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ABSTRACT

Sequential decoding is a decoding algorithm for tree codes originally
developed for single-user channels (i.e., channels with one transmitter
and one receiver). Sequential decoding relies on what is called a metrc.
to direct its search and find the path in the tree that corresponds to the
encoded message. The decoding complexity in sequential decoding, that
is, the number of computations to decode a source digit, is a random
variable. A rate Is said to be achievable by sequential decoding if it is
possible to select a code with that rate and a metric such that the ":': ':.
expected value of the decoding complexity is finite. In the single-user
case, the largest achievable rate is called the cut-off rati of sequential
decoding.

Multiple access channels are models of communication systems where
there are a number of users all sharing the same transmission medium to
communicate their messages to a common receiver. This thesis explores
the possibility of using sequential decoding on multiple access channels.
Immediate generalizations of the metrics, in particular of the Fano
metric, that have been used in the past for single-user sequential
decoding, do not work satisfactorily In the multi-user case. A new
metric Is introduced which works quite satisfactorily not only for
multiple access channels but also for single-user ones. The achievable
rate r of sequential decoding under this new metric is evaluated. ItI,::::
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is shown by examples that sequential decoding has the potential of
achieving rates (throughputs) beyond those achievable by conventional
ways of using multiple access channels, such as time-division .

multiplexing, frequency division multiplexing, and Aloha-like schemes.

Outer bounds to the achievable rate region of sequential decoding are
considered. The cut-off rate of sequential decoding (in the single-user
case) Is determined, thus settling a long-standing open question. Also,
the achievable rate region of sequential decoding is determined in the
case of multiple access channels that have a property known as
pairwlsa-reversibilitg. The achievable rate region of sequential decoding
for arbitrary multiple access channels remains undetermined.

An alternative approach to sequential decoding, in which there is a

separate sequential decoder for each user In the system, is considered
and an inner bound to its achievable rate region Is given. Non-joint
sequential decoding, as this approach is called, has the advantage of
being simple: each sequential decoder is responsible for decoding the
message of a single user, so it does not have to know the tree codes of
the other users. An example is given for which non-joint sequential
decoding, in addition to being simpler, also achieves rates that are
unachievable by ordinary sequential decoding.Iz
Name and Title of Thesis Supervisor:
Robert G. Gallager
Professor of Electrical Engineering and Computer Science
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Chapter i

INTRODUCTION

'01-..

Multiple access channels are models of communication systems in which
there are a number of uncoordinated users sharing a transmission
medium to transmit messages to a common destination. Some examples
of multiple access channels are a satellite transponder shared by several
ground stations, a radio network in which users transmit over the same
frequency band to exchange messages, and a computer network where
several computers send messages over a common bus.

One common approach to multiple access communications is to employ -.

time-sharing (time-division multiplexing), in which at any qiven time
only one user Is allowed to transmit a message. This idea of spiling a .-.

given channel Into non-interfering subchannels and giving the use of eac-
subchannel exclusively to a single user also underlies frequency-division
multiplexing and other techniques that aim at elimination of multi-user
interference.

Another approach, which is much less common than time-sharing, is to
let all users transmit simultaneously, thus allowing them to interfere
with each other. In this approach, a sufficient amount of rsuncancy is

embedded into what Is transmitted by eacn user so that, witi high
probability, the receiver can reconstruct the messages correctly. This is
the gagjag approach to multiple access communicat'ons. Theoretically,
coding affords a channel utilization (througnput) always as high as, and
often significantly higher than, what is possible by time-sharing. The
reason for being interested in coding for multiple access channels is

thus the desire to communicate at higher rates, or more reliaoiy at a
given rate.

While coding is potentially superior to time-sharing in terms of
throughput, it requires more complexity in the form of encoders and
decoders. In addition, there is the problem of finding an encoder-decoder

.. , .. -.

' .. ' , "°.



pair achieving a given desired rate. This thesis examines a particular
approach to coding for multi-access channels, namely, tree coding and
sequential decoding, and establishes It as a practically applicable
method for achieving rates beyond those achievable by time-sharing.

I.I. The Multiple Access Channel Model

The multiple access channel model used In this thesis has, as Its central
element, a channel (in the information theoretic sense of the word),
which has one Input for each user and a single output to the common
destination (Figure 1.1.1).

source I S1 encoder I -iz"

Channel - U Decoder

sZnsource n soencoder n n-L _ Zn '-

Figure 1. 1.1. Multi-user communication syste. mccel.

Our study is restricted to the class of channels which have the following
properties.

1) The channel operates in d1screte4 time; it can De used only once a
second, say.

2) The channel is discrete; that is, the channel input and output
alphabets are finite sets.

.4 • .. _
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3) The channel is memoryless and stationarg. Memorylessness is the
property that the statistics of the output at any given time depends only
on the inputs at that time, and possibly on the time Itself. Stationarty
rules out the dependence of channel statistics on time.

A channel In this class with n users can be identified by its input
alphabets X1,...,Xn, its output alphabet Y, and its transition probabilities

P=(P(-qrj):VrlY, teXlx---xXn). P'114) is the probability of receiving i-

given that t is transmitted. If 4=(41,..-, n), an alternative notation for

P(11 I) IS P(111 It,..., n); P('r I ,..., ) Is thus the probability that il Is

received given that user i transmits i, i1,...,n. A channel with these

parameters will be denoted by (P;X i,...,Xn;Y).

The encoders in this model are what we call (M,k) encoders, where M and
k are arbitrary positive integers. An (M,k) encoder is a device which
sends k symbols to the channel for each digit it receives from the
source; M designates the size of the source alphabet.

In general, each user may have encoders with arbitrary parameters, say,
(Mi,k i) for user i, i:l...,n. We shall, however, consider only those cases

where ki is the same for all I, and denote the parameter of such a

collection of encoders by (1i,...,Mn,k).

A source for an (M,.) encoder is viewed as an infinite shifft-re"ister
holding digits from a set with M elements. It is assumed that each digit -

in each source register is a random variable, uniformly distributed, ard
independent of all other source digits in the same or in other registers.
Viewing the sources In this way eliminates the source coding problem,
and thus, enables us to focus on the problem of channel coding, which is .

the problem of main interest here.

At this point, we view the decoder quite generally as any device that
generates an estimate for each source digit. -

~ .*K-~.K* K-K. >1K>K- ~ .1-:' K°I
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Notice that, as a result of the statlstlci InCependenca at the sour:a
level and the lack of cooperation among the users in the encoding of
their messages, the inputs to the channel by different users are
statistically independent. This is the essential difference between a
multi-user channel, say, (P;X 1,.... XnlY) and its single-user counterpart
(P;X 1 X ... XXn).

The two main performance criteria for the analysis of this model will be
the expected system delay and the probability of decoding error. System
delay for a source digit is defined as the time lag from the time that
digit Is accepted by its encoder to the time the decoder delivers its
estimate about that digit. System delay is permitted to be a random
variable; but clearly, a system can not be used in practice unless the
expected system delay is uniformly bounded over all source digits.

Probability of decoding error for a source digit is the probabilitg that
the decoder estimate for that digit is in error. We are interested in
finding ways of reducing the probability of decoding error to arbitrarily
low levels for each source digit, while keeping the expected system --
delay bounded.

In order to describe the model precisely, and also for future refer ncs,

we now list the notation that will be used throughcut this thesis.

Notation, Concepts. and Conventions

Transmissions start at time I, and take place at times 1,2,3,...

As a convention, in the following notation, subscripts refer to user
identity, arguments refer to time.

Generically, ei stands for the encoder (the device) and the encoding

operation for user 1; the parameter of ei is denoted by (Mi,k); and the
number of users is denoted by n. e denotes the collection of encoders

no and also the joint encoding operation.

.-4
*.#
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.,ut~rta 'btsuts. !Accer !nputs

st(m) Is the mth input to e, or equivalently, the mth output of source i.
..)= ,...,s1 m)) is the first m inputs to st.

sizsl(1),si(2),... Is the Input sequence to ei.

It Is Important to note that si denotes the actual output of source I.

Throughout what follows, the letter s is reserved for denoting actual
source outputs. When there is need to mention a possible but arbitrary
output sequence for source i, we write ui or u, or vip but never si.Thus,

ui denotes an arbitrary sequence of letters from (I,...,Mi}. We denote the

mth letter of u1 by ul(m), and the first m letters of u1 by ui(..m).

Encoder Outputs, Channel Inouts

xi(m) is the mth output block of e•, m=1,2,...

xi(m,j) is the Ith digit of xi(m), Jr= ,...,k.
xi(..m):(x(1), .... ,xi(m)) is the first m output blocks of 91.

xi:xi(b ,l),...,x 1(l ,k),xi(2, 1),... is the output sequence of ei.

x1 is the actual output of encoder el; in other words, it is the sequence

of channel symbols transmitted by user i. xi and si are related through

the equation xt(m):ei(s4(..m)). As stated earlier, 9i is regarded not only

as a device (the encoder) but also as the encoding operation itself. In -

this second sense, ei is a causal operator mapping source sequences into

channel input sequences.

Our model allows xi(m) to depend on all of si(1),...,si(m), no matter how

large m Is. If xi(m) does not depend on s(m-b-1) for any bzbo and bo Is

the smallest integer with this property, then be is said to be the memor-
of e-.

-. A \ °-'2A%
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Encoders with zero memory ara called block encoders and they w~I be iax
discussed in the next section. The discussion of block codes aims at
Introducing certain theorems that are useful In understanding the coding
problem in multi-access channels. Our focus in this thesis Is on tree
codes, which are generated by encoders that may have arbitrarily large
memories.

We often use the following notation for the actual channel inputs:

SiSi=Xi, ets1(m)=x1(m) , ejs(..m)=xi(..m). -

We use the following notation In relation to what would be observed as
the output of e if ui were the input to ei.

; ui(m):ei(ui(..m)), the mth output block of et in response to ui. ..

Iiiui(..m):(eiui(1),...,eiui(m)), the first m blocks In response to ui. :::-

iiuieiui(IL),eiui(2),.... the output sequence in response to ui .

Inputs and Outputs for the Joint Encoder

s(m):(si(m),...,sn(m)) is the mth input to e.

s(..m)=ls(l),...,s(r)) is the first m inputs to e.
s:s(1),s(2),.., is the input sequence to e.

x(m'j):(xj(m'j),...,Xn(m,j)) is the jth digit in the mth output block of *.

x(m):(x(m, 1), ....,x(m,k)) Is the mth output block of e.
x(..m)=(x(l),...,x(m)) is the first m output blocks of e.
X:x( I, I ),...,x( I ,k),x(2, 1),... is the output sequence of e.

The functional relationship between the joint source output s and the
ioinj channel input x will be expressed by writing x(m)=e(s(..m)). Thus, e
is regarded both as a label for the collection of all encoders and as an
operator mapping sequences of letters from (l,..,Ml)x...x(1,...Mn} into

-p

;S . . -* -* :. ,-. -.* ' - ,- ... .. . -. . ,. - -, ,% - .-.-. .. . . . .. .,.. ,.. -. -. , .. .,.. ..- , ... .. ._-. -. .. . . . .. '
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sequences of letters from Xjx ... Xn. In this secona sense, e is an :-.,

encoder with parameter (MI." Mnk), Input alphabet (1 ,..,Ml}xx...x{ Igooe , 

and output alphabet X1x...xX.

We often use the following notation for joint channel inputs. 4 2'

-sx, es(m)x(m), es(..m)lx(..m)i

As In the case of Individual source sequences, the letter s Is reserved
for denoting the actual Joint source outputs. Arbitrary joint source
sequences are denoted by u or u or v. etc. Thus, u denotes a sequence of
elements from (1,...,M1)x...xl, ...,MN); u(m) denotes the mth letter of u;

and u(..m) denotes the first m letters of u.

We use the following notation in relation to what would be obser'ed as
the output of e ift u were the input to e.

eu(m)=e(u(..m)), the mfl output block of e in response to u.
eu(..m):(eu(1),...,eu(m)), the first m blocks in response to u.
eueu(l),eu(2),.... , the output sequence in response to u.

I4annel ad Dncoder Cutguts

* ~y(m,j) is the channel output in response to x(m,j).
y(m)=(y(m, I) ....,y(m,k)) is the mth channel output block.
y(..m):(y(1),...,y(m)) is the first m channel output blocks.

zyU( 1, !),...,y( 1 ,k),y(2,1),... is the channel output sequence.

zi(m) ts the decoder estimate for si(m).

z(m)=(zz(m),...,Zn(m)) is the decoder estimate for s(m).

An error in the decoding of si(m) is the event that zi(m)=si(m).

This completes the basic list of notation.
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Ws now Int.rOduc3 an aperatlan to slimplify the not atlion.

For anq collection at sets AI,,..,Ah. any integer t, and any collection of

1 -Qql..q E~Ajt 9W..nowe defitne

If titl9i2t,1..With 4EAthen we define

Some of the preceding relations can now be restated as follows.

e(m)=xl(m)x ... xen(m) x, m=i.r~.ox -) XXxsx

eu=elx ...X enuno
eu(m):e, 11(m)x ... xe enns

eu(..m):eiui(..M)x...xenu(.m.

BU~elul* ... ..

*um = lu~~ .. X .** . * * ** .d ..

I-.m = lu(. ) ... *eu(. )
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1.2. CapacitV and Coding for Multiple Access Channels

Interest in multiple access channels (and other types of multi-user
channels) goes back to Shannon's 1961 paper [1]. Since the publication of
that paper considerable theoretical work has been done about such
channels. This section presents two well-known results about multiple
access channels which provide the motivation and the framework for the
work reported in this thesis. To keep the notation simple, the discussion
Is limited to the two-user case.

Two-User Block Codin :

A (M1,Mz,k) tinok cd for a two-user channel with input alphabets X,
and X2 Is a mapping

f:{ 1 ,...,1x{ I ,...,M2 }  (X~xX 2)k

which has the property that, for each (i,j)E{1,...,M1 )X(1 ,...,M,-.

fd(iOf1ixf 2(),'""

for some pair of functions f1 and f2 such that

f 1:{1 1,--P 1} I ,-'-.'

k

f 2: (1,..-,M21 X2Z" ;::.:

The operation x is as defined in 51.1.

The above definition forces a two-user block code f to be decomposable
into two component block codes f, and f2. This reflects the requirement
that in a two-user channel the channel inputs must be independently
encoded.

The implementation of a block code f, with component codes f, and f2, on
a channel K:(P;X1 ,X2;Y) results in the following functional relationships. .4

46!,

:.:.-.:.-.:K-j--
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Any f unction g. g:vk - (1 ,...,M1}x{ 1 ,.,M2), can be used as a decoder
for the above block code by simply letting z(m)zg(y(m)).

An error is said to occur in the decoding of s(m) if s(m)r:7(m). Under our
assumption that the source output letters are independent and uniformly
distributed, the probability of s(m):cz(m) is independent of m; It equals

P (f~g) is minimized if g has the property that, for each qe~yk, g(r,)=(i,j)

only if P('Tl If(i,j))zP(li jf(h,m)) for all (h,m)e(1,...,Mj}x{1,...,12}. Such a

decoder is called a maximum- i kelihood (MlL) decoder. The way ties are
broken in ML decoding does not affect the probability of decoding error;
so, we denote the probability of error for ML decoders by Pe(f).

Capacity Region

The capacity region C(K) of a two-user channel K:('P;X1,X2;Y) is de'111ed

as the closure of tile following region.

C(K)=convex-hull U C(Q1,Q2)
QI ,Q2

where the union Is over all Q, and Q2 Such that Q, is a probabilitu,
distribution (p.d.) on X, and Q2 is a p.d. on X2; and C(Q,,Q2) is leflned a

-' the set of points (81,R2) Such that
o R1  I ~,~ 2)ln P(i-q

O1 X1  42EX2  r1EY t Q("P(1

~.~ a-.. * * ... -.....- **-)**W2.
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0 R2 -C 2 QIJ 2(22P I 41,2l
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41X 2*X2  11EV Q I(V)(' P0 Ud
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-

ol 41942)R14R24 2 Qld Q2(42)2 P01 I 41,42)1n Pr
40E1  42EX2  TILY Q Q(Z 02 Q2(V P0~1 1 14

C1ex1 .2 ,X2

Theorem 1.2.1. (Ahlswede [21, Liao [31)
For amy two-user channel K=(P;X1 ,X2;V) and any pair of real numbers R,
and R2, we have:

1) If (Ri,R)EC(K), then, for any e>O, there exists a (MOM2,k) block code f.
such that Pe(f)CE and (1/k)InMiR i , i:1,2.

I1) If (R1,R2) lies outside CK), then P,(f,g) Is bounded away from zero

for all f and g, so long as (MM 2,k), the parameter of f, is such that
(1/k)lnMlZR1, 1:1,2. 0

In words, Theorem 1.2.1 states that, for any channel K, ) communication --

with arbitrarily low probability of eror is possible if the c:ure rates
lie In C(K), and 11) probability of error can not be mace ar:.;trarny small
(i.e., reliable communication is not possible) if the source rates lie
outside C(K). The theorem does not assert anything acut pcints wh^ch- .

belong to CK) but not to CK).

Example 1.2.1.
To illustrate the capacity theorem and to explain certain approaches to
multi-access communications, we now discuss the two-user erasure
channel (TEC) of Figure 1.2.1. We observe from the figure and by tne
channel capacity theorem that sum rates, R1+R2, of up to 1.5 bits are
achievable (with arbitrarily small probability of error) by using block
codes.



(0,0)0 0 0

(0,1)

(1,0)

X, (0,1) X2 (0, 1 Y (0, e, 1)

R.

R1*R2=l.5 bits

I bit

Figure 1.2. 1. Two-user erasure -channel and its capacity region.

Let us look at some simple block codes for this channel. It is easy to see
that the following code achieves the rate pair (0.5 bits, 0.5 bits) with
zero probability of error.
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Code l....':..--•

User 1 User 2
Message Codeword Message Codeword

1 00 1 00
2 0f 2 10

In this code, the first user sends no information in the first digit of a
codeword (it always transmits a 0); similarly, the second user is 'quiet'
in the second digit of each codeword. For this reason, this code Is said
to have no multi-user interference: user l's message can be estimated
independently of user 2's message without any loss of optimality. Thus,
elimination of multi-user interference simplifies decoding, but codes
without multi-user interference are limited to sum rates of at most I
bit in the case of the TEC, which Is significantly below the theoretically
possible 1.5 bits.

Code I Is typical of a class of straightforward approaches to multiple
:1 access communications, such as time division multiplexing, frequency
p division multiplexing, and the like, which are based on the idea of

splitting the channel into non-interfering subchannels and giving the use
of each subchannel exclusively to a single user. The main advantage of
these approaches is the ease of decoding, but as here, their operation is
often restricted to a small portion of the capacity region. Coding for
multiale access channels aims, at the very least, at findinc ,ricticl
techniques for achieving rates beyond what is acnievaole Dy such sImple
schemes.

One can easily improve upon Code 1; for example, Kasarmi and Lin [41 give
the following code, which achieves a sum rate of 0.5+(1/2)1og2 3-,1.3
bi ts.
Code 2.

User I User 2
Message Codeword Message Codeword

1 00 1 01
2 11 2 10

3 11 *~

. °

S-*..•-.oO -. ]

-. . - -- -- . . " o ° -
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In this code, unlike the pravious one, bcth 'ueers transrnit in f ",3"-n In
both digits of each codeword; as a result, each received digit Is
corrupted by multi-user interference. Hence, if optimality is desired, the
decoder must deal with the codes of both users simultaneously. So, an ."

increase in the rates comes at the cost of increased decoding
complexity. As a general rule, allowing the users to interfere with each

other requires untangling a more complicated set of possibilities at the
decoder, hence, an increased decoding complexity. -

If we wish to communicate at still higher sum rates, and at the same
time keep the probability of error below a given level, we find out that
codes with longer block lengths must be considered. The channel capacity
theorem does not tell us how large the block length has to be before we
can be sure that there exists a block code with that block length which
satisfies our rate and reliability requirements; the following theorem
provides an answer to this question.

Theorem 1.2.2. (Slepian and Wolf [51)

For any two-user channel K, there exists a function EK(Rl,R2) which has

the following properties. I) EK(Rl,R2) Is positive if (R1,R2)eC(K) and zero -

otherwise. 2) For any (R1,R2), there exists a block code f with parameter
(M 1,M2,k) such that a) (I/k)InlMi2R I for I=1,2 and b) Pe(f). sexo-kEK(R,RI).

For the purposes of our discussion, the Q <plicit form of E< 1,) is not

important. The important point is that, for any given rate in C(K), this
theorem establishes the possibility of making the probability of decoding
error at that rate approach zero exponentially by increasing the block
length. This suggests a favorable trade-off between reliabilitu and
system complexity, as long as the desired rate is in C(K). A more
complete discussion of this Issue lies outside the scope of this thesis.
For that the Interested reader is referred to [6), which covers all the
material given up to here in greater detail and from a broader
perspective, and also gives an overview of sever31 approaches to coding
for multiple access channels, which we will not discuss at all.

, '.-'-

S'.. ~ .. * . .. * .~.~. .. * •.._________
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1.3. ?ultl-User Tree Codes

A multi-user tree code is simply another name for the joint encoding
operation described in 11.1. The name derives from the fact that the
mapping generated by cjisj encoders with long memory is most easily
visualized as a tree. This section starts by considering a single-user
tree code to Introduce the basic terminology and concepts; then &
two-user tree code is considered; next the form of the concepts and the
notation for an arbitrary number of users Is indicated; and, finally,
random tree code ensembles are introduced.

Single-User Tree Codes

As in the case of encoders, a single-user tree code with parameter (M,k)
has an input alphabet of size M and, for each source digit accepted, it
generates k channel digits. The rate of such a tree code is defined as
(l/k)lnil (nats) or, equivalently, as (I/k)logM (bits).

As an example, consider a (2,2) tree code for which the source and the
channel alphabets are both equal to (0,I} and the encoding operation e is
defined as follows.

(u)uM ) for m=1;

(u(m- I)+u(m),u(m)) for m=2,3,...

Here, + denotes modulo 2 addition, and u denotes an arbitr3ry source
sequence.

The first three levels of the code tree for e are shown in Figure 1.3.1.
The tree representation is based on establishing a one-to-one mapping
from source sequences to paths in the tree. In the present example, the
mapping is Indicated by the arrows at the left side of the diagram. In
order to generate the encoded sequence, the encoder uses the source
output as a sequence of instructions and follows the "upper" or the
'lower' branch going out from the current node depending on whether the
next source digit is, respectively, a 0 or a 1.

............................ . . ..": ' " " ""-" _"; -" 5 :_:_ '. :5 ""-:. : "" - -:: : : .".' ":' ": -. : " : . -.. ... ,.. . ..- .. . .
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Figure 1.3.1. Example of a single-user tree code.

For example, if the first three digits of the source output are 0,1,0, then
the first three blocks (branches) of the encoded sequence are 00,11,10.
Thus, each source sequence is mapped to a unique path. Hence, we refer
to source sequences as U= and to initial segments of source sequences
as node. For any path u, and any m=1,2,..., the brr'ch connecting node
u(..m-l) (for m=l, take u(..m-i) as the orcin) to node u(..rm) is labelled
by e u(..r)).

In the tree representation of a (M,k) tree code, each node at each level is
connected to M nodes at the next higher level; each branch is labelled by
a block of k channel input digits; M is r=t=rred to as the degree of the
tree.

The path corresponding to s, the actual source sequence, is called the
.d correct path. Nodes on the correct path are called the correct nodes. The

branch labels on the correct path are thus the channel symbols that get
transmitted over the channel.

<. . ........ .......... .. . ...... *.. ............. ..... .. ,
.:.:... .:. : *-* *...* .'****.t*. : .: . ****.. . *... . . . . .. ... . ... ** **.*.*.. .... . .,. ..... ... , :- -.--. ' .. -...- ,.---'
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Two-User Tree Codes

We illustrate the relationship between a pair of single-user tree codes,
I and *2, and the corresponding joint two-user tree code, e, by using

the example shown in Figure 1.3.2. We observe that the parameters of el -'

and e2 are both equal to (2,2). In general, if (M1 ,k) and (M2,k) are the
parameters of el and e2, then (M1,M2,k) is the parameter of e. So, here, !
the parameter of s Is (2,2,2).

With reference to Figure 1.3.2, observe that, for each pair of nodes,
ul(..m) in s and u2(..m) in e2, ul(..m)xu 2(..m) is a node in e. Likewise,
for each pair of paths, ul in ev and u2 in e2, u1xu2 is a path in e.

The path S=SIxS2, where s, is the correct path in e1 and s2 is the
correct path in 82, is called the joint correct path. or the correct path in
e.

Basic Concepts and Notation for Multi-User Tree Codes

Generically, ei denotes the tree code for user i, and e denotes the joint

tree code. (M1,k) denotes the parameter of el; n denotes the number of

users; and (M1,...,Mn,k) denotes the parameter of e. The of ei is

defined as Ri=(l/k)lnMi , and that of e as (R ,...,Rn).

If ui is a path in ei for each ie(1,...,n}, then ulx"..xun is a path in e. It is

called the product-path or the joint path corresponding to u1,...,un, U1 is
said to be a component path of u~x ... xun -.- "

The path In ei corresponding to si , the actual source output, is called the

correct oath in el; six ... xsn is called the correct path in e, or the joint

correct path. Nodes on Six.--xsn are called correct nodes.

'a-...
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If u(Lm) Is a node In ei for each IEll,...,n}, then ui(..m)x...xun(..m) is a

node in e. It is called the joint node or the oroduct node corresponding to
u(..m) ......un(--m). ui(..m) is said to be a comonent node of u(..m)x...X
Un(..m). -::-

For any pair of nodes in a, u(..m)=u(..m)x...xun(..m) and (..m)=3 1(..m)x.-

• Xn(..m), the jypj of u(..m) with respect to Zl..m) is defined as the

vector (T1,...,Tm) where Ti. IJ.m, Is the set of I such that ui(J)=caj(..j).

(For example, In Figure 1.3.2, the type of node ((1,l),(1,O)) with respect
to ((1,1),(oo)) Is (---".).

For any node u(..m) and any path U in e, the type of u(..m) with respect to
" is defined as the type of u(..m) with respect to u(..m).

For any path u In e, the mth (m l) incorrect subtree of u, denoted by
Im(u), is defined as the set of nodes '(..j) in e such that a) jzm, b)

j(..m)*u(..m), and c) if m22, u'..m-1)u(..m-1).

The number of types of nodes at level m equals (ml)n. This can be seen :
by observing that, if (Ti,...,Tm) is the type of a node, Tj must be a subset

of Th for all h>j. Thus, for each user, there are m I waus that that user-

first appears (one possibility is that it never appears) in the sequence of
sets Ti,...,Tm.

Ensembles of Tres Codes

We end this section by introducing a certain type of tree code ensembles,
which will be used mainly for proving theorems.

For any parameter (lM,k), any channel Input alphabet X, and any p.d. Q on
X, the single-user tree code ensemble Ens(M;k;X;Q) is a set of tree codes
SI(Mk,X) with a probability measure 4I on it. i(M,k,X) is the set of all

]', ,' ," " . ," ." . * r" .' " . ." -* ,, * .. , ,, % * * * * . * % *.- . - --, *, ,. , , -.. -*. . .. ". . *. . - .- . . . .- * - ,• . .. .- - . -. - ' . -
• - ='"- - * % % " . . °% . . " " %=% . . . % % " " - " **.*" .**. *. - * , -. . . ."*, - -
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(M,k) tree codes with channel Input alphabet X. U Is a measure defined on _-__

the class of events that are expressable as countable unions and _

Intersections (the 0-algebra) of elementary events of the form ,.

Eu.I,) eif2IM,k,X): elu(..Il)=4eX k ).-'?

E(u(..i),4) is the set of tree codes in Q(Mk,X) for which 4 is the label of
the branch immediately preceding node u(..), JL is the extension measure
corresponding to the following probability assignment: For any collection
of distinct nodes ui(..m),...,ur(..mr) and any 419-94eXk,

Pr E(u1(..m1),Z1 ),,...,E(Ur(..mr),r) Q('41 . . ::

Thus, the statistical properties of a code chosen at random according to
ji coincides with those of a (Mk) tree code each of whose branches gets
a label 4, &xk, with probability Q(), independently of what is assigned
to other branches.

\ \.

For any n-user parameter (M,...,iTn,k), any collectfon or channel Input

alphabets X1, .... ,Xn, and any collection of Q'",.'Qn, wnere Qi is a p.d. on

Xi , the n-user tree code ensemble Ens(M,...,lMn;k;Xi,...,Xn;QI, ...,Qn) is

defined as the set of all (M1,...,Mnk) tree codes for which X1 is user i's

channel input alhabet, with the following probability measure A on this
set. g is best described by saying that it is the measure that would
exist on the joint tree code e corresponding to a collection of random,
mutually independent tree codes e, ...,en, where e1 is selected according

to the probability measure associated with Ens(Mi;k;Xi;Qi). In other

words, the statistical properties of a code chosen at random according
to g are identical to those of a joint tree code in the situation where
each branch of each user's tree code is labelled independently of each
other branch, in such a way that Q1 is the p.d. for branch labels in user

I's tree code, 1= ,...,n.

*.-.:-
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1.4. 3equential Decoding for flultt-User Tree Codes

Sequential decoding Is a decoding algorithm for tree codes invented by :

Wozencraft (71, and later developed by Fano [81. This section describes the
stack algorithm, a version of sequential decoding due to Zigangirov [91
and Jelinek [101, and defines the concept of achievability for sequential
decoding. Familiarity with sequential decoding, to the extent that It is
given in any one of the references [ 111, [121, and [131, Is assumed.

Sequentlal Decoding and Its Metric

Sequential decoding is a tree search algorithm for finding the correct
path in a code tree based on the information available from the received
sequence. The algorithm relies on what Is called a metric for directing
its search. The metric in sequential decoding is not a metric in the usual --.
mathematical sense of the word. Ordinarily, the metric is intended to be
a function that measures the statistical correlation between the received
sequence and the hypothesized transmitted sequence.

Formally, a metric for a channel K:(P;Xi,...,Xn;Y) and a (Mi,...,Mn,k) tree

code e Is any function of the form

: u (Xx-XXn x )hkxy hk  [-,o).

h: I
The value of the metric at a node u(..m) for a received sequence y is
given by r(eu(..m),y(..m)), where the notation is as given in J1.1. --.

It is important to note that r(eu(..m),y(..m)) does not depend on y(m+1),
y(m 2), .. , the portion of the received sequence beyond level m. This
restriction is an Integral part of sequential decoding; and without it,
some results of this thesis would not hold.

Also notice that the metric Is allowed to take on the value -oo. As will
be clear soon, this makes it possible to rule out a node permanently from
further consideration when there Is no doubt that it is incorrect.

7-
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Example 1.4.1. The Fano Metrcl-
The most well-known metric for sequential decoding Is the Fano metric,
which was originally Introduced by Fano for single-user channels (a1. In
the case of an n-user channel K:(P;X1,...,Xn;Y) and a (Mi,...,Mn,k) tree code

e, the Fano metric takes the following form.

m P(y(h) I eu(h))
rl("..m),y..m))= x2 (in - kR),

h:1 (&(y(h))h= I (yh).:.-

n
where w is a p.d. on Vk and R:(1k) 2nM1 i .

In practice, one might pick a at random according to the probability
measure associated with an ensemble Ens(MI,...,n;k;X I,...,Xn;Qt,...,Qn) and

set (I W0) =Z ( R )°°.. Qn(In) P( 1 Z I ,...,t n) : :'

ftEXik 4EXnk

for each "lE k

The Fano metric Is branchwlse additive; that is,

r(eu(..ml~y(..m)):r'leu(..m- ! ),y(..m- I))+ (eu(m),y(m)),

P(y(m) eu(m))
where V(eu(m),y(m)): in - kR.( (y(m))

Branchwisa additive metrics are simoler to implement and easier to
analyze; but these are not compelling reasons to restrict our discussion
to this class of metrics, and we do not do so.

The Stack Algorithm

There are two well-known versions of sequential decoding, namely, the

:. .ii

V °

Ve . o . . . . . . ."-"
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29

." .

Fano algorithm and the stack algorithm. For practical purposes, the Fano
algorithm is preferable since it requires almost no storage. However, in
this thesis, we shall consider only the stack algorithm, mainly because it
Is much simpler to describe and analyze. Let us point out that the results -%

of our analyses hold for the Fano aigorithm without any essential
changes.

In the stack algorithm, there is a list of nodes In which nodes are ordered
with respect to their metric values. This list Is referred to as the 3tack.
The metric values of the nodes in the stack Increase towards the I f u..
the stak, Ties between the metric values In the ordering of nodes are
broken by some fixed but arbitrary rule. Each step of the stack algorithm
consists of deleting the node at the stack-top and inserting Its
Immediate descendants into the stack. At the start of the algorithm, the
origin is the only node In the stack, and it has a metric value of zero.

In practice, all tree codes are truncated at some finite level, and the
stack algorithm stops as soon as a node at the last level of the code tree
reaches the stack-top. The stack-top-node is then taken as the output of .::
the sequential decoder. If the rate is sufficiently small, reliability of the
decoder output can be improved by Increasing the length of the finite tree
code. The remarkable point about sequential decoding is the possibility of
making the average decoding complexity independent of the length of the
tree code, and thus, of the desired level of reliability.

The following definitions formalize the concept of decoding complexity.

Definition 1.4.1. A Measure of Decoding Comolexity'
If the stack algorithm is used, with I' as its metric, in decoding a tree
code e over a channel K, then C (K,e,r,s,y) denotes the number of nodes in

Ij(s), the jth incorrect subset of the correct path, which reach the

stack-top, conditional on s being the correct path and y being thereceived sequence. -.....
-';,'-.

.o5
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Cj(K,Sr) denotes the expected value of C(K ars w) with respect to the

joint p.d. on s and U. That is, Cj(K,r)=EsEEgsCj(K9, ,,sy) where Es
denotes expectation with respect to the p.d. on s and Ey as denotes

expectation with respect to the p.d. on y conditional on es being the
transmitted sequence.

For each L, DL(K,3,I) is defined to be (Cl(K,e,')+-'-+CL(K,e,r))/L. 0

Observe that LDL(K,,r) is an upper bound on the expected number of

nodes which reach the stack-top before the algorithm reaches level L on
the correct path for the first time. Hence, for large L, DL can be taken as

an approximate measure of the average number of computations for the
algorithm to move one step along the correct path. These considerations
motivate the following definition.

Definition 1.4.2. A Criterion of Apolicabilit-.

A point R:(RI,...,Rn) is said to be an achievable rate for sequential

decoding on a channel K:(P;X ,...,Xn;Y) if

1) Ri2O for each I:1,...,n, and
2) there exists a finite constant A, A:A(K,R), such that, for everu L, there

exI st.
1) a coCe a with rate at least as large as R

and ii) a metric r
such that DL(K,e,r)< A.

(Condition 1) above means that, if (M1,...jMnk) is the parameter of e, then

(I /k)lnM1 z R1 for each i:l,...,n.)

The closure of the set of all such R is called the achievable rate region
of sequential decodtng and is denoted by R(K).-

The above definition of achievability allows e and r to depend on L. Now,
one may ask, quite justifiably, why the definition of achievability does
not read as follows.

4.7
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DefInition 1.4.3. An Alternative Criterion of Afolicab litu
A point R=(Ri,...,Rn) is said to be a stronagly achievable rate for sequential

decodin on a channel K=(P;Xi,...,Xn;Y) if

I) RI O for each :a I,...,n, and

2) there exists a finite constant A=A(K,R) such that there exist
1) a code s with rate at least as large as R -.

and ii) a metric r
such that DL(K,e,r)A for all L.

Unlike Definition 1.4.2, Definition 1.4.3 requires that e and r be chosen
Independently of L. Clearly, if R Is achievable in the sense of Def. 1.4.3,
then R is also achievable in the sense of Def. 1.4.2.

The concept of achlevability used in the literature on sequential decoding
coincides with that of Def. 1.4.2. It Is not known If strong achievability
and achievabilitg are equivalent, even for the single-user case. (Resolving
this question might contribute greatly to our understanding of sequential
decoding.) Strong achievability is not used anywhere in this thesis for the
following reasons. First, despite some efforts, we have not been able to
prove that any non-trivial rate is strongly achievable. Second, for finite
tree codes, which are the only type of tree codes of practical interest,
strong achievaotlity is unnecessarily restrictive.

To illustrate that achievability in the sense of Def. 1.4.2 is sufficient for
practical purposes, consider a situation where the desired rate and the
desired level of reliability are given. Suppose that the desired rate is
achievable. Then, given any L, there exists an infinite tree code e with
the desired rate and a metric r such that DL(Ke,r)<A, where A is a

finite constant, independent of e, L, and r. The idea is to pick L large
enough so that, among those code-metric pairs satisfying DL(K,e,r)<A,

there exist a and r such that: When the stack algorithm is applied, with r
as its metric, to the finite tree code that is obtained by truncating e at
level L, the desired reliability Is also satisfied. A t i.e. a part where

j no branching occurs, may be appended to the truncated code in order to
increase the reliability of the final digits of the decoded sequence.

9.h
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1.5. Summarg of Results

The research reported In this thesis has been aimed mainly at finding a -..

characterization of R, the achievable rate region of sequential decoding.
This goal has not been achieved and no general characterization of R is
known at present; there are, however, some partial results, which we now
summarize.

The Result on AchleYabilitu

The following theorem Is the main result of this thesis on achievability.
For notational simplicity, it is stated here for the two-user case. In
Chapter 2, It is restated and proved for an arbitrary number of users.

Theorem 2.2.1.
For any two-user channel K=(P;X 1,X2;Y), R(K) is Inner-bounded by RO(K,
which is defined as follows.

Re(K) U Ro(KQ)

Q
where the union is over all Q:(Q1 ,Q2) such that Q, is a p.d. on X×k and Q2

Is a p.d. on X2k for some arnltrary Integer k (same k for both Q1 and Q2);
and for any such Q, Ro(K,Q) is defined as the set of all (R1,R2) such that

0 i R, i -(1/k) In 2 Q2(42) ( Q1(41) ) ~~I~. 2

4zEX 2k qey k 41j~lk

0 1R2 s-(l/k)ln 01 Q(41) 42 12_QCz#C~l, )}, ::::-

R I+R 2 i -(Ilk) I n ( 2. (4 2 Q (4 ) PI ,2) 
-2'

lEYk I2EX2k 41EX1k
.I'..
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This theorem Is proved by showing that RO is achievable by the foilowing
class of metrics: Members of the class are identified by a parameter
(K,k,Q,S) where K is a channel, say K=(P;X 1,X2;Y); k Is a positive integer;

Q=(Q 1 ,Q2) where Q, Is a p.d. on X, and Q2 is a p.d. on X2k; and
B=(B 1982,B3) is what is called the biaj function. The member of the class
with parameter (Kk,Q,B) is based on a branch metric

: (X x 2)kx yk "-".),

such that, for each Ikeyk and k= tx~Z, where ltXtk, 2eX2k,

where *' e( ti 1 "

in -k6 1,

~EX 2k

I62(4,-) in - k2, and

in - kEo.

InI

Q (,1 (t In -k2 Qn .°2. "t. t jC

k k

Here, P is the transition probability of K over blocks of length k. (We use
boldface characters to indicate quantities relating to blocks.) P1 4I 0
is the probability that il is received given that user I transmits 41 and
user 2 transmi ts ~

A full intuitive account of the above metric cannot be given at this point,

'I. _. ,.
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because the form of the metric Itself is closely related to the method tie
use In 12.1 to prove that a given rate is achievable.

This metric is the only metric known to achieve RO(K) for all K. Our
efforts to show that the Fano metric (or simple modifications of it)
achieves Ro have not been successful. In view of this, we regard the
introduction of the above metric as a major contribution of this thesis.

Converse Results -"

Converse arguments aim at finding outer bounds to the achievable rate
region of sequential decoding. The main converse results of this thesis
are as follows.

Theorem 3.2. 1. For any single-user channel K, R(K)=Rg(K). 0

For single-user channels, RO(K): [O,0 (K)] (see 12.3 or pp. 149-50 of [121),
where

RO(K) : max -In -Q(- 4P(, ) ,

Q 1EY tex

where the maximum is taken over all p.d.'s Q on X.

The achievability of all R, for ReO,. 0oK,), is a special case of Theorem
2.2.1 and it has been well-known, see, e.g., [ 1], [ 121, or [ 131. But the
converse statement, that rates grea:er than %(K) are not achievable, is
new and will be prayed in 13.2.

The strongest converse prior to this was due to Jacobs and Serlekamp
[141, which stated that rates in excess of ta(K,l) are not achievable.
Here, to(K,l) is the value, at pz l, of Eo(K,p), which Jacobs and Berlekamp
defined as the smallest concave function greater than or equal to

E :(KP) max -In { Qu P(T"t4) +

Q 1rlEY 4EX

where the maximization is over all p.d.'s Q on X.

, ."%
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Note that Eo(K,1)=Ro(K); hence, our result Is an improvement over that of
Jacobs and Berlekamp only for channels for which Eo(K, O< to(K, I). We do
not have an example for which Eo(KI)<4o(KI), but we believe that such .. ,
channels exist. It is known, for example, that there exists K for which
E0(Kp) Is not a concave function of p 1141; for any such K, Eo(K,p)< o(K,p) --

at some pzO.

R0(K) has been called the ct2.rte of channel K with the understanding
that at rates above Re(K) the average complexity of sequential decoding Is
Infinite. The above theorem justifies the use of this term.

Theorem 3.3.1. R(K)=Ro(K) for any channel K=(P;Xl,...,Xn;V) which has .- *." "

the property that
/p(11 t ,,.,nP(11 i,.... tn) log {Pol I 0

11ey
for every 419,1 XI, I= I ,..,n. 0

Channels with the above property are called pairwise reversible channels
[161; an example is the TEC of Figure 1.2.1.

The above converses determine R for two special classes of channels.
However, R remains undetermined in the general case. It might be that
R(K) equals RO(K) for all K, but this has not been :roved yet, except in an
ensemble average sense (see Theorem 3.4.1). No examples have been found
for which R is strictly larger than RO, either.

Non-Joint Seguential Decoding

Chapter 4 considers an alternative approach to sequential decoding and
finds an inner bound to its (appropriately defined) achievable rate region.
Non-joint sequential decoding, as this approach is called, uses a separate
sequential decoder for each user; the decoder for a given user decodes
that user's message without any knowledge of the tree codes of the
remaining users.

* - *::



36

In exchange for the increase in the number of decoders, non-joint
decoding allows each decoder to be much simpler than a joint decoder. It
Is demonstrated by an example in Chapter 4 that non-joint sequential
decoding, in addition to being simpler, sometimes achieves rates that are
unachievable by ordinary sequential decoding. This seemingly paradoxical - -

result is then explained, and conclusions are drawn about the nature of
achievability in sequential decoding.

This completes the summary of the main results. In the remaining part of
this section, we shall consider some examples and try to answer some
specific questions about sequential decoding. - -

Example 1.5.1.

a) Two-User OR Channel (Figure 1.5.1)
For this channel, it Is known that R=Ro=C; In other words, the achievable
rate region of sequential decoding coincides with the c3pacity region.

One particular feature of the OR channel, which we wish to discuss, is
that it is noiseless: that is, the channel output is completely determinec
by the channel inputs. Noiseless channels are pairwyise reversible. Hence,
by Theorem 3.3.1, R(K)=Ro(K) for all noiseless K. Furthermore, for any
noiseless K, one can achieve RO(K) by simply using a ,etc that has only

Ytwo values, namely 0 and -ao. This met"c ass,-ns 0 to r s 1 s- a nodes n -
and -oo to inconsistent ones. A node u(..j) is said to be cnsistnt if i 1, s
correctness can not be ruled out on the basis of u(..j), the first j blocks
of the received sequence.

, b) Two-User Erasure Channel (TEC) (Figure 1.5.2)
This is another noiseless channel, so we know that Ro(TE'2)=R(TEC). The

'.. shaded region in Figure 1.5.2 is an inner bound to RO(TE), obtained by
computing Ro(TEC,Q) for Q=(Q 1 ,Q2) with Q=Q-=the uniform distribution
on {0,I1. Ro(TEC,Q) Is not equal to Ro(TEC), because clearly, the points
(0,1) and (1,0) belong to Ro(TEC). So, a larger inner bound to Ro(TEC) can
be obtained by taking the convex-hull of the union of the shaded region
with the points (0,1) and (1,0).

,, :"1" -
,-4 " .- ,
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Figure 1.5. 1. Two-user OR channel.
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Figure 1.5.2. Two-user erasure channel.
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Figure 1.5.2 shows that sum rates of up to 1.42 bits are achievable by
sequential decoding. In Example 1.2.1, a simple block code achieving a
sum rate of approximately 1.3 bits was given. We do not know, however,
of any comparably simple block codes which achieve sum rates as high as
1.42 bits, while maintaining an arbitrarily small probability of error.

c) Two-User Additive Gaussian Noise Channel (AGNC) (Figure 1.5.3) k'
This Is a channel with non-discrete input and output alphabets. Our
results do not directly apply to such channels since we are considering
only discrete channels. Nevertheless, the AGNC is of special interest
because of its practical relevance. The treatment here is brief, however;
and we refer to [61 for more about this channel.

The channel input and output alphabets for AGNC's are the set of real
numbers. If 11, 41, and 42 denote, respectively, the received number, the
number transmitted by user 1, and the number transmitted by user 2, then
11- lt2 (the noise) is a random variable with distribution N(O,o 2). Here,
N(O, 2) is the Gaussian density function with mean 0 and variance a2.
There are Ia,.gy constraints on the inputs of the form: E(Zj 2)e and
El 22)iE2, where E denotes expected value in a time and code average
sense. (In the absence of energy constraints, the capacity region and the
achievable rate region of sequential decoding are unbounded.)

Figure 1.5.3 shows C(VAGNC), the capacity region, and an inner bound t:
Ro(AGNC). The inner bound is obtained by computing Ro(AGNC,qi for
q=(N(0,ej),N(0,e 2)). The computation of Ro(AGNC,q) is camied out in the
same way as for discrete channels, except that sums are replaced by
integrals and probability distributions by densities.

Notice that, if a2 is fixed, the achievable rate region of sequential
decoding for an AGNC with constraints E(412)<2ej and E(,22)s2i 2 is at
least as large as the capacity region of an AGNC with constraints
E(412)je1 and E(42

2 ).e2 . So, at the expense of at most doubling the
"energy, we can achieve all points in the capacity region of a given AGNC
by sequential decoding.

J"Z'
4:::!
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Figure 1.5.3. Additie Gaussian noise channel.
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Compiamentary Remarkcs

Here we wish to discuss informally some questions that may have arisen
up to this point.

Q. What makes sequential decoding of multi-user tree codes a different,
if not a more difficult, problem than sequential decoding of one-user tree
codes?

A. The complication in multi-user sequential decoding is due to the
presence of different types of incorrect paths which have markedly
different statistical properties in relation to the correct path. Despite
this, one has to design a metric that distinguishes the correct path from
these various types of incorrect paths. While the design of such a metric
may not seem to be a problem (because the correct path has a higher
correlation with the channel output sequence than any other path), it Is
not at all clear whether such additional constraints on the metric do not
force the achievable rate region of sequential decoding to be much too
s#all to make it attractive.

To discuss the above ideas in more concrete terms, consider a two-user
tree code. Let s 1 and 32 be the correct paths for users 1 and 2. Sequential
decoding aims at finding s1xs 2 based on the information available from
the received sequence u. For simplicity, let us consider only the inczrrect

paths In I1(sjxs 2), the first Incorrect subtree of the correct pat. There
are three types of paths in I(sIxs2): 1) Totally incorrect paths of the
form ulxu z where ux-1 and u2zs 2. 2) Half incorrect paths of the form
ujxs Z where ul:sl. 3) Half incorrect paths of the form sIxu2 where U2=32.

Paths of type 1 have no correlation with y; hence, they are relatively
easy to detect and eliminate from further search. But paths of types 2
and 3 are correlated with y. This is precisely the point where multi-user
sequential decoding differs from and becomes more difficult than
single-user sequential decoding.

Q. Do we know of simpler characterizations of the regions R and Ro ?

p~.*. ~ -- -, * '* '*~ 4- a i~'LK &-.A'.Y2.1 :.**
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A. In general, there are no known characterizations of the regions R and
R9 which are simpler than their definitions. Clearly, the definitions of
these regions do not immediately suggest any algorithms for determining .5b ,q

whether a given point belongs to these regions. IN

While so little is known in terms of computing R and Ro in general, the

situation Is completely solved in the one-user case. For any one-user
channel K=(P;X;Y), we have

R(K)=Ro(K=[O,sup Ro(K,Q)],
Q

where the supremum is over all p.d.'s Q on Xk for some arbitrary integer
k, and for any such Q,

IYk geXk

The computation of R(K) Is made possible by Gallager's parallel channels
theorem (see pp. 14g-50 of [121), which states that in order to maximize.
RoK,Q) over Q, one needs to consider only p.d.'s over X, i.e.,

sup Ro(K,Q):Q Is a p.d. on Xk for some integer k"

sup Ro(KQ):Q isapA on aX-

The computation of Ro(K):=sup{Ro(KQ):Q is a p.d. on X) is facilitated by
tie following necessary and sufficient conditions for a p.d. Q on X to
maximize Ro(K,Q) (see Theorem 5.6.5 in 1121):

) Z Q(Z) VP(n R) 2 Q(Z) FP(q 2I all :eX.
11eV EX -lEY leX :.:

with equality if Q(4)>O.
These conditions are extremely useful in verifying whether a given Q,
which may have been guessed on the basis of intuition, does indeed
maximize Ro(K,Q). It is unfortunate that there is no analogue of the
parallel channels theorem in the multi-user case.

99i

:. 9.:
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Q. Are R(K) and Re(K) convex regions for all K?

A. It is not known if R(K) is convex for all K. (Note that one may not need
to have an explicit characterization of R(K) to prove that It is convex.)

It is known that ROlk) Is convex for all K. The convexity of Re should not
be attributed to the possibility of time-sharing between a number of tree . --

codes and decoding each code by a separate sequential decoder. That
argument overlooks the fact that a collection of sequential decoders
working on different codes is not equivalent to any single sequential
decoder.

The convexity of Ro can still be explained by the idea of time-sharing,
however;, but we must consider time-sharing within a code as opposed to
between a number of different codes. Time-sharing within a code is
achieved by taking the branches of the tree code long enough so that
conventional time-sharing can In effect be used within the duration of a
branch. The proof of convexity of Re, along with several other of its
properties, Is given in 12.3.

Q. How well does the metric proposed for multi-user sequential decoding
work in the one-user case?

A. The achilevatle rate region of the proposed metric coincides with R()
for every one-user channel K. For K:(F;X;Y), the metric with parameter
(K,k,Q,S) is given as follows. ..-.
For each :.Xk, qrleyk, '---

5(t,'r) n - kBSQ(.: /,.q It€)-,."

.EXk

For any code parameter (M,k) satisfying (1/k)lnM<Ro(K), the appropriate
parameter to be used is found as follows: Q is taken as a p.d. on Xk such
that (I/k)nM<Ro(K,Q), and B is then set equal to ((I/k)lnM+Ro(K,Q)}/2. "-

- . *. ~*!.** . *
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In Chapter 2, It Is proven, as a special case of Theorem 2.2. 1, that the
above metric achieves the rate (1/k)lnM. It thus follows that all rates up
to ROK) are achievable.

Now, compare the above metric with the Fano metric, which is given by

'F(V) z In kBF,

and which also achieves all rates up to RO(K) for any single-user channel
K, provided that w and BF are chosen appropriately.

Note that these two metrics are not reducible to one another; that is, it
Is not possible, in general, to choose the parameters of these metrics so ..-*.

that their ratio is fixed.

We conjecture that the following metric, which contains the above two as
special cases, also achieves all rates up to RO(K) for each single-user
channel K and for each r, O.SiriI.

p( 11:-.-

V(Zit) in - kS

Qt ,

. o

S. 
. o°

~ .~:.-:-.:.KI-J:..4 . :q~.:.:.K :.-..K.:
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Chapter 2

AN INNER BOUND TO THE ACHIEVABLE RATE REGION OF
SEQUENTIAL DECODING

The main result of this chapter is the proof that RO(K) (to be defined in
12.2) Is an Inner bound to R(K) for any multiple access channel K. .-. ,

2.1. 3ufflctent Conditions on Achtevabllt"

Let K:(P;X,...,Xn;Y) be an n-user channel; let r be a branchwise additive

metric for (M1,...,Mnk) codes for K; let 6, V:(Xlx...xXn)k I

be the branch metric for r. The value of r for a channel input x(..m) and
a channel output U(..m) is thus given by

m

In this section, we wish to find conditions on K, (M1,..,Mn,k), and -

which, if satisfied, guarantee that the point R:(R,...,Fn), where

Ri=(l/k)InM i, Is achievable In the sense of Definition 1.4.2. We fix K,

(11,...,Mnk), :nd r throughout the followinc disusslon, and sucpress

them in the notation.

Proving that R is achievable rgulres exhibiting the existerce of a code

9, with rate at least as large as R, for which DL(e) is uniformly bounded.

A direct approach to this problem is not feasible, because the
computation of DL(e) is hopelessly complicated for any non-degenerate

code e. We try therefore an indirect approach, known as random-coding,
which is based on the fact that the expected value of a random variable
upper-bounds the value of that random variable at at least one sample
point. Thus, instead of a fixed code, we consider an ensemble of codes,
and evaluate the expected value Of DL(e) over this ensemble.

a v t e c a o ) e s e .4.. ;

* . . . . . . . .. . . . . . . . . . . . . a . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. '%. '
. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
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The ensemble we use here Is EzEns(M 11...r1n;k;X i..vXn;As...Qn). E will be
fixed throughout the following analysis, and E.will denote expectation
with respect to the probability measure associated with E.

Now, ESDL(e) zE* {C j(e) + ** CL(S) )/L

I EGCC(e) ... +EOCL(s))/L.()

So, ED,(e can be upper-bounded by upper-bounding EeCI(e) for each i.

E C1(s z EE5E *C 1(@'s'y)

zE E Ey ,C 1(e's'y). (2)

Here, s represents the source sequence; Es stands for expectation with

respect to the source statistics; Y~1es stands for expectation with
respect to the probability measure on the channel output sequence y
conditional on es being the channel input sequence.

Changing the order of expectations in (2) is justified by the -

non-negativity of tlhe term..s Involved. (3ee. e.g., page 147 ofl [191.) e

(One can see at this point that E,8E, es (ii s,g) does not depend on s;
hence, in (2), E. can be dropped, and s can be replaced by ary fixed
source output. But we shall carry along E5 in the following argument.)

EC1(e) will be upper-bounded with the help of the following inequality.

Lemma 2. 1. 1. For any non-negative t,

C1(e,s,y) I exp tre(.),.j)- r(es(..m),y(..m))} (3)



47

Proof. A node u(..j)eIi(s) reaclies the stack-top only if

rleu(..9,(..)) z r(es(..m),y(..m)) for some mzi. (4)

If (4) is not satisfied, s(..m) has precedence over u(..j) In reaching the
stack-top for each m, mil. So, u(..J)Ei 1(s) reaches the stack-top only if

1 1 2 exp t r(su(..9,y(..i)) - r(ss(..m),y(..m))) for all t2O. (5)
mzi

Note that the right hand side of (5) is positive whether or not u(..J)
reaches the stack-top; hence, it upper-bounds the indicator function of
the event that u(..j) reaches the stack-top. So, by summing the right
hand side of (5) over all nodes in li(s), we obtain the claimed upper

bound on Ci(e,s,y). 0

Hereafter, suppose that t is a fixed positive number. Now, from (2) and
(3),

EeCi(e) Es A(s,r,u(..j)), () .•,

u(..j)E1i(s) m~i

where, by definition, "-"-"

A(s,,u(..J)W =E E esXp - r(es..m). (..) . (7r

For any u(..j)eIi(s),

A(s,m,ul..j)) = EeEy es exp t( (eu(h),y(h)) - 5(es(h),y(h)) };
i-h-j ish.m

thus, if j>m,

A(s,m,u(..j))

EIEy exp t{ [5(eu(h),y(h)) -6(es(h),y(h))]+. (eu(h),y(h))}; (8)
lihim m<hij
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and, If mzj,

E EV e p t (2 1 [(eu(h),y(h)) -16(es(h),y(h))] - (es(h),y(h))) ( ::):
ishij j <himk

Since the labels on branches at different levels are independent random
variables over the ensemble under consideration, (8) and (19) can be
rewritten as follows.

For any u(..J)i11(s), If 1:-m,

A~s~m~u..j))

TT E exp t (16(eu(h),y(h)) - V(es(h),y(h))} IT E exp t 16(eu(h),y(h)); (10)

ishim mhsj

and, If mzj,

TT E exp t {16(u(h),y(h)) - (es(h),y(h)) T-1 Eaxpz (es(h),-( D,(Ii

lshij jphim

where the symbol E has been used as an abbreviation for Ee-:Y es

We now wish to find an explicit expression for A(s,m,u(..j)). Let u(..j) be
a fixed node in 1t~s), and (Tl,,..,T) be the type of u(..j) with respect to s.
Now, for any hEl..j, 11yk, n where

r6Xr trE r rl,...,n, the probability that es(h):4 and eu(h)=C and

y(h):'t1 Is given as follows.
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:TT QZ TT Qr(tr) TT x (t= Pot~ v, (12) ~ ~

1 irin reTh reTh

where is the indicator function.

To simplify the notation, we shall write'

Q(W in place of Tr4

QQ)in place Of TTrd and
reT

WM=T in place Of T rZ
rET

In this notation, (12) can be rewritten as follows.

Now, EeEu; exp -t6(ss(h),y(h))

I ESEU Os exp t{*6(eu(h),y(h))- 6(es(h),y(h))}

Io QhT XhTZTIP14 xptf%1) *
and E E~ exp tMeu(h),y(h))

QW 2R 2 () X(4VlT) PQ I )exP t Zq). (16)
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We see that the left hand side of (14) does not depend on M; and the left
hand sides of (15) and (16) depend on h only through Th. So, we define

= E6Ey I es exp -t (es(h),y(h)),

0(Th):EeEy I exp t{ (eu(h),y(h))- (es(h),y(h))}, and

(Th)=ESEy Is exp t6(eu(h),y(h))).

Now, for any node u(..j)E1i(s) with type (T,...,T ) wrt s, (10) and (11) can

be rewritten as follows.

(Ti) ..-.Cam) (Tm jI) ... s(Ti)  , j>m; (17) --- !

*Als~m,u(..j))::::::

L Ti) .. cm) limJ m~j. (18)

Observe that A(s,m,u(..j)) depends on u(..j) only through the type of u(..j)
wrt s. 5o, let A(s,mT) denote A(s,m,u(..j)) whenever u(..j) is a node of
type T wrt s. Letting T(ij) be the set of types for level-j nodes in YS)

(6) c3n be rewritten as follows.
00 00E Ii(e) i Es  _ .A(s,m,u(..j)).-.::::::--.

j=i TeT(i,J) u(..j): m=i
type of u(..j)=T

00 00

* = Es E N(T) 2 A(s,m,T), (1 9)
° j~i TJTO,j) m~i

where N(T) denotes the number of nodes of type T.

Define SX(T)=max(co(T), O(T)}. Now, for any T:(T1 ,...,T )ET(i,j),

f ,(Ti)...(T j) , j>m; (20)

A(s,m,T) ( (2

(Ti)...-(T).m-J mj. (21) .-.-"

.::.-.::
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Thus, ,.:.

00 J-1 00_A(s,m,T) 1 2_ !(Tt) ...,a(T) + 2_ (T1)"... !(Tj)1Im-J :-'....,

m~t m=i m=j
00

(j-,. . TUP)H (22)

hzO

For any non-empty subset T of (1,....,n), let M(T) be the product of M, for

iET; if T=, let M(T)=I. For any node type T=T'I,...,Tj), let M(T)=M(T)..

..M(Tj). Note that M(T) is an upper bound on N(T), the number of nodes of

type T. Also note that, if T=(Ti,...,Tj)eT(i,j), then M(T)=M(Ti)...M(Tj);

because ThO+ for 1<.h.i-1. Define

+:max{SI(T)M(T): T is a non-empty subset of {1,..,n.

Now, by (22),
00 00

. N(T) 2 A(s,m,T) i M(T) 2 A(s,m,T) (23)
mzi m=i"'"

00
,Ji( j1-i+  _ h ). (24)

h=O

my (19) and (23)-(24),
00 00

EeCi(e) I Es +j -, i( j-i+ , jhh ) (25)

jzi TeT(i,j) h=O

Noting that the number of elements in T(i,j) is upper-bounded by (j-i 2) n

(see §1.3 for this upper bound), it follows from (25) that
00 00

Ci(e)  Es -(J-i+)n yj-i -i+ 11h

j~~~i ~h=0 ...'
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00 00

- [ (j+2)n VJ( j, h  (26)
j=O h:O *

The right side of (26) is independent of i; and, it converges if F,<1 and
i"rcl. The conclusion of this discussion can now be stated as follows.

Theorem 2.1.1. Sufflcient Conditions on Achievability.
Let K=(P;X1 ,...,Xn;y) be a multiple access channel; suppose that there

exist a branch metric :(Xlx... [-oo,oo), an ensemble

E=Ens(Ml,..,Mn;kll,..,Xn;Q,.

and a positive real number t such that

0i) (tK919,E) 1 9

1i) MCT),(T,t,K,6,E)<I for each non-empty subset T of {1,...,n}, and

iit) M(T) $(T,t,K,5,E)< I for each non-empty subset T of (I ,...,n}.

Then, for allI L,
00

EeDL(K,e,r)s 2 (j. 2)n 'I(t,K,6,E)I ( j 1/(1-I(t,K,6,E)) < oo,

jI.,

where r denotes the metric based on V. * -

Thus, if K, (Ml,..., Mn,k), and satisfy the conditions of the abovye

theorem for some ensemble E, then (Ri,...,Rn), where Ri=(I/k)lnMi,

belongs to R(K), the achievable rate region of sequential decoding.

It Is possible to prove this theorem with T[(t,K,V,E)< relaxed to
i(t,K,,E) i I by following Gallager's proof for n= I (see App. 68 of (121).

t

~ ~ -.-.. ..'.-.



2.2. The Proposed letric and An Inner Bound to Its Achievable
Rate Region

This section considers a class of metrics and finds an inner bound to its
achievable rate region by using Theorem 2.1.1. Metrics In this class are
parametrized by a four-tuple (K,k,Q,B) where K is a multiple access
channel, say K=(P;Xi,..,Xn;Y); k Is a positive integer; Q=(Qi,..,Qn) where

Qi is a p.d. on X k, i=l,...,n; and B is a real-valued function of non-empty

subsets of {1,...,nS. B(T) is called the bias term for subset T.

The metric with parameter (Kk,Q,B), denoted by met(K,k,Q,B), is a
branchwise additive metric based on the following branch metric Z.
For each IteYk and 4:4x... xn where tieXik, l:l,...,n,

T
where the minimum is over all non-empty subsets of (1,...,n} and

T P(11. I ):!}

*-(4,11)z In - kB(T). (2)

{li~iEiT JET "''

In (2), the summation is over the cartesian product, over all ieT, of Xik

P(It I) is the transition probability of the channel over blocks of length

k; P{11 I ({ilier (MieT} is the probability that i" is received given

that the transmitted block at input i equals tj if ieT and 4i if ETC.

To simplify the notation, as in the previous section, we shall denote

RiWiET by ZT ,

__ I... •
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U'Qi(,) by Q(T), and
l6T

P I {11 1OT, I lOET) by P(l I tT*,tT).

In this notation, (2) can be rewritten as follows.

VT(V,)=ln kB(T) (3)
Q(t:T) qrP(1j FZT*,ItT)""'"

The remainder of this section is devoted to showing that Ro(K), which
we shall define next, is an inner bound to the achievable rate region of
the above class of metrics (hence, an inner bound to R(K)) for all K.

Definition 2.2.1.
For any channel K:(P;Xl,...,Xn;Y), any Q=(Qi,...,Qn) where Qi is a p.d. on -,:"

X k, and any subset T of (1,...,n1, we define

RO(K,Q,T) -(l/k)ln 2 Q(4r a ){ 2 Q(T.)/ P(-iR ) and

Ro'K,Q)= (RIS,..,Rn):OsR(T)sRo(K,Q,T) for each subset T of (1,..,n}
. •

We also define

R°(Kk) = U Ro(KQ),
Q

where the union is over all Q=(Ql,...,Qn) such that Qj is a p.d. on xik,

00

and RO(K) U Ro(K,I). 0
k:

1°



55

Ro(K) will be shown to be an inner bound to the achievable rate region of
met(Kj,Q,S) with the help of the following fact, which is Just a special
case of Theorem 2. 1.1 at t=I and in the particular way E is selected.

Lemma 2.2.1. Sufficient Conditions on Achievability for met(K,k,Q,B).
For any channel K=(P;Xi,...Xn;y) and any (MI,...,Mnk), the point (Ri,...,Rn),

where Rt=(1/k)nM,, belongs to the achievable rate region of met(K,k,Q,B)

If the following conditions are satisfied by 1, the branch metric for
met(K,k,Q,9), and the ensemble E=Ens(M 1 ,...,Mn;k;Xi,...,Xn;Q,...,qn), where

are such that (Qi,...,Qn)=Q.
1) l(i1,K, ,E)<1, "::

2) M(T)(TI,K,,E)< I for each non-empty subset T of {0,...,nf, and
3) M(T)$(T, 1,K,V,E)< I for each non-empty subset T of { 1,...,n}. 0 .: --

Note that in the above lemma the distributions parametrizing E and the
metric are identica. Of course, the statement of the lemma would still -.--
hold if this wers not so, but this less general form is sufficient for our
purposes. -

In order to restate Lemma 2.2.1 in a simpler, more useful way, we now
fflna upper bounds on i(I,K,6,E), a(T,I,K,:,E), and $(T,l,K,6,E) for a
fixed collection of K, 1, and E, where E and V are parametrized by the
same Q:(Q.....Q

(I,, ,E : Q(t."p(.11 Zexo . 1.(4,11).:-

-- I("P1 C9P-Tt'

T=+ 11,9"':

SQ(11~I IV 2){ Q(T _(iIr~ /T 7Vq e) }xp kB(TM

Tz+ 11A t

........................................................ .....
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2 2 (~)/P~~ I~) 2~ . ~(~ ~~r)exp kB(T)

2 tr) 2 QQ) !P(-1 I ,4T 2 Q~t !P(--i I TCT) exp k (T)

- 2 Q(~{ 2 (~ /ji-i }2exp kB(T

S. : xp-k{(RO(K,Q,T)-B(T)}. (4)

For notational convenience, in the following '64,T,1 and 6(4,i) will

be used Interchangeably.

cr(T, I,K,V,E) 2Q~Q~)(I~ x ~,,1-(1)

II t'-" .47 ep -V4~,1) e3xp -kB(T)

2QRY ,'P(1l ItPt*

=exp -kB(T) 2Q(Z)PQ'i 4 ) exp -V(4,i

2Q(+T)VP(lI +TT'c)

A+
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"*xp -kS(T) Q()P(.q j ) exp 4M1)

" q1( I K,6,E)exp 48M(T. (5) .5

Ftnal1yq

$(To 1 9KII,E)= Q(QtTP1 V Iexp VTTC9"t)

= Q(4)Q(tT)P(.l v exp -kBCT)

#T

'iT

SQ(vP(.1 IvU exp -kB(T

exp -kB(T) (5)

It follows from (4-(6 that conditions of Lemma 2.2.1 are satisfied if

Sexp-k(RO(K,Q,T)-B(T)} < 1, (7)

M(T)exp -kB(T)2 exp-k{RO(K,Q,3)-B(3)} < I for each non-empty T, (a)

344
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and M(T) exp -kB(T) <'1 for each non-empty T. Vg

We notice that (8) is redundant as a condition, because (a) is satisfied
whenever (7) and (9) are satisfied.

We can theref ore express Lemma 2.2.1 i n the f ollIowi ng weaker but more
readily applicable form.

Lemma 2.2.2. For any channel K:(P;Xi,....Xn;V) and any (MI ... 1n,k), the

point Rx(RI,...,.R.). where R=(l/k)nM1, belongs to the achievable rate

region of met(K,k,Q,B) if

1) exp-k{RO(K,QT)-B(T)} n

2) M(T) exp -kB(T) <I for each non-empty T. 0

Using this lemma and the following definition, we are now in a position

to give an inner bound to the achievable rate region of met(K,k,Q,S).

Definition 2.2.2.
For any channel K=(P;X 1,...,Xn;Y)9 any M=(MI, ...,MNk), and any Q=Q, ..qn
where Qjis a p.d. on Xik, we define

*1 6(KM,Q) =mm (RO(K,Q,r)-R(r) },
T

where the minimum is taken over all non-empty subsets of (1 T...,nl, ana
R(T) i s def ined as 1/A) In M(T) for any subset T of {I,..,n}. 0

* Lemma 2.2.3. Inner Bound to Achievable Rate Region of met(K,k,Q,B).
For any Kz(P;X1, ... Xn;Y) and M=(M 1,...,ln, k), the Point R=(Rj,..aqRn)q where
Ri:(1/k)lnMi, belongs to the achievable rate region of met(K,k,QB) if

(MW > (2/k)In (2n-1), provided that the bias terms are selected such ' :~
that B(T)=(R 0(K,Q,T).R(T))/2 for each T.
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Proof. 3uppose that S(K,i,Q)>(2/k)ln(2n-l. It suffices to verify that
conditions 1) and 2) of Lemma 2.2.2 are satisfied.

1) esxp-k{Ro(KtQtT)-B(T)}

.- exp-k f(lK,Q,T)-(Ro(K,Q,T) R(T))/2 .

= exp-k{(Ro(K,QT)-R(T))/2 }

s exp-k{S(KM,Q)/2}

-(2n- 1 exp-k S(KM,Q/2i < 1.

The last two steps follow by noting that 2'-lsth nubro

n- 1). 

o

non-empty subsets of 1 ,..,n), and that S(KM,Q) > (2/k)lfl(2n1)

2) M(Tlexp -kS(T)

D xp-kt(Ro(K,Q,T)-R(T))/21 I for all non-empty T,

since (K,1Q) >0. 0

Lemma 2.2.4. For all K, RO(K) Is an Inner bound to the achievable rate
region of the proposed class of metrics.

Proof. In view of Lemma 2.2.4, it suffices to prove the following
statement: For any channel K=(P;X,,...Xn;Y) and any point R=(R 1, ... 9Pn),
suppose that there exist M=(Mi....,rnk an9M(i...Q where Qii a

*j. -?.

p.. on p such that (/k)InI R1, 1=I,..,n, and (K,/,Q)>O. Then, there

I"_

" 22 ( l x - E ( )- 
-..-
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p."

exist H.:(H 1,...J-n,h) and U:,lj,...,Un), where Ui is a p.l. on Xi such that

( I/h)lnHizR i, I= ,...,n, and 6(K,H,U) >2/h)ln(2 n -i1).

Suppose that M and Q satisfy the hypothesis of the above statement. Let
U be such that Ui Is the mth product of Qi, 1:l,...,n; 1.e, Ui Is a p.d. on

Xim k such that, for each ,-l,,,-,4mk)EXmk I

U1((I .... 4mk))=Qi(19 .. 9k))Qi((k+ ...,920) .... Qi (m- I )k+ 1 .... ,4mk).

Let H be such that Hi=Mim and h=mk.

It Is easy to verify that Ro(KQT)2R(KUT) for all T, and that S(141Q)=
S(K,H,U). So, by simply taking m large enough, we can satisfy S(K,HtJ)>
(2/h)ln(2 n- I). C

As a corollary to Lemma 2.2.4, we have the main result of this chapter.

Theorem 2.2. 1. Ro(K) is an inner bound to R(K) for all K. 0

ComplementaCy Remarks

l) No examples are known for which R is strictly larger than Ro. On the
other hand, it is not known If Ro(K)=R(K) for all K. In the next chapter,
it will be shown that Ro=R for single-user channels (see S3.2) and also
for pairwise reversible channels (see 53.3).

2) At this point, it is natural to ask whether there exists a class of
metrics which satisfies the conditions of Theorem 2.1.1 over a set of
points larger than Ro. 12.4 will prove that there is no such class.

3) Onemight also ask whether the metric of Example 1.4.1 (the Fano
metric) satisfies the conditions of Theorem 2.1.1 over all (interior)
points of RO(K) for all K. Assuming that the parameters of the metric are
set in the way suggested in Example 1.4.1, the answer is no. A simple
counter-example is a (pseudo) two-user channel which is the parallel
combination of two independent binary symmetric channels. By choosing

p..p::":::_--.

.,.p... %
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the crossover probabilities of the binary symmetric channels
appropriately (one close to 1/2, the other close to 0), one can obtain a
situation where the Fano metric has a positive drift (in an ensemble
average sense) on each path whose component path for the less noisy
subchannel is correct.

4) The proof of Lemma 2.2.4 suggests a method for finding an
appropriate metric in any given situation. Suppose, for example, that
K:(PXI~,...,XIY) Is the channel and R:(RI,...,Rn) is the desired rate. we

first try to find M=(Mt,...,Mn,k) and Q=(Qi-..,Qn), where Qi is a p.d. on

i p such that (1/k)!nIzRi and 6(K,1,Q),>(2/k)ln(2n - I). Supposing that
such a pair is found, then the metric met(K,k,Q,B), with bias
B(T)=(Ro(K,QT)+R(T))/2 for each T, Is an appropriate metric for this
situation. If we decide to use this metric, then we may select the tree
code at random according to the probability measure associated with the
ensemble Ens(M,..., Mn;k;Xt,...,Xn;Qi,...,Qn). There is no guarantee that
such a randomly selected code will perform satisfactorily; but the
probability that its performance is much worse than average is small.

5) If the stack algorithm Is applied to a tree code with parameter
M-(MJ,...,Mn,k), each step of the algorithm requires the evaluation of the
metric values of M.'M nodes. Ordinarily, one is given a desired rate

and the code parameter M=(MI,...,Mnk) is chosen so that
(1/k)nM2R, is satisfied for each iE{1,...,n}. From the viewpoint of
computational complexity, it Is thus preferable to select M so that k Is

the minimum possible subject to the rate constraints.

If we wish to use met(K,k,Q,B), with bias B(T)=(Ro(K,QT).R(T))/2 for
each T, there is an additional constraint that M has to meet, namely,
8(K,M,Q)>(2/k)ln(2n-l). This constraint is unpleasant because it forces k
to get large as the desired rate approaches the boundary of RO(K). It is
not known at present whether a constraint of this type is inherent In
multi-user sequential decoding or whether one can find metrics which do
not suffer from this problem.

71.
2-.-.:
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2.3. 3dme Properties of Ro

This section summarizes some of what is known about the RO region.

In S1.5, It was shown that Ro(K)=Ro(K,l) for any single-user channel K.
In the case of multi-user channels, however, this is no longer true; there
are channels for which Ro(K)*Ro(K,1). An example is the two-user M-ary
collision channel K=(P;X,X 2;Y), where M is an integer greater than 2,
X1=X2={O,I,...,M-l), Y=(e,O,l,..,M-I), and the transition probabilities are
as follows. P(x1 I X1,0)=P(x 2 1 0,X2)=1 for each x1iX1  and X2EX2;
P(elx1,x 2)=l if x10{,...,M-1} and x2E{21,...,M-11; and, all other transitions
have zero probability. We leave it to the reader to verify that the point
((l/2)lnM nats, (1/2)lnM nats) belongs to Ro(K,2) but not to Ro(K,1).

By considering collision channels with larger numbers of users, it can be
seen that, for any fixed m, there exists a channel K for which RO(K)=
Ro(4V I) U...URO(K,m).

Ro is convex. This is a simple result of admitting probability
distributions over blocks of arbitrary length in the definition of Ro. The
convexity of Ro can be proved by observing that, for any pair, Q, and Q2,
of vectors of p.d.'s over block-lengths k, and k2, and for any pair of
int'gers m, and m2, the vector of p.d.'s Q, defined as Q=Qk 2 miQ21kM2,

satisfies (m_1 m2)Ro(Q,T)=mRg(QjT)+m 2Ro(Q 2,T) for all T. Here, the
components of Q112mi are k2ml-order product forms of the corresponding
components of Q., and similarly for Q2 k1n 2 . The components of Q are
product forms of the corresponding components of Qjk2mi and Qnk1m2 . The
components of Q1jki and Q2kjm2 are thus p.d.'s over block-lengths of
kjk2m1 and k~kim 2, respectively; and the components of Q are p.d.'s over
a block-length of klk 2(m1*m2).

For any given m, there exists a channel K (e.g., a collision channel) for
which Ro(K,m) is not convex. It is not known, however, if there exists K
such that Ro(K):convex-hullRo(K,1). If there were no such channel, then
we would have a characterization of RO similar to that for the capacity
region.

I:::.'.-
._4_,
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By using the parallel channels theorem (pp.149-150, (121), it can be
proved that, for any K, I, and m,

max{ Ri: (O,..,Ri ..,O)E convex-hull RO(K, 1))

max { Ri : (O,..,R i ,..,0) e convex-hull RO(K,m)}.

This can be seen directly by noting that, if all users, except for user i,
are constrained to transmit at rate zero (which means that each such
user transmits a fixed sequence), then the situation reduces to the
single-user case, for which we know that the stated result holds. This
result is useful In that it provides some information about the relative
sizes of the regions Ro(K,m), m: 1,2,... -

We now prove some Inequalities about the Ro region.

For any K, Q, 3, and T, if T is a subset of 5, then

RK,Q,T) i Ro(K,Q,3). ():)!!?

Proof. Let m be the block-length for Q. Now,

mRo(K,Q,3): -in Q(c

-I Q (Z c) Q Z3\) Q(4)V 14 (2)

1114O 4 5\T 4

_1,TO 4T

mRO(K,Q,T),
i

whee,3) olow fro (2 y-ese--Ieu-iy

c-.~:*~§- ** .-
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(Q(Q)1Pi1T) QQ)P(T1 0 '
4,T 4,T "

In the proof of (1), if we replace T by the empty set, we obtain the proof
of another basic fact, namely, Ro(K,Q,S)zO for all K, Q, and non-empty S.

For any subset of users T, let P(ltI T : Q(tTo)P(1l I ).-

tTQ

P('1 I ZT) Is the transition probability that would be observed between

the users In set T and the receiver if the users in set Tc collectively
transmitted a given symbol 4T* with probability Q(-c). If one is only

interested in decoding the messages of the users in a set T, then one
may model the remaining users as noise sources and thus obtain a
reduced channel. Such schemes will be the subject of Chapter 4. The
following inequality is of interest in comparing the achievable rates for
the reduced channel with those for the original one.

For any K, Q, and T, "

-In Q T P(i1 ZT} < mRo(K,Q,T), (4)

where m is the block-lenoth for Q.

Proof.

mRo(K,Q,T) -In _ Q(4r){ Q(T) I }2.

-- In Q O { ) (5)

11 Z~ ZT

1 4T 4TO

"'IT S <

:.....
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- -In
! 1l T ""

where (6) follows from (5) by the following inequality.

2 { 2 Q QTrcP(1 s{ Q(4T) V2 Q(Z-)P(qT 4) (7)
4:TO ZT 4T Z:TC

(7) is proved by using Minkowsky's inequality (see inequality h on p.524 -

in [121), which states that, for any collection of non-negative real
numbers {ajk} and any p.d. {Qj},

2(2 Qjk)2  (2 QjV/2 aj}0
kj j k

In a sense, this inequality confirms the obvious fact that codebook
knowledge of all users can be used to improve the achievable rate region
in sequential decoding.

- o.

- . < ** - *.,-*".-.. . .



S2 A. A Result on the Method of 12.1

In this section we prove that there is no branchwise additive metric
which satisfies the sufficient conditions on achievability of Theorem
2.1.1 at any given point outside Ro . This means that, if there is an
achievable point outside RO, the achievability of that point cannot be
shown by using Theorem 2.1.1. This, of course, does not mean that Ro

equals R, the achievable rate region of sequential decoding. Thus, the
results of this section are not directly related to sequential decoding,
but rather to the limitations of the particular method of S2.1 in terms of
proving achievability.

The above result is proved in two steps. First, Theorem 2.4.1 gives an
outer bound, for any given metric, to the rate region where the ensemble
average of decoding complexity is finite. Then, Lemma 2.4.1 shows that
Ro outer-bounds the outer bound of Theorem 2.4.1 for any given
branchwlse additive metric.

Let the following be fixed but otherwise completely arbitrar throughout
this section: A channel K-(P;X1,...,Xn;Y), a code parameter M=(MI,...,Mn,k),

a branchwise additive metric I which can be used in decoding codes over
K with parameter M, and an ensemble E:Ens(M11 ,...,!Mn;k;Xi,...,Xn;Ql,...,Qn).;

We define DL to be EeDL(K,e.I) for eac, L, wnere E.enotes expectazon
with respect to the probability measure associat.ed with E. We also
define, as usual, Ri:(I/k)lnMi , i:1,...,n; and we let .Isnota the branch

* metric for r.

Theorem 2.4.1. If Inf(a(T,t,K,1,E):tO)> exp-k R(T) for some non-empty
subset T of (1,...,n}, then DL increases without bound as L increases.

Lemma 2.4.1. If tO and T Is a non-empty subset of {1,...,n), then

-ln<a(T, t , K ,6,E)z kRo(K , Q,T) . --

-C...... ,- :::.:*:'
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Proof oil L'3.rnma 2.4.1. By !eftnition,

-2Q(4T@)2 Q(tT)QT)P(7jt 4) expt(TAT0,1) -6T14r'r)). (1)

Now,
2 tTQRTP('i I tt exP t( 6ZTtc l- ;(Zr,trc,1l))

/ 2Q(tT) Q(T) P01 I TOT exp t(6RAT09i) (6RTATo' l

4TXT91

V II

where (2) follows by reyersing the raies Of 47 and arc (3) follows
by Cauchy's inequality. (For arbitrary non-negati9e reals ai, b,,iti..m
Cauchy's inequality states that (Eaj'db 1)Iz Z wilthJ 0eualltyj iff,
for some constant c, ai:cb1 for all 1.)

sUbstituting (3) Into (1), we get

a(T,t,K,69E) 2 2Q(Qrc) 2 QRT)Q(4T)i" 4T,ZTo) P(1I C T,ZTO)21>
ZT-- 4T'XT-1
exp -kRO(KQ,T), which is the desired result.1 4

%
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Proof of Theorem 2.4.1. Lat the nodes at leel L be laielled y int=ge!-3

I,--,ML, where ML denotes the total number of nodes at level L. Let rk1

denote the value of the metric at the kth node on the path to level-L
node 1. Is thus a random variable whose distribution is determined by

the source, channel, and ensemble statistics.

For any pair of nodes I and j at level L, let us define
A(i,j) = the event that min{rkJ: lIk.L)>min{rki:l.k.L),

B(i,j) : the event that rkJ>rkf for each k, IskiL, and -,

C(i,j) = the event that rL JrL

Let Pi denote probabilities conditional on node I being the correct node

at level L.

Theorem 2.4.1 follows by the following sequence of inequaIiti'es, eacM of
which is justified subsequently.

ML ML
LDL2 2 0 /ML) 2_ Pi(Ai,j)) (4) :\:-2 ,.

ML ML
Z .(1/ML) 2_ Pi(Bli1j)) (. :.:-:

=I j="

ML
(I/(LML) Pi(C(i,j)) (for any non-empty T) ()

i=1 j : type of j wrt i=(T,...,T)

ML
2 _ ( 0/(LML)) (c/ ['L)(inf(0(T,tK, ,E):t-O})L (7)

i= I j : type of j wrt i=(T,...,T)

-"-3---. ~ -. . . . . . . .
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a exp {k(L- I )R(T)} (c/L'Z) (Inft ('i,t,K,iE) tOk)L. (8 -,V

Supposing for a moment that (4)-(8) hold, it immediately follows that,
if expkR(T):.nf{ ((T,t,KVE):t.O) for some T, then DL goes to infinity as

L Increases. So, the proof will be complete if we prove (4)-().

Proof of (4).
If there exists a node i at level L such that Pi(i never reaches the

stack-top)>O, then mD=a* for all miL. So, without loss of generality,

we may assume that Pi( never reaches the stack-top):O for each node I

at level L and each level L.

Let 1 be the correct node at level L. If A(,J) occurs, then, by the -.

properties of the stack algorithm, I cannot reach the stack-top before j.
But, by assumption, i reaches the stack-top with probability one; it
follows that P(A(i,j)) is a lower bound to the probability that j reaches

the stack-top before i, conditional on i being correct. Summing over j,
we obtain a lower bound to the expected number of nodes which reach
the stack-top before i, conditional on i being correct; averaging over i,
we obtain (4).

Proof of (5).

This follows by the fact that B(i,J) Is a subset of A,I). To see tn' s.
suppose that 2(i,j) occurs; in other words, suppose that rJ>r'ki fcr eac.'.

k, 1ik.L. Now, by taking the minimum of the rignt side, we Obtain
rkJ>min{fri:1ImL}, which holds for each k. Taking the minimum of both

sides of rk >min{r i:smi)L} over k, we see that whenever B(i,j) occurs

so does A(i,j); hence, B(i,j) is a subset of A(,j).

Proof of (6).
We wish to prove that, for any two nodes i and j, if the type of i with
respect to j Is uniform, i.e., if it equals (T,...,T) for some non-empty
subset T of {l .... ,n), then Pi(B(i,j))2(1/L)Pi(C(i,j)). We do this with the

help of the following fact.

,=. ~ ~ .'.J
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Claim. Let Z*,...,Z be il (independent, identlcally-aistr"buted) random . 2

variables. Let C be the event that Zl *..ZL>O. Let B be the event that

m
_Zi>0 for each m, I .miL.

Then, P(S) a I1/L)PIC).

Proof of the Claim. Suppose that C occurs; that is, suppose that a sample
point c occurs such that Zl(w) .... ZL(w)>O. Let h be the maximum index
such that Z(M)+-.-+Zh()=min{Zt(w)..Zk(O)1 .kL. Consider the.

cyclic permutation ZI+I(o),...,ZL(),Z1(W),...,Zh(wu); observe that all

partial sums for this permutation, namely Z. I(1, Zh I()+Zh2(W),

and so on, are positive.

So, If Z(w) ,..+ZL(W)>0, then there exists a cyclic permutation for

which all partial sums are positive. Since there are L cyclic
permutations and since each permutation (cyclic or non-cyclic) of a
given realization is equally likely to occur, the claim follows.
The proof follows by substituting (rkJ - rk_1) - - rk.l) in place

Of Zk in the atove claim. Notice that the condition that j be of tpe

(T,...,T) with resoect to i ensures that the random variables (k -k-lI-

"(-rk - rk- I i), k= 1 ,...,L, are identically-distributed.

Proof of (7).
We want to prove that, for any L, any non-empty T, and any pair of nodes

and j at level L, if the type of j wrt i is (T,...,T), then

Pi(C0i1j)) (c//L) (inf {oa(T,t,K, ,E):tO} )L, 9 -. .,.''.

where c is a constant.

*", ----
_::~~~~~~~~~~~~~~~~~~~. :..-.... ...--..-.. . ....................... . ........................ .......-.. >..-. '..:t -L _': _..?,:.:.: _ : , '- :, -_"- .... . .. :_.._ _ : -_. - - - - - - -- -. ..-"-- - - - - - -"-".---_-.. . .. . . . . . . . . . . . ....-"-- - 1"-"'': -"'"'"-.-.'."-. . "" .
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Le (r J - , ,)("ki - i r:

L t ( k - 1.1 - - Ik (or eac, k: ,...,L. Note that Zl,..,ZL

are lid random variables with a moment generating function a(T,t,K,9'E).
Now, we have Pl(C(Xj)):Pi(Z1+...+ZL>O); so, C(i,J) is the event that the

sum of L ild random variables exceeds zero.

If Zk has a non-negative expected value (this corresponds to the

situation where the metric tends to increase on a branch of type T at
least as fast as it does on a correct branch), then Pi(C(i,j))z1/2 and

lnf({(T,t,K,6,E):t.O}=l; so, in this case, (9) is easily satisfied by taking,
say, c= 1/2.

3o, without loss of generality, we may assume that the expected value
of Zk Is negative, In which case, (9) follows directly from the

asymptotic form of the Chernoff bound, as given by equations 5.4.23 and
5.4.24 of (121.

Proof of (8).
(8) follows from (7) by noting that expk(L-1)R(T) is a lower bound on
the number of nodes at level L which are of type (T,...,T) wrt (any given)
level-!. node i. (Also note that expkLR(T) Is larger than the number of
nodes in question.) This completes the proof of Theorem 2.4.1.

-14
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Chiapter 3

OUTER BOUNDS TO THE ACHIEVABLE RATE REGION OF
SEQUENTIAL DECODING

3. 1. A Basic Lemma

Definition 3.1.1.
For any channel K=(P;X 1,*..,Xn;Y) and any block code f over K with block
length N and codewords f(1 ), ...,f(M), define

M M
),(K~f=(1/M P (B(lj) f f(1))p

where, for each i and j,

f-ey {iE :p(Tj f() S P('ri f () if izj,
809~j)

OSL~i ~j. 0

X(K~f) is the expected number of incorrect codew.-orcls which are at least
as likely as the correct codeword conditional on the received word il
assurniing that ezch codeword is a prior scually likely. X(K,f) will be
used in lowsr- .ounding the exp-ected cornputatlon in sequential decoding.
The link between block codes and sequential decoding is established by
Lemma 3.1.1, which will be given after developing some concepts.

Definition 3.1.2.
For any channel K, any tree code e over K, and any positive integer t,
define A(K,,r,t) as the expected number of nodes which reach the
stack-top before the correct node at level t, assuming that the stack
algorithm is used with 1r as its metric, and that a priori each path is

* equally likely to be the correct one.

For any tree code e and any positive integer t, let e(t) denote the block
code obtained by. truncating e at level t. 0
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For the purposes of this chapter, it is necessary to state explicitly the
tie-reaking rule for ordering those nodes In the stack which have equal
metric values. The rule that we shall use is based on the following
lexicographical order on the set of nodes.

In our notation, a node u(..j) is associated with a vector (u(1) .....,u(j)),
where each u(h), lishj, belongs to a common set, say S. Any ordering .%%
relation on the elements of S induces a lexicographical order on the .7

nodes: For any pair of nodes u(..j) and v(..h), u(..J) proceeds v(..h) iff, for
some 1, OiliJ-1, u(..f)=v(..t) and u(t+f) proceeds v(.I1) with respect to
the order on S.

We shall assume throughout this chapter that nodes in the stack with
equal metric values are ordered in the above lexicographical order. Our
interest In the details of the tie-breaking rule is for purposes of
precision (and correctness) in the following proofs. For practical
purposes, any tie-breaking rule should be as good as any other.

Lemma 3.1.1. A(K,e,r',t) (1/2)X(K,e(t)). (1)

Remark. Observe that %(K,(t)) is the expected number of level-t nodes

which, conditional on the first t blocks of the received sequence, appear
at least as likely as the corract noOe at level t. Lemma 3.1.1 thus
implies that the average dCecocing c2mmexity in sequentiai aecoding
would be minimized if the stack algorithm were able to explore the
nodes at any given level t in the same order as they are ordered with
respect to their a posteriori likelihoods conditional on the first t blocks

of the received sequence. Of course, no sequential decoder can actually --

do this. So the analysis In this chapter can be seen as an attempt to
lower-bound the average decoding complexity of sequential decoding by
that of an optimum, but unrealizable, sequential decoder.

Proof. Let K=(P;Xi,...,Xn;Y) be a channel and e be a tree code for K with

parameter (MI,...,Mnk). Consider the situation where the stack algorithmS is used In decoding e with a metric r.
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Let the level-t nodes in a be lioelled by integers 1,...,M(t), where rlWt is
the total number of nodes at level t, namely MMt)(Mi*...Mndt. Let e(t,i)

denote the encoded sequence for the ith level-t node In e. We shall
regard s(tAl) also as the ith codeword of eft). .'

Claim.
MMt MMt

where, by definition, for each pair of distinct level-t nodes I and j,

A0i9j):(llEykt: I cannot reach the stack-top before jgiven that 11 is the
first t blocks of the received sequencel;

and for each level-t node I, A(igiW4+.

The definition of A(ij) would not be meaningful if the stack algorithm
(equipped with the lexicographical order discussed above) did not have
the property that, given any two nodes at level t, In order to determine
which of them reaches the stack-top first, if any reaches it at all, we
need to know only the first t blocks of the received sequence. In other
words, given a node, t411 first. t blocks of the raceived sequence, in

general, do not tell us if that node raaches the stack-top; but given any
two nodes, they tell which of the nodes cannot reach the stack-top
before the other.

An explicit characterization of AOi,j) can be gIven as follows. For any
level-t node I, let minroioi) be the minimum of the metrnc values of the
nodes on the path to node i, given that T1eykt is received. Now, for any
two distinct level-t nodes I and ],and any 1eYkt

'TjAilj) if mInr(j,1)>mtnrol,Tj) or if minr(j,rq)= min rom~)
and j preceeds I with respect to the lexicographical order;

1jiA(J,i) otherwise.
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Thus, A0,J) and A(j,I) are complementary sets (in Yk), a fact which will
be used in what follows.

Proof of the Claim.
If the probability that the correct node at level t never reaches the
stack-top Is positive, then A(K,e,rt) is infinite. So, without loss of
generality, we may assume that the code and the metric are such that
the correct node at level t reaches the stack-top with probability one.

Suppose that node I is the correct node at level t. Let j be some other
level-t node. Since i, being the correct node, reaches the stack-top with
certainty, the probability that j reaches the stack-top before I equals
P(A(ij) I e(tj,)). Thus,

Mt)
2 P(A(ij) I e(t,i)) (3)
j: 1

Is the expected number of level-t nodes which reach the stack-top
before node 1, conditional on i being correct. Averaging (3) over i, we
obtain (2), thus concluding the proof of the claim.

Now, the proof of Lemma 3.1.1 is completed as follows. ..

r1(t) 11(t)
2,(K,e,r,t) 2 (I/M(t)) min{P(i,j) e'trl ) ) i: e(t,i)) (5)

Mt) M (t) 
'2 (1/M(t)) 2 ' min{F( le(t,i)),P(1jje(t,i))} (5) :::::

i= I j=1 I e'kt""""

MWt MMt ::':':

(1/2M(t)) . P(6(i,j) e(ti)) P(B(j,i) e(t,i)) (6)

I=1 j=l
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Mt) M(t)0 (/M(t)) _ P(Boi,j)le(t,i))

1=1 j=1i .""

= M(K,e(t)).

Here, (5) follows from (4) by the complementarity of A(ij) and A(j,1) for

i:j; in (6) we divide by 2 to account for the fact that, for i=j, 8(i,j) and
(ji) have in comrion those 11 for which P( I e(t,i)=P(rl I e(t,j)). 0

The following sections of this chapter are devoted to finding outer
bounds to the achievable rate region of sequential decoding (to be exact,
of the stack algorithm with the particular tie-breaking rule described
above) in various situations. These bounds are based on the fact that, if
X(K,e(t)) grows without bound as t increases, then by Lemma 3.1.1, the
average complexity of sequential decoding must, too, be unbounded.

4....,
J--4i-

• -- " -*

:.::.:.
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3.2. The Cut-off Rate of Single-User Channels

The main result of this section is the proof that RO(K) is the cut-off
rate of sequential decoding for any single-user discrete memoryless
channel (DMC) K. This proof relies heavily on certain results about
sphere-packing lower bounds to the probability of decoding error for
block codes, which we review in the following subsection.

3.2.1. Sphere-Packing Lower Bounds

Probabilities of Error

Let K=(P;X;Y) be a DMC and let f be a block code for this channel with
rate R, block length N, and number of codewords M (M=eNR). Denote the
codewords of f by f(1),...,f(M). Let d=(Y ...,Ym) be a decoder f or f. Here,

Y1,...YM are disjoint sets whose union is yN, and the decoder decides in
favor of message i If the received word belongs to Yi.

P(Yi* fli)) is then the probability of decoding error for message i.

The average probability of decoding error is defined as

Pe(K,f,d) (I/I) F f( i)).-

The maximum probability of decoding ,*-3r is defined as

Pe,max(K,f,d) max P(Yi f(i)).

I1ilm
Pe(K,M,N) is defined as the minimum of Pe(K,f,d) aver all codes f with M

codewords and block length N, and all decoders d.

We shall give lower bounds to Pe(K,f,d) and Pe (Kfd); but first more

definitions are needed.

**. *~** *~ **.. .. . . . . . . . . . . . .
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Composit!ons ind the Sphers-Pic'.ng Exponent Fuinction

A p.d. Q on X is said to be the composition of ZeXN iff, for each ZX,
NQ() equals the number of times t appears in 4. A p.d. Q on X is said to
be a composition class on XN iff NQ(Q) is integer-valued for each 4eX. A
code Is called a fixed-composition code iff all of its codewords have the
same composition.

For any channel K=(P;X;Y), any positive real number R, and any p.d. Q on
X, the sphere-packing exponent. Esp(K,R,Q), is defined as

Esp(KRQ) = min D(V IP IQ)
V

subject to V( 11 z 0 for each tX and 1Y,

SV(l I = I for each ZeX, and R2 I(Q;V).
i1EY

Here, D(ViPIQ = Q(t)V(nIt)In (Yq ) / P'q-'-)" and

4ex 1ey

I(Q;V) Q(Z) V(iiq t~)In {V(-q 4) / Q(*) V(ri)
4ex treY ::::: -

Lemma 3.2.1. Sphere-Packing Lower Eound for iFixed-Compositin Codes
Let K=(P;X;Y) be a channel, N be a positive integer, Q be a comoosition
class on XN, R and 8 be positive real numbers. Let f be a
fixed-composition code with composition Q, block length N, and number
of codewords M. Suppose that MexpN(R+S). Let d be , decoder for f.
Then, for any such K, f, and d,

Pe a(KJf,d) >(112) exp -N{E E(K,R,Q) ( 1+8) }

provided that N> NO(8, I l I , for some function No. r1

This is Theorem 5.3 in (161, and hence, its proof will be omitted here.

o-"0

0
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The explicit form of the function No is not important for our purposes (it
can be found In [161); what is Important Is the fact that No does not
depend on Q.

Corollarg 3.2.1.
For any K, N, Q, R, 8, f, M, and d as in Lemma 3.2.1, satisfying the
additional condition (M-1)/2 a expN(R8),

Pe(Kf,d) > (1/4) exp -N(Esp(K,R,Q)( I+.)1,

provided that N> NO(S, X I Yl)

Proof. We make use of an idea of [171 (Eq. 4.41): If (I/N) In[(M-I)/21 > R+S
and N>No(S,IXI,IYI), then, by Lemma 3.2.1, at least half of the
codewords of f have probability of error greater than

(1/2) exp -N{ Esp(K,RQ) (1 8) };

the corollary follows by noting that such codewords have probability of
occurrence of at least one half. 0

Lemma 3.2.2. 3ome Proer"ties of Esp(K,R,Q)

For fixed K=(P;X;Y) and Q, E ,0 is a c:nvex, non-incr-asing functinon

of RzO. Esp(K,R,Q) is positive for O IR<I(Q;P) and zsro for R>l(Q;P). There

Is a rate Rc(K,Q), called the citcal rate for Q, '-,c. his tIe pr pertg

that
Rc(KQ) + Esp(KRc(KQ),Q) : Eo(K,Q), where, by definition,

Eo(K,Q) min D(V P jQ) + I(Q;V)
V

s.t. V(4I) 2 0 for all X and T Y,

V(11i) I for all NX.

. . .. . . . .°
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The asseions of this lemma are contained in Lemma 5.4 and Corollarg
5.4 of [161; hence, their proofs are omitted here.

Lemma 3.2.3. For any K and Q, Ro(K)zEo(K,Q).Ro(K,Q).

Proof. We follow the hints given in problem 5.23 of [161. The dependence
of the functions on K will be suppressed in the following proof. First it ,.
will be shown that R0 Eo(Q).

E(Q) min D(V I P IQ) + I(Q;V) (1)
V

-min Q(1V1IlIn{V(VlIZ)/P 4l)}+ nV n l>/u(0}), (2)
V,U tX rleY

where U is a probability distribution on Y. (2) follows from (1) by noting
that

I(Q;v) mm n Q() v(r ) )l1n {V(11 g)/u(0)}, (3)
U 4.X ",4Y

which can be proved by considering the difference of the two sides in (3).
for fixed U, and then using Jensen's inequality.

Now, note that

ZZX T1ey 4 .:.:....-"

,-2 .Q(,) In{() 2 V(tnv)I(,))UuT0 /::} (6)
re x -r:.Y

t, -." x "n, Y :..-.:..

:-:x rl.(6)

° X

~i.~-.***- ~&~Cr ; *.• .• . ..
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whera (5) follows from (4) by Jensan's ineguaity; and aquality olds in
(5) if V Is as follows.

2 P/F0l1 )u()--.-..

jiY

From (1)-(6), It follows that

E(Q): min -2 .Q(4) In{ ( 'P(hI~)u(h)• (7)

U teX hqey

So, for any p.d. U on Y,

In particular, we may take U in (8) to be

4.:X

U*(, ) : for eac ","

-{ 'Q(:Vp I:} .::-'

where Q* is a p.d. that maximizes RO(Q), i.e., Ro(Q*):R o. By Theorem
5.6.5 of [121, Q* has the property that

I_ Pnl) 7_Q*()/P( I) ' 7 { 7. Q*( )-/P~ThB3}: ()-.:

for each ZeX, with equality if Q*( )>O.

d 
*1"
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Substltutlng U* into 08), we get

Eo(Q) 1 -2 .Q(Q) ln{ 4 /P(l I -u*( )

11EV ex
~~fM~wb(10)11E )Y Q* ix ~l

.o9
sRo . (i11) :"::

(I 1) follows by the property of Q* expressed in (g). This completes the
proof of the first half of the lemma. We now prove that Eo(Q)_>Ro(Q) for
all Q.

Eo(Q): min -2 Q(Q) In{ / !P(-q )uQ4) (12)

U 4ex TIeY

z min -2 In{ C Q() 4tF 4' l)U(11)} (13)
U -X 'rY

(14)

where (12) is Just a restatement of (7); (13) follows by Jensen's
Inequality; and (14) follows by substituting the minimizing U, which Is

U01) for each 11V. 0

Q(Y 
"--"j

-, ~ey 4r.X ---.



Corollarj 3.2.2. max EO(K,Q) = ROK) for all K.

Proof. By Lemma 3.2.3,

Ro(KQ).Eo(KQ)sRo(K);
hence,

max Ro(K,Q) s max EG(K,Q) RO(K).
Q Q

The proof follows by noting that max Ro(K,Q)=Ro(K).

Corollary 3.2.3. max RC(KQ) .RO(K) for all K.

Proof. Rc(K,Q)i.E0(K,Q) by Lemma 3.2.2, and Eo(K,Q)h.Ro(K) by Lemma

3.2.3. Hence, Rc(K,Q) .Ro(K) for all K and Q.-

3.2.2. A Lower Bound on X(Kf)

Lemma 3.2.4. For any K=(P;X;Y), any code f for K with M codewords and
block length N, and any collection of integers t,tM,...,Mt such that i)t21,

ii) M 1>I for each iE{I,...,t}, and iii) M-I:=(Mi-I), one has

X (K,).>P (, ,)--P (K,Mt,N) . ""...:.

Proof. Fix K, f, and Ml,..., t.. Let f(1),...,f(M) be the codewords of f.

Define
{ qeyN: phll f (i)) j P< i f (j))} if itj;

80,j)
if i=j.

For each Ie(I,.o.,M}, define

Piz (tS,...,st): SIU---Ust={ 1,...,M), fs, Is j I :Mj, j=,,...,t 4.
",.,.,

.,I .,,..,' :,::;. , .f. .. :,. ..:: . .%, . '"'';" "":: '""'''" "" " ' '" -. "" '.:.'
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It follows from the definition that, if (,,i,..., t )eP i , then the sets 06

are mutually disjoint, except for i, which is common to all.

For each subset T of (I M, ), define

Ei=r)={ IYN: There exists jeT such that j:i and P( 1 f(0)sPQl I f(j)) .

Observe that, for ang =(51, ...,St)ePi and any iei,...,M},:

M t
P(B(i,j) I )) P(Ei(Sk)I f(i0).

... '.-j=1 W~ ' !"

So, for any p.d. W1 on Pit

M t
P(Ei,j) I f(i)) z W1(S) 2 P(E5lk)I f(i)),

j=l SeP i  k= I

Take W i as the uniform distribution on Pi for each IE{1,...,M}. Note that

the cardinality of Pi equals c := (M-I)!I/(M -I)!"(Mt-I

Sum over all i to obtain

M M M t
),(K,C) : (l/M) P(E(ij) f(i)) > (/cM) [ P(Ei(5k) f (W.

:1 j:1 i=I SiPk I

M

kLet k (1/c-M) 2 2 P(E(5kIf(i)),

Now, X(KCl)zcix+'"*c(t. Clearly, the proof will be complete if we show

that Ok 2 Pe

Define F(m):(D:D is a subset of {I,...,M) with m elements) and
Fi(m)=(D:DeF(m) and leD).

*d. ~*,,..,.. . . . .

. . . . .. . . . . . . . . . . . . . .
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M

:~k(1/cM)2 2 P(E()If()) 1

W: DEF(M) SEP1 :Sk:D

" (1/m) 2 2 P(EI(D)jtM)) 1

1: Di(Mk) (M-)5k (M-)

M(M-Mk)! (Mk- 1) 

1=1 t(FiDMk)(Mk)!..(M-1

M2 2 P(E(D)fIM))
M! W DiMk) lED

( MIM) DEM(M

-~M Pe(KKikN).

Corollaril 3.2.4. For any channel K=(P;X;Y), any code f for K with

*block length N and number of codewords M, and any integer H such that
M211, one has X6(K,f) >(M/2H)P8 (K,H,N).
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Proof. Under the conditions of the corollarg, integers Mi,...,t can be

found such that t>(M/2H) and Mi.H, for each i. The result follows from

Lemma 3.2.4 by noting that Pe(K,mi,N)>Pe(K,mz,N) for any pair of

integers m, and m2 such that ml>m2.

3.2.3. Proof that Ro Is the Cut-off Rate

Lemma 3.2.5. Let ff 2,.. be an infinite sequence of block codes for a
DMC K:(P;X;Y). Let Ni=kl be the block length of f1 for each I, where k is

some fixed integer. Let Mi be the number of codewords in 'i. Suppose

that M >expN(Ro+e) for each I, where E is a positive constant

independent of 1. Then, for all sufficiently large i, (l/Ni)ln.X(K,fi)> e/8.

Proof. Let gi be a subset of fi with a fixed composition and with number

of codewords at least as large as t1/(I+Ni)IXI. (There is no problem in

assuming that gi has this many codewords because (IN 1)1l is an

upper bound on the number of composition classes on XN.) Let Li be the

number of codewords in gl, and let Q, be the composition of the

codewords in gi.

Note that X(K,fi)z(Li/Mi )X(K,gi), a fact tn4at will be used later in this

proof.

Let 8=e/(0+4Ro(K)).

It is tedious but conceptually straightforward to see that there is a
function s1(e,K,IXI,IYI) such that for all i>,2 all of the following
conditions hold simultaneously.
I. (I/Ni)lnL I >Ro(K)+E/2 (15)

2. (I/N i )ln(L 1 /8MI)>-e/8 (16)

3. Ni>No(8,IX,IYI) (17)

,..-.4

q -" o o
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4. There exist Integers Hi such that

a) L1"'21  (18)
b) RC(KQi)+S (1/Ni)ln[(Hi-1)/21 (19)
0) R (K,Q)28 -, (i/N)iH. (20)

The No In (17)1Is the same as the No In Lemma 3.3. 1.

To see that (15) and (16) can be satisfied, recall the assumption on the
size of Li. To see how (18)-(20) can be satisfied, first note that, for

large I, the right hand sides of (19) and (20) are almost identical; thus,
(19) and (20) essentially require that (1/N)lnH, be between Rc(KQi)+S

and RC(KQi).289 a condition which can clearly be satisfied. Now, If Li
are chosen to satisfy (16) and Hi are chosen to satisfy (19) and (20),

then, for all I sufficiently large, they also satisfy (16) in view of 1)
Rc(K,Q)iRO(K) (see Corollary 3.2.3) and 2) the relation S:e/(5+4RO(K)).

Hereafter, suppose that i is larger than 2. Let Hi be chosen so that

(18)-(20) are satisfied. The rest of the proof is a simple consequence of
the results established thus far.

X(K~f1) > (L1/Mi)X(K9g 1) (trie in ceneral)

> (Li2/(2MiHi))Pe(K9HiNi) (by (16) and Corollary 3.2.4)

(L 2/(8M ~ ~ ~ H*Sx-jEp(9cKQ)Q )}0 (by (17), (19),

(Li 2(8M~i)exPNi{EpO4(K~t)~i)(and Corollary 3.2.1)

(L,2/(aM iH1)) exp-N1 ((1 +S)iEO(KQ)-Rc(K9Q ) 1 (by Lemma 3.2.2)

S(Li 2/(8M1H1)) exp-Ni((l I S) [RO(K)- RC(KQi)I) (by Corollary 3.2.2)
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z ( 1 /811 ) exp Ni{RO(K)+/2-Rc(K,Qi)-2-(i +8) Ro(K)+(1+8) Rc(K,Qi )

(by (15) and (20))
(Li/8Mi ) exp Nj{l/2-26-6 Ro(K) Rc(K,Q i ) } .

z (Li/0fMi)exp N(1e/2-26-6Ro(K)} (since Rc(K,Qi)zO)

= (L,/8Mi)exp Nle/4 (since 8 = /{8+4P(K)})

exp Nie/8 (by (16)). 0

Theorem 3.2.1. Ro(K) is the cut-off rate of sequential decoding for any
single-user DMC K.

Proof. For any single-user DMC K and any (M,k) tree code e for this
channel, If (1/k)lnM>-RO(K), then Lemma 3.2.5 implies that X(K,e(t))
increases exponentially In Increasing t. Hence, by Lemma 3.1.1,
A(K,e,r,t), too, Increases exponentially In t regardless of what the
metric r Is. It follows that rates above RO(K) are not achievable (in the
sense of Def. 1.4.2). 0

4.--,

5,,
"a"d.

A.

. o



3.3 Proof that RO=R for Pairwise Reversible Channels

A channel K=(P;X 19..0Xn;Y). is said to be a pairwise reversible channel

(PRC) f f for each tj 9 1e Xi91  1 t...,n, and i1EV,

11EV

(Here, 0O1ogO0:0.)

PRCs were Introduced by Shannon, Gallager, and Berlekamp in their study
of zero-rate error exponents for block codes (171. Somne examples of
PRC's are the two-user gR and ersr channels of Si .5. Our purpose in
this section is to prove the following result.

Theorem 3.3. 1. R0(K)=R(K) for any PRC K.

Recall that ROMK has already been shown to be an inner bound to R(K) for
all K (Theorem 2.2.1).' Thus, to prove that R0(K)=R(K) for a given K, it
suffices to show that ROWK is an outer bound to R(K). The following
result, taken from (171 without proof, is the key to praying this.

Lemma 3.3.1. For any PRC K=(P;X1 ,...,Xn;y), any positive integer N, and
any pair of ti(Xlx ...xXn) and t-C-Xix..X n )N,

Smin{P(,q V'(1 V >) g(N) V(1 J)("j
11EYN 1IEyN

where g(N) =(I /4)exp{I/2N flPmmI and
smn=min{(ii V):ateY, 40(Xx ... xX.), and P~n 4 ~>O I.

P~m Is thus the smallest non-zero transition probaolity over K. C

Definition 3.4.1. Let f be an (M,N) block code over a symbol alphabet
X. A p.d. Q on xN is said to be the composition of f iff, for each e
MQ(Q) equals the number of times appears as a codeword of f.
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(The concept of composition here has no relatlion to that in the preaiious
secti on.)

Lemma 3.3.2. For any PRC K, and any block code f for K,

).(K~f) - (1/2)g(N) [-1 . exp -NS(K,M,Q),

where N Is the block length of f; g(N) is as in Lemma 3.3.1; M is the
parameter of f (if, say,, f is an n-user code, then M Is of the form
(M....,M,,N) where M, is the number of codewords in the ith component

code and N Is the common block length); Q is the composition of f. The
function S(K,M1Q), as defined In 32.2, is the minimum of Ro(K,QT)-R(T)
over all T,, where T is a non-empty subset of (1, ....,n) and R(T is the sum,
over leT, of 01/N)]nM,.

* The proof of Lemma 3.3.2 will be given following that of Theorem 3.3.1.

Proof of Theorem 3.3. 1.
Let K be a PRC, and f be a tree code for K with parameter M=(M 11...,r1nk)9

where n denotes the number of users. Let R=(Rlp ... 1R) with P,=1% I/k)lnl.

3uppose that R does not belong to Rc(K. We will show that R dces not
belong to R(K), either.

Let M() be the block code obtained by truncatIng f at leyel I and let Q
be the composition of f(i). The parameter of fM), which is denoted by M19

eul(M1,.,n' Iki). The rate of fVi) thus equals R=..... Now, by

Lemma 3.3.2,

X6(K,f(l))'(1/2)g(ki)[- 1.exp-ki S(K,MlIQ')]

0 (/2)g(ki)(I .exp-kl A(K,ril

where, by definition, A(K9M)=sup{%S(K,M1 ,Qj) : I=1,2,3, ... I.
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Since we assume that R does not belong to RG(K), we have A(K,M)<O.
Therefore, X(K,f(i)) Increases exponentially as I increases. This in turn
implies, by Lemma 3.1.1, that A(Kf,r,i) increases exponentially as i
increases, regardless of what the metric is. This means that the
expected number of nodes which reach the stack-top before the correct
node at level i grows exponentially in increasing i. Hence, R does not
belong to R(K). 0

Proof of Lemma 3.3.2.
Let K=(P;Xi,...,Xn;Y) be a PRC and f be a M=(M,.%.,M,N) block code for K.

Let f1 be the component code of f for user i, i=1,...,n. Let the codewords

of fi be Indexed by integers 1 through M1, and the codewords of f by

-:n-tuples of integers (MI.,...Pm n) where mic(l 1....OM1}. The words index and
message will be used interchangeably in what follows.

The codeword in f with Index (ml,...,mn) corresponds to a collection of

codewords, namely, codeword mi from code fi for each ie{1,...,n} The

codeword with index m=(mI,...,mn) will be denoted by f(m), as usual.

Recall that MXI If / iH) Pf S"::'::'(M)

mm
where H=M ... Mn is the total number of codewords, the surma:ions rn

through all possible messages for f, and 8(mm) is as defined in 33.1.

Now, by Lemma 3.3.1, for any distinct pair of m and mn,

P(B(m,Fn) f (m)) + P(B(i ,m)I f(r)) . (g(N)/2) _ ." f(m))P( f

where the factor of 1/2 accounts for the fact that E(mmi) and B(rmm)
have In common those qj yN for which P(11 f(m))=P(1l f(F)).

;-::..

e.- .-
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Summing over all mesages,

=(g(N)/2) (-H + -/- (ijf (m))P(ij f (FnT (2)

This expression will now be simplified.

Let Q be the composition of f, and Qbe that of fi. The relationship
between Q and Ql--tnis a simple one: For any collection of l,
409 1 ...,n), Q(41 x..e. xtn)=QI(I) ... Qn(~d)

The following short-hand notation (which should be familiar by now) will
be used in the rest of the proof. For any subset T of (1 ,...,n) and any
Z~x.. x.,where tieX.1N P T will denote the collection of tj far iET; Z

will denote 41 .. ~;QT will denote the product of Qj4j over allL
ieT. P(11 I ) and POijI 4T',rc) will be used interchangeably.

For any message m(,.,m)and any subset T of {1..,n , (T) Wil1l

denote the set of messages M~'- .... -:-n)r whch mi m; 'For ec

Now, we can proceed with the proof.

* m meT)M il

* Here, T is a fixed but arbitrary subset of 01...n).

U.7
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t-q- V (T') Q(T) t-" =l~)'(l Tff M)T,;)

The summation over tT should be thought of as one summation for each

element In T; the summation corresponding to an element I of T runs
through all of x.N. Now, let M(T) denote the product of all Mi for iET.

• .H 2 Q(w M(T) 2. Q(t T)  _/ Pl 4) )P( 1t T,4TO)

Recall that H is the total number of codewords in f. The summation over
1 runs through all of (Xx ... xXn)N.

HM(T) 2 Q(QTO) 2 Q(ZT). Q(tT) 2 (1P )P(11 I tTZ')
'.

Note that Q()=Q(ZT)Q(T ).

= HM(T) Q Q(r) Q(IT)P( T, ) 4 7 Q (tT!P(t 7 T

1~tT

47C 'I T

Hexp N(R(T)-RO(K,Q,T)), where R(T) is defined as (I!N)InM(T).

We have thus proved that, for any non-empty subset T of {1,...,n},

X Ip( lf(m)) P( i~jf(rO)).± HexpN(R(T)-Ro(K,Q,T)). (3)

-
Z*1",,°,, 7
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It follows that

!P(i~tM))P( 'ii f(ff)) z HexpN(maxfR(r)-RO(KQT))). (4

Noting that max{R(T)-RO(KQT)h z 6(K,i1,Q),

2 V PF liiT(m)) P (d 'I Oi)) I~ H exp N(max[R(r)-R0(KQ,T)D). () Y
mmii T

m m it

Now, the lemma follows from (1), (2), and (5).13

4
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3.4. A Lower Bound to the Ensemble Average of Computation In
aqustlI Daeoo

Tbeorem 3.4.1. For my channel K=I(P;X,,..,Xn;Y), any tree code

ensemle Esnh(Mi,...,Mn;k;Xt,-,Xn'Qt,..,Qn), any metric r that can be

used in sequential decoding of codes In E, and any positive Integer t,

EA(KvX]t) i hltlexp-ktSlK,M,Q), " :'

where E denotes expectation (here, E Is an averaging operation over all
codes I in E) h(t)z(g/f)+o(l//t) where g Is a constant and o(I/IE) Is
a quantity which goes to zero faster than /1A as t goes to Infinity;
M(M,..,lnk) Q-(Q,.Qn; and, (K,MQ) is as defined In 12.2.

Remfarks .-.:.:

1) There are certain similarities between Theorem 3.4.1 and the results
of 12.4, but neither Is stronger than the other.

Theorem 2.4.1 and Lemma 2.4.1 together Imply that, for branchwlse
additive metrics, the method of 12.1 cannot be used to prove the OK-,

achlevability of any point outside Ro. The result here is much stronger.
Theorem 3.4,1 states that the inability to prove achievability outside R,
is not due to a shortcoming of the particular method employed in 12.1,
neither is it due to the restriction of the metrics to branchwise 3dditive
ones. It Is because random-coding arguments over the class of ensembies
we are considering in this thesis can not yield any achievable points
outside Re; in this respect, the method of 12.1 can not be improved.

Theorem 2.4.1 gives an outer bound to what can be shown to be
achievable by a given branchwise additive metric by using the method of
$2.1. Theorem 3.4.1, on the other hand, implicitly deals only with the
best possible metric.

2) In the one-user case, a result similar to Theorem 3.4.1 was proved by ":'
Gallager In a different context [18.

d'.

I ".
:.:..:-
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Proof of Theorem 3.4.1.
In view of Lmma 3. 1. 1, It Is sufficient to prove that

EMK,9(t)) a hltexp-ktSlKMQ),

Here, e(t) Is the block code obtained by truncating the tree code e at
level t, as defined In 13.1. We associate messages for e(t) with level-t
nodes in . Now, by definition,

VICAO~t) z 0 /M(t)) :P(B~uC..t),$6(..t))eu.t, II O5:::D"
u(..t) x..t )t,

where M(t) Is the total number of codewords in e(t), i.e., M(t)=(M . . .Mn)t;

the sums are over all level-t nodes in 5; eu(.t) denotes the codeword in
e(t) for message (node) u(..t); and 8(u(..t),6(..t)) Is defined as follows.

(eykt :p(. i ea(..t)-z P(.q eu(.,t)) )u(..t)=u(,.t); ,.-
Blul.t),R..t)) = ::';

Taking expectations of both sides of (1),

E)6(K,e(t)) : (/M(t)) 2 E P(S(u(..t)4G(.t)) Jsu(.t 2
U(..t) a(.,*

E(K,e(t)) can thus be lower-bounced by lower-bounding

E,( ( .. ,f..) eu(..t)),:- ::-'

which is just the probability of the event that
t

Sln[P(y(i) eu(i))/P(y(i) eu(i)) 1 0. (3'
i:l

Here, y(t) denotes the Ith channel output block, and It is regarded as a
random variable taking values in yk. Likewise, e is regarded as a random
variable taking values in E. I...-. -

,I-.°%

• -:.:.
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The distribution of :i In [P(yVl) Jea(i)) /P(y(i) jeu(i))] depends on the
tVp of ik.j) with respect to u(..i). In order to simplify matters, let usL A
suppose that the tyjpe of a..t with respect to u(.0t is (T, ...,9T) f or some
n-gmpty subset T of (1 ,...n)e Z ... Z are then Independent- and

identically-distributed. So, the probability of the event in (3), which is
now just the probability that the sum of t lid random variables, Z1,,..,Zt,
hmv a non-negative sum, can be lower-bounded by using the asymptotic
form of the Chernoff. bound,, as given by equations 5.4.23 and 5.4.24 of
[121. To use the Chernoff bound, we note that the moment-generating
function of Z1,, E(expsZ,), is as follows.

E(expsZ,) QQT) T)QI P( rtTAT)' -s PO'1I t~~~

where we have used the notation of 13.3.

It can be verified easily that E(expsZj) is a convex function of s with a
minimum at szI/2; thus, the minimum value of E(expsZ,) equals

Ek'exp(Zt/2)) zexp-kR0(K,QT). ,..

Now, the Chernoff bound states that

Pf-.+-Z tOh H(tL)exp-t*kR0 (K,Q,T), 4

where H0t) is of the form ((x/fit + o~l/A) for some constant ~.(For
the exact form of HJt), see page 130 of (121.)

Note that exp~k(t-l)R(T)), where R(T)=(1/k)lntl(T), lower-bounds th e
number of level-t nodes which are of type (T...T) with respect to (any
given) node u(..t). Thus, it follows from (2), (3), and (4) that 1

E.X(K,e(t)) 2 H(t) exp(-kR(T) exp {ktER(T) - R(K,Q,T)I }, (5)

which IS true for any non-empty subset T of (i1,...,nj.



g

Now, lower-bounding H(t)exp{-kO(r) by h(t)=H(t)/(M 1 -. t) and takIng a T

in (5) for which

R(T) - Ro(KQ,T) = max {R(3) - R(K,Q,3))
3:3 is a non-empty subset of (1,...,n)

-- (K,MI,Q),

we obtain EXIK,e(t)) z ht) exp -kte(K,M,Q), (6) . .,..

thus concluding the proof.

- -,-

* ... * ...... ........ * -.

. . . . . . . . . . . . . . . . . . . .. .. '--.. -. .
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Chapter 4

NON-JOINT SEQUENTIAL DECODING

The sequential decoding procedure that we have been considering in the
post chapters - joint sequential decoding (JD), as It will be called in
this chapter - requires a complete knowledge of all tree codes in the
system on the part of a single processor. In this section, we shall
consider what we call non-joint sequential decoding (NJSD) In which
there is a separate sequential decoder for each user, the decoder for any
gien user working only on that user's tree code. (See Figure 4.1.) Our
goal is to examine the achievable rate region of NJSD (to be defined
presently) and compare It with that of JSD.

Consider a channel K=(P;-X,...,Xn;Y) and suppose that user I employs a
(Mi,k) tree code e1, t:1,...,n. Let a denote joint tree code for
NJSD in this situation uses n sequential decoders. The sequential decoder
working on user i's tree code ei, which we denote by SDI, uses a metric

r, of the form:
: U (xihkx hk - ,--:---:.-.h hk)-

h:1

Ncte tabt te form of r1 does not allow 5DZ to use any information ncu,'

the codes of the ather users.

Rougnly speakIng, acnievability In NJ5D requires that the average
decoding complexltU be finite for each 30i, l1,..,n. What follows Is a
formalizition of this idea.

Achievability in Non-Joint 3eouentlal Decoding

Let C;,j(Ke,rl,s,y) be the number of nodes in Ij(st) , the jth incorrect
subset of the correct path si in ei , that reach the stack-top of SDI.
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Decodes the n-ussr
tree code

seq.

Joint equentel Dcodcn

Decodes tree 1

ISource n nc
SD Zn e...?

Non-Joint Sequential Decoding

Figure 4.1. Joint and Non-Joint Sequential Decoding
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(As usUoa, sxx.. xsX denlotes the corr~ect path ini s,an e sth

chmnel Met we.)

Lot Ct,jOKeFi) be the value of Cj(Kse~Fiss~g) averaged over s and y.Let

01,1(KSvrI)Z{c 11 (KP.,r 1) .e-.CiL(Kqetri 1 /IL.

For large L9 Dl,L(KeFI) can be Interpreted as the average work SDI has

to do to move one stop along the correct path sl.

A point Rz(R1 ...,R ) is said to be achievable by NJSD if there exists a

finite constant A. A=A(KR), such that for any given L there exist 1) a
code e with rate at least as large as R. and ii) metrics r1,....,rn such

that
D 1L(K,e,r)+..+.DnL(Kteprn) <A.

The achievable rate region of NJ5D Is defined as tne closure of the set
of all points achievable by NJ5D, and is denoted by Rnj(K).

Theorem 4. 1. RN (K) is inner-bounded by Rn,o(K whc sdfnda
follows.

R(K) R. I

where the union is over all Q=Q--,n Such that Qi is a p.d. on Xik for

some k (k is the same for ea-ch i), and for any such Q,

R,13 (KqQ) (Rtj...,n:Oj R (K,Qji) for each i it ...,n)

where R (KQ~i) -(l/k)ln i )______

7jeyk ZCX~k

and where
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....-. .

Proof. We use a random-coding argument that is essentially the same as
the one In 12.1. Hence, details of the following proof are omitted.

Let E-Ens(Mi,..,Mn;k;Xt,..,Xn;Qi,..,Qn) be an arbitrary ensemble such that

Rj.,(K,Q,J)>(l/k)nMj for each j--1,...,n. To prove the theorem, it suffices

to prove that there exist metrics r n...,r such that the expected value

of Dl.l(K,e,rl)*...+Dn,L(K,e4rn) over E is uniformly bounded over all L.

3impler get, It suffices to prove that, for any given i, there exists ri

such that the expected value of DI,L(Kser) over E is uniformly bounded

over all L. Without loss of generality, we may consider the expected
value of DIL(K,e,rl1) over E, as we do next.

Let Ei:Ens(M1;k;Xlk;Q1), i:l,...n. Let E denote expectation over E, and Ei

denote expectation over Ei. Now,

ED1 ,L(KqeI ) El ... EnD I,L(K,e,r 1)

EI{E...EnD 1,L(K,e,r )}

where DL is as in Def. 1.4.1, and K<:(P ;Xjk;Yk) with P1 as follows.
Xk  e k, --..

For each ZEXk and 1 'y-

P ,(1q 4 1): =2 02't)" .. Qn( n) P(11 4 ,, It,,...,n . qtd- .1

If r, is taken as met(K1,1,Q1 ,B), with bias B=(Ro(K,Q,{I)+lnM,}/2,
then EjDL(K,e,rl) is uniformly bounded over all L by the results of 82.2.

Remarks "-.--

1) The branch metric for met(K1,1,Q1 ,B) is as follows.

--7 7-
•. " • .



103

For each "V ,

~6x~k . ,J

2) RnjO(K,Q) Is also achievable if SDI uses the following Fano metric.

For each 11jy k , 
-EX-k

'F(,'q)ln ' - lnMi ,

where wi(,1) : Q1(1)P1(-I ). a

lexik

One might think that R(K) must be at least as large as R (K) for all K.

This is not true. There is no general inclusion relationship between R

and R,, as illustrated by the following examples.

Example 4.1. A channel for which R is not contained in R....

Consider a channel K=(P;XI,X 2;YIxY2) (Figure 4.2) where X1:X2 :Y1:.. Y:

(0,I) and the transition probabilities are as follows.

f ti) , )) 00# 1;

P((I1) I)) I-e 4= I and =0, or 4:0 and :1;

P((,0)I(,)) 4 :1 and t:0, or 4:0 and :;

all other transitions have zero probability.
VIM,.
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*• ...;¢

(00) (0,0)

(0,1) (0,!)

Io,1) (,) ,

Figure 4.2. The two-user channel of Example 4.1.
II

Thus, In a sense, the input by the second user selects the channel for the
first user. If (t,42) is the channel Input and (111,1 2) is the channel

* output at a given time, the transition probabilities from Z2 to 12 are the
-* same as those of a binary symmetric channel with probability of error e.
*. If t2=O, one has qj=41 with probability one; if t:=, then one has m:..

with probability one.

In or-der to decode the message of user 1, it is sufficient to dec:ce t"n t-
' of user 2. 30, any two-user rate (I bit, R2 bits) for which R2 is s lier

then the cut-off rate of a binary symmetric channel with probatilitj of
errar e, namely I -2log 2(4../i+3} bits, is achievable by ,,,..D.

If user I transmits at a rate of I bit, any decoder that decodes user 1's
message correctly must produce (as a by-product) a correct decoding of

* user 2's message, whether or not we are interested in that message.
Therefore, no two-user rate of the form (I bit, R2 bits) is achievable by
NJ3D If R2 Is positive. More precisely, if (R1 bits, R2 bits) is achievable
by NJ3D, then R, must be smaller than 1-(R) bits, where 6 Is a
function such that S(R2)>O for R2>0,

-i *.--*. .;...* .'*i-.".-.. - * .. . . . . .

.%. *~~ ~ *-.~ 8:. ~ 4** *** %.* *,** ,** .** .*~.**
1
b~, ,__ _ __ _o. -** **. '*
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Example 4.2. A channel for which R is not contained in R.

Consider a channel K=(P;X 1,X2;YIXY2) (Figure 4.3) where XI=X 2 {0,1),-
Yi=Y 2z(Ol,8), and the transition probabilities are

=,-1-6: t-Ae Q'::) I -

and P((eWe) Il4,f2)) - for each pair of 4jeX1, t2eX2.

The output symbol (e,e) is called an erasure and i is called the erasure
Drobability. We assume that e satisfies O<e 1.

.1 (09w l (0,0)I,

(0 1) (0,1)

(1,0) ,o 1,0)

(1 I,1) (1,1):--

": (e,e).-. e

Figure 4.3. The two-user channel of Example 4.2.

An outer bound to R(K) is found by observing that, if (R1,R2 ) beloncs t:
R(K), then R1.R2 cannot be larger than Ro(K4:-ln{(i+3)/4} nats, w,!-..
K4 is the single-user quaternary erasure channel, and Ro(K% 4 ) is tls
cut-off rate of K4.

By Theorem 4.1, R j(K) is inner-bounded by Rfj,o(K,Q) for anu Q, in
particular for Q*=(Q1 ,Q2) where QI =Q2 :the uniform distribution on
{0,1}. By simple calculation, Rn, (K,Q*)=((R1 ,R2):O.R .- ln[(I+e)/2] nats,
O.R21-ln[(l.e)/21 nats}.*

* Actually, Rnj 0(K,Q*):Rnj 0 (K); but we do not need this fact here.

e z .
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Figure 4.4 Shows the above bounds. We notica that thera ara3 points in
the neighborood of (-1n(I'i)/2I,-ln[(1.~)/2j) which belong to R,,(K) but
not to R(K), since -21n[(I+e)/2:-ln[(I.3e)/4j for any e, 0.Ce4C1.

R2 -In LUE

'2

Figure 4.4. Inner and outer bound regions of Example 4.2.

Comglernentar emarks on Example 4.2

1) Example 4.2 may seem paradoxical: How can two sequential decoders,
4 neither with a complete view of the system, achieve a point that is not

achievatle by J!D? This can be explained as follows.

Let 91 be the code for user 1, and e2 be the one for user 2. Let e be the
joint tree code for a, and 92. Let k be the number of channel symbols per
branch.

The channel output here is a sequence of pairs of symbols: (11,12)
(TI129ri 22), (11130123) ..... We shall denote the sequence 1r1 11,71121rt 13.... by

g.The first kt elements of Ut will be denoted by Y1(..t). 1121,1122, 23,...
will be denoted by y2, and the first kt elements of Y2 by y2(..t).

1_
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A nods u1(.t in St is said to be consistent if elu1(..t) agrees with y1(..t)
tn the unerased digits. A node u2(..t in *2 IS said to be consistent if
e*ia2(..t) agrees with 92G.0t in the unerased digits. A node ul(..t)xu2(..t)
in e is said to be consistent If u1(..t) and U2(..t) are consistent. Let
Wl(y(..t))g Wz(y 2(..t)), and W(yIxy2(,.t)) denote the number of consistent
level-t nodes in ell e2, and a. respectively. Note the Identity W:W1W2.

Conditional on U,(.. all consistent level-t nodes In a, are equally likely
to be correct. Thus,, W(l(..t))/2 Is a lower bound to the number of
level-t nodes in 91 that reach the stack-top of SDI in NJSD. (The
reasoning here is the same as that leading to Lemma 3. 1. 1.) On the other
hand, W, Is an upper bound on the same number of nodes provided that
SDI uses, as we assume that It does; a metric that assigns -00 to
Inconsistent nodes, thus preventing them from ever reaching the
stack-top.

Similarly, the number df level-t nodes in 02 that reach the stack-top of
502 is lower-bounded by W2(Y2(.t))/2 and upper-bounded by W2(y2(..t)).
And the number of level-t nodes in m that reach the stack-top in JSD is
lower-bounded by W(yIxy2(.t))/2 and upper-bounded by W(ylxyz(..t)).

What Is of interest for our discussion Is that 1) W(YlxY2(.t))/2 is a
lower bound to the number of leyel-t nodes in a that are processed in
J,'QD, and 2) W1(Y(..))+W2(Y(..t) IS an upper bound on the number of
level-t nodes in a, and 92 that are processed in NJ5D. Since W:-W1W2 a I--d
both W, and W2 are at least 1 , we have W/2 I (WI.W 2)/4. It is thus clear
that the complexity of JSD is greater than one fourth the combined
complexity of S0I and SD2. The conclusion that follows is that R(K) must
be a subset of Raj(K).

2) Example 4.2 was inspired by Massey's paper on sequential decoding for
sine-ser M'ary erasure channels (151. Massey observed that, if M=21-,

* then an W'ary erasure channel decomposes into L completely correlated
binary erasure channels (SEC), as Illustrated In Figure 4.5 for L=2. The
component BEC's are completely correlated In the sense that an erasure
in one means an erasure in all.

=17
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(A,a) 1-6 - (A,a)

(A,b) - o (A,b)

(,a) -e (B,a)

(8,b) (Bb)

(E,e)

A A n a

E e
9B b nb

1 -6 1 -6

Figure 4.5. Oecomposftfon Ort a quaternary erasure channel.

The cut-off rate of an Wary erasure channel with erasure probability .

equals R(M)=-ln[e+(l-e)/Mj nats. If one uses separate sequential
decoders on each component EEC of a 2L'ari erasure channel, one can
then achieve rates up to LRo(2)=-Lln[I-6),, . nats. On the other hand, if ..-

secuential decoding is used directly on a 2Lary erasure channel, then the

achievable rates are upper-bounded by Ro(2L). But LRo(2)>Ro(2L) for any

e, O<e<1. In fact , LRa(2)tRo(2L) goes to infinity as L increases.

An explanation for this apparent peculiarity can be given In exactly the
same way as has been done for Example 4.2. The conclusions that :an be
drawn from Massey's observation are that i) one cannot talk about a
cut-off rate for single-user channels without being explicit about the
sequential decoding scheme one has in mind, and ii) the cut-off rate of
ordinary sequential decoding does not constitute a limit, even in an
approximate sense, to rates at which reliable communication is possible .7
in practice.

I.:. -.
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Chapter 5

SUGGESTIONS FOR FURTHER RESEARCH

1. Determine whether R(K)sRo(K) for all K.

2. Determine whether R Is convex. Note that, If R Is indeed convex, :..
proving that It is convex does not necessarily require an explicit
characterization of R.

3. Determine whether Ro(K)=convex-hull R0(K, 1) for all K.

4. Determine whether strong achievability (Def. 1.4.3) is equivalent to
achievability (Def. 1.4.2).

5. The metric of 12.2 requires that, in order to maintain achievability as
8, the distance between the desired rate and the "outer" boundary of R0,
goes to zero, the number of channel symbols per branch increase without
bound. Determine whether this requirement, which does not exist in the
single-user case, Is inherent in multi-user sequential decoding.

A result in this regard, which is not reporta in this thesis, is that
there Is no metrlc tnat 1) satIsfies tie sufficlent conditions of 12.1
over a region whose closure is R0, and 2) does not require the number of
sgmbols per !r-nch go to infinity as 8 goes to zero.

6. A simulation study of multi-user sequential decoding may be done to
obtain a better idea about its complexity. The analytical upper bounds of
this thesis are useful for determining whether the average complexity is
finite; but they are too weak to give an idea about the actual average
complexity. Furthermore, a simulation study would provide Information
about the dynamic behavior of multi-user sequential decoders, a difficult
subject to approach analytically.
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7. The non-Joint sequential decoding schieme of Chapter 4 Is Just one of

$meral possible approaches to sequential decoding with multiple
processors. It would be Interesting to see what could be gained by
letting the processors exchange information about their current
estimtes. Such schemes are not likely to be analytically tractable; but
that should not deter one from exploring these potentially more powerful
schemes.

Pb .

p . .
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