, and thus, of the desirad level of reliability.

The following definitions formalize the concept of decoding complexity.

Definition 1.4.1. A Measyrs of Decoding Complexity

If the stack aigorithm is used, with ' as its metric, in decoding a tree
code 8 over a channel K, then CJ(K,e,I‘,s,g) denotes the number of nodes in

Ij(s), the j"‘ incorrect subset of the correct path, which reach the

stack-top, conditional on s being the correct path and y being the
received saquence.
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Cj(K.a.r) denotas the expected value of Cj(K.e.I‘.s,u) with raspect to the
joint p.d. on s and y. That is, Cj(K,e,I')=EsEg|,scj(K,a,r,s,g) where Eg
denotes expectation with respect to the p.d. on s and Egles denotes

expectation with respect to the p.d. on y conditional on es being the
transmitted sequencs.

& For each L, D (K,e,I') is defined to be (C,(K,8,I)+---+C (K,e,[))/L. O

Observe that LD, (K,s,[) is an upper bound on the expected number of

".» nodes which reach the stack-top before the algorithm reaches level L on ‘—
the correct path for the first time. Hence, for large L, O can be taken as SR

an approximate measure of the average number of computations for the
g algorithm to move one step along the correct path. These considerations Py
& motivate the following definition. -

i Definition 1.4.2. A Criterion of Apolicability

- A point R=(Ry...Ry) i said to be an achievable rate for sequential Ry
2 decoding on a channel K=(P;Xyu.,XpsY) if e
> AR
2. 1) R;20 for each {=1,...,n, and DAY
> 2) there exists a finite constant A, A=A(K,R), such that, for every L, there .m\
exist ]
i 1) 3 code e with rat2 at least as large as R e
§ and ii) a metric T L
; such that D, (K,8,I') <A, ;E:I:E-jf:j}
= (Condition 1) above means that, if (My,...,M,,k) 1s the parameter of e, then _____g
o S
- (1/k)InM; 2 R, for sach i=1,...,n.) SR
% The closurs of the sat of all such R is called the achievabie rate region A
™ of sequential decoding and is denoted by R¢K).O S

The above definition of achievability allows e and I' to depend on L. Now,
one may ask, quite justifiably, why the definition of achievability does :
not read as follows. RO
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Definition 1.4.3. An Altarnative Criterign of Agplicability
A point R=(R;,...,Rp) ts said to be a strongly achievable rate for sequential

1) R;20 for each i=l,..,,n, and

2) there exists a finite constant A=A(K,R) such that there exist
i)} a code 8 with rate at least as large as R
and ii) a metric T
such that D (K,e,I')<A for ail L.O

Unlike Definition 1.4.2, Definition 1.4.3 requires that e and I' be chosen
independently of L. Clearly, if R is achievable in the sense of Def.1.4.3,
then R is also achievable in the sense of Def. 1.4.2.

The concept of achievability used in the literature on sequential decoding
coincides with that of Def. 1.4.2. It is not known 1f strong achievability
and achievability ars equivalent, even for the single-user case. (Resolving
this question might contribute greatly to our understanding of sequential
decoding.) Strong achievability is not used anywhera in this thesis for the
following reasons. First, despite some efforts, we have not been abie to
prove that any non-trivial rate is strongly achievable. Second, for finite
trae codes, which ar2 the only type of tree codes of practical interest,
strong achievasdility {s unnecsssarily rastrictive.

To illustrate that achievapility in the sense of Def. 1.4.2 is sufficient for
practical purposes, consider a situation whers the desired rate and the
desirad lsvel of raliability are given. Suppose that the desired rate is
achievable. Then, given any L, there exists an infinite tree code e with
the desired rate and a metric I' such that D (K,e,[)<A, where A is 23

finite constant, indepencent of e, L, and I'. The idea is to pick L large
enough so that, among those code-metric pairs satisfying Dy (K,e,[)<A,

there exist @ and T such that: when the stack aigerithm is applied, with [
as its metric, to the finite tree code that is obtained by truncating e at
level L, the desired reliability is also satisfied. A fail, i.e. a part where
no branching occurs, may be appended to the truncated code in order to
increase the reliability of the final digits of the decoded sequence.




1.5. Summary of Results

The research reported in this thesis has been aimed mainly at finding 2
characterization of R, the achievable rate region of sequential decoding.
This goal has not been achieved and no general characterization of R is
known at present; there are, however, some partial results, which we now
summarizs.

The Resuylt on Achievability

The following theorem is the main result of this thesis on achievability.
For notational simplicity, it is stated hers for the two-user case. In
Chapter 2, it is restated and proved for an arbitrary number of users.

Theorem 2.2.1.
For any two-user channel K=(P;X,XzY), R(K) is inner-bounded by Rg(K),

F:f which is defined as follows.

| RoK) = |J Ry(K,Q)

N Q

g

;_3 whers the union is over all Q={Q,,Q.) such that Q, is a p.d. on X,k and Q,

s a p.d. on xz" for some arditrary integer k (same k for both Q; and Q,);
and for any such Q, Ry(K,Q) is defined as the sat of ail (Ry,R;) such that
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This theorem is proved by showing that R, is achievadle by the following
class of metrics: Members of the class are identified by a parameter
(K,%,Q,B) whera K is a channel, say K=(P;X;,X5;Y); k is a positive integer;
Q=(Q;,Q;) where Q is 2 p.d. on %K and Q, is a p.d. on X, and
B=(B,,8,,B3) is what is called the pias function. The member of the class
with parameter (K,k,Q,B) is based on a branch metric

¥: (X,sz)kXYk——-)[-oo,#oe),
such that, for each MeYK and 2=2,x2,, where Z,€X,K, Z,¢X,X,

U(C.R)zmmwt(g-"l)» 82(2!11)1 83(£91l)}s

yhere

R

61(£|1‘) =1In - k8|,
S Q@) YFAR[E0

tGXZk

Y P(M|2)
%{Z,m) = In = k5,, ang

S Q@Y PM[C.E)

tfxtk

./P(nlt)

63(!,1\) = 1n - kE;.
S Q) T QR PAITLE)

26X, tzixzk

Here, P is the transition probability of K over blocks of length k. (We use
boldface characters to indicate quantities relating to biocks.) P(M[&,,2)
is the probability that m is received given that user 1 transmits &, and
user 2 transmits 2.

A full intuitive account of the above metric cannot be given at this point,




bscausa the form of the metric itsaif is closaly related to the method we
use in §2.1 to prove that a given rate is achievable.

This metric is the only metric known to achisve Ry(K) for all K. Our
efforts to show that the Fano metric (or simple modifications of it)
achieves Ry have not been successful. In view of this, we regard the
introduction of the above metric as a major contribution of this thesis.

Converse Resuylts

Converse arguments aim at finding outer bounds to the achievable rate
region of sequential decoding. The main converse results of this thesis
are as follows,

Theorem 3.2.1. For any single-user channel K, R(K)=Rq(K). O

For single-user channels, Rq{K)=[0,Rq(K)] (see 82.3 or pp.143-50 of [12]),
where
2
Rg(K) = max -In ¥ { 2 A2V P(Tlli)} ,
Q neY &eX

whers the maximum is taken over ail p.d.’s Q on X,

The achievability of a1l R, for Re{0,Ry{K)}, is a special case of Theorsm
2.2.1 and it has been weil-known, see, e.3., [11], [12], or [13]. But the
converse statement, that rates grzatar than Rq{K) ars not achievable, is
new and will be proved in $3.2.

The strongest converse prior to this was due to Jacobs and Rerlekamp
[14], which stated that ratas in excess of £,(K,1) arz not achievable.
Here, Eq(K,1) is the value, at p=1, of E4(K,p), which Jacobs and Berlekamp
defined as the smallest concave function greater than or equal to

Eo(K,p) = max ~In 2 { z Q) p(nlz)I/(hP)}(Hp)’
Q ney &eX
where the maximization is over all p.d.’s Q on X.
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Note that Eq(K,1)=R¢(K); hence, our result is an improvement over that of
Jacabs and Berlekamp only for channels for which Eg(K, 1)< Eg(K,1). We do
not have an example for which Eq(K,1)<£4(K,1), but we believe that such
channels exist. It is known, for exampls, that thera exists K for which
Eq(K,p) 18 not a concave function of p [14]; for any such K, Eg(K,p)<Eg(K,p)
at some p20.

Ro(K) has been called the cut-off rate of channel K with the understanding
that at rates above Rq(K) the average complexity of sequential decoding is
infinite. The above theorem justifies the use of this term.

Theorem 3.3.1. R(K)=Ry(K) for any channel K=(P;Xy,...,X;;¥) which has
the property that
2 m‘n I 51:---,5,1) P(Tl | :l!""tn) 109 {P(Tl I 51;---,5n)/P(Tl l th"-s:n)}:o

neY
for every &;,8;€X;, i=1yusn. O

Channels with the above praperty are cailed pairwise raversioie channels
[16]; an example is the TEC of Figurs 1.2.1.

The above converses detarmine R for two special classes of channels.
However, R remains undetarmined in the gereral case. It might be that
R(K) equals Rq(K) for ail K, but this has not been praved yet, except in an
ensemble average sense (see Theoram 3.4.1). No examples have been found
for which R is strictly larger than Rg, either.

Non-Jain ntial Decadin

Chapter 4 considers an alternative approach to sequential decoding and
finds an inner bound to its (appropriateiy defined) achievabie rate region.
Non-joint sequential decoding, as this approach is called, uses a separate
sequential decoder for each user; the decoder for a given user decodes
that user’s message without any knowledge of the tree codes of the
remaining users.




In exchange for the increase in the number of decoders, ncn-joint
decoding allows each decoder to be much simpler than a joint decoder. It
is demonstrated by an example in Chapter 4 that non-joint sequential
decoding, in addition to being simpler, sometimes achieves rates that are
unachievable by ordinary sequential decoding. This seemingly paradoxical
result is then explained, and conclusions are drawn about the nature of
achievability in sequential decoding.

This completes the summary of the main results. In the remaining part of
this section, we shall consider some examples and try to answer some
specific questions about sequential decoding.

Example 1.5.1.

a) Two-lser OR Channel (Figure 1.5.1)
For this channel, it is known that R=Ry=C; in other words, the achievable

rate region of sequential decoding cgincides with the capacity region.

Cne particular feature of the OR channel, which we wish to discuss, is
that it is noiselass; that is, the channel output is completely detarmineg
by the channel inputs. Noiseless channels ars pairwise raversible. Hence,
by Theorem 3.3.1, R(K)=R¢(K) for all noiseless K. Furthermore, for any
noiseiess K, one can achieve Rq(K) by simply using a metric that has only
two values, namely 0 and -oco, THhis metric assigns 9 to z3rgistant nodes
and -o0 t0 inconsistant ones. A noce u(..]) is said to be consistent if its
correctness can not be ruled out on the basis of y(..j), the first j blocks
of the received sequence.

b) Two-User Erasure Channel (TEC) (Figure 1.5.2}

This is another noiseless channel, so we know that Ry(TZZ)=R(TEC). The
shaded region in Figure 1.5.2 is an inner bound ta Ry(TEZ), obtained by
computing Ro(TEC,Q) for Q=(Q,,Q;) with Q,=Q,=the uniform distribution
on {0,1}. Ro(TEC,Q) is not equal to Ry(TEC), because clearly, the points
(0,1) and (1,0) belong to Ry(TEC). So, a larger inner bound to Ry(TEC) can
be obtained by taking the convex-hull of the union of the shaded region

with the points (0,1) and (1,0).

......................
.............
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Figure 1.5.1. Two-user OR channel.
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(0,0) o0— -0 0

(0,1)

(1,0)

(1,1) 0— -0 1

X1={0,1} X,=(0,1} Y={0,e1}

copecity

94 region

R, *R,=1.42

8410 PRz bits

Figure 1.5.2. Two-user erasure channel.

? ! ﬂ, s 'q}ée’e-.-,-'u.-(.g AT T T AT e L e




39 4

'y

8

3
Y.

LR

A
L

Figure 1.5.2 shows that sum rates of up to 1.42 bits are achievable by
sequential decoding. In Example 1.2.1, 2 simple block code achieving 3
sum rate of approximateiy 1.3 bits was given. We do not know, however,
of any comparably simple block codes which achieve sum rates as high as
1.42 bits, while maintaining an arbitrarily small probability of error.
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c) Iwg-User Additive Gaussian Noise Channel (AGNC) (Figure 1.5.3) Apw

This is a channel with non-discrete input and output aiphabets. Our i

results do not directly apply to such channeis since we are considering S

only discrate channels. Nevertheless, the AGNC is of special interest .,:.:_.

because of its practical relevance. The treatment here is brief, however; i

and we refer to [6] for more about this channel. S

The channel input and output alphabets for AGNC’s are the set of real

numbers. If 7, &, and 2, denote, respectively, the received number, the :

number transmitted by user 1, and the number transmitted by user 2, then e

n-2:-&, (the noise} is a random variable with distribution N(0,02). Hers, S

N(0,0?) is the Gaussian density function with mean O and variance o2.

Thers are gnergy constraints on the inputs of the form: E(Z,2)ce, and o

E(2,%)s¢;, where E denotes expected value in a time and code average "?T_'

sense. (In the absence of energy constraints, the capacity region and the *3‘.;5

achievable rate region of sequential decoding ares unbounded.) {zf.-

SN

D Figurs 1.5.3 shows C(AGNC), the capacity rsgion, and 2n inner dound t3 R

E_ Ro(AGNC). The inner bound is obtained by computing R¢(AGNC.q: for \

3 q=(N(0,¢,),N(0,¢,)). The computation of Re(AGNC,q) is carried out in the S

n same way as for discrate channsls, except that sums ara raplacad by e

N intagrals and probability distributions by densities. —
, Notice that, if o2 is fixed, the achievable rate region of sequential

decoding for an AGNC with constraints E(Z,2)k2e, and E(2,%):2¢, is at S
least as large as the capacity region of an AGNC with constraints —
E(£,2)s¢; and E(Z,2)<é,. So, at the expense of at most doubling the
“energy”, we can achieve all points in the capacity region of a given AGNC N
by sequential decoding.
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Figure 1.5.3. Additive Gaussian noise channel.
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Complementary Remarks

Here we wish to discuss informally some questions that may have arisen
up to this point.

Q. what makes sequenttal decoding of multi-user tree codes 2 different,
if not a more difficult, problem than sequential decoding of one-user tree
codes ?

A. The complication in multi-user sequential decoding is due to the
prasence of different types of incorrect paths which have markedly
different statistical properties in relation to the correct path. Despite
this, one has to design a2 metric that distinguishes the correct path from
these various types of incorrect paths. while the design of such a metric
may not seem to be a problem {because the correct path has a higher
correlation with the channel output sequence than any other path), it is
not at ail clear whether such additional constraints on the metric do not
force the achievable rate region of sequential decoding to be much too
small to make it attractive.

To discuss the above ideas in more concrete terms, consider a two-user
tree code. Lot 3, and s, be the correct paths for users 1 and 2. Sequential
decading aims at finding s,xs, based on the information availabie from
the raceived sequencs y. For simplicity, let us consider only the incsrract
patns in I,(s4xs,), the first incorrect subtree of the corract path. Thers
ara thrse types of paths in I(syxsp): 1} Totally incorrect paths of the
form uyxu, whers u,=s, and u,zs,. 2) Half incorrect paths of the form
uyxs, whera u,=s,. 3) Half incorrect paths of the form s;xu, whers u,=3,.

Paths of type 1 have no correlation with y; hence, they are relatively
easy to detect and eliminate from further search. But paths of types 2
and 3 are correlated with y. This is precisely the point where multi-user
sequential decoding differs from and becomes more difficult than
single-user sequential decoding.

Q. Do we know of simpler characterizations of the regions R and Ry ?
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A. In general, there are no known characterizations of the regions R and
Ry which are simpler than their definitions. Clearly, the definitions of
thesa regions do not immediately suggest any algorithms for determining
whether a given point belongs to these ragions.

while so little is known in terms of computing R and Ry in general, the
situation is completely soived in the one-user case. For any one-user
channel K=(P;X;Y), we have

R(K)= Ro(K)=[0,sgp RelK,Q)1,

where the supremum {s over all p.d.’s Q on xK for some arbitrary integer
k, and for any such Q,

' 2
Rk, @ =10 3 { T Q@ /FAID} .

neYk !exk

The computation of R(K) is made possibie by Galiager’s parallel channels
theoram (see pp. 149-50 of [12]), which states that in order to maximize
Re(K,Q) over Q, one needs to consider only p.d.’s over X, i.e.,

sup{ Re(K,Q):Q is a p.d. on xX for some integer k}

= SUD{%(K,Q)tQ is a p.d. on x}.

The computation of Ro(K):=sup{Ry(K,Q):Q is a p.d. on X} is facilitated by
the following necessary and sufficient conditions for a p.d. Q on X to
maximize Ry{K,Q) (see Thearem 5.8.5 in [12]):

2

SARIDS a/PmD2 3 { Se/FAD) all gex,

neyY TeX neY feX
with squality if Q(2)>0.
These conditions are extremely useful in verifying whether a given Q,
which may have been guessed on the basis of intuition, does indeed
maximize Ry(K,Q). It is unfortunate that there is no analogue of the
parallel channels theorem in the multi-user case.
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Q. Ars R(K) and Ry(K) convex regions for ail K?

A. It is not known if R(K) is convex for all K. (Note that one may not need
to have an explicit characterization of R(K) to prove that it is convex.)

It is known that Ry(K) is convex for all K. The convexity of Ry should not
be attributed to the possibility of time-sharing between a number of tree
codes and decoding each code by 3 separate sequential decoder. That
argument overlooks the fact that a collection of sequential decoders
working on different codes is not equivalent to any single sequential R
decoder. hored

[ 0

¥ The convexity of Rg can still be explained by the idea of time-sharing, R
however; but we must consider time-sharing within a code as opposed to
between a number of different codes. Time-sharing within a code is

achieved by taking the branches of the tree code long enocugh so that
3 conventional time-sharing can in effect be used within the duration of a
- branch. The proof of convexity of Rg, along with several other of its

properties, is given in §2.3.
b}
Q. How well does the metric propased for multi-user sequential decoding
(s work in the one-user case?
7 A. The achievabla rata ragion of the praposed metric coincides with R(X)
5 for every one-user channel K. For K=(F;X;¥), the metric with parameter RO
2 (K,k,Q,8) is given as foiiows.
‘ For sach Z:XK, mevk, | N
N YP(n[&) —
;’3 ¥2ZM)=1n kS . ORY

S QR P([T S
gexk
For any code parameter (M) satisfying (1/k}InM<Ry(K), the appropriate

parameter to be used is found as follows: Q is taken as a p.d. on xK such
that (1/k)InM<Ry(K,Q), and B is then set equal to {(1/k)InM+Rqy(K,Q}}/2.
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In Chapter 2, it is proven, as a special case of Theoram 2.2.1, that the
above metric achieves the rate (1/k)InM. It thus follows that all rates up
to Ry(K) are achievable.

Now, compare the above metric with the Fano metric, which is given by
P(n|2®)
win)

and which also achieves all rates up to Ry(K) for any single-user channel
K, provided that w and By are chosen appropriately.

Note that these two metrics are not reducible to one another; that is, it
is not possible, in general, to choose the parameters of these metrics so
that their ratio is fixed.
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3 We conjecture that the following metric, which contains the above two as 1
A special cases, also achieves all ratas up to Ry(K) for each single-user 5.-"-:5:'
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Chapter 2

AN INNER BOUND TO THE ACHIEVABLE RATE REGION OF
SEQUENTIAL DECODING

The main result of this chapter is the proof that Ry(K) (to be defined in
§2.2) is an inner bound to R(K) for any multiple access channel K.

2.1. Sufficient Conditions on Achievability

Let K:(P;X,,...,xn;v) be an n-user channal; let I' be a branchwise additive
MELric 10r (MypMp,k) cOdES for K; let B, Fi(Xyxs+exX )K ——3 [~c0,0),

be the branch metric for I'. The value of T' for a channel input x(..m) and
a channel output y(..m) is thus given by
m
Px(..m),y(..m))=D B(x(i),y(i)).
=1

In this section, we wish to find conditions on K, (M,..,M, k), and ¥
which, if satisfied, guarantee that the point R=(R,,..,R.}, where
Ry={1/k)InM;, 1s achievable in the sense of Definition 1.4.2. We fix K,
(m,...,r‘.n,k), 2nd T throughout the following discussion, and sucprass
them in the nefation.

Proving that R is achievable rsguirss sxhibiting the existencs of a3 code
e, with rate at least as large 2s R, for which D (e) is uniformly bourded.

A direct approach to this probiem is not feasible, because the
computation of DL(e) is hopelessly complicatsd for any non-degenerate

code e. We try therefore an indirect approach, known as randem-coding,
which is based on the fact that the expected value of a random variable
upper-bounds the value of that random variabie at at least one sample
point. Thus, instead of a fixed code, we consider an ensemble of codes,
and evaluate the expected value of D (e) over this ensemble.
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The ensamble we usa hers 1S E=ENS(MyyniKiX (seesXniQ1ses Q). E will De
fixed throughout the following analysis, and Eg will denote expectation
with respect to the probability measure associated with E.

2,

Now, EqDL(®) = Eg{Ci(@)+---+C (e)}/L

= {EgCi(@)+---+EgC (e)}/L. (0 5. \ 5

So, EgDy (8) can be upper-bounded by upper-bounding EgC;(e) for each i.

EqCy(®) = EgESE, | gsCil8:siy)

= EqEqEy | asCi(@:siy)- (2) bererd

S

Here, s represents the source sequence; Eg stands for expectation with Y
respect to the source statistics; E|qq Stands for expectation with g =i
respect to the probability measurs on the channel output sequence y
conditional on es being the channei input seguence.
Changing the order of expectations in (2) is justified by the -

non-negativity of the tarms involved. (Ses, 2.3, page 147 of {15].

(One can see at this point that EeEulesCi(e,s,g) does not depend on s;

hence, in (2), Eg can be dropped, and s c2n De replaced by any fixed L.__!
source output. But we shall carry aiong Eg in the fallowing argument.) S
EqCi(e) will be upper-bounded with the help of the follow:ng inequality.

Lemma 2.1.1. For any non-negative t,

Ci(e,s,4) ¢ > > exp t{r'(eu(..j),g(..j)) - r‘(es(..m),g(..m))}. (3)
u(..jleli(s) mai
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Proof. A node u(..j)el;(s) raaches the stack-top only if

P{eu(..j),y(..j)) 2 T(es(..m),y(..m))  for some mai. (4)

If (4) is not satisfied, s(..m) has precedence over u(..J) in reaching the
stack-top for each m, mi. So, u(..j)el;(s) reaches the stack-tap only if

1 D exp t{l‘(eu(..j),g(..j)) - I‘(os(..m),g(..m))} for all t20. (5
m2i '

Note that the right hand side of (S) is positive whether or not u(..)
reaches the stack-top; hence, it upper-bounds the indicator function of
the event that u(..j) reaches the stack-top. So, by summing the right
hand side of (5) over all nodes in I;(s), we obtain the claimed upper

bound on C;(e,s,y). O

Hereafter, suppose that t is a fixed positive number. Now, from (2) and

(3,
Egli(®) ¢ EgY 2 Als,mul..i)), (6)

u(..fdel(s) mai
where, by definition,

L g

z‘\(s,m,u(..j)):EeEg | es®*P t{ T{eu(..j)yd(. i) - I‘(es(..m),;(..m))}. (7

For any u(..j)eI;(s),

Als,myul..])) = EgEy| ggexp tl S gleulh)yth) - S Slesth,y(h) i
iche] ishsm

thus, if j>m,
Als,m,u(..j) =

= EgE

<xp t{ 3 [3(euth),y(n) - Blesth),y(h)l+ 3 Sleuth)yt))l;  (8)
ishsm m<hej

yle




ang, it mzj,

Als,mu(..j)) =

s E,Eg | es &P t{ [8(eu(h),y(h))-B(es(h),y(h)l - > ¥(esth),ythh) ). (9)
ichsj j<hsm

Since the labels on branches at different levels are independent random
variables over the ensemble under consideration, (8) and (3) can be
rewritten as follows.

For any u(..jlel;(s), 1f 1>m,
Als,mu(..j)) =

TT Eexpt{steuth),y(h)) - ¥(es(h),y(h)} TT Eexptseuth),y(h); (10)
fshem m<hsj

and, if mzj,

As,m,u(..7)) =

Me exp t{B(eu(h),y(h)) - ¥(es{h),yth))} T Eaxpt3{esth),u(hil, (11}
ichsj j<hsm

whera the symbol E has been used as an aboraviation for Eegg [ as *
'

We now wish to find an explicit expression for A(s,m,u(..j)). Lat u(..j) be
a fixed node in I;(s), and (T ,,...,Tj) be the type of u(..j) with respect to s.

Now, for any hell,..,j}, neYk, &=&x--x&,, and §=qyx.--xqp, where
:rexr", trexr", rz1,...,n, the probability that es(h)=Z and eu(h)=g and
yth)=n 1s given as follows.

...............
............




Prias(h)=2, su(h)=3, y(h)=}=

Moz TTQ @ TTx(x =2, Ptn|2), (12)
tsren el reTy’
where X is the indicator function.

To simplify the notation, we shall write

Q(2) in place of ﬂor(zr) ,
1¢rsn

Q(27) in place of (2., and
reT

X{Tr=27} in place of ﬂx (8=&.}).
reT

In this notation, (12) can be rewritten as follows.

Pr{es(h)=Z, euth)=, y(h}=7} = Q(&) Q(tT,,)X{tT,"’:zT:}P(‘“ | &) (13)

Now, EaEg | as P ~t{as(h),ylh))

NS

s z z Q(2)P(m l Zexp -t ¥(Z,m’, (14
né

oAt

T e

Eqfy|es &%P t{8(eu(h),y(h))-¥(es(h),y(n)}

=53 > QA Q(t'ﬁ\) X{t-,-ftT:}P(n |2)exp tB@,)-3(2, W), (1)
nel

and  EgEy| gg®XP tg(eu(h),y(h))

=53y Q) Q(ER‘)X{?.R«:CT:}P(n | 2)exp t3(2,M). (16)
néeg

AN o ARRIS U es ! ARARAIORE P MY
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We see that the left hand side of {(14) does not depend on h; and the lert
hand sides of (15) and (16) depend on h only through T,. So, we define

; n=Eqy | es %P -t ¥(es(h),y(h)),
c,f(T,,.):EeE,:l | es €XP t{8(eu(h),yh))-¥(es(h),y(h)}, and
5 3(Tn)=EeEg|es exp t¥(euth),y(h))).

Now, for any node u(..j)el;(s) with type (T ,,...,Tj) wrt s, (10) and (11) can
be rewritten as follows.

» d(‘l'i)---d(‘l'm)B(Tm,I)---sﬂ'j) , j>m; (17)

Als,mu(.)) = _
s O(T;)e0(T ) nm-] , m2j. (18)

Observe that A(s,m,u(..j)) depends on u(..j) only through the tupe of u(..j)
wrt s. So, let A(s,m,T) denote A(s,m,u(..j)) whenever u(..j) is a node of
type T wrt s. Letting T(i,j) be the set of typss for level-j nodes in I(s},

(6) can be rewritten as follows.

O AN A Y

b 00
Egli(e) ¢ EgF 2 S S Alsmul.)
j=i TeTGL)) uCuj: mei
type of u(..j)=T

[ ] o0
=E,> 2 NT) 3 Als,mT), (19}
j=i TeT(i,j)  m=i

whera N(T) denotes the number of nodes of type T.

Define R(T)=max{o(T), B(T)}. Now, for any T=(T,...,T j)eT(i,j),

3 QAT R(T ) , j>m; (20)

Als,m,T) ¢ '
QT )= T )M , m2j. (21)
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Thus,
0o J=1 00 .
2 AGMT) < § AT (T) + 3 AT, oo QUT ™) T
m=1 m=i m=j R

o0
= Ty T ) ( f-i+ Sahy. (22)
" h=0 ’

For any non-empty subset T of {1,....,n}, let M(T} be the product of M; for

% i€T; if T=¢, let M(T)=1. For any node type T=(T ,,...,Tj), let M(T)=M(T)-- e
; »+M(T}). Note that M(T) is an upper bound on N(T), the number of nodes of
& type T. Also note that, if T=(T ., TjeTC,j) then MT)=M(T))--M(T;);
because Ty=$ for 1chei-1. Define -
‘Y=max{$2(T YM(T) : T is a non-empty subset of {l,..,n}}.

E ® % S
o NT) Y Als,m,T) < M(T) 3 Als,m,T) (23) o
m=i m=i ;:

L pod v
< s ¥ g-ie Y 7). 24)

.:'? h=0
8y (19) and (23)-(24),

(-] 0
EgCyf®) s E¢S S w¥lTi(j-ie T M) (25) s

- j=i TeT(,)) h=0
: Noting that the number of elements in T(i,]j) is upper-bounded by (j-i+2)0 e
(see §1.3 for this upper bound), it follows from (25) that

00 o 00

. ECi(®) $Eg S (-t+27 ¥)T1(j-1+ T M) e
= j=i h=0 =
g o R e e e T T e D R N :ﬁ-ﬁi?ﬁi
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o0 . o0
= S Gl T M) (26)
j:O =0

The right side of (26) is independent of i; and, it converges if ¥<i and
m<1. The conclusion of this discussion can now be stated as follows.

Theorem 2.1.1. Sufficient Conditions on Achievability.
Let K=(P;Xy,....Xn:Y) De a muitiple access channel; suppose that there

exist a branch metric ¥ :(x,x---xxn)k—9 [-00,00), an ensemble
;}‘ E=Ens(r11,..,r1n;k;><1,..,Xn;Q1,..,Qn),
and a positive real number t such that

i) mtK,8,E)<l,
1) MTIo(T,tK,3,E)<t for each non-empty subset T of {1,...,n}, and
it} M(T) 8(T,t,K,5,E)<1 for each non-empty subset T of {{,...,n}.

Then, for all L,

[
EgDL(K,8, s T (1420 W(t,K,8,E) ( j+1/(1-M(t,KE,E) < 0,
j=0
where I’ denotes the metric based on ¥. * O

Thus, if K, (My,e.,Mp,k), and @ satisfy the conditions of the above
thesrsam for some ensemble E, then (Ry,..,R,), where R;=(1/k}InM;,
belongs to R(K), the achievable rate region of sequential decoding.

» It is possible to prove this theorem with m(t,K,¥,E)<i relaxed to
n(t,K,5,E) <1 by fallowing Gallager’s proaf for n=1 (see App. 68 of [12]).



2.2. The Proposed Metric and An Inner Bound to Its Achievable
Rate Region

This section considers a class of metrics and finds an inner bound to its
achisvable rate region by using Theorem 2.1.1. Metrics in this class are
parametrized by a four-tuple (K,k,Q,B) whers K is a multiple access
channel, say K=(P;X,...,Xn;Y¥); k 18 2 positive integer; Q=(Qy,..,Q,) where

Q; is a p.d. on x,", f=1,..0o05 3nd B is 2 real-valued function of non-empty
subsats of {1,...,n}. B(T) is called the bias term for subset T.

The metric with parameter (K,k,Q,B), dencted by met(K,k,Q,B), is a
branchwise additive metric based on the following branch metric ¥.
For each neYk and Z=2x.--xZ, where {iexik, 21,0050y

5(2,m) = min{¥7(2, 1)}, (1)
T

where the minimum is over all non-empty subsets of {1,...,n} and

JP(nlz)

¥+(&,n)=In = k8(M . (2)

2 ﬂQi(ti)«/P{'ﬂl{’-i}mv , @her }
Ribier "7

In (2), the summation is over the cartesian product, over all ieT, of x,-k;
P(m|2) is the transition probability of the channel over blocks of length

ks P{nl{t‘.,}igc ) {Ci}m} is the prabability that m is received given
that the transmitted block at input i equals ti if €T and £i if ieTe.

To simplify the notation, as in the previous section, we shall denate

Eikier 4 &
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Moz by Qp), and
ieT

P{n|@hero, @ik} by PCMZroly).

In this notation, (2) can be rewritten as follows.

JP[D

%1(&,n)=In = kB(T) (3)
2 QX7 Y P(R | yel7)
Sr

The remainder of this section is devoted to showing that Ry(K), which
we shall define next, is an inner bound to the achievable rate region of
the abave class of metrics (hence, an inner bound to R(K)) for all K.

Definition 2.2.1.
For any channel K=(P;Xy,...,XnsY), any Q=(Qy,...,Qp) where Q; is a p.d. on

Xik, and any subsat T of {1,...,n}, we define

Re,Q,7) = =(170In S Q(t.Tc){ > U2 P(R[E }2 and
i &r

Rg(K,Q)={(R,,..,Rn)=OsR(T)sRu(K,Q,T) for each subset T of {I,..,n}}.
We 2aiso define
Ro(K,k)=URy(K,Q),
Q

where the union is over all Q=(Q,,...,Q,) such that Q; is 2 p.d. on x,k,

0

and Ro(K)=U Ry(K,k). O
k=1

a

" .
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Ry(K) will be shown to De an inner bound to the achievable rate ragion of
met(i,k,Q,B) with the help of the follgwing fact, which is just a special
case of Theorem 2.1.1 at t=1 and in the particular way E is salected.

Lemma 2.2.1. Sufficient Conditions on Achievability for met(K,k,Q,B}.
For any channel K=(P;Xy,...Xp;¥) and any (My,...,M,,K), the point (Ry...,Rp),

whers Ry=(1/k}InM;, belongs to the achisvable rate region of met(K,k,Q,8)
if the following conditions are satisfied by &, the branch metric for
met(K,k,Q,3), and the ensemble E=ENS(My,...,MpiK;X y5e0esX3Q1s0e., Q) Where
Q].no]Qn are SUCh that (Q]guuQn)=Q-

1) n{1,K,¥,E)<1,
2) M(TYo(T,1,K,%,E)<1 for each non-empty subset T of {I,...,n}, and
3) M(TY (T, 1,K,5,E) <1 for each non-empty subset T of {1,...,n}. O

Nota that in the above lemma the distributions parametrizing E and the
metric ara identical. Cf course, the statsment of the lemma would still
hold if this wers not so, but this less general form is sufficient for our
purposes.

In order to restats Lemma 2.2.1 in 2 simpier, more useful way, we now
find upper bounds on m(1,K,%.E), o(T,1,K,5,E), and $(T,1,K,BE) for a
fixed collection of K, ¥, and E, whera E and ¥ are parametrized by the
s2me Q={Q.,.....Q.).

nLKEE = T QPR Bexo-3(2,7)
¢
¢ 2 2 QZPM|&ewp-3(E,M)
T=b m,2

=3 3 a@pa| {3 @p/P@IEe Ly /YPAID JexpksD)
Tzd 7,2 o

AP R R R R L T S R re s Ve e s R e e e e e .. o
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2 5 Sa@ YP@[D S QR P | Trety) exp kB(T) i
T:* N2 tT f\(::*:

¢ =3 3 Q) 3 A2V P Ere2p) T Q@)Y PR [ZreRy) exp kBT aﬁu

T2 1,270 g o1 o

5 =5 Saep{ S aep/FalD ) expkam

< Lo 2 S L S —--

e} o

For notational conveniencs, in the following ¥(2,81¢, M) and (&, m) will
be used interchangeably.

FLNaTs

iy
St

IHTKEE) = T QBQR-IP(R | exp (37,8, M)-3(2, M)
Q,tru“l

R

o Yo

¢ 2 QUEQRIP(R| &) exp (377,812, M)-3(2,M)) =
t.t','.‘l'l
/P |T5,8-<) exp-F(&, M) axp -kB(T)

B L,

= 2 QUAQRP(N| L

AR | > Q¥ )/ P(R | $5,870) —
A ¥
; > Q)P [R7.270)

P o :

L} B/ B
L DURPRC AL

‘ = exp ~kB(T) 3 Q(2)P(R| &) exp -3(&,n) ;-:;-:‘:E‘:E:
;. g, 2 Q(¥1)v P{m I *T,ch)
' *T 7‘:‘-':':

o,

AN NN NN I NI




= exp ~kB(T) 3 Q(2)P(7m | Bexp-3(2,m)
Zm
= 7(1,K,%,E)exp -kB(T).

Finally,

$(T,1K5,E) = 3 Q2)IQRTTIP(N | Bexp BQt,87e, M)
C-C'rs‘ll

¢ 2 ADARIP(| )exp B1¥ridye )
:’CTJ‘

= 2 ABQARIP(M|2) exp -kB(T)

& S Q(¥7) /P [ #1.287¢)
¥

> Q@)Y PR |er.21e)
ST |
= > Q2P(m|2) axp -kB(T)
21 > Q7)Y P(M [ $7,87¢)

¥

= axp ~kB(T)

(S)

(6)

It follows from (4)-(6) that conditions of Lemma 2.2.1 are satisfied if
S exp-k{Re(,Q,T)-BM } <1,
Tz¢

M(T)exp -kB(T)D exp-k{ﬂo(K,Q.S)-B(S)} < 1 for each non-empty T,

Sz¢

(7

(8

-----
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and M(T)exp -kB(T) <1 for each non-empty T. (9}

We notice that (8) is redundant as a condition, because (8) is satisfied
whenever (7) and (9) are satisfied.

We can therefore express Lemma 2.2.1 in the following weaker but more
readily applicable form.

Lemma 2.2.2. For any channel K=(P;x,,...xn;_Y) and any (Myye.ny,K), the
point R=(Ry,..,Ry), where R;=(1/k)InM;, belongs to the achievable rate
region of met(K,k,Q,B) if

1) exp-k{Ro(K,Q,T)-B(T) } <1 and
T2
2) M(T)exp -kB(T) <1 for each non-empty 7.0

Using this lemma and the following definition, we are now in a position
to give an inner bound to the achievable rate region of met(K,k,Q,S).

Definition 2.2.2.
For any channel K=(P;X,...sXn;Y), any M=(My,...,My,k), and any Q=(Q;,...,Qp,)

where Q; is 3 p.d. on X,k, we define

8(K,M,Q) = min{Ry(K,Q,T)-R(T)},
T

where the minimum 1s taken over all non-empty subsets of {I,...,n}, and
R(T) is defined as (1/k)InM(T) for any subset T of {1,..,n}. O

Lemma 2.2.3. Inner Bound to Achiavable Rate Region of met(K,k,Q,B).
For any K=(P;X,...Xn:¥) and M=(My,...,M,,k), the point R=(Ry,...,.Rp), where

Ry=(1/k)InM;, belongs to the achievable rate region of met(K,k,Q,B) if

8(K,M,Q) > (2/k)In(2M-1), provided that the bias terms are selected such
that B(T)=(R¢(K,Q,T)+R(T))/2 for each T.
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Proof. Supposa that &(K,M,Q)>(2/k}In{2"-1). It suffices to verify that
conditions 1) and 2) of Lemma 2.2.2 are satisfied.

1 3 expk{Ry(k,Q,T)-B(T)}
T2

Proof. In view of Lemma 2.2.4, it suffices to prove the following
statement: For any channel K=(P;X,...,Xn;¥) and any point R=(Ry,...,Ry),

suppose that there exist M=(My,...,M,k) and Q=(Q,,...,Q,), where Q; is a
p.d. on X;K, such that (1/k)InM;2R;, 1=1,....n, and §(K,M,Q)>0. Then, there

. = T expk{Ro(K,QT)-Re(K,QT)RTIV2 }
= 3 exp-«{ (Retk,QT)-RT/2 }
»
3 Tz o
b ) exp-k{s(K,H,Q)/Z} *
T2¢ -
1 ] =
‘ = (20-1) exp-k { KM Q)2 < 1.
: The last two steps follow by noting that 2"-1 is the number of
% non-empty subsets of {1,..,n}, and that 8(K,M,Q) > (2/k)In(2"-1).
-
; 2) M(T)exp -ka(T)
| = r(Texp -k { (Re(K,Q,T) +R(TI/ 2} i
, = exp -k{(Ro(K,Q,T)-R(T))IZ} < 1 for all non-empty T, i
2 since 8(K,M,Q)>0. O
Lemma 2.2.4. For all K, Rg(K) is an inner bound to the achievable rate '.-f._t:‘-i'
region of the proposed class of metrics. Sl
RO
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XISt H={HypuansHp,n) and U={Uy,...,Up,), whera U; is 2 p.d. on xih- such that §‘

(1/)1nH;2Ry, 121,040, 3nd §(K,H,U) >(2/)1n(2"-1), oy
. ANESE
g o
Suppose that M and Q satisfy the hypothesis of the above statement. Let ;:':'_::?2:
’ U be such that U; is the mt™M product of Qy, 1=1,..,0; L.e, U; 1s a p.d. on peSe
: X;MK such that, for ach (21, JeX; MK, 555
2 ’ SOy~
.. u1 ((51,-...,£mk))=oi((£1,..-,£k)) Qi ((ek; 1 ’n.,zzk))u-'oi((e(m- ] )k+ 1 ’Oonogamk)n E:T:E:":;
* Let H be such that H;=M;™ and h=mk. i
) .;}:'_ S
2 It is easy to verify that Rg(K,Q,T)=Ry(K,U,T) for all T, and that &(K,M,Q)= e
2 §(K,H,U). So, by simply taking m large enough, we can satisfy &(K,HU)> S
’ (2/h)In(2"-1). O iy
i As 3 corollary to Lemma 2.2.4, we have the main result of this chapter. Lo

ﬁ Theoram 2.2.1. Ry(K) is an inner bound to R(K) for all K. O
.
A lemen Remarks

1) No exampies are known for which R is strictly larger than Rq. On the

' other hand, it is not known 1f Rg(K)=R(K) for all K. In the next chapter,

;4;. it will be shown that Rg=R for single-user channels (see §3.2) and alsa

for pairwise raversible channels (see §3.3).

! 2) At this point, it is natural to ask whether there exists a class of

2 metrics which satisfies the conditions of Theorem 2.1.1 over a set of

;} points larger than Rg. $2.4 will prove that there is no such class.

r,

g 3) One:might also ask whether the metric of Example 1.4.1 (the Fano
metric) satisfies the conditions of Theorem 2.1.1 over all (interior)

paints of Ry(K) for all K. Assuming that the parameters of the metric are

" set in the way suggested in Example 1.4.1, the answer is ng. A simple

i counter-example is a (pseuds) two-user channel which is the parallel

combination of two independent binary symmetric channels. By choosing
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the crossover probabilities of the 0binary symmetric channels
appropriately (one close to 1/2, the other close to 0), one can obtain 3
situation where the Fans metric has a positive drift (in an ensemble
average sense) on each path whose component path for the less noisy
subchannel is correct.

4) The proof of Lemma 2.2.4 suggests a method for finding an
appropriate metric in any given situation. Suppose, for example, that
K=(P;X15e00Xpi¥) 1S the channel and R=(Ry,...,Rp) is the desired rate. We

first try to find M=(Myseenstinsk) and Q=(Qy,...,Qp), where Q; is a p.d. on
Xik, such that (1/k}inM;2R; and 8(K,M,Q)>(2/k)In(2"-1). Supposing that
such a pair is found, then the metric met(K,k,Q,B), with bias
B(T)=(Re(K,Q,T)+R(T))/2 for each T, is an appropriate metric for this
situation. If we decide to use this metric, then we may select the tree

code at random according to the probability measure associated with the
ensemble Ens(MiseesMpiK;X 150009 Xi Qs Qp). There is no guarantee that

such a randomly selected code will perform satisfactorily; but the
probability that its performance is much worse than average is small,

S) If the stack algorithm {is applied to a tree code with parameter
M={My,00slp,k), €2CH step of the aigorithm requires the evaiuation of the

me:ric values of My---M, nodes. Ordinarily, one is given a desirsd rats
R={1ssRy) and the code parameter M=(My,...,Mn,k) is chosen so that
(1/k)InM2R; is satisfied for each ie{l,..,n}. From the viewpaint of

computational complexity, it is thus preferable to select M so that k is
the minimum possible subject to the rate constraints.

If we wish to use met(K,k,Q,B), with bias B(T)=(Ry(K,Q,T)+R(T))/2 for
each T, there is an additional constraint that M has to meet, namely,
8(K,M,Q)>(2/k)1n(2"-1). This constraint is unpleasant because it forces k
to get large as the desired rate approaches the boundary of Rg(K). It is
not known at present whether a constraint of this type is inherent in
multi-user sequential decading or whether one can find metrics which do
not suffer from this problem.
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2.3. 3ome Praperties of Ry
This section summarizes some of what is known about the Ry region.

In §1.5, it was shown that Ry{(K}=Ry(K,1) for any single-user channel K.
In the case of multi-user channels, however, this is no longer true; there
are channels for which Rg(K)=R¢(K,1). An example is the two-user M-ary
collision channel K=(P;X,,X,;¥), where M is an integer greater than 2,
X1=%2={0, 1,...,M- 1}, Y={e,0,1,...,M-1}, and the transition probabilities are
as follows. P(x,]%;,00=P(x,]|0,%,)=1 for each xeX, and xeXy;
P(e|xy,%p)=1 if %€{1,..,M-1} and x,€{1,..,M-1}; and, all other transitions
have zero probability. We leave it to the reader to verify that the peoint
((1/2)1nM nats, (1/2)InM nats) belongs to Ry(K,2) but not to Rg(K,1).

By considering collision channels with larger numbers of users, it can be
seen that, for any fixed m, there exists a channel K for which Ry(K)=

Ro(K, 1)U-+-UR4(K,m).

Ry is convex., This is a simple result of admitting probability
distributions over blocks of arbitrary length in the definition of Rg. The
convexity of Ry can be proved Dy observing that, for any pair, Q and Q,,
of vectors of p.d.’s over biock-lengths k, and k,, and for any pair of
intagers my and mj, the vector of p.d.’s Q, defined as Q=Q k2™ Q. m2,
satisfies (My+*m7lRg{Q,T)=mRe(Qy,T)+ MmyRy(Q,T) for all T. Here, the
components of Q2™ arz k,m,-order product forms of the corresponding
components of Q., and similarly for Q,1™2. The components of Q are
praduct farms of the corresponding components of Q,“2™ and Q,1™2. The
components of Q2™ and Q,*1™2 are thus p.d.’s over block-lengths of
Kikamy 2nd ki komy, respectively; and the components of Q are {.d.’s over
a black-length of kiky(my+m,).

For any given m, there exists a channel K (e.g., a collision channel) for
which Rg(K,m) is not convex. It is not known, however, if there exists K
such that Ry(K)zconvex-hullRy(K,1). If there were no such channel, then
we would have a characterization of Ry similar to that for the capacity
region.
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By using the parallel channels theorem (pp.149-150, [12]), it can be s
proved that, for any K, 1, and m, -
max{R;: (0,...R;,..,0)€ convex-hullRy(K, 1)} = S
Max{Ry? (OyeeRyse.,0) € CORVER-NUTT Ro(K,m)}. S
This can be seen directly by noting that, if all users, except for user i, : 2
‘. are constrained to transmit at rate zeros (which means that each such ?f-_:gg.'i}
N user transmits a fixed sequence), then the situation reduces to the
z single-user case, for which we know that the stated result holds. This AR
result is useful in that it provides some information about the relative RN
A | sizes of the regions Ry(K,m), m=1,2,... ey
¢ SRt
g We now prove some inequalities about the Rg region. :
P For any K, Q, §, and T, if T is a subset of S, then ‘_‘_
2 Re(K,Q,T) £ Rg(K,Q,5). (1 ]
. Proof. Let m be the block-length for Q. Now,
7 MRYK,Q.9) = -In T a2z {T a@g/PM[ D} T
V) 11:!5’-' tS \’
=-In 3 02z {S e S - VPID ) (2) ‘
e i &
i , . 2
i 2-1n 3 QiZs) T Q2s ) { S VP } (3) _
& nezx &\t &r L
2 N 2 goa
i :-n 3 ez {T a2 /P D ) B
: 11,51'0 81- "—'—]
<
. g
i = mRy(K,Q,T), ]
where (3) follows from (2) by Jensen’s {nequality: S0
IS N o B N e e T L AT g
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¥
In the proof of (1), if we replace T by the empty set, we obtain the proof
. of another basic fact, namely, Rg(K,Q,5)20 for all K, Q, and non-empty S.
b
For any subset of users T, let P(n | 27) = 3 Q(Zre)P(M | 2).
e e
P(1\|£T) is the transition probability that would be observed between :_fj;!.
the users in set T and the receiver if the users in set T° collectively e
4, transmitted a given symbol Ztc with probability Q(Ze). If one is only e
| interested in decoding the messages of the users in a set T, then one w‘]
2 may model the remaining users as noise sources and thus obtain a s
‘.5 reducad channel. Such schemes will be the subject of Chapter 4. The 7
following inequality is of interast in comparing the achievable rates for ‘.;-:t}
) the reducad channel with those for the original one. e
> For any K, Q, and T, -
o
o : 2 -
¥ -in ${Te@pVP@IED} < mR(k.QT), (4) =
- n & i
whers m is the block-isngth for Q.
Proof. '
2 N
mRK,QT) = -In 3 Q&) T e/ Pim[Ey) |} -
- 2 u
= -in 3 3 { Sap/e@P@[d)} (5) ooy
N & &7 R
2-in 3 { Satp./ S|} ®) wE
" n & &re e
o RS
b
-j > ,:.‘
i 1
%
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where (8) follows from (S) by the following inequatity.

-
|

3 { e/ RmID) « {3 azp / Se@er|d) @
&re 21 &r &1e

(?) is proved by using Minkowsky’s inequality (see inequality h on p.524
in [12]), which states that, for any collection of non-negative real
numbers {a;} and any p.d. (Qjh,

z{z Q]@}z ¢ {z Qjﬁ/ 2 ajk}2 .0 h--w-
“ ] ‘

In 2 sense, this inequality confirms the obvious fact that codebook L__
knowledge of ail users can be used to improve the achievable rate rzgion
in sequential decoding. S

.........................................
............
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= - 2.4. A Result on the Method of $2.1

In this section we prove that there is no branchwise additive metric
which satisfies the sufficient conditions on achievability of Theorem
2.1.1 at any given point outside Ry. This means that, if thers is an
achievable point outside Ry, the achievability of that point cannot be
shown by using Theorsm 2.1.1. This, of course, does not mean that Ry
equals R, the achievable rate region of sequential decoding. Thus, the
results of this section are not directly related to sequential decoding,
but rather to the limitations of the particular method of §2.1 in terms of
praving achievability.

g

eN.

ot

The above result is proved in two steps. First, Theorsm 2.4.1 gives an
outer bound, for any given metric, to the rate region where the ensemble
average of decoding complexity is finite. Then, Lemma 2.4.1 shows that
Ry outer-bounds the outer bound of Theorsm 2.4.1 for any given
branchwise additive metric.

.:.'J';t'..vl’.l;'-

Let the following be fixed but otherwise completaly arbitrary throughcut
this section: A channel K={PF;X,...,%n;V¥), 3 code parametar M=(My,...,M,,k,

a branchwise additive metric I' which can be usad in decoding codes over
K with parameter M, and an ensamble E=EnS(My,...,M3%5X 500X 3 Q15e.0,Qp)

o

We define D, to be E,D (K.,e.l') for each L, wherz I, denotes expectation

with respect to the probability measurs asscciatad with E. We also o
define, as usual, R;=(1/k)InM;, 1=1,..,n; and we let T denots the dranch

metric for T.

AR DI INN | ’l.O-A-J PP ¥ ]

Theorem 2.4.1. If inf{o(T,t,K,¥,E):t20} > exp-kR(T} for scme non-smpty
subset T of {1,...,n}, then D increases without bound as L increases.

b "

Lemma 2.4.1. If £20 and T is a non-empty subset of {1,...,n}, then

-
%

-1no(T,t,K,8,E) 2kRy(K,Q,T).

L]
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)
1
X
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: S(T,tKE8,E) 2 Y Qere) 3 QRPUEVPIN | &1,21) P(M | 31,870

5 Zre  &rtrm

i = exp -kRg(K,Q,T), which is the desired result.

‘r

F

:

' . e R T T N P S S T P

e T e e Y e e e T e

o(T,tK,5,E) =3 QRTIQUZIP(R | L expt(3(€T,87e, 1) -5(2, 7))
tltTl"‘

=3 Q(21e)T QRTIQZTIP(M | 2) expt(B @7, 2, M) - B2 21}, (1)
e &1.830M

Now,
2 QAP l &1, 87e) expt{B(T1,81e, M) - 887,87, 1))

t‘]”t‘pn

= \/ 2 QRIQETIP(N | &1, 21e) expt(¥ R, 1e, M) - B(2 7,875, M))
?.T@Tﬂl

\/ > QRTIQAZDIP(N | 8,81 expt(B(&T 87, M) - 3@, 8rem)) (2
8,‘1t‘ryn

2 D QR VP(N | &1,87) P(N | 87, 87e), (3
tTltTuTl

whers (2) foilows by reversing the raies of &- and -, anc (3) foilows
by Cauchy’s inequality. (For arbitrary non-negative rsais 3;, b, i=l,...,m,
Cauchy’s inequality states that (2a;2b;)"/2 2 £4/3;3;, with sguality iff,
for some constant ¢, 3;=cb; for all i.)

Substituting (3) into (1), we get

_______________________

________________________
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Proof of Theoram 2.4.1. L2t the nodes at leve! L be labelleg dy intsgers
l,...M, where M, denotes the total number of nodes at level L. Let I‘k'

denote the value of the metric at the k" node on the path to level-L
nade i. I‘ki is thus a random variable whase distribution is determined by

the source, channel, and ensembie statistics.

For any pair of nodes i and j at level L, let us define
A(i,]) = the avent that min{T'J: 1<keL}>min{r, s1<kel},

B8(i,j) = the event that rki>rk' for each k, 1sksl, and

C(i,)) = the event tnat T, 1> . TR
S
Let P; denote probabilities conditional on node 1 being the correct node 5-':1-2:41

. at level L.
Theorem 2.4.1 follows by the following sequence of inequalities, each of ]
3 which is justified subsequently. S
‘ My M =
R L0z D (1/M) 2 Py(AG,IN ) (4) e
: g - de
.\..ai
M M R
23 (/M) 2 Py(BG,IN (S B
= i
P ol
23 (LMY 3 Py(CC,i) (for any non-empty T)  (6) ot
=1 j : type of j wrt i=(T,...,T) RO
5 M RO
2 T O/M) S (/YD nf {o(T 4K, 8,E):t20ht (?) S
i=1 j t type of j wrt i=(T,...,T) 3

...................................
.........................................
s e LY
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2 exp k(L - DR(TI (/L33 (inf {o(T,t,K,5,E): 20t (8)

Supposing for a moment that (4)-(8) hold, it immediately follows that,
if expkR(T)>inf{o(T,t,K,5,E):t20} for some T, then Dy goes to infinity as

L increases. So, the proof will be complete if we prove (4)-(3).

Proof of (4).

If there exists a node i at level L such that P(i never reaches the
stack-top)>0, then mD=ee for all mal. So, without loss of generality,
we may assume that P;(1 never reaches the stack-top)=0 for each node i
at level L and each level L.

Let 1 be the correct node at level L. If A(i,}) occurs, then, by the
properties of the stack algorithm, i cannot reach the stack-top before j.
But, by assumption, i reaches the stack-top with probability one; it
follows that Py(A(i,j)) is a lower bound to the probability that j reaches

the stack-top beforz i, conditional on i being corract. Summing over j,
we obtain 3 lower bound to the expected number of nodes which raach
the stack-top before i, conditional on i being correct; averaging over i,
we obtain (4).

roof of (5).
This follows by the fact that E(1,]) Is a subsst of A(l,{). 79 sse tnis,
suppose that 8(i,j) occurs; in other words, suppose that I'kJ>I‘k‘ fer each
k, 1cksl. Now, Dy taking the minimum of the right side, we cbtamn
ij>min{rm’:1smsL}, which holds for each k. Taking the minimum of Both

sides of I'kj>min{I‘m":1smsL} over k, we see that whenever B(i,j) occurs
sa does A(i,j); hence, B(i,j) is a subset of A(i,j).

Proof of (6).

We wish to prove that, for any two nodes i and j, if the type of i with
respect to j is uniform, i.e., if it equals (T,..,T) for some non-empty
subset T of {1,....,n}, then Pi(B(i,j))z(I/L)Pi(C(i,j)). We do this with the

help of the following fact.




Ciaim. Lat Zy,...,Z_ De iid (independent, identically-dgistributad) randsm
variabies. Let C be the event that Z+---+Z; >0. Let B be the event that

m
> 2;>0  for each m, f<msL.

i=1
Then, P{B)2(1/L)P(C).

Proof of the Claim. Suppose that C occurs; that is, suppose that a sampie
point w occurs such that Z,(w)+---+Z, (w)>0. Let h be the maximum index

such that Z,(w)+---+Z (w)=min{Z((w)+---+2 (w):1¢kel). Consider the
cyclic permutation Zn, (w)yeenZ) (0),21(W);ensZp(w); observe that all
partial sums for this permutation, namely Z,, (w), Zp, (w)+Zy,o(w),
and so on, are positive.

So, if Zy(w)+---+Z (w)>0, then there exists a cyclic permutation for

which all partial sums are positive. Since therz ars L cyclic
permutations and since each permutation (cyclic or non-cyclic) of a
given realization is equally likely to occur, the claim follows.

The proof follows by substituting (I‘kj - I‘k_,j) - (I’ki - Pk-]i) in placs
8f 2, in the above claim. Notics that the condition that j be of tupe

(T,...sT) With raspect to i snsures that the random variabies (T J-T . )
- (T =Tyt k= 1,uuul, 2re identically-distributed.

Proof of (7).
We want to prove that, for any L, any non-empty T, and any pair of nodes
iand j at level L, if the type of j wrt i is (T,...,,T), then

PL(C(i,0) 2 (/D) (inf (o(T 4K, 5, E): 2010k, (%)

where ¢ is a constant.
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Lat 2= (I'kj - Pk-lj) - (I‘ki - I‘k-,i) for ach x=i,..L. Note that Zy,..g
are iid random variables with 2 moment generating function o(T,t,X,%,E}.
Now, we have P;(C(1,)) =P;(Z++--+2| >0); so, C(i,]) is the event that the

sum of L iid random variables exceeds 2ero.

If Z, has a non-negative expected value (this corresponds to the

situation where the metric tends to increase on 2 branch of type T at
least as fast as it does on a correct branch), then P;(C(i,j))21/2 and

inf{c(T,t,K,%,E):t20}=1; so, in this case, (9) is easily satisfied by taking,
say, c=1/2,

3o, without loss of generality, we may assume that the expected value
of Z, 1s negative, in which case, (9) follows directly from the

asymptotic form of the Chernoff bound, 3as given by equations 5.4.23 and
S.4.24 of [12].

Praof of (8).

(8) follows from (?) by noting that expk(L-1)R(T) is a lower bound on
the number of nodes at level L which are of type (T,...,T) wrt (any given)
level-L node i. (Also note that expkLR(T) is larger than the number of
nodes in question.) This compietes the proof of Theoram 2.4.1.
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Chapter 3

OUTER BOUNDS TO THE ACHIEVABLE RATE REGION OF
SEQUENTIAL DECODING

3.1. A Basic Lemma

Definition 3.1.1.
For any channel K=(P;Xy,....Xp:¥) and any block code f over K with block

length N and codewords f(1),...,f{M), define
M M
AKD=U/M DY PEGH,)D| 1),
i=1 j=1

where, for each i and j,

(neyN s P(n|1G) PRGN it i=j,
B(,j) =

$ if i=j. O

A(K,f) is the expectad number of incorrect codewords which are at least
as likely as the correct cadeword conditional on the received word T,
assuming that each codeword is 2 priori 2agually likely. A(K,f) will be
used in lowsr-dounding the sxpectsg camputation in saquential decoding.
The link between bleck codes and sequential decading is established by
Lemma 3.1.1, which will be given aftar developing some concepts.

Definition 3.1.2.

For any channel K, any tree code e over K, and any positive integer t,
define A(K.,e,l,t) as the expected number of nodes which reach the
stack-top before the correct node at level t, assuming that the stack
algorithm is used with I' as its metric, and that a priori each path is
equally tikely to be the correct one.

For any tree code e and any positive integer t, let e(t) denote the block
code obtained by truncating e at ievei t. O By
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For the purposes of this chapter, it is necessary to state explicitly the
tie-breaking rule for ordering those nodes in the stack which have equal
metric values. The rule that we shall use is based on the following
lexicographical order on the set of nodes.

In our notation, a node u(..j) is associated with a vector (u(1),....,u(j)),
whers each u(h), Ishsj, belongs to a common set, say S. Any ordering
relation on the elements of S induces a lexicographical order on the
nodes: For any pair of nodes u(..j) and v(..h), u(..j) preceeds v(..n) iff, for
some 1, O¢cisj-1, ul..1)=v(..{) and u(i+1) preceeds v(i+1) with respect to
the order on S.

We shall assume throughout this chapter that nodes in the stack with
equal metric values are ordered in the above lexicographical order. Our
interest in the details of the tie-breaking rule is for purposes of
precision (and correctness) in the following proofs. For practical
purposes, any tie-breaking rule should be as good as any other.

Lemma 3.1.1. A(K,e,T',t)2 (172} A(K,e(t)). (1)

Remark. Obsarve that A(K,8(t)) is the expectad number of levei-t nodes

which, conditional on the first t biocks of the recsived seguence, appear
at least as likely as the corract node at level t. Lemma 3.1.1 thus
implies that the averags cecscing compiexity in sesguentiai dsciding
would be minimized if the stack algorithm wers able to explors the
nodes at any given level t in the same order as they ar2 ordersd with
respect to their a postariori likelihcods conditional on the first t blocks
of the received sequence. Of course, no seguential decoder can actually
do this. So the analysis in this chapter can be sesn as an attempt to
lower-bound the average decading complexity of saquential decading by
that of an optimum, but unrealizable, sequential decoder.

Proof. Let K=(P;Xy,...,Xn;Y¥) be a channel and e be a tree code for K with
parameter (M,,...,Mn,k). Consider the situation where the stack algorithm
is used in decoding e with a metric T.
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Lat the level-t nodes in 8 be laoelled by integers 1,...M(t), where M(t) is
the total number of nodes at levei t, namely H(t)z(m---nn)t. Let e(t,i)

denote the encoded sequence for the ith level-t node in e. We shall
regard e(t,i) also as the ith codeword of e(t).

Claim.

: M(t) M(t)
AlK,e,I,t) 2 (1M D S P(AL,)) | e(t,i). @

=1 §=1
where, by definition, for each pair of distinct level-t nodes i and j,

Ali,j)={nevKl: i cannot reach the stack-top befare j given that 7 is the
first t blocks of the received sequence};

and for each level-t node i, A(i,i)=$.

The definition of A(i,j) would not be meaningful if the stack algorithm
(equipped with the lexicographical order discussed above) did not have
the property that, given any two nodes at level t, in order to determine
which of them raaches the stack-top first, if any raaches it at all, ws
nesd to know only the first t blocks of the raceived saquence. In other
words, given a ncde, the first t Dlocks of the rescsived saguencs, in
general, do not teil us if that node rs2ches the stack-top; but given any
two nodes, they tell which of the nodes cannot reach the stack-top
before the other.

An explicit characterization of A(i,j) can be given as follows. For any
level-t node i, let minl'{i,n) be the minimum of the metric values of the
nodes on the path to node i, given that ne‘f'kt is received., Now, for any
two distinct level-t nodes i and j, and any nevkt,

neAli,j) it minl{j,n)>minl{,n) or if minl(j,n)}=minl(i,M)
and j preceeds { with respect to the lexicographical order;
neA(j,i) otherwise.
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Thus, A(i,]) and A(j,1) are compiementary sats (in YY), a fact which will
be used in what follows.

Proof of the Claim.

If the probability that the correct node at level t never reaches the
stack-top is positive, then A(K,e,l,t) is infinite. So, without loss of
generality, we may assume that the code and the metric are such that
the correct node at level t reaches the stack-top with probability one.

Suppose that node i is the carrect node at level t. Let j be some other
level-t node. Since i, being the correct node, reaches the stack-top with
certainty, the probability that j reaches the stack-top before i equals
P(A(1,}) | e(t,)). Thus,

M(t)

Y P(AG,]) | e(t,in (3)

J=1
is the expected number of level-t nodes which reach the stack-top
before node i, conditional on i being corract. Averaging (3) aver i, we
obtain (2), thus concluding the proof of the claim.

Now, the proof of Lamma 3.1.1 is completed as follows.

Mt ML)
2AK,8, 0,0 2 (/M) S S FLAG,D | elni)) ¢ BAGLD et id (4)
i=1 j=t

M(t) ()
2 M) S S S mintP(medt,),Pin et} (3)

i=1 j=1 mevkt
j=i

M(t) M(t)
2 (1/2M(1) 5 3 P(B(,{)| elt,id) + P(BCj,i) | o(t,j)) (6)

=1 j=1

.......
'''''''''''''''
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=1 j=1 ol
oy
2
= AlK,e(t)). —
5 : s
%* Here, (5) follows from (4) by the complementarity of A(i,j) and A(j,1) for L
R iz]; in (6) we divide by 2 to account for the fact that, for i=j, B(i,j) and T
' B(j,i) have in comnion those M for which P(m | e{t,i})=P(n | e(t,j}). O -
The following sections of this chapter are devoted to finding outer *
bounds to the achievable rate region of sequential decoding (to be exact, R
of the stack algarithm with the particular tie-breaking rule described nEnd
above) in various situations. These bounds ara based on the fact that, if .
A{K,e(t)) grows without bound as t increasas, then by Lamma 3.1.1, the
average complexity of sequential decoding must, too, be unbounded. o
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3.2. The Cut-off Rate of 3ingle-User Channels

The main result of this section is the proof that Ry{(K) is the cut-off
rate of sequential decoding for any single-user discrete memoryless
channel (DMC) K. This proof relies heavily on certain results about
sphere-packing lower bounds to the probability of decoding error for
block codes, which we review in the following subsection.

3.2.1. Sphere~-Packing Lower Bounds

Probabilities of Errar

Let K=(P;X;Y) be a DMC and let f be a block code for this channel with
rate R, block length N, and number of codewords M (M=é“n). Denote the
codewords of f by f(1),...,f(M). Let d=(Y,,...,Y,,) be a decoder for f. Here,

Y,,...,YH are disjoint sets whoss union is YN, and the decoder decides in
favor of message i if the received word belongs to ;.

P(Yi°|f(i)) is then the probability of decoding arror for message i.

The average probability of decoding error is defined as

M
PolK,1,0) = (1/M) 3 L2 1),
!

i=

The maximum probability of decoding ar—ar is defined as

(K,f,d) = max P(Y;® | £(i)).
1¢icM

Po(K,M,N) is defined as the minimum of P,(K,f,d) aver all codes f with M
codewords and block length N, and all decoders d.

Pe,max

We shall give lower bounds to P,(K,f,d) and P (K,f,d); but first more

definitions are needed.

e,max
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Compositions and the Sphera-Packing Sxponent Function

A p.d. Q on X is said to be the composition of ZexN iff, for each &:¢X,
NQ(2) equals the number of times & appears in £. A p.d. Q on X is said to
be a composition class on N ifr NQ(2) is integer-valued for each £eX. A
code is called a fixed-compesition code iff all of its codewords have the
same composition.

For any channel K=(P;X;¥), any positive real number R, and any p.d. Q on

X, the sphere-packing expanent, Ego(K,R,Q), is defined as

Egp(K,R,Q) = min D(V|P|Q)
v

subject to V(| 2) 2 O for each 2<X and meY,

2 V(n|&) =1for sach 2¢X, and Rz (Q;V).
ney

Hers, D(V|P|Q) =3 S &v(n|&n{¥(n]|2)/P(7|2)} and
&eX neY

(V) =S S a@Vn]&in (V|8 /T aRvin |,
8eX meY LeX

Lemma 3.2.1. . urgd for Fixed-Compasition Caodes
Let K=(P;X;¥) be a channel, N be a positive integer, G be a composition
class on XN, R ana § be positive real numbers. Let f be 2
fixed-composition code with composition Q, block length N, anc number
of codewords M. Suppose that M2expN(R+8). Lat d be 2 decscer for f.
Then, for any such K, f, and d,

Po max (K1, > (1/2) exp ~N{Eg5(K,R,Q) (1+8)}

provided that N>No(8,|X|,|Y¥|), for some function Ny. O

This is Theorem 5.3 in [16], and hence, its proof will be omitted here.

-
~

‘‘‘‘‘
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The explicit form of the function Ny is not important for our purposes (it
can be found in [16]); what is important is the fact that N, does not
depend on Q.

Corollary 3.2.1.
For any K, N, Q, R, &, f, M, and d as in Lemma 3.2.1, satisfying the
additional condition (M-1)/2 2 expN{R+$),

Po(K.1,8) >(1/4)exp-MEg(KR,Q)(1+8)],

provided that N>No(8, | X|,| Y ]).

Proof. We make use of an idea of [17] (Eq. 4.41): If (1/N)In[{M-1)/2] > R+§
and N>Ng(s,|X]|,|Y|), then, by Lemma 3.2.1, at least half of the
codewords of f have probability of error greater than

(1/2)exp-MEgp(K,R,Q)(1+8)}

the corollary follows by noting that such codewords have probability of
occurrence of at least one haif. O

Lemma 3.2.2. Some Progerties of £, (K,R,Q)

For fixed K=(P;X;¥) and Q, E¢4{K,R,Q) is 3 convex, non-incrsasing funclion
of R20. Esp(K,R,Q) is positivé for 0 <R<I(Q;P) and zero for R21(Q;P). Thers
is a rate R.(K,Q), called the gritical rate for Q, which has the pragerty

that
Re(KiQ) + Egp(K,R(K,Q),Q) = Eg(K, Q) where, by gefinition,

CEglK,Q) = m\i}n DIVIP|Q + H{Q;¥)
s.t. V(n|2) 20 for all 2eX and meY,

Y v(n|2) =1 for all ZeX.
neY
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The assertions of this lemma ara contained in Lamma 5.4 and Corollary
S.4 of [16]; hence, their proofs are omitted here.

Lemma 3.2.3. For any K and Q, Rg(K)2Ey(K,Q)2R(K,Q).

Proof. We follow the hints given in probiem 5.23 of [16]. The dependence
of the functions on K will be suppressed in the following proof. First it
will be shown that Rg2E4(Q).

EolQ) = mvin DIV|P[Q) + Q;V) (1

=min3 3 a@vn|d{intvin| /P |k Invin| /UM, (2)
V,U &eX meY

whera U is a probability distribution on Y. (2} follows from (1) by noting
that
KW =min Y Y Q2IV(N|2)in{v{n
U &:X meY
which can be proved by considering the differencs of the two sides in (3}
for fixed U, and then using Jensen’s inequality.

£)/u(n)}, (3)

Now, note that

S 3a@ via] et &/e@ | Db Invin | 27U }

2:X meY

:-23 e 3 van|on{FRDT/ V| 8} (4
8:X neyY

1-23 @@ n{ 3 vin o[ F[DUm/ven | 0]} (5)

&exX TeY

=23 a@ n{ T /FmIT0m |, (6)

26X mneY

o
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whera (S) follows from (4} by Jensan’s inegquality; and agquality aclde in

(S) if V is as follows.
YP(m | 2U(n)
S PR UM

NeY

{n|2)=

From (1)-(6), it follows that

E@ = min-2 3 Q@ In{ 3 /FRIUM)} . (7)

U  2eX neY

So, for any pd. Uon v,

£(Q) ¢ -2 3 @) in{ 5 /F[DU . (8)
§¢X

neY

In particular, we may take U in (8) to be
- 2
{3 e@/FD}

§:x
L*(n) = for sach meY,

S {Sew/FRDY

neY LeX

where Q* is a p.d. that maximizes Ry(Q), i.e., Re(Q*)=R,. By Theoram
5.6.5 of [12], Q* has the property that

S /FAD S eFmD: 3 {3 e PmD) @
neY Cex neY CeX
for each 2¢X, with equality if Q*(§)>0.

|
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Substituting U* intg (8), we get

EfQ s -2 3 Q@) In{ 3 /R [B0~m) }

&eX neY
S YP([2) T *@VPM [T
TeY gex
=-23 Q) n (10)
wx /3 {3 ewsmmp)
neY GeX
s Re. (1)

(11) follows by the property of Q* expressed in (9). This completes the
proof of the first half of the lemma. We now prove that Eg(Q)2Ry(Q) for
all Q.

E(@ = min-2 3 a@ n{ T /AmIDum ) (12)
U 2eX neyY

» min-21n{ § Q@ 3 JFR[DUm) (13)
U X MY

=Ry(Q), (14)

whera (12) ts just a rastatsment of (7); (13) follows by Jensen’s
inequality; and (14) foliows by substituting the minimizing U, which {s

{Sa@/FmD)

gex
u(m) = for each meY. O

S {3 a/PRID}

neY 2ex




Corollary 3.2.2. mgx £4(%,Q) = Ry(K) for ai! K.

Proof. By Lemma 3.2.3,

Ro(K;Q)&Eo(K,Q)SRo(K);
hence,
n'g.!x Ro{K,Q}s man Eq(K,Q)<Rg(K).

The proof fallows by noting that mgx Ro(K,Q)=Ry(K).

Corollary 3.2.3. max R.(K,Q) ¢ Re{K) for all K.
Q

Proof. R (K,Q)<Eq(K,Q) by Lemma 3.2.2, and Eg(K,Q)<Re(K) by Lemma
3.2.3. Hence, R.(K,Q) ¢Rg(K) for all K and Q.

3.2.2. A Lower Bound on A(K,f)

Lemma 3.2.4. For any K=(P;X;¥), any code f for K with M codewords and
block length N, and any collection of integers t,My,.., My such that i)tal,

i) My>1 for each i{1,.,,t}, and iii) M=1=3(M;-1), one has
lgict

AT 2 P (KM, N)+-eosP 4 (K M, N).

Proof. Fix K, f, and My,...,My. Let f{1),...,f(M) be the codewords of f.

Define
{ (mevN:piq | 1N <P(R | 1)) if i=j;
3, = {

¢ if izj.

For each 1€{1,...,M}, define

Pi= {(51,...,5t) H 51U"’U5t=“,...,n}, iés]', |5] l =Mj, j=|,...,t }.
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It follows from the definition that, if (8y,...,.Sp)¢P;, then the sats
Sty are mutually disjoint, except for i, which is common to all.

For each subset T of {1,...,M}, define

Ei(‘r)z{neYN: There exists jeT such that j=i and P(q | f(i)) <P{m | () }

Observe that, for any 8=(Sy,...,5¢)¢P; and any ie{1,...,M},

M t
S PG, 1)) 2 T PE;(S,)] £
j=1 k=1

So, for any p.d. W; on P;,

M t

S P(BLLI | 1)) 2 3 Wy(S) D P(E;(S,) | 1(iN.

J=1 SeP; k=1
Take W; as the uniform distribution on P; for each ie{l,..,M}. Note that
the cardinality of P; equals ¢ 3= (M=1)1/(My=1}eee(Me=1)1,
Sum over all i to obtain

M M M t
AL = (1M Y SPEGDIIAN 2 (/e Y Y S PE(S)]
i=1 j=1 iz1 SeP; k=1

M
Let = (1/cM) 3 3 P(E(S )] fCid).
=1 SEP{‘

Now, A(K,C)2xq+e--+xq. Cleariy, the proof will be complete if we show
that ﬂkZPe(K,nk,H).

Define F(m)={D:D is a subsat of {1,...,M} with m alements} and
Fi(m)={D:DeF(m) and ieD}.

P T T R T T %oyt h i A S T TR
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M
= (1/eM) T 3 PCE(S,)] 101D
i=1 SePi

M
(/e y 3 2 P(E;(S )| 1N
i=1 DeFyMy) SeP;:5,<0

M
=(1/eM) Y 3 PED|IE) T

i=1 DeF;(M) SeP;:5,=D

M (M=M)! (M- 1!

=(1/eM) Y 3 PCE(D)| ()

=1 DéFi(”k) (Mr‘)!"'(”t‘l)!

M- (M- M

= > 2 PELD 1N
M! i=1 DGF](Hk)
(=M (M= 1)!
z > Y PED| )
M! DeriMy) i€D
2 2 M PKMN)

s Pe(K|nk|N)l D

Corsilary 3.2.4. For any channel K=(P;X;Y), any code f for K with
block length N and number of codewords M, and any integer H such that

M22H, one has A(K,)>(M/2H)P4(K,H,N).

-----
DA

--------------
-




Proof. Under the conditions of the corollary, intagers My,..,M; can be
found such that t>(M/2H) and M;2H, for each i. The result follows from
Lemma 3.2.4 by noting that P,(K,myN)>P,{K,mz,N) for any pair of
integers m, and m, such that m;>ms,.

3.2.3. Proof that Ry is the Cut-off Rate

Lemma 3.2.S. Let f,,f,,.. be an infinite sequence of block codes for a
DMC K=(P;X;Y). Let Ny=ki be the block length of f; for each i, where k is

some fixed integer. Let M; be the number of codewords in 7j. Suppose
that M;>expN;(Re+¢) for each i, where ¢ is a positive constant
independent of 1. Then, for all sufficiently large i, (1/N;}InA(K,f;)>¢/8.

Proof. Let g; be a subset of f; with a fixed composition and with number
of codewords at least as large as H,-/(hNi)Ix]. (There is no probiem in

assuming that g; has this many codewords because (1+N1-)!x| is an

upper bound on the number of compaosition classes on XN .) Let L; be the
number of codewords in g, and let Q; be the composition of the
codewords in g;.

Note that A(K,f;)2(Li/M;)A(K,g;), 2 fact that will be used later in this
proof.

Let §=¢/(8+4Rg(K)).

It is tedious but concasptually straightforward to see that there is a
function Q(e,K,|X|,|¥]) such that for all i>Q all of the following
conditions hold simultaneously.

1. (I/Ni)1nLi>Rq(K)*€/2 (15)

3. Ny>No(s, [ X[, Y] (1?)




4. Thera exist intagers H; such that

2) L‘>2Hi (18)
b) Re(K,Qy)+8 < (1/N)Inl(H;-1)/2] (19)
c) Re(K,Q;)+28 > (1/Ny)InH;. (20)

The Ny in (17) 1s the same as the Nq in Lemma 3.3.1.

To see that (15) and (16) can be satisfied, recall the assumption on the
size of L;. To ses how (18)-(20) can be satisfied, first note that, for

large 1, the right hand sides of {19} and (20) are almost identical; thus,
(19) and (20) essentially require that (1/N;)InH; be between R.(K,Q;)+8

and R.(K,Q;)+28, a condition which can clearly be satisfied. Now, if L;
are chosen to satisfy (16) and H; are chosen to satisfy (19) and (20),

then, for all i sufficiently large, they also satisfy (18) in view of 1)
Re(K,Q)sRg(K) (see Corollary 3.2.3) and 2) the relation §=€/(8+4Ry(K)).

Hereafter, suppose that i is larger than Q. Let H; be chosen so that

(18)-(20) are satisfied. The rest of the proof is a simple consaquence of
the resuits estabiished thus far.

AlK, 1) > (Li/M)AdK,g;) (true in general)
> (Li2/(2MH; P (K, Hy,Ny) (by (18) and Corollary 3.2.4)
> (L‘Z/(3H1H1))GXP’N1{ESD(K,RC(K,Qi),Qi)(I"5)} (bg (17), (19)9

and Carollary 3.2.1)

s (Liz/(G"iHi)) GKP"Ni{(I+8)[EQ(K,QI)'RC(K,Q1)]} (by Lemma 3.2.2)

2 (L;2/(8M;H,)) exp=N;{(1 +8) [Re(K) =R (K,Qp) ]} (by Corollary 3.2.2)




, 2 (LiIBHi) 8xp Ni{Ro(K)+6/2°Rc(K,Qi)-28-(! +8) RQ(K)'F( 1 *S)RC(K’Qi)}

(by (15) and (20))
= (L;/8M;)exp N;{€/2-28-5Rg(K)+ SR (K,Q;)}

( 2 (L;/8M;)exp N;i{e/2-28-8Ry(K)} (since R.(K,Q;)20)
H = (L;/8M;) exp Nye/4 (since &= e/(8+4Ry(K)})
> exp Nye/8 (by (16)). O L.

‘ Theorem 3.2.1. Ry(K) is the cut-off rate of sequential decading for any
i single-user DMC K.

channel, if (1/k)InM>Rqy(K), then Lemma 3.2.5 implies that A(K,e(t})
increases exponentially in increasing t. Hence, by Lemma 3.1.1,
AlK,e,T,t), too, increases exponentially in t regardiess of what the
o metric [ is. It follows that rates abave Ry(K} ars not achievatie (in the
Ag) sensa of Def. 1.4.2). O

%

3 Proof. For any single-user DMC K and any (M,k) tree code e for this
1
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3.3 Proof that Ry=R for Pairwise Reversible Channels

A channel K=(P;Xy,...,Xn;¥) is said to be a pairwise reversible channel
(PRC) iff for each §&;,q; € X, 1=1,..,n, and MeY,

S VP[50 PN B 3eeeso) 10G (PN | & fpmeur ) PAR | B 1yennsig) )20,
neY

(Hers, 010g0=0.)

PRC’s were introduced by Shannon, Gallager, and Berlekamp in their study
of zero-rate error exponents for block codes [17]. Some examples of
PRC’s are the two-user QR and grasure channels of §1.5. Our purpose in
this section is to prove the following result.

Theorem 3.3.1. Ry(K)=R(K) for any PRC K.

Recall that Ry(K) has alrzady been shown to be an inner bound to R(K} for
all K (Theorem 2.2.1). Thus, to prove that Re{K)=R(K) for a given K, it
suffices to show that R¢(K) is an outer bound to R(K). The following
result, taken from [17] without proof, is the kay to praving this.

Lemma 3.3.1. For any PRC K=(P;X,...XpsY), 2ny positive integer N, and
any pair of te(x1x---xxn)N and (-:(x,x---xxn)“,

S min(P(n|2),P(R |} > g0 T SPIM|EF(Q|T
neYN 1'[€YN
where g(N) =(1/4)exp{#/2NInP__} and

P = Min{P(n|&)imeY, Ze(Xx-+xX.), and P(n[£)>01.
(P 18 thus the smallest non-zero transition probapility over K.) O

Definition 3.4.1. Let f be an (M,N) biock code over a symbol alphabet

X. A p.d. Q on XM is said to be the composition of f iff, for each &exN,
MQ(2) equals the number of times Z appears as a codeword of f.

----------------
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(The cancept of composition here has no relation to that in the previous
saction.)

Lemma 3.3.2. For any PRC K, and any block code f for K,
AK, 0 >(1/2)g(N) [- 1+ exp-N&(K,M,Q)],

where N is the block length of f; g(N) is as in Lemma 3.3.1; M is the
parameter of f (if, say, f is an n-user code, then M is of the form
(Mypeeest,N) where M; is the number of codewords in the ith component

code and N is the common black length); Q is the composition of f. The
function §(K,M,Q), as defined in §2.2, is the minimum of R¢(K,Q,T)-R(T)
over all T, where T is 3 non-empty subset of {1,....n} and R(T) is the sum,
over i¢T, of (1/N)InM,.

The proof of Lemma 3.3.2 will be given following that of Theoram 3.3.1.

Proof of Theoram 3.3.1.
Let K be a PRC, and f be a tree code for K with parameter M=(My,...,M,k),

whers n denotes the number of usars. Let R=(Ry,...,8) with Bi={1/Kk})InM;.

Suppose that R does not belong to Ro(K). We will show that R dces not
bslong to R(K), either.

Let (i) be the block code obtained by truncating f at level i and let Q,

be the composition of f(i). The parameter of f(i), which is denoted by M,
equais (My',....M ! ki), The rate of (i) thus equals R=(R;,...P,). Now, by

Lemma 3.3.2,

AK 1) > (1/72)g(ki) [~ 1 + exp-ki s(k,M!,Q1)]
> (1/2)glk1)[-1+exp-ki A(K,M ],

where, by definition, A(K,N):sup{s(K,Mi,Q‘):iz1,2,3,...}.
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Since we assume that R does not belong to Ry(K}, we have A(K,M)<0.
Therefore, A(K,f(1)) increases exponentially as i increases. This in tumn
implies, by Lemma 3.1.1, that A(K,f,l,i) increases exponentially as i
increases, regardless of what the metric is. This means that the
expacted number of nodes which reach the stack-top befors the corract
node at level i grows exponentially in increasing i. Hence, R does not
belong to R(K). O

Proof of Lemma 3.3.2.
Let K=(P;X,...,Xp5Y) De @ PRC and f be a M=(M,,...,M,,N) block code for K.

Let f; be the component code of f for user i, i=1,...,n. Let the codewords
of f; be indexed by integers 1 through M;, and the codewords of f by
n-tupies of integers (m,,...,m,) where m;e{1,...,M;}. The words index and
message will be used interchangeably in what follows.

The codeword in { with index (m,,...,mn) corrasponds to a collection of
codewords, namely, codeword m; from code f; for each ié{l,..,nk The
codeword with index m=(m,...,m,) will be denated by f(m), as usual.

Recall that
AK = (1/H) 3 D P(8(m,m ]| f{m)) (1
mm
whera H=M,---M, is the total numper of codewords, the summations run

through all possible messages for f, and B(m,m) is as defined in §3.1.

Now, by Lemma 3.3.1, for any distinct pair of m and m,

P(B(m,m) | f{m)) + P(B(M,m) | 1(M)) 2 (g(N)/2) 3 {P( i fimNP (R | f(m)),
neyY

where the factor of 1/2 accounts for the fact that B(m,m) and B(m,m)
have in common those meYN for which P(q | f{m)=P(q | f(m)).




......................

Summing aver 3l1 messages,

2 2 PBumlfm) 2 (/22 3 3 SYPIRTHmDP(n [f(m)
m m m m=m N

=N/ (-H+T T T A[mip(alfm). (2
m m q

This expression will now be simplified.

Let Q be the composition of f, and Q; be that of f;. The reilationship
between Q and Qy,....,Q, is a simple one: For any collection of 816X1N.
ie{1,ee,n}, Q(t,x---xtn)=Q1(81)---Qn(£n).

The following short-hand notation (which should be familiar by now) will
be used in the rest of the proof. For any subset T of {!,...,n} and any
Zyx-oexE, where £iexiN, & will denote the collection of &; for ieT; &

will denote &x---x2.; Q(Z1) will dencte the product of Q;(Z;) aver all
i€T. P(n | &) and P(n | &7,87¢) will be used intarchangeabiy.

For any message m=(my,...,m,} and any subset T of {1,..,n}, T(T) will

denots the set of messages M={My,...,My) for which m;=a, for sacn 177,

Now, we can proceed with the proof.

S 3 I /Rm[myp(a]rm)
m m 1

2y > S /P(n]tm)P(n]|1(m)
m meTp,(T) M

Here, T is a fixed but arbitrary subset of {1,...,n}

....................

------
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.............
~ y

IR T TSP B




' .
o
Y
)
...
.

ey
>,
i

o
L,

SRESCES BRI IR SR Su KL R 0 A g Y g B A M T B AT G T A oA T o A A e Aot i A

¥

CRARC S 4 e~ ~a)

93

= 3 2 MD AR D YRR m)P(n] Tr,fimde)
m 87 N

The summation over tT should be thought of as one summation for each

element in T; the summation corresponding to an element i of T runs
through all of x,-N. Now, let M(T) denote the product of ail M; for ieT.

=HY QMM 3 ey T VP [DP(R[Tr. &)
4 Cr L

Recall that H is the total number of codewords in f. The summation over
2 runs through all of (X,x---xx N,

= HM(T) 3 Q(21e) D Q212 Q) 2 VPN | &)P(M| Br.8+e)
Z1e &r o n

Note that Q(£)=Q(&1=)Q(&7).

=HMT) $ Q2pe) 5 5 QPR 21.87) 2 QR-)VP{M 2r.8)
&re n &7 &

= HMT) T Q(27e) 3 {2 Q&r)v P("‘w}z
e n &

= Hexp N(R(T)-R4(K,Q,T)), where R(T) is defined as (1/N)InM(T).

We have thus proved that, for any non-empty subset T of {!,...,n},

2 2 2 YPOn{fm)P(m|f(m) 2 HexpN(R(T)-Ry(K,Q,T)). (3)
m m T

Tl e = adopi At o
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It follows that

3 3 I /FRITmpx]em) : HexpN(mas(RT)Re(KQTI: (4
mm N

Noting that M?X{R(T)'RQ(K,Q;”]} = -§(K,M,Q),

2 3 /PR fm) P(q | 1(m)) 2 HexpN(ma_:lt_(R(T)-Ro(K,Q,T)l). (5)
mm R

Now, the lemma follows from (1), (2), and (S). O
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3.4. A Lower Bound to the Ensemble Average of Computation in
Sequential Decoding

Theorsm 3.4.1. For any channel K=(P;X,,...%n;¥), any tree code
used in ssquential decoding of codes in E, and any positive integer t,

EA(K,8,I,t) 2 h(t)exp -kt5(K,M,Q),

whers E denctes expectation (hers, E is an averaging operation over all
codes @ in E); h(t)=(g/vT)+0(1/4/T) whers g is a constant and o(1//1) is
a quantity which goes to zero faster than 1//t as t goes to infinity;
M2(Myyeeestnk); Q2(Q,e..,Qp); 200, &K,M,Q) is 2s defined in §2.2.

Bemarks

1) There are certain similarities between Theorem 3.4.1 and the results
of §2.4, but neither is stronger than the other.

Theoram 2.4.1 and Lemma 2.4.1 together imply that, for branchwise
2dditive metrics, the method of §2.1 cannot be used to prove the
achievability of any point outside Ry. The result hers is much stronger:
Theoram 3.4.1 statas that the inability to prove achievability outside Ry
is not due to 2 shortcoming of the particular method empioued in §2.1,
neither is it due to the rastriction of the metrics to branchwise additive
ones. It is because random-coding arguments over the class of ensembies
we ar2 considering in this thesis can not yield any achievable points
outside Rg; in this respect, the method of §2.1 can not be impraved.

Theoram 2.4.1 gives an outer bound to what can be shown to be
achievable by 3 given branchwise additive metric by using the method of
§2.1. Theorem 3.4.1, on the other hand, implicitly deals only with the
best possible metric.

2) In the one-user case, a result similar to Theorem 3.4.1 was proved by
Gallager in a different context [18].
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Proof of Theoram 3.4.1.
In view of Lemma 3.1.1, it is sufficient to prove that

EX(K,8(t)} 2 h(t)exp-kts(K,M,Q).

Here, e(t) is the block code obtained by truncating the tree code e at
level t, as defined in $3.1. We associate messages for e(t) with level-t
nodes in e. Now, by definition,

A = (1M 3 D P(BUC.,G(.t0) | eul..t)), (N
u(..t) ul..t)
where M(t) is the total number of codewords in e(t), i.e., M(t)=(M;---M)Y;

the sums are over all level-t nodes in e; eu(..t) denotes the codeword in
o(t) for message (node) ul..t); and B(u(..t),u(..t}) is defined as follows.

{(nevKt:p(n | ed(..t)2P(n | eul..t)} u(et)=ul.t);
Bu(..t),u(..t)) =

¢ . th=utaat),
Taking expactations of bath sides of (1),

EMK,0(1) = (1/M() 5 D EP(B(U.t),0(..t)) | oul..t)), (2)
ul..t) ul..t)

EA(K,e(t)) can thus be Tower-bounded by lower-bounding
EP(S(u(..t),U0.10) | eul..t)),

which is just the probability of the avent that

t
2 In[P(y(i) | eu(i))/ P(y(i) | euti))] 2 0. 63
=1

Here, y(i) denotes the ith channel output block, and it is regarded as a
random variable taking values in vk, Likewise, e is regarded as a random
variabie taking values in E.
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The distribution of Z; = In[P(y(i)|eu(i)) / P(y(i) [ eu(i))] depends on the

typs of &(..1) with respsct to u(..i). In order to simplify matters, let us
suppose that the type of u(..t) with respect to u(..t) is (T,...,T) for some
non-empty subset T of {l,..,n}. Zy...,2y 2re then independent- and

identically-distributed. So, the probability of the event in (3), which is
now just the probability that the sum of t iid random variables, Zy,...,Z;,

have a non-negative sum, can be lower-bounded by using the asymptotic
form of the Chernoff bound, as given by equations 5.4.23 and S5.4.24 of
(12]. To use the Chernoff bound, we note that the moment-generating
function of Z,, E(expsZ,), is as follows,

ElexpsZy) =3 D 2 2 Q(Zp)QRIQ(21e)P(7 ] tT.QTc)l-s P(n|81.870)°

Nl it
where we have used the notation of §3.3.

It can be verified easily that E{expsZ,) is a convex function of s with 2
minimum at s=1/2; thus, the minimum vaiue of E{expsZ,) equais

E{exp(Z,/2)} = exp-kRq(K,Q,T).
Now, the Chernoff bound states that

P;’{Zﬁ'“"‘thO}l H(t)exp-tkRy(X,Q,T), (<

whera H(%) is of the form (x/vT) + o(1/4/t) for some constant x. (For
the exact form of H(t), see page 130 of [12].)

Note that exp{k(t-1)R(T)}, whera R(T)=(1/k)InM(T), lower-bound§ the

number of level-t nodes which ara of type (T,...,T) with respect to (any
given) node u(..t). Thus, it follows from (2), (3), and (4) that

EA(K,e(t)) 2 H(t)exp{-kR(T)}exp {kt{R(T) - Ry(K,Q,T)i}, (S)

which s true for any non-empti; subset T of {1,...,n}.




Now, lower-bounding H(tdexp{-k8(T) by h(t)=H(t}/(M---M) and taking a T
in (S) for which

R(T) - Ro(K,Q.T) s max{R(S) - Ro(K1°|S)}
§:S is a non-empty subset of {1,...,n}

|S- S(K,”’Q)s
we obtain EA(K,8(t)) 2 h(t)exp{-kts&(K,M,Q), (6)

thus concluding the proof.
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Chapter 4

NON-JOINT SEQUENTIAL DECODING

The sequential decoding procedure that we have been considering in the
past chapters - joint sequential decoding (JSD), as it will be called in
this chapter - requires a complete knowledge of all tree codes in the
system on the part of 3 single processor. In this section, we shall
consider what we calil non-joint sequential decoding (NJSD) in which
thers is a separate sequential decoder for each user, the decoder for any
given user working only on that user’s tree code. (See Figure 4.1.) Our
goal is to examine the achievable rate region of NJSD (to be defined
presently) and compare it with that of JSD.

Consider 2 channel K=(P;X(,...Xn:Y) and suppose that user { employs 2
(Mj,k) tree code ey, i=1,...,n. Let @ denote joint tree code for ey,....,ep.

NJSD in this situation uses n sequential decoders. The sequential decoder
working on user i's tree code e;, which we denote by 5D;, uses a metric

I'i of the form 00
I'i H U (Xihk*th)

h=1
Ncts that the farm of I'i does not 2llgw SO; to use any information accut

[-00,00].

the codes of the other users.

Rougnly speaking, achievability tn NJSD requires that the average
decaging complexity be finite for each SO0;, i1=1,.,n. What follows is a

formalization of this igea.

Achievanility in Non-Joint Sequential Decoding

Let C,J(K,G,I',,s,g) be the number of nodes in Ij(s,), the jth incorrect
subset of the correct path s; in e;, that reach the stack-top of 30;.
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Figure 4.1. Joint and Non-Joint Sequential Decoding
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(As usual, s=8yx---xg, denctes the correct path in @, and y denctas the
channel output sequencs.)

Let C; j(K.8,I;) be the value of C;,j(K.8,T',8,4y) averaged over s and y. Let
Di ,L(K,c,l‘ i) ‘-’{CtJ(K,I,P i) *“’"Ci’L(K,C,r i) }L.

For large L, Dy ((K,8,I'y) can be interpreted as the average work 5D; has
to do to move one step along the correct path s,.

A point R=(Ry,..,Ry) is said to be achigvable by NJOD if there exists a

finite constant A, A=A(K,R), such that for any given L there exist i) a
code 8 with rate at least as large as R, and ii) metrics Ty,...,[; such

that
D ) ’L(K.O,rﬂ“"" *Dn’L(K,e,I‘n)<A.

The achievable rate ragion of NJSD is defined as the closurs of the set
of all points achievable by NJSD, and 1s denoted by an(K).

Theorsm 4.1. R .(K) is inner-bounded by Ry, (K}, which is defined as
follows.

R, = {J R, ,(K.Q),
Q

whera the union is over all Q={Qy,...,Q,) such that Q; is a p.d. on xi" for
some k (k is the same for 2ach i), and for any such Q,

Ryjo{Ks@ = {(RumniRp) 205 R <R, (K, Qi) for each izl,..,nl,

where Rn”o(K,Q,i) = ~(1/K)n z { z 01(21)4 Pi(T[ i ii)}z,

K k
NeY" &eX;

and where

oA
‘_\'-_\
CAGIN
R

R )

.p'.v '.'.,'

%'I"'l‘. °
YN
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Pi(nlal) 201(% zQi-l(tM c.Qlﬂ(twl) an“'n‘P""!th ’zl’ ’tn'
tt tiq ti-M “'n

Proof. We use a random-coding argument that is essentially the same as
the one in $2.1. Hence, details of the following proof ars omitted.

Lot EsENS(Myye,Mpsk;X 1500sXni Q150 Q) De an arbitrary ensemble such that
Ryj.o(KsQ:)>(17k)InM, for sach j=1,...,n. To prove the theorem, it suffices
to prove that there exist metrics I'y,...,I'y such that the expected value
of Dy (K,8,Ty)¢+--+Dp | (K,8,p) over E s uniformly bounded over all L.
Simpler yet, it suffices to prove that, for any given i, there exists [}
such that the expected value of D"L(K,o,r',) over E is uniformly bounded

over all L. Without loss of generality, we may consider the expected
value of Dy | (K,8,I'y) over E, as we do next.

Let E,zEns(M,;k;x,k;Qi), i=1,...n. Let E dencta expectation over E, and E; [i
denote expectation over E;. Now, BT
ED,’L(K,c,I',) s Eg"'EnDI’L(K,e,F1)
s E,{Ez---EnD1,L(K,e,P,)}
= EgDL(K"eg,rg),

whers D, is 2s in Def.1.4.1, 2ng K‘ziP,;x,k;Yk) with Py as follows.
For each £.6X,K and mevk,

P | 21023 Qai8a)e+ D Qu) P(M | 1.8 2seeesBp)
tz tn

If Ty is taken as met(K,,1,Q:,B), with bias B={R¢(K,,Qq,{1})+InM}/2,
then E,0 (Ky,84,I'y) is uniformly bounded over all L by the results of §2.2.

Bemarks

1) The branch metric for met(K,1,Q,,B8) is as follows.
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For aach nev", tsx,",
P|(1'l g

; ¥(Z,m)=1n - B.
E > Q,@Q/Pi(a]0
: Tex
{ 2) R, ,(K,Q) 1s also achievable if SD; uses the following Fane metric.
§ For each nev¥, Zex,X,
) Pi(m|2) o
g gp@m)=n - Int, =

where wi(q) = 3 Q(QP(n|2). O

Zex;* S

) N
- One might think that R(K) must be at least 3s large 2s R, (K} for all X, -
N This is not true. Thers is no general inclusion relationship betwsen R
e and R, as fllustrated by the following exampies. =
O } 5
: Example 4.1. A channel for which R is not contained in R, ..
_fZ Consider 2 channel K=(P;X,Xj;¥YxY,) (Figure 4.2) whers X =X,=¥ =¥,z
< {0,1} and the transition probabilities are as follows.
" P((£,0)](£,00) = 1-€ £=0,1;
8 3
‘3 P((i.i) ! (310)) = ¢é ’ £=°1';
PUE,ND[R,1) = 1-¢ 2=1 and 3=0, or £=0 and 2=1; e
N Sl
s P((2,0)|(2,1)) = ¢ 2=1 and §=0, or £=0 and 3=1; 2

all other transitions have zero probability.
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(1,1) 0= (0,1)
(1,0) b0 (1,0)
K I-€
(0,1) (1,1

Figure 4.2. The two-user channel of Example 4.1,

Thus, in a sense, the input by the second user selects the channe! for the
tirst user. If (£,£,) is the channel input and (m,,m;) is the channei
output at a given time, the transition prababilities fram &, to 7, ara the
same as those of 2 binary symmetric channel with probability of arror e.
If &,20, one has =&, with probability one; if &,=1, then one has m,=2,
with probability one.

In order to decode the message of user 1, it is sufficient to decsce that
, of user 2. So, any two-user rate (1 bit, R, bits) for which R, is smalier
L then the cut-off rate of a binary symmetric channel with probatility af
" errar ¢, namely 1-2l0g,{v/e+ v/ {1-¢)} bits, is achievable by JED.

If user 1 transmits at a rate of 1 bit, any decoder that decodes user i's
message corractly must produce (as a by-product) a correct decoding of
user 2’s message, whether or not we are interested in that message.
Therefore, no two-user rate of the form (1 bit, R, bits) is achievable by
NJSD if R, is positive. More precisely, if (R, bits, R, bits) is achievabie
by NJSO, then R, must be smaller than 1-8(R;) bits, where § is a
function such that 8(R,)>0 for R,>0.
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Example 4.2, A channel for which an is not contained in R.

Consider 3 channel K=(P;X;,Xp;¥xY,) (Figure 4.3) where X;=X,={0,1},
Y4=¥,={0,1,8}, and the transition probabilities are

PU(2 1,820 | (21,82)) = 1-¢
and P((e,e)|(2y,82)) = €  for each pair of £,eX,, &,¢X,.

The output symbel (e,8) is called an erasure and ¢ is called the erasure
probability. We assume that ¢ satisfies 0<e<|.

1€ o (0,0)

(o,o)e\
(0,1) 04 (0, 1)

AN
(1,0) c\i'e 2 (1,0)
f-¢

(1,1) (1,1)

(e,e)

Figurs 4.3. The two-user channel of Example 4.2.

An guter bound to R(K) is found by observing that, if (R,,3,) belongs &s
R(X), then Ry+R, cannot be larger than Ry{KJ=-1n{(i+3€}/4} nats, whers
Kq is the gingla-user quaternary erasurs channe!, and R4y is the
cut-off rate of K.

By Theorsm 4.1, R (K) is inner-bounded by R (X,Q) for any Q, in
particular for Q*=(Q,,Q,) where Q;=Q,=the uniform distribution on
{0,1}. By simple calculation, an'o(K,Q*)={(R,,R2)=0sR,s-ln[(1+e)/2] nats,
0sRy<~1n[(1+€)/2] nats}.*

* Actuaily, R

nj,o

(K,Q*):RM o(K); but we do not need this fact here.

N e Tt u AN et et e e e e e e c e . . e - .
'y St e et T T AT et T L e T T e e e " -t e .

TR R T - - R :
Al a e ey o Ll LTS e e Tt e e s A T e e

.............................

............



Figura 4.4 shows the above bounds. We ncotice that ther2 arz points in
the neighborhaed of (-1n{(1+€)/2],-In{(1+€)/2]) which belong to Ry;(K) but

not to R(K), since -2In((1+€)/2]>-1n{(1+3¢)/4] for any ¢, O<e<l,

A_;Rz

Figure 4.4. Inner and outer bound regions of Example 4.2.

gomglementary Remarks on Examgle 4.2

1) Example 4.2 may seem paradoxical: How can two sequential deccocers,
neither with a complete view of the system, achieve a point that is not
achievable by JSD? This can be explained as follows.

Lot e, be the code for user 1, and e, be the one for user 2. Let e be the
joint tree code for e, and e,. Let k be the number of channel symbols per
branch.

The channel output here is a sequence of pairs of symbols: (m;{,N21)
(My2sN22)s (M13M23)se- We shall dencte the sequence Tiyy,My2sM12seee DY
Y. The first kt elements of y, will be denoted by y,(..th. M21,MN22:M23seee
will be denoted by y,, and the first kt elements of y, by y,(..t).

-

-
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A node u,(..t) in 8, is said to be consistent if e,u,(..t) agraes with y,(.t) "‘"43‘:?.';

:‘;

in the unerased digits. A node u,(..t) in @, is said to be consistent if
82u,(..t) agrees with y,(..t) in the unerased digits. A node uy(..t)xu,(..t)
in @ is said to be consistent if u;(..t) and ux(..t) are consistent. Let

ﬁ'
Y M

L
Wiy, (..t)), Walys(..t)), and W(y;xy,(..t)) denote the number of consistent :Eé
level-t nodes in e,, @,, and e, respectively. Note the identity W=WwW,. &
Condittonal on y,(..t), all consistant level-t nodes in e, are equally likely Ef;:?:
to be correct. Thus, W,(ys(.t))/2 is a lower bound to the number of A9
level-t nodes in @, that reach the stack-top of SD; in NJSD. (The Ry
reasoning here is the same as that leading to Lemma 3.1.1.) On the other ;
hand, W, is an upper bound on the same number of nodes provided that R
SD, uses, 3s we assume that it does, a metric that assigns - to e
inconsistent nodes, thus preventing them from ever reaching the P,
stack-top. S
Similarly, the number of level-t nodes in e, that reach the stack-top of
8D, is lower-bounded by W,(y,(..t))/2 and upper-bounded by W,(y,(..t)). S
And the number of level-t nodes in @ that reach the stack-top in JSD is e
lower-bounded by W(y,xy,{..t))/2 and upper-bounded by W(y;xy;{..t)). bR
What is of intersst for our discussion is that 1) W(y,xu,(..t))/2 is a IR

lowar bound to the number of level-t nodes in e that are processed in sl
JED, and 2) Ww,{y(.t))+w(y(..t)) is an upper bound on the number of
levei-t nodes in @, and e, that ar2 pracessed in NJSD. Since W= W, and
both W, and W, ara at least 1, we have W/2 2(W+W,)/4. It is thus clear -t
that the complexity of JSD is grsater than one fourth the combined
compiexity of SD,; and SD,. The conclusion that follows is that R(K) must
be a subset of R,,(K).
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2) Example 4.2 was inspirad by Massey’s paper on sequential decading for L
single-yser M'ary erasure channels [15]. Massey observed that, if M=2b, -
then an M'ary erasure channel decomposes into L completely correlated
binary erasure channels (BEC), as illustrated in Figure 4.5 for L=2. The
component BEC’s are compietely correlated in the sense that an erasure :
in one means an erasure in all. ,._,
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Figure 4.5. Decomposition of a quaternary erasure channel. f::_
y e
2 3
" The cut-off rats of an M'ary erasurs channel with erasura probability ¢ \;-
equals Rg(M)=-In[¢+{1-¢)/M] nats. If one uses separate sequential [::_‘
5: decacdsrs on each component EEC of a 2L’aq erasure channel, one can “
2 then achieve ratss up to LRy(2)=-LIn{(1+<)/2] nats. On the other hand, if R
- saguential decading is used diractly on 3 2L’arg erasure channel, then the a
- achievabie rates ara upper-bounded by Re{2L). But LR0(2)>R0(2'-) for any T
§ € 0<é<1, In fact, LRy(2)/ RO(ZL) goes to infinity as L increases. PR
3 )
R An explanaticn for this apparant pecultarity can be given in exactly the o

same way as has been done for Example 4.2, The conclusions tha* can be
A‘ drawn from Massey’s observation are that i) one cannot talk about a
} cut-off rate for single-user channels without being explicit about the ;:;;:;::
B sequential decoding scheme one has in mind, and ii) the cut-off rate of NN
i ordinary sequential decoding does not constitute a limit, even in an Fl“lf
? approximate sense, to rates at which reliable communication is possible R
% in practice. BN
o
o NN S e N N
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Chapter 5

SUGGESTIONS FOR FURTHER RESEARCH

1. Determine whether R(K)=Ry(K) for all K.

2. Determine whether R is convex. Note that, if R is indeed convex,
proving that it is convex does not necessarily require an explicit
characterization of R.

3. Determine whether Rq(K)=convex-hullRy(K, 1) for all K.

4. Determine whether strong achievability (Def. 1.4.3) is equivalent to
achievability (Def, 1.4.2).

S. The metric of §2.2 requires that, in order to maintain achievability as
§, the distance between the desired rats and the “outer” boundary of Ry,
goes to zero, the number of channel symbols per branch incraase without
bound. Determine whether this raquirement, which does not exist in the
single-user case, is inhersnt in multi-user sequential decoding.

A rasult in this rsgard, which is not rapcrted in this thesis, is that
thera is no metric that 1) satisfies the sufficient conditions of §2.1
over a region whose closura is Ry, and 2) does not require the number of
symbels per Sranch go to infinity 2s § goes to 2era.

6. A simulation study of muiti-user saquential decoding may be done to
obtain a better idea about its complexity. The analytical upper bounds of
this thesis are useful for determining whether the average complexity is
finite; but they are too weak to give an idea about the actual average
complexity. Furthermore, a simulation study would provide information
about the dynamic behavior of multi-user sequential decoders, a difficult
subject to approach analytically.
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7. The non-joint sequential decoding scheme of Chapter 4 is just one of
several possible approaches to sequential decoding with muiltiple

ANRRAD

g
1

processors. It would be interesting to see what could be gained by RN
letting the processors exchange information about their current on
Tty

estimates. Such schemes are not likely to be anaiytically tractable; but
that should not deter one from exploring these potentially more powerful
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